FN Clarivate Analytics Web of Science VR 1.0 PT J AU Croft, WL Sack, JR AF Croft, William L. Sack, Joerg-Rudiger TI Predicting the citation count and CiteScore of journals one year in advance SO JOURNAL OF INFORMETRICS LA English DT Article DE Impact metrics; Predictive modeling; Neural networks; Long short-term memory; CiteScore ID IMPACT FACTOR; SCIENCE; SCORES AB Prediction of the future performance of academic journals is a task that can benefit a variety of stakeholders including editorial staff, publishers, indexing services, researchers, university admin-istrators and granting agencies. Using historical data on journal performance, this can be framed as a machine learning regression problem. In this work, we study two such regression tasks: 1) prediction of the number of citations a journal will receive during the next calendar year, and 2) prediction of the Elsevier CiteScore a journal will be assigned for the next calendar year. To address these tasks, we first create a dataset of historical bibliometric data for journals indexed in Scopus. We propose the use of neural network models trained on our dataset to predict the future performance of journals. To this end, we perform feature selection and model configuration for a Multi-Layer Perceptron and a Long Short-Term Memory. Through experimental comparisons to heuristic prediction baselines and classical machine learning models, we demonstrate superior performance in our proposed models for the prediction of future citation and CiteScore values. C1 [Croft, William L.; Sack, Joerg-Rudiger] Carleton Univ, Sch Comp Sci, Ottawa, ON, Canada. C3 Carleton University RP Croft, WL (corresponding author), Carleton Univ, Sch Comp Sci, Ottawa, ON, Canada. EM leecroft@cmail.carleton.ca; sack@scs.carleton.ca FU Natural Sciences and Engineering Research Council of Canada (NSERC); [RGPIN-2016-06253] FX Funding: This work was supported by the Natural Sciences and Engineering Research Council of Canada (NSERC) [grant number RGPIN-2016-06253] . CR Abrishami A, 2019, J INFORMETR, V13, P485, DOI 10.1016/j.joi.2019.02.011 Drongstrup D, 2020, SCIENTOMETRICS, V125, P1541, DOI 10.1007/s11192-020-03613-3 Elsevier, 2020, CITESCORE J METR FAQ Elsevier, 2020, 2019 CITESCORE VAL R Feng L, 2020, SCIENTOMETRICS, V124, P233, DOI 10.1007/s11192-020-03422-8 García-Villar C, 2021, RADIOLOGIA-MADRID, V63, P228, DOI 10.1016/j.rx.2021.01.002 GARFIELD E, 1955, SCIENCE, V122, P108, DOI 10.1126/science.122.3159.108 Garfield E, 2006, JAMA-J AM MED ASSOC, V295, P90, DOI 10.1001/jama.295.1.90 Garfield E., 1961, SCI CITATION INDEX, V1, pv Glanzel W, 2002, SCIENTOMETRICS, V53, P171, DOI 10.1023/A:1014848323806 González-Pereira B, 2010, J INFORMETR, V4, P379, DOI 10.1016/j.joi.2010.03.002 Halim Z, 2019, SCIENTOMETRICS, V119, P393, DOI 10.1007/s11192-019-03035-w Hastie T, 2009, MODEL ASSESSMENT SEL Hochreiter S, 1997, NEURAL COMPUT, V9, P1735, DOI [10.1162/neco.1997.9.1.1, 10.1007/978-3-642-24797-2] Hou J, 2019, COMPUT SCI REV, V34, DOI 10.1016/j.cosrev.2019.100197 Jacsó P, 2010, ONLINE INFORM REV, V34, P339, DOI 10.1108/14684521011037034 Ketcham CM, 2007, LAB INVEST, V87, P520, DOI 10.1038/labinvest.3700554 Kim K, 2018, SCI ED, V5, P16, DOI 10.6087/kcse.112 Lee DH, 2019, SCIENTOMETRICS, V118, P281, DOI 10.1007/s11192-018-2943-z Manolopoulos Y., 2017, COMMUN COMP INFO SCI, V706, P265, DOI [10.1007/978-3-319-57135-5_19, DOI 10.1007/978-3-319-57135-5_19] Mingers J, 2017, EUR J OPER RES, V257, P323, DOI 10.1016/j.ejor.2016.07.058 Moed HF, 2010, J INFORMETR, V4, P265, DOI 10.1016/j.joi.2010.01.002 Ni CQ, 2013, J AM SOC INF SCI TEC, V64, P802, DOI 10.1002/asi.22778 Prathap G, 2012, SCIENTOMETRICS, V92, P403, DOI 10.1007/s11192-012-0746-1 Roldan-Valadez E, 2019, IRISH J MED SCI, V188, P939, DOI 10.1007/s11845-018-1936-5 Ruan XM, 2020, J INFORMETR, V14, DOI 10.1016/j.joi.2020.101039 RUMELHART DE, 1986, NATURE, V323, P533, DOI 10.1038/323533a0 Saarela M, 2020, J INFORMETR, V14, DOI 10.1016/j.joi.2020.101008 Teixeira da Silva JA, 2020, PUBLISH RES Q, V36, P459, DOI 10.1007/s12109-020-09736-y Teixeira da Silva JA, 2017, SCIENTOMETRICS, V111, P553, DOI 10.1007/s11192-017-2250-0 Templ M, 2020, AUST J STAT, V49, P35, DOI 10.17713/ajs.v49i5.1186 Thelwall M, 2018, J INFORMETR, V12, P237, DOI 10.1016/j.joi.2018.01.008 Trapp JV, 2020, PHYS ENG SCI MED, V43, P739, DOI 10.1007/s13246-020-00903-1 Wang DS, 2013, SCIENCE, V342, P127, DOI 10.1126/science.1237825 WERBOS PJ, 1990, P IEEE, V78, P1550, DOI 10.1109/5.58337 Wu XF, 2008, J ZHEJIANG UNIV-SC B, V9, P582, DOI 10.1631/jzus.B0840001 Xu JG, 2019, IEEE ACCESS, V7, P92248, DOI 10.1109/ACCESS.2019.2927011 Yan R, 2011, P 20 ACM INT C INF K, P1247, DOI DOI 10.1145/2063576.2063757 Zijlstra H., 2016, CiteScore: a new metric to help you track journal performance and make decisions NR 39 TC 5 Z9 5 U1 3 U2 31 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS SN 1751-1577 EI 1875-5879 J9 J INFORMETR JI J. Informetr. PD NOV PY 2022 VL 16 IS 4 AR 101349 DI 10.1016/j.joi.2022.101349 EA NOV 2022 PG 19 WC Computer Science, Interdisciplinary Applications; Information Science & Library Science WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Computer Science; Information Science & Library Science GA 6D9KY UT WOS:000883004100006 OA Green Submitted DA 2024-09-05 ER PT J AU Muppidi, S Gorripati, SK Kishore, B AF Muppidi, Satish Gorripati, Satya Keerthi Kishore, B. TI An approach for bibliographic citation sentiment analysis using deep learning SO INTERNATIONAL JOURNAL OF KNOWLEDGE-BASED AND INTELLIGENT ENGINEERING SYSTEMS LA English DT Article DE Citation sentiment analysis; deep learning models; CNN; CNN-LSTM AB Sentiment analysis of scientific citations is a novel and remarkable research area. Most of the work on opinion or sentiment analysis has been suggested on social platforms such as Blogs, Twitter, and Facebook. Nevertheless, when it comes to recognizing sentiments from scientific citation papers, investigators used to face difficulties due to the implied and unseen natures of sentiments or opinions. As the citation references are reflected implicitly positive in opinion, famous ranking and indexing prototypes frequently disregard the sentiment existence while citing. Hence, in the proposed framework the paper emphasizes the issue of classifying positive and negative polarity of reference sentiments in scientific research papers. First, the paper scraps the PDF articles from arxiv.org under the computer science group consisting of articles that are comprised of 'autism' in their title, then the paper extracted cited references and assigns polarity scores to each cited reference. The paper uses a supervised classifier with a combination of significant feature sets and compared the performance of the models. Experimental results show that a combined CNN-LSTM deep neural network model results in 85% of accuracy while traditional models result in less accuracy. C1 [Muppidi, Satish] GMRIT, Dept CSE, Rajam, Andhra Pradesh, India. [Gorripati, Satya Keerthi] GVP Coll Engn Autonomous, Dept CSE, Visakhapatnam, Andhra Pradesh, India. [Kishore, B.] Oregon State Univ, Sch Elect Engn & Comp Sci, Corvallis, OR 97331 USA. C3 GMR Institute of Technology; Gayatri Vidya Parishad College of Engineering; Oregon State University RP Muppidi, S (corresponding author), GMRIT, Dept CSE, Rajam, Andhra Pradesh, India. EM satish.m@gmrit.edu.in RI Muppidi, Satish/E-4016-2016 OI Muppidi, Satish/0000-0003-1714-1769; B, Kishore/0000-0002-7577-4911 CR [Anonymous], 2012, 2012 Conference of the North American Chapter of the Association for Computational Linguistics [Anonymous], 2004, Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, DOI 10.3115/1218955.1218990 Athar A., 2011, P ACL 2011 STUD SESS, P81 Bahrainian SA, 2013, IEEE INT C COMPUT, P227, DOI 10.1109/CSE.2013.44 Ding Y, 2014, J ASSOC INF SCI TECH, V65, P1820, DOI 10.1002/asi.23256 Ghosh S., 2016, INT C INT TEXT PROC Godbole N., 2007, ICWSM, V7, P219 Kouloumpis E., 2011, TWITTER SENTIMENT AN, P538 Kumar R., 2018, 2018 IEEE 17 INT C C Muppidi S, 2020, INT J KNOWL-BASED IN, V24, P19, DOI 10.3233/KES-200025 Pak A, 2010, LREC Reddy D.M., 2019, ARXIV190412580 Shahana PH, 2015, PROCEDIA COMPUT SCI, V46, P1585, DOI 10.1016/j.procs.2015.02.088 Sosa P. M., 2017, TWITTER SENTIMENT AN NR 14 TC 4 Z9 4 U1 1 U2 10 PU IOS PRESS PI AMSTERDAM PA NIEUWE HEMWEG 6B, 1013 BG AMSTERDAM, NETHERLANDS SN 1327-2314 EI 1875-8827 J9 INT J KNOWL-BASED IN JI Int. J. Knowl.-Based Intell. Eng. Syst. PY 2020 VL 24 IS 4 BP 353 EP 362 DI 10.3233/KES-200087 PG 10 WC Computer Science, Artificial Intelligence WE Emerging Sources Citation Index (ESCI) SC Computer Science GA PW7HI UT WOS:000610841000009 DA 2024-09-05 ER PT J AU Kumar, S AF Kumar, Suresh TI An evaluation of author productivity in artificial neural networks research in India during 1991-2014 SO ANNALS OF LIBRARY AND INFORMATION STUDIES LA English DT Article DE Lotka Law; Bibliometrics; Artificial Neural Networks; India ID LOTKAS LAW; COLLABORATION AB The study examines the conformity of Lotka's law to authorship distribution in the field of Artificial Neural Networks research (ANNs) in India during 1991-2014 using Science Citation Index-Expanded. There were 3411 articles contributed by 5654 unique authors. Lotka's law was tested using methodology suggested by Pao and compared with maximum likelihood method advocated by Nicholls. The main elements involved in fitting in Lotka's law were identified. These includes criterion for taking a certain pair of observed data points for calculating Lotka's gradient, the constant for measurement of single author productivity and assessing goodness-of-fit. The results suggested that author productivity distribution, predicted by the modified Lotka's Law suggested by Pao, was confirmed to the ANNs discipline in India whereas methodology suggested by Nicholls was not able to explain the author productivity distribution for the same. Evaluation of the prolific authors indicated that most of them are among the top position in their respective institutions. However, they were not listed as first author in their publications supporting that all the authors should be considered while analysing author productivity. C1 [Kumar, Suresh] CSIR Natl Inst Sci Technol & Dev Studies, Dr KS Krishnan Marg, New Delhi 110012, India. C3 Council of Scientific & Industrial Research (CSIR) - India; CSIR - National Institute of Science Communication & Policy Research (NIScPR) RP Kumar, S (corresponding author), CSIR Natl Inst Sci Technol & Dev Studies, Dr KS Krishnan Marg, New Delhi 110012, India. EM sureshkr@nistads.res.in CR Aaron Laura, 2010, Radiol Technol, V82, P185 Askew C A, 2008, THESIS BOOKSTEIN A, 1976, LIBR QUART, V46, P416 COILE RC, 1977, J AM SOC INFORM SCI, V28, P366, DOI 10.1002/asi.4630280610 Coursaris CK, 2014, SCIENTOMETRICS, V101, P357, DOI 10.1007/s11192-014-1399-z Egghe L, 2012, MALAYS J LIBR INF SC, V17, P1 Figg WD, 2006, PHARMACOTHERAPY, V26, P759, DOI 10.1592/phco.26.6.759 Harande YI, 2001, LIBRI, V51, P124, DOI 10.1515/LIBR.2001.124 Huber JC, 2001, SCIENTOMETRICS, V50, P323, DOI 10.1023/A:1010581925357 Lotka A.J., 1926, J Wash Acad Sci Wash D C, V16, P23 Newby GB, 2003, J AM SOC INF SCI TEC, V54, P169, DOI 10.1002/asi.10177 NICHOLLS PT, 1986, INFORM PROCESS MANAG, V22, P417, DOI 10.1016/0306-4573(86)90076-2 PAO ML, 1986, J AM SOC INFORM SCI, V37, P26, DOI 10.1002/(SICI)1097-4571(198601)37:1<26::AID-ASI4>3.0.CO;2-Z PAO ML, 1985, INFORM PROCESS MANAG, V21, P305, DOI 10.1016/0306-4573(85)90055-X POTTER WG, 1981, LIBR TRENDS, V30, P21 Rousseau B., 2000, Cybermetrics, V4 SCHORR AE, 1975, J AM SOC INFORM SCI, V26, P189, DOI 10.1002/asi.4630260308 NR 17 TC 0 Z9 0 U1 0 U2 3 PU NATL INST SCIENCE COMMUNICATION-NISCAIR PI NEW DELHI PA DR K S KRISHNAN MARG, PUSA CAMPUS, NEW DELHI 110 012, INDIA SN 0972-5423 EI 0975-2404 J9 ANN LIBR INF STUD JI Ann. Libr. Inf. Stud. PY 2016 VL 63 IS 2 BP 126 EP 131 DI 10.56042/alis.v63i2.11697 PG 6 WC Information Science & Library Science WE Emerging Sources Citation Index (ESCI) SC Information Science & Library Science GA FI2HU UT WOS:000411760500006 DA 2024-09-05 ER PT J AU Ausloos, M AF Ausloos, M. TI Assessing the true role of coauthors in the h-index measure of an author scientific impact SO PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS LA English DT Article DE Co-authorship; h-index; Principal component analysis; Scientific production; Fractional weight ID JOURNAL LITERATURE; HIRSCH INDEX; GROWTH-MODEL; CO-AUTHORS; VARIANTS; COLLABORATION; MANIFESTATION; INDICATORS; REFERENCES AB A method based on the classical principal component analysis leads to demonstrate that the role of co-authors should give a h-index measure to a group leader higher than usually accepted. The method rather easily gives what is usually searched for, i.e. an estimate of the role (or "weight") of co-authors, as the additional value to an author papers' popularity. The construction of the co-authorship popularity, H-matrix is exemplified and the role of eigenvalues and the main eigenvector component are discussed. Examples illustrate the points and serve as the basis for suggesting a generally practical application of the concept. (C) 2015 Elsevier B.V. All rights reserved. C1 [Ausloos, M.] KNAW, E Humanities Grp, NL-1096 CJ Amsterdam, Netherlands. [Ausloos, M.] GRAPES, B-4031 Liege, Federation Wall, Belgium. C3 Royal Netherlands Academy of Arts & Sciences RP Ausloos, M (corresponding author), GRAPES, Rue Belle Jardiniere, B-4031 Liege, Federation Wall, Belgium. EM marcel.ausloos@ulg.ac.be RI Ausloos, Marcel/AAC-8812-2020 OI Ausloos, Marcel/0000-0001-9973-0019 CR Abramo G, 2013, J INFORMETR, V7, P198, DOI 10.1016/j.joi.2012.11.003 Alonso S, 2009, J INFORMETR, V3, P273, DOI 10.1016/j.joi.2009.04.001 Ausloos M, 2008, INT J MOD PHYS C, V19, P371, DOI 10.1142/S0129183108012224 Ausloos M, 2013, SCIENTOMETRICS, V95, P895, DOI 10.1007/s11192-012-0936-x Ausloos M, 2014, SCIENTOMETRICS, V99, P331, DOI 10.1007/s11192-014-1230-x Aziz NA, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0059814 Bar-Ilan J, 2008, SCIENTOMETRICS, V74, P257, DOI 10.1007/s11192-008-0216-y Batista PD, 2006, SCIENTOMETRICS, V68, P179, DOI 10.1007/s11192-006-0090-4 Beck I. M., 1984, SCI SCI, V4, P183 Borner K, 2005, COMPLEXITY, V10, P57, DOI 10.1002/cplx.20078 Bornmann L, 2008, J AM SOC INF SCI TEC, V59, P830, DOI 10.1002/asi.20806 Bougrine H, 2014, SCIENTOMETRICS, V98, P1047, DOI 10.1007/s11192-013-1066-9 Braun T., 1985, Scientometric indicators:a 32-country comparative evaluation of publishing performance and citation impact Buchanan RA, 2006, COLL RES LIBR, V67, P292, DOI 10.5860/crl.67.4.292 Carbone V., 2011, ARXIV11060114V1 Durieux V, 2010, RADIOLOGY, V255, P342, DOI 10.1148/radiol.09090626 Egghe L, 2008, J AM SOC INF SCI TEC, V59, P1608, DOI 10.1002/asi.20845 Galam S, 2011, SCIENTOMETRICS, V89, P365, DOI 10.1007/s11192-011-0447-1 Glänzel W, 2001, SCIENTOMETRICS, V51, P69, DOI 10.1023/A:1010512628145 Hagen NT, 2009, SCIENCE, V323, P583, DOI 10.1126/science.323.5914.583a Hirsch JE, 2010, SCIENTOMETRICS, V85, P741, DOI 10.1007/s11192-010-0193-9 Hirsch JE, 2005, P NATL ACAD SCI USA, V102, P16569, DOI 10.1073/pnas.0507655102 Kwok LS, 2005, J MED ETHICS, V31, P554, DOI 10.1136/jme.2004.010553 Laudel G, 2001, 8TH INTERNATIONAL CONFERENCE ON SCIENTOMETRICS AND INFORMETRICS, VOLS 1 AND 2 - ISSI-2001, PROCEEDINGS, P369 Melin G, 1996, SCIENTOMETRICS, V36, P363, DOI 10.1007/BF02129600 Miskiewicz J, 2013, PHYSICA A, V392, P5119, DOI 10.1016/j.physa.2013.06.027 Morris SA, 2005, J AM SOC INF SCI TEC, V56, P1250, DOI 10.1002/asi.20208 Morris SA, 2007, J AM SOC INF SCI TEC, V58, P1764, DOI 10.1002/asi.20661 Rotundo G, 2014, PHYSICA A, V404, P296, DOI 10.1016/j.physa.2014.02.011 Schreiber M, 2012, J INFORMETR, V6, P347, DOI 10.1016/j.joi.2012.02.001 Schreiber M, 2007, EPL-EUROPHYS LETT, V78, DOI 10.1209/0295-5075/78/30002 Schreiber M, 2008, NEW J PHYS, V10, DOI 10.1088/1367-2630/10/4/040201 Schreiber M, 2008, J INFORMETR, V2, P211, DOI 10.1016/j.joi.2008.05.001 Schreiber M, 2010, ANN PHYS-BERLIN, V522, P536, DOI 10.1002/andp.201000046 Schreiber M, 2010, J INFORMETR, V4, P42, DOI 10.1016/j.joi.2009.06.003 Sekercioglu CH, 2008, SCIENCE, V322, P371, DOI 10.1126/science.322.5900.371a Sidiropoulos A, 2007, SCIENTOMETRICS, V72, P253, DOI 10.1007/s11192-007-1722-z Vanclay JK, 2007, J AM SOC INF SCI TEC, V58, P1547, DOI 10.1002/asi.20616 Zhang CT, 2009, EMBO REP, V10, P416, DOI 10.1038/embor.2009.74 NR 39 TC 16 Z9 16 U1 0 U2 38 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS SN 0378-4371 EI 1873-2119 J9 PHYSICA A JI Physica A PD MAR 15 PY 2015 VL 422 BP 136 EP 142 DI 10.1016/j.physa.2014.12.004 PG 7 WC Physics, Multidisciplinary WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Physics GA CC1EX UT WOS:000350085100013 OA Green Submitted DA 2024-09-05 ER PT J AU Momeni, F Mayr, P Dietze, S AF Momeni, Fakhri Mayr, Philipp Dietze, Stefan TI Investigating the contribution of author-and publication-specific features to scholars' h-index prediction SO EPJ DATA SCIENCE LA English DT Article DE h-index prediction; Feature importance; Academic mobility; Machine learning; Open access publishing ID INTERNATIONAL COLLABORATION; CITATION IMPACT; PRODUCTIVITY AB Evaluation of researchers' output is vital for hiring committees and funding bodies, and it is usually measured via their scientific productivity, citations, or a combined metric such as the h-index. Assessing young researchers is more critical because it takes a while to get citations and increment of h-index. Hence, predicting the h-index can help to discover the researchers' scientific impact. In addition, identifying the influential factors to predict the scientific impact is helpful for researchers and their organizations seeking solutions to improve it. This study investigates the effect of the author, paper/venue-specific features on the future h-index. For this purpose, we used a machine learning approach to predict the h-index and feature analysis techniques to advance the understanding of feature impact. Utilizing the bibliometric data in Scopus, we defined and extracted two main groups of features. The first relates to prior scientific impact, and we name it 'prior impact-based features' and includes the number of publications, received citations, and h-index. The second group is 'non-prior impact-based features' and contains the features related to author, co-authorship, paper, and venue characteristics. We explored their importance in predicting researchers' h-index in three career phases. Also, we examined the temporal dimension of predicting performance for different feature categories to find out which features are more reliable for long- and short-term prediction. We referred to the gender of the authors to examine the role of this author's characteristics in the prediction task. Our findings showed that gender has a very slight effect in predicting the h-index. Although the results demonstrate better performance for the models containing prior impact-based features for all researchers' groups in the near future, we found that non-prior impact-based features are more robust predictors for younger scholars in the long term. Also, prior impact-based features lose their power to predict more than other features in the long term. C1 [Momeni, Fakhri; Mayr, Philipp; Dietze, Stefan] GESIS Leibniz Inst Social Sci, Unter Sachsenhausen 6-8, D-50667 Cologne, Germany. [Dietze, Stefan] Heinrich Heine Univ, Univ Str 1, D-40225 Dusseldorf, Germany. C3 Leibniz Institut fur Sozialwissenschaften (GESIS); Heinrich Heine University Dusseldorf RP Momeni, F (corresponding author), GESIS Leibniz Inst Social Sci, Unter Sachsenhausen 6-8, D-50667 Cologne, Germany. EM fakhri.momeni@t-online.de RI Momeni, Fakhri/I-8012-2018 OI Momeni, Fakhri/0000-0002-5572-575X FU BMBF project OASE [01PU17005A]; [01PQ17001] FX We acknowledge the support of the German Competence Center for Bibliometrics (grant: 01PQ17001) for maintaining the used dataset for the analyses.; Open Access funding enabled and organized by Projekt DEAL. This work is financially supported by BMBF project OASE, grant number 01PU17005A. CR Abrishami A, 2019, J INFORMETR, V13, P485, DOI 10.1016/j.joi.2019.02.011 Amjad T, 2022, LIBR HI TECH, V40, P685, DOI 10.1108/LHT-05-2021-0154 Artur Mechetin., 2021, Procedia Computer Science, V190, P564, DOI [10.1016/j.procs.2021.06.066, DOI 10.1016/J.PROCS.2021.06.066] Asaro PM, 2019, IEEE TECHNOL SOC MAG, V38, P40, DOI 10.1109/MTS.2019.2915154 Ayaz S, 2018, SCIENTOMETRICS, V114, P993, DOI 10.1007/s11192-017-2618-1 Bai XM, 2019, J INFORMETR, V13, P407, DOI 10.1016/j.joi.2019.01.010 Bartneck C, 2011, SCIENTOMETRICS, V87, P85, DOI 10.1007/s11192-010-0306-5 Blair LD, 2020, The open access policy citation advantage for a medical school Bornmann L, 2020, SCIENTOMETRICS, V124, P1457, DOI 10.1007/s11192-020-03512-7 Bornmann L, 2014, J ASSOC INF SCI TECH, V65, P1939, DOI 10.1002/asi.23152 Carter TE, 2017, SCIENTOMETRICS, V111, P1547, DOI 10.1007/s11192-017-2287-0 Chen TQ, 2016, KDD'16: PROCEEDINGS OF THE 22ND ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, P785, DOI 10.1145/2939672.2939785 Confraria H, 2017, RES POLICY, V46, P265, DOI 10.1016/j.respol.2016.11.004 Daud Ali, 2013, Database Systems for Advanced Applications.18th International Conference, DASFAA 2013. Proceedings, P13, DOI 10.1007/978-3-642-37487-6_4 Dong Y, 2015, WSDM'15: PROCEEDINGS OF THE EIGHTH ACM INTERNATIONAL CONFERENCE ON WEB SEARCH AND DATA MINING, P149, DOI 10.1145/2684822.2685314 Egghe L., 2006, ISSI NEWSLETTER, V2, P8 Egghe L, 2006, SCIENTOMETRICS, V69, P131, DOI 10.1007/s11192-006-0144-7 Fraser N, 2020, QUANT SCI STUD, V1, P618, DOI 10.1162/qss_a_00043 Gantman ER, 2012, SCIENTOMETRICS, V93, P967, DOI 10.1007/s11192-012-0736-3 Grech V, 2018, INT UROGYNECOL J, V29, P619, DOI 10.1007/s00192-018-3604-8 Hirsch JE, 2005, P NATL ACAD SCI USA, V102, P16569, DOI 10.1073/pnas.0507655102 Hsu JW, 2011, SCIENTOMETRICS, V86, P317, DOI 10.1007/s11192-010-0265-x Iglesias JE, 2007, SCIENTOMETRICS, V73, P303, DOI 10.1007/s11192-007-1805-x Jiang S, 2021, PROCEEDINGS OF THE WORLD WIDE WEB CONFERENCE 2021 (WWW 2021), P3158, DOI 10.1145/3442381.3450107 Karimi F, 2016, PROCEEDINGS OF THE 25TH INTERNATIONAL CONFERENCE ON WORLD WIDE WEB (WWW'16 COMPANION), P53, DOI 10.1145/2872518.2889385 Kaur J, 2013, J INFORMETR, V7, P924, DOI 10.1016/j.joi.2013.09.002 Kelly CD, 2006, TRENDS ECOL EVOL, V21, P167, DOI 10.1016/j.tree.2006.01.005 Kossmeier M, 2019, TRANSPL INT, V32, P6, DOI 10.1111/tri.13292 Langham-Putrow A, 2021, PLOS ONE, V16, DOI 10.1371/journal.pone.0253129 Leydesdorff L, 2019, J ASSOC INF SCI TECH, V70, P198, DOI 10.1002/asi.24109 Lillquist E, 2010, SCIENTOMETRICS, V84, P749, DOI 10.1007/s11192-010-0162-3 Liu JW, 2021, SCIENTOMETRICS, V126, P1079, DOI 10.1007/s11192-020-03783-0 Lopez SA, 2014, J SURG EDUC, V71, P851, DOI 10.1016/j.jsurg.2014.03.015 Malesios CC, 2014, QUAL QUANT, V48, P521, DOI 10.1007/s11135-012-9785-1 McCarty C, 2013, SCIENTOMETRICS, V96, P467, DOI 10.1007/s11192-012-0933-0 Momeni F, 2023, QUANT SCI STUD, V4, P353, DOI 10.1162/qss_a_00253 Momeni F, 2022, J INFORMETR, V16, DOI 10.1016/j.joi.2022.101280 Moreno JJM, 2013, PSICOTHEMA, V25, P500, DOI 10.7334/psicothema2013.23 Netz N, 2020, RES EVALUAT, V29, P327, DOI 10.1093/reseval/rvaa007 NEWBOLD P., 1995, Statistics for business and economics Ni P, 2018, SCIENTOMETRICS, V116, P863, DOI 10.1007/s11192-018-2784-9 Nie YB, 2019, SCIENTOMETRICS, V120, P461, DOI 10.1007/s11192-019-03131-x Nikolentzos G, 2021, The case of h-index, P177 Ottaviani J, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0159614 Petersen AM, 2014, EPJ DATA SCI, V3, DOI 10.1140/epjds/s13688-014-0024-y Puuska HM, 2014, SCIENTOMETRICS, V98, P823, DOI 10.1007/s11192-013-1181-7 Radford DM, 2022, J WOMENS HEALTH, V31, P110, DOI 10.1089/jwh.2020.8579 Ruan XM, 2020, J INFORMETR, V14, DOI 10.1016/j.joi.2020.101039 Sarigöl E, 2014, EPJ DATA SCI, V3, DOI 10.1140/epjds/s13688-014-0009-x Singh V, 2018, SCIENTOMETRICS, V115, P1241, DOI 10.1007/s11192-018-2706-x Smirnova N, 2023, SCIENTOMETRICS, V128, P709, DOI 10.1007/s11192-022-04554-9 Weihs L, 2017, ACM-IEEE J CONF DIG, P49 Wu ZM, 2019, IEEE ACCESS, V7, P51759, DOI 10.1109/ACCESS.2019.2910239 Xie FY, 2022, PLOS ONE, V17, DOI 10.1371/journal.pone.0279265 Yuxiao Dong, 2016, IEEE Transactions on Big Data, V2, P18, DOI 10.1109/TBDATA.2016.2521657 Zhao Lin, 2022, 2022 7th International Conference on Intelligent Informatics and Biomedical Science (ICIIBMS), P188, DOI 10.1109/ICIIBMS55689.2022.9971528 Zuiderveen Borgesius F, 2018, Linea NR 57 TC 1 Z9 1 U1 4 U2 4 PU SPRINGER PI NEW YORK PA ONE NEW YORK PLAZA, SUITE 4600, NEW YORK, NY, UNITED STATES EI 2193-1127 J9 EPJ DATA SCI JI EPJ Data Sci. PD OCT 6 PY 2023 VL 12 IS 1 AR 45 DI 10.1140/epjds/s13688-023-00421-6 PG 21 WC Mathematics, Interdisciplinary Applications; Social Sciences, Mathematical Methods WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Mathematics; Mathematical Methods In Social Sciences GA LS8H5 UT WOS:001188878200001 OA gold, Green Submitted DA 2024-09-05 ER PT C AU Adetiba, E Adeyemi-Kayode, T Moninuola, F Akinrinmade, A Abolarin, O Moyo, S AF Adetiba, Emmanuel Adeyemi-Kayode, Temitope Moninuola, Funmilayo Akinrinmade, Adekunle Abolarin, Olusegun Moyo, Sibusiso BE Soliman, KS TI A Mini Bibliometric Review to Explore Decades of Research in Artificial Neural Networks SO EDUCATION EXCELLENCE AND INNOVATION MANAGEMENT: A 2025 VISION TO SUSTAIN ECONOMIC DEVELOPMENT DURING GLOBAL CHALLENGES LA English DT Proceedings Paper CT 35th International-Business-Information-Management-Association Conference (IBIMA) CY APR 01-02, 2020 CL Seville, SPAIN DE Artificial Neural Networks; ANN; Neurofuzzy; Kohonen; Hopfield; Bibliometrics AB In this mini bibliometric review, we explore and report on the contributions made in the field of Artificial Neural Networks (ANN) over more than three decades of research endeavors. The review covers the period from 1986 to 2018 with a total of 380,086 documents extracted from Scopus database. The extracted bibliometric information was thoroughly pre-processed while the analysis of authorship was performed using the VOSviewer (www.vosviewer.com). The result of the bibliometric analysis unearths the types of publications, the languages used for the publications, the evolution of the scientific outputs, the distribution of publications by regions and institutions, the distribution of outputs in subject categories and the networks of authorship. The results presented in this paper could help researchers seeking for collaborations in the field of ANN to promptly locate reputable scholars. Funding agencies could also leverage on the results in this study to properly disburse grants for ground-breaking work and measure impact and accountability of investment to support further research in artificial intelligence. C1 [Adetiba, Emmanuel; Adeyemi-Kayode, Temitope; Moninuola, Funmilayo; Akinrinmade, Adekunle] Covenant Univ, Coll Engn, Dept Elect & Informat Engn, Ota, Nigeria. [Adetiba, Emmanuel] Durban Univ Technol, Inst Syst Sci, HRA, POB 1334, Durban, South Africa. [Abolarin, Olusegun] Schlumberger Technol Corp, 14910 Airline Rd, Rosharon, TX 77583 USA. [Moyo, Sibusiso] Durban Univ Technol, Inst Syst Sci, DVC Res Innovat & Engagement, Durban, South Africa. C3 Covenant University; Durban University of Technology; Schlumberger; Durban University of Technology RP Adetiba, E (corresponding author), Covenant Univ, Coll Engn, Dept Elect & Informat Engn, Ota, Nigeria.; Adetiba, E (corresponding author), Durban Univ Technol, Inst Syst Sci, HRA, POB 1334, Durban, South Africa. EM emmanuel.adetiba@covenantuniversity.edu.ng; mercy.john@covenantuniversity.edu.ng; funmiadefemi@gmail.com; adekunleakinrinmade@gmail.com; oablarin@slb.com; moyos@dut.ac.za RI Adetiba, Emmanuel/AAC-4129-2022; Moyo, Sibusiso/GRE-7858-2022 OI Moyo, Sibusiso/0000-0001-5613-7290 FU Covenant University Center for Research Innovation and Discovery (CUCRID) FX The authors wish to acknowledge the Covenant University Center for Research Innovation and Discovery (CUCRID) for sponsoring the publication of this study. CR Adeodato PJL, 2011, INT J FORECASTING, V27, P661, DOI 10.1016/j.ijforecast.2009.05.029 Adetiba E., 2016, ADV NATURE BIOL INSP Adetiba E, 2017, COGENT ENG, V4, DOI 10.1080/23311916.2017.1411220 Adetiba E, 2017, LECT N BIOINFORMAT, V10209, P41, DOI 10.1007/978-3-319-56154-7_5 Adetiba E, 2017, LECT N BIOINFORMAT, V10208, P155, DOI 10.1007/978-3-319-56148-6_13 Adetiba E, 2016, LECT NOTES COMPUT SC, V9680, P243, DOI 10.1007/978-3-319-33618-3_25 Adetiba E, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0143542 [Anonymous], 2015, SCI WORLD J [Anonymous], 2011, INT J COMPUTER APPL [Anonymous], 2014, MEASURING SCHOLARLY [Anonymous], 2011, J EMERGING TRENDS EN Bildirici M, 2010, EXPERT SYST APPL, V37, P2, DOI 10.1016/j.eswa.2009.07.077 Chen CF, 2012, KNOWL-BASED SYST, V26, P281, DOI 10.1016/j.knosys.2011.09.002 Chen WS, 2009, EXPERT SYST APPL, V36, P4075, DOI 10.1016/j.eswa.2008.03.020 Chen YS, 2012, TECHNOL FORECAST SOC, V79, P1537, DOI 10.1016/j.techfore.2012.04.007 Chou SM, 2004, EXPERT SYST APPL, V27, P133, DOI 10.1016/j.eswa.2003.12.013 Hussain AJ, 2008, EXPERT SYST APPL, V35, P1186, DOI 10.1016/j.eswa.2007.08.038 Kara Y, 2011, EXPERT SYST APPL, V38, P5311, DOI 10.1016/j.eswa.2010.10.027 Lin RH, 2010, COMPUT BIOL MED, V40, P665, DOI 10.1016/j.compbiomed.2010.06.002 Palmer A, 2006, TOURISM MANAGE, V27, P781, DOI 10.1016/j.tourman.2005.05.006 Perez-Rodriguez J.V., 2005, Journal of Empirical Finance, V12, P490 Rada R, 2008, EXPERT SYST APPL, V34, P2232, DOI 10.1016/j.eswa.2007.05.012 Robert C, 2004, SCIENTOMETRICS, V59, P117, DOI 10.1023/B:SCIE.0000013302.59845.34 Sivagaminathan RK, 2007, EXPERT SYST APPL, V33, P49, DOI 10.1016/j.eswa.2006.04.010 van Eck NJ, 2010, SCIENTOMETRICS, V84, P523, DOI 10.1007/s11192-009-0146-3 Wei CH, 2007, ACCIDENT ANAL PREV, V39, P944, DOI 10.1016/j.aap.2006.12.017 Zazoun RS, 2013, J AFR EARTH SCI, V83, P55, DOI 10.1016/j.jafrearsci.2013.03.003 NR 27 TC 0 Z9 0 U1 0 U2 1 PU INT BUSINESS INFORMATION MANAGEMENT ASSOC-IBIMA PI NORRISTOWN PA 34 E GERMANTOWN PIKE, NO. 327, NORRISTOWN, PA 19401 USA BN 978-0-9998551-4-0 PY 2020 BP 12026 EP 12043 PG 18 WC Business; Green & Sustainable Science & Technology; Economics; Management WE Conference Proceedings Citation Index - Social Science & Humanities (CPCI-SSH) SC Business & Economics; Science & Technology - Other Topics GA BR6JR UT WOS:000661489802092 DA 2024-09-05 ER PT J AU Wu, JH Liu, TY Mu, KL Zhou, L AF Wu, Jinhong Liu, Tianye Mu, Keliang Zhou, Lei TI Identification and causal analysis of predatory open access journals based on interpretable machine learning SO SCIENTOMETRICS LA English DT Article DE Open access; Journal alerts; Causal analysis; Interpretable machine learning ID RANK INDICATOR; IMPACT FACTOR; SCIENCE; INDEX AB Predatory journals have been a recent phenomenon, drawing attention from the academic community in the last decade. However, as the open access (OA) movement has gained momentum, the indiscriminate growth of predatory journals has had significant negative impacts on academic communication, scholarly publishing, and effective utilization of scientific resources. This rampant growth poses a serious threat to the healthy development of the OA movement and also undermines the integrity of research and the research ecosystem. Identifying predatory journals from the massive number of OA journals would assist scholars in evading negative consequences in areas of monetary investment, reputation, academic influence, and occupational advancement. Traditional methods for identifying predatory journals have relied heavily on the knowledge of domain experts. However, a large number of predatory journals exhibit latent and covert characteristics, and the growth rate of OA journals is extremely rapid, making it difficult for experts to identify these predatory journals from the vast number of OA journals. This paper proposes an interpretable machine learning model for early warning of predatory OA journals, which identifies predatory journals through the ensemble of multiple machine learning algorithms. Specifically, the proposed methodology first constructs an OA journal early warning indicator system and integrates multiple machine learning algorithms to compute the early warning values of OA journals. Then, the SHAP interpretable framework is introduced to analyze the causal factors of the early warning risks in a novel way. To verify the accuracy of the model's causal factors, we conduct a comparative analysis of domestic and foreign medical OA journals using case studies. The empirical analysis conducted in this study demonstrates the efficacy of the ensemble algorithm in accurately identifying the risk of predatory OA journals. C1 [Wu, Jinhong; Liu, Tianye; Mu, Keliang; Zhou, Lei] Wuhan Text Univ, Wuhan, Peoples R China. C3 Wuhan Textile University RP Mu, KL (corresponding author), Wuhan Text Univ, Wuhan, Peoples R China. EM 704266922@qq.com FU 2020 Hubei Provincial Social Science Foundation Pre-Funded Projects; China Scholarship Council FX This work was supported by the China Scholarship Council. CR Ahmad S, 2017, J SCIENTOMETR RES, V6, P151, DOI 10.5530/jscires.6.3.22 Beranová L, 2022, SCIENTOMETRICS, V127, P2313, DOI 10.1007/s11192-022-04314-9 Bohannon J, 2013, SCIENCE, V342, P60, DOI 10.1126/science.342.6154.60 Bornmann L, 2005, SCIENTOMETRICS, V65, P391, DOI 10.1007/s11192-005-0281-4 Butler D, 2008, NATURE, V451, P6, DOI 10.1038/451006a Butler D, 2013, NATURE, V495, P433, DOI 10.1038/495433a Cantín M, 2015, INT J MORPHOL, V33, P1183, DOI 10.4067/S0717-95022015000300060 Cheng W., 2016, CHINESE SCI BULL, V61, P2861, DOI [10.1360/N972016-00914, DOI 10.1360/N972016-00914] Clarivate, 2023, SUPP INT SCH REC OUR Clarivate, 2022, Journal citation reports Dadkhah M, 2016, ADV PHARM BULL, V6, P1, DOI 10.15171/apb.2016.001 Dai Q., 2018, CHINESE J SCI TECHNI, V29, P1063 Ding H., 2022, DOCUMENT INFORM KNOW, V39, P83 doaj, Directory of Open Access Journals Dong XL, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0120039 Falagas ME, 2008, FASEB J, V22, P2623, DOI 10.1096/fj.08-107938 Fang HL., 2018, CHINESE J SCI TECHNI, V29, P935 [冯德成 Feng Decheng], 2022, [建筑结构学报, Journal of Building Structures], V43, P228 Fu ZK., 2022, J INTELL-BASEL, V10, P89 GARFIELD E, 1955, SCIENCE, V122, P108, DOI 10.1126/science.122.3159.108 Halim Z, 2019, SCIENTOMETRICS, V119, P393, DOI 10.1007/s11192-019-03035-w He Y., 2022, CHINESE J SCI TECHNI, V33, P305 Hirsch JE, 2005, P NATL ACAD SCI USA, V102, P16569, DOI 10.1073/pnas.0507655102 Hu DH., 2010, CHINESE J SCI TECHNI, V4, P4 Huang YQ, 2016, J CLIN ONCOL, V34, P2157, DOI 10.1200/JCO.2015.65.9128 Ibrahim M., 2019, ARXIV Jaafar R, 2021, EUROMED J BUS, V16, P361, DOI 10.1108/EMJB-05-2020-0039 John T., 2019, FTC HITS PREDATORY S [李俊龙 Li Junlong], 2020, [中国科学基金, Bulletin of National Natural Science Foundation of China], V34, P305 Li X., 2022, J LIB INFORM SCI, V7, P67 Lin Y., 2020, J NAVY MED, V41, P741 Lin Z., 2021, ACTA EDITOLOGICA, V33, P114 Liu XL., 2011, ACTA EDITOLOGICA, V23, P4 Luan M., 2020, J INTELL-BASEL, V39, P37 Lundberg SM, 2017, ADV NEUR IN, V30 Ma Y, 2022, APPL SCI-BASEL, V12, DOI 10.3390/app122412864 Mingers J, 2017, EUR J OPER RES, V257, P323, DOI 10.1016/j.ejor.2016.07.058 Mo J., 2012, CHINESE J SCI TECHNI, V23, P8 Moed HF, 2011, J AM SOC INF SCI TEC, V62, P211, DOI 10.1002/asi.21424 National Science Library Chinese Academy of Sciences, 2020, EARL WARN LIST INT J Normile D., BIG NAME SCI SURPRIS Pajic D, 2015, J INFORMETR, V9, P990, DOI 10.1016/j.joi.2015.08.005 Parsa AB, 2020, ACCIDENT ANAL PREV, V136, DOI 10.1016/j.aap.2019.105405 Ribeiro MT, 2016, KDD'16: PROCEEDINGS OF THE 22ND ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, P1135, DOI 10.1145/2939672.2939778 Shapley L.S., 1953, CONTRIBUTIONS THEORY, V2, P307, DOI [10.1515/9781400881970-018, DOI 10.1515/9781400881970-018] Su LX, 2015, SCIENTOMETRICS, V105, P449, DOI 10.1007/s11192-015-1697-0 Sun R., 2022, J MODERN INFORM, V11, P87 The Paper, 2021, NEARL YEAR 2 OFF ISS Tian YP, 2023, J INFORMETR, V17, DOI 10.1016/j.joi.2023.101399 Ubeda-Sánchez AM, 2019, EDULEARN PROC, P3394 Valderrama P, 2020, MED ORAL PATOL ORAL, V25, pE180, DOI 10.4317/medoral.23289 Vundavalli Sudhakar, 2016, Indian J Dent Res, V27, P116, DOI 10.4103/0970-9290.183132 Wei MK, 2020, SCIENTOMETRICS, V122, P1027, DOI 10.1007/s11192-019-03306-6 Wolpert AJ, 2013, NEW ENGL J MED, V368, P785, DOI 10.1056/NEJMp1211410 Wu T., 2015, CHINESE J SCI TECHNO, V26, P5 Yang H., 2017, ACTA EDITOLOGICA, V29, P150 Yu LP., 2022, J LIB INFORM SCI AGR, V34, P55 Yu LP., 2023, INFORM DOCUMENTATION, V01, P52 Zarifmahmoudi L, 2015, IRAN J NUCL MED, V23, P8 Zhang H., 2007, J INFORM, V16, P124 Zhao RY, 2019, SCIENTOMETRICS, V120, P1091, DOI 10.1007/s11192-019-03159-z Zhao TY, 2021, J SCHOLARLY PUBL, V52, P107, DOI 10.3138/jsp.52.2.03 Zong ZJ., 2022, J INTELL-BASEL, V41, P8 NR 63 TC 0 Z9 0 U1 16 U2 16 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0138-9130 EI 1588-2861 J9 SCIENTOMETRICS JI Scientometrics PD APR PY 2024 VL 129 IS 4 BP 2131 EP 2158 DI 10.1007/s11192-024-04969-6 EA MAR 2024 PG 28 WC Computer Science, Interdisciplinary Applications; Information Science & Library Science WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Computer Science; Information Science & Library Science GA QV6H9 UT WOS:001180362500007 DA 2024-09-05 ER PT J AU Tian, S Mo, SS Wang, LW Peng, ZY AF Tian, Shan Mo, Songsong Wang, Liwei Peng, Zhiyong TI Deep Reinforcement Learning-Based Approach to Tackle Topic-Aware Influence Maximization SO DATA SCIENCE AND ENGINEERING LA English DT Article DE Social network; Influence maximization; Graph embedding; Reinforcement learning AB Motivated by the application of viral marketing, the topic-aware influence maximization (TIM) problem has been proposed to identify the most influential users under given topics. In particular, it aims to find k seeds (users) in social network G, such that the seeds can maximize the influence on users under the specific query topics and diffusion model such as independent cascade (IC) or linear threshold (LT). This problem has been proved to be NP-hard, and most of the proposed techniques suffer from the efficiency issue due to the lack of generalization. Even worse, the design of these algorithms requires significant specialized knowledge which is hard to be understood and implemented. To overcome these issues, this paper aims to learn a generalized heuristic framework to solve TIM problems by meta-learning. To this end, we first propose two topic-aware social influence propagation models based on IC and LT model, respectively, which is conducive to better advertising injections. We then encode the feature of each node by a vector and introduce a model, called deep influence evaluation model , to evaluate the user influence under different circumstances. Based on this model, we can construct the solution according to the influence evaluations efficiently, rather than spending a high cost to compute the exact influence by considering the complex graph structure. We conducted experiments on generated graph instances and real-world social networks. The results show the superiority in performance and comparable quality of our framework. C1 [Tian, Shan; Mo, Songsong; Wang, Liwei; Peng, Zhiyong] Wuhan Univ, Sch Comp Sci, Wuhan, Hubei, Peoples R China. C3 Wuhan University RP Peng, ZY (corresponding author), Wuhan Univ, Sch Comp Sci, Wuhan, Hubei, Peoples R China. EM tianshan14@whu.edu.cn; songsong945@whu.edu.cn; liwei.wang@whu.edu.cn; peng@whu.edu.cn FU National Key Research and Development Program of China [2018YFB1003400]; Fundamental Research Funds for the Central Universities [2042017kf1017] FX This work is supported by the National Key Research and Development Program of China (Project Number: 2018YFB1003400), and the Fundamental Research Funds for the Central Universities (Project Number: 2042017kf1017). CR Albert R, 2001, ARXIVCONDMAT016096 C [Anonymous], 2017, P 31 INT C NEUR INF [Anonymous], 2014, EDBT [Anonymous], 2003, P 9 ACM SIGKDD INT C [Anonymous], 1998, Introduction to Reinforcement Learning [Anonymous], 2015, Advances in neural information processing systems [Anonymous], 2013, Advances in neural information processing systems Bello I, 2017, 5 INT C LEARN REPR I Bengio Y, 2013, IEEE T PATTERN ANAL, V35, P1798, DOI 10.1109/TPAMI.2013.50 Borgs C, 2012, ARXIV12120884 CORR Cai HY, 2018, IEEE T KNOWL DATA EN, V30, P1616, DOI 10.1109/TKDE.2018.2807452 Chen S, 2015, PROC VLDB ENDOW, V8, P666, DOI 10.14778/2735703.2735706 Chen W, 2015, LECT NOTES COMPUT SC, V9197, P1, DOI 10.1007/978-3-319-21786-4_1 Chen W, 2009, KDD-09: 15TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, P199, DOI 10.1145/1557019.1557047 Fan J, 2018, PROC INT CONF DATA, P1569, DOI 10.1109/ICDE.2018.00178 Goyal A., 2011, P 20 INT C COMP WORL, P47, DOI DOI 10.1145/1963192.1963217 Grover A, 2016, KDD'16: PROCEEDINGS OF THE 22ND ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, P855, DOI 10.1145/2939672.2939754 Guo J, 2013, PROCEEDINGS OF THE 22ND ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT (CIKM'13), P199 Krizhevsky A, 2017, COMMUN ACM, V60, P84, DOI 10.1145/3065386 Kwak H., WWW'10, DOI DOI 10.1145/1772690.1772751 Leskovec J, 2007, KDD-2007 PROCEEDINGS OF THE THIRTEENTH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, P420 Li GL, 2014, SIGMOD'14: PROCEEDINGS OF THE 2014 ACM SIGMOD INTERNATIONAL CONFERENCE ON MANAGEMENT OF DATA, P87, DOI 10.1145/2588555.2588561 Li YC, 2017, SIGMOD'17: PROCEEDINGS OF THE 2017 ACM INTERNATIONAL CONFERENCE ON MANAGEMENT OF DATA, P619, DOI 10.1145/3035918.3035952 Li YC, 2018, IEEE T KNOWL DATA EN, V30, P1852, DOI 10.1109/TKDE.2018.2807843 Li YC, 2015, PROC VLDB ENDOW, V8, P1070, DOI 10.14778/2794367.2794376 Mnih V., 2013, ABS13125602 CORR Mnih V, 2015, NATURE, V518, P529, DOI 10.1038/nature14236 Mo S., 2019, NATL C THEORETICAL C, P131, DOI 10.1007/978-981-15-0105-0_9 Nguyen HT, 2016, IEEE INFOCOM SER Schaul T, 2015, ARXIV151105952 CORR Shan Tian, 2019, Web and Big Data. Third International Joint Conference, APWeb-WAIM 2019. Proceedings: Lecture Notes in Computer Science (LNCS 11641), P125, DOI 10.1007/978-3-030-26072-9_9 van Hasselt H, 2016, AAAI CONF ARTIF INTE, P2094 Zhang P, 2019, WORLD WIDE WEB, V22, P1799, DOI 10.1007/s11280-018-0623-9 NR 33 TC 57 Z9 59 U1 1 U2 6 PU SPRINGERNATURE PI LONDON PA CAMPUS, 4 CRINAN ST, LONDON, N1 9XW, ENGLAND SN 2364-1185 EI 2364-1541 J9 DATA SCI ENG JI Data Sci. Eng. PD MAR PY 2020 VL 5 IS 1 BP 1 EP 11 DI 10.1007/s41019-020-00117-1 PG 11 WC Computer Science, Information Systems; Computer Science, Theory & Methods WE Emerging Sources Citation Index (ESCI) SC Computer Science GA SL8HQ UT WOS:000657155000001 OA gold DA 2024-09-05 ER PT J AU Seo, YW Lee, KC Lee, S AF Seo, Young Wook Lee, Kun Chang Lee, Sangjae TI Decision quality of the research project evaluation mechanism by using particle swarm optimization SO MANAGEMENT DECISION LA English DT Article DE Research performance; Particle swarm optimization; Research impact; K-means clustering method; Research fund; Knowledge-based society ID EFFICIENCY; SUPPORT; IMPACT AB Purpose - For those who plan research funds and assess the research performance from the funds, it is necessary to overcome the limitations of the conventional classification of evaluated papers published by the research funds. Besides, they need to promote the objective, fair clustering of papers, and analysis of research performance. Therefore, the purpose of this paper is to find the optimum clustering algorithm using the MATLAB tools by comparing the performances of and the hybrid particle swarm optimization algorithms using the particle swarm optimization (PSO) algorithm and the conventional K-means clustering method. Design/methodology/approach - The clustering analysis experiment for each of the three fields of study - health and medicine, physics, and chemistry - used the following three algorithms: "K-means+Simulated annealing (SA)+ Adjustment of parameters+PSO" (KASA-PSO clustering), "K-means+SA+PSO" clustering, "K-means+PSO" clustering. Findings - The clustering analyses of all the three fields showed that KASA-PSO is the best method for the minimization of fitness value. Furthermore, this study administered the surveys intended for the "performance measurement of decision- making process" with 13 members of the research fund organization to compare the group clustering by the clustering analysis method of KASA-PSO algorithm and the group clustering by research funds. The results statistically demonstrated that the group clustering by the clustering analysis method of KASA-PSO algorithm was better than the group clustering by research funds. Originality/value - There are still too few studies that assess the research project evaluation mechanisms and its effectiveness perceived by the research fund managers. To fill the research void like this, this study aims to propose PSO and successfully proves validity of the proposed approach. C1 [Seo, Young Wook] Daejeon Univ, Dept Business Consulting, Daejeon, South Korea. [Lee, Kun Chang] Sungkyunkwan Univ, SKK Business Sch, Seoul, South Korea. [Lee, Kun Chang] Sungkyunkwan Univ, Digital Hlth Dept, SAIHST, Seoul, South Korea. [Lee, Sangjae] Sejong Univ, Sch Management, Seoul, South Korea. C3 Daejeon University; Sungkyunkwan University (SKKU); Sungkyunkwan University (SKKU); Sejong University RP Lee, KC (corresponding author), Sungkyunkwan Univ, SKK Business Sch, Seoul, South Korea.; Lee, KC (corresponding author), Sungkyunkwan Univ, Digital Hlth Dept, SAIHST, Seoul, South Korea. EM kunchanglee@gmail.com RI Lee, Sangjae/F-4383-2014 CR Abramo G, 2009, RES POLICY, V38, P206, DOI 10.1016/j.respol.2008.11.001 Alavi M, 1982, MIS QUART, V6, P1, DOI 10.2307/249063 Albert MN, 2014, MANAGE DECIS, V52, P794, DOI 10.1108/MD-03-2012-0179 Andersen PH, 2015, MANAGE DECIS, V53, P786, DOI 10.1108/MD-06-2014-0399 Auranen O, 2010, RES POLICY, V39, P822, DOI 10.1016/j.respol.2010.03.003 BAROUDI JJ, 1989, MIS QUART, V13, P87, DOI 10.2307/248704 Bertocchi G, 2015, RES POLICY, V44, P451, DOI 10.1016/j.respol.2014.08.004 Chen CY, 2013, MANAGE DECIS, V51, P566, DOI 10.1108/00251741311309661 Chiu CY, 2009, EXPERT SYST APPL, V36, P4558, DOI 10.1016/j.eswa.2008.05.029 Choi BK, 2013, MANAGE DECIS, V51, P1250, DOI 10.1108/MD-Sep-2011-0334 Comeig I, 2014, MANAGE DECIS, V52, P365, DOI 10.1108/MD-01-2012-0051 European Science Foundation, 2012, Evaluation in Research and Research Funding Organisations: European Practices A report by the ESF Member Organisation Forum on Evaluation of Publicly Funded Research Gibbons J.D., 1985, NONPARAMETRIC STAT I Glanzel W, 2002, SCIENTOMETRICS, V53, P171, DOI 10.1023/A:1014848323806 Groot T, 2006, RES POLICY, V35, P1362, DOI 10.1016/j.respol.2006.07.002 Kalyani S, 2011, EXPERT SYST APPL, V38, P10839, DOI 10.1016/j.eswa.2011.02.086 Kennedy J, 1995, 1995 IEEE INTERNATIONAL CONFERENCE ON NEURAL NETWORKS PROCEEDINGS, VOLS 1-6, P1942, DOI 10.1109/icnn.1995.488968 KIRKPATRICK S, 1983, SCIENCE, V220, P671, DOI 10.1126/science.220.4598.671 Knott PJ, 2015, MANAGE DECIS, V53, P1806, DOI 10.1108/MD-08-2014-0525 Korea Ministry of Strategy and Finance (KMSF), 2016, KOR GOV BUDG Korea National Research Foundation (KHRF), 2016, PRIM QUEST ANSW KRF Lahtinen E, 2005, HEALTH PROMOT INT, V20, P306, DOI 10.1093/heapro/dai008 Lee K.C., 2008, DEV TRACKING SYSTEMS Lee KC, 2006, J MANAGE INFORM SYST, V22, P337, DOI 10.2753/MIS0742-1222220412 Levin RichardI., 1998, STAT MANAGEMENT, V7th Lim WH, 2015, EXPERT SYST APPL, V42, P5887, DOI 10.1016/j.eswa.2015.03.025 Liu CH, 2015, MANAGE DECIS, V53, P494, DOI 10.1108/MD-02-2014-0076 MacQueen James, 1967, 5 BERK S MATH STAT P, P281 Mårtensson P, 2016, RES POLICY, V45, P593, DOI 10.1016/j.respol.2015.11.009 Sen BK, 1999, J DOC, V55, P325, DOI 10.1108/EUM0000000007149 Sinha AK, 2011, EXPERT SYST APPL, V38, P6132, DOI 10.1016/j.eswa.2010.11.004 Talbi EG, 2009, Metaheuristics from design to implementation Tang JW, 2015, MANAGE DECIS, V53, P1858, DOI 10.1108/MD-12-2014-0691 van den Bergh F, 2004, IEEE T EVOLUT COMPUT, V8, P225, DOI [10.1109/TEVC.2004.826069, 10.1109/tevc.2004.826069] van der Merwe D, 2003, IEEE C EVOL COMPUTAT, P215, DOI 10.1109/CEC.2003.1299577 Van Raan A. F. J, 2005, 1 INT C WORLD CLASS van Raan AFJ, 2002, RES POLICY, V31, P611, DOI 10.1016/S0048-7333(01)00129-9 Wang F, 2014, EXPERT SYST APPL, V41, P3016, DOI 10.1016/j.eswa.2013.10.032 Xu L, 2015, EXPERT SYST APPL, V42, P7186, DOI 10.1016/j.eswa.2015.05.012 Zhang DQ, 2011, RES POLICY, V40, P875, DOI 10.1016/j.respol.2011.03.010 Zhu HH, 2011, EXPERT SYST APPL, V38, P10161, DOI 10.1016/j.eswa.2011.02.075 NR 41 TC 3 Z9 3 U1 0 U2 15 PU EMERALD GROUP PUBLISHING LTD PI BINGLEY PA HOWARD HOUSE, WAGON LANE, BINGLEY BD16 1WA, W YORKSHIRE, ENGLAND SN 0025-1747 EI 1758-6070 J9 MANAGE DECIS JI Manag. Decis. PY 2017 VL 55 IS 4 BP 745 EP 765 DI 10.1108/MD-03-2016-0141 PG 21 WC Business; Management WE Social Science Citation Index (SSCI) SC Business & Economics GA EX0UW UT WOS:000402937300007 DA 2024-09-05 ER PT C AU Nugraha, YR Wibawa, AP Zaeni, IAE AF Nugraha, Youngga Rega Wibawa, Aji Prasetya Zaeni, Ilham Ari Elbaith BE Hidayati, A Oktaviana, S Ismail, IE Zain, AR Nugrahani, F Kurniawati, D Permatasari, I TI Particle Swarm Optimization - Support Vector Machine (PSO-SVM) Algorithm for Journal Rank Classification SO 2019 2ND INTERNATIONAL CONFERENCE OF COMPUTER AND INFORMATICS ENGINEERING (IC2IE 2019): ARTIFICIAL INTELLIGENCE ROLES IN INDUSTRIAL REVOLUTION 4.0 LA English DT Proceedings Paper CT 2nd International Conference of Computer and Informatics Engineering (IC2IE) - Artificial Intelligence Roles in Industrial Revolution 4.0 CY SEP 10-11, 2019 CL Politeknik Negeri Jakarta, Banyuwangi, INDONESIA HO Politeknik Negeri Jakarta DE support vector machine; particle swarm optimization; SCImago journal rank; classification AB Support Vector Machine (SVM) is a method with basic classification principles for data that can be separated linearly. As it developed, SVM is designed to work on non-linear problems by incorporating kernel concepts in high-dimensional space. The SVM method implemented in this study for classifying international journals using the SCImago Journal Rank (SJR) dataset. To overcome the disadvantages of SVM performance, the researchers used Particle Swarm Optimization (PSO) to optimize its performance. The purpose of using PSO is to get a better classification performance based on the parameters and functions of the kernel used and to approach the SJR classification system. The process includes normalizing and processing the data on the PSO, followed by implementation using the SVM method. The accuracy results obtained from PSO-SVM are 63.12% using Linear kernels. Based on these results, it assumed that PSO-SVM is still unable to optimize the approach in the SJR classification system if the system is 100% accurate. C1 [Nugraha, Youngga Rega; Wibawa, Aji Prasetya; Zaeni, Ilham Ari Elbaith] Univ Negeri Malang, Elect Engn Dept, Malang, Indonesia. C3 Universitas Negeri Malang RP Nugraha, YR (corresponding author), Univ Negeri Malang, Elect Engn Dept, Malang, Indonesia. EM younggarega@gmail.com; aji.prasetya.ft@um.ac.id; ilham.ari.ft@um.ac.id RI wibawa, aji prasetya/AAI-7475-2021; Zaeni, Ilham Ari Elbaith/AAJ-9600-2020 OI Zaeni, Ilham Ari Elbaith/0000-0001-9665-8613 CR Aggarwal CC, 2014, CH CRC DATA MIN KNOW, P457 Al Shalabi L., 2006, Journal of Computer Sciences, V2, P735, DOI 10.3844/jcssp.2006.735.739 Amoozegar M, 2018, EXPERT SYST APPL, V113, P499, DOI 10.1016/j.eswa.2018.07.013 Auria L., 2008, DISCUSS PAP DTSCH I Banu A. S., 2015, 2015 INT C INN INF E, P1 Braun A. C., 2011, VECTOR MACHINES HYPE, V2, P2 Dash M., 1997, Intelligent Data Analysis, V1 Gharaibeh K. M., 2010, SCI TECHNOL, P0 He X, 2013, INTERNATIONAL CONFERENCE ON INFORMATION SOCIETY (I-SOCIETY 2013), P130 Hric M, 2011, PROCEEDINGS OF THE 21ST INTERNATIONAL CONFERENCE - RADIOELEKTRONIKA 2011, P387 Jiang HY, 2010, I C CONT AUTOMAT ROB, P2519, DOI 10.1109/ICARCV.2010.5707396 Lin S.-L., 2007, J. Zhejiang Univ. Technol, V35, P163 Lucieer A, 2007, INT GEOSCI REMOTE SE, P2034, DOI 10.1109/IGARSS.2007.4423230 Miao JY, 2016, PROCEDIA COMPUT SCI, V91, P919, DOI 10.1016/j.procs.2016.07.111 Monien K, 2005, ST CLASS DAT ANAL, P355, DOI 10.1007/3-540-26981-9_41 Pattanasri N, 2012, IEEE T LEARN TECHNOL, V5, P52, DOI 10.1109/TLT.2011.22 Pedrycz W, 2009, EXPERT SYST APPL, V36, P4610, DOI 10.1016/j.eswa.2008.05.017 Saranya C., 2013, International Journal of Engineering and Technology, V5, P2701 Singh D, 2020, SOFT COMPUT, V24, P9727, DOI 10.1007/s00500-019-04487-1 Wang XK, 2019, ULTRASONICS, V91, P161, DOI 10.1016/j.ultras.2018.08.014 NR 20 TC 3 Z9 3 U1 0 U2 1 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA BN 978-1-7281-2384-4 PY 2019 BP 69 EP 73 PG 5 WC Computer Science, Information Systems; Computer Science, Theory & Methods WE Conference Proceedings Citation Index - Science (CPCI-S) SC Computer Science GA BO7UI UT WOS:000525626200014 DA 2024-09-05 ER PT J AU Mi, HC Gao, ZH Zhang, QR Zheng, YF AF Mi, Huichao Gao, Zhanghao Zhang, Qiaorong Zheng, Yafeng TI Research on Constructing Online Learning Performance Prediction Model Combining Feature Selection and Neural Network SO INTERNATIONAL JOURNAL OF EMERGING TECHNOLOGIES IN LEARNING LA English DT Article DE learning performance prediction; machine learning; deep neural networks; multiple linear regression; feature selection ID STUDENTS PERFORMANCE; DROPOUT AB Learning performance prediction can help teachers find students who tend to fail as early as possible so as to give them timely help, which is of great significance for online education. With the availability of online data and the continuous development of machine learning technology, learning performance prediction in large-scale online education is gaining new momentum. Traditional prediction methods include statistical methods, machine learning and neural networks. Among them, statistical methods and machine learning have low prediction efficiency. Although neural network can improve prediction efficiency, it ignores the impact of artificial feature filtering on model performance, and cannot find key factors for performance prediction, making predictions uninterpretable. Therefore, this paper proposes an online academic performance prediction model that integrates feature selection and neural network. Multiple linear regression analysis is used for feature extraction to obtain key influence features, and then deep neural networks is used for prediction. The results show that the F1 score of our model on large-scale data set is 99.25%, which is 1.25% higher than that of other related models. C1 [Mi, Huichao; Gao, Zhanghao; Zhang, Qiaorong; Zheng, Yafeng] Henan Univ Econ & Law, Coll Comp & Informat Engn, Zhengzhou, Peoples R China. C3 Henan University of Economics & Law RP Zheng, YF (corresponding author), Henan Univ Econ & Law, Coll Comp & Informat Engn, Zhengzhou, Peoples R China. EM mmhhcc@126.com FU Industry-university cooperative education project [202101045002]; Science and Technology Research Project of Henan Province ("Research on text classification model and application for massive open online courses") FX This material is based upon work supported by Industry-university cooperative education project (202101045002) and the Science and Technology Research Project of Henan Province ("Research on text classification model and application for massive open online courses"). CR Alamri A, 2019, LECT NOTES COMPUT SC, V11528, P163, DOI 10.1007/978-3-030-22244-4_20 Amnueypornsakul B., 2014, Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), P55, DOI DOI 10.3115/V1/W14-4110 [Anonymous], 2014, LEARNING TECHNOLOGY, DOI DOI 10.1007/978-3-319-10671-7_4 Böttcher A, 2020, IEEE GLOB ENG EDUC C, P827, DOI [10.1109/EDUCON45650.2020.9125378, 10.1109/educon45650.2020.9125378] Bognár L, 2021, INT J EMERG TECHNOL, V16, P106, DOI 10.3991/ijet.v16i06.18347 Chen X Y, 2020, COMPUTER PRODUCTS CI, P85 Dalipi F, 2018, IEEE GLOB ENG EDUC C, P1007, DOI 10.1109/EDUCON.2018.8363340 Evangelista E, 2021, INT J EMERG TECHNOL, V16, P255, DOI 10.3991/ijet.v16i24.26151 Goel S, 2019, ADV INTELL SYST COMP, V841, P583, DOI 10.1007/978-981-13-2285-3_69 He J, 2015, ASS ADV ARTIFICIAL I Imran AS, 2019, ICCAI '19 - PROCEEDINGS OF THE 2019 5TH INTERNATIONAL CONFERENCE ON COMPUTING AND ARTIFICIAL INTELLIGENCE, P190, DOI 10.1145/3330482.3330514 Jordan K, 2015, INT REV RES OPEN DIS, V16, DOI 10.19173/irrodl.v16i3.2112 Kim HJ, 2018, NEUROCOMPUTING, V315, P128, DOI 10.1016/j.neucom.2018.07.002 Mi F, 2015, 2015 IEEE INTERNATIONAL CONFERENCE ON DATA MINING WORKSHOP (ICDMW), P256, DOI 10.1109/ICDMW.2015.174 Muniasamy A, 2020, INT J EMERG TECHNOL, V15, P188, DOI 10.3991/ijet.v15i01.11435 Qi Q, 2018, ACM INT C PROCEEDING, P67 Qiu L, 2018, INT J APPL ELECTROM, V57, P29, DOI 10.3233/JAE-170038 Qiu L, 2019, SOFT COMPUT, V23, P10287, DOI 10.1007/s00500-018-3581-3 Raschka S., 2015, Python Machine Learning Robinson C, 2016, LAK '16 CONFERENCE PROCEEDINGS: THE SIXTH INTERNATIONAL LEARNING ANALYTICS & KNOWLEDGE CONFERENCE,, P383, DOI 10.1145/2883851.2883932 Schmidhuber J, 2015, NEURAL NETWORKS, V61, P85, DOI 10.1016/j.neunet.2014.09.003 Shingari I, 2017, J STAT MANAG SYST, V20, P713, DOI 10.1080/09720510.2017.1395191 Tang C, 2018, TIME SERIES MODEL PR, DOI [10.1007/978-3-319-93846-2 66, DOI 10.1007/978-3-319-93846-266] Tian YJ, 2012, TECHNOL ECON DEV ECO, V18, P5, DOI 10.3846/20294913.2012.661205 Tomasevic N, 2020, COMPUT EDUC, V143, DOI 10.1016/j.compedu.2019.103676 Vitiello M, 2018, J UNIVERS COMPUT SCI, V24, P1131 Wang TH, 2014, COMPUT EDUC, V73, P189, DOI 10.1016/j.compedu.2013.12.002 Zhang G Q, 2018, RES DROPOUT RATE PRE NR 28 TC 2 Z9 2 U1 5 U2 29 PU INT ASSOC ONLINE ENGINEERING PI WIEN PA KIRCHENGASSE 10-200, WIEN, A-1070, AUSTRIA SN 1863-0383 J9 INT J EMERG TECHNOL JI Int. J. Emerg. Technol. Learn. PY 2022 VL 17 IS 7 BP 94 EP 111 DI 10.3991/ijet.v17i07.25587 PG 18 WC Education & Educational Research WE Emerging Sources Citation Index (ESCI) SC Education & Educational Research GA 0W3EO UT WOS:000788914700007 OA gold DA 2024-09-05 ER PT J AU Du, WM Li, ZM Xie, Z AF Du, Wumei Li, Zhemin Xie, Zheng TI A modified LSTM network to predict the citation counts of papers SO JOURNAL OF INFORMATION SCIENCE LA English DT Article DE Citation analysis; citation count prediction; deep learning; long short-term memory ID IMPACT; ARTICLES; INDEXES AB Quantifiable predictability in the citation counts of articles is significant in scientometrics and informetrics. Many metrics based on the citation counts can evaluate the scientific impact of research articles and journals. Utilising time series models, an article's citation counts up to the yth year after publication can be predicted by those up to the previous years. However, the typically used models cannot predict the fat tail of the actual citation distributions. Thus, based on cumulative advantage of the citation behaviour, we propose a method to predict the accumulated citation counts, by using a random number sampled from a power-law distribution to modify the results given by a recurrent neural network (RNN), long short-term memory. Extensive experiments on the data set including 17 journals in information science verified the effectiveness of our method by the good fittings on distributions and evolutionary trends of the citation counts of articles. Our method has the potential to be extended to predict other popular assessment measures such as impact factor and h-index for journals. C1 [Du, Wumei; Li, Zhemin; Xie, Zheng] Natl Univ Def Technol, Coll Liberal Arts & Sci, Changsha 410000, Peoples R China. C3 National University of Defense Technology - China RP Xie, Z (corresponding author), Natl Univ Def Technol, Coll Liberal Arts & Sci, Changsha 410000, Peoples R China. EM xiezheng81@nudt.edu.cn FU National Natural Science Foundation of China [61773020] FX The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This work was supported by the National Natural Science Foundation of China (grant no. 61773020). CR Abramo G, 2019, J INFORMETR, V13, P32, DOI 10.1016/j.joi.2018.11.003 Abrishami A, 2019, J INFORMETR, V13, P485, DOI 10.1016/j.joi.2019.02.011 Akella AP, 2021, J INFORMETR, V15, DOI 10.1016/j.joi.2020.101128 [Anonymous], 2015, Network science Bai XM, 2019, J INFORMETR, V13, P407, DOI 10.1016/j.joi.2019.01.010 Bornmann L, 2014, J INFORMETR, V8, P175, DOI 10.1016/j.joi.2013.11.005 Didegah F, 2013, J INFORMETR, V7, P861, DOI 10.1016/j.joi.2013.08.006 Du J, 2018, SCIENTOMETRICS, V116, P959, DOI 10.1007/s11192-018-2780-0 Egghe L, 2006, SCIENTOMETRICS, V69, P131, DOI 10.1007/s11192-006-0144-7 Fu LD, 2010, SCIENTOMETRICS, V85, P257, DOI 10.1007/s11192-010-0237-1 Garfield E, 2006, JAMA-J AM MED ASSOC, V295, P90, DOI 10.1001/jama.295.1.90 Gers FA, 1999, IEE CONF PUBL, P850, DOI [10.1049/cp:19991218, 10.1162/089976600300015015] Golosovsky M, 2017, PHYS REV E, V96, DOI 10.1103/PhysRevE.96.032306 Hirsch JE, 2010, SCIENTOMETRICS, V85, P741, DOI 10.1007/s11192-010-0193-9 Hirsch JE, 2005, P NATL ACAD SCI USA, V102, P16569, DOI 10.1073/pnas.0507655102 Hochreiter S, 1997, NEURAL COMPUT, V9, P1735, DOI [10.1162/neco.1997.9.1.1, 10.1007/978-3-642-24797-2] Hollander M., 2013, Nonparametric statistical methods Hua YX, 2019, IEEE COMMUN MAG, V57, P114, DOI 10.1109/MCOM.2019.1800155 Klimek P, 2016, SCIENTOMETRICS, V107, P1265, DOI 10.1007/s11192-016-1926-1 Lee DH, 2019, SCIENTOMETRICS, V118, P281, DOI 10.1007/s11192-018-2943-z Lopez J, 2017, J SURG EDUC, V74, P191, DOI 10.1016/j.jsurg.2016.08.005 Ma AQ, 2021, SCIENTOMETRICS, V126, P6803, DOI 10.1007/s11192-021-04033-7 Mistele T, 2019, SCIENTOMETRICS, V120, P87, DOI 10.1007/s11192-019-03110-2 Nair V., 2010, P 27 INT C MACH LEAR, P807, DOI DOI 10.5555/3104322.3104425 Newman MEJ, 2014, EPL-EUROPHYS LETT, V105, DOI 10.1209/0295-5075/105/28002 Perneger TV, 2015, J CLIN EPIDEMIOL, V68, P1440, DOI 10.1016/j.jclinepi.2015.01.024 Pobiedina N, 2016, APPL INTELL, V44, P252, DOI 10.1007/s10489-015-0657-y PRICE DJD, 1976, J AM SOC INFORM SCI, V27, P292, DOI 10.1002/asi.4630270505 Redner S, 1998, EUR PHYS J B, V4, P131, DOI 10.1007/s100510050359 Robson BJ, 2016, ENVIRON MODELL SOFTW, V75, P94, DOI 10.1016/j.envsoft.2015.10.007 Ruan XM, 2020, J INFORMETR, V14, DOI 10.1016/j.joi.2020.101039 Schmidhuber J, 2015, NEURAL NETWORKS, V61, P85, DOI 10.1016/j.neunet.2014.09.003 Sohrabi B, 2017, SCIENTOMETRICS, V110, P243, DOI 10.1007/s11192-016-2161-5 Stegehuis C, 2015, J INFORMETR, V9, P642, DOI 10.1016/j.joi.2015.06.005 Thelwall M, 2018, J INFORMETR, V12, P237, DOI 10.1016/j.joi.2018.01.008 Wacker D, 2013, SCIENCE, V340, P615, DOI 10.1126/science.1232808 Wang FH, 2019, SCIENTOMETRICS, V118, P109, DOI 10.1007/s11192-018-2965-6 Wang MY, 2019, SCIENTOMETRICS, V119, P1575, DOI 10.1007/s11192-019-03052-9 Xie Z, 2020, J INFORMETR, V14, DOI 10.1016/j.joi.2020.101065 Xie Z, 2017, SCIENTOMETRICS, V112, P483, DOI 10.1007/s11192-017-2359-1 Yu T, 2014, SCIENTOMETRICS, V101, P1233, DOI 10.1007/s11192-014-1279-6 Zhang C, 2009, PLOS ONE, V4, DOI [10.1371/journal.pone.0004881, 10.1371/journal.pone.0005429] Zhang XY, 2021, J INFORMETR, V15, DOI 10.1016/j.joi.2021.101140 Zhao QH, 2022, J INFORMETR, V16, DOI 10.1016/j.joi.2021.101235 NR 44 TC 3 Z9 3 U1 16 U2 94 PU SAGE PUBLICATIONS LTD PI LONDON PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND SN 0165-5515 EI 1741-6485 J9 J INF SCI JI J. Inf. Sci. PD AUG PY 2024 VL 50 IS 4 BP 894 EP 909 DI 10.1177/01655515221111000 EA AUG 2022 PG 16 WC Computer Science, Information Systems; Information Science & Library Science WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Computer Science; Information Science & Library Science GA C3E8I UT WOS:000837348100001 DA 2024-09-05 ER PT C AU Bhardwaj, A Mercier, D Dengel, A Ahmed, S AF Bhardwaj, Akansha Mercier, Dominik Dengel, Andreas Ahmed, Sheraz BE Liu, D Xie, S Li, Y Zhao, D ElAlfy, ESM TI DeepBIBX: Deep Learning for Image Based Bibliographic Data Extraction SO NEURAL INFORMATION PROCESSING (ICONIP 2017), PT II SE Lecture Notes in Computer Science LA English DT Proceedings Paper CT 24th International Conference on Neural Information Processing (ICONIP) CY NOV 14-18, 2017 CL Guangzhou, PEOPLES R CHINA DE Deep learning; Machine learning; Bibliographic data; Reference linking AB Extraction of structured bibliographic data from document images of non-native-digital academic content is a challenging problem that finds its application in the automation of cataloging systems in libraries and reference linking domain. The existing approaches discard the visual cues and focus on converting the document image to text and further identifying citation strings using trained segmentation models. Apart from the large training data, which these existing methods require, they are also language dependent. This paper presents a novel approach (DeepBIBX) which targets this problem from a computer vision perspective and uses deep learning to semantically segment the individual citation strings in a document image. DeepBIBX is based on deep Fully Convolutional Networks and uses transfer learning to extract bibliographic references from document images. Unlike existing approaches which use textual content to semantically segment bibliographic references, DeepBIBX utilizes image based contextual information, which makes it applicable to documents of any language. To gauge the performance of the presented approach, a dataset consisting of 286 document images containing 5090 bibliographic references is collected. Evaluation results reveals that the DeepBIBX outperforms state-of-the-art method (ParsCit, 71.7%) for bibliographic references extraction and achieved an accuracy of 84.9% in comparison to 71.7%. Furthermore, in terms of pixel classification task, DeepBIBX achieved a precision and a recall rate of 96.2%, 94.4% respectively. C1 [Bhardwaj, Akansha; Mercier, Dominik; Dengel, Andreas; Ahmed, Sheraz] DFKI Kaiserslautern, Smart Data & Serv, Kaiserslautern, Germany. [Bhardwaj, Akansha] Univ Fribourg, eXascale Infolab, Fribourg, Switzerland. C3 German Research Center for Artificial Intelligence (DFKI); University of Fribourg RP Bhardwaj, A (corresponding author), DFKI Kaiserslautern, Smart Data & Serv, Kaiserslautern, Germany.; Bhardwaj, A (corresponding author), Univ Fribourg, eXascale Infolab, Fribourg, Switzerland. EM akansha.bhardwaj@dfki.de; dominik.mercier@dfki.de; andreas.dengel@dfki.de; sheraz.ahmed@dfki.de OI Mercier, Dominique/0000-0001-8817-2744 FU DFG [DE 420/18-1]; Swiss National Science Foundation [407540 167320]; Swiss National Science Foundation (SNF) [407540_167320] Funding Source: Swiss National Science Foundation (SNF) FX This work was partially supported by the DFG under contract DE 420/18-1 and by the Swiss National Science Foundation under grant number 407540 167320. CR [Anonymous], 2016, ARXIV161105725 [Anonymous], 2008, DOCUMENT RECOGNITION Caruana R, 1998, LEARNING TO LEARN, P95, DOI 10.1007/978-1-4615-5529-2_5 Councill I.G., 2008, LREC 2008 Everingham M., 2005, The PASCAL visual object classes challenge, (VOC2007) results, V1, P7 He KM, 2016, PROC CVPR IEEE, P770, DOI 10.1109/CVPR.2016.90 Johnson JA, 2007, CARDIOVASCULAR GENETICS AND GENOMICS FOR THE CARDIOLOGIST, P250, DOI 10.1002/9780470691977.ch11 Long J, 2015, PROC CVPR IEEE, P3431, DOI 10.1109/CVPR.2015.7298965 Szegedy C, 2017, AAAI CONF ARTIF INTE, P4278 Tkaczyk D, 2015, INT J DOC ANAL RECOG, V18, P317, DOI 10.1007/s10032-015-0249-8 NR 10 TC 4 Z9 4 U1 0 U2 1 PU SPRINGER INTERNATIONAL PUBLISHING AG PI CHAM PA GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND SN 0302-9743 EI 1611-3349 BN 978-3-319-70096-0; 978-3-319-70095-3 J9 LECT NOTES COMPUT SC PY 2017 VL 10635 BP 286 EP 293 DI 10.1007/978-3-319-70096-0_30 PN II PG 8 WC Computer Science, Artificial Intelligence; Computer Science, Theory & Methods WE Conference Proceedings Citation Index - Science (CPCI-S) SC Computer Science GA BQ1LI UT WOS:000576766300030 DA 2024-09-05 ER PT J AU Bhatt, SM Noortgate, WV Verbert, K AF Bhatt, Sohum M. Noortgate, Wim Van Den Verbert, Katrien TI Investigating the Use of Deep Learning and Implicit Feedback in K12 Educational Recommender Systems SO IEEE TRANSACTIONS ON LEARNING TECHNOLOGIES LA English DT Article DE Recommender systems; Deep learning; Education; Market research; Recurrent neural networks; Long short term memory; Context; E-learning tools; evaluation; K12 education; personalized E-learning; recommender systems AB Recommender systems are increasingly being used in university or online education. However, recommender systems still have not found major usage in K12 education. This may be because of the unique challenges that recommender systems face when used by a young and diverse population. However, recommender systems for K12 education could provide many benefits for students and teachers, such as the simplification of personalized learning. Some of the issues with K12 educational recommender systems may be solved by the use of deep learning and implicit feedback. As such, we investigated the use of deep recommendation algorithms and implicit feedback for K12 educational recommender systems. To do this, we compared metrics for highly cited traditional and deep recommendation algorithms trained on explicit and implicit data. We found that recommendation algorithms using deep learning as a group do not differ in performance compared to traditional recommendation algorithms. We also found that the use of implicit feedback led to higher performance than using explicit feedback. The best performing algorithm used both deep learning and implicit feedback. We conclude that deep learning can be a benefit for K12 recommender systems, particularly when the ordered sequence of items is carefully accounted for. We also conclude that researchers and developers must carefully consider which feedback contributes the most information for learning. C1 [Bhatt, Sohum M.; Noortgate, Wim Van Den] Katholieke Univ Leuven, IMEC Res Grp ITEC, B-8500 Kortrijk, Belgium. [Bhatt, Sohum M.; Noortgate, Wim Van Den] Fac Psychol & Educ Sci, KU Leuven Campus KulakKortrijk, B-8500 Kortrijk, Belgium. [Verbert, Katrien] Katholieke Univ Leuven, Dept Comp Sci, Human & Comp Interact Grp, B-3001 Heverlee, Belgium. C3 KU Leuven; KU Leuven RP Bhatt, SM (corresponding author), Katholieke Univ Leuven, IMEC Res Grp ITEC, B-8500 Kortrijk, Belgium.; Bhatt, SM (corresponding author), Fac Psychol & Educ Sci, KU Leuven Campus KulakKortrijk, B-8500 Kortrijk, Belgium. EM sohummandar.bhatt@kuleuven.be; wim.vandennoortgate@kuleuven.be; katrien.verbert@kuleuven.be OI Bhatt, Sohum/0000-0002-8917-292X; verbert, katrien/0000-0001-6699-7710 FU Flanders Agency of Innovation amp; Entrepreneurship FX No Statement Available CR Abdelrahman G, 2023, ACM COMPUT SURV, V55, DOI 10.1145/3569576 Almeida F, 2023, Arxiv, DOI arXiv:1901.09069 Amatriain X., 2017, Netflix Technology Blog Bakkenes I, 2010, LEARN INSTR, V20, P533, DOI 10.1016/j.learninstruc.2009.09.001 Batmaz Z, 2019, ARTIF INTELL REV, V52, P1, DOI 10.1007/s10462-018-9654-y Bennett J., 2007, P KDD CUP WORKSH, V2007, P35 Bernacki ML, 2021, EDUC PSYCHOL REV, V33, P1675, DOI 10.1007/s10648-021-09615-8 Blomgren C, 2018, INT REV RES OPEN DIS, V19, P55 Bodily R, 2017, IEEE T LEARN TECHNOL, V10, P405, DOI 10.1109/TLT.2017.2740172 BUCKLAND M, 1994, J AM SOC INFORM SCI, V45, P12, DOI 10.1002/(SICI)1097-4571(199401)45:1<12::AID-ASI2>3.0.CO;2-L Buder J, 2012, COMPUT HUM BEHAV, V28, P207, DOI 10.1016/j.chb.2011.09.002 Bunting L, 2021, Int J Child-Comput Inter, V27, DOI [10.1016/j.ijcci.2020.100236, DOI 10.1016/J.IJCCI.2020.100236] Cheng Heng-Tze, 2016, 1 WORKSH DEEP LEARN, P7 Claypool Mark, 2001, P 6 INT C INT US INT, P33, DOI [DOI 10.1145/359784.359836, 10.1145/359784.359836] Urdaneta-Ponte MC, 2021, ELECTRONICS-SWITZ, V10, DOI 10.3390/electronics10141611 Covington P, 2016, PROCEEDINGS OF THE 10TH ACM CONFERENCE ON RECOMMENDER SYSTEMS (RECSYS'16), P191, DOI 10.1145/2959100.2959190 Cremonesi P., 2010, RECSYS 10 P 4 ACM C, P39, DOI DOI 10.1145/1864708.1864721 Deldjoo Y., 2017, P C INF RES SCI WORK Gong TJ, 2018, 2018 2ND INTERNATIONAL CONFERENCE ON EDUCATION AND E-LEARNING (ICEEL 2018), P48, DOI 10.1145/3291078.3291118 Gong TJ, 2021, AICCC 2021: 2021 4TH ARTIFICIAL INTELLIGENCE AND CLOUD COMPUTING CONFERENCE, P138, DOI 10.1145/3508259.3508279 Guo HF, 2017, PROCEEDINGS OF THE TWENTY-SIXTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, P1725 Hamari J, 2016, COMPUT HUM BEHAV, V54, P170, DOI 10.1016/j.chb.2015.07.045 He XN, 2017, PROCEEDINGS OF THE 26TH INTERNATIONAL CONFERENCE ON WORLD WIDE WEB (WWW'17), P173, DOI 10.1145/3038912.3052569 Hidasi B, 2016, Arxiv, DOI arXiv:1511.06939 Jawaheer G., 2010, P 1 INT WORKSH INF H, P47, DOI [DOI 10.1145/1869446, 10.1145/1869446.1869453, DOI 10.1145/1869446.1869453] Jiang WJ, 2019, RECSYS 2019: 13TH ACM CONFERENCE ON RECOMMENDER SYSTEMS, P506, DOI 10.1145/3298689.3347030 Jiang WJ, 2019, PROCEEDINGS OF THE 9TH INTERNATIONAL CONFERENCE ON LEARNING ANALYTICS & KNOWLEDGE (LAK'19), P36, DOI 10.1145/3303772.3303814 Khanal SS, 2020, EDUC INF TECHNOL, V25, P2635, DOI 10.1007/s10639-019-10063-9 Khribi MK, 2015, LECT N EDUC TECHNOL, P159, DOI 10.1007/978-3-662-44659-1_9 Koren Y., 2011, U.S. Patent Application, Patent No. [12/643,237, 12643237] Koren Yehuda, 2008, P ACM SIGKDD INT C K, P426, DOI DOI 10.1145/1401890.1401944 LeCun Y, 2015, NATURE, V521, P436, DOI 10.1038/nature14539 Lee TQ, 2008, EXPERT SYST APPL, V34, P3055, DOI 10.1016/j.eswa.2007.06.031 Li G, 2016, MATH PROBL ENG, V2016, DOI 10.1155/2016/2535329 Li J, 2020, COMPLEXITY, V2020, DOI 10.1155/2020/6619249 Liu TY, 2022, ARTIF INTELL REV, V55, P5953, DOI 10.1007/s10462-022-10135-2 massquantity, 2021, massquantity/LibRecommender Murgia E., 2019, P WORKSHOP RECOMMEND, V2449, P5 Ooge J, 2022, IUI'22: 27TH INTERNATIONAL CONFERENCE ON INTELLIGENT USER INTERFACES, P93, DOI 10.1145/3490099.3511140 Pera MS, 2014, PROCEEDINGS OF THE 8TH ACM CONFERENCE ON RECOMMENDER SYSTEMS (RECSYS'14), P9, DOI 10.1145/2645710.2645721 Piech C., 2015, NEURIPS, V28, P505 Rajagopal K, 2020, INTERACT DES ARCHIT, P155, DOI 10.48175/ijarsct-666 Reidenberg JR, 2018, THEORY RES EDUC, V16, P263, DOI 10.1177/1477878518805308 Rendle Steffen, 2010, Proceedings 2010 10th IEEE International Conference on Data Mining (ICDM 2010), P995, DOI 10.1109/ICDM.2010.127 Rendle Steffen, 2012, P UNC ART INT Reusens M, 2017, DECIS SUPPORT SYST, V98, P26, DOI 10.1016/j.dss.2017.04.002 Ricci F, 2011, RECOMMENDER SYSTEMS HANDBOOK, P1, DOI 10.1007/978-0-387-85820-3 Ricci F, 2011, RECOMMENDER SYSTEMS HANDBOOK, P1, DOI 10.1007/978-0-387-85820-3_1 Saiyeda A., 2017, Int. J. Adv. Res. Comput. Sci, V8, P68 Selent D, 2016, PROCEEDINGS OF THE THIRD (2016) ACM CONFERENCE ON LEARNING @ SCALE (L@S 2016), P181, DOI 10.1145/2876034.2893409 Song WP, 2019, PROCEEDINGS OF THE 28TH ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT (CIKM '19), P1161, DOI 10.1145/3357384.3357925 Steck Harald, 2013, RecSys '13, P213 Tawfik AA, 2021, TECHTRENDS, V65, P925, DOI 10.1007/s11528-021-00648-y Verbert K., 2011, P 1 INT C LEARN AN K, P44, DOI DOI 10.1145/2090116.2090122 Verbert K, 2012, IEEE T LEARN TECHNOL, V5, P318, DOI 10.1109/TLT.2012.11 Warford MK, 2011, TEACH TEACH EDUC, V27, P252, DOI 10.1016/j.tate.2010.08.008 Zhang M, 2020, IEEE GLOB ENG EDUC C, P374, DOI [10.1109/educon45650.2020.9125245, 10.1109/EDUCON45650.2020.9125245] Zhou GR, 2018, KDD'18: PROCEEDINGS OF THE 24TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING, P1059, DOI 10.1145/3219819.3219823 Zhou YW, 2018, INFORM SCIENCES, V444, P135, DOI 10.1016/j.ins.2018.02.053 NR 59 TC 0 Z9 0 U1 14 U2 14 PU IEEE COMPUTER SOC PI LOS ALAMITOS PA 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1314 USA SN 1939-1382 J9 IEEE T LEARN TECHNOL JI IEEE Trans. Learn. Technol. PY 2024 VL 17 BP 112 EP 123 DI 10.1109/TLT.2023.3273422 PG 12 WC Computer Science, Interdisciplinary Applications; Education & Educational Research WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Computer Science; Education & Educational Research GA EU8T8 UT WOS:001141545900043 DA 2024-09-05 ER PT J AU Meireles, MRG Cendón, BV AF Meireles, Magali Rezende Gouvea Cendon, Beatriz Valadares TI Citation-Based Document Categorization: An Approach Using Artificial Neural Networks SO QUALITATIVE & QUANTITATIVE METHODS IN LIBRARIES LA English DT Article DE Bibliometrics; Document Clustering; Information Science; Classification; Information Retrieval Systems; Artificial Neural Networks AB The automatic organization of large collections of documents becomes more important with the growth of the amount of information available in digital form. This study contributes to this issue evaluating the use of Artificial Neural Networks (ANNs) to automatically categorize documents through the analysis of the references cited in these documents. The article describes the method developed to generate clusters of documents based on bibliometric concepts. The method is grounded on the premise that the presence of common citations is indicative of relationships among documents and thus publications are categorized using citations as the main input information. ANNs are typically used to solve problems related to approximation, prediction, classification, categorization and optimization. Many of the experiments reported in the literature describe the use of SOM networks, Self Organizing Maps, in the organization of documents for information retrieval. SOM networks are used in this work in order to categorize documents in a test database. In this categorization process, the semantic relationships among documents are defined not by the identification of terms in common, but by the presence of common cited references and their years of publication. After validation of the method, through the use of a prototype, a database was created, containing the references cited in 200 articles published in the IEEE Transactions on Neural Networks Journal, between years of 2001 and 2010. The publications were categorized by the ANN and presented in groups organized by their common citations. The results obtained show that the ANN successfully identified clusters of authors and texts, through their cited references. These clusters, formed through automatic classification of documents, evidence the existence of semantic relationships between the documents. They can be useful, for example, to automatically identify groups of researchers working in related fields or for identifying research trends in specific domains of knowledge. Another application would be in the process of information retrieval, where they could assist users in the development or reformulation of their queries. C1 [Meireles, Magali Rezende Gouvea] Pontificia Univ Catolica Minas Gerais, Inst Math Sci & Informat, Belo Horizonte, MG, Brazil. [Cendon, Beatriz Valadares] Univ Fed Minas Gerais, Sch Informat Sci, Belo Horizonte, MG, Brazil. C3 Pontificia Universidade Catolica de Minas Gerais; Universidade Federal de Minas Gerais RP Meireles, MRG (corresponding author), Pontificia Univ Catolica Minas Gerais, Inst Math Sci & Informat, Belo Horizonte, MG, Brazil. RI Cendon, Beatriz/G-6141-2011; Meireles, Magali RG/F-6563-2013 OI Cendon, Beatriz/0000-0002-3276-0114; CR ALVARENGA L, 1998, CIENCIA INFORM BRASI, V27 [Anonymous], THE CITATION PROCESS Barite MG, 2000, KNOWL ORGAN, V27, P4 Lima GABD, 2010, PERSPECT CIENC INF, V15, P108, DOI 10.1590/S1413-99362010000200008 Borgman CL, 2002, ANNU REV INFORM SCI, V36, P3 Braga AP., 2000, Redes Neurais Artificiais: Teoria e Aplicacoes DURAES Rodrigo Leite, 2009, THESIS Guedes V. L. S, 2005, P CINFORM ENC NAC CI Jacob EK, 2004, LIBR TRENDS, V52, P515 Leal I. C., 2005, THESIS MACROBERTS MH, 1989, J AM SOC INFORM SCI, V40, P342, DOI 10.1002/(SICI)1097-4571(198909)40:5<342::AID-ASI7>3.0.CO;2-U Meireles M. R. G., 2003, IEEE T IND ELECTRON, V50, P1 Souza RR, 2006, PERSPECT CIENC INF, V11, P161 Xavier B. R, 2008, PENSAR FORTALEZA, V13, P57 NR 14 TC 1 Z9 1 U1 0 U2 4 PU INT SOC ART SCIENCE & TECHNOLOGY-ISAST PI ATHINA PA INT SOC ART SCIENCE & TECHNOLOGY-ISAST, ATHINA, 00000, GREECE SN 2241-1925 J9 QUAL QUANT METHODS L JI Qual. Quant. Methods Libr. PD JAN PY 2015 SI SI BP 71 EP 79 PG 9 WC Information Science & Library Science WE Emerging Sources Citation Index (ESCI) SC Information Science & Library Science GA CV9ZK UT WOS:000364647800008 DA 2024-09-05 ER PT J AU Egger, J Pepe, A Gsaxner, C Jin, Y Li, JN Kern, R AF Egger, Jan Pepe, Antonio Gsaxner, Christina Jin, Yuan Li, Jianning Kern, Roman TI Deep learning-a first meta-survey of selected reviews across scientific disciplines, their commonalities, challenges and research impact SO PEERJ COMPUTER SCIENCE LA English DT Article DE Deep learning; Artificial neural networks; Machine learning; Data analysis; Image analysis; Language processing; Speech recognition; Big data; Medical image analysis; Meta-review ID IMAGE; RECOGNITION AB Deep learning belongs to the field of artificial intelligence, where machines perform tasks that typically require some kind of human intelligence. Deep learning tries to achieve this by drawing inspiration from the learning of a human brain. Similar to the basic structure of a brain, which consists of (billions of) neurons and connections between them, a deep learning algorithm consists of an artificial neural network, which resembles the biological brain structure. Mimicking the learning process of humans with their senses, deep learning networks are fed with (sensory) data, like texts, images, videos or sounds. These networks outperform the state-of-the-art methods in different tasks and, because of this, the whole field saw an exponential growth during the last years. This growth resulted in way over 10,000 publications per year in the last years. For example, the search engine PubMed alone, which covers only a sub-set of all publications in the medical field, provides already over 11,000 results in Q3 2020 for the search term 'deep learning', and around 90% of these results are from the last three years. Consequently, a complete overview over the field of deep learning is already impossible to obtain and, in the near future, it will potentially become difficult to obtain an overview over a subfield. However, there are several review articles about deep learning, which are focused on specific scientific fields or applications, for example deep learning advances in computer vision or in specific tasks like object detection. With these surveys as a foundation, the aim of this contribution is to provide a first high-level, categorized meta-survey of selected reviews on deep learning across different scientific disciplines and outline the research impact that they already have during a short period of time. The categories (computer vision, language processing, medical informatics and additional works) have been chosen according to the underlying data sources In we review the common architectures, methods, pros, cons, evaluations, challenges and future directions for every sub-category. C1 [Egger, Jan; Pepe, Antonio; Gsaxner, Christina; Jin, Yuan; Li, Jianning] Graz Univ Technol, Fac Comp Sci & Biomed Engn, Inst Comp Graph & Vis, Graz, Austria. [Egger, Jan; Pepe, Antonio; Gsaxner, Christina; Jin, Yuan; Li, Jianning] Comp Algorithms Med Lab, Graz, Austria. [Egger, Jan; Gsaxner, Christina] Med Univ Graz, Dept Oral & Maxillofacial Surg, Graz, Austria. [Egger, Jan; Li, Jianning] Univ Med Essen, Inst AI Med IKIM, Essen, Germany. [Jin, Yuan] Res Ctr Connected Healthcare Big Data, Zhejiang Lab, Hangzhou, Zhejiang, Peoples R China. [Li, Jianning] Med Univ Graz, Dept Neurosurg, Res Unit Expt Neurotraumatol, Graz, Austria. [Kern, Roman] Know Ctr, Knowledge Discovery, Graz, Austria. [Kern, Roman] Graz Univ Technol, Inst Interact Syst & Data Sci, Graz, Austria. C3 Graz University of Technology; Medical University of Graz; Zhejiang Laboratory; Medical University of Graz; Graz University of Technology RP Egger, J (corresponding author), Graz Univ Technol, Fac Comp Sci & Biomed Engn, Inst Comp Graph & Vis, Graz, Austria.; Egger, J (corresponding author), Comp Algorithms Med Lab, Graz, Austria.; Egger, J (corresponding author), Med Univ Graz, Dept Oral & Maxillofacial Surg, Graz, Austria.; Egger, J (corresponding author), Univ Med Essen, Inst AI Med IKIM, Essen, Germany. EM egger@tugraz.at RI Pepe, Antonio/AAI-9317-2020; Kern, Roman/ABG-3805-2020 OI Pepe, Antonio/0000-0002-5843-6275; Kern, Roman/0000-0003-0202-6100; Jin, Yuan/0000-0001-8695-1525 FU Austrian Science Fund (FWF) [KLI 678-B31]; TU Graz Lead Project (Mechanics, Modeling and Simulation of Aortic Dissection); Austrian Federal Ministry of Transport, Innovation and Technology (BMVIT) [871132]; Austrian Federal Ministry for Digital and Economic Affairs (BMDW) [871132]; Styrian Business Promotion Agency (SFG) FX The authors received funding from the Austrian Science Fund (FWF) KLI 678-B31: 'enFaced: Virtual and Augmented Reality Training and Navigation Module for 3D-Printed Facial Defect Reconstructions' and the TU Graz Lead Project (Mechanics, Modeling and Simulation of Aortic Dissection). Moreover, this work was supported by CAMed (COMET K-Project 871132), which is funded by the Austrian Federal Ministry of Transport, Innovation and Technology (BMVIT), and the Austrian Federal Ministry for Digital and Economic Affairs (BMDW), and the Styrian Business Promotion Agency (SFG). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. CR Abadi M, 2016, PROCEEDINGS OF OSDI'16: 12TH USENIX SYMPOSIUM ON OPERATING SYSTEMS DESIGN AND IMPLEMENTATION, P265 Almeida F., 2019, Word embeddings: a survey, V1901 [Anonymous], 2019, ARXIV190601529 [Anonymous], 2018, P 27 INT C COMP LING Arulkumaran K, 2017, IEEE SIGNAL PROC MAG, V34, P26, DOI 10.1109/MSP.2017.2743240 Ball JE, 2017, J APPL REMOTE SENS, V11, DOI 10.1117/1.JRS.11.042609 Bevilacqua V, 2015, LECT NOTES ARTIF INT, V9227, P264, DOI 10.1007/978-3-319-22053-6_28 Boski M, 2017, 2017 10TH INTERNATIONAL WORKSHOP ON MULTIDIMENSIONAL (ND) SYSTEMS (NDS) Campbell M, 2002, ARTIF INTELL, V134, P57, DOI 10.1016/S0004-3702(01)00129-1 Chen JX, 2016, COMPUT SCI ENG, V18, P4, DOI 10.1109/MCSE.2016.74 Cicek O., 2016, MED IMAGE COMPUTING, P424, DOI 10.1007/978-3-319-46723-8_49 Dargan S, 2020, ARCH COMPUT METHOD E, V27, P1071, DOI 10.1007/s11831-019-09344-w Deng L, 2013, FOUND TRENDS SIGNAL, V7, pI, DOI 10.1561/2000000039 Do HH, 2019, EXPERT SYST APPL, V118, P272, DOI 10.1016/j.eswa.2018.10.003 Egger J, 2020, MED DEEP LEARNING SY Emmert-Streib F, 2020, FRONT ARTIF INTELL, V3, DOI 10.3389/frai.2020.00004 Fan JT, 2020, ENGINEERING-PRC, V6, P248, DOI 10.1016/j.eng.2019.11.012 Fleischmann D, 2020, RADIOLOGY CARDIOTHOR, V2, DOI [10.1148/ryct.2020190179, DOI 10.1148/RYCT.2020190179] Gao JF, 2018, ACM/SIGIR PROCEEDINGS 2018, P1371, DOI 10.1145/3209978.3210183 Garcia-Garcia A, 2018, APPL SOFT COMPUT, V70, P41, DOI 10.1016/j.asoc.2018.05.018 Gatt A, 2018, J ARTIF INTELL RES, V61, P65, DOI 10.1613/jair.5477 Gibson E, 2018, COMPUT METH PROG BIO, V158, P113, DOI 10.1016/j.cmpb.2018.01.025 Goodfellow I, 2016, ADAPT COMPUT MACH LE, P1 Gsaxner C, 2019, INT C MED IM COMP CO Gsaxner C, 2018, 2018 11 BIOM ENG INT, P1 Gsaxner C, 2019, PLOS ONE, V14, DOI 10.1371/journal.pone.0212550 Hahn LD, 2020, RADIOL-CARDIOTHORAC, V2, DOI 10.1148/ryct.2020190179 Haskins G, 2020, MACH VISION APPL, V31, DOI 10.1007/s00138-020-01060-x Herath S, 2017, IMAGE VISION COMPUT, V60, P4, DOI 10.1016/j.imavis.2017.01.010 Hesamian MH, 2019, J DIGIT IMAGING, V32, P582, DOI 10.1007/s10278-019-00227-x Hong JW, 2020, INT J HUM-COMPUT INT, V36, P1768, DOI 10.1080/10447318.2020.1785693 Hong JW, 2020, INT J HUM-COMPUT INT, V36, P1928, DOI 10.1080/10447318.2020.1801226 Hongshen Chen, 2017, ACM SIGKDD Explorations Newsletter, V19, P25, DOI 10.1145/3166054.3166058 Hossain MZ, 2019, ACM COMPUT SURV, V51, DOI 10.1145/3295748 Hu ZL, 2018, PATTERN RECOGN, V83, P134, DOI 10.1016/j.patcog.2018.05.014 HUTTENLOCHER DP, 1993, IEEE T PATTERN ANAL, V15, P850, DOI 10.1109/34.232073 Jiao LC, 2019, IEEE ACCESS, V7, P128837, DOI 10.1109/ACCESS.2019.2939201 Kalinin AA, 2018, PHARMACOGENOMICS, V19, P629, DOI 10.2217/pgs-2018-0008 Kallioinen Noa, 2019, Front Psychol, V10, P2415, DOI 10.3389/fpsyg.2019.02415 Kamilaris A, 2018, COMPUT ELECTRON AGR, V147, P70, DOI 10.1016/j.compag.2018.02.016 Karner F, 2020, LECT NOTES COMPUT SC, V12445, P64, DOI 10.1007/978-3-030-60946-7_7 Kohl C., 2018, J. Bus. Econ., V88, P617, DOI DOI 10.1007/S11573-018-0897-5 Krizhevsky A, 2017, COMMUN ACM, V60, P84, DOI 10.1145/3065386 Kwon D, 2019, CLUSTER COMPUT, V22, P949, DOI 10.1007/s10586-017-1117-8 Lan K, 2018, J MED SYST, V42, DOI 10.1007/s10916-018-1003-9 Li J, 2020, AUTOMATIZATION CRANI Li JN, 2021, IEEE T MED IMAGING, V40, P2329, DOI 10.1109/TMI.2021.3077047 Li J, 2022, IEEE T KNOWL DATA EN, V34, P50, DOI 10.1109/TKDE.2020.2981314 Li S, 2022, IEEE T AFFECT COMPUT, V13, P1195, DOI 10.1109/TAFFC.2020.2981446 Li Y., 2017, 170107274 ARXIV, DOI DOI 10.1007/978-3-319-56991-8_32 Litjens G, 2017, MED IMAGE ANAL, V42, P60, DOI 10.1016/j.media.2017.07.005 Liu L, 2020, INT J COMPUT VISION, V128, P261, DOI 10.1007/s11263-019-01247-4 Liu XX, 2019, LANCET DIGIT HEALTH, V1, pE271, DOI 10.1016/S2589-7500(19)30123-2 Long J, 2015, PROC CVPR IEEE, P3431, DOI 10.1109/CVPR.2015.7298965 Lundervold AS, 2019, Z MED PHYS, V29, P102, DOI 10.1016/j.zemedi.2018.11.002 Masi I, 2018, SIBGRAPI, P471, DOI 10.1109/SIBGRAPI.2018.00067 Mazurowski MA, 2019, J MAGN RESON IMAGING, V49, P939, DOI 10.1002/jmri.26534 MCCULLOCH WS, 1990, B MATH BIOL, V52, P99, DOI 10.1016/S0092-8240(05)80006-0 Meyer P, 2018, COMPUT BIOL MED, V98, P126, DOI 10.1016/j.compbiomed.2018.05.018 Minaee S, 2019, BIOMETRIC RECOGNITIO Mohammadi M, 2018, IEEE COMMUN SURV TUT, V20, P2923, DOI 10.1109/COMST.2018.2844341 Mousavi SS, 2018, LECT NOTE NETW SYST, V16, P426, DOI 10.1007/978-3-319-56991-8_32 Ota K, 2017, ACM T MULTIM COMPUT, V13, DOI 10.1145/3092831 Paszke Adam, 2017, Automatic differentiation in PyTorch Pepe A, 2019, J DIGIT IMAGING, V32, P1008, DOI 10.1007/s10278-019-00272-6 Pouyanfar S, 2019, ACM COMPUT SURV, V51, DOI 10.1145/3234150 Raghu M., 2020, ARXIV200311755 Ramachandram D, 2017, IEEE SIGNAL PROC MAG, V34, P96, DOI 10.1109/MSP.2017.2738401 Ravì D, 2017, IEEE J BIOMED HEALTH, V21, P4, DOI 10.1109/JBHI.2016.2636665 Ronneberger O, 2015, LECT NOTES COMPUT SC, V9351, P234, DOI 10.1007/978-3-319-24574-4_28 Rusk N, 2016, NAT METHODS, V13, P35, DOI 10.1038/nmeth.3707 Sampa MP, 2006, IEEE IMAGE PROC, P81, DOI 10.1109/ICIP.2006.312367 Santhanam Sashank, 2019, SURVEY NATURAL LANGU Shen DG, 2017, ANNU REV BIOMED ENG, V19, P221, DOI [10.1146/annurev-bioeng-071516044442, 10.1146/annurev-bioeng-071516-044442] Shi T., 2018, NEURAL ABSTRACTIVE T Shickel Benjamin, 2018, IEEE J Biomed Health Inform, V22, P1589, DOI 10.1109/JBHI.2017.2767063 Shorten C, 2019, J BIG DATA-GER, V6, DOI 10.1186/s40537-019-0197-0 Sundararajan K, 2018, ACM COMPUT SURV, V51, DOI 10.1145/3190618 Sylos Labini Mauro, 2019, Intelligent Computing Methodologies. 15th International Conference, ICIC 2019. Proceedings: Lecture Notes in Artificial Intelligence (LNAI 11645), P716, DOI 10.1007/978-3-030-26766-7_65 Sze V, 2017, P IEEE, V105, P2295, DOI 10.1109/JPROC.2017.2761740 Voulodimos A, 2018, COMPUT INTEL NEUROSC, V2018, DOI 10.1155/2018/7068349 Wallner J, 2019, SCI DATA, V6, DOI 10.1038/sdata.2019.3 Wang JJ, 2018, J MANUF SYST, V48, P144, DOI 10.1016/j.jmsy.2018.01.003 Wang M., 2018, DEEP FACE RECOGNITIO Wang PC, 2018, COMPUT VIS IMAGE UND, V171, P118, DOI 10.1016/j.cviu.2018.04.007 Wang ZH, 2021, IEEE T PATTERN ANAL, V43, P3365, DOI 10.1109/TPAMI.2020.2982166 Wild D, 2019, CLIENT SERVER BASED Xing FZ, 2018, ARTIF INTELL REV, V50, P49, DOI 10.1007/s10462-017-9588-9 Xing FY, 2018, IEEE T NEUR NET LEAR, V29, P4550, DOI 10.1109/TNNLS.2017.2766168 Yadav V., 2018, P 27 INT C COMP LING, P2145 Young T, 2018, IEEE COMPUT INTELL M, V13, P55, DOI 10.1109/MCI.2018.2840738 Zeiler MD, 2014, LECT NOTES COMPUT SC, V8689, P818, DOI 10.1007/978-3-319-10590-1_53 Zhang CY, 2019, IEEE COMMUN SURV TUT, V21, P2224, DOI 10.1109/COMST.2019.2904897 Zhang L, 2018, WIRES DATA MIN KNOWL, V8, DOI 10.1002/widm.1253 Zhang QC, 2018, INFORM FUSION, V42, P146, DOI 10.1016/j.inffus.2017.10.006 Zhang SA, 2019, ACM COMPUT SURV, V52, DOI 10.1145/3285029 Zhang Y., 2016, NEURAL INFORM RETRIE Zhao ZQ, 2019, IEEE T NEUR NET LEAR, V30, P3212, DOI 10.1109/TNNLS.2018.2876865 Ziwei Zhang, 2022, IEEE Transactions on Knowledge and Data Engineering, V34, P249, DOI 10.1109/TKDE.2020.2981333 NR 99 TC 15 Z9 15 U1 1 U2 10 PU PEERJ INC PI LONDON PA 341-345 OLD ST, THIRD FLR, LONDON, EC1V 9LL, ENGLAND EI 2376-5992 J9 PEERJ COMPUT SCI JI PeerJ Comput. Sci. PD NOV 17 PY 2021 VL 7 AR e773 DI 10.7717/peerj-cs.773 PG 83 WC Computer Science, Artificial Intelligence; Computer Science, Information Systems; Computer Science, Theory & Methods WE Science Citation Index Expanded (SCI-EXPANDED) SC Computer Science GA XA9AB UT WOS:000720930400002 PM 34901429 OA gold, Green Published, Green Submitted DA 2024-09-05 ER PT J AU Melnikova, EV AF Melnikova, E. V. TI Needs of Scientometry and Possibilities of Modern Machine Learning as a Field of Artificial Intelligence SO SCIENTIFIC AND TECHNICAL INFORMATION PROCESSING LA English DT Article DE scientometry; scientometric indicators; bibliometry; classification; Web of Science; Scopus; artificial intelligence; machine learning; deep learning; artificial neural networks; big data ID CITATION INDEXES AB A general description of modern scientometry, its main tasks, and its research methods is presented. The issues of the application of conventional machine learning and deep learning algorithms as tools of artificial intelligence in the thematic classification of scientific literature are considered. The problems and limitations of the classification of literature by sections of science in the systems of indexing and citing of scientific information are outlined. The author presents a specific example of a deep learning application for by-article thematic classification based on convolutional neural networks that was designed by scientists from the United Arab Emirates and Jordan. The article emphasizes the importance of the use of deep learning applications and models for creating correct classifications of the scientific literature that correspond to the realities of the development of science and that are capable of increasing the accuracy of calculating scientometric indicators. C1 [Melnikova, E. V.] Russian Acad Sci, All Russian Res Inst Sci & Tech Informat, Moscow, Russia. C3 Russian Academy of Sciences RP Melnikova, EV (corresponding author), Russian Acad Sci, All Russian Res Inst Sci & Tech Informat, Moscow, Russia. EM verden.mel@yandex.ru FU All-Russian Research Institute for Scientific and Technical Information, Russian Academy of Sciences [FFFU-2022-0007] FX The article was supported by the state assignment of the All-Russian Research Institute for Scientific and Technical Information, Russian Academy of Sciences (project no.FFFU-2022-0007). CR Akoev M.A., 2021, RUKOVODSTVO NAUKOMET, V2nd Bhattacharya S, 2019, J SCIENTOMETR RES, V8, pS85, DOI 10.5530/jscires.8.2.26 Daradkeh M, 2022, ELECTRONICS-SWITZ, V11, DOI 10.3390/electronics11132066 Eykens J, 2021, QUANT SCI STUD, V2, P89, DOI 10.1162/qss_a_00106 Gargiulo F., 2018, SMART INNOVATION SYS, V76, P471, DOI [10.1007/978-3-319-59480-4_47, DOI 10.1007/978-3-319-59480-4_47] Giliarevskii RS, 2020, SCI TECH INF PROCESS, V47, P194, DOI 10.3103/S0147688220030107 Gilyarevskii RS, 2022, AUTOMAT DOC MATH LIN, V56, P26, DOI 10.3103/S000510552201006X Gilyarevskii R.S., 2022, Scientific Metrics in Science Journalism: A Course of Lectures Huang H, 2022, SCIENTOMETRICS, V127, P5257, DOI 10.1007/s11192-021-04183-8 Kassab O, 2020, QUANT SCI STUD, V1, P792, DOI 10.1162/qss_a_00032 Melnikova EV, 2022, SCI TECH INF PROCESS, V49, P102, DOI 10.3103/S0147688222020083 Melnikova E.V., 2021, Inf. Resur. Ross., P6, DOI [10.52815/0204-3653_2021_04182_6, DOI 10.52815/0204-36532021041826] Melnikova E.V., 2022, Naukosfera, P202 Microsoft Corp, 2022, DEEP LEARN VS MACH L Mikhailov A.I., 1965, OSNOVY NAUCHNOI INFO Mokhnacheva Y, 2018, NAUCHNYE TEK BIBL, P51 Nalimov V.V., 1969, Naukometriya. Izuchenie Razvitiya Nauki kak Informatsionnogo Protsessa.[Scientometrics. Study of the Development of Science as an Information Process] Ozcan S, 2022, IEEE T ENG MANAGE, V69, P3023, DOI 10.1109/TEM.2020.3027973 Salazar-Reyna R, 2022, MANAGE DECIS, V60, P300, DOI 10.1108/MD-01-2020-0035 Shraiberg Ya.L., 2021, BIBLIOTEKA, P21 Srinivasa G, 2019, J SCIENTOMETR RES, V8, pS39, DOI 10.5530/jscires.8.2.23 Subelj L, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0154404 Tsvetkova V.A., 2021, INF RESUR ROSS, P20, DOI [10.52815/0204-3653_2021_04182_20, DOI 10.52815/0204-3653_2021_04182_20] Waltman L, 2020, QUANT SCI STUD, V1, P691, DOI 10.1162/qss_a_00035 Wang GH, 2021, PLOS ONE, V16, DOI 10.1371/journal.pone.0254054 Wook M, 2021, J BIG DATA-GER, V8, DOI 10.1186/s40537-021-00439-5 Zhang ZQ, 2021, QUANT SCI STUD, V2, P698, DOI 10.1162/qss_a_00123 NR 27 TC 1 Z9 1 U1 5 U2 5 PU PLEIADES PUBLISHING INC PI NEW YORK PA PLEIADES HOUSE, 7 W 54 ST, NEW YORK, NY, UNITED STATES SN 0147-6882 EI 1934-8118 J9 SCI TECH INF PROCESS JI Sci. Tech. Inf. Process. PD JUN PY 2023 VL 50 IS 2 BP 114 EP 120 DI 10.3103/S0147688223020089 PG 7 WC Information Science & Library Science WE Emerging Sources Citation Index (ESCI) SC Information Science & Library Science GA Q5HV3 UT WOS:001057838600004 DA 2024-09-05 ER PT J AU Ji, TR Self, N Fu, KQ Chen, ZQ Ramakrishnan, N Lu, CT AF Ji, Taoran Self, Nathan Fu, Kaiqun Chen, Zhiqian Ramakrishnan, Naren Lu, Chang-Tien TI Citation Forecasting with Multi-Context Attention-Aided Dependency Modeling SO ACM TRANSACTIONS ON KNOWLEDGE DISCOVERY FROM DATA LA English DT Article DE Citation analysis; recurrent neural networks; deep learning ID COUNT PREDICTION; NETWORKS; IMPACT; INDEX AB Forecasting citations of scientific patents and publications is a crucial task for understanding the evolution and development of technological domains and for foresight into emerging technologies. By construing citations as a time series, the task can be cast into the domain of temporal point processes. Most existing work on forecasting with temporal point processes, both conventional and neural network-based, only performs single-step forecasting. In citation forecasting, however, the more salient goal is n-step forecasting: predicting the arrival of the next n citations. In this article, we propose Dynamic Multi-Context Attention Networks (DMA-Nets), a novel deep learning sequence-to-sequence (Seq2Seq) model with a novel hierarchical dynamic attention mechanism for long-term citation forecasting. Extensive experiments on two real-world datasets demonstrate that the proposed model learns better representations of conditional dependencies over historical sequences compared to state-of-the-art counterparts and thus achieves significant performance for citation predictions. C1 [Ji, Taoran] Texas A&M Univ, Dept Comp Sci, CI 317,6300 Ocean Dr, Corpus Christi, TX 78412 USA. [Self, Nathan; Ramakrishnan, Naren] Virginia Tech, Dept Comp Sci, Arlington, VA USA. [Self, Nathan; Ramakrishnan, Naren] VTRC Arlington, Dept Comp Sci, 900 North Glebe Rd, Arlington, VA 22203 USA. [Fu, Kaiqun] South Dakota State Univ, Dept Comp Sci, Daktron Eng Hall 123,Elect Engn Comp Sci Box 2222, Brookings, SD 57007 USA. [Chen, Zhiqian] Mississippi State Univ, Comp Sci & Engn Dept, Starkville, MS USA. [Chen, Zhiqian] Mississippi State Univ, Comp Sci & Engn Dept, 304 Butler Hall,75 BS Hood Rd, Mississippi State, MS 39762 USA. [Lu, Chang-Tien] Virginia Tech, Dept Comp Sci, Falls Church, VA USA. [Lu, Chang-Tien] Northern Virginia Ctr, Dept Comp Sci, 7054 Haycock Rd,Room 312, Falls Church, VA 22043 USA. C3 Texas A&M University System; Virginia Polytechnic Institute & State University; South Dakota State University; Mississippi State University; Mississippi State University; Virginia Polytechnic Institute & State University RP Ji, TR (corresponding author), Texas A&M Univ, Dept Comp Sci, CI 317,6300 Ocean Dr, Corpus Christi, TX 78412 USA. EM taoran.ji@tamucc.edu; nwself@vt.edu; kaiqun.fu@sdstate.edu; zchen@cse.msstate.edu; ctlu@vt.edu RI ; Fu, Kaiqun/L-7587-2015 OI Ji, Taoran/0000-0001-9438-3038; Fu, Kaiqun/0000-0003-4307-9938; Chen, Zhiqian/0000-0003-4112-9647 FU National Science Foundation [CCF-1918770, NRT DGE-1545362, OAC-1835660, IIS-2153369] FX This work is supported in part by the National Science Foundation via grants Expeditions CCF-1918770, NRT DGE-1545362, OAC-1835660, and IIS-2153369. The US Government is authorized to reproduce and distribute reprints of this work for Governmental purposes notwithstanding any copyright annotation thereon. Disclaimer: The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of NSF, or the U.S. Government. CR Acuna DE, 2012, NATURE, V489, P201, DOI 10.1038/489201a Bergstrom CT, 2008, J NEUROSCI, V28, P11433, DOI 10.1523/JNEUROSCI.0003-08.2008 Bessen J, 2008, RES POLICY, V37, P932, DOI 10.1016/j.respol.2008.02.005 Bletsas A, 2009, J AM SOC INF SCI TEC, V60, P2577, DOI 10.1002/asi.21197 Bornmann Lutz, 2013, Technical Report Braun T, 2006, SCIENTOMETRICS, V69, P169, DOI 10.1007/s11192-006-0147-4 Chakraborty T, 2015, COMMUN ACM, V58, P82, DOI 10.1145/2701412 Cho KYHY, 2014, Arxiv, DOI arXiv:1409.1259 Ding DZ, 2019, KDD'19: PROCEEDINGS OF THE 25TH ACM SIGKDD INTERNATIONAL CONFERENCCE ON KNOWLEDGE DISCOVERY AND DATA MINING, P1114, DOI 10.1145/3292500.3330896 Du N, 2016, KDD'16: PROCEEDINGS OF THE 22ND ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, P1555, DOI 10.1145/2939672.2939875 Egghe L, 2006, SCIENTOMETRICS, V69, P131, DOI 10.1007/s11192-006-0144-7 Egghe L, 2014, J ASSOC INF SCI TECH, V65, P2152, DOI 10.1002/asi.23168 Ferludin O, 2022, Arxiv, DOI arXiv:2207.03522 Ferrara E, 2013, J AM SOC INF SCI TEC, V64, P2332, DOI 10.1002/asi.22976 Filimonov V, 2015, QUANT FINANC, V15, P1293, DOI 10.1080/14697688.2015.1032544 HAWKES AG, 1971, BIOMETRIKA, V58, P83, DOI 10.1093/biomet/58.1.83 Helmstetter A, 2002, J GEOPHYS RES-SOL EA, V107, DOI 10.1029/2001JB001580 Hirsch JE, 2005, P NATL ACAD SCI USA, V102, P16569, DOI 10.1073/pnas.0507655102 Hochreiter S, 1997, NEURAL COMPUT, V9, P1735, DOI [10.1162/neco.1997.9.1.1, 10.1007/978-3-642-24797-2] Jang HJ, 2017, J INFORMETR, V11, P511, DOI 10.1016/j.joi.2017.03.007 Jha R, 2017, NAT LANG ENG, V23, P93, DOI 10.1017/S1351324915000443 Ji TR, 2019, PROCEEDINGS OF THE TWENTY-EIGHTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, P2621 Kim J, 2014, IEEE INT CONF BIG DA Kingma D. P., 2014, INT C LEARNING REPRE Klosik DF, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0113184 Lee C, 2018, TECHNOL FORECAST SOC, V127, P291, DOI 10.1016/j.techfore.2017.10.002 Lee C, 2012, TECHNOL FORECAST SOC, V79, P16, DOI 10.1016/j.techfore.2011.06.009 Lee Yunjae, 2022, arXiv Li N, 2012, INT CONF COMP SCI ED, P1115, DOI 10.1109/ICCSE.2012.6295261 Liu HW, 2019, EURASIP J WIREL COMM, V2019, DOI 10.1186/s13638-019-1561-7 Liu X, 2017, AAAI CONF ARTIF INTE, P1438 Luong MT, 2015, Arxiv, DOI arXiv:1508.04025 Massucci FA, 2019, J INFORMETR, V13, P185, DOI 10.1016/j.joi.2018.12.001 McGovern Amy, 2003, ACM SIGKDD Explorations Newsletter, V5, P165, DOI DOI 10.1145/980972.980999 Meho LI, 2007, PHYS WORLD, V20, P32 Mei HY, 2017, ADV NEUR IN, V30 Mishra S, 2016, CIKM'16: PROCEEDINGS OF THE 2016 ACM CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, P1069, DOI 10.1145/2983323.2983812 Kipf TN, 2016, Arxiv, DOI arXiv:1611.07308 PERITZ BC, 1992, J AM SOC INFORM SCI, V43, P448, DOI 10.1002/(SICI)1097-4571(199207)43:6<448::AID-ASI5>3.0.CO;2-9 Pobiedina N, 2016, APPL INTELL, V44, P252, DOI 10.1007/s10489-015-0657-y Prathap G, 2014, J ASSOC INF SCI TECH, V65, P1506, DOI 10.1002/asi.23120 Radicchi F, 2008, P NATL ACAD SCI USA, V105, P17268, DOI 10.1073/pnas.0806977105 Radicchi F, 2013, SCIENTOMETRICS, V97, P627, DOI 10.1007/s11192-013-1027-3 Shen HW, 2014, AAAI CONF ARTIF INTE, P291 Sinha A, 2015, WWW'15 COMPANION: PROCEEDINGS OF THE 24TH INTERNATIONAL CONFERENCE ON WORLD WIDE WEB, P243, DOI 10.1145/2740908.2742839 Sutskever I, 2014, ADV NEUR IN, V27 Vaswani A, 2017, ADV NEUR IN, V30 Wang K, 2019, NEUROCOMPUTING, V360, P107, DOI 10.1016/j.neucom.2019.05.023 Wang YQ, 2017, PROCEEDINGS OF THE TWENTY-SIXTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, P2985 Wen JQ, 2020, IEEE INT CONF ELECTR, P303, DOI 10.1109/iceiec49280.2020.9152330 Wu X, 2018, CIKM'18: PROCEEDINGS OF THE 27TH ACM INTERNATIONAL CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, P1073, DOI 10.1145/3269206.3271794 Xiao S, 2017, AAAI CONF ARTIF INTE, P1597 Xiao S, 2019, IEEE T NEUR NET LEAR, V30, P3124, DOI 10.1109/TNNLS.2018.2889776 Xiao Shuai, 2016, Ijcai, P2676, DOI [DOI 10.1109/SCEECS57921.2023.10061818, DOI 10.1145/3123266.3123277] Yan Junchi, 2016, P IJCAI, P2690 Yan R, 2012, P 12 ACM IEEE CS JOI, P51, DOI DOI 10.1145/2232817.2232831 Yan R, 2011, P 20 ACM INT C INF K, P1247, DOI DOI 10.1145/2063576.2063757 Yang Shuang-Hong, 2013, ICML Yuan Sha, 2022, arXiv Zhou K., 2013, PMLR, P2338 NR 60 TC 0 Z9 0 U1 4 U2 4 PU ASSOC COMPUTING MACHINERY PI NEW YORK PA 1601 Broadway, 10th Floor, NEW YORK, NY USA SN 1556-4681 EI 1556-472X J9 ACM T KNOWL DISCOV D JI ACM Trans. Knowl. Discov. Data PD JUL PY 2024 VL 18 IS 6 AR 144 DI 10.1145/3649140 PG 23 WC Computer Science, Information Systems; Computer Science, Software Engineering WE Science Citation Index Expanded (SCI-EXPANDED) SC Computer Science GA OU9C2 UT WOS:001209901400011 OA hybrid, Green Accepted DA 2024-09-05 ER PT J AU Ibáñez, A Bielza, C Larrañaga, P AF Ibanez, Alfonso Bielza, Concha Larranaga, Pedro TI Cost-sensitive selective naive Bayes classifiers for predicting the increase of the h-index for scientific journals SO NEUROCOMPUTING LA English DT Article DE Cost-sensitive learning approach; Selective naive Bayes; h-index; Neurosciences journals ID CLASSIFICATION; MODEL AB Machine learning community is not only interested in maximizing classification accuracy, but also in minimizing the distances between the actual and the predicted class. Some ideas, like the cost-sensitive learning approach, are proposed to face this problem. In this paper, we propose two greedy wrapper forward cost-sensitive selective naive Bayes approaches. Both approaches readjust the probability thresholds of each class to select the class with the minimum-expected cost. The first algorithm (CS-SNB-Accuracy) considers adding each variable to the model and measures the performance of the resulting model on the training data. The variable that most improves the accuracy, that is, the percentage of well classified instances between the readjusted class and actual class, is permanently added to the model. In contrast, the second algorithm (CS-SNB-Cost) considers adding variables that reduce the misclassification cost, that is, the distance between the readjusted class and actual class. We have tested our algorithms on the bibliometric indices prediction area. Considering the popularity of the well-known h-index, we have researched and built several prediction models to forecast the annual increase of the h-index for Neurosciences journals in a four-year time horizon. Results show that our approaches, particularly CS-SNB-Accuracy, achieved higher accuracy values than the analyzed cost-sensitive classifiers and Bayesian classifiers. Furthermore, we also noted that the CS-SNB-Cost always achieved a lower average cost than all analyzed cost-sensitive and cost-insensitive classifiers. These cost-sensitive selective naive Bayes approaches outperform the selective naive Bayes in terms of accuracy and average cost, so the cost-sensitive learning approach could be also applied in different probabilistic classification approaches. (c) 2014 Elsevier B.V. All rights reserved. C1 [Ibanez, Alfonso; Bielza, Concha; Larranaga, Pedro] Univ Politecn Madrid, Fac Informat, Dept Inteligencia Artificial, Computat Intelligence Grp, E-28660 Madrid, Spain. C3 Universidad Politecnica de Madrid RP Ibáñez, A (corresponding author), Univ Politecn Madrid, Fac Informat, Dept Inteligencia Artificial, Computat Intelligence Grp, E-28660 Madrid, Spain. EM aibanez@fi.upm.es; mcbielza@fi.upm.es; pedro.larranaga@fi.upm.es RI Ibáñez, Alfonso/B-3423-2010; Larranaga, Pedro/F-9293-2013; Bielza, Concha/F-9277-2013 OI Larranaga, Pedro/0000-0003-0652-9872; Bielza, Concha/0000-0001-7109-2668 FU Spanish Ministry of Economy and Competitiveness (MINECO) projects [TIN2010-20900-004-04]; Cajal Blue Brain FX This work has been partially supported by the Spanish Ministry of Economy and Competitiveness (MINECO) projects TIN2010-20900-004-04 and Cajal Blue Brain. CR Alonso S, 2010, SCIENTOMETRICS, V82, P391, DOI 10.1007/s11192-009-0047-5 Alonso S, 2009, J INFORMETR, V3, P273, DOI 10.1016/j.joi.2009.04.001 [Anonymous], P 21 INT C MACH LEAR [Anonymous], 2005, Data Mining: Pratical Machine Learning Tools and Techniques Baskurt OK, 2011, SCIENTOMETRICS, V86, P645, DOI 10.1007/s11192-010-0298-1 Batista PD, 2006, SCIENTOMETRICS, V68, P179, DOI 10.1007/s11192-006-0090-4 Bornmann L, 2008, J AM SOC INF SCI TEC, V59, P830, DOI 10.1002/asi.20806 Cabrerizo FJ, 2010, J INFORMETR, V4, P23, DOI 10.1016/j.joi.2009.06.005 Cardoso JS, 2007, J MACH LEARN RES, V8, P1393 Crammer K, 2002, ADV NEUR IN, V14, P641 Domingos P., 1999, Proceedings of the fifth ACM SIGKDD international conference on Knowledge discovery and data mining, V99, P155 Drummond Chris., 2000, P 17 INT C MACHINE L, P239 DUDA D, 1973, PATTERN CLASSIFICATI Egghe L., 2006, ISSI NEWSLETTER, V2, P8 Egghe L, 2007, J AM SOC INF SCI TEC, V58, P452, DOI 10.1002/asi.20473 Egghe L, 2006, SCIENTOMETRICS, V69, P121, DOI 10.1007/s11192-006-0143-8 Egghe L, 2010, ANNU REV INFORM SCI, V44, P65, DOI 10.1002/aris.2010.1440440109 Elkan C., 2001, INT JOINT C ART INT, VVolume 17, P973 FRANK E, 2004, P 21 INT C MACH LEAR, P305 Fürnkranz J, 2002, LECT NOTES ARTIF INT, V2430, P97 Hall M., 2001, Machine Learning: ECML 2001, P145, DOI 10.1007/3-540-44795-413 HART PE, 1968, IEEE T INFORM THEORY, V14, P515, DOI 10.1109/TIT.1968.1054155 Herbrich R, 2000, ADV NEUR IN, P115 HERBRICH R, 1999, 993 TU BERL DEP COMP Hirsch JE, 2005, P NATL ACAD SCI USA, V102, P16569, DOI 10.1073/pnas.0507655102 Hosmer W., 2000, Applied Logistic Regression, VSecond Ibanez A., 2011, Proceedings of the 2011 11th International Conference on Intelligent Systems Design and Applications (ISDA), P599, DOI 10.1109/ISDA.2011.6121721 Ibáñez A, 2009, BIOINFORMATICS, V25, P3303, DOI 10.1093/bioinformatics/btp585 Jin B., 2006, SCI FOCUS, V1, P8, DOI 10.1209/0295-5075/78/30002 Kotsiantis S.B., 2004, ARTIF INTELL, P1 Kotsiantis SB, 2004, LECT NOTES COMPUT SC, V3025, P220 Kramer S, 2001, FUND INFORM, V47, P1 Krampen G, 2011, SCIENTOMETRICS, V87, P687, DOI 10.1007/s11192-011-0357-2 KRUSKAL WH, 1952, J AM STAT ASSOC, V47, P583, DOI 10.1080/01621459.1952.10483441 Langley P., 1994, Uncertainty in Artificial Intelligence. Proceedings of the Tenth Conference (1994), P399 Lin HT, 2012, NEURAL COMPUT, V24, P1329, DOI 10.1162/NECO_a_00265 MANN HB, 1947, ANN MATH STAT, V18, P50, DOI 10.1214/aoms/1177730491 MCCULLAGH P, 1980, J ROY STAT SOC B MET, V42, P109 McCullagh P., 1989, Monographs on Statistics and Applied Probability, V2 MINSKY M, 1961, P IRE, V49, P8, DOI 10.1109/JRPROC.1961.287775 Potharst R., 2000, Intelligent Data Analysis, V4, P97 Quinlan J. R., 1993, C4 5 PROGRAMS MACHIN Ruane F, 2008, SCIENTOMETRICS, V75, P395, DOI 10.1007/s11192-007-1869-7 Shashua A., 2003, Advances in neural informa-tion processing systems, P961 Sheng VS, 2007, LECT NOTES ARTIF INT, V4701, P724 Sidiropoulos A, 2007, SCIENTOMETRICS, V72, P253, DOI 10.1007/s11192-007-1722-z STONE M, 1974, J R STAT SOC B, V36, P111, DOI 10.1111/j.2517-6161.1974.tb00994.x Ting K.M., 1998, Proceedings of the Second European Symposium on Principles of Data Mining and Knowledge Discovery, P23 Turney PD, 1994, J ARTIF INTELL RES, V2, P369, DOI 10.1613/jair.120 Ye FY, 2008, J INFORMETR, V2, P288, DOI 10.1016/j.joi.2008.09.002 Zadrozny B, 2003, THIRD IEEE INTERNATIONAL CONFERENCE ON DATA MINING, PROCEEDINGS, P435, DOI 10.1109/icdm.2003.1250950 Zadrozny B., 2001, KDD-2001. Proceedings of the Seventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, P204, DOI 10.1145/502512.502540 NR 52 TC 14 Z9 16 U1 2 U2 39 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS SN 0925-2312 EI 1872-8286 J9 NEUROCOMPUTING JI Neurocomputing PD JUL 5 PY 2014 VL 135 SI SI BP 42 EP 52 DI 10.1016/j.neucom.2013.08.042 PG 11 WC Computer Science, Artificial Intelligence WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Computer Science GA AH1HM UT WOS:000335871200006 DA 2024-09-05 ER PT C AU Velez-Estevez, A Garcia-Sanchez, P Moral-Munoz, JA Cobo, MJ AF Velez-Estevez, A. Garcia-Sanchez, P. Moral-Munoz, J. A. Cobo, M. J. BE Castellano, G Castiello, C Mencar, C TI Thematical and Impact Differences Between National and International Collaboration on Artificial Intelligence Research SO 2020 IEEE INTERNATIONAL CONFERENCE ON EVOLVING AND ADAPTIVE INTELLIGENT SYSTEMS (EAIS) SE IEEE Conference on Evolving and Adaptive Intelligence Systems LA English DT Proceedings Paper CT 12th IEEE International Conference on Evolving and Adaptive Intelligent Systems (IEEE EAIS) CY MAY 27-29, 2020 CL ELECTR NETWORK DE Research impact; international collaboration; national collaboration; local collaboration and bibliographic networks AB In this paper, an analysis to discover the impact differences in terms of citations between three levels of research collaboration is carried out. Thus, the objective, further than discover what kind of collaboration is more rewarding in terms of impact, is to determine if researchers cover different themes when they collaborate with people from other countries or universities within the same country, and if those themes get more citations. To this end, 12610 documents belonging to the "Computer Science & Artificial Intelligence" Web of Science subject category, and published in 2015 were analyzed. The whole corpus was divided into three different datasets, according to the defined collaboration levels (local, national and international). Results indicate that papers by authors from different countries receive more citations in average, but also, there exist some differences with respect to the research themes between the datasets. C1 [Velez-Estevez, A.; Cobo, M. J.] Univ Cadiz, Dept Comp Sci & Engn, Cadiz, Spain. [Garcia-Sanchez, P.] Univ Granada, Dept Software Engn, Granada, Spain. [Moral-Munoz, J. A.] Univ Cadiz, Dept Nursing & Physiotherapy, Cadiz, Spain. [Moral-Munoz, J. A.] Inst Res & Innovat Biomed Sci Prov Cadiz INiBICA, Cadiz, Spain. C3 Universidad de Cadiz; University of Granada; Universidad de Cadiz RP Velez-Estevez, A (corresponding author), Univ Cadiz, Dept Comp Sci & Engn, Cadiz, Spain. EM antonio.velezestevez@alum.uca.es; pablogarcia@ugr.es; joseantonio.moral@uca.es; manueljesus.cobo@uca.es RI FCADIZ, INIBICA/AFS-0591-2022; Cobo Martí­n, Manuel Jesús/C-5581-2011; García-Sánchez, Pablo/G-2166-2010; Velez-Estevez, Antonio/AAX-7661-2020; Moral-Munoz, Jose A./A-5893-2014 OI Cobo Martí­n, Manuel Jesús/0000-0001-6575-803X; García-Sánchez, Pablo/0000-0003-4644-2894; Velez-Estevez, Antonio/0000-0002-0109-0293; Moral-Munoz, Jose A./0000-0002-6465-982X FU FEDER funds [TIN2016-75850-R, TIN2017-85727-C4-2-P] FX The authors want to thank the support of FEDER funds (TIN2016-75850-R and TIN2017-85727-C4-2-P). CR Adams J, 2013, NATURE, V497, P557, DOI 10.1038/497557a Tran BX, 2019, J CLIN MED, V8, DOI 10.3390/jcm8030360 Batagelj V, 2013, SCIENTOMETRICS, V96, P845, DOI 10.1007/s11192-012-0940-1 Castillo J. A., 2018, J HISPANIC HIGHER ED Chinchilla-Rodríguez Z, 2019, PLOS ONE, V14, DOI 10.1371/journal.pone.0218309 Cobo MJ, 2012, J AM SOC INF SCI TEC, V63, P1609, DOI 10.1002/asi.22688 Cobo MJ, 2011, J AM SOC INF SCI TEC, V62, P1382, DOI 10.1002/asi.21525 Cobo MJ, 2011, J INFORMETR, V5, P146, DOI 10.1016/j.joi.2010.10.002 Fortunato S, 2018, SCIENCE, V359, DOI 10.1126/science.aao0185 García-Sánchez P, 2018, LECT NOTES COMPUT SC, V11315, P138, DOI 10.1007/978-3-030-03496-2_16 Khor KA, 2016, SCIENTOMETRICS, V107, P1095, DOI 10.1007/s11192-016-1905-6 Merigó JM, 2017, INT J INTELL SYST, V32, P526, DOI 10.1002/int.21859 Moed HF, 2013, SCIENTOMETRICS, V94, P929, DOI 10.1007/s11192-012-0783-9 Moral-Muñoz JA, 2020, PROF INFORM, V29, DOI 10.3145/epi.2020.ene.03 Ni P, 2018, SCIENTOMETRICS, V116, P863, DOI 10.1007/s11192-018-2784-9 Sud P, 2016, J ASSOC INF SCI TECH, V67, P1849, DOI 10.1002/asi.23515 Sugimoto CR, 2017, NATURE, V550, P29, DOI 10.1038/550029a Traag VA, 2019, SCI REP-UK, V9, DOI 10.1038/s41598-019-41695-z Wagner CS, 2017, SCIENTOMETRICS, V110, P1633, DOI 10.1007/s11192-016-2230-9 NR 19 TC 2 Z9 2 U1 0 U2 0 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA SN 2330-4863 BN 978-1-7281-4384-2 J9 IEEE CONF EVOL ADAPT PY 2020 DI 10.1109/eais48028.2020.9122769 PG 8 WC Computer Science, Artificial Intelligence; Computer Science, Information Systems WE Conference Proceedings Citation Index - Science (CPCI-S) SC Computer Science GA BQ8DH UT WOS:000619398100032 DA 2024-09-05 ER PT J AU Zhao, WF Liu, WJ Zhang, RY AF Zhao, Weifan Liu, Wenjun Zhang, Ruiyu TI New methods to quantify an individual's scientific research output based on h-index and various factors SO QUALITATIVE & QUANTITATIVE METHODS IN LIBRARIES LA English DT Article DE h-index; principal component analysis; h(f)-index AB Hirsch proposed h-index in 2005. To overcome some limitations of h-index in practical application, many scholars have proposed a series of derivative indexes. So far, derivative indexes designed by the scholars are mostly based on the citations and total number of papers. Although they are simple to use, they have certain oneness on the data source. To overcome this situation, two methods are used in this paper to analyze various factors. Firstly, we use the principal component analysis method to analyze original data such as the total number of papers, citation and so on, and then draw a comprehensive evaluation result of Z to quantify scientific research output, which avoid the oneness on the factor. Then, based on the "Gold priority" rule and h(a)-index proposed by Xu, we introduce a new comprehensive scientific research evaluation index, named as h(f)-index, to enhance the degree of differentiation and sensitivity of h-index. For two methods above, examples are given respectively. C1 [Zhao, Weifan; Liu, Wenjun; Zhang, Ruiyu] Nanjing Univ Informat Sci & Technol, Coll Math & Stat, Nanjing 210044, Jiangsu, Peoples R China. C3 Nanjing University of Information Science & Technology RP Zhao, WF (corresponding author), Nanjing Univ Informat Sci & Technol, Coll Math & Stat, Nanjing 210044, Jiangsu, Peoples R China. RI Liu, Wenjun/A-3643-2009 OI Liu, Wenjun/0000-0002-4500-6559 CR Alonso S, 2010, SCIENTOMETRICS, V82, P391, DOI 10.1007/s11192-009-0047-5 Anderson TR, 2008, SCIENTOMETRICS, V76, P577, DOI 10.1007/s11192-007-2071-2 Braun T, 2006, SCIENTOMETRICS, V69, P169, DOI 10.1007/s11192-006-0147-4 Egghe L, 2006, SCIENTOMETRICS, V69, P131, DOI 10.1007/s11192-006-0144-7 Hirsch JE, 2005, P NATL ACAD SCI USA, V102, P16569, DOI 10.1073/pnas.0507655102 Hotelling H, 1933, J EDUC PSYCHOL, V24, P417, DOI 10.1037/h0071325 Jin BH, 2007, CHINESE SCI BULL, V52, P855, DOI 10.1007/s11434-007-0145-9 Kosmulski M., 2006, ISSI NEWSLETTER, V2, P4, DOI [10.1177/01655515211014478, DOI 10.1177/01655515211014478] Pearson K, 1901, PHILOS MAG, V2, P559, DOI 10.1080/14786440109462720 Qiang Wu, 2008, W INDEX SIGNIFICANT Qiu J. P., 2006, KNOWLEDGE LIB INFORM, V4, P101 Wei R. B., 2009, CHINESE J SCI TECHNI, V20, P220 Xu X. J., 2009, J INFORM THEORY PRAC, V11, P8 Ye Y, 2009, INFORM LEARNED J, V28, P142 Zhang X. M., 2007, LIB INFORM SERVICE, V51, P116 NR 15 TC 2 Z9 2 U1 0 U2 22 PU INT SOC ART SCIENCE & TECHNOLOGY-ISAST PI ATHINA PA INT SOC ART SCIENCE & TECHNOLOGY-ISAST, ATHINA, 00000, GREECE SN 2241-1925 J9 QUAL QUANT METHODS L JI Qual. Quant. Methods Libr. PD MAR PY 2016 BP 221 EP 234 PG 14 WC Information Science & Library Science WE Emerging Sources Citation Index (ESCI) SC Information Science & Library Science GA EM4FN UT WOS:000395269000021 DA 2024-09-05 ER PT J AU Wu, ZM Lin, WW Liu, P Chen, JB Mao, L AF Wu, Ziming Lin, Weiwei Liu, Pan Chen, Jingbang Mao, Li TI Predicting Long-Term Scientific Impact Based on Multi-Field Feature Extraction SO IEEE ACCESS LA English DT Article DE H-index prediction; scientific impact; machine learning; heterogeneous network AB Nowadays, there have been many studies on evaluating the scientific impact of scholars. However, we still lack effective methods to predict long-term impact, especially 10 years in the future. Therefore, we propose a long-term scientific impact prediction model based on multi-field feature extraction. The workflow of our proposed model consists of feature engineering and model ensemble. In feature engineering, we extract attribute feature, time-series feature, and heterogeneous network feature based on three different fields. Moreover, when extracting heterogeneous network feature, we propose a scientific impact evaluation method based on heterogeneous academic network, which considers both the time of publication and author order factors. In the model ensemble, we adjust the basic model and noise model to the different training set to make full use of the information from the original dataset. The experiment results demonstrate that the proposed model can stably improve the accuracy of scholars' scientific impact prediction, and it also offers a prediction pattern for long-term prediction problem. C1 [Wu, Ziming; Lin, Weiwei] South China Univ Technol, Sch Comp Sci & Engn, Guangzhou 510006, Guangdong, Peoples R China. [Liu, Pan; Chen, Jingbang] Zhejiang Univ, Chu Kochen Coll, Hangzhou 310000, Zhejiang, Peoples R China. [Mao, Li] Guangdong Police Coll, Dept Comp Sci, Guangzhou 510440, Guangdong, Peoples R China. C3 South China University of Technology; Zhejiang University RP Lin, WW (corresponding author), South China Univ Technol, Sch Comp Sci & Engn, Guangzhou 510006, Guangdong, Peoples R China. EM linww@scut.edu.cn OI Liu, Pan/0009-0003-3764-7772; lin, weiwei/0000-0001-6876-1795 FU National Natural Science Foundation of China [61772205, 61872084]; Science and Technology Planning Project of Guangdong Province [2017B010126002, 2016A010101018, 2016A010119171, 2018KJYZ009]; Guangzhou Science and Technology Projects [201610010092, 201807010052, 201802010010]; Nansha Science and Technology Projects [2017GJ001]; Special Funds for the Development of Industry and Information of Guangdong Province (Big Data Demonstrated Applications) in 2017; Young Teachers Training of Guangdong Police Officer College [2018QNGG06]; Fundamental Research Funds for the Central Universities, SCUT FX This work was supported in part by the National Natural Science Foundation of China under Grant 61772205 and Grant 61872084, in part by the Science and Technology Planning Project of Guangdong Province under Grant 2017B010126002, Grant 2016A010101018, Grant 2016A010119171, and Grant 2018KJYZ009, in part by the Guangzhou Science and Technology Projects under Grant 201610010092, Grant 201807010052, and Grant 201802010010, in part by the Nansha Science and Technology Projects under Grant 2017GJ001, in part by the Special Funds for the Development of Industry and Information of Guangdong Province (Big Data Demonstrated Applications) in 2017, in part by the Young Teachers Training of Guangdong Police Officer College under Grant 2018QNGG06, and in part by the Fundamental Research Funds for the Central Universities, SCUT. CR Acuna DE, 2012, NATURE, V489, P201, DOI 10.1038/489201a [Anonymous], 2013, P 34 INT C INFORM SY [Anonymous], 2016, EVID-BASED COMPL ALT, DOI DOI 10.3390/APP7010018 [Anonymous], 2015, P AEIT INT ANN C [Anonymous], PATTERN RECOGNITION [Anonymous], COMPLEXITY Ayaz S, 2018, SCIENTOMETRICS, V114, P993, DOI 10.1007/s11192-017-2618-1 Bai XM, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0162364 Butun Ertan, 2017, 2017 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM), P952, DOI 10.1145/3110025.3110160 Cao XY, 2016, J INFORMETR, V10, P471, DOI 10.1016/j.joi.2016.02.006 Chakraborty T, 2014, ACM-IEEE J CONF DIG, P351, DOI 10.1109/JCDL.2014.6970190 Chen TQ, 2016, KDD'16: PROCEEDINGS OF THE 22ND ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, P785, DOI 10.1145/2939672.2939785 Dawson S., 2014, P 4 INT C LEARNING A, P231 Egghe L, 2006, SCIENTOMETRICS, V69, P131, DOI 10.1007/s11192-006-0144-7 GARFIELD E, 1970, NATURE, V227, P669, DOI 10.1038/227669a0 Gross J.W., 2017, ESANN 2017 P EUR S A, P71 Hirsch JE, 2005, P NATL ACAD SCI USA, V102, P16569, DOI 10.1073/pnas.0507655102 Jin BH, 2007, CHINESE SCI BULL, V52, P855, DOI 10.1007/s11434-007-0145-9 Li YL, 2014, J INFORMETR, V8, P791, DOI 10.1016/j.joi.2014.07.007 Lin WW, 2017, IEEE ACCESS, V5, P16568, DOI 10.1109/ACCESS.2017.2738069 Podlubny I, 2005, SCIENTOMETRICS, V64, P95, DOI 10.1007/s11192-005-0240-0 Shen HW, 2014, AAAI CONF ARTIF INTE, P291 Stewart B, 2015, LEARN MEDIA TECHNOL, V40, P287, DOI 10.1080/17439884.2015.1015547 Walters WH, 2017, IEEE ACCESS, V5, P22036, DOI 10.1109/ACCESS.2017.2761400 Wang DS, 2013, SCIENCE, V342, P127, DOI 10.1126/science.1237825 Wang L, 2018, NAT COMMUN, V9, DOI 10.1038/s41467-017-02344-z Wang Z, 2018, NAT COMMUN, V9, DOI 10.1038/s41467-018-05259-5 Weihs L, 2017, ACM-IEEE J CONF DIG, P49 Wu B, 2018, IEEE ACCESS, V6, P51355, DOI 10.1109/ACCESS.2018.2868650 Xiaojun Wan, 2014, Journal of the Association for Information Science and Technology, V65, P1929, DOI 10.1002/asi.23083 Yan R, 2011, P 20 ACM INT C INF K, P1247, DOI DOI 10.1145/2063576.2063757 Yan ZW, 2015, MEDIAT INFLAMM, V2015, DOI 10.1155/2015/780149 Yuxiao Dong, 2016, IEEE Transactions on Big Data, V2, P18, DOI 10.1109/TBDATA.2016.2521657 Zeng A, 2017, PHYS REP, V714, P1, DOI 10.1016/j.physrep.2017.10.001 Zhang J, 2018, IEEE ACCESS, V6, P55661, DOI 10.1109/ACCESS.2018.2863938 Zhang J, 2017, SCIENTOMETRICS, V112, P1301, DOI 10.1007/s11192-017-2458-z Zhou ZH., 2012, Ensemble Methods: Foundations and Algorithms NR 37 TC 10 Z9 11 U1 1 U2 25 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 2169-3536 J9 IEEE ACCESS JI IEEE Access PY 2019 VL 7 BP 51759 EP 51770 DI 10.1109/ACCESS.2019.2910239 PG 12 WC Computer Science, Information Systems; Engineering, Electrical & Electronic; Telecommunications WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Computer Science; Engineering; Telecommunications GA HW5CR UT WOS:000466707200001 OA gold DA 2024-09-05 ER PT C AU Su, X Prasad, A Kan, MY Sugiyama, K AF Su, Xuan Prasad, Animesh Kan, Min-Yen Sugiyama, Kazunari BE Bonn, M Wu, D Downie, SJ Martaus, A TI Neural Multi-Task Learning for Citation Function and Provenance SO 2019 ACM/IEEE JOINT CONFERENCE ON DIGITAL LIBRARIES (JCDL 2019) SE ACM-IEEE Joint Conference on Digital Libraries JCDL LA English DT Proceedings Paper CT 19th ACM/IEEE Joint Conference on Digital Libraries (JCDL) CY JUN 02-06, 2019 CL IL DE Citation Analysis; Multi-Task Learning; Neural Networks AB Citation function and provenance are two cornerstone tasks in citation analysis. Given a citation, the former task determines its rhetorical role, while the latter locates the text in the cited paper that contains the relevant cited information. We hypothesize that these two tasks are synergistically related, and build a model that validates this claim. For both tasks, we show that a single-layer convolutional neural network (CNN) outperforms existing state-of-the-art baselines. More importantly, we show that the two tasks are indeed synergistic: by jointly training both tasks using multi-task learning, we demonstrate additional performance gains. C1 [Su, Xuan; Prasad, Animesh; Kan, Min-Yen; Sugiyama, Kazunari] Natl Univ Singapore, Sch Comp, Singapore, Singapore. C3 National University of Singapore RP Su, X (corresponding author), Natl Univ Singapore, Sch Comp, Singapore, Singapore. EM suxuan@comp.nus.edu.sg; animesh@comp.nus.edu.sg; kanmy@comp.nus.edu.sg; sugiyama@comp.nus.edu.sg RI Sugiyama, Kazunari/JRY-8592-2023 OI Sugiyama, Kazunari/0000-0003-3962-821X; Prasad, Animesh/0000-0002-9865-6993 CR Bird S, 2008, SIXTH INTERNATIONAL CONFERENCE ON LANGUAGE RESOURCES AND EVALUATION, LREC 2008, P1755 Caruana R, 1998, LEARNING TO LEARN, P95, DOI 10.1007/978-1-4615-5529-2_5 Jaidka K, 2018, INT J DIGIT LIBRARIE, V19, P163, DOI 10.1007/s00799-017-0221-y Low HengWee, 2011, THESIS Prasad Animesh, 2017, BIRNDL SIGIR, P26 Yulianto Eric, 2012, THESIS NR 6 TC 12 Z9 14 U1 0 U2 6 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA SN 2575-7865 EI 2575-8152 BN 978-1-7281-1547-4 J9 ACM-IEEE J CONF DIG PY 2019 BP 394 EP 395 DI 10.1109/JCDL.2019.00122 PG 2 WC Computer Science, Information Systems; Computer Science, Interdisciplinary Applications; Computer Science, Theory & Methods; Information Science & Library Science WE Conference Proceedings Citation Index - Science (CPCI-S); Conference Proceedings Citation Index - Social Science & Humanities (CPCI-SSH) SC Computer Science; Information Science & Library Science GA BP5KE UT WOS:000555928200080 OA Green Submitted DA 2024-09-05 ER PT J AU Safdar, M Siddique, N Gulzar, A Adil, SA Yasin, H Khan, MA AF Safdar, Muhammad Siddique, Nadeem Gulzar, Ayesha Adil, Syed Adnan Yasin, Haisim Khan, Muhammad Ajmal TI A bibliometric analysis of literature published on ChatGPT and GPT SO GLOBAL KNOWLEDGE MEMORY AND COMMUNICATION LA English DT Article; Early Access DE AI tools; ChatGPT; GPT; Artificial intelligence; Bibliometric analysis AB Purpose-This study aims to analyse the literature published on ChatGPT and generative pre-trained transformer (GPT) available through Scopus to identify the top countries, institutions, authors, journals and titles in terms of publishing and citations in the area. The research also intends to determine the collaborative trends among countries and authors as well as top-used keywords on the topic identified from the analysed literature. Design/methodology/approach-The researchers searched the Scopus database to collect and assess the literature on the topic. The paper used six applications such as Biblioshiny, VosViewer, Python, MS Access and Excel and Endnote to collect and analyse the literature. Findings-It is found that European countries such as the USA, the UK and Germany took the lead in terms of publishing and impact in the area but the USA stood first with 90 publications and 1,720 citations in this connection. Likewise, the organization "Rheinisch-Westf & auml;lische Technische Hochschule Aachen" scored the top position regarding publishing, but Open AI remained on top for getting the highest citations (1,384). Apropos, the author "Choi, Y" produced the highest number of publications. The research also shares the collaborative patterns, top journals and publications in the area, as well as the top-used keywords on the topic. Originality/value-To the best of the authors' knowledge, this is the first study that shares a bibliometric analysis of literature published on GPT and ChatGPT. The research not only fills the research gap on the topic but also shares implications for relevant stakeholders and future research directions for future researchers. C1 [Safdar, Muhammad; Siddique, Nadeem] Lahore Univ Management Sci, Gad & Birgit Rausing Lib, Lahore, Pakistan. [Gulzar, Ayesha] Univ Sargodha, Sargodha, Pakistan. [Adil, Syed Adnan] UCL, London, England. [Yasin, Haisim] Systems Ltd, Lahore, Pakistan. [Khan, Muhammad Ajmal] Imam Abdulrahman Bin Faisal Univ, Deanship Lib Affairs, Dammam, Saudi Arabia. C3 Lahore University of Management Sciences; University of Sargodha; University of London; University College London; Imam Abdulrahman Bin Faisal University RP Safdar, M (corresponding author), Lahore Univ Management Sci, Gad & Birgit Rausing Lib, Lahore, Pakistan. EM safdargr8@gmail.com CR Abbas A., 2022, Journal of Information Management and Practices, V2, P1 Adeshola I, 2023, INTERACT LEARN ENVIR, DOI 10.1080/10494820.2023.2253858 Aldossary Nada Jaber, 2023, Acta Biomed, V94, pe2023061, DOI 10.23750/abm.v94i1.14086 Alston E., 2023, ChatGPT vs. GPT-3 and GPT-4: what's the difference? Armstrong D., 2021, Public Sector, V44, P30 Ashiq M, 2021, J ACAD LIBR, V47, DOI 10.1016/j.acalib.2021.102355 Bawack RE, 2022, ELECTRON MARK, V32, P297, DOI 10.1007/s12525-022-00537-z Bhagat K.J., 2020, Advance and Innovative Research, V7, P272 Biswas S., 2023, Role of Chat GPT in Education Boudry C, 2022, GRAEF ARCH CLIN EXP, V260, P1779, DOI 10.1007/s00417-021-05511-7 Burcher M., 2020, Social Network Analysis and Law Enforcement: Applications for Intelligence Analysis, P159 Burlakov Vyacheslav V., 2020, Artificial Intelligence: Anthropogenic Nature vs. Social Origin. Advances in Intelligent Systems and Computing (AISC 1100), P374, DOI 10.1007/978-3-030-39319-9_43 Casino F, 2022, IEEE ACCESS, V10, P25464, DOI 10.1109/ACCESS.2022.3154059 Cheng SW, 2023, PSYCHIAT CLIN NEUROS, V77, P592, DOI 10.1111/pcn.13588 Cheng YP, 2022, INT J TECHNOL HUM IN, V18, DOI 10.4018/IJTHI.293191 Costa I.P.D.A., 2022, Pesquisa Operacional, V42, pe249414 Ferreira JJ, 2021, TECHNOL FORECAST SOC, V173, DOI 10.1016/j.techfore.2021.121077 Fink MA, 2023, RADIOLOGY, V308, DOI 10.1148/radiol.231362 Fitria T. N., 2023, J. Engl. Lang. Teach, V12, P44, DOI DOI 10.15294/ELT.V12I1.64069 Floridi L, 2020, MIND MACH, V30, P681, DOI 10.1007/s11023-020-09548-1 Freeman L.A., 2022, Journal of Information Systems Education, V33, P109 Gulzar A, 2022, INT J MOB LEARN ORG, V16, P429, DOI 10.1504/IJMLO.2022.125963 Halpern B., 2022, The difference between ChatGPT and GPT-3 Haupt CE, 2023, JAMA-J AM MED ASSOC, V329, P1349, DOI 10.1001/jama.2023.5321 Hendy A, 2023, Arxiv, DOI [arXiv:2302.09210, DOI 10.48550/ARXIV.2302.09210] Hill-Yardin EL, 2023, BRAIN BEHAV IMMUN, V110, P152, DOI 10.1016/j.bbi.2023.02.022 Hosseini M, 2023, RES INTEGR PEER REV, V8, DOI 10.1186/s41073-023-00133-5 Imani B., 2019, Library Philosophy and Practice, V2019, P1 Jafarzade K., 2023, 2023 5 INT C PROBL C, P1 Jayadatta S., 2023, Journal of Applied Information Science, V11, P21 Keyes O.K., 2023, Tradition Innovations in Arts, Design, and Media Higher Education, V1, P4 Khan A, 2022, FINANC RES LETT, V47, DOI 10.1016/j.frl.2021.102520 Knickerbocker D., 2023, Network Science with Python: Explore the Networks around us Using Network Science, Social Network Analysis, and Machine Learning Lingard L, 2023, PERSPECT MED EDUC, V12, P261, DOI 10.5334/pme.1072 Luckett J., 2023, Journal of Computing Sciences in Colleges, V39, P47 Lund Brady D., 2023, Library Hi Tech News, P26, DOI 10.1108/LHTN-01-2023-0009 McGee R W., 2023, SSRN, DOI DOI 10.2139/SSRN.4359405 Murati M., 2023, Tweets Nah F. F., 2023, Journal of Information Technology Case and Application Research, V25, P277, DOI DOI 10.1080/15228053.2023.2233814 Park JY, 2023, J KOR ASSOC ORAL MAX, V49, P105, DOI 10.5125/jkaoms.2023.49.3.105 Pinzolits R. F. J., 2023, MAP Education and Humanities, P37, DOI [10.53880/2744-2373.2023.4.37, DOI 10.53880/2744-2373.2023.4.37] Raja R., 2018, J Appl Adv Res., V3, P33, DOI [10.21839/jaar.2018.v3iS1.165, DOI 10.21839/JAAR.2018.V3IS1.165] Safdar M, 2023, J LIBR INF SCI, DOI 10.1177/09610006231155886 Safdar M, 2023, J LIBR INF SCI, V55, P848, DOI 10.1177/09610006221090225 Sezgin E, 2022, JMIR MED INF, V10, DOI 10.2196/32875 Sheikh RA., 2023, Int Res J Innov Eng Technol, V7, P150 Siddique N, 2023, GLOB KNOWL MEM COMMU, V72, P138, DOI 10.1108/GKMC-06-2021-0103 Sirrianni J, 2022, METHOD INFORM MED, V61, P195, DOI 10.1055/a-1900-7351 Sookoo A, 2021, INT J SYST ASSUR ENG, V12, P461, DOI 10.1007/s13198-021-01092-0 Straub D.W., 2009, MIS Quarterly, V33, P3, DOI [10.2307/20650302, DOI 10.2307/20650302] Surameery NMS., 2023, International Journal of Information Technology & Computer Engineering (IJITC), DOI DOI 10.55529/IJITC.31.17.22 Tijjani B, 2021, ISRA INT J ISLAMIC F, V13, P84, DOI 10.1108/IJIF-03-2020-0056 Wahid N, 2023, GLOB KNOWL MEM COMMU, DOI 10.1108/GKMC-07-2022-0159 NR 53 TC 0 Z9 0 U1 6 U2 6 PU EMERALD GROUP PUBLISHING LTD PI Leeds PA Floor 5, Northspring 21-23 Wellington Street, Leeds, W YORKSHIRE, ENGLAND SN 2514-9342 EI 2514-9350 J9 GLOB KNOWL MEM COMMU JI Glob. Knowl. Mem. Commun. PD 2024 MAY 20 PY 2024 DI 10.1108/GKMC-08-2023-0304 EA MAY 2024 PG 18 WC Information Science & Library Science WE Emerging Sources Citation Index (ESCI) SC Information Science & Library Science GA QX5V7 UT WOS:001224189500001 DA 2024-09-05 ER PT J AU Fang, DB Yang, HX Gao, BJ Li, XJ AF Fang, Debin Yang, Haixia Gao, Baojun Li, Xiaojun TI Discovering research topics from library electronic references using latent Dirichlet allocation SO LIBRARY HI TECH LA English DT Article DE Academic libraries; Big data; Accounting research; Latent Dirichlet allocation (LDA); Topic model; Topic trends ID INFORMATION-SCIENCE; WORD; DISSERTATIONS; TRENDS AB Purpose Discovering the research topics and trends from a large quantity of library electronic references is essential for scientific research. Current research of this kind mainly depends on human justification. The purpose of this paper is to demonstrate how to identify research topics and evolution in trends from library electronic references efficiently and effectively by employing automatic text analysis algorithms. Design/methodology/approach The authors used the latent Dirichlet allocation (LDA), a probabilistic generative topic model to extract the latent topic from the large quantity of research abstracts. Then, the authors conducted a regression analysis on the document-topic distributions generated by LDA to identify hot and cold topics. Findings First, this paper discovers 32 significant research topics from the abstracts of 3,737 articles published in the six top accounting journals during the period of 1992-2014. Second, based on the document-topic distributions generated by LDA, the authors identified seven hot topics and six cold topics from the 32 topics. Originality/value The topics discovered by LDA are highly consistent with the topics identified by human experts, indicating the validity and effectiveness of the methodology. Therefore, this paper provides novel knowledge to the accounting literature and demonstrates a methodology and process for topic discovery with lower cost and higher efficiency than the current methods. C1 [Fang, Debin; Yang, Haixia; Gao, Baojun] Wuhan Univ, Econ & Management Sch, Wuhan, Hubei, Peoples R China. [Li, Xiaojun] Yunnan Univ Finance & Econ, Coll Accounting, Kunming, Yunnan, Peoples R China. C3 Wuhan University; Yunnan University of Finance & Economics RP Gao, BJ (corresponding author), Wuhan Univ, Econ & Management Sch, Wuhan, Hubei, Peoples R China. EM gaobj@whu.edu.cn RI Lobo, Diele/I-9106-2012; lan, xueyao/JZD-4201-2024; gao, baojun/AAQ-1613-2020 OI Gao, Baojun/0000-0002-9190-8158; Fang, Debin/0000-0001-8410-8358 FU National Natural Science Foundation Programs of China (NSFC) [71771182, 71673210, 71725007] FX The authors would like to thank all the supports from the National Natural Science Foundation Programs of China (NSFC) (71771182, 71673210, 71725007). CR Agarwal A, 2008, INT J COMPUT VISION, V78, P15, DOI 10.1007/s11263-007-0072-x An XY, 2011, SCIENTOMETRICS, V88, P133, DOI 10.1007/s11192-011-0374-1 [Anonymous], 1999, Foundations of statistical natural language processing Bao Y, 2014, MANAGE SCI, V60, P1371, DOI 10.1287/mnsc.2014.1930 Blei D.M., 2006, P 23 INT C MACH LEAR, DOI [DOI 10.1145/1143844.1143859, 10.1145/1143844.1143859] Blei DM, 2007, ANN APPL STAT, V1, P17, DOI 10.1214/07-AOAS114 Blei DM, 2012, COMMUN ACM, V55, P77, DOI 10.1145/2133806.2133826 Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993 CAMBROSIO A, 1993, SCIENTOMETRICS, V27, P119, DOI 10.1007/BF02016546 Coelho LP, 2010, BIOINFORMATICS, V26, pi7, DOI 10.1093/bioinformatics/btq220 Cushing B.E., 1989, ACCOUNTING HIST J, V16, P1 Ding Y, 2000, J INFORM SCI, V26, P429, DOI 10.1177/016555150002600606 Dunbar AE, 2014, ISS ACCOUNT EDUC, V29, P1, DOI 10.2308/iace-50603 Dunning T., 1993, Computational Linguistics, V19, P61 Farcas T.V., 2015, KNOWLEDGE HORIZONS E, V7, P14 Feinerer I, 2008, J STAT SOFTW, V25, P1 Franklin Renee E., 2007, Journal of Education for Library and Information Science, V48, P187 Gao BJ, 2018, TOURISM MANAGE, V65, P176, DOI 10.1016/j.tourman.2017.10.007 Gao SJ, 2009, LIBR COLLECT ACQUIS, V33, P8, DOI 10.1016/j.lcats.2009.03.001 Griffiths TL, 2004, P NATL ACAD SCI USA, V101, P5228, DOI 10.1073/pnas.0307752101 Grün B, 2011, J STAT SOFTW, V40, P1 Hall David, 2008, P 2008 C EMP METH NA, P363, DOI DOI 10.3115/1613715.1613763 Hofmann T, 1999, SIGIR'99: PROCEEDINGS OF 22ND INTERNATIONAL CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, P50, DOI 10.1145/312624.312649 Hwang SY, 2017, ONLINE INFORM REV, V41, P318, DOI 10.1108/OIR-06-2016-0166 Jo Yohan, 2011, Proceedings of the fourth ACM international conference on Web search and data mining, P815, DOI DOI 10.1145/1935826.1935932 Kakkonen T, 2008, EDUC TECHNOL SOC, V11, P275 Li W., 2006, ICML, P577, DOI [10.1145/1143844.1143917, 10.1145/] Liu GY, 2012, SCIENTOMETRICS, V91, P203, DOI 10.1007/s11192-011-0586-4 NEWTON MA, 1994, J R STAT SOC B, V56, P3 Niebles JC, 2008, INT J COMPUT VISION, V79, P299, DOI 10.1007/s11263-007-0122-4 Piepenbrink A, 2015, SCIENTOMETRICS, V102, P2107, DOI 10.1007/s11192-014-1513-2 Priva UC, 2015, COGNITION, V135, P4, DOI 10.1016/j.cognition.2014.11.006 RIP A, 1984, SCIENTOMETRICS, V6, P381, DOI 10.1007/BF02025827 Ritzhaupt AD, 2010, INT REV RES OPEN DIS, V11, P37, DOI 10.19173/irrodl.v11i1.763 Sugimoto CR, 2011, J AM SOC INF SCI TEC, V62, P185, DOI 10.1002/asi.21435 Sun LJ, 2017, TRANSPORT RES C-EMER, V77, P49, DOI 10.1016/j.trc.2017.01.013 Teh YW, 2006, J AM STAT ASSOC, V101, P1566, DOI 10.1198/016214506000000302 Wallach H.M., 2006, Proc. 23rd Int. Conf. Mach. Learn, P977984, DOI DOI 10.1145/1143844.1143967 Wang XG, 2009, IEEE T PATTERN ANAL, V31, P539, DOI 10.1109/TPAMI.2008.87 Wang Xuerui., P 12 ACM SIGKDD INT, P424 Wu H., 2010, P 12 ACM SIGKDD INT, P424 Xing DS, 2007, PATTERN RECOGN LETT, V28, P1727, DOI 10.1016/j.patrec.2007.04.015 Yan EJ, 2012, SCIENTOMETRICS, V90, P499, DOI 10.1007/s11192-011-0531-6 Yau CK, 2014, SCIENTOMETRICS, V100, P767, DOI 10.1007/s11192-014-1321-8 Zong QJ, 2013, SCIENTOMETRICS, V94, P781, DOI 10.1007/s11192-012-0799-1 NR 45 TC 18 Z9 22 U1 5 U2 97 PU EMERALD GROUP PUBLISHING LTD PI BINGLEY PA HOWARD HOUSE, WAGON LANE, BINGLEY BD16 1WA, W YORKSHIRE, ENGLAND SN 0737-8831 J9 LIBR HI TECH JI Libr. Hi Tech PY 2018 VL 36 IS 3 SI SI BP 400 EP 410 DI 10.1108/LHT-06-2017-0132 PG 11 WC Information Science & Library Science WE Social Science Citation Index (SSCI) SC Information Science & Library Science GA GI3EB UT WOS:000434253200003 DA 2024-09-05 ER PT J AU Wulff, P Westphal, A Mientus, L Nowak, A Borowski, A AF Wulff, Peter Westphal, Andrea Mientus, Lukas Nowak, Anna Borowski, Andreas TI Enhancing writing analytics in science education research with machine learning and natural language processing-Formative assessment of science and non-science preservice teachers' written reflections SO FRONTIERS IN EDUCATION LA English DT Article DE machine learning; natural language processing; teachers' reflections; assessment; deep learning ID PROFESSIONAL VISION; KNOWLEDGE; SUPPORT; OPPORTUNITIES AB IntroductionScience educators use writing assignments to assess competencies and facilitate learning processes such as conceptual understanding or reflective thinking. Writing assignments are typically scored with holistic, summative coding rubrics. This, however, is not very responsive to the more fine-grained features of text composition and represented knowledge in texts, which might be more relevant for adaptive guidance and writing-to-learn interventions. In this study we examine potentials of machine learning (ML) in combination with natural language processing (NLP) to provide means for analytic, formative assessment of written reflections in science teacher education. MethodsML and NLP are used to filter higher-level reasoning sentences in physics and non-physics teachers' written reflections on a standardized teaching vignette. We particularly probe to what extent a previously trained ML model can facilitate the filtering, and to what extent further fine-tuning of the previously trained ML model can enhance performance. The filtered sentences are then clustered with ML and NLP to identify themes and represented knowledge in the teachers' written reflections. ResultsResults indicate that ML and NLP can be used to filter higher-level reasoning elements in physics and non-physics preservice teachers' written reflections. Furthermore, the applied clustering approach yields specific topics in the written reflections that indicate quality differences in physics and non-physics preservice teachers' texts. DiscussionOverall, we argue that ML and NLP can enhance writing analytics in science education. For example, previously trained ML models can be utilized in further research to filter higher-level reasoning sentences, and thus provide science education researchers efficient mean to answer derived research questions. C1 [Wulff, Peter] Heidelberg Univ Educ, Phys & Phys Educ Res, Heidelberg, Germany. [Westphal, Andrea] Univ Greifswald, Dept Educ Res, Greifswald, Mecklenburg Vor, Germany. [Mientus, Lukas; Nowak, Anna; Borowski, Andreas] Univ Potsdam, Phys Educ Res Grp, Brandenburg, Germany. C3 Ruprecht Karls University Heidelberg; Universitat Greifswald; University of Potsdam RP Wulff, P (corresponding author), Heidelberg Univ Educ, Phys & Phys Educ Res, Heidelberg, Germany. EM peter.wulff@ph-heidelberg.de RI Wulff, Peter/GSI-9069-2022 OI Wulff, Peter/0000-0002-5471-7977; Mientus, Lukas/0000-0001-5344-4770 CR Abels S., 2011, LEHRERINNEN ALSREFLE, V1st Adams RA, 2013, BRAIN STRUCT FUNCT, V218, P611, DOI 10.1007/s00429-012-0475-5 Aeppli J., 2016, Beitrage zur Lehrerinnen- und Lehrerbildung, V34, P78, DOI DOI 10.36950/BZL.34.2016.9540 [Anonymous], 2012, NORDIC STUDIES SCI E, DOI DOI 10.5617/NORDINA.253 [Anonymous], 2010, UNTERRICHTSWISSENSCH Baaijen VM, 2018, COGNITION INSTRUCT, V36, P199, DOI 10.1080/07370008.2018.1456431 Bain JohnD., 1999, TEACHERS TEACHING TH, V5, P51, DOI DOI 10.1080/1354060990050104 Bangert-Drowns RL, 2004, REV EDUC RES, V74, P29, DOI 10.3102/00346543074001029 Bhardwaj R., 2020, PREPRINT Billion-Kramer T., 2020, Z F R DIDAKTIK NATUR, V26, P53, DOI [10.1007/s40573-020-00112-z, DOI 10.1007/S40573-020-00112-Z] Brazdil Pavel, 2022, Metalearning: Applications to Automated Machine Learning and Data Mining Breiman L, 2001, STAT SCI, V16, P199, DOI 10.1214/ss/1009213726 Burstein J, 2009, LECT NOTES COMPUT SC, V5449, P6, DOI 10.1007/978-3-642-00382-0_2 Caliskan A, 2017, SCIENCE, V356, DOI 10.1126/science.aal4230 Campello Ricardo J. G. B., 2013, Advances in Knowledge Discovery and Data Mining. 17th Pacific-Asia Conference (PAKDD 2013). Proceedings, P160, DOI 10.1007/978-3-642-37456-2_14 Carlson J., 2019, Repositioning Pedagogical Content Knowledge in Teachers' Knowledge for Teaching Science Carpenter D, 2020, LECT NOTES ARTIF INT, V12163, P67, DOI 10.1007/978-3-030-52237-7_6 Chan KKH, 2021, STUD SCI EDUC, V57, P1, DOI 10.1080/03057267.2020.1755803 Chen YC, 2013, SCI EDUC, V97, P745, DOI 10.1002/sce.21067 Chodorow M., 2004, ETS Research Report Series, V2004, pi, DOI DOI 10.1002/J.2333-8504.2004.TB01931.X Christian B., 2021, The Alignment Problem: How can Machines Learn Human Values? Cronje R, 2013, INT J SCI EDUC, V35, P2718, DOI 10.1080/09500693.2011.628344 Crossley SA, 2016, WRIT COMMUN, V33, P328, DOI 10.1177/0741088316650178 Darling-Hammond L., 2012, POWERFUL TEACHER ED DEJONG T, 1986, J EDUC PSYCHOL, V78, P279 Devlin J, 2019, Arxiv, DOI arXiv:1810.04805 Docktor JL, 2016, PHYS REV PHYS EDUC R, V12, DOI 10.1103/PhysRevPhysEducRes.12.010130 Donnelly DF, 2015, J SCI EDUC TECHNOL, V24, P861, DOI 10.1007/s10956-015-9569-1 Engel Andreas, 2001, STAT MECH LEARNING Fleckenstein J, 2020, FRONT PSYCHOL, V11, DOI 10.3389/fpsyg.2020.562462 Fleiss JL., 1981, Statistical methods for rates and proportions, V2, P22, DOI [10.1002/0471445428.ch18, DOI 10.1002/0471445428.CH18] Galbraith David., 2009, BRIT J EDUC PSYCHOL, V2, P5, DOI DOI 10.1348/978185409X421129 Gibson Andrew., 2016, Journal of Learning Analytics, V3, P22, DOI DOI 10.18608/JLA.2016.32.3 Goldberg Y, 2017, SYNTHESIS LECT HUMAN Graham S, 2007, J EDUC PSYCHOL, V99, P445, DOI 10.1037/0022-0663.99.3.445 Grootendorst M., 2020, Topic modeling with BERT Ha MS, 2011, CBE-LIFE SCI EDUC, V10, P379, DOI 10.1187/cbe.11-08-0081 Halliday MAK., 2007, An Introduction to Functional Grammar, V2nd ed Harris ZS, 1954, WORD, V10, P146, DOI 10.1080/00437956.1954.11659520 HATTON N, 1995, TEACH TEACH EDUC, V11, P33, DOI 10.1016/0742-051X(94)00012-U Honnibal M., 2017, spacy 2: natural language understanding with bloom embeddings, convolutional neural networks and incremental parsing, DOI DOI 10.3233/978-1-60750-588-4-1080 Hume A, 2009, HIGH EDUC RES DEV, V28, P247, DOI 10.1080/07294360902839859 Jescovitch LN, 2021, J SCI EDUC TECHNOL, V30, P150, DOI 10.1007/s10956-020-09858-0 Jung J, 2022, J TEACH EDUC, V73, P301, DOI 10.1177/00224871211056936 Jurafsky D, 2014, Speech and language processing, V3 Kelih E., 2005, LDV FORUM, V20, DOI [10.21248/jlcl.20.2005.74, DOI 10.21248/JLCL.20.2005.74] Kellogg RT, 2008, J WRIT RES, V1, P1, DOI 10.17239/jowr-2008.01.01.1 Kember D., 1999, International Journal of Lifelong Education, V18, P18, DOI DOI 10.1080/026013799293928 Kleinknecht M, 2016, TEACH TEACH EDUC, V59, P45, DOI 10.1016/j.tate.2016.05.020 Koponen IT, 2010, SCI EDUC-NETHERLANDS, V19, P259, DOI 10.1007/s11191-009-9200-z Korthagen F., 2005, TEACHERS TEACHING TH, V11, P47, DOI [DOI 10.1080/1354060042000337093, 10.1080/1354060042000337093] Korthagen F.A. J., 1999, Educational Researcher, V28, P4, DOI [DOI 10.2307/1176444, https://doi.org/10.2307/1176444, DOI 10.3102/0013189X028004004] Kost D., 2019, DISSERTATION Kriegel HP, 2011, WIRES DATA MIN KNOWL, V1, P231, DOI 10.1002/widm.30 Kruger D., 2020, Z DIDAKT NATURWISS, V26, P157, DOI DOI 10.1007/S40573-020-00118-7 LANDIS JR, 1977, BIOMETRICS, V33, P159, DOI 10.2307/2529310 Langley P., 1988, Machine Learning, V3, P5, DOI 10.1023/A:1022623814640 Lederman N., 2007, HDB RES SCI ED Leonhard T., 2011, Ein Lehramtsstudium beginnen: Laufbahnberatung, Bewerberauswahl und erste Schritte im Qualifizierungsprozess Lehrerbildung auf dem Prufstand, V4, P240 Levin DA, 2009, J TEACH EDUC, V60, P142, DOI 10.1177/0022487108330245 Lieberman E, 2007, NATURE, V449, P713, DOI 10.1038/nature06137 Lin XD, 1999, ETR&D-EDUC TECH RES, V47, P43, DOI 10.1007/BF02299633 Liu S, 2022, COMPUT EDUC, V181, DOI 10.1016/j.compedu.2022.104461 Loughran J, 1995, TEACH TEACH EDUC, V11, P565, DOI 10.1016/0742-051X(95)00012-9 Mainzer K, 2009, EVOL INST ECON REV, V6, P1 Marsland S., 2014, MACHINE LEARNING ALG, DOI [DOI 10.1201/B17476, 10.1201/b17476] McCloskey M., 1989, Psychol. Learn. Motiv., V24, P109, DOI 10.1016/S0079-7421(08)60536-8 McInnes L., 2018, J OPEN SOUR SOFTWARE, V3, DOI [10.21105/joss.00861, DOI 10.21105/JOSS.00861] McInnes L, 2017, INT CONF DAT MIN WOR, P33, DOI 10.1109/ICDMW.2017.12 McNamara DS, 1996, COGNITION INSTRUCT, V14, P1, DOI 10.1207/s1532690xci1401_1 Mena-Marcos J, 2013, EUR J TEACH EDUC, V36, P147, DOI 10.1080/02619768.2012.713933 Mikolov T., 2013, ADV NEURAL INFORM PR, P3111, DOI DOI 10.48550/ARXIV.1310.4546 Nehyba J, 2023, EDUC INF TECHNOL, V28, P2961, DOI 10.1007/s10639-022-11254-7 Norris SP, 2003, SCI EDUC, V87, P224, DOI 10.1002/sce.10066 Nowak A., 2019, NATURWISSENSCHAFTLIC, V838 Odden TOB, 2021, SCI EDUC, V105, P653, DOI 10.1002/sce.21623 Ostendorff M, 2019, Arxiv, DOI [arXiv:1909.08402, DOI 10.48550/ARXIV.1909.08402] Park S, 2008, RES SCI EDUC, V38, P261, DOI 10.1007/s11165-007-9049-6 Poldner E, 2014, EUR J TEACH EDUC, V37, P348, DOI 10.1080/02619768.2014.892479 Prain V, 1996, TEACH TEACH EDUC, V12, P609, DOI 10.1016/S0742-051X(96)00003-0 Rafoth B.A., 1984, Written Communication, V1, P446, DOI DOI 10.1177/0741088384001004004 Rauf I A., 2021, Physics of Data Science and Machine Learning Reimers N, 2019, 2019 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING AND THE 9TH INTERNATIONAL JOINT CONFERENCE ON NATURAL LANGUAGE PROCESSING (EMNLP-IJCNLP 2019), P3982 Ruder Sebastian, 2019, Neural transfer learning for natural language processing Sadler PM, 2013, AM EDUC RES J, V50, P1020, DOI 10.3102/0002831213477680 Seidel T, 2014, AM EDUC RES J, V51, P739, DOI 10.3102/0002831214531321 Shum SB., 2017, J LEARN ANAL, V4, P58, DOI DOI 10.18608/JLA.2017.41.5 Smyth JM, 1998, J CONSULT CLIN PSYCH, V66, P174, DOI 10.1037/0022-006X.66.1.174 Sorge S., 2018, MNU J, V6, P420 SPARKSLANGER GM, 1990, J TEACH EDUC, V41, P23, DOI 10.1177/002248719004100504 Stephenson NS, 2016, CHEM EDUC RES PRACT, V17, P72, DOI 10.1039/c5rp00102a Strubell E, 2019, PREPRINT Talanquer V, 2015, J RES SCI TEACH, V52, P585, DOI 10.1002/tea.21209 Todorova M, 2017, TEACH TEACH EDUC, V68, P275, DOI 10.1016/j.tate.2017.08.016 Ullmann TD, 2017, SEVENTH INTERNATIONAL LEARNING ANALYTICS & KNOWLEDGE CONFERENCE (LAK'17), P163, DOI 10.1145/3027385.3027394 Ullmann TD, 2019, INT J ARTIF INTELL E, V29, P217, DOI 10.1007/s40593-019-00174-2 Vaswani A, 2017, ADV NEUR IN, V30 von Aufschnaiter C., 2019, HERAUSFORDERUNG LEHR, V2, P144, DOI DOI 10.4119/UNIBI/HLZ-144 Wenner JA, 2018, J SCI TEACH EDUC, V29, P741, DOI 10.1080/1046560X.2018.1512362 Wu Y., 2016, PREPRINT Wulff P, 2022, J SCI EDUC TECHNOL, V31, P490, DOI 10.1007/s10956-022-09969-w Wulff P, 2023, INT J ARTIF INTELL E, V33, P439, DOI 10.1007/s40593-022-00290-6 Wulff P, 2021, J SCI EDUC TECHNOL, V30, P1, DOI 10.1007/s10956-020-09865-1 Yore LD, 2004, READ RES QUART, V39, P347, DOI 10.1598/RRQ.39.3.8 YOUMANS G, 1990, STYLE, V24, P584 Zhai XM, 2022, J RES SCI TEACH, V59, P1765, DOI 10.1002/tea.21773 Zhai XM, 2020, STUD SCI EDUC, V56, P111, DOI 10.1080/03057267.2020.1735757 NR 107 TC 8 Z9 8 U1 7 U2 25 PU FRONTIERS MEDIA SA PI LAUSANNE PA AVENUE DU TRIBUNAL FEDERAL 34, LAUSANNE, CH-1015, SWITZERLAND EI 2504-284X J9 FRONT EDUC JI Front. Educ. PD JAN 9 PY 2023 VL 7 AR 1061461 DI 10.3389/feduc.2022.1061461 PG 18 WC Education & Educational Research WE Emerging Sources Citation Index (ESCI) SC Education & Educational Research GA 8E7XN UT WOS:000919182700001 OA gold DA 2024-09-05 ER PT C AU Castanha, J Indrawati Pillai, SKB Ramantoko, G Widarmanti, T AF Castanha, Jick Indrawati Pillai, Subhash K. B. Ramantoko, Gadang Widarmanti, Tri GP IEEE TI A Systematic Literature Review on Natural Language Processing (NLP) SO 2022 INTERNATIONAL CONFERENCE ON ADVANCED CREATIVE NETWORKS AND INTELLIGENT SYSTEMS, ICACNIS LA English DT Proceedings Paper CT International Conference on Advanced Creative Networks and Intelligent Systems (ICACNIS) - Blockchain Technology, Intelligent Systems, and the Applications for Human Life CY NOV 23, 2022 CL Bandung, INDONESIA DE Natural Language Processing; Artificial Intelligence; Systematic Review; Bibliometric analysis; NLP ID TEXT; INFORMATION AB Natural Language Processing (NLP) is a branch of Artificial Intelligence (AI) technology used by machines to understand, analyze and interpret human languages. In the past decade, NLP received more recognition due to innovation in information and communication technology which led to various research. Thus, it is essential to understand the development taken in the knowledge of literature. The present study aims to present a systematic literature review using bibliometric analysis in NLP research. The study identifies the publication trends, influential journals, cited articles, influential authors, institutions, countries, key research areas, and research clusters in the NLP field. 12541 NLP publications were extracted from the Web of Science (WoS) database and further analyzed using bibliometric analysis. The result indicated that the first NLP publication was in 1989, with the highest publication recorded in 2021. The IEEE access journal was the leading journal with the highest number of publications, and the highest number of citations received for NLP articles is 3174. The most productive author in the NLP field is Liu HF, whereas Harward university is the most influential institution. The US is the leading country in the total number of publications. Researchers extensively researched applied sciences area. The findings further revealed that most of the NLP research focused on five main clusters: modeling, neural networks, artificial intelligence, data mining using social media platforms, and data capturing and learning. C1 [Castanha, Jick; Pillai, Subhash K. B.] Goa Univ, Goa Business Sch, Taleigao, Goa, India. [Indrawati; Ramantoko, Gadang; Widarmanti, Tri] Telkom Univ, Sch Business & Econ, Bandung, Indonesia. C3 Goa University; Telkom University RP Castanha, J (corresponding author), Goa Univ, Goa Business Sch, Taleigao, Goa, India. OI CASTANHA, JICK/0000-0003-0665-1691 CR [Anonymous], 1999, Foundations of statistical natural language processing Aria M, 2017, J INFORMETR, V11, P959, DOI 10.1016/j.joi.2017.08.007 Aronson AR, 2001, J AM MED INFORM ASSN, P17 Berger AL, 1996, COMPUT LINGUIST, V22, P39 Cai M, 2021, HELIYON, V7, DOI 10.1016/j.heliyon.2021.e06322 Collobert R, 2011, J MACH LEARN RES, V12, P2493 Erkan G, 2004, J ARTIF INTELL RES, V22, P457, DOI 10.1613/jair.1523 Gu JX, 2018, PATTERN RECOGN, V77, P354, DOI 10.1016/j.patcog.2017.10.013 Guo YM, 2019, SUSTAINABILITY-BASEL, V11, DOI 10.3390/su11133606 Hofmann T, 2001, MACH LEARN, V42, P177, DOI 10.1023/A:1007617005950 Houssein EH, 2021, IEEE ACCESS, V9, P140628, DOI 10.1109/ACCESS.2021.3119621 Kang Y, 2020, J MANAG ANAL, V7, P139, DOI 10.1080/23270012.2020.1756939 Kreimeyer K, 2017, J BIOMED INFORM, V73, P14, DOI 10.1016/j.jbi.2017.07.012 Le Glaz A, 2021, J MED INTERNET RES, V23, DOI 10.2196/15708 Liu WB, 2017, NEUROCOMPUTING, V234, P11, DOI 10.1016/j.neucom.2016.12.038 Luo JW, 2020, NEUROIMAG CLIN N AM, V30, P447, DOI 10.1016/j.nic.2020.08.001 Mellia JA, 2021, ANN SURG, V273, P900, DOI 10.1097/SLA.0000000000004419 Paul J, 2020, INT BUS REV, V29, DOI 10.1016/j.ibusrev.2020.101717 Raharjana IK, 2021, IEEE ACCESS, V9, P53811, DOI 10.1109/ACCESS.2021.3070606 Savova GK, 2010, J AM MED INFORM ASSN, V17, P507, DOI 10.1136/jamia.2009.001560 Secinaro S, 2022, J BUS RES, V150, P399, DOI 10.1016/j.jbusres.2022.06.011 Singh G, 2022, IETE TECH REV, V39, P1046, DOI 10.1080/02564602.2021.1984323 Spyns P, 1996, METHOD INFORM MED, V35, P285 Sun SL, 2017, INFORM FUSION, V36, P10, DOI 10.1016/j.inffus.2016.10.004 Taskin Z, 2019, ONLINE INFORM REV, V43, P676, DOI 10.1108/OIR-07-2018-0217 Tsochantaridis I, 2005, J MACH LEARN RES, V6, P1453 van Eck NJ, 2010, SCIENTOMETRICS, V84, P523, DOI 10.1007/s11192-009-0146-3 WEISCHEDEL R, 1989, ANNU REV COMPUT SCI, V4, P435 Wikipedia, 2022, OUTL AC DISC Wu S, 2020, J AM MED INFORM ASSN, V27, P457, DOI 10.1093/jamia/ocz200 Xiang CY, 2017, ECOL ENG, V99, P400, DOI 10.1016/j.ecoleng.2016.11.028 Young T, 2018, IEEE COMPUT INTELL M, V13, P55, DOI 10.1109/MCI.2018.2840738 Zulkarnain, 2021, HELIYON, V7, DOI 10.1016/j.heliyon.2021.e08615 NR 33 TC 1 Z9 1 U1 10 U2 28 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA BN 979-8-3503-3444-9 PY 2022 BP 130 EP 135 DI 10.1109/ICACNIS57039.2022.10055568 PG 6 WC Computer Science, Artificial Intelligence; Computer Science, Interdisciplinary Applications WE Conference Proceedings Citation Index - Science (CPCI-S) SC Computer Science GA BV2XB UT WOS:001012145500022 DA 2024-09-05 ER PT J AU Garg, M Rangra, P AF Garg, Mohit Rangra, Priya TI Bibliometric Analysis of Latent Dirichlet Allocation SO DESIDOC JOURNAL OF LIBRARY & INFORMATION TECHNOLOGY LA English DT Article DE Bibliometrics; Big data; Citation analysis; Latent dirichlet allocation ID QUESTION; SCIENCE AB Latent Dirichlet Allocation (LDA) has emerged as an important algorithm in big data analysis that finds the group of topics in the text data. It posits that each text document consists of a group of topics, and each topic is a mixture of words related to it. With the emergence of a plethora of text data, the LDA has become a popular algorithm for topic modeling among researchers from different domains. Therefore, it is essential to understand the trends of LDA researches. Bibliometric techniques are established methods to study the research progress of a topic. In this study, bibliographic data of 18715 publications that have cited the I,DA were extracted from the Scopus database. The software R and Vosviewer were used to carry out the analysis. The analysis revealed that research interest in LDA had grown exponentially. The results showed that most authors preferred "Book Series" followed by "Conference Proceedings" as the publication venue. The majority of the institutions and authors were from the USA, followed by China. The co-occurrence analysis of keywords indicated that text mining and machine learning were dominant topics in LDA research with significant interest in social media. This study attempts to provide a comprehensive analysis and intellectual structure of LDA compared to previous studies. C1 [Garg, Mohit] Indian Inst Technol, Delhi 110016, India. [Rangra, Priya] Cent Univ Himachal Pradesh, Dept Lib & Informat Sci, Shahpur 176206, India. C3 Indian Institute of Technology System (IIT System); Indian Institute of Technology (IIT) - Delhi; Central University of Himachal Pradesh RP Rangra, P (corresponding author), Cent Univ Himachal Pradesh, Dept Lib & Informat Sci, Shahpur 176206, India. EM priyarangra26494@gmail.com OI GARG, MOHIT/0000-0001-5787-7143; , Priya/0000-0003-3015-9963 CR Ali R.H., 2020, SEKE, P400 [Anonymous], 2012, PROC 5 ACM INT C WEB Baburajan V, 2018, IEEE INT C INTELL TR, P3657, DOI 10.1109/ITSC.2018.8569380 Bandeira Alan, 2019, 2019 IEEE/ACM 16th International Conference on Mining Software Repositories (MSR), P255, DOI 10.1109/MSR.2019.00051 Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993 Chang J., 2015, lda: Collapsed Gibbs Sampling Methods for Topic Models 1.4.2 Chen S., 2018, APPL MARKETING ANAL, V4, P53 Chen TH, 2016, EMPIR SOFTW ENG, V21, P1843, DOI 10.1007/s10664-015-9402-8 Choi S, 2020, ISSUES MENT HEALTH N, V41, P592, DOI 10.1080/01612840.2019.1705944 Daud A, 2010, FRONT COMPUT SCI CHI, V4, P280, DOI 10.1007/s11704-009-0062-y Hoang DT, 2018, STUD COMPUT INTELL, V769, P27, DOI 10.1007/978-3-319-76081-0_3 Dwivedi S, 2015, CURR SCI INDIA, V109, P869, DOI 10.18520/v109/i5/869-877 Falagas ME, 2008, FASEB J, V22, P338, DOI 10.1096/fj.07-9492LSF Figuerola CG, 2017, SCIENTOMETRICS, V112, P1507, DOI 10.1007/s11192-017-2432-9 Haridasan S, 2007, LIBR REV, V56, P299, DOI 10.1108/00242530710743525 Ikegami Y, 2013, IEEE SYS MAN CYBERN, P4676, DOI 10.1109/SMC.2013.796 Jelodar H, 2019, MULTIMED TOOLS APPL, V78, P15169, DOI 10.1007/s11042-018-6894-4 Li HJ, 2016, PHYSICA A, V450, P657, DOI 10.1016/j.physa.2016.01.017 Li X, 2021, J INF SCI, V47, P161, DOI 10.1177/0165551519877049 Maity SK, 2018, IEEE T COMPUT SOC SY, V5, P816, DOI 10.1109/TCSS.2018.2859964 Majumdar A, 2019, INT J PROD ECON, V216, P1, DOI 10.1016/j.ijpe.2019.04.008 McCallum Andrew Kachites, 2002, MALLET: A machine learning for language toolkit Negi S, 2014, INT C PATT RECOG, P1958, DOI 10.1109/ICPR.2014.342 PRITCHARD A, 1969, J DOC, V25, P348 Rehurek R., 2011, Gensim-statistical semantics in python" Sinha A., 2013, Proceedings of the 2013 ACM Workshop on Artificial Intelligence and Security, P13, DOI DOI 10.1145/2517312.2517317 Steyvers M., 2011, Matlab topic modeling toolbox version 1.4 Sun XB, 2016, 2016 17TH IEEE/ACIS INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING, ARTIFICIAL INTELLIGENCE, NETWORKING AND PARALLEL/DISTRIBUTED COMPUTING (SNPD), P357, DOI 10.1109/SNPD.2016.7515925 van Eck NJ, 2010, SCIENTOMETRICS, V84, P523, DOI 10.1007/s11192-009-0146-3 Vasconcelos Marisa, 2020, WebMedia '20: Proceedings of the Brazilian Symposium on Multimedia and the Web, P25, DOI 10.1145/3428658.3431090 Vlachos E, 2018, IEEE INT C INT ROBOT, P1255, DOI 10.1109/IROS.2018.8594058 Wang Y-C, 2013, P SIGCHI C HUM FACT, P31, DOI DOI 10.1145/2470654.2470659 Yu DJ, 2020, INT J MACH LEARN CYB, V11, P715, DOI 10.1007/s13042-019-01028-y Zou CY, 2014, PROC IEEE INT CONF S, P593, DOI 10.1109/ICSME.2014.103 NR 34 TC 5 Z9 5 U1 10 U2 41 PU DEFENCE SCIENTIFIC INFORMATION DOCUMENTATION CENTRE PI DELHI PA METCALFE HOUSE, DELHI 110054, INDIA SN 0974-0643 EI 0976-4658 J9 DESIDOC J LIB INF TE JI DESIDOC J. Lib. Inf. Technol. PD MAR PY 2022 VL 42 IS 2 BP 105 EP 113 DI 10.14429/djlit.42.2.17307 PG 9 WC Information Science & Library Science WE Emerging Sources Citation Index (ESCI) SC Information Science & Library Science GA ZQ8QW UT WOS:000767363700005 OA gold DA 2024-09-05 ER PT J AU Ma, AQ Liu, Y Xu, XJ Dong, T AF Ma, Anqi Liu, Yu Xu, Xiujuan Dong, Tao TI A deep-learning based citation count prediction model with paper metadata semantic features SO SCIENTOMETRICS LA English DT Article DE Citation count prediction; Metadata semantic features; Deep learning; Sentence embedding; Semantic information ID CONVOLUTIONAL NEURAL-NETWORKS; IMPACT; ARTICLES; SCIENCE; TITLES; INDEX AB Predicting the impact of academic papers can help scholars quickly identify the high-quality papers in the field. How to develop efficient predictive model for evaluating potential papers has attracted increasing attention in academia. Many studies have shown that early citations contribute to improving the performance of predicting the long-term impact of a paper. Besides early citations, some bibliometric features and altmetric features have also been explored for predicting the impact of academic papers. Furthermore, paper metadata text such as title, abstract and keyword contains valuable information which has effect on its citation count. However, present studies ignore the semantic information contained in the metadata text. In this paper, we propose a novel citation prediction model based on paper metadata text to predict the long-term citation count, and the core of our model is to obtain the semantic information from the metadata text. We use deep learning techniques to encode the metadata text, and then further extract high-level semantic features for learning the citation prediction task. We also integrate early citations for improving the prediction performance of the model. We show that our proposed model outperforms the state-of-the-art models in predicting the long-term citation count of the papers, and metadata semantic features are effective for improving the accuracy of the citation prediction models. C1 [Ma, Anqi; Liu, Yu; Xu, Xiujuan; Dong, Tao] Dalian Univ Technol, Sch Software, Dalian 116621, Peoples R China. C3 Dalian University of Technology RP Liu, Y (corresponding author), Dalian Univ Technol, Sch Software, Dalian 116621, Peoples R China. EM maanqi@mail.dlut.edu.cn; yuliu@dlut.edu.cn; xjxu@dlut.edu.cn; dongtao2019@mail.dlut.edu.cn RI Liu, Yu/ABD-6335-2021 OI Ma, Anqi/0000-0002-2683-0657 FU Natural Science Foundation of China [61672128] FX This work was supported by the Natural Science Foundation of China grant 61672128. CR Abramo G, 2019, J INFORMETR, V13, P32, DOI 10.1016/j.joi.2018.11.003 Abrishami A, 2019, J INFORMETR, V13, P485, DOI 10.1016/j.joi.2019.02.011 Aikawa K., 2019, 2019 IEEE 8 GLOB C C, P441, DOI [10.1109/GCCE46687.2019.9015579, DOI 10.1109/GCCE46687.2019.9015579] Bahdanau D, 2016, Arxiv, DOI arXiv:1409.0473 Bai XM, 2019, J INFORMETR, V13, P407, DOI 10.1016/j.joi.2019.01.010 Bornmann L, 2014, J INFORMETR, V8, P175, DOI 10.1016/j.joi.2013.11.005 Bornmann L, 2012, J INFORMETR, V6, P11, DOI 10.1016/j.joi.2011.08.004 Braun T, 2006, SCIENTOMETRICS, V69, P169, DOI 10.1007/s11192-006-0147-4 Cao XY, 2016, J INFORMETR, V10, P471, DOI 10.1016/j.joi.2016.02.006 Chen JP, 2015, PROCEEDINGS OF 2015 IEEE 14TH INTERNATIONAL CONFERENCE ON COGNITIVE INFORMATICS & COGNITIVE COMPUTING (ICCI*CC), P434, DOI 10.1109/ICCI-CC.2015.7259421 Chen TQ, 2016, KDD'16: PROCEEDINGS OF THE 22ND ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, P785, DOI 10.1145/2939672.2939785 Chen YC, 2019, IEEE-ACM T AUDIO SPE, V27, P1481, DOI 10.1109/TASLP.2019.2922832 Clark K., 2020, BT Clauset A, 2017, SCIENCE, V355, P477, DOI 10.1126/science.aal4217 Colladon AF, 2020, SCIENTOMETRICS, V124, P357, DOI 10.1007/s11192-020-03479-5 Devlin J, 2019, 2019 CONFERENCE OF THE NORTH AMERICAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS: HUMAN LANGUAGE TECHNOLOGIES (NAACL HLT 2019), VOL. 1, P4171 Egghe L, 2006, SCIENTOMETRICS, V69, P131, DOI 10.1007/s11192-006-0144-7 Friedman JH, 2001, ANN STAT, V29, P1189, DOI 10.1214/aos/1013203451 Garfield E, 2006, JAMA-J AM MED ASSOC, V295, P90, DOI 10.1001/jama.295.1.90 Guo JX, 2018, AAAI CONF ARTIF INTE, P5141 Habibzadeh F, 2010, CROAT MED J, V51, P165, DOI 10.3325/cmj.2010.51.165 Haggan M, 2004, J PRAGMATICS, V36, P293, DOI 10.1016/S0378-2166(03)00090-0 Hirsch JE, 2005, P NATL ACAD SCI USA, V102, P16569, DOI 10.1073/pnas.0507655102 Hochreiter S, 1997, NEURAL COMPUT, V9, P1735, DOI [10.1162/neco.1997.9.1.1, 10.1007/978-3-642-24797-2] Hu YH, 2020, J INFORMETR, V14, DOI 10.1016/j.joi.2019.101004 Jamali HR, 2011, SCIENTOMETRICS, V88, P653, DOI 10.1007/s11192-011-0412-z Jati A, 2019, IEEE-ACM T AUDIO SPE, V27, P1577, DOI 10.1109/TASLP.2019.2921890 Karvelis P., 2018, P INT JOINT C NEUR N, V2018, P1, DOI DOI 10.1109/IJCNN.2018.8489513 Lau Jey Han, 2016, P 1 WORKSHOP REPRESE, P78, DOI DOI 10.18653/V1/W16-1609 Le Q., 2014, 31 INT C MACH LEARN, P1188, DOI DOI 10.1145/2740908.2742760 Letchford A, 2016, J INFORMETR, V10, P1, DOI 10.1016/j.joi.2015.11.001 Li MJ, 2019, IEEE SYS MAN CYBERN, P1172, DOI 10.1109/SMC.2019.8913961 Li SB, 2018, SCIENTOMETRICS, V117, P721, DOI 10.1007/s11192-018-2905-5 Li SQ, 2019, 2019 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING AND THE 9TH INTERNATIONAL JOINT CONFERENCE ON NATURAL LANGUAGE PROCESSING (EMNLP-IJCNLP 2019), P4914 Liu Yinhan, 2019, Roberta: A robustly optimized bert pretraining approach Markov I, 2017, LECT NOTES ARTIF INT, V10062, P117, DOI 10.1007/978-3-319-62428-0_9 Mikolov T., 2013, ARXIV Newman MEJ, 2014, EPL-EUROPHYS LETT, V105, DOI 10.1209/0295-5075/105/28002 Platanios E. A., 2020, P 2018 C EMP METH NA, P425 Rose ME, 2019, SOFTWAREX, V10, DOI 10.1016/j.softx.2019.100263 Ruan XM, 2020, J INFORMETR, V14, DOI 10.1016/j.joi.2020.101039 Rusk N, 2016, NAT METHODS, V13, P35, DOI 10.1038/nmeth.3707 Saeed-Ul Hassan, 2019, SCIENTOMETRICS, V119, P481, DOI 10.1007/s11192-019-03044-9 Sohrabi B, 2017, SCIENTOMETRICS, V110, P243, DOI 10.1007/s11192-016-2161-5 Stegehuis C, 2015, J INFORMETR, V9, P642, DOI 10.1016/j.joi.2015.06.005 Stiebellehner S., 2018, LEARNING CONTINUOUS Tang JL, 2019, 57TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2019), P557 Wang FH, 2019, SCIENTOMETRICS, V118, P109, DOI 10.1007/s11192-018-2965-6 Wang MY, 2019, SCIENTOMETRICS, V119, P1575, DOI 10.1007/s11192-019-03052-9 Wang MY, 2012, J INFORMETR, V6, P586, DOI 10.1016/j.joi.2012.06.002 Wang ZD, 2019, PROC CVPR IEEE, P1117, DOI 10.1109/CVPR.2019.00121 Weinberger CJ, 2015, PLOS COMPUT BIOL, V11, DOI 10.1371/journal.pcbi.1004205 Wen YD, 2019, INT J COMPUT VISION, V127, P668, DOI 10.1007/s11263-018-01142-4 Wu ZM, 2019, IEEE ACCESS, V7, P51759, DOI 10.1109/ACCESS.2019.2910239 Xiao Shuai, 2016, Ijcai, P2676, DOI [DOI 10.1109/SCEECS57921.2023.10061818, DOI 10.1145/3123266.3123277] Yahav I, 2019, IEEE T KNOWL DATA EN, V31, P437, DOI 10.1109/TKDE.2018.2840127 Yan E., 2010, P AM SOC INFORM SCI, V47, P1, DOI [10.1002/meet.14504701033, DOI 10.1002/MEET.14504701033] Yan R, 2012, P 12 ACM IEEE CS JOI, P51, DOI DOI 10.1145/2232817.2232831 Yan R, 2011, P 20 ACM INT C INF K, P1247, DOI DOI 10.1145/2063576.2063757 Yu L, 2017, 24TH ANNUAL NETWORK AND DISTRIBUTED SYSTEM SECURITY SYMPOSIUM (NDSS 2017), DOI 10.14722/ndss.2017.23241 Yuan S., 2018, ABS18110 CORR Zeng J., 2020, P 2018 C EMP METH NA, P447 Zhang Y, 2018, J INFORMETR, V12, P1099, DOI 10.1016/j.joi.2018.09.004 Zhou P, 2016, PROCEEDINGS OF THE 54TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2016), VOL 2, P207, DOI 10.18653/v1/p16-2034 Zhu SY, 2019, 57TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2019), P471 NR 65 TC 20 Z9 21 U1 8 U2 87 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0138-9130 EI 1588-2861 J9 SCIENTOMETRICS JI Scientometrics PD AUG PY 2021 VL 126 IS 8 BP 6803 EP 6823 DI 10.1007/s11192-021-04033-7 EA JUN 2021 PG 21 WC Computer Science, Interdisciplinary Applications; Information Science & Library Science WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Computer Science; Information Science & Library Science GA TM5GC UT WOS:000658116700003 DA 2024-09-05 ER PT J AU Bornmann, L Ganser, C Tekles, A AF Bornmann, Lutz Ganser, Christian Tekles, Alexander TI Simulation of the h index use at university departments within the bibliometrics-based heuristics framework: Can the indicator be used to compare individual researchers? SO JOURNAL OF INFORMETRICS LA English DT Article DE Bibliometrics; Bibliometrics-based heuristics; Bibliometrics-based decision trees; h index ID HIRSCH-INDEX; QUANTITATIVE-ANALYSIS; CITATION IMPACT; MODELS; FRUGAL; SCIENCES; CHOICE AB Bornmann and Marewski (2019) have adapted the concept of fast-and-frugal heuristics to scientometrics in order to study and guide the application of bibliometrics in research evaluation. Bibliometrics-based heuristics (BBHs) are simple decision strategies for evaluative purposes based on bibliometric indicators. One aim of the heuristics research program is to develop methods for studying the use of BBHs in research evaluation. Many deans probably evaluate rough performance differences between researchers in their departments based on h index values. Bornmann, Ganser, Tekles, and Leydesdorff (2020) developed the Stata command h_index and R package hindex which can be deployed in a fast and frugal way to decide on the following question: can the h index be used to compare all researchers in a university department, or are the citation cultures so different between sub-groups in the department that not all researchers can be compared with one another? The command and package can be used for simulations that might answer the question before extensive processes of data collection start. If the citation cultures are very different in the sub-groups, the researchers should be compared with field-normalized indicators (instead of the h index). This paper shows how the h_index command and hindex package can be employed for the decision on the h index use in the BBH. C1 [Bornmann, Lutz; Tekles, Alexander] Max Planck Gesell, Sci Policy & Strategy Dept Adm Headquarters, Hofgartenstr 8, D-80539 Munich, Germany. [Ganser, Christian; Tekles, Alexander] Ludwig Maximilians Univ Munchen, Dept Sociol, Konradstr 6, D-80801 Munich, Germany. C3 Max Planck Society; University of Munich RP Bornmann, L (corresponding author), Max Planck Gesell, Sci Policy & Strategy Dept Adm Headquarters, Hofgartenstr 8, D-80539 Munich, Germany. EM bornmann@gv.mpg.de RI Bornmann, Lutz/A-3926-2008 OI Ganser, Christian/0000-0002-2790-7353 CR Abramo G, 2019, J INFORMETR, V13, P32, DOI 10.1016/j.joi.2018.11.003 Alonso S, 2009, J INFORMETR, V3, P273, DOI 10.1016/j.joi.2009.04.001 [Anonymous], 2016, HDB BIBLIOMETRIC IND, DOI DOI 10.1002/ANIE.201608447 Åstebro T, 2006, MANAGE SCI, V52, P395, DOI 10.1287/mnsc.1050.0468 Bornmann L, 2005, SCIENTOMETRICS, V65, P391, DOI 10.1007/s11192-005-0281-4 Bornmann L, 2020, DOES H INDEX REINFOR Bornmann L., 2019, SAGE research methods foundations Bornmann L, 2020, QUANT SCI STUD, V1, P171, DOI 10.1162/qss_a_00012 Bornmann L, 2007, J AM SOC INF SCI TEC, V58, P1381, DOI 10.1002/asi.20609 Bornmann L, 2020, SCIENTOMETRICS, V122, P1255, DOI 10.1007/s11192-019-03319-1 Bornmann L, 2019, SCIENTOMETRICS, V120, P419, DOI 10.1007/s11192-019-03018-x Bornmann L, 2014, RES EVALUAT, V23, P166, DOI 10.1093/reseval/rvu002 Bornmann L, 2014, SCIENTOMETRICS, V98, P487, DOI 10.1007/s11192-013-1161-y Bornmann L, 2011, J INFORMETR, V5, P346, DOI 10.1016/j.joi.2011.01.006 Boyack KW, 2013, EUR J CLIN INVEST, V43, P1339, DOI 10.1111/eci.12171 Czerlinski J., 1999, Simple heuristics that make us smart, P97 Egghe L, 2010, ANNU REV INFORM SCI, V44, P65, DOI 10.1002/aris.2010.1440440109 Franceschini F, 2014, J INFORMETR, V8, P508, DOI 10.1016/j.joi.2014.04.005 Franceschini F, 2010, EUR J OPER RES, V203, P494, DOI 10.1016/j.ejor.2009.08.001 Gigerenzer G, 1996, PSYCHOL REV, V103, P650, DOI 10.1037/0033-295X.103.4.650 Gigerenzer Gerd., 2001, SIMPLE HEURISTICS MA GLANZEL W, 1995, J INFORM SCI, V21, P37, DOI 10.1177/016555159502100104 Glänzel W, 2006, SCIENTOMETRICS, V67, P315, DOI 10.1556/Scient.67.2006.2.12 Glänzel W, 2003, SCIENTOMETRICS, V56, P357, DOI 10.1023/A:1022378804087 Goldstein DG, 2002, PSYCHOL REV, V109, P75, DOI 10.1037//0033-295X.109.1.75 Hammarfelt B, 2018, J ASSOC INF SCI TECH, V69, P924, DOI 10.1002/asi.24043 Hertwig Ralph., 2003, THINKING PSYCHOL PER, P213, DOI [DOI 10.1002/047001332X.CH11, 10.1002/047001332X.ch11] Hicks D, 2015, NATURE, V520, P429, DOI 10.1038/520429a Hirsch JE, 2005, P NATL ACAD SCI USA, V102, P16569, DOI 10.1073/pnas.0507655102 Jann B., 2005, Statistical Software Components Jones AW, 2008, J ANAL TOXICOL, V32, P327, DOI 10.1093/jat/32.4.327 Julian N. Marewski, 2010, [心理学报, Acta Psychologica Sinica], V42, P72 Katsikopoulos KV, 2011, DECIS ANAL, V8, P10, DOI 10.1287/deca.1100.0191 Kellner AWA, 2008, AN ACAD BRAS CIENC, V80, P771, DOI 10.1590/S0001-37652008000400016 Lee MD, 2002, AUST J PSYCHOL, V54, P137, DOI 10.1080/00049530412331312704 Lehmann S, 2008, SCIENTOMETRICS, V76, P369, DOI 10.1007/s11192-007-1868-8 Lotka A.J., 1926, J Wash Acad Sci Wash D C, V16, P23 Luan SH, 2017, ORGAN BEHAV HUM DEC, V141, P29, DOI 10.1016/j.obhdp.2017.05.003 Machácek M, 2008, POLIT EKON, V56, P229, DOI 10.18267/j.polek.638 MacRoberts MH, 2018, J ASSOC INF SCI TECH, V69, P474, DOI 10.1002/asi.23970 Martignon L, 2011, Heuristics: The Foundations of Adaptive Behavior, P4 Marx W, 2010, J AM SOC INF SCI TEC, V61, P2061, DOI 10.1002/asi.21377 Mingers J, 2008, J OPER RES SOC, V59, P1013, DOI 10.1057/palgrave.jors.2602428 Mingers J, 2015, EUR J OPER RES, V246, P1, DOI 10.1016/j.ejor.2015.04.002 Mousavi S., 2017, Homo Oeconomicus, V34, P361, DOI [10.1007/s41412-017-0058-z, DOI 10.1007/S41412-017-0058-Z] Newman MEJ, 2001, PHYS REV E, V64, DOI [10.1103/PhysRevE.64.016131, 10.1103/PhysRevE.64.016132] Norris M, 2010, J DOC, V66, P681, DOI 10.1108/00220411011066790 Panaretos J, 2009, SCIENTOMETRICS, V81, P635, DOI 10.1007/s11192-008-2174-9 Phillips ND, 2017, JUDGM DECIS MAK, V12, P344 Raab M, 2015, FRONT PSYCHOL, V6, DOI 10.3389/fpsyg.2015.01672 Robinson S, 2002, EUR J OPER RES, V138, P103, DOI 10.1016/S0377-2217(01)00127-8 Rodríguez-Navarro A, 2020, RES EVALUAT, V29, P215, DOI 10.1093/reseval/rvaa002 Ruiz-Castillo J, 2014, J INFORMETR, V8, P917, DOI 10.1016/j.joi.2014.09.006 Ruiz-Castillo J, 2015, J INFORMETR, V9, P102, DOI 10.1016/j.joi.2014.11.010 Sargent RG, 2011, WINT SIMUL C PROC, P183, DOI 10.1109/WSC.2011.6147750 Scheibehenne B, 2009, MAKING ESSENTIAL CHO, P194 SIMON HA, 1990, ANNU REV PSYCHOL, V41, P1, DOI 10.1146/annurev.ps.41.020190.000245 SIMON HA, 1956, PSYCHOL REV, V63, P129, DOI 10.1037/h0042769 Simon HA, 1955, Q J ECON, V69, P99, DOI 10.2307/1884852 Tang R, 2008, J DOC, V64, P246, DOI 10.1108/00220410810858047 Thompson DF, 2009, AM J PHARM EDUC, V73, DOI 10.5688/aj7306111 van den Besselaar P., 2018, STI 2018 C P, P346 Waltman L., 2019, INAUGURAL LECT LUDO Waltman L., 2018, STI 2018 C P, P526 Waltman L, 2013, J AM SOC INF SCI TEC, V64, P372, DOI 10.1002/asi.22775 Waltman L, 2012, J AM SOC INF SCI TEC, V63, P2419, DOI 10.1002/asi.22708 Waltman L, 2011, SCIENTOMETRICS, V87, P467, DOI 10.1007/s11192-011-0354-5 Waltman L, 2011, J INFORMETR, V5, P37, DOI 10.1016/j.joi.2010.08.001 Wang J, 2013, SCIENTOMETRICS, V94, P851, DOI 10.1007/s11192-012-0775-9 Wegwarth O, 2009, MED EDUC, V43, P721, DOI 10.1111/j.1365-2923.2009.03359.x Zeng A, 2017, PHYS REP, V714, P1, DOI 10.1016/j.physrep.2017.10.001 NR 71 TC 1 Z9 1 U1 2 U2 36 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS SN 1751-1577 EI 1875-5879 J9 J INFORMETR JI J. Informetr. PD FEB PY 2022 VL 16 IS 1 AR 101237 DI 10.1016/j.joi.2021.101237 PG 17 WC Computer Science, Interdisciplinary Applications; Information Science & Library Science WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Computer Science; Information Science & Library Science GA 1H0CB UT WOS:000796212300002 DA 2024-09-05 ER PT J AU Cantu-Ortiz, FJ AF Javier Cantu-Ortiz, Francisco TI Advancing artificial intelligence research and dissemination through conference series: Benchmark, scientific impact and the MICAI experience SO EXPERT SYSTEMS WITH APPLICATIONS LA English DT Article DE Artificial intelligence; AI research and development; Scientific impact of AI AB This article presents an overview, analysis and benchmark of the best-known artificial intelligence (AI) conferences, including the Mexican International Conference on Artificial Intelligence (MICAI) conference series, and describes how MICAI has contributed to both the growth of artificial intelligence (AI) research in Mexico and the advancement of AI research worldwide. Among the prestigious AI conferences examined are the IJCAI, AAAI, ECAI, IBERAMIA, AAJCAI and PRICAI. Features analyzed include number of papers, acceptance rate and the h index as a measure of the scientific impact. The MICAI has been held in Mexico since 2000, when the National Meeting on AI, held by the Mexican Society for Artificial Intelligence (SMIA) since 1983, and the International Symposium on Artificial Intelligence (ISAI), organized by Tecnologico de Monterrey (ITESM) since 1988, merged into a single conference. Conference trends and future developments are also explained. (C) 2013 Elsevier Ltd. All rights reserved. C1 [Javier Cantu-Ortiz, Francisco] Tecnol Monterrey, Monterrey 64849, NL, Mexico. C3 Tecnologico de Monterrey RP Cantu-Ortiz, FJ (corresponding author), 2501 Eugenio Garza Sada Ave, Monterrey 64849, NL, Mexico. EM fcantu@itesm.mx RI Cantu-Ortiz, Francisco Javier/K-2942-2019 OI Cantu-Ortiz, Francisco Javier/0000-0002-2015-0562 CR [Anonymous], LNAI Batyrshin I, 2012, APPL COMPUT MATH-BAK, V11, P149 Cai XC, 2010, LECT NOTES ARTIF INT, V6464, P476, DOI 10.1007/978-3-642-17432-2_48 Chou CC, 2006, LECT NOTES ARTIF INT, V4099, P161, DOI 10.1007/978-3-540-36668-3_19 Cutello V, 2002, LECT NOTES ARTIF INT, V2527, P361 Gelbukh A., 2008, LECT NOTES COMPUTER, V5317, pI Hayden B.Y., 2011, Psychology Today He Y, 2005, LECT NOTES ARTIF INT, V3789, P712 KURZWEIL Raymond, 2005, The Singularity is Near: When Humans Transcend Biology Lucas Bruce D, 1981, An iterative image registration technique with an application to stereo vision McCarthy J., 1955, A proposal for the Dartmouth Summer Research Project on Artificial Intelligence McCorduck Pamela, 2004, MACHINES WHO THINK Quinlan JR, 1996, PROCEEDINGS OF THE THIRTEENTH NATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND THE EIGHTH INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE, VOLS 1 AND 2, P725 Russell Stuart, 2010, Artificial intelligence, a modern approach, V3 Sidorov G, 2011, INT J MACH LEARN CYB, V2, P123, DOI 10.1007/s13042-011-0033-0 NR 15 TC 9 Z9 9 U1 3 U2 46 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0957-4174 EI 1873-6793 J9 EXPERT SYST APPL JI Expert Syst. Appl. PD FEB 15 PY 2014 VL 41 IS 3 SI SI BP 781 EP 785 DI 10.1016/j.eswa.2013.08.008 PG 5 WC Computer Science, Artificial Intelligence; Engineering, Electrical & Electronic; Operations Research & Management Science WE Science Citation Index Expanded (SCI-EXPANDED) SC Computer Science; Engineering; Operations Research & Management Science GA 272EU UT WOS:000328443900002 DA 2024-09-05 ER PT J AU Nannini, L Manerba, MM Beretta, I AF Nannini, Luca Manerba, Marta Marchiori Beretta, Isacco TI Mapping the landscape of ethical considerations in explainable AI research SO ETHICS AND INFORMATION TECHNOLOGY LA English DT Article DE Explainable AI (XAI); AI ethics; Ethical analysis; Bibliometric study ID VIRTUE; FAIR AB With its potential to contribute to the ethical governance of AI, eXplainable AI (XAI) research frequently asserts its relevance to ethical considerations. Yet, the substantiation of these claims with rigorous ethical analysis and reflection remains largely unexamined. This contribution endeavors to scrutinize the relationship between XAI and ethical considerations. By systematically reviewing research papers mentioning ethical terms in XAI frameworks and tools, we investigate the extent and depth of ethical discussions in scholarly research. We observe a limited and often superficial engagement with ethical theories, with a tendency to acknowledge the importance of ethics, yet treating it as a monolithic and not contextualized concept. Our findings suggest a pressing need for a more nuanced and comprehensive integration of ethics in XAI research and practice. To support this, we propose to critically reconsider transparency and explainability in regards to ethical considerations during XAI systems design while accounting for ethical complexity in practice. As future research directions, we point to the promotion of interdisciplinary collaborations and education, also for underrepresented ethical perspectives. Such ethical grounding can guide the design of ethically robust XAI systems, aligning technical advancements with ethical considerations. C1 [Nannini, Luca] Univ Santiago De Compostela, Ctr Singular Invest Tecnoloxias Intelixentes, Santiago De Compostela, Spain. [Manerba, Marta Marchiori; Beretta, Isacco] Univ Pisa, Comp Sci Dept, Pisa, Italy. [Manerba, Marta Marchiori] CNR, KDD Lab, ISTI, Pisa, Italy. [Nannini, Luca] Indra Sistemas, Minsait, Madrid, Spain. C3 Universidade de Santiago de Compostela; University of Pisa; Consiglio Nazionale delle Ricerche (CNR); Istituto di Scienza e Tecnologie dell'Informazione "Alessandro Faedo" (ISTI-CNR); Indra RP Nannini, L (corresponding author), Univ Santiago De Compostela, Ctr Singular Invest Tecnoloxias Intelixentes, Santiago De Compostela, Spain.; Nannini, L (corresponding author), Indra Sistemas, Minsait, Madrid, Spain. EM l.nannini@usc.es; marta.marchiori@phd.unipi.it; isacco.beretta@phd.unipi.it OI Nannini, Luca/0000-0002-4733-9760 FU HORIZON EUROPE Framework Programme; ITN project NL4XAI Natural Language for Explainable AI [860621]; European Union; Marie Curie Actions (MSCA) [860621] Funding Source: Marie Curie Actions (MSCA) FX Funding contribution from the ITN project NL4XAI Natural Language for Explainable AI. This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sk & lstrok;odowska-Curie grant agreement No 860621. This document reflects the views of the author(s) and does not necessarily reflect the views or policy of the European Commission. The REA cannot be held responsible for any use that may be made of the information this document contains. CR Adadi A, 2018, IEEE ACCESS, V6, P52138, DOI 10.1109/ACCESS.2018.2870052 ADAMS RM, 1976, J PHILOS, V73, P467, DOI 10.2307/2025783 Ali S, 2023, INFORM FUSION, V99, DOI 10.1016/j.inffus.2023.101805 Alonso JM, 2020, IEEE INT CONF FUZZY, DOI 10.1109/fuzz48607.2020.9177770 Alonso R.S., 2020, Advances in Intelligent Systems and Computing, V1239, P272, DOI 10 Alufaisan Y, 2021, AAAI CONF ARTIF INTE, V35, P6618 Amann J, 2020, BMC MED INFORM DECIS, V20, DOI 10.1186/s12911-020-01332-6 Amugongo LM, 2023, PROCEEDINGS OF THE 6TH ACM CONFERENCE ON FAIRNESS, ACCOUNTABILITY, AND TRANSPARENCY, FACCT 2023, P583, DOI 10.1145/3593013.3594024 [Anonymous], 2021, The Stanford encyclopedia of philosophy [Anonymous], 1999, NICOMACHEAN ETHICS, V2nd ANSCOMBE GEM, 1958, PHILOSOPHY, V33, P1, DOI 10.1017/S0031819100037943 Arpaly N, 2002, J PHILOS, V99, P223, DOI 10.2307/3655647 Balagopalan Aparna, 2022, FAccT '22: 2022 ACM Conference on Fairness, Accountability, and Transparency, P1194, DOI 10.1145/3531146.3533179 Balasubramaniam N, 2023, INFORM SOFTWARE TECH, V159, DOI 10.1016/j.infsof.2023.107197 Bansal Gagan, 2021, CHI '21: Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems, DOI 10.1145/3411764.3445717 Arrieta AB, 2020, INFORM FUSION, V58, P82, DOI 10.1016/j.inffus.2019.12.012 Batliner A, 2022, IEEE T AFFECT COMPUT, V13, P1236, DOI 10.1109/TAFFC.2020.3021015 Baum K., 2022, Philos. Technol., V35, P1, DOI [10.1007/s13347-022-00510-w, DOI 10.1007/S13347-022-00510-W] Beauchamp TL, 2001, Principles of Biomedical Ethics Bentham J., 1789, An introduction to the principles of morals and legislation, VDover ed., DOI DOI 10.1093/OSEO/INSTANCE.00077240 Benzmuller Christoph, 2020, KI 2020: Advances in Artificial Intelligence. 43rd German Conference on AI. Proceedings. Lecture Notes in Artificial Intelligence Subseries of Lecture Notes in Computer Science (LNAI 12325), P251, DOI 10.1007/978-3-030-58285-2_20 Bertrand A, 2022, PROCEEDINGS OF THE 2022 AAAI/ACM CONFERENCE ON AI, ETHICS, AND SOCIETY, AIES 2022, P78, DOI 10.1145/3514094.3534164 Bhatt U, 2020, FAT* '20: PROCEEDINGS OF THE 2020 CONFERENCE ON FAIRNESS, ACCOUNTABILITY, AND TRANSPARENCY, P648, DOI 10.1145/3351095.3375624 Bietti E, 2020, FAT* '20: PROCEEDINGS OF THE 2020 CONFERENCE ON FAIRNESS, ACCOUNTABILITY, AND TRANSPARENCY, P210, DOI 10.1145/3351095.3372860 Blasimme A., 2020, The Oxford Handbook of Ethics of AI, P703, DOI [10.1093/oxfordhb/9780190067397.013.45, DOI 10.1093/OXFORDHB/9780190067397.013.45] Boden M., 2006, Mind As Machine: A History of Cognitive Science Two-Volume Set Bordt Sebastian, 2022, FAccT '22: 2022 ACM Conference on Fairness, Accountability, and Transparency, P891, DOI 10.1145/3531146.3533153 Brand J, 2023, PROCEEDINGS OF THE 2023 AAAI/ACM CONFERENCE ON AI, ETHICS, AND SOCIETY, AIES 2023, P990, DOI 10.1145/3600211.3604741 Brand JLM, 2023, Arxiv, DOI arXiv:2311.14687 Brennan A., 2022, The Stanford Encyclopedia of Philosophy Brey P., 2010, CAMBRIDGE HDB INFORM, P41 Broniatowski D. A., 2021, PSYCHOL FDN EXPLAINA, DOI DOI 10.6028/NIST.IR.8367 Brun Y., 2018, ACM, V10, P3194776 Brunotte W, 2022, LECT NOTES COMPUT SC, V13216, P26, DOI 10.1007/978-3-030-98464-9_3 Buijsman S., Cambridge Handbook on the Law, Ethics and Policy of AI Buyl M., 2022, FACCT 22, P1071, DOI DOI 10.1145/3531146.3533169 Cabitza F., 2023, MACHINE LEARNING KNO Cabitza F, 2024, ARTIF INTELL MED, V150, DOI 10.1016/j.artmed.2024.102819 Calegari R., 2020, CEUR WORKSHOP P, V2742 Cambria E, 2023, INFORM PROCESS MANAG, V60, DOI 10.1016/j.ipm.2022.103111 Casper S, 2024, Arxiv, DOI arXiv:2401.14446 Chaudhuri K., 2019, P MACHINE LEARNING R Chazette L, 2019, INT REQUIR ENG CONF, P223, DOI 10.1109/RE.2019.00032 Chouldechova A, 2017, BIG DATA-US, V5, P153, DOI 10.1089/big.2016.0047 Cohen IG, 2014, HEALTH AFFAIR, V33, P1139, DOI 10.1377/hlthaff.2014.0048 Copp David., 2006, OXFORD HDB ETHICAL T Cumpston M, 2019, COCHRANE DB SYST REV, DOI 10.1002/14651858.ED000142 Cysneiros L.M., 2013, P 6 INT I WORKSH 201, V978, P19 de Bruijn H, 2022, GOV INFORM Q, V39, DOI 10.1016/j.giq.2021.101666 Dexe Jacob, 2020, Artificial Intelligence in HCI. First International Conference, AI-HCI 2020 Held as Part of the 22nd HCI International Conference, HCII 2020. Proceedings. Lecture Notes in Computer Science (LNCS 12217), P3, DOI 10.1007/978-3-030-50334-5_1 Dubler N., 2011, Bioethics mediation: a guide to shaping shared solutions, DOI [10.2307/j.ctv17z84h3, DOI 10.2307/J.CTV17Z84H3] Ehsan U, 2022, EXTENDED ABSTRACTS OF THE 2022 CHI CONFERENCE ON HUMAN FACTORS IN COMPUTING SYSTEMS, CHI 2022, DOI 10.1145/3491101.3503727 Ehsan U, 2024, Arxiv, DOI arXiv:2107.13509 El-Nasr M.S., 2020, FDG 20, p64:1, DOI [10.1145/3402942.3402964, DOI 10.1145/3402942.3402964] Elish M.C., 2021, FACCT 21, DOI [10.1145/3442188, DOI 10.1145/3442188] Falomir Z, 2021, FRONT ARTIF INTEL AP, V339, P445, DOI 10.3233/FAIA210165 Felzmann H, 2020, SCI ENG ETHICS, V26, P3333, DOI 10.1007/s11948-020-00276-4 Felzmann H, 2019, BIG DATA SOC, V6, DOI 10.1177/2053951719860542 Fleisher W, 2022, EPISTEME-J INDIV SOC, V19, P534, DOI 10.1017/epi.2022.39 Floridi L., 2019, Philosophy Technology, V32, P185, DOI DOI 10.1007/S13347-019-00354-X Floridi L., 2019, UNIFIED FRAMEWORK 5, V1, DOI [10.1162/99608f92.8cd550d1, DOI 10.1162/99608F92.8CD550D1] Floridi L, 2018, MIND MACH, V28, P689, DOI 10.1007/s11023-018-9482-5 Foot P., 1978, VIRTUES VICES OTHER, DOI 10.1093/0199252866.001.0001 Genus A, 2018, RES POLICY, V47, P61, DOI 10.1016/j.respol.2017.09.012 Gerdes A., 2021, Advances in Intelligent Systems and Computing, V1288, DOI [10.1007/978-3-030-63128-419, DOI 10.1007/978-3-030-63128-419] Gert B., 2006, Bioethics: a return to fundamentals, DOI [10.1093/0195159063.001.0001, DOI 10.1093/0195159063.001.0001] Graziani M, 2023, ARTIF INTELL REV, V56, P3473, DOI 10.1007/s10462-022-10256-8 Green B, 2022, COMPUT LAW SECUR REV, V45, DOI 10.1016/j.clsr.2022.105681 Gulum M.A., 2020, LECT NOTES COMPUTER Gunning D, 2019, AI MAG, V40, P44, DOI 10.1609/aimag.v40i2.2850 Habibullah KM, 2021, INT REQUIR ENG CONF, P13, DOI 10.1109/RE51729.2021.00009 Hancox-Li L, 2020, FAT* '20: PROCEEDINGS OF THE 2020 CONFERENCE ON FAIRNESS, ACCOUNTABILITY, AND TRANSPARENCY, P640, DOI 10.1145/3351095.3372836 Hare RM., 1981, MORAL THINKING ITS L, DOI [10.1093/0198246609.001.0001, DOI 10.1093/0198246609.001.0001] He G, 2023, PROCEEDINGS OF THE 2023 CHI CONFERENCE ON HUMAN FACTORS IN COMPUTING SYSTEMS, CHI 2023, DOI 10.1145/3544548.3581025 Hein A, 2022, IEEE INT FUZZY SYST, DOI 10.1109/FUZZ-IEEE55066.2022.9882615 Heinrichs B, 2020, HUM BRAIN MAPP, V41, P1435, DOI 10.1002/hbm.24886 Held V., 2006, ETHICS CARE PERSONAL Herzog C., 2022, Philosophy & Technology, V35, DOI [DOI 10.1007/S13347-022-00546-Y, 10.1007/s13347-022-00546-y] Hickok M., 2021, Al and Ethics, V1, P41, DOI [10.1007/s43681-020-00008-1, DOI 10.1007/S43681-020-00008-1] Hildebrandt M., 2020, FAT 20 C FAIRN ACC T, DOI [10.1145/3351095, DOI 10.1145/3351095] Hill JThomas E., 1992, Dignity and practical reason in Kant's moral theory Hofeditz L, 2022, ELECTRON MARK, V32, P2207, DOI 10.1007/s12525-022-00600-9 Hu Lily, 2021, Journal of Social Computing, V2, P238, DOI 10.23919/JSC.2021.0033 Hursthouse R., 2018, STANFORD ENCY PHILOS Hursthouse R., 1999, On virtue ethics, DOI DOI 10.1093/0199247994.001.0001 Ibáñez JC, 2022, AI SOC, V37, P1663, DOI 10.1007/s00146-021-01267-0 Information Commissioner's Office (ICO) of the United Kingdom The Alan Turing Institute, 2019, Project explain-interim report International Standards Association(ISO) SAIS, 2023, Iso/iec awi ts 6254 -information technology-artificial intelligence-objectives and approaches for explainability of ml models and ai systems Jobin A, 2019, NAT MACH INTELL, V1, P389, DOI 10.1038/s42256-019-0088-2 John-Mathews J., 2021, arXiv Jongepier F, 2022, ETHICS INF TECHNOL, V24, DOI 10.1007/s10676-022-09654-x Jonsen Albert R, 2012, Virtual Mentor, V14, P264, DOI 10.1001/virtualmentor.2012.14.3.mhst1-1203 Kant Immanuel., 1959, FDN METAPHYSICS MORA Kant Immanuel., 1996, Kant: The Metaphysics of Morals Kasirzadeh A, 2021, PROCEEDINGS OF THE 2021 ACM CONFERENCE ON FAIRNESS, ACCOUNTABILITY, AND TRANSPARENCY, FACCT 2021, P228, DOI 10.1145/3442188.3445886 Kasirzadeh A, 2021, PROCEEDINGS OF THE 2021 ACM CONFERENCE ON FAIRNESS, ACCOUNTABILITY, AND TRANSPARENCY, FACCT 2021, P14, DOI 10.1145/3442188.3445866 Kaur H, 2020, PROCEEDINGS OF THE 2020 CHI CONFERENCE ON HUMAN FACTORS IN COMPUTING SYSTEMS (CHI'20), DOI 10.1145/3313831.3376219 Kempt H, 2022, ETHICS INF TECHNOL, V24, DOI 10.1007/s10676-022-09646-x Kim TW, 2022, BUS ETHICS Q, V32, P75, DOI 10.1017/beq.2021.3 Kitamura Y., 2021, The Effect of AI Explanations on Complementary Team Performance, ACM, V10, P3445717 Köhl MA, 2019, INT REQUIR ENG CONF, P363, DOI 10.1109/RE.2019.00046 Korsgaard ChristineM., 1996, CREATING KINGDOM END, P311, DOI [10.1017/CBO9781139174503.012, DOI 10.1017/CBO9781139174503.012] Kroll JA, 2021, PROCEEDINGS OF THE 2021 ACM CONFERENCE ON FAIRNESS, ACCOUNTABILITY, AND TRANSPARENCY, FACCT 2021, P758, DOI 10.1145/3442188.3445937 Lakkaraju H, 2020, PROCEEDINGS OF THE 3RD AAAI/ACM CONFERENCE ON AI, ETHICS, AND SOCIETY AIES 2020, P79, DOI 10.1145/3375627.3375833 Langer M, 2021, ARTIF INTELL, V296, DOI 10.1016/j.artint.2021.103473 Larsson S., 2020, Internet Policy Review, DOI [10.14763/2020.2.1469, DOI 10.14763/2020.2.1469] Liao QV, 2020, PROCEEDINGS OF THE 2020 CHI CONFERENCE ON HUMAN FACTORS IN COMPUTING SYSTEMS (CHI'20), DOI 10.1145/3313831.3376590 Lima G., 2022, P 2022 ACM C FAIRN A, P2103, DOI DOI 10.1145/3531146.3534628 Lindner F, 2019, LECT NOTES ARTIF INT, V11793, P216, DOI 10.1007/978-3-030-30179-8_18 Löfström H, 2022, LECT NOTES BUS INF P, V452, P55, DOI 10.1007/978-3-031-07481-3_7 Loi M, 2021, AIES '21: PROCEEDINGS OF THE 2021 AAAI/ACM CONFERENCE ON AI, ETHICS, AND SOCIETY, P757, DOI 10.1145/3461702.3462631 Loi M, 2021, ETHICS INF TECHNOL, V23, P253, DOI 10.1007/s10676-020-09564-w Longo L, 2024, INFORM FUSION, V106, DOI 10.1016/j.inffus.2024.102301 MacIntyre A. C., 1984, After virtue: a study in moral theory Markham A.N., 2020, AIES 20 AAAI ACM C A, DOI [10.1145/3375627, DOI 10.1145/3375627] Markus AF, 2021, J BIOMED INFORM, V113, DOI 10.1016/j.jbi.2020.103655 Martinho A, 2021, ARTIF INTELL MED, V121, DOI 10.1016/j.artmed.2021.102190 Martins T, 2024, IEEE ACCESS, V12, P618, DOI 10.1109/ACCESS.2023.3347028 Maruyama Y., 2021, LECT NOTES COMPUTER, P127, DOI DOI 10.1007/978 McDonald Nora, 2019, Proceedings of the ACM on Human-Computer Interaction, V3, DOI 10.1145/3359174 MCDOWELL J, 1979, MONIST, V62, P331, DOI 10.5840/monist197962319 Meo R, 2022, LECT NOTES COMPUT SC, V13389, P25, DOI 10.1007/978-3-031-15740-0_3 Metcalf J, 2019, SOC RES, V86, P449 Mill J.S., 1962, UTILITARIANISM Miller T, 2023, PROCEEDINGS OF THE 6TH ACM CONFERENCE ON FAIRNESS, ACCOUNTABILITY, AND TRANSPARENCY, FACCT 2023, P333, DOI 10.1145/3593013.3594001 Mittelstadt B, 2019, NAT MACH INTELL, V1, P501, DOI 10.1038/s42256-019-0114-4 Mittelstadt B, 2019, FAT*'19: PROCEEDINGS OF THE 2019 CONFERENCE ON FAIRNESS, ACCOUNTABILITY, AND TRANSPARENCY, P279, DOI 10.1145/3287560.3287574 Mökander J, 2023, AI SOC, V38, P153, DOI 10.1007/s00146-021-01286-x Morley J, 2023, AI SOC, V38, P411, DOI 10.1007/s00146-021-01308-8 Morley J, 2021, MIND MACH, V31, P239, DOI 10.1007/s11023-021-09563-w Morris MX, 2023, AM SURGEON, V89, P55, DOI 10.1177/00031348221117042 Muralidharan A, 2024, ETHICS INF TECHNOL, V26, DOI 10.1007/s10676-024-09754-w Nannini L, 2023, PROCEEDINGS OF THE 6TH ACM CONFERENCE ON FAIRNESS, ACCOUNTABILITY, AND TRANSPARENCY, FACCT 2023, P1198, DOI 10.1145/3593013.3594074 Narayanan D, 2023, MIND MACH, V33, P55, DOI 10.1007/s11023-023-09628-y Nicodeme C, 2020, C HUM SYST INTERACT, P20, DOI [10.1109/HSI49210.2020.9142668, 10.1109/hsi49210.2020.9142668] Nussbaum Martha., 1993, The Quality of Life, P242, DOI [DOI 10.1111/J.1475-4975.1988.TB00111.X, 10.1111/j.1475-4975.1988.tb00111.x, DOI 10.1093/0198287976.003.0019, 10.1111/j.14754975.1988.tb00111.x, DOI 10.1111/J.14754975.1988.TB00111.X] Nyrup R, 2022, ETHICS INF TECHNOL, V24, DOI 10.1007/s10676-022-09632-3 O'Neill O., 1975, ACTING PRINCIPLE OAKLEY J, 1996, RATIO, V9, P128, DOI 10.1111/j.1467-9329.1996.tb00101.x Okolo CT, 2023, Arxiv, DOI [arXiv:2304.11861, 10.48550/ARXIV.2304.11861, DOI 10.48550/ARXIV.2304.11861] Okolo CT, 2022, PROCEEDINGS OF THE 4TH ACM SIGCAS/SIGCHI CONFERENCE ON COMPUTING AND SUSTAINABLE SOCIETIES, COMPASS'22, P439, DOI 10.1145/3530190.3534802 Parfit Derek., 1984, REASONS PERSONS Pastaltzidis Ioannis, 2022, FAccT '22: 2022 ACM Conference on Fairness, Accountability, and Transparency, P2302, DOI 10.1145/3531146.3534644 Phillips P.J., 2021, 4 PRINCIPLES EXPLAIN, DOI DOI 10.6028/NIST.IR.8312 RAILTON P, 1984, PHILOS PUBLIC AFF, V13, P134 Robbins S, 2019, MIND MACH, V29, P495, DOI 10.1007/s11023-019-09509-3 Ross W. D., 1930, The Right and the Good Saeed W, 2023, KNOWL-BASED SYST, V263, DOI 10.1016/j.knosys.2023.110273 Samek W, 2017, Arxiv, DOI arXiv:1708.08296 Leite JCSD, 2010, BUS INFORM SYST ENG+, V2, P127, DOI 10.1007/s12599-010-0102-z Scheffler Samuel., 1982, The Rejection of Consequentialism Schmid U, 2022, KUNSTL INTELL, V36, P303, DOI 10.1007/s13218-022-00786-2 SEN A, 1979, J PHILOS, V76, P463, DOI 10.2307/2025934 Shafer-Landau R., 2012, Ethical theory: an anthology Shamsabadi A.S., 2022, Advances in Neural Information Processing Systems, V35 Sherman N., 1989, FABRIC CHARACTER ARI Sibai F.N., 2020, 2020 INT C CYB SEC P, P1, DOI [10.1109/CYBERSECURITY49315.2020.9138891, DOI 10.1109/CYBERSECURITY49315.2020.9138891] Sidgwick Henry., 1907, METHODS ETHICS Slack D, 2020, PROCEEDINGS OF THE 3RD AAAI/ACM CONFERENCE ON AI, ETHICS, AND SOCIETY AIES 2020, P180, DOI 10.1145/3375627.3375830 Slote M., 1992, MORALITY VIRTUE Smart J.J. C., 1973, UTILITARIANISM Sokol K, 2020, FAT* '20: PROCEEDINGS OF THE 2020 CONFERENCE ON FAIRNESS, ACCOUNTABILITY, AND TRANSPARENCY, P56, DOI 10.1145/3351095.3372870 Solomon MZ, 2005, HASTINGS CENT REP, V35, P40, DOI 10.2307/3528827 Standard for XAI-eXplainable AI Working Group IEEE Computational Intelligence Society/ Standards Committee (IEEE CIS/SC/XAI WG), 2024, Ieee cis/sc/xai wg p2976-standard for xai-explainable artificial intelligence-for achieving clarity and interoperability of ai systems design Stepin I, 2021, IEEE ACCESS, V9, P11974, DOI 10.1109/ACCESS.2021.3051315 Sullivan E, 2022, PROCEEDINGS OF THE 2022 AAAI/ACM CONFERENCE ON AI, ETHICS, AND SOCIETY, AIES 2022, P712, DOI 10.1145/3514094.3534185 Theodorou A, 2017, CONNECT SCI, V29, P230, DOI 10.1080/09540091.2017.1310182 Theunissen M, 2022, ETHICS INF TECHNOL, V24, DOI 10.1007/s10676-022-09649-8 Tsamados A, 2022, AI SOC, V37, P215, DOI 10.1007/s00146-021-01154-8 Vainio-Pekka H, 2023, ACM T INTERACT INTEL, V13, DOI 10.1145/3599974 van der Waa J, 2021, FRONT ROBOT AI, V8, DOI 10.3389/frobt.2021.640647 van Otterlo M., 2020, Lecture Notes in Computer Science, V13048 Waefler T., 2021, P 2 EUR C IMP ART IN, P185, DOI [10.20378/irb-49775, DOI 10.20378/IRB-49775] Wagner B, 2018, Being profiled: Cogitas ergo sum. 10 years of 'Profiling the European Citizen', P84, DOI [DOI 10.1515/9789048550180-016, 10.2307/j.ctvhrd092.18, DOI 10.2307/J.CTVHRD092.18] Weller A., 2019, LNCS (LNAI), P23, DOI [DOI 10.1007/978-3-030-28954-62, DOI 10.1007/978-3-030-28954] Wu STI, 2023, PROCEEDINGS OF THE 6TH ACM CONFERENCE ON FAIRNESS, ACCOUNTABILITY, AND TRANSPARENCY, FACCT 2023, P593, DOI 10.1145/3593013.3594026 Zerilli J., 2019, Philos. Technol., V32, P683, DOI DOI 10.1007/S13347-018-0330-6 Zhang JH, 2022, LECT NOTES COMPUT SC, V13315, P437, DOI 10.1007/978-3-031-05061-9_31 Zhang YF, 2020, FAT* '20: PROCEEDINGS OF THE 2020 CONFERENCE ON FAIRNESS, ACCOUNTABILITY, AND TRANSPARENCY, P295, DOI 10.1145/3351095.3372852 Zhou TY, 2020, PROCEEDINGS OF THE 3RD AAAI/ACM CONFERENCE ON AI, ETHICS, AND SOCIETY AIES 2020, P407, DOI 10.1145/3375627.3375856 Zicari Roberto V., 2021, IEEE Transactions on Technology and Society, V2, P83, DOI 10.1109/TTS.2021.3066209 NR 181 TC 0 Z9 0 U1 10 U2 10 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 1388-1957 EI 1572-8439 J9 ETHICS INF TECHNOL JI Ethics Inf. Technol. PD SEP PY 2024 VL 26 IS 3 AR 44 DI 10.1007/s10676-024-09773-7 PG 22 WC Ethics; Information Science & Library Science; Philosophy WE Social Science Citation Index (SSCI); Arts & Humanities Citation Index (A&HCI) SC Social Sciences - Other Topics; Information Science & Library Science; Philosophy GA WI2G6 UT WOS:001254169000001 OA hybrid DA 2024-09-05 ER PT J AU Curiel-Marín, E Passoni, I Olmedo-Moreno, EM Fernández-Cano, A AF Curiel-Marin, Elvira Passoni, Isabel Olmedo-Moreno, Eva M. Fernandez-Cano, Antonio TI Self-organizing maps for research evaluation of doctoral dissertations: the case of teaching Social Sciences in Spain SO RELIEVE-REVISTA ELECTRONICA DE INVESTIGACION Y EVALUACION EDUCATIVA LA English DT Article DE Scientometrics; Research Evaluation; Doctoral Theses; Self Organizing Maps; Neural Networks; Methodological Tools; Social Science Teaching ID ORGANIZATION; THESES AB This paper has as main objective to highlight the potential use of neural networks, self-organized maps type (SOM), as a clarifying tool in the treatment, analysis and visualization of scientometric data, specifically, in the case of the analysis of the Spanish doctoral theses in teaching Social Sciences, indexed in TESEO (Spanish national database of dissertations), and defended between 1976 and 2014. A census of 301 doctoral theses has been recovered, analyzed according to autonomous communities (Andalusia and Catalonia), five-year term groups, thematic categories and educational stages. In Andalusia, the production is highest in the five-year period 1986-1990 and 2001-2005. In Catalonia, the most productive five-year periods were 1991-1995, 1996-2000, 2001-2005 and 2006-2010. More agreement is needed in the nomenclature of the teaching Social Sciences area, as well as an update in the operation of the TESEO database. As a general conclusion, it can be inferred that the resulting SOM allow to update the understanding of the state of the art in the area based on the various variables considered. The potentiality of SOM as an exploratory approximation of multivariate data becomes evident. C1 [Curiel-Marin, Elvira] Univ Granada, Dept Res Methods & Diag Educ, Fac Educ Econ & Technol, C Cortadura Valle S-N, Ceuta, Spain. [Olmedo-Moreno, Eva M.; Fernandez-Cano, Antonio] Univ Granada, Dept Res Methods & Diag Educ, Ceuta, Spain. [Passoni, Isabel] Natl Univ Mar del Plata, Dept Elect & Comp Engn, Fac Engn, Mar Del Plata, Buenos Aires, Argentina. C3 University of Granada; University of Granada; National University of Mar del Plata RP Curiel-Marín, E (corresponding author), Univ Granada, Fac Educ Econ & Technol, C Cortadura Valle S-N, Ceuta, Spain. EM ecuriel@ugr.es RI Fernández-Cano, Antonio/GLS-0532-2022; FERNANDEZ-CANO, ANTONIO/B-7376-2008; Curiel-Marín, Elvira/C-1064-2016; OLMEDO, EVA/K-6810-2014 OI FERNANDEZ-CANO, ANTONIO/0000-0003-3991-4443; OLMEDO, EVA/0000-0003-0558-1513 CR Agudelo D, 2003, PSICOTHEMA, V15, P595 Albo Hernández Ramón Orlando, 2018, Rev. cuba. inf. cienc. salud, P55 Andersen JP, 2011, SCIENTOMETRICS, V88, P371, DOI 10.1007/s11192-011-0408-8 Casillas J., 2016, CIENCIA DATOS ANALIT Curiel-Marin E., 2017, ANALISIS CIENCIOMETR Curiel-Marin E., 2013, THESIS Curiel-Marín E, 2015, REV ESP DOC CIENT, V38, DOI 10.3989/redc.2015.4.1282 Fernández-Bautista A, 2014, RELIEVE, V20, DOI 10.7203/relieve.20.2.4479 Fernandez-Cano A, 2008, REV INVESTIGACION ED, V26, P191 Fernández-Cano A, 2012, SCIENTOMETRICS, V91, P15, DOI 10.1007/s11192-011-0572-x Ferreira-Villa C, 2013, RELIEVE, V19, DOI 10.7203/relieve.19.1.2460 Hernandez Orallo J., 2004, INTRODUCCION MINERIA Hicks D, 2015, NATURE, V520, P429, DOI 10.1038/520429a Jiménez-Contreras E, 2014, RIE-REV INVESTIG EDU, V32, P295, DOI 10.6018/rie.32.2.197401 Kohonen T, 2000, IEEE T NEURAL NETWOR, V11, P574, DOI 10.1109/72.846729 KOHONEN T, 1993, NEURAL NETWORKS, V6, P895, DOI 10.1016/S0893-6080(09)80001-4 KOHONEN T, 1982, BIOL CYBERN, V43, P59, DOI 10.1007/BF00337288 KOHONEN T, 1990, P IEEE, V78, P1464, DOI 10.1109/5.58325 Liceras A., 2004, PROFESORADO REV CURR, V8 Mathworks, 2013, MATLAB COMP SOFTW Meireles M. R. G., 2017, QUAL QUANT, P71 Meschino G.J., 2013, ADV SELF ORG MAPS, V198, DOI [10.1007/978-3-642-35230-0_9, DOI 10.1007/978-3-642-35230-0_9] Nielsen SE, 2016, CHEM EDUC RES PRACT, V17, P711, DOI 10.1039/c6rp00058d Noyons ECM, 1998, J AM SOC INFORM SCI, V49, P68, DOI 10.1002/(SICI)1097-4571(1998)49:1<68::AID-ASI9>3.0.CO;2-1 Passoni L. I., 2005, THESIS Passoni L. I., 2003, FACES, V9, P73 Pellicer-Chenoll M, 2015, HEALTH EDUC RES, V30, P436, DOI 10.1093/her/cyv016 Prats J., 2003, HIST ENSINO, V9, P133 PRATS J, 2002, REV ED, V328, P81 Prats J, 1997, INVESTIGACION DIDACT Robinson-Garcia N., 2016, OP EV C Saavedra Fernández Oscar, 2002, ACIMED, V10, P5 Sotolongo Aguilar G., 2001, Ciencias de la Informacion, V32, P27 Sotolongo-Aguilar G., 2002, Revista Espanola de Documentacion Cientifica, V25, P477, DOI 10.3989/redc.2002.v25.i4.281 Torralbo M., 2003, Ensenanza de las Ciencias, V21, P295 Torralbo M., 2002, ANALISIS CIENCIOMETR Vallejo M., 2005, ACT 9 SEIEM CORD, P163 Vallejo M., 2005, THESIS vansLeeuwen T., 2013, BIBLIOMETRIE PRAXIS, V2, P1, DOI [10.5283/bpf.173, DOI 10.5283/BPF.173] Vatanen T, 2015, NEUROCOMPUTING, V147, P60, DOI 10.1016/j.neucom.2014.02.061 White HD, 2015, SCIENTOMETRICS, V102, P2275, DOI 10.1007/s11192-014-1483-4 NR 41 TC 3 Z9 3 U1 0 U2 6 PU ASOC INTERUNIVERSITARIA INVESTIGACION PEDAGOGICA PI VALENCIA PA AVE BLASCO IBANEZ NO 30, VALENCIA, 46010, SPAIN SN 1134-4032 J9 RELIEVE JI RELIEVE PY 2018 VL 24 IS 1 AR 2 DI 10.7203/relieve.24.1.12345 PG 18 WC Education & Educational Research WE Emerging Sources Citation Index (ESCI) SC Education & Educational Research GA GM2BZ UT WOS:000437884500002 OA Green Submitted, gold DA 2024-09-05 ER PT J AU Prado-Romero, MA Prenkaj, B Stilo, G Giannotti, F AF Prado-Romero, Mario Alfonso Prenkaj, Bardh Stilo, Giovanni Giannotti, Fosca TI A Survey on Graph Counterfactual Explanations: Definitions, Methods, Evaluation, and Research Challenges SO ACM COMPUTING SURVEYS LA English DT Article DE Explainability; explainable AI; counterfactual explainability; post-hoc explanation; graphs; graph neural networks; graph learning; molecular recourse; black box problem; fairness in AI; machine learning ID PREDICTION; DATABASE AB Graph Neural Networks (GNNs) perform well in community detection and molecule classification. Counter-factual Explanations (CE) provide counter-examples to overcome the transparency limitations of black-box models. Due to the growing attention in graph learning, we focus on the concepts of CE for GNNs. We analysed the SoA to provide a taxonomy, a uniform notation, and the benchmarking datasets and evaluation metrics. We discuss fourteen methods, their evaluation protocols, twenty-two datasets, and nineteen metrics. We integrated the majority of methods into the GRETEL library to conduct an empirical evaluation to understand their strengths and pitfalls. We highlight open challenges and future work. C1 [Prado-Romero, Mario Alfonso] Gran Sasso Sci Inst, I-67100 Laquila, Italy. [Prenkaj, Bardh] Sapienza Univ Rome, I-00198 Rome, Italy. [Stilo, Giovanni] Univ Aquila, I-67100 Laquila, Italy. [Giannotti, Fosca] Scuola Normale Super Pisa, I-56126 Pisa, Italy. C3 Gran Sasso Science Institute (GSSI); Sapienza University Rome; University of L'Aquila; Scuola Normale Superiore di Pisa RP Prado-Romero, MA (corresponding author), Gran Sasso Sci Inst, I-67100 Laquila, Italy. EM marioalfonso.prado@gssi.it; prenkaj@di.uniroma1.it; giovanni.stilo@univaq.it; fosca.giannotti@sns.it RI Prenkaj, Bardh/AAL-6461-2020 OI Prenkaj, Bardh/0000-0002-2991-2279; stilo, giovanni/0000-0002-2092-0213 FU European Union - NextGenerationEU - National Recovery and Resilience Plan [IR0000013, 3264, 834756]; HPC & Big Data Laboratory of DISIM, University of L'Aquila FX This work is partially supported by the European Union - NextGenerationEU - National Recovery and Resilience Plan (Piano Nazionale di Ripresa e Resilienza, PNRR) - Project: SoBigData.it - Strengthening the Italian RI for Social Mining and Big Data Analytics - Prot. IR0000013 - Avviso n. 3264 del 28/12/2021, XAI: Science and technology for the eXplanation of AI decision - ERC Advanced Grant 2018 G.A. 834756 and by the HPC & Big Data Laboratory of DISIM, University of L'Aquila (https://www.disim.univaq.it/). CR Abrate C, 2021, KDD '21: PROCEEDINGS OF THE 27TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING, P2495, DOI 10.1145/3447548.3467154 Amara K., 2022, P MACHINE LEARNING R, V198 Artelt A., 2019, A survey Bajaj M, 2021, ADV NEUR IN, V34 Bajusz D, 2015, J CHEMINFORMATICS, V7, DOI 10.1186/s13321-015-0069-3 Barocas S., 2019, FAIRNESS MACHINE LEA Arrieta AB, 2020, INFORM FUSION, V58, P82, DOI 10.1016/j.inffus.2019.12.012 Borgwardt KM, 2005, BIOINFORMATICS, V21, pI47, DOI 10.1093/bioinformatics/bti1007 Brown J, 2012, FRONT NEUROINFORM, V6, DOI 10.3389/fninf.2012.00028 Byrne RMJ, 2019, PROCEEDINGS OF THE TWENTY-EIGHTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, P6276 Cai R., 2023, On the Probability of Necessity and Sufficiency of Explaining Graph Neural Networks: A Lower Bound Optimization Approach Chen Z., 2022, Grease: Generate factual and counterfactual explanations for gnn-based recommendations Colmenarejo AB, 2022, PROCEEDINGS OF THE 2022 AAAI/ACM CONFERENCE ON AI, ETHICS, AND SOCIETY, AIES 2022, P107, DOI 10.1145/3514094.3534158 Craddock C., 2013, Neuroinformatics 2013, V7, P27, DOI [10.3389/conf.fninf.2013.09.00041, DOI 10.3389/CONF.FNINF.2013.09.00041] Davis MI, 2011, NAT BIOTECHNOL, V29, P1046, DOI 10.1038/nbt.1990 Dobson PD, 2003, J MOL BIOL, V330, P771, DOI 10.1016/S0022-2836(03)00628-4 Elahi, 2019, Cheminformatics-Dataset for Molecular Machine Learning for Drug Discovery European Commission, 2020, WHIT PAP ART INT EUR European Commission, 2021, Regulatory framework proposal on artificial intelligence Faber L., 2020, P 37 GRAPH REPR LEAR, P28 Giles C. L., 1998, P 3 ACM C DIGITAL LI, P89 Guidotti R, 2022, DATA MIN KNOWL DISC, DOI 10.1007/s10618-022-00831-6 Guidotti R, 2019, IEEE INTELL SYST, V34, P14, DOI 10.1109/MIS.2019.2957223 Guidotti R, 2019, ACM COMPUT SURV, V51, DOI 10.1145/3236009 Hiv Dataset, 2019, DTP NCI Bulk Data for Download-Nci DTP Data-nci wiki Hu W., 2020, Adv. Neural Inf. Proces. Syst., P22118 Huang Zexi, 2023, WSDM '23: Proceedings of the Sixteenth ACM International Conference on Web Search and Data Mining, P141, DOI 10.1145/3539597.3570376 Jain S, 2019, 2019 CONFERENCE OF THE NORTH AMERICAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS: HUMAN LANGUAGE TECHNOLOGIES (NAACL HLT 2019), VOL. 1, P3543 Kazius J, 2005, J MED CHEM, V48, P312, DOI 10.1021/jm040835a Kersting K., 2016, Benchmark Data Sets for Graph Kernels Kipf T. N., 2017, P INT C LEARN REPR Krenn M, 2020, MACH LEARN-SCI TECHN, V1, DOI 10.1088/2632-2153/aba947 Lanciano T, 2020, KDD '20: PROCEEDINGS OF THE 26TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING, P3308, DOI 10.1145/3394486.3403383 Lin TY, 2014, LECT NOTES COMPUT SC, V8693, P740, DOI 10.1007/978-3-319-10602-1_48 Lin WY, 2021, PR MACH LEARN RES, V139 Liu YF, 2021, IEEE DATA MINING, P409, DOI 10.1109/ICDM51629.2021.00052 Loyola-González O, 2019, IEEE ACCESS, V7, P154096, DOI 10.1109/ACCESS.2019.2949286 Lucic A, 2022, PR MACH LEARN RES, V151 Lucic A, 2020, FAT* '20: PROCEEDINGS OF THE 2020 CONFERENCE ON FAIRNESS, ACCOUNTABILITY, AND TRANSPARENCY, P90, DOI 10.1145/3351095.3372824 Luo D., 2020, ADV NEURAL INFORM PR, V33, P19620 Ma J., 2022, NEURIPS, V35, P25895 Madeddu L., 2022, Deep Learning In Biology And Medicine, P197 Madeddu L, 2020, INT J DATA MIN BIOIN, V24, P16, DOI 10.1504/IJDMB.2020.109502 Manerba MM, 2022, PROCEEDINGS OF THE 2022 AAAI/ACM CONFERENCE ON AI, ETHICS, AND SOCIETY, AIES 2022, P468, DOI 10.1145/3514094.3534170 Martins IF, 2012, J CHEM INF MODEL, V52, P1686, DOI 10.1021/ci300124c McCallum AK, 2000, INFORM RETRIEVAL, V3, P127, DOI 10.1023/A:1009953814988 Mehrabi N, 2021, ACM COMPUT SURV, V54, DOI 10.1145/3457607 Morris C., 2020, Tudataset: A collection of benchmark datasets for learning with graphs Mullenbach J., 2018, P 2018 C N AM CHAPTE, DOI [DOI 10.18653/V1/N18-1100.ARXIV:1802.05695, 10.18653/v1/n18-1100. arXiv: 1802.05695] Nguyen TM, 2023, IEEE ACM T COMPUT BI, V20, P1020, DOI 10.1109/TCBB.2022.3190266 Nigam A, 2021, CHEM SCI, V12, P7079, DOI 10.1039/d1sc00231g Nowotny KM, 2021, AM J PUBLIC HEALTH, V111, P197, DOI 10.2105/AJPH.2020.306040 Numeroso D., 2021, P 2021 INT JOINT C N, P1 Pareja A, 2020, AAAI CONF ARTIF INTE, V34, P5363 PEMANTLE R, 1992, PROBAB THEORY REL, V92, P117, DOI 10.1007/BF01205239 Pessach D, 2023, ACM COMPUT SURV, V55, DOI 10.1145/3494672 Petch J, 2022, CAN J CARDIOL, V38, P204, DOI 10.1016/j.cjca.2021.09.004 Prado-Romero Mario Alfonso, 2023, WSDM '23: Proceedings of the Sixteenth ACM International Conference on Web Search and Data Mining, P1180, DOI 10.1145/3539597.3573026 Prado-Romero M.A., 2022, INT C ITALIAN ASS AR, P88 Prado-Romero MA, 2022, PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, CIKM 2022, P4389, DOI 10.1145/3511808.3557608 Prenkaj B, 2021, FUTURE GENER COMP SY, V125, P532, DOI 10.1016/j.future.2021.07.002 Prenkaj B, 2020, CIKM '20: PROCEEDINGS OF THE 29TH ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT, P2169, DOI 10.1145/3340531.3412088 Riesen K, 2008, LECT NOTES COMPUT SC, V5342, P287 Rozemberczki B, 2020, CIKM '20: PROCEEDINGS OF THE 29TH ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT, P1325, DOI 10.1145/3340531.3411866 Rozemberczki B, 2021, J COMPLEX NETW, V9, DOI 10.1093/comnet/cnab014 Scarselli F, 2009, IEEE T NEURAL NETWOR, V20, P61, DOI 10.1109/TNN.2008.2005605 Srinivas S, 2017, IEEE COMPUT SOC CONF, P455, DOI 10.1109/CVPRW.2017.61 Sun LH, 2023, INTERACT LEARN ENVIR, DOI 10.1080/10494820.2023.2190356 Sun Y., 2021, Preserve, Promote, or Attack? GNN Explanation via Topology Perturbation Tan JT, 2022, PROCEEDINGS OF THE ACM WEB CONFERENCE 2022 (WWW'22), P1018, DOI 10.1145/3485447.3511948 Velickovic P., 2018, INT C LEARNING REPRE Verenich I, 2019, J SOFTW-EVOL PROC, V31, DOI 10.1002/smr.2170 Verma H, 2022, EXPERT SYST APPL, V195, DOI 10.1016/j.eswa.2022.116611 Verma S., 2022, Counterfactual explanations and algorithmic recourses for machine learning: A review Vu M.N., 2020, Advances in neural information processing systems, V33, P12225, DOI DOI 10.48550/ARXIV.2010.05788 Wale N, 2008, KNOWL INF SYST, V14, P347, DOI 10.1007/s10115-007-0103-5 Wang BH, 2021, AAAI CONF ARTIF INTE, V35, P10093 Wang RX, 2004, J MED CHEM, V47, P2977, DOI 10.1021/jm030580l Wang X, 2019, PROCEEDINGS OF THE 42ND INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL (SIGIR '19), P165, DOI 10.1145/3331184.3331267 Wellawatte GP, 2022, CHEM SCI, V13, P3697, DOI 10.1039/d1sc05259d Wouters OJ, 2020, JAMA-J AM MED ASSOC, V323, P844, DOI 10.1001/jama.2020.1166 Wu HR, 2021, 2021 CONFERENCE OF THE NORTH AMERICAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS: HUMAN LANGUAGE TECHNOLOGIES (NAACL-HLT 2021), P1942 Wu ZQ, 2018, CHEM SCI, V9, P513, DOI 10.1039/c7sc02664a Yanardag P, 2015, KDD'15: PROCEEDINGS OF THE 21ST ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, P1365, DOI 10.1145/2783258.2783417 Ying Rex, 2019, Adv Neural Inf Process Syst, V32, P9240 Ying R, 2018, KDD'18: PROCEEDINGS OF THE 24TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING, P974, DOI 10.1145/3219819.3219890 You JX, 2021, AAAI CONF ARTIF INTE, V35, P10737 Yuan H, 2023, IEEE T PATTERN ANAL, V45, P5782, DOI 10.1109/TPAMI.2022.3204236 Zhao TX, 2021, WSDM '21: PROCEEDINGS OF THE 14TH ACM INTERNATIONAL CONFERENCE ON WEB SEARCH AND DATA MINING, P833, DOI 10.1145/3437963.3441720 Zhou ZP, 2019, SCI REP-UK, V9, DOI 10.1038/s41598-019-47148-x NR 90 TC 1 Z9 1 U1 5 U2 5 PU ASSOC COMPUTING MACHINERY PI NEW YORK PA 1601 Broadway, 10th Floor, NEW YORK, NY USA SN 0360-0300 EI 1557-7341 J9 ACM COMPUT SURV JI ACM Comput. Surv. PD JUL PY 2024 VL 56 IS 7 AR 171 DI 10.1145/3618105 PG 37 WC Computer Science, Theory & Methods WE Science Citation Index Expanded (SCI-EXPANDED) SC Computer Science GA OQ7S3 UT WOS:001208811000010 OA hybrid, Green Submitted DA 2024-09-05 ER PT J AU Marzouk, M Elhakeem, A Adel, K AF Marzouk, Mohamed Elhakeem, Ahmed Adel, Kareem TI Artificial neural networks applications in construction and building engineering (1991-2021): Science mapping and visualization SO APPLIED SOFT COMPUTING LA English DT Article DE ANN; Neural Networks; Bibliometrics; Science Mapping; VOSviewer; Biblioshiny ID COMPRESSIVE STRENGTH PREDICTION; HIGH-PERFORMANCE CONCRETE; PARTICLE SWARM OPTIMIZATION; SELF-COMPACTING CONCRETE; NATURAL-GAS CONSUMPTION; SUPPORT VECTOR MACHINE; RECYCLED AGGREGATE; DAMAGE DETECTION; CRACK DETECTION; NANO-SILICA AB Artificial neural network (ANN) has acquired noticeable interest from the research community to handle complex problems in Construction and Building engineering (CB). This interest has led to an enormous amount of scientific publications in diverse CB domains over the last three decades. This study introduces a scientometric review to quantitatively explore and visually map the development pathways and trends of ANN -CB literature. Via the Web of Science (WoS) database, 2406 peer -reviewed journal articles are identified and included for analysis as follows. First, the publication growth over time is inspected and evaluated. Second, the collaboration patterns between key contributors (researchers, countries, and organizations) are explored and mapped using the co -authorship analysis. Third, the key sources' productivity and influence are explored and mapped using the direct citation analysis. Fourth, the publications clusters and research themes are analyzed and visualized via the keyword co -occurrence analysis and document trend topics mapping. The study outcomes include but are not limited to i) recognizing pioneer ANN -CB researchers for future collaboration opportunities, ii) identifying reliable sources of information or suitable ones for publishing new ANN -CB works, and iii) fostering probable academic partnerships with the leading ANN -CB organizations. These outcomes help researchers to comprehend ANN -CB literature and direct research policy -makers and editorial boards to adopt the promising ANN -CB themes for further research and development. C1 [Marzouk, Mohamed] Cairo Univ, Fac Engn, Struct Engn Dept, Construct Engn & Management, Giza, Egypt. [Elhakeem, Ahmed; Adel, Kareem] Arab Acad Sci Technol & Maritime Transport AASTMT, Coll Engn & Technol, Construct & Bldg Engn Dept, Cairo, Egypt. C3 Egyptian Knowledge Bank (EKB); Cairo University; Egyptian Knowledge Bank (EKB); Arab Academy for Science, Technology & Maritime Transport RP Marzouk, M (corresponding author), Cairo Univ, Fac Engn, Struct Engn Dept, Construct Engn & Management, Giza, Egypt. EM mmarzouk@cu.edu.eg RI adel, kareem/GVS-4750-2022; Elhakeem, Ali/U-9543-2019 OI Elhakeem, Ali/0000-0002-2752-1207; Marzouk, Mohamed/0000-0002-8594-8452; Adel, Kareem/0000-0002-8193-0204 CR Abdelaziz N, 2020, INT J PAVEMENT ENG, V21, P88, DOI 10.1080/10298436.2018.1441414 Dantas ATA, 2013, CONSTR BUILD MATER, V38, P717, DOI 10.1016/j.conbuildmat.2012.09.026 Abdulla-Al Kafy, 2021, SUSTAIN CITIES SOC, V64, DOI 10.1016/j.scs.2020.102542 Adeli H, 2000, COMPUT-AIDED CIV INF, V15, P251, DOI 10.1111/0885-9507.00189 Adeli H, 2006, J STRUCT ENG, V132, P102, DOI 10.1061/(ASCE)0733-9445(2006)132:1(102) Adeli H, 2001, COMPUT-AIDED CIV INF, V16, P126, DOI 10.1111/0885-9507.00219 Adeli H, 1998, J CONSTR ENG M, V124, P18, DOI 10.1061/(ASCE)0733-9364(1998)124:1(18) Adhikary BB, 2006, CONSTR BUILD MATER, V20, P801, DOI 10.1016/j.conbuildmat.2005.01.047 Ahmad A, 2021, BUILDINGS-BASEL, V11, DOI 10.3390/buildings11080324 Ahmad MW, 2017, ENERG BUILDINGS, V147, P77, DOI 10.1016/j.enbuild.2017.04.038 Ahmad T, 2018, ENERG BUILDINGS, V166, P460, DOI 10.1016/j.enbuild.2018.01.066 Ahmadi M, 2020, CONSTR BUILD MATER, V234, DOI 10.1016/j.conbuildmat.2019.117293 Akhavian R, 2016, AUTOMAT CONSTR, V71, P198, DOI 10.1016/j.autcon.2016.08.015 Akinosho TD, 2020, J BUILD ENG, V32, DOI 10.1016/j.jobe.2020.101827 Akkurt S, 2004, CEMENT CONCRETE RES, V34, P1429, DOI 10.1016/j.cemconres.2004.01.020 Akkurt S, 2003, CEMENT CONCRETE RES, V33, P973, DOI 10.1016/S0008-8846(03)00006-1 Al-Barqawi H, 2006, J PERFORM CONSTR FAC, V20, P126, DOI 10.1061/(ASCE)0887-3828(2006)20:2(126) Al-Khatib MI, 2019, PROC INST CIV ENG-CO, V172, P235, DOI 10.1680/jcoma.16.00055 Al-Shamiri AK, 2019, CONSTR BUILD MATER, V208, P204, DOI 10.1016/j.conbuildmat.2019.02.165 Alavi AH, 2011, CONSTR BUILD MATER, V25, P1338, DOI 10.1016/j.conbuildmat.2010.09.010 Ali R, 2019, CONSTR BUILD MATER, V226, P376, DOI 10.1016/j.conbuildmat.2019.07.293 Alrashydah EI, 2018, CONSTR BUILD MATER, V159, P635, DOI 10.1016/j.conbuildmat.2017.10.132 Alshihri MM, 2009, CONSTR BUILD MATER, V23, P2214, DOI 10.1016/j.conbuildmat.2008.12.003 Ante L, 2021, TELEMAT INFORM, V57, DOI 10.1016/j.tele.2020.101519 Antwi-Afari MF, 2018, AUTOMAT CONSTR, V96, P433, DOI 10.1016/j.autcon.2018.10.004 Arangio S, 2012, STRUCT CONTROL HLTH, V19, P3, DOI 10.1002/stc.420 Aria M, 2020, SOC INDIC RES, V149, P803, DOI 10.1007/s11205-020-02281-3 Aria M, 2017, J INFORMETR, V11, P959, DOI 10.1016/j.joi.2017.08.007 Armaghani DJ, 2017, TUNN UNDERGR SP TECH, V63, P29, DOI 10.1016/j.tust.2016.12.009 Arora S, 2019, J BUILD ENG, V24, DOI 10.1016/j.jobe.2019.100741 Ashouri M, 2019, ENERG BUILDINGS, V183, P659, DOI 10.1016/j.enbuild.2018.11.050 Ashrafian A, 2020, CONSTR BUILD MATER, V230, DOI 10.1016/j.conbuildmat.2019.117048 Ashtiani A, 2014, ENERG BUILDINGS, V76, P597, DOI 10.1016/j.enbuild.2014.03.018 Asteris PG, 2021, STEEL COMPOS STRUCT, V39, P471, DOI 10.12989/scs.2021.39.4.471 Asteris PG, 2021, CEMENT CONCRETE RES, V145, DOI 10.1016/j.cemconres.2021.106449 Asteris PG, 2019, COMPUT CONCRETE, V24, P469, DOI 10.12989/cac.2019.24.5.469 Asteris PG, 2019, COMPUT CONCRETE, V24, P329, DOI 10.12989/cac.2019.24.4.329 Azari R, 2016, ENERG BUILDINGS, V126, P524, DOI 10.1016/j.enbuild.2016.05.054 Azimi M, 2020, COMPUT-AIDED CIV INF, V35, P597, DOI 10.1111/mice.12517 Azimi-Pour M, 2018, CONSTR BUILD MATER, V189, P978, DOI 10.1016/j.conbuildmat.2018.09.031 Bal L, 2013, CONSTR BUILD MATER, V38, P248, DOI 10.1016/j.conbuildmat.2012.08.043 Behnood A, 2021, CONSTR BUILD MATER, V266, DOI 10.1016/j.conbuildmat.2020.120983 Behnood A, 2020, CONSTR BUILD MATER, V262, DOI 10.1016/j.conbuildmat.2020.120544 Behnood A, 2015, CONSTR BUILD MATER, V98, P519, DOI 10.1016/j.conbuildmat.2015.08.124 Benardos AG, 2004, TUNN UNDERGR SP TECH, V19, P597, DOI 10.1016/j.tust.2004.02.128 Bianchini A, 2010, COMPUT-AIDED CIV INF, V25, P39, DOI 10.1111/j.1467-8667.2009.00615.x Boussabaine A.H., 1996, CONSTR MANAG ECON, V14, P427, DOI [10.1080/014461996373296, DOI 10.1080/014461996373296] Braun JE, 2002, HVAC&R RES, V8, P73, DOI 10.1080/10789669.2002.10391290 Cai R, 2020, CEMENT CONCRETE RES, V136, DOI 10.1016/j.cemconres.2020.106164 Cao SJ, 2018, BUILD ENVIRON, V144, P316, DOI 10.1016/j.buildenv.2018.08.032 Dung CV, 2019, AUTOMAT CONSTR, V102, P217, DOI 10.1016/j.autcon.2019.02.013 Dung CV, 2019, AUTOMAT CONSTR, V99, P52, DOI 10.1016/j.autcon.2018.11.028 Catalina T, 2008, ENERG BUILDINGS, V40, P1825, DOI 10.1016/j.enbuild.2008.04.001 Celikoglu HB, 2013, COMPUT-AIDED CIV INF, V28, P273, DOI 10.1111/j.1467-8667.2012.00792.x Ceylan H, 2009, J MATER CIVIL ENG, V21, P286, DOI 10.1061/(ASCE)0899-1561(2009)21:6(286) Cha YJ, 2018, COMPUT-AIDED CIV INF, V33, P731, DOI 10.1111/mice.12334 Cha YJ, 2017, COMPUT-AIDED CIV INF, V32, P361, DOI 10.1111/mice.12263 Chae YT, 2016, ENERG BUILDINGS, V111, P184, DOI 10.1016/j.enbuild.2015.11.045 Chen C, 2020, AUTOMAT CONSTR, V110, DOI 10.1016/j.autcon.2019.103045 Chen JY, 2021, AUTOMAT CONSTR, V123, DOI 10.1016/j.autcon.2020.103526 Chen M, 2004, COMPUT-AIDED CIV INF, V19, P364, DOI 10.1111/j.1467-8667.2004.00363.x Cheng JCP, 2018, AUTOMAT CONSTR, V95, P155, DOI 10.1016/j.autcon.2018.08.006 Chithra S, 2016, CONSTR BUILD MATER, V114, P528, DOI 10.1016/j.conbuildmat.2016.03.214 Chopra P, 2018, ADV CIV ENG, V2018, DOI 10.1155/2018/5481705 Chou JS, 2014, CONSTR BUILD MATER, V73, P771, DOI 10.1016/j.conbuildmat.2014.09.054 Chou JS, 2014, ENERG BUILDINGS, V82, P437, DOI 10.1016/j.enbuild.2014.07.036 Chou JS, 2013, CONSTR BUILD MATER, V49, P554, DOI 10.1016/j.conbuildmat.2013.08.078 Cook R, 2019, J MATER CIVIL ENG, V31, DOI 10.1061/(ASCE)MT.1943-5533.0002902 Bui DK, 2018, CONSTR BUILD MATER, V180, P320, DOI 10.1016/j.conbuildmat.2018.05.201 Dai HZ, 2017, COMPUT-AIDED CIV INF, V32, P344, DOI 10.1111/mice.12257 Dai HZ, 2015, COMPUT-AIDED CIV INF, V30, P151, DOI 10.1111/mice.12086 Dai HZ, 2014, COMPUT-AIDED CIV INF, V29, P801, DOI 10.1111/mice.12117 Darko A, 2020, AUTOMAT CONSTR, V112, DOI 10.1016/j.autcon.2020.103081 Deb C, 2016, ENERG BUILDINGS, V121, P284, DOI 10.1016/j.enbuild.2015.12.050 Delgado JMPQ, 2020, J BUILD ENG, V31, DOI 10.1016/j.jobe.2020.101445 Demir F, 2008, CONSTR BUILD MATER, V22, P1428, DOI 10.1016/j.conbuildmat.2007.04.004 Deng FM, 2018, CONSTR BUILD MATER, V175, P562, DOI 10.1016/j.conbuildmat.2018.04.169 Deng ZP, 2021, ENERG BUILDINGS, V238, DOI 10.1016/j.enbuild.2021.110860 Deng ZP, 2020, ENERG BUILDINGS, V214, DOI 10.1016/j.enbuild.2020.109872 Deng ZP, 2019, ENERG BUILDINGS, V198, P216, DOI 10.1016/j.enbuild.2019.06.015 Deng ZP, 2018, ENERG BUILDINGS, V174, P587, DOI 10.1016/j.enbuild.2018.06.060 Di Piazza MC, 2017, ENERG BUILDINGS, V139, P1, DOI 10.1016/j.enbuild.2017.01.003 Dias WPS, 2001, CONSTR BUILD MATER, V15, P371, DOI 10.1016/S0950-0618(01)00006-X Dias WPS, 2000, CEMENT CONCRETE RES, V30, P1255, DOI 10.1016/S0008-8846(00)00311-2 Díaz G, 1999, HVAC&R RES, V5, P195, DOI 10.1080/10789669.1999.10391233 Ding LY, 2018, AUTOMAT CONSTR, V86, P118, DOI 10.1016/j.autcon.2017.11.002 Ding XL, 2021, J BUILD ENG, V33, DOI 10.1016/j.jobe.2020.101577 Dong B, 2005, ENERG BUILDINGS, V37, P545, DOI 10.1016/j.enbuild.2004.09.009 Dorafshan S, 2020, AUTOMAT CONSTR, V113, DOI 10.1016/j.autcon.2020.103133 Dorafshan S, 2018, CONSTR BUILD MATER, V186, P1031, DOI 10.1016/j.conbuildmat.2018.08.011 Du ZM, 2014, BUILD ENVIRON, V73, P1, DOI 10.1016/j.buildenv.2013.11.021 Duan ZH, 2013, CONSTR BUILD MATER, V44, P524, DOI 10.1016/j.conbuildmat.2013.02.064 Duan ZH, 2013, CONSTR BUILD MATER, V40, P1200, DOI 10.1016/j.conbuildmat.2012.04.063 El-Abbasy MS, 2014, AUTOMAT CONSTR, V45, P50, DOI 10.1016/j.autcon.2014.05.003 El-Badawy S, 2018, J MATER CIVIL ENG, V30, DOI 10.1061/(ASCE)MT.1943-5533.0002282 Elemam WE, 2020, CONSTR BUILD MATER, V249, DOI 10.1016/j.conbuildmat.2020.118781 Elnour M, 2020, J BUILD ENG, V27, DOI 10.1016/j.jobe.2019.100935 Emamian SA, 2019, CONSTR BUILD MATER, V218, P8, DOI 10.1016/j.conbuildmat.2019.05.092 Eskandari-Naddaf H, 2017, CONSTR BUILD MATER, V138, P1, DOI 10.1016/j.conbuildmat.2017.01.132 Fan DQ, 2020, CONSTR BUILD MATER, V265, DOI 10.1016/j.conbuildmat.2020.120339 Fang WL, 2018, AUTOMAT CONSTR, V91, P53, DOI 10.1016/j.autcon.2018.02.018 Felix EF, 2021, CONSTR BUILD MATER, V266, DOI 10.1016/j.conbuildmat.2020.121050 Feng DC, 2020, CONSTR BUILD MATER, V230, DOI 10.1016/j.conbuildmat.2019.117000 Ferreira PM, 2012, ENERG BUILDINGS, V55, P238, DOI 10.1016/j.enbuild.2012.08.002 Fortuna G, 2020, J ORAL PATHOL MED, V49, P565, DOI 10.1111/jop.13077 Gandomi AH, 2013, MATER STRUCT, V46, P2109, DOI 10.1617/s11527-013-0039-z Gao XJ, 2019, AUTOMAT CONSTR, V98, P225, DOI 10.1016/j.autcon.2018.11.013 Getahun MA, 2018, CONSTR BUILD MATER, V190, P517, DOI 10.1016/j.conbuildmat.2018.09.097 Gholizadeh S, 2011, J CONSTR STEEL RES, V67, P770, DOI 10.1016/j.jcsr.2011.01.001 Ghosh-Dastidar S, 2003, COMPUT-AIDED CIV INF, V18, P325, DOI 10.1111/1467-8667.t01-1-00311 Gobakis K, 2011, SUSTAIN CITIES SOC, V1, P104, DOI 10.1016/j.scs.2011.05.001 Goh YM, 2015, J CONSTR ENG M, V141, DOI 10.1061/(ASCE)CO.1943-7862.0000972 Goksu I, 2021, TELEMAT INFORM, V56, DOI 10.1016/j.tele.2020.101491 Golafshani EM, 2015, MATER STRUCT, V48, P1581, DOI 10.1617/s11527-014-0256-0 Golafshani EM, 2020, CONSTR BUILD MATER, V232, DOI 10.1016/j.conbuildmat.2019.117266 Golafshani EM, 2012, CONSTR BUILD MATER, V36, P411, DOI 10.1016/j.conbuildmat.2012.04.046 Golnaraghi S, 2019, ADV CIV ENG, V2019, DOI 10.1155/2019/5972620 Gong HR, 2021, INT J PAVEMENT ENG, V22, P162, DOI 10.1080/10298436.2019.1580367 Gong HR, 2018, CONSTR BUILD MATER, V190, P710, DOI 10.1016/j.conbuildmat.2018.09.087 Gopalakrishnan K, 2017, CONSTR BUILD MATER, V157, P322, DOI 10.1016/j.conbuildmat.2017.09.110 Gossard D, 2013, ENERG BUILDINGS, V67, P253, DOI 10.1016/j.enbuild.2013.08.026 Grima MA, 2000, TUNN UNDERGR SP TECH, V15, P259 Guo YM, 2021, FUTURE GENER COMP SY, V116, P316, DOI 10.1016/j.future.2020.10.023 Hammoudi A, 2019, CONSTR BUILD MATER, V209, P425, DOI 10.1016/j.conbuildmat.2019.03.119 Hegazy T., 1994, Microcomputers in Civil Engineering, V9, P145 Hegazy T, 1998, J CONSTR ENG M ASCE, V124, P210, DOI 10.1061/(ASCE)0733-9364(1998)124:3(210) Hendi A, 2019, CONSTR BUILD MATER, V199, P369, DOI 10.1016/j.conbuildmat.2018.12.020 Heravi G, 2015, J CONSTR ENG M, V141, DOI 10.1061/(ASCE)CO.1943-7862.0001006 Neto AH, 2008, ENERG BUILDINGS, V40, P2169, DOI 10.1016/j.enbuild.2008.06.013 Hobson BW, 2019, BUILD ENVIRON, V159, DOI 10.1016/j.buildenv.2019.05.032 Hosseini MR, 2018, AUTOMAT CONSTR, V87, P235, DOI 10.1016/j.autcon.2017.12.002 Huang LQ, 2018, TUNN UNDERGR SP TECH, V81, P265, DOI 10.1016/j.tust.2018.07.006 Huang YH, 2010, J PERFORM CONSTR FAC, V24, P597, DOI 10.1061/(ASCE)CF.1943-5509.0000124 Ilbeigi M, 2020, SUSTAIN CITIES SOC, V61, DOI 10.1016/j.scs.2020.102325 Jacobsen EL, 2022, J COMPUT CIVIL ENG, V36, DOI 10.1061/(ASCE)CP.1943-5487.0001010 Jeong JH, 2020, COMPUT-AIDED CIV INF, V35, P1209, DOI 10.1111/mice.12546 Jiang XM, 2007, STRUCT CONTROL HLTH, V14, P333, DOI 10.1002/stc.161 Jiang XM, 2005, COMPUT-AIDED CIV INF, V20, P316, DOI 10.1111/j.1467-8667.2005.00399.x Jin Y, 2021, BUILD SIMUL-CHINA, V14, P219, DOI 10.1007/s12273-020-0638-x Jing R, 2017, ENERG BUILDINGS, V144, P117, DOI 10.1016/j.enbuild.2017.03.042 Jovanovic RZ, 2015, ENERG BUILDINGS, V94, P189, DOI 10.1016/j.enbuild.2015.02.052 Kamran M, 2020, COMPUT ELECTR ENG, V81, DOI 10.1016/j.compeleceng.2019.106525 Kandasamy NK, 2018, BUILD ENVIRON, V139, P170, DOI 10.1016/j.buildenv.2018.05.005 Kandiri A, 2020, CONSTR BUILD MATER, V248, DOI 10.1016/j.conbuildmat.2020.118676 Kang DH, 2018, COMPUT-AIDED CIV INF, V33, P885, DOI 10.1111/mice.12375 Kang F, 2017, STRUCT CONTROL HLTH, V24, DOI 10.1002/stc.1997 Kao CY, 2013, STRUCT CONTROL HLTH, V20, P282, DOI 10.1002/stc.492 Kazanasmaz T, 2009, BUILD ENVIRON, V44, P1751, DOI 10.1016/j.buildenv.2008.11.012 Kewalramani MA, 2006, AUTOMAT CONSTR, V15, P374, DOI 10.1016/j.autcon.2005.07.003 Khallaf R, 2021, AUTOMAT CONSTR, V129, DOI 10.1016/j.autcon.2021.103760 Khodabandelu A, 2021, AUTOMAT CONSTR, V131, DOI 10.1016/j.autcon.2021.103882 Kim D, 2019, AUTOMAT CONSTR, V99, P168, DOI 10.1016/j.autcon.2018.12.014 Kim GH, 2005, J COMPUT CIVIL ENG, V19, P208, DOI 10.1061/(ASCE)0887-3801(2005)19:2(208) Kim GH, 2004, BUILD ENVIRON, V39, P1235, DOI 10.1016/j.buildenv.2004.02.013 Kim JI, 2004, J MATER CIVIL ENG, V16, P257, DOI 10.1061/(ASCE)0899-1561(2004)16:3(257) Kim J, 2019, AUTOMAT CONSTR, V104, P255, DOI 10.1016/j.autcon.2019.03.025 Kim J, 2019, ENERG BUILDINGS, V194, P328, DOI 10.1016/j.enbuild.2019.04.034 Klar A, 2010, TUNN UNDERGR SP TECH, V25, P575, DOI 10.1016/j.tust.2010.04.003 Kolar Z, 2018, AUTOMAT CONSTR, V89, P58, DOI 10.1016/j.autcon.2018.01.003 Kooshkaki A, 2019, CONSTR BUILD MATER, V212, P176, DOI 10.1016/j.conbuildmat.2019.03.243 Kumar SS, 2018, AUTOMAT CONSTR, V91, P273, DOI 10.1016/j.autcon.2018.03.028 Kwon SJ, 2010, CEMENT CONCRETE RES, V40, P119, DOI 10.1016/j.cemconres.2009.08.022 Lai S, 1997, CONSTR BUILD MATER, V11, P93, DOI 10.1016/S0950-0618(97)00007-X Lakshmanan AK, 2020, AUTOMAT CONSTR, V112, DOI 10.1016/j.autcon.2020.103078 Lee KP, 2019, BUILD ENVIRON, V157, P24, DOI 10.1016/j.buildenv.2019.04.029 Lenjani A, 2020, COMPUT-AIDED CIV INF, V35, P241, DOI 10.1111/mice.12493 Li BX, 2020, INT J PAVEMENT ENG, V21, P457, DOI 10.1080/10298436.2018.1485917 Liang X, 2019, COMPUT-AIDED CIV INF, V34, P415, DOI 10.1111/mice.12425 Lin YZ, 2017, COMPUT-AIDED CIV INF, V32, P1025, DOI 10.1111/mice.12313 Ling H, 2019, CONSTR BUILD MATER, V206, P355, DOI 10.1016/j.conbuildmat.2019.02.071 Ling M, 2019, CONSTR BUILD MATER, V206, P130, DOI 10.1016/j.conbuildmat.2019.01.179 Liu B, 2020, TUNN UNDERGR SP TECH, V95, DOI 10.1016/j.tust.2019.103103 Liu H, 2021, TECHNOL FORECAST SOC, V169, DOI 10.1016/j.techfore.2021.120827 Liu H, 2019, SUSTAIN CITIES SOC, V47, DOI 10.1016/j.scs.2019.101471 Liu JC, 2020, J BUILD ENG, V32, DOI 10.1016/j.jobe.2020.101472 Liu QF, 2021, CONSTR BUILD MATER, V268, DOI 10.1016/j.conbuildmat.2020.121082 Liu QC, 2018, COMPUT-AIDED CIV INF, V33, P999, DOI 10.1111/mice.12417 Liu SC, 2021, APPL SCI-BASEL, V11, DOI 10.3390/app11209616 Liu X, 2021, COMPOS PART B-ENG, V224, DOI 10.1016/j.compositesb.2021.109152 Liu YL, 2021, TELEMAT INFORM, V57, DOI 10.1016/j.tele.2020.101506 Luo HB, 2018, AUTOMAT CONSTR, V94, P282, DOI 10.1016/j.autcon.2018.06.007 Lv ST, 2020, CONSTR BUILD MATER, V264, DOI 10.1016/j.conbuildmat.2020.120235 Maeda H, 2018, COMPUT-AIDED CIV INF, V33, P1127, DOI 10.1111/mice.12387 Magnier L, 2010, BUILD ENVIRON, V45, P739, DOI 10.1016/j.buildenv.2009.08.016 Mahmoodzadeh A, 2021, AUTOMAT CONSTR, V123, DOI 10.1016/j.autcon.2020.103530 Mao WJ, 2021, SUSTAIN CITIES SOC, V65, DOI 10.1016/j.scs.2020.102567 Marcelino P, 2021, INT J PAVEMENT ENG, V22, P341, DOI 10.1080/10298436.2019.1609673 Markovic R, 2021, ENERG BUILDINGS, V234, DOI 10.1016/j.enbuild.2020.110667 Markovic R, 2019, ENERG BUILDINGS, V185, P1, DOI 10.1016/j.enbuild.2018.12.012 Markovic R, 2018, BUILD ENVIRON, V145, P319, DOI 10.1016/j.buildenv.2018.09.024 Martinez P, 2019, AUTOMAT CONSTR, V107, DOI 10.1016/j.autcon.2019.102947 Marzouk M, 2020, CONSTR INNOV-ENGL, V20, P609, DOI 10.1108/CI-12-2019-0138 Mashhadban H, 2016, CONSTR BUILD MATER, V119, P277, DOI 10.1016/j.conbuildmat.2016.05.034 Mashrei MA, 2013, CONSTR BUILD MATER, V40, P812, DOI 10.1016/j.conbuildmat.2012.11.109 Mba L, 2016, ENERG BUILDINGS, V121, P32, DOI 10.1016/j.enbuild.2016.03.046 McGlinn K, 2017, AUTOMAT CONSTR, V84, P154, DOI 10.1016/j.autcon.2017.08.033 Mohandas P, 2019, SUSTAIN CITIES SOC, V48, DOI 10.1016/j.scs.2019.101499 Mohandes SR, 2019, NEUROCOMPUTING, V340, P55, DOI 10.1016/j.neucom.2019.02.040 Amiruddin AAAM, 2020, NEURAL COMPUT APPL, V32, P447, DOI 10.1007/s00521-018-3911-5 Monlouis-Bonnaire JP, 2004, CEMENT CONCRETE RES, V34, P737, DOI 10.1016/S0008-8846(03)00071-1 Moro C, 2021, CONSTR BUILD MATER, V267, DOI 10.1016/j.conbuildmat.2020.120960 Moselhi O, 2005, J CONSTR ENG M ASCE, V131, P354, DOI 10.1061/(ASCE)0733-9364(2005)131:3(354) Mostafa K, 2021, AUTOMAT CONSTR, V122, DOI 10.1016/j.autcon.2020.103516 Mozumder RA, 2018, TUNN UNDERGR SP TECH, V72, P131, DOI 10.1016/j.tust.2017.11.023 Muhuri PK, 2018, APPL SOFT COMPUT, V69, P381, DOI 10.1016/j.asoc.2018.03.041 Mustafaraj G, 2011, ENERG BUILDINGS, V43, P1452, DOI 10.1016/j.enbuild.2011.02.007 Nabian MA, 2018, COMPUT-AIDED CIV INF, V33, P443, DOI 10.1111/mice.12359 Naderpour H, 2018, J BUILD ENG, V19, P205, DOI 10.1016/j.jobe.2018.05.012 Naderpour H, 2018, J BUILD ENG, V16, P213, DOI 10.1016/j.jobe.2018.01.007 Nagrath P, 2021, SUSTAIN CITIES SOC, V66, DOI 10.1016/j.scs.2020.102692 Najimi M, 2019, J BUILD ENG, V22, P216, DOI 10.1016/j.jobe.2018.12.013 Nath ND, 2020, AUTOMAT CONSTR, V112, DOI 10.1016/j.autcon.2020.103085 Neaupane KM, 2006, TUNN UNDERGR SP TECH, V21, P151, DOI 10.1016/j.tust.2005.07.001 Nguyen MST, 2020, STEEL COMPOS STRUCT, V35, P415, DOI 10.12989/scs.2020.35.3.415 Hoang ND, 2018, AUTOMAT CONSTR, V94, P203, DOI 10.1016/j.autcon.2018.07.008 Ni HG, 2000, CEMENT CONCRETE RES, V30, P1245, DOI 10.1016/S0008-8846(00)00345-8 Oh BK, 2020, STRUCT CONTROL HLTH, V27, DOI 10.1002/stc.2519 Ongpeng J, 2017, COMPUT CONCRETE, V19, P59, DOI 10.12989/cac.2017.19.1.059 Onyari EK, 2018, CONSTR BUILD MATER, V187, P1232, DOI 10.1016/j.conbuildmat.2018.08.079 Öztas A, 2006, CONSTR BUILD MATER, V20, P769, DOI 10.1016/j.conbuildmat.2005.01.054 Pala M, 2007, CONSTR BUILD MATER, V21, P384, DOI 10.1016/j.conbuildmat.2005.08.009 Pan X, 2020, COMPUT-AIDED CIV INF, V35, P495, DOI 10.1111/mice.12549 Papantoniou S, 2015, ENERG BUILDINGS, V98, P45, DOI 10.1016/j.enbuild.2014.10.083 Parichatprecha R, 2009, CONSTR BUILD MATER, V23, P910, DOI 10.1016/j.conbuildmat.2008.04.015 Patel DA, 2015, J CONSTR ENG M, V141, DOI 10.1061/(ASCE)CO.1943-7862.0000922 Pham TM, 2016, ADV STRUCT ENG, V19, P1710, DOI 10.1177/1369433216649384 Prasad BKR, 2009, CONSTR BUILD MATER, V23, P117, DOI 10.1016/j.conbuildmat.2008.01.014 Qi CC, 2018, CONSTR BUILD MATER, V159, P473, DOI 10.1016/j.conbuildmat.2017.11.006 Qiao WB, 2020, ENERG BUILDINGS, V217, DOI 10.1016/j.enbuild.2020.110023 Rafiei MH, 2018, J CONSTR ENG M, V144, DOI 10.1061/(ASCE)CO.1943-7862.0001570 Rafiei MH, 2017, STRUCT DES TALL SPEC, V26, DOI 10.1002/tal.1400 Rajabi M, 2017, TUNN UNDERGR SP TECH, V64, P51, DOI 10.1016/j.tust.2017.01.010 Rajasekaran S, 1996, COMPUT STRUCT, V61, P291, DOI 10.1016/0045-7949(96)00044-2 Rebouh R, 2017, CONSTR BUILD MATER, V149, P778, DOI 10.1016/j.conbuildmat.2017.05.165 Ren C, 2020, SUSTAIN CITIES SOC, V52, DOI 10.1016/j.scs.2019.101860 Ren C, 2019, SUSTAIN CITIES SOC, V51, DOI 10.1016/j.scs.2019.101673 Ren J, 2019, SUSTAIN CITIES SOC, V47, DOI 10.1016/j.scs.2019.101498 Ren YP, 2020, CONSTR BUILD MATER, V234, DOI 10.1016/j.conbuildmat.2019.117367 Riahi Y, 2021, EXPERT SYST APPL, V173, DOI 10.1016/j.eswa.2021.114702 Roberts D, 2019, AUTOMAT CONSTR, V105, DOI 10.1016/j.autcon.2019.04.006 Ruano AE, 2006, ENERG BUILDINGS, V38, P682, DOI 10.1016/j.enbuild.2005.09.007 Sadrmomtazi A, 2013, CONSTR BUILD MATER, V42, P205, DOI 10.1016/j.conbuildmat.2013.01.016 Salih A, 2020, CONSTR BUILD MATER, V262, DOI 10.1016/j.conbuildmat.2020.120777 Samant A, 2000, COMPUT-AIDED CIV INF, V15, P241, DOI 10.1111/0885-9507.00188 Samant A, 2001, COMPUT-AIDED CIV INF, V16, P239, DOI 10.1111/0885-9507.00229 Sanad A, 2001, J STRUCT ENG-ASCE, V127, P818, DOI 10.1061/(ASCE)0733-9445(2001)127:7(818) Santos OJ, 2008, TUNN UNDERGR SP TECH, V23, P481, DOI 10.1016/j.tust.2007.07.002 Saridemir M, 2009, CONSTR BUILD MATER, V23, P1279, DOI 10.1016/j.conbuildmat.2008.07.021 Sebaaly H, 2018, CONSTR BUILD MATER, V168, P660, DOI 10.1016/j.conbuildmat.2018.02.118 Seitllari A, 2019, COMPUT CONCRETE, V24, P271, DOI 10.12989/cac.2019.24.3.271 Sezavar R, 2019, CONSTR BUILD MATER, V211, P528, DOI 10.1016/j.conbuildmat.2019.03.114 Shafabakhsh GH, 2015, CONSTR BUILD MATER, V85, P136, DOI 10.1016/j.conbuildmat.2015.03.060 Shukla H, 2020, AUTOMAT CONSTR, V117, DOI 10.1016/j.autcon.2020.103256 Silva FAN, 2021, BUILDINGS-BASEL, V11, DOI 10.3390/buildings11020044 Sipos TK, 2017, CONSTR BUILD MATER, V148, P757, DOI 10.1016/j.conbuildmat.2017.05.111 Soldo B, 2014, ENERG BUILDINGS, V69, P498, DOI 10.1016/j.enbuild.2013.11.032 Sollazzo G, 2017, CONSTR BUILD MATER, V134, P684, DOI 10.1016/j.conbuildmat.2016.12.186 Son H, 2019, AUTOMAT CONSTR, V99, P27, DOI 10.1016/j.autcon.2018.11.033 Song L, 2021, ROAD MATER PAVEMENT, V22, P23, DOI 10.1080/14680629.2019.1614969 Song LG, 2008, J CONSTR ENG M, V134, P786, DOI 10.1061/(ASCE)0733-9364(2008)134:10(786) Song Y, 2020, CEMENT CONCRETE RES, V135, DOI 10.1016/j.cemconres.2020.106118 Stathopoulos A, 2008, COMPUT-AIDED CIV INF, V23, P521, DOI 10.1111/j.1467-8667.2008.00558.x Su M, 2021, CONSTR BUILD MATER, V270, DOI 10.1016/j.conbuildmat.2020.121456 Suwansawat S, 2006, TUNN UNDERGR SP TECH, V21, P133, DOI 10.1016/j.tust.2005.06.007 Taki M, 2016, ENERG BUILDINGS, V110, P314, DOI 10.1016/j.enbuild.2015.11.010 Tam VWY, 2007, CONSTR BUILD MATER, V21, P1928, DOI 10.1016/j.conbuildmat.2006.05.040 Tan Y, 2021, AUTOMAT CONSTR, V131, DOI 10.1016/j.autcon.2021.103912 Taspinar F, 2013, ENERG BUILDINGS, V56, P23, DOI 10.1016/j.enbuild.2012.10.023 Amlashi AT, 2021, J MATER CIVIL ENG, V33, DOI 10.1061/(ASCE)MT.1943-5533.0003645 Tenza-Abril AJ, 2018, CONSTR BUILD MATER, V189, P1173, DOI 10.1016/j.conbuildmat.2018.09.096 Tian W, 2017, BUILD SIMUL-CHINA, V10, P11, DOI 10.1007/s12273-016-0314-3 Le TT, 2021, MATER STRUCT, V54, DOI 10.1617/s11527-021-01646-5 Tiruneh GG, 2020, AUTOMAT CONSTR, V119, DOI 10.1016/j.autcon.2020.103348 Tong Z, 2018, COMPUT-AIDED CIV INF, V33, P1056, DOI 10.1111/mice.12406 Tong Z, 2018, CONSTR BUILD MATER, V169, P69, DOI 10.1016/j.conbuildmat.2018.02.081 Tuan NS, 2020, CONSTR BUILD MATER, V260, DOI 10.1016/j.conbuildmat.2020.119757 Uysal M, 2012, CONSTR BUILD MATER, V27, P404, DOI 10.1016/j.conbuildmat.2011.07.028 van Eck NJ, 2010, SCIENTOMETRICS, V84, P523, DOI 10.1007/s11192-009-0146-3 Van Eck NJ., 2013, Leiden: Universiteit Leiden, V1, P1, DOI DOI 10.1016/J.INFFUS.2016.12.001 Vlahogianni EI, 2008, COMPUT-AIDED CIV INF, V23, P536, DOI 10.1111/j.1467-8667.2008.00554.x Wang MZ, 2021, TUNN UNDERGR SP TECH, V110, DOI 10.1016/j.tust.2021.103840 Wang MZ, 2020, COMPUT-AIDED CIV INF, V35, P162, DOI 10.1111/mice.12481 Wang W, 2018, BUILD ENVIRON, V138, P160, DOI 10.1016/j.buildenv.2018.04.034 Wang ZL, 2019, AUTOMAT CONSTR, V97, P220, DOI 10.1016/j.autcon.2018.11.009 Wen QJ, 2021, AUTOMAT CONSTR, V124, DOI 10.1016/j.autcon.2021.103558 Wu QL, 2019, SUSTAIN CITIES SOC, V50, DOI 10.1016/j.scs.2019.101657 Wu RT, 2019, COMPUT-AIDED CIV INF, V34, P774, DOI 10.1111/mice.12449 Xiao FP, 2009, J MATER CIVIL ENG, V21, P253, DOI 10.1061/(ASCE)0899-1561(2009)21:6(253) Xiong C, 2020, AUTOMAT CONSTR, V109, DOI 10.1016/j.autcon.2019.102994 Xu JJ, 2019, CONSTR BUILD MATER, V226, P534, DOI 10.1016/j.conbuildmat.2019.07.155 Xu JJ, 2019, CONSTR BUILD MATER, V211, P479, DOI 10.1016/j.conbuildmat.2019.03.234 Xu XQ, 2012, ENERG BUILDINGS, V55, P637, DOI 10.1016/j.enbuild.2012.09.013 Xu Y, 2019, STRUCT CONTROL HLTH, V26, DOI 10.1002/stc.2313 Xu YJ, 2021, COMPUT-AIDED CIV INF, V36, P504, DOI 10.1111/mice.12628 Xu ZS, 2021, TECHNOL FORECAST SOC, V170, DOI 10.1016/j.techfore.2021.120896 Xue J, 2021, INT J ENV RES PUB HE, V18, DOI 10.3390/ijerph18115985 Xue YD, 2018, COMPUT-AIDED CIV INF, V33, P638, DOI 10.1111/mice.12367 Yang XC, 2018, COMPUT-AIDED CIV INF, V33, P1090, DOI 10.1111/mice.12412 Yang X, 2021, J TRAFFIC TRANSP ENG, V8, P1000, DOI 10.1016/j.jtte.2021.03.005 Yao BZ, 2017, COMPUT-AIDED CIV INF, V32, P154, DOI 10.1111/mice.12221 Ye WL, 2021, ROAD MATER PAVEMENT, V22, P42, DOI 10.1080/14680629.2019.1615533 Ye ZJ, 2020, COMPUT-AIDED CIV INF, V35, P134, DOI 10.1111/mice.12448 Yeh IC, 2007, CEMENT CONCRETE COMP, V29, P474, DOI 10.1016/j.cemconcomp.2007.02.001 Yeh IC, 2006, J MATER CIVIL ENG, V18, P597, DOI 10.1061/(ASCE)0899-1561(2006)18:4(597) Yeh IC, 1998, CEMENT CONCRETE RES, V28, P1797, DOI 10.1016/S0008-8846(98)00165-3 Yevu SK, 2021, J CLEAN PROD, V322, DOI 10.1016/j.jclepro.2021.129093 Yi W, 2016, AUTOMAT CONSTR, V62, P101, DOI 10.1016/j.autcon.2015.11.003 Yu DJ, 2020, APPL SOFT COMPUT, V94, DOI 10.1016/j.asoc.2020.106467 Yu W, 2015, ENERG BUILDINGS, V88, P135, DOI 10.1016/j.enbuild.2014.11.063 Yu Z, 2010, ENERG BUILDINGS, V42, P1637, DOI 10.1016/j.enbuild.2010.04.006 Yuce B, 2016, ENERG BUILDINGS, V111, P311, DOI 10.1016/j.enbuild.2015.11.017 Yusoff NIM, 2019, CONSTR BUILD MATER, V204, P781, DOI 10.1016/j.conbuildmat.2019.01.203 Zavrtanik N, 2016, AUTOMAT CONSTR, V63, P155, DOI 10.1016/j.autcon.2015.12.009 Zeng XS, 2013, COMPUT-AIDED CIV INF, V28, P359, DOI 10.1111/mice.12000 Zhai Z, 2020, ADV CIV ENG, V2020, DOI 10.1155/2020/6813043 Zhang A, 2017, COMPUT-AIDED CIV INF, V32, P805, DOI 10.1111/mice.12297 Zhang CB, 2020, COMPUT-AIDED CIV INF, V35, P389, DOI 10.1111/mice.12500 Zhang H, 2018, AUTOMAT CONSTR, V94, P1, DOI 10.1016/j.autcon.2018.05.033 Zhang J, 2010, ENERG BUILDINGS, V42, P435, DOI 10.1016/j.enbuild.2009.10.011 Zhang J, 2020, CONSTR BUILD MATER, V244, DOI 10.1016/j.conbuildmat.2020.118295 Zhang J, 2020, AUTOMAT CONSTR, V113, DOI 10.1016/j.autcon.2020.103119 Zhang JZ, 2021, EXPERT SYST APPL, V184, DOI 10.1016/j.eswa.2021.115561 Zhang K, 2020, TUNN UNDERGR SP TECH, V106, DOI 10.1016/j.tust.2020.103594 Zhang P, 2020, TUNN UNDERGR SP TECH, V99, DOI 10.1016/j.tust.2020.103383 Zhang SC, 2020, COMPUT-AIDED CIV INF, V35, P1132, DOI 10.1111/mice.12575 Zhang YQ, 2019, COMPUT-AIDED CIV INF, V34, P822, DOI 10.1111/mice.12447 Zhang YN, 2015, BUILD ENVIRON, V86, P177, DOI 10.1016/j.buildenv.2014.12.023 Zhang YL, 2013, COMPUT-AIDED CIV INF, V28, P594, DOI 10.1111/mice.12014 Zhao S, 2021, STRUCT CONTROL HLTH, V28, DOI 10.1002/stc.2732 Zhao S, 2020, TUNN UNDERGR SP TECH, V95, DOI 10.1016/j.tust.2019.103156 Zheng D, 2018, CONSTR BUILD MATER, V158, P614, DOI 10.1016/j.conbuildmat.2017.10.056 Zhong BT, 2020, AUTOMAT CONSTR, V113, DOI 10.1016/j.autcon.2020.103089 Zhou CG, 2020, SUSTAIN CITIES SOC, V55, DOI 10.1016/j.scs.2019.102000 Zhou ZX, 2021, BUILD ENVIRON, V195, DOI 10.1016/j.buildenv.2021.107775 Zhou ZX, 2020, ENERG BUILDINGS, V224, DOI 10.1016/j.enbuild.2020.110232 Zhu GY, 2017, ENERG BUILDINGS, V155, P503, DOI 10.1016/j.enbuild.2017.09.053 Ziari H, 2018, CONSTR BUILD MATER, V160, P415, DOI 10.1016/j.conbuildmat.2017.11.071 Ziari H, 2016, INT J PAVEMENT ENG, V17, P776, DOI 10.1080/10298436.2015.1019498 Zou JH, 2017, ENERG BUILDINGS, V152, P385, DOI 10.1016/j.enbuild.2017.07.064 Zou ZB, 2020, BUILD ENVIRON, V168, DOI 10.1016/j.buildenv.2019.106535 NR 340 TC 4 Z9 4 U1 9 U2 14 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS SN 1568-4946 EI 1872-9681 J9 APPL SOFT COMPUT JI Appl. Soft. Comput. PD FEB PY 2024 VL 152 AR 111174 DI 10.1016/j.asoc.2023.111174 EA JAN 2024 PG 31 WC Computer Science, Artificial Intelligence; Computer Science, Interdisciplinary Applications WE Science Citation Index Expanded (SCI-EXPANDED) SC Computer Science GA GN8K2 UT WOS:001153439800001 DA 2024-09-05 ER PT J AU Ran, N AF Ran, Na TI Association Between Immediacy of Citations and Altmetrics in COVID-19 Research by Artificial Neural Networks SO DISASTER MEDICINE AND PUBLIC HEALTH PREPAREDNESS LA English DT Article DE journal impact factor; social media; COVID-19; scholarly communication; neural networks ID CORE; SCORE AB Objectives: Both citations and Altmetrics are indexes of influence of a publication, potentially useful, but to what extent that the professional-academic citation and media-dominated Altmetrics are consistent with each other is a topic worthy of being investigated. The objective is to show their correlation. Methods: DOI and citation information of coronavirus disease 2019 (COVID-19) researches were obtained from the Web of Science, its Altmetric indicators were collected from the Altmetrics. Correlation between the immediacy of citation and Altmetrics of COVID-19 research was studied by artificial neural networks. Results: Pearson coefficients are 0.962, 0.254, 0.222, 0.239, 0.363, 0.218, 0.136, 0.134, and 0.505 (P < 0.01) for dimensions citation, attention score, journal impact factor, news, blogs, Twitter, Facebook, video, and Mendeley correlated with the SCI citation, respectively. The citations from the Web of Science and that from the Altmetrics have deviance large enough in the current. Altmetric score is not precise to describe the immediacy of citations of academic publication in COVID-19 research. Conclusions: The effects of news, blogs, Twitter, Facebook, video, and Mendeley on SCI citations are similar to that of the journal impact factor. This paper performs a pioneer study for investigating the role of academic topics across Altmetric sources on the dissemination of scholarly publications. C1 [Ran, Na] Univ Sci & Technol Beijing, Beijing, Peoples R China. C3 University of Science & Technology Beijing RP Ran, N (corresponding author), Univ Sci & Technol Beijing, Beijing, Peoples R China. EM ranna@ustb.edu.cn OI na, ran/0000-0003-2204-2183 CR Abrishami A, 2019, J INFORMETR, V13, P485, DOI 10.1016/j.joi.2019.02.011 Almousa O., 2011, 2011 IEEE JORD C APP Arencibia-Jorge R, 2016, LIBRES, V26, P1 Azer SA, 2019, BMJ OPEN, V9, DOI 10.1136/bmjopen-2019-029433 Basheer IA, 2000, J MICROBIOL METH, V43, P3, DOI 10.1016/S0167-7012(00)00201-3 Bollen J, 2009, PLOS ONE, V4, DOI [10.1371/journal.pone.0006022, 10.1371/journal.pone.0004803] Chang J, 2019, J SURG RES, V243, P52, DOI 10.1016/j.jss.2019.05.010 Costas R, 2015, J ASSOC INF SCI TECH, V66, P2003, DOI 10.1002/asi.23309 Di Franco G., 2020, QUAL QUANTITY, V55, P1007, DOI [10.1007/s11135-020-01037-y, DOI 10.1007/S11135-020-01037-Y] da Silva NCD, 2020, REV BRAS ENFERM, V73, DOI 10.1590/0034-7167-2019-0362 Elmore SA, 2018, TOXICOL PATHOL, V46, P252, DOI 10.1177/0192623318758294 Eysenbach G, 2011, J MED INTERNET RES, V13, DOI 10.2196/jmir.2012 Fang ZC, 2020, SCIENTOMETRICS, V124, P2519, DOI 10.1007/s11192-020-03564-9 Fox WP., 2017, MATH MODELING BUSINE, P1 Galligan F, 2013, SERIALS REV, V39, P56, DOI 10.1016/j.serrev.2013.01.003 Garcovich D, 2020, INT J PAEDIATR DENT, V30, P66, DOI 10.1111/ipd.12575 Hansen Rikke P, 2011, BMC Health Serv Res, V11, P284, DOI 10.1186/1472-6963-11-284 Haustein S., 2013, P 18 INT C SCI TECHN Haustein S, 2014, J ASSOC INF SCI TECH, V65, P656, DOI 10.1002/asi.23101 Jeng W, 2015, J ASSOC INF SCI TECH, V66, P890, DOI 10.1002/asi.23225 Jiang J, 2013, ASIA-PAC POWER ENERG Kim Y, 2019, CLIN NEUROL NEUROSUR, V183, DOI 10.1016/j.clineuro.2019.105386 Modarres R, 2009, HYDROL EARTH SYST SC, V13, P411, DOI 10.5194/hess-13-411-2009 Mohammadi E, 2014, J ASSOC INF SCI TECH, V65, P1627, DOI 10.1002/asi.23071 Mukherjee S.P., 2018, Statistical Methods in Social Science Research Parrish JM, 2020, SPINE, V45, P1229, DOI 10.1097/BRS.0000000000003508 Priem J., 2010, Altmetrics: a manifesto Priem J., ALTEMETRICS WILD USI Pukelis L., 2019, Politologija, V94, P56, DOI [https://doi.org/10.15388/Polit.2019.94.2, DOI 10.15388/POLIT.2019.94.2] Rovetta A, 2020, JMIR PUBLIC HLTH SUR, V6, DOI 10.2196/19374 Ruan XM, 2020, J INFORMETR, V14, DOI 10.1016/j.joi.2020.101039 Thelwall M, 2015, J ASSOC INF SCI TECH, V66, P876, DOI 10.1002/asi.23236 Thelwall M, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0064841 Trigo RM, 1999, CLIM RES, V13, P45, DOI 10.3354/cr013045 Walsh L, 2012, DISASTER MED PUBLIC, V6, P44, DOI 10.1001/dmp.2012.4 Warren VT, 2020, CLIN IMPLANT DENT R, V22, P54, DOI 10.1111/cid.12876 Zahedi Z., 2013, P ISSI 2013 14 INT S Zahedi Z, 2014, SCIENTOMETRICS, V101, P1491, DOI 10.1007/s11192-014-1264-0 Zhang XY, 2021, J INFORMETR, V15, DOI 10.1016/j.joi.2021.101140 NR 39 TC 5 Z9 5 U1 4 U2 34 PU CAMBRIDGE UNIV PRESS PI NEW YORK PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA SN 1935-7893 EI 1938-744X J9 DISASTER MED PUBLIC JI Dis. Med. Public Health Prep. PD AUG 31 PY 2021 VL 17 AR PII S1935789321002779 DI 10.1017/dmp.2021.277 EA AUG 2021 PG 6 WC Public, Environmental & Occupational Health WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Public, Environmental & Occupational Health GA 8R0OF UT WOS:000757087500001 PM 34462034 OA Green Published DA 2024-09-05 ER PT J AU Makhashen, GMB Al-Jamimi, HA AF Makhashen, Galal M. Bin Al-Jamimi, Hamdi A. TI An Intelligent Prediction of the Next Highly Cited Paper Using Machine Learning SO JOURNAL OF SCIENTOMETRIC RESEARCH LA English DT Article DE Artificial Intelligence; Machine Learning; Highly Cited Paper Indicators; Digital; Libraries; Bibliometric Analysis ID CITATION COUNTS; IMPACT; IMPROVE AB Highly cited articles capture the attention of significant contributors in the research community as an opportunity to improve knowledge, source of ideas or solutions, and advance their research in general. Typically, these articles are authored by a large number of scientists with international collaboration. However, this could not be the only reason for an article to be highly cited, there might be several other characteristics for an article to be more attractive to researchers and readers. In other words, there are a few other characteristics that help articles/papers to be more than others to appear in search engines or to grab readers' attention. In this study, we modeled several machine-learning methods with a set of articles, and journal characteristics including authors-count, title characteristics, abstract length, international collaboration, number of keywords, funding information, journal characteristics, etc. We extracted 20 characteristics and developed multiple machine-learning models to automate highly-cited papers recognition from regular papers. In experiments conducted with an ensemble machine learning algorithm, 97% recognition accuracy was achieved. Other algorithms including a deep learning method using LSTMs also achieved high recognition accuracy. Such high performances can be utilized for a promising HCP auto-detection system in the future. C1 [Makhashen, Galal M. Bin; Al-Jamimi, Hamdi A.] King Fahd Univ Petr & Minerals, Res Inst, Dhahran 31261, Saudi Arabia. C3 King Fahd University of Petroleum & Minerals RP Makhashen, GMB (corresponding author), King Fahd Univ Petr & Minerals, Res Inst, Dhahran 31261, Saudi Arabia. EM binmakhashen@kfupm.edu.sa RI Al-Jamimi, Hamdi A./G-5734-2016 CR Abrishami A, 2019, J INFORMETR, V13, P485, DOI 10.1016/j.joi.2019.02.011 Aksnes DW, 2003, RES EVALUAT, V12, P159, DOI 10.3152/147154403781776645 ALTMAN NS, 1992, AM STAT, V46, P175, DOI 10.2307/2685209 Antonakis J, 2014, LEADERSHIP QUART, V25, P152, DOI 10.1016/j.leaqua.2013.10.014 BinMakhashen GM, 2022, 2022 7TH INTERNATIONAL CONFERENCE ON DATA SCIENCE AND MACHINE LEARNING APPLICATIONS (CDMA 2022), P1, DOI 10.1109/CDMA54072.2022.00006 Biscaro C, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0099502 Bornmann L, 2014, J INFORMETR, V8, P175, DOI 10.1016/j.joi.2013.11.005 Bornmann L, 2012, J INFORMETR, V6, P11, DOI 10.1016/j.joi.2011.08.004 Catalini C, 2015, P NATL ACAD SCI USA, V112, P13823, DOI 10.1073/pnas.1502280112 Chakraborty T, 2014, ACM-IEEE J CONF DIG, P351, DOI 10.1109/JCDL.2014.6970190 CORTES C, 1995, MACH LEARN, V20, P273, DOI 10.1023/A:1022627411411 Didegah F, 2013, J INFORMETR, V7, P861, DOI 10.1016/j.joi.2013.08.006 Elgendi M, 2019, IEEE ACCESS, V7, P87977, DOI 10.1109/ACCESS.2019.2925965 Fayaz SA, 2022, INT J ADV COMPUT SC, V13, P466 Gallivan M.J., 2012, P 50 ANN C COMPUTERS, P175, DOI [10.1145/2214091.2214137, DOI 10.1145/2214091.2214137] Hsu CW, 2002, IEEE T NEURAL NETWOR, V13, P415, DOI 10.1109/72.991427 Hurley L. A., 2013, Proceedings of the American Society for Information Science and Technology, V50, P1, DOI [DOI 10.1002/MEET.14505001070, 10.1002/meet.14505001070] Liaw A., 2002, R NEWS, V2, P18 Millet-Reyes B, 2013, GLOB FINANC J, V24, P129, DOI 10.1016/j.gfj.2013.07.003 Noorhidawati A, 2017, MALAYS J LIBR INF SC, V22, P85, DOI 10.22452/mjlis.vol22no2.6 Pedregosa F, 2011, J MACH LEARN RES, V12, P2825 Persson O, 2010, SCIENTOMETRICS, V83, P397, DOI 10.1007/s11192-009-0007-0 Ponomarev IV, 2014, SCIENTOMETRICS, V100, P755, DOI 10.1007/s11192-014-1320-9 Ponomarev IV, 2014, TECHNOL FORECAST SOC, V81, P49, DOI 10.1016/j.techfore.2012.09.017 Rojas R., 1996, Neural Networks, P149, DOI [10.1007/978-3-642-61068-4, DOI 10.1007/978-3-642-61068-4, 10.1007/978-3-642-61068-4_7, DOI 10.1007/978-3-642-61068-47] Tahamtan I, 2016, SCIENTOMETRICS, V107, P1195, DOI 10.1007/s11192-016-1889-2 Van Raan AF., 2000, CITATION ANAL MEASUR, P301 Vanclay JK, 2013, J INFORMETR, V7, P265, DOI 10.1016/j.joi.2012.11.009 Velez-Estevez A, 2022, SCIENTOMETRICS, V127, P7517, DOI 10.1007/s11192-022-04486-4 Wang FH, 2019, SCIENTOMETRICS, V118, P109, DOI 10.1007/s11192-018-2965-6 Wang MY, 2012, J INFORMETR, V6, P586, DOI 10.1016/j.joi.2012.06.002 Winnink JJ, 2015, SCIENTOMETRICS, V102, P113, DOI 10.1007/s11192-014-1451-z Yan R, 2011, P 20 ACM INT C INF K, P1247, DOI DOI 10.1145/2063576.2063757 Zeng A, 2017, PHYS REP, V714, P1, DOI 10.1016/j.physrep.2017.10.001 NR 34 TC 0 Z9 0 U1 5 U2 10 PU PHCOG NET PI KARNATAKA PA 17, 2ND FLR, BUDDHA VIHAR RD, NEAR SPORTS ZONE, COX TOWN, BENGALURU, KARNATAKA, 560005, INDIA SN 2321-6654 EI 2320-0057 J9 J SCIENTOMETR RES JI J. Scientometr. Res. PD JAN-APR PY 2023 VL 12 IS 1 BP 44 EP 53 DI 10.5530/jscires.12.1.008 PG 10 WC Information Science & Library Science WE Emerging Sources Citation Index (ESCI) SC Information Science & Library Science GA O6RV0 UT WOS:001045065000006 OA hybrid DA 2024-09-05 ER PT J AU Melnikova, EV AF Melnikova, E. V. TI Deep Machine Learning in Optimization of Scientific Research Activities SO SCIENTIFIC AND TECHNICAL INFORMATION PROCESSING LA English DT Article DE artificial intelligence; deep learning; machine learning; artificial neural networks; big data; scientometrics; research productivity; predictive models; research data repositories AB -This article provides a general overview of machine learning, a subdomain of artificial intelligence. The substance of the deep learning process is explained, and key features of deep learning as a high-level artificial intelligence technology are outlined. Differences between deep and conventional machine learning are analyzed. The architecture of deep learning models is considered. Issues with using deep learning in neural networks are outlined, and key processes of the functioning of neural networks are described. The importance of deep learning neural networks for processing big data is noted. Specific examples of application of deep learning algorithms in various research fields, specifically, scientometrics, bibliometrics, medicine, geoseismic research, and others, are provided. It is shown that deep learning plays an important role in optimizing research activities and improving research productivity. C1 [Melnikova, E. V.] Russian Acad Sci, All Russian Inst Sci & Tech Informat VINITI, Moscow 125315, Russia. C3 Russian Academy of Sciences; Institute for Scientific & Technical Information of the Russian Academy of Sciences RP Melnikova, EV (corresponding author), Russian Acad Sci, All Russian Inst Sci & Tech Informat VINITI, Moscow 125315, Russia. EM verden.mel@yandex.ru FU All-Russian Institute for Scientific and Technical Information VINITI, Russian Academy of Sciences [FFFU-2021-0002]; Russian Foundation for Basic Research [20-07-00014] FX The work is supported by the State assignment of the All-Russian Institute for Scientific and Technical Information VINITI, Russian Academy of Sciences (project no. FFFU-2021-0002) and by the Russian Foundation for Basic Research (project no. 20-07-00014). CR DataAge, 2025 REP INF AN ENT Denisova O.Yu., 2015, VESTN TEKHNOL U, V18, P226 Elshawi R, 2018, BIG DATA RES, V14, P1, DOI 10.1016/j.bdr.2018.04.004 Gilyarevskii RS, 2021, SCI TECH INF PROCESS, V48, P53, DOI 10.3103/S0147688221010111 hathitrust, HATHITRUST DIGITAL R Hinton GE, 2007, TRENDS COGN SCI, V11, P428, DOI 10.1016/j.tics.2007.09.004 Komkov A.A., 2020, NAUCHN OBOZR MEDITSI, P33, DOI [10.17513/srms.1141, DOI 10.17513/SRMS.1141] Krasnov FV, 2018, BIZN INFORM, V44, P7, DOI 10.17323/1998-0663.2018.2.7.16 LeCun Y, 2015, NATURE, V521, P436, DOI 10.1038/nature14539 McCarthy J., ARTHUR SAMUEL PIONEE McCulloch WS, 2016, EMBODIMENTS OF MIND, P19 Melnikova EV, 2022, SCI TECH INF PROCESS, V49, P102, DOI 10.3103/S0147688222020083 Melnikova E.V., 2021, Inf. Resur. Ross., P6, DOI [10.52815/0204-3653_2021_04182_6, DOI 10.52815/0204-36532021041826] Microsoft Corporation, 2022, DEEP LEARN VS MACH L Naur P., 1974, Concise Survey of Computer Methods Piatetsky-Shapiro G., 1991, AI MAG, V11 Rawat, 2021, QUAL QUANTITY, V55, P1371, DOI [DOI 10.1007/S11135-020-01061-Y, 10.1007/s11135-020-01061-y] SAMUEL AL, 1959, IBM J RES DEV, V3, P211, DOI 10.1147/rd.441.0206 Swiss National Science Foundation, 2022, US Ulrich R., 2020, E SCI TAGE 2019 DATA, P194, DOI [10.11588/heibooks.598.c8432, DOI 10.11588/HEIBOOKS.598.C8432] Von der Heyde M., 2019, OPEN RES DATA LANDSC, DOI [10.5281/zenodo.2643460, DOI 10.5281/ZENODO.2643460] Wook M, 2021, J BIG DATA-GER, V8, DOI 10.1186/s40537-021-00439-5 NR 22 TC 1 Z9 1 U1 15 U2 46 PU PLEIADES PUBLISHING INC PI NEW YORK PA PLEIADES HOUSE, 7 W 54 ST, NEW YORK, NY, UNITED STATES SN 0147-6882 EI 1934-8118 J9 SCI TECH INF PROCESS JI Sci. Tech. Inf. Process. PD MAR PY 2023 VL 50 IS 1 BP 53 EP 58 DI 10.3103/S0147688223010082 PG 6 WC Information Science & Library Science WE Emerging Sources Citation Index (ESCI) SC Information Science & Library Science GA H0EW6 UT WOS:000992792300006 DA 2024-09-05 ER PT C AU Sadaf, F Shahid, MH Islam, MA AF Sadaf, Fatima Shahid, Muzammil Hussain Islam, Muhammad Arshad GP IEEE TI Predicting Most Influential Paper Award Using Citation Count SO 2021 INTERNATIONAL CONFERENCE ON DIGITAL FUTURES AND TRANSFORMATIVE TECHNOLOGIES (ICODT2) LA English DT Proceedings Paper CT IEEE International Conference on Digital Futures and Transformative Technologies (ICoDT2) CY MAY 20-21, 2021 CL Natl Univ Sci & Technol, Islamabad, PAKISTAN HO Natl Univ Sci & Technol DE Citation Count Prediction; Time series forecasting; Most influential paper award; Feature Engineering; Machine Learning ID IMPACT; NETWORK AB The early identification of the influential papers is of great significance for assessing the scientific achievements of researchers and institutions as it can help in addressing the processes in an academic and scientific field, such as promotions, recruitment decisions, and funding allocation. This work evaluates features for predicting the most influential paper award that is given by several renowned conferences, ten years subsequent to their publication. The data of five renowned conferences, i.e., ICSE, ICFP, POPL, PLDI, and OOPSLA is used to predict the long-term citations to identify the most influential paper of the respective conference. GD boost model is considered to be better performing among the five different machine learning algorithms. The results show that a three to five years of the time window is good enough to evaluate the most influential paper award. Additionally, the assessment of time window and the citation trajectory of awarded and non awarded papers shows that the citation trajectory of the awarded paper vary from the Citation gain patterns of non-awarded paper. C1 [Sadaf, Fatima; Shahid, Muzammil Hussain; Islam, Muhammad Arshad] Natl Univ Comp & Emerging Sci, Islamabad, Pakistan. RP Sadaf, F (corresponding author), Natl Univ Comp & Emerging Sci, Islamabad, Pakistan. EM i181257@nu.edu.pk; i171090@nu.edu.pk; arshad.islam@nu.edu.pk RI Islam, Muhammad Arshad/M-2385-2019 OI Islam, Muhammad Arshad/0000-0002-7503-5086; Shahid, Muzammil/0000-0001-7013-335X CR Abramo G, 2019, J INFORMETR, V13, P32, DOI 10.1016/j.joi.2018.11.003 Abrishami A, 2019, J INFORMETR, V13, P485, DOI 10.1016/j.joi.2019.02.011 Bai XM, 2019, J INFORMETR, V13, P407, DOI 10.1016/j.joi.2019.01.010 Bai XM, 2017, INFORMATION, V8, DOI 10.3390/info8030073 Dunaiski M, 2016, J INFORMETR, V10, P392, DOI 10.1016/j.joi.2016.01.010 Färber M, 2019, LECT NOTES COMPUT SC, V11779, P113, DOI 10.1007/978-3-030-30796-7_8 Fiala D, 2017, J INFORMETR, V11, P1044, DOI 10.1016/j.joi.2017.09.008 Friedman JH, 2002, COMPUT STAT DATA AN, V38, P367, DOI 10.1016/S0167-9473(01)00065-2 Giuffrida C, 2019, J INFORMETR, V13, P500, DOI 10.1016/j.joi.2019.02.008 Ke Q, 2015, P NATL ACAD SCI USA, V112, P7426, DOI 10.1073/pnas.1424329112 Komamizu T, 2020, KNOWL INF SYST, V62, P2989, DOI 10.1007/s10115-020-01445-4 Li MJ, 2019, IEEE SYS MAN CYBERN, P1172, DOI 10.1109/SMC.2019.8913961 Maqsood S, 2020, MALAYS J LIBR INF SC, V25, P31, DOI 10.22452/mjlis.vol25no1.2 Wang Y, 2021, STRUCT HEALTH MONIT, V20, P861, DOI 10.1177/1475921719850641 West JD, 2013, J AM SOC INF SCI TEC, V64, P787, DOI 10.1002/asi.22790 Zhang J, 2017, SCIENTOMETRICS, V112, P1301, DOI 10.1007/s11192-017-2458-z NR 16 TC 1 Z9 1 U1 1 U2 7 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA BN 978-1-6654-1285-8 PY 2021 DI 10.1109/ICoDT252288.2021.9441487 PG 7 WC Computer Science, Artificial Intelligence; Computer Science, Information Systems WE Conference Proceedings Citation Index - Science (CPCI-S) SC Computer Science GA BS7GM UT WOS:000760235700015 DA 2024-09-05 ER PT C AU Montelongo, A Becker, JL AF Montelongo, Alfredo Becker, Joao Luiz BE Wu, XT Jermaine, C Xiong, L Hu, XH Kotevska, O Lu, SY Xu, WJ Aluru, S Zhai, CX Al-Masri, E Chen, ZY Saltz, J TI A bibliometric network analysis of Deep Learning publications applied into legal documents SO 2020 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA) SE IEEE International Conference on Big Data LA English DT Proceedings Paper CT 8th IEEE International Conference on Big Data (Big Data) CY DEC 10-13, 2020 CL ELECTR NETWORK DE Deep Learning; Neural Networks; bibliometric; legal; applications ID NEURAL-NETWORKS; CLASSIFICATION AB Deep Learning has been gradually adopted as the main methodology to perform Natural Language Processing tasks on legal documents. In this work we provide a bibliometric network analysis of Deep Learning publications (formerly Neural Networks) applied to the analysis of legal documents. Our study includes a total sample of 138 works published between 1987 and 2020 that used DL as primary methodology. We focused on three specific objectives: identification of the journals with more publications on the subject, a co-authorship network analysis, and an examination of the most cited works. Our results show that the publications are concentrated in a small number of specialized journals on the topic, and consequently, the number of works that use DL methodologies in the legal context is smaller compared to other areas. The co-authorship network analysis reveals four broad clusters of researchers that are time-dependent concentrated into Connectionism (1), Neural Networks (1) and Deep Learning (2). Our analysis of highly cited publications delivered 10 articles with two particular authors that centralize the network. Finally, we have found that collaboration between groups of researchers from different areas is minimal, showing a window of opportunity to increase interdisciplinary research, particularly between computer and legal research groups. C1 [Montelongo, Alfredo] Univ Fed Rio Grande do Sul EA PPGA, Porto Alegre, RS, Brazil. [Becker, Joao Luiz] Fundacao Getulio Vargas FGV EAESP, Sao Paulo, Brazil. C3 Getulio Vargas Foundation RP Montelongo, A (corresponding author), Univ Fed Rio Grande do Sul EA PPGA, Porto Alegre, RS, Brazil. EM alfredo.montelongo@ufrgs.br; joao.becker@fgv.br RI Becker, João Luiz/R-2088-2016 OI Becker, João Luiz/0000-0003-4176-7374 CR Abood A., 2018, ARTIF INTELL LAW, P1 Alschner Wolfgang., 2016, SSRN Electronic Journal [Anonymous], 2013, P 2013 C N AM CHAPTE [Anonymous], 2017, ARXIV170305320 Asra F., 2017, INT J APPL ENG RES, V12, P14984 Bansal N, 2019, P AIAI 19, P374, DOI DOI 10.1007/978-3-030-19823-7_31 Belew R., 1987, P 1 INT C ART INT LA, P116 Bench-Capon T., 1993, Fourth International Conference on Artificial Intelligence and Law. Proceedings of the Conference, P292, DOI 10.1145/158976.159012 BOCHEREAU L, 1991, THIRD INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE & LAW, P288, DOI 10.1145/112646.112683 Branting L., 2018, LECT NOTES COMPUTER, P465 Branting LK, 2017, ARTIF INTELL LAW, V25, P5, DOI 10.1007/s10506-017-9193-x Cerka P, 2015, COMPUT LAW SECUR REV, V31, P376, DOI 10.1016/j.clsr.2015.03.008 Chalkidis I., 2018, ARXIV180503871 Chalkidis I., 2017, DEEP LEARNING APPROA Chalkidis I., 2017, P INT C ART INT LAW, P19 Chalkidis I, 2019, ARTIF INTELL LAW, V27, P171, DOI 10.1007/s10506-018-9238-9 Chaphalkar NB, 2015, INT J PROJ MANAG, V33, P1827, DOI 10.1016/j.ijproman.2015.09.002 Chau KW, 2007, AUTOMAT CONSTR, V16, P642, DOI 10.1016/j.autcon.2006.11.008 Chen BG, 2019, 2019 COMPANION OF THE 19TH IEEE INTERNATIONAL CONFERENCE ON SOFTWARE QUALITY, RELIABILITY AND SECURITY (QRS-C 2019), P145, DOI 10.1109/QRS-C.2019.00040 Chen WQ, 2018, CHINESE J CANCER RES, V30, P1, DOI 10.21147/j.issn.1000-9604.2018.01.01 Chevalier-Boisvert M., 2019, ARXIV181008272 Corcoran JJ, 2003, INT J FORECASTING, V19, P623, DOI 10.1016/S0169-2070(03)00095-5 Da Silva N.C., 2018, P 10 INT C FOR COMP, P29 Dikmen I, 2004, J CONSTR ENG M, V130, P59, DOI 10.1061/(ASCE)0733-9364(2004)130:1(59) El Jelali S, 2015, ARTIF INTELL LAW, V23, P1, DOI 10.1007/s10506-015-9162-1 Hobson J., 1994, INDEXING THEFT ACT 1 Hollatz J., 1999, Artificial Intelligence and Law, V7, P289, DOI 10.1023/A:1008344904309 John AK, 2017, LECT NOTES COMPUT SC, V10260, P267, DOI 10.1007/978-3-319-59569-6_32 Kim Mi-Young, 2015, JURISIN WORKSH Lai YH, 2009, EXPERT SYST APPL, V36, P10520, DOI 10.1016/j.eswa.2009.01.027 Li SB, 2018, SCIENTOMETRICS, V117, P721, DOI 10.1007/s11192-018-2905-5 Li Y, 2020, INT J MACH LEARN CYB, P1 Lippi M, 2019, ARTIF INTELL LAW, V27, P117, DOI 10.1007/s10506-019-09243-2 Lopes SA, 2018, INT J PRODUCT PERFOR, V67, P1940, DOI 10.1108/IJPPM-08-2017-0212 Merkl D., 1999, Artificial Intelligence and Law, V7, P185, DOI 10.1023/A:1008365524782 Merkl D., 1995, Fourth International Conference on `Artificial Neural Networks' (Conf. Publ. No.409), P29, DOI 10.1049/cp:19950524 Merkl D., 1995, AUSTR DAT C Merkl D., 1997, ICAIL, V97, P98 Merkl D., 1995, CONTENT BASED DOCUME Morimoto A., 2017, COLIEE ICAIL, V47, P79 MOSELHI O, 1991, J CONSTR ENG M ASCE, V117, P606, DOI 10.1061/(ASCE)0733-9364(1991)117:4(606) Nanda R., 2017, 4th Competition on Legal Information Extraction and Entailment (COLIEE 2017), P68 Nejadgholi I, 2017, FRONT ARTIF INTEL AP, V302, P125, DOI 10.3233/978-1-61499-838-9-125 Son NT, 2016, INT CONF KNOWL SYS, P252, DOI 10.1109/KSE.2016.7758062 Oatley G, 2006, ARTIF INTELL LAW, V14, P35, DOI 10.1007/s10506-006-9023-z Philipps L., 1999, Artificial Intelligence and Law, V7, P115, DOI 10.1023/A:1008371600675 Philipps L., 1989, NEURAL NETWORK IDENT Philipps L., 1991, CARDOZO REV, V13, P987 Philipps L., 1989, ARE LEGAL DECISIONS Rose D. E., 1989, Second International Conference on Artificial Intelligence and Law. Proceedings of the Conference, P138, DOI 10.1145/74014.74033 Sadeghian A., 2016, Proceedings of the Workshop on Legal Text, Document, and Corpus Analytics LTDCA-2016, P70 Sadeghian A, 2018, ARTIF INTELL LAW, V26, P127, DOI 10.1007/s10506-018-9217-1 Sartor G., 1998, Judicial applications of artificial intelligence, P1, DOI DOI 10.1007/978-94-015-9010-5_1 Singh Jaspreet, 2018, Procedia Computer Science, V132, P1041, DOI 10.1016/j.procs.2018.05.019 Stranieri A., 1999, Artificial Intelligence and Law, V7, P153, DOI 10.1023/A:1008325826599 Stranieri A, 2006, INFORMATION TECHNOLOGY AND LAWYERS: ADVANCED TECHNOLOGY IN THE LEGAL DOMAIN, FROM CHALLENGES TO DAILY ROUTINE, P81, DOI 10.1007/1-4020-4146-2_4 Thagard P., 1991, CARDOZO LAW REV, V13, P1001 Nguyen TL, 2019, ADV MATER, V31, DOI 10.1002/adma.201803953 Tran V, 2020, ARTIF INTELL LAW, V28, P441, DOI 10.1007/s10506-020-09262-4 Trappey AJC, 2006, EXPERT SYST APPL, V31, P755, DOI 10.1016/j.eswa.2006.01.013 Undavia S, 2018, FED CONF COMPUT SCI, P515, DOI 10.15439/2018F227 Wagh Rupali Sunil, 2020, Intelligent Systems, Technologies and Applications. Proceedings of ISTA 2018. Advances in Intelligent Systems and Computing (AISC 910), P53, DOI 10.1007/978-981-13-6095-4_4 Winiwarter W., 1995, KNOWLEDGE ACQUISITIO Xu, 2016, MATCHING LAW CASES R Yan G, 2019, 2019 COMPANION OF THE 19TH IEEE INTERNATIONAL CONFERENCE ON SOFTWARE QUALITY, RELIABILITY AND SECURITY (QRS-C 2019), P281, DOI 10.1109/QRS-C.2019.00060 Yitmen I, 2010, ARTIFICIAL NEURAL NE Zeleznikow J., 1993, ARTIF INTELL LAW, V2, P169, DOI [10.1007/BF00871889, DOI 10.1007/BF00871889] NR 67 TC 0 Z9 0 U1 1 U2 11 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA SN 2639-1589 BN 978-1-7281-6251-5 J9 IEEE INT CONF BIG DA PY 2020 BP 2131 EP 2138 DI 10.1109/BigData50022.2020.9377970 PG 8 WC Computer Science, Artificial Intelligence; Computer Science, Information Systems; Computer Science, Theory & Methods WE Conference Proceedings Citation Index - Science (CPCI-S) SC Computer Science GA BR6NZ UT WOS:000662554702034 DA 2024-09-05 ER PT J AU Le, TQ Huynh, NV AF Thanh Quynh Le Nam Van Huynh TI Grading Sewing Operator Skill Using Principal Component Analysis and Ordinal Logistic Regression SO INTERNATIONAL JOURNAL OF KNOWLEDGE AND SYSTEMS SCIENCE LA English DT Article DE Delphi Method; Generalized Ordered Logit; Logistic Regression Method; Operation Research; Ordinal Logistic Regression; Performance Rating; Principal Component Analysis; Worker Skill Level ID PARTIAL PROPORTIONAL ODDS; DELPHI METHOD; PERFORMANCE; MODELS; VARIABLES AB In the apparel manufacturing process, productivity and quality are somewhat determined by operator skill level. Predicting worker skill level is very important for effective production operation management. However, the current methods for ranking skill level in the manufacturing industry have been based on the subjective evaluation of managers and have failed both in predicting the operator skill level needed for planning and in encouraging operators to develop new skills for quality and productivity. This article develops a new method for grading sewing worker skill levels that employs updated knowledge from experts involved in training, coaching and managing operations in factories. This approach uses the Delphi method combined with principal component analysis to define and classify six qualitative variables that effect on three aspects of operator skill, including coordination skill, sustaining skill, and tool operating skill. Based on these three variables, ordinal logistic regression is applied to grade skill levels, with a statistically significance result. C1 [Thanh Quynh Le] Japan Adv Inst Sci & Technol, Sch Knowledge Sci, Nomi, Japan. [Nam Van Huynh] Japan Adv Inst Sci & Technol, Nomi, Japan. C3 Japan Advanced Institute of Science & Technology (JAIST); Japan Advanced Institute of Science & Technology (JAIST) RP Le, TQ (corresponding author), Japan Adv Inst Sci & Technol, Sch Knowledge Sci, Nomi, Japan. OI Le, Thanh Quynh/0000-0002-1099-7807 CR Abdallah FDM., 2017, INT J STAT APPL, V7, P192 Adkins CL, 2001, J ORGAN BEHAV, V22, P453, DOI 10.1002/job.96 Ameyaw EE, 2016, J CIV ENG MANAG, V22, P991, DOI 10.3846/13923730.2014.945953 Asmus S, 2015, PROC CIRP, V26, P127, DOI 10.1016/j.procir.2015.02.086 Chase R.B., 1998, PRODUCTION OPERATION Chih YY, 2017, J CONSTR ENG M, V143, DOI 10.1061/(ASCE)CO.1943-7862.0001346 Chowdhury M., 2006, J KNOWLEDGE MANAGEME, V7, P1 Das S, 2011, NUTR J, V10, DOI 10.1186/1475-2891-10-124 DEADRICK DL, 1990, PERS PSYCHOL, V43, P717, DOI 10.1111/j.1744-6570.1990.tb00680.x Fuks M, 2008, ENERG ECON, V30, P1672, DOI 10.1016/j.eneco.2007.09.006 Gao XM, 2017, COMPUT METH PROG BIO, V150, P23, DOI 10.1016/j.cmpb.2017.07.008 Gordon, 1994, FUTUR RES METHODOL, V4, P2 Hosmer W., 2000, Applied Logistic Regression, VSecond Hotelling H, 1933, J EDUC PSYCHOL, V24, P417, DOI 10.1037/h0071325 Johnson R.A., 1982, APPL MULTIVARIATE ST Jolliffe IT, 2002, Principal Component Analysis, V2nd Kahya E, 2009, INT J IND ERGONOM, V39, P96, DOI 10.1016/j.ergon.2008.06.006 Koletsi D, 2018, AM J ORTHOD DENTOFAC, V153, P157, DOI 10.1016/j.ajodo.2017.11.011 LANDY FJ, 1980, PSYCHOL BULL, V87, P72, DOI 10.1037/0033-2909.87.1.72 MCCULLAGH P, 1980, J ROY STAT SOC B MET, V42, P109 Nembhard DA, 2001, INT J PROD RES, V39, P1955, DOI 10.1080/00207540110036696 Niebel B.W., 2003, METHODS STANDARDS WO, V11 Okoli C, 2004, INFORM MANAGE-AMSTER, V42, P15, DOI 10.1016/j.im.2003.11.002 PETERSON B, 1990, J R STAT SOC C-APPL, V39, P205 Petroni Alberto., 2000, J SUPPLY CHAIN MANAG, V36, P63, DOI [10.1111/j.1745-493X.2000.tb00078.x, DOI 10.1111/J.1745-493X.2000.TB00078.X] Polat K, 2007, DIGIT SIGNAL PROCESS, V17, P702, DOI 10.1016/j.dsp.2006.09.005 Sepehr M, 2017, GLOB J ENVIRON SCI M, V3, P89, DOI 10.22034/gjesm.2017.03.01.009 Steyerberg EW., 2016, BIOMETRICS, V72, P1006, DOI DOI 10.1111/BIOM.12569 WALKER SH, 1967, BIOMETRIKA, V54, P167, DOI 10.1093/biomet/54.1-2.167 NR 29 TC 2 Z9 2 U1 0 U2 6 PU IGI GLOBAL PI HERSHEY PA 701 E CHOCOLATE AVE, STE 200, HERSHEY, PA 17033-1240 USA SN 1947-8208 EI 1947-8216 J9 INT J KNOWL SYST SCI JI Int. J. Knowl. Syst. Sci. PD APR-JUN PY 2018 VL 9 IS 2 BP 28 EP 44 AR 2 DI 10.4018/IJKSS.2018040102 PG 17 WC Operations Research & Management Science WE Emerging Sources Citation Index (ESCI) SC Operations Research & Management Science GA HH1UK UT WOS:000455505100002 DA 2024-09-05 ER PT C AU Montelongo, A Becker, JL AF Montelongo, Alfredo Becker, Joao Luiz BE DiFatta, G Sheng, V Cuzzocrea, A Zaniolo, C Wu, X TI Tasks performed in the legal domain through Deep Learning: A bibliometric review (1987-2020) SO 20TH IEEE INTERNATIONAL CONFERENCE ON DATA MINING WORKSHOPS (ICDMW 2020) SE International Conference on Data Mining Workshops LA English DT Proceedings Paper CT 20th IEEE International Conference on Data Mining (ICDM) CY NOV 17-20, 2020 CL ELECTR NETWORK DE Legal Corpus; Deep Learning; Neural Networks ID NEURAL-NETWORKS AB Deep Learning (DL) has become the state-of-the-art method for Natural Language Processing (NLP). During the last 5 years DL became the primary Artificial Intelligence (AI) method in the legal domain. In this work we provide a systematic bibliometric review of the publications that have utilized DL as the primary methodology. In particular we analyzed the performed objectives (performed tasks), the corpus utilized to train the models and promising areas of research. The sample includes a total of 137 works published between 1987 and 2020. This analysis starts with the first DL models (formerly Neural Networks) in the legal domain until the latest articles in the ongoing year. Our results show an increment of 300% on the total number of publications during the last 5 years, mainly on information extraction and classification tasks. Moreover, classification is the category with most publications with 39% of the total sample. Finally, we have identified that summarization and text generation as promising areas of research. These findings show that DL in the legal domain is currently in a growing stage, and hence it will be a promising topic of research in the coming years. C1 [Montelongo, Alfredo] Univ Fed Rio Grande do Sul, Porto Alegre, RS, Brazil. [Becker, Joao Luiz] Fundacao Getulio Vargas FGV EAESP, Sao Paulo, Brazil. C3 Universidade Federal do Rio Grande do Sul; Getulio Vargas Foundation RP Montelongo, A (corresponding author), Univ Fed Rio Grande do Sul, Porto Alegre, RS, Brazil. EM alfredo.montelongo@ufrgs.br; joao.becker@fgv.br RI Becker, João Luiz/R-2088-2016 OI Becker, João Luiz/0000-0003-4176-7374 CR Abood A., 2018, ARTIF INTELL LAW, P1 Adderley R., 2001, KDD-2001. Proceedings of the Seventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, P215, DOI 10.1145/502512.502541 Alschner W, 2017, P 16 ED INT C ART IN, P229, DOI 10.1145/3086512.30865 36 [Anonymous], 2019, ARXIV190308983 [Anonymous], 2018, AMTA [Anonymous], 2017, ARXIV171103902 [Anonymous], 2000, Building natural language generation systems Bansal N., 2019, IFIP INT C ART INT A, P374 Belew R., 1987, P 1 INT C ART INT LA, P116 Bench-Capon T., 1993, Fourth International Conference on Artificial Intelligence and Law. Proceedings of the Conference, P292, DOI 10.1145/158976.159012 BOCHEREAU L, 1991, THIRD INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE & LAW, P288, DOI 10.1145/112646.112683 Borges F., 2003, 16 ANN C LEG KNOWL I, P187 Bourcier D., 1999, Artificial Intelligence and Law, V7, P211, DOI 10.1023/A:1008388719330 Branting LK, 2017, ARTIF INTELL LAW, V25, P5, DOI 10.1007/s10506-017-9193-x Brown T. B., 2020, ADV NEURAL INFORM PR Chalkidis I., 2017, PROC, V17 Chalkidis I, 2017, FRONT ARTIF INTEL AP, V302, P155, DOI 10.3233/978-1-61499-838-9-155 Chalkidis Ilias, 2018, ARTIF INTELL LAW, P1 Chaphalkar NB, 2015, KSCE J CIV ENG, V19, P10, DOI 10.1007/s12205-014-1161-3 Chen BG, 2019, 2019 COMPANION OF THE 19TH IEEE INTERNATIONAL CONFERENCE ON SOFTWARE QUALITY, RELIABILITY AND SECURITY (QRS-C 2019), P145, DOI 10.1109/QRS-C.2019.00040 Chhatwal R., 2018, EXPLAINABLE TEXT CLA Corcoran JJ, 2003, INT J FORECASTING, V19, P623, DOI 10.1016/S0169-2070(03)00095-5 Corcoran J, 2001, LECT NOTES COMPUT SC, V2206, P807 Crombag Hans., 1993, ARTIF INTELL LAW, V2, P39, DOI [10.1007/BF00871746, DOI 10.1007/BF00871746] Da Silva N.C., 2018, P 10 INT C FOR COMP, P29 Devlin J., 2018, ARXIV Erhan D, 2010, J MACH LEARN RES, V11, P625 Hunter D., 1994, LEG KNOWL BASED SYST, P55 John A., 2017, LECT NOTES COMPUT SC, P267, DOI DOI 10.1007/978-3-319-59569-6_32 Kowsrihawat K, 2018, PROCEEDINGS OF THE 2018 5TH ASIAN CONFERENCE ON DEFENSE TECHNOLOGY (ACDT 2018), P50, DOI 10.1109/ACDT.2018.8592948 Lai YH, 2009, EXPERT SYST APPL, V36, P10520, DOI 10.1016/j.eswa.2009.01.027 LeCun Y., 2015, NAT METHODS, V521, P436, DOI DOI 10.1038/nmeth.3707 Li SB, 2018, SCIENTOMETRICS, V117, P721, DOI 10.1007/s11192-018-2905-5 Merkl D., 1999, Artificial Intelligence and Law, V7, P185, DOI 10.1023/A:1008365524782 Mikolov T., 2013, Advances in Neural Information Processing Systems, P3111 Mortazavi M, 2017, COLUMBIA LAW REV, V117, P202 Nanda R., 2018, ARTIF INTELL, P1 Pennington J., 2014, PROCEEDINGS, P1532 Rose D. E., 1989, Second International Conference on Artificial Intelligence and Law. Proceedings of the Conference, P138, DOI 10.1145/74014.74033 Sadeghian A, 2018, ARTIF INTELL LAW, V26, P127, DOI 10.1007/s10506-018-9217-1 Sandbhor Sayali, 2019, Information Systems Design and Intelligent Applications. Proceedings of Fifth International Conference INDIA 2018. Advances in Intelligent Systems and Computing (AISC 862), P481, DOI 10.1007/978-981-13-3329-3_45 Schmidhuber J, 2015, NEURAL NETWORKS, V61, P85, DOI 10.1016/j.neunet.2014.09.003 Shahinfar S, 2020, ECOL INFORM, V57, DOI 10.1016/j.ecoinf.2020.101085 Shang Li, 2018, 2018 IEEE Third International Conference on Data Science in Cyberspace (DSC). Proceedings, P392, DOI 10.1109/DSC.2018.00063 Sharma RD, 2015, LECT NOTES COMPUT SC, V9490, P475, DOI 10.1007/978-3-319-26535-3_54 Singh Jaspreet, 2018, Procedia Computer Science, V132, P1041, DOI 10.1016/j.procs.2018.05.019 Sugathadasa K, 2019, ADV INTELL SYST COMP, V857, P160, DOI 10.1007/978-3-030-01177-2_12 Tang Raphael, 2019, CORR Thammaboosadee S, 2012, PROCEDIA COMPUT SCI, V13, P53, DOI 10.1016/j.procs.2012.09.113 Nguyen TL, 2019, ADV MATER, V31, DOI 10.1002/adma.201803953 Theresa M., 2011, C EM TRENDS EL COMP Tran V, 2020, ARTIFICIAL INTELLIGE, P1 Undavia S, 2018, FED CONF COMPUT SCI, P515, DOI 10.15439/2018F227 Vijayarani S., 2015, International Journal of Computer Science Communication Networks, V5, P7 Vogel F, 2018, LAW SOCIAL INQUIRY, V43, P1340, DOI 10.1111/lsi.12305 Wachsmuth H, 2014, LECT NOTES COMPUT SC, V8404, P115, DOI 10.1007/978-3-642-54903-8_10 Warner Jr David R, 1993, INFORM COMMUNICATION, V2, P135 Yang R., 2011, EXPERT SYST APPL Yousefi-Azar M, 2017, EXPERT SYST APPL, V68, P93, DOI 10.1016/j.eswa.2016.10.017 Zhang QS, 2018, FRONT INFORM TECH EL, V19, P27, DOI 10.1631/FITEE.1700808 NR 60 TC 0 Z9 0 U1 1 U2 11 PU IEEE COMPUTER SOC PI LOS ALAMITOS PA 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1264 USA SN 2375-9232 BN 978-1-7281-9012-9 J9 INT CONF DAT MIN WOR PY 2020 BP 775 EP 781 DI 10.1109/ICDMW51313.2020.00113 PG 7 WC Computer Science, Artificial Intelligence; Computer Science, Information Systems; Computer Science, Theory & Methods WE Conference Proceedings Citation Index - Science (CPCI-S) SC Computer Science GA BR5SN UT WOS:000657112800105 DA 2024-09-05 ER PT J AU Nazir, S Asif, M Ahmad, S Aljuaid, H Iftikhar, R Nawaz, Z Ghadi, YY AF Nazir, Shahzad Asif, Muhammad Ahmad, Shahbaz Aljuaid, Hanan Iftikhar, Rimsha Nawaz, Zubair Ghadi, Yazeed Yasin TI Important Citation Identification by Exploding the Sentiment Analysis and Section-Wise In-Text Citation Weights SO IEEE ACCESS LA English DT Article DE Sentiment analysis; Support vector machines; Random forests; Training data; Neural networks; Multilayer perceptrons; Linguistics; Machine learning; Citation analysis; Important citation identification; sentiment analysis; weight assignment; machine learning ID QUALITY; INDEX AB A massive research corpus is generated in this epoch based on some previously established concepts or findings. For the acknowledgment of the base knowledge, researchers perform citations. Citations are the key considerations used in finding the different research measures, such as ranking the institutions, researchers, countries, computing the impact factor of journals, allocating research funds, etc. But in calculating these critical measures, citations are treated equally. However, researchers have argued that all citations can never be equally influential. Therefore, researchers have proposed other techniques to identify the important content-based, meta-data-based, and bibliographic-based citations. However, the produced results by the state-of-the-art still need to be improved. In this research work, we proposed an approach based on two primary modules, 1) The section-wise citation count and 2) Sentiment based analysis of citation sentences. The first technique is based on extracting the different sections of the research articles and performing citation count. We applied Neural Network and Multiple Regression on section-wise citations for automatic weight assignment. The citation sentences were extracted in the second approach, and sentiment analysis was used for sentences. Citations were classified with Support Vector Machine, Multilayer Perceptron, and Random Forest. F-measure, Recall, and Precision were considered to evaluate the results, compared with the state-of-the-art results. The value of precision with the proposed approach was enhanced to 0.94. C1 [Nazir, Shahzad; Asif, Muhammad; Ahmad, Shahbaz; Iftikhar, Rimsha] Natl Text Univ, Dept Comp Sci, Faisalabad 37610, Pakistan. [Aljuaid, Hanan] Princess Nourah Bint Abdulrahman Univ PNU, Coll Comp & Informat Sci, Dept Comp Sci, Riyadh 11671, Saudi Arabia. [Nawaz, Zubair] Univ Punjab, Dept Data Sci, Lahore 54590, Pakistan. [Ghadi, Yazeed Yasin] Al Ain Univ, Dept Comp Sci Software Engn, Abu Dhabi, U Arab Emirates. C3 National Textile University - Pakistan; Princess Nourah bint Abdulrahman University; University of Punjab RP Asif, M (corresponding author), Natl Text Univ, Dept Comp Sci, Faisalabad 37610, Pakistan. EM asif@ntu.edu.pk RI Asif, Muhammad/B-6072-2012; aljuaid, Hanan/AAJ-4910-2020; Ghadi, Yazeed Yasin/AAW-6774-2021; Ahmad, Shahbaz/AAA-1264-2021 OI Asif, Muhammad/0000-0003-1839-2527; aljuaid, Hanan/0000-0001-6042-0283; Ghadi, Yazeed Yasin/0000-0002-7121-495X; Ahmad, Shahbaz/0000-0003-0148-4521 FU Princess Nourah bint Abdulrahman University Researchers Supporting Project, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia [PNURSP2022R54] FX This work was supported by the Princess Nourah bint Abdulrahman University Researchers Supporting Project, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia, under Grant PNURSP2022R54. CR Agarwal Shashank, 2010, AMIA Annu Symp Proc, V2010, P11 Aljuaid H, 2021, TELEMAT INFORM, V56, DOI 10.1016/j.tele.2020.101492 [Anonymous], 1976, EVALUATIVE BIBLIOMET Athar A., 2014, Sentiment analysis of scientific citations, DOI DOI 10.48456/TR-856 Balaban AT, 2012, SCIENTOMETRICS, V92, P241, DOI 10.1007/s11192-012-0637-5 Bi HH, 2011, IEEE T KNOWL DATA EN, V23, P1274, DOI 10.1109/TKDE.2010.167 Bornmann L, 2008, J DOC, V64, P45, DOI 10.1108/00220410810844150 Choi J, 2010, ENVIRON EARTH SCI, V60, P473, DOI 10.1007/s12665-009-0188-0 Councill IG, 2008, SIXTH INTERNATIONAL CONFERENCE ON LANGUAGE RESOURCES AND EVALUATION, LREC 2008, P661 Dong C., 2011, P 5 INT JOINT C NAT, P623 Finney B., 1979, THESIS CITY U LONDON GARFIELD E, 1979, SCIENTOMETRICS, V1, P359, DOI 10.1007/BF02019306 Garzone M, 2000, LECT NOTES ARTIF INT, V1822, P337 Giles C. L., 1998, Digital 98 Libraries. Third ACM Conference on Digital Libraries, P89, DOI 10.1145/276675.276685 Butt BH, 2015, Arxiv, DOI arXiv:1506.08966 Hirsch JE, 2005, P NATL ACAD SCI USA, V102, P16569, DOI 10.1073/pnas.0507655102 Hou WR, 2011, BIOESSAYS, V33, P724, DOI 10.1002/bies.201100067 INHABER H, 1976, SOC STUD SCI, V6, P33, DOI 10.1177/030631277600600102 Jochim C., 2012, P COLING 2012, P1343 Karakaya Fahri, 2014, International Journal of Data Analysis Techniques and Strategies, V6, P121, DOI 10.1504/IJDATS.2014.062461 Khan AY, 2018, TURK J ELECTR ENG CO, V26, P3345, DOI 10.3906/elk-1703-260 Kumar S, 2016, PROCEEDINGS OF THE 25TH INTERNATIONAL CONFERENCE ON WORLD WIDE WEB (WWW'16 COMPANION), P63, DOI 10.1145/2872518.2889391 Lahitani AR, 2016, 2016 4TH INTERNATIONAL CONFERENCE ON CYBER AND IT SERVICE MANAGEMENT, P205 Lee S, 2002, INT GEOSCI REMOTE SE, P2865, DOI 10.1109/IGARSS.2002.1026804 MORAVCSIK MJ, 1975, SOC STUD SCI, V5, P86, DOI 10.1177/030631277500500106 MYERS CR, 1970, AM PSYCHOL, V25, P1041, DOI 10.1037/h0030149 Nazir S., 2020, P INT C ENG EM TECHN, P1, DOI [10.1109/ICEET48479.2020.9048224, DOI 10.1109/ICEET48479.2020.9048224] Nazir S, 2020, PLOS ONE, V15, DOI 10.1371/journal.pone.0228885 Pham SB, 2003, LECT NOTES ARTIF INT, V2903, P759 Qayyum F, 2019, SCIENTOMETRICS, V118, P21, DOI 10.1007/s11192-018-2961-x Shahid A, 2011, Australian Journal of Basic and Applied Sciences, V5, P1599 Small H, 2011, SCIENTOMETRICS, V87, P373, DOI 10.1007/s11192-011-0349-2 SMITH LC, 1981, LIBR TRENDS, V30, P83 SPIEGELROSING I, 1977, SOC STUD SCI, V7, P97, DOI 10.1177/030631277700700111 Sugiyama Kazunari, 2010, Proceedings of the 2010 International Conference on Information Retrieval and Knowledge Management (CAMP 2010), P67, DOI 10.1109/INFRKM.2010.5466945 Sula CA, 2014, LIT LINGUIST COMPUT, V29, P452, DOI 10.1093/llc/fqu019 Teufel S., 2006, P C EMP METH NAT LAN, DOI 10.3115/1610075.1610091 Valenzuela M., 2015, PROC WORKSHOPS 29 AA, P1 Wang MY, 2020, SCIENTOMETRICS, V125, P2109, DOI 10.1007/s11192-020-03677-1 Zhu XD, 2015, J ASSOC INF SCI TECH, V66, P408, DOI 10.1002/asi.23179 NR 40 TC 2 Z9 2 U1 9 U2 32 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 2169-3536 J9 IEEE ACCESS JI IEEE Access PY 2022 VL 10 BP 87990 EP 88000 DI 10.1109/ACCESS.2022.3199420 PG 11 WC Computer Science, Information Systems; Engineering, Electrical & Electronic; Telecommunications WE Science Citation Index Expanded (SCI-EXPANDED) SC Computer Science; Engineering; Telecommunications GA 4E9UC UT WOS:000848162600001 OA gold DA 2024-09-05 ER PT J AU Manogna, RL Anand, A AF Manogna, R. L. Anand, Aayush TI A bibliometric analysis on the application of deep learning in finance: status, development and future directions SO KYBERNETES LA English DT Article; Early Access DE Bibliometric analysis; Financial markets; Deep learning; Neural networks; Co-citation analysis; Keyword analysis ID NEURAL-NETWORKS; BANKRUPTCY PREDICTION; STATISTICAL ARBITRAGE; MARKET; SUPPORT; PERCEPTRON; OUTRANKING; SELECTION; RATIOS; MODEL AB PurposeDeep learning (DL) is a new and relatively unexplored field that finds immense applications in many industries, especially ones that must make detailed observations, inferences and predictions based on extensive and scattered datasets. The purpose of this paper is to answer the following questions: (1) To what extent has DL penetrated the research being done in finance? (2) What areas of financial research have applications of DL, and what quality of work has been done in the niches? (3) What areas still need to be explored and have scope for future research?Design/methodology/approachThis paper employs bibliometric analysis, a potent yet simple methodology with numerous applications in literature reviews. This paper focuses on citation analysis, author impacts, relevant and vital journals, co-citation analysis, bibliometric coupling and co-occurrence analysis. The authors collected 693 articles published in 2000-2022 from journals indexed in the Scopus database. Multiple software (VOSviewer, RStudio (biblioshiny) and Excel) were employed to analyze the data.FindingsThe findings reveal significant and renowned authors' impact in the field. The analysis indicated that the application of DL in finance has been on an upward track since 2017. The authors find four broad research areas (neural networks and stock market simulations; portfolio optimization and risk management; time series analysis and forecasting; high-frequency trading) with different degrees of intertwining and emerging research topics with the application of DL in finance. This article contributes to the literature by providing a systematic overview of the DL developments, trajectories, objectives and potential future research topics in finance.Research limitations/implicationsThe findings of this paper act as a guide for literature review for anyone interested in doing research in the intersection of finance and DL. The article also explores multiple areas of research that have yet to be studied to a great extent and have abundant scope.Originality/valueVery few studies have explored the applications of machine learning (ML), namely, DL in finance, which is a much more specialized subset of ML. The authors look at the problem from the aspect of different techniques in DL that have been used in finance. This is the first qualitative (content analysis) and quantitative (bibliometric analysis) assessment of current research on DL in finance. C1 [Manogna, R. L.; Anand, Aayush] Birla Inst Technol & Sci Pilani, Dept Econ & Finance, KK Birla Goa Campus, Zuarinagar, India. C3 Birla Institute of Technology & Science Pilani (BITS Pilani) RP Manogna, RL (corresponding author), Birla Inst Technol & Sci Pilani, Dept Econ & Finance, KK Birla Goa Campus, Zuarinagar, India. EM leshma2020@gmail.com OI R L, Manogna/0000-0002-8882-6434 CR Abdallah AH, 2016, AGRIC FINANCE REV, V76, P494, DOI 10.1108/AFR-05-2016-0052 Abdullaev B., 2023, Journal of Data Acquisition and Processing, V38, P461 Abiodun OI, 2018, HELIYON, V4, DOI 10.1016/j.heliyon.2018.e00938 Adomavicius G, 2005, IEEE T KNOWL DATA EN, V17, P734, DOI 10.1109/TKDE.2005.99 Alfaro E, 2008, DECIS SUPPORT SYST, V45, P110, DOI 10.1016/j.dss.2007.12.002 Alshater MM, 2023, J SUSTAIN FINANC INV, V13, P1131, DOI 10.1080/20430795.2021.1947116 Alshater MM, 2021, INT J ISLAMIC MIDDLE, V14, P339, DOI 10.1108/IMEFM-08-2020-0419 Altan A, 2019, CHAOS SOLITON FRACT, V126, P325, DOI 10.1016/j.chaos.2019.07.011 ALTMAN EI, 1968, J FINANC, V23, P589, DOI 10.2307/2978933 Aria M, 2017, J INFORMETR, V11, P959, DOI 10.1016/j.joi.2017.08.007 Atiya AF, 2001, IEEE T NEURAL NETWOR, V12, P929, DOI 10.1109/72.935101 Bao W, 2017, PLOS ONE, V12, DOI 10.1371/journal.pone.0180944 BEAVER WH, 1966, J ACCOUNTING RES, V4, P71, DOI 10.2307/2490171 Bengio Y, 2013, Arxiv, DOI arXiv:1308.3432 Bengio Yoshua, 2009, P ANN INT C MACH LEA, P41, DOI [10.1145/1553374.1553380, DOI 10.1145/1553374.1553380] Bhattacharyya S, 2011, DECIS SUPPORT SYST, V50, P602, DOI 10.1016/j.dss.2010.08.008 Blondel VD, 2008, J STAT MECH-THEORY E, DOI 10.1088/1742-5468/2008/10/P10008 Bollen J, 2011, J COMPUT SCI-NETH, V2, P1, DOI 10.1016/j.jocs.2010.12.007 Breiman L, 2001, MACH LEARN, V45, P5, DOI 10.1023/A:1010933404324 Cao J, 2019, PHYSICA A, V519, P127, DOI 10.1016/j.physa.2018.11.061 Cavalcante RC, 2016, EXPERT SYST APPL, V55, P194, DOI 10.1016/j.eswa.2016.02.006 Chen AS, 2004, COMPUT OPER RES, V31, P1049, DOI 10.1016/S0305-0548(03)00064-9 Chen AS, 2003, COMPUT OPER RES, V30, P901, DOI 10.1016/S0305-0548(02)00037-0 Cioffi R, 2020, SUSTAINABILITY-BASEL, V12, DOI 10.3390/su12020492 CORTES C, 1995, MACH LEARN, V20, P273, DOI 10.1023/A:1022627411411 Culkin R, 2017, J INVEST MANAG, V15, P92 CYBENKO G, 1989, J PARALLEL DISTR COM, V7, P279, DOI 10.1016/0743-7315(89)90021-X Cybenko G., 1989, Mathematics of Control, Signals, and Systems, V2, P303, DOI 10.1007/BF02551274 Deng L, 2013, IEEE INT NEW CIRC Bui DT, 2020, CATENA, V188, DOI 10.1016/j.catena.2019.104426 Dimitras AI, 1996, EUR J OPER RES, V90, P487, DOI 10.1016/0377-2217(95)00070-4 Ding Y, 2009, J AM SOC INF SCI TEC, V60, P2229, DOI 10.1002/asi.21171 Donthu N, 2021, J BUS RES, V133, P285, DOI 10.1016/j.jbusres.2021.04.070 Erhan D, 2010, J MACH LEARN RES, V11, P625 Fischer T, 2018, EUR J OPER RES, V270, P654, DOI 10.1016/j.ejor.2017.11.054 Geng RB, 2015, EUR J OPER RES, V241, P236, DOI 10.1016/j.ejor.2014.08.016 Glorot X., 2010, P 13 INT C ART INT S, P249 Gogas P, 2021, COMPUT ECON, V57, P1, DOI 10.1007/s10614-021-10094-w Goodell JW, 2023, INT REV FINANC ANAL, V85, DOI 10.1016/j.irfa.2022.102442 Goodell JW, 2021, J BEHAV EXP FINANC, V32, DOI 10.1016/j.jbef.2021.100577 Goyal K, 2021, INT J CONSUM STUD, V45, P80, DOI 10.1111/ijcs.12605 Guyon I., 2003, Journal of Machine Learning Research, V3, P1157, DOI 10.1162/153244303322753616 Hajek P., 2013, Engineering Applications of Neural Networks: 14th International Conference, EANN 2013, Halkidiki, Greece, Proceedings, Part II 14, P13 He KM, 2016, LECT NOTES COMPUT SC, V9908, P630, DOI 10.1007/978-3-319-46493-0_38 Heaton JB, 2017, APPL STOCH MODEL BUS, V33, P3, DOI 10.1002/asmb.2209 Hinton GE, 2006, SCIENCE, V313, P504, DOI 10.1126/science.1127647 Hochreiter S, 1997, NEURAL COMPUT, V9, P1735, DOI [10.1162/neco.1997.9.1.1, 10.1007/978-3-642-24797-2] HORNIK K, 1991, NEURAL NETWORKS, V4, P251, DOI 10.1016/0893-6080(91)90009-T Huang J, 2020, FRONT BUS RES CHINA, V14, DOI 10.1186/s11782-020-00082-6 Huang Z, 2004, DECIS SUPPORT SYST, V37, P543, DOI 10.1016/S0167-9236(03)00086-1 Huang ZH, 2015, Arxiv, DOI arXiv:1508.01991 Huck N, 2010, EUR J OPER RES, V207, P1702, DOI 10.1016/j.ejor.2010.06.043 Huck N, 2009, EUR J OPER RES, V196, P819, DOI 10.1016/j.ejor.2008.03.025 Ioffe S, 2015, PR MACH LEARN RES, V37, P448 Jarraya SK, 2020, IEEE ACCESS, V8, P26612, DOI 10.1109/ACCESS.2020.2970979 Kan R, 1999, J FINANC, V54, P203, DOI 10.1111/0022-1082.00102 Karasu S, 2020, ENERGY, V212, DOI 10.1016/j.energy.2020.118750 Kraus M, 2017, DECIS SUPPORT SYST, V104, P38, DOI 10.1016/j.dss.2017.10.001 Kraus S, 2020, INT ENTREP MANAG J, V16, P1023, DOI 10.1007/s11365-020-00635-4 Krauss C, 2017, J ECON SURV, V31, P513, DOI 10.1111/joes.12153 Krauss C, 2017, EUR J OPER RES, V259, P689, DOI 10.1016/j.ejor.2016.10.031 Krizhevsky A, 2017, COMMUN ACM, V60, P84, DOI 10.1145/3065386 Kumar PR, 2007, EUR J OPER RES, V180, P1, DOI 10.1016/j.ejor.2006.08.043 Laurent P., 2015, Intelligent automation entering the business world Lecun Y, 1998, P IEEE, V86, P2278, DOI 10.1109/5.726791 LeCun Y, 2015, NATURE, V521, P436, DOI 10.1038/nature14539 Linnenluecke MK, 2020, AUST J MANAGE, V45, P175, DOI 10.1177/0312896219877678 Liu B., 2012, SYNLECT HUM LANG TEC, V5, P1, DOI [10.2200/S00416ED1V01Y201204HLT016, DOI 10.2200/S00416ED1V01Y201204HLT016] Liu Y, 2005, J OPER RES SOC, V56, P1099, DOI 10.1057/palgrave.jors.2601976 Manogna RL, 2023, J MODEL MANAG, V18, P190, DOI 10.1108/JM2-04-2021-0104 Manogna RL, 2022, INT J SOC ECON, V49, P73, DOI 10.1108/IJSE-05-2021-0254 Manogna R, 2022, MEAS BUS EXCELL, V26, P288, DOI 10.1108/MBE-05-2020-0073 Manogna RL, 2021, INT J INOV SCI, V13, P233, DOI 10.1108/IJIS-07-2020-0104 Manogna RL, 2021, INTELL SYST ACCOUNT, V28, P72, DOI 10.1002/isaf.1487 Manogna RL, 2021, REV INT BUS STRATEGY, V31, P540, DOI 10.1108/RIBS-07-2020-0077 Manogna RL, 2022, INT J FINANC ECON, V27, P4244, DOI 10.1002/ijfe.2369 Manogna RL, 2021, J AGRIBUS DEV EMERG, V11, P506, DOI 10.1108/JADEE-07-2020-0156 Manogna RL, 2021, REV INT BUS STRATEGY, V31, P1, DOI 10.1108/RIBS-05-2020-0058 Manogna RL, 2021, J STRATEGY MANAG, V14, P50, DOI 10.1108/JSMA-12-2019-0210 Manogna RL, 2020, J AGRIBUS DEV EMERG, V10, P447, DOI 10.1108/JADEE-10-2019-0175 MOED HF, 1985, RES POLICY, V14, P131, DOI 10.1016/0048-7333(85)90012-5 Molina-García A, 2023, REV MANAG SCI, V17, P787, DOI 10.1007/s11846-022-00556-2 Navamani TM, 2019, DEEP LEARNING AND PARALLEL COMPUTING ENVIRONMENT FOR BIOENGINEERING SYSTEMS, P123, DOI 10.1016/B978-0-12-816718-2.00014-2 Olafsson S, 2008, EUR J OPER RES, V187, P1429, DOI 10.1016/j.ejor.2006.09.023 Oztekin A, 2016, EUR J OPER RES, V253, P697, DOI 10.1016/j.ejor.2016.02.056 Paltrinieri A., 2019, International Review of Economics and Finance, P10 Pang XW, 2020, J SUPERCOMPUT, V76, P2098, DOI 10.1007/s11227-017-2228-y Pinaya W.H.L., 2023, Machine Learning, P173 PRITCHARD A, 1969, J DOC, V25, P348 Qiu MY, 2016, CHAOS SOLITON FRACT, V85, P1, DOI 10.1016/j.chaos.2016.01.004 ROSENBLATT F, 1958, PSYCHOL REV, V65, P386, DOI 10.1037/h0042519 RUMELHART DE, 1986, NATURE, V323, P533, DOI 10.1038/323533a0 Saeed U, 2021, IEEE SENS J, V21, P20833, DOI 10.1109/JSEN.2021.3096641 Schmidhuber J, 2015, NEURAL NETWORKS, V61, P85, DOI 10.1016/j.neunet.2014.09.003 Sermpinis G, 2013, EUR J OPER RES, V225, P528, DOI 10.1016/j.ejor.2012.10.020 Srivastava N., 2014, Tropical Plant Research, V1, P11 van Eck NJ, 2010, SCIENTOMETRICS, V84, P523, DOI 10.1007/s11192-009-0146-3 Weiss G, 2018, PROCEEDINGS OF THE 56TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, VOL 2, P740 White H., 1988, IEEE International Conference on Neural Networks (IEEE Cat. No.88CH2632-8), P451, DOI 10.1109/ICNN.1988.23959 WILSON RL, 1994, DECIS SUPPORT SYST, V11, P545, DOI 10.1016/0167-9236(94)90024-8 Wong BK, 2000, COMPUT OPER RES, V27, P1045, DOI 10.1016/S0305-0548(99)00142-2 Xiong T, 2015, INFORM SCIENCES, V305, P77, DOI 10.1016/j.ins.2015.01.029 Yu Y, 2019, NEURAL COMPUT, V31, P1235, DOI 10.1162/neco_a_01199 NR 103 TC 7 Z9 7 U1 8 U2 17 PU EMERALD GROUP PUBLISHING LTD PI Leeds PA Floor 5, Northspring 21-23 Wellington Street, Leeds, W YORKSHIRE, ENGLAND SN 0368-492X EI 1758-7883 J9 KYBERNETES JI Kybernetes PD 2023 OCT 12 PY 2023 DI 10.1108/K-04-2023-0637 EA OCT 2023 PG 21 WC Computer Science, Cybernetics WE Science Citation Index Expanded (SCI-EXPANDED) SC Computer Science GA U0IS3 UT WOS:001081735000001 DA 2024-09-05 ER PT J AU Melnikova, EV AF Melnikova, E. V. TI Relevance of Application of Artificial Intelligence Toolkit in Modern Scientometric Research SO SCIENTIFIC AND TECHNICAL INFORMATION PROCESSING LA English DT Article DE scientometry; monitoring of scientific research; effectiveness of science; artificial intelligence; neural networks; deep learning; machine learning; representation learning; unsupervised learning AB The main tasks of modern scientometrics are considered, including monitoring the effectiveness of science, and the possibility of solving them with the use of high-performance artificial intelligence tools is analyzed. The characteristics of artificial intelligence as a branch of computer science are presented, and the contribution of neuroinformatics to its development is noted. The common features and differences of the main types of machine learning developed to date are considered: classical, deep, hybrid, and automatic learning. The features of the functioning of artificial neural networks are presented, including their internal structure, order of operation, distinctive features, areas, and conditions of application. Examples of the practical use of artificial intelligence tools in modern scientometric research are given: central attention is paid to the advanced developments of the Indian scientific school. The urgently demanded method of article-by-article classification of scientific literature, as proposed by Arab scientists, is also outlined. A conclusion is drawn about the great importance of artificial intelligence and the relevance of its application for the implementation of new opportunities in optimizing scientometric research. C1 [Melnikova, E. V.] Russian Acad Sci, All Russian Inst Sci & Tech Informat, Dept Theoret & Appl Problems Informat, Moscow, Russia. C3 Russian Academy of Sciences; Institute for Scientific & Technical Information of the Russian Academy of Sciences RP Melnikova, EV (corresponding author), Russian Acad Sci, All Russian Inst Sci & Tech Informat, Dept Theoret & Appl Problems Informat, Moscow, Russia. EM verden.mel@yandex.ru CR Chollet F., 2018, Astrophys. Source Code Libr. ascl:1806.022 Daradkeh M, 2022, ELECTRONICS-SWITZ, V11, DOI 10.3390/electronics11132066 Eykens J, 2021, QUANT SCI STUD, V2, P89, DOI 10.1162/qss_a_00106 Gilyarevskii R.S., 2022, Scientific Metrics in Science Journalism: A Course of Lectures Goodfellow Ian B., 2018, Deep Learning Huang H, 2022, SCIENTOMETRICS, V127, P5257, DOI 10.1007/s11192-021-04183-8 Institute of Neuroinformatics Zurich, ABOUT US LeCun Y, 2015, NATURE, V521, P436, DOI 10.1038/nature14539 Melnikova EV, 2023, SCI TECH INF PROCESS, V50, P114, DOI 10.3103/S0147688223020089 Melnikova EV, 2023, SCI TECH INF PROCESS, V50, P53, DOI 10.3103/S0147688223010082 Melnikova E.V., 2022, Naukosfera, P202 Microsoft Corporation, 2022, Deep Learning vs. Machine Learning Ozcan S, 2022, IEEE T ENG MANAGE, V69, P3023, DOI 10.1109/TEM.2020.3027973 Rawat, 2021, QUAL QUANTITY, V55, P1371, DOI [DOI 10.1007/S11135-020-01061-Y, 10.1007/s11135-020-01061-y] Shraiberg Ya.L., 2010, Biblioteka, P21 Srinivasa G, 2019, J SCIENTOMETR RES, V8, pS39, DOI 10.5530/jscires.8.2.23 Wook M, 2021, J BIG DATA-GER, V8, DOI 10.1186/s40537-021-00439-5 NR 17 TC 0 Z9 0 U1 2 U2 2 PU PLEIADES PUBLISHING INC PI NEW YORK PA PLEIADES HOUSE, 7 W 54 ST, NEW YORK, NY, UNITED STATES SN 0147-6882 EI 1934-8118 J9 SCI TECH INF PROCESS JI Sci. Tech. Inf. Process. PD MAR PY 2024 VL 51 IS 1 BP 57 EP 63 DI 10.3103/S014768822401009X PG 7 WC Information Science & Library Science WE Emerging Sources Citation Index (ESCI) SC Information Science & Library Science GA RK4R2 UT WOS:001227549600008 DA 2024-09-05 ER PT J AU Xu, C Zong, QJ AF Xu, Chuer Zong, Qianjin TI The effects of international research collaboration on the policy impact of research: A causal inference drawing on the journal Lancet SO JOURNAL OF INFORMATION SCIENCE LA English DT Article; Early Access DE Causal inference; international research collaboration; policy citation counts; policy impact ID PROPENSITY SCORE; SCIENTIFIC COLLABORATION; CITATION; SCIENCE; DOCUMENTS AB Research findings have been widely used as evidence for policy-making. The internationalisation of research activities has been increasing in recent decades, particularly during the COVID-19 pandemic. Previous studies have revealed that international research collaboration can enhance the academic impact of research. However, the effects that international research collaboration exerts on the policy impact of research are still unknown. This study aims to examine the effects of international research collaboration on the policy impact of research (as measured by the number of citations in policy documents) using a causal inference approach. Research articles published by the journal Lancet between 2000 and 2019 were selected as the study sample (n = 6098). The number of policy citations of each article was obtained from Overton, the largest database of policy citations. Propensity score matching analysis, which takes a causal inference approach, was used to examine the dataset. Four other matching methods and alternative datasets of different sizes were used to test the robustness of the results. The results of this study reveal that international research collaboration has significant and positive effects on the policy impact of research (coefficient = 4.323, p < 0.001). This study can provide insight to researchers, research institutions and grant funders for improving the policy impact of research. C1 [Xu, Chuer; Zong, Qianjin] South China Normal Univ, Sch Econ & Management, Guangzhou 510006, Peoples R China. C3 South China Normal University RP Zong, QJ (corresponding author), South China Normal Univ, Sch Econ & Management, Guangzhou 510006, Peoples R China. EM zongqj@m.scnu.edu.cn RI Zong, Qianjin/ABD-0454-2022 OI Zong, Qianjin/0000-0002-7517-8191 CR Airoldi G, 2021, HIST PHIL LIFE SCI, V43, DOI 10.1007/s40656-021-00419-1 Akobeng AK, 2005, ARCH DIS CHILD, V90, P840, DOI 10.1136/adc.2004.058222 AL-Aqeel S, 2020, RES SOC ADMIN PHARM, V16, P1513, DOI 10.1016/j.sapharm.2020.05.019 Arbour D., 2014, CEUR WORKSH P, V1, P25 Austin PC, 2019, STAT MED, V38, P751, DOI 10.1002/sim.8008 Austin PC, 2011, MULTIVAR BEHAV RES, V46, P399, DOI 10.1080/00273171.2011.568786 Baek S, 2015, KOREAN J RADIOL, V16, P286, DOI 10.3348/kjr.2015.16.2.286 Bornmann L, 2016, SCIENTOMETRICS, V109, P1477, DOI 10.1007/s11192-016-2115-y Cartwright N, 2010, PHILOS STUD, V147, P59, DOI 10.1007/s11098-009-9450-2 Cheng X, 2021, HEALTH RES POLICY SY, V19, DOI 10.1186/s12961-021-00770-6 Da Silva S., FAST SLOW CAUSAL INF Drew CH, 2016, SCIENTOMETRICS, V106, P987, DOI 10.1007/s11192-015-1828-7 Glänzel W, 2001, SCIENTOMETRICS, V50, P199, DOI 10.1023/A:1010561321723 Goldfinch S, 2003, SCIENTOMETRICS, V57, P321, DOI 10.1023/A:1025048516769 GOV.UK, 2020, SCI EV SUPP GOV RESP Haunschild R, 2017, SCIENTOMETRICS, V110, P1209, DOI 10.1007/s11192-016-2237-2 Hayati Z, 2010, LIBR HI TECH, V28, P433, DOI 10.1108/07378831011076675 Head BW, 2013, AUST J PUBL ADMIN, V72, P397, DOI 10.1111/1467-8500.12037 Hsiehchen D, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0130930 Huang ZH, 2022, SCIENTOMETRICS, V127, P6453, DOI 10.1007/s11192-022-04532-1 Kato M, 2017, SCIENTOMETRICS, V110, P673, DOI 10.1007/s11192-016-2183-z Kwiek M, 2021, STUD HIGH EDUC, V46, P2629, DOI 10.1080/03075079.2020.1749254 Barrantes BSL, 2012, J AM SOC INF SCI TEC, V63, P481, DOI 10.1002/asi.21682 Lee Suk Jeong, 2007, Taehan Kanho Hakhoe Chi, V37, P414 Li MX, 2013, ORGAN RES METHODS, V16, P188, DOI 10.1177/1094428112447816 Marginson S, 2022, COMP EDUC, V58, P125, DOI 10.1080/03050068.2021.1981725 Markovic-Denic L, 2022, FRONT PUBLIC HEALTH, V10, DOI 10.3389/fpubh.2022.1056670 McMurry TL, 2015, J THORAC CARDIOV SUR, V150, P14, DOI 10.1016/j.jtcvs.2015.03.057 NARIN F, 1991, SCIENTOMETRICS, V21, P313, DOI 10.1007/BF02093973 Newson R, 2018, HEALTH RES POLICY SY, V16, DOI [10.1186/s12961-018-0326-9, 10.1186/s12961-018-0310-4] Payumo J, 2017, SCIENTOMETRICS, V111, P1657, DOI 10.1007/s11192-017-2313-2 Pocock S, 2013, EUR HEART J, V34, P1846, DOI 10.1093/eurheartj/eht071 Ritter A, 2013, INT J DRUG POLICY, V24, P30, DOI 10.1016/j.drugpo.2012.02.005 Ronda-Pupo GA, 2016, SCIENTOMETRICS, V107, P1423, DOI 10.1007/s11192-016-1939-9 ROSENBAUM PR, 1983, BIOMETRIKA, V70, P41, DOI 10.1093/biomet/70.1.41 Schmoch U, 2008, SCIENTOMETRICS, V74, P361, DOI 10.1007/s11192-007-1818-5 Schnake-Mahl AS, 2022, SOC SCI MED, V314, DOI 10.1016/j.socscimed.2022.115444 Sooryamoorthy R, 2009, SCIENTOMETRICS, V81, P177, DOI 10.1007/s11192-009-2126-z Tang M, 2019, BRIT J CANCER, V121, P515, DOI 10.1038/s41416-019-0532-4 Trapero-Bertran M, 2022, HEALTH RES POLICY SY, V20, DOI 10.1186/s12961-022-00875-6 Velez-Estevez A, 2022, SCIENTOMETRICS, V127, P7517, DOI 10.1007/s11192-022-04486-4 World Health Organization, 2015, Guidelines for the treatment of malaria, V3rd ed, DOI DOI 10.1021/CB300454T Wu JQ, 2022, NAT MACH INTELL, V4, P436, DOI 10.1038/s42256-022-00470-y Wu LY, 2023, J INF SCI, V49, P911, DOI 10.1177/01655515211030866 Yamey Gavin, 2011, Evid Based Med, V16, P97, DOI 10.1136/ebm.2011.100060 Yin Y, 2021, SCIENCE, V371, P128, DOI 10.1126/science.abe3084 Zhang ZH, 2019, ANN TRANSL MED, V7, DOI 10.21037/atm.2018.12.10 Zhe C, 2021, SAGE OPEN, V11, DOI 10.1177/21582440211050381 Zhou P, 2010, SCIENTOMETRICS, V82, P597, DOI 10.1007/s11192-010-0174-z Zong QJ, 2020, SCIENTOMETRICS, V125, P607, DOI 10.1007/s11192-020-03545-y NR 50 TC 2 Z9 2 U1 14 U2 43 PU SAGE PUBLICATIONS LTD PI LONDON PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND SN 0165-5515 EI 1741-6485 J9 J INF SCI JI J. Inf. Sci. PD 2023 MAY 11 PY 2023 DI 10.1177/01655515231174381 EA MAY 2023 PG 11 WC Computer Science, Information Systems; Information Science & Library Science WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Computer Science; Information Science & Library Science GA F8UE2 UT WOS:000985034900001 DA 2024-09-05 ER PT J AU Kilicoglu, H Peng, ZS Tafreshi, S Tran, T Rosemblat, G Schneider, J AF Kilicoglu, Halil Peng, Zeshan Tafreshi, Shabnam Tung Tran Rosemblat, Graciela Schneider, Jodi TI Confirm or refute?: A comparative study on citation sentiment classification in clinical research publications SO JOURNAL OF BIOMEDICAL INFORMATICS LA English DT Article DE Citation analysis; Sentiment analysis; Natural language processing; Supervised machine learning; Neural networks ID SCIENCE; IMPACT AB Quantifying scientific impact of researchers and journals relies largely on citation counts, despite the acknowledged limitations of this approach. The need for more suitable alternatives has prompted research into developing advanced metrics, such as h-index and Relative Citation Ratio (RCR), as well as better citation categorization schemes to capture the various functions that citations serve in a publication. One such scheme involves citation sentiment whether a reference paper is cited positively (agreement with the findings of the reference paper), negatively (disagreement), or neutrally. The ability to classify citation function in this manner can be viewed as a first step toward a more fine-grained bibliometrics. In this study, we compared several approaches, varying in complexity, for classification of citation sentiment in clinical trial publications. Using a corpus of 285 discussion sections from as many publications (a total of 4,182 citations), we developed a rule-based method as well as supervised machine learning models based on support vector machines (SVM) and two variants of deep neural networks; namely, convolutional neural network (CNN) and bidirectional long shortterm memory (BiLSTM). A CNN model augmented with hand-crafted features yielded the best performance (0.882 accuracy and 0.721 macro-F-1 on held-out set). Our results show that baseline performances of traditional supervised learning algorithms and deep neural network architectures are similar and that hand-crafted features based on sentiment dictionaries and rhetorical structure allow neural network approaches to outperform traditional machine learning approaches for this task. We make the rule-based method and the best-performing neural network model publicly available at: https://github.com/kilicogluh/clinical-citation-sentiment. C1 [Kilicoglu, Halil; Peng, Zeshan; Rosemblat, Graciela] Natl Lib Med, Lister Hill Natl Ctr Biomed Commun, Bethesda, MD 20894 USA. [Tafreshi, Shabnam] George Washington Univ, Dept Comp Sci, Washington, DC 20052 USA. [Tung Tran] Univ Kentucky, Dept Comp Sci, Lexington, KY 40506 USA. [Schneider, Jodi] Univ Illinois, Sch Informat Sci, Champaign, IL 61820 USA. C3 National Institutes of Health (NIH) - USA; NIH National Library of Medicine (NLM); George Washington University; University of Kentucky; University of Illinois System; University of Illinois Urbana-Champaign RP Kilicoglu, H (corresponding author), Natl Lib Med, Lister Hill Natl Ctr Biomed Commun, Bethesda, MD 20894 USA. EM kilicogluh@mail.nih.gov RI Schneider, Jodi/AAK-2236-2020; Tafreshi, Shabnam/GXV-9636-2022 OI Schneider, Jodi/0000-0002-5098-5667; FU U.S. National Library of Medicine, National Institutes of Health FX HK, ZP, and GR were supported by the intramural research program at the U.S. National Library of Medicine, National Institutes of Health. ST and TT took part in this study during their participation in the Lister Hill National Center for Biomedical Communications (LHNCBC) Research Program in Medical Informatics for Graduate students at the U.S. National Library of Medicine. JS was supported by an appointment to the NLM Research Participation Program, administered by the Oak Ridge Institute for Science and Education through an interagency agreement between the U.S. Department of Energy and the National Library of Medicine Research Participation Program. CR Abu-Jbara A., 2013, NAACL, P596 Abu-Jbara Amjad., 2012, NAACL-HLT, P80 Agarwal Shashank, 2010, AMIA Annu Symp Proc, V2010, P11 [Anonymous], 2014, U CAMBRIDGE COMPUTER [Anonymous], 2012, 2012 Conference of the North American Chapter of the Association for Computational Linguistics [Anonymous], ARXIV151003820 [Anonymous], ARXIV14042188 [Anonymous], 1997, BMJ [Anonymous], 2016, TRAIN GOOD WORD EMBE, DOI [10.18653/v1/w16-2922, DOI 10.18653/V1/W16-2922] Athar A., 2011, P ACL 2011 STUD SESS, P81 Egghe L, 2006, SCIENTOMETRICS, V69, P131, DOI 10.1007/s11192-006-0144-7 ELMAN JL, 1990, COGNITIVE SCI, V14, P179, DOI 10.1207/s15516709cog1402_1 Fan RE, 2008, J MACH LEARN RES, V9, P1871 GARFIELD E, 1972, SCIENCE, V178, P471, DOI 10.1126/science.178.4060.471 Goldberg Y, 2017, Neural network methods for natural language processing, V10, P1, DOI [DOI 10.1007/978-3-031-02165-7, 10.1007/978-3-031-02165-7, 10.2200/S00762ED1V01Y201703HLT037, DOI 10.2200/S00762ED1V01Y201703HLT037] Greenberg Steven A, 2009, BMJ, V339, pb2680, DOI 10.1136/bmj.b2680 Hernández-Alvarez M, 2017, NAT LANG ENG, V23, P561, DOI 10.1017/S1351324916000346 Hernández-Alvarez M, 2016, NAT LANG ENG, V22, P327, DOI 10.1017/S1351324915000388 Hirsch JE, 2005, P NATL ACAD SCI USA, V102, P16569, DOI 10.1073/pnas.0507655102 Hochreiter S, 1997, NEURAL COMPUT, V9, P1735, DOI [10.1162/neco.1997.9.1.1, 10.1007/978-3-642-24797-2] Hutchins BI, 2016, PLOS BIOL, V14, DOI 10.1371/journal.pbio.1002541 Jia M., 2018, THESIS Kavuluru R, 2017, 2017 IEEE INTERNATIONAL CONFERENCE ON HEALTHCARE INFORMATICS (ICHI), P5, DOI 10.1109/ICHI.2017.15 Kim Y., 2014, C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS Krizhevsky A, 2017, COMMUN ACM, V60, P84, DOI 10.1145/3065386 Lecun Y, 1998, P IEEE, V86, P2278, DOI 10.1109/5.726791 Levy O, 2014, PROCEEDINGS OF THE 52ND ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, VOL 2, P302, DOI 10.3115/v1/p14-2050 Liu XY, 2009, IEEE T SYST MAN CY B, V39, P539, DOI 10.1109/TSMCB.2008.2007853 Manning CD, 2014, PROCEEDINGS OF 52ND ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS: SYSTEM DEMONSTRATIONS, P55, DOI 10.3115/v1/p14-5010 Mikolov T., 2013, ADV NEURAL INFORM PR, P3111, DOI DOI 10.48550/ARXIV.1310.4546 Mikolov T., 2013, ArXiv13013781 Cs, P1 MORAVCSIK MJ, 1975, SOC STUD SCI, V5, P86, DOI 10.1177/030631277500500106 OSeaghdha D., 2014, P 25 INT C COMP LING, P2 Qazvinian V, 2010, ACL 2010: 48TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, P555 RADEV DR, 2009, P ACL WORKSH NAT LAN SPIEGELROSING I, 1977, SOC STUD SCI, V7, P97, DOI 10.1177/030631277700700111 SWALES J, 1986, APPL LINGUIST, V7, P39, DOI 10.1093/applin/7.1.39 Tang Duyu, 2015, P C EMP METH NAT LAN, P1422, DOI [10.18653/v1/D15-1167, DOI 10.18653/V1/D15-1167] Teufel S., 2006, P 7 SIGDIAL WORKSHOP, P80, DOI [10.3115/1654595.1654612, DOI 10.3115/1654595.1654612] Teufel S., 2006, P C EMP METH NAT LAN, DOI 10.3115/1610075.1610091 Teufel S., 2010, STRUCTURE SCI ARTICL Waltman L, 2016, J INFORMETR, V10, P365, DOI 10.1016/j.joi.2016.02.007 Xu Jun, 2015, AMIA Annu Symp Proc, V2015, P1334 Yin W., CORR Yu Bei., 2013, P 76 ASIST ANN M CLO, P1, DOI [10.1002/meet.14505001084, DOI 10.1002/MEET.14505001084] Zhang G, 2013, J AM SOC INF SCI TEC, V64, P1490, DOI 10.1002/asi.22850 Zhu X., CORR NR 47 TC 14 Z9 17 U1 3 U2 34 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 1532-0464 EI 1532-0480 J9 J BIOMED INFORM JI J. Biomed. Inform. PD MAR PY 2019 VL 91 AR 103123 DI 10.1016/j.jbi.2019.103123 PG 11 WC Computer Science, Interdisciplinary Applications; Medical Informatics WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Computer Science; Medical Informatics GA LC9XS UT WOS:000525688200006 PM 30753947 OA Green Accepted DA 2024-09-05 ER PT J AU Deng, GF Lin, WT AF Deng, Guang-Feng Lin, Woo-Tsong TI Citation analysis and bibliometric approach for ant colony optimization from 1996 to 2010 SO EXPERT SYSTEMS WITH APPLICATIONS LA English DT Article DE Citation analysis; Bibliometric analysis; Ant colony optimization (ACO); Bradford Law; Lotka's Law ID QUADRATIC ASSIGNMENT PROBLEM; SYSTEM; ALGORITHMS AB To build awareness of the development of ant colony optimization (ACO), this study clarifies the citation and bibliometric analysis of research publications of ACO during 1996-2010. This study analysed 12,960 citations from a total of 1372 articles dealing with ACO published in 517 journals based on the databases of SCIE, SSCI and AH&CI, retrieved via the Web of Science. Bradford Law and Lotka's Law, respectively, examined the distribution of journal articles and author productivity. Furthermore, this study determines the citation impact of ACO using parameters such as extent of citation received in terms of number of citations per study, distribution of citations over time, distribution of citations among domains, citation of authors, citation of institutions, highly cited papers and citing journals and impact factor of 12,960 citations. This study can help researchers to better understand the history, current status and trends of ACO in the advanced study of it. (C) 2011 Elsevier I.td. All rights reserved. C1 [Deng, Guang-Feng; Lin, Woo-Tsong] Natl Chengchi Univ, Dept Management Informat Syst, Taipei 116, Taiwan. C3 National Chengchi University RP Deng, GF (corresponding author), Natl Chengchi Univ, Dept Management Informat Syst, 64,Sec 2,Chihnan Rd, Taipei 116, Taiwan. EM deng@nccu.edu.tw; lin@mis.nccu.edu.tw RI Deng, Guang-Feng/HNS-1201-2023 CR Abdallah H, 2009, EXPERT SYST APPL, V36, P10004, DOI 10.1016/j.eswa.2008.12.064 Blum C, 2003, ACM COMPUT SURV, V35, P268, DOI 10.1145/937503.937505 Bullnheimer B, 1999, ANN OPER RES, V89, P319, DOI 10.1023/A:1018940026670 Costa D, 1997, J OPER RES SOC, V48, P295, DOI 10.1057/palgrave.jors.2600357 Deng GF, 2011, EXPERT SYST APPL, V38, P5787, DOI 10.1016/j.eswa.2010.10.053 Dorigo M, 2005, THEOR COMPUT SCI, V344, P243, DOI 10.1016/j.tcs.2005.05.020 Dorigo M, 1997, BIOSYSTEMS, V43, P73, DOI 10.1016/S0303-2647(97)01708-5 Dorigo M, 1999, ARTIF LIFE, V5, P137, DOI 10.1162/106454699568728 Dorigo M, 1996, IEEE T SYST MAN CY B, V26, P29, DOI 10.1109/3477.484436 Dorigo M, 2006, IEEE COMPUT INTELL M, V1, P28, DOI 10.1109/MCI.2006.329691 Gambardella LM, 1999, J OPER RES SOC, V50, P167, DOI 10.2307/3010565 Gutjahr WJ, 2000, FUTURE GENER COMP SY, V16, P873, DOI 10.1016/S0167-739X(00)00044-3 Maniezzo V, 1999, IEEE T KNOWL DATA EN, V11, P769, DOI 10.1109/69.806935 Merkle D, 2002, IEEE T EVOLUT COMPUT, V6, P333, DOI 10.1109/TEVC.2002.802450 Mishra PN, 2010, MALAYS J LIBR INF SC, V15, P91 Rajendran C, 2004, EUR J OPER RES, V155, P426, DOI 10.1016/S0377-2217(02)00908-6 Shiau WL, 2011, EXPERT SYST APPL, V38, P3999, DOI 10.1016/j.eswa.2010.09.061 Stützle T, 2000, FUTURE GENER COMP SY, V16, P889, DOI 10.1016/S0167-739X(00)00043-1 Takeda Y, 2009, SCIENTOMETRICS, V78, P543, DOI 10.1007/s11192-007-2012-5 Tsay MY, 2000, SCIENTOMETRICS, V49, P491, DOI 10.1023/A:1010593824716 NR 20 TC 21 Z9 23 U1 1 U2 33 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0957-4174 J9 EXPERT SYST APPL JI Expert Syst. Appl. PD MAY PY 2012 VL 39 IS 6 BP 6229 EP 6237 DI 10.1016/j.eswa.2011.12.001 PG 9 WC Computer Science, Artificial Intelligence; Engineering, Electrical & Electronic; Operations Research & Management Science WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Computer Science; Engineering; Operations Research & Management Science GA 902BN UT WOS:000301013700013 DA 2024-09-05 ER PT J AU Gupta, G Katarya, R AF Gupta, Garima Katarya, Rahul TI Research on Understanding the Effect of Deep Learning on User Preferences SO ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING LA English DT Article DE Recommender systems; Machine learning; Deep learning ID RECOMMENDER SYSTEMS; NETWORKS AB Recommender systems are becoming more essential than ever as the data available online is increasing manifold. The increasing data presents us with an opportunity to build complex systems that can model the user interactions more accurately and extract sophisticated features to provide recommendations with better accuracy. To construct these complex models, deep learning is emerging as one of the most powerful tools. It can process large amounts of data to learn the structure and patterns that can be exploited. It has been used in recommender systems to solve cold-start problem, better estimate the interaction functions, and extract deep feature representations, among other facets that plague the traditional recommender systems. As big data is becoming more prevalent, there is a need to use tools that can take advantage of such explosive data. An extensive study on recommender systems using deep learning has been performed in the paper. The literature review spans in-depth analysis and comparative study of the research domain. The paper exhibits a vast range of scope for efficient recommender systems in future. C1 [Gupta, Garima; Katarya, Rahul] Delhi Technol Univ, Dept Comp Sci & Engn, Delhi 110042, India. C3 Delhi Technological University RP Katarya, R (corresponding author), Delhi Technol Univ, Dept Comp Sci & Engn, Delhi 110042, India. EM garimacsdtu@gmail.com; rahulkatarya@dtu.ac.in OI Katarya, Prof. Rahul/0000-0001-7763-291X CR Ahamed M. T., 2019, 2nd Int Conf Electr Comput Commun Eng ECCE, P1 Almahairi A., 2015, P 9 ACM C REC SYST, P147, DOI [DOI 10.1145/2792838.2800192, 10.1145/2792838.2800192] [Anonymous], 2016, P 1 WORKSH DEEP LEAR [Anonymous], 2017, PATTERN RECOGN LETT [Anonymous], 2016, 1 WORKSHOP DEEP LEAR, DOI [DOI 10.1145/2988450.2988451, 10.1145/2988450.2988451] [Anonymous], 2014, COLLABORATIVE DEEP L, DOI DOI 10.1145/2783258.2783273 [Anonymous], 2008, SciencesNew York, DOI 10.1.1.146.2352 [Anonymous], 2017, COMPREHENSIVE QUALIT Bai T, 2017, CIKM'17: PROCEEDINGS OF THE 2017 ACM CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, P1979, DOI 10.1145/3132847.3133083 Bansal T, 2016, PROCEEDINGS OF THE 10TH ACM CONFERENCE ON RECOMMENDER SYSTEMS (RECSYS'16), P107, DOI 10.1145/2959100.2959180 Bobadilla J, 2020, APPL SCI-BASEL, V10, DOI 10.3390/app10072441 Cao SX, 2017, 2017 16TH IEEE/ACIS INTERNATIONAL CONFERENCE ON COMPUTER AND INFORMATION SCIENCE (ICIS 2017), P721 Catherine R, 2017, PROCEEDINGS OF THE ELEVENTH ACM CONFERENCE ON RECOMMENDER SYSTEMS (RECSYS'17), P288, DOI 10.1145/3109859.3109878 Chatzis SotiriosP., 2017, DLRS RECSYS, P38 Chen WJ, 2017, 2017 2ND IEEE INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND APPLICATIONS (ICCIA), P275, DOI 10.1109/CIAPP.2017.8167222 Chen XL, 2017, INT CONF COMP SCI ED, P769, DOI 10.1109/ICCSE.2017.8085597 Cheng Heng-Tze, 2016, 1 WORKSH DEEP LEARN, P7 Chiliguano P, 2016, INT CONF ACOUST SPEE, P2618, DOI 10.1109/ICASSP.2016.7472151 Covington P, 2016, PROCEEDINGS OF THE 10TH ACM CONFERENCE ON RECOMMENDER SYSTEMS (RECSYS'16), P191, DOI 10.1145/2959100.2959190 Cui Hongliang, 2015, 2015 IEEE International Conferences on Computer and Information Technology; Ubiquitous Computing and Communications; Dependable, Autonomic and Secure Computing; and Pervasive Intelligence and Computing (CIT/IUCC/DASC/PICOM). Proceedings, P1016, DOI 10.1109/CIT/IUCC/DASC/PICOM.2015.154 Da'u A, 2020, INFORM SCIENCES, V512, P1279, DOI 10.1016/j.ins.2019.10.038 Da'u A, 2020, EXPERT SYST APPL, V140, DOI 10.1016/j.eswa.2019.112871 Da'u A, 2019, IEEE ACCESS, V7, P45472, DOI 10.1109/ACCESS.2019.2907729 Deng SG, 2017, IEEE T NEUR NET LEAR, V28, P1164, DOI 10.1109/TNNLS.2016.2514368 Deng XY, 2019, IEEE ACCESS, V7, P55679, DOI 10.1109/ACCESS.2019.2913468 Dominguez V., 2017, Proceedings of the 2nd workshop on deep learning for recommender systems p, P55, DOI DOI 10.1145/3125486.3125495DOI.ORG/10.1145/3125486.3125495 Dong X, 2017, AAAI CONF ARTIF INTE, P1309 Donkers T, 2017, PROCEEDINGS OF THE ELEVENTH ACM CONFERENCE ON RECOMMENDER SYSTEMS (RECSYS'17), P152, DOI 10.1145/3109859.3109877 Ebesu T, 2017, SIGIR'17: PROCEEDINGS OF THE 40TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, P1093, DOI 10.1145/3077136.3080730 Elkahky A, 2015, PROCEEDINGS OF THE 24TH INTERNATIONAL CONFERENCE ON WORLD WIDE WEB (WWW 2015), P278, DOI 10.1145/2736277.2741667 Feinman R, DEEP BELIEF NETWORK, P1 Fessahaye F, 2019, I SYMP CONSUM ELECTR, DOI 10.1109/icce.2019.8662028 Florez O.U., DEEP LEARNING SEMANT, V14, P1 Fu MS, 2019, IEEE T CYBERNETICS, V49, P1084, DOI 10.1109/TCYB.2018.2795041 Gao TW, 2016, 2016 IEEE INTERNATIONAL CONFERENCE ON INFORMATION AND AUTOMATION (ICIA), P1556, DOI 10.1109/ICInfA.2016.7832066 Grant P, 2014, BUS GIV, DOI [10.1057/9780230355033.0018, DOI 10.1057/9780230355033.0018] Greenstein-Messica A, 2017, IUI'17: PROCEEDINGS OF THE 22ND INTERNATIONAL CONFERENCE ON INTELLIGENT USER INTERFACES, P629, DOI 10.1145/3025171.3025197 Guan Y, 2019, DECIS SUPPORT SYST, V118, P58, DOI 10.1016/j.dss.2019.01.003 Hassan HAM, 2017, PROCEEDINGS OF THE 25TH CONFERENCE ON USER MODELING, ADAPTATION AND PERSONALIZATION (UMAP'17), P327, DOI 10.1145/3079628.3079708 He XN, 2017, SIGIR'17: PROCEEDINGS OF THE 40TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, P355, DOI 10.1145/3077136.3080777 Hidasi B., 2017, RECURRENT NEURAL NET, P370, DOI DOI 10.1145/3269206.3271761 Hidasi B, 2016, PROCEEDINGS OF THE 10TH ACM CONFERENCE ON RECOMMENDER SYSTEMS (RECSYS'16), P241, DOI 10.1145/2959100.2959167 Hinton GE, 2006, NEURAL COMPUT, V18, P1527, DOI 10.1162/neco.2006.18.7.1527 Huang ZH, 2019, IEEE INTERNET THINGS, V6, P7713, DOI 10.1109/JIOT.2019.2901759 Huck-Fries V., 2017, INFORM 2017, P585, DOI [10.18420/in2017, DOI 10.18420/IN2017] Jaradat S, 2017, PROCEEDINGS OF THE ELEVENTH ACM CONFERENCE ON RECOMMENDER SYSTEMS (RECSYS'17), P407, DOI 10.1145/3109859.3109861 Jiang M, 2017, CONF REC ASILOMAR C, P356, DOI 10.1109/ACSSC.2017.8335200 Jiang SH, 2018, ACM T MULTIM COMPUT, V14, DOI 10.1145/3152114 Jishan S.T., 2017, MACH LEARN COMPUT, DOI 10.1145/3055635.3056606 Katzman JL, 2018, BMC MED RES METHODOL, V18, DOI 10.1186/s12874-018-0482-1 Kim D, 2016, PROCEEDINGS OF THE 10TH ACM CONFERENCE ON RECOMMENDER SYSTEMS (RECSYS'16), P233, DOI 10.1145/2959100.2959165 Kim D, 2017, INFORM SCIENCES, V417, P72, DOI 10.1016/j.ins.2017.06.026 Kim KJ, 2008, EXPERT SYST APPL, V34, P1200, DOI 10.1016/j.eswa.2006.12.025 Kumar V, 2017, INT CONF DAT MIN WOR, P765, DOI 10.1109/ICDMW.2017.106 Lee H, 2016, SIGIR'16: PROCEEDINGS OF THE 39TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, P957, DOI 10.1145/2911451.2914734 Lee H, 2019, ICT EXPRESS, V5, P84, DOI 10.1016/j.icte.2018.05.003 Lee W, 2017, CIKM'17: PROCEEDINGS OF THE 2017 ACM CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, P1139, DOI 10.1145/3132847.3132972 Lei CY, 2016, PROC CVPR IEEE, P2545, DOI 10.1109/CVPR.2016.279 Li PJ, 2017, SIGIR'17: PROCEEDINGS OF THE 40TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, P345, DOI 10.1145/3077136.3080822 Li QW, 2017, CONF REC ASILOMAR C, P305, DOI 10.1109/ACSSC.2017.8335189 Liu J., 2017, PHD PROBABILISTIC MO, P1 Liu WB, 2017, NEUROCOMPUTING, V234, P11, DOI 10.1016/j.neucom.2016.12.038 Liu YH, 2012, SCI CHINA TECHNOL SC, V55, P2656, DOI 10.1007/s11431-012-4938-y Lu YC, 2018, WEB CONFERENCE 2018: PROCEEDINGS OF THE WORLD WIDE WEB CONFERENCE (WWW2018), P773, DOI 10.1145/3178876.3186158 Luo LK, 2018, KNOWL-BASED SYST, V144, P144, DOI 10.1016/j.knosys.2017.12.032 Maheshwary S, 2018, COMPANION PROCEEDINGS OF THE WORLD WIDE WEB CONFERENCE 2018 (WWW 2018), P87, DOI 10.1145/3184558.3186942 Meteren R.Van, 2000, ECML MLNET WORK MACH, DOI [10.1125/5743, DOI 10.1125/5743] Nassar N, 2020, KNOWL-BASED SYST, V187, DOI 10.1016/j.knosys.2019.06.019 Nguyen TT, 2017, CIKM'17: PROCEEDINGS OF THE 2017 ACM CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, P2231, DOI 10.1145/3132847.3133128 Nimirthi P, 2019, Social Network Forensics, Cyber Security, and Machine Learning, P59 Nweke HF, 2018, EXPERT SYST APPL, V105, P233, DOI 10.1016/j.eswa.2018.03.056 Oh KJ, 2014, INT CONF ADV COMMUN, P1283, DOI 10.1109/ICACT.2014.6779166 Oramas S., 2017, DLRS RECSYS, P32, DOI DOI 10.1145/3125486.3125492 Pacheco AGC, 2018, EXPERT SYST APPL, V96, P77, DOI 10.1016/j.eswa.2017.11.054 Pan YT, 2020, WORLD WIDE WEB, V23, P2259, DOI 10.1007/s11280-020-00793-z Paradarami TK, 2017, EXPERT SYST APPL, V83, P300, DOI 10.1016/j.eswa.2017.04.046 Park K, 2017, CIKM'17: PROCEEDINGS OF THE 2017 ACM CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, P2255, DOI 10.1145/3132847.3133154 Peska L., 2017, P 2 WORKSHOP DEEP LE, P19, DOI [10.1145/3125486.3125490, DOI 10.1145/3125486.3125490] Preethi G, 2017, INT CONF COMP INFO, P93, DOI 10.1109/CITS.2017.8035341 Purkaystha B., 2018, 2018 21 INT C COMPUT, P1, DOI 10.1109/ICCITECHN.2017.8281852 Dang QV, 2017, 2017 IEEE 3RD INTERNATIONAL CONFERENCE ON COLLABORATION AND INTERNET COMPUTING (CIC), P209, DOI 10.1109/CIC.2017.00036 Rafailidis D, 2017, ICTIR'17: PROCEEDINGS OF THE 2017 ACM SIGIR INTERNATIONAL CONFERENCE THEORY OF INFORMATION RETRIEVAL, P151, DOI 10.1145/3121050.3121057 Ruocco M, 2017, INTERSESSION MODELIN, DOI [10.1145/3125486.3125491, DOI 10.1145/3125486.3125491] Saravanan B, 2019, SOFT COMPUT, V23, P2575, DOI 10.1007/s00500-019-03807-9 Schmidhuber J, 2015, NEURAL NETWORKS, V61, P85, DOI 10.1016/j.neunet.2014.09.003 Seo S, 2017, PROCEEDINGS OF THE ELEVENTH ACM CONFERENCE ON RECOMMENDER SYSTEMS (RECSYS'17), P297, DOI 10.1145/3109859.3109890 Serrà J, 2017, PROCEEDINGS OF THE ELEVENTH ACM CONFERENCE ON RECOMMENDER SYSTEMS (RECSYS'17), P279, DOI 10.1145/3109859.3109876 Smirnova E, 2017, P 2 WORKSH DEEP LEAR, DOI [10.1145/3125486.3125488, DOI 10.1145/3125486.3125488] Soh H, 2017, IUI'17: PROCEEDINGS OF THE 22ND INTERNATIONAL CONFERENCE ON INTELLIGENT USER INTERFACES, P589, DOI 10.1145/3025171.3025207 Song Y, 2016, SIGIR'16: PROCEEDINGS OF THE 39TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, P909, DOI 10.1145/2911451.2914726 Sottocornola G, 2017, 2017 IEEE/WIC/ACM INTERNATIONAL CONFERENCE ON WEB INTELLIGENCE (WI 2017), P1260, DOI 10.1145/3106426.3110321 Suglia A, 2017, PROCEEDINGS OF THE 25TH CONFERENCE ON USER MODELING, ADAPTATION AND PERSONALIZATION (UMAP'17), P202, DOI 10.1145/3079628.3079684 Taheri SM, 2018, 2018 6TH IRANIAN JOINT CONGRESS ON FUZZY AND INTELLIGENT SYSTEMS (CFIS), P200, DOI 10.1109/CFIS.2018.8336633 Tan JW, 2016, CIKM'16: PROCEEDINGS OF THE 2016 ACM CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, P65, DOI 10.1145/2983323.2983788 Tan Y K., 2016, Improved Recurrent Neural Networks for Session-based Recommendations, P0, DOI DOI 10.1145/2988450.2988452 Tay Y., 2017, LATENT RELATIONAL ME, P729, DOI [10.1145/3178876.3186154, DOI 10.1145/3178876.3186154] Tomar A, 2014, 2014 INTERNATIONAL CONFERENCE ON ADVANCES IN COMPUTING, COMMUNICATIONS AND INFORMATICS (ICACCI), P362, DOI 10.1109/ICACCI.2014.6968557 Vekariya V., 2012, 2012 Second International Conference on Digital Information and Communication Technology and it's Applications (DICTAP), P469, DOI 10.1109/DICTAP.2012.6215409 Verma M, 2019, PROCEEDINGS OF THE 42ND INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL (SIGIR '19), P1281, DOI 10.1145/3331184.3331377 Vincent P., 2008, ICML, P1096, DOI [DOI 10.1145/1390156.1390294, 10.1145/1390156.1390294] Wang FJ, 2017, 2017 IEEE 3RD INTERNATIONAL CONFERENCE ON COLLABORATION AND INTERNET COMPUTING (CIC), P369, DOI 10.1109/CIC.2017.00054 Wang H., IEEE T KNOWLEDGE DAT, P1 Wang K, 2019, COGN SYST RES, V55, P164, DOI 10.1016/j.cogsys.2019.01.011 Wang S, 2019, IEEE ACCESS, V7, P136951, DOI 10.1109/ACCESS.2019.2942338 Wang X, 2017, SIGIR'17: PROCEEDINGS OF THE 40TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, P185, DOI 10.1145/3077136.3080771 Wang X, 2017, IEEE SYS MAN CYBERN, P455, DOI 10.1109/SMC.2017.8122647 Wang XX, 2014, PROCEEDINGS OF THE 2014 ACM CONFERENCE ON MULTIMEDIA (MM'14), P627, DOI 10.1145/2647868.2654940 Wang XJ, 2017, KDD'17: PROCEEDINGS OF THE 23RD ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, P2051, DOI 10.1145/3097983.3098096 WEBB T, 1976, CANCER RES, V36, P298 Wei J, 2017, EXPERT SYST APPL, V69, P29, DOI 10.1016/j.eswa.2016.09.040 Wei J, 2016, 2016 IEEE 14TH INTL CONF ON DEPENDABLE, AUTONOMIC AND SECURE COMPUTING, 14TH INTL CONF ON PERVASIVE INTELLIGENCE AND COMPUTING, 2ND INTL CONF ON BIG DATA INTELLIGENCE AND COMPUTING AND CYBER SCIENCE AND TECHNOLOGY CONGRESS (DASC/PICOM/DATACOM/CYBERSC, P874, DOI 10.1109/DASC-PICom-DataCom-CyberSciTec.2016.149 Wu H, 2018, KNOWL-BASED SYST, V145, P46, DOI 10.1016/j.knosys.2018.01.003 Xia B., 2018, P 2017 12 INT C INT, P1, DOI [10.1109/ISKE.2017.8258747, DOI 10.1109/ISKE.2017.8258747] Xu ZH, 2016, CIKM'16: PROCEEDINGS OF THE 2016 ACM CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, P1921, DOI 10.1145/2983323.2983874 Xue HJ, 2017, PROCEEDINGS OF THE TWENTY-SIXTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, P3203 Yi BL, 2016, I C SOFTWARE KNOWL I, P298, DOI 10.1109/SKIMA.2016.7916236 Yin HZ, 2017, IEEE T KNOWL DATA EN, V29, P2537, DOI 10.1109/TKDE.2017.2741484 Yuan JH, 2016, 2016 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), P1901, DOI 10.1109/BigData.2016.7840810 Yuan WW, 2018, NEURAL COMPUT APPL, V30, P2071, DOI 10.1007/s00521-018-3394-4 Zahálka J, 2015, IEEE T MULTIMEDIA, V17, P2235, DOI 10.1109/TMM.2015.2480007 Zarzour H, 2019, INT CONF INFORM COMM, P99, DOI [10.1109/IACS.2019.8809156, 10.1109/iacs.2019.8809156] Zhang H, 2017, 2017 INTERNATIONAL SYMPOSIUM ON EDUCATIONAL TECHNOLOGY (ISET 2017), P106, DOI 10.1109/ISET.2017.33 Zhang SA, 2019, ACM COMPUT SURV, V52, DOI 10.1145/3285029 Zhang WW, 2017, INT SYM COMPUT INTEL, P504, DOI 10.1109/ISCID.2017.235 Zhang XF, 2021, NEURAL COMPUT APPL, V33, P2793, DOI 10.1007/s00521-020-05117-w Zhang XF, 2020, INFORM SCIENCES, V519, P306, DOI 10.1016/j.ins.2020.01.044 Zhang Y, 2018, WSDM'18: PROCEEDINGS OF THE ELEVENTH ACM INTERNATIONAL CONFERENCE ON WEB SEARCH AND DATA MINING, P709, DOI 10.1145/3159652.3159688 Zhang YW, 2021, IEEE T SYST MAN CY-S, V51, P3796, DOI 10.1109/TSMC.2019.2931723 Zhang YF, 2017, CIKM'17: PROCEEDINGS OF THE 2017 ACM CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, P1449, DOI 10.1145/3132847.3132892 Zhao C, 2016, 2016 16TH INTERNATIONAL SYMPOSIUM ON COMMUNICATIONS AND INFORMATION TECHNOLOGIES (ISCIT), P201, DOI 10.1109/ISCIT.2016.7751621 Zheng GJ, 2018, WEB CONFERENCE 2018: PROCEEDINGS OF THE WORLD WIDE WEB CONFERENCE (WWW2018), P167, DOI 10.1145/3178876.3185994 Zheng L.:., 2016, A Survey and Critique of Deep Learning on Recommender Systems Zheng L, 2017, WSDM'17: PROCEEDINGS OF THE TENTH ACM INTERNATIONAL CONFERENCE ON WEB SEARCH AND DATA MINING, P425, DOI 10.1145/3018661.3018665 Zhu H, 2018, KDD'18: PROCEEDINGS OF THE 24TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING, P1079, DOI 10.1145/3219819.3219826 Zuo Y, 2016, NEUROCOMPUTING, V204, P51, DOI 10.1016/j.neucom.2015.10.134 NR 135 TC 10 Z9 10 U1 2 U2 17 PU SPRINGER HEIDELBERG PI HEIDELBERG PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY SN 2193-567X EI 2191-4281 J9 ARAB J SCI ENG JI Arab. J. Sci. Eng. PD APR PY 2021 VL 46 IS 4 BP 3247 EP 3286 DI 10.1007/s13369-020-05112-2 EA NOV 2020 PG 40 WC Multidisciplinary Sciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Science & Technology - Other Topics GA QU1RC UT WOS:000593093000001 DA 2024-09-05 ER PT J AU Nam, S Kim, D Jung, W Zhu, YJ AF Nam, Seojin Kim, Donghun Jung, Woojin Zhu, Yongjun TI Understanding the Research Landscape of Deep Learning in Biomedical Science: Scientometric Analysis SO JOURNAL OF MEDICAL INTERNET RESEARCH LA English DT Article DE deep learning; scientometric analysis; research publications; research landscape; research collaboration; knowledge diffusion ID CONVOLUTIONAL NEURAL-NETWORKS; MODEL; SEGMENTATION; WEB; CLASSIFICATION; PREDICTION; CNN; MRI AB Background: Advances in biomedical research using deep learning techniques have generated a large volume of related literature. However, there is a lack of scientometric studies that provide a bird's-eye view of them. This absence has led to a partial and fragmented understanding of the field and its progress. Objective: This study aimed to gain a quantitative and qualitative understanding of the scientific domain by analyzing diverse bibliographic entities that represent the research landscape from multiple perspectives and levels of granularity. Methods: We searched and retrieved 978 deep learning studies in biomedicine from the PubMed database. A scientometric analysis was performed by analyzing the metadata, content of influential works, and cited references. Results: In the process, we identified the current leading fields, major research topics and techniques, knowledge diffusion, and research collaboration. There was a predominant focus on applying deep learning, especially convolutional neural networks, to radiology and medical imaging, whereas a few studies focused on protein or genome analysis. Radiology and medical imaging also appeared to be the most significant knowledge sources and an important field in knowledge diffusion, followed by computer science and electrical engineering. A coauthorship analysis revealed various collaborations among engineering-oriented and biomedicine-oriented clusters of disciplines. Conclusions: This study investigated the landscape of deep learning research in biomedicine and confirmed its interdisciplinary nature. Although it has been successful, we believe that there is a need for diverse applications in certain areas to further boost the contributions of deep learning in addressing biomedical research problems. We expect the results of this study to help researchers and communities better align their present and future work. C1 [Nam, Seojin; Kim, Donghun; Jung, Woojin] Sungkyunkwan Univ, Dept Lib & Informat Sci, Seoul, South Korea. [Zhu, Yongjun] Yonsei Univ, Dept Lib & Informat Sci, 50 Yonsei Ro, Seoul 03722, South Korea. C3 Sungkyunkwan University (SKKU); Yonsei University RP Zhu, YJ (corresponding author), Yonsei Univ, Dept Lib & Informat Sci, 50 Yonsei Ro, Seoul 03722, South Korea. EM zhu@yonsei.ac.kr RI jung, woojin/GRY-0374-2022; Zhu, Yongjun/K-2486-2015 OI Jung, Woojin/0000-0003-2229-169X; Zhu, Yongjun/0000-0003-4787-5122; Kim, Donghun/0000-0001-5441-1532 CR Alansary A, 2019, MED IMAGE ANAL, V53, P156, DOI 10.1016/j.media.2019.02.007 Alipanahi B, 2015, NAT BIOTECHNOL, V33, P831, DOI 10.1038/nbt.3300 [Anonymous], 2019, INTR MESH [Anonymous], 2015, Nature, DOI 10.1038/nature14539 [Anonymous], 2006, ENTREZ HELP [Anonymous], 2013, Using OpenRefine Ardila D, 2019, NAT MED, V25, P954, DOI 10.1038/s41591-019-0447-x Arvaniti E, 2018, SCI REP-UK, V8, DOI 10.1038/s41598-018-30535-1 Aubreville M, 2017, SCI REP-UK, V7, DOI 10.1038/s41598-017-12320-8 Baevski A, 2020, ArXiv arxiv, V2006, P11477 Bastian M, 2009, P INT AAAI C WEBL SO Bernard O, 2018, IEEE T MED IMAGING, V37, P2514, DOI 10.1109/TMI.2018.2837502 Betancur J, 2018, JACC-CARDIOVASC IMAG, V11, P1654, DOI 10.1016/j.jcmg.2018.01.020 Bien N, 2018, PLOS MED, V15, DOI 10.1371/journal.pmed.1002699 Blaschke T, 2018, MOL INFORM, V37, DOI 10.1002/minf.201700123 Blondel VD, 2008, J STAT MECH-THEORY E, DOI 10.1088/1742-5468/2008/10/P10008 Brin S, 1998, COMPUT NETWORKS ISDN, V30, P107, DOI 10.1016/S0169-7552(98)00110-X Byrne MF, 2019, GUT, V68, P94, DOI 10.1136/gutjnl-2017-314547 Campanella G, 2019, NAT MED, V25, P1301, DOI 10.1038/s41591-019-0508-1 Cao CS, 2018, GENOM PROTEOM BIOINF, V16, P17, DOI 10.1016/j.gpb.2017.07.003 Cha KH, 2017, SCI REP-UK, V7, DOI 10.1038/s41598-017-09315-w Chambon S., 2018, IEEE T NEUR SYS REH, V26, P758, DOI [10.1109/TNSRE.2018.2813138, DOI 10.1109/TNSRE.2018.2813138] Chang J., 2020, BIOPYTHON Chang K, 2018, J AM MED INFORM ASSN, V25, P945, DOI 10.1093/jamia/ocy017 Chang P, 2018, AM J NEURORADIOL, V39, P1201, DOI 10.3174/ajnr.A5667 Chapman D, 2009, J CAN ACAD CHILD ADO, V18, P58 Chaudhari AS, 2018, MAGN RESON MED, V80, P2139, DOI 10.1002/mrm.27178 Chaudharyl K, 2018, CLIN CANCER RES, V24, P1248, DOI 10.1158/1078-0432.CCR-17-0853 Chen GC, 2018, J BIOMED INFORM, V85, P149, DOI 10.1016/j.jbi.2018.07.024 Chen Hao, 2018, Neuroimage, V170, P446, DOI 10.1016/j.neuroimage.2017.04.041 Chen H, 2018, IEEE T MED IMAGING, V37, P1333, DOI 10.1109/TMI.2018.2805692 Chilamkurthy S, 2018, LANCET, V392, P2388, DOI 10.1016/S0140-6736(18)31645-3 Chung SW, 2018, ACTA ORTHOP, V89, P468, DOI 10.1080/17453674.2018.1453714 Ciompi F, 2017, SCI REP-UK, V7, DOI 10.1038/srep46479 Coenen A, 2018, CIRC-CARDIOVASC IMAG, V11, DOI 10.1161/CIRCIMAGING.117.007217 Cohen O, 2018, MAGN RESON MED, V80, P885, DOI 10.1002/mrm.27198 De Fauw J, 2018, NAT MED, V24, P1342, DOI 10.1038/s41591-018-0107-6 de Vos BD, 2019, MED IMAGE ANAL, V52, P128, DOI 10.1016/j.media.2018.11.010 de Vos BD, 2016, PROC SPIE, V9784, DOI 10.1117/12.2216971 Devlin J, 2019, 2019 CONFERENCE OF THE NORTH AMERICAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS: HUMAN LANGUAGE TECHNOLOGIES (NAACL HLT 2019), VOL. 1, P4171 Dilsizian ME, 2018, CURR CARDIOL REP, V20, DOI 10.1007/s11886-018-1074-8 Ding Y, 2019, RADIOLOGY, V290, P456, DOI 10.1148/radiol.2018180958 Dolz J, 2018, NEUROIMAGE, V170, P456, DOI 10.1016/j.neuroimage.2017.04.039 dos Santos BS, 2019, COMPUT IND ENG, V138, DOI 10.1016/j.cie.2019.106120 Esteva A, 2017, NATURE, V542, P115, DOI 10.1038/nature21056 Falk T, 2019, NAT METHODS, V16, P67, DOI 10.1038/s41592-018-0261-2 Fu HZ, 2018, IEEE T MED IMAGING, V37, P1597, DOI 10.1109/TMI.2018.2791488 Gong E, 2018, J MAGN RESON IMAGING, V48, P330, DOI 10.1002/jmri.25970 González G, 2018, AM J RESP CRIT CARE, V197, P193, DOI 10.1164/rccm.201705-0860OC Goodfellow IJ, 2014, ADV NEUR IN, V27, P2672, DOI 10.1145/3422622 Grassmann F, 2018, OPHTHALMOLOGY, V125, P1410, DOI 10.1016/j.ophtha.2018.02.037 Gulshan V, 2016, JAMA-J AM MED ASSOC, V316, P2402, DOI 10.1001/jama.2016.17216 Gurovich Y, 2019, NAT MED, V25, P60, DOI 10.1038/s41591-018-0279-0 Haenssle HA, 2018, ANN ONCOL, V29, P1836, DOI 10.1093/annonc/mdy166 Han SS, 2018, J INVEST DERMATOL, V138, P1529, DOI 10.1016/j.jid.2018.01.028 Han Y, 2018, MAGN RESON MED, V80, P1189, DOI 10.1002/mrm.27106 Han Y, 2017, BMC BIOINFORMATICS, V18, DOI 10.1186/s12859-017-1997-x Han ZY, 2017, SCI REP-UK, V7, DOI 10.1038/s41598-017-04075-z Hauptmann A, 2018, IEEE T MED IMAGING, V37, P1382, DOI 10.1109/TMI.2018.2820382 He KM, 2016, PROC CVPR IEEE, P770, DOI 10.1109/CVPR.2016.90 Hochreiter S., 1997, Neural Comput., V9, P1735, DOI 10.1162/neco.1997.9.8.1735 Hosny A, 2018, PLOS MED, V15, DOI 10.1371/journal.pmed.1002711 Hu ZL, 2018, PATTERN RECOGN, V83, P134, DOI 10.1016/j.patcog.2018.05.014 Hyun CM, 2018, PHYS MED BIOL, V63, DOI 10.1088/1361-6560/aac71a Jiang HY, 2018, IEEE J BIOMED HEALTH, V22, P1227, DOI 10.1109/JBHI.2017.2725903 Jiménez J, 2018, J CHEM INF MODEL, V58, P287, DOI 10.1021/acs.jcim.7b00650 Jo Y, 2017, SCI ADV, V3, DOI 10.1126/sciadv.1700606 Kermany DS, 2018, CELL, V172, P1122, DOI 10.1016/j.cell.2018.02.010 Kim JK, 2018, J HEALTHC ENG, V2018, DOI 10.1155/2018/4651582 Lakhani P, 2017, RADIOLOGY, V284, P574, DOI 10.1148/radiol.2017162326 Lao JW, 2017, SCI REP-UK, V7, DOI 10.1038/s41598-017-10649-8 Lehman CD, 2019, RADIOLOGY, V290, P52, DOI 10.1148/radiol.2018180694 Li XM, 2018, IEEE T MED IMAGING, V37, P2663, DOI 10.1109/TMI.2018.2845918 Li ZJ, 2017, SCI REP-UK, V7, DOI 10.1038/s41598-017-05848-2 Li ZX, 2018, OPHTHALMOLOGY, V125, P1199, DOI 10.1016/j.ophtha.2018.01.023 Liang HY, 2019, NAT MED, V25, P433, DOI 10.1038/s41591-018-0335-9 Lin ZM, 2016, AAAI CONF ARTIF INTE, P27 Lindsey R, 2018, P NATL ACAD SCI USA, V115, P11591, DOI 10.1073/pnas.1806905115 Litjens G, 2017, MED IMAGE ANAL, V42, P60, DOI 10.1016/j.media.2017.07.005 Liu F, 2018, RADIOLOGY, V289, P160, DOI 10.1148/radiol.2018172986 Liu Z, 2021, 2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), P9992, DOI 10.1109/ICCV48922.2021.00986 Ma JZ, 2018, NAT METHODS, V15, P290, DOI [10.1038/NMETH.4627, 10.1038/nmeth.4627] Mamoshina P, 2016, MOL PHARMACEUT, V13, P1445, DOI 10.1021/acs.molpharmaceut.5b00982 Martín-Martín A, 2018, J INFORMETR, V12, P1160, DOI 10.1016/j.joi.2018.09.002 Mathis A, 2018, NAT NEUROSCI, V21, P1281, DOI 10.1038/s41593-018-0209-y Merk D, 2018, MOL INFORM, V37, DOI 10.1002/minf.201700153 Meyer P, 2018, COMPUT BIOL MED, V98, P126, DOI 10.1016/j.compbiomed.2018.05.018 Miao S, 2016, IEEE T MED IMAGING, V35, P1352, DOI 10.1109/TMI.2016.2521800 Nam JG, 2019, RADIOLOGY, V290, P218, DOI 10.1148/radiol.2018180237 Nie D, 2018, IEEE T BIO-MED ENG, V65, P2720, DOI 10.1109/TBME.2018.2814538 Nie Dong, 2016, Med Image Comput Comput Assist Interv, V9901, P212, DOI 10.1007/978-3-319-46723-8_25 Oakden-Rayner L, 2017, SCI REP-UK, V7, DOI 10.1038/s41598-017-01931-w Ouyang W, 2018, NAT BIOTECHNOL, V36, P460, DOI 10.1038/nbt.4106 Pereira TD, 2019, NAT METHODS, V16, P117, DOI 10.1038/s41592-018-0234-5 Poplin R, 2018, NAT BIOMED ENG, V2, P158, DOI 10.1038/s41551-018-0195-0 Popova M, 2018, SCI ADV, V4, DOI 10.1126/sciadv.aap7885 Preuer K, 2018, BIOINFORMATICS, V34, P1538, DOI 10.1093/bioinformatics/btx806 Putin E, 2018, J CHEM INF MODEL, V58, P1194, DOI 10.1021/acs.jcim.7b00690 Quang D, 2016, NUCLEIC ACIDS RES, V44, DOI 10.1093/nar/gkw226 Rajpurkar P, 2018, PLOS MED, V15, DOI 10.1371/journal.pmed.1002686 Ribli D, 2018, SCI REP-UK, V8, DOI 10.1038/s41598-018-22437-z Ronneberger O, 2015, LECT NOTES COMPUT SC, V9351, P234, DOI 10.1007/978-3-319-24574-4_28 Saltz J, 2018, CELL REP, V23, P181, DOI 10.1016/j.celrep.2018.03.086 Schlegl T, 2018, OPHTHALMOLOGY, V125, P549, DOI 10.1016/j.ophtha.2017.10.031 Schmidhuber J, 2015, NEURAL NETWORKS, V61, P85, DOI 10.1016/j.neunet.2014.09.003 Sharma K, 2017, SCI REP-UK, V7, DOI 10.1038/s41598-017-01779-0 Shelhamer E, 2017, IEEE T PATTERN ANAL, V39, P640, DOI 10.1109/TPAMI.2016.2572683 Shin HC, 2016, IEEE T MED IMAGING, V35, P1285, DOI 10.1109/TMI.2016.2528162 Shu XB, 2018, IEEE T PATTERN ANAL, V40, P905, DOI 10.1109/TPAMI.2017.2705122 Shukla N, 2020, COMPUT METH PROG BIO, V183, DOI 10.1016/j.cmpb.2019.105075 Song QZ, 2017, J HEALTHC ENG, V2017, DOI 10.1155/2017/8314740 Steiner DF, 2018, AM J SURG PATHOL, V42, P1636, DOI 10.1097/PAS.0000000000001151 Stepniewska-Dziubinska MM, 2018, BIOINFORMATICS, V34, P3666, DOI 10.1093/bioinformatics/bty374 Sugimoto C.R., 2018, Measuring research: What everyone needs to know, DOI DOI 10.1093/WENTK/9780190640118.001.0001 Sullivan DP, 2018, NAT BIOTECHNOL, V36, P820, DOI 10.1038/nbt.4225 Szegedy C, 2016, PROC CVPR IEEE, P2818, DOI 10.1109/CVPR.2016.308 Szegedy C, 2015, PROC CVPR IEEE, P1, DOI 10.1109/CVPR.2015.7298594 Van Eck N.J., 2020, VOSviewer Manual Version 1.6.16, P1 Van Eck N.J., 2014, Measuring Scholarly Impact: Methods and Practice, P285, DOI 10.1007/978-3-319-10377-8_13(InEng.) Veltri D, 2018, BIOINFORMATICS, V34, P2740, DOI 10.1093/bioinformatics/bty179 Wainberg M, 2018, NAT BIOTECHNOL, V36, P829, DOI 10.1038/nbt.4233 Waltman L, 2010, J INFORMETR, V4, P629, DOI 10.1016/j.joi.2010.07.002 Wang GT, 2018, IEEE T MED IMAGING, V37, P1562, DOI 10.1109/TMI.2018.2791721 Wang HD, 2019, NAT METHODS, V16, P103, DOI 10.1038/s41592-018-0239-0 Wang K, 2019, GUT, V68, P729, DOI 10.1136/gutjnl-2018-316204 Wang L, 2018, J COMPUT BIOL, V25, P361, DOI 10.1089/cmb.2017.0135 Wang S, 2018, PROTEINS, V86, P67, DOI 10.1002/prot.25377 Wang S, 2016, NUCLEIC ACIDS RES, V44, pW430, DOI 10.1093/nar/gkw306 Wang XG, 2017, SCI REP-UK, V7, DOI 10.1038/s41598-017-15720-y Wang Y, 2018, J PERS SOC PSYCHOL, V114, P246, DOI 10.1037/pspa0000098 Wen HG, 2018, CEREB CORTEX, V28, P4136, DOI 10.1093/cercor/bhx268 Xue Y, 2017, CONTRAST MEDIA MOL I, DOI 10.1155/2017/9512370 Yang G, 2018, IEEE T MED IMAGING, V37, P1310, DOI 10.1109/TMI.2017.2785879 Yildirim Ö, 2018, COMPUT BIOL MED, V96, P189, DOI 10.1016/j.compbiomed.2018.03.016 Yousefi S, 2017, SCI REP-UK, V7, DOI 10.1038/s41598-017-11817-6 Zaharchuk G, 2018, AM J NEURORADIOL, V39, P1776, DOI 10.3174/ajnr.A5543 Zech JR, 2018, PLOS MED, V15, DOI 10.1371/journal.pmed.1002683 Zhang J, 2018, CIRCULATION, V138, P1623, DOI 10.1161/CIRCULATIONAHA.118.034338 Zhang Y, 2018, NAT COMMUN, V9, DOI 10.1038/s41467-018-03113-2 Zhang YB, 2018, IEEE T MED IMAGING, V37, P1370, DOI 10.1109/TMI.2018.2823083 Zhou J, 2018, NAT GENET, V50, P1171, DOI 10.1038/s41588-018-0160-6 Zhou J, 2015, NAT METHODS, V12, P931, DOI [10.1038/NMETH.3547, 10.1038/nmeth.3547] Zreik M, 2018, MED IMAGE ANAL, V44, P72, DOI 10.1016/j.media.2017.11.008 NR 143 TC 2 Z9 2 U1 2 U2 18 PU JMIR PUBLICATIONS, INC PI TORONTO PA 130 QUEENS QUAY East, Unit 1100, TORONTO, ON M5A 0P6, CANADA SN 1438-8871 J9 J MED INTERNET RES JI J. Med. Internet Res. PD APR 22 PY 2022 VL 24 IS 4 AR e28114 DI 10.2196/28114 PG 25 WC Health Care Sciences & Services; Medical Informatics WE Science Citation Index Expanded (SCI-EXPANDED) SC Health Care Sciences & Services; Medical Informatics GA 1N3WN UT WOS:000800589600004 PM 35451980 OA Green Published, gold DA 2024-09-05 ER PT J AU Hameed, A Omar, M Bilal, M Park, HW AF Hameed, Abdul Omar, Muhammad Bilal, Muhammad Park, Han Woo TI Toward the consolidation of a multi-metric-based journal ranking and categorization system for computer science subject areas SO PROFESIONAL DE LA INFORMACION LA English DT Article DE Journal rankings; Research evaluation; Indicators; Scientific journals; Metrics; Algorithms; Machine learning; Cluster analysis; Principal component analysis (PCA); t-distributed stochastic neighbor embedding (t-SNE); Cross tabulation; ESA index ID IMPACT FACTOR AB The evaluation of scientific journals poses challenges owing to the existence of various impact measures. This is because journal ranking is a multidimensional construct that may not be assessed effectively using a single metric such as an impact factor. A few studies have proposed an ensemble of metrics to prevent the bias induced by an individual metric. In this study, a multi-metric journal ranking method based on the standardized average index (SA index) was adopted to develop an extended standardized average index (ESA index). The ESA index utilizes six metrics: the CiteScore, Source Normalized Impact per Paper (SNIP), SCImago Journal Rank (SJR), Hirsh index (H-index), Eigenfactor Score, and Journal Impact Factor from three well-known databases (Scopus, SCImago Journal & Country Rank, and Web of Science). Experiments were conducted in two computer science subject areas: (1) artificial intelligence and (2) computer vision and pattern recognition. Comparing the results of the multi-metric-based journal ranking system with the SA index, it was demonstrated that the multi-metric ESA index exhibited high correlation with all other indicators and significantly outperformed the SA index. To further evaluate the performance of the model and determine the aggregate impact of bibliometric indices with the ESA index, we employed unsupervised machine learning techniques such as clustering coupled with principal component analysis (PCA) and t-distributed stochastic neighbor embedding (t-SNE). These techniques were utilized to measure the clustering impact of various bibliometric indicators on both the complete set of bibliometric features and the reduced set of features. Furthermore, the results of the ESA index were compared with those of other ranking systems, including the internationally recognized Scopus, SJR, and HEC Journal Recognition System (HJRS) used in Pakistan. These comparisons demonstrated that the multi-metric-based ESA index can serve as a valuable reference for publishers, journal editors, researchers, policymakers, librarians, and practitioners in journal selection, decision making, and professional assessment. C1 [Hameed, Abdul; Omar, Muhammad; Bilal, Muhammad] Islamia Univ, Dept Comp Sci, Bahawalpur, Pakistan. [Park, Han Woo] Yeungnam Univ, 257 Humanities Hall,280 Dae Dong, Gyongsan 38541, Gyeongsangbuk D, South Korea. C3 Yeungnam University RP Omar, M (corresponding author), Islamia Univ, Dept Comp Sci, Bahawalpur, Pakistan.; Park, HW (corresponding author), Yeungnam Univ, 257 Humanities Hall,280 Dae Dong, Gyongsan 38541, Gyeongsangbuk D, South Korea. EM abdulhameedattari@gmail.com; m.omar.nazeer@gmail.com; m_bilalcsiub@yahoo.com; hanpark@ynu.ac.kr OI Bilal, Muhammad/0009-0004-4757-3153 CR Abbas NN, 2019, SCIENTOMETRICS, V121, P1189, DOI 10.1007/s11192-019-03222-9 Allen L, 2009, PLOS ONE, V4, DOI 10.1371/journal.pone.0005910 [Anonymous], 2007, College and Research Libraries News, DOI DOI 10.5860/CRLN.68.5.7804 Beliakov G, 2011, FUZZY SET SYST, V167, P101, DOI 10.1016/j.fss.2010.08.011 Bollen J, 2009, PLOS ONE, V4, DOI 10.1371/journal.pone.0006022 Dellavalle RP, 2007, J AM ACAD DERMATOL, V57, P116, DOI 10.1016/j.jaad.2007.03.005 Duan L, 2018, EXPERT SYST, V35, DOI 10.1111/exsy.12309 Ennas G, 2015, SCIENTOMETRICS, V105, P1911, DOI 10.1007/s11192-015-1751-y Feng L, 2020, SCIENTOMETRICS, V124, P233, DOI 10.1007/s11192-020-03422-8 Fernandez-Cano A, 2017, SCIENTOMETRICS, V110, P991, DOI 10.1007/s11192-016-2197-6 Ferrer-Sapena A, 2016, RES EVALUAT, V25, P306, DOI 10.1093/reseval/rvv041 Fersht A, 2009, P NATL ACAD SCI USA, V106, P6883, DOI 10.1073/pnas.0903307106 González-Pereira B, 2010, J INFORMETR, V4, P379, DOI 10.1016/j.joi.2010.03.002 Halim Z, 2019, SCIENTOMETRICS, V119, P393, DOI 10.1007/s11192-019-03035-w Holmberg K, 2018, SCIENTOMETRICS, V117, P603, DOI 10.1007/s11192-018-2874-8 Hsu WC, 2015, ONLINE INFORM REV, V39, P858, DOI 10.1108/OIR-11-2014-0277 NR 16 TC 2 Z9 2 U1 6 U2 6 PU EDICIONES PROFESIONALES INFORMACION SL-EPI PI BARCELONA PA MISTRAL, 36, BARCELONA, ALBOLOTE, SPAIN SN 1386-6710 EI 1699-2407 J9 PROF INFORM JI Prof. Inf. PY 2023 VL 32 IS 7 AR e320703 DI 10.3145/epi.2023.dic.03 PG 17 WC Communication; Information Science & Library Science WE Social Science Citation Index (SSCI) SC Communication; Information Science & Library Science GA GZ6U9 UT WOS:001156551800002 OA Green Accepted, hybrid DA 2024-09-05 ER PT J AU Yu, FX Liu, XR AF Yu, Fuxing Liu, Xinran TI Research on Student Performance Prediction Based on Stacking Fusion Model SO ELECTRONICS LA English DT Article DE performance prediction; bagging; stacking; XGBoost; LightGBM; model fusion ID CLASSIFICATION; NETWORK AB Online learning is gradually becoming popular with the continuous development of Internet technology and the rapid development of educational informatization. It plays a key role in predicting students' course performance based on their online learning behavior. It can optimize the effects of teaching and improve teaching strategies. Student performance prediction models that are built with a single algorithm currently have limited prediction accuracy. Meanwhile, model fusion improvement technology can combine many algorithms into a single model, thereby enhancing the overall effect of the model and providing better performance. In this paper, a stacking fusion model based on RF-CART-XGBoost-LightGBM is proposed. The first layer of the model uses a decision tree (CART), random forest, XGBoost and LightGBM as the base models. The second layer uses the LightGBM model. We used the Kalboard360 student achievement dataset, and features related to online learning behavior were selected as the model's input for model training. Finally, we employed five-fold cross-validation to assess the model's performance. In comparison with the four single models, the two fusion models based on the four single models both show significantly better performance. The prediction accuracies of the bagging fusion model and stacking fusion model are 83% and 84%, respectively. This proves that the proposed stacking fusion model has better performance, which helps to improve the accuracy of the performance prediction model further. It also provides an effective basis for optimizing the effects of teaching. C1 [Yu, Fuxing; Liu, Xinran] North China Univ Sci & Technol, Inst Artificial Intelligence, Tangshan 063210, Peoples R China. [Yu, Fuxing] Hebei Prov Key Lab Ind Intelligent Sensing, Tangshan 063210, Peoples R China. C3 North China University of Science & Technology RP Liu, XR (corresponding author), North China Univ Sci & Technol, Inst Artificial Intelligence, Tangshan 063210, Peoples R China. EM liuxinran9652@163.com OI Fuxing, Yu/0000-0002-5481-2413 CR Alam MS B., 2022, P INT C INFORM COMMU, P95 Alhazzani Noura, 2020, Soc Sci Humanit Open, V2, P100030, DOI 10.1016/j.ssaho.2020.100030 Arcinas M., 2021, Turkish Journal of Physiotherapy and Rehabilitation, V32, P6519 Batool S., 2021, P MOHAMMAD ALI JINNA, P1, DOI 10.1109/MAJICC53071.2021.9526239 Benesty J, 2009, Noise Reduction in Speech Processing, P1 Bradley AP, 1997, PATTERN RECOGN, V30, P1145, DOI 10.1016/S0031-3203(96)00142-2 Chen T., R package version 04-2 Demir N, 2018, TURK J ELECTR ENG CO, V26, P418, DOI 10.3906/elk-1702-279 Dong W, 2020, AUTOMAT CONSTR, V114, DOI 10.1016/j.autcon.2020.103155 Durica M., 2019, EkonomickoManazerske Spektrum, V13, P51, DOI [10.26552/ems.2019.1.51-61, DOI 10.26552/EMS.2019.1.51-61] Dzeroski S, 2002, LECT NOTES COMPUT SC, V2364, P201 Han MM, 2017, 2017 6TH IIAI INTERNATIONAL CONGRESS ON ADVANCED APPLIED INFORMATICS (IIAI-AAI), P735, DOI 10.1109/IIAI-AAI.2017.73 Hegde Chiranth., 2015, SPE Conference Paper, P1, DOI DOI 10.2118/176792-MS Hussain M, 2018, COMPUT INTEL NEUROSC, V2018, DOI 10.1155/2018/6347186 Ju Y, 2019, IEEE ACCESS, V7, P28309, DOI 10.1109/ACCESS.2019.2901920 Kaur P, 2015, PROCEDIA COMPUT SCI, V57, P500, DOI 10.1016/j.procs.2015.07.372 Lewis R.J., 2022, P ANN M SOC AC EM SA, P14 Li GY, 2019, PROCEEDINGS OF 2019 7TH INTERNATIONAL CONFERENCE ON INFORMATION AND EDUCATION TECHNOLOGY (ICIET 2019), P289, DOI 10.1145/3323771.3323803 Liu YN, 2020, ANAL BIOCHEM, V609, DOI 10.1016/j.ab.2020.113903 Machado MR, 2019, INT CONF COMP SCI ED, P1111, DOI [10.1109/ICCSE.2019.8845529, 10.1109/iccse.2019.8845529] Mehta M., 1995, KDD-95 Proceedings. First International Conference on Knowledge Discovery and Data Mining, P216 Persico D, 2015, BRIT J EDUC TECHNOL, V46, P230, DOI 10.1111/bjet.12207 Petkovic D., 2016, 2016 IEEE FRONT ED C, P1, DOI 10.1109/FIE.2016.7757406 Puarungroj W, 2018, PROCEEDINGS OF THE 12TH INTERNATIONAL CONFERENCE ON UBIQUITOUS INFORMATION MANAGEMENT AND COMMUNICATION (IMCOM 2018), DOI 10.1145/3164541.3164638 Romero C, 2013, COMPUT EDUC, V68, P458, DOI 10.1016/j.compedu.2013.06.009 Sen B, 2012, EXPERT SYST APPL, V39, P9468, DOI 10.1016/j.eswa.2012.02.112 Speiser JL, 2019, EXPERT SYST APPL, V134, P93, DOI 10.1016/j.eswa.2019.05.028 Santos SGTD, 2020, ARTIF INTELL REV, V53, P1293, DOI 10.1007/s10462-019-09696-6 Wang C., 2022, P INTELLIGENT INFORM, P508 Wang G, 2014, DECIS SUPPORT SYST, V57, P77, DOI 10.1016/j.dss.2013.08.002 Wang X, 2020, IEEJ T ELECTR ELECTR, V15, P1734, DOI 10.1002/tee.23247 Wu YC, 2019, SENSOR REV, V39, P743, DOI 10.1108/SR-11-2018-0309 Xia YF, 2017, ELECTRON COMMER R A, V24, P30, DOI 10.1016/j.elerap.2017.06.004 Xing WL, 2016, COMPUT HUM BEHAV, V58, P119, DOI 10.1016/j.chb.2015.12.007 Zhong ST, 2022, NEURAL PROCESS LETT, V54, P3583, DOI 10.1007/s11063-020-10385-7 NR 35 TC 3 Z9 3 U1 12 U2 43 PU MDPI PI BASEL PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND EI 2079-9292 J9 ELECTRONICS-SWITZ JI Electronics PD OCT PY 2022 VL 11 IS 19 AR 3166 DI 10.3390/electronics11193166 PG 13 WC Computer Science, Information Systems; Engineering, Electrical & Electronic; Physics, Applied WE Science Citation Index Expanded (SCI-EXPANDED) SC Computer Science; Engineering; Physics GA 5F9SO UT WOS:000866650200001 OA gold DA 2024-09-05 ER PT J AU Reich, Y Barai, SV AF Reich, Y Barai, SV TI Evaluating machine learning models for engineering problems SO ARTIFICIAL INTELLIGENCE IN ENGINEERING LA English DT Article DE artificial neural networks; research methodology; performance evaluation; statistical tests; modeling ID CROSS-VALIDATION; ERROR RATE; ALGORITHMS; SELECTION AB The use of machine learning (ML), and in particular, artificial neural networks (ANN), in engineering applications has increased dramatically over the last years. However, by and large, the development of such applications or their report lack proper evaluation. Deficient evaluation practice was observed in the general neural networks community and again in engineering applications through a survey we conducted of articles published in Al in Engineering and elsewhere. This status hinders understanding and prevents progress. This article goal is to remedy this situation. First, several evaluation methods are discussed with their relative qualities. Second, these qualities are illustrated by using the methods to evaluate ANN performance in two engineering problems. Third, a systematic evaluation procedure for ML is discussed. This procedure will lead to better evaluation of studies, and consequently to improved research and practice in the area of ML in engineering applications. (C) 1999 Elsevier Science Ltd. All rights reserved. C1 Tel Aviv Univ, Fac Engn, Dept Solid Mech Mat & Struct, IL-69978 Tel Aviv, Israel. Indian Inst Technol, Dept Civil Engn, Kharagpur 721302, W Bengal, India. C3 Tel Aviv University; Indian Institute of Technology System (IIT System); Indian Institute of Technology (IIT) - Kharagpur RP Reich, Y (corresponding author), Tel Aviv Univ, Fac Engn, Dept Solid Mech Mat & Struct, IL-69978 Tel Aviv, Israel. RI Reich, Yoram/AAE-6262-2020; Barai, Sudhirkumar/AAI-5698-2020; Reich, Yoram/G-4894-2010 OI Reich, Yoram/0000-0002-0922-8381; Barai, Sudhirkumar/0000-0001-5100-0607; CR [Anonymous], 1996, P 13 INT C INT C MAC [Anonymous], P 11 INT JOINT C ART [Anonymous], 1962, STAT PRINCIPLES EXPT BAILEY TL, 1993, P 13 INT JOINT C ART, P895 Breiman L, 1996, ANN STAT, V24, P2350 Breiman L., 1984, CLASSIFICATION REGRE, DOI DOI 10.1201/9781315139470 CONGLETON J, 1995, CORROSION, V51, P901, DOI 10.5006/1.3293566 DEMUTH H, 1994, NEURAL NETWORKS TOOL DENNY SB, 1989, MAR TECHNOL SNAME N, V26, P173 DIETTERICH T, 1996, STAT TESTS COMPARING EFRON B, 1983, J AM STAT ASSOC, V78, P316, DOI 10.2307/2288636 Efron B, 1993, INTRO BOOTSTRAP, V57, P17 FEELDERS A, 1995, 5 INT WORKSH ART INT, P219 FLEXER A, 1995, P 13 EUR M CYB SYST, P1005 Gama J., 1995, Progress in Artificial Intelligence. 7th Portuguese Conference on Artificial Intelligence, EPIA '95. Proceedings, P189 GASCUEL P, 1992, P 10 EUR C ART INT, P435 GEMAN S, 1992, NEURAL COMPUT, V4, P1, DOI 10.1162/neco.1992.4.1.1 HAYS W.L., 1988, Statistics, V4th Henry R. J., 1994, MACHINE LEARNING NEU, P107 HIGHLEYMAN WH, 1962, AT&T TECH J, V41, P723, DOI 10.1002/j.1538-7305.1962.tb02426.x JAIN AK, 1987, IEEE T PATTERN ANAL, V9, P628, DOI 10.1109/TPAMI.1987.4767957 Kohavi R., 1995, A Study of Cross-Validation and Bootstrap for Accuracy Estimation and Model Selection, P1137 Michie D., 1994, MACHINE LEARNING NEU, V29 Morrison D.F., 1990, MULTIVARIATE STAT ME, V3 NEOCLEUS CC, 1995, P ICNN 95 INT C NEUR, V2, P1098 Prechelt L, 1996, NEURAL NETWORKS, V9, P457, DOI 10.1016/0893-6080(95)00123-9 REICH Y, 1995, INT J HUM-COMPUT ST, V42, P3, DOI 10.1006/ijhc.1995.1002 REICH Y, 1997, MICROCOMPUTERS CIVIL, V12, P307 SCHAFFER CA, 1997, P 11 INT C MACH LEAR, P259 SHAO J, 1993, J AM STAT ASSOC, V88, P486, DOI 10.2307/2290328 STINE RA, 1990, SOCIOLOGICAL METHODS, V18, P243 STONE M, 1977, BIOMETRIKA, V64, P29 WEISS SM, 1991, IEEE T PATTERN ANAL, V13, P285, DOI 10.1109/34.75516 WEISS SM, 1994, PROCEEDINGS OF THE TWELFTH NATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOLS 1 AND 2, P626 WELCH BL, 1947, BIOMETRIKA, V34, P28, DOI 10.1093/biomet/34.1-2.28 Wolpert DH, 1996, NEURAL COMPUT, V8, P1341, DOI 10.1162/neco.1996.8.7.1341 NR 36 TC 114 Z9 126 U1 1 U2 17 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0954-1810 J9 ARTIF INTELL ENG JI Artif. Intell. Eng. PD JUL PY 1999 VL 13 IS 3 BP 257 EP 272 DI 10.1016/S0954-1810(98)00021-1 PG 16 WC Computer Science, Artificial Intelligence; Engineering, Multidisciplinary WE Science Citation Index Expanded (SCI-EXPANDED) SC Computer Science; Engineering GA 221AT UT WOS:000081702600006 DA 2024-09-05 ER PT J AU Thakuria, A Deka, D AF Thakuria, Abhijit Deka, Dipen TI A decadal study on identifying latent topics and research trends in open access LIS journals using topic modeling approach SO SCIENTOMETRICS LA English DT Article DE Topic modeling; LDA; Open access; LIS ID INFORMATION-SCIENCE; AUTHOR COCITATION; RESEARCH FRONT; LIBRARY; EVOLUTION; PUBLICATIONS; ARTICLES AB The study utilized Latent Dirichlet Allocation (LDA) Topic modeling to identify prevalent latent topics within Open Access (OA) Library and Information Science (LIS) journals from 2013 to 2022. Eight core OA Scopus indexed journals were selected based on their SJR scores and DOAJ listing. Titles, Abstracts and keywords of 2589 articles were extracted from the Scopus database. R software packages were used to perform data analysis and LDA topic modeling. The optimal value of k was determined to be 9. The analysis revealed that 53.89% of documents comprise over 50% of a certain topic (theta > 0.50). Notably, 'Scholarly Communication' and 'Information Systems, Models and Frameworks' emerged as dominant topics with the highest proportions of research literature in the corpus. The topic 'Scholarly Communication' experienced significant growth with an average annual growth rate (AAGR) of 4.37%, while 'Collection development and E-resources' exhibited the lowest research proportion and a negative AAGR of - 4.22%. Additionally, topics such as 'Information Seeking Behaviour and User Studies', 'User Education and Information Literacy', and 'Information Retrieval and Systematic Review' remained stable and persistent topics. Conversely, research on traditional topics like 'Librarianship and Profession', 'Bibliometrics' and 'Medical Library and Health Information' showed a gradual decline. The LDA topic modeling approach unveiled previously unknown or unexplored topics in open access LIS research literature, enhancing our understanding of emerging trends. C1 [Thakuria, Abhijit; Deka, Dipen] Gauhati Univ, Dept Lib & Informat Sci, Gauhati, Assam, India. C3 Gauhati University RP Thakuria, A (corresponding author), Gauhati Univ, Dept Lib & Informat Sci, Gauhati, Assam, India. EM abhijitthakuria97@gmail.com OI Thakuria, Abhijit/0000-0002-3852-1982 CR Abbasi Z, 2019, GLOB KNOWL MEM COMMU, V68, P288, DOI 10.1108/GKMC-02-2018-0016 Aharony N, 2012, J LIBR INF SCI, V44, P27, DOI 10.1177/0961000611424819 [Anonymous], 2010, COLING 2010 POSTERS [Anonymous], 2012, P SIGCHI C HUM FACT, DOI DOI 10.1145/2207676.2207738 Åström F, 2007, J AM SOC INF SCI TEC, V58, P947, DOI 10.1002/asi.20567 Barik Nilaranjan, 2019, Library Hi Tech News, V36, P1, DOI 10.1108/LHTN-05-2019-0035 Beck S.E., 2008, PRACTICAL RES METHOD Bhatia S, 2018, 2018 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING (EMNLP 2018), P844 Blei D, 2006, P 23 INT C MACH LEAR, P113 Blei DM, 2012, COMMUN ACM, V55, P77, DOI 10.1145/2133806.2133826 Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993 Blessinger K, 2010, LIBR INFORM SCI RES, V32, P156, DOI 10.1016/j.lisr.2009.12.007 Börner K, 2003, ANNU REV INFORM SCI, V37, P179, DOI 10.1002/aris.1440370106 Chan L., 2006, Science and Development Network, V1, P1 Chan L, 2005, NEW LIB WORLD, V106, P141, DOI 10.1108/03074800510587354 CHANG J., 2009, Advances in Neural Information Processing Systems, V22, P288 Chang J, 2009, P 12 INT C ART INT S, P81 Chang W., 2017, Shiny: Web Application Framework for R. manual, V1 Chang YW, 2015, SCIENTOMETRICS, V105, P2071, DOI 10.1007/s11192-015-1762-8 Chang YW, 2012, J AM SOC INF SCI TEC, V63, P22, DOI 10.1002/asi.21649 Chen M, 2016, ELECTRON LIBR, V34, P722, DOI 10.1108/EL-05-2015-0070 Chuang J., 2014, Computer-assisted content analysis: Topic models for exploring multiple subjective interpretations Cole F L, 1988, Clin Nurse Spec, V2, P53, DOI 10.1097/00002800-198800210-00025 De la Hoz-M J, 2021, MATHEMATICS-BASEL, V9, DOI 10.3390/math9141671 Figuerola CG, 2017, SCIENTOMETRICS, V112, P1507, DOI 10.1007/s11192-017-2432-9 Ghosh, 2023, INT J INFORM SCI MAN, V21, P19, DOI [10.22034/ijism.2023.1977569.0, DOI 10.22034/IJISM.2023.1977569.0] Griffiths TL, 2004, P NATL ACAD SCI USA, V101, P5228, DOI 10.1073/pnas.0307752101 Grün B, 2011, J STAT SOFTW, V40, P1 Hall Mark, 2012, Theory and Practice of Digital Libraries. Second International Conference, TPDL 2012. Proceedings: LNCS 7489, P323, DOI 10.1007/978-3-642-33290-6_35 Han XY, 2020, SCIENTOMETRICS, V125, P2561, DOI 10.1007/s11192-020-03721-0 Harnad S., 2004, Ser. Rev, V30, P310, DOI [DOI 10.1080/00987913.2004.10764930, DOI 10.1016/J.SERREV.2004.09.013, 10.1016/j.serrev.2004.09.013] Hider P, 2008, LIBR INFORM SCI RES, V30, P108, DOI 10.1016/j.lisr.2007.11.007 Hofmann T, 1999, SIGIR'99: PROCEEDINGS OF 22ND INTERNATIONAL CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, P50, DOI 10.1145/312624.312649 JARVELIN K, 1993, INFORM PROCESS MANAG, V29, P129, DOI 10.1016/0306-4573(93)90028-C Järvelin K, 2022, J DOC, V78, P65, DOI 10.1108/JD-03-2021-0062 Kanjilal U., 2015, INTRO OPEN ACCESS Khan D, 2023, COLLECT CURATION, V42, P13, DOI 10.1108/CC-03-2022-0010 Kherwa P, 2020, EAI ENDORSED TRANS S, V7, DOI 10.4108/eai.13-7-2018.159623 Kumar V, 2022, ANN LIBR INF STUD, V69, P191, DOI 10.56042/alis.v69i3.58719 Kurata Keiko, 2018, Proceedings of the Association for Information Science and Technology, V55, DOI 10.1002/pra2.2018.14505501143 Lamba M, 2019, SCIENTOMETRICS, V120, P477, DOI 10.1007/s11192-019-03137-5 Landauer TK, 1998, DISCOURSE PROCESS, V25, P259, DOI 10.1080/01638539809545028 Li P, 2019, SCIENTOMETRICS, V121, P1753, DOI 10.1007/s11192-019-03239-0 Li W., 2006, ICML, P577, DOI [10.1145/1143844.1143917, 10.1145/] Liu GY, 2019, J ACAD LIBR, V45, P278, DOI 10.1016/j.acalib.2019.04.001 Lu K, 2012, J AM SOC INF SCI TEC, V63, P1973, DOI 10.1002/asi.22628 Ma JX, 2021, J ASSOC INF SCI TECH, V72, P1059, DOI 10.1002/asi.24474 Milojevic S, 2011, J AM SOC INF SCI TEC, V62, P1933, DOI 10.1002/asi.21602 Miyata Y, 2020, SCIENTOMETRICS, V125, P665, DOI 10.1007/s11192-020-03657-5 Mokhtarpour R, 2021, J INF SCI, V47, P794, DOI 10.1177/0165551520932119 Mooney, 2010, P 27 INT C MACH LEAR, P903, DOI DOI 10.1007/S10955-009-9892-0 Mukherjee B, 2009, SCIENTOMETRICS, V80, P167, DOI 10.1007/s11192-008-2055-2 Newman D., 2010, P ANN JOINT C DIG LI, P215, DOI [10.1145/1816123.1816156, DOI 10.1145/1816123.1816156] Nezhad FG., 2022, INT J INFORM SCI MAN, V20, P471 Castellà CO, 2016, LEARN PUBL, V29, P89, DOI 10.1002/leap.1016 Olson Gary M., 2009, Interactions, V16, P15, DOI 10.1145/1487632.1487636 Onyancha OB, 2018, PUBLISH RES Q, V34, P456, DOI 10.1007/s12109-018-9590-3 Panda S., 2021, SOCARXIV, DOI [10.31235/osf.io/67ctu, DOI 10.31235/OSF.IO/67CTU] Papic A, 2019, 2019 42ND INTERNATIONAL CONVENTION ON INFORMATION AND COMMUNICATION TECHNOLOGY, ELECTRONICS AND MICROELECTRONICS (MIPRO), P508, DOI [10.23919/MIPRO.2019.8756693, 10.23919/mipro.2019.8756693] Paul M., 2010, P 24 ANN C ART INT A Rajan AC., 2019, INT J COMPUTER SCI T, V7, P10 Sievert C., 2014, P WORKSH INT LANG LE, P63, DOI [10.3115/v1/W14-3110, DOI 10.3115/V1/W14-3110, 10.3115/v1/w14-3110] Suber P, 2012, BMJ-BRIT MED J, V345, DOI 10.1136/bmj.e5184 Sugimoto CR, 2011, J AM SOC INF SCI TEC, V62, P185, DOI 10.1002/asi.21435 Sung HY, 2017, LIBR INFORM SCI RES, V39, P77, DOI 10.1016/j.lisr.2017.03.002 Trivedi SK, 2023, J MODEL MANAG, V18, P1204, DOI 10.1108/JM2-02-2022-0045 Tuomaala O, 2014, J ASSOC INF SCI TECH, V65, P1446, DOI 10.1002/asi.23034 Walker TJ, 1998, AM SCI, V86, P463, DOI 10.1241/johokanri.41.678 Wallach H. M., 2006, P 23 INT C MACH LEAR, V23, P977, DOI [10.1145/1143844.1143967, DOI 10.1145/1143844.1143967] White HD, 1998, J AM SOC INFORM SCI, V49, P327, DOI 10.1002/(SICI)1097-4571(19980401)49:4<327::AID-ASI4>3.0.CO;2-W Yan E, 2015, J ASSOC INF SCI TECH, V66, P2357, DOI 10.1002/asi.23324 Yan EJ, 2014, J INFORMETR, V8, P98, DOI 10.1016/j.joi.2013.10.010 Yuan SB, 2011, ELECTRON LIBR, V29, P682, DOI 10.1108/02640471111177107 Zeng JX, 2023, ASLIB J INFORM MANAG, V75, P589, DOI 10.1108/AJIM-03-2022-0130 Zhao DZ, 2008, J AM SOC INF SCI TEC, V59, P2070, DOI 10.1002/asi.20910 Zhao DZ, 2014, J ASSOC INF SCI TECH, V65, P995, DOI 10.1002/asi.23027 NR 76 TC 1 Z9 1 U1 18 U2 18 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0138-9130 EI 1588-2861 J9 SCIENTOMETRICS JI Scientometrics PD JUL PY 2024 VL 129 IS 7 BP 3841 EP 3869 DI 10.1007/s11192-024-05058-4 EA JUN 2024 PG 29 WC Computer Science, Interdisciplinary Applications; Information Science & Library Science WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Computer Science; Information Science & Library Science GA ZU5Q7 UT WOS:001238196700002 DA 2024-09-05 ER PT J AU Zhou, YH Wang, RJ Zeng, A AF Zhou, Yuhao Wang, Ruijie Zeng, An TI Predicting the impact and publication date of individual scientists' future papers SO SCIENTOMETRICS LA English DT Article DE Citation counts; H-index; Deep learning; Scientific impact; Prediction ID CITATION COUNTS; NEURAL-NETWORK AB Predicting the future career of individual scientists is an important yet challenging problem with numerous applications such as recruitment of scientific research positions, promoting outstanding academic staff, and managing scientific grant proposals. Despite that much effort has been devoted to predict scientists' future performance and success, yet these works focus on the macro future performance of scholars from the perspective of their career ages. A related but different task is to predict the impact and publication date of each future paper. We regard this micro level prediction problem as a dynamic series auto-regression task, and a deep learning method is designed to solve it. The experiments show that our method outperforms the state-of-the-art method in this issue. C1 [Zhou, Yuhao; Wang, Ruijie] Univ Fribourg, Dept Phys, CH-1700 Fribourg, Switzerland. [Zeng, An] Beijing Normal Univ, Sch Syst Sci, Beijing 100875, Peoples R China. C3 University of Fribourg; Beijing Normal University RP Zeng, A (corresponding author), Beijing Normal Univ, Sch Syst Sci, Beijing 100875, Peoples R China. EM anzeng@bnu.edu.cn FU National Natural Science Foundation of China [71731002]; China Scholarship Council (CSC) FX This work is supported by the National Natural Science Foundation of China under Grant 71731002. Rui-Jie Wang acknowledges the support from the China Scholarship Council (CSC). CR Abrishami A, 2019, J INFORMETR, V13, P485, DOI 10.1016/j.joi.2019.02.011 Acuna DE, 2012, NATURE, V489, P201, DOI 10.1038/489201a Akella AP, 2021, J INFORMETR, V15, DOI 10.1016/j.joi.2020.101128 [Anonymous], 2017, INT C LEARNING REPRE [Anonymous], 2009, Proc. of the 9th SIAM International Conference on Data Mining Bai S., 2018, CoRR Bao P, 2017, SCIENTOMETRICS, V112, P595, DOI 10.1007/s11192-017-2335-9 Batista AD, 2021, J INFORMETR, V15, DOI 10.1016/j.joi.2021.101130 Bengio S, 2015, ADV NEUR IN, V28 Cao XY, 2016, J INFORMETR, V10, P471, DOI 10.1016/j.joi.2016.02.006 Chen XH, 2021, J INTELL MANUF, V32, P971, DOI 10.1007/s10845-020-01600-2 Cho K., 2014, ARXIV, DOI [DOI 10.3115/V1/D14-1179, 10.3115/v1/w14-4012] Fu LD, 2010, SCIENTOMETRICS, V85, P257, DOI 10.1007/s11192-010-0237-1 García-Pérez MA, 2013, SCIENTOMETRICS, V96, P901, DOI 10.1007/s11192-013-0979-7 GEISSER S, 1974, BIOMETRIKA, V61, P101, DOI 10.1093/biomet/61.1.101 Goodfellow I, 2016, ADAPT COMPUT MACH LE, P1 Hirsch JE, 2005, P NATL ACAD SCI USA, V102, P16569, DOI 10.1073/pnas.0507655102 Hochreiter S, 1997, NEURAL COMPUT, V9, P1735, DOI [10.1162/neco.1997.9.1.1, 10.1007/978-3-642-24797-2] Jean Sebastien, 2014, ARXIV14122007 Kong XJ, 2015, 2015 IEEE INTERNATIONAL CONFERENCE ON SMART CITY/SOCIALCOM/SUSTAINCOM (SMARTCITY), P242, DOI 10.1109/SmartCity.2015.78 Kuncel NR, 2007, SCIENCE, V315, P1080, DOI 10.1126/science.1136618 Lea C, 2017, PROC CVPR IEEE, P1003, DOI 10.1109/CVPR.2017.113 Lea C, 2016, LECT NOTES COMPUT SC, V9915, P47, DOI 10.1007/978-3-319-49409-8_7 Lee DH, 2019, SCIENTOMETRICS, V121, P1481, DOI 10.1007/s11192-019-03232-7 Li MJ, 2019, IEEE SYS MAN CYBERN, P1172, DOI 10.1109/SMC.2019.8913961 Li N, 2012, INT CONF COMP SCI ED, P1115, DOI 10.1109/ICCSE.2012.6295261 Li XG, 2015, INT CONF ACOUST SPEE, P4520, DOI 10.1109/ICASSP.2015.7178826 Lipton Z.C., 2015, Learning to Diagnose with LSTM Recurrent Neural Networks, V1506, P19 Liu L, 2018, NATURE, V559, P396, DOI 10.1038/s41586-018-0315-8 Lu WJ, 2020, COMPLEXITY, V2020, DOI 10.1155/2020/6622927 Lü LY, 2011, PHYSICA A, V390, P1150, DOI 10.1016/j.physa.2010.11.027 Mariani MS, 2016, J INFORMETR, V10, P1207, DOI 10.1016/j.joi.2016.10.005 Mazloumian A, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0049246 McCarty C, 2013, SCIENTOMETRICS, V96, P467, DOI 10.1007/s11192-012-0933-0 Mistele T, 2019, SCIENTOMETRICS, V120, P87, DOI 10.1007/s11192-019-03110-2 Newman MEJ, 2014, EPL-EUROPHYS LETT, V105, DOI 10.1209/0295-5075/105/28002 Newman MEJ, 2009, EPL-EUROPHYS LETT, V86, DOI 10.1209/0295-5075/86/68001 Nezhadbiglari M, 2016, ACM-IEEE J CONF DIG, P181, DOI 10.1145/2910896.2910905 Penner O, 2013, SCI REP-UK, V3, DOI 10.1038/srep03052 Qi MJ, 2017, SCIENTOMETRICS, V111, P1839, DOI 10.1007/s11192-017-2328-8 Qin DM, 2019, IEEE ACCESS, V7, P20050, DOI 10.1109/ACCESS.2019.2897028 Ruan XM, 2020, J INFORMETR, V14, DOI 10.1016/j.joi.2020.101039 Sarigöl E, 2014, EPJ DATA SCI, V3, DOI 10.1140/epjds/s13688-014-0009-x Sinatra R, 2016, SCIENCE, V354, DOI 10.1126/science.aaf5239 Singh SP, 2017, 2017 INTERNATIONAL CONFERENCE ON COMPUTER, COMMUNICATIONS AND ELECTRONICS (COMPTELIX), P162, DOI 10.1109/COMPTELIX.2017.8003957 Sutskever I, 2014, ADV NEUR IN, V27 Vaccario G, 2017, J INFORMETR, V11, P766, DOI 10.1016/j.joi.2017.05.014 Wang DS, 2013, SCIENCE, V342, P127, DOI 10.1126/science.1237825 Xing YM, 2021, J INFORMETR, V15, DOI 10.1016/j.joi.2021.101157 Yan JN, 2020, SCI REP-UK, V10, DOI 10.1038/s41598-020-65070-5 Yin CY, 2022, IEEE T SYST MAN CY-S, V52, P112, DOI 10.1109/TSMC.2020.2968516 Yu T, 2014, SCIENTOMETRICS, V101, P1233, DOI 10.1007/s11192-014-1279-6 Yuxiao Dong, 2016, IEEE Transactions on Big Data, V2, P18, DOI 10.1109/TBDATA.2016.2521657 Zen HG, 2015, INT CONF ACOUST SPEE, P4470, DOI 10.1109/ICASSP.2015.7178816 Zeng A, 2017, PHYS REP, V714, P1, DOI 10.1016/j.physrep.2017.10.001 Zhang F, 2020, J INFORMETR, V14, DOI 10.1016/j.joi.2020.101035 Zhang RX, 2018, P INT COMP SOFTW APP, P546, DOI 10.1109/COMPSAC.2018.10292 Zhao Q, 2020, ARXIV PREPRINT ARXIV Zhou JL, 2016, SCIENTOMETRICS, V106, P805, DOI 10.1007/s11192-015-1805-1 Zhou YH, 2020, J INFORMETR, V14, DOI 10.1016/j.joi.2020.101038 NR 60 TC 3 Z9 3 U1 6 U2 63 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0138-9130 EI 1588-2861 J9 SCIENTOMETRICS JI Scientometrics PD APR PY 2022 VL 127 IS 4 BP 1867 EP 1882 DI 10.1007/s11192-022-04286-w EA FEB 2022 PG 16 WC Computer Science, Interdisciplinary Applications; Information Science & Library Science WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Computer Science; Information Science & Library Science GA 0M5LI UT WOS:000755102600003 DA 2024-09-05 ER PT C AU Lin, YY Lin, L AF Lin, Yi-yong Lin, Lei GP Destech Publicat Inc TI Research on the Algorithm of LAN Performance Evaluation Based on Deep Learning SO INTERNATIONAL CONFERENCE ON MECHANICAL, ELECTRONIC AND INFORMATION TECHNOLOGY (ICMEIT 2018) SE DEStech Transactions on Engineering and Technology Research LA English DT Proceedings Paper CT International Conference on Mechanical, Electronic and Information Technology (ICMEIT) CY APR 15-16, 2018 CL Shanghai, PEOPLES R CHINA DE Deep learning; Deep neural network; Recurrent neural network; Evaluation algorithm; K-line cross-validation ID CLASSIFICATION; NETWORK AB A network performance evaluation algorithm is presented based on deep learning framework RNN on this paper. The algorithm collects 8 index parameters in the private LAN and realizes the automatic evaluation of the three levels of the private LAN: excellent, good, and unqualified. The results of the example verification and analysis show that the algorithm proposed in this paper evaluates the performance of the private area network using K-fold cross-validation. The correctness of the algorithm is over 90%. The robustness and high efficiency of the algorithm, the computing time of milliseconds, can be effectively applied to the real-time performance evaluation of the local area network. C1 [Lin, Yi-yong] Xichang Satellite Launch Ctr, Xichang, Sichuan, Peoples R China. [Lin, Lei] Chengdu Flight Ind Refco Grp Ltd, Chengdu, Sichuan, Peoples R China. RP Lin, YY (corresponding author), Xichang Satellite Launch Ctr, Xichang, Sichuan, Peoples R China. FU Equipment pre-research project FX This research was financially supported by the Equipment pre-research project. CR [Anonymous], 2017, ELECT LETT Chen YS, 2015, IEEE J-STARS, V8, P2381, DOI 10.1109/JSTARS.2015.2388577 DA Li-rong, 2017, DATA ACQUISITION PRO, V32, P221 Dahl GE, 2012, IEEE T AUDIO SPEECH, V20, P30, DOI 10.1109/TASL.2011.2134090 Gong MG, 2015, IEEE T NEUR NET LEAR, V26, P3263, DOI 10.1109/TNNLS.2015.2469673 Gu F., 2016, COMPUTER SCI, P84 Kato N, 2017, IEEE WIREL COMMUN, V24, P146, DOI 10.1109/MWC.2016.1600317WC Li Lin, 2016, Journal of Huazhong University of Science and Technology (Natural Science Edition), V44, P70, DOI 10.13245/j.hust.161212 Lu N, 2017, IEEE T NEUR SYS REH, V25, P566, DOI 10.1109/TNSRE.2016.2601240 Maleh Y, 2015, PROCEDIA COMPUT SCI, V52, P1047, DOI 10.1016/j.procs.2015.05.108 Nanyang Chen Lin, 2015, J COMPUTER APPL, V35, P3055 Papyan V, 2017, IEEE T SIGNAL PROCES, V65, P5687, DOI 10.1109/TSP.2017.2733447 Rawat W, 2017, NEURAL COMPUT, V29, P2352, DOI [10.1162/NECO_a_00990, 10.1162/neco_a_00990] Shi Hong-li, 2005, Journal of Shanghai University, V9, P159, DOI 10.1007/s11741-005-0070-6 [孙旭 Sun Xu], 2017, [自动化学报, Acta Automatica Sinica], V43, P697 Wang L, 2017, IEEE T POWER SYST, V32, P2673, DOI 10.1109/TPWRS.2016.2628873 Wang ZY, 2017, IEEE T NEUR NET LEAR, V28, P1397, DOI 10.1109/TNNLS.2015.2508931 [奚雪峰 Xi Xuefeng], 2016, [自动化学报, Acta Automatica Sinica], V42, P1445 Yan H, 2012, IEEE INFOCOM SER, P2756, DOI 10.1109/INFCOM.2012.6195694 Yu Yan, 2017, DEEP LEARNING PRINCI Zhang Tuo, 2017, NEW NAVIGATION, V8, P19 Zhang Y, 2017, IET COMPUT VIS, V11, P471, DOI 10.1049/iet-cvi.2016.0322 Zhang Yubing, 2017, MODERN COMPUTER, P26 Zheng Jun, 2004, Control and Decision, V19, P1190 Zhou P, 2015, IEEE-ACM T AUDIO SPE, V23, P631, DOI 10.1109/TASLP.2015.2392944 NR 25 TC 0 Z9 0 U1 0 U2 0 PU DESTECH PUBLICATIONS, INC PI LANCASTER PA 439 DUKE STREET, LANCASTER, PA 17602-4967 USA SN 2475-885X BN 978-1-60595-548-3 J9 DESTECH TRANS ENG PY 2018 BP 411 EP 418 PG 8 WC Engineering, Multidisciplinary WE Conference Proceedings Citation Index - Science (CPCI-S) SC Engineering GA BM7ZE UT WOS:000468596500069 DA 2024-09-05 ER PT J AU Daradkeh, M Abualigah, L Atalla, S Mansoor, W AF Daradkeh, Mohammad Abualigah, Laith Atalla, Shadi Mansoor, Wathiq TI Scientometric Analysis and Classification of Research Using Convolutional Neural Networks: A Case Study in Data Science and Analytics SO ELECTRONICS LA English DT Article DE scientific literature; thematic classification; scientometric; deep learning; convolutional neural network (CNN) ID BIG DATA; DETERMINANTS; KNOWLEDGE; ADOPTION AB With the increasing development of published literature, classification methods based on bibliometric information and traditional machine learning approaches encounter performance challenges related to overly coarse classifications and low accuracy. This study presents a deep learning approach for scientometric analysis and classification of scientific literature based on convolutional neural networks (CNN). Three dimensions, namely publication features, author features, and content features, were divided into explicit and implicit features to form a set of scientometric terms through explicit feature extraction and implicit feature mapping. The weighted scientometric term vectors are fitted into a CNN model to achieve dual-label classification of literature based on research content and methods. The effectiveness of the proposed model is demonstrated using an application example from the data science and analytics literature. The empirical results show that the scientometric classification model proposed in this study performs better than comparable machine learning classification methods in terms of precision, recognition, and F1-score. It also exhibits higher accuracy than deep learning classification based solely on explicit and dominant features. This study provides a methodological guide for fine-grained classification of scientific literature and a thorough investigation of its practice. C1 [Daradkeh, Mohammad; Atalla, Shadi; Mansoor, Wathiq] Univ Dubai, Coll Engn & Informat Technol, Dubai 14143, U Arab Emirates. [Daradkeh, Mohammad] Yarmouk Univ, Fac Informat Technol & Comp Sci, Irbid 21163, Jordan. [Abualigah, Laith] Amman Arab Univ, Fac Comp Sci & Informat, Amman 11953, Jordan. [Abualigah, Laith] Middle East Univ, Fac Informat Technol, Amman 11831, Jordan. C3 University of Dubai; Yarmouk University; Middle East University RP Daradkeh, M (corresponding author), Univ Dubai, Coll Engn & Informat Technol, Dubai 14143, U Arab Emirates.; Daradkeh, M (corresponding author), Yarmouk Univ, Fac Informat Technol & Comp Sci, Irbid 21163, Jordan. EM mdaradkehc@ud.ac.ae; aligah.2020@gmail.com; satalla@ud.ac.ae; wmansoor@ud.ac.ae RI Abualigah, Laith/ABC-9695-2020; Atalla, Shadi/KAO-2626-2024; mansoor, wathiq/D-8297-2018 OI Abualigah, Laith/0000-0002-2203-4549; Atalla, Shadi/0000-0003-3017-9243; Daradkeh, Mohammad/0000-0003-2693-7363; mansoor, wathiq/0000-0003-2784-5188 CR Accuosto P, 2020, DATA KNOWL ENG, V129, DOI 10.1016/j.datak.2020.101840 Adnani H, 2020, MALAYS J LIBR INF SC, V25, P31, DOI 10.22452/mjlis.vol25no3.3 Aljohani NR, 2021, SCIENTOMETRICS, V126, P5509, DOI 10.1007/s11192-021-03986-z Aljuaid H, 2021, TELEMAT INFORM, V56, DOI 10.1016/j.tele.2020.101492 An X, 2023, J INF SCI, V49, P107, DOI 10.1177/0165551521991034 Andriamamonjy A, 2019, J BUILD ENG, V22, P513, DOI 10.1016/j.jobe.2018.12.021 [Anonymous], 2015, J. Big Data, DOI 10.1186/s40537-014-0007-7 Bhatt C, 2021, MULTIMEDIA SYST, V27, P599, DOI 10.1007/s00530-020-00694-1 Brack Arthur, 2020, Advances in Information Retrieval, 42nd European Conference on IR Research, ECIR 2020. Proceedings. Lecture Notes in Computer Science (LNCS 12035), P251, DOI 10.1007/978-3-030-45439-5_17 Caselli T, 2022, LANG RESOUR EVAL, V56, P417, DOI 10.1007/s10579-021-09554-4 Daradkeh M., 2022, INT J INF TECHNOL SY, V15, P1, DOI [10.4018/IJITSA.307023, DOI 10.4018/IJITSA.307023] Daradkeh M, 2022, INT J BUS ANAL, V9, DOI 10.4018/IJBAN.292056 Daradkeh M, 2019, J ORGAN END USER COM, V31, P19, DOI 10.4018/JOEUC.2019100102 Daradkeh M, 2017, INT J ENTERP INF SYS, V13, P65, DOI 10.4018/IJEIS.2017070105 Daradkeh MK, 2019, INFORM TECHNOL PEOPL, V32, P668, DOI 10.1108/ITP-10-2017-0359 de Medeiros MM, 2020, BOTTOM LINE, V33, P149, DOI 10.1108/BL-12-2019-0132 Dunham J., 2020, ARXIV Eykens J, 2021, QUANT SCI STUD, V2, P89, DOI 10.1162/qss_a_00106 González-Alcaide G, 2018, PLOS NEGLECT TROP D, V12, DOI 10.1371/journal.pntd.0006602 Gryncewicz W., 2021, EUR RES STUD J, V24, P1061, DOI [10.35808/ersj/2558, DOI 10.35808/ERSJ/2558] Guo DY, 2017, SUSTAINABILITY-BASEL, V9, DOI 10.3390/su9101928 Hernández-Alvarez M, 2017, NAT LANG ENG, V23, P561, DOI 10.1017/S1351324916000346 Hernández-Alvarez M, 2016, NAT LANG ENG, V22, P327, DOI 10.1017/S1351324915000388 Ho YS, 2021, MULT SCLER RELAT DIS, V54, DOI 10.1016/j.msard.2021.103112 Huang H, 2022, SCIENTOMETRICS, V127, P5257, DOI 10.1007/s11192-021-04183-8 Iqbal S, 2021, SCIENTOMETRICS, V126, P6551, DOI 10.1007/s11192-021-04055-1 Kandimalla Bharath, 2020, Front Res Metr Anal, V5, P600382, DOI 10.3389/frma.2020.600382 Kim MC, 2020, J AM MED INFORM ASSN, V27, P1612, DOI 10.1093/jamia/ocaa107 Kozlowski AC, 2019, AM SOCIOL REV, V84, P905, DOI 10.1177/0003122419877135 Liakata M, 2012, BIOINFORMATICS, V28, P991, DOI 10.1093/bioinformatics/bts071 Luo JQ, 2021, J HOSP MARKET MANAG, V30, P71, DOI 10.1080/19368623.2020.1772163 Makabate CT, 2022, ENG CONSTR ARCHIT MA, V29, P179, DOI 10.1108/ECAM-02-2020-0139 Mercer RE, 2003, LECT NOTES ARTIF INT, V2671, P550 Mosallaie S, 2021, COLLNET J SCIENTOMET, V15, P225, DOI 10.1080/09737766.2021.1958659 Mukhamediev RI, 2021, APPL SCI-BASEL, V11, DOI 10.3390/app11125541 Nosratabadi S, 2020, MATHEMATICS-BASEL, V8, DOI 10.3390/math8101799 Ozcan S, 2022, IEEE T ENG MANAGE, V69, P3023, DOI 10.1109/TEM.2020.3027973 Porter M. F, 2001, Snowball: A language for stemming algorithms Provost F, 2013, BIG DATA, V1, P51, DOI 10.1089/big.2013.1508 Purnomo A, 2020, PROCEEDINGS OF 2020 INTERNATIONAL CONFERENCE ON INFORMATION MANAGEMENT AND TECHNOLOGY (ICIMTECH), P893, DOI [10.1109/icimtech50083.2020.9211192, 10.1109/ICIMTech50083.2020.9211192] Rajput NK, 2022, MULTIMED TOOLS APPL, V81, P32469, DOI 10.1007/s11042-022-12961-6 Ravenscroft J, 2017, PLOS ONE, V12, DOI 10.1371/journal.pone.0173152 Ravikiran M., 2020, P 2020 IEEE INT C BI Sagnika S, 2021, NEURAL COMPUT APPL, V33, P17425, DOI 10.1007/s00521-021-06328-5 Salazar-Reyna R, 2022, MANAGE DECIS, V60, P300, DOI 10.1108/MD-01-2020-0035 Sarker Iqbal H, 2021, SN Comput Sci, V2, P160, DOI 10.1007/s42979-021-00592-x Schmidt J, 2019, NPJ COMPUT MATER, V5, DOI 10.1038/s41524-019-0221-0 Serenko A, 2021, J KNOWL MANAG, V25, P1889, DOI 10.1108/JKM-09-2020-0730 Setyanto A, 2022, APPL SCI-BASEL, V12, DOI 10.3390/app12094140 SHELLEY M, 1984, J AM STAT ASSOC, V79, P240, DOI 10.2307/2288384 Sood SK, 2021, ARTIF INTELL REV, V54, P6309, DOI 10.1007/s10462-021-09980-4 Timoshenko A, 2019, MARKET SCI, V38, P1, DOI 10.1287/mksc.2018.1123 Vicario G, 2020, APPL STOCH MODEL BUS, V36, P6, DOI 10.1002/asmb.2488 Vortmann LM, 2021, SENSORS-BASEL, V21, DOI 10.3390/s21248205 Wahid N, 2021, COLLNET J SCIENTOMET, V15, P287, DOI 10.1080/09737766.2021.1960219 Waller MA, 2013, J BUS LOGIST, V34, P77, DOI 10.1111/jbl.12010 Wang GH, 2021, PLOS ONE, V16, DOI 10.1371/journal.pone.0254054 Wang J., 2020, J PHYS C SER, V1544 Wang LC, 2021, IEEE T IMAGE PROCESS, V30, P9125, DOI 10.1109/TIP.2021.3122003 Wang MY, 2020, SCIENTOMETRICS, V125, P2109, DOI 10.1007/s11192-020-03677-1 Wickett K.M., 2012, P AM SOC INFORM SCI, V49, P1, DOI [10.1002/meet.14504901199, DOI 10.1002/MEET.14504901199] Wimmer H, 2019, J COMPUT INFORM SYST, V59, P43, DOI 10.1080/08874417.2017.1295790 Xu GX, 2019, IEEE ACCESS, V7, P51522, DOI 10.1109/ACCESS.2019.2909919 Zhang ZQ, 2021, QUANT SCI STUD, V2, P698, DOI 10.1162/qss_a_00123 Zhao DW, 2022, APPL SOFT COMPUT, V124, DOI 10.1016/j.asoc.2022.109071 NR 65 TC 20 Z9 20 U1 2 U2 17 PU MDPI PI BASEL PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND EI 2079-9292 J9 ELECTRONICS-SWITZ JI Electronics PD JUL PY 2022 VL 11 IS 13 AR 2066 DI 10.3390/electronics11132066 PG 22 WC Computer Science, Information Systems; Engineering, Electrical & Electronic; Physics, Applied WE Science Citation Index Expanded (SCI-EXPANDED) SC Computer Science; Engineering; Physics GA 2X9VE UT WOS:000825543500001 OA gold DA 2024-09-05 ER PT J AU Li, Q Li, JX Sheng, JW Cui, SY Wu, J Hei, YM Peng, H Guo, S Wang, LH Beheshti, A Yu, PS AF Li, Qian Li, Jianxin Sheng, Jiawei Cui, Shiyao Wu, Jia Hei, Yiming Peng, Hao Guo, Shu Wang, Lihong Beheshti, Amin Yu, Philip S. TI A Survey on Deep Learning Event Extraction: Approaches and Applications SO IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS LA English DT Article DE Task analysis; Deep learning; Electronic mail; Data mining; Measurement; Feature extraction; Technological innovation; evaluation metrics; event extraction (EE); research trends ID JOINT ENTITY; TEXT; TRANSFORMER AB Event extraction (EE) is a crucial research task for promptly apprehending event information from massive textual data. With the rapid development of deep learning, EE based on deep learning technology has become a research hotspot. Numerous methods, datasets, and evaluation metrics have been proposed in the literature, raising the need for a comprehensive and updated survey. This article fills the research gap by reviewing the state-of-the-art approaches, especially focusing on the general domain EE based on deep learning models. We introduce a new literature classification of current general domain EE research according to the task definition. Afterward, we summarize the paradigm and models of EE approaches, and then discuss each of them in detail. As an important aspect, we summarize the benchmarks that support tests of predictions and evaluation metrics. A comprehensive comparison among different approaches is also provided in this survey. Finally, we conclude by summarizing future research directions facing the research area. C1 [Li, Qian; Li, Jianxin] Beihang Univ, Beijing Adv Innovat Ctr Big Data & Brain Comp, Sch Comp Sci & Engn, Beijing 100083, Peoples R China. [Sheng, Jiawei; Cui, Shiyao] Chinese Acad Sci, Inst Informat Engn, Beijing 100083, Peoples R China. [Sheng, Jiawei; Cui, Shiyao] Univ Chinese Acad Sci, Sch Cyber Secur, Beijing 100083, Peoples R China. [Wu, Jia; Beheshti, Amin] Macquarie Univ, Sch Comp, Sydney, NSW 2109, Australia. [Hei, Yiming] Beihang Univ, Sch Cyber Sci & Technol, Beijing 100083, Peoples R China. [Peng, Hao] Beihang Univ, Beijing Adv Innovat Ctr Big Data & Brain Comp, Sch Comp Sci & Engn, Beijing 100083, Peoples R China. [Peng, Hao] Beihang Univ, Beijing Adv Innovat Ctr Big Data & Brain Comp, Beijing 100083, Peoples R China. [Guo, Shu] Natl Comp Network Emergency Response Tech Team Coo, Beijing 100029, Peoples R China. [Wang, Lihong; Yu, Philip S.] Univ Illinois, Dept Comp Sci, Chicago, IL 60607 USA. C3 Beihang University; Chinese Academy of Sciences; Chinese Academy of Sciences; University of Chinese Academy of Sciences, CAS; Macquarie University; Beihang University; Beihang University; Beihang University; University of Illinois System; University of Illinois Chicago; University of Illinois Chicago Hospital RP Li, JX (corresponding author), Beihang Univ, Beijing Adv Innovat Ctr Big Data & Brain Comp, Sch Comp Sci & Engn, Beijing 100083, Peoples R China. EM liqian@act.buaa.edu.cn; lijx@act.buaa.edu.cn; shengjiawei@iie.ac.cn; cuishiyao@iie.ac.cn; jia.wu@mq.edu.au; black@buaa.edu.cn; penghao@act.buaa.edu.cn; guoshu@cert.org.cn; wlh@cert.org.cn; amin.beheshti@mq.edu.au; psyu@uic.edu FU NSFC FX No Statement Available CR Abdelaziz I, 2021, AAAI CONF ARTIF INTE, V35, P15985 Ahmad WU, 2021, AAAI CONF ARTIF INTE, V35, P12462 Aly R, 2019, 57TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2019:): STUDENT RESEARCH WORKSHOP, P323 [Anonymous], 2017, P 2017 C EMP METH NA Araki T., 2015, P EMNLP, P1 Barhom S, 2019, 57TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2019), P4179 Bean D, 2004, HLT-NAACL 2004: HUMAN LANGUAGE TECHNOLOGY CONFERENCE OF THE NORTH AMERICAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, PROCEEDINGS OF THE MAIN CONFERENCE, P297 Bejan CA, 2010, ACL 2010: 48TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, P1412 Ben Veyseh AP, 2019, 57TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2019), P4393 Björne J, 2018, SIGBIOMED WORKSHOP ON BIOMEDICAL NATURAL LANGUAGE PROCESSING (BIONLP 2018), P98 Bjorne T., 2011, inBioNLP@ACL (Shared Task), P1 Bosselut A, 2021, AAAI CONF ARTIF INTE, V35, P4923 Boyd-Graber B., 2020, P 58 ANN M ASS COMP, P1 Cao PF, 2021, 2021 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING (EMNLP 2021), P2636 Cao PF, 2021, 59TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS AND THE 11TH INTERNATIONAL JOINT CONFERENCE ON NATURAL LANGUAGE PROCESSING (ACL-IJCNLP 2021), VOL 1, P4862 Cao P, 2020, PROCEEDINGS OF THE 2020 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING (EMNLP), P707 Cao QQ, 2020, 58TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2020), P4487 Cao R., 2020, P ACL, P1 Cao YW, 2021, PROCEEDINGS OF THE WORLD WIDE WEB CONFERENCE 2021 (WWW 2021), P3383, DOI 10.1145/3442381.3449834 Chalkidis I, 2019, 57TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2019), P6314 Chambers D., 2008, ACL, P1 Chambers N., 2014, Trans. Assoc. Comput. Linguist. (TACL), V2, P273, DOI DOI 10.1162/tacl_a_00182 Chan Y.S, 2019, P ACL, P1 Chang C. D., 2013, P SEMEVAL, P1 Chang WC, 2020, KDD '20: PROCEEDINGS OF THE 26TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING, P3163, DOI 10.1145/3394486.3403368 Chaturvedi S., 2017, P 2017 C EMP METH NA, P1603, DOI DOI 10.18653/V1/D17-1168 Chau D., CoRR Chen C, 2016, AAAI CONF ARTIF INTE, P2913 Chen H., 2009, P WORKSH EV EM TEXT, P17 Chen H., 2009, P HLT NAACL, P1 Chen JW, 2021, 2021 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING (EMNLP 2021), P8078 Chen L, 2020, P 58 ANN M ASS COMP, P8801, DOI [10.18653/v1/2020.acl-main.777, DOI 10.18653/V1/2020.ACL-MAIN.777] Chen SW, 2021, AAAI CONF ARTIF INTE, V35, P12666 Chen T., 2020, P NLP EMNLP, P1 Chen T, 2021, AAAI CONF ARTIF INTE, V35, P12675 Chen YB, 2017, PROCEEDINGS OF THE 55TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2017), VOL 1, P409, DOI 10.18653/v1/P17-1038 Chen YB, 2015, PROCEEDINGS OF THE 53RD ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS AND THE 7TH INTERNATIONAL JOINT CONFERENCE ON NATURAL LANGUAGE PROCESSING, VOL 1, P167 Chen Zheng, 2009, Graph-Based Methods Natural Lang. Process. (TextGraphs-4), P54 Cheng F, 2017, PROCEEDINGS OF THE 55TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2017), VOL 2, P1, DOI 10.18653/v1/P17-2001 Choubey PK, 2018, PROCEEDINGS OF THE 56TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL), VOL 1, P485 Choubey Prafulla Kumar, 2017, P 2017 INT C EMP MET, P2124 Collins A. M., 1977, Artificial Intelligence, P190 Cong X, 2021, FINDINGS OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, ACL-IJCNLP 2021, P28 Costa TS, 2020, CIKM '20: PROCEEDINGS OF THE 29TH ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT, P3157, DOI 10.1145/3340531.3412760 Cui B., 2020, P EMNLP FIND, P1 Cui B., 2020, arXiv Cybulska P., 2015, P EVENTS HLP NAACL, P1 Davani AM, 2019, C EMPIRICAL METHODS de Marneffe MC, 2012, COMPUT LINGUIST, V38, P301, DOI 10.1162/COLI_a_00097 Deng SM, 2020, PROCEEDINGS OF THE 13TH INTERNATIONAL CONFERENCE ON WEB SEARCH AND DATA MINING (WSDM '20), P151, DOI 10.1145/3336191.3371796 Devlin J, 2019, 2019 CONFERENCE OF THE NORTH AMERICAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS: HUMAN LANGUAGE TECHNOLOGIES (NAACL HLT 2019), VOL. 1, P4171 Diab L. S., 2009, THE LAW, P1 Ding N, 2019, 2019 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING AND THE 9TH INTERNATIONAL JOINT CONFERENCE ON NATURAL LANGUAGE PROCESSING (EMNLP-IJCNLP 2019), P347 Ding X, EVENT REPRESENTATION Ding X, 2019, Arxiv, DOI arXiv:1907.08015 Dligach T., 2017, ACL SHORT PAPERS, P746 Doddington G.R., 2004, P LREC, V2, P837 Du D., 2020, P ACL, P1 Du T.H, 2020, PROC EMNLP, P1 Du XY, 2021, 2021 CONFERENCE OF THE NORTH AMERICAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS: HUMAN LANGUAGE TECHNOLOGIES (NAACL-HLT 2021), P909 Du XY, 2021, 16TH CONFERENCE OF THE EUROPEAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (EACL 2021), P634 Du X, 2020, PROCEEDINGS OF THE 2020 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING (EMNLP), P671 Ebner P., 2020, ACL, P1 Feng XC, 2016, PROCEEDINGS OF THE 54TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2016), VOL 2, P66 Ferguson J., 2018, P NAACL HLT, P1 Finn C, 2017, PR MACH LEARN RES, V70 Frisoni G, 2021, IEEE ACCESS, V9, P160721, DOI 10.1109/ACCESS.2021.3130956 Funke H, 2018, INT CONF MANAGE DATA, P1603, DOI 10.1145/3183713.3183734 Gao L, 2019, 2019 CONFERENCE OF THE NORTH AMERICAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS: HUMAN LANGUAGE TECHNOLOGIES (NAACL HLT 2019), VOL. 1, P1808 Gao L, 2016, CIKM'16: PROCEEDINGS OF THE 2016 ACM CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, P1941, DOI 10.1145/2983323.2983879 Gasmi M, 2018, IEEE T SYST MAN CY-S, V48, P892, DOI 10.1109/TSMC.2016.2625817 Goodfellow I. J., 2014, P NIPS, P2672 Graff C., 2003, inLinguistic DataConsortium Granroth-Wilding M, 2016, AAAI CONF ARTIF INTE, P2727 Gui T, 2020, PROCEEDINGS OF THE 2020 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING (EMNLP), P2316 Guo BY, 2021, AAAI CONF ARTIF INTE, V35, P12929 Guo SR, 2020, 58TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2020), P891 Hagege X., 2007, P SEMEVAL, P1 Han RJ, 2019 C EMPIRICAL MET Han RJ, 2021, 2021 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING (EMNLP 2021), P7543 Han RJ, 2020, PROCEEDINGS OF THE 2020 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING (EMNLP), P5717 Hashimoto C, 2014, PROCEEDINGS OF THE 52ND ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, VOL 1, P987 Hei YM, 2024, IEEE T NEUR NET LEAR, V35, P4703, DOI 10.1109/TNNLS.2021.3105617 Hogenboom F, 2016, DECIS SUPPORT SYST, V85, P12, DOI 10.1016/j.dss.2016.02.006 Hong Y., 2011, ANN M ASS COMP LING, V1, P1127 Hong Y, 2018, PROCEEDINGS OF THE 56TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL), VOL 1, P515 Hsi Andrew, 2016, P COLING 2016 26 INT, P1201 Hsu IH, 2022, Arxiv, DOI arXiv:2108.12724 Hu ZC, 2017, 18TH ANNUAL MEETING OF THE SPECIAL INTEREST GROUP ON DISCOURSE AND DIALOGUE (SIGDIAL 2017), P342 Huang K., 2020, P EMNLP, P1277 Huang L, 2020, PROCEEDINGS OF THE 2020 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING (EMNLP), P718 Huang LF, 2018, PROCEEDINGS OF THE 56TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL), VOL 1, P2160 Huang LF, 2016, PROCEEDINGS OF THE 54TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, VOL 1, P258 Huang N., 2021, P 3 WORKSH NARR UND, P1 Huang P., 2020, P 28 INT C COMP LING, P2653, DOI DOI 10.18653/V1/2020.COLINGMAIN.239 Huang R., 2019, LECT NOTES COMPUTER, P404 Huang YJ, 2019, 2019 CONFERENCE OF THE NORTH AMERICAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS: HUMAN LANGUAGE TECHNOLOGIES (NAACL HLT 2019), VOL. 1, P785 Huang YS, 2021, FINDINGS OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, EMNLP 2021, P340 Jans S., 2012, ACL, P1 Ji Heng, 2008, P ACL 08 HLT, P254 Jiang T, 2021, AAAI CONF ARTIF INTE, V35, P7987 Jiexin Wang, 2020, Advances in Information Retrieval, 42nd European Conference on IR Research, ECIR 2020. Proceedings. Lecture Notes in Computer Science (LNCS 12035), P774, DOI 10.1007/978-3-030-45439-5_51 Kadowaki K, 2019, 2019 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING AND THE 9TH INTERNATIONAL JOINT CONFERENCE ON NATURAL LANGUAGE PROCESSING (EMNLP-IJCNLP 2019), P5816 Kipf T. N., 2017, P INT C LEARN REPR Kuhnle A, 2021, SIGIR '21 - PROCEEDINGS OF THE 44TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, P2669, DOI 10.1145/3404835.3462813 Lai VD, 2020, LECT NOTES ARTIF INT, V12085, P233, DOI 10.1007/978-3-030-47436-2_18 Lee K., 2015, P 2015 C EMPIRICAL M, P1643, DOI 10.18653/v1/d15-1189 Li DY, 2019, 2019 CONFERENCE OF THE NORTH AMERICAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS: HUMAN LANGUAGE TECHNOLOGIES (NAACL HLT 2019), VOL. 1, P1421 Li FY, 2020, FINDINGS OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, EMNLP 2020, P829 Li G., 2012, COLING, P1 Li G., 2012, EMNLP CONLL, P1 Li LH, 2020, IEEE ACM T COMPUT BI, V17, P599, DOI 10.1109/TCBB.2018.2868078 Li ML, 2020, 58TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2020), P2557 Li Qi, 2013, ANN M ASS COMP LING, P73, DOI DOI 10.1021/BI00231A020 Li Q, 2021, Arxiv, DOI arXiv:2108.10038 Li S, 2021, 2021 CONFERENCE OF THE NORTH AMERICAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS: HUMAN LANGUAGE TECHNOLOGIES (NAACL-HLT 2021), P894 Li W, 2019, IEEE ACCESS, V7, P25001, DOI 10.1109/ACCESS.2019.2900124 Li XY, 2020, 58TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2020), P465, DOI 10.1007/978-981-15-3863-6_51 Li XY, 2019, 57TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2019), P1340 Li ZH, 2020, KDD '20: PROCEEDINGS OF THE 26TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING, P297, DOI 10.1145/3394486.3403072 Liang X, 2020, PROCEEDINGS OF THE TWENTY-NINTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, P4490 Liao JZ, 2021, SIGIR '21 - PROCEEDINGS OF THE 44TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, P644, DOI 10.1145/3404835.3462977 Liao SS, 2010, ACL 2010: 48TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, P789 Lin B. Y., 2020, P ACL, P1 Lin HY, 2019, 57TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2019), P5278 Lin HY, 2018, PROCEEDINGS OF THE 56TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL), VOL 1, P1565 Lin Y., 2020, P ACL, P7999, DOI [10.18653/v1/ 2020.acl-main.713, DOI 10.18653/V1/2020.ACL-MAIN.713] Liu CY, 2017, IEEE IJCNN, P1532, DOI 10.1109/IJCNN.2017.7966033 Liu FZ, 2020, PROCEEDINGS OF THE TWENTY-NINTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, P4981 Liu J, 2020, PROCEEDINGS OF THE TWENTY-NINTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, P3608 Liu J, 2020, PROCEEDINGS OF THE 2020 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING (EMNLP), P1641 Liu J, 2019, 2019 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING AND THE 9TH INTERNATIONAL JOINT CONFERENCE ON NATURAL LANGUAGE PROCESSING (EMNLP-IJCNLP 2019), P738 Liu JW, 2021, Arxiv, DOI arXiv:2111.03212 Liu K, 2020, AI OPEN, V1, P22, DOI 10.1016/j.aiopen.2021.02.004 Liu SL, 2016, PROCEEDINGS OF THE 54TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, VOL 1, P2134 Liu SL, 2017, PROCEEDINGS OF THE 55TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2017), VOL 1, P1789, DOI 10.18653/v1/P17-1164 Liu X, 2019, 57TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2019), P2860 Liu X, 2018, 2018 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING (EMNLP 2018), P1247 Liu Y, 2018, AAAI CONF ARTIF INTE, P354 Lotan A., 2013, NAACL HLT, P1 Lu J, 2017, PROCEEDINGS OF THE 55TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2017), VOL 1, P90, DOI 10.18653/v1/P17-1009 Lu J, 2017, 2017 16TH IEEE INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS (ICMLA), P113, DOI 10.1109/ICMLA.2017.0-170 Lu Jing., 2016, Proceedings of International Conference on Com-putational Linguistics, P3264 Lu YJ, 59 ANN M ASS COMPUTA Lv S., 2020, P 28 INT C COMPUTATI, P306, DOI DOI 10.18653/V1/2020.COLING-MAIN.27 Lv SW, 2019, AAAI CONF ARTIF INTE, P6802 Lyu Q, 2021, ACL-IJCNLP 2021: THE 59TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS AND THE 11TH INTERNATIONAL JOINT CONFERENCE ON NATURAL LANGUAGE PROCESSING, VOL 2, P322 Ma XX, 2023, IEEE T KNOWL DATA EN, V35, P12012, DOI 10.1109/TKDE.2021.3118815 Mani I, 2006, COLING/ACL 2006, VOLS 1 AND 2, PROCEEDINGS OF THE CONFERENCE, P753 Mejri J., 2017, P LPKM, P1 Mekala D, 2020, 58TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2020), P323 Min BN, 2020, PROCEEDINGS OF THE 12TH INTERNATIONAL CONFERENCE ON LANGUAGE RESOURCES AND EVALUATION (LREC 2020), P1747 Nguyen MV, 2021, 2021 CONFERENCE OF THE NORTH AMERICAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS: HUMAN LANGUAGE TECHNOLOGIES (NAACL-HLT 2021), P27 Mirza P, 2014, 52ND ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS: STUDENT RESEARCH WORKSHOP (ACL 2014), P10 Mirza S., 2016, COLING, P1 Mirza S., 2014, COLING, P1 Mostafazadeh N, 2020, PROCEEDINGS OF THE 2020 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING (EMNLP), P4569 Nairn C., 2006, P 5 INT WORKSH INF C, P1 Nguyen TH, 2016, P 2016 C N AM CHAPT, P300, DOI DOI 10.18653/V1/N16-1034 Nguyen Thien Huu, 2016, P C EMP METH NAT LAN, P886, DOI [DOI 10.18653/V1/D16-1085:URL.HTTPS://WWW.ACLWEB.ORG/ANTHOLOGY/D16-1085, DOI 10.18653/V1/D16-1085] Ning Q., 2017, P 2017 C EMPIRICAL M Nuo Xu, 2020, Chinese Computational Linguistics. 19th China National Conference, CCL 2020. Proceedings. Lecture Notes in Artificial Intelligence. Subseries of Lecture Notes in Computer Science (LNAI 12522), P174, DOI 10.1007/978-3-030-63031-7_13 Peters M, 2018, STUD LATEINAMERIKA, V32, P1, DOI 10.5771/9783845286846 Petrovic S., 2013, P INT AAAI C WEB SOC, V7, P713, DOI DOI 10.1609/ICWSM.V7I1.14450 Pichotta K, 2016, AAAI CONF ARTIF INTE, P2800 Pichotta R., 2014, ACL, P1 Prabhakaran O., 2010, COLING, P1 Pustejovsky J., 2003, New Directions in Question Answering Qian Z, 2018, PROCEEDINGS OF THE TWENTY-SEVENTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, P4293 Qian Z, 2019, 2019 CONFERENCE OF THE NORTH AMERICAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS: HUMAN LANGUAGE TECHNOLOGIES (NAACL HLT 2019), VOL. 1, P2799 Qian Z, 2015, INT CONF ASIAN LANG, P103, DOI 10.1109/IALP.2015.7451542 Qin Bing, 2010, Tsinghua Sci. Technol., V15, P251 Ramponi A, 2020, PROCEEDINGS OF THE 2020 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING (EMNLP), P5357 Rashkin H, 2018, PROCEEDINGS OF THE 56TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL), VOL 1, P463 Riaz M., 2013, P SIGDIAL 2013 C, P21 Riaz M, 2010, IEEE INT C SEMANT CO, P361, DOI 10.1109/ICSC.2010.19 Riaz R., 2014, EACL, P1 Ring M. B., 1995, CONTINUAL LEARNING R, V255, P1 Ross H, 2020, PROCEEDINGS OF THE 2020 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING (EMNLP), P8548 Rudinger A. S., 2018, NAACL HLT, P1 Rudinger P., 2015, P EMNLP, P1 Sap M., 2019, arXiv Sauri R., 2008, A Factuality Profiler for Eventualities in Text Saurí R, 2012, COMPUT LINGUIST, V38, P261, DOI 10.1162/COLI_a_00096 Schank R.C, 1977, Readings in Cognitive Science: A Perspective FromPsychology andArtificial Intelligence, P190 Sha L, 2018, AAAI CONF ARTIF INTE, P5916 Sha L, 2016, PROCEEDINGS OF THE 54TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, VOL 1, P1224 Shen SR, 2021, FINDINGS OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, ACL-IJCNLP 2021, P2417 Sheng B., 2019, LECT NOTES COMPUTER, P486 Sheng JW, 2020, PROCEEDINGS OF THE 2020 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING (EMNLP), P1681 Sheng JW, 2021, DATA INTELLIGENCE, V3, P444, DOI 10.1162/dint_a_00098 Stengel-Eskin A. S., 2020, ACL, P1 Su X, 2024, IEEE T NEUR NET LEAR, V35, P4682, DOI 10.1109/TNNLS.2021.3137396 Subburathinam A, 2019, 2019 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING AND THE 9TH INTERNATIONAL JOINT CONFERENCE ON NATURAL LANGUAGE PROCESSING (EMNLP-IJCNLP 2019), P313 Sun K, 2021, AAAI CONF ARTIF INTE, V35, P13851 Sun QY, 2022, AAAI CONF ARTIF INTE, P4165 Sun QY, 2021, PROCEEDINGS OF THE WORLD WIDE WEB CONFERENCE 2021 (WWW 2021), P2081, DOI 10.1145/3442381.3449822 SUNDHEIM BM, 1992, FOURTH MESSAGE UNDERSTANDING CONFERENCE (MUC-4), P3 Tang Z, 2020, 58TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2020): STUDENT RESEARCH WORKSHOP, P169 Nguyen TH, 2018, AAAI CONF ARTIF INTE, P5900 Nguyen TH, 2015, PROCEEDINGS OF THE 53RD ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL) AND THE 7TH INTERNATIONAL JOINT CONFERENCE ON NATURAL LANGUAGE PROCESSING (IJCNLP), VOL 2, P365 Thrun S, 1998, LEARNING TO LEARN, P181 Tourille J, 2017, PROCEEDINGS OF THE 55TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2017), VOL 2, P224, DOI 10.18653/v1/P17-2035 Trieu HL, 2020, BIOINFORMATICS, V36, P4910, DOI 10.1093/bioinformatics/btaa540 Nguyen TM, 2019, AAAI CONF ARTIF INTE, P6851 Vanegas JA, 2015, COMPUT MATH METHOD M, V2015, DOI 10.1155/2015/571381 Vaswani A, 2017, ADV NEUR IN, V30 Lai VD, 2021, 2021 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING (EMNLP 2021), P5270 Lai VD, 2021, FINDINGS OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, ACL-IJCNLP 2021, P2390 Lai VD, 2021, SIGIR '21 - PROCEEDINGS OF THE 44TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, P2172, DOI 10.1145/3404835.3463054 Lai VD, 2020, NARRATIVE UNDERSTANDING, STORYLINES, AND EVENTS, P38 Vinyals Oriol, 2016, ADV NEURAL INFORM PR, V29, DOI DOI 10.48550/ARXIV.1606.04080 Wadden D, 2019 C EMPIRICAL MET Wang LH, 2021, PROCEEDINGS OF THE WORLD WIDE WEB CONFERENCE 2021 (WWW 2021), P3524, DOI 10.1145/3442381.3449894 Wang XZ, 2020, PROCEEDINGS OF THE 2020 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING (EMNLP), P1652 Wang XZ, 2019, 2019 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING AND THE 9TH INTERNATIONAL JOINT CONFERENCE ON NATURAL LANGUAGE PROCESSING (EMNLP-IJCNLP 2019), P5777 Wang Z., 2021, P 59 ANN M ASS COMP, V1, P6283 Wei KW, 2021, 59TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS AND THE 11TH INTERNATIONAL JOINT CONFERENCE ON NATURAL LANGUAGE PROCESSING (ACL-IJCNLP 2021), VOL 1, P4672 Wen HY, 2021, 2021 CONFERENCE OF THE NORTH AMERICAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS: HUMAN LANGUAGE TECHNOLOGIES (NAACL-HLT 2021), P62 Wu XD, 2019, IEEE DATA MINING, P1540, DOI 10.1109/ICDM.2019.00204 Xiang W, 2019, IEEE ACCESS, V7, P173111, DOI 10.1109/ACCESS.2019.2956831 Xiao L, 2021, AAAI CONF ARTIF INTE, V35, P14103 Xu RX, 2021, 59TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS AND THE 11TH INTERNATIONAL JOINT CONFERENCE ON NATURAL LANGUAGE PROCESSING (ACL-IJCNLP 2021), VOL 1, P3533 Yang, 2021, P 59 ANN M ASS COMP, P6298, DOI [DOI 10.18653/V1/2021.ACL-LONG.492, 10.18653/v1/2021.acl-long.492] Yang H, 2018, 56TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2018): PROCEEDINGS OF SYSTEM DEMONSTRATIONS, P50 Yang S, 2019, 57TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2019), P5284 Yang T. M., 2016, NAACL HLT, P1 Yang YY, 2019, PROCEEDINGS OF THE 28TH ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT (CIKM '19), P2161, DOI 10.1145/3357384.3358156 Yao L, 2019, AAAI CONF ARTIF INTE, P7370 Ye ZX, 2019, 57TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2019), P2872 Yu B., 2020, P ACL, P1 Yuan W, 2021, PROCEEDINGS OF THE WORLD WIDE WEB CONFERENCE 2021 (WWW 2021), P3489, DOI 10.1145/3442381.3449975 Yubo Chen, 2016, Chinese Computational Linguistics and Natural Language Processing Based on Naturally Annotated Big Data. 15th China National Conference, CCL 2016, and 4th International Symposium, NLP-NABD 2016. Proceedings: LNAI 10035, P190, DOI 10.1007/978-3-319-47674-2_17 Zeng Y, 2018, AAAI CONF ARTIF INTE, P6045 Zeng Y, 2016, LECT NOTES COMPUT SC, V10102, P275, DOI 10.1007/978-3-319-50496-4_23 Zhang HM, 2020, WEB CONFERENCE 2020: PROCEEDINGS OF THE WORLD WIDE WEB CONFERENCE (WWW 2020), P201, DOI 10.1145/3366423.3380107 Zhang JC, 2019, PROCEEDINGS OF THE TWENTY-EIGHTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, P5422 Zhang TT, 2019, DATA INTELLIGENCE, V1, P99, DOI 10.1162/dint_a_00014 Zhang WN, 2021, SIGIR '21 - PROCEEDINGS OF THE 44TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, P2681, DOI 10.1145/3404835.3462818 Zhang Y, 2018, PROCEEDINGS OF THE 56TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL), VOL 1, P1554 Zhang Z., 2020, ACL, P7479, DOI DOI 10.18653/V1/2020.ACL-MAIN.667 Zhang ZK, 2016, LECT NOTES COMPUT SC, V10102, P324, DOI 10.1007/978-3-319-50496-4_27 Zhang ZX, 2021, 2021 CONFERENCE OF THE NORTH AMERICAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS: HUMAN LANGUAGE TECHNOLOGIES (NAACL-HLT 2021), P39 Zhao Y, 2018, PROCEEDINGS OF THE 56TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, VOL 2, P414 Zheng B., 2020, P ACL, P1 Zheng J., 2020, P 28 INT C COMP LING, P328 Zheng JM, 2021, PROCEEDINGS OF THE WORLD WIDE WEB CONFERENCE 2021 (WWW 2021), P3546, DOI 10.1145/3442381.3449949 Zheng S, DOC2EDAG END TO END Zheng S, 2021, FINDINGS OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, ACL-IJCNLP 2021, P4609 Zhou Y, 2021, AAAI CONF ARTIF INTE, V35, P14638 Zhu Z, 2014, PROCEEDINGS OF THE 52ND ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, VOL 2, P842 Zuo X., 2020, P COLING, P1 NR 252 TC 0 Z9 0 U1 2 U2 2 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 2162-237X EI 2162-2388 J9 IEEE T NEUR NET LEAR JI IEEE Trans. Neural Netw. Learn. Syst. PD MAY PY 2024 VL 35 IS 5 BP 6301 EP 6321 DI 10.1109/TNNLS.2022.3213168 PG 21 WC Computer Science, Artificial Intelligence; Computer Science, Hardware & Architecture; Computer Science, Theory & Methods; Engineering, Electrical & Electronic WE Science Citation Index Expanded (SCI-EXPANDED) SC Computer Science; Engineering GA PM9I4 UT WOS:001214608800104 OA Green Submitted DA 2024-09-05 ER PT J AU Zhang, X Wang, XH Zhao, HK de Pablos, PO Sun, YQ Xiong, H AF Zhang, Xi Wang, Xianhai Zhao, Hongke Ordonez de Pablos, Patricia Sun, Yongqiang Xiong, Hui TI An effectiveness analysis of altmetrics indices for different levels of artificial intelligence publications SO SCIENTOMETRICS LA English DT Article DE Altmetrics; Bibliometrics; Artificial intelligence; Highly cited publication; Increase of citation count; Citation analysis ID CITATIONS; IMPACT; MODEL AB Altmetrics indices are increasingly applied to measure scholarly influence in recent years because they can reflect the influence of research outputs more timely comparing with traditional measurements. Simultaneously, artificial intelligence (AI), as an emerging interdiscipline, has a rapid development in these years. Traditional indices can't reflect the influence of the AI research outputs quickly, thus more timely altmetrics indices are needed. In this paper, we conduct four studies about altmetrics indices and AI research outputs based on the datasets collected from Altmetric.com and Scopus database. First, we provide a review of the research status in the AI field. Second, we show the AI researches that attracted the most attention. Third, we demonstrate the general effectiveness of altmetrics indices in the AI field. Last, we examine the effectiveness of altmetrics indices for different levels of AI journal papers and AI conference papers. Our results indicate that there is a rapid increase of AI publications and the public has paid more attention to AI research outputs since 2011. It is found that altmetrics indices are effective to discriminate highly cited publications and publications whose citation counts increase quickly. Among all Altmetric sub-indicators, Number of Mendeley readers is the most effective. Moreover, the results indicate that altmetrics indices are more effective in high levels of AI journal papers and AI conference papers. The main contribution of this paper is investigating the effectiveness of altmetrics indices from the perspective of different levels of publications. This study lays the foundation for further investigations about effectiveness of altmetrics indices from new perspectives, and it has important implication for the studies about the impact of social media on the scientific community. C1 [Zhang, Xi; Wang, Xianhai; Zhao, Hongke] Tianjin Univ, Coll Management & Econ, Tianjin 300072, Peoples R China. [Ordonez de Pablos, Patricia] Univ Oviedo, Dept Business Adm, Oviedo, Spain. [Sun, Yongqiang] Wuhan Univ, Sch Informat Management, Wuhan 430072, Hubei, Peoples R China. [Xiong, Hui] Rutgers State Univ, Rutgers Business Sch Newark & New Brunswick, Newark, NJ USA. C3 Tianjin University; University of Oviedo; Wuhan University; Rutgers University System; Rutgers University Newark; Rutgers University New Brunswick RP Zhang, X (corresponding author), Tianjin Univ, Coll Management & Econ, Tianjin 300072, Peoples R China. EM jackyzhang@tju.edu.cn RI Ordóñez de Pablos, Patricia/AAC-9329-2022; Zhang, Jacky/HHS-9302-2022; Sun, Yongqiang/K-4074-2019; Jiang, Cheng/JHU-0179-2023 OI Ordonez de Pablos, Patricia/0000-0002-8388-6382; Xiong, Hui/0000-0001-6016-6465; Sun, Yongqiang/0000-0001-8753-9268; Zhang, Xi/0000-0002-1105-9417 FU National Natural Science Foundation of China [71722005, 71571133, 71790594, 71790590]; Natural Science Foundation of Tianjin [18JCJQJC45900]; Humanities and Social Sciences Foundation of the Ministry of Education, China [16YJC870011] FX The study is supported by funds from National Natural Science Foundation of China (Nos: 71722005 and 71571133 and 71790594 and 71790590). And from Natural Science Foundation of Tianjin (No. 18JCJQJC45900), the Humanities and Social Sciences Foundation of the Ministry of Education, China (Project No. 16YJC870011). We are grateful to Altmetric.com for providing the data. CR Adie E, 2013, LEARN PUBL, V26, P11, DOI 10.1087/20130103 [Anonymous], SCIENTOMETRICS [Anonymous], 2014, INT C NEUR INF PROC [Anonymous], COMP VIS PATT REC [Anonymous], 2010, 1 MONDAY [Anonymous], ACM SIGKDD INT C KNO [Anonymous], 2016, CVPR [Anonymous], 2014, J MOL STRUCTURE [Anonymous], SCIENTOMETRICS [Anonymous], 2014, SCIENTOMETRICS [Anonymous], CAN SOC COMP STUD IN [Anonymous], ALTMETRICS ALTMETRIC [Anonymous], SOURC ATT ALTM TRACK [Anonymous], 2013, PLOS ALM WORKSH SAN [Anonymous], IEEE RSJ INT C INT R [Anonymous], NAT C ART INT Bench-Capon TJM, 2007, ARTIF INTELL, V171, P619, DOI 10.1016/j.artint.2007.05.001 Bornmann L, 2014, J INFORMETR, V8, P895, DOI 10.1016/j.joi.2014.09.005 Boyd S., 2004, CONVEX OPTIMIZATION Colledge L., 2010, Serials, V23, P215, DOI DOI 10.1629/23215 Costas R, 2015, J ASSOC INF SCI TECH, V66, P2003, DOI 10.1002/asi.23309 Dalal N, 2005, PROC CVPR IEEE, P886, DOI 10.1109/cvpr.2005.177 Daud A, 2015, SCIENTOMETRICS, V102, P1687, DOI 10.1007/s11192-014-1455-8 de Winter JCF, 2015, SCIENTOMETRICS, V102, P1773, DOI 10.1007/s11192-014-1445-x Eysenbach G, 2011, J MED INTERNET RES, V13, DOI 10.2196/jmir.2012 Fei Shu, 2017, Proceedings of the Association for Information Science and Technology, V54, DOI 10.1002/pra2.2017.14505401040 González-Pereira B, 2010, J INFORMETR, V4, P379, DOI 10.1016/j.joi.2010.03.002 Hartley R., 2003, Multiple view geometry in computer vision, V2nd, DOI 10.1007/3-540-44480-7_19 Harvey C., 2010, Academic journal quality guide (version 4) Hassan SU, 2013, SCIENTOMETRICS, V94, P163, DOI 10.1007/s11192-012-0786-6 Haykin S., 1994, Neural networks: a comprehensive foundation Heagerty PJ, 2005, BIOMETRICS, V61, P92, DOI 10.1111/j.0006-341X.2005.030814.x Holmberg K, 2014, SCIENTOMETRICS, V101, P1027, DOI [10.1007/s11192-014-1229-3, 10.1159/000358776] King DB, 2015, ACS SYM SER, V1214, P1 Kousha K, 2017, J ASSOC INF SCI TECH, V68, P762, DOI 10.1002/asi.23694 Krizhevsky A, 2017, COMMUN ACM, V60, P84, DOI 10.1145/3065386 Lee YG, 2007, SCIENTOMETRICS, V70, P27, DOI 10.1007/s11192-007-0102-z METZ CE, 1978, SEMIN NUCL MED, V8, P283, DOI 10.1016/S0001-2998(78)80014-2 Moed HF, 2015, J ASSOC INF SCI TECH, V66, P1988, DOI 10.1002/asi.23314 Moed HF, 2010, J INFORMETR, V4, P265, DOI 10.1016/j.joi.2010.01.002 Nguyen V, 2007, AUTON ROBOT, V23, P97, DOI 10.1007/s10514-007-9034-y Peoples BK, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0166570 Piwowar H, 2013, NATURE, V493, P159, DOI 10.1038/493159a Pooladian A, 2017, SCIENTOMETRICS, V113, P455, DOI 10.1007/s11192-017-2474-z Priem J., 2010, ALTMETRICS MANIFESTO Priem J., 2012, ARXIV Qian YF, 2017, SCIENTOMETRICS, V110, P1351, DOI 10.1007/s11192-016-2235-4 RENDELL L, 1983, ARTIF INTELL, V20, P369, DOI 10.1016/0004-3702(83)90002-4 Ringelhan S, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0134389 Russell Stuart, 2010, Artificial intelligence, a modern approach, V3 Sause MGR, 2012, PATTERN RECOGN LETT, V33, P17, DOI 10.1016/j.patrec.2011.09.018 Shuai X, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0047523 Sud P, 2014, SCIENTOMETRICS, V98, P1131, DOI 10.1007/s11192-013-1117-2 Sugimoto CR, 2017, J ASSOC INF SCI TECH, V68, P2037, DOI 10.1002/asi.23833 Teixeira da Silva JA, 2017, SCIENTOMETRICS, V111, P553, DOI 10.1007/s11192-017-2250-0 Thelwall M, 2016, J ASSOC INF SCI TECH, V67, P1962, DOI 10.1002/asi.23501 Thelwall M, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0064841 Van Noorden R, 2014, NATURE, V512, P126, DOI 10.1038/512126a Wouters P., 2012, Users, narcissism and control-tracking the impact of scholarly publications in the 21st century Xia F, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0165997 Yu HQ, 2017, SCIENTOMETRICS, V111, P267, DOI 10.1007/s11192-017-2251-z NR 61 TC 26 Z9 28 U1 7 U2 146 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0138-9130 EI 1588-2861 J9 SCIENTOMETRICS JI Scientometrics PD JUN PY 2019 VL 119 IS 3 BP 1311 EP 1344 DI 10.1007/s11192-019-03088-x PG 34 WC Computer Science, Interdisciplinary Applications; Information Science & Library Science WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Computer Science; Information Science & Library Science GA HZ7UB UT WOS:000469058000002 DA 2024-09-05 ER PT J AU Oblizanov, A Shevskaya, N Kazak, A Rudenko, M Dorofeeva, A AF Oblizanov, Alexandr Shevskaya, Natalya Kazak, Anatoliy Rudenko, Marina Dorofeeva, Anna TI Evaluation Metrics Research for Explainable Artificial Intelligence Global Methods Using Synthetic Data SO APPLIED SYSTEM INNOVATION LA English DT Article DE explainable artificial intelligence; XAI; explanation metrics; synthetic data ID SMOTE AB In recent years, artificial intelligence technologies have been developing more and more rapidly, and a lot of research is aimed at solving the problem of explainable artificial intelligence. Various XAI methods are being developed to allow the user to understand the logic of how machine learning models work, and in order to compare the methods, it is necessary to evaluate them. The paper analyzes various approaches to the evaluation of XAI methods, defines the requirements for the evaluation system and suggests metrics to determine the various technical characteristics of the methods. A study was conducted, using these metrics, which determined the degradation in the explanation quality of the SHAP and LIME methods with increasing correlation in the input data. Recommendations are also given for further research in the field of practical implementation of metrics, expanding the scope of their use. C1 [Oblizanov, Alexandr; Shevskaya, Natalya] St Petersburg Electrotech Univ Leti, Fac Comp Sci & Technol, St Petersburg 197376, Russia. [Kazak, Anatoliy; Dorofeeva, Anna] VI Vernadsky Crimean Fed Univ, Humanitarian Pedag Acad, Simferopol 295007, Russia. [Rudenko, Marina] VI Vernadsky Crimean Fed Univ, Inst Phys & Technol, Simferopol 295007, Russia. C3 Saint Petersburg State Electrotechnical University; VI Vernadsky Crimean Federal University; VI Vernadsky Crimean Federal University RP Kazak, A (corresponding author), VI Vernadsky Crimean Fed Univ, Humanitarian Pedag Acad, Simferopol 295007, Russia. EM kazak@cfuv.ru RI Kazak, Anatoliy/R-8222-2019 OI Kazak, Anatoliy/0000-0001-7678-9210; Marina, Rudenko/0000-0002-8334-8453 FU International Alexander Popov's Innovation Institute for Artificial Intelligence, Cybersecurity and Communications of Saint Petersburg Electrotechnical University"LETI" FX Authors thank International Alexander Popov's Innovation Institute for Artificial Intelligence, Cybersecurity and Communications of Saint Petersburg Electrotechnical University"LETI" for support in work and research CR Atapour-Abarghouei A, 2018, PROC CVPR IEEE, P2800, DOI 10.1109/CVPR.2018.00296 Bolón-Canedo V, 2013, KNOWL INF SYST, V34, P483, DOI 10.1007/s10115-012-0487-8 Bunkhumpornpat C, 2009, LECT NOTES ARTIF INT, V5476, P475, DOI 10.1007/978-3-642-01307-2_43 Chawla NV, 2002, J ARTIF INTELL RES, V16, P321, DOI 10.1613/jair.953 Chen YH, 2019, PROC CVPR IEEE, P1841, DOI 10.1109/CVPR.2019.00194 Coutinho-Almeida J, 2021, LECT NOTES ARTIF INT, V12986, P282, DOI 10.1007/978-3-030-88942-5_22 DiMattia F, 2019, ARXIV Doshi-Velez Finale, 2017, arXiv Douzas G, 2018, INFORM SCIENCES, V465, P1, DOI 10.1016/j.ins.2018.06.056 Dunn KW, 2019, SCI REP-UK, V9, DOI 10.1038/s41598-019-54244-5 Emam KE., 2020, Practical synthetic data generation: balancing privacy and the broad availability of data Frid-Adar M, 2018, I S BIOMED IMAGING, P289, DOI 10.1109/ISBI.2018.8363576 Goodfellow IJ, 2014, ADV NEUR IN, V27, P2672, DOI 10.1145/3422622 Gupta A, 2016, PROC CVPR IEEE, P2315, DOI 10.1109/CVPR.2016.254 Han H, 2005, LECT NOTES COMPUT SC, V3644, P878, DOI 10.1007/11538059_91 He HB, 2008, IEEE IJCNN, P1322, DOI 10.1109/IJCNN.2008.4633969 Hsiao J.H.-w., 2021, ARXIV Keane MarkT., 2021, ARXIV Kim K, 2018, IEEE ACCESS, V6, P54207, DOI 10.1109/ACCESS.2018.2872025 Kim MY, 2021, MACH LEARN KNOW EXTR, V3, P900, DOI 10.3390/make3040045 Kingma D. P., 2013, ARXIV Koch B, 2010, ISPRS J PHOTOGRAMM, V65, P581, DOI 10.1016/j.isprsjprs.2010.09.001 Lin Y., 2020, arXiv Liu JH, 2019, IEEE T IND INFORM, V15, P3877, DOI 10.1109/TII.2018.2885365 Lundberg SM, 2017, ADV NEUR IN, V30 Mirza M., 2014, ADV NEURAL INFORM PR Nikolenko S.I., 2021, SYNTHETIC DATA DEEP, P217 Pan ZQ, 2019, IEEE ACCESS, V7, P36322, DOI 10.1109/ACCESS.2019.2905015 Petrauskas V, 2021, APPL SCI-BASEL, V11, DOI 10.3390/app112411763 Poursabzi-Sangdeh F, 2021, CHI '21: PROCEEDINGS OF THE 2021 CHI CONFERENCE ON HUMAN FACTORS IN COMPUTING SYSTEMS, DOI 10.1145/3411764.3445315 Radford A., 2016, INT C LEARN REPR ICL Ribeiro MT, 2016, KDD'16: PROCEEDINGS OF THE 22ND ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, P1135, DOI 10.1145/2939672.2939778 Rosenfeld A., 2021, P 20 INT C AUT AG MU, P45, DOI DOI 10.5555/3463952.3463962 Sarp S, 2021, ELECTRONICS-SWITZ, V10, DOI 10.3390/electronics10121406 Saxena D, 2022, ACM COMPUT SURV, V54, DOI 10.1145/3446374 Siddani B, 2021, THEOR COMP FLUID DYN, V35, P807, DOI 10.1007/s00162-021-00593-9 Torkzadehmahani R, 2019, IEEE COMPUT SOC CONF, P98, DOI 10.1109/CVPRW.2019.00018 Utkin L.V., 2021, ARXIV Utkin LV, 2021, Arxiv, DOI arXiv:2103.03302 Vilone G, 2021, MACH LEARN KNOW EXTR, V3, P615, DOI 10.3390/make3030032 Wang Q, 2021, INT J COMPUT VISION, V129, DOI 10.1007/s11263-020-01365-4 Wang Q, 2019, PROC CVPR IEEE, P8190, DOI 10.1109/CVPR.2019.00839 Wu XM, 2019, GEOPHYSICS, V84, pIM35, DOI 10.1190/GEO2018-0646.1 Zhang LC, 2019, IEEE T IMAGE PROCESS, V28, P1837, DOI 10.1109/TIP.2018.2879249 Zhou JL, 2021, ELECTRONICS-SWITZ, V10, DOI 10.3390/electronics10050593 NR 45 TC 2 Z9 2 U1 4 U2 14 PU MDPI PI BASEL PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND EI 2571-5577 J9 APPL SYST INNOV JI Appl. Syst. Innov. PD FEB PY 2023 VL 6 IS 1 AR 26 DI 10.3390/asi6010026 PG 13 WC Computer Science, Information Systems; Engineering, Electrical & Electronic; Telecommunications WE Emerging Sources Citation Index (ESCI) SC Computer Science; Engineering; Telecommunications GA 9H4MF UT WOS:000938806500001 OA gold DA 2024-09-05 ER PT C AU Mercier, D Rizvi, STR Rajashekar, V Ahmed, S Dengel, A AF Mercier, Dominique Rizvi, Syed Tahseen Raza Rajashekar, Vikas Ahmed, Sheraz Dengel, Andreas BE Rocha, AP Steels, L VanDenHerik, J TI Utilizing Out-Domain Datasets to Enhance Multi-task Citation Analysis SO AGENTS AND ARTIFICIAL INTELLIGENCE, ICAART 2021 SE Lecture Notes in Computer Science LA English DT Proceedings Paper CT 13th International Conference on Agents and Artificial Intelligence (ICAART) CY FEB 04-06, 2021 CL ELECTR NETWORK DE Artificial intelligence; Natural language processing; Scientific citation analysis; Multi-task; Transformers; Sentiment analysis; Intent analysis; Multi-domain AB Citations are generally analyzed using only quantitative measures while excluding qualitative aspects such as sentiment and intent. However, qualitative aspects provide deeper insights into the impact of a scientific research artifact and make it possible to focus on relevant literature free from bias associated with quantitative aspects. Therefore, it is possible to rank and categorize papers based on their sentiment and intent. For this purpose, larger citation sentiment datasets are required. However, from a time and cost perspective, curating a large citation sentiment dataset is a challenging task. Particularly, citation sentiment analysis suffers from both data scarcity and tremendous costs for dataset annotation. To overcome the bottleneck of data scarcity in the citation analysis domain we explore the impact of out-domain data during training to enhance the model performance. Our results emphasize the use of different scheduling methods based on the use case. We empirically found that a model trained using sequential data scheduling is more suitable for domain-specific usecases. Conversely, shuffled data feeding achieves better performance on a cross-domain task. Based on our findings, we propose an end-to-end trainable multi-task model that covers the sentiment and intent analysis that utilizes out-domain datasets to overcome the data scarcity. C1 [Mercier, Dominique; Rizvi, Syed Tahseen Raza; Rajashekar, Vikas; Ahmed, Sheraz; Dengel, Andreas] German Res Ctr Artificial Intelligence DFKI GmbH, Trippstadter Str 122, D-67663 Kaiserslautern, Germany. [Mercier, Dominique; Rizvi, Syed Tahseen Raza; Dengel, Andreas] TU Kaiserslautern, Erwin Schrodinger Str 52, D-67663 Kaiserslautern, Germany. C3 German Research Center for Artificial Intelligence (DFKI); University of Kaiserslautern RP Mercier, D (corresponding author), German Res Ctr Artificial Intelligence DFKI GmbH, Trippstadter Str 122, D-67663 Kaiserslautern, Germany.; Mercier, D (corresponding author), TU Kaiserslautern, Erwin Schrodinger Str 52, D-67663 Kaiserslautern, Germany. EM dominique.mercier@dfki.de; syed.rizvi@dfki.de; vikas.rajashekar@dfki.de; sheraz.ahmed@dfki.de; andreas.dengel@dfki.de OI Mercier, Dominique/0000-0001-8817-2744; Rajashekar, Vikas/0000-0002-3664-5156; Rizvi, Syed Tahseen Raza/0000-0002-4359-4772; Dengel, Andreas/0000-0002-6100-8255 CR Abu-Jbara A., 2013, NAACL, P596 [Anonymous], 2004, Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics - ACL'04, DOI DOI 10.3115/1218955.1218990 [Anonymous], 2017, P 11 INT WORKSHOP SE, DOI DOI 10.18653/V1/S17-2094 [Anonymous], 2009, P 18 ACM C INF KNOWL, DOI DOI 10.1145/1645953.1646003 [Anonymous], 2006, 11 C EUR CHAPT ASS C Athar A., 2011, P ACL 2011 STUD SESS, P81 Bahrainian SA, 2013, IEEE INT C COMPUT, P227, DOI 10.1109/CSE.2013.44 Beltagy I, 2019, 2019 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING AND THE 9TH INTERNATIONAL JOINT CONFERENCE ON NATURAL LANGUAGE PROCESSING (EMNLP-IJCNLP 2019), P3615 Bornmann L, 2007, J AM SOC INF SCI TEC, V58, P1381, DOI 10.1002/asi.20609 Cohan A, 2019, Arxiv, DOI arXiv:1904.01608 Dai ZH, 2019, Arxiv, DOI arXiv:1901.02860 Devlin J, 2019, Arxiv, DOI arXiv:1810.04805 Feldman R, 2013, COMMUN ACM, V56, P82, DOI 10.1145/2436256.2436274 GARFIELD E, 1979, SCIENTOMETRICS, V1, P359, DOI 10.1007/BF02019306 Khayrallah H, 2018, NEURAL MACHINE TRANSLATION AND GENERATION, P36 Lan ZZ, 2020, Arxiv, DOI arXiv:1909.11942 Li YT, 2018, Arxiv, DOI arXiv:1805.06088 Maas A, 2011, P 49 ANN M ASS COMP McAuley J, 2015, SIGIR 2015: PROCEEDINGS OF THE 38TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, P43, DOI 10.1145/2766462.2767755 Medhat W, 2014, AIN SHAMS ENG J, V5, P1093, DOI 10.1016/j.asej.2014.04.011 Mercier D, 2019, Arxiv, DOI [arXiv:1910.03498, DOI 10.48550/ARXIV.1910.03498, 10.48550/arXiv.1910.03498] Mercier D, 2021, ICAART: PROCEEDINGS OF THE 13TH INTERNATIONAL CONFERENCE ON AGENTS AND ARTIFICIAL INTELLIGENCE - VOL 2, P159, DOI 10.5220/0010235201590168 Mrksic N, 2015, Arxiv, DOI arXiv:1506.07190 Munikar M., 2019, 2019 ART INT TRANSF, VVolume 1, P1 Ranjan H, 2017, 2017 CONFERENCE ON INFORMATION AND COMMUNICATION TECHNOLOGY (CICT) Sajjad H, 2018, Arxiv, DOI arXiv:1708.08712 Snow R, 2008, P 2008 C EMPIRICAL M, P254 Socher R., 2013, ADV NEURAL INFORM PR, V26, DOI DOI 10.1371/JOURNAL.PONE.0073791 Su Dan, 2019, P 2 WORKSH MACH READ, P203, DOI 10.18653/v1/D19-5827 Tang DY, 2014, PROCEEDINGS OF THE 52ND ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, VOL 1, P1555 Thongtan T, 2019, 57TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2019:): STUDENT RESEARCH WORKSHOP, P407 Wu ZW, 2015, LECT NOTES COMPUT SC, V9052, P76, DOI 10.1007/978-3-319-22324-7_7 Xie QZ, 2020, Arxiv, DOI arXiv:1904.12848 Xu Jun, 2015, AMIA Annu Symp Proc, V2015, P1334 Yang ZL, 2019, ADV NEUR IN, V32 Yousif A, 2019, ARTIF INTELL REV, V52, P1805, DOI 10.1007/s10462-017-9597-8 Zhou P, 2016, PROCEEDINGS OF THE 54TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2016), VOL 2, P207, DOI 10.18653/v1/p16-2034 NR 37 TC 1 Z9 1 U1 0 U2 2 PU SPRINGER INTERNATIONAL PUBLISHING AG PI CHAM PA GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND SN 0302-9743 EI 1611-3349 BN 978-3-031-10161-8; 978-3-031-10160-1 J9 LECT NOTES COMPUT SC PY 2022 VL 13251 BP 113 EP 134 DI 10.1007/978-3-031-10161-8_6 PG 22 WC Computer Science, Artificial Intelligence; Computer Science, Theory & Methods; Mathematics, Applied WE Conference Proceedings Citation Index - Science (CPCI-S) SC Computer Science; Mathematics GA BU1DA UT WOS:000876376200006 OA Green Submitted DA 2024-09-05 ER PT J AU Abrishami, A Aliakbary, S AF Abrishami, Ali Aliakbary, Sadegh TI Predicting citation counts based on deep neural network learning techniques SO JOURNAL OF INFORMETRICS LA English DT Article DE Informetrics; Citation count prediction; Neural networks; Deep learning; Scientific impact; Time series prediction ID SLEEPING BEAUTIES; LINK PREDICTION; IMPACT; SCIENCE AB With the growing number of published scientific papers world-wide, the need to evaluation and quality assessment methods for research papers is increasing. Scientific fields such as scientometrics, informetrics, and bibliometrics establish quantified analysis methods and measurements for evaluating scientific papers. In this area, an important problem is to predict the future influence of a published paper. Particularly, early discrimination between influential papers and insignificant papers may find important applications. In this regard, one of the most important metrics is the number of citations to the paper, since this metric is widely utilized in the evaluation of scientific publications and moreover, it serves as the basis for many other metrics such as h-index. In this paper, we propose a novel method for predicting long-term citations of a paper based on the number of its citations in the first few years after publication. In order to train a citation count prediction model, we employed artificial neural network which is a powerful machine learning tool with recently growing applications in many domains including image and text processing. The empirical experiments show that our proposed method outperforms state-of-the-art methods with respect to the prediction accuracy in both yearly and total prediction of the number of citations. (C) 2019 Elsevier Ltd. All rights reserved. C1 [Abrishami, Ali; Aliakbary, Sadegh] Shahid Beheshti Univ, Fac Comp Sci & Engn, Tehran, Iran. C3 Shahid Beheshti University RP Aliakbary, S (corresponding author), Shahid Beheshti Univ, Fac Comp Sci & Engn, Tehran, Iran. EM a.abrishami@mail.sbu.ac.ir; s_aliakbary@sbu.ac.ir CR Acuna DE, 2012, NATURE, V489, P201, DOI 10.1038/489201a Amjad T, 2017, J INFORMETR, V11, P307, DOI 10.1016/j.joi.2017.01.004 [Anonymous], P 3 INT C LEARNING R [Anonymous], 2016, MED EXPRESS [Anonymous], 2012, PLOS ONE, DOI [DOI 10.1371/JOURNAL.PONE.0049246, DOI 10.1371/journal.pone.0112520] [Anonymous], 2015, P ICLR [Anonymous], COMMUN ACM, DOI DOI 10.1145/3065386 [Anonymous], 2016, DEEP LEARNING [Anonymous], CITATION ANAL RES EV [Anonymous], 41 ANN M COUNC BIOL [Anonymous], 2014, P 19 INT DAT ENG APP [Anonymous], IEEE C COMP VIS PATT Ayaz S, 2018, SCIENTOMETRICS, V114, P993, DOI 10.1007/s11192-017-2618-1 Bornmann L, 2014, J INFORMETR, V8, P175, DOI 10.1016/j.joi.2013.11.005 Butun Ertan, 2017, 2017 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM), P952, DOI 10.1145/3110025.3110160 Cao XY, 2016, J INFORMETR, V10, P471, DOI 10.1016/j.joi.2016.02.006 Castillo C, 2007, LECT NOTES COMPUT SC, V4726, P107, DOI 10.1007/978-3-540-75530-2_10 Chan HF, 2018, SCIENTOMETRICS, V114, P1069, DOI 10.1007/s11192-017-2614-5 Cho K., 2014, P 2014 C EMP METH NA, P1724 Chollet F, 2018, DEEP LEARNING PYTHON Ciresan D, 2012, PROC CVPR IEEE, P3642, DOI 10.1109/CVPR.2012.6248110 Dahl GE, 2012, IEEE T AUDIO SPEECH, V20, P30, DOI 10.1109/TASL.2011.2134090 Daud A, 2017, LIBR HI TECH, V35, P509, DOI 10.1108/LHT-02-2017-0044 Dong Y, 2015, WSDM'15: PROCEEDINGS OF THE EIGHTH ACM INTERNATIONAL CONFERENCE ON WEB SEARCH AND DATA MINING, P149, DOI 10.1145/2684822.2685314 Fiala D, 2017, J INFORMETR, V11, P1044, DOI 10.1016/j.joi.2017.09.008 Garfield E, 2006, JAMA-J AM MED ASSOC, V295, P90, DOI 10.1001/jama.295.1.90 Glorot X., 2011, P 14 INT C ARTIFICIA, V15, P315 Graves A, 2013, INT CONF ACOUST SPEE, P6645, DOI 10.1109/ICASSP.2013.6638947 Havemann F, 2015, SCIENTOMETRICS, V102, P1413, DOI 10.1007/s11192-014-1476-3 Hinton G, 2012, IEEE SIGNAL PROC MAG, V29, P82, DOI 10.1109/MSP.2012.2205597 Hirsch JE, 2005, P NATL ACAD SCI USA, V102, P16569, DOI 10.1073/pnas.0507655102 Karpathy A, 2017, IEEE T PATTERN ANAL, V39, P664, DOI 10.1109/TPAMI.2016.2598339 Ke Q, 2015, P NATL ACAD SCI USA, V112, P7426, DOI 10.1073/pnas.1424329112 Ketcham CM, 2007, LAB INVEST, V87, P520, DOI 10.1038/labinvest.3700554 Klimek P, 2016, SCIENTOMETRICS, V107, P1265, DOI 10.1007/s11192-016-1926-1 Kosteas VD, 2018, SCIENTOMETRICS, V115, P1395, DOI 10.1007/s11192-018-2703-0 Lai SW, 2015, AAAI CONF ARTIF INTE, P2267 Lamb CT, 2018, PEERJ, V6, DOI 10.7717/peerj.4564 Li J, 2016, SCIENTOMETRICS, V108, P821, DOI 10.1007/s11192-016-1977-3 McNamara Daniel, 2013, Trends and Applications in Knowledge Discovery and Data Mining. PAKDD 2013 International Workshops: DMApps, DANTH, QIMIE, BDM, CDA, CloudSD. Revised Selected Papers: LNCS 7867, P14, DOI 10.1007/978-3-642-40319-4_2 Mikolov T, 2010, 11TH ANNUAL CONFERENCE OF THE INTERNATIONAL SPEECH COMMUNICATION ASSOCIATION 2010 (INTERSPEECH 2010), VOLS 1-2, P1045 Moed HF, 2012, SCIENTOMETRICS, V92, P367, DOI 10.1007/s11192-012-0679-8 Newman MEJ, 2014, EPL-EUROPHYS LETT, V105, DOI 10.1209/0295-5075/105/28002 OPPENHEIM C, 1995, J DOC, V51, P18, DOI 10.1108/eb026940 Pobiedina N, 2016, APPL INTELL, V44, P252, DOI 10.1007/s10489-015-0657-y RUMELHART DE, 1986, NATURE, V323, P533, DOI 10.1038/323533a0 Sarigöl E, 2014, EPJ DATA SCI, V3, DOI 10.1140/epjds/s13688-014-0009-x Severyn A, 2015, SIGIR 2015: PROCEEDINGS OF THE 38TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, P959, DOI 10.1145/2766462.2767830 Severyn A, 2015, SIGIR 2015: PROCEEDINGS OF THE 38TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, P373, DOI 10.1145/2766462.2767738 Srivastava N, 2014, J MACH LEARN RES, V15, P1929 Sutskever I, 2014, ADV NEUR IN, V27 Sutskever Ilya, 2011, Proceedings of the 28th International Conference on Machine Learning (ICML-11), P1017 van Raan AFJ, 2004, SCIENTOMETRICS, V59, P467, DOI 10.1023/B:SCIE.0000018543.82441.f1 Wan J, 2014, PROCEEDINGS OF THE 2014 ACM CONFERENCE ON MULTIMEDIA (MM'14), P157, DOI 10.1145/2647868.2654948 Wang DS, 2013, SCIENCE, V342, P127, DOI 10.1126/science.1237825 WERBOS PJ, 1990, P IEEE, V78, P1550, DOI 10.1109/5.58337 Wildgaard L, 2014, SCIENTOMETRICS, V101, P125, DOI 10.1007/s11192-014-1423-3 Wu XF, 2008, J ZHEJIANG UNIV-SC B, V9, P582, DOI 10.1631/jzus.B0840001 Yan R, 2012, P 12 ACM IEEE CS JOI, P51, DOI DOI 10.1145/2232817.2232831 Yan R, 2011, P 20 ACM INT C INF K, P1247, DOI DOI 10.1145/2063576.2063757 Yu T, 2014, SCIENTOMETRICS, V101, P1233, DOI 10.1007/s11192-014-1279-6 Yuxiao Dong, 2016, IEEE Transactions on Big Data, V2, P18, DOI 10.1109/TBDATA.2016.2521657 NR 62 TC 88 Z9 94 U1 11 U2 166 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS SN 1751-1577 EI 1875-5879 J9 J INFORMETR JI J. Informetr. PD MAY PY 2019 VL 13 IS 2 BP 485 EP 499 DI 10.1016/j.joi.2019.02.011 PG 15 WC Computer Science, Interdisciplinary Applications; Information Science & Library Science WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Computer Science; Information Science & Library Science GA IB0FF UT WOS:000469932800002 OA Green Submitted DA 2024-09-05 ER PT J AU Sun, ZL AF Sun, Zhuanlan TI Textual features of peer review predict top-cited papers: An interpretable machine learning perspective SO JOURNAL OF INFORMETRICS LA English DT Article DE Peer review reports; Textual features; Machine learning; Explainable artificial intelligence; Research impact AB Peer review is crucial in improving the quality and reliability of scientific research. However, the mechanisms through which peer review practices ensure papers become top-cited papers (TCPs) after publication are not well understood. In this study, by collecting a data set containing 13, 066 papers published between 2016 and 2020 from Nature communications with open peer review reports, we aim to examine how textual features embedded within the peer review reports of papers that reflect the reviewers' emotions may predict the papers to be TCPs. We compiled a list of 15 textual features and classified them into three categories: peer review features, linguistic features, and sentiment features. We then chose the XGBoost machine learning model with the best performance in predicting TCPs, and utilized the explainable artificial intelligence techniques SHAP to interpret the role of feature importance on the prediction results. The distribution of feature importance ranking results demonstrates that sentiment features play a crucial role in determining papers' potential to be highly cited. This conclusion still holds, even when the ranking of the feature importance changes in the subgroup analysis of dividing the samples into four disciplines (biological sciences, health sciences, physical sciences, and earth and environmental sciences), as well as two groups based on whether reviewers' identities were revealed. This research emphasizes the textual features retrieved from peer review reports that play role in improving manuscript quality can predict the post-publication research impact. C1 [Sun, Zhuanlan] Nanjing Univ Posts & Telecommun, High Qual Dev Evaluat Res Inst, Nanjing 210003, Peoples R China. C3 Nanjing University of Posts & Telecommunications RP Sun, ZL (corresponding author), Nanjing Univ Posts & Telecommun, High Qual Dev Evaluat Res Inst, Nanjing 210003, Peoples R China. EM zlsuen@njupt.edu.cn OI Sun, Zhuanlan/0000-0003-4958-7351 FU Teachers Research Foundation Project of Nanjing University of Posts and Telecommunications [NYY222042] FX Funding This work is funded by Teachers Research Foundation Project of Nanjing University of Posts and Telecommunications (NYY222042) . CR [Anonymous], 2016, NAT COMMUN, V7, DOI 10.1038/ncomms13625 [Anonymous], 2015, NAT COMMUN, V6, DOI 10.1038/ncomms10277 [Anonymous], 2001, Linguistic inquiry and word count: Liwc 2001 Armstrong J.S., 1997, SCI ENG ETHICS, V3, P63, DOI [DOI 10.1007/S11948-997-0017-3, 10.1007/s11948-997-0017-3] Bianchi F, 2022, J INFORMETR, V16, DOI 10.1016/j.joi.2022.101316 Bird S., 2006, P COLING ACL 2006 IN, P69, DOI 10.3115/1225403.1225421 Bornmann L, 2011, ANNU REV INFORM SCI, V45, P199, DOI 10.1002/aris.2011.1440450112 Brandt JS, 2019, JAMA NETW OPEN, V2, DOI 10.1001/jamanetworkopen.2019.18007 Bravo G, 2019, NAT COMMUN, V10, DOI 10.1038/s41467-018-08250-2 Bruce R, 2016, BMC MED, V14, DOI 10.1186/s12916-016-0631-5 Buljan I, 2020, ELIFE, V9, DOI 10.7554/eLife.53249 Casnici N, 2017, SCIENTOMETRICS, V113, P533, DOI 10.1007/s11192-017-2241-1 Casnici N, 2017, J ASSOC INF SCI TECH, V68, P1763, DOI 10.1002/asi.23665 Chawla NV, 2002, J ARTIF INTELL RES, V16, P321, DOI 10.1613/jair.953 Chen HC, 2022, INFORM PROCESS MANAG, V59, DOI 10.1016/j.ipm.2021.102855 Colladon AF, 2020, SCIENTOMETRICS, V124, P357, DOI 10.1007/s11192-020-03479-5 Delgado AF, 2019, SCIENTOMETRICS, V120, P1225, DOI 10.1007/s11192-019-03160-6 Donner P, 2018, J INFORMETR, V12, P330, DOI 10.1016/j.joi.2018.01.012 Franco MC, 2021, J CLIN EPIDEMIOL, V136, P37, DOI 10.1016/j.jclinepi.2021.01.018 García JA, 2019, SCIENTOMETRICS, V118, P885, DOI 10.1007/s11192-019-03008-z García JA, 2018, SCIENTOMETRICS, V115, P1413, DOI 10.1007/s11192-018-2723-9 Gunning D, 2019, SCI ROBOT, V4, DOI 10.1126/scirobotics.aay7120 Han Ruxue, 2022, Proceedings of the Association for Information Science and Technology, P89, DOI 10.1002/pra2.607 Huber J, 2022, P NATL ACAD SCI USA, V119, DOI 10.1073/pnas.2205779119 Huisman J, 2017, SCIENTOMETRICS, V113, P633, DOI 10.1007/s11192-017-2310-5 Hunston S, 2011, ROUTL ADV CORPUS LIN, V13, P1 Jiang S, 2021, SCIENTOMETRICS, V126, P6085, DOI 10.1007/s11192-021-04032-8 Jockers M., 2017, Package "syuzhet Kharasch ED, 2021, ANESTHESIOLOGY, V134, P1, DOI 10.1097/ALN.0000000000003608 Klebel T, 2020, PLOS ONE, V15, DOI 10.1371/journal.pone.0239518 LABAND DN, 1990, Q J ECON, V105, P341, DOI 10.2307/2937790 Letchford A, 2015, ROY SOC OPEN SCI, V2, DOI 10.1098/rsos.150266 Li SQ, 2019, 2019 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING AND THE 9TH INTERNATIONAL JOINT CONFERENCE ON NATURAL LANGUAGE PROCESSING (EMNLP-IJCNLP 2019), P4914 Loria S., 2018, Textblob documentation Lundberg SM, 2017, ADV NEUR IN, V30 Luo JW, 2022, QUANT SCI STUD, V2, P1271, DOI 10.1162/qss_a_00156 Ma YX, 2022, INFORM PROCESS MANAG, V59, DOI 10.1016/j.ipm.2022.102945 Mahoney M. J., 1977, Cognitive Therapy and Research, V1, P161, DOI [DOI 10.1007/BF01173636, 10.1007/BF01173636] Mangalathu S, 2020, ENG STRUCT, V219, DOI 10.1016/j.engstruct.2020.110927 Manzoor E, 2021, AAAI CONF ARTIF INTE, V35, P4767 Matsui A, 2021, PEERJ, V9, DOI 10.7717/peerj.11999 Mohammad SM, 2013, COMPUT INTELL-US, V29, P436, DOI 10.1111/j.1467-8640.2012.00460.x Mukherjee S, 2017, SCI ADV, V3, DOI 10.1126/sciadv.1601315 Ni J, 2021, SCIENTOMETRICS, V126, P9393, DOI 10.1007/s11192-021-04182-9 Onodera N, 2015, J ASSOC INF SCI TECH, V66, P739, DOI 10.1002/asi.23209 Ponomarev IV, 2014, TECHNOL FORECAST SOC, V81, P49, DOI 10.1016/j.techfore.2012.09.017 Rigby J, 2018, SCIENTOMETRICS, V114, P1087, DOI 10.1007/s11192-017-2630-5 Rinker T., 2017, PACKAGESENTIMENTR, V8, P31 Robson BJ, 2016, ENVIRON MODELL SOFTW, V75, P94, DOI 10.1016/j.envsoft.2015.10.007 Ruan XM, 2020, J INFORMETR, V14, DOI 10.1016/j.joi.2020.101039 Seraj S, 2021, P NATL ACAD SCI USA, V118, DOI 10.1073/pnas.2017154118 Shah NB, 2022, COMMUN ACM, V65, P75, DOI 10.1145/3528086 Silge J., 2016, The Open Journal, V1, P37, DOI DOI 10.21105/JOSS.00037 Sotudeh H, 2022, SCIENTOMETRICS, V127, P5587, DOI 10.1007/s11192-022-04502-7 Squazzoni F, 2013, JASSS-J ARTIF SOC S, V16, DOI 10.18564/jasss.2128 Stephen D, 2022, SCIENTOMETRICS, V127, P3413, DOI 10.1007/s11192-022-04357-y Sun ZL, 2023, J INFORMETR, V17, DOI 10.1016/j.joi.2023.101449 Taboada M, 2016, ANNU REV LINGUIST, V2, P325, DOI 10.1146/annurev-linguistics-011415-040518 Tahamtan I, 2016, SCIENTOMETRICS, V107, P1195, DOI 10.1007/s11192-016-1889-2 Tenorio-Fornés A, 2021, INFORM PROCESS MANAG, V58, DOI 10.1016/j.ipm.2021.102724 Wang K, 2018, ACM/SIGIR PROCEEDINGS 2018, P175, DOI 10.1145/3209978.3210056 Wei WJ, 2022, SCIENTOMETRICS, V127, P4315, DOI 10.1007/s11192-022-04462-y Wolfram D, 2021, RES EVALUAT, V30, P314, DOI 10.1093/reseval/rvab005 Wyner AJ, 2017, J MACH LEARN RES, V18, P1 Xia WJ, 2023, SCIENTOMETRICS, V128, P543, DOI 10.1007/s11192-022-04547-8 Yan R, 2012, P 12 ACM IEEE CS JOI, P51, DOI DOI 10.1145/2232817.2232831 Yuan ZM, 2022, SCIENTOMETRICS, V127, P6191, DOI 10.1007/s11192-022-04515-2 Zhang GY, 2022, J INFORMETR, V16, DOI 10.1016/j.joi.2022.101264 Zhang-James Yanli, 2019, Adolescent Brain Cognitive Development Neurocognitive Prediction. First Challenge, ABCD-NP 2019. Held in Conjunction with MICCAI 2019. Proceedings. Lecture Notes in Computer Science (LNCS 11791), P92, DOI 10.1007/978-3-030-31901-4_11 NR 69 TC 3 Z9 3 U1 29 U2 29 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS SN 1751-1577 EI 1875-5879 J9 J INFORMETR JI J. Informetr. PD MAY PY 2024 VL 18 IS 2 AR 101501 DI 10.1016/j.joi.2024.101501 EA JAN 2024 PG 20 WC Computer Science, Interdisciplinary Applications; Information Science & Library Science WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Computer Science; Information Science & Library Science GA JY0I5 UT WOS:001176598700001 DA 2024-09-05 ER PT J AU Love, PED AF Love, Peter E. D. TI A Pragmatist Research Agenda for Employing Psychological Heuristics in Construction: Context, Design, Artificial Intelligence, and Performance Evaluation SO IEEE TRANSACTIONS ON ENGINEERING MANAGEMENT LA English DT Article DE Artificial intelligence (AI); construction; decision-making; pragmaticism; psychological heuristics; uncertainty ID HOMO HEURISTICUS; DECISION-MAKING; MODELS; FRUGAL; SAFETY; RATIONALITY; UNCERTAINTY; DEFINITION; PROJECTS; JUDGMENT AB Psychological heuristics are formal models of decision making relying on core psychological capacities, such as perception, attention, memory, language, emotion regulation, and social cognition. They function under conditions of limited information, which is processed using simple computations that are easy to understand, apply, and explain. Under conditions characterized by Knightian uncertainty, psychological heuristics embrace the "less-is-more" effect and have demonstrated to achieve equal and better performance in inference problems than optimality methods. Despite these salient performance outcomes, the construction and engineering management literature remains silent on their role in decision making. Filling this void, in this article, we use a narrative review to address the following research question: How can psychological heuristics be effectively used for decision making under uncertainty in construction? A research agenda comprising four interconnected themes integral to decision making under uncertainty is examined to deal with this question: understanding the context; developing and designing heuristics; the integration of heuristics with artificial intelligence; and performance evaluation. Underpinning these themes is the methodological lens of pragmatism and mixed method research design to foster the actualities of psychological heuristics in real-world situations. Thus, we aim to stimulate new lines of inquiry and the development of a repertoire of decision-making strategies of the mind that can be employed in construction where uncertainty reigns. C1 [Love, Peter E. D.] Curtin Univ, Sch Civil & Mech Engn, Perth, WA, Australia. C3 Curtin University RP Love, PED (corresponding author), Curtin Univ, Sch Civil & Mech Engn, Perth, WA, Australia. EM p.love@curtin.edu.au RI Love, Peter/D-7418-2017 OI Love, Peter/0000-0002-3239-1304 CR Alter AL, 2006, P NATL ACAD SCI USA, V103, P9369, DOI 10.1073/pnas.0601071103 [Anonymous], 1999, Simple HeuristicsThat Make Us Smart Bakht MN, 2015, J CONSTR ENG M, V141, DOI 10.1061/(ASCE)CO.1943-7862.0000984 Barnett E, 2001, AM J PUBLIC HEALTH, V91, P465, DOI 10.2105/AJPH.91.3.465a Arrieta AB, 2020, INFORM FUSION, V58, P82, DOI 10.1016/j.inffus.2019.12.012 Baumeister R.F., 1997, Rev. Gen. Psychol., V1, P311, DOI DOI 10.1037/1089-2680.1.3.311 Bingham CB, 2014, STRATEGIC MANAGE J, V35, P1698, DOI 10.1002/smj.2257 Bingham CB, 2011, STRATEGIC MANAGE J, V32, P1437, DOI 10.1002/smj.965 Bowers JS, 2022, BEHAV BRAIN SCI, V46, DOI 10.1017/S0140525X22002813 Brighton H., 2012, Ecological Rationality: Intelligence in the World, P60, DOI [10.1093/acprof:oso/9780195315448.003.0014, DOI 10.1093/ACPROF:OSO/9780195315448.003.0014] Brighton H, 2012, MALAYS J MED SCI, V19, P6 DAWES RM, 1979, AM PSYCHOL, V34, P571, DOI 10.1037/0003-066X.34.7.571 DeMiguel V, 2009, REV FINANC STUD, V22, P1915, DOI 10.1093/rfs/hhm075 Ding LY, 2018, AUTOMAT CONSTR, V86, P118, DOI 10.1016/j.autcon.2017.11.002 Dosi G, 2020, ECON INQ, V58, P1487, DOI 10.1111/ecin.12897 Dragan AD, 2013, ACMIEEE INT CONF HUM, P301, DOI 10.1109/HRI.2013.6483603 Fang WL, 2022, ADV ENG INFORM, V54, DOI 10.1016/j.aei.2022.101729 Fang WL, 2023, IEEE T ENG MANAGE, V70, P4120, DOI 10.1109/TEM.2021.3093166 Fang WL, 2020, ADV ENG INFORM, V43, DOI 10.1016/j.aei.2019.100980 Fang WL, 2018, ADV ENG INFORM, V37, P139, DOI 10.1016/j.aei.2018.05.003 Fang WL, 2018, AUTOMAT CONSTR, V91, P53, DOI 10.1016/j.autcon.2018.02.018 Gadzinski G, 2020, J BEHAV EXP FINANC, V26, DOI 10.1016/j.jbef.2020.100293 García-Peñalvo FJ, 2023, CMES-COMP MODEL ENG, V136, P1023, DOI 10.32604/cmes.2023.023897 GIGERENZER G, 1991, PSYCHOL REV, V98, P254, DOI 10.1037/0033-295X.98.2.254 Gigerenzer G, 1996, PSYCHOL REV, V103, P592, DOI 10.1037/0033-295X.103.3.592 Gigerenzer G, 1996, PSYCHOL REV, V103, P650, DOI 10.1037/0033-295X.103.4.650 Gigerenzer G, 1996, MED DECIS MAKING, V16, P273, DOI 10.1177/0272989X9601600312 Gigerenzer G., 2014, Risk Savvy: How to Make Good Decisions Gigerenzer G., 2006, sHarvard Business Review, V84, P58 Gigerenzer G., 2022, How to Stay Smart in a Smart World: Why Human Intelligence Still Beats Algorithms Gigerenzer G, 2023, PERSPECT PSYCHOL SCI, DOI 10.1177/17456916231180597 Gigerenzer G, 2022, ANNU REV ORGAN PSYCH, V9, P171, DOI 10.1146/annurev-orgpsych-012420-090506 Gigerenzer G, 2011, ANNU REV PSYCHOL, V62, P451, DOI 10.1146/annurev-psych-120709-145346 Gigerenzer G, 2009, TOP COGN SCI, V1, P107, DOI 10.1111/j.1756-8765.2008.01006.x Gigerenzer G, 2008, PERSPECT PSYCHOL SCI, V3, P20, DOI 10.1111/j.1745-6916.2008.00058.x Goldkuhl G, 2012, EUR J INFORM SYST, V21, P135, DOI 10.1057/ejis.2011.54 Goldstein DG, 2002, PSYCHOL REV, V109, P75, DOI 10.1037//0033-295X.109.1.75 Green L, 1997, J FAM PRACTICE, V45, P219 Groner R., 1983, Adv. Psychol., V16, P87, DOI [10.1016/S0166-4115(08)62195-0, DOI 10.1016/S0166-4115(08)62195-0] Gunning D, 2019, SCI ROBOT, V4, DOI 10.1126/scirobotics.aay7120 Hafenbrädl S, 2016, J APPL RES MEM COGN, V5, P215, DOI 10.1016/j.jarmac.2016.04.011 Hertwig R, 2008, J EXP PSYCHOL LEARN, V34, P1191, DOI 10.1037/a0013025 Ho M. K., Advances inNeural Information Processing Systems, P3027 Ho MK, 2022, ANNU REV CONTR ROBOT, V5, P33, DOI 10.1146/annurev-control-042920-015547 HOLT GD, 1994, BUILD ENVIRON, V29, P241, DOI 10.1016/0360-1323(94)90074-4 Johnson JG, 2003, ORGAN BEHAV HUM DEC, V91, P215, DOI 10.1016/S0749-5978(03)00027-X Johnson RB, 2007, J MIX METHOD RES, V1, P112, DOI 10.1177/1558689806298224 KAHNEMAN D, 1979, ECONOMETRICA, V47, P263, DOI 10.2307/1914185 Kahneman D., 2002, HEURISTICS BIASES PS, V49, P74 Katsikopoulos KV, 2013, J SUPPLY CHAIN MANAG, V49, P3, DOI 10.1111/j.1745-493x.2012.03285.x Katsikopoulos KV, 2011, DECIS ANAL, V8, P10, DOI 10.1287/deca.1100.0191 Katsikopoulos KV, 2020, CLASSIFICATION IN THE WILD, P1 Keller N, 2016, EUR J OPER RES, V249, P1063, DOI 10.1016/j.ejor.2015.07.023 Kelsey D., 1992, Journal of Economic Surveys, V6, P133, DOI DOI 10.1111/J.1467-6419.1992.TB00148.X Kong T, 2021, ADV ENG INFORM, V50, DOI 10.1016/j.aei.2021.101400 Li H., 1999, Construction Management and Economics, V17, P169, DOI [10.1080/014461999371664, DOI 10.1080/014461999371664] Loock M, 2015, J BUS RES, V68, P2027, DOI 10.1016/j.jbusres.2015.02.016 Love PED, 2024, DEV BUILT ENVIRON, V18, DOI 10.1016/j.dibe.2024.100402 Love PED, 2024, IEEE T ENG MANAGE, V71, P5720, DOI 10.1109/TEM.2024.3364168 Love PED, 2023, PROD PLAN CONTROL, DOI 10.1080/09537287.2023.2257178 Love PED, 2023, PROD PLAN CONTROL, DOI 10.1080/09537287.2023.2248942 Love PED, 2023, ADV ENG INFORM, V57, DOI 10.1016/j.aei.2023.102024 Love PED, 2023, DEV BUILT ENVIRON, V14, DOI 10.1016/j.dibe.2023.100129 Love PED, 2023, IEEE T ENG MANAGE, V70, P791, DOI 10.1109/TEM.2021.3097324 Love PED, 2022, RELIAB ENG SYST SAFE, V217, DOI 10.1016/j.ress.2021.108021 Love PED, 2018, PROD PLAN CONTROL, V29, P353, DOI 10.1080/09537287.2018.1424961 Love PED, 2018, SAFETY SCI, V103, P270, DOI 10.1016/j.ssci.2017.11.026 Luan SH, 2019, ACAD MANAGE J, V62, P1735, DOI 10.5465/amj.2018.0172 Luan SH, 2017, ORGAN BEHAV HUM DEC, V141, P29, DOI 10.1016/j.obhdp.2017.05.003 Martignon L, 2002, THEOR DECIS, V52, P29, DOI 10.1023/A:1015516217425 Martignon L., 2003, Thinking: Psychological perspective on reasoning, judgment, and decision making, P211, DOI [DOI 10.1002/047001332X.CH10, 10.1002/047001332X.ch10] Martignon L, 2008, J MATH PSYCHOL, V52, P352, DOI 10.1016/j.jmp.2008.04.003 Matthews J, 2023, PROD PLAN CONTROL, DOI 10.1080/09537287.2023.2223566 Matthews J, 2022, INT J INFORM MANAGE, V65, DOI 10.1016/j.ijinfomgt.2022.102495 Meder B, 2013, TRENDS COGN SCI, V17, P257, DOI 10.1016/j.tics.2013.04.008 Mostofi F, 2023, J CONSTR ENG M, V149, DOI 10.1061/JCEMD4.COENG-13435 Mousavi S, 2014, J BUS RES, V67, P1671, DOI 10.1016/j.jbusres.2014.02.013 Neth H., 2015, Emerging trends in the social and behavioral sciences: An interdisciplinary, searchable, and linkable resource, P1, DOI DOI 10.1002/9781118900772.ETRDS0394 Paneru S, 2021, AUTOMAT CONSTR, V132, DOI 10.1016/j.autcon.2021.103940 Patton M. Q., 2015, Qualitative Research and Evaluation Methods, V4th ed. Phillips ND, 2017, JUDGM DECIS MAK, V12, P344 Le PL, 2020, INT J CONSTR MANAG, V20, P490, DOI 10.1080/15623599.2018.1488089 Ployhart RE, 2011, ACAD MANAGE REV, V36, P127, DOI 10.5465/amr.2009.0318 Raab M, 2015, FRONT PSYCHOL, V6, DOI 10.3389/fpsyg.2015.01672 Radzi AR, 2023, J ENG DES TECHNOL, V21, P1083, DOI 10.1108/JEDT-06-2021-0306 Richardson P.J., 2005, NOT GENES ALONE CULT, DOI DOI 10.7208/CHICAGO/9780226712130.001.0001 Rivest R. L., 1987, Machine Learning, V2, P229, DOI 10.1007/BF00058680 Saylors R, 2021, ORGAN RES METHODS, V24, P616, DOI 10.1177/1094428119893452 Schooler LJ, 2005, PSYCHOL REV, V112, P610, DOI 10.1037/0033-295X.112.3.610 Schoonenboom J, 2017, KOLNER Z SOZIOL SOZ, V69, P107, DOI 10.1007/s11577-017-0454-1 Shah AK, 2008, PSYCHOL BULL, V134, P207, DOI 10.1037/0033-2909.134.2.207 Shoar S, 2022, J BUILD ENG, V50, DOI 10.1016/j.jobe.2022.104102 SIMON HA, 1990, ANNU REV PSYCHOL, V41, P1, DOI 10.1146/annurev.ps.41.020190.000245 Simon HA, 1996, SCI ARTIFICIAL Simon HA, 1955, Q J ECON, V69, P99, DOI 10.2307/1884852 Stingl V, 2021, TECHNOL FORECAST SOC, V162, DOI 10.1016/j.techfore.2020.120367 Suri G, 2024, J EXP PSYCHOL GEN, DOI 10.1037/xge0001547 Tetlock PE, 2002, PSYCHOL SCI, V13, P94, DOI 10.1111/1467-9280.00418 Tixier AJP, 2016, AUTOMAT CONSTR, V69, P102, DOI 10.1016/j.autcon.2016.05.016 Todd P. M., 2012, ECOLOGICAL RATIONALI, DOI [10.1093/acprof:oso/9780195315448.003.0011, DOI 10.1093/ACPROF:OSO/9780195315448.003.0011] TVERSKY A, 1974, SCIENCE, V185, P1124, DOI 10.1126/science.185.4157.1124 Volz KG, 2012, FRONT NEUROSCI-SWITZ, V6, DOI 10.3389/fnins.2012.00105 Vranas PBM, 2000, COGNITION, V76, P179, DOI 10.1016/S0010-0277(99)00084-0 Wang YH, 2022, PSYCH J, V11, P600, DOI 10.1002/pchj.576 Watt DJ, 2009, INT J PROJ MANAG, V27, P250, DOI 10.1016/j.ijproman.2008.03.002 Woike J. K., 2017, Decision,vol, V4, P234, DOI [10.1037/dec0000086, DOI 10.1037/DEC0000086] Zhan JJ, 2024, IEEE T ENG MANAGE, DOI 10.1109/TEM.2023.3325951 NR 107 TC 0 Z9 0 U1 1 U2 1 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9391 EI 1558-0040 J9 IEEE T ENG MANAGE JI IEEE Trans. Eng. Manage. PY 2024 VL 71 BP 11183 EP 11197 DI 10.1109/TEM.2024.3411656 PG 15 WC Business; Engineering, Industrial; Management WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Business & Economics; Engineering GA WQ7F8 UT WOS:001256396800001 DA 2024-09-05 ER PT J AU Talha, MM Khan, HU Iqbal, S Alghobiri, M Iqbal, T Fayyaz, M AF Talha, Mian Muhammad Khan, Hikmat Ullah Iqbal, Saqib Alghobiri, Mohammed Iqbal, Tassawar Fayyaz, Muhammad TI Deep learning in news recommender systems: A comprehensive survey, challenges and future trends SO NEUROCOMPUTING LA English DT Article DE Recommender system; News recommender systems; Research challenges; Evaluation metrics; Datasets; Deep learning AB Nowadays, people prefer to read news articles from online sources worldwide due to their easiness and availability. For the last few years, online searching for required information or content has been replaced by item recommendation, and news recommendation is also not an exception. For news recommendations, News Recommender System (NRS) helps the users to find the appropriate and pertinent content, alleviate the problem of information overload, and propose news that would be of interest to news readers. NRS also assists different users all around the world in this regard by recommending the most recent news articles based on their interests and past preferences. Many techniques such as traditional, Deep Learning (DL), and hybrid have been proposed to solve the NRS challenges and issues. DL techniques are considered one of the best techniques and have been successfully applied in various fields such as Natural Language Processing (NLP) and Computer Vision (CV). This survey article provides a detailed analysis of DL models-based techniques to build NRS. In this regard, firstly, a comprehensive comparison is provided between published survey articles on NRS and this research work. Secondly, it discusses the background of recommendation systems and their techniques. Furthermore, NRS is explored along with its current research challenges. Then background knowledge of DL and its methods have been discussed along with the analysis of year-wise published relevant articles having DL as the applied technique. The survey also presents widely used datasets and performance evaluation metrics used in the relevant literature. Finally, a detailed discussion provides several future directions and open research challenges for the researchers to consider DL applications in NRS. C1 [Talha, Mian Muhammad; Khan, Hikmat Ullah; Iqbal, Tassawar] COMSATS Univ Islamabad, Dept Comp Sci, Wah Campus, Wah Cantt 47040, Pakistan. [Iqbal, Saqib] Al Ain Univ, Coll Engn, Al Ain, U Arab Emirates. [Alghobiri, Mohammed] King Khalid Univ, Dept MIS, Abha, Saudi Arabia. [Fayyaz, Muhammad] FAST Natl Univ Comp & Emerging Sci, Dept Comp Sci, Chiniot Faisalabad Campus, Chiniot, Pakistan. [Khan, Hikmat Ullah] Univ Sargodha, Dept Informat Management, Sargodha, Pakistan. C3 COMSATS University Islamabad (CUI); King Khalid University; University of Sargodha RP Khan, HU (corresponding author), COMSATS Univ Islamabad, Dept Comp Sci, Wah Campus, Wah Cantt 47040, Pakistan.; Khan, HU (corresponding author), Univ Sargodha, Dept Informat Management, Sargodha, Pakistan. EM hikmat.ullah@ciitwah.edu.pk RI Fayyaz, Muhammad/AAP-8145-2021; Khan, Hikmat Ullah/GZG-2251-2022 OI Fayyaz, Muhammad/0000-0002-0909-4539; CR Aditya PH, 2016, INT C ADV COMP SCI I, P303, DOI 10.1109/ICACSIS.2016.7872755 Adomavicius G, 2005, IEEE T KNOWL DATA EN, V17, P734, DOI 10.1109/TKDE.2005.99 Ahmed S.S., 2020, CRPASE: Transactions of Electrical Electronic and Computer Engineering, V6, P132 Ajaegbu C, 2021, J AMB INTEL HUM COMP, V12, P10629, DOI 10.1007/s12652-020-02876-1 Akhter MP, 2022, ENTERP INF SYST-UK, V16, P223, DOI 10.1080/17517575.2020.1755455 Ameen A., 2019, Internat. J. Comput. Appl., V182, P20 Amin SA, 2019, LECT NOTES COMPUT SC, V11517, P46, DOI 10.1007/978-3-030-23381-5_4 Amir N, 2023, ARTIF INTELL REV, V56, P1101, DOI 10.1007/s10462-022-10191-8 An MX, 2019, 57TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2019), P336 [Anonymous], 2004, P 21 INT C MACH LEAR, DOI 10.1145/1015330.1015437 Bank D., 2020, arXiv Binbusayyis A, 2022, INTELL AUTOM SOFT CO, V33, P501, DOI 10.32604/iasc.2022.022239 Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993 Bobadilla J, 2013, KNOWL-BASED SYST, V46, P109, DOI 10.1016/j.knosys.2013.03.012 Bobadilla J, 2010, KNOWL-BASED SYST, V23, P520, DOI 10.1016/j.knosys.2010.03.009 Borges HL, 2010, STUD COMPUT INTELL, V260, P129, DOI 10.1007/978-3-642-04584-4_6 BUCKLAND M, 1994, J AM SOC INFORM SCI, V45, P12, DOI 10.1002/(SICI)1097-4571(199401)45:1<12::AID-ASI2>3.0.CO;2-L Buder J, 2012, COMPUT HUM BEHAV, V28, P207, DOI 10.1016/j.chb.2011.09.002 Burke R, 2002, USER MODEL USER-ADAP, V12, P331, DOI 10.1023/A:1021240730564 Burke R., 2000, Encyclopedia of Library and Information Science, V69, P175, DOI DOI 10.1007/S10115-015-0897-5 Cao SX, 2017, 2017 16TH IEEE/ACIS INTERNATIONAL CONFERENCE ON COMPUTER AND INFORMATION SCIENCE (ICIS 2017), P721 Chen M, 2012, arXiv Corbeil J.-P., 2020, ORSUM@ RecSys Covington P, 2016, PROCEEDINGS OF THE 10TH ACM CONFERENCE ON RECOMMENDER SYSTEMS (RECSYS'16), P191, DOI 10.1145/2959100.2959190 Tran DH, 2023, WORLD WIDE WEB, V26, P713, DOI 10.1007/s11280-022-01059-6 Das A. S., 2007, P 16 INT C WORLD WID, P271 Deshpande M, 2004, ACM T INFORM SYST, V22, P143, DOI 10.1145/963770.963776 Dey R, 2017, MIDWEST SYMP CIRCUIT, P1597, DOI 10.1109/MWSCAS.2017.8053243 Fayyaz M, 2023, NEURAL COMPUT APPL, V35, P11937, DOI 10.1007/s00521-023-08331-4 Fayyaz M, 2021, NEURAL COMPUT APPL, V33, P361, DOI 10.1007/s00521-020-05015-1 Fayyaz M, 2020, NEURAL COMPUT APPL, V32, P10519, DOI 10.1007/s00521-019-04590-2 Feng C, 2020, IEEE ACCESS, V8, P16702, DOI 10.1109/ACCESS.2020.2967792 Fortuna B, 2010, LECT NOTES ARTIF INT, V6323, P583, DOI 10.1007/978-3-642-15939-8_38 Ge SY, 2020, WEB CONFERENCE 2020: PROCEEDINGS OF THE WORLD WIDE WEB CONFERENCE (WWW 2020), P2863, DOI 10.1145/3366423.3380050 Goodfellow I, 2016, ADAPT COMPUT MACH LE, P1 Harpale Abhay S, 2008, SIGIR ?08: Proceedings of the 31st annual international ACM SIGIR conference on research and development in information retrieval, P91 Herlocker JL, 2004, ACM T INFORM SYST, V22, P5, DOI 10.1145/963770.963772 Hsieh CK, 2016, PROCEEDINGS OF THE 25TH INTERNATIONAL CONFERENCE ON WORLD WIDE WEB (WWW'16), P51, DOI 10.1145/2872427.2883006 Iaquinta Leo, 2008, 2008 8th International Conference on Hybrid Intelligent Systems (HIS), P168, DOI 10.1109/HIS.2008.25 IJntema Wouter., 2010, Proceedings of the 2010 EDBT/ICDT Workshops, New York, NY, P1 Isinkaye FO, 2015, EGYPT INFORM J, V16, P261, DOI 10.1016/j.eij.2015.06.005 Jayashree R, 2015, PROCEDIA COMPUT SCI, V50, P216, DOI 10.1016/j.procs.2015.04.057 Karimi M, 2018, INFORM PROCESS MANAG, V54, P1203, DOI 10.1016/j.ipm.2018.04.008 Khan ZA, 2019, IEEE ACCESS, V7, P141287, DOI 10.1109/ACCESS.2019.2940603 Khusro Shah, 2016, International Conference on Information Science and Applications (ICISA) 2016. LNEE 376, P1179, DOI 10.1007/978-981-10-0557-2_112 Kompan M, 2010, LECT NOTES BUS INF P, V61, P61 Kumar B., 2016, INDIAN J SCI TECHNOL, V9, DOI [DOI 10.17485/ijst/2016/v9i47/94892, 10.17485/ijst/2015/v8i1/94892] Kumar Vaibhav, 2017, CLEF WORKING NOTES Lam SK, 2006, LECT NOTES COMPUT SC, V3995, P14 Larochelle H., 2011, Journal of Machine Learning Research, P29 Le D-T, 2019, Tech Rep Lee D, 2020, CIKM '20: PROCEEDINGS OF THE 29TH ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT, P695, DOI 10.1145/3340531.3411932 Li L, 2011, PROCEEDINGS OF THE 34TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL (SIGIR'11), P125 Li L, 2011, J COMPUT SCI TECH-CH, V26, P754, DOI 10.1007/s11390-011-0175-2 Li MM, 2019, IEEE ACCESS, V7, P145861, DOI 10.1109/ACCESS.2019.2944927 Lian JX, 2018, PROCEEDINGS OF THE TWENTY-SEVENTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, P3805 Lika B, 2014, EXPERT SYST APPL, V41, P2065, DOI 10.1016/j.eswa.2013.09.005 Liu J, 2010, IUI 2010, P31 Liu R, 2020, PROCEEDINGS OF THE TWENTY-NINTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, P3487 Lops P, 2019, USER MODEL USER-ADAP, V29, P239, DOI 10.1007/s11257-019-09231-w Mahesh G., 2020, ELCVIA Electron Lett Comput Vis Image Anal, V19, P0018, DOI DOI 10.5565/REV/ELCVIA.1232 Mathew P, 2016, PROCEEDINGS OF 2016 INTERNATIONAL CONFERENCE ON DATA MINING AND ADVANCED COMPUTING (SAPIENCE), P47, DOI 10.1109/SAPIENCE.2016.7684166 Melville P., 2011, Encyclopedia of Machine Learning, P829 Mnih V, 2015, NATURE, V518, P529, DOI 10.1038/nature14236 Morales De Francisci, 2012, ACM International Conference on Web Search and Data Mining (WSDM), P153, DOI DOI 10.1145/2124295.2124315 Moreira GDP, 2019, IEEE ACCESS, V7, P169185, DOI 10.1109/ACCESS.2019.2954957 Murtaza M, 2022, IEEE ACCESS, V10, P115469, DOI 10.1109/ACCESS.2022.3218322 Myerson J, 2001, J EXP ANAL BEHAV, V76, P235, DOI 10.1901/jeab.2001.76-235 Natarajan S, 2020, EXPERT SYST APPL, V149, DOI 10.1016/j.eswa.2020.113248 Nilashi M, 2018, EXPERT SYST APPL, V92, P507, DOI 10.1016/j.eswa.2017.09.058 Nitu P, 2021, BIG DATA MIN ANAL, V4, P139, DOI 10.26599/BDMA.2020.9020026 Noriega L., 2005, Multilayer Perceptron Tutorial, School of Computing, P444 Nudrat S, 2022, COMPUT INTEL NEUROSC, V2022, DOI 10.1155/2022/2347641 Okura S, 2017, KDD'17: PROCEEDINGS OF THE 23RD ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, P1933, DOI 10.1145/3097983.3098108 Ozgobek Ozlem, 2014, 10th International Conference on Web Information Systems and Technologies (WEBIST 2014). Proceedings, P278 Papadakis H, 2022, KNOWL INF SYST, V64, P35, DOI 10.1007/s10115-021-01628-7 Park K, 2017, CIKM'17: PROCEEDINGS OF THE 2017 ACM CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, P2255, DOI 10.1145/3132847.3133154 Pazzani M. J., 2007, The Adaptive Web. Methods and Strategies of Web Personalization, P325 Moreira GDP, 2018, 12TH ACM CONFERENCE ON RECOMMENDER SYSTEMS (RECSYS), P578, DOI 10.1145/3240323.3240331 Moreira GDP, 2018, PROCEEDINGS OF THE 3RD WORKSHOP ON DEEP LEARNING FOR RECOMMENDER SYSTEMS (DLRS), P15, DOI 10.1145/3270323.3270328 Phelan O, 2011, LECT NOTES COMPUT SC, V6611, P448, DOI 10.1007/978-3-642-20161-5_44 Probst Patrick., 2016, WORKING NOTES CLEF 2, P669 Raza S, 2021, Arxiv, DOI arXiv:2103.08458 Raza S, 2022, ARTIF INTELL REV, V55, P749, DOI 10.1007/s10462-021-10043-x Raza S, 2020, IEEE INT CONF BIG DA, P551, DOI 10.1109/BigData50022.2020.9378340 Rendle Steffen, 2010, Proceedings 2010 10th IEEE International Conference on Data Mining (ICDM 2010), P995, DOI 10.1109/ICDM.2010.127 Resnick P, 1997, COMMUN ACM, V40, P56, DOI 10.1145/245108.245121 Resnick P., 1994, P CSCW 94 Sangeetha S.K.B., 2022, Artificial Intelligent Techniques for Wireless Communication and Networking, V8, P105, DOI DOI 10.1002/9781119821809.CH8 Saranya K., 2012, Internat. J. Comput. Appl., V57 Sarwar Badrul, 2001, Proceedings of the 10th international conference on World Wide Web (WWW '01), P285 Schedl M, 2016, ICMR'16: PROCEEDINGS OF THE 2016 ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA RETRIEVAL, P103, DOI 10.1145/2911996.2912004 Sharma RC, 2016, INT J DIGIT EARTH, V9, P1004, DOI 10.1080/17538947.2016.1168879 Shokeen J, 2020, J INTELL INF SYST, V54, P633, DOI 10.1007/s10844-019-00578-5 Shokeen J, 2020, ARTIF INTELL REV, V53, P965, DOI 10.1007/s10462-019-09684-w Singh M, 2020, KNOWL INF SYST, V62, P1, DOI 10.1007/s10115-018-1254-2 Singh RK, 2021, ARTIF INTELL REV, V54, P1385, DOI 10.1007/s10462-020-09884-9 Singh RK., 2020, Ingenierie Des Systemes d Inf., V25, P669, DOI 10.18280/ISI.250514 Souabi Sonia, 2021, Advanced Information Networking and Applications. Proceedings of the 35th International Conference on Advanced Information Networking and Applications (AINA-2021). Lecture Notes in Networks and Systems (LNNS 225), P149, DOI 10.1007/978-3-030-75100-5_14 Souabi S, 2020, PROCEEDINGS OF 2020 5TH INTERNATIONAL CONFERENCE ON CLOUD COMPUTING AND ARTIFICIAL INTELLIGENCE: TECHNOLOGIES AND APPLICATIONS (CLOUDTECH'20), P10, DOI 10.1109/CloudTech49835.2020.9365874 Su Xiaoyuan, 2009, Adv Artif Intell, V2009, DOI 10.1155/2009/421425 Subramaniyaswamy V., 2017, International Journal of High Performance Computing and Networking, V10, P54 Sundermeyer M, 2012, 13TH ANNUAL CONFERENCE OF THE INTERNATIONAL SPEECH COMMUNICATION ASSOCIATION 2012 (INTERSPEECH 2012), VOLS 1-3, P194 Takács G, 2009, J MACH LEARN RES, V10, P623 Türker BB, 2019, 2019 4TH INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND ENGINEERING (UBMK), P601, DOI [10.1109/UBMK.2019.8907093, 10.1109/ubmk.2019.8907093] Uria B, 2016, J MACH LEARN RES, V17 Wang H, 2021, Journal of Physics: Conference Series, V1757 Wang HW, 2018, WEB CONFERENCE 2018: PROCEEDINGS OF THE WORLD WIDE WEB CONFERENCE (WWW2018), P1835, DOI 10.1145/3178876.3186175 Wang K, 2020, J VIS COMMUN IMAGE R, V71, DOI 10.1016/j.jvcir.2019.102735 Weng ZZ, 2023, IEEE T WIREL COMMUN, V22, P6227, DOI 10.1109/TWC.2023.3240969 Wu CH, 2019, 2019 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING AND THE 9TH INTERNATIONAL JOINT CONFERENCE ON NATURAL LANGUAGE PROCESSING (EMNLP-IJCNLP 2019), P6389 Wu CH, 2020, 1ST CONFERENCE OF THE ASIA-PACIFIC CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS AND THE 10TH INTERNATIONAL JOINT CONFERENCE ON NATURAL LANGUAGE PROCESSING (AACL-IJCNLP 2020), P44 Wu CH, 2019, KDD'19: PROCEEDINGS OF THE 25TH ACM SIGKDD INTERNATIONAL CONFERENCCE ON KNOWLEDGE DISCOVERY AND DATA MINING, P2576, DOI 10.1145/3292500.3330665 Xu L., 2018, 2018 10 INT C MOD ID, P1 Yadav Sambhav, 2018, Procedia Computer Science, V132, P1795, DOI 10.1016/j.procs.2018.05.155 Yang K, 2018, IEEE GLOB CONF SIG, P798, DOI 10.1109/GlobalSIP.2018.8646359 Yang X., 2012, RECSYS, P67 Ying HC, 2018, PROCEEDINGS OF THE TWENTY-SEVENTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, P3926 Yu BY, 2018, ICIIP'18: PROCEEDINGS OF THE 3RD INTERNATIONAL CONFERENCE ON INTELLIGENT INFORMATION PROCESSING, P17, DOI 10.1145/3232116.3232120 Zhang CY, 2022, SUSTAIN CITIES SOC, V76, DOI 10.1016/j.scs.2021.103373 Zhang H., 2022, ACM Trans. Knowledge Discov. Data (TKDD), V16, P1 Zhang HJ, 2023, INFORMATION, V14, DOI 10.3390/info14020060 Zhang LM, 2018, HT'18: PROCEEDINGS OF THE 29TH ACM CONFERENCE ON HYPERTEXT AND SOCIAL MEDIA, P201, DOI 10.1145/3209542.3209557 Zhang LM, 2019, MACH LEARN, V108, P1851, DOI 10.1007/s10994-018-05777-9 Zhang N, 2018, NEUROCOMPUTING, V275, P1186, DOI 10.1016/j.neucom.2017.09.065 Zhang SA, 2019, ACM COMPUT SURV, V52, DOI 10.1145/3285029 Zheng GJ, 2018, WEB CONFERENCE 2018: PROCEEDINGS OF THE WORLD WIDE WEB CONFERENCE (WWW2018), P167, DOI 10.1145/3178876.3185994 Zhu P, 2022, NEUROCOMPUTING, V494, P33, DOI 10.1016/j.neucom.2022.04.073 Zhu QN, 2019, AAAI CONF ARTIF INTE, P5973 NR 129 TC 1 Z9 1 U1 7 U2 9 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS SN 0925-2312 EI 1872-8286 J9 NEUROCOMPUTING JI Neurocomputing PD DEC 28 PY 2023 VL 562 AR 126881 DI 10.1016/j.neucom.2023.126881 EA OCT 2023 PG 23 WC Computer Science, Artificial Intelligence WE Science Citation Index Expanded (SCI-EXPANDED) SC Computer Science GA Y2ZD5 UT WOS:001103991000001 DA 2024-09-05 ER PT J AU Cai, RA Tian, WC Luo, RD Hu, ZG AF Cai, Ruonan Tian, Wencan Luo, Rundong Hu, Zhigang TI The generation mechanism of research leadership in international collaboration based on GERGM: a case from the field of artificial intelligence SO SCIENTOMETRICS LA English DT Article; Early Access DE International collaboration; Research leaderships; GERGM; Artificial intelligence ID SCIENTIFIC COLLABORATION; CO-AUTHORSHIP; PROXIMITY; DISTANCE; PERFORMANCE; IMPACT; ROLES; CHINA AB Conducting an in-depth analysis of 235,746 research papers in the field of artificial intelligence spanning from 2001 to 2020, this study quantified the extent of research leadership in international collaborations by discerning the country of the corresponding author. To comprehensively investigate both endogenous and exogenous effects, we employed the Generalized Exponential Random Graph Model, an advanced methodology adept at characterizing network structures with real-valued edges. This research elucidates the pivotal role of intrinsic structural factors influenced by edge dependencies and evaluates their impact on research leadership in international collaborations. Specifically, our findings reveal a positive and significant effect of the mutual effect and the transitivity effect. Furthermore, language and geography no longer play a significant role in generating international research collaborations between two countries. Additionally, scientific productivity also holds an important position in generating research leadership. However, R&D expenditures no longer facilitate the establishment of leadership for international research collaboration. C1 [Cai, Ruonan; Luo, Rundong] Shandong Univ, Sch Business, Weihai, Peoples R China. [Tian, Wencan] Dalian Univ Technol, Inst Sci Sci & S&T Management, WISE Lab, Dalian, Peoples R China. [Hu, Zhigang] South China Normal Univ, Inst Sci Technol & Soc, Guangzhou, Peoples R China. C3 Shandong University; Dalian University of Technology; South China Normal University RP Hu, ZG (corresponding author), South China Normal Univ, Inst Sci Technol & Soc, Guangzhou, Peoples R China. EM huzhigang@scnu.edu.cn RI zhigang, hu/C-6880-2009 OI zhigang, hu/0000-0003-1835-4264; , Ruonan Cai/0000-0002-2111-1362; Tian, Wencan/0000-0001-7420-9315 FU National Natural Science Foundation of China [2023 (ISSI 2023)]; Major Projects of National Social Science Foundation of China [22ZD194]; National Natural Science Foundation of China [71974030]; LiaoNing Revitalization Talents Program [XLYC2007149]; China Scholarship Council [202106060134] FX The present study is an extended version of a paper presented at the 19th International Conference on Scientometrics and Informetrics 2023 (ISSI 2023), Bloomington, Indiana (USA), 2-5 July 2023 (Cai et al., 2023). This study is partially supported by the Major Projects of National Social Science Foundation of China (22&ZD194), the National Natural Science Foundation of China (71974030), and the LiaoNing Revitalization Talents Program (XLYC2007149). Wencan Tian is financially supported by the China Scholarship Council (202106060134). The authors are grateful to the anonymous reviewers for their helpful comments and suggestions. CR Abramo G, 2011, SCIENTOMETRICS, V86, P629, DOI 10.1007/s11192-010-0284-7 Abramski K, 2020, STUD COMPUT INTELL, V882, P387, DOI 10.1007/978-3-030-36683-4_32 Acosta M, 2011, SCIENTOMETRICS, V87, P63, DOI 10.1007/s11192-010-0305-6 Akbaritabar A, 2020, SCIENTOMETRICS, V124, P2361, DOI 10.1007/s11192-020-03555-w Asubiaro T, 2019, SCIENTOMETRICS, V120, P1261, DOI 10.1007/s11192-019-03157-1 Ayanso A, 2014, INFORM TECHNOL DEV, V20, P60, DOI 10.1080/02681102.2013.797378 Balland PA, 2012, REG STUD, V46, P741, DOI 10.1080/00343404.2010.529121 Bergé LR, 2017, PAP REG SCI, V96, P785, DOI 10.1111/pirs.12218 Blau P.M., 2017, Exchange and Power in Social Life Bordons M, 2015, SCIENTOMETRICS, V102, P1385, DOI 10.1007/s11192-014-1491-4 Bos N, 2007, J COMPUT-MEDIAT COMM, V12, P652, DOI 10.1111/j.1083-6101.2007.00343.x Boschma RA, 2005, REG STUD, V39, P61, DOI 10.1080/0034340052000320887 Boshoff N, 2009, SCIENTOMETRICS, V81, P413, DOI 10.1007/s11192-008-2211-8 Cai R., 2023, P 19 INT C SCIENT IN Chen KH, 2019, RES POLICY, V48, P149, DOI 10.1016/j.respol.2018.08.005 Chinchilla-Rodrguez Z., 2016, Frontiers in Research Metrics and Analytics, V1, P2, DOI [10.3389/frma.2016.00002, DOI 10.3389/FRMA.2016.00002] Chinchilla-Rodríguez Z, 2019, PLOS ONE, V14, DOI 10.1371/journal.pone.0218309 Choi S, 2012, SCIENTOMETRICS, V90, P25, DOI 10.1007/s11192-011-0509-4 Cimini G, 2016, J INFORMETR, V10, P200, DOI 10.1016/j.joi.2016.01.002 de Frutos-Belizón J, 2023, RES POLICY, V52, DOI 10.1016/j.respol.2023.104779 de Moya-Anegon F, 2018, J INFORMETR, V12, P1251, DOI 10.1016/j.joi.2018.10.004 Desmarais BA, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0030136 Fernández A, 2016, SCIENTOMETRICS, V106, P1073, DOI 10.1007/s11192-015-1819-8 Ferretti M, 2022, TECHNOVATION, V111, DOI 10.1016/j.technovation.2021.102390 Gazni A, 2012, J AM SOC INF SCI TEC, V63, P323, DOI 10.1002/asi.21688 Glänzel W, 1999, SCIENTOMETRICS, V45, P185, DOI 10.1007/BF02458432 Glanzel W, 1997, SCIENTOMETRICS, V40, P605, DOI 10.1007/BF02459304 González-Alcaide G, 2017, PLOS ONE, V12, DOI 10.1371/journal.pone.0182513 GRANOVETTER M, 1985, AM J SOCIOL, V91, P481, DOI 10.1086/228311 Gui QC, 2019, GEOFORUM, V105, P1, DOI 10.1016/j.geoforum.2019.06.017 He CC, 2023, J INFORMETR, V17, DOI 10.1016/j.joi.2023.101401 He CC, 2022, J ASSOC INF SCI TECH, V73, P70, DOI 10.1002/asi.24546 [贺超城 He Chaocheng], 2020, [情报学报, Journal of the China Society for Scientific and Technical Information], V39, P148 Hemlin S, 2013, ROUT STUD INNOV ORG, V29, P1 Hoekman J, 2010, RES POLICY, V39, P662, DOI 10.1016/j.respol.2010.01.012 Högfeldt AK, 2019, SUSTAINABILITY-BASEL, V11, DOI 10.3390/su11247236 Hou L, 2021, J INFORMETR, V15, DOI 10.1016/j.joi.2021.101194 Hu XJ, 2010, J INF SCI, V36, P73, DOI 10.1177/0165551509348133 Hu ZG, 2018, SCIENTOMETRICS, V115, P1185, DOI 10.1007/s11192-018-2740-8 Huang MH, 2011, J AM SOC INF SCI TEC, V62, P2427, DOI 10.1002/asi.21625 Hung SW, 2010, SCIENTOMETRICS, V82, P121, DOI 10.1007/s11192-009-0032-z Jackson MS., 2021, China Journal of Social Work, V14, P288, DOI [10.1080/17525098.2021.1909237, DOI 10.1080/17525098.2021.1909237] Jeong S, 2011, SCIENTOMETRICS, V89, P967, DOI 10.1007/s11192-011-0474-y Jiang L, 2018, J INFORMETR, V12, P618, DOI 10.1016/j.joi.2018.04.004 Kato M, 2017, SCIENTOMETRICS, V110, P673, DOI 10.1007/s11192-016-2183-z Kato M, 2013, SCIENTOMETRICS, V97, P535, DOI 10.1007/s11192-013-1011-y KATZ JS, 1994, SCIENTOMETRICS, V31, P31, DOI 10.1007/BF02018100 Katz JS, 1997, RES POLICY, V26, P1, DOI 10.1016/S0048-7333(96)00917-1 Kwiek M, 2022, SCIENTOMETRICS, V127, P1697, DOI 10.1007/s11192-022-04308-7 Ma YH, 2022, SCIENTOMETRICS, V127, P1273, DOI 10.1007/s11192-022-04270-4 Machácek V, 2023, RES EVALUAT, V32, P157, DOI 10.1093/reseval/rvac033 Matveeva N, 2022, SCIENTOMETRICS, V127, P1583, DOI 10.1007/s11192-022-04274-0 McPherson M, 2001, ANNU REV SOCIOL, V27, P415, DOI 10.1146/annurev.soc.27.1.415 Mosleh M, 2022, SCIENTOMETRICS, V127, P1931, DOI 10.1007/s11192-022-04300-1 Moya-Anegón F, 2013, SCIENTOMETRICS, V97, P421, DOI 10.1007/s11192-013-1046-0 Ovchinnikova E, 2023, GLOB SOC EDUC, V21, P563, DOI 10.1080/14767724.2022.2070132 Parreira MR, 2017, SCIENTOMETRICS, V113, P1539, DOI 10.1007/s11192-017-2502-z Peng TQ, 2015, J INFORMETR, V9, P250, DOI 10.1016/j.joi.2015.02.002 Quan W, 2019, SCIENTOMETRICS, V120, P707, DOI 10.1007/s11192-019-03111-1 Sánchez-Jiménez R, 2017, J INFORMETR, V11, P103, DOI 10.1016/j.joi.2016.11.004 Snijders TAB, 2006, SOCIOL METHODOL, V36, P99, DOI 10.1111/j.1467-9531.2006.00176.x Storper M, 2004, J ECON GEOGR, V4, P351, DOI 10.1093/jnlecg/lbh027 [孙玉涛 Sun Yutao], 2021, [科研管理, Science Research Management], V42, P20 Tang XL, 2022, SCIENTOMETRICS, V127, P181, DOI 10.1007/s11192-021-04207-3 Ter Wal ALJ, 2009, ANN REGIONAL SCI, V43, P739, DOI 10.1007/s00168-008-0258-3 Tian WC, 2024, SCIENTOMETRICS, V129, P985, DOI 10.1007/s11192-023-04909-w Tian WC, 2024, J ASSOC INF SCI TECH, V75, P3, DOI 10.1002/asi.24836 Vieira ES, 2022, J INFORMETR, V16, DOI 10.1016/j.joi.2022.101259 Wagner CS, 2019, RES POLICY, V48, P1260, DOI 10.1016/j.respol.2019.01.002 Wang J, 2018, J INFORMETR, V12, P858, DOI 10.1016/j.joi.2018.07.006 Wang LL, 2017, RES EVALUAT, V26, P124, DOI 10.1093/reseval/rvx009 Wilson JD, 2017, SOC NETWORKS, V49, P37, DOI 10.1016/j.socnet.2016.11.002 Yang JQ, 2022, J INFORMETR, V16, DOI 10.1016/j.joi.2021.101225 Yuret T, 2016, SCIENTOMETRICS, V107, P899, DOI 10.1007/s11192-016-1883-8 Zhang CW, 2018, J ASSOC INF SCI TECH, V69, P72, DOI 10.1002/asi.23916 Zhang YZ, 2020, SUSTAINABILITY-BASEL, V12, DOI 10.3390/su12114605 NR 76 TC 1 Z9 1 U1 22 U2 22 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0138-9130 EI 1588-2861 J9 SCIENTOMETRICS JI Scientometrics PD 2024 MAR 11 PY 2024 DI 10.1007/s11192-024-04974-9 EA MAR 2024 PG 19 WC Computer Science, Interdisciplinary Applications; Information Science & Library Science WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Computer Science; Information Science & Library Science GA KM4E0 UT WOS:001180362500002 DA 2024-09-05 ER PT J AU Zhu, YJ Kim, D Jiang, T Zhao, Y He, JE Chen, XY Lou, W AF Zhu, Yongjun Kim, Donghun Jiang, Ting Zhao, Yi He, Jiangen Chen, Xinyi Lou, Wen TI Dependency, reciprocity, and informal mentorship in predicting long-term research collaboration: A co-authorship matrix-based multivariate time series analysis SO JOURNAL OF INFORMETRICS LA English DT Article DE Long-term research collaboration; Co-authorship prediction; dependency; Reciprocity; Informal mentorship; Interpretable machine learning ID PATTERNS; IMPACT; PRODUCTIVITY; 20TH-CENTURY AB In this study, we examine the roles of dependency, reciprocity, and informal mentorship in the prediction of long-term research collaboration in five disciplines. We use co-authorship matrixbased multivariate time series features and interpretable machine learning to train long-term collaboration prediction models and interpret the feature importance of trained models. Overall, long-term research collaboration that is defined using various standards was rare across the examined disciplines, and the prediction results were moderate to good. We found dependency, reciprocity, and informal mentorship to have different roles in different disciplines. Among the three, informal mentorship was important in predicting long-term research collaboration in Agriculture, Geology, and Library and Information Science. Reciprocity, which measures the interdependence between two researchers was important to prediction in the fields of Agriculture and Geology. Finally, dependency was important in all the disciplines with varying degrees of importance. C1 [Zhu, Yongjun; Kim, Donghun; Jiang, Ting] Yonsei Univ, Dept Lib & Informat Sci, Seoul, South Korea. [Zhao, Yi] Nanjing Univ Sci & Technol, Sch Econ & Management, Nanjing, Peoples R China. [He, Jiangen] Univ Tennessee, Sch Informat Sci, Knoxville, TN USA. [Chen, Xinyi] Yonsei Univ, Dept Cultural Media, Seoul, South Korea. [Lou, Wen] East China Normal Univ, Sch Econ & Management, Shanghai, Peoples R China. C3 Yonsei University; Nanjing University of Science & Technology; University of Tennessee System; University of Tennessee Knoxville; Yonsei University; East China Normal University RP Lou, W (corresponding author), East China Normal Univ, Sch Econ & Management, Shanghai, Peoples R China. EM wlou@infor.ecnu.edu.cn RI lan, xueyao/JZD-4201-2024; Zhu, Yongjun/AAU-5726-2020; Lou, Wen/I-7966-2019; Zhu, Yongjun/K-2486-2015 OI Zhu, Yongjun/0000-0002-2099-2209; Lou, Wen/0000-0002-1770-6734; Zhu, Yongjun/0000-0003-4787-5122 FU Yonsei University [2022-22-0394] FX This work was supported by the Yonsei University Research Grant of 2022 (2022-22-0394). CR Abramo G, 2019, SCIENTOMETRICS, V118, P215, DOI 10.1007/s11192-018-2970-9 Abramo G, 2017, J INFORMETR, V11, P1016, DOI 10.1016/j.joi.2017.09.007 Abramo G, 2011, J TECHNOL TRANSFER, V36, P84, DOI 10.1007/s10961-009-9131-5 Agoramoorthy G, 2017, SCI ENG ETHICS, V23, P625, DOI 10.1007/s11948-016-9794-x AlShebli B, 2020, NAT COMMUN, V11, DOI 10.1038/s41467-020-19723-8 Amjad T, 2017, J INFORMETR, V11, P307, DOI 10.1016/j.joi.2017.01.004 [Anonymous], 1963, The structure of scientific revolutions Bozeman B, 2013, J TECHNOL TRANSFER, V38, P1, DOI 10.1007/s10961-012-9281-8 Bu Y, 2018, J ASSOC INF SCI TECH, V69, P438, DOI 10.1002/asi.23966 Bu Y, 2018, J ASSOC INF SCI TECH, V69, P87, DOI 10.1002/asi.23911 Bukvova H., 2010, Sprouts: Working Papers on Information Systems, V10 Chen TQ, 2016, KDD'16: PROCEEDINGS OF THE 22ND ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, P785, DOI 10.1145/2939672.2939785 Cheng MY, 2013, ASLIB PROC, V65, P659, DOI 10.1108/AP-12-2012-0094 Christ M, 2018, NEUROCOMPUTING, V307, P72, DOI 10.1016/j.neucom.2018.03.067 Creamer E.G., 2004, CANADIAN J HIGHER ED, V34, P27 Cronin B, 2004, J AM SOC INF SCI TEC, V55, P160, DOI 10.1002/asi.10353 Cronin B, 2003, J AM SOC INF SCI TEC, V54, P855, DOI 10.1002/asi.10278 FOX MF, 1984, J HIGH EDUC, V55, P347, DOI 10.2307/1981888 Gazni A, 2014, RES EVALUAT, V23, P261, DOI 10.1093/reseval/rvu014 Hoekman J, 2010, RES POLICY, V39, P662, DOI 10.1016/j.respol.2010.01.012 Katz JS, 1997, RES POLICY, V26, P1, DOI 10.1016/S0048-7333(96)00917-1 Lapidow A, 2019, J MED LIBR ASSOC, V107, P618, DOI 10.5195/jmla.2019.700 Larivière V, 2015, J ASSOC INF SCI TECH, V66, P1323, DOI 10.1002/asi.23266 Lee B, 2011, J INF SCI, V37, P67, DOI 10.1177/0165551510392147 Lee DH, 2012, SCIENTOMETRICS, V91, P925, DOI 10.1007/s11192-011-0602-8 Lee S, 2005, SOC STUD SCI, V35, P673, DOI 10.1177/0306312705052359 Levitt JM, 2016, SCIENTOMETRICS, V108, P1103, DOI 10.1007/s11192-016-2061-8 Melin G, 2000, RES POLICY, V29, P31, DOI 10.1016/S0048-7333(99)00031-1 Pedregosa F, 2011, J MACH LEARN RES, V12, P2825 Petersen AM, 2015, P NATL ACAD SCI USA, V112, pE4671, DOI 10.1073/pnas.1501444112 Savanur K, 2010, SCIENTOMETRICS, V84, P365, DOI 10.1007/s11192-009-0100-4 Shen HQ, 2022, J INFORMETR, V16, DOI 10.1016/j.joi.2021.101248 Traore N, 1997, SCI COMMUN, V19, P124, DOI 10.1177/1075547097019002002 Tsai CH, 2016, PROCEEDINGS OF THE 25TH INTERNATIONAL CONFERENCE ON WORLD WIDE WEB (WWW'16 COMPANION), P375, DOI 10.1145/2872518.2890516 Wang W, 2021, ACM T KNOWL DISCOV D, V15, DOI 10.1145/3442199 Wang W, 2019, IEEE T COMPUT SOC SY, V6, P311, DOI 10.1109/TCSS.2019.2898198 Wray KB, 2006, STUD HIST PHILOS SCI, V37, P505, DOI 10.1016/j.shpsa.2005.07.011 Yarime M, 2010, SUSTAIN SCI, V5, P115, DOI 10.1007/s11625-009-0090-4 Ye Q, 2013, J HOSP TOUR RES, V37, P51, DOI 10.1177/1096348011425500 NR 39 TC 0 Z9 0 U1 16 U2 18 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS SN 1751-1577 EI 1875-5879 J9 J INFORMETR JI J. Informetr. PD FEB PY 2024 VL 18 IS 1 AR 101486 DI 10.1016/j.joi.2023.101486 EA DEC 2023 PG 11 WC Computer Science, Interdisciplinary Applications; Information Science & Library Science WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Computer Science; Information Science & Library Science GA FS5S1 UT WOS:001147863300001 DA 2024-09-05 ER PT C AU Huang, SZ AF Huang, Shengzhong BE Wu, YW TI Research and Application of wavelet neural networks of particle swarm optimization algorithm in the performance prediction of centrifugal compressor SO SPORTS MATERIALS, MODELLING AND SIMULATION SE Advanced Materials Research LA English DT Proceedings Paper CT International Conference on Sport Material, Modelling and Simulation CY JAN 27-28, 2011 CL Shenzhen, PEOPLES R CHINA DE Particle swarm optimization; Wavelet neural network; Centrifugal compressor; Performance prediction AB The traditional method of centrifugal compressor performance prediction is usually the BP neural network, however, the problems are that prediction accuracy is not high enough, convergence is slow and it is apt to fall into local optimal solution. In order to predict the performance of centrifugal compressors more accurately and identify the implicit problems in advance, now we combine the particle swarm optimization, wavelet theory and neural networks, to establish performance prediction model of centrifugal compressor based on wavelet neural network of PSO. First, set the various parameters of wavelet neural network as the particle position vector X and the energy function of mean square error as the optimized objective function. By particle swarm optimization algorithm to iterate the basic formula to obtain the corresponding WNN coefficient and then use back-propagation algorithm to train WNN to approach any nonlinear function. Simulation results show that application of the prediction model can achieve the accurate prediction of performance and monitoring of centrifugal compressor. The prediction model has the advantages of simple algorithm, stable structure, fast calculation of convergence speed and strong generalization ability with a prediction accuracy of 99%, 13% higher than prediction accuracy of traditional methods, which has a certain theoretical research value and practical value. C1 Liuzhou Teachers Coll, Dept Math & Comp Sci, Liuzhou 545004, Guangxi, Peoples R China. RP Huang, SZ (corresponding author), Liuzhou Teachers Coll, Dept Math & Comp Sci, Liuzhou 545004, Guangxi, Peoples R China. EM gxhsz@126.com CR Calise F, 2006, ENERGY, V31, P3278, DOI 10.1016/j.energy.2006.03.006 DAUBECHIES, 1990, IEEE T INFORM THEORY, V36, P226 GUO LY, 1997, PATTERN RECOGN, V10, P197 He YY, 2002, NEURAL COMPUT APPL, V10, P357, DOI 10.1007/s005210200008 Janardhanan VM, 2007, J POWER SOURCES, V172, P296, DOI 10.1016/j.jpowsour.2007.07.008 Liu Hong-bo, 2005, Mini-Micro Systems, V26, P638 LU G, 2002, P 9 INT C NEUR INF P, V5 WANG XJ, 2006, J COMPUTERS, V29, P835 WEI CZ, 2008, COMPUTER SIMULATION, V25, P147 WEI LD, 2007, ENG GEOPHYS, V4, P529 YI ZR, 2006, COAL SCI TECHNOLOGY, P67 ZHANG QG, 1992, IEEE T NEURAL NETWOR, V3, P889, DOI 10.1109/72.165591 ZHAO GR, 2010, SYSTEM SIMULATION, V22, P670 NR 13 TC 0 Z9 1 U1 2 U2 15 PU TRANS TECH PUBLICATIONS LTD PI STAFA-ZURICH PA LAUBLSRUTISTR 24, CH-8717 STAFA-ZURICH, SWITZERLAND SN 1022-6680 BN 978-3-03785-041-1 J9 ADV MATER RES-SWITZ PY 2011 VL 187 BP 271 EP 276 DI 10.4028/www.scientific.net/AMR.187.271 PG 6 WC Computer Science, Artificial Intelligence; Computer Science, Information Systems; Materials Science, Multidisciplinary WE Conference Proceedings Citation Index - Science (CPCI-S) SC Computer Science; Materials Science GA BVV36 UT WOS:000292888500051 DA 2024-09-05 ER PT J AU Srinivasa, G AF Srinivasa, Gowri TI Relevance of Innovations in Machine Learning to Scientometrics SO JOURNAL OF SCIENTOMETRIC RESEARCH LA English DT Article DE Feature engineering; Machine learning; Deep learning; Scientometrics ID REGRESSION; PREDICTION; ADVANTAGES; NETWORKS; IMPACT; INDEX AB Machine learning envisages building models that either classify, predict, cluster or determine the relative relevance of features to a problem and the associations between them. This paper briefy describes how these tasks are relevant to Scientometrics. Through this brief survey of selected tasks, it is observed that most solution approaches in Scientometric literature are built on the strong foundation of understanding and debating in uencing factors and the process of feature engineering, requiring the descriptors to be intuitive and methods used for classication, prediction, etc., to be amenable to interpretation. Recent trends in machine learning, particularly, deep learning methods, however, pose an interesting question: can we build models that automatically determine what features are important and thereby bypass the step of feature engineering? This paper discusses how such techniques could also be harnessed in Scientometrics. C1 [Srinivasa, Gowri] PES Univ, Ctr Pattern Recognit, EC Campus, Bengaluru, Karnataka, India. [Srinivasa, Gowri] PES Univ, Dept Comp Sci & Engn, EC Campus,Hosur Rd, Bengaluru 560100, Karnataka, India. C3 PES University; PES University RP Srinivasa, G (corresponding author), PES Univ, Dept Comp Sci & Engn, EC Campus,Hosur Rd, Bengaluru 560100, Karnataka, India. EM gsrinivasa@pes.edu RI Srinivasa, Gowri/ABP-9131-2022 OI Srinivasa, Gowri/0000-0002-3568-6749 CR Ajiferuke I, 2015, J INFORMETR, V9, P499, DOI 10.1016/j.joi.2015.05.001 [Anonymous], 2015, Nature, DOI 10.1038/nature14539 [Anonymous], INT C INT INT MULT S [Anonymous], PATTERN CLASSIFICATI [Anonymous], THESIS [Anonymous], 2012, 2012 Conference of the North American Chapter of the Association for Computational Linguistics [Anonymous], 2013, FOUND TRENDS SIGNAL, DOI DOI 10.1561/2000000039 [Anonymous], TELLING WHOLE STORY [Anonymous], ADV NEURAL INFORM PR [Anonymous], 2018, ARXIV180304644 [Anonymous], 2014, CoRR, abs/1402.3722. Athanasios Voulodimos, 2018, COMPUTATIONAL INTELL, V2018 CHEN YQ, 1994, NEURAL NETWORKS, V7, P1477, DOI 10.1016/0893-6080(94)90093-0 Costas R, 2007, J INFORMETR, V1, P193, DOI 10.1016/j.joi.2007.02.001 EFRON B, 1983, AM STAT, V37, P36, DOI 10.2307/2685844 Érdi P, 2013, SCIENTOMETRICS, V95, P225, DOI 10.1007/s11192-012-0796-4 Eysenbach G, 2011, J MED INTERNET RES, V13, DOI 10.2196/jmir.2012 Fu Lawrence D, 2008, AMIA Annu Symp Proc, P222 Gamboa J.C.B., 2017, CoRR Garzone M, 2000, LECT NOTES ARTIF INT, V1822, P337 Guns R, 2014, SCIENTOMETRICS, V101, P1461, DOI 10.1007/s11192-013-1228-9 Habib R, 2017, TURK J ELECTR ENG CO, V25, P2708, DOI 10.3906/elk-1608-180 HARRELL FE, 1985, CANCER TREAT REP, V69, P1071 Haslam N, 2008, SCIENTOMETRICS, V76, P169, DOI 10.1007/s11192-007-1892-8 Hinton GE, 2006, SCIENCE, V313, P504, DOI 10.1126/science.1127647 Hirsch JE, 2005, P NATL ACAD SCI USA, V102, P16569, DOI 10.1073/pnas.0507655102 Jeremic V, 2011, SCIENTOMETRICS, V87, P587, DOI 10.1007/s11192-011-0361-6 Klimek P, 2016, SCIENTOMETRICS, V107, P1265, DOI 10.1007/s11192-016-1926-1 Li F, 2009, PROCEEDINGS OF INTERNATIONAL SYMPOSIUM ON COMPUTER SCIENCE AND COMPUTATIONAL TECHNOLOGY (ISCSCT 2009), P431 Maas A, 2011, P 49 ANN M ASS COMP McCarty C, 2013, SCIENTOMETRICS, V96, P467, DOI 10.1007/s11192-012-0933-0 Pan SJ, 2010, IEEE T KNOWL DATA EN, V22, P1345, DOI 10.1109/TKDE.2009.191 Papernot N., 2018, ARXIV180304765 Radojicic Z, 2012, CURR SCI INDIA, V103, P158 Salvador MR, 2000, RES EVALUAT, V9, P189, DOI 10.3152/147154400781777214 Schmidhuber J, 2015, NEURAL NETWORKS, V61, P85, DOI 10.1016/j.neunet.2014.09.003 Stegehuis C, 2015, J INFORMETR, V9, P642, DOI 10.1016/j.joi.2015.06.005 Sun MX, 2016, 2016 13TH IEEE INTERNATIONAL CONFERENCE ON SOLID-STATE AND INTEGRATED CIRCUIT TECHNOLOGY (ICSICT), P478, DOI 10.1109/ICSICT.2016.7998956 Thelwall M, 2014, J INFORMETR, V8, P963, DOI 10.1016/j.joi.2014.09.011 Waltman L, 2012, J AM SOC INF SCI TEC, V63, P406, DOI 10.1002/asi.21678 Wang F, 2019, SCIENTOMETRICS, P1 Wang MY, 2012, SCIENTOMETRICS, V93, P635, DOI 10.1007/s11192-012-0766-x Xie Y, 2018, PATTERN RECOGN, V81, P50, DOI 10.1016/j.patcog.2018.03.026 Young T, 2018, IEEE COMPUT INTELL M, V13, P55, DOI 10.1109/MCI.2018.2840738 Zhang L, 2010, J INFORMETR, V4, P185, DOI 10.1016/j.joi.2009.11.005 NR 45 TC 5 Z9 5 U1 2 U2 17 PU PHCOG NET PI KARNATAKA PA 17, 2ND FLR, BUDDHA VIHAR RD, NEAR SPORTS ZONE, COX TOWN, BENGALURU, KARNATAKA, 560005, INDIA SN 2321-6654 EI 2320-0057 J9 J SCIENTOMETR RES JI J. Scientometr. Res. PD MAY-AUG PY 2019 VL 8 IS 2 SI SI BP S39 EP S43 DI 10.5530/jscires.8.2.23 PG 5 WC Information Science & Library Science WE Emerging Sources Citation Index (ESCI) SC Information Science & Library Science GA KA8FQ UT WOS:000506037200004 OA hybrid DA 2024-09-05 ER PT C AU Golowko, N Tamla, P Stein, H Böhm, T Hemmje, M Onete, CB AF Golowko, Nina Tamla, Philippe Stein, Holger Boehm, Thilo Hemmje, Matthias Onete, Christian Bogdan BE Soliman, KS TI On the Trail of Future Management Topics with Digital Technology - How Can Artificial Intelligence Influence the Didactic Content of Higher Education in Economics? SO EDUCATION EXCELLENCE AND INNOVATION MANAGEMENT THROUGH VISION 2020 LA English DT Proceedings Paper CT 33rd International-Business-Information-Management-Association (IBIMA) Conference CY APR 10-11, 2019 CL Granada, SPAIN DE Higher education; management trends; Latent Dirichlet Allocation (LDA) topic modeling; artificial intelligence; transfer didactics; curricular contents AB Universities can as little ignore the ever-faster pace of change in their environment as companies can. To anticipate the increase in the quantity of knowledge and the increasing competition in the higher education sector, universities can access their own knowledge base. This paper aims to show that universities can use machine learning to uncover potentials in their own knowledge base and use them for curriculum development. The final theses written at a German university are examined using software based on the Latent Dirichlet Allocation (LDA) topic model. Topic blocks are disclosed that reflect current developments and trends on the market. This paper describes the process and essential features in the preparation of the corpus and the derivation of the thematic areas. The added value of this method is pointed out and subsequently discussed using examples. This results in an innovative approach to future-oriented curriculum development. The study presented here gives only a small insight into the fundamental changes which artificial intelligence will imply for all of us in the future. C1 [Golowko, Nina; Onete, Christian Bogdan] Bucharest Univ Econ Studies, Bucharest, Romania. [Tamla, Philippe; Boehm, Thilo; Hemmje, Matthias] Fernuniv, Fac Multimedia & Comp Sci, Hagen, Germany. [Stein, Holger] FOM Univ Appl Sci, Frankfurt, Germany. C3 Bucharest University of Economic Studies; Fern University Hagen RP Golowko, N (corresponding author), Bucharest Univ Econ Studies, Bucharest, Romania. EM golowko@ninagolowko.de; philippe.tamla@studium.fernuni-hagen.de; holger.stein@fom.de; thilo.boehm@fernuni-hagen.de; mhemmje@fernuni-hagen.de; bogdan.onete@com.ase.ro RI Onete, Cristian Bogdan/E-6579-2017; Prof. Dr.-Ing. Tamla, Philippe/KPB-3066-2024 OI Prof. Dr.-Ing. Tamla, Philippe/0000-0002-0786-4253 FU FOM University of Applied Sciences [576] FX This research was supported by FOM University of Applied Sciences, implemented through the project "LeMaKoTA - Lebenszyklen von Managementmethoden - Korpusanalyse auf Basis der Titel von Abschlussarbeiten" (ID 576) under the expert guidance of Prof. Dr. Matthias Gehrke. CR [Anonymous], WEG AGILEN ORG Barua A, 2014, EMPIR SOFTW ENG, V19, P619, DOI 10.1007/s10664-012-9231-y Benders J, 2007, QUAL QUANT, V41, P815, DOI 10.1007/s11135-006-9027-5 D'Aveni R.A., 1994, Hypercompetition: Managing the dynamics of strategic maneuvering Denny MJ, 2018, POLIT ANAL, V26, P168, DOI 10.1017/pan.2017.44 Despeisse M, 2018, WINT SIMUL C PROC, P4046, DOI 10.1109/WSC.2018.8632285 Doring N, 2016, Bestimmung von Teststarke, Effektgroβe und optimalem Stichprobenumfang, V5 Glaser W., 2018, VUCA WELT Golowko N, 2019, INTED PROC, P799 Gratsch S., 2017, VUCA CHANGE MANAGEME Indira D. N. V. S. L., 2019, Smart Intelligent Computing and Applications. Proceedings of the Second International Conference on SCI 2018. Smart Innovation, Systems and Technologies (SIST 105), P143, DOI 10.1007/978-981-13-1927-3_15 Kaplan R., 2018, BALANCED SCORECARD S Li K, 2018, SCIENTOMETRICS, V115, P1, DOI 10.1007/s11192-017-2622-5 Madsen DO, 2015, COGENT BUS MANAG, V2, DOI 10.1080/23311975.2015.1122256 Nawroth C., 2018, DATA 2018 P 7 INT C, DOI [10. 5220/0006853200470055, DOI 10.5220/0006853200470055] Plewe C., 2018, COMPUTERSPIELE FLUCH Rosen C, 2016, EMPIR SOFTW ENG, V21, P1192, DOI 10.1007/s10664-015-9379-3 Tamla P., 2019, CERC, P131 NR 18 TC 0 Z9 0 U1 1 U2 8 PU INT BUSINESS INFORMATION MANAGEMENT ASSOC-IBIMA PI NORRISTOWN PA 34 E GERMANTOWN PIKE, NO. 327, NORRISTOWN, PA 19401 USA BN 978-0-9998551-2-6 PY 2019 BP 8145 EP 8155 PG 11 WC Education & Educational Research; Management WE Conference Proceedings Citation Index - Social Science & Humanities (CPCI-SSH) SC Education & Educational Research; Business & Economics GA BO3KC UT WOS:000510675603070 DA 2024-09-05 ER PT J AU Shan, SQ Wang, L Wang, J Hao, Y Hua, F AF Shan, Siqing Wang, Li Wang, Jing Hao, Yi Hua, Fan TI Research on e-Government evaluation model based on the principal component analysis SO INFORMATION TECHNOLOGY & MANAGEMENT LA English DT Article DE e-Government evaluation; Local e-Government; Evaluation model; Principal component analysis; K-means clustering ID INFORMATION-SYSTEMS SUCCESS; SERVICES; DELONE; ACCEPTANCE; QUALITY AB Over the last few years, the area of electronic government (e-Government) has received increasing prominence and attention; people are interacting with e-Government systems to an ever greater extent. It is therefore important to measure the development of e-Government. Adopting principal component analysis (PCA), this study presents, validates and updates an evaluation model with 5 dimensions based on Socio-Technical model and Stakeholder Theory, which captures the multidimensional and interdependent nature of e-Government system. The validity of the model is empirically investigated using a sample of local e-Government of 18 cities in China, all of which have high Internet penetration and mature ICT use. The five dimensions of the evaluation model include project construction, information security management, special construction, transparency of government affairs and informationized ability. K-means clustering is applied in the subspace created by PCA to evaluate the local e-Government stages of growth of these 18 cities. The findings provide several important implications for e-Government research and practice. C1 [Shan, Siqing; Wang, Li; Wang, Jing; Hao, Yi; Hua, Fan] Beihang Univ, Sch Econ & Management, Beijing 100191, Peoples R China. C3 Beihang University RP Shan, SQ (corresponding author), Beihang Univ, Sch Econ & Management, Beijing 100191, Peoples R China. EM shansiqing@buaa.edu.cn; wl2000bh@yahoo.com.cn; wangjing.sem.buaa@gmail.com; haoyi@buaa.edu.cn; huafan@buaa.edu.cn RI hao, yi/KHY-8135-2024 CR Akman I, 2005, GOV INFORM Q, V22, P239, DOI 10.1016/j.giq.2004.12.001 [Anonymous], 2001, Proceedings of Neural Information Processing Systems (NIPS) [Anonymous], 39 ANN HAW INT C SYS [Anonymous], 1985, Competitive Strategy BAUM C, 2000, TU116474 Bostrom R. P., 1977, MIS Quarterly", V1, P17, DOI [DOI 10.2307/249019, 10.2307/248710, DOI 10.2307/248710] Carbo T., 2004, Electronic Journal of e-Government, V2, P95 CHUA C., 2005, J ELECTRON COMMER RE, V6, P262 D'Mello DA, 2010, ENTERP INF SYST-UK, V4, P23, DOI 10.1080/17517570903159467 de Jong M, 2006, GOV INFORM Q, V23, P191, DOI 10.1016/j.giq.2005.11.007 DeLone WH, 2004, INT J ELECTRON COMM, V9, P31, DOI 10.1080/10864415.2004.11044317 Detlor B, 2001, ELECTRONIC GOVERNMENT: DESIGN, APPLICATIONS, AND MANAGEMENT, P99 DONALDSON T, 1995, ACAD MANAGE REV, V20, P65, DOI 10.5465/AMR.1995.9503271992 Feng S, 2007, DECIS SUPPORT SYST, V42, P1989, DOI 10.1016/j.dss.2004.11.004 Flak L. S., 2005, Scandinavian Journal of Information Systems, V17, P41 Flak LS, 2005, COMMUN ASSOC INF SYS, V16, P642 Gottschalk P, 2007, ENTERP INF SYST-UK, V1, P443, DOI 10.1080/17517570701630412 Gupta MP, 2003, GOV INFORM Q, V20, P365, DOI 10.1016/j.giq.2003.08.002 Hartigan J. A., 1979, Applied Statistics, V28, P100, DOI 10.2307/2346830 Heeks R., 2001, EGOVERNMENT WORKING, P33 Hotelling H, 1933, J EDUC PSYCHOL, V24, P417, DOI 10.1037/h0071325 HU PJH, 2003, 36 HAW INT C SYST HI Hung SY, 2006, GOV INFORM Q, V23, P97, DOI 10.1016/j.giq.2005.11.005 HUNTER DR, 2001, EGOVERNMENT LEADERSH Iivari J., 2005, DATA BASE ADV INF SY, V36, P8, DOI [DOI 10.1145/1066149.1066152, 10.1145/1066149.1066152] Issa H, 2009, ENTERP INF SYST-UK, V3, P449, DOI 10.1080/17517570903042754 Jaeger PT, 2003, GOV INFORM Q, V20, P323, DOI 10.1016/j.giq.2003.08.003 Jolliffe IT, 2002, Principal Component Analysis, V2nd Kaylor C, 2001, GOV INFORM Q, V18, P293, DOI 10.1016/S0740-624X(01)00089-2 KLING R, 1999, D LIB MAGAZ, V5 Kulkarni UR, 2006, J MANAGE INFORM SYST, V23, P309, DOI 10.2753/MIS0742-1222230311 Kunstelj M., 2004, Information Polity, V9, P131 Lenk K., 2001, Designing E-Government, P63 LESSEN VT, 2009, ENTERP INFO SYST, V3, P347 Li L, 2008, INFORM SYST FRONT, V10, P531, DOI 10.1007/s10796-008-9108-1 Li W, 2007, ENTERP INF SYST-UK, V1, P161, DOI 10.1080/17517570701243273 Lofstedt U., 2005, E GOVT ASSESSMENT CU Luo J, 2007, ENTERP INF SYST-UK, V1, P49, DOI 10.1080/17517570601092184 MacQueen J., 1967, P 5 BERK S MATH STAT, P281, DOI DOI 10.1007/S11665-016-2173-6 McGill T., 2003, Information Resources Management Journal, V16, P24, DOI 10.4018/irmj.2003010103 Molla A., 2001, J ELECTRON COMMER RE, V2, P131 PARE G, 2005, 38 HAW INT C SYST SC Parent M, 2005, GOV INFORM Q, V22, P720, DOI 10.1016/j.giq.2005.10.001 Pearson K, 1901, PHILOS MAG, V2, P559, DOI 10.1080/14786440109462720 Prattipati SN., 2003, Journal of American Academy of Business, V3, P386 Rai A, 2002, INFORM SYST RES, V13, P50, DOI 10.1287/isre.13.1.50.96 Rosenberg F, 2008, ENTERP INF SYST-UK, V2, P459, DOI 10.1080/17517570802395626 Sauer Chris., 2003, STATE IT PROJECT MAN Scavo C, 2003, PUBLIC INFORMATION TECHNOLOGY: POLICY AND MANAGEMENT ISSUES, P299 SCOTT M, 2004, P 12 EUR INF SYST TU SHACKLETON P, 2004, 37 ANN HAW INT C SYS Shan SQ, 2008, PROCEEDINGS OF THE 38TH INTERNATIONAL CONFERENCE ON COMPUTERS AND INDUSTRIAL ENGINEERING, VOLS 1-3, P2756 Sharma S. K., 2004, Electronic Government, V1, P198, DOI 10.1504/EG.2004.005178 Skok W, 2001, INFORM MANAGE, V38, P409, DOI 10.1016/S0378-7206(00)00076-8 Stowers G., 2004, Measuring the performance of e-Government Tao AT, 2008, ENTERP INF SYST-UK, V2, P367, DOI 10.1080/17517570802382590 Torres L, 2005, GOV INFORM Q, V22, P217, DOI 10.1016/j.giq.2005.02.004 *UNPAN, 2005, UN GLOB EGOVERNMENT Vathanophas V, 2009, ENTERP INF SYST-UK, V3, P133, DOI 10.1080/17517570802653800 Wang L, 2009, SYST RES BEHAV SCI, V26, P357, DOI 10.1002/sres.973 Wang T, 2008, ENTERP INF SYST-UK, V2, P443, DOI 10.1080/17517570802337362 Wang YS, 2008, GOV INFORM Q, V25, P717, DOI 10.1016/j.giq.2007.06.002 Wu JH, 2006, INFORM MANAGE-AMSTER, V43, P728, DOI 10.1016/j.im.2006.05.002 XU L, 2008, IEEE T SYST MAN CY C, V38, P1 Yuan RX, 2010, INFORM SYST FRONT, V12, P149, DOI 10.1007/s10796-008-9131-2 Zha HY, 2002, ADV NEUR IN, V14, P1057 Zhang J, 2005, J ENTERP INF MANAG, V18, P548, DOI 10.1108/17410390510624007 Zhang T, 2008, ENTERP INF SYST-UK, V2, P239, DOI 10.1080/17517570802285959 NR 68 TC 34 Z9 41 U1 5 U2 91 PU SPRINGER PI NEW YORK PA ONE NEW YORK PLAZA, SUITE 4600, NEW YORK, NY, UNITED STATES SN 1385-951X EI 1573-7667 J9 INFORM TECHNOL MANAG JI Inf. Technol. Manag. PD JUN PY 2011 VL 12 IS 2 SI SI BP 173 EP 185 DI 10.1007/s10799-011-0083-8 PG 13 WC Information Science & Library Science; Management WE Social Science Citation Index (SSCI) SC Information Science & Library Science; Business & Economics GA 769TE UT WOS:000291040400012 DA 2024-09-05 ER PT J AU Wamba, SF Queiroz, MM AF Wamba, Samuel Fosso Queiroz, Maciel M. TI Responsible Artificial Intelligence as a Secret Ingredient for Digital Health: Bibliometric Analysis, Insights, and Research Directions SO INFORMATION SYSTEMS FRONTIERS LA English DT Article DE Artificial intelligence; Machine learning; Digital health; Responsible AI; Bibliometric analysis ID OF-THE-ART; BIG-DATA; EXPERIENCE; ROBOT; CHALLENGES; RECOVERY; MEDICINE; THERAPY; FUTURE AB With the unparallel advance of leading-edge technologies like artificial intelligence (AI), the healthcare systems are transforming and shifting for more digital health. In recent years, scientific productions have reached unprecedented levels. However, a holistic view of how AI is being used for digital health remains scarce. Besides, there is a considerable lack of studies on responsible AI and ethical issues that identify and suggest practitioners' essential insights towards the digital health domain. Therefore, we aim to rely on a bibliometric approach to explore the dynamics of the interplay between AI and digital health approaches, considering the responsible AI and ethical aspects of scientific production over the years. We found four distinct periods in the publication dynamics and the most popular approaches of AI in the healthcare field. Also, we highlighted the main trends and insightful directions for scholars and practitioners. In terms of contributions, this work provides a framework integrating AI technologies approaches and applications while discussing several barriers and benefits of AI-based health. In addition, five insightful propositions emerged as a result of the main findings. Thus, this study's originality is regarding the new framework and the propositions considering responsible AI and ethical issues on digital health. C1 [Wamba, Samuel Fosso] TBS Business Sch, Informat Operat & Management Sci, 1 Pl Alphonse Jourdain, F-31068 Toulouse, France. [Queiroz, Maciel M.] Paulista Univ UNIP, Postgrad Program Business Adm, Dr Bacelar St 1212, BR-04026002 Sao Paulo, Brazil. [Queiroz, Maciel M.] Univ Prebiteriana Mackenzie, Sch Engn, Consolacao St 930, BR-01302000 Sao Paulo, Brazil. C3 Universidade Paulista RP Queiroz, MM (corresponding author), Paulista Univ UNIP, Postgrad Program Business Adm, Dr Bacelar St 1212, BR-04026002 Sao Paulo, Brazil.; Queiroz, MM (corresponding author), Univ Prebiteriana Mackenzie, Sch Engn, Consolacao St 930, BR-01302000 Sao Paulo, Brazil. EM s.fosso-wamba@tbs-education.fr; maciel.queiroz@docente.unip.br RI Queiroz, Maciel M./U-8499-2019; Queiroz, Maciel M./F-1274-2014; Fosso Wamba, Samuel/AAB-4953-2019 OI Queiroz, Maciel M./0000-0002-6025-9191; Fosso Wamba, Samuel/0000-0002-1073-058X CR Ahlering TE, 2003, J UROLOGY, V170, P1738, DOI 10.1097/01.ju.0000092881.24608.5e Aisen ML, 1997, ARCH NEUROL-CHICAGO, V54, P443, DOI 10.1001/archneur.1997.00550160075019 Alahakoon D, 2023, INFORM SYST FRONT, V25, P221, DOI 10.1007/s10796-020-10056-x Aria M, 2017, J INFORMETR, V11, P959, DOI 10.1016/j.joi.2017.08.007 Benight SJ, 2013, PROG POLYM SCI, V38, P1961, DOI 10.1016/j.progpolymsci.2013.08.001 Benway BM, 2009, J UROLOGY, V182, P866, DOI 10.1016/j.juro.2009.05.037 Beydoun G, 2019, INFORM SYST FRONT, V21, P485, DOI 10.1007/s10796-019-09925-x Broadbent E, 2009, INT J SOC ROBOT, V1, P319, DOI 10.1007/s12369-009-0030-6 Burke EK, 2004, J SCHEDULING, V7, P441, DOI 10.1023/B:JOSH.0000046076.75950.0b Chen JH, 2017, NEW ENGL J MED, V376, P2507, DOI 10.1056/NEJMp1702071 Ching T, 2018, J R SOC INTERFACE, V15, DOI 10.1098/rsif.2017.0387 Clarivate Analytics, 2020, Web of Science De Fauw J, 2018, NAT MED, V24, P1342, DOI 10.1038/s41591-018-0107-6 Deo RC, 2015, CIRCULATION, V132, P1920, DOI 10.1161/CIRCULATIONAHA.115.001593 Duan YQ, 2019, INT J INFORM MANAGE, V48, P63, DOI 10.1016/j.ijinfomgt.2019.01.021 Dwivedi YK, 2021, INT J INFORM MANAGE, V57, DOI 10.1016/j.ijinfomgt.2019.08.002 Esteva A, 2019, NAT MED, V25, P24, DOI 10.1038/s41591-018-0316-z Fasoli SE, 2003, ARCH PHYS MED REHAB, V84, P477, DOI 10.1053/apmr.2003.50110 Feldman SS, 2022, INFORM SYST FRONT, V24, P121, DOI 10.1007/s10796-020-10064-x Giulianotti PC, 2003, ARCH SURG-CHICAGO, V138, P777, DOI 10.1001/archsurg.138.7.777 Gottlieb A, 2011, MOL SYST BIOL, V7, DOI 10.1038/msb.2011.26 Haefner N, 2021, TECHNOL FORECAST SOC, V162, DOI 10.1016/j.techfore.2020.120392 He JX, 2019, NAT MED, V25, P30, DOI 10.1038/s41591-018-0307-0 Hu WQ, 2018, NATURE, V554, P81, DOI 10.1038/nature25443 Jiang F, 2017, STROKE VASC NEUROL, V2, P230, DOI 10.1136/svn-2017-000101 Kafeza E, 2021, INFORM SYST FRONT, V23, P1303, DOI 10.1007/s10796-020-10033-4 Kapoor KK, 2018, INFORM SYST FRONT, V20, P531, DOI 10.1007/s10796-017-9810-y Kasar, 2019, INT J SCI RES SCI TE, V5, P8869, DOI [10.32628/ijsrst19633, DOI 10.32628/IJSRST19633] Kim, 2014, ROBOTICS GEN SURG, V138, P1, DOI [10.1007/978-1-4614-8739-5, DOI 10.1007/978-1-4614-8739-5] Klinker K, 2020, INFORM SYST FRONT, V22, P1419, DOI 10.1007/s10796-019-09937-7 Kononenko I, 2001, ARTIF INTELL MED, V23, P89, DOI 10.1016/S0933-3657(01)00077-X Lei ZY, 2017, ADV MATER, V29, DOI 10.1002/adma.201700321 Lovis C, 2018, INT J MED INFORM, V110, P108, DOI 10.1016/j.ijmedinf.2017.12.006 Majidi C, 2014, SOFT ROBOT, V1, P5, DOI 10.1089/soro.2013.0001 Mellit A, 2008, PROG ENERG COMBUST, V34, P574, DOI 10.1016/j.pecs.2008.01.001 Miotto R, 2018, BRIEF BIOINFORM, V19, P1236, DOI 10.1093/bib/bbx044 Mishra D, 2018, ANN OPER RES, V270, P313, DOI 10.1007/s10479-016-2236-y Mukherjee S, 2020, INFORM SYST FRONT, V22, P23, DOI 10.1007/s10796-019-09965-3 Mukherjee UK, 2020, J OPER MANAG, V66, P227, DOI 10.1002/joom.1058 Nobre GC, 2017, SCIENTOMETRICS, V111, P463, DOI 10.1007/s11192-017-2281-6 Obermeyer Z, 2016, NEW ENGL J MED, V375, P1216, DOI 10.1056/NEJMp1606181 Peng YF, 2017, INFORM SYST FRONT, V19, P1329, DOI 10.1007/s10796-017-9771-1 Perry JC, 2007, IEEE-ASME T MECH, V12, P408, DOI 10.1109/TMECH.2007.901934 Queiroz MM, 2020, ANN OPER RES, DOI 10.1007/s10479-020-03685-7 Queiroz MM, 2020, BUS PROCESS MANAG J, V26, P1075, DOI 10.1108/BPMJ-03-2019-0134 Rajkomar A, 2019, NEW ENGL J MED, V380, P1347, DOI 10.1056/NEJMra1814259 Rajkomar A, 2018, NPJ DIGIT MED, V1, DOI 10.1038/s41746-018-0029-1 Serrano A, 2020, INFORM SYST FRONT, V22, P455, DOI 10.1007/s10796-018-9869-0 Sharma R, 2020, INT J INFORM MANAGE, V53, DOI 10.1016/j.ijinfomgt.2020.102105 Sivarajah U, 2017, J BUS RES, V70, P263, DOI 10.1016/j.jbusres.2016.08.001 Stephanie L, 2020, INT J INFORM MANAGE, V53, DOI 10.1016/j.ijinfomgt.2019.10.017 Tewari A, 2003, BJU INT, V92, P205, DOI 10.1046/j.1464-410X.2003.04311.x Topol EJ, 2019, NAT MED, V25, P44, DOI 10.1038/s41591-018-0300-7 van Velthoven MH, 2019, INT J MED INFORM, V124, P49, DOI 10.1016/j.ijmedinf.2019.01.007 Vayena E, 2018, PLOS MED, V15, DOI 10.1371/journal.pmed.1002689 Wamba SF, 2021, TECHNOL FORECAST SOC, V164, DOI 10.1016/j.techfore.2020.120482 Wang Y., 2020, P 53 HAWAII INT C SY, DOI DOI 10.24251/HICSS.2020.610 Wang YC, 2018, TECHNOL FORECAST SOC, V126, P3, DOI 10.1016/j.techfore.2015.12.019 Wearn OR, 2019, NAT MACH INTELL, V1, P72, DOI 10.1038/s42256-019-0022-7 Xiong HY, 2015, SCIENCE, V347, DOI 10.1126/science.1254806 NR 60 TC 48 Z9 48 U1 12 U2 81 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 1387-3326 EI 1572-9419 J9 INFORM SYST FRONT JI Inf. Syst. Front. PD DEC PY 2023 VL 25 IS 6 SI SI BP 2123 EP 2138 DI 10.1007/s10796-021-10142-8 EA MAY 2021 PG 16 WC Computer Science, Information Systems; Computer Science, Theory & Methods WE Science Citation Index Expanded (SCI-EXPANDED) SC Computer Science GA AU9X6 UT WOS:000650816700001 PM 34025210 OA Green Published, Bronze DA 2024-09-05 ER PT J AU Prahani, BK Imah, EM Maureen, IY Rakhmawati, L Saphira, HV AF Prahani, Binar Kurnia Imah, Elly Matul Maureen, Irena Yolanita Rakhmawati, Lusia Saphira, Hanandita Veda TI Trend and Visualization of Artificial Intelligence Research in the Last 10 Years SO TEM JOURNAL-TECHNOLOGY EDUCATION MANAGEMENT INFORMATICS LA English DT Article DE - artificial intelligence; bibliometric; deep learning; machine learning ID BIBLIOMETRICS; TECHNOLOGIES; NETWORK AB - Technology is permeating every aspect of our everyday lives, and businesses are increasingly turning to learning algorithms. These technologies are commonly associated with Artificial Intelligence (AI), Artificial Neural Network (ANN). Due to previous research exciting findings, implications, and limitations, the research publication on AI, ML, DL, and ANN will increase each year. Finally, the growth analysis of AI, ML, DL, and ANN publications in last 10 years brings up the results that the publications significantly increase each year. This research utilizes descriptive analyses and bibliometrics. Implications of the investigation of specific keyword mapping visualization results on AI, ML, DL, and ANN, can be created and enhanced for more study. A different area of future research might focus on using fewer terms, particularly to study learning methods like AI, ML, DL, and ANN in a convolutional neural network. C1 [Prahani, Binar Kurnia; Imah, Elly Matul; Maureen, Irena Yolanita; Rakhmawati, Lusia; Saphira, Hanandita Veda] Univ Negeri Surabaya, Surabaya, Indonesia. C3 Universitas Negeri Surabaya RP Prahani, BK (corresponding author), Univ Negeri Surabaya, Surabaya, Indonesia. EM binarprahani@unesa.ac.id RI Saphira, Hanandita Veda/KIB-3061-2024; Imah, Elly Matul/D-1258-2015 OI Saphira, Hanandita Veda/0000-0002-3609-952X; Imah, Elly Matul/0000-0003-1008-4837 FU LPPM Competitive PNBP Research, Universitas Negeri Surabaya, Indonesia [B/35071/UN38.9/K.04.00/2022] FX This paper is part of the LPPM Competitive PNBP Research, Universitas Negeri Surabaya, Indonesia which is fully funded with a contract number [B/35071/UN38.9/K.04.00/2022]. CR Akiba D, 2021, INNOV HIGH EDUC, V46, P321, DOI 10.1007/s10755-020-09538-2 Arteaga JV, 2021, INT J EMERG TECHNOL, V16, P132, DOI 10.3991/ijet.v16i21.25149 Tran BX, 2019, J CLIN MED, V8, DOI 10.3390/jcm8030360 Baduge SK, 2022, AUTOMAT CONSTR, V141, DOI 10.1016/j.autcon.2022.104440 Choi RY, 2020, TRANSL VIS SCI TECHN, V9, DOI 10.1167/tvst.9.2.14 Draxler F, 2018, PR MACH LEARN RES, V80 Garg R, 2019, J STROKE CEREBROVASC, V28, P2045, DOI 10.1016/j.jstrokecerebrovasdis.2019.02.004 Grewal P., 2014, IOSR J. Comput. Eng., V16, P9, DOI DOI 10.9790/0661-16210913 Guo YQ, 2020, J MED INTERNET RES, V22, DOI 10.2196/18228 Hassani H, 2020, AI-BASEL, V1, DOI 10.3390/ai1020008 He KM, 2016, PROC CVPR IEEE, P770, DOI 10.1109/CVPR.2016.90 Hino N, 2021, RUSS J LINGUIST, V25, P528, DOI 10.22363/2687-0088-2021-25-2-528-545 Hu HT, 2020, J DATA INFO SCI, V5, P86, DOI 10.2478/jdis-2020-0027 Katz Y., 2017, SSRN Electronic Journal, DOI [10.2139/ssrn.3078224, DOI 10.2139/SSRN.3078224] Kirtil IG, 2021, ADV HOSP TOUR RES-AH, V9, P205, DOI 10.30519/ahtr.801690 Lee M., 2018, J OPEN INNOV TECHNOL, V4, P1, DOI [DOI 10.3390/JOITMC4030021, 10.3390/joitmc4030021] Li YP, 2020, INT J STEM EDUC, V7, DOI 10.1186/s40594-020-00213-8 Li YL, 2016, IEEE T CYBERNETICS, V46, P1411, DOI 10.1109/TCYB.2015.2437282 Liu XZ, 2013, J AM SOC INF SCI TEC, V64, P1852, DOI 10.1002/asi.22883 Malley CS, 2017, ENVIRON INT, V101, P173, DOI 10.1016/j.envint.2017.01.023 Munim ZH, 2020, MARIT POLICY MANAG, V47, P577, DOI 10.1080/03088839.2020.1788731 Natarajarathinam M, 2021, J ENG EDUC, V110, P1049, DOI 10.1002/jee.20424 Pedregosa F., 2011, JMLR, V12, P2825 Perez H, 2019, SENSORS-BASEL, V19, DOI 10.3390/s19163556 Pranckute R, 2021, PUBLICATIONS-BASEL, V9, DOI 10.3390/publications9010012 Racic L., 2021, 2021 25 INT C INFORM, P17 Reynolds BL, 2022, ASIA-PAC EDUC RES, V31, P11, DOI 10.1007/s40299-020-00534-w Roh Y, 2021, IEEE T KNOWL DATA EN, V33, P1328, DOI 10.1109/TKDE.2019.2946162 Sarker I. H., 2021, SN Comput. Sci., V2, P1, DOI DOI 10.1007/S42979-021-00557-0 Sarker Iqbal H, 2021, SN Comput Sci, V2, P160, DOI 10.1007/s42979-021-00592-x Shubina I, 2021, INT J EMERG TECHNOL, V16, P235, DOI 10.3991/ijet.v16i19.24361 Shubina I, 2020, INT J EMERG TECHNOL, V15, P89, DOI 10.3991/ijet.v15i21.16101 Shukla AK, 2019, ENG APPL ARTIF INTEL, V85, P517, DOI 10.1016/j.engappai.2019.06.010 Su J, 2021, CHANG ENGL, V28, P429, DOI 10.1080/1358684X.2021.1915748 Weingart P, 2005, SCIENTOMETRICS, V62, P117, DOI 10.1007/s11192-005-0007-7 Wu Y, 2019, INFORM SCIENCES, V490, P317, DOI 10.1016/j.ins.2019.03.080 Zappone A, 2019, IEEE T COMMUN, V67, P7331, DOI 10.1109/TCOMM.2019.2924010 Zhang CM, 2021, J IND INF INTEGR, V23, DOI 10.1016/j.jii.2021.100224 Zhang PY, 2021, IEEE NETWORK, V35, P27, DOI 10.1109/MNET.011.2000741 Zhang Y, 2021, KNOWL-BASED SYST, V222, DOI 10.1016/j.knosys.2021.106994 NR 40 TC 1 Z9 1 U1 3 U2 8 PU UIKTEN - ASSOC INFORMATION COMMUNICATION TECHNOLOGY EDUCATION & SCIENCE PI NOVI PAZAR PA HILMA ROZAJCA 15, NOVI PAZAR, 36300, SERBIA SN 2217-8309 EI 2217-8333 J9 TEM J JI TEM J. PD MAY PY 2023 VL 12 IS 2 BP 918 EP 927 DI 10.18421/TEM122-38 PG 10 WC Computer Science, Information Systems WE Emerging Sources Citation Index (ESCI) SC Computer Science GA I6PD4 UT WOS:001003974800038 OA gold DA 2024-09-05 ER PT J AU Yamazaki, T Sakata, I AF Yamazaki, Tomomi Sakata, Ichiro TI Exploration of Interdisciplinary Fusion and Interorganizational Collaboration With the Advancement of AI Research: A Case Study on Natural Language Processing SO IEEE TRANSACTIONS ON ENGINEERING MANAGEMENT LA English DT Article; Early Access DE Citation network analysis; emerging technology; interdisciplinarity fusion; interorganizational collaboration; natural language processing (NLP) ID ARTIFICIAL-INTELLIGENCE; TECHNOLOGY AB Network analysis is increasingly being used as a decision-making support tool for science and technology policy and technology management through the understanding of the trends and structure of innovation activities and the prediction of their changes. Since convergence and diversity are generally regarded as opportunities for groundbreaking innovation, analysis of interdisciplinary fusion and interorganizational collaboration using network analysis is expected to provide useful suggestions for policy formation and technology management. Nevertheless, little quantitative analysis has been conducted to date, especially for interorganizational collaboration. Meanwhile, regarding artificial intelligence research, its effectiveness has accelerated its application in various fields, and in the process, interdisciplinary fusion and interorganizational collaboration are developing. In this study, we focused on "natural language processing (NLP)," which is said to have recently surpassed human performance, and conducted a microanalysis by visualizing community formation, topic transition including technology integration with other fields and organizations, and their collaboration engaged in research front. Specifically, using the Scopus dataset, we extracted NLP papers and conducted a network analysis. As a result, we visualized these developments in the fast-changing field, and second, we showed that our method is applicable to many other fields. These results will help researchers interested in the application of NLP. C1 [Yamazaki, Tomomi; Sakata, Ichiro] Univ Tokyo, Dept Technol Management Innovat, Bunkyo Ku, Tokyo 1138654, Japan. C3 University of Tokyo RP Yamazaki, T (corresponding author), Univ Tokyo, Dept Technol Management Innovat, Bunkyo Ku, Tokyo 1138654, Japan. EM yamazaki-tomomi@g.ecc.u-tokyo.ac.jp; isakata@ipr-ctr.t.u-tokyo.ac.jp OI SAKATA, ICHIRO/0000-0001-5881-3790 CR Abbass H., 2021, IEEE Trans. Artif. Intell, V2, P94, DOI [10.1109/TAI.2021.3096243, DOI 10.1109/TAI.2021.3096243] Tran BX, 2019, J CLIN MED, V8, DOI 10.3390/jcm8030360 Beltagy I, 2019, 2019 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING AND THE 9TH INTERNATIONAL JOINT CONFERENCE ON NATURAL LANGUAGE PROCESSING (EMNLP-IJCNLP 2019), P3615 Bhullar SS, 2019, TECHNOL FORECAST SOC, V145, P1, DOI 10.1016/j.techfore.2019.04.021 Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993 Brem A, 2023, IEEE T ENG MANAGE, V70, P770, DOI 10.1109/TEM.2021.3109983 Calza F, 2022, IEEE T ENG MANAGE, V69, P2649, DOI 10.1109/TEM.2019.2950514 Devlin J, 2019, 2019 CONFERENCE OF THE NORTH AMERICAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS: HUMAN LANGUAGE TECHNOLOGIES (NAACL HLT 2019), VOL. 1, P4171 Dwivedi YK, 2023, INT J INFORM MANAGE, V71, DOI 10.1016/j.ijinfomgt.2023.102642 Elsevier, 2021, Res. Intell. Frank MR, 2019, NAT MACH INTELL, V1, P79, DOI 10.1038/s42256-019-0024-5 Guo HN, 2011, SCIENTOMETRICS, V89, P421, DOI 10.1007/s11192-011-0433-7 Guo HF, 2017, PROCEEDINGS OF THE TWENTY-SIXTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, P1725 Klavans R, 2006, J AM SOC INF SCI TEC, V57, P251, DOI 10.1002/asi.20274 Kose T, 2019, TECHNOL FORECAST SOC, V146, P751, DOI 10.1016/j.techfore.2018.09.005 Lai SW, 2015, AAAI CONF ARTIF INTE, P2267 Lecun Y, 1998, P IEEE, V86, P2278, DOI 10.1109/5.726791 LeCun Y, 2015, NATURE, V521, P436, DOI 10.1038/nature14539 Lee H, 2018, J TECHNOL TRANSFER, V43, P1291, DOI 10.1007/s10961-017-9561-4 Lee J, 2020, BIOINFORMATICS, V36, P1234, DOI 10.1093/bioinformatics/btz682 Leydesdorff L, 2011, J INFORMETR, V5, P87, DOI 10.1016/j.joi.2010.09.002 Liqun Wen, 2020, AIAM2020: Proceedings of the 2nd International Conference on Artificial Intelligence and Advanced Manufacture, P145, DOI 10.1145/3421766.3421799 Liu H., 2019, INT C LEARN REPR ICL Miao YS, 2017, PR MACH LEARN RES, V70 Min S, 2017, BRIEF BIOINFORM, V18, P851, DOI 10.1093/bib/bbw068 Moriwaki Y., 2022, Chemistry, V77, P23 Muhlroth C, 2022, IEEE T ENG MANAGE, V69, P493, DOI 10.1109/TEM.2020.2989214 Nakayama M., 2020, Mainabi Book Nsanzumuhire SU, 2020, J CLEAN PROD, V258, DOI 10.1016/j.jclepro.2020.120861 Sood SK, 2022, COMPUT ELECTR ENG, V101, DOI 10.1016/j.compeleceng.2022.107948 Spanhol FA, 2016, IEEE IJCNN, P2560, DOI 10.1109/IJCNN.2016.7727519 Suominen A, 2021, IEEE T ENG MANAGE, V68, P1786, DOI 10.1109/TEM.2019.2923634 Tenney I, 2019, 57TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2019), P4593 Uzzi B, 2013, SCIENCE, V342, P468, DOI 10.1126/science.1240474 Vahidnia S., 2020, Procedia Computer Science, V177, P581 Vaswani A, 2017, ADV NEUR IN, V30 Wagner CS, 2011, J INFORMETR, V5, P14, DOI 10.1016/j.joi.2010.06.004 Wang XS, 2017, PROC CVPR IEEE, P3462, DOI 10.1109/CVPR.2017.369 Xu YJ, 2021, INNOVATION-AMSTERDAM, V2, DOI 10.1016/j.xinn.2021.100179 Yamazaki Tomomi, 2022, 2022 IEEE International Conference on Big Data (Big Data), P6109, DOI 10.1109/BigData55660.2022.10020326 Yu KH, 2018, NAT BIOMED ENG, V2, P719, DOI 10.1038/s41551-018-0305-z Zhang Y, 2019, TECHNOVATION, V86-87, P33, DOI 10.1016/j.technovation.2019.05.003 Zhou X, 2021, IEEE T ENG MANAGE, V68, P1360, DOI 10.1109/TEM.2020.2994049 NR 43 TC 1 Z9 1 U1 6 U2 19 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9391 EI 1558-0040 J9 IEEE T ENG MANAGE JI IEEE Trans. Eng. Manage. PD 2023 NOV 1 PY 2023 DI 10.1109/TEM.2023.3327209 EA NOV 2023 PG 14 WC Business; Engineering, Industrial; Management WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Business & Economics; Engineering GA Y2WY1 UT WOS:001103933100001 DA 2024-09-05 ER PT J AU Tolcheev, VO AF Tolcheev, V. O. TI Research and Analysis of the Subject Area of Deep Learning SO AUTOMATIC DOCUMENTATION AND MATHEMATICAL LINGUISTICS LA English DT Article DE deep learning; deep neural networks; factual and multimedia data; scientometric analysis; bibliographic database Web of Science; publication activity; descriptor analysis AB This paper analyzes the rapidly growing scientific direction of Deep Learning, as one of the most significant parts of artificial intelligence. Using scientometric methods, the growth rates of publications in leading countries and the level of their international cooperation are estimated. The terminological structure of the subject area is investigated and the most perspective directions of studies are revealed. We compare scientometric indicators of Deep Learning with another booming scientific area, Quantum Technology. The conclusion is made that publication activity on Deep Learning is growing faster. It is noted that in both these areas the United States and China are the leaders according to the number of papers. Scientometric analysis showed a fairly low level of publication activity of Russian scientists on Deep Learning and their weak involvement in international cooperation. C1 [Tolcheev, V. O.] Moscow Power Engn Inst, Moscow 111250, Russia. C3 Moscow Power Engineering Institute RP Tolcheev, VO (corresponding author), Moscow Power Engn Inst, Moscow 111250, Russia. EM tolcheevvo@mail.ru CR Abadi M, 2016, PROCEEDINGS OF OSDI'16: 12TH USENIX SYMPOSIUM ON OPERATING SYSTEMS DESIGN AND IMPLEMENTATION, P265 [Anonymous], Convolutional networks for fast, energy-efficient neuromorphic computing [Anonymous], GUIDELINES STAT METH [Anonymous], 2015, Nature, DOI 10.1038/nature14539 [Anonymous], COMMUN ACM, DOI DOI 10.1145/3065386 [Anonymous], DOKUMENTOVEDENIE UCH [Anonymous], MACHINE LEARNING STE [Anonymous], NAUCHNYE KOMMUNIKATS Bengio Y., 2007, NIPS, P153 Ding J., 2018, Deciphering Chinas AI Dream: The Context, Components, Capabilities, and Consequences of Chinas Strategy to Lead the World in AI Golovko V.A., 2017, Opt. Mem. Neural Netw, V26, P1, DOI [10.3103/S1060992X16040081, DOI 10.3103/S1060992X16040081] Goodfellow IJ, 2014, ADV NEUR IN, V27, P2672, DOI 10.1145/3422622 Grace K., 2018, When will AI exceed human performance? Evidence from AI experts Graves A., 2014, NEURAL TURING MACHIN He KM, 2016, PROC CVPR IEEE, P770, DOI 10.1109/CVPR.2016.90 Hinton GE, 2006, SCIENCE, V313, P504, DOI 10.1126/science.1127647 Huang G, 2016, LECT NOTES COMPUT SC, V9908, P646, DOI 10.1007/978-3-319-46493-0_39 Jia YQ, 2014, PROCEEDINGS OF THE 2014 ACM CONFERENCE ON MULTIMEDIA (MM'14), P675, DOI 10.1145/2647868.2654889 Mikolov T, 2010, Recurrent neural network based language model Reese H., 2017, Understanding the differences between AI, machine learning, and deep learning Schmidhuber J, 2015, NEURAL NETWORKS, V61, P85, DOI 10.1016/j.neunet.2014.09.003 [Созыкин Андрей Владимирович Sozykin A.V.], 2017, [Вестник Южно-Уральского государственного университета. Серия: Вычислительная математика и информатика, Bulletin of the South Ural State University. Series: Computational Mathematics and Software Engineering, Vestnik Yuzhno-Ural'skogo gosudarstvennogo universiteta. Seriya: Vychislitel'naya matematika i informatika], V6, P28, DOI 10.14529/cmse170303 Tolcheev VO, 2018, AUTOM DOC MATH LINGU, V52, P121, DOI 10.3103/S000510551803007X NR 23 TC 1 Z9 1 U1 0 U2 6 PU PLEIADES PUBLISHING INC PI NEW YORK PA PLEIADES HOUSE, 7 W 54 ST, NEW YORK, NY, UNITED STATES SN 0005-1055 EI 1934-8371 J9 AUTOMAT DOC MATH LIN JI Autom. Doc. Math. Linguist. PD MAY PY 2019 VL 53 IS 3 BP 103 EP 113 DI 10.3103/S000510551903004X PG 11 WC Computer Science, Information Systems WE Emerging Sources Citation Index (ESCI) SC Computer Science GA IT5QJ UT WOS:000482919700001 DA 2024-09-05 ER PT J AU Djeffal, C Siewert, MB Wurster, S AF Djeffal, Christian Siewert, Markus B. Wurster, Stefan TI Role of the state and responsibility in governing artificial intelligence: a comparative analysis of AI strategies SO JOURNAL OF EUROPEAN PUBLIC POLICY LA English DT Article DE Artificial intelligence; AI governance; policy instruments; state types; responsible research innovation; technology assessment ID TECHNOLOGY; GOVERNANCE; INNOVATION AB Technologies based on artificial intelligence (AI) represent a crucial governance challenge for policymakers. This study contributes to the understanding of how states plan to govern AI with respect to the role they assume and to the way they develop AI in a responsible manner. In different policy instruments across 22 countries plus the European Union, there is considerable variation in how governments approach the governance of AI, both regarding the policy measures proposed and their focus on public responsibility. Analysing a set of policy instruments we find multiple modes of AI governance, with the major difference being between self-regulation-promoting and market-based approaches, and a combination of entrepreneurial and regulatory governance approaches. Our analysis also indicates that the approach to public responsibility is largely independent of the chosen policy mix of AI governance. Therefore, responsibility seems to be a cross-cutting issue that cannot be tied to a specific approach of states towards technology. C1 [Djeffal, Christian; Wurster, Stefan] Tech Univ Munich, TUM Sch Social Sci & Technol, Munich, Germany. [Siewert, Markus B.; Wurster, Stefan] Munich Sch Polit & Publ Policy, Munich, Germany. C3 Technical University of Munich RP Siewert, MB (corresponding author), Munich Sch Polit & Publ Policy, Munich, Germany. EM markus.siewert@hfp.tum.de CR [Anonymous], 2007, TAKING EUROPEAN KNOW [Anonymous], 2019, Report of the Special Rapporteur on Extreme Poverty and Human Rights 11 October, UN Doc A/74/493 Bisson P., 2010, MARKET STATE Borrás S, 2020, RES POLICY, V49, DOI 10.1016/j.respol.2020.103971 Braithwaite J., 2011, The Oxford Handbook of Political Science Brooks Harvey., 1976, Newsletter on Science, Technology Human Values, V17, P17 Broussard M, 2018, ARTIFICIAL UNINTELLIGENCE: HOW COMPUTERS MISUNDERSTAND THE WORLD Bughin J., 2019, Tech for Good: Smoothing Disruption, Improving Well-Being Casado-Asensio J, 2014, J PUBLIC POLICY, V34, P437, DOI 10.1017/S0143814X13000287 Chessen Matt., 2017, The MADCOM Future: How Artificial Intelligence Will Enhance Computational Propaganda, Reprogram Human Culture and Threaten Democracy and What Can Be Done About It Crawford K., 2021, Atlas of AI: Power, Politics, and the Planetary Costs of Artificial Intelligence Dauvergne P, 2021, GLOBALIZATIONS, V18, P285, DOI 10.1080/14747731.2020.1785670 Di Stefano G, 2012, RES POLICY, V41, P1283, DOI 10.1016/j.respol.2012.03.021 Dijck Jose van, 2013, The Culture of Connectivity: A Critical History of Social Media, P24 Djeffal C., 2019, GLOBAL SOLUTIONS J, V4, P186 Djeffal C, 2020, REGULATING ARTIFICIAL INTELLIGENCE, P277, DOI 10.1007/978-3-030-32361-5_12 Ely A, 2014, RES POLICY, V43, P505, DOI 10.1016/j.respol.2013.09.004 Erdélyi OJ, 2018, PROCEEDINGS OF THE 2018 AAAI/ACM CONFERENCE ON AI, ETHICS, AND SOCIETY (AIES'18), P95, DOI 10.1145/3278721.3278731 European Commission, 2020, DIG EC SOC IND DESI European Commission, COM2020825 EUR COMM Fatima S, 2020, ECON ANAL POLICY, V67, P178, DOI 10.1016/j.eap.2020.07.008 Fisher E., 2006, B SCI TECHNOL SOC, V26, P485, DOI [10.1177/0270467606295402, DOI 10.1177/0270467606295402] Fiss PC, 2011, ACAD MANAGE J, V54, P393, DOI 10.5465/AMJ.2011.60263120 Gasser U, 2017, IEEE INTERNET COMPUT, V21, P58, DOI 10.1109/MIC.2017.4180835 Guston DH, 2014, SOC STUD SCI, V44, P218, DOI 10.1177/0306312713508669 Guston DavidH., 2002, Technology in Society, V24, P93 Hasselbalch JA, 2018, J EUR PUBLIC POLICY, V25, P1855, DOI 10.1080/13501763.2017.1363805 Hennen Leonhard, 2012, Poiesis Prax, V9, P27 Hood C., 2007, The Tools of Government in the Digital Age, DOI DOI 10.1111/J.1467-9299.2008.00756_4.X Howlett M., 2019, The policy design primer. Choosing the right tools for the job Kim Yun Tae, 2007, Korean Social Science Journal, V34, P31 Knill C, 2012, REGUL GOV, V6, P427, DOI 10.1111/j.1748-5991.2012.01150.x König PD, 2022, BIG DATA SOC, V9, DOI 10.1177/20539517211069632 Kuhlmann S, 2019, RES POLICY, V48, P1091, DOI 10.1016/j.respol.2019.01.006 Kvist J, 2007, J BUS RES, V60, P474, DOI 10.1016/j.jbusres.2007.01.005 Majone G., 1997, J PUBLIC POLICY, V17, P139, DOI DOI 10.1017/S0143814X00003524 Mandel G.N., 2009, Law, Innovation and Technology, V1, P75, DOI DOI 10.1080/17579961.2009.11428365 Marchant Gary, 2020, JURIMETRICS, V61, P1 Marchant GE, 2013, INNOVATIVE GOVERNANCE MODELS FOR EMERGING TECHNOLOGIES, P136 Mazzucato M., 2011, The Entrepreneurial State Mittelstadt B, 2019, NAT MACH INTELL, V1, P501, DOI 10.1038/s42256-019-0114-4 Nemitz P, 2018, PHILOS T R SOC A, V376, DOI 10.1098/rsta.2018.0089 OECD, 2019, ARTIF INTELL, DOI [10.1787/eedfee77-en, DOI 10.1787/EEDFEE77-EN] Ornetzeder Michael, 2012, Poiesis Prax, V9, P1 Petrella S, 2021, ORBIS, V65, P75, DOI [10.1016/j.orbis.2020.11.004, DOI 10.1016/J.ORBIS.2020.11.004] Radu R, 2021, POLICY SOC, V40, P178, DOI 10.1080/14494035.2021.1929728 Ransbotham S., 2020, Expanding AI's Impact With Organizational Learnin Rayner J., 2009, Policy and Society, V28, P99, DOI DOI 10.1016/J.POLSOC.2009.05.001 Russell Stuart, 2010, Artificial intelligence, a modern approach, V3 Sarewitz D, 2011, INT LIBR ETH LAW TEC, V7, P95, DOI 10.1007/978-94-007-1356-7_7 Saurwein Florian, 2015, Info, V17, P35, DOI 10.1108/info-05-2015-0025 Schaffrin A, 2015, POLICY STUD J, V43, P257, DOI 10.1111/psj.12095 Simonis Georg., 2013, Konzepte und Verfahren der Technikfolgenabschatzung, DOI [10.1007/978-3-658-02035-4, DOI 10.1007/978-3-658-02035-4] Stilgoe J., 2017, The Handbook of Science and Technology Studies, P853 Stilgoe J., 2019, MONITORING EVOLUTION, DOI 10.2777/285467 Sudmann Andreas, 2019, The Democratization of Artificial Intelligence: Net Politics in the Era of Learning Algorithms Taeihagh A, 2021, POLICY SOC, V40, P137, DOI 10.1080/14494035.2021.1928377 Taeihagh A, 2021, REGUL GOV, V15, P1009, DOI 10.1111/rego.12392 Thierer AdamD., 2017, Mercatus Research Paper Trajtenberg M., 2019, Economics of Artificial Intelligence: An Agenda, P175, DOI DOI 10.7208/CHICAGO/9780226613475.003.0006 Ulnicane I, 2021, POLICY SOC, V40, P158, DOI 10.1080/14494035.2020.1855800 Wilsdon J., 2004, See-Through Science: Why Public Engagement Needs to Move Upstream World Bank, 2021, HARN ART INT DEV POS WYNNE B, 1975, RES POLICY, V4, P108, DOI 10.1016/0048-7333(75)90028-1 Zwanenberg PV, 2009, 30 STEPS CTR NR 65 TC 20 Z9 20 U1 29 U2 120 PU ROUTLEDGE JOURNALS, TAYLOR & FRANCIS LTD PI ABINGDON PA 2-4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND SN 1350-1763 EI 1466-4429 J9 J EUR PUBLIC POLICY JI J. Eur. Public Policy PD NOV 2 PY 2022 VL 29 IS 11 SI SI BP 1799 EP 1821 DI 10.1080/13501763.2022.2094987 EA JUL 2022 PG 23 WC Political Science; Public Administration WE Social Science Citation Index (SSCI) SC Government & Law; Public Administration GA 6M4NX UT WOS:000836050700001 OA Green Published DA 2024-09-05 ER PT J AU Chen, H Deng, ZJ AF Chen, Huie Deng, Zhenjie TI Bibliometric Analysis of the Application of Convolutional Neural Network in Computer Vision SO IEEE ACCESS LA English DT Article DE Bibliometrics; Convolutional neural networks; Computer vision; Market research; Indexes; Technological innovation; Convolutional neural networks; computer vision; bibliometric analysis ID FAULT-DIAGNOSIS; ARCHITECTURES; RECOGNITION AB This article analyzes the research progress in field of Convolutional Neural Networks (CNNs) using the bibliometric method. Literature samples of CNNs are analyzed by a basic statistic and co-citation network. Experimental results show that CNNs are being utilized in many computer vision applications, such as fault and image recognition diagnosis, seismic detection, positioning, and automatic detection of cracks and signals, image classification and image segmentation. In addition, there is systematic research on unbalanced problems in CNNs. Quantitative experimental research, extensive application fields, and market research informatization will be the three vital research tendencies in the future. The ideas and conclusions of this article provide insights to the academic research of CNNs and their practical application in the corporate world. C1 [Chen, Huie; Deng, Zhenjie] Guangdong Univ Finance, Sch Internet Finance & Informat Engn, Guangzhou 510521, Peoples R China. C3 Guangdong University of Finance RP Deng, ZJ (corresponding author), Guangdong Univ Finance, Sch Internet Finance & Informat Engn, Guangzhou 510521, Peoples R China. EM 47-047@gduf.edu.cn OI deng, zhenjie/0000-0002-3432-2169; Chen, Huie/0000-0002-4621-6718 FU First Batch of Reform of Innovation and Business Running Education [201801193131]; Characteristic Innovation Project of Guangdong Province Ordinary University [2019KTSCX113] FX This work was supported in part by the First Batch of Reform of Innovation and Business Running Education with cooperation between production and learning of the Ministry of Education in 2018 under Project 201801193131, and in part by the Characteristic Innovation Project of Guangdong Province Ordinary University under Project 2019KTSCX113. CR Acharya UR, 2018, COMPUT BIOL MED, V100, P270, DOI 10.1016/j.compbiomed.2017.09.017 Ahmed A, 2008, LECT NOTES COMPUT SC, V5304, P69, DOI 10.1007/978-3-540-88690-7_6 [Anonymous], 2015, Nature, DOI 10.1038/nature14539 Basaran E, 2020, BIOMED SIGNAL PROCES, V56, DOI 10.1016/j.bspc.2019.101734 Basha SHS, 2020, NEUROCOMPUTING, V378, P112, DOI 10.1016/j.neucom.2019.10.008 Bengio Y, 2013, IEEE T PATTERN ANAL, V35, P1798, DOI 10.1109/TPAMI.2013.50 Bengio Y, 2009, FOUND TRENDS MACH LE, V2, P1, DOI 10.1561/2200000006 Buda M, 2018, NEURAL NETWORKS, V106, P249, DOI 10.1016/j.neunet.2018.07.011 Cecotti H, 2011, IEEE T PATTERN ANAL, V33, P433, DOI 10.1109/TPAMI.2010.125 Cha YJ, 2017, COMPUT-AIDED CIV INF, V32, P361, DOI 10.1111/mice.12263 Chen CM, 2006, J AM SOC INF SCI TEC, V57, P359, DOI 10.1002/asi.20317 Chen Y, 2020, J MED IMAG HEALTH IN, V10, P391, DOI 10.1166/jmihi.2020.2967 Cheng G, 2016, IEEE T GEOSCI REMOTE, V54, P7405, DOI 10.1109/TGRS.2016.2601622 Dieleman S, 2015, MON NOT R ASTRON SOC, V450, P1441, DOI 10.1093/mnras/stv632 Egmont-Petersen M, 2002, PATTERN RECOGN, V35, P2279, DOI 10.1016/S0031-3203(01)00178-9 Fan JL, 2010, IEEE T NEURAL NETWOR, V21, P1610, DOI 10.1109/TNN.2010.2066286 Hau Darren., 2011, P 11 UK WORKSHOP COM, P37 He KM, 2016, PROC CVPR IEEE, P770, DOI 10.1109/CVPR.2016.90 Hinton G, 2012, IEEE SIGNAL PROC MAG, V29, P82, DOI 10.1109/MSP.2012.2205597 Hinton GE, 2006, NEURAL COMPUT, V18, P1527, DOI 10.1162/neco.2006.18.7.1527 HUBEL DH, 1962, J PHYSIOL-LONDON, V160, P106, DOI 10.1113/jphysiol.1962.sp006837 Ji SW, 2013, IEEE T PATTERN ANAL, V35, P221, DOI 10.1109/TPAMI.2012.59 Jia YQ, 2014, PROCEEDINGS OF THE 2014 ACM CONFERENCE ON MULTIMEDIA (MM'14), P675, DOI 10.1145/2647868.2654889 Jin JQ, 2014, IEEE T INTELL TRANSP, V15, P1991, DOI 10.1109/TITS.2014.2308281 Krizhevsky A, 2017, COMMUN ACM, V60, P84, DOI 10.1145/3065386 Larochelle H., 2007, IEEE INT C ICML, P473 Lawrence S, 1997, IEEE T NEURAL NETWOR, V8, P98, DOI 10.1109/72.554195 Lecun Y, 1998, P IEEE, V86, P2278, DOI 10.1109/5.726791 Li F, 2018, BMC MED IMAGING, V18, DOI 10.1186/s12880-018-0273-5 Linhui L., 2013, ADV MECH ENG, V5 Liu Y, 2017, INFORM FUSION, V36, P191, DOI 10.1016/j.inffus.2016.12.001 Matsugu M, 2001, IEEE IJCNN, P802, DOI 10.1109/IJCNN.2001.939462 Mohamed AR, 2012, INT CONF ACOUST SPEE, P4273, DOI 10.1109/ICASSP.2012.6288863 Neubauer C, 1998, IEEE T NEURAL NETWOR, V9, P685, DOI 10.1109/72.701181 Schemmel J, 2002, IEEE IJCNN, P2704, DOI 10.1109/IJCNN.2002.1007574 Shin HC, 2016, IEEE T MED IMAGING, V35, P1285, DOI 10.1109/TMI.2016.2528162 Sun X, 2016, NEUROCOMPUTING, V210, P227, DOI 10.1016/j.neucom.2016.02.077 SZEGEDY C, 2015, CVPR, DOI [10.1109/cvpr.2015.7298594, DOI 10.1109/CVPR.2015.7298594] Tseng CH, 2020, BIOSYST ENG, V189, P36, DOI 10.1016/j.biosystemseng.2019.11.002 Venieris SI, 2018, ACM COMPUT SURV, V51, DOI 10.1145/3186332 Wen L, 2018, IEEE T IND ELECTRON, V65, P5990, DOI 10.1109/TIE.2017.2774777 Zhang W, 2018, MECH SYST SIGNAL PR, V100, P439, DOI 10.1016/j.ymssp.2017.06.022 Zhang Y, 2017, IEEE T CYBERNETICS, V47, P3230, DOI 10.1109/TCYB.2016.2628402 Zhang YH, 2018, REMOTE SENS LETT, V9, P11, DOI 10.1080/2150704X.2017.1378452 Zhao ZQ, 2019, IEEE T NEUR NET LEAR, V30, P3212, DOI 10.1109/TNNLS.2018.2876865 NR 45 TC 4 Z9 4 U1 5 U2 32 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 2169-3536 J9 IEEE ACCESS JI IEEE Access PY 2020 VL 8 BP 155417 EP 155428 DI 10.1109/ACCESS.2020.3019336 PG 12 WC Computer Science, Information Systems; Engineering, Electrical & Electronic; Telecommunications WE Science Citation Index Expanded (SCI-EXPANDED) SC Computer Science; Engineering; Telecommunications GA NK4GG UT WOS:000566690000001 OA gold DA 2024-09-05 ER PT C AU Kim, J Le, DX Thoma, GR AF Kim, Jongwoo Le, Daniel X. Thoma, George R. BE Likforman-Sulem, L Agam, G TI Naive Bayes and SVM classifiers for classifying Databank Accession Number sentences from online biomedical articles SO DOCUMENT RECOGNITION AND RETRIEVAL XVII SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Document Recognition and Retrieval XVII CY JAN 19-21, 2010 CL San Jose, CA DE Naive Bayes; Support Vector Machine (SVM); databank; labeling; text classification; bibliographic information AB This paper describes two classifiers, Nave Bayes and Support Vector Machine (SVM), to classify sentences containing Databank Accession Numbers, a key piece of bibliographic information, from online biomedical articles. The correct identification of these sentences is necessary for the subsequent extraction of these numbers. The classifiers use words that occur most frequently in sentences as features for the classification. Twelve sets of word features are collected to train and test the classifiers. Each set has a different number of word features ranging from 100 to 1,200. The performance of each classifier is evaluated using four measures: Precision, Recall, F-Measure, and Accuracy. The Naive Bayes classifier shows performance above 93.91% at 200 word features for all four measures. The SVM shows 98.80% Precision at 200 word features, 94.90% Recall at 500 and 700, 96.46% F-Measure at 200, and 99.14% Accuracy at 200 and 400. To improve classification performance, we propose two merging operators, Max and Harmonic Mean, to combine results of the two classifiers. The final results show a measureable improvement in Recall, F-Measure, and Accuracy rates. C1 [Kim, Jongwoo; Le, Daniel X.; Thoma, George R.] Natl Lib Med, Bethesda, MD 20894 USA. C3 National Institutes of Health (NIH) - USA; NIH National Library of Medicine (NLM) RP Kim, J (corresponding author), Natl Lib Med, 8600 Rockville Pike, Bethesda, MD 20894 USA. EM jongkim@mail.nih.gov CR Burges CJC, 1998, DATA MIN KNOWL DISC, V2, P121, DOI 10.1023/A:1009715923555 Chang CC, 2011, ACM T INTEL SYST TEC, V2, DOI 10.1145/1961189.1961199 Dumais S., 1998, Proceedings of the 1998 ACM CIKM International Conference on Information and Knowledge Management, P148, DOI 10.1145/288627.288651 GABRILOVICH E, 2004, ICML 04, P321 Joachims Thorsten, 1998, ECML, P137, DOI DOI 10.1007/BFB0026683 Johnson M., 2008, SVM NET Kim J, 2006, COMP MED SY, P905 Lewis D.D., 1998, Machine Learning: ECML-98, P4 Madigan D., 2005, STAT GUIDE UNKNOWN, P135 McCallum A., 1998, P AAAI 98 WORKSH LEA, P577 *NIH, 1993, 347 NIH NAT LIB MED Rennie J.D., 2003, Proceedings of the 20th International Conference on Machine Learning, P616 Sohn S, 2008, J AM MED INFORM ASSN, V15, P546, DOI 10.1197/jamia.M2431 NR 13 TC 0 Z9 0 U1 0 U2 3 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X EI 1996-756X BN 978-0-8194-7927-3 J9 PROC SPIE PY 2010 VL 7534 AR 75340U DI 10.1117/12.838961 PG 8 WC Computer Science, Information Systems; Optics; Imaging Science & Photographic Technology WE Conference Proceedings Citation Index - Science (CPCI-S) SC Computer Science; Optics; Imaging Science & Photographic Technology GA BRR44 UT WOS:000283495700030 DA 2024-09-05 ER PT J AU Kaban, A AF Kaban, Abdullatif TI Artificial Intelligence in Education: A Science Mapping Approach SO INTERNATIONAL JOURNAL OF EDUCATION IN MATHEMATICS SCIENCE AND TECHNOLOGY LA English DT Article DE Education; Artificial intelligence; Machine learning; Deep learning; Bibliometric analysis ID MANAGEMENT AB While using artificial intelligence in education is a popular field of study for researchers, it has become a joint application for educational institutions. Educational institutions are trying to establish artificial intelligence-based systems to improve the existing education systems. On the other hand, education researchers want to determine which artificial intelligence models are the most effective. To provide an in-depth resource for both researchers and educators on the use of artificial intelligence in education, this study aims to make a bibliometric analysis of articles related to artificial intelligence in education. After the query was made in the Web of Science database, 1153 articles related to the subject were obtained. As a result of the bibliometric analysis of the articles obtained, the most influential journals are Education and Information Technologies and Computers & Education, and the most influential authors are Scouller, Biggs, and Hwang. After 2019, it has been observed that there has been a significant increase in the number of studies, the first examples of which were found in 1985. It is thought that this study, which provides results on the most cited publications, trending topics, thematic map of keywords, and co-occurrence network, will serve as a bedside resource for both educators and researchers. Implications of the findings for theory and practice are discussed. C1 [Kaban, Abdullatif] Ataturk Univ, Erzurum, Turkiye. C3 Ataturk University RP Kaban, A (corresponding author), Ataturk Univ, Erzurum, Turkiye. EM abdullatif.kaban@gmail.com RI Kaban, Abdullatif/ABC-3989-2021 OI Kaban, Abdullatif/0000-0003-4465-3145 CR Agbo FJ, 2021, SMART LEARN ENVIRON, V8, DOI 10.1186/s40561-020-00145-4 Al-Sudani S, 2019, EDUC INF TECHNOL, V24, P2357, DOI 10.1007/s10639-019-09873-8 Aria M, 2017, J INFORMETR, V11, P959, DOI 10.1016/j.joi.2017.08.007 Aydogdu S, 2020, EDUC INF TECHNOL, V25, P1913, DOI 10.1007/s10639-019-10053-x Azza Abdullah A., 2022, International Journal of Computer Science and Information Security (IJCSIS), V20, P27 Baek C., 2020, International Journal of Learning Analytics and Artificial Intelligence for Education (iJAI), V2, P67, DOI [10.3991/ijai.v2i1.14481, DOI 10.3991/IJAI.V2I1.14481] Bañeres D, 2020, APPL SCI-BASEL, V10, DOI 10.3390/app10134427 Basnet RB, 2022, EDUC INF TECHNOL, V27, P11499, DOI 10.1007/s10639-022-11068-7 Chen PSD, 2010, COMPUT EDUC, V54, P1222, DOI 10.1016/j.compedu.2009.11.008 Clarivate, 2022, KeyWords Plus generation, creation, and changes López-Fernández MC, 2016, J SMALL BUS MANAGE, V54, P622, DOI 10.1111/jsbm.12161 Ferreira FAF, 2018, J BUS RES, V85, P348, DOI 10.1016/j.jbusres.2017.03.026 GOOD R, 1987, J RES SCI TEACH, V24, P325, DOI 10.1002/tea.3660240406 Higgins R, 2002, STUD HIGH EDUC, V27, P53, DOI 10.1080/03075070120099368 Hinojo-Lucena FJ, 2019, EDUC SCI, V9, DOI 10.3390/educsci9010051 Jokhan A, 2019, STUD HIGH EDUC, V44, P1900, DOI 10.1080/03075079.2018.1466872 Kasemodel M. G. C., 2016, International Journal of Food Studies, V5, P73, DOI 10.7455/ijfs/5.1.2016.a7 Khan I, 2021, SMART LEARN ENVIRON, V8, DOI 10.1186/s40561-021-00161-y Lawler R. W., 1984, New horizons in educational computing Lee J, 2017, COMPUT EDUC, V115, P143, DOI 10.1016/j.compedu.2017.06.015 Lykourentzou I, 2009, COMPUT EDUC, V53, P950, DOI 10.1016/j.compedu.2009.05.010 Manesh MF, 2021, IEEE T ENG MANAGE, V68, P289, DOI 10.1109/TEM.2019.2963489 Martí-Parreño J, 2016, J COMPUT ASSIST LEAR, V32, P663, DOI 10.1111/jcal.12161 MARTON F, 1976, BRIT J EDUC PSYCHOL, V46, P4, DOI 10.1111/j.2044-8279.1976.tb02980.x Nahar K, 2021, EDUC INF TECHNOL, V26, P6051, DOI 10.1007/s10639-021-10575-3 Neimann T, 2017, ADV HIGH ED PROF DEV, P37, DOI 10.4018/978-1-5225-0929-5.ch003 O'Shea T., 1983, Learning and Teaching with Computers:Artificial Intelligence in Education Papert S., 1980, Mindstorms: Children, computers and powerful ideas Romero C, 2010, IEEE T SYST MAN CY C, V40, P601, DOI 10.1109/TSMCC.2010.2053532 Scouller K, 1998, HIGH EDUC, V35, P453, DOI 10.1023/A:1003196224280 Sharma P, 2022, EDUC INF TECHNOL, V27, P6197, DOI 10.1007/s10639-021-10882-9 Shen GH, 2023, EDUC INF TECHNOL, V28, P725, DOI 10.1007/s10639-022-11146-w Sleeman D., 1982, INTELLIGENT TUTORING Small H, 1999, J AM SOC INFORM SCI, V50, P799, DOI 10.1002/(SICI)1097-4571(1999)50:9<799::AID-ASI9>3.0.CO;2-G Song P, 2020, ASIA PAC EDUC REV, V21, P473, DOI 10.1007/s12564-020-09640-2 Song Y, 2019, COMPUT EDUC, V137, P12, DOI 10.1016/j.compedu.2019.04.002 Talan T., 2021, International Journal of Research in Education and Science, V7, P822, DOI [DOI 10.46328/IJRES.2409, 10.46328/ijres.2409] Tas N., 2021, INT C STUD ED SOC SC Thanuskodi S., 2010, J SOCIAL SCI, V24, P77, DOI [10.1080/09718923.2010.11892847, DOI 10.1080/09718923.2010.11892847] YAZDANI M, 1986, INSTR SCI, V14, P197, DOI 10.1007/BF00051820 NR 40 TC 1 Z9 1 U1 39 U2 95 PU NECMETTIN ERBAKAN UNIV PI KONYA PA AHMET KELESOGLU FAC EDUCATION, DEPT COMPUTER EDUCATION & INSTRUCTIONAL TECHNOLOGY, KONYA, 42090, Turkiye SN 2147-611X J9 INT J EDUC MATH SCI JI Int. J. Educ. Math. Sci. Technol. PY 2023 VL 11 IS 4 BP 844 EP 861 DI 10.46328/ijemst.3368 PG 19 WC Education, Scientific Disciplines WE Emerging Sources Citation Index (ESCI) SC Education & Educational Research GA T7VD9 UT WOS:001080014900002 OA gold DA 2024-09-05 ER PT J AU Zhou, MZ Liu, HJ Hu, YR AF Zhou, Maoze Liu, Hongjiu Hu, Yanrong TI Research on corporate financial performance prediction based on self-organizing and convolutional neural networks SO EXPERT SYSTEMS LA English DT Article DE CNN; financial performance; performance forecasting; SOM ID BANKRUPTCY PREDICTION; DEFAULT PREDICTION; LISTED COMPANIES; RATIOS; DISTRESS; MODELS; ABILITY; TIME AB Economic risks faced by manufacturing enterprises are gradually increasing and risk reduction whilst maintaining high financial performance has become key to their survival and development of enterprises. Enterprise performance affects not only enterprise development but also does the interests of investors and creditors. Therefore, a well-performing model for financial performance prediction is particularly important. In this paper, we combine unsupervised and supervised learning, fusing self-organizing mapping neural networks and convolutional neural networks, and apply deep learning to financial analysis to construct a new financial performance prediction model, called SNN-CNN. This paper uses crawler technology to obtain financial data of listed manufacturing enterprises and classifies their financial performance into five levels. It finds that enterprises with high financial performance tend to have balanced financial indicators, strong corporate vitality and stable development of various capabilities, while enterprises with low financial performance have poor repayment and profitability, significant risks in corporate operation and limited growth and development. Compared with traditional risk prediction models, the SOM-CNN model has a higher accuracy rate, up to 95.69%. C1 [Zhou, Maoze; Liu, Hongjiu; Hu, Yanrong] Zhejiang A&F Univ, Sch Math & Comp Sci, Hangzhou 311300, Peoples R China. [Zhou, Maoze; Liu, Hongjiu; Hu, Yanrong] Zhejiang A&F Univ, Key Lab Intelligent Forestry Monitoring & Informa, Hangzhou, Peoples R China. [Zhou, Maoze; Liu, Hongjiu; Hu, Yanrong] Zhejiang A&F Univ, Key Lab Forestry Sensing Technol & Intelligent Eq, State Forestry & Grassland Bur, Hangzhou, Peoples R China. C3 Zhejiang A&F University; Zhejiang A&F University; Zhejiang A&F University RP Liu, HJ (corresponding author), Zhejiang A&F Univ, Sch Math & Comp Sci, Hangzhou 311300, Peoples R China. EM joe_hunter@zafu.edu.cn FU Humanity and Social Science Foundation of Ministry of Education of China [18YJA630037, 21YJA630054]; Zhejiang Philosophy and Social Science Program of China [19NDJC240YB, 17NDJC262YB]; Zhejiang Provincial Natural Science Foundation of China [LY18G010005, LY17G020025] FX The Humanity and Social Science Foundation of Ministry of Education of China, Grant/Award Numbers: 18YJA630037, 21YJA630054; Zhejiang Philosophy and Social Science Program of China, Grant/Award Numbers: 19NDJC240YB, 17NDJC262YB; Zhejiang Provincial Natural Science Foundation of China, Grant/Award Numbers: LY18G010005, LY17G020025 CR Agustia D, 2020, HELIYON, V6, DOI 10.1016/j.heliyon.2020.e03317 Alaminos D, 2020, ENTROPY-SWITZ, V22, DOI 10.3390/e22091056 ALTMAN EI, 1968, J FINANC, V23, P589, DOI 10.2307/2978933 Back B, 1996, EXPERT SYST APPL, V11, P407, DOI 10.1016/S0957-4174(96)00055-3 Barboza F, 2023, COMMUN STAT-SIMUL C, V52, P2615, DOI 10.1080/03610918.2021.1910837 Beaver WH, 2005, REV ACCOUNT STUD, V10, P93, DOI 10.1007/s11142-004-6341-9 BEAVER WH, 1966, J ACCOUNTING RES, V4, P71, DOI 10.2307/2490171 Chauhan N, 2009, EXPERT SYST APPL, V36, P7659, DOI 10.1016/j.eswa.2008.09.019 Chava S., 2004, Review of Finance, V8, P537, DOI 10.1093/rof/8.4.537 Che S., 2020, MATH PROBL ENG, V2020, P1 Chen JH, 2012, EXPERT SYST APPL, V39, P823, DOI 10.1016/j.eswa.2011.07.080 Cheung KTS, 2017, J CORP FINANC, V42, P15, DOI 10.1016/j.jcorpfin.2016.11.006 Cho S, 2010, EXPERT SYST APPL, V37, P3482, DOI 10.1016/j.eswa.2009.10.040 Choi J, 2020, DATA TECHNOL APPL, V54, P151, DOI 10.1108/DTA-08-2019-0127 Ciampi F, 2015, J BUS RES, V68, P1012, DOI 10.1016/j.jbusres.2014.10.003 COATS PK, 1993, FINANC MANAGE, V22, P142, DOI 10.2307/3665934 Dalwai T, 2021, ASIAN REV ACCOUNT, V29, P474, DOI 10.1108/ARA-01-2021-0008 Fernández A, 2010, INFORM SCIENCES, V180, P1268, DOI 10.1016/j.ins.2009.12.014 FitzPatrick P.J., 1932, The Certified Public Accountant, V12, P598 Hang M, 2019, BUS STRATEG ENVIRON, V28, P257, DOI 10.1002/bse.2215 Hasanzadeh MR, 2016, MATH PROBL ENG, V2016, DOI 10.1155/2016/4831867 Hosaka T, 2019, EXPERT SYST APPL, V117, P287, DOI 10.1016/j.eswa.2018.09.039 HUANG C, 2014, MATH PROBL ENG, V2014, P1, DOI DOI 10.1155/2014/749604 Huang JC, 2010, J INFORM OPTIM SCI, V31, P333, DOI 10.1080/02522667.2010.10699963 Jeong C, 2012, EXPERT SYST APPL, V39, P3650, DOI 10.1016/j.eswa.2011.09.056 Kainulainen L., 2014, Case Studies in Business, Industry and Government Statistics (CSBIGS), V4, P116 Kaski S, 2001, IEEE T NEURAL NETWOR, V12, P936, DOI 10.1109/72.935102 조남옥, 2015, [Journal of Intelligence and Information Systems, 지능정보연구], V21, P79 Kumar PR, 2007, EUR J OPER RES, V180, P1, DOI 10.1016/j.ejor.2006.08.043 Lee J, 2017, SUSTAINABILITY-BASEL, V9, DOI 10.3390/su9060899 Li J, 2007, PROCEEDINGS OF THE 2007 IEEE INTERNATIONAL CONFERENCE ON NATURAL LANGUAGE PROCESSING AND KNOWLEDGE ENGINEERING (NLP-KE'07), P393 Li SX, 2021, INFORM PROCESS MANAG, V58, DOI 10.1016/j.ipm.2021.102673 López-Busto A, 2016, CULT CIENC DEPORTE, V11, P185, DOI 10.12800/ccd.v11i33.763 Lukason O, 2019, RISKS, V7, DOI 10.3390/risks7030077 Mohamed EA, 2021, INTELL SYST ACCOUNT, V28, P52, DOI 10.1002/isaf.1484 Nicolis O, 2006, MANAG FINANC, V32, P654, DOI 10.1108/03074350610676750 Nyitrai T, 2019, BENCHMARKING, V26, P317, DOI 10.1108/BIJ-03-2017-0052 OHLSON JA, 1980, J ACCOUNTING RES, V18, P109, DOI 10.2307/2490395 Pendharkar PC, 2005, COMPUT OPER RES, V32, P2561, DOI 10.1016/j.cor.2004.06.023 Richards G, 2019, J COMPUT INFORM SYST, V59, P188, DOI 10.1080/08874417.2017.1334244 Salehi M, 2022, INT J PRODUCT PERFOR, V71, P1490, DOI 10.1108/IJPPM-04-2020-0194 Salehi M, 2021, J FACIL MANAG, V19, P150, DOI 10.1108/JFM-08-2020-0056 Salehi M, 2019, COMPET REV, V29, P440, DOI 10.1108/CR-11-2018-0070 Salehi M, 2016, INT J LAW MANAG, V58, P545, DOI 10.1108/IJLMA-05-2015-0023 Sardo F, 2018, INT J HOSP MANAG, V75, P67, DOI 10.1016/j.ijhm.2018.03.001 Shin KS, 2005, EXPERT SYST APPL, V28, P127, DOI 10.1016/j.eswa.2004.08.009 Srivastava PR, 2021, J ORGAN END USER COM, V33, P204, DOI 10.4018/JOEUC.20210901.oa10 Stevenson M, 2021, EUR J OPER RES, V295, P758, DOI 10.1016/j.ejor.2021.03.008 Sun J, 2009, EXPERT SYST APPL, V36, P8659, DOI 10.1016/j.eswa.2008.10.002 TAM KY, 1992, MANAGE SCI, V38, P926, DOI 10.1287/mnsc.38.7.926 Tang YJ, 2019, COMPLEXITY, V2019, DOI 10.1155/2019/8682124 Tian S, 2015, RISK HAZARDS CRISIS, V6, P91, DOI 10.1002/rhc3.12071 Tinoco MH, 2013, INT REV FINANC ANAL, V30, P394, DOI 10.1016/j.irfa.2013.02.013 Veganzones D, 2021, EUR BUS REV, V33, P204, DOI 10.1108/EBR-12-2018-0209 Yu MC, 2016, SUSTAINABILITY-BASEL, V8, DOI 10.3390/su8090866 Yu Q, 2014, NEUROCOMPUTING, V128, P296, DOI 10.1016/j.neucom.2013.01.063 NR 56 TC 5 Z9 5 U1 13 U2 69 PU WILEY PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0266-4720 EI 1468-0394 J9 EXPERT SYST JI Expert Syst. PD NOV PY 2022 VL 39 IS 9 SI SI AR e13042 DI 10.1111/exsy.13042 EA JUN 2022 PG 17 WC Computer Science, Artificial Intelligence; Computer Science, Theory & Methods WE Science Citation Index Expanded (SCI-EXPANDED) SC Computer Science GA 5F3HH UT WOS:000807113800001 DA 2024-09-05 ER PT C AU Iqbal, S Shaheen, M Fazl-e-Basit AF Iqbal, Saeed Shaheen, Muhammad Fazl-e-Basit GP IEEE TI A Machine Learning Based Method for Optimal Journal Classification SO 2013 8TH INTERNATIONAL CONFERENCE FOR INTERNET TECHNOLOGY AND SECURED TRANSACTIONS (ICITST) SE International Conference for Internet Technology and Secured Transactions LA English DT Proceedings Paper CT 8th International Conference for Internet Technology and Secured Transactions (ICITST) CY DEC 09-12, 2013 CL London, UNITED KINGDOM DE Journal ranking; Impact Factor; Eigenfactor; Article Influence; Prestige of Journal ID IMPACT AB We present a hypothetical and realistic examination and exploration of a number of bibliometric indicators of journal performance. In this paper, the indicators we have focused upon are Eigenfactor indicator, Impact factor, audience factor and Article influence weight indicator. Our focus is to find the missing parameters and some limitations that have not been conducted in previous algorithms. To find the influential parameters and to propose a new journal performance factor, that ranked a journal in best accepted manner. For calssification and verification purpose we use a machine learning classification technique (Bayesian classification). It is one of the most common learning algorithms in machine learning classification. Using bayesain classification, we classify several journals according to our proposed methods and compare results with the previous methods. C1 [Iqbal, Saeed; Shaheen, Muhammad; Fazl-e-Basit] Natl Univ Comp & Emerging Scinece, Dept Compter Sci, FAST NUCES, Peshawar, Pakistan. RP Iqbal, S (corresponding author), Natl Univ Comp & Emerging Scinece, Dept Compter Sci, FAST NUCES, Peshawar, Pakistan. EM saeediqbalkhattak@gmail.com; muhammad.shaheen@nu.edu.pk; fazl.basit@nu.edu.pk RI Shaheen, Prof. Dr. Muhammad/AGH-3143-2022 OI Shaheen, Prof. Dr. Muhammad/0000-0003-3647-1261; Iqbal, Saeed/0000-0002-3176-4658 CR ANDERSON TW, 1963, ANN MATH STAT, V34, P122, DOI 10.1214/aoms/1177704248 [Anonymous], 2003, 2 EIGENVALUE GOOGLE [Anonymous], 2012, CHAPMAN HALL CRC DAT [Anonymous], 1997, P INT C KNOWL DISC D [Anonymous], DATA MINING KNOWLEDG Arendt J., 2010, ISSUES SCI TECHNOL, P4 Bar-Ilan J, 2008, SCIENTOMETRICS, V74, P257, DOI 10.1007/s11192-008-0216-y BREU H, 1995, IEEE T PATTERN ANAL, V17, P529, DOI 10.1109/34.391389 Butler D, 2008, NATURE, V451, P6, DOI 10.1038/451006a Collazo-Reyes F, 2008, SCIENTOMETRICS, V75, P145, DOI 10.1007/s11192-007-1841-6 Colledge L., 2010, Serials, V23, P215, DOI DOI 10.1629/23215 DANIELSSON PE, 1980, COMPUT VISION GRAPH, V14, P227, DOI 10.1016/0146-664X(80)90054-4 Falagas ME, 2008, FASEB J, V22, P2623, DOI 10.1096/fj.08-107938 Flach PA, 2004, MACH LEARN, V57, P233, DOI 10.1023/B:MACH.0000039778.69032.ab Gama J, 2010, CH CRC DATA MIN KNOW, P1 Garfield E, 2006, JAMA-J AM MED ASSOC, V295, P90, DOI 10.1001/jama.295.1.90 Gonzalez-Pereira B., 2009, ARXIV09124141 González-Pereira B, 2010, J INFORMETR, V4, P379, DOI 10.1016/j.joi.2010.03.002 Haveliwala TH, 2003, IEEE T KNOWL DATA EN, V15, P784, DOI 10.1109/TKDE.2003.1208999 Holmes DE, 2012, INTEL SYST REF LIBR, V23, P1 Jacsó P, 2010, ONLINE INFORM REV, V34, P642, DOI 10.1108/14684521011073034 Leydesdorff L, 2010, J AM SOC INF SCI TEC, V61, P2365, DOI 10.1002/asi.21371 Li SS, 2010, ACL 2010: 48TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, P414 LIEBOWITZ SJ, 1984, J ECON LIT, V22, P77 Loeliger HA, 2004, IEEE SIGNAL PROC MAG, V21, P28, DOI 10.1109/MSP.2004.1267047 Long X, 2009, IEEE ENG MED BIO, P6107, DOI 10.1109/IEMBS.2009.5334925 Campanario JM, 2009, SCIENTOMETRICS, V81, P859, DOI 10.1007/s11192-008-2257-7 Poelmans J, 2010, LECT NOTES ARTIF INT, V6208, P139, DOI 10.1007/978-3-642-14197-3_15 Prinzie A, 2007, LECT NOTES COMPUT SC, V4653, P349 Ridgeway G., 2007, Update, V1, P2007, DOI DOI 10.1111/J.1467-9752.1996.TB00390.X Scientific T., 2007, Science Citation Index and Journal Citation Report Shaheen M., 2012, KNOWLEDGE BASED SYST SHAHEEN M, 2010, P IASTED ART INT APP, P394 Shaheen M, 2011, KNOWL-BASED SYST, V24, P1159, DOI 10.1016/j.knosys.2011.04.016 Shaheen M, 2011, ARTIF INTELL REV, V35, P1, DOI 10.1007/s10462-010-9180-z Sombatsompop N, 2004, SCIENTOMETRICS, V60, P217, DOI 10.1023/B:SCIE.0000027794.98854.f6 Vanclay JK, 2011, J INFORMETR, V5, P265, DOI 10.1016/j.joi.2010.12.001 Wang Q, 2007, APPL ENVIRON MICROB, V73, P5261, DOI 10.1128/AEM.00062-07 Wang Shuliang, 2012, SPRINGER HDB GEOGRAP, P49 Zhang S., 2012, KNOWLEDGE DISCOVERY NR 40 TC 4 Z9 5 U1 0 U2 0 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA SN 2164-7046 BN 978-1-908320-20-9 J9 INT CONF INTERNET PY 2013 BP 259 EP 264 PG 6 WC Computer Science, Theory & Methods; Engineering, Electrical & Electronic WE Conference Proceedings Citation Index - Science (CPCI-S) SC Computer Science; Engineering GA BC1AN UT WOS:000349902500038 DA 2024-09-05 ER PT J AU Wang, YB Ding, D AF Wang, Yanbing Ding, Ding TI Deep Learning Algorithm Research and Performance Optimization of Financial Treasury Big Data Monitoring Platform SO INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS LA English DT Article DE Deep learning; financial database big data monitoring; algorithm research; performance optimization AB With the rapid development of information technology and the advent of the digital age, the management of fiscal treasury is facing unprecedented challenges and opportunities. In order to improve the efficiency and effectiveness of deep learning algorithms in the financial and treasury big data monitoring platform, this paper further studies the performance optimization methods of the model. This paper deeply studies deep learning algorithm research and performance optimization of financial Treasury big data monitoring platforms. This paper reviews the basic concepts, methods, and applications of deep learning and their application in the financial database big data monitoring platform. In the financial Treasury big data monitoring platform, deep learning algorithms are widely used in image recognition, natural language processing, recommendation systems and other fields. This article first conducts in-depth theoretical research on deep learning algorithms, including various neural network structures (such as convolutional neural network CNN, recurrent neural network RNN, etc.), optimization algorithms (such as gradient descent method and its variants), regularization techniques, etc. In addition, we also studied the practical applications of deep learning in fields such as image processing, natural language processing, and recommendation systems. In order to verify the effectiveness of deep learning algorithms in the financial and treasury big data monitoring platform, we designed corresponding experiments. These experiments include using deep learning algorithms for image recognition of financial documents, natural language processing, and building recommendation systems. We collected real fiscal treasury data as the experimental dataset and preprocessed and annotated the data. C1 [Wang, Yanbing] Huishang Vocat Coll, Dept Elect Informat, Hefei 231201, Peoples R China. [Ding, Ding] AnHui Audit Coll, Hefei 230601, Peoples R China. RP Ding, D (corresponding author), AnHui Audit Coll, Hefei 230601, Peoples R China. FU Natural Science Foundation of Anhui Provincial [2023AH053112] FX This work was sponsored by Natural Science Foundation of Anhui Provincial (2023AH053112) . CR Ahmad A, 2023, SMART AGR TECHNOL, V3, DOI 10.1016/j.atech.2022.100083 de Oliveira RA, 2023, ELECTR POW SYST RES, V214, DOI 10.1016/j.epsr.2022.108887 Nguyen DK, 2023, EUR FINANC MANAG, V29, P517, DOI 10.1111/eufm.12365 Isert C, 2023, CURR OPIN STRUC BIOL, V79, DOI 10.1016/j.sbi.2023.102548 de Paz JCL, 2023, J BANK REGUL, V24, P146, DOI 10.1057/s41261-022-00189-1 Lee I, 2020, BUS HORIZONS, V63, P157, DOI 10.1016/j.bushor.2019.10.005 Li Chaoyang, 2023, 2023 IEEE 6th International Conference on Electronic Information and Communication Technology (ICEICT), P557, DOI 10.1109/ICEICT57916.2023.10245041 Mohammed A, 2023, J KING SAUD UNIV-COM, V35, P757, DOI 10.1016/j.jksuci.2023.01.014 Narayan V., 2023, 2023 INT C ART INT S, P763, DOI [10.1109/AISC56616.2023.10085665, DOI 10.1109/AISC56616.2023.10085665] Narayan V, 2023, J SENSORS, V2023, DOI 10.1155/2023/8276738 Novakovsky G, 2023, NAT REV GENET, V24, P125, DOI 10.1038/s41576-022-00532-2 Polak P, 2020, AI SOC, V35, P715, DOI 10.1007/s00146-019-00919-6 Sharifani K., 2023, World Information Technology and Engineering Journal, V10, P3897 Sun YL, 2023, CHINA FINANC REV INT, V13, P183, DOI 10.1108/CFRI-11-2021-0222 Wu YH, 2022, ECON RES-EKON ISTRAZ, DOI 10.1080/1331677X.2022.2106278 Xiang HY, 2023, PATTERN RECOGN, V134, DOI 10.1016/j.patcog.2022.109046 Zamani ED, 2023, ANN OPER RES, V327, P605, DOI 10.1007/s10479-022-04983-y Zhou HJ, 2020, CMC-COMPUT MATER CON, V64, P1091, DOI 10.32604/cmc.2020.09834 NR 18 TC 0 Z9 0 U1 0 U2 0 PU SCIENCE & INFORMATION SAI ORGANIZATION LTD PI WEST YORKSHIRE PA 19 BOLLING RD, BRADFORD, WEST YORKSHIRE, 00000, ENGLAND SN 2158-107X EI 2156-5570 J9 INT J ADV COMPUT SC JI Int. J. Adv. Comput. Sci. Appl. PD JUN PY 2024 VL 15 IS 6 BP 322 EP 331 PG 10 WC Computer Science, Theory & Methods WE Emerging Sources Citation Index (ESCI) SC Computer Science GA ZT9D4 UT WOS:001277649400001 DA 2024-09-05 ER PT J AU Serenko, A Dohan, M AF Serenko, Alexander Dohan, Michael TI Comparing the expert survey and citation impact journal ranking methods: Example from the field of Artificial Intelligence SO JOURNAL OF INFORMETRICS LA English DT Article DE Artificial Intelligence; Journal ranking; Academic journal; Google Scholar; Survey; Citation impact; H-index; G-index; Hc-index ID MANAGEMENT JOURNALS; GLOBAL PERCEPTIONS; BUSINESS; QUALITY; PEER; SCHOLARSHIP; RESEARCHERS; DECISION; SCIENCE; FACULTY AB The purpose of this study is to: (1) develop a ranking of peer-reviewed AI journals; (2) compare the consistency of journal rankings developed with two dominant ranking techniques, expert surveys and journal impact measures; and (3) investigate the consistency of journal ranking scores assigned by different categories of expert judges. The ranking was constructed based on the survey of 873 active AI researchers who ranked the overall quality of 182 peer-reviewed AI journals. It is concluded that expert surveys and citation impact journal ranking methods cannot be used as substitutes. Instead, they should be used as complementary approaches. The key problem of the expert survey ranking technique is that in their ranking decisions, respondents are strongly influenced by their current research interests. As a result, their scores merely reflect their present research preferences rather than an objective assessment of each journal's quality. In addition, the application of the expert survey method favors journals that publish more articles per year. (C) 2011 Elsevier Ltd. All rights reserved. C1 [Serenko, Alexander] Lakehead Univ, Fac Business Adm, Thunder Bay, ON P7B 5E1, Canada. [Dohan, Michael] McMaster Univ, DeGroote Sch Business, Hamilton, ON L8S 4M4, Canada. C3 Lakehead University; McMaster University RP Serenko, A (corresponding author), Lakehead Univ, Fac Business Adm, 955 Oliver Rd, Thunder Bay, ON P7B 5E1, Canada. EM aserenko@lakeheadu.ca; dohanms@mcmaster.ca RI Serenko, Alexander/AAT-2082-2020 OI Serenko, Alexander/0000-0003-4881-2932 CR Adler NJ, 2009, ACAD MANAG LEARN EDU, V8, P72, DOI 10.5465/AMLE.2009.37012181 [Anonymous], 2003, J INFORM TECHNOLOGY [Anonymous], 2010, NED TIJDSCHR GENEES Bharati P, 2002, COMMUN ACM, V45, P21 Bonev I., 2009, SHOULD WE TAKE J IMP Bontis N, 2009, J KNOWL MANAG, V13, P16, DOI 10.1108/13673270910931134 Butler L, 2002, SCIENTOMETRICS, V53, P207, DOI 10.1023/A:1014852424715 Calver MC, 2009, SCIENTOMETRICS, V81, P611, DOI 10.1007/s11192-008-2229-y Catling JC, 2009, SCIENTOMETRICS, V81, P333, DOI 10.1007/s11192-009-2124-1 Cheng CH, 1996, AI MAG, V17, P87 CHENG CH, 1994, IEEE EXPERT, V9, P7, DOI 10.1109/64.363256 COE R, 1984, ACAD MANAGE J, V27, P660, DOI 10.2307/256053 Donohue JM, 2000, OMEGA-INT J MANAGE S, V28, P17, DOI 10.1016/S0305-0483(99)00024-9 DuBois FL, 2000, J INT BUS STUD, V31, P689, DOI 10.1057/palgrave.jibs.8490929 Dul J, 2005, HUM FACTOR ERGON MAN, V15, P327, DOI 10.1002/hfm.20029 Egghe L, 2006, SCIENTOMETRICS, V69, P131, DOI 10.1007/s11192-006-0144-7 Elkins MR, 2010, SCIENTOMETRICS, V85, P81, DOI 10.1007/s11192-010-0262-0 Etzkowitz H., 2000, ATHENA UNBOUND ADV W Forgionne GA, 2002, OMEGA-INT J MANAGE S, V30, P171, DOI 10.1016/S0305-0483(02)00025-7 Forgionne GA, 2001, INFORM MANAGE, V38, P421, DOI 10.1016/S0378-7206(00)00079-3 Fox MF, 2005, SOC STUD SCI, V35, P131, DOI 10.1177/0306312705046630 Franceschet M, 2010, J INFORMETR, V4, P239, DOI 10.1016/j.joi.2009.12.002 Frandsen TF, 2007, J INFORMETR, V1, P47, DOI 10.1016/j.joi.2006.09.002 Gillenson M., 2008, P 14 AM C INF SYST T GILLENSON ML, 1991, MIS QUART, V15, P447, DOI 10.2307/249448 Goldstein HA, 2006, J PLAN EDUC RES, V26, P66, DOI 10.1177/0739456X05282353 GOMEZMEJIA LR, 1992, ACAD MANAGE J, V35, P921, DOI 10.5465/256535 Goodyear RK, 2009, EDUC RESEARCHER, V38, P700, DOI 10.3102/0013189X09354778 GORDON MD, 1982, J AM SOC INFORM SCI, V33, P55, DOI 10.1002/asi.4630330109 Haddow G, 2010, SCIENTOMETRICS, V85, P471, DOI 10.1007/s11192-010-0198-4 Harzing A., 2008, Ethics in Science and Environmental Politics, V8, P61, DOI [DOI 10.3354/ESEP00076, 10.3354/esep00076] Hirsch JE, 2005, P NATL ACAD SCI USA, V102, P16569, DOI 10.1073/pnas.0507655102 HOLSAPPLE CW, 1995, DECIS SUPPORT SYST, V14, P359, DOI 10.1016/0167-9236(94)00022-K Jackson KF, 2010, RES SOCIAL WORK PRAC, V20, P260, DOI 10.1177/1049731509347862 Kao C, 2008, SCIENTOMETRICS, V76, P95, DOI 10.1007/s11192-007-1895-5 Korevaar JC, 1996, SCIENTOMETRICS, V37, P117, DOI 10.1007/BF02093488 Lewison G, 2002, SCIENTOMETRICS, V53, P229, DOI 10.1023/A:1014804608785 Lowry P., 2004, J ASSOC INF SYST, V5, P29, DOI DOI 10.17705/1JAIS.00045 Lowry PB, 2007, IEEE T PROF COMMUN, V50, P352, DOI 10.1109/TPC.2007.908733 Maier G, 2006, SCIENTOMETRICS, V69, P651, DOI 10.1007/s11192-006-0175-0 Manning LM, 2005, CAN J ADM SCI, V22, P273 MCALLISTER PR, 1980, J AM SOC INFORM SCI, V31, P147, DOI 10.1002/asi.4630310304 McCarthy J., 1958, Proceedings of the Symposium on the Mechanization of Thought Processes, P77 McCarthy J., 1956, AUTOMATA STUDIES, P177 Meho LI, 2007, J AM SOC INF SCI TEC, V58, P2105, DOI 10.1002/asi.20677 Mingers J, 2007, EUR J INFORM SYST, V16, P303, DOI 10.1057/palgrave.ejis.3000696 Mittal V, 2008, MARKET SCI, V27, P430, DOI 10.1287/mksc.1080.0361 Mylonopoulos NA, 2001, COMMUN ACM, V44, P29, DOI 10.1145/383694.383701 Nederhof AJ, 2001, SCIENTOMETRICS, V51, P241, DOI 10.1023/A:1010533232688 O'Brien JP, 2010, ACAD MANAG LEARN EDU, V9, P638, DOI 10.5465/AMLE.2010.56659881 Olson JE, 2005, INTERFACES, V35, P323, DOI 10.1287/inte.1050.0149 Peritz BC, 2002, SCIENTOMETRICS, V54, P269, DOI 10.1023/A:1016018013096 Rogers P.S., 2007, J BUS COMMUN, V44, P403, DOI 10.1177/0021943607306138 Rousseau R, 1999, SCIENTOMETRICS, V44, P521, DOI 10.1007/BF02458493 Rousseau S, 2008, SCIENTOMETRICS, V77, P223, DOI 10.1007/s11192-007-1980-9 Saha S, 2003, J MED LIBR ASSOC, V91, P42 Schloegl C, 2004, J AM SOC INF SCI TEC, V55, P1155, DOI 10.1002/asi.20070 SEGLEN PO, 1992, J AM SOC INFORM SCI, V43, P628, DOI 10.1002/(SICI)1097-4571(199210)43:9<628::AID-ASI5>3.0.CO;2-0 Seglen PO, 1997, BRIT MED J, V314, P498 Sellers SL, 2004, J SOC WORK EDUC, V40, P143, DOI 10.1080/10437797.2004.10778484 Serenko Alexander, 2009, International Journal of Business Governance and Ethics, V4, P390, DOI 10.1504/IJBGE.2009.023790 Serenko A, 2011, J INFORMETR, V5, P219, DOI 10.1016/j.joi.2010.07.005 Serenko A, 2010, J INFORMETR, V4, P447, DOI 10.1016/j.joi.2010.04.001 Serenko A, 2009, J KNOWL MANAG, V13, P4, DOI 10.1108/13673270910931125 Sevinc A, 2004, SWISS MED WKLY, V134, P410 Sidiropoulos A, 2007, SCIENTOMETRICS, V72, P253, DOI 10.1007/s11192-007-1722-z Sonderstrup-Andersen EM, 2008, SCIENTOMETRICS, V76, P391, DOI 10.1007/s11192-007-1924-4 Starbuck WH, 2005, ORGAN SCI, V16, P180, DOI 10.1287/orsc.1040.0107 Suchan J., 2008, J BUS COMMUN, V45, P349 Tahai A, 1999, STRATEGIC MANAGE J, V20, P279 Thomas PR, 1998, SCIENTOMETRICS, V41, P335, DOI 10.1007/BF02459050 Truex D, 2009, J ASSOC INF SYST, V10, P560 Vanclay JK, 2008, J INFORMETR, V2, P326, DOI 10.1016/j.joi.2008.07.002 Walstrom KA, 2001, INFORM MANAGE, V39, P117, DOI 10.1016/S0378-7206(01)00084-2 NR 74 TC 61 Z9 65 U1 0 U2 70 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS SN 1751-1577 EI 1875-5879 J9 J INFORMETR JI J. Informetr. PD OCT PY 2011 VL 5 IS 4 BP 629 EP 648 DI 10.1016/j.joi.2011.06.002 PG 20 WC Computer Science, Interdisciplinary Applications; Information Science & Library Science WE Social Science Citation Index (SSCI) SC Computer Science; Information Science & Library Science GA 841PI UT WOS:000296524200014 DA 2024-09-05 ER PT J AU Goepp, V Matta, N Caillaud, E Feugeas, F AF Goepp, Virginie Matta, Nada Caillaud, Emmanuel Feugeas, Francoise TI Systematic community of Practice activities evaluation through Natural Language Processing: application to research projects SO AI EDAM-ARTIFICIAL INTELLIGENCE FOR ENGINEERING DESIGN ANALYSIS AND MANUFACTURING LA English DT Article DE Community of practice; Natural Language Processing; performance evaluation; pragmatics; research project AB Community of Practice (CoP) efficiency evaluation is a great deal in research. Indeed, having the possibility to know if a given CoP is successful or not is essential to better manage it over time. The existing approaches for efficiency evaluation are difficult and time-consuming to put into action on real CoPs. They require either to evaluate subjective constructs making the analysis unreliable, either to work out a knowledge interaction matrix that is difficult to set up. However, these approaches build their evaluation on the fact that a CoP is successful if knowledge is exchanged between the members. It is the case if there are some interactions between the actors involved in the CoP. Therefore, we propose to analyze these interactions through the exchanges of emails thanks to Natural Language Processing. Our approach is systematic and semi-automated. It requires the e-mails exchanged and the definition of the speech-acts that will be retrieved. We apply it on a real project-based CoP: the SEPOLBE research project that involves different expertise fields. It allows us to identify the CoP core group and to emphasize learning processes between members with different backgrounds (Microbiology, Electrochemistry and Civil engineering). C1 [Goepp, Virginie; Feugeas, Francoise] INSA Strasbourg, Icube 24, F-67084 Strasbourg, France. [Matta, Nada] Univ Technol Troyes, TechCICO 12 Rue Marie Curie CS 42060, F-10004 Troyes, France. [Caillaud, Emmanuel] Unistra, ICube 3,Rue Univ, F-67084 Strasbourg, France. C3 Universites de Strasbourg Etablissements Associes; Universite de Strasbourg; Universite de Technologie de Troyes RP Goepp, V (corresponding author), INSA Strasbourg, Icube 24, F-67084 Strasbourg, France. EM virginie.goepp@insa-strasbourg.fr RI Caillaud, Emmanuel/O-7735-2019 OI Caillaud, Emmanuel/0000-0002-9198-6041; GOEPP, Virginie/0000-0003-2294-7919 CR [Anonymous], 2011, 2011149536 WHO APW, V1, P22 Austin JohnLangshaw., 1975, How to Do Things with Words, V367 Baron NS, 1998, LANG COMMUN, V18, P133, DOI 10.1016/S0271-5309(98)00005-6 Borzillo S, 2011, KNOWL MAN RES PRACT, V9, P353, DOI 10.1057/kmrp.2011.13 Brown JS, 1991, ORGAN SCI, V2, P40, DOI 10.1287/orsc.2.1.40 Carvalho V.R., 2006, ACTS 09 P HLT NAACL, P35 Chu MT, 2009, EXPERT SYST APPL, V36, P1549, DOI 10.1016/j.eswa.2007.11.053 Corney M, 2002, 18 COMP SEC APPL C L Cox A, 2005, J INF SCI, V31, P527, DOI 10.1177/0165551505057016 Felice RD, 2012, IDENTIFYING SPEECH A Goepp V, 2014, ADV PRODUCTION MANAG Guanting Tang, 2014, Knowledge and Information Systems, V41, P1, DOI 10.1007/s10115-013-0658-2 Guptill Janet, 2005, J Health Care Finance, V31, P10 Jeon SH, 2011, EXPERT SYST APPL, V38, P12423, DOI 10.1016/j.eswa.2011.04.023 Kalia A, 2013, IDENTIFYING BUSINESS Kim SJ, 2012, EXPERT SYST APPL, V39, P13093, DOI 10.1016/j.eswa.2012.05.092 Lampert A, 2010, 11 ANN C N AM CHAPT, P984 Lave J., 1991, Situated learning: Legitimate peripheral participation Lee J, 2010, EXPERT SYST APPL, V37, P2670, DOI 10.1016/j.eswa.2009.08.011 Lesser E., 2001, IVEY BUSINESS J, V65, P37 Levinson Stephen., 2000, PRAGMATICS McDermott R., 2004, KM REV, V7, P10 McDermott R., 2000, KNOWLEDGE MANAGEMENT, V3, P16 Nonaka I., 1995, The knowledge-creating company: How Japanese companies create the dynamics of innovation Probst Gilbert, 2008, European Management Journal, V26, P335, DOI 10.1016/j.emj.2008.05.003 Rauscher F, 2016, 8 IFAC C MAN MOD MAN Richard J-F., 1990, MENTAL ACTIVITIES UN Wenger E, 2000, ORGANIZATION, V7, P225, DOI 10.1177/135050840072002 Wenger E., 2002, CULTIVATING COMMUNIT Wenger E., 2009, COMMUNITIES PRACTICE Wenger EC, 2000, HARVARD BUS REV, V78, P139 Yelati S., 2011, 2011 IEEE/WIC/ACM International Joint Conferences on Web Intelligence (WI) and Intelligent Agent Technologies, P369, DOI 10.1109/WI-IAT.2011.71 Zack MH, 1999, CALIF MANAGE REV, V41, P125, DOI 10.2307/41166000 NR 33 TC 1 Z9 1 U1 1 U2 9 PU CAMBRIDGE UNIV PRESS PI NEW YORK PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA SN 0890-0604 EI 1469-1760 J9 AI EDAM JI AI EDAM-Artif. Intell. Eng. Des. Anal. Manuf. PD MAY PY 2019 VL 33 IS 2 SI SI BP 160 EP 171 DI 10.1017/S0890060419000076 PG 12 WC Computer Science, Artificial Intelligence; Computer Science, Interdisciplinary Applications; Engineering, Multidisciplinary; Engineering, Manufacturing WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Computer Science; Engineering GA ID8ZV UT WOS:000471978100006 OA Green Submitted DA 2024-09-05 ER PT J AU Si, YT AF Si, Yutong TI Co-authorship in energy justice studies: Assessing research collaboration through social network analysis and topic modeling SO ENERGY STRATEGY REVIEWS LA English DT Article; Proceedings Paper CT Conference on Energy Modelling Platform for Europe (EMP-E) on Modelling the implementation of a Clean Planet for All Strategy CY OCT 08-09, 2019 CL Brussels, BELGIUM DE Energy justice; Co-authorship; Social network analysis; Topic modeling; Giant component AB Diverse research collaboration is important to perform innovative science and drive transformational change. In the field of energy justice, the need for transformative team science is no longer bigger, given the urgency of a just energy transition. This study is the first research utilizing social network analysis (SNA) and computational methods to understand the structure of scientific collaboration networks around energy justice, while also exploring existing research topics in the field. The bibliographic data were obtained from Web of Science (1975-2021), including the information of 192 journal articles. Based on the linear regression quadratic assignment procedure (LR-QAP), this study shows that pairs of authors who share the same country (i.e., where an author's institution/affiliation is located) are significantly more likely to collaborate with each other. In addition, according to different actor-level centrality measures, this paper identifies the top four leading authors, who are all within the giant component of the network (about 17.07% of all nodes). Results of topic modeling also show that the articles authored or coauthored by the scholars involved in the giant component can capture all identified topics, suggesting the efficacy of the giant component and the significant impact of leading scientists on shaping hot research topics in the field. This study calls for more research collaboration across different countries in the energy justice research community, which can result in more comparative studies, especially the ones exploring energy justice issues between developing and developed countries. It also calls for a more decentralized network open to outside connections to diversify research collaboration, thus enriching research topics and advancing innovative work on energy justice. C1 [Si, Yutong] Northeastern Univ, Sch Publ Policy & Urban Affairs, Boston, MA 02115 USA. C3 Northeastern University RP Si, YT (corresponding author), Northeastern Univ, Sch Publ Policy & Urban Affairs, Boston, MA 02115 USA. EM si.yut@northeastern.edu RI Si, Yutong/ABD-2240-2021 OI Si, Yutong/0000-0002-4937-1721 CR Baker S., 2021, REVOLUTIONARY POWER Bastian M., 2009, Gephi: An open source software for exploring and manipulating networks Chae B, 2018, SUSTAINABILITY-BASEL, V10, DOI 10.3390/su10072231 Fagan J, 2018, J RES ADMIN, V49, P76 Fonseca BDFE, 2016, HEALTH RES POLICY SY, V14, DOI 10.1186/s12961-016-0104-5 FREEMAN LC, 1980, SOC NETWORKS, V2, P119, DOI 10.1016/0378-8733(79)90002-9 Gielen D, 2019, ENERGY STRATEG REV, V24, P38, DOI 10.1016/j.esr.2019.01.006 Gillard R, 2017, ENERGY RES SOC SCI, V29, P53, DOI 10.1016/j.erss.2017.05.012 Healy N, 2019, ENERGY RES SOC SCI, V48, P219, DOI 10.1016/j.erss.2018.09.016 Higaki A, 2020, INT J MED INFORM, V143, DOI 10.1016/j.ijmedinf.2020.104274 Hirsch JE, 2005, P NATL ACAD SCI USA, V102, P16569, DOI 10.1073/pnas.0507655102 Jelodar H, 2019, MULTIMED TOOLS APPL, V78, P15169, DOI 10.1007/s11042-018-6894-4 Jenkins K, 2018, ENERGY RES SOC SCI, V39, P117, DOI 10.1016/j.erss.2017.11.015 Jenkins K, 2016, ENERGY RES SOC SCI, V11, P174, DOI 10.1016/j.erss.2015.10.004 Jenkins KEH, 2021, ENVIRON RES LETT, V16, DOI 10.1088/1748-9326/abd78c Jenkins KEH, 2020, ENERGY RES SOC SCI, V69, DOI 10.1016/j.erss.2020.101727 KILDUFF M, 1994, ACAD MANAGE J, V37, P87, DOI 10.5465/256771 KRACKHARDT D, 1988, SOC NETWORKS, V10, P359, DOI 10.1016/0378-8733(88)90004-4 Kumar S, 2016, ASLIB J INFORM MANAG, V68, P19, DOI 10.1108/AJIM-12-2014-0172 Kumar S, 2015, ASLIB J INFORM MANAG, V67, P55, DOI 10.1108/AJIM-09-2014-0116 McCauley D, 2018, ENERG POLICY, V119, P1, DOI 10.1016/j.enpol.2018.04.014 Molose R., 2021, 2021 INT C EL COMP E, P1, DOI [10.1007/978-3-030-67044-3_1, DOI 10.1007/978-3-030-67044-3_1] Moody J, 2004, AM SOCIOL REV, V69, P213, DOI 10.1177/000312240406900204 Pellegrini-Masini G, 2020, ENERGY RES SOC SCI, V59, DOI 10.1016/j.erss.2019.101310 Pinheiro ML, 2016, INT J PROJ MANAG, V34, P1519, DOI 10.1016/j.ijproman.2016.07.006 Scott J., 2011, The sage handbook on social network analysis Si YT, 2021, FRONT SUSTAIN CITIES, V3, DOI 10.3389/frsc.2021.632020 Sovacool BK, 2021, ENERGY RES SOC SCI, V73, DOI 10.1016/j.erss.2021.101916 Sovacool BK, 2017, ENERG POLICY, V105, P677, DOI 10.1016/j.enpol.2017.03.005 Sovacool BK, 2016, NAT ENERGY, V1, DOI 10.1038/NENERGY.2016.24 Sovacool BK, 2015, APPL ENERG, V142, P435, DOI 10.1016/j.apenergy.2015.01.002 Stephens J., 2020, DIVERSIFYING POWER W Tekles A, 2020, QUANT SCI STUD, V1, P1510, DOI 10.1162/qss_a_00081 Wuchty S, 2007, SCIENCE, V316, P1036, DOI 10.1126/science.1136099 Yousefi-Nooraie Reza, 2008, Health Res Policy Syst, V6, P9, DOI 10.1186/1478-4505-6-9 NR 35 TC 6 Z9 7 U1 1 U2 13 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS SN 2211-467X EI 2211-4688 J9 ENERGY STRATEG REV JI Energy Strateg. Rev. PD MAY PY 2022 VL 41 AR 100859 DI 10.1016/j.esr.2022.100859 EA MAY 2022 PG 10 WC Energy & Fuels WE Science Citation Index Expanded (SCI-EXPANDED); Conference Proceedings Citation Index - Science (CPCI-S) SC Energy & Fuels GA 5U9HO UT WOS:000876851000001 OA gold DA 2024-09-05 ER PT C AU Rizvi, STR Lucieri, A Dengel, A Ahmed, S AF Rizvi, Syed Tahseen Raza Lucieri, Adriano Dengel, Andreas Ahmed, Sheraz GP IEEE TI Benchmarking Object Detection Networks for Image based Reference Detection in Document Images SO 2019 DIGITAL IMAGE COMPUTING: TECHNIQUES AND APPLICATIONS (DICTA) LA English DT Proceedings Paper CT APRS International Conference on Digital Image Computing - Techniques and Applications (DICTA) CY DEC 02-04, 2019 CL Perth, AUSTRALIA DE bibliographic reference detection; Image based Reference Detection; Benchmarking; Convolutional Neural Networks AB In this paper we study the performance evaluation of state-of-the-art object detection models for the task of bibliographic reference detection from document images. The motivation of evaluating object detection models for the task in hand is inspired from how human perceive a document containing bibliographic references. Humans can easily distinguish between different references just by exploiting the layout with a glimpse of an eye, without understanding the content. Existing state-of-the-art systems for bibliographic reference detection are purely based on textual content. By contrast, we employed four state-of-the art object detection models and compared their performance with state-of-the-art text based reference extraction models. Evaluations are performed on the publicly available dataset (ICONIP) for image based reference detection, containing 455 scanned bibliographic documents with 8766 references from Social Sciences books and journals. Evaluation results reveal the superiority of image based methods for the task of reference detection in document images. C1 [Rizvi, Syed Tahseen Raza; Dengel, Andreas] Tech Univ Kaiserslautern, Kaiserslautern, Germany. [Rizvi, Syed Tahseen Raza; Lucieri, Adriano; Dengel, Andreas; Ahmed, Sheraz] German Res Ctr Artificial Intelligence DFKI, Kaiserslautern, Germany. C3 University of Kaiserslautern; German Research Center for Artificial Intelligence (DFKI) RP Rizvi, STR (corresponding author), Tech Univ Kaiserslautern, Kaiserslautern, Germany.; Rizvi, STR (corresponding author), German Res Ctr Artificial Intelligence DFKI, Kaiserslautern, Germany. EM syed_tahseen_raza.rizvi@dfki.de; adriano.lucieri@dfki.de; andreas.dengel@dfki.de; sheraz.ahmed@dfki.de RI Lucieri, Adriano/KFS-5924-2024 OI Lucieri, Adriano/0000-0003-1473-4745; Rizvi, Syed Tahseen Raza/0000-0002-4359-4772 CR Bhardwaj A., 2018, ICONIP DATASAET LABE Bhardwaj A, 2017, LECT NOTES COMPUT SC, V10635, P286, DOI 10.1007/978-3-319-70096-0_30 Chen CC, 2008, 2008 22ND INTERNATIONAL WORKSHOPS ON ADVANCED INFORMATION NETWORKING AND APPLICATIONS, VOLS 1-3, P1175, DOI 10.1109/WAINA.2008.125 Councill IG, 2008, SIXTH INTERNATIONAL CONFERENCE ON LANGUAGE RESOURCES AND EVALUATION, LREC 2008, P661 Dai JF, 2017, IEEE I CONF COMP VIS, P764, DOI 10.1109/ICCV.2017.89 Dai J, 2016, PROCEEDINGS 2016 IEEE INTERNATIONAL CONFERENCE ON INDUSTRIAL TECHNOLOGY (ICIT), P1796, DOI 10.1109/ICIT.2016.7475036 Deng J, 2009, PROC CVPR IEEE, P248, DOI 10.1109/CVPRW.2009.5206848 Girshick R, 2015, IEEE I CONF COMP VIS, P1440, DOI 10.1109/ICCV.2015.169 HE KM, 2016, PROC CVPR IEEE, P770, DOI DOI 10.1109/CVPR.2016.90 Hochreiter S, 1997, NEURAL COMPUT, V9, P1735, DOI [10.1162/neco.1997.9.1.1, 10.1007/978-3-642-24797-2] Lafferty John, 2001, em Proceedings of the Eighteenth International Conference on Machine Learning Lauscher A, 2018, ACM-IEEE J CONF DIG, P109, DOI 10.1145/3197026.3197050 Lin T.-Y., 2017, ICCV, DOI [DOI 10.1109/CVPR.2017.106, 10.1109/CVPR.2017.106] Long J, 2015, PROC CVPR IEEE, P3431, DOI 10.1109/CVPR.2015.7298965 Madriles C, 2009, CONF PROC INT SYMP C, P474, DOI 10.1145/1555815.1555813 Prasad A, 2018, INT J DIGIT LIBRARIE, V19, P323, DOI 10.1007/s00799-018-0242-1 Ren SQ, 2015, ADV NEUR IN, V28, DOI 10.1109/TPAMI.2016.2577031 Russakovsky O, 2015, INT J COMPUT VISION, V115, P211, DOI 10.1007/s11263-015-0816-y Smith R, 2007, PROC INT CONF DOC, P629, DOI 10.1109/icdar.2007.4376991 Tkaczyk D., 2018, ABS181110369 ARXIV Tkaczyk D, 2018, ACM-IEEE J CONF DIG, P99, DOI 10.1145/3197026.3197048 Tkaczyk D, 2015, INT J DOC ANAL RECOG, V18, P317, DOI 10.1007/s10032-015-0249-8 Zou J, 2010, INT J DOC ANAL RECOG, V13, P107, DOI 10.1007/s10032-009-0105-9 NR 23 TC 6 Z9 6 U1 0 U2 8 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA BN 978-1-7281-3857-2 PY 2019 BP 400 EP 407 DI 10.1109/dicta47822.2019.8945991 PG 8 WC Computer Science, Theory & Methods; Imaging Science & Photographic Technology WE Conference Proceedings Citation Index - Science (CPCI-S) SC Computer Science; Imaging Science & Photographic Technology GA BO8QY UT WOS:000529063300056 DA 2024-09-05 ER PT J AU WOELFEL, J AF WOELFEL, J TI ARTIFICIAL NEURAL NETWORKS IN POLICY RESEARCH - A CURRENT ASSESSMENT SO JOURNAL OF COMMUNICATION LA English DT Article ID BACK PROPAGATION AB Recent advances in neuroscience, computer science, psychology, and other fields have led to the development of computer programs that are modeled, in principle, on idealizations Of organic neural structures. These artificial neural networks (ANNs) exhibit important properties that promise great usefulness for policy researchers. Most important among these are ANNs' ability to learn to identify complex patterns of information and to associate them with other patterns. Furthermore, like their biological predecessors, ANNs can recognize and recall these patterns and associations in spite of noisy, incomplete, or otherwise defective information inputs. ANNs can also generalize information learned about one or more patterns to other related patterns. As a result, ANNs have already found extensive use in areas once reserved for multivariate statistical programs such as regression and multiple classification analysis, and are developing an extensive community of advocates for processing text and other qualitative information. C1 SUNY BUFFALO,ROCKFELLER INST GOVT,BUFFALO,NY 14260. C3 State University of New York (SUNY) System; State University of New York (SUNY) Buffalo RP WOELFEL, J (corresponding author), SUNY BUFFALO,DEPT COMMUN,BUFFALO,NY 14260, USA. CR [Anonymous], 1986, Parallel Distributed Processing Explorations in the Microstructure of Cognition Volume 1: Foundations ARMSTRONG GB, 1993, J COMMUN, V43, P81, DOI 10.1111/j.1460-2466.1993.tb01250.x BURGATTI S, 1992, UCINET 4 NETWORK ANA CARPENTER GA, 1987, APPL OPTICS, V26, P4919, DOI 10.1364/AO.26.004919 Cybenko G., 1989, Mathematics of Control, Signals, and Systems, V2, P303, DOI 10.1007/BF02551274 DISPENZA G, 1992, JUN ADV RES TECHN FO FUNAHASHI K, 1989, NEURAL NETWORKS, V2, P183, DOI 10.1016/0893-6080(89)90003-8 HEBB DO, 1949, ORG BEHAVIOR JACOBS RA, 1988, NEURAL NETWORKS, V1, P295, DOI 10.1016/0893-6080(88)90003-2 KOHONEN T, 1982, BIOL CYBERN, V43, P59, DOI 10.1007/BF00337288 KOHONEN T, 1986, SELF ORG ASS MEMORY KOSKO B, 1989, JUN INT JOINT C NEUR KURKOVA V, 1992, NEURAL NETWORKS, V5, P501, DOI 10.1016/0893-6080(92)90012-8 LEIMAN J, 1992, JUN ADV RES TECHN FO McClelland J., 1987, Learning Internal Representations by Error Propagation, V1, P318 Richards W.W., 1989, NEGOPY NETWORK ANAL RIGLER AK, 1991, NEURAL NETWORKS, V4, P225, DOI 10.1016/0893-6080(91)90006-Q TOLLENAERE T, 1990, NEURAL NETWORKS, V3, P561, DOI 10.1016/0893-6080(90)90006-7 VANOOYEN A, 1992, NEURAL NETWORKS, V5, P465, DOI 10.1016/0893-6080(92)90008-7 VOGL TP, 1988, NEURAL NETWORKS, V3, P561 WASSMAN DA, 1992, JUN ADV RES TECHN FO Werbos Paul., 1974, New tools for prediction and analysis in the behavioral sciences WOELFEL J, 1992, CATPAC USER MANUAL Woelfel J.D., 1980, MEASUREMENT COMMUNIC 1992, APPLYING NEURAL NETW NR 25 TC 43 Z9 53 U1 0 U2 7 PU OXFORD UNIV PRESS INC PI CARY PA JOURNALS DEPT, 2001 EVANS RD, CARY, NC 27513 SN 0021-9916 J9 J COMMUN JI J. Commun. PD WIN PY 1993 VL 43 IS 1 BP 63 EP 80 DI 10.1111/j.1460-2466.1993.tb01249.x PG 18 WC Communication WE Social Science Citation Index (SSCI) SC Communication GA KP598 UT WOS:A1993KP59800005 DA 2024-09-05 ER PT J AU Pillai, M Griffin, AC Kronk, CA McCall, T AF Pillai, Malvika Griffin, Ashley C. Kronk, Clair A. McCall, Terika TI Toward Community-Based Natural Language Processing (CBNLP): Cocreating With Communities SO JOURNAL OF MEDICAL INTERNET RESEARCH LA English DT Article DE ChatGPT; natural language processing; community-based participatory research; research design; artificial intelligence; participatory; co-design; machine learning; co-creation; community based; lived experience; lived experiences; collaboration; collaborative ID PARTICIPATORY RESEARCH; ENGAGEMENT; BIAS AB Rapid development and adoption of natural language processing (NLP) techniques has led to a multitude of exciting and innovative societal and health care applications. These advancements have also generated concerns around perpetuation of historical injustices and that these tools lack cultural considerations. While traditional health care NLP techniques typically include clinical subject matter experts to extract health information or aid in interpretation, few NLP tools involve community stakeholders with lived experiences. In this perspective paper, we draw upon the field of community-based participatory research, which gathers input from community members for development of public health interventions, to identify and examine ways to equitably involve communities in developing health care NLP tools. To realize the potential of community-based NLP (CBNLP), research and development teams must thoughtfully consider mechanisms and resources needed to effectively collaborate with community members for maximal societal and ethical impact of NLP-based tools. C1 [Pillai, Malvika] Stanford Univ, Sch Med, Ctr Biomed Informat Res, Stanford, CA USA. [Pillai, Malvika; Griffin, Ashley C.] Vet Affairs Palo Alto Hlth Care Syst, Palo Alto, CA USA. [Griffin, Ashley C.] Stanford Univ, Sch Med, Dept Hlth Policy, Stanford, CA USA. [Kronk, Clair A.; McCall, Terika] Yale Sch Med, Ctr Med Informat, New Haven, CT USA. [McCall, Terika] Yale Sch Publ Hlth, Dept Biostat, Div Hlth Informat, New Haven, CT USA. [McCall, Terika] Yale Sch Med, Sect Biomed Informat & Data Sci, New Haven, CT USA. [Pillai, Malvika] Stanford Univ, Sch Med, Ctr Biomed Informat Res, 1265 Welch Rd, Stanford, CA 94305 USA. C3 Stanford University; US Department of Veterans Affairs; Veterans Health Administration (VHA); VA Palo Alto Health Care System; Stanford University; Yale University; Yale University; Yale University; Stanford University RP Pillai, M (corresponding author), Stanford Univ, Sch Med, Ctr Biomed Informat Res, 1265 Welch Rd, Stanford, CA 94305 USA. EM mpillai@stanford.edu OI Pillai, Malvika/0000-0001-8739-189X; McCall, Terika/0000-0002-8143-5393 FU Department of Veterans Affairs (VA) Big Data-Scientist Training Enhancement Program; VA advanced fellowship in medical informatics; National Library of Medicine [R01LM013477] FX Acknowledgments MP is currently supported by the Department of Veterans Affairs (VA) Big Data-Scientist Training Enhancement Program. ACG is currently supported by a VA advanced fellowship in medical informatics. The opinions expressed are those of the authors and not necessarily those of the VA or those of the US government. TM is currently supported by funding from the National Library of Medicine (award R01LM013477) . The authors would like to thank Mary Peng for her support in creating the community-based natural language processing framework figure. CR [Anonymous], PAUS GIANT AI EXP OP [Anonymous], COR VAL ETH SPECTR 3 [Anonymous], BLUEPR AI BILL RIGHT [Anonymous], GOV GUID IMPL AI PRI Benjamin R, 2019, SCIENCE, V366, P421, DOI 10.1126/science.aaz3873 Boberg S., 2020, arXiv, DOI DOI 10.1214/20-BA1223 Brizay U, 2015, J INT AIDS SOC, V18, DOI 10.7448/IAS.18.1.19354 Gordon ML, 2022, PROCEEDINGS OF THE 2022 CHI CONFERENCE ON HUMAN FACTORS IN COMPUTING SYSTEMS (CHI' 22), DOI 10.1145/3491102.3502004 Hoffman KM, 2016, P NATL ACAD SCI USA, V113, P4296, DOI 10.1073/pnas.1516047113 Holkup PA, 2004, ADV NURS SCI, V27, P162, DOI 10.1097/00012272-200407000-00002 Hu K., Reuters Israel B.A., 2018, Community -based Participatory Research for Health: Advancing Social and health Equity, P31 JACKSON F, 1982, PHILOS QUART, V32, P127, DOI 10.2307/2960077 Jang HJ, 2021, J MED INTERNET RES, V23, DOI 10.2196/25431 Jensen AC, 2022, J GEN INTERN MED, V37, P80, DOI 10.1007/s11606-021-06985-1 Kaye J, 2012, NAT REV GENET, V13, P371, DOI 10.1038/nrg3218 Kim I, 2022, CAN J CARDIOL, V38, P1865, DOI 10.1016/j.cjca.2022.09.009 Kwon SC, 2018, TRANSL BEHAV MED, V8, P683, DOI 10.1093/tbm/ibx026 McFarlane SJ, 2022, HEALTH COMMUN, V37, P1075, DOI 10.1080/10410236.2021.1943978 Mesko B, 2022, J MED INTERNET RES, V24, DOI 10.2196/39178 Mullan F, 2002, AM J PUBLIC HEALTH, V92, P1748, DOI 10.2105/AJPH.92.11.1748 Newman-Griffis D, 2021, 2021 CONFERENCE OF THE NORTH AMERICAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS: HUMAN LANGUAGE TECHNOLOGIES (NAACL-HLT 2021), P4125 Rahman P, 2020, JMIR MED INF, V8, DOI 10.2196/19612 Samulowitz A, 2018, PAIN RES MANAG, V2018, DOI 10.1155/2018/6358624 Schoenthaler A, 2022, JAMA NETW OPEN, V5, DOI 10.1001/jamanetworkopen.2022.16281 Shmueli B, 2021, 2021 CONFERENCE OF THE NORTH AMERICAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS: HUMAN LANGUAGE TECHNOLOGIES (NAACL-HLT 2021), P3758 Sylolypavan A, 2023, NPJ DIGIT MED, V6, DOI 10.1038/s41746-023-00773-3 Tamang S, 2023, JMIR MED INF, V11, DOI 10.2196/37805 Tyson A., 2023, 60 AM WOULD BE UNC P Vaughn L., 2020, Journal of Participatory Research Methods, V1, DOI [DOI 10.35844/001C.13244, 10.35844/001c.13244] Yang K, 2018, INT CONF MANAGE DATA, P1773, DOI 10.1145/3183713.3193568 NR 31 TC 1 Z9 1 U1 2 U2 7 PU JMIR PUBLICATIONS, INC PI TORONTO PA 130 QUEENS QUAY East, Unit 1100, TORONTO, ON M5A 0P6, CANADA SN 1438-8871 J9 J MED INTERNET RES JI J. Med. Internet Res. PD AUG 4 PY 2023 VL 25 AR e48498 DI 10.2196/48498 PG 10 WC Health Care Sciences & Services; Medical Informatics WE Science Citation Index Expanded (SCI-EXPANDED) SC Health Care Sciences & Services; Medical Informatics GA P1EN0 UT WOS:001048139500001 PM 37540551 OA Green Published, gold DA 2024-09-05 ER PT J AU Vallurupalli, V Bose, I AF Vallurupalli, Vamsi Bose, Indranil TI Exploring thematic composition of online reviews: A topic modeling approach SO ELECTRONIC MARKETS LA English DT Article DE Latent Dirichlet allocation; Online reviews; Review influence; Thematic content; Topic modeling; Yelp AB Online reviews are a critical component of the retail business ecosystem today. They help consumers share feedback and readers make informed choices. As such, it is important to understand the mechanism driving the creation of reviews and identify factors which make them useful for readers. Extant work in this field has largely ignored the distribution of thematic content in reviews and its role in review diagnosticity. This article attempts to bridge the gap. A novel approach is proposed to explore the distribution of thematic content in reviews, in terms of underlying topics, and test its impact on influence of reviews. The approach is illustrated through a case study using data from Yelp. Implications of the study for theory and practice are discussed. C1 [Vallurupalli, Vamsi; Bose, Indranil] Indian Inst Management Calcutta, Diamond Harbour Rd, Kolkata 700104, India. C3 Indian Institute of Management (IIM System); Indian Institute of Management Calcutta RP Bose, I (corresponding author), Indian Inst Management Calcutta, Diamond Harbour Rd, Kolkata 700104, India. EM vallurupalliv13@email.iimcal.ac.in; bose@iimcal.ac.in CR Anderson M., 88 CONSUMERS TRUST O [Anonymous], 2007, LIWC2007: Linguistic Inquiry and Word Count. Austin Tex [Anonymous], P 27 INT C HUM FACT, DOI DOI 10.1145/1518701.1518848 Baek H, 2012, INT J ELECTRON COMM, V17, P99, DOI 10.2753/JEC1086-4415170204 Banerjee S, 2017, DECIS SUPPORT SYST, V96, P17, DOI 10.1016/j.dss.2017.01.006 Bearde WO., 2007, MARKETING Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993 Buettner R, 2017, ELECTRON MARK, V27, P247, DOI 10.1007/s12525-016-0228-z Chen Z, 2013, J MARKETING RES, V50, P463, DOI 10.1509/jmr.12.0063 Corley JK, 2013, ELECTRON MARK, V23, P177, DOI 10.1007/s12525-012-0118-y Debortoli S, 2016, COMMUN ASSOC INF SYS, V39, P110, DOI 10.17705/1CAIS.03907 DiMaggio P, 2013, POETICS, V41, P570, DOI 10.1016/j.poetic.2013.08.004 Dimoka A, 2012, MIS QUART, V36, P395 Dyer T, 2017, J ACCOUNT ECON, V64, P221, DOI 10.1016/j.jacceco.2017.07.002 Elo S, 2008, J ADV NURS, V62, P107, DOI 10.1111/j.1365-2648.2007.04569.x Evans J. R., 2002, MARKETING MARKETING Forman C, 2008, INFORM SYST RES, V19, P291, DOI 10.1287/isre.1080.0193 Fu XH, 2013, KNOWL-BASED SYST, V37, P186, DOI 10.1016/j.knosys.2012.08.003 Gale T., GOODS SERVICES Ghose A, 2011, IEEE T KNOWL DATA EN, V23, P1498, DOI 10.1109/TKDE.2010.188 Goes PB, 2014, INFORM SYST RES, V25, P222, DOI 10.1287/isre.2013.0512 Guo Y, 2017, TOURISM MANAGE, V59, P467, DOI 10.1016/j.tourman.2016.09.009 Huang LQ, 2013, J MANAGE INFORM SYST, V30, P311, DOI 10.2753/MIS0742-1222300311 Jiang ZH, 2004, J MANAGE INFORM SYST, V21, P111, DOI 10.1080/07421222.2004.11045817 Kempf DS, 1998, J MARKETING RES, V35, P325, DOI 10.2307/3152031 Kuan KKY, 2015, J ASSOC INF SYST, V16, P48, DOI 10.17705/1jais.00386 Lee S, 2016, BEHAV INFORM TECHNOL, V35, P853, DOI 10.1080/0144929X.2016.1173099 LOVELOCK CH, 1983, J MARKETING, V47, P9, DOI 10.2307/1251193 Luca M, 2016, MANAGE SCI, V62, P3412, DOI 10.1287/mnsc.2015.2304 Lugmayr A, 2017, ELECTRON MARK, V27, P33, DOI 10.1007/s12525-016-0239-9 Ma BZ, 2013, J ELECTRON COMMER RE, V14, P304 Mudambi SM, 2010, MIS QUART, V34, P185 Pan Y, 2011, J RETAILING, V87, P598, DOI 10.1016/j.jretai.2011.05.002 Pavlou PA, 2007, MIS QUART, V31, P105 Podium, 2018, 2017 STAT ONL REV Robinson D., 2017, Text Mining with R, V1st Schmiedel T, 2019, ORGAN RES METHODS, V22, P941, DOI 10.1177/1094428118773858 Shi Z, 2016, MIS QUART, V40, P1035, DOI 10.25300/MISQ/2016/40.4.11 STEENKAMP JBEM, 1990, J BUS RES, V21, P309, DOI 10.1016/0148-2963(90)90019-A Vallurupalli V., 2017, P 28 AUSTR C INF SYS Wallach H.M., 2006, Proc. 23rd Int. Conf. Mach. Learn, P977984, DOI DOI 10.1145/1143844.1143967 Wan Y, 2015, ELECTRON MARK, V25, P313, DOI 10.1007/s12525-015-0186-x Weathers D, 2015, DECIS SUPPORT SYST, V79, P12, DOI 10.1016/j.dss.2015.07.009 Wu PF, 2013, PSYCHOL MARKET, V30, P971, DOI 10.1002/mar.20660 Yelp, 2018, YELP DAT CHALL Yin DZ, 2014, MIS QUART, V38, P539, DOI 10.25300/MISQ/2014/38.2.10 ZEITHAML VA, 1985, J MARKETING, V49, P33, DOI 10.2307/1251563 Zhang Y, 2010, INT J MACH LEARN CYB, V1, P43, DOI 10.1007/s13042-010-0001-0 NR 48 TC 9 Z9 9 U1 5 U2 26 PU SPRINGER HEIDELBERG PI HEIDELBERG PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY SN 1019-6781 EI 1422-8890 J9 ELECTRON MARK JI Electron. Mark. PD DEC PY 2020 VL 30 IS 4 BP 791 EP 804 DI 10.1007/s12525-020-00397-5 PG 14 WC Business; Management WE Social Science Citation Index (SSCI) SC Business & Economics GA PD6VV UT WOS:000597821100009 DA 2024-09-05 ER PT J AU Okagbue, HI Nzeadibe, CA Teixeira da Silva, JA AF Okagbue, Hilary, I Nzeadibe, Chinyere A. Teixeira da Silva, Jaime A. TI Predicting access mode of multidisciplinary and library and information sciences journals using machine learning SO COLLNET JOURNAL OF SCIENTOMETRICS AND INFORMATION MANAGEMENT LA English DT Article DE Adaptive boosting; Gradient boosting; CiteScore; Journal impact factor; Metrics; Web of Science AB Academics and librarians might want to identify whether a journal is open access (OA) or subscription-based. While indexes and digital libraries might provide such information for known collections, it is possible that the access mode of a journal or body of journals might be unknown a priori. In this short analysis, a machine learning-based method is used to classify a journal's access mode, OA or subscription, using its CiteScore and Journal Impact Factor (JIF). Using an initial pool of 91 multidisciplinary journals with a CiteScore, 38 journals with both a JIF and a CiteScore were selected (24 = OA; 14 = subscription). Using a data mining tool (Orange), ten machine learning models were applied (k nearest neighbor (kNN), Tree, support vector machine (SVM), Random forest, Neural network, Naive Bayes, Logistic regression, Adaptive boosting (Adaboost)), Gradient Boosting (Scikit-learn) (GBS) and Gradient Boosting (catboost) (GBC). Adaboost, GBS and GBC showed the highest (100%) precision, sensitivity, and specificity. The 3 models correctly classify the access mode with zero error. The 3 optimum models were validated using then to predict the access mode of 54 (7 = OA; 47 = subscription) library and information science (LIS) journals and Adaboost and GBS gave perfect results with no misclassification. With these model, the access mode of multidisciplinary and LIS journals can be accurately and correctly predicted using only JIF-CiteScore data. Libraries in low-resource settings will benefit from the implementation of this research by designing a decision support system for the selection of journals. C1 [Okagbue, Hilary, I] Covenant Univ, Dept Math, Coll Sci & Technol, KM 10 Idiroko Rd, Ota 112104, Nigeria. [Nzeadibe, Chinyere A.] Univ Nigeria, Dept Sci Educ, Nsukka, Nigeria. [Teixeira da Silva, Jaime A.] POB 7,Miki Cho PO,Ikenobe 3011-2, Miki, Kagawa 7610799, Japan. C3 Covenant University; University of Nigeria RP Okagbue, HI (corresponding author), Covenant Univ, Dept Math, Coll Sci & Technol, KM 10 Idiroko Rd, Ota 112104, Nigeria. EM hilary.okagbue@covenantuniversity.edu.ng; chinyere.nzeadibe@unn.edu.ng; jaimetex@yahoo.com RI Okagbue, Hilary Izuchukwu/AAD-1102-2020 CR Bai XM, 2019, J INFORMETR, V13, P407, DOI 10.1016/j.joi.2019.01.010 Bornmann L, 2017, J INFORMETR, V11, P788, DOI 10.1016/j.joi.2017.06.001 EBADI A, 2020, J INFORMETR, V14, P2, DOI DOI 10.1016/J.JOI.2020.01018 Okagbue HI, 2020, SCIENTOMETRICS, V124, P797, DOI 10.1007/s11192-020-03457-x Piwowar H, 2018, PEERJ, V6, DOI 10.7717/peerj.4375 Shu F, 2019, J INFORMETR, V13, P202, DOI 10.1016/j.joi.2018.12.005 Teixeira da Silva JA, 2020, PUBLISH RES Q, V36, P459, DOI 10.1007/s12109-020-09736-y Teixeira da Silva JA, 2019, J ACAD LIBR, V45, DOI 10.1016/j.acalib.2019.102071 Tougui I, 2020, HEALTH TECHNOL-GER, V10, P1137, DOI 10.1007/s12553-020-00438-1 Xie Z, 2020, J INFORMETR, V14, DOI 10.1016/j.joi.2020.101036 NR 10 TC 3 Z9 3 U1 1 U2 3 PU TARU PUBLICATIONS PI NEW DELHI PA G-159, PUSHKAR ENCLAVE, PASHCHIM VIHAR, NEW DELHI, 110 063, INDIA SN 0973-7766 EI 2168-930X J9 COLLNET J SCIENTOMET JI Collnet J. Scientometr. Inf. Manag. PD JAN 2 PY 2022 VL 16 IS 1 BP 117 EP 124 DI 10.1080/09737766.2021.2009745 PG 8 WC Information Science & Library Science WE Emerging Sources Citation Index (ESCI) SC Information Science & Library Science GA 3F7VX UT WOS:000830873200008 DA 2024-09-05 ER PT J AU Hajibabaei, A Schiffauerova, A Ebadi, A AF Hajibabaei, Anahita Schiffauerova, Andrea Ebadi, Ashkan TI Gender-specific patterns in the artificial intelligence scientific ecosystem SO JOURNAL OF INFORMETRICS LA English DT Article DE Gender disparity; Interdisciplinary research; Artificial intelligence; Research performance; Collaboration ID RESEARCH COLLABORATION; SEX-DIFFERENCES; RESEARCH PRODUCTIVITY; SCIENCE; CENTRALITY; DIVERSITY; PERFORMANCE; PIPELINE; CAREERS; TEAMS AB Gender disparity in science is one of the most focused debating points among authorities and the scientific community. Over the last few decades, numerous initiatives have endeavored to accelerate gender equity in academia and research society. However, despite the ongoing efforts, gaps persist across the world, and more measures need to be taken. Using social network analysis, natural language processing, and machine learning, in this study, we comprehensively analyzed gender-specific patterns in the highly interdisciplinary and evolving field of artificial intelligence for the period of 2000-2019. Our findings suggest an overall increasing rate of mixed-gender collaborations. From the observed gender-specific collaborative patterns, the existence of disciplinary homophily at both dyadic and team levels is confirmed. However, a higher preference was observed for female researchers to form homophilous collaborative links. Our core-periphery analysis indicated a significant positive association between having diverse collaboration and scientific performance and experience. We found evidence in support of expecting the rise of new female superstar researchers in the artificial intelligence field. C1 [Hajibabaei, Anahita; Schiffauerova, Andrea; Ebadi, Ashkan] Concordia Univ, Concordia Inst Informat Syst Engn, Montreal, PQ H3G 2W1, Canada. [Ebadi, Ashkan] Natl Res Council Canada, Montreal, PQ H3T 2B2, Canada. C3 Concordia University - Canada; National Research Council Canada RP Ebadi, A (corresponding author), Concordia Univ, Concordia Inst Informat Syst Engn, Montreal, PQ H3G 2W1, Canada. EM ashkan.ebadi@nrc-cnrc.gc.ca RI Ebadi, Ashkan/AAI-5123-2020; Ebadi, Ashkan/GWZ-9018-2022 OI Ebadi, Ashkan/0000-0002-4542-9105; Schiffauerova, Andrea/0000-0003-3349-3991 CR Abbasi A, 2012, J INFORMETR, V6, P403, DOI 10.1016/j.joi.2012.01.002 Abramo G, 2013, J INFORMETR, V7, P811, DOI 10.1016/j.joi.2013.07.002 ALPER J, 1993, SCIENCE, V260, P409, DOI 10.1126/science.260.5106.409 AlShebli BK, 2018, NAT COMMUN, V9, DOI 10.1038/s41467-018-07634-8 [Anonymous], 1991, The Journal of Applied Behavioral Science, DOI DOI 10.1177/0021886391272001 [Anonymous], 1984, Advances in motivation and achievement [Anonymous], 2015, Advancing Women in Science. An International Perspective, DOI [DOI 10.1007/978-3-319-08629-3, 10.1007/978-3-319-08629-3, DOI 10.1007/978-3-319-08629-3_9] [Anonymous], 2005, FAC INT RES Aydinoglu AU, 2016, RES EVALUAT, V25, P18, DOI 10.1093/reseval/rvv028 Bennett LM, 2012, J INVEST MED, V60, P768, DOI 10.2310/JIM.0b013e318250871d Berryman S.E., 1983, SPECIAL REPORT Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993 Bonetta & Clayton, 2008, REM WOM SCI Bordons M, 2003, SCIENTOMETRICS, V57, P159, DOI 10.1023/A:1024181400646 Borgatti SP, 2005, SOC NETWORKS, V27, P55, DOI 10.1016/j.socnet.2004.11.008 Borrego A, 2010, SCIENTOMETRICS, V83, P93, DOI 10.1007/s11192-009-0025-y Boschma RA, 2005, REG STUD, V39, P61, DOI 10.1080/0034340052000320887 Bozeman B, 2004, RES POLICY, V33, P599, DOI 10.1016/j.respol.2004.01.008 Brewer GD, 1999, POLICY SCI, V32, P327, DOI 10.1023/A:1004706019826 Bunderson JS, 2002, ACAD MANAGE J, V45, P875, DOI 10.2307/3069319 Ceci SJ, 2014, PSYCHOL SCI PUBL INT, V15, P75, DOI 10.1177/1529100614541236 CIFAR, 2019, CAN IS SUPP NEXT GEN Cummings JN, 2005, SOC STUD SCI, V35, P703, DOI 10.1177/0306312705055535 De Nooy W., 2005, EXPLORATORY SOCIAL N, P509 Duch J, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0051332 Ebadi A, 2020, J INFORMETR, V14, DOI 10.1016/j.joi.2020.101018 Ebadi A, 2016, SCIENTOMETRICS, V106, P1093, DOI 10.1007/s11192-015-1825-x Ebadi A, 2015, J INFORMETR, V9, P809, DOI 10.1016/j.joi.2015.08.002 Ebadi A, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0133061 Edgington E.S., 1980, RANDOMIZATION TESTS Elsevier, 2021, GENDER GLOBAL RES LA Feng SH, 2020, SCI REP-UK, V10, DOI 10.1038/s41598-020-64351-3 Fox MF, 2007, J HIGH EDUC, V78, P542, DOI 10.1353/jhe.2007.0032 Ghiasi G, 2018, SCIENTOMETRICS, V115, P785, DOI 10.1007/s11192-018-2701-2 Ghiasi G, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0145931 Ramos AMG, 2015, INTERDISCIPL SCI REV, V40, P182, DOI 10.1179/0308018815Z.000000000112 Government of Canada, 2019, EN BUDG Government of Canada, 2018, NSERC MAD CAN ATH SW Gray RM, 2011, ENTROPY AND INFORMATION THEORY , SECOND EDITION, P395, DOI 10.1007/978-1-4419-7970-4 Griffiths TL, 2004, P NATL ACAD SCI USA, V101, P5228, DOI 10.1073/pnas.0307752101 Han J., 2012, Data Mining, P393, DOI [DOI 10.1016/B978-0-12-381479-1.00009-5, 10.1016/B978-0-12-381479-1.00009-5] Hogan A., 2010, INT WORKSH INT RES C Holman L, 2019, PLOS ONE, V14, DOI 10.1371/journal.pone.0216128 Huang JM, 2020, P NATL ACAD SCI USA, V117, P4609, DOI 10.1073/pnas.1914221117 Hunter LA, 2010, SOC STUD SCI, V40, P433, DOI 10.1177/0306312709358472 Huyer S, 2018, GENDER EQUALITY WILL, V21 Jadidi M, 2018, ADV COMPLEX SYST, V21, DOI 10.1142/S0219525917500114 Jurviste M, 2016, ATERNITY PATERNITY L Kamraro, 2014, HORIZON 2020 EUROPEA Katz JS, 1997, RES POLICY, V26, P1, DOI 10.1016/S0048-7333(96)00917-1 Kwiek M, 2020, SCIENTOMETRICS, V124, P57, DOI 10.1007/s11192-020-03460-2 Kyvik S, 1996, SCI TECHNOL HUM VAL, V21, P54, DOI 10.1177/016224399602100103 Lariviere Vincent, 2013, Nature, V504, P211 Larivière V, 2013, EUR NEUROPSYCHOPHARM, V23, P1340, DOI 10.1016/j.euroneuro.2013.01.006 Larivière V, 2011, SCIENTOMETRICS, V87, P483, DOI 10.1007/s11192-011-0369-y Leahey E, 2006, GENDER SOC, V20, P754, DOI 10.1177/0891243206293030 Lee E, 2019, NAT HUM BEHAV, V3, P1078, DOI 10.1038/s41562-019-0677-4 Lippa RA, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0095960 LONG JS, 1992, SOC FORCES, V71, P159, DOI 10.2307/2579971 Luoto S, 2020, J INFORMETR, V14, DOI 10.1016/j.joi.2020.101021 Mauleón E, 2008, RES EVALUAT, V17, P213, DOI 10.3152/095820208X331676 Moss-Racusin CA, 2012, P NATL ACAD SCI USA, V109, P16474, DOI 10.1073/pnas.1211286109 Murray D, 2019, bioRxiv, DOI [10.1101/400515, 10.1101/400515, DOI 10.1101/400515] Nelson D. J., 2003, NATL ANAL DIVERSITY Nielsen MW, 2016, SCI PUBL POLICY, V43, P386, DOI 10.1093/scipol/scv052 Nooteboom B., 2000, LEARNING INNOVATION, DOI [10.1093/acprof:oso/9780199241002.001.0001, DOI 10.1093/ACPROF:OSO/9780199241002.001.0001] Ovseiko PV, 2017, HEALTH RES POLICY SY, V15, DOI 10.1186/s12961-017-0177-9 Paswan J, 2020, SCIENTOMETRICS, V123, P497, DOI 10.1007/s11192-020-03398-5 Paul-Hus A, 2015, SCIENTOMETRICS, V102, P1541, DOI 10.1007/s11192-014-1386-4 Porter AL, 2007, SCIENTOMETRICS, V72, P117, DOI 10.1007/s11192-007-1700-5 Schummer J, 2004, SCIENTOMETRICS, V59, P425, DOI 10.1023/B:SCIE.0000018542.71314.38 Shannon C. E., 2001, Bell Labs Technical Journal, V5, P3, DOI [DOI 10.1002/J.1538-7305.1948.TB01338.X, 10.1002/j.1538-7305.1948.tb01338.x] Shaw AK, 2012, P ROY SOC B-BIOL SCI, V279, P3736, DOI 10.1098/rspb.2012.0822 Shelementaicom, 2019, GLOB TAL REP 2019 Shen H, 2013, NATURE, V495, P22, DOI 10.1038/495021a Stack S, 2004, RES HIGH EDUC, V45, P891, DOI 10.1007/s11162-004-5953-z Su R, 2009, PSYCHOL BULL, V135, P859, DOI 10.1037/a0017364 Tang XL, 2020, J INFORMETR, V14, DOI 10.1016/j.joi.2020.101094 Thelwall M, 2019, J INFORMETR, V13, P118, DOI 10.1016/j.joi.2018.12.003 Thelwall M, 2019, J INFORMETR, V13, P149, DOI 10.1016/j.joi.2018.12.002 Tower Greg., 2007, Journal of Diversity Management (JDM), V2, P23, DOI DOI 10.19030/JDM.V2I4.5020 Uhly KM, 2017, STUD HIGH EDUC, V42, P760, DOI 10.1080/03075079.2015.1072151 UNESCO, 2018, IMPROVING MEASUREMEN van Arensbergen P, 2012, SCIENTOMETRICS, V93, P857, DOI 10.1007/s11192-012-0712-y Wagner CS, 2011, J INFORMETR, V5, P14, DOI 10.1016/j.joi.2010.06.004 Waltman L, 2016, J INFORMETR, V10, P365, DOI 10.1016/j.joi.2016.02.007 Wang J., 2015, PLOS ONE, V10, DOI [10.1371/jour-nal.pone.0127298, DOI 10.1371/JOUR-NAL.PONE.0127298] Wang MT, 2017, EDUC PSYCHOL REV, V29, P119, DOI 10.1007/s10648-015-9355-x West JD, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0066212 Witteman HO, 2019, LANCET, V393, P531, DOI 10.1016/S0140-6736(18)32611-4 World Economic Forum, 2018, The Global Gender Gap Report Xie Y, 1998, AM SOCIOL REV, V63, P847, DOI 10.2307/2657505 Xie Y., 2003, WOMEN SCI CAREER PRO, V82, P1669 Yan EJ, 2009, J AM SOC INF SCI TEC, V60, P2107, DOI 10.1002/asi.21128 Yuan S, 2020, SCIENTOMETRICS, V124, P993, DOI 10.1007/s11192-020-03423-7 Zeng XHT, 2016, PLOS BIOL, V14, DOI 10.1371/journal.pbio.1002573 NR 96 TC 2 Z9 2 U1 7 U2 60 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS SN 1751-1577 EI 1875-5879 J9 J INFORMETR JI J. Informetr. PD MAY PY 2022 VL 16 IS 2 AR 101275 DI 10.1016/j.joi.2022.101275 EA MAR 2022 PG 17 WC Computer Science, Interdisciplinary Applications; Information Science & Library Science WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Computer Science; Information Science & Library Science GA 1A1UP UT WOS:000791550800001 OA Green Submitted DA 2024-09-05 ER PT J AU Chen, XL Xie, HR AF Chen, Xieling Xie, Haoran TI A Structural Topic Modeling-Based Bibliometric Study of Sentiment Analysis Literature SO COGNITIVE COMPUTATION LA English DT Article DE Sentiment analysis; Bibliometric; Structural topic modeling; Social network analysis ID SOCIAL EMOTION CLASSIFICATION; NEWS IMPACT; EXTRACTION; TEXT; PREDICTION; RESOURCES; EVOLUTION; NETWORKS; SYSTEM AB Sentiment analysis is an increasingly evolving field of research in computer science. With the considerable number of studies on innovative sentiment analysis available, it is worth the effort to present a review to understand the research on sentiment analysis comprehensively. This study aimed to investigate issues involved in sentiment analysis; for instance, (1) What types of research topics had been covered in sentiment analysis research? (2) How did the research topics evolve with time? (3) What were the topic distributions for major contributors? (4) How did major contributors collaborate in sentiment analysis research? Based on articles retrieved from the Web of Science, this study presented a bibliometric review of sentiment analysis with the basis of a structural topic modeling method to obtain an extensive overview of the research field. We also utilized methods such as regression analysis, geographic visualization, social network analysis, and the Mann-Kendal trend test. Sentiment analysis research had, overall, received a growing interest in academia. In addition, institutions and authors within the same countries/regions were liable to collaborate closely. Highly discussed topics weresentiment lexicons and knowledge bases,aspect-based sentiment analysis, andsocial network analysis. Several current and potential future directions, such asdeep learning for natural language processing,web services,recommender systems and personalization, andeducation and social issues, were revealed. The findings provided a thorough understanding of the trends and topics regarding sentiment analysis, which could help in efficiently monitoring future research works and projects. Through this study, we proposed a framework for conducting a comprehensive bibliometric analysis. C1 [Chen, Xieling] Educ Univ Hong Kong, Dept Math & Informat Technol, Hong Kong, Peoples R China. [Xie, Haoran] Lingnan Univ, Dept Comp & Decis Sci, Hong Kong, Peoples R China. C3 Education University of Hong Kong (EdUHK); Lingnan University RP Xie, HR (corresponding author), Lingnan Univ, Dept Comp & Decis Sci, Hong Kong, Peoples R China. EM hrxie2@gmail.com RI Xie, Haoran/AFS-3515-2022 OI Xie, Haoran/0000-0003-0965-3617; PV, THAYYIB/0000-0001-8929-0398 FU Interdisciplinary Research Scheme of Dean's Research Fund 2018-19 [FLASS/DRF/IDS-3]; Departmental Collaborative Research Fund 2019 [MIT/DCRF-R2/18-19]; Small Grant for Academic Staff of The Education University of Hong Kong [MIT/SGA04/19-20]; HKIBS Research Seed Fund 2019/20 [190-009]; Lingnan University, Hong Kong [102367] FX The research presented in this study has been supported by the Interdisciplinary Research Scheme of Dean's Research Fund 2018-19 (FLASS/DRF/IDS-3), Departmental Collaborative Research Fund 2019 (MIT/DCRF-R2/18-19), Small Grant for Academic Staff (MIT/SGA04/19-20) of The Education University of Hong Kong, HKIBS Research Seed Fund 2019/20 (190-009), and Research Seed Fund (102367) of Lingnan University, Hong Kong. CR Agt-Rickauer H., 2018, INT C MOD DRIV ENG S, V991, P134 Ahlgren O, 2016, INT CONF DAT MIN WOR, P890, DOI [10.1109/ICDMW.2016.0131, 10.1109/ICDMW.2016.94] Al-Moslmi T, 2018, J INF SCI, V44, P345, DOI 10.1177/0165551516683908 Al-Moslmi T, 2017, IEEE ACCESS, V5, P16173, DOI 10.1109/ACCESS.2017.2690342 Al-Smadi M, 2019, INFORM PROCESS MANAG, V56, P308, DOI 10.1016/j.ipm.2018.01.006 Alaei AR, 2019, J TRAVEL RES, V58, P175, DOI 10.1177/0047287517747753 [Anonymous], 2017, P C EMP METH NAT LAN [Anonymous], PR INT CONF DEVICE C, DOI DOI 10.1109/CESYS.2016.7889868 Araque O, 2016, INT CONF DAT MIN WOR, P900, DOI [10.1109/ICDMW.2016.71, 10.1109/ICDMW.2016.0132] Arif MH, 2018, SOFT COMPUT, V22, P7281, DOI 10.1007/s00500-017-2729-x Bahassine S, 2020, J KING SAUD UNIV-COM, V32, P225, DOI 10.1016/j.jksuci.2018.05.010 Batistic S, 2019, BRIT J MANAGE, V30, P229, DOI 10.1111/1467-8551.12340 Bennett R, 2019, TRANSPORT RES A-POL, V127, P1, DOI 10.1016/j.tra.2019.07.002 Bodrunova SS, 2018, LECT NOTES COMPUT SC, V11193, P226, DOI 10.1007/978-3-030-01437-7_18 Burgers C, 2018, J PRAGMATICS, V127, P71, DOI 10.1016/j.pragma.2018.01.009 López MB, 2018, J UNIVERS COMPUT SCI, V24, P1515 Calefato F, 2018, EMPIR SOFTW ENG, V23, P1352, DOI 10.1007/s10664-017-9546-9 Cambria E, 2017, IEEE INTELL SYST, V32, P74, DOI 10.1109/MIS.2017.4531228 Chandelier M, 2018, BIOL CONSERV, V220, P254, DOI 10.1016/j.biocon.2018.01.029 Chauhan GS, 2019, SMART INNOV SYST TEC, V107, P259, DOI 10.1007/978-981-13-1747-7_25 Chen GB, 2018, LECT NOTES COMPUT SC, V10971, P18, DOI 10.1007/978-3-319-94307-7_2 Chen S, 2016, PROCEEDINGS 2016 IEEE SECOND INTERNATIONAL CONFERENCE ON BIG DATA COMPUTING SERVICE AND APPLICATIONS (BIGDATASERVICE 2016), P152, DOI 10.1109/BigDataService.2016.51 Chen X, 2020, COMPUT EDUC, P151 Chen X, 2019, SOCIAL WEB HLTH RES, P31, DOI DOI 10.1007/978-3-030-14714-3_3 Chen X, 2020, BRIT J EDUC TECHNOL, P1, DOI DOI 10.1136/BJOPHTALMOL-2020-316304 Chen X, 2019, INT WORKSH HUM BRAIN, P69 Chen XL, 2020, APPL SCI-BASEL, V10, DOI 10.3390/app10062157 Chen XL, 2020, PLOS ONE, V15, DOI 10.1371/journal.pone.0231192 Chen XL, 2019, J COMPUT EDUC, V6, P563, DOI 10.1007/s40692-019-00149-1 Chen XL, 2019, BMC MED INFORM DECIS, V19, DOI 10.1186/s12911-019-0757-4 Chen XL, 2019, ONLINE INFORM REV, V43, P29, DOI 10.1108/OIR-03-2018-0068 Chen XL, 2018, BMC MED INFORM DECIS, V18, DOI [10.1186/s12911-018-0594-x, 10.1186/s12870-018-1555-3] Chen X, 2016, SIGIR'16: PROCEEDINGS OF THE 39TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, P305, DOI 10.1145/2911451.2911549 Choi E, 2015, 2015 INTERNATIONAL CONFERENCE ON ICT CONVERGENCE (ICTC), P188, DOI 10.1109/ICTC.2015.7354525 Contratres Felipe G., 2018, Trends and Advances in Information Systems and Technologies. Advances in Intelligent Systems and Computing (AISC 746), P122, DOI 10.1007/978-3-319-77712-2_12 Dandannavar P. S., 2020, EAI INT C BIG DAT IN, P191, DOI [10.1007/978-3-030-19562-5_19, DOI 10.1007/978-3-030-19562-5_19] Dashtipour K, 2020, NEUROCOMPUTING, V380, P1, DOI 10.1016/j.neucom.2019.10.009 Souza MLD, 2016, P BRAZ SYMP SOFTW, P1, DOI 10.1109/SBCARS.2016.15 Dinkic N, 2016, INT C ICT INNOVATION Dragoni M, 2018, IEEE INTELL SYST, V33, P77, DOI 10.1109/MIS.2018.033001419 El Alaoui I, 2018, J BIG DATA-GER, V5, DOI 10.1186/s40537-018-0120-0 Esparza G.G., 2017, INT S DISTR COMP ART, P157 Farrell J, 2016, P NATL ACAD SCI USA, V113, P92, DOI 10.1073/pnas.1509433112 García-Díaz V, 2018, APPL SOFT COMPUT, V67, P822, DOI 10.1016/j.asoc.2017.05.038 García-Pablos A, 2018, EXPERT SYST APPL, V91, P127, DOI 10.1016/j.eswa.2017.08.049 Garcia-Rudolph A, 2019, J MED INTERNET RES, V21, DOI 10.2196/14077 Garg P, 2017, 2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTING, COMMUNICATION AND AUTOMATION (ICCCA), P17, DOI 10.1109/CCAA.2017.8229812 Gul S, 2016, ONLINE INFORM REV, V40, P900, DOI 10.1108/OIR-10-2015-0330 Guzman E, 2014, INT REQUIR ENG CONF, P153, DOI 10.1109/RE.2014.6912257 Han Z., 2020, WILEY INTERDISC REV, V10, P1 Hao TY, 2018, SOFT COMPUT, V22, P7875, DOI 10.1007/s00500-018-3511-4 Hassan A, 2018, IEEE ACCESS, V6, P13949, DOI 10.1109/ACCESS.2018.2814818 He JF, 2016, ADV SOC SCI EDUC HUM, V65, P1, DOI [10.1109/WIW.2016.017, 10.1109/WIW.2016.9] Hirsch JE, 2014, INT J CLIN HLTH PSYC, V14, P161, DOI 10.1016/S1697-2600(14)70050-X Hollenstein N, 2018, SCI DATA, V5, DOI 10.1038/sdata.2018.291 Hsu A, 2020, CLIM POLICY, V20, P443, DOI 10.1080/14693062.2019.1624252 Huang MH, 2020, INFORM SCIENCES, V520, P389, DOI 10.1016/j.ins.2020.02.026 Huang QX, 2017, 2017 INTERNATIONAL CONFERENCE ON GREEN INFORMATICS (ICGI), P30, DOI 10.1109/ICGI.2017.45 Hussein Doaa Mohey El-Din Mohamed, 2018, Journal of King Saud University - Engineering Sciences, V30, P330, DOI 10.1016/j.jksues.2016.04.002 Ilic S., 2018, WASSA, P2, DOI 10.18653/v1/W18-6202 Jabreel M., 2019, APPL SCI, V9, P6 Jayaratna S, 2017, 2017 IEEE 24TH INTERNATIONAL CONFERENCE ON WEB SERVICES (ICWS 2017), P516, DOI 10.1109/ICWS.2017.60 Jiang HC, 2018, TECHNOL FORECAST SOC, V134, P61, DOI 10.1016/j.techfore.2018.05.012 Jiang HC, 2016, RENEW SUST ENERG REV, V57, P226, DOI 10.1016/j.rser.2015.12.194 Jiang YW, 2019, CURR ISSUES TOUR, V22, P1925, DOI 10.1080/13683500.2017.1408574 Kang M, 2018, EXPERT SYST APPL, V94, P218, DOI 10.1016/j.eswa.2017.07.019 Keramatfar A, 2019, J INF SCI, V45, P3, DOI 10.1177/0165551518761013 Kim K, 2014, PATTERN RECOGN, V47, P758, DOI 10.1016/j.patcog.2013.07.022 Kiritchenko S, 2014, J ARTIF INTELL RES, V50, P723, DOI 10.1613/jair.4272 Kong YY, 2018, BMC MED IMAGING, V18, DOI 10.1186/s12880-018-0252-x Korfiatis N, 2019, EXPERT SYST APPL, V116, P472, DOI 10.1016/j.eswa.2018.09.037 Kumar Akshi, 2012, International Journal of Intelligent Systems and Applications, V4, P1, DOI 10.5815/ijisa.2012.10.01 Kuta M, 2017, LECT NOTES ARTIF INT, V10415, P74, DOI 10.1007/978-3-319-64206-2_9 Li XS, 2017, IEEE T AFFECT COMPUT, V8, P428, DOI 10.1109/TAFFC.2017.2716930 Li XD, 2016, NEURAL COMPUT APPL, V27, P67, DOI 10.1007/s00521-014-1550-z Li XD, 2015, IEEE INTELL SYST, V30, P26, DOI 10.1109/MIS.2015.1 Li XD, 2014, KNOWL-BASED SYST, V69, P14, DOI 10.1016/j.knosys.2014.04.022 Li X, 2019, DATA KNOWL ENG, V123, DOI 10.1016/j.datak.2017.07.008 Li Y, 2018, INFORM SCIENCES, V450, P301, DOI 10.1016/j.ins.2018.03.050 Liang TP, 2016, INT J ELECTRON COMM, V20, P236, DOI 10.1080/10864415.2016.1087823 Liang WM, 2018, EXPERT SYST APPL, V114, P322, DOI 10.1016/j.eswa.2018.07.027 Liu B., 2012, SYNLECT HUM LANG TEC, V5, P1, DOI [10.2200/S00416ED1V01Y201204HLT016, DOI 10.2200/S00416ED1V01Y201204HLT016] Liu B, 2015, SENTIMENT ANALYSIS: MINING OPINIONS, SENTIMENTS, AND EMOTIONS, P1 Liu Q, 2018, ACM T INTEL SYST TEC, V9, DOI 10.1145/3168361 Liu Z, 2016, NEUROCOMPUTING, V185, P11, DOI 10.1016/j.neucom.2015.12.036 Long Y., 2019, IEEE T AFFECTIVE COM Ma RX, 2019, FUTURE GENER COMP SY, V92, P879, DOI 10.1016/j.future.2017.11.036 Ma YK, 2018, COGN COMPUT, V10, P639, DOI 10.1007/s12559-018-9549-x Ma YK, 2018, AAAI CONF ARTIF INTE, P5876 Majumder N, 2019, AAAI CONF ARTIF INTE, P6818 Majumdert N, 2018, 2018 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING (EMNLP 2018), P3402 Mann HB, 1945, ECONOMETRICA, V13, P245, DOI 10.2307/1907187 Mäntylä MV, 2018, COMPUT SCI REV, V27, P16, DOI 10.1016/j.cosrev.2017.10.002 Maqsood H, 2020, INT J INFORM MANAGE, V50, P432, DOI 10.1016/j.ijinfomgt.2019.07.011 Jiménez-Zafra SM, 2018, LANG RESOUR EVAL, V52, P533, DOI 10.1007/s10579-017-9391-x Medhat W, 2014, AIN SHAMS ENG J, V5, P1093, DOI 10.1016/j.asej.2014.04.011 Mishra A, 2018, COGN INTELL ROBOT, P153, DOI 10.1007/978-981-13-1516-9_7 Mishra Abhijit, 2016, P 20 SIGNLL C COMP N, P156 Nandal N, 2020, SPAT INF RES, V28, P601 Omurca S, 2018, 2018 INNOVATIONS INT, P1 Pang R, 2019, J CLEAN PROD, V233, P84, DOI 10.1016/j.jclepro.2019.05.303 Peng BH, 2018, J CLEAN PROD, V197, P1177, DOI 10.1016/j.jclepro.2018.06.283 Peng HY, 2018, KNOWL-BASED SYST, V148, P167, DOI 10.1016/j.knosys.2018.02.034 Martinho VJPD, 2019, SCI TOTAL ENVIRON, V688, P346, DOI 10.1016/j.scitotenv.2019.06.199 Piryani R, 2017, INFORM PROCESS MANAG, V53, P122, DOI 10.1016/j.ipm.2016.07.001 Poria S, 2018, IEEE INTELL SYST, V33, P17, DOI 10.1109/MIS.2018.2882362 Poria S, 2017, INFORM FUSION, V37, P98, DOI 10.1016/j.inffus.2017.02.003 Purnamasari PD, 2017, PROCEEDINGS OF THE 3RD INTERNATIONAL CONFERENCE ON COMMUNICATION AND INFORMATION PROCESSING (ICCIP 2017), P19, DOI 10.1145/3162957.3163012 Qasem M, 2017, 2017 IEEE S SER COMP, P1 Qazi A, 2017, INTERNET RES, V27, P608, DOI 10.1108/IntR-04-2016-0086 Qingxi Peng, 2014, Journal of Software, V9, P2065, DOI 10.4304/jsw.9.8.2065-2072 Rambocas M, 2018, J RES INTERACT MARK, V12, P146, DOI 10.1108/JRIM-05-2017-0030 Rao YH, 2016, INFORM MANAGE-AMSTER, V53, P978, DOI 10.1016/j.im.2016.04.005 Ravi K, 2015, KNOWL-BASED SYST, V89, P14, DOI 10.1016/j.knosys.2015.06.015 Roberts J, 2014, CRIT PERSPECT INT BU, V10, P2, DOI 10.1108/cpoib-12-2013-0053 Roberts ME, 2014, AM J POLIT SCI, V58, P1064, DOI 10.1111/ajps.12103 Rothschild JE, 2019, POLIT BEHAV, V41, P423, DOI 10.1007/s11109-018-9457-5 Sato M, 2017, INT C AG ART INT, P62 Seifollahi S, 2019, J INTELL INF SYST, V52, P57, DOI 10.1007/s10844-018-0504-9 Serrano-Guerrero J, 2015, INFORM SCIENCES, V311, P18, DOI 10.1016/j.ins.2015.03.040 Singh JP, 2017, J BUS RES, V70, P346, DOI 10.1016/j.jbusres.2016.08.008 Singh P, 2017, COMM COM INF SC, V712, P73, DOI 10.1007/978-981-10-5780-9_7 Song M, 2019, INFORM PROCESS MANAG, V56, P637, DOI 10.1016/j.ipm.2018.12.005 Song Y, 2019, COMPUT EDUC, V137, P12, DOI 10.1016/j.compedu.2019.04.002 Sun MY, 2019, IEEE T SMART GRID, V10, P5007, DOI 10.1109/TSG.2018.2873001 Taj S., 2019, P 2 INT C COMP MATH, P1 Tirea M, 2014, INT SYMP SYMB NUMERI, P273, DOI 10.1109/SYNASC.2013.43 Tubishat M, 2018, INFORM PROCESS MANAG, V54, P545, DOI 10.1016/j.ipm.2018.03.008 Tvinnereim E, 2015, NAT CLIM CHANGE, V5, P744, DOI [10.1038/nclimate2663, 10.1038/NCLIMATE2663] Valdivia A, 2020, J AMB INTEL HUM COMP, V11, P39, DOI 10.1007/s12652-018-1150-3 Wu FZ, 2016, NEUROCOMPUTING, V175, P599, DOI 10.1016/j.neucom.2015.10.101 Xiaohui Tao, 2016, Advanced Data Mining and Applications. 12th International Conference, ADMA 2016. Proceedings: LNAI 10086, P807, DOI 10.1007/978-3-319-49586-6_59 Xing FZ, 2019, INFORM PROCESS MANAG, V56, P554, DOI 10.1016/j.ipm.2018.11.002 Yan Q, 2018, TOURISM MANAGE, V66, P348, DOI 10.1016/j.tourman.2017.12.015 Yan Zhao, 2018, Security and Communication Networks, V2018, DOI 10.1155/2018/9178941 Yang QJ, 2019, IEEE INTELL SYST, V34, P43, DOI 10.1109/MIS.2019.2899142 Yang ZK, 2015, INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND ENVIRONMENTAL ENGINEERING (CSEE 2015), P373 Yun YD, 2018, J INF SCI, V44, P331, DOI 10.1177/0165551517692955 Zhang D, 2020, J OPER RES SOC, V71, P528, DOI 10.1080/01605682.2018.1557021 Zhang ZF, 2018, NEUROCOMPUTING, V275, P1407, DOI 10.1016/j.neucom.2017.09.080 Zhao JQ, 2018, IEEE ACCESS, V6, P23253, DOI 10.1109/ACCESS.2017.2776930 Zhao W, 2019, 57TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2019), P1549 Zhou XJ, 2017, 2017 IEEE/WIC/ACM INTERNATIONAL CONFERENCE ON WEB INTELLIGENCE (WI 2017), P533, DOI 10.1145/3106426.3106459 Zupic I, 2015, ORGAN RES METHODS, V18, P429, DOI 10.1177/1094428114562629 NR 144 TC 25 Z9 25 U1 8 U2 78 PU SPRINGER PI NEW YORK PA ONE NEW YORK PLAZA, SUITE 4600, NEW YORK, NY, UNITED STATES SN 1866-9956 EI 1866-9964 J9 COGN COMPUT JI Cogn. Comput. PD NOV PY 2020 VL 12 IS 6 BP 1097 EP 1129 DI 10.1007/s12559-020-09745-1 EA JUL 2020 PG 33 WC Computer Science, Artificial Intelligence; Neurosciences WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Computer Science; Neurosciences & Neurology GA OU4WX UT WOS:000554346600001 DA 2024-09-05 ER PT J AU Schepers, I Medvedeva, M Bruijn, M Wieling, M Vols, M AF Schepers, Iris Medvedeva, Masha Bruijn, Michelle Wieling, Martijn Vols, Michel TI Predicting citations in Dutch case law with natural language processing SO ARTIFICIAL INTELLIGENCE AND LAW LA English DT Article DE Machine learning; Case law; Natural language processing; Citation analysis; Judicial decisions ID NETWORK ANALYSIS AB With the ever-growing accessibility of case law online, it has become challenging to manually identify case law relevant to one's legal issue. In the Netherlands, the planned increase in the online publication of case law is expected to exacerbate this challenge. In this paper, we tried to predict whether court decisions are cited by other courts or not after being published, thus in a way distinguishing between more and less authoritative cases. This type of system may be used to process the large amounts of available data by filtering out large quantities of non-authoritative decisions, thus helping legal practitioners and scholars to find relevant decisions more easily, and drastically reducing the time spent on preparation and analysis. For the Dutch Supreme Court, the match between our prediction and the actual data was relatively strong (with a Matthews Correlation Coefficient of 0.60). Our results were less successful for the Council of State and the district courts (MCC scores of 0.26 and 0.17, relatively). We also attempted to identify the most informative characteristics of a decision. We found that a completely explainable model, consisting only of handcrafted metadata features, performs almost as well as a less well-explainable system based on all text of the decision. C1 [Schepers, Iris; Bruijn, Michelle; Vols, Michel] Univ Groningen, Fac Law, Dept Legal Methods, Groningen, Netherlands. [Schepers, Iris; Wieling, Martijn] Univ Groningen, Fac Arts, Ctr Language & Cognit Groningen, Groningen, Netherlands. [Medvedeva, Masha] Leiden Univ, Fac Law, Ctr Law & Digital Technol, Leiden, Netherlands. C3 University of Groningen; University of Groningen; Leiden University - Excl LUMC; Leiden University RP Schepers, I (corresponding author), Univ Groningen, Fac Law, Dept Legal Methods, Groningen, Netherlands.; Schepers, I (corresponding author), Univ Groningen, Fac Arts, Ctr Language & Cognit Groningen, Groningen, Netherlands. EM i.schepers@rug.nl OI Medvedeva, Masha/0000-0002-2972-8447; Bruijn, Larissa Michelle/0000-0002-1904-8122; Schepers, Iris/0000-0003-4036-5904; Vols, Michel/0000-0002-5762-8697; Wieling, Martijn/0000-0003-0434-1526 FU European Union [949316]; Center for Information Technology of the University of Groningen; European Research Council (ERC) [949316] Funding Source: European Research Council (ERC) FX The research presented in this paper has received funding from the European Union's ERC Research Grant under grant agreement No 949316. We would like to thank the Center for Information Technology of the University of Groningen for their support and for providing access to the Peregrine High Performance Computing Cluster. We would like to thank dr. Marc van Opijnen for making it possible to use the updated LIDO dataset and for his feedback in the early stages of this research. CR Ashley KD, 2017, ARTIFICIAL INTELLIGENCE AND LEGAL ANALYTICS: NEW TOOLS FOR LAW PRACTICE IN THE DIGITAL AGE, P234 Barabási AL, 2003, SCI AM, V288, P60, DOI 10.1038/scientificamerican0503-60 Chalkidis I, 2019, 57TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2019), P4317 Chicco D, 2020, BMC GENOMICS, V21, DOI 10.1186/s12864-019-6413-7 Derlén M, 2017, J INT ECON LAW, V20, P257, DOI 10.1093/jiel/jgx011 Fowler JH, 2008, SOC NETWORKS, V30, P16, DOI 10.1016/j.socnet.2007.05.001 Gholamy A., 2018, Why 70/30 or 80/20 relation between training and testing sets: A pedagogical explanation Hernandez Serrano PV, 2020, FRONT ARTIF INTEL AP, V334, P231, DOI 10.3233/FAIA200871 Katz DM, 2017, PLOS ONE, V12, DOI 10.1371/journal.pone.0174698 Kaur A, 2019, IR C ART INT COGN SC Ke Q, 2015, P NATL ACAD SCI USA, V112, P7426, DOI 10.1073/pnas.1424329112 Leitao JC, 2019, APPL NETW SCI, V4, DOI 10.1007/s41109-018-0110-3 Lippi M, 2019, ARTIF INTELL LAW, V27, P117, DOI 10.1007/s10506-019-09243-2 Medvedeva M, 2021, ASAILLEGALAIIA ICAIL Medvedeva M, 2021, FRONT ARTIF INTEL AP, V346, P13, DOI 10.3233/FAIA210312 Medvedeva M, 2023, ARTIF INTELL LAW, V31, P195, DOI 10.1007/s10506-021-09306-3 Medvedeva M, 2020, ARTIF INTELL LAW, V28, P237, DOI 10.1007/s10506-019-09255-y Moens M F., 1997, Proceedings of the Sixth International Conference on Artificial Intelligence and Law, P114 Mones E, 2021, SCI REP-UK, V11, P1 OSullivan C, 2019, 27 AIAI IR C ART INT Pandya V, 2019, CS IT C P CS IT C P, V9 Sadl U., 2020, RELEVANCE NETWORK AP Sartor G, 2023, ADV CONCEPTUAL MODEL, P102 Sleimi A, 2021, EMPIR SOFTW ENG, V26, DOI 10.1007/s10664-020-09933-5 Sleimi A, 2018, INT REQUIR ENG CONF, P124, DOI 10.1109/RE.2018.00022 Spinosa P, 2009, P 12 INT C ART INT L, P40, DOI DOI 10.1145/1568234.1568240 Strickson Benjamin, 2020, ICISS 2020: Proceedings of the 2020 The 3rd International Conference on Information Science and System, P204, DOI 10.1145/3388176.3388183 Sulea O-M, 2017, ARXIV PREPRINT ARXIV Sulea OM, 2017, 2 WORKSHOP AUTOMATED Van Kuppevelt D, 2017, FRONT ARTIF INTEL AP, V302, P95, DOI 10.3233/978-1-61499-838-9-95 van Opijnen M, 2016, FRONT ARTIF INTEL AP, V294, P155, DOI 10.3233/978-1-61499-726-9-155 Van Opijnen M, 2012, FRONT ARTIF INTEL AP, V250, P95, DOI 10.3233/978-1-61499-167-0-95 VanOpijnen M, 2018, COMPUTERRECHT, V51 VanOpijnen M, 2013, P 14 INT C ART INT L, P140, DOI DOI 10.1145/2514601.2514617 Vapnik VN, 1999, IEEE T NEURAL NETWOR, V10, P988, DOI 10.1109/72.788640 Verheugt J, 2020, INLEIDING NEDERLANDS Virtucio MBL, 2018, P INT COMP SOFTW APP, P130, DOI 10.1109/COMPSAC.2018.10348 Vols M., 2021, LEGAL RES 100 QUESTI Vols M, 2021, METHODEN SYSTEMATISC, P125 Whalen R, 2020, COMPUTATIONAL LEGAL Whalen R., 2016, Mich. St. L. Rev, P539 Winkels R, 2011, AI APPROACHES COMPLE, P106 Wu XD, 2008, KNOWL INF SYST, V14, P1, DOI 10.1007/s10115-007-0114-2 Zhong HX, 2018, 2018 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING (EMNLP 2018), P3540 Zweigert K., 1998, INTRO COMP LAW, V3 edn NR 45 TC 0 Z9 0 U1 5 U2 12 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0924-8463 EI 1572-8382 J9 ARTIF INTELL LAW JI Artif. Intell. Law PD SEP PY 2024 VL 32 IS 3 BP 807 EP 837 DI 10.1007/s10506-023-09368-5 EA JUN 2023 PG 31 WC Computer Science, Artificial Intelligence; Computer Science, Interdisciplinary Applications; Law WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Computer Science; Government & Law GA A3L4V UT WOS:001018103700001 PM 39099768 OA hybrid, Green Published DA 2024-09-05 ER PT C AU Newlin, M Smathers, K DeYoung, ME AF Newlin, Marvin Smathers, Kyle DeYoung, Mark E. GP ASSOC COMP MACHINERY TI ARC Containers for AI Workloads Singularity Performance Overhead SO PEARC '19: PROCEEDINGS OF THE PRACTICE AND EXPERIENCE IN ADVANCED RESEARCH COMPUTING ON RISE OF THE MACHINES (LEARNING) LA English DT Proceedings Paper CT Conference on Practice and Experience in Advanced Research Computing on Rise of the Machines (learning) (PEARC) CY JUL 28-AUG 01, 2019 CL Chicago, IL DE Advanced Research Computing; High Performance Computing; Artificial Intelligence; Machine Learning; Deep Learning AB Containerization has taken the software world by storm. Deployment complications, like requiring elevated (i.e. "root") permissions to run, have slowed the adoption of containers in shared advanced research computing (ARC) environments. Singularity is a containerization approach that is designed for ARC in shared high performance computing (HPC) clusters. With the creation of the Singularity, there is finally a viable scientific container solution. However very few papers have looked at the performance tradeoffs of deploying applications using a container based model. The authors are not aware of any published studies evaluating the tradeoffs of the deployment models with complex Artificial Intelligence (AI) workloads. Without detailed evaluations of the performance trade-offs scientists and engineers are unable to make an informed decision on deployment model for time sensitive training or low power inference. Furthering previous research in this area and using emerging community developed benchmarks, we examine performance trade-offs of running AI workloads in a containerized Singularity environment. C1 [Newlin, Marvin; Smathers, Kyle; DeYoung, Mark E.] Air Force Inst Technol Elect & Comp Engn, Wright Patterson AFB, OH 45433 USA. C3 Air Force Institute of Technology (AFIT) RP Newlin, M (corresponding author), Air Force Inst Technol Elect & Comp Engn, Wright Patterson AFB, OH 45433 USA. EM marvin.newlin@afit.edu; kyle.smathers@afit.edu; mark.deyoung@afit.edu NR 0 TC 0 Z9 0 U1 0 U2 0 PU ASSOC COMPUTING MACHINERY PI NEW YORK PA 1601 Broadway, 10th Floor, NEW YORK, NY, UNITED STATES BN 978-1-4503-7227-5 PY 2019 DI 10.1145/3332186.3333048 PG 8 WC Computer Science, Artificial Intelligence; Computer Science, Theory & Methods WE Conference Proceedings Citation Index - Science (CPCI-S) SC Computer Science GA BT7QE UT WOS:000850448600001 DA 2024-09-05 ER PT J AU de la Paz-Marín, M Campoy-Muñoz, P Hervás-Martínez, C AF de la Paz-Marin, Monica Campoy-Munoz, Pilar Hervas-Martinez, Cesar TI Non-linear multiclassifier model based on Artificial Intelligence to predict research and development performance in European countries SO TECHNOLOGICAL FORECASTING AND SOCIAL CHANGE LA English DT Article DE R&D performance; Neural networks; Evolutionary algorithms; k-means clustering; Multiclassification; European Union ID NEURAL-NETWORKS; PRODUCT-UNIT; TECHNOLOGICAL CAPABILITIES; LOGISTIC-REGRESSION; ENDOGENOUS GROWTH; INNOVATION; SYSTEMS; DESIGN; EXTENSION AB This paper deals with one of the most important keys for economic growth: scientific knowledge and innovation, following the linear Research and Development (R&D) model. Patents, scientific publications and expenditure in R&D as well as the personnel involved in these activities are taken into account as proxy indicators, together with variables related to education and economy in order to classify R&D performance in 25 European Union (EU) Member States. This study classifies these countries using a set of variables which characterize them from 2005 to 2008 and analyses the most relevant ones for this classification. The Multilayer Perceptron Model (MLP) and the Product-Unit Neural Network (EPUNN) models, both trained by evolutionary algorithms (EA), were used to classify yearly country observations in clusters previously defined by employing unsupervised algorithm k-means clustering, obtaining four different classes of national R&D performance: low, moderate, high and innovation driven economies. Finally, our methodology is compared to other classification methods normally used in machine learning. The results show that while various methods of classification exist, our methodology obtains models with a significantly lower number of coefficients without decreasing their accuracy in predicting the classification of other European countries or in these countries in the following years. (C) 2012 Elsevier Inc. All rights reserved. C1 [de la Paz-Marin, Monica; Campoy-Munoz, Pilar] Fac Business Adm, ETEA, Dept Management & Quantitat Methods, Cordoba 14004, Spain. [Hervas-Martinez, Cesar] Univ Cordoba, Dept Comp & Numer Anal, E-14071 Cordoba, Spain. C3 Universidad Loyola Andalucia; Universidad de Cordoba RP de la Paz-Marín, M (corresponding author), Fac Business Adm, ETEA, Dept Management & Quantitat Methods, Escritor Castilla Aguayo 4, Cordoba 14004, Spain. EM mpaz@uco.es; mpcampoy@etea.com; chervas@uco.com RI Campoy-Muñoz, Pilar/J-8879-2012; Campoy-Muñoz, Pilar/GLS-8345-2022; Hervas-Martinez, Cesar/A-3979-2009 OI Campoy-Muñoz, Pilar/0000-0003-4163-3907; Hervas-Martinez, Cesar/0000-0003-4564-1816 CR AGHION P, 1992, ECONOMETRICA, V60, P323, DOI 10.2307/2951599 Alcouffe A, 2004, J EVOL ECON, V14, P223, DOI 10.1007/s00191-004-0205-0 [Anonymous], 2007, SPSS 15.0 Advanced Statistical Procedures Companion [Anonymous], J INFORM SCI TECHNOL [Anonymous], MAIN SCI TECHN IND [Anonymous], 2007, SCI TECHN INN IND CH Archibugi D, 2005, RES POLICY, V34, P175, DOI 10.1016/j.respol.2004.12.002 Bishop C. M., 1995, NEURAL NETWORKS PATT Bode J, 1998, INFORM MANAGE-AMSTER, V34, P33, DOI 10.1016/S0378-7206(98)00043-3 Brinkman R., 2001, Int. J. Soc. Econ, V28, P506 BUCK SF, 1960, J ROY STAT SOC B, V22, P302 Cerulli G, 2012, TECHNOL FORECAST SOC, V79, P875, DOI 10.1016/j.techfore.2011.12.002 Charalambous C, 2000, ANN OPER RES, V99, P403, DOI 10.1023/A:1019292321322 Chiesa V, 2009, R&D MANAGE, V39, P488, DOI 10.1111/j.1467-9310.2009.00554.x Coccia M, 2009, TECHNOL FORECAST SOC, V76, P433, DOI 10.1016/j.techfore.2008.02.008 Conte A., 2009, EUROPEAN COMMISSION, V54 De Smet Y, 2004, EUR J OPER RES, V158, P390, DOI 10.1016/j.ejor.2003.06.012 Durbin R, 1989, NEURAL COMPUT, V1, P133, DOI 10.1162/neco.1989.1.1.133 European Commission, 2012, EUR INN SCOR 2011 CO Fahrenkrog G., 2002, RTD EVALUATION TOOLB Filippetti A, 2011, RES POLICY, V40, P179, DOI 10.1016/j.respol.2010.09.001 Fogel LJ, 1966, Artificial Intelligence Through Simulated Evaluation Furman JL, 2002, RES POLICY, V31, P899, DOI 10.1016/S0048-7333(01)00152-4 GEMMELL N, 1995, ECON PLANN, V28, P169, DOI 10.1007/BF01263636 Godin B, 2006, SCI TECHNOL HUM VAL, V31, P639, DOI 10.1177/0162243906291865 Goldberg DE, 2000, TECHNOL FORECAST SOC, V64, P7, DOI 10.1016/S0040-1625(99)00079-7 GRILICHES Z, 1990, J ECON LIT, V28, P1661, DOI 10.3386/w3301 Griliches Z., 1998, RD and Productivity: The Econometric Evidence Grossman G. M., 1991, Innovation and growth in the global economy Gruca TS, 1998, OMEGA-INT J MANAGE S, V26, P49, DOI 10.1016/S0305-0483(97)00046-7 Guan JC, 2006, TECHNOL FORECAST SOC, V73, P666, DOI 10.1016/j.techfore.2005.05.009 Guellec D., 2001, OECD Economic Studies, V33, P103, DOI DOI 10.1787/652870318341 Gutiérrez PA, 2010, OMEGA-INT J MANAGE S, V38, P333, DOI 10.1016/j.omega.2009.11.001 Hájková V, 2010, INT C COMMUN MANAGE, P46 Hall M., 2009, ACM SIGKDD Explor. Newsl., V11, P10, DOI DOI 10.1145/1656274.1656278 Hartigan J. A., 1979, Applied Statistics, V28, P100, DOI 10.2307/2346830 Hayken S., 1994, NEURAL NETWORKS Hervás-Martínez C, 2007, PATTERN RECOGN, V40, P52, DOI 10.1016/j.patcog.2006.06.003 Holland J, 1975, Adaptation in natural and artificial systems: An introductory analysis with applications to biology, control, and artificial intelligence, DOI DOI 10.7551/MITPRESS/1090.001.0001 KerssensvanDrongelen IC, 1997, R&D MANAGE, V27, P345, DOI 10.1111/1467-9310.00070 Kline S., 1986, OVERVIEW INNOVATION, DOI DOI 10.1108/14601069810368485 Kuhlmann S, 2003, TECHNOL FORECAST SOC, V70, P619, DOI 10.1016/S0040-1625(03)00027-1 Landwehr N, 2005, MACH LEARN, V59, P161, DOI 10.1007/s10994-005-0466-3 Lippmann RP, 1989, NEURAL COMPUT, V1, P1, DOI 10.1162/neco.1989.1.1.1 Loikkanen T, 2009, TECHNOL FORECAST SOC, V76, P1177, DOI 10.1016/j.techfore.2009.07.011 LUCAS RE, 1988, J MONETARY ECON, V22, P3, DOI 10.1016/0304-3932(88)90168-7 Martínez-Estudillo A, 2006, NEURAL NETWORKS, V19, P477, DOI 10.1016/j.neunet.2005.11.001 O'Donnell FJ, 2002, INT J OPER PROD MAN, V22, P1198, DOI 10.1108/01443570210450301 *OECD, 1994, PROP STAND PRACT SUR OECD (Organization for Economic Co-operation and Development), 1992, TECHN EC KEY REL Ojanen V., 2003, 16 LAPP U TECHN TEL Padmore T, 1998, RES POLICY, V26, P605, DOI 10.1016/S0048-7333(97)00039-5 PORTER ME, 1990, HARVARD BUS REV, V68, P73 Rechenberg I., 1973, Evolutionsstrategie-optimierung technisher systeme nach prinzipien der biologischen evolution Romer P.M., 2001, INNOVATION POLICY EC ROMER PM, 1990, J POLIT ECON, V98, pS71, DOI 10.1086/261725 SEGERSTROM PS, 1990, AM ECON REV, V80, P1077 Sheskin DJ., 2004, HDB PARAMETRIC NONPA Smith KA, 2000, COMPUT OPER RES, V27, P1023, DOI 10.1016/S0305-0548(99)00141-0 Soudien C, 2002, INT J EDUC DEV, V22, P439, DOI 10.1016/S0738-0593(02)00005-6 Trippi R., 1994, NEURAL NETWORKS FINA Varsakelis NC, 2006, RES POLICY, V35, P1083, DOI 10.1016/j.respol.2006.06.002 Wang EC, 2007, J POLICY MODEL, V29, P345, DOI 10.1016/j.jpolmod.2006.12.005 Watts RJ, 1997, TECHNOL FORECAST SOC, V56, P25, DOI 10.1016/S0040-1625(97)00050-4 Yao X, 1997, IEEE T NEURAL NETWOR, V8, P694, DOI 10.1109/72.572107 Zanakis SH, 2005, EUR J OPER RES, V166, P185, DOI 10.1016/j.ejor.2004.03.028 NR 66 TC 19 Z9 20 U1 0 U2 79 PU ELSEVIER SCIENCE INC PI NEW YORK PA STE 800, 230 PARK AVE, NEW YORK, NY 10169 USA SN 0040-1625 EI 1873-5509 J9 TECHNOL FORECAST SOC JI Technol. Forecast. Soc. Chang. PD NOV PY 2012 VL 79 IS 9 BP 1731 EP 1745 DI 10.1016/j.techfore.2012.06.001 PG 15 WC Business; Regional & Urban Planning WE Social Science Citation Index (SSCI) SC Business & Economics; Public Administration GA 031UI UT WOS:000310667500013 DA 2024-09-05 ER PT S AU Okada, T Takasu, A Adachi, J AF Okada, T Takasu, A Adachi, J BE Heery, R Lyon, L TI Bibliographic component extraction using support vector machines and hidden Markov models SO RESEARCH AND ADVANCED TECHNOLOGY FOR DIGITAL LIBRARIES SE Lecture Notes in Computer Science LA English DT Article; Proceedings Paper CT 8th European Conference on Research and Advanced Technology for Digital Libraries (ECDL 2004) CY SEP 12-17, 2004 CL Univ Bath, Bath, ENGLAND HO Univ Bath AB Article citations are composed of subfields such as 'author', 'title', 'journal', and 'year'. It is useful to automatically identify attributes of these subfields, since they are used for linking a citation with the actual cited article. In this article, we employ a Support Vector Machine (SVM), a method of machine learning, to automatically identify subfields. We then employ a Hidden Markov Model (HMM) to improve the identification accuracy. Information from the subfields identified by the SVM, and syntactic information analyzed by the HMM, are integrated to make an accurate identification. C1 Univ Tokyo, Tokyo, Japan. Natl Inst Informat, Chiyoda Ku, Tokyo, Japan. C3 University of Tokyo; Research Organization of Information & Systems (ROIS); National Institute of Informatics (NII) - Japan RP Univ Tokyo, 7-3-1 Bunkyo Ku, Tokyo, Japan. EM takashi@nii.ac.jp; takasu@nii.ac.jp; adachi@nii.ac.jp CR AIZAWA A, 2004, NII J, P43 [Anonymous], 1999, REPOSIT TU DORTMUND, DOI DOI 10.17877/DE290R-5098 AYRES FH, 1988, PROGRAM-AUTOM LIBR, V22, P117, DOI 10.1108/eb046992 Bilenko M., 2003, P 9 ACM SIGKDD INT C, P39, DOI [DOI 10.1145/956750.956759, 10.1145/956750.956759] Hsu CW., 2001, COMP METHODS MULTICL ITHO T, 2003, 2003DBS130 IPSJ SIG, P181 KITA K, 1999, COMPUTATION LANGUAGE, V4 Lawrence S, 1999, COMPUTER, V32, P67, DOI 10.1109/2.769447 Ristad ES, 1998, IEEE T PATTERN ANAL, V20, P522, DOI 10.1109/34.682181 Takasu A., 1996, Proceedings of the 13th International Conference on Pattern Recognition, P175, DOI 10.1109/ICPR.1996.546933 Takasu A, 2003, ACM-IEEE J CONF DIG, P49, DOI 10.1109/JCDL.2003.1204843 Takasu A, 1998, INT C PATT RECOG, P932, DOI 10.1109/ICPR.1998.711387 NR 12 TC 4 Z9 5 U1 0 U2 2 PU SPRINGER-VERLAG BERLIN PI BERLIN PA HEIDELBERGER PLATZ 3, D-14197 BERLIN, GERMANY SN 0302-9743 EI 1611-3349 BN 3-540-23013-0 J9 LECT NOTES COMPUT SC PY 2004 VL 3232 BP 501 EP 512 PG 12 WC Computer Science, Information Systems; Computer Science, Theory & Methods WE Conference Proceedings Citation Index - Science (CPCI-S); Science Citation Index Expanded (SCI-EXPANDED) SC Computer Science GA BAX48 UT WOS:000224092600046 DA 2024-09-05 ER PT J AU Huang, H Zhu, DH Wang, XF AF Huang, Heng Zhu, Donghua Wang, Xuefeng TI Evaluating scientific impact of publications: combining citation polarity and purpose SO SCIENTOMETRICS LA English DT Article DE Scientific impact; Citation polarity; Citation purpose; CNN; Word2Vec ID SCIENCE; COLLABORATION; RANKING; INDEX; TOOL AB Citation counts are commonly used to evaluate the scientific impact of a publication on the general premise that more citations probably mean more endorsements. However, two questionable assumptions underpin this idea: a) that all authors contributed equally to the paper; and b) that the endorsement is positive. Obviously, neither of these assumptions hold true. Hence, with this study, we examine two components of citations-their purpose, i.e., the reason for the citation, and polarity, being the author's attitude toward the cited work. Our findings provide a new perspective on the scientific impact of highly-cited publications. Our methodology consists of three steps. Firstly, a pre-trained model composed of a Word2Vec-a well-known word embedding approach-and a convolutional neural network (CNN) is used to identify citation polarity and purpose. Secondly, in a set of highly-cited papers, we compare eight categories of purpose from foundational to critical and three categories of polarity: positive, negative, and neutral. We further explore how different types of papers-those discussing discoveries or those discussing utilitarian topics-influence the evaluation of scientific impact of papers. Finally, we mine and discover the knowledge (e.g. method, concept, tool or data) to explain the actual scientific impact of a highly-cited paper. To demonstrate how combining citation polarity with purpose can provide far greater details of a paper's scientific impact, we undertake a case study with 370 highly-cited journal articles spanning "Biochemistry & Molecular Biology" and "Genetics & Heredity". The results yield valuable insights into the assumption about citation counts as a metric for evaluating scientific impact. C1 [Huang, Heng; Zhu, Donghua; Wang, Xuefeng] Beijing Inst Technol, Sch Management & Econ, Beijing 100081, Peoples R China. C3 Beijing Institute of Technology RP Wang, XF (corresponding author), Beijing Inst Technol, Sch Management & Econ, Beijing 100081, Peoples R China. EM wxf5122@bit.edu.cn OI Wang, xuefeng/0000-0002-4857-6944 FU General Program of the National Natural Science Foundation of China [72074020, 71774012] FX This work was supported by the General Program of the National Natural Science Foundation of China under Grant Nos. 72074020 and 71774012. The findings and observations in this paper are those of the authors and do not necessarily reflect the views of the supporters. CR Abu-Jbara A., 2013, NAACL, P596 Akella AP, 2021, J INFORMETR, V15, DOI 10.1016/j.joi.2020.101128 Alam M. B., 2015, ARXIV PREPRINT ARXIV [Anonymous], 2012, 2012 Conference of the North American Chapter of the Association for Computational Linguistics [Anonymous], 1998, Tech. Rep., DOI DOI 10.1007/978-3-319-08789-4_10 Athar A., 2011, P ACL 2011 STUD SESS, P81 Bergstrom CT, 2008, J NEUROSCI, V28, P11433, DOI 10.1523/JNEUROSCI.0003-08.2008 BONZI S, 1982, J AM SOC INFORM SCI, V33, P208, DOI 10.1002/asi.4630330404 Bornmann L, 2017, J INFORMETR, V11, P164, DOI 10.1016/j.joi.2016.12.001 Bu Y, 2021, QUANT SCI STUD, V2, P155, DOI 10.1162/qss_a_00109 Butler D, 2008, NATURE, V451, P6, DOI 10.1038/451006a Chi PS, 2017, SCIENTOMETRICS, V112, P403, DOI 10.1007/s11192-017-2356-4 Crane D., 1972, Invisible colleges. Diffusion of knowledge in scientific communities Egghe L, 2011, SCIENTOMETRICS, V89, P727, DOI 10.1007/s11192-011-0483-x Egghe L, 2006, SCIENTOMETRICS, V69, P131, DOI 10.1007/s11192-006-0144-7 Fujiwara T, 2015, J BIOMED SEMANT, V6, DOI 10.1186/s13326-015-0037-x GARFIELD E, 1979, SCIENTOMETRICS, V1, P359, DOI 10.1007/BF02019306 GARFIELD E, 1972, SCIENCE, V178, P471, DOI 10.1126/science.178.4060.471 Garfield E, 1979, CITATION INDEXING IT Hernández-Alvarez M, 2017, NAT LANG ENG, V23, P561, DOI 10.1017/S1351324916000346 Hernández-Alvarez M, 2015, 2015 IEEE 18TH INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE AND ENGINEERING (CSE), P307, DOI 10.1109/CSE.2015.21 Hirsch JE, 2005, P NATL ACAD SCI USA, V102, P16569, DOI 10.1073/pnas.0507655102 Hutchins BI, 2016, PLOS BIOL, V14, DOI 10.1371/journal.pbio.1002541 Ikram MT, 2019, SCIENTOMETRICS, V119, P73, DOI 10.1007/s11192-019-03028-9 Insu Kim, 2015, 2015 IEEE 42nd Photovoltaic Specialist Conference (PVSC). Proceedings, P1, DOI 10.1109/PVSC.2015.7356246 Jha R, 2017, NAT LANG ENG, V23, P93, DOI 10.1017/S1351324915000443 Jiang XR, 2019, J INFORMETR, V13, DOI 10.1016/j.joi.2019.100977 Jochim C., 2012, P COLING 2012, P1343 Jochim C, 2014, PROCEEDINGS OF THE 52ND ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, VOL 2, P42 Koshland DE, 2007, SCIENCE, V317, P761, DOI 10.1126/science.1147166 Kosmulski M., 2006, ISSI NEWSLETTER, V2, P4, DOI [10.1177/01655515211014478, DOI 10.1177/01655515211014478] Lauscher A., 2017, P 6 INT WORKSH MIN S, DOI [DOI 10.1145/3127526.3127531, https://doi.org/10.1145/3127526.3127531] Leydesdorff L, 2019, J ASSOC INF SCI TECH, V70, P198, DOI 10.1002/asi.24109 Li X., 2013, Proceedings of Recent Advances in Natural Language Processing, P402 Lin CS, 2018, SCIENTOMETRICS, V116, P797, DOI 10.1007/s11192-018-2770-2 MACROBERTS MH, 1984, SOC STUD SCI, V14, P91, DOI 10.1177/030631284014001006 MORAVCSIK MJ, 1975, SOC STUD SCI, V5, P86, DOI 10.1177/030631277500500106 Nanba H, 1999, IJCAI-99: PROCEEDINGS OF THE SIXTEENTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOLS 1 & 2, P926 Parthasarathy G, 2014, 2014 5TH INTERNATIONAL CONFERENCE CONFLUENCE THE NEXT GENERATION INFORMATION TECHNOLOGY SUMMIT (CONFLUENCE), P923, DOI 10.1109/CONFLUENCE.2014.6949321 Qayyum F, 2019, SCIENTOMETRICS, V118, P21, DOI 10.1007/s11192-018-2961-x Schubert A, 2009, SCIENTOMETRICS, V78, P559, DOI 10.1007/s11192-008-2208-3 Small H, 2017, J INFORMETR, V11, P46, DOI 10.1016/j.joi.2016.11.001 SPIEGELROSING I, 1977, SOC STUD SCI, V7, P97, DOI 10.1177/030631277700700111 Tahamtan I, 2019, SCIENTOMETRICS, V121, P1635, DOI 10.1007/s11192-019-03243-4 Taskin Z, 2018, SCIENTOMETRICS, V114, P335, DOI 10.1007/s11192-017-2560-2 Teufel S., 2006, P C EMP METH NAT LAN, DOI 10.3115/1610075.1610091 Winnink JJ, 2019, TECHNOL FORECAST SOC, V146, P673, DOI 10.1016/j.techfore.2018.05.018 Xiao X, 2013, 2013 CONFERENCE ON LASERS AND ELECTRO-OPTICS PACIFIC RIM (CLEO-PR) Yan EJ, 2020, J ASSOC INF SCI TECH, V71, P314, DOI 10.1002/asi.24237 Yan EJ, 2018, SCIENTOMETRICS, V115, P369, DOI 10.1007/s11192-017-2583-8 Zhang Y., 2015, ARXIV Zhang YJ, 2018, SCIENTOMETRICS, V114, P1345, DOI 10.1007/s11192-017-2626-1 Zhou ZG, 2018, J VISUAL LANG COMPUT, V48, P134, DOI 10.1016/j.jvlc.2018.08.007 NR 53 TC 9 Z9 9 U1 4 U2 67 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0138-9130 EI 1588-2861 J9 SCIENTOMETRICS JI Scientometrics PD SEP PY 2022 VL 127 IS 9 BP 5257 EP 5281 DI 10.1007/s11192-021-04183-8 EA OCT 2021 PG 25 WC Computer Science, Interdisciplinary Applications; Information Science & Library Science WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Computer Science; Information Science & Library Science GA 4L1UW UT WOS:000712768100001 DA 2024-09-05 ER PT J AU Sousa, AL Ribeiro, TP Relvas, S Barbosa-Póvoa, A AF Sousa, Ana L. Ribeiro, Tiago P. Relvas, Susana Barbosa-Povoa, Ana TI Using Machine Learning for Enhancing the Understanding of Bullwhip Effect in the Oil and Gas Industry SO MACHINE LEARNING AND KNOWLEDGE EXTRACTION LA English DT Article DE artificial neural networks; bullwhip effect; oil and gas industry; research proposal; supply networks; machine learning ID ARTIFICIAL NEURAL-NETWORKS; SUPPLY CHAIN MANAGEMENT; MODEL-PREDICTIVE CONTROL; DECISION-SUPPORT-SYSTEM; INVENTORY MANAGEMENT; BIG DATA; FEEDFORWARD NETWORKS; LEAD TIME; DEMAND; IMPACT AB Several suppliers of oil and gas (O & G) equipment and services have reported the necessity of making frequent resources planning adjustments due to the variability of demand, which originates in unbalanced production levels. The occurrence of these specific problems for the suppliers and operators is often related to the bullwhip effect. For studying such a problem, a research proposal is herein presented. Studying the bullwhip effect in the O & G industry requires collecting data from different levels of the supply chain, namely: services, upstream and midstream suppliers, and downstream clients. The first phase of the proposed research consists of gathering the available production and financial data. A second phase will be the statistical treatment of the data in order to evaluate the importance of the bullwhip effect in the oil and gas industry. The third phase of the program involves applying artificial neural networks (ANN) to forecast the demand. At this stage, ANN based on different training methods will be used. Further on, the attained mathematical model will be used to simulate the effects of demand fluctuations and assess the bullwhip effect in an oil and gas supply chain. C1 [Sousa, Ana L.] Univ Lisbon, Inst Super Tecn, CERENA, P-1049001 Lisbon, Portugal. [Ribeiro, Tiago P.] Tal Projecto Lda, P-1350252 Lisbon, Portugal. [Relvas, Susana; Barbosa-Povoa, Ana] Univ Lisbon, Inst Super Tecn, CEG IST, P-1049001 Lisbon, Portugal. C3 Universidade de Lisboa; Universidade de Lisboa RP Sousa, AL (corresponding author), Univ Lisbon, Inst Super Tecn, CERENA, P-1049001 Lisbon, Portugal. EM ana.margarida.sousa@tecnico.ulisboa.pt; tpribeiro@gmail.com; susana.relvas@tecnico.ulisboa.pt; apovoa@tecnico.ulisboa.pt RI Ribeiro, Tiago Pinto/Q-6280-2018; Barbosa-Povoa, Ana/AFM-0470-2022; Barbosa-Povoa, Ana/AAH-2812-2022; Relvas, Susana/D-7556-2011; Sousa, Ana/AAB-3319-2019 OI Ribeiro, Tiago Pinto/0000-0002-5967-0864; Barbosa-Povoa, Ana/0000-0001-6594-9653; Barbosa-Povoa, Ana/0000-0001-6594-9653; Relvas, Susana/0000-0003-3043-6086; Sousa, Ana/0000-0003-2869-2195 FU Fundacao para a Ciencia e a Tecnologia, I. P [SFRH/BD/131005/2017]; Fundação para a Ciência e a Tecnologia [SFRH/BD/131005/2017] Funding Source: FCT FX This research was funded by Fundacao para a Ciencia e a Tecnologia, I. P, grant number SFRH/BD/131005/2017. CR Abambres M, 2018, COMPUTERS, V8, DOI 10.3390/computers8010002 Aggelogiannaki E, 2008, INT J PROD ECON, V114, P165, DOI 10.1016/j.ijpe.2008.01.003 Agrawal S, 2009, EUR J OPER RES, V192, P576, DOI 10.1016/j.ejor.2007.09.015 Ahmadi M.A., 2015, Petroleum, V1, P118, DOI [DOI 10.1016/J.PETLM.2015.06.004, 10.1016/j.petlm.2015.06.004] AlSudairi M., 2012, INT J MANAG VALUE SU, V3, P27, DOI DOI 10.5121/IJMVSC.2012.3403 Arjun KS, 2015, J ENG SCI TECHNOL, V10, P1477 Azhar M., 2013, STUDY BULLWHIP EFFEC Barlas Y, 2011, J OPER RES SOC, V62, P458, DOI 10.1057/jors.2010.188 Beheshti HM, 2010, INT J PRODUCT PERFOR, V59, P452, DOI 10.1108/17410401011052887 Bello O, 2016, SOC PET ENG SPE NIG, DOI [10.2118/184320-ms, DOI 10.2118/184320-MS] Bhattacharya S, 2011, DECIS SUPPORT SYST, V50, P576, DOI 10.1016/j.dss.2010.08.011 Birkel HS, 2019, SUSTAINABILITY-BASEL, V11, DOI 10.3390/su11020384 Boute RN, 2007, EUR J OPER RES, V178, P121, DOI 10.1016/j.ejor.2006.01.023 Bravo C, 2014, SPE J, V19, P547, DOI 10.2118/150314-PA BROWN DJH, 1977, KYBERNETES, V6, P245, DOI 10.1108/eb005457 Cachon GP, 2007, M&SOM-MANUF SERV OP, V9, P457, DOI 10.1287/msom.1060.0149 Cachon GP, 2000, MANAGE SCI, V46, P1032, DOI 10.1287/mnsc.46.8.1032.12029 Caloiero G, 2008, INT J PROD ECON, V114, P631, DOI 10.1016/j.ijpe.2007.10.009 Cannella S, 2010, INT J PROD RES, V48, P6739, DOI 10.1080/00207540903252308 Carbonneau R, 2008, EUR J OPER RES, V184, P1140, DOI 10.1016/j.ejor.2006.12.004 Carlsson C., 2001, P 34 ANN HAW INT C S Carvajal G., 2018, Intelligent Digital Oil and Gas Fields Chaharsooghi SK, 2010, INT J PROD ECON, V124, P475, DOI 10.1016/j.ijpe.2009.12.010 Chandra C, 2005, EUR J OPER RES, V166, P337, DOI 10.1016/j.ejor.2004.02.012 Chao Y.F., 2013, ADV MAT RES, V711, P799, DOI DOI 10.4028/WWW.SCIENTIFIC.NET/AMR.711.799 Chatfield DC, 2004, PROD OPER MANAG, V13, P340, DOI 10.1111/j.1937-5956.2004.tb00222.x Chawla A, 2019, ADV INTELL SYST, V697, P79, DOI 10.1007/978-981-13-1822-1_8 Chen F, 2000, MANAGE SCI, V46, P436, DOI 10.1287/mnsc.46.3.436.12069 Chen F., 1999, QUANT MODEL SUPPLY C, V17, P419 Chen L, 2009, MANAGE SCI, V55, P781, DOI 10.1287/mnsc.1080.0983 Ciancimino E, 2012, EUR J OPER RES, V221, P49, DOI 10.1016/j.ejor.2012.02.039 Coleman Julian, 2010, International Journal of Networking and Virtual Organisations, V7, P257, DOI 10.1504/IJNVO.2010.031221 Coppini M, 2010, INT J PROD RES, V48, P3943, DOI 10.1080/00207540902896204 Croson R, 2006, MANAGE SCI, V52, P323, DOI 10.1287/mnsc.1050.0436 Croson R, 2003, PROD OPER MANAG, V12, P1, DOI 10.1111/j.1937-5956.2003.tb00194.x Cucker F, 2002, B AM MATH SOC, V39, P1 Dai JH, 2017, PROCEDIA ENGINEER, V174, P1229, DOI 10.1016/j.proeng.2017.01.291 Dejonckheere J, 2003, EUR J OPER RES, V147, P567, DOI 10.1016/S0377-2217(02)00369-7 Dejonckheere J, 2002, INT J PROD ECON, V78, P133, DOI 10.1016/S0925-5273(01)00084-6 Disney SM, 2006, EUR J OPER RES, V173, P151, DOI 10.1016/j.ejor.2005.01.026 Disney SM, 2003, INT J OPER PROD MAN, V23, P625, DOI 10.1108/01443570310476654 Disney SM, 2004, INT J PROD ECON, V90, P295, DOI 10.1016/j.ijpe.2003.10.009 Disney SM, 2007, EUR J IND ENG, V1, P241, DOI 10.1504/EJIE.2007.014686 Dyckhoff H., 2004, SUPPLY CHAIN MANAGEM Edwards RE, 2017, APPL ENERG, V202, P685, DOI 10.1016/j.apenergy.2017.05.155 Feng J., 2010, 2010 INT C LOG ENG M, V387, P4336 Ferri M, 2019, MACH LEARN KNOW EXTR, V1, P115, DOI 10.3390/make1010006 FLOOD I, 1994, J COMPUT CIVIL ENG, V8, P131, DOI 10.1061/(ASCE)0887-3801(1994)8:2(131) Flood I, 2008, ADV ENG INFORM, V22, P4, DOI 10.1016/j.aei.2007.07.001 FORRESTER JW, 1958, HARVARD BUS REV, V36, P37 FORRESTER JW, 1968, MANAGE SCI, V14, P398, DOI 10.1287/mnsc.14.7.398 Fradinata E, 2017, INT J ADV APPL SCI, V4, P64, DOI 10.21833/ijaas.2017.010.011 Fu DF, 2015, COMPUT IND ENG, V81, P46, DOI 10.1016/j.cie.2014.12.024 Fu DF, 2014, COMPUT IND ENG, V73, P21, DOI 10.1016/j.cie.2014.04.003 Geary S, 2006, INT J PROD ECON, V101, P2, DOI 10.1016/j.ijpe.2005.05.009 Gholizadeh S, 2011, J CONSTR STEEL RES, V67, P770, DOI 10.1016/j.jcsr.2011.01.001 Guo SZ, 2006, 2006 INTERNATIONAL CONFERENCE ON SERVICE SYSTEMS AND SERVICE MANAGEMENT, VOLS 1 AND 2, PROCEEDINGS, P1455 HAGAN MT, 1994, IEEE T NEURAL NETWOR, V5, P989, DOI 10.1109/72.329697 Hahn CK, 2000, INTERFACES, V30, P32, DOI 10.1287/inte.30.4.32.11642 Hertzmann A., 2012, Machine Learning and Data Mining Lecture Notes Huang GB, 2007, NEUROCOMPUTING, V70, P3056, DOI 10.1016/j.neucom.2007.02.009 Huang GB, 2006, NEUROCOMPUTING, V70, P489, DOI 10.1016/j.neucom.2005.12.126 Huang GB, 2006, IEEE T NEURAL NETWOR, V17, P879, DOI 10.1109/TNN.2006.875977 Huang XY, 2007, INT J PROD RES, V45, P207, DOI 10.1080/00207540600678912 Hutter F, 2014, ARTIF INTELL-AMST, V206, P79, DOI 10.1016/j.artint.2013.10.003 Ilie-Zudor E, 2015, SUPPLY CHAIN MANAG, V20, P369, DOI 10.1108/SCM-10-2014-0323 Ingalls R. G., 2005, International Journal of Simulation & Process Modelling, V1, P90 Jacoby D, 2010, OIL GAS J, V108, P20 Jaksic M, 2008, EUR J OPER RES, V184, P946, DOI 10.1016/j.ejor.2006.12.018 Kadivar M, 2018, APPL MATH MODEL, V59, P319, DOI 10.1016/j.apm.2018.01.028 KAHN JA, 1987, AM ECON REV, V77, P667 de Almeida MMK, 2015, INT J ADV MANUF TECH, V77, P495, DOI 10.1007/s00170-014-6444-9 Kaisler S, 2013, P ANN HICSS, P995, DOI 10.1109/HICSS.2013.645 Kasun LLC, 2016, IEEE T IMAGE PROCESS, V25, P3906, DOI 10.1109/TIP.2016.2570569 Kelepouris T, 2008, COMPUT OPER RES, V35, P3657, DOI 10.1016/j.cor.2007.04.004 Kim H, 2008, EUR J OPER RES, V189, P172, DOI 10.1016/j.ejor.2007.05.012 Kim JG, 2006, EUR J OPER RES, V173, P617, DOI 10.1016/j.ejor.2005.01.043 Kuo RJ, 2001, FUZZY SET SYST, V118, P21, DOI 10.1016/S0165-0114(98)00399-6 LACHTERMACHER G, 1995, J FORECASTING, V14, P381, DOI 10.1002/for.3980140405 Lampret T., 2014, Logistics sustainable transport, V5, DOI DOI 10.1515/JLST-2015-0005 Lau HCW, 2013, DECIS SUPPORT SYST, V54, P1404, DOI 10.1016/j.dss.2012.12.008 Lee HL, 2004, HARVARD BUS REV, V82, P102 Lee HL, 1997, MANAGE SCI, V43, P546, DOI 10.1287/mnsc.43.4.546 Liang NY, 2006, IEEE T NEURAL NETWOR, V17, P1411, DOI 10.1109/TNN.2006.880583 Litjens G, 2016, SCI REP-UK, V6, DOI 10.1038/srep26286 Liu HJ, 2015, ADV INTEL SYS RES, V124, P177 Liu P, 2016, DISCRETE DYN NAT SOC, V2016, DOI 10.1155/2016/2026715 Lockwood A., 2014, THESIS Lotfi Z, 2013, PROC TECH, V11, P298, DOI 10.1016/j.protcy.2013.12.194 Makajic-Nikolic D., 2004, Fifth Workshop and Tutorial on Practical Use of Coloured Petri Nets and the CPN Tools, P219 MCCULLOCH WS, 1943, B MATH BIOPHYS, V5, P115, DOI DOI 10.1007/BF02478259 Mentzer J.T., 2001, J BUSINESS LOGISTICS, V22, P1, DOI [DOI 10.1002/J.2158-1592.2001.TB00001.X, 10.1002/j.2158-1592.2001.tb00001.x] Metters R., 1997, Journal of Operations Management, V15, P89, DOI 10.1016/S0272-6963(96)00098-8 Mirzaei-Paiaman A, 2012, ENERG SOURCE PART A, V34, P1834, DOI 10.1080/15567036.2010.492386 Mohammad R.M., 2016, Intellect. Econ., DOI [10.1016/j.intele.2017.02.001, DOI 10.1016/J.INTELE.2017.02.001] Moyaux T, 2007, IEEE T SYST MAN CY C, V37, P396, DOI 10.1109/TSMCC.2006.887014 Müller JM, 2018, PROCESSES, V6, DOI 10.3390/pr6120260 Müller JM, 2018, SUSTAINABILITY-BASEL, V10, DOI 10.3390/su10010247 Mukherjee A, 1996, J STRUCT ENG-ASCE, V122, P1385, DOI 10.1061/(ASCE)0733-9445(1996)122:11(1385) Musa A, 2019, MACH LEARN KNOW EXTR, V1, P205, DOI 10.3390/make1010012 Nagaraja CH, 2018, EUR J OPER RES, V267, P96, DOI 10.1016/j.ejor.2017.11.015 Nienhaus J, 2006, PROD PLAN CONTROL, V17, P547, DOI 10.1080/09537280600866587 Pacheco ED, 2017, COMPUT IND ENG, V113, P347, DOI 10.1016/j.cie.2017.09.015 Park H, 2016, DECIS SUPPORT SYST, V91, P89, DOI 10.1016/j.dss.2016.08.003 Prakash A, 2012, DECIS SUPPORT SYST, V52, P528, DOI 10.1016/j.dss.2011.10.024 Prieto A, 2016, NEUROCOMPUTING, V214, P242, DOI 10.1016/j.neucom.2016.06.014 Pu YC, 2006, ENG STRUCT, V28, P1190, DOI 10.1016/j.engstruct.2005.12.009 RUMELHART DE, 1986, NATURE, V323, P533, DOI 10.1038/323533a0 Sage A.P., 2000, INTRO SYSTEMS ENG Sarkar S, 2016, DECIS SCI-J INNOV ED, V14, P25, DOI 10.1111/dsji.12091 Sherhart E., 2013, BULLWHIP EFFECT RECO Slimani I, 2015, INT CONF INTELL SYST, P266, DOI 10.1109/ISDA.2015.7489236 Sodhi MS, 2011, EUR J OPER RES, V215, P374, DOI 10.1016/j.ejor.2011.06.019 Solà-Serrabou M, 2019, APUNT EDUC FIS DEPOR, P30, DOI 10.5672/apunts.2014-0983.es.(2019/3).137.03 Sousa AL, 2019, J PET EXPLOR PROD TE, V9, P2091, DOI 10.1007/s13202-019-0609-x Springer M, 2010, EUR J OPER RES, V203, P380, DOI 10.1016/j.ejor.2009.08.009 STERMAN JD, 1989, MANAGE SCI, V35, P321, DOI 10.1287/mnsc.35.3.321 Stock T, 2016, PROC CIRP, V40, P536, DOI 10.1016/j.procir.2016.01.129 Stock T, 2018, PROCESS SAF ENVIRON, V118, P254, DOI 10.1016/j.psep.2018.06.026 Sucky E, 2009, INT J PROD ECON, V118, P311, DOI 10.1016/j.ijpe.2008.08.035 Tanweer A, 2014, PROCD SOC BEHV, V138, P289, DOI 10.1016/j.sbspro.2014.07.206 Toh Albert K., 2014, International Journal of Society Systems Science, V6, P308, DOI 10.1504/IJSSS.2014.066642 Tohidi Sajjad, 2015, IES Journal Part A: Civil & Structural Engineering, V8, P24, DOI 10.1080/19373260.2014.955139 Torabi F, 2011, PETROL SCI TECHNOL, V29, P804, DOI 10.1080/10916460903485876 Tsay A. A., 1999, Manufacturing & Service Operations Management, V1, P89, DOI 10.1287/msom.1.2.89 Wang F, 2011, DECIS SUPPORT SYST, V51, P262, DOI 10.1016/j.dss.2010.11.020 Wang JL, 2010, EXPERT SYST APPL, V37, P4726, DOI 10.1016/j.eswa.2009.09.071 Wang P, 2007, J EXP THEOR ARTIF IN, V19, P249, DOI 10.1080/09528130601143109 Wang X, 2016, EUR J OPER RES, V250, P691, DOI 10.1016/j.ejor.2015.07.022 Wilamowski B.M., 2011, IND ELECT HDB INTELL, V1 Wright D, 2008, INT J PROD ECON, V113, P587, DOI 10.1016/j.ijpe.2007.10.022 Yoo Y, 2015, J INF TECHNOL-UK, V30, P63, DOI 10.1057/jit.2014.30 Yu ZX, 2001, IND MANAGE DATA SYST, V101, P114, DOI 10.1108/02635570110386625 Zhang JH, 2013, APPL MECH MATER, V295-298, P3310, DOI 10.4028/www.scientific.net/AMM.295-298.3310 Zhang XL, 2004, INT J PROD ECON, V88, P15, DOI 10.1016/S0925-5273(03)00128-2 Zhou L, 2006, OR SPECTRUM, V28, P127, DOI 10.1007/s00291-005-0009-0 ZYMELMAN M, 1965, MANAGE SCI, V11, P572, DOI 10.1287/mnsc.11.5.572 NR 137 TC 8 Z9 8 U1 3 U2 12 PU MDPI PI BASEL PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND EI 2504-4990 J9 MACH LEARN KNOW EXTR JI Mach. Learn. Knowl. Extr. PD SEP PY 2019 VL 1 IS 3 AR 57 DI 10.3390/make1030057 PG 19 WC Computer Science, Artificial Intelligence; Computer Science, Interdisciplinary Applications; Engineering, Electrical & Electronic WE Emerging Sources Citation Index (ESCI) SC Computer Science; Engineering GA VJ9LO UT WOS:000646949500001 OA gold DA 2024-09-05 ER PT J AU Zheng, B Ma, X Zhang, XQ Gao, HY AF Zheng, Bo Ma, Xin Zhang, Xiaoqiang Gao, Huiying TI Research Article Team Collaboration Particle Swarm Optimization and Its Application on Reliability Optimization SO INTERNATIONAL JOURNAL OF COMPUTATIONAL INTELLIGENCE SYSTEMS LA English DT Article DE Particle swarm optimization; Premature convergence; Reliability optimization; Optimization  performance improvement ID ALGORITHM; PSO AB Particle swarm optimization (PSO) tends to be premature convergence due to easily trapping into local suboptimal areas. In order to overcome the PSO's defects, the reasons causing the defects are analyzed and summarized as population diversity deficiency, insufficient information sharing, unbalance of exploitation and exploration, and single update strategy. On this basis, inspired by human team collaboration behavior, a team collaboration particle swarm optimization (TCPSO) is proposed. Diversified updates strategies, dynamic grouping strategy, selectivity vector, and decreasing and increasing inertia weight are designed in TCPSO to solve the defects' reasons and improve the optimization performance. Eight typical test functions have been used to evaluate and compare the performance of different PSO variants, and the results have been proven that the optimal results found by TCPSO are better compared with other PSO variants, which demonstrates the rationality and effectiveness of TCPSO. Finally, a real-world problem for reliability optimization are solved by five algorithms, and the results prove the convergence rate and stable optimization performance of TCPSO, TCPSO can provide better support for reliability optimization of complex system. (c) 2021 The Authors. Published by Atlantis Press B.V. This is an open access article distributed under the CC BY-NC 4.0 license (http://creativecommons.org/licenses/by-nc/4.0/). C1 [Zheng, Bo; Zhang, Xiaoqiang; Gao, Huiying] Civil Aviat Flight Univ China, Aviat Engn Inst, Guanghan 618307, Sichuan, Peoples R China. [Ma, Xin] Civil Aviat Flight Univ China, Coll Air Traff Management, Guanghan 618307, Sichuan, Peoples R China. C3 Civil Aviation Flight University of China; Civil Aviation Flight University of China RP Zheng, B (corresponding author), Civil Aviat Flight Univ China, Aviat Engn Inst, Guanghan 618307, Sichuan, Peoples R China. EM b_zheng1@126.com FU Project of Sichuan Province Sci-ence and Technology program [2021YJ0519]; China Civil Avia-tion Administration Development Foundation Educational Talents Program [14002600100018J034]; General Foundation of Civil Aviation Flight University of China [Q2019053]; Youth Foun-dation of Civil Aviation Flight University of China [Q2018139] FX This study was supported by the Project of Sichuan Province Sci-ence and Technology program (No. 2021YJ0519) ; China Civil Avia-tion Administration Development Foundation Educational Talents Program (No. 14002600100018J034) ; General Foundation of Civil Aviation Flight University of China (No. Q2019053) ; Youth Foun-dation of Civil Aviation Flight University of China (No. Q2018139) . CR Ali T, 2015, 2015 IEEE 12TH INTERNATIONAL MULTI-CONFERENCE ON SYSTEMS, SIGNALS & DEVICES (SSD) An P, 2017, J NANOELECTRON OPTOE, V12, P404, DOI 10.1166/jno.2017.2033 Anescu G, 2018, COMPUT IND ENG, V120, P31, DOI 10.1016/j.cie.2018.04.020 [Anonymous], 2014, INT J HYBRID INTELL Arasomwan MA, 2013, SCI WORLD J, DOI 10.1155/2013/860289 Baladeh AE, 2021, IEEE T RELIAB, V70, P99, DOI 10.1109/TR.2020.2974284 Banks Alec, 2008, Natural Computing, V7, P109, DOI 10.1007/s11047-007-9050-z Bergh V.D, 2002, ANAL PARTICLE SWARM Blackwell T, 2019, IEEE T EVOLUT COMPUT, V23, P689, DOI 10.1109/TEVC.2018.2880894 Cao YL, 2019, IEEE T EVOLUT COMPUT, V23, P718, DOI 10.1109/TEVC.2018.2885075 Changxin Liu, 2010, Proceedings of the 2010 Fourth International Conference on Genetic and Evolutionary Computing (ICGEC 2010), P8, DOI 10.1109/ICGEC.2010.10 Chen DN., 2017, CHIN HYDRAUL PNEUM, P17 Clerc M, 2002, IEEE T EVOLUT COMPUT, V6, P58, DOI 10.1109/4235.985692 Ding JL, 2014, NEUROCOMPUTING, V137, P261, DOI 10.1016/j.neucom.2013.03.075 Dong WY, 2017, IEEE T SYST MAN CY-S, V47, P1135, DOI 10.1109/TSMC.2016.2560128 Gao KZ, 2019, IEEE-CAA J AUTOMATIC, V6, P904, DOI 10.1109/JAS.2019.1911540 Kalidindi KR, 2020, J SUPERCOMPUT, V76, P5873, DOI 10.1007/s11227-019-03058-3 Kennedy J, 1995, 1995 IEEE INTERNATIONAL CONFERENCE ON NEURAL NETWORKS PROCEEDINGS, VOLS 1-6, P1942, DOI 10.1109/icnn.1995.488968 Khorram B, 2019, J DIGIT IMAGING, V32, P162, DOI 10.1007/s10278-018-0111-x Li J, 2015, IEEE T CYBERNETICS, V45, P2350, DOI 10.1109/TCYB.2015.2424836 Li W, 2020, INFORM SCIENCES, V529, P179, DOI 10.1016/j.ins.2020.02.034 [李昕艺 Li Xinyi], 2019, [浙江大学学报. 理学版, Journal of Zhejiang University. Sciences Edition], V46, P15 Li YK, 2019, INFORM SCIENCES, V494, P233, DOI 10.1016/j.ins.2019.01.084 [刘全金 Liu Quanjin], 2016, [电子学报, Acta Electronica Sinica], V44, P995 Liu TY, 2017, COMMUN NONLINEAR SCI, V44, P167, DOI 10.1016/j.cnsns.2016.08.001 Luo W., 2019, SCI TECH ENG, V19, P173 Lv ZM, 2019, IEEE-CAA J AUTOMATIC, V6, P838, DOI 10.1109/JAS.2019.1911450 Mahmoodabadi MJ, 2014, INFORM SCIENCES, V273, P101, DOI 10.1016/j.ins.2014.02.150 Mellal MA, 2019, P I MECH ENG O-J RIS, V233, P990, DOI 10.1177/1748006X19852814 Melton RG, 2018, ACTA ASTRONAUT, V148, P246, DOI 10.1016/j.actaastro.2018.04.045 Meng DBA, 2016, CONCURRENT ENG-RES A, V24, P48, DOI 10.1177/1063293X15600894 Pant M, 2007, ICCIMA 2007: INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND MULTIMEDIA APPLICATIONS, VOL I, PROCEEDINGS, P97, DOI 10.1109/ICCIMA.2007.96 Rehman OU, 2018, COMPEL, V37, P319, DOI 10.1108/COMPEL-04-2017-0160 Roy P, 2019, IEEE-CAA J AUTOMATIC, V6, P1365, DOI 10.1109/JAS.2019.1911753 Shailaja K., 2017, J Eng Appl Sci, V12, P7234 [沈博 Shen Bo], 2019, [导弹与航天运载技术, Missiles and Space Vehicles], P17 Singh RP, 2015, INT J ELEC POWER, V64, P1185, DOI 10.1016/j.ijepes.2014.09.005 Tanweer MR, 2015, INFORM SCIENCES, V294, P182, DOI 10.1016/j.ins.2014.09.053 Tavakkoi-Moghaddam R, 2008, RELIAB ENG SYST SAFE, V93, P550, DOI 10.1016/j.ress.2007.02.009 [王春华 Wang Chunhua], 2018, [机械强度, Journal of Mechanical Strength], V40, P1364 [王岚 Wang Lan], 2019, [土木与环境工程学报(中英文), Journal of Civil and Environmental Engineering], V41, P96 [王晓佳 Wang Xiaojia], 2012, [运筹与管理, Operations Research and Management Science], V21, P114 Wang Zhenchu, 2007, MANUFACTURE INFORM E, V36, P72 Wu Z, 2018, COMPUTING, V100, P861, DOI 10.1007/s00607-018-0625-6 Xu XP, 2020, IEEE T SYST MAN CY-S, V50, P4212, DOI 10.1109/TSMC.2018.2839618 Yu JF., 2020, SCI TECHNOL ENG, V20, P4202 Yuan HT, 2020, IEEE-CAA J AUTOMATIC, V7, P1380, DOI 10.1109/JAS.2020.1003177 Yuhui Shi, 1998, Evolutionary Programming VII. 7th International Conference, EP98. Proceedings, P591, DOI 10.1007/BFb0040810 Zhang K, 2019, INFORM SCIENCES, V471, P1, DOI 10.1016/j.ins.2018.08.049 Zhang T.F, 2020, J N CHINA ELECT POWE, V47, P56 [张晓 Zhang Xiao], 2017, [陕西师范大学学报. 自然科学版, Journal of Shaanxi Normal University. Natural Science Edition], V45, P17 Zheng B., 2020, Aeroengine, V46, P23 Zheng B., 2020, COMPUT SCI, V47, P133 Zheng B., MECH SCI TECHNOL AER, V40, P155 Zheng B, 2018, INTELL DATA ANAL, V22, P191, DOI 10.3233/IDA-163392 Zheng B, 2018, MECH SYST SIGNAL PR, V106, P526, DOI 10.1016/j.ymssp.2017.12.026 Zheng Bo, 2015, Acta Aeronautica et Astronautica Sinica, V36, P3640, DOI 10.7527/S1000-6893.2015.0020 Zheng Bowen., 2016, P 2016 IEEE GLOB COM, P1 Zhou HL, 2018, APPL SOFT COMPUT, V64, P564, DOI 10.1016/j.asoc.2017.12.031 NR 59 TC 2 Z9 2 U1 1 U2 30 PU SPRINGERNATURE PI LONDON PA CAMPUS, 4 CRINAN ST, LONDON, N1 9XW, ENGLAND SN 1875-6891 EI 1875-6883 J9 INT J COMPUT INT SYS JI Int. J. Comput. Intell. Syst. PY 2021 VL 14 IS 1 BP 1842 EP 1855 DI 10.2991/ijcis.d.210625.001 PG 14 WC Computer Science, Artificial Intelligence; Computer Science, Interdisciplinary Applications WE Science Citation Index Expanded (SCI-EXPANDED) SC Computer Science GA TP5YR UT WOS:000677675400002 OA gold DA 2024-09-05 ER PT J AU Correia, A Grover, A Jameel, S Schneider, D Antunes, P Fonseca, B AF Correia, Antonio Grover, Andrea Jameel, Shoaib Schneider, Daniel Antunes, Pedro Fonseca, Benjamim TI A hybrid human-AI tool for scientometric analysis SO ARTIFICIAL INTELLIGENCE REVIEW LA English DT Article DE Artificial intelligence; Bibliometric-enhanced information retrieval; Crowdsourcing; Human-AI interaction; Reinforcement learning from human feedback; Scientometrics ID DESIGN SCIENCE; SYSTEM AB Solid research depends on systematic, verifiable and repeatable scientometric analysis. However, scientometric analysis is difficult in the current research landscape characterized by the increasing number of publications per year, intersections between research domains, and the diversity of stakeholders involved in research projects. To address this problem, we propose SciCrowd, a hybrid human-AI mixed-initiative system, which supports the collaboration between Artificial Intelligence services and crowdsourcing services. This work discusses the design and evaluation of SciCrowd. The evaluation is focused on attitudes, concerns and intentions towards use. This study contributes a nuanced understanding of the interplay between algorithmic and human tasks in the process of conducting scientometric analysis. C1 [Correia, Antonio; Fonseca, Benjamim] INESC TEC, Apartado 1013, Vila Real, Portugal. [Correia, Antonio; Fonseca, Benjamim] Univ Tras Os Montes & Alto Douro, UTAD, Apartado 1013, Vila Real, Portugal. [Correia, Antonio; Grover, Andrea] Univ Nebraska Omaha, Coll Informat Sci & Technol, Omaha, NE 68182 USA. [Jameel, Shoaib] Univ Southampton, Southampton SO17 1BJ, England. [Schneider, Daniel] Univ Fed Rio de Janeiro, Tercio Pacitti Inst Comp Applicat & Res NCE, Rio De Janeiro, Brazil. [Antunes, Pedro] LASIGE, P-1749016 Lisbon, Portugal. [Antunes, Pedro] Univ Lisbon, P-1749016 Lisbon, Portugal. C3 INESC TEC; University of Tras-os-Montes & Alto Douro; University of Nebraska System; University of Nebraska Omaha; University of Southampton; Universidade Federal do Rio de Janeiro; Universidade de Lisboa; Universidade de Lisboa RP Correia, A (corresponding author), INESC TEC, Apartado 1013, Vila Real, Portugal.; Correia, A (corresponding author), Univ Tras Os Montes & Alto Douro, UTAD, Apartado 1013, Vila Real, Portugal.; Correia, A (corresponding author), Univ Nebraska Omaha, Coll Informat Sci & Technol, Omaha, NE 68182 USA. EM antonio.g.correia@inesctec.pt RI Antunes, Pedro A/B-8664-2008; Correia, António/AAJ-3347-2021 OI Antunes, Pedro A/0000-0002-5411-8798; Correia, António/0000-0002-2736-3835 FU Portuguese Foundation for Science and Technology (FCT) [SFRH/BD/136211/2018] FX This research was mainly performed during an internship of Antonio Correia at Microsoft Research, Cambridge, UK. The work was supported in part by the Portuguese Foundation for Science and Technology (FCT), national funding through the individual research Grant SFRH/BD/136211/2018. The authors would like to thank Sian Lindley from Microsoft Research for the important role in understanding and modifying the human-AI scientometric workflow that supports the SciCrowd system, as well as Jorge Santos for the help while building the necessary infrastructure. Our thanks extend to Hugo Paredes for the helpful discussions and valuable insights in the early stages of this work. CR Antunes P, 2023, KNOWL MAN RES PRACT, V21, P806, DOI 10.1080/14778238.2022.2064350 Armentano MG, 2014, EXPERT SYST APPL, V41, P2886, DOI 10.1016/j.eswa.2013.10.023 Bansal G, 2019, AAAI CONF ARTIF INTE, P2429 Beck S, 2022, RES POLICY, V51, DOI 10.1016/j.respol.2022.104491 Beltagy I, 2019, 2019 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING AND THE 9TH INTERNATIONAL JOINT CONFERENCE ON NATURAL LANGUAGE PROCESSING (EMNLP-IJCNLP 2019), P3615 Berente N, 2019, INFORM SYST RES, V30, P50, DOI 10.1287/isre.2018.0774 Biermann OC, 2022, PROCEEDINGS OF THE 2022 ACM DESIGNING INTERACTIVE SYSTEMS CONFERENCE, DIS 2022, P1209, DOI 10.1145/3532106.3533506 Blesik T, 2022, INFORM SYST FRONT, V24, P1647, DOI 10.1007/s10796-021-10176-y Bornmann L, 2014, J INFORMETR, V8, P895, DOI 10.1016/j.joi.2014.09.005 Chan Joel, 2018, Proceedings of the ACM on Human-Computer Interaction, V2, DOI 10.1145/3274300 Chilton Lydia B., 2013, P SIGCHI C HUM FACT, P1999, DOI [10.1145/2470654.2466265, DOI 10.1145/2470654.2466265] CORBIN J, 1990, Z SOZIOL, V19, P418, DOI 10.1007/BF00988593 Correia Antonio, 2022, 2022 IEEE International Conference on Big Data (Big Data), P3417, DOI 10.1109/BigData55660.2022.10020416 Correia A, 2021, INT C COMP SUPP COOP, P150, DOI 10.1109/CSCWD49262.2021.9437769 Correia A, 2020, IEEE INT CONF BIG DA, P2876, DOI 10.1109/BigData50022.2020.9378096 Correia A, 2019, IEEE SYS MAN CYBERN, P1372, DOI 10.1109/SMC.2019.8914637 Correia A, 2018, SCIENTOMETRICS, V114, P31, DOI 10.1007/s11192-017-2562-0 Daniel F, 2018, ACM COMPUT SURV, V51, DOI 10.1145/3148148 Hernández IMD, 2023, ARTIF INTELL REV, V56, P1699, DOI 10.1007/s10462-022-10206-4 Dhamala J, 2021, PROCEEDINGS OF THE 2021 ACM CONFERENCE ON FAIRNESS, ACCOUNTABILITY, AND TRANSPARENCY, FACCT 2021, P862, DOI 10.1145/3442188.3445924 Doré JC, 2000, SCIENTOMETRICS, V47, P475, DOI 10.1023/A:1005667800235 Du W, 2021, ARTIF INTELL REV, V54, P3215, DOI 10.1007/s10462-020-09938-y Dwivedi YK, 2019, INFORM SYST FRONT, V21, P719, DOI 10.1007/s10796-017-9774-y Ehsan U, 2021, CHI '21: PROCEEDINGS OF THE 2021 CHI CONFERENCE ON HUMAN FACTORS IN COMPUTING SYSTEMS, DOI 10.1145/3411764.3445188 Eickhoff C, 2018, WSDM'18: PROCEEDINGS OF THE ELEVENTH ACM INTERNATIONAL CONFERENCE ON WEB SEARCH AND DATA MINING, P162, DOI 10.1145/3159652.3159654 Engström E, 2020, EMPIR SOFTW ENG, V25, P2630, DOI 10.1007/s10664-020-09818-7 Evans J, 2010, SCIENCE, V329, P399, DOI 10.1126/science.1189416 Ferrara A, 2012, SCIENTOMETRICS, V93, P765, DOI 10.1007/s11192-012-0810-x Feuston Jessica L., 2021, Proceedings of the ACM on Human-Computer Interaction, V5, DOI 10.1145/3479856 Floridi L, 2020, MIND MACH, V30, P681, DOI 10.1007/s11023-020-09548-1 Fortunato S, 2018, SCIENCE, V359, DOI 10.1126/science.aao0185 FRAME JD, 1984, SCIENTOMETRICS, V6, P97, DOI 10.1007/BF02021283 Franzoni C, 2014, RES POLICY, V43, P1, DOI 10.1016/j.respol.2013.07.005 Gadiraju U, 2015, IEEE INTELL SYST, V30, P81, DOI 10.1109/MIS.2015.66 GARFIELD E, 1979, CURR CONTENTS, P5 Gero KI, 2019, CHI 2019: PROCEEDINGS OF THE 2019 CHI CONFERENCE ON HUMAN FACTORS IN COMPUTING SYSTEMS, DOI 10.1145/3290605.3300526 Gil Y, 2014, SCIENCE, V346, P171, DOI 10.1126/science.1259439 Hevner AR, 2004, MIS QUART, V28, P75, DOI 10.2307/25148625 Hope T, 2022, ARXIV Howe J., 2006, Wired Mag, V14, P176 Iivari J, 2017, INFORM SYST J, V27, P753, DOI 10.1111/isj.12121 Jackson Corey Brian, 2015, 2015 48th Hawaii International Conference on System Sciences (HICSS). Proceedings, P1624, DOI 10.1109/HICSS.2015.196 Jiang Jialun Aaron, 2021, Proceedings of the ACM on Human-Computer Interaction, V5, DOI 10.1145/3449168 Johnsson M., 2022, ARTIF INTELL INNOV M, V1, P161 Jorge CC, 2022, ACMIEEE INT CONF HUM, P1155, DOI 10.1109/HRI53351.2022.9889652 Kaelbling LP, 1996, J ARTIF INTELL RES, V4, P237, DOI 10.1613/jair.301 Karimi P, 2020, PROCEEDINGS OF THE 25TH INTERNATIONAL CONFERENCE ON INTELLIGENT USER INTERFACES, IUI 2020, P221, DOI 10.1145/3377325.3377522 Karunagaran S, 2019, INFORM SYST FRONT, V21, P861, DOI 10.1007/s10796-017-9781-z Knox WB, 2009, K-CAP'09: PROCEEDINGS OF THE FIFTH INTERNATIONAL CONFERENCE ON KNOWLEDGE CAPTURE, P9 Koren J., 2008, P 17 INT C WORLD WID, P477, DOI [DOI 10.1145/1367497.1367562, 10.1145/1367497.1367562] Krivosheev Evgeny, 2018, Proceedings of the ACM on Human-Computer Interaction, V2, DOI 10.1145/3274366 Ley M, 2009, PROC VLDB ENDOW, V2, P1493, DOI 10.14778/1687553.1687577 Liu BJ, 2021, J COMPUT-MEDIAT COMM, V26, P384, DOI 10.1093/jcmc/zmab013 Lukyanenko R, 2020, INFORM SYST FRONT, V22, P961, DOI 10.1007/s10796-019-09915-z Luz N, 2015, ARTIF INTELL REV, V44, P187, DOI 10.1007/s10462-014-9423-5 Lykourentzou, 2022, FRONT ARTIF INTELL, V102, P1 Ma Shutian, 2020, Scientometrics, V122, P1445, DOI 10.1007/s11192-019-03336-0 Micchi G., 2021, T INT SOC MUSIC INF, V4, P263 Mittleman DD, 2008, LECT NOTES COMPUT SC, V5411, P305, DOI 10.1007/978-3-540-92831-7_25 Nakagawa S, 2019, TRENDS ECOL EVOL, V34, P224, DOI 10.1016/j.tree.2018.11.007 Noel-Storr AH, 2021, BMC MED RES METHODOL, V21, DOI 10.1186/s12874-021-01271-4 Peeters MMM, 2021, AI SOC, V36, P217, DOI 10.1007/s00146-020-01005-y Peffers K, 2007, J MANAGE INFORM SYST, V24, P45, DOI 10.2753/MIS0742-1222240302 Price S, 2017, COMMUN ACM, V60, P70, DOI 10.1145/2979672 Rohde M, 2009, P 4 INT C DES SCI RE, P1 Rosser HK, 2019, PROCEEDINGS OF THE 52ND ANNUAL HAWAII INTERNATIONAL CONFERENCE ON SYSTEM SCIENCES, P5289 Rui Zhang, 2020, Proceedings of the ACM on Human-Computer Interaction, V4, DOI 10.1145/3432945 Rzeszotarski JM, 2012, UIST'12: PROCEEDINGS OF THE 25TH ANNUAL ACM SYMPOSIUM ON USER INTERFACE SOFTWARE AND TECHNOLOGY, P55 Sanyal DK, 2021, J INF SCI, V47, P227, DOI 10.1177/0165551519888605 Schmiedel T, 2019, ORGAN RES METHODS, V22, P941, DOI 10.1177/1094428118773858 Schroder A, 2022, P 55 HAW INT C SYST, P206 Seeber I, 2020, INFORM MANAGE-AMSTER, V57, DOI 10.1016/j.im.2019.103174 Shneiderman B, 1996, IEEE SYMPOSIUM ON VISUAL LANGUAGES, PROCEEDINGS, P336, DOI 10.1109/VL.1996.545307 Singh S, 2023, P 2023 INT C AUT AG, P317 Suh M, 2021, CHI '21: PROCEEDINGS OF THE 2021 CHI CONFERENCE ON HUMAN FACTORS IN COMPUTING SYSTEMS, DOI 10.1145/3411764.3445219 Swanson DR, 1997, ARTIF INTELL, V91, P183, DOI 10.1016/S0004-3702(97)00008-8 Tchoua RB, 2017, P IEEE INT C E-SCI, P109, DOI 10.1109/eScience.2017.23 Thilakaratne M, 2020, ACM COMPUT SURV, V52, DOI 10.1145/3365756 Thomas J, 2016, COMPLEXITY, V21, P207, DOI 10.1002/cplx.21799 Tokarchuk O, 2012, IEEE INTERNET COMPUT, V16, P45, DOI 10.1109/MIC.2012.66 Vincent-Lamarre P, 2023, ARXIV Vössing M, 2022, INFORM SYST FRONT, V24, P877, DOI 10.1007/s10796-022-10284-3 Wagner G, 2022, J INF TECHNOL-UK, V37, P209, DOI 10.1177/02683962211048201 Waltz D, 2009, SCIENCE, V324, P43, DOI 10.1126/science.1172781 Wang SH, 2017, SCIENTOMETRICS, V111, P1017, DOI 10.1007/s11192-017-2298-x Wang WR, 2022, NPJ COMPUT MATER, V8, DOI 10.1038/s41524-021-00687-2 Wiethof C, 2022, P 30 EUR C INF SYST, P66 Yang FM, 2020, PROCEEDINGS OF THE 25TH INTERNATIONAL CONFERENCE ON INTELLIGENT USER INTERFACES, IUI 2020, P189, DOI 10.1145/3377325.3377480 Zhang JZ, 2020, SCIENTOMETRICS, V125, P551, DOI 10.1007/s11192-020-03641-z NR 89 TC 2 Z9 2 U1 7 U2 24 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0269-2821 EI 1573-7462 J9 ARTIF INTELL REV JI Artif. Intell. Rev. PD OCT PY 2023 VL 56 IS SUPPL 1 SU 1 BP 983 EP 1010 DI 10.1007/s10462-023-10548-7 EA JUL 2023 PG 28 WC Computer Science, Artificial Intelligence WE Science Citation Index Expanded (SCI-EXPANDED) SC Computer Science GA U9KW4 UT WOS:001026679400001 DA 2024-09-05 ER PT J AU Gokcimen, T Das, B AF Gokcimen, Tunahan Das, Bihter TI Exploring climate change discourse on social media and blogs using a topic modeling analysis SO HELIYON LA English DT Article DE Bibliometric Analysis; Latent Dirichlet Allocation(LDA); BERTopic; Topic modeling; Climate change; Sentence similarity AB Climate change is one of the most pressing global issues of our time, and understanding public perception and awareness of the topic is crucial for developing effective policies to mitigate its effects. While traditional survey methods have been used to gauge public opinion, advances in natural language processing (NLP) and data visualization techniques offer new opportunities to analyze user-generated content from social media and blog posts. In this study, a new dataset of climate change-related texts was collected from social media sources and various blogs. The dataset was analyzed using BERTopic and LDA to identify and visualize the most important topics related to climate change. The study also used sentence similarity to determine the similarities in the comments written and which topic categories they belonged to. The performance of different techniques for keyword extraction and text representation, including OpenAI, Maximal Marginal Relevance (MMR), and KeyBERT, was compared for topic modeling with BERTopic. It was seen that the best coherence score and topic diversity metric were obtained with OpenAI-based BERTopic. The results provide insights into the public's attitudes and perceptions towards climate change, which can inform policy development and contribute to efforts to reduce activities that cause climate change. C1 [Gokcimen, Tunahan; Das, Bihter] Firat Univ, Technol Fac, Dept Software Engn, TR-23119 Elazig, Turkiye. C3 Firat University RP Das, B (corresponding author), Firat Univ, Technol Fac, Dept Software Engn, TR-23119 Elazig, Turkiye. EM tunahangokcimen@gmail.com; bihterdas@firat.edu.tr FU Republic of Turkey, Ministry of Science, Technology and Industry [AR-22-087-0001]; Arcelik Digital Transformation, Big Data and Artificial Intelligence RD Center [5746] FX This work is supported by the Republic of Turkey, Ministry of Science, Technology and Industry project named "AI Based Smart Digital Assistant Customer Dialog Bot project" and project code AR-22-087-0001. It is funded by R&D project within the scope of law 5746 by the Arcelik Digital Transformation, Big Data and Artificial Intelligence R&D Center. CR Abdelrazek A, 2023, INFORM SYST, V112, DOI 10.1016/j.is.2022.102131 Ahmad F., 2022, International Journal of Cognitive Computing in Engineering, V3, P58 An N., 2020, Curr. Inves. Agri. Curr. Res., V8, P288, DOI [10.32474/CIACR.2020.08.000288, DOI 10.32474/CIACR.2020.08.000288] baeldung, Semantic similarity of two phrases Bergstedt H., 2018, GI_Forum, V1, P47, DOI [10.1553/giscience2018_01_s4, DOI 10.1553/GISCIENCE2018_01_S4] Cao ZQ, 2015, AAAI CONF ARTIF INTE, P2210 Chen CF, 2021, ADV CLIM CHANG RES, V12, P913, DOI 10.1016/j.accre.2021.09.011 Ebeling R., 2021, J. Inf. Data Manag., V12, P1889 El Barachi M, 2021, J CLEAN PROD, V312, DOI 10.1016/j.jclepro.2021.127820 Farouk M., 2019, P 13 INT C COMP ENG Ferreira R, 2016, COMPUT SPEECH LANG, V39, P1, DOI 10.1016/j.csl.2016.01.003 Grootendorst M., 2022, arXiv Hananto V.R., 2023, Jurnal Online Informatika, V8, P2, DOI [10.15575/join.v8i2.963, DOI 10.15575/JOIN.V8I2.963] Hlapisi N.N.M, 2023, Mesopotamian Journal of Computer Science, P47 Intellica AI, 2019, comparison of different word embeddings on text similarity-a use case in NLP Islam A., 2008, ACM Transactions on Knowledge Discovery from Data (TKDD), V2, p10:1 Jost F, 2019, ENVIRON SCI POLICY, V96, P27, DOI 10.1016/j.envsci.2019.02.007 Karimiziarani M, 2023, CLIM RISK MANAG, V39, DOI 10.1016/j.crm.2023.100480 Kenter T., 2015, P 24 ACM INT C INF K, P18 Kirelli Y, 2020, COMPUT INTEL NEUROSC, V2020, DOI 10.1155/2020/1904172 Kirilenko AP, 2015, GLOBAL ENVIRON CHANG, V30, P92, DOI 10.1016/j.gloenvcha.2014.11.003 Kirilenko AP, 2014, GLOBAL ENVIRON CHANG, V26, P171, DOI 10.1016/j.gloenvcha.2014.02.008 Koruyan K., 2022, I.zmir Sosyal Bilimler Dergisi, V4, P66, DOI [10.47899/ijss.1167719, DOI 10.47899/IJSS.1167719] Koubaa A, 2023, HELIYON, V9, DOI 10.1016/j.heliyon.2023.e21624 Lee MC, 2014, SCI WORLD J, DOI 10.1155/2014/437162 Li Y, 2021, CLIM CHANG ECON, V12, DOI 10.1142/S2010007821500044 Li YH, 2006, IEEE T KNOWL DATA EN, V18, P1138, DOI 10.1109/TKDE.2006.130 Loureiro ML, 2020, ENERG POLICY, V143, DOI 10.1016/j.enpol.2020.111490 Masson-Delmotte V., 2021, Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, DOI 10.1017/9781009157896 McInnes L, 2020, Arxiv, DOI [arXiv:1802.03426, DOI 10.48550/ARXIV.1802.03426, 10.21105/joss.00861] Menon D, 2023, HELIYON, V9, DOI 10.1016/j.heliyon.2023.e20962 Park CY, 2023, GLOBAL ENVIRON CHANG, V80, DOI 10.1016/j.gloenvcha.2023.102667 Pawar A, 2018, Arxiv, DOI [arXiv:1802.05667, DOI arXiv:1802.05667.v2] Pekkaya M, 2024, TURK J ELECTR ENG CO, V32, DOI 10.55730/1300-0632.4055 Prabha Sneh, 2023, Procedia Computer Science, P2172, DOI 10.1016/j.procs.2023.01.193 Sawant Sahil, 2022, 2022 IEEE 24th Int Conf on High Performance Computing & Communications; 8th Int Conf on Data Science & Systems; 20th Int Conf on Smart City; 8th Int Conf on Dependability in Sensor, Cloud & Big Data Systems & Application (HPCC/DSS/SmartCity/DependSys), P2251, DOI 10.1109/HPCC-DSS-SmartCity-DependSys57074.2022.00332 Srisunont C, 2022, ECOL MODEL, V473, DOI 10.1016/j.ecolmodel.2022.110141 Stuhlmacher M, 2019, J ENVIRON MANAGE, V249, DOI 10.1016/j.jenvman.2019.109352 Tayal M.A., 2014, P 11 INT C NAT LANG Tong Z., 2016, INT C COMP SCI ENG I, V6, DOI [DOI 10.5121/CSIT.2016.60616, 10.5121/csit.2016.60616] Tuitjer L., 2021, DIGITAL GEOGRAPHY SO, V2, DOI [10.1016/j.diggeo.2021.100018, DOI 10.1016/J.DIGGEO.2021.100018] Turkes M, 2020, WOR WATER RESOUR, V2, P467, DOI 10.1007/978-3-030-11729-0_14 Uthirapathy Samson Ebenezar, 2023, Procedia Computer Science, P908, DOI 10.1016/j.procs.2023.01.071 Wang J, 2021, SCI TOTAL ENVIRON, V755, DOI 10.1016/j.scitotenv.2020.142734 Wei YG, 2021, ENERG POLICY, V158, DOI 10.1016/j.enpol.2021.112559 Williams HTP, 2015, GLOBAL ENVIRON CHANG, V32, P126, DOI 10.1016/j.gloenvcha.2015.03.006 Wu MF, 2023, RESOUR CONSERV RECY, V188, DOI 10.1016/j.resconrec.2022.106697 Xie Q, 2020, J INFORMETR, V14, DOI 10.1016/j.joi.2020.101055 Xu GX, 2019, IEEE ACCESS, V7, P51522, DOI 10.1109/ACCESS.2019.2909919 Yanarates C, 2023, HELIYON, V9, DOI 10.1016/j.heliyon.2023.e20994 Yang LP, 2007, INFORM PROCESS MANAG, V43, P315, DOI 10.1016/j.ipm.2006.07.011 Yoo Y, 2021, SYMMETRY-BASEL, V13, DOI 10.3390/sym13081442 NR 52 TC 0 Z9 0 U1 16 U2 16 PU CELL PRESS PI CAMBRIDGE PA 50 HAMPSHIRE ST, FLOOR 5, CAMBRIDGE, MA 02139 USA EI 2405-8440 J9 HELIYON JI Heliyon PD JUN 15 PY 2024 VL 10 IS 11 AR e32464 DI 10.1016/j.heliyon.2024.e32464 PG 16 WC Multidisciplinary Sciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Science & Technology - Other Topics GA UX2K2 UT WOS:001251296800001 PM 38947458 OA gold DA 2024-09-05 ER PT J AU Li, Y Xu, ZS Wang, XX Wang, XZ AF Li, Yang Xu, Zeshui Wang, Xinxin Wang, Xizhao TI A bibliometric analysis on deep learning during 2007-2019 SO INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS LA English DT Article DE Deep learning; Machine learning; Bibliometric analysis; Hot topic; Development trend ID NEURAL-NETWORKS; CLASSIFICATION; ALGORITHM AB As an emerging and applicable method, deep learning (DL) has attracted much attention in recent years. With the development of DL and the massive of publications and researches in this direction, a comprehensive analysis of DL is necessary. In this paper, from the perspective of bibliometrics, a comprehensive analysis of publications of DL is deployed from 2007 to 2019 (the first publication with keywords "deep learning" and "machine learning" was published in 2007). By preprocessing, 5722 publications are exported from Web of Science and they are imported into the professional science mapping tools: VOS viewer and Cite Space. Firstly, the publication structures are analyzed based on annual publications, and the publication of the most productive countries/regions, institutions and authors. Secondly, by the use of VOS viewer, the co-citation networks of countries/regions, institutions, authors and papers are depicted. The citation structure of them and the most influential of them are further analyzed. Thirdly, the cooperation networks of countries/regions, institutions and authors are illustrated by VOS viewer. Time-line review and citation burst detection of keywords are exported from Cite Space to detect the hotspots and research trend. Finally, some conclusions of this paper are given. This paper provides a preliminary knowledge of DL for researchers who are interested in this area, and also makes a conclusive and comprehensive analysis of DL for these who want to do further research on this area. C1 [Li, Yang; Xu, Zeshui; Wang, Xinxin] Sichuan Univ, Business Sch, Chengdu 610064, Peoples R China. [Wang, Xizhao] Shenzhen Univ, Coll Comp Sci & Software Engn, Shenzhen 518060, Peoples R China. C3 Sichuan University; Shenzhen University RP Xu, ZS (corresponding author), Sichuan Univ, Business Sch, Chengdu 610064, Peoples R China. EM liyang_ly18@163.com; xuzeshui@263.net; wangxinxin_cd@163.com; xizhaowang@ieee.org RI Xu, Zeshui/N-8908-2013 CR Ahmed KI, 2019, IEEE NETWORK, V33, P188, DOI 10.1109/MNET.2019.1900029 [Anonymous], 2016, European conference on computer vision, DOI [DOI 10.1007/978-3-319-46493-0_38, 10.1007/978-3-319-46493-0_38] Bengio Y, 2013, IEEE T PATTERN ANAL, V35, P1798, DOI 10.1109/TPAMI.2013.50 Braun T, 2005, SCIENTOMETRICS, V63, P185 Chen CM, 2006, J AM SOC INF SCI TEC, V57, P359, DOI 10.1002/asi.20317 Chen LC, 2018, IEEE T PATTERN ANAL, V40, P834, DOI 10.1109/TPAMI.2017.2699184 Cheng G, 2016, IEEE T GEOSCI REMOTE, V54, P7405, DOI 10.1109/TGRS.2016.2601622 Cobo MJ, 2015, KNOWL-BASED SYST, V80, P3, DOI 10.1016/j.knosys.2014.12.035 Cobo MJ, 2011, J AM SOC INF SCI TEC, V62, P1382, DOI 10.1002/asi.21525 Dao SD, 2017, COMPUT IND ENG, V110, P395, DOI 10.1016/j.cie.2017.06.009 Faust O, 2018, COMPUT METH PROG BIO, V161, P1, DOI 10.1016/j.cmpb.2018.04.005 Ghosh M, 2019, PROC INT CONF DOC, P86, DOI 10.1109/ICDARW.2019.00020 Ghosh S, 2019, PROC INT CONF DOC, P68, DOI 10.1109/ICDARW.2019.00017 Ghosh S, 2019, INT J MACH LEARN CYB, V10, P3145, DOI 10.1007/s13042-019-01005-5 Gu DX, 2017, INT J MED INFORM, V98, P22, DOI 10.1016/j.ijmedinf.2016.11.006 Guha R, 2020, INT J PATTERN RECOGN, V34, DOI 10.1142/S0218001420520096 Gulshan V, 2016, JAMA-J AM MED ASSOC, V316, P2402, DOI 10.1001/jama.2016.17216 Guo GD, 2019, COMPUT VIS IMAGE UND, V189, DOI 10.1016/j.cviu.2019.102805 Guo YM, 2016, NEUROCOMPUTING, V187, P27, DOI 10.1016/j.neucom.2015.09.116 Hamidinekoo A, 2018, MED IMAGE ANAL, V47, P45, DOI 10.1016/j.media.2018.03.006 Hao ZY, 2019, MATEC WEB C, P277 He XR, 2017, INT J INTELL SYST, V32, P1151, DOI 10.1002/int.21894 Hinton GE, 2006, SCIENCE, V313, P504, DOI 10.1126/science.1127647 Hinton GE, 2006, NEURAL COMPUT, V18, P1527, DOI 10.1162/neco.2006.18.7.1527 Ji SW, 2013, IEEE T PATTERN ANAL, V35, P221, DOI 10.1109/TPAMI.2012.59 Jia YQ, 2014, PROCEEDINGS OF THE 2014 ACM CONFERENCE ON MULTIMEDIA (MM'14), P675, DOI 10.1145/2647868.2654889 Jiao LC, 2019, IEEE ACCESS, V7, P128837, DOI 10.1109/ACCESS.2019.2939201 Kamble Parshuram M., 2017, International Journal of Imaging and Robotics, V17, P95 Khalil RA, 2019, IEEE ACCESS, V7, P117327, DOI 10.1109/ACCESS.2019.2936124 Laengle S, 2017, EUR J OPER RES, V262, P803, DOI 10.1016/j.ejor.2017.04.027 LeCun Y, 2015, NATURE, V521, P436, DOI 10.1038/nature14539 Li XF, 2019, WIRELESS COMMUNICATI Litjens G, 2017, MED IMAGE ANAL, V42, P60, DOI 10.1016/j.media.2017.07.005 Long J, 2015, PROC CVPR IEEE, P3431, DOI 10.1109/CVPR.2015.7298965 Mnih V, 2015, NATURE, V518, P529, DOI 10.1038/nature14236 Monkam P, 2019, IEEE ACCESS, V7, P78075, DOI 10.1109/ACCESS.2019.2920980 Mukherjee H, 2019, NEURAL COMPUT APPL, V31, P8483, DOI 10.1007/s00521-019-04468-3 Ordóñez FJ, 2016, SENSORS-BASEL, V16, DOI 10.3390/s16010115 Perumal R.S., 2019, COMMUN COMPUT PHYS, V1035, P178 Chuan PM, 2018, APPL INTELL, V48, P2470, DOI 10.1007/s10489-017-1086-x Qin ZJ, 2019, IEEE WIREL COMMUN, V26, P93, DOI 10.1109/MWC.2019.1800601 Sawat Dattatray D., 2017, CSI Transactions on ICT, V5, P195, DOI 10.1007/s40012-016-0149-1 Sawat DD, 2018, INT C REC TRENDS IM Schmidhuber J, 2015, NEURAL NETWORKS, V61, P85, DOI 10.1016/j.neunet.2014.09.003 Sengupta D, 2020, INT J AMBIENT COMPUT, V11, P1, DOI 10.4018/IJACI.2020010101 Shen DG, 2017, ANNU REV BIOMED ENG, V19, P221, DOI [10.1146/annurev-bioeng-071516044442, 10.1146/annurev-bioeng-071516-044442] Shi YJ, 2019, INT C COMP SUPP COOP, P239, DOI 10.1109/CSCWD.2019.8791899 Srivastava N, 2014, J MACH LEARN RES, V15, P1929 Taigman Y, 2014, PROC CVPR IEEE, P1701, DOI 10.1109/CVPR.2014.220 Ukil S, 2020, NEURAL COMPUT APPL, V32, P2829, DOI 10.1007/s00521-019-04111-1 van Eck NJ, 2010, SCIENTOMETRICS, V84, P523, DOI 10.1007/s11192-009-0146-3 Vedaldi A, 2015, MM'15: PROCEEDINGS OF THE 2015 ACM MULTIMEDIA CONFERENCE, P689, DOI 10.1145/2733373.2807412 White H, 2018, SCIENTOMETRICS, V114, P757, DOI 10.1007/s11192-017-2610-9 Yu DJ, 2018, IEEE T FUZZY SYST, V26, P430, DOI 10.1109/TFUZZ.2017.2672732 Yu DJ, 2017, INFORM SCIENCES, V418, P619, DOI 10.1016/j.ins.2017.08.031 Zhou J, 2019, IEEE ACCESS, V7, P78454, DOI 10.1109/ACCESS.2019.2920075 NR 56 TC 40 Z9 42 U1 10 U2 109 PU SPRINGER HEIDELBERG PI HEIDELBERG PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY SN 1868-8071 EI 1868-808X J9 INT J MACH LEARN CYB JI Int. J. Mach. Learn. Cybern. PD DEC PY 2020 VL 11 IS 12 BP 2807 EP 2826 DI 10.1007/s13042-020-01152-0 EA JUN 2020 PG 20 WC Computer Science, Artificial Intelligence WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Computer Science GA OG5CX UT WOS:000543945600001 DA 2024-09-05 ER PT J AU Keramatfar, A Rafiee, M Amirkhani, H AF Keramatfar, Abdalsamad Rafiee, Mohadeseh Amirkhani, Hossein TI Graph Neural Networks: A bibliometrics overview SO MACHINE LEARNING WITH APPLICATIONS LA English DT Article DE Bibliometrics; Graph Convolutional Network; Graph Neural Network; Graph representation learning ID MODEL; PREDICTION; SCIENCE; INDEX AB Recently, graph neural networks (GNNs) have become a hot topic in machine learning community. This paper presents a Scopus -based bibliometric overview of the GNNs' research since 2004 when GNN papers were first published. The study aims to evaluate GNN research trends, both quantitatively and qualitatively. We provide the trend of research, distribution of subjects, active and influential authors and institutions, sources of publications, most cited documents, and hot topics. Our investigations reveal that the most frequent subject categories in this field are computer science, engineering, and telecommunications. In addition, the most active source of GNN publications is Lecture Notes in Computer Science. The most prolific or impactful institutions are found in the United States, China, and Canada. We also provide must -read papers based on citation count and future directions. Our analysis reveals that node classification is the most popular task, followed by link prediction, and graph classification in the GNN literature. Moreover, the results suggest that the application of graph convolutional networks and attention mechanisms are now among hot topics of GNN research. Finally, scalability, generalization, over -smoothing, and explainability of graph neural networks are some research directions to pursue. C1 [Keramatfar, Abdalsamad; Rafiee, Mohadeseh] Acad Ctr Educ Culture & Res ACECR, Tehran, Iran. [Amirkhani, Hossein] Univ Qom, Fac Engn, Dept Comp Engn & IT, Qom, Iran. C3 Academic Center for Education, Culture & Research (ACECR); University of Qom RP Keramatfar, A (corresponding author), Acad Ctr Educ Culture & Res ACECR, Tehran, Iran. EM samad@sid.com; mohadeseh.rafie2012@gmail.com; amirkhani@qom.ac.ir OI Keramatfar, Abdalsamad/0000-0001-6826-4692 CR AlQuraishi M, 2019, CELL SYST, V8, P292, DOI 10.1016/j.cels.2019.03.006 [Anonymous], 2000, PODS 2000 Bengio Y, 2021, COMMUN ACM, V64, P58, DOI 10.1145/3448250 Bianchini M, 2018, STUD COMPUT INTELL, V777, P29, DOI 10.1007/978-3-319-89629-8_2 Bin YR, 2020, PATTERN RECOGN, V106, DOI 10.1016/j.patcog.2020.107410 Bo DY, 2020, WEB CONFERENCE 2020: PROCEEDINGS OF THE WORLD WIDE WEB CONFERENCE (WWW 2020), P1400, DOI 10.1145/3366423.3380214 Bondy J. A., 1976, Graph theory with applications Bronstein MM, 2017, IEEE SIGNAL PROC MAG, V34, P18, DOI 10.1109/MSP.2017.2693418 Burnham Judy F, 2006, Biomed Digit Libr, V3, P1 Casas-Valadez M. A., 2020, 2020 INT C INN INT F Chen DL, 2020, AAAI CONF ARTIF INTE, V34, P3438 Chen L, 2019, MED IMAGE ANAL, V58, DOI 10.1016/j.media.2019.101539 Chen XL, 2020, COGN COMPUT, V12, P1097, DOI 10.1007/s12559-020-09745-1 Chen XL, 2018, WIREL COMMUN MOB COM, DOI 10.1155/2018/1827074 Chen XL, 2018, BMC MED INFORM DECIS, V18, DOI [10.1186/s12911-018-0594-x, 10.1186/s12870-018-1555-3] Chen ZM, 2019, PROC CVPR IEEE, P5172, DOI 10.1109/CVPR.2019.00532 Chiu CC, 2018, 2018 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), P4774, DOI 10.1109/ICASSP.2018.8462105 Cook Diane J, 2006, Mining graph data Deng SGJ, 2020, CIKM '20: PROCEEDINGS OF THE 29TH ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT, P245, DOI 10.1145/3340531.3411975 Deuerlein JW, 2008, J HYDRAUL ENG-ASCE, V134, P822, DOI 10.1061/(ASCE)0733-9429(2008)134:6(822) Devlin J, 2019, Arxiv, DOI arXiv:1810.04805 Dhere A, 2021, Arxiv, DOI arXiv:2101.05456 Ding YK, 2020, NEUROCOMPUTING, V403, P348, DOI 10.1016/j.neucom.2020.04.110 Ebrahim SA, 2020, IEEE ACCESS, V8, P90202, DOI 10.1109/ACCESS.2020.2993538 Fortunato S, 2010, PHYS REP, V486, P75, DOI 10.1016/j.physrep.2009.11.002 GARFIELD E, 1955, SCIENCE, V122, P108, DOI 10.1126/science.122.3159.108 Gievska S., 2019, BIG DATA PROCESSING, V1110, P17 Gilmer J, 2017, PR MACH LEARN RES, V70 Giudici P, 2020, J BANK FINANC, V112, DOI 10.1016/j.jbankfin.2017.05.010 Giudici P, 2021, EXPERT SYST APPL, V167, DOI 10.1016/j.eswa.2020.114104 Giudici P, 2021, ANN OPER RES, V299, P443, DOI 10.1007/s10479-019-03282-3 Gogoglou A., 2020, P 1 ACM INT C AI FIN, DOI [10.1145/3383455.3422552, DOI 10.1145/3383455.3422552] González-Pereira B, 2010, J INFORMETR, V4, P379, DOI 10.1016/j.joi.2010.03.002 Gori M, 2005, IEEE IJCNN, P729 Grover A, 2016, KDD'16: PROCEEDINGS OF THE 22ND ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, P855, DOI 10.1145/2939672.2939754 Heimerl F, 2014, P ANN HICSS, P1833, DOI 10.1109/HICSS.2014.231 Hirsch JE, 2007, P NATL ACAD SCI USA, V104, P19193, DOI 10.1073/pnas.0707962104 Hirsch JE, 2005, P NATL ACAD SCI USA, V102, P16569, DOI 10.1073/pnas.0507655102 Hong Y, 2019, IEEE T MED IMAGING, V38, P2717, DOI 10.1109/TMI.2019.2911203 Hou YF, 2019, KDD'19: PROCEEDINGS OF THE 25TH ACM SIGKDD INTERNATIONAL CONFERENCCE ON KNOWLEDGE DISCOVERY AND DATA MINING, P65, DOI 10.1145/3292500.3330948 Hu X., 2013, P 6 ACM INT C WEB SE P 6 ACM INT C WEB SE P 6 ACM INT C WEB SE P 6 ACM INT C WEB SE P 6 ACM INT C WEB SE P 6 ACM INT C WEB SE P 6 ACM INT C WEB SE P 6 ACM INT C WEB SE P 6 ACM INT C WEB SE P 6 ACM INT C WEB SE P 6 ACM INT C WEB SE P 6 ACM INT C WEB SE P 6 ACM INT C WEB SE P 6 ACM INT C WEB SE P 6 ACM INT C WEB SE P 6 ACM INT C WEB SE, P537 Huang BX, 2019, 2019 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING AND THE 9TH INTERNATIONAL JOINT CONFERENCE ON NATURAL LANGUAGE PROCESSING (EMNLP-IJCNLP 2019), P4732 Huang C, 2019, KDD'19: PROCEEDINGS OF THE 25TH ACM SIGKDD INTERNATIONAL CONFERENCCE ON KNOWLEDGE DISCOVERY AND DATA MINING, P2613, DOI 10.1145/3292500.3330790 Jeong C, 2020, SCIENTOMETRICS, V124, P1907, DOI 10.1007/s11192-020-03561-y Jing YJ, 2020, IEEE ACCESS, V8, P15800, DOI 10.1109/ACCESS.2020.2966409 Keramatfar A., 2015, Caspian Journal of Scientometrics, V2, P33, DOI DOI 10.22088/ACADPUB.BUMS.2.1.33 Keramatfar A, 2023, J INF SCI, V49, P133, DOI 10.1177/0165551521990617 Keramatfar A, 2019, J INF SCI, V45, P3, DOI 10.1177/0165551518761013 Khanfor A, 2020, MIDWEST SYMP CIRCUIT, P1056, DOI 10.1109/mwscas48704.2020.9184643 Khiste G.P., 2018, Asian Journal of Research in Social Sciences and Humanities, V8, P10, DOI [10.5958/2249-7315.2018.00002.3, DOI 10.5958/2249-7315.2018.00002.3] Khiste G. P., 2017, International Journal of Current Innovation Research, V3, P879 Khiste G. P., 2017, International Journal of Library Science and Information Management (IJLSIM), P81 Kim J, 2019, PROC CVPR IEEE, P11, DOI 10.1109/CVPR.2019.00010 Kipf T. N., 2017, P INT C LEARN REPR Laranjeira J., 2020, What is traffic prediction and how does it work? Le Q., 2014, 31 INT C MACH LEARN, P1188, DOI DOI 10.1145/2740908.2742760 LeCun Y, 2015, NATURE, V521, P436, DOI 10.1038/nature14539 Lee JB, 2019, ACM T KNOWL DISCOV D, V13, DOI 10.1145/3363574 Lei K, 2019, IEEE INFOCOM SER, P388, DOI [10.1109/infocom.2019.8737631, 10.1109/INFOCOM.2019.8737631] Leordeanu M., 2020, Coupling appearance and motion: Unsupervised clustering for object segmentation through space and time Leordeanu M., 2020, Unsupervised learning in space and time: a modern approach for computer vision using graph-based techniques and deep neural networks, P253 Leordeanu M., 2020, Unsupervised visual learning: From pixels to seeing. Li A, 2019, PROCEEDINGS OF THE 28TH ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT (CIKM '19), P2703, DOI 10.1145/3357384.3357820 Li MS, 2019, PROC CVPR IEEE, P3590, DOI 10.1109/CVPR.2019.00371 Li QM, 2019, PROC CVPR IEEE, P9574, DOI 10.1109/CVPR.2019.00981 Li RR, 2020, WEB CONFERENCE 2020: PROCEEDINGS OF THE WORLD WIDE WEB CONFERENCE (WWW 2020), P2472, DOI 10.1145/3366423.3379994 Li X, 2021, J INF SCI, V47, P161, DOI 10.1177/0165551519877049 Li Y., 2016, ICLR Li Y, 2020, INT J MACH LEARN CYB, V11, P2807, DOI 10.1007/s13042-020-01152-0 Li ZK, 2019, PROCEEDINGS OF THE 28TH ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT (CIKM '19), P539, DOI 10.1145/3357384.3357951 Li ZX, 2021, NEURAL COMPUT APPL, V33, P1773, DOI 10.1007/s00521-020-05087-z Liben-Nowell D, 2007, J AM SOC INF SCI TEC, V58, P1019, DOI 10.1002/asi.20591 Liu B, 2011, DATA CENTRIC SYST AP, P459, DOI 10.1007/978-3-642-19460-3_11 Liu PY, 2019, PROCEEDINGS OF THE 13TH WORKSHOP ON GEOGRAPHIC INFORMATION RETRIEVAL (GIR'19), DOI 10.1145/3371140.3371141 Liu ZQ, 2018, CIKM'18: PROCEEDINGS OF THE 27TH ACM INTERNATIONAL CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, P2077, DOI 10.1145/3269206.3272010 Lopez-Martinez RE, 2020, J SCIENTOMETR RES, V9, P310, DOI 10.5530/jscires.9.3.38 Lu J, 2015, DECIS SUPPORT SYST, V74, P12, DOI 10.1016/j.dss.2015.03.008 Lu Z., 2020, EUR C INF RETR Lu ZL, 2020, NEUROCOMPUTING, V400, P34, DOI 10.1016/j.neucom.2020.03.031 Mahdavi S, 2019, Arxiv, DOI arXiv:1910.01963 Mao M., 2018, INT C DAT MIN BIG DA Marcheggiani D., 2017, P EMNLP, P1506 Marin A, 2011, The SAGE handbook of social network analysis, P25, DOI DOI 10.4135/9781446294413.N2 Martinez A., 2019, Graph convolutional networks on customer/supplier graph data to improve default prediction Mojgani P, 2022, NEUROPSYCHOL REHABIL, V32, P51, DOI 10.1080/09602011.2020.1796714 Monti F, 2017, PROC CVPR IEEE, P5425, DOI 10.1109/CVPR.2017.576 Kipf TN, 2016, Arxiv, DOI arXiv:1611.07308 Nguyen H., 2019, DATA MINING Nicolaisen J, 2007, ANNU REV INFORM SCI, V41, P609, DOI 10.1002/aris.2007.1440410120 Nicolaisen J, 2010, J AM SOC INF SCI TEC, V61, P205, DOI 10.1002/asi.21181 Ouyang W, 2019, NATURAL LANGUAGE PRO Pennec X., 2019, Riemannian geometric statistics in medical image analysis Perozzi B, 2014, PROCEEDINGS OF THE 20TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING (KDD'14), P701, DOI 10.1145/2623330.2623732 Persson O., 2009, CELEBRATING SCHOLARL, V5, P9 Qin AY, 2019, IEEE GEOSCI REMOTE S, V16, P241, DOI 10.1109/LGRS.2018.2869563 Qiu RH, 2019, PROCEEDINGS OF THE 28TH ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT (CIKM '19), P579, DOI 10.1145/3357384.3358010 Rebecq H, 2019, PROC CVPR IEEE, P3852, DOI 10.1109/CVPR.2019.00398 Sboev A., 2020, Cham Scarselli F., 2004, Graphical -based learning environments for pattern recognition Scarselli F, 2009, IEEE T NEURAL NETWOR, V20, P61, DOI 10.1109/TNN.2008.2005605 Schlichtkrull M, 2018, LECT NOTES COMPUT SC, V10843, P593, DOI 10.1007/978-3-319-93417-4_38 SCOTT J, 1988, SOCIOLOGY, V22, P109, DOI 10.1177/0038038588022001007 Seo S, 2020, IEEE ACCESS, V8, P32816, DOI 10.1109/ACCESS.2020.2973923 Shen J., 2020, Taxoexpan: Self -supervised taxonomy expansion with position -enhanced graph neural network, DOI DOI 10.1145/3366423.3380132 Shi L, 2019, PROC CVPR IEEE, P12018, DOI 10.1109/CVPR.2019.01230 Singh VK, 2015, SCIENTOMETRICS, V104, P529, DOI 10.1007/s11192-015-1612-8 Song LC, 2021, J VIS COMMUN IMAGE R, V76, DOI 10.1016/j.jvcir.2021.103055 Spinelli I., 2017, IIH MSP Spinelli I, 2020, NEURAL NETWORKS, V129, P249, DOI 10.1016/j.neunet.2020.06.005 Sügis E, 2019, SCI DATA, V6, DOI 10.1038/s41597-019-0152-0 Sun C., 2019, NAACL HLT 2019 2019 Sun X., 2019, Incorporating description embeddings into medical knowledge graphs representation learning Tan Z, 2017, CIKM'17: PROCEEDINGS OF THE 2017 ACM CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, P1777, DOI 10.1145/3132847.3132961 Tang XF, 2020, KDD '20: PROCEEDINGS OF THE 26TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING, P2269, DOI 10.1145/3394486.3403276 Tang XF, 2020, CIKM '20: PROCEEDINGS OF THE 29TH ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT, P1435, DOI 10.1145/3340531.3411872 Thelwall M, 2008, J INF SCI, V34, P605, DOI 10.1177/0165551507087238 Trentin E, 2018, NEUROCOMPUTING, V313, P14, DOI 10.1016/j.neucom.2018.05.095 Trentin E, 2009, NEUROCOMPUTING, V73, P204, DOI 10.1016/j.neucom.2008.07.021 Tu M, 2019, 57TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2019), P2704 Upadhyay S., 2011, P 1 WORKSH UNS LEARN Van Eck NJ, 2007, STUD CLASS DATA ANAL, P299 van Eck NJ, 2010, SCIENTOMETRICS, V84, P523, DOI 10.1007/s11192-009-0146-3 Vaswani A, 2017, ADV NEUR IN, V30 Veličkovic P, 2018, Arxiv, DOI arXiv:1710.10903 Wang DX, 2019, IEEE DATA MINING, P598, DOI 10.1109/ICDM.2019.00070 Wang R, 2020, IEEE ACCESS, V8, P38472, DOI 10.1109/ACCESS.2020.2973039 Wang X, 2019, PROCEEDINGS OF THE 42ND INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL (SIGIR '19), P165, DOI 10.1145/3331184.3331267 Wang XL, 2018, PROC CVPR IEEE, P6857, DOI 10.1109/CVPR.2018.00717 Wang Y, 2020, ADV SOC SCI EDUC HUM, V415, P341, DOI 10.1145/3383972.3383985 West D. B., 2001, Introduction to graph theory, V2 Wu J, 2019, KDD'19: PROCEEDINGS OF THE 25TH ACM SIGKDD INTERNATIONAL CONFERENCCE ON KNOWLEDGE DISCOVERY AND DATA MINING, P406, DOI 10.1145/3292500.3330950 Xiaolu Ding, 2020, ICIAI 2020: Proceedings of the 2020 the 4th International Conference on Innovation in Artificial Intelligence, P130, DOI 10.1145/3390557.3394129 Xie YQ, 2020, PROCEEDINGS OF THE TWENTY-NINTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, P1303 Xie YX, 2020, KNOWL-BASED SYST, V194, DOI 10.1016/j.knosys.2020.105548 Xie ZY, 2020, NEUROCOMPUTING, V402, P245, DOI 10.1016/j.neucom.2020.03.086 Yan SJ, 2018, AAAI CONF ARTIF INTE, P7444 Yang JW, 2018, LECT NOTES COMPUT SC, V11205, P690, DOI 10.1007/978-3-030-01246-5_41 Yang K, 2019, ICVIP 2019: PROCEEDINGS OF 2019 3RD INTERNATIONAL CONFERENCE ON VIDEO AND IMAGE PROCESSING, P1, DOI 10.1145/3376067.3376076 Yang LX, 2014, IEEE GEOSCI REMOTE S, V11, P651, DOI 10.1109/LGRS.2013.2273792 Yang YY, 2019, PROCEEDINGS OF THE 28TH ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT (CIKM '19), P2161, DOI 10.1145/3357384.3358156 Yao JT, 2007, GRC: 2007 IEEE INTERNATIONAL CONFERENCE ON GRANULAR COMPUTING, PROCEEDINGS, P734, DOI 10.1109/GrC.2007.11 Yao T, 2018, LECT NOTES COMPUT SC, V11218, P711, DOI 10.1007/978-3-030-01264-9_42 Yin RP, 2019, KNOWL-BASED SYST, V185, DOI 10.1016/j.knosys.2019.105020 Ying R, 2018, KDD'18: PROCEEDINGS OF THE 24TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING, P974, DOI 10.1145/3219819.3219890 Yo HF, 2020, IEEE T GEOSCI REMOTE, V58, P1281, DOI 10.1109/TGRS.2019.2945591 You JX, 2018, ADV NEUR IN, V31 Yu B, 2018, PROCEEDINGS OF THE TWENTY-SEVENTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, P3634 Yu DJ, 2018, KNOWL-BASED SYST, V141, P188, DOI 10.1016/j.knosys.2017.11.018 Zhang CX, 2019, KDD'19: PROCEEDINGS OF THE 25TH ACM SIGKDD INTERNATIONAL CONFERENCCE ON KNOWLEDGE DISCOVERY AND DATA MINING, P793, DOI 10.1145/3292500.3330961 Zhang HM, 2021, KNOWL-BASED SYST, V229, DOI 10.1016/j.knosys.2021.107299 Zhang MH, 2022, Arxiv, DOI arXiv:2010.16103 Zhang MH, 2018, AAAI CONF ARTIF INTE, P4438 Zhang S, 2021, KNOWL-BASED SYST, V231, DOI 10.1016/j.knosys.2021.107403 Zhang Si, 2019, Comput Soc Netw, V6, P11, DOI 10.1186/s40649-019-0069-y Zhang WS, 2019, IEEE ACCESS, V7, P32754, DOI 10.1109/ACCESS.2019.2902865 Zhang Y, 2021, KNOWL-BASED SYST, V222, DOI 10.1016/j.knosys.2021.106994 Zhang YH, 2018, 2018 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING (EMNLP 2018), P2205 Zhao BX, 2020, IEEE ACCESS, V8, P76632, DOI 10.1109/ACCESS.2020.2989443 Zhao M, 2020, LECT NOTES ARTIF INT, V12085, P542, DOI 10.1007/978-3-030-47436-2_41 Zhao PL, 2020, KNOWL-BASED SYST, V193, DOI 10.1016/j.knosys.2019.105443 Zhou J, 2020, AI OPEN, V1, P57, DOI 10.1016/j.aiopen.2021.01.001 Zhou J, 2020, KNOWL-BASED SYST, V205, DOI 10.1016/j.knosys.2020.106292 Zhu X., 2002, Tech. Rep., Technical Report CMU-CALD-02-107 Zou XM, 2018, PLOS ONE, V13, DOI 10.1371/journal.pone.0191163 NR 164 TC 14 Z9 13 U1 3 U2 3 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS EI 2666-8270 J9 MACH LEARN APPL JI Mach. Learn. Appl. PD DEC 15 PY 2022 VL 10 AR 100401 DI 10.1016/j.mlwa.2022.100401 PG 18 WC Computer Science, Artificial Intelligence; Computer Science, Information Systems; Computer Science, Interdisciplinary Applications WE Emerging Sources Citation Index (ESCI) SC Computer Science GA QT9C3 UT WOS:001223227900014 OA Green Submitted, gold DA 2024-09-05 ER PT J AU Serenko, A AF Serenko, Alexander TI The development of an AI journal ranking based on the revealed preference approach SO JOURNAL OF INFORMETRICS LA English DT Article DE Artificial intelligence; Journal ranking; Academic journal; Google scholar; Citation impact; h-Index; g-Index; hc-Index ID H-INDEX; CITATION ANALYSIS; SCIENTOMETRIC ANALYSIS; KNOWLEDGE MANAGEMENT; GLOBAL PERCEPTIONS; BUSINESS; QUALITY; IMPACT; SCIENCE; PRODUCTIVITY AB This study presents a ranking of 182 academic journals in the field of artificial intelligence. For this, the revealed preference approach, also referred to as a citation impact method, was utilized to collect data from Google Scholar. This list was developed based on three relatively novel indices: h-index, g-index, and hc-index. These indices correlated almost perfectly with one another (ranging from 0.97 to 0.99), and they correlated strongly with Thomson's Journal Impact Factors (ranging from 0.64 to 0.69). It was concluded that journal longevity (years in print) is an important but not the only factor affecting an outlet's ranking position. Inclusion in Thomson's Journal Citation Reports is a must for a journal to be identified as a leading A+ or A level outlet. However, coverage by Thomson does not guarantee a high citation impact of an outlet. The presented list may be utilized by scholars who want to demonstrate their research output, various academic committees, librarians and administrators who are not familiar with the AI research domain. (C) 2010 Elsevier Ltd. All rights reserved. C1 Lakehead Univ, Fac Business Adm, 955 Oliver Rd, Thunder Bay, ON P7B 5E1, Canada. C3 Lakehead University RP Serenko, A (corresponding author), Lakehead Univ, Fac Business Adm, 955 Oliver Rd, Thunder Bay, ON P7B 5E1, Canada. EM aserenko@lakeheadu.ca RI Serenko, Alexander/AAT-2082-2020 OI Serenko, Alexander/0000-0003-4881-2932 CR Adler NJ, 2009, ACAD MANAG LEARN EDU, V8, P72, DOI 10.5465/AMLE.2009.37012181 [Anonymous], 2005, Australian Journal of Management Ball P, 2005, NATURE, V436, P900, DOI 10.1038/436900a Banks MG, 2006, SCIENTOMETRICS, V69, P161, DOI 10.1007/s11192-006-0146-5 Barnes SJ, 2005, COMMUN ACM, V48, P110, DOI 10.1145/1039539.1039573 Bharati P, 2002, COMMUN ACM, V45, P21 BOBROW DG, 1993, ARTIF INTELL, V59, P5, DOI 10.1016/0004-3702(93)90163-6 BONEV I, 2009, PARALLEMIC Bontis N, 2009, J KNOWL MANAG, V13, P16, DOI 10.1108/13673270910931134 Cheng CH, 1996, AI MAG, V17, P87 Cheng CH, 1999, IEEE T ENG MANAGE, V46, P4, DOI 10.1109/17.740028 CHENG CH, 1994, IEEE EXPERT, V9, P7, DOI 10.1109/64.363256 COE R, 1984, ACAD MANAGE J, V27, P660, DOI 10.2307/256053 CUELLAR MJ, 2008, P 14 AM C INF SYST T Egghe L, 2008, J AM SOC INF SCI TEC, V59, P1304, DOI 10.1002/asi.20823 Egghe L, 2006, SCIENTOMETRICS, V69, P131, DOI 10.1007/s11192-006-0144-7 Fisher J, 2007, AUSTRALAS J INF SYST, V14, P5 Forgionne GA, 2002, OMEGA-INT J MANAGE S, V30, P171, DOI 10.1016/S0305-0483(02)00025-7 Forgionne GA, 2001, INFORM MANAGE, V38, P421, DOI 10.1016/S0378-7206(00)00079-3 FRANKE RH, 1990, STRATEGIC MANAGE J, V11, P243, DOI 10.1002/smj.4250110306 Gallivan MJ, 2007, EUR J INFORM SYST, V16, P36, DOI 10.1057/palgrave.ejis.3000667 GARFIELD E, 1972, SCIENCE, V178, P471, DOI 10.1126/science.178.4060.471 Garfield E, 1979, CITATION INDEXING IT Gillenson M., 2008, P 14 AM C INF SYST T Goodrum AA, 2001, INFORM PROCESS MANAG, V37, P661, DOI 10.1016/S0306-4573(00)00047-9 Gross P L, 1927, Science, V66, P385, DOI 10.1126/science.66.1713.385 GUPTA UG, 1994, EXPERT SYST APPL, V7, P581, DOI 10.1016/0957-4174(94)90081-7 Harzing A., 2008, Ethics in Science and Environmental Politics, V8, P61, DOI [DOI 10.3354/ESEP00076, 10.3354/esep00076] Harzing AW, 2009, J AM SOC INF SCI TEC, V60, P41, DOI 10.1002/asi.20953 Hirsch JE, 2005, P NATL ACAD SCI USA, V102, P16569, DOI 10.1073/pnas.0507655102 Holsapple C. W., 1994, Journal of Management Information Systems, V11, P131 Holsapple CW, 2008, J AM SOC INF SCI TEC, V59, P166, DOI 10.1002/asi.20679 Holsapple CW, 2009, COMMUN ACM, V52, P117, DOI 10.1145/1467247.1467276 HOLSAPPLE CW, 1995, DECIS SUPPORT SYST, V14, P359, DOI 10.1016/0167-9236(94)00022-K HOWARD GS, 1995, DEV REV, V15, P136, DOI 10.1006/drev.1995.1006 Kleijnen JPC, 2000, INFORM PROCESS MANAG, V36, P551, DOI 10.1016/S0306-4573(99)00076-X Kousha K, 2007, J AM SOC INF SCI TEC, V58, P1055, DOI 10.1002/asi.20584 Lewis BR, 2007, J ASSOC INF SYST, V8, P619, DOI 10.17705/1jais.00145 Liang LM, 2006, SCIENTOMETRICS, V69, P153, DOI 10.1007/s11192-006-0145-6 Lowry P., 2004, J ASSOC INF SYST, V5, P29, DOI DOI 10.17705/1JAIS.00045 Lowry PB, 2007, IEEE T PROF COMMUN, V50, P352, DOI 10.1109/TPC.2007.908733 MACROBERTS MH, 1989, J AM SOC INFORM SCI, V40, P342, DOI 10.1002/(SICI)1097-4571(198909)40:5<342::AID-ASI7>3.0.CO;2-U Manning LM, 2005, CAN J ADM SCI, V22, P273 Meho LI, 2007, J AM SOC INF SCI TEC, V58, P2105, DOI 10.1002/asi.20677 Meho LI, 2007, PHYS WORLD, V20, P32 Merton R., 1976, Sociological Ambivalence and Other Essays Merton R. K., 1974, SOCIOLOGY SCI THEORE MERTON RK, 1968, SCIENCE, V159, P56, DOI 10.1126/science.159.3810.56 MERTON RK, 1988, ISIS, V79, P606, DOI 10.1086/354848 Mingers J, 2007, EUR J INFORM SYST, V16, P303, DOI 10.1057/palgrave.ejis.3000696 Moussa S, 2010, J INFORMETR, V4, P107, DOI 10.1016/j.joi.2009.10.001 Mylonopoulos NA, 2001, COMMUN ACM, V44, P29, DOI 10.1145/383694.383701 Nisonger TE, 2004, COLL RES LIBR, V65, P152, DOI 10.5860/crl.65.2.152 Oltheten E, 2005, J FINANC QUANT ANAL, V40, P223, DOI 10.1017/S0022109000001800 Paul K, 2004, J SCHOLARLY PUBL, V35, P103, DOI 10.1353/scp.2004.0009 Pauly D., 2005, Ethics Sci Environ Polit, V5, P33 Polites GL, 2008, COMMUN ACM, V51, P95, DOI 10.1145/1327452.1327454 Price D. J. d. S., 1963, Little Science, Big Science Rogers P.S., 2007, J BUS COMMUN, V44, P403, DOI 10.1177/0021943607306138 Saad G, 2006, SCIENTOMETRICS, V69, P117, DOI 10.1007/s11192-006-0142-9 Serenko Alexander, 2009, International Journal of Business Governance and Ethics, V4, P390, DOI 10.1504/IJBGE.2009.023790 Serenko A, 2009, J INTELLECT CAP, V10, P8, DOI 10.1108/14691930910922860 Serenko A, 2010, J KNOWL MANAG, V14, P3, DOI 10.1108/13673271011015534 Serenko A, 2009, J KNOWL MANAG, V13, P4, DOI 10.1108/13673270910931125 Serenko A, 2008, CAN J ADM SCI, V25, P279, DOI 10.1002/CJAS.73 Serenko Alexander., 2004, KNOWL PROCESS MANAG, V11, P185, DOI DOI 10.1002/KPM.203 Sidiropoulos A, 2007, SCIENTOMETRICS, V72, P253, DOI 10.1007/s11192-007-1722-z Starbuck WH, 2005, ORGAN SCI, V16, P180, DOI 10.1287/orsc.1040.0107 Straub D, 2006, J ASSOC INF SYST, V7, P241, DOI 10.17705/1jais.00091 Tahai A, 1999, STRATEGIC MANAGE J, V20, P279 Theoharakis V, 2002, MARKET LETT, V13, P389, DOI 10.1023/A:1020378718456 Tol RSJ, 2008, J INFORMETR, V2, P149, DOI 10.1016/j.joi.2008.01.001 Truex D, 2009, J ASSOC INF SYST, V10, P560 Vokurka R.J., 1996, Journal of Operations Management, V14, P345, DOI DOI 10.1016/S0272-6963(96)00092-7 Walstrom KA, 2001, INFORM MANAGE, V39, P117, DOI 10.1016/S0378-7206(01)00084-2 NR 75 TC 39 Z9 39 U1 0 U2 32 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS SN 1751-1577 EI 1875-5879 J9 J INFORMETR JI J. Informetr. PD OCT PY 2010 VL 4 IS 4 BP 447 EP 459 DI 10.1016/j.joi.2010.04.001 PG 13 WC Computer Science, Interdisciplinary Applications; Information Science & Library Science WE Social Science Citation Index (SSCI) SC Computer Science; Information Science & Library Science GA 647KA UT WOS:000281616200001 DA 2024-09-05 ER PT J AU Hori, Y Hayashi, E AF Hori, Yoshiki Hayashi, Eiji TI A Research on a System Using Deep Learning for Inferring Piano Performance SO JOURNAL OF ROBOTICS NETWORKING AND ARTIFICIAL LIFE LA English DT Article DE Automatic piano; Computer music; Deep learning AB Achieving expressive and human-like automated piano performances has proven challenging. This study proposes a deep learning system to infer expressive nuances from musical scores, addressing the limitations of traditional rule-based approaches. By leveraging neural networks to learn the mapping between scores and expert performances, the system automates the inference process, improving accuracy while enhancing efficiency. This novel application of deep learning shows promise for advancing automated music performance and enabling more artistically expressive renditions. The insights gained could have broader implications for computer-aided musical interpretation and synthesis. C1 [Hori, Yoshiki; Hayashi, Eiji] Kyushu Inst Technol, 680-4 Kawazu, Iizuka Shi, Fukuoka 8208502, Japan. C3 Kyushu Institute of Technology RP Hori, Y (corresponding author), Kyushu Inst Technol, 680-4 Kawazu, Iizuka Shi, Fukuoka 8208502, Japan. EM hori.yoshiki311@mail.kyutech.jp; haya@mse.kyutech.ac.jp CR HAYASHI E, 1994, INT J JPN S PREC ENG, V28, P164 NR 1 TC 0 Z9 0 U1 0 U2 0 PU ALife Robotics Corp Ltd PI Oita PA Handadai Higashi 2-8-4, Oita, JAPAN SN 2352-6386 J9 J ROBOT NETW ARTIF L JI J. Robot Netw. Artif. Life PD DEC PY 2023 VL 10 IS 3 BP 282 EP 285 PG 4 WC Robotics WE Emerging Sources Citation Index (ESCI) SC Robotics GA A9L6X UT WOS:001285686500014 DA 2024-09-05 ER PT J AU Hanif, O Zhu, DH Wang, XF Nawaz, MS AF Hanif, Omer Zhu Donghua Wang Xuefeng Nawaz, M. Saqib TI Refining the Measurement of Topic Similarities Through Bibliographic Coupling and LDA SO IEEE ACCESS LA English DT Article DE Bibliographic coupling; brain cancer; technology mining; Latent Dirichlet allocation; topic similarity ID GROWTH-HORMONE; THERAPY; CANCER; TECHNOLOGY; TRACKING; CITATION; DISEASE; BRAIN; MODEL; AXIS AB Generally, two topics with vastly different terminology probably indicate different implied concepts. However, these topics themselves might share common references (bibliographic coupling), which suggest the underlying joint concept. Therefore, searching for these joint concepts in different topics would be of scientific interest. Previous studies have measured the similarity between topics based on comparison of the topics' word probability distributions. In contrast, this paper presents an approach for measuring the similarity between topics based on the bibliographic coupling. Besides, the similarity is independent of the topic's word probability distributions generated by a Latent Dirichlet Allocation (LDA) model. The proposed approach was evaluated using its counterpart (intra-topic similarity), baseline topic similarity matrices, and cosine measure. The method was exampled on brain cancer patents. A cross-topic similarity network of eight topics showcases 28 cross-topic pairs to profile which topics were associated with particular topics. Interestingly, some of the 28 combinations may be of scientific interest. For instance, the findings of the top five cross-topic pairs suggest that "growth of cancer cells" and "imbalances in the hormones" have common knowledge sources with the highest similarity value. These two entirely different concepts may suggest some common causative factors within the field. We believe that finding such an association between unrelated innovative inventions across various industries may help public and private research units in planning research direction and serve as a reference for future research. C1 [Hanif, Omer; Zhu Donghua; Wang Xuefeng] Beijing Inst Technol, Sch Management & Econ, Lab Knowledge Management & Data Anal, Beijing 100081, Peoples R China. [Nawaz, M. Saqib] Harbin Inst Technol, Sch Comp Sci & Technol, Shenzhen 518000, Peoples R China. C3 Beijing Institute of Technology; Harbin Institute of Technology RP Hanif, O (corresponding author), Beijing Inst Technol, Sch Management & Econ, Lab Knowledge Management & Data Anal, Beijing 100081, Peoples R China. EM omerhanif@bit.edu.cn RI Nawaz, M. Saqib/AAV-3633-2020; Nawaz, M Saqib/JDM-5962-2023; Hanif, Omer/AAQ-3868-2020 OI Nawaz, M. Saqib/0000-0001-9856-2885; Wang, xuefeng/0000-0002-4857-6944; HANIF, OMER/0000-0002-3829-5620 FU National Natural Science Foundation of China [71774012, 71373019, 71673024]; Chinese Scholarship Council [278401] FX This work was supported in part by the General Program of National Natural Science Foundation of China under Grant 71774012, Grant 71373019, and Grant 71673024, and in part by Chinese Scholarship Council through the Omer Hanif under Grant 2014-CSC#278401. CR Adams J, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0115092 Aletras N., 2014, Short Papers, V2, P22, DOI [10.3115/v1/E14-4005, DOI 10.3115/V1/E14-4005, 10.1017/CBO9781107415324.004] Ando R.K., 2000, PROC SIGIR, P216 [Anonymous], 2006, ADV NEURAL INFORM PR [Anonymous], AD CENTR NERV SYST T [Anonymous], 2008, TECH REP [Anonymous], 2017, CANCER [Anonymous], 2006, P 29 ANN INT ACM SIG [Anonymous], ACM T INTELL SYST TE [Anonymous], 2009, Proceeding of the 18th ACM Conference on Information and Knowledge Management, DOI DOI 10.1145/1645953.1646076 [Anonymous], BIOMED RES INT [Anonymous], 2009, WSDM [Anonymous], 1983, INTRO MODERN INFORM [Anonymous], STRATEGIC SOURCING N Arora Sanjeev, 2013, International Conference on Machine Learning Arun R, 2010, LECT NOTES ARTIF INT, V6118, P391 Blei D.M., 2009, Text mining: Classification, clustering, and applications, P101 Blei DM, 2007, ANN APPL STAT, V1, P17, DOI 10.1214/07-AOAS114 Boyack KW, 2014, J ASSOC INF SCI TECH, V65, P670, DOI 10.1002/asi.22990 Boyack KW, 2010, J AM SOC INF SCI TEC, V61, P2389, DOI 10.1002/asi.21419 Chaney A., 2021, P INT AAAI C WEB SOC, V6, P419 Chang J, 2009, P 12 INT C ART INT S, P81 Clayton PE, 2011, NAT REV ENDOCRINOL, V7, P11, DOI 10.1038/nrendo.2010.171 Di Marco M, 2016, WORLD J GASTRO ONCOL, V8, P55, DOI 10.4251/wjgo.v8.i1.55 Faba-Pérez C, 2004, LIBRI, V54, P43, DOI 10.1515/LIBR.2004.43 Glänzel W, 2011, SCIENTOMETRICS, V88, P297, DOI 10.1007/s11192-011-0347-4 Goh J, 2019, SUSTAINABILITY-BASEL, V11, DOI 10.3390/su11102869 Griffiths TL, 2004, P NATL ACAD SCI USA, V101, P5228, DOI 10.1073/pnas.0307752101 Gurcan F, 2019, IEEE ACCESS, V7, P82541, DOI 10.1109/ACCESS.2019.2924075 Hinneburg Alexander, 2012, Machine Learning and Knowledge Discovery in Databases. Proceedings of the European Conference (ECML PKDD 2012), P838, DOI 10.1007/978-3-642-33486-3_59 Huang HL, 2014, BMC PULM MED, V14, DOI 10.1186/1471-2466-14-80 Huang K., 2016, ADV NEURAL INFORM PR, P1786 Huang Y, 2015, SCIENTOMETRICS, V105, P2005, DOI 10.1007/s11192-015-1638-y Jo Y, 2007, KDD-2007 PROCEEDINGS OF THE THIRTEENTH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, P370 KESSLER MM, 1963, AM DOC, V14, P10, DOI 10.1002/asi.5090140103 Kostoff RN, 2014, SCIENTOMETRICS, V100, P623, DOI 10.1007/s11192-014-1298-3 Kuusi O, 2007, SCIENTOMETRICS, V70, P759, DOI 10.1007/s11192-007-0311-5 Lee YY, 2013, PROCEEDINGS OF THE 35TH INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING (ICSE 2013), P23, DOI 10.1109/ICSE.2013.6606548 Li Lianghao, 2012, P 26 AAAI C ART INT, P998 Li MN, 2018, TECHNOL FORECAST SOC, V129, P285, DOI 10.1016/j.techfore.2017.09.032 Li W., 2006, ICML, P577, DOI [10.1145/1143844.1143917, 10.1145/] Lin HY, 2016, COMPR PHYSIOL, V6, P1221, DOI 10.1002/cphy.c150035 Liu SJ, 1997, INT J TECHNOL MANAGE, V13, P661, DOI 10.1504/IJTM.1997.001689 Lupien SJ, 2007, BRAIN COGNITION, V65, P209, DOI 10.1016/j.bandc.2007.02.007 Mahesh S, 2008, PEDIATR NEPHROL, V23, P41, DOI 10.1007/s00467-007-0527-x Mantyla M., 2018, PROC IEEE INT S EMPI, P1 Meyer M, 2014, SCIENTOMETRICS, V99, P151, DOI 10.1007/s11192-013-1103-8 Morch LS, 2009, JAMA-J AM MED ASSOC, V302, P298, DOI 10.1001/jama.2009.1052 Nakazawa R, 2015, IEEE INT CONF INF VI, P283, DOI 10.1109/iV.2015.58 Nicolaisen J, 2015, J ASSOC INF SCI TECH, V66, P1082, DOI 10.1002/asi.23224 Park B, 2017, AM J HYPERTENS, V30, P713, DOI 10.1093/ajh/hpx037 Raghupathi V, 2018, IEEE ACCESS, V6, P41518, DOI 10.1109/ACCESS.2018.2859052 Ramage Daniel., 2009, EMNLP ROUSSEEUW PJ, 1987, J COMPUT APPL MATH, V20, P53, DOI 10.1016/0377-0427(87)90125-7 Schally AV, 2008, NAT CLIN PRACT ENDOC, V4, P33, DOI 10.1038/ncpendmet0677 Shao HB, 2012, NEUROLOGY, V79, P1846, DOI 10.1212/WNL.0b013e318271f823 Shibata N, 2008, TECHNOVATION, V28, P758, DOI 10.1016/j.technovation.2008.03.009 Sklar C, 2011, J CLIN ONCOL, V29, P4743, DOI 10.1200/JCO.2011.38.9833 Soranzo B, 2016, J ENG TECHNOL MANAGE, V42, P15, DOI 10.1016/j.jengtecman.2016.08.002 Thijs B, 2015, SCIENTOMETRICS, V105, P1453, DOI 10.1007/s11192-015-1641-3 Nguyen T, 2018, INT CONF KNOWL SYS, P91, DOI 10.1109/KSE.2018.8573400 Wang F, 2018, IEEE ACCESS, V6, P24660, DOI 10.1109/ACCESS.2018.2815904 Xiaofei He, 2004, Proceedings of Sheffield SIGIR 2004. The Twenty-Seventh Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, P96 Xu GX, 2019, IEEE ACCESS, V7, P58407, DOI 10.1109/ACCESS.2019.2914097 Yang XP, 2011, CURR OPIN NEPHROL HY, V20, P133, DOI 10.1097/MNH.0b013e3283431921 Zamboni WC, 2008, ONCOLOGIST, V13, P248, DOI 10.1634/theoncologist.2007-0180 Zhang Jin, 2006, Cancer Genomics & Proteomics, V3, P147 Zhang Y, 2017, J ASSOC INF SCI TECH, V68, P1925, DOI 10.1002/asi.23814 NR 68 TC 4 Z9 4 U1 0 U2 15 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 2169-3536 J9 IEEE ACCESS JI IEEE Access PY 2019 VL 7 BP 179997 EP 180011 DI 10.1109/ACCESS.2019.2958489 PG 15 WC Computer Science, Information Systems; Engineering, Electrical & Electronic; Telecommunications WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Computer Science; Engineering; Telecommunications GA KF8JT UT WOS:000509483800210 OA gold DA 2024-09-05 ER PT J AU Cascella, M Perri, F Ottaiano, A Cuomo, A Wirz, S Coluccia, S AF Cascella, Marco Perri, Francesco Ottaiano, Alessandro Cuomo, Arturo Wirz, Stefan Coluccia, Sergio TI Trends in Research on Artificial Intelligence in Anesthesia: A VOSviewer-Based Bibliometric Analysis SO INTELIGENCIA ARTIFICIAL-IBEROAMERICAL JOURNAL OF ARTIFICIAL INTELLIGENCE LA English DT Article DE Artificial Intelligence; Anesthesia; Bibliometric analysis; Machine Learning; Deep Learning; Network analysis AB Background: The scientific literature on Artificial Intelligence (AI) in anesthesia is rapidly growing. Considering that applications of AI strategies can offer paramount support in clinical decision processes, it is crucial to delineate the research features. Bibliometric analyses can provide an overview of research tendencies useful for supplementary investigations in a research field. Methods: The comprehensive literature about AI in anesthesia was checked in the Web of Science (WOS) core collection. Year of publication, journal metrics including impact factor and quartile, title, document type, topic, and article metric (citations) were extracted. The software tool VOSviewer (version 1.6.17) was implemented for the co-occurrence of keywords and the co-citation analyses, and for evaluating research networks (countries and institutions). Results: Altogether, 288 documents were retrieved from the WOS and 154 articles were included in the analysis. The number of articles increased from 4 articles in 2017 to 37 in 2021. Only 34 were observational investigations and 7 RCTs. The most relevant topic is "anesthesia management". The research network for countries and institutions shows severe gaps. Conclusion: Research on AI in anesthesia is rapidly developing. Further clinical studies are needed. Although different topics are addressed, scientific collaborations must be implemented. C1 [Cascella, Marco; Cuomo, Arturo] Ist Nazl Tumori IRCCS Fdn Pascale, Div Anesthesia & Pain Med, Naples, Italy. [Perri, Francesco] IRCCS Fdn G Pascale, Ist Nazl Tumori, Med & Expt Head & Neck Oncol Unit, Naples, Italy. [Ottaiano, Alessandro] IRCCS G Pascale, Ist Nazl Tumori Napoli, SSD Innovat Therapies Abdominal Metastases, Via M Semmola, I-80131 Naples, Italy. [Wirz, Stefan] GFO Kliniken Bonn, Cura Krankenhaus, Zent Schmerzmed, Abt Anasthesie Interdisziplinare Intens Med Schmer, Schulgenstr 15, D-53604 Bad Honnef, Germany. [Coluccia, Sergio] IRCCS Fdn G Pascale, Ist Nazl Tumori, Epidemiol & Biostat Unit, I-80100 Naples, Italy. C3 IRCCS Fondazione Pascale; IRCCS Fondazione Pascale; Fondazione IRCCS Istituto Nazionale Tumori Milan; IRCCS Fondazione Pascale; IRCCS Fondazione Pascale; Fondazione IRCCS Istituto Nazionale Tumori Milan RP Cascella, M (corresponding author), Ist Nazl Tumori IRCCS Fdn Pascale, Div Anesthesia & Pain Med, Naples, Italy. EM m.cascella@istitutotumori.na.it RI cuomo, arturo/AAL-4416-2020; cascella, marco/N-1316-2018; Coluccia, Sergio/AAC-6043-2022; Wirz, Stefan/KGM-5077-2024 OI cascella, marco/0000-0002-5236-3132; Ottaiano, Alessandro/0000-0002-2901-3855 CR Afshar S, 2021, IEEE J BIOMED HEALTH, V25, P3408, DOI 10.1109/JBHI.2021.3068481 Alexander JC, 2020, INT ANESTHESIOL CLIN, V58, P7, DOI 10.1097/AIA.0000000000000294 Bellini Valentina, 2022, Acta Biomed, V93, pe2022297, DOI 10.23750/abm.v93i5.13626 Cascella M, 2022, J CLIN MED, V11, DOI 10.3390/jcm11185484 Cascella M, 2022, J PAIN SYMPTOM MANAG, V63, P1041, DOI 10.1016/j.jpainsymman.2022.01.023 Cascella Marco AI_Anesthesia_WoS, 2022, ZENODO Coelho A., 2017, INTELIGENCIA ARTIFIC, V20, P42, DOI [10.4114/intartif.vol20iss59pp42-52, DOI 10.4114/INTARTIF.VOL20ISS59PP42-52] Connor CW, 2019, ANESTHESIOLOGY, V131, P1346, DOI 10.1097/ALN.0000000000002694 Cuendet GL, 2016, IEEE T BIO-MED ENG, V63, P328, DOI 10.1109/TBME.2015.2457032 El-Nagar AM, 2014, ARTIF INTELL MED, V61, P1, DOI 10.1016/j.artmed.2014.03.002 Flores Fonseca V. M., 2016, INTELIGENCIA ARTIFIC, V19, P17, DOI [10.4114/intartif.vol19iss58pp17-22, DOI 10.4114/INTARTIF.VOL19ISS58PP17-22] Gardner H., 1983, THEORY MULTIPLE INTE Glance LG, 2017, ANESTH ANALG, V125, P689, DOI 10.1213/ANE.0000000000002005 Guo YQ, 2020, J MED INTERNET RES, V22, DOI 10.2196/18228 Hashimoto DA, 2020, ANESTHESIOLOGY, V132, P379, DOI 10.1097/ALN.0000000000002960 Joosten A, 2019, BRIT J ANAESTH, V123, P430, DOI 10.1016/j.bja.2019.04.064 Lee M, 2022, NAT COMMUN, V13, DOI 10.1038/s41467-022-28451-0 Miyaguchi N, 2021, SCI REP-UK, V11, DOI 10.1038/s41598-021-03112-2 Niu BB, 2014, SCIENTOMETRICS, V98, P511, DOI 10.1007/s11192-013-1065-x Russell S. J., 2020, ARTIF INTELL Stephan P, 2017, NATURE, V544, P411, DOI 10.1038/544411a Szomszor Martin, 2020, Front Res Metr Anal, V5, P628703, DOI 10.3389/frma.2020.628703 van Eck NJ, 2010, SCIENTOMETRICS, V84, P523, DOI 10.1007/s11192-009-0146-3 Vittori A, 2022, CHILDREN-BASEL, V9, DOI 10.3390/children9050637 Walczak S, 2020, PLOS ONE, V15, DOI 10.1371/journal.pone.0229450 Wu HY, 2014, BIOSCI TRENDS, V8, P192, DOI 10.5582/bst.2014.01048 Yoon HK, 2022, KOREAN J ANESTHESIOL, V75, P202, DOI 10.4097/kja.22157 Zhao H, 2021, FRONT SURG, V8, DOI 10.3389/fsurg.2021.634629 NR 28 TC 3 Z9 3 U1 4 U2 24 PU ASOC ESPANOLA INTELIGENCIA ARTIFICIAL PI VALENCIA PA FAC INFORMATICA, UNIV POLITECNICA VALENCIA, VALENCIA, SPAIN SN 1137-3601 EI 1988-3064 J9 INTELIGENCIA ARTIFIC JI Inteligencia Artif. PD DEC PY 2022 VL 25 IS 70 BP 126 EP 137 DI 10.4114/intartif.vol25iss70pp126-137 PG 12 WC Computer Science, Artificial Intelligence WE Emerging Sources Citation Index (ESCI) SC Computer Science GA 7M8UM UT WOS:000906926400001 OA Green Submitted, gold DA 2024-09-05 ER PT J AU Ho, YS Wang, MH AF Ho, Yuh-Shan Wang, Ming-Huang TI A bibliometric analysis of artificial intelligence publications from 1991 to 2018 SO COLLNET JOURNAL OF SCIENTOMETRICS AND INFORMATION MANAGEMENT LA English DT Article DE AI; Neural networks; Hybrid; Machine learning; Support vector machine ID CHEMICAL INFERENCE; COMPUTER-PROGRAM; ELUCIDATION; SIMULATION; ARTICLES; GENOA AB This study aimed to analyze the characteristics of artificial intelligence-related publications in Science Citation Index Expanded (SCI-EXPANDED) from 1991 to 2018. The analyzed aspects covered distribution of annual publications, citations per publication, journals, Web of Science categories, countries, institutions, as well as research foci and their trends. A total of 13,251 artificial intelligence-related articles were found. Articles were published in a wide range of journals and Web of Science categories. The United States took the lead position in total, single country, international collaboration, and first, corresponding, and single author articles as well as citations per publication among 119 countries. Chinese Academy of Sciences in China, Islamic Azad University in Iran, and Massachusetts Institute of Technology (MIT) in USA were the three most productive institutions. MIT had higher citations per publication. An international collaborative article by authors from Canada, the United States, and Switzerland was the most frequently cited article with the most total citations from Web of Science Core Collection since publication through the end of 2018. Results from word cluster analysis showed that models, neural networks, learning, and prediction were the most popular topics and features, classification, and optimization might be focus in artificial intelligence research. C1 [Ho, Yuh-Shan; Wang, Ming-Huang] Asia Univ, Trend Res Ctr, 500 Lioufeng Rd, Wufeng 41354, Taichung County, Taiwan. C3 Asia University Taiwan RP Ho, YS (corresponding author), Asia Univ, Trend Res Ctr, 500 Lioufeng Rd, Wufeng 41354, Taichung County, Taiwan. EM ysho@asia.edu.tw RI Wang, Ming-Huang/F-5445-2012 OI Wang, Ming-Huang/0000-0002-2193-9864 CR [Anonymous], 1934, Engineering, DOI [10.1177/016555158501000, DOI 10.1177/016555158501000] Bahrammirzaee A, 2010, NEURAL COMPUT APPL, V19, P1165, DOI 10.1007/s00521-010-0362-z Barnich O, 2011, IEEE T IMAGE PROCESS, V20, P1709, DOI 10.1109/TIP.2010.2101613 Barsalou LW, 1999, BEHAV BRAIN SCI, V22, P577, DOI 10.1017/S0140525X99532147 Bellini A, 2008, IEEE T IND ELECTRON, V55, P4109, DOI 10.1109/TIE.2008.2007527 CARBONEL.JR, 1970, IEEE T MAN MACHINE, VMM11, P190, DOI 10.1109/TMMS.1970.299942 CARHART RE, 1981, J ORG CHEM, V46, P1708, DOI 10.1021/jo00321a037 CARHART RE, 1975, J AM CHEM SOC, V97, P5755, DOI 10.1021/ja00853a021 CARHART RE, 1975, J CHEM INF COMP SCI, V15, P124, DOI 10.1021/ci60002a011 Chaouachi A, 2013, IEEE T IND ELECTRON, V60, P1688, DOI 10.1109/TIE.2012.2188873 Chiu WT, 2007, SCIENTOMETRICS, V73, P3, DOI 10.1007/s11192-005-1523-1 Chiu WT, 2005, SCIENTOMETRICS, V63, P3, DOI 10.1007/s11192-005-0201-7 Chuang KY, 2015, CURR SCI INDIA, V108, P933 Chuang KY, 2014, J INFORMETR, V8, P951, DOI 10.1016/j.joi.2014.09.008 Chuang KY, 2011, SCIENTOMETRICS, V87, P551, DOI 10.1007/s11192-011-0365-2 Elango B, 2017, CURR SCI INDIA, V112, P1653, DOI 10.18520/cs/v112/i08/1653-1658 EMERENCIANO VD, 1994, SPECTROSC-INT J, V12, P91 Esteva A, 2017, NATURE, V542, P115, DOI 10.1038/nature21056 Fu HZ, 2015, ELECTRON LIBR, V33, P698, DOI 10.1108/EL-12-2013-0221 Fu HZ, 2015, J ENG THERMOPHYS-RUS, V24, P68, DOI 10.1134/S1810232815010075 Fu HZ, 2014, RES EVALUAT, V23, P12, DOI 10.1093/reseval/rvt018 Fu HZ, 2013, SCIENTOMETRICS, V96, P259, DOI 10.1007/s11192-012-0912-5 Fu HZ, 2013, SCI TOTAL ENVIRON, V443, P757, DOI 10.1016/j.scitotenv.2012.11.061 Fu HZ, 2013, J INFORMETR, V7, P210, DOI 10.1016/j.joi.2012.11.005 Fu HZ, 2012, J COLLOID INTERF SCI, V379, P148, DOI 10.1016/j.jcis.2012.04.051 FU KS, 1971, IEEE T AUTOMAT CONTR, VAC16, P70, DOI 10.1109/TAC.1971.1099633 Gardner MW, 1998, ATMOS ENVIRON, V32, P2627, DOI 10.1016/S1352-2310(97)00447-0 GARFIELD E, 1990, CURR CONTENTS, V32, P5 GARFIELD E, 1983, CURR CONTENTS, V49, P5 Garfield E., 1983, CURR CONTENTS, V52, P5 GLOVER F, 1986, COMPUT OPER RES, V13, P533, DOI 10.1016/0305-0548(86)90048-1 GRIBOV LA, 1980, ANAL CHIM ACTA-COMP, V4, P249 Gruber TR, 1995, INT J HUM-COMPUT ST, V43, P907, DOI 10.1006/ijhc.1995.1081 Han JS, 2011, NEUROSCI BIOBEHAV R, V35, P680, DOI 10.1016/j.neubiorev.2010.08.006 Ho YS, 2016, INORG CHEM COMMUN, V73, P174, DOI 10.1016/j.inoche.2016.10.023 Ho YS, 2016, CURR SCI INDIA, V111, P1156, DOI 10.18520/cs/v111/i7/1156-1165 Ho YS, 2016, FUTURE VIROL, V11, P631, DOI 10.2217/fvl-2016-0057 Ho YS, 2014, J ASSOC INF SCI TECH, V65, P372, DOI 10.1002/asi.22974 Ho YS, 2014, SCIENTOMETRICS, V98, P137, DOI 10.1007/s11192-013-1014-8 Ho YS, 2012, CHINESE J CHEM ENG, V20, P478, DOI 10.1016/S1004-9541(11)60209-7 Ho YS, 2010, INTERNAL MED, V49, P2219, DOI 10.2169/internalmedicine.49.3687 Hsieh WH, 2004, SCIENTOMETRICS, V60, P205 Huang CY, 2011, AFR J BUS MANAGE, V5, P276 HUNT E, 1968, ANNU REV PSYCHOL, V19, P135, DOI 10.1146/annurev.ps.19.020168.001031 Jia F, 2016, MECH SYST SIGNAL PR, V72-73, P303, DOI 10.1016/j.ymssp.2015.10.025 KLOPMAN G, 1984, J AM CHEM SOC, V106, P7315, DOI 10.1021/ja00336a004 Kschischang FR, 2001, IEEE T INFORM THEORY, V47, P498, DOI 10.1109/18.910572 LEDERBERG J, 1969, J AM CHEM SOC, V91, P2973, DOI 10.1021/ja01039a025 Lei J, 2018, COLLNET J SCIENTOMET, V12, P327, DOI 10.1080/09737766.2018.1501923 Li JF, 2009, CROAT CHEM ACTA, V82, P695 Li LL, 2009, SCIENTOMETRICS, V80, P39, DOI 10.1007/s11192-008-1939-5 Li Z, 2008, SCIENTOMETRICS, V75, P97, DOI 10.1007/s11192-007-1838-1 Lin CSL, 2015, CELL J, V17, P59 LINDLEY MR, 1983, ORG MAGN RESONANCE, V21, P405, DOI 10.1002/omr.1270210702 Long X, 2014, AM J SURG, V208, P841, DOI 10.1016/j.amjsurg.2014.03.016 Mannsfeld SCB, 2010, NAT MATER, V9, P859, DOI [10.1038/nmat2834, 10.1038/NMAT2834] Mao N, 2010, HUM ECOL RISK ASSESS, V16, P801, DOI 10.1080/10807039.2010.501248 MASINTER LM, 1974, J AM CHEM SOC, V96, P7702, DOI 10.1021/ja00832a017 Mazaheri H, 2017, PHYS CHEM CHEM PHYS, V19, P11299, DOI 10.1039/c6cp08437k Mellit A, 2008, PROG ENERG COMBUST, V34, P574, DOI 10.1016/j.pecs.2008.01.001 MINSKY M, 1961, P IRE, V49, P8, DOI 10.1109/JRPROC.1961.287775 Mo ZW, 2018, ENVIRON SCI POLLUT R, V25, P30257, DOI 10.1007/s11356-018-3019-6 Picknett T, 1999, J MOL BIOL, V293, P173, DOI 10.1006/jmbi.1999.3148 Pierce A., 1959, TASK, V46104 Pouris A, 2016, S AFR J SCI, V112, P83, DOI 10.17159/sajs.2016/20150326 Qian L, 2011, NATURE, V475, P368, DOI 10.1038/nature10262 SCHIMINOVICH S, 1975, BIOSCI COMMUN, V1, P24 SHUBIK M, 1960, J AM STAT ASSOC, V55, P736, DOI 10.2307/2281597 Silver D, 2017, NATURE, V550, P354, DOI 10.1038/nature24270 Silver D, 2016, NATURE, V529, P484, DOI 10.1038/nature16961 Smith DR, 2008, AUST VET J, V86, P337, DOI 10.1111/j.1751-0813.2008.00330.x SMITH LC, 1980, ANNU REV INFORM SCI, V15, P67 TAM KY, 1992, MANAGE SCI, V38, P926, DOI 10.1287/mnsc.38.7.926 Tan J, 2014, SCIENTOMETRICS, V98, P1473, DOI 10.1007/s11192-013-1125-2 Tanaka H, 2011, DESALIN WATER TREAT, V25, P1, DOI 10.5004/dwt.2011.1936 Tchuifon DRT, 2017, REV BIOL TROP, V65, P1582, DOI 10.15517/rbt.v65i4.27101 Wambu EW, 2017, INT J FOOD SCI TECH, V52, P644, DOI 10.1111/ijfs.13317 Wang CC, 2016, SCIENTOMETRICS, V109, P481, DOI 10.1007/s11192-016-1986-2 Wang MH, 2011, MALAYS J LIBR INF SC, V16, P1 WHITE RW, 1989, PAP REG SCI ASSOC, V67, P43, DOI 10.1007/BF01934666 WOOLDRIDGE M, 1995, KNOWL ENG REV, V10, P115, DOI 10.1017/S0269888900008122 Zhai C, 2018, MEAS CONTROL-UK, V51, P113, DOI 10.1177/0020294018768352 NR 82 TC 11 Z9 11 U1 0 U2 17 PU ROUTLEDGE JOURNALS, TAYLOR & FRANCIS LTD PI ABINGDON PA 2-4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND SN 0973-7766 EI 2168-930X J9 COLLNET J SCIENTOMET JI Collnet J. Scientometr. Inf. Manag. PD JUL 2 PY 2020 VL 14 IS 2 BP 369 EP 392 DI 10.1080/09737766.2021.1918032 PG 24 WC Information Science & Library Science WE Emerging Sources Citation Index (ESCI) SC Information Science & Library Science GA SM9LO UT WOS:000657918700011 DA 2024-09-05 ER PT J AU Lokker, C Bagheri, E Abdelkader, W Parrish, R Afzal, M Navarro, T Cotoi, C Germini, F Linkins, L Haynes, RB Chu, LY Iorio, A AF Lokker, Cynthia Bagheri, Elham Abdelkader, Wael Parrish, Rick Afzal, Muhammad Navarro, Tamara Cotoi, Chris Germini, Federico Linkins, Lori Haynes, R. Brian Chu, Lingyang Iorio, Alfonso TI Deep learning to refine the identification of high-quality clinical research articles from the biomedical literature: Performance evaluation SO JOURNAL OF BIOMEDICAL INFORMATICS LA English DT Article DE Bioinformatics; Machine learning; Evidence-based medicine; Literature retrieval; Medical informatics; Natural Language Processing ID RETRIEVAL; MEDLINE; CARE AB Background: Identifying practice-ready evidence-based journal articles in medicine is a challenge due to the sheer volume of biomedical research publications. Newer approaches to support evidence discovery apply deep learning techniques to improve the efficiency and accuracy of classifying sound evidence.Objective: To determine how well deep learning models using variants of Bidirectional Encoder Representations from Transformers (BERT) identify high-quality evidence with high clinical relevance from the biomedical literature for consideration in clinical practice. Methods: We fine-tuned variations of BERT models (BERTBASE, BioBERT, BlueBERT, and PubMedBERT) and compared their performance in classifying articles based on methodological quality criteria. The dataset used for fine-tuning models included titles and abstracts of >160,000 PubMed records from 2012 to 2020 that were of interest to human health which had been manually labeled based on meeting established critical appraisal criteria for methodological rigor. The data was randomly divided into 80:10:10 sets for training, validating, and testing. In addition to using the full unbalanced set, the training data was randomly undersampled into four balanced datasets to assess performance and select the best performing model. For each of the four sets, one model that maintained sensitivity (recall) at & GE;99% was selected and were ensembled. The best performing model was evaluated in a prospective, blinded test and applied to an established reference standard, the Clinical Hedges dataset.Results: In training, three of the four selected best performing models were trained using BioBERTBASE. The ensembled model did not boost performance compared with the best individual model. Hence a solo BioBERT-based model (named DL-PLUS) was selected for further testing as it was computationally more efficient. The model had high recall (>99%) and 60% to 77% specificity in a prospective evaluation conducted with blinded research associates and saved >60% of the work required to identify high quality articles. Conclusions: Deep learning using pretrained language models and a large dataset of classified articles produced models with improved specificity while maintaining >99% recall. The resulting DL-PLUS model identifies high-quality, clinically relevant articles from PubMed at the time of publication. The model improves the efficiency of a literature surveillance program, which allows for faster dissemination of appraised research. C1 [Lokker, Cynthia; Bagheri, Elham; Abdelkader, Wael; Parrish, Rick; Navarro, Tamara; Cotoi, Chris; Germini, Federico; Haynes, R. Brian; Iorio, Alfonso] McMaster Univ, Dept Hlth Res Methods Evidence & Impact, Hlth Informat Res Unit, Hamilton, ON, Canada. [Afzal, Muhammad] Birmingham City Univ, Dept Comp, Birmingham, England. [Germini, Federico; Linkins, Lori; Haynes, R. Brian; Iorio, Alfonso] McMaster Univ, Dept Med, Hamilton, ON, Canada. [Chu, Lingyang] McMaster Univ, Dept Comp & Software, Hamilton, ON, Canada. C3 McMaster University; Birmingham City University; McMaster University; McMaster University RP Lokker, C (corresponding author), McMaster Univ, Dept Hlth Res Methods Evidence & Impact, Hlth Informat Res Unit, Hamilton, ON, Canada. EM lokkerc@mcmaster.ca RI Afzal, Muhammad/D-3741-2019; Germini, Federico/K-6881-2016 OI Afzal, Muhammad/0000-0002-7851-2327; Germini, Federico/0000-0002-0802-3616; Abdelkader, Wael/0000-0002-9581-1521; Lokker, Cynthia/0000-0003-2436-4290 CR Adhikari A, 2019, Arxiv, DOI arXiv:1904.08398 Afzal M, 2020, ELECTRONICS-SWITZ, V9, DOI 10.3390/electronics9081253 Afzal M, 2019, HEALTH INFORM J, V25, P429, DOI 10.1177/1460458217719560 Ambalavanan AK, 2020, J BIOMED INFORM, V112, DOI 10.1016/j.jbi.2020.103578 [Anonymous], 2021, MEDLINE PUBMED PRODU [Anonymous], 2023, MCMASTER HLTH KNOWLE Aphinyanaphongs Y, 2005, J AM MED INFORM ASSN, V12, P207, DOI 10.1197/jamia.M1641 Aphinyanaphongs Yindalon, 2006, AMIA Annu Symp Proc, P6 Bachmann LM, 2002, J AM MED INFORM ASSN, V9, P653, DOI 10.1197/jamia.M1124 Beltagy I, 2019, 2019 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING AND THE 9TH INTERNATIONAL JOINT CONFERENCE ON NATURAL LANGUAGE PROCESSING (EMNLP-IJCNLP 2019), P3615 Bernstam EV, 2006, J AM MED INFORM ASSN, V13, P96, DOI 10.1197/jamia.M1909 Cohen AM, 2006, J AM MED INFORM ASSN, V13, P206, DOI 10.1197/jamia.M1929 Del Fiol G, 2018, J MED INTERNET RES, V20, DOI 10.2196/10281 Del Fiol G, 2014, JAMA INTERN MED, V174, P710, DOI 10.1001/jamainternmed.2014.368 Devlin J, 2019, 2019 CONFERENCE OF THE NORTH AMERICAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS: HUMAN LANGUAGE TECHNOLOGIES (NAACL HLT 2019), VOL. 1, P4171 Ganaie MA, 2022, ENG APPL ARTIF INTEL, V115, DOI 10.1016/j.engappai.2022.105151 Geersing GJ, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0032844 Guan Hong, 2019, AMIA Annu Symp Proc, V2019, P1051 H.I.R.U. McMaster, 2022, COVID 19 EVIDENCE AL Haynes RB, 2006, J AM MED INFORM ASSN, V13, P593, DOI 10.1197/jamia.M2158 Haynes RB., 1993, ACP Journal Club, V993, pA22 hiruweb.mcmaster.ca, MCMASTER HLTH KNOWLE Holland Jennifer, 2005, AMIA Annu Symp Proc, P340 Howard J, 2018, Arxiv, DOI arXiv:1801.06146 Huang T., 2020, BOOSTINGBERT INTEGRA Irwin AN, 2017, RES SOC ADMIN PHARM, V13, P389, DOI 10.1016/j.sapharm.2016.04.006 Kamath S, 2016, INDIAN J ANAESTH, V60, P622, DOI 10.4103/0019-5049.190615 Kilicoglu H, 2009, J AM MED INFORM ASSN, V16, P25, DOI 10.1197/jamia.M2996 Lan ZZ, 2020, Arxiv, DOI arXiv:1909.11942 Lanera C, 2019, SYST REV-LONDON, V8, DOI 10.1186/s13643-019-1245-8 Lee J, 2020, BIOINFORMATICS, V36, P1234, DOI 10.1093/bioinformatics/btz682 Li LS, 2018, Arxiv, DOI [arXiv:1603.06560, DOI 10.48550/ARXIV.1603.06560, 10.48550/ARXIV.1603.06560] Liu YH, 2019, Arxiv, DOI arXiv:1907.11692 Marshall IJ, 2018, RES SYNTH METHODS, V9, P602, DOI 10.1002/jrsm.1287 microsoft.github.io, BLURB LEAD Peng YF, 2020, Arxiv, DOI arXiv:2005.02799 Qiu XP, 2020, SCI CHINA TECHNOL SC, V63, P1872, DOI 10.1007/s11431-020-1647-3 Si YQ, 2019, J AM MED INFORM ASSN, V26, P1297, DOI 10.1093/jamia/ocz096 Wang B., 2021, PRETRAINED LANGUAGE, V1, P46, DOI [10.1145/nnnnnnn.nnnnnnn, DOI 10.1145/NNNNNNN.NNNNNNN] Wilczynski N L, 1993, Proc Annu Symp Comput Appl Med Care, P601 Wilczynski Nancy L, 2005, BMC Med Inform Decis Mak, V5, P20, DOI 10.1186/1472-6947-5-20 Wilczynski NL, 2004, BMC MED, V2, DOI 10.1186/1741-7015-2-23 Wilczynski NL, 2013, J AM MED INFORM ASSN, V20, P363, DOI 10.1136/amiajnl-2012-001075 Wilczynski NL, 2001, STUD HEALTH TECHNOL, V84, P390 Xie Qianqian, 2022, Knowledge-Based Systems, DOI 10.1016/j.knosys.2022.109460 Yu Gu, 2022, ACM Transactions on Computing and Healthcare, V3, DOI 10.1145/3458754 Zhao SD, 2021, BRIEF BIOINFORM, V22, DOI 10.1093/bib/bbaa057 NR 47 TC 4 Z9 4 U1 5 U2 9 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 1532-0464 EI 1532-0480 J9 J BIOMED INFORM JI J. Biomed. Inform. PD JUN PY 2023 VL 142 AR 104384 DI 10.1016/j.jbi.2023.104384 EA MAY 2023 PG 9 WC Computer Science, Interdisciplinary Applications; Medical Informatics WE Science Citation Index Expanded (SCI-EXPANDED) SC Computer Science; Medical Informatics GA J8TJ9 UT WOS:001012292000001 PM 37164244 OA hybrid, Green Accepted DA 2024-09-05 ER PT J AU Pobiedina, N Ichise, R AF Pobiedina, Nataliia Ichise, Ryutaro TI Citation count prediction as a link prediction problem SO APPLIED INTELLIGENCE LA English DT Article DE Citation count; Graph pattern mining; Feature selection ID IMPACT AB The citation count is an important factor to estimate the relevance and significance of academic publications. However, it is not possible to use this measure for papers which are too new. A solution to this problem is to estimate the future citation counts. There are existing works, which point out that graph mining techniques lead to the best results. We aim at improving the prediction of future citation counts by introducing a new feature. This feature is based on frequent graph pattern mining in the so-called citation network constructed on the basis of a dataset of scientific publications. Our new feature improves the accuracy of citation count prediction, and outperforms the state-of-the-art features in many cases which we show with experiments on two real datasets. C1 [Pobiedina, Nataliia] Vienna Univ Technol, Inst Software Technol & Interact Syst, A-1040 Vienna, Austria. [Ichise, Ryutaro] Natl Inst Informat, Principles Informat Res Div, Tokyo, Japan. C3 Technische Universitat Wien; Research Organization of Information & Systems (ROIS); National Institute of Informatics (NII) - Japan RP Pobiedina, N (corresponding author), Vienna Univ Technol, Inst Software Technol & Interact Syst, A-1040 Vienna, Austria. EM pobiedina@ec.tuwien.ac.at; ichise@nii.ac.jp CR Adamic LA, 2003, SOC NETWORKS, V25, P211, DOI 10.1016/S0378-8733(03)00009-1 Barabási AL, 1999, SCIENCE, V286, P509, DOI 10.1126/science.286.5439.509 Beel J, 2009, INT CONF RES CHAL, P439, DOI 10.1109/RCIS.2009.5089308 Bethard S., 2010, Proceedings of the 19th ACM International Conference on Information and Knowledge Management, P609, DOI [DOI 10.1145/1871437.1871517, 10.1145/1871437.1871517] Blewitt ME, 2008, NAT GENET, V40, P663, DOI 10.1038/ng.142 Bringmann B, 2010, IEEE INTELL SYST, V25, P26, DOI 10.1109/MIS.2010.91 Callaham M, 2002, JAMA-J AM MED ASSOC, V287, P2847, DOI 10.1001/jama.287.21.2847 Chang CC, 2011, ACM T INTEL SYST TEC, V2, DOI 10.1145/1961189.1961199 Devroye L., 1996, A Probabilistic Theory of Pattern Recognition Didegah F, 2013, J AM SOC INF SCI TEC, V64, P1055, DOI 10.1002/asi.22806 Dietterich TG, 1998, NEURAL COMPUT, V10, P1895, DOI 10.1162/089976698300017197 Garfield E, 2001, NATURE, V411, P522, DOI 10.1038/35079156 Hirsch JE, 2005, P NATL ACAD SCI USA, V102, P16569, DOI 10.1073/pnas.0507655102 Hothorn T, 2006, J COMPUT GRAPH STAT, V15, P651, DOI 10.1198/106186006X133933 Kulkarni AV, 2007, PLOS ONE, V2, DOI 10.1371/journal.pone.0000403 Liben-Nowell D, 2007, J AM SOC INF SCI TEC, V58, P1019, DOI 10.1002/asi.20591 Livne A., 2013, P ICONFERENCE 2013 W, P16 McGovern Amy, 2003, ACM SIGKDD Explorations Newsletter, V5, P165, DOI DOI 10.1145/980972.980999 Munasinghe L, 2012, IEICE T INF SYST, VE95D, P821, DOI 10.1587/transinf.E95.D.821 Pobiedina Nataliia, 2014, Modern Advances in Applied Intelligence. 27th International Conference on Industrial Engineering and Other Applications of Applied Intelligent Systems, IEA/AIE 2014. Proceedings: LNCS 8482, P109, DOI 10.1007/978-3-319-07467-2_12 SHI X, 2010, P 10 ANN JOINT C DIG, P49, DOI DOI 10.1145/1816123.1816131 Sokolova M, 2009, INFORM PROCESS MANAG, V45, P427, DOI 10.1016/j.ipm.2009.03.002 Yan R, 2012, P 12 ACM IEEE CS JOI, P51, DOI DOI 10.1145/2232817.2232831 Yan R, 2011, P 20 ACM INT C INF K, P1247, DOI DOI 10.1145/2063576.2063757 NR 24 TC 30 Z9 33 U1 3 U2 43 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0924-669X EI 1573-7497 J9 APPL INTELL JI Appl. Intell. PD MAR PY 2016 VL 44 IS 2 BP 252 EP 268 DI 10.1007/s10489-015-0657-y PG 17 WC Computer Science, Artificial Intelligence WE Science Citation Index Expanded (SCI-EXPANDED) SC Computer Science GA DF0SB UT WOS:000371048100002 DA 2024-09-05 ER PT C AU Li, JX Hu, YL AF Li Jiaxu Hu Yuling GP IEEE TI Research Framework of Risk Assessment in Evacuation Based on Deep Learning SO 2020 CHINESE AUTOMATION CONGRESS (CAC 2020) SE Chinese Automation Congress LA English DT Proceedings Paper CT Chinese Automation Congress (CAC) CY NOV 06-08, 2020 CL Shanghai, PEOPLES R CHINA DE risk assessment; emergency evacuation; deep learning; convolutional neural network ID AUTOENCODER; ACCIDENTS AB Aim at the occurrence of security accidents, emergency evacuation has become an important means that cannot be ignored. At present, most of the risk assessment studies are focused on accident analysis, while only a few studies conduct risk assessments on evacuation issues. Without the basis for risk assessment, it is easy to ignore some important factors when formulating an evacuation emergency plan, resulting in lacking of science in the evacuation plan and even a negative impact in actual implementation. Therefore, the research on risk assessment of evacuation is a very significant research direction. In addition, with the advent of the era of big data and the development of artificial intelligence, the data required for risk assessment is also increasing, and traditional risk assessment methods are difficult to deal with these huge amounts of data. Therefore, the use of deep learning methods into risk assessment and deal with this problem is also one trend in future. The major objective of this study Is as to apply deep learning method to evacuation risk assessment, and give a framework of risk assessment in evacuation based on convolutional neural networks. C1 [Li Jiaxu; Hu Yuling] Beijing Univ Civil Engn & Architecture, Beijing Key Lab Intelligent Proc Jbr Bldg Big Dat, Beijing, Peoples R China. C3 Beijing University of Civil Engineering & Architecture RP Li, JX (corresponding author), Beijing Univ Civil Engn & Architecture, Beijing Key Lab Intelligent Proc Jbr Bldg Big Dat, Beijing, Peoples R China. EM 454453502@qq.com; huyuling@bucea.edu.cn RI hu, yuling/KLE-4059-2024 OI hu, yuling/0000-0003-0884-0699 FU Fundamental Research Funds for Beijing University of Civil Engineering and Architecture [X18304] FX This work was supported by Fundamental Research Funds for Beijing University of Civil Engineering and Architecture (X18304). CR [Anonymous], 2019, IND SAFETY ENV PROTE Chen ZY, 2017, IEEE T INSTRUM MEAS, V66, P1693, DOI 10.1109/TIM.2017.2669947 Gai WM, 2020, J LOSS PREVENT PROC, V63, DOI 10.1016/j.jlp.2019.103993 Gai WM, 2018, SAFETY SCI, V106, P203, DOI 10.1016/j.ssci.2018.03.021 Goodfellow I, 2016, ADAPT COMPUT MACH LE, P321 Gu JX, 2018, PATTERN RECOGN, V77, P354, DOI 10.1016/j.patcog.2017.10.013 Luan QZ, 2020, CHINESE GEOGR SCI, V30, P294, DOI 10.1007/s11769-020-1112-5 Lyu S., 2020, TECHNOLOGY EC AREAS, V22, P54 Mao L, 2020, JAMA NEUROL, V77, P683, DOI 10.1001/jamaneurol.2020.1127 Marhavilas PK, 2019, J LOSS PREVENT PROC, V62, DOI 10.1016/j.jlp.2019.103981 Norazahar N, 2018, APPL OCEAN RES, V79, P1, DOI 10.1016/j.apor.2018.07.002 Paltrinieri N, 2019, SAFETY SCI, V118, P475, DOI 10.1016/j.ssci.2019.06.001 Ramzali N, 2015, SAFETY SCI, V78, P49, DOI 10.1016/j.ssci.2015.04.004 Shao HD, 2017, MECH SYST SIGNAL PR, V95, P187, DOI 10.1016/j.ymssp.2017.03.034 Shi Y., 2020, SAFETY ENV ENG, V27, P111 Skorupski J, 2016, SAFETY SCI, V88, P76, DOI 10.1016/j.ssci.2016.04.025 Sun ZM, 2011, 2011 INTERNATIONAL CONFERENCE ON ECONOMIC, EDUCATION AND MANAGEMENT (ICEEM2011), VOL I, P139 Tao Y., 2019, FIRE SCI TECHNOLOGY, V38, P1624 Wang H, 2020, FUEL, V272, DOI 10.1016/j.fuel.2020.117731 [王坤峰 Wang Kunfeng], 2017, [自动化学报, Acta Automatica Sinica], V43, P321 Wicaksono FD, 2020, HELIYON, V6, DOI 10.1016/j.heliyon.2020.e03607 Yao T., 2019, STRUCTURAL ENG, V35, P93 [余萍 Yu Ping], 2020, [计算机工程与应用, Computer Engineering and Application], V56, P1 Zhang Peiyang, 2020, NETWORK SECURITY TEC, P43 Zhang YL, 2019, J MATER SCI TECHNOL, V35, P902, DOI 10.1016/j.jmst.2018.09.067 Zhang YZ, 2020, PEERJ, V8, DOI 10.7717/peerj.9403 Zhao JB, 2020, P REL MAINT S, DOI 10.1109/rams48030.2020.9153632 Zuo L., 2018, LANDSCAPE ARCHITECTU, V25, P90 NR 28 TC 0 Z9 0 U1 1 U2 12 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA SN 2688-092X EI 2688-0938 BN 978-1-7281-7687-1 J9 CHIN AUTOM CONGR PY 2020 BP 1860 EP 1864 DI 10.1109/CAC51589.2020.9326940 PG 5 WC Automation & Control Systems WE Conference Proceedings Citation Index - Science (CPCI-S) SC Automation & Control Systems GA BR9MR UT WOS:000678697001175 DA 2024-09-05 ER PT J AU Fu, LD Aphinyanaphongs, Y Wang, LL Aliferis, CF AF Fu, Lawrence D. Aphinyanaphongs, Yindalon Wang, Lily Aliferis, Constantin F. TI A comparison of evaluation metrics for biomedical journals, articles, and websites in terms of sensitivity to topic SO JOURNAL OF BIOMEDICAL INFORMATICS LA English DT Article DE Information retrieval; Machine learning; PageRank; Journal impact factor; Topic-sensitivity; Bibliometrics ID IMPACT FACTORS; PAGERANK; SEARCH; LINK AB Evaluating the biomedical literature and health-related websites for quality are challenging information retrieval tasks. Current commonly used methods include impact factor for journals, PubMed's clinical query filters and machine learning-based filter models for articles, and PageRank for websites. Previous work has focused on the average performance of these methods without considering the topic, and it is unknown how performance varies for specific topics or focused searches. Clinicians, researchers, and users should be aware when expected performance is not achieved for specific topics. The present work analyzes the behavior of these methods for a variety of topics. Impact factor, clinical query filters, and PageRank vary widely across different topics while a topic-specific impact factor and machine learning-based filter models are more stable. The results demonstrate that a method may perform excellently on average but struggle when used on a number of narrower topics. Topic-adjusted metrics and other topic robust methods have an advantage in such situations. Users of traditional topic-sensitive metrics should be aware of their limitations. (C) 2011 Elsevier Inc. All rights reserved. C1 [Fu, Lawrence D.; Aphinyanaphongs, Yindalon; Aliferis, Constantin F.] NYU, Med Ctr, Ctr Hlth Informat & Bioinformat, New York, NY 10016 USA. [Wang, Lily] Vanderbilt Univ, Sch Med, Dept Biostat, Nashville, TN 37232 USA. C3 New York University; Vanderbilt University RP Fu, LD (corresponding author), NYU, Med Ctr, Ctr Hlth Informat & Bioinformat, 227 E 30th St,7th Floor, New York, NY 10016 USA. EM lawrence.fu@nyumc.org; yin.a@nyumc.org; lily.wang@vanderbilt.edu; constantin.aliferis@nyumc.org OI Aphinyanaphongs, Yin/0000-0001-8605-5392 FU [R56 LM007948-04A1]; [1UL1RR029893] FX The authors gratefully acknowledge support from Grants R56 LM007948-04A1 and 1UL1RR029893. CR Aphinyanaphongs Y, 2005, J AM MED INFORM ASSN, V12, P207, DOI 10.1197/jamia.M1641 APHINYANAPHONGS Y, 2003, AMIA ANN S BLAND JM, 1986, LANCET, V1, P307, DOI 10.1016/s0140-6736(86)90837-8 Borodin A., 2001, WWW, V1, P415 Brin S, 1998, WWW, DOI 10.1016/s0169-7552(98)00110-x. Burges CJC, 1998, DATA MIN KNOWL DISC, V2, P121, DOI 10.1023/A:1009715923555 Garfield E, 2006, JAMA-J AM MED ASSOC, V295, P90, DOI 10.1001/jama.295.1.90 GARFIELD E, 1972, SCIENCE, V178, P471, DOI 10.1126/science.178.4060.471 Garfield E., 1965, CAN CITATION INDEXIN Glanzel W, 2002, SCIENTOMETRICS, V53, P171, DOI 10.1023/A:1014848323806 Haveliwala TH, 2003, IEEE T KNOWL DATA EN, V15, P784, DOI 10.1109/TKDE.2003.1208999 HAYNES RB, 1994, J AM MED INFORM ASSN, V1, P447, DOI 10.1136/jamia.1994.95153434 Kamvar S., 2003, Exploiting the Block Structure of the Web for Computing PageRank Lempel R, 2005, INFORM RETRIEVAL, V8, P245, DOI 10.1007/s10791-005-5661-0 National Library of Medicine, MESH BROWS Ng A., 2001, 24 ACM INT C RES DEV NIE L, 2006, 29 ACM INT C RES DEV Richardson M, 2002, ADV NEUR IN, V14, P1441 Tabachnick B.G., 2014, USING MULTIVARIATE S, V6 Takahashi K, 1999, OCCUP MED-OXFORD, V49, P57, DOI 10.1093/occmed/49.1.57-a *THOMS SCI, ISI WEB KNOWL Uehara M, 2003, J OCCUP HEALTH, V45, P248, DOI 10.1539/joh.45.248 NR 22 TC 4 Z9 4 U1 0 U2 17 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 1532-0464 J9 J BIOMED INFORM JI J. Biomed. Inform. PD AUG PY 2011 VL 44 IS 4 BP 587 EP 594 DI 10.1016/j.jbi.2011.03.006 PG 8 WC Computer Science, Interdisciplinary Applications; Medical Informatics WE Science Citation Index Expanded (SCI-EXPANDED) SC Computer Science; Medical Informatics GA 800OO UT WOS:000293371500009 PM 21419864 OA Green Accepted DA 2024-09-05 ER PT J AU Zhou, R He, ZH Lu, XB Gao, Y AF Zhou, Rui He, Zhihua Lu, Xiaobiao Gao, Ying TI Applying Deep Learning in the Training of Communication Design Talents Under University-Industrial Research Collaboration SO FRONTIERS IN PSYCHOLOGY LA English DT Article DE deep learning; RNN; higher vocational computer science specialty; talent cultivation; fused attention model; communication design courses ID TIME-SERIES MODEL; ALGORITHM AB The purpose of the study was to solve the problem of the mismatching between the supply and demand of the talents that universities provide for society, whose major is communication design. The correlations between social post demand and university cultivation, as well as between social post demand and the demand indexes of enterprises for posts, are explored under the guidance of University-Industrial Research Collaboration. The backpropagation neural network (BPNN) is used, and the advantages of the Seasonal Autoregressive Integrated Moving Average model (SARIMA) model are combined to design the SARIMA-BPNN (SARIMA-BP) model after the relevant parameters are adjusted. Through the experimental analysis, it is found that the error of the root mean square of the designed SARIMA-BP model in post prediction is 7.523 and that of the BPNN model is 16.122. The effect of the prediction model that was designed based on deep learning is smaller than that of the previous model based on the neural network, and it can predict future posts more accurately for colleges and universities. Guided by the "University-Industrial Research Collaboration," students will have more practice in the teaching process in response to social needs. "University-Industrial Research Collaboration" guides the teaching direction for communication design majors and can help to cultivate communication design talents who are competent for the post provided. C1 [Zhou, Rui; Lu, Xiaobiao] Anhui Agr Univ, Sch Text Engn & Art, Hefei, Peoples R China. [He, Zhihua; Gao, Ying] Zhejiang Gongshang Univ, Art & Design Coll, Hangzhou, Peoples R China. C3 Anhui Agricultural University; Zhejiang Gongshang University RP He, ZH (corresponding author), Zhejiang Gongshang Univ, Art & Design Coll, Hangzhou, Peoples R China. EM hezhihua@mail.zjgsu.edu.cn FU Key Research Projects of Humanities and Social Sciences in Colleges and Universities in Anhui Province [SK2020A0127] FX Funding This work was supported by Key Research Projects of Humanities and Social Sciences in Colleges and Universities in Anhui Province (The Research on the Communication Design of Huizhou Gate Decoration Art from the Perspective of Omnimedi, Project Number: SK2020A0127). CR Alhnaity B, 2020, ENG APPL ARTIF INTEL, V95, DOI 10.1016/j.engappai.2020.103873 Arrafii MA, 2021, TEACH TEACH EDUC, V98, DOI 10.1016/j.tate.2020.103245 Awujoola O., 2021, MALAYS J SCI, V6, P67, DOI [10.37231/myjas.2021.6.1.276, DOI 10.37231/MYJAS.2021.6.1.276] Chattha M.A., 2019, ARXIV PREPRINT ARXIV Davis JK, 2019, ENVIRON MODELL SOFTW, V119, P275, DOI 10.1016/j.envsoft.2019.06.010 Gates KM, 2017, MULTIVAR BEHAV RES, V52, P129, DOI 10.1080/00273171.2016.1256187 Jha S, 2021, NEURAL COMPUT APPL, V33, P10621, DOI 10.1007/s00521-020-04998-1 Jiang P, 2017, APPL SOFT COMPUT, V55, P44, DOI 10.1016/j.asoc.2017.01.043 Karasu S, 2020, ENERGY, V212, DOI 10.1016/j.energy.2020.118750 Khan MM, 2021, INDIAN J OTOLARYNGOL, V73, P85, DOI [10.1007/s12070-020-01865-2, 10.1109/JESTIE.2020.3041704] Liao YQ, 2019, IEEE ACCESS, V7, P38044, DOI 10.1109/ACCESS.2019.2904749 Livieris IE, 2019, INTELL DECIS TECHNOL, V13, P367, DOI 10.3233/IDT-180136 Lu YF, 2018, IEEE ACCESS, V6, P10986, DOI 10.1109/ACCESS.2018.2805280 Luo J., 2018, Open Journal of Business and Management, V6, P850, DOI [DOI 10.4236/OJBM.2018.64063, 10.4236/ojbm.2018] Mahmut O.Z.E. R., 2020, KASTAMONU UNIV KASTA, V28, P558, DOI DOI 10.24106/kefdergi.704878 Msosa SK, 2020, EDUC SCI, V10, DOI 10.3390/educsci10080189 Nashold L., 2020, USING LSTM SARIMA MO Pramanik PKD, 2021, IEEE ACCESS, V9, P116647, DOI 10.1109/ACCESS.2021.3103903 Song XY, 2020, J PETROL SCI ENG, V186, DOI 10.1016/j.petrol.2019.106682 Tealab Ahmed, 2018, Future Computing and Informatics Journal, V3, P334, DOI 10.1016/j.fcij.2018.10.003 Wagner-Muns IM, 2018, IEEE T INTELL TRANSP, V19, P878, DOI 10.1109/TITS.2017.2706143 Wang CH, 2018, COMPUT IND ENG, V115, P486, DOI 10.1016/j.cie.2017.12.003 Wang Y, 2018, REMOTE SENS LETT, V9, P274, DOI 10.1080/2150704X.2017.1418992 Yang HF, 2019, EXPERT SYST APPL, V120, P128, DOI 10.1016/j.eswa.2018.11.019 Yao JP, 2020, SCI TOTAL ENVIRON, V698, DOI 10.1016/j.scitotenv.2019.134227 Yoon J., 2019, Neural Information Processing Systems (NeurIPS), P1 NR 26 TC 2 Z9 2 U1 3 U2 31 PU FRONTIERS MEDIA SA PI LAUSANNE PA AVENUE DU TRIBUNAL FEDERAL 34, LAUSANNE, CH-1015, SWITZERLAND SN 1664-1078 J9 FRONT PSYCHOL JI Front. Psychol. PD DEC 15 PY 2021 VL 12 AR 742172 DI 10.3389/fpsyg.2021.742172 PG 10 WC Psychology, Multidisciplinary WE Social Science Citation Index (SSCI) SC Psychology GA YA0RS UT WOS:000738052000001 PM 34975631 OA gold, Green Published DA 2024-09-05 ER PT C AU Kang, Q Wang, L Xiao, H Wu, Q AF Kang Qi Wang Lei Xiao Hui Wu Qidi GP IEEE TI Evaluation mode research on particle swarm optimization algorithm SO 2007 IEEE INTERNATIONAL CONFERENCE ON NETWORKING, SENSING, AND CONTROL, VOLS 1 AND 2 SE IEEE International Conference on Networking Sensing and Control LA English DT Proceedings Paper CT IEEE International Conference on Networking, Sensing and Control CY APR 15-17, 2007 CL London, ENGLAND DE particle swarm optimization; evaluation mode; general optimization performance; population dynamics AB This paper presents a series of evaluation indexes for intelligent particle swarm optimization based on the basal evaluation index system in the field of intelligent optimization. A kind of evaluation model used to evaluate synthetically the general optimization performance and population dynamics of particle swarm optimization is proposed. This evaluation model is simulated and validated by function optimization problems. C1 [Kang Qi; Wang Lei; Xiao Hui] Tongji Univ, Coll Elect & Informat Engn, Siping Rd 1239, Shanghai 200092, Peoples R China. [Wu Qidi] Minist Educ China, Beijing 100816, Peoples R China. C3 Tongji University RP Kang, Q (corresponding author), Tongji Univ, Coll Elect & Informat Engn, Siping Rd 1239, Shanghai 200092, Peoples R China. EM kangqi_kz@hotmail.com RI Kang, Qi/M-1037-2018 FU National Science Foundation of China [70531020]; National 973 project [2002CB312202]; National committee Development and Innovation of China [CNGI-04-15-5A-2] FX The workof this paper is supported by National Science Foundation of China (70531020), sub-item of National 973 project (2002CB312202) and National committee Development and Innovation of China(CNGI-04-15-5A-2). CR Eberhart RC, 2001, IEEE C EVOL COMPUTAT, P81, DOI 10.1109/CEC.2001.934374 Fan HY, 2002, ENG COMPUTATION, V19, P970, DOI 10.1108/02644400210450378 Kennedy J, 1995, 1995 IEEE INTERNATIONAL CONFERENCE ON NEURAL NETWORKS PROCEEDINGS, VOLS 1-6, P1942, DOI 10.1109/icnn.1995.488968 LEI W, 2004, P IEEE CCA ISIC CACS, P149 LEI W, 2004, P 2004 IEEE INT C CY, P377 LEI W, 2004, FORMALIZATION RES CO, V33, P694 LING W, 2001, INTELLIGENT OPTIMIZA, P1 QI K, 2006, RUIPEEEC2006, P106 Ratnaweera A, 2004, IEEE T EVOLUT COMPUT, V8, P240, DOI 10.1109/tevc.2004.826071 Shi Y., 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406), P1945, DOI 10.1109/CEC.1999.785511 NR 10 TC 1 Z9 1 U1 0 U2 1 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA SN 1810-7869 BN 978-1-4244-1075-0 J9 IEEE INT C NETW SENS PY 2007 BP 846 EP + PG 2 WC Automation & Control Systems; Computer Science, Theory & Methods; Engineering, Electrical & Electronic WE Conference Proceedings Citation Index - Science (CPCI-S) SC Automation & Control Systems; Computer Science; Engineering GA BHB32 UT WOS:000252065800151 DA 2024-09-05 ER PT J AU Amon, J Hornik, K AF Amon, Julian Hornik, Kurt TI Is it all bafflegab? - Linguistic and meta characteristics of research articles in prestigious economics journals SO JOURNAL OF INFORMETRICS LA English DT Article DE Research impact; SJR indicator; NLP; Readability; Gradient boosting; GLMLSS ID R-PACKAGE; VARIABLE SELECTION; BETA REGRESSION; IMPACT; READABILITY; COLLABORATION; COMPLEXITY; MANAGEMENT; CITATIONS; RANKINGS AB In competitive research environments, scholars have a natural interest to maximize the prestige associated with their scientific work. In order to identify factors that might help them address this goal more effectively, the scientometric literature has tried to link linguistic and meta characteristics of academic papers to the associated degree of scientific prestige, conceptualized as cumulative citation counts. In this paper, we take an alternative approach that instead understands scientific prestige in terms of the rankings of the journals that the articles appeared in, as such rankings are routinely used as surrogate research quality indicators. For the purpose of determining the most important drivers of suchlike prestige, we use state-of-the-art text mining tools to extract 344 interpretable features from a large corpus of over 200,000 journal articles in economics. We then estimate beta regression models to investigate the relationship between these predictors and a cross-sectionally standardized version of SCImago Journal Rank (SJR) in multiple topically homogeneous clusters. In so doing, we also reinvestigate the bafflegab theory, according to which more prestigious research papers tend to be less readable, in a methodologically novel way. Our results show the consistently most informative predictors to be associated with the length of the paper, the span of coreference chains in its full text, the deployment of a personal and moderately informal writing style, the "density" of the article in terms of sentences per page, international and institutional collaboration in research teams and the references cited in the paper. Moreover, we identify various linguistic intricacies that matter in the association between readability and scientific prestige, which suggest this relationship to be more complicated than previously assumed. C1 [Amon, Julian; Hornik, Kurt] Vienna Univ Econ & Business Adm, Inst Stat & Math, Welthandelspl 1, A-1020 Vienna, Austria. C3 Vienna University of Economics & Business RP Amon, J (corresponding author), Vienna Univ Econ & Business Adm, Inst Stat & Math, Welthandelspl 1, A-1020 Vienna, Austria. EM julian.amon@wu.ac.at RI ; Hornik, Kurt/S-8548-2017 OI Amon, Julian/0000-0002-1677-8349; Hornik, Kurt/0000-0003-4198-9911 CR Abritis A, 2017, SCIENCE, DOI 10.1126/science.aan7214 [Anonymous], 2010, ICML Argamon S, 2008, SCIENTOMETRICS, V75, P203, DOI 10.1007/s11192-007-1768-y Armstrong J.S, 1980, PSYCHOL TODAY, V12 ARMSTRONG JS, 1989, J INFORM SCI, V15, P123, DOI 10.1177/016555158901500209 ARMSTRONG JS, 1980, INTERFACES, V10, P80, DOI 10.1287/inte.10.2.80 Bayer F. M, 2014, ARXIV PREPRINT ARXIV Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993 Bordons M, 2013, SCIENTOMETRICS, V96, P443, DOI 10.1007/s11192-012-0890-7 Boyack KW, 2005, ISSI 2005: Proceedings of the 10th International Conference of the International Society for Scientometrics and Informetrics, Vols 1 and 2, P335 Chen CM, 2012, J AM SOC INF SCI TEC, V63, P431, DOI 10.1002/asi.21694 De Clercq O, 2016, COMPUT LINGUIST, V42, P457, DOI 10.1162/COLI_a_00255 Didegah F, 2013, J INFORMETR, V7, P861, DOI 10.1016/j.joi.2013.08.006 Eilers PHC, 1996, STAT SCI, V11, P89, DOI 10.1214/ss/1038425655 Ester Martin, 1996, P 2 INT C KNOWL DISC, P226 Feng L, 2010, A Comparison of Features for Automatic Readability Assessment, P276, DOI DOI 10.5555/1944566.1944598 Ferrari SLP, 2004, J APPL STAT, V31, P799, DOI 10.1080/0266476042000214501 Flesch R, 1948, J APPL PSYCHOL, V32, P221, DOI 10.1037/h0057532 Fraley C, 2002, J AM STAT ASSOC, V97, P611, DOI 10.1198/016214502760047131 Frey BS, 2010, J APPL ECON, V13, P1, DOI 10.1016/S1514-0326(10)60002-5 Gazni A, 2011, J INF SCI, V37, P273, DOI 10.1177/0165551511401658 Gazni A, 2011, SCIENTOMETRICS, V87, P251, DOI 10.1007/s11192-011-0343-8 González-Pereira B, 2010, J INFORMETR, V4, P379, DOI 10.1016/j.joi.2010.03.002 Groll A., 2018, WORKING PAPERS EC ST Grün B, 2011, J STAT SOFTW, V40, P1 Guerrero-Bote VP, 2012, J INFORMETR, V6, P674, DOI 10.1016/j.joi.2012.07.001 Gunning Robert, 1952, The Technique of Clear Writing Hahsler M, 2008, J STAT SOFTW, V25, P1 Hartigan J. A., 1979, Applied Statistics, V28, P100, DOI 10.2307/2346830 HARTLEY J, 1988, J INFORM SCI, V14, P69, DOI 10.1177/102831538801400202 Hartley J, 2002, SOC STUD SCI, V32, P321, DOI 10.1177/0306312702032002005 Haslam N, 2008, SCIENTOMETRICS, V76, P169, DOI 10.1007/s11192-007-1892-8 Hofner B, 2016, J STAT SOFTW, V74, P1, DOI 10.18637/jss.v074.i01 Hyland K, 2017, ENGL SPECIF PURP, V45, P40, DOI 10.1016/j.esp.2016.09.001 JOHNSON SC, 1967, PSYCHOMETRIKA, V32, P241, DOI 10.1007/BF02289588 Klare G. R., 1963, THE MEASUREMENT OF R Koltcov S., 2014, P 2014 ACM C WEB SCI, P161, DOI [DOI 10.1145/2615569.2615680, 10.1145/2615569.2615680] Kormos J, 2011, J SECOND LANG WRIT, V20, P148, DOI 10.1016/j.jslw.2011.02.001 Larivière V, 2015, J ASSOC INF SCI TECH, V66, P1323, DOI 10.1002/asi.23266 Larivière V, 2010, J AM SOC INF SCI TEC, V61, P126, DOI 10.1002/asi.21226 Lee PS, 2018, IEEE T BIG DATA, V4, P117, DOI 10.1109/TBDATA.2017.2689038 Lei L, 2016, SCIENTOMETRICS, V107, P1361, DOI 10.1007/s11192-016-1896-3 Leimu R, 2005, TRENDS ECOL EVOL, V20, P28, DOI 10.1016/j.tree.2004.10.010 Liu F, 2015, R J, V7, P34 Lu C, 2019, J INFORMETR, V13, P817, DOI 10.1016/j.joi.2019.07.004 Lu C, 2019, J ASSOC INF SCI TECH, V70, P462, DOI 10.1002/asi.24126 MacQueen James, 1967, 5 BERK S MATH STAT P, P281 Manning CD, 2014, PROCEEDINGS OF 52ND ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS: SYSTEM DEMONSTRATIONS, P55, DOI 10.3115/v1/p14-5010 Mayr A, 2012, J ROY STAT SOC C, V61, P403, DOI 10.1111/j.1467-9876.2011.01033.x Meyer D., 2023, vcd: Visualizing Categorical Data Mubin O, 2018, SCIENTOMETRICS, V116, P1181, DOI 10.1007/s11192-018-2778-7 Peng TQ, 2012, J AM SOC INF SCI TEC, V63, P1789, DOI 10.1002/asi.22649 Phan Xuan-Hieu, 2008, P 17 INT C WORLD WID, P91, DOI 10.1145/1367497.1367510 Rigby J, 2013, SCIENTOMETRICS, V94, P57, DOI 10.1007/s11192-012-0779-5 Rigby RA, 2005, J ROY STAT SOC C, V54, P507, DOI 10.1111/j.1467-9876.2005.00510.x Schwendinger F., 2020, PREPRINT SELIGMAN L, 1986, J COUNS DEV, V65, P189, DOI 10.1002/j.1556-6676.1986.tb01311.x Serenko A, 2013, J KNOWL MANAG, V17, P307, DOI 10.1108/13673271311315231 Sienkiewicz J, 2016, ROY SOC OPEN SCI, V3, DOI 10.1098/rsos.160140 Simas AB, 2010, COMPUT STAT DATA AN, V54, P348, DOI 10.1016/j.csda.2009.08.017 Sooryamoorthy R, 2009, SCIENTOMETRICS, V81, P177, DOI 10.1007/s11192-009-2126-z Sternberg RJ, 1996, PSYCHOL SCI, V7, P69, DOI 10.1111/j.1467-9280.1996.tb00332.x STEVENS K., 1992, The Journal of Business Comunication, v, V29, n, P367, DOI DOI 10.1177/002194369202900404 Stremersch S, 2007, J MARKETING, V71, P171, DOI 10.1509/jmkg.71.3.171 Thomas J, 2018, STAT COMPUT, V28, P673, DOI 10.1007/s11222-017-9754-6 Tüselmann H, 2015, OMEGA-INT J MANAGE S, V51, P11, DOI 10.1016/j.omega.2014.08.002 Uddin S, 2016, J INFORMETR, V10, P1166, DOI 10.1016/j.joi.2016.10.004 Umlauf N, 2018, J COMPUT GRAPH STAT, V27, P612, DOI 10.1080/10618600.2017.1407325 van Wesel M, 2014, SCIENTOMETRICS, V98, P1601, DOI 10.1007/s11192-013-1154-x Willmott H, 2011, ORGANIZATION, V18, P429, DOI 10.1177/1350508411403532 WOLFF WM, 1970, AM PSYCHOL, V25, P636, DOI 10.1037/h0029770 Zhao WH, 2014, J APPL STAT, V41, P95, DOI 10.1080/02664763.2013.830284 Zimmerman J.L., 1989, Issues in Accounting Education, V4, P458 NR 73 TC 1 Z9 1 U1 2 U2 23 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS SN 1751-1577 EI 1875-5879 J9 J INFORMETR JI J. Informetr. PD MAY PY 2022 VL 16 IS 2 AR 101284 DI 10.1016/j.joi.2022.101284 EA APR 2022 PG 17 WC Computer Science, Interdisciplinary Applications; Information Science & Library Science WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Computer Science; Information Science & Library Science GA 2S3GW UT WOS:000821684900004 OA hybrid DA 2024-09-05 ER PT J AU Muntean, M Militaru, FD AF Muntean, Mihaela Militaru, Florin Daniel TI Design Science Research Framework for Performance Analysis Using Machine Learning Techniques SO ELECTRONICS LA English DT Article DE design science research; performance analysis; machine learning; classification algorithms; clustering algorithms AB We propose a methodological framework based on design science research for the design and development of data and information artifacts in data analysis projects, particularly managerial performance analysis. Design science research methodology is an artifact-centric creation and evaluation approach. Artifacts are used to solve real-life business problems. These are key elements of the proposed approach. Starting from the main current approaches of design science research, we propose a framework that contains artifact engineering aspects for a class of problems, namely data analysis using machine learning techniques. Several classification algorithms were applied to previously labelled datasets through clustering. The datasets contain values for eight competencies that define a manager's profile. These values were obtained through a 360 feedback evaluation. A set of metrics for evaluating the performance of the classifiers was introduced, and a general algorithm was described. Our initiative has a predominant practical relevance but also ensures a theoretical contribution to the domain of study. The proposed framework can be applied to any problem involving data analysis using machine learning techniques. C1 [Muntean, Mihaela; Militaru, Florin Daniel] West Univ Timisoara, Fac Econ & Business Adm, Business Informat Syst Dept, Timisoara 300223, Romania. C3 West University of Timisoara RP Muntean, M (corresponding author), West Univ Timisoara, Fac Econ & Business Adm, Business Informat Syst Dept, Timisoara 300223, Romania. EM mihaela.muntean@e-uvt.ro RI Muntean, Mihaela/KII-9080-2024 OI Muntean, Mihaela/0000-0001-8428-4415 CR Achampong E.K., 2017, J ADV SCI TECHNOL RE, V4, P1 Ahmed M., 2011, P AUSTR C INF SYST A Alapati YK., 2016, Int. J. Comput. Sci. Eng, V5, P336 [Anonymous], 2019, Gartner Top 10 Strategic Technology Trends for 2020 [Anonymous], 1973, PATTERN CLASSIFICATI [Anonymous], 2021, 8 STEP GUIDE PERFORM [Anonymous], 2021, SELECT MACHINE LEARN Apt360, 2019, CHEST PENTR EV MAN D Attaran Mohsen, 2018, International Journal of Knowledge Engineering and Data Mining, V5, P277 Baskerville R., 2009, P 4 INT C DES SCI RE, P1 Behn RD, 2003, PUBLIC ADMIN REV, V63, P586, DOI 10.1111/1540-6210.00322 Bertsimas D, 2017, MACH LEARN, V106, P1039, DOI 10.1007/s10994-017-5633-9 Bhardwaj Garima, 2020, 2020 International Conference on Computation, Automation and Knowledge Management (ICCAKM). Proceedings, P47, DOI 10.1109/ICCAKM46823.2020.9051544 Bilandzic M., 2011, J COMMUNITY INFORM, V7, P3, DOI DOI 10.15353/JOCI.V7I3.2592 Celebi ME., 2015, PARTITIONAL CLUSTERI, V79-98 Chakraborty T, 2017, IEEE DATA MINING, P781, DOI 10.1109/ICDM.2017.92 Chicco D, 2020, BMC GENOMICS, V21, DOI 10.1186/s12864-019-6413-7 Choi JG, 2021, IEEE ACCESS, V9, P96739, DOI 10.1109/ACCESS.2021.3088874 Dash M., 2009, Encyclopedia of database systems, P1119, DOI DOI 10.1007/978-0-387-39940-9_613 El Bouchefry K., 2020, Knowledge Discovery in Big Data from Astronomy and Earth Observation: Astrogeoinformatics, P225, DOI [DOI 10.1016/B978-0-12-819154-5.00023-0, 10.1016/B978-0-12-819154-5.00023-0, https://doi.org/10.1016/B978-0-12-819154-5.00023-0] Elragal A, 2019, SYSTEMS-BASEL, V7, DOI 10.3390/systems7020027 Ghosal Attri, 2020, Emerging Technology in Modelling and Graphics. Proceedings of IEM Graph 2018. Advances in Intelligent Systems and Computing (AISC 937), P69, DOI 10.1007/978-981-13-7403-6_9 Goecks Lucas Schmidt, 2021, Gest. Prod., V28, pe5811, DOI 10.1590/1806-9649-2021v28e5811 Grabusts P, 2002, PAR ELEC 2002: INTERNATIONAL CONFERENCE ON PARALLEL COMPUTING IN ELECTRICAL ENGINEERING, P425, DOI 10.1109/PCEE.2002.1115319 Herselman M., 2015, P 2015 ANN RES C S A, DOI DOI 10.1145/2815782.2815806 Hevner AR, 2004, MIS QUART, V28, P75, DOI 10.2307/25148625 Hossin M., 2015, INT J DATA MIN KNOWL, V5, P01, DOI [DOI 10.5121/IJDKP.2015.5201, 10.5121/ijdkp.2015.5201] Huilgol P., 2021, ACCURACY VS F1 SCORE Loukas S., 2020, K MEANS CLUSTERING I Madhulatha T.S., 2012, IOSR J ENG, V2, P719, DOI [DOI 10.9790/3021-0204719725, 10.9790/3021-0204719725] Martens D, 2010, ANN INFORM SYST, V8, P53, DOI 10.1007/978-1-4419-1280-0_3 Muhammad R, 2021, PEERJ COMPUT SCI, DOI 10.7717/peerj-cs.590 Muntean M, 2021, SUSTAINABILITY-BASEL, V13, DOI 10.3390/su13020638 Mwadulo M. W., 2016, Int. J. Comput. Appl. Technol. Res., V5, P395 Narula G., 2021, MACHINE LEARNING ALG Nunamaker J. F. Jr., 1990, Journal of Management Information Systems, V7, P89 Papas D, 2014, LECT NOTES ARTIF INT, V8445, P273, DOI 10.1007/978-3-319-07064-3_22 Paquette J., 2021, BRIEF INTRO USEFUL D Peffers K, 2007, J MANAGE INFORM SYST, V24, P45, DOI 10.2753/MIS0742-1222240302 Peffers K, 2018, EUR J INFORM SYST, V27, P129, DOI 10.1080/0960085X.2018.1458066 Pramoditha R., 2021, 5 CUTE FEATURES CATB Rani Y., 2013, International Journal of Information and Computation Technology, V3, P1115 Rong M, 2019, IEEE ACCESS, V7, P19709, DOI 10.1109/ACCESS.2019.2894366 Sander J., 2011, Encyclopedia of Machine Learning, P270, DOI DOI 10.1007/978-0-387-30164-8_211 Sein MK, 2011, MIS QUART, V35, P37 Sinaga KP, 2020, IEEE ACCESS, V8, P80716, DOI 10.1109/ACCESS.2020.2988796 Stroet H., 2020, Bachelor's Thesis Vaishnavi V., 2017, Design Science Research in Information Systems Venable JR., 2017, ACIS 2017 P Vujovic ZD, 2021, INT J ADV COMPUT SC, V12, P599 Weber S., 2010, AMCIS 2010 P Witten IH, 2011, MOR KAUF D, P1 Zhao L, 2021, ELECTRONICS-SWITZ, V10, DOI 10.3390/electronics10161903 NR 53 TC 3 Z9 3 U1 0 U2 13 PU MDPI PI BASEL PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND EI 2079-9292 J9 ELECTRONICS-SWITZ JI Electronics PD AUG PY 2022 VL 11 IS 16 AR 2504 DI 10.3390/electronics11162504 PG 18 WC Computer Science, Information Systems; Engineering, Electrical & Electronic; Physics, Applied WE Science Citation Index Expanded (SCI-EXPANDED) SC Computer Science; Engineering; Physics GA 4B6LF UT WOS:000845885600001 OA gold DA 2024-09-05 ER PT C AU Jaca-Madariaga, M Bilbao, EZ Rio-Belver, RM de la Torre, AR AF Jaca-Madariaga, Maite Zarrabeitia Bilbao, Enara Rio-Belver, Rosa Maria Ruiz de la Torre, Aitor BE Bautista-Valhondo, J Mateo-Doll, M Lusa, A Pastor-Moreno, R TI Is the Impact of Management Research Predictable Through the Title? - A BERT Model to Find a Response SO PROCEEDINGS OF THE 17TH INTERNATIONAL CONFERENCE ON INDUSTRIAL ENGINEERING AND INDUSTRIAL MANAGEMENT, ICIEIM-XXVII CONGRESO DE INGENIERIA DE ORGANIZACION, CIO 2023 SE Lecture Notes on Data Engineering and Communications Technologies LA English DT Proceedings Paper CT 17th International Conference on Industrial Engineering and Industrial Management (ICIEIM) / 27th Organization Engineering Congress (CIO) CY JUL 06-07, 2023 CL Barcelona, SPAIN DE BERT; Management science; Text classification; Prediction; Research impact measurement AB In academia, the impact a research paper can generate is a matter of concern to most researchers. Therefore, in this study a model is proposed to evaluate whether the impact is predictive by considering the title of the article. To measure this impact, the number of times an article is cited is taken into account. In addition, the aim is to create a tool that, when a new article title is introduced, will go through the designed model and output the impact it will have in five years' time. This paper focuses specifically on the management research field, so a dataset has been created with data downloaded belonging to this specific domain. This dataset has been labeled, preprocessed, tokenized, padded, masked and split into training and validation sets. The data were then trained and evaluated across a BERT model. The F1-score performance metric achieved is 0.56. Finally, some possible improvements are proposed. C1 [Jaca-Madariaga, Maite; Zarrabeitia Bilbao, Enara] Univ Basque Country UPV EHU, Ind Org & Management Engn Dept, Fac Engn Bilbao, Bilbao 48013, Spain. [Rio-Belver, Rosa Maria; Ruiz de la Torre, Aitor] Univ Basque Country UPV EHU, Ind Org Management Engn Dept, Fac Engn Vitoria Gasteiz, Vitoria 01006, Spain. C3 University of Basque Country; University of Basque Country RP Jaca-Madariaga, M (corresponding author), Univ Basque Country UPV EHU, Ind Org & Management Engn Dept, Fac Engn Bilbao, Bilbao 48013, Spain. EM maite.jacamadariaga@ehu.eus CR Agarwal Ayush, 2021, 2021 7th International Conference on Advanced Computing and Communication Systems (ICACCS), P233, DOI 10.1109/ICACCS51430.2021.9441715 Anastassiou A., 2022, Sentiment Analysis with Deep Learning using BERT Bedi J, 2022, SUSTAIN CITIES SOC, V80, DOI 10.1016/j.scs.2022.103706 Beltagy I, 2020, Arxiv, DOI arXiv:2004.05150 Devlin J, 2019, 2019 CONFERENCE OF THE NORTH AMERICAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS: HUMAN LANGUAGE TECHNOLOGIES (NAACL HLT 2019), VOL. 1, P4171 Hugging Face, 2023, About us Katumullage D, 2022, J WINE ECON, V17, P27, DOI 10.1017/jwe.2022.2 Kazemzadeh A, 2022, 2022 IEEE INTERNATIONAL CONFERENCE ON PERVASIVE COMPUTING AND COMMUNICATIONS WORKSHOPS AND OTHER AFFILIATED EVENTS (PERCOM WORKSHOPS), DOI [10.1109/PerComWorkshops53856.2022.9767475, 10.1109/PerComWorkshop53856.2022.9767475] Kim D, 2021, INT CONF UBIQUIT INF, DOI [10.1109/IMCOM51814.2021.9377411, 10.1109/IEDM19574.2021.9720537] Kumari V., 2022, P CONFL 2022 12 INT, P368, DOI [10.1109/CONFLUENCE52989.2022.9734207, DOI 10.1109/CONFLUENCE52989.2022.9734207] Pavlov Tashko, 2022, 2022 45th Jubilee International Convention on Information, Communication and Electronic Technology (MIPRO)., P312, DOI 10.23919/MIPRO55190.2022.9803414 Riaz M.T., 2022, TM-BERT: a twitter modified BERT for sentiment analysis on Covid-19 vaccination tweets, P1, DOI [10.1109/ICODT255437.2022.9787395, DOI 10.1109/ICODT255437.2022.9787395] Scola E, 2021, PROCES LENG NAT, P13, DOI 10.26342/2021-67-1 Soldevilla I, 2021, 2021 IEEE INTERNATIONAL CONFERENCE ON INFORMATION COMMUNICATION AND SOFTWARE ENGINEERING (ICICSE 2021), P204, DOI 10.1109/ICICSE52190.2021.9404127 Sriharsha C., 2021, 2021 12 INT C COMP C, DOI [10.1109/ICCCNT51525.2021.9579531, DOI 10.1109/ICCCNT51525.2021.9579531] Web of Science, 2023, About us NR 16 TC 0 Z9 0 U1 1 U2 1 PU SPRINGER INTERNATIONAL PUBLISHING AG PI CHAM PA GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND SN 2367-4512 BN 978-3-031-57995-0; 978-3-031-57996-7 J9 LECT NOTE DATA ENG PY 2024 VL 206 BP 379 EP 384 DI 10.1007/978-3-031-57996-7_65 PG 6 WC Computer Science, Interdisciplinary Applications; Engineering, Industrial; Operations Research & Management Science WE Conference Proceedings Citation Index - Science (CPCI-S) SC Computer Science; Engineering; Operations Research & Management Science GA BX2NG UT WOS:001265092200065 DA 2024-09-05 ER PT J AU Karger, E Kureljusic, M AF Karger, Erik Kureljusic, Marko TI Using Artificial Intelligence for Drug Discovery: A Bibliometric Study and Future Research Agenda SO PHARMACEUTICALS LA English DT Article DE drug discovery; drug development; artificial intelligence; machine learning; deep learning; bibliometric study ID SUPPORT VECTOR MACHINES; DESIGN SCIENCE RESEARCH; LEARNING APPLICATIONS; NEURAL-NETWORKS; PREDICTION; SYSTEMS; CITATIONS; EVOLUTION; BUSINESS; FIELD AB Drug discovery is usually a rule-based process that is carefully carried out by pharmacists. However, a new trend is emerging in research and practice where artificial intelligence is being used for drug discovery to increase efficiency or to develop new drugs for previously untreatable diseases. Nevertheless, so far, no study takes a holistic view of AI-based drug discovery research. Given the importance and potential of AI for drug discovery, this lack of research is surprising. This study aimed to close this research gap by conducting a bibliometric analysis to identify all relevant studies and to analyze interrelationships among algorithms, institutions, countries, and funding sponsors. For this purpose, a sample of 3884 articles was examined bibliometrically, including studies from 1991 to 2022. We utilized various qualitative and quantitative methods, such as performance analysis, science mapping, and thematic analysis. Based on these findings, we furthermore developed a research agenda that aims to serve as a foundation for future researchers. C1 [Karger, Erik] Univ Duisburg Essen, Informat Syst & Strateg IT Management, D-45141 Essen, Germany. [Kureljusic, Marko] Univ Duisburg Essen, Int Accounting, D-45141 Essen, Germany. C3 University of Duisburg Essen; University of Duisburg Essen RP Karger, E (corresponding author), Univ Duisburg Essen, Informat Syst & Strateg IT Management, D-45141 Essen, Germany. EM erik.karger@uni-due.de OI Kureljusic, Marko/0000-0003-4382-0669 CR Abdi H, 2010, WIRES COMPUT STAT, V2, P433, DOI 10.1002/wics.101 Adams SS, 2012, AI MAG, V33, P25, DOI 10.1609/aimag.v33i1.2322 Aliper A, 2016, MOL PHARMACEUT, V13, P2524, DOI 10.1021/acs.molpharmaceut.6b00248 Alloghani M., 2020, Supervised and Unsupervised Learning for Data Science, P3, DOI [DOI 10.1007/978-3-030-22475-21, 10.1007/978-3-030-22475-2_1] [Anonymous], 2012, Int J Inf Dissem Technol Aria M, 2017, J INFORMETR, V11, P959, DOI 10.1016/j.joi.2017.08.007 Athey S, 2017, SCIENCE, V355, P483, DOI 10.1126/science.aal4321 Tran BX, 2019, J CLIN MED, V8, DOI 10.3390/jcm8030360 Baker HK, 2021, J FUTURES MARKETS, V41, P1027, DOI 10.1002/fut.22211 Baskin II, 2016, EXPERT OPIN DRUG DIS, V11, P785, DOI 10.1080/17460441.2016.1201262 Bastanlar Y, 2014, METHODS MOL BIOL, V1107, P105, DOI 10.1007/978-1-62703-748-8_7 Bauer K, 2021, BUS INFORM SYST ENG+, V63, P79, DOI 10.1007/s12599-021-00683-2 Bhatt Y, 2020, J CLEAN PROD, V260, DOI 10.1016/j.jclepro.2020.120988 BOLIS G, 1991, J COMPUT AID MOL DES, V5, P617, DOI 10.1007/BF00135318 Bolton EE, 2010, ANN REP COMP CHEM, V4, P217, DOI 10.1016/S1574-1400(08)00012-1 Börner K, 2003, ANNU REV INFORM SCI, V37, P179, DOI 10.1002/aris.1440370106 Braga A, 2017, INFORMATION, V8, DOI 10.3390/info8040156 Bro R, 2014, ANAL METHODS-UK, V6, P2812, DOI 10.1039/c3ay41907j Byvatov E, 2003, J CHEM INF COMP SCI, V43, P1882, DOI 10.1021/ci0341161 Carvalho MM, 2013, TECHNOL FORECAST SOC, V80, P1418, DOI 10.1016/j.techfore.2012.11.008 Caviggioli F, 2019, INT J PROD ECON, V208, P254, DOI 10.1016/j.ijpe.2018.11.022 Celebi M.E., 2016, Unsupervised learning algorithms, DOI [DOI 10.1007/978-3-319-24211-8, 10.1007/978-3-319-24211-8] Chen GL, 2020, MAR DRUGS, V18, DOI 10.3390/md18110545 Chen HM, 2018, DRUG DISCOV TODAY, V23, P1241, DOI 10.1016/j.drudis.2018.01.039 Chen X, 2012, GENOMICS, V99, P323, DOI 10.1016/j.ygeno.2012.04.003 Chiari W, 2022, POLYMERS-BASEL, V14, DOI 10.3390/polym14163297 Chollet F., 2021, Deep Learning with Python Coates WJ, 2000, DRUG DISCOV TODAY, V5, P521, DOI 10.1016/S1359-6446(00)01571-3 Cobo MJ, 2012, J AM SOC INF SCI TEC, V63, P1609, DOI 10.1002/asi.22688 Cobo MJ, 2011, J INFORMETR, V5, P146, DOI 10.1016/j.joi.2010.10.002 Cutler A, 2012, ENSEMBLE MACHINE LEARNING: METHODS AND APPLICATIONS, P157, DOI 10.1007/978-1-4419-9326-7_5 Danvila-del-Valle I, 2019, J BUS RES, V101, P627, DOI 10.1016/j.jbusres.2019.02.026 Dey L, 2020, BIOMED J, V43, P438, DOI 10.1016/j.bj.2020.08.003 Dingli A., 2021, ARTIF INTELL Donthu N, 2021, J BUS RES, V133, P285, DOI 10.1016/j.jbusres.2021.04.070 Donthu N, 2020, J BUS RES, V109, P1, DOI 10.1016/j.jbusres.2019.10.039 Escalante H. J., 2018, Explainable and Interpretable Models in Computer Vision and Machine Learning, DOI [10.1007/978-3-319-98131-4, DOI 10.1007/978-3-319-98131-4] Eulerich M, 2022, EUR MANAG J, V40, P832, DOI 10.1016/j.emj.2022.09.006 Firoozbakht F, 2022, BMC BIOINFORMATICS, V23, DOI 10.1186/s12859-022-04662-6 Forliano C, 2021, TECHNOL FORECAST SOC, V165, DOI 10.1016/j.techfore.2020.120522 Franco P, 2022, CANCERS, V14, DOI 10.3390/cancers14071697 FRANKISH Keith, 2014, The Cambridge handbook of artificial intelligence, DOI 10.1017/CBO9781139046855 Franklin S, 2014, CAMBRIDGE HANDBOOK OF ARTIFICIAL INTELLIGENCE, P15 GARFIELD E, 1993, J AM SOC INFORM SCI, V44, P298, DOI 10.1002/(SICI)1097-4571(199306)44:5<298::AID-ASI5>3.0.CO;2-A George Joey F, 2020, P 41 INT C INF SYST Ghahramani Z, 2004, LECT NOTES ARTIF INT, V3176, P72 Goodfellow I, 2016, ADAPT COMPUT MACH LE, P1 Gregor S, 2013, MIS QUART, V37, P337, DOI 10.25300/MISQ/2013/37.2.01 Gunning D, 2019, SCI ROBOT, V4, DOI 10.1126/scirobotics.aay7120 Haenlein M, 2019, CALIF MANAGE REV, V61, P5, DOI 10.1177/0008125619864925 Han LY, 2007, DRUG DISCOV TODAY, V12, P304, DOI 10.1016/j.drudis.2007.02.015 Heikamp K, 2014, EXPERT OPIN DRUG DIS, V9, P93, DOI 10.1517/17460441.2014.866943 Hevner A, 2010, INTEGR SER INFORM SY, V22, P1, DOI 10.1007/978-1-4419-5653-8_1 Hevner AR, 2004, MIS QUART, V28, P75, DOI 10.2307/25148625 Hu F, 2022, BIOMOLECULES, V12, DOI 10.3390/biom12081156 Jagals M., 2021, Corporate Ownership Control, V19, P105, DOI [10.22495/cocv19ilart9, DOI 10.22495/COCV19ILART9] Janiesch C, 2021, ELECTRON MARK, V31, P685, DOI 10.1007/s12525-021-00475-2 Jiang JH, 2022, PHARMACEUTICS, V14, DOI 10.3390/pharmaceutics14112257 Jiang LX, 2007, FOURTH INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS AND KNOWLEDGE DISCOVERY, VOL 1, PROCEEDINGS, P679, DOI 10.1109/FSKD.2007.552 Jiménez-Luna J, 2020, NAT MACH INTELL, V2, P573, DOI 10.1038/s42256-020-00236-4 Kaelbling LP, 1996, J ARTIF INTELL RES, V4, P237, DOI 10.1613/jair.301 Kaushal K, 2022, J BIOMOL STRUCT DYN, V40, P4750, DOI 10.1080/07391102.2020.1855250 KESSLER MM, 1963, AM DOC, V14, P10, DOI 10.1002/asi.5090140103 Khanra S, 2021, TOUR MANAG PERSPECT, V37, DOI 10.1016/j.tmp.2020.100777 Khanra S, 2020, ENTERP INF SYST-UK, V14, P737, DOI 10.1080/17517575.2020.1734241 Kim S, 2016, NUCLEIC ACIDS RES, V44, pD1202, DOI 10.1093/nar/gkv951 Koseoglu MA, 2016, SCIENTOMETRICS, V109, P203, DOI 10.1007/s11192-016-1894-5 Kureljusic M., 2022, CORPORATE OWNERSHIP, V19, P159, DOI 10.22495/cocv19i2art13 Lavecchia A, 2019, DRUG DISCOV TODAY, V24, P2017, DOI 10.1016/j.drudis.2019.07.006 LeCun Y, 2015, NATURE, V521, P436, DOI 10.1038/nature14539 Leitner-Hanetseder S, 2021, J APPL ACCOUNT RES, V22, P539, DOI 10.1108/JAAR-10-2020-0201 Leung XY, 2017, INT J HOSP MANAG, V66, P35, DOI 10.1016/j.ijhm.2017.06.012 Libbrecht MW, 2015, NAT REV GENET, V16, P321, DOI 10.1038/nrg3920 London AJ, 2019, HASTINGS CENT REP, V49, P15, DOI 10.1002/hast.973 Lu Y.-H., 2022, COC, V19, P133, DOI [10.22495/cocv19i3art10, DOI 10.22495/COCV19I3ART10] McCulloch WS, 2016, EMBODIMENTS OF MIND, P19 Mohri M., 2012, ADAPTIVE COMPUTATION Monteiro NRC, 2022, BMC BIOINFORMATICS, V23, DOI 10.1186/s12859-022-04767-y Moral-Muñoz JA, 2020, PROF INFORM, V29, DOI 10.3145/epi.2020.ene.03 Mulligan VK, 2021, EXPERT OPIN DRUG DIS, V16, P1025, DOI 10.1080/17460441.2021.1918097 Patel JL, 2007, CURR CLIN PHARMACOL, V2, P217, DOI 10.2174/157488407781668811 Paul J, 2020, INT BUS REV, V29, DOI 10.1016/j.ibusrev.2020.101717 Peffers K, 2007, J MANAGE INFORM SYST, V24, P45, DOI 10.2753/MIS0742-1222240302 Poduri R., 2021, DRUG DISCOVERY DEV, P1 PRITCHARD A, 1969, J DOC, V25, P348 Raschka S., 2019, PYTHON MACHINE LEARN Rechberger JS, 2021, PHARMACEUTICS, V13, DOI 10.3390/pharmaceutics13111885 Research and Markets, 2022, PHARM GLOB MARK REP Roser Max., 2013, LIF EXP Rossetto DE, 2018, SCIENTOMETRICS, V115, P1329, DOI 10.1007/s11192-018-2709-7 Russell Stuart, 2010, Artificial intelligence, a modern approach, V3 Saikia S, 2019, CURR DRUG TARGETS, V20, P501, DOI 10.2174/1389450119666181022153016 Samek W, 2019, EXPLAINABLE INTERPRE, DOI 10.1007/978-3-030-28954-6 Samet H, 2008, IEEE T PATTERN ANAL, V30, P243, DOI 10.1109/TPAMI.2007.1182 Sampietro A, 2022, PHARMACEUTICALS-BASE, V15, DOI 10.3390/ph15050545 SEARLE JR, 1980, BEHAV BRAIN SCI, V3, P417, DOI 10.1017/S0140525X00006038 Secinaro S., 2021, Economia Aziendale Online, V12, P407, DOI [10.13132/2038-5498/12.4.407-431, DOI 10.13132/2038-5498/12.4.407-431] Secinaro S, 2021, ACCOUNT AUDIT ACCOUN, V35, P168, DOI 10.1108/AAAJ-10-2020-4987 Shalev-Shwartz S., 2014, UNDERSTANDING MACHIN, DOI 10.1017/CBO9781107298019 Shen Jie, 2019, Drug Discov Today Technol, V32-33, P29, DOI 10.1016/j.ddtec.2020.05.001 Silver D, 2017, NATURE, V550, P354, DOI 10.1038/nature24270 Stokes JM, 2020, CELL, V180, P688, DOI 10.1016/j.cell.2020.01.021 Stremersch S, 2007, J MARKETING, V71, P171, DOI 10.1509/jmkg.71.3.171 Suenderhauf C, 2011, MOL PHARMACEUT, V8, P213, DOI 10.1021/mp100279d Sutariya VB, 2013, PR SOUTH BIOMED ENG, P91, DOI 10.1109/SBEC.2013.54 Tandon A, 2021, TECHNOL FORECAST SOC, V166, DOI 10.1016/j.techfore.2021.120649 Taulli T., 2019, Artificial Intelligence Basics Tian K, 2015, IEEE INT C BIOINFORM, P29, DOI 10.1109/BIBM.2015.7359651 Tsou LK, 2020, SCI REP-UK, V10, DOI 10.1038/s41598-020-73681-1 Tsubaki M, 2019, BIOINFORMATICS, V35, P309, DOI 10.1093/bioinformatics/bty535 Uluyol B, 2021, J ISLAMIC ACCOUNT BU, V12, P748, DOI 10.1108/JIABR-01-2021-0031 Vamathevan J, 2019, NAT REV DRUG DISCOV, V18, P463, DOI 10.1038/s41573-019-0024-5 van Eck NJ, 2010, SCIENTOMETRICS, V84, P523, DOI 10.1007/s11192-009-0146-3 van Gerven M, 2017, FRONT COMPUT NEUROSC, V11, DOI 10.3389/fncom.2017.00112 Wallin JA, 2005, BASIC CLIN PHARMACOL, V97, P261, DOI 10.1111/j.1742-7843.2005.pto_139.x Wang JZ, 2015, LECT NOTES COMPUT SC, V9313, P793, DOI 10.1007/978-3-319-25255-1_65 Weber M, 2022, BUS INFORM SYST ENG+, V64, P91, DOI 10.1007/s12599-021-00732-w WEINBERG BH, 1974, INFORM STORAGE RET, V10, P189, DOI 10.1016/0020-0271(74)90058-8 WEINSTEIN DB, 1992, J AUTOM CHEM, V14, P59, DOI 10.1155/S1463924692000142 Xu XH, 2018, INT J PROD ECON, V204, P160, DOI 10.1016/j.ijpe.2018.08.003 Yang YQ, 2022, BRIEF BIOINFORM, V23, DOI 10.1093/bib/bbac147 You YJ, 2022, SIGNAL TRANSDUCT TAR, V7, DOI 10.1038/s41392-022-00994-0 Zanders ED, 2011, SCIENCE AND BUSINESS OF DRUG DISCOVERY: DEMYSTIFYING THE JARGON, P1, DOI 10.1007/978-1-4419-9902-3 Zeller A., 2002, Software Engineering Notes, V27, P1, DOI 10.1145/605466.605468 Zernov VV, 2003, J CHEM INF COMP SCI, V43, P2048, DOI 10.1021/ci0340916 Zhang J, 2016, J ASSOC INF SCI TECH, V67, P967, DOI 10.1002/asi.23437 Zhao Q, 2019, CURR PROTEIN PEPT SC, V20, P492, DOI 10.2174/1389203720666190123164310 NR 127 TC 6 Z9 6 U1 12 U2 47 PU MDPI PI BASEL PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND EI 1424-8247 J9 PHARMACEUTICALS-BASE JI Pharmaceuticals PD DEC PY 2022 VL 15 IS 12 AR 1492 DI 10.3390/ph15121492 PG 22 WC Chemistry, Medicinal; Pharmacology & Pharmacy WE Science Citation Index Expanded (SCI-EXPANDED) SC Pharmacology & Pharmacy GA 7H9ZR UT WOS:000903556000001 PM 36558943 OA Green Published, gold DA 2024-09-05 ER PT C AU Xu, JZ Ren, AS AF Xu, Jianzhong Ren, Jiasong BE VandeWalle, B Song, Y Zlatanova, S Li, J TI Research on Management Performance Evaluation of Intellectual Property for Research-Oriented Universities Based on Bayesian Networks SO 3RD INTERNATIONAL CONFERENCE ON INFORMATION SYSTEMS FOR CRISIS RESPONSE AND MANAGEMENT & 4TH INTERNATIONAL SYMPOSIUM ON GEO-INFORMATION FOR DISASTER MANAGEMENT LA English DT Proceedings Paper CT Joint Conference of the 3rd International Conference on Information Systems for Crisis Response and Management/4th International Symposium on Geo-Information for Disaster Management CY AUG 04-06, 2008 CL Harbin Engn Univ, Harbin, PEOPLES R CHINA HO Harbin Engn Univ DE Bayesian networks; research-oriented university; intellectual property management; management performance evaluation AB This paper designs a comprehensive evaluation index system of intellectual property management performance for research-oriented university based on intellectual property management features. Taking into account the qualitative characteristics and feasibility of the evaluation; we innovatively use Bayesian Networks to analyze the management performance evaluation of intellectual property for research-oriented universities. We end the study with the useful implications obtained from this study, including the problems needed to pay attention to in applying Bayesian Networks to conduct the management performance evaluation of intellectual property. C1 [Xu, Jianzhong; Ren, Jiasong] Harbin Engn Univ, Sch Econ & Management, Harbin 150001, Peoples R China. C3 Harbin Engineering University EM XuJianZhongXJZ@163.com; Goodrjs@Yahoo.com CR ALEXANDER C, 2004, OPERATIONAL RISK REG, P307 BARNES T, 2003, EUROPEAN MANAGEMENT, P35 CARACA J, 2002, HIGHER ED POLICY, P45 DU XJ, 2004, R&D MANAGE, V2, P80 HE JQ, 2002, SCI TECHNOLOGY REV, V3, P33 HU XM, 2004, RES SOFTWARE RISK MA, P33 Li Y, 2006, TECHNOLOGY INNOVATIO, V1, P71 PENG YY, 2004, R&D MANAGE, V3, P110 THOMAS H, 2004, IND INSIDER, P13 ZHOU YM, 2006, J ZHENGZHOU U, V2, P16 NR 10 TC 0 Z9 0 U1 0 U2 3 PU HARBIN ENGINEERING UNIV PI HARBIN PA ADMINISTRATION BLDG, 145 NANTONG ST, HARBIN, 150001, PEOPLES R CHINA BN 978-7-81133-251-3 PY 2008 BP 291 EP 296 PG 6 WC Computer Science, Information Systems; Computer Science, Interdisciplinary Applications; Management; Regional & Urban Planning; Public Administration; Urban Studies WE Conference Proceedings Citation Index - Science (CPCI-S); Conference Proceedings Citation Index - Social Science & Humanities (CPCI-SSH) SC Computer Science; Business & Economics; Public Administration; Urban Studies GA BIQ89 UT WOS:000262092900048 DA 2024-09-05 ER PT J AU Iqbal, S Saeed-Ul Hassan Aljohani, NR Alelyani, S Nawaz, R Bornmann, L AF Iqbal, Sehrish Hassan, Saeed-Ul Aljohani, Naif Radi Alelyani, Salem Nawaz, Raheel Bornmann, Lutz TI A decade of in-text citation analysis based on natural language processing and machine learning techniques: an overview of empirical studies SO SCIENTOMETRICS LA English DT Article DE In-text citation analysis; Citation context analysis; Citation content analysis; Citation classification; Citation sentiment analysis; Summarisation; Recommendation; Bibliometrics ID SCIENTIFIC ARTICLES; CONTEXT ANALYSIS; LINGUISTIC PATTERNS; COUNTS MEASURE; SENTIMENT; CLASSIFICATION; PSYCHOLOGY; REFERENCES; RETRIEVAL; AUTHOR AB In-text citation analysis is one of the most frequently used methods in research evaluation. We are seeing significant growth in citation analysis through bibliometric metadata, primarily due to the availability of citation databases such as the Web of Science, Scopus, Google Scholar, Microsoft Academic, and Dimensions. Due to better access to full-text publication corpora in recent years, information scientists have gone far beyond traditional bibliometrics by tapping into advancements in full-text data processing techniques to measure the impact of scientific publications in contextual terms. This has led to technical developments in citation classifications, citation sentiment analysis, citation summarisation, and citation-based recommendation. This article aims to narratively review the studies on these developments. Its primary focus is on publications that have used natural language processing and machine learning techniques to analyse citations. C1 [Iqbal, Sehrish; Hassan, Saeed-Ul] Informat Technol Univ, Dept Comp Sci, 346-B,Ferozepur Rd, Lahore, Pakistan. [Aljohani, Naif Radi] King Abdulaziz Univ, Fac Comp & Informat Technol, Jeddah, Saudi Arabia. [Alelyani, Salem] King Khalid Univ, Ctr Artificial Intelligence CAI, POB 9004, Abha 61413, Saudi Arabia. [Alelyani, Salem] King Khalid Univ, Coll Comp Sci, POB 9004, Abha 61413, Saudi Arabia. [Nawaz, Raheel] Manchester Metropolitan Univ, Dept Operat Technol Events & Hospitality Manageme, Manchester, Lancs, England. [Bornmann, Lutz] Max Planck Gesell, Div Sci & Innovat Studies, Hofgartenstr 8, D-80539 Munich, Germany. C3 King Abdulaziz University; King Khalid University; King Khalid University; Manchester Metropolitan University; Max Planck Society RP Saeed-Ul Hassan (corresponding author), Informat Technol Univ, Dept Comp Sci, 346-B,Ferozepur Rd, Lahore, Pakistan. EM sehrishiqbal@itu.edu.pk; saeed-ul-hassan@itu.edu.pk; nraljohani@kau.edu.sa; s.alelyani@kku.edu.sa; R.Nawaz@mmu.ac.uk; lutz.bornmann@gv.mpg.de RI Nawaz, Raheel/AAX-5293-2021; Aljohani, Naif R/S-1109-2017; Bornmann, Lutz/A-3926-2008; Hassan, Saeed-Ul/G-1889-2016 OI Nawaz, Raheel/0000-0001-9588-0052; Hassan, Saeed-Ul/0000-0002-6509-9190 FU King Khalid University [R.G.P2/100/41] FX The authors (Salem Alelyani and Saeed-Ul Hassan) are grateful for the financial support received from King Khalid University for this research Under Grant No. R.G.P2/100/41. CR Abu-Jbara A., 2013, NAACL, P596 Agarwal Shashank, 2010, AMIA Annu Symp Proc, V2010, P11 Ahmad R, 2018, SCIENTOMETRICS, V117, P1405, DOI 10.1007/s11192-018-2920-6 Aljaber B, 2011, J BIOMED INFORM, V44, P881, DOI 10.1016/j.jbi.2011.05.007 Ananiadou Sophia, 2013, Computational Linguistics and Intelligent Text Processing. 14th International Conference, CICLing 2013. Proceedings, P318, DOI 10.1007/978-3-642-37256-8_27 Ananiadou S., 2013, FACILITATING ANAL DI, P559 Anderson MH, 2006, ORGAN STUD, V27, P1675, DOI 10.1177/0170840606068346 Angrosh M., 2010, Proceedings of the 10th annual joint conference on Digital libraries, P293, DOI [DOI 10.1145/1816123.1816168, DOI 10.1145/1816123.1816168.1816168] Angrosh MA, 2013, NAT LANG ENG, V19, P481, DOI 10.1017/S1351324912000277 [Anonymous], 2012, 2012 Conference of the North American Chapter of the Association for Computational Linguistics [Anonymous], 2007, HUMAN LANGUAGE TECHN [Anonymous], 2015, DOCUMENT CLUSTERING Athar Awais., 2012, PROC ACL WORKSHOP DE, P18 Bakhti K, 2018, 2018 INTERNATIONAL CONFERENCE ON CONTROL, ARTIFICIAL INTELLIGENCE, ROBOTICS & OPTIMIZATION (ICCAIRO), P43, DOI 10.1109/ICCAIRO.2018.00016 Barrera Araly, 2012, Computational Linguistics and Intelligent Text Processing. 13th International Conference (CICLing 2012). Proceedings, Part II, P366, DOI 10.1007/978-3-642-28601-8_31 Bertin M., 2014, Ceur workshop proceedings, P5 Bertin M, 2018, INT J DIGIT LIBRARIE, V19, P127, DOI 10.1007/s00799-017-0225-7 Bertin M, 2016, J ASSOC INF SCI TECH, V67, P164, DOI 10.1002/asi.23367 Bo Pang, 2008, Foundations and Trends in Information Retrieval, V2, P1, DOI 10.1561/1500000001 BONZI S, 1982, J AM SOC INFORM SCI, V33, P208, DOI 10.1002/asi.4630330404 Bornmann L, 2008, J DOC, V64, P45, DOI 10.1108/00220410810844150 Bornmann L, 2018, SCIENTOMETRICS, V114, P427, DOI 10.1007/s11192-017-2591-8 Boyack KW, 2018, J INFORMETR, V12, P59, DOI 10.1016/j.joi.2017.11.005 Cao Z, 2016, P JOINT WORKSH BIBL, P132 Chang YW, 2013, SCIENTOMETRICS, V96, P535, DOI 10.1007/s11192-013-0956-1 CHUBIN DE, 1975, SOC STUD SCI, V5, P423, DOI 10.1177/030631277500500403 Cohan A, 2018, INT J DIGIT LIBRARIE, V19, P287, DOI 10.1007/s00799-017-0216-8 Cohen AM, 2006, J AM MED INFORM ASSN, V13, P206, DOI 10.1197/jamia.M1929 Conroy JohnM., 2015, Proceedings of NAACL-HLT, P186 Councill IG, 2008, SIXTH INTERNATIONAL CONFERENCE ON LANGUAGE RESOURCES AND EVALUATION, LREC 2008, P661 Cronin B., 1984, ROLE SIGNIFICANCE CI, P103 Ding Y, 2014, J ASSOC INF SCI TECH, V65, P1820, DOI 10.1002/asi.23256 Ding Y, 2013, J INFORMETR, V7, P583, DOI 10.1016/j.joi.2013.03.003 Dong C., 2011, P 5 INT JOINT C NAT, P623 Doslu M, 2016, SCIENTOMETRICS, V108, P653, DOI 10.1007/s11192-016-1982-6 Dreyer Markus, 2012, P 2012 C N AM CHAPTE, P162 Elkiss A, 2008, J AM SOC INF SCI TEC, V59, P51, DOI 10.1002/asi.20707 Erikson MG, 2014, SOC STUD SCI, V44, P625, DOI 10.1177/0306312714522871 Erkan G, 2004, J ARTIF INTELL RES, V22, P457, DOI 10.1613/jair.1523 Fang H, 2015, MALAYS J LIBR INF SC, V20, P1 Finney B., 1979, The reference characteristics of scientific texts FROST CO, 1979, LIBR QUART, V49, P399 Fujiwara T, 2015, J BIOMED SEMANT, V6, DOI 10.1186/s13326-015-0037-x Galgani F, 2015, EXPERT SYST APPL, V42, P6391, DOI 10.1016/j.eswa.2015.04.022 Gambhir M, 2017, ARTIF INTELL REV, V47, P1, DOI 10.1007/s10462-016-9475-9 GARFIELD E, 1965, STAT ASSOC METHOD M, V1964, P189 Garfield E., 1956, The Chemical Bulletin, V43, P11 Garfield E, 1955, CITATION INDEXES OLD Gupta S, 2017, WWW'17 COMPANION: PROCEEDINGS OF THE 26TH INTERNATIONAL CONFERENCE ON WORLD WIDE WEB, P1267, DOI 10.1145/3041021.3053062 Hassan SU, 2018, LECT NOTES COMPUT SC, V11279, P316, DOI 10.1007/978-3-030-04257-8_32 Hassan SU, 2018, SCIENTOMETRICS, V117, P1645, DOI 10.1007/s11192-018-2944-y Hassannejad S., 2017, 2017 ACM IEEE JOINT, V14, P1, DOI [DOI 10.1109/JCDL.2017.7991558, 10.9734/ARRB/2017/27339] Hatzivassiloglou V, 1997, 35TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS AND THE 8TH CONFERENCE OF THE EUROPEAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, PROCEEDINGS OF THE CONFERENCE, P174, DOI 10.3115/976909.979640 He Q., 2010, P 19 INT C WORLD WID, DOI DOI 10.1145/1772690.1772734 Hernandez M, 2015, NATURAL LANGUAGE PRO, P149 Hernández-Alvarez M, 2016, NAT LANG ENG, V22, P327, DOI 10.1017/S1351324915000388 Hirsch JE, 2005, P NATL ACAD SCI USA, V102, P16569, DOI 10.1073/pnas.0507655102 Hoffmann A., 2003, P 2 INT C KNOWL CAPT, P28 HOOTEN PA, 1991, J AM SOC INFORM SCI, V42, P397, DOI 10.1002/(SICI)1097-4571(199107)42:6<397::AID-ASI2>3.0.CO;2-N Hu ZG, 2017, J INFORMETR, V11, P948, DOI 10.1016/j.joi.2017.08.004 Hu ZG, 2015, PRO INT CONF SCI INF, P221 Hu ZG, 2013, J INFORMETR, V7, P887, DOI 10.1016/j.joi.2013.08.005 Huang WY, 2015, AAAI CONF ARTIF INTE, P2404 Huang Wenyi, 2012, P 21 ACM INT C INF K, P1910, DOI DOI 10.1145/2396761.2398542 HURT CD, 1987, INFORM PROCESS MANAG, V23, P1, DOI 10.1016/0306-4573(87)90033-1 Ikram MT, 2019, SCIENTOMETRICS, V119, P73, DOI 10.1007/s11192-019-03028-9 Ikram MT, 2018, TURK J ELECTR ENG CO, V26, P1922, DOI 10.3906/elk-1712-24 Jahangir M, 2017, PROCEEDINGS OF THE 2017 INTELLIGENT SYSTEMS CONFERENCE (INTELLISYS), P722, DOI 10.1109/IntelliSys.2017.8324209 Jebari C, 2018, LECT NOTES COMPUT SC, V11315, P121, DOI 10.1007/978-3-030-03496-2_14 Jeong YK, 2014, J INFORMETR, V8, P197, DOI 10.1016/j.joi.2013.12.001 Jha R, 2017, NAT LANG ENG, V23, P93, DOI 10.1017/S1351324915000443 Jochim C., 2012, P COLING 2012, P1343 Judge TA, 2007, ACAD MANAGE J, V50, P491 Kaplan D., 2009, Proceedings of the 2009 Workshop on Text and Citation Analysis for Scholarly Digital Libraries (NLPIR4DL), P88 Karimi S, 2018, SCIENTOMETRICS, V116, P1331, DOI 10.1007/s11192-018-2785-8 Klampfl Stefan., 2016, BIRNDL at JCDL, P122 Lawrence S, 1999, COMPUTER, V32, P67, DOI 10.1109/2.769447 Li L., 2017, P 2 JOINT WORKSH BIB Li X., 2013, Proceedings of Recent Advances in Natural Language Processing, P402 Lin CY, 2003, HLT-NAACL 2003: HUMAN LANGUAGE TECHNOLOGY CONFERENCE OF THE NORTH AMERICAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, PROCEEDINGS OF THE MAIN CONFERENCE, P150 Liu D, 2004, MEAD PLATFORM MULTID LIU MX, 1993, J DOC, V49, P370, DOI 10.1108/eb026920 Lopez P, 2009, LECT NOTES COMPUT SC, V5714, P473, DOI 10.1007/978-3-642-04346-8_62 Ma Shutian, 2020, Scientometrics, V122, P1445, DOI 10.1007/s11192-019-03336-0 Ma ST, 2018, SCIENTOMETRICS, V116, P1303, DOI 10.1007/s11192-018-2754-2 MACROBERTS MH, 1989, J AM SOC INFORM SCI, V40, P342, DOI 10.1002/(SICI)1097-4571(198909)40:5<342::AID-ASI7>3.0.CO;2-U Mäntylä MV, 2018, COMPUT SCI REV, V27, P16, DOI 10.1016/j.cosrev.2017.10.002 MCCAIN KW, 1989, SCIENTOMETRICS, V17, P127, DOI 10.1007/BF02017729 McCallum AK, 2000, INFORM RETRIEVAL, V3, P127, DOI 10.1023/A:1009953814988 Mei Q., 2008, P ACL 08, P816 Mercer RE, 2004, LECT NOTES ARTIF INT, V3060, P75 Mohammad S., 2009, P HUMAN LANGUAGE TEC, P584 MORAVCSIK MJ, 1975, SOC STUD SCI, V5, P86, DOI 10.1177/030631277500500106 Nallapati R. M., 2008, P 14 ACM SIGKDD INT, P542, DOI DOI 10.1145/1401890.1401957 Nicholson JM, 2021, QUANT SCI STUD, V2, P882, DOI 10.1162/qss_a_00146 Nomoto T., 2016, P JOINT WORKSH BIBL, P168 OPPENHEIM C, 1978, J AM SOC INFORM SCI, V29, P225, DOI 10.1002/asi.4630290504 Piao SS., 2007, International Workshop on Computational Semantics (IWCS), P366 PRABHA CG, 1983, J AM SOC INFORM SCI, V34, P202, DOI 10.1002/asi.4630340305 Pride D, 2017, PRO INT CONF SCI INF, P1357 Qazvinian V, 2013, J ARTIF INTELL RES, V46, P165, DOI 10.1613/jair.3732 Qazvinian V, 2010, ACL 2010: 48TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, P555 Ritchie A., 2008, P 17 ACM C INF KNOWL, P213, DOI DOI 10.1145/1458082.1458113 Safder I, 2019, SCIENTOMETRICS, V119, P257, DOI 10.1007/s11192-019-03025-y Safer MA, 2009, PERSPECT PSYCHOL SCI, V4, P51, DOI 10.1111/j.1745-6924.2009.01104.x SALTON G, 1963, J ACM, V10, P440, DOI 10.1145/321186.321188 See A, 2017, PROCEEDINGS OF THE 55TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2017), VOL 1, P1073, DOI 10.18653/v1/P17-1099 SHADISH WR, 1995, SOC STUD SCI, V25, P477, DOI 10.1177/030631295025003003 Sharma M, 2018, BMC HEALTH SERV RES, V18, DOI 10.1186/s12913-018-3043-8 Small H, 2004, SCIENTOMETRICS, V60, P71, DOI 10.1023/B:SCIE.0000027310.68393.bc Small H., 1982, PROGR COMMUNICATION, V3, P287 Small H, 2018, J INFORMETR, V12, P461, DOI 10.1016/j.joi.2018.03.007 Small H, 2017, J INFORMETR, V11, P46, DOI 10.1016/j.joi.2016.11.001 Sugiyama Kazunari, 2010, Proceedings of the 2010 International Conference on Information Retrieval and Knowledge Management (CAMP 2010), P67, DOI 10.1109/INFRKM.2010.5466945 Sula CA, 2014, LIT LINGUIST COMPUT, V29, P452, DOI 10.1093/llc/fqu019 Tahamtan I, 2019, SCIENTOMETRICS, V121, P1635, DOI 10.1007/s11192-019-03243-4 Tandon N., 2012, P 35 GERMAN C ARTIFI, P98 Tang J, 2009, LECT NOTES ARTIF INT, V5476, P572, DOI 10.1007/978-3-642-01307-2_55 Taskin Z, 2018, SCIENTOMETRICS, V114, P335, DOI 10.1007/s11192-017-2560-2 Teufel S, 2002, COMPUT LINGUIST, V28, P409, DOI 10.1162/089120102762671936 Teufel S., 2006, P C EMP METH NAT LAN, DOI 10.3115/1610075.1610091 Thompson P, 2017, LANG RESOUR EVAL, V51, P409, DOI 10.1007/s10579-016-9344-9 Tkaczyk D, 2015, COMM COM INF SC, V548, P93, DOI 10.1007/978-3-319-25518-7_8 Tuarob S, 2020, IEEE T KNOWL DATA EN, V32, P1881, DOI 10.1109/TKDE.2019.2913376 Turney PD, 2002, 40TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, PROCEEDINGS OF THE CONFERENCE, P417 Valenzuela M., 2015, WORKSHOPS 20 9 AAAI Verma Rakesh, 2017, Comp. y Sist., V21, P787, DOI 10.13053/cys-21-4-2855 Voos H., 1976, The Journal of Academic Librarianship, V1, P19 Wang Chong, 2011, P ACM SIGKDD INT C K, P448, DOI DOI 10.1145/2020408.2020480 Wang MY, 2019, CURR SCI INDIA, V117, P606, DOI 10.18520/cs/v117/i4/606-616 Wang WJ, 2012, INT J ARTIF INTELL T, V21, DOI 10.1142/S0218213012400040 White HD, 2004, APPL LINGUIST, V25, P89, DOI 10.1093/applin/25.1.89 Xu J., 2016, P JOINT WORKSH BIBL, P139 Yang LB, 2018, IEEE ACCESS, V6, P59618, DOI 10.1109/ACCESS.2018.2872730 Yasunaga M, 2019, AAAI CONF ARTIF INTE, P7386 Yin XS, 2011, INFORM PROCESS MANAG, V47, P53, DOI 10.1016/j.ipm.2010.03.010 Yousif A, 2019, NEUROCOMPUTING, V335, P195, DOI 10.1016/j.neucom.2019.01.021 Zafar L, 2019, 2019 2ND INTERNATIONAL CONFERENCE ON COMMUNICATION, COMPUTING AND DIGITAL SYSTEMS (C-CODE), P120, DOI [10.1109/c-code.2019.8680976, 10.1109/C-CODE.2019.8680976] Zarrinkalam F, 2013, PROGRAM-ELECTRON LIB, V47, P92, DOI 10.1108/00330331311296320 Zhang G, 2013, J AM SOC INF SCI TEC, V64, P1490, DOI 10.1002/asi.22850 Zhu XD, 2015, J ASSOC INF SCI TECH, V66, P408, DOI 10.1002/asi.23179 NR 141 TC 21 Z9 24 U1 17 U2 132 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0138-9130 EI 1588-2861 J9 SCIENTOMETRICS JI Scientometrics PD AUG PY 2021 VL 126 IS 8 BP 6551 EP 6599 DI 10.1007/s11192-021-04055-1 EA JUN 2021 PG 49 WC Computer Science, Interdisciplinary Applications; Information Science & Library Science WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Computer Science; Information Science & Library Science GA TM5GC UT WOS:000664849500019 OA Green Submitted, Green Accepted DA 2024-09-05 ER PT J AU Shen, Y Lei, C AF Shen, Yue Lei, Cao TI Research on evaluation of university education informatization level based on clustering technique SO HELIYON LA English DT Article DE Education informatization; Machine learning; Clustering; Reinforcement learning; Support vector machine AB Today, the utilization of Information Technology tools is considered an inevitable path in the education system. In this regard, assessing the effective integration of Information Technology tools in the educational system holds significant importance. This process can be automated using artificial intelligence techniques, which are the subject of the current study. In this research, initially, a set of 14 indicators related to levels of Education Informatization (EI) in higher education is introduced. Subsequently, a clustering-based strategy is proposed to rank the indicators and determine an optimal subset of these features. Based on this framework, it is demonstrated that using 11 indicators related to educational behaviors can achieve the highest accuracy in evaluating EI levels. The proposed approach employs a group of Support Vector Machines (SVMs) for EI level assessment, where classifier hyperparameters are tuned using reinforcement learning strategy. The performance of the proposed method is evaluated on real-world data and compared with previous works. The results indicate that the proposed method can assess EI levels in universities with an average accuracy of 93.64 %, outperforming compared methods by at least 4.09 %. C1 [Shen, Yue] Jiangsu Food & Pharmaceut Sci Coll, Huaian 223003, Jiangsu, Peoples R China. [Lei, Cao] China West Normal Univ, Educ Coll, Nanchong 637000, Sichuan, Peoples R China. C3 Jiangsu Food & Pharmaceutical Science College; China West Normal University RP Shen, Y (corresponding author), Jiangsu Food & Pharmaceut Sci Coll, Huaian 223003, Jiangsu, Peoples R China.; Lei, C (corresponding author), China West Normal Univ, Educ Coll, Nanchong 637000, Sichuan, Peoples R China. EM 20163014@jsfpc.edu.cn; caolei115@cwnu.edu.cn CR Bai Y, 2019, 2019 INTERNATIONAL CONFERENCE ON SMART GRID AND ELECTRICAL AUTOMATION (ICSGEA), P437, DOI 10.1109/ICSGEA.2019.00105 Binu Jose A., 2022, SOFT COMPUTING THEOR, P319 Brik Y., 2021, 9 ONLINE INT C APPL, P43 Cervantes J, 2020, NEUROCOMPUTING, V408, P189, DOI 10.1016/j.neucom.2019.10.118 Clifton J, 2020, ANNU REV STAT APPL, V7, P279, DOI 10.1146/annurev-statistics-031219-041220 Dingsheng Deng, 2020, 2020 7th International Forum on Electrical Engineering and Automation (IFEEA), P949, DOI 10.1109/IFEEA51475.2020.00199 Dong K., 2022, Discrete Dynam Nat. Soc, V2022 Fedorenko E.H., 2019, Informatization of Education as a Pledge of the Existence and Development of a Modern Higher Education Feng H, 2020, 2020 5TH INTERNATIONAL CONFERENCE ON SMART GRID AND ELECTRICAL AUTOMATION (ICSGEA 2020), P558, DOI 10.1109/ICSGEA51094.2020.00127 Halili SH, 2019, The Online Journal of Distance Education and e -Learning, V7, P63 Hawkridge D., 2022, New information technology in education Hou YH, 2022, MATH PROBL ENG, V2022, DOI 10.1155/2022/5817752 Huang CQ, 2023, COMPUT EDUC, V207, DOI 10.1016/j.compedu.2023.104910 Huang CQ, 2021, AUSTRALAS J EDUC TEC, V37, P81, DOI 10.14742/ajet.6749 Lei K., 2021, APPL BIG DATA BLOCKC, P263 Li BW, 2021, PLOS ONE, V16, DOI 10.1371/journal.pone.0242023 Li SP, 2021, COMPLEXITY, V2021, DOI 10.1155/2021/5599655 Li XT, 2020, NEURAL COMPUT APPL, V32, P1765, DOI 10.1007/s00521-019-04566-2 Li Y., 2022, 2022 2 INT C ED INFO, P882 Paudel P., 2021, International Journal on Studies in Education (IJonSE), V3 Pisner D.A., 2020, Machine Learning, P101, DOI [DOI 10.1016/B978-0-12-815739-8.00006-7, 10.1016/B978-0-12-815739-8.00006-7] Raja R., 2018, J Appl Adv Res., V3, P33, DOI [10.21839/jaar.2018.v3iS1.165, DOI 10.21839/JAAR.2018.V3IS1.165] Singh D, 2020, APPL SOFT COMPUT, V97, DOI 10.1016/j.asoc.2019.105524 Szymkowiak A, 2021, TECHNOL SOC, V65, DOI 10.1016/j.techsoc.2021.101565 Wang DL, 2022, SCI PROGRAMMING-NETH, V2022, DOI 10.1155/2022/9658735 Wei Chengyan, 2021, Journal of Physics: Conference Series, DOI 10.1088/1742-6596/1992/2/022126 Xu L, 2022, PSYCHIAT DANUB, V34, pS363 Xu Wang, 2019, IOP Conference Series: Materials Science and Engineering, V569, DOI 10.1088/1757-899X/569/5/052024 Yan JJ, 2020, KNOWL-BASED SYST, V198, DOI 10.1016/j.knosys.2020.105922 Yan SX, 2021, ECNU REV EDUC, V4, P410, DOI 10.1177/2096531120944929 Yi SP, 2022, SUSTAINABILITY-BASEL, V14, DOI 10.3390/su14116474 NR 31 TC 0 Z9 0 U1 11 U2 11 PU CELL PRESS PI CAMBRIDGE PA 50 HAMPSHIRE ST, FLOOR 5, CAMBRIDGE, MA 02139 USA EI 2405-8440 J9 HELIYON JI Heliyon PD FEB 29 PY 2024 VL 10 IS 4 AR e25215 DI 10.1016/j.heliyon.2024.e25215 EA FEB 2024 PG 14 WC Multidisciplinary Sciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Science & Technology - Other Topics GA KZ7S9 UT WOS:001183863100001 PM 38370245 OA gold, Green Published DA 2024-09-05 ER PT C AU Zhu, XP Ban, ZJ AF Zhu, XinPing Ban, ZhiJie BE Barolli, L Takizawa, M Enokido, T Ogiela, MR Javaid, N TI Citation Count Prediction Based on Academic Network Features SO PROCEEDINGS 2018 IEEE 32ND INTERNATIONAL CONFERENCE ON ADVANCED INFORMATION NETWORKING AND APPLICATIONS (AINA) SE International Conference on Advanced Information Networking and Applications LA English DT Proceedings Paper CT 32nd IEEE International Conference on Advanced Information Networking and Applications (AINA) CY MAY 16-18, 2018 CL Krakow, POLAND DE citation count prediction; academic social network; feature selection ID JOURNALS IMPACT FACTOR; PUBLICATION AB Citation count is an important factor to measure the influence of academic publications. Identifying future citation count in advance can help scientists to find references and research area. There are many academic network features which are related to citation count. However, these features have not been completely explored in the existing studies. In this paper, we propose a citation count prediction model based on academic network features. Firstly, some important features are introduced and analyzed in detail. Then, we verify the importance of each feature and use a neural network model to select a set of optimal features. Finally, we present several machine learning methods and one multiple linear regression strategy to predict a paper's future citation. Experimental results on real datasets demonstrate that our model significantly outperforms the baseline method. C1 [Zhu, XinPing; Ban, ZhiJie] Inner Mongolia Univ, Sch Comp Sci, Hohhot, Peoples R China. C3 Inner Mongolia University RP Zhu, XP (corresponding author), Inner Mongolia Univ, Sch Comp Sci, Hohhot, Peoples R China. EM zhuxinping1993@163.com; banzhijie@imu.edu.cn FU Natural Science Foundation of China [61662053] FX We thank the anonymous reviewers for their constructive comments. This work was supported by the Natural Science Foundation of China (Grant No. 61662053). We thank Jie Tang for providing the basic data set. The corresponding author is Zhijie Ban in this paper. CR [Anonymous], Acm Sigkdd Explorations Newsletter, DOI 10.1145/980972.980992 [Anonymous], ASNA [Anonymous], 1997, TECHNICAL REPORT Bethard S., 2010, Proceedings of the 19th ACM International Conference on Information and Knowledge Management, P609, DOI [DOI 10.1145/1871437.1871517, 10.1145/1871437.1871517] Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993 Blondel VD, 2008, J STAT MECH-THEORY E, DOI 10.1088/1742-5468/2008/10/P10008 Brandes U, 2001, J MATH SOCIOL, V25, P163, DOI 10.1080/0022250X.2001.9990249 Brin S., 1998, P 7 INT WORLD WID WE, V98, P161 Brody T, 2006, J AM SOC INF SCI TEC, V57, P1060, DOI 10.1002/asi.20373 Callaham M, 2002, JAMA-J AM MED ASSOC, V287, P2847, DOI 10.1001/jama.287.21.2847 Castillo C, 2007, LECT NOTES COMPUT SC, V4726, P107, DOI 10.1007/978-3-540-75530-2_10 Dimitrov JD, 2010, NATURE, V466, P179, DOI 10.1038/466179b Eberly Lynn E., 2007, V404, P165, DOI 10.1007/978-1-59745-530-5_9 Fersht A, 2009, P NATL ACAD SCI USA, V106, P6883, DOI 10.1073/pnas.0903307106 Fu Lawrence D, 2008, AMIA Annu Symp Proc, P222 Garfield E, 2001, NATURE, V411, P522, DOI 10.1038/35079156 Hirsch JE, 2005, P NATL ACAD SCI USA, V102, P16569, DOI 10.1073/pnas.0507655102 Ibáñez A, 2009, BIOINFORMATICS, V25, P3303, DOI 10.1093/bioinformatics/btp585 Kleinberg JM, 1999, J ACM, V46, P604, DOI 10.1145/324133.324140 Kulkarni AV, 2007, PLOS ONE, V2, DOI 10.1371/journal.pone.0000403 KULLBACK S, 1951, ANN MATH STAT, V22, P79, DOI 10.1214/aoms/1177729694 Livne A., 2013, ICONFERENCE 2013 WOR Lokker C, 2008, BMJ-BRIT MED J, V336, P655, DOI 10.1136/bmj.39482.526713.BE Mcgovern A., 2003, SIGKDD EXPLORATIONS, V5, P2003 Pobiedina N, 2016, APPL INTELL, V44, P252, DOI 10.1007/s10489-015-0657-y RODGERS JL, 1988, AM STAT, V42, P59, DOI 10.2307/2685263 Simons K, 2008, SCIENCE, V322, P165, DOI 10.1126/science.1165316 SIU KY, 1993, IEEE T INFORM THEORY, V39, P946, DOI 10.1109/18.256501 Stallings J, 2013, P NATL ACAD SCI USA, V110, P9680, DOI 10.1073/pnas.1220184110 Steel R.G., 1980, PRINCIPLES PROCEDURE, V633 Yan R, 2012, P 12 ACM IEEE CS JOI, P51, DOI DOI 10.1145/2232817.2232831 Yuxiao Dong, 2016, IEEE Transactions on Big Data, V2, P18, DOI 10.1109/TBDATA.2016.2521657 NR 32 TC 12 Z9 13 U1 1 U2 14 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA SN 1550-445X BN 978-1-5386-2195-0 J9 INT CON ADV INFO NET PY 2018 BP 534 EP 541 DI 10.1109/AINA.2018.00084 PG 8 WC Computer Science, Hardware & Architecture; Engineering, Electrical & Electronic WE Conference Proceedings Citation Index - Science (CPCI-S) SC Computer Science; Engineering GA BL7AK UT WOS:000454817500071 DA 2024-09-05 ER PT J AU Dong, XL Xu, JH Bu, Y Zhang, CW Ding, Y Hu, BB Ding, Y AF Dong, Xianlei Xu, Jiahui Bu, Yi Zhang, Chenwei Ding, Ying Hu, Beibei Ding, Yang TI Beyond correlation: Towards matching strategy for causal inference in Information Science SO JOURNAL OF INFORMATION SCIENCE LA English DT Article DE Causal inference; citation analysis; matching; scientometrics ID INSTRUMENTAL VARIABLES ESTIMATION; RANDOMIZED CLINICAL-TRIALS; CITATION IMPACT; PROPENSITY; RISK; PERSPECTIVE AB Correlation has become a fundamental method for information science. However, correlations are limited in making concrete decisions. In this article, we detail how causal inference could be utilised in the field of information science. There are six main steps of implementing matching for causal inference, namely, selecting candidate control variables, determining control variables, calculating similarities among all samples, forming control group, examining the performance of control group and estimating causal effects. As an example, this article applies causal inference to investigate whether Nobel Physics award increases the after-award citations. The method is presented in a step-by-step manner so that researchers can reproduce our analysis in the future. C1 [Dong, Xianlei; Xu, Jiahui; Hu, Beibei; Ding, Yang] Shandong Normal Univ, Jinan, Peoples R China. [Bu, Yi] Peking Univ, 5 Yiheyuan Rd, Beijing 100871, Peoples R China. [Zhang, Chenwei] Univ Hong Kong, Hong Kong, Peoples R China. [Ding, Ying] Univ Texas Austin, Austin, TX 78712 USA. C3 Shandong Normal University; Peking University; University of Hong Kong; University of Texas System; University of Texas Austin RP Bu, Y (corresponding author), Peking Univ, 5 Yiheyuan Rd, Beijing 100871, Peoples R China. EM buyi@pku.edu.cn RI Bu, Yi/B-4964-2018; xu, jiawen/KGK-4238-2024; Xu, Jiawen/JEF-5028-2023; xu, jia/GSD-6347-2022 OI Bu, Yi/0000-0003-2549-4580; Zhang, Chenwei/0000-0002-0488-4603; Ding, Yang/0000-0002-0683-2655 FU programmes of National Natural Science Foundation of China [71904110]; Humanities and Social Science Foundation of Ministry of Education of the People's Republic of China [19YJCGJW014]; National Natural Science Foundation of China [71701115]; China Postdoctoral Science Foundation [2017M610440]; National Nature Science Foundation of Shandong Province [ZR2017MF058] FX The author(s) disclosed receipt of the following financial support for the research, authorship and/or publication of this article: The authors are grateful to two anonymous reviewers for their constructive comments. X.D. thanks the programmes of National Natural Science Foundation of China (Grant No. 71904110) and Humanities and Social Science Foundation of Ministry of Education of the People's Republic of China (Grant No. 19YJCGJW014) for their support. B.H. thanks the programmes of National Natural Science Foundation of China (Grant No. 71701115), China Postdoctoral Science Foundation (Grant No. 2017M610440) and the National Nature Science Foundation of Shandong Province (Grant No. ZR2017MF058) for their support. CR Agrawal AK, 2013, J FINANC ECON, V107, P417, DOI 10.1016/j.jfineco.2012.08.019 AlShebli BK, 2018, NAT COMMUN, V9, DOI 10.1038/s41467-018-07634-8 Angrist JD, 2009, MOSTLY HARMLESS ECONOMETRICS: AN EMPIRICISTS COMPANION, P3 Astin JA, 2002, ARTHRIT RHEUM-ARTHR, V47, P291, DOI 10.1002/art.10416 Austin PC, 2014, STAT MED, V33, P1057, DOI 10.1002/sim.6004 Austin PC, 2009, BIOMETRICAL J, V51, P171, DOI 10.1002/bimj.200810488 Azoulay P, 2010, Q J ECON, V125, P549, DOI 10.1162/qjec.2010.125.2.549 Becker SO, 2002, STATA J, V2, P358, DOI 10.1177/1536867X0200200403 Begg C, 1996, JAMA-J AM MED ASSOC, V276, P637, DOI 10.1001/jama.276.8.637 Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993 Blumberg Joyce, 2016, INT STAT REV, V84, P159 Bor J, 2014, EPIDEMIOLOGY, V25, P729, DOI 10.1097/EDE.0000000000000138 BOUND J, 1995, J AM STAT ASSOC, V90, P443, DOI 10.2307/2291055 Bu Y, 2019, PRO INT CONF SCI INF, P561 BYAR DP, 1976, NEW ENGL J MED, V295, P74, DOI 10.1056/NEJM197607082950204 Card, 1993, NBER WORK PAPERS, V3386, P4483 COCHRAN WG, 1973, SANKHYA SER A, V35, P417 Duflo E., 2005, Evaluating Development Effectiveness, V7, P205 Falavarjani SAM, 2019, INFORM PROCESS MANAG, V56, DOI 10.1016/j.ipm.2019.102070 Frölich M, 2007, ECONOMET J, V10, P359, DOI 10.1111/j.1368-423X.2007.00212.x Gitonga ZM, 2013, FOOD POLICY, V43, P44, DOI 10.1016/j.foodpol.2013.08.005 Godlee Fiona, 2011, BMJ, V342, pc7452, DOI 10.1136/bmj.c7452 Goodman S, 2014, J CHILD PSYCHOL PSYC, V55, P121, DOI 10.1111/jcpp.12202 Greenland S, 2000, INT J EPIDEMIOL, V29, P722, DOI 10.1093/ije/29.4.722 Hahn JY, 2001, ECONOMETRICA, V69, P201, DOI 10.1111/1468-0262.00183 Haviland A, 2007, PSYCHOL METHODS, V12, P247, DOI 10.1037/1082-989X.12.3.247 Huang C, 2019, PHYSICA A, V533, DOI 10.1016/j.physa.2019.122043 Huang JM, 2020, P NATL ACAD SCI USA, V117, P4609, DOI 10.1073/pnas.1914221117 Jeong H, 2003, EUROPHYS LETT, V61, P567, DOI 10.1209/epl/i2003-00166-9 King G, 2019, POLIT ANAL, V27, P435, DOI 10.1017/pan.2019.11 Larivière V, 2010, J AM SOC INF SCI TEC, V61, P424, DOI 10.1002/asi.21232 Lechner Michael, 2011, Foundations and Trends in Econometrics, V4, P165, DOI 10.1561/0800000014 Li HJ, 2013, ACCIDENT ANAL PREV, V60, P148, DOI 10.1016/j.aap.2013.08.003 Li WH, 2019, NAT COMMUN, V10, DOI 10.1038/s41467-019-13130-4 Meadowbrooke CC, 2014, J ASSOC INF SCI TECH, V65, P609, DOI 10.1002/asi.23001 MERTON RK, 1968, SCIENCE, V159, P56, DOI 10.1126/science.159.3810.56 Morgan SL, 2007, ANAL METHOD SOC RES, P1, DOI 10.1017/CBO9780511804564 Oakes J.M., 2006, METHODS SOCIAL EPIDE, P370 Pearl J., 2000, CAUSALITY MODELS REA, P384 PETO R, 1977, BRIT J CANCER, V35, P1, DOI 10.1038/bjc.1977.1 PSACHAROPOULOS G, 1985, J HUM RESOUR, V20, P583, DOI 10.2307/145686 Rassen JA, 2012, PHARMACOEPIDEM DR S, V21, P41, DOI 10.1002/pds.2328 Ridner SL, 2006, J AM ACAD NURSE PRAC, V18, P374, DOI 10.1111/j.1745-7599.2006.00142.x ROSENBAUM PR, 1983, BIOMETRIKA, V70, P41, DOI 10.1093/biomet/70.1.41 Rubin DB, 2006, MATCHED SAMPLING FOR CAUSAL EFFECTS, P1, DOI 10.2277/ 0521674360 Rubin DB, 2006, MATCHED SAMPLING FOR CAUSAL EFFECTS, P365 Sander, 1999, AM J PUBLIC HEALTH, V10, P37 Sinatra R, 2015, NAT PHYS, V11, P791, DOI 10.1038/nphys3494 Sovey AJ, 2011, AM J POLIT SCI, V55, P188, DOI 10.1111/j.1540-5907.2010.00477.x Stuart EA, 2010, STAT SCI, V25, P1, DOI 10.1214/09-STS313 SUN J, 2019, PREDICTING HUMAN DIS Tahamtan I, 2019, SCIENTOMETRICS, V121, P1635, DOI 10.1007/s11192-019-03243-4 Thoemmes FJ, 2011, MULTIVAR BEHAV RES, V46, P90, DOI 10.1080/00273171.2011.540475 Waldinger F, 2012, REV ECON STUD, V79, P838, DOI 10.1093/restud/rdr029 Waltman L, 2016, J INFORMETR, V10, P365, DOI 10.1016/j.joi.2016.02.007 Wang BL, 2018, SCIENTOMETRICS, V116, P675, DOI 10.1007/s11192-018-2787-6 Way SF, 2019, P NATL ACAD SCI USA, V116, P10729, DOI 10.1073/pnas.1817431116 Wildgaard L, 2014, SCIENTOMETRICS, V101, P125, DOI 10.1007/s11192-014-1423-3 Wittenburg P, 2019, DATA INTELLIGENCE, V1, P6, DOI 10.1162/dint_a_00004 Wold H, 1954, ECONOMETRICA, V22, P162, DOI 10.2307/1907540 Wood Angela M, 2004, Clin Trials, V1, P368 Yan EJ, 2020, J ASSOC INF SCI TECH, V71, P314, DOI 10.1002/asi.24237 Zhang CW, 2018, J ASSOC INF SCI TECH, V69, P72, DOI 10.1002/asi.23916 Zhao ZY, 2020, J INFORMETR, V14, DOI 10.1016/j.joi.2020.101037 NR 64 TC 6 Z9 6 U1 6 U2 86 PU SAGE PUBLICATIONS LTD PI LONDON PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND SN 0165-5515 EI 1741-6485 J9 J INF SCI JI J. Inf. Sci. PD DEC PY 2022 VL 48 IS 6 BP 735 EP 748 AR 0165551520979868 DI 10.1177/0165551520979868 EA JUN 2021 PG 14 WC Computer Science, Information Systems; Information Science & Library Science WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Computer Science; Information Science & Library Science GA 5M6KX UT WOS:000667859600001 DA 2024-09-05 ER PT C AU ElAbdi, M Smine, B Ben Yahia, S AF ElAbdi, Mariem Smine, Boutheina Ben Yahia, Sadok GP IEEE TI DFBICA: A New Distributed Approach For Sentiment Analysis of Bibliographic Citations SO 2018 12TH INTERNATIONAL CONFERENCE ON RESEARCH CHALLENGES IN INFORMATION SCIENCE (RCIS) SE International Conference on Research Challenges in Information Science LA English DT Proceedings Paper CT 12th International Conference on Research Challenges in Information Science (RCIS) CY MAY 29-31, 2018 CL Nantes, FRANCE DE Sentiment analysis; Scientific paper; Word2vec; MapReduce AB Sentiment analysis of citations in scientific papers is a new and interesting research area. In this paper, we focus on the problem of automatic identification of positive and negative sentiment polarity of citations in scientific papers. In this work, we conducted empirical research to investigate the classification of positive and negative citations. It is based on word vectors as a feature space, to which the examined citation context was mapped to. In order to handle with the huge amount of data, we have implemented our proposed approach in a distributed manner according to MapReduce paradigm through the Hadoop framework. C1 [ElAbdi, Mariem; Ben Yahia, Sadok] Univ Tunis El Manar, Fac Sci Tunis, LIPAH LR 11ES14, Tunis 2092, Tunisia. [Smine, Boutheina] Univ Carthage, Fac Sci Econ & Gest Nabeul, Tunis 1054, Tunisia. C3 Universite de Tunis-El-Manar; Faculte des Sciences de Tunis (FST); Universite de Carthage RP ElAbdi, M (corresponding author), Univ Tunis El Manar, Fac Sci Tunis, LIPAH LR 11ES14, Tunis 2092, Tunisia. EM elabdi.mariem@gmail.com; boutheina.smine@yahoo.fr; sadok.benyahia@fst.rnu.tn RI BEN YAHIA, Sadok/C-8239-2019 OI BEN YAHIA, Sadok/0000-0001-8939-8948 CR Abu-Jbara A., 2013, NAACL, P596 Athar A., 2011, P ACL 2011 STUD SESS, P81 Bengio Y, 2008, IEEE T NEURAL NETWOR, V19, P713, DOI 10.1109/TNN.2007.912312 Dong L, 2014, PROCEEDINGS OF THE 52ND ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, VOL 2, P49 FLEISS JL, 1971, PSYCHOL BULL, V76, P378, DOI 10.1037/h0031619 Jochim C, 2014, PROCEEDINGS OF THE 52ND ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, VOL 2, P42 LANDIS JR, 1977, BIOMETRICS, V33, P159, DOI 10.2307/2529310 Lilleberg J, 2015, PROCEEDINGS OF 2015 IEEE 14TH INTERNATIONAL CONFERENCE ON COGNITIVE INFORMATICS & COGNITIVE COMPUTING (ICCI*CC), P136, DOI 10.1109/ICCI-CC.2015.7259377 Medhat W, 2014, AIN SHAMS ENG J, V5, P1093, DOI 10.1016/j.asej.2014.04.011 Mikolov T., 2013, ARXIV Olson D. L, 2008, Advanced Data Mining Techniques, DOI DOI 10.1007/978-3-540-76917-0 Pang B., 2002, THUMBS SENTIMENT CLA, V10 Tang DY, 2014, PROCEEDINGS OF THE 52ND ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, VOL 1, P1555 NR 13 TC 4 Z9 4 U1 0 U2 5 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA SN 2151-1357 BN 978-1-5386-6517-6 J9 INT CONF RES CHAL PY 2018 PG 6 WC Computer Science, Information Systems; Information Science & Library Science WE Conference Proceedings Citation Index - Science (CPCI-S); Conference Proceedings Citation Index - Social Science & Humanities (CPCI-SSH) SC Computer Science; Information Science & Library Science GA BL3WY UT WOS:000450067100033 DA 2024-09-05 ER PT J AU da Silva, RL de Sousa, BP AF da Silva, Renata Lima de Sousa, Brisa Pozzi TI Artificial Intelligence and ChatGPT: perspectives and challenges for Bibliographic Classification SO REVISTA IBERO-AMERICANA DE CIENCIA DA INFORMACAO LA English DT Article DE Library Science; Bibliographic Classification; ChatGPT; Artificial Intelligence AB It presents perspectives and challenges of applying Artificial Intelligence in the field of Library Science. To this end, it focuses on the practice of Bibliographic Classification and conducts a comparative study between the results obtained through classification performed by a human and by ChatGPT, the chatbot tool used in this analysis. The study is based on the Dewey Decimal Classification and the Universal Decimal Classification. The results revealed significant divergences between both methods, exposing mistakes and hallucinations of the generative AI model GPT-3.5, on which the current free version of ChatGPT is based. Challenges and limitations to the effective applicability of ChatGPT in the context of Bibliographic Classification are highlighted, as well as the relevance of the librarian in the practice of classification and thematic analysis, given the importance of mental exercise and critical analysis in interpreting the subject to be classified. It should be noted that the study does not conduct a comprehensive comparative analysis. The need for future, more comprehensive investigations with different perspectives from human experts and AI models is emphasized. C1 [da Silva, Renata Lima; de Sousa, Brisa Pozzi] Univ Fed Estado Rio De Janeiro, Curso Bibliotecon, Rio De Janeiro, RJ, Brazil. C3 Universidade Federal do Estado do Rio de Janeiro RP da Silva, RL (corresponding author), Univ Fed Estado Rio De Janeiro, Curso Bibliotecon, Rio De Janeiro, RJ, Brazil. EM limarenataa@gmail.com; brisa.pozzi@unirio.br CR Almeida Vergilio, 2023, IA Generativa: oportunidades, riscos e governanca Andrade Rodrigo de Oliveira, 2023, Pesquisa FAPESP, Sao Paulo, V325, P17 Anjos Liane dos, 2008, Tese (Doutorado em Cultura e Informacao) [Anonymous], 2023, ChatGPT-Release Notes-OpenAI Help Center Aranalde Michel Maya, 2009, Ciencia da Informacao, V38, P86 BARBOSA A., 1969, Teoria e pratica dos sistemas de classificacao bibliografica Brady Damian, 2023, Github Blog Carvalho Tiago, 2018, Monografia (Bacharelado em Biblioteconomia) Cortiz Diogo, 2023, Diogo Cortiz Daugherty Paul, 2023, Uma nova era da IA generativa para todos: a tecnologia que sustenta o ChatGPT vai transformar o trabalho e reinventar as empresas Davenport T. H., 2022, Harvard Business Review Dewey Melvil, 2011, Dewey decimal classification and relative index, V23 Fernandes Anita Maria da Rocha, 2005, Inteligencia artificial: nocoes gerais Gil A.C., 2002, S O PAULO Gil Antonio Carlos, 2008, Metodos e tecnicas depesquisa social, V6 Gill S. S., 2023, Internet of Things and Cyber-Physical Systems, V3, DOI DOI 10.1016/J.IOTCPS.2023.05.004 Lund B.D., 2023, LIB HI TECH NEWS, V40 Maciel L, 2023, REGE-REV GEST, V30, P110, DOI 10.1108/REGE-04-2023-207 Miranda Marcos Luiz, 2018, Instrumentos de Representacao Tematica da Informacao, VI Piedade M., 1983, Introducao a teoria da classificacao Russel S., 2013, Inteligencia Artificial Sichman Jaime Simão, 2021, Estud. av., V35, P37, DOI 10.1590/s0103-4014.2021.35101.004 Wang S, 2023, Arxiv, DOI [arXiv:2306.00227, 10.48550/arXiv.2306.00227, DOI 10.48550/ARXIV.2306.00227] NR 23 TC 0 Z9 0 U1 31 U2 31 PU UNIV BRASILIA, DEPT CIENCIA INFORMACAO PI BRASILIA PA CAIXA POSTAL 15-3011, BRASILIA, DF 00000, BRAZIL SN 1983-5213 J9 REV IBERI-AM CIENC I JI Rev. Ibero-Am. Cienc. Inf. PD JAN-APR PY 2024 VL 17 IS 1 BP 44 EP 65 DI 10.26512/rici.v17.n1.2024.50429 PG 22 WC Information Science & Library Science WE Emerging Sources Citation Index (ESCI) SC Information Science & Library Science GA MQ0I8 UT WOS:001194970100006 OA gold DA 2024-09-05 ER PT J AU Hassan, SU Saleem, A Soroya, SH Safder, I Iqbal, S Jamil, S Bukhari, F Aljohani, NR Nawaz, R AF Hassan, Saeed-Ul Saleem, Aneela Soroya, Saira Hanif Safder, Iqra Iqbal, Sehrish Jamil, Saqib Bukhari, Faisal Aljohani, Naif Radi Nawaz, Raheel TI Sentiment analysis of tweets through Altmetrics: A machine learning approach SO JOURNAL OF INFORMATION SCIENCE LA English DT Article DE Altmetrics; comparative analysis; machine learning; sentiment analysis; Twitter ID SOCIAL MEDIA; TWITTER; NETWORK AB The purpose of the study is to (a) contribute to annotating an Altmetrics dataset across five disciplines, (b) undertake sentiment analysis using various machine learning and natural language processing-based algorithms, (c) identify the best-performing model and (d) provide a Python library for sentiment analysis of an Altmetrics dataset. First, the researchers gave a set of guidelines to two human annotators familiar with the task of related tweet annotation of scientific literature. They duly labelled the sentiments, achieving an inter-annotator agreement (IAA) of 0.80 (Cohen's Kappa). Then, the same experiments were run on two versions of the dataset: one with tweets in English and the other with tweets in 23 languages, including English. Using 6388 tweets about 300 papers indexed in Web of Science, the effectiveness of employed machine learning and natural language processing models was measured by comparing with well-known sentiment analysis models, that is, SentiStrength and Sentiment140, as the baseline. It was proved that Support Vector Machine with uni-gram outperformed all the other classifiers and baseline methods employed, with an accuracy of over 85%, followed by Logistic Regression at 83% accuracy and Naive Bayes at 80%. The precision, recall and F1 scores for Support Vector Machine, Logistic Regression and Naive Bayes were (0.89, 0.86, 0.86), (0.86, 0.83, 0.80) and (0.85, 0.81, 0.76), respectively. C1 [Hassan, Saeed-Ul; Saleem, Aneela; Safder, Iqra; Iqbal, Sehrish] Informat Technol Univ, Lahore, Pakistan. [Soroya, Saira Hanif] Univ Punjab, Dept Informat Management, Lahore 54590, Pakistan. [Jamil, Saqib] Univ Okara, Dept Management Sci, Okara, Pakistan. [Bukhari, Faisal] Univ Punjab, Punjab Univ Coll Informat Technol PUCIT, Lahore, Pakistan. [Aljohani, Naif Radi] King Abdulaziz Univ, Fac Comp & Informat Technol, Jeddah, Saudi Arabia. [Nawaz, Raheel] Manchester Metropolitan Univ, Sch Comp Sci, Manchester, Lancs, England. C3 University of Punjab; University of Punjab; King Abdulaziz University; Manchester Metropolitan University RP Soroya, SH (corresponding author), Univ Punjab, Dept Informat Management, Lahore 54590, Pakistan. EM sairasroya@gmail.com RI Aljohani, Naif R/S-1109-2017; Nawaz, Raheel/AAX-5293-2021; Safder, Iqra/JXN-8069-2024; Hassan, Saeed-Ul/G-1889-2016 OI Nawaz, Raheel/0000-0001-9588-0052; Hassan, Saeed-Ul/0000-0002-6509-9190; soroya, Dr. Saira Hanif/0000-0002-8153-1529 FU Higher Education Commission; National Centre for Big Data and Cloud Computing (NCBC) FX The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: The author Saeed-Ul Hassan is grateful for the financial support received from the Higher Education Commission for this research for Crime Investigation and Prevention Lab (CIPL) affiliated with National Centre for Big Data and Cloud Computing (NCBC). CR Ananiadou Sophia, 2013, Computational Linguistics and Intelligent Text Processing. 14th International Conference, CICLing 2013. Proceedings, P318, DOI 10.1007/978-3-642-37256-8_27 [Anonymous], 2004, Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics - ACL'04, DOI DOI 10.3115/1218955.1218990 Bagheri A, 2019, J INF SCI, V45, P736, DOI 10.1177/0165551518811458 Batista-Navarro Riza Theresa, 2013, Computational Linguistics and Intelligent Text Processing. 14th International Conference, CICLing 2013. Proceedings, P559, DOI 10.1007/978-3-642-37247-6_45 Bessagnet MN, 2018, P 7 WORKSH BIBL ENH, P80 Bonaccorsi A, 2017, J INFORMETR, V11, P435, DOI 10.1016/j.joi.2017.02.003 Bonaccorsi A, 2017, SCIENTOMETRICS, V110, P217, DOI 10.1007/s11192-016-2180-2 Bradley AP, 1997, PATTERN RECOGN, V30, P1145, DOI 10.1016/S0031-3203(96)00142-2 Bruns A, 2012, JOURNALISM STUD, V13, P801, DOI 10.1080/1461670X.2012.664428 Buitinck Lars, 2013, ECML PKDD WORKSH LAN, P108, DOI DOI 10.48550/ARXIV.1309.0238 Cheng LC, 2020, J INF SCI, V46, P664, DOI 10.1177/0165551519849510 Díaz-Faes AA, 2019, PLOS ONE, V14, DOI 10.1371/journal.pone.0216408 Didegah F, 2018, J INFORMETR, V12, P960, DOI 10.1016/j.joi.2018.08.002 Emadi M, 2020, J INF SCI, V46, P226, DOI 10.1177/0165551519828627 Erdt M, 2016, SCIENTOMETRICS, V109, P1117, DOI 10.1007/s11192-016-2077-0 Freitag D, 2000, MACH LEARN, V39, P169, DOI 10.1023/A:1007601113994 Friedrich N, DO TWEETS SCI ARTICL Friedrich N, 2015, TWEETS SCI ARTICLES Friedrich N, 2015, PRO INT CONF SCI INF, P107 Hallgren Kevin A, 2012, Tutor Quant Methods Psychol, V8, P23 Hassan S.-U., 2017, Digital Libraries: Data, Information, and Knowledge for Digital Lives, P119, DOI DOI 10.1007/978-3-319-70232-2_10 Haustein Stefanie, 2015, PLoS One, V10, pe0120495, DOI 10.1371/journal.pone.0120495 Haustein S, 2019, SPRINGER HBK, P729, DOI 10.1007/978-3-030-02511-3_28 Haustein S, 2016, THEORIES OF INFORMETRICS AND SCHOLARLY COMMUNICATION: A FESTSCHRIFT IN HONOR OF BLAISE CRONIN, P372 Haustein S, 2014, SCIENTOMETRICS, V101, P1145, DOI 10.1007/s11192-013-1221-3 Hellsten I, 2019, J ASS INF SCI TECHNO, DOI 10.1002/asi.24082 Holmberg K, 2014, SCIENTOMETRICS, V101, P1027, DOI [10.1007/s11192-014-1229-3, 10.1159/000358776] Houghton D, 2017, CREATING MARKETING M, P1413, DOI DOI 10.1007/978-3-319-45596-9_260 Imran M., 2018, 23 INT C SCI TECHN I Jahangir M, 2017, PROCEEDINGS OF THE 2017 INTELLIGENT SYSTEMS CONFERENCE (INTELLISYS), P722, DOI 10.1109/IntelliSys.2017.8324209 Jussila J., 2017, Strategic innovative marketing, P43, DOI 10.1007/978-3-319-56288-9_7 Kohavi R., 1995, Ijcai, V14, P1137 Lee MK, 2017, SCIENTOMETRICS, V112, P767, DOI 10.1007/s11192-017-2413-z Letierce J, 2010, P 4 INT AAAI C WEBL Liu B., 2007, Web Data Mining: Exploring Hyperlinks, Contents Moed HF, 2010, J INFORMETR, V4, P436, DOI 10.1016/j.joi.2010.03.009 Nawaz R, 2012, LREC 2012 - EIGHTH INTERNATIONAL CONFERENCE ON LANGUAGE RESOURCES AND EVALUATION, P3505 Nawaz R, 2013, BMC BIOINFORMATICS, V14, DOI 10.1186/1471-2105-14-14 Pang B, 2002, PROCEEDINGS OF THE 2002 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING, P79, DOI 10.3115/1118693.1118704 Park A., 2010, LREC, P1320 Priem J., 2010, Altmetrics: a manifesto Priem J., 2011, P METR 2011 S INF SC Provost F., 1998, Machine Learning. Proceedings of the Fifteenth International Conference (ICML'98), P445 Robinson-Garcia N, 2017, PLOS ONE, V12, DOI 10.1371/journal.pone.0183551 Saeed-Ul Hassan, 2018, SCIENTOMETRICS, V116, P973, DOI 10.1007/s11192-018-2767-x Safder I, 2019, SCIENTOMETRICS, V119, P257, DOI 10.1007/s11192-019-03025-y Safder I, 2017, LECT NOTES COMPUT SC, V10647, P30, DOI 10.1007/978-3-319-70232-2_3 Said A, 2019, SCIENTOMETRICS, V120, P217, DOI 10.1007/s11192-019-03112-0 Sampogna G, 2017, EUR PSYCHIAT, V41, pS89, DOI 10.1016/j.eurpsy.2017.01.279 Sarlan A, 2014, I C INF TECH MULTIM, P212, DOI 10.1109/ICIMU.2014.7066632 Sharma M, 2018, BMC HEALTH SERV RES, V18, DOI 10.1186/s12913-018-3043-8 Sugimoto CR, 2017, J ASSOC INF SCI TECH, V68, P2037, DOI 10.1002/asi.23833 Thelwall M., 2013, Cybermetrics, V17 Thelwall M, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0064841 Thelwall M, 2012, J AM SOC INF SCI TEC, V63, P163, DOI 10.1002/asi.21662 Thompson P, 2017, LANG RESOUR EVAL, V51, P409, DOI 10.1007/s10579-016-9344-9 Wakeling S, 2020, J INF SCI, V46, P82, DOI 10.1177/0165551518819965 Wang XL, 2011, BMC BIOINFORMATICS, V12, DOI 10.1186/1471-2105-12-S8-S11 Wouters P, 2019, SPRINGER HBK, P687, DOI 10.1007/978-3-030-02511-3_26 Zahedi Z, 2018, PLOS ONE, V13, DOI 10.1371/journal.pone.0197326 Zahedi Z, 2014, SCIENTOMETRICS, V101, P1491, DOI 10.1007/s11192-014-1264-0 NR 61 TC 18 Z9 18 U1 7 U2 77 PU SAGE PUBLICATIONS LTD PI LONDON PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND SN 0165-5515 EI 1741-6485 J9 J INF SCI JI J. Inf. Sci. PD DEC PY 2021 VL 47 IS 6 BP 712 EP 726 AR 0165551520930917 DI 10.1177/0165551520930917 EA JUN 2020 PG 15 WC Computer Science, Information Systems; Information Science & Library Science WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Computer Science; Information Science & Library Science GA WW0WF UT WOS:000550209800001 OA Green Accepted DA 2024-09-05 ER PT C AU Guo, MR AF Guo Meirong BE Su, Y Hakim, L TI Research on Journal Evaluation Based on Principal Component Analysis SO PROCEEDINGS OF THE 5TH INTERNATIONAL CONFERENCE ON COOPERATION AND PROMOTION OF INFORMATION RESOURCES IN SCIENCE AND TECHNOLOGY(COINFO 10) LA English DT Proceedings Paper CT 5th International Conference on Cooperation and Promotion of Information Resources in Science and Technology CY NOV 27-29, 2010 CL Beijing, PEOPLES R CHINA DE principal component analysis; journal evaluation; weight; SPSS AB Based on the Journal Citation measurement Index and data provided by the expand Chinese Journal Citation Reports 2009, using principal component analysis to reduce the number of related indicators into a few weak correlation indicators, solved the problem of distortion index weights. Put these composite indicators in accordance with the linear combination of weights, and ultimately evaluate the scientific and technical journals. C1 Inst Sci & Tech Informat China, Beijing 100038, Peoples R China. RP Guo, MR (corresponding author), Inst Sci & Tech Informat China, Beijing 100038, Peoples R China. EM meirong1750@126.com CR Chen Han Chung, 2004, CHINESE J SCI TECHNI, P658 GUAN J, 2004, J MED INTELLIGENCE, P13 [贺颖 HE Ying], 2007, [中国软科学, China Soft Science], P107 *I SCI TECHN INF C, CHIN SCI TECHN CIT R Li Xiujie, 2006, J LIB SCI JIANGXI, P48 Lin Haiming, 2005, STAT RES, P65 LOU WG, 2010, STAT ED, P57 Pang Jingan, 2000, CHINESE J SCI TECHNI, P217 Qiu Junping, 2004, NEW TECHNOLOGY LIB I, P23 Su X, 2008, DONGYUE TRIBUNE, V1, P35 Wang Jiu, 2003, J MATH MED, P266 YU LP, 2009, INFORM STUDIES THEOR, P84 Yue WP, 2004, SCIENTOMETRICS, V60, P317, DOI 10.1023/B:SCIE.0000034377.93437.18 ZHANG H, 2008, ACTA EDITOLOGICA, P87 NR 14 TC 0 Z9 0 U1 0 U2 5 PU SCI RES PUBL, INC-SRP PI IRVIN PA 5005 PASEO SEGOVIA, IRVIN, CA 92603-3334 USA BN 978-1-935068-43-3 PY 2010 BP 711 EP 716 PG 6 WC Computer Science, Interdisciplinary Applications; Engineering, Multidisciplinary; Multidisciplinary Sciences WE Conference Proceedings Citation Index - Science (CPCI-S) SC Computer Science; Engineering; Science & Technology - Other Topics GA BST09 UT WOS:000285731100138 DA 2024-09-05 ER PT J AU Ferrell, B Raskin, SE Zimmerman, EB AF Ferrell, Brian Raskin, Sarah E. Zimmerman, Emily B. TI Calibrating a Transformer-Based Model's Confidence on Community-Engaged Research Studies: Decision Support Evaluation Study SO JMIR FORMATIVE RESEARCH LA English DT Article DE explainable artificial intelligence; XAI; Bidirectional Encoder Representations From Transformers; BERT; transformer-based models; text classification; community engagement; community-engaged research; deep learning; decision support; trust; confidence ID DEEP LEARNING-PERFORMANCE; SCIENCE AB Background: Deep learning offers great benefits in classification tasks such as medical imaging diagnostics or stock trading, especially when compared with human-level performances, and can be a viable option for classifying distinct levels within community-engaged research (CEnR). CEnR is a collaborative approach between academics and community partners with the aim of conducting research that is relevant to community needs while incorporating diverse forms of expertise. In the field of deep learning and artificial intelligence (AI), training multiple models to obtain the highest validation accuracy is common practice; however, it can overfit toward that specific data set and not generalize well to a real-world population, which creates issues of bias and potentially dangerous algorithmic decisions. Consequently, if we plan on automating human decision-making, there is a need for creating techniques and exhaustive evaluative processes for these powerful unexplainable models to ensure that we do not incorporate and blindly trust poor AI models to make real-world decisions.Objective: We aimed to conduct an evaluation study to see whether our most accurate transformer-based models derived from previous studies could emulate our own classification spectrum for tracking CEnR studies as well as whether the use of calibrated confidence scores was meaningful.Methods: We compared the results from 3 domain experts, who classified a sample of 45 studies derived from our university's institutional review board database, with those from 3 previously trained transformer-based models, as well as investigated whether calibrated confidence scores can be a viable technique for using AI in a support role for complex decision-making systems.Results: Our findings reveal that certain models exhibit an overestimation of their performance through high confidence scores, despite not achieving the highest validation accuracy.Conclusions: Future studies should be conducted with larger sample sizes to generalize the results more effectively. Although our study addresses the concerns of bias and overfitting in deep learning models, there is a need to further explore methods that allow domain experts to trust our models more. The use of a calibrated confidence score can be a misleading metric when determining our AI model's level of competency.(JMIR Form Res 2023;7:e41516) doi: 10.2196/41516 C1 [Ferrell, Brian] Virginia Commonwealth Univ, Richmond, VA USA. [Raskin, Sarah E.] Virginia Commonwealth Univ, L Douglas Wilder Sch Govt & Publ Affairs, Richmond, VA USA. [Zimmerman, Emily B.] Virginia Commonwealth Univ, Ctr Soc & Hlth, Richmond, VA USA. [Ferrell, Brian] Virginia Commonwealth Univ, 907 Floyd Ave, Richmond, VA 23284 USA. C3 Virginia Commonwealth University; Virginia Commonwealth University; Virginia Commonwealth University; Virginia Commonwealth University RP Ferrell, B (corresponding author), Virginia Commonwealth Univ, 907 Floyd Ave, Richmond, VA 23284 USA. EM ferrellbj@vcu.edu RI Raskin, Sarah/AAC-2435-2022 OI Raskin, Sarah/0000-0002-1652-6678; Zimmerman, Emily/0000-0003-2678-6657; Ferrell, Brian/0000-0003-2301-4926 FU National Institutes of Health (National Center for Advancing Translational Sciences Clinical and Translational Science Awards Program) [UL1TR002649]; Wright Center for Clinical and Translational Research at Virginia Commonwealth University FX Acknowledgments The National Institutes of Health (National Center for Advancing Translational Sciences Clinical and Translational Science Awards Program UL1TR002649) and the Wright Center for Clinical and Translational Research at Virginia Commonwealth University have supported our work. CR Alsentzer E, 2019, P 2 CLIN NATURAL LAN, P72, DOI 10.18653/v1/W19-1909 [Anonymous], CLASS COMM ENG RES T Bahrammirzaee A, 2010, NEURAL COMPUT APPL, V19, P1165, DOI 10.1007/s00521-010-0362-z Bansal Gagan, 2021, CHI '21: Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems, DOI 10.1145/3411764.3445717 Blohm M, 2021, ICAART: PROCEEDINGS OF THE 13TH INTERNATIONAL CONFERENCE ON AGENTS AND ARTIFICIAL INTELLIGENCE - VOL 2, P1131, DOI 10.5220/0010331411311136 Burlina P, 2017, COMPUT BIOL MED, V82, P80, DOI 10.1016/j.compbiomed.2017.01.018 Chromik M, 2021, IUI '21 - 26TH INTERNATIONAL CONFERENCE ON INTELLIGENT USER INTERFACES, P307, DOI 10.1145/3397481.3450644 Conneau Alexis, 2019, Unsupervised Cross-lingual Representation Learning at Scale Desai S, 2020, PROCEEDINGS OF THE 2020 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING (EMNLP), P295 Devlin J, 2019, Arxiv, DOI arXiv:1810.04805 Dhanorkar S, 2021, PROCEEDINGS OF THE 2021 ACM DESIGNING INTERACTIVE SYSTEMS CONFERENCE (DIS 2021), P1591, DOI 10.1145/3461778.3462131 Dodge S, 2017, 2017 26TH INTERNATIONAL CONFERENCE ON COMPUTER COMMUNICATION AND NETWORKS (ICCCN 2017) Eder MM, 2018, PROG COMM HLTH PARTN, V12, P145, DOI 10.1353/cpr.2018.0034 Enos F, 2006, P INT 2006 2006 INT, DOI [10.21437/interspeech.2006-278, DOI 10.21437/INTERSPEECH.2006-278] Ferrell BJ, 2023, JMIR FORM RES, V7, DOI 10.2196/41137 Ferrell BJ, 2022, JMIR FORM RES, V6, DOI 10.2196/32460 Fleming N, 2018, NATURE, V557, pS55, DOI 10.1038/d41586-018-05267-x Geirhos R., 2018, INT C LEARN REPR Grace K, 2018, J ARTIF INTELL RES, V62, P729, DOI 10.1613/jair.1.11222 Guo CA, 2017, PR MACH LEARN RES, V70 Hayes GR, 2011, ACM T COMPUT-HUM INT, V18, DOI 10.1145/1993060.1993065 Hutson N., 2019, Journal of Community Engagement and Higher Education, V11, P3 Köbis N, 2021, COMPUT HUM BEHAV, V114, DOI 10.1016/j.chb.2020.106553 Lee J, 2020, BIOINFORMATICS, V36, P1234, DOI 10.1093/bioinformatics/btz682 Li BH, 2017, FRONT INFORM TECH EL, V18, P86, DOI 10.1631/FITEE.1601885 Limwattanayingyong J, 2020, J DIABETES RES, V2020, DOI 10.1155/2020/8839376 Liu XX, 2019, LANCET DIGIT HEALTH, V1, pE271, DOI 10.1016/S2589-7500(19)30123-2 Liu YH, 2019, Arxiv, DOI arXiv:1907.11692 Mucha H, 2021, EXTENDED ABSTRACTS OF THE 2021 CHI CONFERENCE ON HUMAN FACTORS IN COMPUTING SYSTEMS (CHI'21), DOI 10.1145/3411763.3451759 Naeini MP, 2016, IEEE DATA MINING, P360, DOI [10.1109/ICDM.2016.0047, 10.1109/ICDM.2016.96] Nangia Nikita., 2019, Proceedings of the 57th annual meeting of the association for computational linguistics, P4566, DOI [DOI 10.18653/V1/P19-1449, 10.18653/v1/p19-1449] Neumann L, 2018, P NIPS WORKSHOP MACH Nixon J, 2020, Arxiv, DOI arXiv:1904.01685 Project description, PROJ DESCR NETC Rajapakse T., 2020, THILINARAJAPAKSE SIM Ross A, 2017, ARXIV, DOI [10.24963/ijcai.2017/371, DOI 10.24963/IJCAI.2017/371] Rozenblit L, 2002, COGNITIVE SCI, V26, P521, DOI 10.1207/s15516709cog2605_1 Tschandl P, 2019, LANCET ONCOL, V20, P938, DOI 10.1016/S1470-2045(19)30333-X Valerie LH, 2013, IRB APPROVED COMMUNI ZADROZNY B, 2001, P 18 INT C MACH LEAR, P609, DOI DOI 10.5555/645530.655658 Zimmerman EB, 2021, J CLIN TRANSL SCI, V6, DOI 10.1017/cts.2021.877 NR 41 TC 1 Z9 1 U1 0 U2 1 PU JMIR PUBLICATIONS, INC PI TORONTO PA 130 QUEENS QUAY East, Unit 1100, TORONTO, ON M5A 0P6, CANADA EI 2561-326X J9 JMIR FORM RES JI JMIR Form. Res. PY 2023 VL 7 DI 10.2196/41516 PG 13 WC Health Care Sciences & Services; Medical Informatics WE Emerging Sources Citation Index (ESCI) SC Health Care Sciences & Services; Medical Informatics GA H8MD9 UT WOS:000998428700031 PM 36939830 OA Green Published, gold DA 2024-09-05 ER PT J AU Elgendi, M AF Elgendi, Mohamed TI Characteristics of a Highly Cited Article: A Machine Learning Perspective SO IEEE ACCESS LA English DT Article DE Natural language processing; text mining; artificial intelligence; scientific writing; citation analysis; bibliometrics ID TITLES; NUMBER AB Machine learning (ML) is a fast-growing topic that enables the extraction of patterns from varying types of datasets, ranging from medical data to financial data. However, the application of the ML methodology to understand the key characteristics of highly cited research articles has not been thoroughly investigated, despite the potential practical guidance that ML can provide for researchers during the publication process. To address this research gap, an ML algorithm known as principal component (PC) analysis is used to detect patterns in highly and lowly cited papers. In this paper, eight features (number of citations, number of views, number of characters with no spaces, number of figures, number of tables, number of equations, number of authors, and title length) are extracted from highly and lowly cited papers, leading to eight PCs (PC1-PC8). PC1 shows that the numbers of citations are positively correlated with the character count and negatively correlated with the title length. PC2 shows that the number of tables is positively correlated with the title length. PC3 shows that the number of figures is positively correlated with the number of tables. PC4-PC8 rank the importance of individual features in the descending order: number of equations, number of characters with no spaces, number of figures, number of views, and then the number of authors. The results of the ML analysis provide interesting and valuable tips for researchers, students, and all academic and non-academic writers who are seeking to improve their citation rates. C1 [Elgendi, Mohamed] Univ British Columbia, Fac Med, Vancouver, BC V6T 1Z3, Canada. [Elgendi, Mohamed] BC Childrens & Womens Hosp, Vancouver, BC V6H 3N1, Canada. [Elgendi, Mohamed] Univ British Columbia, Sch Elect & Comp Engn, Vancouver, BC V6T 1Z4, Canada. C3 University of British Columbia; University of British Columbia; University of British Columbia RP Elgendi, M (corresponding author), Univ British Columbia, Fac Med, Vancouver, BC V6T 1Z3, Canada.; Elgendi, M (corresponding author), BC Childrens & Womens Hosp, Vancouver, BC V6H 3N1, Canada.; Elgendi, M (corresponding author), Univ British Columbia, Sch Elect & Comp Engn, Vancouver, BC V6T 1Z4, Canada. EM moe.elgendi@gmail.com RI Elgendi, Mohamed/I-8596-2016 OI Elgendi, Mohamed/0000-0003-1831-0202 FU Mining for Miracles, BC Children's Hospital Foundation, Vancouver, British Columbia, Canada FX The author is grateful for the support from Mining for Miracles, BC Children's Hospital Foundation, Vancouver, British Columbia, Canada. CR Aksnes DW, 2003, RES EVALUAT, V12, P159, DOI 10.3152/147154403781776645 Chen H., IEEE T ENG MANAG Clements JC, 2017, FACETS, V2, DOI 10.1139/facets-2016-0032 Ding Y, 2011, J INFORMETR, V5, P187, DOI 10.1016/j.joi.2010.10.008 Habibzadeh F, 2010, CROAT MED J, V51, P165, DOI 10.3325/cmj.2010.51.165 Ioannidis JPA, 2018, NATURE, V561, P167, DOI 10.1038/d41586-018-06185-8 Jacques Thomas S, 2010, JRSM Short Rep, V1, P2, DOI 10.1258/shorts.2009.100020 Jamali HR, 2011, SCIENTOMETRICS, V88, P653, DOI 10.1007/s11192-011-0412-z Kane T.S., 2003, Oxford Essential Guide to Writing LAWANI SM, 1986, SCIENTOMETRICS, V9, P13, DOI 10.1007/BF02016604 Letchford A, 2015, ROY SOC OPEN SCI, V2, DOI 10.1098/rsos.150266 MILLER GA, 1956, PSYCHOL REV, V63, P81, DOI 10.1037/h0043158 Nadri H, 2017, J MED SYST, V41, DOI 10.1007/s10916-017-0794-4 Patience GS, 2015, CAN J CHEM ENG, V93, P1693, DOI 10.1002/cjce.22261 Rostami F, 2014, SCIENTOMETRICS, V98, P2007, DOI 10.1007/s11192-013-1118-1 Soler V, 2007, ENGL SPECIF PURP, V26, P90, DOI 10.1016/j.esp.2006.08.001 Subotic S, 2014, J INF SCI, V40, P115, DOI 10.1177/0165551513511393 Van Noorden R, 2014, NATURE, V514, P550, DOI 10.1038/514550a Wang Y., 2007, SYSTEM, V35, P388, DOI DOI 10.1016/J.SYSTEM.2007.01.005 Zhang Y, 2017, KNOWL-BASED SYST, V133, P255, DOI 10.1016/j.knosys.2017.07.011 NR 20 TC 17 Z9 18 U1 1 U2 35 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 2169-3536 J9 IEEE ACCESS JI IEEE Access PY 2019 VL 7 BP 87977 EP 87986 DI 10.1109/ACCESS.2019.2925965 PG 10 WC Computer Science, Information Systems; Engineering, Electrical & Electronic; Telecommunications WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Computer Science; Engineering; Telecommunications GA IK7YT UT WOS:000476810500030 OA gold DA 2024-09-05 ER PT J AU Baba, T Baba, K Ikeda, D AF Baba, Takahiro Baba, Kensuke Ikeda, Daisuke TI Citation Count Prediction using Abstracts SO JOURNAL OF WEB ENGINEERING LA English DT Article DE Citation count prediction; Document classification; Text analysis; Machine learning AB Researchers are expected to find previous literature that is related to their research and potentially has a scientific impact from among a large number of publications. This paper addresses the problem of predicting the citation count of each research paper, that is, the number of citations from other papers to that paper. Previous literature related to the problem claims that the textual data of papers do not deeply affect the prediction compared with data about the authors and venues of publication. In contrast, the authors of this paper detected the citation counts of papers using only the paper abstracts. Additionally, they investigated the effect of technical terms used in the abstracts on the detection. They classified abstracts of papers with high and low citation counts and applied the classification to the abstracts modified by hiding the technical terms used in them. The results of their experiments indicate that the high and low of citation counts of research papers can be detected using their abstracts, and the effective features used in the prediction are related to the trend of research topics. C1 [Baba, Takahiro] Kyushu Univ, Fukuoka, Fukuoka 8190395, Japan. [Ikeda, Daisuke] Kyushu Univ, Dept Informat, Fukuoka, Fukuoka 8190395, Japan. [Ikeda, Daisuke] Kyushu Univ, Comp Ctr, Fukuoka, Fukuoka 8190395, Japan. [Baba, Kensuke] Fujitsu Labs, Artificial Intelligence Lab, Kawasaki, Kanagawa 2118588, Japan. C3 Kyushu University; Kyushu University; Kyushu University; Fujitsu Ltd; Fujitsu Laboratories Ltd RP Baba, T (corresponding author), Kyushu Univ, Fukuoka, Fukuoka 8190395, Japan. EM baba.takahiro.414@m.kyushu-u.ac.jp RI Baba, Kensuke/J-8426-2017 OI Baba, Kensuke/0000-0002-8118-0175 FU JSPS KAKENHI [19K12133]; Grants-in-Aid for Scientific Research [19K12133] Funding Source: KAKEN FX We thank Kimberly Moravec, PhD, from Edanz Group (www.edanzedi ting.com/ac) for editing a draft of this manuscript. This work was supported by JSPS KAKENHI Grant Number 19K12133. CR [Anonymous], 2011, Proceedings of the 2011 conference on empirical methods in natural language processing, DOI 10.18653/v1/d16-1202 Baba T, 2018, LECT NOTES COMPUT SC, V11177, P448, DOI 10.1007/978-3-030-01851-1_43 Baba T, 2018, LECT NOTES COMPUT SC, V10960, P366, DOI 10.1007/978-3-319-95162-1_25 Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993 CALLAHAN PL, 1985, P NATL ACAD SCI USA, V82, P732, DOI 10.1073/pnas.82.3.732 Chen JP, 2015, PROCEEDINGS OF 2015 IEEE 14TH INTERNATIONAL CONFERENCE ON COGNITIVE INFORMATICS & COGNITIVE COMPUTING (ICCI*CC), P434, DOI 10.1109/ICCI-CC.2015.7259421 Garfield E, 2006, JAMA-J AM MED ASSOC, V295, P90, DOI 10.1001/jama.295.1.90 Hirsch JE, 2005, P NATL ACAD SCI USA, V102, P16569, DOI 10.1073/pnas.0507655102 Li CT, 2015, LECT NOTES ARTIF INT, V9077, P659, DOI 10.1007/978-3-319-18038-0_51 Schutze H., 2008, Introduction to information retrieval, V39 Yan R, 2011, P 20 ACM INT C INF K, P1247, DOI DOI 10.1145/2063576.2063757 Yuxiao Dong, 2016, IEEE Transactions on Big Data, V2, P18, DOI 10.1109/TBDATA.2016.2521657 NR 12 TC 4 Z9 4 U1 2 U2 24 PU RIVER PUBLISHERS PI GISTRUP PA ALSBJERGVEJ 10, GISTRUP, 9260, DENMARK SN 1540-9589 EI 1544-5976 J9 J WEB ENG JI J. Web Eng. PD JAN PY 2019 VL 18 IS 1-3 BP 207 EP 228 DI 10.13052/jwe1540-9589.18136 PG 22 WC Computer Science, Software Engineering; Computer Science, Theory & Methods WE Science Citation Index Expanded (SCI-EXPANDED) SC Computer Science GA IF0EP UT WOS:000472749400006 OA Bronze DA 2024-09-05 ER PT J AU Kim, H Jang, H AF Kim, Huijae Jang, Hoon TI Predicting research projects' output using machine learning for tailored projects management SO ASIAN JOURNAL OF TECHNOLOGY INNOVATION LA English DT Article DE Research and development; research project output; prediction; classification; artificial intelligence ID RESEARCH PRODUCTIVITY; DELPHI METHOD; SELECTION; IMPACT; METHODOLOGY; PERFORMANCE AB With the increasing interest and investment in research and development (R & D), the need for more efficient research project management has grown. Accordingly, we built prediction models to classify research projects that were expected to show excellent research output. Specifically, we applied five machine learning techniques to build prediction models. In an empirical analysis of data on research projects funded by South Korea over the last five years (2014-2018), we found that the automated machine learning model (autoML), in which the machine builds the most suitable learning model, shows relatively greater and more robust performance than models based on other techniques. We also established that research funding and project type played the most important roles in predicting excellent research projects. This study is significant because it shows the need for a paradigm shift in building an evidence-based project management system by verifying the utility and applicability of a data-driven approach in R & D project management. C1 [Kim, Huijae] Korea Adv Inst Sci & Technol, Dept Ind & Syst Engn, Daejeon, South Korea. [Jang, Hoon] Korea Univ, Coll Global Business, Sejong Campus, Sejong, South Korea. [Jang, Hoon] Korea Univ, Coll Global Business, Sejong Campus,2511 Sejong Ro, Sejong 30019, South Korea. C3 Korea Advanced Institute of Science & Technology (KAIST); Korea University; Korea University RP Jang, H (corresponding author), Korea Univ, Coll Global Business, Sejong Campus,2511 Sejong Ro, Sejong 30019, South Korea. EM hoonjang@korea.ac.kr FU National Research Foundation of Korea (NRF) - Korean government [2019R1F1A1063365] FX This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government [grant number 2019R1F1A1063365]. CR Abdel-Basset M, 2018, J AMB INTEL HUM COMP, V9, P1427, DOI 10.1007/s12652-017-0548-7 Abramo G, 2019, J INFORMETR, V13, P32, DOI 10.1016/j.joi.2018.11.003 Amara N, 2015, SCIENTOMETRICS, V103, P489, DOI 10.1007/s11192-015-1537-2 Arik SO, 2021, AAAI CONF ARTIF INTE, V35, P6679 Bai XM, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0162364 BAKER NR, 1964, IEEE T ENG MANAGE, V11, P124, DOI 10.1109/TEM.1964.6446420 Chen ZH, 2015, COMMUN ASSOC INF SYS, V36, P357 허정은, 2008, [Journal of Korea Technology Innovation Society, 기술혁신학회지], V11, P376 Chunjia Han, 2017, Journal of High Technology Management Research, V28, P93, DOI 10.1016/j.hitech.2017.04.007 Costantino F, 2015, INT J PROJ MANAG, V33, P1744, DOI 10.1016/j.ijproman.2015.07.003 Dundar H, 1998, RES HIGH EDUC, V39, P607, DOI 10.1023/A:1018705823763 Edquist C, 1998, INSTITUTIONS AND ECONOMIC CHANGE, P131 Eilat H, 2008, OMEGA-INT J MANAGE S, V36, P895, DOI 10.1016/j.omega.2006.05.002 Fox Kevin J., 2015, KDI Journal of Economic Policy, V37, P73 Galbraith C.S., 2007, J HIGH TECHNOLOGY MA, V17, P125, DOI [DOI 10.1016/J.HITECH.2006.11.002, 10.1016/j.hitech.2006.11.002] Ghapanchi AH, 2012, INT J PROJ MANAG, V30, P791, DOI 10.1016/j.ijproman.2012.01.012 Hall B.H., 2011, Innovation and Productivity Hsu YL, 2010, EXPERT SYST APPL, V37, P419, DOI 10.1016/j.eswa.2009.05.068 Hwang S., 2019, COMP US CHINA JAPAN Jacob BA, 2011, J PUBLIC ECON, V95, P1168, DOI 10.1016/j.jpubeco.2011.05.005 Jang H, 2019, DECIS SUPPORT SYST, V121, P1, DOI 10.1016/j.dss.2019.03.010 Jang Pilseong, 2020, [Journal of Korea Technology Innovation Society, 기술혁신학회지], V23, P20, DOI 10.35978/jktis.2020.2.23.1.20 Jin XH, 2011, INT J PROJ MANAG, V29, P591, DOI 10.1016/j.ijproman.2010.07.011 Jung U, 2010, DECIS SUPPORT SYST, V49, P335, DOI 10.1016/j.dss.2010.04.005 Karasakal E, 2017, OMEGA-INT J MANAGE S, V73, P79, DOI 10.1016/j.omega.2016.12.006 Khoshnevis P, 2018, SOCIO-ECON PLAN SCI, V61, P16, DOI 10.1016/j.seps.2017.01.005 LeDell Erin, 2020, Proceedings of the automl workshop at icml, V2020 Lee H., 2020, 2019 PERFORMANCE ANA Liu C., 2011, SCI RES ESSAYS, V6, P3973, DOI [https://doi.org/10.5897/SRE10.838, DOI 10.5897/SRE10.838] Liu PD, 2019, INT J FUZZY SYST, V21, P2168, DOI 10.1007/s40815-019-00687-x NDOUR B, 1992, AGROFOREST SYST, V19, P119, DOI 10.1007/BF00138502 Pathak SK, 2022, SUSTAIN ENERGY TECHN, V50, DOI 10.1016/j.seta.2021.101818 Pudovkin AI, 2004, P ASIST ANNU, V41, P507, DOI 10.1002/meet.1450410159 Smarandache F, 2020, NEUTROSOPHIC SETS SY, V34, P204 Song Gwangsuk, 2015, [Journal of Korean Society for Quality Management, 품질경영학회지], V43, P85, DOI 10.7469/JKSQM.2015.43.1.085 SOUDER WE, 1972, MANAGE SCI B-APPL, V18, pB526 Stephan PE., 1992, Striking the mother lode in science: The importance of age, place, and time Talias MA, 2007, EUR J OPER RES, V177, P1105, DOI 10.1016/j.ejor.2006.01.011 Tan B, 2010, SYST DYNAM REV, V26, P1, DOI 10.1002/sdr.433 Um I., 2020, EFFICIENCY EVALUATIO Walworth T., 2013, P IEEE INT SYST C SY, P123 Wang YR, 2012, INT J PROJ MANAG, V30, P470, DOI 10.1016/j.ijproman.2011.09.002 Wang YR, 2010, AUTOMAT CONSTR, V19, P341, DOI 10.1016/j.autcon.2009.12.007 Zhang WQ, 2021, ENVIRON SCI POLLUT R, V28, P6561, DOI 10.1007/s11356-020-10919-5 Zhou JH, 2020, TECHNOVATION, V92-93, DOI 10.1016/j.technovation.2018.11.002 NR 45 TC 0 Z9 0 U1 2 U2 14 PU ROUTLEDGE JOURNALS, TAYLOR & FRANCIS LTD PI ABINGDON PA 2-4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND SN 1976-1597 EI 2158-6721 J9 ASIAN J TECHNOL INNO JI Asian J. Technol. Innov. PD MAY 3 PY 2024 VL 32 IS 2 BP 346 EP 363 DI 10.1080/19761597.2023.2243611 EA AUG 2023 PG 18 WC Business; Economics WE Social Science Citation Index (SSCI) SC Business & Economics GA YS4U6 UT WOS:001043184500001 DA 2024-09-05 ER PT J AU Zhang, BJ Fan, T AF Zhang, Bijun Fan, Ting TI Knowledge structure and emerging trends in the application of deep learning in genetics research: A bibliometric analysis [2000-2021] SO FRONTIERS IN GENETICS LA English DT Article DE deep learning; machine learning; genetics; bibliometric; knowledge graph ID MODELS AB Introduction: Deep learning technology has been widely used in genetic research because of its characteristics of computability, statistical analysis, and predictability. Herein, we aimed to summarize standardized knowledge and potentially innovative approaches for deep learning applications of genetics by evaluating publications to encourage more research. Methods: The Science Citation Index Expanded (TM) (SCIE) database was searched for deep learning applications for genomics-related publications. Original articles and reviews were considered. In this study, we derived a clustered network from 69,806 references that were cited by the 1,754 related manuscripts identified. We used CiteSpace and VOSviewer to identify countries, institutions, journals, co-cited references, keywords, subject evolution, path, current characteristics, and emerging topics. Results: We assessed the rapidly increasing publications concerned about deep learning applications of genomics approaches and identified 1,754 articles that published reports focusing on this subject. Among these, a total of 101 countries and 2,487 institutes contributed publications, The United States of America had the most publications (728/1754) and the highest h-index, and the US has been in close collaborations with China and Germany. The reference clusters of SCI articles were clustered into seven categories: deep learning, logic regression, variant prioritization, random forests, scRNA-seq (single-cell RNA-seq), genomic regulation, and recombination. The keywords representing the research frontiers by year were prediction (2016-2021), sequence (2017-2021), mutation (2017-2021), and cancer (2019-2021). Conclusion: Here, we summarized the current literature related to the status of deep learning for genetics applications and analyzed the current research characteristics and future trajectories in this field. This work aims to provide resources for possible further intensive exploration and encourages more researchers to overcome the research of deep learning applications in genetics. C1 [Zhang, Bijun] China Med Univ, Dept Clin Genet, Shengjing Hosp, Shenyang, Peoples R China. [Fan, Ting] China Med Univ, Sch Intelligent Med, Dept Comp, Shenyang, Peoples R China. C3 China Medical University; China Medical University RP Fan, T (corresponding author), China Med Univ, Sch Intelligent Med, Dept Comp, Shenyang, Peoples R China. EM tfan@cmu.edu.cn FU Shengjing Hospital [M0347]; Research on the application of genetic big data analysis in the prevention and control of newborn birth defects [2900021013-CMU-013] FX This study was supported by the 345 Talent Project of Shengjing Hospital (M0347) and " Research on the application of genetic big data analysis in the prevention and control of newborn birth defects" (2900021013-CMU-013). CR Adrian AB, 2016, GENOME BIOL EVOL, V8, P2597, DOI 10.1093/gbe/evw181 Adrion JR, 2020, MOL BIOL EVOL, V37, P1790, DOI 10.1093/molbev/msaa038 Arisdakessian C, 2019, GENOME BIOL, V20, DOI 10.1186/s13059-019-1837-6 Atak ZK, 2021, GENOME RES, V31, DOI 10.1101/gr.260851.120 Berrar D, 2021, BRIEF BIOINFORM, V22, P1513, DOI 10.1093/bib/bbab087 Bosio M, 2019, HUM MUTAT, V40, P865, DOI 10.1002/humu.23772 Braberg H, 2022, NAT REV GENET, V23, P342, DOI 10.1038/s41576-021-00441-w Chen CM, 2017, J DATA INFO SCI, V2, P1, DOI 10.1515/jdis-2017-0006 Chen CM, 2006, J AM SOC INF SCI TEC, V57, P359, DOI 10.1002/asi.20317 Chen Z, 2018, GENOM PROTEOM BIOINF, V16, P451, DOI 10.1016/j.gpb.2018.08.004 Chereda H, 2021, GENOME MED, V13, DOI 10.1186/s13073-021-00845-7 Colbran LL, 2021, GENOME BIOL EVOL, V13, DOI 10.1093/gbe/evab237 Cui FF, 2021, BRIEF FUNCT GENOMICS, V20, P61, DOI 10.1093/bfgp/elaa030 Dasgupta A, 2011, GENET EPIDEMIOL, V35, pS5, DOI 10.1002/gepi.20642 Ding YL, 2021, BRIEF FUNCT GENOMICS, V20, P273, DOI 10.1093/bfgp/elab002 Esteva A, 2019, NAT MED, V25, P24, DOI 10.1038/s41591-018-0316-z Eyre-Walker A, 2013, PLOS BIOL, V11, DOI 10.1371/journal.pbio.1001675 Groschel MI, 2021, GENOME MED, V13, DOI 10.1186/s13073-021-00953-4 He Y, 2020, GENOME BIOL, V21, DOI 10.1186/s13059-020-02083-3 Huang YF, 2020, PLOS GENET, V16, DOI 10.1371/journal.pgen.1008922 Huang Z, 2020, BMC MED GENOMICS, V13, DOI 10.1186/s12920-020-0686-1 Johansen N, 2019, GENOME BIOL, V20, DOI 10.1186/s13059-019-1766-4 Khairi SSM, 2022, HEALTHCARE-BASEL, V10, DOI 10.3390/healthcare10010010 Khan F, 2020, FRONT GENET, V11, DOI 10.3389/fgene.2020.539227 Liu DJ, 2019, MOL GENET GENOM MED, V7, DOI 10.1002/mgg3.872 Luo P, 2019, FRONT GENET, V10, DOI 10.3389/fgene.2019.00013 Majumdar A, 2021, GENES-BASEL, V12, DOI 10.3390/genes12060844 Mallik S, 2020, GENES-BASEL, V11, DOI 10.3390/genes11080931 Nicholls HL, 2020, FRONT GENET, V11, DOI 10.3389/fgene.2020.00350 Nicodemus KK, 2010, HUM GENET, V127, P441, DOI 10.1007/s00439-009-0782-y Poirion OB, 2021, GENOME MED, V13, DOI 10.1186/s13073-021-00930-x Sahraeian SME, 2022, GENOME BIOL, V23, DOI 10.1186/s13059-021-02592-9 Synnestvedt Marie B, 2005, AMIA Annu Symp Proc, P724 Tang XF, 2021, NEURAL COMPUT APPL, V33, P15901, DOI 10.1007/s00521-021-06211-3 Torroja C, 2019, FRONT GENET, V10, DOI 10.3389/fgene.2019.00978 Tran KA, 2021, GENOME MED, V13, DOI 10.1186/s13073-021-00968-x Tripathi R, 2016, NETW MODEL ANAL HLTH, V5, DOI 10.1007/s13721-016-0129-2 VAERNET K, 1972, CONFIN NEUROL, V34, P176, DOI 10.1159/000103055 Vellido A, 2020, NEURAL COMPUT APPL, V32, P18069, DOI 10.1007/s00521-019-04051-w Wang L, 2022, EUR J RADIOL, V146, DOI 10.1016/j.ejrad.2021.110069 Woo G, 2020, BIOINFORMATICS, V36, P813, DOI 10.1093/bioinformatics/btz645 Wu S, 2020, J AM MED INFORM ASSN, V27, P457, DOI 10.1093/jamia/ocz200 Xiao ML, 2019, GENET EPIDEMIOL, V43, P330, DOI 10.1002/gepi.22182 Xie R, 2017, BMC GENOMICS, V18, DOI 10.1186/s12864-017-4226-0 Yang J, 2021, FRONT GENET, V12, DOI 10.3389/fgene.2021.707802 Zhang XL, 2021, GENET MED, V23, P69, DOI 10.1038/s41436-020-00972-3 Zhang YL, 2021, GENOMICS, V113, P3774, DOI 10.1016/j.ygeno.2021.09.009 Zhao LL, 2018, CURR GENE THER, V18, P268, DOI 10.2174/1566523218666180913110949 Zou J, 2019, NAT GENET, V51, P12, DOI 10.1038/s41588-018-0295-5 NR 49 TC 2 Z9 2 U1 3 U2 17 PU FRONTIERS MEDIA SA PI LAUSANNE PA AVENUE DU TRIBUNAL FEDERAL 34, LAUSANNE, CH-1015, SWITZERLAND EI 1664-8021 J9 FRONT GENET JI Front. Genet. PD AUG 23 PY 2022 VL 13 AR 951939 DI 10.3389/fgene.2022.951939 PG 13 WC Genetics & Heredity WE Science Citation Index Expanded (SCI-EXPANDED) SC Genetics & Heredity GA 4V4IP UT WOS:000859442400001 PM 36081985 OA gold, Green Published DA 2024-09-05 ER PT J AU Rossi, D van Rensburg, H Harreveld, RE Beer, C Clark, D Danaher, PA AF Rossi, Dolene van Rensburg, Henriette Harreveld, R. E. (Bobby) Beer, Colin Clark, Damien Danaher, P. A. TI Exploring a cross-institutional research collaboration and innovation: Deploying social software and Web 2.0 technologies to investigate online learning designs and interactions in two Australian universities SO JOURNAL OF LEARNING DESIGN LA English DT Article DE Cross-institutional collaboration; interactions; online learning design; research; social software; Web 2.0 technologies AB One significant manifestation of the proposition of a "classroom without walls" is the online learning environments evident in most contemporary Australian universities. A key element of the effectiveness of those environments is the quality of the interactions that they foster. Planning and implementing rigorous research into that quality is crucial if these particular "classrooms without walls" are to deliver enhanced and sustained learning outcomes. This article explores selected aspects of a cross-institutional collaboration linking two Australian universities researching the quality of learning interactions in their online courses. In particular, the authors analyse the utility of the social software and Web 2.0 technologies that have been deployed to facilitate their collaborative research. Despite the constraints and tensions attendant on within-and cross-organisational learning, teaching and research activities, the article records evidence of a developing innovation in investigating both the online learning designs and the research project developed to evaluate the effectiveness and impact of those designs. C1 [Rossi, Dolene] CQUniversity, Sch Nursing & Midwifery, Melbourne, Vic, Australia. [van Rensburg, Henriette; Danaher, P. A.] Univ So Queensland, Fac Educ, Toowoomba, Qld 4350, Australia. [Harreveld, R. E. (Bobby)] CQUniversity, Sch Educ, Melbourne, Vic, Australia. [Beer, Colin; Clark, Damien] CQUniversity, Off Learning & Teaching, Melbourne, Vic, Australia. C3 Central Queensland University; University of Southern Queensland; Central Queensland University; Central Queensland University RP Rossi, D (corresponding author), CQUniversity, Sch Nursing & Midwifery, Melbourne, Vic, Australia. CR Anderson T, 2008, THEORY AND PRACTICE OF ONLINE LEARNING, 2ND EDITION, P1 [Anonymous], 2009, WELSH J ED Arnold N, 2009, J INTERACT ONLINE LE, V8, P121 Atkinson T, 2009, TECHTRENDS, V53, P30 Baxter P, 2008, QUAL REP, V13, P544 Beer C, 2010, THESIS Beer C., 2009, PAPER PRESENTED AT T Beuchot A., 2005, DISTANCE EDUC, V26, P67, DOI [10.1080/01587910500081285, DOI 10.1080/01587910500081285] Bexley E., 2011, The Australian academic profession in transition Cardini A, 2006, J EDUC POLICY, V21, P393, DOI 10.1080/02680930600731773 Casey G, 2015, J LEARN DES, V8, P38 Cavanaugh CS, 2009, INT REV RES OPEN DIS, V10 D'Amour Danielle, 2005, J Interprof Care, V19 Suppl 1, P116, DOI 10.1080/13561820500082529 Denning P, 2004, UBIQUITY, V5, P1 Duff A, 2010, J LEARN DES, V4, P32, DOI 10.5204/jld.v4i1.67 Eddy P.L., 2010, ASHE HIGHER ED REPOR, V36, P1 Hillman D.C. A., 1994, AM J DISTANCE EDUC, V8, P30, DOI 10.1080/08923649409526853 Kehrwald B. A., 2007, THESIS Kurasawa F., 2007, TOPIA CANADIAN J CUL, V18 Lai YC, 2011, INTERNET HIGH EDUC, V14, P15, DOI 10.1016/j.iheduc.2010.06.001 Lloyd M, 2011, J LEARN DES, V4, P39 Means B., 2009, Evaluation of Evidence-Based Practices in Online Learning: A Meta-Analysis and Review of Online Learning Studies, DOI DOI 10.30935/CEDTECH/8708 Oliver R, 2007, J LEARN DES, V2, P1 Patton M., 2002, QUALITATIVE RES EVAL, DOI DOI 10.1002/NUR.4770140111 Raffaghelli J. E., 2010, P 7 INT C NETW LEARN, P327 Reushle S., 2012, J LEARNING DESIGN, V3, P11, DOI [10.5204/jld.v3i1.45, DOI 10.5204/JLD.V3I1.45] Rosenberg JP, 2007, J ADV NURS, V60, P447, DOI 10.1111/j.1365-2648.2007.04385.x Rossi D. M., 2010, THESIS Rossi D. M., 2013, DEHUB REPORT SERIES Rossi D, 2012, J LEARN DES, V5, P1, DOI 10.5204/jld.v5i2.108 Saiki D, 2010, J LEARN DES, V4, P52, DOI 10.5204/jld.v4i1.69 Schuetze U, 2010, J LEARN DES, V4, P24, DOI 10.5204/jld.v4i1.66 SU B, 2005, J INTERACTIVE ONLINE, V4 Turner M., 2007, J LEARNING DESIGN, V2, P70, DOI [10.5204/jld.v2i2.42, DOI 10.5204/JLD.V2I2.42] Walling A, 2013, FAM MED, V45, P7 Yin R. K., 2003, CASE STUDY RES DESIG NR 36 TC 1 Z9 1 U1 0 U2 4 PU QUEENSLAND UNIV TECHNOLOGY PI BRISBANE PA GPO BOX 2434, BRISBANE, QLD 4001, AUSTRALIA SN 1832-8342 J9 J LEARN DES JI J. Learn. Des. PY 2015 VL 8 IS 3 BP 81 EP 91 PG 11 WC Education & Educational Research WE Emerging Sources Citation Index (ESCI) SC Education & Educational Research GA CZ4IC UT WOS:000367065700013 DA 2024-09-05 ER PT J AU Zheng, ET Fang, ZC Fu, HZ AF Zheng, Er -Te Fang, Zhichao Fu, Hui-Zhen TI Is gold open access helpful for academic purification? A causal inference analysis based on retracted articles in biochemistry SO INFORMATION PROCESSING & MANAGEMENT LA English DT Article DE Open access; Academic misconduct; Scientometrics; Retraction time lag; Post-retraction citation; Causal inference ID PROPENSITY SCORE; JOURNALS; SCIENCE; REPRODUCIBILITY; PUBLICATIONS; CREDIBILITY; CITATIONS AB The relationship between transparency and credibility has long been a subject of theoretical and analytical exploration within the realm of social sciences, and it has recently attracted increasing attention in the context of scientific research. Retraction serves as a pivotal mechanism in addressing concerns about research integrity. This study aims to empirically examining the relationship between open access level and the effectiveness of current mechanism, specifically academic purification centered on retracted articles. In this study, we used matching and Difference-in-Difference (DiD) methods to examine whether gold open access is helpful for academic purification in biochemistry field. We collected gold open access (Gold OA) and non -open access (non-OA) biochemistry retracted articles as the treatment group, and matched them with corresponding unretracted articles as the control group from 2005 to 2021 based on Web of Science and Retraction Watch database. The results showed that compared to non-OA, Gold OA is advantageous in reducing the retraction time of flawed articles, but does not demonstrate a significant advantage in reducing citations after retraction. This indicates that Gold OA may help expedite the detection and retraction of flawed articles, ultimately promoting the practice of responsible research. C1 [Zheng, Er -Te; Fang, Zhichao] Renmin Univ China, Sch Informat Resource Management, Beijing, Peoples R China. [Fang, Zhichao] Leiden Univ, Ctr Sci & Technol Studies CWTS, Leiden, Netherlands. [Fu, Hui-Zhen] Zhejiang Univ, Sch Publ Affairs, Dept Informat Resources Management, Hangzhou, Peoples R China. C3 Renmin University of China; Leiden University; Leiden University - Excl LUMC; Zhejiang University RP Fu, HZ (corresponding author), Zhejiang Univ, Sch Publ Affairs, Dept Informat Resources Management, Hangzhou, Peoples R China. EM zhengerte@ruc.edu.cn; z.fang@cwts.leidenuniv.nl; fuhuizhen@zju.edu.cn RI Zheng, Er-Te/JNE-7783-2023 OI Zheng, Er-Te/0000-0001-8759-3643 FU Soft Science Research Program of the Zhejiang Provincial Department of Science of Technology [2021C35040] FX Acknowledgments This study is supported by the Soft Science Research Program of the Zhejiang Provincial Department of Science of Technology (No. 2021C35040) . We gratefully acknowledge the contribution of team members who collected the data, Jinyuan Huang, Hong Tao, Shichu Xu, Yawen Yin, Qin Zhang, Yangliu Cui. CR Ajiferuke I, 2020, J LIBR INF SCI, V52, P169, DOI 10.1177/0961000618785408 Angrist JD, 1996, J AM STAT ASSOC, V91, P444, DOI 10.2307/2291629 Asai S, 2023, INF DISCOV DELIV, V51, P121, DOI 10.1108/IDD-09-2021-0098 ASHENFELTER O, 1985, REV ECON STAT, V67, P648, DOI 10.2307/1924810 Ayodele FO, 2019, SCI ENG ETHICS, V25, P357, DOI 10.1007/s11948-017-9941-z Baker M, 2016, NATURE, V533, P452, DOI 10.1038/533452a Baptista MS, 2019, BRAZ J MED BIOL RES, V52, DOI [10.1590/1414-431X20198935, 10.1590/1414-431x20198935] Bittmann F, 2022, QUANT SCI STUD, V2, P1246, DOI 10.1162/qss_a_00158 Bjork BC, 2014, J ASSOC INF SCI TECH, V65, P237, DOI 10.1002/asi.22963 Blackwell M, 2009, STATA J, V9, P524, DOI 10.1177/1536867X0900900402 Blanton H., 2009, Transparency should trump trust: Rejoinder to McConnell and Leibold (2009) and Ziegert and Hanges Bornmann L, 2021, J INFORMETR, V15, DOI 10.1016/j.joi.2021.101159 Brainard J, 2018, SCIENCE, V362, P390, DOI 10.1126/science.362.6413.390 Brown SJ, 2022, J MED LIBR ASSOC, V110, P47, DOI 10.5195/jmla.2022.1280 Budd JM, 1998, JAMA-J AM MED ASSOC, V280, P296, DOI 10.1001/jama.280.3.296 Candal-Pedreira C, 2020, BMJ GLOB HEALTH, V5, DOI 10.1136/bmjgh-2020-003719 CARD D, 1994, AM ECON REV, V84, P772 Chan L., 2002, Budapest open access initiative, P48 Chen CM, 2013, J AM SOC INF SCI TEC, V64, P234, DOI 10.1002/asi.22755 Christensen G, 2018, J ECON LIT, V56, P920, DOI 10.1257/jel.20171350 Clarivate, 2023, Descriptions of Open Access Types Cokol M, 2008, EMBO REP, V9, DOI 10.1038/sj.embor.7401143 COPE Council, 2019, COPE retraction guidelines - English, DOI [10.24318/cope.2019.1.4, DOI 10.24318/COPE.2019.1.4] Craft S., 2008, The handbook of mass media ethics, P231 Curry AL, 2021, JOURNALISM, V22, P901, DOI 10.1177/1464884919850387 Davis PM, 2011, FASEB J, V25, P2129, DOI 10.1096/fj.11-183988 Delli Carpini MX, 1996, WHAT AM KNOW POLITIC Dinh L., 2019, P ASS INFORM SCI TEC, V56, P390, DOI DOI 10.1002/PRA2.35 Dong XL, 2023, INFORM PROCESS MANAG, V60, DOI 10.1016/j.ipm.2023.103410 Dong XL, 2022, J INF SCI, V48, P735, DOI 10.1177/0165551520979868 Enria L, 2021, PLOS ONE, V16, DOI 10.1371/journal.pone.0239247 Faggion CM, 2018, J DENT, V79, P19, DOI 10.1016/j.jdent.2018.09.002 Fanelli D, 2018, P NATL ACAD SCI USA, V115, P2628, DOI 10.1073/pnas.1708272114 Fang FC, 2012, P NATL ACAD SCI USA, V109, P17028, DOI 10.1073/pnas.1212247109 Fang FC, 2011, INFECT IMMUN, V79, P3855, DOI 10.1128/IAI.05661-11 Felzmann H, 2019, BIG DATA SOC, V6, DOI 10.1177/2053951719860542 Foo JYA, 2011, SCI ENG ETHICS, V17, P459, DOI 10.1007/s11948-010-9212-8 Freese J, 2022, SOC SCI RES, V107, DOI 10.1016/j.ssresearch.2022.102770 Fung A, 2007, FULL DISCLOSURE: THE PERILS AND PROMISE OF TRANSPARENCY, P1, DOI 10.1017/CBO9780511510533 Furman JL, 2012, RES POLICY, V41, P276, DOI 10.1016/j.respol.2011.11.001 Gasparyan AY, 2014, CROAT MED J, V55, P61, DOI 10.3325/cmj.2014.55.61 Godlee F, 2008, BMJ-BRIT MED J, V337, DOI 10.1136/bmj.a1051 Grant S, 2022, PREV SCI, V23, P701, DOI 10.1007/s11121-022-01336-w Grieneisen ML, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0044118 Güngör T, 2021, TURK LIBRARIANSH, V35, P10, DOI 10.24146/tk.784583 Hainmueller J, 2012, POLIT ANAL, V20, P25, DOI 10.1093/pan/mpr025 Hasen R.L., 2020, Election Meltdown: Dirty Tricks, Distrust, and the Threat to American Democracy Heibi I, 2022, QUANT SCI STUD, V3, P953, DOI 10.1162/qss_a_00222 Iacus SM, 2012, POLIT ANAL, V20, P1, DOI 10.1093/pan/mpr013 Imbens GW, 2000, BIOMETRIKA, V87, P706, DOI 10.1093/biomet/87.3.706 Juan I. L. I., 2014, International Journal of Legal Information, V42, P135 Karlsson M, 2014, JOURNALISM STUD, V15, P668, DOI 10.1080/1461670X.2014.886837 Korpela KM, 2010, CURR MED RES OPIN, V26, P843, DOI 10.1185/03007991003603804 Langfeldt L, 2015, RES EVALUAT, V24, P256, DOI 10.1093/reseval/rvv012 LeBel EP, 2018, ADV METH PRACT PSYCH, V1, P389, DOI 10.1177/2515245918787489 Lesk M., 2019, ANAL OPEN DATA AVAIL Lynch CP, 2022, CLIN SPINE SURG, V35, pE558, DOI 10.1097/BSD.0000000000001303 Makkonen T, 2016, SCIENTOMETRICS, V106, P1193, DOI 10.1007/s11192-015-1824-y Maleki A., 2015, P INT C SCIENTOMETRI Martinez A, 2016, RES EVALUAT, V25, P184, DOI 10.1093/reseval/rvv042 Mebane CA, 2019, INTEGR ENVIRON ASSES, V15, P320, DOI 10.1002/ieam.4119 Nian TT, 2021, INFORM SYST RES, V32, P605, DOI 10.1287/isre.2020.0985 Ortega JL, 2021, LEARN PUBL, V34, P164, DOI 10.1002/leap.1339 Pearson K., 1896, Phil. Trans. R. Soc. Lond. Ser. A, V187, P253, DOI [10.1098/rsta.1896.0007, DOI 10.1098/RSTA.1896.0007] Peng R., 2015, SIGNIFICANCE, V12, P30, DOI [DOI 10.1111/J.1740-9713.2015.00827.X, 10.1111/j.1740-9713.2015.00827.x] Peterson GM, 2013, J AM SOC INF SCI TEC, V64, P2428, DOI 10.1002/asi.22944 PETO R, 1977, BRIT J CANCER, V35, P1, DOI 10.1038/bjc.1977.1 Pinfield S, 2016, J ASSOC INF SCI TECH, V67, P1751, DOI 10.1002/asi.23446 Pirson M, 2011, ORGAN SCI, V22, P1087, DOI 10.1287/orsc.1100.0581 Pozil S., 2017, J SOCIAL CHANGE, V9, DOI DOI 10.5590/JOSC.2017.09.1 Pulverer B, 2015, EMBO J, V34, P2483, DOI 10.15252/embj.201570080 Rieh SY, 2007, ANNU REV INFORM SCI, V41, P307, DOI 10.1002/aris.2007.1440410114 ROSENBAUM PR, 1983, BIOMETRIKA, V70, P41, DOI 10.1093/biomet/70.1.41 Shah TA, 2021, SCIENTOMETRICS, V126, P4589, DOI 10.1007/s11192-021-03990-3 Shaw D, 2018, ACCOUNT RES, V25, P79, DOI 10.1080/08989621.2017.1413940 Shi DB, 2023, SCIENCE, V379, P62, DOI 10.1126/science.abq1218 Slingsby JA, 2020, S AFR J SCI, V116, P100, DOI 10.17159/sajs.2020/7684 Teixeira da Silva JA, 2022, LEARN PUBL, V35, P292, DOI 10.1002/leap.1409 Teixeira da Silva JA, 2015, ACCOUNT RES, V22, P22, DOI 10.1080/08989621.2014.899909 Titus SL, 2008, NATURE, V453, P980, DOI 10.1038/453980a Tripathi M, 2019, DESIDOC J LIB INF TE, V39, P74, DOI 10.14429/djlit.39.2.14000 UNESCO, 2023, UNESCO Recommendation on Open Science Vadhera AS, 2022, AM J SPORT MED, V50, P3690, DOI 10.1177/03635465221124885 Valdez D., 2020, F1000Research, P9 Van Noorden R, 2011, NATURE, V478, P26, DOI 10.1038/478026a Vos TP, 2017, JOURNALISM STUD, V18, P1505, DOI 10.1080/1461670X.2015.1135754 Wager E, 2009, MATURITAS, V64, P201, DOI 10.1016/j.maturitas.2009.09.018 Wallach OD, 2018, PLOS BIOL, V16, DOI 10.1371/journal.pbio.2006930 Wang T, 2019, SCI ENG ETHICS, V25, P855, DOI 10.1007/s11948-018-0040-6 WCRI, 2017, The Amsterdam Agenda seeks to promote discussion and to coordinate efforts to improve research integrity on a global scale Weischenberg S., 2005, Handbuch journalismus und medien Wicherts JM, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0147913 Wood Angela M, 2004, Clin Trials, V1, P368 Yan E, 2018, J ASSOC INF SCI TECH, V69, P844, DOI 10.1002/asi.24002 Yang SL, 2024, J INF SCI, V50, P531, DOI 10.1177/01655515221097623 Zhang Q, 2020, SCIENTOMETRICS, V125, P213, DOI 10.1007/s11192-020-03636-w Zheng X, 2023, J ASSOC INF SCI TECH, V74, P219, DOI 10.1002/asi.24723 Zong QJ, 2020, SCIENTOMETRICS, V125, P607, DOI 10.1007/s11192-020-03545-y NR 98 TC 0 Z9 0 U1 37 U2 37 PU ELSEVIER SCI LTD PI London PA 125 London Wall, London, ENGLAND SN 0306-4573 EI 1873-5371 J9 INFORM PROCESS MANAG JI Inf. Process. Manage. PD MAY PY 2024 VL 61 IS 3 AR 103640 DI 10.1016/j.ipm.2023.103640 EA JAN 2024 PG 18 WC Computer Science, Information Systems; Information Science & Library Science WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Computer Science; Information Science & Library Science GA JZ1E8 UT WOS:001176881600001 DA 2024-09-05 ER PT J AU Rossi, D Harreveld, RE Clark, D van Rensburg, H Beer, C Danaher, PA AF Rossi, Dolene Harreveld, R. E. (Bobby) Clark, Damien van Rensburg, Henriette Beer, Colin Danaher, P. A. TI Exploring a cross-institutional research collaboration and innovation: Deploying social software and Web 2.0 technologies to investigate online learning designs and interactions in two Australian Universities SO JOURNAL OF LEARNING DESIGN LA English DT Article DE Cross-institutional collaboration; interactions; online learning design; research; social software; Web 2.0 technologies AB One significant manifestation of the proposition of a 'classroom without walls' is the online learning environments evident in most contemporary Australian universities. A key element of the effectiveness of those environments is the quality of the interactions that they foster. Planning and implementing rigorous research into that quality is crucial if these particular 'classrooms without walls' are to deliver enhanced and sustained learning outcomes. This article explores selected aspects of a cross-institutional collaboration linking two Australian universities researching the quality of learning interactions in their online courses. In particular, the authors analyse the utility of the social software and Web 2.0 technologies that have been deployed to facilitate their collaborative research. Despite the constraints and tensions attendant on within-and cross-organisational learning, teaching and research activities, the article records evidence of a developing innovation in investigating both the online learning designs and the research project developed to evaluate the effectiveness and impact of those designs. C1 [Rossi, Dolene] CQ Univ, Sch Nursing & Midwifery, Rockhampton, Qld, Australia. [Harreveld, R. E. (Bobby)] CQ Univ, Sch Educ, Rockhampton, Qld, Australia. [Clark, Damien; Beer, Colin] CQ Univ, Off Learning & Teaching, Rockhampton, Qld, Australia. [van Rensburg, Henriette; Danaher, P. A.] Univ Southern Queensland, Fac Educ, Toowoomba, Qld, Australia. C3 Central Queensland University; Central Queensland University; Central Queensland University; University of Southern Queensland RP Rossi, D (corresponding author), CQ Univ, Sch Nursing & Midwifery, Rockhampton, Qld, Australia. EM d.rossi@cqu.edu.au; b.harreveld@cqu.edu.au; d.clark@cqu.edu.au; henriette.vanrensburg@usq.edu.au; c.beer@cqu.edu.au; patrick.danaher@usq.edu.au RI Rossi, Dolene M/G-5036-2015; Danaher, Patrick A/N-7315-2014; Beer, Colin/GZA-5917-2022 OI Rossi, Dolene M/0000-0002-5093-6443; Danaher, Patrick A/0000-0002-2289-7774; Beer, Colin/0000-0002-1827-1365 FU DeHub Consortium FX This article reports on a project funded in 2011-2012 by the DeHub Consortium, hosted by the University of New England. Administrative support was provided by Ms Tash Toon, Ms Chriss Lenz and Ms Mary Cranston at the Learning and Teaching Education Research Centre at CQUniversity, Australia. The project evaluator was Professor Michael Singh in the Centre for Educational Research at the University of Western Sydney, Australia. The project reference group was chaired by Professor Terry Evans (School of Education, Deakin University, Australia) and included Professor Nita Temmerman (Faculty of Education, University of Southern Queensland, Australia), Dr Abdurrahman Umar (Commonwealth of Learning, Canada) and Associate Professor Steve McKillup and Ms Beth Tennent (CQUniversity, Australia). The authors thank the guest editors of this special theme issue of the journal and acknowledge the feedback of two anonymous peer reviewers. CR Anderson Terry, 2008, MARQUIS PRINTING BOO, V2, P1 [Anonymous], 2009, WELSH J ED Arnold N, 2009, J INTERACT ONLINE LE, V8, P121 Atkinson T, 2009, TECHTRENDS, V53, P30 Baxter P, 2008, QUAL REP, V13, P544 Beer C., 2009, PAPER PRESENTED AT T Beuchot A., 2005, DISTANCE EDUC, V26, P67, DOI [10.1080/01587910500081285, DOI 10.1080/01587910500081285] Bexley E., 2011, The Australian academic profession in transition Bonk CJ, 2009, INTERNET HIGH EDUC, V12, P126, DOI 10.1016/j.iheduc.2009.04.002 Cardini A, 2006, J EDUC POLICY, V21, P393, DOI 10.1080/02680930600731773 Cavanaugh CS, 2009, INT REV RES OPEN DIS, V10 Chou C.-T. C., 2002, 35 HAW INT C SYST SC D'Amour Danielle, 2005, J Interprof Care, V19 Suppl 1, P116, DOI 10.1080/13561820500082529 Denning P, 2004, UBIQUITY, V5, P1 Duff A, 2010, J LEARN DES, V4, P32, DOI 10.5204/jld.v4i1.67 Hillman D.C. A., 1994, AM J DISTANCE EDUC, V8, P30, DOI 10.1080/08923649409526853 Kehrwald B. A., 2007, THESIS Kurasawa F., 2007, TOPIA CANADIAN J CUL, P18 Lai YC, 2011, INTERNET HIGH EDUC, V14, P15, DOI 10.1016/j.iheduc.2010.06.001 Lloyd M, 2011, J LEARN DES, V4, P39 McLoughlin C., 2007, ANN C AUSTR SOC COMP Means B., 2009, Evaluation of Evidence-Based Practices in Online Learning: A Meta-Analysis and Review of Online Learning Studies, DOI DOI 10.30935/CEDTECH/8708 Oliver R, 2007, J LEARN DES, V2, P1 Patton M., 2002, QUALITATIVE RES EVAL, DOI DOI 10.1002/NUR.4770140111 Raffaghelli J. E., 2010, P 7 INT C NETW LEARN, P327 Reushle S, 2009, J LEARN DES, V3, P11 Rosenberg JP, 2007, J ADV NURS, V60, P447, DOI 10.1111/j.1365-2648.2007.04385.x Rossi D. M., 2010, THESIS Saiki D, 2010, J LEARN DES, V4, P52, DOI 10.5204/jld.v4i1.69 Schuetze U, 2010, J LEARN DES, V4, P24, DOI 10.5204/jld.v4i1.66 Su BD, 2005, J INTERACT ONLINE LE, V4, P1 Turner M, 2007, J LEARN DES, V2, P56 Yin R. K., 2003, CASE STUDY RES DESIG NR 33 TC 6 Z9 7 U1 0 U2 0 PU QUEENSLAND UNIV TECHNOLOGY PI BRISBANE PA GPO BOX 2434, BRISBANE, QLD 4001, AUSTRALIA SN 1832-8342 J9 J LEARN DES JI J. Learn. Des. PY 2012 VL 5 IS 2 SI SI BP 1 EP 11 DI 10.5204/jld.v5i2.108 PG 11 WC Education & Educational Research WE Emerging Sources Citation Index (ESCI) SC Education & Educational Research GA V01JA UT WOS:000213597300002 OA Green Accepted, hybrid DA 2024-09-05 ER PT J AU Ul Haq, MI Li, QM Hou, J AF Ul Haq, Muhammad Inaam Li, Qianmu Hou, Jun TI Analyzing the Research Trends of IoT Using Topic Modeling SO COMPUTER JOURNAL LA English DT Article DE topic modeling; text analysis; topic trends; research communities; topic; correlation ID OF-THE-ART; INDUSTRY 4.0; COMMUNITY STRUCTURE; HEALTH-CARE; BIG DATA; INTERNET; THINGS; CHALLENGES; FUTURE; SECURITY AB The internet of things (IoT) is one of the most rapidly growing technologies. Therefore, the interest in industry and academia has been increasing. The published research data have evolved in IoT because of scientific advances in this field. Since science plays a vital role in decision-making, this study examines the thematic landscape of research on IoT, which may contribute to understanding the research field's structure allows for critical reflections and the identification of blind spots for advancing this field. The current study applies a text mining approach on 25966 Scopus-indexed abstracts and titles published from 2008 to 2020 on a latent Dirichlet allocation-based topic model. In this study, various models in the range of 1-100 topics were created. Examination of coherence scores was combined with manual analysis; the 25-topic model was chosen as an optimal one. The statistical methods employed highlight the timely trends of the extracted topics, intellectual topic structure and resulting communities in the topic network. The study carpingly depicts the quantitative results from an IoT perspective. The statistical analysis depicts that IoT publications has exponential growth rate. The hotspot of the IoT research can be concluded as 'intrusion attack detection', 'cloud and edge computing', 'energy consumption', 'access channels', 'algorithm optimization' and 'healthcare and medical'. The topics that reflect the wireless sensor networks, security and privacy, high-range signal, devices and context aware computing and sensor control and monitoring have stable trends. This study identifies research focus on the development of low-energy consumption systems (Green IoT), application of high-range signals and their performance in tracking and identification, and data analytics (Big data IoT). Furthermore, the research focuses on industrial solutions towards diseases diagnosis and its treatment in health sector. Finally, in agriculture sector for intelligent manufacturing, research focuses on the application of image recognition for plant and food analysis. C1 [Ul Haq, Muhammad Inaam; Li, Qianmu] Nanjing Univ Sci & Technol, Sch Comp Sci & Engn, Nanjing 210094, Peoples R China. [Hou, Jun] Nanjing Vocat Univ Ind Technol, Sch Social Sci, Nanjing 210046, Peoples R China. [Ul Haq, Muhammad Inaam] COMSATS Univ Islamabad, Dept Comp Sci, Sahiwal Campus, Sahiwal 57000, Pakistan. C3 Nanjing University of Science & Technology; Nanjing Vocational University of Industry Technology; COMSATS University Islamabad (CUI) RP Ul Haq, MI; Li, QM (corresponding author), Nanjing Univ Sci & Technol, Sch Comp Sci & Engn, Nanjing 210094, Peoples R China.; Ul Haq, MI (corresponding author), COMSATS Univ Islamabad, Dept Comp Sci, Sahiwal Campus, Sahiwal 57000, Pakistan. EM minaamulhaq@hotmail.com; qianmu@njust.edu.cn RI Inaam ul haq, Muhammad/HKO-1217-2023 OI Inaam ul haq, Muhammad/0000-0002-5759-073X FU National Key R&D Program of China [2020YFB1805503]; Jiangsu Province Modern Education Technology Research Project [84365]; National Vocational Education Teacher Enterprise Practice Base "Integration of Industry and Education'' Special Project(study on Evaluation Standard of Artificial Intelligence Vocational Skilled Level) FX This work is supported by the National Key R&D Program of China (Funding No.2020YFB1805503), Jiangsu Province Modern Education Technology Research Project (84365); National Vocational Education Teacher Enterprise Practice Base "Integration of Industry and Education'' Special Project(study on Evaluation Standard of Artificial Intelligence Vocational Skilled Level). CR Adelantado F, 2017, IEEE COMMUN MAG, V55, P34, DOI 10.1109/MCOM.2017.1600613 Al-Fuqaha A, 2015, IEEE COMMUN SURV TUT, V17, P2347, DOI 10.1109/COMST.2015.2444095 Aletras N, 2013, P 10 INT C COMP SEM, P13, DOI [10.1145/2537052, DOI 10.1145/2537052] Ambrosino A, 2018, J ECON METHODOL, V25, P329, DOI 10.1080/1350178X.2018.1529215 Amendola S, 2014, IEEE INTERNET THINGS, V1, P144, DOI 10.1109/JIOT.2014.2313981 [Anonymous], 2020, CYBERSPACE, DOI [10.5772/intechopen.85362, DOI 10.5772/INTECHOPEN.85362] Archambault É, 2009, J AM SOC INF SCI TEC, V60, P1320, DOI 10.1002/asi.21062 Asmussen CB, 2019, J BIG DATA-GER, V6, DOI 10.1186/s40537-019-0255-7 Assi A.L.B., 2010, INTERNET THINGS TODA, P44 Atzori L, 2014, IEEE COMMUN MAG, V52, P97, DOI 10.1109/MCOM.2014.6710070 Atzori L, 2012, COMPUT NETW, V56, P3594, DOI 10.1016/j.comnet.2012.07.010 Augustin A, 2016, SENSORS-BASEL, V16, DOI 10.3390/s16091466 Bandodkar AJ, 2016, ACS SENSORS, V1, P464, DOI 10.1021/acssensors.6b00250 Barbieri N, 2013, MACH LEARN, V93, P5, DOI 10.1007/s10994-013-5391-2 BERAN R, 1977, ANN STAT, V5, P445, DOI 10.1214/aos/1176343842 Bi ZM, 2014, IEEE T IND INFORM, V10, P1537, DOI 10.1109/TII.2014.2300338 Bickel MW, 2019, ENERGY SUSTAIN SOC, V9, DOI 10.1186/s13705-019-0226-z Bird S., 2009, Natural language processing with Python: analyzing text with the natural lan-guage toolkit Blei D.M., 2006, P 23 INT C MACH LEAR, DOI [DOI 10.1145/1143844.1143859, 10.1145/1143844.1143859] Blei DM, 2007, ANN APPL STAT, V1, P17, DOI 10.1214/07-AOAS114 Blei DM, 2012, COMMUN ACM, V55, P77, DOI 10.1145/2133806.2133826 Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993 Blondel VD, 2008, J STAT MECH-THEORY E, DOI 10.1088/1742-5468/2008/10/P10008 Bobadilla J, 2013, KNOWL-BASED SYST, V46, P109, DOI 10.1016/j.knosys.2013.03.012 Botta A, 2016, FUTURE GENER COMP SY, V56, P684, DOI 10.1016/j.future.2015.09.021 Bouma G., 2009, From Form to Meaning. Processing Texts Automatically. Proceedings of the Biennial GSCL Conference. Ed. by, P31 Chae B, 2019, TELECOMMUN POLICY, V43, DOI 10.1016/j.telpol.2019.101848 CHANG J., 2009, Advances in Neural Information Processing Systems, V22, P288 Choi HS, 2017, COMPUT SECUR, V67, P244, DOI 10.1016/j.cose.2017.03.007 Dai LL, 2015, IEEE COMMUN MAG, V53, P74, DOI 10.1109/MCOM.2015.7263349 Damani O. P., 2013, P 17 C COMP NAT LANG, P20 Daud A, 2010, FRONT COMPUT SCI CHI, V4, P280, DOI 10.1007/s11704-009-0062-y DEERWESTER S, 1990, J AM SOC INFORM SCI, V41, P391, DOI 10.1002/(SICI)1097-4571(199009)41:6<391::AID-ASI1>3.0.CO;2-9 Sánchez AD, 2017, EUR RES MANAG BUS EC, V23, P8, DOI 10.1016/j.iedeen.2016.02.001 Ejaz W, 2019, SPRBRIEF ELECT, P1, DOI 10.1007/978-3-319-95037-2 Fortunato S, 2010, PHYS REP, V486, P75, DOI 10.1016/j.physrep.2009.11.002 Ganti RK, 2011, IEEE COMMUN MAG, V49, P32, DOI 10.1109/MCOM.2011.6069707 Girvan M, 2002, P NATL ACAD SCI USA, V99, P7821, DOI 10.1073/pnas.122653799 Gomez C, 2012, SENSORS-BASEL, V12, P11734, DOI 10.3390/s120911734 Granjal J, 2015, IEEE COMMUN SURV TUT, V17, P1294, DOI 10.1109/COMST.2015.2388550 Gravina R, 2017, INFORM FUSION, V35, P68, DOI 10.1016/j.inffus.2016.09.005 Gretzel U, 2015, ELECTRON MARK, V25, P179, DOI 10.1007/s12525-015-0196-8 Griffiths TL, 2004, P NATL ACAD SCI USA, V101, P5228, DOI 10.1073/pnas.0307752101 Guo L, 2018, PLOS ONE, V13, DOI 10.1371/journal.pone.0199510 Hashem IAT, 2016, INT J INFORM MANAGE, V36, P748, DOI 10.1016/j.ijinfomgt.2016.05.002 Hofmann E, 2017, COMPUT IND, V89, P23, DOI 10.1016/j.compind.2017.04.002 Hofmann T, 1999, SIGIR'99: PROCEEDINGS OF 22ND INTERNATIONAL CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, P50, DOI 10.1145/312624.312649 Tu HT, 2017, INT CONF SYST SCI EN, P588, DOI 10.1109/ICSSE.2017.8030943 Islam SMR, 2015, IEEE ACCESS, V3, P678, DOI 10.1109/ACCESS.2015.2437951 Jahnichen P., 2018, INT C ART INT STAT, P1427 Jelodar H, 2019, MULTIMED TOOLS APPL, V78, P15169, DOI 10.1007/s11042-018-6894-4 Jiang HC, 2016, RENEW SUST ENERG REV, V57, P226, DOI 10.1016/j.rser.2015.12.194 Jin XL, 2015, BIG DATA RES, V2, P59, DOI 10.1016/j.bdr.2015.01.006 Jing Q, 2014, WIREL NETW, V20, P2481, DOI 10.1007/s11276-014-0761-7 Kamalinejad P, 2015, IEEE COMMUN MAG, V53, P102, DOI 10.1109/MCOM.2015.7120024 Kang HS, 2016, INT J PR ENG MAN-GT, V3, P111, DOI 10.1007/s40684-016-0015-5 Kortuem G, 2010, IEEE INTERNET COMPUT, V14, P44, DOI 10.1109/MIC.2009.143 Lee Jay, 2013, Manufacturing Letters, V1, P38, DOI 10.1016/j.mfglet.2013.09.005 Lee M, 2016, BMC BIOINFORMATICS, V17, DOI 10.1186/s12859-016-1225-0 Li Ding-Cheng, 2015, AMIA Jt Summits Transl Sci Proc, V2015, P102 Li H, 2018, IEEE NETWORK, V32, P96, DOI 10.1109/MNET.2018.1700202 Li SC, 2015, INFORM SYST FRONT, V17, P243, DOI 10.1007/s10796-014-9492-7 Li X, 2011, IEEE COMMUN MAG, V49, P68, DOI 10.1109/MCOM.2011.6069711 Lin J, 2017, IEEE INTERNET THINGS, V4, P1125, DOI 10.1109/JIOT.2017.2683200 Liu Y, 2015, AAAI CONF ARTIF INTE, P2418 Lossio-Ventura J.A., 2019, SIMBIG 2018, DOI [10.1007/978-3-030-11680-4, DOI 10.1007/978-3-030-11680-4] Mann HB, 1945, ECONOMETRICA, V13, P245, DOI 10.2307/1907187 Marjani M, 2017, IEEE ACCESS, V5, P5247, DOI 10.1109/ACCESS.2017.2689040 Mimno D., 2011, P C Murtagh F, 2014, J CLASSIF, V31, P274, DOI 10.1007/s00357-014-9161-z Nasar Z, 2018, SCIENTOMETRICS, V117, P1931, DOI 10.1007/s11192-018-2921-5 Nepusz T, 2006, InterJournal Comp. Syst., VComplex Systems, P1695 Newman MEJ, 2006, P NATL ACAD SCI USA, V103, P8577, DOI 10.1073/pnas.0601602103 Newman MEJ, 2004, PHYS REV E, V70, DOI 10.1103/PhysRevE.70.056131 Palattella MR, 2016, IEEE J SEL AREA COMM, V34, P510, DOI 10.1109/JSAC.2016.2525418 Palattella MR, 2013, IEEE COMMUN SURV TUT, V15, P1389, DOI 10.1109/SURV.2012.111412.00158 Perera C, 2014, IEEE ACCESS, V2, P1660, DOI 10.1109/ACCESS.2015.2389854 Perera C, 2014, T EMERG TELECOMMUN T, V25, P81, DOI 10.1002/ett.2704 Perera C, 2014, IEEE COMMUN SURV TUT, V16, P414, DOI 10.1109/SURV.2013.042313.00197 Qiu JF, 2016, EURASIP J ADV SIG PR, DOI 10.1186/s13634-016-0355-x Randriamihamison N, 2021, J CLASSIF, V38, P363, DOI 10.1007/s00357-020-09377-y Rapp R., 2014, COMPUT LINGUIST, V8403, DOI [10.1007/978-3-642-54906-9_1, DOI 10.1007/978-3-642-54906-9_1] Raza U, 2017, IEEE COMMUN SURV TUT, V19, P855, DOI 10.1109/COMST.2017.2652320 Razzaque MA, 2016, IEEE INTERNET THINGS, V3, P70, DOI 10.1109/JIOT.2015.2498900 Rehurek R., 2010, Proceedings of the LREC 2010 Workshop on New Challenges for NLP Frameworks Reyna A, 2018, FUTURE GENER COMP SY, V88, P173, DOI 10.1016/j.future.2018.05.046 Roblek V, 2016, SAGE OPEN, V6, DOI 10.1177/2158244016653987 Röder M, 2015, WSDM'15: PROCEEDINGS OF THE EIGHTH ACM INTERNATIONAL CONFERENCE ON WEB SEARCH AND DATA MINING, P399, DOI 10.1145/2684822.2685324 Roman R, 2013, COMPUT NETW, V57, P2266, DOI 10.1016/j.comnet.2012.12.018 Schmidt BenjaminM., 2012, J DIGITAL HUMANITIES, V2 Schreyer AG, 2016, ROFO-FORTSCHR RONTG, V188, P134, DOI 10.1055/s-0041-104892 Shaalan K., 2018, STUDIES COMPUTATIONA, V740 Shafi M, 2017, IEEE J SEL AREA COMM, V35, P1201, DOI 10.1109/JSAC.2017.2692307 Sheng ZG, 2013, IEEE WIREL COMMUN, V20, P91, DOI 10.1109/MWC.2013.6704479 Shi WS, 2016, IEEE INTERNET THINGS, V3, P637, DOI 10.1109/JIOT.2016.2579198 Sievert C., 2014, P WORKSH INT LANG LE, P63, DOI [10.3115/v1/W14-3110, DOI 10.3115/V1/W14-3110, 10.3115/v1/w14-3110] Sievert Carson., 2015, LDAvis: Interactive Visualization of Topic Models (0.3.2) Sing DC, 2017, SPINE, V42, P863, DOI 10.1097/BRS.0000000000002079 Stankovic JA, 2014, IEEE INTERNET THINGS, V1, P3, DOI 10.1109/JIOT.2014.2312291 Stergiou C, 2018, FUTURE GENER COMP SY, V78, P964, DOI 10.1016/j.future.2016.11.031 Sun LJ, 2017, TRANSPORT RES C-EMER, V77, P49, DOI 10.1016/j.trc.2017.01.013 Syed S, 2018, REV FISH SCI AQUAC, V26, P319, DOI 10.1080/23308249.2017.1416331 Tang J, 2014, PR MACH LEARN RES, V32 Tao F, 2014, IEEE T IND INFORM, V10, P1547, DOI 10.1109/TII.2014.2306397 Tsai CW, 2014, IEEE COMMUN SURV TUT, V16, P77, DOI 10.1109/SURV.2013.103013.00206 Ul Haq MI, 2019, IEEE ACCESS, V7, P162254, DOI 10.1109/ACCESS.2019.2950045 van Altena Allard J., 2016, Journal of Big Data, V3, DOI 10.1186/s40537-016-0057-0 Wallach HM, 2009, ADV NEURAL INFORM PR, V22, P1973, DOI DOI 10.1007/S10708-008-9161-9 Wan YPE, 2017, IEEE COMMUN MAG, V55, P117, DOI 10.1109/MCOM.2017.1600510CM WARD JH, 1963, J AM STAT ASSOC, V58, P236, DOI 10.2307/2282967 Watford Sean M, 2018, Comput Toxicol, V7, P46, DOI 10.1016/j.comtox.2018.06.003 Weber Rolf H., 2010, Computer Law and Security Report, V26, P23, DOI 10.1016/j.clsr.2009.11.008 Welbourne E, 2009, IEEE INTERNET COMPUT, V13, P48, DOI 10.1109/MIC.2009.52 Whitmore A, 2015, INFORM SYST FRONT, V17, P261, DOI 10.1007/s10796-014-9489-2 Wollschlaeger M, 2017, IEEE IND ELECTRON M, V11, P17, DOI 10.1109/MIE.2017.2649104 Wu QH, 2014, IEEE INTERNET THINGS, V1, P129, DOI 10.1109/JIOT.2014.2311513 Xiong H, 2019, COMPUT IND ENG, V135, P333, DOI 10.1016/j.cie.2019.06.010 Xu LD, 2018, INT J PROD RES, V56, P2941, DOI 10.1080/00207543.2018.1444806 Xu LD, 2014, IEEE T IND INFORM, V10, P2233, DOI 10.1109/TII.2014.2300753 Yan Z, 2014, J NETW COMPUT APPL, V42, P120, DOI 10.1016/j.jnca.2014.01.014 Yang YC, 2017, IEEE INTERNET THINGS, V4, P1250, DOI 10.1109/JIOT.2017.2694844 Zhao ZY, 2018, J INTELL FUZZY SYST, V35, P1077, DOI 10.3233/JIFS-17682 Zhong RY, 2017, ENGINEERING-PRC, V3, P616, DOI 10.1016/J.ENG.2017.05.015 Zou C, 2018, EXPERT OPIN DRUG SAF, V17, P629, DOI 10.1080/14740338.2018.1458838 NR 124 TC 3 Z9 3 U1 3 U2 30 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0010-4620 EI 1460-2067 J9 COMPUT J JI Comput. J. PD OCT 17 PY 2022 VL 65 IS 10 BP 2589 EP 2609 DI 10.1093/comjnl/bxab091 EA JUL 2021 PG 21 WC Computer Science, Hardware & Architecture; Computer Science, Information Systems; Computer Science, Software Engineering; Computer Science, Theory & Methods WE Science Citation Index Expanded (SCI-EXPANDED) SC Computer Science GA 5L8FZ UT WOS:000789359600001 DA 2024-09-05 ER PT J AU Zamit, I Musa, IH Jiang, LM Wei, YJ Tang, JJ AF Zamit, Ibrahim Musa, Ibrahim Hussein Jiang, Limin Wei, Yanjie Tang, Jijun TI Trends and features of autism spectrum disorder research using artificial intelligence techniques: a bibliometric approach SO CURRENT PSYCHOLOGY LA English DT Article DE Autism spectrum disorder; Artificial intelligence; Machine learning; Bibliometric analysis; Scientific collaboration; Research hotspots ID MACHINE; SCIENCE; IDENTIFICATION; METAANALYSIS; DIAGNOSIS; DISEASE AB The prevalence of autism spectrum disorder (ASD) has risen rapidly in recent decades. Owing to its success across disciplines, the use of artificial intelligence (AI) in the screening of ASD has emerged as a prominent solution. We conducted a bibliometric analysis on AI-powered ASD screening research with a unit of 2090 publications retrieved from Scopus database in the period 2010-2021. Our findings show, among other things, that the annual growth rate of publications was 33.05% and scientific production drastically increased 23-fold from 22 in 2010 to 509 in 2021 with nearly two thirds (1307; 62,54%) of the retrieved documents being published between 2019-2021. The USA was the global leader in terms of scientific output with 730 publications followed by China (255), and India (251). Stanford university, the scientific journal NeuroImage, and Dennis P. Wall were the most globally prolific institution, publication source, and author, respectively. Using VOSviewer's clustering algorithms, keyword and topic analysis identified neuroimaging techniques and genetic research as hot and emerging research trends. Interestingly, three of the top ten prolific authors were women, indicating a significant milestone for gender rebalancing efforts in the AI workforce. The findings will help both experienced and aspiring scientists better understand the structure and current state of knowledge, uncover patterns of collaboration, and identify emerging trends in ASD research using AI. C1 [Zamit, Ibrahim; Jiang, Limin; Wei, Yanjie; Tang, Jijun] Shenzhen Inst Adv Technol, Inst Adv Comp & Digital Engn, Ctr High Performance Comp Technol, Shenzhen, Peoples R China. [Zamit, Ibrahim] Univ Chinese Acad Sci, Beijing, Peoples R China. [Musa, Ibrahim Hussein] Southeast Univ, Sch Comp Sci & Engn, Key Lab Comp Network & Informat Integrat, Nanjing, Peoples R China. C3 Chinese Academy of Sciences; Shenzhen Institute of Advanced Technology, CAS; Chinese Academy of Sciences; University of Chinese Academy of Sciences, CAS; Southeast University - China RP Wei, YJ; Tang, JJ (corresponding author), Shenzhen Inst Adv Technol, Inst Adv Comp & Digital Engn, Ctr High Performance Comp Technol, Shenzhen, Peoples R China. EM yj.wei@siat.ac.cn; jj.tang@siat.ac.cn OI Zamit, Ibrahim/0000-0002-5517-5102 FU ANSO; National Natural Science Foundation of China [NSFC 61772362, 61972280]; Shenzhen KQTD Project [KQTD20200820113106007]; Research and Development Project of Guangdong Province [2021B0101310002]; Strategic Priority CAS Project [XDB38050100]; National Science Foundation of China [62272449]; Shenzhen Basic Research Fund [KQTD20200820113106007, RCYX202007141 1473419, JCYJ20200109114818703]; CAS Key Lab [2011DP173015]; Youth Innovation Promotion Association, CAS [Y2021101] FX I. Z acknowledges support from the ANSO Scholarship for Young Talents. J.T. was supported by The National Natural Science Foundation of China (NSFC 61772362, 61972280) and Shenzhen KQTD Project [KQTD20200820113106007]. W.Y. was partly supported by the Research and Development Project of Guangdong Province under grant no. 2021B0101310002, the Strategic Priority CAS Project XDB38050100, National Science Foundation of China under grant no. 62272449, the Shenzhen Basic Research Fund under grant no KQTD20200820113106007, RCYX202007141 1473419, JCYJ20200109114818703, CAS Key Lab under grant no. 2011DP173015, the Youth Innovation Promotion Association (Y2021101), CAS. CR Abd-alrazaq AA, 2019, INT J MED INFORM, V132, DOI 10.1016/j.ijmedinf.2019.103978 Abeel T, 2009, BIOINFORMATICS, V25, pI313, DOI 10.1093/bioinformatics/btp191 American Psychiatric Association, 2013, Diagnostic and Statistical Manual of Mental Disorders: DSM-5, V5th, DOI [DOI 10.1176/APPI.BOOKS.9780890425596, 10.1176/APPI.BOOKS.9780890425596] Arbabshirani MR, 2017, NEUROIMAGE, V145, P137, DOI 10.1016/j.neuroimage.2016.02.079 Aria M, 2017, J INFORMETR, V11, P959, DOI 10.1016/j.joi.2017.08.007 Avati A, 2018, BMC MED INFORM DECIS, V18, DOI 10.1186/s12911-018-0677-8 Bosl W, 2011, BMC MED, V9, DOI 10.1186/1741-7015-9-18 Bracher-Smith M, 2021, MOL PSYCHIATR, V26, P70, DOI 10.1038/s41380-020-0825-2 BROOKES BC, 1969, NATURE, V224, P953, DOI 10.1038/224953a0 Campbell K, 2017, J PEDIATR-US, V183, P133, DOI 10.1016/j.jpeds.2017.01.021 Chiarotti F, 2020, BRAIN SCI, V10, DOI 10.3390/brainsci10050274 Courchesne E, 2011, BRAIN RES, V1380, P138, DOI 10.1016/j.brainres.2010.09.101 de Leeuw A, 2020, AUTISM RES, V13, P1029, DOI 10.1002/aur.2276 Ecker C, 2010, NEUROIMAGE, V49, P44, DOI 10.1016/j.neuroimage.2009.08.024 Elsabbagh Mayada, 2012, Autism Res, V5, P160, DOI 10.1002/aur.239 Eslami T, 2019, FRONT NEUROINFORM, V13, DOI 10.3389/fninf.2019.00070 Falkmer T, 2013, EUR CHILD ADOLES PSY, V22, P329, DOI 10.1007/s00787-013-0375-0 Fombonne E., 2020, Swiss Archives of Neurology Psychiatry and Psychotherapy, V171, DOI DOI 10.4414/SANP.2020.03084 Geschwind DH, 2011, TRENDS COGN SCI, V15, P409, DOI 10.1016/j.tics.2011.07.003 Goodfellow I, 2016, ADAPT COMPUT MACH LE, P1 Grove J, 2019, NAT GENET, V51, P431, DOI 10.1038/s41588-019-0344-8 Hassan SU, 2014, SCIENTOMETRICS, V99, P549, DOI 10.1007/s11192-013-1193-3 Hazlett HC, 2017, NATURE, V542, P348, DOI 10.1038/nature21369 Heinsfeld AS, 2018, NEUROIMAGE-CLIN, V17, P16, DOI 10.1016/j.nicl.2017.08.017 Hirsch JE, 2005, P NATL ACAD SCI USA, V102, P16569, DOI 10.1073/pnas.0507655102 Hyde KK, 2019, REV J AUTISM DEV DIS, V6, P128, DOI 10.1007/s40489-019-00158-x Jaganathan K, 2019, CELL, V176, P535, DOI 10.1016/j.cell.2018.12.015 Jiang F, 2017, STROKE VASC NEUROL, V2, P230, DOI 10.1136/svn-2017-000101 Jiang YH, 2013, AM J HUM GENET, V93, P249, DOI 10.1016/j.ajhg.2013.06.012 Jordan MI, 2015, SCIENCE, V349, P255, DOI 10.1126/science.aaa8415 Katz JS, 1997, RES POLICY, V26, P1, DOI 10.1016/S0048-7333(96)00917-1 KING J, 1987, J INFORM SCI, V13, P261, DOI 10.1177/016555158701300501 Krizhevsky A, 2017, COMMUN ACM, V60, P84, DOI 10.1145/3065386 Legg S, 2007, MIND MACH, V17, P391, DOI 10.1007/s11023-007-9079-x Liao HC, 2018, SUSTAINABILITY-BASEL, V10, DOI 10.3390/su10010166 Litjens G, 2017, MED IMAGE ANAL, V42, P60, DOI 10.1016/j.media.2017.07.005 Liu WB, 2016, AUTISM RES, V9, P888, DOI 10.1002/aur.1615 Lord C, 2000, NEURON, V28, P355, DOI 10.1016/S0896-6273(00)00115-X Mahajan R, 2015, CNS SPECTRUMS, V20, P412, DOI 10.1017/S1092852915000371 Majumder S, 2017, SENSORS-BASEL, V17, DOI 10.3390/s17010130 Masi A, 2017, NEUROSCI BULL, V33, P183, DOI 10.1007/s12264-017-0100-y Mnih V, 2015, NATURE, V518, P529, DOI 10.1038/nature14236 Moeslund TB, 2006, COMPUT VIS IMAGE UND, V104, P90, DOI 10.1016/j.cviu.2006.08.002 Mongeon P, 2016, SCIENTOMETRICS, V106, P213, DOI 10.1007/s11192-015-1765-5 Moustris GP, 2011, INT J MED ROBOT COMP, V7, P375, DOI 10.1002/rcs.408 Orrù G, 2012, NEUROSCI BIOBEHAV R, V36, P1140, DOI 10.1016/j.neubiorev.2012.01.004 Parish SL, 2015, AJIDD-AM J INTELLECT, V120, P166, DOI 10.1352/1944-7558-120.2.166 Pletscher-Frankild S, 2015, METHODS, V74, P83, DOI 10.1016/j.ymeth.2014.11.020 Quang D, 2015, BIOINFORMATICS, V31, P761, DOI 10.1093/bioinformatics/btu703 Sarabadani S, 2020, IEEE T AFFECT COMPUT, V11, P588, DOI 10.1109/TAFFC.2018.2820049 Silver D, 2016, NATURE, V529, P484, DOI 10.1038/nature16961 Song DY, 2019, J KOR ACAD CHILD ADO, V30, P145, DOI 10.5765/jkacap.190027 Stanfield AC, 2008, EUR PSYCHIAT, V23, P289, DOI 10.1016/j.eurpsy.2007.05.006 Sweileh WM, 2016, SPRINGERPLUS, V5, DOI 10.1186/s40064-016-3165-6 Thabtah F, 2019, HEALTH INFORM J, V25, P1739, DOI 10.1177/1460458218796636 Thabtah F, 2019, INFORM HEALTH SOC CA, V44, P278, DOI 10.1080/17538157.2017.1399132 Tick B, 2016, J CHILD PSYCHOL PSYC, V57, P585, DOI 10.1111/jcpp.12499 Vaidyam AN, 2019, CAN J PSYCHIAT, V64, P456, DOI 10.1177/0706743719828977 van Eck NJ, 2010, SCIENTOMETRICS, V84, P523, DOI 10.1007/s11192-009-0146-3 Wallin JA, 2005, BASIC CLIN PHARMACOL, V97, P261, DOI 10.1111/j.1742-7843.2005.pto_139.x Wan GB, 2019, J AUTISM DEV DISORD, V49, P209, DOI 10.1007/s10803-018-3690-y Wei LY, 2017, INFORM SCIENCES, V384, P135, DOI 10.1016/j.ins.2016.06.026 Woodbury-Smith M, 2018, DEV MED CHILD NEUROL, V60, P445, DOI 10.1111/dmcn.13717 Xiong HY, 2015, SCIENCE, V347, DOI 10.1126/science.1254806 Xu K, 2015, PR MACH LEARN RES, V37, P2048 Yang XX, 2019, BMC BIOINFORMATICS, V20, DOI 10.1186/s12859-019-2983-2 Yu KH, 2018, NAT BIOMED ENG, V2, P719, DOI 10.1038/s41551-018-0305-z Zhou J, 2019, NAT GENET, V51, P973, DOI 10.1038/s41588-019-0420-0 Zupic I, 2015, ORGAN RES METHODS, V18, P429, DOI 10.1177/1094428114562629 NR 69 TC 0 Z9 0 U1 9 U2 25 PU SPRINGER PI NEW YORK PA ONE NEW YORK PLAZA, SUITE 4600, NEW YORK, NY, UNITED STATES SN 1046-1310 EI 1936-4733 J9 CURR PSYCHOL JI Curr. Psychol. PD DEC PY 2023 VL 42 IS 35 BP 31317 EP 31332 DI 10.1007/s12144-022-03977-0 EA DEC 2022 PG 16 WC Psychology, Multidisciplinary WE Social Science Citation Index (SSCI) SC Psychology GA EE1X1 UT WOS:000901937100002 DA 2024-09-05 ER PT J AU Kushkowski, JD Shrader, CB Anderson, MH White, RE AF Kushkowski, Jeffrey D. Shrader, Charles B. Anderson, Marc H. White, Robert E. TI Information flows and topic modeling in corporate governance SO JOURNAL OF DOCUMENTATION LA English DT Article DE Corporate governance; Bibliometrics; Citation analysis; Latent Dirichlet allocation; Agency theory; Director; Interdisciplinary ID INTELLECTUAL STRUCTURE; BIBLIOMETRIC ANALYSIS; MANAGEMENT RESEARCH; COCITATION ANALYSIS; CITATION; SCIENCE; FIELD; UNIVERSITY; LOGISTICS; EVOLUTION AB Purpose Multiple disciplines such as finance, management and economics have contributed to governance research over time. However, the full intellectual structure of the governance "field" including the exchange of knowledge across disciplines and the large variety of governance topics remains to be uncovered. To appreciate the breadth of corporate governance research, it is necessary to understand the disciplinary sources from which the research stems. This manuscript focuses on the interdisciplinary underpinnings of corporate governance research. Design/methodology/approach This paper employs bibliometric analysis to trace the evolution of corporate governance using articles included in the ISI Web of Science database between 1990 and 2015. Journals included in these categories encompass a full range of business disciplines and provide evidence of the multi-disciplinary nature of corporate governance. It also uncovers the topics treated by disciplines under the governance umbrella using a machine learning method called latent Dirichtlet allocation (LDA). Findings Corporate governance research deals with a number of strategy-related topics. Unlike strategy topics that reside in a single discipline, corporate governance crosses disciplinary boundaries and includes contributions from accounting, finance, economics, law and management. Our analysis shows that over 80% of corporate governance articles come from outside the field of management. Our LDA solution indicates that the major topics in governance research include corporate governance theory, control of family firms, executive compensation and audit committees. Originality/value The results illustrate that corporate governance is far more interdisciplinary than previously thought. This is an important insight for corporate governance academics and may lead to collaborative research. More importantly, this research illustrates the usefulness of LDA for investigating interdisciplinary fields. This method is easily transferable to other interdisciplinary fields and it provides a powerful alternative to existing bibliometric methods. We suggest a number of topic areas within library and information science where this method may be applied, including collection development, support for interdisciplinary faculty and basic research into emerging interdisciplinary areas. C1 [Kushkowski, Jeffrey D.] Iowa State Univ, Univ Lib, Ames, IA 50011 USA. [Shrader, Charles B.; Anderson, Marc H.; White, Robert E.] Iowa State Univ, Dept Management, Ivy Coll Business, Ames, IA USA. C3 Iowa State University; Iowa State University RP Kushkowski, JD (corresponding author), Iowa State Univ, Univ Lib, Ames, IA 50011 USA. EM kushkows@iastate.edu; cshrader@iastate.edu; mha@iastate.edu; rewhite@iastate.edu RI Anderson, Marc/AAD-5445-2020; Kushkowski, Jeffrey/IYJ-9478-2023 OI Anderson, Marc/0000-0001-7379-0902; Kushkowski, Jeffrey/0000-0002-5331-8149 FU Iowa State University Ivy College of Business FX The authors wish to thank Florence Honore of the University of Wisconsin for help with the early stages of this project and feedback on the manuscript; Kyle Hansen, Manaswi Podduturi and Hope Scheffert of Kingland Systems for their help with the latent Dirichlet allocation analysis; and, Kelly Moore for assistance with data collection. Thanks to the Iowa State University Ivy College of Business and the University Library for financial support of the open access fees. CR Acedo FJ, 2005, INT BUS REV, V14, P619, DOI 10.1016/j.ibusrev.2005.05.003 Acedo FJ, 2006, STRATEGIC MANAGE J, V27, P621, DOI 10.1002/smj.532 Alvesson M, 2014, ORGAN STUD, V35, P967, DOI 10.1177/0170840614530916 [Anonymous], 1997, CORPORATE GOVERNANCE Azar OH, 2008, J ECON MANAGE STRAT, V17, P781, DOI 10.1111/j.1530-9134.2008.00195.x Blei DM, 2012, COMMUN ACM, V55, P77, DOI 10.1145/2133806.2133826 Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993 Brandenburg MD, 2017, COLL RES LIBR, V78, P272, DOI 10.5860/crl.78.3.272 Calabretta G, 2011, J BUS ETHICS, V104, P499, DOI 10.1007/s10551-011-0924-8 Chen H.P., 2010, FINANCE AND CORPORAT Chen S., 2018, LATENT DIRICHLET ALL Chun-Hao C, 2012, APPL ECON, V44, P2827, DOI 10.1080/00036846.2011.566208 CULNAN MJ, 1987, MIS QUART, V11, P341, DOI 10.2307/248680 CULNAN MJ, 1986, MANAGE SCI, V32, P156, DOI 10.1287/mnsc.32.2.156 Delserone LM, 2017, J AGRIC FOOD INF, V18, P373, DOI 10.1080/10496505.2017.1330691 Durisin B, 2010, J PROD INNOVAT MANAG, V27, P437, DOI 10.1111/j.1540-5885.2010.00726.x Durisin B, 2009, CORP GOV-OXFORD, V17, P266, DOI 10.1111/j.1467-8683.2009.00739.x Dyer T, 2017, J ACCOUNT ECON, V64, P221, DOI 10.1016/j.jacceco.2017.07.002 Fernandez-Alles M, 2009, J AM SOC INF SCI TEC, V60, P161, DOI 10.1002/asi.20947 Filatotchev I, 2009, CORP GOV-OXFORD, V17, P257, DOI 10.1111/j.1467-8683.2009.00748.x Georgi C, 2013, INT J LOGIST-RES APP, V16, P522, DOI 10.1080/13675567.2013.846309 Georgi C, 2010, J BUS LOGIST, V31, P63, DOI 10.1002/j.2158-1592.2010.tb00143.x Gundolf K, 2013, J BUS ETHICS, V112, P177, DOI 10.1007/s10551-012-1240-7 Harzing A-W, 2022, Journal Quality List Hult GTM, 2015, J ACAD MARKET SCI, V43, P663, DOI 10.1007/s11747-015-0464-3 Keasey K., 2005, Corporate Governance: Accountability: Enterprise and International Comparisions Koseoglu MA, 2016, BRQ-BUS RES Q, V19, P153, DOI 10.1016/j.brq.2016.02.001 Kushkowski JD, 2012, J BUS FINANC LIBR, V17, P201, DOI 10.1080/08963568.2012.685035 Kushkowski JD, 2013, LIBR RESOUR TECH SER, V57, P51, DOI 10.5860/lrts.57n1.51 Moro S, 2015, EXPERT SYST APPL, V42, P1314, DOI 10.1016/j.eswa.2014.09.024 Mryglod O, 2016, SCIENTOMETRICS, V106, P1151, DOI 10.1007/s11192-015-1820-2 Nerur SP, 2008, STRATEG MANAGE J, V29, P319, DOI 10.1002/smj.659 Niu X, 2012, J AM SOC INF SCI TEC, V63, P336, DOI 10.1002/asi.21669 Podsakoff PM, 2008, J MANAGE, V34, P641, DOI 10.1177/0149206308319533 Pugliese A, 2009, CORP GOV-OXFORD, V17, P292, DOI 10.1111/j.1467-8683.2009.00740.x Ramos-Rodríguez AR, 2004, STRATEGIC MANAGE J, V25, P981, DOI 10.1002/smj.397 Saggese S, 2016, INT J MANAG REV, V18, P417, DOI 10.1111/ijmr.12072 Samiee S, 2012, J ACAD MARKET SCI, V40, P364, DOI 10.1007/s11747-011-0296-8 Schwab A, 2019, ENTREP THEORY PRACT, V43, P843, DOI 10.1177/1042258718760841 Shafique M, 2013, STRATEGIC MANAGE J, V34, P62, DOI 10.1002/smj.2002 SHARPLIN AD, 1985, HUM RELAT, V38, P139, DOI 10.1177/001872678503800204 Shiau WL, 2013, SCIENTOMETRICS, V94, P1317, DOI 10.1007/s11192-012-0807-5 Shleifer A, 1997, J FINANC, V52, P737, DOI 10.1111/j.1540-6261.1997.tb04820.x Sievert C., 2014, P WORKSH INT LANG LE, P63, DOI [10.3115/v1/W14-3110, DOI 10.3115/V1/W14-3110, 10.3115/v1/w14-3110] Sugimoto CR, 2011, J AM SOC INF SCI TEC, V62, P185, DOI 10.1002/asi.21435 Taskin Z, 2015, SCIENTOMETRICS, V103, P1003, DOI 10.1007/s11192-015-1576-8 Tihanyi L, 2014, ACAD MANAGE J, V57, P1535, DOI 10.5465/amj.2014.4006 van Ees H, 2009, CORP GOV-OXFORD, V17, P307, DOI 10.1111/j.1467-8683.2009.00741.x Wellings S, 2019, J LIBR INF SCI, V51, P789, DOI 10.1177/0961000617742466 White HD, 1998, J AM SOC INFORM SCI, V49, P327, DOI 10.1002/(SICI)1097-4571(19980401)49:4<327::AID-ASI4>3.0.CO;2-W Williams CJ, 2013, J AM SOC INF SCI TEC, V64, P1768, DOI 10.1002/asi.22874 Yoshikawa T, 2009, CORP GOV-OXFORD, V17, P388, DOI 10.1111/j.1467-8683.2009.00745.x Zahra SA, 2009, J MANAGE STUD, V46, P1059, DOI 10.1111/j.1467-6486.2009.00848.x Zupic I, 2015, ORGAN RES METHODS, V18, P429, DOI 10.1177/1094428114562629 NR 54 TC 6 Z9 7 U1 3 U2 57 PU EMERALD GROUP PUBLISHING LTD PI BINGLEY PA HOWARD HOUSE, WAGON LANE, BINGLEY BD16 1WA, W YORKSHIRE, ENGLAND SN 0022-0418 EI 1758-7379 J9 J DOC JI J. Doc. PD OCT 5 PY 2020 VL 76 IS 6 BP 1313 EP 1339 DI 10.1108/JD-10-2019-0207 EA JUN 2020 PG 27 WC Computer Science, Information Systems; Information Science & Library Science WE Social Science Citation Index (SSCI) SC Computer Science; Information Science & Library Science GA PB2EL UT WOS:000541942200001 OA Green Submitted, hybrid DA 2024-09-05 ER PT J AU Macri, C Bacchi, S Teoh, SC Lim, WY Lam, L Patel, S Slee, M Casson, R Chan, WG AF Macri, Carmelo Bacchi, Stephen Teoh, Sheng Chieh Lim, Wan Yin Lam, Lydia Patel, Sandy Slee, Mark Casson, Robert Chan, WengOnn TI Evaluating the Ability of Open-Source Artificial Intelligence to Predict Accepting-Journal Impact Factor and Eigenfactor Score Using Academic Article Abstracts: Cross-sectional Machine Learning Analysis SO JOURNAL OF MEDICAL INTERNET RESEARCH LA English DT Article DE journal impact factor; artificial intelligence; ophthalmology; radiology; neurology; eye; neuroscience; impact factor; research quality; journal recommender; publish; open source; predict; machine learning; academic journal; scientometric; scholarly literature ID AUTHORS AB Background: Strategies to improve the selection of appropriate target journals may reduce delays in disseminating research results. Machine learning is increasingly used in content-based recommender algorithms to guide journal submissions for academic articles. Objective: We sought to evaluate the performance of open-source artificial intelligence to predict the impact factor or Eigenfactor score tertile using academic article abstracts. Methods: PubMed-indexed articles published between 2016 and 2021 were identified with the Medical Subject Headings (MeSH) terms "ophthalmology," "radiology," and "neurology." Journals, titles, abstracts, author lists, and MeSH terms were collected. Journal impact factor and Eigenfactor scores were sourced from the 2020 Clarivate Journal Citation Report. The journals included in the study were allocated percentile ranks based on impact factor and Eigenfactor scores, compared with other journals that released publications in the same year. All abstracts were preprocessed, which included the removal of the abstract structure, and combined with titles, authors, and MeSH terms as a single input. The input data underwent preprocessing with the inbuilt ktrain Bidirectional Encoder Representations from Transformers (BERT) preprocessing library before analysis with BERT. Before use for logistic regression and XGBoost models, the input data underwent punctuation removal, negation detection, stemming, and conversion into a term frequency-inverse document frequency array. Following this preprocessing, data were randomly split into training and testing data sets with a 3:1 train:test ratio. Models were developed to predict whether a given article would be published in a first, second, or third tertile journal (0-33rd centile, 34th-66th centile, or 67th-100th centile), as ranked either by impact factor or Eigenfactor score. BERT, XGBoost, and logistic regression models were developed on the training data set before evaluation on the hold-out test data set. The primary outcome was overall classification accuracy for the best-performing model in the prediction of accepting journal impact factor tertile. Results: There were 10,813 articles from 382 unique journals. The median impact factor and Eigenfactor score were 2.117 (IQR 1.102-2.622) and 0.00247 (IQR 0.00105-0.03), respectively. The BERT model achieved the highest impact factor tertile classification accuracy of 75.0%, followed by an accuracy of 71.6% for XGBoost and 65.4% for logistic regression. Similarly, BERT achieved the highest Eigenfactor score tertile classification accuracy of 73.6%, followed by an accuracy of 71.8% for XGBoost and 65.3% for logistic regression. Conclusions: Open-source artificial intelligence can predict the impact factor and Eigenfactor score of accepting peer-reviewed journals. Further studies are required to examine the effect on publication success and the time-to-publication of such recommender systems. C1 [Macri, Carmelo] Univ Adelaide, Discipline Ophthalmol & Visual Sci, Adelaide, Australia. [Bacchi, Stephen; Teoh, Sheng Chieh; Lam, Lydia; Casson, Robert; Chan, WengOnn] Royal Adelaide Hosp, Dept Ophthalmol, Adelaide, Australia. [Lim, Wan Yin; Patel, Sandy] Royal Adelaide Hosp, Dept Radiol, Adelaide, Australia. [Slee, Mark] Flinders Univ S Australia, Coll Med & Publ Hlth, Adelaide, Australia. [Macri, Carmelo] Univ Adelaide, Discipline Ophthalmol & Visual Sci, Adelaide 5000, Australia. C3 University of Adelaide; Royal Adelaide Hospital; Royal Adelaide Hospital; Flinders University South Australia; University of Adelaide RP Macri, C (corresponding author), Univ Adelaide, Discipline Ophthalmol & Visual Sci, Adelaide 5000, Australia. EM carmelo.macri@adelaide.edu.au RI ; Slee, Mark/J-4731-2015 OI Teoh, Ian/0000-0002-8562-6277; Lam, Lydia/0000-0002-1484-5202; Slee, Mark/0000-0003-4323-2453; Macri, Carmelo/0000-0002-1110-3780; Bacchi, Stephen/0000-0001-5130-8628 CR Abadi M., 2016, PROC USENIX OSDI Abraham A, 2014, FRONT NEUROINFORM, V8, DOI 10.3389/fninf.2014.00014 Adomavicius G, 2005, IEEE T KNOWL DATA EN, V17, P734, DOI 10.1109/TKDE.2005.99 [Anonymous], 2007, College and Research Libraries News, DOI DOI 10.5860/CRLN.68.5.7804 [Anonymous], J SUGGESTER [Anonymous], 2022, CHOOSE TARGET J [Anonymous], J FINDER Bacchi S, 2022, CLIN EXP OPHTHALMOL, V50, P687, DOI 10.1111/ceo.14087 Bergstrom CT, 2008, J NEUROSCI, V28, P11433, DOI 10.1523/JNEUROSCI.0003-08.2008 Bird S., 2009, Natural language processing with Python: analyzing text with the natural lan-guage toolkit Chen TQ, 2016, Arxiv, DOI [arXiv:1603.02754, 10.48550/arXiv.1603.02754] Nguyen D, 2021, LECT NOTES COMPUT SC, V12607, P563, DOI 10.1007/978-3-030-67731-2_41 Errami M, 2007, NUCLEIC ACIDS RES, V35, pW12, DOI 10.1093/nar/gkm221 Feng XY, 2019, J MED INTERNET RES, V21, DOI 10.2196/12957 Franceschet M, 2010, INFORM PROCESS MANAG, V46, P555, DOI 10.1016/j.ipm.2010.01.001 Gao J, 2016, J OPHTHALMOL, V2016, DOI 10.1155/2016/6392658 GARFIELD E, 1972, SCIENCE, V178, P471, DOI 10.1126/science.178.4060.471 Gasparyan AY, 2013, J KOREAN MED SCI, V28, P1117, DOI 10.3346/jkms.2013.28.8.1117 Huynh Son T., 2020, Trends in Artificial Intelligence Theory and Applications. Artificial Intelligence Practices. 33rd International Conference on Industrial, Engineering and Other Applications of Applied Intelligent Systems, IEA/AIE 2020. Proceedings. Lecture Notes in Artificial Intelligence. Subseries of Lecture Notes in Computer Science (LNAI 12144), P186, DOI 10.1007/978-3-030-55789-8_17 IEEE Publication Recommender, US KOCHEN M, 1974, INFORM STORAGE RET, V10, P197, DOI 10.1016/0020-0271(74)90059-X Kubak MP, 2016, ANN TRANSL MED, V4, DOI 10.21037/atm.2016.05.55 Liu C, 2022, NEUROCOMPUTING, V508, P242, DOI 10.1016/j.neucom.2022.08.043 Maiya AS., 2022, Journal of Machine Learning Research, V23, P1 Manuscript Matcher, MATCH UNPUB Nguyen DH, 2022, EXPERT SYST APPL, V202, DOI 10.1016/j.eswa.2022.117096 Paine CET, 2018, ECOL EVOL, V8, P9566, DOI 10.1002/ece3.4467 Scherer RW, 2018, COCHRANE DB SYST REV, DOI 10.1002/14651858.MR000005.pub4 Scherer RW, 2015, J CLIN EPIDEMIOL, V68, P803, DOI 10.1016/j.jclinepi.2015.01.027 Schuemie MJ, 2008, BIOINFORMATICS, V24, P727, DOI 10.1093/bioinformatics/btn006 Taylor & Francis Author Services, US Villaseñor-Almaraz M, 2019, RADIOL MED, V124, P495, DOI 10.1007/s11547-019-00996-z Wang DH, 2018, KNOWL-BASED SYST, V157, P1, DOI 10.1016/j.knosys.2018.05.001 NR 33 TC 0 Z9 0 U1 5 U2 14 PU JMIR PUBLICATIONS, INC PI TORONTO PA 130 QUEENS QUAY East, Unit 1100, TORONTO, ON M5A 0P6, CANADA SN 1438-8871 J9 J MED INTERNET RES JI J. Med. Internet Res. PD MAR 7 PY 2023 VL 25 AR e42789 DI 10.2196/42789 PG 7 WC Health Care Sciences & Services; Medical Informatics WE Science Citation Index Expanded (SCI-EXPANDED) SC Health Care Sciences & Services; Medical Informatics GA I9QU6 UT WOS:001006062500001 PM 36881455 OA Green Published, gold DA 2024-09-05 ER PT C AU Di Rosa, E Durante, A AF Di Rosa, Emanuele Durante, Alberto BE Esposito, F Basili, R Ferilli, S Lisi, FA TI Evaluating Industrial and Research Sentiment Analysis Engines on Multiple Sources SO AI*IA 2017 ADVANCES IN ARTIFICIAL INTELLIGENCE SE Lecture Notes in Artificial Intelligence LA English DT Proceedings Paper CT 16th International Conference of the Italian Association for Artificial Intelligence (AI*IA) CY NOV 14-17, 2017 CL Bari, ITALY DE Sentiment analysis; Natural language processing; Machine learning; Experimental evaluation; Industrial and research tools comparison; Cross-domain sentiment classification ID CLASSIFICATION AB Sentiment Analysis has a fundamental role in analyzing users opinions in all kinds of textual sources. Computing accurately sentiment expressed in huge amount of textual data is a key task largely required by the market, and nowadays industrial engines make available ready-to-use APIs for sentiment analysis-related tasks. However, building sentiment engines showing high accuracy on structurally different textual sources (e.g. reviews, tweets, blogs, etc.) is not a trivial task. Papers about cross-source evaluation lack of a comparison with industrial engines, which are instead specifically designed for dealing with multiple sources. In this paper, we compare the results of research and industrial engines on an extensive experimental evaluation, considering the document-level polarity detection task performed on different textual sources: tweets, apps reviews and general products reviews, in both English and Italian. The experimental evaluation results help the reader to quantify the performance gap between industrial and research sentiment engines when both are tested on heterogeneous textual sources and on different languages (English/Italian). Finally, we present the results of our multi-source solution X2Check. Considering an overall cross-source average F-score on all of the results, X2Check shows a performance that is 9.1% and 5.1% higher than Google CNL, respectively on Italian and English benchmarks. Compared to the research engines, X2Check shows a F-score that is always higher than tools not specifically trained on the test set under evaluation; it is lower at most of 3.4% in Italian and 11.6% on English benchmarks, compared to the best research tools specifically trained on the target source. C1 [Di Rosa, Emanuele] Finsa Spa, Artificial Intelligence, Genoa, Italy. [Durante, Alberto] Finsa Spa, Genoa, Italy. RP Di Rosa, E (corresponding author), Finsa Spa, Artificial Intelligence, Genoa, Italy. EM emanuele.dirosa@finsa.it; alberto.durante@finsa.it RI Di Rosa, Emanuele/AAP-3475-2021 CR [Anonymous], 2016, P ACM S APPL COMP 20 Araújo M, 2014, WWW'14 COMPANION: PROCEEDINGS OF THE 23RD INTERNATIONAL CONFERENCE ON WORLD WIDE WEB, P75, DOI 10.1145/2567948.2577013 Barbieri F., 2016, P CLIC IT 2016 EVALI Blitzer J., 2007, P ACL 2007 Bo Pang, 2008, Foundations and Trends in Information Retrieval, V2, P1, DOI 10.1561/1500000001 Bollegala D, 2016, IEEE T KNOWL DATA EN, V28, P398, DOI 10.1109/TKDE.2015.2475761 Di Rosa E, 2016, P INT WORKSH SOC MED, P8 Dragoni M., 2016, Revised Selected Papers Heredia B, 2016, 2016 IEEE 2ND INTERNATIONAL CONFERENCE ON COLLABORATION AND INTERNET COMPUTING (IEEE CIC), P285, DOI [10.1109/CIC.2016.44, 10.1109/CIC.2016.046] Heredia B, 2016, PROCEEDINGS OF 2016 IEEE 17TH INTERNATIONAL CONFERENCE ON INFORMATION REUSE AND INTEGRATION (IEEE IRI), P160, DOI 10.1109/IRI.2016.28 Li F, 2014, AAAI CONF ARTIF INTE, P1636 Liu B., 2012, SENTIMENT ANAL OPINI Mejova Y, 2012, P ICWSM 2012 Nakov P., 2016, P SEMEVAL 2016 ASS C Pan SinnoJialin., 2010, P 19 INT C WORLD WID, P751 Rosenthal S., 2017, P SEMEVAL 2017 ASS C Täckström O, 2011, LECT NOTES COMPUT SC, V6611, P368, DOI 10.1007/978-3-642-20161-5_37 Tackstrom Oscar., 2011, ACL, P569 Thelwall M, 2010, J AM SOC INF SCI TEC, V61, P2544, DOI 10.1002/asi.21416 Wilson T, 2009, COMPUT LINGUIST, V35, P399, DOI 10.1162/coli.08-012-R1-06-90 Wu F., 2016, P ACL 2016 Wu FZ, 2017, INFORM FUSION, V35, P26, DOI 10.1016/j.inffus.2016.09.001 NR 22 TC 1 Z9 1 U1 0 U2 4 PU SPRINGER INTERNATIONAL PUBLISHING AG PI CHAM PA GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND SN 0302-9743 EI 1611-3349 BN 978-3-319-70169-1; 978-3-319-70168-4 J9 LECT NOTES ARTIF INT PY 2017 VL 10640 BP 141 EP 155 DI 10.1007/978-3-319-70169-1_11 PG 15 WC Computer Science, Artificial Intelligence WE Conference Proceedings Citation Index - Science (CPCI-S) SC Computer Science GA BL5GC UT WOS:000451442200011 DA 2024-09-05 ER PT C AU Ochi, M Shiro, M Mori, J Sakata, I AF Ochi, Masanao Shiro, Masanori Mori, Jun'ichiro Sakata, Ichiro BE Mayo, FD Marchiori, M Filipe, J TI Which Is More Helpful in Finding Scientific Papers to Be Top-cited in the Future: Content or Citations? Case Analysis in the Field of Solar Cells 2009 SO PROCEEDINGS OF THE 17TH INTERNATIONAL CONFERENCE ON WEB INFORMATION SYSTEMS AND TECHNOLOGIES (WEBIST) LA English DT Proceedings Paper CT 17th International Conference on Web Information Systems and Technologies (WEBIST) CY OCT 26-28, 2021 CL ELECTR NETWORK DE Citation Analysis; Scientific Impact; Graph Neural Network; BERT ID H-INDEX AB With the increasing digital publication of scientific literature and the fragmentation of research, it is becoming more and more difficult to find promising papers. Of course, we can examine the contents of a large number of papers, but it is easier to look at the references cited. Therefore, we want to know whether a paper is promising or not based only on its content and citation information. This paper proposes a method of extracting and clustering the content and citations of papers as distributed representations and comparing them using the same criteria. This method clarifies whether the future promising papers will be biased toward content or citations. We evaluated the proposed method by comparing the distribution of the papers that would become the top-cited papers three years later among the papers published in 2009. As a result, we found that the citation information is 39.9% easier to identify the papers that will be the top-cited papers in the future than the content information. This analysis will provide a basis for developing more general models for early prediction of the impact of various scientific researches and trends in science and technology. C1 [Ochi, Masanao; Mori, Jun'ichiro; Sakata, Ichiro] Univ Tokyo, Grad Sch Engn, Dept Technol Management Innovat, Bunkyo Ku, Hongo 7-3-1, Tokyo, Japan. [Shiro, Masanori] Natl Inst Adv Ind Sci & Technol, HIRI, Umezono 1-1-1, Tsukuba, Ibaraki, Japan. C3 University of Tokyo; National Institute of Advanced Industrial Science & Technology (AIST) RP Ochi, M (corresponding author), Univ Tokyo, Grad Sch Engn, Dept Technol Management Innovat, Bunkyo Ku, Hongo 7-3-1, Tokyo, Japan. RI Ochi, Masanao/KND-7312-2024 OI Ochi, Masanao/0000-0002-6661-6735; Mori, Junichiro/0000-0002-9787-3857 FU New Energy and Industrial Technology Development Organization (NEDO) [JPNP20006] FX This article is based on results obtained from a project, JPNP20006, commissioned by the New Energy and Industrial Technology Development Organization (NEDO). CR Acuna DE, 2012, NATURE, V489, P201, DOI 10.1038/489201a Ayaz S, 2018, SCIENTOMETRICS, V114, P993, DOI 10.1007/s11192-017-2618-1 Bai XM, 2019, J INFORMETR, V13, P407, DOI 10.1016/j.joi.2019.01.010 Bowman S. R., 2015, P 2015 C EMPIRICAL M Cao XY, 2016, J INFORMETR, V10, P471, DOI 10.1016/j.joi.2016.02.006 Cohan Arman, 2020, ACL GARFIELD E, 1963, AM DOC, V14, P195, DOI 10.1002/asi.5090140304 Hirsch JE, 2005, P NATL ACAD SCI USA, V102, P16569, DOI 10.1073/pnas.0507655102 Hu W., 2020, ICLR McInnes L., 2018, J OPEN SOUR SOFTWARE, V3, DOI [10.21105/joss.00861, DOI 10.21105/JOSS.00861] Miró O, 2017, EMERG MED J, V34, P175, DOI 10.1136/emermed-2016-205893 Reimers N, 2019, 57TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2019), P567 Sasaki H, 2016, J SUSTAIN DEV ENERGY, V4, P418, DOI 10.13044/j.sdewes.2016.04.0032 Schreiber M, 2013, J INFORMETR, V7, P325, DOI 10.1016/j.joi.2013.01.001 Stegehuis C, 2015, J INFORMETR, V9, P642, DOI 10.1016/j.joi.2015.06.005 Zhang MH, 2018, ADV NEUR IN, V31 NR 16 TC 0 Z9 0 U1 0 U2 1 PU SCITEPRESS PI SETUBAL PA AV D MANUELL, 27A 2 ESQ, SETUBAL, 2910-595, PORTUGAL BN 978-989-758-536-4 PY 2021 BP 360 EP 364 DI 10.5220/0010689100003058 PG 5 WC Computer Science, Information Systems; Telecommunications WE Conference Proceedings Citation Index - Science (CPCI-S) SC Computer Science; Telecommunications GA BT0ZP UT WOS:000795868100038 OA hybrid DA 2024-09-05 ER PT J AU Thelwall, M Kousha, K Wilson, P Makita, M Abdoli, M Stuart, E Levitt, J Knoth, P Cancellieri, M AF Thelwall, Mike Kousha, Kayvan Wilson, Paul Makita, Meiko Abdoli, Mahshid Stuart, Emma Levitt, Jonathan Knoth, Petr Cancellieri, Matteo TI Predicting article quality scores with machine learning: The UK Research Excellence Framework SO QUANTITATIVE SCIENCE STUDIES LA English DT Article DE artificial intelligence; bibliometrics; citation analysis; machine learning; scientometrics ID RESEARCH COLLABORATION; CITATION COUNTS; NEURAL-NETWORK; IMPACT; AUTHORS; BIAS; PERFORMANCE; INDICATOR; FEATURES AB National research evaluation initiatives and incentive schemes choose between simplistic quantitative indicators and time-consuming peer/expert review, sometimes supported by bibliometrics. Here we assess whether machine learning could provide a third alternative, estimating article quality using more multiple bibliometric and metadata inputs. We investigated this using provisional three-level REF2021 peer review scores for 84,966 articles submitted to the U.K. Research Excellence Framework 2021, matching a Scopus record 2014-18 and with a substantial abstract. We found that accuracy is highest in the medical and physical sciences Units of Assessment (UoAs) and economics, reaching 42% above the baseline (72% overall) in the best case. This is based on 1,000 bibliometric inputs and half of the articles used for training in each UoA. Prediction accuracies above the baseline for the social science, mathematics, engineering, arts, and humanities UoAs were much lower or close to zero. The Random Forest Classifier (standard or ordinal) and Extreme Gradient Boosting Classifier algorithms performed best from the 32 tested. Accuracy was lower if UoAs were merged or replaced by Scopus broad categories. We increased accuracy with an active learning strategy and by selecting articles with higher prediction probabilities, but this substantially reduced the number of scores predicted. C1 [Thelwall, Mike; Kousha, Kayvan; Wilson, Paul; Makita, Meiko; Abdoli, Mahshid; Stuart, Emma; Levitt, Jonathan] Univ Wolverhampton, Stat Cybermetr & Res Evaluat Grp, Wolverhampton, England. [Knoth, Petr; Cancellieri, Matteo] Open Univ, Knowledge Media Inst, Milton Keynes, England. C3 University of Wolverhampton; Open University - UK RP Thelwall, M (corresponding author), Univ Wolverhampton, Stat Cybermetr & Res Evaluat Grp, Wolverhampton, England. EM m.thelwall@wlv.ac.uk RI Thelwall, Mike/JDV-4700-2023 OI Thelwall, Mike/0000-0001-6065-205X; Wilson, Paul/0000-0002-1265-543X; Cancellieri, Matteo/0000-0002-9558-9772; Kousha, Kayvan/0000-0003-4827-971X; Abdoli, Mahshid/0000-0001-9251-5391 FU Scottish Funding Council; Research England; Higher Education Funding Council for Wales; Department for the Economy, Northern Ireland; Future Research Assessment Programme FX This study was funded by Research England, Scottish Funding Council, Higher Education Funding Council for Wales, and Department for the Economy, Northern Ireland as part of the Future Research Assessment Programme (https://www.jisc.ac.uk/future-research-assessment-programme). The content is solely the responsibility of the authors and does not necessarily represent the official views of the funders. CR Abramo G, 2014, J INFORMETR, V8, P89, DOI 10.1016/j.joi.2013.10.011 Abrishami A, 2019, J INFORMETR, V13, P485, DOI 10.1016/j.joi.2019.02.011 Akella AP, 2021, J INFORMETR, V15, DOI 10.1016/j.joi.2020.101128 Beltagy I, 2019, 2019 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING AND THE 9TH INTERNATIONAL JOINT CONFERENCE ON NATURAL LANGUAGE PROCESSING (EMNLP-IJCNLP 2019), P3615 Bol T, 2018, P NATL ACAD SCI USA, V115, P4887, DOI 10.1073/pnas.1719557115 Bonaccorsi A., 2020, Scholarly AssessmentReports, V2, P1, DOI [10.29024/sar.28, DOI 10.29024/SAR.28] Buckle R.A., 2019, N. Z. Econ. Pap., V53, P144, DOI [10.1080/00779954.2018.1429486, DOI 10.1080/00779954.2018.1429486] Chen JP, 2015, PROCEEDINGS OF 2015 IEEE 14TH INTERNATIONAL CONFERENCE ON COGNITIVE INFORMATICS & COGNITIVE COMPUTING (ICCI*CC), P434, DOI 10.1109/ICCI-CC.2015.7259421 Chen YT, 2022, SCIENTOMETRICS, V127, P3317, DOI 10.1007/s11192-022-04371-0 COARA, 2022, Agreement on reforming research assessment de Moya-Anegon F, 2018, J INFORMETR, V12, P1251, DOI 10.1016/j.joi.2018.10.004 Didegah F, 2013, J INFORMETR, V7, P861, DOI 10.1016/j.joi.2013.08.006 Fairclough R, 2022, LEARN PUBL, V35, P241, DOI 10.1002/leap.1417 Fox CW, 2019, ECOL EVOL, V9, P3599, DOI 10.1002/ece3.4993 Franceschini F, 2017, J INFORMETR, V11, P337, DOI 10.1016/j.joi.2017.02.005 Fu LD, 2010, SCIENTOMETRICS, V85, P257, DOI 10.1007/s11192-010-0237-1 Gershoni A, 2018, J AAPOS, V22, P394, DOI 10.1016/j.jaapos.2018.03.012 Haddawy P, 2016, J INFORMETR, V10, P162, DOI 10.1016/j.joi.2015.12.005 Haffar S, 2019, MAYO CLIN PROC, V94, P670, DOI 10.1016/j.mayocp.2018.09.004 HEFCE, 2015, METR TID CORR AN REF Hemlin S., 2009, Journal of Psychology of Science and Technology, V2, P5, DOI [10.1891/1939-7054.2.1.5, DOI 10.1891/1939-7054.2.1.5] Herrera AJ, 1999, NATURE, V397, P467, DOI 10.1038/17194 Hicks D, 2015, NATURE, V520, P429, DOI 10.1038/520429a Hinze S, 2019, SPRINGER HBK, P465, DOI 10.1007/978-3-030-02511-3_18 Hu YH, 2020, J INFORMETR, V14, DOI 10.1016/j.joi.2019.101004 Jackson JL, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0022475 Jones S, 2019, ACCOUNT FINANC, V59, P2509, DOI 10.1111/acfi.12584 Jukola Saana, 2017, Perspectives on Science, V25, P124, DOI 10.1162/POSC_a_00237 KANG DY, 2018, P 2018 C N AM CHAPT, V1, P1647, DOI DOI 10.18653/V1/N18-1149 Kitayama S, 2017, J PERS SOC PSYCHOL, V112, P357, DOI 10.1037/pspa0000077 Kleminski R, 2021, J INFORMETR, V15, DOI 10.1016/j.joi.2021.101200 Knoth Petr, 2012, D-Lib Magazine, V18, DOI 10.1045/november2012-knoth Kousha K., 2022, ARXIV Kravitz RL, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0010072 Larivière V, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0162709 Lee CJ, 2013, J AM SOC INF SCI TEC, V64, P2, DOI 10.1002/asi.22784 Levitt JM, 2011, INFORM PROCESS MANAG, V47, P300, DOI 10.1016/j.ipm.2010.09.005 Li J., 2020, P 1 WORKSHOP SCHOLAR, DOI 10.18653/v1/2020.sdp-1.14 Li MJ, 2019, IEEE SYS MAN CYBERN, P1172, DOI 10.1109/SMC.2019.8913961 Li SQ, 2019, 2019 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING AND THE 9TH INTERNATIONAL JOINT CONFERENCE ON NATURAL LANGUAGE PROCESSING (EMNLP-IJCNLP 2019), P4914 Mattsson P, 2011, SCIENTOMETRICS, V87, P99, DOI 10.1007/s11192-010-0310-9 Medoff MH, 2003, SOUTH ECON J, V70, P425, DOI 10.2307/3648979 Morgan R, 2018, CAN MED ASSOC J, V190, pE487, DOI 10.1503/cmaj.180188 PLOS, 2022, CRIT PUBL Prins A, 2016, 21ST INTERNATIONAL CONFERENCE ON SCIENCE AND TECHNOLOGY INDICATORS (STI 2016), P965 Qian YF, 2017, SCIENTOMETRICS, V110, P1351, DOI 10.1007/s11192-016-2235-4 REF2021, 2019, IND REV GUID SUBM 20 Ross JS, 2006, JAMA-J AM MED ASSOC, V295, P1675, DOI 10.1001/jama.295.14.1675 Settles B., 2011, ACT LEARN EXP DES WO, V16, P1 Tan J., 2020, P 58 ANN M ASS COMP, P6004, DOI DOI 10.18653/V1/2020.ACL-MAIN.534 Tennant JP, 2020, RES INTEGR PEER REV, V5, DOI 10.1186/s41073-020-00092-1 Thelwall M., 2022, arXiv Thelwall M, 2021, LIBR INFORM SCI RES, V43, DOI 10.1016/j.lisr.2021.101094 Thelwall M, 2021, J INF SCI, V47, P809, DOI 10.1177/0165551520938678 Thelwall M, 2017, J INFORMETR, V11, P128, DOI 10.1016/j.joi.2016.12.002 Thelwall M, 2016, J ASSOC INF SCI TECH, V67, P1233, DOI 10.1002/asi.23474 Thelwall M, 2016, J INFORMETR, V10, P48, DOI 10.1016/j.joi.2015.11.007 Thelwall M, 2015, J INFORMETR, V9, P263, DOI 10.1016/j.joi.2015.02.004 Thelwell M, 2022, QUANT SCI STUD, V3, P208, DOI 10.1162/qss_a_00185 Traag VA, 2019, PALGR COMMUN, V5, DOI 10.1057/s41599-019-0233-x van den Besselaar P, 2009, RES EVALUAT, V18, P273, DOI 10.3152/095820209X475360 van Wesel M, 2014, SCIENTOMETRICS, V98, P1601, DOI 10.1007/s11192-013-1154-x Wagner CS, 2019, RES POLICY, V48, P1260, DOI 10.1016/j.respol.2019.01.002 Wen JQ, 2020, IEEE INT CONF ELECTR, P303, DOI 10.1109/iceiec49280.2020.9152330 Wessely S, 1998, LANCET, V352, P301, DOI 10.1016/S0140-6736(97)11129-1 Whitley R., 2000, The Intellectual and Social Organization of the Sciences Wilsdon J., 2016, The metric tide: Independent review of the role of metrics in research assessment and management, DOI DOI 10.4135/9781473978782 Xu JG, 2019, IEEE ACCESS, V7, P92248, DOI 10.1109/ACCESS.2019.2927011 Yuan WZ, 2022, J ARTIF INTELL RES, V75, P171 Zhao QH, 2022, J INFORMETR, V16, DOI 10.1016/j.joi.2021.101235 Zhongqi Su, 2020, 2020 Proceedings of Asia-Pacific Conference on Image Processing, Electronics and Computers (IPEC), P101, DOI 10.1109/IPEC49694.2020.9114959 Zhu XP, 2018, INT CON ADV INFO NET, P534, DOI 10.1109/AINA.2018.00084 NR 72 TC 6 Z9 7 U1 7 U2 13 PU MIT PRESS PI CAMBRIDGE PA ONE ROGERS ST, CAMBRIDGE, MA 02142-1209 USA EI 2641-3337 J9 QUANT SCI STUD JI Quant. Sci. Stud. PD MAY 1 PY 2023 VL 4 IS 2 BP 547 EP 573 DI 10.1162/qss_a_00258 PG 27 WC Information Science & Library Science WE Emerging Sources Citation Index (ESCI) SC Information Science & Library Science GA K5CJ2 UT WOS:001016613900013 OA Green Accepted, Green Submitted, gold DA 2024-09-05 ER PT C AU Zeng, LQ Hu, H Han, QW Ye, L Lei, Y AF Zeng, Lingqiu Hu, Han Han, Qingwen Ye, Lei Lei, Yu GP IEEE TI Research on Task Offloading and Typical Application Based on Deep Reinforcement Learning and Device-Edge-Cloud Collaboration SO 2024 AUSTRALIAN & NEW ZEALAND CONTROL CONFERENCE, ANZCC SE Australian and New Zealand Control Conference LA English DT Proceedings Paper CT Australian and New Zealand Control Conference (ANZCC) CY FEB 01-02, 2024 CL Gold Coast, AUSTRALIA AB The ever evolving intelligent transportation systems may be able to provide low latency and high-quality service for intelligent connected vehicles (ICVs) on the basis of device-edge-cloud architecture. To match the requirement of vehicle-oriented task computing, the task offloading technology has received extensive attention, while making correct and fast offloading decisions to improve highly dynamic vehicular users' experience is still a considerable challenge. In this paper, we study a device-edge-cloud architecture, where tasks from vehicles can be partially offloaded with a dynamically offloading proportion. To deal with this problem, we firstly introduce SPSO (serial particle swarm optimization) algorithm to search optimal connected MEC (Multi-Access Edge Computing) node. Then we further design a novel offloading strategy based on the deep Q network (DQN), prioritized experience replay based double deep Q-learning network (PERDDQN), which considers priority weight of the sample and sampling probability in loss function definition. A typical complex task, bus remote takeover, is selected to verify the performance of proposed approach. Simulation results show that PERDDQN has lower system cost, faster convergence speed and higher task success rate than the other comparison algorithms. C1 [Zeng, Lingqiu; Hu, Han] Chongqing Univ, Coll Comp Sci, Chongqing 400044, Peoples R China. [Han, Qingwen; Ye, Lei] Chongqing Univ, Sch Microelect & Commun Engn, Chongqing 400044, Peoples R China. [Lei, Yu] Chongqing Univ, Coll Mech & Vehicle Engn, Chongqing 400044, Peoples R China. C3 Chongqing University; Chongqing University; Chongqing University RP Zeng, LQ (corresponding author), Chongqing Univ, Coll Comp Sci, Chongqing 400044, Peoples R China. EM zenglq@cqu.edu.cn; 20174328@cqu.edu.cn; hqw@cqu.edu.cn; Yelei@cqu.edu.cn; leiyyu@cqu.edu.cn FU special key project of Chongqing Technology Innovation and Application Development [cstc2021jscx-gksbX0057]; special major project of Chongqing Technology Innovation and Application Development [CSTB2022TIAD-STX0003] FX This research is supported by the special key project of Chongqing Technology Innovation and Application Development under Grant No.cstc2021jscx-gksbX0057, and the special major project of Chongqing Technology Innovation and Application Development under Grant No.CSTB2022TIAD-STX0003. CR Boukerche Azzedine, 2020, ACM Comput. Surv., V6 Chen Z, 2020, EURASIP J WIREL COMM, V2020, DOI 10.1186/s13638-020-01801-6 Dang XC, 2022, ELECTRONICS-SWITZ, V11, DOI 10.3390/electronics11152326 Lin QZ, 2018, IEEE T EVOLUT COMPUT, V22, P32, DOI 10.1109/TEVC.2016.2631279 Liu JS, 2022, IEEE INTERNET THINGS, V9, P8315, DOI 10.1109/JIOT.2022.3155667 Maan U, 2021, AD HOC NETW, V120, DOI 10.1016/j.adhoc.2021.102565 Maleki H, 2021, SIU, P1 Shi JM, 2020, IEEE WCNC, DOI 10.1109/wcnc45663.2020.9120816 Taleb T, 2013, IEEE GLOB COMM CONF, P1291, DOI 10.1109/GLOCOM.2013.6831252 Wang B, 2022, PEERJ COMPUT SCI, V8, DOI 10.7717/peerj-cs.893 Zeng L., 2020, Mobile Information Systems, V2020, P1 Zhang WW, 2013, IEEE T WIREL COMMUN, V12, P4569, DOI 10.1109/TWC.2013.072513.121842 NR 12 TC 0 Z9 0 U1 3 U2 3 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA SN 2767-7230 EI 2767-7257 BN 979-8-3503-1497-7 J9 AUST N Z C CONF PY 2024 BP 13 EP 18 DI 10.1109/ANZCC59813.2024.10432815 PG 6 WC Automation & Control Systems WE Conference Proceedings Citation Index - Science (CPCI-S) SC Automation & Control Systems GA BW6GM UT WOS:001173666600003 DA 2024-09-05 ER PT J AU Lou, TF Hung, WH AF Lou, Ta-Feng Hung, Wei-Hsi TI Revival of Classical Algorithms: A Bibliometric Study on the Trends of Neural Networks and Genetic Algorithms SO SYMMETRY-BASEL LA English DT Article DE algorithm; neural network; artificial neural network; genetic algorithm; bibliometric; artificial intelligence; AI; Lotka's law ID LOTKA LAW AB The purpose of our bibliometric research was to capture and analyze the trends of two types of well-known classical artificial intelligence (AI) algorithms: neural networks (NNs) and genetic algorithms (GAs). Symmetry is a very popular international and interdisciplinary scientific journal that cover six major research subjects of mathematics, computer science, engineering science, physics, biology, and chemistry which are all related to our research on classical AI algorithms; therefore, we referred to the most innovative research articles of classical AI algorithms that have been published in Symmetry, which have also introduced new advanced applications for NNs and Gas. Furthermore, we used the keywords of "neural network algorithm" or "artificial neural network" to search the SSCI database from 2002 to 2021 and obtained 951 NN publications. For comparison purposes, we also analyzed GA trends by using the keywords "genetic algorithm" to search the SSCI database over the same period and we obtained 878 GA publications. All of the NN and GA publication results were categorized into eight groups for deep analyses so as to investigate their current trends and forecasts. Furthermore, we applied the Kolmogorov-Smirnov test (K-S test) to check whether our bibliometric research complied with Lotka's law. In summary, we found that the number of applications for both NNs and GAs are continuing to grow but the use of NNs is increasing more sharply than the use of GAs due to the boom in deep learning development. We hope that our research can serve as a roadmap for other NN and GA researchers to help them to save time and stay at the cutting edge of AI research trends. C1 [Lou, Ta-Feng; Hung, Wei-Hsi] Natl Chengchi Univ, Dept Management Informat Syst, Taipei 116302, Taiwan. C3 National Chengchi University RP Lou, TF (corresponding author), Natl Chengchi Univ, Dept Management Informat Syst, Taipei 116302, Taiwan. EM 103356505@nccu.edu.tw OI Hung, Wei-Hsi/0000-0002-8480-8079 CR Abiodun OI, 2018, HELIYON, V4, DOI 10.1016/j.heliyon.2018.e00938 Adnan A, 2020, SYMMETRY-BASEL, V12, DOI 10.3390/sym12081292 Aldallal A, 2021, SYMMETRY-BASEL, V13, DOI 10.3390/sym13122306 Alhakami H, 2022, SYMMETRY-BASEL, V14, DOI 10.3390/sym14102023 Bishop J. M., 1993, Artificial Neural Nets and Genetic Algorithms. Proceedings of the International Conference, P719 Blazewicz J, 1996, EUR J OPER RES, V93, P1, DOI 10.1016/0377-2217(95)00362-2 BOOKER LB, 1989, ARTIF INTELL, V40, P235, DOI 10.1016/0004-3702(89)90050-7 Caraka RE, 2021, SYMMETRY-BASEL, V13, DOI 10.3390/sym13071158 Cengiz AB, 2022, SYMMETRY-BASEL, V14, DOI 10.3390/sym14102022 Chang TJ, 2000, COMPUT OPER RES, V27, P1271, DOI 10.1016/S0305-0548(99)00074-X Chen SW, 2022, SYMMETRY-BASEL, V14, DOI 10.3390/sym14102132 Cheng RW, 1996, COMPUT IND ENG, V30, P983, DOI 10.1016/0360-8352(96)00047-2 Chin ZH, 2022, SYMMETRY-BASEL, V14, DOI 10.3390/sym14030609 Chu PC, 1997, COMPUT OPER RES, V24, P17, DOI 10.1016/S0305-0548(96)00032-9 COILE RC, 1977, J AM SOC INFORM SCI, V28, P366, DOI 10.1002/asi.4630280610 Ehrgott M, 2000, OR SPEKTRUM, V22, P425, DOI 10.1007/s002910000046 Ernst AT, 2004, EUR J OPER RES, V153, P3, DOI 10.1016/S0377-2217(03)00095-X Feng CW, 1997, J COMPUT CIVIL ENG, V11, P184, DOI 10.1061/(ASCE)0887-3801(1997)11:3(184) Garud KS, 2021, INT J ENERG RES, V45, P6, DOI 10.1002/er.5608 Goldber D. E., 1988, Machine Learning, V3, P95, DOI 10.1023/A:1022602019183 Graves A, 2013, INT CONF ACOUST SPEE, P6645, DOI 10.1109/ICASSP.2013.6638947 GUPTA DK, 1987, SCIENTOMETRICS, V12, P33, DOI 10.1007/BF02016688 Han H, 2022, SYMMETRY-BASEL, V14, DOI 10.3390/sym14102077 Hancock P.J.B., 1990, LECT NOTES COMPUT SC, V2, P292 Haroon M, 2022, SYMMETRY-BASEL, V14, DOI 10.3390/sym14102045 Hartmann S, 1998, NAV RES LOG, V45, P733, DOI 10.1002/(SICI)1520-6750(199810)45:7<733::AID-NAV5>3.0.CO;2-C He KM, 2016, PROC CVPR IEEE, P770, DOI 10.1109/CVPR.2016.90 Hirsch JE, 2005, P NATL ACAD SCI USA, V102, P16569, DOI 10.1073/pnas.0507655102 HOLLAND JH, 1992, SCI AM, V267, P66, DOI 10.1038/scientificamerican0792-66 Hou DK, 2021, SYMMETRY-BASEL, V13, DOI 10.3390/sym13112082 Hussain M, 2019, ADV INTELL SYST, V840, P191, DOI 10.1007/978-3-319-97982-3_16 Hussain T., 1997, P 1997 ITRCTRIO RES Jian WT, 2021, SYMMETRY-BASEL, V13, DOI 10.3390/sym13101904 Jiang T, 2022, SYMMETRY-BASEL, V14, DOI 10.3390/sym14081689 Kubanek M, 2019, SYMMETRY-BASEL, V11, DOI 10.3390/sym11091185 Lan P, 2021, SYMMETRY-BASEL, V13, DOI 10.3390/sym13091706 Liao LX, 2021, SYMMETRY-BASEL, V13, DOI 10.3390/sym13071133 Liu XH, 2020, SYMMETRY-BASEL, V12, DOI 10.3390/sym12010146 MANIEZZO V, 1994, IEEE T NEURAL NETWOR, V5, P39, DOI 10.1109/72.265959 Matricciani E., 1991, IEEE Transactions on Professional Communications, V34, P7, DOI 10.1109/47.68421 Meng FQ, 2021, SYMMETRY-BASEL, V13, DOI 10.3390/sym13061082 Mikhalev AS, 2022, SYMMETRY-BASEL, V14, DOI 10.3390/sym14102036 Min SH, 2006, EXPERT SYST APPL, V31, P652, DOI 10.1016/j.eswa.2005.09.070 Mohapatra PK, 2022, SYMMETRY-BASEL, V14, DOI 10.3390/sym14102078 NICHOLLS PT, 1989, J AM SOC INFORM SCI, V40, P379, DOI 10.1002/(SICI)1097-4571(198911)40:6<379::AID-ASI1>3.0.CO;2-Q O'Shea K., 2015, ARXIV, V5, P23 Pan XZ, 2019, SYMMETRY-BASEL, V11, DOI 10.3390/sym11010052 Pao M.L., 1989, CONCEPT INFORM RETRI PAO ML, 1985, INFORM PROCESS MANAG, V21, P305, DOI 10.1016/0306-4573(85)90055-X Pater L, 2016, Arxiv, DOI arXiv:1605.00097 Potter W.G., 1988, Journal of Academic Librarianship, V14 POTTER WG, 1981, LIBR TRENDS, V30, P21 Rahman M.M., 2015, Inter. J. Comp. Sci. Technol, V6, P218 Rasheed J, 2022, SYMMETRY-BASEL, V14, DOI 10.3390/sym14102098 Schaffer J. D., 1992, COGANN-92. International Workshop on Combinations of Genetic Algorithms and Neural Networks (Cat. No.92TH0435-8), P1, DOI 10.1109/COGANN.1992.273950 Sefiane S., 2012, Journal of Applied Finance and Banking, V2, P143 Sherstinsky A, 2020, PHYSICA D, V404, DOI 10.1016/j.physd.2019.132306 Sivanandam S. N., 2008, Genetic algorithms. Introduction to genetic algorithms, DOI DOI 10.1007/978-3-540-73190-0 Swift R.S., 2001, ACCELERATING CUSTOME Syed O, 1995, THESIS CASE W RESERV Tsai H.H., 2010, INT J IND MANUF ENG, V4, P75 Tsay M.Y., 2003, CHARACTERISTIC INFOR Vidal T, 2012, OPER RES, V60, P611, DOI 10.1287/opre.1120.1048 VLACHY J, 1978, SCIENTOMETRICS, V1, P99, DOI 10.1007/BF02016842 Wang HZ, 2022, SYMMETRY-BASEL, V14, DOI 10.3390/sym14050863 Wang S-C., 2003, KLUWER INT SER ENG C, P81 Wang S, 2022, SYMMETRY-BASEL, V14, DOI 10.3390/sym14010048 WHITLEY D, 1994, STAT COMPUT, V4, P65, DOI 10.1007/BF00175354 Yadav N, 2015, An introduction to neural network methods for differential equations, DOI 10.1007/978-94-017-9816-7 Yang G, 2022, SYMMETRY-BASEL, V14, DOI 10.3390/sym14102138 Yarushkina NG, 2002, 2002 IEEE INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE SYSTEMS, PROCEEDINGS, P357, DOI 10.1109/ICAIS.2002.1048127 Yasashvini R, 2022, SYMMETRY-BASEL, V14, DOI 10.3390/sym14091932 Yin C.Y., 2010, ENVIRON SCI-WAT RES, V5, P17 Yu CC, 2019, SYMMETRY-BASEL, V11, DOI 10.3390/sym11020179 Zhang Z, 2020, SYMMETRY-BASEL, V12, DOI 10.3390/sym12060993 Zhong YC, 2021, SYMMETRY-BASEL, V13, DOI 10.3390/sym13020228 NR 76 TC 2 Z9 2 U1 5 U2 14 PU MDPI PI BASEL PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND EI 2073-8994 J9 SYMMETRY-BASEL JI Symmetry-Basel PD FEB PY 2023 VL 15 IS 2 AR 325 DI 10.3390/sym15020325 PG 23 WC Multidisciplinary Sciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Science & Technology - Other Topics GA 9J2EX UT WOS:000940008000001 OA Green Published, gold DA 2024-09-05 ER PT C AU Liu, Y Li, L Wan, SH Gao, ZQ AF Liu, Yu Li, Lei Wan, Shuhong Gao, Zhiqiao BE Ma, H Wang, W Zhang, Y TI RESEARCH ON CHINESE MULTI-DOCUMENT HIERARCHICAL TOPIC MODELING AUTOMATIC EVALUATION METHODS SO 2014 IEEE 3RD INTERNATIONAL CONFERENCE ON CLOUD COMPUTING AND INTELLIGENCE SYSTEMS (CCIS) SE International Conference on Cloud Computing and Intelligence Systems LA English DT Proceedings Paper CT 3rd IEEE International Conference on Cloud Computing and Intelligence Systems (CCIS) CY NOV 27-29, 2014 CL PEOPLES R CHINA DE Hierarchical LDA; Hierarchical Topic Modeling; Automatic Evaluation Methods ID CLUSTER VALIDITY MEASURE AB Hierarchical Latent Dirichlet Allocation (hLDA) has achieved good results in the supervised and unsupervised multi-document hierarchical topic modeling. However, the result is diversified. The results maintain randomness even with the same parameters. Thus, this paper proposed automatic evaluation methods for unsupervised multi-document hLDA modeling results over previous studies. This paper used 10 topics of corpus of ACL2013 multilingual multi-document summarization and found 90 topics of news as experimental corpus, then compared the different modeling results. The results showed that automatic evaluation method can provide a good reference for the optimization of the modeling results. C1 [Liu, Yu; Li, Lei; Wan, Shuhong; Gao, Zhiqiao] Beijing Univ Posts & Telecommun, Sch Comp Sci, Ctr Intelligence Sci & Technol, Beijing 100864, Peoples R China. C3 Beijing University of Posts & Telecommunications RP Liu, Y (corresponding author), Beijing Univ Posts & Telecommun, Sch Comp Sci, Ctr Intelligence Sci & Technol, Beijing 100864, Peoples R China. EM 147121500@qq.com RI Chen, Qi/GVU-3024-2022; Li, Lei/AAN-5959-2020 OI Chen, Qi/0000-0002-6568-7267; FU National Natural Science Foundation of China [61202247, 71231002, 61202248, 61472046]; EU FP7 IRSES MobileCloud Project [612212]; 111 Project of China [B08004]; Engineering Research Center of Information Networks, Ministry of Education; Fundamental Research Funds for the Central Universities [2013RC0304]; Beijing Institute of Science and Technology Information FX This work was supported by the National Natural Science Foundation of China under Grant 61202247, 71231002, 61202248 and 61472046; EU FP7 IRSES MobileCloud Project (Grant No. 612212); the 111 Project of China under Grant B08004; Engineering Research Center of Information Networks, Ministry of Education; the Fundamental Research Funds for the Central Universities under Grant2013RC0304; the project of Beijing Institute of Science and Technology Information. CR Blei DM, 2004, ADV NEUR IN, V16, P17 Brown P. F., 1992, Computational Linguistics, V18, P31 Celikyilmaz A, 2010, ACL 2010: 48TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, P815 Chang J, 2009, Adv. Neural Inf. Process. Syst., P288 Chou CH, 2004, PATTERN ANAL APPL, V7, P205, DOI 10.1007/s10044-004-0218-1 DAVIES DL, 1979, IEEE T PATTERN ANAL, V1, P224, DOI 10.1109/TPAMI.1979.4766909 Dunn J. C., 1974, Journal of Cybernetics, V4, P95, DOI 10.1080/01969727408546059 [衡伟 Heng Wei], 2013, [中文信息学报, Journal of Chinese Information Processing], V27, P117 Jia Yu, 2013, J HENAN SCI TECHNOLO, P273 Liu Hongyan, 2012, MULTIDOCUMENT SUMMAR Liu Pingan, 2012, CHINESE MULTIDOCUMEN Steinberge Josef, 2005, P 7 INT C ISIM Wang JS, 2008, PATTERN RECOGN, V41, P506, DOI 10.1016/j.patcog.2007.06.027 Yang XL, 2006, NEURAL PROCESS LETT, V23, P325, DOI 10.1007/s11063-006-9005-x Zhang YJ, 2008, INFORM SCIENCES, V178, P1205, DOI 10.1016/j.ins.2007.10.004 NR 15 TC 0 Z9 0 U1 0 U2 1 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA SN 2376-5933 BN 978-1-4799-4719-5 J9 INT CONF CLOUD COMPU PY 2014 BP 444 EP 449 PG 6 WC Computer Science, Artificial Intelligence; Computer Science, Theory & Methods; Engineering, Electrical & Electronic WE Conference Proceedings Citation Index - Science (CPCI-S) SC Computer Science; Engineering GA BG8UT UT WOS:000392727800084 DA 2024-09-05 ER PT C AU Zhang, QW Zhang, HX AF Zhang, Qingqing Zhang, Hongxin GP IEEE TI Research on evaluation metric of cross device bypass attack based on deep learning SO 2022 CROSS STRAIT RADIO SCIENCE & WIRELESS TECHNOLOGY CONFERENCE, CSRSWTC SE Cross Strait Quad Regional Radio Science and Wireless Technology Conference LA English DT Proceedings Paper CT Cross Strait Radio Science and Wireless Technology Conference (CSRSWTC) CY DEC 17-18, 2022 CL Haidian, PEOPLES R CHINA DE side channel attack; SPECK; deep learning; cross device; evaluation metric AB Based on the bypass analysis of SPECK encryption algorithm, this paper considers the feasibility of using commonly used in-depth learning evaluation index to evaluate the attack efficiency in real cross-device scenarios.We considered the impact of in-depth learning model evaluation indicators for side channel attacks in three different scenarios. We showed that using different devices and keys or changing the chip base during the analysis and attack phase would significantly affect the accuracy indicators compared with changing the probe measurement position.Our experimental results show that, although accuracy is the most commonly used indicator for monitoring and evaluating neural networks, it can result in a significant underestimation of attack efficiency under cross-device conditions. C1 [Zhang, Qingqing; Zhang, Hongxin] Beijing Univ Posts & Telecommun, Sch Elect Engn, Beijing, Peoples R China. C3 Beijing University of Posts & Telecommunications RP Zhang, QW (corresponding author), Beijing Univ Posts & Telecommun, Sch Elect Engn, Beijing, Peoples R China. EM zhangqingqing24630@bupt.edu.cn; hongxinzhang@bupt.edu.cn RI Zhang, Hongxin/T-3714-2019 CR Beaulieu R, 2015, DES AUT CON, DOI 10.1145/2744769.2747946 Benadjila R., 2018, IACR Cryptol. ePrint Arch. Biryukov A, 2016, LECT NOTES COMPUT SC, V9696, P537, DOI 10.1007/978-3-319-39555-5_29 Kim K, 2018, AES WIRELESS KEYBOAR Picek S., 2018, IACR Trans. Cryptogr. Hardw. Embed. Syst., V2019, P209, DOI [10.13154/tches.v2019.i1.209-237, DOI 10.13154/TCHES.V2019.I1.209-237, 10.13154/tches.v2019.i1.209- 237] Renauld M, 2011, LECT NOTES COMPUT SC, V6632, P109, DOI 10.1007/978-3-642-20465-4_8 Standaert FX, 2009, LECT NOTES COMPUT SC, V5479, P443, DOI 10.1007/978-3-642-01001-9_26 Zhang Jiajia, 2021, RES EVALUATION INDEX, DOI [10.27517/d.cnki.gzkju.2021.001644, DOI 10.27517/D.CNKI.GZKJU.2021.001644] NR 8 TC 0 Z9 0 U1 0 U2 2 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA SN 2378-1297 BN 978-1-6654-6096-5 J9 Cross Strait Quad Re PY 2022 DI 10.1109/CSRSWTC56224.2022.10098470 PG 3 WC Engineering, Electrical & Electronic; Telecommunications WE Conference Proceedings Citation Index - Science (CPCI-S) SC Engineering; Telecommunications GA BV1QQ UT WOS:000995192000176 DA 2024-09-05 ER PT J AU Heringa, PW Hessels, LK van der Zouwen, M AF Heringa, Pieter W. Hessels, Laurens K. van der Zouwen, Marielle TI The influence of proximity dimensions on international research collaboration: an analysis of European water projects SO INDUSTRY AND INNOVATION LA English DT Article DE Proximity; international research collaboration; Framework Programmes; logistic regression; O31; R12 ID EMPIRICAL-EVIDENCE; COOPERATION; NETWORKS; PATTERNS; DISTANCE; SCIENCE AB In this paper we investigate the effect of geographical, organisational and social proximity on the propensity of organisations to collaborate internationally in knowledge production. We apply logistic regression models on data from water research projects in the European Union's Framework Programme 1-7. Although the main challenges in the water sector typically cut across borders, knowledge development is traditionally organised in national systems. These systems have a long tradition in collaborating across societal sectors. Despite the fact that about half of the collaborations in the Framework Programmes are not proximate at all, we show that all three proximity dimensions contribute to the propensity to collaborate. The three dimensions of proximity are weakly correlated, and there is a small substitution effect between organisational and geographical proximity. C1 [Heringa, Pieter W.] Minist Econ Affairs, Directorate Gen Enterprise & Innovat, The Hague, Netherlands. [Hessels, Laurens K.; van der Zouwen, Marielle] KWR Watercycle Res Inst, Nieuwegein, Netherlands. [Heringa, Pieter W.; Hessels, Laurens K.] Rathenau Inst, The Hague, Netherlands. C3 KWR Watercycle Research Institute; Royal Netherlands Academy of Arts & Sciences; Rathenau Institute (KNAW) RP Heringa, PW (corresponding author), Minist Econ Affairs, Directorate Gen Enterprise & Innovat, The Hague, Netherlands.; Heringa, PW (corresponding author), Rathenau Inst, The Hague, Netherlands. EM p.w.heringa@minez.nl OI Hessels, Laurens/0000-0002-6399-7050 CR Aguiléra A, 2012, IND INNOV, V19, P187, DOI 10.1080/13662716.2012.669609 Aldieri L, 2011, ECON INNOV NEW TECH, V20, P597, DOI 10.1080/10438599.2011.554632 [Anonymous], DISTRIBUTED ORG SCI Augier M., 1999, J KNOWL MANAG, V3, P252, DOI DOI 10.1108/13673279910304005 Autant-Bernard C, 2007, PAP REG SCI, V86, P495, DOI 10.1111/j.1435-5957.2007.00132.x Balland PA, 2013, ECON INNOV NEW TECH, V22, P47, DOI 10.1080/10438599.2012.699773 Balland PA, 2012, REG STUD, V46, P741, DOI 10.1080/00343404.2010.529121 Barber Michael, 2008, NEMO NETWORK MODELS Barber MJ, 2013, REG STUD, V47, P1283, DOI 10.1080/00343404.2011.622745 Boschma RA, 2005, REG STUD, V39, P61, DOI 10.1080/0034340052000320887 Bouba-Olga O, 2012, PAPERS REGIONAL SCI, V91, P355 Bozeman B, 2004, RES POLICY, V33, P599, DOI 10.1016/j.respol.2004.01.008 BRESCHI S., 2003, MOBILITY SOCIAL NETW Broekel T, 2012, J ECON GEOGR, V12, P409, DOI 10.1093/jeg/lbr010 Chessa A, 2013, SCIENCE, V339, P650, DOI 10.1126/science.1227970 Cunningham SW, 2012, PAP REG SCI, V91, P723, DOI 10.1111/j.1435-5957.2012.00416.x Delanghe Henri, 2009, EUROPEAN SCI TECHNOL, DOI [10.4337/9781849803281, DOI 10.4337/9781849803281] Etzkowitz H, 2000, RES POLICY, V29, P109, DOI 10.1016/S0048-7333(99)00055-4 European Innovation Partnership, 2014, BARR BOTTL INN WAT S Ferru M, 2010, IND INNOV, V17, P531, DOI 10.1080/13662716.2010.509998 Fleming L, 2007, ORGAN SCI, V18, P938, DOI 10.1287/orsc.1070.0289 Frenken K, 2009, J INFORMETR, V3, P222, DOI 10.1016/j.joi.2009.03.005 Heller-Schuh B, 2011, JRC SCI TECHNICAL RE Heringa P. W., 2015, THESIS Heringa PW, 2016, WATER POLICY, V18, P493, DOI 10.2166/wp.2015.185 Hessels LK, 2008, RES POLICY, V37, P740, DOI 10.1016/j.respol.2008.01.008 Hoekman J, 2010, RES POLICY, V39, P662, DOI 10.1016/j.respol.2010.01.012 Katz JS, 1997, RES POLICY, V26, P1, DOI 10.1016/S0048-7333(96)00917-1 KAY R, 1987, BIOMETRIKA, V74, P495, DOI 10.1093/biomet/74.3.495 Knoben J, 2006, INT J MANAG REV, V8, P71, DOI 10.1111/j.1468-2370.2006.00121.x Laudel G, 2001, INT J TECHNOL MANAGE, V22, P762, DOI 10.1504/IJTM.2001.002990 Leydesdorff L, 2008, J INFORMETR, V2, P317, DOI 10.1016/j.joi.2008.07.003 Melin G, 2000, RES POLICY, V29, P31, DOI 10.1016/S0048-7333(99)00031-1 NARIN F, 1991, SCIENTOMETRICS, V21, P313, DOI 10.1007/BF02093973 Nieminen M., 2001, SITRA REPORTS 11 Paier M, 2011, IND INNOV, V18, P89, DOI 10.1080/13662716.2010.528935 Pond R, 2007, PAP REG SCI, V86, P423, DOI 10.1111/j.1435-5957.2007.00126.x Poti B., 2007, Science and Public Policy, V34, P417, DOI [10.3152/030234207X239401, DOI 10.3152/030234207X239401] Rallet A., 1999, GEOJOURNAL, V494, P373, DOI 10.1038/sj.bjc.6690389 Scherngell T, 2013, PAP REG SCI, V92, P555, DOI 10.1111/j.1435-5957.2012.00419.x Scherngell T, 2011, ANN REGIONAL SCI, V46, P247, DOI 10.1007/s00168-009-0334-3 SINNOTT RW, 1984, SKY TELESCOPE, V68, P159 Ter Wal A. L. J, 2009, THESIS Thomas D.A., 2005, CRISIS INNOVATION WA Weterings A, 2009, IND INNOV, V16, P11, DOI 10.1080/13662710902728035 NR 45 TC 16 Z9 16 U1 2 U2 37 PU ROUTLEDGE JOURNALS, TAYLOR & FRANCIS LTD PI ABINGDON PA 2-4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND SN 1366-2716 EI 1469-8390 J9 IND INNOV JI Ind. Innov. PD NOV PY 2016 VL 23 IS 8 BP 753 EP 772 DI 10.1080/13662716.2016.1215240 PG 20 WC Economics; Management WE Social Science Citation Index (SSCI) SC Business & Economics GA DV5JU UT WOS:000382964100006 DA 2024-09-05 ER PT J AU Patino-Ramirez, F O'Sullivan, C AF Patino-Ramirez, F. O'Sullivan, C. TI Analysis of the growth, trends and prevalent topics in Geotechnical Engineering (1998-2022) using topic modelling SO GEOTECHNIQUE LETTERS LA English DT Article DE Research output; Latent Dirichlet Allocation (LDA); Topic modelling; Geotechnical Engineering; Text Mining; History; Data AB Data gathered from 65,922 articles published in 30 Geotechnical Engineering journals between 1998-2022 were used to build a topic model and study the evolution of research output in the field. Over this period, the number of journal publications has grown exponentially with the number of articles published per year doubling every 6.3 years. The average citations per article (32.7) are skewed by highly-cited articles, which make up 7.8% of the articles but account for 34.5 of the total number of citations. The articles' country of origin has become increasingly centralised, with nearly half the articles published between 2018-2022 coming from China (39%) and the United States (10%). The topic distribution in the field has become highly specialised, with emerging topics being fueled by: i) new technologies and methods (i.e., data science and sensing techniques - the fastest-growing topics), and ii) rising applications seemingly related to mitigation (e.g. offshore and energy geotechnics) and adaptation (e.g., geohazards, mass movements) to climate change. As a consequence, traditional topics (e.g. soil and rock mechanics) have reduced their share in the field, but still remain among the most cited topics in geotechnical engineering. C1 [Patino-Ramirez, F.; O'Sullivan, C.] Imperial Coll, Dept Civil & Environm Engn, London, England. C3 Imperial College London RP Patino-Ramirez, F (corresponding author), Imperial Coll, Dept Civil & Environm Engn, London, England. EM lpatinor@ic.ac.uk CR Burland J. B., 2012, ICE manual of geotechnical engineering, VI, P17, DOI [10.1680/moge.57074.0017, DOI 10.1680/MOGE.57074.0017] Chauhan U, 2021, ACM COMPUT SURV, V54, DOI 10.1145/3462478 Das B.M., 1999, PRINCIPLES FDN ENG, Vfourth Elsevier B.V, 2023, Elsevier developer portal Melis G, 2017, Arxiv, DOI arXiv:1707.05589 National Science Board. (NSB), 2021, PUBL OUTP US TRENDS Rose ME, 2019, SOFTWAREX, V10, DOI 10.1016/j.softx.2019.100263 Scimago Lab, 2023, Journal rankings on geotechnical engineering and engineering geology The MathWorks Inc, 2022, Text analytics toolbox version: 9.4 (r2022b) NR 9 TC 0 Z9 0 U1 7 U2 7 PU EMERALD GROUP PUBLISHING LTD PI Leeds PA Floor 5, Northspring 21-23 Wellington Street, Leeds, W YORKSHIRE, ENGLAND SN 2049-825X EI 2045-2543 J9 GEOTECH LETT JI Geotech. Lett. PD FEB 28 PY 2024 VL 14 IS 1 BP 1 EP 19 DI 10.1680/jgele.23.00097 PG 19 WC Engineering, Geological WE Science Citation Index Expanded (SCI-EXPANDED) SC Engineering GA KO3K0 UT WOS:001180865500001 DA 2024-09-05 ER PT J AU Di Caro, L Cataldi, M Schifanella, C AF Di Caro, Luigi Cataldi, Mario Schifanella, Claudio TI The d-index: Discovering dependences among scientific collaborators from their bibliographic data records SO SCIENTOMETRICS LA English DT Article DE Evaluation metrics; Social networks; Research evaluation; Collaboration analysis; Data visualization ID SOCIAL NETWORK; H-INDEX AB The evaluation of the work of a researcher and its impact on the research community has been deeply studied in literature through the definition of several measures, first among all the h-index and its variations. Although these measures represent valuable tools for analyzing researchers' outputs, they usually assume the co-authorship to be a proportional collaboration between the parts, missing out their relationships and the relative scientific influences. In this work, we propose the d-index, a novel measure that estimates the dependence degree between authors on their research environment along their entire scientific publication history. We also present a web application that implements these ideas and provides a number of visualization tools for analyzing and comparing scientific dependences among all the scientists in the DBLP bibliographic database. Finally, relying on this web environment, we present case and user studies that highlight both the validity and the reliability of the proposed evaluation measure. C1 [Di Caro, Luigi; Cataldi, Mario; Schifanella, Claudio] Univ Turin, Dept Comp Sci, Turin, Italy. C3 University of Turin RP Di Caro, L (corresponding author), Univ Turin, Dept Comp Sci, Turin, Italy. EM dicaro@di.unito.it RI Schifanella, Claudio/JVP-2818-2024; Di, Luigi/C-8149-2011 OI Schifanella, Claudio/0000-0001-7449-6529; Di, Luigi/0000-0002-7570-637X CR [Anonymous], 2010 2 INT C COMM SY Barabási AL, 2002, PHYSICA A, V311, P590, DOI 10.1016/S0378-4371(02)00736-7 BEAVER DD, 1979, SCIENTOMETRICS, V1, P133, DOI 10.1007/BF02016966 BRANDAO W.C., 2007, Inf. Inf., V12 Chen P, 2007, J INFORMETR, V1, P8, DOI 10.1016/j.joi.2006.06.001 CHUBIN DE, 1976, SOCIOL QUART, V17, P448, DOI 10.1111/j.1533-8525.1976.tb01715.x CRANE D, 1969, AM SOCIOL REV, V34, P335, DOI 10.2307/2092499 Feeney MK, 2010, SCIENTOMETRICS, V85, P767, DOI 10.1007/s11192-010-0256-y Fisher RA., 1918, T ROY SOC EDINBURGH, V52, P399, DOI DOI 10.1017/S0080456800012163 Girvan M, 2002, P NATL ACAD SCI USA, V99, P7821, DOI 10.1073/pnas.122653799 GOODMAN LA, 1954, J AM STAT ASSOC, V49, P732, DOI 10.2307/2281536 Hou H, 2008, SCIENTOMETRICS, V75, P189, DOI 10.1007/s11192-007-1771-3 HUNT R, 1991, NATURE, V352, P187, DOI 10.1038/352187a0 Imperial J, 2007, SCIENTOMETRICS, V71, P271, DOI 10.1007/s11192-007-1665-4 Katz JS, 1997, RES POLICY, V26, P1, DOI 10.1016/S0048-7333(96)00917-1 Kendall MG, 1938, BIOMETRIKA, V30, P81, DOI 10.2307/2332226 Melin G, 1996, SCIENTOMETRICS, V36, P363, DOI 10.1007/BF02129600 Moody J, 2004, AM SOCIOL REV, V69, P213, DOI 10.1177/000312240406900204 Newman MEJ, 2001, PHYS REV E, V64, DOI [10.1103/PhysRevE.64.016131, 10.1103/PhysRevE.64.016132] Pelleg D., 2000, P 17 INT C MACH LEAR Pepe A., 2010, SCIENTOMETRICS, V85 Radicchi F, 2008, P NATL ACAD SCI USA, V105, P17268, DOI 10.1073/pnas.0806977105 Radicchi F, 2009, PHYS REV E, V80, DOI 10.1103/PhysRevE.80.056103 Rodriguez MA, 2008, J INFORMETR, V2, P195, DOI 10.1016/j.joi.2008.04.002 Schmidt RH., 1987, Bull Ecol Soc Am, V68, P8, DOI [10.2307/20166549, DOI 10.2307/20166549] Shapin S., 1981, MED HIST, V25, P341 Sidiropoulos A, 2007, SCIENTOMETRICS, V72, P253, DOI 10.1007/s11192-007-1722-z Tang J, 2007, IEEE DATA MINING, P292, DOI 10.1109/ICDM.2007.30 Tang J, 2010, ACM T KNOWL DISCOV D, V5, DOI 10.1145/1870096.1870098 Torgerson W, 1958, Theory and methods of scaling Verhagen JV, 2003, NATURE, V426, P602, DOI 10.1038/426602a Wagner CS, 2005, RES POLICY, V34, P1608, DOI 10.1016/j.respol.2005.08.002 Wang C., 2010, P 16 ACM SIGKDD INT, P203, DOI DOI 10.1145/1835804.1835833 Yan EJ, 2009, J AM SOC INF SCI TEC, V60, P2107, DOI 10.1002/asi.21128 NR 34 TC 8 Z9 8 U1 0 U2 60 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0138-9130 EI 1588-2861 J9 SCIENTOMETRICS JI Scientometrics PD DEC PY 2012 VL 93 IS 3 BP 583 EP 607 DI 10.1007/s11192-012-0762-1 PG 25 WC Computer Science, Interdisciplinary Applications; Information Science & Library Science WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Computer Science; Information Science & Library Science GA 035RD UT WOS:000310964500002 DA 2024-09-05 ER PT J AU Daud, A Li, JZ Zhou, LZ Muhammad, F AF Daud, Ali Li, Juanzi Zhou, Lizhu Muhammad, Faqir TI Temporal expert finding through generalized time topic modeling SO KNOWLEDGE-BASED SYSTEMS LA English DT Article DE Temporal expert finding; Conferences influence; Generalized time topic modeling; Unsupervised learning ID MIXTURE MODEL AB This paper addresses the problem of semantics-based temporal expert finding, which means identifying a person with given expertise for different time periods. For example, many real world applications like reviewer matching for papers and finding hot topics in newswire articles need to consider time dynamics. Intuitively there will be different reviewers and reporters for different topics during different time periods. Traditional approaches used graph-based link structure by using keywords based matching and ignored semantic information, while topic modeling considered semantics-based information without conferences influence (richer text semantics and relationships between authors) and time information simultaneously. Consequently they result in not finding appropriate experts for different time periods. We propose a novel Temporal-Expert-Topic (TET) approach based on Semantics and Temporal Information based Expert Search (STMS) for temporal expert finding, which simultaneously models conferences influence and time information. Consequently, topics (semantically related probabilistic clusters of words) occurrence and correlations change over time, while the meaning of a particular topic almost remains unchanged. By using Bayes Theorem we can obtain topically related experts for different time periods and show how experts' interests and relationships change over time Experimental results on scientific literature dataset show that the proposed generalized time topic modeling approach significantly outperformed the non-generalized time topic modeling approaches, due to simultaneously capturing conferences influence with time information (C) 2010 Elsevier B.V. All rights reserved. C1 [Daud, Ali; Li, Juanzi; Zhou, Lizhu] Tsinghua Univ, Dept Comp Sci & Technol, Beijing 100084, Peoples R China. [Muhammad, Faqir] Allama Iqbal Open Univ, Dept Math & Stat, Sector H 8, Islamabad 44000, Pakistan. C3 Tsinghua University RP Daud, A (corresponding author), Tsinghua Univ, Dept Comp Sci & Technol, 1-308 FIT Bldg, Beijing 100084, Peoples R China. RI Daud, Adil/T-3079-2019; Daud, Ali/ABD-4485-2020; Li, Zhiyuan/AAT-1121-2020; Daud, Ali/G-6568-2017 OI Daud, Adil/0000-0002-6617-8421; Daud, Ali/0000-0002-8284-6354 FU National Natural Science Foundation of China [60973102, 60703059]; Chinese National Key Foundation Research and Development Plan [2007CB310803]; Higher Education Commission, Islamabad, Pakistan FX The work is supported by the National Natural Science Foundation of China under Grant (60973102, 60703059). Chinese National Key Foundation Research and Development Plan under Grant (2007CB310803) and Higher Education Commission, Islamabad, Pakistan for providing scholarship to the first author the main contributor of this work. We are thankful to Jie Tang for sharing his topic modeling codes. CR Alonso O., 2007, ACM SIGIR Forum, V41 Andrieu C, 2003, MACH LEARN, V50, P5, DOI 10.1023/A:1020281327116 [Anonymous], P 26 ACM SIGIR INT C [Anonymous], 2008, P 14 ACM SIGKDD INT [Anonymous], P INT AS PAC WEB C W [Anonymous], P 15 ANN C UNC ART I Balog K., 2006, Proceedings of the Twenty-Ninth Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, P43, DOI 10.1145/1148170.1148181 BALOG K, 2007, P 30 ANN INT ACM SIG, P551, DOI DOI 10.1145/1277741.1277836 Blei D.M., 2006, P 23 INT C MACHINE L, P113, DOI [DOI 10.1145/1143844.1143859, 10.1145/1143844.1143859, 10.1145/1143844.114385] Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993 Cao Y., 2005, RES EXPERT SEARCH EN DAUD A, 2009, P INT C ADV DAT MIN DAUD A, 2010, J FRONTIERS IN PRESS, DOI DOI 10.1007/S11704-009-0062-Y *DBLP, DBLP BIBL DAT Erten C., 2003, EXPLORING COMPUTING Griffiths TL, 2004, P NATL ACAD SCI USA, V101, P5228, DOI 10.1073/pnas.0307752101 HAWKING D, 2004, P 15 C AUSTR DAT Li MQ, 2008, KNOWL-BASED SYST, V21, P704, DOI 10.1016/j.knosys.2008.03.025 LI Y, 2008, P INT AS PAC WEB C W LIU X, 2005, INFORM PROCESSING MA, V41, P681 McCallum A., 2000, Proceedings. KDD-2000. Sixth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, P169, DOI 10.1145/347090.347123 Mimno D, 2007, KDD-2007 PROCEEDINGS OF THE THIRTEENTH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, P500 Mutschke P, 2003, LECT NOTES COMPUT SC, V2810, P155, DOI 10.1007/978-3-540-45231-7_15 NALLAPATI R, 2007, P SIGKDD INT C KNOWL NIE Z, 2007, P 16 INT C WORLD WID, P81 PETKOVA D, 2007, P ACM SIGIR INT C RE Popescul A, 2000, IEEE ADVANCES IN DIGITAL LIBRARIES 2000, PROCEEDINGS, P173, DOI 10.1109/ADL.2000.848380 ROSENZVI M, 2004, P 20 INT C UNC ART I White Scott, 2003, KDD '03, P266, DOI 10.1145/956750.956782 XueruiWang Andrew, 2006, International Conference on Knowledge discovery and data mining, P424 ZENG J, 2008, KNOWL-BASED SYST, V21, P704 Zhai C., 2001, Proceedings of the 24th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. SIGIR'01, P334, DOI DOI 10.1145/383952.384019 Zhang J, 2008, LECT NOTES ARTIF INT, V5012, P466, DOI 10.1007/978-3-540-68125-0_41 Zhang J, 2007, LECT NOTES COMPUT SC, V4443, P1066 NR 34 TC 43 Z9 44 U1 0 U2 23 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS SN 0950-7051 EI 1872-7409 J9 KNOWL-BASED SYST JI Knowledge-Based Syst. PD AUG PY 2010 VL 23 IS 6 BP 615 EP 625 DI 10.1016/j.knosys.2010.04.008 PG 11 WC Computer Science, Artificial Intelligence WE Science Citation Index Expanded (SCI-EXPANDED) SC Computer Science GA 633UO UT WOS:000280532400015 DA 2024-09-05 ER PT J AU Besimi, N Çiço, B Shehu, V Besimi, A AF Besimi, Nuhi Cico, Betim Shehu, Visar Besimi, Adrian TI EVALUATION OF MACHINE LEARNING TECHNIQUES FOR RESEARCH ARTICLES RECOMMANDATION SO INTERNATIONAL JOURNAL ON INFORMATION TECHNOLOGIES AND SECURITY LA English DT Article DE recommendation system; supervised learning; unsupervised learning; text mining AB Recently, application of machine learning techniques on textual data has become a crucial factor in terms of extracting useful and unknown information from textual documents. This research adds to the machine learning community by evaluating some of the most significant text mining techniques for unsupervised and supervised learning that will supposedly ease the process of literature review for researchers. Furthermore, it evaluates the accuracy and execution time for all the phases of the model by comparing multiple techniques. Results showed that our proposed model can have a positive impact in terms of easing the processing of literature reviews and identify trend topics for a given field. On the other hand, this solution does not perform very well in execution time as the volume of data increases. C1 [Besimi, Nuhi] South East European Univ, Tetovo, North Macedonia. [Shehu, Visar; Besimi, Adrian] South East European Univ, Fac Contemporary Sci & Technol, Tetovo, North Macedonia. [Cico, Betim] Epoka Univ, Skopje, North Macedonia. RP Besimi, N (corresponding author), South East European Univ, Tetovo, North Macedonia. EM nuhibesimi@gmail.com; bcico@epoka.edu.al; v.shehu@seeu.edu.mk; a.besimi@seeu.edu.mk RI Cico, Betim/N-4797-2019; Cico, Betim/ABH-8348-2020; Shehu, Visar/HLX-2722-2023; Besimi, Adrian/U-5817-2019 OI Cico, Betim/0000-0001-9078-6147; Besimi, Nuhi/0000-0002-8264-0444 CR Besimi N., 2017, 6 MED C EMB COMP, P1 Besimi N., 2019, 7 MED C EMB COMP MEC, P1 Bogers T, 2008, RECSYS'08: PROCEEDINGS OF THE 2008 ACM CONFERENCE ON RECOMMENDER SYSTEMS, P287 Chaitanya V, 2017, INT CONF SOFT COMP, P178, DOI 10.1109/ISCMI.2017.8279622 Denscombe M., 2014, The good research guide: for small-scale social research projects, V5th Fasheng Liu, 2011, Proceedings 2011 IEEE 2nd International Conference on Software Engineering and Service Science (ICSESS 2011), P196, DOI 10.1109/ICSESS.2011.5982288 Garay A. B., 2011, Proceedings of the 2011 11th International Conference on Hybrid Intelligent Systems (HIS 2011), P572, DOI 10.1109/HIS.2011.6122168 Gupta Tanvi, 2019, 2019 International Conference on Machine Learning, Big Data, Cloud and Parallel Computing (COMITCon), P10, DOI 10.1109/COMITCon.2019.8862199 Kim CS, 2018, IEEE INT CONF BIG DA, P5360, DOI 10.1109/BigData.2018.8622539 Kumar S, 2019, BIG DATA MIN ANAL, V2, P240, DOI 10.26599/BDMA.2018.9020037 Lee YJ, 2015, INT CONF ADV COMMUN, P556, DOI 10.1109/ICACT.2015.7224857 Putri FK, 2017, IEEE INT CONGR BIG, P533, DOI 10.1109/BigDataCongress.2017.80 Tzou N, 2012, IEEE VLSI TEST SYMP, P140, DOI 10.1109/VTS.2012.6231093 Zhang XD, 2017, PROC INT CONF DATA, P1612, DOI 10.1109/ICDE.2017.235 NR 14 TC 1 Z9 1 U1 1 U2 4 PU UNION SCIENTISTS BULGARIA PI SOFIA PA 1505 SOFIA 39, MADRID BLVD, FLR 2, SOFIA, 00000, BULGARIA SN 1313-8251 J9 INT J INF TECHNOL SE JI Int. J. Inf. Technol. Secur. PY 2020 VL 12 IS 1 BP 75 EP 86 PG 12 WC Computer Science, Information Systems WE Emerging Sources Citation Index (ESCI) SC Computer Science GA KR9LD UT WOS:000517933700006 DA 2024-09-05 ER PT J AU Manzoor, A Asghar, S Amjad, T AF Manzoor, Ayesha Asghar, Sohail Amjad, Tehmina TI Toward a New Paradigm for Author Name Disambiguation SO IEEE ACCESS LA English DT Article DE Semantics; Deep learning; Convolutional neural networks; Training; Support vector machines; Libraries; Collaboration; Author name disambiguation; digital library; deep learning; classification; word embedding; journal descriptor; semantic type AB Author Name Disambiguation (AND) has emerged as a significant challenge in the bibliometric context with the growing volume of scientific literature. When citations written by different authors have the same names (polysemy or homonym names), and when an author has different names, there is ambiguity (synonyms or name variants). It is difficult to associate a citation with the correct author. Polysemy and synonyms cause merging and splitting anomalies in the citations. These anomalies affect the quantification of an author's productivity (bibliometric analysis) and the reliability and quality of the information retrieved. Many techniques for AND have been proposed in the literature; most of them do not go beyond string matching or text matching. Most of the existing work do not consider the context or semantics of the terms used in the citations. In this study, the AND problem is resolved semantically using the deep learning technique on the PubMed dataset. The experimental results show that the proposed method achieves overall (11.72 %, 12.5 %, and 12.1 %) higher precision, recall, and f-measure than the pairwise class classification. C1 [Manzoor, Ayesha; Amjad, Tehmina] Int Islamic Univ Islamabad, Dept Comp Sci & Software Engn, Islamabad 44000, Pakistan. [Asghar, Sohail] COMSATS Univ Islamabad, Dept Comp Sci, Islamabad 44000, Pakistan. C3 International Islamic University, Pakistan; COMSATS University Islamabad (CUI) RP Manzoor, A (corresponding author), Int Islamic Univ Islamabad, Dept Comp Sci & Software Engn, Islamabad 44000, Pakistan. EM ayeshamanzoor1@gmail.com RI Amjad, Tehmina/GLS-0209-2022 OI asghar, sohail/0000-0001-6883-3584; Amjad, Tehmina/0000-0003-1201-498X; manzoor, ayesha/0000-0002-4754-2929 CR Amancio DR, 2015, SCIENTOMETRICS, V102, P465, DOI 10.1007/s11192-014-1381-9 Amancio DR, 2012, EPL-EUROPHYS LETT, V99, DOI 10.1209/0295-5075/99/48002 [Anonymous], 2014, P COLING 2014 25 INT Atarashi K, 2017, LECT NOTES ARTIF INT, V10234, P83, DOI 10.1007/978-3-319-57454-7_7 Bilenko Mikhail, 2003, 9 ACM SIGKDD INTCONF, P39, DOI DOI 10.1145/956750.956759 Deng CH, 2020, IEEE ACCESS, V8, P28375, DOI 10.1109/ACCESS.2020.2972372 Dogan RI, 2009, DATABASE-OXFORD, DOI 10.1093/database/bap018 Gomide J, 2017, SCIENTOMETRICS, V112, P747, DOI 10.1007/s11192-017-2410-2 Huang XF, 2020, KNOWL-BASED SYST, V204, DOI 10.1016/j.knosys.2020.106230 Humphrey Susanne M, 2006, AMIA Annu Symp Proc, P960 Tran HN, 2014, LECT NOTES COMPUT SC, V8397, P123, DOI 10.1007/978-3-319-05476-6_13 Hussain I, 2018, J INF SCI, V44, P830, DOI 10.1177/0165551518761011 Hussain I, 2017, KNOWL ENG REV, V32, DOI 10.1017/S0269888917000182 Hussain M, 2019, ADV INTELL SYST, V840, P191, DOI 10.1007/978-3-319-97982-3_16 Jamshidi MB, 2020, IEEE ACCESS, V8, P109581, DOI 10.1109/ACCESS.2020.3001973 Jhawar K., 2020, P 20 ACMIEEE JOINT C, P469 Kim K, 2019, PROCEEDINGS OF THE 28TH ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT (CIKM '19), P2369, DOI 10.1145/3357384.3358153 Kim Y., 2014, P 2014 C EMP METH NA P 2014 C EMP METH NA P 2014 C EMP METH NA P 2014 C EMP METH NA P 2014 C EMP METH NA P 2014 C EMP METH NA P 2014 C EMP METH NA P 2014 C EMP METH NA P 2014 C EMP METH NA P 2014 C EMP METH NA P 2014 C EMP METH NA P 2014 C EMP METH NA P 2014 C EMP METH NA P 2014 C EMP METH NA P 2014 C EMP METH NA P 2014 C EMP METH NA P 2014 C EMP METH NA P 2014 C EMP METH NA P 2014 C EMP METH NA P 2014 C EMP METH NA P 2014 C EMP METH NA P 2014 C EMP METH NA P 2014 C EMP METH NA P 2014 C EMP METH NA P 2014 C EMP METH NA P 2014 C EMP METH NA P 2014 C EMP METH NA P 2014 C EMP METH NA P 2014 C EMP METH NA P 2014 C EMP METH NA P 2014 C EMP METH NA P 2014 C EMP METH NA P 2014 C EMP METH NA P 2014 C EMP METH NA P 2014 C EMP METH NA P 2014 C EMP METH NA P 2014 C EMP METH NA P 2014 C EMP METH NA P 2014 C EMP METH NA P 2014 C EMP METH NA P 2014 C EMP METH NA P 2014 C EMP METH NA P 2014 C EMP METH NA P 2014 C EMP METH NA P 2014 C EMP METH NA P 2014 C EMP METH NA P 2014 C EMP METH NA P 2014 C EMP METH NA P 2014 C EMP METH NA P 2014 C EMP METH NA P 2014 C EMP METH NA P 2014 C EMP METH NA P 2014 C EMP METH NA P 2014 C EMP METH NA P 2014 C EMP METH NA P 2014 C EMP METH NA P 2014 C EMP METH NA P 2014 C EMP METH NA P 2014 C EMP METH NA P 2014 C EMP METH NA P 2014 C EMP METH NA P 2014 C EMP METH NA P 2014 C EMP METH NA P 2014 C EMP METH NA P 2014 C EMP METH NA P 2014 C EMP METH NA P 2014 C EMP METH NA P 2014 C EMP METH NA P 2014 C EMP METH NA P 2014 C EMP METH NA P 2014 C EMP METH NA P 2014 C EMP METH NA P 2014 C EMP METH NA P 2014 C EMP METH NA P 2014 C EMP METH NA P 2014 C EMP METH NA P 2014 C EMP METH NA P 2014 C EMP METH NA P 2014 C EMP METH NA P 2014 C EMP METH NA P 2014 C EMP METH NA P 2014 C EMP METH NA P 2014 C EMP METH NA P 2014 C EMP METH NA P 2014 C EMP METH NA P 2014 C EMP METH NA P 2014 C EMP METH NA P 2014 C EMP METH NA P 2014 C EMP METH NA P 2014 C EMP METH NA P 2014 C EMP METH NA P 2014 C EMP METH NA P 2014 C EMP METH NA P 2014 C EMP METH NA P 2014 C EMP METH NA P 2014 C EMP METH NA P 2014 C EMP METH NA P 2014 C EMP METH NA P 2014 C EMP METH NA P 2014 C EMP METH NA P 2014 C EMP METH NA P 2014 C EMP METH NA P 2014 C EMP METH NA P 2014 C EMP METH NA P 2014 C EMP METH NA P 2014 C EMP METH NA P 2014 C EMP METH NA P 2014 C EMP METH NA P 2014 C EMP METH NA P 2014 C EMP METH NA P 2014 C EMP METH NA P 2014 C EMP METH NA P 2014 C EMP METH NA P 2014 C EMP METH NA P 2014 C EMP METH NA P 2014 C EMP METH NA P 2014 C EMP METH NA P 2014 C EMP METH NA P 2014 C EMP METH NA P 2014 C EMP METH NA P 2014 C EMP METH NA P 2014 C EMP METH NA P 2014 C EMP METH NA P 2014 C EMP METH NA P 2014 C EMP METH NA P 2014 C EMP METH NA P 2014 C EMP METH NA P 2014 C EMP METH NA, DOI [10.3115/v1/D14-1181, DOI 10.3115/V1/D14-1181] Liu WL, 2014, J ASSOC INF SCI TECH, V65, P765, DOI 10.1002/asi.23063 Manzoor A, GITHUB Milojevic S, 2013, J INFORMETR, V7, P767, DOI 10.1016/j.joi.2013.06.006 Müller MC, 2017, LECT NOTES COMPUT SC, V10450, P300, DOI 10.1007/978-3-319-67008-9_24 Nadimi-Shahraki MH, 2014, Journal of Computing and Security, V1, P307 Otter DW, 2021, IEEE T NEUR NET LEAR, V32, P604, DOI 10.1109/TNNLS.2020.2979670 Sanyal DK, 2021, J INF SCI, V47, P227, DOI 10.1177/0165551519888605 Shoaib M, 2016, INT ARAB J INF TECHN, V13, P1004 Smalheiser NR, 2016, J BIOMED DISCOV COLL, V7, DOI 10.5210/disco.v7i0.6654 Song M., DATAST Song M, 2015, J INFORMETR, V9, P924, DOI 10.1016/j.joi.2015.08.004 Huynh T, 2013, LECT NOTES COMPUT SC, V7802, P226, DOI 10.1007/978-3-642-36546-1_24 Torvik VI, 2009, ACM T KNOWL DISCOV D, V3, DOI 10.1145/1552303.1552304 Vishnyakova D, 2016, P 5 WORKSH BUILD EV, DOI 10.5167/uzh-132256 Young T, 2018, IEEE COMPUT INTELL M, V13, P55, DOI 10.1109/MCI.2018.2840738 Yu D, 2013, Arxiv, DOI [arXiv:1301.3605, 10.1371/journal.pcbi.1010633, DOI 10.1371/JOURNAL.PCBI.1010633] Zahoora U, 2022, APPL INTELL, V52, P13941, DOI 10.1007/s10489-022-03244-6 Zhang SY, 2019, IEEE ACCESS, V7, P104250, DOI 10.1109/ACCESS.2019.2931592 Zhang YT, 2018, KDD'18: PROCEEDINGS OF THE 24TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING, P1002, DOI 10.1145/3219819.3219859 NR 37 TC 1 Z9 1 U1 1 U2 13 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 2169-3536 J9 IEEE ACCESS JI IEEE Access PY 2022 VL 10 BP 76055 EP 76068 DI 10.1109/ACCESS.2022.3190088 PG 14 WC Computer Science, Information Systems; Engineering, Electrical & Electronic; Telecommunications WE Science Citation Index Expanded (SCI-EXPANDED) SC Computer Science; Engineering; Telecommunications GA 3G0NR UT WOS:000831054800001 OA gold DA 2024-09-05 ER PT C AU Zhang, QP Shan, W AF Zhang Qing-pu Shan Wei BE Lan, H TI Research on enterprise tacit knowledge management performance appraisal based on artificial neural networks SO PROCEEDINGS OF THE 2006 INTERNATIONAL CONFERENCE ON MANAGEMENT SCIENCE & ENGINEERING (13TH), VOLS 1-3 LA English DT Proceedings Paper CT 13th International Conference on Management Science and Engineering CY OCT 05-07, 2006 CL Lille, FRANCE DE BP algorithm; knowledge management; performance appraisal; tacit knowledge AB Based on knowledge management theory and performance appraisal methodology, the enterprise tacit knowledge management performance appraisal index system is established, and in view of the neural network structure characteristic, self-adapted and self-taught function, enterprise tacit knowledge management performance appraisal model based on BP neural algorithm is proposed. This model is feasible and suitable in terms of convergence rate, the network adaptability aspect. By using these research results, it can appraise the level of the enterprise tacit knowledge management scientifically, and provide the policy-making basis to correctly instruct enterprise knowledge management development. C1 Harbin Inst Technol, Sch Management, Harbin 150001, Peoples R China. C3 Harbin Institute of Technology RP Zhang, QP (corresponding author), Harbin Inst Technol, Sch Management, Harbin 150001, Peoples R China. RI Wang, Charles/B-5565-2011 OI Wang, Charles/0000-0001-9331-8437 CR AIM JH, 2002, P 35 HAW INT C SYST [Anonymous], P 35 HAW INT C SYST CHENG GH, 2004, T NW U, V2 LI SC, 2001, SCI RES MANAGEMENT, V22, P73 LI XF, 2000, T SICHUAN U, V32, P105 Tiwana A., 2001, The Essential Guide to Knowledge Management: E-Business and CRM Applications [王军霞 Wang Junxia], 2002, [科学学研究, Studies in Science of Science], V20, P84 WANG Y, 2002, T BEIJING BROADCASTI, V3, P33 YAN GH, 2001, MANAGEMENT REV NANKA, V6, P26 ZHANG LM, 1995, MODEL APPL ARTIFICIA Zhang Q., 2003, Chinese Wheat Improvement and Pedigree Analysis, P88 NR 11 TC 2 Z9 2 U1 0 U2 4 PU HARBIN INSTITUTE TECHNOLOGY PUBLISHERS PI HARBIN PA 16 FUXINGJIE NANGANGQU, HARBIN 150006, HEILONGJIANG, PEOPLES R CHINA BN 7-5603-2355-3 PY 2006 BP 1333 EP 1337 PG 5 WC Computer Science, Artificial Intelligence; Computer Science, Information Systems; Engineering, Industrial; Engineering, Electrical & Electronic; Operations Research & Management Science WE Conference Proceedings Citation Index - Science (CPCI-S) SC Computer Science; Engineering; Operations Research & Management Science GA BFI54 UT WOS:000242037601110 DA 2024-09-05 ER PT J AU Usman, M Mustafa, G Afzal, MT AF Usman, Muhammad Mustafa, Ghulam Afzal, Muhammad Tanvir TI Ranking of author assessment parameters using Logistic Regression SO SCIENTOMETRICS LA English DT Article DE Parameters ranking; Citation count; Citation intensity; Variants of h-index; Civil engineering subject classification; ASCE; CSCE; ACI; ICE ID H-INDEX; GOOGLE-SCHOLAR; VARIANTS; IMPACT AB The renowned international scientific societies nominate researchers for awards based on qualitative judgments every year. Qualitative judgment uses subjective assessments based on information that is not quantifiable. The way of assessing the quality of the work has not been established or disclosed, nor do we have any qualitative evaluation criteria. We can assess the quality of the researcher's work by mapping the quantitative parameters to qualitative judgments. To date, the scientific community has presented more than 50 research assessment quantitative parameters, including publication count, citation count, h-index, and its variants. The contemporary state-of-the-art in authors ranking does not determine the best parameter that effectively maps on experts' qualitative evaluation. Moreover, these parameters have been evaluated by using same scenarios. In such scenarios, the value and effect of each parameter over the others are complicated to ascertain. Therefore, they must be assessed in inequitable scenarios. The purpose of this research is to identify the significant parameters that map on qualitative judgments of international scientific societies in Civil Engineering (CE) for award nominations. We will identify the rank of author assessment parameters, which includes published papers, citations, No of years since 1st publication, citations in h-core, authors/paper, citations/paper, citations/year, h-index, g-index, hg-index, A-index, R-index, e-index, and f-index. We have evaluated these parameters on the dataset from the discipline of Civil Engineering (CE). The data set contains 250 non-award winners and 250 award winners from prestigious scientific societies of CE. The h-index and its variants have been ranked based on their effectiveness for awardees using Logistic Regression. The award-winning researchers have less number of average authors/paper than the non-awardees. The authors/paper has achieved the highest effectiveness of 67% for awardees. Furthermore, we have also analyzed the ratio of awardees in the ranked list of 50, 100, and 150 researchers by author assessment parameters. The authors/papers have outperformed all other indices by elevating 62% and 66% of the award recipients in its ranked list of 100 and 150 researchers. In the ranked list of 50 researchers, publications elevate 54% awardees, and Authors/papers achieved the second-highest elevation score of awardees of 50%. C1 [Usman, Muhammad] FAST Natl Univ Comp & Emerging Sci, Islamabad Campus, Islamabad, Pakistan. [Mustafa, Ghulam] Capital Univ Sci & Technol, Islamabad, Pakistan. [Afzal, Muhammad Tanvir] Namal Inst Mianwali, Mianwali, Pakistan. C3 Capital University of Science & Technology RP Afzal, MT (corresponding author), Namal Inst Mianwali, Mianwali, Pakistan. EM m.usman@nu.edu.pk; ghulam.mustafa@cust.edu.pk; tanvir.afzal@namal.edu.pk RI Mustafa, Ghulam/IQV-2174-2023; Mustafa, Ghulam/JPY-1274-2023; Afzal, Muhammad/D-3741-2019 OI Mustafa, Ghulam/0000-0003-4467-2987; Mustafa, Ghulam/0000-0002-0354-8229; Afzal, Muhammad/0000-0002-7851-2327; Afzal, Muhammad Tanvir/0000-0002-9765-8815; Usman, Muhammad/0000-0002-6154-6256 CR Abe N, 2005, LECT NOTES ARTIF INT, V3684, P689 Algamal ZY, 2019, ADV DATA ANAL CLASSI, V13, P753, DOI 10.1007/s11634-018-0334-1 Alonso S, 2010, SCIENTOMETRICS, V82, P391, DOI 10.1007/s11192-009-0047-5 Alonso S, 2009, J INFORMETR, V3, P273, DOI 10.1016/j.joi.2009.04.001 Ameer M, 2019, SCIENTOMETRICS, V121, P653, DOI 10.1007/s11192-019-03209-6 Aoun SG, 2013, WORLD NEUROSURG, V80, pE85, DOI 10.1016/j.wneu.2012.01.052 Ayaz S, 2016, SCIENTOMETRICS, V109, P1511, DOI 10.1007/s11192-016-2122-z Cameron D. H. L., 2007, Ph.D. dissertation Crowder R, 2002, LECT NOTES ARTIF INT, V2569, P179 Dienes KR, 2015, J INFORMETR, V9, P385, DOI 10.1016/j.joi.2015.01.003 Egghe L, 2006, SCIENTOMETRICS, V69, P131, DOI 10.1007/s11192-006-0144-7 El-adaway IH, 2019, J CONSTR ENG M, V145, DOI 10.1061/(ASCE)CO.1943-7862.0001705 Falagas ME, 2008, FASEB J, V22, P338, DOI 10.1096/fj.07-9492LSF Hariri-Ardebili MA, 2015, EARTHQ ENG STRUCT D, V44, P461, DOI 10.1002/eqe.2481 Harzing AW, 2014, SCIENTOMETRICS, V98, P565, DOI 10.1007/s11192-013-0975-y Hirsch JE, 2005, P NATL ACAD SCI USA, V102, P16569, DOI 10.1073/pnas.0507655102 Jin B., 2006, SCI FOCUS, V1, P8, DOI 10.1209/0295-5075/78/30002 Jin BH, 2007, CHINESE SCI BULL, V52, P855, DOI 10.1007/s11434-007-0145-9 Katsaros D, 2009, J AM SOC INF SCI TEC, V60, P1051, DOI 10.1002/asi.21040 Liang RH, 2016, AAAI CONF ARTIF INTE, P20 Mingers J, 2009, J OPER RES SOC, V60, P1143, DOI 10.1057/jors.2008.94 Moed HF, 2016, J INFORMETR, V10, P533, DOI 10.1016/j.joi.2016.04.017 Qurat-ul Ain, 2019, SCIENTOMETRICS, V119, P187, DOI 10.1007/s11192-019-03009-y Raheel M, 2018, SCIENTOMETRICS, V114, P1107, DOI 10.1007/s11192-017-2633-2 Sidiropoulos A, 2007, SCIENTOMETRICS, V72, P253, DOI 10.1007/s11192-007-1722-z Springer DB, 2016, IEEE T BIO-MED ENG, V63, P822, DOI 10.1109/TBME.2015.2475278 Teixeira AAC, 2012, SCIENTOMETRICS, V93, P719, DOI 10.1007/s11192-012-0823-5 Tol RSJ, 2009, SCIENTOMETRICS, V80, P317, DOI 10.1007/s11192-008-2079-7 Van Raan AFJ, 2006, SCIENTOMETRICS, V67, P491, DOI 10.1556/Scient.67.2006.3.10 West R., 2004, UK7 INT SOC ADDICTIO Wilsdon J., 2015, TECHNICAL REPORT Wu Q, 2010, J AM SOC INF SCI TEC, V61, P609, DOI 10.1002/asi.21276 Zhang CT, 2009, PLOS ONE, V4, DOI 10.1371/journal.pone.0005429 NR 33 TC 14 Z9 14 U1 3 U2 24 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0138-9130 EI 1588-2861 J9 SCIENTOMETRICS JI Scientometrics PD JAN PY 2021 VL 126 IS 1 BP 335 EP 353 DI 10.1007/s11192-020-03769-y EA NOV 2020 PG 19 WC Computer Science, Interdisciplinary Applications; Information Science & Library Science WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Computer Science; Information Science & Library Science GA PU7XL UT WOS:000591124400001 DA 2024-09-05 ER PT J AU Chen, XL Zhang, XX Xie, HR Tao, XH Wang, F Xie, NF Hao, TY AF Chen, Xieling Zhang, Xinxin Xie, Haoran Tao, Xiaohui Wang, Fu Lee Xie, Nengfu Hao, Tianyong TI A bibliometric and visual analysis of artificial intelligence technologies-enhanced brain MRI research SO MULTIMEDIA TOOLS AND APPLICATIONS LA English DT Article DE Magnetic resonance imaging; Artificial intelligence; Latent Dirichlet allocation; Research topics ID MILD COGNITIVE IMPAIRMENT; MAGNETIC-RESONANCE IMAGE; FUNCTIONAL NETWORK; PATTERN-RECOGNITION; FMRI DATA; CLASSIFICATION; SEGMENTATION; SINGLE; DIAGNOSIS; DISORDER AB With the advances and development of imaging and computer technologies, the application of artificial intelligence (AI) in the processing of magnetic resonance imaging (MRI) data has become a significant research field. Based on 2572 research articles concerning AI-enhanced brain MRI processing, this study provides a latent Dirichlet allocation based bibliometric analysis for the exploration of the status, trends, major research issues, and potential future directions of the research field. The trend analyses of articles and citations demonstrate a flourishing and increasing impact of the research.Neuroimageis the most prolific and influential journal. The USA andUniversity College Londonhave contributed the most to the research. The collaboration between European countries is very close. Essential research issues such asImage segmentation,Mental disorder,Functional network connectivity, andAlzheimer's diseasehave been uncovered. Potential inter-topic research directions such asFunctional network connectivityandMental disorder,Image segmentationandImage classification,Cognitive impairmentandDiffusion imaging, as well asSense and memoryandEmotion and feedback, have been highlighted. C1 [Chen, Xieling] Educ Univ Hong Kong, Dept Math & Informat Technol, Hong Kong, Peoples R China. [Zhang, Xinxin] South China Normal Univ, Inst Brain Res & Rehabil, Guangzhou, Peoples R China. [Xie, Haoran] Lingnan Univ, Dept Comp & Decis Sci, Hong Kong, Peoples R China. [Tao, Xiaohui] Univ Southern Queensland, Sch Sci, Toowoomba, Qld, Australia. [Wang, Fu Lee] Open Univ Hong Kong, Sch Sci & Technol, Hong Kong, Peoples R China. [Xie, Nengfu] Chinese Acad Agr Sci, Inst Agr Informat, Beijing, Peoples R China. [Hao, Tianyong] South China Normal Univ, Sch Comp Sci, Guangzhou, Peoples R China. C3 Education University of Hong Kong (EdUHK); South China Normal University; Lingnan University; University of Southern Queensland; Hong Kong Metropolitan University; Chinese Academy of Agricultural Sciences; South China Normal University RP Hao, TY (corresponding author), South China Normal Univ, Sch Comp Sci, Guangzhou, Peoples R China. EM haoty@m.scnu.edu.cn RI tao, xiaohui/KCK-2677-2024; Xie, Haoran/AFS-3515-2022; Tao, Xiaohui/JKI-2330-2023; Hao, Tianyong/HJH-2742-2023; Xie, Haoran/AAW-8845-2020; Wang, Fu Lee/AAD-9782-2021 OI Xie, Haoran/0000-0003-0965-3617; Hao, Tianyong/0000-0002-9792-3949; Wang, Fu Lee/0000-0002-3976-0053; PV, THAYYIB/0000-0001-8929-0398 CR Agirre-Arrizubieta Z, 2009, BRAIN, V132, P3060, DOI 10.1093/brain/awp137 Ahmadvand A, 2015, APPL MATH COMPUT, V256, P808, DOI 10.1016/j.amc.2015.01.053 Algunaid RF, 2018, BIOMED SIGNAL PROCES, V43, P289, DOI 10.1016/j.bspc.2018.02.018 Allen EA, 2014, CEREB CORTEX, V24, P663, DOI 10.1093/cercor/bhs352 Altameem T, 2015, CONNECT SCI, V27, P305, DOI 10.1080/09540091.2014.970126 Andersson P, 2012, J NEURAL ENG, V9, DOI 10.1088/1741-2560/9/4/045004 Bae Y, 2018, J DIGIT IMAGING, V31, P252, DOI 10.1007/s10278-017-0020-4 Balafar MA, 2010, ARTIF INTELL REV, V33, P261, DOI 10.1007/s10462-010-9155-0 Baldauf D, 2014, SCIENCE, V344, P424, DOI 10.1126/science.1247003 Bastian M., 2009, Gephi: An open source software for exploring and manipulating networks Bhuvaneswari KS, 2017, J EXP THEOR ARTIF IN, V29, P663, DOI 10.1080/0952813X.2016.1212106 Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993 Bollmann S, 2019, NEUROIMAGE, V195, P373, DOI 10.1016/j.neuroimage.2019.03.060 Brambilla P, 2003, BRAIN RES BULL, V61, P557, DOI 10.1016/j.brainresbull.2003.06.001 Cabezas M, 2011, COMPUT METH PROG BIO, V104, pE158, DOI 10.1016/j.cmpb.2011.07.015 Cabral C, 2016, SCHIZOPHRENIA BULL, V42, pS110, DOI 10.1093/schbul/sbw053 Cai CB, 2018, MAGN RESON MED, V80, P2202, DOI 10.1002/mrm.27205 Cai KP, 2017, PLOS ONE, V12, DOI 10.1371/journal.pone.0170875 Cao M, 2017, CEREB CORTEX, V27, P1949, DOI 10.1093/cercor/bhw038 Chen MS, 2017, COMPUT ASSIST SURG, V22, P200, DOI 10.1080/24699322.2017.1389398 Chen SC, 2019, PATTERN RECOGN, V88, P90, DOI 10.1016/j.patcog.2018.11.009 Chen X, 2019, INT WORKSH HUM BRAIN, P69 Chen XD, 2020, J ASIAN NAT PROD RES, V22, P1024, DOI 10.1080/10286020.2019.1680646 Chen X, 2020, COMPUT EDUC, V151, DOI 10.1016/j.compedu.2020.103855 Chen XL, 2020, BRIT J EDUC TECHNOL, V51, P692, DOI 10.1111/bjet.12907 Chen XL, 2019, BMC MED INFORM DECIS, V19, DOI 10.1186/s12911-019-0757-4 Chen XL, 2019, ONLINE INFORM REV, V43, P29, DOI 10.1108/OIR-03-2018-0068 Chen XL, 2018, BMC MED INFORM DECIS, V18, DOI 10.1186/s12911-018-0692-9 Chen XL, 2018, WIREL COMMUN MOB COM, DOI 10.1155/2018/1827074 Chen XL, 2018, BMC MED INFORM DECIS, V18, DOI [10.1186/s12911-018-0594-x, 10.1186/s12870-018-1555-3] Chen YC, 2020, NEUROIMAGE, V207, DOI 10.1016/j.neuroimage.2019.116389 Chen YP, 2015, MOL NEURODEGENER, V10, DOI 10.1186/1750-1326-10-4 Cheng B, 2017, NEUROINFORMATICS, V15, P115, DOI 10.1007/s12021-016-9318-5 Cheng H, 2015, SCHIZOPHR RES, V168, P345, DOI 10.1016/j.schres.2015.08.011 Cherubini A, 2014, MOVEMENT DISORD, V29, P266, DOI 10.1002/mds.25737 Chong CD, 2017, CEPHALALGIA, V37, P828, DOI 10.1177/0333102416652091 Codari M, 2019, AM J ROENTGENOL, V212, P280, DOI 10.2214/AJR.18.20389 Deraeve J, 2018, NEUROINFORMATICS, V16, P253, DOI 10.1007/s12021-018-9371-3 Di Plinio S, 2018, HUM BRAIN MAPP, V39, P4689, DOI 10.1002/hbm.24315 Diekhof EK, 2016, NEUROPSYCHOLOGIA, V84, P70, DOI 10.1016/j.neuropsychologia.2015.10.016 Duchesne S, 2009, NEUROIMAGE, V47, P1363, DOI 10.1016/j.neuroimage.2009.04.023 Ecker C, 2010, NEUROIMAGE, V49, P44, DOI 10.1016/j.neuroimage.2009.08.024 Eklund A, 2017, NEUROIMAGE, V155, P354, DOI 10.1016/j.neuroimage.2017.04.069 Falkai P, 2018, DIALOGUES CLIN NEURO, V20, P179 Fang DB, 2018, LIBR HI TECH, V36, P400, DOI 10.1108/LHT-06-2017-0132 Feis RA, 2018, NEUROIMAGE-CLIN, V20, P188, DOI 10.1016/j.nicl.2018.07.014 Focke NK, 2011, HUM BRAIN MAPP, V32, P1905, DOI 10.1002/hbm.21161 Fukuma R, 2018, FRONT NEUROSCI-SWITZ, V12, DOI 10.3389/fnins.2018.00478 Gao LL, 2017, BMC BIOINFORMATICS, V18, DOI 10.1186/s12859-017-1903-6 Ge Y, 2006, AM J NEURORADIOL, V27, P1165 Ghosh P, 2018, J VIS COMMUN IMAGE R, V54, P63, DOI 10.1016/j.jvcir.2018.04.007 Giger ML, 2018, J AM COLL RADIOL, V15, P512, DOI 10.1016/j.jacr.2017.12.028 Goubran M, 2020, HUM BRAIN MAPP, V41, P291, DOI 10.1002/hbm.24811 Grossman M, 2010, CURR OPIN NEUROL, V23, P643, DOI 10.1097/WCO.0b013e32833fd540 Gunning-Dixon FM, 2009, INT J GERIATR PSYCH, V24, P109, DOI 10.1002/gps.2087 Guo H, 2017, FRONT NEUROSCI-SWITZ, V11, DOI 10.3389/fnins.2017.00639 Hacker CD, 2013, NEUROIMAGE, V82, P616, DOI 10.1016/j.neuroimage.2013.05.108 Han X, 2007, IEEE T MED IMAGING, V26, P479, DOI 10.1109/TMI.2007.893282 Hao TY, 2018, SOFT COMPUT, V22, P7875, DOI 10.1007/s00500-018-3511-4 Harris LN, 2016, J CLIN ONCOL, V34, P1134, DOI 10.1200/JCO.2015.65.2289 Hart H, 2014, J AM ACAD CHILD PSY, V53, P569, DOI 10.1016/j.jaac.2013.12.024 Heinzel A, 2012, J NUCL MED, V53, P552, DOI 10.2967/jnumed.111.097352 Henkelman RM, 2001, NMR BIOMED, V14, P57, DOI 10.1002/nbm.683 Hill D, 2010, EXPERT OPIN INV DRUG, V19, P23, DOI 10.1517/13543780903381320 Hoexter MQ, 2013, J AFFECT DISORDERS, V150, P1213, DOI 10.1016/j.jad.2013.05.041 HUANG M, 2017, SCI REP-UK, V7, P1, DOI [DOI 10.1038/S41598-016-0028-X, DOI 10.1038/SREP39880] Iqbal A, 2018, IEEE T BIO-MED ENG, V65, P2519, DOI 10.1109/TBME.2018.2806958 Isin A, 2016, PROCEDIA COMPUT SCI, V102, P317, DOI 10.1016/j.procs.2016.09.407 Jha D, 2017, J HEALTHC ENG, V2017, DOI 10.1155/2017/9060124 Jiang F, 2017, STROKE VASC NEUROL, V2, P230, DOI 10.1136/svn-2017-000101 Jiang RK, 2019, IEEE ACCESS, V7, P23579, DOI 10.1109/ACCESS.2019.2899990 Jie B, 2015, HUM BRAIN MAPP, V36, P489, DOI 10.1002/hbm.22642 Jin CF, 2017, HUM BRAIN MAPP, V38, P4479, DOI 10.1002/hbm.23676 Jin W, 2017, J MED IMAG HEALTH IN, V7, P400, DOI 10.1166/jmihi.2017.2028 Johnston BA, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0132958 Jung RE, 2010, HUM BRAIN MAPP, V31, P398, DOI 10.1002/hbm.20874 Karimaghaloo Z, 2012, IEEE T MED IMAGING, V31, P1181, DOI 10.1109/TMI.2012.2186639 Khatami M, 2017, PATTERN RECOGN, V63, P593, DOI 10.1016/j.patcog.2016.09.020 Khawaldeh S, 2018, APPL SCI-BASEL, V8, DOI 10.3390/app8010027 Koush Y, 2017, NEUROIMAGE, V156, P489, DOI 10.1016/j.neuroimage.2017.06.039 Kumar M, 2017, NEUROIMAGE, V155, P422, DOI 10.1016/j.neuroimage.2017.03.037 Lenglet C, 2009, NEUROIMAGE, V45, pS111, DOI 10.1016/j.neuroimage.2008.10.054 Li R, 2013, PLOS ONE Li Y, 2020, NEUROCOMPUTING, V379, P370, DOI 10.1016/j.neucom.2019.10.085 Li ZC, 2018, EUR RADIOL, V28, P3640, DOI 10.1007/s00330-017-5302-1 Lian QS, 2020, SIGNAL PROCESS, V170, DOI 10.1016/j.sigpro.2019.107444 Lim KY, 2018, EXPERT SYST APPL, V112, P288, DOI 10.1016/j.eswa.2018.06.041 Lim L, 2013, PLOS ONE, V8, DOI [10.1371/journal.pone.0063660, 10.1371/journal.pone.0084487] Liu MH, 2020, NEUROIMAGE, V208, DOI 10.1016/j.neuroimage.2019.116459 Liu Y, 2018, KSII T INTERNET INF, V12, P4336, DOI 10.3837/tiis.2018.09.012 Liu YH, 2016, APPL SCI-BASEL, V6, DOI 10.3390/app6050142 Lorenzetti V, 2009, J AFFECT DISORDERS, V117, P1, DOI 10.1016/j.jad.2008.11.021 Mann HB, 1945, ECONOMETRICA, V13, P245, DOI 10.2307/1907187 Miwa K, 2014, RADIAT ONCOL, V9, DOI 10.1186/1748-717X-9-181 MOED HF, 1995, SCIENTOMETRICS, V33, P381, DOI 10.1007/BF02017338 Moeskops P, 2016, IEEE T MED IMAGING, V35, P1252, DOI 10.1109/TMI.2016.2548501 Mwangi B, 2013, NEUROIMAGE, V75, P58, DOI 10.1016/j.neuroimage.2013.02.055 Nieuwenhuis M, 2012, NEUROIMAGE, V61, P606, DOI 10.1016/j.neuroimage.2012.03.079 Nomi JS, 2016, HUM BRAIN MAPP, V37, P1770, DOI 10.1002/hbm.23135 Park H, 2013, NEUROSCI LETT, V550, P17, DOI 10.1016/j.neulet.2013.06.042 Pereira S, 2016, J NEUROSCI METH, V270, P111, DOI 10.1016/j.jneumeth.2016.06.017 Pesapane F, 2018, INSIGHTS IMAGING, V9, P745, DOI 10.1007/s13244-018-0645-y Ranlund S, 2018, NEUROIMAGE-CLIN, V20, P1026, DOI 10.1016/j.nicl.2018.10.008 Rasero J, 2018, PLOS ONE, V13, DOI 10.1371/journal.pone.0207385 Rasoolinejad M, 2019, ARCH PEDIATR INFECT, V7, DOI 10.5812/pedinfect.80318 Reichert C, 2014, FRONT NEUROSCI-SWITZ, V8, DOI 10.3389/fnins.2014.00116 Rovira A, 2009, ARCH NEUROL-CHICAGO, V66, P587, DOI 10.1001/archneurol.2009.49 Rubin-Falcone H, 2018, J AFFECT DISORDERS, V227, P498, DOI 10.1016/j.jad.2017.11.043 Saladi S, 2018, INT J IMAG SYST TECH, V28, P207, DOI 10.1002/ima.22271 Serpa MH, 2014, BIOMED RES INT-UK, V2014, DOI 10.1155/2014/706157 Shenton ME, 2001, SCHIZOPHR RES, V49, P1, DOI 10.1016/S0920-9964(01)00163-3 Sheth D, 2020, J MAGN RESON IMAGING, V51, P1310, DOI 10.1002/jmri.26878 Shi F, 2010, NEUROIMAGE, V49, P391, DOI 10.1016/j.neuroimage.2009.07.066 Soch J, 2016, NEUROIMAGE, V141, P469, DOI 10.1016/j.neuroimage.2016.07.047 Song Y, 2019, COMPUT EDUC, V137, P12, DOI 10.1016/j.compedu.2019.04.002 Stamile C, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0156405 Szilágyi L, 2012, COMPUT METH PROG BIO, V108, P80, DOI 10.1016/j.cmpb.2012.01.005 Tian Dan, 2007, 2007 1st International Conference on Bioinformatics and Biomedical Engineering, P686, DOI 10.1109/ICBBE.2007.179 Tredinnick L., 2017, Business Information Review, V34, P37, DOI [10.1177/0266382117692621, DOI 10.1177/0266382117692621] Valli I, 2016, FRONT PSYCHIATRY, V7, DOI 10.3389/fpsyt.2016.00052 Wallace GL, 2013, BRAIN, V136, P1956, DOI 10.1093/brain/awt106 Wang J, 2018, FRONT HUM NEUROSCI, V12, DOI 10.3389/fnhum.2018.00166 Wang L, 2012, J AFFECT DISORDERS, V142, P6, DOI 10.1016/j.jad.2012.04.013 Wang PY, 2016, J ALZHEIMERS DIS, V54, P359, DOI 10.3233/JAD-160102 Wang SH, 2015, INT J IMAG SYST TECH, V25, P153, DOI 10.1002/ima.22132 Wang WX, 2018, ELECTRON COMMER R A, V29, P142, DOI 10.1016/j.elerap.2018.04.003 Wei HJ, 2019, NEUROIMAGE, V202, DOI 10.1016/j.neuroimage.2019.116064 Wise T, 2018, ACTA PSYCHIAT SCAND, V138, P73, DOI 10.1111/acps.12887 Wolz R, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0025446 Wu GR, 2015, NEUROIMAGE, V106, P34, DOI 10.1016/j.neuroimage.2014.11.025 Wu JW, 2017, BRAIN, V140, P344, DOI 10.1093/brain/aww328 Wu X, 2017, FRONT HUM NEUROSCI, V11, DOI 10.3389/fnhum.2017.00061 Wu Y, 2013, J DIGIT IMAGING, V26, P786, DOI 10.1007/s10278-012-9568-1 Yin XB, 2017, J ELECTROCERAM, V39, P210, DOI 10.1007/s10832-017-0083-0 Zang WK, 2018, ENTROPY-SWITZ, V20, DOI 10.3390/e20120964 Zhan Y, 2015, J ALZHEIMERS DIS, V47, P1057, DOI 10.3233/JAD-142820 Zhang DQ, 2012, NEUROIMAGE, V59, P895, DOI 10.1016/j.neuroimage.2011.09.069 Zhang DQ, 2011, NEUROIMAGE, V55, P856, DOI 10.1016/j.neuroimage.2011.01.008 Zhang JN, 2018, FRONT HUM NEUROSCI, V12, DOI 10.3389/fnhum.2018.00152 Zhang J, 2018, COMPUT INTEL NEUROSC, V2018, DOI 10.1155/2018/3956536 Zhang S, 2019, MED IMAGE ANAL, V54, P238, DOI 10.1016/j.media.2019.03.011 Zhang T, 2018, INT J PATTERN RECOGN, V32, DOI 10.1142/S0218001418570057 Zhang T, 2014, NEUROCOMPUTING, V134, P122, DOI 10.1016/j.neucom.2012.12.081 Zhang Y, 2011, PROG ELECTROMAGN RES, V116, P65, DOI 10.2528/PIER11031709 Zhang Y, 2015, INT J GYNECOL CANCER, V25, P4, DOI 10.1097/IGC.0000000000000314 Zia R, 2018, INT J IMAG SYST TECH, V28, P153, DOI 10.1002/ima.22266 NR 146 TC 10 Z9 11 U1 8 U2 56 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 1380-7501 EI 1573-7721 J9 MULTIMED TOOLS APPL JI Multimed. Tools Appl. PD MAY PY 2021 VL 80 IS 11 BP 17335 EP 17363 DI 10.1007/s11042-020-09062-7 EA JUN 2020 PG 29 WC Computer Science, Information Systems; Computer Science, Software Engineering; Computer Science, Theory & Methods; Engineering, Electrical & Electronic WE Science Citation Index Expanded (SCI-EXPANDED) SC Computer Science; Engineering GA SE7XP UT WOS:000539519200002 OA Green Accepted DA 2024-09-05 ER PT C AU Zhang, ZQ Zhang, AH AF Zhang, Zhiqiang Zhang, Aihua GP Northeastern Univ, China TI Research on Performance of Audio Frequency Equalizer Evaluation Based on Support Vector Regression SO 2010 CHINESE CONTROL AND DECISION CONFERENCE, VOLS 1-5 SE Chinese Control and Decision Conference LA English DT Proceedings Paper CT 22nd Chinese Control and Decision Conference CY MAY 26-AUG 28, 2010 CL Xuzhou, PEOPLES R CHINA DE Support Vector Regression Machine; Performance of Audio Frequency Equalizer Evaluation; Amplifier Amplitude Frequency Characteristics AB A evaluate method of audio frequency equalizer performance based on Support Vector Machine was presented. Taking BPF that applied to audio frequency equalizer as experiment object. First, obtaining dataset of the amplitude frequency of the BPF by amplitude frequency characteristics testing equipment to get samples, and then using support vector regression to get the approach function of the amplifier amplitude frequency characteristics of the BPF, using the function to test four performance parameters. The experimental results show that this method improves the precision of the parameters testing. It is suitable for the evaluate of the electronic production performance that tested by oscillograph. C1 [Zhang, Zhiqiang; Zhang, Aihua] BoHai Univ, Coll Informat Sci & Engn, Jinzhou 121000, Peoples R China. C3 Bohai University RP Zhang, ZQ (corresponding author), BoHai Univ, Coll Informat Sci & Engn, Jinzhou 121000, Peoples R China. EM Jsxinxi_zzq@163.com; Jsxinxi_zah@163.com CR CRISTIANINI N, 2004, INTRO SUPPORT VECTOR, P125 DENG NY, 2004, NEW METHOD DATA MINI, P98 Scholkopf B., 1998, P ICANN 98 PERSP NEU, P111 SUYKENS JAK, 1999, EUR C CIRC THEOR DES, P839 VAPNIK V, 2000, ESSENCE STAT LEARNIN, P205 XU JB, 1998, J ACTA ELECT SINICA, V26, P59 XUE LZ, 1983, THEOR METHOD FUNCTIO, P169 NR 7 TC 0 Z9 0 U1 0 U2 0 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA SN 1948-9439 BN 978-1-4244-5182-1 J9 CHIN CONT DECIS CONF PY 2010 BP 810 EP 814 DI 10.1109/CCDC.2010.5498116 PG 5 WC Automation & Control Systems; Engineering, Electrical & Electronic; Operations Research & Management Science WE Conference Proceedings Citation Index - Science (CPCI-S) SC Automation & Control Systems; Engineering; Operations Research & Management Science GA BUV61 UT WOS:000290460300163 DA 2024-09-05 ER PT J AU Zhou, H Sun, JQ Zhao, ZY Yang, YH Xie, AL Chiclana, F AF Zhou, Hui Sun, Jinqing Zhao, Zhongying Yang, Yonghao Xie, Ailei Chiclana, Francisco TI Attention-Based Deep Learning Model for Predicting Collaborations Between Different Research Affiliations SO IEEE ACCESS LA English DT Article DE Relationship prediction; collaboration analysis; coauthor networks; deep learning ID LINK PREDICTION; INFLUENCE MAXIMIZATION; NETWORKS AB It is challenging but important to predict the collaborations between different entities which in academia, for example, would enable finding evaluating trends of scientific research collaboration and the provision of decision support for policy formulation and incentive measures. In this paper, we propose an attention-based Long Short-Term Memory Convolutional Neural Network (LSTM-CNN) model to predict the collaborations between different research affiliations, which takes both the influence of research articles and time (year) relationships into consideration. The experimental results show that the proposed model outperforms the competitive Support Vector Machine (SVM), CNN and LSTM methods. It significantly improves the prediction precision by a minimum of 3.23 percent points and up to 10.80 percent points when compared with the mentioned competitive methods, while in terms of the F1-score, the performance is improved by 13.48, 4.85 and 4.24 percent points, respectively. C1 [Zhou, Hui; Sun, Jinqing; Zhao, Zhongying; Yang, Yonghao] Shandong Univ Sci & Technol, Coll Comp Sci & Engn, Shandong Prov Key Lab Wisdom Mine Informat Techno, Qingdao 266590, Shandong, Peoples R China. [Xie, Ailei] Guangzhou Univ, Sch Educ, Guangzhou 510006, Guangdong, Peoples R China. [Chiclana, Francisco] De Montfort Univ, Sch Comp Sci & Informat, Inst Artificial Intelligence, Leicester LE1 9BH, Leics, England. [Chiclana, Francisco] Univ Granada, Andalusian Res Inst Data Sci & Computat Intellige, E-18071 Granada, Spain. C3 Shandong University of Science & Technology; Guangzhou University; De Montfort University; University of Granada RP Zhao, ZY (corresponding author), Shandong Univ Sci & Technol, Coll Comp Sci & Engn, Shandong Prov Key Lab Wisdom Mine Informat Techno, Qingdao 266590, Shandong, Peoples R China. EM zzysuin@163.com RI zhao, zhongying/V-6991-2019; hui, zhou/JOZ-7380-2023; Chiclana, Francisco/B-9031-2008; 谢, 爱磊/GWD-0986-2022 OI Chiclana, Francisco/0000-0002-3952-4210; FU Humanities and Social Science Research Project of the Ministry of Education in China [17YJCZH262, 18YJAZH136]; National Natural Science Foundation of China [61303167, 61702306, 61433012, U1435215, 71772107]; Natural Science Foundation of Shandong Province [ZR2018BF013, ZR2017BF015]; Innovative Research Foundation of Qingdao [18-2-2-41-jch]; Key Project of Industrial Transformation and Upgrading in China [TC170A5SW]; Scientific Research Foundation of SDUST for Innovative Team [2015TDJH102] FX This work was supported in part by the Humanities and Social Science Research Project of the Ministry of Education in China under Grant 17YJCZH262 and Grant 18YJAZH136, in part by the National Natural Science Foundation of China under Grant 61303167, Grant 61702306, Grant 61433012, Grant U1435215, and Grant 71772107, in part by the Natural Science Foundation of Shandong Province under Grant ZR2018BF013 and Grant ZR2017BF015, in part by the Innovative Research Foundation of Qingdao under Grant 18-2-2-41-jch, in part by the Key Project of Industrial Transformation and Upgrading in China under Grant TC170A5SW, and in part by the Scientific Research Foundation of SDUST for Innovative Team under Grant 2015TDJH102. CR Amin MI, 2016, JOINT INT CONF SOFT, P233, DOI [10.1109/SCIS&ISIS.2016.151, 10.1109/SCIS-ISIS.2016.0058] [Anonymous], 2012, LONG SHORT TERM MEMO Aref S., 2018, P AUSTR COMP SCI WEE, V49, P1 Cai XL, 2019, IEEE ACCESS, V7, P2017, DOI 10.1109/ACCESS.2018.2886360 CHUA LO, 1993, IEEE T CIRCUITS-I, V40, P147, DOI 10.1109/81.222795 CORTES C, 1995, MACH LEARN, V20, P273, DOI 10.1023/A:1022627411411 Gers FA, 2000, NEURAL COMPUT, V12, P2451, DOI 10.1162/089976600300015015 Guo J., 2010, P INT C COMP DES APP Guo Z, 2016, 2016 INTERNATIONAL CONFERENCE ON BUSINESS AND ECONOMICS (ICBE2016), P515 He Q, 2019, APPL MATH COMPUT, V354, P338, DOI 10.1016/j.amc.2019.02.056 He Q, 2018, IEEE ACCESS, V6, P49654, DOI 10.1109/ACCESS.2018.2867540 He Q, 2018, APPL SOFT COMPUT, V66, P360, DOI 10.1016/j.asoc.2018.02.016 Huang SP, 2014, INT C COMP SUPP COOP, P706, DOI 10.1109/CSCWD.2014.6846931 Li JC, 2018, PHYSICA A, V495, P1, DOI 10.1016/j.physa.2017.12.018 Li LJ, 2019, IEEE ACCESS, V7, P43233, DOI 10.1109/ACCESS.2019.2908208 Li Y, 2018, SCIENTOMETRICS, V117, P85, DOI 10.1007/s11192-018-2837-0 Lü LY, 2011, PHYSICA A, V390, P1150, DOI 10.1016/j.physa.2010.11.027 Lü LY, 2009, PHYS REV E, V80, DOI 10.1103/PhysRevE.80.046122 Makrehchi M., 2011, Proceedings of the fifth ACM conference on Recommender systems, RecSys '11, P189 Menon AK, 2011, LECT NOTES ARTIF INT, V6912, P437, DOI 10.1007/978-3-642-23783-6_28 Muniz CP, 2018, KNOWL-BASED SYST, V156, P129, DOI 10.1016/j.knosys.2018.05.027 Murata T, 2007, PROCEEDINGS OF THE IEEE/WIC/ACM INTERNATIONAL CONFERENCE ON WEB INTELLIGENCE, P85, DOI 10.1109/WI.2007.52 Murray N, 2014, PROC CVPR IEEE, P2473, DOI 10.1109/CVPR.2014.317 Sharma DD, 2014, IEEE POW ENER SOC GE Shuguang Han, 2013, Social Computing, Behavioral-Cultural Modeling and Prediction. 6th International Conference, SBP 2013. Proceedings, P274, DOI 10.1007/978-3-642-37210-0_30 Su F., 2011, LIB INF SERVICE, V55, P144 Sun YZ, 2011, 2011 INTERNATIONAL CONFERENCE ON ADVANCES IN SOCIAL NETWORKS ANALYSIS AND MINING (ASONAM 2011), P121, DOI 10.1109/ASONAM.2011.112 Tang J, 2016, ACM T INFORM SYST, V34, DOI 10.1145/2746230 Wang X., 2004, SCI SCI MANAGE S T, P15 Wang ZQ, 2018, KNOWL-BASED SYST, V159, P72, DOI 10.1016/j.knosys.2018.06.005 Wang ZQ, 2016, IEEE T KNOWL DATA EN, V28, P2857, DOI 10.1109/TKDE.2016.2597823 Xu GL, 2019, ALGORITHMS, V12, DOI 10.3390/a12010012 Zhang ZB, 2017, KNOWL-BASED SYST, V132, P226, DOI 10.1016/j.knosys.2017.06.035 Zhao ZY, 2019, J INTELL FUZZY SYST, V36, P6207, DOI 10.3233/JIFS-182512 Zhao ZY, 2019, KNOWL-BASED SYST, V163, P404, DOI 10.1016/j.knosys.2018.09.002 Zhao ZY, 2018, INFORM SCIENCES, V466, P258, DOI 10.1016/j.ins.2018.07.064 Zhao ZY, 2018, J INTELL FUZZY SYST, V35, P1077, DOI 10.3233/JIFS-17682 Zhou K, 2019, AAMAS '19: PROCEEDINGS OF THE 18TH INTERNATIONAL CONFERENCE ON AUTONOMOUS AGENTS AND MULTIAGENT SYSTEMS, P305 Zhu XY, 2018, KNOWL-BASED SYST, V159, P171, DOI 10.1016/j.knosys.2018.07.015 NR 39 TC 1 Z9 1 U1 1 U2 23 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 2169-3536 J9 IEEE ACCESS JI IEEE Access PY 2019 VL 7 BP 118068 EP 118076 DI 10.1109/ACCESS.2019.2936745 PG 9 WC Computer Science, Information Systems; Engineering, Electrical & Electronic; Telecommunications WE Science Citation Index Expanded (SCI-EXPANDED) SC Computer Science; Engineering; Telecommunications GA IV6BV UT WOS:000484354800001 OA Green Submitted, gold DA 2024-09-05 ER PT J AU Vinayak Raghuvanshi, A Kshitij, A AF Vinayak Raghuvanshi, Adarsh Kshitij, Avinash TI Signatures of capacity development through research collaborations in artificial intelligence and machine learning SO JOURNAL OF INFORMETRICS LA English DT Article DE Artificial intelligence; Co-authorship network; Network statistics; Closeness centrality; Machine learning; Social network analysis ID CO-AUTHORSHIP NETWORKS; SCIENTIFIC COLLABORATION; CENTRALITY; IMPACT; PRODUCTIVITY; PROXIMITY; EVOLUTION; PATTERNS AB Extant studies suggest that the proximity between the researchers and their structural position-ing in the collaboration network may influence productivity and performance in collaboration research. In this paper, we analyze the co-authorship networks of the three countries, viz. the USA, China, and India, constructed in consecutive non-overlapping 5-year long time windows from bibliometric data of research papers published in the past decade in the rapidly evolving area of Artificial Intelligence and Machine Learning (AI&ML). Our analysis relies on the observa-tions ensued from a comparison of the statistical properties of the evolving networks. We consider macro-level network properties which describe the global characteristics, such as degree distri-bution, assortativity, and large-scale cohesion etc., as well as micro-level properties associated with the actors who have assumed central positions, defining a core in the network assembly with respect to closeness centrality measure. For the analysis of the core actors, who are well connected with a large number of other actors, we consider share of their affiliations with do-mestic institutes. We find dominant representation of domestic affiliations of the core actors for high productivity cases, such as China in the second time window and the USA in the first and second both. Our study, therefore, suggests that the domestic affiliation of the core actors, who could access network resources more efficiently than other actors, influences and catalyzes the collaborative research. C1 [Vinayak; Raghuvanshi, Adarsh; Kshitij, Avinash] CSIR Natl Inst Sci Commun & Policy Res, Dr KS Krishnan Marg, New Delhi 110012, India. [Vinayak; Raghuvanshi, Adarsh; Kshitij, Avinash] Acad Sci & Innovat Res AcSIR, Ghaziabad 201002, India. C3 Council of Scientific & Industrial Research (CSIR) - India; CSIR - National Institute of Science Communication & Policy Research (NIScPR); Academy of Scientific & Innovative Research (AcSIR) RP Vinayak (corresponding author), CSIR Natl Inst Sci Commun & Policy Res, Dr KS Krishnan Marg, New Delhi 110012, India.; Vinayak (corresponding author), Acad Sci & Innovat Res AcSIR, Ghaziabad 201002, India. EM vinayaksps2003@gmail.com FU University Grant Commission, India [191620064987] FX Adarsh Raghuvanshi acknowledges University Grant Commission, India (NTA Ref. No.: 191620064987) for financial support. The authors acknowledge Anirban Chakraborty and are indebted to anonymous reviewers for their insightful comments and suggestions. CR Abbasi A, 2011, J INFORMETR, V5, P594, DOI 10.1016/j.joi.2011.05.007 Agrawal A, 2008, J URBAN ECON, V64, P258, DOI 10.1016/j.jue.2008.01.003 Ba ZC, 2021, J INFORMETR, V15, DOI 10.1016/j.joi.2021.101198 Barabási AL, 1999, SCIENCE, V286, P509, DOI 10.1126/science.286.5439.509 Barrat A, 2004, P NATL ACAD SCI USA, V101, P3747, DOI 10.1073/pnas.0400087101 Barthélemy M, 2005, PHYSICA A, V346, P34, DOI 10.1016/j.physa.2004.08.047 BEAUCHAMP MA, 1965, BEHAV SCI, V10, P161, DOI 10.1002/bs.3830100205 Broido AD, 2019, NAT COMMUN, V10, DOI 10.1038/s41467-019-08746-5 Chen KH, 2019, RES POLICY, V48, P149, DOI 10.1016/j.respol.2018.08.005 Cheng FX, 2020, BMC BIOL, V18, DOI 10.1186/s12915-020-00868-3 Clarivate, 2021, WEB SCI CORE COLLECT Clauset A, 2009, SIAM REV, V51, P661, DOI 10.1137/070710111 Dorogovtsev SN, 2010, PHYS REV E, V81, DOI 10.1103/PhysRevE.81.031135 Duque RB, 2005, SOC STUD SCI, V35, P755, DOI 10.1177/0306312705053048 Egghe L, 2006, SCIENTOMETRICS, V69, P131, DOI 10.1007/s11192-006-0144-7 ERDOS P, 1960, B INT STATIST INST, V38, P343 Faust K, 1997, SOC NETWORKS, V19, P157, DOI 10.1016/S0378-8733(96)00300-0 Fleming L, 2007, ADMIN SCI QUART, V52, P443, DOI 10.2189/asqu.52.3.443 FREEMAN LC, 1979, SOC NETWORKS, V1, P215, DOI 10.1016/0378-8733(78)90021-7 Ghosh J, 2015, SCIENTOMETRICS, V102, P1207, DOI 10.1007/s11192-014-1475-4 GILBERT EN, 1959, ANN MATH STAT, V30, P1141, DOI 10.1214/aoms/1177706098 Glänzel W, 2001, SCIENTOMETRICS, V51, P69, DOI 10.1023/A:1010512628145 Guan JC, 2016, RES POLICY, V45, P770, DOI 10.1016/j.respol.2016.01.003 Iglic H, 2017, SCIENTOMETRICS, V112, P153, DOI 10.1007/s11192-017-2386-y KATZ JS, 1994, SCIENTOMETRICS, V31, P31, DOI 10.1007/BF02018100 Kim J, 2016, J ASSOC INF SCI TECH, V67, P1446, DOI 10.1002/asi.23489 Kretschmer H, 2004, SCIENTOMETRICS, V60, P409, DOI 10.1023/B:SCIE.0000034383.86665.22 Laudel G, 2002, RES EVALUAT, V11, P3, DOI 10.3152/147154402781776961 Lee S, 2005, SOC STUD SCI, V35, P673, DOI 10.1177/0306312705052359 Li EY, 2013, RES POLICY, V42, P1515, DOI 10.1016/j.respol.2013.06.012 Litvak N, 2013, PHYS REV E, V87, DOI 10.1103/PhysRevE.87.022801 Lotka A.J., 1926, J Wash Acad Sci Wash D C, V16, P23 Lozano S, 2014, SCIENTOMETRICS, V98, P1505, DOI 10.1007/s11192-013-1162-x March JG, 1991, ORGAN SCI, V2, P71, DOI 10.1287/orsc.2.1.71 McFadyen MA, 2004, ACAD MANAGE J, V47, P735, DOI [10.2307/20159615, 10.5465/20159615] Melin G, 1996, SCIENTOMETRICS, V36, P363, DOI 10.1007/BF02129600 Moody J., 2002, Sociol. Method., V68, P365 Newman MEJ, 2001, P NATL ACAD SCI USA, V98, P404, DOI 10.1073/pnas.021544898 Newman MEJ, 1999, PHYS REV E, V60, P7332, DOI 10.1103/PhysRevE.60.7332 Newman MEJ, 2001, PHYS REV E, V64, DOI [10.1103/PhysRevE.64.016132, 10.1103/PhysRevE.64.026118] Newman MEJ, 2001, PHYS REV E, V64, DOI [10.1103/PhysRevE.64.016131, 10.1103/PhysRevE.64.016132] Newman MEJ, 2002, PHYS REV LETT, V89, DOI 10.1103/PhysRevLett.89.208701 Raschke M, 2010, PHYS REV E, V82, DOI 10.1103/PhysRevE.82.037102 Subelj L, 2019, J INFORMETR, V13, P10, DOI 10.1016/j.joi.2018.11.005 Sun YT, 2015, TECHNOL FORECAST SOC, V96, P215, DOI 10.1016/j.techfore.2015.03.013 Watts DJ, 1998, NATURE, V393, P440, DOI 10.1038/30918 Yan EJ, 2009, J AM SOC INF SCI TEC, V60, P2107, DOI 10.1002/asi.21128 Zhou B, 2020, SOC NETWORKS, V63, P47, DOI 10.1016/j.socnet.2020.04.004 NR 48 TC 1 Z9 1 U1 9 U2 35 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS SN 1751-1577 EI 1875-5879 J9 J INFORMETR JI J. Informetr. PD FEB PY 2023 VL 17 IS 1 AR 101358 DI 10.1016/j.joi.2022.101358 EA DEC 2022 PG 17 WC Computer Science, Interdisciplinary Applications; Information Science & Library Science WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Computer Science; Information Science & Library Science GA 7E0LW UT WOS:000900872200003 DA 2024-09-05 ER PT C AU Wang, GJ AF Wang, GuoJun GP IEEE TI Research on the Construction of Classroom Teaching Evaluation System Based on Artificial Intelligence SO 2021 INTERNATIONAL CONFERENCE ON BIG DATA ENGINEERING AND EDUCATION (BDEE 2021) LA English DT Proceedings Paper CT International Conference on Big Data Engineering and Education (BDEE) CY AUG 12-14, 2021 CL Guiyang, PEOPLES R CHINA DE artificial intelligence; classroom teaching; evaluation; construction research AB Human beings are accelerating into the era of artificial intelligence. In all areas of society, artificial intelligence is playing an irreplaceable and huge role. The development of artificial intelligence in the field of education is accelerating. The development of artificial intelligence in the field of education is accelerating. It promotes the development of teaching and makes classroom teaching more lively and interesting. Classroom teaching evaluation occupies a very important position in education and teaching, and it is a ruler to measure the quality of classroom teaching. Based on the study of traditional classroom teaching evaluation, this paper analyzes the problems in traditional teaching evaluation from three aspects: single teaching evaluation method, untimely feedback of evaluation results, and inability to achieve comprehensive evaluation. An artificial intelligence-based classroom teaching evaluation system is constructed from three aspects: system structure, procedural evaluation of students' listening to lectures, and procedural evaluation of teachers' teaching. On this basis, it analyzes the technical, ethical, and systematic problems of artificial intelligence in classroom teaching evaluation. In response to these problems, the development strategy of artificial intelligence in classroom teaching evaluation is proposed from several aspects, such as breaking through the technical bottleneck and establishing a teaching evaluation simulation system. Finally, the prospects for the development of artificial intelligence in teaching evaluation are prospected. C1 [Wang, GuoJun] Shandong Technician Coll Water Conservancy, Dept Intelligent Mfg, Zibo, Peoples R China. RP Wang, GJ (corresponding author), Shandong Technician Coll Water Conservancy, Dept Intelligent Mfg, Zibo, Peoples R China. EM 155098193@qq.com FU Shandong University [SSD-2020-002] FX This article is part of the research results of the 2020 Shandong University Student Ideological and Political Education Theory and Practice Research Project "Curriculum Ideology and Politics Integration into the Course Evaluation System of Mechatronics Professional Course Teaching" (Project Number: SSD-2020-002), Project host: Guojun Wang CR Bian H., 2020, APPL ARTIF INTELL, P114 Hongcheng Jiang, 2021, International Journal of Information and Education Technology, V11, P262, DOI 10.18178/ijiet.2021.11.6.1521 Hu Z. H., 2019, EDUC REV, P128 Li Y. H., 2019, 2 SESSION 13 NATL CO Sun F. Q., 2019, CHINA ED INFORM, P58 Wang Z. Q., 2020, INT COMP ED, P43 Wu Q., 2021, ED TEACHING REFORM, P81 Xiao R., 2020, CHINA ED TECHNOLOGY, P76 Yi Yuan, 2016, International Journal of Information and Education Technology, V6, P923, DOI 10.7763/IJIET.2016.V6.818 NR 9 TC 1 Z9 1 U1 7 U2 37 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA BN 978-1-6654-3957-2 PY 2021 BP 101 EP 105 DI 10.1109/BDEE52938.2021.00024 PG 5 WC Computer Science, Information Systems; Computer Science, Interdisciplinary Applications WE Conference Proceedings Citation Index - Science (CPCI-S) SC Computer Science GA BT8LI UT WOS:000853884200018 DA 2024-09-05 ER PT J AU Alahmadi, D Babour, A Saeedi, K Visvizi, A AF Alahmadi, Dimah Babour, Amal Saeedi, Kawther Visvizi, Anna TI Ensuring Inclusion and Diversity in Research and Research Output: A Case for a Language-Sensitive NLP Crowdsourcing Platform SO APPLIED SCIENCES-BASEL LA English DT Article DE human-centric technology; inclusion; decision-making; natural language processing (NLP); NLP crowdsourcing platforms ID CORPUS AB In the context of the debate on the need to place citizens at the center of the technological revolution, this paper makes a case for a natural language processing (NLP) crowdsourcing platform that ensures inclusion and diversity, thus making the research outcome relevant and applicable across issues and domains. This paper also makes the case that by enabling participation for a wide variety of stakeholders, this NLP crowdsourcing platform might ultimately prove useful in the decision- and policy-making processes at city, community, and country levels. Against the backdrop of the debates on artificial intelligence (AI) and NLP research, and considering substantial differentiation specific to the Arab language, this paper introduces and evaluates an Arab language-sensitive NLP crowdsourcing platform. The value of the platform and its accuracy are measured via the System Usability Scale (SUS), where it scores 72.5, i.e., above the accepted usability average. These findings are crucial for NLP research and the research community in general. They are equally promising in view of the practical application of the research findings. C1 [Alahmadi, Dimah; Babour, Amal; Saeedi, Kawther] King Abdulaziz Univ, Dept Informat Syst, Fac Comp & Informat Technol, Jeddah 21589, Saudi Arabia. [Visvizi, Anna] Effat Univ, Effat Coll Business, Jeddah 34689, Saudi Arabia. C3 King Abdulaziz University; Effat University RP Alahmadi, D (corresponding author), King Abdulaziz Univ, Dept Informat Syst, Fac Comp & Informat Technol, Jeddah 21589, Saudi Arabia. EM dalahmadi@kau.edu.sa; ababor@kau.edu.sa; ksaeedi@kau.edu.sa; avisvizi@gmail.com RI Saeedi, Kawther/JDD-5107-2023; Visvizi, Anna/AFV-1944-2022 OI Alahmadi, Dimah/0000-0001-5576-8832; Babour, Amal/0000-0002-0365-3889; Saeedi, Kawther/0000-0002-5295-4485; Visvizi, Anna/0000-0003-3240-3771 FU Deanship of Scientific Research (DSR), King Abdulaziz University, Jeddah, Saudi Arabia [G: 1473-612-1440, 62467] FX This project was funded by the Deanship of Scientific Research (DSR), King Abdulaziz University, Jeddah, Saudi Arabia, under grant G: 1473-612-1440 and grant No. 62467. The authors D.A., A.B., and K.S. therefore gratefully acknowledge the DSR technical and financial support. CR Akila G., 2015, P INT C INT TEXT PRO Al-Muzaini HA, 2018, INT J ADV COMPUT SC, V9, P67 Al-Twairesh N, 2018, PROCEDIA COMPUT SCI, V142, P72, DOI 10.1016/j.procs.2018.10.462 Albadi N, 2019, SOC NETW ANAL MIN, V9, DOI 10.1007/s13278-019-0587-5 Alhelbawy A., 2016, P 10 INT C LANG RES Almeman K., 2013, P 2013 1 INT C COMM Alotaibi B, 2020, IEEE ACCESS, V8, P10718, DOI 10.1109/ACCESS.2020.2965181 Alsarsour I., 2018, P 11 INT C LANG RES Alshutayri A., 2018, P OSACT 3 3 WORKSH O [Anonymous], **NON-TRADITIONAL** [Anonymous], **NON-TRADITIONAL** [Anonymous], **NON-TRADITIONAL** [Anonymous], **NON-TRADITIONAL** [Anonymous], 1996, QUICK DIRTY USABILIT [Anonymous], **NON-TRADITIONAL** [Anonymous], **NON-TRADITIONAL** Baly R., ARXIV19060183 Bougrine S, 2017, PROCEDIA COMPUT SCI, V117, P137, DOI 10.1016/j.procs.2017.10.102 Brooke J, 2013, J USABILITY STUD, V8, P29 Chen L, 2019, INT J MED INFORM, V124, P6, DOI 10.1016/j.ijmedinf.2019.01.004 Crowston Kevin, 2012, SHAPING FUTURE ICT R, P210 Dashtipour K, 2020, NEUROCOMPUTING, V380, P1, DOI 10.1016/j.neucom.2019.10.009 de Winter JCF, 2015, PROCEDIA MANUF, V3, P2518, DOI 10.1016/j.promfg.2015.07.514 Denzin NormanK., 2008, The Sage Handbook of Qualitative Research, V3rd Farra N., 2015, P 2 WORKSH AR NAT LA Lewis J. R., 2009, P INT C HUM CTR DES, P1 Li X., 2017, FRONT CHEM, V5, P1, DOI DOI 10.1093/europace/eux283.145 Lieberman ES, 2005, AM POLIT SCI REV, V99, P435, DOI 10.1017/S0003055405051762 Miller Tristan., 2016, The European Journal of Humour Research, V4, P59, DOI DOI 10.7592/EJHR2016.4.1.miller Mora-Cantallops M, 2021, J AMB INTEL HUM COMP, V12, P4363, DOI 10.1007/s12652-019-01273-7 Mubarak H., 2017, P INT C ADV INT SYST Sauro Jeff., 2011, MeasuringU Tubaro P, 2020, BIG DATA SOC, V7, DOI 10.1177/2053951720919776 Vaughan J. W., 2017, J MACH LEARN RES, V18, P7026 Visvizi A., 2020, Computers in Human Behavior, V107 Zaidan OF, 2014, COMPUT LINGUIST, V40, P171, DOI 10.1162/COLI_a_00169 NR 36 TC 3 Z9 3 U1 1 U2 21 PU MDPI PI BASEL PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND EI 2076-3417 J9 APPL SCI-BASEL JI Appl. Sci.-Basel PD SEP PY 2020 VL 10 IS 18 AR 6216 DI 10.3390/app10186216 PG 18 WC Chemistry, Multidisciplinary; Engineering, Multidisciplinary; Materials Science, Multidisciplinary; Physics, Applied WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Chemistry; Engineering; Materials Science; Physics GA OE2KI UT WOS:000580365600001 OA gold DA 2024-09-05 ER PT J AU Tao, KM Osman, ZA Tzou, PL Rhee, SY Ahluwalia, V Shafer, RW AF Tao, Kaiming Osman, Zachary A. Tzou, Philip L. Rhee, Soo-Yon Ahluwalia, Vineet Shafer, Robert W. TI GPT-4 performance on querying scientific publications: reproducibility, accuracy, and impact of an instruction sheet SO BMC MEDICAL RESEARCH METHODOLOGY LA English DT Article DE Large language model; HIV drug resistance; Systematic review; GPT-4; Data extraction AB BackgroundLarge language models (LLMs) that can efficiently screen and identify studies meeting specific criteria would streamline literature reviews. Additionally, those capable of extracting data from publications would enhance knowledge discovery by reducing the burden on human reviewers.MethodsWe created an automated pipeline utilizing OpenAI GPT-4 32 K API version "2023-05-15" to evaluate the accuracy of the LLM GPT-4 responses to queries about published papers on HIV drug resistance (HIVDR) with and without an instruction sheet. The instruction sheet contained specialized knowledge designed to assist a person trying to answer questions about an HIVDR paper. We designed 60 questions pertaining to HIVDR and created markdown versions of 60 published HIVDR papers in PubMed. We presented the 60 papers to GPT-4 in four configurations: (1) all 60 questions simultaneously; (2) all 60 questions simultaneously with the instruction sheet; (3) each of the 60 questions individually; and (4) each of the 60 questions individually with the instruction sheet.ResultsGPT-4 achieved a mean accuracy of 86.9% - 24.0% higher than when the answers to papers were permuted. The overall recall and precision were 72.5% and 87.4%, respectively. The standard deviation of three replicates for the 60 questions ranged from 0 to 5.3% with a median of 1.2%. The instruction sheet did not significantly increase GPT-4's accuracy, recall, or precision. GPT-4 was more likely to provide false positive answers when the 60 questions were submitted individually compared to when they were submitted together.ConclusionsGPT-4 reproducibly answered 3600 questions about 60 papers on HIVDR with moderately high accuracy, recall, and precision. The instruction sheet's failure to improve these metrics suggests that more sophisticated approaches are necessary. Either enhanced prompt engineering or finetuning an open-source model could further improve an LLM's ability to answer questions about highly specialized HIVDR papers. C1 [Tao, Kaiming; Osman, Zachary A.; Tzou, Philip L.; Rhee, Soo-Yon; Shafer, Robert W.] Stanford Univ, Dept Med, Div Infect Dis, Stanford, CA 94305 USA. [Ahluwalia, Vineet] Aphorism Labs, Palo Alto, CA USA. C3 Stanford University RP Shafer, RW (corresponding author), Stanford Univ, Dept Med, Div Infect Dis, Stanford, CA 94305 USA. EM rshafer@stanford.edu FU National Institutes of Health FX This work was funded by a grant from the National Institutes of Health: CR Alshami A, 2023, SYSTEMS-BASEL, V11, DOI 10.3390/systems11070351 Blaizot A, 2022, RES SYNTH METHODS, V13, P353, DOI 10.1002/jrsm.1553 dos Santos AO, 2023, J BIOMED INFORM, V142, DOI 10.1016/j.jbi.2023.104389 Guo E, 2023, Arxiv, DOI arXiv:2305.00844 Jimenez RC, 2022, BMC MED RES METHODOL, V22, DOI 10.1186/s12874-022-01805-4 Jin Q, 2023, BIOINFORMATICS, V39, DOI 10.1093/bioinformatics/btad651 Kandpal N, 2023, Arxiv, DOI [arXiv:2211.08411, 10.48550/arXiv.2211.08411] Kassaye SG, 2016, CLIN INFECT DIS, V63, P836, DOI 10.1093/cid/ciw382 Khraisha Q, 2023, Arxiv, DOI [arXiv:2310.17526, 10.48550/arXiv.2310.17526] Liang WX, 2023, Arxiv, DOI arXiv:2310.01783 Liu R, 2023, Arxiv, DOI [arXiv:2306.00622, DOI 10.48550/ARXIV.2306.00622] Schopow N, 2023, JMIR MED INF, V11, DOI 10.2196/48933 Syriani E., 2023, arXiv, DOI 10.48550/arXiv.2307.06464 Tao KM, 2023, VIRUSES-BASEL, V15, DOI 10.3390/v15091932 van de Schoot R, 2021, NAT MACH INTELL, V3, P125, DOI 10.1038/s42256-020-00287-7 van Dijk SHB, 2023, BMJ OPEN, V13, DOI 10.1136/bmjopen-2023-072254 Weissenbacher D, 2023, medRxiv, DOI [10.1101/2023.07.29.23293370, 10.1101/2023.07.29.23293370v1, DOI 10.1101/2023.07.29.23293370V1] Zhang Zhuosheng, 2022, arXiv, DOI DOI 10.48550/ARXIV.2210.03493 NR 18 TC 0 Z9 0 U1 0 U2 0 PU BMC PI LONDON PA CAMPUS, 4 CRINAN ST, LONDON N1 9XW, ENGLAND EI 1471-2288 J9 BMC MED RES METHODOL JI BMC Med. Res. Methodol. PD JUN 25 PY 2024 VL 24 IS 1 AR 139 DI 10.1186/s12874-024-02253-y PG 10 WC Health Care Sciences & Services WE Science Citation Index Expanded (SCI-EXPANDED) SC Health Care Sciences & Services GA WI1Y8 UT WOS:001254161100001 PM 38918736 OA gold DA 2024-09-05 ER PT C AU Urooj, A Khan, HU Iqbal, S Althebyan, Q AF Urooj, Amber Khan, Hikmat Ullah Iqbal, Saqib Althebyan, Qutaibah BE Guetl, C Ceravolo, P Jararweh, Y Benkhelifa, E Adedugbe, O TI On Prediction of Research Excellence using Data Mining and Deep Learning Techniques SO 2021 EIGHTH INTERNATIONAL CONFERENCE ON SOCIAL NETWORK ANALYSIS, MANAGEMENT AND SECURITY (SNAMS) LA English DT Proceedings Paper CT 8th International Conference on Social Network Analysis, Management and Security (SNAMS) CY DEC 06-09, 2021 CL ELECTR NETWORK DE Scientometrics; Machine Learning Techniques; Deep Learning Techniques; Research Excellence and Data Mining Techniques ID AUTHORS AB Scientometrics analyses the science, technology and innovation. It measures and analyses the scientific literature. The goal of our research is to predict excellence of the researchers and examine the relationship between scientometric indicators. Data Mining Techniques are used to study research excellence in this paper. A dataset used in this research study consisted of 406 researcher's data which is extracted from MathSciNet (MSN) databases. Data mining classification algorithms like Naive Bayes, Decision Tree, Random Forest, Support Vector Machine, Logistic Regression and Deep Learning are applied on the dataset for the prediction of research excellence. The performance of these algorithms is also compared on the basis of some performance measures. C1 [Urooj, Amber; Khan, Hikmat Ullah] COMSATS Univ Islamabad, Dept Comp Sci, Wah, Pakistan. [Iqbal, Saqib; Althebyan, Qutaibah] Al Ain Univ, Coll Engn, Al Ain, U Arab Emirates. C3 COMSATS University Islamabad (CUI) RP Urooj, A (corresponding author), COMSATS Univ Islamabad, Dept Comp Sci, Wah, Pakistan. EM amberurooj1122@gmail.com; hikmat.ullah@ciitwah.edu.pk; saqib.iqbal@aau.ac.ae; qutaibah.althebyan@aau.ac RI Khan, Hikmat Ullah/GZG-2251-2022 OI Khan, Hikmat/0000-0002-8178-6652 CR Abramo G, 2014, J INFORMETR, V8, P89, DOI 10.1016/j.joi.2013.10.011 [Anonymous], 2013, CWTS WORKING PAPER S BUCKLAND ST, 1993, J APPL ECOL, V30, P478, DOI 10.2307/2404188 Carli G, 2019, STUD HIGH EDUC, V44, P1912, DOI 10.1080/03075079.2018.1466873 Danell R, 2011, J AM SOC INF SCI TEC, V62, P50, DOI 10.1002/asi.21454 Havemann F, 2015, SCIENTOMETRICS, V102, P1413, DOI 10.1007/s11192-014-1476-3 Larivière V, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0162709 Mryglod O, 2015, SCIENTOMETRICS, V102, P2165, DOI 10.1007/s11192-014-1512-3 Rueping S., SVM CLASSIFIER ESTIM, P8 Sammut C., 2016, ENCY MACHINE LEARNIN, DOI [10.1007/978-1-4899-7502-7, DOI 10.1007/978-1-4899-7502-7] Sandström U, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0166149 sciencedirect, PRED RES EXC IND LEV SWAIN PH, 1977, IEEE T GEOSCI REMOTE, V15, P142, DOI 10.1109/TGE.1977.6498972 NR 13 TC 0 Z9 0 U1 0 U2 0 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA BN 978-1-6654-9495-3 PY 2021 BP 50 EP 55 DI 10.1109/SNAMS53716.2021.9732153 PG 6 WC Computer Science, Artificial Intelligence; Computer Science, Theory & Methods WE Conference Proceedings Citation Index - Science (CPCI-S) SC Computer Science GA BT2PA UT WOS:000813133100007 DA 2024-09-05 ER PT J AU Iqbal, AM Iqbal, S Khan, AS Senin, AA AF Iqbal, Abeda Muhammad Iqbal, Saima Khan, Adnan Shahid Senin, Aslan Amat TI A Novel Cost Efficient Evaluation Model for Assessing Research-Based Technology Transfer between University and Industry SO JURNAL TEKNOLOGI LA English DT Article DE University-industry research collaboration; evaluation metrics; evaluation model; technology transfer AB Innovations and inventions are not outcomes of single activity of any organization. This is a result of collaboration of different partners. The evaluation of collaborated research between university and industry has created the greatest interest amongst the collaboration researchers as it can determine the feasibility and value of the collaboration. Despite the enormous importance of this collaboration, there have been certain problems in successful collaboration, for instance issues related to time, trainings, differences in their perceptions, orientations and goals, intellectual property right issues, some other technological competency and fund and financial matters are the key constraints that generates some how proportional to this collaboration. Thus to tackle the basis of these problems and to analyse the strength and weaknesses of these technological linkage, evaluation of such collaboration is highly demanded. This paper intends to illustrate an evaluation model to evaluate the university-industry collaboration and to enhance their technological linkage. For bridging the model, four important variables, constraints, evaluation parameter, success criteria and tangible outcome has been identified. The novelty of this model is, it is cost and time efficient and can be applied for any university-industry research collaboration. C1 [Iqbal, Abeda Muhammad; Iqbal, Saima; Senin, Aslan Amat] Univ Teknol Malaysia, Fac Management & Human Resource Dev, Utm Johor Bahru 81310, Johor, Malaysia. [Khan, Adnan Shahid] Univ Teknol Malaysia, Fac Elect Engn, UTM MIMOS Ctr Excellence, Skudai 81310, Malaysia. C3 Universiti Teknologi Malaysia; Universiti Teknologi Malaysia RP Iqbal, AM (corresponding author), Univ Teknol Malaysia, Fac Management & Human Resource Dev, Utm Johor Bahru 81310, Johor, Malaysia. EM abidaiqbal49@yahoo.com RI Khan, Adnan Shahid S/N-7113-2018; Iqbal, Abeda Muhammad/AAM-2154-2020; Senin, Aslan Amat/B-1757-2017 OI Senin, Aslan Amat/0000-0002-8004-8746; Khan, Adnan Shahid/0000-0002-3924-3646 FU Faculty of Management and Human Resource Development (FPPSM); Research Management Centre (RMC); Universiti Teknologi Malaysia (UTM) FX The authors would like to thanks Faculty of Management and Human Resource Development (FPPSM) and Research Management Centre (RMC), Universiti Teknologi Malaysia (UTM) for their partial funding contributions. CR Abeda, 2011, INT J BUSINESS RES M, V2, P59 Agrawal A, 2001, INT J MANAG REV, V3, P285, DOI 10.1111/1468-2370.00069 Cilingir F. C., 1984, JURNAL TEKNOLOGI, V6, P18 Danell R, 2003, SCIENTOMETRICS, V58, P205, DOI 10.1023/A:1026228425125 David, 2006, ASIA PACIFIC BUSINES, V12 Etzkowitz H, 2000, RES POLICY, V29, P109, DOI 10.1016/S0048-7333(99)00055-4 Hall B. H., 2010, N200414 EUI ECO Hermans J., 2007, The Electronic Journal of Knowledge Management, V5, P43 Majid I.A., 2009, ENTREPRENEURIAL MANA Matkin G.W., 2006, TECHNOLOGY TRANSFER Santoro MichaelD., 2000, Journal of High Technology Management Research, V11, P255, DOI [DOI 10.1016/S1047-8310, DOI 10.1016/S1047-8310(00)00032-8, 10.1016/S1047-8310(00)00032-8] Siegel D.S., 2003, The Journal of High Technology Management Research, V14, P111, DOI [10.1016/S1047-8310(03)00007-5, DOI 10.1016/S1047-8310(03)00007-5, 10.1016/s1047-8310(03)00007-5] Tansinsin Lydia G., 2006, DEV U IND PARTNERSHI Teng Heqiang, 2004, U IND TECHNOLOGY TRA Veugelers R, 2005, INT J IND ORGAN, V23, P355, DOI 10.1016/j.ijindorg.2005.01.008 Winter, 2004, INT J TECHNOLOGY MAN, V10, P643 NR 16 TC 0 Z9 0 U1 0 U2 0 PU PENERBIT UTM PRESS PI JOHOR PA PENERBIT UTM PRESS, SKUDAI, JOHOR, 81310, MALAYSIA SN 0127-9696 EI 2180-3722 J9 J TEKNOL JI J. Teknol. PY 2013 VL 64 IS 2 PG 5 WC Engineering, Multidisciplinary WE Emerging Sources Citation Index (ESCI) SC Engineering GA V3P1I UT WOS:000218458900031 DA 2024-09-05 ER PT C AU Barakhnin, VB Duisenbayeva, AN Kozhemyakina, OY Yergaliyev, YN Muhamedyev, RI AF Barakhnin, V. B. Duisenbayeva, A. N. Kozhemyakina, O. Yu Yergaliyev, Y. N. Muhamedyev, R., I GP IOP TI The automatic processing of the texts in natural language. Some bibliometric indicators of the current state of this research area SO BIGDATA CONFERENCE (FORMERLY INTERNATIONAL CONFERENCE ON BIG DATA AND ITS APPLICATIONS) SE Journal of Physics Conference Series LA English DT Proceedings Paper CT 5th Big Data Conference (BDC) CY SEP 13, 2018 CL Moscow, RUSSIA DE Natural language processing; Machine Learning; Bibliometric Indicators; Scientometrics; Deep Learning; Neural Networks; Information Extraction; Text Categorization; Dialog Systems; Speech Recognition; Machine Translation; Information Retrieval; Question Answering; Opinion Mining; Smart advisors; D1; D2; semantic network AB This work reviews the bibliometric indicators of a rapidly developing field of research as automatic text processing (Natural language processing). The differential indicators of speed and acceleration were used to evaluate the development dynamics of NLP domains. The evaluation was based on the data from the Science direct bibliometric database. The evaluation of the Russian research segment was conducted according to e-library data. The calculations for the following subdomains of NLP were performed: Grammar Checking, Information Extraction, Text Categorization, Dialog Systems, Speech Recognition, Machine Translation, Information Retrieval, Question Answering, Opinion Mining, Smart advisors and others. The areas with high growth rates (Grammar Checking, Information Extraction, Machine Translation and Question Answering) and the areas that have lost the previously existing dynamics of growth of the publication activity (Information Retrieval, Opinion Mining, Text Categorization) have been identified. C1 [Barakhnin, V. B.; Kozhemyakina, O. Yu] Inst Computat Technol SB RAS, Moscow, Russia. [Duisenbayeva, A. N.; Yergaliyev, Y. N.; Muhamedyev, R., I] Inst Informat & Computat Technol MES RK, Alma Ata, Kazakhstan. [Duisenbayeva, A. N.; Yergaliyev, Y. N.; Muhamedyev, R., I] Satbayev Univ, Alma Ata, Kazakhstan. [Muhamedyev, R., I] ISMA Univ, Riga, Latvia. C3 Russian Academy of Sciences; Federal Research Center for Information & Computational Technologies; Institute of Information & Computational Technologies; Satbayev University RP Barakhnin, VB (corresponding author), Inst Computat Technol SB RAS, Moscow, Russia. EM bar@ict.nsc.ru; a.duisenbayeva@gmail.com; olgakozhemyakina@mail.ru; erlan21@mail.ru; ravil.muhamedyev@gmail.com RI Kozhemyakina, Olga Yu./AAG-8715-2019; Mukhamediev, Ravil I./X-1461-2019; Yergaliyev, Yerlan/AAB-2507-2020; Barakhnin, Vladimir/A-5856-2014 OI Kozhemyakina, Olga Yu./0000-0003-3619-1120; Mukhamediev, Ravil I./0000-0002-3727-043X; Barakhnin, Vladimir/0000-0003-3299-0507; Yergaliyev, Yerlan/0000-0001-9632-3784 FU Ministry of Education and Science of the Republic of Kazakhstan [BR05236839] FX The work was funded by grant No. BR05236839 of the Ministry of Education and Science of the Republic of Kazakhstan. CR Abramo G, 2008, SCIENTOMETRICS, V76, P225, DOI 10.1007/s11192-007-1942-2 Adilmanova A, 2016, CLOUD SCI, V3, P366 [Anonymous], 2003, TATuP Z Tech Theor Prax [Anonymous], 2015, P 78 ASIS T ANN M IN Cilibrasi RL, 2007, IEEE T KNOWL DATA EN, V19, P370, DOI 10.1109/TKDE.2007.48 Daim TU, 2005, Technology Management: A Unifying Discipline for Melting the Boundaries, P112 Daim TU, 2006, TECHNOL FORECAST SOC, V73, P981, DOI 10.1016/j.techfore.2006.04.004 Dale R, 2015, NAT LANG ENG, V21, P653, DOI 10.1017/S1351324915000200 Debackere K, 2004, SCIENTOMETRICS, V59, P253, DOI 10.1023/B:SCIE.0000018532.70146.02 GARFIELD E, 1955, SCIENCE, V122, P108, DOI 10.1126/science.122.3159.108 Gauthier E, 1998, CANADA SCI TECHNOLOG Goldberg Y, 2016, J ARTIF INTELL RES, V57, P345, DOI 10.1613/jair.4992 Leo E, 2007, J ASSOC INF SCI TECH, V58, P452 Mokhnacheva J., 2014, INF RESOUR RUSS, V6, P17 Muhamedyev R I, 2014, P 2014 C EL GOV OP S, P178, DOI DOI 10.1145/2729104.2729112 Muhamedyev R I, 2001, ANN LIB INFORM STUDI, V65, P62 Mukhamediev R I, 2017, INT C DIG TRANSF GLO, P130 Rousseau R, 2008, J AM SOC INF SCI TEC, V59, P1853, DOI 10.1002/asi.20890 Sun SL, 2017, INFORM FUSION, V36, P10, DOI 10.1016/j.inffus.2016.10.004 Tablan V, 2013, P 51 ANN M ASS COMP, P19 NR 20 TC 9 Z9 9 U1 0 U2 11 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 1742-6588 EI 1742-6596 J9 J PHYS CONF SER PY 2018 VL 1117 AR 012001 DI 10.1088/1742-6596/1117/1/012001 PG 9 WC Computer Science, Artificial Intelligence; Computer Science, Theory & Methods; Physics, Multidisciplinary WE Conference Proceedings Citation Index - Science (CPCI-S) SC Computer Science; Physics GA BO1FH UT WOS:000495570900001 OA gold DA 2024-09-05 ER PT J AU Gupta, BM Dhawan, SM AF Gupta, B. M. Dhawan, S. M. TI Machine Translation Research: A Scientometric Assessment of Global Publications Output during 2007-16 SO DESIDOC JOURNAL OF LIBRARY & INFORMATION TECHNOLOGY LA English DT Article DE Machine translation; Global publications; Scientometrics; Bibliometrics AB The present study provides a quantitative and qualitative description of global machine translation research published during 2007-16 and as indexed in Scopus database. The study profiles research in the field on a series of measures, such as publications growth rate, global share, citation impact, share of international collaborative papers and distribution of publications by sub-areas. The study also profiles top contributing countries, organisations and authors in machine translation research on a series of bibliometric indicators. The study further reports characteristics of highly cited papers in the field. C1 [Gupta, B. M.] 1173 Sect 15, Panchkula 134113, India. [Dhawan, S. M.] 114 Dayanand Vihar, Delhi 110092, India. RP Dhawan, SM (corresponding author), 114 Dayanand Vihar, Delhi 110092, India. EM smdhawan@yahoo.com RI Technology, DESIDOC Journal of Library and Information/AHA-3068-2022 CR Brownlee Jason, 2017, NATURAL LANGUAGE PRO Dong DH, 2015, SCIENTOMETRICS, V105, P1111, DOI 10.1007/s11192-015-1769-1 Gile D, 2015, PERSPECT STUD TRANSL, V23, P240, DOI 10.1080/0907676X.2014.972418 Okpor MD., 2014, International Journal of Computer Science Issues (IJCSI), V11, P159, DOI [10.20943/01201702.5457, DOI 10.20943/01201702.5457] Oladosu J., 2016, FUOYEJET, V1, P120, DOI DOI 10.46792/FUOYEJET.V1I1.26 van Doorslaer L, 2015, PERSPECT STUD TRANSL, V23, P305, DOI 10.1080/0907676X.2015.1026360 Voss Stefan, 2005, C ART INT APPL PART Zanettin F, 2015, PERSPECT STUD TRANSL, V23, P161, DOI 10.1080/0907676X.2015.1010551 NR 8 TC 3 Z9 3 U1 1 U2 13 PU DEFENCE SCIENTIFIC INFORMATION DOCUMENTATION CENTRE PI DELHI PA METCALFE HOUSE, DELHI 110054, INDIA SN 0974-0643 EI 0976-4658 J9 DESIDOC J LIB INF TE JI DESIDOC J. Lib. Inf. Technol. PD JAN PY 2019 VL 39 IS 1 BP 31 EP 38 DI 10.14429/djlit.39.1.13558 PG 8 WC Information Science & Library Science WE Emerging Sources Citation Index (ESCI) SC Information Science & Library Science GA HO5AO UT WOS:000460935300005 OA Green Submitted, gold DA 2024-09-05 ER PT J AU Ahmed, B Wang, L Al-Shamayleh, AS Afzal, MT Mustafa, G Alrawagfeh, W Akhunzada, A AF Ahmed, Bilal Wang, Li Al-Shamayleh, Ahmad Sami Afzal, Muhammad Tanvir Mustafa, Ghulam Alrawagfeh, Wagdi Akhunzada, Adnan TI Machine Learning Approach for Effective Ranking of Researcher Assessment Parameters SO IEEE ACCESS LA English DT Article DE Measurement; Indexes; Mathematics; Metadata; Reliability; Random forests; Current measurement; Research evaluation; H index and variants; research assessment parameters; ranking of researchers; math subject classification ID H-INDEX; COMPREHENSIVE EVALUATION; GOOGLE SCHOLAR; PUBLICATION; EXTENSIONS; VARIANTS; JOURNALS; METRICS; IMPACT AB The measurement and assessment of academic performance is now a fact of scientific life. This assessment guides the scientific community in making significant judgments such as selecting appropriate candidates for various positions, nominating individuals for scientific awards, and awarding scholarships or grants. Several research assessment parameters have been proposed by researchers to identify the most influential scholars. In the literature, researchers have employed a combination of hypothetical and fictional scenarios, as well as manual approaches, to identify the best assessment parameters. Moreover, there is no established benchmark available for assessing these parameters. The current study employs an innovative machine learning approach, the Dynamic Random Forest with Brouta Optimizer called "BorutaRanked Forest", to prioritize the assessment metrics for researchers by calculating the importance score for each metric. Thirty different assessment metrics have been evaluated on a comprehensive dataset of researchers that contains awardees researchers and non-awardees researchers of three decades from (1990 to 2023). The main purpose of this evaluation is to determine the potential value and significance of each parameter relative to others. In addition, the position of awardees researchers is examined at different percentile ranges form Top 10% to Top 100% in the ranked lists of each parameter. During the individual evaluation of each parameter, we uncovered several intriguing patterns in the data. Our findings indicate that the normalized h-index is a particularly effective assessment parameter for the impact evaluation of researchers in the domain of mathematics. An analysis has been conducted to explore the correlation between parameters and awarding societies, examining the associations between different metrics and specific awarding societies. C1 [Ahmed, Bilal; Wang, Li] Taiyuan Univ Technol, Coll Informat & Comp, Taiyuan, Peoples R China. [Al-Shamayleh, Ahmad Sami] Al Ahliyya Amman Univ, Fac Informat Technol, Dept Data Sci & Artificial Intelligence, Amman 19328, Jordan. [Afzal, Muhammad Tanvir; Mustafa, Ghulam] Shifa Tameer E Millat Univ, Dept Comp, Islamabad 44000, Pakistan. [Alrawagfeh, Wagdi; Akhunzada, Adnan] Univ Doha Sci & Technol, Coll Comp & IT, Doha, Qatar. C3 Taiyuan University of Technology; Al-Ahliyya Amman University RP Alrawagfeh, W (corresponding author), Univ Doha Sci & Technol, Coll Comp & IT, Doha, Qatar. EM wagdi.alrawagfeh@udst.edu.qa RI Al-Shamayleh, Ahmad Sami/IVU-8846-2023; Akhunzada, Adnan/N-7917-2017; Afzal, Muhammad/D-3741-2019 OI Akhunzada, Adnan/0000-0001-8370-9290; Afzal, Muhammad/0000-0002-7851-2327; Alrawagfeh, Wagdi/0000-0003-4227-9276; Ahmed, Bilal/0000-0002-9458-9412; Wang, Li/0000-0002-7385-1426; Al-Shamayleh, Dr. Ahmad Sami/0000-0002-7222-2433 FU Qatar National Library FX No Statement Available CR Ahmed B., 2020, P 6 INT C DAT SCI IC, P331 Ahmed B., 2023, IEEE Access, V11 Ahmed B, 2021, INT ARAB J INF TECHN, V18, P365, DOI 10.34028/iajit/18/3/13 Ameer M, 2019, SCIENTOMETRICS, V121, P653, DOI 10.1007/s11192-019-03209-6 Kursa MB, 2011, Arxiv, DOI [arXiv:1106.5112, 10.48550/arXiv.1106.5112] Balog K., 2006, Proceedings of the Twenty-Ninth Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, P43, DOI 10.1145/1148170.1148181 Bhattacharya S., 2022, P INT INT C MATH ENG, P1 Bihari A, 2023, J INF SCI, V49, P624, DOI 10.1177/01655515211014478 Burrell QL, 2007, J INFORMETR, V1, P170, DOI 10.1016/j.joi.2007.01.003 Burrell QL, 2007, J INFORMETR, V1, P16, DOI 10.1016/j.joi.2006.07.001 Cabrerizo FJ, 2010, J INFORMETR, V4, P23, DOI 10.1016/j.joi.2009.06.005 Cheng FF, 2019, LIBR HI TECH, V37, P43, DOI 10.1108/LHT-11-2017-0241 DE N, 2016, DISCRET MATH ALGORIT, V8 Dienes KR, 2015, J INFORMETR, V9, P385, DOI 10.1016/j.joi.2015.01.003 Dillon R., 2022, P 12 INT C VIRT CAMP, P1 Ding JD, 2020, SCIENTOMETRICS, V122, P1303, DOI 10.1007/s11192-020-03364-1 Dunne E., 2020, Nat. Amer. Math. Soc., V67, P410 Egghe L, 2006, SCIENTOMETRICS, V69, P131, DOI 10.1007/s11192-006-0144-7 GARFIELD E, 1972, SCIENCE, V178, P471, DOI 10.1126/science.178.4060.471 Ghani R, 2019, SCIENTOMETRICS, V118, P809, DOI 10.1007/s11192-019-03007-0 Halevi G, 2017, J INFORMETR, V11, P823, DOI 10.1016/j.joi.2017.06.005 Harzing AW, 2009, J AM SOC INF SCI TEC, V60, P41, DOI 10.1002/asi.20953 Hirsch JE, 2005, P NATL ACAD SCI USA, V102, P16569, DOI 10.1073/pnas.0507655102 Hussain A, 2019, INT J ADV COMPUT SC, V10, P39 Jiang XR, 2013, SCIENTOMETRICS, V96, P743, DOI 10.1007/s11192-012-0943-y Khan Nickalus R, 2013, World Neurosurg, V80, P766, DOI 10.1016/j.wneu.2013.07.011 Kursa MB, 2010, J STAT SOFTW, V36, P1, DOI 10.18637/jss.v036.i11 Lane J, 2010, NATURE, V464, P488, DOI 10.1038/464488a Liang RH, 2016, AAAI CONF ARTIF INTE, P20 Lima H, 2013, ACM-IEEE J CONF DIG, P97 Lötsch J, 2022, PAIN REP, V7, DOI 10.1097/PR9.0000000000001044 Maurya NS, 2023, SCI REP-UK, V13, DOI 10.1038/s41598-023-33327-4 Moreira C, 2015, EXPERT SYST, V32, P477, DOI 10.1111/exsy.12062 Mustafa G., 2021, IEEE Access, V9 Mustafa G, 2023, IEEE ACCESS, V11, P86597, DOI 10.1109/ACCESS.2023.3304013 Mustafa G, 2023, IEEE ACCESS, V11, P83136, DOI 10.1109/ACCESS.2023.3292248 Mustafa G, 2023, IEEE ACCESS, V11, P65759, DOI 10.1109/ACCESS.2023.3290917 Mustafa G, 2021, SCI REP-UK, V11, DOI 10.1038/s41598-021-01460-7 Nerur SP, 2008, STRATEG MANAGE J, V29, P319, DOI 10.1002/smj.659 Nguyen K, 2021, ISPRS INT J GEO-INF, V10, DOI 10.3390/ijgi10070452 Qurat-ul Ain, 2019, SCIENTOMETRICS, V119, P187, DOI 10.1007/s11192-019-03009-y Raheel M, 2018, SCIENTOMETRICS, V114, P1107, DOI 10.1007/s11192-017-2633-2 Rathore MMU, 2021, IEEE T EMERG TOP COM, V9, P280, DOI 10.1109/TETC.2018.2869458 Schreiber M, 2007, EPL-EUROPHYS LETT, V78, DOI 10.1209/0295-5075/78/30002 Schreiber M, 2008, J INFORMETR, V2, P211, DOI 10.1016/j.joi.2008.05.001 Shah SMAH, 2023, IEEE ACCESS, V11, P75528, DOI 10.1109/ACCESS.2023.3294562 Smolinsky L, 2012, SCIENTOMETRICS, V91, P911, DOI 10.1007/s11192-012-0647-3 Usman M, 2021, SCIENTOMETRICS, V126, P335, DOI 10.1007/s11192-020-03769-y Yu Liu, 2020, 2020 3rd International Conference on Advanced Electronic Materials, Computers and Software Engineering (AEMCSE). Proceedings, P529, DOI 10.1109/AEMCSE50948.2020.00119 NR 49 TC 3 Z9 3 U1 4 U2 8 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 2169-3536 J9 IEEE ACCESS JI IEEE Access PY 2023 VL 11 BP 133294 EP 133312 DI 10.1109/ACCESS.2023.3336950 PG 19 WC Computer Science, Information Systems; Engineering, Electrical & Electronic; Telecommunications WE Science Citation Index Expanded (SCI-EXPANDED) SC Computer Science; Engineering; Telecommunications GA AB6N6 UT WOS:001116036800001 OA Green Submitted, gold DA 2024-09-05 ER PT J AU Huang, L Cai, YJ Zhao, ED Zhang, ST Shu, Y Fan, J AF Huang, Lu Cai, Yijie Zhao, Erdong Zhang, Shengting Shu, Yue Fan, Jiao TI Measuring the interdisciplinarity of Information and Library Science interactions using citation analysis and semantic analysis SO SCIENTOMETRICS LA English DT Article DE Interdisciplinary interactions; Citation analysis; Semantic analysis; LDA; Word2Vec ID TOPIC EXTRACTION; DIVERSITY; NETWORK; MODEL; NORMALIZATION; EXPLORATION; INDICATORS; FRAMEWORK; INDEXES AB Interdisciplinary interaction and integration have become major features of current science and technology development. Hence, ways to measure the strength of the interdisciplinary interactions between two given disciplines has become a crucial issue. In this study, we propose a novel framework for measuring interdisciplinary interaction that is based on both citation analysis and semantic analysis. Within the framework, direct citations combined with bibliographic coupling reflect citation relationship of interdisciplinary knowledge, while an LDA model combined with a word embedding model are used to explore the integration and diffusion of knowledge via semantic similarity. The strength of the interdisciplinary interactions is then assessed with an entropy weighting method. A case study on the interactions between Information & Library Science and six other disciplines demonstrates the efficacy and reliability of the framework. C1 [Huang, Lu; Cai, Yijie; Zhao, Erdong; Zhang, Shengting; Shu, Yue; Fan, Jiao] Beijing Inst Technol, Sch Management & Econ, 5 South Zhongguancun St, Beijing 100081, Peoples R China. C3 Beijing Institute of Technology RP Zhao, ED (corresponding author), Beijing Inst Technol, Sch Management & Econ, 5 South Zhongguancun St, Beijing 100081, Peoples R China. EM huanglu628@163.com; m15001185835@163.com; teacherzed@163.com; bhgszst@163.com; shuyue.1997@163.com; 18844116182@163.com RI lan, xueyao/JZD-4201-2024 FU National Science Foundation of China [71673086, 71774013] FX This work was supported by the National Science Foundation of China [Grant No. 71673086; 71774013]. Our heartfelt appreciation goes to Changtian Wang for his contributions to this paper. CR Adnani H, 2020, MALAYS J LIBR INF SC, V25, P31, DOI 10.22452/mjlis.vol25no3.3 Ali M, 2020, J INTELL FUZZY SYST, V38, P2661, DOI 10.3233/JIFS-179552 Ayele W. Y., 2019, COMPUTER VISION C CV, P355 Benito-Santos A, 2019, IEEE ACCESS, V7, P98144, DOI 10.1109/ACCESS.2019.2929754 Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993 Boyack KW, 2010, J AM SOC INF SCI TEC, V61, P2389, DOI 10.1002/asi.21419 Cao J, 2009, NEUROCOMPUTING, V72, P1775, DOI 10.1016/j.neucom.2008.06.011 Carass A, 2020, SCI REP-UK, V10, DOI 10.1038/s41598-020-64803-w Chang YW, 2012, J AM SOC INF SCI TEC, V63, P22, DOI 10.1002/asi.21649 Chen LT, 2019, J ASSOC INF SYST, V20, P1023, DOI 10.17705/1jais.00561 Chi RB, 2013, SCIENTOMETRICS, V96, P147, DOI 10.1007/s11192-012-0894-3 Loureiro SMC, 2020, TOURISM MANAGE, V77, DOI 10.1016/j.tourman.2019.104028 Dai T, 2019, IEEE ACCESS, V7, P1706, DOI 10.1109/ACCESS.2018.2884981 de Oliveira TM, 2019, RES EVALUAT, V28, P23, DOI 10.1093/reseval/rvy013 DEERWESTER S, 1990, J AM SOC INFORM SCI, V41, P391, DOI 10.1002/(SICI)1097-4571(199009)41:6<391::AID-ASI1>3.0.CO;2-9 Deng SL, 2020, SCIENTOMETRICS, V124, P489, DOI 10.1007/s11192-020-03465-x Deng SL, 2019, ACM-IEEE J CONF DIG, P384, DOI 10.1109/JCDL.2019.00082 DILLON M, 1983, INFORM PROCESS MANAG, V19, P402, DOI 10.1016/0306-4573(83)90062-6 Edge, 1977, SOC SOCIAL STUDIES S, V2, P13 Frank R., 1988, WORDS ROBERT BURCHFI, P91 Gullbekk E, 2019, J DOC, V75, P247, DOI 10.1108/JD-06-2018-0101 Hammarfelt B, 2011, SCIENTOMETRICS, V86, P705, DOI 10.1007/s11192-010-0314-5 Heo GE, 2017, BMC BIOINFORMATICS, V18, DOI 10.1186/s12859-017-1640-x Hofmann T, 1999, SIGIR'99: PROCEEDINGS OF 22ND INTERNATIONAL CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, P50, DOI 10.1145/312624.312649 Holland GA, 2008, J DOC, V64, P7, DOI 10.1108/00220410810844132 Hu K, 2018, SCIENTOMETRICS, V114, P1031, DOI 10.1007/s11192-017-2574-9 Hu K, 2018, SCIENTOMETRICS, V114, P1141, DOI 10.1007/s11192-017-2604-7 Hu WJ, 2021, NEUROCOMPUTING, V448, P94, DOI 10.1016/j.neucom.2021.03.093 Huang L, 2021, TECHNOL FORECAST SOC, V170, DOI 10.1016/j.techfore.2021.120944 Huang MH, 2012, SCIENTOMETRICS, V91, P789, DOI 10.1007/s11192-012-0619-7 Huang XY., 2020, ED MODERNIZATION, V7, P20 Huang Y, 2021, SCIENTOMETRICS, V126, P6201, DOI 10.1007/s11192-020-03821-x [黄颖 Huang Ying], 2019, [科学学研究, Studies in Science of Science], V37, P25 Isler Y, 2010, P I MECH ENG H, V224, P453, DOI 10.1243/09544119JEIM642 Jaccard P., 1901, B SOC VAUD SCI NAT, V37, P547, DOI DOI 10.5169/SEALS-266450 Karunan K, 2017, SCIENTOMETRICS, V113, P335, DOI 10.1007/s11192-017-2481-0 Ke Q, 2019, J AM MED INFORM ASSN, V26, P516, DOI 10.1093/jamia/ocy177 Kim M, 2018, J ASSOC INF SCI TECH, V69, P329, DOI 10.1002/asi.23960 Kim SK, 2018, J SUPERCOMPUT, V74, P6691, DOI 10.1007/s11227-017-2062-2 Langer M, 2021, ARTIF INTELL, V296, DOI 10.1016/j.artint.2021.103473 Lee C, 2019, CHI EA '19 EXTENDED ABSTRACTS: EXTENDED ABSTRACTS OF THE 2019 CHI CONFERENCE ON HUMAN FACTORS IN COMPUTING SYSTEMS, DOI 10.1145/3290607.3312776 Levy O, 2014, ADV NEUR IN, V27 Leydesdorff L, 2008, J AM SOC INF SCI TEC, V59, P77, DOI 10.1002/asi.20732 Leydesdorff L, 2021, J ASSOC INF SCI TECH, V72, P387, DOI 10.1002/asi.24416 Leydesdorff L, 2011, J INFORMETR, V5, P87, DOI 10.1016/j.joi.2010.09.002 Lin L., 2017, J INTELL-BASEL, V36, P182 Liu YM, 2021, J INFORMETR, V15, DOI 10.1016/j.joi.2021.101141 Lu K, 2012, J AM SOC INF SCI TEC, V63, P1973, DOI 10.1002/asi.22628 Lu W, 2019, KNOWL ORGAN, V46, P403, DOI 10.5771/0943-7444-2019-6-403 Ma Ruimin, 2019, Journal of the China Society for Scientific and Technical Information, V38, P688, DOI 10.3772/j.issn.1000-0135.2019.07.003 Mikolov T., 2013, ADV NEURAL INFORM PR, P3111, DOI DOI 10.48550/ARXIV.1310.4546 Mugabushaka AM, 2016, SCIENTOMETRICS, V107, P593, DOI 10.1007/s11192-016-1865-x National Academy of Sciences, 2005, Facilitating Interdisciplinary Research, Facilitating Interdisciplinary Research, DOI DOI 10.17226/11153 Nichols LG, 2014, SCIENTOMETRICS, V100, P741, DOI 10.1007/s11192-014-1319-2 Onan A, 2019, IEEE ACCESS, V7, P145614, DOI 10.1109/ACCESS.2019.2945911 Ozkaya I, 2020, IEEE SOFTWARE, V37, P3, DOI 10.1109/MS.2020.2993662 Pan JF., 2013, MAPPING SCI STRUCTUR, P13 Pierce SJ, 1999, J AM SOC INFORM SCI, V50, P271, DOI 10.1002/(SICI)1097-4571(1999)50:3<271::AID-ASI10>3.3.CO;2-D Rafols I, 2010, SCIENTOMETRICS, V82, P263, DOI 10.1007/s11192-009-0041-y Raimbault J, 2019, SCIENTOMETRICS, V119, P617, DOI 10.1007/s11192-019-03090-3 Shang XL., 2018, INFORM SCIENTIST, V36, P57 Shi S., 2018, INFORM STUDIES THEOR, V41, P99 Stirling A, 2007, J R SOC INTERFACE, V4, P707, DOI 10.1098/rsif.2007.0213 Le TTN, 2020, WIRELESS PERS COMMUN, V112, P1875, DOI 10.1007/s11277-020-07131-6 Wagner CS, 2011, J INFORMETR, V5, P14, DOI 10.1016/j.joi.2010.06.004 Wang F, 2021, STRUCT SAF, V88, DOI 10.1016/j.strusafe.2020.102028 Wang LL, 2013, SCIENTOMETRICS, V94, P877, DOI 10.1007/s11192-012-0856-9 Wang XF, 2021, TECHNOL FORECAST SOC, V167, DOI 10.1016/j.techfore.2021.120698 Wang Y, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0118437 Wang ZB, 2016, 2016 IEEE FIRST INTERNATIONAL CONFERENCE ON DATA SCIENCE IN CYBERSPACE (DSC 2016), P98, DOI 10.1109/DSC.2016.110 Xing W, 2006, SIXTH IEEE INTERNATIONAL SYMPOSIUM ON CLUSTER COMPUTING AND THE GRID, P178 Xu HY, 2016, SCIENTOMETRICS, V106, P583, DOI 10.1007/s11192-015-1792-2 Xu J, 2019, SCIENTOMETRICS, V119, P1597, DOI 10.1007/s11192-019-03106-y Xu Shurui, 2017, Journal of the China Society for Scientific and Technical Information, V36, P809 Yang LJ, 2019, SCIENTOMETRICS, V120, P507, DOI 10.1007/s11192-019-03141-9 Yu DJ, 2017, INFORM SCIENCES, V418, P619, DOI 10.1016/j.ins.2017.08.031 Zhang L, 2016, J ASSOC INF SCI TECH, V67, P1257, DOI 10.1002/asi.23487 Zhang Y, 2018, J INFORMETR, V12, P1099, DOI 10.1016/j.joi.2018.09.004 Zhang Y, 2014, TECHNOL FORECAST SOC, V85, P26, DOI 10.1016/j.techfore.2013.12.019 Zhou X, 2019, SCIENTOMETRICS, V121, P699, DOI 10.1007/s11192-019-03218-5 Zhou Y., 2018, J INTELL-BASEL, V37, P76 Zhou Y, 2019, PROCEEDINGS OF THE 2019 56TH ACM/EDAC/IEEE DESIGN AUTOMATION CONFERENCE (DAC), DOI 10.1145/3316781.3317884 NR 82 TC 10 Z9 11 U1 24 U2 134 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0138-9130 EI 1588-2861 J9 SCIENTOMETRICS JI Scientometrics PD NOV PY 2022 VL 127 IS 11 BP 6733 EP 6761 DI 10.1007/s11192-022-04401-x EA JUN 2022 PG 29 WC Computer Science, Interdisciplinary Applications; Information Science & Library Science WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Computer Science; Information Science & Library Science GA 5U5FU UT WOS:000807322400004 DA 2024-09-05 ER PT C AU Fan, LP Wang, YF Ding, SC AF Fan, Lipeng Wang, Yuefen Ding, Shengchun BE Catalano, G Daraio, C Gregori, M Moed, HF Ruocco, G TI Scientific research collaboration in Artificial Intelligence: global trends and citations at the institution level SO 17TH INTERNATIONAL CONFERENCE ON SCIENTOMETRICS & INFORMETRICS (ISSI2019), VOL I SE Proceedings of the International Conference on Scientometrics and Informetrics LA English DT Proceedings Paper CT 17th International Conference of the International-Society-for-Scientometrics-and-Informetrics (ISSI) on Scientometrics and Informetrics CY SEP 02-05, 2019 CL Sapienza Univ Rome, Rome, ITALY HO Sapienza Univ Rome DE Collaboration pattern; Global trends; Citation; Institution level; Artificial Intelligence ID INTERNATIONAL COLLABORATION; COMPUTER-SCIENCE; PATTERNS AB In order to gain a deeper understanding of collaboration and the relationship between collaboration patterns and citations in global Artificial Intelligence (AI) research, this present paper defines institution types and collaboration patterns from a new perspective. According to a variation of H-index, it classifies institutions into two types: Main institutions and Normal institutions. Based on institution types of the first and remaining institutions in a paper, it divides collaboration publications into six parts: M, M&M, M&N, N, N&M and N&N. In this study, all publications were collected from papers listed in Web of science from 1997 to 2017, published in the field of AI. According the number of units in a paper, results show that five or more authors have a great chance to be the primary pattern in Al field in the future; single-institution papers are the primary pattern but decreasing sharply during a long time; single-country papers keep playing a dominant role in past almost 20 years. According to different collaboration types, results show that five or more author publications are the primary form in M&M, M&N and N&M types, while three-author papers in N & N; Domestic two-institution papers in M&N and N&N are obviously more than that in M&M and N&M types; Single-country papers account for a large share in M&N, N&N and N&M, while two-country papers are more than single-country papers and become the most important part since 2010 in M&M. According to the relationship between collaboration types and citations, results show that the number of Main institutions has a positive relationship with the citation values, while the number of Normal institutions has a little negative influence on N&N type. C1 [Fan, Lipeng; Wang, Yuefen; Ding, Shengchun] Nanjing Univ Sci & Technol, Sch Econ & Management, Nanjing, Peoples R China. [Wang, Yuefen] Jiangsu Collaborat Innovat Ctr Social Safety Sci, Nanjing, Peoples R China. C3 Nanjing University of Science & Technology RP Fan, LP (corresponding author), Nanjing Univ Sci & Technol, Sch Econ & Management, Nanjing, Peoples R China. EM funnypower@126.com; yuefen163@163.com; todingding@163.com RI fan, lipeng/IWM-3409-2023 FU National Social Science of China [16ZDA224] FX The authors are grateful to anonymous referees and editors for their invaluable and insightful comments, and thank for the support by the National Social Science of China (16ZDA224). CR Abramo G, 2011, SCIENTOMETRICS, V86, P347, DOI 10.1007/s11192-010-0297-2 Ali JM, 2015, EXPERT SYST APPL, V42, P5915, DOI 10.1016/j.eswa.2015.03.023 Beaver DD, 2001, SCIENTOMETRICS, V52, P365, DOI 10.1023/A:1014254214337 Franceschet M, 2011, J AM SOC INF SCI TEC, V62, P1992, DOI 10.1002/asi.21614 Gazni A, 2012, J AM SOC INF SCI TEC, V63, P323, DOI 10.1002/asi.21688 Gazni A, 2011, SCIENTOMETRICS, V87, P251, DOI 10.1007/s11192-011-0343-8 Ibáñez A, 2013, SCIENTOMETRICS, V95, P689, DOI 10.1007/s11192-012-0883-6 Katz JS, 1997, RES POLICY, V26, P1, DOI 10.1016/S0048-7333(96)00917-1 Larivière V, 2006, SCIENTOMETRICS, V68, P519, DOI 10.1007/s11192-006-0127-8 Lee DH, 2012, SCIENTOMETRICS, V91, P925, DOI 10.1007/s11192-011-0602-8 Liu HI, 2012, SCIENTOMETRICS, V92, P145, DOI 10.1007/s11192-012-0719-4 Nguyen TV, 2017, SCIENTOMETRICS, V110, P1035, DOI 10.1007/s11192-016-2201-1 Ni P, 2018, SCIENTOMETRICS, V116, P863, DOI 10.1007/s11192-018-2784-9 Pham DT, 1999, INT J MACH TOOL MANU, V39, P937, DOI 10.1016/S0890-6955(98)00076-5 Sooryamoorthy R, 2009, SCIENTOMETRICS, V81, P177, DOI 10.1007/s11192-009-2126-z Van Raan AFJ, 2005, SCIENTOMETRICS, V62, P133, DOI 10.1007/s11192-005-0008-6 Wang W, 2017, SCIENTOMETRICS, V112, P329, DOI 10.1007/s11192-017-2388-9 Yuan LL, 2018, SCIENTOMETRICS, V116, P401, DOI 10.1007/s11192-018-2753-3 Zhang CW, 2018, J ASSOC INF SCI TECH, V69, P72, DOI 10.1002/asi.23916 NR 19 TC 0 Z9 0 U1 1 U2 15 PU INT SOC SCIENTOMETRICS & INFORMETRICS-ISSI PI LEUVEN PA KATHOLIEKE UNIV LEUVEN, FACULTEIT E T E W, DEKENSTRAAT 2, LEUVEN, B-3000, BELGIUM SN 2175-1935 BN 978-88-3381-118-5 J9 PRO INT CONF SCI INF PY 2019 BP 596 EP 607 PG 12 WC Computer Science, Interdisciplinary Applications; Information Science & Library Science WE Conference Proceedings Citation Index - Science (CPCI-S); Conference Proceedings Citation Index - Social Science & Humanities (CPCI-SSH) SC Computer Science; Information Science & Library Science GA BO2SN UT WOS:000508217900057 DA 2024-09-05 ER PT J AU Shao, Z Yuan, S Wang, YL Xu, J AF Shao, Zhou Yuan, Sha Wang, Yongli Xu, Jing TI Evolutions and trends of artificial intelligence (AI): research, output, influence and competition SO LIBRARY HI TECH LA English DT Article DE Science of science; Artificial intelligence; KG4AI; Knowledge graph ID COMPUTER-SCIENCE; IMPACT; PUBLICATIONS; SYSTEMS AB Purpose This paper throws light on some of the nature of artificial intelligence (AI) development, which will serve as a starter for helping to advance its development. Design/methodology/approach This work reveals the evolutions and trends of AI from four dimensions: research, output, influence and competition through leveraging academic knowledge graph with 130,750 AI scholars and 43,746 scholarly articles. Findings The authors unearth that the "research convergence" phenomenon becomes more evident in current AI research for scholars' highly similar research interests in different regions. The authors notice that Pareto's principle applies to AI scholars' outputs, and the outputs have been increasing at an explosive rate in the past two decades. The authors discover that top works dominate the AI academia, for they attracted considerable attention. Finally, the authors delve into AI competition, which accelerates technology development, talent flow, and collaboration. Originality/value The work aims to throw light on the nature of AI development, which will serve as a starter for helping to advance its development. The work will help us to have a more comprehensive and profound understanding of the evolutions and trends, which bridge the gap between literature research and AI development as well as enlighten the way the authors promote AI development and its strategy formulation. C1 [Shao, Zhou; Wang, Yongli] Nanjing Univ Sci & Technol, Nanjing, Peoples R China. [Yuan, Sha] Beijing Acad Artificial Intelligence, Beijing, Peoples R China. [Xu, Jing] Tsinghua Univ, Beijing, Peoples R China. C3 Nanjing University of Science & Technology; Tsinghua University RP Wang, YL (corresponding author), Nanjing Univ Sci & Technol, Nanjing, Peoples R China. EM shaozhou0001@gmail.com; yuansha@baal.ac.cn; yongllwang@njust.edu.cn; xjqh@mail.tsinghua.edu.cn OI Shao, Zhou/0000-0002-6265-7310 FU National Natural Science Foundation of China [61941113, 82074580, 61806111]; Fundamental Research Fund for the Central Universities [30918015103, 30918012204]; Nanjing Science and Technology Development Plan Project [201805036]; China Academy of Engineering Consulting Research Project [2019-ZD-1-02-02]; National Social Science Foundation [18BTQ073]; NSFC for Distinguished Young Scholar [61825602]; National Key R&D Program of China [2020AAA010520002] FX This article has been awarded by the National Natural Science Foundation of China (61941113, 82074580, 61806111), the Fundamental Research Fund for the Central Universities (30918015103, 30918012204), Nanjing Science and Technology Development Plan Project (201805036), China Academy of Engineering Consulting Research Project (2019-ZD-1-02-02), National Social Science Foundation (18BTQ073), NSFC for Distinguished Young Scholar under Grant No. 61825602 and National Key R&D Program of China under Grant No. 2020AAA010520002. CR [Anonymous], 2010, Commun ACM, DOI [10.1145/1839676.1839701, DOI 10.1145/1839676.1839701] Arash B, 2014, SCI REP-UK, V4, DOI [10.1038/srep06479, 10.1038/srep04770, 10.1038/srep05848] Chen CY, 2018, AAAI CONF ARTIF INTE, P2111 Correia A, 2019, INT C COMP SUPP COOP, P129, DOI [10.1109/cscwd.2019.8791855, 10.1109/CSCWD.2019.8791855] Correia A, 2018, SCIENTOMETRICS, V114, P31, DOI 10.1007/s11192-017-2562-0 Fortunato S, 2018, SCIENCE, V359, DOI 10.1126/science.aao0185 Franceschet M, 2010, Commun. ACM, V53, P129, DOI [10.1145/1859204.1859234, DOI 10.1145/1859204.1859234] Hall W., 2017, Independent Report Barbosa SDJ, 2017, SCIENTOMETRICS, V110, P275, DOI 10.1007/s11192-016-2162-4 Larivière V, 2010, J AM SOC INF SCI TEC, V61, P424, DOI 10.1002/asi.21232 Li XC, 2018, SCIENTOMETRICS, V116, P879, DOI 10.1007/s11192-018-2763-1 Liu JY, 2019, COMPUT SCI REV, V34, DOI 10.1016/j.cosrev.2019.100193 Liu JY, 2019, SCIENTOMETRICS, V118, P617, DOI 10.1007/s11192-018-2974-5 Liu JY, 2018, IEEE ACCESS, V6, P34403, DOI 10.1109/ACCESS.2018.2819688 Lotka A.J., 1926, J Wash Acad Sci Wash D C, V16, P23 Makridakis S, 2017, FUTURES, V90, P46, DOI 10.1016/j.futures.2017.03.006 MERTON RK, 1968, SCIENCE, V159, P56, DOI 10.1126/science.159.3810.56 Milojevic S, 2018, P NATL ACAD SCI USA, V115, P12616, DOI 10.1073/pnas.1800478115 Moed H, 2014, SCIENTOMETRICS, V101, P1987, DOI 10.1007/s11192-014-1307-6 Moed HF, 2013, SCIENTOMETRICS, V94, P929, DOI 10.1007/s11192-012-0783-9 Qian YF, 2017, SCIENTOMETRICS, V110, P1351, DOI 10.1007/s11192-016-2235-4 Robinson-Garcia N, 2019, J INFORMETR, V13, P50, DOI 10.1016/j.joi.2018.11.002 Russell Stuart, 2010, Artificial intelligence, a modern approach, V3 Sha Yuan, 2020, WebSci '20: 12th ACM Conference on Web Science, P69, DOI 10.1145/3394231.3397896 Shao Z., 2018, P 24 ACM SIGKDD INT Shao Z, 2020, IEEE ACCESS, V8, P69734, DOI 10.1109/ACCESS.2020.2986383 Shao Z, 2020, IEEE ACCESS, V8, P70519, DOI 10.1109/ACCESS.2020.2986826 Sinatra R, 2015, NAT PHYS, V11, P791, DOI 10.1038/nphys3494 Sinha A, 2015, WWW'15 COMPANION: PROCEEDINGS OF THE 24TH INTERNATIONAL CONFERENCE ON WORLD WIDE WEB, P243, DOI 10.1145/2740908.2742839 Tang J., 2019, China Patents, Patent No. [(CN 109359249A[P]),, 109359249] Tang J, 2012, IEEE T KNOWL DATA EN, V24, P975, DOI 10.1109/TKDE.2011.13 Van Noorden R., 2014, Nature | News Van Noorden R, 2012, NATURE, V490, P326, DOI 10.1038/490326a Yuan S, 2020, SCIENTOMETRICS, V124, P993, DOI 10.1007/s11192-020-03423-7 Zeng A, 2017, PHYS REP, V714, P1, DOI 10.1016/j.physrep.2017.10.001 Zhang YT, 2018, KDD'18: PROCEEDINGS OF THE 24TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING, P1002, DOI 10.1145/3219819.3219859 Zhou Shao, 2020, WebSci '20: 12th ACM Conference on Web Science, P345, DOI 10.1145/3394231.3397925 NR 37 TC 20 Z9 20 U1 17 U2 88 PU EMERALD GROUP PUBLISHING LTD PI BINGLEY PA HOWARD HOUSE, WAGON LANE, BINGLEY BD16 1WA, W YORKSHIRE, ENGLAND SN 0737-8831 J9 LIBR HI TECH JI Libr. Hi Tech PD MAY 27 PY 2022 VL 40 IS 3 BP 704 EP 724 DI 10.1108/LHT-01-2021-0018 EA JUL 2021 PG 21 WC Information Science & Library Science WE Social Science Citation Index (SSCI) SC Information Science & Library Science GA 1M5FJ UT WOS:000675934600001 DA 2024-09-05 ER PT J AU Martin, P Surian, D Bashir, R Bourgeois, FT Dunn, AG AF Martin, Paige Surian, Didi Bashir, Rabia Bourgeois, Florence T. Dunn, Adam G. TI Trial2rev: Combining machine learning and crowd-sourcing to create a shared space for updating systematic reviews SO JAMIA OPEN LA English DT Article DE review literature as topic; semi-supervised learning; databases as topic; bibliographic databases ID PUBLICATION; SIMILARITY; WORKLOAD AB Objectives: Systematic reviews of clinical trials could be updated faster by automatically monitoring relevant trials as they are registered, completed, and reported. Our aim was to provide a public interface to a database of curated links between systematic reviews and trial registrations. Materials and Methods: We developed the server-side system components in Python, connected them to a PostgreSQL database, and implemented the web-based user interface using Javascript, HTML, and CSS. All code is available on GitHub under an open source MIT license and registered users can access and download all available data. Results: The trial2rev system is a web-based interface to a database that collates and augments information from multiple sources including bibliographic databases, the ClinicalTrials.gov registry, and the actions of registered users. Users interact with the system by browsing, searching, or adding systematic reviews, verifying links to trials included in the review, and adding or voting on trials that they would expect to include in an update of the systematic review. The system can trigger the actions of software agents that add or vote on included and relevant trials, in response to user interactions or by scheduling updates from external resources. Discussion and Conclusion: We designed a publicly-accessible resource to help systematic reviewers make decisions about systematic review updates. Where previous approaches have sought to reactively filter published reports of trials for inclusion in systematic reviews, our approach is to proactively monitor for relevant trials as they are registered and completed. C1 [Martin, Paige; Surian, Didi; Bashir, Rabia; Dunn, Adam G.] Macquarie Univ, Ctr Hlth Informat, Australian Inst Hlth Innovat, Level 6,75 Talavera Rd, Sydney, NSW 2109, Australia. [Bourgeois, Florence T.] Childrens Hosp Boston, Computat Hlth Informat Program, Boston, MA USA. [Bourgeois, Florence T.] Harvard Med Sch, Dept Pediat, Boston, MA 02115 USA. C3 Macquarie University; Harvard University; Boston Children's Hospital; Harvard University; Harvard Medical School RP Martin, P (corresponding author), Macquarie Univ, Ctr Hlth Informat, Australian Inst Hlth Innovat, Level 6,75 Talavera Rd, Sydney, NSW 2109, Australia. EM paige.newman@mq.edu.au RI Dunn, Adam/H-4425-2019; Bashir, Rabia/Q-3225-2019 OI Dunn, Adam/0000-0002-1720-8209; Bashir, Rabia/0000-0002-9613-8957; Surian, Didi/0000-0003-2299-2971; Martin, Paige/0000-0002-6157-4740 FU Agency for Healthcare Research and Quality [R03HS024798] FX This work was supported by the Agency for Healthcare Research and Quality (R03HS024798 to FTB). CR Bangor A, 2008, INT J HUM-COMPUT INT, V24, P574, DOI 10.1080/10447310802205776 Bashir R, 2018, COCHR C Bastian H, 2010, PLOS MED, V7, DOI 10.1371/journal.pmed.1000326 Bierer BE, 2016, NEW ENGL J MED, V374, P2411, DOI 10.1056/NEJMp1605348 Bourgeois FT, 2010, ANN INTERN MED, V153, P158, DOI 10.7326/0003-4819-153-3-201008030-00006 Chan AW, 2004, JAMA-J AM MED ASSOC, V291, P2457, DOI 10.1001/jama.291.20.2457 Chen RJ, 2016, BMJ-BRIT MED J, V352, DOI 10.1136/bmj.i637 Coens C, 2017, F1000 RES, V6, P71 Cohen AM, 2009, J AM MED INFORM ASSN, V16, P690, DOI 10.1197/jamia.M3162 Cohen AM, 2006, J AM MED INFORM ASSN, V13, P206, DOI 10.1197/jamia.M1929 DeAngelis CD, 2004, JAMA-J AM MED ASSOC, V292, P1363, DOI 10.1001/jama.292.11.1363 DeVito NJ, 2018, BIORXIV, P266452 Dickersin K, 2003, JAMA-J AM MED ASSOC, V290, P516, DOI 10.1001/jama.290.4.516 Dunn AG, 2018, J CLIN EPIDEMIOL, V95, P94, DOI 10.1016/j.jclinepi.2017.12.007 Dwan K, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0066844 Elliott JH, 2017, J CLIN EPIDEMIOL, V91, P23, DOI 10.1016/j.jclinepi.2017.08.010 Elliott JH, 2014, PLOS MED, V11, DOI 10.1371/journal.pmed.1001603 Garner P, 2016, BMJ-BRIT MED J, V354, DOI 10.1136/bmj.i3507 Garritty C, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0009914 Ji XN, 2017, J BIOMED INFORM, V69, P33, DOI 10.1016/j.jbi.2017.03.007 Jones CW, 2013, BMJ-BRIT MED J, V347, DOI 10.1136/bmj.f6104 Kirkham JJ, 2010, BMJ-BRIT MED J, V340, DOI 10.1136/bmj.c365 Krivosheev E, 2017, ARXIV170905168 Miwa M, 2014, J BIOMED INFORM, V51, P242, DOI 10.1016/j.jbi.2014.06.005 Mortensen ML, 2017, RES SYNTH METHODS, V8, P366, DOI 10.1002/jrsm.1252 O'Mara-Eves A, 2015, SYST REV-LONDON, V4, DOI 10.1186/2046-4053-4-5 Page MJ, 2013, J CLIN EPIDEMIOL, V66, P524, DOI 10.1016/j.jclinepi.2012.10.010 Saito H, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0101826 Schmucker C, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0114023 Shamliyan TA, 2014, J EPIDEMIOL GLOB HEA, V4, P1, DOI 10.1016/j.jegh.2013.08.002 Shekelle PG, 2017, ANN INTERN MED, V167, P213, DOI 10.7326/L17-0124 Shemilt I, 2014, RES SYNTH METHODS, V5, P31, DOI 10.1002/jrsm.1093 Song F, 2010, HEALTH TECHNOL ASSES, V14, P1, DOI 10.3310/hta14080 Surian D, 2018, J BIOMED INFORM, V79, P32, DOI 10.1016/j.jbi.2018.01.008 Takwoingi Y, 2013, BMJ-BRIT MED J, V347, DOI 10.1136/bmj.f7191 Thomas J, 2011, RES SYNTH METHODS, V2, P1, DOI 10.1002/jrsm.27 Trinquart L, 2018, BMC MED, V16, DOI 10.1186/s12916-018-1168-6 Tsafnat G, 2014, SYST REV-LONDON, V3, DOI 10.1186/2046-4053-3-74 Turner EH, 2012, PLOS MED, V9, DOI 10.1371/journal.pmed.1001189 Vawdrey DK, 2013, J BIOMED INFORM, V46, P139, DOI 10.1016/j.jbi.2012.08.007 Wallace BC, 2017, J AM MED INFORM ASSN, V24, P1165, DOI 10.1093/jamia/ocx053 Wallace BC, 2010, BMC BIOINFORMATICS, V11, DOI 10.1186/1471-2105-11-55 NR 42 TC 16 Z9 16 U1 1 U2 4 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND EI 2574-2531 J9 JAMIA OPEN JI JAMIA Open PD APR PY 2019 VL 2 IS 1 BP 15 EP 22 DI 10.1093/jamiaopen/ooy062 PG 8 WC Health Care Sciences & Services; Medical Informatics WE Emerging Sources Citation Index (ESCI) SC Health Care Sciences & Services; Medical Informatics GA VJ9DU UT WOS:000645417700004 PM 31984340 OA gold, Green Published DA 2024-09-05 ER PT J AU Yang, Q AF Yang, Qin TI RESEARCH ON E-COMMERCE CUSTOMER SATISFACTION EVALUATION METHOD BASED ON PSO-LSTM AND TEXT MINING SO 3C EMPRESA LA English DT Article DE text mining; PSO-LSTM; particle swarm algorithm; long short-term memory network ID SENTIMENT ANALYSIS AB With the increase of social technology, e-commerce platforms have entered a period of rapid development. Improving customer satisfaction , purchase rate is the key to the survival of e-commerce platforms. Text mining and analysis of customer evaluation data will help to grasp the focus of customers and optimize the e -commerce platform. To this end, through text mining technology, the text comment data of five e-commerce platforms such as Amazon, eBay, Alibaba, Jingdong , Taobao are collected, and the cleaned text is analyzed by particle swarm algorithm (PSO)-long short-term memory (LSTM) model. The data is subject to time scale extraction, and the extraction results are visualized and interpreted. The research shows that the logistics, price, freshness, quality and packaging of e-commerce platform merchants are important factors that affect the evaluation of e-commerce customer satisfaction. C1 [Yang, Qin] Jinling Inst Sci & Technol, Sch Marxism, Nanjing 211169, Jiangsu, Peoples R China. RP Yang, Q (corresponding author), Jinling Inst Sci & Technol, Sch Marxism, Nanjing 211169, Jiangsu, Peoples R China. EM yang2161980@sina.com CR Cai Xiaozhen, 2014, CURR CONTENTS, V30, P58 Che XB, 2022, APPL MATH NONLIN SCI, V7, P83, DOI 10.2478/amns.2021.1.00098 Fan Qingbo, 2018, J SHANGHAI MARITIME, V39, P54 Feng Yuxu, 2019, CURR CONTENTS, V49, P308 Delgado MF, 2021, 3C TIC, V10, P123, DOI 10.17993/3ctic.2021.102.123-141 Hochreiter S, 1997, NEURAL COMPUT, V9, P1735, DOI [10.1162/neco.1997.9.1.1, 10.1007/978-3-642-24797-2] Jia Kong, 2020, PORTL INT CONF MANAG, V40, P173 Le S, 2021, Circuits and Systems II: Express Briefs, IEEE Transactions on, VPP, P1 Li HJ, 2021, FRONT ENERGY RES, V9, DOI 10.3389/fenrg.2021.799039 Li HJ, 2021, FRONT ENERGY RES, V9, DOI 10.3389/fenrg.2021.780928 Li Qichao, 2020, INFORM TECHNOLOGY IN, P54 Liu LZ, 2014, CHINA COMMUN, V11, P154, DOI 10.1109/CC.2014.6825268 Liu Y, 2020, DES AUT CON Luo Zhengjun, 2020, COMPUTER TECHNOLOGY, V30, P40 Medhat W, 2014, AIN SHAMS ENG J, V5, P1093, DOI 10.1016/j.asej.2014.04.011 Ming Junren, 2012, CURR CONTENTS, V56, P99 Mitsuru Toyoda, 2019, IEEE T CYBERNETICS Tang Xiaobo, 2013, CURR CONTENTS, V36, P100 Wu Y, IEEE T NEUR NET LEAR, P1 Xia Maosen, 2019, J HUBEI U SCI TECHNO, V39, P56 Yang Li-gong, 2013, Transactions of Beijing Institute of Technology, V33, P600 Yang M., 2020, MOD INF TECHNOL, V4, P110 Yun He, 2019, QINGHAI TRANSPORTATI, P76 Zhang Y, 2022, ENERGY, V244, DOI 10.1016/j.energy.2022.123104 Zhao Jingpeng, 2021, RES HIERARCHICAL WEB Zhou Ying, 2018, INTELLIGENCE THEORY, V41, P89 Zhou Zhou, 2019, ANAL RES CURRICULUM NR 27 TC 0 Z9 0 U1 3 U2 16 PU AREA INNOVACION & DESARROLLO PI ALICANTE PA C/ELS ALZAMORA NO 17, ALCOY, ALICANTE, 03802, SPAIN SN 2254-3376 J9 3C EMPRESA JI 3C EMPRESA PD JAN-MAR PY 2023 VL 12 IS 1 BP 51 EP 66 DI 10.17993/3cemp.2023.120151.51-66 PG 16 WC Business WE Emerging Sources Citation Index (ESCI) SC Business & Economics GA 9A2TK UT WOS:000933915300003 OA gold, Green Submitted DA 2024-09-05 ER PT J AU Jang, H AF Jang, Hoon TI Predicting funded research project performance based on machine learning SO RESEARCH EVALUATION LA English DT Article DE research and development; project output prediction; commercialization; artificial intelligence; autoML ID RESEARCH-AND-DEVELOPMENT; RESEARCH PRODUCTIVITY; RESEARCH COLLABORATION; DELPHI METHOD; SELECTION; IMPACT; INNOVATION; MODEL; MANAGEMENT; SUCCESS AB Increasing investment and interest in research and development (R&D) requires an efficient management system for achieving better research project outputs. In tandem with this trend, there is a growing need to develop a method for predicting research project outputs. Motivated by this, using information gathered in the early stage of projects, this study addresses the problem of predicting research projects' output, which is binary coded as either successful or not. To build the prediction model, we apply six machine learning algorithms: five are well-known supervised learning algorithms and the other is autoML, characterized by its ability to produce a learning model appropriate to the data characteristics on its own, with minimal user intervention. Our empirical analysis with real R&D data provided by the South Korean government over 5 years (2014-8) confirms that the autoML-based model performs better than models based on other machine learning algorithms for this task. We also find that project duration and research funding are important factors in predicting R&D project outputs. Based on the results, our study provides insightful implications leading to a paradigm shift for data-based R&D project management. C1 [Jang, Hoon] Korea Univ, Coll Global Business, Sejong Campus,2511 Sejong Ro, Sejong 30019, South Korea. C3 Korea University RP Jang, H (corresponding author), Korea Univ, Coll Global Business, Sejong Campus,2511 Sejong Ro, Sejong 30019, South Korea. EM hoonjang@korea.ac.kr FU National Research Foundation of Korea (NRF) - Korean government [2019R1F1A1063365] FX This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (2019R1F1A1063365). CR Abdel-Basset M, 2018, J AMB INTEL HUM COMP, V9, P1427, DOI 10.1007/s12652-017-0548-7 Abramo G, 2019, J INFORMETR, V13, P32, DOI 10.1016/j.joi.2018.11.003 Abrishami A, 2019, J INFORMETR, V13, P485, DOI 10.1016/j.joi.2019.02.011 Amara N, 2015, SCIENTOMETRICS, V103, P489, DOI 10.1007/s11192-015-1537-2 [Anonymous], 2011, ANN WORLD BANK C DEV Bai XM, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0162364 BAKER NR, 1964, IEEE T ENG MANAGE, V11, P124, DOI 10.1109/TEM.1964.6446420 Balachandra R, 1997, IEEE T ENG MANAGE, V44, P276, DOI 10.1109/17.618169 Brew A, 2016, HIGH EDUC, V71, P681, DOI 10.1007/s10734-015-9930-6 Cerulli G, 2021, APPL ECON LETT, V28, P1419, DOI 10.1080/13504851.2020.1820939 Chang Keum-Young, 2010, [JOURNAL OF TECHNOLOGY INNOVATION, 기술혁신연구], V18, P75 Chen CT, 2009, INT J PROJ MANAG, V27, P389, DOI 10.1016/j.ijproman.2008.04.001 Chen GH, 2019, TECHNOVATION, V82-83, P58, DOI 10.1016/j.technovation.2019.02.001 Chen ZH, 2015, COMMUN ASSOC INF SYS, V36, P357 Chunjia Han, 2017, Journal of High Technology Management Research, V28, P93, DOI 10.1016/j.hitech.2017.04.007 Costantino F, 2015, INT J PROJ MANAG, V33, P1744, DOI 10.1016/j.ijproman.2015.07.003 Davletov F., 2014, P 23 ACM INT C CONFE, P491, DOI [DOI 10.1145/2661829, 10.1145/2661829.2662066, 10.1145/2661829] Didegah F, 2013, J INFORMETR, V7, P861, DOI 10.1016/j.joi.2013.08.006 Dundar H, 1998, RES HIGH EDUC, V39, P607, DOI 10.1023/A:1018705823763 Eilat H, 2008, OMEGA-INT J MANAGE S, V36, P895, DOI 10.1016/j.omega.2006.05.002 Freyman CA, 2016, RES EVALUAT, V25, P442, DOI 10.1093/reseval/rvw016 Galbraith C.S., 2007, J HIGH TECHNOLOGY MA, V17, P125, DOI [DOI 10.1016/J.HITECH.2006.11.002, 10.1016/j.hitech.2006.11.002] Ghapanchi AH, 2012, INT J PROJ MANAG, V30, P791, DOI 10.1016/j.ijproman.2012.01.012 Grimaldi R, 2003, INT J TECHNOL MANAGE, V25, P766, DOI 10.1504/IJTM.2003.003136 Han D., 2008, KOREAN PUBLIC ADM RE, V42, P265 Han W., 2020, GOVT RES DEV R D BUD Hegde D, 2009, J LAW ECON, V52, P665, DOI 10.1086/605565 Hirsch JE, 2007, P NATL ACAD SCI USA, V104, P19193, DOI 10.1073/pnas.0707962104 Hiruy K, 2019, RES EVALUAT, V28, P313, DOI 10.1093/reseval/rvz019 Holliday EB, 2014, ACAD MED, V89, P767, DOI 10.1097/ACM.0000000000000229 Holosko MJ, 2016, RES SOCIAL WORK PRAC, V26, P278, DOI 10.1177/1049731514549815 Hourihan M., 2020, AAAS Guide to the President's budget: Research & development FY 2021', a report from American Association for the Advancement of Science Huang CC, 2008, OMEGA-INT J MANAGE S, V36, P1038, DOI 10.1016/j.omega.2006.05.003 Hwang S., 2019, COMPARISON US CHINA Jacob BA, 2011, J PUBLIC ECON, V95, P1168, DOI 10.1016/j.jpubeco.2011.05.005 Jang H, 2019, DECIS SUPPORT SYST, V121, P1, DOI 10.1016/j.dss.2019.03.010 Jang Pilseong, 2020, [Journal of Korea Technology Innovation Society, 기술혁신학회지], V23, P20, DOI 10.35978/jktis.2020.2.23.1.20 Jin XH, 2011, INT J PROJ MANAG, V29, P591, DOI 10.1016/j.ijproman.2010.07.011 Jung H, 2017, ASIAN J TECHNOL INNO, V25, P447, DOI 10.1080/19761597.2018.1436411 Jung U, 2010, DECIS SUPPORT SYST, V49, P335, DOI 10.1016/j.dss.2010.04.005 Karasakal E, 2017, OMEGA-INT J MANAGE S, V73, P79, DOI 10.1016/j.omega.2016.12.006 Khoshnevis P, 2018, SOCIO-ECON PLAN SCI, V61, P16, DOI 10.1016/j.seps.2017.01.005 LeDell Erin, 2020, Proceedings of the automl workshop at icml, V2020 Lee CJ, 2013, J AM SOC INF SCI TEC, V64, P2, DOI 10.1002/asi.22784 Lee S, 2005, SOC STUD SCI, V35, P673, DOI 10.1177/0306312705052359 Leisyte L, 2016, STUD HIGH EDUC, V41, P828, DOI 10.1080/03075079.2016.1147721 Li D, 2017, AM ECON J-APPL ECON, V9, P60, DOI 10.1257/app.20150421 Liu C., 2011, SCI RES ESSAYS, V6, P3973, DOI [https://doi.org/10.5897/SRE10.838, DOI 10.5897/SRE10.838] Liu PD, 2019, INT J FUZZY SYST, V21, P2168, DOI 10.1007/s40815-019-00687-x Loo R, 2002, POLICING, V25, P762, DOI 10.1108/13639510210450677 Mitze T, 2015, ANN REGIONAL SCI, V55, P555, DOI 10.1007/s00168-015-0719-4 Okoli C, 2004, INFORM MANAGE-AMSTER, V42, P15, DOI 10.1016/j.im.2003.11.002 Park H, 2015, RES POLICY, V44, P1145, DOI 10.1016/j.respol.2015.03.004 Potì B, 2011, RES EVALUAT, V20, P19, DOI 10.3152/095820211X12941371876427 Ramkumar S., 2016, INT J HLTH SCI RES, V6, P386 Reed DA, 2007, JAMA-J AM MED ASSOC, V298, P1002, DOI 10.1001/jama.298.9.1002 Rosenbloom JL, 2017, RES POLICY, V46, P1454, DOI 10.1016/j.respol.2017.06.008 Schwartz M, 2012, TECHNOVATION, V32, P358, DOI 10.1016/j.technovation.2012.03.004 Song Gwangsuk, 2015, [Journal of Korean Society for Quality Management, 품질경영학회지], V43, P85, DOI 10.7469/JKSQM.2015.43.1.085 SOUDER WE, 1972, MANAGE SCI B-APPL, V18, pB526 Talias MA, 2007, EUR J OPER RES, V177, P1105, DOI 10.1016/j.ejor.2006.01.011 Tan B, 2010, SYST DYNAM REV, V26, P1, DOI 10.1002/sdr.433 Tidd J., 2020, MANAGING INNOVATION Walworth T., 2013, P IEEE INT SYST C SY, P123 Wang MY, 2012, J INFORMETR, V6, P586, DOI 10.1016/j.joi.2012.06.002 Wang YR, 2012, INT J PROJ MANAG, V30, P470, DOI 10.1016/j.ijproman.2011.09.002 Wang YR, 2010, AUTOMAT CONSTR, V19, P341, DOI 10.1016/j.autcon.2009.12.007 Wolfinger NH, 2009, SOC FORCES, V87, P1591, DOI 10.1353/sof.0.0182 Yin ZF, 2018, J INFORMETR, V12, P1146, DOI 10.1016/j.joi.2018.09.003 Yoon Doh-keun, 2013, [Journal of Digital Convergence, 디지털융복합연구], V11, P127 Zhou JH, 2020, TECHNOVATION, V92-93, DOI 10.1016/j.technovation.2018.11.002 이종욱, 2011, [Journal of Korea Technology Innovation Society, 기술혁신학회지], V14, P915 NR 72 TC 1 Z9 1 U1 3 U2 29 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0958-2029 EI 1471-5449 J9 RES EVALUAT JI Res. Evaluat. PD APR 28 PY 2022 VL 31 IS 2 BP 257 EP 270 DI 10.1093/reseval/rvac005 EA MAR 2022 PG 14 WC Information Science & Library Science WE Social Science Citation Index (SSCI) SC Information Science & Library Science GA 0V3QC UT WOS:000769089500001 DA 2024-09-05 ER PT J AU González-Tejero, CB Ancillo, AD Gavrila, SG Blanco, AG AF Gonzalez-Tejero, Cristina Blanco Ancillo, Antonio de Lucas Gavrila, Sorin Gavrila Blanco, Antonio Garcia TI Uncovering the Complexities of Intellectual Property Management in the era of AI: Insights from a Bibliometric Analysis SO JOURNAL OF COMPETITIVENESS LA English DT Article DE Intellectual Property; Artificial Intelligence; Natural Language Processing; Machine Learning ID OF-THE-ART; ARTIFICIAL-INTELLIGENCE; BIG DATA; RIGHTS; INNOVATION; COMPETITIVENESS; WATERMARKING; PERFORMANCE; MODELS AB Intellectual property (IP) management has posed continuous problems in the digital world, so understanding its associated concepts and the particularities they present is crucial. Within artificial intelligence (AI), machine learning (ML) and natural language processing (NLP) have enabled the intelligent processing and analysis of large volumes of data, making them widely used tools. In order to help fill the research gap that exists due to the novelty of the concepts, a bibliometric analysis is proposed of 404 scientific documents linked to AI, ML, NLP and IP, extracted from the Web of Science (WoS) core collection repository. The results demonstrate a current trend in research on the management of IP, related to digital tools and highlight the issues that arise from the management of IP stemming from their use. This research also identifies how these tools have been used to facilitate the management and identification of IP. In this sense, this study brings originality to the field of intellectual property management by examining previous studies and proposing new avenues for future research, thus broadening the current understanding of the subject. Entrepreneurs and business leaders can benefit from this study as it uncovers the complexities of IP management and thus enhances understanding of the opportunities and challenges in the AI era. C1 [Gonzalez-Tejero, Cristina Blanco; Ancillo, Antonio de Lucas; Gavrila, Sorin Gavrila; Blanco, Antonio Garcia] Univ Alcala, Fac Econ Business & Tourism, Dept Econ & Business Adm, Alcala De Henares, Spain. C3 Universidad de Alcala RP González-Tejero, CB (corresponding author), Univ Alcala, Fac Econ Business & Tourism, Dept Econ & Business Adm, Alcala De Henares, Spain. EM cristina.blancog@uah.es; antonio.lucas@uah.es; sorin.gavrila@uah.es; antonio.garciab@uah.es RI De Lucas, Antonio/AAB-2463-2019; Gavrila Gavrila, Sorin/AAG-9867-2021 OI De Lucas, Antonio/0000-0002-8876-7753; Gavrila Gavrila, Sorin/0000-0002-7574-5504 CR Acemoglu D, 2012, J EUR ECON ASSOC, V10, P1, DOI 10.1111/j.1542-4774.2011.01053.x Ali SI, 2023, J KNOWL ECON, V14, P4100, DOI 10.1007/s13132-022-00904-3 Ancillo AD, 2023, J BUS RES, V157, DOI 10.1016/j.jbusres.2022.113566 Aria M, 2017, J INFORMETR, V11, P959, DOI 10.1016/j.joi.2017.08.007 Aristodemou L, 2018, WORLD PAT INF, V55, P37, DOI 10.1016/j.wpi.2018.07.002 Ata S, 2022, ESIC MARK, V53, DOI 10.7200/esicm.53.280 Bustamante J. C., 2019, International Journal of Intellectual Property Management, V9, P315 Calo R, 2015, CALIF LAW REV, V103, P513 Cao JW, 2021, COMPLEXITY, V2021, DOI 10.1155/2021/1909518 Chen MA, 2019, REV FINANC STUD, V32, P2062, DOI 10.1093/rfs/hhy130 Chen PL, 2022, ECON RES-EKON ISTRAZ, V35, P622, DOI 10.1080/1331677X.2021.1931909 Chowdhary K., 2020, Fundamentals of artificial intelligence, P603, DOI 10.1007/978-81-322-3972-7_19 Cichy RM, 2019, TRENDS COGN SCI, V23, P305, DOI 10.1016/j.tics.2019.01.009 Coleman S, 2013, J DEV ENTREP, V18, DOI 10.1142/S1084946713500027 Dana L.P., 2022, SUSTAINABLE TECHNOLO, V1, DOI DOI 10.1016/J.STAE.2022.100016 Darroch J., 2005, International Entrepreneurship and Management Journal, V1, P45 Davies CR, 2011, COMPUT LAW SECUR REV, V27, P601, DOI 10.1016/j.clsr.2011.09.006 de Laat PB, 2022, ETHICS INF TECHNOL, V24, DOI 10.1007/s10676-022-09642-1 Denter NM, 2023, INT J INFORM MANAGE, V68, DOI 10.1016/j.ijinfomgt.2022.102506 Domingo-Ferrer J, 2019, COMPANION OF THE WORLD WIDE WEB CONFERENCE (WWW 2019 ), P501 Donthu N, 2021, J BUS RES, V133, P285, DOI 10.1016/j.jbusres.2021.04.070 Duan YQ, 2019, INT J INFORM MANAGE, V48, P63, DOI 10.1016/j.ijinfomgt.2019.01.021 El Naqa I., 2015, Machine Learning in Radiation Oncology: Theory and Applications, P3, DOI [DOI 10.1007/978-3-319-18305-3_1, 10.1007/978-3-319-18305-3, DOI 10.1007/978-3-319-18305-3] Enrique CM, 2023, J BUS RES, V157, DOI 10.1016/j.jbusres.2022.113561 Falvey R, 2006, REV DEV ECON, V10, P700, DOI 10.1111/j.1467-9361.2006.00343.x Fossaceca JM, 2015, EXPERT SYST APPL, V42, P4062, DOI 10.1016/j.eswa.2014.12.040 Fujii A, 2007, INFORM PROCESS MANAG, V43, P1149, DOI 10.1016/j.ipm.2006.11.004 Gavrila SG, 2022, INT J ENTREP BEHAV R, V28, P45, DOI 10.1108/IJEBR-05-2021-0395 Gavrila SG, 2021, BRIT FOOD J, V123, P3358, DOI 10.1108/BFJ-11-2020-1037 Griffen EJ, 2018, DRUG DISCOV TODAY, V23, P1373, DOI 10.1016/j.drudis.2018.03.011 Gurkaynak G., 2017, ROBOTICS LAW J, V3, P9 Hartung F, 2000, IEEE COMMUN MAG, V38, P78, DOI 10.1109/35.883493 Heller MA, 1998, SCIENCE, V280, P698, DOI 10.1126/science.280.5364.698 Hirschberg J, 2015, SCIENCE, V349, P261, DOI 10.1126/science.aaa8685 Ilvonen I, 2018, KNOWL MAN RES PRACT, V16, P235, DOI 10.1080/14778238.2018.1445427 Ioannidis JPA, 2016, PLOS BIOL, V14, DOI 10.1371/journal.pbio.1002542 van Eck NJ, 2011, Arxiv, DOI arXiv:1109.2058 Jochim C., 2014, Doctoral dissertation, DOI [10.18419/opus-3472, DOI 10.18419/OPUS-3472] Kaissis GA, 2020, NAT MACH INTELL, V2, P305, DOI 10.1038/s42256-020-0186-1 Kang X, 2022, ECON RES-EKON ISTRAZ, DOI 10.1080/1331677X.2022.2106265 Kannan G., 2004, J INTELLECT CAP, V5, P389, DOI DOI 10.1108/14691930410550363 Ko A, 2022, J COMPETITIVENESS, V14, P78, DOI 10.7441/joc.2022.04.05 Kusuma A. S., 2022, International Journal of Technoentrepreneurship, V4, P242 Lauriola I, 2022, NEUROCOMPUTING, V470, P443, DOI 10.1016/j.neucom.2021.05.103 Li SL, 2023, J INNOV KNOWL, V8, DOI 10.1016/j.jik.2023.100317 Lin HF, 2022, J INNOV KNOWL, V7, DOI 10.1016/j.jik.2022.100276 Lin SH, 2022, ECON RES-EKON ISTRAZ, V35, P143, DOI 10.1080/1331677X.2021.1889390 Lupu M., 2017, World Patent Information, Patent No. [49A1A3, 491] Menell PeterS., 2011, BERKELEY TECH. L. J, P1523 Nadkarni PM, 2011, J AM MED INFORM ASSN, V18, P544, DOI 10.1136/amiajnl-2011-000464 Nedjah N., 2022, Sustainable Technology and Entrepreneurship, V1, DOI [10.1016/j.stae.2022.100001, DOI 10.1016/J.STAE.2022.100001] Nyagadza B., 2022, Sustainable Technology and Entrepreneurship, V1, P1, DOI DOI 10.1016/J.STAE.2022.100020 Park WG, 1997, CONTEMP ECON POLICY, V15, P51, DOI 10.1111/j.1465-7287.1997.tb00477.x Peng YZ, 2022, J INNOV KNOWL, V7, DOI 10.1016/j.jik.2022.100198 PLACE JF, 1995, CLIN BIOCHEM, V28, P373, DOI 10.1016/0009-9120(95)00002-Q Popkova EG, 2020, J INTELLECT CAP, V21, P565, DOI 10.1108/JIC-09-2019-0224 Rabbani Mustafa Raza, 2021, 2021 International Conference on Decision Aid Sciences and Application (DASA), P1087, DOI 10.1109/DASA53625.2021.9682360 Ragot S., 2020, World Patent Information, Patent No. [62,101966, 62101966] Reichman JH, 1997, VANDERBILT LAW REV, V50, P49 Ribeiro-Navarrete S, 2022, REV MANAG SCI, V16, P2381, DOI 10.1007/s11846-021-00491-8 Saura JR, 2022, J COMPETITIVENESS, V14, P172, DOI 10.7441/joc.2022.04.10 Sniecinski I, 2018, TRANSFUS APHER SCI, V57, P422, DOI 10.1016/j.transci.2018.05.004 Stamm MC, 2013, IEEE ACCESS, V1, P167, DOI 10.1109/ACCESS.2013.2260814 Teece DJ, 2018, RES POLICY, V47, P1367, DOI 10.1016/j.respol.2017.01.015 Teece DJ, 2000, LONG RANGE PLANN, V33, P35, DOI 10.1016/S0024-6301(99)00117-X Tietze Frank, 2022, IEEE Trans Eng Manag, V69, P2039, DOI 10.1109/TEM.2020.2996982 Torre R.D.L., 2019, International Journal of Intellectual Property Management, V9, P264 Trappey AJC, 2020, ADV ENG INFORM, V43, DOI 10.1016/j.aei.2019.101027 Tsou HT, 2022, J COMPETITIVENESS, V14, P44, DOI 10.7441/joc.2022.04.03 van Eck NJ, 2010, SCIENTOMETRICS, V84, P523, DOI 10.1007/s11192-009-0146-3 Vrochidis S, 2012, WORLD PAT INF, V34, P292, DOI 10.1016/j.wpi.2012.07.002 Wexler R, 2018, STANFORD LAW REV, V70, P1343 Xiao Y, 2019, J PLAN EDUC RES, V39, P93, DOI 10.1177/0739456X17723971 Zhang JL, 2018, PROCEEDINGS OF THE 2018 ACM ASIA CONFERENCE ON COMPUTER AND COMMUNICATIONS SECURITY (ASIACCS'18), P159, DOI 10.1145/3196494.3196550 Zhang YQ, 2020, IEEE ACCESS, V8, P213296, DOI 10.1109/ACCESS.2020.3039323 Zimmerling A, 2021, TECHNOL SOC, V65, DOI 10.1016/j.techsoc.2021.101541 NR 76 TC 0 Z9 0 U1 20 U2 20 PU UNIV TOMASE BATI & ZLINE, FAK MANAGEMENTU EKONOMIKY PI ZLIN PA NAM T G MASARYKA 5555, ZLIN, 760 01, CZECH REPUBLIC SN 1804-171X EI 1804-1728 J9 J COMPETITIVENESS JI J. Competitiveness PD DEC PY 2023 VL 15 IS 4 BP 69 EP 86 DI 10.7441/joc.2023.04.05 PG 18 WC Business; Economics; Management WE Social Science Citation Index (SSCI) SC Business & Economics GA FD8Q1 UT WOS:001143918000002 DA 2024-09-05 ER PT J AU Sotudeh, H Saber, Z Aloni, FG Mirzabeigi, M Khunjush, F AF Sotudeh, Hajar Saber, Zeinab Aloni, Farzin Ghanbari Mirzabeigi, Mahdieh Khunjush, Farshad TI A longitudinal study of the evolution of opinions about open access and its main features: a twitter sentiment analysis SO SCIENTOMETRICS LA English DT Article DE Open access; Opinion mining; Sentiment analysis; Twitter; Tweets ID ACADEMICS BEHAVIORS; ATTITUDES; AWARENESS; JOURNALS; IMPACT; USAGE; PERCEPTIONS; CHALLENGES; ALTMETRICS; CITATIONS AB The present study aimed to explore how tweeters' opinions about open access publishing and its main features evolved over time. Using a quantitative content analysis method through an opinion mining approach, it explored a sample of English tweets on open access posted from 2007 to December 2019. The main terms related to open access were first identified through reviewing the related literature and were then categorized into five features including "costs & funding", "impact", "models", "publishing & publications", and "quality & quality control". The terms were composed in the form of search formulae. The searches on Twitter led to retrieving 629,123 tweets. A cleansing process was carried out to remove duplicates, non-English, and low-relevant tweets. The final sample reached 80,629 tweets. The tweets were then tagged with the five features. The KNIME data mining tool and SentiStrength were used respectively for processing the tweets' contents and calculating their opinion scores. According to the results, the open-access-related tweets have been growing based on a sigmoidal model. They were mostly neutral and opinion tweets were far lower in number. The tweets in different polarities have been increasing based on a power-law model, with the negative tweets experiencing a disproportionately higher increase. The positive and negative opinions have remained almost stable in strength, with the former being stronger. The results were almost in line with the previous surveys confirming the co-existence of the positive and negative attitudes about open access. However, the social sphere has been gradually becoming more negative. As attitudes are likely to go viral on social networks, and thereby affect users' perceptions and behaviors, the results call for devising appropriate measures to empower the movement and to find solutions for the problems and concerns leading to the negative opinions. C1 [Sotudeh, Hajar; Saber, Zeinab; Mirzabeigi, Mahdieh] Shiraz Univ, Sch Educ & Psychol, Dept Knowledge & Informat Sci, Eram Campus, Shiraz, Iran. [Aloni, Farzin Ghanbari; Khunjush, Farshad] Shiraz Univ, Sch Comp Engn, Dept Comp Sci & Engn & IT, Shiraz, Iran. C3 Shiraz University; Shiraz University RP Sotudeh, H (corresponding author), Shiraz Univ, Sch Educ & Psychol, Dept Knowledge & Informat Sci, Eram Campus, Shiraz, Iran. EM sotudeh@shirazu.ac.ir; zeinabsaber92@gmail.com; f.ghanbari@shirazu.ac.ir; mmirzabeigi@gmail.com; khunjush@shirazu.ac.ir CR Agee J, 2014, J LIBR ADM, V54, P590, DOI 10.1080/01930826.2014.964021 Aguillo IF, 2020, SCIENTOMETRICS, V123, P1181, DOI 10.1007/s11192-020-03424-6 Agustini B, 2019, AUST NZ J PSYCHIAT, V53, P1044, DOI 10.1177/0004867419864436 Alperin JP, 2019, PUBLIC UNDERST SCI, V28, P2, DOI 10.1177/0963662518761733 Anger I., 2011, P 11 INT C KNOWL MAN, V31, P1, DOI 10.1145/2024288.2024326 [Anonymous], 2014, U CAMBRIDGE COMPUTER [Anonymous], 2013, IMAGINE INNOVATE INS [Anonymous], 2018, GUARDIAN 1115 Baumeister R. F., 2001, Review of General Psychology, V5, P477, DOI [DOI 10.1037/10892680.5.4.323, DOI 10.1037/1089-2680.5.4.323] Beall J, 2013, LEARN PUBL, V26, P79, DOI 10.1087/20130203 Bernius S, 2009, ECON ANAL POLICY, V39, P103, DOI 10.1016/S0313-5926(09)50046-X Bohannon J, 2013, SCIENCE, V342, P60, DOI 10.1126/science.342.6154.60 Bollen J, 2011, Modeling Public Mood and Emotion: Twitter Sentiment and Socio-Economic Phenomena, V5, P450 Bollen J, 2011, J COMPUT SCI-NETH, V2, P1, DOI 10.1016/j.jocs.2010.12.007 Bornmann L, 2014, J INFORMETR, V8, P895, DOI 10.1016/j.joi.2014.09.005 Boukacem-Zeghmouri C, 2018, LEARN PUBL, V31, P345, DOI 10.1002/leap.1169 Brody T., 2004, NAT POL OP ACC OA PR Burgman M, 2019, CONSERV BIOL, V33, P5, DOI 10.1111/cobi.13248 Chan GR, 2017, LIBR MANAGE, V38, P488, DOI 10.1108/LM-02-2017-0013 Christian G.E., 2008, Issues and challenges to the development of open access institutional repositories in academic and research institutions in Nigeria Claudio-González MG, 2015, PROF INFORM, V24, P517, DOI 10.3145/epi.2015.sep.02 Collins K., 2015, You Spoony Bard!: An Analysis of Video Game Localization Practices (thesis). University of Massachusetts of Amherst Collins K, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0162680 Coombs Jenny, 2017, New Review of Academic Librarianship, V23, P159, DOI 10.1080/13614533.2017.1329750 Copiello S, 2020, SCIENTOMETRICS, V125, P2449, DOI 10.1007/s11192-020-03698-w Costas R, 2017, Arxiv, DOI arXiv:1712.05667 Curlin T, 2019, BUS SYST RES J, V10, P102, DOI 10.2478/bsrj-2019-0008 Dalton ED, 2020, PORTAL-LIBR ACAD, V20, P73, DOI 10.1353/pla.2020.0005 Davis Philip M., 2009, Journal of Electronic Publishing, V12, DOI 10.3998/3336451.0012.101 Dawson DD., 2018, J LIBRARIANSHIP SCHO, DOI [10.7710/2162-3309.2216, DOI 10.7710/2162-3309.2216] Dehdarirad T, 2020, PLOS ONE, V15, DOI 10.1371/journal.pone.0241723 Didegah F, 2018, J INFORMETR, V12, P960, DOI 10.1016/j.joi.2018.08.002 Echevarría L, 2021, NUCLEIC ACID THER, V31, P185, DOI 10.1089/nat.2020.0865 Erskine N, 2021, J MED INTERNET RES, V23, DOI 10.2196/26378 Escota GV., 2019, OPEN FORUM INFECT DI, V6, pS57, DOI 10.1093/ofid/ofz359.125 European Commission, 2012, COM2012401 EUR COMM Eysenbach G, 2011, J MED INTERNET RES, V13, DOI 10.2196/jmir.2012 Fang ZC, 2020, J ASSOC INF SCI TECH, V71, P1455, DOI 10.1002/asi.24344 Feenstra R. A., 2021, SOCIAL MOBILISATION, P1 Fredriksson M., 2020, TRANSITION OPEN ACCE Friedrich N., 2015, ALTM WOKRSH AMST Gabarron Elia, 2019, J Diabetes Sci Technol, V13, P439, DOI 10.1177/1932296818811679 Garcia K, 2021, APPL SOFT COMPUT, V101, DOI 10.1016/j.asoc.2020.107057 Giachanou A, 2016, ACM COMPUT SURV, V49, DOI 10.1145/2938640 Grgic IH, 2019, INT J EDUC INTEGR, V15, DOI 10.1007/s40979-019-0041-5 Gunasekera C, 2017, SRELS J INFORM MANAG, V54, P147, DOI 10.17821/srels/2017/v54i3/111684 Halevi G, 2021, PUBLISH RES Q, V37, P384, DOI 10.1007/s12109-021-09820-x Hammad M, 2016, ADV INTELL SYST, V448, P131, DOI 10.1007/978-3-319-32467-8_13 Holmberg Kim, 2014, Scientometrics, V101, P1027, DOI 10.1007/s11192-014-1229-3 Jalali N, 2019, ACAD EMERG MED, V26, P443, DOI 10.1111/acem.13646 Jamali Hamid R., 2015, International Journal of Knowledge Content Development & Technology, V5, P15 Ji X, 2015, SOC NETW ANAL MIN, V5, DOI 10.1007/s13278-015-0253-5 Joung KH, 2019, INFORM DEV, V35, P191, DOI 10.1177/0266666917736360 Jungherr A., 2014, TWITTER POLITICS COM Kaba A, 2015, NEW LIB WORLD, V116, P94, DOI 10.1108/NLW-05-2014-0053 Kenneway M, 2011, AUTHOR ATTITUDES OPE Khasawneh RT, 2013, INT CONF INTERNET, P101, DOI 10.1109/ICIST.2013.6747520 Khatua A, 2020, APPL SOFT COMPUT, V97, DOI 10.1016/j.asoc.2020.106743 Kolahi J, 2020, DENT HYPOTHESES, V11, P1, DOI 10.4103/denthyp.denthyp_17_20 Kumar A, 2020, MULTIMED TOOLS APPL, V79, P15349, DOI 10.1007/s11042-019-7346-5 Kumar A, 2019, MULTIMED TOOLS APPL, V78, P24103, DOI 10.1007/s11042-019-7390-1 Laakso M, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0020961 Lee RW, 2015, THORAX, V70, pA238, DOI 10.1136/thoraxjnl-2015-207770.453 Lewis DW, 2012, COLL RES LIBR, V73, P493, DOI 10.5860/crl-299 López-Vergara C, 2021, PUBLICATIONS, V9, DOI 10.3390/publications9030037 Lopez-Vergara C, 2020, PUBLICATIONS, V8, DOI 10.3390/publications8020029 Lu Y., 2022, Cultures of Science, V4, P208, DOI [10.1177/20966083221084807, DOI 10.1177/20966083221084807] Marcus A, 2011, NATURE, V480, P449, DOI 10.1038/480449a Jiménez-Zafra SM, 2021, ROY SOC OPEN SCI, V8, DOI 10.1098/rsos.201756 Mohammadi E, 2018, PLOS ONE, V13, DOI 10.1371/journal.pone.0197265 Mohan V. V., 2012, N SITE 2012 INFORMIN, V12, P205, DOI [10.28945/1650, DOI 10.28945/1650] Morris S, 2009, LEARN PUBL, V22, P221, DOI 10.1087/2009308 Nagaraj M.N., 2017, INT J LIB INFORM STU, V7, P132 Narayan B., 2018, Open Information Science, V2, P168, DOI DOI 10.1515/OPIS-2018-0013 Narayan B, 2017, INFORM RES, V22 Nishikawa N., 2017, ISIS2017THE 18 INT S, P167 Nobes A., 2019, Emerald Open Res., V1, P17, DOI [10.35241/emeraldopenres.13325.1, DOI 10.35241/EMERALDOPENRES.13325.1] Obuh AO., 2013, SOCIAL SCI, V8, P153 Oddone NE, 2019, TRANSINFORMACAO, V31, DOI 10.1590/2318-0889201931e190011 Palomino MA, 2018, FRONT ARTIF INTEL AP, V303, P1004, DOI 10.3233/978-1-61499-900-3-1004 Peekhaus W, 2015, J INF SCI, V41, P640, DOI 10.1177/0165551515587855 Pershad Y, 2018, J CLIN MED, V7, DOI 10.3390/jcm7060121 Pisoschi AM, 2016, SCIENTOMETRICS, V109, P1075, DOI 10.1007/s11192-016-2088-x Piwowar H, 2018, PEERJ, V6, DOI 10.7717/peerj.4375 PRATTO F, 1991, J PERS SOC PSYCHOL, V61, P380, DOI 10.1037/0022-3514.61.3.380 Puschmann C., 2014, Opening science, P89, DOI DOI 10.1007/978-3-319-00026-8_6 Qiao F, 2022, J GLOB INF MANAG, V30, DOI 10.4018/JGIM.296708 Quigley N, 2021, LIBER Q J ASS EUROPE, V31, P1, DOI [10.53377/lq.10937, DOI 10.53377/LQ.10937] Richtig G, 2019, ESMO OPEN, V4, DOI 10.1136/esmoopen-2019-000580 Robinson-Garcia N., 2018, 23 INT C SCI TECHN I, DOI [10.5281/zenodo.1414022, DOI 10.5281/ZENODO.1414022] Robinson-Garcia N, 2018, SCI PUBL POLICY, V45, P815, DOI 10.1093/scipol/scy024 Rodriguez JE, 2014, J ACAD LIBR, V40, P604, DOI 10.1016/j.acalib.2014.07.013 Rogers E.M., 2010, DIFFUSION INNOVATION Rowley J, 2017, J ASSOC INF SCI TECH, V68, P1201, DOI 10.1002/asi.23710 Ruiz-Perez S., 2017, DRIVERS BARRIERS OPE, DOI [10.5281/zenodo.842016, DOI 10.5281/ZENODO.842016] Ruiz-Péerez S, 2017, PROF INFORM, V26, P722, DOI 10.3145/epi.2017.jul.16 Sadiq M. T., 2022, Journal of Indian Library Association, V57, P67 Saeed-Ul Hassan, 2020, KNOWL-BASED SYST, V192, DOI 10.1016/j.knosys.2019.105383 Schroter S, 2005, BMJ-BRIT MED J, V330, P756, DOI 10.1136/bmj.38359.695220.82 Rodrigues RS, 2020, PLOS ONE, V15, DOI 10.1371/journal.pone.0233432 Scott RE, 2021, PORTAL-LIBR ACAD, V21, P365 Seddighi H, 2020, JOURNAL MEDIA, V1, P59, DOI 10.3390/journalmedia1010005 Segado-Boj F, 2018, J SCHOLARLY PUBL, V50, P48, DOI 10.3138/jsp.50.1.08 Segado-Boj F, 2018, IBERSID, V12, P27 Serrano-Vicente R, 2016, J ACAD LIBR, V42, P595, DOI 10.1016/j.acalib.2016.07.002 Sheikh A, 2019, J LIBR INF SCI, V51, P612, DOI 10.1177/0961000617742455 Shema H., 2012, PLOS ONE, V7, DOI [10.1371/journal.pone.0035869, DOI 10.1371/journal.pone.0035869] Siler K, 2017, CAN J SOCIOL, V42, P83, DOI 10.29173/cjs28140 Silva DD, 2021, J ORTHOP SPORT PHYS, V51, P536, DOI 10.2519/jospt.2021.10598 Sinnenberg L, 2017, AM J PUBLIC HEALTH, V107, pE1, DOI 10.2105/AJPH.2016.303512 Smith LM, 2013, 2013 ASE/IEEE INTERNATIONAL CONFERENCE ON SOCIAL COMPUTING (SOCIALCOM), P236, DOI 10.1109/SocialCom.2013.41 Snijder R, 2016, SCIENTOMETRICS, V109, P1855, DOI 10.1007/s11192-016-2160-6 Solomon D, 2013, PUBLICATIONS, V1, P16, DOI 10.3390/publications1010016 Sud P, 2014, SCIENTOMETRICS, V98, P1131, DOI 10.1007/s11192-013-1117-2 Swanberg SM, 2020, J MED LIBR ASSOC, V108, P208, DOI 10.5195/jmla.2020.849 Taylor M, 2020, SCIENTOMETRICS, V125, P2523, DOI 10.1007/s11192-020-03735-8 Tennant JP., 2016, F1000RESEARCH, DOI [10.1268/f1000research.8460.3, DOI 10.1268/F1000RESEARCH.8460.3] Tenopir C, 2017, COLL RES LIBR, V78, P824, DOI 10.5860/crl.78.6.824 Thelwall Mike, 2013, Computational Linguistics and Intelligent Text Processing. 14th International Conference, CICLing 2013. Proceedings, P1, DOI 10.1007/978-3-642-37256-8_1 Thelwall M, 2013, J AM SOC INF SCI TEC, V64, P1608, DOI 10.1002/asi.22872 Thelwall M, 2011, J AM SOC INF SCI TEC, V62, P406, DOI 10.1002/asi.21462 Thelwall M, 2010, J AM SOC INF SCI TEC, V61, P2544, DOI 10.1002/asi.21416 Tmava A. M., 2017, INT C KNOWLEDGE MANA Togia Aspasia, 2014, Information Services & Use, V34, P221, DOI 10.3233/ISU-140742 Torres-Salinas D., 2020, bioRxiv, DOI DOI 10.1101/2020.04.23.057307 Trueger NS, 2018, J AM COLL RADIOL, V15, P173, DOI 10.1016/j.jacr.2017.09.036 van Vlokhoven H, 2019, J INFORMETR, V13, P751, DOI 10.1016/j.joi.2019.04.001 Vanherpe J., 2018, LICENSING EXECUTIVES, V53, P269 Verhaar Peter, 2017, LIBER Quarterly, V27, P1, DOI 10.18352/lq.10185 Verma P., 2019, Int. J. Recent Technol. Eng, V8, P8338 Wang T, 2022, INT J CONSTR MANAG, V22, P1585, DOI 10.1080/15623599.2020.1735610 Wang XW, 2015, SCIENTOMETRICS, V103, P555, DOI 10.1007/s11192-015-1547-0 Wicherts JM, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0147913 Xia JF, 2010, J AM SOC INF SCI TEC, V61, P615, DOI 10.1002/asi.21283 Yanfang Qi, 2021, Journal of Physics: Conference Series, V1802, DOI 10.1088/1742-6596/1802/4/042069 Yang L., 2019, 13 CTV 2019 P 13 INT Yousif A, 2019, ARTIF INTELL REV, V52, P1805, DOI 10.1007/s10462-017-9597-8 Yu XQ, 2022, J DENT, V119, DOI 10.1016/j.jdent.2022.104067 Zhu YM, 2020, J INF SCI, V46, P41, DOI 10.1177/0165551518823174 Zhu YM, 2017, SCIENTOMETRICS, V111, P557, DOI 10.1007/s11192-017-2316-z Zimbra D, 2018, ACM TRANS MANAG INF, V9, DOI 10.1145/3185045 NR 141 TC 5 Z9 5 U1 4 U2 37 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0138-9130 EI 1588-2861 J9 SCIENTOMETRICS JI Scientometrics PD OCT PY 2022 VL 127 IS 10 BP 5587 EP 5611 DI 10.1007/s11192-022-04502-7 EA SEP 2022 PG 25 WC Computer Science, Interdisciplinary Applications; Information Science & Library Science WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Computer Science; Information Science & Library Science GA 4P1FY UT WOS:000849303100001 DA 2024-09-05 ER PT J AU Yang, C Wang, CH Zheng, RZ Geng, S AF Yang, Chen Wang, Chuhan Zheng, Ruozhen Geng, Shuang TI Link prediction in research collaboration: a multi-network representation learning framework with joint training SO MULTIMEDIA TOOLS AND APPLICATIONS LA English DT Article DE Research collaboration; Link prediction; Network representation learning; Machine learning ID PERFORMANCE AB With the rapid advancement of scientific research, collaboration in this area is becoming increasingly important. One of the major challenges is the link prediction problem for research collaboration. Recently, learning-based link prediction methods have received much attention. However, most of these studies have solely concentrated on exploiting a single network and its topology features for prediction, and ignore other factors that may influence link formation. To address this issue, in this paper we propose a link prediction model based on multi-network representation learning. Specifically, we develop new features based on the author's institutions and published papers, and three networks incorporating these features are modeled. Then, the network representation method based on joint training is proposed to embed the networks in a low-dimensional space. Finally, the authors' feature vectors are combined in finer granularity, and collaboration prediction is performed in a supervised manner. The performance of our model is evaluated by comparing it with other link prediction methods on a real-world dataset, and the experimental results show the effectiveness of our model. C1 [Yang, Chen; Wang, Chuhan; Zheng, Ruozhen; Geng, Shuang] Shenzhen Univ, Coll Management, Shenzhen, Peoples R China. C3 Shenzhen University RP Geng, S (corresponding author), Shenzhen Univ, Coll Management, Shenzhen, Peoples R China. EM gs@szu.edu.cn FU National Natural Science Foundation of China [71901150, 71701134]; Guangdong Basic and Applied Basic Research Foundation [2023A1515012515, 2 022A1515012077]; Guangdong Province Innovation Team "Intelligent Management and Interdisciplinary Innovation" [2021WCXTD002]; Shenzhen Higher Education Support Plan [20200826144104001] FX This work was supported by grants from National Natural Science Foundation of China [71901150, 71701134]; Guangdong Basic and Applied Basic Research Foundation [2023A1515012515, 2 022A1515012077]; Guangdong Province Innovation Team "Intelligent Management and Interdisciplinary Innovation" [2021WCXTD002]; Shenzhen Higher Education Support Plan [20200826144104001]. CR Adamic LA, 2003, SOC NETWORKS, V25, P211, DOI 10.1016/S0378-8733(03)00009-1 Ahmed A, 2013, P 22 INT C WORLD WID, P37 Ahmed C, 2016, SOC NETW ANAL MIN, V6, DOI 10.1007/s13278-016-0333-1 Aldieri L, 2018, SOCIO-ECON PLAN SCI, V62, P13, DOI 10.1016/j.seps.2017.05.003 AlHasan M., 2006, P SDM 06 WORKSH LINK Aziz F, 2020, SCI REP-UK, V10, DOI 10.1038/s41598-020-76860-2 Barabási AL, 2002, PHYSICA A, V311, P590, DOI 10.1016/S0378-4371(02)00736-7 Belkin M, 2003, NEURAL COMPUT, V15, P1373, DOI 10.1162/089976603321780317 Blondel VD, 2008, J STAT MECH-THEORY E, DOI 10.1088/1742-5468/2008/10/P10008 Brin S, 1998, COMPUT NETWORKS ISDN, V30, P107, DOI 10.1016/S0169-7552(98)00110-X Cao JX, 2021, WSDM '21: PROCEEDINGS OF THE 14TH ACM INTERNATIONAL CONFERENCE ON WEB SEARCH AND DATA MINING, P635, DOI 10.1145/3437963.3441783 Cao Shaosheng, 2015, P 24 ACM INT C INFOR, P891 ChengXiang Zhai, 2008, Synthesis Lect. Hum. Lang. Technol, V1, P1, DOI [DOI 10.1007/978-3-031-02130-5, DOI 10.2200/S00158ED1V01Y200811HLT001] Cohen S, 2013, PROCEEDINGS OF THE 22ND INTERNATIONAL CONFERENCE ON WORLD WIDE WEB (WWW'13 COMPANION), P959 Grover A, 2016, KDD'16: PROCEEDINGS OF THE 22ND ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, P855, DOI 10.1145/2939672.2939754 Hassan D, 2019, INT CONF MACH LEARN, P511, DOI 10.1109/icmlc48188.2019.8949320 Jin T, 2021, INT J MACH LEARN CYB, V12, P597, DOI 10.1007/s13042-020-01190-8 KATZ JS, 1994, SCIENTOMETRICS, V31, P31, DOI 10.1007/BF02018100 Katz Leo, 1953, PSYCHOMETRIKA, V18, P39 Kong XJ, 2017, SCIENTOMETRICS, V113, P369, DOI 10.1007/s11192-017-2485-9 Kumar A, 2020, PHYSICA A, V553, DOI 10.1016/j.physa.2020.124289 Li J, 2014, WWW'14 COMPANION: PROCEEDINGS OF THE 23RD INTERNATIONAL CONFERENCE ON WORLD WIDE WEB, P1209, DOI 10.1145/2567948.2579034 Li KY, 2020, COMPUT NETW, V166, DOI 10.1016/j.comnet.2019.106978 Liang W, 2018, FUTURE GENER COMP SY, V87, P591, DOI 10.1016/j.future.2017.12.038 Lin SY, 2017, J INTELL INF SYST, V49, P255, DOI 10.1007/s10844-016-0440-5 Maisonobe M, 2016, J INFORMETR, V10, P1025, DOI 10.1016/j.joi.2016.06.002 Makarov I, 2019, 12TH ACM INTERNATIONAL CONFERENCE ON PERVASIVE TECHNOLOGIES RELATED TO ASSISTIVE ENVIRONMENTS (PETRA 2019), P204, DOI 10.1145/3316782.3316786 Makarov I, 2019, PEERJ COMPUT SCI, DOI 10.7717/peerj-cs.172 Malhotra D, 2021, MACH LEARN APPL, V6, DOI 10.1016/j.mlwa.2021.100086 Mayrose I, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0137856 Mikolov T., 2013, ARXIV Newman MEJ, 2001, PHYS REV E, V64, DOI [10.1103/PhysRevE.64.016131, 10.1103/PhysRevE.64.016132] Perozzi B, 2014, PROCEEDINGS OF THE 20TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING (KDD'14), P701, DOI 10.1145/2623330.2623732 Chuan PM, 2018, APPL INTELL, V48, P2470, DOI 10.1007/s10489-017-1086-x Pradhan T, 2020, KNOWL-BASED SYST, V197, DOI 10.1016/j.knosys.2020.105784 Rahman M, 2018, ARXIV, DOI DOI 10.48550/ARXIV.1804.05755 Robertson S, 2004, J DOC, V60, P503, DOI 10.1108/00220410410560582 Sun K, 2020, IEEE ACCESS, V8, P205600, DOI 10.1109/ACCESS.2020.3037118 Tang J, 2015, PROCEEDINGS OF THE 24TH INTERNATIONAL CONFERENCE ON WORLD WIDE WEB (WWW 2015), P1067, DOI 10.1145/2736277.2741093 Tong HH, 2006, IEEE DATA MINING, P613 Wang DX, 2016, KDD'16: PROCEEDINGS OF THE 22ND ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, P1225, DOI 10.1145/2939672.2939753 Wang SH, 2016, CIKM'16: PROCEEDINGS OF THE 2016 ACM CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, P115, DOI 10.1145/2983323.2983755 Wang W, 2021, ACM T KNOWL DISCOV D, V15, DOI 10.1145/3442199 Wang X, 2021, DECIS SUPPORT SYST, V141, DOI 10.1016/j.dss.2020.113448 Wang X, 2019, PROCEEDINGS OF THE 42ND INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL (SIGIR '19), P165, DOI 10.1145/3331184.3331267 West Jevin D., 2016, IEEE Transactions on Big Data, V2, P113, DOI 10.1109/TBDATA.2016.2541167 XIE M, 2016, P 25 ACM INT C INF K, P15, DOI DOI 10.1145/29833213.2983711 Xu KYL, 2018, PR MACH LEARN RES, V80 Xu ZZ, 2019, PEERJ COMPUT SCI, DOI 10.7717/peerj-cs.178 Yan M, 2019, INT SYM QUAL ELECT, P1, DOI 10.1109/ISQED.2019.8697584 Yang C, 2020, SCIENTOMETRICS, V123, P429, DOI 10.1007/s11192-020-03374-z Zhang DK, 2020, IEEE T BIG DATA, V6, P3, DOI 10.1109/TBDATA.2018.2850013 Zhang MH, 2018, ADV NEUR IN, V31 Zhang ZQ, 2020, AAAI CONF ARTIF INTE, V34, P3065 Zhang ZC, 2021, KNOWL-BASED SYST, V228, DOI 10.1016/j.knosys.2021.107297 Zhou T, 2009, EUR PHYS J B, V71, P623, DOI 10.1140/epjb/e2009-00335-8 NR 56 TC 2 Z9 2 U1 1 U2 15 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 1380-7501 EI 1573-7721 J9 MULTIMED TOOLS APPL JI Multimed. Tools Appl. PD DEC PY 2023 VL 82 IS 30 BP 47215 EP 47233 DI 10.1007/s11042-023-15720-3 EA MAY 2023 PG 19 WC Computer Science, Information Systems; Computer Science, Software Engineering; Computer Science, Theory & Methods; Engineering, Electrical & Electronic WE Science Citation Index Expanded (SCI-EXPANDED) SC Computer Science; Engineering GA Z9FI2 UT WOS:000983956900004 DA 2024-09-05 ER PT C AU Baba, T Baba, K AF Baba, Takahiro Baba, Kensuke BE Gervasi, O Murgante, B Misra, S Stankova, E Torre, CM Rocha, AMAC Taniar, D Apduhan, BO Tarantino, E Ryu, Y TI Citation Count Prediction Using Non-technical Terms in Abstracts SO COMPUTATIONAL SCIENCE AND ITS APPLICATIONS - ICCSA 2018, PT I SE Lecture Notes in Computer Science LA English DT Proceedings Paper CT 18th International Conference on Computational Science and Its Applications (ICCSA) CY JUL 02-05, 2018 CL Monash Univ, Caulfield Campus, Melbourne, AUSTRALIA HO Monash Univ, Caulfield Campus DE Citation count prediction; Document classification; Text analysis; Machine learning AB Researchers are required to find previous literature which is related to their research and has a scientific impact efficiently from a large number of publications. The target problem of this paper is predicting the citation count of each scholarly paper, that is, the number of citations from other scholarly papers, as the scientific impact. The authors tried to detect the high and low of the citation count of scholarly papers using only their abstracts, especially, non-technical terms used in them. They conducted a classification of abstracts of scholarly papers with high and low citation counts, and applied the classification also to the abstracts modified by deleting technical terms from them. The results of their experiments indicate that the scientific impact of a scholarly paper can be detected from information which is written in its abstract and is not related to the trend of research topics. The classification accuracy for detecting scholarly papers with the top or bottom 1% citation counts was 0.93, and that using the abstracts without technical terms was 0.90. C1 [Baba, Takahiro] Kyushu Univ, Fukuoka, Fukuoka 8190395, Japan. [Baba, Kensuke] Fujitsu Labs, Kawasaki, Kanagawa 2118588, Japan. C3 Kyushu University; Fujitsu Ltd; Fujitsu Laboratories Ltd RP Baba, K (corresponding author), Fujitsu Labs, Kawasaki, Kanagawa 2118588, Japan. EM baba.kensuke@jp.fujitsu.com RI Baba, Kensuke/J-8426-2017 OI Baba, Kensuke/0000-0002-8118-0175; ma chang, long kuan/0000-0001-7910-2728 FU JSPS KAKENHI [15K00310]; Grants-in-Aid for Scientific Research [15K00310] Funding Source: KAKEN FX This work was supported by JSPS KAKENHI Grant Number 15K00310. CR Garfield E, 2006, JAMA-J AM MED ASSOC, V295, P90, DOI 10.1001/jama.295.1.90 Hirsch JE, 2005, P NATL ACAD SCI USA, V102, P16569, DOI 10.1073/pnas.0507655102 Schutze H., 2008, Introduction to information retrieval, V39 Yan R, 2011, P 20 ACM INT C INF K, P1247, DOI DOI 10.1145/2063576.2063757 Yuxiao Dong, 2016, IEEE Transactions on Big Data, V2, P18, DOI 10.1109/TBDATA.2016.2521657 NR 5 TC 4 Z9 4 U1 0 U2 7 PU SPRINGER INTERNATIONAL PUBLISHING AG PI CHAM PA GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND SN 0302-9743 EI 1611-3349 BN 978-3-319-95162-1; 978-3-319-95161-4 J9 LECT NOTES COMPUT SC PY 2018 VL 10960 BP 366 EP 375 DI 10.1007/978-3-319-95162-1_25 PN I PG 10 WC Computer Science, Theory & Methods WE Conference Proceedings Citation Index - Science (CPCI-S) SC Computer Science GA BM1UH UT WOS:000460577300025 DA 2024-09-05 ER PT J AU Wang, KT Tan, FB Zhu, ZM Kong, LY AF Wang, Kangtao Tan, Fengbo Zhu, Zhiming Kong, Lingyu TI Exploring changes in depression and radiology-related publications research focus: A bibliometrics and content analysis based on natural language processing SO FRONTIERS IN PSYCHIATRY LA English DT Article DE major depressive disorder; radiology; bibliometric analysis; Latent Dirichlet allocation; machine learning ID CORTICAL SPREADING DEPRESSION; FUNCTIONAL CONNECTIVITY; MRI; MIGRAINE; DEPOLARIZATION; METAANALYSIS; RELEVANCE; NETWORKS; DISORDER; BIPOLAR AB ObjectiveThis study aims to construct and use natural language processing and other methods to analyze major depressive disorder (MDD) and radiology studies' publications in the PubMed database to understand the historical growth, current state, and potential expansion trend. MethodsAll MDD radiology studies publications from January 2002 to January 2022 were downloaded from PubMed using R, a statistical computing language. R and the interpretive general-purpose programming language Python were used to extract publication dates, geographic information, and abstracts from each publication's metadata for bibliometric analysis. The generative statistical algorithm "Latent Dirichlet allocation" (LDA) was applied to identify specific research focus and trends. The unsupervised Leuven algorithm was used to build a network to identify relationships between research focus. ResultsA total of 5,566 publications on MDD and radiology research were identified, and there is a rapid upward trend. The top-cited publications were 11,042, and the highly-cited publications focused on improving diagnostic performance and establishing imaging standards. Publications came from 76 countries, with the most from research institutions in the United States and China. Hospitals and radiology departments take the lead in research and have an advantage. The extensive field of study contains 12,058 Medical Subject Heading (MeSH) terms. Based on the LDA algorithm, three areas were identified that have become the focus of research in recent years, "Symptoms and treatment," "Brain structure and imaging," and "Comorbidities research." ConclusionLatent Dirichlet allocation analysis methods can be well used to analyze many texts and discover recent research trends and focus. In the past 20 years, the research on MDD and radiology has focused on exploring MDD mechanisms, establishing standards, and constructing imaging methods. Recent research focuses are "Symptoms and sleep," "Brain structure study," and "functional connectivity." New progress may be made in studies on MDD complications and the combination of brain structure and metabolism. C1 [Wang, Kangtao; Tan, Fengbo] Cent South Univ, Xiangya Hosp, Dept Gen Surg, Changsha, Hunan, Peoples R China. [Wang, Kangtao; Tan, Fengbo] Cent South Univ, Xiangya Hosp, Natl Clin Res Ctr Geriatr Disorders, Changsha, Hunan, Peoples R China. [Zhu, Zhiming; Kong, Lingyu] Cent South Univ, Xiangya Hosp, Dept Radiol, Changsha, Hunan, Peoples R China. C3 Central South University; Central South University; Central South University RP Kong, LY (corresponding author), Cent South Univ, Xiangya Hosp, Dept Radiol, Changsha, Hunan, Peoples R China. EM kong_lingyu@csu.edu.cn RI 令煜, 孔/HME-1741-2023; Zhu, Zhiming/ABH-9561-2020 CR [Anonymous], 2009, PLOS MED, V6, pe1000097, DOI DOI 10.1371/JOURNAL.PMED.1000097 Ashburner J, 2007, NEUROIMAGE, V38, P95, DOI 10.1016/j.neuroimage.2007.07.007 Bethea TN, 2022, CANCER MED-US, V11, P3352, DOI 10.1002/cam4.4682 Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993 Bolay H, 2002, NAT MED, V8, P136, DOI 10.1038/nm0202-136 Bora E, 2015, SCHIZOPHRENIA BULL, V41, P1095, DOI 10.1093/schbul/sbu198 Buckner RL, 2008, ANN NY ACAD SCI, V1124, P1, DOI 10.1196/annals.1440.011 Chen CM, 2012, EXPERT OPIN BIOL TH, V12, P593, DOI 10.1517/14712598.2012.674507 Chen JW, 2022, FRONT HUM NEUROSCI, V16, DOI 10.3389/fnhum.2022.908049 Chireh B, 2019, PREV MED REP, V14, DOI 10.1016/j.pmedr.2019.100822 Dai LS, 2019, PEERJ, V7, DOI 10.7717/peerj.8170 Desikan RS, 2006, NEUROIMAGE, V31, P968, DOI 10.1016/j.neuroimage.2006.01.021 Dreier JP, 2011, NAT MED, V17, P439, DOI 10.1038/nm.2333 Eikermann-Haerter K, 2009, J CLIN INVEST, V119, P99, DOI 10.1172/JCI36059 Fabricius M, 2006, BRAIN, V129, P778, DOI 10.1093/brain/awh716 Feng CZ, 2022, FRONT ONCOL, V12, DOI 10.3389/fonc.2022.824201 Fischl B, 2002, NEURON, V33, P341, DOI 10.1016/S0896-6273(02)00569-X Friedrich M J, 2017, JAMA, V317, P1517, DOI 10.1001/jama.2017.3826 Graham EA, 2020, J AFFECT DISORDERS, V265, P224, DOI 10.1016/j.jad.2020.01.053 Greicius MD, 2007, BIOL PSYCHIAT, V62, P429, DOI 10.1016/j.biopsych.2006.09.020 Higgins JPT, 2003, BMJ-BRIT MED J, V327, P557, DOI 10.1136/bmj.327.7414.557 Jacomy M, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0098679 Kaiser RH, 2015, JAMA PSYCHIAT, V72, P603, DOI 10.1001/jamapsychiatry.2015.0071 Kang SG, 2020, INT J MOL SCI, V21, DOI 10.3390/ijms21062148 Kumar R, 2022, SENSORS-BASEL, V22, DOI 10.3390/s22114276 Kumar R, 2022, ARCH COMPUT METHOD E, V29, P2781, DOI 10.1007/s11831-021-09675-7 Lauritzen M, 2011, J CEREBR BLOOD F MET, V31, P17, DOI 10.1038/jcbfm.2010.191 Lemke H, 2022, DEPRESS ANXIETY, V39, P441, DOI 10.1002/da.23260 Li TT, 2022, J AFFECT DISORDERS, V312, P331, DOI 10.1016/j.jad.2022.05.047 Li XD, 2022, FRONT MOL NEUROSCI, V15, DOI 10.3389/fnmol.2022.825286 Meng RW, 2018, J AFFECT DISORDERS, V234, P59, DOI 10.1016/j.jad.2018.02.052 Meyer JH, 2022, FRONT NEUROSCI-SWITZ, V15, DOI 10.3389/fnins.2021.773404 Miao HF, 2022, J AFFECT DISORDERS, V302, P101, DOI 10.1016/j.jad.2021.12.103 Miller AH, 2009, BIOL PSYCHIAT, V65, P732, DOI 10.1016/j.biopsych.2008.11.029 Mitchell AJ, 2009, LANCET, V374, P609, DOI 10.1016/S0140-6736(09)60879-5 Mojtabai R, 2008, J CLIN PSYCHIAT, V69, P1064, DOI 10.4088/JCP.v69n0704 Nozari A, 2010, ANN NEUROL, V67, P221, DOI 10.1002/ana.21871 Otte C, 2016, NAT REV DIS PRIMERS, V2, DOI 10.1038/nrdp.2016.65 Piilgaard H, 2009, J CEREBR BLOOD F MET, V29, P1517, DOI 10.1038/jcbfm.2009.73 Power JD, 2012, NEUROIMAGE, V59, P2142, DOI 10.1016/j.neuroimage.2011.10.018 Ridgway JP, 2021, JMIR MED INF, V9, DOI 10.2196/23456 Sheline YI, 2010, P NATL ACAD SCI USA, V107, P11020, DOI 10.1073/pnas.1000446107 Smith SM, 2004, NEUROIMAGE, V23, pS208, DOI 10.1016/j.neuroimage.2004.07.051 Tzourio-Mazoyer N, 2002, NEUROIMAGE, V15, P273, DOI 10.1006/nimg.2001.0978 van Eck NJ, 2010, SCIENTOMETRICS, V84, P523, DOI 10.1007/s11192-009-0146-3 Wang KC, 2023, PSYCHOL MED, V53, P3672, DOI 10.1017/S0033291722000320 Wang KT, 2020, THER ADV GASTROENTER, V13, DOI 10.1177/1756284820934594 Wen JH, 2022, JAMA PSYCHIAT, V79, P464, DOI 10.1001/jamapsychiatry.2022.0020 Zhang HF, 2022, IEEE J BIOMED HEALTH, V26, P4100, DOI 10.1109/JBHI.2022.3166826 Zheng KZ, 2023, EUR ARCH PSY CLIN N, V273, P169, DOI 10.1007/s00406-022-01403-x NR 50 TC 2 Z9 2 U1 6 U2 26 PU FRONTIERS MEDIA SA PI LAUSANNE PA AVENUE DU TRIBUNAL FEDERAL 34, LAUSANNE, CH-1015, SWITZERLAND SN 1664-0640 J9 FRONT PSYCHIATRY JI Front. Psychiatry PD NOV 30 PY 2022 VL 13 AR 978763 DI 10.3389/fpsyt.2022.978763 PG 15 WC Psychiatry WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Psychiatry GA 6Y3PV UT WOS:000897010800001 PM 36532194 OA Green Published, gold DA 2024-09-05 ER PT J AU Xu, MY Du, JP Xue, Z Guan, ZL Kou, FF Shi, L AF Xu, Mingying Du, Junping Xue, Zhe Guan, Zeli Kou, Feifei Shi, Lei TI A scientific research topic trend prediction model based on multi-LSTM and graph convolutional network SO INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS LA English DT Article DE graph convolutional networks; long short-term memory; scientific Influence modeling; time series prediction; topic trend prediction ID EVOLUTION; DEMAND; SYSTEM AB Predicting the development trend of future scientific research not only provides a reference for researchers to understand the development of the discipline, but also provides support for decision-making and fund allocation for decision-makers. The continuous growth of scientific publications has brought challenges to track the development trends of scientific research topics. The existing topic trend prediction methods have proved that the research topic trend of a publication is influenced by other peer publications. However, they ignore the fact that the research topics of different publications belong to different research topic space. Moreover, the existing topic prediction methods do not fully consider the interactive influence among publications that the research topic of one publication affects the topics of other publications, it is also influenced by the research topics of other publications. In line with this, this paper proposes a scientific research topic trend prediction model based on multi-long short-term memory (multi-LSTM) and Graph Convolutional Network. Specifically, multiple LSTMs are employed to map research topics of different publications into their respective topic space. Then, the graph convolutional neural network is applied to learn the scientific influence context of each publication, so that the research topic of each publication not only integrates the influence of neighbor nodes, but also considers the influence of the neighbors of the neighbor node on the research topic of the publication, so as to more accurately fuse scientific influence context of research topic of peer publications. Experiments results on the data set of scientific research papers in the field of artificial intelligence and data mining demonstrate that the model improves the prediction precision and achieves the state-of-the-art research topic trend prediction effect compared with the other baseline models. C1 [Xu, Mingying; Du, Junping; Xue, Zhe; Guan, Zeli; Kou, Feifei] Beijing Univ Posts & Telecommun, Sch Comp Sci, Beijing Key Lab Intelligent Telecommun Software &, Beijing 100876, Peoples R China. [Shi, Lei] Commun Univ China, State Key Lab Media Convergence & Commun, Beijing, Peoples R China. C3 Beijing University of Posts & Telecommunications; Communication University of China RP Du, JP (corresponding author), Beijing Univ Posts & Telecommun, Sch Comp Sci, Beijing Key Lab Intelligent Telecommun Software &, Beijing 100876, Peoples R China. EM junpingdu@126.com RI Shi, Lei/JAX-8444-2023; shi, lei/ADU-8999-2022 OI Shi, Lei/0000-0002-5570-7818; Xu, Mingying/0000-0002-4175-199X FU National Key R&D Program of China [2018YFB1402600]; Major Program of National Natural Science Foundation of China [62192784]; National Natural Science Foundation of China (NSFC) [61772083, 61802028, 61877006] FX National Key R&D Program of China, Grant/Award Number: 2018YFB1402600; Major Program of National Natural Science Foundation of China, Grant/Award Number: 62192784; National Natural Science Foundation of China (NSFC), Grant/Award Numbers: 61772083, 61802028, 61877006 CR Abuhay TM, 2018, PROCEDIA COMPUT SCI, V136, P304, DOI 10.1016/j.procs.2018.08.284 Amini MH, 2016, ELECTR POW SYST RES, V140, P378, DOI 10.1016/j.epsr.2016.06.003 [Anonymous], P 26 INT C COMPUTATI [Anonymous], 2010, ICML Balili C, 2020, IEEE ACCESS, V8, P108514, DOI 10.1109/ACCESS.2020.3000948 Behpour S, 2021, KNOWL-BASED SYST, V220, DOI 10.1016/j.knosys.2021.106907 Cai GF, 2019, IEEE J-STSP, V13, P1375, DOI 10.1109/JSTSP.2019.2913944 Chandra K, 2018, IEEE VEH TECHNOL MAG, V13, P75, DOI 10.1109/MVT.2018.2814822 Chen BT, 2018, SCIENTOMETRICS, V117, P211, DOI 10.1007/s11192-018-2843-2 Chen BT, 2017, J INFORMETR, V11, P1175, DOI 10.1016/j.joi.2017.10.003 Chen CY, 2018, AAAI CONF ARTIF INTE, P2111 Cho K., 2014, P 2014 C EMPIRICAL M, V1406, P1078, DOI DOI 10.3115/V1/D14-1179 Cover T. M., 1991, Elements of information theory, V1, P12 Cummings D, 2020, INT CONF ACOUST SPEE, P3897, DOI [10.1109/icassp40776.2020.9054769, 10.1109/ICASSP40776.2020.9054769] Du J, 2019, IEEE T NETW SCI ENG, V6, P103, DOI 10.1109/TNSE.2017.2787746 Fan J, 2023, NEURAL COMPUT APPL, V35, P13109, DOI 10.1007/s00521-021-05958-z Fong IH, 2020, KNOWL-BASED SYST, V192, DOI 10.1016/j.knosys.2020.105622 Hamilton WL, 2017, ADV NEUR IN, V30 Hu C, 2016, IEEE T KNOWL DATA EN, V28, P1635, DOI 10.1109/TKDE.2016.2538223 Jamal N, 2021, ACM T ASIAN LOW-RESO, V20, DOI 10.1145/3410570 Jebari C, 2021, SCIENTOMETRICS, V126, P2971, DOI 10.1007/s11192-020-03858-y Jung S, 2020, J INFORMETR, V14, DOI 10.1016/j.joi.2020.101040 Kipf T. N., 2017, P INT C LEARN REPR, P1 Li SQ, 2019, 2019 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING AND THE 9TH INTERNATIONAL JOINT CONFERENCE ON NATURAL LANGUAGE PROCESSING (EMNLP-IJCNLP 2019), P4914 Li XY, 2019, INFORM PROCESS MANAG, V56, P394, DOI 10.1016/j.ipm.2018.10.019 Li YH, 2019, PATTERN RECOGN LETT, V117, P111, DOI 10.1016/j.patrec.2018.11.008 Liang ZT, 2021, INFORM PROCESS MANAG, V58, DOI 10.1016/j.ipm.2021.102611 Liao WX, 2021, COMPUT ELECTR ENG, V92, DOI 10.1016/j.compeleceng.2021.107096 Lin X, 2021, IEEE T EMERG TOP COM, V9, P1373, DOI 10.1109/TETC.2020.2971831 Liu HL, 2020, SCIENTOMETRICS, V125, P2043, DOI 10.1007/s11192-020-03700-5 Liu YQ, 2020, EXPERT SYST APPL, V143, DOI 10.1016/j.eswa.2019.113082 Liu YQ, 2019, COMPUT ELECTRON AGR, V165, DOI 10.1016/j.compag.2019.104964 Lu W, 2021, INFORM PROCESS MANAG, V58, DOI 10.1016/j.ipm.2021.102594 Lu ZY, 2019, INFORM SCIENCES, V473, P166, DOI 10.1016/j.ins.2018.09.027 Prabhakaran V, 2016, PROCEEDINGS OF THE 54TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, VOL 1, P1170 Qian Y, 2020, J INFORMETR, V14, DOI 10.1016/j.joi.2020.101047 Qian Y, 2020, WORLD WIDE WEB, V23, P2281, DOI 10.1007/s11280-020-00796-w Qin Y, 2017, PROCEEDINGS OF THE TWENTY-SIXTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, P2627 Qin Y, 2021, IEEE T IND INFORM, V17, P6438, DOI 10.1109/TII.2020.2999442 Ruan XM, 2020, J INFORMETR, V14, DOI 10.1016/j.joi.2020.101039 Wang KH, 2021, SCIENTOMETRICS, V126, P6533, DOI 10.1007/s11192-021-04026-6 Wang XG, 2021, SCIENTOMETRICS, V126, P4991, DOI 10.1007/s11192-021-03963-6 Wang YB, 2017, ADV NEUR IN, V30 Wu ZH, 2021, IEEE T NEUR NET LEAR, V32, P4, DOI 10.1109/TNNLS.2020.2978386 Xie Z, 2020, J INFORMETR, V14, DOI 10.1016/j.joi.2020.101036 Xu Da, 2020, P 8 INT C LEARN REPR Xu HY, 2020, J INFORMETR, V14, DOI 10.1016/j.joi.2020.101014 Xu J, 2018, SCIENTOMETRICS, V117, P973, DOI 10.1007/s11192-018-2897-1 Xu S, 2019, J INFORMETR, V13, DOI 10.1016/j.joi.2019.100983 Yan R, 2011, P 20 ACM INT C INF K, P1247, DOI DOI 10.1145/2063576.2063757 Yang X, 2022, INFORM SCIENCES, V585, P41, DOI 10.1016/j.ins.2021.11.035 Yu J., 2018, P CHIN C KNOWL GRAPH, P116, DOI DOI 10.1007/978-981-13-3146-6_102-S2.0-85058521618 Yuan XF, 2021, IEEE T IND ELECTRON, V68, P4404, DOI 10.1109/TIE.2020.2984443 Zhang F, 2020, J INFORMETR, V14, DOI 10.1016/j.joi.2020.101035 Zhang FL, 2017, SCIENTOMETRICS, V113, P1155, DOI 10.1007/s11192-017-2510-z Zhang Q, 2021, INFORM SCIENCES, V553, P305, DOI 10.1016/j.ins.2020.10.023 Zhu XD, 2015, J ASSOC INF SCI TECH, V66, P408, DOI 10.1002/asi.23179 NR 57 TC 15 Z9 16 U1 6 U2 104 PU WILEY-HINDAWI PI LONDON PA ADAM HOUSE, 3RD FL, 1 FITZROY SQ, LONDON, WIT 5HE, ENGLAND SN 0884-8173 EI 1098-111X J9 INT J INTELL SYST JI Int. J. Intell. Syst. PD SEP PY 2022 VL 37 IS 9 BP 6331 EP 6353 DI 10.1002/int.22846 EA FEB 2022 PG 23 WC Computer Science, Artificial Intelligence WE Science Citation Index Expanded (SCI-EXPANDED) SC Computer Science GA 3K1XR UT WOS:000752787800001 OA gold DA 2024-09-05 ER PT J AU Alshdadi, AA Usman, M Alassafi, MO Afzal, MT AlGhamdi, R AF Alshdadi, Abdulrahman A. Usman, Muhammad Alassafi, Madini O. Afzal, Muhammad Tanvir AlGhamdi, Rayed TI Formulation of rules for the scientific community using deep learning SO SCIENTOMETRICS LA English DT Article DE Scientific quantitative rules; Rule mining; Citations; Publications; h-index; g-index; Variants of h-index; ASCE; CSCE; ACI; ICE; AMS; LMS; IMU; ANS; CNS; FENS; IBRO; SFN ID H-INDEX; GOOGLE-SCHOLAR; VARIANTS AB In a deluge of scientific literature, it is important to build scientific quantitative rules (SQR) that can be applied to researchers' quantitative data in order to produce a uniform format for making decisions regarding the nomination of outstanding researchers. Google Scholar and other search engines track scholars' papers, citations, etc. However, the scientific community hasn't agreed on standards a researcher must meet to be regarded as important. In this paper, we suggest rules for the scientific community based on the top five quantitative scientific parameters. The significance of the parameters is measured based on two factors: (i) parameters' impact on the model's performance while classifying awardees and non-awardees, and (ii) the number of award-winning researchers elevated in the ranking of researchers through each respective parameter. The experimental dataset includes information from researchers in the civil engineering, mathematics, and neuroscience domains. There are 250 awardees and 250 non-awardees from each field. The SQR for each discipline has attained an accuracy of 70% or more for their respective award-winning researchers. In addition to this, the top ranked parameters from each discipline have elevated more than 50% of the award-winning researchers into their respective ranked lists of the top 100 researchers. These findings can guide individual researchers to be on the list of prestigious scientists, and scientific societies can use the SQR to filter the list of researchers for subjective evaluation in order to reward prolific researchers in the domain. C1 [Alshdadi, Abdulrahman A.] Univ Jeddah, Jeddah, Saudi Arabia. [Alassafi, Madini O.; AlGhamdi, Rayed] King Abdulaziz Univ, Fac Comp & Informat Technol, Jeddah, Saudi Arabia. [Usman, Muhammad; Afzal, Muhammad Tanvir] Shifa Tameer e Millat Univ, Islamabad, Pakistan. C3 University of Jeddah; King Abdulaziz University RP Usman, M (corresponding author), Shifa Tameer e Millat Univ, Islamabad, Pakistan. EM alshdadi@uj.edu.sa; usman.alot761@gmail.com; malasafi@kau.edu.sa; director.ssc@stmu.edu.pk; raalghamdi8@kau.edu.sa RI Alshdadi, Abdulrahman A./KXQ-6244-2024; Alassafi, Madini O./AGY-4104-2022; Afzal, Muhammad/D-3741-2019; AlGhamdi, Rayed/H-8753-2012 OI Alshdadi, Abdulrahman A./0000-0002-9815-0319; Alassafi, Madini O./0000-0001-9919-8368; Afzal, Muhammad/0000-0002-7851-2327; Usman, Muhammad/0000-0002-6154-6256; Afzal, Muhammad Tanvir/0000-0002-9765-8815 FU Institutional Fund Project [812-611-1442]; Ministry of Education; King Abdulaziz University, DSR, Jeddah, Saudi Arabia FX This research work was funded by the Institutional Fund Project under grant no. (IFPIP; 812-611-1442). Therefore, the authors gratefully acknowledge technical and financial support from the Ministry of Education and King Abdulaziz University, DSR, Jeddah, Saudi Arabia. Moreover, there is no conflict of interest between the authors and the funding department. CR Alonso S, 2010, SCIENTOMETRICS, V82, P391, DOI 10.1007/s11192-009-0047-5 Alonso S, 2009, J INFORMETR, V3, P273, DOI 10.1016/j.joi.2009.04.001 Ameer M, 2019, SCIENTOMETRICS, V121, P653, DOI 10.1007/s11192-019-03209-6 [Anonymous], 2009, P INT STUD SCI C Ayaz S, 2016, SCIENTOMETRICS, V109, P1511, DOI 10.1007/s11192-016-2122-z BABOR TF, 2004, PUBLISHING ADDICTION Brigato L, 2021, INT C PATT RECOG, P2490, DOI 10.1109/ICPR48806.2021.9412492 Burrell QL, 2007, SCIENTOMETRICS, V73, P19, DOI 10.1007/s11192-006-1774-5 Cabrerizo FJ, 2010, J INFORMETR, V4, P23, DOI 10.1016/j.joi.2009.06.005 Crowder R, 2002, LECT NOTES ARTIF INT, V2569, P179 Egghe L, 2006, SCIENTOMETRICS, V69, P131, DOI 10.1007/s11192-006-0144-7 Falagas ME, 2008, FASEB J, V22, P338, DOI 10.1096/fj.07-9492LSF Harzing AW, 2014, SCIENTOMETRICS, V99, P811, DOI 10.1007/s11192-013-1208-0 Hirsch JE, 2005, P NATL ACAD SCI USA, V102, P16569, DOI 10.1073/pnas.0507655102 Jin B., 2006, SCI FOCUS, V1, P8, DOI 10.1209/0295-5075/78/30002 Jin BH, 2007, CHINESE SCI BULL, V52, P855, DOI 10.1007/s11434-007-0145-9 Kaushik R., 2013, INT J RES MED SCI, V1, P1, DOI [10.5455/2320-6012.ijrms20130201, DOI 10.5455/2320-6012.IJRMS20130201] Liang RH, 2016, AAAI CONF ARTIF INTE, P20 Moed HF, 2016, J INFORMETR, V10, P533, DOI 10.1016/j.joi.2016.04.017 Prakash J, 2020, MEASUREMENT, V151, DOI 10.1016/j.measurement.2019.107225 Prathap G, 2010, SCIENTOMETRICS, V84, P167, DOI 10.1007/s11192-009-0068-0 Qurat-ul Ain, 2019, SCIENTOMETRICS, V119, P187, DOI 10.1007/s11192-019-03009-y Raheel M, 2018, SCIENTOMETRICS, V114, P1107, DOI 10.1007/s11192-017-2633-2 Sidiropoulos A, 2007, SCIENTOMETRICS, V72, P253, DOI 10.1007/s11192-007-1722-z Sinatra R, 2016, SCIENCE, V354, DOI 10.1126/science.aaf5239 Tol RSJ, 2009, SCIENTOMETRICS, V80, P317, DOI 10.1007/s11192-008-2079-7 Urbanowicz RJ, 2018, J BIOMED INFORM, V85, P189, DOI 10.1016/j.jbi.2018.07.014 Usman M, 2021, SCIENTOMETRICS, V126, P335, DOI 10.1007/s11192-020-03769-y Velmurugan C., 2016, INT J MULTIDISCIPLIN, V49, P1 Wang Z, 2016, INT GEOSCI REMOTE SE, P755, DOI 10.1109/IGARSS.2016.7729190 Wohlin C, 2009, SCIENTOMETRICS, V81, P521, DOI 10.1007/s11192-008-2155-z Ye FY, 2010, SCIENTOMETRICS, V84, P431, DOI 10.1007/s11192-009-0099-6 Zhang C, 2009, PLOS ONE, V4, DOI [10.1371/journal.pone.0004881, 10.1371/journal.pone.0005429] NR 33 TC 9 Z9 9 U1 6 U2 25 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0138-9130 EI 1588-2861 J9 SCIENTOMETRICS JI Scientometrics PD MAR PY 2023 VL 128 IS 3 BP 1825 EP 1852 DI 10.1007/s11192-023-04633-5 EA JAN 2023 PG 28 WC Computer Science, Interdisciplinary Applications; Information Science & Library Science WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Computer Science; Information Science & Library Science GA 9M3IZ UT WOS:000922480200001 DA 2024-09-05 ER PT C AU Cheng, X Zhao, YF AF Cheng, Xin Zhao, YiFan GP IEEE TI Analysis of Scholars' influence evaluation Based on Data collection and integration in the Context of Big Data - Taking the Hospital Scientific Research Output Database as an Example SO 2021 3RD INTERNATIONAL CONFERENCE ON MACHINE LEARNING, BIG DATA AND BUSINESS INTELLIGENCE (MLBDBI 2021) LA English DT Proceedings Paper CT 3rd International Conference on Machine Learning, Big Data and Business Intelligence (MLBDBI) CY DEC 03-05, 2021 CL ELECTR NETWORK DE Academic influence of scholars; Medical field; Principal component analysis; First author; Big Data AB [Purpose/Significance] Evaluating the academic influence of scholars is an important basis for identifying excellent scholars and selecting talents. At present, there is no strict and unified standard for the evaluation index of scholars' academic influence. Using a single index or traditional indexes such as the number of documents has certain limitations and is not comprehensive enough. [Methods / Process] This paper constructs the evaluation index system of academic influence of scholars in the medical field from the perspective of multiple indicators. By dividing the number of scholars' papers into two data sources: the total number of published papers and the number of papers only containing scholars as the first author, the principal component analysis method is used to empirically study the data, obtain the evaluation index model and calculate the corresponding scholar ranking. [Results / Conclusion] It is found that the total number of scholars' papers is quite different from the ranking of only considering the first author, and whether it is the first author has a great impact on the influence evaluation. Therefore, whether it is the first author and the weight of the first author and non first author should be considered when evaluating the influence of scholars. C1 [Cheng, Xin; Zhao, YiFan] Shanxi Univ Finance & Econ, Sch Informat, Taiyuan, Peoples R China. C3 Shanxi University Finance & Economics RP Zhao, YF (corresponding author), Shanxi Univ Finance & Econ, Sch Informat, Taiyuan, Peoples R China. EM 347063513@qq.com RI Zhao, Yifan/AAN-7735-2021 OI Zhao, Yifan/0000-0001-6911-3183 CR Bornmann L, 2006, SCIENTOMETRICS, V68, P427, DOI 10.1007/s11192-006-0121-1 Cao Vi, 2011, INFORM RES, P56 Chen Zhengwei, 2013, COMPREHENSIVE EVALUA Du Jian, 2013, LIB INFORM WORK, V57, P135 Du Jian, 2014, AUTHORS DUAL MEASURE, V33, P388 Jing Jiang, 2011, RES COMPREHENSIVE EV Li Qinmin, 2019, Journal of the China Society for Scientific and Technical Information, V38, P709, DOI 10.3772/j.issn.1000-0135.2019.07.005 Liu Ping, 2017, INFORM THEORY PRACTI, V40 Lu Wanhui, 2020, INFORM WORK, P60 Ortega JL, 2015, J INFORMETR, V9, P39, DOI 10.1016/j.joi.2014.11.004 Qiu Junping, 2010, J CHONGQING U SOCIAL, P110 Shen Xiaoling, 2013, LIB INFORM WORK, V57, P95 Sotudeh H, 2015, SCIENTOMETRICS, V105, P2237, DOI 10.1007/s11192-015-1745-9 Van Guangcai, 2019, EDUC RES-UK, V06, P16 Wan Hao, 2017, LIB INFORM WORK, P134 [王菲菲 Wang Feifei], 2019, [科研管理, Science Research Management], V40, P178 Wu Shuai, 2018, INFORM THEORY PRACTI, V41, P41 Yang Ruixian, 2017, J INFORM, P106 Yu Liping, 2021, LIB J, V40, P93 NR 19 TC 0 Z9 0 U1 0 U2 18 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA BN 978-1-6654-1790-7 PY 2021 BP 402 EP 407 DI 10.1109/MLBDBI54094.2021.00082 PG 6 WC Computer Science, Artificial Intelligence; Computer Science, Information Systems; Computer Science, Theory & Methods WE Conference Proceedings Citation Index - Science (CPCI-S) SC Computer Science GA BT1XR UT WOS:000804043100075 DA 2024-09-05 ER PT C AU Li, L Fan, YX Lin, KY AF Li, Li Fan, Yuxi Lin, Kuo-Yi GP IEEE TI A Survey on federated learning SO 2020 IEEE 16TH INTERNATIONAL CONFERENCE ON CONTROL & AUTOMATION (ICCA) SE IEEE International Conference on Control and Automation ICCA LA English DT Proceedings Paper CT 16th IEEE International Conference on Control and Automation (ICCA) CY OCT 09-11, 2020 CL ELECTR NETWORK DE Federated learning; Literature survey; Citation analysis; Research front AB Federated learning (FL) is an emerging setting which implement machine learning in a distributed environment while protecting privacy. Research activities relating to FLhave grown at a fast rate recently in control. Exactly what activities have been carrying the research momentum forward is a question of interest to the research community. This study finds these research activities and optimization path of FL based on survey. Thus, this study aims to review related studies of FL to base on the baseline a universal definition gives a guiding for the future work. Besides, this study presents the prevailing FL applications and the evolution of federated learning. In the end, this study also identifies four research fronts to enrich the FL literature and help advance our understanding of the field. A comprehensive taxonomy of FL can also be developed through analyzing the results of this review. C1 [Li, Li; Fan, Yuxi; Lin, Kuo-Yi] Tongji Univ, Shanghai 201804, Peoples R China. C3 Tongji University RP Li, L (corresponding author), Tongji Univ, Shanghai 201804, Peoples R China. EM lili@tongji.edu.cn; 1830749@tongji.edu.cn; 19603@tongji.edu.cn RI Fan, Yuxi/ABG-6950-2021; yuan, lin/JDW-7387-2023; Lin, Kuo-Yi/HLH-8727-2023 FU National Key R&D Program of China [2018YFE0105000]; National Natural Science Foundation of China [51475334]; Shanghai Municipal Commission of science and technology [19511132100]; Fundamental Research Funds for the Central Universities of China [22120170077] FX Research supported by National Key R&D Program of China, No. 2018YFE0105000, the National Natural Science Foundation of China under Grant No. 51475334, the Shanghai Municipal Commission of science and technology No. 19511132100 and the Fundamental Research Funds for the Central Universities of China under Grant No. 22120170077. CR Aivodji Ulrich Matchi, 2019, 2019 IEEE Security and Privacy Workshops (SPW). Proceedings, P175, DOI 10.1109/SPW.2019.00041 [Anonymous], International Journal of Medical Informatics [Anonymous], IEEE TRUST BIG [Anonymous], IEEE T INF FOREN SEC Bagdasaryan E., 2018, ARXIV180700459CS Bonawitz K, 2017, CCS'17: PROCEEDINGS OF THE 2017 ACM SIGSAC CONFERENCE ON COMPUTER AND COMMUNICATIONS SECURITY, P1175, DOI 10.1145/3133956.3133982 Bos JW, 2014, J BIOMED INFORM, V50, P234, DOI 10.1016/j.jbi.2014.04.003 Brendan McMahan H., 2017, INT C ARTIF Chai Z, 2019, PROCEEDINGS OF THE 2019 USENIX CONFERENCE ON OPERATIONAL MACHINE LEARNING, P19 Chakraborty S, ANAL FEDERATED LEARN, P10 Chen M., 2019, ARXIV190310635 Chen MZ, 2020, IEEE T WIREL COMMUN, V19, P177, DOI 10.1109/TWC.2019.2942929 Chen Y., 2019, ARXIV190307424CSSTAT Chen Y., 2019, ARXIV191102134CS Du D., 2018, LECT NOTES COMPUT SC Gao D, HIERARCHICAL HETEROG Gascon A., 2017, P PRIV ENH TECHN 201, V2017, P345 Geyer R.C., 2017, ARXIV171207557, DOI DOI 10.1109/TCSS.2021.3074038 Han X, 2019, LECT NOTES COMPUT SC, V11663, P52, DOI 10.1007/978-3-030-27272-2_5 Hao M., 2019, ICC 20192019 IEEE international conference on communications (ICC), P1, DOI [10.1109/ICC.2019.8761267, DOI 10.1109/ICC.2019.8761267] Hardy S, 2017, Arxiv, DOI [arXiv:1711.10677, DOI 10.48550/ARXIV.1711.10677] Ho Qirong, 2013, Adv Neural Inf Process Syst, V2013, P1223 Hsu W., IEEE INFOCOM SER Hu BX, 2018, IEEE GLOB COMM CONF Huang L, 2019, J BIOMED INFORM, V99, DOI 10.1016/j.jbi.2019.103291 Ilias C, 2019, PROCEEDINGS OF THE 5TH INTERNATIONAL CONFERENCE ON INFORMATION SYSTEMS SECURITY AND PRIVACY (ICISSP), P544, DOI 10.5220/0007571705440551 Kairouz P., 2019, FOUND TRENDS MACH LE, DOI DOI 10.1561/2200000083 Kang JW, 2019, 2019 IEEE VTS ASIA PACIFIC WIRELESS COMMUNICATIONS SYMPOSIUM (APWCS 2019), DOI 10.1109/vts-apwcs.2019.8851649 Khan L. U, 2019, ARXIV191105642CS Kim YJ, 2019, ASIA-PAC NETW OPER M, DOI 10.23919/apnoms.2019.8893114 Li HY, 2019, IEEE DATA COMPR CONF, P589, DOI 10.1109/DCC.2019.00101 Li S., 2019, ARXIV191009933CSSTAT Li T., 2019, ARXIV181206127CSSTAT Liu DB, 2019, SIGBIOMED WORKSHOP ON BIOMEDICAL NATURAL LANGUAGE PROCESSING (BIONLP 2019), P283, DOI 10.18653/v1/W19-5030 Liu Y., 2018, IEEE INTELL SYST, DOI DOI 10.1109/MIS.2020.2988525 Lu YL, 2020, IEEE T IND INFORM, V16, P2134, DOI 10.1109/TII.2019.2942179 Lupu EC, 2019, ARXIV190905125CSSTAT Ma C, 2019, ARXIV190906512CS Majeed U., 2019, ASIA-PAC NETW OPER M, P1, DOI DOI 10.23919/APNOMS.2019.8892848 Nasr M, 2019, P IEEE S SECUR PRIV, P739, DOI 10.1109/SP.2019.00065 Nion D., INT CONF ACOUST SPEE, P2077 Nishio T, 2019, IEEE ICC Nock R, 2018, ARXIV180304035CS Qian YF, 2019, INFORM SCIENCES, V505, P562, DOI 10.1016/j.ins.2019.07.069 Qin X., 2019, IEEE INTELL SYST, DOI DOI 10.1109/MIS.2020.2988604 Ramaswamy Swaroop, 2019, ARXIV190604329 Saputra Y.M., 2019, ARXIV190900907CSEESS Sarikaya Y., 2019, ARXIV190803092CS Silva S, 2019, I S BIOMED IMAGING, P270, DOI [10.1109/isbi.2019.8759317, 10.1109/ISBI.2019.8759317] Smith V, 2017, ADV NEUR IN, V30 Truex S., 2019, P 12 ACM WORKSH ART, P1 Wang SQ, 2019, IEEE J SEL AREA COMM, V37, P1205, DOI 10.1109/JSAC.2019.2904348 Wang ZB, 2019, IEEE INFOCOM SER, P2512, DOI [10.1109/infocom.2019.8737416, 10.1109/INFOCOM.2019.8737416] Wu SH, 2019, PROCEEDINGS OF 2019 THE 3RD INTERNATIONAL CONFERENCE ON CRYPTOGRAPHY, SECURITY AND PRIVACY (ICCSP 2019) WITH WORKSHOP 2019 THE 4TH INTERNATIONAL CONFERENCE ON MULTIMEDIA AND IMAGE PROCESSING (ICMIP 2019), P13, DOI 10.1145/3309074.3309079 Wu W, 2019, ARXIV191001355CS Xu R., 2019, P 12 ACM WORKSHOP, P13 Yang Q, 2019, ACM T INTEL SYST TEC, V10, DOI 10.1145/3298981 Yao X, 2018, 2018 IEEE INTERNATIONAL CONFERENCE ON VISUAL COMMUNICATIONS AND IMAGE PROCESSING (IEEE VCIP) Yurochkin M, 2019, PR MACH LEARN RES, V97 Zhao Y., 2018, ARXIV180600582 Zhu HB, 2020, IEEE J BIOMED HEALTH, V24, P1652, DOI 10.1109/JBHI.2019.2947506 NR 61 TC 20 Z9 20 U1 5 U2 40 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA SN 1948-3449 BN 978-1-7281-9093-8 J9 IEEE INT CONF CON AU PY 2020 BP 791 EP 796 DI 10.1109/icca51439.2020.9264412 PG 6 WC Automation & Control Systems; Engineering, Electrical & Electronic; Operations Research & Management Science WE Conference Proceedings Citation Index - Science (CPCI-S) SC Automation & Control Systems; Engineering; Operations Research & Management Science GA BR3HM UT WOS:000646357300135 DA 2024-09-05 ER PT J AU Porwal, P Devare, MH AF Porwal, Priya Devare, Manoj H. TI Citation count prediction using weighted latent semantic analysis (wlsa) and three-layer-deep-learning paradigm: a meta-heuristic approach SO MULTIMEDIA TOOLS AND APPLICATIONS LA English DT Article DE Citation count prediction; Class distribution factor-based Term Frequency-Inverse Document Frequency (CDF-TFIDF); Weighted Latent Semantic Analysis (WLSA); Red fox optimization (RFO); Convolutional Neural Network (CNN) ID IMPACT; PUBLICATION AB Citation count prediction is a subfield of bibliometrics, which involves using mathematical and statistical models to predict the quantity of citations that a scholarly research paper will accept in the future. This study suggests a novel approach for forecasting the number of citations academic papers will receive in future. The proposed model includes four major phases: "(a) pre-processing, (b) feature extraction, (c) feature selection, (d) Three-Layer-Deep-Learning-based-citation-count-prediction". In this paper, the Raw data collected is pre-processed via stop word removal, stemming, lemmatization, tokenization. As a resultant, the tokens are acquired. The features are extracted from the tokens. The features like bag-of-words, Part-of-Speech (POS) Tagger, Pointwise Mutual Information (PMI), Class distribution factor-based Term Frequency-Inverse Document Frequency (CDF-TFIDF), Doc2vec (document to vector) and Weighted Latent Semantic Analysis (WLSA). Subsequently, from the extracted features, the optimal features are selected using the new hybrid optimization model. The proposed hybrid optimization model- Polar Red Fox Optimization (PRFO), is the agglomeration of concepts of the standard "Polar Bear Optimization (PBO)" and "Red the fox optimization (RFO)," respectively. The citation counts are predicted using the new three-layer-deep-learning paradigm that includes the "Long Short-Term Memory (LSTM), Recurrent Neural Net Language Model (RNNL), and Convolutional Neural Network (CNN)," respectively. The input to LSTM and RNNL is the selected optimal features. The outcome from LSTM and RNNL is fed as input to the CNN. The outcome is acquired from CNN. Finally, the proposed prototypical is validated over current models, to manifest its efficiency in accurate citation count prediction. C1 [Porwal, Priya] Amity Univ, Comp Engn Dept, Mumbai, India. [Devare, Manoj H.] Amity Univ, Prof & Head Inst, Amity Inst Informat Technol, Mumbai, India. RP Porwal, P (corresponding author), Amity Univ, Comp Engn Dept, Mumbai, India. EM priya.porwal20@gmail.com; mhdevare@mum.amity.edu RI Devare, Manoj/H-2442-2016 OI Devare, Manoj/0000-0002-9530-3914 CR Abramo G, 2019, J INFORMETR, V13, P32, DOI 10.1016/j.joi.2018.11.003 Abrams DS., 2013, PATENT VALUE CITATIO, DOI [10.3386/w19647, DOI 10.3386/W19647] Abrishami A, 2019, J INFORMETR, V13, P485, DOI 10.1016/j.joi.2019.02.011 Akella AP, 2021, J INFORMETR, V15, DOI 10.1016/j.joi.2020.101128 Aljuaid H, 2021, TELEMAT INFORM, V56, DOI 10.1016/j.tele.2020.101492 Bai XM, 2019, J INFORMETR, V13, P407, DOI 10.1016/j.joi.2019.01.010 Berahmand K, 2021, COMPUTING, V103, P2227, DOI 10.1007/s00607-021-00982-2 Bornmann L, 2007, J AM SOC INF SCI TEC, V58, P1100, DOI 10.1002/asi.20531 Choudhury N, 2020, J INFORMETR, V14, DOI 10.1016/j.joi.2020.101057 Dey AK, 2019, P NATL ACAD SCI USA, V116, P19368, DOI 10.1073/pnas.1819529116 Dhanith PRJ, 2021, INT J INTERACT MULTI, V6, P122, DOI 10.9781/ijimai.2020.09.003 Dion ML, 2018, POLIT ANAL, V26, P312, DOI 10.1017/pan.2018.12 Färber M, 2020, INT J DIGIT LIBRARIE, V21, P375, DOI 10.1007/s00799-020-00288-2 Gunti P., 2022, Data mining approaches for big data and sentiment analysis in social media, P116 Gusenbauer M, 2020, RES SYNTH METHODS, V11, P181, DOI 10.1002/jrsm.1378 Gusenbauer M, 2019, SCIENTOMETRICS, V118, P177, DOI 10.1007/s11192-018-2958-5 Hassan SU, 2018, SCIENTOMETRICS, V117, P1645, DOI 10.1007/s11192-018-2944-y Kim M, 2018, APPL SOFT COMPUT, V66, P506, DOI 10.1016/j.asoc.2017.09.028 Konda A, 2020, ACS NANO, V14, P6339, DOI 10.1021/acsnano.0c03252 Kuhn J, 2020, RAND J ECON, V51, P109, DOI 10.1111/1756-2171.12307 Kumar S, 2014, SCIENTOMETRICS, V98, P387, DOI 10.1007/s11192-013-1059-8 Masrour F, 2020, AAAI CONF ARTIF INTE, V34, P841 Newman MEJ, 2014, EPL-EUROPHYS LETT, V105, DOI 10.1209/0295-5075/105/28002 Ozcan A, 2019, INT J INF TECH DECIS, V18, P241, DOI 10.1142/S0219622018500530 Porwal P., 2021, CITATION CLASSIFICAT, P540 Qurat-ul Ain, 2019, SCIENTOMETRICS, V119, P187, DOI 10.1007/s11192-019-03009-y Razzaq S, 2022, INT J INTERACT MULTI, V7, P103, DOI 10.9781/ijimai.2022.03.001 Stegehuis C, 2015, J INFORMETR, V9, P642, DOI 10.1016/j.joi.2015.06.005 Tope Megha, 2019, International Journal of Scientific Development and Research, V4, P1 van Dongen T, 2020, ARXIV Yu T, 2014, SCIENTOMETRICS, V101, P1233, DOI 10.1007/s11192-014-1279-6 Zhang Q, 2023, PATTERN RECOGN LETT, V168, P31, DOI 10.1016/j.patrec.2023.02.026 NR 32 TC 0 Z9 0 U1 5 U2 11 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 1380-7501 EI 1573-7721 J9 MULTIMED TOOLS APPL JI Multimed. Tools Appl. PD MAR PY 2024 VL 83 IS 11 BP 32245 EP 32276 AR s11042-023-16957-8 DI 10.1007/s11042-023-16957-8 EA SEP 2023 PG 32 WC Computer Science, Information Systems; Computer Science, Software Engineering; Computer Science, Theory & Methods; Engineering, Electrical & Electronic WE Science Citation Index Expanded (SCI-EXPANDED) SC Computer Science; Engineering GA KF5H9 UT WOS:001070386400005 DA 2024-09-05 ER PT J AU Wang, ZW Jia, YH Fu, PH Li, HY Song, L Yang, BQ Zhang, LJ Yuan, L Shi, K AF Wang, Zhiwei Jia, Yanhao Fu, Penghao Li, Haiyin Song, Li Yang, Bingqing Zhang, Lijun Yuan, Liang Shi, Kan TI Research on the online evaluation of the straightness error of hydrostatic guideways based on deep learning SO INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY LA English DT Article DE Recess pressure; Hydrostatic guideway; Online evaluation; Straightness error; Deep learning ID MOTION ERRORS; RAILS AB Currently, the measurement of guide rail straightness error is basically a direct measurement, which cannot meet the requirements of online straightness error measurement in the machining process of the machine tool. Therefore, this paper proposes a straightness error evaluation model based on the recess pressure, which can realize the online measurement of the straightness error of hydrostatic guideways. To address the nonlinear relationship between the recess pressure and the linear deviation data of the guideway in an experiment, based on deep learning, the hydrostatic guideway straightness error was evaluated. First, the experimental data are analyzed and processed by feature, and a sliding window is processed using the data time sequence. Second, a long short-term memory network model is constructed based on an attention mechanism, the model parameters are obtained through orthogonal experiments, and the theoretical straightness error of the hydrostatic guideway is obtained via training. Finally, the theoretical values and experimental values of straightness error are compared and evaluated with the multilayer perceptron and recurrent neural network models. The results show that the model can effectively evaluate the straightness error of hydrostatic guideways. C1 [Wang, Zhiwei; Jia, Yanhao; Fu, Penghao; Li, Haiyin; Song, Li; Yang, Bingqing; Yuan, Liang; Shi, Kan] Shandong Univ Sci & Technol, Coll Mech & Elect Engn, 579 Qianwangang Rd, Qingdao 266590, Peoples R China. [Wang, Zhiwei] Xi An Jiao Tong Univ, State Key Lab Mfg Syst Engn, 28 Xianning West Rd, Xian 710049, Peoples R China. [Zhang, Lijun] China Univ Petr, Coll Mech & Elect Engn, 66 Yangtze West Rd, Qingdao 266580, Peoples R China. C3 Shandong University of Science & Technology; Xi'an Jiaotong University; China University of Petroleum RP Shi, K (corresponding author), Shandong Univ Sci & Technol, Coll Mech & Elect Engn, 579 Qianwangang Rd, Qingdao 266590, Peoples R China. EM kan.shi@hotmail.com FU National Natural Science Foundation of China [52275497]; Natural Foundation of Shandong Province [ZR2020ME141] FX This work was supported by the National Natural Science Foundation of China (52275497) and Natural Foundation of Shandong Province (ZR2020ME141). CR Dong H., 2022, J ELECT TECHNOL, V37, P5598 English D, 1999, ISO 230 1 1996 Fan JW, 2018, INT J ADV MANUF TECH, V98, P1131, DOI 10.1007/s00170-018-2335-9 Fu XY, 2023, J MANUF SCI E-T ASME, V145, DOI 10.1115/1.4055897 Gao WG, 2020, INT J ADV MANUF TECH, V106, P4731, DOI 10.1007/s00170-020-04965-z He GY, 2017, INT J ADV MANUF TECH, V93, P1915, DOI 10.1007/s00170-017-0635-0 Hwang J, 2007, INT J MACH TOOL MANU, V47, P1053, DOI 10.1016/j.ijmachtools.2006.10.003 Jia L., 2008, J MECH ENG SCI, V09, P141, DOI [10.3901/JME.2008.09.141, DOI 10.3901/JME.2008.09.141] Jiang B, 2022, BUILD ENVIRON, V224, DOI 10.1016/j.buildenv.2022.109536 Jin M., 2015, MECH DES MANUF, V07, P142 Karim F, 2018, IEEE ACCESS, V6, P1662, DOI 10.1109/ACCESS.2017.2779939 Kniel K, 2020, MEASUREMENT, V153, DOI 10.1016/j.measurement.2019.107366 Kono D., 2017, INT J AUTOM TECHNOL, V11, P188, DOI [10.20965/ijat.2017.p0188, DOI 10.20965/IJAT.2017.P0188] Lin J., 2019, STUDY MEASURING STRA Linares JM, 2014, PRECIS ENG, V38, P578, DOI 10.1016/j.precisioneng.2014.02.008 Liu HW, 2018, INT J ADV MANUF TECH, V98, P2769, DOI 10.1007/s00170-018-2471-2 Park CH., 2003, INT J PRECIS ENG MAN, V4, P64 Park CH., 2003, INT J PRECIS ENG MAN, V4, P27 [施晨淳 Shi Chenchun], 2020, [机械工程学报, Journal of Mechanical Engineering], V56, P157 Su H., 2003, J MECH ENG SCI, V03, P8, DOI [10.3901/JME.2003.03.008, DOI 10.3901/JME.2003.03.008] Tang H, 2017, INT J MACH TOOL MANU, V120, P12, DOI 10.1016/j.ijmachtools.2017.04.010 Wang Y., 2020, RES MOTION STRAIGHTN Wang YP, 2021, SHOCK VIB, V2021, DOI 10.1155/2021/6615920 Wang ZW, 2013, INT J MACH TOOL MANU, V64, P78, DOI 10.1016/j.ijmachtools.2012.07.011 Xiang S, 2020, ISA T, V106, P343, DOI 10.1016/j.isatra.2020.06.023 Yang P., 2022, J INSTRUM, V43, P70 Yin X., 2022, MOD MACH, V06, P52 Zha J, 2017, INT J MACH TOOL MANU, V112, P1, DOI 10.1016/j.ijmachtools.2016.10.002 Zhang PH, 2018, INT J MACH TOOL MANU, V125, P55, DOI 10.1016/j.ijmachtools.2017.10.006 Zhao L, 2019, CHIN J MECH ENG-EN, V32, DOI 10.1186/s10033-019-0338-6 NR 30 TC 0 Z9 0 U1 2 U2 2 PU SPRINGER LONDON LTD PI LONDON PA 236 GRAYS INN RD, 6TH FLOOR, LONDON WC1X 8HL, ENGLAND SN 0268-3768 EI 1433-3015 J9 INT J ADV MANUF TECH JI Int. J. Adv. Manuf. Technol. PD SEP PY 2024 VL 134 IS 3-4 BP 2023 EP 2034 DI 10.1007/s00170-024-14052-2 EA AUG 2024 PG 12 WC Automation & Control Systems; Engineering, Manufacturing WE Science Citation Index Expanded (SCI-EXPANDED) SC Automation & Control Systems; Engineering GA D7X5A UT WOS:001290981800004 DA 2024-09-05 ER PT J AU Hilmi, MF Mustapha, Y AF Hilmi, Mohd Faiz Mustapha, Yanti TI A BIBLIOMETRIC AND TOPIC MODELING OVERVIEW OF KAJIAN MALAYSIA BETWEEN 2011 AND 2020: A RESEARCH NOTE SO KAJIAN MALAYSIA LA English DT Article DE Kajian Malaysia; bibliometric analysis; topic modeling; latent dirichlet allocation; social science; humanities; Malaysia ID CORPORATE SOCIAL-RESPONSIBILITY; COMMUNITY; PROSPECTS; EDUCATION; SOCIETY AB Kajian Malaysia, published by Penerbit Universiti Sains Malaysia, is an interdisciplinary journal which provides a forum for a broad range of social sciences and humanities research. This research note presents a bibliometric review of the articles published in the journal Kajian Malaysia between 2011 and 2020. The purpose of this research note is to evaluate publication patterns and the topic model of articles published in Kajian Malaysia. The bibliographical material applied in this study was retrieved from the Scopus database. This study bibliometrically examines 192 documents published in Kajian Malaysia from 2011 to 2020 to rank the most productive countries, institutions, authors, keywords, influential articles and the topic model. This research note assists researchers with an understanding of the development of Kajian Malaysia, provides an important reference for Kajian Malaysia's future trajectory as well as provides an effective method of analysis for the future evaluation of journals. C1 [Hilmi, Mohd Faiz] Univ Sains Malaysia, Sch Distance Educ, George Town, Malaysia. [Mustapha, Yanti] Univ Teknol MARA, Fac Business & Management, Kedah, Malaysia. C3 Universiti Sains Malaysia RP Hilmi, MF (corresponding author), Univ Sains Malaysia, Sch Distance Educ, George Town, Malaysia. EM faiz@usm.my RI Hilmi, Mohd Faiz/GVL-9141-2022; Mustapha, Yanti Aspha Ameira/HJH-8582-2023; Hilmi, Mohd Faiz/B-9197-2009 OI Hilmi, Mohd Faiz/0000-0003-4548-0565; Mustapha, Yanti Aspha Ameira/0000-0002-1871-9457 CR Abd Rahim RA, 2011, KAJI MALAYS, V29, P91 Amran A, 2013, KAJI MALAYS, V31, P57 Austin OC, 2012, KAJI MALAYS, V30, P21 Embong AR, 2015, KAJI MALAYS, V33, P117 Embong Abdul Rahman, 2013, KAJI MALAYS, V31, P97 Farouk AFA, 2011, KAJI MALAYS, V29, P91 Foong L, 2018, KAJI MALAYS, V36, P127, DOI 10.21315/km2018.36.1.6 Ghazali MF, 2015, KAJI MALAYS, V33, P69 Halim SA, 2011, KAJI MALAYS, V29, P125 Hamid Ahmad Fauzi Abdul, 2019, 10 GLOBAL C BUSINESS Harzing A.W., 2007, Publish or perish Hilmi Mohd Faiz, 2020, 2020 Sixth International Conference on e-Learning (econf), P243, DOI 10.1109/econf51404.2020.9385513 Hilmi Mohd Faiz, 2020, 2020 International Conference on Decision Aid Sciences and Application (DASA), P882, DOI 10.1109/DASA51403.2020.9317278 Holden P, 2012, KAJI MALAYS, V30, P47 Ibrahim Zawawi, 1983, KAJI MALAYS, V1, P1 Idrus R, 2011, KAJI MALAYS, V29, P53 Kajian Malaysia, 2022, KAJIAN MALAYSIA J MA Khoo SL, 2013, KAJI MALAYS, V31, P37 Leng KY, 2014, KAJI MALAYS, V32, P89 Liu OP, 2017, KAJI MALAYS, V35, P59, DOI 10.21315/km2017.35.Supp.1.4 Ming BH, 2015, KAJI MALAYS, V33, P173 Mustapha M, 2015, KAJI MALAYS, V33, P155 Mustapha Yanti, 2020, FBM INSIGHTS, V1, P82 Narayanan SS, 2016, KAJI MALAYS, V34, P1, DOI 10.21315/km2016.34.2.1 Raman M, 2012, KAJI MALAYS, V30, P71 Sani MAM, 2014, KAJI MALAYS, V32, P123 Scopus, 2021, SOURCE DETAILS Singh R, 2022, J QUAL ASSUR HOSP TO, V23, P482, DOI 10.1080/1528008X.2021.1884931 Tuck-Po L, 2011, KAJI MALAYS, V29, P23 Yahya Z, 2017, KAJI MALAYS, V35, P39, DOI 10.21315/km2017.35.2.3 Yean TF, 2015, KAJI MALAYS, V33, P141 NR 31 TC 0 Z9 0 U1 0 U2 2 PU PENERBIT UNIV SAINS MALAYSIA PI PULAU PINANG PA PENERBIT UNIVERSITI SAINS MALAYSIA, PULAU PINANG, PINANG 11800, MALAYSIA SN 2180-4273 J9 KAJI MALAYS JI Kaji. Malays. PY 2022 VL 40 IS 2 BP 255 EP 268 DI 10.21315/km2022.40.2.11 PG 14 WC Area Studies WE Emerging Sources Citation Index (ESCI) SC Area Studies GA 5Z6US UT WOS:000880106600011 OA gold DA 2024-09-05 ER PT J AU Liu, R Liu, Q Shi, JW Yu, WY Gong, X Chen, N Yang, Y Huang, JL Wang, ZX AF Liu, Rui Liu, Qian Shi, Jianwei Yu, Wenya Gong, Xin Chen, Ning Yang, Yan Huang, Jiaoling Wang, Zhaoxin TI Application of a feature extraction and normalization method to improve research evaluation across clinical disciplines SO ANNALS OF TRANSLATIONAL MEDICINE LA English DT Article DE Research evaluation; clinical discipline; feature extraction; normalization AB Background: To deal with the large disparity across disciplines using impact factor, which is widely used in hospitals and has recently come under attack for distorting good scientific practices, we propose a set of systematic methods to improve the equality of research evaluations of various clinical disciplines. Methods: We used bibliometric information on 18 clinical disciplines from 2016 to 2018. We first sought to clarify disciplinary characteristics with the aim of identifying the characteristic fields for each clinical discipline, and we constructed a keyword database. To minimize the disparity across various clinical disciplines, we used normalized evaluation, referring to the calculation of the normalized coefficient of a specific discipline, to enable a relatively clear evaluation across different disciplines. Results: Feature extraction was performed, and over 700,000 journals were retrieved each year. Using this information, the journal correlation coefficient was calculated. From 2016 to 2018, oncology had the largest normalized coefficient (0.133, 0.136, 0.146 respectively), which reflects the highest correlation between the characteristic journals of the discipline. The findings showed a clear distinction in journal coverage and journal correlations for different disciplines. Conclusions: The new evaluation indicator and normalized process measure different features of disciplines, providing a basis for the further balancing of evaluations, and considering differences across disciplines. C1 [Liu, Rui] Tongji Univ, Shanghai Peoples Hosp 10, Shanghai, Peoples R China. [Liu, Qian; Yang, Yan] Tongji Univ, Sch Econ & Management, Shanghai, Peoples R China. [Shi, Jianwei; Yu, Wenya; Huang, Jiaoling; Wang, Zhaoxin] Shanghai Jiao Tong Univ, Sch Publ Hlth, Sch Med, South Chongqing Rd 227, Shanghai 200025, Peoples R China. [Gong, Xin] Tongji Univ, Sch Med, Shanghai East Hosp, Shanghai, Peoples R China. [Chen, Ning] Tongji Univ, Sch Med, Shanghai, Peoples R China. [Wang, Zhaoxin] Southern Med Univ, Nanhai Hosp, Gen Practice Ctr, Foshan, Peoples R China. C3 Tongji University; Tongji University; Shanghai Jiao Tong University; Tongji University; Tongji University; Southern Medical University - China RP Huang, JL; Wang, ZX (corresponding author), Shanghai Jiao Tong Univ, Sch Publ Hlth, Sch Med, South Chongqing Rd 227, Shanghai 200025, Peoples R China. EM jiaoling_huang@sina.com; supercell002@sina.com RI zhang, min/IYI-9869-2023; Wang, Ling/AGR-4917-2022; Liu, qianhong/HDO-6033-2022; Huang, Joy/HJP-2358-2023 OI Wang, Ling/0000-0003-0272-2974; Huang, Jiaoling/0000-0003-1975-3937 CR Althouse BM, 2009, J AM SOC INF SCI TEC, V60, P27, DOI 10.1002/asi.20936 Bordons M, 1997, SCIENTOMETRICS, V40, P423, DOI 10.1007/BF02459290 Budd JM, 2018, COLL RES LIBR, V79, P853 Comins JA, 2015, SCIENTOMETRICS, V104, P575, DOI 10.1007/s11192-015-1598-2 Costas R, 2011, SCIENTOMETRICS, V89, P177, DOI 10.1007/s11192-011-0436-4 Ding Y, 2014, J ASSOC INF SCI TECH, V65, P1820, DOI 10.1002/asi.23256 Fraley RC, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0109019 Frandsen TF, 2008, J AM SOC INF SCI TEC, V59, P1570, DOI 10.1002/asi.20817 Garfield E, 2006, JAMA-J AM MED ASSOC, V295, P90, DOI 10.1001/jama.295.1.90 Hoeffel C, 1998, ALLERGY, V53, P1225, DOI 10.1111/j.1398-9995.1998.tb03848.x Leydesdorff L, 2019, J INFORMETR, V13, P255, DOI 10.1016/j.joi.2018.12.006 Leydesdorff L, 2016, J ASSOC INF SCI TECH, V67, P707, DOI 10.1002/asi.23408 Leydesdorff L, 2012, SCIENTOMETRICS, V92, P355, DOI 10.1007/s11192-012-0660-6 Makrehchi M, 2008, LECT NOTES COMPUT SC, V4956, P222 Milojevic S, 2011, J AM SOC INF SCI TEC, V62, P1933, DOI 10.1002/asi.21602 Mishra Shubhanshu, 2016, Dlib Mag, V22, DOI 10.1045/september2016-mishra Rehn C., 2014, Bibliometric indicators - definitions and usage at Karolinska Institutet Solna Schmidt M, 2015, PRO INT CONF SCI INF, P365 van Leeuwen TN, 2012, RES EVALUAT, V21, P61, DOI 10.1093/reseval/rvr006 Wagner H, 2014, J SPORT SCI MED, V13, P808 Waltman L, 2012, J AM SOC INF SCI TEC, V63, P2378, DOI 10.1002/asi.22748 Waltman L, 2011, SCIENTOMETRICS, V87, P467, DOI 10.1007/s11192-011-0354-5 Waltman L, 2011, J INFORMETR, V5, P37, DOI 10.1016/j.joi.2010.08.001 Wang J, 2016, RES POLICY, V45, P68, DOI 10.1016/j.respol.2015.09.003 NR 24 TC 1 Z9 1 U1 1 U2 8 PU AME PUBLISHING COMPANY PI SHATIN PA FLAT-RM C 16F, KINGS WING PLAZA 1, NO 3 KWAN ST, SHATIN, HONG KONG 00000, PEOPLES R CHINA SN 2305-5839 EI 2305-5847 J9 ANN TRANSL MED JI ANN. TRANSL. MED. PD OCT PY 2021 VL 9 IS 20 AR 1580 DI 10.21037/atm-21-5046 PG 15 WC Oncology; Medicine, Research & Experimental WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Oncology; Research & Experimental Medicine GA WR8GG UT WOS:000714733000006 PM 34790786 OA Green Published, gold DA 2024-09-05 ER PT J AU Lu, W Huang, SZ Yang, JQ Bu, Y Cheng, QK Huang, Y AF Lu, Wei Huang, Shengzhi Yang, Jinqing Bu, Yi Cheng, Qikai Huang, Yong TI Detecting research topic trends by author-defined keyword frequency SO INFORMATION PROCESSING & MANAGEMENT LA English DT Article DE Scientometrics; Bibliometrics; Deep learning; Word frequency prediction ID WORD ANALYSIS; SCIENCE; TECHNOLOGY; EVOLUTION; NETWORKS; COCITATION; CITATIONS; KNOWLEDGE; SYSTEM; IMPACT AB Detecting research trends helps researchers and decision makers to promptly identify and analyze research topics. However, due to citation and publication delay, previous studies on trend analysis are more likely to identify ex-post trends. In this study, we employ author-defined keywords to represent topics and propose a simple, effective, and ex-ante approach, called authordefined keyword frequency prediction (AKFP), to detect research trends. More specifically, the proposed AKFP relies on the long short-term memory (LSTM) neural network. Four categories of features are proposed as input variables: Temporal feature, Persistence, Community size, and Community development potential. To verify the effectiveness and feasibility of the AKFP, we also proposed a simple but effective method to build a balanced and sufficient data set and conducted extensive comparative experiments, based on data extracted from the ACM Digital Library. Our empirical result confirms the feasibility of word frequency prediction by forecasting precision. Specifically, the short- and medium-term word frequency prediction achieved excellent performance, and the long-term word frequency prediction obtained acceptable prediction accuracy. In addition, we found that these proposed features have a significant but inconsistent impact on the AKFP. Specifically, the temporal feature is always an unignorable factor. The persistence has a strong correlation with the community size, and both are more important in the short- and medium-term prediction. In contrast, the community development potential is particularly significant in the long-term prediction. C1 [Lu, Wei; Huang, Shengzhi; Yang, Jinqing; Cheng, Qikai; Huang, Yong] Wuhan Univ, Sch Informat Management, Wuhan, Hubei, Peoples R China. [Lu, Wei; Huang, Shengzhi; Yang, Jinqing; Cheng, Qikai; Huang, Yong] Wuhan Univ, Informat Retrieval & Knowledge Min Lab, Wuhan, Hubei, Peoples R China. [Bu, Yi] Peking Univ, Dept Informat Management, Beijing, Peoples R China. C3 Wuhan University; Wuhan University; Peking University RP Huang, Y (corresponding author), Wuhan Univ, Sch Informat Management, Wuhan, Hubei, Peoples R China.; Huang, Y (corresponding author), Wuhan Univ, Informat Retrieval & Knowledge Min Lab, Wuhan, Hubei, Peoples R China. EM weilu@whu.edu.cn; ShengzhiHuang@whu.edu.cn; Jinq_yang@163.com; buyi@pku.edu.cn; chengqikai0806@163.com; yonghuang1991@whu.edu.cn OI Huang, Shengzhi/0000-0002-7035-4627 CR Abramo G, 2019, J INFORMETR, V13, P32, DOI 10.1016/j.joi.2018.11.003 Abrishami A, 2019, J INFORMETR, V13, P485, DOI 10.1016/j.joi.2019.02.011 Alkhodair SA, 2020, INFORM PROCESS MANAG, V57, DOI 10.1016/j.ipm.2019.02.016 An XY, 2011, SCIENTOMETRICS, V88, P133, DOI 10.1007/s11192-011-0374-1 Asghari M, 2020, INFORM PROCESS MANAG, V57, DOI 10.1016/j.ipm.2020.102340 Behrouzi S, 2020, J INFORMETR, V14, DOI 10.1016/j.joi.2020.101079 Bergstra J, 2012, J MACH LEARN RES, V13, P281 BRAAM RR, 1991, J AM SOC INFORM SCI, V42, P233, DOI 10.1002/(SICI)1097-4571(199105)42:4<233::AID-ASI1>3.0.CO;2-I Chakraborty T, 2014, ACM-IEEE J CONF DIG, P351, DOI 10.1109/JCDL.2014.6970190 Chang YW, 2015, SCIENTOMETRICS, V105, P2071, DOI 10.1007/s11192-015-1762-8 Chen P, 2010, J INFORMETR, V4, P278, DOI 10.1016/j.joi.2010.01.001 Cheng QK, 2020, SCIENTOMETRICS, V124, P1923, DOI 10.1007/s11192-020-03576-5 Choi J, 2014, TECHNOL FORECAST SOC, V83, P170, DOI 10.1016/j.techfore.2013.07.004 Choi J, 2011, INFORM MANAGE-AMSTER, V48, P371, DOI 10.1016/j.im.2011.09.004 Choudhury N, 2016, SCIENTOMETRICS, V108, P745, DOI 10.1007/s11192-016-2003-5 Dehdarirad T, 2014, SCIENTOMETRICS, V101, P273, DOI 10.1007/s11192-014-1327-2 Duvvuru A, 2013, PROCEDIA COMPUT SCI, V20, P439, DOI 10.1016/j.procs.2013.09.300 ELMAN JL, 1990, COGNITIVE SCI, V14, P179, DOI 10.1207/s15516709cog1402_1 Ernst H, 1997, SMALL BUS ECON, V9, P361, DOI 10.1023/A:1007921808138 Geng Q, 2018, LIB INFORM SERVICE, V62, P29 Glorot X., 2011, Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics, P315 Guo JF, 2020, INFORM PROCESS MANAG, V57, DOI 10.1016/j.ipm.2019.102067 Hochreiter S, 1997, NEURAL COMPUT, V9, P1735, DOI [10.1162/neco.1997.9.1.1, 10.1007/978-3-642-24797-2] HORNIK K, 1989, NEURAL NETWORKS, V2, P359, DOI 10.1016/0893-6080(89)90020-8 Hu JM, 2015, INFORM PROCESS MANAG, V51, P329, DOI 10.1016/j.ipm.2015.02.002 Hu YH, 2020, J INFORMETR, V14, DOI 10.1016/j.joi.2019.101004 Huang TY, 2019, PLOS ONE, V14, DOI 10.1371/journal.pone.0208370 Jia T, 2017, NAT HUM BEHAV, V1, DOI 10.1038/s41562-017-0078 Katsurai M, 2019, SCIENTOMETRICS, V121, P1583, DOI 10.1007/s11192-019-03241-6 Ketkar N., 2017, DEEP LEARNING PYTHON, V1 Khasseh AA, 2017, INFORM PROCESS MANAG, V53, P705, DOI 10.1016/j.ipm.2017.02.001 Lee C, 2018, TECHNOL FORECAST SOC, V127, P291, DOI 10.1016/j.techfore.2017.10.002 Li LL, 2009, SCIENTOMETRICS, V80, P39, DOI 10.1007/s11192-008-1939-5 Liu GY, 2012, SCIENTOMETRICS, V91, P203, DOI 10.1007/s11192-011-0586-4 Lu W, 2020, J INFORMETR, V14, DOI 10.1016/j.joi.2020.101066 McCain KW, 2008, J AM SOC INF SCI TEC, V59, P510, DOI 10.1002/asi.20705 Mousques A., 2014, INT ENV MOD SOFTW SO Newman N. C., 2017, 2017 PORTL INT C MAN, P1 Pedregosa F, 2011, J MACH LEARN RES, V12, P2825 Peset F, 2020, J ASSOC INF SCI TECH, V71, P462, DOI 10.1002/asi.24248 Rezaeian M, 2017, TECHNOL FORECAST SOC, V118, P270, DOI 10.1016/j.techfore.2017.02.027 Ruan XM, 2020, J INFORMETR, V14, DOI 10.1016/j.joi.2020.101039 RUMELHART DE, 1986, NATURE, V323, P533, DOI 10.1038/323533a0 Soriano AS, 2018, SCIENTOMETRICS, V115, P1591, DOI 10.1007/s11192-018-2651-8 Taylor M, 2012, INT J PROD ECON, V140, P541, DOI 10.1016/j.ijpe.2012.07.006 Trevisani M, 2018, KNOWL-BASED SYST, V146, P129, DOI 10.1016/j.knosys.2018.01.035 Tu YN, 2012, INFORM PROCESS MANAG, V48, P303, DOI 10.1016/j.ipm.2011.07.006 Uddin S, 2016, J INFORMETR, V10, P1166, DOI 10.1016/j.joi.2016.10.004 Wang Q, 2018, J ASSOC INF SCI TECH, V69, P290, DOI 10.1002/asi.23930 Wang XG, 2014, SCIENTOMETRICS, V101, P1253, DOI 10.1007/s11192-014-1347-y Xu S, 2019, J INFORMETR, V13, DOI 10.1016/j.joi.2019.100983 Yan R, 2012, P 12 ACM IEEE CS JOI, P51, DOI DOI 10.1145/2232817.2232831 Zeiler Matthew D, 2012, CoRR Zeng A, 2019, NAT COMMUN, V10, DOI 10.1038/s41467-019-11401-8 Zhao WY, 2018, INFORM PROCESS MANAG, V54, P203, DOI 10.1016/j.ipm.2017.11.005 Zhu XD, 2015, J ASSOC INF SCI TECH, V66, P408, DOI 10.1002/asi.23179 NR 56 TC 29 Z9 31 U1 9 U2 108 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0306-4573 EI 1873-5371 J9 INFORM PROCESS MANAG JI Inf. Process. Manage. PD JUL PY 2021 VL 58 IS 4 AR 102594 DI 10.1016/j.ipm.2021.102594 EA MAR 2021 PG 18 WC Computer Science, Information Systems; Information Science & Library Science WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Computer Science; Information Science & Library Science GA SN6BG UT WOS:000658372100033 DA 2024-09-05 ER PT J AU Qayyum, F Jamil, H Iqbal, N Kim, D Afzal, MT AF Qayyum, Faiza Jamil, Harun Iqbal, Naeem Kim, DoHyeun Afzal, Muhammad Tanvir TI Toward potential hybrid features evaluation using MLP-ANN binary classification model to tackle meaningful citations SO SCIENTOMETRICS LA English DT Article DE Binary Classification; Citation Count; Information Retrieval; Logistic Regression; Multi-layer Perceptron; Naive Bayes; Support vector machine ID QUALITY; INDEX AB Citation analysis-based systems are premised on assuming that all citations are equally important. The scientific community argues that a citation may hold divergent reasons and thus, should not be treated at par. In this regard, a plethora of existing studies classifies citations for varying reasons. Presently, the community has a propensity toward binary citation classification with the notion of contemplating only important reasons while employing quantitative analysis-based measures. We argue that outcomes yielded by the contemporary state-of-the-art models cannot be deemed ideal as the plethora of them has been evaluated on a data set with minimal number of instances due to which the outcomes cannot be generalized. The scope of results from such approaches is restricted to a single domain only which may exhibit entirely different behavior for the different data sets. Most of the studies are ruled by the content based features evaluated by harnessing traditional classification models like Support Vector Machine (SVM), and random forest (RF), while an inconsiderable number of studies employ metadata which holds the potential to serve as a quintessential indicator to tackle meaningful citations. In this study, we introduce Multilayer perceptron artificial neural network (MLP-ANN) binary citation classifier, which exploits the best combinations of features formed using both sources. We also introduce a new benchmark data set from the electrical engineering domain which is consolidated with two existing benchmark data sets for model evaluation. The outcomes reveal that the results produced by the proposed MLP model outperform the contemporary models achieving a precision of 0.92. C1 [Qayyum, Faiza; Iqbal, Naeem; Kim, DoHyeun] Jeju Natl Univ, Comp Engn Dept, Jeju 63243, South Korea. [Jamil, Harun] Jeju Natl Univ, Dept Elect Engn, Jeju 63243, South Korea. [Afzal, Muhammad Tanvir] Shifa Tameer E Milat Univ, Dept Comp Sci, Islamabad 46000, Pakistan. C3 Jeju National University; Jeju National University RP Qayyum, F; Kim, D (corresponding author), Jeju Natl Univ, Comp Engn Dept, Jeju 63243, South Korea. EM faizaqayyum@jejunu.ac.kr; harunjamil@hotmail.com; naeemiqbal@jejunu.ac.kr; kimdh@jejunu.ac.kr; tanvirqau@hotmail.com RI Iqbal, Naeem/ABG-1525-2021; Afzal, Muhammad/D-3741-2019 OI Iqbal, Naeem/0000-0003-2749-6344; Afzal, Muhammad/0000-0002-7851-2327; Afzal, Muhammad Tanvir/0000-0002-9765-8815 FU Energy Cloud R&D Program through the National Research Foundation of Korea(NRF) - Ministry of Science, ICT [2019M3F2A1073387]; Institute for Information & communications Technology Promotion (IITP) [2022-0-00980] FX This research was supported by Energy Cloud R&D Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Science, ICT (2019M3F2A1073387), and this work was supported by the Institute for Information & communications Technology Promotion (IITP) (NO. 2022-0-00980, Cooperative Intelligence Framework of Scene Perception for Autonomous IoT Device). CR Abu-Jbara A., 2011, P 49 ANN M ASS COMP, P500 Adagbasa EG, 2022, GEOCARTO INT, V37, P142, DOI 10.1080/10106049.2019.1704070 Agarwal Shashank, 2010, AMIA Annu Symp Proc, V2010, P11 Ahmed I, 2020, IEEE ACCESS, V8, P129359, DOI 10.1109/ACCESS.2020.3009021 Aljuaid H, 2021, TELEMAT INFORM, V56, DOI 10.1016/j.tele.2020.101492 An X, 2022, SCIENTOMETRICS, V127, P6533, DOI 10.1007/s11192-021-04212-6 An X, 2023, J INF SCI, V49, P107, DOI 10.1177/0165551521991034 Ayaz S, 2016, SCIENTOMETRICS, V109, P1511, DOI 10.1007/s11192-016-2122-z Pham BT, 2017, CATENA, V149, P52, DOI 10.1016/j.catena.2016.09.007 Bishop C.M., 2006, Pattern recognition and machine learning BONZI S, 1982, J AM SOC INFORM SCI, V33, P208, DOI 10.1002/asi.4630330404 Breiman L., 2001, Machine Learning, V45, P5, DOI 10.1023/A:1010933404324 BROOKS TA, 1985, J AM SOC INFORM SCI, V36, P223, DOI 10.1002/asi.4630360402 Case DO, 2000, J AM SOC INFORM SCI, V51, P635, DOI 10.1002/(SICI)1097-4571(2000)51:7<635::AID-ASI6>3.0.CO;2-H Chen JL, 2000, 2000 5TH INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING PROCEEDINGS, VOLS I-III, P1556, DOI 10.1109/ICOSP.2000.893396 CORTES C, 1995, MACH LEARN, V20, P273, DOI 10.1023/A:1022627411411 Diederich J, 2007, LECT NOTES COMPUT SC, V4675, P1 Dong C., 2011, P 5 INT JOINT C NAT, P623 Finney B., 1979, REFERENCE CHARACTERI, V269, P192 Garzone M, 2000, LECT NOTES ARTIF INT, V1822, P337 Hassan SU, 2018, SCIENTOMETRICS, V117, P1645, DOI 10.1007/s11192-018-2944-y Hirsch JE, 2005, P NATL ACAD SCI USA, V102, P16569, DOI 10.1073/pnas.0507655102 INHABER H, 1976, SOC STUD SCI, V6, P33, DOI 10.1177/030631277600600102 Iqbal N, 2021, J INTELL FUZZY SYST, V40, P9361, DOI 10.3233/JIFS-201844 Jochim C., 2012, P COLING 2012, P1343 Li X., 2013, Proceedings of Recent Advances in Natural Language Processing, P402 Lyu DQ, 2021, SCIENTOMETRICS, V126, P3243, DOI 10.1007/s11192-021-03908-z Mazloumian A, 2013, SCI REP-UK, V3, DOI 10.1038/srep01167 MORAVCSIK MJ, 1975, SOC STUD SCI, V5, P86, DOI 10.1177/030631277500500106 Nanba H, 1999, IJCAI-99: PROCEEDINGS OF THE SIXTEENTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOLS 1 & 2, P926 Nazir S, 2020, PLOS ONE, V15, DOI 10.1371/journal.pone.0228885 Pham SB, 2003, LECT NOTES ARTIF INT, V2903, P759 Pradhan B, 2010, ENVIRON MODELL SOFTW, V25, P747, DOI 10.1016/j.envsoft.2009.10.016 Pride D, 2017, LECT NOTES COMPUT SC, V10450, P572, DOI 10.1007/978-3-319-67008-9_48 Qayyum F, 2019, SCIENTOMETRICS, V118, P21, DOI 10.1007/s11192-018-2961-x SPIEGELROSING I, 1977, SOC STUD SCI, V7, P97, DOI 10.1177/030631277700700111 Sugiyama Kazunari, 2010, Proceedings of the 2010 International Conference on Information Retrieval and Knowledge Management (CAMP 2010), P67, DOI 10.1109/INFRKM.2010.5466945 Tandon N., 2012, CITATION CONTEXT SEN Teufel S., 2006, P C EMP METH NAT LAN, DOI 10.3115/1610075.1610091 Valenzuela M., 2015, WORKSHOPS 20 9 AAAI Wang MY, 2020, SCIENTOMETRICS, V125, P2109, DOI 10.1007/s11192-020-03677-1 Xu S, 2018, J INF SCI, V44, P48, DOI 10.1177/0165551516677946 Xu S, 2014, MULTIMED TOOLS APPL, V71, P699, DOI 10.1007/s11042-013-1526-5 Zeng T, 2020, SCIENTOMETRICS, V124, P399, DOI 10.1007/s11192-020-03421-9 Zhang Y, 2021, LECT NOTES COMPUT SC, V13081, P363, DOI 10.1007/978-3-030-91560-5_26 Zhu XD, 2015, J ASSOC INF SCI TECH, V66, P408, DOI 10.1002/asi.23179 NR 46 TC 8 Z9 8 U1 4 U2 39 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0138-9130 EI 1588-2861 J9 SCIENTOMETRICS JI Scientometrics PD NOV PY 2022 VL 127 IS 11 BP 6471 EP 6499 DI 10.1007/s11192-022-04530-3 EA OCT 2022 PG 29 WC Computer Science, Interdisciplinary Applications; Information Science & Library Science WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Computer Science; Information Science & Library Science GA 5U5FU UT WOS:000870916600001 DA 2024-09-05 ER PT J AU Yan, YY Fan, GX Liao, X Zhao, XD AF Yan, Yangye Fan, Guoxin Liao, Xiang Zhao, Xudong TI Research trends and hotspots on connectomes from 2005 to 2021: A bibliometric and latent Dirichlet allocation application study SO FRONTIERS IN NEUROSCIENCE LA English DT Article DE connectome; bibliometric; latent Dirichlet allocation; Web of Science; neuroscience ID FUNCTIONAL CONNECTIVITY; GRAPH-THEORY; RICH-CLUB; BRAIN; NETWORKS; SCIENCE; PROMISE; STROKE AB BackgroundThis study aimed to conduct a bibliometric analysis of publications on connectomes and illustrate its trends and hotspots using a machine-learning-based text mining algorithm. MethodsDocuments were retrieved from the Web of Science Core Collection (WoSCC) and Scopus databases and analyzed in Rstudio 1.3.1. Through quantitative and qualitative methods, the most productive and impactful academic journals in the field of connectomes were compared in terms of the total number of publications and h-index over time. Meanwhile, the countries/regions and institutions involved in connectome research were compared, as well as their scientific collaboration. The study analyzed topics and research trends by R package "bibliometrix." The major topics of connectomes were classified by Latent Dirichlet allocation (LDA). ResultsA total of 14,140 publications were included in the study. NEUROIMAGE ranked first in terms of publication volume (1,427 articles) and impact factor (h-index:122) among all the relevant journals. The majority of articles were published by developed countries, with the United States having the most. Harvard Medical School and the University of Pennsylvania were the two most productive institutions. Neuroimaging analysis technology and brain functions and diseases were the two major topics of connectome research. The application of machine learning, deep learning, and graph theory analysis in connectome research has become the current trend, while an increasing number of studies were concentrating on dynamic functional connectivity. Meanwhile, researchers have begun investigating alcohol use disorders and migraine in terms of brain connectivity in the past 2 years. ConclusionThis study illustrates a comprehensive overview of connectome research and provides researchers with critical information for understanding the recent trends and hotspots of connectomes. C1 [Yan, Yangye] Tongji Univ, Sch Med, Shanghai Eastern Hosp, Shanghai, Peoples R China. [Fan, Guoxin; Liao, Xiang] Huazhong Univ Sci & Technol, Union Shenzhen Hosp, Dept Pain Med, Shenzhen, Peoples R China. [Fan, Guoxin; Liao, Xiang] Shenzhen Univ, Sch Biomed Engn, Sch Med, Guangdong Key Lab Biomed Measurements & Ultrasound, Shenzhen, Peoples R China. [Fan, Guoxin] Sun Yat Sen Univ, Affiliated Hosp 3, Dept Spine Surg, Guangzhou, Peoples R China. [Zhao, Xudong] Tongji Univ, Chinese German Inst Mental Hlth, Clin Res Ctr Mental Disorders, Shanghai Pudong New Area Mental Hlth Ctr,Sch Med, Shanghai, Peoples R China. C3 Tongji University; Huazhong University of Science & Technology; Shenzhen University; Sun Yat Sen University; Tongji University RP Liao, X (corresponding author), Huazhong Univ Sci & Technol, Union Shenzhen Hosp, Dept Pain Med, Shenzhen, Peoples R China.; Liao, X (corresponding author), Shenzhen Univ, Sch Biomed Engn, Sch Med, Guangdong Key Lab Biomed Measurements & Ultrasound, Shenzhen, Peoples R China.; Zhao, XD (corresponding author), Tongji Univ, Chinese German Inst Mental Hlth, Clin Res Ctr Mental Disorders, Shanghai Pudong New Area Mental Hlth Ctr,Sch Med, Shanghai, Peoples R China. EM digitalxiang@163.com; zhaoxd@tongji.edu.cn FU Outstanding Clinical Discipline Project of Shanghai Pudong; Guangdong Basic and Applied Basic Research Foundation; National Natural Science Foundation of China; [PWYgy2021-02]; [2019A1515111171]; [82102640] FX Funding This work was supported by the Outstanding Clinical Discipline Project of Shanghai Pudong (Grant No.: PWYgy2021-02), Guangdong Basic and Applied Basic Research Foundation (2019A1515111171), and the National Natural Science Foundation of China (82102640). The funders played no part in the study design, data collection, analysis, interpretation, writing, or the decision to submit the manuscript for publication. CR African Union, 2020, DIGITAL TRANSFORMATI, DOI DOI 10.18356/7F55A58E-EN Aggarwal A, 2021, MINERVA MED, V112, P631, DOI 10.23736/S0026-4806.21.07489-9 Andersson JLR, 2016, NEUROIMAGE, V125, P1063, DOI 10.1016/j.neuroimage.2015.10.019 Aria M, 2017, J INFORMETR, V11, P959, DOI 10.1016/j.joi.2017.08.007 Tran BX, 2019, J MED INTERNET RES, V21, DOI 10.2196/15511 Barron DS, 2021, CEREB CORTEX, V31, P2523, DOI 10.1093/cercor/bhaa371 Bernhardt BC, 2019, NEUROLOGY, V92, pE2209, DOI 10.1212/WNL.0000000000007447 Biswal BB, 2010, P NATL ACAD SCI USA, V107, P4734, DOI 10.1073/pnas.0911855107 Burke MJ, 2020, BRAIN, V143, P541, DOI 10.1093/brain/awz405 Coppola G, 2020, J NEUROL, V267, P185, DOI 10.1007/s00415-019-09571-y delEtoile J, 2017, NEUROSCIENTIST, V23, P616, DOI 10.1177/1073858417702621 Devezas MAM, 2021, J NEUROIMAGING, DOI 10.1111/jon.12877 Dick AS, 2014, NEUROSCIENTIST, V20, P453, DOI 10.1177/1073858413513502 Ding HR, 2021, FRONT ONCOL, V11, DOI 10.3389/fonc.2021.689802 Dong DB, 2018, SCHIZOPHRENIA BULL, V44, P168, DOI 10.1093/schbul/sbx034 Elton A, 2021, NEUROIMAGE-CLIN, V32, DOI 10.1016/j.nicl.2021.102801 Farahani FV, 2019, FRONT NEUROSCI-SWITZ, V13, DOI 10.3389/fnins.2019.00585 Fornito A, 2013, NEUROIMAGE, V80, P426, DOI 10.1016/j.neuroimage.2013.04.087 Gerchen MF, 2021, HUM BRAIN MAPP, V42, P36, DOI 10.1002/hbm.25201 Glasser MF, 2016, NATURE, V536, P171, DOI 10.1038/nature18933 Glasser MF, 2013, NEUROIMAGE, V80, P105, DOI 10.1016/j.neuroimage.2013.04.127 Gong B, 2019, J NEUROIMAGING, V29, P14, DOI 10.1111/jon.12570 Griffiths TL, 2004, P NATL ACAD SCI USA, V101, P5228, DOI 10.1073/pnas.0307752101 Guler AT, 2016, SCIENTOMETRICS, V107, P385, DOI 10.1007/s11192-016-1885-6 He Y, 2007, CEREB CORTEX, V17, P2407, DOI 10.1093/cercor/bhl149 Horn A, 2017, ANN NEUROL, V82, P67, DOI 10.1002/ana.24974 Hutchison RM, 2013, NEUROIMAGE, V80, P360, DOI 10.1016/j.neuroimage.2013.05.079 Kaestner E, 2020, NEUROIMAGE-CLIN, V25, DOI 10.1016/j.nicl.2019.102125 Koch PJ, 2021, BRAIN, V144, P2107, DOI 10.1093/brain/awab082 Krismer F, 2021, NAT REV NEUROL, V17, P527, DOI 10.1038/s41582-021-00543-3 Lichtman JW, 2008, CURR OPIN NEUROBIOL, V18, P346, DOI 10.1016/j.conb.2008.08.010 Lynall ME, 2010, J NEUROSCI, V30, P9477, DOI 10.1523/JNEUROSCI.0333-10.2010 Malagurski B, 2020, HUM BRAIN MAPP, V41, P4829, DOI 10.1002/hbm.25161 Malekpour MR, 2021, PLOS ONE, V16, DOI 10.1371/journal.pone.0258064 Mill RD, 2017, NEUROIMAGE, V160, P124, DOI 10.1016/j.neuroimage.2017.01.060 Moguilner S, 2021, NEUROIMAGE, V225, DOI 10.1016/j.neuroimage.2020.117522 Neher PF, 2017, NEUROIMAGE, V158, P417, DOI 10.1016/j.neuroimage.2017.07.028 Oh SW, 2014, NATURE, V508, P207, DOI 10.1038/nature13186 Ousdal OT, 2020, HUM BRAIN MAPP, V41, P697, DOI 10.1002/hbm.24833 Sadaghiani S, 2020, NETW NEUROSCI, V4, P1, DOI 10.1162/netn_a_00114 Schwarz C, 2018, STATA J, V18, P101, DOI 10.1177/1536867X1801800107 Seung HS, 2009, NEURON, V62, P17, DOI 10.1016/j.neuron.2009.03.020 Shatte ABR, 2019, PSYCHOL MED, V49, P1426, DOI 10.1017/S0033291719000151 Silasi G, 2014, NEURON, V83, P1354, DOI 10.1016/j.neuron.2014.08.052 Sporns O, 2005, PLOS COMPUT BIOL, V1, P245, DOI 10.1371/journal.pcbi.0010042 Sporns O, 2018, DIALOGUES CLIN NEURO, V20, P111 Sporns O, 2016, ANNU REV PSYCHOL, V67, P613, DOI 10.1146/annurev-psych-122414-033634 Sporns O, 2013, NEUROIMAGE, V80, P53, DOI 10.1016/j.neuroimage.2013.03.023 Taylor SR, 2021, CELL, V184, P4329, DOI 10.1016/j.cell.2021.06.023 Thompson PM, 2013, NEUROIMAGE, V80, P475, DOI 10.1016/j.neuroimage.2013.05.013 Towlson EK, 2013, J NEUROSCI, V33, P6380, DOI 10.1523/JNEUROSCI.3784-12.2013 van den Heuvel MP, 2019, NAT REV NEUROSCI, V20, P435, DOI 10.1038/s41583-019-0177-6 van den Heuvel MP, 2011, J NEUROSCI, V31, P15775, DOI 10.1523/JNEUROSCI.3539-11.2011 Van Dijk KRA, 2012, NEUROIMAGE, V59, P431, DOI 10.1016/j.neuroimage.2011.07.044 Van Essen DC, 2013, NEUROIMAGE, V80, P62, DOI 10.1016/j.neuroimage.2013.05.041 Wang XQ, 2020, MOL NEURODEGENER, V15, DOI 10.1186/s13024-020-00395-3 Xia MR, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0068910 Yan CG, 2013, NEUROIMAGE, V80, P246, DOI 10.1016/j.neuroimage.2013.04.081 Yan CG, 2013, NEUROIMAGE, V76, P183, DOI 10.1016/j.neuroimage.2013.03.004 Yan WW, 2020, NEUROIMAGE, V220, DOI 10.1016/j.neuroimage.2020.117121 Yu MC, 2021, NAT REV NEUROL, V17, P545, DOI 10.1038/s41582-021-00529-1 Yun JY, 2021, PROG NEURO-PSYCHOPH, V111, DOI 10.1016/j.pnpbp.2021.110401 Zhang ZY, 2021, FRONT ONCOL, V11, DOI 10.3389/fonc.2021.687904 NR 63 TC 1 Z9 1 U1 4 U2 12 PU FRONTIERS MEDIA SA PI LAUSANNE PA AVENUE DU TRIBUNAL FEDERAL 34, LAUSANNE, CH-1015, SWITZERLAND EI 1662-453X J9 FRONT NEUROSCI-SWITZ JI Front. Neurosci. PD DEC 22 PY 2022 VL 16 AR 1046562 DI 10.3389/fnins.2022.1046562 PG 12 WC Neurosciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Neurosciences & Neurology GA 7N7PG UT WOS:000907527100001 PM 36620450 OA Green Published, gold, Green Submitted DA 2024-09-05 ER PT C AU Viloria, A Lis-Gutiérrez, JP Gaitán-Angulo, M Stanescu, CLV Crissien, T AF Viloria, Amelec Paola Lis-Gutierrez, Jenny Gaitan-Angulo, Mercedes Vasquez Stanescu, Carmen Luisa Crissien, Tito BE Rocha, A Reis, JL Peter, MK Bogdanovic, Z TI Machine Learning Applied to the H Index of Colombian Authors with Publications in Scopus SO MARKETING AND SMART TECHNOLOGIES, ICMARKTECH 2019 SE Smart Innovation Systems and Technologies LA English DT Proceedings Paper CT International Conference on Marketing and Technologies (ICMarkTech) CY NOV 27-29, 2019 CL Porto, PORTUGAL AB Our research aims to establish how to predict the H index of Colombian authors with publications in Scopus until 2016. The selection of the date was because, as mentioned earlier, the number of documents indexed per year exceeded 10,000 and they obtained the highest number of documents cited. To accomplish this purpose, a quantitative, nonexperimental, cross-sectional, descriptive, explanatory, and predictive research was designed using supervised learning algorithms. These were applied to information from 8,840 Colombian authors. Among the findings we can highlight that: (i) Colombia is in the fifth position in the scope of countries of South America and the Caribbean, in terms of the number of products and citations; (ii) the largest number of Colombian authors with products in Scopus until 2016, belonged mainly to the area of natural sciences, followed by medical sciences and health; (iii) most of the Colombian authors were men (64.2%, or 5,442) and they have higher H index rates than women; (iv) using random cross validation for 10 iterations, the methods with the best predictive value using R2 and the minimization of mean absolute error (MAE) correspond to: AdaBoost (96.6% and 0.397, respectively); Random Forest (96.8% and 0.431, respectively); KNN (94.4% and 0.525, respectively); Tree (94.9% and 0.53, respectively); and Neural Network (93.3% and 0.7, respectively); and (v) the variables that help predict the H index in the case of the Colombian authors, in addition to the citations, correspond to: the quantity of products, number of products in Q1, and international collaboration. C1 [Viloria, Amelec; Crissien, Tito] Univ Costa, Barranquilla, Colombia. [Paola Lis-Gutierrez, Jenny] Corp Univ Meta, Villavicencio, Colombia. [Paola Lis-Gutierrez, Jenny] Univ Nacl Colombia, Bogota, Colombia. [Gaitan-Angulo, Mercedes] Corp Univ Salamanca, Barranquilla, Colombia. [Vasquez Stanescu, Carmen Luisa] Univ Nacl Expt Politecn Antonio Jose de Sucre, Barquisimeto, Venezuela. C3 Universidad de la Costa; Universidad Nacional de Colombia RP Viloria, A (corresponding author), Univ Costa, Barranquilla, Colombia. EM aviloria@cuc.edu.co; jenny.lis@unimeta.edu.co; m_gaitan689@cues.edu.co; cvasquez@unexpo.edu.ve; rectoria@cuc.edu.co RI Gaitán-Angulo, Mercedes/U-3365-2019 OI Gaitán-Angulo, Mercedes/0000-0002-8248-8788; Lis-Gutierrez, Jenny-Paola/0000-0002-1438-7619; Vasquez Stanescu, Carmen Luisa/0000-0002-0657-3470 CR Abrishami A, 2019, J INFORMETR, V13, P485, DOI 10.1016/j.joi.2019.02.011 Alarcón-Quinapanta Mónica del Rocío, 2019, Ing. Ind., P24 [Anonymous], 2017, HCI 17 P 31 BRIT COM [Anonymous], 2020, SJR - SCImago Journal Country Rank [Portal] Belhi A., 2018, QATAR FDN ANN RES C, V2018 Charalambous G, 2017, 2017 INTERNATIONAL TOPICAL MEETING ON MICROWAVE PHOTONICS (MWP) Csomós G, 2018, J INFORMETR, V12, P547, DOI 10.1016/j.joi.2018.05.003 de Sousa WG, 2019, GOV INFORM Q, V36, DOI 10.1016/j.giq.2019.07.004 Demsar J, 2013, INFORM-J COMPUT INFO, V37, P55 Demsar J, 2013, J MACH LEARN RES, V14, P2349 Fast NJ, 2020, CURR OPIN PSYCHOL, V33, P172, DOI 10.1016/j.copsyc.2019.07.039 Ibáñez A, 2014, NEUROCOMPUTING, V135, P42, DOI 10.1016/j.neucom.2013.08.042 Kilicoglu H, 2019, J BIOMED INFORM, V91, DOI 10.1016/j.jbi.2019.103123 Owens T, 2018, ACM-IEEE J CONF DIG, P1, DOI 10.1145/3197026.3197027 Pretnar A., 2019, MYSTERY TEST SCORE Rosales R, 2018, APPL SCI-BASEL, V8, DOI 10.3390/app8030446 Torres-Samuel Maritza, 2018, Data Mining and Big Data. Third International Conference, DMBD 2018. Proceedings: LNCS 10943, P235, DOI 10.1007/978-3-319-93803-5_22 Torres-Samuel M., 2018, DATA MINING BIG DATA, V10943 Wuestman ML, 2019, RES POLICY, V48, P1771, DOI 10.1016/j.respol.2019.04.004 NR 19 TC 0 Z9 0 U1 0 U2 0 PU SPRINGER-VERLAG BERLIN PI BERLIN PA HEIDELBERGER PLATZ 3, D-14197 BERLIN, GERMANY SN 2190-3018 EI 2190-3026 BN 978-981-15-1564-4; 978-981-15-1563-7 J9 SMART INNOV SYST TEC PY 2020 VL 167 BP 388 EP 397 DI 10.1007/978-981-15-1564-4_36 PG 10 WC Business; Computer Science, Artificial Intelligence WE Conference Proceedings Citation Index - Science (CPCI-S); Conference Proceedings Citation Index - Social Science & Humanities (CPCI-SSH) SC Business & Economics; Computer Science GA BT4QS UT WOS:000833547500036 DA 2024-09-05 ER PT J AU Venkatesan, VK Ramakrishna, MT Batyuk, A Barna, A Havrysh, B AF Venkatesan, Vinoth Kumar Ramakrishna, Mahesh Thyluru Batyuk, Anatoliy Barna, Andrii Havrysh, Bohdana TI High-Performance Artificial Intelligence Recommendation of Quality Research Papers Using Effective Collaborative Approach SO SYSTEMS LA English DT Article DE recommender system; quality; artificial intelligence; publications; research paper; collaborative approach; accuracy; precision; recall AB The Artificial Intelligence Recommender System has emerged as a significant research interest. It aims at helping users find things online by offering recommendations that closely fit their interests. Recommenders for research papers have appeared over the last decade to make it easier to find publications associated with the field of researchers' interests. However, due to several issues, such as copyright constraints, these methodologies assume that the recommended articles' contents are entirely openly accessible, which is not necessarily the case. This work demonstrates an efficient model, known as RPRSCA: Research Paper Recommendation System Using Effective Collaborative Approach, to address these uncertain systems for the recommendation of quality research papers. We make use of contextual metadata that are publicly available to gather hidden relationships between research papers in order to personalize recommendations by exploiting the advantages of collaborative filtering. The proposed system, RPRSCA, is unique and gives personalized recommendations irrespective of the research subject. Thus, a novel collaborative approach is proposed that provides better performance. Using a publicly available dataset, we found that our proposed method outperformed previous uncertain methods in terms of overall performance and the capacity to return relevant, valuable, and quality publications at the top of the recommendation list. Furthermore, our proposed strategy includes personalized suggestions and customer expertise, in addition to addressing multi-disciplinary concerns. C1 [Venkatesan, Vinoth Kumar] VIT Univ, Sch Informat Technol & Engn, Vellore 632014, Tamil Nadu, India. [Ramakrishna, Mahesh Thyluru] JAIN, Fac Engn & Technol, Dept Comp Sci & Engn, Bangalore 562112, Karnataka, India. [Batyuk, Anatoliy] Lviv Polytech Natl Univ, Dept Automated Control Syst, UA-79013 Lvov, Ukraine. [Barna, Andrii] Lviv Polytech Natl Univ, Dept Artificial Intelligence, UA-79013 Lvov, Ukraine. [Havrysh, Bohdana] Lviv Polytech Natl Univ, Dept Publishing Informat Technol, UA-79013 Lvov, Ukraine. C3 Vellore Institute of Technology (VIT); VIT Vellore; Jain University; Ministry of Education & Science of Ukraine; Lviv Polytechnic National University; Ministry of Education & Science of Ukraine; Lviv Polytechnic National University; Ministry of Education & Science of Ukraine; Lviv Polytechnic National University RP Ramakrishna, MT (corresponding author), JAIN, Fac Engn & Technol, Dept Comp Sci & Engn, Bangalore 562112, Karnataka, India. EM t.mahesh@jainuniversity.ac.in RI Batyuk, Anatoliy Ye./S-4988-2017; Havrysh, Bohdana/W-5413-2018 OI Batyuk, Anatoliy Ye./0000-0001-7650-7383; TR, MAHESH/0000-0002-5589-8992; Havrysh, Bohdana/0000-0003-3213-9747 CR Beel J, 2013, ACM-IEEE J CONF DIG, P459 Beltagy Iz, 2019, arXiv Devarajan D, 2022, IEEE ACCESS, V10, P126957, DOI 10.1109/ACCESS.2022.3221451 Ghosh P., 2017, P 2016 INT C ICT BUS, P1, DOI [10.1109/ICTBIG.2016.7892668, DOI 10.1109/ICTBIG.2016.7892668] Haruna K., 2016, INT J SOFT COMPUTING, V11, P96 Haruna K, 2018, LECT NOTES COMPUT SC, V10960, P514, DOI 10.1007/978-3-319-95162-1_35 Haruna K, 2017, PLOS ONE, V12, DOI 10.1371/journal.pone.0184516 Indraneel A., 2021, LECT NOTES DATA ENG, V725, P735, DOI [10.1007/978-981-15-9509-7_59, DOI 10.1007/978-981-15-9509-7_59] Kim J, 2019, INFORM SCIENCES, V470, P141, DOI 10.1016/j.ins.2018.08.046 Li LH, 2021, SCI PROGRAMMING-NETH, V2021, DOI 10.1155/2021/7427409 Liu HF, 2015, IEEE ACCESS, V3, P1695, DOI 10.1109/ACCESS.2015.2481320 Mahesh TR, 2022, J SENSORS, V2022, DOI 10.1155/2022/4649510 Mahesh TR, 2024, INT J SYST ASSUR ENG, V15, P188, DOI 10.1007/s13198-022-01696-0 McNee SM, 2002, P 2002 ACM C COMP SU, P116, DOI DOI 10.1145/587078.587096 Nascimento C., 2011, Proceeding of the 11th annual international ACMIEEE Joint Conference on Digital libraries, P297, DOI DOI 10.1145/1998076.1998132 Osman NA, 2021, PLOS ONE, V16, DOI 10.1371/journal.pone.0248695 Pawlicka A, 2021, SENSORS-BASEL, V21, DOI 10.3390/s21155248 Ramakrishna MT, 2023, ENTROPY-SWITZ, V25, DOI 10.3390/e25020245 Richa, 2021, APPL ARTIF INTELL, V35, P326, DOI 10.1080/08839514.2021.1881297 Roopashree S, 2022, MEASUREMENT, V200, DOI 10.1016/j.measurement.2022.111484 Sakib N, 2020, IEEE ACCESS, V8, P51246, DOI 10.1109/ACCESS.2020.2980589 Sanh Victor, 2019, arXiv Shao BL, 2021, EXPERT SYST APPL, V165, DOI 10.1016/j.eswa.2020.113764 Singh Pradeep Kumar, 2021, International Journal of Business and Systems Research, V15, P14, DOI 10.1504/IJBSR.2021.111753 Sugiyama K, 2015, INT J DIGIT LIBRARIE, V16, P91, DOI 10.1007/s00799-014-0122-2 Thomas Binu, 2021, IOP Conference Series: Materials Science and Engineering, V1085, DOI 10.1088/1757-899X/1085/1/012011 Vivek V., 2022, BIG DATA MANAGEMENT, P61 Wu S, 2019, AAAI CONF ARTIF INTE, P346 NR 28 TC 4 Z9 4 U1 2 U2 16 PU MDPI PI BASEL PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND EI 2079-8954 J9 SYSTEMS-BASEL JI Systems-Basel PD FEB PY 2023 VL 11 IS 2 AR 81 DI 10.3390/systems11020081 PG 14 WC Social Sciences, Interdisciplinary WE Social Science Citation Index (SSCI) SC Social Sciences - Other Topics GA 9L2OA UT WOS:000941392700001 OA gold DA 2024-09-05 ER PT J AU Ma, HZ Zhang, QJ AF Ma, Huizhu Zhang, Qiuju TI Research on cultural-based multi-objective particle swarm optimization in image compression quality assessment SO OPTIK LA English DT Article DE Image compression; Multi-objective optimization; Cultural algorithms; Particle swarm optimization AB Quantization is a main factor which affects the performance of the JPEG compression. Compression ratio and the quality of the decoded images are both determined by quantization tables. Appropriate choice of the quantization tables is the key to the Compression performance. To select different optimal quantization tables for different classes of images is multi-objective optimal problem. A cultural-based multi-objective particle swarm optimization model is proposed in this paper. And, different trade-offs between image compression and quality is presented. The simulation result shows that the proposed model is effective to the choice of image compression quality. (C) 2012 Elsevier GmbH. All rights reserved. C1 [Ma, Huizhu; Zhang, Qiuju] Harbin Engn Univ, Informat & Commun Engn Coll, Harbin 150001, Peoples R China. C3 Harbin Engineering University RP Zhang, QJ (corresponding author), Harbin Engn Univ, Informat & Commun Engn Coll, Harbin 150001, Peoples R China. EM mahuizhu@hrbeu.edu.cn; zhangqiuju_hrbeu@yahoo.com.cn RI zhang, qiu/GXG-5600-2022 FU Fundamental Research Funds for the Central Universities FX This work was supported by the Fundamental Research Funds for the Central Universities. CR [Anonymous], 2010 IEEE C EV COMP Coello CAC, 2003, PROCEEDINGS OF THE 2003 IEEE SWARM INTELLIGENCE SYMPOSIUM (SIS 03), P6, DOI 10.1109/SIS.2003.1202240 Daneshyari M, 2011, IEEE T SYST MAN CY B, V41, P553, DOI 10.1109/TSMCB.2010.2068046 Daneshyari M, 2008, IEEE C EVOL COMPUTAT, P1325, DOI 10.1109/CEC.2008.4630967 Gu Wei, 2010, POWER ENERGY ENG C A, P1 Lazzerini B, 2010, APPL SOFT COMPUT, V10, P548, DOI 10.1016/j.asoc.2009.08.024 NR 6 TC 9 Z9 12 U1 0 U2 5 PU ELSEVIER GMBH PI MUNICH PA HACKERBRUCKE 6, 80335 MUNICH, GERMANY SN 0030-4026 EI 1618-1336 J9 OPTIK JI Optik PY 2013 VL 124 IS 10 BP 957 EP 961 DI 10.1016/j.ijleo.2012.02.041 PG 5 WC Optics WE Science Citation Index Expanded (SCI-EXPANDED) SC Optics GA 154XV UT WOS:000319710900020 DA 2024-09-05 ER PT J AU Antons, D Joshi, AM Salge, TO AF Antons, David Joshi, Amol M. Salge, Torsten Oliver TI Content, Contribution, and Knowledge Consumption: Uncovering Hidden Topic Structure and Rhetorical Signals in Scientific Texts SO JOURNAL OF MANAGEMENT LA English DT Article DE scientific impact; management research; citation analysis; text mining; latent Dirichlet allocation ID STRATEGIC MANAGEMENT RESEARCH; INTELLECTUAL STRUCTURE; CO-AUTHORSHIP; LANGUAGE USE; WORDS; CITATIONS; JOURNALS; ARTICLE; SCIENCE; IMPACT AB Knowledge production and scientific discourse are observable in published scholarly texts. Citations capture knowledge consumption and impact. Drawing from the sociology of science, our theoretical framework posits scientific communities as thought collectives with distinctive thought styles that embed a hidden topic structure and rhetorical signals into a journal's published articles. We hypothesize and uncover how an article's topic attributes (structure, focus, and newness) and rhetorical attributes (inclusiveness, exclusiveness, tentativeness, and certainty) are related to future knowledge consumption. We empirically test our ideas by applying text mining algorithms to model topics and extract rhetorical signals from 1,646 strategy articles composed of nearly 18 million words generating 172,237 citations over 35 years. We find that strategy articles' hidden topic structure explains 14% of variance in scientific impact. We also show that topic focus and topic newness each independently, directly, and significantly increase impact. As for newness, the first two articles published on a new topic each generate a citation premium >100%, which is higher within the focal thought collective than outside. Importantly, we find that the citation premium of newness increases with greater topic focus (which attracts attention) and greater inflow of prior intracollective knowledge (which enhances absorption). Impact also increases when authors present new topics using a rhetorical style that is more tentative than certain. Overall, our findings demonstrate that topic and rhetorical attributes, as constitutive elements of scientific content, are independently and interdependently related to the consumption of strategy articles across thought collectives in management research. C1 [Antons, David; Salge, Torsten Oliver] Rhein Westfal TH Aachen, Aachen, Germany. [Joshi, Amol M.] Oregon State Univ, Corvallis, OR 97331 USA. C3 RWTH Aachen University; Oregon State University RP Joshi, AM (corresponding author), Oregon State Univ, Coll Business, 443 Austin Hall, Corvallis, OR 97331 USA. EM amol.joshi@oregonstate.edu RI Joshi, Amol M/C-8433-2013; Joshi, Amol/JBQ-4510-2023 OI Joshi, Amol M/0000-0002-3023-6749; CR Abe JAA, 2011, J LANG SOC PSYCHOL, V30, P212, DOI 10.1177/0261927X10397152 Acedo FJ, 2006, J MANAGE STUD, V43, P957, DOI 10.1111/j.1467-6486.2006.00625.x Alvesson M, 2011, ACAD MANAGE REV, V36, P247, DOI 10.5465/AMR.2011.59330882 Antons D., 2018, J SERVICE RES Antons D, 2016, J PROD INNOVAT MANAG, V33, P726, DOI 10.1111/jpim.12300 Astley W.G., 1985, ADMIN SCI QUART, V30, P497, DOI [10.2307/2392694, DOI 10.2307/2392694] ASTLEY WG, 1992, ORGAN SCI, V3, P443, DOI 10.1287/orsc.3.4.443 Baldi S, 1998, AM SOCIOL REV, V63, P829, DOI 10.2307/2657504 Bao Y, 2014, MANAGE SCI, V60, P1371, DOI 10.1287/mnsc.2014.1930 Barrett M, 2004, INFORMATION SYSTEMS RESEARCH: RELEVANT THEORY AND INFORMED PRACTICE, P293 Bednar MK, 2012, ACAD MANAGE J, V55, P131, DOI 10.5465/amj.2009.0862 Bergh DD, 2006, STRATEGIC MANAGE J, V27, P81, DOI 10.1002/smj.504 Blei DM, 2012, COMMUN ACM, V55, P77, DOI 10.1145/2133806.2133826 Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993 Boyd BK, 2005, STRATEGIC MANAGE J, V26, P239, DOI 10.1002/smj.444 Boyd Ryan L, 2015, Tech. Rep. Colquitt JA, 2007, ACAD MANAGE J, V50, P1281, DOI 10.5465/AMJ.2007.28165855 Corley PC, 2014, LAW SOC REV, V48, P35, DOI 10.1111/lasr.12058 Davis GF, 2015, ADMIN SCI QUART, V60, P179, DOI 10.1177/0001839215585725 Dawson JF, 2014, J BUS PSYCHOL, V29, P1, DOI 10.1007/s10869-013-9308-7 Fagan MB, 2009, STUD HIST PHI PART C, V40, P272, DOI 10.1016/j.shpsc.2009.09.005 Fleck Ludwik., 2012, GENESIS DEV SCI FACT Galunic DC, 1998, STRATEGIC MANAGE J, V19, P1193, DOI 10.1002/(SICI)1097-0266(1998120)19:12<1193::AID-SMJ5>3.3.CO;2-6 Gamache DL, 2015, ACAD MANAGE J, V58, P1261, DOI 10.5465/amj.2013.0377 Gieryn T. F., 1995, BOUNDARIES SCI SCI Q Goldstone A, 2014, NEW LITERARY HIST, V45, P359, DOI 10.1353/nlh.2014.0025 Graesser AC, 2004, BEHAV RES METH INS C, V36, P193, DOI 10.3758/BF03195564 Grimmer J, 2013, POLIT ANAL, V21, P267, DOI 10.1093/pan/mps028 HARWOOD J, 1986, SOC STUD SCI, V16, P173, DOI 10.1177/030631286016001009 He ZL, 2004, ORGAN SCI, V15, P481, DOI 10.1287/orsc.1040.0078 HIRSCHMAN AO, 1964, AM ECON REV, V54, P761 Huff A.S., 2009, DESIGNING RES PUBLIC Hyland K, 1996, APPL LINGUIST, V17, P433, DOI 10.1093/applin/17.4.433 Joekers ML, 2013, POETICS, V41, P750, DOI 10.1016/j.poetic.2013.08.005 Johnson MS., 2003, MARKETING THEORY, V3, P477 Joksimovic S, 2014, INTERNET HIGH EDUC, V22, P1, DOI 10.1016/j.iheduc.2014.03.001 Judge TA, 2007, ACAD MANAGE J, V50, P491 Kane GC, 2016, ORGAN SCI, V27, P1258, DOI 10.1287/orsc.2016.1075 Kaplan A., 1964, The conduct of inquiry KAPLAN N, 1965, AM DOC, V16, P179, DOI 10.1002/asi.5090160305 Kaplan S, 2015, STRATEGIC MANAGE J, V36, P1435, DOI 10.1002/smj.2294 King DA, 2004, NATURE, V430, P311, DOI 10.1038/430311a Lafferty J.D, 2009, Topic Models, P71, DOI [10.1145/1143844.1143859, DOI 10.1145/1143844.1143859] Latour B., 2005, REASSEMBLING SOCIAL Laudun J, 2013, J AM FOLKLORE, V126, P455, DOI 10.5406/jamerfolk.126.502.0455 LEYDESDORFF L, 1989, RES POLICY, V18, P209, DOI 10.1016/0048-7333(89)90016-4 Li EY, 2013, RES POLICY, V42, P1515, DOI 10.1016/j.respol.2013.06.012 Locke K, 1997, ACAD MANAGE J, V40, P1023, DOI 10.5465/256926 Long RG, 1998, ACAD MANAGE J, V41, P704, DOI 10.5465/256966 Lowy Ilana., 1998, Sociology of Health Illness, V10, P133 Mann W, 1988, Text, V8, P243, DOI DOI 10.1515/TEXT.1.1988.8.3.243 Mckinley W, 1999, ACAD MANAGE REV, V24, P634 McKinley William., 1993, Journal of Management Inquiry, V2, P284 Mercer RE, 2003, LECT NOTES ARTIF INT, V2671, P550 Mingers J, 2010, EUR J OPER RES, V205, P422, DOI 10.1016/j.ejor.2009.12.008 Mössner N, 2011, STUD HIST PHILOS SCI, V42, P362, DOI 10.1016/j.shpsa.2010.12.002 Murray Tom, 2013, Artificial Intelligence in Education. Proceedings of 16th International Conference (AIED 2013): LNCS 7926, P811, DOI 10.1007/978-3-642-39112-5_119 Nadkarni S, 2014, ACAD MANAGE J, V57, P1810, DOI 10.5465/amj.2011.0401 Nerkar A, 2013, TECH INNOVATION ENTR, V13, P165, DOI 10.1108/S1479-067X(2013)0000013009 Nerur S, 2016, STRATEGIC MANAGE J, V37, P1065, DOI 10.1002/smj.2377 Nerur SP, 2008, STRATEG MANAGE J, V29, P319, DOI 10.1002/smj.659 O'Connor B., 2011, public health, V41, P43 Park SH, 1996, STRATEGIC MANAGE J, V17, P109, DOI 10.1002/(SICI)1097-0266(199602)17:2<109::AID-SMJ796>3.3.CO;2-G Peine A, 2011, MINERVA, V49, P489, DOI 10.1007/s11024-011-9180-4 Pennebaker J. W., 2015, PENNEBAKER CONGLOMER Pennebaker JW, 1999, J PERS SOC PSYCHOL, V77, P1296, DOI 10.1037/0022-3514.77.6.1296 Phelan SE, 2002, STRATEGIC MANAGE J, V23, P1161, DOI 10.1002/smj.268 Podsakoff PM, 2008, J MANAGE, V34, P641, DOI 10.1177/0149206308319533 Podsakoff PM, 2005, STRATEGIC MANAGE J, V26, P473, DOI 10.1002/smj.454 Price SM, 2012, J BANK FINANC, V36, P992, DOI 10.1016/j.jbankfin.2011.10.013 Radicchi F, 2008, P NATL ACAD SCI USA, V105, P17268, DOI 10.1073/pnas.0806977105 Rafols I, 2012, RES POLICY, V41, P1262, DOI 10.1016/j.respol.2012.03.015 Ramos-Rodríguez AR, 2004, STRATEGIC MANAGE J, V25, P981, DOI 10.1002/smj.397 SCHNELLE T, 1981, THEOR SOC, V10, P733 SCHNURR PP, 1992, J PERS ASSESS, V58, P311, DOI 10.1207/s15327752jpa5802_10 Shafique M, 2013, STRATEGIC MANAGE J, V34, P62, DOI 10.1002/smj.2002 Short JC, 2010, ORGAN RES METHODS, V13, P320, DOI 10.1177/1094428109335949 Slavova K, 2016, ORGAN SCI, V27, P72, DOI 10.1287/orsc.2015.1026 Smith E A, 1967, AMRL TR, P1 Starbuck WH, 2005, ORGAN SCI, V16, P180, DOI 10.1287/orsc.1040.0107 Stremersch S, 2007, J MARKETING, V71, P171, DOI 10.1509/jmkg.71.3.171 Taboada M, 2006, J PRAGMATICS, V38, P567, DOI 10.1016/j.pragma.2005.09.010 Tahai A, 1999, STRATEGIC MANAGE J, V20, P279 Tausczik YR, 2010, J LANG SOC PSYCHOL, V29, P24, DOI 10.1177/0261927X09351676 THOMAS CB, 1985, PSYCHOSOM MED, V47, P201, DOI 10.1097/00006842-198503000-00012 Trieschmann JS, 2000, ACAD MANAGE J, V43, P1130, DOI 10.5465/1556341 Uotila J, 2009, STRATEGIC MANAGE J, V30, P221, DOI 10.1002/smj.738 Uzzi B, 2013, SCIENCE, V342, P468, DOI 10.1126/science.1240474 VINKLER P, 1994, SCIENTOMETRICS, V30, P495, DOI 10.1007/BF02018130 Wang J, 2017, RES POLICY, V46, P1416, DOI 10.1016/j.respol.2017.06.006 Wang X, 2015, J CONSUM RES, V42, P5, DOI 10.1093/jcr/ucv009 Weick K. E., 1995, PUBLISHING ORG SCI, P284 WEICK KE, 1993, ADMIN SCI QUART, V38, P357, DOI 10.2307/2393372 WHETTEN DA, 1989, ACAD MANAGE REV, V14, P490, DOI 10.2307/258554 Whissell C, 1999, PERCEPT MOTOR SKILL, V88, P76, DOI 10.2466/PMS.88.1.76-86 Zavyalova A, 2012, ACAD MANAGE J, V55, P1079, DOI 10.5465/amj.2010.0608 NR 96 TC 39 Z9 40 U1 6 U2 89 PU SAGE PUBLICATIONS INC PI THOUSAND OAKS PA 2455 TELLER RD, THOUSAND OAKS, CA 91320 USA SN 0149-2063 EI 1557-1211 J9 J MANAGE JI J. Manag. PD SEP PY 2019 VL 45 IS 7 BP 3035 EP 3076 DI 10.1177/0149206318774619 PG 42 WC Business; Psychology, Applied; Management WE Social Science Citation Index (SSCI) SC Business & Economics; Psychology GA IR5QB UT WOS:000481488500015 DA 2024-09-05 ER PT C AU Purwitasari, D Ilmi, AB Fatichah, C Fauzi, WA Sumpeno, S Purnomo, MH AF Purwitasari, Diana Ilmi, Akhmad Bakhrul Fatichah, Chastine Fauzi, Willy Achmat Sumpeno, Surya Purnomo, Mauridhi Hery GP IEEE TI Conflict of Interest based Features for Expert Classification in Bibliographic Network SO 2018 INTERNATIONAL CONFERENCE ON COMPUTER ENGINEERING, NETWORK AND INTELLIGENT MULTIMEDIA (CENIM) LA English DT Proceedings Paper CT Joint International Conference on Computer Engineering, Network and Intelligent Multimedia (CENIM) / 11th AUN/SEED-Net Regional Conference on Computer and Information Engineering (RCCIE) CY NOV 26-27, 2018 CL Surabaya, INDONESIA DE expert classification; bibliographic data; citation analysis; conflict of interest feature; word embedding; deep learning AB Countless approaches of feature extraction in the expert classification problem employ text contents and network structures from bibliographic metadata of published articles. The content part often use title and abstract while the structure part utilize co-authorship and citation. On citation data, the classifier method works on a feature of citation quantity since a frequently cited author is presumed to have more expertise. Citation misconduct occurs if there is no subject relation between citing and cited articles. Therefore, the misconduct becomes a challenge for evaluation of citation quality. Here, the problem is to classify experts with features that can indicate citation misconduct. To address this problem, our contribution exploited the quality and the quantity of citations in feature extraction designed for classifying experts. Co-authorship that influence the misconducts is called as Conflict of Interest (CoI) situation. Accordingly, the class labels are experts with or without CoI indication. We proposed three ratio features of (1) self-citation to represent the citation quantity, then (2) subject similarity of author interests and article contents, as well as (3) subject similarity of citing and cited articles to determine the citation quality. There are various word phrases used in subjects with similar contexts. Therefore the proposed CoI-based features for the citation quality took on deep learning approaches for understanding natural language. Our experiments exercised a selection of data from one of the common datasets in bibliographic related problems called as AMiner. We selected +/- 15K articles from the original data of +/- 2M articles in the experiments. The results showed that our proposed features classified experts with CoI indication by accuracy value of +/- 60%. Although the first feature of citation quantity was not significant for categorizing experts, other features of citation quality confirmed more profound evidence. C1 [Purwitasari, Diana] Inst Teknol Sepuluh Nopember, Fac Informat Technol, Dept Informat, Dept Elect Engn,Fac Elect Technol, Surabaya, Indonesia. [Ilmi, Akhmad Bakhrul; Fatichah, Chastine] Kampus Inst Teknol Sepuluh Nopember ITS Sukolilo, Inst Teknol Sepuluh Nopember ITS, Fac Informat Technol, Dept Informat, Surabaya 60111, East Java, Indonesia. [Fauzi, Willy Achmat] Inst Teknol Sepuluh Nopember, Dept Elect Engn, Fac Elect Technol, Surabaya, Indonesia. [Sumpeno, Surya; Purnomo, Mauridhi Hery] Inst Teknol Sepuluh Nopember, Dept Elect Engn, Fac Elect Technol, Dept Comp Engn, Surabaya, Indonesia. C3 Institut Teknologi Sepuluh Nopember; Institut Teknologi Sepuluh Nopember; Institut Teknologi Sepuluh Nopember; Institut Teknologi Sepuluh Nopember RP Purwitasari, D (corresponding author), Inst Teknol Sepuluh Nopember, Fac Informat Technol, Dept Informat, Dept Elect Engn,Fac Elect Technol, Surabaya, Indonesia. EM diana@if.its.ac.id; chastine@cs.its.ac.id; surya@ee.its.ac.id; hery@ee.its.ac.id RI Fatichah, Chastine/W-2402-2019; Setijadi, Eko/A-2128-2012; s, surya/AER-2052-2022; Fauzi, Willy Achmat/GLN-6678-2022; Purwitasari, Diana/X-3953-2019 OI Fatichah, Chastine/0000-0002-7348-9762; Fauzi, Willy Achmat/0000-0002-2919-6575; Purwitasari, Diana/0000-0001-7000-7628; Sumpeno, Surya/0000-0002-1744-1342 FU Indonesia Endowment Fund for Education, Indonesian called as Lembaga Pengelola Dana Pendidikan, LPDP, under Indonesian Education Scholarship for Master and Doctoral Programs of the LPDP Doctoral Scholarship Programme fiscal year 2017-2020 [PRJ-4228/LPDP.3/2016] FX This work was supported by the Indonesia Endowment Fund for Education, or in Indonesian called as Lembaga Pengelola Dana Pendidikan, LPDP, under Indonesian Education Scholarship for Master and Doctoral Programs with the grant number PRJ-4228/LPDP.3/2016 of the LPDP Doctoral Scholarship Programme fiscal year 2017-2020. CR Alarfaj F., 2012, P NAACL, P1 Bai XM, 2017, IEEE ACCESS, V5, P17607, DOI 10.1109/ACCESS.2017.2740226 Bai X, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0167772 Collobert R, 2011, J MACH LEARN RES, V12, P2493 Hirsch JE, 2005, P NATL ACAD SCI USA, V102, P16569, DOI 10.1073/pnas.0507655102 Ilmi A. B., 2018, P 4 INT SEM SCI TECH Manning Christopher D., 2008, Introduction to Information Retrieval Mikolov T., 2013, ADV NEURAL INFORM PR, P3111, DOI DOI 10.48550/ARXIV.1310.4546 Moreira C, 2013, EXPERT SYST APPL, V40, P5740, DOI 10.1016/j.eswa.2013.04.001 Moustafa K, 2016, ACCOUNT RES, V23, P230, DOI 10.1080/08989621.2015.1127763 Mueller J, 2016, AAAI CONF ARTIF INTE, P2786 Pedregosa F, 2011, J MACH LEARN RES, V12, P2825 Purwitasari D., 2017, 2017 IEEE 10 INT WOR, V2017 Rehurek R., 2010, Proceedings of the LREC 2010 Workshop on New Challenges for NLP Frameworks Tang J, 2016, PROCEEDINGS OF THE NINTH ACM INTERNATIONAL CONFERENCE ON WEB SEARCH AND DATA MINING (WSDM'16), P467, DOI 10.1145/2835776.2835849 Thinsungnoena T., 2015, Learning, V3, DOI [10.12792/iciae2015.012, DOI 10.12792/ICIAE2015.012] Xia F, 2017, IEEE T BIG DATA, V3, P18, DOI 10.1109/TBDATA.2016.2641460 Xia F, 2014, IEEE T EMERG TOP COM, V2, P364, DOI 10.1109/TETC.2014.2356505 Yu T, 2014, J INFORMETR, V8, P123, DOI 10.1016/j.joi.2013.11.001 NR 19 TC 1 Z9 1 U1 0 U2 0 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA BN 978-1-5386-7509-0 PY 2018 BP 54 EP 59 PG 6 WC Computer Science, Theory & Methods; Engineering, Electrical & Electronic WE Conference Proceedings Citation Index - Science (CPCI-S) SC Computer Science; Engineering GA BM8IQ UT WOS:000469263900010 DA 2024-09-05 ER PT J AU Zerva, C Nghiem, MQ Nguyen, NTH Ananiadou, S AF Zerva, Chrysoula Minh-Quoc Nghiem Nguyen, Nhung T. H. Ananiadou, Sophia TI Cited text span identification for scientific summarisation using pre-trained encoders SO SCIENTOMETRICS LA English DT Article DE Cited text span identification; Citation analysis; Scientific summarisation; Neural networks; BERT; Fine-tuning ID MODELS AB We present our approach for the identification of cited text spans in scientific literature, using pre-trained encoders (BERT) in combination with different neural networks. We further experiment to assess the impact of using these cited text spans as input in BERT-based extractive summarisation methods. Inspired and motivated by the CL-SciSumm shared tasks, we explore different methods to adapt pre-trained models which are tuned for generic domain to scientific literature. For the identification of cited text spans, we assess the impact of different configurations in terms of learning from augmented data and using different features and network architectures (BERT, XLNET, CNN, and BiMPM) for training. We show that identifying and fine-tuning the language models on unlabelled or augmented domain specific data can improve the performance of cited text span identification models. For the scientific summarisation we implement an extractive summarisation model adapted from BERT. With respect to the input sentences taken from the cited paper, we explore two different scenarios: (1) consider all the sentences (full-text) of the referenced article as input and (2) consider only the text spans that have been identified to be cited by other publications. We observe that in certain experiments, by using only the cited text-spans we can achieve better performance, while minimising the input size needed. C1 [Zerva, Chrysoula; Minh-Quoc Nghiem; Nguyen, Nhung T. H.; Ananiadou, Sophia] Univ Manchester, Natl Ctr Text Min, Sch Comp Sci, Manchester, Lancs, England. [Ananiadou, Sophia] Alan Turing Inst, London, England. C3 University of Manchester RP Zerva, C (corresponding author), Univ Manchester, Natl Ctr Text Min, Sch Comp Sci, Manchester, Lancs, England. EM chrysoula.zerva@manchester.ac.uk; minh-quoc.nghiem@manchester.ac.uk; nhung.nguyen@manchester.ac.uk; sophia.ananiadou@manchester.ac.uk RI Zerva, Chrysoula/JOK-8942-2023 OI Zerva, Chrysoula/0000-0002-4031-9492 FU EPSRC [EP/N509565/1]; HSE Discovering Safety, Lloyd's Register Foundation; Thomas Ashton Institute FX This work was partly supported by the EPSRC Doctoral Prize award [EP/N509565/1]; the HSE Discovering Safety, Lloyd's Register Foundation; and the Thomas Ashton Institute. CR Abu-Jbara A., 2011, P 49 ANN M ASS COMP, P500 AbuRaed A., 2018, P 3 JOINT WORKSH BIB, V2132, P150 Aggarwal P., 2016, BIRNDL JCDL, P103 AGRAWAL K, 2018, BIRNDL SIGIR, P130 Ammar W., 2018, P 2018 C N AM CHAPT, V3, P84, DOI [DOI 10.18653/V1/N18-3011, 10.18653/v1/N18-3011] [Anonymous], 2019, Ctrl: A conditional transformer language model for controllable generation [Anonymous], 2015, P 2015 C N AM CHAPTE, DOI [10.3115/v1/N15-1013, DOI 10.3115/V1/N15-1013] [Anonymous], 2012, P COLING 2012 Baruah G., 2018, BIRNDL SIGIR, V2132, P134 Beltagy I, 2019, 2019 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING AND THE 9TH INTERNATIONAL JOINT CONFERENCE ON NATURAL LANGUAGE PROCESSING (EMNLP-IJCNLP 2019), P3615 Bird S, 2008, SIXTH INTERNATIONAL CONFERENCE ON LANGUAGE RESOURCES AND EVALUATION, LREC 2008, P1755 Bornmann L, 2009, EMBO REP, V10, P2, DOI 10.1038/embor.2008.233 Cao Z, 2016, P JOINT WORKSH BIBL, P132 Carbonell J., 1998, Proceedings of the 21st Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, P335, DOI 10.1145/290941.291025 Chandrasekaran MK., 2019, P 4 JOINT WORKSH BIB, P153 Chang LLH, 2019, IEEE ACCESS, V7, P132027, DOI 10.1109/ACCESS.2019.2937220 Cohan A., 2017, ARXIV170406619 Conroy J. M., 2001, SIGIR Forum, P406 Conroy J. M., 2006, P COLING ACL MAIN C, P152 Councill IG, 2008, SIXTH INTERNATIONAL CONFERENCE ON LANGUAGE RESOURCES AND EVALUATION, LREC 2008, P661 Craswell N., 2009, Encyclopedia of Database Systems, V1703, DOI 10.1007/978-0-387-39940-9_488 Devlin J, 2019, 2019 CONFERENCE OF THE NORTH AMERICAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS: HUMAN LANGUAGE TECHNOLOGIES (NAACL HLT 2019), VOL. 1, P4171 Ding Y, 2016, Measuring scholarly impact Duan CQ, 2018, PROCEEDINGS OF THE TWENTY-SEVENTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, P4033 EDMUNDSON HP, 1969, J ACM, V16, P264, DOI 10.1145/321510.321519 FERGADIS A, 2019, ATHENA CL SCISUMM 20 Fister I, 2016, FRONT PHYS, V4, DOI 10.3389/fphy.2016.00049 Galgani F., 2012, PRICAI 2012 TRENDS A, P40 Galgani F, 2015, INFORM PROCESS MANAG, V51, P1, DOI 10.1016/j.ipm.2014.08.001 Hassan SU, 2018, SCIENTOMETRICS, V117, P1645, DOI 10.1007/s11192-018-2944-y Howard J, 2018, PROCEEDINGS OF THE 56TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL), VOL 1, P328 Hutchins BI, 2016, PLOS BIOL, V14, DOI 10.1371/journal.pbio.1002541 JAIDKA K, 2018, BIRNDL SIGIR, P1 Jaidka K., 2016, P JOINT WORKSH BIBLI, P93 Jaidka K., 2017, BIRNDL SIGIR, P1 JHA S, 2017, P 14 INT C NAT LANG, P23 KARIMI S, 2017, BIRNDL SIGIR, P73 Kim Y, 2014, ARXIV14085882, DOI 10.3115/v1/D14-1181 Klampfl Stefan., 2016, BIRNDL at JCDL, P122 Kupiec J, 1999, ADVANCES IN AUTOMATIC TEXT SUMMARIZATION, P55 Lai Guokun, 2017, Association for Computational Linguistics LAQUATRA M, 2019, POLI2SUM CL SCISUMM LI L, 2019, BIRNDL 2019 Li L., 2017, P 2 JOINT WORKSH BIB Li L., 2018, BIRNDL SIGIR CEUR WO, V2132, P84 Lin C., 2000, P 18 C COMP LING ASS, P495, DOI [10.3115/990820.990892, DOI 10.3115/990820.990892] Lin Chin-Yew, 2004, P ACL ANN M ASS COMP, P1 LIU Y, 2019, ARXIV190310318CS Liu Y, 2019, BIOMED RES INT, V2019, DOI 10.1155/2019/4273290 Liu Y, 2021, J IND TEXT, V51, P396, DOI 10.1177/1528083719881816 LUHN HP, 1958, IBM J RES DEV, V2, P159, DOI 10.1147/rd.22.0159 MA S, 2018, BIRNDL SIGIR, P114 MA S, 2019, BIRNDL2019 Mihalcea R., 2006, Proceedings of the National Conference on Artificial Intelligence, V6, P775 Miller Derek, 2019, Leveraging BERT for extractive text summarization on lectures MILLER GA, 1995, COMMUN ACM, V38, P39, DOI 10.1145/219717.219748 Mohammad S., 2009, P HUMAN LANGUAGE TEC, P584 Molla D, 2014, P AUSTR LANG TECHN A, P79 Moraes L.F.T.D., 2018, BIRNDL SIGIR, V2132, P142 Nallapati R, 2017, AAAI CONF ARTIF INTE, P3075 Neculoiu P, 2016, P 1 WORKSH REPR LEAR, P148, DOI DOI 10.18653/V1/W16-1617 Nicosia M, 2017, CIKM'17: PROCEEDINGS OF THE 2017 ACM CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, P2235, DOI 10.1145/3132847.3133156 Nie Y., 2017, RepEval, P41 Nomoto T., 2018, FRONTIERS RES METRIC, V3, P31, DOI [10.3389/frma.2018.00031, DOI 10.3389/FRMA.2018.00031] Nomoto T., 2016, P JOINT WORKSH BIBL, P168 Paulus Romain, 2017, A deep reinforced model for abstractive summarization arXiv preprint arXiv:1705 04304 Prasad Animesh, 2017, BIRNDL SIGIR, P26 Qazvinian V., 2008, P 22 INT C COMP LING, V1, P689 Radev DR, 2013, LANG RESOUR EVAL, V47, P919, DOI 10.1007/s10579-012-9211-2 Rajpurkar Pranav, 2016, EMNLP, DOI DOI 10.18653/V1/D16-1264 Rush Alexander M., 2015, EMNLP, DOI [10.48550/arXiv.1509.00685, DOI 10.18653/V1/D15-1044] Saggion Horacio., 2016, Proceedings of the Joint Workshop on Bibliometric-enhanced Information Retrieval and Natural Language Processing for Digital Libraries (BIRNDL); 2016 June 23; Newark, P175, DOI DOI 10.1007/978-94-017-2388-6_4 See A, 2017, PROCEEDINGS OF THE 55TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2017), VOL 1, P1073, DOI 10.18653/v1/P17-1099 SHEN D, 2007, P 20 INT JOINT C ART, P2862 Socher Richard, 2014, Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), P1532, DOI [10.3115/v1/D14-1162.https, DOI 10.3115/V1/D14-1162.HTTPS, 10.3115/v1/D14-1162] Teufel S., 2006, P C EMP METH NAT LAN, DOI 10.3115/1610075.1610091 Wang J, 2014, PROC CVPR IEEE, P1386, DOI 10.1109/CVPR.2014.180 Wang P., 2018, BIRNDL SIGIR, P102 Wang Z, 2017, IEEE IJCNN, P1411, DOI 10.1109/IJCNN.2017.7966018 Wolf T, 2020, PROCEEDINGS OF THE 2020 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING: SYSTEM DEMONSTRATIONS, P38 Yang ZL, 2019, ADV NEUR IN, V32 Yasunaga M, 2019, AAAI CONF ARTIF INTE, P7386 Yeh J.Y., 2017, P 6 INT C SOFTW COMP, P87, DOI [10.1145/3056662.3056692, DOI 10.1145/3056662.3056692] Zerva C., 2019, BIRNDL SIGIR, P167 Zhang XX, 2019, 57TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2019), P5059 Zhou QY, 2018, PROCEEDINGS OF THE 56TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL), VOL 1, P654 NR 86 TC 16 Z9 16 U1 1 U2 16 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0138-9130 EI 1588-2861 J9 SCIENTOMETRICS JI Scientometrics PD DEC PY 2020 VL 125 IS 3 BP 3109 EP 3137 DI 10.1007/s11192-020-03455-z EA MAY 2020 PG 29 WC Computer Science, Interdisciplinary Applications; Information Science & Library Science WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Computer Science; Information Science & Library Science GA PE1YL UT WOS:000531002500001 OA hybrid DA 2024-09-05 ER PT J AU Hernández, IMD Urdaneta, AS Carayannis, E AF De la Vega Hernandez, Ivan Manuel Serrano Urdaneta, Angel Carayannis, Elias TI Global bibliometric mapping of the frontier of knowledge in the field of artificial intelligence for the period 1990-2019 SO ARTIFICIAL INTELLIGENCE REVIEW LA English DT Article DE Artificial intelligence; Machine learning; Deep learning; Big Data; Bibliometric mapping; Knowledge networks; WoS; Radical changes AB Artificial Intelligence (AI) has emerged as a field of knowledge that is displacing and disrupting technologies, leading to changes in human life. Therefore, the purpose of this study is to scientifically map this topic and its ramifications, in order to analyze its growth. The study was developed under the bibliometric approach and considered the period 1990-2019. The steps followed were (i) Identification and selection of keyword terms in three methodological layers by a panel of experts. (ii) Design and application of an algorithm to identify these selected keywords in titles, abstracts, and keywords using terms in Web of Science to contrast them. (iii) Performing data processing based on the Journals of the Journal Citation Report during 2020. Knowing the evolution of a field of knowledge such as AI from a bibliometric study and subsequently establishing the ramifications of new research streams is in itself a relevant finding. Addressing a broad field of knowledge as AI from a multidisciplinary approach given the convergence it generates with other disciplines and specialties is of high strategic value for decision makers such as governments, academics, scientists, and entrepreneurs. C1 [De la Vega Hernandez, Ivan Manuel; Serrano Urdaneta, Angel] CTR Catolica Grad Business Sch, Lima, Peru. [De la Vega Hernandez, Ivan Manuel; Serrano Urdaneta, Angel] Pontificia Univ Catolica Peru, Lima, Peru. [Carayannis, Elias] George Washington Univ, GWU Sch Business, Washington, DC 20052 USA. C3 Pontificia Universidad Catolica del Peru; George Washington University RP Hernández, IMD (corresponding author), CTR Catolica Grad Business Sch, Lima, Peru.; Hernández, IMD (corresponding author), Pontificia Univ Catolica Peru, Lima, Peru. EM idelavega@pucp.edu.pe; angel.serrano@pucp.pe; caraye@gwu.edu RI CARAYANNIS, ELIAS/H-3075-2014; de la Vega Hernandez, Ivan Manuel/AAD-5460-2019 OI CARAYANNIS, ELIAS/0000-0003-2348-4311; de la Vega Hernandez, Ivan Manuel/0000-0002-8554-0510 CR Agarwal M, 2021, J MED SYST, V45, DOI 10.1007/s10916-021-01707-w [Anonymous], 1980, Principles of Artificial Intelligence [Anonymous], 1989, Artificial Intelligence: The Very Idea, DOI DOI 10.7551/MITPRESS/1170.001.0001 Bainbridge W.S., 2016, Handbook of science and technology convergence de Paula LB, 2022, LECT NOTE NETW SYST, V388, P217, DOI 10.1007/978-3-030-93787-4_13 Bastian M., 2009, Gephi: An open source software for exploring and manipulating networks Bongomin O, 2020, J ENG-NY, V2020, DOI 10.1155/2020/4280156 Bordons M, 1999, REV ESP CARDIOL, V52, P790, DOI 10.1016/S0300-8932(99)75008-6 Carayannis EG, 2023, AI SOC, V38, P2679, DOI 10.1007/s00146-021-01382-y Carayannis EG, 2022, J KNOWL ECON, V13, P587, DOI 10.1007/s13132-020-00719-0 Chatterjee J, 2021, RENEW SUST ENERG REV, V144, DOI 10.1016/j.rser.2021.111051 Cockburn IM., 2018, IMPACT ARTIFICIAL IN, DOI [10.3386/w24449, DOI 10.3386/W24449] Cox AM, 2021, INT J EDUC TECHNOL H, V18, DOI 10.1186/s41239-020-00237-8 Hernandez IMD, 2021, KYBERNETES, V50, P2917, DOI 10.1108/K-05-2020-0328 Hernández IMD, 2020, KYBERNETES, V49, P2241, DOI 10.1108/K-08-2019-0522 Delgosha MS, 2022, TECHNOVATION, V118, DOI 10.1016/j.technovation.2021.102236 Dhamija P, 2020, TQM J, V32, P869, DOI 10.1108/TQM-10-2019-0243 Donthu N, 2022, J ADVERTISING, V51, P153, DOI 10.1080/00913367.2021.2006100 Donthu N, 2021, J BUS RES, V133, P285, DOI 10.1016/j.jbusres.2021.04.070 Donthu N, 2021, J INT MARKETING, V29, P1, DOI 10.1177/1069031X211004234 Donthu N, 2021, PSYCHOL MARKET, V38, P834, DOI 10.1002/mar.21472 Doreian P, 2006, SOC NETWORKS, V28, P269, DOI 10.1016/j.socnet.2005.12.002 Goodell JW, 2021, J BEHAV EXP FINANC, V32, DOI 10.1016/j.jbef.2021.100577 Guo YQ, 2020, J MED INTERNET RES, V22, DOI 10.2196/18228 Jiang XG, 2020, CMC-COMPUT MATER CON, V63, P537, DOI 10.32604/cmc.2020.010691 Kumar S, 2022, INT J BANK MARK, V40, P341, DOI 10.1108/IJBM-07-2021-0351 Kumar S, 2021, J BUS RES, V134, P275, DOI 10.1016/j.jbusres.2021.05.041 Kumar S, 2021, BUS STRATEG ENVIRON, V30, P3454, DOI 10.1002/bse.2813 Kumar S, 2021, ELECTRON COMMER RES, V21, P1, DOI 10.1007/s10660-021-09464-1 Lee C, 2021, TECHNOL FORECAST SOC, V167, DOI 10.1016/j.techfore.2021.120653 Liu XJ, 2011, BIODIVERS CONSERV, V20, P807, DOI 10.1007/s10531-010-9981-z De la Vega IM, 2023, INT J INOV SCI, V15, P59, DOI 10.1108/IJIS-07-2021-0116 Zabala-Iturriagagoitia JM, 2021, TECHNOVATION, V102, DOI 10.1016/j.technovation.2020.102215 Munim ZH, 2020, MARIT POLICY MANAG, V47, P577, DOI 10.1080/03088839.2020.1788731 Panch T, 2019, NPJ DIGIT MED, V2, DOI 10.1038/s41746-019-0155-4 Rahwan I, 2009, ARGUMENTATION IN ARTIFICIAL INTELLIGENCE, P1, DOI 10.1007/978-0-387-98197-0 Ramakrishna S, 2020, SCI TECHNOL SOC, V25, P505, DOI 10.1177/0971721820912918 Roco MC, 2020, J NANOPART RES, V22, DOI 10.1007/s11051-020-05032-0 Russell S.J., 2011, Inteligencia artificial: un enfoque moderno Santoro G, 2018, TECHNOL FORECAST SOC, V136, P347, DOI 10.1016/j.techfore.2017.02.034 Sekli G.F.M., 2021, Journal of Open Innovation: Technology, Market, and Complexity, V7, P221, DOI DOI 10.3390/JOITMC7040221 Rao ASRS, 2020, INFECT CONT HOSP EP, V41, P826, DOI 10.1017/ice.2020.61 Stahl BC., 2021, Artificial Intelligence for a Better Future: An Ecosystem Perspective on the Ethics of AI and Emerging Digital Technologies, DOI 10.1007/978-3-030-69978-9 Sun SJ, 2020, TELEMAT INFORM, V53, DOI 10.1016/j.tele.2020.101433 Tian YG, 2008, J INFORMETR, V2, P65, DOI 10.1016/j.joi.2007.10.001 van Eck NJ, 2010, SCIENTOMETRICS, V84, P523, DOI 10.1007/s11192-009-0146-3 Van Raan A, 1999, SCIENTOMETRICS, V45, P417, DOI 10.1007/BF02457601 Vinuesa R, 2020, NAT COMMUN, V11, DOI 10.1038/s41467-019-14108-y Wamba SF, 2021, TECHNOL FORECAST SOC, V164, DOI 10.1016/j.techfore.2020.120482 WIPO, 2021, INTELLECTUAL PROPERT Zhejiang Da Xue IEEE Technology and Engineering Management Society Institute of Electrical and Electronics Engineers, 2019, 2 ANN INT S INN ENTR NR 51 TC 17 Z9 17 U1 9 U2 34 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0269-2821 EI 1573-7462 J9 ARTIF INTELL REV JI Artif. Intell. Rev. PD FEB PY 2023 VL 56 IS 2 BP 1699 EP 1729 DI 10.1007/s10462-022-10206-4 EA JUN 2022 PG 31 WC Computer Science, Artificial Intelligence WE Science Citation Index Expanded (SCI-EXPANDED) SC Computer Science GA 8L6FZ UT WOS:000807969300001 PM 35693001 OA Bronze, Green Published DA 2024-09-05 ER PT J AU La Quatra, M Cagliero, L Baralis, E AF La Quatra, Moreno Cagliero, Luca Baralis, Elena TI Leveraging full-text article exploration for citation analysis SO SCIENTOMETRICS LA English DT Article DE Citation analysis; Deep natural language processing; Citation classification ID SENTIMENT AB Scientific articles often include in-text citations quoting from external sources. When the cited source is an article, the citation context can be analyzed by exploring the article full-text. To quickly access the key information, researchers are often interested in identifying the sections of the cited article that are most pertinent to the text surrounding the citation in the citing article. This paper first performs a data-driven analysis of the correlation between the textual content of the sections of the cited article and the text snippet where the citation is placed. The results of the correlation analysis show that the title and abstract of the cited article are likely to include content highly similar to the citing snippet. However, the subsequent sections of the paper often include cited text snippets as well. Hence, there is a need to understand the extent to which an exploration of the full-text of the cited article would be beneficial to gain insights into the citing snippet, considering also the fact that the full-text access could be restricted. To this end, we then propose a classification approach to automatically predicting whether the cited snippets in the full-text of the paper contain a significant amount of new content beyond abstract and title. The proposed approach could support researchers in leveraging full-text article exploration for citation analysis. The experiments conducted on real scientific articles show promising results: the classifier has a 90% chance to correctly distinguish between the full-text exploration and only title and abstract cases. C1 [La Quatra, Moreno; Cagliero, Luca; Baralis, Elena] Politecn Torino, Corso Duca degli Abruzzi 24, I-10129 Turin, Italy. C3 Polytechnic University of Turin RP La Quatra, M (corresponding author), Politecn Torino, Corso Duca degli Abruzzi 24, I-10129 Turin, Italy. EM moreno.laquatra@polito.it; luca.cagliero@polito.it; elena.baralis@polito.it RI La Quatra, Moreno/AET-2693-2022 OI La Quatra, Moreno/0000-0001-8838-064X; Cagliero, Luca/0000-0002-7185-5247 CR AbuRaed A., 2018, P 3 JOINT WORKSH BIB, V2132, P150 Ali Z, 2020, EXPERT SYST APPL, V162, DOI 10.1016/j.eswa.2020.113790 Baruah G., 2018, BIRNDL SIGIR, V2132, P134 Cagliero L, 2021, IEEE T EMERG TOP COM, V9, P329, DOI 10.1109/TETC.2018.2861214 Chandrasekaran M. K., 2019, P 4 JOINT WORKSH BIB, P2019 Chandrasekaran MK., 2019, P 4 JOINT WORKSH BIB, P153 Cohan A, 2020, 58TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2020), P2270 Cohan A, 2019, 2019 CONFERENCE OF THE NORTH AMERICAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS: HUMAN LANGUAGE TECHNOLOGIES (NAACL HLT 2019), VOL. 1, P3586 Davoodi E., 2018, BIRNDL SIGIR, P96 Devlin J, 2019, 2019 CONFERENCE OF THE NORTH AMERICAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS: HUMAN LANGUAGE TECHNOLOGIES (NAACL HLT 2019), VOL. 1, P4171 He Q., 2010, P 19 INT C WORLD WID, DOI DOI 10.1145/1772690.1772734 Hernández-Alvarez M, 2017, NAT LANG ENG, V23, P561, DOI 10.1017/S1351324916000346 Jeong C., 2019, CONTEX AWARE CITATIO Jeong C, 2020, SCIENTOMETRICS, V124, P1907, DOI 10.1007/s11192-020-03561-y Jha R, 2017, NAT LANG ENG, V23, P93, DOI 10.1017/S1351324915000443 Jurgens D., 2018, T ASSOC COMPUT LING, V6, P391, DOI [DOI 10.1162/TACLA00028, 10.1162/tacl_a_00028] Khalid A., 2017, CLUSTER COMPUT, V21, P1 La Quatra M, 2019, BIRNDL SIGIR, P233 La Quatra M, 2020, SCIENTOMETRICS, V125, P3139, DOI 10.1007/s11192-020-03532-3 Li L., 2018, BIRNDL SIGIR CEUR WO, V2132, P84 Lin Chin-Yew, 2004, P ACL ANN M ASS COMP, P1 Ma ST, 2018, SCIENTOMETRICS, V116, P1303, DOI 10.1007/s11192-018-2754-2 Mikolov T., 2013, ADV NEURAL INFORM PR, P3111, DOI DOI 10.48550/ARXIV.1310.4546 Moraes L.F.T.D., 2018, BIRNDL SIGIR, V2132, P142 Nomoto T., 2018, FRONTIERS RES METRIC, V3, P31, DOI [10.3389/frma.2018.00031, DOI 10.3389/FRMA.2018.00031] Pagliardini, 2017, ARXIV PREPRINT ARXIV Pedregosa F, 2011, J MACH LEARN RES, V12, P2825 Pilehvar M. T., 2020, Synthesis Lectures on Human Language Technologies, V13, P1, DOI [10.2200/S01057ED1V01Y202009HLT047, DOI 10.2200/S01057ED1V01Y202009HLT047] Reimers N, 2019, 57TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2019), P567 Ritchie A., 2008, P 17 ACM C INF KNOWL, P213, DOI DOI 10.1145/1458082.1458113 Ritchie A, 2008, LECT NOTES COMPUT SC, V4956, P211 Ritchie Anna., 2006, Proceedings of the Workshop on How Can Computational Linguistics Improve Information Retrieval? CLIIR'06, P25, DOI DOI 10.3115/1629808.1629813 Ronzano F, 2016, LECT NOTES COMPUT SC, V9612, P318, DOI 10.1007/978-3-319-41754-7_30 Saier T, 2020, SCIENTOMETRICS, V125, P3085, DOI 10.1007/s11192-020-03382-z Wang, 2018, BIRNDL SIGIR Yasunaga M., 2017, P CONLL 2017 Yasunaga M, 2019, AAAI CONF ARTIF INTE, P7386 Yeh J.Y., 2017, P 6 INT C SOFTW COMP, P87, DOI [10.1145/3056662.3056692, DOI 10.1145/3056662.3056692] Yousif A, 2019, NEUROCOMPUTING, V335, P195, DOI 10.1016/j.neucom.2019.01.021 Zaki MJ., 2020, DATA MINING MACHINE, DOI DOI 10.1017/9781108564175 Zerva C, 2020, SCIENTOMETRICS, V125, P3109, DOI 10.1007/s11192-020-03455-z Zhang L, 2018, WIRES DATA MIN KNOWL, V8, DOI 10.1002/widm.1253 NR 42 TC 1 Z9 1 U1 2 U2 44 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0138-9130 EI 1588-2861 J9 SCIENTOMETRICS JI Scientometrics PD OCT PY 2021 VL 126 IS 10 BP 8275 EP 8293 DI 10.1007/s11192-021-04117-4 EA AUG 2021 PG 19 WC Computer Science, Interdisciplinary Applications; Information Science & Library Science WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Computer Science; Information Science & Library Science GA UW2MR UT WOS:000686089100011 OA hybrid DA 2024-09-05 ER PT J AU Thelwell, M AF Thelwell, Mike TI Can the quality of published academic journal articles be assessed with machine learning? SO QUANTITATIVE SCIENCE STUDIES LA English DT Article DE citation analysis; machine learning; research evaluation; text mining ID CITATION COUNTS; IMPACT; SCIENCE; READABILITY; JUDGMENT; FEATURES; MODELS; FIELD AB Formal assessments of the quality of the research produced by departments and universities are now conducted by many countries to monitor achievements and allocate performance-related funding. These evaluations are hugely time consuming if conducted by postpublication peer review and are simplistic if based on citations or journal impact factors. I investigate whether machine learning could help reduce the burden of peer review by using citations and metadata to learn how to score articles from a sample assessed by peer review. An experiment is used to underpin the discussion, attempting to predict journal citation thirds, as a proxy for article quality scores, for all Scopus narrow fields from 2014 to 2020. The results show that these proxy quality thirds can be predicted with above baseline accuracy in all 326 narrow fields, with Gradient Boosting Classifier, Random Forest Classifier, or Multinomial Naive Bayes being the most accurate in nearly all cases. Nevertheless, the results partly leverage journal writing styles and topics, which are unwanted for some practical applications and cause substantial shifts in average scores between countries and between institutions within a country. There may be scope for predicting articles' scores when the predictions have the highest probability. C1 [Thelwell, Mike] Univ Wolverhampton, Wolverhampton, England. C3 University of Wolverhampton RP Thelwell, M (corresponding author), Univ Wolverhampton, Wolverhampton, England. EM m.thetwall@wlv.ac.uk RI Thelwall, Mike/JDV-4700-2023 OI Thelwall, Mike/0000-0001-6065-205X CR Abrishami A, 2019, J INFORMETR, V13, P485, DOI 10.1016/j.joi.2019.02.011 Akella AP, 2021, J INFORMETR, V15, DOI 10.1016/j.joi.2020.101128 [Anonymous], 2003, The higher education managerial revolution?, DOI DOI 10.1007/978-94-010-0072-7 Buckle R.A., 2019, N. Z. Econ. Pap., V53, P144, DOI [10.1080/00779954.2018.1429486, DOI 10.1080/00779954.2018.1429486] Checco A, 2021, HUM SOC SCI COMMUN, V8, DOI 10.1057/s41599-020-00703-8 Chen CM, 2017, J DATA INFO SCI, V2, P1, DOI 10.1515/jdis-2017-0006 Chen JP, 2015, PROCEEDINGS OF 2015 IEEE 14TH INTERNATIONAL CONFERENCE ON COGNITIVE INFORMATICS & COGNITIVE COMPUTING (ICCI*CC), P434, DOI 10.1109/ICCI-CC.2015.7259421 Fairclough R, 2022, LEARN PUBL, V35, P241, DOI 10.1002/leap.1417 Foltynek T, 2020, ACM COMPUT SURV, V52, DOI 10.1145/3345317 Franceschini F, 2017, J INFORMETR, V11, P337, DOI 10.1016/j.joi.2017.02.005 Fu LD, 2010, SCIENTOMETRICS, V85, P257, DOI 10.1007/s11192-010-0237-1 Gov.uk, 2021, PS21219 RESP US TECH Haddawy P, 2016, J INFORMETR, V10, P162, DOI 10.1016/j.joi.2015.12.005 Hall KL, 2018, AM PSYCHOL, V73, P532, DOI 10.1037/amp0000319 Heo GE, 2017, BMC BIOINFORMATICS, V18, DOI 10.1186/s12859-017-1640-x Hinze S, 2019, SPRINGER HBK, P465, DOI 10.1007/978-3-030-02511-3_18 Kim YM, 2018, HEALTH INFORM J, V24, P432, DOI 10.1177/1460458216678443 Klavans R, 2017, J ASSOC INF SCI TECH, V68, P984, DOI 10.1002/asi.23734 Kleminski R, 2021, J INFORMETR, V15, DOI 10.1016/j.joi.2021.101200 Kulczycki E, 2017, J INFORMETR, V11, P282, DOI 10.1016/j.joi.2017.01.001 Lei L, 2016, SCIENTOMETRICS, V108, P1155, DOI 10.1007/s11192-016-2036-9 Li SQ, 2019, 2019 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING AND THE 9TH INTERNATIONAL JOINT CONFERENCE ON NATURAL LANGUAGE PROCESSING (EMNLP-IJCNLP 2019), P4914 Maier G, 2006, SCIENTOMETRICS, V69, P651, DOI 10.1007/s11192-006-0175-0 McCannon BC, 2019, ECON LETT, V180, P76, DOI 10.1016/j.econlet.2019.02.017 Mohammadi E, 2013, SCIENTOMETRICS, V97, P383, DOI 10.1007/s11192-013-0993-9 Nie BL, 2017, APPL SCI-BASEL, V7, DOI 10.3390/app7040401 Nuijten MB, 2020, RES SYNTH METHODS, V11, P574, DOI 10.1002/jrsm.1408 Parks S, 2019, The changing research landscape and reflections on national research assessment in the future Ruan XM, 2020, J INFORMETR, V14, DOI 10.1016/j.joi.2020.101039 Serenko A, 2022, J KNOWL MANAG, V26, P126, DOI 10.1108/JKM-11-2020-0814 Serenko A, 2011, J INFORMETR, V5, P629, DOI 10.1016/j.joi.2011.06.002 Sohrabi B, 2017, SCIENTOMETRICS, V110, P243, DOI 10.1007/s11192-016-2161-5 Stegehuis C, 2015, J INFORMETR, V9, P642, DOI 10.1016/j.joi.2015.06.005 Thelwall M, 2002, J AM SOC INF SCI TEC, V53, P995, DOI 10.1002/asi.10135 Thelwall M, 2021, LIBR INFORM SCI RES, V43, DOI 10.1016/j.lisr.2021.101094 Thelwall M, 2020, ONLINE INFORM REV, V44, P1057, DOI 10.1108/OIR-11-2019-0347 Thelwall M, 2019, J INFORMETR, V13, P149, DOI 10.1016/j.joi.2018.12.002 Thelwall M, 2017, J INFORMETR, V11, P128, DOI 10.1016/j.joi.2016.12.002 Traag VA, 2019, PALGR COMMUN, V5, DOI 10.1057/s41599-019-0233-x Wang MY, 2020, IEEE ACCESS, V8, P107887, DOI 10.1109/ACCESS.2020.3001190 Wilsdon J., 2016, The metric tide: Independent review of the role of metrics in research assessment and management, DOI DOI 10.4135/9781473978782 Wilsdon J, 2016, METRIC TIDE INDEPEND Xu JG, 2019, IEEE ACCESS, V7, P92248, DOI 10.1109/ACCESS.2019.2927011 Yuan Sha, 2022, arXiv Zhao QH, 2022, J INFORMETR, V16, DOI 10.1016/j.joi.2021.101235 Zhongqi Su, 2020, 2020 Proceedings of Asia-Pacific Conference on Image Processing, Electronics and Computers (IPEC), P101, DOI 10.1109/IPEC49694.2020.9114959 Zhu XP, 2018, INT CON ADV INFO NET, P534, DOI 10.1109/AINA.2018.00084 NR 47 TC 8 Z9 9 U1 5 U2 25 PU MIT PRESS PI CAMBRIDGE PA ONE ROGERS ST, CAMBRIDGE, MA 02142-1209 USA EI 2641-3337 J9 QUANT SCI STUD JI Quant. Sci. Stud. PD APR 12 PY 2022 VL 3 IS 1 BP 208 EP 226 DI 10.1162/qss_a_00185 PG 19 WC Information Science & Library Science WE Emerging Sources Citation Index (ESCI) SC Information Science & Library Science GA 4J6XG UT WOS:000851408900010 OA Green Published, gold DA 2024-09-05 ER PT J AU Collado-Villaverde, A Muñoz, P Cid, C AF Collado-Villaverde, Armando Munoz, Pablo Cid, Consuelo TI Comment on "Prediction of the SYM-H Index Using a Bayesian Deep Learning Method With Uncertainty Quantification" by Abduallah et al. (2024) SO SPACE WEATHER-THE INTERNATIONAL JOURNAL OF RESEARCH AND APPLICATIONS LA English DT Article DE machine learning; uncertainty; geomagnetic indices forecasting AB Abduallah et al. (2024b, ) proposed a novel approach using a deep neural network model, which includes a graph neural network and a bidirectional LSTM layer, named SYMHnet, to forecast the SYM-H index one and 2 hr in advance. Additionally, the network also provides an uncertainty quantification of the predictions. While the approach is innovative, there are some areas where the model's design and implementation may not align with best practices in uncertainty quantification and predictive modeling. We focus on discrepancies in the input and output of the model, which can limit the applicability in real-world forecasting scenarios. This comment aims to clarify these issues, offering detailed insights into how such discrepancies could compromise the model's interpretability and reliability, thereby contributing to the advancement of predictive modeling in space weather research. The use of Machine learning to predict geomagnetic storms is becoming a trend. A recent study by Abduallah et al. (2024b, ) introduces a novel approach to forecast the SYM-H index, which measures geomagnetic activity on a global scale, while also quantifying the uncertainty of these predictions. However, this commentary highlights methodological concerns with their approach, such as data selection issues and the reliability of uncertainty calculations. These factors could significantly affect the model's accuracy and applicability in real-time forecasting scenarios. Examination of the model input and output reveals oversights that could undermine the model's predictive accuracy and applicability The process to estimate uncertainty has limited applicability for use in real time There are no coverage metrics regarding the uncertainty intervals C1 [Collado-Villaverde, Armando; Munoz, Pablo] Univ Alcala, Dept Comp Engn, Madrid, Spain. [Cid, Consuelo] Univ Alcala, Dept Phys & Math, Madrid, Spain. C3 Universidad de Alcala; Universidad de Alcala RP Collado-Villaverde, A (corresponding author), Univ Alcala, Dept Comp Engn, Madrid, Spain. EM armando.collado@uah.es OI Munoz, Pablo/0000-0003-0581-5383 FU ESA project Deep Neural Networks for Geomagnetic Forecasting [4000137421/22/NL/GLC/my]; MICINN [PID2020-119407GB-I00]; University of Alcala [2022/00464/001] FX The authors are also thankful to the reviewer for their suggestions which helped us to improve the paper and the ESA's technical officer Alexi Glover for her support. Armando Collado-Villaverde is supported by the ESA project Deep Neural Networks for Geomagnetic Forecasting 4000137421/22/NL/GLC/my. Consuelo Cid acknowledges the support by the MICINN (Grant PID2020-119407GB-I00). Pablo Munoz acknowledges the support by the University of Alcala (Grant 2022/00464/001). CR Abduallah Y., 2024, Zenodo, DOI [10.5281/zenodo.10602474, DOI 10.5281/ZENODO.10602474] Abduallah Y, 2024, SPACE WEATHER, V22, DOI 10.1029/2023SW003824 Alarab I, 2021, NEURAL PROCESS LETT, V53, P1001, DOI 10.1007/s11063-021-10424-x Bhaskar A, 2019, J SPACE WEATHER SPAC, V9, DOI 10.1051/swsc/2019007 Collado-Villaverde A, 2024, NAT HAZARDS, V120, P1141, DOI 10.1007/s11069-023-06241-1 Collado-Villaverde A, 2023, SPACE WEATHER, V21, DOI 10.1029/2023SW003485 Collado-Villaverde A, 2021, SPACE WEATHER, V19, DOI 10.1029/2021SW002748 GAL Y, 2016, INT C MACH LEARN, P1050, DOI DOI 10.48550/ARXIV.1506.02142 Graves A., 2011, Advances in neural information processing sys-tems, P2348 Iong D, 2022, SPACE WEATHER, V20, DOI 10.1029/2021SW002928 Kim T, 2021, Arxiv, DOI arXiv:2105.08919 Larrodera C, 2020, ASTRON ASTROPHYS, V635, DOI 10.1051/0004-6361/201937307 Redxgit, 2024, Zenodo, DOI 10.5281/ZENODO.10732876 Seoh R, 2020, Arxiv, DOI [arXiv:2007.01720, DOI 10.48550/ARXIV.2007.01720, 10.48550/arxiv.2007.01720] Siciliano F, 2021, SPACE WEATHER, V19, DOI 10.1029/2020SW002589 NR 15 TC 0 Z9 0 U1 0 U2 0 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA EI 1542-7390 J9 SPACE WEATHER JI Space Weather PD AUG PY 2024 VL 22 IS 8 AR e2024SW003909 DI 10.1029/2024SW003909 PG 6 WC Astronomy & Astrophysics; Geochemistry & Geophysics; Meteorology & Atmospheric Sciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Astronomy & Astrophysics; Geochemistry & Geophysics; Meteorology & Atmospheric Sciences GA D5A3T UT WOS:001296304100001 OA hybrid DA 2024-09-05 ER PT J AU Kumar, R Althaqafi, E Patro, SGK Simic, V Babbar, A Pamucar, D Singh, SK Verma, A AF Kumar, Raman Althaqafi, Essam Patro, S. Gopal Krishna Simic, Vladimir Babbar, Atul Pamucar, Dragan Singh, Sanjeev Kumar Verma, Amit TI Machine and deep learning methods for concrete strength Prediction: A bibliometric and content analysis review of research trends and future directions SO APPLIED SOFT COMPUTING LA English DT Article DE Review; Machine Learning; Deep Learning; Concrete Strength Prediction; Construction Engineering ID HIGH-PERFORMANCE CONCRETE; COMPRESSIVE STRENGTH; SHEAR-STRENGTH; BRADFORD LAW; ACCURACY; SCIENCE; MODELS AB This review paper provides a detailed evaluation of the existing landscape and future trends in applying machine learning and deep learning approaches for predicting concrete strength in construction engineering. The study contextualizes the investigation of machine learning and deep learning in concrete strength prediction, emphasizing the need for precise strength forecasting in construction. This hybrid review uses quantitative analysis of an extensive collection of 1005 research publications from the Scopus database (2010-2023) to identify clusters, hotspots, and gaps in this area, giving a systematic way to analyze the field's dynamics. This review reveals major research clusters such as concrete characteristics, sustainability, error analysis, and optimization. It identifies research hotspots like compressive strength prediction, reinforced concrete, and neural networks. The review illuminates future research paths, ethical concerns, and environmental implications. It emphasizes the relevance of fairness, bias reduction, and sustainability in developing and deploying machine and deep learning models in the construction sector and the necessity for specialized models in forecasting concrete durability, sustainable concrete strength, and shear strength. C1 [Kumar, Raman] Guru Nanak Dev Engn Coll, Dept Mech & Prod Engn, Ludhiana 141006, Punjab, India. [Althaqafi, Essam] King Khalid Univ, Coll Engn, Civil Engn Dept, Abha 61421, Saudi Arabia. [Patro, S. Gopal Krishna] Woxsen Univ, Sch Technol, Hyderabad, Telangana, India. [Simic, Vladimir] Univ Belgrade, Fac Transport & Traff Engn, Vojvode Stepe 305, Belgrade 11010, Serbia. [Simic, Vladimir] Yuan Ze Univ, Coll Engn, Dept Ind Engn & Management, Taoyuan 320315, Taiwan. [Simic, Vladimir] Korea Univ, Coll Informat, Dept Comp Sci & Engn, Seoul 02841, South Korea. [Babbar, Atul] SGT Univ, Dept Mech Engn, Gurugram 122505, Haryana, India. [Pamucar, Dragan] Univ Belgrade, Fac Org Sci, Dept Operat Res & Stat, Belgrade, Serbia. [Pamucar, Dragan] Western Caspian Univ, Dept Mech & Math, Baku, Azerbaijan. [Pamucar, Dragan] Sunway Univ, Sch Engn & Technol, Selangor, Malaysia. [Singh, Sanjeev Kumar] Galgotia Coll Engn, Galgotias Coll Engn & Technol, Knowledge Pk 1, Greater Noida 201310, Uttar Pradesh, India. [Verma, Amit] Chandigarh Univ, Univ Ctr Res & Dev, Gharuan Mohali 140413, Punjab, India. C3 Guru Nanak Dev Engineering College Ludhiana; King Khalid University; University of Belgrade; Yuan Ze University; Korea University; University of Belgrade; Ministry of Education of Azerbaijan Republic; Western Caspian University; Sunway University; Galgotias College of Engineering & Technology (GCET); Chandigarh University RP Simic, V (corresponding author), Univ Belgrade, Fac Transport & Traff Engn, Vojvode Stepe 305, Belgrade 11010, Serbia. EM sehgal91@yahoo.co.in; ealthaqafi@kku.edu.sa; sgkpatro2008@gmail.com; vsima@sf.bg.ac.rs; atulbabbar123@gmail.com; dragan.pamucar@fon.bg.ac.rs; sksingh72@gmail.com; amit.e9679@cumail.in RI Patro, Dr. S Gopal Krishna/CAF-9606-2022; Simic, Vladimir/B-8837-2011 OI Patro, Dr. S Gopal Krishna/0000-0003-3130-339X; Simic, Vladimir/0000-0001-5709-3744 FU Deanship of Scientific Research at King Khalid University, Abha, Saudi Arabia [RGP2/563/44] FX The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University, Abha, Saudi Arabia for providing financial support to this research work through Large Groups Research Project under grant number RGP2/563/44. CR Abuodeh OR, 2020, APPL SOFT COMPUT, V95, DOI 10.1016/j.asoc.2020.106552 Ahmad A, 2022, CASE STUD CONSTR MAT, V16, DOI 10.1016/j.cscm.2021.e00840 Ahmad A, 2021, POLYMERS-BASEL, V13, DOI 10.3390/polym13193389 Ahmad A, 2021, BUILDINGS-BASEL, V11, DOI 10.3390/buildings11080324 Ahmad A, 2021, MATERIALS, V14, DOI 10.3390/ma14154222 Ahmad A, 2021, MATERIALS, V14, DOI 10.3390/ma14040794 Ahmad W, 2021, MATERIALS, V14, DOI 10.3390/ma14195762 Ahmed HU, 2022, MATERIALS, V15, DOI 10.3390/ma15051868 Al Yamani W.H., 2023, Asian J. Civ. Eng., DOI [10.1007/s42107-023-00614-4, DOI 10.1007/S42107-023-00614-4] Al-Hashem MN, 2022, MATERIALS, V15, DOI 10.3390/ma15196928 Al-Sabaeei AM, 2023, ENERGY REP, V10, P1313, DOI 10.1016/j.egyr.2023.08.009 Alabdullah AA, 2022, CONSTR BUILD MATER, V345, DOI 10.1016/j.conbuildmat.2022.128296 Alabdullh AA, 2022, POLYMERS-BASEL, V14, DOI 10.3390/polym14173505 Albuthbahak OM, 2019, REV ROM MATER, V49, P232 Alidoust P, 2023, EUR J ENVIRON CIV EN, V27, P1853, DOI 10.1080/19648189.2022.2102081 Almustafa MK, 2020, ENG STRUCT, V221, DOI 10.1016/j.engstruct.2020.111109 Almustafa MK, 2023, ENG STRUCT, V294, DOI 10.1016/j.engstruct.2023.116803 Almustafa MK, 2022, CEMENT CONCRETE COMP, V126, DOI 10.1016/j.cemconcomp.2021.104378 Amin MN, 2023, J MATER RES TECHNOL, V25, P1495, DOI 10.1016/j.jmrt.2023.06.006 Amin MN, 2023, J MATER RES TECHNOL, V23, P3943, DOI 10.1016/j.jmrt.2023.02.021 Amin MN, 2023, STRUCTURES, V50, P745, DOI 10.1016/j.istruc.2023.02.080 Amin MN, 2022, MATERIALS, V15, DOI 10.3390/ma15217800 Amin MN, 2022, POLYMERS-BASEL, V14, DOI 10.3390/polym14214717 Amin MN, 2022, MATERIALS, V15, DOI 10.3390/ma15155207 Amin MN, 2022, MATERIALS, V15, DOI 10.3390/ma15124296 Amin MN, 2022, MATERIALS, V15, DOI 10.3390/ma15113808 Amin MN, 2022, MATERIALS, V15, DOI 10.3390/ma15103478 Amin MN, 2022, POLYMERS-BASEL, V14, DOI 10.3390/polym14102128 Amin MN, 2021, MATERIALS, V14, DOI 10.3390/ma14195659 Amin MN, 2021, CRYSTALS, V11, DOI 10.3390/cryst11070779 Anjum M, 2022, POLYMERS-BASEL, V14, DOI 10.3390/polym14183906 Anjum M, 2022, MATERIALS, V15, DOI 10.3390/ma15186261 Aria M, 2017, J INFORMETR, V11, P959, DOI 10.1016/j.joi.2017.08.007 Aslam F, 2022, AIN SHAMS ENG J, V13, DOI 10.1016/j.asej.2021.09.020 Aslam F, 2020, ADV CIV ENG, V2020, DOI 10.1155/2020/8850535 Asteris PG, 2021, CEMENT CONCRETE RES, V145, DOI 10.1016/j.cemconres.2021.106449 Bakouregui AS, 2021, ENG STRUCT, V245, DOI 10.1016/j.engstruct.2021.112836 Behnood A, 2020, CONSTR BUILD MATER, V243, DOI 10.1016/j.conbuildmat.2020.118152 Behnood A, 2015, CONSTR BUILD MATER, V98, P519, DOI 10.1016/j.conbuildmat.2015.08.124 Ben Chaabene W, 2020, COMPOS PART C-OPEN, V3, DOI 10.1016/j.jcomc.2020.100070 Ben Chaabene W, 2020, CONSTR BUILD MATER, V260, DOI 10.1016/j.conbuildmat.2020.119889 Binhl PT, 2022, VIETNAM J EARTH SCI, V44, P470, DOI 10.15625/2615-9783/17177 BROOKES BC, 1969, NATURE, V224, P953, DOI 10.1038/224953a0 Bulbul AMR, 2022, MATERIALS, V15, DOI 10.3390/ma15217764 Caballero L, 2020, SN APPL SCI, V2, DOI 10.1007/s42452-020-2060-5 Cakiroglu C, 2023, J BUILD ENG, V76, DOI 10.1016/j.jobe.2023.107279 Cao JX, 2024, STRUCT HEALTH MONIT, V23, P1013, DOI 10.1177/14759217231178457 Castelli M, 2013, EXPERT SYST APPL, V40, P6856, DOI 10.1016/j.eswa.2013.06.037 Chang QY, 2023, J MATER RES TECHNOL, V24, P6348, DOI 10.1016/j.jmrt.2023.04.223 Channi AS, 2023, INT J INTERACT DES M, V17, P2095, DOI 10.1007/s12008-022-01060-3 Chen K, 2023, NEUROSURG REV, V46, DOI 10.1007/s10143-023-01987-5 Chen LL, 2023, J MATER RES TECHNOL, V24, P6391, DOI 10.1016/j.jmrt.2023.04.180 Choi H, 2020, J MATER CIVIL ENG, V32, DOI 10.1061/(ASCE)MT.1943-5533.0003024 Chou JS, 2020, SOFT COMPUT, V24, P3393, DOI 10.1007/s00500-019-04103-2 Chou JS, 2014, CONSTR BUILD MATER, V73, P771, DOI 10.1016/j.conbuildmat.2014.09.054 Chou JS, 2011, J COMPUT CIVIL ENG, V25, P242, DOI 10.1061/(ASCE)CP.1943-5487.0000088 Chun PJ, 2020, CONSTR BUILD MATER, V253, DOI 10.1016/j.conbuildmat.2020.119238 Cui LY, 2021, ADV CIV ENG, V2021, DOI 10.1155/2021/8878396 Dai L, 2022, MATERIALS, V15, DOI 10.3390/ma15134450 Ali AHHD, 2023, ANTIBIOTICS-BASEL, V12, DOI 10.3390/antibiotics12081305 Deger ZT, 2021, ACI STRUCT J, V118, P61, DOI 10.14359/51728177 Deng FM, 2018, CONSTR BUILD MATER, V175, P562, DOI 10.1016/j.conbuildmat.2018.04.169 Dhiman P, 2023, ELECTRONICS-SWITZ, V12, DOI 10.3390/electronics12040948 Dissanayake K., 2023, International Journal of Computing and Digital Systems, V13, P289, DOI [10.12785/ijcds/130124, DOI 10.12785/IJCDS/130124] Do Espirito Santo Faria R.M., 2023, Confronting Secur. Priv. Chall. Digit. Mark., P73 Dong W, 2023, J BUILD ENG, V72, DOI 10.1016/j.jobe.2023.106577 Donthu N, 2021, J BUS RES, V133, P285, DOI 10.1016/j.jbusres.2021.04.070 Esparham A, 2023, INT J ENG-IRAN, V36, P1383, DOI 10.5829/ije.2023.36.07a.18 Fahad A., 2023, Asian J. Civ. Eng, DOI [10.1007/s42107-023-00786-z, DOI 10.1007/S42107-023-00786-Z] Faridmehr I, 2022, ENG STRUCT, V256, DOI 10.1016/j.engstruct.2022.114030 Faridmehr I, 2022, STRUCT CONCRETE, V23, P1642, DOI 10.1002/suco.202100641 Farooq F, 2021, MATERIALS, V14, DOI 10.3390/ma14174934 Farooq F, 2021, J CLEAN PROD, V292, DOI 10.1016/j.jclepro.2021.126032 Farooq F, 2020, APPL SCI-BASEL, V10, DOI 10.3390/app10207330 Feng DC, 2020, CONSTR BUILD MATER, V230, DOI 10.1016/j.conbuildmat.2019.117000 Feng DC, 2021, ENG STRUCT, V235, DOI 10.1016/j.engstruct.2021.111979 Feng WH, 2022, CONSTR BUILD MATER, V318, DOI 10.1016/j.conbuildmat.2021.125970 Gkountakou F.I., 2022, Math. Model. Eng. Probl., V9, DOI [10.18280/mmep.090101, DOI 10.18280/MMEP.090101] Gros C, 2019, NEUROIMAGE, V184, P901, DOI 10.1016/j.neuroimage.2018.09.081 Guzmán-Torres JA, 2022, ACI MATER J, V119, P25, DOI 10.14359/51734601 Han QH, 2019, CONSTR BUILD MATER, V226, P734, DOI 10.1016/j.conbuildmat.2019.07.315 He HJ, 2023, TRANSP GEOTECH, V42, DOI 10.1016/j.trgeo.2023.101061 Helmi Rabab Alayham Abbas, 2021, 2021 IEEE 12th Control and System Graduate Research Colloquium (ICSGRC), P7, DOI 10.1109/ICSGRC53186.2021.9515227 Hemmatian A, 2023, J BUILD ENG, V63, DOI 10.1016/j.jobe.2022.105474 Nguyen H, 2021, CONSTR BUILD MATER, V266, DOI 10.1016/j.conbuildmat.2020.120950 Hossain R, 2023, WORLD NEUROSURG, V175, P57, DOI [10.1016/j.wneu.2023.03.115, 10.1016/J.WnEU.2023.03.115] Hu Y, 2023, MATER TODAY COMMUN, V36, DOI 10.1016/j.mtcomm.2023.106467 Huang H, 2022, SOIL DYN EARTHQ ENG, V163, DOI 10.1016/j.soildyn.2022.107499 Huang H, 2022, ENG STRUCT, V251, DOI 10.1016/j.engstruct.2021.113479 Huang H, 2021, STRUCT INFRASTRUCT E, V17, P1210, DOI 10.1080/15732479.2020.1801768 Huang H, 2021, J BUILD ENG, V39, DOI 10.1016/j.jobe.2021.102266 Huang H, 2020, J STRUCT ENG, V146, DOI 10.1061/(ASCE)ST.1943-541X.0002725 Huang X, 2021, SUSTAINABILITY-BASEL, V13, DOI 10.3390/su13041691 Iftikhar B, 2023, J MATER RES TECHNOL, V25, P5705, DOI 10.1016/j.jmrt.2023.07.034 Iftikhar B, 2022, J CLEAN PROD, V348, DOI 10.1016/j.jclepro.2022.131285 Ilyas I, 2022, POLYMERS-BASEL, V14, DOI 10.3390/polym14091789 Ilyas I, 2021, MATERIALS, V14, DOI 10.3390/ma14237134 Imran H, 2022, MATERIALS, V15, DOI 10.3390/ma15010317 Iqtidar A, 2021, CRYSTALS, V11, DOI 10.3390/cryst11040352 Ishaque Mohammed, 2022, 2022 9th International Conference on Computing for Sustainable Global Development (INDIACom), P749, DOI 10.23919/INDIACom54597.2022.9763122 Jeon JS, 2014, EARTHQ ENG STRUCT D, V43, P2075, DOI 10.1002/eqe.2437 Jiao HB, 2023, MATER TODAY COMMUN, V35, DOI 10.1016/j.mtcomm.2023.106335 Kang MC, 2021, CONSTR BUILD MATER, V266, DOI 10.1016/j.conbuildmat.2020.121117 Sharafshadeh BK, 2023, BUILDINGS-BASEL, V13, DOI 10.3390/buildings13010125 Kashifi M.T., 2023, Asian J Civ Eng, DOI [10.1007/s42107-023-00769-0, DOI 10.1007/S42107-023-00769-0] Kaur S, 2022, MATER TODAY-PROC, V65, P3780, DOI 10.1016/j.matpr.2022.06.484 KERNER EH, 1961, B MATH BIOPHYS, V23, P141, DOI 10.1007/BF02477468 Keshtegar B, 2021, APPL SOFT COMPUT, V112, DOI 10.1016/j.asoc.2021.107739 Khan K, 2022, POLYMERS-BASEL, V14, DOI 10.3390/polym14153065 Khan K, 2022, MATERIALS, V15, DOI 10.3390/ma15124108 Khan K, 2022, MATERIALS, V15, DOI 10.3390/ma15113762 Khan K, 2022, MATERIALS, V15, DOI 10.3390/ma15103430 Khan MA, 2023, CONSTR BUILD MATER, V394, DOI 10.1016/j.conbuildmat.2023.132012 Khan MA, 2022, J CLEAN PROD, V350, DOI 10.1016/j.jclepro.2022.131364 Nguyen KT, 2020, CONSTR BUILD MATER, V247, DOI 10.1016/j.conbuildmat.2020.118581 Kumar A, 2023, EXPERT SYST APPL, V216, DOI 10.1016/j.eswa.2022.119497 Kumar P, 2021, IEEE ACCESS, V9, P112312, DOI 10.1109/ACCESS.2021.3102647 Kumar R, 2024, INT J INTERACT DES M, DOI 10.1007/s12008-024-01830-1 Kumar R, 2022, SENSORS-BASEL, V22, DOI 10.3390/s22114276 Kumar R, 2022, ARCH COMPUT METHOD E, V29, P2781, DOI 10.1007/s11831-021-09675-7 Kumar R, 2021, SUSTAINABILITY-BASEL, V13, DOI 10.3390/su13105617 Li JW, 2022, MATER TODAY COMMUN, V33, DOI 10.1016/j.mtcomm.2022.104615 Li K, 2021, J MATER CIVIL ENG, V33, DOI 10.1061/(ASCE)MT.1943-5533.0003843 Liu C, 2021, TUNN UNDERGR SP TECH, V111, DOI 10.1016/j.tust.2021.103857 Liu GL, 2023, J MATER RES TECHNOL, V26, P1808, DOI 10.1016/j.jmrt.2023.07.222 Liu KH, 2023, J BUILD ENG, V63, DOI 10.1016/j.jobe.2022.105570 Liu Y, 2023, SUSTAINABILITY-BASEL, V15, DOI 10.3390/su15129170 Lu DC, 2023, J ENG MECH, V149, DOI 10.1061/JENMDT.EMENG-7206 Lu DC, 2017, INT J IMPACT ENG, V103, P124, DOI 10.1016/j.ijimpeng.2017.01.011 Luo Y, 2023, METALS-BASEL, V13, DOI 10.3390/met13081402 Lyu ZQ, 2022, MATERIALS, V15, DOI 10.3390/ma15041477 Mangalathu S, 2018, ENG STRUCT, V160, P85, DOI 10.1016/j.engstruct.2018.01.008 Marani A, 2023, ENG APPL ARTIF INTEL, V118, DOI 10.1016/j.engappai.2022.105652 Marani A, 2022, ENG STRUCT, V257, DOI 10.1016/j.engstruct.2022.114083 Marani A, 2020, MATERIALS, V13, DOI 10.3390/ma13214757 Moral-Muñoz JA, 2020, PROF INFORM, V29, DOI 10.3145/epi.2020.ene.03 MURPHY LJ, 1973, J AM SOC INFORM SCI, V24, P461, DOI 10.1002/asi.4630240607 Nafees A, 2022, POLYMERS-BASEL, V14, DOI 10.3390/polym14081583 Nafees A, 2022, POLYMERS-BASEL, V14, DOI 10.3390/polym14010030 Nafees A, 2021, MATERIALS, V14, DOI 10.3390/ma14247531 NARANAN S, 1970, NATURE, V227, P631, DOI 10.1038/227631a0 Naser AH, 2022, CASE STUD CONSTR MAT, V17, DOI 10.1016/j.cscm.2022.e01262 Nazar S, 2023, DEV BUILT ENVIRON, V13, DOI 10.1016/j.dibe.2022.100113 Nazar S, 2023, J MATER RES TECHNOL, V24, P100, DOI 10.1016/j.jmrt.2023.02.180 Nazar S, 2022, BUILDINGS-BASEL, V12, DOI 10.3390/buildings12122160 Nazar S, 2022, MATER TODAY COMMUN, V32, DOI 10.1016/j.mtcomm.2022.103964 Nguyen NH, 2021, CONSTR BUILD MATER, V304, DOI 10.1016/j.conbuildmat.2021.124467 Trung NT, 2019, STRUCT ENG MECH, V70, P639, DOI 10.12989/sem.2019.70.5.639 Hoang ND, 2020, NEURAL COMPUT APPL, V32, P7289, DOI 10.1007/s00521-019-04258-x Nhat-Duc Hoang, 2023, J. Soft Comput. Civ. Eng., V7, P114, DOI DOI 10.22115/SCCE.2022.349837.1485 Nordin N, 2024, MANAG REV Q, V74, P171, DOI 10.1007/s11301-022-00297-2 Nunez I, 2020, MATERIALS, V13, DOI 10.3390/ma13194331 Ouyang B, 2020, ACI MATER J, V117, P125, DOI 10.14359/51728128 Ouyang BY, 2021, ENG RES EXPRESS, V3, DOI 10.1088/2631-8695/abe344 Oyebisi S, 2023, CONSTR BUILD MATER, V400, DOI 10.1016/j.conbuildmat.2023.132606 Pak H, 2022, ENG STRUCT, V266, DOI 10.1016/j.engstruct.2022.114579 Parida L, 2022, SENSORS-BASEL, V22, DOI 10.3390/s22249920 Plevris V, 2022, CONSTR BUILD MATER, V328, DOI 10.1016/j.conbuildmat.2022.126899 Prakaash AS, 2021, INT J WAVELETS MULTI, V19, DOI 10.1142/S0219691320500745 Prakash M., 2019, Int. J. Recent Technol. Eng., V7, P988 Qin X, 2023, SUSTAINABILITY-BASEL, V15, DOI 10.3390/su15086640 Rahchamani G, 2022, COMPLEXITY, V2022, DOI 10.1155/2022/6322834 Rahman J, 2021, ENG STRUCT, V233, DOI 10.1016/j.engstruct.2020.111743 Rani S, 2022, MATER TODAY-PROC, V60, P1800, DOI 10.1016/j.matpr.2021.12.469 Ranjbar I, 2022, STRUCT CONCRETE, V23, P2405, DOI 10.1002/suco.202100199 Rathakrishnan V, 2022, SCI REP-UK, V12, DOI 10.1038/s41598-022-12890-2 Roman-Naranjo P, 2023, J BIOMED INFORM, V143, DOI 10.1016/j.jbi.2023.104429 Sabour MR, 2021, ENVIRON PROCESS, V8, P1601, DOI 10.1007/s40710-021-00542-y Setiawan A.A., 2022, ARPN J. Eng. Appl. Sci., V17, P1956 Shah MI, 2022, CONSTR BUILD MATER, V314, DOI 10.1016/j.conbuildmat.2021.125634 Shah MI, 2021, ADV CIV ENG, V2021, DOI 10.1155/2021/6682283 Shah MI, 2021, SUSTAINABILITY-BASEL, V13, DOI 10.3390/su13052867 Shah SL, 2023, J MATER RES TECHNOL, V25, P5720, DOI 10.1016/j.jmrt.2023.07.041 Shaikhina T, 2017, ARTIF INTELL MED, V75, P51, DOI 10.1016/j.artmed.2016.12.003 Shamsabadi EA, 2022, CONSTR BUILD MATER, V324, DOI 10.1016/j.conbuildmat.2022.126592 Shang MJ, 2022, MATERIALS, V15, DOI 10.3390/ma15020647 Shariati M, 2022, ENG COMPUT-GERMANY, V38, P757, DOI 10.1007/s00366-020-01081-0 Shariati M, 2021, ENG COMPUT-GERMANY, V37, P2089, DOI 10.1007/s00366-019-00930-x Shariati M, 2019, STEEL COMPOS STRUCT, V33, P319, DOI 10.12989/scs.2019.33.3.319 She AQ, 2023, STRUCTURES, V57, DOI 10.1016/j.istruc.2023.105289 Sidhu AS, 2022, MATER TODAY-PROC, V50, P1248, DOI 10.1016/j.matpr.2021.08.132 Song HW, 2021, CONSTR BUILD MATER, V308, DOI 10.1016/j.conbuildmat.2021.125021 Song HW, 2021, MATERIALS, V14, DOI 10.3390/ma14164518 Song Y, 2022, APPL SCI-BASEL, V12, DOI 10.3390/app12010361 Su Y, 2023, AUTOMAT CONSTR, V149, DOI 10.1016/j.autcon.2023.104776 Sun JB, 2022, J MATER RES TECHNOL, V18, P1391, DOI 10.1016/j.jmrt.2022.02.123 Sun JB, 2022, BUILDINGS-BASEL, V12, DOI 10.3390/buildings12010065 Sun JB, 2021, APPL SCI-BASEL, V11, DOI 10.3390/app11156686 Takahashi M., 2020, J. Struct. Constr. Eng., V85, P1479, DOI [10.3130/AIJS.85.1479, DOI 10.3130/AIJS.85.1479] Tanhadoust A, 2023, CONSTR BUILD MATER, V362, DOI 10.1016/j.conbuildmat.2022.129703 Tanyildizi H, 2022, CONSTR BUILD MATER, V319, DOI 10.1016/j.conbuildmat.2021.126146 Nguyen T, 2019, COMPUT-AIDED CIV INF, V34, P316, DOI 10.1111/mice.12422 Turk K, 2023, FIRE TECHNOL, V59, P2877, DOI 10.1007/s10694-023-01457-w Ullah HS, 2022, J BUILD ENG, V56, DOI 10.1016/j.jobe.2022.104746 Ullah HS, 2022, MATERIALS, V15, DOI 10.3390/ma15093166 Wang BC, 2022, APPL SCI-BASEL, V12, DOI 10.3390/app122110911 Wang QC, 2022, CASE STUD CONSTR MAT, V17, DOI 10.1016/j.cscm.2022.e01243 Wang Y, 2020, APPL SCI-BASEL, V10, DOI 10.3390/app10144724 Wei JA, 2023, ENG STRUCT, V278, DOI 10.1016/j.engstruct.2022.115500 Williams K, 2023, PLOS ONE, V18, DOI 10.1371/journal.pone.0288469 Wu RL, 2023, J INFORMETR, V17, DOI 10.1016/j.joi.2023.101436 Xi B, 2023, MATER TODAY COMMUN, V35, DOI 10.1016/j.mtcomm.2023.106403 Xie WL, 2023, CASE STUD CONSTR MAT, V18, DOI 10.1016/j.cscm.2023.e02004 Xu JJ, 2020, J BUILD ENG, V30, DOI 10.1016/j.jobe.2020.101308 Xu Y, 2021, MATERIALS, V14, DOI 10.3390/ma14227034 Yajie L., 2023, Indonesian Journal of Electrical Engineering Computer Science, V32, P1712, DOI [10.11591/IJEECS.V32.I3.PP1712-1723, DOI 10.11591/IJEECS.V32.I3.PP1712-1723] Yang DW, 2023, J MATER RES TECHNOL, V24, P7198, DOI 10.1016/j.jmrt.2023.04.250 Yang L, 2024, INT J INTERACT DES M, DOI 10.1007/s12008-024-01765-7 Yao XF, 2023, CONSTR BUILD MATER, V375, DOI 10.1016/j.conbuildmat.2023.130898 Yaseen ZM, 2018, ADV ENG SOFTW, V115, P112, DOI 10.1016/j.advengsoft.2017.09.004 Yosri AM, 2023, CASE STUD CONSTR MAT, V18, DOI 10.1016/j.cscm.2023.e02096 Young BA, 2019, CEMENT CONCRETE RES, V115, P379, DOI 10.1016/j.cemconres.2018.09.006 Yuan XZ, 2022, MATERIALS, V15, DOI 10.3390/ma15082823 Yue JG, 2021, CEMENT CONCRETE COMP, V123, DOI 10.1016/j.cemconcomp.2021.104205 Zandifaez P, 2023, CONSTR BUILD MATER, V391, DOI 10.1016/j.conbuildmat.2023.131851 Zeng HY, 2024, CONSTR BUILD MATER, V412, DOI 10.1016/j.conbuildmat.2024.134863 Zhang CW, 2024, INT J STRUCT STAB DY, V24, DOI 10.1142/S0219455424500226 Zhang CW, 2023, SCI CHINA TECHNOL SC, V66, P390, DOI 10.1007/s11431-022-2228-0 Zhang JF, 2022, ENG COMPUT-GERMANY, V38, P1293, DOI 10.1007/s00366-020-01076-x Zhang JF, 2020, CONSTR BUILD MATER, V253, DOI 10.1016/j.conbuildmat.2020.119208 Zhang JF, 2020, J CLEAN PROD, V258, DOI 10.1016/j.jclepro.2020.120665 Zhang LV, 2022, CONSTR BUILD MATER, V316, DOI 10.1016/j.conbuildmat.2021.126103 Zhao WJ, 2023, CONSTR BUILD MATER, V366, DOI 10.1016/j.conbuildmat.2022.130146 Zheng W, 2023, MATER TODAY COMMUN, V35, DOI 10.1016/j.mtcomm.2023.105901 Zheng W, 2023, J BUILD ENG, V70, DOI 10.1016/j.jobe.2023.106479 Zhou X, 2022, COMPUT METHOD APPL M, V390, DOI 10.1016/j.cma.2021.114356 Zhu YZ, 2022, CRYSTALS, V12, DOI 10.3390/cryst12050569 Zou Y, 2022, GELS-BASEL, V8, DOI 10.3390/gels8050271 NR 228 TC 0 Z9 0 U1 13 U2 13 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS SN 1568-4946 EI 1872-9681 J9 APPL SOFT COMPUT JI Appl. Soft. Comput. PD OCT PY 2024 VL 164 AR 111956 DI 10.1016/j.asoc.2024.111956 EA JUL 2024 PG 28 WC Computer Science, Artificial Intelligence; Computer Science, Interdisciplinary Applications WE Science Citation Index Expanded (SCI-EXPANDED) SC Computer Science GA YG7E5 UT WOS:001267393300001 DA 2024-09-05 ER PT J AU Daud, A Ghaffar, S Amjad, T AF Daud, Ali Ghaffar, Sehrish Amjad, Tehmina TI Citation Count Is Not Enough: Citation's Context-Based Scientific Impact Evaluation SO IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS LA English DT Article; Early Access DE Sentiment analysis; Task analysis; Blogs; Software; Social networking (online); Protocols; Prediction algorithms; Article ranking; citation context; conflict of interest; context-based article impact factor (CBAIF); impact evaluation; sentiment analysis ID SENTIMENT ANALYSIS; RANKING AUTHORS AB Qualitative analysis of citations received by a scientific manuscript is a challenging task in the field of citation analysis. In most cases, the existing approaches that involve citations for the scientific impact evaluation normally employ a quantitative parameter, such as the number of received citations, while ignoring the qualitative feature, such as the context of citations, while, in reality, a received citation might hold positive feedback and negative or neutral feedback. In this study, a measure is purposed for the scientific evaluation of the articles based on the context of the citations named the context-based article impact factor (CBAIF). CBAIF not only considers the positive, negative, or neutral context of the citations but also involves the citing and cited author's conflict-of-interest relationship for the evaluation of their scientific impact. With the help of experimentation, it is observed that CBAIF performs a fair ranking of articles based on citation's context, whether it is cited positively or being criticized by some authors. Experimental results show that the CBAIF value with the context of citations revealed accurate results rather than the article impact factor (AIF) value without the context of citations. C1 [Daud, Ali] Abu Dhabi Sch Management, Abu Dhabi, U Arab Emirates. [Ghaffar, Sehrish] Int Islamic Univ, Islamabad 44000, Pakistan. [Amjad, Tehmina] Int Islamic Univ, Dept Comp Sci & Software Engn, Islamabad 44000, Pakistan. C3 International Islamic University, Pakistan; International Islamic University, Pakistan RP Amjad, T (corresponding author), Int Islamic Univ, Dept Comp Sci & Software Engn, Islamabad 44000, Pakistan. EM tehmina.amj@gmail.com RI Amjad, Tehmina/GLS-0209-2022; Daud, Ali/ABA-8422-2020 OI Daud, Ali/0000-0002-8284-6354 CR Amjad T, 2022, LIBR HI TECH, V40, P685, DOI 10.1108/LHT-05-2021-0154 Amjad T, 2021, SCIENTOMETRICS, V126, P4333, DOI 10.1007/s11192-021-03930-1 Amjad T, 2018, COMPANION PROCEEDINGS OF THE WORLD WIDE WEB CONFERENCE 2018 (WWW 2018), P373, DOI 10.1145/3184558.3186358 Amjad T, 2020, SCIENTOMETRICS, V122, P915, DOI 10.1007/s11192-019-03334-2 Amjad T, 2018, LIBR HI TECH, V36, P97, DOI 10.1108/LHT-05-2017-0090 Amjad T, 2017, MALAYS J LIBR INF SC, V22, P69, DOI 10.22452/mjlis.vol22no1.6 Amjad T, 2016, KUWAIT J SCI, V43, P101 Amjad T, 2016, INFORM PROCESS MANAG, V52, P374, DOI 10.1016/j.ipm.2015.12.001 [Anonymous], 2004, Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics - ACL'04, DOI DOI 10.3115/1218955.1218990 Anupkant S, 2017, PROCEEDINGS OF THE 2017 INTERNATIONAL CONFERENCE ON BIG DATA ANALYTICS AND COMPUTATIONAL INTELLIGENCE (ICBDAC), P348, DOI 10.1109/ICBDACI.2017.8070862 Bai XM, 2017, INFORMATION, V8, DOI 10.3390/info8030073 Bai XM, 2017, IEEE ACCESS, V5, P17607, DOI 10.1109/ACCESS.2017.2740226 Bai XM, 2016, PROCEEDINGS OF THE 25TH INTERNATIONAL CONFERENCE ON WORLD WIDE WEB (WWW'16 COMPANION), P9, DOI 10.1145/2872518.2889383 Bal D, 2011, LECT NOTES COMPUT SC, V6997, P129, DOI 10.1007/978-3-642-24434-6_10 Boiy E, 2009, INFORM RETRIEVAL, V12, P526, DOI 10.1007/s10791-008-9070-z Bouyssou D, 2016, J INFORMETR, V10, P183, DOI 10.1016/j.joi.2015.12.006 Cavalcanti DC, 2011, PROC INT C TOOLS ART, P156, DOI 10.1109/ICTAI.2011.32 Daud A, 2019, LIBR HI TECH, V37, P8, DOI 10.1108/LHT-03-2018-0042 Dunaiski M, 2018, J INFORMETR, V12, P679, DOI 10.1016/j.joi.2018.06.004 Esuli Andrea., 2006, SENTIWORDNET PUBLICL Giuffrida C, 2019, J INFORMETR, V13, P500, DOI 10.1016/j.joi.2019.02.008 Hu K, 2019, INFORM PROCESS MANAG, V56, P1185, DOI 10.1016/j.ipm.2019.02.014 Kim S., 2004, P 20 INT C COMP LING, V4, P1367, DOI DOI 10.3115/1220355.1220555 Kreutzer J., 2013, Opinion Mining Using SentiWordNet' Liu HF, 2015, IEEE ACCESS, V3, P1695, DOI 10.1109/ACCESS.2015.2481320 Liu J, 2017, COMM COM INF SC, V761, P334, DOI 10.1007/978-981-10-6370-1_33 Vilares D, 2017, INFORM PROCESS MANAG, V53, P595, DOI 10.1016/j.ipm.2017.01.004 NR 27 TC 0 Z9 0 U1 3 U2 27 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 2329-924X J9 IEEE T COMPUT SOC SY JI IEEE Trans. Comput. Soc. Syst. PD 2022 AUG 5 PY 2022 DI 10.1109/TCSS.2022.3193508 EA AUG 2022 PG 7 WC Computer Science, Cybernetics; Computer Science, Information Systems WE Science Citation Index Expanded (SCI-EXPANDED) SC Computer Science GA 3T7ZW UT WOS:000840490800001 DA 2024-09-05 ER PT C AU Zhao, ZB Gao, Q Huang, LY AF Zhao, Zhenbing Gao, Qiang Huang, Liyan GP IEEE TI Research on the Order and Specific Component of the Output Signals of Independent Component Analysis SO 2008 7TH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION, VOLS 1-23 LA English DT Proceedings Paper CT 7th World Congress on Intelligent Control and Automation CY JUN 25-27, 2008 CL Chongqing, PEOPLES R CHINA DE Independent component analysis; Independent component ordering; Apriori knowledge ID CONSTANT-MODULUS ALGORITHM; NON-GAUSSIAN SIGNALS; BLIND AB Independent Component Analysis (ICA) is a new signal processing technique that can recover source signals from the observed mixtures. In some applications of ICA, it is desired that the order of the recovered source signals can be predicted and the component which we are interested in can be extracted separately. But the order of recovered source signals is unpredictable. Facing this problem, a new algorithm based on ICA is presented for determining the order of recovered source signals in this paper. First it gives a brief introduction about the problem of ICA, and then by using the observed vectors and apriori knowledge of components from the first run, it also constructs the linear system of equations statistically and achieves the separating matrix. The results of simulation show that the proposed method can separate the source signals in specified order effectively. C1 [Zhao, Zhenbing; Gao, Qiang] N China Elect Power Univ, Sch Elect & Elect Engn, Baoding 071003, Hebei Province, Peoples R China. [Huang, Liyan] Tianjin Elect Corp, Elect Power Commun Co, Tianjin 300010, Peoples R China. C3 North China Electric Power University RP Zhao, ZB (corresponding author), N China Elect Power Univ, Sch Elect & Elect Engn, Baoding 071003, Hebei Province, Peoples R China. EM diligencyzhao@yahoo.com.cn; gaoqiang0001@sohu.com; huangliyan08@163.com CR [Anonymous], P INT C ART NEUR NET [Anonymous], INTRO RANDOM PROCESS BACK AD, 1999, P INT JOINT C NEUR N, V2, P989, DOI DOI 10.1109/IJCNN.1999.831089 BINGHAM E, 2000, NEURAL SYSTEMS, V10, P1 Cheung YM, 2001, NEUROCOMPUTING, V41, P145, DOI 10.1016/S0925-2312(00)00358-1 Cichocki A, 1997, ELECTRON LETT, V33, P64, DOI 10.1049/el:19970060 COMON P, 1994, SIGNAL PROCESS, V36, P287, DOI 10.1016/0165-1684(94)90029-9 EDWARD PC, 2003, INTRO STOCHASTIC PRO HYVARINEN A, 1997, NEURAL NETWORKS SIGN, V7, P388 JUTTEN C, 1991, SIGNAL PROCESS, V24, P1, DOI 10.1016/0165-1684(91)90079-X KANNAN A, 1979, INTRO STOCHASTIC PRO Lee TW, 1999, NEURAL COMPUT, V11, P417, DOI 10.1162/089976699300016719 Moreau E, 2000, IEEE T SIGNAL PROCES, V48, P3248, DOI 10.1109/78.875482 Sheinvald J, 1998, IEEE T SIGNAL PROCES, V46, P1878, DOI 10.1109/78.700958 ZHU XL, 2003, 4 INT S IND COMP AN NR 15 TC 0 Z9 0 U1 1 U2 2 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA BN 978-1-4244-2113-8 PY 2008 BP 3569 EP + DI 10.1109/WCICA.2008.4593491 PG 2 WC Automation & Control Systems; Computer Science, Artificial Intelligence; Computer Science, Cybernetics; Engineering, Electrical & Electronic; Robotics WE Conference Proceedings Citation Index - Science (CPCI-S) SC Automation & Control Systems; Computer Science; Engineering; Robotics GA BIJ02 UT WOS:000259965702210 DA 2024-09-05 ER PT J AU Umer, M Sadiq, S Missen, MMS Hameed, Z Aslam, Z Siddique, MA Nappi, M AF Umer, Muhammad Sadiq, Saima Missen, Malik Muhammad Saad Hameed, Zahid Aslam, Zahid Siddique, Muhammad Abubakar Nappi, Michele TI Scientific papers citation analysis using textual features and SMOTE resampling techniques SO PATTERN RECOGNITION LETTERS LA English DT Article DE Citation sentiment analysis; Machine learning; Feature engineering; TF-IDF; SMOTE ID SENTIMENT ANALYSIS; IMPACT; CLASSIFICATION; EXTRACTION; INDEX AB Ascertaining the impact of research is significant for the research community and academia of all disciplines. The only prevalent measure associated with the quantification of research quality is the citationcount. Although a number of citations play a significant role in academic research, sometimes citations can be biased or made to discuss only the weaknesses and shortcomings of the research. By considering the sentiment of citations and recognizing patterns in text can aid in understanding the opinion of the peer research community and will also help in quantifying the quality of research articles. Efficient feature representation combined with machine learning classifiers has yielded significant improvement in text classification. However, the effectiveness of such combinations has not been analyzed for citation sentiment analysis. This study aims to investigate pattern recognition using machine learning models in combination with frequency-based and prediction-based feature representation techniques with and without using Synthetic Minority Oversampling Technique (SMOTE) on publicly available citation sentiment dataset. Sentiment of citation instances are classified into positive, negative or neutral. Results indicate that the Extra tree classifier in combination with Term Frequency-Inverse Document Frequency achieved 98.26% accuracy on the SMOTE-balanced dataset. (c) 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) C1 [Umer, Muhammad; Sadiq, Saima; Siddique, Muhammad Abubakar] Khwaja Fareed Univ Engn & Informat Technol, Dept Comp Sci, Rahim Yar Khan, Pakistan. [Umer, Muhammad; Missen, Malik Muhammad Saad; Aslam, Zahid] Islamia Univ Bahawalpur, Dept Comp Sci & Informat Technol, Bahawalpur 63100, Pakistan. [Nappi, Michele] Univ Salerno, Dept Comp Sci, Via Giovanni Paolo II 132, I-84084 Salerno, Italy. [Hameed, Zahid] Khwaja Fareed Univ Engn & Informat Technol, Dept Management Sci, Rahim Yar Khan, Pakistan. C3 Khwaja Fareed University of Engineering & Information Technology, Pakistan; Islamia University of Bahawalpur; University of Salerno; Khwaja Fareed University of Engineering & Information Technology, Pakistan RP Umer, M (corresponding author), Khwaja Fareed Univ Engn & Informat Technol, Dept Comp Sci, Rahim Yar Khan, Pakistan.; Umer, M; Missen, MMS (corresponding author), Islamia Univ Bahawalpur, Dept Comp Sci & Informat Technol, Bahawalpur 63100, Pakistan. EM umersabir1996@gmail.com; s.kamrran@gmail.com; Saad.missen@iub.edu.pk; zahid.hameed@kfueit.edu.pk; zahid.aslam@iub.edu.pk; abubakar.ahmadani@gmail.com; mnappi@unisa.it RI Missen, Malik Muhammad Saad/LEM-0611-2024; Umer, Muhammad/AAX-4594-2020; Umer, Muhammad/KHU-2339-2024 OI Umer, Muhammad/0000-0002-6015-9326; Umer, Muhammad/0009-0001-8751-6100; Hameed, Zahid/0000-0002-2413-6143 CR Abu-Jbara A., 2013, NAACL, P596 Aljuaid H, 2021, TELEMAT INFORM, V56, DOI 10.1016/j.tele.2020.101492 [Anonymous], 2012, 2012 Conference of the North American Chapter of the Association for Computational Linguistics [Anonymous], MACHINE LEARNING Athar A., 2011, P ACL 2011 STUD SESS, P81 Athar Awais., 2012, PROC ACL WORKSHOP DE, P18 Baccianella S, 2010, LREC 2010 - SEVENTH INTERNATIONAL CONFERENCE ON LANGUAGE RESOURCES AND EVALUATION Bar-Ilan J, 2017, SCIENTOMETRICS, V113, P547, DOI 10.1007/s11192-017-2242-0 Bergstrom C.T., 2008, ASSESSING CITATIONS Bornmann L., 2014, WHICH KIND PAPERS HA Bornmann L, 2008, J DOC, V64, P45, DOI 10.1108/00220410810844150 BOYD CR, 1987, J TRAUMA, V27, P370, DOI 10.1097/00005373-198704000-00005 Breiman L., 1984, CLASSIFICATION REGRE, DOI DOI 10.1201/9781315139470 CANO V, 1989, J AM SOC INFORM SCI, V40, P284, DOI 10.1002/(SICI)1097-4571(198907)40:4<284::AID-ASI10>3.0.CO;2-Z Chaturvedi I, 2019, PATTERN RECOGN LETT, V125, P264, DOI 10.1016/j.patrec.2019.04.024 Chawla NV, 2002, J ARTIF INTELL RES, V16, P321, DOI 10.1613/jair.953 Devi BL, 2020, ADV INTELL SYST COMP, V1054, P321, DOI 10.1007/978-981-15-0135-7_31 Falagas ME, 2008, FASEB J, V22, P2623, DOI 10.1096/fj.08-107938 Freund Y., 1999, Journal of Japanese Society for Artificial Intelligence, V14, P771 GARDNER WA, 1984, SIGNAL PROCESS, V6, P113, DOI 10.1016/0165-1684(84)90013-6 Garfield E, 2006, JAMA-J AM MED ASSOC, V295, P90, DOI 10.1001/jama.295.1.90 Ghosh S., 2016, INT C INT TEXT PROC, P292 He HB, 2008, IEEE IJCNN, P1322, DOI 10.1109/IJCNN.2008.4633969 Hernández-Alvarez M, 2015, 2015 IEEE 18TH INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE AND ENGINEERING (CSE), P307, DOI 10.1109/CSE.2015.21 Hirsch JE, 2005, P NATL ACAD SCI USA, V102, P16569, DOI 10.1073/pnas.0507655102 Hjerppe Roland., 1980, A Bibliography of Bibliometrics and Citation Indexing and Analysis Huggett S, 2013, ATHEROSCLEROSIS, V230, P275, DOI 10.1016/j.atherosclerosis.2013.07.051 Ishaku A., 2020, J MATH BIOL, V81, P209, DOI DOI 10.1007/s00285-020-01508-8 Jokar K., 2021, SCIENTOMETRICS RES J Kochhar SK, 2020, ICT EXPRESS, V6, P253, DOI 10.1016/j.icte.2020.02.001 Leydesdorff L, 2010, J AM SOC INF SCI TEC, V61, P2365, DOI 10.1002/asi.21371 Lim TS, 2000, MACH LEARN, V40, P203, DOI 10.1023/A:1007608224229 Lindsay J. Michael, 2016, Journal of Electronic Resources in Medical Libraries, V13, P8, DOI 10.1080/15424065.2016.1142836 Ma Z, 2016, P 5 WORKSH COMP LING, P122, DOI [10.18653/v1/w16-0420, DOI 10.18653/V1/W16-0420] Melero R, 2015, BIOCHEM MEDICA, V25, P152, DOI 10.11613/BM.2015.016 Meng R., 2017, ICONFERENCE 2017 P Mercier D., 2021, IMPACTCITE XLNET BAS Mercier D., 2020, ARXIV PREPRINT ARXIV Pan RK, 2014, SCI REP-UK, V4, DOI 10.1038/srep04880 Park S, 2015, PATTERN RECOGN LETT, V56, P38, DOI 10.1016/j.patrec.2015.01.004 Sadiq S, 2021, FUTURE GENER COMP SY, V114, P120, DOI 10.1016/j.future.2020.07.050 Scholkopf B., 1996, Artificial Neural Networks - ICANN 96. 1996 International Conference Proceedings, P47 Sendhilkumar S., 2013, P INT C ICCSEA, P411 Sharaff A, 2019, ADV INTELL SYST, V924, P189, DOI 10.1007/978-981-13-6861-5_17 Shi XL, 2009, PLOS ONE, V4, DOI 10.1371/journal.pone.0006547 SIEVERT ME, 1989, J AM SOC INFORM SCI, V40, P334, DOI 10.1002/(SICI)1097-4571(198909)40:5<334::AID-ASI6>3.0.CO;2-S SMALL H, 1989, J AM SOC INFORM SCI, V40, P152, DOI 10.1002/(SICI)1097-4571(198905)40:3<152::AID-ASI3>3.0.CO;2-K SPIEGELROSING I, 1977, SOC STUD SCI, V7, P97, DOI 10.1177/030631277700700111 Sula CA, 2014, LIT LINGUIST COMPUT, V29, P452, DOI 10.1093/llc/fqu019 West JD, 2013, J AM SOC INF SCI TEC, V64, P787, DOI 10.1002/asi.22790 Xu Jun, 2015, AMIA Annu Symp Proc, V2015, P1334 Yang L, 2020, IEEE ACCESS, V8, P23522, DOI 10.1109/ACCESS.2020.2969854 Yousaf A, 2020, IEEE ACCESS Yousif A, 2019, ARTIF INTELL REV, V52, P1805, DOI 10.1007/s10462-017-9597-8 Zhao JH, 2020, PATTERN RECOGN LETT, V138, P397, DOI 10.1016/j.patrec.2020.07.035 NR 55 TC 23 Z9 23 U1 2 U2 23 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS SN 0167-8655 EI 1872-7344 J9 PATTERN RECOGN LETT JI Pattern Recognit. Lett. PD OCT PY 2021 VL 150 BP 250 EP 257 DI 10.1016/j.patrec.2021.07.009 EA AUG 2021 PG 8 WC Computer Science, Artificial Intelligence WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Computer Science GA UO5DU UT WOS:000694715500011 OA hybrid, Green Published DA 2024-09-05 ER PT J AU He, CC Wu, J Zhang, QP AF He, Chaocheng Wu, Jiang Zhang, Qingpeng TI Proximity-aware research leadership recommendation in research collaboration via deep neural networks SO JOURNAL OF THE ASSOCIATION FOR INFORMATION SCIENCE AND TECHNOLOGY LA English DT Article ID SCIENTIFIC COLLABORATION; CHINA; INSTITUTIONS; FUSION AB Collaborator recommendation is of great significance for facilitating research collaboration. Proximities have been demonstrated to be significant factors and determinants of research collaboration. Research leadership is associated with not only the capability to integrate resources to launch and sustain the research project but also the production and academic impact of the collaboration team. However, existing studies mainly focus on social or cognitive proximity, failing to integrate critical proximities comprehensively. Besides, existing studies focus on recommending relationships among all the coauthors, ignoring leadership in research collaboration. In this article, we propose a proximity-aware research leadership recommendation (PRLR) model to systematically integrate critical node attribute information (critical proximities) and network features to conduct research leadership recommendation by predicting the directed links in the research leadership network. PRLR integrates cognitive, geographical, and institutional proximity as node attribute information and constructs a leadership-aware coauthorship network to preserve the research leadership information. PRLR learns the node attribute information, the local network features, and the global network features with an autoencoder model, a joint probability constraint, and an attribute-aware skip-gram model, respectively. Extensive experiments and ablation studies have been conducted, demonstrating that PRLR significantly outperforms the state-of-the-art collaborator recommendation models in research leadership recommendation. C1 [He, Chaocheng; Wu, Jiang] Wuhan Univ, Sch Informat Management, Wuhan, Hubei, Peoples R China. [He, Chaocheng; Zhang, Qingpeng] City Univ Hong Kong, Sch Data Sci, Kowloon, Hong Kong, Peoples R China. C3 Wuhan University; City University of Hong Kong RP Wu, J (corresponding author), Wuhan Univ, Sch Informat Management, Wuhan, Hubei, Peoples R China.; Zhang, QP (corresponding author), City Univ Hong Kong, Sch Data Sci, Kowloon, Hong Kong, Peoples R China. EM jiangw@whu.edu.cn; qingpeng.zhang@cityu.edu.hk RI Zhang, Qingpeng/D-4682-2011 OI Zhang, Qingpeng/0000-0002-6819-0686; He, Chaocheng/0000-0002-9885-0331 CR Boschma RA, 2005, REG STUD, V39, P61, DOI 10.1080/0034340052000320887 Brandao MA, 2013, PROCEEDINGS OF THE 22ND INTERNATIONAL CONFERENCE ON WORLD WIDE WEB (WWW'13 COMPANION), P833 Broekel T, 2012, J ECON GEOGR, V12, P409, DOI 10.1093/jeg/lbr010 Fernández A, 2016, SCIENTOMETRICS, V106, P1073, DOI 10.1007/s11192-015-1819-8 Grover A, 2016, KDD'16: PROCEEDINGS OF THE 22ND ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, P855, DOI 10.1145/2939672.2939754 Gui QC, 2018, GROWTH CHANGE, V49, P532, DOI 10.1111/grow.12245 He CC, 2020, J ASSOC INF SCI TECH, V71, P1341, DOI 10.1002/asi.24331 Hoekman J, 2010, RES POLICY, V39, P662, DOI 10.1016/j.respol.2010.01.012 Huang P, 2018, DESTECH TRANS ENVIR Järvelin K, 2002, ACM T INFORM SYST, V20, P422, DOI 10.1145/582415.582418 Jeck T, 2020, MORAV GEOGR REP, V28, P98, DOI 10.2478/mgr-2020-0008 Klavans R, 2010, SCIENTOMETRICS, V82, P539, DOI 10.1007/s11192-010-0188-6 Kong XJ, 2017, SCIENTOMETRICS, V113, P369, DOI 10.1007/s11192-017-2485-9 Kong XJ, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0148492 Li J, 2014, WWW'14 COMPANION: PROCEEDINGS OF THE 23RD INTERNATIONAL CONFERENCE ON WORLD WIDE WEB, P1209, DOI 10.1145/2567948.2579034 Liang L., 2006, INT WORKSH WEB Liu Z, 2018, KDD'18: PROCEEDINGS OF THE 24TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING, P1870, DOI 10.1145/3219819.3220050 Ma YF, 2020, P NATL ACAD SCI USA, V117, P14077, DOI 10.1073/pnas.1915516117 Malmgren RD, 2010, NATURE, V465, P622, DOI 10.1038/nature09040 Melitz J, 2014, J INT ECON, V93, P351, DOI 10.1016/j.jinteco.2014.04.004 Mikolov T., 2013, ADV NEURAL INFORM PR, P3111, DOI DOI 10.48550/ARXIV.1310.4546 Nooteboom B., 2000, LEARNING INNOVATION, DOI [10.1093/acprof:oso/9780199241002.001.0001, DOI 10.1093/ACPROF:OSO/9780199241002.001.0001] Pazzani M. J., 2007, The Adaptive Web. Methods and Strategies of Web Personalization, P325 Perozzi B, 2014, PROCEEDINGS OF THE 20TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING (KDD'14), P701, DOI 10.1145/2623330.2623732 Petruzzelli AM, 2011, TECHNOVATION, V31, P309, DOI 10.1016/j.technovation.2011.01.008 Chuan PM, 2018, APPL INTELL, V48, P2470, DOI 10.1007/s10489-017-1086-x Plotnikova T, 2014, SCIENTOMETRICS, V98, P1173, DOI 10.1007/s11192-013-1182-6 Pradhan T, 2020, KNOWL-BASED SYST, V197, DOI 10.1016/j.knosys.2020.105784 Sekara V, 2018, P NATL ACAD SCI USA, V115, P12603, DOI 10.1073/pnas.1800471115 Sinatra R, 2016, SCIENCE, V354, DOI 10.1126/science.aaf5239 SINNOTT RW, 1984, SKY TELESCOPE, V68, P159 Tang J., 2012, 18 ACM SIGKDD INT C, P1285, DOI DOI 10.1145/2339530.2339730 Tang J, 2015, PROCEEDINGS OF THE 24TH INTERNATIONAL CONFERENCE ON WORLD WIDE WEB (WWW 2015), P1067, DOI 10.1145/2736277.2741093 Wang CP, 2020, ACM T KNOWL DISCOV D, V14, DOI 10.1145/3391298 Wang CK, 2019, IEEE T KNOWL DATA EN, V31, P2277, DOI 10.1109/TKDE.2018.2877748 Wang LL, 2017, RES EVALUAT, V26, P124, DOI 10.1093/reseval/rvx009 Wang WC, 2014, SCIENTOMETRICS, V98, P1535, DOI 10.1007/s11192-013-1072-y Wang XW, 2013, SCIENTOMETRICS, V95, P885, DOI 10.1007/s11192-012-0877-4 Xia F, 2014, IEEE T EMERG TOP COM, V2, P364, DOI 10.1109/TETC.2014.2356505 Zeng A, 2017, PHYS REP, V714, P1, DOI 10.1016/j.physrep.2017.10.001 Zhang CY, 2020, IEEE T IND INFORM, V16, P2707, DOI 10.1109/TII.2019.2947066 Zhang C, 2017, SCIENTOMETRICS, V113, P1129, DOI 10.1007/s11192-017-2513-9 Zhang JZ, 2017, INFORM PROCESS MANAG, V53, P42, DOI 10.1016/j.ipm.2016.06.005 Zhang Y, 2019, SCIENTOMETRICS, V121, P399, DOI 10.1007/s11192-019-03206-9 Zhang Z, 2018, PROCEEDINGS OF THE TWENTY-SEVENTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, P3155 Zhao SF, 2020, IEICE T INF SYST, VE103D, P71, DOI 10.1587/transinf.2019EDP7108 Zhou JL, 2018, SCIENTOMETRICS, V114, P1327, DOI 10.1007/s11192-017-2619-0 Zhou X, 2017, INFORM RETRIEVAL J, V20, P317, DOI 10.1007/s10791-017-9300-3 NR 48 TC 16 Z9 16 U1 8 U2 94 PU WILEY PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 2330-1635 EI 2330-1643 J9 J ASSOC INF SCI TECH PD JAN PY 2022 VL 73 IS 1 BP 70 EP 89 DI 10.1002/asi.24546 EA JUN 2021 PG 20 WC Computer Science, Information Systems; Information Science & Library Science WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Computer Science; Information Science & Library Science GA XJ2PG UT WOS:000667522800001 DA 2024-09-05 ER PT J AU Du, JC Soysal, E Wang, D He, L Lin, B Wang, JQ Manion, FJ Li, YR Wu, E Yao, LX AF Du, Jingcheng Soysal, Ekin Wang, Dong He, Long Lin, Bin Wang, Jingqi Manion, Frank J. Li, Yeran Wu, Elise Yao, Lixia TI Machine learning models for abstract screening task - A systematic literature review application for health economics and outcome research SO BMC MEDICAL RESEARCH METHODOLOGY LA English DT Article DE Machine learning; Deep learning; Text classification; Article screening; Systematic literature review AB Objective Systematic literature reviews (SLRs) are critical for life-science research. However, the manual selection and retrieval of relevant publications can be a time-consuming process. This study aims to (1) develop two disease-specific annotated corpora, one for human papillomavirus (HPV) associated diseases and the other for pneumococcal-associated pediatric diseases (PAPD), and (2) optimize machine- and deep-learning models to facilitate automation of the SLR abstract screening.Methods This study constructed two disease-specific SLR screening corpora for HPV and PAPD, which contained citation metadata and corresponding abstracts. Performance was evaluated using precision, recall, accuracy, and F1-score of multiple combinations of machine- and deep-learning algorithms and features such as keywords and MeSH terms.Results and conclusions The HPV corpus contained 1697 entries, with 538 relevant and 1159 irrelevant articles. The PAPD corpus included 2865 entries, with 711 relevant and 2154 irrelevant articles. Adding additional features beyond title and abstract improved the performance (measured in Accuracy) of machine learning models by 3% for HPV corpus and 2% for PAPD corpus. Transformer-based deep learning models that consistently outperformed conventional machine learning algorithms, highlighting the strength of domain-specific pre-trained language models for SLR abstract screening. This study provides a foundation for the development of more intelligent SLR systems. C1 [Du, Jingcheng; Soysal, Ekin; He, Long; Lin, Bin; Wang, Jingqi; Manion, Frank J.] Intelligent Med Objects, Houston, TX USA. [Wang, Dong; Li, Yeran; Wu, Elise; Yao, Lixia] Merck & Co Inc, Rahway, NJ 07065 USA. [Soysal, Ekin] Univ Texas Hlth Sci Ctr Houston, McWilliams Sch Biomed Informat, Houston, TX USA. C3 Merck & Company; University of Texas System; University of Texas Health Science Center Houston RP Yao, LX (corresponding author), Merck & Co Inc, Rahway, NJ 07065 USA. EM Lixia.cn.yao@gmail.com OI Wang, Dong/0009-0003-3322-6284 FU Merck Sharp Dohme LLC; Merck & Co., Inc., Rahway, NJ, USA FX This research was supported by Merck Sharp & Dohme LLC, a subsidiary of Merck & Co., Inc., Rahway, NJ, USA. CR Achiam OJ, 2023, Arxiv, DOI [arXiv:2303.08774, DOI 10.48550/ARXIV.2303.08774] [Anonymous], Recent advances in. biomedical literature mining | Briefings in Bioinformatics [Anonymous], Logistic Regression, DOI [10.1007/978-1-4419-1742-3, DOI 10.1007/978-1-4419-1742-3] BioBERT, a pre-trained biomedical language representation model for biomedical text mining Bullers K, 2018, J MED LIBR ASSOC, V106, P198, DOI 10.5195/jmla.2018.323 Carver Jeffrey C., 2013, 2013 ACM / IEEE International Symposium on Empirical Software Engineering and Measurement (ESEM), P203, DOI 10.1109/ESEM.2013.28 Chen Q, 2022, arXiv Chen Q., 2022, arXiv Chen TQ, 2016, KDD'16: PROCEEDINGS OF THE 22ND ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, P785, DOI 10.1145/2939672.2939785 Devlin J, 2019, Arxiv, DOI arXiv:1810.04805 Do C., 2005, Advances in Neural Information Processing Systems emapic, about us Howard J, 2018, Arxiv, DOI arXiv:1801.06146 Kermany DS, 2018, CELL, V172, P1122, DOI 10.1016/j.cell.2018.02.010 Lame G., 2019, Proceedings of the Design Society: International Conference on Engineering Design, P1633, DOI DOI 10.1017/DSI.2019.169 Michelson M, 2019, CONT CLIN TRIAL COMM, V16, DOI 10.1016/j.conctc.2019.100443 nlm, Medical Subject Headings-home page Noble WS, 2006, NAT BIOTECHNOL, V24, P1565, DOI 10.1038/nbt1206-1565 Pal M, 2005, INT J REMOTE SENS, V26, P217, DOI 10.1080/01431160412331269698 Vaswani A, 2017, ADV NEUR IN, V30 Yu Gu, 2022, ACM Transactions on Computing and Healthcare, V3, DOI 10.1145/3458754 NR 21 TC 0 Z9 0 U1 5 U2 5 PU BMC PI LONDON PA CAMPUS, 4 CRINAN ST, LONDON N1 9XW, ENGLAND EI 1471-2288 J9 BMC MED RES METHODOL JI BMC Med. Res. Methodol. PD MAY 9 PY 2024 VL 24 IS 1 AR 108 DI 10.1186/s12874-024-02224-3 PG 7 WC Health Care Sciences & Services WE Science Citation Index Expanded (SCI-EXPANDED) SC Health Care Sciences & Services GA PX4H9 UT WOS:001217362100002 PM 38724903 OA gold, Green Published DA 2024-09-05 ER PT J AU Loan, FA Bashir, B Nasreen, N AF Loan, Fayaz Ahmad Bashir, Bisma Nasreen, Nahida TI Applied artificial intelligence : A bibliometric study of an International Journal SO COLLNET JOURNAL OF SCIENTOMETRICS AND INFORMATION MANAGEMENT LA English DT Article DE Artificial intelligence; Applied artificial intelligence; Bibliometrics; Scientometrics; Citation analysis; Keyword analysis ID SCIENTOMETRIC ANALYSIS; RESEARCH OUTPUT; SCIENCE; PRODUCTIVITY; MANAGEMENT; AMERICAN; PATTERNS; IMPACT AB Purpose: The study aims to conduct a bibliometric analysis of an international journal "Applied Artificial Intelligence (AAI)" to analyze publication trends, authorship patterns, collaborative networks, citation behaviors, and research hotspots of authors, organizations, and countries. Research Design/Methodology: "Applied Artificial Intelligence" is a peer-reviewed international journal, published by Taylor & Francis. The journal has published more than 1100 articles in 34 volumes so far. The idea was conceived to conduct the bibliometric study of the AAI journal. The data were collected from the Web of Science (WOS) database, owned by the Clarivate Analytics. A total of 1109 articles were retrieved and their metadata was collected for further analysis and interpretation. Additionally, the VOS viewer software was used for mapping and visualization of the bibliographic information. Findings: The journal has experienced positive growth in research productivity and negative growth in citations. Authors of 74 prominent countries have contributed to the journal and the USA has occupied the first position in publication count followed by Italy, India and England respectively. All the countries work in close collaboration and created a collaborative network and sub-networks. The USA is the pivot of the collaborative network, mostly collaborating with England, Japan, Italy, China and Germany. The keywords like the classification, optimization, algorithms and neural networks are the most common and hence the hot topics of research in the journal. Originality/Value: The main advantage of this study is that it provides profound knowledge of the content structure and developmental process of the journal to date. It is also valuable for researchers in the field of artificial intelligence to identify the research hotspots in this field. C1 [Loan, Fayaz Ahmad; Bashir, Bisma; Nasreen, Nahida] Univ Kashmir, Ctr Cent Asian Studies, Srinagar, Jammu & Kashmir, India. C3 University of Kashmir RP Loan, FA (corresponding author), Univ Kashmir, Ctr Cent Asian Studies, Srinagar, Jammu & Kashmir, India. EM fayazlib@yahoo.co.in; bismabashir53@gmail.com; nahidariasreen94@gmail.com CR Akhavan P, 2016, SCIENTOMETRICS, V107, P1249, DOI 10.1007/s11192-016-1938-x Andrikopoulos A, 2018, J CORP FINANC, V51, P98, DOI 10.1016/j.jcorpfin.2018.05.008 Anyi KWU, 2009, MALAYS J LIBR INF SC, V14, P17 Applied Artificial Intelligence, 2020, J INFORM Arkhipov DB, 1999, SCIENTOMETRICS, V46, P51, DOI 10.1007/BF02766295 Tran BX, 2019, J CLIN MED, V8, DOI 10.3390/jcm8030360 BIRADAR BS, 2006, ANN LIB INF STUD, V53, P109 Biswas BC, 2007, MALAYS J LIBR INF SC, V12, P23 Blanco-Mesa F, 2017, J INTELL FUZZY SYST, V32, P2033, DOI 10.3233/JIFS-161640 Buznik VM, 2004, J STRUCT CHEM+, V45, P1096, DOI 10.1007/s10947-005-0100-z Casillas J, 2007, FAM BUS REV, V20, P141, DOI 10.1111/j.1741-6248.2007.00092.x CHUNG KH, 1990, J FINANC, V45, P301, DOI 10.2307/2328824 Cioffi R, 2020, SUSTAINABILITY-BASEL, V12, DOI 10.3390/su12020492 Cobo MJ, 2011, J AM SOC INF SCI TEC, V62, P1382, DOI 10.1002/asi.21525 Copeland B., 2020, Artificial Intelligence Corrales IE, 2016, J Oral Res, V5, P188 Crawley-Low J, 2006, J MED LIBR ASSOC, V94, P430 Dalpé R, 2002, SCIENTOMETRICS, V55, P189, DOI 10.1023/A:1019663607103 Damrosch LF, 2006, AM J INT LAW, V100, P2, DOI 10.2307/3518829 Das A.K., 2001, ILA B, V31, P9 Davarpanah MR, 2008, SCIENTOMETRICS, V77, P21, DOI 10.1007/s11192-007-1803-z Davarpanah MR, 2012, J SCHOLARLY PUBL, V43, P421, DOI 10.3138/jsp.43.4.421 Dutta B., 2001, IASLIC Bulletin, V46, P221 Genest C, 2002, CAN J STAT, V30, P329, DOI 10.2307/3315955 Glover SW, 2004, TROP MED INT HEALTH, V9, P1327, DOI 10.1111/j.1365-3156.2004.01331.x Guo YQ, 2020, J MED INTERNET RES, V22, DOI 10.2196/18228 Gupta BM, 2018, DESIDOC J LIB INF TE, V38, P416, DOI 10.14429/djlit.38.6.12309 Gupta B. M., 2012, ANN LIB INFORM STUDI, V59, P25 HALKAR G, 1998, IASLIC B, V43, P89 HAZARIKA T, 2005, ANN LIB INFORM STUDI, V52, P65 Hu HT, 2020, J DATA INFO SCI, V5, P86, DOI 10.2478/jdis-2020-0027 Ibrahim M, 2015, J PAK MED ASSOC, V65, P978 Jena KL, 2012, ELECTRON LIBR, V30, P103, DOI 10.1108/02640471211204097 Jin RY, 2019, RESOUR CONSERV RECY, V140, P175, DOI 10.1016/j.resconrec.2018.09.029 Lamani M.B., 2017, INT J INFORM DISSEMI, V7, P217 Lei YF, 2019, J PHYS CONF SER, V1168, DOI 10.1088/1742-6596/1168/2/022027 Liu N, 2021, SCIENTOMETRICS, V126, P3153, DOI 10.1007/s11192-021-03868-4 Loan F.A., 2017, J CENTRAL ASIAN STUD, V24, P197 Merigó JM, 2017, INT J INTELL SYST, V32, P526, DOI 10.1002/int.21859 Merigó JM, 2016, SCIENTOMETRICS, V108, P559, DOI 10.1007/s11192-016-1984-4 Narang A, 2004, ANN LIBR INF STUD, V51, P28 Nederhof AJ, 2006, SCIENTOMETRICS, V66, P81, DOI 10.1007/s11192-006-0007-2 Nishy P, 2012, INDIAN J CHEM B, V51, P269 Niu JQ, 2016, ISPRS INT J GEO-INF, V5, DOI 10.3390/ijgi5050066 Phene A, 1998, J INT BUS STUD, V29, P621, DOI 10.1057/palgrave.jibs.8490011 Podsakoff PM, 2008, J MANAGE, V34, P641, DOI 10.1177/0149206308319533 PRITCHARD A, 1969, J DOC, V25, P348 Ramesh L. S. R. C. V., 2002, SRELS Journal of Information Management, V39, P457 ROCHESTER MK, 2003, INT LIB INFORM SCI R Seggie SH, 2009, J MARKETING, V73, P122, DOI 10.1509/jmkg.73.1.122 Shao Z, 2020, IEEE ACCESS, V8, P69734, DOI 10.1109/ACCESS.2020.2986383 Shrivastava Rishabh, 2016, Science & Technology Libraries, V35, P136, DOI 10.1080/0194262X.2016.1181023 Swain D. K., 2012, CHINESE LIB INT ELEC, V33 Uddin A, 2015, SCIENTOMETRICS, V105, P97, DOI 10.1007/s11192-015-1654-y van Eck NJ, 2010, SCIENTOMETRICS, V84, P523, DOI 10.1007/s11192-009-0146-3 VIJ R, 1999, ILA B, V34, P39 Yu DJ, 2019, APPL INTELL, V49, P449, DOI 10.1007/s10489-018-1278-z Yu DJ, 2018, KNOWL-BASED SYST, V141, P188, DOI 10.1016/j.knosys.2017.11.018 Zainab AN, 2009, MALAYAS J COMPUT SCI, V22, P1 NR 59 TC 4 Z9 4 U1 3 U2 29 PU ROUTLEDGE JOURNALS, TAYLOR & FRANCIS LTD PI ABINGDON PA 2-4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND SN 0973-7766 EI 2168-930X J9 COLLNET J SCIENTOMET JI Collnet J. Scientometr. Inf. Manag. PD JAN 2 PY 2021 VL 15 IS 1 BP 27 EP 45 DI 10.1080/09737766.2021.1938742 PG 19 WC Information Science & Library Science WE Emerging Sources Citation Index (ESCI) SC Information Science & Library Science GA TI9DQ UT WOS:000673096200003 DA 2024-09-05 ER PT J AU Tao, FF Pi, YL Deng, MH Tang, YJ Yuan, C AF Tao, Feifei Pi, Yanling Deng, Menghua Tang, Yongjun Yuan, Chi TI Research on Intelligent Grading Evaluation of Water Conservancy Project Safety Risks Based on Deep Learning SO WATER LA English DT Article DE deep learning; hazard sources; risk evaluation; transformer model; task scenarios; a priori knowledge ID MANAGEMENT AB With the rise of artificial intelligence and big data technologies, it is increasingly significant to apply these emerging technologies to scientific decision-making in water conservancy project construction management in the face of many problems in the process of water conservancy project construction. Different from using traditional assessment methods for risk classification of water conservancy construction hazards, this paper integrates a priori attention and constructs a transformer risk prediction model based on a sliding window, which deeply explores the data value of water conservancy construction hazards information, further predicts the risk level of water conservancy construction hazards and realizes efficient and intelligent management of water conservancy project construction hazard identification management. C1 [Tao, Feifei; Pi, Yanling; Yuan, Chi] Hohai Univ, Coll Comp & Informat, Nanjing 210098, Peoples R China. [Deng, Menghua; Tang, Yongjun] Hohai Univ, Business Sch, Nanjing 210098, Peoples R China. C3 Hohai University; Hohai University RP Pi, YL (corresponding author), Hohai Univ, Coll Comp & Informat, Nanjing 210098, Peoples R China. EM 211607010123@hhu.edu.cn RI Tang, Yongjun/AAX-9631-2021 OI Tang, Yongjun/0000-0002-7061-728X; Tao, Feifei/0000-0002-4217-635X FU National Natural Science Foundation of China [42001250]; Jiangsu Water Conservancy Science and Technology Foundation [2020014] FX This research was funded by the National Natural Science Foundation of China, grant number. 42001250; Jiangsu Water Conservancy Science and Technology Foundation, grant number. 2020014. CR [Anonymous], 1995, B ICOLD [Anonymous], 1974, LESS DAM INC Bao J.T., 2021, Jiangsu Water Resour, V11, P57 Bing L, 1999, J CONSTR ENG M ASCE, V125, P377, DOI 10.1061/(ASCE)0733-9364(1999)125:5(377) Diligenti M, 2017, 2017 16TH IEEE INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS (ICMLA), P920, DOI 10.1109/ICMLA.2017.00-37 Fu L.J., 2010, Heilongjiang Sci. Technol. Inf, V31, P25 [葛巍 Ge Wei], 2020, [水科学进展, Advances in Water Science], V31, P143 Guo D.L., 2017, COMPUT MOD, P78 He C., 2019, Intell. Comput. Appl, V9, P21 He M., 2016, INTELL SCI, V34, P8 Hreinsson E.B., 2003, P 38 INT UPEC THESS Hu zhangfang, 2022, Computer Engineering and Applications, P187, DOI 10.3778/j.issn.1002-8331.2012-0264 ICOLD, 1983, DAMS DISPLACEMENT TU Jiang D., 2022, NE WATER CONSERV HYD, V40, P56 Kim Y, 2014, ARXIV14085882, DOI 10.3115/v1/D14-1181 [李博涵 Li Bohan], 2022, [软件学报, Journal of Software], V33, P3565 Li LJ, 2019, PROCEEDINGS OF THE 2019 INTERNATIONAL CONFERENCE ON ROBOTICS, INTELLIGENT CONTROL AND ARTIFICIAL INTELLIGENCE (RICAI 2019), P738, DOI 10.1145/3366194.3366327 Liu PF, 2016, Arxiv, DOI [arXiv:1605.05101, 10.48550/arXiv.1605.05101] [刘婷 Liu Ting], 2022, [水力发电学报, Journal of Hydroelectric Engineering], V41, P1 [刘昕 Liu Xin], 2022, [计算机科学, Computer Science], V49, P225 [刘永强 Liu Yongqiang], 2022, [安全与环境学报, Journal of Safety and Environment], V22, P550 Lyons T., 2004, International Journal of Project Management, V22, P51, DOI 10.1016/S0263-7863(03)00005-X Mills A., 2001, STRUCT SURV, V19, P245, DOI [10.1108/02630800110412615/FULL/XML, 10.1108/02630800110412615, DOI 10.1108/02630800110412615] Niyogi P, 1998, P IEEE, V86, P2196, DOI 10.1109/5.726787 Pan H., 2018, PRACT UNDERST MATH, V48, P13 Saaty T.L., 1980, ANAL HIERARCHY PROCE, P222 Sheng J., 2022, J UNCONV OIL GAS RES, P1 Vaswani A, 2017, ADV NEUR IN, V30 Wang J., 2022, People's Yellow River, V44, P107 Wang S., 2012, Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics: Short Papers - Volume 2, ACL '12, P90 Ward S., 2003, INT J PROJ MANAG, V21, P97, DOI [DOI 10.1016/S0263-7863(01)00080-1, 10.1016/s0263-7863(01)00080-1] Williams R.F., 1983, P 1983 DEFENSE RISK Xuan Dong-mei, 2015, Computer Engineering and Design, V36, P3087, DOI 10.16208/j.issn1000-7024.2015.11.041 Yang J, 2007, PEOPLES YANGTZE RIVE, V6, P148 ZADEH LA, 1965, INFORM CONTROL, V8, P338, DOI 10.1016/S0019-9958(65)90241-X Zhang S., 2021, Mar. Eng, V50, P6 Zhang XC, 2021, SCI CHINA INFORM SCI, V64, DOI 10.1007/s11432-019-2744-2 Zhou YJ, 2016, 2016 IEEE/WIC/ACM INTERNATIONAL CONFERENCE ON WEB INTELLIGENCE (WI 2016), P137, DOI [10.1109/WI.2016.28, 10.1109/WI.2016.0029] NR 38 TC 0 Z9 0 U1 65 U2 138 PU MDPI PI BASEL PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND EI 2073-4441 J9 WATER-SUI JI Water PD APR PY 2023 VL 15 IS 8 AR 1607 DI 10.3390/w15081607 PG 15 WC Environmental Sciences; Water Resources WE Science Citation Index Expanded (SCI-EXPANDED) SC Environmental Sciences & Ecology; Water Resources GA E8IT6 UT WOS:000977922000001 OA gold DA 2024-09-05 ER PT J AU Ihsan, I Qadir, MA AF Ihsan, Imran Qadir, M. Abdul TI An NLP-based citation reason analysis using CCRO SO SCIENTOMETRICS LA English DT Article DE NLP-based citation analysis; Qualitative research evaluation; Text classification; Ontology ID REPORTING VERBS; SCIENCE AB In recent scientific advances, Artificial Intelligence and Natural Language Processing are the major contributors to classifying documents and extracting information. Classifying citations in different classes have gathered a lot of attention due to the large volume of citations available in different digital libraries. Typical citation classification uses sentiment analysis, where various techniques are applied to citations texts to mainly classify them in "Positive", "Negative" and "Neutral" sentiments. However, there can be innumerable reasons why an author selects another research for citation. Citations' Context and Reasons Ontology-CCRO uses a clear scientific method to articulate eight basic reasons for citing by using an iterative process of sentiment analysis, collaborative meanings, and experts' opinions. Using CCRO, this research paper adopts an ontology-based approach to extract citation's reasons and instantiate ontology classes and properties on two different corpora of citation sentences. One corpus of citation sentences is a publicly available dataset, while the other is our own manually curated. The process uses a two-step approach. The first part is an interface to manually annotate each citation text in the selected corpora on CCRO properties. A team of carefully selected annotators has annotated each citation to achieve a high inter-annotator agreement. The second part focuses on the automatic extraction of these reasons. Using Natural Language Processing, Mapping Graph, and Reporting Verb in a citation sentence, citation's reason is extracted and mapped onto a CCRO property. After comparing both manual and automatic mapping, accuracy is calculated. Based on experiments and results, accuracy is calculated for both publicly available and own corpora of citation sentences. C1 [Ihsan, Imran; Qadir, M. Abdul] Capital Univ Sci & Technol, Dept Comp Sci, Islamabad, Pakistan. [Ihsan, Imran] Air Univ, Fac Comp & AI, Dept Creat Technol, Islamabad, Pakistan. C3 Capital University of Science & Technology; Air University Islamabad RP Ihsan, I (corresponding author), Capital Univ Sci & Technol, Dept Comp Sci, Islamabad, Pakistan.; Ihsan, I (corresponding author), Air Univ, Fac Comp & AI, Dept Creat Technol, Islamabad, Pakistan. EM iimranihsan@gmail.com; aqadir@cust.edu.pk RI ihsan, imran/ABA-7494-2021; ihsan, imran/AAZ-6236-2021 OI ihsan, imran/0000-0002-3447-4576; Qadir, Muhammad Abdul/0000-0003-4634-9016 CR Amjad Z, 2020, INT J ADV COMPUT SC, V11, P621 Angrosh MA., 2010, P ACM INT C DIGITAL, DOI 10.1145/1816123.1816168 [Anonymous], 1973, Essays of an Information Scientist Artstein R, 2008, COMPUT LINGUIST, V34, P555, DOI 10.1162/coli.07-034-R2 Athar A., 2011, P ACL 2011 STUD SESS, P81 Athar A., 2014, Sentiment analysis of scientific citations, DOI DOI 10.48456/TR-856 BAIRD LM, 1994, J INFORM SCI, V20, P2, DOI 10.1177/016555159402000102 Butt B. H., 2015, CEUR WORKSHOP PROC, P18 Charles M, 2006, ENGL SPECIF PURP, V25, P310, DOI 10.1016/j.esp.2005.05.003 Ciancarini Paolo, 2014, The Semantic Web: Trends and Challenges. 11th International Conference (ESWC 2014). Proceedings: LNCS 8465, P580, DOI 10.1007/978-3-319-07443-6_39 Councill IG, 2008, SIXTH INTERNATIONAL CONFERENCE ON LANGUAGE RESOURCES AND EVALUATION, LREC 2008, P661 CRONIN B, 1981, J DOC, V37, P16, DOI 10.1108/eb026703 Dong C., 2011, P 5 INT JOINT C NAT, P623 Finkel Jenny Rose, 2005, P 43 ANN M ASS COMP, P363, DOI DOI 10.3115/1219840.1219885 Garfield E, 1996, LIBR QUART, V66, P449, DOI 10.1086/602912 GARFIELD E, 1972, SCIENCE, V178, P471, DOI 10.1126/science.178.4060.471 GILBERT GN, 1974, SCI STUD, V4, P279, DOI 10.1177/030631277400400305 GuEmez JM, 2015, P 1 WORKSH ARG MININ, P102, DOI [10.3115/v1/w14-2115, DOI 10.3115/V1/W14-2115] Han Xu, 2013, P 13 C PAC ASSN COMP, DOI 10.13140/2.1.2737.2484 Hopper Paul J., 2013, ROUTLEDGE HDB DISCOU, P301 Ihsan I., 2019, CORP J CORPUS LINGUI, V2, P25 Ihsan I, 2019, IEEE ACCESS, V7, P30423, DOI 10.1109/ACCESS.2019.2903450 Jochim C., 2012, P COLING 2012, P1343 Kazi, 2016, IEEE INT C COMP COMM, DOI 10.1109/IC4.2015.7375701 Kilgarriff A, 2000, LANGUAGE, V76, P706, DOI 10.2307/417141 Kim I, 2015, 2015 IEEE MAGNETICS CONFERENCE (INTERMAG) Kipper K, 2008, LANG RESOUR EVAL, V42, P21, DOI 10.1007/s10579-007-9048-2 Levin B, 2008, OPTICAL INFRARED INT Levin B., 1995, Language - Review, V71, P144, DOI DOI 10.2307/415968 Li X., 2013, Proceedings of Recent Advances in Natural Language Processing, P402 Manan NA, 2014, PROCD SOC BEHV, V134, P140, DOI 10.1016/j.sbspro.2014.04.232 Mann W, 1988, Text, V8, P243, DOI DOI 10.1515/TEXT.1.1988.8.3.243 Manning CD, 2014, PROCEEDINGS OF 52ND ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS: SYSTEM DEMONSTRATIONS, P55, DOI 10.3115/v1/p14-5010 Markoff John., 1975, Sociological Methodology, V6, P1 MORAVCSIK MJ, 1975, SOC STUD SCI, V5, P86, DOI 10.1177/030631277500500106 Peroni S, 2012, J WEB SEMANT, V17, P33, DOI 10.1016/j.websem.2012.08.001 PETROV S, 2016, GOOGLE AI BLOG Phugnar, 2014, CITATION ANAL DOCTOR Piller I., 1999, LANGUAGE, V75, P631, DOI [10.2307/417106, DOI 10.2307/417106] Qayyum F, 2019, SCIENTOMETRICS, V118, P21, DOI 10.1007/s11192-018-2961-x Radev DR, 2013, LANG RESOUR EVAL, V47, P919, DOI 10.1007/s10579-012-9211-2 Shum SB., 1998, INTERFACES, V39, P1 Small H, 2011, SCIENTOMETRICS, V87, P373, DOI 10.1007/s11192-011-0349-2 Tandon N., 2012, P 35 GERMAN C ARTIFI, P98 Taskin Z, 2018, SCIENTOMETRICS, V114, P335, DOI 10.1007/s11192-017-2560-2 Teufel S, 1999, ARGUMENTATIVE ZONING Teufel S., 2006, P 7 SIGDIAL WORKSHOP, P80, DOI [10.3115/1654595.1654612, DOI 10.3115/1654595.1654612] Teufel S., 2006, P C EMP METH NAT LAN, DOI 10.3115/1610075.1610091 THOMPSON G, 1991, APPL LINGUIST, V12, P365, DOI 10.1093/applin/12.4.365 Valenzuela M., 2015, P 29 AAAI WORKSH SCH, P21 VINET L, 2011, J PHYS A-MATH THEOR Wan XJ, 2014, J ASSOC INF SCI TECH, V65, P1929, DOI 10.1002/asi.23083 Wilson V, 2012, EVID BASED LIB INF P, V7, P121, DOI 10.18438/B82C9K Xu Jun, 2015, AMIA Annu Symp Proc, V2015, P1334 Yu, 2013, P ASIST ANN M, DOI 10.1002/meet.14505001084 NR 55 TC 2 Z9 2 U1 4 U2 64 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0138-9130 EI 1588-2861 J9 SCIENTOMETRICS JI Scientometrics PD JUN PY 2021 VL 126 IS 6 BP 4769 EP 4791 DI 10.1007/s11192-021-03955-6 EA MAR 2021 PG 23 WC Computer Science, Interdisciplinary Applications; Information Science & Library Science WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Computer Science; Information Science & Library Science GA SI9BA UT WOS:000633283300003 DA 2024-09-05 ER PT J AU Chen, XL Xie, HR Cheng, G Poon, LKM Leng, MM Wang, FL AF Chen, Xieling Xie, Haoran Cheng, Gary Poon, Leonard K. M. Leng, Mingming Wang, Fu Lee TI Trends and Features of the Applications of Natural Language Processing Techniques for Clinical Trials Text Analysis SO APPLIED SCIENCES-BASEL LA English DT Article DE natural language processing; clinical trials text; bibliometrics; collaboration; structural topic modeling ID BIBLIOMETRIC ANALYSIS; INFORMATION EXTRACTION; RADIOLOGY REPORTS; SCIENCE; WEB; ENGLISH; INTERVENTION; QUALITY; SYSTEMS; SCOPUS AB Natural language processing (NLP) is an effective tool for generating structured information from unstructured data, the one that is commonly found in clinical trial texts. Such interdisciplinary research has gradually grown into a flourishing research field with accumulated scientific outputs available. In this study, bibliographical data collected from Web of Science, PubMed, and Scopus databases from 2001 to 2018 had been investigated with the use of three prominent methods, including performance analysis, science mapping, and, particularly, an automatic text analysis approach named structural topic modeling. Topical trend visualization and test analysis were further employed to quantify the effects of the year of publication on topic proportions. Topical diverse distributions across prolific countries/regions and institutions were also visualized and compared. In addition, scientific collaborations between countries/regions, institutions, and authors were also explored using social network analysis. The findings obtained were essential for facilitating the development of the NLP-enhanced clinical trial texts processing, boosting scientific and technological NLP-enhanced clinical trial research, and facilitating inter-country/region and inter-institution collaborations. C1 [Chen, Xieling; Cheng, Gary; Poon, Leonard K. M.] Educ Univ Hong Kong, Dept Math & Informat Technol, Tai Po, Hong Kong 999077, Peoples R China. [Xie, Haoran; Leng, Mingming] Lingnan Univ, Dept Comp & Decis Sci, Tuen Mun, Hong Kong 999077, Peoples R China. [Wang, Fu Lee] Open Univ Hong Kong, Sch Sci & Technol, Ho Man Tin, Kowloon, Hong Kong 999077, Peoples R China. C3 Education University of Hong Kong (EdUHK); Lingnan University; Hong Kong Metropolitan University RP Wang, FL (corresponding author), Open Univ Hong Kong, Sch Sci & Technol, Ho Man Tin, Kowloon, Hong Kong 999077, Peoples R China. EM xielingchen0708@gmail.com; hrxie@ln.edu.hk; chengks@eduhk.hk; kmpoon@eduhk.hk; mmleng@ln.edu.hk; pwang@ouhk.edu.hk RI Wang, Fu Lee/AAD-9782-2021; Xie, Haoran/AFS-3515-2022; LENG, Mingming/O-7640-2017 OI Wang, Fu Lee/0000-0002-3976-0053; Xie, Haoran/0000-0003-0965-3617; POON, Leonard K. M./0000-0002-8394-1492; PV, THAYYIB/0000-0001-8929-0398; LENG, Mingming/0000-0002-3377-2387; Cheng, Gary/0000-0002-5614-3348 FU Interdisciplinary Research Scheme of the Dean's Research Fund 2018-19 of The Education University of Hong Kong, Research Seed Fund [FLASS/DRF/IDS-3]; Departmental Collaborative Research Fund 2019 of The Education University of Hong Kong, Research Seed Fund [MIT/DCRF-R2/18-19]; One-o ff Special Fund from the Central and Faculty Fund in Support of Research entitled "Facilitating Artificial Intelligence and Big Data Analytics Research in Education" of The Education University of Hong Kong, Research Seed Fund [MIT02/19-20]; Hong Kong Institute of Business Studies Research Seed Fund [HKIBS RSF-190-009]; LEO Dr. David P. Chan Institute of Data Science, Lingnan University, Hong Kong FX The work has been supported by the Interdisciplinary Research Scheme of the Dean's Research Fund 2018-19 (FLASS/DRF/IDS-3), Departmental Collaborative Research Fund 2019 (MIT/DCRF-R2/18-19), and One-o ff Special Fund from the Central and Faculty Fund in Support of Research (MIT02/19-20) entitled "Facilitating Artificial Intelligence and Big Data Analytics Research in Education" of The Education University of Hong Kong, Research Seed Fund, Hong Kong Institute of Business Studies Research Seed Fund (HKIBS RSF-190-009) and LEO Dr. David P. Chan Institute of Data Science, Lingnan University, Hong Kong. CR Adriaanse LS, 2013, ELECTRON LIBR, V31, P727, DOI 10.1108/EL-12-2011-0174 Alonso O., 2012, P CCIA AL SPAIN 24 2 Alonso-Calvo R, 2017, COMPUT BIOL MED, V87, P179, DOI 10.1016/j.compbiomed.2017.06.005 [Anonymous], 2017, Knowledge Solutions, DOI 10.1007/978-981-10-0983-9_9 Arici F, 2019, COMPUT EDUC, V142, DOI 10.1016/j.compedu.2019.103647 Bakal G, 2018, J BIOMED INFORM, V82, P189, DOI 10.1016/j.jbi.2018.05.003 Bayram B, 2016, AM J EMERG MED, V34, P1210, DOI 10.1016/j.ajem.2016.03.033 Bean DM, 2017, SCI REP-UK, V7, DOI 10.1038/s41598-017-16674-x Bekhuis T, 2012, ARTIF INTELL MED, V55, P197, DOI 10.1016/j.artmed.2012.05.002 Bennett R, 2019, J TRANSP HEALTH, V12, P1, DOI 10.1016/j.jth.2018.11.005 Bian J., 2017, P 2017 IEEE EMBS INT Bisgin H, 2012, BMC BIOINFORMATICS, V13, DOI 10.1186/1471-2105-13-S15-S6 Blei DM, 2012, COMMUN ACM, V55, P77, DOI 10.1145/2133806.2133826 Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993 Bosca D., 2013, P MEDINFO COP DENM 2 Bucur A, 2014, STUD HEALTH TECHNOL, V205, P823, DOI 10.3233/978-1-61499-432-9-823 Bustos A, 2018, APPL SCI-BASEL, V8, DOI 10.3390/app8071206 Byrne-Davis LMT, 2006, PSYCHOL HEALTH, V21, P667, DOI 10.1080/14768320500444315 Caballero-Ruiz E, 2017, INT J MED INFORM, V102, P35, DOI 10.1016/j.ijmedinf.2017.02.014 Ramírez LJC, 2019, SUSTAINABILITY-BASEL, V11, DOI 10.3390/su11113121 Cancino CA, 2019, COMPUT IND ENG, V137, DOI 10.1016/j.cie.2019.106015 Canino G., 2016, P 7 ACM INT C BIOINF Chen CJ, 2019, J AM MED INFORM ASSN, V26, P1227, DOI 10.1093/jamia/ocz128 Chen L, 2019, J AM MED INFORM ASSN, V26, P1218, DOI 10.1093/jamia/ocz109 Chen T, 2019, JMIR MED INF, V7, DOI 10.2196/13039 Chen X., 2017, P INT S EM TECHN ED Chen X, 2020, COMPUT EDUC, V151, DOI 10.1016/j.compedu.2020.103855 Chen XL, 2020, BRIT J EDUC TECHNOL, V51, P692, DOI 10.1111/bjet.12907 Chen XL, 2019, J COMPUT EDUC, V6, P563, DOI 10.1007/s40692-019-00149-1 Chen XL, 2019, BMC MED INFORM DECIS, V19, DOI 10.1186/s12911-019-0757-4 Chen XL, 2019, ONLINE INFORM REV, V43, P29, DOI 10.1108/OIR-03-2018-0068 Chen XL, 2018, BMC MED INFORM DECIS, V18, DOI 10.1186/s12911-018-0692-9 Chen XL, 2018, WIREL COMMUN MOB COM, DOI 10.1155/2018/1827074 Chen XL, 2018, BMC MED INFORM DECIS, V18, DOI [10.1186/s12911-018-0594-x, 10.1186/s12870-018-1555-3] Chen ZH, 2015, HEALTH EDUC BEHAV, V42, P32, DOI 10.1177/1090198114550822 Clare SM, 2019, SMALL-SCALE FOR, V18, P149, DOI 10.1007/s11842-018-9411-8 Cobo MJ, 2015, KNOWL-BASED SYST, V80, P3, DOI 10.1016/j.knosys.2014.12.035 Cobo MJ, 2014, IEEE T INTELL TRANSP, V15, P901, DOI 10.1109/TITS.2013.2284756 Cobo MJ, 2011, J AM SOC INF SCI TEC, V62, P1382, DOI 10.1002/asi.21525 Cobo MJ, 2011, J INFORMETR, V5, P146, DOI 10.1016/j.joi.2010.10.002 Cole-Lewis HJ, 2016, INT J MED INFORM, V85, P96, DOI 10.1016/j.ijmedinf.2015.08.003 Cowie MR, 2017, CLIN RES CARDIOL, V106, P1, DOI 10.1007/s00392-016-1025-6 Cramer H, 2014, BMC COMPLEM ALTERN M, V14, DOI 10.1186/1472-6882-14-328 Cramer H, 2015, CONTEMP CLIN TRIALS, V41, P269, DOI 10.1016/j.cct.2015.02.005 De la Flor-Martínez M, 2016, CLIN ORAL IMPLAN RES, V27, P1317, DOI 10.1111/clr.12749 De Maio C, 2015, IEEE IJCNN Demner-Fushman D, 2016, Yearb Med Inform, P224 Dhuliawala M., 2018, P 2018 ACM INT C BIO Dietrich G, 2018, METHOD INFORM MED, V57, pE22, DOI 10.3414/ME17-02-0010 Dreisbach C, 2019, INT J MED INFORM, V125, P37, DOI 10.1016/j.ijmedinf.2019.02.008 Fernandes F., 2015, P 2015 SCI INF C SAI FRIEDMAN C, 1994, J AM MED INFORM ASSN, V1, P161, DOI 10.1136/jamia.1994.95236146 Gao W, 2015, SCIENTOMETRICS, V102, P1951, DOI 10.1007/s11192-014-1500-7 Romero AG, 2009, SCIENTOMETRICS, V80, P747, DOI 10.1007/s11192-008-2108-6 Garfield E., 1994, Current Contents: Social and Behavioural Sciences, V7, P5 Gazzarata R, 2017, J HEALTHC ENG, V2017, DOI 10.1155/2017/2190679 Gener S., 2017, P MEDINFO HANGZH CHI Gonzalez-Hernandez G, 2017, Yearb Med Inform, V26, P214, DOI 10.15265/IY-2017-029 Grajzl P, 2019, J COMP ECON, V47, P111, DOI 10.1016/j.jce.2018.10.004 Gutiérrez-Salcedo M, 2018, APPL INTELL, V48, P1275, DOI 10.1007/s10489-017-1105-y Hao TY, 2018, SOFT COMPUT, V22, P7875, DOI 10.1007/s00500-018-3511-4 Hassan SU, 2014, SCIENTOMETRICS, V99, P549, DOI 10.1007/s11192-013-1193-3 Hassanpour S, 2016, ARTIF INTELL MED, V66, P29, DOI 10.1016/j.artmed.2015.09.007 Heidarysafa M., WOMEN ISIS PROPAGAND Hirsch JE, 2014, INT J CLIN HLTH PSYC, V14, P161, DOI 10.1016/S1697-2600(14)70050-X Hong SJ, 2016, AM J ROENTGENOL, V206, P917, DOI 10.2214/AJR.15.15640 Huang Z., 2013, PROCESS SUPPORT KNOW Huhdanpaa HT, 2018, J DIGIT IMAGING, V31, P84, DOI 10.1007/s10278-017-0013-3 Jiang HC, 2016, RENEW SUST ENERG REV, V57, P226, DOI 10.1016/j.rser.2015.12.194 Jonnalagadda S, 2012, J BIOMED INFORM, V45, P129, DOI 10.1016/j.jbi.2011.10.007 Jonnalagadda SR, 2017, J CARDIOVASC TRANSL, V10, P313, DOI 10.1007/s12265-017-9752-2 Tarazona-Santabalbina FJ, 2016, J AM MED DIR ASSOC, V17, P426, DOI 10.1016/j.jamda.2016.01.019 Jung HA, 2019, J THORAC ONCOL, V14, pS328, DOI 10.1016/j.jtho.2019.08.659 Kehl KL, 2019, JAMA ONCOL, V5, P1421, DOI 10.1001/jamaoncol.2019.1800 Kim S, 2014, ACUPUNCT MED, V32, P160, DOI 10.1136/acupmed-2013-010470 Koleck TA, 2019, J AM MED INFORM ASSN, V26, P364, DOI 10.1093/jamia/ocy173 Kowsari K, 2019, INFORMATION, V10, DOI 10.3390/info10040150 Kowsari K, 2017, 2017 16TH IEEE INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS (ICMLA), P364, DOI 10.1109/ICMLA.2017.0-134 Kreimeyer K, 2017, J BIOMED INFORM, V73, P14, DOI 10.1016/j.jbi.2017.07.012 Lee JD, 2020, HUM FACTORS, V62, P260, DOI 10.1177/0018720819872672 Lee Y, 2013, ACM T INTEL SYST TEC, V4, DOI 10.1145/2508037.2508052 Lester CA, 2019, J AM PHARM ASSOC, V59, P349, DOI 10.1016/j.japh.2019.02.004 Li Q, 2013, J AM MED INFORM ASSN, V20, P915, DOI 10.1136/amiajnl-2012-001487 Li X, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0060338 Liu C, 2019, J AM MED INFORM ASSN, V26, P1333, DOI 10.1093/jamia/ocz121 Livas C, 2018, PROG ORTHOD, V19, DOI 10.1186/s40510-017-0201-1 Löbe M, 2018, STUD HEALTH TECHNOL, V248, P293, DOI 10.3233/978-1-61499-858-7-293 Luo Y, 2017, DRUG SAFETY, V40, P1075, DOI 10.1007/s40264-017-0558-6 Milian K., 2013, P HEALTHINF BARC SPA Milosevic N., 2016, P HEALTHINF ROM IT 2 Moed H.F., 2004, USE PUBLICATION PATE Mongeon P, 2016, SCIENTOMETRICS, V106, P213, DOI 10.1007/s11192-015-1765-5 Neveol A, 2015, Yearb Med Inform, V10, P194, DOI 10.15265/IY-2015-035 Noyons ECM, 1999, J AM SOC INFORM SCI, V50, P115, DOI 10.1002/(SICI)1097-4571(1999)50:2<115::AID-ASI3>3.3.CO;2-A Oellrich A, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0116040 Patterson OV, 2017, BMC CARDIOVASC DISOR, V17, DOI 10.1186/s12872-017-0580-8 Peng BH, 2018, J CLEAN PROD, V197, P1177, DOI 10.1016/j.jclepro.2018.06.283 Petkov VI, 2013, EXP BIOL MED, V238, P1370, DOI 10.1177/1535370213508172 Priyatna F, 2017, J BIOMED SEMANT, V8, DOI 10.1186/s13326-017-0155-8 Radev DR, 2016, J ASSOC INF SCI TECH, V67, P683, DOI 10.1002/asi.23394 Rajapaksha P., 2015, P 2015 15 INT C ADV Roberts ME, 2016, J AM STAT ASSOC, V111, P988, DOI 10.1080/01621459.2016.1141684 Roberts ME, 2014, AM J POLIT SCI, V58, P1064, DOI 10.1111/ajps.12103 Rosas SR, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0017428 Sad Houari N, 2016, INT J INTERACT MULTI, V4, P61, DOI 10.9781/ijimai.2016.4210 Segura-Bedmar I, 2019, J AM MED INFORM ASSN, V26, P1181, DOI 10.1093/jamia/ocz139 Settouti N, 2016, INT J INTERACT MULTI, V4, P46, DOI 10.9781/ijimai.2016.419 Sheikhalishahi S, 2019, JMIR MED INF, V7, P15, DOI 10.2196/12239 Small H, 1999, J AM SOC INFORM SCI, V50, P799, DOI 10.1002/(SICI)1097-4571(1999)50:9<799::AID-ASI9>3.0.CO;2-G Song Y, 2019, COMPUT EDUC, V137, P12, DOI 10.1016/j.compedu.2019.04.002 Spyns P, 1996, METHOD INFORM MED, V35, P285 Stubbs A, 2019, J AM MED INFORM ASSN, V26, P1163, DOI 10.1093/jamia/ocz163 Tao TZ, 2012, CRIT CARE, V16, DOI 10.1186/cc11401 Thompson J, 2019, SCI REP-UK, V9, DOI 10.1038/s41598-019-45705-y Timimi F, 2019, J MED INTERNET RES, V21, DOI 10.2196/14809 van Engen-Verheul MM, 2017, INT J MED INFORM, V97, P76, DOI 10.1016/j.ijmedinf.2016.10.003 van Engen-Verheul Mariette M, 2014, Implement Sci, V9, P780, DOI 10.1186/s13012-014-0131-y van Leeuwen J., 2014, P HEALTHINF LOIR VAL Velupillai S, 2015, Yearb Med Inform, V10, P183, DOI 10.15265/IY-2015-009 Vidhya KA, 2017, INT CONF ADVAN COMPU Vydiswaran VGV, 2019, J AM MED INFORM ASSN, V26, P1172, DOI 10.1093/jamia/ocz079 Wang ZT, 2016, INT J ENV RES PUB HE, V13, DOI 10.3390/ijerph13060583 Wu YH, 2013, STUD HEALTH TECHNOL, V192, P662, DOI 10.3233/978-1-61499-289-9-662 Xie H, 2019, COMPUT EDUC, V140, DOI 10.1016/j.compedu.2019.103599 Xiong Y, 2019, J AM MED INFORM ASSN, V26, P1203, DOI 10.1093/jamia/ocz099 Yang GY, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0120655 Zeng ZX, 2019, IEEE ACM T COMPUT BI, V16, P139, DOI 10.1109/TCBB.2018.2849968 Zhang J., 2017, P 2017 IEEE ACM INT Zhang JH, 2018, IEEE ACCESS, V6, P65333, DOI 10.1109/ACCESS.2018.2875677 Zhang Y., 2016, ANTICIPATING FUTURE Zhang Y, 2019, TECHNOL FORECAST SOC, V146, P795, DOI 10.1016/j.techfore.2018.06.007 NR 131 TC 21 Z9 23 U1 1 U2 31 PU MDPI PI BASEL PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND EI 2076-3417 J9 APPL SCI-BASEL JI Appl. Sci.-Basel PD MAR PY 2020 VL 10 IS 6 AR 2157 DI 10.3390/app10062157 PG 36 WC Chemistry, Multidisciplinary; Engineering, Multidisciplinary; Materials Science, Multidisciplinary; Physics, Applied WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Chemistry; Engineering; Materials Science; Physics GA LI1NZ UT WOS:000529252800258 OA gold DA 2024-09-05 ER PT J AU Salehpour, A Samadzamini, K AF Salehpour, Arash Samadzamini, Karim TI A bibliometric analysis on the application of deep learning in economics, econometrics, and finance SO INTERNATIONAL JOURNAL OF COMPUTATIONAL SCIENCE AND ENGINEERING LA English DT Article DE deep learning; bibliometric; economics; econometrics; finance ID NETWORK; EVOLUTION; TOOL AB This research looked at the deep learning applications in economics, econometrics, and finance. Two hundred fifty articles from the Scopus database's index of journals published between 2013 and 2022 were gathered using a bibliometric technique. The data was analysed using many programs (R studio, Excel, and Biblioshiny), and in terms of countries, organisations, publications, papers, and authors, the most prominent scientific players were highlighted. Our research found that as of 2019, the quantity of publications has increased. The literature analysis received the most contributions from China and the USA. The most significant findings and discussions came from the following analyses: estimation of share prices, asset management price fluctuations and liquidity, forecast of bankruptcies, evaluation of credit risk, risk assessment, commodity prices top trend analysis, citation analysis, thematic evolution, and thematic map. Our findings offer practical recommendations on how deep learning may be implemented into decision-making processes for market participants, particularly those working in fintech and finance. C1 [Salehpour, Arash] Islamic Azad Univ, Dept Comp Engn, Rasht Branch, Rasht, Gilan, Iran. [Samadzamini, Karim] Univ Coll Nabi Akram, Dept Comp Engn, Tabriz, Iran. C3 Islamic Azad University RP Salehpour, A (corresponding author), Islamic Azad Univ, Dept Comp Engn, Rasht Branch, Rasht, Gilan, Iran. EM arash.salehpour4@gmail.com; samadzamini@ucna.ac.ir RI Salehpour, Arash/KIJ-9771-2024 CR Alkhatib K., 2022, Elsevier, V8, P96, DOI DOI 10.3390/JOITMC8020096 Alshater MM, 2021, INT J ISLAMIC MIDDLE, V14, P339, DOI 10.1108/IMEFM-08-2020-0419 [Anonymous], 2015, J. Big Data, DOI 10.1186/s40537-014-0007-7 Aria M, 2017, J INFORMETR, V11, P959, DOI 10.1016/j.joi.2017.08.007 Baas J, 2020, QUANT SCI STUD, V1, P377, DOI 10.1162/qss_a_00019 Börner K, 2003, ANNU REV INFORM SCI, V37, P179, DOI 10.1002/aris.1440370106 BOSSERMA.P, 1973, AM J SOCIOL, V79, P180, DOI 10.1086/225517 Brereton P, 2007, J SYST SOFTWARE, V80, P571, DOI 10.1016/j.jss.2006.07.009 Buhler H, 2020, Arxiv, DOI arXiv:2006.14498 CALLON M, 1991, SCIENTOMETRICS, V22, P155, DOI 10.1007/BF02019280 Chen S, 2021, INT REV ECON FINANC, V71, P936, DOI 10.1016/j.iref.2020.07.010 Chowdhury M, 2022, INT J EMBED SYST, V15, P313, DOI 10.1504/IJES.2022.10050472 Cobo MJ, 2012, J AM SOC INF SCI TEC, V63, P1609, DOI 10.1002/asi.22688 Cobo MJ, 2011, J INFORMETR, V5, P146, DOI 10.1016/j.joi.2010.10.002 Deng L, 2014, APSIPA TRANS SIGNAL, V3, DOI 10.1017/atsip.2013.9 Dong CJ, 2018, J ADV TRANSPORT, DOI 10.1155/2018/3869106 Dong S, 2021, COMPUT SCI REV, V40, DOI 10.1016/j.cosrev.2021.100379 Donthu N, 2021, J BUS RES, V133, P285, DOI 10.1016/j.jbusres.2021.04.070 Fjelland R, 2020, HUM SOC SCI COMMUN, V7, DOI 10.1057/s41599-020-0494-4 Gao B, 2022, COMPUT ECON, V59, P1385, DOI 10.1007/s10614-021-10101-0 Janani K, 2022, CONNECT SCI, V34, P2714, DOI 10.1080/09540091.2022.2149698 Janiesch C, 2021, ELECTRON MARK, V31, P685, DOI 10.1007/s12525-021-00475-2 Jia YH, 2017, J ADV TRANSPORT, DOI 10.1155/2017/6575947 Jiang H, 2022, RESOUR POLICY, V78, DOI 10.1016/j.resourpol.2022.102855 Jiang ZX, 2021, INT J EMBED SYST, V14, P421 Kumar A, 2020, INT J COMPUT SCI ENG, V23, P319, DOI 10.1504/IJCSE.2020.113176 Li D, 2022, SOFT COMPUT, V26, P4423, DOI [10.12133/j.smartag.2020.2.3.202004-SA007, 10.1007/s00500-021-06496-5] Li YZ, 2022, FINANC INNOV, V8, DOI 10.1186/s40854-022-00336-7 Lu CY, 2022, COMPUT ECON, V59, P1501, DOI 10.1007/s10614-021-10172-z MOED HF, 1985, RES POLICY, V14, P131, DOI 10.1016/0048-7333(85)90012-5 Nayak SK, 2018, CONNECT SCI, V30, P362, DOI 10.1080/09540091.2018.1487384 Nikou M, 2019, INTELL SYST ACCOUNT, V26, P164, DOI 10.1002/isaf.1459 Peters E., 2020, Journal of Self-Governance and Management Economics, V8, P16, DOI [DOI 10.22381/JSME8320202, 10.22381/JSME8320202] Pouyanfar S, 2019, ACM COMPUT SURV, V51, DOI 10.1145/3234150 Qin JS, 2022, CONNECT SCI, V34, P2807, DOI 10.1080/09540091.2022.2151977 Sadhwani A, 2021, J FINANC ECONOMET, V19, P313, DOI 10.1093/jjfinec/nbaa025 Salehpour A., 2022, Journal of Artificial Intelligence and Capsule Networks, P230, DOI [10.36548/jaicn.2022.4.001, DOI 10.36548/JAICN.2022.4.001] Salehpour A., 2022, Journal of Soft Computing Paradigm, V4, P238 Sarma B, 2021, INT J COMPUT SCI ENG, V24, P343, DOI 10.1504/IJCSE.2021.117015 Shetty S, 2022, J RISK FINANC MANAG, V15, DOI 10.3390/jrfm15010035 Sirignano J, 2019, QUANT FINANC, V19, P1449, DOI 10.1080/14697688.2019.1622295 Soentpiet R., 1999, Advances in kernel methods: support vector learning Stan Z., 2009, Encyclopedia of Biometrics Steinwart I., 2008, Support Vector Machines Sun G, 2020, INT J COMPUT SCI ENG, V23, P177, DOI 10.1504/IJCSE.2020.110543 System A.C.C., About Us Verbeek JJ, 2003, NEURAL COMPUT, V15, P469, DOI 10.1162/089976603762553004 Waltman L, 2016, J INFORMETR, V10, P365, DOI 10.1016/j.joi.2016.02.007 Wamba SF, 2021, TECHNOL FORECAST SOC, V164, DOI 10.1016/j.techfore.2020.120482 Wang JJ, 2023, STUD NONLINEAR DYN E, V27, P397, DOI 10.1515/snde-2021-0096 Wang SY, 2022, INT J EMBED SYST, V15, P344, DOI 10.1504/IJES.2022.10050474 Wang Y, 2022, INT J EMBED SYST, V15, P448, DOI 10.1504/IJES.2022.127166 Wu ST, 2022, CONNECT SCI, V34, P44, DOI 10.1080/09540091.2021.1940101 Yang X, 2021, INT J EMBED SYST, V14, P201, DOI 10.1504/IJES.2021.113815 Zhang SX, 2022, INT J COMPUT SCI ENG, V25, P479, DOI [10.1504/IJCSE.2022.10051194, 10.1504/IJCSE.2022.126251] Zhao Y, 2017, ENERG ECON, V66, P9, DOI 10.1016/j.eneco.2017.05.023 Zheng ZH, 2022, CONNECT SCI, V34, P1, DOI 10.1080/09540091.2021.1936455 Zhong X, 2019, FINANC INNOV, V5, DOI 10.1186/s40854-019-0138-0 NR 58 TC 1 Z9 1 U1 6 U2 6 PU INDERSCIENCE ENTERPRISES LTD PI GENEVA PA WORLD TRADE CENTER BLDG, 29 ROUTE DE PRE-BOIS, CASE POSTALE 856, CH-1215 GENEVA, SWITZERLAND SN 1742-7185 EI 1742-7193 J9 INT J COMPUT SCI ENG JI Int. J. Comput. Sci. Eng. PY 2024 VL 27 IS 2 DI 10.1504/IJCSE.2024.137286 PG 16 WC Computer Science, Interdisciplinary Applications WE Emerging Sources Citation Index (ESCI) SC Computer Science GA LB9L4 UT WOS:001184435200004 DA 2024-09-05 ER PT C AU Lipitakis, AD Lipitakis, EAEC AF Lipitakis, Anastasia-Dimitra Lipitakis, Evangelia A. E. C. BE Akhgar, B Arabnia, HR TI On Machine Learning with Imbalanced Data and Research Quality Evaluation Methodologies SO 2014 INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE AND COMPUTATIONAL INTELLIGENCE (CSCI), VOL 1 LA English DT Proceedings Paper CT International Conference on Computational Science and Computational Intelligence (CSCI) CY MAR 10-13, 2014 CL Las Vegas, NV DE Bibliometric Indicators; Business Intelligence; Citation Analysis; Computational Intelligence; Data Mining; Learning Algorithms; Imbalanced Data; Machine Learning; Quantitative Methods; Research Quality Evaluation ID FIRM PERFORMANCE; ROTATION FOREST; E-BUSINESS; CLASSIFICATION; INTELLIGENCE; PREDICTION; STRATEGY AB In this article a synoptic review of machine learning techniques with imbalanced data and a class of corresponding learning algorithms is presented. This class of algorithms includes the meta-algorithms: Cost sensitive, Metacost, Rotation forest-cost sensitive, rotation forest-smote. Four learning algorithms (with base classifiers J48 and part processing with F-measure and a predetermined imbalanced data set) are compared in the computational environment WEKA leading to comparative numerical results. The basic concepts of research quality evaluation methodologies are presented, an adaptive citation qualitative-quantitative approach and advanced bibliometric indicators are given. Basic components of research quality performance such as research journal cited publications, citing publications and research quality evaluations at various academic levels are considered and corresponding numerical results are given. An alternative approach using certain machine learning algorithms with imbalanced data in the case of research quality evaluation methodologies is proposed. C1 [Lipitakis, Anastasia-Dimitra] Univ Patras, Dept Math, Patras 26504, Hellas, Greece. [Lipitakis, Evangelia A. E. C.] Univ Kent, Kent Business Sch, Canterbury CT2 7PE, Kent, England. C3 University of Patras; University of Kent RP Lipitakis, AD (corresponding author), Univ Patras, Dept Math, Patras 26504, Hellas, Greece. EM adlipitaki@gmail.com; eael2@kentforlife.net RI Lipitakis, Evangelia/N-2952-2013; Lipitakis, Anastasia Dimitra/AAO-8831-2020 OI Lipitakis, Evangelia/0000-0002-9506-4319; Lipitakis, Anastasia-Dimitra/0000-0001-5058-5463 CR [Anonymous], E BUS REVOLUTION UPP [Anonymous], 1989, ARTIFICIAL INTELLIGE [Anonymous], COMMUNICATION ACM JA [Anonymous], THESIS KBS CANTERBUR [Anonymous], 2005, Data Mining: Pratical Machine Learning Tools and Techniques [Anonymous], UCI MACHINE REPOSIIT [Anonymous], 1986, Machine Learning [Anonymous], 1998, Artificial intelligence: a new synthesis [Anonymous], ANN REC COMPUTER SCI [Anonymous], VERY LARGE KNOWLEDGE [Anonymous], 2003, TATuP Z Tech Theor Prax [Anonymous], COMPUTER TECHNOLOGY [Anonymous], INTRO COMPUTATIONAL [Anonymous], EUR E BUS REP [Anonymous], E METR BUS METR NEW [Anonymous], INN EUR [Anonymous], COMMUNICATIONS ACM [Anonymous], ADV I MANAGEMENT PAP [Anonymous], PAC LEARNING RECURSI [Anonymous], 1993, RES EVALUAT, DOI DOI 10.1093/REV/3.3.151 [Anonymous], ICEBE SOKM 2007 C PR [Anonymous], THESIS U PATRAS PATR [Anonymous], MEAS BUS VAK INF TEC [Anonymous], P 14 INT C SCI INF I [Anonymous], CITATION ANAL RES EV [Anonymous], 2010, SERIES ARTIFICIAL IN [Anonymous], HDB QUANTITATIVE SCI [Anonymous], COMPUTATIONAL INTELL [Anonymous], P IEEE S COMP COMM I [Anonymous], P 18 NAT C ART INT A [Anonymous], MACHINE LEARNING ART [Anonymous], MACHINE LEARNING [Anonymous], APPRAISAL CITATION D [Anonymous], SERIES INTELLIGENCE [Anonymous], SERIES ARTIFICIAL IN [Anonymous], 2009, RES EXC FRAM 2 CONS [Anonymous], THESIS KBS ENGLAND [Anonymous], INT J DISTANCE ED TE [Anonymous], HERCMA 2009 C PROCS [Anonymous], HERCMA 2007 C PROCS Anthony M., 1999, NEURAL NETWORK LEARN Barandela R, 2003, PATTERN RECOGN, V36, P849, DOI 10.1016/S0031-3203(02)00257-1 Bauer E, 1999, MACH LEARN, V36, P105, DOI 10.1023/A:1007515423169 Bellman R. E., 1978, Thomson Course Technology Beynon-Davies P., 2004, E BUSINESS Bollen J, 2006, SCIENTOMETRICS, V69, P669, DOI 10.1007/s11192-006-0176-z Charniak E., 1985, INTRO ARTIFICIAL INT Chawla NV, 2003, LECT NOTES ARTIF INT, V2838, P107, DOI 10.1007/978-3-540-39804-2_12 Coltman TR, 2007, J INF TECHNOL-UK, V22, P87, DOI 10.1057/palgrave.jit.2000073 Cormen T.H., 2009, Introduction to Algorithms Domingos P., 1999, Proceedings of the fifth ACM SIGKDD international conference on Knowledge discovery and data mining, V99, P155 Farhoomand A F., 2005, Managing (e)business transformation: A global perspective Fawcett T, 1997, DATA MIN KNOWL DISC, V1, P291, DOI 10.1023/A:1009700419189 Freund Y, 1997, J COMPUT SYST SCI, V55, P119, DOI 10.1006/jcss.1997.1504 GARFIELD E, 1972, SCIENCE, V178, P471, DOI 10.1126/science.178.4060.471 Gavrilova T, 2009, LECT NOTES COMPUT SC, V5686, P158, DOI 10.1007/978-3-642-03426-8_20 GREEN SG, 1995, IEEE T ENG MANAGE, V42, P203, DOI 10.1109/17.403738 Gross P L, 1927, Science, V66, P385, DOI 10.1126/science.66.1713.385 Henderson Michael, 2009, Campus-Wide Information Systems, V26, P149, DOI 10.1108/10650740910967348 Ho T.K., 2002, Hybrid Methods in Pattern Recognition, P171, DOI [DOI 10.1142/9789812778147_0007, 10.1142/9789812778147_0007] Japkowicz N., 2002, Intelligent Data Analysis, V6, P429 Jelassi T., 2005, STRATEGIES E BUSINES KAPLAN RS, 1992, HARVARD BUS REV, V70, P71 Knuth D. E., 1968, ART COMPUTER PROGRAM, V1 Koellinger P, 2008, RES POLICY, V37, P1317, DOI 10.1016/j.respol.2008.04.024 Kuncheva LI, 2007, LECT NOTES COMPUT SC, V4472, P459 Kurzweil Ray., 1990, AGE INTELLIGENT MACH Liu Y, 2006, LECT NOTES ARTIF INT, V3918, P107 LUHN HP, 1958, IBM J RES DEV, V2, P314, DOI 10.1147/rd.24.0314 Meho LI, 2008, J AM SOC INF SCI TEC, V59, P1711, DOI 10.1002/asi.20874 Mesenbourg T.L., 2001, Measuring electronic business Michalski R. S., 1983, Machine Learning: An Artificial Intelligence Approach, VI Mingers J, 2013, INFORM PROCESS MANAG, V49, P587, DOI 10.1016/j.ipm.2012.11.002 Mingers J, 2010, SCIENTOMETRICS, V85, P613, DOI 10.1007/s11192-010-0270-0 Mitchell Thomas M., 1997, Machine learning. McGraw Hill series in computer science, V1 Nicolaisen J, 2002, RES EVALUAT, V11, P129, DOI 10.3152/147154402781776808 Porter ME, 2001, HARVARD BUS REV, V79, P62 Rausch P., 2013, Business Intelligence and Performance Management: Theory, Systems and Industrial Applications Rich E, 1991, ARTIF INTELL Rodríguez JJ, 2006, IEEE T PATTERN ANAL, V28, P1619, DOI 10.1109/TPAMI.2006.211 Rud O.P., 2009, BUSINESS INTELLIGENC SCHAPIRE R, 2002, LECT NOTES STAT Sedgewick R., 1984, Algorithms SIMON HA, 1995, ARTIF INTELL, V77, P95, DOI 10.1016/0004-3702(95)00039-H Sun YM, 2007, PATTERN RECOGN, V40, P3358, DOI 10.1016/j.patcog.2007.04.009 Wheeler BC, 2002, INFORM SYST RES, V13, P125, DOI 10.1287/isre.13.2.125.89 Winston P.H., 1992, Artificial Intelligence NR 87 TC 0 Z9 0 U1 1 U2 18 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA BN 978-1-4799-3009-8 PY 2014 BP 451 EP 457 DI 10.1109/CSCI.2014.81 PG 7 WC Computer Science, Artificial Intelligence; Computer Science, Theory & Methods WE Conference Proceedings Citation Index - Science (CPCI-S) SC Computer Science GA BC8NS UT WOS:000355911900077 DA 2024-09-05 ER PT J AU Jiang, HC Qiang, MS Lin, P AF Jiang HanChen Qiang MaoShan Lin Peng TI Finding academic concerns of the Three Gorges Project based on a topic modeling approach SO ECOLOGICAL INDICATORS LA English DT Article DE Hydropower project; Three Gorges Project; Topic modeling; Scientific documents; Latent Dirichlet Allocation; Bibliometric indicators ID YANGTZE-RIVER; SCIENCE; POLICY; CHINA; TEXT AB The Three Gorges Project (TGP) has gone into the overall completion acceptance stage in 2014. As the world's largest hydropower project, the TGP has attracted worldwide attention over the past few decades. Previous studies mainly focused on a single aspect, such as engineering technologies, social impacts and environmental impacts, of the TGP. However, a large-scale review gathering systematic data to find academic concerns about the TGP is missing. Topic model is a text mining approach for discovering latent topics in a collection of documents. In this article, an emerging topic modeling approach, Latent Dirichlet Allocation (LDA), was introduced to uncover the intellectual structure of the academic literature focusing on the TGP. A collection of 8280 Chinese research articles highly related to the TGP was established with a time frame ranging from 2001 to 2013, and an 18-topic model was used to describe the intellectual structure. Two novel bibliometric indicators, including topic proportion and topic trend, were constructed to describe the academic concerns of the TGP. Topic proportion analysis shows that post-construction issues, including the social and environmental impacts brought by the TGP, have attracted more attention than the construction issues. "Ecology", "Reservoir Operation", "Land Administration", and "Water Pollution", have become the dominant research topics regarding the TGP during these years. Meanwhile, "Construction Technology" and "Design", have gradually lost scholars' interest. The results show that the approach reported in this study can provide sound and credible conclusions of the major academic concerns for a hydropower project. The topic modeling approach is expected to be widely applied as a methodological strategy in future hydropower and other infrastructure project assessment. (C) 2015 Elsevier Ltd. All rights reserved. C1 [Jiang HanChen; Qiang MaoShan; Lin Peng] Tsinghua Univ, State Key Lab Hydrosci & Engn, Beijing 100084, Peoples R China. C3 Tsinghua University RP Qiang, MS (corresponding author), Tsinghua Univ, State Key Lab Hydrosci & Engn, Beijing 100084, Peoples R China. EM jhc13@mails.tsinghua.edu.cn; qiangms@mail.tsinghua.edu.cn; celinpe@tsinghua.edu.cn RI Lin, Peng/J-4015-2013 FU National Natural Science Foundation of China [51479100, 51179086, 11272178, 51379104]; State Key Laboratory of Hydroscience and Engineering of China [2015-KY-5, 2013-KY-5] FX This work was supported by the National Natural Science Foundation of China under Grant Nos. 51479100, 51179086, 11272178, and 51379104; and State Key Laboratory of Hydroscience and Engineering of China under Grant 2015-KY-5 and 2013-KY-5. CR Barros N, 2011, NAT GEOSCI, V4, P593, DOI 10.1038/ngeo1211 Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993 Chang J, 2009, Adv. Neural Inf. Process. Syst., P288 Chang XL, 2010, ENERGY, V35, P4400, DOI 10.1016/j.energy.2009.06.051 Chen CC, 2011, DECIS SUPPORT SYST, V50, P755, DOI 10.1016/j.dss.2010.08.023 Chen S.H., 1999, SCI FDN CHINA, V5, P313 Chen ZY, 2001, GEOMORPHOLOGY, V41, P77, DOI 10.1016/S0169-555X(01)00106-4 Coglianese C, 2004, SOC SCI COMPUT REV, V22, P85, DOI 10.1177/0894439303259890 Cuéllar MF, 2005, ADMIN LAW REV, V57, P411 Dai ZJ, 2010, HYDROGEOL J, V18, P359, DOI 10.1007/s10040-009-0538-8 Duan YueFang Duan YueFang, 2003, Journal of Refugee Studies, V16, P422, DOI 10.1093/jrs/16.4.422 Feinerer I, 2008, J STAT SOFTW, V25, P1 Fu BJ, 2010, PROG PHYS GEOG, V34, P741, DOI 10.1177/0309133310370286 George G, 2014, ACAD MANAGE J, V57, P321, DOI 10.5465/amj.2014.4002 Gleick PeterH., 2009, WORLDS WATERS 2008 2, P139 Griffiths TL, 2004, P NATL ACAD SCI USA, V101, P5228, DOI 10.1073/pnas.0307752101 Grimmer J, 2013, POLIT ANAL, V21, P267, DOI 10.1093/pan/mps028 Grün B, 2011, J STAT SOFTW, V40, P1 Hofmann T, 2001, MACH LEARN, V42, P177, DOI 10.1023/A:1007617005950 Hwang SS, 2011, SOC INDIC RES, V101, P73, DOI 10.1007/s11205-010-9636-1 [简文星 Jian Wenxing], 2013, [地球科学, Earth Science], V38, P625 Kim S., 2014, J BIOMED INFORM, V53, P267 Kulkarni SS, 2014, DECISION SCI, V45, P971, DOI 10.1111/deci.12095 Leitzinger J.J., 1984, CONTEMP ECON POLICY, V2, P44, DOI DOI 10.1111/J.1465-7287.1984.TB00777.X Levy KEC, 2014, SOC SCI COMPUT REV, V32, P182, DOI 10.1177/0894439313506847 Lu Youmei, 1994, International Water Power & Dam Construction, V46, P20 Mann HB, 1945, ECONOMETRICA, V13, P245, DOI 10.2307/1907187 Moro S, 2015, EXPERT SYST APPL, V42, P1314, DOI 10.1016/j.eswa.2014.09.024 Nichols LG, 2014, SCIENTOMETRICS, V100, P741, DOI 10.1007/s11192-014-1319-2 Roberts ME, 2014, AM J POLIT SCI, V58, P1064, DOI 10.1111/ajps.12103 Robertson S, 2004, J DOC, V60, P503, DOI 10.1108/00220410410560582 Shulman SW, 2003, SOC SCI COMPUT REV, V21, P162, DOI 10.1177/0894439303251557 Singh RK, 2009, ECOL INDIC, V9, P189, DOI 10.1016/j.ecolind.2008.05.011 Song M, 2014, IEEE INTELL SYST, V29, P18, DOI 10.1109/MIS.2014.20 Steelman TA, 1999, J FOREST, V97, P22 Stone R, 2011, SCIENCE, V333, P817, DOI 10.1126/science.333.6044.817 Sutton A, 2004, GEOGRAPHY, V89, P111 Tullos D, 2009, J ENVIRON MANAGE, V90, pS208, DOI 10.1016/j.jenvman.2008.07.031 Wang JZ, 2002, PUBLIC ADMIN DEVELOP, V22, P369, DOI 10.1002/pad.241 Wang M.F., 2004, J HUAZHONG U SCI TEC, V3, P34 Wang Rushu, 2009, Journal of China Three Gorges University, V31, P1 Wood SA, 2013, SCI REP-UK, V3, DOI 10.1038/srep02976 Wu JG, 2003, SCIENCE, V300, P1239, DOI 10.1126/science.1083312 Yang SL, 2011, GLOBAL PLANET CHANGE, V75, P14, DOI 10.1016/j.gloplacha.2010.09.006 Yang XK, 2013, ENVIRON RES LETT, V8, DOI 10.1088/1748-9326/8/4/041006 Yau CK, 2014, SCIENTOMETRICS, V100, P767, DOI 10.1007/s11192-014-1321-8 Zhang H.-P., 2003, Proc. of the second SIGHAN workshop on Chinese language process, P184, DOI DOI 10.3115/1119250.1119280 Zhao XG, 2012, RENEW ENERG, V44, P1, DOI 10.1016/j.renene.2012.01.005 Zheng B, 2006, BMC BIOINFORMATICS, V7, DOI 10.1186/1471-2105-7-58 NR 49 TC 29 Z9 34 U1 5 U2 83 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS SN 1470-160X EI 1872-7034 J9 ECOL INDIC JI Ecol. Indic. PD JAN PY 2016 VL 60 BP 693 EP 701 DI 10.1016/j.ecolind.2015.08.007 PG 9 WC Biodiversity Conservation; Environmental Sciences WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Biodiversity & Conservation; Environmental Sciences & Ecology GA CZ9GW UT WOS:000367407000070 DA 2024-09-05 ER PT J AU Amos, AJ Lee, KYM Gupta, TS Malau-Aduli, BS AF Amos, Andrew James Lee, Kyungmi Gupta, Tarun Sen Malau-Aduli, Bunmi S. TI Validating the knowledge represented by a self-organizing map with an expert-derived knowledge structure SO BMC MEDICAL EDUCATION LA English DT Article DE Artificial intelligence; Machine learning; Curriculum development; Scientometrics; Medical education; Explainable AI AB Background Professionals are reluctant to make use of machine learning results for tasks like curriculum development if they do not understand how the results were generated and what they mean. Visualizations of peer reviewed medical literature can summarize enormous amounts of information but are difficult to interpret. This article reports the validation of the meaning of a self-organizing map derived from the Medline/PubMed index of peer reviewed medical literature by its capacity to coherently summarize the references of a core psychiatric textbook.Methods Reference lists from ten editions of Kaplan and Sadock's Comprehensive Textbook of Psychiatry were projected onto a self-organizing map trained on Medical Subject Headings annotating the complete set of peer reviewed medical research articles indexed in the Medline/PubMed database (MedSOM). K-means clustering was applied to references from every edition to examine the ability of the self-organizing map to coherently summarize the knowledge contained within the textbook.Results MedSOM coherently clustered references into six psychiatric knowledge domains across ten editions (1967-2017). Clustering occurred at the abstract level of broad psychiatric practice including General/adult psychiatry, Child psychiatry, and Administrative psychiatry.Conclusions The uptake of visualizations of published medical literature by medical experts for purposes like curriculum development depends upon validation of the meaning of the visualizations. The current research demonstrates that a self-organizing map (MedSOM) can validate the stability and coherence of the references used to support the knowledge claims of a standard psychiatric textbook, linking the products of machine learning to a widely accepted standard of knowledge. C1 [Amos, Andrew James; Gupta, Tarun Sen] James Cook Univ, Coll Med & Dent, Townsville, Australia. [Lee, Kyungmi] James Cook Univ, Coll Sci & Engn, Cairns, Australia. [Malau-Aduli, Bunmi S.] Univ Newcastle, Sch Med & Publ Hlth, Newcastle, Australia. C3 James Cook University; James Cook University; University of Newcastle RP Amos, AJ (corresponding author), James Cook Univ, Coll Med & Dent, Townsville, Australia. EM Andrew.Amos@jcu.edu.au RI Malau-Aduli, Bunmi/J-9388-2014 OI Malau-Aduli, Bunmi/0000-0001-6054-8498 CR American Psychiatric Association, 2013, DIAGN STAT MAN MENT American Psychiatric Association, 2013, Diagnostic and Statistical Manual of Mental Disorders: DSM-5, V5th, DOI [DOI 10.1176/APPI.BOOKS.9780890425596, 10.1176/APPI.BOOKS.9780890425596] Amos A, 2023, 19 WORLD C MED HLTH Amos AJ, 2023, CURR PSYCHOL, V42, P30813, DOI 10.1007/s12144-022-04090-y [Anonymous], 2019, LANCET, V393, P959, DOI 10.1016/S0140-6736(19)30510-0 Antoniadi AM, 2021, APPL SCI-BASEL, V11, DOI 10.3390/app11115088 Arrieta AB, 2020, INFORM FUSION, V58, P82, DOI 10.1016/j.inffus.2019.12.012 Boyack KW, 2019, SPRINGER HBK, P187, DOI 10.1007/978-3-030-02511-3_8 Boyack KW, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0018029 Clarivate. Web of Science Home, 2023, Web of Science Website Denny, 2010, KNOWL INF SYST, V25, P281, DOI 10.1007/s10115-009-0264-5 Elsevier, 2023, Scopus Home Internet English JT, 2002, AM J PSYCHIAT, V159, P327, DOI 10.1176/appi.ajp.159.2.327 Harden RM, 2001, MED TEACH, V23, P123, DOI 10.1080/01421590120036547 He X, 2023, INT J HUM-COMPUT INT, V39, P1519, DOI 10.1080/10447318.2022.2095093 Kaplan HI., 1980, Kaplan and Sadocks Comprehensive Textbook of Psychiatry, V3 Kaplan HI., 1985, Kaplan and Sadocks Comprehensive Textbook of Psychiatry, V4 Klavans R, 2017, J ASSOC INF SCI TECH, V68, P984, DOI 10.1002/asi.23734 Kohonen T., 2001, SELF ORGANIZING MAPS, P501, DOI [DOI 10.1007/978-3-642-56927-2, 10.1007/978-3-642-56927-2] Melka J, 2017, P 9 INT JOINT C COMP, P54, DOI DOI 10.5220/0006499500540063 Melka J, 2019, STUD COMPUT INTELL, V829, P139, DOI 10.1007/978-3-030-16469-0_8 Miller T, 2019, ARTIF INTELL, V267, P1, DOI 10.1016/j.artint.2018.07.007 National Library of Medicine, 2023, MEDLINE Citation Counts by Year of Publication National Library of Medicine, 2021, MEDLINE Database Home Ohniwa RL, 2019, SCIENTOMETRICS, V121, P1549, DOI 10.1007/s11192-019-03248-z Rousseau R, 2019, SPRINGER HBK, P69, DOI 10.1007/978-3-030-02511-3_3 Sadock BJ, 2009, Kaplan Sadocks Comprehensive Textbook of Psychiatry, DOI DOI 10.1080/09638230902946833 Shulner-Tal A, 2023, INT J HUM-COMPUT INT, V39, P1455, DOI 10.1080/10447318.2022.2095705 Silva A, 2023, INT J HUM-COMPUT INT, V39, P1390, DOI 10.1080/10447318.2022.2101698 Skupin A, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0058779 Thomas P.A., 2016, CURRICULUM DEV MEDIC, DOI DOI 10.7326/0003-4819-130-10-199905180-00028 NR 31 TC 0 Z9 0 U1 1 U2 1 PU BMC PI LONDON PA CAMPUS, 4 CRINAN ST, LONDON N1 9XW, ENGLAND EI 1472-6920 J9 BMC MED EDUC JI BMC Med. Educ. PD APR 16 PY 2024 VL 24 IS 1 AR 416 DI 10.1186/s12909-024-05352-y PG 16 WC Education & Educational Research; Education, Scientific Disciplines WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Education & Educational Research GA OA4L6 UT WOS:001204524700002 PM 38627742 OA gold DA 2024-09-05 ER PT C AU Hamadicharef, B AF Hamadicharef, Brahim BE Deng, H Miao, DQ Lei, JS Wang, FL TI Bibliometric Analysis of Particle Swarm Optimization (PSO) Research 2000-2010 SO ARTIFICIAL INTELLIGENCE AND COMPUTATIONAL INTELLIGENCE, PT III SE Lecture Notes in Artificial Intelligence LA English DT Proceedings Paper CT 3rd International Conference on Artificial Intelligence and Computational Intelligence (AICI 2011) CY SEP 23-25, 2011 CL Taiyuan, PEOPLES R CHINA DE Particle Swarm Optimization; bibliometric study; citations ID PUBLICATION AB In the last decade, Particle Swarm Optimization (PSO) has grown in popularity as one important method for optimization, compared to recent Differential Evolution (DE) and Harmony Search (HS). In this paper a bibliometric study is presented, carried out on the PSO research literature from 2000 to 2010. The Thomson Reuters Web of Science (WoS) was used to collect publication records and analyzed to identify authorship, co-authorship, top journals, profile the distribution of citations and references. The study also includes the use keyword co-occurrence frequency from the articles' title, to help getting insights into PSO research trends and fields of applications. C1 Tiara, Singapore 239403, Singapore. RP Hamadicharef, B (corresponding author), Tiara, 1 Kim Seng Walk, Singapore 239403, Singapore. EM bhamadicharef@hotmail.com RI HAMADICHAREF, Brahim/B-8686-2009 OI HAMADICHAREF, Brahim/0000-0003-4192-3517 CR Clerc M, 2002, IEEE T EVOLUT COMPUT, V6, P58, DOI 10.1109/4235.985692 Dereli T, 2009, EUR J IND ENG, V3, P379, DOI 10.1504/EJIE.2009.027034 GARFIELD E, 1955, SCIENCE, V122, P108, DOI 10.1126/science.122.3159.108 Garfield E, 2006, JAMA-J AM MED ASSOC, V295, P90, DOI 10.1001/jama.295.1.90 Geem ZW, 2001, SIMULATION, V76, P60, DOI 10.1177/003754970107600201 Goldberg DE, 1989, Genetic Algorithms in Search, Optimization and Machine Learning, V1st Hagen NT, 2010, SCIENTOMETRICS, V84, P785, DOI 10.1007/s11192-009-0129-4 Hamadicharef B., 2010, Proceedings 2010 International Conference on Web Information Systems and Mining (WISM 2010), P201, DOI 10.1109/WISM.2010.166 Hamadicharef Brahim, 2010, 2010 10th International Conference on Information Sciences, Signal Processing and their Applications (ISSPA 2010), P626, DOI 10.1109/ISSPA.2010.5605421 Hamadicharef B, 2009, IEEE INT SYMP CIRC S, P1465, DOI 10.1109/ISCAS.2009.5118043 Karaboga D, 2009, ARTIF INTELL REV, V31, P61, DOI 10.1007/s10462-009-9127-4 Kennedy J, 1995, 1995 IEEE INTERNATIONAL CONFERENCE ON NEURAL NETWORKS PROCEEDINGS, VOLS 1-6, P1942, DOI 10.1109/icnn.1995.488968 Kwok LS, 2005, J MED ETHICS, V31, P554, DOI 10.1136/jme.2004.010553 Storn R, 1999, IEEE T EVOLUT COMPUT, V3, P22, DOI 10.1109/4235.752918 Viégas FB, 2009, IEEE T VIS COMPUT GR, V15, P1137, DOI 10.1109/TVCG.2009.171 NR 15 TC 3 Z9 3 U1 0 U2 1 PU SPRINGER-VERLAG BERLIN PI BERLIN PA HEIDELBERGER PLATZ 3, D-14197 BERLIN, GERMANY SN 0302-9743 EI 1611-3349 BN 978-3-642-23895-6; 978-3-642-23896-3 J9 LECT NOTES ARTIF INT PY 2011 VL 7004 BP 404 EP 411 PN III PG 8 WC Computer Science, Artificial Intelligence WE Conference Proceedings Citation Index - Science (CPCI-S) SC Computer Science GA BBZ34 UT WOS:000309149800050 DA 2024-09-05 ER PT J AU Kartal, G Yesilyurt, YE AF Kartal, Galip Yesilyurt, Yusuf Emre TI A bibliometric analysis of artificial intelligence in L2 teaching and applied linguistics between 1995 and 2022 SO RECALL LA English DT Article; Early Access DE artificial intelligence (AI); L2; applied linguistics; bibliometric analysis; co-citation analysis ID LEARNER LANGUAGE; COMPREHENSION; EXPERIENCES; CALL; AI AB This study offers a comprehensive bibliometric analysis of artificial intelligence (AI) applications in the field of second language (L2) teaching and applied linguistics, spanning from the early developments in 1995 to 2022. It aims to uncover current trends, prominent themes, and influential authors, documents, and sources. A total of 185 relevant articles published in Social Sciences Citation Index (SSCI) indexed journals were analyzed using the VOSviewer bibliometric software tool. Our investigation reveals a highly multidisciplinary and interconnected field, with four main clusters identified: AI, natural language processing (NLP), robot-assisted language learning, and chatbots. Notable themes include the increasing use of intelligent tutoring systems, the importance of syntactic complexity and vocabulary in L2 learning, and the exploration of robots and gamification in language education. The study also highlights the potential of NLP and AI technologies to enhance personalized feedback and instruction for language learners. The findings emphasize the growing interest in AI applications in L2 teaching and applied linguistics, as well as the need for continued research to advance the field and improve language instruction and assessment. By providing a quantitative and rigorous overview of the literature, this study contributes valuable insights into the current state of research in AI-assisted L2 teaching and applied linguistics and identifies key areas for future exploration and development. C1 [Kartal, Galip] Necmettin Erbakan Univ, Konya, Turkiye. [Yesilyurt, Yusuf Emre] Burdur Mehmet Akif Ersoy Univ, Burdur, Turkiye. C3 Necmettin Erbakan University; Mehmet Akif Ersoy University RP Kartal, G (corresponding author), Necmettin Erbakan Univ, Konya, Turkiye. EM kartalgalip@gmail.com; yeyesilyurtnew@gmail.com OI KARTAL, Galip/0000-0003-4656-2108 CR Alexopoulou T, 2017, LANG LEARN, V67, P180, DOI 10.1111/lang.12232 Ali Zuraina, 2020, IOP Conference Series: Materials Science and Engineering, V769, DOI 10.1088/1757-899X/769/1/012043 Alm A, 2020, INT J COMPUT-ASSIST, V10, P51, DOI 10.4018/IJCALLT.2020100104 Amaral L, 2011, COMPUT ASSIST LANG L, V24, P1, DOI 10.1080/09588221.2010.520674 Asher Jordi M, 2022, Vision (Basel), V6, DOI 10.3390/vision6040067 Bouchrika I, 2021, INTERACT LEARN ENVIR, V29, P1244, DOI 10.1080/10494820.2019.1623267 Cao MY, 2020, English Language Teaching, V13, P77 Chang CW, 2010, EDUC TECHNOL SOC, V13, P13 Chen GD, 2013, INTERACT LEARN ENVIR, V21, P172, DOI 10.1080/10494820.2012.705856 Chen XL, 2021, EDUC TECHNOL SOC, V24, P205 Cheng YW, 2020, COMPUT ASSIST LANG L, V34, P6, DOI 10.1080/09588221.2020.1799823 Cheng YW, 2018, COMPUT EDUC, V126, P399, DOI 10.1016/j.compedu.2018.07.020 Crossley SA, 2017, DISCOURSE PROCESS, V54, P340, DOI 10.1080/0163853X.2017.1296264 Crossley SA, 2016, J SECOND LANG WRIT, V32, P1, DOI 10.1016/j.jslw.2016.01.003 Dhimolea TK, 2022, TECHTRENDS, V66, P810, DOI 10.1007/s11528-022-00717-w Divekar RR, 2022, COMPUT ASSIST LANG L, V35, P2332, DOI 10.1080/09588221.2021.1879162 Dokukina Irina, 2020, Procedia Computer Science, P542, DOI 10.1016/j.procs.2020.02.212 Hallinger P, 2019, REV EDUC RES, V89, P335, DOI 10.3102/0034654319830380 Hamal O, 2022, INT J EMERG TECHNOL, V17, P32, DOI 10.3991/ijet.v17i02.26605 Huang WJ, 2022, J COMPUT ASSIST LEAR, V38, P237, DOI 10.1111/jcal.12610 Huang XY, 2023, EDUC TECHNOL SOC, V26, P112, DOI 10.30191/ETS.202301_26(1).0009 Kessler G, 2018, FOREIGN LANG ANN, V51, P205, DOI 10.1111/flan.12318 Khalifa A., 2017, Proceedings of the 7th ISCA Workshop on Speech and Language Technology in Education, P13, DOI [10.21437/slate.2017-3, 10.21437/SLaTE.2017-3, DOI 10.21437/SLATE.2017-3] Khalifa A, 2019, INT J EMERG TECHNOL, V14, P105, DOI 10.3991/ijet.v14i02.9212 Kuhail MA, 2023, EDUC INF TECHNOL, V28, P973, DOI 10.1007/s10639-022-11177-3 Kumar A., 2017, International Journal of Cognitive Research in Science, Engineering, Education, V5, P83, DOI [DOI 10.5937/IJCRSEE1702083K, 10.5937/IJCRSEE1702083K] Kyle K, 2018, MOD LANG J, V102, P333, DOI 10.1111/modl.12468 Lee H, 2022, EDUC RES REV-NETH, V35, DOI 10.1016/j.edurev.2021.100425 Lee S, 2011, RECALL, V23, P25, DOI 10.1017/S0958344010000273 Lei H., 2022, P 2021 INT C ED LANG, P659, DOI [10.2991/assehr.k.220131.121, DOI 10.2991/ASSEHR.K.220131.121] Leoste J, 2022, FRONT ROBOT AI, V9, DOI 10.3389/frobt.2022.976836 Liang JC, 2023, INTERACT LEARN ENVIR, V31, P4270, DOI 10.1080/10494820.2021.1958348 McHugh D, 2020, J RES TECHNOL EDUC, V52, P391, DOI 10.1080/15391523.2020.1752337 Meurers WD, 2009, CALICO J, V26, P469 Molenaar B, 2021, MULTIMODAL TECHNOLOG, V5, DOI 10.3390/mti5120076 Nair V, 2021, SUSTAINABILITY-BASEL, V13, DOI 10.3390/su13179829 Nushi M., 2020, Teaching English with Technology, V20, P65 Oliva SZ, 2021, SCIENTOMETRICS, V126, P1471, DOI 10.1007/s11192-020-03785-y Pokrivcakova S, 2019, J LANG CULT EDUC, V7, P135, DOI 10.2478/jolace-2019-0025 Roemer R.C., 2015, MEANINGFUL METRICS 2 Rustan E., 2022, Journal of Language Teaching and Research, V13, P1251, DOI [10.17507/jltr.1306.13, DOI 10.17507/JLTR.1306.13] Schulze M., 2013, Contemporary computer-assisted language learning, P249 Schulze M, 2008, CALICO J, V25, P510, DOI 10.1558/cj.v25i3.510-527 Sisman B, 2019, INTERACT LEARN ENVIR, V27, P377, DOI 10.1080/10494820.2018.1474234 Sun K, 2019, T ASSOC COMPUT LING, V7, P217, DOI 10.1162/tacl_a_00264 Timpe-Laughlin V, 2022, COMPUT ASSIST LANG L, V35, P1194, DOI 10.1080/09588221.2020.1774904 Tschichold C, 2016, ROUT HANDB APPL, P522 Tsivitanidou Olia, 2021, Learning and Collaboration Technologies Games and Virtual Environments for Learning. 8th International Conference, LCT 2021. Held as Part of the 23rd HCI International Conference, HCII 2021. Proceedings. Lecture Notes in Computer Science (LNCS 12785), P230, DOI 10.1007/978-3-030-77943-6_15 Vall R., 2023, International Journal of Social Sciences and Humanities Invention, V10, P7569, DOI [https://doi.org/10.18535/ijsshi/v10i01.02, DOI 10.18535/IJSSHI/V10I01.02] van Eck NJ, 2017, PRO INT CONF SCI INF, P1087 Wang W, 2024, ENT-EAR NOSE THROAT, V103, P36, DOI 10.1177/01455613211037641 Wang ZJ, 2021, Arxiv, DOI arXiv:2103.04044 Widiasih Johan, 2021, P INT C ED SCI TEACH, P218, DOI [10.2991/assehr.k.210227.039, DOI 10.2991/ASSEHR.K.210227.039] Xu ZH, 2019, BRIT J EDUC TECHNOL, V50, P3119, DOI 10.1111/bjet.12758 Yang HZ, 2022, AUSTRALAS J EDUC TEC, V38, P180, DOI 10.14742/ajet.7492 Yang YF, 2010, LEARN INSTR, V20, P72, DOI 10.1016/j.learninstruc.2009.01.003 Zhang ZC, 2022, FRONT PSYCHOL, V13, DOI 10.3389/fpsyg.2022.880935 Zou B, 2023, SUSTAINABILITY-BASEL, V15, DOI 10.3390/su15042872 Zou X, 2018, ACCIDENT ANAL PREV, V118, P131, DOI 10.1016/j.aap.2018.06.010 NR 59 TC 0 Z9 0 U1 70 U2 70 PU CAMBRIDGE UNIV PRESS PI CAMBRIDGE PA EDINBURGH BLDG, SHAFTESBURY RD, CB2 8RU CAMBRIDGE, ENGLAND SN 0958-3440 EI 1474-0109 J9 RECALL JI ReCALL PD 2024 FEB 26 PY 2024 DI 10.1017/S0958344024000077 EA FEB 2024 PG 17 WC Education & Educational Research; Linguistics; Language & Linguistics WE Social Science Citation Index (SSCI); Arts & Humanities Citation Index (A&HCI) SC Education & Educational Research; Linguistics GA JF5K4 UT WOS:001171763000001 OA hybrid DA 2024-09-05 ER PT J AU Gupta, BM Dhawan, SM AF Gupta, B. M. Dhawan, S. M. TI Artificial Intelligence Research in India: A Scientometric Assessment of Publications Output during 2007-16 SO DESIDOC JOURNAL OF LIBRARY & INFORMATION TECHNOLOGY LA English DT Article DE Artificial intelligence; India; Publications; Highly cited papers; Scientometrics; Bibliometrics ID COMPUTER-SCIENCE RESEARCH AB The paper examines the world output in artificial intelligence research, a total of 1,52,655 publications, as seen from Scopus database, covering the period during 2007-16. The top 10 countries of the world in artificial intelligence research accounted for 74.32 per cent global publication share. Individually their global share varied from 3.68 per cent to 19.46 per cent, with China accounting for 19.46 per cent global share, followed by the USA (17.96 %), India (6.37 %), and the U.K. (6.33 %), etc. The paper also examines publications output by India in artificial intelligence research. India cumulated a total of 9730 publications in 10 years during 2007-16, registered an annual average growth rate of 27.45 per cent, averaged citation impact to 2.76 citations per paper, and contributed 10.34 per cent share of its total country output as international collaborative publications during 2007-16. Computer science accounted for the largest publication share (86.99 %), followed by engineering (30.69 %), mathematics (15.95 %), biochemistry, genetics & molecular biology (4.66 %), and several other disciplines. The top 10 organizations and 10 authors together accounted for 19.31 per cent and 2.71 per cent national publications share respectively and 29.78 per cent share and 6.85 per cent national citation share respectively during 2007-16. Top 10 journals accounted for 15.45 per cent share of the country output appearing in journal medium (1650 papers). India accounted for 24 highly cited papers, averaging to 162.46 citations per paper. These 24 highly cited papers involved the participation of 109 authors from 70 organizations, published in 15 journals. C1 [Gupta, B. M.] 1173,Sect 15, Panchkula 134113, Haryana, India. [Dhawan, S. M.] 114 Dayanand Vihar, Delhi 110092, India. RP Gupta, BM (corresponding author), 1173,Sect 15, Panchkula 134113, Haryana, India. EM bmgupta1@gmail.com CR Cheng Saiyan, 2012, IEEE P 5 INT JOINT C Gupta BM, 2017, J SCIENTOMETR RES, V6, P74, DOI 10.5530/jscires.6.2.13 Gupta BM, 2010, DESIDOC J LIB INF TE, V30, P39, DOI 10.14429/djlit.30.680 Gupta BM, 2011, SCIENTOMETRICS, V86, P261, DOI 10.1007/s11192-010-0272-y Gupta BM, 2005, DESIDOC J LIB INF TE, V25, P3, DOI 10.14429/dbit.25.1.3644 Niu JQ, 2016, ISPRS INT J GEO-INF, V5, DOI 10.3390/ijgi5050066 Shanmugam A. P, 2016, J ADV LIB INF SCI, V5, P235 Shrivastava Rishabh, 2016, Science & Technology Libraries, V35, P136, DOI 10.1080/0194262X.2016.1181023 van den Besselaar P, 1996, J AM SOC INFORM SCI, V47, P415, DOI 10.1002/(SICI)1097-4571(199606)47:6<415::AID-ASI3>3.0.CO;2-Y NR 9 TC 8 Z9 8 U1 0 U2 25 PU DEFENCE SCIENTIFIC INFORMATION DOCUMENTATION CENTRE PI DELHI PA METCALFE HOUSE, DELHI 110054, INDIA SN 0974-0643 EI 0976-4658 J9 DESIDOC J LIB INF TE JI DESIDOC J. Lib. Inf. Technol. PD NOV PY 2018 VL 38 IS 6 BP 416 EP 422 DI 10.14429/djlit.38.6.12309 PG 7 WC Information Science & Library Science WE Emerging Sources Citation Index (ESCI) SC Information Science & Library Science GA GZ0NB UT WOS:000449059400006 OA Green Submitted, hybrid DA 2024-09-05 ER PT J AU Chen, XL Xie, HR Li, ZX Zhang, D Cheng, GRY Wang, FL Dai, HN Li, Q AF Chen, Xieling Xie, Haoran Li, Zongxi Zhang, Dian Cheng, Gary Wang, Fu Lee Dai, Hong-Ning Li, Qing TI Leveraging deep learning for automatic literature screening in intelligent bibliometrics SO INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS LA English DT Article DE Automatic literature screening; Deep neural networks; Intelligent bibliometrics; Big data analytics ID SYSTEMATIC REVIEWS; CLASSIFICATION; PATTERNS AB Intelligent bibliometrics, by providing sufficient statistical information based on large-scale literature data analytics, is promising for understanding innovative pathways, addressing meaningful insights with the assistance of expert knowledge, and indicating key areas of scientific inquiry. However, the exponential growth of global scientific publication output in most areas of modern science makes it extremely difficult and labor-intensive to analyze literature in large volumes. This study aims to accelerate intelligent bibliometrics-driven literature analysis by leveraging deep learning for automatic literature screening. The comparison of different machine learning algorithms for the automatic classification of literature regarding relevance to a given research topic reveals the outstanding performance of deep learning. This study also compares different features as model input and provides suggestions about training dataset size. By leveraging deep learning's abilities in predictive and big data analytics, this study makes contributions to intelligent bibliometrics by promoting literature screening and is promising to track technological changes and scientific evolutionary pathways. C1 [Chen, Xieling] Guangzhou Univ, Sch Educ, Guangzhou, Peoples R China. [Xie, Haoran] Lingnan Univ, Dept Comp & Decis Sci, Hong Kong, Peoples R China. [Li, Zongxi; Wang, Fu Lee] Hong Kong Metropolitan Univ, Sch Sci & Technol, Hong Kong, Peoples R China. [Zhang, Dian] Shenzhen Univ, Coll Comp Sci & Software Engn, Shenzhen, Peoples R China. [Cheng, Gary] Educ Univ Hong Kong, Dept Math & Informat Technol, Hong Kong, Peoples R China. [Dai, Hong-Ning] Hong Kong Baptist Univ, Dept Comp Sci, Hong Kong, Peoples R China. [Li, Qing] Hong Kong Polytech Univ, Dept Comp, Hong Kong, Peoples R China. C3 Guangzhou University; Lingnan University; Hong Kong Metropolitan University; Shenzhen University; Education University of Hong Kong (EdUHK); Hong Kong Baptist University; Hong Kong Polytechnic University RP Xie, HR (corresponding author), Lingnan Univ, Dept Comp & Decis Sci, Hong Kong, Peoples R China. EM xielingchen0708@gmail.com; hrxie@ieee.org; zoli@hkmu.edu.hk; zhangd@szu.edu.cn; chengks@eduhk.hk; pwang@hkmu.edu.hk; henrydai@comp.hkbu.edu.hk; qing-prof.li@polyu.edu.hk RI Li, Qing/JMH-1365-2023; zheng, yi/JOZ-7204-2023; Dai, Hong-Ning/B-1931-2012; Xie, Haoran/AFS-3515-2022; Wang, Fu Lee/AAD-9782-2021 OI Li, Qing/0000-0003-3370-471X; Dai, Hong-Ning/0000-0001-6165-4196; Xie, Haoran/0000-0003-0965-3617; Wang, Fu Lee/0000-0002-3976-0053; PV, THAYYIB/0000-0001-8929-0398 FU Research Grants Council of the Hong Kong Special Administrative Region, China [UGC/FDS16/E01/19]; Lingnan University, Hong Kong [DR22A2, DB22B4, DB22B7]; One-off Special Fund from Central and Faculty Fund in Support of Research [MIT02/19-20]; Interdisciplinary Research Scheme of Dean's Research Fund 2021/22 of The Education University of Hong Kong [FLASS/DRF/IDS-3] FX The research described in this article has been supported by a grant from the Research Grants Council of the Hong Kong Special Administrative Region, China (UGC/FDS16/E01/19), the Direct Grant (DR22A2) and the Faculty Research Grants (DB22B4 and DB22B7) of Lingnan University, Hong Kong, the One-off Special Fund from Central and Faculty Fund in Support of Research from 2019/20 to 2021/22 (MIT02/19-20), and Interdisciplinary Research Scheme of Dean's Research Fund 2021/22 (FLASS/DRF/IDS-3) of The Education University of Hong Kong. CR Ali J., 2012, INT J COMPUT SCI ISS, V9, P272 Althnian A, 2021, APPL SCI-BASEL, V11, DOI 10.3390/app11020796 [Anonymous], 2011, P 2011 C EMP METH NA [Anonymous], 2006, Nursing research. principles Astrom F., 2009, Celebrating scholarly communication studies: a festschrift for Olle Persson at his 60th birthday Balaji NNA, 2020, HLTH IRVINE CALIF, V100, P100 Balakrishnan N, 2019, INT J MACH LEARN CYB, V10, P3575, DOI 10.1007/s13042-019-00945-2 Barnett GA, 2017, TECHNOL FORECAST SOC, V117, P38, DOI 10.1016/j.techfore.2017.01.011 Barnett GA, 2017, NEW MEDIA SOC, V19, P217, DOI 10.1177/1461444815604421 Bastian M., 2009, Gephi: An open source software for exploring and manipulating networks Belter CW, 2016, J ASSOC INF SCI TECH, V67, P2766, DOI 10.1002/asi.23605 Bernardo Wanderley Marques, 2004, Rev Assoc Med Bras (1992), V50, P104, DOI 10.1590/S0104-42302004000100045 Bernstam EV, 2006, J AM MED INFORM ASSN, V13, P96, DOI 10.1197/jamia.M1909 Boell SK, FORMULATING RES METH, P8 Bunn F, 2014, SYST REV, V3, DOI 10.1186/2046-4053-3-125 Cheah S, 2017, J CHIN ECON FOREIGN, V10, P229, DOI 10.1108/JCEFTS-05-2017-0013 Chen CM, 2006, J AM SOC INF SCI TEC, V57, P359, DOI 10.1002/asi.20317 Chen X, 2019, INT S EMERGING TECHN, P201 Chen XL, 2021, LANG LEARN TECHNOL, V25, P151 Chen XL, 2020, APPL SCI-BASEL, V10, DOI 10.3390/app10062157 Chen XL, 2018, BMC MED INFORM DECIS, V18, DOI [10.1186/s12911-018-0594-x, 10.1186/s12870-018-1555-3] Cheng FF, 2019, COMPUT-AIDED CHEM EN, V46, P757, DOI 10.1016/B978-0-12-818634-3.50127-2 Cobo MJ, 2012, J AM SOC INF SCI TEC, V63, P1609, DOI 10.1002/asi.22688 Collins JA, 2005, HUM REPROD UPDATE, V11, P103, DOI 10.1093/humupd/dmh058 Collobert R, 2011, J MACH LEARN RES, V12, P2493 Colón-Ruiz C, 2020, J BIOMED INFORM, V110, DOI 10.1016/j.jbi.2020.103539 Cronin Patricia, 2008, Br J Nurs, V17, P38 Dakuo Wang, 2019, Proceedings of the ACM on Human-Computer Interaction, V3, DOI 10.1145/3359313 Dufter P, 2021, 2021 CONFERENCE OF THE NORTH AMERICAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS: HUMAN LANGUAGE TECHNOLOGIES (NAACL-HLT 2021), P2353 Dunn TJ, 2019, COMPUT EDUC, V137, P104, DOI 10.1016/j.compedu.2019.04.004 Fawagreh K, 2014, SYST SCI CONTROL ENG, V2, P602, DOI 10.1080/21642583.2014.956265 Adeva JJG, 2014, EXPERT SYST APPL, V41, P1498, DOI 10.1016/j.eswa.2013.08.047 Adeva JJG, 2007, ENG APPL ARTIF INTEL, V20, P555, DOI 10.1016/j.engappai.2006.09.001 Gimenez E, 2018, SUSTAINABILITY-BASEL, V10, DOI 10.3390/su10020391 Golmohammadi M, 2017, ROUTL STUD NEW MEDIA Graham S, 2019, CURR PSYCHIAT REP, V21, DOI 10.1007/s11920-019-1094-0 Grauwin S, 2011, SCIENTOMETRICS, V89, P943, DOI 10.1007/s11192-011-0482-y Guyon I, 2003, J MACH LEARN RES, V3, P1157, DOI DOI 10.1162/153244303322753616 Ha T, 2017, TELEMAT INFORM, V34, P1262, DOI 10.1016/j.tele.2017.05.011 Hao TY, 2020, J EDUC COMPUT RES, V58, P1311, DOI 10.1177/0735633120940956 Hart C, 1998, REV RES IMAGINATION Hearst M.A., 1999, P ASS COMPUTATIONAL, P3, DOI DOI 10.3115/1034678.1034679 Hennigen LT, 2020, PROCEEDINGS OF THE 2020 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING (EMNLP), P197 Hochreiter S., 1997, Neural Computation, V9, P1735 Hofst„tter S, 2019, Arxiv, DOI arXiv:1907.04614 Howard BE, 2016, SYST REV, V5, DOI 10.1186/s13643-016-0263-z Iglesias LL, 2021, INSIGHTS IMAGING, V12, DOI 10.1186/s13244-021-01052-z Immer A, 2022, PROCEEDINGS OF THE 60TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2022), VOL 1: (LONG PAPERS), P1839 Islam KI, 2020, INT CONF COMPUT INFO, DOI 10.1109/ICCIT51783.2020.9392653 Iyyer M, 2014, PROCEEDINGS OF THE 52ND ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, VOL 1, P1113 Jabbar MA, 2014, 2014 INTERNATIONAL CONFERENCE ON CIRCUITS, COMMUNICATION, CONTROL AND COMPUTING (I4C), P322, DOI 10.1109/CIMCA.2014.7057816 Kalchbrenner N, 2014, PROCEEDINGS OF THE 52ND ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, VOL 1, P655, DOI 10.3115/v1/p14-1062 Kho ME, 2012, J CLIN EPIDEMIOL, V65, P1010, DOI 10.1016/j.jclinepi.2012.03.009 Kim B, 2021, CITIES, V108, DOI 10.1016/j.cities.2020.102941 Kim Y, 2014, ARXIV14085882, DOI 10.3115/v1/D14-1181 Kontonatsios G., 2020, EXPERT SYST APPL X, V6, P100030, DOI [DOI 10.1016/J.ESWAX.2020.100030, 10.1016/j.eswax.2020.100030] Kucukyilmaz T, 2008, INFORM PROCESS MANAG, V44, P1448, DOI 10.1016/j.ipm.2007.12.009 Kwon O, 2013, EXPERT SYST APPL, V40, P1847, DOI 10.1016/j.eswa.2012.09.017 LANGLEY P, 1993, IJCAI-93, VOLS 1 AND 2, P889 Lee S, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0164680 Lewis D. D., 1998, Machine Learning: ECML-98. 10th European Conference on Machine Learning. Proceedings, P4, DOI 10.1007/BFb0026666 Liu Pengfei., 2016, IJCAI, P2873 Liu ZH, 2020, 5TH WORKSHOP ON REPRESENTATION LEARNING FOR NLP (REPL4NLP-2020), P1 Magge A, 2021, J AM MED INFORM ASSN, V28, P2184, DOI 10.1093/jamia/ocab114 Mccallum A., 2001, AAAIICML 98 WORKSHOP, V752 Mikolov T, 2017, P 11 INT C LANG RES Moschitti A, 2003, LECT NOTES COMPUT SC, V2633, P420 O'Mara-Eves A, 2014, RES SYNTH METHODS, V5, P50, DOI 10.1002/jrsm.1094 Oral B, 2020, INFORM PROCESS MANAG, V57, DOI 10.1016/j.ipm.2020.102361 Oussous A, 2018, J KING SAUD UNIV-COM, V30, P431, DOI 10.1016/j.jksuci.2017.06.001 Peng Y, 2011, APPL SOFT COMPUT, V11, P2906, DOI 10.1016/j.asoc.2010.11.028 Petticrew M, 2006, SYSTEMATIC REVIEWS IN THE SOCIAL SCIENCES: A PRACTICAL GUIDE, P1, DOI 10.1002/9780470754887 Prusa J, 2015, 2015 IEEE 14TH INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS (ICMLA), P96, DOI 10.1109/ICMLA.2015.22 Rahman MS, 2017, BMC MED RES METHODOL, V17, DOI 10.1186/s12874-017-0313-9 Ramos-Rodríguez AR, 2004, STRATEGIC MANAGE J, V25, P981, DOI 10.1002/smj.397 Raudys S, 1980, IEEE Trans Pattern Anal Mach Intell, V2, P242, DOI 10.1109/TPAMI.1980.4767011 Robinson KA, 2014, J CLIN EPIDEMIOL, V67, P793, DOI 10.1016/j.jclinepi.2013.11.015 Ros R., 2017, EASE 17 P 21 INT C E, P118, DOI DOI 10.1145/3084226.3084243 Rowley J., 2004, Management research news, V27, P31, DOI [10.1108/01409170410784185, DOI 10.1108/01409170410784185] Roy K., 2015, Understanding the Basics of QSAR for Applications in Pharmaceutical Sciences and Risk Assessment Royle P, 2013, SYST REV-LONDON, V2, DOI 10.1186/2046-4053-2-74 Saarela M, 2021, SN APPL SCI, V3, DOI 10.1007/s42452-021-04148-9 Scells H, 2017, SIGIR'17: PROCEEDINGS OF THE 40TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, P1237, DOI 10.1145/3077136.3080707 Shemilt I, 2014, RES SYNTH METHODS, V5, P31, DOI 10.1002/jrsm.1093 Shen YL, 2014, WWW'14 COMPANION: PROCEEDINGS OF THE 23RD INTERNATIONAL CONFERENCE ON WORLD WIDE WEB, P373, DOI 10.1145/2567948.2577348 Shojania KG, 2007, ANN INTERN MED, V147, P224, DOI 10.7326/0003-4819-147-4-200708210-00179 Sia S, 2020, PROCEEDINGS OF THE 2020 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING (EMNLP), P1728 Song Y, 2019, COMPUT EDUC, V137, P12, DOI 10.1016/j.compedu.2019.04.002 Taha A, 2022, APPL SCI-BASEL, V12, DOI 10.3390/app12063209 Tawfik NS, 2020, J BIOMED INFORM, V104, DOI 10.1016/j.jbi.2020.103396 Team S, 2009, SCI2 TOOL TOOL SCI S Timsina P, 2016, P ANN HICSS, P1195, DOI 10.1109/HICSS.2016.151 van Dinter R, 2021, EXPERT SYST APPL, V182, DOI 10.1016/j.eswa.2021.115261 van Eck NJ, 2014, J INFORMETR, V8, P802, DOI 10.1016/j.joi.2014.07.006 van Eck NJ, 2010, SCIENTOMETRICS, V84, P523, DOI 10.1007/s11192-009-0146-3 vom Brocke J, 2015, COMMUN ASSOC INF SYS, V37, P205 Watanabe WM, 2020, INFORM SOFTWARE TECH, V128, DOI 10.1016/j.infsof.2020.106395 Webster J, 2002, MIS QUART, V26, pXIII Xie H, 2019, COMPUT EDUC, V140, DOI 10.1016/j.compedu.2019.103599 Xieling Chen, 2022, International Journal of Mobile Learning and Organisation, V16, P20, DOI 10.1504/IJMLO.2022.119952 Xiong ZH, 2018, FRONT PHYSIOL, V9, DOI 10.3389/fphys.2018.00835 Yesir S, 2021, 9TH INTERNATIONAL SYMPOSIUM ON DIGITAL FORENSICS AND SECURITY (ISDFS'21), DOI 10.1109/ISDFS52919.2021.9486377 Yih WT, 2014, PROCEEDINGS OF THE 52ND ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, VOL 2, P643 Yu Z, 2019, EXPERT SYST APPL, V120, P57, DOI 10.1016/j.eswa.2018.11.021 Yu Z, 2018, EMPIR SOFTW ENG, V23, P3161, DOI 10.1007/s10664-017-9587-0 Zarate Juan Manuel Ortiz, 2020, String Processing and Information Retrieval. 27th International Symposium, SPIRE 2020. Proceedings. Lecture Notes in Computer Science (LNCS 12303), P194, DOI 10.1007/978-3-030-59212-7_14 Zhang Y, 2021, QUANT SCI STUD, V2, P409, DOI 10.1162/qss_a_00100 Zhang YL, 2022, SYST REV-LONDON, V11, DOI 10.1186/s13643-021-01881-5 Zhou CT, 2015, Arxiv, DOI [arXiv:1511.08630, DOI 10.48550/ARXIV.1511.08630] NR 109 TC 1 Z9 2 U1 10 U2 37 PU SPRINGER HEIDELBERG PI HEIDELBERG PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY SN 1868-8071 EI 1868-808X J9 INT J MACH LEARN CYB JI Int. J. Mach. Learn. Cybern. PD APR PY 2023 VL 14 IS 4 BP 1483 EP 1525 DI 10.1007/s13042-022-01710-8 EA DEC 2022 PG 43 WC Computer Science, Artificial Intelligence WE Science Citation Index Expanded (SCI-EXPANDED) SC Computer Science GA A1ZL5 UT WOS:000899155600001 DA 2024-09-05 ER PT J AU Gong, YL Jia, LG AF Gong, Yunlu Jia, Lianguo TI Research on SVM environment performance of parallel computing based on large data set of machine learning SO JOURNAL OF SUPERCOMPUTING LA English DT Article DE SVM environment; Parallel computing; Large data set; Machine learning ID BIG DATA; ALGORITHM; SCHEME AB The support vector machine (SVM) algorithm is widely used in various fields because of its good classification effect, simplicity and practicability. However, the support vector machine calculates the support vector by quadratic programming, and the solution of quadratic programming will calculate the n-order matrix. When the amount of data is large, the calculation and storage of the n-order matrix will make the optimization speed very slow, even lead to memory overflow and interrupt operation. Using the big data computing platform Spark to improve the support vector machine algorithm can solve the above problems, but it's not competent for multi-classification problems. Therefore, this paper starts with constructing multiple classifiers, combines the Spark framework of big data programming model and the classification characteristics of support vector machine to realize a parallel one-to-many SVM optimization algorithm based on large data sets and compares them through UCI data sets. In the experiments, the one-to-many support vector machine improved by Spark is obviously better than the one-to-many support vector machine in the single-machine environment. The simulation results show that the proposed algorithm has better performance. C1 [Gong, Yunlu] Shanghai Univ, Dept Math, Shanghai, Peoples R China. [Jia, Lianguo] Wuxi Huoqiupuhui Co Ltd, Wuxi, Jiangsu, Peoples R China. C3 Shanghai University RP Gong, YL (corresponding author), Shanghai Univ, Dept Math, Shanghai, Peoples R China. EM ylgong@shu.edu.cn FU Natural Science Foundation of Jiangsu Province [BK20150204] FX The authors acknowledge the Natural Science Foundation of Jiangsu Province (Grant: BK20150204). CR Allombert V, 2017, INT J PARALLEL PROG, V45, P340, DOI 10.1007/s10766-016-0417-6 [Anonymous], COMPUT SCI [Anonymous], INT J PARALLEL PROGR Babiceanu RF, 2016, COMPUT IND, V81, P128, DOI 10.1016/j.compind.2016.02.004 Bhatia V, 2018, EXPERT SYST APPL, V106, P217, DOI 10.1016/j.eswa.2018.04.010 Danchin A, 2018, MICROB BIOTECHNOL, V11, P588, DOI 10.1111/1751-7915.13284 Dastgeer U, 2016, INT J PARALLEL PROG, V44, P506, DOI 10.1007/s10766-015-0357-6 Fang YL, 2017, SENSORS-BASEL, V17, DOI 10.3390/s17081799 Grover P., 2017, GLOBAL J FLEXIBLE SY, V18, P203, DOI DOI 10.1007/S40171-017-0159-3 Guerra G, 2017, J ENG-JOE, V2017, P195, DOI 10.1049/joe.2017.0023 Janka EA, 2018, INT J ENV RES PUB HE, V15, DOI 10.3390/ijerph15020353 Kim JS, 2018, PERVASIVE MOB COMPUT, V44, P45, DOI 10.1016/j.pmcj.2018.01.005 Kim Y, 2014, IEEE COMPUT ARCHIT L, V13, P101, DOI 10.1109/L-CA.2013.19 Kumar N, 2016, IEEE SYST J, V10, P847, DOI 10.1109/JSYST.2015.2409651 Li DZ, 2018, SOFT COMPUT, V22, P2245, DOI 10.1007/s00500-017-2486-x Madar V, 2016, BIOINFORMATICS, V32, P1716, DOI 10.1093/bioinformatics/btw029 Magnus JR, 2016, J ECON SURV, V30, P117, DOI 10.1111/joes.12094 Ripepi V, 2016, ASTROPHYSICS SPACE, V42, P145, DOI 10.1007/978-3-319-19330-4_23 Sitaridi EA, 2016, VLDB J, V25, P719, DOI 10.1007/s00778-015-0409-y Smith C, 2016, ACM SIGPLAN NOTICES, V51, P326, DOI [10.1145/2908080.2908102, 10.1145/2980983.2908102] Tetko IV, 2016, J INORG BIOCHEM, V156, P1, DOI 10.1016/j.jinorgbio.2015.12.006 Washington ID, 2017, COMPUT CHEM ENG, V103, P151, DOI 10.1016/j.compchemeng.2017.03.021 Wu XG, 2016, ACM T EMBED COMPUT S, V15, DOI 10.1145/2914789 Zaharia M, 2016, COMMUN ACM, V59, P56, DOI 10.1145/2934664 Zhang CJ, 2016, J AMB INTEL HUM COMP, V7, P633, DOI 10.1007/s12652-015-0262-2 Zhou SH, 2018, SENSORS-BASEL, V18, DOI 10.3390/s18061934 Zhou SH, 2016, J INTELL FUZZY SYST, V30, P3367, DOI 10.3233/IFS-152084 NR 27 TC 8 Z9 8 U1 0 U2 22 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0920-8542 EI 1573-0484 J9 J SUPERCOMPUT JI J. Supercomput. PD SEP PY 2019 VL 75 IS 9 BP 5966 EP 5983 DI 10.1007/s11227-019-02894-7 PG 18 WC Computer Science, Hardware & Architecture; Computer Science, Theory & Methods; Engineering, Electrical & Electronic WE Science Citation Index Expanded (SCI-EXPANDED) SC Computer Science; Engineering GA JA2JV UT WOS:000487643900019 DA 2024-09-05 ER PT C AU Sleeman, J Halem, M Finin, T Cane, M AF Sleeman, Jennifer Halem, Milton Finin, Tim Cane, Mark BE Nie, JY Obradovic, Z Suzumura, T Ghosh, R Nambiar, R Wang, C Zang, H BaezaYates, R Hu, X Kepner, J Cuzzocrea, A Tang, J Toyoda, M TI Discovering Scientific Influence using Cross-Domain Dynamic Topic Modeling SO 2017 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA) SE IEEE International Conference on Big Data LA English DT Proceedings Paper CT IEEE International Conference on Big Data (IEEE Big Data) CY DEC 11-14, 2017 CL Boston, MA DE big data; topic model; cross-domain correlation; data integration; domain influence AB We describe an approach using dynamic topic modeling to model influence and predict future trends in a scientific discipline. Our study focuses on climate change and uses assessment reports of the Intergovernmental Panel on Climate Change (IPCC) and the papers they cite. Since 1990, an IPCC report has been published every five years that includes four separate volumes, each of which has many chapters. Each report cites tens of thousands of research papers, which comprise a correlated dataset of temporally grounded documents. We use a custom dynamic topic modeling algorithm to generate topics for both datasets and apply cross-domain analytics to identify the correlations between the IPCC chapters and their cited documents. The approach reveals both the influence of the cited research on the reports and how previous research citations have evolved over time. For the IPCC use case, the report topic model used 410 documents and a vocabulary of 5911 terms while the citations topic model was based on 200K research papers and a vocabulary more than 25K terms. We show that our approach can predict the importance of its extracted topics on future IPCC assessments through the use of cross domain correlations, Jensen-Shannon divergences and cluster analytics. C1 [Sleeman, Jennifer; Halem, Milton; Finin, Tim] Univ Maryland, Comp Sci & Elect Engn, Baltimore, MD 21250 USA. [Cane, Mark] Columbia Univ, Lamont Doherty Earth Observ, New York, NY 10027 USA. C3 University System of Maryland; University of Maryland Baltimore; Columbia University RP Sleeman, J (corresponding author), Univ Maryland, Comp Sci & Elect Engn, Baltimore, MD 21250 USA. EM jsleem1@umbc.edu; halem@umbc.edu; finin@umbc.edu; mac6@columbia.edu RI Cane, Mark A/I-8086-2012; Finin, Tim/IUO-4834-2023 OI Finin, Tim/0000-0002-6593-1792; Cane, Mark/0000-0001-5408-2388 FU NSF [1439663]; Division Of Computer and Network Systems; Direct For Computer & Info Scie & Enginr [1439663] Funding Source: National Science Foundation FX This work was partially supported by NSF award #1439663 and a gift from IBM. CR [Anonymous], 1995, INTRO KALMAN FILTER Blei D.M., 2006, P 23 INT C MACH LEAR, DOI [DOI 10.1145/1143844.1143859, 10.1145/1143844.1143859] Blei DavidM., Dynamic Topic Models Brown P. F., 1992, Computational Linguistics, V18, P467 Dietz L., 2007, ICML, P233, DOI DOI 10.1145/1273496.1273526 Hall David, 2008, P 2008 C EMP METH NA, P363, DOI DOI 10.3115/1613715.1613763 Hu JJ, 2015, 2015 22ND INTERNATIONAL CONFERENCE ON SOFTWARE ANALYSIS, EVOLUTION, AND REENGINEERING (SANER), P3, DOI 10.1109/SANER.2015.7081810 Kelley CP, 2015, P NATL ACAD SCI USA, V112, P3241, DOI 10.1073/pnas.1421533112 Li Lianghao., 2012, AAAI LIN JH, 1991, IEEE T INFORM THEORY, V37, P145, DOI 10.1109/18.61115 McLachlan G., 2007, EM ALGORITHM EXTENSI, V382 Mimno David, 2011, P C EMPIRICAL METHOD, P262 Shalit U., 2013, ICML, V2, P244 Sleeman J, 2016, BIG DAT CHALL RES TE Sleeman J., 2017, AAAI SPRING S AI SOC Sleeman J. A., 2016, THESIS Stirling CH, 1998, EARTH PLANET SC LETT, V160, P745, DOI 10.1016/S0012-821X(98)00125-3 Tang C, 2015, COMPUT SCI ENG, V17, P43, DOI 10.1109/MCSE.2015.128 Wang C., 2008, P 24 C UNC ART INT Wang Xuerui., P 12 ACM SIGKDD INT, P424 NR 20 TC 4 Z9 4 U1 0 U2 3 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA SN 2639-1589 BN 978-1-5386-2715-0 J9 IEEE INT CONF BIG DA PY 2017 BP 1325 EP 1332 PG 8 WC Computer Science, Artificial Intelligence; Computer Science, Information Systems WE Conference Proceedings Citation Index - Science (CPCI-S) SC Computer Science GA BJ8DN UT WOS:000428073701043 OA Green Submitted DA 2024-09-05 ER PT J AU Mazrou, H AF Mazrou, Hakim TI Performance improvement of artificial neural networks designed for safety key parameters prediction in nuclear research reactors SO NUCLEAR ENGINEERING AND DESIGN LA English DT Article AB The present work explores, through a comprehensive sensitivity study, a new methodology to find a suitable artificial neural network architecture which improves its performances capabilities in predicting two significant parameters in safety assessment i.e. the multiplication factor k(eff) and the fuel powers peaks P-max of the benchmark 10 MW IAEA LEU core research reactor. The performances under consideration were the improvement of network predictions during the validation process and the speed up of computational time during the training phase. To reach this objective, we took benefit from Neural Network MATLAB Toolbox to carry out a widespread sensitivity study. Consequently, the speed up of several popular algorithms has been assessed during the training process. The comprehensive neural system was subsequently trained on different transfer functions, number of hidden neurons, levels of error and size of generalization corpus. Thus, using a personal computer with data created from preceding work, the final results obtained for the treated benchmark were improved in both network generalization phase and much more in computational time during the training process in comparison to the results obtained previously. (C) 2009 Elsevier B.V. All rights reserved. C1 CRNA, Div Phys Radiol, Fanon 16000, Alger, Algeria. RP Mazrou, H (corresponding author), CRNA, Div Phys Radiol, 02 Blvd Frantz,BP 399, Fanon 16000, Alger, Algeria. EM mazrou_h@crna.dz RI MAZROU, Hakim/AAM-5146-2021 OI MAZROU, Hakim/0000-0001-5394-1021 CR Demuth H., 2002, Neural Network Toolbox User's Guide, V13 Erdogan A, 2003, ANN NUCL ENERGY, V30, P35, DOI 10.1016/S0306-4549(02)00041-5 Hakim MA, 2006, NUCL ENG DES, V236, P255, DOI 10.1016/j.nucengdes.2005.08.002 IBRAHIM K, 2002, P INT C NEW FRONT NU International Atomic Energy Agency-IAEA, 1992, IAEA-TECDOC- 643 KIM HG, 1993, NUCL SCI ENG, V113, P70, DOI 10.13182/NSE93-A23994 Mazrou H, 2004, PROG NUCL ENERG, V44, P263, DOI 10.1016/j.pnucene.2004.03.002 Miller L. F., 1992, Transactions of the American Nuclear Society, V66, P108 Rafiq MY, 2001, COMPUT STRUCT, V79, P1541, DOI 10.1016/S0045-7949(01)00039-6 Sadighi M, 2002, ANN NUCL ENERGY, V29, P41, DOI 10.1016/S0306-4549(01)00024-X Souza RMGP, 2006, ANN NUCL ENERGY, V33, P594, DOI 10.1016/j.anucene.2006.02.007 Uhrig RE, 1999, PROG NUCL ENERG, V34, P13, DOI 10.1016/S0149-1970(97)00109-1 Walczak S, 1999, INFORM SOFTWARE TECH, V41, P107, DOI 10.1016/S0950-5849(98)00116-5 WENDT SE, 1995, T AM NUCL SOC, V72 [No title captured] NR 15 TC 13 Z9 13 U1 0 U2 2 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0029-5493 EI 1872-759X J9 NUCL ENG DES JI Nucl. Eng. Des. PD OCT PY 2009 VL 239 IS 10 BP 1901 EP 1910 DI 10.1016/j.nucengdes.2009.06.004 PG 10 WC Nuclear Science & Technology WE Science Citation Index Expanded (SCI-EXPANDED) SC Nuclear Science & Technology GA 501VO UT WOS:000270411500020 DA 2024-09-05 ER PT J AU Wang, QY Liao, J Lapata, M Macleod, M AF Wang, Qianying Liao, Jing Lapata, Mirella Macleod, Malcolm TI Risk of bias assessment in preclinical literature using natural language processing SO RESEARCH SYNTHESIS METHODS LA English DT Article DE automatic assessment; natural language processing; preclinical research synthesis; risk of bias AB We sought to apply natural language processing to the task of automatic risk of bias assessment in preclinical literature, which could speed the process of systematic review, provide information to guide research improvement activity, and support translation from preclinical to clinical research. We use 7840 full-text publications describing animal experiments with yes/no annotations for five risk of bias items. We implement a series of models including baselines (support vector machine, logistic regression, random forest), neural models (convolutional neural network, recurrent neural network with attention, hierarchical neural network) and models using BERT with two strategies (document chunk pooling and sentence extraction). We tune hyperparameters to obtain the highest F1 scores for each risk of bias item on the validation set and compare evaluation results on the test set to our previous regular expression approach. The F1 scores of best models on test set are 82.0% for random allocation, 81.6% for blinded assessment of outcome, 82.6% for conflict of interests, 91.4% for compliance with animal welfare regulations and 46.6% for reporting animals excluded from analysis. Our models significantly outperform regular expressions for four risk of bias items. For random allocation, blinded assessment of outcome, conflict of interests and animal exclusions, neural models achieve good performance; for animal welfare regulations, BERT model with a sentence extraction strategy works better. Convolutional neural networks are the overall best models. The tool is publicly available which may contribute to the future monitoring of risk of bias reporting for research improvement activities. C1 [Wang, Qianying; Liao, Jing; Macleod, Malcolm] Univ Edinburgh, Ctr Clin Brain Sci, 49 Little France Crescent, Edinburgh EH16 4SB, Midlothian, Scotland. [Lapata, Mirella] Univ Edinburgh, Sch Informat, Edinburgh, Midlothian, Scotland. C3 University of Edinburgh; University of Edinburgh RP Macleod, M (corresponding author), Univ Edinburgh, Ctr Clin Brain Sci, 49 Little France Crescent, Edinburgh EH16 4SB, Midlothian, Scotland. EM malcolm.macleod@ed.ac.uk RI Macleod, Malcolm Robert/B-2052-2010; Wang, Junzhe/KCK-4991-2024; Wang, Yitong/KBA-1959-2024 OI Macleod, Malcolm Robert/0000-0001-9187-9839; L, Jing/0000-0002-9591-8070 FU China Scholarship Council; UK Reproducibility Network - John Climax PhD studentship; University of Edinburgh - Edinburgh Global Research Scholarship; MRC [MR/N015665/1] Funding Source: UKRI FX China Scholarship Council; UK Reproducibility Network -John Climax PhD studentship; University of Edinburgh -Edinburgh Global Research Scholarship CR Abiodun OI, 2018, HELIYON, V4, DOI 10.1016/j.heliyon.2018.e00938 Bahdanau D, 2016, Arxiv, DOI arXiv:1409.0473 Bahor Z., 2021, BMJ Open Science, V5 Bahor Zsanett, 2016, Evid Based Preclin Med, V3, pe00022, DOI 10.1002/ebm2.22 Bahor Z, 2017, CLIN SCI, V131, P2525, DOI 10.1042/CS20160722 Beltagy I, 2019, 2019 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING AND THE 9TH INTERNATIONAL JOINT CONFERENCE ON NATURAL LANGUAGE PROCESSING (EMNLP-IJCNLP 2019), P3615 Beltagy Iz, 2020, ArXiv Preprint ArXiv. Breiman L., 2001, Machine Learning, V45, P5, DOI 10.1023/A:1010933404324 Cho K., 2014, ARXIV, DOI [DOI 10.3115/V1/D14-1179, 10.3115/v1/w14-4012] Currie GL, 2019, PLOS BIOL, V17, DOI 10.1371/journal.pbio.3000243 Daniel J., 2020, SPEECH LANGUAGE PROC Devlin J, 2019, 2019 CONFERENCE OF THE NORTH AMERICAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS: HUMAN LANGUAGE TECHNOLOGIES (NAACL HLT 2019), VOL. 1, P4171 du Sert NP, 2020, PLOS BIOL, V18, DOI 10.1371/journal.pbio.3000410 Elliott JH, 2017, J CLIN EPIDEMIOL, V91, P23, DOI 10.1016/j.jclinepi.2017.08.010 Goldberg Y., 2017, SYNTH LECT HUM LANG, V10, P1, DOI [DOI 10.2200/S00762ED1V01Y201703HLT037, 10.2200/S00762ED1V01Y201703HLT037] Hair K, 2019, RES INTEGR PEER REV, V4, DOI 10.1186/s41073-019-0069-3 Hastie T., 2009, The Elements of Statistical Learning Higgins, 2011, COCHRANE DB SYST REV, DOI DOI 10.1002/14651858.CD001930.PUB3 Higgins Julian P T, 2011, BMJ, V343, pd5928, DOI 10.1136/bmj.d5928 Hochreiter S, 1997, NEURAL COMPUT, V9, P1735, DOI [10.1162/neco.1997.9.1.1, 10.1007/978-3-642-24797-2] Hooijmans CR, 2014, BMC MED RES METHODOL, V14, DOI 10.1186/1471-2288-14-43 Kim Y, 2014, ARXIV14085882, DOI 10.3115/v1/D14-1181 Lee Jinhyuk, 2020, Bioinformatics Macleod, 2018, BMJ OPEN SCI Macleod M, 2019, ILAR J, V60, P17, DOI 10.1093/ilar/ilz015 Macleod MR, 2015, PLOS BIOL, V13, DOI 10.1371/journal.pbio.1002273 Macleod MR, 2004, STROKE, V35, P1203, DOI 10.1161/01.STR.0000125719.25853.20 Manning CD, 2014, PROCEEDINGS OF 52ND ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS: SYSTEM DEMONSTRATIONS, P55, DOI 10.3115/v1/p14-5010 Marshall IJ, 2016, J AM MED INFORM ASSN, V23, P193, DOI 10.1093/jamia/ocv044 Menke J., SUPPLEMENTAL INFORM, V23 Mikolov T., 2013, ARXIV Millard LAC, 2016, INT J EPIDEMIOL, V45, P266, DOI 10.1093/ije/dyv306 Mulyar A., 2019, PHENOTYPING CLIN NOT Neumann M, 2019, SIGBIOMED WORKSHOP ON BIOMEDICAL NATURAL LANGUAGE PROCESSING (BIONLP 2019), P319 NPQIP Collaborative group, 2019, BMJ Open Sci, V3, pe000035, DOI 10.1136/bmjos-2017-000035 Pascanu R., 2013, P INT C MACH LEARN, V28, P1310 Pyysalo Sampo, 2013, P LBM Le Q, 2014, PR MACH LEARN RES, V32, P1188 Raschka S., 2018, Model Evaluation, Model Selection, and Algorithm Selection in Machine Learning, DOI DOI 10.48550/ARXIV.1811.12808 Reimers N, 2019, 57TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2019), P567 Sanh Victor, 2019, P 5 WORKSH EN EFF MA Sutton C, 2012, FOUND TRENDS MACH LE, V4, P267, DOI 10.1561/2200000013 Vaswani A, 2017, ADV NEUR IN, V30 Vollert Jan, 2020, BMJ Open Sci, V4, pe100046, DOI 10.1136/bmjos-2019-100046 WANG Q, PRECLINICAL ROB ASSE Wu Yonghui, 2016, Google's neural machine translation system: bridging the gap between human and machine translation Yang Z., 2016, P 2016 C N AM CHAPTE ZHANG Y, 2016, RATIONALE AUGMENTED NR 48 TC 7 Z9 7 U1 1 U2 8 PU WILEY PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1759-2879 EI 1759-2887 J9 RES SYNTH METHODS JI Res. Synth. Methods PD MAY PY 2022 VL 13 IS 3 BP 368 EP 380 DI 10.1002/jrsm.1533 EA NOV 2021 PG 13 WC Mathematical & Computational Biology; Multidisciplinary Sciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Mathematical & Computational Biology; Science & Technology - Other Topics GA 1B5RJ UT WOS:000714691800001 PM 34709718 OA Green Published, Green Submitted DA 2024-09-05 ER PT J AU Wu, RL Kang, D Chen, Y Chen, CF AF Wu, Renli Kang, Donghyun Chen, Yi Chen, Chuanfu TI Assessing academic impacts of machine learning applications on a social science: Bibliometric evidence from economics SO JOURNAL OF INFORMETRICS LA English DT Article DE Academic impact; Machine learning application; Citation analysis; Interdisciplinary impact; Economics research ID ARTIFICIAL-INTELLIGENCE; WEIGHTED CITATION; TRENDS AB Machine learning (ML) methods have recently been applied in diverse fields of study. ML methods provide new toolkits and opportunities for social sciences, but they have also raised concerns with their black-box nature, irreproducibility, and emphasis on prediction rather than explanation. Against this backdrop, we study the bibliometric impact of leveraging ML methods in economics using publications indexed in Microsoft Academic Graph. We use our four-dimensional bibliometric framework by which we gage citation intensity, speed, breadth, and disruption to compare two groups of publications in economics (2001-2020)-those using ML methods and others not. We find that economics papers applying ML methods started to have advantages in citation counts and speed after 2010. Our analysis also shows that they received attention from more diverse research communities and had more disruptive citations over the past two decades. Then, we demonstrate that economics papers using ML methods obtained more disruptive citations within economics than outside. These findings suggest bibliometric advantages for applying ML methods in economics, especially in the recent decade, but we also discuss cautions and potential opportunities missed. C1 [Wu, Renli; Chen, Yi; Chen, Chuanfu] Wuhan Univ, Sch Informat Management, Wuhan 430072, Hubei, Peoples R China. [Wu, Renli; Chen, Yi; Chen, Chuanfu] Wuhan Univ, Ctr Studies Informat Resources, Wuhan 430072, Hubei, Peoples R China. [Kang, Donghyun] Univ Chicago, Dept Sociol, Chicago, IL 60637 USA. [Wu, Renli; Kang, Donghyun] Univ Chicago, Knowledge Lab, Chicago, IL 60637 USA. C3 Wuhan University; Wuhan University; University of Chicago; University of Chicago RP Chen, CF (corresponding author), Wuhan Univ, Sch Informat Management, Wuhan 430072, Hubei, Peoples R China.; Chen, CF (corresponding author), Wuhan Univ, Ctr Studies Informat Resources, Wuhan 430072, Hubei, Peoples R China. EM cfchen@whu.edu.cn RI Kang, Donghyun/GQP-7643-2022 OI Kang, Donghyun/0000-0001-6241-8910; Wu, Renli/0000-0003-2370-6236 FU National Natural Science Foundation of China (NSFC) [71921002] FX We are deeply grateful for the insightful comments from two anonymous reviewers and the editors. This work was supported by the National Natural Science Foundation of China (NSFC) under Grant Number 71921002. This work was completed in part with resources provided by the University of Chicago Research Computing Center. We thank Professor James Evans for his support towards this collaboration. We also appreciate Wenxuan Shi for her assistance in the submission process. CR Adali T, 2018, P IEEE, V106, P1014, DOI 10.1109/JPROC.2018.2823428 Agrawal A, 2019, J ECON PERSPECT, V33, P31, DOI 10.1257/jep.33.2.31 Agresti A, 2012, Categorical Data Analysis, V792 Ahmed M., 2020, Annals of Data Science, V7, P427 Alpaydin E., 2004, Introduction to Machine Learning Angrist J, 2020, J ECON LIT, V58, P3, DOI 10.1257/jel.20181508 Aragón AM, 2013, SCI REP-UK, V3, DOI 10.1038/srep01649 Athey, 2018, EC ARTIFICIAL INTELL, P507, DOI DOI 10.7208/CHICAGO/9780226613475.003.0021 Athey S, 2019, ANNU REV ECON, V11, P685, DOI 10.1146/annurev-economics-080217-053433 Baumann A, 2020, SCIENTOMETRICS, V124, P2433, DOI 10.1007/s11192-020-03570-x Beutel J, 2019, J FINANC STABIL, V45, DOI 10.1016/j.jfs.2019.100693 Bickley SJ, 2022, SCIENTOMETRICS, V127, P2055, DOI 10.1007/s11192-022-04294-w Bonaccorsi A, 2021, J INFORMETR, V15, DOI 10.1016/j.joi.2020.101129 Bornmann L, 2020, QUANT SCI STUD, V1, P1242, DOI 10.1162/qss_a_00068 Bornmann L, 2018, APPL ECON, V50, P659, DOI 10.1080/00036846.2017.1332753 Bornmann L, 2012, J INFORMETR, V6, P11, DOI 10.1016/j.joi.2011.08.004 Bu Y, 2021, INFORM PROCESS MANAG, V58, DOI 10.1016/j.ipm.2020.102429 Chakraborty T, 2014, ACM-IEEE J CONF DIG, P351, DOI 10.1109/JCDL.2014.6970190 Chen SJ, 2015, J INFORMETR, V9, P1034, DOI 10.1016/j.joi.2015.09.003 Choi RY, 2020, TRANSL VIS SCI TECHN, V9, DOI 10.1167/tvst.9.2.14 Chu JSG, 2021, P NATL ACAD SCI USA, V118, DOI 10.1073/pnas.2021636118 Didegah F, 2013, J INFORMETR, V7, P861, DOI 10.1016/j.joi.2013.08.006 Egghe L, 2011, J INFORMETR, V5, P181, DOI 10.1016/j.joi.2010.10.006 Ellison G, 2002, J POLIT ECON, V110, P947, DOI 10.1086/341868 Eshete B, 2021, SCIENCE, V373, P743, DOI 10.1126/science.abi5052 Fernandez-Cano A, 2021, SCIENTOMETRICS, V126, P3673, DOI 10.1007/s11192-020-03833-7 Fouliard J., 2021, ANSWERING QUEEN MACH, DOI [10.3386/w28302, DOI 10.3386/W28302] Frank MR, 2019, NAT MACH INTELL, V1, P79, DOI 10.1038/s42256-019-0024-5 Funk RJ, 2017, MANAGE SCI, V63, P791, DOI 10.1287/mnsc.2015.2366 Ghoddusi H, 2019, ENERG ECON, V81, P709, DOI 10.1016/j.eneco.2019.05.006 GLANZEL W, 1992, INFORM PROCESS MANAG, V28, P53, DOI 10.1016/0306-4573(92)90092-E Gomez CJ, 2022, NAT HUM BEHAV, V6, P919, DOI 10.1038/s41562-022-01351-5 Goodell JW, 2021, J BEHAV EXP FINANC, V32, DOI 10.1016/j.jbef.2021.100577 Henrique BM, 2019, EXPERT SYST APPL, V124, P226, DOI 10.1016/j.eswa.2019.01.012 Hirsch JE, 2005, P NATL ACAD SCI USA, V102, P16569, DOI 10.1073/pnas.0507655102 Huang Y, 2019, J ASSOC INF SCI TECH, V70, P1098, DOI 10.1002/asi.24177 Hug SE, 2017, SCIENTOMETRICS, V111, P371, DOI 10.1007/s11192-017-2247-8 Jean N, 2016, SCIENCE, V353, P790, DOI 10.1126/science.aaf7894 Jordan MI, 2015, SCIENCE, V349, P255, DOI 10.1126/science.aaa8415 Kitchin JR, 2018, NAT CATAL, V1, P230, DOI 10.1038/s41929-018-0056-y Lehmann S, 2006, NATURE, V444, P1003, DOI 10.1038/4441003a Li WH, 2019, NAT COMMUN, V10, DOI 10.1038/s41467-019-13130-4 Lin YL, 2022, J INFORMETR, V16, DOI 10.1016/j.joi.2021.101234 Ruiz-Real JL, 2021, J BUS ECON MANAG, V22, P98, DOI 10.3846/jbem.2020.13641 Lyhagen J, 2020, SCIENTOMETRICS, V125, P2545, DOI 10.1007/s11192-020-03681-5 Martín-Martín A, 2021, SCIENTOMETRICS, V126, P871, DOI 10.1007/s11192-020-03690-4 Marx V, 2019, NAT METHODS, V16, P463, DOI 10.1038/s41592-019-0432-9 McBride L, 2018, WORLD BANK ECON REV, V32, P531, DOI 10.1093/wber/lhw056 McInnes L, 2020, Arxiv, DOI [arXiv:1802.03426, DOI 10.48550/ARXIV.1802.03426, 10.21105/joss.00861] McMahan P, 2021, AM SOCIOL REV, V86, P341, DOI 10.1177/0003122421996323 Molina M, 2019, ANNU REV SOCIOL, V45, P27, DOI 10.1146/annurev-soc-073117-041106 Mullainathan S, 2017, J ECON PERSPECT, V31, P87, DOI 10.1257/jep.31.2.87 Nakamura H, 2011, SCIENTOMETRICS, V87, P221, DOI 10.1007/s11192-011-0341-x Pak C, 2018, SCIENTOMETRICS, V114, P905, DOI 10.1007/s11192-017-2627-0 Peng R., 2015, SIGNIFICANCE, V12, P30, DOI [DOI 10.1111/J.1740-9713.2015.00827.X, 10.1111/j.1740-9713.2015.00827.x] Pilania G, 2013, SCI REP-UK, V3, DOI 10.1038/srep02810 Purkayastha A, 2019, J INFORMETR, V13, P635, DOI 10.1016/j.joi.2019.03.012 Ramage D, 2020, Arxiv, DOI [arXiv:2004.01291, 10.48550/arXiv.2004.01291] Raudenbush S. W., 2002, HIERARCHICAL LINEAR Reis J, 2019, IBER CONF INF SYST, DOI 10.23919/cisti.2019.8760893 Rudin C, 2019, NAT MACH INTELL, V1, P206, DOI 10.1038/s42256-019-0048-x Sabatier M, 2017, RES POLICY, V46, P522, DOI 10.1016/j.respol.2017.01.003 Samitas A, 2020, INT REV FINANC ANAL, V71, DOI 10.1016/j.irfa.2020.101507 Shen ZH, 2018, Arxiv, DOI arXiv:1805.12216 Sinha A, 2015, WWW'15 COMPANION: PROCEEDINGS OF THE 24TH INTERNATIONAL CONFERENCE ON WORLD WIDE WEB, P243, DOI 10.1145/2740908.2742839 Sloane M, 2019, NAT MACH INTELL, V1, P330, DOI 10.1038/s42256-019-0084-6 Taheri S, 2022, SCIENTOMETRICS, V127, P849, DOI 10.1007/s11192-021-04240-2 Tang XL, 2022, SCIENTOMETRICS, V127, P181, DOI 10.1007/s11192-021-04207-3 van Dalen HP, 2005, SCIENTOMETRICS, V64, P209, DOI 10.1007/s11192-005-0248-5 Varian HR, 2016, P NATL ACAD SCI USA, V113, P7310, DOI 10.1073/pnas.1510479113 Waljee AK, 2010, AM J GASTROENTEROL, V105, P1224, DOI 10.1038/ajg.2010.173 Waltman L, 2016, J INFORMETR, V10, P365, DOI 10.1016/j.joi.2016.02.007 Wang KS, 2019, FRONT BIG DATA, V2, DOI 10.3389/fdata.2019.00045 Wirtz BW, 2020, INT J PUBLIC ADMIN, V43, P818, DOI 10.1080/01900692.2020.1749851 Wu LF, 2019, NATURE, V566, P378, DOI 10.1038/s41586-019-0941-9 Wu R. L., 2020, P ACMIEEE JOINT C DI, DOI [10.1145/3383583.3398536.Sinha, DOI 10.1145/3383583.3398536.SINHA] Xu FL, 2022, P NATL ACAD SCI USA, V119, DOI 10.1073/pnas.2200927119 Yan E, 2014, J ASSOC INF SCI TECH, V65, P2331, DOI 10.1002/asi.23106 Yan E, 2010, J AM SOC INF SCI TEC, V61, P1635, DOI 10.1002/asi.21349 Yang D, 2024, TECHNOL ANAL STRATEG, V36, P563, DOI 10.1080/09537325.2022.2043268 Zhang XY, 2021, J INFORMETR, V15, DOI 10.1016/j.joi.2021.101140 Zibar D, 2017, NAT PHOTONICS, V11, P749, DOI 10.1038/s41566-017-0058-3 NR 82 TC 1 Z9 1 U1 8 U2 42 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS SN 1751-1577 EI 1875-5879 J9 J INFORMETR JI J. Informetr. PD AUG PY 2023 VL 17 IS 3 AR 101436 DI 10.1016/j.joi.2023.101436 EA JUL 2023 PG 19 WC Computer Science, Interdisciplinary Applications; Information Science & Library Science WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Computer Science; Information Science & Library Science GA P4DI0 UT WOS:001050163300001 DA 2024-09-05 ER PT J AU Ma, YC Teng, Y Deng, ZZ Liu, L Zhang, Y AF Ma, Yongchao Teng, Ying Deng, Zhongzhun Liu, Li Zhang, Yi TI Does writing style affect gender differences in the research performance of articles?: An empirical study of BERT-based textual sentiment analysis SO SCIENTOMETRICS LA English DT Article DE Gender; Gender inequalities; Female; Research performance; Marketing; SDGs; Writing style ID CITATION ADVANTAGES; SELF-PROMOTION; 1ST AUTHORS; PRODUCTIVITY; JOURNALS; IMPACT; SCIENTISTS; SCIENCE; COLLABORATION; PUBLICATIONS AB "Achieve gender equality and empower all women and girls" is essential to reduce gender disparity and improve the status of women. But it remains a challenge to narrow gender differences and improve gender equality in academic research. In this paper, we propose that the impact of articles is lower and writing style of articles is less positive when the article's first author is female relative to male first authors, and writing style mediates this relationship. Focusing on the positive writing style, we attempt to contribute and explain the research on gender differences in research performance. We use BERT-based textual sentiment analysis to analyse 87 years of 9820 articles published in the top four marketing journals and prove our hypotheses. We also consider a set of control variables and conduct a set of robustness checks to ensure the robustness of our findings. We discuss the theoretical and managerial implications of our findings for researchers. C1 [Ma, Yongchao] Huazhong Univ Sci & Technol, Sch Management, Wuhan, Hubei, Peoples R China. [Ma, Yongchao; Teng, Ying] City Univ Hong Kong, Dept Mkt, Hong Kong, Peoples R China. [Deng, Zhongzhun] Sichuan Univ, Business Sch, Chengdu, Sichuan, Peoples R China. [Liu, Li; Zhang, Yi] Huazhong Univ Sci & Technol, Coll Publ Adm, Wuhan, Hubei, Peoples R China. C3 Huazhong University of Science & Technology; City University of Hong Kong; Sichuan University; Huazhong University of Science & Technology RP Deng, ZZ (corresponding author), Sichuan Univ, Business Sch, Chengdu, Sichuan, Peoples R China. EM martin@hust.edu.cn; danieldeng@scu.edu.cn RI Ma, Yongchao Martin/ABG-4449-2021; Liu, Enlong/AFM-5097-2022 OI Ma, Yongchao Martin/0000-0002-7272-9779; Liu, Enlong/0000-0002-3507-1963; TENG, Ying/0000-0002-7198-4823; /0000-0001-7822-5064 FU National Natural Science Foundation of China [72202149, 71672063, 72072065]; Major Program of the National Social Science Fund Projects [19ZDA104]; Fundamental Research Funds for the Central Universities [2022ZY-SX004] FX The authors thank the editor, the editorial assistant, and anonymous reviewers for their insightful comments and suggestions. The authors thank Maikun Li, Nibing Zhu, Kexin Wu, and Shuai Jin for their assistance in this paper. The authors gratefully acknowledge the grants from the National Natural Science Foundation of China (projects 72202149, 71672063 and 72072065), the grant from the Major Program of the National Social Science Fund Projects (project 19ZDA104), and the Fundamental Research Funds for the Central Universities (project 2022ZY-SX004) for financial support. The computation is completed in the HPC Platform of Huazhong University of Science and Technology. CR Abramo G, 2021, J INFORMETR, V15, DOI 10.1016/j.joi.2021.101144 Abramo G, 2019, SCIENTOMETRICS, V120, P405, DOI 10.1007/s11192-019-03136-6 Abramo G, 2019, SCIENTOMETRICS, V118, P215, DOI 10.1007/s11192-018-2970-9 Abramo G, 2015, J INFORMETR, V9, P25, DOI 10.1016/j.joi.2014.11.002 Andersen Jens Peter, 2020, Elife, V9, DOI 10.7554/eLife.58807 Arkin Nicole, 2019, J Grad Med Educ, V11, P44, DOI 10.4300/JGME-D-18-00377.1 Badar K, 2014, ASLIB J INFORM MANAG, V66, P38, DOI 10.1108/AJIM-05-2013-0040 Baerlocher MO, 2007, J INVEST MED, V55, P174, DOI 10.2310/6650.2007.06044 BARON RM, 1986, J PERS SOC PSYCHOL, V51, P1173, DOI 10.1037/0022-3514.51.6.1173 Barsade SG, 2007, ACAD MANAGE PERSPECT, V21, P36, DOI 10.5465/AMP.2007.24286163 Bauerly RJ, 2005, J ACAD MARKET SCI, V33, P313, DOI 10.1177/0092070304272052 Beyer S, 1997, PERS SOC PSYCHOL B, V23, P157, DOI 10.1177/0146167297232005 Boekhout H., 2021, ARXIV Bordignon F, 2021, LEARN PUBL, V34, P622, DOI 10.1002/leap.1411 Cao XK, 2021, LEARN PUBL, V34, P82, DOI 10.1002/leap.1322 Cheng CH, 2017, COMMUN STAT-THEOR M, V46, P6909, DOI 10.1080/03610926.2016.1139135 Cheryan S, 2020, PSYCHOL REV, V127, P1022, DOI 10.1037/rev0000209 Decullier E, 2023, ACCOUNT RES, V30, P356, DOI 10.1080/08989621.2021.1988576 DeFilippis EM, 2021, J AM HEART ASSOC, V10, DOI 10.1161/JAHA.120.019005 Dehdarirad T, 2024, J INF SCI, V50, P53, DOI 10.1177/01655515221074327 DeJesus JM, 2021, SEX ROLES, V85, P577, DOI 10.1007/s11199-021-01240-7 Devlin M, 2018, INT J SPORT MARK SPO, V19, P58, DOI [10.1108/IJSMS-10-2016-0078, 10.1108/ijsms-10-2016-0078] Diezmann Carmel, 2019, WOMEN PROFESSORS, DOI [10.1007/978-981-13-3685-0, DOI 10.1007/978-981-13-3685-0] Dinu NR, 2021, TELOS, V23, P568, DOI 10.36390/telos233.05 Dunn EW, 2021, PERS SOC PSYCHOL B, V47, P969, DOI 10.1177/0146167220950522 Edwards HA, 2018, PLOS ONE, V13, DOI 10.1371/journal.pone.0201725 Ehrlinger J, 2003, J PERS SOC PSYCHOL, V84, P5, DOI 10.1037/0022-3514.84.1.5 Ehrlinger J, 2018, SEX ROLES, V78, P40, DOI 10.1007/s11199-017-0763-x Ellis J, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0157447 Else-Quest NM, 2010, PSYCHOL BULL, V136, P103, DOI 10.1037/a0018053 Elsevier, 2021, GENDER GLOBAL RES LA Fernandez A, 2021, SCIENTOMETRICS, V126, P579, DOI 10.1007/s11192-020-03748-3 Fishbach A, 2006, J PERS SOC PSYCHOL, V91, P232, DOI 10.1037/0022-3514.91.2.232 Fox CW, 2019, ECOL EVOL, V9, P3599, DOI 10.1002/ece3.4993 Ghiasi G, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0145931 Gruber J, 2021, PERSPECT PSYCHOL SCI, V16, P483, DOI 10.1177/1745691620952789 Ha GL, 2021, JAMA NETW OPEN, V4, DOI 10.1001/jamanetworkopen.2021.12404 HALEVI G, 2019, BIBLIOMETRIC STUDIES, P563, DOI DOI 10.1007/978-3-030-02511-3_21 Harnad S, 2008, SERIALS REV, V34, P36, DOI 10.1016/j.serrev.2007.12.005 Heath JK, 2022, J GEN INTERN MED, V37, P2187, DOI 10.1007/s11606-022-07535-z Hofstede G., 2003, CULTURES CONSEQUENCE Holtz P, 2017, J CROSS CULT PSYCHOL, V48, P1410, DOI 10.1177/0022022117724902 Hoops H, 2019, AM J SURG, V217, P301, DOI 10.1016/j.amjsurg.2018.12.023 Horbach SPJM, 2022, J INFORMETR, V16, DOI 10.1016/j.joi.2022.101332 Huang CJ, 2013, EUR J PSYCHOL EDUC, V28, P663, DOI 10.1007/s10212-012-0134-5 Huang JM, 2020, P NATL ACAD SCI USA, V117, P4609, DOI 10.1073/pnas.1914221117 Huang S, 2017, J PERS SOC PSYCHOL, V112, P813, DOI 10.1037/pspa0000082 Hubble C., 2016, Journal of Sports Analytics, V2, P19, DOI DOI 10.3233/JSA-150008 INSTONE D, 1983, J PERS SOC PSYCHOL, V44, P322, DOI 10.1037/0022-3514.44.2.322 Jemielniak D, 2023, J INF SCI, V49, P1587, DOI 10.1177/01655515211068168 López AJ, 2021, SUSTAINABILITY-BASEL, V13, DOI 10.3390/su13105426 Jiang L, 2018, J INFORMETR, V12, P618, DOI 10.1016/j.joi.2018.04.004 Joshi PD, 2020, J PERS SOC PSYCHOL, V118, P417, DOI 10.1037/pspa0000177 Jung H, 2017, ASIAN J TECHNOL INNO, V25, P447, DOI 10.1080/19761597.2018.1436411 Khosrowjerdi M, 2021, J INFORMETR, V15, DOI 10.1016/j.joi.2021.101160 Kolev J., 2019, ACAD MANAGEMENT P, V2019, P15210, DOI [10.5465/AMBPP.2019.15210abstract, DOI 10.5465/AMBPP.2019.15210ABSTRACT, 10.5465/AMBPP.2019.15210] Koseoglu MA, 2019, INT J CONTEMP HOSP M, V32, P535, DOI 10.1108/IJCHM-09-2018-0747 Kou MT, 2020, SCIENTOMETRICS, V122, P477, DOI 10.1007/s11192-019-03282-x Kumar A, 2020, EUR HEART J, V41, P3782, DOI 10.1093/eurheartj/ehaa597 Kwiek M, 2021, J INFORMETR, V15, DOI 10.1016/j.joi.2021.101171 Larivière V, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0162709 Larivière V, 2016, SOC STUD SCI, V46, P417, DOI 10.1177/0306312716650046 Lerchenmueller MJ, 2019, BMJ-BRIT MED J, V367, DOI 10.1136/bmj.l6573 Lerchenmueller MJ, 2018, RES POLICY, V47, P1007, DOI 10.1016/j.respol.2018.02.009 Li A, 2021, J APPL PSYCHOL, V106, P1188, DOI 10.1037/apl0000956 Liu MJ, 2022, J INFORMETR, V16, DOI 10.1016/j.joi.2022.101295 Liu W., 2013, AAAI SPRING S ANAL M López-Padilla D, 2021, ARCH BRONCONEUMOL, V57, P107, DOI 10.1016/j.arbres.2020.04.020 Mauleón E, 2006, SCIENTOMETRICS, V66, P199, DOI 10.1007/s11192-006-0014-3 Mayer SJ, 2018, SCIENTOMETRICS, V117, P1663, DOI 10.1007/s11192-018-2933-1 Meisha DE, 2021, J DENT EDUC, V85, P1497, DOI 10.1002/jdd.12617 Meyerson S L., 2017, Journal of Surgical Education, V74, pe111, DOI [10.1016/j.jsurg.2017.06, DOI 10.1016/J.JSURG.2017.06.014] Micari M., 2007, Journal of Women and Minorities in Science and Engineering, V13, P279, DOI [10.1615/JWomenMinorScienEng.v13.i3.50, DOI 10.1615/JWOMENMINORSCIENENG.V13.I3.50] Millar N, 2019, ENGL SPECIF PURP, V54, P139, DOI 10.1016/j.esp.2019.02.004 Min HY, 2021, J APPL PSYCHOL, V106, P214, DOI 10.1037/apl0000886 Morris DW, 2021, FACETS, V6, P1881, DOI 10.1139/facets-2021-0100 Muric G, 2021, J MED INTERNET RES, V23, DOI 10.2196/25379 Myers KR, 2020, NAT HUM BEHAV, V4, P880, DOI 10.1038/s41562-020-0921-y Newman ML, 2008, DISCOURSE PROCESS, V45, P211, DOI 10.1080/01638530802073712 Nguyen E, 2021, J AM PHARM ASSOC, V61, pE26, DOI 10.1016/j.japh.2020.08.037 Nielsen MW, 2017, STUD HIGH EDUC, V42, P1033, DOI 10.1080/03075079.2015.1075197 Nunkoo R, 2020, TOURISM MANAGE, V78, DOI 10.1016/j.tourman.2019.104056 Palomo J, 2017, SCIENTOMETRICS, V113, P123, DOI 10.1007/s11192-017-2484-x Parsons CE, 2021, TRENDS COGN SCI, V25, P639, DOI 10.1016/j.tics.2021.05.003 Paswan J, 2020, SCIENTOMETRICS, V123, P497, DOI 10.1007/s11192-020-03398-5 Polanco NAP, 2020, DIGEST DIS SCI, V65, P3014, DOI 10.1007/s10620-019-06025-3 Powell SN, 2022, J AM ACAD ORTHOP SUR, V30, pE878, DOI 10.5435/JAAOS-D-21-01113 Restrepo N, 2021, SUSTAINABILITY-BASEL, V13, DOI 10.3390/su13095111 Rigg LS, 2012, PROF GEOGR, V64, P491, DOI 10.1080/00330124.2011.611434 Salerno A, 2019, J CONSUM RES, V46, P388, DOI 10.1093/jcr/ucy077 Santamaría L, 2018, PEERJ COMPUT SCI, DOI 10.7717/peerj-cs.156 Sawdon M, 2014, J ANAT, V224, P279, DOI 10.1111/joa.12072 Scharff C, 2015, SOCIOL REV, V63, P97, DOI 10.1111/1467-954X.12243 Sebo P, 2023, J GEN INTERN MED, V38, P661, DOI 10.1007/s11606-022-07717-9 Selig J.P., 2008, MONTE CARLO METHOD A Shang YY, 2022, SCIENTOMETRICS, V127, P4769, DOI 10.1007/s11192-022-04430-6 Shauman KA, 2003, EQUAL RITES, UNEQUAL OUTCOMES: WOMEN IN AMERICAN RESEARCH UNIVERSITIES, P175 Skitka LJ, 2021, PERS SOC PSYCHOL B, V47, P863, DOI 10.1177/0146167220947326 Stankov L, 2014, J CROSS CULT PSYCHOL, V45, P821, DOI 10.1177/0022022114527345 Stremersch S, 2005, MARKET SCI, V24, P585, DOI 10.1287/mksc.1050.0152 Sugimoto CR, 2013, NATURE, V504, P211, DOI 10.1038/504211a Tellis GJ, 1999, J MARKETING RES, V36, P120, DOI 10.2307/3151920 Thelwall M, 2022, J INF SCI, V48, P106, DOI 10.1177/0165551520942729 Thelwall M, 2020, QUANT SCI STUD, V1, P1260, DOI 10.1162/qss_a_00050 Thelwall M, 2020, QUANT SCI STUD, V1, P599, DOI 10.1162/qss_a_00038 Thelwall M, 2020, INT J PSYCHOL, V55, P684, DOI 10.1002/ijop.12633 Thelwall M, 2019, J INFORMETR, V13, P118, DOI 10.1016/j.joi.2018.12.003 Thelwall M, 2018, SCIENTOMETRICS, V117, P2133, DOI 10.1007/s11192-018-2926-0 United Nations, 2015, TRANSF OUR WORLD 203, DOI [10.1891/9780826190123.ap02, DOI 10.1891/9780826190123.AP02] Urquhart-Cronish M, 2019, FACETS, V4, P442, DOI 10.1139/facets-2018-0039 van Arensbergen P, 2012, SCIENTOMETRICS, V93, P857, DOI 10.1007/s11192-012-0712-y van den Besselaar P, 2016, SCIENTOMETRICS, V106, P143, DOI 10.1007/s11192-015-1775-3 Vinkers CH, 2015, BMJ-BRIT MED J, V351, DOI 10.1136/bmj.h6467 Walker KA, 2020, ANN ENTOMOL SOC AM, V113, P193, DOI 10.1093/aesa/saz066 Weidmann NB, 2018, PS-POLIT SCI POLIT, V51, P625, DOI 10.1017/S1049096518000124 Wen J, 2022, SCIENTOMETRICS, V127, P4731, DOI 10.1007/s11192-022-04453-z Wen J, 2022, APPL LINGUIST, V43, P340, DOI 10.1093/applin/amab037 Woolley K, 2021, J CONSUM RES, V47, P675, DOI 10.1093/jcr/ucaa030 Yani-de-Soriano M, 2019, EUR J MARKETING, V53, P708, DOI 10.1108/EJM-09-2017-0570 Yoo B, 2009, AUSTRALAS MARK J, V17, DOI 10.1016/j.ausmj.2009.05.014 Yuan ZM, 2022, SCIENTOMETRICS, V127, P6191, DOI 10.1007/s11192-022-04515-2 Zeina M, 2020, BMJ OPEN, V10, DOI 10.1136/bmjopen-2020-037269 Zhang GY, 2022, J INFORMETR, V16, DOI 10.1016/j.joi.2022.101264 Zhang Lin, 2021, Quantitative Science Studies, P376, DOI 10.1162/qss_a_00102 Zhang L, 2022, SCIENTOMETRICS, V127, P145, DOI 10.1007/s11192-021-04209-1 Zhang MY, 2020, J INFORMETR, V14, DOI 10.1016/j.joi.2020.101068 Zhao XS, 2010, J CONSUM RES, V37, P197, DOI 10.1086/651257 Zhu BZ, 2022, J BUS RES, V145, P65, DOI 10.1016/j.jbusres.2022.02.071 Zhu DH, 2020, J RETAIL CONSUM SERV, V54, DOI 10.1016/j.jretconser.2019.102028 Zhu NB, 2021, J INFORMETR, V15, DOI 10.1016/j.joi.2021.101205 Zippel K., 2020, Women in global science NR 131 TC 9 Z9 9 U1 10 U2 44 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0138-9130 EI 1588-2861 J9 SCIENTOMETRICS JI Scientometrics PD APR PY 2023 VL 128 IS 4 BP 2105 EP 2143 DI 10.1007/s11192-023-04666-w EA MAR 2023 PG 39 WC Computer Science, Interdisciplinary Applications; Information Science & Library Science WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Computer Science; Information Science & Library Science GA M8WZ2 UT WOS:000945307700001 PM 37095862 OA Bronze DA 2024-09-05 ER PT J AU Upshall, M AF Upshall, Michael TI An AI toolkit for libraries SO INSIGHTS-THE UKSG JOURNAL LA English DT Article DE AI; NLP; evaluation; metrics; research support AB Now that artificial intelligence (AI) tools are being widely used across academic publishing, how can we make informed assessments of these utilities? There is a need for a set of skills for evaluating new tools and measuring existing ones, which should enable anyone commissioning or managing AI utilities to understand what questions to ask, what parameters to measure and possible pitfalls to avoid when introducing a new utility. The skills required are not technical. Potential problems include bias in the corpus, a poor training set or poor use of metrics for evaluation. This article gives a quick overview of some of areas where AI tools are being used and how they work. It then provides a checklist for assessment. The goal is not to discredit AI, but to make effective use of it. EM michael@consultmu.co.uk OI Upshall, Michael/0000-0003-1115-6847 CR [Anonymous], 2020, IBM CLOUD LEARN HUB [Anonymous], ONLINE SPELLCHECK CO [Anonymous], ACAD INFLUENCE [Anonymous], SCITE SEE RES HAS BE [Anonymous], WEB SCI REVIEWER LOC [Anonymous], 2021, 2021 TRENDS LIB AN [Anonymous], 2022, wikipedia [Anonymous], 50 EX 1 0 DOC [Anonymous], ARTIFICIAL GEN INTEL [Anonymous], Semantic Scholar | AI-Powered Research Tool Bernardi K, 2020, AM J MED SCI, V360, P511, DOI 10.1016/j.amjms.2019.11.005 Burrell J, 2016, BIG DATA SOC, V3, P1, DOI 10.1177/2053951715622512 Carr Nicholas., 2020, The Shallows: How the Internet Is Changing the Way We Think, Read and Remember Cellan-Jones R, 2014, BBC NEWS 1202 Crawford K., 2021, ATLAS POWER POLITICS, DOI [10.12987/9780300252392, DOI 10.12987/9780300252392] Domagala and Spiro, ENG PUBL Domagala Natalia, 2021, CTR DATA ETHICS INNO Domingos P., 2017, The Master Algorithm: How the Quest for the Ultimate Learning Machine Will Remake Our World Eslami M, 2015, CHI 2015: PROCEEDINGS OF THE 33RD ANNUAL CHI CONFERENCE ON HUMAN FACTORS IN COMPUTING SYSTEMS, P153, DOI 10.1145/2702123.2702556 European Parliament. Directorate General for Parliamentary Research Services, 2019, A governance framework for algorithmic accountability and transparency, DOI DOI 10.2861/59990 Ewerth R, 2017, LECT NOTES COMPUT SC, V10193, P186, DOI 10.1007/978-3-319-56608-5_15 GARFIELD E, 1955, SCIENCE, V122, P108, DOI 10.1126/science.122.3159.108 Goh YC, 2020, SCIENTOMETRICS, V125, P1197, DOI 10.1007/s11192-020-03614-2 Harikrishnan N. B., 2019, Analytics vidhya Hirsch JE, 2005, P NATL ACAD SCI USA, V102, P16569, DOI 10.1073/pnas.0507655102 Kohavi R, 2020, TRUSTWORTHY ONLINE CONTROLLED EXPERIMENTS: A PRACTICAL GUIDE TO A/B TESTING, P1, DOI 10.1017/9781108653985 Kurzweil Ray, 2002, KURZWEILAI NET 0409 Larson, MYTH ART INT Larson Erik J., 2021, The Myth of Artificial Intelligence: Why Computers Can't Think the Way We Do, DOI DOI 10.4159/9780674259935 LeCun Y., The mnist database Long DR, 2020, PROCEEDINGS OF THE 2020 CHI CONFERENCE ON HUMAN FACTORS IN COMPUTING SYSTEMS (CHI'20), DOI 10.1145/3313831.3376727 Machado Tyler, 2020, NEWS NE 0305 Merrick Rob, 2022, INDEPENDENT 0210 MILLER GA, 1956, PSYCHOL REV, V63, P81, DOI 10.1037/h0043158 Musk Elon, 2014, WASHINGTON POST 1024 Nayak Pandu, 2019, GOOGLE BLOG 1025 ONeil C., 2016, Weapons of math destruction Russell S., 2009, Artificial intelligence-A modern approach Scholarcy, SCHOL LONG FROM ART Shultz M, 2007, J MED LIBR ASSOC, V95, P442, DOI 10.3163/1536-5050.95.4.442 Turing A. M., 1996, Philosophia Mathematica, V4, P256 Valenzuela Marco, 2015, P AAAI WORKSH SCHOL, P6 NR 42 TC 1 Z9 1 U1 7 U2 21 PU UBIQUITY PRESS LTD PI LONDON PA Unit 3.22, East London Works, 65-75 Whitechapel Road, LONDON, E1 1DU, ENGLAND SN 2048-7754 J9 INSIGHTS JI Insights PD NOV 1 PY 2022 VL 35 DI 10.1629/uksg.592 PG 16 WC Information Science & Library Science WE Emerging Sources Citation Index (ESCI) SC Information Science & Library Science GA 6H2RG UT WOS:000885293100001 OA gold DA 2024-09-05 ER PT J AU Gursoy, F Kakadiaris, IA AF Gursoy, Furkan Kakadiaris, Ioannis A. TI Artificial intelligence research strategy of the United States: critical assessment and policy recommendations SO FRONTIERS IN BIG DATA LA English DT Article DE artificial intelligence; research; development; policy; strategy; accountable AI ID DECISION-MAKING; PROJECT AB The foundations of Artificial Intelligence (AI), a field whose applications are of great use and concern for society, can be traced back to the early years of the second half of the 20th century. Since then, the field has seen increased research output and funding cycles followed by setbacks. The new millennium has seen unprecedented interest in AI progress and expectations with significant financial investments from the public and private sectors. However, the continual acceleration of AI capabilities and real-world applications is not guaranteed. Mainly, accountability of AI systems in the context of the interplay between AI and the broader society is essential for adopting AI systems via the trust placed in them. Continual progress in AI research and development (R & D) can help tackle humanity's most significant challenges to improve social good. The authors of this paper suggest that the careful design of forward-looking research policies serves a crucial function in avoiding potential future setbacks in AI research, development, and use. The United States (US) has kept its leading role in R & D, mainly shaping the global trends in the field. Accordingly, this paper presents a critical assessment of the US National AI R & D Strategic Plan and prescribes six recommendations to improve future research strategies in the US and around the globe. C1 [Gursoy, Furkan; Kakadiaris, Ioannis A.] Univ Houston, Computat Biomed Lab, Houston, TX 77204 USA. C3 University of Houston System; University of Houston RP Kakadiaris, IA (corresponding author), Univ Houston, Computat Biomed Lab, Houston, TX 77204 USA. EM ioannisk@uh.edu RI Gürsoy, Furkan/HSE-4101-2023 FU National Science Foundation [CCF-2131504] FX Funding This material is based upon work supported by the National Science Foundation under Grant CCF-2131504. CR Alfonseca M, 2021, J ARTIF INTELL RES, V70, P65 Araujo T, 2020, AI SOC, V35, P611, DOI 10.1007/s00146-019-00931-w Bader V, 2019, ORGANIZATION, V26, P655, DOI 10.1177/1350508419855714 Cave S, 2018, PROCEEDINGS OF THE 2018 AAAI/ACM CONFERENCE ON AI, ETHICS, AND SOCIETY (AIES'18), P36, DOI 10.1145/3278721.3278780 Chou YL, 2022, INFORM FUSION, V81, P59, DOI 10.1016/j.inffus.2021.11.003 Crevier D., 1993, AI: The tumultuous history of the search for artificial intelligence, DOI DOI 10.1177/027046769401400414 Dhar P., 2020, UNDERSTANDING CAUSAL Goel AK, 2021, AI MAG, V42, P83, DOI 10.1609/aaai.12026 Herrmann T, 2023, AI SOC, V38, P1523, DOI 10.1007/s00146-022-01391-5 Kasirzadeh Atoosa, 2021, FAccT '21: Proceedings of the 2021 ACM Conference on Fairness, Accountability, and Transparency, P228, DOI 10.1145/3442188.3445886 Knowles B, 2021, PROCEEDINGS OF THE 2021 ACM CONFERENCE ON FAIRNESS, ACCOUNTABILITY, AND TRANSPARENCY, FACCT 2021, P262, DOI 10.1145/3442188.3445890 Koulu R., 2020, Maastricht J. Eur. Comparative Law, V27, P720, DOI [10.1177/1023263X20978649, DOI 10.1177/1023263X20978649] Kwok R., 2019, SOCIAL SCI USED TALK McCarthy J, 2006, AI MAG, V27, P12 McCorduck P., 2004, Machines Who Think: A Personal Inquiry into the History and Prospects of Artificial Intelligence, DOI DOI 10.1201/9780429258985 Meissner P., 2021, HUMAN FACTOR AI BASE Mitchell S, 2021, ANNU REV STAT APPL, V8, P141, DOI 10.1146/annurev-statistics-042720-125902 Moore J, 2019, FRONT BIG DATA, V2, DOI 10.3389/fdata.2019.00032 Mousavizadeh A., 2021, BOOM TIME TORTOISE National Science and Technology Council, 2016, NAT ART INT RES DEV National Science Technology Council, 2019, NAT ART INT RES DEV NEWELL A, 1956, IRE T INFORM THEOR, V2, P61, DOI 10.1109/tit.1956.1056797 Newquist H. P., 1994, BRAIN MAKERS SAMS NSF, 2021, NSF PARTN EXP NAT RE OECD, 2022, GROSS DOM SPEND RAND Royer A., 2019, WHY NEEDS SOCIAL SCI Sammut C., 2010, ENCY MACHINE LEARNIN, P881, DOI 10.1007/978-0-387-30164-8_740 Sartori L, 2022, ETHICS INF TECHNOL, V24, DOI 10.1007/s10676-022-09624-3 Scholkopf B., 2022, PROBABILISTIC CAUSAL, P765 Sgaier S. K., 2020, STANFORD SOC INNOV R SHAPIRO EY, 1983, COMMUN ACM, V26, P637, DOI 10.1145/358172.358179 Shead S., 2020, RES ARE WE CUSP AI W Taddeo M, 2018, SCIENCE, V361, P751, DOI 10.1126/science.aat5991 Tomasev N, 2020, NAT COMMUN, V11, DOI 10.1038/s41467-020-15871-z Turing A.M., 1950, MIND, V59, P433, DOI [10.1093/mind/LIX.236.433, DOI 10.1093/MIND/LIX.236.433] Tzimas T., 2021, LEGAL ETHICAL CHALLE, P9 van den Besselaar P, 2001, 8TH INTERNATIONAL CONFERENCE ON SCIENTOMETRICS AND INFORMETRICS, VOLS 1 AND 2 - ISSI-2001, PROCEEDINGS, P705 Wagner B, 2019, POLICY INTERNET, V11, P104, DOI 10.1002/poi3.198 Yao LY, 2021, ACM T KNOWL DISCOV D, V15, DOI 10.1145/3444944 NR 39 TC 0 Z9 0 U1 8 U2 14 PU FRONTIERS MEDIA SA PI LAUSANNE PA AVENUE DU TRIBUNAL FEDERAL 34, LAUSANNE, CH-1015, SWITZERLAND EI 2624-909X J9 FRONT BIG DATA JI Front. Big Data PD AUG 7 PY 2023 VL 6 AR 1206139 DI 10.3389/fdata.2023.1206139 PG 5 WC Computer Science, Information Systems; Computer Science, Interdisciplinary Applications; Multidisciplinary Sciences WE Emerging Sources Citation Index (ESCI) SC Computer Science; Science & Technology - Other Topics GA P4WV6 UT WOS:001050691000001 PM 37609602 OA gold, Green Published DA 2024-09-05 ER PT J AU van de Venter, R Skelton, E Matthew, J Woznitza, N Tarroni, G Hirani, SP Kumar, A Malik, R Malamateniou, C AF van de Venter, Riaan Skelton, Emily Matthew, Jacqueline Woznitza, Nick Tarroni, Giacomo Hirani, Shashivadan P. Kumar, Amrita Malik, Rizwan Malamateniou, Christina TI Artificial intelligence education for radiographers, an evaluation of a UK postgraduate educational intervention using participatory action research: a pilot study SO INSIGHTS INTO IMAGING LA English DT Article DE Artificial intelligence; Radiography; Education; Evaluation; Action research ID HEALTH-CARE; TELEHEALTH; INNOVATION; ONLINE AB BackgroundArtificial intelligence (AI)-enabled applications are increasingly being used in providing healthcare services, such as medical imaging support. Sufficient and appropriate education for medical imaging professionals is required for successful AI adoption. Although, currently, there are AI training programmes for radiologists, formal AI education for radiographers is lacking. Therefore, this study aimed to evaluate and discuss a postgraduate-level module on AI developed in the UK for radiographers.MethodologyA participatory action research methodology was applied, with participants recruited from the first cohort of students enrolled in this module and faculty members. Data were collected using online, semi-structured, individual interviews and focus group discussions. Textual data were processed using data-driven thematic analysis.ResultsSeven students and six faculty members participated in this evaluation. Results can be summarised in the following four themes: a. participants' professional and educational backgrounds influenced their experiences, b. participants found the learning experience meaningful concerning module design, organisation, and pedagogical approaches, c. some module design and delivery aspects were identified as barriers to learning, and d. participants suggested how the ideal AI course could look like based on their experiences.ConclusionsThe findings of our work show that an AI module can assist educators/academics in developing similar AI education provisions for radiographers and other medical imaging and radiation sciences professionals. A blended learning delivery format, combined with customisable and contextualised content, using an interprofessional faculty approach is recommended for future similar courses. C1 [van de Venter, Riaan] Nelson Mandela Univ, Fac Hlth Sci, Sch Clin Care Sci, Dept Radiog, Port Elizabeth, South Africa. [van de Venter, Riaan; Skelton, Emily; Malik, Rizwan; Malamateniou, Christina] City Univ London, Sch Hlth & Psychol Sci, Div Midwifery & Radiog, London, England. [Skelton, Emily; Matthew, Jacqueline; Malamateniou, Christina] Kings Coll London, Dept Perinatal Imaging & Hlth, London, England. [Matthew, Jacqueline] Guys & St Thomas NHS Fdn Trust, London, England. [Woznitza, Nick] Univ Coll London Hosp, Radiol Dept, London, England. [Woznitza, Nick] Canterbury Christ Church Univ, Sch Allied & Publ Hlth Profess, Canterbury, England. [Tarroni, Giacomo] City Univ London, Dept Comp Sci, Cit AI, London, England. [Tarroni, Giacomo] Imperial Coll London, Dept Comp, BioMedIA, London, England. [Hirani, Shashivadan P.] City Univ London, Ctr Healthcare Innovat Res, London, England. [Kumar, Amrita] Frimley Hlth NHS Fdn Trust, London, England. [Malik, Rizwan] Royal Bolton Hosp, Farnworth, England. [Malamateniou, Christina] HESAV Univ, Dept Radiog, Lausanne, Switzerland. C3 Nelson Mandela University; City St Georges, University of London; University of London; King's College London; Guy's & St Thomas' NHS Foundation Trust; University College London Hospitals NHS Foundation Trust; University of London; University College London; Canterbury Christ Church University; City St Georges, University of London; Imperial College London; City St Georges, University of London; Royal Bolton Hospital RP van de Venter, R (corresponding author), Nelson Mandela Univ, Fac Hlth Sci, Sch Clin Care Sci, Dept Radiog, Port Elizabeth, South Africa.; van de Venter, R; Malamateniou, C (corresponding author), City Univ London, Sch Hlth & Psychol Sci, Div Midwifery & Radiog, London, England.; Malamateniou, C (corresponding author), Kings Coll London, Dept Perinatal Imaging & Hlth, London, England.; Malamateniou, C (corresponding author), HESAV Univ, Dept Radiog, Lausanne, Switzerland. EM riaan.vandeventer@mandela.ac.za; christina.malamateniou@city.ac.uk RI Matthew, Jackie/HQZ-6583-2023; van de Venter, Riaan/JFK-9683-2023 OI Matthew, Jackie/0000-0003-4754-0322; van de Venter, Riaan/0000-0003-4384-9234; Skelton, Emily/0000-0003-0132-7948; Malamateniou, Christina/0000-0002-2352-8575 CR [Anonymous], 2016, DOING QUALITATIVE RE, DOI DOI 10.4135/9781473921955 Brewster L, 2014, J ADV NURS, V70, P21, DOI 10.1111/jan.12196 Brink H., 2018, Fundamentals of research methodology for health care professionals Car LT, 2022, J MED INTERNET RES, V24, DOI 10.2196/31977 Carr W., 2003, BECOMING CRITICAL ED Chan Kai Siang, 2019, JMIR Med Educ, V5, pe13930, DOI 10.2196/13930 Charow R, 2021, JMIR MED EDUC, V7, DOI 10.2196/31043 Clarke V, 2017, J POSIT PSYCHOL, V12, P297, DOI 10.1080/17439760.2016.1262613 Cohen ManionL., 2011, Research methods in education, V7th Creswell J., 2009, Research design: qualitative, quantitative, and mixed methods approaches, V3rd Dhawan Shivangi, 2020, Journal of Educational Technology Systems, V49, P5, DOI 10.1177/0047239520934018 Di Basilio F, 2022, HEALTHCARE-BASEL, V10, DOI 10.3390/healthcare10010153 Edirippulige S, 2017, J TELEMED TELECARE, V23, P273, DOI 10.1177/1357633X16632968 Edirippulige S, 2022, J TELEMED TELECARE, V28, P258, DOI 10.1177/1357633X20932436 Elliott V, 2018, QUAL REP, V23, P2850 EuSoMII Virtual Annual Meeting, 2021, INSIGHTS IMAGING, V13, P31, DOI [10.1186/s13244-022-01168-w, DOI 10.1186/S13244-022-01168-W] Fan JT, 2020, ENGINEERING-PRC, V6, P248, DOI 10.1016/j.eng.2019.11.012 Forde C, 2020, ONLINE LEARN, V24, P118, DOI 10.24059/olj.v24i1.1566 Gambling T., 2003, Radiography, V9, P71 Geis JR, 2019, INSIGHTS IMAGING, V10, DOI 10.1186/s13244-019-0785-8 Gibbs A., 1997, SOCIAL RES UPDATE Gray J.R., 2017, Burns and Gove's the practice of nursing research: Appraisal, synthesis, and generation of evidence, V8 Hardy M, 2020, BRIT J RADIOL, V93, DOI 10.1259/bjr.20190840 Havenga Y, 2018, HEALTH SA GESONDHEID, V23, DOI 10.4102/hsag.v23i0.1107 Health and Care Professions Council [HCPC], 2022, STAND PROF RAD Henning Peter A, 2021, J Eur CME, V10, P2014099, DOI 10.1080/21614083.2021.2014099 Huang HB, 2010, ACTION RES-LONDON, V8, P93, DOI 10.1177/1476750310362435 Jöhnk J, 2021, BUS INFORM SYST ENG+, V63, P5, DOI 10.1007/s12599-020-00676-7 Lewis SJ, 2019, J MED RADIAT SCI, V66, P292, DOI 10.1002/jmrs.369 Lin YC, 2021, JMIR MED EDUC, V7, DOI 10.2196/30873 Malamateniou C, 2021, RADIOGRAPHY, V27, P1192, DOI 10.1016/j.radi.2021.07.028 Malamateniou C, 2021, RADIOGRAPHY, V27, pS58, DOI 10.1016/j.radi.2021.07.015 Malamateniou C., 2022, RAD. magazine, V48, P19 Mathur P, 2021, ARTIF INTELL, DOI [10.13140/RG.2.2.25350.24645/1, DOI 10.13140/RG.2.2.25350.24645/1] McNiff J., 2002, ACTION RES PRINCIPLE, DOI [10.4324/9780203199961, DOI 10.4324/9780203199961] Mitchell SN, 2009, TEACH TEACH EDUC, V25, P344, DOI 10.1016/j.tate.2008.06.008 Mulryan P, 2022, INSIGHTS IMAGING, V13, DOI 10.1186/s13244-022-01209-4 Munn Z, 2013, J MED RADIAT SCI, V60, P47, DOI 10.1002/jmrs.8 Neri E, 2019, INSIGHTS IMAGING, V10, DOI 10.1186/s13244-019-0738-2 Polit D., 2018, Essentials of nursing research: Appraising evidence for nursing practice, V9th Rainey C, 2021, FRONT DIGIT HEALTH, V3, DOI 10.3389/fdgth.2021.739327 Roddy C., 2017, FRONT EDUC, DOI DOI 10.3389/FEDUC.2017.00059 Saldana Johnny, 2015, The coding manual for qualitative researchers, Vfourth Sanderson P, 2007, STUD HEALTH TECHNOL, V130, P3 Sapci AH, 2020, JMIR MED EDUC, V6, DOI 10.2196/19285 Schuur F, 2021, EUR RADIOL, V31, P6021, DOI 10.1007/s00330-020-07621-y Sit C, 2020, INSIGHTS IMAGING, V11, DOI 10.1186/s13244-019-0830-7 Society and College of Radiographers, 2020, SOC COLL RAD POL STA Stogiannos N, 2022, J MED IMAGING RADIAT, V53, pS47, DOI 10.1016/j.jmir.2022.09.011 Succi MD, 2020, J AM COLL RADIOL, V17, P1329, DOI 10.1016/j.jacr.2020.04.020 Tejani AS, 2021, J AM COLL RADIOL, V18, P605, DOI 10.1016/j.jacr.2020.10.001 Tetui M, 2017, GLOBAL HEALTH ACTION, V10, DOI 10.1080/16549716.2017.1346038 Tong A, 2007, INT J QUAL HEALTH C, V19, P349, DOI 10.1093/intqhc/mzm042 Topol E., 2019, The Topol Review. Preparing the Healthcare Workforce to Deliver the Digital Future, P1 Van De Venter R., 2020, The South African Radiographer, V58, P30 van de Venter R., 2018, S AFR RADIOGR, V56, P7 Van de Venter R, 2021, South Afr Radiogr, V59, P45 Wiggins WF, 2021, J DIGIT IMAGING, V34, P1026, DOI 10.1007/s10278-021-00492-9 Wiggins WF, 2020, RADIOL-ARTIF INTELL, V2, DOI 10.1148/ryai.2020200057 Wiljer D, 2019, J MED IMAGING RADIAT, V50, pS8, DOI 10.1016/j.jmir.2019.09.010 Wood MJ, 2019, J AM COLL RADIOL, V16, P740, DOI 10.1016/j.jacr.2018.10.008 Yasmeen G, 2008, TURK ONLINE J EDUC T, V7, P46 NR 62 TC 9 Z9 9 U1 4 U2 15 PU SPRINGER WIEN PI Vienna PA Prinz-Eugen-Strasse 8-10, A-1040 Vienna, AUSTRIA SN 1869-4101 J9 INSIGHTS IMAGING JI Insights Imaging PD FEB 3 PY 2023 VL 14 IS 1 AR 25 DI 10.1186/s13244-023-01372-2 PG 13 WC Radiology, Nuclear Medicine & Medical Imaging WE Science Citation Index Expanded (SCI-EXPANDED) SC Radiology, Nuclear Medicine & Medical Imaging GA 8O2MV UT WOS:000925674900003 PM 36735172 OA Green Accepted, Green Published, gold DA 2024-09-05 ER PT J AU Fan, P AF Fan, Peng TI Application of deep learning and cloud data platform in college teaching quality evaluation (Publication with Expression of Concern) SO JOURNAL OF INTELLIGENT & FUZZY SYSTEMS LA English DT Article; Publication with Expression of Concern DE Deep learning; teaching quality; cloud computing; data fusions ID REVIEWS; MODEL AB In this paper, the author introduces the theory of fuzzy mathematics into the evaluation of higher education. By determining the set of evaluation factors and comments, the author constructs the relevant mathematical model and processes the data, thus turning the evaluation problem into the multiplication problem of the fuzzy matrix. Deep learning is a very active branch of machine learning research in recent years. By increasing the depth and breadth of the model, i.e. increasing the number of operations from the input end to the output end and the number of channels of the model, the scale of parameters of the model is increased, so that the model has the ability to express complex functions. It is appropriate to use deep learning in teaching quality evaluation. The simulation results show that the deep learning model is very effective in dealing with data diversity and extracting complex implicit rules. It can effectively model experts' professional knowledge and experience. Deep neural network has powerful expressive ability, and can effectively extract the deep-seated laws affecting the teaching quality. It can be used as an assistant technology for the evaluation of teaching quality in Colleges. C1 [Fan, Peng] Xidian Univ, Xian, Peoples R China. C3 Xidian University RP Fan, P (corresponding author), Xidian Univ, Xian, Peoples R China. EM fanpengxidian@163.com CR Bai TC, 2014, NEURAL COMPUT APPL, V25, P1699, DOI 10.1007/s00521-014-1658-1 Bayindir R, 2016, RENEW SUST ENERG REV, V66, P499, DOI 10.1016/j.rser.2016.08.002 Bayram A, 2015, ENVIRON EARTH SCI, V73, P6565, DOI 10.1007/s12665-014-3876-3 Beuscart JS, 2016, J CULT ECON-UK, V9, P458, DOI 10.1080/17530350.2016.1210534 Cao WD, 2016, INT J ADV MANUF TECH, V85, P2657, DOI 10.1007/s00170-015-8114-y Castelli M, 2017, EXPERT SYST APPL, V84, P117, DOI 10.1016/j.eswa.2017.05.008 Centeno R, 2015, INFORM SYST FRONT, V17, P809, DOI 10.1007/s10796-014-9526-1 D'Andrea A., 2015, International Journal of Computer Applications, V125, P26, DOI DOI 10.5120/IJCA2015905866 Djenouri Y, 2015, J SUPERCOMPUT, V71, P1318, DOI 10.1007/s11227-014-1366-8 Ebesu T, 2017, INFORM RETRIEVAL J, V20, P109, DOI 10.1007/s10791-017-9295-9 Erica L., 2019, ARCH LATINOAMERICANO, V69, P165 Fang H, 2013, ELECTRON COMMER R A, V12, P208, DOI 10.1016/j.elerap.2013.03.001 Glaucia C., 2019, B MALARIOL SALUD AMB, V59, P130 Kumar A, 2017, IEEE J BIOMED HEALTH, V21, P31, DOI 10.1109/JBHI.2016.2635663 Leiva J, 2016, RENEW SUST ENERG REV, V55, P227, DOI 10.1016/j.rser.2015.11.002 Liu PK, 2016, RENEW SUST ENERG REV, V66, P10, DOI 10.1016/j.rser.2016.07.055 NAYAK PK, 2015, NEURAL COMPUT APPL, V27, P1 Pan H, 2015, J COMPUT THEOR NANOS, V12, P2802, DOI 10.1166/jctn.2015.4180 Renato T., 2019, ARCH LATINOAMERICANO, V69, P122 Rojas F., 2018, ARCH LATINOAMERICANO, V68, P331 Salem AA, 2017, INTEGR MATER MANUF I, V6, P111, DOI 10.1007/s40192-017-0090-7 Sharma S.K., 2017, BEHAV INFORM TECHNOL, V12, P1 [王丽萍 Wang Liping], 2014, [水力发电学报, Journal of Hydroelectric Engineering], V33, P29 Yang GM, 2014, INT J COMPUT INT SYS, V7, P1148, DOI 10.1080/18756891.2014.966999 You XM, 2015, J FUSION ENERG, V34, P918, DOI 10.1007/s10894-015-9903-x Zemma P., 2018, ARCH LATINOAM NUTR, V68, P343 Zhang Q, 2016, J COMPUTATIONAL THEO, V13, P6005 Zhou C., 2019, B MALARIOL SALUD AMB, V59, P116 Zhou LL, 2017, CHEMOMETR INTELL LAB, V167, P190, DOI 10.1016/j.chemolab.2017.06.009 Zhu RL, 2014, ADV MATER RES-SWITZ, V886, P532, DOI 10.4028/www.scientific.net/AMR.886.532 NR 30 TC 16 Z9 16 U1 0 U2 34 PU IOS PRESS PI AMSTERDAM PA NIEUWE HEMWEG 6B, 1013 BG AMSTERDAM, NETHERLANDS SN 1064-1246 EI 1875-8967 J9 J INTELL FUZZY SYST JI J. Intell. Fuzzy Syst. PY 2020 VL 39 IS 4 BP 5547 EP 5558 DI 10.3233/JIFS-189036 PG 12 WC Computer Science, Artificial Intelligence WE Science Citation Index Expanded (SCI-EXPANDED) SC Computer Science GA OH1HF UT WOS:000582322000069 DA 2024-09-05 ER PT J AU Saputra, NA Hamidah, I Setiawan, A AF Saputra, Nisa Aulia Hamidah, Ida Setiawan, Agus TI A BIBLIOMETRIC ANALYSIS OF DEEP LEARNING FOR EDUCATION RESEARCH SO JOURNAL OF ENGINEERING SCIENCE AND TECHNOLOGY LA English DT Article DE Bibliometric analysis; Deep learning in education; Learning media; Technology 4; 0; VOSviewer ID COVID-19 AB The purpose of this study was to determine the role, trend, and development of deep learning (DL) in education. The research method used is a bibliometric analysis method using the VOSviewer tool. VOSviewer is used to analyse the distribution of documents each year in various countries, institutions, journals, authors, and the relationship between keywords that appear. The results of this study show that the growth of publications on DL articles in the world of education increased by 31.69%, while the growth of DL articles as learning media increased by 11%. The most productive country in publishing articles related to DL in education is the United States with a total of 460 related documents and 13,162 citations. The most productive institution that researches DL in education is Stanford University with a total of 21 articles published. Furthermore, the most productive journal in IEEE Access with a total publication of 58,219 articles and a citation score of 4.8. The relationship between authors shows that the co-authoring network with Zhang Y. is the largest network with a total of 24 co-authored articles. The keyword that appears the most is the keyword "deep learning" which is directly related to "Data Analytics" and "AI". It is also seen that the topics that may arise for future research are topics related to the keyword "deep learning" which is related to "Virtual Reality" or "Educational Psychology". This research can be useful to find research gaps regarding the development or implementation of deep learning in the field of education to improve the quality of education and solving problems related to the world of education. C1 [Saputra, Nisa Aulia; Hamidah, Ida; Setiawan, Agus] Univ Pendidikan Indonesia, Bandung, Indonesia. C3 Universitas Pendidikan Indonesia RP Hamidah, I (corresponding author), Univ Pendidikan Indonesia, Bandung, Indonesia. EM idahamidah@upi.edu CR Abràmoff MD, 2016, INVEST OPHTH VIS SCI, V57, P5200, DOI 10.1167/iovs.16-19964 Abumalloh RA, 2022, J INFECT PUBLIC HEAL, V15, P75, DOI 10.1016/j.jiph.2021.11.013 Agbo FJ, 2021, SMART LEARN ENVIRON, V8, DOI 10.1186/s40561-020-00145-4 Al Husaeni D. F., 2022, ASEAN Journal of Science and Engineering, V2, P19, DOI DOI 10.17509/AJSE.V2I1.37368 Al Husaeni D.F., 2023, Indonesian Journal of Teaching in Science, V3, P1 Al Husaeni D. N., 2023, INDONESIAN J COMMUNI, V3, P1 Al Husaeni DN, 2023, Indones J Edu Res Technol, V3, P1 Al Husaeni DF, 2022, J ENG SCI TECHNOL, V17, P1135 Bilad M. R, 2022, ASEAN Journal of Community and Special Needs Education, V1, P61 Brika SKM, 2022, FRONT PSYCHOL, V12, DOI 10.3389/fpsyg.2021.762819 Bronstein MM, 2017, IEEE SIGNAL PROC MAG, V34, P18, DOI 10.1109/MSP.2017.2693418 Chartrand G, 2017, RADIOGRAPHICS, V37, P2113, DOI 10.1148/rg.2017170077 Chauhan D, 2022, CLIN IMAG, V82, P121, DOI 10.1016/j.clinimag.2021.11.013 Chicaiza J, 2022, IEEE ACCESS, V10, P33281, DOI 10.1109/ACCESS.2022.3159025 Churiyah M., 2022, World Journal on Educational Technology: Current Issues, V14, P484, DOI [10.18844/wjet.v14i2.6990, DOI 10.18844/WJET.V14I2.6990] Dimililer K, 2021, MICROPROCESS MICROSY, V80, DOI 10.1016/j.micpro.2020.103613 Donthu N, 2021, J BUS RES, V133, P285, DOI 10.1016/j.jbusres.2021.04.070 Fauziah A., 2022, Indonesian Journal of Multidiciplinary Research, V2, P333 Guarascio M., 2019, ENCYCOPEDIA BIOINFOR, V1, P634 Hamidah I., 2020, Indon. J. Sci. Technol., V5, P209, DOI DOI 10.17509/IJOST.V5I2.24522 Hamidah I, 2021, HELIYON, V7, DOI 10.1016/j.heliyon.2021.e06406 Han ZC, 2021, MICROPROCESS MICROSY, V80, DOI 10.1016/j.micpro.2020.103343 Hirawan D, 2022, MOROC J CHEM, V10, P576, DOI 10.48317/IMIST.PRSM/morjchem-v10i3.33145 Hong SD, 2020, COMPUT BIOL MED, V122, DOI 10.1016/j.compbiomed.2020.103801 Husain S.S., 2023, Indones. J. Sci. Technol., V8, P197, DOI [10.17509/IJOST.V8I2.54794, DOI 10.17509/IJOST.V8I2.54794] Jing LY, 2017, MEASUREMENT, V111, P1, DOI 10.1016/j.measurement.2017.07.017 Khairi SSM, 2022, HEALTHCARE-BASEL, V10, DOI 10.3390/healthcare10010010 Tamala JK, 2022, CLEAN ENG TECHNOL, V7, DOI 10.1016/j.clet.2022.100437 Kurniati PS, 2022, MOROC J CHEM, V10, P428, DOI 10.48317/IMIST.PRSM/morjchem-v10i3.33061 Lee JB, 2021, INT J NAV ARCH OCEAN, V13, P641 Lenar S, 2014, PROCD SOC BEHV, V131, P111, DOI 10.1016/j.sbspro.2014.04.088 Li Y, 2020, INT J MACH LEARN CYB, V11, P2807, DOI 10.1007/s13042-020-01152-0 Liang ZT, 2021, INFORM PROCESS MANAG, V58, DOI 10.1016/j.ipm.2021.102611 Luckyardi S., 2022, MOROC J CHEM, V10, P10 Madabhushi A, 2016, MED IMAGE ANAL, V33, P170, DOI 10.1016/j.media.2016.06.037 Mao M., 2018, BIBLIOMETRIC ANAL DE, V3, P585 Maryanti R., 2022, Journal of Engineering, Science and Technology, V17, P161 Misbah M., 2022, Journal of Engineering Science and Technology, V17, P118 Misbah M., 2022, Journal of Engineering Science and Technology, V17, P152 Mudzakir A., 2022, Indonesian Journal of Science and Technology, V7, P291 Muhammad S., 2022, J ENG SCI TECHNOL, P1 Muji S., 2021, INDONESIAN J SCI TEC, V6, DOI [10.17509/ijost.v6i3.38430, DOI 10.17509/IJOST.V6I3.38430] Mukhamedyev R.I., 2020, ASSESSMENT DYNAMICS, P744 Mulyawati IB., 2021, ASEAN J Sci Eng Educ, V1, P37, DOI [10.17509/ajsee.v1i1.32405, DOI 10.17509/AJSEE.V1I1.32405] Nandiyanto A.B.D., 2023, ASEAN Journal for Science and Engineering in Materials, V2, P35 Nandiyanto A.B.D., 2020, Indones. J. Sci. Technol, V5, P154, DOI [10.17509/ijost.v5i1.22265, DOI 10.17509/IJOST.V5I1.22265] Nandiyanto ABD., 2022, Commun Sci Technol, V7, P50, DOI [10.21924/cst.7.1.2022.757, DOI 10.21924/CST.7.1.2022.757] Nandiyanto ABD, 2023, MOROC J CHEM, V11, P1, DOI 10.48317/IMIST.PRSM/morjchem-v%vi%i.36576 Nandiyanto ABD, 2021, J ENG RES-KUWAIT, V9, DOI 10.36909/jer.ASSEEE.16037 Nandiyanto ABD, 2022, J ENG SCI TECHNOL, V17, P883 Nayak J, 2020, COMPUT SCI REV, V38, DOI 10.1016/j.cosrev.2020.100297 Nordin N. A. H. M, 2022, Indonesian Journal of Teaching in Science, V2, P127 Nugraha S. A., 2022, Indonesian Journal of Multidiciplinary Research, V2, P327 Oliveira DAB, 2021, LIVEST SCI, V253, DOI 10.1016/j.livsci.2021.104700 ordin N. A. H. M., 2022, ASEAN Journal of Community and Special Needs Education, V1, P9 Pilarz J, 2022, J MOL LIQ, V347, DOI 10.1016/j.molliq.2021.118376 Ragadhita R., 2022, Indonesian Journal of Multidiciplinary Research, V2, P213 Rebai S, 2020, SOCIO-ECON PLAN SCI, V70, DOI 10.1016/j.seps.2019.06.009 Riandi R, 2022, MOROC J CHEM, V10, P417, DOI 10.48317/IMIST.PRSM/morjchem-v10i3.33060 Sahidin I., 2023, Indonesian Journal of Science and Technology, V8, P217, DOI [10.17509/ijost.v8i2.54822, DOI 10.17509/IJOST.V8I2.54822] Saputra H, 2022, MOROC J CHEM, V10, P37, DOI 10.48317/IMIST.PRSM/morjchem-v10i1.31723 Shen YC, 2017, NAT PHOTONICS, V11, P441, DOI [10.1038/NPHOTON.2017.93, 10.1038/nphoton.2017.93] Shidiq A. P., 2023, ASEAN J SCI ENG, V3, P31, DOI DOI 10.17509/AJSE.V3I1.43345 Shidiq AS, 2021, MOROC J CHEM, V9, P290, DOI 10.48317/IMIST.PRSM/morjchem-v9i2.27581 Soegoto H., 2022, Indonesian Journal of Science and Technology, V7, P89, DOI [DOI 10.17509/IJOST.V7I1.43328, 10.17509/ijost.v7i1.43328] Su M, 2021, EXPERT SYST APPL, V186, DOI 10.1016/j.eswa.2021.115728 Sudarjat H., 2023, ASEAN Journal of Community and Special Needs Education, V2, P1 Supratak A, 2017, IEEE T NEUR SYS REH, V25, P1998, DOI 10.1109/TNSRE.2017.2721116 Ting DSW, 2020, NAT MED, V26, P459, DOI 10.1038/s41591-020-0824-5 Utama D.M., 2023, Indonesian Journal of Science and Technology, V8, P171 Uto N, 2022, NEUROPEPTIDES, V92, DOI 10.1016/j.npep.2021.102225 van Eck NJ, 2010, SCIENTOMETRICS, V84, P523, DOI 10.1007/s11192-009-0146-3 Veluri RK, 2022, MATER TODAY-PROC, V51, P2317, DOI 10.1016/j.matpr.2021.11.416 Wibowo R.P., 2022, PROCEDIA COMPUTER SC, V197, P484 Wiendartun W, 2022, J ENG SCI TECHNOL, V17, P343 Wirzal M. D. H., 2022, Indonesian Journal of Community and Special Needs Education, V2, P103 Yan W, 2021, FRONT PSYCHOL, V12, DOI 10.3389/fpsyg.2021.771591 Zhang JZ, 2021, EXPERT SYST APPL, V184, DOI 10.1016/j.eswa.2021.115561 Zhang K, 2017, IEEE T IMAGE PROCESS, V26, P3142, DOI 10.1109/TIP.2017.2662206 Zhang WJ, 2019, SUSTAINABILITY-BASEL, V11, DOI 10.3390/su11133548 Zhang Y., 2022, WORLD NEUROSURG, V161, P355 Zhou BL, 2018, IEEE T PATTERN ANAL, V40, P1452, DOI 10.1109/TPAMI.2017.2723009 Zhu X, 2020, SCIENTOMETRICS, V123, P753, DOI 10.1007/s11192-020-03400-0 NR 83 TC 0 Z9 0 U1 2 U2 7 PU TAYLORS UNIV SDN BHD PI SELANGOR PA 1 JALAN SS15-8, SUBANG JAYA, SELANGOR, 47500, MALAYSIA EI 1823-4690 J9 J ENG SCI TECHNOL JI J. Eng. Sci. Technol. PD APR PY 2023 VL 18 IS 2 BP 1258 EP 1276 PG 19 WC Engineering, Multidisciplinary WE Emerging Sources Citation Index (ESCI) SC Engineering GA F9SA3 UT WOS:000985660800026 DA 2024-09-05 ER PT C AU Wang, MY AF Wang Mingyan BE Zhu, KL Zhang, H TI Research on E-procurement Supplier Performance Assessment Model Based on SPSS Principal Component Analysis and Gray Relational Theory SO COMPREHENSIVE EVALUATION OF ECONOMY AND SOCIETY WITH STATISTICAL SCIENCE LA English DT Proceedings Paper CT 2nd Conference of the International-Institute-of-Applied-Statistics-Studies CY JUL 24-29, 2009 CL Qingdao, PEOPLES R CHINA DE Principal Component Analysis; Grey Theory; Supplier's Performance Evaluation Model; SPSS AB The supplier of e-procurement under at the whole supply chain environment are the main operators of the generalized one. Implementation of ongoing supplier performance evaluation is to control the stable operation of the supply chain the key aspect. In this paper, with theoretical analysis and empirical analysis, put forward the gray relational theory and the principal component analysis SPSS combined to build he supplier performance evaluation index system model under e-procurement, and carry out the relevant empirical research. Examples of analysis showed that the evaluation model for supplier performance evaluation under e-procurement provides a new effective way. C1 [Wang Mingyan] Shanghai Univ Engn Sci, Informat Management Dept, Inst Management, Shanghai 201620, Peoples R China. C3 Shanghai University of Engineering Science RI wang, ming/HPC-6329-2023; wang, ming/ITV-5378-2023 CR Chen Churuning, 2005, LEARNING RES, P197 FAN W, 2007, SCI TECHNOLOGY INFOR, P421 FENG H, 2004, MODERN MANAGEMENT SC, V4, P75 Li Yanshuang, 1999, J HEBEI U TECHNOLOGY PENG JS, 2003, ENTERPRISE EC NR 5 TC 1 Z9 1 U1 0 U2 1 PU AUSSINO ACAD PUBL HOUSE PI MARRICKVILLE PA PO BOX 893, MARRICKVILLE, NSW 2204 00000, AUSTRALIA BN 978-0-9806057-7-8 PY 2009 BP 745 EP 751 PG 7 WC Agricultural Economics & Policy; Economics; Education & Educational Research; Environmental Sciences; Environmental Studies; Social Sciences, Mathematical Methods; Statistics & Probability WE Conference Proceedings Citation Index - Science (CPCI-S); Conference Proceedings Citation Index - Social Science & Humanities (CPCI-SSH) SC Agriculture; Business & Economics; Education & Educational Research; Environmental Sciences & Ecology; Mathematical Methods In Social Sciences; Mathematics GA BOE48 UT WOS:000276383800129 DA 2024-09-05 ER PT J AU Poole, G Egan, JP Iqbal, I AF Poole, Gary Egan, John P. Iqbal, Isabeau TI Innovation in collaborative health research training: The role of active learning SO JOURNAL OF INTERPROFESSIONAL CARE LA English DT Article DE Active learning; collaboration; community health; research training ID TEAMS AB This paper describes and discusses the essential pedagogical elements of the Partnering in Community Health Research (PCHR) program, which was designed to address the training needs of researchers who participate in collaborative, interdisciplinary health research. These elements were intended to foster specific skills that helped learners develop research partnerships featuring knowledge, capabilities, values and attitudes needed for successful research projects. By establishing research teams called "clusters'', PCHR provided research training and experience for graduate students and post-doctoral fellows, as well as for community health workers and professionals. Pedagogical elements relied on active learning approaches such as inquiry-based and experience-based learning. Links between these elements and learning approaches are explained. Through their work in cluster-based applied research projects, the development of learning plans, and cross-cluster learning events, trainees acquired collaborative research competencies that were valuable, relevant and theoretically informed. C1 [Poole, Gary] Univ British Columbia, Fac Med, Sch Populat & Publ Hlth, Vancouver, BC V6T 1Z3, Canada. [Egan, John P.] Univ British Columbia, Fac Med, Ctr Clin Epidemiol & Evaluat, Vancouver, BC V6T 1Z3, Canada. [Iqbal, Isabeau] Univ British Columbia, Dept Educ Studies & Educ Developer, Ctr Teaching & Acad Growth, Vancouver, BC V6T 1Z3, Canada. C3 University of British Columbia; University of British Columbia; University of British Columbia RP Poole, G (corresponding author), Univ British Columbia, Fac Med, Sch Populat & Publ Hlth, 5804 Fairview Ave, Vancouver, BC V6T 1Z3, Canada. EM gary.poole@ubc.ca RI Egan, John P/JHS-5622-2023 CR Edelson DC, 1999, J LEARN SCI, V8, P391, DOI 10.1207/s15327809jls0803&4_3 Fox CE, 2004, ACAD MED, V79, P1169, DOI 10.1097/00001888-200412000-00009 Gilbert J.H., 2000, J INTERPROF CARE, V14, P223, DOI DOI 10.1080/JIC.14.3.223.235 GITLIN LN, 1994, EDUC GERONTOL, V20, P15, DOI 10.1080/0360127940200103 Hall-Long B A, 2001, J Public Health Manag Pract, V7, P60 Kayes AB, 2005, SIMULAT GAMING, V36, P330, DOI 10.1177/1046878105279012 Partridge EE, 2005, FAM COMMUNITY HEALTH, V28, P6, DOI 10.1097/00003727-200501000-00004 Rodgers C, 2002, TEACH COLL REC, V104, P842, DOI 10.1111/1467-9620.00181 Schofield RF, 1999, HEALTH SOC WORK, V24, P210, DOI 10.1093/hsw/24.3.210 Shulman LS, 2019, PROFESORADO, V23, P269, DOI 10.30827/profesorado.v23i3.11230 Splaine Mark E, 2002, Qual Manag Health Care, V10, P10 Trussler Terry., 2005, NEW DIRECTIONS ADULT, V105, P43 NR 12 TC 4 Z9 6 U1 0 U2 10 PU TAYLOR & FRANCIS INC PI PHILADELPHIA PA 530 WALNUT STREET, STE 850, PHILADELPHIA, PA 19106 USA SN 1356-1820 EI 1469-9567 J9 J INTERPROF CARE JI J. Interprofessional Care PY 2009 VL 23 IS 2 BP 148 EP 155 DI 10.1080/13561820802634894 PG 8 WC Health Care Sciences & Services; Health Policy & Services WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Health Care Sciences & Services GA 483PB UT WOS:000268978600005 PM 19283545 DA 2024-09-05 ER PT J AU Zhang, ZP Yin, H AF Zhang, Zipeng Yin, Hu TI Research on design forms based on artificial intelligence collaboration model SO COGENT ENGINEERING LA English DT Article DE AI; industrial design; design morphology; AIGC; co-design AB With the advent of the era of great intersection and integration, the development of generative artificial intelligence has caused the renewal of design methods, promoting a new paradigm of research in design fundamentals. The study seeks to investigate the research method of design form in the collaborative mode of artificial intelligence, to provide new ideas for design to conduct interdisciplinary research, and to promote design innovation under AI collaboration. This research begins with the design morphology theory, integrates interdisciplinary theories such as bionic design, and topology research, and collaborates with AIGC tools such as Midjourney, Stable Diffusion, and Chilloutmix to conduct case-specific research. To improve the accuracy of the morphological study, parametric design, bi-directional progressive topology optimization, genetic algorithm and simulation analysis, and other methods were also used in the research process to carry out a comprehensive design experiment exploration. This study also summarizes the AIGC prompt formula for the industrial design field and proposes an innovative seven-step design form research method with shape finding and shape making. This study also summarizes the AIGC prompt formula for the industrial design field and proposes an innovative seven-step design form research method with shape finding and shape making. Simultaneously, the pearl shell design morphology research is conducted in collaboration with AI technology, the full case design of the autonomous underwater vehicle is completed, and the efficacy of the seven-step design morphology research method is validated through fluid simulation. AI synergy provides new ideas for complex morphology research, extends and complements design, and plays a crucial role in the phases of morphology exploration, concept generation, and solution implementation, thereby assisting in the exploration of the central content of design morphology. C1 [Zhang, Zipeng; Yin, Hu] Beihang Univ, Sch Mech Engn & Automat, Dept Ind Design, Beijing, Peoples R China. [Zhang, Zipeng] Tsinghua Univ, Acad Art & Design, Beijing, Peoples R China. C3 Beihang University; Tsinghua University RP Yin, H (corresponding author), Beihang Univ, Sch Mech Engn & Automat, Dept Ind Design, Beijing, Peoples R China. EM 19375309@buaa.edu.cn FX Thanks to my supervisor Hu Yin, for his valuable advice on the selection of the research subjects, the setting of the design evaluation criteria, and the verification of the morphological laws, which gave me great encouragement and help in the process of writing the paper. CR [Anonymous], 2014, A natural history of human thinking Boden MA, 2009, DIGIT CREAT, V20, P21, DOI 10.1080/14626260902867915 Caires C. S., 2023, Perspectives on Design and Digital Communication IV: Research, Innovations and Best Practices, P113 Cao YH, 2023, Arxiv, DOI [arXiv:2303.04226, DOI 10.48550/ARXIV.2303.04226, 10.48550/arXiv.2303.04226] Chang Kuang-Hua., 2014, PRODUCT DESIGN MODEL Chung JJY, 2022, PROCEEDINGS OF THE 2022 ACM DESIGNING INTERACTIVE SYSTEMS CONFERENCE, DIS 2022, P232, DOI 10.1145/3532106.3533505 Craciun A. E., 2019, IOP Conference Series: Materials Science and Engineering, V682, DOI 10.1088/1757-899X/682/1/012006 Dehouche N, 2023, HELIYON, V9, DOI 10.1016/j.heliyon.2023.e16757 Dubberly H, 2023, SHE JI, V9, P135, DOI 10.1016/j.sheji.2023.05.003 DURGEE JF, 1988, J ADVERTISING RES, V28, P42 Farin G. E., 1996, Curves and surfaces for computeraided geometric design, a practical guide Fathoni Ahmad Faisal Choiril Anam, 2023, E3S Web of Conferences, DOI 10.1051/e3sconf/202342601102 Gupta D., 2022, DifusionBee-Stable difusion App for AI art Hsiao SW, 2008, INT J IND ERGONOM, V38, P910, DOI 10.1016/j.ergon.2008.02.009 Hugo J., 2023, Artificial intelligence in the industrial design process INCOSE Systems Engineering Handbook Working Group, 2015, Systems engineering handbook, V4th ed.) Jarrahi MH, 2023, BUS HORIZONS, V66, P87, DOI 10.1016/j.bushor.2022.03.002 Javaid M., 2023, Journal of Economy and Technology, V1, P127, DOI [DOI 10.1016/J.JECT.2023.08.001, https://doi.org/10.1016/j.ject.2023.08.001] Kelly K., 2022, What AI-generated art really means for human creativity Kimball M.A., 2013, Journal of Technical Writing and Communication, V43, P3 Lugo J. E., 2012, DETC201270434 ASME, DOI [https://doi.org/10.1115/DETC2012-70434, DOI 10.1115/DETC2012-70434] Lugo JE, 2016, J MECH DESIGN, V138, DOI 10.1115/1.4032775 Lugo JE, 2015, J MECH DESIGN, V137, DOI 10.1115/1.4030988 Luo Y., 2023, Proceedings of the 4th International Conference on Education, Knowledge and Information Management, ICEKIM 2023, May 2628, 2023, Nanjing, China, DOI [https://doi.org/10.4108/eai.26-5-2023.2337328, DOI 10.4108/EAI.26-5-2023.2337328] Mozaffar M, 2022, J MATER PROCESS TECH, V302, DOI 10.1016/j.jmatprotec.2021.117485 Nan LL, 2011, ACM T GRAPHIC, V30, DOI 10.1145/2024156.2024219 Orbay G, 2015, J MECH DESIGN, V137, DOI 10.1115/1.4030206 Oya T., 2012, DETC201270859 ASME, DOI [https://doi.org/10.1115/DETC2012-70859, DOI 10.1115/DETC2012-70859] Radanliev P, 2022, IEEE ACCESS, V10, P45280, DOI 10.1109/ACCESS.2022.3169580 Sederberg Thomas W., 2012, Computer Aided Geometric Design, V1 Sylcott B, 2013, J MECH DESIGN, V135, DOI 10.1115/1.4024975 Tencent Research Institute, 2023, Tencent Research Institute AIGC Development Trend Report, 2023 Tian X. Luo S. Tan Z. Zhang H. Cheng H. Zhu C. Lin H. Cong F., 2023, AHFE 2023 HAW ED, DOI [https://doi.org/10.54941/ahfe1004238, DOI 10.54941/AHFE1004238] Tovares N, 2014, J MECH DESIGN, V136, DOI 10.1115/1.4027985 Valencia-Romero A, 2016, J MECH DESIGN, V138, DOI 10.1115/1.4033664 Verheijden Mathias Peter., 2023, 2023 CHI C HUM FACT, P1, DOI [DOI 10.1145/3544549.3585680, 10.1145/3544549.3585680] Wang Y., 2023, Highlights in Science, Engineering and Technology, V57, P242 Wertheimer M, 1923, PSYCHOL FORSCH, V4, P301, DOI 10.1007/BF00410640 Xi ZH, 2023, Arxiv, DOI arXiv:2309.07864 Xiaopeng Guo, 2020, E3S Web of Conferences, V179, DOI 10.1051/e3sconf/202017902032 Zhang CN, 2023, Arxiv, DOI arXiv:2303.11717 Zhang F, 2022, MATH PROBL ENG, V2022, DOI 10.1155/2022/9342691 Zhao Y., 2024, Proceedings of the 2nd International Conference on Intelligent Design and Innovative Technology (ICIDIT 2023), V), P451, DOI [https://doi.org/10.2991/978-94-6463-266-849, DOI 10.2991/978-94-6463-266-849] NR 43 TC 0 Z9 0 U1 11 U2 11 PU TAYLOR & FRANCIS AS PI OSLO PA KARL JOHANS GATE 5, NO-0154 OSLO, NORWAY SN 2331-1916 J9 COGENT ENG JI Cogent Eng. PD DEC 31 PY 2024 VL 11 IS 1 AR 2364051 DI 10.1080/23311916.2024.2364051 PG 18 WC Engineering, Multidisciplinary WE Emerging Sources Citation Index (ESCI) SC Engineering GA XH5J4 UT WOS:001260801700001 OA gold DA 2024-09-05 ER PT J AU Ibáñez, A Larrañaga, P Bielza, C AF Ibanez, Alfonso Larranaga, Pedro Bielza, Concha TI Using Bayesian networks to discover relationships between bibliometric indices. A case study of computer science and artificial intelligence journals SO SCIENTOMETRICS LA English DT Article DE Bibliometric indices; Bayesian networks; Conditional dependencies and conditional independencies; Computer science and artificial intelligence ID H-INDEX; PROBABILISTIC NETWORKS; CITATION ANALYSIS; R-INDEX; IMPACT AB As they are used to evaluate the importance of research at different levels by funding agencies and promotion committees, bibliometric indices have received a lot of attention from the scientific community over the last few years. Many bibliometric indices have been developed in order to take into account aspects not previously covered. The result is that, nowadays, the scientific community faces the challenge of selecting which of this pool of indices meets the required quality standards. In view of the vast number of bibliometric indices, it is necessary to analyze how they relate to each other (irrelevant, dependent and so on). Our main purpose is to learn a Bayesian network model from data to analyze the relationships among bibliometric indices. The induced Bayesian network is then used to discover probabilistic conditional (in) dependencies among the indices and, also for probabilistic reasoning. We also run a case study of 14 well-known bibliometric indices on computer science and artificial intelligence journals. C1 [Ibanez, Alfonso; Larranaga, Pedro; Bielza, Concha] Univ Politecn Madrid, Computat Intelligence Grp, Dept Inteligencia Artificial, E-28660 Madrid, Spain. C3 Universidad Politecnica de Madrid RP Ibáñez, A (corresponding author), Univ Politecn Madrid, Computat Intelligence Grp, Dept Inteligencia Artificial, E-28660 Madrid, Spain. EM aibanez@fi.upm.es; plarranaga@fi.upm.es; mcbielza@fi.upm.es RI Bielza, Concha/F-9277-2013; Larranaga, Pedro/F-9293-2013; Ibáñez, Alfonso/B-3423-2010 OI Bielza, Concha/0000-0001-7109-2668; Larranaga, Pedro/0000-0003-0652-9872; FU Spanish Ministry of Science and Innovation [TIN2008-04528-E, TIN2010-20900-C04-04]; Cajal Blue Brain and Consolider Ingenio [2010-CSD2007-00018] FX Research supported by Spanish Ministry of Science and Innovation, Project TIN2008-04528-E. The study has also been partially supported by Spanish Ministry of Science and Innovation, grants TIN2010-20900-C04-04, Cajal Blue Brain and Consolider Ingenio 2010-CSD2007-00018. CR Alonso S, 2010, SCIENTOMETRICS, V82, P391, DOI 10.1007/s11192-009-0047-5 [Anonymous], 1988, Probabilistic Reasoning in Intelligent Systems Bar-Ilan J, 2008, SCIENTOMETRICS, V74, P257, DOI 10.1007/s11192-008-0216-y Bergstrom CT, 2008, J NEUROSCI, V28, P11433, DOI 10.1523/JNEUROSCI.0003-08.2008 Bollen J, 2009, PLOS ONE, V4, DOI 10.1371/journal.pone.0006022 Bornmann L, 2008, RES EVALUAT, V17, P149, DOI 10.3152/095820208X319166 Bornmann L, 2008, J AM SOC INF SCI TEC, V59, P830, DOI 10.1002/asi.20806 Braun T, 2006, SCIENTOMETRICS, V69, P169, DOI 10.1007/s11192-006-0147-4 Cabrerizo FJ, 2010, J INFORMETR, V4, P23, DOI 10.1016/j.joi.2009.06.005 Castillo E., 1997, Expert Systems and Probabilistic Network Models Consortium Elvira., 2002, Proceedings of the first European workshop on probabilistic graphical models, P222 COOPER GF, 1992, MACH LEARN, V9, P309, DOI 10.1023/A:1022649401552 Costas R, 2008, SCIENTOMETRICS, V77, P267, DOI 10.1007/s11192-007-1997-0 Davis PM, 2008, J AM SOC INF SCI TEC, V59, P2186, DOI 10.1002/asi.20943 Egghe L., 2006, ISSI newsletter., V2, P8 Elkins MR, 2010, SCIENTOMETRICS, V85, P81, DOI 10.1007/s11192-010-0262-0 Franceschet M, 2010, J INFORMETR, V4, P239, DOI 10.1016/j.joi.2009.12.002 GARFIELD E, 1972, SCIENCE, V178, P471, DOI 10.1126/science.178.4060.471 GARFIELD E, 1972, ESSAYS INFORM SCI CU, V1, P270 Goodrum AA, 2001, INFORM PROCESS MANAG, V37, P661, DOI 10.1016/S0306-4573(00)00047-9 Hirsch JE, 2005, P NATL ACAD SCI USA, V102, P16569, DOI 10.1073/pnas.0507655102 Jin B., 2006, SCI FOCUS, V1, P8, DOI 10.1209/0295-5075/78/30002 Jin BH, 2007, CHINESE SCI BULL, V52, P855, DOI 10.1007/s11434-007-0145-9 LACAVE C, 2003, THESIS DEP INTELIGEN Leydesdorff L, 2009, J AM SOC INF SCI TEC, V60, P1327, DOI 10.1002/asi.21024 Ruane F, 2008, SCIENTOMETRICS, V75, P395, DOI 10.1007/s11192-007-1869-7 SAAD G, J AM SOC IN IN PRESS Schreiber M, 2008, J AM SOC INF SCI TEC, V59, P1513, DOI 10.1002/asi.20856 *SCIMAGO, 2007, SJR SCIMAGO J C 1112 Serenko A, 2010, J INFORMETR, V4, P447, DOI 10.1016/j.joi.2010.04.001 WELLMAN MP, 1990, ARTIF INTELL, V44, P257, DOI 10.1016/0004-3702(90)90026-V Woeginger GJ, 2008, MATH SOC SCI, V56, P224, DOI 10.1016/j.mathsocsci.2008.03.001 Zhang CT, 2009, PLOS ONE, V4, DOI 10.1371/journal.pone.0005429 NR 33 TC 10 Z9 10 U1 1 U2 79 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0138-9130 J9 SCIENTOMETRICS JI Scientometrics PD NOV PY 2011 VL 89 IS 2 BP 523 EP 551 DI 10.1007/s11192-011-0486-7 PG 29 WC Computer Science, Interdisciplinary Applications; Information Science & Library Science WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Computer Science; Information Science & Library Science GA 840WU UT WOS:000296473400004 DA 2024-09-05 ER PT J AU Huang, W Song, FB Zhang, SY Xia, T AF Huang, Wei Song, Fangbin Zhang, Shenyu Xia, Tian TI Influence of deep learning-based journal reading guidance system on students' national cognition and cultural acceptance SO FRONTIERS IN PSYCHOLOGY LA English DT Article DE educational psychology; art journal; national identity; guidance system; deep learning ID MENTAL-HEALTH; COLLEGE-STUDENTS AB The purpose is to explore new cultivation modes of college students' national cognition and cultural acceptance. Deep learning (DL) technology and Educational Psychology theory are introduced, and the influence of art journal reading on college students' national cognition and cultural acceptance is analyzed under Educational Psychology. Firstly, the background of Educational Psychology, national cognition and cultural acceptance, and learning system are discussed following a literature review. The DL technology is introduced to construct the journal reading guidance system. The system can provide users with art journals and record the user habits like reading duration and preferences. Secondly, hypotheses are proposed, and a questionnaire survey is designed, with 12 specific indicators to investigate and collect research data. Finally, the collected data are analyzed. The results show that women's cognition of Chinese traditional culture, Chinese excellent revolutionary culture, and Chinese national identity is higher than that of men. By comparison, men's cognition of Chinese advanced socialist culture is higher than women's. After using the journal reading guidance system, the cognition of female college students on traditional Chinese culture is improved by 16.3%. Before and after reading art journals, the overall national cognition and cultural acceptance of Minority students are higher than that of Han students. The overall cognition of Literature and History students is higher than that of Science and Engineering students in traditional Chinese culture and China's excellent revolutionary culture and lower in advanced Chinese socialist culture and Chinese national identity. The overall cognition of college students' party members to the advanced socialist culture is higher than league members. As students read more art journals through the guidance system, their overall national cognition and cultural acceptance have increased. Therefore, reading art journals can promote college students' national cognition and cultural acceptance. A national cognition and cultural acceptance promotion system that conforms to the current situation of college students is constructed. The finding provides a reference for developing complex emotion recognition technology in human-computer interaction. C1 [Huang, Wei] Southeast Univ, Sch Arts, Nanjing, Peoples R China. [Song, Fangbin] Nanjing Univ Sci & Technol, Sch Design Art & Media, Nanjing, Peoples R China. [Zhang, Shenyu] Nanjing Normal Univ, Sch Liberal Arts, Nanjing, Peoples R China. [Xia, Tian] Southwestern Univ Finance & Econ, Sch Econ, Chengdu, Peoples R China. C3 Southeast University - China; Nanjing University of Science & Technology; Nanjing Normal University; Southwestern University of Finance & Economics - China RP Huang, W (corresponding author), Southeast Univ, Sch Arts, Nanjing, Peoples R China. EM 230198768@seu.edu.cn CR Anders KM, 2019, ARCH SEX BEHAV, V48, P1859, DOI 10.1007/s10508-018-1332-2 Backhaus I, 2020, FRONT PSYCHOL, V11, DOI 10.3389/fpsyg.2020.00644 Barnes ME, 2020, CBE-LIFE SCI EDUC, V19, DOI 10.1187/cbe.19-10-0197 Barnett TM, 2019, SOC WORK PUBLIC HLTH, V34, P145, DOI 10.1080/19371918.2019.1575308 Braby L, 2022, J ETHN SUBST ABUSE, V21, P621, DOI 10.1080/15332640.2020.1793864 Carvajal L, 2021, J ADOLESCENT HEALTH, V69, P361, DOI 10.1016/j.jadohealth.2021.06.009 Chang WL, 2019, INT J ENV RES PUB HE, V16, DOI 10.3390/ijerph16193560 Chow SKY, 2019, INT J ENV RES PUB HE, V16, DOI 10.3390/ijerph16173210 Edele A, 2020, INT J PSYCHOL, V55, P754, DOI 10.1002/ijop.12677 Gattamorta KA, 2019, J SCHOOL HEALTH, V89, P800, DOI 10.1111/josh.12817 Gómez JM, 2019, AM J ORTHOPSYCHIAT, V89, P237, DOI 10.1037/ort0000367 Graesser AC, 2022, ANNU REV PSYCHOL, V73, P547, DOI 10.1146/annurev-psych-020821-113042 Hartas D, 2021, RES PAP EDUC, V36, P542, DOI 10.1080/02671522.2019.1697734 Jao NC, 2019, J AM COLL HEALTH, V67, P790, DOI 10.1080/07448481.2018.1515744 Krasovska O, 2020, BEHAV SCI-BASEL, V10, DOI 10.3390/bs10020050 Lattie EG, 2019, J MED INTERNET RES, V21, DOI 10.2196/12869 Li YY, 2021, J AFFECT DISORDERS, V281, P597, DOI 10.1016/j.jad.2020.11.109 Lipson SK, 2019, PSYCHIAT SERV, V70, P60, DOI 10.1176/appi.ps.201800332 Liu CH, 2019, DEPRESS ANXIETY, V36, P8, DOI 10.1002/da.22830 Ma Z, 2020, EPIDEMIOL PSYCH SCI, V29, DOI 10.1017/S2045796020000931 McMaster R, 2021, ISSUES MENT HEALTH N, V42, P862, DOI 10.1080/01612840.2021.1894617 Melcher J, 2020, EVID-BASED MENT HEAL, V23, P161, DOI 10.1136/ebmental-2020-300180 Niu ZM, 2020, J MED INTERNET RES, V22, DOI 10.2196/15817 Paananen J, 2021, J PRAGMATICS, V184, P152, DOI 10.1016/j.pragma.2021.07.026 Parker K., 2021, CURR DEV NUTR, V5, P243, DOI [10.1093/cdn/nzab029_044, DOI 10.1093/CDN/NZAB029_044] Peltz JS, 2021, J AM COLL HEALTH, V69, P577, DOI 10.1080/07448481.2019.1705306 Rogoza R, 2018, FRONT PSYCHOL, V9, DOI 10.3389/fpsyg.2018.00343 Sabella D, 2021, AM J NURS, V121, P66, DOI 10.1097/01.NAJ.0000790660.73133.d8 Sajnani N, 2020, ART PSYCHOTHER, V69, DOI 10.1016/j.aip.2020.101668 Schwartz SJ, 2021, J CLIN PSYCHOL, V77, P121, DOI 10.1002/jclp.23009 Seow TXF, 2021, BIOL PSYCHIAT, V90, P436, DOI 10.1016/j.biopsych.2021.05.013 Shea H, 2019, CULT DIVERS ETHN MIN, V25, P553, DOI 10.1037/cdp0000250 Shen CW, 2019, VIRTUAL REAL-LONDON, V23, P313, DOI 10.1007/s10055-018-0348-1 Smith-Keiling BL, 2020, J MICROBIOL BIOL EDU, V21, DOI 10.1128/jmbe.v21i1.2073 Stein KF, 2019, APPETITE, V140, P180, DOI 10.1016/j.appet.2019.05.008 Taliaferro LA, 2020, J AM COLL HEALTH, V68, P565, DOI 10.1080/07448481.2019.1583655 Tokur-Kesgin M, 2021, CHRONOBIOL INT, V38, P1441, DOI 10.1080/07420528.2021.1931277 Tummala-Narra P, 2021, AM J ORTHOPSYCHIAT, V91, P36, DOI 10.1037/ort0000515 Wright KE, 2021, FOOD SECUR, V13, P701, DOI 10.1007/s12571-020-01140-w Zhou X, 2019, DEV PSYCHOL, V55, P157, DOI 10.1037/dev0000634 NR 40 TC 1 Z9 1 U1 8 U2 45 PU FRONTIERS MEDIA SA PI LAUSANNE PA AVENUE DU TRIBUNAL FEDERAL 34, LAUSANNE, CH-1015, SWITZERLAND SN 1664-1078 J9 FRONT PSYCHOL JI Front. Psychol. PD AUG 25 PY 2022 VL 13 AR 950412 DI 10.3389/fpsyg.2022.950412 PG 17 WC Psychology, Multidisciplinary WE Social Science Citation Index (SSCI) SC Psychology GA 6Q6PA UT WOS:000891733200001 PM 36092117 OA gold, Green Published DA 2024-09-05 ER PT C AU Ma, J AF Ma, Jian BE Li, D Li, Z TI Principal Component Analysis Method-Based Research on Agricultural Science and Technology Website Evaluation SO COMPUTER AND COMPUTING TECHNOLOGIES IN AGRICULTURE IX, CCTA 2015, PT II SE IFIP Advances in Information and Communication Technology LA English DT Proceedings Paper CT 9th IFIP WG 5.14 International Conference on Computer and Computing Technologies in Agriculture (CCTA) CY SEP 27-30, 2015 CL China Agr Univ, Beijing, PEOPLES R CHINA HO China Agr Univ DE Agricultural science and technology website; Principal component analysis method; Website evaluation AB Agricultural science and technology website is a very important supporter of driving agricultural information and servicing agriculture. An evaluation method is proposed on agricultural science and technology website based on objective data and artificial ratings, using principal component analysis method. Finally the author used the model to evaluate 18 agricultural science and technology websites, and proposed some suggestions on development of agricultural science and technology websites based on the evaluation result which would act as reference to agricultural science and technology website construction. C1 [Ma, Jian] Chinese Acad Agr Sci, Agr Informat Inst, Beijing 100081, Peoples R China. [Ma, Jian] Minist Agr, Key Lab Agr Informat Serv Technol 2006 2010, Beijing 100081, Peoples R China. C3 Chinese Academy of Agricultural Sciences; Agriculture Information Institute, CAAS; Ministry of Agriculture & Rural Affairs RP Ma, J (corresponding author), Chinese Acad Agr Sci, Agr Informat Inst, Beijing 100081, Peoples R China.; Ma, J (corresponding author), Minist Agr, Key Lab Agr Informat Serv Technol 2006 2010, Beijing 100081, Peoples R China. EM majian@caas.cn RI JIAN, MA/KQU-7977-2024 CR Du J., 2010, EVALUATION SYSTEM AG Li C., 2005, J NANJING U FINANCES Liu Y., 2010, EVALUATION METHOD EV Sha Y. Z., 2004, EVALUATION CHINA PRO NR 4 TC 0 Z9 0 U1 0 U2 11 PU SPRINGER INT PUBLISHING AG PI CHAM PA GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND SN 1868-4238 BN 978-3-319-48354-2; 978-3-319-48353-5 J9 IFIP ADV INF COMM TE PY 2016 VL 479 BP 369 EP 381 DI 10.1007/978-3-319-48354-2_37 PG 13 WC Agricultural Engineering; Computer Science, Information Systems; Computer Science, Interdisciplinary Applications WE Conference Proceedings Citation Index - Science (CPCI-S) SC Agriculture; Computer Science GA BH5KJ UT WOS:000401099100037 OA Green Submitted DA 2024-09-05 ER PT J AU Rychalski, A Aubry, M AF Rychalski, Aude Aubry, Mathilde TI Diversify Approaches to Better Understand the Compatibility of Artificial Intelligence and Sustainability: "I Love You... Me Neither" SO JOURNAL OF INNOVATION ECONOMICS & MANAGEMENT LA English DT Article DE Artificial Intelligence; Sustainability; Bibliometrics; Co-Citation Analysis (CCA); Bibliographic Coupling Analysis (BCA); Ethics ID BIBLIOMETRIC ANALYSIS; DECISION-MAKING; BIG DATA; IMPACT; MODELS; LAND AB The aim of this article is twofold: 1. Suggest an overview of current knowledge and understanding of both concepts and 2. Present the six contributions and their positioning in relation to current the literature linked to artificial intelligence and sustainability. For that, we use different but complementary sources. First, we ask artificial intelligence to reveal the mainstream view. Then we call on human intelligence to provide a critical perspective. Finally, we carry out a bibliometric analysis using the SCOPUS database and two different statistical analyses (the CCA - co -citation analysis, the BCA - bibliographic coupling analysis). The diversity of the sources used, and their complementarity allow us to propose a holistic vision of the subject, highlighting the concerns that surround it and identifying future avenues of research for academics. The articles selected in this special issue fill some of the gaps raised and call for further research. C1 [Rychalski, Aude] ESSCA Sch Management, Angers, France. [Aubry, Mathilde] EM Normandie Business Sch, Metis Lab, Paris, France. C3 ESSCA School of Management RP Rychalski, A (corresponding author), ESSCA Sch Management, Angers, France. EM aude.rychalski@essca.fr; maubry@em-normandie.fr CR Acemoglu D, 2018, AM ECON REV, V108, P1488, DOI 10.1257/aer.20160696 Albino V, 2015, J URBAN TECHNOL, V22, P3, DOI 10.1080/10630732.2014.942092 Andronie M, 2021, ELECTRONICS-SWITZ, V10, DOI 10.3390/electronics10202497 Andronie M, 2021, SUSTAINABILITY-BASEL, V13, DOI 10.3390/su13020751 Annosi MC, 2020, MANAGE DECIS, V58, P1737, DOI 10.1108/MD-09-2019-1328 Bag S, 2021, TECHNOL FORECAST SOC, V163, DOI 10.1016/j.techfore.2020.120420 Bagstad KJ, 2016, REG ENVIRON CHANGE, V16, P2005, DOI 10.1007/s10113-015-0756-7 Bolukbasi T, 2016, ADV NEUR IN, V29 Brem A, 2023, IEEE T ENG MANAGE, V70, P770, DOI 10.1109/TEM.2021.3109983 BROADUS RN, 1987, SCIENTOMETRICS, V12, P373, DOI 10.1007/BF02016680 Brynjolfsson E, 2017, SCIENCE, V358, P1530, DOI 10.1126/science.aap8062 Chaudhuri R, 2023, J FAM BUS MANAG, V13, P46, DOI 10.1108/JFBM-12-2021-0153 Courtland R, 2018, NATURE, V558, P357, DOI 10.1038/d41586-018-05469-3 Debref R, 2017, J INNOV ECON MANAG, P9, DOI 10.3917/jie.024.0009 Demirci A., 2020, Food Safety Engineering Dhar P, 2020, NAT MACH INTELL, V2, P423, DOI 10.1038/s42256-020-0219-9 DIALLO M. F., 2023, Revue francaise de gestion, V312, P9 Donthu N, 2021, J BUS RES, V133, P285, DOI 10.1016/j.jbusres.2021.04.070 Duan YQ, 2019, INT J INFORM MANAGE, V48, P63, DOI 10.1016/j.ijinfomgt.2019.01.021 Durana P., 2021, Economics, Management, and Financial Markets, V16, P20 Dusmanescu D, 2016, ENERGIES, V9, DOI 10.3390/en9090703 ELKINGTON J, 1994, CALIF MANAGE REV, V36, P90, DOI 10.2307/41165746 FORNELL C, 1981, J MARKETING RES, V18, P39, DOI 10.2307/3151312 Frank B, 2021, J CLEAN PROD, V285, DOI 10.1016/j.jclepro.2020.125242 Galaz V, 2021, TECHNOL SOC, V67, DOI 10.1016/j.techsoc.2021.101741 GARFIELD E, 1963, AM DOC, V14, P289, DOI 10.1002/asi.5090140405 Gavrilescu M., 2010, Dynamic Biochemistry, Process Biotechnology and Molecular Biology, V4, P1 Giret A, 2019, SERV ORIENTED COMPUT, V13, P185, DOI 10.1007/s11761-019-00271-z Gupta BB, 2023, TECHNOL FORECAST SOC, V186, DOI 10.1016/j.techfore.2022.122152 Harzing AW, 2016, SCIENTOMETRICS, V106, P787, DOI 10.1007/s11192-015-1798-9 Jarneving B, 2005, SCIENTOMETRICS, V65, P245, DOI 10.1007/s11192-005-0270-7 Kaplan A, 2019, BUS HORIZONS, V62, P15, DOI 10.1016/j.bushor.2018.08.004 Kayikci Y, 2018, PROCEDIA MANUF, V21, P782, DOI 10.1016/j.promfg.2018.02.184 KESSLER MM, 1963, AM DOC, V14, P10, DOI 10.1002/asi.5090140103 Kliestik T, 2020, OECON COPERNIC, V11, P371, DOI 10.24136/oc.2020.016 Lazaroiu G., 2021, Journal of SelfGovernance and Management Economics, V9, P20, DOI [10.22381/jsme9120212, DOI 10.22381/JSME9120212] Lazaroiu G, 2022, OECON COPERNIC, V13, P1047, DOI 10.24136/oc.2022.030 Lazaroiu G, 2020, ENERGIES, V13, DOI 10.3390/en13184922 Lazaroiu G, 2020, FRONT PSYCHOL, V11, DOI 10.3389/fpsyg.2020.00890 Lazaroiu G, 2019, FRONT PUBLIC HEALTH, V7, DOI 10.3389/fpubh.2019.00340 Lazaroiu G, 2017, FRONT BEHAV NEUROSCI, V11, DOI 10.3389/fnbeh.2017.00188 Leal W, 2023, ENVIRON DEV SUSTAIN, V25, P4957, DOI 10.1007/s10668-022-02252-3 LEPARMENTIER A., 2023, Le Monde.frDecember 6 Liyanage S, 2019, SUSTAINABILITY-BASEL, V11, DOI 10.3390/su11051262 Lytras MD, 2021, SUSTAINABILITY-BASEL, V13, DOI 10.3390/su13073598 Makridakis S, 2017, FUTURES, V90, P46, DOI 10.1016/j.futures.2017.03.006 Maucuer R, 2019, MANAGEMENT, V22, P176 MYEONG S., 2021, How to Integrate the Data-based Strategies and Advanced Technologies into Efficient Air Pollution Management in Smart Cities? Nasir O, 2023, TECHNOL SOC, V72, DOI 10.1016/j.techsoc.2022.102171 Naz F, 2022, BUS STRATEG ENVIRON, V31, P2400, DOI 10.1002/bse.3034 Naz F, 2022, OPER MANAGE RES, V15, P378, DOI 10.1007/s12063-021-00208-w Nica E., 2021, Economics, Management, and Financial Markets, V16, P52, DOI 10.22381/emfm16120215 Nica E., 2021, J. Self-Gov. Manag. Econ, V9, P35, DOI [10.22381/jsme9320213, DOI 10.22381/JSME9320213] Nishant R, 2020, INT J INFORM MANAGE, V53, DOI 10.1016/j.ijinfomgt.2020.102104 NOMA E, 1984, J AM SOC INFORM SCI, V35, P29, DOI 10.1002/asi.4630350105 Olan F, 2022, INT J PROD RES, V60, P4418, DOI 10.1080/00207543.2021.1915510 Olawumi TO, 2018, J CLEAN PROD, V183, P231, DOI 10.1016/j.jclepro.2018.02.162 Ordiano JAG, 2018, WIRES DATA MIN KNOWL, V8, DOI 10.1002/widm.1235 Pan SL, 2023, INT J INFORM MANAGE, V72, DOI 10.1016/j.ijinfomgt.2023.102668 Podsakoff PM, 2003, J APPL PSYCHOL, V88, P879, DOI 10.1037/0021-9010.88.5.879 Popescu GH, 2018, RENEW SUST ENERG REV, V81, P768, DOI 10.1016/j.rser.2017.08.055 Popescu GH, 2017, SUSTAINABILITY-BASEL, V9, DOI 10.3390/su9071230 PRITCHARD A, 1969, J DOC, V25, P348 Rahman MS, 2023, J BUS RES, V156, DOI 10.1016/j.jbusres.2022.113525 Russell S., 2009, Artificial intelligence-A modern approach Saoudi L, 2023, REV INT PME, V36, P13 SMALL H, 1973, J AM SOC INFORM SCI, V24, P265, DOI 10.1002/asi.4630240406 TELLO S. F., 2009, Examining drivers of sustainable innovation, V6 TESSIER L., 2024, Revue Canadienne Des Sciences de l'Administration, V41 Traag VA, 2019, SCI REP-UK, V9, DOI 10.1038/s41598-019-41695-z Tsolakis N, 2022, INT J PROD RES, V60, P4508, DOI 10.1080/00207543.2021.1914355 Uzunidis D, 2009, J INNOV ECON MANAG, P5, DOI 10.3917/jie.003.0005 Vasile AJ, 2016, LAND USE POLICY, V50, P399, DOI 10.1016/j.landusepol.2015.10.011 Vatamanescu EM, 2020, SYST RES BEHAV SCI, V37, P374, DOI 10.1002/sres.2658 VILLANI C., 2018, Rapport de Cedric Villani: Donner un sens a l'intelligence artificielle (IA) Vinuesa R, 2020, NAT COMMUN, V11, DOI 10.1038/s41467-019-14108-y Vogel R, 2013, INT J MANAG REV, V15, P426, DOI 10.1111/ijmr.12000 VUARIN L., 2023, Innovations, V72, P103 Walsh I., 2017, SYSTEMES INFORM MANA, V22, P75, DOI [10.3917/sim.173.0075, DOI 10.3917/SIM.173.0075] Walsh I, 2023, EUR J INFORM SYST, V32, P653, DOI 10.1080/0960085X.2022.2039563 WCED, 1987, Brundtland Report (Britannica) Wilson C, 2022, TECHNOL SOC, V68, DOI 10.1016/j.techsoc.2022.101926 Yigitcanlar T, 2020, SUSTAINABILITY-BASEL, V12, DOI 10.3390/su12208548 Zupic I, 2015, ORGAN RES METHODS, V18, P429, DOI 10.1177/1094428114562629 NR 84 TC 0 Z9 0 U1 0 U2 0 PU DE BOECK UNIV PI LOUVAIN-LA-NEUVE PA FOND JEAN-PAQUES 4,, B-1348 LOUVAIN-LA-NEUVE, BELGIUM EI 2032-5355 J9 J INNOV ECON MANAG JI J. INNOV. ECON. MANAG. PY 2024 IS 44 DI 10.3917/jie.044.0001 PG 23 WC Management WE Emerging Sources Citation Index (ESCI) SC Business & Economics GA XD8L0 UT WOS:001259836400001 DA 2024-09-05 ER PT J AU Chen, HH Nguyen, H Alghamdi, A AF Chen, Haihua Huyen Nguyen Alghamdi, Asmaa TI Constructing a high-quality dataset for automated creation of summaries of fundamental contributions of research articles SO SCIENTOMETRICS LA English DT Article DE Academic literature; Research contribution; Dataset; Text classification; Machine learning; BERT AB Research contributions, which indicate how a research paper contributes new knowledge or new understanding in contrast to prior research on the topic, are the most valuable type of information for researchers to understand the main content of a paper. However, there is little research using research contributions to identify and recommend valuable knowledge in academic literature for users. Instead, most existing studies mainly focus on the analysis of other elements in academic literature, such as keywords, citations, rhetorical structure, discourse, and others. This paper first introduces a fine-grained annotation scheme with six categories for research contributions in academic literature. To evaluate the reliability of our annotation scheme, we conduct annotation on 5024 sentences collected from Proceedings of the Annual Meeting of the Association for Computational Linguistics (ACL Anthology) and an academic journal Information Processing & Management (IP &M). We reach an inter-annotator agreement of Cohen's kappa = 0.91 and Fleiss' kappa = 0.91, demonstrating the high quality of the dataset. We then built two types of classifiers for automated research contribution identification based on the dataset: classic feature-based machine learning (ML) and transformer-based deep learning (DL). Our experimental results show that SCI-BERT, a pretrained language model for scientific text, achieves the best performance with an F1 score of 0.58, improving the best classic ML model (nouns + verbs + tf-idf + random forest) by 2%. This also indicates a comparable power of classic feature-based ML models to DL-based model like SCI-BERT on this dataset. The fine-grained annotation scheme can be applied for large-scale analysis for research contributions in academic literature. The automated research contribution classifiers built in this paper provide the basis for the automatic research contributions extraction and knowledge fragment recommendation. The high-quality research contribution dataset developed in this research is publicly available on Zenodo https://zenodo.org/record/6284137#.YhkZ7-iZO4Q. The code for the data analysis and experiments will be released at: https://github.com/HuyenNguyenHelen/Contribution-Sentence-Classification. C1 [Chen, Haihua; Huyen Nguyen] Univ North Texas, Dept Informat Sci, Denton, TX 76203 USA. [Alghamdi, Asmaa] Univ North Texas, Dept Comp Sci & Engn, Denton, TX 76203 USA. C3 University of North Texas System; University of North Texas Denton; University of North Texas System; University of North Texas Denton RP Chen, HH (corresponding author), Univ North Texas, Dept Informat Sci, Denton, TX 76203 USA. EM haihua.chen@unt.edu OI Chen, Haihua/0000-0002-7088-9752 CR Allard Oelen, 2019, CEUR WORKSHOP PROC, V2526, P21, DOI DOI 10.15488/9388 Angrosh M., 2012, P AUSTR LANG TECHN A, V2012, P5 Auer S., 2018, P 8 INT C WEB INT MI, P1, DOI [DOI 10.1145/3227609.3227689, 10.1145/3227609.3227689] Beltagy I, 2019, 2019 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING AND THE 9TH INTERNATIONAL JOINT CONFERENCE ON NATURAL LANGUAGE PROCESSING (EMNLP-IJCNLP 2019), P3615 Carletta J, 1996, COMPUT LINGUIST, V22, P249 Chawla NV, 2002, J ARTIF INTELL RES, V16, P321, DOI 10.1613/jair.953 Chen HH, 2022, INFORM PROCESS MANAG, V59, DOI 10.1016/j.ipm.2021.102798 Chen HH, 2021, PRO INT CONF SCI INF, P241 Chen HH, 2021, IEEE T RELIAB, V70, P831, DOI 10.1109/TR.2021.3070863 Day RA., 1989, AMWA J, V4, P16 DSouza J., 2020, EEKEJCD20 WORKSH EXT Falotico R, 2015, QUAL QUANT, V49, P463, DOI 10.1007/s11135-014-0003-1 Fernández-Delgado M, 2014, J MACH LEARN RES, V15, P3133 Fisas B, 2016, LREC 2016 - TENTH INTERNATIONAL CONFERENCE ON LANGUAGE RESOURCES AND EVALUATION, P3081 Hande A, 2021, LECT NOTES ARTIF INT, V12705, P88, DOI 10.1007/978-3-030-75015-2_9 Hao W., 2020, P ACM IEEE JOINT C D, V2020, P261 Hofmann AH., 2016, SCI WRITING COMMUNIC Hovy Eduard, 2010, International journal of translation, V22, P13, DOI DOI 10.1075/TARGET.22.1 Jaradeh MY, 2019, PROCEEDINGS OF THE 10TH INTERNATIONAL CONFERENCE ON KNOWLEDGE CAPTURE (K-CAP '19), P243, DOI 10.1145/3360901.3364435 Kok MO, 2012, HEALTH RES POLICY SY, V10, DOI 10.1186/1478-4505-10-21 Kowsari K, 2019, INFORMATION, V10, DOI 10.3390/info10040150 Le XQ, 2019, J DATA INFO SCI, V4, P26, DOI 10.2478/jdis-2019-0019 Li Q., 2020, ARXIV PREPRINT ARXIV Lindsay, 1995, SCI WRITING Mehta P., 2018, ARXIV180204675 Mikolov T., 2013, ARXIV Morton S, 2015, RES EVALUAT, V24, P405, DOI 10.1093/reseval/rvv016 Park S., 2020, P 28 INT C COMPUTATI, P5409, DOI [DOI 10.18653/V1/2020.COLING-MAIN.472, 10.18653/v1/2020.coling] Qasemi Zadeh B., 2014, P 4 INT WORKSH COMP, P52, DOI [DOI 10.3115/V1/W14-4807, 10.3115/v1/W14-4807] Rehman T., 2021, EEKEJCD21 WORKSH EXT Sateli B, 2015, WWW'15 COMPANION: PROCEEDINGS OF THE 24TH INTERNATIONAL CONFERENCE ON WORLD WIDE WEB, P1023, DOI 10.1145/2740908.2742022 Sollaci LB, 2004, J MED LIBR ASSOC, V92, P364 Swales J.M., 1981, Aspects of article introduction Swales J. M., 1990, Genre analysis: English in academic and research settings Teufel S., 2006, P 7 SIGDIAL WORKSHOP, P80, DOI [10.3115/1654595.1654612, DOI 10.3115/1654595.1654612] Vogt L., 2020, P ACM IEEE JOINT C D Wang WM, 2018, PROCEEDINGS OF THE 2ND INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND APPLICATION ENGINEERING (CSAE2018), DOI 10.1145/3207677.3277979 Weng W.H., 2020, MACHINE LEARNING HLT, P415 WHO, 2012, GLOBAL TUBERCULOSIS REPORT 2012, P1 Yifan Shen, 2021, 2021 IEEE 3rd International Conference on Frontiers Technology of Information and Computer (ICFTIC), P144, DOI 10.1109/ICFTIC54370.2021.9647258 NR 40 TC 3 Z9 4 U1 6 U2 40 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0138-9130 EI 1588-2861 J9 SCIENTOMETRICS JI Scientometrics PD DEC PY 2022 VL 127 IS 12 BP 7061 EP 7075 DI 10.1007/s11192-022-04380-z EA APR 2022 PG 15 WC Computer Science, Interdisciplinary Applications; Information Science & Library Science WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Computer Science; Information Science & Library Science GA 6U3BO UT WOS:000788455400002 DA 2024-09-05 ER PT J AU Aytaç, E AF Aytac, Ersin TI EXPLORING ELECTROCOAGULATION THROUGH DATA ANALYSIS AND TEXT MINING PERSPECTIVES SO ENVIRONMENTAL ENGINEERING AND MANAGEMENT JOURNAL LA English DT Article DE bibliometric analysis; decision tree; exploratory data analysis; k-means clustering; sentiment analysis; t-SNE ID ALGORITHM; CLASSIFICATION; ORANGE; CURVE; AREA AB This study is a bibliometric analysis of electrocoagulation with data analysis and text mining aspects. Related research was conducted to take a picture of the current state of electrocoagulation in the literature to find out the less-used wastewater, electrode, and pollutants types, to discover the common words used in article titles, to understand how many pages an average article has, to figure out if electrocoagulation has passed its prime time and to provide helpful information to the researchers in developing of their research strategies. The first part of the study was the statistical analysis of the raw data. Some valuable information such as cited reference count, publication year, number of pages, and times cited - all databases have been revealed with density plots. Then a word cloud approach was used to inspect the abstracts, the titles, and the keywords. Afterward, the abstracts were classed into two, using word embedding and a k-means algorithm. Descriptive statistics, word cloud, and sentiment analysis were performed for each cluster. Finally, a classification process was conducted depending on research areas with the decision tree algorithm. The decision tree method could not classify the data set sufficiently depending on whether the abstracts of the papers were not compatible with the research area classes or because there were too many research area categories. C1 [Aytac, Ersin] Zonguldak Bulent Ecevit Univ, Dept Environm Engn, TR-67100 Zonguldak, Turkey. C3 Zonguldak Bulent Ecevit University RP Aytaç, E (corresponding author), Zonguldak Bulent Ecevit Univ, Dept Environm Engn, TR-67100 Zonguldak, Turkey. EM ersin.aytac@beun.edu.tr RI Aytaç, Ersin/ACU-4789-2022 OI Aytac, Ersin/0000-0002-7124-4438 CR Ahuja V, 2017, PROCEDIA COMPUT SCI, V122, P17, DOI 10.1016/j.procs.2017.11.336 Akansha J, 2020, CHEMOSPHERE, V253, DOI 10.1016/j.chemosphere.2020.126652 Al-Qodah Z, 2020, SCI TOTAL ENVIRON, V744, DOI 10.1016/j.scitotenv.2020.140806 Al-Yaqoobi AM, 2021, ENVIRON ENG MANAG J, V20, P949 Arthur D, 2007, PROCEEDINGS OF THE EIGHTEENTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, P1027 Atasoy AD, 2021, ENVIRON ENG MANAG J, V20, P1973 Aytac E., 2021, Fen Ve Muhendislik Bilimleri Dergisi, V21, P958, DOI [10.35414/akufemubid.870649, DOI 10.35414/AKUFEMUBID.870649] Aytac E., 2018, INT J SCI RES SCI TE, V4, P517 Aytaç E, 2021, ADCAIJ-ADV DISTRIB C, V10, P33, DOI 10.14201/ADCAIJ20211013347 Aytaç E, 2021, ENVIRON ENG MANAG J, V20, P89 Aytaç E, 2020, INT SOIL WATER CONSE, V8, P321, DOI 10.1016/j.iswcr.2020.05.002 Bahn E, 2020, RADIOTHER ONCOL, V144, P148, DOI 10.1016/j.radonc.2019.11.018 Cabeza LF, 2020, J ENERGY STORAGE, V32, DOI 10.1016/j.est.2020.101976 Cheng F, 2019, KNOWL-BASED SYST, V170, P61, DOI 10.1016/j.knosys.2019.01.029 Choi J, 2020, PATTERN RECOGN LETT, V133, P165, DOI 10.1016/j.patrec.2020.03.003 Chu CY, 2020, ADV ENG INFORM, V45, DOI 10.1016/j.aei.2020.101053 Colón-Ruiz C, 2020, J BIOMED INFORM, V110, DOI 10.1016/j.jbi.2020.103539 de Melo T, 2020, DATA BRIEF, V32, DOI 10.1016/j.dib.2020.106179 Demsar J, 2004, LECT NOTES ARTIF INT, V3202, P537 Demsar J, 2013, INFORM-J COMPUT INFO, V37, P55 Drury B, 2019, COMPUT ELECTRON AGR, V163, DOI 10.1016/j.compag.2019.104864 Fischer I, 2020, J STROKE CEREBROVASC, V29, DOI 10.1016/j.jstrokecerebrovasdis.2020.105042 Fujita T, 2020, J STROKE CEREBROVASC, V29, DOI 10.1016/j.jstrokecerebrovasdis.2020.104998 Gao H, 2020, J CLEAN PROD, V275, DOI 10.1016/j.jclepro.2020.122580 García-Díaz JA, 2020, FUTURE GENER COMP SY, V112, P641, DOI 10.1016/j.future.2020.06.019 Goh YM, 2017, ACCIDENT ANAL PREV, V108, P122, DOI 10.1016/j.aap.2017.08.026 Gokhberg L, 2020, FUTURES, V115, DOI 10.1016/j.futures.2019.102476 Hinton G., 2002, NIPS, V15, P833 Hutto C., 2014, P 8 INT C WEBL SOC M Iftikhar PM, 2019, CUREUS J MED SCIENCE, V11, DOI 10.7759/cureus.4131 Jiang W, 2019, ISA T, V87, P235, DOI 10.1016/j.isatra.2018.11.044 Kabdașli I., 2012, Environmental Technology Reviews, V1, P2, DOI 10.1080/21622515.2012.715390 Kim H, 2020, EXPERT SYST APPL, V150, DOI 10.1016/j.eswa.2020.113288 Kim MK, 2020, SEP PURIF TECHNOL, V247, DOI 10.1016/j.seppur.2020.116911 Kim Y, 2012, PATTERN RECOGN, V45, P2266, DOI 10.1016/j.patcog.2011.11.020 Laccetti G, 2020, J PARALLEL DISTR COM, V145, P34, DOI 10.1016/j.jpdc.2020.06.010 Li X, 2020, NANO ENERGY, V71, DOI 10.1016/j.nanoen.2020.104636 Losse M, 2021, J CLEAN PROD, V296, DOI 10.1016/j.jclepro.2021.126376 Mandrekar JN, 2010, J THORAC ONCOL, V5, P1315, DOI 10.1097/JTO.0b013e3181ec173d Manochandar S, 2020, COMPUT IND ENG, V141, DOI 10.1016/j.cie.2020.106290 Moro A, 2020, FUTURES, V117, DOI 10.1016/j.futures.2020.102511 Naderalvojoud B, 2020, NEUROCOMPUTING, V405, P149, DOI 10.1016/j.neucom.2020.03.094 Orange, 2020, SENT AN Orange, 2020, THE TREE Raschka S., 2019, Python Machine Learning, V3, DOI DOI 10.5555/2886323 Ribeiro J, 2019, PROCEDIA COMPUT SCI, V160, P684, DOI 10.1016/j.procs.2019.11.027 Sandoval MA, 2021, SCI TOTAL ENVIRON, V753, DOI 10.1016/j.scitotenv.2020.142108 Schouten K, 2019, EXPERT SYST APPL, V127, P68, DOI 10.1016/j.eswa.2019.03.005 Sedani Anil, 2021, J Clin Orthop Trauma, V16, P157, DOI 10.1016/j.jcot.2020.12.015 Soon S. L., 2005, Surgery of the Skin, P177, DOI [10.1016/B978-0-323-02752-6.50017-1, DOI 10.1016/B978-0-323-02752-6.50017-1] Ainin S, 2020, TOUR MANAG PERSPECT, V34, DOI 10.1016/j.tmp.2020.100658 Tahreen A, 2020, J WATER PROCESS ENG, V37, DOI 10.1016/j.jwpe.2020.101440 Un U.T., 2011, P 2 INT C CHEM ENG A, V23, P138 Un UT, 2013, J ENVIRON MANAGE, V123, P113, DOI 10.1016/j.jenvman.2013.03.016 Vanfretti L, 2020, INT J ELEC POWER, V123, DOI 10.1016/j.ijepes.2020.106251 Villeneuve H, 2020, BUILD ENVIRON, V169, DOI 10.1016/j.buildenv.2019.106555 Wallin JA, 2005, BASIC CLIN PHARMACOL, V97, P261, DOI 10.1111/j.1742-7843.2005.pto_139.x Wang C, 2020, J INF SECUR APPL, V53, DOI 10.1016/j.jisa.2020.102517 Xie X, 2020, FUTURE GENER COMP SY, V111, P859, DOI 10.1016/j.future.2019.08.033 Yang W, 2020, PROCEDIA COMPUT SCI, V166, P507, DOI 10.1016/j.procs.2020.02.056 Yao F, 2020, COMPUT ENVIRON URBAN, V83, DOI 10.1016/j.compenvurbsys.2020.101522 Zeng JJ, 2021, J CLEAN PROD, V295, DOI 10.1016/j.jclepro.2021.126468 NR 62 TC 7 Z9 7 U1 4 U2 15 PU GH ASACHI TECHNICAL UNIV IASI PI IASI PA 71 MANGERON BLVD, IASI, 700050, ROMANIA SN 1582-9596 EI 1843-3707 J9 ENVIRON ENG MANAG J JI Environ. Eng. Manag. J. PD APR PY 2022 VL 21 IS 4 BP 671 EP 685 PG 15 WC Environmental Sciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Environmental Sciences & Ecology GA 1V6UR UT WOS:000806222800013 DA 2024-09-05 ER PT J AU Batista, AD Gouveia, FC Mena-Chalco, JP AF Batista-Jr, Antonio de Abreu Gouveia, Fabio Castro Mena-Chalco, Jesus P. TI Predicting the Q of junior researchers using data from the first years of publication SO JOURNAL OF INFORMETRICS LA English DT Article DE Junior researcher; Research performance; Deep learning; Linear regression ID JOURNAL IMPACT FACTOR; EARLY CAREER; INFLATION AB A researcher's Q denotes their ability in scientific research as a real number. Due to their short presence in the academic environment, junior researchers have unstable Q values. This article aims to present a model that uses data from junior researchers' first years of publication to predict their stable Q values. We tested the deep model and the linear regression model and compared their accuracies. We have obtained reliable results showing that the predicted values estimated with both models are better than the estimated Q values computed with the Q model itself when using only data from the first five years of publication. Lastly, we note that both approaches are robust approaches to deal with the inflation of citation bias. (c) 2021 Elsevier Ltd. All rights reserved. C1 [Batista-Jr, Antonio de Abreu] Univ Fed Maranhao, Dept Informat, Sao Luis, Maranhao, Brazil. [Gouveia, Fabio Castro] Fundacao Oswaldo Cruz, Museum Life, House Oswaldo Cruz, Rio De Janeiro, RJ, Brazil. [Batista-Jr, Antonio de Abreu; Mena-Chalco, Jesus P.] Fed Univ ABC, Ctr Math Computat & Cognit, Santo Andre, SP, Brazil. C3 Universidade Federal do Maranhao; Fundacao Oswaldo Cruz; Universidade Federal do ABC (UFABC) RP Batista, AD (corresponding author), Univ Fed Maranhao, Dept Informat, Sao Luis, Maranhao, Brazil.; Batista, AD (corresponding author), Fed Univ ABC, Ctr Math Computat & Cognit, Santo Andre, SP, Brazil. EM antonio.batista@ufma.br; fgouveia@gmail.com; jesus.mena@ufabc.edu.br RI Mena-Chalco, Jesus P./C-7550-2014 OI Mena-Chalco, Jesus P./0000-0001-7509-5532 FU Maranhao Research Foundation (FAPEMA) [BD-08792/17] FX Research partially supported by grant #BD-08792/17, Maranhao Research Foundation (FAPEMA). CR Acuna DE, 2012, NATURE, V489, P201, DOI 10.1038/489201a Andersen JP, 2018, J INFORMETR, V12, P950, DOI 10.1016/j.joi.2018.07.010 Bazeley P, 2003, HIGH EDUC, V45, P257, DOI 10.1023/A:1022698529612 Bornmann L, 2017, J INFORMETR, V11, P788, DOI 10.1016/j.joi.2017.06.001 Brito R, 2019, J INFORMETR, V13, P314, DOI 10.1016/j.joi.2019.01.009 Iorio Angelo, 2018, Semantics, Analytics, Visualization. 3rd International Workshop, SAVE-SD 2017 and 4th International Workshop, SAVE-SD 2018. Revised Selected Papers: Lecture Notes in Computer Science (LNCS 10959), P150, DOI 10.1007/978-3-030-01379-0_11 Janosov M, 2020, EPJ DATA SCI, V9, DOI 10.1140/epjds/s13688-020-00227-w Kayal Subhradeep, 2019, Machine Learning, Optimization, and Data Science. 4th International Conference, LOD 2018. Revised Selected Papers: Lecture Notes in Computer Science (LNCS 11331), P317, DOI 10.1007/978-3-030-13709-0_27 Lee DH, 2019, SCIENTOMETRICS, V121, P1481, DOI 10.1007/s11192-019-03232-7 Li WH, 2019, NAT COMMUN, V10, DOI 10.1038/s41467-019-13130-4 Liénard JF, 2018, NAT COMMUN, V9, DOI 10.1038/s41467-018-07034-y Lindahl J, 2020, SCIENTOMETRICS, V122, P309, DOI 10.1007/s11192-019-03262-1 Lindahl J, 2018, J INFORMETR, V12, P518, DOI 10.1016/j.joi.2018.04.002 Moher D, 2018, PLOS BIOL, V16, DOI 10.1371/journal.pbio.2004089 Pan RK, 2018, J INFORMETR, V12, P656, DOI 10.1016/j.joi.2018.06.005 Penner O, 2013, SCI REP-UK, V3, DOI 10.1038/srep03052 Petersen AM, 2019, RES POLICY, V48, P1855, DOI 10.1016/j.respol.2019.04.009 Piñeiro G, 2008, ECOL MODEL, V216, P316, DOI 10.1016/j.ecolmodel.2008.05.006 Qi MJ, 2017, SCIENTOMETRICS, V111, P1839, DOI 10.1007/s11192-017-2328-8 Sinatra R, 2016, SCIENCE, V354, DOI 10.1126/science.aaf5239 Tang J., 2008, KDD, P990, DOI DOI 10.1145/1401890.1402008 Zeng A, 2017, PHYS REP, V714, P1, DOI 10.1016/j.physrep.2017.10.001 NR 22 TC 4 Z9 4 U1 3 U2 33 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS SN 1751-1577 EI 1875-5879 J9 J INFORMETR JI J. Informetr. PD MAY PY 2021 VL 15 IS 2 AR 101130 DI 10.1016/j.joi.2021.101130 EA JAN 2021 PG 8 WC Computer Science, Interdisciplinary Applications; Information Science & Library Science WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Computer Science; Information Science & Library Science GA SL1FJ UT WOS:000656661900020 DA 2024-09-05 ER PT J AU Gao, Y Wang, XC Liu, X AF Gao, Yuan Wang, Xuechun Liu, Xu TI Mapping Higher Education Internationalisation as a Research Space via Natural Language Processing (NLP) Techniques SO JOURNAL OF STUDIES IN INTERNATIONAL EDUCATION LA English DT Article; Early Access DE higher education internationalisation; natural language processing techniques; bibliometrics; spatial theory; sociology of science ID CURRICULA AB The productivity of a specific research field hinges on the periodic examination of both the knowledge produced and the knowledge production activities. By harnessing the strength of traditional bibliometric analyses and a variety of Natural language processing (NLP) techniques, this study portrayed a holistic landscape of higher education internationalisation (HEI) research that incorporated time and region through a spatial lens. The findings reveal the field's evolution into establishment, significant regional variations in research focus, and the expansion of networks for disseminating knowledge. These factors collectively contribute to a diverse 'lived' space of HEI research. However, the dominance of Western-centric key concepts, theories, and discourses highlights a homogenous 'conceived' space, pointing to an underlying tension between these spaces. Despite these challenges, opportunities for breakthroughs exist. Additionally, the study underscores the immense potential of NLP techniques in facilitating the exploration of how research fields evolve, further enriching our understanding of HEI. C1 [Gao, Yuan] Victoria Univ, Ctr Int Res Educ Syst, Melbourne, Australia. [Gao, Yuan; Liu, Xu] Southern Univ Sci & Technol, Ctr Higher Educ Res, Shenzhen, Peoples R China. [Wang, Xuechun] Chinese Univ Hongkong, Fac Educ, Hong Kong, Peoples R China. C3 Victoria University; Southern University of Science & Technology; Chinese University of Hong Kong RP Gao, Y (corresponding author), Victoria Univ, Ctr Int Res Educ Syst, Melbourne, Australia. EM catherineyuangao@gmail.com RI Wang, Xuechun/JEO-9948-2023; Liu, May/GSE-0899-2022 OI Liu, May/0000-0002-1567-7925; Gao, Yuan/0000-0001-9290-4397 CR Abd Ghani N, 2022, SUSTAINABILITY-BASEL, V14, DOI 10.3390/su14148810 Atsyor G. A., 2023, Vyssee Obrazovanie v Rossii (Print), V32, P153, DOI [10.31992/0869-3617-2023-32-3-153-166, DOI 10.31992/0869-3617-2023-32-3-153-166] Bamberger A, 2022, BRIT J EDUC STUD, V70, P363, DOI 10.1080/00071005.2021.1925084 Barbosa RS, 2022, ED POLICY ANAL ARCH, V30, DOI 10.14507/epaa.30.7211 Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993 Bourdieu P., 1986, HDB THEORY RES SOCIO, P241 Bourdieu P., 1986, HDB THEORY RES SOCIO, DOI DOI 10.1002/9780470755679.CH15 Carron-Arthur B, 2016, BMC PSYCHIATRY, V16, DOI 10.1186/s12888-016-1073-5 CERYCH L, 1974, HIGH EDUC, V3, P253, DOI 10.1007/BF00168207 Chowdhary K., 2020, Fundamentals of artificial intelligence, P603, DOI 10.1007/978-81-322-3972-7_19 Creswell J.W., 2017, Qualitative inquiry and research design: Choosing among five approaches Daenekindt S, 2020, HIGH EDUC, V80, P571, DOI 10.1007/s10734-020-00500-x de Villiers CJ, 2017, S AFR J ECON MANAG S, V20, DOI 10.4102/sajems.v20i1.1729 de Wit H., 2019, SFU ED REV, V12, P9, DOI [10.21810/sfuer.v12i3.1036, DOI 10.21810/SFUER.V12I3.1036] de Wit H., 2014, At the forefront of international higher education, a festschrift in honour of philip altbach, P95 De Wit H., 1997, Internationalisation of higher education in Asia Pacific countries, P21 De Wit H., 2020, Policy Reviews in Higher Education, V4, P1, DOI [10.1080/23322969.2020.1712003, DOI 10.1080/23322969.2020.1712003] de Wit H, 2024, J STUD INT EDUC, V28, P3, DOI 10.1177/10283153231221655 FOUCAULT M, 1982, CRIT INQUIRY, V8, P777, DOI 10.1086/448181 Galvez SMN, 2020, AM EDUC RES J, V57, P612, DOI 10.3102/0002831219860511 Gao C.Y., 2019, Measuring University Internationalization: Indicators across National Contexts Gao Y, 2015, HIGH EDUC, V70, P359, DOI 10.1007/s10734-014-9834-x Grimmer J, 2013, POLIT ANAL, V21, P267, DOI 10.1093/pan/mps028 Grothaus C., 2021, Collaborative online learning in the cultural context of South East Asia: A systematic review Gümüs S, 2020, J STUD INT EDUC, V24, P495, DOI 10.1177/1028315319893651 Heleta S, 2023, J HIGH EDUC POLICY M, V45, P261, DOI 10.1080/1360080X.2022.2146566 HOFSTEDE G, 1984, J CROSS CULT PSYCHOL, V15, P417, DOI 10.1177/0022002184015004003 Knight J., 2004, Journal of Studies in International Education, V8, P5, DOI DOI 10.1177/1028315303260832 Knight J., 1994, CBIE Research, V7, P1 Knight J., 1997, Internationalisation of Higher Education in Asia Pacific Countries Kuzhabekova A, 2015, RES HIGH EDUC, V56, P861, DOI 10.1007/s11162-015-9371-1 Lane H., 2019, Natural Language Processing in Action: Understanding, Analyzing, and Generating Text with Python Lefebvre Henri, 1991, The Production of Space Li J, 2023, EDUC PHILOS THEORY, V55, P356, DOI 10.1080/00131857.2021.2022473 LiCausi TJ, 2022, HIGH EDUC, V84, P955, DOI 10.1007/s10734-021-00810-8 Liggett G., 2000, J STUD INT EDUC, P3 Liu J, 2022, TERT EDUC MANAG, V28, P1, DOI 10.1007/s11233-021-09082-4 Lo WYW, 2019, GLOB SOC EDUC, V17, P261, DOI 10.1080/14767724.2018.1525283 Mackay M, 2016, NURS EDUC TODAY, V42, P73, DOI 10.1016/j.nedt.2016.04.004 Marginson S, 2023, GLOB SOC EDUC, DOI 10.1080/14767724.2023.2264223 Marginson S, 2022, HIGH EDUC, V84, P1365, DOI 10.1007/s10734-022-00955-0 Marginson S, 2011, HANDBOOK ON GLOBALIZATION AND HIGHER EDUCATION, P394 Merton R. K., 1973, The sociology of science: theoretical and empirical investigations Mok KH, 2008, INT J EDUC MANAG, V22, P527, DOI 10.1108/09513540810895444 Nadkarni PM, 2011, J AM MED INFORM ASSN, V18, P544, DOI 10.1136/amiajnl-2011-000464 O'Dwyer CP, 2023, IFLA J-INT FED LIBR, V49, P375, DOI 10.1177/03400352221116922 Robson S., 2018, EUROPEAN J HIGHER ED, V8, P19, DOI [DOI 10.1080/21568235.2017.1376697, 10.1080/21568235.2017, DOI 10.1080/21568235.2017] Saubert S, 2023, IFLA J-INT FED LIBR, V49, P216, DOI 10.1177/03400352221085293 Saxton M.D., 2018, THEOLOGICAL LIB, V11, P18, DOI DOI 10.31046/TL.V11I1.506 Scholte JA, 2008, WORLD ECON, V31, P1471, DOI 10.1111/j.1467-9701.2007.01019.x Singh M, 2007, ROUTL RES EDUC, V9, P195 Slaughter S., 2004, ACAD CAPITALISM NEW Sochan A, 2008, INT NURS REV, V55, P192, DOI 10.1111/j.1466-7657.2007.00595.x Stein S, 2021, STUD HIGH EDUC, V46, P1771, DOI 10.1080/03075079.2019.1704722 Tight M, 2012, HIGH EDUC RES DEV, V31, P723, DOI 10.1080/07294360.2012.692361 Tran NHN, 2023, STUD HIGH EDUC, V48, P113, DOI 10.1080/03075079.2022.2121813 Valiulis A. V., 2013, World Transactionson Engineeringand Technology Education Canada, V11, P204 Xu X, 2023, DISCOURSE-ABINGDON, V44, P364, DOI 10.1080/01596306.2023.2200075 Xu X, 2024, J STUD INT EDUC, V28, P185, DOI 10.1177/10283153231178129 Yang R., 2002, 3 DELIGHT INT HIGHER Yilmaz K, 2013, EUR J EDUC, V48, P311, DOI 10.1111/ejed.12014 Zheng J, 2021, HIGH EDUC, V81, P179, DOI 10.1007/s10734-020-00517-2 NR 62 TC 0 Z9 0 U1 7 U2 7 PU SAGE PUBLICATIONS INC PI THOUSAND OAKS PA 2455 TELLER RD, THOUSAND OAKS, CA 91320 USA SN 1028-3153 EI 1552-7808 J9 J STUD INT EDUC JI J. Stud. Int. Educ. PD 2024 MAY 2 PY 2024 DI 10.1177/10283153241251924 EA MAY 2024 PG 24 WC Education & Educational Research WE Social Science Citation Index (SSCI) SC Education & Educational Research GA PM7S5 UT WOS:001214566800001 DA 2024-09-05 ER PT J AU Zhuang, H Huang, TY Acuna, DE AF Zhuang, Han Huang, Tzu-Yang Acuna, Daniel E. TI A computational analysis of accessibility, readability, and explainability of figures in open access publications SO EPJ DATA SCIENCE LA English DT Article DE Accessibility; Open Access; Computer Vision ID VISION; MODEL AB Figures are an essential part of scientific communication. Yet little is understood about how accessible (e.g., color-blind safe), readable (e.g., good contrast), and explainable (e.g., contain captions and legends) they are. We develop computational techniques to measure these features and analyze a large sample of them from open access publications. Our method combines computer and human vision research principles, achieving high accuracy in detecting problems. In our sample, we estimated that around 20.6% of publications contain either accessibility, readability, or explainability issues (around 2% of all figures contain accessibility issues, 3% of diagnostic figures contain readability issues, and 23% of line charts contain explainability issues). We release our analysis as a dataset and methods for further examination by the scientific community. C1 [Zhuang, Han] Syracuse Univ, Sch Informat Studies, Syracuse, NY 13244 USA. [Huang, Tzu-Yang] Amazon Inc, New York, NY USA. [Acuna, Daniel E.] Univ Colorado Boulder, Dept Comp Sci, Boulder, CO USA. C3 Syracuse University; Amazon.com; University of Colorado System; University of Colorado Boulder RP Zhuang, H (corresponding author), Syracuse Univ, Sch Informat Studies, Syracuse, NY 13244 USA. EM hzhuang@syr.edu RI Zhuang, Han/KPY-6284-2024; Acuna, Daniel/JJF-1452-2023 OI Huang, Tzu-Yang/0000-0002-5357-1267 FU NSF [1800956]; US Office of Research Integrity (ORI) [ORIIR180041, ORIIIR200052, ORIIIR190049, ORIIIR210062]; Syracuse University Dissertation Fellowship; 2022 Summer Fellowship of the School of Information Studies at Syracuse University; DHHS-ORI grants [ORIIR180041, ORIIIR190049]; Alfred P. Sloan Foundation grant [G-2020-12618]; SBE Off Of Multidisciplinary Activities; Direct For Social, Behav & Economic Scie [1800956] Funding Source: National Science Foundation FX HZ and DEA were funded by NSF award #1800956, and the US Office of Research Integrity (ORI) awards ORIIR180041, ORIIIR190049, ORIIIR200052, and ORIIIR210062. HZ was funded by the Syracuse University Dissertation Fellowship and the 2022 Summer Fellowship of the School of Information Studies at Syracuse University. TYH was partially funded by the DHHS-ORI grants ORIIR180041 and ORIIIR190049. DEA was funded by the Alfred P. Sloan Foundation grant #G-2020-12618. CR Acuna DE, 2018, bioRxiv, DOI [10.1101/269415, 10.1101/269415, DOI 10.1101/269415, 10.1101/269415v3] [Anonymous], 2016, WORKING NOTES CLEF 2 Bochkovskiy A, 2020, Arxiv, DOI [arXiv:2004.10934, 10.48550/arXiv.2004.10934] Borland D, 2007, IEEE COMPUT GRAPH, V27, P14, DOI 10.1109/MCG.2007.323435 Hasikin K., 2012, 2012 UKSim 14th International Conference on Computer Modelling and Simulation (UKSim), P371, DOI 10.1109/UKSim.2012.60 He KM, 2016, PROC CVPR IEEE, P770, DOI 10.1109/CVPR.2016.90 Helsloot A., 2019, In the eye of the beholder Hou XD, 2007, PROC CVPR IEEE, P2280 Jafarzadehpur E, 2014, INT OPHTHALMOL, V34, P1067, DOI 10.1007/s10792-014-9911-2 Jambor H, 2021, PLOS BIOL, V19, DOI 10.1371/journal.pbio.3001161 Jefferson L, 2007, CONFERENCE ON HUMAN FACTORS IN COMPUTING SYSTEMS, VOLS 1 AND 2, P1535 Jefferson Luke., 2006, P 8 INT ACM SIGACCES, P40, DOI DOI 10.1145/1168987.1168996 Kara S, 2016, ARQ BRAS OFTALMOL, V79, P323 Machado GM, 2009, IEEE T VIS COMPUT GR, V15, P1291, DOI 10.1109/TVCG.2009.113 Mancuso R., 2022, bioRxiv, DOI [DOI 10.1101/2022, DOI 10.1101/2022.12, 10.24.512549, 10.1101/2022.10.24.512549, DOI 10.1101/2022.10.24.512549] Montgomery D.C., 2012, Introduction to Linear Regression Analysis, Vfifth Normile D, 2004, SCIENCE, V303, P1746 OWSLEY C, 1981, INVEST OPHTH VIS SCI, V21, P362 Saladi S, 2019, JETFIGHTER FIGURE AC Shah A, 2013, IRAN J PUBLIC HEALTH, V42, P16 Wang Y, 2022, AAAI CONF ARTIF INTE Watson AB, 2005, J VISION, V5, P717, DOI 10.1167/5.9.6 Wei C, 2018, Arxiv, DOI [arXiv:1808.04560, DOI 10.48550/ARXIV.1808.04560] Xiang ZY, 2020, Arxiv, DOI arXiv:2001.07799 Zeng T, 2020, SCIENTOMETRICS, V124, P399, DOI 10.1007/s11192-020-03421-9 Zhuang Han, 2021, PLoS Comput Biol, V17, pe1009650, DOI 10.1371/journal.pcbi.1009650 NR 26 TC 0 Z9 0 U1 4 U2 8 PU SPRINGER PI NEW YORK PA ONE NEW YORK PLAZA, SUITE 4600, NEW YORK, NY, UNITED STATES EI 2193-1127 J9 EPJ DATA SCI JI EPJ Data Sci. PD MAR 2 PY 2023 VL 12 IS 1 AR 5 DI 10.1140/epjds/s13688-023-00380-y PG 16 WC Mathematics, Interdisciplinary Applications; Social Sciences, Mathematical Methods WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Mathematics; Mathematical Methods In Social Sciences GA 9N3SX UT WOS:000942836600002 OA gold DA 2024-09-05 ER PT C AU Pang, NS Shi, YL Ji, CM AF Pang, Nansheng Shi, Yingling Ji, Changming GP IEEE TI Research on Comprehensive Bid Evaluation of Construction Project Based on the Principal Component Analysis SO 2008 4TH INTERNATIONAL CONFERENCE ON WIRELESS COMMUNICATIONS, NETWORKING AND MOBILE COMPUTING, VOLS 1-31 SE International Conference on Wireless Communications, Networking and Mobile Computing LA English DT Proceedings Paper CT 4th International Conference on Wireless Communications, Networking and Mobile Computing CY OCT 12-17, 2008 CL Dalian, PEOPLES R CHINA DE principal component analysis; contribution ratio; factor load; linear weighted model ID NEURAL NETWORKS AB The bid evaluation of construction project is a multivariate evaluation. Based on the principal component analysis which is included in multivariate statistical analysis, this paper establishes the multi-index comprehensive bid evaluation model of construction project, and proposes that how to calculate the evaluation index weight by introducing the variance contribution ratio, and that how to determine the number of principal components by making comprehensive consideration with an introduction of accumulated contribution ratio and factor load. Finally, an example is given to prove the convenience and feasibility of this bid evaluation method. This method has some characteristics: It overcomes deficiencies like large number of evaluation indexes, the overlap of the information that contained in evaluation indexes, and the determination of weight is artificial. The results of bid evaluation are objective and reasonable, which are suit for the evaluation of multi-index systems of large construction projects. C1 [Pang, Nansheng; Shi, Yingling; Ji, Changming] NCEPU, Inst Business Management, Beijing, Peoples R China. C3 North China Electric Power University RP Pang, NS (corresponding author), NCEPU, Inst Business Management, Beijing, Peoples R China. CR CHAPMAN SJ, 2002, MATALAB PROGRAMMING DUNTEMAN GH, 1998, PRINCIPAL COMPONENT, P89 JOHNSON RA, 1998, APPL MULTIVARIATE ST, P162 KARHUNEN J, 1995, NEURAL NETWORKS, V8, P549, DOI 10.1016/0893-6080(94)00098-7 KRAMER MA, 1991, AICHE J, V37, P233, DOI 10.1002/aic.690370209 LINDSAY IA, 2002, TUTORIAL PRINCIPAL C, P132 NR 6 TC 0 Z9 0 U1 0 U2 0 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA BN 978-1-4244-2107-7 J9 I C WIREL COMM NETW PY 2008 BP 5412 EP 5416 PG 5 WC Telecommunications WE Conference Proceedings Citation Index - Science (CPCI-S) SC Telecommunications GA BIW81 UT WOS:000263466102287 DA 2024-09-05 ER PT C AU Bin-Obaidellah, O Al-Fagih, AE AF Bin-Obaidellah, Omar Al-Fagih, Ashraf E. GP IEEE TI Scientometric Indicators and Machine Learning-Based Models for Predicting Rising Stars in Academia SO 2019 7TH INTERNATIONAL CONFERENCE ON SMART COMPUTING & COMMUNICATIONS (ICSCC) LA English DT Proceedings Paper CT 7th International Conference on Smart Computing & Communications (ICSCC) CY JUN 28-30, 2019 CL Miri, MALAYSIA DE kNN; machine learning; rising stars; scientometrics; SVM ID NETWORKS AB Newly recruited researchers who are expected to outstandingly surpass their peers in the quality of their work, are often considered as substantial assets in universities and research & development entities. Foreseeably identifying such Rising Stars is vital for highly competitive and profitable institutes and organizations. In this paper, we propose models based on a set of Scientometric Indicators to predict rising stars in academia. In addition, we define the rising stars problem in a comprehensive and methodological manner. Machine learning techniques are applied on actual data subsets collected from the Web of Science (WoS) data source. Our experimental results show that the proposed models and indicators can be used effectively in predicting future rising stars. C1 [Bin-Obaidellah, Omar; Al-Fagih, Ashraf E.] King Fahd Univ Petr & Minerals, Dept Informat & Comp Sci, Dhahran 31261, Saudi Arabia. C3 King Fahd University of Petroleum & Minerals RP Bin-Obaidellah, O (corresponding author), King Fahd Univ Petr & Minerals, Dept Informat & Comp Sci, Dhahran 31261, Saudi Arabia. EM omar.obaidellah@kfupm.edu.sa; alfagih@kfupm.edu.sa FU King Fahd University of Petroleum & Minerals (KFUPM) FX The authors would like to acknowledge the support provided by the Deanship of Scientific Research at King Fahd University of Petroleum & Minerals (KFUPM) for conducting this research. We also like to acknowledge Dr. Moataz Ahmed from the Information & Computer Science dept., KFUPM and Dr. Hosam Rowaihy from the Computer Engineering dept., KFUPM. CR Abu Alsheikh M, 2014, IEEE COMMUN SURV TUT, V16, P1996, DOI 10.1109/COMST.2014.2320099 Aksnes DW, 2003, RES EVALUAT, V12, P159, DOI 10.3152/147154403781776645 Bar-Ilan J, 2010, SCIENTOMETRICS, V82, P495, DOI 10.1007/s11192-010-0185-9 Bornmann L, 2008, J DOC, V64, P45, DOI 10.1108/00220410810844150 Cawley GC, 2010, J MACH LEARN RES, V11, P2079 Daud Ali, 2013, Database Systems for Advanced Applications.18th International Conference, DASFAA 2013. Proceedings, P13, DOI 10.1007/978-3-642-37487-6_4 Daud A, 2015, SCIENTOMETRICS, V102, P1687, DOI 10.1007/s11192-014-1455-8 Hagen NT, 2008, PLOS ONE, V3, DOI 10.1371/journal.pone.0004021 Helmy T, 2015, I C ARTIF INTELL, P3, DOI 10.1109/AIMS.2015.11 Huang J, 2005, IEEE T KNOWL DATA EN, V17, P299, DOI 10.1109/TKDE.2005.50 James G, 2013, SPRINGER TEXTS STAT, V103, P1, DOI 10.1007/978-1-4614-7138-7_1 Kretschmer H, 2004, SCIENTOMETRICS, V60, P409, DOI 10.1023/B:SCIE.0000034383.86665.22 Kubat M, 1998, MACH LEARN, V30, P195, DOI 10.1023/A:1007452223027 Li XL, 2009, LECT NOTES COMPUT SC, V5463, P288, DOI 10.1007/978-3-642-00887-0_25 Michiels S, 2005, LANCET, V365, P488, DOI 10.1016/S0140-6736(05)17866-0 Mingers J, 2015, EUR J OPER RES, V246, P1, DOI 10.1016/j.ejor.2015.04.002 Nalimov V.V., 1969, Naukometriya. Izuchenie Razvitiya Nauki kak Informatsionnogo Protsessa.[Scientometrics. Study of the Development of Science as an Information Process] Norris M, 2007, J INFORMETR, V1, P161, DOI 10.1016/j.joi.2006.12.001 R. C. Team,, R PROJECT STAT COMPU Remler D., 2014, IMPACT SOCIAL SCI BL Reuters T, 2014, INC IND HDB Tsatsaronis G, 2011, LECT NOTES COMPUT SC, V6966, P15, DOI 10.1007/978-3-642-24469-8_4 Tso GKF, 2007, ENERGY, V32, P1761, DOI 10.1016/j.energy.2006.11.010 Wagner CS, 2005, RES POLICY, V34, P1608, DOI 10.1016/j.respol.2005.08.002 Xu J, 2016, J ASSOC INF SCI TECH, V67, P1973, DOI 10.1002/asi.23495 Zhang J, 2016, PROCEEDINGS OF THE 25TH INTERNATIONAL CONFERENCE ON WORLD WIDE WEB (WWW'16 COMPANION), P395, DOI 10.1145/2872518.2890524 NR 26 TC 3 Z9 3 U1 1 U2 2 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA BN 978-1-7281-1557-3 PY 2019 BP 1 EP 7 PG 7 WC Computer Science, Theory & Methods; Telecommunications WE Conference Proceedings Citation Index - Science (CPCI-S) SC Computer Science; Telecommunications GA BS3DU UT WOS:000709842500001 DA 2024-09-05 ER PT C AU Liu, RC Mei, WJ Liu, J AF Liu Ruochen Mei Wenjuan Liu Jun BE Wang, X TI Research on Predicting Students' Performance Based on Machine Learning SO 2018 INTERNATIONAL CONFERENCE ON BIG DATA AND ARTIFICIAL INTELLIGENCE (ICBDAI 2018) LA English DT Proceedings Paper CT International Conference on Big Data and Artificial Intelligence (ICBDAI) CY DEC 21-23, 2018 CL Ningbo, PEOPLES R CHINA DE Teaching quality; support vector regression; decision tree AB Machine learning is one of the most core and hot technology of artificial intelligence at present. It can automatically identify patterns and discover rules based on a large amount of data, predict students' learning performance, and provide possibilities for more reasonable teaching evaluation and personalized learning. Taking the final mathematics scores of students in two Portuguese schools in the medium education as an example, this paper analyzes the characteristics of students' stage scores, personal personality, social relations and daily performance. After dimensionality reduction and other preprocessing of data sets by PCA and other methods, the final mathematics scores of students in one academic year are classified and predicted by SVM and decision tree algorithm respectively, and relevant factors affecting students' scores were analyzed. Finally, it concludes that schools can focus on students' family status, bad habit and ordinary grades to enable students to perform better. C1 [Liu Ruochen; Mei Wenjuan; Liu Jun] Nanjing Univ Finance & Econ, Sch Management Sci & Engn, 3 Wenyuan Rd, Nanjing, Jiangsu, Peoples R China. C3 Nanjing University of Finance & Economics RP Liu, J (corresponding author), Nanjing Univ Finance & Econ, Sch Management Sci & Engn, 3 Wenyuan Rd, Nanjing, Jiangsu, Peoples R China. EM 965703636@qq.com; 1563477026@qq.com; 9120031038@nufe.edu.cn FU Jiangsu province higher education education reform research project [2017JSJG218]; Postgraduate Research & Practice Innovation Program of Jiangsu Province [KYCX18_1325] FX This paper was supported by the Jiangsu province higher education education reform research project, 2017, project number: 2017JSJG218 and Postgraduate Research & Practice Innovation Program of Jiangsu Province, 2018, project number: KYCX18_1325. CR [Anonymous], CYBERNETICS INFORM T Bai X., 2016, ED TEACHING BBS, P173 Chiang C. F., 2015, SOC INF TECHN TEACH, P2273 Cortez P, 2008, 15TH EUROPEAN CONCURRENT ENGINEERING CONFERENCE/5TH FUTURE BUSINESS TECHNOLOGY CONFERENCE, P5 Huang Y, 2017, SPRINGER NAT HAZARDS, P11, DOI 10.1007/978-981-10-4379-6_2 Kabakchieva D., 2011, 4 INT C ED DAT MIN E Strecht P., 2015, P 8 INT C ED DAT MIN, P392 Wang D., 1999, PEDAGOGY, P290 Xu Y, 2016, 2016 IEEE/WIC/ACM INTERNATIONAL CONFERENCE ON WEB INTELLIGENCE (WI 2016), P121, DOI [10.1109/WI.2016.27, 10.1109/WI.2016.0027] Zhu C, 2016, BIOORG MED CHEM LETT, V26, P55, DOI 10.1016/j.bmcl.2015.11.030 Zhu H., 2009, RES TEACHING QUALITY NR 11 TC 0 Z9 0 U1 1 U2 12 PU FRANCIS ACAD PRESS PI LONDON PA 35 IVOR PL, LOWER GROUND, LONDON, NW1 6EA, ENGLAND BN 978-1-912407-14-9 PY 2019 BP 40 EP 48 DI 10.25236/icbdai.2018.007 PG 9 WC Computer Science, Artificial Intelligence WE Conference Proceedings Citation Index - Science (CPCI-S) SC Computer Science GA BM9TB UT WOS:000471631800007 DA 2024-09-05 ER PT J AU Meireles, MRG Cendon, BV de Almeida, PEM AF Gouvea Meireles, Magali Rezende Cendon, Beatriz Valadares Maciel de Almeida, Paulo Eduardo TI Bibliometric Knowledge Organization: A Domain Analytic Method Using Artificial Neural Networks SO KNOWLEDGE ORGANIZATION LA English DT Article DE articles; documents; categorization; references; network ID RESEARCH QUESTIONS; CATEGORIZATION; SOM; CLASSIFICATION; SCIENCE AB The organization of large collections of documents has become more important with the increase in the amount of digital information available. In certain constricted domains of knowledge, keywords and subject descriptors tend to be similar and therefore insufficient to differentiate documents. In this context, instead of relying only on the presence of common terms, the identification of common cited references can be useful to define semantic relationship among documents. The purpose of this work is to add another instance on the research linking information retrieval and bibliometric techniques aided by information technology. A domain analytic method was developed to generate clusters of documents, which uses self-organizing maps, in the scope of artificial neural networks, to categorize documents. The results obtained show that this approach successfully identified clusters of authors and documents through their cited references. In addition, further qualitative analysis of these clusters demonstrates the existence of semantic relationships between the documents. This study can contribute to the development of the field of knowledge organization by evaluating the use of artificial neural networks in the automatic categorization of documents in a constricted knowledge domain based on the analysis of the references cited by these documents. C1 [Gouvea Meireles, Magali Rezende] Pontificia Univ Catolica Minas Gerais, Inst Math Sci & Informat, BR-30535901 Belo Horizonte, MG, Brazil. [Cendon, Beatriz Valadares] Univ Fed Minas Gerais, Sch Informat Sci, BR-31270901 Belo Horizonte, MG, Brazil. [Maciel de Almeida, Paulo Eduardo] Fed Ctr Technol Educ Minas Gerais, Dept Comp, BR-30510000 Belo Horizonte, MG, Brazil. C3 Universidade Federal de Minas Gerais RP Meireles, MRG (corresponding author), Pontificia Univ Catolica Minas Gerais, Inst Math Sci & Informat, Av Dom Jose Gaspar 500, BR-30535901 Belo Horizonte, MG, Brazil. EM magali@pucminas.br; cendon@eci.ufmg.br; pema@lsi.cefetmg.br RI Cendon, Beatriz/G-6141-2011; Almeida, Paulo/KHY-6445-2024; Meireles, Magali/F-6563-2013 OI Cendon, Beatriz/0000-0002-3276-0114; Almeida, Paulo/0009-0005-7350-6875; Meireles, Magali/0000-0001-6928-7132 CR [Anonymous], 1994, Neural Networks: A Comprehensive Foundation Bakus J, 2002, ICONIP'02: PROCEEDINGS OF THE 9TH INTERNATIONAL CONFERENCE ON NEURAL INFORMATION PROCESSING, P2212 Barite MG, 2000, KNOWL ORGAN, V27, P4 Borgman CL, 2002, ANNU REV INFORM SCI, V36, P3 CAMPANARIO JM, 1995, SCIENTOMETRICS, V33, P23, DOI 10.1007/BF02020773 Chen YS, 2010, SCIENTOMETRICS, V82, P75, DOI 10.1007/s11192-009-0034-x Cronin B., 1984, CITATION PROCESS Do Phuc, 2008, 2008 IEEE International Conference on Research, Innovation and Vision for the Future in Computing and Communication Technologies (RIVF 2008), P209, DOI 10.1109/RIVF.2008.4586357 Gnoli C, 2008, KNOWL ORGAN, V35, P137, DOI 10.5771/0943-7444-2008-2-3-137 Hjorland B, 2002, J DOC, V58, P422, DOI 10.1108/00220410210431136 Hjorland B, 2008, KNOWL ORGAN, V35, P86 Hjorland B, 2007, ANNU REV INFORM SCI, V41, P367, DOI 10.1002/aris.2007.1440410115 Hussin MF, 2003, IEEE IJCNN, P2238 Jacob EK, 2004, LIBR TRENDS, V52, P515 KESSLER MM, 1963, AM DOC, V14, P10, DOI 10.1002/asi.5090140103 Khoo CSG, 2006, ANNU REV INFORM SCI, V40, P157, DOI 10.1002/aris.1440400112 Kohonen T, 2000, IEEE T NEURAL NETWOR, V11, P574, DOI 10.1109/72.846729 Lai Kuei-Kuei, 2003, INFORM PROCESSING MA, V41, P313 Lensu A., 1999, 1999 Third International Conference on Knowledge-Based Intelligent Information Engineering Systems. Proceedings (Cat. No.99TH8410), P174, DOI 10.1109/KES.1999.820147 López-Huertas MJ, 2008, KNOWL ORGAN, V35, P113, DOI 10.5771/0943-7444-2008-2-3-113 Luo X, 2003, IEEE IJCNN, P1786 MACROBERTS MH, 1989, J AM SOC INFORM SCI, V40, P342, DOI 10.1002/(SICI)1097-4571(198909)40:5<342::AID-ASI7>3.0.CO;2-U Marshakova I. V, 1973, SCI TECHNICAL INFORM, V6, P3 Meireles M. R. G., 2003, IEEE T IND ELECTRON, V50, P1 Morris SA, 2001, IEEE IJCNN, P1914, DOI 10.1109/IJCNN.2001.938456 Moya-Anegón F, 2006, J INF SCI, V32, P63, DOI 10.1177/0165551506059226 ROSCH E, 1975, COGNITIVE PSYCHOL, V7, P573, DOI 10.1016/0010-0285(75)90024-9 SHARMA AK, 1994, J CHEM INF COMP SCI, V34, P1130, DOI 10.1021/ci00021a019 SMALL H, 1973, J AM SOC INFORM SCI, V24, P265, DOI 10.1002/asi.4630240406 SMEATON AF, 1991, ONLINE REV, V15, P373, DOI 10.1108/eb024384 Smiraglia Richard P., 2013, P N AM S KNOWL ORG U, V4 Wang W, 2009, NEURAL COMPUT APPL, V18, P875, DOI 10.1007/s00521-008-0193-3 Yen GG, 2006, IEEE IJCNN, P3279 Yu Y, 2008, 7TH IEEE/ACIS INTERNATIONAL CONFERENCE ON COMPUTER AND INFORMATION SCIENCE IN CONJUNCTION WITH 2ND IEEE/ACIS INTERNATIONAL WORKSHOP ON E-ACTIVITY, PROCEEDINGS, P295, DOI 10.1109/ICIS.2008.109 Yulan He, 2001, Library Hi Tech, V19, P274, DOI 10.1108/EUM0000000005889 NR 35 TC 9 Z9 9 U1 0 U2 31 PU NOMOS VERLAGSGESELLSCHAFT MBH & CO KG PI BADEN-BADEN PA WALDSEESTR 3 5, BADEN-BADEN, 76530, GERMANY SN 0943-7444 J9 KNOWL ORGAN JI Knowl. Organ. PY 2014 VL 41 IS 2 BP 145 EP 159 DI 10.5771/0943-7444-2014-2-145 PG 15 WC Information Science & Library Science WE Social Science Citation Index (SSCI) SC Information Science & Library Science GA AF7OJ UT WOS:000334904100005 DA 2024-09-05 ER PT J AU Do Cho, S Hyun, BH Kim, JK AF Do Cho, Sung Hyun, Byung Hwan Kim, Jae Kyeom TI Assessment of technological level of stem cell research using principal component analysis SO SPRINGERPLUS LA English DT Article DE Technology level assessment; Principal component analysis; Analysis of scientific literatures and patents; Stem cell AB Background: In general, technological levels have been assessed based on specialist's opinion through the methods such as Delphi. But in such cases, results could be significantly biased per study design and individual expert. Findings: In this study, therefore scientific literatures and patents were selected by means of analytic indexes for statistic approach and technical assessment of stem cell fields. The analytic indexes, numbers and impact indexes of scientific literatures and patents, were weighted based on principal component analysis, and then, were summated into the single value. Technological obsolescence was calculated through the cited half-life of patents issued by the United States Patents and Trademark Office and was reflected in technological level assessment. As results, ranks of each nation's in reference to the technology level were rated by the proposed method. Furthermore we were able to evaluate strengthens and weaknesses thereof. Conclusions: Although our empirical research presents faithful results, in the further study, there is a need to compare the existing methods and the suggested method. C1 [Do Cho, Sung] Univ Sci & Technol, Sci & Technol Management Policy, Daejeon 305350, South Korea. [Hyun, Byung Hwan] Daejeon Univ, Grad Sch, Dept Business Consulting, Daejeon 300716, South Korea. [Kim, Jae Kyeom] Univ Arkansas, Sch Human Environm Sci, Fayetteville, AR 72701 USA. C3 University of Science & Technology (UST); Daejeon University; University of Arkansas System; University of Arkansas Fayetteville RP Kim, JK (corresponding author), Univ Arkansas, Sch Human Environm Sci, Fayetteville, AR 72701 USA. EM jkk003@uark.edu OI Kim, Jae Kyeom/0000-0002-2837-9302 CR [Anonymous], 1995, NAT CRIT TECHN REP BOSWORTH DL, 1978, J IND ECON, V26, P273, DOI 10.2307/2097871 Chia KC, 2004, THESIS Cho I, 2015, CLUSTER COMPUT, V18, P259, DOI 10.1007/s10586-014-0368-x Cho Sung-Do, 2013, [JOURNAL OF TECHNOLOGY INNOVATION, 기술혁신연구], V21, P141 Crook JM, 2007, CELL STEM CELL, V1, P490, DOI 10.1016/j.stem.2007.10.004 Ernst H., 2003, World Patent Information, V25, P233, DOI 10.1016/S0172-2190(03)00077-2 Garfield E., 1992, Science and Public Policy, V19, P321, DOI [DOI 10.1093/SPP/19.5.321, 10.1093/spp/19.5.321] Han MK, 2010, J KOREA TECHNOL INNO, V13, P252 Huang Z, 2003, J NANOPART RES, V5, P333, DOI 10.1023/A:1025556800994 Japan Science and Technology Agency-Center for Research and Development Strategy, 2013, JAP SCI TECHN IND 20 Korea Centers for Disease Control and Prevention, 2013, TREND OV STEM CELL B Korea Institute of Science & Technology Evaluation and Planning, 2011, 20112014 KOR I SCI T Korea Institute of Science & Technology Evaluation and Planning, 2013, 2012 TECHN LEV EV Korea Institute of Science & Technology Evaluation and Planning, 2010, STUD DYN METH EST TE Litterman NK, 2015, DRUG DISCOV TODAY, V20, P247, DOI 10.1016/j.drudis.2014.10.006 Pattel P, 1988, OECD STI REV, V4, P121 Rao KU, 2010, RENEW SUST ENERG REV, V14, P1070, DOI 10.1016/j.rser.2009.11.007 Raychaudhuri S, 2000, 5 ANN C PAC S BIOC H Thomas Patrick, 2005, FACULTY SCHOLARSHIP, P7 World Technology Evaluation Center, 2013, SYST ENG CLEAN REN E World Technology Evaluation Center, 2014, ASS PHYS SCI ENG ADV Yoo Sunhi, 2006, [Journal of The Korean Operations Research and Management Science Society, 한국경영과학회지], V31, P1 NR 23 TC 1 Z9 1 U1 2 U2 12 PU SPRINGER INTERNATIONAL PUBLISHING AG PI CHAM PA GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND SN 2193-1801 J9 SPRINGERPLUS JI SpringerPlus PD JUN 24 PY 2016 VL 5 AR 857 DI 10.1186/s40064-016-2494-9 PG 17 WC Multidisciplinary Sciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Science & Technology - Other Topics GA DQ0XK UT WOS:000378924900001 PM 27386306 OA gold, Green Published DA 2024-09-05 ER PT J AU Kapusuz, M Ozcan, H Yamin, JA AF Kapusuz, Murat Ozcan, Hakan Yamin, Jehad Ahmad TI Research of performance on a spark ignition engine fueled by alcohol-gasoline blends using artificial neural networks SO APPLIED THERMAL ENGINEERING LA English DT Article DE Artificial neural network; Spark ignition engine; Modeling; Ethanol; Methanol ID EXHAUST EMISSIONS; METHANOL ADDITION; DIESEL-ENGINE; ETHANOL; PREDICTION; COMBUSTION AB In this paper, we investigate various alcohol unleaded gasoline mixtures that can be used with no modifications in a spark-ignition engine. The mixtures consisted of 5%, 10% and 15% ethanol, methanol together and separately. Based on the recommendations of the Jordanian Petroleum Company (JoPetrol), total alcohol content should not exceed 15-20% owing to safety and ignition hazards. Optimizations for the use of alcohol were made for the maximum torque, maximum power and minimum specific fuel consumption values. For torque 0.9906, for brake power 0.997, and for brake specific fuel consumption 0.9312 regression values for tests have been obtained from models generated by the neural network. According to the modeling and optimizations, use of fuel mixture containing 11% methanol-1% ethanol for performance, and fuel mixture containing 2% methanol for BSFC were found to have better results. Moreover, the paper demonstrates that ANN (Artificial Neural Network) can be used successfully as an alternative type of modeling technique for internal combustion engines. (C) 2015 Elsevier Ltd. All rights reserved. C1 [Kapusuz, Murat; Ozcan, Hakan] Ondokuz Mayis Univ, Dept Mech Engn, TR-55139 Samsun, Turkey. [Yamin, Jehad Ahmad] Univ Jordan, Dept Mech Engn, Amman 11942, Jordan. C3 Ondokuz Mayis University; University of Jordan RP Ozcan, H (corresponding author), Ondokuz Mayis Univ, Dept Mech Engn, TR-55139 Samsun, Turkey. EM ozcanh@omu.edu.tr RI Kapusuz, Murat/AAP-2014-2020; ÖZCAN, Hakan/AAG-6973-2019; Yamin, Jehad/D-9235-2016 OI Kapusuz, Murat/0000-0002-2243-8551; ÖZCAN, Hakan/0000-0002-7848-3650; Yamin, Jehad/0000-0002-7874-358X CR Abu-Zaid M, 2004, ENERG FUEL, V18, P312, DOI 10.1021/ef030103d Ahmed S.S., 2013, INT J MECH MECHATRON, V13, P50 Al-Hasan A, 2003, ENERG CONVERS MANAGE, V44, P1547 Arcaklioglu E, 2005, APPL ENERG, V80, P11, DOI 10.1016/j.apenergy.2004.03.004 Balki MK, 2014, ENERGY, V71, P194, DOI 10.1016/j.energy.2014.04.074 Bilgin A, 2008, ENERG FUEL, V22, P2782, DOI 10.1021/ef8001026 Cay Y., 2011, APPL THERM ENG, V37, P1 Danaiah P, 2013, INT J AMBIENT ENERGY, V34, P175, DOI 10.1080/01430750.2012.755609 Egrioglu E, 2008, APPL MATH COMPUT, V195, P591, DOI 10.1016/j.amc.2007.05.005 Elfasakhany A., 2015, ENG SCI TECHNOL INT Etghani MM, 2013, APPL THERM ENG, V59, P309, DOI 10.1016/j.applthermaleng.2013.05.041 Eyidogan M, 2010, FUEL, V89, P2713, DOI 10.1016/j.fuel.2010.01.032 Gautam M., 1991, EC PRODUCTION ALCOHO, P377 Geng P, 2015, FUEL, V145, P221, DOI 10.1016/j.fuel.2014.12.067 Ho T, 2010, INT J HYDROGEN ENERG, V35, P10004, DOI 10.1016/j.ijhydene.2010.03.054 Iliev S, 2015, PROCEDIA ENGINEER, V100, P1013, DOI 10.1016/j.proeng.2015.01.461 Kamar HM, 2013, APPL THERM ENG, V50, P63, DOI 10.1016/j.applthermaleng.2012.05.032 Kiani MKD, 2010, ENERGY, V35, P65, DOI 10.1016/j.energy.2009.08.034 Koç M, 2009, RENEW ENERG, V34, P2101, DOI 10.1016/j.renene.2009.01.018 Liu BL, 2013, APPL THERM ENG, V55, P26, DOI 10.1016/j.applthermaleng.2013.02.032 Liu SH, 2007, APPL THERM ENG, V27, P1904, DOI 10.1016/j.applthermaleng.2006.12.024 Ozsezen AN, 2011, ENERGY, V36, P2747, DOI 10.1016/j.energy.2011.02.014 Pulkrabek W., 2003, ENG FUNDAMENTALS INT, V2nd Rezaei J, 2015, APPL ENERG, V138, P460, DOI 10.1016/j.apenergy.2014.10.088 Sayin C, 2007, APPL THERM ENG, V27, P46, DOI 10.1016/j.applthermaleng.2006.05.016 Yücesu HS, 2007, APPL THERM ENG, V27, P358, DOI 10.1016/j.applthermaleng.2006.07.027 Shayan S.B., 2011, Int. J. Automot. Eng, V1, P219 Shivakumar, 2011, APPL ENERG, V88, P2344, DOI 10.1016/j.apenergy.2010.12.030 Xie FX, 2013, APPL THERM ENG, V50, P1084, DOI 10.1016/j.applthermaleng.2012.08.003 NR 29 TC 65 Z9 65 U1 0 U2 23 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-4311 J9 APPL THERM ENG JI Appl. Therm. Eng. PD DEC 5 PY 2015 VL 91 BP 525 EP 534 DI 10.1016/j.applthermaleng.2015.08.058 PG 10 WC Thermodynamics; Energy & Fuels; Engineering, Mechanical; Mechanics WE Science Citation Index Expanded (SCI-EXPANDED) SC Thermodynamics; Energy & Fuels; Engineering; Mechanics GA CW5RB UT WOS:000365053200053 DA 2024-09-05 ER PT J AU Wang, RY Huang, S Wang, P Shi, XM Li, SQ Ye, YS Zhang, W Shi, L Zhou, X Tang, XW AF Wang, Ruiyu Huang, Shu Wang, Ping Shi, Xiaomin Li, Shiqi Ye, Yusong Zhang, Wei Shi, Lei Zhou, Xian Tang, Xiaowei TI Bibliometric analysis of the application of deep learning in cancer from 2015 to 2023 SO CANCER IMAGING LA English DT Article DE Deep learning; Cancer; Imaging; Bibliometric analysis; VOSviewer; CiteSpace ID ARTIFICIAL-INTELLIGENCE; MITOSIS DETECTION; LUNG-CANCER; SKIN-CANCER; CLASSIFICATION AB BackgroundRecently, the application of deep learning (DL) has made great progress in various fields, especially in cancer research. However, to date, the bibliometric analysis of the application of DL in cancer is scarce. Therefore, this study aimed to explore the research status and hotspots of the application of DL in cancer.MethodsWe retrieved all articles on the application of DL in cancer from the Web of Science database Core Collection database. Biblioshiny, VOSviewer and CiteSpace were used to perform the bibliometric analysis through analyzing the numbers, citations, countries, institutions, authors, journals, references, and keywords.ResultsWe found 6,016 original articles on the application of DL in cancer. The number of annual publications and total citations were uptrend in general. China published the greatest number of articles, USA had the highest total citations, and Saudi Arabia had the highest centrality. Chinese Academy of Sciences was the most productive institution. Tian, Jie published the greatest number of articles, while He Kaiming was the most co-cited author. IEEE Access was the most popular journal. The analysis of references and keywords showed that DL was mainly used for the prediction, detection, classification and diagnosis of breast cancer, lung cancer, and skin cancer.ConclusionsOverall, the number of articles on the application of DL in cancer is gradually increasing. In the future, further expanding and improving the application scope and accuracy of DL applications, and integrating DL with protein prediction, genomics and cancer research may be the research trends. C1 [Wang, Ruiyu; Wang, Ping; Shi, Xiaomin; Li, Shiqi; Ye, Yusong; Zhang, Wei; Shi, Lei; Zhou, Xian; Tang, Xiaowei] Southwest Med Univ, Affiliated Hosp, Dept Gastroenterol, St Taiping 25, Luzhou 646099, Sichuan, Peoples R China. [Wang, Ruiyu; Wang, Ping; Shi, Xiaomin; Li, Shiqi; Ye, Yusong; Zhang, Wei; Shi, Lei; Zhou, Xian; Tang, Xiaowei] Nucl Med & Mol Imaging Key Lab Sichuan Prov, Luzhou, Peoples R China. [Huang, Shu] Lianshui Cty People Hosp, Dept Gastroenterol, Huaian, Peoples R China. [Huang, Shu] Nanjing Med Univ, Lianshui People Hosp, Kangda Coll, Dept Gastroenterol, Huaian, Peoples R China. C3 Southwest Medical University; Nanjing Medical University RP Zhou, X; Tang, XW (corresponding author), Southwest Med Univ, Affiliated Hosp, Dept Gastroenterol, St Taiping 25, Luzhou 646099, Sichuan, Peoples R China.; Zhou, X; Tang, XW (corresponding author), Nucl Med & Mol Imaging Key Lab Sichuan Prov, Luzhou, Peoples R China. EM 853023378@qq.com; solitude5834@hotmail.com CR Albarqouni S, 2016, IEEE T MED IMAGING, V35, P1313, DOI 10.1109/TMI.2016.2528120 Alzubaidi L, 2021, J BIG DATA-GER, V8, DOI 10.1186/s40537-021-00444-8 Ardila D, 2019, NAT MED, V25, P954, DOI 10.1038/s41591-019-0447-x Avanzo M, 2020, MED PHYS, V47, pE185, DOI 10.1002/mp.13678 Balkenende L, 2022, SEMIN NUCL MED, V52, P584, DOI 10.1053/j.semnuclmed.2022.02.003 Brinker TJ, 2019, EUR J CANCER, V111, P30, DOI 10.1016/j.ejca.2018.12.016 Cao CS, 2018, GENOM PROTEOM BIOINF, V16, P17, DOI 10.1016/j.gpb.2017.07.003 Chan HP, 2020, ADV EXP MED BIOL, V1213, P3, DOI 10.1007/978-3-030-33128-3_1 Chatterjee S, 2020, TRANSFORM GOV-PEOPLE, V14, P757, DOI 10.1108/TG-05-2019-0031 Chen W, 2021, MED PHYS, V48, P7946, DOI 10.1002/mp.15302 Choi RY, 2020, TRANSL VIS SCI TECHN, V9, DOI 10.1167/tvst.9.2.14 Currie G, 2019, J MED IMAGING RADIAT, V50, P477, DOI 10.1016/j.jmir.2019.09.005 Dildar M, 2021, INT J ENV RES PUB HE, V18, DOI 10.3390/ijerph18105479 Dong YY, 2021, QUANT IMAG MED SURG, V11, P2354, DOI 10.21037/qims-20-600 Eraslan G, 2019, NAT REV GENET, V20, P389, DOI 10.1038/s41576-019-0122-6 Esteva A, 2017, NATURE, V542, P115, DOI 10.1038/nature21056 Gupta A, 2022, CURR GENOMICS, V23, P234, DOI 10.2174/1389202923666220511155939 Heuvelmans MA, 2021, LUNG CANCER, V154, P1, DOI 10.1016/j.lungcan.2021.01.027 Hinton GE, 2006, NEURAL COMPUT, V18, P1527, DOI 10.1162/neco.2006.18.7.1527 Huang HW, 2021, J DERMATOL, V48, P310, DOI 10.1111/1346-8138.15683 Jindal N., 2019, International Journal of Environment, Ecology, Family and Urban Studies (IJEEFUS), V9, P83, DOI [10.24247/ijeefusapr20197, DOI 10.24247/IJEEFUSAPR20197] Khairi SSM, 2022, HEALTHCARE-BASEL, V10, DOI 10.3390/healthcare10010010 Kim DW, 2019, SCI REP-UK, V9, DOI [10.1038/s41598-018-36760-y, 10.1038/s41598-019-43372-7] Klosowski P, 2018, SIG P ALGO ARCH ARR, P223, DOI 10.23919/SPA.2018.8563389 Krizhevsky A, 2017, COMMUN ACM, V60, P84, DOI 10.1145/3065386 Li C, 2018, MED IMAGE ANAL, V45, P121, DOI 10.1016/j.media.2017.12.002 Liimatainen K, 2021, BIOMOLECULES, V11, DOI 10.3390/biom11020264 Liu JD, 2023, PLOS ONE, V18, DOI 10.1371/journal.pone.0293411 Liu WH, 2020, FRONT GENET, V11, DOI 10.3389/fgene.2020.547327 MacEachern SJ, 2021, GENOME, V64, P416, DOI 10.1139/gen-2020-0131 Mathema VB, 2023, COMPUT STRUCT BIOTEC, V21, P1372, DOI 10.1016/j.csbj.2023.01.043 McCarthy J, 2006, AI MAG, V27, P12 Michelucci U., 2018, Applied Deep Learning, DOI [10.1007/978-1-4842-3790-88, DOI 10.1007/978-1-4842-3790-88] Nazir M, 2021, COMPUT MED IMAG GRAP, V91, DOI 10.1016/j.compmedimag.2021.101940 Pacheco AGC, 2021, IEEE J BIOMED HEALTH, V25, P3554, DOI 10.1109/JBHI.2021.3062002 Pakhrin SC, 2021, INT J MOL SCI, V22, DOI 10.3390/ijms22115553 Paul R, 2018, J MED IMAGING, V5, DOI 10.1117/1.JMI.5.1.011021 Peng S, 2021, LANCET DIGIT HEALTH, V3, pE250, DOI 10.1016/S2589-7500(21)00041-8 Poirion OB, 2021, GENOME MED, V13, DOI 10.1186/s13073-021-00930-x Qin ZJ, 2019, IEEE WIREL COMMUN, V26, P93, DOI 10.1109/MWC.2019.1800601 Ragab DA, 2019, PEERJ, V7, DOI 10.7717/peerj.6201 Rodriguez RV, 2020, PUBLIC ADMIN POLICY, V23, P273, DOI 10.1108/PAP-03-2020-0019 Sahiner B, 2019, MED PHYS, V46, pe1, DOI 10.1002/mp.13264 Sharma J., 2016, International Journal of Research in Humanities and Soc. Sciences, V4, P64 Shen L, 2019, SCI REP-UK, V9, DOI 10.1038/s41598-019-48995-4 Sultan AS, 2020, J ORAL PATHOL MED, V49, P849, DOI 10.1111/jop.13042 Summers RM, 2019, ABDOM RADIOL, V44, P1985, DOI 10.1007/s00261-018-1613-1 Torrisi M, 2020, COMPUT STRUCT BIOTEC, V18, P1301, DOI 10.1016/j.csbj.2019.12.011 Tran KA, 2021, GENOME MED, V13, DOI 10.1186/s13073-021-00968-x Voulodimos A, 2018, COMPUT INTEL NEUROSC, V2018, DOI 10.1155/2018/7068349 Wang LL, 2022, CANCERS, V14, DOI 10.3390/cancers14225569 Wang TQ, 2017, CHINA COMMUN, V14, P92, DOI 10.1109/CC.2017.8233654 Wang ZH, 2018, INT J COMPUT ASS RAD, V13, P1959, DOI 10.1007/s11548-018-1860-1 Wu YH, 2022, FRONT ONCOL, V12, DOI 10.3389/fonc.2022.893972 Xiao YW, 2021, COMPUT BIOL MED, V135, DOI 10.1016/j.compbiomed.2021.104540 Yasaka K, 2018, JPN J RADIOL, V36, P257, DOI 10.1007/s11604-018-0726-3 Zhang GY, 2023, FRONT ONCOL, V12, DOI 10.3389/fonc.2022.1075974 Zhong RK, 2024, FRONT ONCOL, V14, DOI 10.3389/fonc.2024.1346010 Zou J, 2019, NAT GENET, V51, P12, DOI 10.1038/s41588-018-0295-5 NR 59 TC 0 Z9 0 U1 1 U2 1 PU BMC PI LONDON PA CAMPUS, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1740-5025 EI 1470-7330 J9 CANCER IMAGING JI Cancer Imaging PD JUL 4 PY 2024 VL 24 IS 1 AR 85 DI 10.1186/s40644-024-00737-0 PG 17 WC Oncology; Radiology, Nuclear Medicine & Medical Imaging WE Science Citation Index Expanded (SCI-EXPANDED) SC Oncology; Radiology, Nuclear Medicine & Medical Imaging GA XQ4B7 UT WOS:001263122000001 PM 38965599 OA gold, Green Published DA 2024-09-05 ER PT C AU Hou, XH Huang, L Li, XF AF Hou, Xiaohui Huang, Lei Li, Xuefei BE Zhang, R Zhang, Z Liu, K Zhang, J TI Evaluation Method of Scientific Research Projects Based on the Neural Networks SO LISS 2013 LA English DT Proceedings Paper CT 3rd International Conference on Logistics, Informatics and Service Science (LISS) CY AUG 21-24, 2013 CL Beijing Jiaotong Univ, Sch Econ & Management, Reading, ENGLAND HO Beijing Jiaotong Univ, Sch Econ & Management DE Back propagation neural network; Linear neural network; Scientific research projects; Evaluation; Index system AB The scientific research projects are evaluated by using the neural networks in this paper. The evaluation index system of scientific research projects is set up, and based on it, BP neural network model and linear neural network model are established to evaluate the scientific research projects. The Matlab software is used to set the parameters, to solve the two models which are built and by calculating an example, we get the objective evaluation results and then compare the results of these two different neural networks. The result shows that the two neural networks models which we set up have high accuracy and will promote the objective and efficient development of evaluation research of scientific research projects in China. C1 [Hou, Xiaohui] Beijing Jiaotong Univ, Div Sci & Technol, Beijing 100044, Peoples R China. [Huang, Lei] Beijing Jiaotong Univ, Sch Econ & Management, Beijing 100044, Peoples R China. [Li, Xuefei] Beijing Jiaotong Univ, Sch Traff & Transportat, Beijing 100044, Peoples R China. C3 Beijing Jiaotong University; Beijing Jiaotong University; Beijing Jiaotong University RP Hou, XH (corresponding author), Beijing Jiaotong Univ, Div Sci & Technol, Beijing 100044, Peoples R China. EM xhhou@bjtu.edu.cn; lhuang@bjtu.edu.cn; hopeandfuture2010@gmail.com RI huang, lei/GQP-8739-2022; HUANG, LING/HTR-1819-2023; Huang, Li/IUQ-0909-2023 CR CAO ZG, 2007, AERONAUTICAL COMPUTI, V37, P51 LIN H, 2005, SCI TECHNOL ENG, V5, P1365 LIN H, 2006, SCI TECHNOL PROG POL, V23, P47 SONG Z, 2011, ELECT DES ENG, V19, P66 Zhang Zenglian, 2011, SCI TECHNOL MANAG RE, V31, P54 NR 5 TC 0 Z9 0 U1 0 U2 7 PU SPRINGER-VERLAG BERLIN PI BERLIN PA HEIDELBERGER PLATZ 3, D-14197 BERLIN, GERMANY BN 978-3-642-40660-7; 978-3-642-40659-1 PY 2015 BP 489 EP 496 DI 10.1007/978-3-642-40660-7_72 PG 8 WC Engineering, Industrial; Operations Research & Management Science WE Conference Proceedings Citation Index - Science (CPCI-S) SC Engineering; Operations Research & Management Science GA BD1WS UT WOS:000358441900072 DA 2024-09-05 ER PT J AU Chen, K Zhai, X Wang, S Li, XY Lu, ZK Xia, DM Li, M AF Chen, Kai Zhai, Xiao Wang, Sheng Li, Xiaoyu Lu, Zhikai Xia, Demeng Li, Ming TI Emerging trends and research foci of deep learning in spine: bibliometric and visualization study SO NEUROSURGICAL REVIEW LA English DT Article DE Deep learning; Spine; Bibiometrics; Neural network; Image ID CONVOLUTIONAL NEURAL-NETWORKS; SEGMENTATION; DISORDERS; ALGORITHM AB As the cognition of spine develops, deep learning (DL) emerges as a powerful tool with tremendous potential for advancing research in this field. To provide a comprehensive overview of DL-spine research, our study utilized bibliometric and visual methods to retrieve relevant articles from the Web of Science database. VOSviewer and CiteSpace were primarily used for literature measurement and knowledge graph analysis. A total of 273 studies focusing on deep learning in the spine, with a combined total of 2302 citations, were retrieved. Additionally, the overall number of articles published on this topic demonstrated a continuous upward trend. China was the country with the highest number of publications, whereas the USA had the most citations. The two most prominent journals were "European Spine Journal" and "Medical Image Analysis," and the most involved research area was Radiology Nuclear Medicine Medical Imaging. VOSviewer identified three visually distinct clusters: "segmentation," "area," and "neural network." Meanwhile, CiteSpace highlighted "magnetic resonance image" and "lumbar" as the keywords with the longest usage, and "agreement" and "automated detection" as the most commonly used keywords. Although the application of DL in spine is still in its infancy, its future is promising. Intercontinental cooperation, extensive application, and more interpretable algorithms will invigorate DL in the field of spine. C1 [Chen, Kai; Zhai, Xiao; Li, Xiaoyu; Li, Ming] Shanghai Changhai Hosp, Dept Orthoped, Shanghai 200433, Peoples R China. [Wang, Sheng] Shanghai Changhai Hosp, Dept Emergency, Shanghai, Peoples R China. [Lu, Zhikai] No 906 Hosp Joint Logist Support Force PLA, Dept Orthoped, Ningbo, Zhejiang, Peoples R China. [Xia, Demeng] Shanghai Univ, Shanghai Baoshan Luodian Hosp, Luodian Clin Drug Res Ctr, Shanghai, Peoples R China. [Xia, Demeng] Naval Hosp Eastern Theater, Emergency Dept, Zhoushan, Zhejiang, Peoples R China. C3 Naval Medical University; Naval Medical University; Shanghai University RP Li, M (corresponding author), Shanghai Changhai Hosp, Dept Orthoped, Shanghai 200433, Peoples R China.; Lu, ZK (corresponding author), No 906 Hosp Joint Logist Support Force PLA, Dept Orthoped, Ningbo, Zhejiang, Peoples R China.; Xia, DM (corresponding author), Shanghai Univ, Shanghai Baoshan Luodian Hosp, Luodian Clin Drug Res Ctr, Shanghai, Peoples R China.; Xia, DM (corresponding author), Naval Hosp Eastern Theater, Emergency Dept, Zhoushan, Zhejiang, Peoples R China. EM spine_kai@smmu.edu.cn; zhaixiao@smmu.edu.cn; wschyy421304714@163.com; y15721434081@163.com; Lzkjfj113@163.com; demengxia@163.com; limingspine0103@126.com RI Xia, Demeng/ADR-6215-2022 OI ZHAI, XIAO/0000-0003-4236-2264 FU National Natural Science Foundation of China [81701199] FX This research was funded by the National Natural Science Foundation of China (81701199) of Ming Li CR Al Arif SMMR, 2018, COMPUT METH PROG BIO, V157, P95, DOI 10.1016/j.cmpb.2018.01.006 Anwar SM, 2018, J MED SYST, V42, DOI 10.1007/s10916-018-1088-1 Chan HP, 2020, ADV EXP MED BIOL, V1213, P3, DOI 10.1007/978-3-030-33128-3_1 Choi RY, 2020, TRANSL VIS SCI TECHN, V9, DOI 10.1167/tvst.9.2.14 de Jonge MC, 2014, SEMIN MUSCULOSKEL R, V18, P246, DOI 10.1055/s-0034-1375568 Deng HD, 2021, J BIOMED OPT, V26, DOI 10.1117/1.JBO.26.4.040901 Deo RC, 2015, CIRCULATION, V132, P1920, DOI 10.1161/CIRCULATIONAHA.115.001593 Duan HN, 2021, FRONT NEUROROBOTICS, V15, DOI 10.3389/fnbot.2021.658280 Esteva A, 2019, NAT MED, V25, P24, DOI 10.1038/s41591-018-0316-z Fehlings MG, 2015, NEUROSURGERY, V77, pS1, DOI 10.1227/NEU.0000000000000953 Galbusera F, 2019, EUR SPINE J, V28, P951, DOI 10.1007/s00586-019-05944-z Gao KT, 2022, JOR SPINE, V5, DOI 10.1002/jsp2.1204 Goedmakers CMW, 2021, RADIOLOGY, V301, DOI 10.1148/radiol.2021204731 Ha J, 2021, SCI REP-UK, V11, DOI 10.1038/s41598-021-00161-5 Hallinan JTPD, 2021, RADIOLOGY, V300, P130, DOI 10.1148/radiol.2021204289 Hinton GE, 2006, NEURAL COMPUT, V18, P1527, DOI 10.1162/neco.2006.18.7.1527 Hirsch JE, 2007, P NATL ACAD SCI USA, V104, P19193, DOI 10.1073/pnas.0707962104 Horng MH, 2019, COMPUT MATH METHOD M, V2019, DOI 10.1155/2019/6357171 Hsieh CI, 2021, NAT COMMUN, V12, DOI 10.1038/s41467-021-25779-x Kochanski RB, 2019, NEUROSURGERY, V84, P1179, DOI 10.1093/neuros/nyy630 Kokabu T, 2021, SPINE J, V21, P980, DOI 10.1016/j.spinee.2021.01.022 Lacout A, 2009, AM J ROENTGENOL, V193, pW505, DOI 10.2214/AJR.09.2268 LeCun Y, 2015, NATURE, V521, P436, DOI 10.1038/nature14539 Lemay A, 2021, NEUROIMAGE-CLIN, V31, DOI 10.1016/j.nicl.2021.102766 Lessmann N, 2019, MED IMAGE ANAL, V53, P142, DOI 10.1016/j.media.2019.02.005 Li XM, 2018, MED IMAGE ANAL, V45, P41, DOI 10.1016/j.media.2018.01.004 Lim DSW, 2022, RADIOLOGY, V305, P160, DOI 10.1148/radiol.220076 Liu C, 2022, FRONT IMMUNOL, V13, DOI 10.3389/fimmu.2022.972079 Liu DQ, 2020, COMPUT METH PROG BIO, V197, DOI 10.1016/j.cmpb.2020.105755 Luo HF, 2021, FRONT PSYCHOL, V12, DOI 10.3389/fpsyg.2021.759347 Natalia F, 2022, PLOS ONE, V17, DOI 10.1371/journal.pone.0261659 Oei MW, 2022, RADIOL CLIN N AM, V60, P629, DOI 10.1016/j.rcl.2022.03.006 Qu B, 2022, QUANT IMAG MED SURG, V12, P3454, DOI 10.21037/qims-21-939 Rezaeilouyeh H, 2016, J MED IMAGING, V3, DOI 10.1117/1.JMI.3.4.044501 Roldan-Valadez E, 2019, IRISH J MED SCI, V188, P939, DOI 10.1007/s11845-018-1936-5 Rosenblatt F., 1961, PRINCIPLES NEURODYNA Rupp TK, 2015, BIOMECH MODEL MECHAN, V14, P1081, DOI 10.1007/s10237-015-0656-2 Saravi B, 2022, J CLIN MED, V11, DOI 10.3390/jcm11144050 Stout NL, 2018, JNCI-J NATL CANCER I, V110, P815, DOI 10.1093/jnci/djy108 Suri A, 2021, BONE, V149, DOI 10.1016/j.bone.2021.115972 Tsai JY, 2021, FRONT BIOENG BIOTECH, V9, DOI 10.3389/fbioe.2021.708137 Wang LL, 2021, COMPUT MED IMAG GRAP, V93, DOI 10.1016/j.compmedimag.2021.101973 Waqas A, 2019, PLOS ONE, V14, DOI 10.1371/journal.pone.0222194 Xia DM, 2022, FRONT PUBLIC HEALTH, V10, DOI 10.3389/fpubh.2022.990708 Yagi M, 2019, EUR SPINE J, V28, P180, DOI 10.1007/s00586-018-5816-5 Yeh YC, 2021, SCI REP-UK, V11, DOI 10.1038/s41598-021-87141-x Yu YT, 2020, ANN TRANSL MED, V8, DOI 10.21037/atm-20-4235 Zhao JQ, 2022, J MED INTERNET RES, V24, DOI 10.2196/37532 Zhou YJ, 2019, J DIGIT IMAGING, V32, P513, DOI 10.1007/s10278-018-0130-7 Zou J, 2019, NAT GENET, V51, P12, DOI 10.1038/s41588-018-0295-5 NR 50 TC 8 Z9 8 U1 9 U2 26 PU SPRINGER PI NEW YORK PA ONE NEW YORK PLAZA, SUITE 4600, NEW YORK, NY, UNITED STATES SN 0344-5607 EI 1437-2320 J9 NEUROSURG REV JI Neurosurg. Rev. PD MAR 31 PY 2023 VL 46 IS 1 AR 81 DI 10.1007/s10143-023-01987-5 PG 14 WC Clinical Neurology; Surgery WE Science Citation Index Expanded (SCI-EXPANDED) SC Neurosciences & Neurology; Surgery GA C3WI9 UT WOS:000961253900001 PM 37000304 OA Green Submitted DA 2024-09-05 ER PT J AU Chaki, J Ghosh, D AF Chaki, Jyotismita Ghosh, Dibyajyoti TI Deep Learning in Leaf Disease Detection (2014-2024): A Visualization-Based Bibliometric Analysis SO IEEE ACCESS LA English DT Article DE Bibliometric study; biblioshiny; deep learning; leaf disease detection; VOSViewer AB The agriculture industry is critical to delivering high-quality food and contributes significantly to the growth of economies and people which can be affected by the plant disease. This article demonstrates a visualization based bibliometric analysis to depict research trends in deep learning-based leaf disease detection from 2014 to January 2024. The publications used in this study are collected from the Scopus database. The research distributions with respect to sources and country, research trends, and research limits for deep learning in leaf disease detection studies are presented using Biblioshiny and VOSViewer software and visualization technologies. From 2014 to January 2024, the literature on this field has grown at an average rate of 53.41%. 1307 peer-reviewed publications from 54 countries are identified that are published in 594 distinct sources. India is the most productive country, accounting for 36.6% of total publications and 23% of total citations. Chitkara University Institute of Engineering and Technology was the most productive research institute, with 66 publications and 291 citations, while Computers and Electronics in Agriculture journal has the most citations in deep learning-based leaf disease detection research. The findings, in particular, show that "Convolution Neural Network", "Transfer Learning", "Ensemble Learning", etc., are the most widely used research topics in this field from 2014 to January 2024, and the research interest engrossed on applications of deep learning standard architectures. This study gives an insight into deep learning in leaf disease detection's general research patterns, which may assist researchers better understand and forecast the field's dynamic paths. C1 [Chaki, Jyotismita] Vellore Inst Technol, Sch Comp Sci & Engn, Vellore 632014, India. [Ghosh, Dibyajyoti] Vellore Inst Technol, VIT Business Sch, Vellore 632014, India. C3 Vellore Institute of Technology (VIT); VIT Vellore; Vellore Institute of Technology (VIT); VIT Vellore RP Ghosh, D (corresponding author), Vellore Inst Technol, VIT Business Sch, Vellore 632014, India. EM dibyajyoti.ghosh@vit.ac.in RI Chaki, Jyotismita/T-4882-2019 OI Chaki, Jyotismita/0000-0003-1804-8590 FU Vellore Institute of Technology (VIT), Vellore FX The authors are thankful to the Vellore Institute of Technology (VIT), Vellore for providing all the facilities and support. CR Abbas A, 2021, COMPUT ELECTRON AGR, V187, DOI 10.1016/j.compag.2021.106279 Atila Ü, 2021, ECOL INFORM, V61, DOI 10.1016/j.ecoinf.2020.101182 Bajpai Chandrabhanu, 2023, International Journal of Intelligent Systems Technologies and Applications, P72, DOI 10.1504/IJISTA.2023.130562 Beckman J, 2021, AM J AGR ECON, V103, P1595, DOI 10.1111/ajae.12212 bibliometrix.org, Introduction to Biblioshiny Chen HC, 2022, ELECTRONICS-SWITZ, V11, DOI 10.3390/electronics11060951 Chen Junde, 2023, Journal of Ambient Intelligence and Humanized Computing, P12359, DOI 10.1007/s12652-022-04334-6 Chen JD, 2020, COMPUT ELECTRON AGR, V173, DOI 10.1016/j.compag.2020.105393 Chouhan SS, 2020, ARCH COMPUT METHOD E, V27, P611, DOI [10.1007/s11831-019-09324-0, 10.33552/abeb.2018.01.000510] Cibu B, 2023, COMPUTERS, V12, DOI 10.3390/computers12110237 Coulibaly B., 2022, Intell. Syst. With Appli., V16, DOI [10.1016/j.iswa.2022.200102.n, DOI 10.1016/J.ISWA.2022.200102.N] Dhingra G, 2018, MULTIMED TOOLS APPL, V77, P19951, DOI 10.1007/s11042-017-5445-8 Elfatimi E, 2022, IEEE ACCESS, V10, P9471, DOI 10.1109/ACCESS.2022.3142817 Fuentes A, 2017, SENSORS-BASEL, V17, DOI 10.3390/s17092022 Ganaie MA, 2022, ENG APPL ARTIF INTEL, V115, DOI 10.1016/j.engappai.2022.105151 Geetharamani G, 2019, COMPUT ELECTR ENG, V76, P323, DOI 10.1016/j.compeleceng.2019.04.011 Guo YQ, 2020, J MED INTERNET RES, V22, DOI 10.2196/18228 Hassan SM, 2021, ELECTRONICS-SWITZ, V10, DOI 10.3390/electronics10121388 He Y, 2024, FRONT PLANT SCI, V14, DOI 10.3389/fpls.2023.1280671 Hindarto D., 2023, ''Jurnal TeknologiInformasi Universitas Lambung Mangkurat (JTIULM), V8, P41 Islam A., 2021, Int. J. Intell. Syst. Appl, V13, P35, DOI [10.5815/ijisa.2021.05.04, DOI 10.5815/IJISA.2021.05.04] Jiang P, 2019, IEEE ACCESS, V7, P59069, DOI 10.1109/ACCESS.2019.2914929 Karthik R, 2020, APPL SOFT COMPUT, V86, DOI 10.1016/j.asoc.2019.105933 Kaur P, 2023, TURK J AGRIC FOR, V47, P727, DOI 10.55730/1300-011X.3123 Kokol P, 2021, HEALTH INFO LIBR J, V38, P125, DOI 10.1111/hir.12295 Li LL, 2021, IEEE ACCESS, V9, P56683, DOI 10.1109/ACCESS.2021.3069646 Li MX, 2022, COMPUT ELECTRON AGR, V194, DOI 10.1016/j.compag.2022.106779 Li Y, 2020, INT J MACH LEARN CYB, V11, P2807, DOI 10.1007/s13042-020-01152-0 Liu B, 2018, SYMMETRY-BASEL, V10, DOI 10.3390/sym10010011 Ma KD, 2015, IEEE T IMAGE PROCESS, V24, P4673, DOI 10.1109/TIP.2015.2460015 Manogna A., 2023, Kybernetes, V52, P1 Marini S., 2023, J. Pathol. Informat., V14 Mzoughi O, 2023, ECOL INFORM, V75, DOI 10.1016/j.ecoinf.2023.102000 Nguyen C, 2021, SENSORS-BASEL, V21, DOI 10.3390/s21030742 Ojo MO, 2023, AGRONOMY-BASEL, V13, DOI 10.3390/agronomy13030887 Pandian JA, 2019, INT CONF ADV COMPU, P199, DOI [10.1109/iacc48062.2019.8971580, 10.1109/IACC48062.2019.8971580] Pavithra A, 2023, SOFT COMPUT, DOI 10.1007/s00500-023-07936-0 Paymode AS, 2022, ARTIF INTELL AGR, V6, P23, DOI 10.1016/j.aiia.2021.12.002 Qi Y., 2021, Appl. Sci., V11 Qiang Z., 2019, inCommunicationsin Computer and Information Science, V7, P118 Ranganathan G., 2021, Innov. Image Process., V3, P66 Rao U. S., 2021, GLOBAL TRANSITIONS P, V2, P535, DOI [10.1016/j.gltp.2021.08.002, DOI 10.1016/J.GLTP.2021.08.002] Saleem MH, 2020, PLANTS-BASEL, V9, DOI 10.3390/plants9101319 Sarin P. Kumar, Benchmarking Shahin MA, 2003, CEREAL CHEM, V80, P285, DOI 10.1094/CCHEM.2003.80.3.285 Sharma Parul, 2020, Information Processing in Agriculture, V7, P566, DOI 10.1016/j.inpa.2019.11.001 Shorten C, 2019, J BIG DATA-GER, V6, DOI 10.1186/s40537-019-0197-0 Shrestha G, 2020, PROCEEDINGS OF 2020 IEEE APPLIED SIGNAL PROCESSING CONFERENCE (ASPCON 2020), P109, DOI [10.1109/ASPCON49795.2020.9276722, 10.1109/aspcon49795.2020.9276722] Sujatha R, 2021, MICROPROCESS MICROSY, V80, DOI 10.1016/j.micpro.2020.103615 Tassis LM, 2021, COMPUT ELECTRON AGR, V186, DOI 10.1016/j.compag.2021.106191 Tian Hong-kun, 2020, Information Processing in Agriculture, V7, P1, DOI 10.1016/j.inpa.2019.09.006 Vallabhajosyula S, 2022, J PLANT DIS PROTECT, V129, P545, DOI 10.1007/s41348-021-00465-8 Vishnoi VK, 2022, MULTIMED TOOLS APPL, V81, P367, DOI 10.1007/s11042-021-11375-0 vosviewer.com, VOSviewer-Visualizing Scientific Landscapes Zhang XH, 2018, IEEE ACCESS, V6, P30370, DOI 10.1109/ACCESS.2018.2844405 Zhang Z, 2023, IEEE ACCESS, V11, P21176, DOI 10.1109/ACCESS.2023.3251098 Zhong Y, 2020, COMPUT ELECTRON AGR, V168, DOI 10.1016/j.compag.2019.105146 NR 57 TC 0 Z9 0 U1 4 U2 4 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 2169-3536 J9 IEEE ACCESS JI IEEE Access PY 2024 VL 12 BP 95291 EP 95308 DI 10.1109/ACCESS.2024.3425897 PG 18 WC Computer Science, Information Systems; Engineering, Electrical & Electronic; Telecommunications WE Science Citation Index Expanded (SCI-EXPANDED) SC Computer Science; Engineering; Telecommunications GA YY9Q4 UT WOS:001272169500001 OA gold DA 2024-09-05 ER PT J AU Sarin, G Kumar, P Mukund, M AF Sarin, Gaurav Kumar, Pradeep Mukund, M. TI Text classification using deep learning techniques: a bibliometric analysis and future research directions SO BENCHMARKING-AN INTERNATIONAL JOURNAL LA English DT Article DE Data mining; Text analytics; Classification; Deep learning; Bibliometric analysis ID CONVOLUTIONAL NEURAL-NETWORK; ATTENTION; MODEL; SEMANTICS; ENSEMBLE; SYSTEMS; SUPPORT; LSTM; WEB AB PurposeText classification is a widely accepted and adopted technique in organizations to mine and analyze unstructured and semi-structured data. With advancement of technological computing, deep learning has become more popular among academicians and professionals to perform mining and analytical operations. In this work, the authors study the research carried out in field of text classification using deep learning techniques to identify gaps and opportunities for doing research.Design/methodology/approachThe authors adopted bibliometric-based approach in conjunction with visualization techniques to uncover new insights and findings. The authors collected data of two decades from Scopus global database to perform this study. The authors discuss business applications of deep learning techniques for text classification.FindingsThe study provides overview of various publication sources in field of text classification and deep learning together. The study also presents list of prominent authors and their countries working in this field. The authors also presented list of most cited articles based on citations and country of research. Various visualization techniques such as word cloud, network diagram and thematic map were used to identify collaboration network.Originality/valueThe study performed in this paper helped to understand research gaps that is original contribution to body of literature. To best of the authors' knowledge, in-depth study in the field of text classification and deep learning has not been performed in detail. The study provides high value to scholars and professionals by providing them opportunities of research in this area. C1 [Sarin, Gaurav] Delhi Sch Business, New Delhi, Delhi, India. [Kumar, Pradeep] Indian Inst Management Lucknow, Lucknow, India. [Mukund, M.] VDXtv, New Delhi, India. C3 Indian Institute of Management (IIM System); Indian Institute of Management Lucknow RP Sarin, G (corresponding author), Delhi Sch Business, New Delhi, Delhi, India. EM gaurav.sarin@iiml.org; pradeep.kumar@iiml.ac.in; reachoutmukund@gmail.com CR Akhter MP, 2022, ENTERP INF SYST-UK, V16, P223, DOI 10.1080/17517575.2020.1755455 Akhter MP, 2020, IEEE ACCESS, V8, P42689, DOI 10.1109/ACCESS.2020.2976744 Al-Garadi MA, 2021, BMC MED INFORM DECIS, V21, DOI 10.1186/s12911-021-01394-0 Al-Smadi M, 2017, INFORM PROCESS MANAG, V53, P640, DOI 10.1016/j.ipm.2017.01.002 Alom MZ, 2019, ELECTRONICS-SWITZ, V8, DOI 10.3390/electronics8030292 Alsaleh D, 2021, IEEE ACCESS, V9, P91670, DOI 10.1109/ACCESS.2021.3091376 Altinel B, 2018, INFORM PROCESS MANAG, V54, P1129, DOI 10.1016/j.ipm.2018.08.001 Alvesson M, 2011, ACAD MANAGE REV, V36, P247, DOI 10.5465/AMR.2011.59330882 Bartol T, 2014, SCIENTOMETRICS, V98, P1491, DOI 10.1007/s11192-013-1148-8 BROADUS RN, 1987, SCIENTOMETRICS, V12, P373, DOI 10.1007/BF02016680 Burkhardt S, 2018, MACH LEARN, V107, P859, DOI 10.1007/s10994-017-5689-6 Cai LK, 2020, IEEE ACCESS, V8, P152183, DOI 10.1109/ACCESS.2020.3017382 Chen CAS, 2021, NEUROCOMPUTING, V452, P253, DOI 10.1016/j.neucom.2021.04.105 Chen HH, 2022, INFORM PROCESS MANAG, V59, DOI 10.1016/j.ipm.2021.102798 Colace F, 2014, COMPUT HUM BEHAV, V30, P689, DOI 10.1016/j.chb.2013.07.043 Dalal M., 2011, Int. J. Comput. Appl, V28, P37, DOI DOI 10.5120/3358-4633 Dong YR, 2020, IEEE ACCESS, V8, P30548, DOI 10.1109/ACCESS.2019.2954985 Donthu N, 2021, J BUS RES, V133, P285, DOI 10.1016/j.jbusres.2021.04.070 Durán-Sánchez A, 2019, J ENTERP COMMUNITIES, V13, P84, DOI 10.1108/JEC-10-2018-0072 El Rifai H, 2022, NEURAL COMPUT APPL, V34, P1135, DOI 10.1007/s00521-021-06390-z El-Alfy EM, 2020, TECHNOL ANAL STRATEG, V32, P984, DOI 10.1080/09537325.2020.1732912 El-Halees A.M., 2015, IUG J NATURAL STUDIE, V15 Er MJ, 2016, INFORM SCIENCES, V373, P388, DOI 10.1016/j.ins.2016.08.084 Fang WL, 2020, ADV ENG INFORM, V44, DOI 10.1016/j.aei.2020.101060 Fortuna P, 2018, ACM COMPUT SURV, V51, DOI 10.1145/3232676 Gandotra E, 2021, CYBERNET SYST, V52, P169, DOI 10.1080/01969722.2020.1826659 Gao S, 2021, IEEE J BIOMED HEALTH, V25, P3596, DOI 10.1109/JBHI.2021.3062322 Gargiulo F, 2019, APPL SOFT COMPUT, V79, P125, DOI 10.1016/j.asoc.2019.03.041 Genkin A, 2007, TECHNOMETRICS, V49, P291, DOI 10.1198/004017007000000245 Ghiassi M, 2013, EXPERT SYST APPL, V40, P6266, DOI 10.1016/j.eswa.2013.05.057 Ghiassi M, 2012, EXPERT SYST APPL, V39, P10967, DOI 10.1016/j.eswa.2012.03.027 Griesshaber D, 2020, COMPUT SPEECH LANG, V62, DOI 10.1016/j.csl.2019.101056 Gupta Vishal, 2009, Journal of Emerging Technologies in Web Intelligence, V1, P60, DOI 10.4304/jetwi.1.1.60-76 Gupta V., 2012, INT J COMPUTER APPL, V37, P30 Hajiabadi H, 2020, INT J MACH LEARN CYB, V11, P751, DOI 10.1007/s13042-019-00982-x Hao M, 2020, ACM T ASIAN LOW-RESO, V19, DOI 10.1145/3388970 Hartmann J, 2019, INT J RES MARK, V36, P20, DOI 10.1016/j.ijresmar.2018.09.009 Hashemi M, 2020, MULTIMED TOOLS APPL, V79, P11921, DOI 10.1007/s11042-019-08373-8 Huan JL, 2022, NEURAL COMPUT APPL, V34, P2341, DOI 10.1007/s00521-021-06542-1 Huang XB, 2021, NANO RES, V14, P4250, DOI 10.1007/s12274-021-3597-3 Ibrahim MA, 2021, J BIOMED INFORM, V116, DOI 10.1016/j.jbi.2021.103699 Irfan R, 2015, KNOWL ENG REV, V30, P157, DOI 10.1017/S0269888914000277 Islam MR, 2020, SOC NETW ANAL MIN, V10, DOI 10.1007/s13278-020-00696-x Jang B, 2020, APPL SCI-BASEL, V10, DOI 10.3390/app10175841 Jing WP, 2021, ACM T ASIAN LOW-RESO, V20, DOI 10.1145/3434239 Kadhim AI, 2019, ARTIF INTELL REV, V52, P273, DOI 10.1007/s10462-018-09677-1 Kardakis S, 2021, APPL SCI-BASEL, V11, DOI 10.3390/app11093883 KESSLER MM, 1963, AM DOC, V14, P10, DOI 10.1002/asi.5090140103 Khan Aurangzeb, 2010, Journal of Advances in Information Technology, V1, P4, DOI 10.4304/jait.1.1.4-20 Khan T, 2019, MULTIMED TOOLS APPL, V78, P32159, DOI 10.1007/s11042-019-08028-8 Kim HJ, 2018, NEUROCOMPUTING, V315, P128, DOI 10.1016/j.neucom.2018.07.002 Küçük D, 2020, ACM COMPUT SURV, V53, DOI 10.1145/3369026 Kushwaha A. K., 2021, International Journal of Information Management Data Insights, V1, DOI DOI 10.1016/J.JJIMEI.2021.100017 Kwon D, 2019, CLUSTER COMPUT, V22, P949, DOI 10.1007/s10586-017-1117-8 Lee K, 2018, J INF SCI, V44, P715, DOI 10.1177/0165551517743644 Lewis DD, 2004, J MACH LEARN RES, V5, P361 Li Q, 2020, NEUROCOMPUTING, V414, P143, DOI 10.1016/j.neucom.2020.07.049 Li X, 2021, NEUROCOMPUTING, V443, P345, DOI 10.1016/j.neucom.2021.02.069 Liang DC, 2021, INFORM SCIENCES, V547, P271, DOI 10.1016/j.ins.2020.08.051 Liang YJ, 2021, INFORM SCIENCES, V548, P295, DOI 10.1016/j.ins.2020.10.021 Liu C, 2020, J VIS COMMUN IMAGE R, V71, DOI 10.1016/j.jvcir.2019.102724 Liu G, 2019, NEUROCOMPUTING, V337, P325, DOI 10.1016/j.neucom.2019.01.078 Liu JG, 2019, IEEE ACCESS, V7, P154546, DOI 10.1109/ACCESS.2019.2949175 Liu YY, 2022, COMPUT SPEECH LANG, V71, DOI 10.1016/j.csl.2021.101268 Liu ZY, 2020, IEEE ACCESS, V8, P149362, DOI 10.1109/ACCESS.2020.3016727 Lu J, 2015, KNOWL-BASED SYST, V80, P14, DOI 10.1016/j.knosys.2015.01.010 Luo WL, 2022, WIREL COMMUN MOB COM, V2022, DOI 10.1155/2022/4330701 Martarelli N.J., 2022, INT J INF MANAG DATA, V2 Maw M, 2020, MALAYS J COMPUT SCI, V33, P102, DOI 10.22452/mjcs.vol33no2.2 Mitra V, 2007, APPL SOFT COMPUT, V7, P908, DOI 10.1016/j.asoc.2006.04.002 Moirangthem DS, 2021, EXPERT SYST APPL, V165, DOI 10.1016/j.eswa.2020.113898 Moreo A, 2021, DATA MIN KNOWL DISC, V35, P911, DOI 10.1007/s10618-020-00735-3 Mukherjee D, 2022, J BUS RES, V148, P101, DOI 10.1016/j.jbusres.2022.04.042 Linh NV, 2017, KNOWL INF SYST, V50, P763, DOI 10.1007/s10115-016-0956-6 Oleynik M, 2019, J AM MED INFORM ASSN, V26, P1247, DOI 10.1093/jamia/ocz149 Omayio E.O., 2021, DIGITAL TECHNIQUES H, P11 Pan CY, 2019, IEEE ACCESS, V7, P53296, DOI 10.1109/ACCESS.2019.2911850 Paul J, 2021, J BUS RES, V133, P337, DOI 10.1016/j.jbusres.2021.05.005 Qi XG, 2009, ACM COMPUT SURV, V41, DOI 10.1145/1459352.1459357 Queiroz MM, 2020, ANN OPER RES, DOI 10.1007/s10479-020-03685-7 Raffel C, 2020, J MACH LEARN RES, V21 Ranjan N., 2016, INT J COMPUT APPL, V134, P6, DOI DOI 10.5120/IJCA2016907355 Ren JS, 2021, NEUROCOMPUTING, V455, P265, DOI 10.1016/j.neucom.2021.05.072 Rogers D, 2022, IEEE T COMPUT SOC SY, V9, P1154, DOI 10.1109/TCSS.2021.3120138 Sahingoz OK, 2019, EXPERT SYST APPL, V117, P345, DOI 10.1016/j.eswa.2018.09.029 Salloum S.A., 2018, Studies in Computational Intelligence, P417, DOI DOI 10.1007/978-3-319-67056-0_20 Sarikaya R, 2014, IEEE-ACM T AUDIO SPE, V22, P778, DOI 10.1109/TASLP.2014.2303296 Schwenker F, 2014, PATTERN RECOGN LETT, V37, P4, DOI 10.1016/j.patrec.2013.10.017 Shin HS, 2020, ELECTRONICS-SWITZ, V9, DOI 10.3390/electronics9091527 Shuang K, 2019, J EXP THEOR ARTIF IN, V31, P455, DOI 10.1080/0952813X.2019.1572654 Stein RA, 2019, INFORM SCIENCES, V471, P216, DOI 10.1016/j.ins.2018.09.001 Sun SL, 2017, INFORM FUSION, V36, P10, DOI 10.1016/j.inffus.2016.10.004 Tan C., 2022, APPL INTELL, P1 Tan ZP, 2022, IEEE T NEUR NET LEAR, V33, P973, DOI 10.1109/TNNLS.2020.3036192 Tian D, 2021, ADV ENG INFORM, V49, DOI 10.1016/j.aei.2021.101355 Van Phan T, 2016, PATTERN RECOGN, V51, P112, DOI 10.1016/j.patcog.2015.07.012 Vanhala M, 2020, J BUS RES, V106, P46, DOI 10.1016/j.jbusres.2019.09.009 Wagner G, 2022, J INF TECHNOL-UK, V37, P209, DOI 10.1177/02683962211048201 Wang BY, 2021, KNOWL-BASED SYST, V218, DOI 10.1016/j.knosys.2021.106876 Wang CF, 2020, IEEE ACCESS, V8, P202687, DOI 10.1109/ACCESS.2020.3036455 Wang JY, 2019, IEEE ACCESS, V7, P171548, DOI 10.1109/ACCESS.2019.2955924 Wang J, 2017, PROCEEDINGS OF THE TWENTY-SIXTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, P2915 Wang P, 2016, NEUROCOMPUTING, V174, P806, DOI 10.1016/j.neucom.2015.09.096 Wang SY, 2018, PROCEEDINGS OF THE TWENTY-SEVENTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, P4468 WHETTEN DA, 1989, ACAD MANAGE REV, V14, P490, DOI 10.2307/258554 Wozniak M, 2014, INFORM FUSION, V16, P3, DOI 10.1016/j.inffus.2013.04.006 Xia R, 2016, INFORM PROCESS MANAG, V52, P36, DOI 10.1016/j.ipm.2015.04.003 Xia R, 2011, INFORM SCIENCES, V181, P1138, DOI 10.1016/j.ins.2010.11.023 Xing Zhengzheng., 2010, ACM Sigkdd Explorations Newsletter, V12, P40 Xu JC, 2020, INT J INTELL SYST, V35, P1397, DOI 10.1002/int.22260 Xu JC, 2020, ENG APPL ARTIF INTEL, V92, DOI 10.1016/j.engappai.2020.103641 Xu SY, 2021, EXPERT SYST APPL, V176, DOI 10.1016/j.eswa.2021.114795 Yang BG, 2011, DATA KNOWL ENG, V70, P775, DOI 10.1016/j.datak.2011.05.002 Yang KY, 2022, ACM T KNOWL DISCOV D, V16, DOI 10.1145/3457216 Yang ZY, 2019, IEEE ACCESS, V7, P153012, DOI 10.1109/ACCESS.2019.2948855 Yao HP, 2018, COMPUT INFORM, V37, P992, DOI 10.4149/cai_2018_4_992 Yao JQ, 2019, IEEE ACCESS, V7, P183580, DOI 10.1109/ACCESS.2019.2960626 Yao L, 2019, BMC MED INFORM DECIS, V19, DOI 10.1186/s12911-019-0781-4 Zeng K, 2020, JMIR MED INF, V8, DOI 10.2196/17832 Zhang JZ, 2021, EXPERT SYST APPL, V184, DOI 10.1016/j.eswa.2021.115561 Zhang S, 2019, INT J COMPUT COMMUN, V14, P124, DOI 10.15837/ijccc.2019.1.3420 Zhang SA, 2019, ACM COMPUT SURV, V52, DOI 10.1145/3285029 Zhang W, 2015, KNOWL-BASED SYST, V75, P152, DOI 10.1016/j.knosys.2014.11.028 Zhao WJ, 2020, IEEE ACCESS, V8, P100426, DOI 10.1109/ACCESS.2020.2997969 Zheng J, 2019, IEEE ACCESS, V7, P106673, DOI 10.1109/ACCESS.2019.2932619 Zulqarnain M, 2021, ARAB J SCI ENG, V46, P8953, DOI 10.1007/s13369-021-05691-8 NR 126 TC 0 Z9 0 U1 1 U2 10 PU EMERALD GROUP PUBLISHING LTD PI Leeds PA Floor 5, Northspring 21-23 Wellington Street, Leeds, W YORKSHIRE, ENGLAND SN 1463-5771 EI 1758-4094 J9 BENCHMARKING JI Benchmarking PD AUG 30 PY 2024 VL 31 IS 8 BP 2743 EP 2766 DI 10.1108/BIJ-07-2022-0454 EA AUG 2023 PG 24 WC Management WE Emerging Sources Citation Index (ESCI) SC Business & Economics GA E0R0X UT WOS:001049091700001 DA 2024-09-05 ER PT J AU Polyakov, M Gibson, FL Pannell, DJ AF Polyakov, Maksym Gibson, Fiona L. Pannell, David J. TI Antipodean agricultural and resource economics at 60: Trends in topics, authorship and collaboration SO AUSTRALIAN JOURNAL OF AGRICULTURAL AND RESOURCE ECONOMICS LA English DT Article DE citation analysis; co-authorship; collaboration; Latent Dirichlet allocation AB This study presents results of an analysis of 1060 academic articles published in the Australian Journal of Agricultural Economics and the Australian Journal of Agricultural and Resource Economics from 1957 to 2015. Trends in research topics over time identified by the study include a decline in research on agricultural topics offset by growth in publications related to natural resources, the environment, trade, food and international development. Other trends include an increase in the average number of co-authors on each paper, a gradual increase in authorship by females, changes in the shares of top contributing institutions, increases in collaboration between institutions and a steady increase in the number of authors from outside Australia or New Zealand. C1 [Polyakov, Maksym; Gibson, Fiona L.; Pannell, David J.] Univ Western Australia, Ctr Environm Econ & Policy, Sch Agr & Resource Econ, Nedlands, WA, Australia. C3 University of Western Australia RP Polyakov, M (corresponding author), Univ Western Australia, Ctr Environm Econ & Policy, Sch Agr & Resource Econ, Nedlands, WA, Australia. EM maksym.polyakov@uwa.edu.au RI Pannell, David/B-4476-2008; Polyakov, Maksym/G-1523-2010 OI Pannell, David/0000-0001-5420-9908; Polyakov, Maksym/0000-0002-0193-6658; Dempster, Fiona/0000-0002-7989-3483 FU ARC Centre of Excellence for Environmental Decisions FX Funding support from the ARC Centre of Excellence for Environmental Decisions is gratefully acknowledged. CR Alston JM, 2016, AUST J AGR RESOUR EC, V60, P554, DOI 10.1111/1467-8489.12162 Atkinson K., 2003, GNU ASPELL BATTESE GE, 1977, AUST J AGR ECON, V21, P169, DOI 10.1111/j.1467-8489.1977.tb00204.x Blei DM, 2012, COMMUN ACM, V55, P77, DOI 10.1145/2133806.2133826 Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993 Curtis K., 2009, RECENT CHANGES AUSTR Edwards G, 2016, AUST J AGR RESOUR EC, V60, P573, DOI 10.1111/1467-8489.12174 Feinerer Ingo., 2015, Introduction to the tm Package Text Mining in R. 2013‐12‐01 Grün B, 2011, J STAT SOFTW, V40, P1 Karl A, 2015, WIRES COMPUT STAT, V7, DOI 10.1002/wics.1361 Pannell D, 2016, AUST J AGR RESOUR EC, V60, P651, DOI 10.1111/1467-8489.12172 Pannell DJ, 2001, AUST J AGR RESOUR EC, V45, P517, DOI 10.1111/1467-8489.00156 Pournelle G. H., 1953, Journal of Mammalogy, V34, P133, DOI 10.1890/0012-9658(2002)083[1421:SDEOLC]2.0.CO;2 Productivity Commission, 2006, TRENDS AUSTR AGR RES Quiggin JC, 2016, AUST J AGR RESOUR EC, V60, P535, DOI 10.1111/1467-8489.12159 Schilizzi S, 2013, AUST J AGR RESOUR EC, V57, P15, DOI 10.1111/j.1467-8489.2012.00602.x Schymura M, 2014, SCIENTOMETRICS, V99, P631, DOI 10.1007/s11192-014-1248-0 van Dijk AIJM, 2013, WATER RESOUR RES, V49, P1040, DOI 10.1002/wrcr.20123 Westgate MJ, 2015, CONSERV BIOL, V29, P1606, DOI 10.1111/cobi.12605 NR 19 TC 4 Z9 4 U1 3 U2 16 PU WILEY PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1364-985X EI 1467-8489 J9 AUST J AGR RESOUR EC JI Aust. J. Agr. Resour. Econ. PD OCT PY 2016 VL 60 IS 4 BP 506 EP 515 DI 10.1111/1467-8489.12152 PG 10 WC Agricultural Economics & Policy; Economics WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Agriculture; Business & Economics GA EC7IV UT WOS:000388311500004 OA Green Submitted, Green Published DA 2024-09-05 ER PT J AU Liu, YM Chen, M AF Liu, Yunmei Chen, Min TI The Knowledge Structure and Development Trend in Artificial Intelligence Based on Latent Feature Topic Model SO IEEE TRANSACTIONS ON ENGINEERING MANAGEMENT LA English DT Article DE Artificial intelligence; Market research; Analytical models; Patents; Semantics; Collaboration; Computational modeling; development trend; knowl-edge structures; LDA models AB Currently, with the rapid development of science and technology, the field of artificial intelligence presents characteristics such as a wide crossover of disciplines and fast update, and the field of artificial intelligence has become a new focus of international competition. As an interdisciplinary field, the field of artificial intelligence has rich knowledge and strategic management significance. This article conducts an in-depth study on the knowledge structure and evolution trends in the field of AI, and the main work is as follows. First, a new potential feature topic model New-LDA is proposed for the study of topic recognition, which enhances the feature learning ability of the traditional LDA model, and makes up for the deficiency of the traditional LDA model in the ability of recognizing topics in complex environments. Second, the knowledge structure in the field of AI is analyzed from two aspects: topic recognition and coword analysis. The time series model is introduced to establish the topic evolution network, and the high-frequency words in three periods are compared and analyzed to find the evolution regular of knowledge structure in the AI domain. Finally, taking the cross-discipline of AI as an example, the thematic evolution of the field and its cross-discipline is analyzed to determine the future development direction and evolutionary trend of the field of AI. C1 [Liu, Yunmei] Shanghai Univ, Sch Cultural Heritage & Informat Management, Shanghai 200444, Peoples R China. [Chen, Min] Wenzhou Univ, Sch Business, Wenzhou 325035, Peoples R China. C3 Shanghai University; Wenzhou University RP Chen, M (corresponding author), Wenzhou Univ, Sch Business, Wenzhou 325035, Peoples R China. EM emily0904@shu.edu.cn; minchen@wzu.edu.cn RI Chen, Min/AAD-4064-2019 FU "Research on Nonstandard Citation Behavior of Scientific Data for Full-Text Citation Content" (Joint Laboratory Project Between Institute of Scientific and Technical Information of China and Elsevier in 2022); MultidimensionalEvaluation Paradigm of ScientificLiterature and Evaluation System of Scientific and Technological Talents under the Background of `Breaking Four Principles and Establishing New Standards' [21wsk169] FX This work was supported in part by the Project of "Research on Nonstandard Citation Behavior of Scientific Data for Full-Text Citation Content" (Joint Laboratory Project Between Institute of Scientific and Technical Information of China and Elsevier in 2022) and in part by the Project of "MultidimensionalEvaluation Paradigm of ScientificLiterature and Evaluation System of Scientific and Technological Talents under the Background of `Breaking Four Principles and Establishing New Standards"' under Grant 21wsk169 (Zhejiang Soft Science Research Plan in 2022). CR An Wang, 2020, 2020 IEEE 5th Information Technology and Mechatronics Engineering Conference (ITOEC). Proceedings, P814, DOI 10.1109/ITOEC49072.2020.9141892 Azzam M, 2024, IEEE T ENG MANAGE, V71, P2324, DOI 10.1109/TEM.2022.3179107 Balfaqih Hasan, 2023, Explore Business, Technology Opportunities and Challenges After the Covid-19 Pandemic. Lecture Notes in Networks and Systems (495), P1241, DOI 10.1007/978-3-031-08954-1_106 Bone F, 2020, RES EVALUAT, V29, P300, DOI 10.1093/reseval/rvaa006 Borge L, 2024, IEEE T ENG MANAGE, V71, P1452, DOI 10.1109/TEM.2022.3146199 Borrego M, 2010, REV HIGH EDUC, V34, P61 Chen C. H., 2016, CHIN J MANAGE, V13, P157 Coccia M., IEEE T ENG MANAGE Coccia M, 2021, SENSORS-BASEL, V21, DOI 10.3390/s21237803 Coccia M, 2020, TECHNOL ANAL STRATEG, V32, P1462, DOI 10.1080/09537325.2020.1785415 Coccia M, 2019, TECHNOL ANAL STRATEG, V31, P517, DOI 10.1080/09537325.2018.1523385 Coccia M, 2017, TECHNOL ANAL STRATEG, V29, P1048, DOI 10.1080/09537325.2016.1268682 Coccia M, 2016, TECHNOL ANAL STRATEG, V28, P381, DOI 10.1080/09537325.2015.1095287 Coccia M, 2016, P NATL ACAD SCI USA, V113, P2057, DOI 10.1073/pnas.1510820113 Dai J., 2018, LIB INTELL KNOWL CHI, V186, P61 Garcia-Murillo M, 2019, DIGIT POLICY REGUL G, V21, P305, DOI 10.1108/DPRG-09-2018-0051 Guo KJ, 2015, 2015 INTERNATIONAL CONFERENCE ON CYBER-ENABLED DISTRIBUTED COMPUTING AND KNOWLEDGE DISCOVERY, P209, DOI 10.1109/CyberC.2015.20 Gupta A, 2021, COMPUT BIOL MED, V138, DOI 10.1016/j.compbiomed.2021.104920 Hauer T, 2022, HUM SOC SCI COMMUN, V9, DOI 10.1057/s41599-022-01300-7 Hu C, 2017, IEEE DATA MINING, P907, DOI 10.1109/ICDM.2017.113 Jiang S, 2024, IEEE T ENG MANAGE, V71, P1163, DOI 10.1109/TEM.2022.3152216 Kalthoff M, 2015, HARVARD BUS REV, V93, P20 Vinh LT, 2012, APPL INTELL, V37, P100, DOI 10.1007/s10489-011-0315-y Leahey E, 2017, ADMIN SCI QUART, V62, P105, DOI 10.1177/0001839216665364 Liu ZY, 2015, ACSR ADV COMPUT, V18, P837 Lui AKH, 2022, ANN OPER RES, V308, P373, DOI 10.1007/s10479-020-03862-8 Luo J, 2020, INT J COMPUT COMMUN, V15, DOI 10.15837/ijccc.2020.2.3811 Luo M., 2007, SCI RES MANAGE CHINA, V28, P18 Luo XF, 2014, IEEE T SYST MAN CY-S, V44, P86, DOI 10.1109/TSMCC.2012.2231674 Mikalef P, 2019, LECT NOTES BUS INF P, V373, P409, DOI 10.1007/978-3-030-36691-9_34 Mountford N, 2020, STUD HIGH EDUC, V45, P2558, DOI 10.1080/03075079.2019.1623768 Piepenbrink A, 2015, SCIENTOMETRICS, V102, P2107, DOI 10.1007/s11192-014-1513-2 Robertson J, 2022, IEEE T ENG MANAGE, V69, P3913, DOI 10.1109/TEM.2021.3088382 Shao Z, 2022, EXPERT SYST APPL, V209, DOI 10.1016/j.eswa.2022.118221 Shen JJ, 2022, J CLOUD COMPUT-ADV S, V11, DOI 10.1186/s13677-022-00291-9 Soukup V., 2022, IND 40 CHALLENGES SM, P95 Wang L. X., 2015, J INTELL CHINA, V34, P127 Wang XB, 2008, CONF CYBERN INTELL S, P9, DOI 10.1109/IAS.2008.8 Wu D, 2021, J INTELL INF SYST, V56, P1, DOI 10.1007/s10844-020-00597-7 Xu K, 2018, KNOWL-BASED SYST, V141, P44, DOI 10.1016/j.knosys.2017.11.007 Yang X. Z., 2019, MODERN COMPUT CHINA, V26, P13 Zhang YJ, 2018, INT J DATA WAREHOUS, V14, P18, DOI 10.4018/IJDWM.2018040102 Zou LX, 2021, LIBR HI TECH, V39, P1063, DOI 10.1108/LHT-01-2021-0041 NR 43 TC 22 Z9 22 U1 88 U2 197 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9391 EI 1558-0040 J9 IEEE T ENG MANAGE JI IEEE Trans. Eng. Manage. PY 2024 VL 71 BP 12593 EP 12604 DI 10.1109/TEM.2022.3232178 EA JAN 2023 PG 12 WC Business; Engineering, Industrial; Management WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Business & Economics; Engineering GA C6R9A UT WOS:000920705300001 HC Y HP N DA 2024-09-05 ER PT C AU Davidescu, AA Agafitei, MD Strat, VA Dima, AM AF Davidescu, Adriana AnaMaria Agafitei, Marina-Diana Strat, Vasile Alecsandru Dima, Alina Mihaela TI Mapping the Landscape: A Bibliometric Analysis of Rating Agencies in the Era of Artificial Intelligence and Machine Learning SO PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON BUSINESS EXCELLENCE LA English DT Proceedings Paper CT 18th International Conference on Business Excellence (ICBE) - Smart Solutions for a Sustainable Future CY MAR 21-23, 2024 CL Bucharest, ROMANIA DE Rating agencies; Artificial intelligence; Machine learning; Risk assessment; Accountable governance ID BOND RATINGS; CREDIT; CLASSIFICATION; MODELS; INDEX; RISK AB In the ever-evolving financial landscape, the integration of artificial intelligence (AI) and machine learning (ML) is revolutionising creditworthiness assessment. The vast body of literature on credit rating indicates a growing prevalence of these techniques in the rating processes. Although these methods boast high predictive accuracy, concerns about their robustness, equity, and explainability affect the confidence of various parties in rating agencies. This comprehensive study explores the dynamic intersection of these cutting-edge technologies with rating agencies, presenting an in-depth literature review employing a bibliometric analysis that uses the Bibliometrix and Biblioshiny packages from R. The paper makes a significant contribution by analysing the literature across three prominent databases: Web of Science, Scopus, and arXiv. The empirical findings indicate that despite a recent growing interest, the relatively limited number of documents implies that, while there is a wide literature about credit rating in general, when it comes to rating agencies, the literature is much more limited. This limitation may stem from a certain lack of transparency in the methods and processes used by rating agencies and the complex nature of these entities. The literature witnessed growth after the 2008 global financial crisis, where rating agencies faced significant criticism, and post-pandemic, indicating a need for more adaptable and precise ratings. The examination of the topic reveals a recent shift in focus within AI-driven rating agencies towards accountable governance. While traditional attention persists on artificial intelligence techniques and finance, the emerging emphasis on ethical considerations, societal impacts, and performance evaluation underscores a changing landscape. This transition underscores the growing importance of integrating ethical considerations and societal impacts into the operational frameworks of AI-powered rating agencies, emphasising the necessity for responsible and transparent decision-making practices. C1 [Davidescu, Adriana AnaMaria; Agafitei, Marina-Diana; Strat, Vasile Alecsandru; Dima, Alina Mihaela] Bucharest Univ Econ Studies, Bucharest, Romania. C3 Bucharest University of Economic Studies RP Davidescu, AA (corresponding author), Bucharest Univ Econ Studies, Bucharest, Romania. EM adriana.alexandru@csie.ase.ro; diana.agafitei@csie.ase.ro; vasile.strat@csie.ase.ro; alina.dima@ase.ro FU EU's NextGenerationEU instrument through the National Recovery and Resilience Plan of Romania [Pillar III-C9-I8, 760049/23.05.2023, 760047/23.05.2023] FX This work was funded by the EU's NextGenerationEU instrument through the National Recovery and Resilience Plan of Romania - Pillar III-C9-I8, managed by the Ministry of Research, Innovation and Digitalization, within the project entitled "CauseFinder: Causality in the Era of Big Data and AI and its applications to innovation management", contract no. 760049/23.05.2023, code CF 268/29.11.2023, and within the project entitled "Accountable Governance and Responsible Innovation in Artificial Intelligence", contract no. 760047/23.05.2023, code CF 158/15.11.2022. CR Altman EI, 1997, J BANK FINANC, V21, P1721, DOI 10.1016/S0378-4266(97)00036-8 Aria M, 2017, J INFORMETR, V11, P959, DOI 10.1016/j.joi.2017.08.007 Atenstaedt R, 2012, BRIT J GEN PRACT, V62, P148, DOI 10.3399/bjgp12X630142 Bousmalis K, 2013, IEEE T NEUR NET LEAR, V24, P170, DOI 10.1109/TNNLS.2012.2224882 Brennan D, 2004, IC-AI '04 & MLMTA'04 , VOL 1 AND 2, PROCEEDINGS, P161 BROADUS RN, 1987, SCIENTOMETRICS, V12, P373, DOI 10.1007/BF02016680 Chen SY, 2011, QUANT FINANC, V11, P135, DOI 10.1080/14697680903410015 Costas R, 2007, J INFORMETR, V1, P193, DOI 10.1016/j.joi.2007.02.001 Cowan A.R., 1991, Journal of the Midwest Finance Association, V20, P47 Daniels H, 1999, NEURAL COMPUT APPL, V8, P226, DOI 10.1007/s005210050025 Dogan S, 2022, OPER RES DECIS, V32, P25, DOI 10.37190/ord220102 Dutta S., 1988, IEEE International Conference on Neural Networks (IEEE Cat. No.88CH2632-8), P443, DOI 10.1109/ICNN.1988.23958 Ebenroth C. T., 1993, Law and Policy in International Business, V24, P783 Fahimnia B, 2015, INT J PROD ECON, V162, P101, DOI 10.1016/j.ijpe.2015.01.003 Giudici P, 2024, EXPERT SYST APPL, V235, DOI 10.1016/j.eswa.2023.121220 Golbayani P, 2020, N AM J ECON FINANC, V54, DOI 10.1016/j.najef.2020.101251 Griffith-Jones S., 2021, (Working Paper, n. 175). Hao Z, 2021, ECOL INDIC, V125, DOI 10.1016/j.ecolind.2021.107358 Hirsch JE, 2005, P NATL ACAD SCI USA, V102, P16569, DOI 10.1073/pnas.0507655102 HORRIGAN JO, 1966, J ACCOUNTING RES, V4, P44, DOI 10.2307/2490168 Irmatova E, 2016, Arxiv, DOI arXiv:1608.06416 Jun Woo Kim, 1993, Expert Systems, V10, P167, DOI 10.1111/j.1468-0394.1993.tb00093.x KAPLAN RS, 1979, J BUS, V52, P231, DOI 10.1086/296045 Kim HS, 2010, EUR J OPER RES, V201, P838, DOI 10.1016/j.ejor.2009.03.036 Kim KS, 2005, EXPERT SYST APPL, V29, P75, DOI 10.1016/j.eswa.2005.01.007 Kumar R, 2021, SUSTAINABILITY-BASEL, V13, DOI 10.3390/su13105617 Lee TS, 2006, COMPUT STAT DATA AN, V50, P1113, DOI 10.1016/j.csda.2004.11.006 Lessmann S, 2015, EUR J OPER RES, V247, P124, DOI 10.1016/j.ejor.2015.05.030 Maher J. J., 1997, International Journal of Intelligent Systems in Accounting, Finance and Management, V6, P59, DOI 10.1002/(SICI)1099-1174(199703)6:1<59::AID-ISAF116>3.0.CO;2-H Maldonado S, 2017, DECIS SUPPORT SYST, V104, P113, DOI 10.1016/j.dss.2017.10.007 Mattarocci G., 2014, Elsevier Monographs ODLIS, 2022, about us Ozturk H, 2016, ECON MODEL, V54, P469, DOI 10.1016/j.econmod.2016.01.012 Paleologo G, 2010, EUR J OPER RES, V201, P490, DOI 10.1016/j.ejor.2009.03.008 Surkan A. J., 1990, IJCNN International Joint Conference on Neural Networks (Cat. No.90CH2879-5), P157, DOI 10.1109/IJCNN.1990.137709 Sylla RichardE., 2002, Ratings, Rating Agencies and the Global Financial System, P19 Trivedi SK, 2020, TECHNOL SOC, V63, DOI 10.1016/j.techsoc.2020.101413 Ubarhande P, 2021, COGENT BUS MANAG, V8, DOI 10.1080/23311975.2021.1878977 Vapnik V., 2013, The nature of statistical learning theory Yang B, 2017, WORLD REV POLIT ECON, V8, P4 Zeng J. J., 2021, Journal of Cleaner Production NR 41 TC 0 Z9 0 U1 1 U2 1 PU SCIENDO PI WARSAW PA BOGUMILA ZUGA 32A, WARSAW, MAZOVIA, POLAND SN 2502-0226 EI 2558-9652 J9 P INT CONF BUS EXCEL JI Proc. Int. Conf. Bus. Excell. PD JUN 1 PY 2024 VL 18 IS 1 BP 67 EP 85 DI 10.2478/picbe-2024-0007 PG 19 WC Business WE Conference Proceedings Citation Index - Science (CPCI-S) SC Business & Economics GA XM4K5 UT WOS:001262084900007 DA 2024-09-05 ER PT J AU Lathabai, HH Nandy, A Singh, VK AF Lathabai, Hiran H. Nandy, Abhirup Singh, Vivek Kumar TI Institutional collaboration recommendation: An expertise-based framework using NLP and network analysis SO EXPERT SYSTEMS WITH APPLICATIONS LA English DT Article DE Institutional collaboration; Recommendation system; NLP; Network analysis; Research expertise; Expertise indices ID PRODUCTIVITY AB The shift from 'trust-based funding' to 'performance-based funding' is one of the factors that has forced institutions to strive for continuous improvement of performance. Several studies have established the importance of collaboration in enhancing the performance of paired institutions. However, identification of suitable institutions for collaboration is sometimes difficult and therefore institutional collaboration recommendation systems can be vital. Currently, there are no well-developed institutional collaboration recommendation systems. In order to bridge this gap, we design a framework that recognizes the thematic strengths and core competencies of institutions, which can in turn be used for collaboration recommendations. The framework, based on NLP and network analysis techniques, is capable of determining the strengths of an institution in different thematic areas within a field and thereby determining the core competency and potential core competency areas of that institution. It makes use of recently proposed expertise indices such as x and x(g) indices for determination of core and potential core competency areas and can toss two kinds of recommendations: (i) for enhancement of strength of strong areas or core competency areas of an institution and (ii) for complementing the potentially strong areas or potential core competency areas of an institution. A major advantage of the system is that it can help to determine and improve the research portfolio of an institution within a field through suitable collaboration, which may lead to the overall improvement of the performance of the institution in that field. The framework is demonstrated by analyzing the performance of 195 Indian institutions in the field of 'Computer Science'. Upon validation using standard metrics for novelty, coverage and diversity of recommendation systems, the framework is found to be of sufficient coverage and capable of tossing novel and diverse recommendations. The article thus presents an institutional collaboration recommendation system which can be used by institutions to identify potential collaborators. C1 [Lathabai, Hiran H.] Indian Inst Sci, DST Ctr Policy Res, Bengaluru 560012, India. [Nandy, Abhirup; Singh, Vivek Kumar] Banaras Hindu Univ, Dept Comp Sci, Varanasi 221005, Uttar Pradesh, India. C3 Indian Institute of Science (IISC) - Bangalore; Banaras Hindu University (BHU) RP Singh, VK (corresponding author), Banaras Hindu Univ, Dept Comp Sci, Varanasi 221005, Uttar Pradesh, India. EM hiranh@iisc.ac.in; vivek@bhu.ac.in RI Nandy, Abhirup/AFR-0690-2022; Singh, Vivek Kumar/O-5699-2019 OI Nandy, Abhirup/0000-0001-8618-0847; Singh, Vivek Kumar/0000-0002-7348-6545; lathabai, hiran/0000-0002-5633-9842 FU DST-NSTMIS [DST/NSTMIS/05/04/2019-20] FX The authors would like to acknowledge the support provided by the DST-NSTMIS funded project-'Design of a Computational Framework for Discipline-wise and Thematic Mapping of Research Performance of Indian Higher Education Institutions (HEIs)', bearing Grant No. DST/NSTMIS/05/04/2019-20, for this work. CR Abramo G, 2009, HIGH EDUC, V57, P155, DOI 10.1007/s10734-008-9139-z Adams J, 2012, NATURE, V490, P335, DOI 10.1038/490335a Afolabi IT, 2021, WIRELESS PERS COMMUN, V121, P487, DOI 10.1007/s11277-021-08646-2 Ali Z, 2020, KNOWL-BASED SYST, V210, DOI 10.1016/j.knosys.2020.106438 Alshareef AM, 2019, IEEE ACCESS, V7, P38813, DOI 10.1109/ACCESS.2019.2906106 Ammar W., 2018, P 2018 C N AM CHAPT, V3, P84, DOI [DOI 10.18653/V1/N18-3011, 10.18653/v1/N18-3011] Ashraf I, 2020, INT ARAB J INF TECHN, V17, P875, DOI 10.34028/iajit/17/6/6 Batagelj V., 2012, COMPUT COMPLEX, P2878 Bouraga S, 2014, INT J INTELL INF TEC, V10, P1, DOI 10.4018/ijiit.2014040101 Brandao MA, 2013, PROCEEDINGS OF THE 22ND INTERNATIONAL CONFERENCE ON WORLD WIDE WEB (WWW'13 COMPANION), P833 Canto Isabel, 2001, Journal of Studies in International Education, V5, P26, DOI [DOI 10.1177/102831530151003, 10.1177/102831530151003] Caselles-Dupré H, 2018, 12TH ACM CONFERENCE ON RECOMMENDER SYSTEMS (RECSYS), P352, DOI 10.1145/3240323.3240377 Deng J, 2019, INSECT CONSERV DIVER, V12, P18, DOI 10.1111/icad.12298 Ductor L, 2015, OXFORD B ECON STAT, V77, P385, DOI 10.1111/obes.12070 Egghe L., 2006, ISSI NEWSLETTER, V2, P8 Elammari M., 2012, INT J COMPUTER COMMU, V1 Feng Xia, 2016, IEEE Transactions on Big Data, V2, P101, DOI 10.1109/TBDATA.2016.2555318 Fouss Francois, 2008, Wl 2008. 2008 IEEE/WIC/ACM International Conference on Web Intelligence. IAT 2008. 2008 IEEE/WIC/ACM International Conference on Intelligent Agent Technology. Wl-IAT Workshop 2008 2008 IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent Technology Workshops, P735, DOI 10.1109/WIIAT.2008.252 Gao L, 2019, EXPERT SYST APPL, V136, P242, DOI 10.1016/j.eswa.2019.06.013 George S, 2021, EXPERT SYST APPL, V176, DOI 10.1016/j.eswa.2021.114833 Gunawardana A., 2015, Recommender Systems Handbook, P265, DOI DOI 10.1007/978-1-0716-2197-415 Habib R, 2019, SCIENTOMETRICS, V119, P643, DOI 10.1007/s11192-019-03053-8 He C, 2020, J LARYNGOL OTOL, V134, P931, DOI 10.1017/S0022215120001589 Hernandez-Gress Neil, 2018, 2018 5th International Conference on Computational Science and Computational Intelligence (CSCI), P1129, DOI 10.1109/CSCI46756.2018.00218 Luong H, 2012, LECT NOTES ARTIF INT, V7198, P426, DOI 10.1007/978-3-642-28493-9_45 Hirsch JE, 2005, P NATL ACAD SCI USA, V102, P16569, DOI 10.1073/pnas.0507655102 Jatnika D, 2019, PROCEDIA COMPUT SCI, V157, P160, DOI 10.1016/j.procs.2019.08.153 Jinzhu Zhang, 2017, Proceedings of the Association for Information Science and Technology, V54, DOI 10.1002/pra2.2017.14505401182 Jun SP, 2021, TECHNOL FORECAST SOC, V170, DOI 10.1016/j.techfore.2021.120871 Jurgens D., 2012, P SEMEVAL NAACL HLT, V2, P356 Karasu S., 2018, 2018 26th Signal Processing and Communications Applications Conference (SIU), Izmir, Turkey, 25 May 2018, P1, DOI DOI 10.1109/SIU.2018.8404760 Katz JS, 1997, RES POLICY, V26, P1, DOI 10.1016/S0048-7333(96)00917-1 Kent A., 1955, American Documentation, V6, P93, DOI [DOI 10.1002/ASI.5090060209, 10.1002/asi.5090060209, 10.1002/] Kim MC, 2015, SCIENTOMETRICS, V104, P239, DOI 10.1007/s11192-015-1595-5 Kong XJ, 2017, SCIENTOMETRICS, V113, P369, DOI 10.1007/s11192-017-2485-9 Kong XJ, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0148492 Koseoglu MA, 2016, SCIENTOMETRICS, V109, P203, DOI 10.1007/s11192-016-1894-5 Lathabai H. H., 2021, P 11 INT WORKSHOP BI Lathabai HH, 2021, SCIENTOMETRICS, V126, P9557, DOI 10.1007/s11192-021-04188-3 Lathabai HH, 2020, J INFORMETR, V14, DOI 10.1016/j.joi.2020.101096 Lathabai HH, 2017, SCIENTOMETRICS, V110, P711, DOI 10.1007/s11192-016-2202-0 Lee S, 2005, SOC STUD SCI, V35, P673, DOI 10.1177/0306312705052359 LEVENSHT.VI, 1965, DOKL AKAD NAUK SSSR+, V163, P845 Liu Y, 2019, EXPERT SYST, V36, DOI 10.1111/exsy.12365 Lops P, 2011, RECOMMENDER SYSTEMS HANDBOOK, P73, DOI 10.1007/978-0-387-85820-3_3 Martin T, 2013, Arxiv, DOI arXiv:1304.0473 Medvet E, 2014, PROC INT C TOOLS ART, P1004, DOI 10.1109/ICTAI.2014.152 Meghanathan N, 2016, Advanced methods for complex network analysis Melin G, 1996, SCIENTOMETRICS, V36, P363, DOI 10.1007/BF02129600 Mikolov T., 2013, INT C LEARNING REPRE Newman MEJ, 2004, P NATL ACAD SCI USA, V101, P5200, DOI 10.1073/pnas.0307545100 Parada G. A., 2013, COMPSCI 2013 P 2013, P7, DOI DOI 10.1145/2508497.2508499 Parish AJ, 2018, PLOS ONE, V13, DOI 10.1371/journal.pone.0189742 Payumo Jane, 2020, Front Res Metr Anal, V5, P612442, DOI 10.3389/frma.2020.612442 Pazzani M. J., 2007, The Adaptive Web. Methods and Strategies of Web Personalization, P325 Pradhan T, 2021, INFORM SCIENCES, V559, P212, DOI 10.1016/j.ins.2020.12.024 Pradhan T, 2020, FUTURE GENER COMP SY, V110, P1139, DOI 10.1016/j.future.2019.11.017 Pujari M, 2015, NETW HETEROG MEDIA, V10, P17, DOI 10.3934/nhm.2015.10.17 Rollins J., 2017, CEUR Workshop Proceedings, V1823, P18 Sezer A, 2021, SOLDER SURF MT TECH, V33, P291, DOI 10.1108/SSMT-04-2021-0013 Shao BL, 2021, EXPERT SYST APPL, V165, DOI 10.1016/j.eswa.2020.113764 Son J, 2017, EXPERT SYST APPL, V89, P404, DOI 10.1016/j.eswa.2017.08.008 Sorlin S., 2007, Higher Education Policy, V20, P413 Sun N, 2019, IEEE ACCESS, V7, P136036, DOI 10.1109/ACCESS.2019.2941022 Vasile F, 2016, PROCEEDINGS OF THE 10TH ACM CONFERENCE ON RECOMMENDER SYSTEMS (RECSYS'16), P225, DOI 10.1145/2959100.2959160 Wagner CS, 2005, RES POLICY, V34, P1608, DOI 10.1016/j.respol.2005.08.002 Waheed W, 2019, IEEE ACCESS, V7, P33145, DOI 10.1109/ACCESS.2019.2900520 Wu Sen., 2013, Proceedings of the Sixth ACM International Conference on Web Search and Data Mining,WSDM '13, P43, DOI DOI 10.1145/2433396.2433404 Yang C, 2015, P ANN HICSS, P552, DOI 10.1109/HICSS.2015.73 Yang C, 2015, COMPUT J, V58, P1921, DOI 10.1093/comjnl/bxu033 Ye Q, 2012, TOUR MANAG PERSPECT, V2-3, P55, DOI 10.1016/j.tmp.2012.03.002 Zahálka J, 2015, IEEE T MULTIMEDIA, V17, P2235, DOI 10.1109/TMM.2015.2480007 Zhang J, 2016, J ASSOC INF SCI TECH, V67, P967, DOI 10.1002/asi.23437 NR 73 TC 5 Z9 5 U1 5 U2 20 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0957-4174 EI 1873-6793 J9 EXPERT SYST APPL JI Expert Syst. Appl. PD DEC 15 PY 2022 VL 209 AR 118317 DI 10.1016/j.eswa.2022.118317 EA AUG 2022 PG 17 WC Computer Science, Artificial Intelligence; Engineering, Electrical & Electronic; Operations Research & Management Science WE Science Citation Index Expanded (SCI-EXPANDED) SC Computer Science; Engineering; Operations Research & Management Science GA 4R4YQ UT WOS:000856772000012 OA Green Submitted DA 2024-09-05 ER PT J AU Xu, S Hao, LY An, X Yang, GC Wang, FF AF Xu, Shuo Hao, Liyuan An, Xin Yang, Guancan Wang, Feifei TI Emerging research topics detection with multiple machine learning models SO JOURNAL OF INFORMETRICS LA English DT Article DE Emerging research topics; Topic modeling; Dynamic Influence Model; Citation Influence Model; Machine learning ID CO-WORD ANALYSIS; INFORMATION-SCIENCE; RESEARCH FIELDS; RESEARCH FRONTS; IDENTIFY; EVOLUTION; TRENDS; PUBLICATIONS; TECHNOLOGIES; REFERENCES AB Emerging research topic detection can benefit the research foundations and policy-makers. With the long-term and recent interest in detecting emerging research topics, various approaches are proposed in the literature. Though, there is still a lack of well-established linkages between the clear conceptual definition of emerging research topics and the proposed indicators for operationalization. This work follows the definition by Wang (2018), and several machine learning models are together used to detect and foresight the emerging research topics. Finally, experimental results on gene editing dataset discover three emerging research topics, which make clear that it is feasible to identify emerging research topics with our framework. (C) 2019 Elsevier Ltd. All rights reserved. C1 [Xu, Shuo; Hao, Liyuan; Wang, Feifei] Beijing Univ Technol, Coll Econ & Management, Res Base Beijing Modern Mfg Dev, 100 PingLeYuan, Beijing 100124, Peoples R China. [An, Xin] Beijing Forestry Univ, Sch Econ & Management, 35 Qinghua East Rd, Beijing 100083, Peoples R China. [Yang, Guancan] Renmin Univ China, Sch Informat Resource Management, 59 Zhongguancun St, Beijing 100872, Peoples R China. C3 Beijing University of Technology; Beijing Forestry University; Renmin University of China RP An, X (corresponding author), Beijing Forestry Univ, Sch Econ & Management, 35 Qinghua East Rd, Beijing 100083, Peoples R China. EM xushuo@bjut.edu.cn; Leanne.H@qq.com; anxin@bjfu.edu.cn; yanggc@ruc.edu.cn; feifeiwang@bjut.edu.cn RI yang, guancan/HLP-8842-2023; Xu, Shuo/KVY-0402-2024; 王, 菲菲/R-1936-2019 OI yang, guancan/0000-0002-1706-1884; Xu, Shuo/0000-0002-8602-1819; FU Social Science Foundation of Beijing Municipality [17GLB074]; Natural Science Foundation of Guangdong Province [2018A030313695] FX This research received the financial support from Social Science Foundation of Beijing Municipality under grant number 17GLB074, and Natural Science Foundation of Guangdong Province under grant number 2018A030313695. Our gratitude also goes to the anonymous reviewers for their valuable comments. CR AlSumait L, 2009, LECT NOTES ARTIF INT, V5781, P67, DOI 10.1007/978-3-642-04180-8_22 An X, 2019, COMPUT ELECTRON AGR, V157, P239, DOI 10.1016/j.compag.2018.12.035 An X, 2014, INT J DISTRIB SENS N, DOI 10.1155/2014/820715 An XY, 2011, SCIENTOMETRICS, V88, P133, DOI 10.1007/s11192-011-0374-1 Andrieu C, 2003, MACH LEARN, V50, P5, DOI 10.1023/A:1020281327116 [Anonymous], FRACEP EMERGING RES [Anonymous], 2010, ACM KDD, DOI 10.1145/1835804.1835953 [Anonymous], 2003, P 26 ANN INT ACM SIG [Anonymous], 2010, ICML Argyriou A, 2008, MACH LEARN, V73, P243, DOI 10.1007/s10994-007-5040-8 Bakker B, 2004, J MACH LEARN RES, V4, P83, DOI 10.1162/153244304322765658 Ben-David S, 2008, MACH LEARN, V73, P273, DOI 10.1007/s10994-007-5043-5 Bishop Christopher M., 2006, Em: Journal of Electronic Imaging, DOI DOI 10.1117/1.2819119 Blei D.M., 2006, P 23 INT C MACH LEAR, DOI [DOI 10.1145/1143844.1143859, 10.1145/1143844.1143859] Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993 Boyack KW, 2014, J ENG TECHNOL MANAGE, V32, P147, DOI 10.1016/j.jengtecman.2013.07.001 Boyack KW, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0018029 Boyack KW, 2010, J AM SOC INF SCI TEC, V61, P2389, DOI 10.1002/asi.21419 Caruana R, 1997, MACH LEARN, V28, P41, DOI 10.1023/A:1007379606734 Chen BT, 2017, J INFORMETR, V11, P1175, DOI 10.1016/j.joi.2017.10.003 Chen CM, 2006, J AM SOC INF SCI TEC, V57, P359, DOI 10.1002/asi.20317 Cozzens S, 2010, TECHNOL ANAL STRATEG, V22, P361, DOI 10.1080/09537321003647396 DiCarlo JE, 2013, NUCLEIC ACIDS RES, V41, P4336, DOI 10.1093/nar/gkt135 Dietz L., 2007, ICML, P233, DOI DOI 10.1145/1273496.1273526 Glänzel W, 2012, SCIENTOMETRICS, V91, P399, DOI 10.1007/s11192-011-0591-7 González-Alcaide G, 2016, SCIENTOMETRICS, V109, P1283, DOI 10.1007/s11192-016-2083-2 Griffiths TL, 2004, P NATL ACAD SCI USA, V101, P5228, DOI 10.1073/pnas.0307752101 Guo HN, 2011, SCIENTOMETRICS, V89, P421, DOI 10.1007/s11192-011-0433-7 Hansmann T, 2014, 2014 IEEE/WIC/ACM INTERNATIONAL JOINT CONFERENCES ON WEB INTELLIGENCE (WI) AND INTELLIGENT AGENT TECHNOLOGIES (IAT), VOL 1, P43, DOI 10.1109/WI-IAT.2014.15 Hoffman MD, 2013, J MACH LEARN RES, V14, P1303 Hu CP, 2013, SCIENTOMETRICS, V97, P369, DOI 10.1007/s11192-013-1076-7 Huang MH, 2014, SCIENTOMETRICS, V98, P1721, DOI 10.1007/s11192-013-1126-1 Iwata T, 2012, ACM T KNOWL DISCOV D, V5, DOI 10.1145/2086737.2086739 Jaric I, 2014, SCIENTOMETRICS, V100, P519, DOI 10.1007/s11192-014-1268-9 Jia LT, 2012, CANCER TREAT REV, V38, P868, DOI 10.1016/j.ctrv.2012.06.008 Jordan MI, 1999, MACH LEARN, V37, P183, DOI 10.1023/A:1007665907178 Kawamae N., 2010, Proceedings of the 19th International Conference on World Wide Web,WWW'10, P1129 Kleinberg J, 2003, DATA MIN KNOWL DISC, V7, P373, DOI 10.1023/A:1024940629314 KULLBACK S, 1951, ANN MATH STAT, V22, P79, DOI 10.1214/aoms/1177729694 Li XL, 2018, NUCLEIC ACIDS RES, V46, P10195, DOI 10.1093/nar/gky804 LIN JH, 1991, IEEE T INFORM THEORY, V37, P145, DOI 10.1109/18.61115 Liu L, 2015, INTERNATIONAL CONFERENCE ON SIMULATION, MODELLING AND MATHEMATICAL STATISTICS (SMMS 2015), P291 Liu ZG, 2015, SCIENTOMETRICS, V103, P135, DOI 10.1007/s11192-014-1517-y Ma RM, 2012, J INFORMETR, V6, P532, DOI 10.1016/j.joi.2012.04.006 Moqtaderi Zarmik, 2013, Curr Protoc Mol Biol, V104, DOI 10.1002/0471142727.mb1310cs104 Morris SA, 2003, J AM SOC INF SCI TEC, V54, P413, DOI 10.1002/asi.10227 Ohniwa RL, 2010, SCIENTOMETRICS, V85, P111, DOI 10.1007/s11192-010-0252-2 Porter AL, 2019, TECHNOL FORECAST SOC, V146, P628, DOI 10.1016/j.techfore.2018.04.016 Robinson DKR, 2007, SCIENTOMETRICS, V70, P831, DOI 10.1007/s11192-007-0314-2 Roche I, 2010, SCIENTOMETRICS, V82, P663, DOI 10.1007/s11192-010-0178-8 Rotolo D, 2015, RES POLICY, V44, P1827, DOI 10.1016/j.respol.2015.06.006 SAETRE R, 2007, P 2 BIOCREATIVE CHAL, P209 Soriano AS, 2018, SCIENTOMETRICS, V115, P1591, DOI 10.1007/s11192-018-2651-8 Schultz LI, 2010, SCIENTOMETRICS, V85, P155, DOI 10.1007/s11192-010-0244-2 Sentmanat MF, 2018, SCI REP-UK, V8, DOI 10.1038/s41598-018-19441-8 Shibata N, 2008, TECHNOVATION, V28, P758, DOI 10.1016/j.technovation.2008.03.009 SMALL H, 1974, SCI STUD, V4, P17, DOI 10.1177/030631277400400102 Small H, 2014, RES POLICY, V43, P1450, DOI 10.1016/j.respol.2014.02.005 Suykens JAK., 2002, LEAST SQUARES SUPPOR, P308 Tsuruoka Y, 2005, LECT NOTES COMPUT SC, V3746, P382 Tu YN, 2012, INFORM PROCESS MANAG, V48, P303, DOI 10.1016/j.ipm.2011.07.006 Waltman L, 2012, J AM SOC INF SCI TEC, V63, P2378, DOI 10.1002/asi.22748 Wang C, 2008, P 24 C UNCERTAINTY A, P579 Wang Q, 2018, J ASSOC INF SCI TECH, V69, P290, DOI 10.1002/asi.23930 Wang Xuerui., P 12 ACM SIGKDD INT, P424 Xu S, 2020, SCIENTOMETRICS, V122, P607, DOI 10.1007/s11192-019-03288-5 Xu S, 2019, SCIENTOMETRICS, V120, P1427, DOI 10.1007/s11192-019-03162-4 Xu S, 2019, J ASSOC INF SCI TECH, V70, P1026, DOI 10.1002/asi.24175 Xu S, 2018, SCIENTOMETRICS, V117, P61, DOI 10.1007/s11192-018-2841-4 Xu S, 2014, MULTIMED TOOLS APPL, V71, P699, DOI 10.1007/s11042-013-1526-5 Xu S, 2014, INT J DISTRIB SENS N, DOI 10.1155/2014/280892 Xu S, 2013, PATTERN RECOGN LETT, V34, P1078, DOI 10.1016/j.patrec.2013.01.015 Yan EJ, 2014, J INFORMETR, V8, P98, DOI 10.1016/j.joi.2013.10.010 Zhao DZ, 2008, J AM SOC INF SCI TEC, V59, P2070, DOI 10.1002/asi.20910 Zhu XD, 2015, J ASSOC INF SCI TECH, V66, P408, DOI 10.1002/asi.23179 NR 75 TC 39 Z9 46 U1 17 U2 222 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS SN 1751-1577 EI 1875-5879 J9 J INFORMETR JI J. Informetr. PD NOV PY 2019 VL 13 IS 4 AR 100983 DI 10.1016/j.joi.2019.100983 PG 19 WC Computer Science, Interdisciplinary Applications; Information Science & Library Science WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Computer Science; Information Science & Library Science GA JU7SB UT WOS:000501871000011 DA 2024-09-05 ER PT J AU Zhang, Q Mao, R Li, R AF Zhang, Qi Mao, Rui Li, Rui TI Spatial-temporal restricted supervised learning for collaboration recommendation SO SCIENTOMETRICS LA English DT Article DE Spatial-temporal description; Academic influence; Supervised learning; Collaboration recommendation ID DISCRIMINANT-ANALYSIS; RECOGNITION AB Collaboration recommendation from scholarly big data is an important but challenging problem as it might suffer the difficulty of accurate recommendation from three aspects: how to efficiently integrate the available author-related information, how to precisely describe the characteristics of the scholarly data samples, and how to extract the intrinsic features that are more suitable for collaboration recommendation. Facing these challenges, we incorporate the temporal and academic-influence information of the publications with the spatial information of the researchers to present a spatial-temporal restricted supervised learning (STSL) model for collaboration recommendation. We first present a topic clustering model to determine the topic distribution vector of each researcher, where a temporal parameter is introduced to exponentially weight each topic distribution vector and an academic-influence parameter is further introduced to linearly combine all the topic distribution vectors of the publications. Then, inspired by the geographical-advantage phenomena in collaboration, spatial labels are generated by using the personal information of the researchers. Furthermore, considering that the publication data enhanced by spatial-temporal and academic-influence descriptions usually exhibit multimodal or mixmodal properties, we propose a data-driven supervised learning model to extract the intrinsic features inhered in data, which determines a low-dimensional recommendation subspace. A number of experiments are conducted to test the impact of the topic-clustering number, the temporal parameter, the academic-influence parameter, and the number of extracted features. Besides, several widely-used models are adopted to compare with the proposed STSL model for collaboration recommendation, with results verifying its feasibility and effectiveness. C1 [Zhang, Qi] Univ Int Business & Econ, Sch Informat Technol & Management, Beijing 100029, Peoples R China. [Mao, Rui] PLA, Troop 93617, Beijing 101407, Peoples R China. [Li, Rui] Dalian Univ Technol, Sch Math Sci, Dalian 116024, Peoples R China. C3 University of International Business & Economics; Dalian University of Technology RP Zhang, Q (corresponding author), Univ Int Business & Econ, Sch Informat Technol & Management, Beijing 100029, Peoples R China. EM zhangqi@uibe.edu.cn; mr_32@pku.edu.cn; rui_li@dlut.edu.cn RI ARSLAN, Okan/AAA-3232-2020; Li, Rui/C-2155-2009 OI Zhang, Qi/0000-0003-1912-0523 FU NSFC [61503375]; Fundamental Research Funds for the Central Universities in UIBE [CXTD10-05,18QD18] FX This work was supported by NSFC (No. 61503375), and the Fundamental Research Funds for the Central Universities in UIBE (CXTD10-05,18QD18). CR Alinani K, 2018, IEEE ACCESS, V6, P20298, DOI 10.1109/ACCESS.2018.2823720 [Anonymous], 2007, ADAPTIVE WEB, DOI DOI 10.1007/978-3-540-72079-9_10 [Anonymous], 2010, Proceedings of the 4th ACM conference on Recommender systems, ACM, DOI DOI 10.1145/1864708.1864760 Araki M, 2017, IEICE T INF SYST, VE100D, P785, DOI 10.1587/transinf.2016DAP0030 Belhumeur PN, 1997, IEEE T PATTERN ANAL, V19, P711, DOI 10.1109/34.598228 Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993 Cai Z. H., 2017, P INT C PION COMP SC, P52 Chen JY, 2017, SIGIR'17: PROCEEDINGS OF THE 40TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, P335, DOI 10.1145/3077136.3080797 Chen ZW, 2017, MULTIMED TOOLS APPL, V76, P17669, DOI 10.1007/s11042-015-2882-0 Chu KC, 2016, PROCEEDINGS OF THE 2016 IEEE/ACM INTERNATIONAL CONFERENCE ON ADVANCES IN SOCIAL NETWORKS ANALYSIS AND MINING ASONAM 2016, P1119, DOI 10.1109/ASONAM.2016.7752380 Cui JR, 2015, NEUROCOMPUTING, V149, P1451, DOI 10.1016/j.neucom.2014.08.047 Gao ZQ, 2018, INT J DATA WAREHOUS, V14, P1, DOI 10.4018/IJDWM.2018040101 Gutierrez-Santos S, 2017, IEEE T EMERG TOP COM, V5, P56, DOI 10.1109/TETC.2016.2533318 Kong XJ, 2017, SCIENTOMETRICS, V113, P369, DOI 10.1007/s11192-017-2485-9 Kong XJ, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0148492 Li ZJ, 2018, FRONT COMPUT SCI-CHI, V12, P571, DOI 10.1007/s11704-016-6078-1 Tang J., 2008, KDD, P990, DOI DOI 10.1145/1401890.1402008 Wang DH, 2018, KNOWL-BASED SYST, V157, P1, DOI 10.1016/j.knosys.2018.05.001 Wei J, 2017, EXPERT SYST APPL, V69, P29, DOI 10.1016/j.eswa.2016.09.040 West Jevin D., 2016, IEEE Transactions on Big Data, V2, P113, DOI 10.1109/TBDATA.2016.2541167 Xia F, 2014, IEEE T EMERG TOP COM, V2, P364, DOI 10.1109/TETC.2014.2356505 Xu D, 2007, IEEE T IMAGE PROCESS, V16, P2811, DOI 10.1109/TIP.2007.906769 Yang XW, 2017, IEEE T COMPUT SOC SY, V4, P1, DOI 10.1109/TCSS.2017.2665122 Yerma S., 2017, P IEEE INT C REC TRE, P879 Yuan XF, 2017, 2017 6TH INTERNATIONAL SYMPOSIUM ON ADVANCED CONTROL OF INDUSTRIAL PROCESSES (ADCONIP), P577, DOI 10.1109/ADCONIP.2017.7983844 Zhang Q, 2017, MULTIMED TOOLS APPL, V76, P15465, DOI 10.1007/s11042-016-3848-6 Zhao TS, 2015, ACSR ADV COMPUT, P854 Zheng WM, 2005, NEUROCOMPUTING, V67, P357, DOI 10.1016/j.neucom.2004.12.008 NR 28 TC 4 Z9 5 U1 0 U2 39 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0138-9130 EI 1588-2861 J9 SCIENTOMETRICS JI Scientometrics PD JUN PY 2019 VL 119 IS 3 BP 1497 EP 1517 DI 10.1007/s11192-019-03100-4 PG 21 WC Computer Science, Interdisciplinary Applications; Information Science & Library Science WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Computer Science; Information Science & Library Science GA HZ7UB UT WOS:000469058000009 DA 2024-09-05 ER PT J AU Wang, N Lv, XL Sun, SW Wang, QJ AF Wang, Nan Lv, Xinlong Sun, Shanwu Wang, Qingjun TI Research on the effect of government media and users' emotional experience based on LSTM deep neural network SO NEURAL COMPUTING & APPLICATIONS LA English DT Article DE Government media; Emotion analysis; LSTM; Deep learning; Social media platforms AB Different government media have different communication effects and users' emotional experience. It carries on a comparative research on government media selecting three different types of government media which include China's Police Online, Central Committee of the Communist Youth League, and China's Fire Control in the context of public health emergencies. Based on the deep learning technique, the emotion classification model of long-term memory network is constructed to analyze the emotion of the users' comments of different government media; taking the number of contents, the number of retweets, the number of praises, and the number of comments as evaluating indicators to do comparative analysis to cross platform government medias. Through the comparative results, it is found that different types and platforms of government media have great differences in users' emotional experience; the emotion performance of users' comments is strongly related to the information communication power and effectiveness of government media. C1 [Wang, Nan; Lv, Xinlong; Sun, Shanwu] Jilin Univ Finance & Econ, Changchun 130117, Peoples R China. [Wang, Qingjun] Shenyang Aerosp Univ, Shenyang 110136, Peoples R China. [Wang, Qingjun] Nanjing Univ Aeronaut & Astronaut, Nanjing 210016, Peoples R China. C3 Jilin University of Finance & Economics; Shenyang Aerospace University; Nanjing University of Aeronautics & Astronautics RP Wang, QJ (corresponding author), Shenyang Aerosp Univ, Shenyang 110136, Peoples R China.; Wang, QJ (corresponding author), Nanjing Univ Aeronaut & Astronaut, Nanjing 210016, Peoples R China. EM ctuwangnan@126.com; xslvxinlong@163.com; ctusunshanwu@126.com; wangqingjun@sau.edu.cn FU Key Project of Jilin Province Education Science During the 13th Five Year Plan in 2020: Research on new teaching mode in big data cloud education environment [ZD20024] FX This work was supported by Key Project of Jilin Province Education Science During the 13th Five Year Plan in 2020: Research on new teaching mode in big data cloud education environment (ZD20024). CR [Anonymous], 7 CHIN INT AUD VIS C Bengio Y, 2001, ADV NEUR IN, V13, P932 Chang J, 2021, INFORM PROCESS MANAG, V58, DOI 10.1016/j.ipm.2020.102452 China Internet Information Center, 44 CNNIC CHIN INT Guiquan ZAC., 2014, J INTELLIGENCE, V33, P108 Guohua W., 2015, J INTELLIGENCE, V34, P66 [胡荣磊 Hu Ronglei], 2019, [计算机应用研究, Application Research of Computers], V36, P3282 Jiang J, 2020, J Intell, P100, DOI [10.3969/j.issn1002-1965.2020.01.014, DOI 10.3969/J.ISSN1002-1965.2020.01.014] Kingma DP, 2014, ADV NEUR IN, V27 Li SX, 2021, INFORM PROCESS MANAG, V58, DOI 10.1016/j.ipm.2021.102673 List of government affairs, 2019 GOV MICR INFL R Liu CY, 2020, NEURAL COMPUT APPL, V32, P1639, DOI 10.1007/s00521-019-04188-8 Mikolov T., 2013, Advances in Neural Information Processing Systems, P3111 Pang B, 2002, PROCEEDINGS OF THE 2002 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING, P79, DOI 10.3115/1118693.1118704 Rui YCW., 2018, J MODERN INFORM, V38, P110 Su, 2016, TEXT SENTIMENT CLASS Tian Qianjin Yu., 2018, INFORM RES, V8, P33 Xiaobo T., 2020, J MODERN INF, V40, P159 Xiaoping Y., 2017, COMPUT SCI, V44, P43 Yang K., 2019, J Comput Appl, V39, P6 Yihong R., 2016, E GOV, V8, P53 Zeng Yu, 2017, Xibei Shifan Daxue Xuebao (Ziran Kexue Ban), V53, P56, DOI 10.16783/j.cnki.nwnuz.2017.04.013 Zhanyong J., 2019, INFORM SCIENCES, V37, P142 Zhao JH, 2020, NEURAL COMPUT APPL, V32, P1715, DOI 10.1007/s00521-019-04245-2 NR 24 TC 3 Z9 3 U1 2 U2 45 PU SPRINGER LONDON LTD PI LONDON PA 236 GRAYS INN RD, 6TH FLOOR, LONDON WC1X 8HL, ENGLAND SN 0941-0643 EI 1433-3058 J9 NEURAL COMPUT APPL JI Neural Comput. Appl. PD AUG PY 2022 VL 34 IS 15 SI SI BP 12505 EP 12516 DI 10.1007/s00521-021-06567-6 EA OCT 2021 PG 12 WC Computer Science, Artificial Intelligence WE Science Citation Index Expanded (SCI-EXPANDED) SC Computer Science GA 3E6IS UT WOS:000705779300003 PM 34642547 OA Bronze, Green Published DA 2024-09-05 ER PT C AU Bae, S Hwang, C Lee, T AF Bae, Sungho Hwang, Chanwoong Lee, Taejin BE Kim, H TI Research on Improvement of Anomaly Detection Performance in Industrial Control Systems SO INFORMATION SECURITY APPLICATIONS SE Lecture Notes in Computer Science LA English DT Proceedings Paper CT 22nd World Conference on Information Security Application (WISA) CY AUG 11-13, 2021 CL SOUTH KOREA DE Industrial Control System; Anomaly detection; Unsupervised stacked bidirectional LSTM; HAI dataset; TaPR AB In the automated Industrial Control System (ICS) where advanced technology is being integrated with core infrastructure, technology development is ahead of the application of security solutions. Our city, power, and transportation control systems are getting smarter and more efficient, but new connectivity and interoperability are making them more vulnerable than ever before. Accordingly, various studies have been conducted for anomaly detection in ICS. In this paper, we propose an unsupervised stacked bidirectional Long Short-Term Memory (LSTM) model for automated anomaly detection in large-scale ICS and introduce a method for performance improvement. In addition, it was written based on participation in HAICon2020, an ICS security threat detection contest hosted by the National Security Research Institute. We use the HAI 2.0 dataset published at HAICon2020 and use Time-series Aware Precision and Recall (TaPR), which is suitable for anomaly detection evaluation in ICS. As a result of submission of test data, we were awarded 2nd place at HAICon2020. We have detected anomalies in ICS. As a follow-up work, we will do further research to identify the sensor and actuator that caused the anomaly and to quickly respond and recover. C1 [Bae, Sungho; Hwang, Chanwoong; Lee, Taejin] Hoseo Univ, Dept Informat Secur, Asan 31499, South Korea. C3 Hoseo University RP Lee, T (corresponding author), Hoseo Univ, Dept Informat Secur, Asan 31499, South Korea. EM baesungho21@naver.com FU Institute for Information & communication Technology Planning & Evaluation (IITP) - Korea government (MSIT) [2019-0-00026] FX This work was supported by Institute for Information & communication Technology Planning & Evaluation (IITP) grant funded by the Korea government (MSIT) (No. 2019-0-00026, ICT infra-structure protection against intelligent malware threats). CR CISA, 2016, CYB ATT UKR CRIT INF HaddadPajouh H, 2021, INTERNET THINGS-NETH, V14, DOI 10.1016/j.iot.2019.100129 Hwang WS, 2019, PROCEEDINGS OF THE 28TH ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT (CIKM '19), P2241, DOI 10.1145/3357384.3358118 Jacob S, 2021, INTERNET THINGS-NETH, V14, DOI 10.1016/j.iot.2019.100111 Karimipour H, 2018, IEEE ACCESS, V6, P2984, DOI 10.1109/ACCESS.2017.2786584 Kim D., 2021, SOFTWARE ENG ARTIFIC, V951, P181 Kravchik M, 2018, CPS-SPC'18: PROCEEDINGS OF THE 2018 WORKSHOP ON CYBER-PHYSICAL SYSTEMS SECURITY AND PRIVACY, P72, DOI 10.1145/3264888.3264896 Mokhtari S, 2021, ELECTRONICS-SWITZ, V10, DOI 10.3390/electronics10040407 Ren HS, 2019, KDD'19: PROCEEDINGS OF THE 25TH ACM SIGKDD INTERNATIONAL CONFERENCCE ON KNOWLEDGE DISCOVERY AND DATA MINING, P3009, DOI 10.1145/3292500.3330680 Ruff L, 2021, P IEEE, V109, P756, DOI 10.1109/JPROC.2021.3052449 Shin H, 2020, IEEE NON-VOLATILE ME, P25, DOI 10.1109/nvmsa51238.2020.9188086 Stouffer K., 2015, 80082 NIST SP Wang C, 2020, WIREL COMMUN MOB COM, V2020, DOI 10.1155/2020/8897926 Xie X, 2020, IEEE ACCESS, V8, P88348, DOI 10.1109/ACCESS.2020.2993335 Yin CL, 2017, IEEE ACCESS, V5, P21954, DOI 10.1109/ACCESS.2017.2762418 Zaroosin, 2020, HIL BAS AUGM ICS HAI Zhang F, 2019, IEEE T IND INFORM, V15, P4362, DOI 10.1109/TII.2019.2891261 NR 17 TC 0 Z9 0 U1 0 U2 1 PU SPRINGER INTERNATIONAL PUBLISHING AG PI CHAM PA GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND SN 0302-9743 EI 1611-3349 BN 978-3-030-89432-0; 978-3-030-89431-3 J9 LECT NOTES COMPUT SC PY 2021 VL 13009 BP 76 EP 87 DI 10.1007/978-3-030-89432-0_7 PG 12 WC Computer Science, Information Systems; Computer Science, Theory & Methods; Mathematics, Applied WE Conference Proceedings Citation Index - Science (CPCI-S) SC Computer Science; Mathematics GA BS5DU UT WOS:000728361600007 DA 2024-09-05 ER PT C AU Alonso, JM Castiello, C Mencar, C AF Alonso, Jose M. Castiello, Ciro Mencar, Corrado BE Medina, J OjedaAciego, M Verdegay, JL Pelta, DA Cabrera, IP BouchonMeunier, B Yager, RR TI A Bibliometric Analysis of the Explainable Artificial Intelligence Research Field SO INFORMATION PROCESSING AND MANAGEMENT OF UNCERTAINTY IN KNOWLEDGE-BASED SYSTEMS: THEORY AND FOUNDATIONS, IPMU 2018, PT I SE Communications in Computer and Information Science LA English DT Proceedings Paper CT 17th International Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems (IPMU) CY JUN 11-15, 2018 CL Cadiz, SPAIN DE Interpretability; Understandability; Comprehensibility; Explainable AI; Interpretable Fuzzy Systems ID SYSTEMS; ACCURACY AB This paper presents the results of a bibliometric study of the recent research on eXplainable Artificial Intelligence (XAI) systems. We took a global look at the contributions of scholars in XAI as well as in the subfields of AI that are mostly involved in the development of XAI systems. It is worthy to remark that we found out that about one third of contributions in XAI come from the fuzzy logic community. Accordingly, we went in depth with the actual connections of fuzzy logic contributions with AI to promote and improve XAI systems in the broad sense. Finally, we outlined new research directions aimed at strengthening the integration of different fields of AI, including fuzzy logic, toward the common objective of making AI accessible to people. C1 [Alonso, Jose M.] Univ Santiago de Compostela, Ctr Singular Invest Tecnol Informac CiTIUS, Santiago De Compostela, Spain. [Castiello, Ciro; Mencar, Corrado] Univ Bari Aldo Moro, Dept Informat, Bari, Italy. C3 Universidade de Santiago de Compostela; Universita degli Studi di Bari Aldo Moro RP Alonso, JM (corresponding author), Univ Santiago de Compostela, Ctr Singular Invest Tecnol Informac CiTIUS, Santiago De Compostela, Spain. EM josemaria.alonso.moral@usc.es; ciro.castiello@uniba.it; corrado.mencar@uniba.it RI Alonso Moral, Jose Maria/A-4374-2017 OI Alonso Moral, Jose Maria/0000-0003-3673-421X; Mencar, Corrado/0000-0001-8712-023X FU Ramon y Cajal contract - Spanish "Ministerio de Economia y Competitividad" [RYC-2016-19802]; MINECO - Spanish "Ministerio de Economia y Competitividad" [TIN2017-84796-C2-1-R, TIN2014-56633-C3-3-R]; Xunta de Galicia (Centro singular de investigacion de Galicia); European Union (European Regional Development Fund - ERDF) FX This work was supported by RYC-2016-19802 (Ramon y Cajal contract), and two MINECO projects TIN2017-84796-C2-1-R (BIGBISC) and TIN2014-56633-C3-3-R (ABS4SOW). All of them funded by the Spanish "Ministerio de Economia y Competitividad". Financial support from the Xunta de Galicia (Centro singular de investigacion de Galicia accreditation 2016-2019) and the European Union (European Regional Development Fund - ERDF), is gratefully acknowledged. CR Aleven VAWMM, 2002, COGNITIVE SCI, V26, P147, DOI 10.1016/S0364-0213(02)00061-7 [Anonymous], 2017, Statement on Algorithmic Transparency and Accountability [Anonymous], 1998, Graph drawing: algorithms for the visualization of graphs Aria M, 2017, J INFORMETR, V11, P959, DOI 10.1016/j.joi.2017.08.007 Chen CLP, 2014, INFORM SCIENCES, V275, P314, DOI 10.1016/j.ins.2014.01.015 Cobo MJ, 2011, J AM SOC INF SCI TEC, V62, P1382, DOI 10.1002/asi.21525 De Bellis N, 2009, Bibliometrics and Citation Analysis: From the Science Citation Index to Cybermetrics Epstein SL, 2015, ARTIF INTELL, V221, P36, DOI 10.1016/j.artint.2014.12.006 Fazzolari M, 2013, IEEE T FUZZY SYST, V21, P45, DOI 10.1109/TFUZZ.2012.2201338 Gacto MJ, 2011, INFORM SCIENCES, V181, P4340, DOI 10.1016/j.ins.2011.02.021 García S, 2009, SOFT COMPUT, V13, P959, DOI 10.1007/s00500-008-0392-y Goodman B, 2017, ARXIV160608813, V38, P3, DOI [10.1609/aimag.v38i3.2741, DOI 10.1609/AIMAG.V38I3.2741] Guillaume S, 2001, IEEE T FUZZY SYST, V9, P426, DOI 10.1109/91.928739 Gunning D, 2016, IJCAI 2016 WORKSH DE Ishibuchi H, 2007, INT J APPROX REASON, V44, P4, DOI 10.1016/j.ijar.2006.01.004 Jin YC, 2000, IEEE T FUZZY SYST, V8, P212, DOI 10.1109/91.842154 Kobourov S. G., 2012, HDB GRAPH DRAWING VI Martínez L, 2012, INFORM SCIENCES, V207, P1, DOI 10.1016/j.ins.2012.04.025 Moya-Anegon F, 2004, SCIENTOMETRICS, V61, P129, DOI 10.1023/B:SCIE.0000037368.31217.34 Pancho DP, 2013, IEEE T FUZZY SYST, V21, P1133, DOI 10.1109/TFUZZ.2013.2245130 Porter M., 2009, NOT AM MATH SOC, V56, P1082, DOI DOI 10.1103/PHYSREVE.69.066133 SALTON G, 1979, IEEE T PROF COMMUN, V22, P146, DOI 10.1109/TPC.1979.6501740 Serrano E, 2010, INFORM SCIENCES, V180, P561, DOI 10.1016/j.ins.2009.11.007 van Eck NJ, 2010, SCIENTOMETRICS, V84, P523, DOI 10.1007/s11192-009-0146-3 Vargas-Quesada B., 2007, VISUALIZING STRUCTUR, DOI [10.1007/3-540-69728-4, DOI 10.1007/3-540-69728-4] Wasserman S., 1994, SOCIAL NETWORK ANAL, V8 NR 26 TC 41 Z9 45 U1 2 U2 34 PU SPRINGER-VERLAG BERLIN PI BERLIN PA HEIDELBERGER PLATZ 3, D-14197 BERLIN, GERMANY SN 1865-0929 EI 1865-0937 BN 978-3-319-91473-2; 978-3-319-91472-5 J9 COMM COM INF SC PY 2018 VL 853 BP 3 EP 15 DI 10.1007/978-3-319-91473-2_1 PN I PG 13 WC Computer Science, Artificial Intelligence; Computer Science, Theory & Methods WE Conference Proceedings Citation Index - Science (CPCI-S) SC Computer Science GA BN4AQ UT WOS:000481659500001 DA 2024-09-05 ER PT J AU Guo, SC Zheng, YY Zhai, XM AF Guo, Shuchen Zheng, Yuanyuan Zhai, Xiaoming TI Artificial intelligence in education research during 2013-2023: A review based on bibliometric analysis SO EDUCATION AND INFORMATION TECHNOLOGIES LA English DT Article; Early Access DE Artificial intelligence (AI); AI in education (AIED); Machine learning (ML); Bibliometric analysis; Citespace software ID TUTORING SYSTEMS; LEARNING ANALYTICS; SCIENCE; TRENDS; SPEECH; TEXT AB Research on Artificial Intelligence in Education (AIED) has rapidly progressed in recent years, and understanding the research trends and development is essential for technological innovations and implementations in education. Using a bibliometric analysis of 6843 publications from Web of Science and Scopus, we found that China, US, India, Spain, and Germany led the research profuctivity. AIED research is concerned more with higher education compared to K-12 education. Fifteen research trends emerged from the analysis, such as Educational Robots and Large Data Mining. Research has primarily leveraged technologies of machine learning, decision trees, deep learning, speech recognition, and computer vision in AIED. The major implementations of AI include educational robots, automated grading, recommender systems, learning analytics, and intelligent tutoring systems. Among the implementations, a majority of AIED research was conducted in seven major subject domains, chief among them being science, technology, engineering and mathematics (STEM) and language disciplines, with a focus on computer science and English education. C1 [Guo, Shuchen; Zheng, Yuanyuan] Nanjing Normal Univ, Sch Educ, Nanjing, Jiangsu, Peoples R China. [Zhai, Xiaoming] Univ Georgia, AI4STEM Educ Ctr, 125M Aderhold Hall,110 Carlton St, Athens, GA 30602 USA. [Zhai, Xiaoming] Univ Georgia, Dept Math Sci & Social Studies Educ, 125M Aderhold Hall,110 Carlton St, Athens, GA 30602, Georgia. C3 Nanjing Normal University; University System of Georgia; University of Georgia RP Zhai, XM (corresponding author), Univ Georgia, AI4STEM Educ Ctr, 125M Aderhold Hall,110 Carlton St, Athens, GA 30602 USA.; Zhai, XM (corresponding author), Univ Georgia, Dept Math Sci & Social Studies Educ, 125M Aderhold Hall,110 Carlton St, Athens, GA 30602, Georgia. EM gsc44@njnu.edu.cn; 3048835050@qq.com; Xiaoming.Zhai@uga.edu RI Zheng, Yuanyuan/HJA-4183-2022; Zhai, Xiaoming/AAB-7129-2021 OI Zhai, Xiaoming/0000-0003-4519-1931 FU National Science Foundation [2101104]; China Scholarship Council (CSC) - National Science Foundation (NSF); NSF FX The authors thank China Scholarship Council (CSC) for supporting the study. The study was also partially funded by the National Science Foundation (NSF) (Award # 2101104, PI: Zhai). Any opinions, findings, conclusions, or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the CSC and NSF. CR Adiguzel T, 2023, CONTEMP EDUC TECHNOL, V15, DOI 10.30935/cedtech/13152 Aguilar J, 2016, IEEE INT FUZZY SYST, P1539, DOI 10.1109/FUZZ-IEEE.2016.7737873 Ahn TY, 2016, BRIT J EDUC TECHNOL, V47, P778, DOI 10.1111/bjet.12354 Albreiki B, 2021, EDUC SCI, V11, DOI 10.3390/educsci11090552 Aldabe I, 2014, IEEE T LEARN TECHNOL, V7, P375, DOI 10.1109/TLT.2014.2355831 Aldriye H, 2019, INT J ADV COMPUT SC, V10, P215 Alsalman YS, 2019, INT CONF INFORM COMM, P104, DOI [10.1109/iacs.2019.8809106, 10.1109/IACS.2019.8809106] Altin H., 2014, P 4 INT WORKSHOP TEA, P164 Anupama V., 2022, 2022 INT C INNOVATIV, P1, DOI [10.1109/ICITIIT54346.2022.9744245, DOI 10.1109/ICITIIT54346.2022.9744245] Arcon N, 2017, READ WRIT Q, V33, P533, DOI 10.1080/10573569.2016.1253513 Bai LF, 2017, EDUC PSYCHOL-UK, V37, P67, DOI 10.1080/01443410.2016.1223275 Banihashem S.K., 2018, Interdisciplinary Journal of Virtual Learning in Medical Sciences, V9, P63024, DOI [10.5812/ijvlms.63024, DOI 10.5812/IJVLMS.63024] Baskota A, 2018, 2018 IEEE INTERNATIONAL CONFERENCE ON INFORMATION REUSE AND INTEGRATION (IRI), P277, DOI 10.1109/IRI.2018.00050 Bhavana D, 2020, INT J SPEECH TECHNOL, V23, P779, DOI 10.1007/s10772-020-09739-2 Rivera AC, 2018, ADV INTELL SYST, V721, P937, DOI 10.1007/978-3-319-73450-7_89 Chassignol M, 2018, PROCEDIA COMPUT SCI, V136, P16, DOI 10.1016/j.procs.2018.08.233 Chen CM, 2012, EXPERT OPIN BIOL TH, V12, P593, DOI 10.1517/14712598.2012.674507 Chen XL, 2022, EDUC TECHNOL SOC, V25, P28 Chursin G., 2021, Journal of Physics: Conference Series, DOI 10.1088/1742-6596/1989/1/012011 Corral JMR, 2016, INT J ENG EDUC, V32, P1823 Crow T., 2018, P 20 AUSTR COMP ED C, P53, DOI DOI 10.1145/3160489.3160492 de Freitas S, 2015, BRIT J EDUC TECHNOL, V46, P1175, DOI 10.1111/bjet.12212 Deschênes M, 2020, INT J EDUC TECHNOL H, V17, DOI 10.1186/s41239-020-00219-w Efendi Toni, 2022, 2022 International Conference on Information Technology Systems and Innovation (ICITSI), P275, DOI 10.1109/ICITSI56531.2022.9970982 Esquivel-Barboza Esteban A., 2020, 2020 Fourth International Conference on Multimedia Computing, Networking and Applications (MCNA), P51, DOI 10.1109/MCNA50957.2020.9264289 Farnqvist Tommy., 2016, ITICSE 16 P 2016 ACM, P130, DOI [10.1145/2899415.2899454, DOI 10.1145/2899415.2899454] Fernández-Llamas C, 2020, INT J SOC ROBOT, V12, P1009, DOI 10.1007/s12369-017-0440-9 GHALI MA, 2018, INT J ACAD ENG RES, V2, P1 Gobert JD, 2013, J LEARN SCI, V22, P521, DOI 10.1080/10508406.2013.837391 Guan C., 2020, International Journal of Innovation Studies, V4, P134, DOI [DOI 10.1016/J.IJIS.2020.09.001, https://doi.org/10.1016/j.ijis.2020.09.001] Hernández-de-Menéndez M, 2022, INT J INTERACT DES M, V16, P1209, DOI 10.1007/s12008-022-00930-0 Hinojo-Lucena FJ, 2019, EDUC SCI, V9, DOI 10.3390/educsci9010051 Homer John, 2015, ASEE ANN C EXP C P 1, P1, DOI [10.18260/p.23569, DOI 10.18260/P.23569] Huang XY, 2023, EDUC TECHNOL SOC, V26, P112, DOI 10.30191/ETS.202301_26(1).0009 Jiang RH, 2022, FRONT PSYCHOL, V13, DOI 10.3389/fpsyg.2022.1049401 Kewalramani S, 2021, EUR EARLY CHILD EDUC, V29, P652, DOI 10.1080/1350293X.2021.1968458 Kim K J., 2017, Journal of Educational Data Mining, V9, P45 Kulik JA, 2016, REV EDUC RES, V86, P42, DOI 10.3102/0034654315581420 Lacave C, 2018, BEHAV INFORM TECHNOL, V37, P993, DOI 10.1080/0144929X.2018.1485053 Latif E, 2023, Arxiv, DOI arXiv:2310.10072 Lee GG, 2023, Arxiv, DOI arXiv:2401.08660 Lee GG, 2023, Arxiv, DOI [arXiv:2312.06037, 10.48550/arXiv.2312.06037] Lee GG, 2023, Arxiv, DOI arXiv:2311.12990 Lee H. Y., 2022, Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), V13449, DOI [10.1007/978-3-031-15273-3_3, DOI 10.1007/978-3-031-15273-3_3] Li Y, 2020, INT J MACH LEARN CYB, V11, P2807, DOI 10.1007/s13042-020-01152-0 Limna P., 2022, Adv. Knowled. Execut., V1, P1 Lin PH, 2020, IEEE ACCESS, V8, P45689, DOI 10.1109/ACCESS.2020.2977679 Lu OHT, 2017, INTERACT LEARN ENVIR, V25, P220, DOI 10.1080/10494820.2016.1278391 Ma HQ, 2020, CASE STUD CONSTR MAT, V12, DOI 10.1016/j.cscm.2020.e00350 Mah DK, 2016, TECHNOL KNOWL LEARN, V21, P285, DOI 10.1007/s10758-016-9286-8 Maphosa V., 2021, ICABCD 2021 4 INT C, P1, DOI [10.1109/icABCD51485.2021.9519368, DOI 10.1109/ICABCD51485.2021.9519368] Martin F, 2020, ETR&D-EDUC TECH RES, V68, P1903, DOI 10.1007/s11423-020-09793-2 Mauro C., 2017, Advocating the Broad Use of the Decision Tree Method in Advocating the Broad Use of the Decision Tree Method in Education, P22 Mohammadzadeh A, 2018, INT J INSTR, V11, P167, DOI 10.12973/iji.2018.11212a Mousavinasab E, 2021, INTERACT LEARN ENVIR, V29, P142, DOI 10.1080/10494820.2018.1558257 Nesbit JC, 2014, IEEE INT CONF ADV LE, P99, DOI 10.1109/ICALT.2014.38 Ouyang F, 2022, EDUC INF TECHNOL, V27, P7893, DOI 10.1007/s10639-022-10925-9 Paiva JC, 2022, ACM T COMPUT EDUC, V22, DOI 10.1145/3513140 Paladines J, 2020, IEEE ACCESS, V8, P164246, DOI 10.1109/ACCESS.2020.3021383 Peters MA, 2024, EDUC PHILOS THEORY, V56, P828, DOI 10.1080/00131857.2023.2213437 Prahani BK, 2022, INT J EMERG TECHNOL, V17, P169, DOI 10.3991/ijet.v17i08.29833 Pu S., 2021, Cypriot Journal of Educational Sciences, V16, P995, DOI [10.18844/CJES.V16I3.5782, DOI 10.18844/CJES.V16I3.5782] Rastrollo-Guerrero JL, 2020, APPL SCI-BASEL, V10, DOI 10.3390/app10031042 Roll I, 2016, INT J ARTIF INTELL E, V26, P582, DOI 10.1007/s40593-016-0110-3 Shadiev R, 2023, RECALL, V35, P74, DOI 10.1017/S095834402200012X Shadiev R, 2017, ETR&D-EDUC TECH RES, V65, P1239, DOI 10.1007/s11423-017-9516-3 Shenoy M. A., 2022, 6 INT C ELECT COMMUN, P896, DOI [10.1109/ICECA55336.2022.10009136, DOI 10.1109/ICECA55336.2022.10009136] Sophokleous A., 2021, Computer Vision meets Educational Robotics, P1 Sottilare R. A., 2019, 1 INT C, P469, DOI [10.4324/9780203880869-41, DOI 10.4324/9780203880869-41] Taghipour K., 2016, Proceedings of the 2016 conference on empirical methods in natural language processing, P1882 Tahiru F, 2021, J CASES INF TECHNOL, V23, P1, DOI 10.4018/JCIT.2021010101 Talan T., 2021, International Journal of Research in Education and Science, V7, P822, DOI [DOI 10.46328/IJRES.2409, 10.46328/ijres.2409] van der Haar D., 2019, Lecture notes in electrical engineering, P183, DOI [10.1007/978-981-15-1465-419, DOI 10.1007/978-981-15-1465-419] Wald M., 2005, USING AUTOMATIC SPEE, pS3G, DOI [10.1109/FIE.2005.1612286, DOI 10.1109/FIE.2005.1612286] Walker E, 2014, INT J ARTIF INTELL E, V24, P33, DOI 10.1007/s40593-013-0001-9 Williamson B, 2020, LEARN MEDIA TECHNOL, V45, P223, DOI 10.1080/17439884.2020.1798995 Xu WQ, 2022, INT J STEM EDUC, V9, DOI 10.1186/s40594-022-00377-5 Xu ZH, 2019, BRIT J EDUC TECHNOL, V50, P3119, DOI 10.1111/bjet.12758 Yang Junxiong, 2022, Innovative Computing: Proceedings of the 4th International Conference on Innovative Computing (IC 2021). Lecture Notes in Electrical Engineering (791), P605, DOI 10.1007/978-981-16-4258-6_75 Yilmaz R., 2022, Computers and Education: Artificial Intelligence, V3, DOI 10 Youhao Yu, 2012, Proceedings of the 2012 International Conference on Computer Science and Electronics Engineering (ICCSEE 2012), P306, DOI 10.1109/ICCSEE.2012.359 ZAFARI M, 2022, IEEE ACCESS, V10, P61905, DOI 10.1109/ACCESS.2022.3179356 Cabada RZ, 2018, TELEMAT INFORM, V35, P611, DOI 10.1016/j.tele.2017.03.005 Zawacki-Richter O, 2019, INT J EDUC TECHNOL H, V16, DOI 10.1186/s41239-019-0171-0 Zhai X., 2023, ChatGPT for Next Generation, DOI [10.1145/3589649, DOI 10.1145/3589649] Zhai XM, 2023, RES SCI EDUC, V53, P405, DOI 10.1007/s11165-022-10062-w Zhai XM, 2022, J RES SCI TEACH, V59, P1765, DOI 10.1002/tea.21773 Zhai XM, 2020, J RES SCI TEACH, V57, P1430, DOI 10.1002/tea.21658 Zhai XM, 2020, STUD SCI EDUC, V56, P111, DOI 10.1080/03057267.2020.1735757 Zhai XS, 2021, COMPLEXITY, V2021, DOI 10.1155/2021/8812542 Zhang K., 2021, Computers and Education: Artificial Intelligence, V2, P100025, DOI [DOI 10.1016/J.CAEAI.2021.100025, 10.1016/j.caeai.2021.100025, https://doi.org/10.1016/j.caeai.2021.100025] NR 91 TC 0 Z9 0 U1 161 U2 174 PU SPRINGER PI NEW YORK PA ONE NEW YORK PLAZA, SUITE 4600, NEW YORK, NY, UNITED STATES SN 1360-2357 EI 1573-7608 J9 EDUC INF TECHNOL JI Educ. Inf. Technol. PD 2024 FEB 9 PY 2024 DI 10.1007/s10639-024-12491-8 EA FEB 2024 PG 23 WC Education & Educational Research WE Social Science Citation Index (SSCI) SC Education & Educational Research GA HK6S0 UT WOS:001159441700001 DA 2024-09-05 ER PT C AU Hong, MH Marsh, LA Feuston, JL Ruppert, J Brubaker, JR Szafr, DA AF Hong, Matt-Heun Marsh, Lauren A. Feuston, Jessica L. Ruppert, Janet Brubaker, Jed R. Szafr, Danielle Albers GP ACM TI Scholastic: Graphical Human-AI Collaboration for Inductive and Interpretive Text Analysis SO PROCEEDINGS OF THE 35TH ANNUAL ACM SYMPOSIUM ON USER INTERFACE SOFTWARE AND TECHNOLOGY, UIST 2022 LA English DT Proceedings Paper CT 35th Annual ACM Symposium on User Interface Software and Technology (UIST) CY OCT 29-NOV 02, 2022 CL Bend, OR DE qualitative research; interpretive research methods; interactive topic modeling; interactive document clustering; human-AI collaboration; visual analytics; text data ID GROUNDED THEORY; PITFALLS AB Interpretive scholars generate knowledge from text corpora by manually sampling documents, applying codes, and refining and collating codes into categories until meaningful themes emerge. Given a large corpus, machine learning could help scale this data sampling and analysis, but prior research shows that experts are generally concerned about algorithms potentially disrupting or driving interpretive scholarship. We take a human-centered design approach to addressing concerns around machine-assisted interpretive research to build Scholastic, which incorporates a machine-in-the-loop clustering algorithm to scafold interpretive text analysis. As a scholar applies codes to documents and refines them, the resulting coding schema serves as structured metadata which constrains hierarchical document and word clusters inferred from the corpus. Interactive visualizations of these clusters can help scholars strategically sample documents further toward insights. Scholastic demonstrates how human-centered algorithm design and visualizations employing familiar metaphors can support inductive and interpretive research methodologies through interactive topic modeling and document clustering. C1 [Hong, Matt-Heun] Univ Colorado Boulder, ATLAS Inst, Boulder, CO USA. [Marsh, Lauren A.] Univ Colorado Boulder, Dept Appl Math, Boulder, CO USA. [Feuston, Jessica L.; Ruppert, Janet; Brubaker, Jed R.] Univ Colorado Boulder, Dept Informat Sci, Boulder, CO USA. [Szafr, Danielle Albers] Univ North Carolina Chapel Hill, Dept Comp Sci, Chapel Hill, NC USA. C3 University of Colorado System; University of Colorado Boulder; University of Colorado System; University of Colorado Boulder; University of Colorado System; University of Colorado Boulder; University of North Carolina School of Medicine; University of North Carolina; University of North Carolina Chapel Hill RP Hong, MH (corresponding author), Univ Colorado Boulder, ATLAS Inst, Boulder, CO USA. OI BRUBAKER, JED/0000-0003-4826-8324 FU NSF [1764092, 2046725] FX The authors would like to thank Kandrea Wade and Casey Fiesler for their input at the conceptualization stages, students and faculty at the ATLAS Institute, CU Boulder during the design, development, and writing stages, and Matteo Abrate (https://bl.ocks.org/nitaku) for his valuable examples of geographical treemaps. This work was supported by NSF awards #1764092 & #2046725. CR Alexander E, 2014, IEEE CONF VIS ANAL, P173, DOI 10.1109/VAST.2014.7042493 Auber D, 2011, GEOGRAPHICAL TREEMAP Baumer EPS, 2020, HUM-COMPUT INTERACT, V35, P452, DOI 10.1080/07370024.2020.1734460 Baumer EPS, 2017, BIG DATA SOC, V4, DOI 10.1177/2053951717718854 Baumer EPS, 2017, J ASSOC INF SCI TECH, V68, P1397, DOI 10.1002/asi.23786 Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993 BOYDGRABER J, 2017, FOUND TRENDS INF RET, V20, P1 Braun V., 2006, QUAL RES PSYCHOL, V3, P77, DOI [10.1191/1478088706qp063oa, DOI 10.1191/1478088706QP063OA] Brehmer M, 2014, IEEE T VIS COMPUT GR, V20, P2271, DOI 10.1109/TVCG.2014.2346431 Chandrasegaran S, 2017, COMPUT GRAPH FORUM, V36, P201, DOI 10.1111/cgf.13180 Chen NC, 2018, ACM T INTERACT INTEL, V8, DOI 10.1145/3185515 Choo J, 2013, IEEE T VIS COMPUT GR, V19, P1992, DOI 10.1109/TVCG.2013.212 Chuang J, 2012, PROCEEDINGS OF THE INTERNATIONAL WORKING CONFERENCE ON ADVANCED VISUAL INTERFACES, P74, DOI 10.1145/2254556.2254572 Chuang Jason, 2015, NIPS WORKSHOP HUMANP, P1 Collier D, 1996, WORLD POLIT, V49, P56, DOI 10.1353/wp.1996.0023 CORBIN J, 1990, Z SOZIOL, V19, P418, DOI 10.1007/BF00988593 DICKSON LAS, 1988, INSTR SCI, V17, P145, DOI 10.1007/BF00052700 Diehl Alexandra, 2022, CHARACTERIZING GROUN, V41, P3 DiMaggio P, 2013, POETICS, V41, P570, DOI 10.1016/j.poetic.2013.08.004 Drouhard M, 2017, IEEE PAC VIS SYMP, P220, DOI 10.1109/PACIFICVIS.2017.8031598 El-Assady M, 2020, IEEE T VIS COMPUT GR, V26, P1001, DOI 10.1109/TVCG.2019.2934654 Endert A, 2012, IEEE T VIS COMPUT GR, V18, P2879, DOI 10.1109/TVCG.2012.260 Feuston Jessica L., 2021, Proceedings of the ACM on Human-Computer Interaction, V5, DOI 10.1145/3479856 Gauthier Robert P., 2022, Proceedings of the ACM on Human-Computer Interaction, V6, DOI 10.1145/3492844 Gerlach M, 2018, SCI ADV, V4, DOI 10.1126/sciadv.aaq1360 Green Ben, 2019, Proceedings of the ACM on Human-Computer Interaction, V3, DOI 10.1145/3359152 Green B, 2019, P C FAIRN ACC TRANSP, P90, DOI [10.1145/3287560.3287563, DOI 10.1145/3287560.3287563] Griffiths T., 2005, ADV NEURAL INFORM PR, V17 Grimmer J, 2013, POLIT ANAL, V21, P267, DOI 10.1093/pan/mps028 HOLLAND PW, 1983, SOC NETWORKS, V5, P109, DOI 10.1016/0378-8733(83)90021-7 Hyland CC, 2021, EPJ DATA SCI, V10, DOI 10.1140/epjds/s13688-021-00288-5 Jialun Aaron, 2018, P ACM HUMANCOMPUTER, P1, DOI [10.1145/3274350, DOI 10.1145/3274350] Jiang Jialun Aaron, 2021, Proceedings of the ACM on Human-Computer Interaction, V5, DOI 10.1145/3449168 Kim H, 2021, IEEE T VIS COMPUT GR, V27, P3644, DOI 10.1109/TVCG.2020.2981456 Kivela M, 2014, J COMPLEX NETW, V2, P203, DOI 10.1093/comnet/cnu016 Klein LF, 2015, DIGIT SCHOLARSH HUM, V30, P130, DOI 10.1093/llc/fqv052 Lee H, 2012, COMPUT GRAPH FORUM, V31, P1155, DOI 10.1111/j.1467-8659.2012.03108.x Lee TY, 2017, INT J HUM-COMPUT ST, V105, P28, DOI 10.1016/j.ijhcs.2017.03.007 McDonald Nora, 2019, Proceedings of the ACM on Human-Computer Interaction, V3, DOI 10.1145/3359174 Miles M. B., 2014, QUALITATIVE DATA ANA Mimno David., 2011, Proceedings of the Conference on Empirical Methods in Natural Language Processing, P227, DOI DOI 10.5555/2145432.2145459 Muller M., 2016, P 19 INT C SUPPORTIN, P3, DOI [DOI 10.1145/2957276.2957280, 10.1145/2957276.2957280] Nelson LK, 2020, SOCIOL METHOD RES, V49, P3, DOI 10.1177/0049124117729703 Paul M, 2010, AAAI CONF ARTIF INTE, P545 Peixoto TP., 2020, Advances in Network Clustering and Blockmodeling, DOI [10.1002/9781119483298.ch11, DOI 10.1002/9781119483298.CH11] Steyvers M, 2010, LATENT SEMANTIC ANAL, V3, P993, DOI [DOI 10.1016/S0364-0213(01)00040-4, 10.1145/1806338.1806450%, DOI 10.1145/1806338.1806450%] TVERSKY B, 1991, PSYCHOL LEARN MOTIV, V27, P109, DOI 10.1016/S0079-7421(08)60122-X Wiedemann G, 2013, HIST SOC RES, V38, P332 Xie P., 2013, P 29 C 2013, DOI [DOI 10.48550/ARXIV.1309.6874, 10.5555/3023638.3023709, DOI 10.5555/3023638.3023709] Yang Yi, 2015, P 2015 C EMP METH NA, P308, DOI DOI 10.18653/V1/D15-1037 NR 50 TC 3 Z9 3 U1 2 U2 7 PU ASSOC COMPUTING MACHINERY PI NEW YORK PA 1601 Broadway, 10th Floor, NEW YORK, NY, UNITED STATES BN 978-1-4503-9320-1 PY 2022 DI 10.1145/3526113.3545681 PG 12 WC Computer Science, Cybernetics; Computer Science, Hardware & Architecture; Computer Science, Software Engineering; Computer Science, Theory & Methods WE Conference Proceedings Citation Index - Science (CPCI-S) SC Computer Science GA BV5DH UT WOS:001046841800070 OA Green Submitted, Bronze DA 2024-09-05 ER PT J AU Ritchie, F Tilbrook, A Cole, C Jefferson, E Krueger, S Mansouri-Benssassi, E Rogers, S Smith, J AF Ritchie, Felix Tilbrook, Amy Cole, Christian Jefferson, Emily Krueger, Susan Mansouri-Benssassi, Esma Rogers, Simon Smith, Jim TI Machine learning models in trusted research environments - understanding operational risks SO INTERNATIONAL JOURNAL OF POPULATION DATA SCIENCE (IJPDS) LA English DT Article DE confidentiality; output checking; machine learning; artificial intelligence; data enclave; trusted research environment AB Introduction Trusted research environments (TREs) provide secure access to very sensitive data for research. All TREs operate manual checks on outputs to ensure there is no residual disclosure risk. Machine learning (ML) models require very large amount of data; if this data is personal, the TRE is a well-established data management solution. However, ML models present novel disclosure risks, in both type and scale. Objectives As part of a series on ML disclosure risk in TREs, this article is intended to introduce TRE managers to the conceptual problems and work being done to address them. Methods We demonstrate how ML models present a qualitatively different type of disclosure risk, compared to traditional statistical outputs. These arise from both the nature and the scale of ML modelling. Results We show that there are a large number of unresolved issues, although there is progress in many areas. We show where areas of uncertainty remain, as well as remedial responses available to TREs. Conclusions At this stage, disclosure checking of ML models is very much a specialist activity. However, TRE managers need a basic awareness of the potential risk in ML models to enable them to make sensible decisions on using TREs for ML model development. C1 [Ritchie, Felix] Univ West England, Bristol Business Sch, Coldharbour Lane, Bristol BS16 1QY, Avon, England. [Tilbrook, Amy] Univ Edinburgh, South Bridge, Edinburgh EH8 9YL, Midlothian, Scotland. [Cole, Christian; Jefferson, Emily] Ninewells Hosp & Med Sch, Div Populat Hlth & Gen, Dundee DD1 9SY, Scotland. [Krueger, Susan] Ninewells Hosp & Med Sch, Hlth Informat Ctr, Dundee DD1 9SY, Scotland. [Mansouri-Benssassi, Esma] AffectiveHalo Ltd, Tom Morris Dr, St Andrews KY16 8HS, Fife, Scotland. [Rogers, Simon] NHS Natl Serv Scotland, Gyle Sq,1 South Gyle Crescent, Edinburgh EH12 9EB, Midlothian, Scotland. [Smith, Jim] Univ West England, Sch Comp Sci & Creat Technol, Coldharbour Lane, Bristol BS16 1QY, Avon, England. C3 University of West England; University of Edinburgh; University of Dundee; University of Dundee; NHS National Services Scotland; University of West England RP Ritchie, F (corresponding author), Univ West England, Bristol Business Sch, Coldharbour Lane, Bristol BS16 1QY, Avon, England. EM felix.ritchie@uwe.ac.uk RI ; Smith, Jim/M-7533-2015 OI Jefferson, Emily/0000-0003-2992-7582; Rogers, Simon/0000-0003-3578-4477; Krueger, Susan/0000-0002-5219-1959; Ritchie, Felix/0000-0003-4097-4021; Cole, Christian/0000-0002-2560-2484; Smith, Jim/0000-0001-7908-1859 FU UK Medical Research Council as a DARE Phase 1 Sprint Project FX The GRAIMATTER project was funded by the UK Medical Research Council as a DARE Phase 1 Sprint Project https://dareuk.org.uk/sprint-exemplar-project-graimatter/.The DARE project report [11] was the main project output. This post-project article was produced by members of the GRAIMATTER team most closely connected to this workstream. In addition, Amy Tilbrook contributed significantly to the writing of this document but did not receive any funding through DARE or MRC for her contribution. Susan Krueger also contributed to the background analysis and writing of this document but did not receive any GRAIMATTER funding. She does however received funding for the MRC PICTURES project developing AI applications of image data, which continues to help the research team tests recommendations in a genuine environment. CR Alves Kyle, 2020, Statistical Journal of the IAOS, V36, P1281, DOI 10.3233/SJI-200661 [Anonymous], 2010, Handbook on statistical disclosure control [Anonymous], 2010, Guidelines for the checking of output based on microdata research Christiani N., 2000, An introduction to support vector machines and other kernel-based learning methods, V1 De Cristofaro E, 2021, IEEE SECUR PRIV, V19, P19, DOI 10.1109/MSEC.2021.3076443 Green E., 2021, PRESENT FUTURE CONFI Harkness F., 2022, A UK-wide public dialogue exploring what the public perceive as 'public good' use of data for research and statistics Jefferson E., 2022, Recommendations for disclosure control of trained Machine Learning (ML) models from Trusted Research Environments (TREs). Jegorova M, 2023, IEEE T PATTERN ANAL, V45, P9090, DOI 10.1109/TPAMI.2022.3229593 Kaviani S, 2022, EXPERT SYST APPL, V198, DOI 10.1016/j.eswa.2022.116815 Kavianpour S, 2022, J MED INTERNET RES, V24, DOI 10.2196/33720 Krueger S., 2021, UNECE EUR WORKSH STA Mansouri-Benssassi E, 2021, arXiv preprint arXiv:2111.05628 ONS, 2021, Output checker training course handbook version 1.0 Ritchie F, 2021, Journal of Privacy and Confidentiality, V11, P1, DOI [10.29012/jpc.766, DOI 10.29012/JPC.766] Ritchie F., 2007, WISERD Data Resources Paper No. 6 Ritchie F, 2017, DATA POLICY C 2017, DOI [10.5281/zenodo.897821, DOI 10.5281/ZENODO.897821] Ritchie F, 2019, TRANS DATA PRIV, V12, P145 SDAP, 2018, Handbook on Statistical Disclosure Control for Outputs Song CZ, 2017, CCS'17: PROCEEDINGS OF THE 2017 ACM SIGSAC CONFERENCE ON COMPUTER AND COMMUNICATIONS SECURITY, P587, DOI 10.1145/3133956.3134077 NR 20 TC 0 Z9 0 U1 0 U2 0 PU SWANSEA UNIV PI SWANSEA PA SINGLETON PARK, SWANSEA, SA2 8PP, WALES EI 2399-4908 J9 INT J POPUL DATA SCI JI Int. J. Population Data Sci. PY 2023 VL 8 IS 1 AR 30 DI 10.23889/ijpds.v8i1.2165 PG 9 WC Health Care Sciences & Services; Public, Environmental & Occupational Health; Social Sciences, Interdisciplinary WE Emerging Sources Citation Index (ESCI) SC Health Care Sciences & Services; Public, Environmental & Occupational Health; Social Sciences - Other Topics GA GG6C4 UT WOS:001151542700002 PM 38414545 OA gold, Green Published DA 2024-09-05 ER PT J AU Lee, JW Lee, WK Sohn, SY AF Lee, Jong Wook Lee, Won Kyung Sohn, So Young TI Patenting trends in biometric technology of the Big Five patent offices SO WORLD PATENT INFORMATION LA English DT Article DE Biometrics; Citation analysis; Latent dirichlet allocation; Patent analysis; Technology trend analysis; Topic modeling ID RECOGNITION; CENTRALITY; TEXT AB We examined the overall trends in biometric technology based on patent documents. Using PATSTAT database, we extracted 37,462 patent documents applied at the Big Five patent offices between 1990 and 2016. Latent Dirichlet allocation was applied to their abstracts to observe annual trends by topic. Our results are as follows: Fingerprint-enabled car anti-theft systems have been undergoing rapid technological development since 2014. In response, biometric signal transmitting models are becoming popular owing to concerns about theft of biometric templates. While fingerprint, face, and iris authentication technologies continue to advance, finger vein, voice, and signature authentication technologies are lagging. Use of biometric technologies in financial transactions, server networks, and digital media content security are decreasing as well. A citation analysis discovered key topics and patent applicants: Surprisingly, the quantitative growth rate of topics and the effect on the knowledge network showed an inverse relationship. US firms had the most citations, but fewer backward citations of own work, unlike Japanese companies. We provide practical insights to stakeholders of biometric technology. C1 [Lee, Jong Wook; Lee, Won Kyung; Sohn, So Young] Yonsei Univ, Dept Ind Engn, 134 Shinchon Dong, Seoul 120749, South Korea. C3 Yonsei University RP Sohn, SY (corresponding author), Yonsei Univ, Dept Ind Engn, 134 Shinchon Dong, Seoul 120749, South Korea. EM sohns@yonsei.ac.kr OI Sohn, So Young/0000-0002-3958-2269 FU National Research Foundation of Korea (NRF) - Korea government (MSIT) [2020R1A2C2005026] FX This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (2020R1A2C2005026) . CR Abdullah M. K., 2010, 2010 IEEE EMBS Conference on Biomedical Engineering and Sciences (IECBES 2010), P303, DOI 10.1109/IECBES.2010.5742249 Alsaadi I. M., 2015, Int. J. Sci. Technol. Res., V4, P285 [Anonymous], 2007, HDB BIOMETRICS HDB B Bailador G, 2011, PATTERN RECOGN, V44, P2468, DOI 10.1016/j.patcog.2011.04.010 Bednarik R, 2005, LECT NOTES COMPUT SC, V3540, P780 Bernauer L, 2018, INFORM PROCESS MANAG, V54, P370, DOI 10.1016/j.ipm.2018.01.003 Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993 Bonacich P, 2007, SOC NETWORKS, V29, P555, DOI 10.1016/j.socnet.2007.04.002 Chang S.H., 2018, INT C P MOB WIR TECH, P287 Chen H, 2007, IEEE T PATTERN ANAL, V29, P718, DOI 10.1109/TPAMI.2007.1005 Choi HS, 2017, COMPUT SECUR, V67, P244, DOI 10.1016/j.cose.2017.03.007 Ding Y, 2009, J AM SOC INF SCI TEC, V60, P2229, DOI 10.1002/asi.21171 Drira H, 2013, IEEE T PATTERN ANAL, V35, P2270, DOI 10.1109/TPAMI.2013.48 Fong S, 2013, BIOMED ENG ONLINE, V12, DOI 10.1186/1475-925X-12-111 Han EJ, 2016, TECHNOL FORECAST SOC, V106, P1, DOI 10.1016/j.techfore.2016.02.003 Jain AK, 2012, COMPUTER, V45, P87, DOI 10.1109/MC.2012.364 Jee SJ, 2015, TECHNOL FORECAST SOC, V101, P338, DOI 10.1016/j.techfore.2015.09.018 Ju YH, 2015, SCIENTOMETRICS, V102, P389, DOI 10.1007/s11192-014-1382-8 Karki M.M.S., 1997, WORLD PAT INF, V19, P269, DOI DOI 10.1016/S0172-2190(97)00033-1 Kim G, 2016, SUSTAINABILITY-BASEL, V8, DOI 10.3390/su8121252 Koschützki D, 2005, LECT NOTES COMPUT SC, V3418, P16 Kumar A, 2013, PROC CVPR IEEE, P3438, DOI 10.1109/CVPR.2013.441 Kwon DS, 2019, WORLD PAT INF, V59, DOI 10.1016/j.wpi.2019.04.001 Kyebambe MN, 2017, TECHNOL FORECAST SOC, V125, P236, DOI 10.1016/j.techfore.2017.08.002 Lajevardi SM, 2013, IEEE T IMAGE PROCESS, V22, P3625, DOI 10.1109/TIP.2013.2266257 Leydesdorff L, 2007, J AM SOC INF SCI TEC, V58, P1303, DOI 10.1002/asi.20614 Lin PL, 2012, PATTERN RECOGN, V45, P934, DOI 10.1016/j.patcog.2011.08.027 Liu F, 2014, NEUROCOMPUTING, V145, P75, DOI 10.1016/j.neucom.2014.05.069 Liu S., 2001, IT Professional, V3, P27, DOI 10.1109/6294.899930 Lu GM, 2003, PATTERN RECOGN LETT, V24, P1463, DOI 10.1016/S0167-8655(02)00386-0 Mondal S, 2017, NEUROCOMPUTING, V230, P1, DOI 10.1016/j.neucom.2016.11.031 Muramatsu D, 2015, IEEE T IMAGE PROCESS, V24, P140, DOI 10.1109/TIP.2014.2371335 Opsahl T, 2010, SOC NETWORKS, V32, P245, DOI 10.1016/j.socnet.2010.03.006 Rashid RA, 2008, 2008 INTERNATIONAL CONFERENCE ON COMPUTER AND COMMUNICATION ENGINEERING, VOLS 1-3, P898, DOI 10.1109/ICCCE.2008.4580735 Sae-Bae N, 2014, IEEE T INF FOREN SEC, V9, P568, DOI 10.1109/TIFS.2014.2302582 Seo SJ, 2015, SCIENTOMETRICS, V105, P905, DOI 10.1007/s11192-015-1709-0 Sharafudeen R, 2012, INT J IND CHEM, V3, DOI 10.1186/2228-5547-3-26 Sharma P, 2017, WORLD PAT INF, V51, P31, DOI 10.1016/j.wpi.2017.11.002 Sri Prakash N, 2016, INDIAN J SCI TECHNOL Stefan D, 2012, COMPUT SECUR, V31, P109, DOI 10.1016/j.cose.2011.10.001 Thornton J, 2007, IEEE T PATTERN ANAL, V29, P596, DOI 10.1109/TPAMI.2007.1006 Wallach Hanna M., 2009, P 26 ANN INT C MACH, P1105, DOI DOI 10.1145/1553374.1553515 Wang C., 2016, PLOS ONE, V11 You HL, 2017, SCIENTOMETRICS, V111, P297, DOI 10.1007/s11192-017-2252-y NR 44 TC 7 Z9 7 U1 1 U2 14 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS SN 0172-2190 EI 1874-690X J9 WORLD PAT INF JI World Pat. Inf. PD JUN PY 2021 VL 65 AR 102040 DI 10.1016/j.wpi.2021.102040 EA APR 2021 PG 10 WC Information Science & Library Science WE Emerging Sources Citation Index (ESCI) SC Information Science & Library Science GA SU4ZJ UT WOS:000663147300001 DA 2024-09-05 ER PT C AU Yang, C Liu, WX AF Yang Chun Liu Weixin BE Hung, J Zhao, RM TI Research of the Staff Performance in the University Library Based on the Principal Component Analysis SO PROCEEDINGS OF 2008 INTERNATIONAL SEMINAR ON EDUCATION MANAGEMENT AND ENGINEERING LA English DT Proceedings Paper CT International Seminar on Education Management and Engineering CY SEP 22, 2008 CL Chengdu, PEOPLES R CHINA DE principal component analysis; staff performance; university library; the appraisal model AB The competition among the university library is fundamentally intense gradually. The methoud to raise the competition ability of the university library lies in introducing the staff and training the staff. Only the stuff's performance are raised, can the university library be developed prosperously. The performance management of the staff is the basis to make the university library policy and carry on the important decision of the university library, which is also an important mechanism for the university library to set up the strategic targets. This ariticle introduces the principal component to judge the performance of the the staff of the university library, which can give the university library a useful result to introducing the highly efficient staff and training the low outstanding staff. Through enstablishing the appraisal model, the university library can get the stituation of the staff performance eassily, then they can take on some effective measures to raise the level of the staff performance so that the university library can be developed effectively and efficiently. EM yangchun513383000@163.com CR BING AI, 2006, RES PREFORMANCE APPR KE L, 2007, RES PERFORMANCE MANA LI GF, J ANHUI U TECHNOLOGY LIU JM, 2001, J SHANGHAI U VANSCOTTER JR, 1996, J PSYCHOL WANG YM, 2005, J QUANTITATIVE TECHN YE M, 2004, INFORM SCI NR 7 TC 0 Z9 0 U1 0 U2 2 PU M D FORUM PI ALLAWAH NSW PA 17 AUGUSTA ST, ALLAWAH NSW, 2218, AUSTRALIA BN 978-0-646-49806-5 PY 2008 BP 857 EP 864 PG 8 WC Education & Educational Research WE Conference Proceedings Citation Index - Social Science & Humanities (CPCI-SSH) SC Education & Educational Research GA BIO55 UT WOS:000261358200168 DA 2024-09-05 ER PT J AU Heibi, I Peroni, S AF Heibi, Ivan Peroni, Silvio TI A quantitative and qualitative open citation analysis of retracted articles in the humanities SO QUANTITATIVE SCIENCE STUDIES LA English DT Article DE citation analysis; humanities; retraction; topic modeling ID PUBLICATIONS AB In this article, we show and discuss the results of a quantitative and qualitative analysis of open citations of retracted publications in the humanities domain. Our study was conducted by selecting retracted papers in the humanities domain and marking their main characteristics (e.g., retraction reason). Then, we gathered the citing entities and annotated their basic metadata (e.g., title, venue, subject) and the characteristics of their in-text citations (e.g., intent, sentiment). Using these data, we performed a quantitative and qualitative study of retractions in the humanities, presenting descriptive statistics and a topic modeling analysis of the citing entities' abstracts and the in-text citation contexts. As part of our main findings, we noticed that there was no drop in the overall number of citations after the year of retraction, with few entities that have either mentioned the retraction or expressed a negative sentiment toward the cited publication. In addition, on several occasions, we noticed a higher concern/awareness by citing entities belonging to the health sciences domain about citing a retracted publication, compared with the humanities and social science domains. Philosophy, arts, and history are the humanities areas that showed higher concern toward the retraction. C1 [Heibi, Ivan; Peroni, Silvio] Univ Bologna, Res Ctr Open Scholarly Metadata, Dept Class Philol & Italian Studies, Bologna, Italy. [Heibi, Ivan; Peroni, Silvio] Univ Bologna, Digital Humanities Adv Res Ctr DHarc, Dept Class Philol & Italian Studies, Bologna, Italy. C3 University of Bologna; University of Bologna RP Heibi, I (corresponding author), Univ Bologna, Res Ctr Open Scholarly Metadata, Dept Class Philol & Italian Studies, Bologna, Italy.; Heibi, I (corresponding author), Univ Bologna, Digital Humanities Adv Res Ctr DHarc, Dept Class Philol & Italian Studies, Bologna, Italy. EM ivan.heibi2@unibo.it RI Heibi, Ivan/AAZ-9145-2021 OI Heibi, Ivan/0000-0001-5366-5194; Peroni, Silvio/0000-0003-0530-4305 FU European Union [101017452] FX This work has been partially funded by the European Union's Horizon 2020 research andinnovation program under grant agreement No 101017452 (OpenAIRE-Nexus). CR Archambault E., 2010, LIMITS BIBLIOMETRICS Ataie-Ashtiani B, 2018, SCI ENG ETHICS, V24, P1653, DOI 10.1007/s11948-017-9939-6 Azoulay P, 2017, RES POLICY, V46, P1552, DOI 10.1016/j.respol.2017.07.003 Bar-Ilan J, 2018, SCIENTOMETRICS, V116, P1771, DOI 10.1007/s11192-018-2802-y Bar-Ilan J, 2017, SCIENTOMETRICS, V113, P547, DOI 10.1007/s11192-017-2242-0 Barbour V., 2009, Committee on Publication Ethics, DOI [DOI 10.24318/COPE.2019.1.4, https://doi.org/10.24318/cope.2019.1.4] Barde BV, 2017, 2017 INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTING AND CONTROL SYSTEMS (ICICCS), P745, DOI 10.1109/ICCONS.2017.8250563 Boldt J, 2000, ANESTH ANALG, V91, P887, DOI 10.1097/00000539-200010000-00022 Bolland MJ, 2022, ACCOUNT RES, V29, P18, DOI 10.1080/08989621.2021.1886933 Bordignon F, 2020, SCIENTOMETRICS, V124, P1225, DOI 10.1007/s11192-020-03536-z Bornemann-Cimenti H, 2016, SCI ENG ETHICS, V22, P1063, DOI 10.1007/s11948-015-9680-y Brainard J, 2018, Science (80-), V25, P1, DOI [10.1126/science.aav8384, DOI 10.1126/SCIENCE.AAV8384] Brownlee J., 2019, A Gentle Introduction to the Bag-Of-Words Model: 2021 Machine Learning Mastery Campos-Varela I, 2020, GAC SANIT, V34, P430, DOI 10.1016/j.gaceta.2019.05.008 Candal-Pedreira C, 2020, BMJ GLOB HEALTH, V5, DOI 10.1136/bmjgh-2020-003719 Casadevall A, 2014, FASEB J, V28, P3847, DOI 10.1096/fj.14-256735 Chuang J, 2012, PROCEEDINGS OF THE INTERNATIONAL WORKING CONFERENCE ON ADVANCED VISUAL INTERFACES, P74, DOI 10.1145/2254556.2254572 Collier R, 2011, CAN MED ASSOC J, V183, pE385, DOI 10.1503/cmaj.109-3827 Corbyn Z, 2012, NATURE, V490, P21, DOI 10.1038/490021a Dinh L., 2019, P ASS INFORM SCI TEC, V56, P390, DOI DOI 10.1002/PRA2.35 Fang FC, 2011, INFECT IMMUN, V79, P3855, DOI 10.1128/IAI.05661-11 Feng LZ, 2020, SCIENTOMETRICS, V125, P1445, DOI 10.1007/s11192-020-03702-3 Ferri P., 2020, PUNTOORG INT J, V5, P135, DOI DOI 10.19245/25.05.PIJ.5.2.3 Gasparyan AY, 2014, CROAT MED J, V55, P61, DOI 10.3325/cmj.2014.55.61 Gaudino M, 2021, JAMA INTERN MED, DOI 10.1001/jamainternmed.2021.1807 GROSSARTHMATICEK R, 1990, PSYCHOL REP, V66, P355, DOI 10.2466/PR0.66.2.355-373 Halevi G, 2020, PUBLISH RES Q, V36, P55, DOI 10.1007/s12109-019-09699-9 Hammarfelt B, 2016, RESEARCH ASSESSMENT IN THE HUMANITIES: TOWARDS CRITERIA AND PROCEDURES, P115, DOI 10.1007/978-3-319-29016-4_10 Heibi Ivan, 2022, Zenodo, DOI 10.5281/ZENODO.7147985 Heibi Ivan, 2021, Zenodo, DOI 10.5281/ZENODO.5639371 Heibi I, 2022, PLOS ONE, V17, DOI 10.1371/journal.pone.0270872 Heibi I, 2021, SCIENTOMETRICS, V126, P8433, DOI 10.1007/s11192-021-04097-5 Heibi I, 2019, SCIENTOMETRICS, V121, P1213, DOI 10.1007/s11192-019-03217-6 Hendricks G, 2020, QUANT SCI STUD, V1, P414, DOI 10.1162/qss_a_00022 Jelodar H, 2019, MULTIMED TOOLS APPL, V78, P15169, DOI 10.1007/s11042-018-6894-4 Lu SF, 2013, SCI REP-UK, V3, DOI 10.1038/srep03146 Luwel M., 2019, PREPRINT, DOI DOI 10.31235/OSF.IO/C6MVS Mössner N, 2011, STUD HIST PHILOS SCI, V42, P416, DOI 10.1016/j.shpsa.2011.02.001 Mongeon P, 2016, J ASSOC INF SCI TECH, V67, P535, DOI 10.1002/asi.23421 Mott A, 2019, J HEALTH SERV RES PO, V24, P44, DOI 10.1177/1355819618797965 Ngah Z. A., 1997, Malaysian Journal of Library Information Science, V2, P19 Nikpay F, 2020, INFORM SYST FRONT, V22, P789, DOI 10.1007/s10796-016-9716-0 Ojeda, 2018, APPL TEXT ANAL PYTHO OpenCitations, 2020, COCI CSV DATASET ALL, DOI [DOI 10.6084/M9.FIGSHARE.6741422.V6, 10.6084/M9.FIGSHARE.6741422.V6, DOI 10.6084/M9.FIGSHARE.6741422.V3] Peroni S., 2018, OPEN CITATION DEFINI, DOI [10.6084/M9.FIGSHARE.6683855, DOI 10.6084/M9.FIGSHARE.6683855] Peroni S, 2020, QUANT SCI STUD, V1, P428, DOI 10.1162/qss_a_00023 Peroni S, 2012, J WEB SEMANT, V17, P33, DOI 10.1016/j.websem.2012.08.001 Priem J, 2022, Arxiv, DOI [arXiv:2205.01833, DOI 10.48550/ARXIV.2205.01833, 10.48550/arXiv.2205.01833] Ritchie A., 2008, P 17 ACM C INF KNOWL, P213, DOI DOI 10.1145/1458082.1458113 Schmiedel T, 2019, ORGAN RES METHODS, V22, P941, DOI 10.1177/1094428118773858 Schneider J, 2020, SCIENTOMETRICS, V125, P2877, DOI 10.1007/s11192-020-03631-1 Shuai X, 2017, J ASSOC INF SCI TECH, V68, P2225, DOI 10.1002/asi.23826 Sievert C., 2014, LDAVIS METHOD VISUAL, DOI 10.13140/2.1.1394.3043 Siluo Yang, 2020, Digital Libraries at Times of Massive Societal Transition. 22nd International Conference on Asia-Pacific Digital Libraries, ICADL 2020. Proceedings. Lecture Notes in Computer Science (LNCS 12504), P139, DOI 10.1007/978-3-030-64452-9_12 Sternberg R. J., 2006, Creativity Research Journal, V18, P87, DOI [10.1207/s15326934crj1801_10, DOI 10.1207/S15326934CRJ1801] Suppe F, 1998, PHILOS SCI, V65, P381, DOI 10.1086/392651 van der Vet Paul E, 2016, Res Integr Peer Rev, V1, P3, DOI 10.1186/s41073-016-0008-5 Wang KS, 2020, QUANT SCI STUD, V1, P396, DOI 10.1162/qss_a_00021 NR 58 TC 6 Z9 6 U1 12 U2 31 PU MIT PRESS PI CAMBRIDGE PA ONE ROGERS ST, CAMBRIDGE, MA 02142-1209 USA EI 2641-3337 J9 QUANT SCI STUD JI Quant. Sci. Stud. PD DEC 20 PY 2022 VL 3 IS 4 BP 953 EP 975 DI 10.1162/qss_a_00222 PG 23 WC Information Science & Library Science WE Emerging Sources Citation Index (ESCI) SC Information Science & Library Science GA 9B9MZ UT WOS:000935055300004 OA Green Published, gold, Green Submitted DA 2024-09-05 ER PT J AU Hua, V Huynh, B AF Hua, Van Huynh, Bao TI Forecasting a Journal Impact Factor Under Missing Values Based on Machine Learning SO IEEE ACCESS LA English DT Article DE Multivariate; time series; missing values; imputation; journal impact factor; machine learning; kNNI ID MULTIVARIATE TIME-SERIES; IMPUTATION AB Scientists not only engage in research, but also write articles based on their work, and naturally aim to submit their articles to prestigious, well-received, and highly regarded journals or conferences. One way to measure the prestige of a journal is to use the Journal Impact Factor (JIF), but in order to make best use of this information one needs to better understand the relationships among various JIF-related attributes. However, in recent years JIF values have been missing or unavailable for some journals, due to several objective and subjective factors, which significantly impacts the ability to forecast such values in the following years. In this article we study the factors that directly affect the ranking of journals and can be used to forecast the appropriate values in the next few years, in order to help researchers find the right place to submit their articles in certain journals. C1 [Hua, Van; Huynh, Bao] HUTECH Univ, Fac Informat Technol, Ho Chi Minh City 700000, Vietnam. RP Huynh, B (corresponding author), HUTECH Univ, Fac Informat Technol, Ho Chi Minh City 700000, Vietnam. EM hq.bao@hutech.edu.vn RI Huynh, Bao/O-9317-2018 OI Huynh, Bao/0000-0002-1882-6877 CR Andreadis A., 2022, Missing values imputation on multivariate time series in the field of agriculture Asraf HM, 2022, ALEX ENG J, V61, P937, DOI 10.1016/j.aej.2021.04.096 Daberdaku S, 2020, J HEALTHC INFORM RES, V4, P174, DOI 10.1007/s41666-020-00069-1 Du SD, 2020, NEUROCOMPUTING, V388, P269, DOI 10.1016/j.neucom.2019.12.118 Du W., 2021, A deep learning model to impute missing data in time series Du WJ, 2023, EXPERT SYST APPL, V219, DOI 10.1016/j.eswa.2023.119619 Emmanuel T, 2021, J BIG DATA-GER, V8, DOI 10.1186/s40537-021-00516-9 Feng RH, 2021, COMPUT GEOSCI-UK, V152, DOI 10.1016/j.cageo.2021.104763 Flores A, 2022, LECT NOTE NETW SYST, V359, P445, DOI 10.1007/978-3-030-89880-9_34 Groesser SN, 2012, SYST RES BEHAV SCI, V29, P624, DOI 10.1002/sres.2142 Haslbeck JMB, 2020, MULTIVAR BEHAV RES, V56, P120, DOI 10.1080/00273171.2020.1743630 Jadhav A, 2019, APPL ARTIF INTELL, V33, P913, DOI 10.1080/08839514.2019.1637138 Jakobsen JC, 2017, BMC MED RES METHODOL, V17, DOI 10.1186/s12874-017-0442-1 Kabir G, 2020, SUSTAIN RESIL INFRAS, V5, P365, DOI 10.1080/23789689.2019.1600960 Khan F, 2020, CHAOS SOLITON FRACT, V140, DOI 10.1016/j.chaos.2020.110189 Khomytska I., 2020, P IEEE 15 INT C COMP, V1, P259 Li C, 2023, ALGORITHMS, V16, DOI 10.3390/a16090422 Lin WC, 2020, ARTIF INTELL REV, V53, P1487, DOI 10.1007/s10462-019-09709-4 Luo Y, 2022, BRIEF BIOINFORM, V23, DOI 10.1093/bib/bbab489 Martínez F, 2022, IEEE ACCESS, V10, P3275, DOI 10.1109/ACCESS.2022.3140377 Nguyen C. C., 2023, J. Sci. Techn.-Sect. Inf. Commun. Technol., V12, P110, DOI [10.56651/lqdtu.jst.v12.n1.661.ict, DOI 10.56651/LQDTU.JST.V12.N1.661.ICT] Öztürk MM, 2023, VIETNAM J COMPUT SCI, V10, P303, DOI 10.1142/S2196888823500033 Phan Q.-T., 2022, P 8 INT C APPL SYST, P21 Qin R, 2023, ENTROPY-SWITZ, V25, DOI 10.3390/e25010137 Rizvi STH, 2023, CYBERNET SYST, DOI 10.1080/01969722.2023.2247257 Sangeetha M, 2020, SOFT COMPUT, V24, P13369, DOI 10.1007/s00500-020-04755-5 Saroj Abhilasha J., 2021, Journal of Big Data Analytics in Transportation, P95, DOI 10.1007/s42421-021-00043-2 Song XY, 2020, J PETROL SCI ENG, V186, DOI 10.1016/j.petrol.2019.106682 Tran Cao Truong, 2022, 2022 RIVF International Conference on Computing and Communication Technologies (RIVF), P334, DOI 10.1109/RIVF55975.2022.10013809 Vi B. N., 2021, P RIVF INT C COMP CO, P1 Wen XY, 2023, IEEE ACCESS, V11, P48322, DOI 10.1109/ACCESS.2023.3276628 Wu R, 2022, IEEE SENS J, V22, P10671, DOI 10.1109/JSEN.2022.3166643 Yang SV, 2023, IND ENG CHEM RES, V62, P15278, DOI 10.1021/acs.iecr.3c01639 Yang SD, 2022, IND ENG CHEM RES, V61, P8520, DOI 10.1021/acs.iecr.1c04712 Zainuddin A, 2022, 2022 INTERNATIONAL CONFERENCE ON GREEN ENERGY, COMPUTING AND SUSTAINABLE TECHNOLOGY (GECOST), P346, DOI 10.1109/GECOST55694.2022.10010499 Zhang Y, 2021, INFORM SCIENCES, V551, P67, DOI 10.1016/j.ins.2020.11.035 Zhou HY, 2021, AAAI CONF ARTIF INTE, V35, P11106 Zhou J, 2019, IEEE ACCESS, V7, P19775, DOI 10.1109/ACCESS.2019.2895737 NR 38 TC 0 Z9 0 U1 1 U2 1 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 2169-3536 J9 IEEE ACCESS JI IEEE Access PY 2024 VL 12 BP 85745 EP 85760 DI 10.1109/ACCESS.2024.3416345 PG 16 WC Computer Science, Information Systems; Engineering, Electrical & Electronic; Telecommunications WE Science Citation Index Expanded (SCI-EXPANDED) SC Computer Science; Engineering; Telecommunications GA WC3K3 UT WOS:001252628000001 OA gold DA 2024-09-05 ER PT J AU van der Zwaard, S de Leeuw, AW Meerhoff, LA Bodine, SC Knobbe, A AF van der Zwaard, Stephan de Leeuw, Arie-Willem Meerhoff, L. (Rens) A. Bodine, Sue C. Knobbe, Arno TI Articles with impact: insights into 10 years of research with machine learning SO JOURNAL OF APPLIED PHYSIOLOGY LA English DT Article DE altmetrics; bibliometrics; machine learning; natural language processing; scientometrics ID MUSCLE PROTEIN-SYNTHESIS; HIGH-INTENSITY EXERCISE; MAXIMAL OXYGEN-UPTAKE; CARDIORESPIRATORY FITNESS; RESISTANCE EXERCISE; O-2 COST; IMPROVES PERFORMANCE; ACCEPTABLE ESTIMATE; ENDURANCE EXERCISE; VIEWPOINT V AB Worldwide scientific output is growing faster and faster. Academics should not only publish much and fast, but also publish research with impact. The aim of this study is to use machine learning to investigate characteristics of articles that were published in the Journal of Applied Physiology between 2009 and 2018, and characterize high-impact articles. Article impact was assessed for 4,531 publications by three common impact metrics: the Altmetric Attention Scores, downloads, and citations. Additionally, a broad collection of (more than 200) characteristics was collected from the article's title, abstract, authors, keywords, publication, and article engagement. We constructed random forest (RF) regression models to predict article impact and articles with the highest impact (top-25% and top-10% for each impact metric), which were compared with a naive baseline method. RF models outperformed the baseline models when predicting the impact of unseen articles (P < 0.001 for each impact metric). Also, RF models predicted top-25% and top-10% high-impact articles with a high accuracy. Moreover, RF models revealed important article characteristics. Higher impact was observed for articles about exercise, training, performance and (V)over dot(O2max), reviews, human studies, articles from large collaborations, longer articles with many references and high engagement by scientists, practitioners and public or via news outlets and videos. Lower impact was shown for articles about respiratory physiology or sleep apnea, editorials, animal studies, and titles with a question mark or a reference to places or individuals. In summary, research impact can be predicted and better understood using a combination of article characteristics and machine learning. NEW & NOTEWORTHY Common measures of article impact are the Altmetric Attention Scores, number of downloads, and number of citations. To our knowledge, this is the first study that applies machine learning on a comprehensive collection of article characteristics to predict article attention scores, downloads, and citations. Using 10 years of research articles, we obtained accurate predictions of high-impact articles and discovered important article characteristics related to article impact. C1 [van der Zwaard, Stephan; de Leeuw, Arie-Willem; Meerhoff, L. (Rens) A.; Knobbe, Arno] Leiden Univ, Leiden Inst Adv Comp Sci, Leiden, Netherlands. [van der Zwaard, Stephan] Vrije Univ Amsterdam, Dept Human Movement Sci, Amsterdam, Netherlands. [Bodine, Sue C.] Univ Iowa, Dept Internal Med Endocrinol & Metab, Iowa City, IA USA. C3 Leiden University - Excl LUMC; Leiden University; Vrije Universiteit Amsterdam; University of Iowa RP van der Zwaard, S (corresponding author), Leiden Univ, Leiden Inst Adv Comp Sci, Leiden, Netherlands.; van der Zwaard, S (corresponding author), Vrije Univ Amsterdam, Dept Human Movement Sci, Amsterdam, Netherlands. EM s.van.der.zwaard@liacs.leidenuniv.nl RI van der Zwaard, Stephan/J-9622-2019; Knobbe, Arno/AAE-5659-2020; de Leeuw, Arie-Willem/AAL-5634-2021 OI van der Zwaard, Stephan/0000-0002-8296-828X; de Leeuw, Arie-Willem/0000-0002-9857-0970; Bodine, Sue/0000-0002-5742-9145 CR Ade CJ, 2017, J APPL PHYSIOL, V122, P968, DOI 10.1152/japplphysiol.00280.2016 Alberts B, 2013, SCIENCE, V340, P787, DOI 10.1126/science.1240319 [Anonymous], 2006, PLOS MED, V3, P707, DOI 10.1371/journal.pmed.0030291 [Anonymous], 2020, 2018 ALTMETRIC TOP 1 [Anonymous], 2020, NLP R UDPIPE TOKENIZ [Anonymous], 2020, UNIVERSAL POS TAGS O Arciero PJ, 2014, J APPL PHYSIOL, V117, P1, DOI 10.1152/japplphysiol.00152.2014 Azevedo P, 2018, J APPL PHYSIOL, V125, P233, DOI 10.1152/japplphysiol.00319.2018 Bailey SJ, 2010, J APPL PHYSIOL, V109, P1394, DOI 10.1152/japplphysiol.00503.2010 Bailey SJ, 2010, J APPL PHYSIOL, V109, P135, DOI 10.1152/japplphysiol.00046.2010 Bailey SJ, 2009, J APPL PHYSIOL, V107, P1144, DOI 10.1152/japplphysiol.00722.2009 Beltrame T, 2018, J APPL PHYSIOL, V124, P473, DOI 10.1152/japplphysiol.00299.2017 Billat V, 2017, J APPL PHYSIOL, V122, P430, DOI 10.1152/japplphysiol.00569.2016 Bodine SC, 2017, J APPL PHYSIOL, V123, P1, DOI 10.1152/japplphysiol.00534.2017 Bornmann L., 2020, ANAL PERCENTILE IMPA Bornmann L, 2018, PLOS ONE, V13, DOI 10.1371/journal.pone.0197133 Bornmann L, 2015, J ASSOC INF SCI TECH, V66, P2215, DOI 10.1002/asi.23329 Bouchard C, 2011, J APPL PHYSIOL, V110, P1160, DOI 10.1152/japplphysiol.00973.2010 Breiman L., 2001, Machine Learning, V45, P5, DOI 10.1023/A:1010933404324 Brodersen Kay H., 2010, Proceedings of the 2010 20th International Conference on Pattern Recognition (ICPR 2010), P3121, DOI 10.1109/ICPR.2010.764 Burke LM, 2017, J APPL PHYSIOL, V122, P1055, DOI 10.1152/japplphysiol.00860.2016 Cajochen C, 2011, J APPL PHYSIOL, V110, P1432, DOI 10.1152/japplphysiol.00165.2011 Carroll TJ, 2017, J APPL PHYSIOL, V122, P1068, DOI 10.1152/japplphysiol.00775.2016 Carter SE, 2018, J APPL PHYSIOL, V125, P790, DOI 10.1152/japplphysiol.00310.2018 Chang CH, 2011, J APPL PHYSIOL, V110, P774, DOI 10.1152/japplphysiol.00945.2010 Chapman RF, 2014, J APPL PHYSIOL, V116, P595, DOI 10.1152/japplphysiol.00634.2013 COHEN J, 1992, PSYCHOL BULL, V112, P155, DOI 10.1037/0033-2909.112.1.155 Costas R, 2015, J ASSOC INF SCI TECH, V66, P2003, DOI 10.1002/asi.23309 de Winter JCF, 2015, SCIENTOMETRICS, V102, P1773, DOI 10.1007/s11192-014-1445-x Rodríguez JD, 2010, IEEE T PATTERN ANAL, V32, P569, DOI 10.1109/TPAMI.2009.187 DORA-Declaration on Research Assessment, 2019, San Francisco Declaration on Research Assessment Dormann CF, 2013, ECOGRAPHY, V36, P27, DOI 10.1111/j.1600-0587.2012.07348.x Erdt M, 2016, SCIENTOMETRICS, V109, P1117, DOI 10.1007/s11192-016-2077-0 Eysenbach G, 2011, J MED INTERNET RES, V13, DOI 10.2196/jmir.2012 Falagas ME, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0049476 Figg WD, 2006, PHARMACOTHERAPY, V26, P759, DOI 10.1592/phco.26.6.759 Freeling B, 2019, P NATL ACAD SCI USA, V116, P341, DOI 10.1073/pnas.1819937116 Garavaglia S, 1998, Entropy Garfield E, 2006, JAMA-J AM MED ASSOC, V295, P90, DOI 10.1001/jama.295.1.90 Gazni A, 2012, J AM SOC INF SCI TEC, V63, P323, DOI 10.1002/asi.21688 Glänzel W, 2001, SCIENTOMETRICS, V51, P69, DOI 10.1023/A:1010512628145 Glanzel W., HDB QUANTITATIVE SCI, P257 Gök A, 2015, SCIENTOMETRICS, V102, P653, DOI 10.1007/s11192-014-1434-0 Gonçalves LD, 2017, J APPL PHYSIOL, V123, P213, DOI 10.1152/japplphysiol.00260.2017 Green S, 2018, J APPL PHYSIOL, V125, P241, DOI 10.1152/japplphysiol.00307.2018 Green S, 2018, J APPL PHYSIOL, V125, P229, DOI 10.1152/japplphysiol.00850.2017 Gregorutti B, 2017, STAT COMPUT, V27, P659, DOI 10.1007/s11222-016-9646-1 Gries KJ, 2018, J APPL PHYSIOL, V125, P1636, DOI 10.1152/japplphysiol.00174.2018 Guerrero-Bote VP, 2014, SCIENTOMETRICS, V101, P1043, DOI 10.1007/s11192-014-1243-5 Gunnarsson TP, 2012, J APPL PHYSIOL, V113, P16, DOI 10.1152/japplphysiol.00334.2012 HALL PAV, 1980, COMPUT SURV, V12, P381, DOI 10.1145/356827.356830 Hassan SU, 2020, SCIENTOMETRICS, V123, P1407, DOI 10.1007/s11192-020-03447-z Haustein S, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0120495 Haustein S, 2014, J ASSOC INF SCI TECH, V65, P656, DOI 10.1002/asi.23101 Huang WY, 2018, PLOS ONE, V13, DOI 10.1371/journal.pone.0194962 Jamali HR, 2011, SCIENTOMETRICS, V88, P653, DOI 10.1007/s11192-011-0412-z Jaspers A, 2018, INT J SPORT PHYSIOL, V13, P625, DOI 10.1123/ijspp.2017-0299 Knobbe A, 2017, DATA MIN KNOWL DISC, V31, P1872, DOI 10.1007/s10618-017-0512-3 Kuhn M, 2008, J STAT SOFTW, V28, P1, DOI 10.18637/jss.v028.i05 Kumar V, 2009, J APPL PHYSIOL, V106, P2026, DOI 10.1152/japplphysiol.91481.2008 Kwok Roberta, 2013, Nature, V500, P491 Lansley KE, 2011, J APPL PHYSIOL, V110, P591, DOI 10.1152/japplphysiol.01070.2010 Letchford A, 2015, ROY SOC OPEN SCI, V2, DOI 10.1098/rsos.150266 Li YJ, 2007, IEEE T PATTERN ANAL, V29, P1091, DOI 10.1109/TPAMI.2007.1070 Little JP, 2011, J APPL PHYSIOL, V111, P1554, DOI 10.1152/japplphysiol.00921.2011 Lorenzo S, 2010, J APPL PHYSIOL, V109, P1140, DOI 10.1152/japplphysiol.00495.2010 Louis M, 2009, J APPL PHYSIOL, V106, P1538, DOI 10.1152/japplphysiol.91523.2008 Ortega J, 2016, SCIENTOMETRICS, V109, P1353, DOI 10.1007/s11192-016-2113-0 Lundberg TR, 2014, J APPL PHYSIOL, V116, P611, DOI 10.1152/japplphysiol.01082.2013 Lundberg TR, 2013, J APPL PHYSIOL, V114, P81, DOI 10.1152/japplphysiol.01013.2012 Marcora SM, 2009, J APPL PHYSIOL, V106, P857, DOI 10.1152/japplphysiol.91324.2008 Marquez CMS, 2015, J APPL PHYSIOL, V119, P1363, DOI 10.1152/japplphysiol.00126.2015 Miller BF, 2018, J APPL PHYSIOL, V124, P257, DOI 10.1152/japplphysiol.00004.2018 Mitchell CJ, 2012, J APPL PHYSIOL, V113, P71, DOI 10.1152/japplphysiol.00307.2012 Moed HF, 2016, J ASSOC INF SCI TECH, V67, P412, DOI 10.1002/asi.23405 Moed HF, 2005, J AM SOC INF SCI TEC, V56, P1088, DOI 10.1002/asi.20200 Moore AD, 2014, J APPL PHYSIOL, V117, P231, DOI 10.1152/japplphysiol.01251.2013 Morton RW, 2016, J APPL PHYSIOL, V121, P129, DOI 10.1152/japplphysiol.00154.2016 Murdoch WJ, 2019, P NATL ACAD SCI USA, V116, P22071, DOI 10.1073/pnas.1900654116 Neylon C, 2009, PLOS BIOL, V7, DOI 10.1371/journal.pbio.1000242 Peake JM, 2017, J APPL PHYSIOL, V122, P1077, DOI 10.1152/japplphysiol.00622.2016 Peake JM, 2017, J APPL PHYSIOL, V122, P559, DOI 10.1152/japplphysiol.00971.2016 Poole DC, 2017, J APPL PHYSIOL, V122, P997, DOI 10.1152/japplphysiol.01063.2016 Priem Jason, 2010, First Monday, V15, DOI 10.5210/fm.v15i7.2874 Priem J, 2019, ALTMETRICS WILD USIN Ried-Larsen M, 2017, J APPL PHYSIOL, V123, P790, DOI 10.1152/japplphysiol.00415.2017 Saeed-Ul Hassan, 2019, SCIENTOMETRICS, V119, P481, DOI 10.1007/s11192-019-03044-9 Saeed-Ul Hassan, 2017, SCIENTOMETRICS, V113, P1037, DOI 10.1007/s11192-017-2512-x Sagi I, 2008, J INF SCI, V34, P680, DOI 10.1177/0165551507086261 Salome CM, 2010, J APPL PHYSIOL, V108, P206, DOI 10.1152/japplphysiol.00694.2009 Shema H, 2014, J ASSOC INF SCI TECH, V65, P1018, DOI 10.1002/asi.23037 Skovgaard C, 2014, J APPL PHYSIOL, V117, P1097, DOI 10.1152/japplphysiol.01226.2013 Straka M, P CONLL 2017 SHAR TA, P88 Strobl C, 2008, BMC BIOINFORMATICS, V9, DOI 10.1186/1471-2105-9-307 Sugimoto CR, 2017, J ASSOC INF SCI TECH, V68, P2037, DOI 10.1002/asi.23833 Tang JE, 2009, J APPL PHYSIOL, V107, P987, DOI 10.1152/japplphysiol.00076.2009 Thelwall M, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0064841 Timmons JA, 2011, J APPL PHYSIOL, V110, P846, DOI 10.1152/japplphysiol.00934.2010 Timmons JA, 2010, J APPL PHYSIOL, V108, P1487, DOI 10.1152/japplphysiol.01295.2009 Uddin S, 2016, J INFORMETR, V10, P1166, DOI 10.1016/j.joi.2016.10.004 van der Zwaard S, 2018, J APPL PHYSIOL, V124, P1403, DOI 10.1152/japplphysiol.00946.2017 van der Zwaard S, 2019, FRONT PHYSIOL, V10, DOI 10.3389/fphys.2019.01276 van der Zwaard S, 2016, J APPL PHYSIOL, V121, P636, DOI 10.1152/japplphysiol.00355.2016 Van Noorden R, 2014, NATURE, V514, P550, DOI 10.1038/514550a Velez DR, 2007, GENET EPIDEMIOL, V31, P306, DOI 10.1002/gepi.20211 Voss MW, 2011, J APPL PHYSIOL, V111, P1505, DOI 10.1152/japplphysiol.00210.2011 Wang L, 2011, J APPL PHYSIOL, V111, P1335, DOI 10.1152/japplphysiol.00086.2011 West KE, 2011, J APPL PHYSIOL, V110, P619, DOI 10.1152/japplphysiol.01413.2009 Willis LH, 2012, J APPL PHYSIOL, V113, P1831, DOI 10.1152/japplphysiol.01370.2011 Wouters P, 2020, SOCIAL MEDIA METRICS Wright MN, 2017, J STAT SOFTW, V77, P1, DOI 10.18637/jss.v077.i01 Yu HQ, 2017, SCIENTOMETRICS, V111, P267, DOI 10.1007/s11192-017-2251-z Ziegler A, 2014, WIRES DATA MIN KNOWL, V4, P55, DOI 10.1002/widm.1114 Zuo L, 2018, J APPL PHYSIOL, V125, P966, DOI 10.1152/japplphysiol.00687.2018 NR 114 TC 9 Z9 9 U1 2 U2 20 PU AMER PHYSIOLOGICAL SOC PI Rockville PA 6120 Executive Blvd, Suite 600, Rockville, MD, UNITED STATES SN 8750-7587 EI 1522-1601 J9 J APPL PHYSIOL JI J. Appl. Physiol. PD OCT PY 2020 VL 129 IS 4 BP 967 EP 979 DI 10.1152/japplphysiol.00489.2020 PG 13 WC Physiology; Sport Sciences WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Physiology; Sport Sciences GA QX2XY UT WOS:000629212200013 PM 32790596 OA Green Published, Green Submitted, Bronze DA 2024-09-05 ER PT J AU Reong, S Wee, HM Hsiao, YL AF Reong, Samuel Wee, Hui-Ming Hsiao, Yu-Lin TI 20 Years of Particle Swarm Optimization Strategies for the Vehicle Routing Problem: A Bibliometric Analysis SO MATHEMATICS LA English DT Article DE particle swarm optimization; vehicle routing problem; bibliometric analysis; supply chain management; metaheuristics; combinatorial optimization; data mining ID TIME WINDOWS; DELIVERY; IMPACT; PICKUP; FIELD; PSO AB This study uses bibliometric analysis to examine the scientific evolution of particle swarm optimization (PSO) for the vehicle routing problem (VRP) over the past 20 years. Analyses were conducted to discover and characterize emerging trends in the research related to these topics and to examine the relationships between key publications. Through queries of the Web of Science and Scopus databases, the metadata for these particle swarm optimization (PSO) and vehicle routing problem (VRP) solution strategies were compared using bibliographic coupling and co-citation analysis using the Bibliometrix R software package, and secondly with VOSViewer. The bibliometric study's purpose was to identify the most relevant thematic clusters and publications where PSO and VRP research intersect. The findings of this study can guide future VRP research and underscore the importance of developing effective PSO metaheuristics. C1 [Reong, Samuel; Wee, Hui-Ming; Hsiao, Yu-Lin] Chung Yuan Christian Univ, Dept Ind & Syst Engn, Taoyuan 320, Taiwan. C3 Chung Yuan Christian University RP Wee, HM (corresponding author), Chung Yuan Christian Univ, Dept Ind & Syst Engn, Taoyuan 320, Taiwan. EM weehm@cycu.edu.tw RI Wee, H/JXY-0919-2024 OI wee, hui ming/0000-0002-2935-9506 CR Ahmed AKMF, 2018, ALGORITHMS, V11, DOI 10.3390/a11030031 Ai TJ, 2009, COMPUT OPER RES, V36, P1693, DOI 10.1016/j.cor.2008.04.003 Ai TJ, 2009, COMPUT IND ENG, V56, P380, DOI 10.1016/j.cie.2008.06.012 Alinaghian M, 2017, NETW SPAT ECON, V17, P1185, DOI 10.1007/s11067-017-9364-z [Anonymous], 1934, Engineering, DOI [10.1177/016555158501000, DOI 10.1177/016555158501000] [Anonymous], 2001, Swarm Intelligence Aria M, 2017, J INFORMETR, V11, P959, DOI 10.1016/j.joi.2017.08.007 Belmecheri F, 2013, J INTELL MANUF, V24, P775, DOI 10.1007/s10845-012-0627-8 Chen Ai-ling, 2006, Journal of Zhejiang University (Science), V7, P607, DOI 10.1631/jzus.2006.A0607 Chen MC, 2016, TRANSPORT RES E-LOG, V91, P208, DOI 10.1016/j.tre.2016.04.003 Chen RM, 2019, EXPERT SYST APPL, V138, DOI 10.1016/j.eswa.2019.112833 CLARKE G, 1964, OPER RES, V12, P568, DOI 10.1287/opre.12.4.568 Clerc M, 2004, STUD FUZZ SOFT COMP, V141, P219 Cobo MJ, 2011, J INFORMETR, V5, P146, DOI 10.1016/j.joi.2010.10.002 DANTZIG GB, 1959, MANAGE SCI, V6, P80, DOI 10.1287/mnsc.6.1.80 Dethloff J, 2001, OR SPEKTRUM, V23, P79, DOI 10.1007/PL00013346 Ferrucci F, 2013, INTRO TOUR PLANNING, DOI [10.1007/978-3-642-33472-6_2, DOI 10.1007/978-3-642-33472-6_2] FISHER ML, 1981, NETWORKS, V11, P109, DOI 10.1002/net.3230110205 Garai A, 2022, J CLEAN PROD, V334, DOI 10.1016/j.jclepro.2021.129977 GENDREAU M, 1994, MANAGE SCI, V40, P1276, DOI 10.1287/mnsc.40.10.1276 Goksal FP, 2013, COMPUT IND ENG, V65, P39, DOI 10.1016/j.cie.2012.01.005 Gong YJ, 2012, IEEE T SYST MAN CY C, V42, P254, DOI 10.1109/TSMCC.2011.2148712 Hirsch JE, 2005, P NATL ACAD SCI USA, V102, P16569, DOI 10.1073/pnas.0507655102 Jia YH, 2018, IEEE T SYST MAN CY-S, V48, P1607, DOI 10.1109/TSMC.2017.2682264 Kanthavel Karuppusamy, 2011, American Journal of Applied Sciences, V8, P107, DOI 10.3844/ajassp.2011.107.112 Kennedy J, 1995, 1995 IEEE INTERNATIONAL CONFERENCE ON NEURAL NETWORKS PROCEEDINGS, VOLS 1-6, P1942, DOI 10.1109/icnn.1995.488968 KESSLER MM, 1963, AM DOC, V14, P10, DOI 10.1002/asi.5090140103 Khouadjia MR, 2012, APPL SOFT COMPUT, V12, P1426, DOI 10.1016/j.asoc.2011.10.023 Kim BI, 2012, J INTELL MANUF, V23, P1119, DOI 10.1007/s10845-010-0455-7 Lahyani R, 2015, EUR J OPER RES, V241, P1, DOI 10.1016/j.ejor.2014.07.048 LIN S, 1965, AT&T TECH J, V44, P2245, DOI 10.1002/j.1538-7305.1965.tb04146.x Lotka A.J., 1926, J Wash Acad Sci Wash D C, V16, P23 Marinakis Y., 2018, PARTICLE SWARM OPTIM, DOI [10.1007/978-3-319-07124-4_42, DOI 10.1007/978-3-319-07124-4_42] Marinakis Y, 2019, INFORM SCIENCES, V481, P311, DOI 10.1016/j.ins.2018.12.086 Marinakis Y, 2013, APPL SOFT COMPUT, V13, P1693, DOI 10.1016/j.asoc.2013.01.007 Marinakis Y, 2013, LECT NOTES COMPUT SC, V7832, P133, DOI 10.1007/978-3-642-37198-1_12 Marinakis Y, 2010, ENG APPL ARTIF INTEL, V23, P463, DOI 10.1016/j.engappai.2010.02.002 Marinakis Y, 2010, EXPERT SYST APPL, V37, P1446, DOI 10.1016/j.eswa.2009.06.085 Moghaddam BF, 2012, COMPUT IND ENG, V62, P306, DOI 10.1016/j.cie.2011.10.001 Naderipour M, 2016, MEASUREMENT, V90, P443, DOI 10.1016/j.measurement.2016.04.043 Norouzi N, 2012, NETW SPAT ECON, V12, P609, DOI 10.1007/s11067-011-9169-4 Norouzi N, 2017, OPTIM LETT, V11, P121, DOI 10.1007/s11590-015-0996-y Norouzi N, 2015, MEASUREMENT, V62, P162, DOI 10.1016/j.measurement.2014.10.024 Okulewicz M, 2019, SWARM EVOL COMPUT, V48, P44, DOI 10.1016/j.swevo.2019.03.008 Okulewicz M, 2017, APPL SOFT COMPUT, V58, P586, DOI 10.1016/j.asoc.2017.04.070 Ozsoydan FB, 2013, OPTIMIZATION, V62, P1321, DOI 10.1080/02331934.2013.841158 Potvin JY, 2009, INFORMS J COMPUT, V21, P518, DOI 10.1287/ijoc.1080.0312 Rochat Y., 1995, Journal of Heuristics, V1, P147, DOI 10.1007/BF02430370 Sarkar B, 2022, EXPERT SYST APPL, V202, DOI 10.1016/j.eswa.2022.117154 Sarkar B, 2021, J CLEAN PROD, V317, DOI 10.1016/j.jclepro.2021.128079 Shi JL, 2018, ASIA PAC J OPER RES, V35, DOI 10.1142/S0217595918400067 Shi YH, 1998, IEEE C EVOL COMPUTAT, P69, DOI 10.1109/ICEC.1998.699146 SMALL H, 1973, J AM SOC INFORM SCI, V24, P265, DOI 10.1002/asi.4630240406 SOLOMON MM, 1987, OPER RES, V35, P254, DOI 10.1287/opre.35.2.254 Toth P, 2002, SIAM MONOG DISCR MAT, P1 Van Eck N.J., 2014, Measuring Scholarly Impact: Methods and Practice, P285, DOI 10.1007/978-3-319-10377-8_13(InEng.) Vidal T, 2013, EUR J OPER RES, V231, P1, DOI 10.1016/j.ejor.2013.02.053 Waltman L, 2015, J INFORMETR, V9, P872, DOI 10.1016/j.joi.2015.08.001 Wu DQ, 2016, INT J SIMUL MODEL, V15, P742, DOI 10.2507/IJSIMM15(4)CO19 Xu JP, 2011, TRANSPORT RES E-LOG, V47, P1075, DOI 10.1016/j.tre.2011.04.002 NR 60 TC 5 Z9 5 U1 8 U2 32 PU MDPI PI BASEL PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND EI 2227-7390 J9 MATHEMATICS-BASEL JI Mathematics PD OCT PY 2022 VL 10 IS 19 AR 3669 DI 10.3390/math10193669 PG 19 WC Mathematics WE Science Citation Index Expanded (SCI-EXPANDED) SC Mathematics GA 5G6HI UT WOS:000867097500001 OA gold DA 2024-09-05 ER PT J AU Wang, J AF Wang, Jun TI RESEARCH ON THE REALIZATION MECHANISM AND EVALUATION SYSTEM OF HIGH-QUALITY UNDERGRADUATE EDUCATION IN PRIVATE UNIVERSITIES BASED ON DEEP LEARNING SO 3C TIC LA English DT Article DE Deep learning; private universities; high-quality undergraduate education; realization mechanism; assessment system AB Due to the new development stage, it is especially important to improve the education quality of private undergraduate universities. As a result, it is a new hot issue for the construction of a mechanism and assessment system for the quality improvement of private undergraduate education. In this paper, after analyzing and researching the quality of undergraduate education in present-day universities, the mechanism of deep learning is applied to the establishment of the assessment system. Finally, 1082 samples collected from the data center platform of a private university are analyzed as the research object. From the results, the final size of the combined weights of the seven evaluation items constituting the assessment system differed basically little. They were 12.81%, 15.78%, 15.28%, 14.38%, 12.83%, 12.81%, 15.01%, and 13.27%, respectively. In the comparison of this paper's method with FAHP+TOPSIS combined evaluation, euclidean map method, and genetic algorithm assignment, the difference between the seven weight values of the euclidean map method is larger, 5.56%. The evaluation times of the four methods were 41 s, 38 s, 47 s, and 118 s. Compared with the other three methods, the genetic algorithm assignment took the most time. C1 [Wang, Jun] Guangdong Inst Sci & Technol, Dongguan 523808, Guangdong, Peoples R China. RP Wang, J (corresponding author), Guangdong Inst Sci & Technol, Dongguan 523808, Guangdong, Peoples R China. EM wjshgz2022@126.com CR Bhor HN, 2022, COMPUT INTELL-US, V38, P438, DOI 10.1111/coin.12473 Blythe A, 2018, BRIT J GEN PRACT, V68, P560, DOI 10.3399/bjgp18X699881 Boardman C., 2021, British Journal of Surgery, V108 Chang JY, 2022, APPL MATH NONLIN SCI, V7, P175, DOI 10.2478/amns.2021.2.00154 Cong S. L., 2018, Polymer Bulletin Gao RM, 2020, J CHEM EDUC, V97, P3028, DOI 10.1021/acs.jchemed.0c00634 Homberg A, 2020, COMPLEMENT THER MED, V54, DOI 10.1016/j.ctim.2020.102542 Hong W, 2021, Journal of Physics: Conference Series, V1738 Hu C., 2021, Complexity Huang WM, 2021, J INTELL FUZZY SYST, V40, P2373, DOI 10.3233/JIFS-189233 Kali Y, 2019, BRIT J EDUC TECHNOL, V50, P2162, DOI 10.1111/bjet.12847 Marlowe J, 2020, J CHEM EDUC, V97, P4527, DOI 10.1021/acs.jchemed.0c00925 Meng YL, 2020, J CHEM EDUC, V97, P2945, DOI 10.1021/acs.jchemed.0c00874 Murray H, 2020, ACAD MED, V95, P382, DOI 10.1097/ACM.0000000000003085 Natarajan S., 2023, Traitement du Signal Nilsson P, 2020, J RES MATH EDUC, V51, P574, DOI 10.5951/jresematheduc-2020-0167 Papez M, 2022, KNOWL-BASED SYST, V251, DOI 10.1016/j.knosys.2022.108875 Perets EA, 2020, J CHEM EDUC, V97, P2439, DOI 10.1021/acs.jchemed.0c00879 Qiufeng Cheng, 2021, ICCIR 2021: Proceedings of the 2021 International Conference on Control and Intelligent Robotics, P74, DOI 10.1145/3473714.3473728 Ruder SM, 2020, J CHEM EDUC, V97, P3521, DOI 10.1021/acs.jchemed.9b00912 Ruder SM, 2018, J CHEM EDUC, V95, P2126, DOI 10.1021/acs.jchemed.8b00167 Scott KW, 2019, ACAD MED, V94, P996, DOI 10.1097/ACM.0000000000002726 Tackett S, 2019, ACAD MED, V94, P1995, DOI 10.1097/ACM.0000000000002857 Talla-Chumpitaz R., 2023, Information Fusion Tempelman C, 2021, J CHEM EDUC, V98, P2559, DOI 10.1021/acs.jchemed.1c00243 Xiao CL, 2020, J CHEM EDUC, V97, P2940, DOI 10.1021/acs.jchemed.0c00642 Xue K., 2019, 2019 INT C ADV ED MA, P13 Zaijuan Xu, 2020, 2020 International Conference on Computing and Data Science (CDS), P198, DOI 10.1109/CDS49703.2020.00047 Zeng YS, 2020, INT J EMERG TECHNOL, V15, P4, DOI 10.3991/ijet.v15i01.12533 NR 30 TC 0 Z9 0 U1 2 U2 3 PU AREA INNOVACION & DESARROLLO PI ALICANTE PA C/ELS ALZAMORA NO 17, ALCOY, ALICANTE, 03802, SPAIN SN 2254-6529 J9 3C TIC JI 3C Tic PD APR-JUN PY 2023 VL 12 IS 2 BP 97 EP 115 DI 10.17993/3ctic.2023.122.97-115 PG 19 WC Computer Science, Theory & Methods WE Emerging Sources Citation Index (ESCI) SC Computer Science GA U8YQ8 UT WOS:001087605300004 OA gold, Green Submitted DA 2024-09-05 ER PT J AU Zheng, QG Chen, HY Wang, Y Zhang, HB Hu, ZZ AF Zheng, Qiangang Chen, Haoying Wang, Yong Zhang, Haibo Hu, Zhongzhi TI Research on hybrid optimization and deep learning modeling method in the performance seeking control SO PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART G-JOURNAL OF AEROSPACE ENGINEERING LA English DT Article DE Performance seeking control; on-board turbo engine model; deep neural network; genetic algorithm particle swarm optimization; feasible sequential quadratic programming AB A novel performance seeking control method based on hybrid optimization algorithm and deep learning modeling method is proposed to get a better engine performance. The deep learning modeling method, deep neural network, which has strong representation capability and can deal with big training data, is adopted to establish an on-board engine model. A hybrid optimization algorithm-genetic algorithm particle swarm optimization-feasible sequential quadratic programming-is proposed and applied to performance seeking control. The genetic algorithm particle swarm optimization-feasible sequential quadratic programming not only has the global search ability of genetic algorithm particle swarm optimization, but also has the high local search accuracy of feasible sequential quadratic programming. The final simulation experiments show that, compared with feasible sequential quadratic programming, genetic algorithm particle swarm optimization, and genetic algorithm, the proposed optimization algorithm can get more installed thrust, decrease fuel consumption between 2% to 3%, and decrease turbine blade temperature larger than 15k, while meeting all of the constraints. Moreover, it also shows that the proposed modeling method has high accuracy and real-time performance. C1 [Zheng, Qiangang; Chen, Haoying; Wang, Yong; Zhang, Haibo; Hu, Zhongzhi] Nanjing Univ Aeronaut & Astronaut, Jiangsu Prov Key Lab Aerosp Power Syst, Yudao St 29, Nanjing 210016, Peoples R China. C3 Nanjing University of Aeronautics & Astronautics RP Zheng, QG (corresponding author), Nanjing Univ Aeronaut & Astronaut, Jiangsu Prov Key Lab Aerosp Power Syst, Yudao St 29, Nanjing 210016, Peoples R China. EM zhqg@nuaa.edu.cn RI Zhang, Haibo/HLP-9266-2023 FU National Natural Science Foundation of China [51906102]; National Science and Technology Major Project [2017-V-0004-0054]; Research on the Basic Problem of Intelligent Aero-engine [2017-JCJQZD-047-21]; China Postdoctoral Science Foundation [2019M661835]; Aeronautics Power Foundation [6141B09050385]; Fundamental Research Funds for the Central Universities [NT2019004] FX The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This study was supported in part by National Natural Science Foundation of China [Grant no. 51906102], National Science and Technology Major Project [Grant no. 2017-V-0004-0054], Research on the Basic Problem of Intelligent Aero-engine [Grant no. 2017-JCJQZD-047-21, China Postdoctoral Science Foundation Funded Project [Grant no. 2019M661835], Aeronautics Power Foundation [Grant no. 6141B09050385], and the Fundamental Research Funds for the Central Universities [Grant no. NT2019004]. CR Adam SP, 2017, COMM COM INF SC, V744, P314, DOI 10.1007/978-3-319-65172-9_27 [Anonymous], 2005, ADV MULTIVARIABLE CO [Anonymous], 2015, THESIS [Anonymous], 2015, Ph.D. thesis, DAWEI Y, 2010, INT J INFORM ENG ELE, V2, P31 DENHAM JW, 2002, AIAA20026021 Goodfellow I, 2016, ADAPT COMPUT MACH LE, P1 HAIBO Z, 2010, ACTA AERONAUT ASTRON, V4, P4 Hinton GE, 2006, NEURAL COMPUT, V18, P1527, DOI 10.1162/neco.2006.18.7.1527 Huang S., 2017, ARXIV170202284 Ioffe Sergey, 2015, P MACHINE LEARNING R, V37, P448, DOI DOI 10.48550/ARXIV.1502.03167 LAMBERT HH, 1991, 27 JOINT PROP C, P1998 Maine T., 1990, 26 AIAA SAE ASME ASE, P1921 Mikki SaidM., 2008, Synthesis Lectures on Computational Electromagnetics, V3, P1, DOI [DOI 10.2200/S00110ED1V01Y200804CEM020, 10.2200/s00110-d1v01y200804cem020, DOI 10.2200/S00110-D1V01Y200804CEM020] NAN L, 2013, J NANJING U AERONAUT, V3, P3 NIE YW, 2019, J BEIJING U AERONAUT NOBBS SG, 1995, EL WORKSH PERF SEEK, P41 Orme JS., 1994, AIAA943210 ORME JS, 1995, EL WORKSH PERF SEEK, P146 Perez RE, 2007, COMPUT STRUCT, V85, P1579, DOI 10.1016/j.compstruc.2006.10.013 Sarkar S, 2008, P I MECH ENG G-J AER, V222, P319, DOI 10.1243/09544100JAERO312 Sharma D., 2014, Energy Technol. Policy, V1, P106, DOI [10.1080/23317000.2014.969450, DOI 10.1080/23317000.2014.969450] Silva VVR, 2005, ENG APPL ARTIF INTEL, V18, P575, DOI 10.1016/j.engappai.2005.01.001 SIMON DL, 1995, NASATM107110 [孙丰诚 Sun Fengcheng], 2005, [航空动力学报, Journal of Aerospace Power], V20, P862 Sun FY, 2016, INT J TURBO JET ENG, V33, P341, DOI 10.1515/tjj-2015-0036 Wang Yuan, 2016, Journal of Aerospace Power, V31, P948, DOI 10.13224/j.cnki.jasp.2016.04.023 Yu D, 2011, P I MECH ENG G-J AER, V225, P1366, DOI 10.1177/0954410011400959 ZHENG Q, 2018, AEROENGINE BOARD DYN Zheng QG, 2018, AEROSP SCI TECHNOL, V76, P421, DOI 10.1016/j.ast.2018.01.034 Zheng QG, 2017, INT J TURBO JET ENG, V34, P321, DOI 10.1515/tjj-2016-0015 Zheng QG, 2017, P I MECH ENG I-J SYS, V231, P554, DOI 10.1177/0959651817710127 ZHU YB, 2006, 44 AIAA AER SCI M EX, P44 NR 33 TC 6 Z9 7 U1 0 U2 18 PU SAGE PUBLICATIONS LTD PI LONDON PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND SN 0954-4100 EI 2041-3025 J9 P I MECH ENG G-J AER JI Proc. Inst. Mech. Eng. Part G-J. Aerosp. Eng. PD JUN PY 2020 VL 234 IS 7 BP 1340 EP 1355 AR 0954410020903151 DI 10.1177/0954410020903151 EA FEB 2020 PG 16 WC Engineering, Aerospace; Engineering, Mechanical WE Science Citation Index Expanded (SCI-EXPANDED) SC Engineering GA LM6CN UT WOS:000513327500001 DA 2024-09-05 ER PT J AU Polyakov, M Chalak, M Iftekhar, MS Pandit, R Tapsuwan, S Zhang, F Ma, CB AF Polyakov, Maksym Chalak, Morteza Iftekhar, Md. Sayed Pandit, Ram Tapsuwan, Sorada Zhang, Fan Ma, Chunbo TI Authorship, Collaboration, Topics, and Research Gaps in Environmental and Resource Economics 1991-2015 SO ENVIRONMENTAL & RESOURCE ECONOMICS LA English DT Article DE Topic analysis; Latent Dirichlet allocation; Co-authorship; Environmental and resource economics ID ECOLOGICAL ECONOMICS; INFLUENTIAL PUBLICATIONS; TEXT AB Environmental and Resource Economics is one of the premier journals in the field of environmental economics. It was established with an aspiration to focus more on applied and policy relevant research compared to other established journals, and to establish better channels of communication and collaboration between researchers from Europe and other parts of the world. We present a text based exploratory analysis of 1630 articles published in the Journal from 1991 to 2015 that suggests the Journal has been somewhat successful in meeting both these aims. Perhaps more importantly, it shows the Journal continues to progress toward these goals. The European authors are the largest contributors to the Journal, which is in contrast to other prominent journals (such as Journal of Environmental Economics and Management and Ecological Economics). And while most of the collaboration has occurred within this geographic region (e.g., European authors collaborated with other European authors more frequently), this trend appears to be changing as the proportion of articles written by international collaborators is gradually increasing. Topic analysis reveals that almost all of the articles could be grouped under applied and/or policy relevant topics, and almost two-thirds of the articles are empirical in nature, which suggest that the journal has been able to fulfil both of its commitments. We also investigate trends in research foci over the last 25 years and what kind of research gaps can be discerned. C1 [Polyakov, Maksym; Chalak, Morteza; Iftekhar, Md. Sayed; Pandit, Ram; Zhang, Fan; Ma, Chunbo] Univ Western Australia, M089,35 Stirling Hwy, Crawley, WA 6009, Australia. [Tapsuwan, Sorada] Private Bag 5, Wembley, WA 6913, Australia. C3 University of Western Australia RP Ma, CB (corresponding author), Univ Western Australia, M089,35 Stirling Hwy, Crawley, WA 6009, Australia. EM maksym.polyakov@uwa.edu.au; morteza.chalak@uwa.edu.au; mdsayed.iftekhar@uwa.edu.au; ram.pandit@uwa.edu.au; Sorada.Tapsuwan@csiro.au; fan.zhang@uwa.edu.au; chunbo.ma@uwa.edu.au RI Iftekhar, Sayed/J-5298-2013; Ma, Chunbo/D-3478-2011; Polyakov, Maksym/G-1523-2010; Tapsuwan, Sorada/G-5869-2010; Lobo, Diele/I-9106-2012 OI Ma, Chunbo/0000-0002-9973-2943; Polyakov, Maksym/0000-0002-0193-6658; Pandit, Ram/0000-0003-4053-5694; Iftekhar, Md Sayed/0000-0002-2827-2943; Tapsuwan, Sorada/0000-0002-8160-3828 FU Australian Research Council Centre of Excellence for Environmental Decisions FX This research was conducted with the support of funding from the Australian Research Council Centre of Excellence for Environmental Decisions. We acknowledge helpful comments and suggestions of Ms Tammie Harold and Mr Tas Thamo of UWA. CR Adams J, 2013, NATURE, V497, P557, DOI 10.1038/497557a Backhouse RE, 1998, HIST POLIT ECON, V30, P85, DOI 10.1215/00182702-30-Supplement-85 Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993 Brookshire DS, 2000, J ENVIRON ECON MANAG, V39, P249, DOI 10.1006/jeem.1999.1114 Carson RT, 2001, ENVIRON RESOUR ECON, V19, P173, DOI 10.1023/A:1011128332243 Costanza R, 2004, ECOL ECON, V50, P261, DOI 10.1016/j.ecolecon.2004.06.001 Costanza R, 2016, ECOL ECON, V123, P68, DOI 10.1016/j.ecolecon.2016.01.007 Debertin D. L., 1992, Review of Agricultural Economics, V14, P1, DOI 10.2307/1349603 DEERWESTER S, 1990, J AM SOC INFORM SCI, V41, P391, DOI 10.1002/(SICI)1097-4571(199009)41:6<391::AID-ASI1>3.0.CO;2-9 Endres DM, 2003, IEEE T INFORM THEORY, V49, P1858, DOI 10.1109/TIT.2003.813506 Furnas G. W., 1988, 11th International Conference on Research and Development in Information Retrieval, P465 Griffiths TL, 2004, P NATL ACAD SCI USA, V101, P5228, DOI 10.1073/pnas.0307752101 Grimmer J, 2013, POLIT ANAL, V21, P267, DOI 10.1093/pan/mps028 Grün B, 2011, J STAT SOFTW, V40, P1 Hall David, 2008, P 2008 C EMP METH NA, P363, DOI DOI 10.3115/1613715.1613763 Hamermesh DS, 2013, J ECON LIT, V51, P162, DOI 10.1257/jel.51.1.162 Hanley N, 1998, ENVIRON RESOUR ECON, V11, P413, DOI 10.1023/A:1008287310583 Karl A, 2015, WIRES COMPUT STAT, V7, DOI 10.1002/wics.1361 KATES RW, 1987, ANN ASSOC AM GEOGR, V77, P525, DOI 10.1111/j.1467-8306.1987.tb00178.x KULLBACK S, 1951, ANN MATH STAT, V22, P79, DOI 10.1214/aoms/1177729694 Laband DN, 2000, J POLIT ECON, V108, P632, DOI 10.1086/262132 Ma CB, 2006, ECOL ECON, V58, P491, DOI 10.1016/j.ecolecon.2005.07.023 Murtagh F, 2014, J CLASSIF, V31, P274, DOI 10.1007/s00357-014-9161-z Opschoor JB, 1991, ENVIRON RESOUR ECON, V1, P5 Paul MJ, 2014, PLOS ONE, V9, DOI [10.1371/journal.pone.0103408, 10.1371/currents.outbreaks.90b9ed0f59bae4ccaa683a39865d9117] Polyakov M, 2016, AUST J AGR RESOUR EC, V60, P506, DOI 10.1111/1467-8489.12152 Pournelle G. H., 1953, Journal of Mammalogy, V34, P133, DOI 10.1890/0012-9658(2002)083[1421:SDEOLC]2.0.CO;2 Rusch T, 2013, ANN APPL STAT, V7, P613, DOI 10.1214/12-AOAS618 Schymura M, 2014, SCIENTOMETRICS, V99, P631, DOI 10.1007/s11192-014-1248-0 SHOGREN JF, 1991, J ENVIRON ECON MANAG, V20, P205, DOI 10.1016/0095-0696(91)90008-7 Sievert C., 2014, P WORKSH INT LANG LE, P63, DOI [10.3115/v1/W14-3110, DOI 10.3115/V1/W14-3110, 10.3115/v1/w14-3110] WCED SWS., 1987, Our Common Future, V17, P1 Westgate MJ, 2015, CONSERV BIOL, V29, P1606, DOI 10.1111/cobi.12605 NR 33 TC 6 Z9 6 U1 4 U2 33 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0924-6460 EI 1573-1502 J9 ENVIRON RESOUR ECON JI Environ. Resour. Econ. PD SEP PY 2018 VL 71 IS 1 BP 217 EP 239 DI 10.1007/s10640-017-0147-2 PG 23 WC Economics; Environmental Studies WE Social Science Citation Index (SSCI) SC Business & Economics; Environmental Sciences & Ecology GA GS2SD UT WOS:000443405200010 DA 2024-09-05 ER PT J AU Bornmann, L Marewski, JN AF Bornmann, Lutz Marewski, Julian N. TI Heuristics as conceptual lens for understanding and studying the usage of bibliometrics in research evaluation SO SCIENTOMETRICS LA English DT Article DE Bibliometrics; Fast-and-frugal heuristics; Research evaluation ID RECOGNITION-BASED JUDGMENTS; PARALLEL CONSTRAINT SATISFACTION; ADAPTIVE STRATEGY SELECTION; DECISION-MAKING; CREATIVE ACCOMPLISHMENTS; SCIENCE HISTORY; PROCESS MODELS; LINEAR-MODELS; ROBUST BEAUTY; FRUGAL AB While bibliometrics are widely used for research evaluation purposes, a common theoretical framework for conceptually understanding, empirically studying, and effectively teaching its usage is lacking. In this paper, we outline such a framework: the fast-and-frugal heuristics research program, proposed originally in the context of the cognitive and decision sciences, lends itself particularly well for understanding and investigating the usage of bibliometrics in research evaluations. Such evaluations represent judgments under uncertainty in which typically not all possible options, their consequences, and those consequences' probabilities of occurring may be known. In these situations of incomplete information, candidate descriptive and prescriptive models of human behavior are heuristics. Heuristics are simple strategies that, by exploiting the structure of environments, can aid people to make smart decisions. Relying on heuristics does not mean trading off accuracy against effort: while reducing complexity, heuristics can yield better decisions than more information-greedy procedures in many decision environments. The prescriptive power of heuristics is documented in a cross-disciplinary literature, cutting across medicine, crime, business, sports, and other domains. We outline the fast-and-frugal heuristics research program, provide examples of past empirical work on heuristics outside the field of bibliometrics, explain why heuristics may be especially suitable for studying the usage of bibliometrics, and propose a corresponding conceptual framework. C1 [Bornmann, Lutz] Adm Headquarters Max Planck Soc, Div Sci & Innovat Studies, Hofgartenstr 8, D-80539 Munich, Germany. [Marewski, Julian N.] Univ Lausanne, Fac Business & Econ, Quartier UNIL Dorigny, Batiment Internef, CH-1015 Lausanne, Switzerland. C3 Max Planck Society; University of Lausanne RP Bornmann, L (corresponding author), Adm Headquarters Max Planck Soc, Div Sci & Innovat Studies, Hofgartenstr 8, D-80539 Munich, Germany. EM bornmann@gv.mpg.de; julian.marewski@unil.ch RI Marewski, Julian N/A-6211-2012; Bornmann, Lutz/A-3926-2008 OI Marewski, Julian/0000-0002-8974-0667; Bornmann, Lutz/0000-0003-0810-7091 FU Max Planck Society FX Open access funding provided by Max Planck Society. We thank Katrin Auspurg, Robin Haunschild, Sven Hug, and Alexander Tekles for very helpful comments on an earlier version of this paper. We also thank Marc Jekel and another anonymous reviewer for their very thoughtful comments and feedback. CR Adler R, 2009, STAT SCI, V24, P1, DOI 10.1214/09-STS285 ALBA JW, 1985, J MARKETING RES, V22, P340, DOI 10.2307/3151430 Anderson JR, 2004, PSYCHOL REV, V111, P1036, DOI 10.1037/0033-295x.111.4.1036 [Anonymous], 2017, IND BOOK [Anonymous], 2011, HEURISTICS FDN ADAPT [Anonymous], 2012, MULTIDIMENSIONAL RAN [Anonymous], 2016, HDB BIBLIOMETRIC IND, DOI DOI 10.1002/ANIE.201608447 [Anonymous], 1999, Simple Heuristics That Make Us Smart, DOI DOI 10.1111/.1745-9125.2010.00223.X [Anonymous], CITATION ANAL RES EV [Anonymous], 2012, ECOLOGICAL RATIONALI, DOI DOI 10.1093/ACPROF [Anonymous], ECOLOGICAL RATIONALI [Anonymous], 1984, The citation process: The role and significance of citations in scientific communication [Anonymous], 2008, Rationality for mortals: how people cope with uncertainty [Anonymous], 1999, The ABC Research Group, Simple Heuristics that Make Us Smart [Anonymous], SOZIOLOGIE ARROW KJ, 1966, SYNTHESE, V16, P253, DOI 10.1007/BF00485082 Artinger F. M., 2019, Business Research, P9, DOI DOI 10.1007/S40685-018-0074-2 Auspurg K, 2015, SOZ WELT, V66, P177, DOI 10.5771/0038-6073-2015-2-177 Binmore K, 2009, GORMAN LECT ECON, P1 Binmore K., 2007, ANN EC STAT, V86, P25, DOI DOI 10.2307/20079192 Bishop D, 2018, LUCK DRAW FUNDERS SH Bobadilla-Suarez S, 2018, J EXP PSYCHOL LEARN, V44, P24, DOI 10.1037/xlm0000419 Bornmann L, 2006, HIGH EDUC, V52, P687, DOI 10.1007/s10734-004-8306-0 Bornmann L, 2005, SCIENTOMETRICS, V63, P297, DOI 10.1007/s11192-005-0214-2 Bornmann L., Encyclopedia of Research Methods Bornmann L, 2008, J DOC, V64, P45, DOI 10.1108/00220410810844150 Bornmann L, 2019, J INF SCI, V45, P84, DOI 10.1177/0165551518782829 Bornmann L, 2018, J INFORMETR, V12, P598, DOI 10.1016/j.joi.2018.05.002 Bornmann L, 2017, J INFORMETR, V11, P788, DOI 10.1016/j.joi.2017.06.001 Bornmann L, 2015, J ASSOC INF SCI TECH, V66, P1738, DOI 10.1002/asi.23318 Bornmann L, 2014, SCIENTOMETRICS, V98, P487, DOI 10.1007/s11192-013-1161-y Bornmann L, 2011, ANNU REV INFORM SCI, V45, P199, DOI 10.1002/aris.2011.1440450112 Bornmann L, 2011, J INFORMETR, V5, P346, DOI 10.1016/j.joi.2011.01.006 Bornmann L, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0014331 Bornmann L, 2010, PLOS ONE, V5, DOI [10.1371/journal.pone.0013327, 10.1371/journal.pone.0011344] Brandstätter E, 2006, PSYCHOL REV, V113, P409, DOI 10.1037/0033-295X.113.2.409 Brighton H., 2006, AAAI SPRING S COGN S, P17 Bröder A, 2007, PSYCHON B REV, V14, P895, DOI 10.3758/BF03194118 Busemeyer J.R., 1993, TIME PRESSURE STRESS, P181 Busemeyer JR, 2018, J BEHAV DECIS MAKING, V31, P199, DOI 10.1002/bdm.2005 COLE S, 1967, AM SOCIOL REV, V32, P377, DOI 10.2307/2091085 Cronin B., 2005, The hand of science: Academic writing and its rewards. Lanham Czerlinski J., 1999, Simple heuristics that make us smart, P97 Davis PM, 2009, LEARN PUBL, V22, P5, DOI 10.1087/095315108X378712 DAWES RM, 1974, PSYCHOL BULL, V81, P95, DOI 10.1037/h0037613 DAWES RM, 1979, AM PSYCHOL, V34, P571, DOI 10.1037/0003-066X.34.7.571 de Rijcke S, 2016, RES EVALUAT, V25, P161, DOI 10.1093/reseval/rvv038 Derrick G. E., 2016, P 21 INT C SCI TECHN Dhami MK, 2003, PSYCHOL SCI, V14, P175, DOI 10.1111/1467-9280.01438 Diekmann A, 2012, KOLNER Z SOZIOL SOZ, V64, P563, DOI 10.1007/s11577-012-0175-4 Dougherty MR, 2008, PSYCHOL REV, V115, P199, DOI 10.1037/0033-295X.115.1.199 EDWARDS W, 1954, PSYCHOL BULL, V51, P380, DOI 10.1037/h0053870 EINHORN HJ, 1975, ORGAN BEHAV HUM PERF, V13, P171, DOI 10.1016/0030-5073(75)90044-6 Elsevier, 2016, QUICK REF CARDS RES Frenken K, 2009, J INFORMETR, V3, P222, DOI 10.1016/j.joi.2009.03.005 Gaissmaier W, 2011, JUDGM DECIS MAK, V6, P73 Garcia-Retamero R, 2009, PSYCHON B REV, V16, P163, DOI 10.3758/PBR.16.1.163 Gigerenzer G, 1996, PSYCHOL REV, V103, P650, DOI 10.1037/0033-295X.103.4.650 Gigerenzer G., 2014, Risk Savvy: How to Make Good Decisions Gigerenzer G., 2012, Ecological Rationality: Intelligence in the World, P241, DOI DOI 10.1093/ACPROF:OSO/9780195315448.003.0075 Gigerenzer G., 2004, J. Soc. Econ., V33, P587, DOI DOI 10.1016/J.SOCEC.2004.09.033 Gigerenzer G., 2007, GUT FEELINGS Gigerenzer G, 2008, PSYCHOL REV, V115, P230, DOI 10.1037/0033-295X.115.1.230 Gigerenzer G, 2015, J MANAGE, V41, P421, DOI 10.1177/0149206314547522 Gigerenzer G, 2011, ANNU REV PSYCHOL, V62, P451, DOI 10.1146/annurev-psych-120709-145346 Gigerenzer G, 2010, TOP COGN SCI, V2, P528, DOI 10.1111/j.1756-8765.2010.01094.x Gigerenzer G, 2009, TOP COGN SCI, V1, P107, DOI 10.1111/j.1756-8765.2008.01006.x Gigerenzer G, 2008, PERSPECT PSYCHOL SCI, V3, P20, DOI 10.1111/j.1745-6916.2008.00058.x Gigerenzer Gerd, 2011, Heuristics: The foundation of adaptive behavior Gigerenzer Gerd., 2001, SIMPLE HEURISTICS MA GILBERT GN, 1977, SOC STUD SCI, V7, P113 Gingras Y., 2016, Bibliometrics and research evaluation. Uses and abuses Glaser J., 2007, CHANGING GOVERNANCE, P101, DOI [10.1007/978-1-4020-6746-4_5, DOI 10.1007/978-1-4020-6746-4_5] Glöckner A, 2008, JUDGM DECIS MAK, V3, P215 Glöckner A, 2014, COGNITION, V133, P641, DOI 10.1016/j.cognition.2014.08.017 Glöckner A, 2011, EXP PSYCHOL, V58, P180, DOI 10.1027/1618-3169/a000084 Goldstein DG, 2009, INT J FORECASTING, V25, P760, DOI 10.1016/j.ijforecast.2009.05.010 Goldstein DG, 2002, PSYCHOL REV, V109, P75, DOI 10.1037//0033-295X.109.1.75 Gralka S, 2019, J HIGH EDUC POLICY M, V41, P322, DOI 10.1080/1360080X.2019.1588492 Green L, 1997, J FAM PRACTICE, V45, P219 Gunashekar S, 2017, SCIENTOMETRICS, V112, P1813, DOI 10.1007/s11192-017-2417-8 Hafenbrädl S, 2016, J APPL RES MEM COGN, V5, P215, DOI 10.1016/j.jarmac.2016.04.011 Hammarfelt B, 2018, J ASSOC INF SCI TECH, V69, P924, DOI 10.1002/asi.24043 Hammond K.R., 1996, HUMAN JUDGMENT SOCIA Harzing A.-W., 2017, Running the REF on a rainy Sunday afternoon: Do metrics match peer review? HAUSER JR, 1990, J CONSUM RES, V16, P393, DOI 10.1086/209225 Heck DW, 2017, PSYCHOL REV, V124, P442, DOI 10.1037/rev0000063 Heinze T, 2013, SCIENTOMETRICS, V95, P927, DOI 10.1007/s11192-012-0848-9 Heinze T, 2012, KOLNER Z SOZIOL SOZ, V64, P583, DOI 10.1007/s11577-012-0173-6 Helmreich R.L., 2016, Culture at work in aviation and medicine: National, organizational and professional influences Hertwig R., 2013, SIMPLE HEURISTICS SO Hicks D, 2015, NATURE, V520, P429, DOI 10.1038/520429a Hilbig BE, 2010, PSYCHON B REV, V17, P923, DOI 10.3758/PBR.17.6.923 Hirsch JE, 2005, P NATL ACAD SCI USA, V102, P16569, DOI 10.1073/pnas.0507655102 Hoffrage U., 2018, The Routledge international handbook of thinking and reasoning, P325 Hoffrage U, 2015, J APPL RES MEM COGN, V4, P145, DOI 10.1016/j.jarmac.2015.08.001 Horta H, 2016, RES HIGH EDUC, V57, P28, DOI 10.1007/s11162-015-9380-0 Jappe A, 2018, PLOS ONE, V13, DOI 10.1371/journal.pone.0199031 Jekel M, 2018, J BEHAV DECIS MAKING, V31, P289, DOI 10.1002/bdm.2076 Jekel M, 2018, J BEHAV DECIS MAKING, V31, P265, DOI 10.1002/bdm.1983 Johnson EJ, 2008, PSYCHOL REV, V115, P263, DOI 10.1037/0033-295X.115.1.263 Julian N. Marewski, 2010, [心理学报, Acta Psychologica Sinica], V42, P72 Juslin P, 2002, COGNITIVE SCI, V26, P563, DOI 10.1207/s15516709cog2605_2 Kahnemann D., 1982, JUDGMENT UNCERTAINTY Katsikopoulos KV, 2011, DECIS ANAL, V8, P10, DOI 10.1287/deca.1100.0191 Katsikopoulos KV, 2010, PSYCHOL REV, V117, P1259, DOI 10.1037/a0020418 Kerr N L, 1998, Pers Soc Psychol Rev, V2, P196, DOI 10.1207/s15327957pspr0203_4 Knight Frank Hyneman, 1921, Risk, uncertainty and profit, V31 Laurance WF, 2013, BIOSCIENCE, V63, P817, DOI 10.1525/bio.2013.63.10.9 Leydesdorff L, 2016, SCIENTOMETRICS, V109, P2129, DOI 10.1007/s11192-016-2150-8 LINDLEY DV, 1983, J ROY STAT SOC D-STA, V32, P1 LOPES LL, 1991, THEOR PSYCHOL, V1, P65, DOI 10.1177/0959354391011005 LOPES LL, 1992, THEOR PSYCHOL, V2, P231, DOI 10.1177/0959354392022010 Luan SH, 2017, ORGAN BEHAV HUM DEC, V141, P29, DOI 10.1016/j.obhdp.2017.05.003 Luan SH, 2011, PSYCHOL REV, V118, P316, DOI 10.1037/a0022684 Macilwain C, 2013, NATURE, V500, P255, DOI 10.1038/500255a MacRoberts MH, 2018, J ASSOC INF SCI TECH, V69, P474, DOI 10.1002/asi.23970 Marewski J. N., 2019, OPIUM SCI SOC UNPUB Marewski JN, 2018, J BEHAV DECIS MAKING, V31, P181, DOI 10.1002/bdm.2075 Marewski JN, 2014, WIRES COGN SCI, V5, P39, DOI 10.1002/wcs.1265 Marewski Julian N, 2012, Dialogues Clin Neurosci, V14, P77 Marewski JN, 2011, JUDGM DECIS MAK, V6, P439 Marewski JN, 2011, JUDGM DECIS MAK, V6, P359 Marewski JN, 2011, PSYCHOL REV, V118, P393, DOI 10.1037/a0024143 Marewski JN, 2011, JUDGM DECIS MAK, V6, P1 Marewski JN, 2010, JUDGM DECIS MAK, V5, P207 Marewski JN, 2010, PSYCHON B REV, V17, P287, DOI 10.3758/PBR.17.3.287 Marewski JN, 2010, COGN PROCESS, V11, P103, DOI 10.1007/s10339-009-0337-0 Marewski JN, 2010, COGN PROCESS, V11, P177, DOI 10.1007/s10339-009-0340-5 Marewski JN, 2009, Z PSYCHOL, V217, P49, DOI 10.1027/0044-3409.217.1.49 Martignon L, 2008, J MATH PSYCHOL, V52, P352, DOI 10.1016/j.jmp.2008.04.003 MARTIN BR, 1983, RES POLICY, V12, P61, DOI 10.1016/0048-7333(83)90005-7 Merton R.K., 1965, On the shoulders of giants: A Shandean postscript Merton R. K., 1974, SOCIOLOGY SCI THEORE Moed H. F., 2017, Applied evaluative informetrics, DOI DOI 10.1007/978-3-319-60522-7 MOED HF, 1985, RES POLICY, V14, P131, DOI 10.1016/0048-7333(85)90012-5 Montada L, 1999, PSYCHOL RUNDSCH, V50, P69, DOI 10.1026//0033-3042.50.2.69 Moreira JAG, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0143108 Mousavi S., 2017, Homo Oeconomicus, V34, P361, DOI [10.1007/s41412-017-0058-z, DOI 10.1007/S41412-017-0058-Z] Mousavi S, 2014, J BUS RES, V67, P1671, DOI 10.1016/j.jbusres.2014.02.013 Newell BR, 2005, TRENDS COGN SCI, V9, P11, DOI 10.1016/j.tics.2004.11.005 Nicolaisen J, 2007, ANNU REV INFORM SCI, V41, P609, DOI 10.1002/aris.2007.1440410120 Ochsner M., 2016, Research Assessment in the Humanities: Towards Criteria and Procedures Osterloh M, 2015, EVALUATION REV, V39, P102, DOI 10.1177/0193841X14524957 Pachur T, 2006, J EXP PSYCHOL LEARN, V32, P983, DOI 10.1037/0278-7393.32.5.983 PAYNE JW, 1988, J EXP PSYCHOL LEARN, V14, P534, DOI 10.1037/0278-7393.14.3.534 Phillips ND, 2017, JUDGM DECIS MAK, V12, P344 Pinheiro D, 2014, TECHNOL FORECAST SOC, V81, P56, DOI 10.1016/j.techfore.2012.09.008 Pitt MA, 2002, PSYCHOL REV, V109, P472, DOI 10.1037//0033-295X.109.3.472 Pohl RF, 2006, J BEHAV DECIS MAKING, V19, P251, DOI 10.1002/bdm.522 Prathap G, 2014, SCIENTOMETRICS, V101, P1781, DOI 10.1007/s11192-013-1225-z Pride D, 2018, LECT NOTES COMPUT SC, V11057, P195, DOI 10.1007/978-3-030-00066-0_17 Ralph Hertwig., 2013, Simple Heuristics in a Social World, P3 Rieskamp J, 2008, ACTA PSYCHOL, V127, P258, DOI 10.1016/j.actpsy.2007.05.004 Rieskamp J, 2006, J EXP PSYCHOL GEN, V135, P207, DOI 10.1037/0096-3445.135.2.207 Rieskamp J, 2018, J BEHAV DECIS MAKING, V31, P280, DOI 10.1002/bdm.2016 Rothenfluh T., 2009, CHANCEN GEFAHREN GEG, P259 Saad G, 2006, SCIENTOMETRICS, V69, P117, DOI 10.1007/s11192-006-0142-9 Savage L. J., 1972, The foundations of statistics Scheibehenne B, 2007, INT J FORECASTING, V23, P415, DOI 10.1016/j.ijforecast.2007.05.006 Scheibehenne B, 2013, PSYCHOL REV, V120, P39, DOI 10.1037/a0030777 Schooler LJ, 2005, PSYCHOL REV, V112, P610, DOI 10.1037/0033-295X.112.3.610 Serwe S, 2006, J BEHAV DECIS MAKING, V19, P321, DOI 10.1002/bdm.530 Shanks DR, 2000, BEHAV BRAIN SCI, V23, P761, DOI 10.1017/S0140525X00453446 SIMON HA, 1990, ANNU REV PSYCHOL, V41, P1, DOI 10.1146/annurev.ps.41.020190.000245 SIMON HA, 1956, PSYCHOL REV, V63, P129, DOI 10.1037/h0042769 Simon HA, 1955, Q J ECON, V69, P99, DOI 10.2307/1884852 Tahamtan I, 2016, SCIENTOMETRICS, V107, P1195, DOI 10.1007/s11192-016-1889-2 Todd PM, 2000, BEHAV BRAIN SCI, V23, P727, DOI 10.1017/S0140525X00003447 Tomlinson T, 2011, JUDGM DECIS MAK, V6, P89 Traag VA, 2019, PALGR COMMUN, V5, DOI 10.1057/s41599-019-0233-x TVERSKY A, 1972, PSYCHOL REV, V79, P281, DOI 10.1037/h0032955 Von Neumann J., 1947, Theory of Games and Economic Behavior, V2nd rev. ed. Waltman L, 2016, 21ST INTERNATIONAL CONFERENCE ON SCIENCE AND TECHNOLOGY INDICATORS (STI 2016), P541 Waltman L, 2016, J INFORMETR, V10, P365, DOI 10.1016/j.joi.2016.02.007 Weingart P, 2005, SCIENTOMETRICS, V62, P117, DOI 10.1007/s11192-005-0007-7 Wübben M, 2008, J MARKETING, V72, P82, DOI 10.1509/jmkg.72.3.082 NR 177 TC 26 Z9 26 U1 1 U2 61 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0138-9130 EI 1588-2861 J9 SCIENTOMETRICS JI Scientometrics PD AUG PY 2019 VL 120 IS 2 BP 419 EP 459 DI 10.1007/s11192-019-03018-x PG 41 WC Computer Science, Interdisciplinary Applications; Information Science & Library Science WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Computer Science; Information Science & Library Science GA IL1FQ UT WOS:000477044700004 OA hybrid DA 2024-09-05 ER PT J AU Shu, H Zou, CL Chen, JY Wang, SH AF Shu, Han Zou, Chunlong Chen, Jianyu Wang, Shenghuai TI Research on Micro/Nano Surface Flatness Evaluation Method Based on Improved Particle Swarm Optimization Algorithm SO FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY LA English DT Article DE flatness error; micro; nano surface; improved particle swarm optimization algorithm; minimum zone method; uncertainty; AFM ID SEGMENTATION; ERROR AB Flatness error is an important factor for effective evaluation of surface quality. The existing flatness error evaluation methods mainly evaluate the flatness error of a small number of data points on the micro scale surface measured by CMM, which cannot complete the flatness error evaluation of three-dimensional point cloud data on the micro/nano surface. To meet the needs of nano scale micro/nano surface flatness error evaluation, a minimum zone method on the basis of improved particle swarm optimization (PSO) algorithm is proposed. This method combines the principle of minimum zone method and hierarchical clustering method, improves the standard PSO algorithm, and can evaluate the flatness error of nano scale micro/nano surface image data point cloud scanned by atomic force microscope. The influence of the area size of micro/nano surface topography data on the flatness error evaluation results is analyzed. The flatness evaluation results and measurement uncertainty of minimum region method, standard least squares method, and standard PSO algorithm on the basis of the improved PSO algorithm are compared. Experiments show that the algorithm can stably evaluate the flatness error of micro/nano surface topography point cloud data, and the evaluation result of flatness error is more reliable and accurate than standard least squares method and standard PSO algorithm. C1 [Shu, Han; Zou, Chunlong; Chen, Jianyu; Wang, Shenghuai] Hubei Univ Automot Technol, Sch Mech Engn, Shiyan, Hubei, Peoples R China. C3 Hubei University of Automotive Technology RP Wang, SH (corresponding author), Hubei Univ Automot Technol, Sch Mech Engn, Shiyan, Hubei, Peoples R China. EM shwangkb@163.com FU National Natural Science Foundation of China [51675167, 51475150]; National Science and Technology Major Project of China [2018ZX04027001]; Natural Science Foundation of Hubei Province of China [2020CFB755]; Research Project of Education Department of Hubei Province of China [T2020018, Q20191801] FX Funding This project is funded by the National Natural Science Foundation of China (nos. 51675167 and 51475150), National Science and Technology Major Project of China (no. 2018ZX04027001), Natural Science Foundation of Hubei Province of China (no. 2020CFB755), and Research Project of Education Department of Hubei Province of China (nos. T2020018 and Q20191801). CR [Anonymous], 2013, PROCEDIA CIRP, DOI [DOI 10.1016/J.PROCIR.2013.08.041, 10.1016/j.procir.2013.08.041] Arezki Y, 2018, PRECIS ENG, V52, P300, DOI 10.1016/j.precisioneng.2018.01.008 Bensheng Xu, 2018, 2018 2nd IEEE Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC). Proceedings, P690, DOI 10.1109/IMCEC.2018.8469450 Blunt L, 2011, WEAR, V271, P604, DOI 10.1016/j.wear.2010.06.014 Chen TG, 2021, AXIOMS, V10, DOI 10.3390/axioms10020106 Cui C.C., 2008, J HUAQIAO U NATURAL, V39, P507, DOI [10.11830/issn.1000-5013.2008.04.0507, DOI 10.11830/ISSN.1000-5013.2008.04.0507] Cui Chang-cai, 2002, Optics and Precision Engineering, V10, P36 Eberhart R, 1995, P 6 INT S MICR HUM S, P39, DOI DOI 10.1109/MHS.1995.494215 Gan W.Y., 2006, DIANZI XUEBAO ACTA E, V34, P258, DOI [10.3321/j.issn:0372-2112.2006.02.014, DOI 10.3321/J.ISSN:0372-2112.2006.02.014] Iso I., 2017, 11012017 ISO Jalid A., 2015, Int, J. Metrol Qual. Eng., V6, P102, DOI [10.1051/ijmqe/2015002, DOI 10.1051/IJMQE/2015002] Janani R, 2019, EXPERT SYST APPL, V134, P192, DOI 10.1016/j.eswa.2019.05.030 Jiang D, 2021, FUTURE GENER COMP SY, V123, P94, DOI 10.1016/j.future.2021.04.019 Kennedy J, 1995, 1995 IEEE INTERNATIONAL CONFERENCE ON NEURAL NETWORKS PROCEEDINGS, VOLS 1-6, P1942, DOI 10.1109/icnn.1995.488968 Lou S, 2020, PRECIS ENG, V63, P177, DOI 10.1016/j.precisioneng.2020.02.005 Luo Jun, 2012, Optics and Precision Engineering, V20, P422, DOI 10.3788/OPE.20122002.0422 MacAulay GD, 2014, SURF TOPOGR-METROL, V2, DOI 10.1088/2051-672X/2/4/044004 Moulai-khatir D., 2018, INT J METROL QUAL EN, V9, P15, DOI [10.1051/ijmqe/2018011, DOI 10.1051/IJMQE/2018011] Nutsch A, 2007, AIP CONF PROC, V931, P173 Nutsch A, 2008, PROC SPIE, V7155, DOI 10.1117/12.814535 Pin NBC, 2016, MATEC WEB CONF, V68, DOI 10.1051/matecconf/20166817003 Raja J, 2002, PRECIS ENG, V26, P222, DOI 10.1016/S0141-6359(02)00103-4 Samuel GL, 1999, COMPUT AIDED DESIGN, V31, P829, DOI 10.1016/S0010-4485(99)00071-8 Shu H., 2021, J HUBEI I AUTOMOTIVE, V3, P63, DOI [10.3969/j.issn.1008-5483.2021.03.014, DOI 10.3969/J.ISSN.1008-5483.2021.03.014] Strbac B, 2020, TEH VJESN, V27, P535, DOI 10.17559/TV-20190603084835 Sun Y, 2020, J SUPERCOMPUT, V76, P4132, DOI 10.1007/s11227-018-2255-3 Weber T, 2002, PRECIS ENG, V26, P269, DOI 10.1016/S0141-6359(02)00105-8 Wen Xiulan, 2007, Chinese Journal of Scientific Instrument, V28, P832 Yang SM, 2018, MEAS SCI TECHNOL, V29, DOI 10.1088/1361-6501/aad732 Yue W.L., 2008, ACTA METROLOGICA SIN, V2008, P120, DOI [10.3321/j.issn:1000-1158.2007.01.007, DOI 10.3321/J.ISSN:1000-1158.2007.01.007] Zhang LN, 2021, ADV FUNCT MATER, V31, DOI 10.1002/adfm.202100503 NR 31 TC 6 Z9 6 U1 7 U2 35 PU FRONTIERS MEDIA SA PI LAUSANNE PA AVENUE DU TRIBUNAL FEDERAL 34, LAUSANNE, CH-1015, SWITZERLAND SN 2296-4185 J9 FRONT BIOENG BIOTECH JI Front. Bioeng. Biotechnol. PD DEC 15 PY 2021 VL 9 AR 775455 DI 10.3389/fbioe.2021.775455 PG 13 WC Biotechnology & Applied Microbiology; Engineering, Biomedical WE Science Citation Index Expanded (SCI-EXPANDED) SC Biotechnology & Applied Microbiology; Engineering GA YA4CD UT WOS:000738282300001 PM 34976973 OA gold, Green Published DA 2024-09-05 ER PT J AU Feng, JY Jia, DY Cui, L Cao, J Lin, Z Zhang, M AF Feng, Jiayin Jia, Dongyan Cui, Li Cao, Jing Lin, Zhuo Zhang, Min TI COMPARISON OF SVM ALGORITHM AND BP ALGORITHM: STUDY ON THE EVALUATION INDEX SYSTEM OF SCIENTIFIC RESEARCH PERFORMANCE OF VOCATIONAL COLLEGES SO ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS LA English DT Article DE SVM algorithm; BP algorithm; vocational colleges; scientific research; performance evaluation AB As the education in China develops rapidly, the scientific research of higher vocational education has gradually drawn extensive attentions. In order to construct a reasonable evaluation model of scientific research performance to further enhance the research enthusiasm of teachers, this study constructed a model based on relevant theories of the support vector machine (SVM) algorithm and the back propagation (BP) algorithm. In addition, the simulation of the model was performed and the accuracy rate and errors of these two algorithms were compared and analyzed. Then the most appropriate algorithm was applied to the evaluation index system. The simulation results showed that, simplified data of scientific research evaluation could be applied as the input data of the SVM algorithm to accurately and effectively construct an evaluation index system of scientific research performances of vocational colleges. Thus a more reasonable and accurate evaluation system was constructed. C1 [Feng, Jiayin; Jia, Dongyan; Cui, Li; Cao, Jing; Lin, Zhuo; Zhang, Min] Hebei Normal Univ Sci & Technol, Qinhuangdao Haigang Dist 066000, Heibei, Peoples R China. C3 Hebei Normal University of Science & Technology RP Feng, JY (corresponding author), Hebei Normal Univ Sci & Technol, Qinhuangdao Haigang Dist 066000, Heibei, Peoples R China. EM feng_ada2001@163.com FU Research project on the development of social science in Hebei province 2018 The people's livelihood project [201803040106] FX Research project on the development of social science in Hebei province 2018 The people's livelihood project No.201803040106. CR [Anonymous], 2008, Enterprise integrated performance evaluation system, CN Patent, Patent No. [2,00,810,080,220. 4, 200810280220] [Anonymous], 2014, Production enterprise security performance appraisal system, CN Patent, Patent No. [2,01,410,008,561. 6, 201410008561] Chen CS, 2012, EXPERT SYST APPL, V39, P4102, DOI 10.1016/j.eswa.2011.09.078 Heping Y., 2013, EVALUATION PERFORMAN, V5, P843 Hui Z., 2015, J HUNAN SOCIAL SCI, V6, P194 Hunan institute of finance and economy, 2015, CN Patent, Patent No. [2,01,520,902,556. X, 201520902556] Jing S., 2015, J HEBEI NORMAL U ED, P110 Lina Z., 2011, J SHENYANG NORMAL U, V29, P226 Qian L., 2015, J ED TEACHING FORUM, V47, P19 Quande Q., 2012, J INTELLIGENT SYSTEM, V7, P547 State Luminita, 2013, Informatica Economica, V17, P173 Wang X., 2015, APPL MECH MAT, V702, P1352 Wave software Co LTD, 2014, CN Patent, Patent No. [2,01,410,426,131. 6, 201410426131] Yuelan S., 2014, J QINGYUAN POLYTECHN, V4, P26 Ziyu L., 2012, J NANYANG I TECHNOLO, V4, P62 NR 15 TC 0 Z9 0 U1 0 U2 7 PU FORUM EDITRICE UNIV UDINESE PI UDINE PA VIA LARGA 38, UDINE, UD 33100, ITALY SN 1126-8042 EI 2239-0227 J9 ITAL J PURE APPL MAT JI Ital. J. Pure Appl. Math. PD JUL PY 2018 IS 40 BP 244 EP 255 PG 12 WC Mathematics WE Emerging Sources Citation Index (ESCI) SC Mathematics GA HJ4HP UT WOS:000457135400024 DA 2024-09-05 ER PT J AU Lan, GJ Wu, Y Hu, F Hao, Q AF Lan, Gongjin Wu, Yu Hu, Fei Hao, Qi TI Vision-Based Human Pose Estimation via Deep Learning: A Survey SO IEEE TRANSACTIONS ON HUMAN-MACHINE SYSTEMS LA English DT Article DE Action recognition; bibliometric; deep learning; human performance assessment; human pose estimation (HPE) ID NETWORK AB Human pose estimation (HPE) has attracted a significant amount of attention from the computer vision community in the past decades. Moreover, HPE has been applied to various domains, such as human-computer interaction, sports analysis, and human tracking via images and videos. Recently, deep learning-based approaches have shown state-of-the-art performance in HPE-based applications. Although deep learning-based approaches have achieved remarkable performance in HPE, a comprehensive review of deep learning-based HPE methods remains lacking in literature. In this article, we provide an up-to-date and in-depth overview of the deep learning approaches in vision-based HPE. We summarize these methods of 2-D and 3-D HPE, and their applications, discuss the challenges and the research trends through bibliometrics, and provide insightful recommendations for future research. This article provides a meaningful overview as introductory material for beginners to deep learning-based HPE, as well as supplementary material for advanced researchers. C1 [Lan, Gongjin; Wu, Yu; Hao, Qi] Southern Univ Sci & Technol, Dept Comp Sci & Engn, Shenzhen 518055, Peoples R China. [Hu, Fei] Univ Alabama, Dept Elect & Comp Engn, Tuscaloosa, AL 35487 USA. C3 Southern University of Science & Technology; University of Alabama System; University of Alabama Tuscaloosa RP Lan, GJ; Hao, Q (corresponding author), Southern Univ Sci & Technol, Dept Comp Sci & Engn, Shenzhen 518055, Peoples R China. EM langj@sustech.edu.cn; wuy@mail.sustech.edu.cn; fei@eng.ua.edu; hao.q@sustech.edu.cn RI HAO, QI/IST-5581-2023 OI HAO, QI/0000-0002-2792-5965; Lan, Gongjin/0000-0003-2020-8186; Wu, Yu/0009-0009-4754-0892 FU National Natural Science Foundation of China [61773197]; Shenzhen Fundamental Research Program [JCYJ20200109141622964]; Intel ICRI-IACV Research Fund [CG 52514373] FX This work was supported in part by the National Natural Science Foundation of China under Grant 61773197, in part by the Shenzhen Fundamental Research Program under Grant JCYJ20200109141622964, and in part by the Intel ICRI-IACV Research Fund under Grant CG#52514373. This article was recommended by Associate Editor Max Mulder. (Corresponding authors: Gongjin Lan; Qi Hao.) CR Afrouzian R, 2016, MULTIMED TOOLS APPL, V75, P6809, DOI 10.1007/s11042-015-2611-8 Andriluka M, 2018, PROC CVPR IEEE, P5167, DOI 10.1109/CVPR.2018.00542 Andriluka M, 2014, PROC CVPR IEEE, P3686, DOI 10.1109/CVPR.2014.471 Andriluka M, 2012, INT J COMPUT VISION, V99, P259, DOI 10.1007/s11263-011-0498-z [Anonymous], 2018, P EUR C COMP VIS ECC [Anonymous], 2017, P IEEE C COMP VIS PA, DOI DOI 10.1109/CVPR.2017.143 Artacho B, 2020, PROC CVPR IEEE, P7033, DOI 10.1109/CVPR42600.2020.00706 Bazarevsky V, 2020, Arxiv, DOI [arXiv:2006.10204, DOI 10.48550/ARXIV.2006.10204] Bergtholdt M, 2010, INT J COMPUT VISION, V87, P93, DOI 10.1007/s11263-009-0209-1 Bertasius G, 2019, ADV NEUR IN, V32 Bin YR, 2020, PATTERN RECOGN, V106, DOI 10.1016/j.patcog.2020.107410 Bo Li, 2017, 2017 IEEE International Conference on Multimedia and Expo: Workshops (ICMEW), P613, DOI 10.1109/ICMEW.2017.8026283 Bridgeman Lewis, 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). Proceedings, P2487, DOI 10.1109/CVPRW.2019.00304 Bulat A, 2020, IEEE INT CONF AUTOMA, P8, DOI 10.1109/FG47880.2020.00014 Cai YJ, 2019, IEEE I CONF COMP VIS, P2272, DOI 10.1109/ICCV.2019.00236 Chen CH, 2017, PROC CVPR IEEE, P5759, DOI 10.1109/CVPR.2017.610 Chen L, 2020, PROC CVPR IEEE, P3276, DOI 10.1109/CVPR42600.2020.00334 Chen YL, 2018, PROC CVPR IEEE, P7103, DOI 10.1109/CVPR.2018.00742 Chen YC, 2020, COMPUT VIS IMAGE UND, V192, DOI 10.1016/j.cviu.2019.102897 Cheng BW, 2020, PROC CVPR IEEE, P5385, DOI 10.1109/CVPR42600.2020.00543 Cheng Y, 2021, PROC CVPR IEEE, P7645, DOI 10.1109/CVPR46437.2021.00756 Chu X, 2017, PROC CVPR IEEE, P5669, DOI 10.1109/CVPR.2017.601 Congzhentao Huang, 2020, Computer Vision - ECCV 2020. 16th European Conference. Proceedings. Lecture Notes in Computer Science (LNCS 12373), P477, DOI 10.1007/978-3-030-58604-1_29 Dang LM, 2020, PATTERN RECOGN, V108, DOI 10.1016/j.patcog.2020.107561 Dang Q, 2019, TSINGHUA SCI TECHNOL, V24, P663, DOI 10.26599/TST.2018.9010100 Das Srijan, 2020, Computer Vision - ECCV 2020. 16th European Conference. Proceedings. Lecture Notes in Computer Science (LNCS 12354), P72, DOI 10.1007/978-3-030-58545-7_5 Doersch C., 2019, Advances in Neural Information Processing Systems Dong JT, 2019, PROC CVPR IEEE, P7784, DOI 10.1109/CVPR.2019.00798 Duan HD, 2022, PROC CVPR IEEE, P2959, DOI 10.1109/CVPR52688.2022.00298 Elaoud A, 2020, J AMB INTEL HUM COMP, V11, P419, DOI 10.1007/s12652-019-01301-6 Elmi A, 2021, INT C PATT RECOG, P2755, DOI 10.1109/ICPR48806.2021.9412652 Fabbri M, 2020, PROC CVPR IEEE, P7202, DOI 10.1109/CVPR42600.2020.00723 Fabbri M, 2018, LECT NOTES COMPUT SC, V11208, P450, DOI 10.1007/978-3-030-01225-0_27 Fang HS, 2017, IEEE I CONF COMP VIS, P2353, DOI 10.1109/ICCV.2017.256 Fu H, 2018, PROC CVPR IEEE, P2002, DOI 10.1109/CVPR.2018.00214 Gabriel P, 2016, IEEE ENG MED BIO, P3402, DOI 10.1109/EMBC.2016.7591458 Gadhiya R., 2021, P 2021 INT C CIRCUIT, P1 Gilbert A, 2019, INT J COMPUT VISION, V127, P381, DOI 10.1007/s11263-018-1118-y Gong KH, 2021, PROC CVPR IEEE, P8571, DOI 10.1109/CVPR46437.2021.00847 Gong WJ, 2016, SENSORS-BASEL, V16, DOI 10.3390/s16121966 Guo HL, 2018, J CONSTR ENG M, V144, DOI 10.1061/(ASCE)CO.1943-7862.0001497 Harltey A, 2006, MULTIPLE VIEW GEOMET Hbali Y, 2018, IET COMPUT VIS, V12, P16, DOI 10.1049/iet-cvi.2017.0062 He K., 2017, P IEEE INT C COMP VI, P2961 He KM, 2016, PROC CVPR IEEE, P770, DOI 10.1109/CVPR.2016.90 Hogg David, 1983, Image Vision Computing Hornung A, 2007, ACM T GRAPHIC, V26, DOI 10.1145/1186644.1186645 Hu W., 2021, P 29 ACM INT C MULT, P602 Huang FY, 2020, IEEE WINT CONF APPL, P418, DOI [10.1109/WACV45572.2020.9093526, 10.1109/wacv45572.2020.9093526] Huang JJ, 2020, PROC CVPR IEEE, P5699, DOI 10.1109/CVPR42600.2020.00574 Insafutdinov E, 2016, LECT NOTES COMPUT SC, V9910, P34, DOI 10.1007/978-3-319-46466-4_3 Ionescu C, 2014, IEEE T PATTERN ANAL, V36, P1325, DOI 10.1109/TPAMI.2013.248 Iskakov K, 2019, IEEE I CONF COMP VIS, P7717, DOI 10.1109/ICCV.2019.00781 Jain A, 2015, LECT NOTES COMPUT SC, V9004, P302, DOI 10.1007/978-3-319-16808-1_21 Jhuang HH, 2013, IEEE I CONF COMP VIS, P3192, DOI 10.1109/ICCV.2013.396 Johnson S., 2010, BRIT MACH VIS C, P1 Joo H, 2019, IEEE T PATTERN ANAL, V41, P190, DOI 10.1109/TPAMI.2017.2782743 Kamel A, 2019, INT J HUM-COMPUT INT, V35, P427, DOI 10.1080/10447318.2018.1543081 Kim S, 2019, IEEE WINT CONF APPL, P61, DOI 10.1109/WACV.2019.00014 Kocabas M, 2018, LECT NOTES COMPUT SC, V11215, P437, DOI 10.1007/978-3-030-01252-6_26 Krizhevsky A, 2017, COMMUN ACM, V60, P84, DOI 10.1145/3065386 Kumarapu L, 2021, PATTERN RECOGN LETT, V147, P16, DOI 10.1016/j.patrec.2021.03.028 Kurose R., 2018, 2018 International Workshop on Advanced Image Technology (IWAIT), P1 Lan GJ, 2019, 2019 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (IEEE SSCI 2019), P2571, DOI [10.1109/ssci44817.2019.9002863, 10.1109/SSCI44817.2019.9002863] Lan GJ, 2018, I C CONT AUTOMAT ROB, P1959, DOI 10.1109/ICARCV.2018.8581288 Lan GJ, 2016, 2016 2ND IEEE INTERNATIONAL CONFERENCE ON COMPUTER AND COMMUNICATIONS (ICCC), P975, DOI 10.1109/CompComm.2016.7924850 Li JF, 2021, 2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), P11005, DOI 10.1109/ICCV48922.2021.01084 Li JF, 2019, PROC CVPR IEEE, P10855, DOI 10.1109/CVPR.2019.01112 Li K, 2021, PROC CVPR IEEE, P1944, DOI 10.1109/CVPR46437.2021.00198 Li SC, 2020, PROC CVPR IEEE, P6172, DOI 10.1109/CVPR42600.2020.00621 Li SJ, 2015, LECT NOTES COMPUT SC, V9004, P332, DOI 10.1007/978-3-319-16808-1_23 Li WB, 2019, Arxiv, DOI arXiv:1901.00148 Li Y, 2020, IEEE IJCNN, DOI 10.1109/ijcnn48605.2020.9207296 Lin TY, 2014, LECT NOTES COMPUT SC, V8693, P740, DOI 10.1007/978-3-319-10602-1_48 Liu J, 2020, IEEE T PATTERN ANAL, V42, P2684, DOI 10.1109/TPAMI.2019.2916873 Liu W., 2020, EUR C COMP VIS, P718 Liu W, 2023, ACM COMPUT SURV, V55, DOI 10.1145/3524497 Liu ZG, 2021, PROC CVPR IEEE, P525, DOI 10.1109/CVPR46437.2021.00059 Liu ZY, 2020, PROC CVPR IEEE, P140, DOI 10.1109/CVPR42600.2020.00022 Lugaresi C, 2019, Arxiv, DOI [arXiv:1906.08172, DOI 10.48550/ARXIV.1906.08172] Luo Y, 2018, PROC CVPR IEEE, P5207, DOI 10.1109/CVPR.2018.00546 Luvizon DC, 2018, PROC CVPR IEEE, P5137, DOI 10.1109/CVPR.2018.00539 Malleson C, 2017, INT CONF 3D VISION, P449, DOI 10.1109/3DV.2017.00058 Mao W., 2021, arXiv Marín-Jiménez MJ, 2018, J VIS COMMUN IMAGE R, V55, P627, DOI 10.1016/j.jvcir.2018.07.010 Martín-Martín A, 2018, J INFORMETR, V12, P1160, DOI 10.1016/j.joi.2018.09.002 Martinez J, 2017, IEEE I CONF COMP VIS, P2659, DOI 10.1109/ICCV.2017.288 McNally W, 2021, IEEE ACCESS, V9, P139403, DOI 10.1109/ACCESS.2021.3118207 Mehta D, 2018, INT CONF 3D VISION, P120, DOI 10.1109/3DV.2018.00024 Mehta D, 2017, INT CONF 3D VISION, P506, DOI 10.1109/3DV.2017.00064 Mehta D, 2017, ACM T GRAPHIC, V36, DOI 10.1145/3072959.3073596 Moeslund TB, 2001, COMPUT VIS IMAGE UND, V81, P231, DOI 10.1006/cviu.2000.0897 Newell A., 2017, P 31 INT C NEUR INF, P2277 Newell A, 2016, LECT NOTES COMPUT SC, V9912, P483, DOI 10.1007/978-3-319-46484-8_29 Nibali A, 2019, IEEE WINT CONF APPL, P1477, DOI 10.1109/WACV.2019.00162 Nie XC, 2019, IEEE I CONF COMP VIS, P6941, DOI 10.1109/ICCV.2019.00704 Nie XC, 2019, IEEE I CONF COMP VIS, P6950, DOI 10.1109/ICCV.2019.00705 Obdrzálek S, 2012, IEEE ENG MED BIO, P1188, DOI 10.1109/EMBC.2012.6346149 Osokin D, 2018, Arxiv, DOI arXiv:1811.12004 Papandreou G, 2017, PROC CVPR IEEE, P3711, DOI 10.1109/CVPR.2017.395 Park S, 2017, IEEE COMPUT SOC CONF, P105, DOI 10.1109/CVPRW.2017.19 Pavlakos G, 2017, PROC CVPR IEEE, P1263, DOI 10.1109/CVPR.2017.139 Pavllo D, 2019, PROC CVPR IEEE, P7745, DOI 10.1109/CVPR.2019.00794 Poppe R, 2010, IMAGE VISION COMPUT, V28, P976, DOI 10.1016/j.imavis.2009.11.014 Qiu HB, 2019, IEEE I CONF COMP VIS, P4341, DOI 10.1109/ICCV.2019.00444 Qiu ZW, 2020, AAAI CONF ARTIF INTE, V34, P11924 Rabbito R., 2021, THESIS POLITECNICO T Rafi U., 2016, PROC BRIT MACH VIS C, V1 Ren B, 2024, Arxiv, DOI arXiv:2002.05907 Rhodin H, 2018, LECT NOTES COMPUT SC, V11214, P765, DOI 10.1007/978-3-030-01249-6_46 Rogez G, 2020, IEEE T PATTERN ANAL, V42, P1146, DOI 10.1109/TPAMI.2019.2892985 Rose ME, 2019, SOFTWAREX, V10, DOI 10.1016/j.softx.2019.100263 Sapp B, 2013, PROC CVPR IEEE, P3674, DOI 10.1109/CVPR.2013.471 Sarandi I, 2018, Arxiv, DOI arXiv:1809.04987 Shah N. JainS., 2019, P IEEECVF C COMPUTER, P29 Shian-Ru Ke, 2010, Proceedings 7th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS 2010), P489, DOI 10.1109/AVSS.2010.80 Shotton J, 2011, PROC CVPR IEEE, P1297, DOI 10.1109/CVPR.2011.5995316 Sun K, 2019, PROC CVPR IEEE, P5686, DOI 10.1109/CVPR.2019.00584 Thar MC, 2019, 2019 INTERNATIONAL CONFERENCE ON ADVANCED INFORMATION TECHNOLOGIES (ICAIT), P137, DOI [10.1109/AITC.2019.8920892, 10.1109/aitc.2019.8920892] Tompson J, 2014, ADV NEUR IN, V27 Toshev A, 2014, PROC CVPR IEEE, P1653, DOI 10.1109/CVPR.2014.214 Trumble M., 2017, P BRIT MACH VIS C, V2, P1, DOI 10.5244/C.31.14 Tsai TH, 2019, IEEE ACCESS, V7, P153049, DOI 10.1109/ACCESS.2019.2947518 von Marcard T, 2018, LECT NOTES COMPUT SC, V11214, P614, DOI 10.1007/978-3-030-01249-6_37 Wang JH, 2021, PROC CVPR IEEE, P11850, DOI 10.1109/CVPR46437.2021.01168 Wang JB, 2019, PROCEEDINGS OF THE 27TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA (MM'19), P374, DOI 10.1145/3343031.3350910 Wang JB, 2021, COMPUT VIS IMAGE UND, V210, DOI 10.1016/j.cviu.2021.103225 Wehrbein T, 2021, Arxiv, DOI arXiv:2107.13788 Wei SE, 2016, PROC CVPR IEEE, P4724, DOI 10.1109/CVPR.2016.511 Weinzaepfel Philippe, 2020, Computer Vision - ECCV 2020. 16th European Conference. Proceedings. Lecture Notes in Computer Science (LNCS 12371), P380, DOI 10.1007/978-3-030-58574-7_23 Weng CY, 2019, PROC CVPR IEEE, P5901, DOI 10.1109/CVPR.2019.00606 Willett NS, 2020, PROCEEDINGS OF THE 25TH INTERNATIONAL CONFERENCE ON INTELLIGENT USER INTERFACES, IUI 2020, P88, DOI 10.1145/3377325.3377505 Wu E, 2020, CHI'20: EXTENDED ABSTRACTS OF THE 2020 CHI CONFERENCE ON HUMAN FACTORS IN COMPUTING SYSTEMS, DOI 10.1145/3334480.3382853 Wu S., 2021, P IEEECVF INT C COMP, P11148 Xiao B, 2018, LECT NOTES COMPUT SC, V11210, P472, DOI 10.1007/978-3-030-01231-1_29 Xu L., 2021, P IEEE CVF C COMP VI, P16067 Xu YF, 2022, Arxiv, DOI arXiv:2204.12484 Ya Su, 2018, 2018 14th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD), P379, DOI 10.1109/FSKD.2018.8686917 Yang S, 2021, 2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), P11782, DOI 10.1109/ICCV48922.2021.01159 Yang W, 2017, IEEE I CONF COMP VIS, P1290, DOI 10.1109/ICCV.2017.144 Yang ZQ, 2020, PROC CVPR IEEE, P5305, DOI 10.1109/CVPR42600.2020.00535 Yihui He, 2020, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Proceedings, P7776, DOI 10.1109/CVPR42600.2020.00780 Yu CQ, 2021, PROC CVPR IEEE, P10435, DOI 10.1109/CVPR46437.2021.01030 Zanfir A, 2018, ADV NEUR IN, V31 Zhang F, 2020, PROC CVPR IEEE, P7091, DOI 10.1109/CVPR42600.2020.00712 Zhang SH, 2019, PROC CVPR IEEE, P889, DOI 10.1109/CVPR.2019.00098 Zhang WY, 2013, IEEE I CONF COMP VIS, P2248, DOI 10.1109/ICCV.2013.280 Zhang Z, 2021, INT J COMPUT VISION, V129, P703, DOI 10.1007/s11263-020-01398-9 Zhang Z, 2020, PROC CVPR IEEE, P2197, DOI 10.1109/CVPR42600.2020.00227 Zhao L, 2019, PROC CVPR IEEE, P3420, DOI 10.1109/CVPR.2019.00354 Zhao MM, 2018, PROC CVPR IEEE, P7356, DOI 10.1109/CVPR.2018.00768 Zhen Jianan, 2020, ECCV, P550 Zheng C, 2021, 2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), P11636, DOI 10.1109/ICCV48922.2021.01145 NR 153 TC 7 Z9 7 U1 6 U2 30 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 2168-2291 EI 2168-2305 J9 IEEE T HUM-MACH SYST JI IEEE T. Hum.-Mach. Syst. PD FEB PY 2023 VL 53 IS 1 BP 253 EP 268 DI 10.1109/THMS.2022.3219242 EA NOV 2022 PG 16 WC Computer Science, Artificial Intelligence; Computer Science, Cybernetics WE Science Citation Index Expanded (SCI-EXPANDED) SC Computer Science GA 8B3CU UT WOS:000890810300001 OA Green Submitted DA 2024-09-05 ER PT C AU Lee, YS Poh, SW AF Lee, Yik Sheng Poh, Siaw Way BE Markauskaite, L Goodyear, P Reimann, P TI The collaborative work between learning technologists and academics in implementing online learning SO WHO'S LEARNING? WHOSE TECHNOLOGY?, PROCEEDINGS, VOLS 1 AND 2 LA English DT Proceedings Paper CT 23rd Annual Conference of the Australasian-Society-for-Computers-in-Learning-in-Tertiary-Education CY DEC 03-06, 2006 CL Univ Sydney, Ctr Res Comp Supported Learning & Cognit, Sydney, AUSTRALIA HO Univ Sydney, Ctr Res Comp Supported Learning & Cognit DE online learning; higher education; collaboration; organisational change; action research C1 [Lee, Yik Sheng; Poh, Siaw Way] Tunku Abdul Rahman Coll, Jalan Genting Kelang,Setapak, Kuala Lumpur 53300, Malaysia. RP Lee, YS (corresponding author), Tunku Abdul Rahman Coll, Jalan Genting Kelang,Setapak, Kuala Lumpur 53300, Malaysia. EM leeys@mail.tarc.edu.my; pohsw@mail.tarc.edu.my NR 0 TC 0 Z9 0 U1 0 U2 0 PU SYDNEY UNIV PRESS PI SYDNEY PA UNIV SYDNEY LIBRARY F03, SYDNEY, NSW 2006, AUSTRALIA BN 978-1-920898-48-9 PY 2006 BP 980 EP 980 PG 1 WC Computer Science, Information Systems; Computer Science, Interdisciplinary Applications; Education & Educational Research WE Conference Proceedings Citation Index - Science (CPCI-S); Conference Proceedings Citation Index - Social Science & Humanities (CPCI-SSH) SC Computer Science; Education & Educational Research GA BFX00 UT WOS:000245234700138 DA 2024-09-05 ER PT C AU Abuein, QQ Almahmoud, MH Elayan, ON AF Abuein, Qusai Q. Almahmoud, Mothanna H. Elayan, Omar N. BE Alsmirat, M Almaaitah, A Jararweh, Y Lloret, J TI Improving QS Rank Based on The Classification of Authors Research Collaboration Using Machine Learning Techniques SO 2021 12TH INTERNATIONAL CONFERENCE ON INFORMATION AND COMMUNICATION SYSTEMS (ICICS) SE International Conference on Information and Communication Systems LA English DT Proceedings Paper CT 12th International Conference on Information and Communication Systems (ICICS) CY MAY 24-26, 2021 CL ELECTR NETWORK DE QS Ranking; Citation Per Faculty; Academic Collaboration; Co-authorship; Machine Learning ID GLOBAL UNIVERSITY RANKINGS; CO-AUTHORSHIP; PERFORMANCE AB The importance of universities' global ranking lies in providing a trusty resource, which helps students in choosing the right place to complete their academic future. The global ranking systems are based on several metrics that focus on the study environment, the quality of the provided services, the scientific publications, and the extent of the authors' strength. Quacquarelli Symonds (QS) is the most popular global ranking system, it has Citations Per Faculty (CPF) evaluation metric, which constitutes 20% of the total ranking score. In this research, we aim to find the effect of the research collaboration on increasing the CPF score, in which we apply descriptive analytics on a dataset for Jordan University of Science and Technology (JUST) authors, that is scrapped from the official websites of Google Scholar and Researchgate. Then, we find the authors who have a moderate collaboration through building a classification model using machine learning techniques. The results proved that the research collaboration has a significant impact in increasing authors publications that positively correlated with their total citations, which in turn gives a great opportunity to increase the CPF score. Also, the Support Vector Machine classifier has obtained a 95.27% level of accuracy, which considers as an efficient method in classifying the authors research collaboration into strong and moderate collaboration. Finally, the proposed method can be used to improve the QS ranking and obtain a high scientific standing level for academic institutes. C1 [Abuein, Qusai Q.; Almahmoud, Mothanna H.; Elayan, Omar N.] Jordan Univ Sci & Technol, Comp Informat Syst, Irbid, Jordan. C3 Jordan University of Science & Technology RP Abuein, QQ (corresponding author), Jordan Univ Sci & Technol, Comp Informat Syst, Irbid, Jordan. EM qabuein@just.edu.jo; mhalmahmood18@cit.just.edu.jo; onelayan18@cit.just.edu.jo OI Abuein, Qusai/0009-0002-4323-4301 CR Anguita D., 2012, ESANN, P441 [Anonymous], 2006, REGRESSION ANAL Batt S, 2020, J ECON EDUC, V51, P317, DOI 10.1080/00220485.2020.1804503 Ding Shi-fei, 2011, Journal of University of Electronic Science and Technology of China, V40, P2, DOI 10.3969/j.issn.1001-0548.2011.01.001 Ductor L, 2015, OXFORD B ECON STAT, V77, P385, DOI 10.1111/obes.12070 Frenken K, 2017, J INFORMETR, V11, P859, DOI 10.1016/j.joi.2017.06.006 Hassan D, 2018, INT C HYBR INT SYST, P75 Hossin M., 2015, INT J DATA MIN KNOWL, V5, P01, DOI [DOI 10.5121/IJDKP.2015.5201, 10.5121/ijdkp.2015.5201] Hu XL, 2020, CHINA J ACCOUNT RES, V13, P1, DOI 10.1016/j.cjar.2019.09.002 Kataria A., 2013, International Journal of Emerging Technology and Advanced Engineering, V3, P354 Khor KA, 2016, SCIENTOMETRICS, V107, P1095, DOI 10.1007/s11192-016-1905-6 Li WH, 2019, NAT COMMUN, V10, DOI 10.1038/s41467-019-13130-4 Maalouf Maher, 2011, International Journal of Data Analysis Techniques and Strategies, V3, P281, DOI 10.1504/IJDATS.2011.041335 Mali F, 2017, SCI PUBL POLICY, V44, P486, DOI 10.1093/scipol/scw076 Maruyama WT., 2016, P AN 5 BRAZ WORKSH S, P61 Mitchell R., 2018, Web Scraping with Python Collecting More Data from the Modern Web Parish AJ, 2018, PLOS ONE, V13, DOI 10.1371/journal.pone.0189742 Patro SGK., 2015, Normalization: a preprocessing stage, DOI [10.17148/IARJSET.2015.2305, DOI 10.17148/IARJSET.2015.2305] Pavel AP, 2015, PROC ECON FINANC, V26, P54, DOI 10.1016/S2212-5671(15)00838-2 Peters MA, 2019, EDUC PHILOS THEORY, V51, P5, DOI 10.1080/00131857.2017.1381472 Sarigöl E, 2014, EPJ DATA SCI, V3, DOI 10.1140/epjds/s13688-014-0009-x Shukla S., 2014, International Journal of Information & Computation Technology, V4, P1847 Yu Q, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0101214 NR 23 TC 0 Z9 0 U1 2 U2 9 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA SN 2471-125X BN 978-1-6654-3351-8 J9 INT CONF INFORM COMM PY 2021 BP 63 EP 68 DI 10.1109/ICICS52457.2021.9464603 PG 6 WC Computer Science, Theory & Methods; Engineering, Electrical & Electronic; Telecommunications WE Conference Proceedings Citation Index - Science (CPCI-S) SC Computer Science; Engineering; Telecommunications GA BS1QZ UT WOS:000694853800010 DA 2024-09-05 ER PT C AU Han, H Zha, HY Giles, CL AF Han, H Zha, HY Giles, CL GP ACM TI Name disambiguation spectral in author citations using a K-way clustering method SO PROCEEDINGS OF THE 5TH ACM/IEEE JOINT CONFERENCE ON DIGITAL LIBRARIES, PROCEEDINGS SE ACM-IEEE Joint Conference on Digital Libraries JCDL LA English DT Proceedings Paper CT 5th ACM/IEEE Joint Conference on Digital Libraries CY JUN 07-11, 2005 CL Denver, CO DE name disambiguation; feature selection; unsupervised learning; spectral clustering AB An author may have multiple names and multiple authors may share the same name simply due to name abbreviations, identical names, or name misspellings in publications or bibliographies (citations)(1). This can produce name ambiguity which can affect the performance of document retrieval, web search, and database integration, and may cause improper attribution of credit. Proposed here is an unsupervised learning approach using K-way spectral clustering that disambiguates authors in citations. The approach utilizes three types of citation attributes: co-author names, paper titles, and publication venue titles(2). The approach is illustrated with 16 name datasets with citations collected from the DBLP database bibliography and author home pages and shows that name disambiguation can be achieved using these citation attributes. C1 Yahoo Inc, Sunnyvale, CA 95129 USA. C3 Yahoo! Inc; Yahoo! Inc United States EM huihan@yahoo-inc.com; zha@cse.psu.edu; giles@ist.psu.edu CR [Anonymous], P 31 ANN M OH STAT U [Anonymous], 1999, MODERN INFORM RETRIE [Anonymous], 2001, P 33 ANN ACM S THEOR [Anonymous], 1988, Tracking and Data Association Baker L. D., 1998, Proceedings of the 21st Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, P96, DOI 10.1145/290941.290970 BANERJEE S, 2002, P 3 INT C INT TEXT P Bilenko M, 2003, IEEE INTELL SYST, V18, P16, DOI 10.1109/MIS.2003.1234765 BITTON D, 1983, ACM T DATABASE SYST, V8, P255, DOI 10.1145/319983.319987 BRANTING LK, 2002, J INFORMATION LAW TE, P1 Califf ME, 1999, SIXTEENTH NATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE (AAAI-99)/ELEVENTH INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE (IAAI-99), P328 Cohen W. W., 2000, Proceedings. KDD-2000. Sixth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, P255, DOI 10.1145/347090.347141 DAGAN I, 1994, M ASS COMP LING, P272 DANIEL L, 1995, BUSINESS GEOGRAPHICS, P26 Dhillon I. S., 2003, Journal of Machine Learning Research, V3, P1265, DOI 10.1162/153244303322753661 DILAURO T, 2001, DLIB MAGAZINE, P7 DOLAN WB, 1994, WORD SENSE AMBIGUATI Drineas P, 1999, PROCEEDINGS OF THE TENTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, P291 Feitelson DG, 2004, INFORM RES, V9 FELLEGI IP, 1969, J AM STAT ASSOC, V64, P1183, DOI 10.2307/2286061 FRAKES W, 1992, INFORMATION RETRIEVA Giles C. L., 1998, P 3 ACM C DIGITAL LI, P89 GILLMAN P, 1998, 91 BRIT LIBR RES INN Han H, 2003, ACM-IEEE J CONF DIG, P37 HAN H, 2004, P 4 ACM IEEE CS JOIN Hernandez MA, 1998, DATA MIN KNOWL DISC, V2, P9, DOI 10.1023/A:1009761603038 Hua Y, 2003, PARALLEL AND DISTRIBUTED COMPUTING, APPLICATIONS AND TECHNOLOGIES, PDCAT'2003, PROCEEDINGS, P268, DOI 10.1109/PDCAT.2003.1236303 Kannan R, 2000, ANN IEEE SYMP FOUND, P367, DOI 10.1109/SFCS.2000.892125 Karlgren J., 2001, Foundations of Real-World Intelligence, P294 KROVETZ R, 1989, SIGIR FORUM, V23, P127, DOI 10.1145/75335.75349 LI H, 1998, P COLING 98, P749 LIN D, 2002, P C COMP LING, P577 McCallum A., 2000, Proceedings. KDD-2000. Sixth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, P169, DOI 10.1145/347090.347123 Mong Li Loo, 2000, Proceedings. KDD-2000. Sixth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, P290 MONGE AE, 1997, RES ISSUES DATA MINI, P23 Ng AY, 2002, ADV NEUR IN, V14, P849 PASULA H, 2002, P NEUR INF P SYST NA Pirkola A., 2003, P 26 ANN INT ACM SIG, P345 POTHEN A, 1990, SIAM J MATRIX ANAL A, V11, P430, DOI 10.1137/0611030 Seymore K, 1999, P AAAI 99 WORKSH MAC Shi JB, 2000, IEEE T PATTERN ANAL, V22, P888, DOI 10.1109/34.868688 Skounakis M., 2003, P 18 INT JOINT C ART Takasu A, 2003, ACM-IEEE J CONF DIG, P49, DOI 10.1109/JCDL.2003.1204843 TEJADA S, 2002, P 8 ACM SIGKDD INT C, P350 Terra E, 2003, HLT-NAACL 2003: HUMAN LANGUAGE TECHNOLOGY CONFERENCE OF THE NORTH AMERICAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, PROCEEDINGS OF THE MAIN CONFERENCE, P244 Turtle H. R., 1996, UNCERTAINTY MANAGEME, P189 WARNER JW, 2001, P 1 ACM IEEE CS JOIN Yao YY, 1995, INT J GEN SYST, V23, P343, DOI 10.1080/03081079508908047 Zha H., 2001, Proceedings of the tenth international conference on Information and knowledge management, P25 Zha HY, 2002, ADV NEUR IN, V14, P1057 [No title captured] NR 50 TC 132 Z9 162 U1 1 U2 21 PU ASSOC COMPUTING MACHINERY PI NEW YORK PA 1515 BROADWAY, NEW YORK, NY 10036-9998 USA SN 2575-7865 EI 2575-8152 BN 1-58113-876-8 J9 ACM-IEEE J CONF DIG PY 2005 BP 334 EP 343 DI 10.1145/1065385.1065462 PG 10 WC Computer Science, Information Systems; Computer Science, Interdisciplinary Applications; Information Science & Library Science WE Conference Proceedings Citation Index - Science (CPCI-S); Conference Proceedings Citation Index - Social Science & Humanities (CPCI-SSH) SC Computer Science; Information Science & Library Science GA BCO70 UT WOS:000230429800058 DA 2024-09-05 ER PT C AU Frankowska, A Pawlik, B AF Frankowska, Agata Pawlik, Bartosz BE Biele, C Kacprzyk, J Kopec, W Owsinski, JW Romanowski, A Sikorski, M TI A Decade of Artificial Intelligence Research in the European Union: A Bibliometric Analysis SO DIGITAL INTERACTION AND MACHINE INTELLIGENCE, MIDI 2021 SE Lecture Notes in Networks and Systems LA English DT Proceedings Paper CT 9th Machine Intelligence and Digital Interaction Conference (MIDI) CY DEC 09-10, 2021 CL Warsaw, POLAND DE Artificial intelligence; Bibliometric analysis; Bibliometric indicators; Clustering; European Union; Principal component analysis AB In recent years, the body of research on artificial intelligence (AI) has grown rapidly. As the European Union strives for excellence in AI development, this study aims to establish the publication achievements in the field among its member states between 2010 and 2019. We applied clustering and principal component analysis (PCA) on a set of bibliometric data concerning research publications on AI obtained from Scopus. The results reveal that while the union's most populous countries-the United Kingdom, Germany, France, Spain, and Italy- were the most prolific producers of AI publications between 2010 and 2019, the highest impact was noted for publications that originated in the Nordic and Benelux countries, as well as in Austria and Ireland. Analysis confirms that the division between 'old' and 'new' member states has endured: the nations that joined the EU after 2004 recorded the lowest results in scientific output and impact in the AI field. This study can assist research agencies and researchers in developing a broad grasp of the current state of AI research. C1 [Frankowska, Agata; Pawlik, Bartosz] Natl Informat Proc Inst, Warsaw, Poland. C3 Information Processing Center - National Research Institute RP Frankowska, A (corresponding author), Natl Informat Proc Inst, Warsaw, Poland. EM agata.frankowska@opi.org.pl; bartosz.pawlik@opi.org.pl RI Pawlik, Bogdan/W-2346-2018 CR Acemoglu D, 2019, J ECON PERSPECT, V33, P3, DOI 10.1257/jep.33.2.3 Agrawal A.K., 2018, Economic Policy for Artificial Intelligence Aksnes DW, 2012, J INFORMETR, V6, P36, DOI 10.1016/j.joi.2011.08.002 Andrasko J, 2021, AI SOC, V36, P623, DOI 10.1007/s00146-020-01125-5 [Anonymous], GLOSSARY ARTIFICIAL Association for the Advancement of Artificial Intelligence, AI TOP Castro D., 2019, Who Is Winning the AI Race: China, the EU or the United States?' China Institute for Science and Technology Policy at Tsinghua University, 2018, CHIN AI DEV REP Corea F., AI Knowledge Map: how to classify AI technologies-Francesco Corea Correia A, 2020, RES INNOVATION EUROP, DOI [10.2777/264689, DOI 10.2777/264689] Elsevier, 2018, TRENDS CHINA EUROPE European Commission, 2020, White Paper: On Artificial Intelligence-A European approach to excellence and trust European Commission, 2020, Science, Research and Innovation Performance of the EU 2020. A fair, green and digital Europe Frankowska A, 2020, ARTIF INTELL Goodfellow I., 2018, Deep Learning Jain AK, 2010, PATTERN RECOGN LETT, V31, P651, DOI 10.1016/j.patrec.2009.09.011 Kaplan A, 2019, BUS HORIZONS, V62, P15, DOI 10.1016/j.bushor.2018.08.004 Korinek A., 2017, Artificial intelligence and its implication for income distribution and unemployment (NBER working paper series 24174). National Bureau of Economic Research Website Krafft P.M, 2020, PROC 2020 AAAIACM C Lane M., 2021, OECD Social, Employment and Migration Working Papers, DOI DOI 10.1787/7C895724-EN LAWSON RG, 1990, J CHEM INF COMP SCI, V30, P36, DOI 10.1021/ci00065a010 Leydesdorff L, 2011, J AM SOC INF SCI TEC, V62, P1370, DOI 10.1002/asi.21534 Omar M, 2017, SCIENTOMETRICS, V113, P1269, DOI 10.1007/s11192-017-2534-4 Qiu Y, 2010, SCAND J IMMUNOL, V72, P425, DOI 10.1111/j.1365-3083.2010.02456.x Rehn C., 2014, Bibliometric indicators - definitions and usage at Karolinska Institutet Solna ROUSSEEUW PJ, 1987, J COMPUT APPL MATH, V20, P53, DOI 10.1016/0377-0427(87)90125-7 Russel S, 2020, Artificial intelligence: A modern approach, V4th Stahl BC, 2022, AI SOC, V37, P23, DOI 10.1007/s00146-021-01148-6 Stone Peter, 2016, Artificial intelligence and life in 2030: One hundred year study on artificial intelligence Syakur MA, 2018, IOP CONF SER-MAT SCI, V336, DOI 10.1088/1757-899X/336/1/012017 Waltman L, 2015, J INFORMETR, V9, P872, DOI 10.1016/j.joi.2015.08.001 Waltman L, 2013, J AM SOC INF SCI TEC, V64, P372, DOI 10.1002/asi.22775 Waltman L, 2011, SCIENTOMETRICS, V87, P467, DOI 10.1007/s11192-011-0354-5 Zhu JW, 2020, SCIENTOMETRICS, V123, P321, DOI 10.1007/s11192-020-03387-8 NR 34 TC 1 Z9 1 U1 2 U2 9 PU SPRINGER INTERNATIONAL PUBLISHING AG PI CHAM PA GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND SN 2367-3370 EI 2367-3389 BN 978-3-031-11432-8; 978-3-031-11431-1 J9 LECT NOTE NETW SYST PY 2022 VL 440 BP 52 EP 62 DI 10.1007/978-3-031-11432-8_5 PG 11 WC Computer Science, Artificial Intelligence WE Conference Proceedings Citation Index - Science (CPCI-S) SC Computer Science GA BU3OQ UT WOS:000892355400005 OA hybrid DA 2024-09-05 ER PT C AU Boukhers, Z Asundi, NB AF Boukhers, Zeyd Asundi, Nagaraj Bahubali BE Silvello, G Corcho, O Manghi, P DiNunzio, GM Golub, K Ferro, N Poggi, A TI Whois? Deep Author Name Disambiguation Using Bibliographic Data SO LINKING THEORY AND PRACTICE OF DIGITAL LIBRARIES (TPDL 2022) SE Lecture Notes in Computer Science LA English DT Proceedings Paper CT 26th International Conference on Theory and Practice of Digital Libraries (TPDL) CY SEP 20-23, 2022 CL Padua, ITALY DE Author name disambiguation; Entity linkage; Bibliographic data; Neural networks; Classification AB As the number of authors is increasing exponentially over years, the number of authors sharing the same names is increasing proportionally. This makes it challenging to assign newly published papers to their adequate authors. Therefore, Author Name Ambiguity (ANA) is considered a critical open problem in digital libraries. This paper proposes an Author Name Disambiguation (AND) approach that links author names to their real-world entities by leveraging their co-authors and domain of research. To this end, we use a collection from the DBLP repository that contains more than 5 million bibliographic records authored by around 2.6 million co-authors. Our approach first groups authors who share the same last names and same first name initials. The author within each group is identified by capturing the relation with his/her co-authors and area of research, which is represented by the titles of the validated publications of the corresponding author. To this end, we train a neural network model that learns from the representations of the co-authors and titles. We validated the effectiveness of our approach by conducting extensive experiments on a large dataset. C1 [Boukhers, Zeyd; Asundi, Nagaraj Bahubali] Univ Koblenz Landau, Inst Web Sci & Technol WeST, Koblenz, Germany. [Boukhers, Zeyd] Fraunhofer Inst Appl Informat Technol, St Augustin, Germany. C3 University of Koblenz & Landau; Fraunhofer Gesellschaft RP Boukhers, Z (corresponding author), Univ Koblenz Landau, Inst Web Sci & Technol WeST, Koblenz, Germany.; Boukhers, Z (corresponding author), Fraunhofer Inst Appl Informat Technol, St Augustin, Germany. EM boukhers@uni-koblenz.de; nagarajbahubali@uni-koblenz.de RI Boukhers, Zeyd/HZL-0733-2023 OI Boukhers, Zeyd/0000-0001-9778-9164; Asundi, Nagaraj Bahubali/0000-0002-1044-7047 CR [Anonymous], 2010, P 10 ANN JOINT C DIG, DOI 10.1145/1816123.1816130 Arif T, 2014, INT CONF CONTEMP, P135, DOI 10.1109/IC3.2014.6897162 Boukhers Z., 2021, 1 WORKSHOP BIBLIO DA Cao KS, 2016, Arxiv, DOI arXiv:1606.02601 Devlin J, 2019, Arxiv, DOI arXiv:1810.04805 Ebraheem M, 2018, PROC VLDB ENDOW, V11, P1454, DOI 10.14778/3236187.3236198 Fan X., 2011, J DATA INF QUAL, V2, P10, DOI [DOI 10.1145/1891879.1891883, 10.1145/1891879.1891883] Ferreira AA, 2012, SIGMOD REC, V41, P15, DOI 10.1145/2350036.2350040 Foxcroft J, 2019, LECT NOTES ARTIF INT, V11489, P505, DOI 10.1007/978-3-030-18305-9_52 Grover A, 2016, KDD'16: PROCEEDINGS OF THE 22ND ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, P855, DOI 10.1145/2939672.2939754 Han H, 2004, ACM-IEEE J CONF DIG, P296, DOI 10.1145/996350.996419 Han XP, 2011, PROCEEDINGS OF THE 34TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL (SIGIR'11), P765 Hermansson L, 2013, PROCEEDINGS OF THE 22ND ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT (CIKM'13), P1037, DOI 10.1145/2505515.2505565 Hoffart Johannes, 2011, EMNLP, P782, DOI DOI 10.3115/V1/D11-1072 Hourrane O, 2018, COMM COM INF SC, V872, P185, DOI 10.1007/978-3-319-96292-4_15 Tran HN, 2014, LECT NOTES COMPUT SC, V8397, P123, DOI 10.1007/978-3-319-05476-6_13 Hussain I, 2017, KNOWL ENG REV, V32, DOI 10.1017/S0269888917000182 Kai-Hsiang Yang, 2011, 2011 IEEE/WIC/ACM International Joint Conferences on Web Intelligence (WI) and Intelligent Agent Technologies, P335, DOI 10.1109/WI-IAT.2011.181 Khabsa M, 2014, IEEE INT CONF BIG DA Khabsa M, 2015, PROCEEDINGS OF THE 15TH ACM/IEEE-CS JOINT CONFERENCE ON DIGITAL LIBRARIES (JCDL'15), P37, DOI 10.1145/2756406.2756915 Kim K., 2020, P 1 WORKSHOP SCHOLAR, P72 Kim K, 2018, 2018 IEEE INTERNATIONAL CONFERENCE ON WEB SERVICES (IEEE ICWS 2018), P265, DOI 10.1109/ICWS.2018.00041 Li JY, 2013, PROCEEDINGS OF THE 2013 INTERNATIONAL CONFERENCE ON ENERGY, P1 Liu WL, 2014, J ASSOC INF SCI TECH, V65, P765, DOI 10.1002/asi.23063 Louppe G, 2016, COMM COM INF SC, V649, P272, DOI 10.1007/978-3-319-45880-9_21 Müller MC, 2017, LECT NOTES COMPUT SC, V10450, P300, DOI 10.1007/978-3-319-67008-9_24 Park H., 2012, INT C DATA MINING SO, P106 Perozzi B, 2014, PROCEEDINGS OF THE 20TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING (KDD'14), P701, DOI 10.1145/2623330.2623732 Qian Y., 2011, Proceedings of the 20th ACM international conference on Information and knowledge management, P1241, DOI 10.1145/2063576.2063756 Qian YA, 2015, INFORM RETRIEVAL J, V18, P379, DOI 10.1007/s10791-015-9261-3 Tang J, 2015, KDD'15: PROCEEDINGS OF THE 21ST ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, P1165, DOI 10.1145/2783258.2783307 Tang J, 2015, PROCEEDINGS OF THE 24TH INTERNATIONAL CONFERENCE ON WORLD WIDE WEB (WWW 2015), P1067, DOI 10.1145/2736277.2741093 Wu H, 2014, SCIENTOMETRICS, V101, P1955, DOI 10.1007/s11192-014-1283-x Xiaoling Sun, 2011, Proceedings of the 2011 IEEE Third International Conference on Privacy, Security, Risk and Trust and IEEE Third International Conference on Social Computing (PASSAT/SocialCom 2011), P568, DOI 10.1109/PASSAT/SocialCom.2011.43 Xu J, 2018, CIKM'18: PROCEEDINGS OF THE 27TH ACM INTERNATIONAL CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, P1735, DOI 10.1145/3269206.3269272 Zhang BC, 2017, CIKM'17: PROCEEDINGS OF THE 2017 ACM CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, P1239, DOI 10.1145/3132847.3132873 Zhang BC, 2016, CIKM'16: PROCEEDINGS OF THE 2016 ACM CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, P1341, DOI 10.1145/2983323.2983714 Zhang YT, 2018, KDD'18: PROCEEDINGS OF THE 24TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING, P1002, DOI 10.1145/3219819.3219859 NR 38 TC 6 Z9 6 U1 1 U2 11 PU SPRINGER INTERNATIONAL PUBLISHING AG PI CHAM PA GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND SN 0302-9743 EI 1611-3349 BN 978-3-031-16802-4; 978-3-031-16801-7 J9 LECT NOTES COMPUT SC PY 2022 VL 13541 BP 201 EP 215 DI 10.1007/978-3-031-16802-4_16 PG 15 WC Computer Science, Information Systems; Computer Science, Theory & Methods; Information Science & Library Science WE Conference Proceedings Citation Index - Science (CPCI-S); Conference Proceedings Citation Index - Social Science & Humanities (CPCI-SSH) SC Computer Science; Information Science & Library Science GA BU0DS UT WOS:000867565900016 DA 2024-09-05 ER PT J AU Lodge, JM Thompson, K Corrin, L AF Lodge, Jason M. Thompson, Kate Corrin, Linda TI Mapping out a research agenda for generative artificial intelligence in tertiary education SO AUSTRALASIAN JOURNAL OF EDUCATIONAL TECHNOLOGY LA English DT Article DE generative artificial intelligence; research; assessment AB Generative artificial intelligence (AI) has taken the world by storm. In this editorial, we outline some of the key areas of tertiary education impacted by large language models and associated applications that will require re-thinking and research to address in the short to medium term. Given how rapidly generative AI developments are currently occurring, this editorial is speculative. Although there is a long history of research on AI in education, the current situation is both unprecedented and seemingly not something that the AI in education community fully predicted. We also outline the editorial position of AJET in regards to generative AI to assist authors using tools such as ChatGPT as any part of the research or writing process. This is a rapidly evolving space. We have attempted to provide some clarity in this editorial while acknowledging that we may need to revisit some or all of what we offer here in the weeks and months ahead. C1 [Lodge, Jason M.] Univ Queensland, St Lucia, Australia. [Thompson, Kate] Queensland Univ Technol, Brisbane, Australia. [Corrin, Linda] Deakin Univ, Burwood, Australia. C3 University of Queensland; Queensland University of Technology (QUT); Deakin University RP Lodge, JM (corresponding author), Univ Queensland, St Lucia, Australia. EM jason.lodge@uq.edu.au RI BUCCINI, FRANCESCA/HTM-4917-2023; Lodge, Jason M/F-8079-2018; Corrin, Linda/AAD-8545-2019 OI Thompson, Kate/0000-0003-0738-0205; Lodge, Jason/0000-0001-6330-6160; Corrin, Linda/0000-0002-1593-3271 CR Nguyen A, 2023, EDUC INF TECHNOL, V28, P4221, DOI 10.1007/s10639-022-11316-w Arrieta AB, 2020, INFORM FUSION, V58, P82, DOI 10.1016/j.inffus.2019.12.012 Bender EM, 2021, PROCEEDINGS OF THE 2021 ACM CONFERENCE ON FAIRNESS, ACCOUNTABILITY, AND TRANSPARENCY, FACCT 2021, P610, DOI 10.1145/3442188.3445922 Chen LJ, 2020, IEEE ACCESS, V8, P75264, DOI 10.1109/ACCESS.2020.2988510 Chen XL, 2022, EDUC TECHNOL SOC, V25, P28 Dai W, 2023, IEEE INT CONF ADV LE, P323, DOI 10.1109/ICALT58122.2023.00100 Dawson P., 2021, Defending assessment security in a digital world: Preventing e-cheating and supporting academic integrity in higher education Future of Life Institute, 2023, Pause giant AI experiments: An open letter Gasevic D., 2023, Comput. Educ. Artif. Intell., V4, DOI [10.1016/j.caeai.2023.100130, DOI 10.1016/J.CAEAI.2023.100130] Jarvela S., IN PRESS Knight S., 2015, The Routledge International Handbook of Research on Teaching Thinking, P467 Kuka L., 2022, Learning with technologies and technologies in learning, V456, DOI [10.1007/978-3-031-04286-7_26, DOI 10.1007/978-3-031-04286-7_26] Lodge JM, 2023, AUSTRALAS J EDUC TEC, V39, P18, DOI 10.14742/ajet.8695 Morze N., 2021, Journal of Physics: Conference Series, V1840, DOI 10.1088/1742-6596/1840/1/012062 Peng HC, 2019, SMART LEARN ENVIRON, V6, DOI 10.1186/s40561-019-0089-y Sabzalieva E., 2023, ChatGPT and artificial intelligence in higher education: Quick start guide Xie H, 2019, COMPUT EDUC, V140, DOI 10.1016/j.compedu.2019.103599 Zawacki-Richter O, 2019, INT J EDUC TECHNOL H, V16, DOI 10.1186/s41239-019-0171-0 NR 18 TC 42 Z9 43 U1 128 U2 311 PU AUSTRALASIAN SOC COMPUTERS LEARNING TERTIARY EDUCATION-ASCILITE PI TUGUN PA UNIT 5, 202 COODE ST, PO BOX 350, TUGUN, 4224, AUSTRALIA SN 1449-3098 EI 1449-5554 J9 AUSTRALAS J EDUC TEC JI Australas. J. Educ. Technol. PY 2023 VL 39 IS 1 BP 18 EP 18 DI 10.14742/ajet.8695 PG 1 WC Education & Educational Research WE Social Science Citation Index (SSCI) SC Education & Educational Research GA G4FT6 UT WOS:000988740600002 OA gold HC Y HP N DA 2024-09-05 ER PT J AU Liu, JY Kong, XJ Xia, F Bai, XM Wang, L Qing, Q Lee, I AF Liu, Jiaying Kong, Xiangjie Xia, Feng Bai, Xiaomei Wang, Lei Qing, Qing Lee, Ivan TI Artificial Intelligence in the 21st Century SO IEEE ACCESS LA English DT Article DE Artificial intelligence; data analytics; scientific impact; science of science; data science ID SCIENTOMETRIC ANALYSIS; SCIENCE; TRENDS; DECADE AB The field of artificial intelligence (AI) has shown an upward trend of growth in the 21st century (from 2000 to 2015). The evolution in AI has advanced the development of human society in our own time, with dramatic revolutions shaped by both theories and techniques. However, the multidisciplinary and fastgrowing features make AI a field in which it is difficult to be well understood. In this paper, we study the evolution of AI at the beginning of the 21st century using publication metadata extracted from 9 top-tier journals and 12 top-tier conferences of this discipline. We find that the area is in the sustainable development and its impact continues to grow. From the perspective of reference behavior, the decrease in self-references indicates that the AI is becoming more and more open-minded. The influential papers/researchers/institutions we identified outline landmarks in the development of this field. Last but not least, we explore the inner structure in terms of topics' evolution over time. We have quantified the temporal trends at the topic level and discovered the inner connection among these topics. These findings provide deep insights into the current scientific innovations, as well as shedding light on funding policies. C1 [Liu, Jiaying; Kong, Xiangjie; Xia, Feng; Wang, Lei; Qing, Qing] Dalian Univ Technol, Sch Software, Key Lab Ubiquitous Network & Serv Software Liaoni, Dalian 116620, Peoples R China. [Bai, Xiaomei] Anshan Normal Univ, Comp Ctr, Anshan 114007, Peoples R China. [Lee, Ivan] Univ South Australia, Sch Informat Technol & Math Sci, Adelaide, SA 5095, Australia. C3 Dalian University of Technology; Anshan Normal University; University of South Australia RP Xia, F (corresponding author), Dalian Univ Technol, Sch Software, Key Lab Ubiquitous Network & Serv Software Liaoni, Dalian 116620, Peoples R China. EM f.xia@ieee.org RI Xia, Feng/Y-2859-2019; Liu, JY/GYJ-0138-2022; wang, lei/U-2378-2019; Kong, Xiangjie/B-8809-2016; Lee, Ivan/F-4131-2013 OI Xia, Feng/0000-0002-8324-1859; Kong, Xiangjie/0000-0003-2698-3319; Lee, Ivan/0000-0002-2826-6367 CR Bai XM, 2017, IEEE ACCESS, V5, P17607, DOI 10.1109/ACCESS.2017.2740226 Bench-Capon TJM, 2007, ARTIF INTELL, V171, P619, DOI 10.1016/j.artint.2007.05.001 Cameron BD, 2005, PORTAL-LIBR ACAD, V5, P105, DOI 10.1353/pla.2005.0003 Correia A, 2018, SCIENTOMETRICS, V114, P31, DOI 10.1007/s11192-017-2562-0 Ding Y, 2016, Measuring scholarly impact Garfield E, 2006, INT J EPIDEMIOL, V35, P1123, DOI 10.1093/ije/dyl189 Heilig L, 2015, J PUBLIC TRANSPORT, V18, P111, DOI 10.5038/2375-0901.18.2.8 Heilig L, 2014, IEEE TRANS CLOUD COM, V2, P266, DOI 10.1109/TCC.2014.2321168 Hirsch JE, 2005, P NATL ACAD SCI USA, V102, P16569, DOI 10.1073/pnas.0507655102 Holsapple C. W., 2003, Computer Supported Cooperative Work: The Journal of Collaborative Computing, V12, P351, DOI 10.1023/A:1025053027925 INTELLIGENCE BY AM TURING, 1950, Computing Machinery and Intelligence, V59, P433, DOI [10.1093/mind/LIX.236.433, DOI 10.1093/MIND/LIX.236.433] Barbosa SDJ, 2017, SCIENTOMETRICS, V110, P275, DOI 10.1007/s11192-016-2162-4 Kienle A, 2006, INT J COMP-SUPP COLL, V1, P9, DOI 10.1007/s11412-006-6843-5 Kirsh D, 2010, AI SOC, V25, P441, DOI 10.1007/s00146-010-0272-8 Krizhevsky A, 2017, COMMUN ACM, V60, P84, DOI 10.1145/3065386 Lee I, 2017, WWW'17 COMPANION: PROCEEDINGS OF THE 26TH INTERNATIONAL CONFERENCE ON WORLD WIDE WEB, P1259, DOI 10.1145/3041021.3053054 Light RP, 2014, SCIENTOMETRICS, V101, P1535, DOI 10.1007/s11192-014-1238-2 MARR D, 1977, ARTIF INTELL, V9, P37, DOI 10.1016/0004-3702(77)90013-3 McCorduck Pamela, 2004, MACHINES WHO THINK Meyer M, 2009, JASSS-J ARTIF SOC S, V12, pA224 Mubin O, 2017, SCIENTOMETRICS, V112, P367, DOI 10.1007/s11192-017-2293-2 Nilsson N.J, 2014, Principles of Artificial Intelligence Sinatra R, 2015, NAT PHYS, V11, P791, DOI 10.1038/nphys3494 Sinha A, 2015, WWW'15 COMPANION: PROCEEDINGS OF THE 24TH INTERNATIONAL CONFERENCE ON WORLD WIDE WEB, P243, DOI 10.1145/2740908.2742839 Sun LJ, 2017, TRANSPORT RES A-POL, V100, P135, DOI 10.1016/j.tra.2017.04.011 Sun LJ, 2017, TRANSPORT RES C-EMER, V77, P49, DOI 10.1016/j.trc.2017.01.013 Tang J., 2008, KDD, P990, DOI DOI 10.1145/1401890.1402008 Van Noorden Richard., 2014, Nature News Vernon D, 2007, IEEE T EVOLUT COMPUT, V11, P151, DOI 10.1109/TEVC.2006.890274 Wang DS, 2013, SCIENCE, V342, P127, DOI 10.1126/science.1237825 Wang W, 2017, WWW'17 COMPANION: PROCEEDINGS OF THE 26TH INTERNATIONAL CONFERENCE ON WORLD WIDE WEB, P303, DOI 10.1145/3041021.3054159 Wang W, 2017, SCIENTOMETRICS, V113, P177, DOI 10.1007/s11192-017-2468-x Wang W, 2017, SCIENTOMETRICS, V112, P329, DOI 10.1007/s11192-017-2388-9 Wu ZH, 2014, ACM-IEEE J CONF DIG, P117, DOI 10.1109/JCDL.2014.6970157 Xia F, 2017, IEEE T BIG DATA, V3, P18, DOI 10.1109/TBDATA.2016.2641460 NR 35 TC 92 Z9 98 U1 3 U2 54 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 2169-3536 J9 IEEE ACCESS JI IEEE Access PY 2018 VL 6 BP 34403 EP 34421 DI 10.1109/ACCESS.2018.2819688 PG 19 WC Computer Science, Information Systems; Engineering, Electrical & Electronic; Telecommunications WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Computer Science; Engineering; Telecommunications GA GN6RS UT WOS:000439222700017 OA gold DA 2024-09-05 ER PT C AU Zhang, WD Pang, L Yang, QL Zhao, CH AF Zhang, Wendong Pang, Liang Yang, Qingliang Zhao, Chaohui GP IEEE TI Research on Electromagnetic Performance Optimization of Tangential Magnetizing Parallel Structure Hybrid Excitation Synchronous Motor Based on Particle Swarm Optimization Algorithm SO 2022 6TH INTERNATIONAL CONFERENCE ON POWER AND ENERGY ENGINEERING, ICPEE SE International Conference on Power and Energy Engineering LA English DT Proceedings Paper CT 6th International Conference on Power and Energy Engineering (ICPEE) CY NOV 25-27, 2022 CL ELECTR NETWORK DE tangential focus type; hybrid excitation; torque ripple; particle swarm optimization AB In order to reduce the torque ripple of the tangential magnetizing parallel structure hybrid excitation synchronous motor (TMPS-HESM) and improve the efficiency of the motor. The TMPS-HESM torque ripple model was established by analyzing the stator and rotor magnetic force. Then, using Maxwell & Workbench & optiSLong co-simulation tool, particle swarm optimization (PSO) algorithm was used to optimize the length of the air gap and the width and length of permanent magnet. The optimal solution is screened by sensitivity analysis. The results show that the optimized motor torque ripple and cogging torque are reduced, and the average torque is improved. Meanwhile, the optimization saves the use of permanent magnets, reduces the loss of the motor, and improves the maximum efficiency of the motor to 93%. C1 [Zhang, Wendong; Pang, Liang; Zhao, Chaohui] Shanghai Dianji Univ, Sch Elect, Shanghai, Peoples R China. [Yang, Qingliang] Shanghai Maritime Univ, Logist Engn Coll, Shanghai, Peoples R China. C3 Shanghai Dianji University; Shanghai Maritime University RP Zhang, WD (corresponding author), Shanghai Dianji Univ, Sch Elect, Shanghai, Peoples R China. EM 1427912006@qq.com; 1048789838@qq.com; yangql@sdju.edu.cn; zhaoch@sdju.edu.cn RI hu, xin/KHT-2406-2024; Yang, Qingliang/GRY-1981-2022 CR Chen Q, 2018, IEEE T IND ELECTRON, V65, P8520, DOI 10.1109/TIE.2018.2807392 Chen W., 2020, Transactions of China Electrotechnical Society, V35, P377 Cheng Peng, 2019, Electric Machines and Control, V23, P94, DOI 10.15938/j.emc.2019.02.012 Cui K., 2020, MICROMOTORS, V53, P11 Eberhart R.C., 2008, PROC 6 INT S MICROMA [高锋阳 Gao Fengyang], 2021, [电机与控制学报, Electric Machines and Control], V25, P112 Jeong I, 2013, IEEE ENER CONV, P867, DOI 10.1109/ECCE.2013.6646794 Kamiev K, 2014, IEEE T IND ELECTRON, V61, P5075, DOI 10.1109/TIE.2013.2289871 Kennedy J, 1995, 1995 IEEE INTERNATIONAL CONFERENCE ON NEURAL NETWORKS PROCEEDINGS, VOLS 1-6, P1942, DOI 10.1109/icnn.1995.488968 MACMINN SR, 1991, IEEE T IND APPL, V27, P997, DOI 10.1109/28.90358 NING Yinhang, 2017, ELECT MACHINES CONTR, V44, P1 Qin H, 2006, RES DOUBLY SALIENT H TONG Lanian, 2022, SCI TECHNOLOGY ENG, V22, P1023 Wang DH, 2013, IEEE T MAGN, V49, P2295, DOI 10.1109/TMAG.2013.2242454 WANG Daohan, 2021, P CSEE, V16, P42 [张卓然 Zhang Zhuoran], 2020, [中国电机工程学报, Proceedings of the Chinese Society of Electrical Engineering], V40, P7834 [赵纪龙 Zhao Jilong], 2014, [中国电机工程学报, Proceedings of the Chinese Society of Electrical Engineering], V34, P5876 NR 17 TC 0 Z9 0 U1 0 U2 2 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA BN 978-1-6654-6475-8 J9 Power and Energy Eng PY 2022 BP 306 EP 311 DI 10.1109/ICPEE56418.2022.10050269 PG 6 WC Energy & Fuels; Engineering, Electrical & Electronic WE Conference Proceedings Citation Index - Science (CPCI-S) SC Energy & Fuels; Engineering GA BV3SB UT WOS:001022922300052 DA 2024-09-05 ER PT J AU Chen, XL Zou, D Xie, HR Cheng, G Liu, CX AF Chen, Xieling Zou, Di Xie, Haoran Cheng, Gary Liu, Caixia TI Two Decades of Artificial Intelligence in Education: Contributors, Collaborations, Research Topics, Challenges, and Future Directions SO EDUCATIONAL TECHNOLOGY & SOCIETY LA English DT Article DE Artificial intelligence in education; Structural topic modeling; Bibliometric analysis; Research topics; Research evolution ID NEURAL-NETWORK AB With the increasing use of Artificial Intelligence (AI) technologies in education, the number of published studies in the field has increased. However, no large-scale reviews have been conducted to comprehensively investigate the various aspects of this field. Based on 4,519 publications from 2000 to 2019, we attempt to fill this gap and identify trends and topics related to AI applications in education (AIEd) using topic-based bibliometrics. Results of the review reveal an increasing interest in using AI for educational purposes from the academic community The main research topics include intelligent tutoring systems for special education; natural language processing for language education; educational robots for AI education; educational data mining for performance prediction; discourse analysis in computer-supported collaborative learning; neural networks for teaching evaluation; affective computing for learner emotion detection; and recommender systems for personalized learning. We also discuss the challenges and future directions of AIEd. C1 [Chen, Xieling; Cheng, Gary; Liu, Caixia] Educ Univ Hong Kong, Dept Math & Informat Technol, Hong Kong, Peoples R China. [Zou, Di] Educ Univ Hong Kong, Dept English Language Educ, Hong Kong, Peoples R China. [Xie, Haoran] Lingnan Univ, Dept Comp & Decis Sci, Hong Kong, Peoples R China. [Liu, Caixia] Nanjing Normal Univ, Inst EduInfo Sci & Engn, Nanjing, Peoples R China. C3 Education University of Hong Kong (EdUHK); Education University of Hong Kong (EdUHK); Lingnan University; Nanjing Normal University RP Zou, D (corresponding author), Educ Univ Hong Kong, Dept English Language Educ, Hong Kong, Peoples R China. EM xielingchen0708@gmail.com; dizoudaisy@gmail.com; hrxie2@gmail.com; chengks@eduhk.hk; cxsqz@126.com RI Xie, Haoran/AFS-3515-2022; BUCCINI, FRANCESCA/HTM-4917-2023 OI Xie, Haoran/0000-0003-0965-3617; PV, THAYYIB/0000-0001-8929-0398; ZOU, Di/0000-0001-8435-9739; Cheng, Gary/0000-0002-5614-3348 FU Lingnan University, Hong Kong [DR21A5, DB21A4]; Research Grants Council of Hong Kong SAR, China [18601118]; Education University of Hong Kong [MIT02/19-20] FX An abstract entitled "A Bibliometric Study on Artificial Intelligence in Education for Two Decades" from this paper was presented at the International Conference on Education and Artificial Intelligence 2020, The Education University of Hong Kong, 9-11 November 2020, Hong Kong. Haoran Xie's work in this research is supported by the Direct Grant (DR21A5) and the Faculty Research Fund (DB21A4) at Lingnan University, Hong Kong. Gary Cheng's work is supported by General Research Fund (No. 18601118) of Research Grants Council of Hong Kong SAR, China, and One-off Special Fund from Central and Faculty Fund in Support of Research from 2019/20 to 2021/22 (MIT02/19-20) of The Education University of Hong Kong. CR Ai F., 2019, P 12 INT C ED DATA M, P240 Albacete P, 2019, LECT NOTES ARTIF INT, V11625, P37, DOI 10.1007/978-3-030-23204-7_4 Aulck Lovenoor, 2019, P 12 INT C ED DATA M, P9 Bayne S, 2015, TEACH HIGH EDUC, V20, P455, DOI 10.1080/13562517.2015.1020783 Beaulac C, 2019, RES HIGH EDUC, V60, P1048, DOI 10.1007/s11162-019-09546-y Burgess A., 2017, The Executive Guide to Artificial Intelligence - How to identify and implement applications for AI in your organization, DOI [10.1007/978-3-319-63820-1, DOI 10.1007/978-3-319-63820-1] Chan Kai Siang, 2019, JMIR Med Educ, V5, pe13930, DOI 10.2196/13930 Chassignol M, 2018, PROCEDIA COMPUT SCI, V136, P16, DOI 10.1016/j.procs.2018.08.233 Chen X., 2020, Computers and Education: Artificial Intelligence, V1, P100002, DOI DOI 10.1016/J.CAEAI.2020.100002 Chen X., 2020, Comput Educ Artif Intell, V1, DOI DOI 10.1016/J.CAEAI.2020.100005 Chen XL, 2021, EDUC TECHNOL SOC, V24, P205 Chen X, 2020, COMPUT EDUC, V151, DOI 10.1016/j.compedu.2020.103855 Chen XL, 2018, BMC MED INFORM DECIS, V18, DOI [10.1186/s12911-018-0594-x, 10.1186/s12870-018-1555-3] Dowell N, 2019, LECT NOTES ARTIF INT, V11625, P207, DOI 10.1007/978-3-030-23204-7_18 Eom S., 2012, THESIS GEORGETOWN U Goksel N., 2019, Handbook of research on learning in the age of transhumanism, P224, DOI [10.4018/978-1-5225-8431-5.ch014, DOI 10.4018/978-1-5225-8431-5.CH014] Gray CC, 2019, COMPUT EDUC, V131, P22, DOI 10.1016/j.compedu.2018.12.006 Guan C., 2020, International Journal of Innovation Studies, V4, P134, DOI [DOI 10.1016/J.IJIS.2020.09.001, https://doi.org/10.1016/j.ijis.2020.09.001] Hamouda A., 2013, STUDY ENGLISH LANGUA, V1, P228, DOI [10.22158/selt.v1n1p227, DOI 10.22158/SELT.V1N1P227] Hinojo-Lucena FJ, 2019, EDUC SCI, V9, DOI 10.3390/educsci9010051 Holstein K, 2018, PROCEEDINGS OF THE 8TH INTERNATIONAL CONFERENCE ON LEARNING ANALYTICS & KNOWLEDGE (LAK'18): TOWARDS USER-CENTRED LEARNING ANALYTICS, P79, DOI 10.1145/3170358.3170377 Holstein K, 2017, SEVENTH INTERNATIONAL LEARNING ANALYTICS & KNOWLEDGE CONFERENCE (LAK'17), P358, DOI 10.1145/3027385.3027450 Holstein K, 2018, LECT NOTES ARTIF INT, V10947, P154, DOI 10.1007/978-3-319-93843-1_12 Hwang G.-J., 2020, Computers and Education: Artificial Intelligence, V1, P100001, DOI [DOI 10.1016/J.CAEAI.2020.100001, 10.1016/j.caeai.2020.100001] Ijaz K, 2017, INTERACT LEARN ENVIR, V25, P904, DOI 10.1080/10494820.2016.1225099 Krouska A, 2019, J COMPUT ASSIST LEAR, V35, P168, DOI 10.1111/jcal.12330 Kulich M, 2013, IEEE T EDUC, V56, P18, DOI 10.1109/TE.2012.2224867 Lee K., 2015, CRITICAL CALL P 2015, P362, DOI [10.14705/rpnet.2015.000359, DOI 10.14705/RPNET.2015.000359] Li H., 2013, TELKOMNIKA Indonesian Journal of Electrical Engineering, V11, P4602, DOI DOI 10.11591/TELKOMNIKA.V11I8.3085 Lin CC, 2017, EDUC TECHNOL SOC, V20, P148 Lin F, 2018, J COMPUT ASSIST LEAR, V34, P567, DOI 10.1111/jcal.12261 Liu S, 2018, PR IEEE INT CONF TEA, P1079, DOI 10.1109/TALE.2018.8615217 Livieris IE, 2019, J EDUC COMPUT RES, V57, P448, DOI 10.1177/0735633117752614 Ma XY, 2018, INT J MOB BLENDED LE, V10, P23, DOI 10.4018/IJMBL.2018070103 Mann HB, 1945, ECONOMETRICA, V13, P245, DOI 10.2307/1907187 Martínez-Tenor A, 2019, INTERACT LEARN ENVIR, V27, P293, DOI 10.1080/10494820.2018.1525411 Mehmood RM, 2017, SENSORS-BASEL, V17, DOI 10.3390/s17020317 Mondragon Aydee Liza, 2015, Design for Teaching and Learning in a Networked World. 10th European Conference on Technology-Enhanced Learning, EC-TEL 2015. Proceedings: LNCS 9307, P225, DOI 10.1007/978-3-319-24258-3_17 Mondragon AL, 2016, LECT NOTES COMPUT SC, V9684, P402, DOI 10.1007/978-3-319-39583-8_48 Muljono, 2017, INT J EMERG TECHNOL, V12, P138, DOI 10.3991/ijet.v12.i11.7383 Olivé DM, 2019, IEEE T LEARN TECHNOL, V12, P171, DOI 10.1109/TLT.2019.2911068 Panaite M, 2018, ELEARN SOFTW EDUC, P361, DOI 10.12753/2066-026X-18-120 Rashid TA, 2016, COMPUT APPL ENG EDUC, V24, P629, DOI 10.1002/cae.21737 Roberts ME, 2019, J STAT SOFTW, V91, P1, DOI 10.18637/jss.v091.i02 Roberts ME, 2014, AM J POLIT SCI, V58, P1064, DOI 10.1111/ajps.12103 Roll I, 2016, INT J ARTIF INTELL E, V26, P582, DOI 10.1007/s40593-016-0110-3 Rosa K. Dela, 2011, 24 INT FLOR ART INT, P507 Saier MH, 2007, WATER AIR SOIL POLL, V181, P1, DOI 10.1007/s11270-007-9372-6 Samoilescu RF, 2019, LECT NOTES ARTIF INT, V11625, P458, DOI 10.1007/978-3-030-23204-7_38 Sato T., 2018, FUTURE PROOF CALL LA, P284, DOI DOI 10.14705/RPNET.2018.26.851 Shibata C, 2017, ELML 2017: THE NINTH INTERNATIONAL CONFERENCE ON MOBILE, HYBRID, AND ON-LINE LEARNING, P65 Su SH, 2016, INT J ONLINE PEDAGOG, V6, P13, DOI [10.4018/IJOPCD.2016010102, 10.4018/ijopcd.2016010102] Sun Q, 2019, PROCEEDINGS OF 2019 INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE (PRAI 2019), P56, DOI 10.1145/3357777.3357795 Tang KY, 2023, INTERACT LEARN ENVIR, V31, P2134, DOI 10.1080/10494820.2021.1875001 Tsai SC, 2020, INT J EDUC TECHNOL H, V17, DOI 10.1186/s41239-020-00186-2 Zawacki-Richter O, 2019, INT J EDUC TECHNOL H, V16, DOI 10.1186/s41239-019-0171-0 Zhang RF, 2022, COMPUT ASSIST LANG L, V35, P696, DOI 10.1080/09588221.2020.1744666 NR 57 TC 99 Z9 103 U1 149 U2 453 PU INT FORUM EDUCATIONAL TECHNOLOGY & SOC, NATL TAIWAN NORMAL UNIV PI Taipei City PA No.162, Sec. 1, Heping E. Rd., Da-an Dist, Taipei City, TAIWAN SN 1176-3647 EI 1436-4522 J9 EDUC TECHNOL SOC JI Educ. Technol. Soc. PD JAN PY 2022 VL 25 IS 1 BP 28 EP 47 PG 20 WC Education & Educational Research WE Social Science Citation Index (SSCI) SC Education & Educational Research GA ZS7DL UT WOS:000768622600003 HC Y HP N DA 2024-09-05 ER PT J AU Khosravi, H Shafie, MR Hajiabadi, M Raihan, AS Ahmed, I AF Khosravi, Hamed Shafie, Mohammad Reza Hajiabadi, Morteza Raihan, Ahmed Shoyeb Ahmed, Imtiaz TI Chatbots and ChatGPT: a bibliometric analysis and systematic review of publications in Web of Science and Scopus databases SO INTERNATIONAL JOURNAL OF DATA MINING MODELLING AND MANAGEMENT LA English DT Article DE chatbot; ChatGPT; bibliometrics; artificial intelligence; natural language processing; NLP; generative artificial intelligence ID ARTIFICIAL-INTELLIGENCE; BRADFORD LAW; SCATTERING; FIELD AB This paper presents a bibliometric analysis of the scientific literature related to chatbots, focusing specifically on ChatGPT. Chatbots have gained increasing attention recently, with an annual growth rate of 19.16% and 27.19% on the Web of Sciences (WoS) and Scopus, respectively. The research consists of two study phases: 1) an analysis of chatbot literature; 2) a comprehensive review of scientific documents on ChatGPT. In the first phase, a bibliometric analysis is conducted on all the published literature from both Scopus (5,839) and WoS (2,531) databases covering the period from 1998 to 2023. Consequently, bibliometric analysis has been carried out on ChatGPT publications, and 45 published studies have been analysed thoroughly based on their methods, novelty, and conclusions. Overall, the study aims to provide guidelines for researchers to conduct their research more effectively in the field of chatbots and specifically highlight significant areas for future investigation into ChatGPT. C1 [Khosravi, Hamed; Raihan, Ahmed Shoyeb; Ahmed, Imtiaz] West Virginia Univ, Dept Ind & Management Syst Engn, Morgantown, WV 26505 USA. [Shafie, Mohammad Reza] Iran Univ Sci & Technol, Dept Elect Engn, Tehran, Iran. [Hajiabadi, Morteza] Iran Univ Sci & Technol, Sch Comp Engn, Tehran, Iran. C3 West Virginia University; Iran University Science & Technology; Iran University Science & Technology RP Khosravi, H (corresponding author), West Virginia Univ, Dept Ind & Management Syst Engn, Morgantown, WV 26505 USA. EM hk00024@mix.wvu.edu; Mr.shafie7731@gmail.com; hajiabadi1377@gmail.com; ar00065@mix.wvu.edu; imtiaz.ahmed@mail.wvu.edu CR Adamopoulou E., 2020, ARTIF INTELL, P373, DOI [10.1007/978-3-030-49186-4_31, DOI 10.1007/978-3-030-49186-4_31] Adamopoulou E, 2020, MACH LEARN APPL, V2, DOI 10.1016/j.mlwa.2020.100006 Ahangar R.G., 2023, Advancement in Business Analytics Tools for Higher Financial Performance Amara A, 2021, MACH LEARN APPL, V6, DOI 10.1016/j.mlwa.2021.100130 [Anonymous], 2023, NATURE, V613, P612, DOI 10.1038/d41586-023-00191-1 Aria M, 2017, J INFORMETR, V11, P959, DOI 10.1016/j.joi.2017.08.007 Arif TB, 2023, MED EDUC ONLINE, V28, DOI 10.1080/10872981.2023.2181052 Ashfaq M, 2020, TELEMAT INFORM, V54, DOI 10.1016/j.tele.2020.101473 Aydin N., 2022, 2022 3 INT INF SOFTW, DOI [DOI 10.1109/IISEC56263.2022.9998298, 10.1109/IISEC56263.2022.9998298] Baskara F.R., 2023, P INT C INT HUM SHAR, P76 Bhargav P.N.V., 2020, International Journal of Research in Library Science, V6, P24, DOI [10.26761/ijrls.6.2.2020.1330, DOI 10.26761/IJRLS.6.2.2020.1330] Bhattacharya K, 2023, INDIAN J SURG, V85, P1346, DOI 10.1007/s12262-023-03727-x Biswas SS, 2023, ANN BIOMED ENG, V51, P1126, DOI 10.1007/s10439-023-03171-8 Bockting CL, 2023, NATURE, V614, P224, DOI 10.1038/d41586-023-00288-7 Borgohain DJ, 2021, COLLNET J SCIENTOMET, V15, P197, DOI 10.1080/09737766.2021.1943041 Chai JY, 2021, MACH LEARN APPL, V6, DOI 10.1016/j.mlwa.2021.100134 Charrois-Durand C, 2023, CUREUS J MED SCIENCE, V15, DOI 10.7759/cureus.35484 Chatterjee J, 2023, PATTERNS, V4, DOI 10.1016/j.patter.2022.100676 Croes EAJ, 2021, J SOC PERS RELAT, V38, P279, DOI 10.1177/0265407520959463 Dahmen J, 2023, KNEE SURG SPORT TR A, V31, P1187, DOI 10.1007/s00167-023-07355-6 Dale R, 2016, NAT LANG ENG, V22, P811, DOI 10.1017/S1351324916000243 Dasborough MT, 2023, J ORGAN BEHAV, V44, P177, DOI 10.1002/job.2695 De Angelis L, 2023, FRONT PUBLIC HEALTH, V11, DOI 10.3389/fpubh.2023.1166120 DiGiorgio AM, 2023, J MED SYST, V47, DOI 10.1007/s10916-023-01926-3 Dowling M, 2023, FINANC RES LETT, V53, DOI 10.1016/j.frl.2023.103662 Dwivedi YK, 2021, INT J INFORM MANAGE, V59, DOI 10.1016/j.ijinfomgt.2020.102168 Dwivedi YK, 2021, INT J INFORM MANAGE, V57, DOI 10.1016/j.ijinfomgt.2019.08.002 EGGHE L, 1990, J AM SOC INFORM SCI, V41, P469, DOI 10.1002/(SICI)1097-4571(199010)41:7<469::AID-ASI1>3.0.CO;2-P Else H, 2023, NATURE, V613, P423, DOI 10.1038/d41586-023-00056-7 Flanagin A, 2023, JAMA-J AM MED ASSOC, V329, P637, DOI 10.1001/jama.2023.1344 Floridi L, 2020, MIND MACH, V30, P681, DOI 10.1007/s11023-020-09548-1 Garg K.C., 2020, The Serials Librarian, V79, P118, DOI [10.1080/0361526x.2019.1704341, DOI 10.1080/0361526X.2019.1704341] Gilson Aidan, 2023, JMIR Med Educ, V9, pe45312, DOI 10.2196/45312 GLUCK M, 1990, J AM SOC INFORM SCI, V41, P43, DOI 10.1002/(SICI)1097-4571(199001)41:1<43::AID-ASI4>3.0.CO;2-P González-Padilla DA, 2023, J UROLOGY, V209, P682, DOI 10.1097/JU.0000000000003131 Gordijn B, 2023, MED HEALTH CARE PHIL, V26, P1, DOI 10.1007/s11019-023-10136-0 Grudin J, 2023, COMPUTER, V56, P94, DOI 10.1109/MC.2023.3255279 Gupta A.K., 2022, Data Science Insights Magazine, V5 Hamdoun S, 2023, IEEE TECHNOL SOC MAG, V42, P25, DOI 10.1109/MTS.2023.3241309 Hill J, 2015, COMPUT HUM BEHAV, V49, P245, DOI 10.1016/j.chb.2015.02.026 Hosseini M, 2023, ACCOUNT RES, DOI 10.1080/08989621.2023.2168535 Huang JT, 2023, J DIABETES SCI TECHN, V17, P853, DOI 10.1177/19322968231161095 Huh S, 2023, NEUROINTERVENTION, V18, P2, DOI 10.5469/neuroint.2022.00493 Huh S, 2023, J EDUC EVAL HEALTH P, V20, DOI 10.3352/jeehp.2023.20.1 IBM, 2017, What is Natural Language Processing? Io HN, 2017, IN C IND ENG ENG MAN, P215, DOI 10.1109/IEEM.2017.8289883 Jovanovic M, 2022, COMPUTER, V55, P107, DOI 10.1109/MC.2022.3192720 Keramatfar A, 2022, MACH LEARN APPL, V10, DOI 10.1016/j.mlwa.2022.100401 Khodadadi A., 2022, Machine Learning with Applications, V10, DOI [10.1016/j.mlwa.2022.100424, DOI 10.1016/J.MLWA.2022.100424] King MR, 2023, CELL MOL BIOENG, V16, P1, DOI 10.1007/s12195-022-00754-8 Kirmani AR, 2022, ACS ENERGY LETT, V8, P574, DOI 10.1021/acsenergylett.2c02758 Lee JY, 2023, J EDUC EVAL HEALTH P, V20, DOI 10.3352/jeehp.2023.20.6 LEIMKUHLER FF, 1980, J DOC, V36, P285, DOI 10.1108/eb026699 Lim WM, 2023, INT J MANAG EDUC-OXF, V21, DOI 10.1016/j.ijme.2023.100790 Lund Brady D., 2023, Library Hi Tech News, P26, DOI 10.1108/LHTN-01-2023-0009 Lund BD, 2023, J ASSOC INF SCI TECH, V74, P570, DOI 10.1002/asi.24750 Lyu Q, 2023, VIS COMPUT IND BIOME, V6, DOI 10.1186/s42492-023-00136-5 Maad M., 2023, IRAQI J COMPUTER SCI, V4, P65, DOI [10.52866/ijcsm.2023.01.01.0019, DOI 10.52866/IJCSM.2023.01.01.0019, 10.52866/.csm.2023.01.01.0019] Macdonald C, 2023, J GLOB HEALTH, V13, DOI 10.7189/jogh.13.01003 Makkizadeh F, 2017, INT J REPROD BIOMED, V15, P719, DOI 10.29252/ijrm.15.11.719 Mann DL, 2023, JACC-BASIC TRANSL SC, V8, P221, DOI 10.1016/j.jacbts.2023.01.001 Martarelli NJ, 2021, MACH LEARN APPL, V5, DOI 10.1016/j.mlwa.2021.100056 McCarthy J, 2007, ARTIF INTELL, V171, P1174, DOI 10.1016/j.artint.2007.10.009 Molnár G, 2018, I S INTELL SYST INFO, P197, DOI 10.1109/SISY.2018.8524609 Nachshon A, 2023, CUREUS J MED SCIENCE, V15, DOI 10.7759/cureus.35649 Nash-Stewart CE, 2012, J MED LIBR ASSOC, V100, P135, DOI 10.3163/1536-5050.100.2.013 Nautiyal R, 2023, ANN TOURISM RES, V99, DOI 10.1016/j.annals.2023.103544 Nisonger Thomas E., 2008, Serials Librarian, V55, P62, DOI 10.1080/03615260801970774 O'Connor S, 2023, NURSE EDUC PRACT, V66, DOI 10.1016/j.nepr.2022.103537 Patel SB, 2023, LANCET DIGIT HEALTH, V5, pE107, DOI 10.1016/S2589-7500(23)00021-3 Potter J, 2010, J MED LIBR ASSOC, V98, P235, DOI 10.3163/1536-5050.98.3.012 Qiu J., 2017, Informetrics, P89, DOI [10.1007/978-981-10-4032-04, DOI 10.1007/978-981-10-4032-04] Rajaraman V, 2023, RESONANCE, V28, P889, DOI 10.1007/s12045-023-1620-6 Ralston Kennedy, 2019, 2019 18th IEEE International Conference On Machine Learning And Applications (ICMLA), P1924, DOI 10.1109/ICMLA.2019.00309 Ray P. P., 2023, Internet of Things and CyberPhysical Systems, V3, P121, DOI DOI 10.1016/J.IOTCPS.2023.04.003 Rockwell M, 2023, CUREUS J MED SCIENCE, V15, DOI 10.7759/cureus.35644 Sadavarte SS, 2019, 2019 IEEE PUNE SECTION INTERNATIONAL CONFERENCE (PUNECON), DOI 10.1109/punecon46936.2019.9105762 Salvagno M, 2023, CRIT CARE, V27, DOI 10.1186/s13054-023-04380-2 Sangam S.L., 2015, Journal of Library Development, V1, P1, DOI [10.32344/jld/v1/i1/2015/1-13, DOI 10.32344/JLD/V1/I1/2015/1-13] Scerri A, 2023, J CLIN NURS, V32, P4211, DOI 10.1111/jocn.16677 Selivanov A, 2023, SCI REP-UK, V13, DOI 10.1038/s41598-023-31223-5 Sharma V., 2017, International Journal of New Technology and Research Skjuve M, 2023, PROCEEDINGS OF THE 5TH INTERNATIONAL CONFERENCE ON CONVERSATIONAL USER INTERFACES, CUI 2023, DOI 10.1145/3571884.3597144 Skjuve M, 2021, INT J HUM-COMPUT ST, V149, DOI 10.1016/j.ijhcs.2021.102601 Stokel-Walker C, 2023, NATURE, V614, P214, DOI 10.1038/d41586-023-00340-6 Stokel-Walker C, 2023, NATURE, V613, P620, DOI 10.1038/d41586-023-00107-z Stokel-Walker Chris, 2022, Nature, DOI 10.1038/d41586-022-04397-7 Taecharungroj V, 2023, BIG DATA COGN COMPUT, V7, DOI 10.3390/bdcc7010035 Tawfeeq T.M., 2023, JMCER, V2023, P49 Thornton J, 2023, ASIAN J PSYCHIATR, V81, DOI 10.1016/j.ajp.2023.103509 Thorp HH, 2023, SCIENCE, V379, P313, DOI 10.1126/science.adg7879 van Eck NJ, 2010, SCIENTOMETRICS, V84, P523, DOI 10.1007/s11192-009-0146-3 Xu R., 2023, SSRN Electronic Journal, DOI [10.2139/ssrn.4498671, DOI 10.2139/SSRN.4498671] Yeo-Teh NSL, 2023, ACCOUNT RES, DOI 10.1080/08989621.2023.2177160 NR 94 TC 0 Z9 0 U1 8 U2 8 PU INDERSCIENCE ENTERPRISES LTD PI GENEVA PA WORLD TRADE CENTER BLDG, 29 ROUTE DE PRE-BOIS, CASE POSTALE 856, CH-1215 GENEVA, SWITZERLAND SN 1759-1163 EI 1759-1171 J9 INT J DATA MIN MODEL JI Int. J. Data Min. Model. Manag. PY 2024 VL 16 IS 2 DI 10.1504/IJDMMM.2024.138824 PG 36 WC Computer Science, Artificial Intelligence WE Emerging Sources Citation Index (ESCI) SC Computer Science GA SW5D2 UT WOS:001237489300005 OA Green Submitted DA 2024-09-05 ER PT C AU Ping, L AF Ping, Li BE Wang, HS TI The effect research of multimedia-assisted music teaching based on principal component analysis- For example HeNan xuchang college SO PROCEEDINGS OF THE 2ND INTERNATIONAL CONFERENCE ON SCIENCE AND SOCIAL RESEARCH (ICSSR 2013) SE Advances in Intelligent Systems Research LA English DT Proceedings Paper CT 2nd International Conference on Science and Social Research (ICSSR) CY 2013 CL Beijing, PEOPLES R CHINA DE Multimedia-assisted instruction; Teaching effect; Principal component analysis AB Currently, multimedia-assisted music instruction has been widely used in colleges and universities. The diversification trend of music teaching and greatly promoted students' absorbing ability have increased the extensive use of multimedia-assisted instruction in music teaching. To solve the problems like teachers rely too much on multimedia-assisted instruction in music teaching process, lack of effective interaction between teachers and students and lack of effectiveness, 126 pieces of music multimedia teaching effect questionnaires are analyzed and the music professional classes comprehensive scores of art major students of two sessions are compared. Principal component analysis method is applied to analyze the main factors influencing the music multimedia-assisted instruction effect. Conclusions have been drawn from the research that multimedia-assisted instruction can improve the absorbing ability of students' music learning, that teaching courseware of informative and interesting content may enhance students' interest in learning, that effective interaction between teachers and students can improve the effectiveness of multimedia music instruction, and that students accepting more multimedia-assisted music instruction turn to have better absorbing ability. C1 Xuchang Univ, Xuchang 461000, Henan, Peoples R China. C3 Xuchang University RP Ping, L (corresponding author), Xuchang Univ, Xuchang 461000, Henan, Peoples R China. EM 360008910@qq.com CR Dou Wenyu, 2009, MULTIMEDIA TECHNOLOG Li Fei, 2006, PRELIMINARY STUDY AD Lu Xiaoxu, 2005, COMPUTER MUSIC TECHN Luo Hongmin, 2010, BIG STAGE Wang Chenglai, 2010, EFFECTIVE APPL MULTI zhang Jing, 2009, COMPREHENSIVE DIGEST NR 6 TC 0 Z9 0 U1 0 U2 0 PU ATLANTIS PRESS PI PARIS PA 29 AVENUE LAVMIERE, PARIS, 75019, FRANCE SN 1951-6851 BN 978-90-78677-75-8 J9 ADV INTEL SYS RES PY 2013 VL 64 BP 861 EP 866 PG 6 WC Computer Science, Artificial Intelligence; Computer Science, Information Systems WE Conference Proceedings Citation Index - Science (CPCI-S) SC Computer Science GA BIE82 UT WOS:000327937000196 DA 2024-09-05 ER PT J AU Wu, MF Yu, KF Zhao, ZG Zhu, B AF Wu, Mingfen Yu, Kefu Zhao, Zhigang Zhu, Bin TI Knowledge structure and global trends of machine learning in stroke over the past decade: A scientometric analysis SO HELIYON LA English DT Article DE Machine learning; Stroke; Deep learning; Global trends; Algorithm ID ARTIFICIAL-INTELLIGENCE; RISK-FACTORS; CHINA; CARE; EPIDEMIOLOGY AB Objective: Machine learning (ML) models have been widely applied in stroke prediction, diagnosis, treatment, and prognosis assessment. We aimed to conduct a comprehensive scientometrics analysis of studies related to ML in stroke and reveal its current status, knowledge structure, and global trends. Methods: All documents related to ML in stroke were retrieved from the Web of Science database on March 15, 2023. We refined the documents by including only original articles and reviews in the English language. The literature published over the past decade was imported into scientometrics software for influence detection and collaborative network analysis. Results: 2389 related publications were included. The annual publication outputs demonstrated explosive growth, with an average growth rate of 63.99 %. Among the 90 countries/regions involved, the United States (729 articles) and China (636 articles) were the most productive countries. Frontiers in Neurology was the most prolific journal with 94 articles. 234 highly cited articles, each with more than 31 citations, were detected. Keyword analysis revealed a total of 5333 keywords, with a predominant focus on the application of ML models in the early diagnosis, classification, and prediction of "acute ischemic stroke" and "atrial fibrillation-related stroke". The keyword "classification" had the first and longest burst, spanning from 2013 to 2018. 'Upport vector machine' got the strongest burst strength with 6.2. Keywords such as 'mechanical thrombectomy', 'expression', and 'prognosis' experienced bursts in 2022 and have continued to be prominent. Conclusion: The applications of ML in stroke are increasingly diverse and extensive, with researchers showing growing interest over the past decade. However, the clinical application of ML in stroke is still in its early stages, and several limitations and challenges need to be addressed for its widespread adoption in clinical practice. C1 [Wu, Mingfen; Yu, Kefu; Zhao, Zhigang; Zhu, Bin] Capital Med Univ, Beijing Tiantan Hosp, Dept Pharm, Beijing 100070, Peoples R China. [Zhao, Zhigang; Zhu, Bin] Capital Med Univ, Beijing Tiantan Hosp, Dept Pharm, 119 South Fourth Ring West Rd, Beijing 100070, Peoples R China. C3 Capital Medical University; Capital Medical University RP Zhao, ZG; Zhu, B (corresponding author), Capital Med Univ, Beijing Tiantan Hosp, Dept Pharm, 119 South Fourth Ring West Rd, Beijing 100070, Peoples R China. EM 1022zzg@sina.com; zbtcm@163.com OI Zhu, Bin/0000-0003-1771-9874; Wu, Mingfen/0000-0002-2761-2299 FU Nature Foundation of Capital Medical University [PYZ23122] FX Acknowledgements The authors would like to express their appreciation to Professor CM Chen who invented Citespace, and Professor Van Eck and Waltman who invented VOSviewer, which are free to use. This study was supported by the Nature Foundation of Capital Medical University (Number: PYZ23122) . CR Acosta JN, 2019, GENOME MED, V11, DOI 10.1186/s13073-019-0671-5 [Anonymous], 2023, Brain Images of Normal Subjects Arbabshirani MR, 2018, NPJ DIGIT MED, V1, DOI 10.1038/s41746-017-0015-z Attia ZI, 2019, LANCET, V394, P861, DOI 10.1016/S0140-6736(19)31721-0 Bacigaluppi M, 2020, EUR HEART J, V41, P3181, DOI 10.1093/eurheartj/ehaa230 Cai TA, 2022, MED IMAGE ANAL, V80, DOI 10.1016/j.media.2022.102522 Campagnini S, 2022, J NEUROENG REHABIL, V19, DOI 10.1186/s12984-022-01032-4 Campbell BCV, 2020, LANCET, V396, P129, DOI 10.1016/S0140-6736(20)31179-X Chavva IR, 2022, ANN NEUROL, V92, P574, DOI 10.1002/ana.26435 Chen M, 2017, IEEE ACCESS, V5, P8869, DOI 10.1109/ACCESS.2017.2694446 Chilamkurthy S, 2018, LANCET, V392, P2388, DOI 10.1016/S0140-6736(18)31645-3 Choi YA, 2021, SENSORS-BASEL, V21, DOI 10.3390/s21134269 Czap AL, 2021, NEUROLOGY, V97, pS42, DOI 10.1212/WNL.0000000000012794 Deng P, 2022, FRONT IMMUNOL, V13, DOI 10.3389/fimmu.2022.910400 Dengler NF, 2021, NEUROSURG REV, V44, P2837, DOI 10.1007/s10143-020-01453-6 Ding LL, 2020, STROKE, V51, pE351, DOI 10.1161/STROKEAHA.120.031295 Dou Q, 2016, IEEE T MED IMAGING, V35, P1182, DOI 10.1109/TMI.2016.2528129 Farzaneh N, 2020, DIAGNOSTICS, V10, DOI 10.3390/diagnostics10100773 Faust O, 2018, COMPUT METH PROG BIO, V161, P1, DOI 10.1016/j.cmpb.2018.04.005 Greener JG, 2022, NAT REV MOL CELL BIO, V23, P40, DOI 10.1038/s41580-021-00407-0 Guan TJ, 2017, NEUROLOGY, V89, P53, DOI 10.1212/WNL.0000000000004056 Han L, 2019, CIRC-CARDIOVASC QUAL, V12, DOI 10.1161/CIRCOUTCOMES.118.005595 Heo J, 2019, STROKE, V50, P1263, DOI 10.1161/STROKEAHA.118.024293 Hsieh CY, 2019, CLIN EPIDEMIOL, V11, P349, DOI 10.2147/CLEP.S196293 Hussain I, 2021, SENSORS-BASEL, V21, DOI 10.3390/s21165334 Hussain I, 2021, BRAIN SCI, V11, DOI 10.3390/brainsci11070900 Islam MS, 2022, SENSORS-BASEL, V22, DOI 10.3390/s22249859 Jang SK, 2020, J STROKE, V22, P403, DOI 10.5853/jos.2020.02537 Jiang F, 2017, STROKE VASC NEUROL, V2, P230, DOI 10.1136/svn-2017-000101 Kamal N, 2022, STROKE, V53, P2768, DOI 10.1161/STROKEAHA.122.039954 Kamnitsas K, 2017, MED IMAGE ANAL, V36, P61, DOI 10.1016/j.media.2016.10.004 Kim DY, 2023, J NEUROL NEUROSUR PS, V94, P369, DOI 10.1136/jnnp-2022-330230 Kuang HL, 2021, STROKE, V52, P223, DOI 10.1161/STROKEAHA.120.030092 Lineback CM, 2021, FRONT NEUROL, V12, DOI 10.3389/fneur.2021.649521 Liu CM, 2022, CIRC-CARDIOVASC QUAL, V15, DOI 10.1161/CIRCOUTCOMES.121.008360 Lou YS, 2022, J PERS MED, V12, DOI 10.3390/jpm12020315 Lv J, 2023, INT J MED INFORM, V174, DOI 10.1016/j.ijmedinf.2023.105050 Mainali S, 2021, FRONT NEUROL, V12, DOI 10.3389/fneur.2021.734345 Nielsen A, 2018, STROKE, V49, P1394, DOI 10.1161/STROKEAHA.117.019740 Nishi H, 2019, STROKE, V50, P2379, DOI 10.1161/STROKEAHA.119.025411 Ovbiagele B, 2013, STROKE, V44, P2361, DOI 10.1161/STR.0b013e31829734f2 Pitchai R, 2022, COMPUT INTEL NEUROSC, V2022, DOI 10.1155/2022/5489084 Poplin R, 2018, NAT BIOMED ENG, V2, P158, DOI 10.1038/s41551-018-0195-0 Powers WJ, 2018, STROKE, V49, pE46, DOI 10.1161/STR.0000000000000158 Qiu W, 2020, RADIOLOGY, V294, P638, DOI 10.1148/radiol.2020191193 Raghunath S, 2021, CIRCULATION, V143, P1287, DOI 10.1161/CIRCULATIONAHA.120.047829 Rajkomar A, 2019, NEW ENGL J MED, V380, P1347, DOI 10.1056/NEJMra1814259 Rutten-Jacobs LC, 2018, BMJ-BRIT MED J, V363, DOI 10.1136/bmj.k4168 Shao A, 2022, FRONT ENDOCRINOL, V13, DOI 10.3389/fendo.2022.1032144 Shao HL, 2023, DIGIT HEALTH, V9, DOI 10.1177/20552076221149528 Sheth SA, 2023, J NEUROINTERV SURG, V15, P195, DOI 10.1136/neurintsurg-2021-018142 Siegel JS, 2016, P NATL ACAD SCI USA, V113, pE4367, DOI 10.1073/pnas.1521083113 Sirsat MS, 2020, J STROKE CEREBROVASC, V29, DOI 10.1016/j.jstrokecerebrovasdis.2020.105162 Tian DS, 2022, SIGNAL TRANSDUCT TAR, V7, DOI 10.1038/s41392-021-00802-1 Wang GT, 2020, MED IMAGE ANAL, V65, DOI 10.1016/j.media.2020.101787 Wang J, 2022, FRONT PUBLIC HEALTH, V9, DOI 10.3389/fpubh.2021.811707 Wang JA, 2022, STROKE VASC NEUROL, V7, P94, DOI 10.1136/svn-2021-001096 Wang WZ, 2017, CIRCULATION, V135, P759, DOI 10.1161/CIRCULATIONAHA.116.025250 Weber CJ, 2021, ALZH DEMENT-TRCI, V7, DOI 10.1002/trc2.12226 Wegner FK, 2022, CLIN RES CARDIOL, V111, P1010, DOI 10.1007/s00392-022-02012-3 World Stroke Organization, 2021, The Atlas of Heart Disease and Stroke Wu SM, 2019, LANCET NEUROL, V18, P394, DOI 10.1016/S1474-4422(18)30500-3 Yang WX, 2022, FRONT NEUROL, V13, DOI 10.3389/fneur.2022.1014346 Yao Z, 2023, J NEUROINTERV SURG, V15, P1136, DOI 10.1136/jnis-2022-019598 Yu D, 2020, ANN CLIN TRANSL NEUR, V7, P2178, DOI 10.1002/acn3.51208 Yu YN, 2023, RADIOLOGY, V307, DOI 10.1148/radiol.220882 Zhang Q., Eur. Radiol., V33, P4052 NR 67 TC 1 Z9 1 U1 9 U2 10 PU CELL PRESS PI CAMBRIDGE PA 50 HAMPSHIRE ST, FLOOR 5, CAMBRIDGE, MA 02139 USA EI 2405-8440 J9 HELIYON JI Heliyon PD JAN 30 PY 2024 VL 10 IS 2 AR e24230 DI 10.1016/j.heliyon.2024.e24230 EA JAN 2024 PG 15 WC Multidisciplinary Sciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Science & Technology - Other Topics GA HT4X3 UT WOS:001161756800001 PM 38288018 OA gold, Green Published DA 2024-09-05 ER PT J AU Yao, RF Shen, ZH Xu, XY Ling, GX Xiang, RW Song, TY Zhai, F Zhai, YX AF Yao, Rufan Shen, Zhenhua Xu, Xinyi Ling, Guixia Xiang, Rongwu Song, Tingyan Zhai, Fei Zhai, Yuxuan TI Knowledge mapping of graph neural networks for drug discovery: a bibliometric and visualized analysis SO FRONTIERS IN PHARMACOLOGY LA English DT Article DE bibliometric analysis; graph neural network; drug discovery; VOSviewer; Citespace ID CONVOLUTIONAL NETWORK; EMERGING TRENDS; PREDICTION AB Introduction In recent years, graph neural network has been extensively applied to drug discovery research. Although researchers have made significant progress in this field, there is less research on bibliometrics. The purpose of this study is to conduct a comprehensive bibliometric analysis of graph neural network applications in drug discovery in order to identify current research hotspots and trends, as well as serve as a reference for future research. Methods Publications from 2017 to 2023 about the application of graph neural network in drug discovery were collected from the Web of Science Core Collection. Bibliometrix, VOSviewer, and Citespace were mainly used for bibliometric studies. Results and Discussion In this paper, a total of 652 papers from 48 countries/regions were included. Research interest in this field is continuously increasing. China and the United States have a significant advantage in terms of funding, the number of publications, and collaborations with other institutions and countries. Although some cooperation networks have been formed in this field, extensive worldwide cooperation still needs to be strengthened. The results of the keyword analysis clarified that graph neural network has primarily been applied to drug-target interaction, drug repurposing, and drug-drug interaction, while graph convolutional neural network and its related optimization methods are currently the core algorithms in this field. Data availability and ethical supervision, balancing computing resources, and developing novel graph neural network models with better interpretability are the key technical issues currently faced. This paper analyzes the current state, hot spots, and trends of graph neural network applications in drug discovery through bibliometric approaches, as well as the current issues and challenges in this field. These findings provide researchers with valuable insights on the current status and future directions of this field. C1 [Yao, Rufan; Shen, Zhenhua; Xu, Xinyi; Ling, Guixia; Xiang, Rongwu; Song, Tingyan; Zhai, Fei; Zhai, Yuxuan] Shenyang Pharmaceut Univ, Fac Med Device, Shenyang, Peoples R China. C3 Shenyang Pharmaceutical University RP Zhai, F; Zhai, YX (corresponding author), Shenyang Pharmaceut Univ, Fac Med Device, Shenyang, Peoples R China. EM 106030309@syphu.edu.cn; 278763282@qq.com FU Scientific Research Foundation of the Education Bureau of Liaoning Province [LJKR0302]; National Natural Science Foundation of China [U1908215]; Basic Scientific Research Youth Project of Liaoning Provincial Department of Education [JYTQN2023337] FX The author(s) declare that financial support was received for the research, authorship, and/or publication of this article. The General Project supported by the Scientific Research Foundation of the Education Bureau of Liaoning Province (LJKR0302) Special Fund of the National Natural Science Foundation of China (U1908215) Basic Scientific Research Youth Project of Liaoning Provincial Department of Education (JYTQN2023337). CR Albu AI, 2023, COMPUT BIOL MED, V153, DOI 10.1016/j.compbiomed.2022.106526 Altae-Tran H, 2017, ACS CENTRAL SCI, V3, P283, DOI 10.1021/acscentsci.6b00367 Ampah JD, 2021, J CLEAN PROD, V320, DOI 10.1016/j.jclepro.2021.128871 Aria M, 2017, J INFORMETR, V11, P959, DOI 10.1016/j.joi.2017.08.007 Cai HX, 2022, BRIEF BIOINFORM, V23, DOI 10.1093/bib/bbac408 Chen CM, 2014, EXPERT OPIN BIOL TH, V14, P1295, DOI 10.1517/14712598.2014.920813 Chen CM, 2006, J AM SOC INF SCI TEC, V57, P359, DOI 10.1002/asi.20317 Cheng KM, 2022, FRONT PUBLIC HEALTH, V10, DOI 10.3389/fpubh.2022.918483 Cobo MJ, 2011, J INFORMETR, V5, P146, DOI 10.1016/j.joi.2010.10.002 Cui ZY, 2020, IEEE T INTELL TRANSP, V21, P4883, DOI 10.1109/TITS.2019.2950416 Dehghan A, 2024, BMC BIOINFORMATICS, V25, DOI 10.1186/s12859-024-05671-3 Feng JN, 2023, COMPUT BIOL MED, V166, DOI 10.1016/j.compbiomed.2023.107492 Feng YH, 2020, BMC BIOINFORMATICS, V21, DOI 10.1186/s12859-020-03724-x Garfield E, 2006, JAMA-J AM MED ASSOC, V295, P90, DOI 10.1001/jama.295.1.90 Gilmer J, 2017, PR MACH LEARN RES, V70 Harigua-Souiai E, 2021, FRONT GENET, V12, DOI 10.3389/fgene.2021.744170 Jiang DJ, 2021, J CHEMINFORMATICS, V13, DOI 10.1186/s13321-020-00479-8 Karimi M, 2021, J CHEM INF MODEL, V61, P46, DOI 10.1021/acs.jcim.0c00866 Karimi M, 2019, BIOINFORMATICS, V35, P3329, DOI 10.1093/bioinformatics/btz111 Kearnes S, 2016, J COMPUT AID MOL DES, V30, P595, DOI 10.1007/s10822-016-9938-8 Kipf T. N., 2017, P INT C LEARN REPR Lei S, 2022, FRONT PHARMACOL, V13, DOI 10.3389/fphar.2022.1056605 Li JS, 2020, MOL GENET GENOMICS, V295, P1197, DOI 10.1007/s00438-020-01693-7 Li Y, 2022, BRIEF BIOINFORM, V23, DOI 10.1093/bib/bbab346 Li ZW, 2022, MOL THER, V30, P1775, DOI 10.1016/j.ymthe.2022.01.041 Li ZW, 2021, BRIEF BIOINFORM, V22, DOI 10.1093/bib/bbaa240 Liu CY, 2023, J CHEMINFORMATICS, V15, DOI 10.1186/s13321-023-00698-9 Liu K, 2019, INT J MOL SCI, V20, DOI 10.3390/ijms20143389 Liu Q, 2020, BIOINFORMATICS, V36, pI911, DOI 10.1093/bioinformatics/btaa822 Liu SC, 2023, IEEE ACM T COMPUT BI, V20, P976, DOI 10.1109/TCBB.2022.3172421 Lu YD, 2017, BMC BIOINFORMATICS, V18, DOI 10.1186/s12859-017-1460-z Luo YA, 2017, NAT COMMUN, V8, DOI 10.1038/s41467-017-00680-8 Ma M, 2023, PLOS COMPUT BIOL, V19, DOI 10.1371/journal.pcbi.1010812 Merigó JM, 2017, OMEGA-INT J MANAGE S, V73, P37, DOI 10.1016/j.omega.2016.12.004 Palhamkhani F, 2023, J BIOMOL STRUCT DYN, DOI 10.1080/07391102.2023.2291829 Paul D, 2020, DRUG DISCOV TODAY, V26, P80, DOI 10.1016/j.drudis.2020.10.010 Puentes PR, 2022, SCI REP-UK, V12, DOI 10.1038/s41598-022-12180-x Réau M, 2023, BIOINFORMATICS, V39, DOI 10.1093/bioinformatics/btac759 Ryu S, 2019, CHEM SCI, V10, P8438, DOI 10.1039/c9sc01992h Schneider P, 2020, NAT REV DRUG DISCOV, V19, P353, DOI 10.1038/s41573-019-0050-3 Schulte-Sasse R, 2021, NAT MACH INTELL, V3, P513, DOI 10.1038/s42256-021-00325-y Shao KH, 2022, BRIEF BIOINFORM, V23, DOI 10.1093/bib/bbac109 Shen ZF, 2022, J TRANSL MED, V20, DOI 10.1186/s12967-022-03615-0 Shen ZF, 2022, FRONT ONCOL, V12, DOI 10.3389/fonc.2022.843735 Stokes JM, 2020, CELL, V180, P688, DOI 10.1016/j.cell.2020.01.021 Takeda T, 2017, J CHEMINFORMATICS, V9, DOI 10.1186/s13321-017-0200-8 Nguyen T, 2022, IEEE ACM T COMPUT BI, V19, P146, DOI 10.1109/TCBB.2021.3060430 van Eck NJ, 2010, SCIENTOMETRICS, V84, P523, DOI 10.1007/s11192-009-0146-3 Vella D, 2022, J CHEM INF MODEL, DOI 10.1021/acs.jcim.2c00779 Verhaeghe J, 2022, BMC MED INFORM DECIS, V22, DOI 10.1186/s12911-022-01970-y Wan XZ, 2022, BRIEF BIOINFORM, V23, DOI 10.1093/bib/bbac073 Wang JX, 2022, BRIEF BIOINFORM, V23, DOI 10.1093/bib/bbab390 Wang YY, 2022, NAT MACH INTELL, V4, P279, DOI 10.1038/s42256-022-00447-x Wen M, 2017, J PROTEOME RES, V16, P1401, DOI 10.1021/acs.jproteome.6b00618 Wu B, 2022, IEEE INTERNET THINGS, V9, P16386, DOI 10.1109/JIOT.2022.3151400 Wu ZX, 2021, BRIEF BIOINFORM, V22, DOI 10.1093/bib/bbab112 Wu ZH, 2021, IEEE T NEUR NET LEAR, V32, P4, DOI 10.1109/TNNLS.2020.2978386 Xiong JC, 2021, DRUG DISCOV TODAY, V26, P1382, DOI 10.1016/j.drudis.2021.02.011 Xiong ZP, 2020, J MED CHEM, V63, P8749, DOI 10.1021/acs.jmedchem.9b00959 Yang ZD, 2022, CHEM SCI, V13, P8693, DOI 10.1039/d2sc02023h Yang ZD, 2022, CHEM SCI, V13, P816, DOI 10.1039/d1sc05180f Yazdani-Jahromi M, 2022, BRIEF BIOINFORM, V23, DOI 10.1093/bib/bbac272 Yuan QM, 2022, BIOINFORMATICS, V38, P125, DOI 10.1093/bioinformatics/btab643 Zhang MG, 2019, IEEE ACCESS, V7, P114077, DOI 10.1109/ACCESS.2019.2936461 Zhang PL, 2022, COMPUT BIOL MED, V142, DOI 10.1016/j.compbiomed.2022.105214 Zhang YC, 2022, FRONT PHARMACOL, V13, DOI 10.3389/fphar.2022.872785 Zhang ZH, 2022, CURR OPIN STRUC BIOL, V73, DOI 10.1016/j.sbi.2021.102327 Zhao L, 2020, IEEE T INTELL TRANSP, V21, P3848, DOI 10.1109/TITS.2019.2935152 Zhao TY, 2021, BRIEF BIOINFORM, V22, P2141, DOI 10.1093/bib/bbaa044 Zhou J, 2020, AI OPEN, V1, P57, DOI 10.1016/j.aiopen.2021.01.001 Zitnik M, 2018, BIOINFORMATICS, V34, P457, DOI 10.1093/bioinformatics/bty294 NR 71 TC 0 Z9 0 U1 13 U2 13 PU FRONTIERS MEDIA SA PI LAUSANNE PA AVENUE DU TRIBUNAL FEDERAL 34, LAUSANNE, CH-1015, SWITZERLAND EI 1663-9812 J9 FRONT PHARMACOL JI Front. Pharmacol. PD MAY 10 PY 2024 VL 15 AR 1393415 DI 10.3389/fphar.2024.1393415 PG 19 WC Pharmacology & Pharmacy WE Science Citation Index Expanded (SCI-EXPANDED) SC Pharmacology & Pharmacy GA RU4S3 UT WOS:001230166300001 PM 38799167 OA Green Published, gold DA 2024-09-05 ER PT C AU Papachristopoulos, L Kleidis, N Sfakakis, M Tsakonas, G Papatheodorou, C AF Papachristopoulos, Leonidas Kleidis, Nikos Sfakakis, Michalis Tsakonas, Giannis Papatheodorou, Christos BE Garoufallou, E Hartley, RJ Gaitanou, P TI Discovering the Topical Evolution of the Digital Library Evaluation Community SO METADATA AND SEMANTICS RESEARCH, MTSR 2015 SE Communications in Computer and Information Science LA English DT Proceedings Paper CT 9th Conference on Metadata and Semantics Research (MTSR) CY SEP 09-11, 2015 CL Manchester, ENGLAND DE Research trends discovery; Digital library evaluation; Topic modeling; Metadata extraction; Latent Dirichlet Allocation AB The successful management of textual information is a rising challenge for all the researchers' communities, in order firstly to assess its current and previous statuses and secondly to enrich the level of their metadata description. The huge amount of unstructured data that is produced has consequently populated text mining techniques for its interpretation, selection and metadata enrichment opportunities that provides. Scientific production regarding Digital Libraries (DLs) evaluation has been grown in size and has broaden the scope of coverage as it consists a complex and multidimensional field. The current study proposes a probabilistic topic modeling implemented on a domain corpus from the JCDL, ECDL/TDPL and ICADL conferences proceedings in the period 2001-2013, aiming at the unveiling of its topics and subject temporal analysis, for exploiting and extracting semantic metadata from large corpora in an automatic way. C1 [Papachristopoulos, Leonidas; Sfakakis, Michalis; Papatheodorou, Christos] Ionian Univ, Dept Arch Lib Sci & Museol, Corfu, Greece. [Kleidis, Nikos] Athens Univ Econ & Business, Dept Informat, Athens, Greece. [Tsakonas, Giannis] Univ Patras, Lib & Informat Ctr, Patras, Greece. [Papachristopoulos, Leonidas; Papatheodorou, Christos] Athena Res Ctr, IMIS, Digital Curat Unit, Athens, Greece. C3 Ionian University; Athens University of Economics & Business; University of Patras RP Papachristopoulos, L (corresponding author), Ionian Univ, Dept Arch Lib Sci & Museol, Corfu, Greece. EM l11papa@ionio.gr; klidisnik@aueb.gr; sfakakis@ionio.gr; john@lis.upatras.gr; papatheodor@ionio.gr RI Papachristopoulos, Leonidas/AAP-8859-2020; Papatheodorou, Christos/AAD-2749-2020; Tsakonas, Giannis/M-3219-2019; Sfakakis, Michalis/AAR-6503-2021 OI Papachristopoulos, Leonidas/0000-0002-4148-2689; Papatheodorou, Christos/0000-0002-9025-6469; Tsakonas, Giannis/0000-0002-8786-9440; Sfakakis, Michalis/0000-0003-2973-7455 CR Afiontzi E, 2013, ACM-IEEE J CONF DIG, P125 Aletras N., 2014, ACM IEEE JOINT C DIG Aletras N., 2013, ACM J COMPUT CULT HE, V5 Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993 Bolelli L, 2009, ACM-IEEE J CONF DIG, P69 Bruce T.R., 2004, METADATA PRACTICE Delen D, 2008, EXPERT SYST APPL, V34, P1707, DOI 10.1016/j.eswa.2007.01.035 Fox C., 1990, SIGIR Forum, V24, P19, DOI 10.1145/378881.378888 Fuhr N, 2007, INT J DIGIT LIBRARIE, V8, P21, DOI 10.1007/s00799-007-0011-z Marshall C. C., 2002, JCDL 2002. Proceedings of the Second ACM/IEEE-CS Joint Conference on Digital Libraries, P56, DOI 10.1145/544220.544230 Mimno D, JSLDA IMPLEMENTATION Moro S, 2015, EXPERT SYST APPL, V42, P1314, DOI 10.1016/j.eswa.2014.09.024 Newman D., 2010, P ANN JOINT C DIG LI, P215, DOI [10.1145/1816123.1816156, DOI 10.1145/1816123.1816156] Newman D, 2009, LECT NOTES ARTIF INT, V5866, P270, DOI 10.1007/978-3-642-10439-8_28 Newman D, 2007, ACM-IEEE J CONF DIG, P366, DOI 10.1145/1255175.1255248 Nguyen S. H., 2011, LNCS, V7008, P368 Noh Y., 2011, P 11 ANN INT ACM IEE, P411, DOI [10.1145/1998076.1998160, DOI 10.1145/1998076.1998160] Pomerantz J, 2006, OPENING INFORMATION HORIZONS, P175 Tsakonas G., 2012, P 12 ACM IEEE CS JOI, P347 Tsakonas G, 2013, J AM SOC INF SCI TEC, V64, P1914, DOI 10.1002/asi.22900 Tuarob S, 2015, INT J DIGIT LIBRARIE, V16, P111, DOI 10.1007/s00799-015-0146-2 NR 21 TC 4 Z9 4 U1 2 U2 14 PU SPRINGER-VERLAG BERLIN PI BERLIN PA HEIDELBERGER PLATZ 3, D-14197 BERLIN, GERMANY SN 1865-0929 EI 1865-0937 BN 978-3-319-24129-6; 978-3-319-24128-9 J9 COMM COM INF SC PY 2015 VL 544 BP 101 EP 112 DI 10.1007/978-3-319-24129-6_9 PG 12 WC Computer Science, Artificial Intelligence; Computer Science, Information Systems; Computer Science, Interdisciplinary Applications; Computer Science, Theory & Methods; Robotics WE Conference Proceedings Citation Index - Science (CPCI-S) SC Computer Science; Robotics GA BE1NZ UT WOS:000368260500009 DA 2024-09-05 ER PT J AU Ye, YE Na, JC AF Ye, Yingxin Estella Na, Jin-Cheon TI Who is mentioning COVID-19 articles on twitter? Classifying twitter users in the context of scholarly communication SO SOCIAL NETWORK ANALYSIS AND MINING LA English DT Article DE Altmetrics; Twitter; Scholarly communication; User classification; Graph neural networks; Social networks; Machine learning ID TWEETS AB This study aims to examine the demographics of participants engaged in scholarly communication on Twitter, which has been rebranded as X. Firstly, based on a dataset of tweets citing COVID-19 publications, it proposed a more precise classification system consisting of eleven user categories for individuals who tweeted academic publication. Secondly, it explores the effectiveness of graph neural network models (GNNs) in combination with a transformer-based text classification model (specifically, BERT) to classify these newly defined user categories. The findings of this research highlight that GNNs can effectively interpret the social networks within scholarly communication, and complement text classification models in characterizing user types. The best-performing model achieved an accuracy rate of 84.05 percent in classifying user categories for a dataset of 10,048 labeled users. Subsequently, this model was employed to analyze 393,030 tweeters in our dataset. The analysis revealed that relevant scholarly discussion on Twitter was dominated by members from the general public (over 71 percent). Academic researchers and institutions constituted 12.48 percent, while health science professionals and institutions made up 7.35 percent of the contributors to relevant scholarly discussions on Twitter. Notably, academic publishers and research feed accounts exhibited aggressive tweeting behaviors and were responsible for the highest volume of tweets on average. This study also demonstrates the active involvement of various non-academic members, including commercial businesses, mass media outlets, public authorities, politicians, and civil society organizations, in Twitter scholarly communication. C1 [Ye, Yingxin Estella; Na, Jin-Cheon] Nanyang Technol Univ, Wee Kim Wee Sch Commun & Informat, 31 Nanyang Link, Singapore 637718, Singapore. C3 Nanyang Technological University RP Ye, YE (corresponding author), Nanyang Technol Univ, Wee Kim Wee Sch Commun & Informat, 31 Nanyang Link, Singapore 637718, Singapore. EM yingxin001@e.ntu.edu.sg; tjcna@ntu.edu.sg CR Aljabri M, 2023, SOC NETW ANAL MIN, V13, DOI 10.1007/s13278-022-01020-5 Aljohani NR, 2020, SOFT COMPUT, V24, P11109, DOI 10.1007/s00500-020-04689-y Altmetric.com, 2021, Source of Altmetrics-Twitter Basile V., 2019, P 13 INT WORKSH SEM, P54, DOI [DOI 10.18653/V1/S19-2007, 10.18653/v1/S19-2007] Brody S, 2022, Arxiv, DOI [arXiv:2105.14491, 10.48550/arXiv.2105.14491] Campbell WM, 2014, NEURAL INFORM PROCES Cao RM, 2023, INFORM PROCESS MANAG, V60, DOI 10.1016/j.ipm.2022.103152 Dambanemuya HK, 2024, Arxiv, DOI arXiv:2203.04228 Dehghan A, 2023, J BIG DATA-GER, V10, DOI 10.1186/s40537-023-00796-3 Devlin J., 2018, ARXIV Diaz-Faes AA, 2019, 17 INT C SCIENTOMETR Didegah F, 2018, J INFORMETR, V12, P960, DOI 10.1016/j.joi.2018.08.002 Dukic D, 2020, PR INT CONF DATA SC, P631, DOI 10.1109/DSAA49011.2020.00089 Ferguson C, 2014, COLLEGIAN, V21, P89, DOI 10.1016/j.colegn.2014.03.002 Haustein S, 2016, J ASSOC INF SCI TECH, V67, P232, DOI 10.1002/asi.23456 Hayawi K, 2022, SOC NETW ANAL MIN, V12, DOI 10.1007/s13278-022-00869-w Holmberg Kim, 2014, Scientometrics, V101, P1027, DOI 10.1007/s11192-014-1229-3 Holmberg K, 2018, SCIENTOMETRICS, V116, P435, DOI 10.1007/s11192-018-2710-1 Jiang JL, 2022, Arxiv, DOI arXiv:2207.08349 Kousha K, 2020, QUANT SCI STUD, V1, P1068, DOI 10.1162/qss_a_00066 Hamilton WL, 2018, Arxiv, DOI arXiv:1706.02216 Li YM, 2019, COGN COMPUT, V11, P459, DOI 10.1007/s12559-019-9624-y Marco P, 2011, P 5 INT AAAI C WEBLO Muller Martin, 2020, arXiv Özkent Y, 2022, PLOS ONE, V17, DOI 10.1371/journal.pone.0263725 Priem Jason, 2010, First Monday, V15, DOI 10.5210/fm.v15i7.2874 Robinson-Garcia N, 2018, SCI PUBL POLICY, V45, P815, DOI 10.1093/scipol/scy024 Robinson-Garcia N, 2017, PLOS ONE, V12, DOI 10.1371/journal.pone.0183551 Saeed-Ul Hassan, 2017, SCIENTOMETRICS, V113, P1037, DOI 10.1007/s11192-017-2512-x Scarselli F, 2009, IEEE T NEURAL NETWOR, V20, P61, DOI 10.1109/TNN.2008.2005605 Tsung-Yi Lin, 2017, 2017 IEEE International Conference on Computer Vision (ICCV), P2999, DOI 10.1109/ICCV.2017.324 Vainio J, 2017, SCIENTOMETRICS, V112, P345, DOI 10.1007/s11192-017-2368-0 Vaswani A, 2017, ADV NEUR IN, V30 Veličkovic P, 2018, Arxiv, DOI arXiv:1710.10903 Wu ZH, 2021, IEEE T NEUR NET LEAR, V32, P4, DOI 10.1109/TNNLS.2020.2978386 Xu K., 2018, arXiv, DOI 10.48550/arXiv.1810.00826 Yu HQ, 2017, SCIENTOMETRICS, V111, P267, DOI 10.1007/s11192-017-2251-z Zhibin Lu, 2020, Advances in Information Retrieval, 42nd European Conference on IR Research, ECIR 2020. Proceedings. Lecture Notes in Computer Science (LNCS 12035), P369, DOI 10.1007/978-3-030-45439-5_25 Zhou J, 2020, AI OPEN, V1, P57, DOI 10.1016/j.aiopen.2021.01.001 NR 39 TC 0 Z9 0 U1 4 U2 4 PU SPRINGER WIEN PI Vienna PA Prinz-Eugen-Strasse 8-10, A-1040 Vienna, AUSTRIA SN 1869-5450 EI 1869-5469 J9 SOC NETW ANAL MIN JI Soc. Netw. Anal. Min. PD MAR 28 PY 2024 VL 14 IS 1 AR 72 DI 10.1007/s13278-024-01236-7 PG 17 WC Computer Science, Information Systems WE Emerging Sources Citation Index (ESCI) SC Computer Science GA MQ8G0 UT WOS:001195179000001 DA 2024-09-05 ER PT J AU Kaparthi, S AF Kaparthi, Shashidhar TI Business-Related Research in Neural Networks-Based Intelligent Decision Support Systems: A Bibliometric Analysis SO JOURNAL OF DECISION SYSTEMS LA English DT Article DE neural networks; business applications; bibliometric analysis; co-word method; intelligent decision support systems AB Neural networks are used in business organizations for providing intelligent decision support. The ABI/Inform bibliographic database has over 1 000 publications on business-related research in neural networks. Historical trends in this area are examined by a bibliometric analysis of this research. Distributions by management function, by industries & markets, by business environment and by keywords are presented and insights into future research possibilities are drawn. Further, this corpus of literature is analyzed by using the co-word bibliometric methodology to assess the state-of-the-art in this research area. Several research themes are identified. Based on the analysis, suggestions for future research are outlined. C1 [Kaparthi, Shashidhar] Univ Northern Iowa, Coll Business Adm, Dept Management, Cedar Falls, IA 50614 USA. C3 University of Northern Iowa RP Kaparthi, S (corresponding author), Univ Northern Iowa, Coll Business Adm, Dept Management, Cedar Falls, IA 50614 USA. EM Shashi.Kaparthi@uni.edu FU University of Northern Iowa FX This research was supported in part by a professional development assignment from the University of Northern Iowa. An earlier version of this paper was presented at the 34th Annual Meeting of the Decision Sciences Institute, Washington DC, November 2003. CR [Anonymous], 2001, CHALLENGE SCIENTOMET [Anonymous], NEUROCOMPUTING FDN R [Anonymous], IEEE ASSP MAGAZINE Aryee S, 1997, HUM RELAT, V50, P129, DOI 10.1177/001872679705000202 Bailey J. V., 1986, FINANCIAL ANAL J, V42, P20 Baker G. A., 1994, Agribusiness (New York), V10, P319, DOI 10.1002/1520-6297(199407/08)10:4<319::AID-AGR2720100405>3.0.CO;2-J Cahlik T., 1996, Neural Network World, V6, P847 CALLON M, 1991, SCIENTOMETRICS, V22, P155, DOI 10.1007/BF02019280 Callon M, 1986, MAPPING DYNAMICS SCI Coulter N, 1998, J AM SOC INFORM SCI, V49, P1206, DOI 10.1002/(SICI)1097-4571(1998)49:13<1206::AID-ASI7>3.0.CO;2-F COURTIAL JP, 1989, SOC STUD SCI, V19, P301, DOI 10.1177/030631289019002005 COURTIAL JP, 1994, SCIENTOMETRICS, V31, P251, DOI 10.1007/BF02016875 Espahbodi H, 2003, J BANK FINANC, V27, P549, DOI 10.1016/S0378-4266(01)00258-8 Farrell KA, 2003, J ACCOUNT ECON, V36, P165, DOI 10.1016/j.jacceco.2003.09.001 Ferreira D, 2004, ENERG POLICY, V32, P1173, DOI 10.1016/S0301-4215(03)00080-6 GASPER JA, 1985, BENEFITS Q, V1, P41 Goetting MarshaA., 2001, J FAM ECON ISS, V22, P243, DOI [DOI 10.1023/A:1016699822855, 10.1023/A:1016699822855] HALVORSON AL, 1985, REV ECON STAT, V67, P161, DOI 10.2307/1928449 Klein M.R., 1995, KNOWLEDGE BASED DECI Krasachat W., 2004, Journal of American Academy of Business, V4, P64 LAWTHERS AG, 1992, J HEALTH POLIT POLIC, V17, P463, DOI 10.1215/03616878-17-3-463 Lisboa P. J., 2000, PROGR NEURAL PROCESS MASTERS MF, 1985, ACAD MANAGE J, V28, P654, DOI 10.5465/256120 McClelland J. L., 1987, PARALLEL DISTRIBUTED, V3 McClelland J. L., 1987, PARALLEL DISTRIBUTED, V1 McClelland J.L., 1987, Parallel distributed processing, vol 2: explorations in the microstructure of cognition: psychological and biological models, V2 MILOTIC D., 2003, J CONSUM BEHAV, V3, P179, DOI DOI 10.1002/CB.131 Moens MF, 1999, J AM SOC INFORM SCI, V50, P151, DOI 10.1002/(SICI)1097-4571(1999)50:2<151::AID-ASI6>3.0.CO;2-I Nijmeijer M., 2004, British Food Journal, V106, P520, DOI 10.1108/00070700410545728 Peterson R.T., 1999, J BUSINESS FORECASTI, V18, P15 Ravi V, 2000, EUR J OPER RES, V126, P526, DOI 10.1016/S0377-2217(99)00307-0 Renshaw AE, 2003, INSUR MATH ECON, V32, P379, DOI 10.1016/S0167-6687(03)00118-5 Smith K.A., 2003, Neural networks in business: techniques and applications Urbanovich E, 2003, INTERFACES, V33, P15, DOI 10.1287/inte.33.4.15.16372 Vance C, 2004, INT REGIONAL SCI REV, V27, P326, DOI 10.1177/0160017604266029 Wasserman P.D., 1989, Neural Computing: Theory and Practice Webley P, 2001, J ECON PSYCHOL, V22, P141, DOI 10.1016/S0167-4870(01)00026-5 WHITTAKER J, 1989, SOC STUD SCI, V19, P473, DOI 10.1177/030631289019003004 Wong BK, 1997, DECIS SUPPORT SYST, V19, P301, DOI 10.1016/S0167-9236(96)00070-X Wong BK, 2000, COMPUT OPER RES, V27, P1045, DOI 10.1016/S0305-0548(99)00142-2 Yamada K., 1972, RES POLICY, V1, P352 Zhang P G., 2003, Neural Networks in Business Forecasting NR 42 TC 1 Z9 1 U1 0 U2 3 PU TAYLOR & FRANCIS LTD PI ABINGDON PA 2-4 PARK SQUARE, MILTON PARK, ABINGDON OR14 4RN, OXON, ENGLAND SN 1166-8636 EI 2116-7052 J9 J DECIS SYST JI J. Decis. Syst. PY 2005 VL 14 IS 1-2 BP 157 EP 177 DI 10.3166/jds.14.157-177 PG 21 WC Operations Research & Management Science WE Emerging Sources Citation Index (ESCI) SC Operations Research & Management Science GA V88LS UT WOS:000212725500008 DA 2024-09-05 ER PT J AU Sharma, H Kumar, H Gupta, A Shah, MA AF Sharma, Himanshu Kumar, Harish Gupta, Ashulekha Shah, Mohd Asif TI Computer vision in manufacturing: a bibliometric analysis and future research propositions SO INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY LA English DT Article DE Bibliometric analysis; Bibliographic coupling; Computer vision; Manufacturing; Review ID COORDINATE MEASURING MACHINE; SURFACE DEFECT DETECTION; QUALITY INSPECTION; MICROASSEMBLY SYSTEM; INDUSTRY 4.0; ROUGHNESS; CLASSIFICATION; ACCURATE; WEB; ALGORITHMS AB Computer vision for the past two decades has been used to simulate human capabilities and automate tasks, and in the process, has benefited all of us. Specifically, its application within the manufacturing context has garnered ample attention and interest from both academics and practitioners. Due to its large-scale applicability and adoption potential, extensive research has been conducted to understand and appreciate it is working. However, extant research in this domain is rather disjointed, thereby delimiting the otherwise vast scope and knowledge boundaries. Thus, this study utilizes bibliometric analysis to synthesize extant literature within this field to address this lacuna. We analyzed 897 articles from Scopus, entailing contributions from 309 journals, 108 countries, 2138 authors, and 1334 organizations from 1981 to 2022. Additionally, we analyzed citation and co-authorship networks to acknowledge prominent authors, organizations, and countries within this domain. The thematic classification of extant literature through bibliographic coupling identified five major thematic areas: automated visual inspection, object tracking and process controlling, real-time monitoring, roughness inspection, and profile projection. Importantly, we used both knowledge and insights from our findings, and propose scope for future research. C1 [Sharma, Himanshu; Kumar, Harish] Indian Inst Management IIM, Dept Informat Technol & Syst, Kashipur, India. [Gupta, Ashulekha] Graph Era Deemed Be Univ, Dept Management Studies, Dehra Dun, India. [Shah, Mohd Asif] Kebri Dehar Univ, Dept Econ, Kebri Dehar 250, Somali, Ethiopia. [Shah, Mohd Asif] Woxsen Univ, Sch Business, Sadasivpet 502345, Hyderabad, India. [Shah, Mohd Asif] Lovely Profess Univ, Div Res & Dev, Phagwara 144001, Punjab, India. [Shah, Mohd Asif] Sharda Univ, Sch Engn & Technol, Greater Noida 201310, India. C3 Indian Institute of Management (IIM System); Indian Institute of Management Kashipur; Graphic Era University; Lovely Professional University; Sharda University RP Shah, MA (corresponding author), Kebri Dehar Univ, Dept Econ, Kebri Dehar 250, Somali, Ethiopia.; Shah, MA (corresponding author), Woxsen Univ, Sch Business, Sadasivpet 502345, Hyderabad, India.; Shah, MA (corresponding author), Lovely Profess Univ, Div Res & Dev, Phagwara 144001, Punjab, India.; Shah, MA (corresponding author), Sharda Univ, Sch Engn & Technol, Greater Noida 201310, India. EM himanshu.fpm1806@iimkashipur.ac.in; harishkr08@gmail.com; ashulekha26@gmail.com; drmohdasifshah@kdu.edu.et RI Gupta, Ashulekha/AAY-1812-2020; Kumar, Harish/AAU-7634-2020; SHAH, MOHD ASIF/AAZ-4565-2021; Shah, Mohd Asif/GOJ-7931-2022 OI Gupta, Ashulekha/0000-0001-5155-6090; Kumar, Harish/0000-0002-7204-7321; SHAH, MOHD ASIF/0000-0001-6164-0915; Shah, Mohd Asif/0000-0002-0351-9559 CR Aghajan HK, 1993, IEEE T IMAGE PROCESS, V2, P454, DOI 10.1109/83.242355 Aminzadeh M, 2019, J INTELL MANUF, V30, P2505, DOI 10.1007/s10845-018-1412-0 Arents J, 2022, APPL SCI-BASEL, V12, DOI 10.3390/app12020937 Badmos O, 2020, J INTELL MANUF, V31, P885, DOI 10.1007/s10845-019-01484-x Barua S, 2014, RAPID PROTOTYPING J, V20, P77, DOI 10.1108/RPJ-04-2012-0036 Benko P, 2001, COMPUT AIDED DESIGN, V33, P839, DOI 10.1016/S0010-4485(01)00100-2 Bhat NN, 2015, J MANUF PROCESS, V20, P274, DOI 10.1016/j.jmapro.2015.07.002 Bhatt Y, 2020, J CLEAN PROD, V260, DOI 10.1016/j.jclepro.2020.120988 Bhuyan A, 2021, IN C IND ENG ENG MAN, P482, DOI 10.1109/IEEM50564.2021.9673030 Bi ZM, 2014, ENTERP INF SYST-UK, V8, P225, DOI 10.1080/17517575.2012.654826 Brosnan T, 2004, J FOOD ENG, V61, P3, DOI 10.1016/S0260-8774(03)00183-3 Carbone V, 2001, INT J ADV MANUF TECH, V17, P263, DOI 10.1007/s001700170179 Castillo-Vergara M, 2018, J BUS RES, V85, P1, DOI 10.1016/j.jbusres.2017.12.011 Caviggioli F, 2019, INT J PROD ECON, V208, P254, DOI 10.1016/j.ijpe.2018.11.022 Chan VH, 2001, COMPUT IND, V44, P105, DOI 10.1016/S0166-3615(00)00087-7 Chen F., 2018, IEEE T IND INFORM, V3203, P1 Chen HY, 2020, J INTELL MANUF, V31, P453, DOI 10.1007/s10845-018-1458-z Chen MC, 2002, COMPUT IND, V47, P185, DOI 10.1016/S0166-3615(01)00143-9 Cheng Y, 2008, IEEE T AUTOM SCI ENG, V5, P140, DOI 10.1109/TASE.2007.912058 Chiu Victoria, 2019, International Journal of Accounting Information Systems, V32, P24, DOI 10.1016/j.accinf.2018.11.003 Chou PB, 1997, MACH VISION APPL, V9, P201, DOI 10.1007/s001380050041 Cicirello VA, 2002, AI EDAM, V16, P385, DOI 10.1017/S0890060402165048 Colosimo BM, 2018, J QUAL TECHNOL, V50, P391, DOI 10.1080/00224065.2018.1507563 Conci A, 1998, COMPUT NETWORKS ISDN, V30, P1887, DOI 10.1016/S0169-7552(98)00211-6 Couto J, 2020, INTRO GUIDE COMPUTER Danvila-del-Valle I, 2019, J BUS RES, V101, P627, DOI 10.1016/j.jbusres.2019.02.026 DOM BE, 1995, MACH VISION APPL, V8, P5, DOI 10.1007/BF01213634 Donthu N, 2021, J BUS RES, V133, P285, DOI 10.1016/j.jbusres.2021.04.070 Edinbarough I, 2005, COMPUT IND, V56, P986, DOI 10.1016/j.compind.2005.05.022 Ekanayake B, 2021, AUTOMAT CONSTR, V127, DOI 10.1016/j.autcon.2021.103705 Fahimnia B, 2015, INT J PROD ECON, V162, P101, DOI 10.1016/j.ijpe.2015.01.003 Faugeras O, 1998, COMPUT VIS IMAGE UND, V69, P292, DOI 10.1006/cviu.1998.0665 Feng C, 2015, AUTOMAT CONSTR, V59, P128, DOI 10.1016/j.autcon.2015.06.002 Ferreira FAF, 2018, J BUS RES, V85, P348, DOI 10.1016/j.jbusres.2017.03.026 Franceschini F, 2016, J INFORMETR, V10, P933, DOI 10.1016/j.joi.2016.07.003 GHOSAL S, 1993, IEEE T ROBOTIC AUTOM, V9, P385, DOI 10.1109/70.246050 Grasso M, 2017, J MANUF SCI E-T ASME, V139, DOI 10.1115/1.4034715 Guerra E, 2001, COMPUT IND ENG, V40, P175, DOI 10.1016/S0360-8352(01)00016-X Gurzki H, 2017, J BUS RES, V77, P147, DOI 10.1016/j.jbusres.2016.11.009 He KM, 2016, PROC CVPR IEEE, P770, DOI 10.1109/CVPR.2016.90 He KT, 2019, J INTELL MANUF, V30, P947, DOI 10.1007/s10845-018-1424-9 Ho SY, 2002, INT J MACH TOOL MANU, V42, P1441, DOI 10.1016/S0890-6955(02)00078-0 Hoang K, 1997, COMPUT IND, V34, P43, DOI 10.1016/S0166-3615(97)00019-5 Huang R, 2019, ELECTRONICS-SWITZ, V8, DOI 10.3390/electronics8080825 Iglesias C, 2018, COMPUT IND, V99, P119, DOI 10.1016/j.compind.2018.03.030 Iowa State University library, SCOP COMP 2022 Javaid Mohd., 2022, Sensors International, V3, DOI [DOI 10.1016/J.SINTL.2021.100132, 10.1016/j.sintl.2021.100132] Jian CX, 2017, APPL SOFT COMPUT, V52, P348, DOI 10.1016/j.asoc.2016.10.030 Jin ZQ, 2019, MANUF LETT, V22, P11, DOI 10.1016/j.mfglet.2019.09.005 Kamguem R, 2013, INT J PRECIS ENG MAN, V14, P183, DOI 10.1007/s12541-013-0026-x Kerr D, 2006, INT J ADV MANUF TECH, V28, P781, DOI 10.1007/s00170-004-2420-0 KESSLER MM, 1963, AM DOC, V14, P10, DOI 10.1002/asi.5090140103 KHALAJ BH, 1994, MACH VISION APPL, V7, P178, DOI 10.1007/BF01211662 Khanra S, 2021, J BUS RES, V131, P151, DOI 10.1016/j.jbusres.2021.03.056 Khanra S, 2021, TOUR MANAG PERSPECT, V37, DOI 10.1016/j.tmp.2020.100777 Khanra S, 2020, ENTERP INF SYST-UK, V14, P737, DOI 10.1080/17517575.2020.1734241 Kim B, 2006, INT J ADV MANUF TECH, V28, P379, DOI 10.1007/s00170-004-2360-8 Krishnan BR, 2019, T CAN SOC MECH ENG, V43, P509, DOI 10.1139/tcsme-2018-0255 Lee BY, 2004, MECHATRONICS, V14, P129, DOI 10.1016/S0957-4158(02)00096-X Lee JY, 2004, IEICE T INF SYST, VE87D, P2371 Lee KC, 2005, PRECIS ENG, V29, P95, DOI 10.1016/j.precisioneng.2004.05.002 Li D, 2014, INT J ADV MANUF TECH, V73, P1605, DOI 10.1007/s00170-014-5871-y Lian J, 2020, IEEE T IND INFORM, V16, P1343, DOI 10.1109/TII.2019.2945403 Liu JJ, 2006, MACH VISION APPL, V16, P374, DOI 10.1007/s00138-005-0009-8 Liu Y, 2017, SCI REP-UK, V7, DOI 10.1038/s41598-017-11014-5 Market and Market, 2022, MACH VIS MARK COMP H Martinez P, 2019, AUTOMAT CONSTR, V107, DOI 10.1016/j.autcon.2019.102947 Martinez P, 2019, AUTOMAT CONSTR, V97, P151, DOI 10.1016/j.autcon.2018.10.021 MARTYN J, 1964, J DOC, V20, P236, DOI 10.1108/eb026352 Medina R, 2011, INT J ADV MANUF TECH, V57, P1087, DOI 10.1007/s00170-011-3352-0 Medina-Gonzalez Y, 2011, INT J SUSTAIN ENG, V4, P75, DOI 10.1080/19397038.2010.497230 Merigo J.M., 2019, Global Journal of Flexible Systems Management, V20, P1, DOI DOI 10.1007/S40171-018-0201-0 Milovanovic B, 2019, IOP C SER EARTH ENV, V333, DOI 10.1088/1755-1315/333/1/012008 Moganti M, 1996, COMPUT VIS IMAGE UND, V63, P287, DOI 10.1006/cviu.1996.0020 Molleda J, 2016, IEEE T IND APPL, V52, P2684, DOI 10.1109/TIA.2016.2524459 Molleda J, 2013, COMPUT IND, V64, P1186, DOI 10.1016/j.compind.2013.05.002 Mongeon P, 2016, SCIENTOMETRICS, V106, P213, DOI 10.1007/s11192-015-1765-5 Monostori L, 2016, CIRP ANN-MANUF TECHN, V65, P621, DOI 10.1016/j.cirp.2016.06.005 Mostafa K, 2021, AUTOMAT CONSTR, V122, DOI 10.1016/j.autcon.2020.103516 Niñerola A, 2019, SUSTAINABILITY-BASEL, V11, DOI 10.3390/su11051377 Nobanee H, 2021, SUSTAINABILITY-BASEL, V13, DOI 10.3390/su13063277 Palani S, 2011, INT J ADV MANUF TECH, V54, P1033, DOI 10.1007/s00170-010-3018-3 Penumuru DP, 2020, J INTELL MANUF, V31, P1229, DOI 10.1007/s10845-019-01508-6 Peres RS, 2020, IEEE ACCESS, V8, P220121, DOI 10.1109/ACCESS.2020.3042874 Pottmann H, 2005, COMPUT AIDED DESIGN, V37, P751, DOI 10.1016/j.cad.2004.08.013 Rao AR, 1996, IMAGE VISION COMPUT, V14, P3, DOI 10.1016/0262-8856(95)01035-1 Schwarz S, 2014, IEEE T IMAGE PROCESS, V23, P214, DOI 10.1109/TIP.2013.2287613 Smith LN, 2005, IMAGE VISION COMPUT, V23, P887, DOI 10.1016/j.imavis.2005.03.009 Smith ML, 1999, IMAGE VISION COMPUT, V17, P1009, DOI 10.1016/S0262-8856(99)00003-7 Soosaraei M, 2018, ANN MED SURG, V26, P30, DOI 10.1016/j.amsu.2017.12.014 Steger C., 2018, Machine Vision Algorithms and Applications, V2 Szeliski R, 2011, TEXTS COMPUT SCI, P1, DOI 10.1007/978-1-84882-935-0 Tandon A, 2021, TECHNOL FORECAST SOC, V166, DOI 10.1016/j.techfore.2021.120649 Thompson WB, 1999, IEEE T ROBOTIC AUTOM, V15, P57, DOI 10.1109/70.744602 Tian X, 2018, TRANSPORT RES D-TR E, V59, P1, DOI 10.1016/j.trd.2017.12.009 Tsai DM, 2000, INT J ADV MANUF TECH, V16, P474, DOI 10.1007/s001700070055 Tsai DM, 2011, MACH VISION APPL, V22, P629, DOI 10.1007/s00138-010-0256-1 Tsai DM, 2010, IMAGE VISION COMPUT, V28, P491, DOI 10.1016/j.imavis.2009.08.001 Tsang CSC, 2016, PATTERN RECOGN, V51, P378, DOI 10.1016/j.patcog.2015.09.022 Tsarouchi P, 2016, CIRP J MANUF SCI TEC, V14, P20, DOI 10.1016/j.cirpj.2016.04.005 Van Eck N.J., 2014, Measuring Scholarly Impact: Methods and Practice, P285, DOI 10.1007/978-3-319-10377-8_13(InEng.) Vedula SB, 2024, J BUS ETHICS, V189, P301, DOI 10.1007/s10551-023-05346-8 Vogel B, 2021, LEADERSHIP QUART, V32, DOI 10.1016/j.leaqua.2020.101381 Wang MM, 2018, IEEE-ASME T MECH, V23, P997, DOI 10.1109/TMECH.2018.2820172 Wuest T, 2016, PROD MANUF RES, V4, P23, DOI 10.1080/21693277.2016.1192517 Xie WF, 2009, IEEE T IND ELECTRON, V56, P520, DOI 10.1109/TIE.2008.2003217 Xu XH, 2018, INT J PROD ECON, V204, P160, DOI 10.1016/j.ijpe.2018.08.003 Xuan Q, 2019, IEEE T IND ELECTRON, V66, P8244, DOI 10.1109/TIE.2018.2885684 Yang G, 2005, IEEE T IND ELECTRON, V52, P1013, DOI 10.1109/TIE.2005.851665 Yang GE, 2003, J INTELL ROBOT SYST, V37, P43, DOI 10.1023/A:1023982907874 Zhang JM, 1999, COMPUT IND, V40, P51, DOI 10.1016/S0166-3615(99)00009-3 Zhang XH, 2011, INT J PROD RES, V49, P1957, DOI 10.1080/00207541003690074 Zheng P, 2018, FRONT MECH ENG-PRC, V13, P137, DOI 10.1007/s11465-018-0499-5 Zhong RY, 2017, ENGINEERING-PRC, V3, P616, DOI 10.1016/J.ENG.2017.05.015 NR 114 TC 1 Z9 1 U1 3 U2 11 PU SPRINGER LONDON LTD PI LONDON PA 236 GRAYS INN RD, 6TH FLOOR, LONDON WC1X 8HL, ENGLAND SN 0268-3768 EI 1433-3015 J9 INT J ADV MANUF TECH JI Int. J. Adv. Manuf. Technol. PD AUG PY 2023 VL 127 IS 11-12 BP 5691 EP 5710 DI 10.1007/s00170-023-11907-y EA JUL 2023 PG 20 WC Automation & Control Systems; Engineering, Manufacturing WE Science Citation Index Expanded (SCI-EXPANDED) SC Automation & Control Systems; Engineering GA M9VB5 UT WOS:001033455200002 OA Green Submitted DA 2024-09-05 ER PT J AU Ebadi, A Tremblay, S Goutte, C Schiffauerova, A AF Ebadi, Ashkan Tremblay, Stephane Goutte, Cyril Schiffauerova, Andrea TI Application of machine learning techniques to assess the trends and alignment of the funded research output SO JOURNAL OF INFORMETRICS LA English DT Article DE Text mining; Topic modeling; Machine learning; Funded research; Publications; Government research priorities; Canada ID SCIENTIFIC COLLABORATION; TOPIC MODEL; SCIENCE; SYSTEM AB Research and development activities are regarded as one of the most influencing factors of the future of a country. Large investments in research can yield a tremendous outcome in terms of a country's overall wealth and strength. However, public financial resources of countries are often limited which calls for a wise and targeted investment. Scientific publications are considered as one of the main outputs of research investment. Although the general trend of scientific publications is increasing, a detailed analysis is required to monitor the research trends and assess whether they are in line with the top research priorities of the country. Such focused monitoring can shed light on scientific activities evolution as well as the formation of new research areas, thus helping governments to adjust priorities, if required. But monitoring the output of the funded research manually is not only very expensive and difficult, it is also subjective. Using structural topic models, in this paper we evaluated the trends in academic research performed by federally funded Canadian researchers during the time-frame of 2000-2018, covering more than 140,000 research publications. The proposed approach makes it possible to objectively and systematically monitor research projects, or any other set of documents related to research activities such as funding proposals, at large-scale. Our results confirm the accordance between the performed federally funded research projects and the top research priorities of Canada. Crown Copyright (C) 2020 Published by Elsevier Ltd. All rights reserved. C1 [Ebadi, Ashkan; Tremblay, Stephane; Goutte, Cyril] Natl Res Council Canada, Ottawa, ON K1K 2E1, Canada. [Ebadi, Ashkan; Schiffauerova, Andrea] Concordia Univ, Concordia Inst Informat Syst Engn CIISE, Montreal, PQ H3G 2W1, Canada. C3 National Research Council Canada; Concordia University - Canada RP Ebadi, A (corresponding author), Natl Res Council Canada, Ottawa, ON K1K 2E1, Canada.; Ebadi, A (corresponding author), Concordia Univ, Concordia Inst Informat Syst Engn CIISE, Montreal, PQ H3G 2W1, Canada. EM ashkan.ebadi@nrc-cnrc.gc.ca RI Ebadi, Ashkan/AAI-5123-2020; Goutte, Cyril/A-5824-2009; Ebadi, Ashkan/GWZ-9018-2022 OI Ebadi, Ashkan/0000-0002-4542-9105; Goutte, Cyril/0000-0003-4939-6555; CR [Anonymous], 2019, STAT REV WORLD EN [Anonymous], 2018, CONTENT ANAL INTRO I Arun R, 2010, LECT NOTES ARTIF INT, V6118, P391 Bagozzi BE, 2018, POLIT SCI RES METH, V6, P661, DOI 10.1017/psrm.2016.44 Bastian M., 2009, Association for the Advancement of Artificial Intelligence, DOI 10.13140/2.1.1341.1520 Bischof J., 2012, P 29 INT C INT C MAC, P9 Blasius Jorg., 1998, Visualization of categorical data Blei D.M., 2006, P 23 INT C MACH LEAR, DOI [DOI 10.1145/1143844.1143859, 10.1145/1143844.1143859] Blei DM, 2007, ANN APPL STAT, V1, P17, DOI 10.1214/07-AOAS114 Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993 Blondel VD, 2008, J STAT MECH-THEORY E, DOI 10.1088/1742-5468/2008/10/P10008 Bornmann L, 2015, J ASSOC INF SCI TECH, V66, P2215, DOI 10.1002/asi.23329 Brook R, 2008, BIODIVERS CONSERV, V17, P3501, DOI 10.1007/s10531-008-9445-x Canadian Association of Petroleum Producers, 2019, OIL SANDS Canadian Trade Commissioner Service, 2018, CAN INN STRENGTHS PR Cao J, 2009, NEUROCOMPUTING, V72, P1775, DOI 10.1016/j.neucom.2008.06.011 Capeluck I., 2013, CANADA US ICT INVEST Chandelier M, 2018, BIOL CONSERV, V220, P254, DOI 10.1016/j.biocon.2018.01.029 Chen H., 2015, 2601719 SSRN CIFAR, 2019, ANN REP CIFAR PAN CA Clare SM, 2019, SMALL-SCALE FOR, V18, P149, DOI 10.1007/s11842-018-9411-8 Clark BY, 2012, POLICY STUD J, V40, P698, DOI 10.1111/j.1541-0072.2012.00470.x Council of Canadian Academies, 2016, COMP GLOB INN EC CUR Council of Canadian Academies, 2006, STAT SCI TECHN CAN De Bellis N., 2009, BIBLIORNETRICS CITAT DEVEAUD R, 2014, DOCUMENT NUMERIQUE, V0017 Doré JC, 2001, J AM SOC INF SCI TEC, V52, P763, DOI 10.1002/asi.1130 Ebadi A, 2016, SCIENTOMETRICS, V107, P477, DOI 10.1007/s11192-016-1852-2 Ebadi A, 2016, SCIENTOMETRICS, V106, P1093, DOI 10.1007/s11192-015-1825-x Ebadi A, 2015, J INFORMETR, V9, P809, DOI 10.1016/j.joi.2015.08.002 Ebadi A, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0133061 Eisenstein J., 2011, SPARSE ADDITIVE GENE, DOI DOI 10.1184/R1/6476342.V1 Erosheva E.A., 2002, GRADE MEMBERSHIP LAT European Commission, 2017, EUR FUT OP INN OP SC Fast E., 2007, Mobilizing Science and Technology: The new federal strategy Findlay S., 2016, SCI TECHNOLOGY CANAD Foulds J, 2015, PR MACH LEARN RES, V37, P777 Gal D, 2019, EUR HEART J, V40, P2363, DOI 10.1093/eurheartj/ehz282 Gatti C. J., 2015, ARXIV151005154CSSTAT GenomeCanada, 2015, GEN CAN CEL 15 YEARS Godin B., 2003, WORKING PAPER Government of Canada, 2017, INVESTING CANADAS FU Government of Canada, 2001, ACH EXC INV PEOPL KN Government of Canada, 2019, CAN NEW SUP Grajzl P, 2019, J COMP ECON, V47, P111, DOI 10.1016/j.jce.2018.10.004 Greenacre M., 2006, Multiple correspondence analysis and related methods, V1, DOI DOI 10.1201/9781420011319 Griffiths TL, 2004, P NATL ACAD SCI USA, V101, P5228, DOI 10.1073/pnas.0307752101 Grimmer J, 2013, POLIT ANAL, V21, P267, DOI 10.1093/pan/mps028 Hale Geoffrey, 2011, CANADIAN AM PUBLIC P, V76, P1 Hartigan John A, 1975, CLUSTERING ALGORITHM Herzog A., 2018, ARXIV180600793CS Hulpus I., 2013, P 6 ACM INT C WEB SE, P465 Kuhn KD, 2018, TRANSPORT RES C-EMER, V87, P105, DOI 10.1016/j.trc.2017.12.018 Kulczycki E, 2017, J INFORMETR, V11, P282, DOI 10.1016/j.joi.2017.01.001 Landauer T. K., 2013, HDB LATENT SEMANTIC, DOI DOI 10.4324/9780203936399 Lastewka W., 2002, CANADAS INNOVATION S Lau J. H., 2011, P 49 ANN M ASS COMPU, P1536 Lau JH, 2010, EL PACKAG TECH CONF, P560, DOI 10.1109/EPTC.2010.5702702 신규식, 2015, [Journal of Korea Academia-Industrial cooperation Society, 한국산학기술학회논문지], V16, P6411 Lucas C, 2015, POLIT ANAL, V23, P254, DOI 10.1093/pan/mpu019 Magatti D, 2009, INT CONF INTELL SYST, P1227, DOI 10.1109/ISDA.2009.165 Manley J., 2000, REPORT PLANS PRIORIT Maskeri Girish, 2008, 1st India Software Engineering Conference. ISEC 2008, P113 Mehdad Y., 2013, PROC 2013 C N AM CHA, P179 Mei QZ, 2007, KDD-2007 PROCEEDINGS OF THE THIRTEENTH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, P490 Millar J. R., 2009, 22 INT FLAIRS C Mimno D., 2012, ARXIV12063278CSSTAT Mimno David, 2011, P C EMPIRICAL METHOD, P262 *NAT RES CAN, 2019, EN EC Natural Resources Canada, 2019, EL FACTS NSERC, 2019, NSERCS AW DAT NSERC, 2018, NSERC DEP PLAN 2017 NSERC, 2001, PERF REP PER END MAR NSERC, 2019, DASHB NAT SCI ENG RE NSERC, 2015, NSERC EST UPD TARG A NSERC, 2017, COLL RES TRAIN EXP C NSERC, 2017, NSERC STRAT PARTN GR OECD, 2018, RES DEV R D GROSS DO Papadimitriou CH, 2000, J COMPUT SYST SCI, V61, P217, DOI 10.1006/jcss.2000.1711 Park J.-H., 2013, STUDY RES TRENDS LIB, DOI [10,1741/KOSIM,2013,30,1,007, DOI 10.3743/KOSIM.2013.30.1.007] Paull R, 2003, NAT BIOTECHNOL, V21, P1144, DOI 10.1038/nbt1003-1144 Pritchard JK, 2000, GENETICS, V155, P945 Roberts ME, 2014, AM J POLIT SCI, V58, P1064, DOI 10.1111/ajps.12103 Roberts Margaret E., 2014, Journal of Statistical Software, V10, P1, DOI [DOI 10.18637/JSS.V000.I00, 10.18637/jss.v091.i02] Robitaille J. P., 1999, LEVEL FUNDING U RES Rosner Frank, 2014, Evaluating topic coherence measures Savoy J, 2013, INFORM PROCESS MANAG, V49, P341, DOI 10.1016/j.ipm.2012.06.003 Statistics Canada, 2011, GROSS DOM EXP RES DE Sugimoto CR, 2011, J AM SOC INF SCI TEC, V62, P185, DOI 10.1002/asi.21435 Sun LJ, 2017, TRANSPORT RES C-EMER, V77, P49, DOI 10.1016/j.trc.2017.01.013 Taddy M., 2012, Artificial intelligence and statistics, P1184 Ubfal D, 2011, RES POLICY, V40, P1269, DOI 10.1016/j.respol.2011.05.023 van den Besselaar P, 2017, J INFORMETR, V11, P905, DOI 10.1016/j.joi.2017.05.016 Wallach Hanna M., 2009, P 26 ANN INT C MACH, P1105, DOI DOI 10.1145/1553374.1553515 Weng J., 2010, P 3 ACM INT C WEB SE, P261, DOI [10.1145/1718487.1718520, DOI 10.1145/1718487.1718520] Yan EJ, 2014, SCIENTOMETRICS, V100, P407, DOI 10.1007/s11192-014-1308-5 Yang HL, 2018, SUSTAINABILITY-BASEL, V10, DOI 10.3390/su10082779 ZENG A, 2019, NATURE COMMUNICATION, V10, P1, DOI DOI 10.1018/S41467-019-11401-8 Zhang Y, 2016, TECHNOL FORECAST SOC, V105, P179, DOI 10.1016/j.techfore.2016.01.015 NR 99 TC 11 Z9 12 U1 3 U2 42 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS SN 1751-1577 EI 1875-5879 J9 J INFORMETR JI J. Informetr. PD MAY PY 2020 VL 14 IS 2 AR 101018 DI 10.1016/j.joi.2020.101018 PG 15 WC Computer Science, Interdisciplinary Applications; Information Science & Library Science WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Computer Science; Information Science & Library Science GA NG7GI UT WOS:000564148300018 DA 2024-09-05 ER PT J AU Robert, C Arreto, CD Azerad, J Gaudy, JF AF Robert, C Arreto, CD Azerad, J Gaudy, JF TI Bibliometric overview of the utilization of artificial neural networks in medicine and biology SO SCIENTOMETRICS LA English DT Article ID EUROPEAN-UNION AB The distribution of articles involving artificial neural networks (ANN) in the fields of medicine and biology and appearing in the ISI (Institute for Scientific Information) databases during the period 2000-2001 was analysed. The following parameters were considered: the number of articles, the total impact factor, the ISI journal category, the source country population, and the gross domestic product. Among the 803 articles and the 49 countries considered, the 5 most prolific (in term of the number of publications) were the USA, The United Kingdom, Germany, Italy, and Canada; other active countries included Sweden, Netherlands, Spain, France, Japan, and China. Comparison between the USA and the European Union, and the distribution of ANN publications among the subdisciplines of the life sciences and clinical medicine are also presented. C1 Univ Paris 05, Lab Anat Fonct, F-92120 Montrouge, France. Univ Denis Diderot, Lab Physiol Manducat, Paris, France. C3 Universite Paris Cite; Universite Paris Cite RP Robert, C (corresponding author), Univ Paris 05, Lab Anat Fonct, 1 Rue Maurice Arnoux, F-92120 Montrouge, France. EM claude.robert@odontologie.univ-paris5.fr CR [Anonymous], 2000, Artificial Neural Networks in Biomedicine Dybowski R., 2001, CLIN APPL ARTIFICIAL Glänzel W, 2002, SCIENTOMETRICS, V55, P335, DOI 10.1023/A:1020406627944 Gomez I, 1996, SCIENTOMETRICS, V35, P223, DOI 10.1007/BF02018480 Inönü E, 2003, SCIENTOMETRICS, V56, P137, DOI 10.1023/A:1021906925642 Lisboa PJG, 2002, NEURAL NETWORKS, V15, P11, DOI 10.1016/S0893-6080(01)00111-3 MACCAIN KW, 1994, KNOWLEDGE CREATION D, V15, P285 MALMGREN H, 2001, ARTIFICIAL NEURAL NE Mela GS, 1999, EUR J CANCER, V35, P1182, DOI 10.1016/S0959-8049(99)00107-0 Noyons E., 1996, RES EVALUAT, V6, P133 Schneider G, 1998, PROG BIOPHYS MOL BIO, V70, P175, DOI 10.1016/S0079-6107(98)00026-1 Ugolini D, 2001, SCIENTOMETRICS, V52, P45, DOI 10.1023/A:1012746927721 van Leeuwen TN, 2001, SCIENTOMETRICS, V51, P335, DOI 10.1023/A:1010549719484 WEINSTEIN JN, 1994, WORLD C NEUR NETW SA, P121 NR 14 TC 16 Z9 16 U1 0 U2 19 PU KLUWER ACADEMIC PUBL PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0138-9130 J9 SCIENTOMETRICS JI Scientometrics PY 2004 VL 59 IS 1 BP 117 EP 130 PG 14 WC Computer Science, Interdisciplinary Applications; Information Science & Library Science WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Computer Science; Information Science & Library Science GA 767DD UT WOS:000188424200008 DA 2024-09-05 ER PT J AU Farhat, F Athar, MT Ahmad, S Madsen, DO Sohail, SS AF Farhat, Faiza Athar, Md Tanwir Ahmad, Sultan Madsen, Dag Oivind Sohail, Shahab Saquib TI Antimicrobial resistance and machine learning: past, present, and future SO FRONTIERS IN MICROBIOLOGY LA English DT Article DE antimicrobial resistance; antibiotic resistance; machine learning; deep learning; bibliometric analysis; healthcare ID IDENTIFICATION AB Machine learning has become ubiquitous across all industries, including the relatively new application of predicting antimicrobial resistance. As the first bibliometric review in this field, we expect it to inspire further research in this area. The review employs standard bibliometric indicators such as article count, citation count, and the Hirsch index (H-index) to evaluate the relevance and impact of the leading countries, organizations, journals, and authors in this field. VOSviewer and Biblioshiny programs are utilized to analyze citation and co-citation networks, collaboration networks, keyword co-occurrence, and trend analysis. The United States has the highest contribution with 254 articles, accounting for over 37.57% of the total corpus, followed by China (103) and the United Kingdom (78). Among 58 publishers, the top four publishers account for 45% of the publications, with Elsevier leading with 15% of the publications, followed by Springer Nature (12%), MDPI, and Frontiers Media SA with 9% each. Frontiers in Microbiology is the most frequent publication source (33 articles), followed by Scientific Reports (29 articles), PLoS One (17 articles), and Antibiotics (16 articles). The study reveals a substantial increase in research and publications on the use of machine learning to predict antibiotic resistance. Recent research has focused on developing advanced machine learning algorithms that can accurately forecast antibiotic resistance, and a range of algorithms are now being used to address this issue. C1 [Farhat, Faiza] Aligarh Muslim Univ, Dept Zool, Aligarh, India. [Athar, Md Tanwir] Buraydah Coll, Coll Dent & Pharm, Dept Pharmacognosy & Pharmaceut Chem, Buraydah, Al Qassim, Saudi Arabia. [Ahmad, Sultan] Prince Sattam bin Abdulaziz Univ, Coll Comp Engn & Sci, Dept Comp Sci, Al Kharj, Saudi Arabia. [Ahmad, Sultan] Chandigarh Univ, Univ Ctr Res & Dev UCRD, Dept Comp Sci & Engn, Mohali, Punjab, India. [Madsen, Dag Oivind] Univ South Eastern Norway, Sch Business, Honefoss, Norway. [Sohail, Shahab Saquib] Jamia Hamdard, Dept Comp Sci & Engn, New Delhi, India. C3 Aligarh Muslim University; Buraydah Colleges; Prince Sattam Bin Abdulaziz University; Chandigarh University; University College of Southeast Norway; Jamia Hamdard University RP Madsen, DO (corresponding author), Univ South Eastern Norway, Sch Business, Honefoss, Norway.; Sohail, SS (corresponding author), Jamia Hamdard, Dept Comp Sci & Engn, New Delhi, India. EM dag.oivind.madsen@usn.no; shahabssohail@jamiahamdard.ac.in RI FARHAT, FAIZA/KIK-8175-2024; Ahmad, Sultan/F-9146-2010; sohail, shahab/O-3263-2019; Madsen, Dag Øivind/I-1587-2016 OI Ahmad, Sultan/0000-0002-3198-7974; sohail, shahab/0000-0002-5944-7371; Madsen, Dag Øivind/0000-0001-8735-3332 CR [Anonymous], 2013, Threat Report, P50 Arango-Argoty G, 2018, MICROBIOME, V6, DOI 10.1186/s40168-018-0401-z Aria M, 2017, J INFORMETR, V11, P959, DOI 10.1016/j.joi.2017.08.007 Barlandas-Quintana EA, 2020, 2020 7TH INTERNATIONAL CONFERENCE ON INTERNET OF THINGS: SYSTEMS, MANAGEMENT AND SECURITY (IOTSMS), DOI 10.1109/IOTSMS52051.2020.9340214 Berstock JR, 2014, BONE JOINT RES, V3, P175, DOI 10.1302/2046-3758.36.2000239 Cherkasov A, 2009, ACS CHEM BIOL, V4, P65, DOI 10.1021/cb800240j Chiari W, 2022, POLYMERS-BASEL, V14, DOI 10.3390/polym14163297 Cockerill FR, 1999, ANTIMICROB AGENTS CH, V43, P199, DOI 10.1128/AAC.43.2.199 Farhat F, 2023, LIFE-BASEL, V13, DOI 10.3390/life13010143 Fatima N., 2022, ICT Analysis and Applications, P193, DOI [10.1007/978-981-16-5655-2_18/COVER, DOI 10.1007/978-981-16-5655-2_18/COVER] Fjell CD, 2009, J MED CHEM, V52, P2006, DOI 10.1021/jm8015365 Irshad RR, 2023, HEALTHCARE-BASEL, V11, DOI 10.3390/healthcare11040580 Kim JI, 2022, CLIN MICROBIOL REV, V35, DOI 10.1128/cmr.00179-21 Li XX, 2021, J ANTIBIOT, V74, P838, DOI 10.1038/s41429-021-00471-w Liu ZH, 2020, FRONT MICROBIOL, V11, DOI 10.3389/fmicb.2020.00048 Lv J, 2021, BIOSAF HEALTH, V3, P22, DOI 10.1016/j.bsheal.2020.08.003 Macesic N, 2020, MSYSTEMS, V5, DOI 10.1128/mSystems.00656-19 Marini S, 2022, GIGASCIENCE, V11, DOI 10.1093/gigascience/giac029 Melo MCR, 2021, COMMUN BIOL, V4, DOI 10.1038/s42003-021-02586-0 Moral-Muñoz JA, 2020, PROF INFORM, V29, DOI 10.3145/epi.2020.ene.03 Mufti T, 2021, 2021 INTERNATIONAL CONFERENCE ON COMPUTATIONAL PERFORMANCE EVALUATION (COMPE-2021), P874, DOI 10.1109/ComPE53109.2021.9752314 Murray CJL, 2022, LANCET, V399, P629, DOI 10.1016/S0140-6736(21)02724-0 Naaz S, 2022, INT J ENV RES PUB HE, V19, DOI 10.3390/ijerph192416777 Nguyen M, 2018, SCI REP-UK, V8, DOI 10.1038/s41598-017-18972-w Patience GS, 2017, HELIYON, V3, DOI 10.1016/j.heliyon.2017.e00300 Popa SL, 2022, ANTIBIOTICS-BASEL, V11, DOI 10.3390/antibiotics11111674 Schubert AM, 2015, MBIO, V6, DOI 10.1128/mBio.00974-15 Sinha M, 2018, CLIN MICROBIOL REV, V31, DOI 10.1128/CMR.00089-17 Stokes JM, 2020, CELL, V180, P688, DOI 10.1016/j.cell.2020.01.021 Tyers M, 2019, NAT REV MICROBIOL, V17, P141, DOI 10.1038/s41579-018-0141-x ValizadehAslani T, 2020, BIOLOGY-BASEL, V9, DOI 10.3390/biology9110365 van Eck NJ, 2010, SCIENTOMETRICS, V84, P523, DOI 10.1007/s11192-009-0146-3 Veltri D, 2018, BIOINFORMATICS, V34, P2740, DOI 10.1093/bioinformatics/bty179 Wang SY, 2022, FRONT MICROBIOL, V13, DOI 10.3389/fmicb.2022.841289 Weis CV, 2020, CLIN MICROBIOL INFEC, V26, P1310, DOI 10.1016/j.cmi.2020.03.014 Wiegand I, 2008, NAT PROTOC, V3, P163, DOI 10.1038/nprot.2007.521 Wilson LA, 2020, GLOBALIZATION HEALTH, V16, DOI 10.1186/s12992-020-00623-x Yang Y, 2018, BIOINFORMATICS, V34, P1666, DOI 10.1093/bioinformatics/btx801 Yasir M, 2022, ANTIBIOTICS-BASEL, V11, DOI 10.3390/antibiotics11111593 Yu YT, 2020, ANN TRANSL MED, V8, DOI 10.21037/atm-20-4235 NR 40 TC 5 Z9 5 U1 11 U2 23 PU FRONTIERS MEDIA SA PI LAUSANNE PA AVENUE DU TRIBUNAL FEDERAL 34, LAUSANNE, CH-1015, SWITZERLAND EI 1664-302X J9 FRONT MICROBIOL JI Front. Microbiol. PD MAY 26 PY 2023 VL 14 AR 1179312 DI 10.3389/fmicb.2023.1179312 PG 14 WC Microbiology WE Science Citation Index Expanded (SCI-EXPANDED) SC Microbiology GA I5SH4 UT WOS:001003372600001 PM 37303800 OA gold, Green Published DA 2024-09-05 ER PT J AU He, F AF He, Fei TI RESEARCH ON THE EVALUATION MODEL OF STUDENTS' FOREIGN LANGUAGE LEARNING SITUATION BASED ON ORIENTED ONLINE TEACHING COLLABORATION PLATFORM SO SCALABLE COMPUTING-PRACTICE AND EXPERIENCE LA English DT Article DE Online Education; Foreign Language Learning; Evaluation Model; N-Adaboost; DBSCAN ID COLLEGE ENGLISH; SYSTEM AB "Internet + Education" makes online teaching gradually penetrate the education industry, and makes the industry enter a great revolution based on information technology. The traditional student learning evaluation system cannot satisfy the actual demand of current learning evaluation. This paper constructs an evaluation model for the foreign language learning of online students. Firstly, the DBSCAN algorithm with distance optimization is used to conduct cluster analysis on the description indicators of student behavior, and the student groups with different behavior characteristics are obtained. Then the ANOVA F-test was used to extract the features of different student groups. Finally, a novel N-Adaboost algorithm based on multiple classifiers is proposed and a model is constructed to evaluate students' foreign language learning. The experimental results show that the accuracy of the evaluation model is 74.02% in the pass and fail groups and 73.74% in the excellent and non-excellent groups. Students' listening, speaking, and reading abilities are in a state of upward development overall through the online teaching collaboration platform, but their writing ability is obviously declining. There is a great improvement in foreign language vocabulary. This study provides a new perspective of thinking for the improvement of the quality of school teaching management, the analysis of students' behavior, and the evaluation of learning situations, and provides a new solution for the problem of students' learning situations in modern information teaching. C1 [He, Fei] Henan Polytech Univ, Sch Foreign Studies, Jiaozuo 454003, Peoples R China. C3 Henan Polytechnic University RP He, F (corresponding author), Henan Polytech Univ, Sch Foreign Studies, Jiaozuo 454003, Peoples R China. EM feihefhfh@outlook.com FU Henan Provincial Teaching Reform Research and Practice Project "Research and Practice on the Teaching Ecosystem of General Academic English in Science and Engineering Universities under the Double First Class Background" [2019SJGLX060] FX The research is supported by the Henan Provincial Teaching Reform Research and Practice Project "Research and Practice on the Teaching Ecosystem of General Academic English in Science and Engineering Universities under the Double First Class Background" (No. 2019SJGLX060). CR Clayson D, 2022, ASSESS EVAL HIGH EDU, V47, P313, DOI 10.1080/02602938.2021.1909702 Cook C, 2022, J FURTH HIGHER EDUC, V46, P172, DOI 10.1080/0309877X.2021.1895093 Fang CX, 2021, J INTELL FUZZY SYST, V40, P2709, DOI 10.3233/JIFS-189313 Gao H., 2022, International Journal Of Social Sciences In Universities, V5, P255 Jiao FM, 2021, INT J EMERG TECHNOL, V16, P68, DOI 10.3991/ijet.v16i14.24049 Li N, 2021, INT J EMERG TECHNOL, V16, P17, DOI 10.3991/ijet.v16i02.19731 Li Y., 2021, EAI INT C BIGIOT EDU, P216 Liu HY, 2021, INT J EMERG TECHNOL, V16, P173, DOI 10.3991/ijet.v16i02.19727 Lu C, 2021, J INTELL FUZZY SYST, V40, P3185, DOI 10.3233/JIFS-189357 Marks B, 2022, EDUC INF TECHNOL, V27, P1287, DOI 10.1007/s10639-021-10653-6 Marshall P, 2022, HIGH EDUC RES DEV, V41, P1992, DOI 10.1080/07294360.2021.1967887 Noor A., 2021, Pakistan Journal Of Humanities And Social Sciences, V9, P259 Okoye K, 2022, EDUC INF TECHNOL, V27, P3891, DOI 10.1007/s10639-021-10751-5 Sun ZM, 2021, COMPUT INTELL-US, V37, P1166, DOI 10.1111/coin.12351 Susanty L., 2021, Linguistics and Culture Review, V5, P303, DOI 10.21744/lingcure.v5ns1.1401 Tqt T., 2021, International Journal Of TESOL & Education, V1, P72 Wang HZ, 2021, INT J EMERG TECHNOL, V16, P226, DOI 10.3991/ijet.v16i17.24901 Wang Y, 2022, International Journal Of Social Science And Education Research, V5, P93 Yang ZH, 2021, INT J CONTIN ENG EDU, V31, P53, DOI 10.1504/IJCEELL.2021.111836 Yansong Zhang, 2022, International Journal of Continuing Engineering Education and Life-Long Learning, V32, P159, DOI 10.1504/IJCEELL.2022.121947 Zhang YQ, 2021, INT J EMERG TECHNOL, V16, P186, DOI 10.3991/ijet.v16i12.23325 NR 21 TC 0 Z9 0 U1 2 U2 2 PU UNIV VEST TIMISOARA, WEST UNIV TIMISOARA PI TIMISOARA PA BLVD VASILE PARVAN 4, TIMISOARA, TIMIS 300223, ROMANIA SN 1895-1767 J9 SCALABLE COMPUT-PRAC JI Scalable Comput.-Pract. Exp. PD JAN PY 2024 VL 25 IS 1 SI SI DI 10.12694/scpe.v25i1.2306 PG 16 WC Computer Science, Software Engineering WE Emerging Sources Citation Index (ESCI) SC Computer Science GA FE1M3 UT WOS:001143994100025 OA gold DA 2024-09-05 ER PT J AU Zhu, YP Park, HW AF Zhu, Yu Peng Park, Han Woo TI Publication, Collaboration, Citation Performance, and Triple Helix Innovation Gene of Artificial Intelligence Research in the Communication Field: Comparing Asia to the Rest of the World SO JOURNAL OF THE KNOWLEDGE ECONOMY LA English DT Article; Early Access DE Artificial intelligence; Communication; Collaboration; Citation; Network analysis; Asia; Triple helix ID QUADRUPLE HELIX; N-TUPLE AB Artificial intelligence (AI) in the communication field has become increasingly popular in recent years. This study collected data from 482 documents and cited references in the Web of Science database. It explores the knowledge structure related to AI in communication, combined with the triple helix innovation gene model. The analysis employed collaborative network analysis, two-mode network analysis, citation analysis, and quadratic assignment procedure-based correlation analysis. The results show that the most popular hotspots are human-machine communication, automatically generated publications, social media-mediated fake news, and some other AI-based applied research. Academic collaborations can be facilitated by transnational disciplinary leaders. China emerged as the core academic country with the greatest growth potential in Asia, while the core non-Asian country is the United States. In addition, the trend in collaboration among scholars in Asia is better than in non-Asian countries. However, concerning the characteristics of collaborating institutions, the triple-helix collaboration among universities, government bodies, and industries remains insufficient. Particularly, the collaboration between industry and government necessitates further development. C1 [Zhu, Yu Peng] Chongqing Univ, Sch Journalism & Commun, Chongqing Key Lab Intelligent Commun & Citys Int P, Chongqing, Peoples R China. [Park, Han Woo] Yeungnam Univ, Dept Media & Commun, Interdisciplinary Grad Programs Digital Convergenc, Gyongsan, South Korea. C3 Chongqing University; Yeungnam University RP Zhu, YP (corresponding author), Chongqing Univ, Sch Journalism & Commun, Chongqing Key Lab Intelligent Commun & Citys Int P, Chongqing, Peoples R China.; Park, HW (corresponding author), Yeungnam Univ, Dept Media & Commun, Interdisciplinary Grad Programs Digital Convergenc, Gyongsan, South Korea. EM yu.peng.zhu@cqu.edu.cn; hanpark@ynu.ac.kr CR Akbari M., 2022, Quality & Quantity, V56, P3993, DOI [10.1007/s11135-021-01295-4, DOI 10.1007/S11135-021-01295-4] Allen B, 2021, J AM COLL RADIOL, V18, P1489, DOI 10.1016/j.jacr.2021.08.022 Bai XM, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0162364 Cai YZ, 2022, TRIPLE HELIX-NETH, V9, P76, DOI 10.1163/21971927-BJA10029 Cai YZ, 2022, MINERVA, V60, P257, DOI 10.1007/s11024-021-09453-6 Cai YZ, 2015, SOC SCI INFORM, V54, P299, DOI 10.1177/0539018415583527 Carayannis Elias G., 2010, International Journal of Social Ecology and Sustainable Development, V1, P41, DOI 10.4018/jsesd.2010010105 Carayannis EG, 2022, TRIPLE HELIX-NETH, V9, P65, DOI 10.1163/21971927-BJA10028 Carayannis EG, 2021, J KNOWL ECON, V12, P2050, DOI 10.1007/s13132-021-00778-x Carayannis EG, 2009, INT J TECHNOL MANAGE, V46, P201, DOI 10.1504/IJTM.2009.023374 Choi J.-A., 2021, Journal of Contemporary Eastern Asia, V20, P19, DOI [10.17477/jcea.2021.20.2.01, 10.17477/JCEA.2021.20.2.019, DOI 10.17477/JCEA.2021.20.2.019] Choi J-A., 2024, Journal of Contemporary Eastern Asia, V23, P18, DOI [10.17477/jcea.2024.23.1.018, DOI 10.17477/JCEA.2024.23.1.018] Chung CJ, 2020, QUAL REP, V25, P3298 Du-Harpur X, 2020, BRIT J DERMATOL, V183, P423, DOI 10.1111/bjd.18880 Fister I, 2016, FRONT PHYS, V4, DOI 10.3389/fphy.2016.00049 Garcia KR, 2022, J COGN ENG DECIS MAK, V16, P237, DOI 10.1177/15553434221117001 Goyanes M, 2023, SCIENTOMETRICS, V128, P137, DOI 10.1007/s11192-022-04575-4 Guzman AL, 2020, NEW MEDIA SOC, V22, P70, DOI 10.1177/1461444819858691 Hah H, 2021, J MED INTERNET RES, V23, DOI 10.2196/33540 Hameed A, 2023, PROF INFORM, V32, DOI 10.3145/epi.2023.dic.03 Jamshed S., 2022, Quality Quantity, V56, P4269, DOI [10.1007/s11135-022-01315-x, DOI 10.1007/S11135-022-01315-X] Jimenez D.R., 2024, ROSA Journal, V1, P1, DOI [10.62478/BOTC4972, DOI 10.62478/BOTC4972] Johnson JA, 2010, J COMMUNITY PRACT, V18, P493, DOI 10.1080/10705422.2010.519683 Jones B, 2019, DIGIT JOURNAL, V7, P1032, DOI 10.1080/21670811.2019.1609371 Lakshman SA, 2020, IOP CONF SER-MAT SCI, V912, DOI 10.1088/1757-899X/912/3/032075 Lewis SC, 2019, DIGIT JOURNAL, V7, P409, DOI 10.1080/21670811.2019.1577147 Leydesdorff L, 2012, J KNOWL ECON, V3, P25, DOI 10.1007/s13132-011-0049-4 Liu D, 2023, J KNOWL ECON, V14, P4583, DOI 10.1007/s13132-022-01073-z Neyazi TA, 2020, ASIAN J COMMUN, V30, P39, DOI 10.1080/01292986.2019.1699938 Ozbay FA, 2020, PHYSICA A, V540, DOI 10.1016/j.physa.2019.123174 Park H.W., 2024, ROSA Journal, V1, P1, DOI [10.62478/ORVK4600, DOI 10.62478/ORVK4600] Park HW, 2023, TRIPLE HELIX-NETH, V10, P205, DOI 10.1163/21971927-12340015 Park HW, 2022, TRIPLE HELIX-NETH, V9, P43, DOI 10.1163/21971927-BJA10026 Park HW, 2014, SCIENTOMETRICS, V99, P203, DOI 10.1007/s11192-013-1124-3 Park S, 2020, PROF INFORM, V29, DOI 10.3145/epi.2020.sep.16 Phillips F., 2024, ROSA Journal, V1, P1, DOI [10.62478/WSMN9491, DOI 10.62478/WSMN9491] Simes PC., 2022, Triple Helix, V9, P247, DOI [10.1163/21971927-bja10034, DOI 10.1163/21971927-BJA10034] Túñez-López JM, 2018, PROF INFORM, V27, P750, DOI 10.3145/epi.2018.jul.04 TURING Alan, 1950, Mind, V59, P433, DOI [10.1007/978-1-4020-6710-5_3, DOI 10.1093/MIND/LIX.236.433] Yoon J, 2017, SCIENTOMETRICS, V113, P61, DOI 10.1007/s11192-017-2476-x Yoon S. W., 2020, Journal of Contemporary Eastern Asia, V19, P234, DOI [10.17477/jcea.2020.19.2.234, DOI 10.17477/JCEA.2020.19.2.234, 10.17477/JCEA.2020.19.2.234] Zhu YP, 2022, PROF INFORM, V31, DOI 10.3145/epi.2022.jul.08 NR 42 TC 0 Z9 0 U1 0 U2 0 PU SPRINGER PI NEW YORK PA ONE NEW YORK PLAZA, SUITE 4600, NEW YORK, NY, UNITED STATES SN 1868-7865 EI 1868-7873 J9 J KNOWL ECON JI J. Knowl. Econ. PD 2024 AUG 28 PY 2024 DI 10.1007/s13132-024-02280-6 EA AUG 2024 PG 21 WC Economics WE Social Science Citation Index (SSCI) SC Business & Economics GA E0A0J UT WOS:001299704800001 DA 2024-09-05 ER PT J AU Rybinski, K AF Rybinski, Krzysztof TI The forecasting power of the multi-language narrative of sell-side research: A machine learning evaluation SO FINANCE RESEARCH LETTERS LA English DT Article DE Economic research; Forecasting; Text mining; NLP; Sentiment analysis; Wordscores ID TEXT; FINANCE AB This is probably the first ever analysis of sell-side daily economic research to use Natural Language Processing, and it shows that the narrative of such reports can be used to predict economic time series. The NLP indexes are based on Polish and English language reports released at the same time and exhibit predictive power for different sets of economic variables. VAR models with the NLP indexes generate smaller forecast errors than ARIMA. The wordscores scaling model uses Monetary Policy Council statements to generate scores and allows NLP indexes to be created with better forecasting power than the sentiment-based ones. C1 [Rybinski, Krzysztof] Vistula Univ, Warsaw, Poland. [Rybinski, Krzysztof] Synerise Jsc, Warsaw, Poland. C3 Vistula University RP Rybinski, K (corresponding author), Stoklosy 3, PL-02787 Warsaw, Poland. EM rybinski@rybinski.eu RI Rybinski, Krzysztof/AAM-1608-2020 OI Rybinski, Krzysztof/0000-0002-4604-7993 FU National Science Centre in Poland [2018/29/B/HS4/01462] FX Financial support of the Opus 15 project 2018/29/B/HS4/01462 `Construction and testing of country-specific measures of economic uncertainty' of the National Science Centre in Poland is gratefully acknowledged. The author would like to thank the anonymous referee and Wojciech Charemza for many insightful comments on the earlier version of this paper, and Robin Hazlehurst for his excellent language editing. CR Bach MP, 2019, SUSTAINABILITY-BASEL, V11, DOI 10.3390/su11051277 Bennani H., 2018, REV EC, V69, P192 Fisher IE, 2016, INTELL SYST ACCOUNT, V23, P157, DOI 10.1002/isaf.1386 GRANGER CWJ, 1969, ECONOMETRICA, V37, P424, DOI 10.2307/1912791 Grimmer J, 2013, POLIT ANAL, V21, P267, DOI 10.1093/pan/mps028 Hayo B., 2018, FINANCE RES LETT Jansen D.J., 2010, DNB Working Paper, No. 259 Kumar BS, 2016, KNOWL-BASED SYST, V114, P128, DOI 10.1016/j.knosys.2016.10.003 Laver M, 2003, AM POLIT SCI REV, V97, P311 Loughran T, 2016, J ACCOUNT RES, V54, P1187, DOI 10.1111/1475-679X.12123 Nassirtoussi AK, 2014, EXPERT SYST APPL, V41, P7653, DOI 10.1016/j.eswa.2014.06.009 Rajput V., 2016, Int. J. Comput. Sci. Mobile Comput., V5, P500 Ravi K, 2015, KNOWL-BASED SYST, V89, P14, DOI 10.1016/j.knosys.2015.06.015 Rybinski K., 2018, STUDIA MEDIOZNAWCZE, V3, P31 Rybinski K., 2019, Bank i Kredyt, V50, P1 Rybinski K., 2017, E POLITIKON, V24, P162 Sun SL, 2017, INFORM FUSION, V36, P10, DOI 10.1016/j.inffus.2016.10.004 Turegun Nida., 2019, Curr. Anal. Econ. Financ, V1, P18 Xing FZ, 2018, ARTIF INTELL REV, V50, P49, DOI 10.1007/s10462-017-9588-9 Zako-Zielinska M., 2015, P INT C REC ADV NAT, P721 NR 20 TC 0 Z9 0 U1 1 U2 30 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 1544-6123 EI 1544-6131 J9 FINANC RES LETT JI Financ. Res. Lett. PD MAY PY 2020 VL 34 AR 101261 DI 10.1016/j.frl.2019.08.009 PG 7 WC Business, Finance WE Social Science Citation Index (SSCI) SC Business & Economics GA MO2EQ UT WOS:000551346400034 DA 2024-09-05 ER PT J AU Long, YC Cao, ZW Mao, Y Liu, XR Gao, Y Zhou, CZ Zheng, X AF Long, Yuchong Cao, Zhengwei Mao, Yan Liu, Xinran Gao, Yan Zhou, Chuanzhi Zheng, Xin TI Research on Evaluation Elements of Urban Agricultural Green Bases: A Causal Inference-Based Approach SO LAND LA English DT Article DE urban agriculture; green base evaluation; Bayesian network; causal inference ID FUTURE AB The construction of agricultural green bases is an important part of sustainable agricultural development. This paper takes urban agriculture green bases in Shanghai as an example, choosing base construction elements, production, and ecological construction elements, as well as status assessment elements as evaluation indicators, in order to construct an evaluation system for urban agriculture green bases. Using a Bayesian network, typical urban agricultural green bases in six agricultural districts of Shanghai were evaluated. The construction of the evaluation system was analyzed by using intervention, counterfactual inference, and other methods to analyze the correlation and importance of the indicators. The results show that there are differences among the bases in various indicators, but they all reach a high level overall; base construction elements as well as production and ecological construction elements are the main factors affecting the level of urban agricultural green bases; improving the base management system (BMS), innovativeness (IN), and economic benefits (EBs) are key ways to improve the production capacity of agriculture green bases. Green base construction should pay attention to top-level design, coordinate the planning of industrial layout, technical mode, scientific and technological support, and supporting policies. Based on the conclusion, this paper provides some useful recommendations for creating urban agriculture green bases, which help promote urban agriculture transformation, upgrading, and coordinating development between urban and rural areas. C1 [Long, Yuchong; Cao, Zhengwei; Liu, Xinran; Gao, Yan; Zhou, Chuanzhi; Zheng, Xin] Shanghai Jiao Tong Univ, Coll Agr & Biol, Dongchuan Rd, Shanghai 200240, Peoples R China. [Mao, Yan] Zhejiang Univ, Inst Publ Policy, Hangzhou 310058, Peoples R China. C3 Shanghai Jiao Tong University; Zhejiang University RP Cao, ZW (corresponding author), Shanghai Jiao Tong Univ, Coll Agr & Biol, Dongchuan Rd, Shanghai 200240, Peoples R China. EM ayinmostima@sjtu.edu.cn; zhengweiskylark@sjtu.edu.cn; myy0716@outlook.com; roxas5@sjtu.edu.cn; gao.yan@sjtu.edu.cn; zhouchuanzhi@sjtu.edu.cn; zhwngxin@sjtu.edu.cn OI cao, zhengwei/0000-0002-8101-9568; Mao, Yan/0009-0004-4772-1988; Liu, Xinran/0000-0003-2284-7547; Yuchong, Long/0000-0002-3271-9760 FU Shanghai Philosophy and Social Science Program [17Z2017030008]; Shanghai Agriculture Applied Technology Development Program, China [T20200201]; Shanghai Pujiang Talent Program [16Z2022010010] FX This work was co-supported by the Shanghai Philosophy and Social Science Program(17Z2017030008), Shanghai Agriculture Applied Technology Development Program, China (T20200201)and Shanghai Pujiang Talent Program (16Z2022010010). CR Ackerman K, 2014, ECON SOC REV, V45, P189 Akinci H, 2013, COMPUT ELECTRON AGR, V97, P71, DOI 10.1016/j.compag.2013.07.006 Ankan Ankur., 2015, pgmpy: Probabilistic graphical models using python, DOI 10.25080/MAJORA-7B98E3ED-001 [Anonymous], 2012, Farming systems research into the 21st century: the new dynamic, DOI [10.1007/978-94-007-4503-2_20, DOI 10.1007/978-94-007-4503-2_20, DOI 10.1007/978-94-007-4503-220, DOI 10.1007/978-94-007-4503-2] [Anonymous], 2003, Exploring Artificial Intelligence in the New Millennium, DOI DOI 10.5555/779343.779352 Bingen Jim., 2006, AGR STANDARDS Bloebaum P, 2024, Arxiv, DOI arXiv:2206.06821 Cao A., 2022, JIANGSU AGR SCI, V3, P125 Caputo P, 2020, SCI TOTAL ENVIRON, V729, DOI 10.1016/j.scitotenv.2020.138819 Chen YH, 2017, J CLEAN PROD, V164, P258, DOI 10.1016/j.jclepro.2017.06.216 Coles R, 2018, LANDSCAPE URBAN PLAN, V170, P1, DOI 10.1016/j.landurbplan.2017.10.003 Colson-Fearon B, 2022, INT J ENV RES PUB HE, V19, DOI 10.3390/ijerph191912752 Deng XZ, 2019, TECHNOL FORECAST SOC, V144, P394, DOI 10.1016/j.techfore.2018.01.027 Duvernoy I, 2018, J RURAL STUD, V57, P25, DOI 10.1016/j.jrurstud.2017.10.007 Elsheikh R, 2013, COMPUT ELECTRON AGR, V93, P98, DOI 10.1016/j.compag.2013.02.003 Flaxman SR, 2016, ACM T INTEL SYST TEC, V7, DOI 10.1145/2806892 Górna A, 2021, LAND-BASEL, V10, DOI 10.3390/land10090987 Hardman M, 2018, LANDSCAPE URBAN PLAN, V170, P6, DOI 10.1016/j.landurbplan.2017.08.015 Ilieva RT, 2022, LAND-BASEL, V11, DOI 10.3390/land11050622 Jacobi P., 2000, Growing cities, growing food: urban agriculture on the policy agenda. A reader on urban agriculture, P257 Kalisch M, 2007, J MACH LEARN RES, V8, P613 Kiminami L, 2022, ASIA-PAC J REG SCI, V6, P541, DOI 10.1007/s41685-022-00233-y Kingsley J, 2021, URBAN FOR URBAN GREE, V60, DOI 10.1016/j.ufug.2021.127059 Kulak M, 2013, LANDSCAPE URBAN PLAN, V111, P68, DOI 10.1016/j.landurbplan.2012.11.007 Lal R., 1997, Methods for assessment of soil degradation., P17 Li PY, 2018, ENVIRON EARTH SCI, V77, DOI 10.1007/s12665-018-7968-3 Liu Z., 2021, J FOOD SAF QUAL INSP, V1, P355 Tahat MM, 2020, SUSTAINABILITY-BASEL, V12, DOI 10.3390/su12124859 Magwaza ST, 2020, SCI TOTAL ENVIRON, V698, DOI 10.1016/j.scitotenv.2019.134154 Merrington G., 2002, Agricultural Pollution: Environmental problems and practical solutions Mingxing L., 2021, CONTEMP SOC SCI, P11 Mutersbaugh T, 2005, J RURAL STUD, V21, P389, DOI 10.1016/j.jrurstud.2005.08.003 Pearl J, 2009, STAT SURV, V3, P96, DOI 10.1214/09-SS057 Qiu GY, 2013, J INTEGR AGR, V12, P1307, DOI 10.1016/S2095-3119(13)60543-2 Rao NTY, 2022, SUSTAIN CITIES SOC, V85, DOI 10.1016/j.scs.2022.104063 Robineau O, 2018, LANDSCAPE URBAN PLAN, V170, P48, DOI 10.1016/j.landurbplan.2017.09.010 Runge J., 2016, P EGU GEN ASS 2016 V Sanyé-Mengual E, 2019, SUSTAINABILITY-BASEL, V11, DOI 10.3390/su11154221 Sanyé-Mengual E, 2018, SUSTAINABILITY-BASEL, V10, DOI 10.3390/su10072175 Sarmah K., 2018, INT J INNOV RES ENG, V5, P30 Sayer J, 2013, P NATL ACAD SCI USA, V110, P8345, DOI 10.1073/pnas.1208054110 Schjonning P, 2004, MANAGING SOIL QUALITY: CHALLENGES IN MODERN AGRICULTURE, P1, DOI 10.1079/9780851996714.0001 Sharma A, 2020, Arxiv, DOI arXiv:2011.04216 Shen D., 2000, 3912000 NYT MIN AGR Specht K, 2014, AGR HUM VALUES, V31, P33, DOI 10.1007/s10460-013-9448-4 Teshome M, 2016, Environ Syst Res, V5, P1, DOI DOI 10.1186/S40068-016-0064-3 Tong R, 2022, ENVIRON SCI POLLUT R, V29, P29808, DOI 10.1007/s11356-022-18523-5 Tovar LG, 2005, J RURAL STUD, V21, P461, DOI 10.1016/j.jrurstud.2005.10.002 UNGA, 2015, TRANSF OUR WORLD 203 Vejre H., 2016, Urban Agriculture Europe, P18 Yoshida S, 2019, SUSTAINABILITY-BASEL, V11, DOI 10.3390/su11102887 Zhong C, 2020, J CLEAN PROD, V276, DOI 10.1016/j.jclepro.2020.122686 Zhou P., 2022, 13892022 GB31T Zhou Y, 2014, INT J APPROX REASON, V55, P1252, DOI 10.1016/j.ijar.2014.02.008 NR 54 TC 0 Z9 0 U1 2 U2 17 PU MDPI PI BASEL PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND EI 2073-445X J9 LAND-BASEL JI Land PD AUG PY 2023 VL 12 IS 8 AR 1636 DI 10.3390/land12081636 PG 27 WC Environmental Studies WE Social Science Citation Index (SSCI) SC Environmental Sciences & Ecology GA Q2FE9 UT WOS:001055719300001 OA Green Published, gold DA 2024-09-05 ER PT C AU Cao, Y Tong, HF Yu, J AF Cao Yan Tong Hefeng Yu Jie BE Zhu, KL Zhang, H TI Overall and by Fields Research Output Evaluation of Chinese Mainland Universities Based on ESI Database SO COMPREHENSIVE EVALUATION OF ECONOMY AND SOCIETY WITH STATISTICAL SCIENCE LA English DT Proceedings Paper CT 3rd International Institute of Statistics and Management Engineering Symposium CY 2010 CL Wei Hai Lu, PEOPLES R CHINA DE Bibliometrics; Research output; AI; CPP/FCSm ID RESEARCH PERFORMANCE; BASIC RESEARCH; BIBLIOMETRIC ANALYSIS; MOLECULAR-BIOLOGY; DEPARTMENTS; PUBLICATIONS; EFFICIENCY; DIMENSION AB The research performance of mainland China universities is evaluated in this study from the global perspective. Based on the Essential Science Indicators (ESI) database, the main research concern is the academic output in overall fields and the strength in certain fields of top 20 universities ranking by citation. Indicators about the numbers of paper and citation are obtained from ESI to interpret the general academic performance of universities. The other indicators are considered as the population of faculty, the activity index, as well as the relative impact index. The statistical results show that the universities in mainland China in terms of quality and quantity of research output have considerable gap. Meanwhile, a large degree of influence to research concentrated in some specific fields is existed. C1 [Cao Yan; Tong Hefeng; Yu Jie] Inst Sci & Tech Informat China, Beijing 100038, Peoples R China. EM caoyan@istic.ac.cn CR [程莹 CHENG Ying], 2007, [科学学与科学技术管理, Science of Science & Management of S.& T.], V28, P132 COLMAN AM, 1995, SCIENTOMETRICS, V32, P49, DOI 10.1007/BF02020188 GARFIELD E, 1955, SCIENCE, V122, P108, DOI 10.1126/science.122.3159.108 Guz A.N., 2005, INT APPL MECH+, V41, P3 He TW, 2005, SCIENTOMETRICS, V62, P249, DOI 10.1007/s11192-005-0018-4 Herbertz H, 1995, RES POLICY, V24, P959, DOI 10.1016/0048-7333(94)00814-0 Hu XJ, 2007, SCIENTOMETRICS, V72, P389, DOI 10.1007/s11192-006-1733-1 Hu XJ, 2009, SCIENTOMETRICS, V81, P475, DOI 10.1007/s11192-008-2202-9 Huang MH, 2006, SCIENTOMETRICS, V67, P419, DOI 10.1556/Scient.67.2006.3.6 ISTIC (Institute of Scientific and Technical Information of China), 1999, ANN RES REP CHIN SCI Kim MJ, 2000, J INFORM SCI, V26, P111, DOI 10.1177/016555150002600204 MALCIENE L, 1989, SCIENTOMETRICS, V15, P73, DOI 10.1007/BF02021800 Meng W, 2006, SCIENTOMETRICS, V69, P85, DOI 10.1007/s11192-006-0140-y Moed H.F., 2007, Developing bibliometric indicators of research performance in computer science: an exploratory study MOED HF, 1985, SCIENTOMETRICS, V8, P149, DOI 10.1007/BF02016933 NEDERHOF AJ, 1992, SCIENTOMETRICS, V24, P393, DOI 10.1007/BF02051037 Pomfret Richard., 2003, Australian Economic Papers, V42, P418, DOI DOI 10.1111/AEPA.2003.42.ISSUE-4 Pouris A, 2007, HIGH EDUC, V54, P501, DOI 10.1007/s10734-006-9034-4 Thomson Scientific, CIT THRESH Wu Y.S., 2001, CHINESE J SCI TECHNI, V12, P110 ZACHOS G, 1991, SCIENTOMETRICS, V21, P195, DOI 10.1007/BF02017569 Zhang HQ, 1996, SCIENTOMETRICS, V37, P177 NR 22 TC 1 Z9 1 U1 0 U2 8 PU AUSSINO ACAD PUBL HOUSE PI MARRICKVILLE PA PO BOX 893, MARRICKVILLE, NSW 2204 00000, AUSTRALIA BN 978-1-921712-09-8 PY 2010 BP 485 EP 494 PG 10 WC Economics; Social Sciences, Mathematical Methods WE Conference Proceedings Citation Index - Social Science & Humanities (CPCI-SSH) SC Business & Economics; Mathematical Methods In Social Sciences GA BYE74 UT WOS:000298265300084 DA 2024-09-05 ER PT J AU Musa, IH Zamit, I Xu, K Boutouhami, K Qi, GL AF Musa, Ibrahim Hussein Zamit, Ibrahim Xu, Kang Boutouhami, Khaoula Qi, Guilin TI A comprehensive bibliometric analysis on opinion mining and sentiment analysis global research output SO JOURNAL OF INFORMATION SCIENCE LA English DT Article DE Bibliometric; opinion mining; Scopus; sentiment analysis AB The rise of the Internet and social media (i.e. reviews, forum discussions, blogs and social networks) constituted an interesting source to detect user opinion trends. This study examines the global publication output on opinion mining and sentiment analysis from documents published in 2000 to 2020. Bibliometric indicators on the trends, most cited papers, authors, institutions, countries, funding agencies and research subject areas were independently screened and analysed using bibliometrix package in R. A total of 7603 eligible documents were identified from 2000 to 2020. The total number of citations for all publications was 129,251, with an average of 17.0 citations per publication. About 14,629 authors wrote those documents with 1.93 authors per document and a collaboration index of 1.98. The most prolific author was Cambria Erik, with 47 publications and h-index of 42. The leading countries for research were China with n = 824, India with n = 576 and the United States with n = 244 publications. Lecture Notes in Computer Science proceedings was the top-ranked venue for publications with n = 434, h-index of 32 and 4598 total citation scores. National Natural Science Foundation of China was the top-ranked funding agency for research, and most of the publications were computer science (n = 6320) documents. The study provides an in-depth assessment of the landmark of the hot research topic and acknowledges the contribution of the most productive and active authors across different countries in the world. In addition, the findings could support the younger scholars in their future research direction and improve the efficiency in potential future research collaborations and projects. C1 [Musa, Ibrahim Hussein; Boutouhami, Khaoula; Qi, Guilin] Southeast Univ, Sch Comp Sci & Engn, Nanjing 211189, Jiangsu, Peoples R China. [Musa, Ibrahim Hussein; Boutouhami, Khaoula; Qi, Guilin] Southeast Univ, Key Lab Comp Network & Informat Integrat, Minist Educ, Nanjing, Jiangsu, Peoples R China. [Zamit, Ibrahim] Shenzhen Inst Adv Technol, Ctr High Performance Comp, Shenzhen, Guangdong, Peoples R China. [Xu, Kang] Nanjing Univ Posts & Telecommun, Sch Comp Sci, Nanjing, Jiangsu, Peoples R China. C3 Southeast University - China; Southeast University - China; Chinese Academy of Sciences; Shenzhen Institute of Advanced Technology, CAS; Nanjing University of Posts & Telecommunications RP Qi, GL (corresponding author), Southeast Univ, Sch Comp Sci & Engn, Nanjing 211189, Jiangsu, Peoples R China. EM gqi@seu.edu.cn RI Zhang, Yihao/JGM-3514-2023; Wang, Jiacheng/ABE-5948-2020; xu, lingzhi/JVZ-8748-2024; Liu, Song/KCX-6842-2024; Cheng, Yuan/JKJ-0794-2023; Musa, Ibrahim/GYJ-0462-2022; Wang, Peilin/JWP-6008-2024 OI Wang, Jiacheng/0000-0003-4327-1508; BOUTOUHAMI, khaoula/0000-0001-9631-9507 CR Akintunde TY, 2021, ASIAN J PSYCHIATR, V63, DOI 10.1016/j.ajp.2021.102753 Akintunde TY, 2021, HUM VACC IMMUNOTHER, V17, P4246, DOI 10.1080/21645515.2021.1948785 Appel O, 2015, ACTA POLYTECH HUNG, V12, P87, DOI 10.12700/APH.12.3.2015.3.6 Aria M, 2017, J INFORMETR, V11, P959, DOI 10.1016/j.joi.2017.08.007 Bakkalbasi Nisa, 2006, Biomed Digit Libr, V3, P7, DOI 10.1186/1742-5581-3-7 Bakshi RK, 2016, PROCEEDINGS OF THE 10TH INDIACOM - 2016 3RD INTERNATIONAL CONFERENCE ON COMPUTING FOR SUSTAINABLE GLOBAL DEVELOPMENT, P452 Ceri S., 2013, WEB INFORM RETRIEVAL, P3, DOI [10.1007/978-3-642-39314-3_1, DOI 10.1007/978-3-642-39314-3_1] Chen XL, 2020, COGN COMPUT, V12, P1097, DOI 10.1007/s12559-020-09745-1 DILLON M, 1983, INFORM PROCESS MANAG, V19, P402, DOI 10.1016/0306-4573(83)90062-6 Feldman R, 2013, COMMUN ACM, V56, P82, DOI 10.1145/2436256.2436274 Hirsch JE, 2005, P NATL ACAD SCI USA, V102, P16569, DOI 10.1073/pnas.0507655102 Keramatfar A, 2019, J INF SCI, V45, P3, DOI 10.1177/0165551518761013 Larson RR, 2010, J AM SOC INF SCI TEC, V61, P852, DOI 10.1002/asi.21234 Liu B, 2011, DATA CENTRIC SYST AP, P459, DOI 10.1007/978-3-642-19460-3_11 Mäntylä MV, 2018, COMPUT SCI REV, V27, P16, DOI 10.1016/j.cosrev.2017.10.002 Medhat W, 2014, AIN SHAMS ENG J, V5, P1093, DOI 10.1016/j.asej.2014.04.011 Musa T.H., 2021, Bioact. Carbohydr. Diet. Fibre., V25, DOI DOI 10.1016/J.BCDF.2020.100254 Pang B., 2008, INFORM RETRIEVAL, V2, P1, DOI DOI 10.1561/1500000011 Piryani R, 2017, INFORM PROCESS MANAG, V53, P122, DOI 10.1016/j.ipm.2016.07.001 Schutze H., 2008, Introduction to information retrieval, V39, P234 Singh V, 2014, 2014 5TH INTERNATIONAL CONFERENCE CONFLUENCE THE NEXT GENERATION INFORMATION TECHNOLOGY SUMMIT (CONFLUENCE), P232, DOI 10.1109/CONFLUENCE.2014.6949318 Tripathy A, 2015, PROCEDIA COMPUT SCI, V57, P821, DOI 10.1016/j.procs.2015.07.523 Van Eck NJ., 2013, Leiden: Universiteit Leiden, V1, P1, DOI DOI 10.1016/J.INFFUS.2016.12.001 Yang K., 2006, Proc. Am. Soc. Inf. Sci. Technol, V43, P1, DOI DOI 10.1002/MEET.14504301185 Zhang J, 2016, J ASSOC INF SCI TECH, V67, P967, DOI 10.1002/asi.23437 Zou H, 2015, 2015 INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE AND COMPUTATIONAL INTELLIGENCE (CSCI), P175, DOI 10.1109/CSCI.2015.44 Zupic I, 2015, ORGAN RES METHODS, V18, P429, DOI 10.1177/1094428114562629 NR 27 TC 3 Z9 3 U1 3 U2 45 PU SAGE PUBLICATIONS LTD PI LONDON PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND SN 0165-5515 EI 1741-6485 J9 J INF SCI JI J. Inf. Sci. PD DEC PY 2023 VL 49 IS 6 BP 1506 EP 1516 DI 10.1177/01655515211061866 EA SEP 2022 PG 11 WC Computer Science, Information Systems; Information Science & Library Science WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Computer Science; Information Science & Library Science GA Y8SE2 UT WOS:000852202900001 DA 2024-09-05 ER PT J AU Lee, JW Han, DH AF Lee, Jea Woog Han, Doug Hyun TI Data Analysis of Psychological Approaches to Soccer Research: Using LDA Topic Modeling SO BEHAVIORAL SCIENCES LA English DT Article DE soccer; psychology; research trends; data science; topic modeling; bibliometric ID YOUTH SOCCER; ELITE SOCCER; TALENT DEVELOPMENT; INJURY PREVENTION; TEAM PERFORMANCE; DECISION-MAKING; PENALTY KICKS; FOOTBALL; PLAYERS; PERCEPTIONS AB This study identifies the topical areas of research that have attempted a psychological approach to soccer research over the last 33 years (1990-2022) and explored the growth and stagnation of the topic as well as research contributions to soccer development. Data were obtained from 1863 papers from the Web of Science database. The data were collected through keyword text mining and data preprocessing to determine the keywords needed for analysis. Based on the keywords, latent Dirichlet allocation-based topic modeling analysis was performed to analyze the topic distribution of papers and explore research trends by topic area. The topic modeling process included four topic area and fifty topics. The "Coaching Essentials in Football" topic area had the highest frequency, but it was not statistically identified as a trend. However, coaching, including training, is expected to continue to be an important research topic, as it is a key requirement for success in the highly competitive elite football world. Interest in the research field of "Psychological Skills for Performance Development" has waned in recent years. This may be due to the predominance of other subject areas rather than a lack of interest. Various high-tech interventions and problem-solving attempts are being made in this field, providing opportunities for qualitative and quantitative expansion. "Motivation, cognition, and emotion" is a largely underrated subject area in soccer psychology. This could be because survey-based psychological evaluation attempts have decreased as the importance of rapid field application has been emphasized in recent soccer-related studies. However, measuring psychological factors contributes to the study of football psychology through a new methodology and theoretical background. Recognizing the important role of psychological factors in player performance and mental management, as well as presenting new research directions and approaches that can be directly applied to the field, will advance soccer psychology research. C1 [Lee, Jea Woog] Chung Ang Univ, Intelligent Informat Proc Lab, Seoul 06974, South Korea. [Han, Doug Hyun] Chung Ang Univ Hosp, Dept Psychiat, Seoul 06974, South Korea. C3 Chung Ang University; Chung Ang University; Chung Ang University Hospital RP Han, DH (corresponding author), Chung Ang Univ Hosp, Dept Psychiat, Seoul 06974, South Korea. EM yyizeuks@cau.ac.kr; hduk70@gmail.com OI Han, Doug Hyun/0000-0002-8314-0767 CR Abbas K, 2015, DEV NEUROPSYCHOL, V40, P51, DOI 10.1080/87565641.2014.990455 Adams A, 2018, J GENDER STUD, V27, P313, DOI 10.1080/09589236.2017.1391073 Adams A, 2011, J HOMOSEXUAL, V58, P579, DOI 10.1080/00918369.2011.563654 Adams A, 2010, J LANG SOC PSYCHOL, V29, P278, DOI 10.1177/0261927X10368833 Agustí D, 2020, FRONT PSYCHOL, V11, DOI 10.3389/fpsyg.2020.582209 [Anonymous], 2013, Rev. Eur. Stud, DOI DOI 10.5539/RES.V5N5P18 Baltzell A, 2014, J CLIN SPORT PSYCHOL, V8, P221, DOI 10.1123/jcsp.2014-0030 Becerra-Patino Boryi, 2023, Journal of Physical Education and Sport, V23, P76, DOI 10.7752/jpes.2023.01009 Behnke M, 2019, CURR PSYCHOL, V38, P504, DOI 10.1007/s12144-017-9629-1 Bouguezzi R, 2020, SPORT SCI HLTH, V16, P297, DOI 10.1007/s11332-019-00605-6 Branquinho L, 2021, STRENGTH COND J, V43, P96, DOI 10.1519/SSC.0000000000000629 Bruner MW, 2010, PSYCHOL SPORT EXERC, V11, P133, DOI 10.1016/j.psychsport.2009.05.008 Cefis M, 2022, ELECTRON J APPL STAT, V15, P232, DOI 10.1285/i20705948v15n1p232 Çetinkalp ZK, 2011, SOC BEHAV PERSONAL, V39, P925, DOI 10.2224/sbp.2011.39.7.925 Cheng X, 2018, AGR ECOSYST ENVIRON, V267, P1, DOI 10.1016/j.agee.2018.07.022 Clemente FM, 2013, INT J SPORTS SCI COA, V8, P723, DOI 10.1260/1747-9541.8.4.723 Cocco A.R., 2019, SAGE Business Cases Originals Cocking C, 2014, J COMMUNITY APPL SOC, V24, P86, DOI 10.1002/casp.2153 Colantonio A, 2020, CAN PSYCHOL, V61, P163, DOI 10.1037/cap0000208 Corcoran CM, 2020, SCHIZOPHR RES, V226, P158, DOI 10.1016/j.schres.2020.04.032 Coutinho D, 2018, HUM MOVEMENT SCI, V58, P287, DOI 10.1016/j.humov.2018.03.004 Dean F, 2022, SPORTS, V10, DOI 10.3390/sports10040060 Dohme LC, 2019, SPORT PSYCHOL, V33, P261, DOI 10.1123/tsp.2018-0014 Donachie TC, 2022, J APPL SPORT PSYCHOL, V34, P564, DOI 10.1080/10413200.2020.1819472 Duncan MJ, 2022, INT J SPORTS SCI COA, V17, P761, DOI 10.1177/17479541211073547 DURBIN J, 1971, BIOMETRIKA, V58, P1 Eckardt VC, 2022, PSYCHOL SPORT EXERC, V58, DOI 10.1016/j.psychsport.2021.102089 Egan CD, 2007, J MOTOR BEHAV, V39, P423, DOI 10.3200/JMBR.39.5.423-432 Erikstad MK, 2021, SPORT PSYCHOL, V35, P131, DOI 10.1123/tsp.2020-0107 Fernandes T, 2021, FRONT PSYCHOL, V12, DOI 10.3389/fpsyg.2021.798201 Fleming DJM, 2023, INT J SPORT EXERC PS, V21, P491, DOI 10.1080/1612197X.2022.2058584 Fontana FE, 2009, J SPORT EXERCISE PSY, V31, P135, DOI 10.1123/jsep.31.2.135 Ford P, 2007, J MOTOR BEHAV, V39, P481, DOI 10.3200/JMBR.39.6.481-490 Freemantle AWJ, 2021, PSYCHOL SPORT EXERC, V57, DOI 10.1016/j.psychsport.2021.102050 Gammelsæter H, 2008, EUR SPORT MANAG Q, V8, P1, DOI 10.1080/16184740701814365 Gilbourne D, 2006, PSYCHOL SPORT EXERC, V7, P325, DOI 10.1016/j.psychsport.2005.04.004 Glavas D, 2023, COGN RES, V8, DOI 10.1186/s41235-023-00473-2 Goldstein JD, 2008, J APPL SOC PSYCHOL, V38, P1442, DOI 10.1111/j.1559-1816.2008.00355.x Gómez MA, 2021, BIOL SPORT, V38, P603, DOI 10.5114/biolsport.2021.101600 Gouttebarge V, 2015, J HUM KINET, V49, P277, DOI 10.1515/hukin-2015-0130 Haddad M, 2013, PHYSIOL BEHAV, V119, P185, DOI 10.1016/j.physbeh.2013.06.016 Hammami A, 2018, J SPORT MED PHYS FIT, V58, P1446, DOI 10.23736/S0022-4707.17.07420-5 Hansen AA, 2019, J CLIN SPORT PSYCHOL, V13, P543, DOI 10.1123/jcsp.2018-0063 Hassan MFH, 2015, INT J SPORTS SCI COA, V10, P487, DOI 10.1260/1747-9541.10.2-3.487 Hendry DT, 2018, J SPORT SCI, V36, P2009, DOI 10.1080/02640414.2018.1432236 Hennrikus WL, 1998, PEDIATRICS, V102, P735 Henriksen K, 2010, SCAND J MED SCI SPOR, V20, P122, DOI 10.1111/j.1600-0838.2010.01187.x Hirose K, 2022, SCI MED FOOTBALL, V6, P660, DOI 10.1080/24733938.2022.2133161 Hirschberg J, 2015, SCIENCE, V349, P261, DOI 10.1126/science.aaa8685 Hoigaard R, 2017, INT J SPORTS SCI COA, V12, P697, DOI 10.1177/1747954117738843 Hoigaard R, 2008, INT J SPORTS SCI COA, V3, P241, DOI 10.1260/174795408785100581 Holt JE, 2012, PHYS EDUC SPORT PEDA, V17, P231, DOI 10.1080/17408989.2012.690568 Horrocks DE, 2016, INT J SPORTS SCI COA, V11, P673, DOI 10.1177/1747954116667105 Hosp B, 2021, FRONT SPORTS ACT LIV, V3, DOI 10.3389/fspor.2021.692526 INKLAAR H, 1994, SPORTS MED, V18, P55, DOI 10.2165/00007256-199418010-00006 Jelodar H, 2019, MULTIMED TOOLS APPL, V78, P15169, DOI 10.1007/s11042-018-6894-4 Jin G, 2022, PSYCHIAT DANUB, V34, pS939 Jones B, 2023, PHYS EDUC SPORT PEDA, DOI 10.1080/17408989.2022.2153817 Jordana A, 2023, J RATION-EMOT COGN-B, V41, P454, DOI 10.1007/s10942-022-00491-x Kamyab M, 2021, APPL SCI-BASEL, V11, DOI 10.3390/app112311255 Keatlholetswe L, 2019, RES Q EXERCISE SPORT, V90, P71, DOI 10.1080/02701367.2018.1563277 Kennedy KW, 2021, PSYCHOL MEN MASCULIN, V22, P16, DOI 10.1037/men0000261 Kim S, 2021, J SAFETY RES, V77, P255, DOI 10.1016/j.jsr.2021.03.008 Kirkendall DT, 2022, SCAND J MED SCI SPOR, V32, P12, DOI 10.1111/sms.14019 Klarin A, 2019, TECHNOL FORECAST SOC, V149, DOI 10.1016/j.techfore.2019.119776 Konter E., 2019, Football Psychology: From Theory to Practice Kotrba V, 2019, J BEHAV EXP ECON, V78, P89, DOI 10.1016/j.socec.2018.12.010 Kroshus E, 2017, SPORT PSYCHOL, V31, P332, DOI 10.1123/tsp.2016-0067 Kwon J, 2020, PSYCHOL SPORT EXERC, V50, DOI 10.1016/j.psychsport.2020.101730 Larkin P, 2016, J SPORT SCI, V34, P1305, DOI 10.1080/02640414.2015.1126673 Lavallee D, 2005, SPORT PSYCHOL, V19, P193, DOI 10.1123/tsp.19.2.193 Lee JW, 2022, FRONT PSYCHOL, V13, DOI 10.3389/fpsyg.2022.1033872 Lopes JE, 2014, HUM MOVEMENT SCI, V36, P199, DOI 10.1016/j.humov.2014.04.004 Lu ZF, 2002, PERCEPT MOTOR SKILL, V95, P213 Ma Y, 2023, APPL INTELL, V53, P12859, DOI 10.1007/s10489-022-04027-9 MacNamara A, 2015, SPORT PSYCHOL, V29, P73, DOI 10.1123/tsp.2014-0021 Malinauskas R, 2023, HEALTHCARE-BASEL, V11, DOI 10.3390/healthcare11142096 McMorris T, 1996, PERCEPT MOTOR SKILL, V82, P931, DOI 10.2466/pms.1996.82.3.931 Mehrsafar AH, 2021, PSYCHONEUROENDOCRINO, V129, DOI 10.1016/j.psyneuen.2021.105269 Mills A, 2012, J SPORT SCI, V30, P1593, DOI 10.1080/02640414.2012.710753 Moll T, 2021, PSYCHOL SPORT EXERC, V54, DOI 10.1016/j.psychsport.2021.101913 Moore M, 2021, CHILD ADOLESC SOC WO, V38, P409, DOI 10.1007/s10560-021-00770-z Morgan EA, 2018, INT J SPORTS SCI COA, V13, P122, DOI 10.1177/1747954117707480 Mullin B., 2014, Sport marketing, V4th Murr D, 2018, EUR J SPORT SCI, V18, P62, DOI 10.1080/17461391.2017.1386719 Musculus L, 2021, J SPORT EXERCISE PSY, V43, P365, DOI 10.1123/jsep.2020-0166 Myers ND, 2006, RES Q EXERCISE SPORT, V77, P111, DOI 10.5641/027013606X13080769704082 Comas GN, 2018, REV PSICOL DEPORTE, V27, P189 Navia JA, 2019, FRONT PSYCHOL, V10, DOI 10.3389/fpsyg.2019.01438 Neumann ND, 2023, J SPORT EXERCISE PSY, V45, pS99 Nicholls AR, 2017, FRONT PSYCHOL, V8, DOI 10.3389/fpsyg.2017.00684 Nunes NA, 2021, INT J SPORTS SCI COA, V16, P334, DOI 10.1177/1747954120966416 O'Callaghan D, 2015, EXPERT SYST APPL, V42, P5645, DOI 10.1016/j.eswa.2015.02.055 Partington M, 2013, SCAND J MED SCI SPOR, V23, P374, DOI 10.1111/j.1600-0838.2011.01383.x Pereira MR, 2021, PERCEPT MOTOR SKILL, V128, P2279, DOI 10.1177/00315125211025412 Redkva PE, 2017, PERCEPT MOTOR SKILL, V124, P264, DOI 10.1177/0031512516678727 Reigal RE, 2019, FRONT PSYCHOL, V10, DOI 10.3389/fpsyg.2019.02279 Reilly T, 2003, J SPORT SCI, V21, P693, DOI 10.1080/0264041031000102105 Reilly T, 2000, J SPORT SCI, V18, P695, DOI 10.1080/02640410050120050 Ren YY, 2022, FRONT PSYCHOL, V13, DOI 10.3389/fpsyg.2022.892118 Robaldo L, 2019, ARTIF INTELL LAW, V27, P113, DOI 10.1007/s10506-019-09251-2 Rollo I, 2021, EUR J SPORT SCI, V21, P1054, DOI 10.1080/17461391.2020.1792558 Rusciano A, 2017, PSYCHOPHYSIOLOGY, V54, P916, DOI 10.1111/psyp.12847 Scaccia JP, 2021, J COMMUNITY PSYCHOL, V49, P1718, DOI 10.1002/jcop.22603 Seo Y, 2021, INT J ENV RES PUB HE, V18, DOI 10.3390/ijerph18083963 Shafizadeh M, 2014, INT J SPORTS SCI COA, V9, P627, DOI 10.1260/1747-9541.9.4.627 Stratton G., 2004, YOUTH SOCCER SCI PER Suominen A, 2016, J ASSOC INF SCI TECH, V67, P2464, DOI 10.1002/asi.23596 Swallow WE, 2021, INT J SPORTS SCI COA, V16, P192, DOI 10.1177/1747954120951762 Terry DP, 2019, J INT NEUROPSYCH SOC, V25, P950, DOI 10.1017/S1355617719000754 Tian C, 2024, TECHNOL ANAL STRATEG, V36, P2084, DOI 10.1080/09537325.2022.2130039 Tighe PJ, 2020, PAIN MED, V21, P3133, DOI 10.1093/pm/pnaa061 Traclet A, 2008, PERCEPT MOTOR SKILL, V106, P234, DOI 10.2466/PMS.106.1.234-240 Van Yperen NW, 2021, PSYCHOL SPORT EXERC, V53, DOI 10.1016/j.psychsport.2020.101882 VANRAALTE JL, 1992, J SPORT EXERCISE PSY, V14, P273, DOI 10.1123/jsep.14.3.273 VANYPEREN NW, 1995, SPORT PSYCHOL, V9, P225, DOI 10.1123/tsp.9.2.225 Vayansky I, 2020, INFORM SYST, V94, DOI 10.1016/j.is.2020.101582 Vieira LF, 2013, REV PSICOL DEPORTE, V22, P331 Villalonga T, 2015, REV PSICOL DEPORTE, V24, P319 Vorontsov K, 2015, LECT NOTES ARTIF INT, V9047, P193, DOI 10.1007/978-3-319-17091-6_14 Vu A, 2022, FRONT PSYCHOL, V13, DOI 10.3389/fpsyg.2022.901438 Yao ZF, 2020, CORTEX, V132, P79, DOI 10.1016/j.cortex.2020.07.016 Yiannaki C, 2018, SCI MED FOOTBALL, V2, P299, DOI 10.1080/24733938.2018.1483079 Yiannaki C, 2018, SCI MED FOOTBALL, V2, P71, DOI 10.1080/24733938.2017.1332422 Zhao Y.-F., 2016, P 2 ANN INT C EN ENV, DOI [10.2991/eesed-16.2017.41, DOI 10.2991/EESED-16.2017.41] Zoudji B, 2003, INT J SPORT PSYCHOL, V34, P189 Zourbanos N, 2016, J APPL SPORT PSYCHOL, V28, P97, DOI 10.1080/10413200.2015.1074630 Zucchermaglio C, 2005, GROUP DYN-THEOR RES, V9, P219, DOI 10.1037/1089-2699.9.4.219 NR 128 TC 0 Z9 0 U1 5 U2 18 PU MDPI PI BASEL PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND EI 2076-328X J9 BEHAV SCI-BASEL JI Behav. Sci. PD OCT PY 2023 VL 13 IS 10 AR 787 DI 10.3390/bs13100787 PG 19 WC Psychology, Multidisciplinary WE Social Science Citation Index (SSCI) SC Psychology GA X0RR1 UT WOS:001095614600001 PM 37887437 OA Green Published, gold, Green Submitted DA 2024-09-05 ER PT J AU Shao, Z Yuan, S Wang, YL AF Shao, Zhou Yuan, Sha Wang, Yongli TI Institutional Collaboration and Competition in Artificial Intelligence SO IEEE ACCESS LA English DT Article DE Collaboration; Artificial intelligence; Industries; Technological innovation; Market research; Computer science; Licenses; Artificial intelligence; Science of Science; cooperation and competition; data analytics; data science ID INTERNATIONAL COLLABORATION; EVOLUTION; PATTERNS; IMPACT AB The institutional collaboration and competition in academia have benefited the development of science, with inter-institutional scientific work promoting the exchange of ideas and competing fields developing rapidly. However, understanding of how the institutions collaborate and compete in science is sorely lacking, especially in emerging fields. Artificial intelligence is such a booming field currently, changing the way we live and work daily. To illustrate the problem, we try to reveal the evolution of institutional collaboration and competition in artificial intelligence by applying AI 2000 from the perspective of Science of Science. In this paper, we make multiple multidimensional statistical analyses by scrutinizing the collaboration network, research interests, talent flow, etc. We demonstrate the collaboration evolution in this field and find the advantage of inter-institutional collaboration is growing over time for papers that have been published more than 5 years. We discover the common cooperation modes of top institutions and visualize their closer cooperation. We highlight the critical resources competition among institutions in three dimensions and learn the recent trends in the field. In particular, we are concerned about the competition among institutions for cross-industry cooperation and notice the consistency of competitiveness and cross-industry collaboration. The research of this paper may support further research studies on institutional collaboration and competition as well as policy proposals for promoting scientific innovation, research management, and funding. C1 [Shao, Zhou; Wang, Yongli] Nanjing Univ Sci & Technol, Sch Comp Sci & Engn, Nanjing 210094, Peoples R China. [Yuan, Sha] Beijing Acad Artificial Intelligence, Beijing 100190, Peoples R China. [Shao, Zhou; Yuan, Sha] Tsinghua Univ, Dept Comp Sci & Technol, Beijing 100084, Peoples R China. [Shao, Zhou] Southwest Univ Sci & Technol, Sch Comp Sci & Technol, Mianyang 621010, Sichuan, Peoples R China. [Shao, Zhou] China Acad Engn Phys, Grad Sch, Mianyang 621010, Sichuan, Peoples R China. C3 Nanjing University of Science & Technology; Tsinghua University; Southwest University of Science & Technology - China; Chinese Academy of Engineering Physics RP Wang, YL (corresponding author), Nanjing Univ Sci & Technol, Sch Comp Sci & Engn, Nanjing 210094, Peoples R China. EM yongliwang@mail.njust.edu.cn OI Shao, Zhou/0000-0002-6265-7310 FU National Natural Science Foundation of China [61941113, 61806111]; Fundamental Research Fund for the Central Universities [30918015103, 30918012204]; Nanjing Science and Technology Development Plan Project [201805036]; China Academy of Engineering Consulting Research Project [2019-ZD-1-02-02]; National Social Science Foundation [18BTQ073]; State Grid Technology Project [5211XT190033]; 13th Five-Year Equipment Field Fund [61403120501] FX This work was supported in part by the National Natural Science Foundation of China under Grant 61941113 and Grant 61806111, in part by the Fundamental Research Fund for the Central Universities under Grant 30918015103 and Grant 30918012204, in part by the Nanjing Science and Technology Development Plan Project under Grant 201805036, in part by the 13th Five-Year Equipment Field Fund under Grant 61403120501, in part by the China Academy of Engineering Consulting Research Project under Grant 2019-ZD-1-02-02, in part by the National Social Science Foundation under Grant 18BTQ073, and in part by the State Grid Technology Project under Grant 5211XT190033. CR Abramo G, 2011, SCIENTOMETRICS, V86, P347, DOI 10.1007/s11192-010-0297-2 Adams J, 2012, NATURE, V490, P335, DOI 10.1038/490335a Ajiferuke I, 2005, ISSI 2005: PROCEEDINGS OF THE 10TH INTERNATIONAL CONFERENCE OF THE INTERNATIONAL SOCIETY FOR SCIENTOMETRICS AND INFORMETRICS, VOLS 1 AND 2, P527 Bozeman B, 2016, SCI PUBL POLICY, V43, P226, DOI 10.1093/scipol/scv035 Brankovic J, 2018, Z SOZIOL, V47, P270, DOI 10.1515/zfsoz-2018-0118 CHINCHILLA-RODRIGUEZ Z., 2008, P PRIM EUR LAT AM C, P1 Coccia M, 2020, TECHNOL SOC, V60, DOI 10.1016/j.techsoc.2019.101198 Coccia M, 2018, SCIENTOMETRICS, V117, P1265, DOI 10.1007/s11192-018-2902-8 Coccia M, 2016, SCIENTOMETRICS, V108, P1065, DOI 10.1007/s11192-016-2027-x Coccia M, 2016, P NATL ACAD SCI USA, V113, P2057, DOI 10.1073/pnas.1510820113 Corley EA, 2006, RES POLICY, V35, P975, DOI 10.1016/j.respol.2006.05.003 Ding Y, 2011, J INFORMETR, V5, P187, DOI 10.1016/j.joi.2010.10.008 Domke-Damonte D. J., 2000, International Journal of Hospitality & Tourism Administration (IJHTA), V1, P141, DOI 10.1300/J149v01n01_04 Dong Y., 2018, ARXIV180603694 Fortunato S, 2018, SCIENCE, V359, DOI 10.1126/science.aao0185 Gazni A, 2016, RES EVALUAT, V25, P219, DOI 10.1093/reseval/rvv039 Gazni A, 2011, SCIENTOMETRICS, V87, P251, DOI 10.1007/s11192-011-0343-8 Gerdsri N, 2018, INT J BUS, V23, P248 Glänzel W, 2001, SCIENTOMETRICS, V51, P69, DOI 10.1023/A:1010512628145 Gnyawali DR, 2011, RES POLICY, V40, P650, DOI 10.1016/j.respol.2011.01.009 Goralski MA, 2020, INT J MANAG EDUC-OXF, V18, DOI 10.1016/j.ijme.2019.100330 Grimpe C, 2013, IND INNOV, V20, P683, DOI 10.1080/13662716.2013.856620 Han JW, 2000, SIGMOD RECORD, V29, P1 Hartley J., 2017, EUROPEAN POLICE SCI, P159 Lang DW, 2002, HIGH EDUC, V44, P153, DOI 10.1023/A:1015573429956 Laudel G, 2001, INT J TECHNOL MANAGE, V22, P762, DOI 10.1504/IJTM.2001.002990 Lee S, 2005, SOC STUD SCI, V35, P673, DOI 10.1177/0306312705052359 Lin JY, 2017, TECHNOL FORECAST SOC, V123, P216, DOI 10.1016/j.techfore.2016.03.016 Liu JY, 2018, IEEE ACCESS, V6, P34403, DOI 10.1109/ACCESS.2018.2819688 Loper E., 2002, ASS COMPUTATIONAL LI Ma YF, 2018, P NATL ACAD SCI USA, V115, P12608, DOI 10.1073/pnas.1800485115 Newman MEJ, 2004, P NATL ACAD SCI USA, V101, P5200, DOI 10.1073/pnas.0307545100 Newman MEJ, 2001, P NATL ACAD SCI USA, V98, P404, DOI 10.1073/pnas.021544898 Powell J JW., 2018, Emerging Trends in the Social and Behavioral Sciences, P1 Seeber I, 2020, INFORM MANAGE-AMSTER, V57, DOI 10.1016/j.im.2019.103174 Sharma S., 2017, INT J LIB INF STUD, V7, P111 Tang J., 2008, KDD, P990, DOI DOI 10.1145/1401890.1402008 Tang J, 2012, IEEE T KNOWL DATA EN, V24, P975, DOI 10.1109/TKDE.2011.13 van den Besselaar P, 2012, HIGH EDUC POLICY, V25, P263, DOI 10.1057/hep.2012.16 Van Raan AFJ, 1998, SCIENTOMETRICS, V42, P423, DOI 10.1007/BF02458380 Wagner CS, 2017, SCIENTOMETRICS, V110, P1633, DOI 10.1007/s11192-016-2230-9 Walker ES, 2019, TOXICOL RES-UK, V8, P480, DOI 10.1039/c9tx00063a Yahaya N., 2018, THESIS Yi PH, 2018, J AM COLL RADIOL, V15, P781, DOI 10.1016/j.jacr.2017.12.037 Yuan S., 2019, 2019109874530 TSINGH Yuan S., 2019, 2018111497336 TSINGH Zeng A, 2017, PHYS REP, V714, P1, DOI 10.1016/j.physrep.2017.10.001 Zhang YT, 2018, KDD'18: PROCEEDINGS OF THE 24TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING, P1002, DOI 10.1145/3219819.3219859 Zhao SX, 2018, PHYSICA A, V508, P662, DOI 10.1016/j.physa.2018.04.072 NR 49 TC 13 Z9 14 U1 7 U2 55 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 2169-3536 J9 IEEE ACCESS JI IEEE Access PY 2020 VL 8 BP 69734 EP 69741 DI 10.1109/ACCESS.2020.2986383 PG 8 WC Computer Science, Information Systems; Engineering, Electrical & Electronic; Telecommunications WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Computer Science; Engineering; Telecommunications GA MM0CJ UT WOS:000549827900004 OA gold DA 2024-09-05 ER PT J AU Chen, XL Cheng, GRY Zou, D Zhong, BC Xie, HR AF Chen, Xieling Cheng, Gary Zou, Di Zhong, Baichang Xie, Haoran TI Artificial Intelligent Robots for Precision Education: A Topic Modeling- Based Bibliometric Analysis SO EDUCATIONAL TECHNOLOGY & SOCIETY LA English DT Article DE Artificial intelligence robots; Topic modeling; Bibliometric analysis; Precision education; Research topics; Future of human-centered artificial intelligence ID AI; COMMUNICATION; KNOWLEDGE; THINKING AB As a human-friendly system, the artificial intelligence (AI) robot is one of the critical applications in promoting precision education. Alongside the call for humanity-oriented applications in education, AI robot supported precision education has developed into an active field, with increasing literature available. This study aimed to comprehensively analyze directions taken in the past in this research field to interpret a roadmap for future work. By adopting structural topic modeling, the Mann-Kendall trend test, and keyword analysis, we investigated the research topics and their dynamics in the field based on literature collected from Web of Science and Scopus databases up to 2021. Results showed that AI robots and chatbots had been widely used in different subject areas (e.g., early education, STEM education, medical, nursing, and healthcare education, and language education) for promoting collaborative learning, mobile/game-based learning, distance learning, and affective learning. However, a limited practice in developing true human-centered AI (HCAI)-supported educational robots is available. To advance HCAI in education and its application in educational robots for precision education, we suggested involving humans in AI robot design, thinking of individual learners, testing, and understanding the learner-AI robot interaction, taking an HCAI multidisciplinary approach in robot system development, and providing sufficient technical support for instructors during robot implementation. C1 [Chen, Xieling; Zhong, Baichang] South China Normal Univ, Sch Informat Technol Educ, Guangzhou, Peoples R China. [Cheng, Gary] Educ Univ Hong Kong, Dept Math & Informat Technol, Hong Kong, Peoples R China. [Zou, Di] Educ Univ Hong Kong, Dept English Language Educ, Hong Kong, Peoples R China. [Xie, Haoran] Lingnan Univ, Dept Comp & Decis Sci, Hong Kong, Peoples R China. C3 South China Normal University; Education University of Hong Kong (EdUHK); Education University of Hong Kong (EdUHK); Lingnan University RP Zou, D (corresponding author), Educ Univ Hong Kong, Dept English Language Educ, Hong Kong, Peoples R China. EM xielingchen0708@gmail.com; chengks@eduhk.hk; dizoudaisy@gmail.com; zhongbc@163.com; hrxie2@gmail.com RI Xie, Haoran/AFS-3515-2022; Xie, Haoran/AAW-8845-2020 OI Xie, Haoran/0000-0003-0965-3617; ZOU, Di/0000-0001-8435-9739 CR [Anonymous], 2010, Age of Empathy: Nature's Lesson For a Kinder Society, DOI [10.1080/03057240.2011.541776, DOI 10.1080/03057240.2011.541776] Axelsson M, 2019, IEEE ROMAN, DOI 10.1109/ro-man46459.2019.8956309 Ben Shneiderman, 2020, ACM T INTERACT INTEL, V10, DOI 10.1145/3419764 Bernardini S, 2014, INFORM SCIENCES, V264, P41, DOI 10.1016/j.ins.2013.10.027 Bers MU, 2014, COMPUT EDUC, V72, P145, DOI 10.1016/j.compedu.2013.10.020 Bickmore T, 2010, HARVARD REV PSYCHIAT, V18, P119, DOI 10.3109/10673221003707538 Chen X., 2020, Computers and Education: Artificial Intelligence, V1, P100002, DOI DOI 10.1016/J.CAEAI.2020.100002 Chen XL, 2022, EDUC TECHNOL SOC, V25, P28 Chen XL, 2021, EDUC TECHNOL SOC, V24, P205 Chen X, 2020, COMPUT EDUC, V151, DOI 10.1016/j.compedu.2020.103855 Cobo MJ, 2011, J INFORMETR, V5, P146, DOI 10.1016/j.joi.2010.10.002 Colpaert J., 2006, Computer Assisted Language Learning, V19, P109, DOI 10.1080/09588220600821461 Edwards C, 2018, COMMUN EDUC, V67, P473, DOI 10.1080/03634523.2018.1502459 Eguchi A., 2017, Robotics in STEM education: Redesigning the learning experience, P3 Fachada Nuno, 2018, Revista Lusofona de Educacao, V40, P151, DOI [10.24140/issn.1645-7250.rle40.10, DOI 10.24140/ISSN.1645-7250.RLE40.10] Gosper M., 2008, IMPACT WEB BASED LEC Hart SA, 2016, MIND BRAIN EDUC, V10, P209, DOI 10.1111/mbe.12109 Huang WJ, 2022, J COMPUT ASSIST LEAR, V38, P237, DOI 10.1111/jcal.12610 Huang YC, 2019, Arxiv, DOI [arXiv:1910.12544, 10.48550/arXiv.1910.12544, DOI 10.48550/ARXIV.1910.12544] Hwang G.-J., 2020, Computers and Education: Artificial Intelligence, V1, P100001, DOI [DOI 10.1016/J.CAEAI.2020.100001, 10.1016/j.caeai.2020.100001] Kerly A, 2008, KNOWL-BASED SYST, V21, P238, DOI 10.1016/j.knosys.2007.11.015 Kubilinskiene S, 2017, BALT J MOD COMPUT, V5, P50, DOI 10.22364/bjmc.2017.5.1.04 Lee M, 2021, FRONT ROBOT AI, V8, DOI 10.3389/frobt.2021.632015 Li B, 2022, Arxiv, DOI [arXiv:2110.01167, 10.1145/3555803] López-Robles JR, 2019, INT J INFORM MANAGE, V48, P22, DOI 10.1016/j.ijinfomgt.2019.01.013 Lu OHT, 2018, EDUC TECHNOL SOC, V21, P220 Majid Rifqi, 2021, 2021 7th International Conference on Advanced Computing and Communication Systems (ICACCS), P46, DOI 10.1109/ICACCS51430.2021.9441740 Morton H., 2005, Computer Assisted Language Learning, V18, P171, DOI 10.1080/09588220500173344 Moyi P., 2019, COMP INT ED, V47, P1, DOI [10.5206/cie-eci.v47i2.9329, DOI 10.5206/CIE-ECI.V47I2.9329] Na-Young Kim, 2019, [Multimedia-Assisted Language Learning, 멀티미디어 언어교육], V22, P32 Nakao Y, 2022, ACM T INTERACT INTEL, V12, DOI 10.1145/3514258 Oliver M, 2011, J COMPUT ASSIST LEAR, V27, P373, DOI 10.1111/j.1365-2729.2011.00406.x Rajkumar R, 2020, IEEE ACCESS, V8, P67377, DOI 10.1109/ACCESS.2020.2984591 Renz A, 2021, TECHNOL INNOV MANAG, V11, P5, DOI 10.22215/timreview/1438 Roberts ME, 2019, J STAT SOFTW, V91, P1, DOI 10.18637/jss.v091.i02 Santos KA, 2020, PROCEEDINGS OF IDC 2020, P483, DOI 10.1145/3392063.3394405 Seering J, 2020, PROCEEDINGS OF THE 2020 CHI CONFERENCE ON HUMAN FACTORS IN COMPUTING SYSTEMS (CHI'20), DOI 10.1145/3313831.3376708 She TH, 2021, ELECTRONICS-SWITZ, V10, DOI 10.3390/electronics10192393 Smutny P, 2020, COMPUT EDUC, V151, DOI 10.1016/j.compedu.2020.103862 Sreelakshmi A.S., 2019, 2019 GRACE HOPPER CE, DOI DOI 10.1109/GHCI47972.2019.9071832 Stephanidis C, 2019, INT J HUM-COMPUT INT, V35, P1229, DOI 10.1080/10447318.2019.1619259 Tegos S., 2011, Proceedings of the 2011 15th Panhellenic Conference on Informatics (PCI 2011), P13, DOI 10.1109/PCI.2011.24 Tlili A, 2020, EDUC TECHNOL SOC, V23, P95 Vijayan Akshay, 2018, 2018 International CET Conference on Control, Communication, and Computing (IC4), P361, DOI 10.1109/CETIC4.2018.8530940 Vygotsky LS, 1978, Mind in Society: Development of Higher Psychological Processes, DOI [DOI 10.2307/J.CTVJF9VZ4, 10.2307/j.ctvjf9vz4] Wambsganss T., 2019, P INT C INF SYST ICI Weitekamp D, 2020, PROCEEDINGS OF THE 2020 CHI CONFERENCE ON HUMAN FACTORS IN COMPUTING SYSTEMS (CHI'20), DOI 10.1145/3313831.3376226 Williams R, 2019, AAAI CONF ARTIF INTE, P9729 Xia LY, 2018, COMPUT EDUC, V127, P267, DOI 10.1016/j.compedu.2018.09.007 Xu W, 2023, INT J HUM-COMPUT INT, V39, P494, DOI [10.1109/IECON49645.2022.9968424, 10.1080/10447318.2022.2041900] Yang S. J. H., 2021, Computers and Education: Artificial Intelligence, V2, DOI [DOI 10.1016/J.CAEAI.2021.100008, 10.1016/j.caeai.2021.100008] Yang SJH, 2023, EDUC TECHNOL SOC, V26, P95, DOI 10.30191/ETS.202301_26(1).0007 Yang SJH, 2021, EDUC TECHNOL SOC, V24, P105 Zawacki-Richter O, 2019, INT J EDUC TECHNOL H, V16, DOI 10.1186/s41239-019-0171-0 Zhong BC, 2023, INTERACT LEARN ENVIR, V31, P370, DOI 10.1080/10494820.2020.1786409 NR 55 TC 17 Z9 17 U1 37 U2 158 PU INT FORUM EDUCATIONAL TECHNOLOGY & SOC, NATL TAIWAN NORMAL UNIV PI Taipei City PA No.162, Sec. 1, Heping E. Rd., Da-an Dist, Taipei City, TAIWAN SN 1176-3647 EI 1436-4522 J9 EDUC TECHNOL SOC JI Educ. Technol. Soc. PD JAN PY 2023 VL 26 IS 1 BP 171 EP 186 DI 10.30191/ETS.202301_26(1).0013 PG 16 WC Education & Educational Research WE Social Science Citation Index (SSCI) SC Education & Educational Research GA 7Q6QP UT WOS:000909514000013 DA 2024-09-05 ER PT J AU Ermolayeva, A Birukou, A Matyushenko, S Kochetkov, D AF Ermolayeva, Anna Birukou, Aliaksandr Matyushenko, Sergey Kochetkov, Dmitry TI Statistical model and method for analyzing AI conference rankings: China vs USA SO HELIYON LA English DT Article DE Conference proceedings; Scientometrics; Research evaluation; Research assessment; Artificial intelligence ID UNITED-STATES; SCIENCE; WEB; INDEX; QUALITY; SCOPUS AB Artificial Intelligence (AI) is a rapidly developing field of research that attracts significant funding from both the state and industry players. Such interest is driven by a wide range of AI technology applications in many fields. Since many AI research topics relate to computer science, where a significant share of research results are published in conference proceedings, the same applies to AI. The world leaders in artificial intelligence research are China and the United States. The authors conducted a comparative analysis of the bibliometric indicators of AI conference papers from these two countries based on Scopus data. The analysis aimed to identify conferences that receive above-average citation rates and suggest publication strategies for authors from these countries to participate in conferences that are likely to provide better dissemination of their research results. The results showed that, although Chinese researchers publish more AI papers than those from the United States, US conference papers are cited more frequently. The authors also conducted a correlation analysis of the MNCS index, which revealed no high correlation between MNCS USA vs. MNCS China, MNCS China/MNCS USA vs. MSAR, and MNCS China/MNCS USA vs. CORE ranking indicators. C1 [Ermolayeva, Anna; Matyushenko, Sergey; Kochetkov, Dmitry] Peoples Friendship Univ Russia, RUDN Univ, Inst Comp Sci & Telecommun, Dept Probabil Theory & Cyber Secur, 6 Miklukho Maklaya St, Moscow 117198, Russia. [Birukou, Aliaksandr] Springer Nat, Tiergartenstr 17, D-69121 Heidelberg, Germany. [Kochetkov, Dmitry] Leiden Univ, Ctr Sci & Technol Studies, Kolffpad 1, NL-2333 BN Leiden, Netherlands. [Kochetkov, Dmitry] Ural Fed Univ, 19 Mira St, Ekaterinburg 620002, Russia. C3 Peoples Friendship University of Russia; Leiden University - Excl LUMC; Leiden University; Ural Federal University RP Ermolayeva, A; Kochetkov, D (corresponding author), Peoples Friendship Univ Russia, RUDN Univ, Inst Comp Sci & Telecommun, Dept Probabil Theory & Cyber Secur, 6 Miklukho Maklaya St, Moscow 117198, Russia.; Kochetkov, D (corresponding author), Leiden Univ, Ctr Sci & Technol Studies, Kolffpad 1, NL-2333 BN Leiden, Netherlands.; Kochetkov, D (corresponding author), Ural Fed Univ, 19 Mira St, Ekaterinburg 620002, Russia. EM ermolaevaanna@bk.ru; d.kochetkov@cwts.leidenuniv.nl RI Matyushenko, Sergey/JQW-8543-2023; Kochetkov, Dmitry/I-4979-2015 OI Matyushenko, Sergey/0000-0001-8247-8988; Kochetkov, Dmitry/0000-0001-7890-7532; Birukou, Aliaksandr/0000-0002-4925-9131 FU RUDN University Strategic Academic Leadership Program FX This paper has been supported by the RUDN University Strategic Academic Leadership Program (Anna Ermolayeva, Sergey Matyushenko, Dmitry Kochetkov) . CR Abramo G, 2016, J INFORMETR, V10, P646, DOI 10.1016/j.joi.2016.04.006 Alhoori Hamed, 2013, Research and Advanced Technology for Digital Libraries. International Conference on Theory and Practice of Digital Libraries, TPDL 2013. Proceedings: LNCS 8092, P138, DOI 10.1007/978-3-642-40501-3_14 Almendra VD, 2015, SCIENTOMETRICS, V102, P267, DOI 10.1007/s11192-014-1436-y Almind TC, 1997, J DOC, V53, P404, DOI 10.1108/EUM0000000007205 Amin M, 2003, MEDICINA-BUENOS AIRE, V63, P347 [Anonymous], 2023, Scopus data Baker S., Nature Basu A, 2018, SCIENTOMETRICS, V117, P249, DOI 10.1007/s11192-018-2877-5 Bollen J, 2009, PLOS ONE, V4, DOI 10.1371/journal.pone.0006022 Brin S, 1998, COMPUT NETWORKS ISDN, V30, P107, DOI 10.1016/S0169-7552(98)00110-X Castro D., Center for Data Innovation, V19 Chen YN, 2020, SIMUL MODEL PRACT TH, V102, DOI 10.1016/j.simpat.2020.102070 Costas R, 2007, J INFORMETR, V1, P193, DOI 10.1016/j.joi.2007.02.001 Egghe L, 2006, SCIENTOMETRICS, V69, P131, DOI 10.1007/s11192-006-0144-7 elsevier, 2023, ABOUT US Farooq M., INDEX BASED RANKING Farooq M, 2017, IEEE ACCESS, V5, P19588, DOI 10.1109/ACCESS.2017.2744798 Fortunato S, 2010, PHYS REP, V486, P75, DOI 10.1016/j.physrep.2009.11.002 Garfield E, 1999, CAN MED ASSOC J, V161, P979 Glanzel W, 2002, SCIENTOMETRICS, V53, P171, DOI 10.1023/A:1014848323806 Gmurman V.V., 2008, Teoriya veroyatnostej i matematicheskaya statistika Guan J, 2008, SCIENTOMETRICS, V75, P357, DOI 10.1007/s11192-007-1871-0 Gupta S, 2023, J INF SCI, DOI 10.1177/01655515231151411 Haq I.U., 2020, Libr. Philos. Pract., P1522 Hirsch JE, 2005, P NATL ACAD SCI USA, V102, P16569, DOI 10.1073/pnas.0507655102 Kerl A, 2018, J BANK FINANC, V89, P26, DOI 10.1016/j.jbankfin.2018.01.014 Kochetkov Dmitry, 2021, Analysis of Images, Social Networks and Texts. 9th International Conference, AIST 2020. Revised Selected Papers. Lecture Notes in Computer Science (LNCS 12602), P369, DOI 10.1007/978-3-030-72610-2_28 Küngas P, 2013, SCIENTOMETRICS, V96, P651, DOI 10.1007/s11192-012-0938-8 Lang R, 2020, SCIENTOMETRICS, V122, P759, DOI 10.1007/s11192-019-03291-w Leydesdorff L, 2014, J INFORMETR, V8, P606, DOI 10.1016/j.joi.2014.05.002 Leydesdorff L, 2009, SCIENTOMETRICS, V78, P23, DOI 10.1007/s11192-008-1830-4 LILLIEFORS HW, 1967, J AM STAT ASSOC, V62, P399, DOI 10.2307/2283970 Makhoba X, 2016, AFR J SCI TECHNOL IN, V8, P187, DOI 10.1080/20421338.2016.1147205 Martín-Martín A, 2018, J INFORMETR, V12, P1160, DOI 10.1016/j.joi.2018.09.002 Meho LI, 2019, J INFORMETR, V13, P419, DOI 10.1016/j.joi.2019.02.006 Mingers J, 2010, SCIENTOMETRICS, V85, P613, DOI 10.1007/s11192-010-0270-0 Mongeon P, 2016, SCIENTOMETRICS, V106, P213, DOI 10.1007/s11192-015-1765-5 National science foundation, 2023, Science and engineering indicators 2018 Niu JQ, 2016, ISPRS INT J GEO-INF, V5, DOI 10.3390/ijgi5050066 Oikawa A., 2023, China overtakes US in AI research Page L., 1998, The pagerank citation ranking: Bringing order to the web Purnell PJ, 2021, SCIENTOMETRICS, V126, P355, DOI 10.1007/s11192-020-03773-2 Reinartz SJ, 2017, J EMPIR FINANC, V42, P155, DOI 10.1016/j.jempfin.2017.03.001 Saier T., 2020, A Large-Scale Analysis of Cross-Lingual Citations in English Papers, P122 Singh AP, 2011, IEEE DATA MINING, P88, DOI 10.1109/DMO.2011.5976510 Thelwall M, 2015, J ASSOC INF SCI TECH, V66, P876, DOI 10.1002/asi.23236 Thelwall Mike., 2009, Synthesis Lectures on Information Concepts, Retrieval, and Services 4, DOI DOI 10.2200/S00176ED1V01Y200903ICR004 Waltman L., 2023, A farewell to the mncs indicator? Waltman L, 2013, J INFORMETR, V7, P833, DOI 10.1016/j.joi.2013.08.002 Waltman L, 2012, J AM SOC INF SCI TEC, V63, P406, DOI 10.1002/asi.21678 Waltman L, 2011, SCIENTOMETRICS, V87, P467, DOI 10.1007/s11192-011-0354-5 Waltman L, 2011, J INFORMETR, V5, P37, DOI 10.1016/j.joi.2010.08.001 Zhao ZY, 2021, SCIENTOMETRICS, V126, P931, DOI 10.1007/s11192-020-03796-9 NR 53 TC 0 Z9 0 U1 3 U2 5 PU CELL PRESS PI CAMBRIDGE PA 50 HAMPSHIRE ST, FLOOR 5, CAMBRIDGE, MA 02139 USA EI 2405-8440 J9 HELIYON JI Heliyon PD NOV PY 2023 VL 9 IS 11 AR e21592 DI 10.1016/j.heliyon.2023.e21592 EA NOV 2023 PG 12 WC Multidisciplinary Sciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Science & Technology - Other Topics GA Z3TJ8 UT WOS:001111330100001 PM 38027555 OA Green Published, gold DA 2024-09-05 ER PT J AU Kumar, V Kumar, S Chatterjee, S Mariani, M AF Kumar, Vinod Kumar, Sachin Chatterjee, Sheshadri Mariani, Marcello TI Artificial Intelligence (AI) Capabilities and the R&D Performance of Organizations: The Moderating Role of Environmental Dynamism SO IEEE TRANSACTIONS ON ENGINEERING MANAGEMENT LA English DT Article DE Technological innovation; Organizations; Artificial intelligence; Business; Research and development; Dynamic scheduling; Industries; Artificial intelligence (AI) capability (AIC); environmental dynamism (ED); exploitative innovation (EXI); exploration innovation (EXO); research and development (R&D) performance ID PLS-SEM; ANALYTICS CAPABILITY; FIRM PERFORMANCE; OPEN INNOVATION; INDUSTRY 4.0; EXPLOITATION; EXPLORATION; KNOWLEDGE; COMMITMENT; MANAGEMENT AB The potential of artificial intelligence capabilities (AICs) extends beyond fostering both explorative and exploitative innovations (EXO and EXI); it may also enhance the overall performance of organizations. Despite this, the interplay between AIC and research and development performance (RDP) remains unexplored. In this article, we aim to fill this gap by investigating the influence of AIC on RDP, considering both EXO and EXI. Additionally, the study examines the potential moderating role of environmental dynamism in shaping the relationship between AIC and the two types of innovations, ultimately impacting the enhancement of RDP in organizations. To achieve this, a conceptual model was developed based on the existing literature and subsequently validated using the partial least square structural equation modeling. The research gathered 289 responses from a diverse group of industry professionals. The findings of this study contribute both theoretically and practically by shedding light on the pivotal role played by artificial intelligence (AI) capabilities, exploration, and EXI in improving the research and development (R&D) performance of organizations. Understanding these dynamics will provide valuable insights for organizations seeking to leverage AI for strategic advancement in their R&D endeavors. C1 [Kumar, Vinod] FLAME Univ, FLAME Sch Commun, Pune 412115, Maharashtra, India. [Kumar, Sachin] Natl Inst Technol, Dept Management Studies, Hamirpur 177005, Himachal Prades, India. [Chatterjee, Sheshadri] Indian Inst Technol Kharagpur, Kharagpur, W Bengal, India. [Mariani, Marcello] Univ Reading Greenlands, Henley Business Sch, Henley On Thames RG9 3AU, Oxon, England. [Mariani, Marcello] Univ Bologna, I-40126 Bologna, Italy. C3 National Institute of Technology (NIT System); National Institute of Technology Hamirpur; Indian Institute of Technology System (IIT System); Indian Institute of Technology (IIT) - Kharagpur; University of Reading; University of Bologna RP Mariani, M (corresponding author), Univ Reading Greenlands, Henley Business Sch, Henley On Thames RG9 3AU, Oxon, England. EM vinod.kumar@flame.edu.in; sachin@nith.ac.in; sheshadri.academic@gmail.com; m.mariani@henley.ac.uk RI Kumar, Sachin/AEP-4946-2022; KUMAR, VINOD/AAL-2759-2020 OI Kumar, Sachin/0000-0003-2125-044X; KUMAR, VINOD/0000-0002-5014-0672; Chatterjee, Sheshadri/0000-0003-1075-5549 CR Akter S, 2021, IND MARKET MANAG, V97, P258, DOI 10.1016/j.indmarman.2021.07.014 Akter S, 2016, INT J PROD ECON, V182, P113, DOI 10.1016/j.ijpe.2016.08.018 Al-Surmi A, 2022, INT J PROD RES, V60, P4464, DOI 10.1080/00207543.2021.1966540 Alsaad A, 2017, COMPUT HUM BEHAV, V68, P157, DOI 10.1016/j.chb.2016.11.040 Ananno AA, 2021, J ENVIRON MANAGE, V282, DOI 10.1016/j.jenvman.2021.111943 Bernal P, 2019, IND INNOV, V26, P295, DOI 10.1080/13662716.2018.1465813 Blichfeldt H, 2021, TECHNOVATION, V105, DOI 10.1016/j.technovation.2021.102275 Bustinza OF, 2020, INT BUS REV, V29, DOI 10.1016/j.ibusrev.2019.01.004 Caputo M, 2016, MANAGE DECIS, V54, P1788, DOI 10.1108/MD-02-2015-0052 Cegarra-Navarro JG, 2023, IEEE T ENG MANAGE, V70, P4278, DOI 10.1109/TEM.2021.3112615 Chaminade C, 2011, EUR PLAN STUD, V19, P1357, DOI 10.1080/09654313.2011.573171 Chatterjee S, 2023, J CLEAN PROD, V427, DOI 10.1016/j.jclepro.2023.139195 Chatterjee S, 2023, TECHNOL FORECAST SOC, V196, DOI 10.1016/j.techfore.2023.122824 Chatterjee S, 2023, IEEE T ENG MANAGE, DOI 10.1109/TEM.2023.3297251 Chatterjee S, 2023, EUR BUS REV, V35, P839, DOI 10.1108/EBR-02-2023-0049 Chatterjee S, 2024, IEEE T ENG MANAGE, V71, P12910, DOI 10.1109/TEM.2022.3214469 Chatterjee S, 2024, IEEE T ENG MANAGE, V71, P13616, DOI 10.1109/TEM.2022.3220946 Chatterjee S, 2020, J KNOWL MANAG, V24, P2531, DOI 10.1108/JKM-04-2020-0252 Chaudhuri R, 2024, ANN OPER RES, V339, P1757, DOI 10.1007/s10479-021-04407-3 Chen AL, 2023, J TECHNOL TRANSFER, V48, P1628, DOI 10.1007/s10961-023-10027-9 Chung Euiyoung, 2023, IEEE Engineering Management Review, P108, DOI 10.1109/EMR.2022.3215074 Dash G, 2021, TECHNOL FORECAST SOC, V173, DOI 10.1016/j.techfore.2021.121092 Dubey R, 2021, IND MARKET MANAG, V96, P135, DOI 10.1016/j.indmarman.2021.05.003 Elia S, 2021, J BUS RES, V132, P158, DOI 10.1016/j.jbusres.2021.04.010 Faul F, 2007, BEHAV RES METHODS, V39, P175, DOI 10.3758/BF03193146 Faul F, 2009, BEHAV RES METHODS, V41, P1149, DOI 10.3758/BRM.41.4.1149 Fey CF, 2005, J MANAGE, V31, P597, DOI 10.1177/0149206304272346 FORNELL C, 1981, J MARKETING RES, V18, P39, DOI 10.2307/3151312 Fu HP, 2023, INT J RETAIL DISTRIB, V51, P773, DOI 10.1108/IJRDM-12-2021-0610 Goetz N, 2022, INT J PROJ MANAG, V40, P251, DOI 10.1016/j.ijproman.2022.03.001 Hair J. F., 2021, PRIMER PARTIAL LEAST Hair J, 2017, IND MANAGE DATA SYST, V117, P442, DOI 10.1108/IMDS-04-2016-0130 Hair JF, 2011, J MARKET THEORY PRAC, V19, P139, DOI 10.2753/MTP1069-6679190202 Hair JF, 2020, J BUS RES, V109, P101, DOI 10.1016/j.jbusres.2019.11.069 Hair JF, 2021, J FAM BUS STRATEG, V12, DOI 10.1016/j.jfbs.2020.100392 Hair JF, 2019, EUR BUS REV, V31, P2, DOI 10.1108/EBR-11-2018-0203 Hair JF, 2012, LONG RANGE PLANN, V45, P320, DOI 10.1016/j.lrp.2012.09.008 Harmancioglu N, 2020, IND MARKET MANAG, V85, P44, DOI 10.1016/j.indmarman.2019.07.005 Henseler J, 2017, INT SER QUAN MARKET, P361, DOI 10.1007/978-3-319-53469-5_12 Henseler J, 2015, J ACAD MARKET SCI, V43, P115, DOI 10.1007/s11747-014-0403-8 Henseler J, 2014, ORGAN RES METHODS, V17, P182, DOI 10.1177/1094428114526928 Henseler J, 2009, ADV INT MARKETING, V20, P277, DOI 10.1108/S1474-7979(2009)0000020014 Hung KP, 2013, TECHNOVATION, V33, P368, DOI 10.1016/j.technovation.2013.06.006 Jumani ZA, 2021, J ISLAMIC MARK, V12, P408, DOI 10.1108/JIMA-09-2019-0196 Kline R. B., 2023, PRINCIPLES PRACTICE Kumar S, 2024, BRIT FOOD J, V126, P1217, DOI 10.1108/BFJ-07-2023-0667 Kumar S, 2021, IND MARKET MANAG, V95, P54, DOI 10.1016/j.indmarman.2021.03.010 Laud G, 2023, J SERV MANAGE, V34, P368, DOI 10.1108/JOSM-06-2021-0224 Lennerts S, 2020, EUR MANAG J, V38, P121, DOI 10.1016/j.emj.2019.06.002 Ngo LV, 2019, J BUS RES, V94, P154, DOI 10.1016/j.jbusres.2017.10.050 Lin HE, 2017, J PROD INNOVAT MANAG, V34, P122, DOI 10.1111/jpim.12337 Malhotra NK, 2017, J ADVERTISING, V46, P193, DOI 10.1080/00913367.2016.1252287 Mansoor M, 2022, BUS STRATEG ENVIRON, V31, P94, DOI 10.1002/bse.2876 Mariani Marcello M., 2021, Technological Forecasting and Social Change, V172, DOI 10.1016/j.techfore.2021.121009 Mariani M, 2024, J BUS RES, V175, DOI 10.1016/j.jbusres.2024.114542 Mariani M, 2022, INT J CONTEMP HOSP M, V34, P231, DOI 10.1108/IJCHM-03-2021-0301 Mariani M, 2021, INT J CONTEMP HOSP M, V33, P3956, DOI 10.1108/IJCHM-06-2020-0622 Mariani MM, 2023, J BUS RES, V161, DOI 10.1016/j.jbusres.2023.113838 Mariani MM, 2023, J BUS RES, V155, DOI 10.1016/j.jbusres.2022.113364 Mariani MM, 2023, TECHNOVATION, V122, DOI 10.1016/j.technovation.2022.102623 Mariani MM, 2020, J BUS RES, V121, P338, DOI 10.1016/j.jbusres.2020.09.012 Mikalef P, 2023, GOV INFORM Q, V40, DOI 10.1016/j.giq.2022.101797 Mikalef P, 2021, INFORM MANAGE-AMSTER, V58, DOI 10.1016/j.im.2021.103434 Mikalef P, 2020, INFORM MANAGE-AMSTER, V57, DOI 10.1016/j.im.2020.103361 Mikalef P, 2019, BRIT J MANAGE, V30, P272, DOI 10.1111/1467-8551.12343 nasscom, Unlocking value from data and AI-The India opportunity Naz S, 2024, J HOSP TOUR INSIGHTS, V7, P2055, DOI 10.1108/JHTI-01-2023-0017 Patil G, 2023, BUS STRATEGY DEV, V6, P158, DOI 10.1002/bsd2.230 Patil KP, 2021, J INF TECHNOL RES, V14, P123, DOI 10.4018/JITR.2021010108 Podsakoff PM, 2003, J APPL PSYCHOL, V88, P879, DOI 10.1037/0021-9010.88.5.879 pwc, AI business predictions Ramadani V, 2023, IEEE T ENG MANAGE, V70, P2864, DOI 10.1109/TEM.2022.3174628 Rialti R, 2019, TECHNOL FORECAST SOC, V149, DOI 10.1016/j.techfore.2019.119781 Ringle M., 2022, SmartPLS 4 Rozak H, 2023, IEEE T ENG MANAGE, V70, P3766, DOI 10.1109/TEM.2021.3085977 Saha V, 2023, IND MARKET MANAG, V114, P32, DOI 10.1016/j.indmarman.2023.07.009 Sarstedt M, 2014, J FAM BUS STRATEG, V5, P105, DOI 10.1016/j.jfbs.2014.01.002 Sharma VK, 2024, IEEE T ENG MANAGE, V71, P4665, DOI 10.1109/TEM.2023.3236768 Singh A, 2015, BENCHMARKING, V22, P1192, DOI 10.1108/BIJ-01-2014-0007 Sivarajah U, 2024, TECHNOL FORECAST SOC, V202, DOI 10.1016/j.techfore.2024.123328 Teece DJ, 1997, STRATEGIC MANAGE J, V18, P509, DOI 10.1002/(SICI)1097-0266(199708)18:7<509::AID-SMJ882>3.0.CO;2-Z Truong Y, 2022, TECHNOL FORECAST SOC, V183, DOI 10.1016/j.techfore.2022.121852 Wamba SF, 2024, INT J PROD ECON, V268, DOI 10.1016/j.ijpe.2023.109131 Wamba-Taguimdje SL, 2020, BUS PROCESS MANAG J, V26, P1893, DOI 10.1108/BPMJ-10-2019-0411 Yang TT, 2011, MANAGE DECIS, V49, P1444, DOI 10.1108/00251741111173934 NR 85 TC 0 Z9 0 U1 11 U2 11 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9391 EI 1558-0040 J9 IEEE T ENG MANAGE JI IEEE Trans. Eng. Manage. PY 2024 VL 71 BP 11522 EP 11532 DI 10.1109/TEM.2024.3423669 PG 11 WC Business; Engineering, Industrial; Management WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Business & Economics; Engineering GA ZP0P7 UT WOS:001276385800002 DA 2024-09-05 ER PT J AU Villaseñor, EA Arencibia-Jorge, R Carrillo-Calvet, H AF Atenogenes Villasenor, Elio Arencibia-Jorge, Ricardo Carrillo-Calvet, Humberto TI Multiparametric characterization of scientometric performance profiles assisted by neural networks: a study of Mexican higher education institutions SO SCIENTOMETRICS LA English DT Article DE Bibliometric rankings; Higher education; Institutional academic assessment; Scientometric indicators; Self-organized neural networks; Scientometric data mining; Mexico ID BIBLIOMETRIC ANALYSIS; UNIVERSITY RANKINGS; TRIPLE-HELIX; SCIENCE; INDEX; COLLABORATION; CONSEQUENCES; PRODUCTIVITY; PUBLICATION; VISIBILITY AB Development of accurate systems to assess academic research performance is an essential topic in national science agendas around the world. Providing quantitative elements such as scientometric rankings and indicators have contributed to measure prestige and excellence of universities, but more sophisticated computational tools are seldom exploited. We compare the evolution of Mexican scientific production in Scopus and the Web of Science as well as Mexico's scientific productivity in relation to the growth of the National Researchers System of Mexico is analyzed. As a main analysis tool we introduce an artificial intelligence procedure based on self-organizing neural networks. The neural network technique proves to be a worthy scientometric data mining and visualization tool which automatically carries out multiparametric scientometric characterizations of the production profiles of the 50 most productive Mexican Higher Education Institutions (in Scopus database). With this procedure we automatically identify and visually depict clusters of institutions that share similar bibliometric profiles in bidimensional maps. Four perspectives were represented in scientometric maps: productivity, impact, expected visibility and excellence. Since each cluster of institutions represents a bibliometric pattern of institutional performance, the neural network helps locate various bibliometric profiles of academic production, and the identification of groups of institutions which have similar patterns of performance. Also, scientometric maps allow for the identification of atypical behaviors (outliers) which are difficult to identify with classical tools, since they outstand not because of a disparate value in just one variable, but due to an uncommon combination of a set of indicators values. C1 [Atenogenes Villasenor, Elio] Ctr Res & Innovat Informat & Commun Technol INFOT, Circuito Tecnopolo Sur 112, Mexico City, Aguascalientes, Mexico. [Arencibia-Jorge, Ricardo] Empresa Tecnol Informac, Havana, Cuba. [Carrillo-Calvet, Humberto] Univ Nacl Autonoma Mexico, Fac Sci, Lab Nonlinear Dynam, Mexico City, DF, Mexico. [Carrillo-Calvet, Humberto] Univ Nacl Autonoma Mexico, Ctr Complex Sci, Mexico City, DF, Mexico. C3 Universidad Nacional Autonoma de Mexico; Universidad Nacional Autonoma de Mexico RP Carrillo-Calvet, H (corresponding author), Univ Nacl Autonoma Mexico, Fac Sci, Lab Nonlinear Dynam, Mexico City, DF, Mexico.; Carrillo-Calvet, H (corresponding author), Univ Nacl Autonoma Mexico, Ctr Complex Sci, Mexico City, DF, Mexico. EM elio.villasenor@infotec.mx; ricardo.arencibia@eti.biocubafarma.cu; carr@unam.mx RI Atenogenes, Elio/GSE-4644-2022; Carrillo Calvet, Humberto/E-2265-2012; GARCÍA, ELIO ATENÓGENES VILLASEÑOR/W-7501-2019; Arencibia-Jorge, Ricardo/AAK-3567-2020; Arencibia-Jorge, Ricardo/B-1330-2016; CARRILLO CALVET, HUMBERTO/ITW-2657-2023 OI Atenogenes, Elio/0000-0002-8611-8661; Carrillo Calvet, Humberto/0000-0003-3659-6769; GARCÍA, ELIO ATENÓGENES VILLASEÑOR/0000-0002-8611-8661; Arencibia-Jorge, Ricardo/0000-0001-8907-2454; FU Proyecto CITMA-CONACyT [B330.166]; Empresa de Tecnologias Inteligentes y Modelacion de Sistemas S.A. de C.V. FX This research was partially supported by the Proyecto CITMA-CONACyT (B330.166) and the Empresa de Tecnologias Inteligentes y Modelacion de Sistemas S.A. de C.V. The authors acknowledge the collaboration of Jose Luis Jimenez Andrade (UNAM, Mexico), and of Dr. Felix de Moya Anegon (CSIC, Spain) for the data support given from SCImago Institutions Rankings. CR Abramo G, 2013, SCIENTOMETRICS, V95, P311, DOI 10.1007/s11192-012-0875-6 Aguillo IF, 2005, INTERCIENCIA, V30, P735 Aguillo IF, 2010, SCIENTOMETRICS, V85, P243, DOI 10.1007/s11192-010-0190-z Allen N, 2013, BRIT J POLIT INT REL, V15, P147, DOI 10.1111/1467-856X.12006 [Anonymous], 2005, HDB QUANTITATIVE SCI, DOI DOI 10.1007/1-4020-2755-9_11 [Anonymous], 2005, 46 U MARB DEP MATH C Arencibia-Jorge R, 2010, SCIENTOMETRICS, V83, P723, DOI 10.1007/s11192-009-0150-7 Arvanitis R, 1996, SCIENTOMETRICS, V35, P247, DOI 10.1007/BF02018482 Belkhodja O, 2007, SCIENTOMETRICS, V70, P301, DOI 10.1007/s11192-007-0205-6 Belter CW, 2013, SCIENTOMETRICS, V95, P629, DOI 10.1007/s11192-012-0836-0 Bengoetxea E, 2013, INT J CLIN HLTH PSYC, V13, P67, DOI 10.1016/S1697-2600(13)70009-7 Benito M, 2011, SCIENTOMETRICS, V89, P153, DOI 10.1007/s11192-011-0419-5 Billaut JC, 2010, SCIENTOMETRICS, V84, P237, DOI 10.1007/s11192-009-0115-x Bornmann L, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0056768 Bornmann L, 2012, J INFORMETR, V6, P333, DOI 10.1016/j.joi.2011.11.006 Caputo C, 2012, SCIENTOMETRICS, V90, P781, DOI 10.1007/s11192-011-0548-x Collazo-Reyes F, 2008, SCIENTOMETRICS, V75, P145, DOI 10.1007/s11192-007-1841-6 Collazo-Reyes F, 2010, SCIENTOMETRICS, V85, P791, DOI 10.1007/s11192-010-0229-1 CONACyT, 2013, RES ANT SIST NAC INV CONACyT, 2012, ATL CIENC MEX de Arenas JL, 2000, EDUC RES, V42, P85 de Arenas JL, 2002, SCIENTOMETRICS, V53, P39 Dunn J. C., 1973, Journal of Cybernetics, V3, P32, DOI 10.1080/01969727308546046 Egghe L, 2012, J INFORMETR, V6, P307, DOI 10.1016/j.joi.2011.12.007 Luna-Morales ME, 2012, INVESTIG BIBLIOTECOL, V26, P103 Foro Consultivo Cientifico y Tecnologico, 2011, RANK PROD CIENT MEX Gómez-Núñez AJ, 2011, SCIENTOMETRICS, V89, P741, DOI 10.1007/s11192-011-0485-8 Guzman M. V., 2010, ART SCI TUBERCULOSIS, P425 Helene AF, 2011, SCIENTOMETRICS, V89, P677, DOI 10.1007/s11192-011-0470-2 Huang MH, 2012, ONLINE INFORM REV, V36, P534, DOI 10.1108/14684521211254059 Ioannidis JP, 2007, BMC MED, V5, DOI 10.1186/1741-7015-5-30 Kohonen T., 2001, INFORM SCIENCES Kohonen T, 2013, NEURAL NETWORKS, V37, P52, DOI 10.1016/j.neunet.2012.09.018 Krauskopf M, 2007, SCIENTOMETRICS, V72, P93, DOI 10.1007/s11192-007-1737-5 Krishna D, 2002, J SCI IND RES INDIA, V61, P940 Kurzydlowski KJ, 2003, SOL ST PHEN, V94, P349, DOI 10.4028/www.scientific.net/SSP.94.349 Lena MMYL, 1997, ENVIRON BEHAV, V29, P169, DOI 10.1177/001391659702900202 Leydesdorff L, 2007, SCIENTOMETRICS, V70, P207, DOI 10.1007/s11192-007-0200-y Macías-Chapula CA, 2007, PROCEEDINGS OF ISSI 2007: 11TH INTERNATIONAL CONFERENCE OF THE INTERNATIONAL SOCIETY FOR SCIENTOMETRICS AND INFORMETRICS, VOLS I AND II, P894 Sierra-Flores MM, 2009, INVESTIG BIBLIOTECOL, V23, P127 Sierra-Flores MM, 2009, SCIENTOMETRICS, V81, P765, DOI 10.1007/s11192-008-2264-8 Miguel S, 2011, J AM SOC INF SCI TEC, V62, P1130, DOI 10.1002/asi.21532 Miguel S, 2010, SCIENTOMETRICS, V85, P495, DOI 10.1007/s11192-010-0266-9 Moya-Anegón F, 2006, J INF SCI, V32, P63, DOI 10.1177/0165551506059226 Mryglod O, 2013, SCIENTOMETRICS, V95, P115, DOI 10.1007/s11192-012-0874-7 Polanco X, 2001, SCIENTOMETRICS, V51, P267, DOI 10.1023/A:1010537316758 Rehn C., 2008, Bibliometric handbook for Karolinska Institutet SCImago Research Group, 2013, SIR IB 2013 Skupin A, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0058779 Sotolongo-Aguilar G, 2001, 8TH INTERNATIONAL CONFERENCE ON SCIENTOMETRICS AND INFORMETRICS, VOLS 1 AND 2 - ISSI-2001, PROCEEDINGS, P665 Sotolongo-Aguilar G., 2002, Revista Espanola de Documentacion Cientifica, V25, P477, DOI 10.3989/redc.2002.v25.i4.281 Statzner B, 2010, FRESHWATER BIOL, V55, P2639, DOI 10.1111/j.1365-2427.2010.02484.x Torres-Salinas D, 2011, SCIENTOMETRICS, V88, P771, DOI 10.1007/s11192-011-0418-6 Vanclay JK, 2012, SCIENTOMETRICS, V91, P751, DOI 10.1007/s11192-012-0618-8 Vesanto J., 1999, Intelligent Data Analysis, V3, P111, DOI 10.1016/S1088-467X(99)00013-X Waltman L, 2011, SCIENTOMETRICS, V87, P467, DOI 10.1007/s11192-011-0354-5 Weingart P, 2005, SCIENTOMETRICS, V62, P117, DOI 10.1007/s11192-005-0007-7 Zell D, 2005, J MANAGE INQUIRY, V14, P271, DOI 10.1177/1056492605279097 Zhao SX, 2009, ADVANCES IN MANAGEMENT OF TECHNOLOGY, PT 1, P220 NR 59 TC 25 Z9 26 U1 5 U2 91 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0138-9130 EI 1588-2861 J9 SCIENTOMETRICS JI Scientometrics PD JAN PY 2017 VL 110 IS 1 BP 77 EP 104 DI 10.1007/s11192-016-2166-0 PG 28 WC Computer Science, Interdisciplinary Applications; Information Science & Library Science WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Computer Science; Information Science & Library Science GA EK2HL UT WOS:000393748300005 DA 2024-09-05 ER PT C AU BinMakhashen, GM Al-Jamimi, HA AF BinMakhashen, Galal M. Al-Jamimi, Hamdi A. GP IEEE TI Evaluation of Machine Learning to Early Detection of Highly Cited Papers SO 2022 7TH INTERNATIONAL CONFERENCE ON DATA SCIENCE AND MACHINE LEARNING APPLICATIONS (CDMA 2022) LA English DT Proceedings Paper CT 7th International Conference on Data Science and Machine Learning Applications (CDMA) CY MAR 01-03, 2022 CL Prince Sultan Univ, Riyadh, SAUDI ARABIA HO Prince Sultan Univ DE Highly-cited Research; Bibliometric Analysis; Machine Learning; Digital Libraries ID CITATION IMPACT; COLLABORATION; IMPROVE; PREDICT; COUNTS AB As one of the fastest-growing topics, machine learning has many applications that span through different domains including image and signal recognition, text mining, information retrieval, robotics, etc. It enables information extraction and analysis for better insights and decision-based systems. The Web of Science(WoS) citation database is a leading organization that provides citation data of high-quality published research. WoS has its metrics to label published articles as Highly Cited Paper(HCP). Machine learning (ML) can help researchers in identifying the key characteristics of HCP. Moreover, it can allow research evaluation units forecasting significant scientific articles. In other words, it may allow researchers and/or research evaluators to detect potential scientific breakthrough ideas and stay current. In this study, more than 26 thousand records of published articles indexed by WoS were analyzed. All the records are drawn from the Technology research area as defined by WoS. Four ML algorithms are evaluated to verify the HCP common factors influence in raising citations and interest in scientific articles. The ensemble algorithms show promising results to identify HCP articles using only four factors. C1 [BinMakhashen, Galal M.; Al-Jamimi, Hamdi A.] King Fahd Univ Petr & Minerals, Res Inst, Dhahran, Saudi Arabia. C3 King Fahd University of Petroleum & Minerals RP BinMakhashen, GM (corresponding author), King Fahd Univ Petr & Minerals, Res Inst, Dhahran, Saudi Arabia. EM binmakhashen@kfupm.edu.sa; aljamimi@kfupm.edu.sa RI Al-Jamimi, Hamdi A./G-5734-2016 FU King Fahd University of Petroleum and Minerals (KFUPM) [DF191012] FX The authors would like to acknowledge the help and support provided by King Fahd University of Petroleum and Minerals (KFUPM) through funding the project number DF191012. CR Abrishami A, 2019, J INFORMETR, V13, P485, DOI 10.1016/j.joi.2019.02.011 Aksnes DW, 2003, RES EVALUAT, V12, P159, DOI 10.3152/147154403781776645 Antonakis J, 2014, LEADERSHIP QUART, V25, P152, DOI 10.1016/j.leaqua.2013.10.014 Biscaro C, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0099502 Bloch C, 2019, J INFORMETR, V13, P593, DOI 10.1016/j.joi.2019.03.003 Bornmann L, 2020, SCIENTOMETRICS, V124, P1457, DOI 10.1007/s11192-020-03512-7 Bornmann L, 2014, J INFORMETR, V8, P175, DOI 10.1016/j.joi.2013.11.005 Bornmann L, 2012, J INFORMETR, V6, P11, DOI 10.1016/j.joi.2011.08.004 BUCKLAND ST, 1993, J APPL ECOL, V30, P478, DOI 10.2307/2404188 Catalini C, 2015, P NATL ACAD SCI USA, V112, P13823, DOI 10.1073/pnas.1502280112 Chakraborty T, 2014, ACM-IEEE J CONF DIG, P351, DOI 10.1109/JCDL.2014.6970190 Chen JP, 2015, PROCEEDINGS OF 2015 IEEE 14TH INTERNATIONAL CONFERENCE ON COGNITIVE INFORMATICS & COGNITIVE COMPUTING (ICCI*CC), P434, DOI 10.1109/ICCI-CC.2015.7259421 CORTES C, 1995, MACH LEARN, V20, P273, DOI 10.1023/A:1022627411411 Didegah F, 2013, J INFORMETR, V7, P861, DOI 10.1016/j.joi.2013.08.006 Elgendi M, 2019, IEEE ACCESS, V7, P87977, DOI 10.1109/ACCESS.2019.2925965 Gallivan M.J., 2012, P 50 ANN C COMPUTERS, P175, DOI [10.1145/2214091.2214137, DOI 10.1145/2214091.2214137] Hsu CW, 2002, IEEE T NEURAL NETWOR, V13, P415, DOI 10.1109/72.991427 Hurley L. A., 2013, Proceedings of the American Society for Information Science and Technology, V50, P1, DOI [DOI 10.1002/MEET.14505001070, 10.1002/meet.14505001070] Lv ZB, 2019, FRONT BIOENG BIOTECH, V7, DOI 10.3389/fbioe.2019.00215 Malik N, 2019, NEW REV HYPERMEDIA M, V25, P182, DOI 10.1080/13614568.2019.1653996 Millet-Reyes B, 2013, GLOB FINANC J, V24, P129, DOI 10.1016/j.gfj.2013.07.003 Newman MEJ, 2014, EPL-EUROPHYS LETT, V105, DOI 10.1209/0295-5075/105/28002 Noorhidawati A, 2017, MALAYS J LIBR INF SC, V22, P85, DOI 10.22452/mjlis.vol22no2.6 Persson O, 2010, SCIENTOMETRICS, V83, P397, DOI 10.1007/s11192-009-0007-0 Ponomarev IV, 2014, SCIENTOMETRICS, V100, P755, DOI 10.1007/s11192-014-1320-9 Ponomarev IV, 2014, TECHNOL FORECAST SOC, V81, P49, DOI 10.1016/j.techfore.2012.09.017 Rish I., 2001, IJCAI 2001 WORKSH EM IJCAI 2001 WORKSH EM IJCAI 2001 WORKSH EM IJCAI 2001 WORKSH EM IJCAI 2001 WORKSH EM IJCAI 2001 WORKSH EM IJCAI 2001 WORKSH EM IJCAI 2001 WORKSH EM IJCAI 2001 WORKSH EM IJCAI 2001 WORKSH EM IJCAI 2001 WORKSH EM IJCAI 2001 WORKSH EM IJCAI 2001 WORKSH EM IJCAI 2001 WORKSH EM IJCAI 2001 WORKSH EM IJCAI 2001 WORKSH EM, V3, P41 Stegehuis C, 2015, J INFORMETR, V9, P642, DOI 10.1016/j.joi.2015.06.005 Tahamtan I, 2016, SCIENTOMETRICS, V107, P1195, DOI 10.1007/s11192-016-1889-2 van Raan AFJ, 2000, ASIST MON SER, P301 Vanclay JK, 2013, J INFORMETR, V7, P265, DOI 10.1016/j.joi.2012.11.009 Wang FH, 2019, SCIENTOMETRICS, V118, P109, DOI 10.1007/s11192-018-2965-6 Wang MY, 2019, SCIENTOMETRICS, V119, P1575, DOI 10.1007/s11192-019-03052-9 Wang MY, 2012, J INFORMETR, V6, P586, DOI 10.1016/j.joi.2012.06.002 Winnink JJ, 2015, SCIENTOMETRICS, V102, P113, DOI 10.1007/s11192-014-1451-z Yan R, 2011, P 20 ACM INT C INF K, P1247, DOI DOI 10.1145/2063576.2063757 Zeng A, 2017, PHYS REP, V714, P1, DOI 10.1016/j.physrep.2017.10.001 Zhu J, 2009, STAT INTERFACE, V2, P349 NR 38 TC 3 Z9 3 U1 6 U2 17 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA BN 978-1-6654-1014-4 PY 2022 BP 1 EP 6 DI 10.1109/CDMA54072.2022.00006 PG 6 WC Computer Science, Artificial Intelligence; Computer Science, Information Systems; Engineering, Biomedical WE Conference Proceedings Citation Index - Science (CPCI-S) SC Computer Science; Engineering GA BT2WE UT WOS:000814738100002 DA 2024-09-05 ER PT J AU Liu, Y Chen, HX Thoff, A AF Liu, Yang Chen, Huaxi Thoff, Anjahol TI Research on evaluation method of students' classroom performance based on artificial intelligence SO INTERNATIONAL JOURNAL OF CONTINUING ENGINEERING EDUCATION AND LIFE-LONG LEARNING LA English DT Article DE artificial intelligence; classroom performance; evaluation method; students' performance; monitoring image ID BEHAVIOR AB In order to solve the problem of time-consuming and low reliability of the traditional evaluation method for students' classroom performance, an artificial intelligence-based evaluation method for students' classroom performance is proposed. This paper establishes the evaluation standard of students' classroom performance and quantifies the evaluation of students' classroom performance. Classroom monitoring device is driven by program code. The initial acquired image is processed by image enhancement and recognition, and the result is transmitted to the upper computer. This paper analyses the evaluation indexes of students' classroom performance, such as attendance, participation, attention and abnormal behaviour, and finally outputs the results of teachers' classroom performance. The experimental results show that compared with the traditional evaluation method, the artificial intelligence-based evaluation method saves 69 seconds on average and improves its reliability by 6.25%. C1 [Liu, Yang] Chuzhou Univ, Sch Math & Finance, Chuzhou 329000, Peoples R China. [Chen, Huaxi] Bengbu Univ, Sch Sci, Bengbu 233000, Anhui, Peoples R China. [Thoff, Anjahol] Univ Copenhagen, Dept Comp Sci, DK-1017 Copenhagen, Denmark. C3 Chuzhou University; Bengbu University; University of Copenhagen RP Chen, HX (corresponding author), Bengbu Univ, Sch Sci, Bengbu 233000, Anhui, Peoples R China. EM 946261665@qq.com; aiiiang@sina.com; anjahol.thoff@outlook.com RI Valdiviezo, Lorgio/KRO-5493-2024 FU Anhui Provincial Education Department Foundation [2016jyxm0724]; Key project of teaching research in Anhui province [2017jyxm0541] FX This work was supported by Anhui Provincial Education Department Foundation under grant no. 2016jyxm0724, and Key project of teaching research in Anhui province under grant no. 2017jyxm0541. CR Blazar D, 2017, EDUC EVAL POLICY AN, V39, P146, DOI 10.3102/0162373716670260 Caldarella P., 2017, UPDATE APPL RES MUSI, V35, P615 Connell G.L., 2016, CBE-LIFE SCI EDUC, V15, P113 Decristan J., 2017, AM EDUC RES J, V52, P283 Gage NA, 2018, BEHAV DISORDERS, V43, P302, DOI 10.1177/0198742917714809 Goates MC, 2017, COLL RES LIBR, V78, P382, DOI 10.5860/crl.78.3.382 Hansen BD, 2017, BEHAV MODIF, V41, P626, DOI 10.1177/0145445517698418 Kostaris C, 2017, EDUC TECHNOL SOC, V20, P261 Litterio LM, 2018, ASSESS WRIT, V38, P1, DOI 10.1016/j.asw.2018.06.002 Looi C.K., 2005, SCITECH BOOK NEWS, V25, P249 Panadero E., 2016, EDUC PSYCHOL REV, V28, P1 Potter B.S., 2017, TECHNOLOGY ENG TEACH, V76, P355 Rasooli A, 2018, STUD EDUC EVAL, V56, P164, DOI 10.1016/j.stueduc.2017.12.008 Scott TM, 2017, PREV SCH FAIL, V61, P80, DOI 10.1080/1045988X.2016.1196645 Shuter R., 2017, WESTERM J COMMUN, V26, P1 Tousignant M, 2002, ADV HEALTH SCI EDUC, V7, P19, DOI 10.1023/A:1014516206120 Wood C.L., 2017, RURAL SPECIAL ED Q, V28, P39 Zapata GC, 2016, FOREIGN LANG ANN, V49, P93, DOI 10.1111/flan.12176 Zhao XY, 2017, STUD EDUC EVAL, V52, P42, DOI 10.1016/j.stueduc.2016.12.002 NR 19 TC 1 Z9 1 U1 4 U2 29 PU INDERSCIENCE ENTERPRISES LTD PI GENEVA PA WORLD TRADE CENTER BLDG, 29 ROUTE DE PRE-BOIS, CASE POSTALE 856, CH-1215 GENEVA, SWITZERLAND SN 1560-4624 EI 1741-5055 J9 INT J CONTIN ENG EDU JI Int. J. Contin. Eng. Educ. Life-Long Learn. PY 2020 VL 30 IS 4 SI SI BP 476 EP 491 PG 16 WC Education & Educational Research WE Emerging Sources Citation Index (ESCI) SC Education & Educational Research GA OP8WG UT WOS:000588370800008 DA 2024-09-05 ER PT J AU Zhang, Y Lu, J Liu, F Liu, Q Porter, A Chen, HS Zhang, GQ AF Zhang, Yi Lu, Jie Liu, Feng Liu, Qian Porter, Alan Chen, Hongshu Zhang, Guangquan TI Does deep learning help topic extraction? A kernel k-means clustering method with word embedding SO JOURNAL OF INFORMETRICS LA English DT Article DE Bibliometrics; Topic analysis; Cluster analysis; Text mining ID AUTHOR COCITATION; SCIENCE AB Topic extraction presents challenges for the bibliometric community, and its performance still depends on human intervention and its practical areas. This paper proposes a novel kernel k-means clustering method incorporated with a word embedding model to create a solution that effectively extracts topics from bibliometric data. The experimental results of a comparison of this method with four clustering baselines (i.e., k-means, fuzzy c-means, principal component analysis, and topic models) on two bibliometric datasets demonstrate its effectiveness across either a relatively broad range of disciplines or a given domain. An empirical study on bibliometric topic extraction from articles published by three top tier bibliometric journals between 2000 and 2017, supported by expert knowledge-based evaluations, provides supplemental evidence of the method's ability on topic extraction. Additionally, this empirical analysis reveals insights into both overlapping and diverse research interests among the three journals that would benefit journal publishers, editorial boards, and research communities. (C) 2018 Elsevier Ltd. All rights reserved. C1 [Zhang, Yi; Lu, Jie; Liu, Feng; Liu, Qian; Chen, Hongshu; Zhang, Guangquan] Univ Technol Sydney, Fac Engn & Informat Technol, Ctr Artificial Intelligence, Sydney, NSW, Australia. [Liu, Qian] Beijing Inst Technol, Sch Comp Sci, Beijing, Peoples R China. [Porter, Alan] Georgia Inst Technol, Technol Policy & Assessment Ctr, Atlanta, GA 30332 USA. [Porter, Alan] Search Technol Inc, Herndon, VA USA. C3 University of Technology Sydney; Beijing Institute of Technology; University System of Georgia; Georgia Institute of Technology RP Chen, HS (corresponding author), Univ Technol Sydney, Fac Engn & Informat Technol, Ctr Artificial Intelligence, Sydney, NSW, Australia. EM yi.zhang@uts.edu.au; jie.lu@uts.edu.au; feng.liu-2@student.uts.edu.au; qian.liu-9@student.uts.edu.au; alan.porter@isye.gatech.edu; hongsue1114@hotmail.com; guangquan.zhang@uts.edu.au RI Liu, Feng/I-1816-2016; Chen, Hongshu/O-2926-2017; Zhang, Yi/AAT-6945-2021; Zhang, Guangquan/G-2553-2017; Liu, Qian/AGD-5748-2022; porter, alan/A-7013-2009 OI Liu, Feng/0000-0002-5005-9129; Chen, Hongshu/0000-0002-0893-1817; Zhang, Yi/0000-0002-7731-0301; Liu, Qian/0000-0002-3162-935X; porter, alan/0000-0002-4520-6518 FU Australian Research Council [DP150101645]; United States National Science Foundation [1759960]; Direct For Social, Behav & Economic Scie; SBE Off Of Multidisciplinary Activities [1759960] Funding Source: National Science Foundation FX This work is partially supported by the Australian Research Council under Discovery Grant DP150101645 and the United States National Science Foundation Award #1759960. CR Amigó E, 2009, INFORM RETRIEVAL, V12, P461, DOI 10.1007/s10791-008-9066-8 [Anonymous], 2015, Transactions of the Association for Computational Linguistics, DOI [DOI 10.1186/1472-6947-15-S2-S2.ARXIV:1103.0398, DOI 10.1162/TACLA00134, DOI 10.1162/TACL_A_00134] Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993 Boyack KW, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0018029 Chang Y.-W., 2010, Journal of Machine Learning Research, V11, P1471 Chen K. Y., 2007, IEEE T KNOWLEDGE DAT, V19 Colavizza G, 2016, J INFORMETR, V10, P1037, DOI 10.1016/j.joi.2016.07.009 Ding WY, 2014, J ASSOC INF SCI TECH, V65, P2084, DOI 10.1002/asi.23134 Dong Ruihai., 2013, Proceedings of the Twenty- Third international joint conference on Artificial Intelligence, P1310 Faleiros TD, 2015, PROCEEDINGS OF THE TWENTY-FOURTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE (IJCAI), P4363 Firth J.R., 1957, Studies in Linguistic Analysis Funk RJ, 2017, MANAGE SCI, V63, P791, DOI 10.1287/mnsc.2015.2366 Hou JH, 2018, SCIENTOMETRICS, V115, P869, DOI 10.1007/s11192-018-2695-9 Jain AK, 1999, ACM COMPUT SURV, V31, P264, DOI 10.1145/331499.331504 Jain AK, 2010, PATTERN RECOGN LETT, V31, P651, DOI 10.1016/j.patrec.2009.09.011 Kanungo T, 2002, IEEE T PATTERN ANAL, V24, P881, DOI 10.1109/TPAMI.2002.1017616 Klavans R, 2017, J ASSOC INF SCI TECH, V68, P984, DOI 10.1002/asi.23734 Kulis B., 2004, SIGKDD Le Q., 2014, 31 INT C MACH LEARN, P1188, DOI DOI 10.1145/2740908.2742760 LeCun Y, 2015, NATURE, V521, P436, DOI 10.1038/nature14539 Levy O, 2014, ADV NEUR IN, V27 Leydesdorff L, 2008, J AM SOC INF SCI TEC, V59, P77, DOI 10.1002/asi.20732 Li GC, 2014, RES POLICY, V43, P941, DOI 10.1016/j.respol.2014.01.012 Liu Q, 2018, AAAI CONF ARTIF INTE, P5261 Manning C. D., 2008, FLAT CLUSTERING INTR, P350 Mikolov T., 2013, ADV NEURAL INFORM PR, P3111, DOI DOI 10.48550/ARXIV.1310.4546 Nieminen P, 2013, J INFORMETR, V7, P874, DOI 10.1016/j.joi.2013.08.004 PETERS HPF, 1993, RES POLICY, V22, P23, DOI 10.1016/0048-7333(93)90031-C Rip A., 1988, HDB QUANTITATIVE STU, P253 Salton G., 1986, Introduction to Modern Information Retrieval Socher Richard, 2014, Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), P1532, DOI [10.3115/v1/D14-1162.https, DOI 10.3115/V1/D14-1162.HTTPS, 10.3115/v1/D14-1162] Steyvers Mark, 2007, Handbook of latent semantic analysis, V427, P424 Suominen A, 2016, J ASSOC INF SCI TECH, V67, P2464, DOI 10.1002/asi.23596 Velden T, 2017, SCIENTOMETRICS, V111, P1169, DOI 10.1007/s11192-017-2306-1 Waltman L, 2017, PRO INT CONF SCI INF, P691 Xu R, 2005, IEEE T NEURAL NETWOR, V16, P645, DOI 10.1109/TNN.2005.845141 Xuan JY, 2018, IEEE T NEUR NET LEAR, V29, P1835, DOI 10.1109/TNNLS.2017.2676817 Xuan JY, 2017, IEEE T KNOWL DATA EN, V29, P1357, DOI 10.1109/TKDE.2016.2636182 Zhang Y, 2017, J ASSOC INF SCI TECH, V68, P1925, DOI 10.1002/asi.23814 Zhang Y, 2016, J INFORMETR, V10, P1108, DOI 10.1016/j.joi.2016.09.006 Zhang Y, 2016, TECHNOL FORECAST SOC, V105, P179, DOI 10.1016/j.techfore.2016.01.015 Zhang Y, 2014, TECHNOL FORECAST SOC, V85, P26, DOI 10.1016/j.techfore.2013.12.019 Zhao DZ, 2014, J ASSOC INF SCI TECH, V65, P995, DOI 10.1002/asi.23027 Zhao Y, 2004, MACH LEARN, V55, P311, DOI 10.1023/B:MACH.0000027785.44527.d6 Zhao Y, 2005, DATA MIN KNOWL DISC, V10, P141, DOI 10.1007/s10618-005-0361-3 NR 45 TC 80 Z9 83 U1 3 U2 117 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS SN 1751-1577 EI 1875-5879 J9 J INFORMETR JI J. Informetr. PD NOV PY 2018 VL 12 IS 4 BP 1099 EP 1117 DI 10.1016/j.joi.2018.09.004 PG 19 WC Computer Science, Interdisciplinary Applications; Information Science & Library Science WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Computer Science; Information Science & Library Science GA HB5CH UT WOS:000451074800008 OA Green Submitted DA 2024-09-05 ER PT J AU Riehl, K AF Riehl, Kevin TI On the scientometric value of full-text, beyond abstracts and titles: evidence from the business and economic literature SO MANAGEMENT REVIEW QUARTERLY LA English DT Article; Early Access DE Scientometrics; Topic modelling; Latent Dirichlet allocation; LDA; Textual analysis; Natural language processing; I23; M21; O31; O35; Z19 ID CO-WORD ANALYSIS; INTERNATIONAL-BUSINESS; BIBLIOMETRIC ANALYSIS; MANAGEMENT JOURNALS; CITATION ANALYSIS; ARTICLE; SCIENCE; INFORMATION; READABILITY; EVOLUTION AB Are abstracts or titles a good proxy for what an article contains? The majority of scientometric studies have used easily accessible representations of publications such as reference and author lists, citations, keywords, titles, and abstracts, rather than full-texts. However, better accessibility to full-text databases is on the rise. First studies employing full-texts are promising, yet the extent to which scientometric exploration of papers beyond title and abstract is beneficial to gain further insights is still under discussion. In this paper, we analyse the similarity between a paper's title, abstract and full-text and examine whether scientometric analyses should better rely on full-texts. Our dataset includes 66,392 articles published in 27 leading journals in the business administration and economics literature. We examine the use of these representations in textual analysis, topic modelling and research evaluation. The results suggest that, unlike titles, abstracts and full-texts exhibit significant similarities and can be used interchangeably. While, abstracts contain less extraneous information and approximately 30% less noise compared to full-texts in topic modelling, full-text-based models to explain future number of citations yield a 5% higher explanatory power. Additionally, we recommend considering the influence of diverse writing styles as a textual and rhetorical property, as our analysis demonstrates its significant explanatory power for future publication success. C1 [Riehl, Kevin] Tech Univ Darmstadt, Dept Law & Econ, Darmstadt, Germany. C3 Technical University of Darmstadt RP Riehl, K (corresponding author), Tech Univ Darmstadt, Dept Law & Econ, Darmstadt, Germany. EM kevin.riehl.de@googlemail.com OI Riehl, Kevin/0000-0003-4620-8379 CR Adam D, 2002, NATURE, V415, P726, DOI 10.1038/415726a Ahmad H, 2024, ENVIRON DEV SUSTAIN, V26, P2965, DOI 10.1007/s10668-023-02921-x Akpan I. J., 2020, Journal of Small Business & Entrepreneurship, P1, DOI [10.1080/08276331.2020.1786229, DOI 10.1080/08276331.2020.1786229] Anagnostou N.K., 2006, ICT ANAL TEACHING LE, P33 [Anonymous], 1980, Computerstrategien fur die Kommunikationsanalyse [Anonymous], 2020, Web of Science [Anonymous], 2007, AAAI, DOI DOI 10.5555/1619645.1619752 [Anonymous], 2020, Google Scholar Database [Anonymous], 2009, Harvard H-IV dictionary Antons D, 2019, J MANAGE, V45, P3035, DOI 10.1177/0149206318774619 Antons D, 2016, J PROD INNOVAT MANAG, V33, P726, DOI 10.1111/jpim.12300 ARMSTRONG JS, 1980, INTERFACES, V10, P80, DOI 10.1287/inte.10.2.80 ARUN R, 2010, LECT NOTES ARTIF INT, V6118 Astley W.G., 1985, ADMIN SCI QUART, V30, P497, DOI [10.2307/2392694, DOI 10.2307/2392694] Aziz S, 2022, EUR FINANC MANAG, V28, P744, DOI 10.1111/eufm.12326 Baheti Santosh Satyanarayan, 2023, International Journal of Business Innovation and Research, P283, DOI 10.1504/IJBIR.2023.129362 Baier P., 2020, Financial Markets, Institutions Instruments, V29, P93, DOI DOI 10.1111/FMII.12132 Bailey J., 1996, BUS STRAT REV, V7, P7 Baldi S, 1998, AM SOCIOL REV, V63, P829, DOI 10.2307/2657504 Ball R, 2009, SCIENTOMETRICS, V79, P667, DOI 10.1007/s11192-007-1984-5 Balz T, 2022, REMOTE SENS-BASEL, V14, DOI 10.3390/rs14174285 Barker K, 2007, RES EVALUAT, V16, P3, DOI 10.3152/095820207X190674 Baumgartner H, 2003, J MARKETING, V67, P123, DOI 10.1509/jmkg.67.2.123.18610 BAVELAS JB, 1978, CAN PSYCHOL REV, V19, P158, DOI 10.1037/h0081472 BAYER AE, 1982, J MARRIAGE FAM, V44, P527, DOI 10.2307/351577 Bergh DD, 2006, STRATEGIC MANAGE J, V27, P81, DOI 10.1002/smj.504 Berninger M, 2021, J BANK FINANC, V131, DOI 10.1016/j.jbankfin.2021.106188 Bhardwaj RK, 2016, SCIENTOMETRICS, V106, P299, DOI 10.1007/s11192-015-1777-1 Blei D, 2006, P 23 INT C MACH LEAR, P113 Blei D, 2010, IEEE SIGNAL PROC MAG, V27, P55, DOI 10.1109/MSP.2010.938079 Blei DM, 2007, ANN APPL STAT, V1, P17, DOI 10.1214/07-AOAS114 Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993 Boyack KW, 2005, SCIENTOMETRICS, V64, P351, DOI 10.1007/s11192-005-0255-6 Briggs LC, 2014, Text complexity and readability measures: an examination of historical trends Cao J, 2009, NEUROCOMPUTING, V72, P1775, DOI 10.1016/j.neucom.2008.06.011 Card D, 2013, J ECON LIT, V51, P144, DOI 10.1257/jel.51.1.144 COLE JR, 1972, SCIENCE, V178, P368, DOI 10.1126/science.178.4059.368 Cole JR., 1977, Am J Sociol, V83, P491, DOI [10.1086/226571, DOI 10.1086/226571] Colquitt JA, 2007, ACAD MANAGE J, V50, P1281, DOI 10.5465/AMJ.2007.28165855 Corsi M, 2010, AM J ECON SOCIOL, V69, P1495, DOI 10.1111/j.1536-7150.2010.00754.x Dai R, 2023, REV FINANC, V27, P79, DOI 10.1093/rof/rfac018 Dale E, 1948, EDUC RES BULL, V27, P37 Damasevicius R, 2023, J DOC, V79, P183, DOI 10.1108/JD-02-2022-0030 DEVEAUD R, 2014, DOCUMENT NUMERIQUE, V0017 Domschke W., 2015, Einfhrung in operations research, V9, DOI [10.1007/978-3-662-48216-2, DOI 10.1007/978-3-662-48216-2] Duriau VJ, 2007, ORGAN RES METHODS, V10, P5, DOI 10.1177/1094428106289252 Fahrmeir L., 2007, Der Weg zur Datenanalyse Fleck Ludwik., 1935, ENTSTEHUNG ENTWICKLU Flesch R, 1948, J APPL PSYCHOL, V32, P221, DOI 10.1037/h0057532 Fox CW, 2015, ECOL EVOL, V5, P1970, DOI 10.1002/ece3.1480 Garfield E., 1972, Technol Humanit, V2, P98 Gioia DA, 2013, ORGAN RES METHODS, V16, P15, DOI 10.1177/1094428112452151 Glenisson P, 2005, INFORM PROCESS MANAG, V41, P1548, DOI 10.1016/j.ipm.2005.03.021 Glenisson P, 2005, SCIENTOMETRICS, V63, P163, DOI 10.1007/s11192-005-0208-0 Glnzel W., 2019, Springer handbook of science and technology indicators, DOI [10.1007/978-3-030-02511-3, DOI 10.1007/978-3-030-02511-3] Gordon R.A., 1959, Journal of Education for Business, V35, P115, DOI DOI 10.1080/08832323.1959.10116245 Griffiths TL, 2004, P NATL ACAD SCI USA, V101, P5228, DOI 10.1073/pnas.0307752101 Gunning Robert, 1952, The Technique of Clear Writing Gurcan F, 2023, SUSTAINABILITY-BASEL, V15, DOI 10.3390/su15139854 Hannigan TR, 2019, ACAD MANAG ANN, V13, P586, DOI 10.5465/annals.2017.0099 Hassan SU, 2018, SCIENTOMETRICS, V117, P1645, DOI 10.1007/s11192-018-2944-y Huang MH, 2008, J AM SOC INF SCI TEC, V59, P1819, DOI 10.1002/asi.20885 Iqbal S, 2021, SCIENTOMETRICS, V126, P6551, DOI 10.1007/s11192-021-04055-1 Jamali HR, 2015, SCIENTOMETRICS, V105, P1635, DOI 10.1007/s11192-015-1642-2 Jamali HR, 2011, SCIENTOMETRICS, V88, P653, DOI 10.1007/s11192-011-0412-z Jin YR, 2021, TEXT RES J, V91, P1609, DOI 10.1177/0040517520985908 Johnson MS., 2003, MARKETING THEORY, V3, P477 Judge TA, 2007, ACAD MANAGE J, V50, P491 KESSLER MM, 1963, IEEE T INFORM THEORY, V9, P49, DOI 10.1109/TIT.1963.1057800 Kincaid J.P., 1975, Derivation of new readability formulas (automated readability index, fog count and flesch reading ease formula) for navy enlisted personnel Klarin A, 2021, J BUS RES, V126, P250, DOI 10.1016/j.jbusres.2020.12.063 Knorr-Cetina K. D., 1981, The manufacture of knowledge, DOI [10.1016/C2009-0-09537-3, DOI 10.1016/C2009-0-09537-3] Krippendorff K., 2019, Content Analysis: An Introduction to Its Methodology, DOI DOI 10.4135/9781071878781 Kuhn HW, 2005, NAV RES LOG, V52, P7, DOI 10.1002/nav.20053 La Quatra M, 2021, SCIENTOMETRICS, V126, P8275, DOI 10.1007/s11192-021-04117-4 Latour B., 2013, Laboratory life. The construction of scientific facts, DOI [10.2307/j.ctt32bbxc, DOI 10.2307/J.CTT32BBXC] Leydesdorff L., 2015, International Encyclopedia of the Social Behavioral Sciences, V21, P322, DOI [10.1016/B978-0-08-097086-8.85030-8, DOI 10.1016/B978-0-08-097086-8.85030-8] Li CY, 2023, HELIYON, V9, DOI 10.1016/j.heliyon.2023.e18446 Liesch PW, 2011, SCIENTOMETRICS, V88, P17, DOI 10.1007/s11192-011-0372-3 Liu JJ, 2020, TECHNOL FORECAST SOC, V155, DOI 10.1016/j.techfore.2020.120022 Locke K, 1997, ACAD MANAGE J, V40, P1023, DOI 10.5465/256926 Locke K., 2003, Grounded theory in management research, DOI DOI 10.4135/9780857024428 Loughran T, 2014, J FINANC, V69, P1643, DOI 10.1111/jofi.12162 Lowry P., 2004, J ASSOC INF SYST, V5, P29, DOI DOI 10.17705/1JAIS.00045 Lowry PB, 2007, IEEE T PROF COMMUN, V50, P352, DOI 10.1109/TPC.2007.908733 MACROBERTS MH, 1989, J AM SOC INFORM SCI, V40, P342, DOI 10.1002/(SICI)1097-4571(198909)40:5<342::AID-ASI7>3.0.CO;2-U MALIN MV, 1968, LIBR TRENDS, V16, P374 Marshakova IV., 1973, Nauchno-Tekhnicheskaya Informatisiya: Sci Tech Inf Process, V2, P49 Maulana FI, 2022, 7 N AM INT C IND ENG, DOI [10.46254/NA07.20220234, DOI 10.46254/NA07.20220234] MCLAUGHLIN GH, 1969, J READING, V12, P639 Merton RK, 1985, Ders., Entwicklung und Wandel von Forschungsinteressen. Aufsatze zur Wissenschaftssoziologie. Mit einer Einleitung von Nico Stehr, P86 Mingers J, 2017, EUR J OPER RES, V257, P323, DOI 10.1016/j.ejor.2016.07.058 Mingers J, 2010, EUR J OPER RES, V205, P422, DOI 10.1016/j.ejor.2009.12.008 Monastersky R., 2005, CHRON HIGHER EDUC, V52, pA12 Morales-Parragué M, 2022, SUSTAINABILITY-BASEL, V14, DOI 10.3390/su14042291 Morris TA, 1998, J AM MED INFORM ASSN, V5, P448, DOI 10.1136/jamia.1998.0050448 Moya-Anegon F, 2004, SCIENTOMETRICS, V61, P129, DOI 10.1023/B:SCIE.0000037368.31217.34 Mustak M, 2021, J BUS RES, V124, P389, DOI 10.1016/j.jbusres.2020.10.044 Nadi-Ravandi S, 2022, EDUC INF TECHNOL, V27, P10207, DOI 10.1007/s10639-022-11048-x Nerkar A, 2013, TECH INNOVATION ENTR, V13, P165, DOI 10.1108/S1479-067X(2013)0000013009 Nerur S, 2016, STRATEGIC MANAGE J, V37, P1065, DOI 10.1002/smj.2377 Newman D, 2009, J MACH LEARN RES, V10, P1801 Patra BC, 2024, BENCHMARKING, V31, P162, DOI 10.1108/BIJ-02-2022-0091 Pauly D., 2005, Ethics Sci Environ Politics, P33, DOI [DOI 10.3354/ESEP005033, 10.3354/esep005033] Pennebaker J.W., 2007, DEV PSYCHOMETRIC PRO PETERS HPF, 1994, SCIENTOMETRICS, V29, P115, DOI 10.1007/BF02018386 Pfeffer J, 2002, ACAD MANAG LEARN EDU, V1, P78, DOI 10.5465/AMLE.2002.7373679 Phelan SE, 2002, STRATEGIC MANAGE J, V23, P1161, DOI 10.1002/smj.268 Pierson F.C., 1959, The Journal of Business Education, V35, P114, DOI DOI 10.1080/08832323.1959.10116244 Podsakoff PM, 2008, J MANAGE, V34, P641, DOI 10.1177/0149206308319533 Podsakoff PM, 2005, STRATEGIC MANAGE J, V26, P473, DOI 10.1002/smj.454 Pollack J., 2006, International Journal of Project Management, V24, P175, DOI 10.1016/j.ijproman.2005.10.005 PORTER MF, 1980, PROGRAM-AUTOM LIBR, V14, P130, DOI 10.1108/eb046814 PRICE DJD, 1965, SCIENCE, V149, P510 Ravikumar S, 2015, SCIENTOMETRICS, V102, P929, DOI 10.1007/s11192-014-1402-8 Rojas-Lamorena AJ, 2022, J BUS RES, V139, P1067, DOI 10.1016/j.jbusres.2021.10.025 ROWLETT RJ, 1985, J CHEM INF COMP SCI, V25, P159, DOI 10.1021/ci00047a005 Safder I, 2019, SCIENTOMETRICS, V119, P257, DOI 10.1007/s11192-019-03025-y Sagi I, 2008, J INF SCI, V34, P680, DOI 10.1177/0165551507086261 Saini N, 2022, J CLEAN PROD, V381, DOI 10.1016/j.jclepro.2022.135173 Smith Page., 1990, Killing the Spirit: Higher Education in America SNIZEK WE, 1991, SCIENTOMETRICS, V20, P25, DOI 10.1007/BF02018141 Song M, 2013, SCIENTOMETRICS, V96, P183, DOI 10.1007/s11192-012-0900-9 STEWART JA, 1983, SOC FORCES, V62, P166, DOI 10.2307/2578354 Stone B., 2010, TOP COGN SCI, V3, P92, DOI DOI 10.1111/J.1756-8765.2010.01108.X Stremersch S, 2007, J MARKETING, V71, P171, DOI 10.1509/jmkg.71.3.171 Sullivan D, 2011, J INT BUS STUD, V42, P446, DOI 10.1057/jibs.2010.56 Suominen A, 2017, TECHNOL FORECAST SOC, V115, P131, DOI 10.1016/j.techfore.2016.09.028 Tahai A, 1999, STRATEGIC MANAGE J, V20, P279 Tan LW, 2015, NANKAI BUS REV NT, V6, P20, DOI 10.1108/NBRI-09-2014-0036 Tausczik YR, 2010, J LANG SOC PSYCHOL, V29, P24, DOI 10.1177/0261927X09351676 Thelwall M, 2014, J INFORMETR, V8, P963, DOI 10.1016/j.joi.2014.09.011 Van Dalen HP, 2009, J EUR SOC POLICY, V19, P47, DOI 10.1177/0958928708098523 Wang X, 2015, J CONSUM RES, V42, P5, DOI 10.1093/jcr/ucv009 Wei FF, 2020, ELECTRON LIBR, V38, P493, DOI 10.1108/EL-12-2019-0279 Weingart P, 2005, SCIENTOMETRICS, V62, P117, DOI 10.1007/s11192-005-0007-7 Whissell C, 1999, PERCEPT MOTOR SKILL, V88, P76, DOI 10.2466/PMS.88.1.76-86 White HD, 1998, J AM SOC INFORM SCI, V49, P327, DOI 10.1002/(SICI)1097-4571(19980401)49:4<327::AID-ASI4>3.0.CO;2-W Wuehrer GA, 2013, SCIENTOMETRICS, V95, P541, DOI 10.1007/s11192-012-0909-0 Young L, 2015, J BUS-BUS MARK, V22, P111, DOI 10.1080/1051712X.2015.1021591 Zhou L, 2021, INF SYST E-BUS MANAG, V19, P757, DOI 10.1007/s10257-020-00461-9 NR 141 TC 0 Z9 0 U1 1 U2 1 PU SPRINGERNATURE PI LONDON PA CAMPUS, 4 CRINAN ST, LONDON, N1 9XW, ENGLAND SN 2198-1620 EI 2198-1639 J9 MANAG REV Q JI Manag. Rev. Q. PD 2024 MAY 24 PY 2024 DI 10.1007/s11301-024-00439-8 EA MAY 2024 PG 55 WC Business; Business, Finance; Management WE Emerging Sources Citation Index (ESCI) SC Business & Economics GA SJ3O2 UT WOS:001234049200001 DA 2024-09-05 ER PT J AU Crockett, C Finelli, CJ Demonbrun, M Nguyen, KA Tharayil, S Shekhar, P Rosenberg, RS AF Crockett, Caroline Finelli, Cynthia J. Demonbrun, Matt Nguyen, Kevin A. Tharayil, Sneha Shekhar, Prateek Rosenberg, Robyn S. TI Common Characteristics of High-quality Papers Studying Student Response to Active Learning SO INTERNATIONAL JOURNAL OF ENGINEERING EDUCATION LA English DT Article DE active learning; student response; systematic literature review ID EDUCATION; SCIENCE AB Active learning is increasingly used in engineering classrooms to improve student learning and engagement. Although students tend to respond positively to the introduction of active learning, some instructors experience negative student responses. Determining why and how to alleviate such negative responses is an open research question. Because there are many contextual variables to consider, we believe this question will best be addressed by increasing the number of faculty who are able to study their own implementation of active learning. This paper examines the underlying characteristics of 27 high-quality papers on student response to active learning. Using a six step research framework, this paper: (1) discusses common categories of research questions, (2) offers rules of thumb for literature reviews, (3) provides example theories, (4) discusses the data collected by qualitative, quantitative, and mixed methods studies and how the data is analyzed, (5) points to different approaches for data presentation, and (6) lists elements which authors typically include in their description of context and discussion sections. We offer literature-driven recommendations for faculty to help them quickly adopt good practices for how to share evidence based on their experiences. C1 [Crockett, Caroline; Finelli, Cynthia J.] Univ Michigan, Elect Engn & Comp Sci, Ann Arbor, MI 48109 USA. [Demonbrun, Matt] Southern Methodist Univ, Enrollment Management Res Grp, Dallas, TX USA. [Nguyen, Kevin A.] Sonoma State Univ, Hutchins Sch Liberal Studies, Rohnert Pk, CA 94928 USA. [Tharayil, Sneha] Univ Texas Austin, STEM Educ, Austin, TX 78712 USA. [Shekhar, Prateek] New Jersey Inst Technol, Sch Appl Engn & Technol, Newark, NJ 07102 USA. [Rosenberg, Robyn S.] Harvard Univ, Cabot Sci Lib, Cambridge, MA 02138 USA. C3 University of Michigan System; University of Michigan; Southern Methodist University; California State University System; Sonoma State University; University of Texas System; University of Texas Austin; New Jersey Institute of Technology; Harvard University RP Crockett, C (corresponding author), Univ Michigan, Elect Engn & Comp Sci, Ann Arbor, MI 48109 USA. EM cecroc@umich.edu; cfinelli@umich.edu; rdemonbrun@smu.edu; nguyenkevi@sonoma.edu; sneha.tharayil@utexas.edu; prateek.shekhar@njit.edu; robyn_rosenberg@harvard.edu FU NSF [DUE-1744407] FX The authors would like to thank Dr. Maura Borrego and Dr. Cindy Waters for their contributions to the overall systematic literature, without which this project would not have been possible. We also thank the reviewers for their thoughtful comments. We would like to gratefully acknowledge the NSF for their financial support (through the DUE-1744407 grant). Any opinions, findings, and conclusions or recommendations expressed in this Report are those of the authors and do not necessarily reflect the views of the National Science Foundation; NSF has not approved or endorsed its content. CR [Anonymous], 2018, J COLL SCI TEACH Astin AW, 1999, J COLL STUDENT DEV, V40, P518 Azevedo LF, 2011, REV PORT PNEUMOL, V17, P232, DOI 10.1016/j.rppneu.2011.06.014 Bandura A, 2002, APPL PSYCHOL-INT REV, V51, P269, DOI 10.1111/1464-0597.00092 Borrego M, 2018, PROC FRONT EDUC CONF Borrego M, 2015, J ENG EDUC, V104, P212, DOI 10.1002/jee.20069 Borrego M, 2009, J ENG EDUC, V98, P53, DOI 10.1002/j.2168-9830.2009.tb01005.x Borrego M, 2008, J ENG EDUC, V97, P123, DOI 10.1002/j.2168-9830.2008.tb00962.x Clark V.L. P., 2014, UNDERSTANDING RES CO Creswell J. W., 2005, ED RES PLANNING COND Deci E.L., 1980, Advances in experimental social psychology, V13, P39, DOI DOI 10.1016/S0065-2601(08)60130-6 Dewey J., 1986, EDUC FORUM, V50, P241, DOI [10.1080/00131728609335764, DOI 10.1080/00131728609335764] Eddy RM, 2000, J CHEM EDUC, V77, P514, DOI 10.1021/ed077p514 Eisner C., 2018, GOING PUBLIC YOUR SO Evans BC, 2011, J MIX METHOD RES, V5, P276, DOI 10.1177/1558689811412972 Faust JL., 1998, Journal onExcellence in College Teaching, V9, P3, DOI [10.5926/arepj1962.47.029, DOI 10.5926/AREPJ1962.47.029] Finelli CJ, 2014, J ENG EDUC, V103, P331, DOI 10.1002/jee.20042 Freeman S, 2014, P NATL ACAD SCI USA, V111, P8410, DOI 10.1073/pnas.1319030111 Frey B.B., 2018, The SAGE Encyclopedia of Educational Research, Measurement, and Evaluation, DOI DOI 10.4135/9781506326139.N Henderson C, 2007, PHYS REV SPEC TOP-PH, V3, DOI 10.1103/PhysRevSTPER.3.020102 Hilpert JC, 2010, PROC FRONT EDUC CONF Howe KR, 2009, EDUC RESEARCHER, V38, P428, DOI 10.3102/0013189X09342003 Hutchings P., 2000, Opening Lines: Approaches to the Scholarship of Teaching and Learning Kovach R., 1996, DEV SELF REGULATED L, P147 MCAULEY E, 1989, RES Q EXERCISE SPORT, V60, P48, DOI 10.1080/02701367.1989.10607413 PINTRICH PR, 1993, EDUC PSYCHOL MEAS, V53, P801, DOI 10.1177/0013164493053003024 Prince M, 2004, J ENG EDUC, V93, P223, DOI 10.1002/j.2168-9830.2004.tb00809.x Redish EF, 1998, AM J PHYS, V66, P212, DOI 10.1119/1.18847 Rosenberg R., 2018, 2018 ASEE ANN C EXP Schau C., 2003, STUDENTS ATTITUDES O, P11 Semsar K, 2011, CBE-LIFE SCI EDUC, V10, P268, DOI 10.1187/cbe.10-10-0133 [Shavelson R.J. NRC. NRC.], 2002, SCI RES ED Stains M, 2018, SCIENCE, V359, P1468, DOI 10.1126/science.aap8892 Svinicki M. D., GUIDEBOOK CONCEPTUAL, P37 Walberg H. J., 1980, PSYCHOL THEORY ED PR Williams GC, 1996, J PERS SOC PSYCHOL, V70, P767, DOI 10.1037/0022-3514.70.4.767 NR 36 TC 2 Z9 2 U1 0 U2 2 PU TEMPUS PUBLICATIONS PI DURRUS, BANTRY PA IJEE , ROSSMORE,, DURRUS, BANTRY, COUNTY CORK 00000, IRELAND SN 0949-149X J9 INT J ENG EDUC JI Int. J. Eng. Educ PY 2021 VL 37 IS 2 BP 420 EP 432 PG 13 WC Education, Scientific Disciplines; Engineering, Multidisciplinary WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Education & Educational Research; Engineering GA RO4PJ UT WOS:000641026600012 DA 2024-09-05 ER PT J AU Bai, XM Liu, H Zhang, FL Ning, ZL Kong, XJ Lee, I Xia, F AF Bai, Xiaomei Liu, Hui Zhang, Fuli Ning, Zhaolong Kong, Xiangjie Lee, Ivan Xia, Feng TI An Overview on Evaluating and Predicting Scholarly Article Impact SO INFORMATION LA English DT Article DE scholarly big data; article impact; machine learning; data mining ID CITATION IMPACT; UNIVERSALITY; NETWORKS AB Scholarly article impact reflects the significance of academic output recognised by academic peers, and it often plays a crucial role in assessing the scientific achievements of researchers, teams, institutions and countries. It is also used for addressing various needs in the academic and scientific arena, such as recruitment decisions, promotions, and funding allocations. This article provides a comprehensive review of recent progresses related to article impact assessment and prediction. The review starts by sharing some insight into the article impact research and outlines current research status. Some core methods and recent progress are presented to outline how article impact metrics and prediction have evolved to consider integrating multiple networks. Key techniques, including statistical analysis, machine learning, data mining and network science, are discussed. In particular, we highlight important applications of each technique in article impact research. Subsequently, we discuss the open issues and challenges of article impact research. At the same time, this review points out some important research directions, including article impact evaluation by considering Conflict of Interest, time and location information, various distributions of scholarly entities, and rising stars. C1 [Bai, Xiaomei; Liu, Hui; Ning, Zhaolong; Kong, Xiangjie; Xia, Feng] Dalian Univ Technol, Sch Software, Dalian 116620, Peoples R China. [Bai, Xiaomei] Anshan Normal Univ, Ctr Comp, Anshan 114007, Peoples R China. [Zhang, Fuli] Anshan Normal Univ, Anshan 114007, Peoples R China. [Lee, Ivan] Univ South Australia, Sch Informat Technol & Math Sci, Mawson Lakes, SA 5095, Australia. C3 Dalian University of Technology; Anshan Normal University; Anshan Normal University; University of South Australia RP Liu, H (corresponding author), Dalian Univ Technol, Sch Software, Dalian 116620, Peoples R China. EM xiaomeibai@outlook.com; liuhui1126@dlut.edu.cn; zfuli@outlook.com; Zhaolongning@dlut.edu.cn; xjkong@ieee.org; ivan.lee@unisa.edu.au; f.xia@ieee.org RI Xia, Feng/Y-2859-2019; Kong, Xiangjie/B-8809-2016; Ning, Zhaolong/ABI-3626-2022; Lee, Ivan/F-4131-2013 OI Xia, Feng/0000-0002-8324-1859; Kong, Xiangjie/0000-0003-2698-3319; Ning, Zhaolong/0000-0002-7870-5524; Lee, Ivan/0000-0002-2826-6367 CR Aguinis H, 2012, ACAD MANAGE PERSPECT, V26, P105, DOI 10.5465/amp.2011.0088 Anicich EM, 2015, P NATL ACAD SCI USA, V112, P1338, DOI 10.1073/pnas.1408800112 [Anonymous], 2013, P AAAI C ART INT [Anonymous], 1989, Applied Logistic Regression [Anonymous], 2016, ARXIV160605752 [Anonymous], 2009, Proc. of the 9th SIAM International Conference on Data Mining Bai XM, 2016, PROCEEDINGS OF THE 25TH INTERNATIONAL CONFERENCE ON WORLD WIDE WEB (WWW'16 COMPANION), P9, DOI 10.1145/2872518.2889383 Bai XM, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0162364 Barábasi AL, 2013, PHILOS T R SOC A, V371, DOI 10.1098/rsta.2012.0375 Barbaro A., 2014, JEAHIL, V10, P3 Bhise R B., 2013, IOSR Journal Of Humanities And Social Science, V6, P18, DOI DOI 10.9790/0837-0661821 Bruns SB, 2016, SCIENTOMETRICS, V108, P917, DOI 10.1007/s11192-016-1979-1 Cao XY, 2016, J INFORMETR, V10, P471, DOI 10.1016/j.joi.2016.02.006 Catalini C, 2015, P NATL ACAD SCI USA, V112, P13823, DOI 10.1073/pnas.1502280112 Chen P, 2007, J INFORMETR, V1, P8, DOI 10.1016/j.joi.2006.06.001 Chen TQ, 2016, KDD'16: PROCEEDINGS OF THE 22ND ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, P785, DOI 10.1145/2939672.2939785 Cheung MK, 2013, NATURE, V494, P176, DOI 10.1038/494176d Costas R, 2015, J ASSOC INF SCI TECH, V66, P2003, DOI 10.1002/asi.23309 Di Ciaccio A., 2012, Advanced statistical methods for the analysis of large data-sets Eysenbach G, 2011, J MED INTERNET RES, V13, DOI 10.2196/jmir.2012 Gargouri Y, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0013636 Hastie T., 2009, ELEMENTS STAT LEARNI, P485, DOI [DOI 10.1007/978-0-387-84858-7_14, DOI 10.1007/978-0-387-84858-7_7] Hearst MA, 1998, IEEE INTELL SYST APP, V13, P18, DOI 10.1109/5254.708428 Hemmat Esfe M, 2015, SCI ENG ETHICS, V21, P1581, DOI 10.1007/s11948-014-9598-9 Jarrow RA, 1997, REV FINANC STUD, V10, P481, DOI 10.1093/rfs/10.2.481 Jing Z, 2016, CHIN CONTR CONF, P211, DOI 10.1109/ChiCC.2016.7553085 Johnson Richard Arnold, 2002, Applied multivariate statistical analysis, V5-8 Jordan MI, 2015, SCIENCE, V349, P255, DOI 10.1126/science.aaa8415 Kaur J, 2013, J INFORMETR, V7, P924, DOI 10.1016/j.joi.2013.09.002 Ke Q, 2015, P NATL ACAD SCI USA, V112, P7426, DOI 10.1073/pnas.1424329112 Kleinberg JM, 1999, J ACM, V46, P604, DOI 10.1145/324133.324140 Klimek P, 2016, SCIENTOMETRICS, V107, P1265, DOI 10.1007/s11192-016-1926-1 Kwok Roberta, 2013, Nature, V500, P491 Letchford A, 2015, ROY SOC OPEN SCI, V2, DOI 10.1098/rsos.150266 Liu ZR, 2014, PROC INT C TOOLS ART, P493, DOI 10.1109/ICTAI.2014.80 Mnih V, 2015, NATURE, V518, P529, DOI 10.1038/nature14236 Page L., 1999, The PageRank citation ranking: bringing order to the web Petersen AM, 2015, P NATL ACAD SCI USA, V112, pE4671, DOI 10.1073/pnas.1501444112 Piwowar H, 2013, NATURE, V493, P159, DOI 10.1038/493159a Priem J, 2014, BEYOND BIBLIOMETRICS: HARNESSING MULTIDIMENSIONAL INDICATORS OF SCHOLARLY IMPACT, P263 Quinlan J. R., 1986, Machine Learning, V1, P81, DOI 10.1023/A:1022643204877 Radicchi F, 2008, P NATL ACAD SCI USA, V105, P17268, DOI 10.1073/pnas.0806977105 Rojas R., 2013, Neural Networks: A Systematic Introduction Rusk N, 2016, NAT METHODS, V13, P35, DOI 10.1038/nmeth.3707 Sarigöl E, 2014, EPJ DATA SCI, V3, DOI 10.1140/epjds/s13688-014-0009-x Schneider M, 2017, J CLIN TRANSL SCI, V1, P45, DOI 10.1017/cts.2016.8 Shah N., 2015, ARXIV150703650 Simkin MV., 2003, COMPLEX SYSTEMS, V14, P269, DOI [DOI 10.1111/J.1740-9713.2006.00202.X, 10.25088/ComplexSystems.14.3.269] Small H, 2010, SCIENTOMETRICS, V83, P835, DOI 10.1007/s11192-009-0121-z Stegehuis C, 2015, J INFORMETR, V9, P642, DOI 10.1016/j.joi.2015.06.005 Sugiyama Kazunari., 2011, P 11 ANN INT ACMIEEE, P307, DOI DOI 10.1145/1998076.1998133 Sutherland KA, 2017, STUD HIGH EDUC, V42, P743, DOI 10.1080/03075079.2015.1072150 Thelwall Mike., 2016, Journal of Data and Information Science, V1, P7, DOI [DOI 10.20309/JDIS.201610, 10.20309/jdis.201610] Timilsina M, 2016, PROCEEDINGS OF THE 2016 IEEE/ACM INTERNATIONAL CONFERENCE ON ADVANCES IN SOCIAL NETWORKS ANALYSIS AND MINING ASONAM 2016, P1388, DOI 10.1109/ASONAM.2016.7752425 Tin Kam Ho, 1995, Proceedings of the Third International Conference on Document Analysis and Recognition, P278, DOI 10.1109/ICDAR.1995.598994 Wacker D, 2013, SCIENCE, V340, P615, DOI 10.1126/science.1232808 Walker D, 2007, J STAT MECH-THEORY E, DOI 10.1088/1742-5468/2007/06/P06010 Wang SJ, 2014, ADV INTEL SYS RES, V111, P24 West JD, 2013, J AM SOC INF SCI TEC, V64, P787, DOI 10.1002/asi.22790 Wilsdon J, 2015, NATURE, V523, P129, DOI 10.1038/523129a Yan E., 2010, P AM SOC INFORM SCI, V47, P1, DOI [10.1002/meet.14504701033, DOI 10.1002/MEET.14504701033] Yan EJ, 2012, J AM SOC INF SCI TEC, V63, P1313, DOI 10.1002/asi.22680 Yu T, 2014, SCIENTOMETRICS, V101, P1233, DOI 10.1007/s11192-014-1279-6 Zhou YB, 2012, NEW J PHYS, V14, DOI 10.1088/1367-2630/14/3/033033 Zhu XD, 2015, J ASSOC INF SCI TECH, V66, P408, DOI 10.1002/asi.23179 NR 65 TC 34 Z9 36 U1 0 U2 24 PU MDPI PI BASEL PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND EI 2078-2489 J9 INFORMATION JI Information PD SEP PY 2017 VL 8 IS 3 AR 73 DI 10.3390/info8030073 PG 14 WC Computer Science, Information Systems WE Emerging Sources Citation Index (ESCI) SC Computer Science GA FQ6YB UT WOS:000418508900003 OA Green Submitted, gold DA 2024-09-05 ER PT J AU Bickley, SJ Chan, HF Torgler, B AF Bickley, Steve J. Chan, Ho Fai Torgler, Benno TI Artificial intelligence in the field of economics SO SCIENTOMETRICS LA English DT Article DE Artificial intelligence; Machine learning; Economics; Scientometrics; Science of science; Bibliometrics ID WEB-OF-SCIENCE; GOOGLE-SCHOLAR; BIG DATA; SCOPUS; AI; CREATIVITY; BUSINESS; CYBERNETICS; MANAGEMENT; LANDSCAPE AB The history of AI in economics is long and winding, much the same as the evolving field of AI itself. Economists have engaged with AI since its beginnings, albeit in varying degrees and with changing focus across time and places. In this study, we have explored the diffusion of AI and different AI methods (e.g., machine learning, deep learning, neural networks, expert systems, knowledge-based systems) through and within economic subfields, taking a scientometrics approach. In particular, we centre our accompanying discussion of AI in economics around the problems of economic calculation and social planning as proposed by Hayek. To map the history of AI within and between economic sub-fields, we construct two datasets containing bibliometrics information of economics papers based on search query results from the Scopus database and the EconPapers (and IDEAs/RePEc) repository. We present descriptive results that map the use and discussion of AI in economics over time, place, and subfield. In doing so, we also characterise the authors and affiliations of those engaging with AI in economics. Additionally, we find positive correlations between quality of institutional affiliation and engagement with or focus on AI in economics and negative correlations between the Human Development Index and share of learning-based AI papers. C1 [Bickley, Steve J.; Chan, Ho Fai; Torgler, Benno] Queensland Univ Technol, Sch Econ & Finance, 2 George St, Brisbane, Qld 4000, Australia. [Bickley, Steve J.; Chan, Ho Fai; Torgler, Benno] Ctr Behav Econ Soc & Technol BEST, 2 George St, Brisbane, Qld 4000, Australia. [Torgler, Benno] CREMA Ctr Res Econ Management & Arts, Sudstr 11, CH-8008 Zurich, Switzerland. C3 Queensland University of Technology (QUT); Queensland University of Technology (QUT) RP Chan, HF (corresponding author), Queensland Univ Technol, Sch Econ & Finance, 2 George St, Brisbane, Qld 4000, Australia.; Chan, HF (corresponding author), Ctr Behav Econ Soc & Technol BEST, 2 George St, Brisbane, Qld 4000, Australia. EM hofai.chan@qut.edu.au RI Torgler, Benno/W-4556-2019; Bickley, Steve/HZH-8985-2023; Chan, Ho Fai/G-9541-2015 OI Torgler, Benno/0000-0002-9809-963X; Chan, Ho Fai/0000-0002-7281-5212; Bickley, Steven/0000-0002-9579-4231 FU Australian Research Council [DP180101169] FX Open Access funding enabled and organized by CAUL and its Member Institutions. The funding was provided by Australian Research Council, Grant No (DP180101169). CR Agarwal A., 2018, PREDICTION MACHINES, DOI DOI 10.1080/15228053.2019.1673511 Aksnes DW, 2019, J DATA INFO SCI, V4, P1, DOI 10.2478/jdis-2019-0001 Amir R, 2008, REV ECON STAT, V90, P185, DOI 10.1162/rest.90.1.185 [Anonymous], 1976, Cognition and reality [Anonymous], 2001, CASE BASED REASONING [Anonymous], 2005, Fuzzy expert systems and Fuzzy reasoning Bastani Aaron., 2020, FULLY AUTOMATED LUXU Bickley S. J., 2021, CREMA Working Paper online Bickley SJ, 2021, TECHNOL ANAL STRATEG, V33, P1290, DOI 10.1080/09537325.2021.1921137 BilleterFrey EP, 1996, KYBERNETES, V25, P130, DOI 10.1108/03684929610149701 Boden MA, 1998, ARTIF INTELL, V103, P347, DOI 10.1016/S0004-3702(98)00055-1 Bolton GE, 2012, J ECON PSYCHOL, V33, P665, DOI 10.1016/j.joep.2011.09.003 Boulding K.E., 1970, EC SCI Calvano E, 2020, SCIENCE, V370, P1040, DOI 10.1126/science.abe3796 Campedelli GM, 2021, J COMPUT SOC SCI, V4, P503, DOI 10.1007/s42001-020-00082-9 Chan H. F., 2019, CREMA WORKING PAPER COCHRANE JL, 1976, ECON INQ, V14, P241, DOI 10.1111/j.1465-7295.1976.tb00390.x Cockburn IainM., 2019, EC ARTIFICIAL INTELL, P115 Colton S, 2012, FRONT ARTIF INTEL AP, V242, P21, DOI 10.3233/978-1-61499-098-7-21 Loureiro SMC, 2021, J BUS RES, V129, P911, DOI 10.1016/j.jbusres.2020.11.001 Coveney PV, 2016, PHILOS T R SOC A, V374, DOI 10.1098/rsta.2016.0153 Dauvergne, 2020, AI WILD SUSTAINABILI, DOI DOI 10.7551/MITPRESS/12350.001.0001 Dhamija P, 2020, TQM J, V32, P869, DOI 10.1108/TQM-10-2019-0243 Dreyfus H. L., 1965, ALCHEMY ARTIFICIAL I du Sautoy M., 2019, CREATIVITY CODE, DOI 10.2307/j.ctv2sp3dpd Duarte PG, 2020, HIST POLIT ECON, V52, P10, DOI 10.1215/00182702-8717898 Duflo E, 2017, AM ECON REV, V107, P1, DOI 10.1257/aer.p20171153 Dyer-Witheford N., 2019, Inhuman Power: Artificial Intelligence and the Future of Capitalism, DOI DOI 10.2307/J.CTVJ4SXC6 Else Holly., 2018, Nature, DOI DOI 10.1038/D41586-018-04190-5 Falagas ME, 2008, FASEB J, V22, P338, DOI 10.1096/fj.07-9492LSF Floridi L, 2018, MIND MACH, V28, P689, DOI 10.1007/s11023-018-9482-5 Ghoddusi H, 2019, ENERG ECON, V81, P709, DOI 10.1016/j.eneco.2019.05.006 Giles P, 2019, J CULT ECON-UK, V12, P612, DOI 10.1080/17530350.2019.1639068 Gmeiner R., 2021, Artificial intelligence and economic calculation Goodell JW, 2021, J BEHAV EXP FINANC, V32, DOI 10.1016/j.jbef.2021.100577 Griffiths M. R., 2016, VALUE EC ETHICAL IMP Haenlein M, 2019, CALIF MANAGE REV, V61, P5, DOI 10.1177/0008125619864925 Hardyns W, 2018, EUR J CRIM POLICY RE, V24, P201, DOI 10.1007/s10610-017-9361-2 Harzing AW, 2019, SCIENTOMETRICS, V120, P341, DOI 10.1007/s11192-019-03114-y Harzing AW, 2016, SCIENTOMETRICS, V106, P787, DOI 10.1007/s11192-015-1798-9 Hawe P, 2015, ANNU REV PUBL HEALTH, V36, P307, DOI 10.1146/annurev-publhealth-031912-114421 Hayek FA, 1945, AM ECON REV, V35, P519 Hayek F.A., 1952, COUNTER REVOLUTION S Helbing D, 2022, Handbook of complexity economics Helbing D., 2015, Thinking Ahead-Essays on Big Data, Digital Revolution, and Participatory Market Society, P177 Holling CS, 2001, ECOSYSTEMS, V4, P390, DOI 10.1007/s10021-001-0101-5 Hunt M., 2007, The Story of Psychology Jobin A, 2019, NAT MACH INTELL, V1, P389, DOI 10.1038/s42256-019-0088-2 Kao YF, 2015, EUR J HIST ECON THOU, V22, P236, DOI 10.1080/09672567.2013.792366 Lazear EP, 2000, Q J ECON, V115, P99, DOI 10.1162/003355300554683 Leib M., 2021, ARXIV PREPRINT ARXIV Levin S, 2013, ENVIRON DEV ECON, V18, P111, DOI 10.1017/S1355770X12000460 Levine-Clark M, 2021, J BUS FINANC LIBR, V26, P145, DOI 10.1080/08963568.2021.1916724 Liang TP, 2018, EXPERT SYST APPL, V111, P2, DOI 10.1016/j.eswa.2018.05.018 Liu N, 2021, SCIENTOMETRICS, V126, P3153, DOI 10.1007/s11192-021-03868-4 Lo A. W., 2010, ARXIV PREPRINT ARXIV López-Robles JR, 2019, INT J INFORM MANAGE, V48, P22, DOI 10.1016/j.ijinfomgt.2019.01.013 Ruiz-Real JL, 2021, J BUS ECON MANAG, V22, P98, DOI 10.3846/jbem.2020.13641 Mankiw NG, 2006, J ECON PERSPECT, V20, P29, DOI 10.1257/jep.20.4.29 Marcus G., 2019, Rebooting AI: Building Artificial IntelligenceWe Can Trust, V1st edn Mariotti S, 2022, J IND BUS ECON, V49, P1, DOI 10.1007/s40812-021-00203-z Mariotti S, 2021, J IND BUS ECON, V48, P551, DOI 10.1007/s40812-021-00187-w Martín-Martín A, 2021, SCIENTOMETRICS, V126, P871, DOI 10.1007/s11192-020-03690-4 Martín-Martín A, 2018, J INFORMETR, V12, P1160, DOI 10.1016/j.joi.2018.09.002 Martín-Martín A, 2018, SCIENTOMETRICS, V116, P2175, DOI 10.1007/s11192-018-2820-9 Mason Paul., 2015, POSTCAPITALISM GUIDE May CR, 2016, IMPLEMENT SCI, V11, DOI 10.1186/s13012-016-0506-3 McCorduck Pamela., 2019, This Could Be Important: My Life and Times with the Artificial Intelligentsia Mikalef P, 2021, INFORM MANAGE-AMSTER, V58, DOI 10.1016/j.im.2021.103434 Mingers J, 2015, EUR J OPER RES, V246, P1, DOI 10.1016/j.ejor.2015.04.002 MINSKY M, 1991, AI MAG, V12, P34 Minsky M., 1992, Toshiba Review, V47, P1 Minsky M., 2006, EMOTION MACHINE COMM Minsky M., 1986, SOC MIND Mitchell M., 2019, ARTIFICIAL INTELLIGE Mizer?k M., 2019, EUROPEAN J BUSINESS, V5, P107 Morgan MaryS., 2003, The Cambridge History of Science, V7, P275 Morozov E, 2019, NEW LEFT REV, P33 Mullainathan S, 2017, J ECON PERSPECT, V31, P87, DOI 10.1257/jep.31.2.87 Newell A., 1959, Report on a general problem-solving program Nilsson Nils, 2010, The Quest for Artificial Intelligence., DOI DOI 10.1017/CBO9780511819346 NISBETT RE, 1977, PSYCHOL REV, V84, P231, DOI 10.1037/0033-295X.84.3.231 Norris M, 2007, J INFORMETR, V1, P161, DOI 10.1016/j.joi.2006.12.001 Omurtag Y, 2009, EMJ-ENG MANAG J, V21, P3, DOI 10.1080/10429247.2009.11431839 Parkes DC, 2015, SCIENCE, V349, P267, DOI 10.1126/science.aaa8403 Rose ME, 2019, SOFTWAREX, V10, DOI 10.1016/j.softx.2019.100263 Rosheim MarkE., 2006, LEONARDOS LOST ROBOT, V2nd Roth AE, 2002, ECONOMETRICA, V70, P1341, DOI 10.1111/1468-0262.00335 ROWE J, 1993, ARTIF INTELL REV, V7, P43, DOI 10.1007/BF00849197 Rumelhart D., 1986, Explorations in the Microstructure of Cognition: Foundations, P318, DOI 10.1016/b978-1-4832-1446-7.50035-2 Samuelson PA., 2004, LIVES LAUREATES 18 N, P49 Schwartz J. T., 1986, ENCY ARTIFICIAL INTE, V1, P488 Sent EM, 1997, HIST POLIT ECON, V29, P41, DOI 10.1215/00182702-1997-suppl_1009 Sestino A, 2022, TECHNOL ANAL STRATEG, V34, P16, DOI 10.1080/09537325.2021.1883583 Siau K, 2020, J DATABASE MANAGE, V31, P74, DOI 10.4018/JDM.2020040105 Simon H.A., 1991, Models of my Life Simon HA, 1995, INT JOINT CONF ARTIF, P939 SIMON HA, 1978, BELL J ECON, V9, P494, DOI 10.2307/3003595 Simon HA, 1996, SCI ARTIFICIAL Singh, 2003, PANALOGY ARCHI UNPUB Singh VK, 2021, SCIENTOMETRICS, V126, P5113, DOI 10.1007/s11192-021-03948-5 Srnicek N., 2017, Platform Capitalism Taube Mortimer., 1961, COMPUTERS COMMON SEN Torgler B, 2013, PALGRAVE PIVOT, P1, DOI 10.1057/9781137333056 Torgler B., 2021, CREMA WORKING PAPER TURBAN E, 1988, IEEE T ENG MANAGE, V35, P71, DOI 10.1109/17.6007 Varian HR, 2014, J ECON PERSPECT, V28, P3, DOI 10.1257/jep.28.2.3 White I., 1988, AI SOC, V2, P161 Wiener, 1988, HUMAN USE HUMAN BEIN Wu YY, 2015, P NATL ACAD SCI USA, V112, P1036, DOI 10.1073/pnas.1418680112 Zuboff S, 2015, J INF TECHNOL-UK, V30, P75, DOI 10.1057/jit.2015.5 NR 111 TC 12 Z9 13 U1 19 U2 105 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0138-9130 EI 1588-2861 J9 SCIENTOMETRICS JI Scientometrics PD APR PY 2022 VL 127 IS 4 BP 2055 EP 2084 DI 10.1007/s11192-022-04294-w EA MAR 2022 PG 30 WC Computer Science, Interdisciplinary Applications; Information Science & Library Science WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Computer Science; Information Science & Library Science GA 0M5LI UT WOS:000764911500001 OA Green Published, hybrid DA 2024-09-05 ER PT J AU An, L Han, YX Yi, XY Li, G Yu, CM AF An, Lu Han, Yuxin Yi, Xingyue Li, Gang Yu, Chuanming TI Prediction and Evolution of the Influence of Microblog Entries in the Context of Terrorist Events SO SOCIAL SCIENCE COMPUTER REVIEW LA English DT Article DE influence prediction; microblogging; evolution; topic identification; sentiment analysis; h-index; terrorist event ID COLLECTIVE SENSE-MAKING; SOCIAL MEDIA; TWITTER; CRISIS AB The outbreak of terrorist events often causes tremendous damage to the country and society and arouses high attention from the public and an overwhelming response on the microblogging platform. Predicting the influence of microblogging in the context of terrorist events and revealing its evolutionary mode can help counterterrorism departments foresee potential risks, take effective countermeasures in time, and provide a reference for reducing public panic caused by terrorist events. In this study, Word2Vec is combined with the K-means clustering technique to discover the topics of microblogging, and an emotion analysis of microblogging is performed. The user features, time features, and content features of microblogging in the context of terrorist events are extracted. The prediction model of microblogging influence based on the logistic regression model was constructed and evaluated. The experimental results showed that the prediction accuracy of the model was 85.8%, which had superior performance over other six classification models. In addition, the high-influence characteristics of microblogging in the context of terrorist events were analyzed and summarized. Finally, a quantitative method of the influence of a microblogging topic based on the h-index was proposed. The evolution pattern of the influence of a microblogging topic was analyzed. The results can help predict microblog entries of high influence, understand the intensity and variation of public concern over terrorist events, and assist counterterrorism departments in taking scientific decisions. C1 [An, Lu; Li, Gang] Wuhan Univ, Ctr Studies Informat Resources, 299 Bayi Rd, Wuhan 430072, Hubei, Peoples R China. [An, Lu; Han, Yuxin; Yi, Xingyue] Wuhan Univ, Sch Informat Management, Wuhan, Peoples R China. [Yu, Chuanming] Zhongnan Univ Econ & Law, Sch Informat & Safety Engn, Wuhan, Peoples R China. C3 Wuhan University; Wuhan University; Zhongnan University of Economics & Law RP Li, G (corresponding author), Wuhan Univ, Ctr Studies Informat Resources, 299 Bayi Rd, Wuhan 430072, Hubei, Peoples R China. EM anlu97@163.com; yxhanccnu@163.com; yixingyue@126.com; imiswhu@aliyun.com; yuchuanming2003@126.com RI Han, yuxin/LCD-8775-2024 FU National Natural Science Foundation of China [71790612, 71974202, 71603189, 71921002]; Major Project of the Ministry of Education of China [17JZD034]; world class discipline of the Ministry of Education of China "Library, Information, and Data Science" FX The authors disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This work was supported by the National Natural Science Foundation of China (Grant no. 71921002), the Major Project of the Ministry of Education of China (Grant no. 17JZD034), the National Natural Science Foundation of China (Grant nos. 71790612, 71974202, and 71603189), and the world class discipline of the Ministry of Education of China "Library, Information, and Data Science." CR An L, 2021, INT J INFORM MANAGE, V58, DOI 10.1016/j.ijinfomgt.2021.102327 An L, 2018, ONLINE INFORM REV, V42, P821, DOI 10.1108/OIR-04-2016-0100 Bora S, 2015, SOC NETW ANAL MIN, V5, DOI 10.1007/s13278-015-0300-2 Chao Li, 2012, Intelligence and Security Informatics. Proceedings Pacific Asia Workshop, PAISI 2012, P60, DOI 10.1007/978-3-642-30428-6_5 China Internet Network Information Center, 2019, 43 STAT REP INT DEV Costantino G, 2017, IEEE SYMP COMP COMMU, P890, DOI 10.1109/ISCC.2017.8024639 Dhir A, 2019, SOC SCI COMPUT REV, V37, P529, DOI 10.1177/0894439318779145 Fischer-Pressler D, 2019, COMPUT HUM BEHAV, V100, P138, DOI 10.1016/j.chb.2019.05.012 Ghavami, 2017, INT S TEL GHAN TECHN, P559 Goldstein DM, 2010, CURR ANTHROPOL, V51, P487, DOI 10.1086/655393 Hagen L, 2018, SOC SCI COMPUT REV, V36, P523, DOI 10.1177/0894439317721985 Heverin T, 2012, J AM SOC INF SCI TEC, V63, P34, DOI 10.1002/asi.21685 Investopedia, 2021, IMP 9 11 BUS Jones NM, 2016, PSYCHOL METHODS, V21, P526, DOI 10.1037/met0000099 Jong W, 2016, COMPUT HUM BEHAV, V59, P334, DOI 10.1016/j.chb.2016.02.032 Kaur, 2016, 2016 INT C COMP TECH Liu Y, 2016, PHYSICA A, V463, P202, DOI 10.1016/j.physa.2016.07.022 Macso J, 2014, THEATER OPERATIONS N Majer T, 2012, LECT NOTES COMPUT SC, V7147, P518 Maleewong K, 2016, LECT NOTES COMPUT SC, V9810, P306, DOI 10.1007/978-3-319-42911-3_26 Oh O, 2011, INFORM SYST FRONT, V13, P33, DOI 10.1007/s10796-010-9275-8 Palen L, 2009, SOC SCI COMPUT REV, V27, P467, DOI 10.1177/0894439309332302 Patnaik S., 2018, RECENT DEV DATA SCI Reddick CG, 2015, GOV INFORM Q, V32, P129, DOI 10.1016/j.giq.2015.01.003 Reyes JAL, 2017, TERROR POLIT VIOLENC, V29, P1026, DOI 10.1080/09546553.2015.1105798 Starbird K, 2011, 29TH ANNUAL CHI CONFERENCE ON HUMAN FACTORS IN COMPUTING SYSTEMS, P1071 Sun XL, 2018, INT SYM DISCH ELECTR, P151, DOI 10.1109/DEIV.2018.8537070 Toshniwal D, 2014, INT C INT DAT ENG AU, DOI [10.1007/978-3-319-10840-7_48, DOI 10.1007/978-3-319-10840-7_48] Varshney D, 2017, KNOWL-BASED SYST, V133, P66, DOI 10.1016/j.knosys.2017.07.003 Williams GA, 2017, COMMUN STUD, V68, P385, DOI 10.1080/10510974.2017.1340901 Xie D, 2016, 2016 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), P2545, DOI 10.1109/BigData.2016.7840895 NR 31 TC 3 Z9 3 U1 11 U2 123 PU SAGE PUBLICATIONS INC PI THOUSAND OAKS PA 2455 TELLER RD, THOUSAND OAKS, CA 91320 USA SN 0894-4393 EI 1552-8286 J9 SOC SCI COMPUT REV JI Soc. Sci. Comput. Rev. PD FEB PY 2023 VL 41 IS 1 BP 64 EP 82 AR 08944393211029193 DI 10.1177/08944393211029193 EA JUL 2021 PG 19 WC Computer Science, Interdisciplinary Applications; Information Science & Library Science; Social Sciences, Interdisciplinary WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Computer Science; Information Science & Library Science; Social Sciences - Other Topics GA 7S7ZM UT WOS:000676872600001 DA 2024-09-05 ER PT C AU Li, N Su, WT Li, Y Yu, H Xu, WZ Gao, BZ AF Li, Na Su, Wentao Li, Yang Yu, Hui Xu, Weizhi Gao, Baozhong GP IEEE TI Research on Machine Translation Automatic Evaluation Based on Extended Reference SO 2019 IEEE 2ND INTERNATIONAL CONFERENCE ON COMPUTER AND COMMUNICATION ENGINEERING TECHNOLOGY (CCET) LA English DT Proceedings Paper CT 2nd IEEE International Conference on Computer and Communication Engineering Technology (CCET) CY AUG 16-18, 2019 CL Beijing, PEOPLES R CHINA DE machine translation; automatic evaluation; reference extension AB Language is the main carrier of communication between cultures, but the translation between languages has become the biggest problem of people's communication. Machine translation is a process that uses computer to transform a natural language into another natural language. The automatic evaluation of machine translation is an important research content in machine translation technology. It can discover defects in translation system and promote its development. It has achieved rich fruits, and various evaluation methods emerge endlessly after several decades of development of the automatic evaluation method. In this paper, three kinds of representative evaluation methods are introduced and their respective advantages and disadvantages are analyzed. In addition, we describe the evaluation technique based on reference. It plays an important role in improving the performance of automatic evaluation methods although the coverage expansion of reference is not the main method. Finally, we summarize the development trends of automatic evaluation metric based on extended reference and related issues that need to be further addressed. C1 [Li, Na; Yu, Hui] Shandong Normal Univ, Sch Business, Jinan, Peoples R China. [Su, Wentao] CNIPA, Ctr Patent Off, Patent Examinat Cooperat Beijing, Beijing, Peoples R China. [Li, Yang] China Natl Elect Import & Export Corp, Beijing, Peoples R China. [Xu, Weizhi; Gao, Baozhong] Shandong Normal Univ, Sch Informat Sci & Engn, Jinan, Peoples R China. C3 Shandong Normal University; Shandong Normal University RP Gao, BZ (corresponding author), Shandong Normal Univ, Sch Informat Sci & Engn, Jinan, Peoples R China. EM gaobaozhong@sdnu.edu.cn RI Yu, Hui/G-1115-2018; Zeng, Yun/JFK-6190-2023; su, wentao/AAK-3862-2021 OI Yu, Hui/0000-0002-7655-9228; su, wentao/0000-0002-3476-8259 FU NNSF of China [61602285, 61602284, 61602282]; Shandong Natural Science Foundation [ZR2015FQ 009, ZR2016FP07]; Project of Shandong Province Higher Educational Science and Technology Program [J16LN05] FX This work was supported in part by NNSF of China (No. 61602285 and No. 61602284 and No. 61602282), Shandong Natural Science Foundation (No.ZR2015FQ 009 and No. ZR2016FP07), and Project of Shandong Province Higher Educational Science and Technology Program (No.J16LN05) CR [Anonymous], 2005, P ACL WORKSH INTR EX [Anonymous], P ASS MACH TRANSL AM [Anonymous], 2011, P 49 ANN M ASS COMPU [Anonymous], 2006, AMTA Barzilay R, 2003, HLT-NAACL 2003: HUMAN LANGUAGE TECHNOLOGY CONFERENCE OF THE NORTH AMERICAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, PROCEEDINGS OF THE MAIN CONFERENCE, P16 Biswas P, 2005, I CONF VLSI DESIGN, P651 Boonthum C., 2004, S TUD RES WORKSH Denkowski M, 2010, P JOINT 5 WORKSH STA, P339 Denkowski M., 2010, Human language technologies: The 2010 annual conf. of the north american chapter of the acl, P250 Denkowski M. J., 2011, WMT EMNLP Denkowski Michael, 2014, P EACL 2014 WORKSH S Doddington G., 2002, P 2 INT C HUMAN LANG, P138 Echizen-ya H, 2010, ACL 2010: 48TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, P108 FINCH Andrew, 2004, P C 1 INT JOINT C NA, P6 Ji Hongjie, 2017, RES MACHINE TRANSLAT Kauchak D., 2006, HUMAN LANGUAGE TECHN, P455 Kauchak David, 2006, P HUM LANG TECHN C N Lavie A., 2007, P 2 WORKSHOP STAT MA, P228 Lepgae Y., 2005, IWP Li Liangyou, 2014, OVERVIEW AUTOMATIC E, V28, P81 Li Maoxi, 2016, J CHINESE INFORM PRO, V30, P117 Liu Ting, 2006, J CHINESE INFORM PRO, P25 Lo C.-k., 2012, P 7 WORKSH STAT MACH, P243 OWCZARZAK K, 2007, P 2 WORKSH STAT MACH, P104 Owczarzak K., 2007, Proceedings of the NAACL/HTL/AMTA Workshop on Syntax and Structure in Statistical Translation (SSST), P80 Owczarzak K, 2007, MACH TRANSL, V21, P95, DOI 10.1007/s10590-008-9038-1 Pado S., 2009, P 4 WORKSHOP STAT MA, P37 Popovic M., 2009, Proceedings of the Fourth Workshop on Statistical Machine Translation, P29 Russo-Lassner Grazia, 2005, LAMPTR125CSTR4754UMI Tillmann C., 1997, 5 EUR C SPEECH COMM Wang Bo, 2010, RES AUTOMATIC EVALUA Wong B. T. M., 2011, 2011 7th International Conference on Natural Language Processing and Knowledge Engineering (NLPKE), P238, DOI 10.1109/NLPKE.2011.6138201 Zhang Jian, 2003, CHINESE J INFORM, V17, P1 ZHOU L, 2006, P 2006 C EMP METH NA, P77 Zhou Liang, 2006, P ACL 2006 NR 35 TC 0 Z9 0 U1 0 U2 2 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA BN 978-1-7281-2871-9 PY 2019 BP 41 EP 45 DI 10.1109/ccet48361.2019.8989400 PG 5 WC Computer Science, Theory & Methods; Telecommunications WE Conference Proceedings Citation Index - Science (CPCI-S) SC Computer Science; Telecommunications GA BP2XS UT WOS:000545638300009 DA 2024-09-05 ER PT J AU de la Paz, LD Collado, FNR Mendoza, JLG González, LMG Mederos, AAL Crispi, AT AF Diaz de la Paz, Lisandra Riestra Collado, Francisco N. Garcia Mendoza, Juan L. Gonzalez Gonzalez, Luisa M. Leiva Mederos, Amed A. Taboada Crispi, Alberto TI Weights Estimation in the Completeness Measurement of Bibliographic Metadata SO COMPUTACION Y SISTEMAS LA English DT Article DE Bibliographic metadata; completeness metric; particle swarm optimization (PSO); weights estimation ID DATA QUALITY; DIGITAL REPOSITORIES; PARTICLE SWARM; LIBRARY; MANAGEMENT; FRAMEWORK AB Y The weighted completeness metrics for metadata use a weighting factor to indicate the importance of each field. In the case of bibliographic metadata, a common way of representing the importance of a field is its frequency of appearance in a given repository. The inaccuracy of this method is why we need to recalculate the weights as the volume of the repository grows. In this paper, we used the Particle Swarm Optimization (PSO) method in the estimation of the weights for the completeness metrics of bibliographic metadata. This method is independent of the metadata format, of the collection and the volume of the repository used. As part of this work, we defined the fitness function of the PSO method to reflect the importance levels of the fields. Finally, we presented a case study with the estimated weights and the calculated completeness of the bibliographic records described at the full cataloging level in MARC 21 format. C1 [Diaz de la Paz, Lisandra; Gonzalez Gonzalez, Luisa M.; Leiva Mederos, Amed A.; Taboada Crispi, Alberto] Univ Cent Marta Abreu Las Villas, Santa Clara, Cuba. [Diaz de la Paz, Lisandra; Taboada Crispi, Alberto] Ctr Invest Informat, Santa Clara, Cuba. [Riestra Collado, Francisco N.] Melia Dunas Cayo Santa Maria, Cayo De Santa Maria, Cuba. [Garcia Mendoza, Juan L.] Inst Nacl Astrofis Opt & Electr, Cholula, Mexico. C3 Universidad Central "Marta Abreu" de Las Villas; Instituto Nacional de Astrofisica, Optica y Electronica RP de la Paz, LD (corresponding author), Univ Cent Marta Abreu Las Villas, Santa Clara, Cuba.; de la Paz, LD (corresponding author), Ctr Invest Informat, Santa Clara, Cuba. EM ldp@uclv.edu.cu; informatico.mld@mld.solmelia.cu; juanluis@inaoep.mx; luisagon@uclv.edu.cu; amed@uclv.edu.cu; ataboada@uclv.edu.cu RI Majumder, Abhishek/AAV-3041-2020; Taboada-Crispi, Alberto/ABC-5178-2020; Majumder, Abhishek/GQO-9495-2022; Majumder, Abhishek/ABC-3221-2021; Balasubramanian, Gomathy/JUF-7312-2023; Taboada-Crispi, Alberto/K-4732-2019 OI Majumder, Abhishek/0000-0001-8451-0451; Taboada-Crispi, Alberto/0000-0002-7797-1441; Majumder, Abhishek/0000-0001-8451-0451; Balasubramanian, Gomathy/0000-0002-0418-2150; Taboada-Crispi, Alberto/0000-0002-7797-1441; Garcia Mendoza, Juan Luis/0000-0002-8165-9661 FU Project 3 ICT supporting the educational processes and the knowledge management in higher education (ELINF)of the NETWORK University Cooperation Strengthening of the role of ICT in Cuban Universities for the development of the society FX This work is partially supported by Project 3 ICT supporting the educational processes and the knowledge management in higher education (ELINF)of the NETWORK University Cooperation Strengthening of the role of ICT in Cuban Universities for the development of the society. CR Alemu G., 2015, EMERGENT THEORY DIGI Gaona-Garcia PA, 2017, ONLINE INFORM REV, V41, P840, DOI 10.1108/OIR-04-2016-0114 Angelozzi S., 2007, 3 ENCUENTRO INT CATA, P1 [Anonymous], 2017, INT J ENG SCI MATH [Anonymous], 2006, GENETIC ALGORITHMS [Anonymous], 2006, EdMedia+ innovate learning [Anonymous], 2008, THESIS Awad AI, 2015, PROCEDIA COMPUT SCI, V65, P920, DOI 10.1016/j.procs.2015.09.064 Batini C, 2009, ACM COMPUT SURV, V41, DOI 10.1145/1541880.1541883 Bellini E., 2013, INFORM TECHNOLOGIES, P90 Berti-Equille L, 2007, STUDIES COMPUTATIONA, V43, P101 Bratton D, 2007, 2007 IEEE SWARM INTELLIGENCE SYMPOSIUM, P120, DOI 10.1109/SIS.2007.368035 Bruce T., 2004, METADATA PRACTICE, P248 Burnard Lou, 2013, Journal of the Text Encoding Initiative, DOI [10.4000/jtei.811, DOI 10.4000/JTEI.811] Cappiello C., 2004, IQIS, P68, DOI [DOI 10.1145/1012453.1012465, 10.1145/1012453.1012465] Chapman A.D., 2006, Guide to Best Practices for Georeferencing Cichy C, 2019, IEEE ACCESS, V7, P24634, DOI 10.1109/ACCESS.2019.2899751 Clerc M, 2002, IEEE T EVOLUT COMPUT, V6, P58, DOI 10.1109/4235.985692 Crespo-Borges T., 2007, RESPUESTAS 16 PREGUN Deepti A., 2015, IOSR J COMPUTER ENG, V17, P75 Duval E, 2001, J UNIVERS COMPUT SCI, V7, P591 Furner J., 2019, J ASS INFORM SCI TEC Garcia-Mendoza J., 2017, PROCEDIMIENTO MEJORA Garcia-Mendoza J., 2015, REV PUBLICANDO, V3, P397 Gavrilis D, 2015, LECT NOTES COMPUT SC, V9316, P56, DOI 10.1007/978-3-319-24592-8_5 GOLDBERG DE, 1989, PROCEEDINGS OF THE THIRD INTERNATIONAL CONFERENCE ON GENETIC ALGORITHMS, P80 Goovaerts M, 2012, COMM COM INF SC, V343, P181 Haegemans T., 2016, INT C INFORM QUALITY, V15, P1 Hassan Rania, 2005, 46 AIAAASMEASCEAHSAS, DOI DOI 10.2514/6.2005-1897 Hillier F., 2021, Introduction to Operations Research, V11th Hillmann DI, 2008, CAT CLASSIF Q, V46, P65, DOI 10.1080/01639370802183008 Hopkinson Andrew, 2018, IND PAPERS, P200 Kemps-Snijders M., 2014, CLARIN C CAC14 Kiraly P., 2015, METADATA QUALITY ASS Király P, 2018, IEEE INT CONF BIG DA, P2711, DOI 10.1109/BigData.2018.8622487 La Fe-Jimenez R., 2017, THESIS Les G., 2001, NEW FRAMEWORK INFORM Liaw ST, 2013, INT J MED INFORM, V82, P10, DOI 10.1016/j.ijmedinf.2012.10.001 Library of Congress, 2006, INTRODUCTION Library of Congress, 2010, MARC 21 FORM BIBL DA Library of Congress, 2003, MARC 21 FORM BIBL DA Library of Congress, 2019, ENC ARCH DESC Library of Congress, 2003, APP B FULL LEV REC E Library of Congress, 2020, MARC 21 FORM BIBL DA, V1999 Madnick S.E., 2009, Journal of Data and Information Quality (JDIQ), V1, P1, DOI [10.1145/1515693.1516680, DOI 10.1145/1515693.1516680] Margaritopoulos Thomas., 2008, International Conference on Dublin Core and Metadata Applications, P104 Mayernik M, 2010, LIBR RESOUR TECH SER, V54, P40, DOI 10.5860/lrts.54n1.40 McMahon Christiana, 2016, AMIA Jt Summits Transl Sci Proc, V2016, P199 Medrano JF, 2012, SCIRE, V18, P109 Mendes P.N., 2012, P 2012 JOINT EDBTICD, P116, DOI [DOI 10.1145/2320765.2320803, 10.1145/2320765.2320803] Michalewicz Z., 2013, How to Solve It: Modern Heuristics Moen W., 1997, IEEE COMP SOC MET C, P1 Moges HT, 2013, INFORM MANAGE-AMSTER, V50, P43, DOI 10.1016/j.im.2012.10.001 Najjar J., 2003, P 3 ANN ARIADNE C AR, P1 Nápoles Gonzalo, 2012, Polibits, V0, P05 Nápoles G, 2014, COMPUT SIST, V18, P79, DOI 10.13053/CyS-18-1-2014-020 Nichols D., 2008, TOOL METADATA ANAL Nilsson PO, 2002, NAV ARCHIT, P22 Ochoa X, 2009, INT J DIGIT LIBRARIE, V10, P67, DOI 10.1007/s00799-009-0054-4 Palavitsinis N., 2013, THESIS Palavitsinis N, 2014, J ASSOC INF SCI TECH, V65, P1202, DOI 10.1002/asi.23045 Phillips ME., 2019, P INT C DUBL COR MET, P49 Prakash Sangwan M., 2019, INT J COMPUTER SCI I, V17, P71 Raghuwanshi K., 2018, SMART TRENDS SYSTEMS, P169 Rashid M, 2019, SEMANT WEB, V10, P349, DOI 10.3233/SW-180324 Reza V., 2017, TOTAL QUAL MANAG BUS, V30, P708 Sadiq S., 2011, Proceedings of the Twenty-Second Australasian Database Conference-Volume, P153 Saini N., 2017, Int. J.Eng. Comput. Sci., V6, P22261, DOI DOI 10.18535/IJECS/V6I12.04 Shankaranarayanan G, 2006, DECIS SUPPORT SYST, V42, P302, DOI 10.1016/j.dss.2004.12.006 Shi YH, 1998, IEEE C EVOL COMPUTAT, P69, DOI 10.1109/ICEC.1998.699146 Shreeves S., 2005, P 12 NATL C ASS COLL, P223 Shyam Sundar S., 2002, GOOGLE PATENTS Tabares Morales Valentina, 2013, Rev. Interam. Bibliot, V36, P183 Tani A, 2013, INFORM PROCESS MANAG, V49, P1194, DOI 10.1016/j.ipm.2013.05.003 Tayi GK, 1998, COMMUN ACM, V41, P54, DOI 10.1145/269012.269021 Thompson S., 2019, FACULTY STAFF STUDEN Wang R. Y., 1996, Journal of Management Information Systems, V12, P5 Yang L, 2016, COLL RES LIBR, V77, P7, DOI 10.5860/crl.77.1.7 Yeganeh NK, 2014, INFORM SYST, V46, P24, DOI 10.1016/j.is.2014.05.005 Yuan Man, 2010, 2010 Third International Symposium on Electronic Commerce and Security (ISECS 2010), P29, DOI 10.1109/ISECS.2010.15 Zavalina OL, 2016, PROCEDIA COMPUT SCI, V99, P50, DOI 10.1016/j.procs.2016.09.100 NR 81 TC 3 Z9 3 U1 0 U2 5 PU IPN, CENTRO INVESTIGAVION COMPUTACION PI MEXICO CITY PA AV JUAN DIOS BATIZ, S N ESQ M OTHON MENDIZABAL, UP ADOLFO LOPEZ MATEOS ZACATENCO, MEXICO CITY, 07738, MEXICO SN 1405-5546 EI 2007-9737 J9 COMPUT SIST JI Comput. Sist. PY 2021 VL 25 IS 1 BP 47 EP 65 DI 10.13053/CyS-25-1-3355 PG 19 WC Computer Science, Information Systems WE Emerging Sources Citation Index (ESCI) SC Computer Science GA RY1WZ UT WOS:000647710700005 DA 2024-09-05 ER PT J AU Rahman, A Raj, A Tomy, P Hameed, MS AF Rahman, Abdur Raj, Antony Tomy, Prajeesh Hameed, Mohamed Sahul TI A comprehensive bibliometric and content analysis of artificial intelligence in language learning: tracing between the years 2017 and 2023 SO ARTIFICIAL INTELLIGENCE REVIEW LA English DT Article DE Artificial intelligence; Language learning; Bibliometric analysis; Natural language processing; Review; Content analysis ID RESEARCH TRENDS; EDUCATION; CHATBOT; FUTURE; FIELD AB The rising pervasiveness of Artificial Intelligence (AI) has led applied linguists to combine it with language teaching and learning processes. In many cases, such implementation has significantly contributed to the field. The retrospective amount of literature dedicated on the use of AI in language learning (LL) is overwhelming. Thus, the objective of this paper is to map the existing literature on Artificial Intelligence in language learning through bibliometric and content analysis. From the Scopus database, we systematically explored, after keyword refinement, the prevailing literature of AI in LL. After excluding irrelevant articles, we conducted our study with 606 documents published between 2017 and 2023 for further investigation. This review reinforces our understanding by identifying and distilling the relationships between the content, the contributions, and the contributors. The findings of the study show a rising pattern of AI in LL. Along with the metrics of performance analysis, through VOSviewer and R studio (Biblioshiny), our findings uncovered the influential authors, institutions, countries, and the most influential documents in the field. Moreover, we identified 7 clusters and potential areas of related research through keyword analysis. In addition to the bibliographic details, this review aims to elucidate the content of the field. NVivo 14 and Atlas AI were used to perform content analysis to categorize and present the type of AI used in language learning, Language learning factors, and its participants. C1 [Rahman, Abdur; Raj, Antony; Tomy, Prajeesh; Hameed, Mohamed Sahul] Vellore Inst Technol, Sch Social Sci & Languages, Dept English, Vellore 632104, Tamil Nadu, India. C3 Vellore Institute of Technology (VIT); VIT Vellore RP Rahman, A (corresponding author), Vellore Inst Technol, Sch Social Sci & Languages, Dept English, Vellore 632104, Tamil Nadu, India. EM mrabdurrahmanofficial@gmail.com; antonyr311@gmail.com RI raj, antony/HGF-3077-2022 OI raj, antony/0000-0003-0351-4245 CR Ahmed S, 2022, RES INT BUS FINANC, V61, DOI 10.1016/j.ribaf.2022.101646 Ali Zuraina, 2020, IOP Conference Series: Materials Science and Engineering, V769, DOI 10.1088/1757-899X/769/1/012043 Amaral LA, 2011, RECALL, V23, P4, DOI 10.1017/S0958344010000261 Bazeley KJP., 2019, Qualitative data analysis with NVivo Botero-Gómez V, 2023, SOC SCI-BASEL, V12, DOI 10.3390/socsci12020070 Briggs N., 2018, JALT CALL Journal, V14, P3 Chen LJ, 2020, IEEE ACCESS, V8, P75264, DOI 10.1109/ACCESS.2020.2988510 Chen XB, 2022, LECT NOTES COMPUT SC, V13356, P582, DOI 10.1007/978-3-031-11647-6_120 Chen XL, 2021, IEEE INT CONF ADV LE, P241, DOI 10.1109/ICALT52272.2021.00079 Chu HC, 2022, AUSTRALAS J EDUC TEC, V38, P22, DOI 10.14742/ajet.7526 Cobo MJ, 2011, J INFORMETR, V5, P146, DOI 10.1016/j.joi.2010.10.002 CUMMING G, 1993, COMPUT EDUC, V20, P119, DOI 10.1016/0360-1315(93)90078-W Dagdeler KO, 2023, SMART LEARN ENVIRON, V10, DOI 10.1186/s40561-023-00235-z Dizon G., 2022, Computers and Education: Artificial Intelligence, V3, P100088, DOI DOI 10.1016/J.CAEAI.2022.100088 Dizon G, 2023, RELC J, V54, P848, DOI 10.1177/00336882211020548 Dizon G, 2017, TESOL J, V8, P811, DOI 10.1002/tesj.353 Dogan ME, 2023, APPL SCI-BASEL, V13, DOI 10.3390/app13053056 Dokukina Irina, 2020, Procedia Computer Science, P542, DOI 10.1016/j.procs.2020.02.212 Donthu N, 2021, J BUS RES, V133, P285, DOI 10.1016/j.jbusres.2021.04.070 El Shazly R, 2021, EXPERT SYST, V38, DOI 10.1111/exsy.12667 Esit Ö, 2011, COMPUT ASSIST LANG L, V24, P211, DOI 10.1080/09588221.2010.538702 Fang XX, 2023, EDUC INF TECHNOL, V28, P14361, DOI 10.1007/s10639-023-11741-5 Farrokhnia M, 2024, INNOV EDUC TEACH INT, V61, P460, DOI 10.1080/14703297.2023.2195846 Fryer LK, 2019, COMPUT HUM BEHAV, V93, P279, DOI 10.1016/j.chb.2018.12.023 Fryer LK, 2017, COMPUT HUM BEHAV, V75, P461, DOI 10.1016/j.chb.2017.05.045 Gayed J. M., 2022, Comput. Educ. Artif. Intell., V3, DOI [10.1016/j.caeai.2022.100055, DOI 10.1016/J.CAEAI.2022.100055] Godwin-Jones R, 2022, LANG LEARN TECHNOL, V26, P5, DOI 10.10125/73474 Goodell JW, 2021, J BEHAV EXP FINANC, V32, DOI 10.1016/j.jbef.2021.100577 Górriz JM, 2020, NEUROCOMPUTING, V410, P237, DOI 10.1016/j.neucom.2020.05.078 Gruetzemacher R, 2022, The power of natural language processing Gugerty L., 2006, Proc. Hum. Factors Ergon. Soc. Annu. Meet., V50, P880, DOI [10.1177/154193120605000904, DOI 10.1177/154193120605000904] Hariri W, 2024, Arxiv, DOI [arXiv:2304.02017, 10.48550/arxiv.2304.02017, DOI 10.48550/ARXIV.2304.02017] Hou YK, 2023, EDUC SCI, V13, DOI 10.3390/educsci13020125 Huang WJ, 2022, J COMPUT ASSIST LEAR, V38, P237, DOI 10.1111/jcal.12610 Huang XY, 2023, EDUC TECHNOL SOC, V26, P112, DOI 10.30191/ETS.202301_26(1).0009 INTELLIGENCE BY AM TURING, 1950, Computing Machinery and Intelligence, V59, P433, DOI [10.1093/mind/LIX.236.433, DOI 10.1093/MIND/LIX.236.433] Jeon J, 2023, INTERACT LEARN ENVIR, DOI 10.1080/10494820.2023.2204343 Jeon J, 2023, COMPUT ASSIST LANG L, V36, P1338, DOI 10.1080/09588221.2021.1987272 Ji H, 2023, J RES TECHNOL EDUC, V55, P48, DOI 10.1080/15391523.2022.2142873 Katsarou Eirene, 2023, International Journal of Emerging Technologies in Learning, P65, DOI 10.3991/ijet.v18i10.37723 Kessler G, 2018, FOREIGN LANG ANN, V51, P205, DOI 10.1111/flan.12318 Kienberger M, 2022, INT C TECHNOLOGICAL, P1092 Kohnke L, 2023, RELC J, V54, P537, DOI 10.1177/00336882231162868 Krippendorff K., 2018, CONTENT ANAL INTRO I Lee S, 2024, COMPUT ASSIST LANG L, V37, P1048, DOI 10.1080/09588221.2022.2067182 Liang JC, 2023, INTERACT LEARN ENVIR, V31, P4270, DOI 10.1080/10494820.2021.1958348 Lin MPC, 2020, EDUC TECHNOL SOC, V23, P78 Litman D, 2018, LANG ASSESS Q, V15, P294, DOI 10.1080/15434303.2018.1472265 Liu CC, 2023, EDUC INF TECHNOL, V28, P13027, DOI 10.1007/s10639-023-11697-6 Liu Z, 2023, FOODS, V12, DOI 10.3390/foods12061242 López-Belmonte J, 2023, INTERACT LEARN ENVIR, V31, P1860, DOI 10.1080/10494820.2020.1859546 Luo JX, 2022, SUSTAINABILITY-BASEL, V14, DOI 10.3390/su141610230 Ma L, 2021, MOB INF SYST, V2021, DOI 10.1155/2021/2637439 Meurers D, 2012, Encyc Appl Ling 4193-4205 Min WH, 2023, SUSTAINABILITY-BASEL, V15, DOI 10.3390/su15097235 Nagata N, 2013, CALICO J, V13, P47, DOI [10.1558/cj.v13i1.47-67, DOI 10.1558/CJ.V13I1.47-67] Page MJ, 2021, BMJ-BRIT MED J, V372, DOI [10.1136/bmj.n71, 10.1016/j.ijsu.2021.105906, 10.1136/bmj.n160] Peters Matthew E., 2017, Semi-supervised sequence tagging with bidirectional language models, DOI [DOI 10.48550/ARXIV.1705.00108, 10.48550/arXiv.1705.00108] Pokrivcakova S, 2019, J LANG CULT EDUC, V7, P135, DOI 10.2478/jolace-2019-0025 Popenici Stefan A D, 2017, Res Pract Technol Enhanc Learn, V12, P22, DOI 10.1186/s41039-017-0062-8 Rahman A, 2022, Appropriate Allocation of Specified NLP Tools for the Four Language Skills, DOI [10.1080/10494820.2023.2204324, DOI 10.1080/10494820.2023.2204324] Rahman A, 2023, INTERACT LEARN ENVIR, DOI 10.1080/10494820.2023.2204324 Ruiz S, 2021, LANG TEACH RES, V25, P510, DOI 10.1177/1362168819872859 Rusmiyanto R., 2023, Journal on Education, V6, P750, DOI [10.31004/joe.v6i1.2990, DOI 10.31004/JOE.V6I1.2990] Russell Stuart, 2010, Artificial intelligence, a modern approach, V3 Segler T. M., 2002, Computer Assisted Language Learning, V15, P409, DOI 10.1076/call.15.4.409.8272 Seising R, 2018, MATHEMATICS-BASEL, V6, DOI 10.3390/math6070110 Shadiev R, 2023, RECALL, V35, P74, DOI 10.1017/S095834402200012X Sharadgah TA, 2022, J INF TECHNOL EDUC-R, V21, P337, DOI 10.28945/4999 Simonite T, 2020, MIT Technology Review Slavuj V, 2015, 38 INT CONVENTION IN, DOI [10.1109/mipro.2015.7160383, DOI 10.1109/MIPRO.2015.7160383] stanford, Home Tai TY, 2023, INTERACT LEARN ENVIR, V31, P1485, DOI 10.1080/10494820.2020.1841801 Tan S C., 2022, Computers and Education: Artificial Intelligence, V3, P100097, DOI [DOI 10.1016/J.CAEAI.2022.100097, 10.1016/j.caeai.2022.100097] Thayyib PV, 2023, SUSTAINABILITY-BASEL, V15, DOI 10.3390/su15054026 Triantafillou E, 2003, COMPUT EDUC, V41, P87, DOI 10.1016/S0360-1315(03)00031-9 Vaswani A, 2017, ADV NEUR IN, V30 Verma S, 2020, J BUS RES, V118, P253, DOI 10.1016/j.jbusres.2020.06.057 Weitzman T, 2023, Forbes Weng X., 2023, Computers and Education: Artificial Intelligence, DOI DOI 10.1016/J.CAEAI.2022.100117 Wijekumar K, 2013, COMPUT EDUC, V68, P366, DOI 10.1016/j.compedu.2013.05.021 Xu ZH, 2019, BRIT J EDUC TECHNOL, V50, P3119, DOI 10.1111/bjet.12758 Yang CTY, 2024, INTERACT LEARN ENVIR, V32, P2175, DOI 10.1080/10494820.2022.2141266 Yang HZ, 2022, AUSTRALAS J EDUC TEC, V38, P180, DOI 10.14742/ajet.7492 Zhang RF, 2023, INTERACT LEARN ENVIR, DOI 10.1080/10494820.2023.2202704 Ziegler N, 2017, LANG LEARN, V67, P209, DOI 10.1111/lang.12227 Zilio L, 2017, RANLP, P839 NR 87 TC 0 Z9 0 U1 27 U2 27 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0269-2821 EI 1573-7462 J9 ARTIF INTELL REV JI Artif. Intell. Rev. PD APR 1 PY 2024 VL 57 IS 4 AR 107 DI 10.1007/s10462-023-10643-9 PG 27 WC Computer Science, Artificial Intelligence WE Science Citation Index Expanded (SCI-EXPANDED) SC Computer Science GA MR5M5 UT WOS:001195372800002 OA hybrid DA 2024-09-05 ER PT C AU Bhattacharjee, KK AF Bhattacharjee, Kalyan Kumar GP IEEE TI Research Output on the Usage of Artificial Intelligence in Indian Higher Education - A Scientometric Study SO 2019 IEEE INTERNATIONAL CONFERENCE ON INDUSTRIAL ENGINEERING AND ENGINEERING MANAGEMENT (IEEM) SE International Conference on Industrial Engineering and Engineering Management IEEM LA English DT Proceedings Paper CT IEEE International Conference on Industrial Engineering and Engineering Management (IEEM) CY DEC 15-18, 2019 CL Macao, MACAO DE Scientometric analysis; Artificial Intelligence; Indian higher education AB Scientrometrics is a branch of science which performs reproducible measurements of scientific activity. Scientometric analysis of research papers/ articles indexed in Scopus database (www.scopus.com) for last ten years (2009 to 2018) have been done. The study focuses on the research publications for the applications of Artificial Intelligence (AI) in higher education. A scientometric assessment of the trend of the research papers on AI usage in education sector have been presented in the study by way of analyzing; annual growth of research publications of AI (both globally and country wise) and growth trend of the "AI usage in education" publications (both country-wise as well as individual share). The study reveals the growth of AI in research publications both in international and in Indian context, but its applicability in the field of higher education is substantially low. The usage of AI in Indian education sector has tremendous scope for growth and in most likelihood research publications in the said field will expand considerably in years to come. This study will help subject specialists, researchers, policy makers for drafting effective policies, and those who wish to map the scientrometric patterns of research publications in the capacity of academic administrator or as an individual. C1 [Bhattacharjee, Kalyan Kumar] Indian Inst Technol Delhi, New Delhi 16, India. C3 Indian Institute of Technology System (IIT System); Indian Institute of Technology (IIT) - Delhi RP Bhattacharjee, KK (corresponding author), Indian Inst Technol Delhi, New Delhi 16, India. EM kalyan@admin.iitd.ac.in RI Bhattacharjee, Kalyan/AAM-8341-2021 OI Bhattacharjee, Kalyan/0000-0001-9844-6091 CR ANDREWS S., 2016, Contingent Academic Employment in Australian Universities Bonder G, 2001, J CHEM EDUC, V78, P1107 Bostrom N., 2011, CAMBRIDGE HDB ARTIFI, P316 Brindley G., 1998, LANG TEST, V15, P45, DOI 10.1177/026553229801500103 Grove J., 2015, Times Higher Education Haitun D., 1983, SCIENCE, V8, P48 Herr H, 2015, NEW SCI, V227, P24 Hines PJ, 2013, SCIENCE, V340, P291 Hinojo-Lucena FJ, 2019, EDUC SCI, V9, DOI 10.3390/educsci9010051 Ismail Noor Azizi, 2008, Campus-Wide Information Systems, V25, P145, DOI 10.1108/10650740810886321 Kübler A, 2015, ARCH PHYS MED REHAB, V96, pS27, DOI 10.1016/j.apmr.2014.03.036 Luckin R, 2017, NAT HUM BEHAV, V1, DOI 10.1038/s41562-016-0028 Nasrallah R., 2014, Education, Business and Society: Contemporary Middle Eastern Issues, V7, P257, DOI DOI 10.1108/EBS-03-2014-0016 Neven H., 2013, Launching the quantum artificial intelligence lab Google Research Norris SP, 2003, SCI EDUC, V87, P224, DOI 10.1002/sce.10066 Popenici Stefan A D, 2017, Res Pract Technol Enhanc Learn, V12, P22, DOI 10.1186/s41039-017-0062-8 Schleicher A., 2015, Schools for 21st-century learners: Strong leaders, confident teachers NR 17 TC 3 Z9 3 U1 3 U2 12 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA SN 2157-3611 BN 978-1-7281-3804-6 J9 IN C IND ENG ENG MAN PY 2019 BP 916 EP 919 DI 10.1109/ieem44572.2019.8978798 PG 4 WC Engineering, Industrial; Operations Research & Management Science WE Conference Proceedings Citation Index - Science (CPCI-S) SC Engineering; Operations Research & Management Science GA BP2CR UT WOS:000541902500182 DA 2024-09-05 ER PT J AU Yeom, S Choi, C Kim, K AF Yeom, Sungwoong Choi, Chulwoong Kim, Kyungbaek TI LSTM-Based Collaborative Source-Side DDoS Attack Detection SO IEEE ACCESS LA English DT Article DE Collaboration; Adaptive systems; Denial-of-service attack; Neural networks; Market research; Logic gates; Time series analysis; Network security; DDoS attack; SDN; LSTM; collaborative detection; traffic seasonality embedding ID NETWORK; DEFENSE AB As denial of service attacks become more sophisticated, the source-side detection techniques are being studied to solve the limitations of target-side detection techniques such as delayed detection and difficulty in tracking attackers. Recently, some source-side detection techniques are being studied to use an adaptive attack detection threshold considering seasonal behavior of network traffic. However, because patterns of network traffic usage have become irregular with increased randomness and explosive traffic, the performance of the adaptive threshold technique has deteriorated. In addition, by limitations of the local view of a single site, distributed attacks from multiple sites may not be detected. In this paper, we propose a LSTM (Long Short Term Memory) based collaborative source-side DDoS (Distributed Denial of Service) attack detection framework which provides the attack detection result of a collaboration network in a global view. The proposed framework applies LSTM-based adaptive thresholds to each source-side network to mitigate performance degradation caused by irregular network traffic behavior. Also, in order to overcome the limitation of performance caused by the local view of single source-side network, the proposed framework constructs a collaborative network through multiple detection sites and aggregates feedback from each site, such as detection rates, local traffic patterns, and timestamp. The collaborative attack detection technique uses the aggregated feedback to determine whether the attack is finally detected and shares the finial detection results with multiple sites. Depending on this final detection result, the adaptive thresholds of each site are reset. Through extensive evaluation of actual network traffic data, the proposed collaborative source-side attack detection technique shows around 15% lower false positive rate than the single source-side attack detection technique while maintaining a high detection rate. C1 [Yeom, Sungwoong; Choi, Chulwoong; Kim, Kyungbaek] Chonnam Natl Univ, Dept Artificial Intelligence Convergence, Gwangju 61186, South Korea. C3 Chonnam National University RP Kim, K (corresponding author), Chonnam Natl Univ, Dept Artificial Intelligence Convergence, Gwangju 61186, South Korea. EM kyungbaekkim@jnu.ac.kr OI Kim, Kyungbaek/0000-0001-9985-3051 FU Institute for Information & communications Technology Planning & Evaluation (IITP); Korea Government Ministry of Science and ICT (MSIT) [2019-0-01343]; Regional strategic Industry convergence Security Core Talent Training Business; Bio and Medical Technology Development Program of the National Research Foundation (NRF) through the Korean Government Ministry of Science and ICT (MSIT) [NRF-2019M3E5D1A02067961] FX This work was supported by the Institute for Information & communications Technology Planning & Evaluation (IITP) and the Korea Government Ministry of Science and ICT (MSIT) under Grant 2019-0-01343, in part by the Regional strategic Industry convergence Security Core Talent Training Business, and in part by the Bio and Medical Technology Development Program of the National Research Foundation (NRF) through the Korean Government Ministry of Science and ICT (MSIT) under Grant NRF-2019M3E5D1A02067961. CR Bhanu M, 2021, IEEE T INTELL TRANSP, V22, P3359, DOI 10.1109/TITS.2020.2984175 Chan KY, 2011, C IND ELECT APPL, P376, DOI 10.1109/ICIEA.2011.5975612 Ciucu F, 2014, IEEE INFOCOM SER, P2616, DOI 10.1109/INFOCOM.2014.6848209 Cui JJ, 2018, LECT NOTES ARTIF INT, V11144, P283, DOI 10.1007/978-3-030-00202-2_23 Duma C, 2006, INT WORKSHOP DATABAS, P692, DOI 10.1109/DEXA.2006.21 Feldmann Anja, 2020, IMC '20: Proceedings of the ACM Internet Measurement Conference, P1, DOI 10.1145/3419394.3423658 Fouladi RF, 2020, J INF SECUR APPL, V54, DOI 10.1016/j.jisa.2020.102587 Fung CJ, 2009, 2009 IFIP/IEEE INTERNATIONAL SYMPOSIUM ON INTEGRATED NETWORK MANAGEMENT (IM 2009) VOLS 1 AND 2, P33, DOI 10.1109/INM.2009.5188784 Geng Y, 2019, INT CONF SOFTW ENG, P324, DOI 10.1109/icsess47205.2019.9040735 Nguyen GT, 2019, KSII T INTERNET INF, V13, P2651, DOI 10.3837/tiis.2019.05.023 Jiang H., 2005, Performance Evaluation Review, V33, P241, DOI 10.1145/1071690.1064240 Jing Q, 2014, WIREL NETW, V20, P2481, DOI 10.1007/s11276-014-0761-7 Kim H, 2013, IEEE COMMUN MAG, V51, P114, DOI 10.1109/MCOM.2013.6461195 Lazaris A, 2019, 2019 IFIP/IEEE SYMPOSIUM ON INTEGRATED NETWORK AND SERVICE MANAGEMENT (IM), P19 Lee C., 2019, ARXIV191111552 LELAND WE, 1994, IEEE ACM T NETWORK, V2, P1, DOI 10.1109/90.282603 Lopez-Benitez M., 2017, Proc. IEEE Wirel. Comms. and Net. Conf. (WCNC 2017), P1 Mantere M, 2013, FUTURE INTERNET, V5, P460, DOI 10.3390/fi5040460 Mirkovic J, 2005, IEEE T DEPEND SECURE, V2, P216, DOI 10.1109/TDSC.2005.35 Oduro-Gyimah F. K., 2018, P IEEE 7 INT C AD SC, P1 Paxson V, 2001, ACM SIGCOMM COMP COM, V31, P38, DOI 10.1145/505659.505664 Ramakrishnan N, 2018, 2018 17TH IEEE INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS (ICMLA), P187, DOI 10.1109/ICMLA.2018.00035 Robert C., 1990, Journal of Official Statistics, V6, P3 Nguyen SN, 2018, IEICE T INF SYST, VE101D, P1686, DOI 10.1587/transinf.2018EDL8020 Song BH, 2007, IEICE T COMMUN, VE90B, P2655, DOI 10.1093/ietcom/e90-b.10.2655 Sungwoong Yeom, 2021, SAC '21: Proceedings of the 36th Annual ACM Symposium on Applied Computing, P1130, DOI 10.1145/3412841.3441987 Tran TV, 2016, IEEE SENS J, V16, P9021, DOI 10.1109/JSEN.2016.2616114 Yaacob Asrul H., 2010, Proceedings of the Second International Conference on Communication Software and Networks (ICCSN 2010), P205, DOI 10.1109/ICCSN.2010.55 Yeom S, 2020, ASIA-PAC NETW OPER M, P239, DOI 10.23919/APNOMS50412.2020.9237014 Zecheng He, 2017, 2017 IEEE 4th International Conference on Cyber-Security and Cloud Computing (CSCloud), P114, DOI 10.1109/CSCloud.2017.58 Zhang Y, 2013, PROCEEDINGS OF THE 2013 ACM INTERNATIONAL CONFERENCE ON EMERGING NETWORKING EXPERIMENTS AND TECHNOLOGIES (CONEXT '13), P25 NR 31 TC 3 Z9 3 U1 2 U2 7 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 2169-3536 J9 IEEE ACCESS JI IEEE Access PY 2022 VL 10 BP 44033 EP 44045 DI 10.1109/ACCESS.2022.3169616 PG 13 WC Computer Science, Information Systems; Engineering, Electrical & Electronic; Telecommunications WE Science Citation Index Expanded (SCI-EXPANDED) SC Computer Science; Engineering; Telecommunications GA 0Y9RE UT WOS:000790719100001 OA gold DA 2024-09-05 ER PT J AU Armenia, S Franco, E Iandolo, F Maielli, G Vito, P AF Armenia, Stefano Franco, Eduardo Iandolo, Francesca Maielli, Giuliano Vito, Pietro TI Zooming in and out the landscape: Artificial intelligence and system dynamics in business and management SO TECHNOLOGICAL FORECASTING AND SOCIAL CHANGE LA English DT Article DE System dynamics; Artificial intelligence; Bibliometrics; Topic modeling; Technology; Forecasting ID SUPPLY CHAIN DYNAMICS; DECISION-MAKING; KNOWLEDGE MANAGEMENT; HEALTH-CARE; BANKRUPTCY PREDICTION; INNOVATION SYSTEM; NEURAL-NETWORKS; POLICY-ANALYSIS; BIG DATA; MODEL AB Organizations are increasingly leveraging the ability of artificial intelligence to analyze and resolve complex problems. This can potentially reshape the interdependencies and interactions of complex systems, leading to our research question: To what extent and in which direction is the literature on Artificial Intelligence (AI) and System Dynamics (SD) converging within the business and management landscape? We conducted an extensive literature review using bibliometric and topic modeling methods to address this question. Through a bibliometric analysis, we identified the areas in which academic papers referred to both SD and AI literature. However, bibliometrics do not show a clear path towards convergence. The top modeling analysis highlights more details on how convergence is structured, providing insights into how SD and AI may be integrated. Two trajectories are identified. In the "soft convergence," AI supports system dynamics analysis and modeling more deeply characterized by social interaction. In the "hard convergence," AI shapes innovative ways of rethinking system design, dynamics, and interdependencies. Our analysis suggests that while soft convergence is more visible in the business and management landscape, hard convergence may well represent a new frontier in studying system dynamics with the potential to reshape the landscape. C1 [Armenia, Stefano] IUL Univ, Rome, Italy. [Franco, Eduardo] Univ Sao Paulo, Sao Paulo, Brazil. [Iandolo, Francesca; Vito, Pietro] Sapienza Univ Rome, Rome, Italy. [Maielli, Giuliano] Queen Mary Univ London, Sch Business & Management, London, England. C3 Universidade de Sao Paulo; Sapienza University Rome; University of London; Queen Mary University London RP Iandolo, F (corresponding author), Sapienza Univ Rome, Rome, Italy. EM francesca.iandolo@uniroma1.it RI Armenia, Stefano/K-2167-2017; Maielli, Giuliano/KDM-8272-2024; Iandolo, Francesca/AFK-0311-2022 OI Armenia, Stefano/0000-0002-0777-4004; Iandolo, Francesca/0000-0002-2366-4892 CR AAMODT A, 1995, DATA KNOWL ENG, V16, P191, DOI 10.1016/0169-023X(95)00017-M Adya M, 1998, J FORECASTING, V17, P481, DOI 10.1002/(SICI)1099-131X(1998090)17:5/6<481::AID-FOR709>3.3.CO;2-H Ahn J, 2022, J BUS RES, V141, P50, DOI 10.1016/j.jbusres.2021.12.007 Akaev A, 2021, TECHNOL FORECAST SOC, V167, DOI 10.1016/j.techfore.2021.120675 Akkermans H, 2016, PROJ MANAG J, V47, P79, DOI 10.1002/pmj.21585 Alinasab J, 2022, J KNOWL ECON, V13, P2490, DOI 10.1007/s13132-021-00801-1 Alkaldy EAH, 2019, INT J ENERGY SECT MA, V13, P149, DOI 10.1108/IJESM-03-2018-0008 [Anonymous], 1969, Urban Dynamics [Anonymous], 1971, World dynamics Antons D, 2016, J PROD INNOVAT MANAG, V33, P726, DOI 10.1111/jpim.12300 Armenia S., 2023, Syst. Res. Behav. Sci., P1 Armenia S., 2018, P 60 C UK SOC OR60, V178 Armenia S., 2019, New Challenges in Corporate Governance: Theory and Practice, P41, DOI [10.22495/ncpr_10, DOI 10.22495/NCPR_10] Armenia S., 2017, P BSLABSYDIC WORKSHO Arroyabe MF, 2022, STUD HIGH EDUC, V47, P955, DOI 10.1080/03075079.2022.2055318 Atsalakis GS, 2018, EUR J OPER RES, V268, P716, DOI 10.1016/j.ejor.2018.01.044 Azadeh A, 2014, SYST RES BEHAV SCI, V31, P236, DOI 10.1002/sres.2199 Badakhshan E, 2020, INT J PROD RES, V58, P5253, DOI 10.1080/00207543.2020.1715505 Badinelli R, 2012, J SERV MANAGE, V23, P498, DOI 10.1108/09564231211260396 Bai G.H, 2017, DESTECH T SOCIAL SCI Baldwin C.Y., 2020, Design rules, Volume 1: The power of modularity. Baldwin R, 2015, WORLD ECON, V38, P1682, DOI 10.1111/twec.12189 Ballester O, 2022, J INFORMETR, V16, DOI 10.1016/j.joi.2021.101224 Barile S, 2016, J SERV MANAGE, V27, P652, DOI 10.1108/JOSM-09-2015-0268 Barlas Y, 2011, J OPER RES SOC, V62, P458, DOI 10.1057/jors.2010.188 Bayer S, 2021, J OPER RES SOC, V72, P2122, DOI 10.1080/01605682.2020.1772018 Bennett CC, 2013, ARTIF INTELL MED, V57, P9, DOI 10.1016/j.artmed.2012.12.003 Blei DM, 2012, COMMUN ACM, V55, P77, DOI 10.1145/2133806.2133826 Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993 Bordot F, 2022, J INNOV ECON MANAG, P117, DOI 10.3917/jie.037.0117 Braganza A, 2021, J BUS RES, V131, P485, DOI 10.1016/j.jbusres.2020.08.018 Brailsford SC, 2004, J OPER RES SOC, V55, P34, DOI 10.1057/palgrave.jors.2601667 Campbell C, 2022, J ADVERTISING, V51, P22, DOI 10.1080/00913367.2021.1909515 Caponio G, 2015, INT J ENG BUS MANAG, V7, DOI 10.5772/61768 Caputo F, 2021, J BUS RES, V135, P19, DOI 10.1016/j.jbusres.2021.06.012 Caputo F, 2020, J BUS RES, V119, P330, DOI 10.1016/j.jbusres.2019.03.040 Caputo F, 2019, MANAGE DECIS, V57, P2032, DOI 10.1108/MD-07-2018-0833 Ceylan Z, 2021, J FORECASTING, V40, P279, DOI 10.1002/for.2747 Chaney Nathan, 2020, CRAN Charfi S, 2020, J MODEL MANAG, V15, P166, DOI 10.1108/JM2-09-2018-0130 Chekima K., 2010, Document Categorizer Agent for Computer Science Academic Papers Chiang AH, 2022, TECHNOL FORECAST SOC, V177, DOI 10.1016/j.techfore.2022.121550 Chung B, 2018, SYST RES BEHAV SCI, V35, P248, DOI 10.1002/sres.2477 Clay NM, 2018, INT T OPER RES, V25, P215, DOI 10.1111/itor.12326 Collins C, 2021, INT J INFORM MANAGE, V60, DOI 10.1016/j.ijinfomgt.2021.102383 Core MG, 2006, AAAI, V2, P1766 Loureiro SMC, 2021, J BUS RES, V129, P911, DOI 10.1016/j.jbusres.2020.11.001 Cosenz F, 2021, J BUS RES, V130, P658, DOI 10.1016/j.jbusres.2020.03.003 Cosenz F, 2018, LONG RANGE PLANN, V51, P127, DOI 10.1016/j.lrp.2017.07.001 Cramton CD, 2001, ORGAN SCI, V12, P346, DOI 10.1287/orsc.12.3.346.10098 Cronin MA, 2009, ORGAN BEHAV HUM DEC, V108, P116, DOI 10.1016/j.obhdp.2008.03.003 Cusumano M.A., 2019, BUSINESS PLATFORMS S, V320 Das SR, 2007, MANAGE SCI, V53, P1375, DOI 10.1287/mnsc.1070.0704 Davenport JH, 2020, J SYMB COMPUT, V100, P1, DOI 10.1016/j.jsc.2019.07.017 Gomes LAD, 2018, TECHNOL FORECAST SOC, V136, P30, DOI 10.1016/j.techfore.2016.11.009 Dejonckheere J, 2003, EUR J OPER RES, V147, P567, DOI 10.1016/S0377-2217(02)00369-7 DEVEAUD R, 2014, DOCUMENT NUMERIQUE, V0017 Dordkeshan MJ, 2017, J FOOD PROD MARK, V23, P890, DOI 10.1080/10454446.2017.1244798 Duan YQ, 2019, INT J INFORM MANAGE, V48, P63, DOI 10.1016/j.ijinfomgt.2019.01.021 Duch-Brown N, 2022, RES POLICY, V51, DOI 10.1016/j.respol.2021.104446 Dwivedi YK, 2021, INT J INFORM MANAGE, V57, DOI 10.1016/j.ijinfomgt.2019.08.002 DYNER I, 1995, J OPER RES SOC, V46, P1163, DOI 10.1038/sj/jors/0461001 Dyson B, 2005, WASTE MANAGE, V25, P669, DOI 10.1016/j.wasman.2004.10.005 Er H, 2017, EURASIAN BUS REV, V7, P313, DOI 10.1007/s40821-016-0056-2 Espinasse B, 1997, EUR J OPER RES, V103, P389, DOI 10.1016/S0377-2217(97)00127-6 Eugeni R, 2019, LECT NOTES COMPUT SC, V11579, P291, DOI 10.1007/978-3-030-21905-5_23 Fan WH, 2021, TSINGHUA SCI TECHNOL, V26, P608, DOI 10.26599/TST.2021.9010005 Feng N, 2019, ELECTRON COMMER R A, V35, DOI 10.1016/j.elerap.2019.100843 Ferreira P, 2020, LECT NOTES BUS INF P, V377, P202, DOI 10.1007/978-3-030-38724-2_15 Fethi MD, 2010, EUR J OPER RES, V204, P189, DOI 10.1016/j.ejor.2009.08.003 Fiala P, 2005, OMEGA-INT J MANAGE S, V33, P419, DOI 10.1016/j.omega.2004.07.006 Ford A, 1997, SYST DYNAM REV, V13, P57, DOI 10.1002/(SICI)1099-1727(199721)13:1<57::AID-SDR117>3.0.CO;2-B Ford DN, 1998, SYST DYNAM REV, V14, P309, DOI 10.1002/(SICI)1099-1727(199824)14:4<309::AID-SDR154>3.0.CO;2-5 Forrester J.W., 1961, Industrial Dynamics Forrester JW, 2007, SYST DYNAM REV, V23, P359, DOI 10.1002/sdr.381 FORRESTER JW, 1992, EUR J OPER RES, V59, P42, DOI 10.1016/0377-2217(92)90006-U Fridgeirsson TV, 2021, SUSTAINABILITY-BASEL, V13, DOI 10.3390/su13042345 Gao B, 2022, COMPUT ECON, V59, P1385, DOI 10.1007/s10614-021-10101-0 Garbero A, 2021, TECHNOL FORECAST SOC, V172, DOI 10.1016/j.techfore.2021.121012 Gary MS, 2005, STRATEGIC MANAGE J, V26, P643, DOI 10.1002/smj.468 Gawer A, 2021, LONG RANGE PLANN, V54, DOI 10.1016/j.lrp.2020.102045 Gawer A, 2014, RES POLICY, V43, P1239, DOI 10.1016/j.respol.2014.03.006 Gelman IA, 2005, EUR J OPER RES, V160, P325, DOI 10.1016/j.ejor.2003.09.004 Ghaffarzadegan N, 2017, EUR J OPER RES, V261, P1085, DOI 10.1016/j.ejor.2017.02.041 Ghaffarzadegan N, 2011, SYST DYNAM REV, V27, P22, DOI 10.1002/sdr.442 Goodell JW, 2021, J BEHAV EXP FINANC, V32, DOI 10.1016/j.jbef.2021.100577 Griffiths TL, 2004, P NATL ACAD SCI USA, V101, P5228, DOI 10.1073/pnas.0307752101 Gruetzemacher R, 2021, TECHNOL FORECAST SOC, V170, DOI 10.1016/j.techfore.2021.120909 Gruia L., 2020, Human-made in the Age of Artificial Intelligence, P443 Grum M, 2020, LECT NOTES BUS INF P, V391, P182, DOI 10.1007/978-3-030-52306-0_12 Guerreiro J, 2016, J BUS ETHICS, V139, P111, DOI 10.1007/s10551-015-2622-4 Haefner N, 2021, TECHNOL FORECAST SOC, V162, DOI 10.1016/j.techfore.2020.120392 Hannigan TR, 2019, ACAD MANAG ANN, V13, P586, DOI 10.5465/annals.2017.0099 Harrison G, 2017, TECHNOL FORECAST SOC, V114, P165, DOI 10.1016/j.techfore.2016.08.007 Hein R, 2012, TECHNOL FORECAST SOC, V79, P1654, DOI 10.1016/j.techfore.2012.06.002 Hekkert MP, 2007, TECHNOL FORECAST SOC, V74, P413, DOI 10.1016/j.techfore.2006.03.002 HENDERSON RM, 1990, ADMIN SCI QUART, V35, P9, DOI 10.2307/2393549 Hengstler M, 2016, TECHNOL FORECAST SOC, V105, P105, DOI 10.1016/j.techfore.2015.12.014 Hess TJ, 2000, DECISION SCI, V31, P1, DOI 10.1111/j.1540-5915.2000.tb00922.x Hovmand PS, 2012, SYST RES BEHAV SCI, V29, P179, DOI 10.1002/sres.2105 Huang D, 2021, TECHNOL FORECAST SOC, V166, DOI 10.1016/j.techfore.2021.120594 Huang L, 2007, PROCEEDINGS OF THE 2007 CONFERENCE ON SYSTEMS SCIENCE, MANAGEMENT SCIENCE AND SYSTEM DYNAMICS: SUSTAINABLE DEVELOPMENT AND COMPLEX SYSTEMS, VOLS 1-10, P793 Huang MH, 2019, CALIF MANAGE REV, V61, P43, DOI 10.1177/0008125619863436 Huang MH, 2018, J SERV RES-US, V21, P155, DOI 10.1177/1094670517752459 Huelsen P, 2021, RISUS, V12, P17, DOI 10.23925/2179-3565.2021v12i2p17-29 Hwang S, 2010, INT J STRATEG PROP M, V14, P157, DOI 10.3846/ijspm.2010.12 Hwarng HB, 2008, EUR J OPER RES, V184, P1163, DOI 10.1016/j.ejor.2006.12.014 Iandolo F, 2021, J KNOWL ECON, V12, P1982, DOI 10.1007/s13132-020-00703-8 Jacobides MG, 2018, STRATEGIC MANAGE J, V39, P2255, DOI 10.1002/smj.2904 Jafarian-Namin S, 2019, INT J ENERGY SECT MA, V13, P1038, DOI 10.1108/IJESM-06-2018-0002 Jahangirian M, 2010, EUR J OPER RES, V203, P1, DOI 10.1016/j.ejor.2009.06.004 van Eck NJ, 2011, Arxiv, DOI arXiv:1109.2058 Jana RK, 2022, TECHNOL FORECAST SOC, V178, DOI 10.1016/j.techfore.2022.121584 Jarrahi MH, 2018, BUS HORIZONS, V61, P577, DOI 10.1016/j.bushor.2018.03.007 Jelodar H, 2019, MULTIMED TOOLS APPL, V78, P15169, DOI 10.1007/s11042-018-6894-4 Jiang F, 2017, STROKE VASC NEUROL, V2, P230, DOI 10.1136/svn-2017-000101 Jiang YY, 2020, INT J CONTEMP HOSP M, V32, P2563, DOI 10.1108/IJCHM-03-2020-0237 Jnitova V, 2021, INT J ENG BUS MANAG, V13, DOI 10.1177/18479790211004010 KABIR C, 1981, COMPUT IND ENG, V5, P7, DOI 10.1016/0360-8352(81)90009-7 Kahneman D, 2015, FORTUNE, V172, P20 Kaiser C, 2020, J BUS RES, V117, P707, DOI 10.1016/j.jbusres.2019.09.017 Kambur E, 2022, INT J MANPOWER, V43, P168, DOI 10.1108/IJM-04-2021-0216 Kampmann CE, 2008, SYST RES BEHAV SCI, V25, P505, DOI 10.1002/sres.909 Kaplan A, 2019, BUS HORIZONS, V62, P15, DOI 10.1016/j.bushor.2018.08.004 KESSLER MM, 1963, AM DOC, V14, P10, DOI 10.1002/asi.5090140103 Khashei M, 2022, J MODEL MANAG, V17, P154, DOI 10.1108/JM2-06-2020-0159 Khmiadashvili CL, 2019, QUAL-ACCESS SUCCESS, V20, P85 Kim H, 2008, EUR J OPER RES, V189, P172, DOI 10.1016/j.ejor.2007.05.012 Kim J, 2022, J BUS RES, V144, P797, DOI 10.1016/j.jbusres.2022.02.047 Kitanaka H, 2021, J PERS SELL SALES M, V41, P351, DOI 10.1080/08853134.2021.1935976 Kobbacy KAH, 2007, J OPER RES SOC, V58, P10, DOI 10.1057/palgrave.jors.2602132 Kogan K, 2003, EUR J OPER RES, V149, P448, DOI 10.1016/S0377-2217(02)00450-2 Kong HY, 2021, INT J CONTEMP HOSP M, V33, P717, DOI 10.1108/IJCHM-07-2020-0789 Kopainsky B, 2008, SYST RES BEHAV SCI, V25, P471, DOI 10.1002/sres.913 Kozikowski D, 2020, EDUCATION EXCELLENCE AND INNOVATION MANAGEMENT: A 2025 VISION TO SUSTAIN ECONOMIC DEVELOPMENT DURING GLOBAL CHALLENGES, P7438 Krenz P, 2014, PROC CIRP, V16, P38, DOI 10.1016/j.procir.2014.01.006 Krusinskas R, 2014, TRANSFORM BUS ECON, V13, P102 Kunc M, 2018, J SIMUL, V12, P115, DOI 10.1080/17477778.2018.1468950 Kunsch P, 2008, EUR J OPER RES, V185, P1285, DOI 10.1016/j.ejor.2006.05.048 Kunsch PL, 2004, EUR J OPER RES, V153, P386, DOI 10.1016/S0377-2217(03)00160-7 Kwakkel JH, 2015, SYST RES BEHAV SCI, V32, P358, DOI 10.1002/sres.2225 Lambrecht A, 2019, MANAGE SCI, V65, P2966, DOI 10.1287/mnsc.2018.3093 Lee K, 2011, INT J INFORM MANAGE, V31, P160, DOI 10.1016/j.ijinfomgt.2010.07.009 Liebowitz J, 2001, EXPERT SYST APPL, V20, P1, DOI 10.1016/S0957-4174(00)00044-0 Liu CY, 2015, J OPER MANAG, V39-40, P31, DOI 10.1016/j.jom.2015.07.004 Liu Q, 2018, Manag. Des. Eng., V32, P67 Lusch RF, 2018, MARKETING THEOR, V18, P435, DOI 10.1177/1470593118777904 Lustig IJ, 2001, INTERFACES, V31, P29, DOI 10.1287/inte.31.6.29.9647 Lv H, 2022, J HOSP MARKET MANAG, V31, P145, DOI 10.1080/19368623.2021.1937434 Lyneis JM, 2000, SYST DYNAM REV, V16, P3, DOI 10.1002/(SICI)1099-1727(200021)16:1<3::AID-SDR183>3.0.CO;2-5 Maier FH, 1998, SYST DYNAM REV, V14, P285, DOI 10.1002/(SICI)1099-1727(199824)14:4<285::AID-SDR153>3.0.CO;2-F Maliapen M, 2010, J OPER RES SOC, V61, P255, DOI 10.1057/jors.2008.134 Manahov V, 2019, INT J ELECTRON COMM, V23, P12, DOI 10.1080/10864415.2018.1512271 MARSHAKOVA IV, 1973, NAUCH-TEKHN INFORM 2, P3 Martínez-López FJ, 2013, IND MARKET MANAG, V42, P489, DOI 10.1016/j.indmarman.2013.03.001 MARTINO JP, 1980, MANAGE SCI, V26, P28, DOI 10.1287/mnsc.26.1.28 McLean G, 2021, J BUS RES, V124, P312, DOI 10.1016/j.jbusres.2020.11.045 Mendoza JD, 2014, INT J OPER PROD MAN, V34, P1055, DOI 10.1108/IJOPM-06-2012-0238 Middleton K, 2021, MARKETING THEOR, V21, P561, DOI 10.1177/14705931211035163 Mikalef P, 2021, INFORM MANAGE-AMSTER, V58, DOI 10.1016/j.im.2021.103434 Mingers J, 2010, EUR J OPER RES, V207, P1147, DOI 10.1016/j.ejor.2009.12.019 MORECROFT JDW, 1988, EUR J OPER RES, V35, P301, DOI 10.1016/0377-2217(88)90221-4 Moxnes E, 1990, SYST DYNAM REV, V6, P44, DOI 10.1002/sdr.4260060104 Nag AK, 2002, J FORECASTING, V21, P501, DOI 10.1002/for.838 Nasirzadeh F, 2013, INT J PROJ MANAG, V31, P903, DOI 10.1016/j.ijproman.2012.11.003 Nazareth DL, 2015, INFORM MANAGE-AMSTER, V52, P123, DOI 10.1016/j.im.2014.10.009 Nemati HR, 2002, DECIS SUPPORT SYST, V33, P143, DOI 10.1016/S0167-9236(01)00141-5 Nicholson CF, 2008, J BUS RES, V61, P1125, DOI 10.1016/j.jbusres.2007.11.011 Noniashvili M, 2020, J E EUR CENT ASIAN R, V7, P96, DOI 10.15549/jeecar.v7i1.386 North K., 2018, KNOWLEDGE MANAGEMENT Nyam YS, 2022, SYST RES BEHAV SCI, V39, P305, DOI 10.1002/sres.2753 O'Leary DE, 1998, COMPUTER, V31, P54, DOI 10.1109/2.660190 Oladimeji OO, 2020, INT J PRODUCT PERFOR, V69, P1539, DOI 10.1108/IJPPM-12-2018-0453 Oliva R, 2003, EUR J OPER RES, V151, P552, DOI 10.1016/S0377-2217(02)00622-7 Oliva R, 2001, MANAGE SCI, V47, P894, DOI 10.1287/mnsc.47.7.894.9807 Ozalp H, 2022, CALIF MANAGE REV, V64, P78, DOI 10.1177/00081256221094307 Park E, 2018, INT J CONTEMP HOSP M, V30, P3386, DOI 10.1108/IJCHM-11-2017-0714 Parry K, 2016, GROUP ORGAN MANAGE, V41, P571, DOI 10.1177/1059601116643442 Paschen J, 2020, J PROD BRAND MANAG, V29, P223, DOI 10.1108/JPBM-12-2018-2179 Patterson DW, 1990, INTRO ARTIFICIAL INT Paucar-Caceres A, 2007, J OPER RES SOC, V58, P701, DOI 10.1057/palgrave.jors.2602188 Perolla H, 2021, REV GEINTEC, V11, P1312, DOI 10.47059/revistageintec.v11i2.1759 Pillai R, 2020, BENCHMARKING, V27, P2599, DOI 10.1108/BIJ-04-2020-0186 Pitardi V, 2022, J SERV MANAGE, V33, P389, DOI 10.1108/JOSM-12-2020-0435 Pitt CS, 2020, EUR J MARKETING, V54, P305, DOI 10.1108/EJM-01-2019-0083 Powell JH, 2017, J OPER RES SOC, V68, P1211, DOI 10.1057/s41274-016-0147-6 Prentic C, 2020, J RETAIL CONSUM SERV, V56, DOI 10.1016/j.jretconser.2020.102186 Prentice C, 2023, J RETAIL CONSUM SERV, V73, DOI 10.1016/j.jretconser.2023.103376 Prentice C, 2020, J HOSP MARKET MANAG, V29, P739, DOI 10.1080/19368623.2020.1722304 PRICE DJD, 1965, SCIENCE, V149, P510 Rahman MS, 2022, J ENTERP INF MANAG, V35, P455, DOI 10.1108/JEIM-05-2020-0185 Rahmandad H, 2008, MANAGE SCI, V54, P998, DOI 10.1287/mnsc.1070.0787 Rahmandad H, 2016, STRATEGIC MANAGE J, V37, P649, DOI 10.1002/smj.2354 Rashwan W, 2015, EUR J OPER RES, V247, P276, DOI 10.1016/j.ejor.2015.05.043 Reddi KR, 2011, INT J ADV MANUF TECH, V55, P1225, DOI 10.1007/s00170-010-3143-z Redmond M, 2002, EUR J OPER RES, V141, P660, DOI 10.1016/S0377-2217(01)00264-8 Rezaee MJ, 2019, INT J ENERGY SECT MA, V13, P828, DOI 10.1108/IJESM-09-2018-0015 Richardson GP, 2011, SYST DYNAM REV, V27, P219, DOI 10.1002/sdr.462 Rodrigues A.G., 2001, 4 EUROPEAN PROJECT M, P1 Rodriguez-Ulloal R, 2005, SYST PRACT ACT RES, V18, P303, DOI 10.1007/s11213-005-4816-7 Rouwette EAJA, 2004, SYST RES BEHAV SCI, V21, P351, DOI 10.1002/sres.647 Russell MG, 2018, TECHNOL FORECAST SOC, V136, P114, DOI 10.1016/j.techfore.2017.11.024 Sajjad R, 2007, PROCEEDINGS OF THE 2007 CONFERENCE ON SYSTEMS SCIENCE, MANAGEMENT SCIENCE AND SYSTEM DYNAMICS: SUSTAINABLE DEVELOPMENT AND COMPLEX SYSTEMS, VOLS 1-10, P1713 Salman A, 2007, EUR J OPER RES, V183, P785, DOI 10.1016/j.ejor.2006.10.020 Scherer Matthew U., 2016, HARVARD J LAW TECHNO, V29, P359, DOI DOI 10.2139/SSRN.2609777 Schwaninger M, 2006, SYST RES BEHAV SCI, V23, P583, DOI 10.1002/sres.800 Segura MG, 2020, INT J LEAN SIX SIG, V11, P863, DOI 10.1108/IJLSS-05-2017-0042 SHARIF MN, 1976, TECHNOL FORECAST SOC, V9, P89, DOI 10.1016/0040-1625(76)90046-9 Shrestha YR, 2021, J BUS RES, V123, P588, DOI 10.1016/j.jbusres.2020.09.068 Shrestha YR, 2019, CALIF MANAGE REV, V61, P66, DOI 10.1177/0008125619862257 Simkova N, 2021, J THEOR APPL EL COMM, V16, P1186, DOI 10.3390/jtaer16050067 Simon HA, 1955, Q J ECON, V69, P99, DOI 10.2307/1884852 Smith G, 2020, J INF TECHNOL-UK, V35, P182, DOI 10.1177/0268396220915600 Srinivasan N, 2021, REV GEINTEC, V11, P1526, DOI 10.47059/revistageintec.v11i2.1778 Stancu MS, 2021, P INT CONF BUS EXCEL, V15, P749, DOI 10.2478/picbe-2021-0070 Sterman J, 2015, J OPER MANAG, V39-40, P1, DOI 10.1016/j.jom.2015.07.001 Sundaresan S, 2022, INT J ORGAN ANAL, V30, P983, DOI 10.1108/IJOA-12-2020-2558 Suryani E, 2021, J MODEL MANAG, V16, P37, DOI 10.1108/JM2-03-2019-0055 Swaminathan JM, 1998, DECISION SCI, V29, P607, DOI 10.1111/j.1540-5915.1998.tb01356.x Talafidaryani M, 2021, MANAG RES REV, V44, P236, DOI 10.1108/MRR-03-2020-0139 Konchou FAT, 2021, INT J ENERGY SECT MA, V15, P566, DOI 10.1108/IJESM-04-2020-0008 TAM KY, 1992, EUR J OPER RES, V63, P322, DOI 10.1016/0377-2217(92)90034-7 Tigabu AD, 2015, TECHNOL FORECAST SOC, V90, P331, DOI 10.1016/j.techfore.2013.09.019 Tiwana A, 2010, INFORM SYST RES, V21, P675, DOI 10.1287/isre.1100.0323 Toorajipour R, 2021, J BUS RES, V122, P502, DOI 10.1016/j.jbusres.2020.09.009 Townshend JRP, 2000, J OPER RES SOC, V51, P812, DOI 10.1057/palgrave.jors.2600978 van de Poel I, 2020, MIND MACH, V30, P385, DOI 10.1007/s11023-020-09537-4 van Eck NJ, 2017, SCIENTOMETRICS, V111, P1053, DOI 10.1007/s11192-017-2300-7 van Eck NJ, 2010, SCIENTOMETRICS, V84, P523, DOI 10.1007/s11192-009-0146-3 van Oorschot KE, 2018, PROJ MANAG J, V49, P78, DOI 10.1177/8756972818802714 Vennix JAM, 1990, SYST DYNAM REV, V6, P194, DOI 10.1002/sdr.4260060205 VENNIX JAM, 1992, EUR J OPER RES, V59, P85, DOI 10.1016/0377-2217(92)90008-W VENNIX JAM, 1992, EUR J OPER RES, V59, P28, DOI 10.1016/0377-2217(92)90005-T Vennix JAM, 1999, SYST DYNAM REV, V15, P379, DOI 10.1002/(SICI)1099-1727(199924)15:4<379::AID-SDR179>3.0.CO;2-E Wang CX, 2009, ICMECG: 2009 INTERNATIONAL CONFERENCE ON MANAGEMENT OF E-COMMERCE AND E-GOVERNMENT, PROCEEDINGS, P339, DOI 10.1109/ICMeCG.2009.27 Westermann A, 2021, CORP COMMUN, V26, P2, DOI 10.1108/CCIJ-01-2020-0028 Wiart L, 2022, J BUS RES, V144, P391, DOI 10.1016/j.jbusres.2022.02.024 Wien AH, 2021, J BUS RES, V137, P13, DOI 10.1016/j.jbusres.2021.08.016 WILLIAMS T, 1995, J OPER RES SOC, V46, P809, DOI 10.1057/jors.1995.114 Winz I, 2009, WATER RESOUR MANAG, V23, P1301, DOI 10.1007/s11269-008-9328-7 Wirth N, 2018, INT J MARKET RES, V60, P435, DOI 10.1177/1470785318776841 Wirtz J, 2018, J SERV MANAGE, V29, P907, DOI 10.1108/JOSM-04-2018-0119 Xia M, 2005, EUR J OPER RES, V164, P239, DOI 10.1016/j.ejor.2003.11.018 Xu JJ, 2021, INT J MANAG EDUC-OXF, V19, DOI 10.1016/j.ijme.2021.100550 Xue CG, 2013, J OPER RES SOC, V64, P864, DOI 10.1057/jors.2012.91 Yang Y, 2022, J HOSP MARKET MANAG, V31, P1, DOI 10.1080/19368623.2021.1926037 Zaim S, 2013, PROCD SOC BEHV, V99, P545, DOI 10.1016/j.sbspro.2013.10.524 Zhang GQ, 1999, EUR J OPER RES, V116, P16, DOI 10.1016/S0377-2217(98)00051-4 Zhang LX, 2021, J SERV MARK, V35, P628, DOI 10.1108/JSM-05-2020-0162 Zhang X, 2018, J REAL ESTATE FINANC, V57, P476, DOI 10.1007/s11146-017-9650-z Zhao JY, 2018, TECHNOL FORECAST SOC, V137, P128, DOI 10.1016/j.techfore.2018.07.001 Zhao WZ, 2015, BMC BIOINFORMATICS, V16, DOI 10.1186/1471-2105-16-S13-S8 Zhou L, 2019, J APPL PSYCHOL, V104, P388, DOI 10.1037/apl0000370 NR 253 TC 4 Z9 4 U1 33 U2 41 PU ELSEVIER SCIENCE INC PI NEW YORK PA STE 800, 230 PARK AVE, NEW YORK, NY 10169 USA SN 0040-1625 EI 1873-5509 J9 TECHNOL FORECAST SOC JI Technol. Forecast. Soc. Chang. PD MAR PY 2024 VL 200 AR 123131 DI 10.1016/j.techfore.2023.123131 EA JAN 2024 PG 20 WC Business; Regional & Urban Planning WE Social Science Citation Index (SSCI) SC Business & Economics; Public Administration GA GR7Q5 UT WOS:001154469500001 OA hybrid, Green Submitted DA 2024-09-05 ER PT J AU Galán, JJ Carrasco, RA LaTorre, A AF Galan, Jose Javier Carrasco, Ramon Alberto LaTorre, Antonio TI Military Applications of Machine Learning: A Bibliometric Perspective SO MATHEMATICS LA English DT Article DE machine learning; military; artificial intelligence; bibliometric analysis ID STRESS; INTELLIGENCE; IDENTIFICATION; TECHNOLOGY; NETWORKS; VETERANS; TRENDS; MODEL AB The military environment generates a large amount of data of great importance, which makes necessary the use of machine learning for its processing. Its ability to learn and predict possible scenarios by analyzing the huge volume of information generated provides automatic learning and decision support. This paper aims to present a model of a machine learning architecture applied to a military organization, carried out and supported by a bibliometric study applied to an architecture model of a nonmilitary organization. For this purpose, a bibliometric analysis up to the year 2021 was carried out, making a strategic diagram and interpreting the results. The information used has been extracted from one of the main databases widely accepted by the scientific community, ISI WoS. No direct military sources were used. This work is divided into five parts: the study of previous research related to machine learning in the military world; the explanation of our research methodology using the SciMat, Excel and VosViewer tools; the use of this methodology based on data mining, preprocessing, cluster normalization, a strategic diagram and the analysis of its results to investigate machine learning in the military context; based on these results, a conceptual architecture of the practical use of ML in the military context is drawn up; and, finally, we present the conclusions, where we will see the most important areas and the latest advances in machine learning applied, in this case, to a military environment, to analyze a large set of data, providing utility, machine learning and decision support. C1 [Galan, Jose Javier] Univ Complutense Madrid, Fac Stat, Madrid 3728040, Spain. [Carrasco, Ramon Alberto] Univ Madrid, Fac Commerce & Tourism Complutense, Dept Management & Mkt, Madrid 28223, Spain. [LaTorre, Antonio] Univ Politecn Madrid, Ctr Computat Simulat CCS, Madrid 28660, Spain. C3 Complutense University of Madrid; Universidad Politecnica de Madrid RP Galán, JJ (corresponding author), Univ Complutense Madrid, Fac Stat, Madrid 3728040, Spain. EM josejgal@ucm.es; ramoncar@ucm.es; a.latorre@upm.es RI Galan Hernandez, Jose Javier/AHA-8253-2022; CARRASCO, RAMON ALBERTO/D-9973-2012; LaTorre, Antonio/A-5361-2011 OI Galan Hernandez, Jose Javier/0000-0002-1668-1731; CARRASCO, RAMON ALBERTO/0000-0001-7365-349X; LaTorre, Antonio/0000-0002-8718-5735 FU FEDER funds [PGC2018-096509-B-I00] FX This research has been partially supported support from the FEDER funds provided by the National Spanish project PGC2018-096509-B-I00. CR Adamowski T., 2006, ADV CLIN EXP MED, V15, P355 Ajakwe SO, 2020, I C INF COMM TECH CO, P417, DOI 10.1109/ICTC49870.2020.9289286 Al-Kaff A, 2018, EXPERT SYST APPL, V92, P447, DOI 10.1016/j.eswa.2017.09.033 Alfandi O, 2021, CLUSTER COMPUT, V24, P37, DOI 10.1007/s10586-020-03137-8 Amalina F, 2020, IEEE ACCESS, V8, P3629, DOI 10.1109/ACCESS.2019.2923270 Aouto A, 2019, I C INF COMM TECH CO, P626, DOI 10.1109/ictc46691.2019.8939983 Arnous FI, 2020, PROC SPIE, V11408, DOI 10.1117/12.2567139 Azar AT, 2021, ELECTRONICS-SWITZ, V10, DOI 10.3390/electronics10090999 Aziz L, 2020, IEEE ACCESS, V8, P170461, DOI 10.1109/ACCESS.2020.3021508 Banerjee A, 2021, SENSORS-BASEL, V21, DOI 10.3390/s21041253 Bekesiene S, 2021, MATHEMATICS-BASEL, V9, DOI 10.3390/math9060626 Berry D, 2021, HEALTH TECHNOL-GER, V11, P251, DOI 10.1007/s12553-020-00513-7 Bickel KE, 2020, J GEN INTERN MED, V35, P505, DOI 10.1007/s11606-019-05538-x Camara N., 2015, SSRN Electronic Journal, DOI DOI 10.2139/SSRN.2634616 Cho S, 2020, ELECTRONICS-SWITZ, V9, DOI 10.3390/electronics9122187 Chukhnov A.P., 2021, Journal of Physics: Conference Series, V2096 Cid-López A, 2015, TECHNOL ECON DEV ECO, V21, P720, DOI 10.3846/20294913.2015.1056281 Cobo MJ, 2018, PROCEDIA COMPUT SCI, V139, P364, DOI 10.1016/j.procs.2018.10.278 Cobo MJ, 2012, J AM SOC INF SCI TEC, V63, P1609, DOI 10.1002/asi.22688 Convertino VA, 2020, SENSORS-BASEL, V20, DOI 10.3390/s20226413 de las Heras-Rosas C, 2021, INT J FINANC STUD, V9, DOI 10.3390/ijfs9020031 de Neufville R, 2021, TECHNOL SOC, V66, DOI 10.1016/j.techsoc.2021.101649 Degenstein LM, 2021, MICROMACHINES-BASEL, V12, DOI 10.3390/mi12070773 Dodge J, 2021, ACM T INTERACT INTEL, V11, DOI 10.1145/3453173 Duddu V, 2018, DEFENCE SCI J, V68, P356, DOI 10.14429/dsj.68.12371 Dwivedi R.K., 2018, P 2018 8 INT C CLOUD, P192 Escobar-Flores JG, 2022, ENVIRON SCI POLLUT R, V29, P61662, DOI 10.1007/s11356-022-18985-7 Fazekas F., 2021, ARTIF INTELL, P79 GODEREZ BI, 1987, B MENNINGER CLIN, V51, P96 Gomes GF, 2018, COMPOS STRUCT, V196, P44, DOI 10.1016/j.compstruct.2018.05.002 Evangelista JRG, 2021, J APPL SEC RES, V16, P345, DOI 10.1080/19361610.2020.1761737 Graham K, 2019, J PSYCHOSOM RES, V127, DOI 10.1016/j.jpsychores.2019.109838 Hanson PJ, 2018, PROC SPIE, V10643, DOI 10.1117/12.2305071 Hu WD, 2019, ACTA PHYS SIN-CH ED, V68, DOI 10.7498/aps.68.20190281 Huang WQ, 2015, 2015 IEEE TRUSTCOM/BIGDATASE/ISPA, VOL 1, P1318, DOI [10.1109/Trustcom-2015.524, 10.1109/Trustcom.2015.524] Iftimie IA, 2020, PR INT CONF INF WAR, P262, DOI 10.34190/ICCWS.20.078 Jahromi AN, 2020, IEEE TETCI, V4, P630, DOI 10.1109/TETCI.2019.2910243 Jian Pan, 2021, E3S Web of Conferences, V235, DOI 10.1051/e3sconf/202123503046 Kang B, 2021, J ADV NURS, V77, P3176, DOI 10.1111/jan.14864 Kang JJ, 2021, 2021 31ST INTERNATIONAL TELECOMMUNICATION NETWORKS AND APPLICATIONS CONFERENCE (ITNAC), P13, DOI 10.1109/ITNAC53136.2021.9652140 Karstoft KI, 2015, J AFFECT DISORDERS, V184, P170, DOI 10.1016/j.jad.2015.05.057 Kehle-Forbes SM, 2017, J HEAD TRAUMA REHAB, V32, pE16, DOI 10.1097/HTR.0000000000000227 Khan MJ, 2018, IEEE ACCESS, V6, P14118, DOI 10.1109/ACCESS.2018.2812999 Lammers D, 2022, J SURG RES, V270, P369, DOI 10.1016/j.jss.2021.09.017 Lance B.J., 2020, INT SOC OPT PHOTONIC, V11413, P1141306, DOI [10.1117/12.2564515, DOI 10.1117/12.2564515] Li Y, 2018, WIRES DATA MIN KNOWL, V8, DOI 10.1002/widm.1264 Liu H., 2020, ACTA PHYS-CHIM SIN, V38 López-Robles JR, 2019, INT J INFORM MANAGE, V48, P22, DOI 10.1016/j.ijinfomgt.2019.01.013 Martins OO, 2021, GAZI U J SCI, V34, P765, DOI 10.35378/gujs.792682 Mellit A, 2014, ENERGY, V70, P1, DOI 10.1016/j.energy.2014.03.102 Miller DJ, 2020, P IEEE, V108, P402, DOI 10.1109/JPROC.2020.2970615 Moreno C, 2019, INT J INTERACT MULTI, V5, P7, DOI 10.9781/ijimai.2019.06.003 Morse S, 2020, PLOS ONE, V15, DOI 10.1371/journal.pone.0235017 Nampoothiri MGH, 2021, SN APPL SCI, V3, DOI 10.1007/s42452-021-04453-3 Oh D, 2020, SENSORS-BASEL, V20, DOI 10.3390/s20247321 Pietrzak RH, 2012, J PSYCHIATR RES, V46, P317, DOI 10.1016/j.jpsychires.2011.11.013 Ploumis Michail, 2022, COMP STRATEGY, V41, P1 Privett GJ, 2003, P SOC PHOTO-OPT INS, V5203, P163, DOI 10.1117/12.510037 Pundir M, 2021, J NETW COMPUT APPL, V188, DOI 10.1016/j.jnca.2021.103084 Rempel M, 2021, OPER RES PERSPECT, V8, DOI 10.1016/j.orp.2021.100204 Restituyo R, 2018, 2018 9TH IEEE ANNUAL UBIQUITOUS COMPUTING, ELECTRONICS & MOBILE COMMUNICATION CONFERENCE (UEMCON), P26, DOI 10.1109/UEMCON.2018.8796596 Rosellini AJ, 2016, PSYCHOL MED, V46, P303, DOI 10.1017/S0033291715001774 Rosellini AJ, 2018, DEPRESS ANXIETY, V35, P1073, DOI 10.1002/da.22807 Samarasinghe D, 2021, IEEE ACCESS, V9, P114051, DOI 10.1109/ACCESS.2021.3103198 Sarker Iqbal H, 2021, SN Comput Sci, V2, P160, DOI 10.1007/s42979-021-00592-x Shahid H, 2021, ACM T INTERNET TECHN, V21, DOI 10.1145/3418204 Shin G, 2018, SOFT COMPUT, V22, P6835, DOI 10.1007/s00500-018-3433-1 Small SG, 2014, NEURAL COMPUT APPL, V25, P533, DOI 10.1007/s00521-013-1516-6 Srinath R, 2021, INT J IMAG SYST TECH, V31, P729, DOI 10.1002/ima.22486 Svenmarck P., 2018, Possibilities and Challenges for Artificial Intelligence in Military Applications, P1 Talbot LA, 2020, MIL MED, V185, pE1364, DOI 10.1093/milmed/usaa108 Tian YY, 2020, INT J ADV ROBOT SYST, V17, DOI 10.1177/1729881420936091 Tursunbayeva A, 2018, INT J INFORM MANAGE, V43, P224, DOI 10.1016/j.ijinfomgt.2018.08.002 Verma V, 2020, SOC NETW ANAL MIN, V10, DOI 10.1007/s13278-020-00660-9 Walker PB, 2017, IEEE ACM T COMPUT BI, V14, P534, DOI 10.1109/TCBB.2016.2591549 Wang W, 2020, IEEE ACCESS, V8, P131614, DOI 10.1109/ACCESS.2020.3009840 Wang X., 2018, P IECON 2018 44 ANN, p3171 3175 Wilson AN, 2022, IEEE SENS J, V22, P1807, DOI 10.1109/JSEN.2021.3139124 Xu YY, 2021, DEV BUILT ENVIRON, V6, DOI 10.1016/j.dibe.2021.100045 YuLong Zhang, 2020, 2020 6th International Conference on Big Data and Information Analytics (BigDIA), P113, DOI 10.1109/BigDIA51454.2020.00026 Zhang H, 2020, FRONT INFORM TECH EL, V21, P1671, DOI 10.1631/FITEE.2000228 Zhang Y, 2017, BIOMED ENG ONLINE, V16, DOI 10.1186/s12938-017-0397-9 Zhang YJ, 2019, SENSORS-BASEL, V19, DOI 10.3390/s19214790 Zheng Y, 2020, NEURAL COMPUT APPL, V32, P1869, DOI 10.1007/s00521-019-04567-1 Zhong GQ, 2019, WIRES DATA MIN KNOWL, V9, DOI 10.1002/widm.1255 Zuluaga JGC, 2018, PROC NAECON IEEE NAT, P521, DOI 10.1109/NAECON.2018.8556642 Zuromski KL, 2020, J PSYCHIATR RES, V121, P214, DOI 10.1016/j.jpsychires.2019.12.003 Zuromski KL, 2019, JAMA NETW OPEN, V2, DOI 10.1001/jamanetworkopen.2019.0766 NR 88 TC 10 Z9 10 U1 8 U2 36 PU MDPI PI BASEL PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND EI 2227-7390 J9 MATHEMATICS-BASEL JI Mathematics PD MAY PY 2022 VL 10 IS 9 AR 1397 DI 10.3390/math10091397 PG 27 WC Mathematics WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Mathematics GA 1G9BQ UT WOS:000796143500001 OA gold DA 2024-09-05 ER PT C AU Qi, J Liu, CY Guo, Y Gao, Y Hu, XX AF Qi, Jin Liu, Chenya Guo, Yang Gao, Yu Hu, Xiaoxuan GP IEEE TI Research and Practice on the Talent Evaluation Model of the First-class Undergraduate Major in Network Engineering for Emerging engineering SO 2023 35TH CHINESE CONTROL AND DECISION CONFERENCE, CCDC SE Chinese Control and Decision Conference LA English DT Proceedings Paper CT 35th Chinese Control and Decision Conference (CCDC) CY MAY 20-22, 2023 CL Yichang, PEOPLES R CHINA DE emerging engineering; outcome-based education; network engineering; talent evaluation; reinforcement learning AB In view of the continuous quality improvement of network engineering education in the context of emerging engineering, we propose a talent evaluation method in the field of network engineering based on deep reinforcement learning with time windows. Firstly, a mathematical model of talent evaluation is established, and then a comprehensive index system is built from four aspects: engineering awareness, engineering foundation, engineering ability and engineering innovation. Secondly, the time window mode is used to divide the time slots of the data source, and the evaluation results are solved through the dynamic interaction between the agent and the environment. Further, the evaluation results are used as feedback factors to continuously improve the quality of education. Finally, we take "Nanjing University of Posts and Telecommunications-Network Engineering" as an example to conduct experimental simulation. The results show that the proposed method can obtain more accurate and reliable evaluation conclusions. C1 [Qi, Jin; Liu, Chenya; Hu, Xiaoxuan] Nanjing Univ Posts & Telecommun, Sch Internet Things, Nanjing, Peoples R China. [Guo, Yang] Nanjing Vovat Univ Ind Technol, Sch Elect Engn, Nanjing, Peoples R China. [Gao, Yu] Nanjing Univ Posts & Telecommun, Coll Automat, Nanjing, Peoples R China. [Gao, Yu] Nanjing Univ Posts & Telecommun, Coll Artif Intelligence, Nanjing, Peoples R China. C3 Nanjing University of Posts & Telecommunications; Nanjing University of Posts & Telecommunications; Nanjing University of Posts & Telecommunications RP Qi, J (corresponding author), Nanjing Univ Posts & Telecommun, Sch Internet Things, Nanjing, Peoples R China. EM qijin@njupt.edu.cn FU Education Reform of Nanjing University of Posts and Telecommunications [JG01620JX04]; Ministry of Education 2020 School Cooperative Education Project [QT-HKEDU2021030800069] FX This paper is a key project funded by Education Reform of Nanjing University of Posts and Telecommunications. Project number:JG01620JX04;Ministry of Education 2020 School Cooperative Education Project:QT- HKEDU2021030800069. CR Ak J, 1999, NEURAL PROCESSING LE BIAN Yi-jie, 2015, J CHONGQING U TECHNO, P71 Dorigo M, 1996, IEEE T SYST MAN CY B, V26, P29, DOI 10.1109/3477.484436 HU Kai, 2022, J DEZHOU U, V38, P92 Jiaming LI, 2020, COMPUTER KNOWLEDGE T, V16, P124, DOI [10.14004/j.cnki.ckt.2020. 0788.J, DOI 10.14004/J.CNKI.CKT.2020.0788] LI Guang-Qiong, 2020, SCI TECHNOLOGY VISIO, P19, DOI [10.19694/j.cnki.issn2095-2457.2020.29.009, DOI 10.19694/J.CNKI.ISSN2095-2457.2020.29.009] Li Nana, 2020, Computer Engineering, V46, P80, DOI 10.19678/j.issn.1000-3428.0053625 Li R. Y., 2020, Comput. Syst. Appl, V29, P13 LIANG Y, 2003, STUDIES FOREIGN ED, P35 Liu Y T, 2020, 2020 CHIN CONTR DEC Maxwell J. Clerk, 1892, Signals and systems, V2, P68 Mnih V., 2013, ARXIV E PRINTS Nana LI, 2020, COMPUTER ENG, V46, P80 Rosenblatt F., 1961, PRINCIPLES NEURODYNA Ruguo Luo, 2019, NANJING J SOCIAL SCI, P149, DOI [10.15937/j.cnki.issn1001- 8263.2019.01.019, DOI 10.15937/J.CNKI.ISSN1001-8263.2019.01.019] Sutton RS, 2018, ADAPT COMPUT MACH LE, P1 Wang Xibin, 2022, HEILONGJIANG ED RES, P4 WANG Xin, 2016, CHINA ED LIGHT IND, P56 WEI Wei, 2021, J SCI ED, P98, DOI [10.1687 1lj.cnki.kjwha.2021.10.032, DOI 10.16871/J.CNKI.KJWHA.2021.10.032] Zhang Z., 2021, J PHYS C SERIES, V2004 NR 20 TC 0 Z9 0 U1 1 U2 1 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA SN 1948-9439 BN 979-8-3503-3472-2 J9 CHIN CONT DECIS CONF PY 2023 BP 1130 EP 1135 DI 10.1109/CCDC58219.2023.10327192 PG 6 WC Automation & Control Systems; Operations Research & Management Science WE Conference Proceedings Citation Index - Science (CPCI-S) SC Automation & Control Systems; Operations Research & Management Science GA BW2HE UT WOS:001116704301059 DA 2024-09-05 ER PT C AU Chandrasekaran, MK Jaidka, K Mayr, P AF Chandrasekaran, Muthu Kumar Jaidka, Kokil Mayr, Philipp GP ACM/SIGIR TI Joint Workshop on Bibliometric-enhanced Information Retrieval and Natural Language Processing for Digital Libraries (BIRNDL 2017) SO SIGIR'17: PROCEEDINGS OF THE 40TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL LA English DT Proceedings Paper CT 40th International ACM SIGIR conference on research and development in Information Retrieval CY AUG 07-11, 2017 CL Shinjuku, JAPAN DE Scientometrics; Information Retrieval; Digital Libraries; NLP; Summarization; Information Extraction; Citation analysis AB The large scale of scholarly publications poses a challenge for scholars in information seeking and sensemaking. Bibliometrics, information retrieval (IR), text mining and NLP techniques could help in these search and look-up activities, but are not yet widely used. This workshop is intended to stimulate IR researchers and digital library professionals to elaborate on new approaches in natural language processing, information retrieval, scientometrics, text mining and recommendation techniques that can advance the state-of-the-art in scholarly document understanding, analysis, and retrieval at scale. The BIRNDL workshop at SIGIR 2017 will incorporate an invited talk, paper sessions and the third edition of the Computational Linguistics (CL) Scientific Summarization Shared Task. C1 [Chandrasekaran, Muthu Kumar] Natl Univ Singapore, Sch Comp, Singapore, Singapore. [Jaidka, Kokil] Univ Penn, Sch Arts & Sci, Philadelphia, PA 19104 USA. [Mayr, Philipp] GESIS Leibniz Inst Social Sci, Mannheim, Germany. C3 National University of Singapore; University of Pennsylvania; Leibniz Institut fur Sozialwissenschaften (GESIS) RP Chandrasekaran, MK (corresponding author), Natl Univ Singapore, Sch Comp, Singapore, Singapore. EM muthu.chandra@comp.nus.edu.sg; jaidka@sas.upenn.edu; philipp.mayr@gesis.org RI Jaidka, Kokil/AAK-2618-2020 OI Jaidka, Kokil/0000-0002-8127-1157 FU Microsoft Research Asia FX We thank Microsoft Research Asia for their generous support in funding the development, dissemination and organization of the CL-SciSumm dataset and the Shared Task. We are also grateful to the co-organizers of the 1st BIRNDL workshop - Guillaume Cabanac, Ingo Frommholz, Min-Yen Kan and Dietmar Wolfram, for their continued support and involvement. CR Cabanac G., 2017, SIGIR FORUM, V50, P36, DOI [10.1145/3053408.3053417, DOI 10.1145/3053408.3053417] Jaidka K., 2016, P JOINT WORKSH BIBL Jaidka Kokil, 2014, The computational linguistics summarization pilot task Mayr P., 2016, SIGIR FORUM, V50, P28 Mayr P, 2015, SCIENTOMETRICS, V102, P2193, DOI 10.1007/s11192-014-1484-3 Wolfram D, 2016, P JOINT WORKSH BIBL, P6 NR 6 TC 0 Z9 0 U1 1 U2 4 PU ASSOC COMPUTING MACHINERY PI NEW YORK PA 1515 BROADWAY, NEW YORK, NY 10036-9998 USA BN 978-1-4503-5022-8 PY 2017 BP 1421 EP 1422 DI 10.1145/3077136.3084370 PG 2 WC Computer Science, Information Systems WE Conference Proceedings Citation Index - Science (CPCI-S) SC Computer Science GA BL6UH UT WOS:000454711900249 OA Green Submitted DA 2024-09-05 ER PT J AU Fahd, K Miah, SJ AF Fahd, Kiran Miah, Shah J. TI Designing and evaluating a big data analytics approach for predicting students' success factors SO JOURNAL OF BIG DATA LA English DT Article DE Design Science Research (DSR); Big Data; Big Data Analytical Solution (BDAS); Machine Learning (ML); Deep Learning (DL); DSR evaluation; Artificial Intelligence (AI) ID SCIENCE RESEARCH; HIGHER-EDUCATION; ARTIFACT DESIGN; SYSTEMS; MANAGEMENT; METHODOLOGY; CONTEXT AB Reducing student attrition in tertiary education plays a significant role in the core mission and financial well-being of an educational institution. The availability of big data source from the Learning Management System (LMS) can be analysed to help with the attrition issues. This study aims to use an integrated Design Science Research (DSR) methodology to develop and evaluate a novel Big Data Analytical Solution (BDAS) as an educational decision support artefact. The BDAS as DSR artefact utilises Artificial Intelligence (AI) approaches to predict potential students at risk. Identifying students at risk helps to take timely intervention in the learning process to improve student academic progress for increasing their retention rate. To evaluate the performance of the predictive model, we compare the accuracy of the collection of representational AI algorithms in the literature. The study utilized an integrated DSR methodology founded on the similarities of DSR and design based research (DBR) to design and develop the proposed BDAS employing an specific evaluation framework that works on real data scenarios. The BDAS does not only aimto replace any existing practice but also support educators to implement a variety of pedagogical practices for improving students' academic performance. C1 [Fahd, Kiran; Miah, Shah J.] Univ Newcastle, Newcastle Business Sch, Business Analyt, Hunter St, Newcastle, NSW 2300, Australia. C3 University of Newcastle RP Miah, SJ (corresponding author), Univ Newcastle, Newcastle Business Sch, Business Analyt, Hunter St, Newcastle, NSW 2300, Australia. EM shah.miah@newcastle.edu.au FU Not applicable. FX Not applicable. CR Ali Md Shaheb, 2018, International Journal of Business Intelligence Research, V9, P47, DOI 10.4018/IJBIR.2018070103 Aljohani O., 2016, HIGHER ED STUDIES, V6, P1, DOI DOI 10.5539/HES.V6N2P1 Altay O, 2023, NEURAL COMPUT APPL, V35, P529, DOI 10.1007/s00521-022-07775-4 Anderson T, 2012, EDUC RESEARCHER, V41, P16, DOI 10.3102/0013189X11428813 Ang KLM, 2020, IEEE ACCESS, V8, P116392, DOI 10.1109/ACCESS.2020.2994561 Anshari M, 2016, J E-LEARN KNOWL SOC, V12, P121 Ashaari MA, 2021, TECHNOL FORECAST SOC, V173, DOI 10.1016/j.techfore.2021.121119 Babiceanu RF, 2016, COMPUT IND, V81, P128, DOI 10.1016/j.compind.2016.02.004 Beer C, 2017, J FURTH HIGH EDUC, V41, P773, DOI 10.1080/0309877X.2016.1177171 Begum A, 2019, Explorations in Technology Education Research, P594, DOI [10.1007/978-3-030-11890-7_57, DOI 10.1007/978-3-030-11890-7_57] Bravo-Agapito J, 2021, COMPUT HUM BEHAV, V115, DOI 10.1016/j.chb.2020.106595 Cantabella M, 2019, FUTURE GENER COMP SY, V90, P262, DOI 10.1016/j.future.2018.08.003 Carstensen AK, 2019, EUR J ENG EDUC, V44, P85, DOI 10.1080/03043797.2018.1498459 Cherastidtham I., 2018, University attrition: What helps and what hinders university completion Chunzi S, 2020, 2020 2 INT C MACH LE de Vass T, 2018, 29 AUSTR C INF SYSTE Elatia S., 2021, Learning analytics and education data mining in higher education, P108 Fahd K, 2021, 2021 31 INT TEL NETW Fahd K, 2021, EDUC INF TECHNOL, V26, P4027, DOI 10.1007/s10639-021-10442-1 Ferguson H., 2021, About us Genemo H, 2016, EDUC INF TECHNOL, V21, P1769, DOI 10.1007/s10639-015-9417-1 Hasan N, 2022, INFORM TECHNOL DEV, V28, P230, DOI 10.1080/02681102.2021.1951150 Hasan R, 2021, DATA, V6, DOI 10.3390/data6110110 Hevner AR, 2004, MIS QUART, V28, P75, DOI 10.2307/25148625 Institute TV., 2013, Student attrition report comprehensive analysis and recommendations Jain Abhinav, 2019, 2019 International Conference on Communication and Electronics Systems (ICCES), P1457, DOI 10.1109/ICCES45898.2019.9002038 Janssen M, 2017, J BUS RES, V70, P338, DOI 10.1016/j.jbusres.2016.08.007 Kumar P, 2021, 2021 8 INT C COMP SU Martin MD., 2016, Understanding the Problem Student attrition and retention in university Language Culture programs in Australia. The Doubters' Dilemma. Exploring student attrition and retention in university language and culture programs, P1 Miah SJ, 2021, EDUC INF TECHNOL, V26, P763, DOI 10.1007/s10639-020-10285-2 Miah SJ, 2020, EDUC INF TECHNOL, V25, P553, DOI 10.1007/s10639-019-09981-5 Miah SJ, 2020, EDUC INF TECHNOL, V25, P725, DOI 10.1007/s10639-020-10129-z Miah SJ, 2020, HEALTH INFORM J, V26, P2300, DOI 10.1177/1460458219895386 Miah SJ, 2019, HEALTHC INFORM RES, V25, P313, DOI 10.4258/hir.2019.25.4.313 Miah SJ, 2014, INFORM TECHNOL PEOPL, V27, P259, DOI 10.1108/ITP-04-2012-0041 Miah SJ, 2019, J ASSOC INF SYST, V20, P570, DOI 10.17705/1jais.00544 Miah SJ, 2017, EDUC INF TECHNOL, V22, P1895, DOI 10.1007/s10639-016-9525-6 Miah SJ, 2017, INFORM SYST, V69, P1, DOI 10.1016/j.is.2017.04.001 Miah SJ, 2014, AUSTRALAS J INF SYST, V18, P5 Miah SJ., 2012, Aust J Inf Syst, DOI [10.3127/ajis.v17i2.694, DOI 10.3127/AJIS.V17I2.694] Miah SJ, 2016, Australas J Inf Syst., V20, DOI [10.3127/ajis.v20i0.1482, DOI 10.3127/AJIS.V20I0.1482] Miah SJ., 2008, An ontology based design environment for rural decision support Muhammad JS, 2020, EDUC INF TECHNOL, V25, P5565, DOI 10.1007/s10639-020-10206-3 Nghe NT, 2007, PROC FRONT EDUC CONF, P290 Otoo-Arthur D., 2019, ACM International Conference Proceeding Series, P79, DOI [10.1145/3377817.3377836, DOI 10.1145/3377817.3377836] Otoo-Arthur D., 2020, A scalable heterogeneous big data framework for e-learning systems, P1 Page MJ, 2021, BMJ-BRIT MED J, V372, DOI [10.1136/bmj.n71, 10.1016/j.ijsu.2021.105906, 10.1136/bmj.n160] Panel HES, 2017, Final report-improving retention, completion and success in higher education Peffers K, 2007, J MANAGE INFORM SYST, V24, P45, DOI 10.2753/MIS0742-1222240302 Plak S, 2022, HIGH EDUC Q, V76, P131, DOI 10.1111/hequ.12298 Rahmani AM, 2021, PEERJ COMPUT SCI, DOI 10.7717/peerj-cs.488 Rokach L, 2010, ARTIF INTELL REV, V33, P1, DOI 10.1007/s10462-009-9124-7 Sahin M., 2020, Present and Future, V9, P121 Sarker Kamal Uddin, 2019, International Journal of Computing and Digital Systems, V8, P265, DOI 10.12785/ijcds/080306 Sarra A, 2019, SOC INDIC RES, V146, P41, DOI 10.1007/s11205-018-1901-8 Sein MK, 2011, MIS QUART, V35, P37 Sekeroglu B, 2021, APPL SCI-BASEL, V11, DOI 10.3390/app112210907 Sharma A, 2021, book: Advancing the Power of Learning Analytics and Big Data in Education, P208, DOI [10.4018/978-1-7998-7103-3.ch010, DOI 10.4018/978-1-7998-7103-3.CH010] Singh H, 2020, EDUC INF TECHNOL, V25, P3299, DOI 10.1007/s10639-020-10116-4 Singh H, 2019, EDUC INF TECHNOL, V24, P995, DOI 10.1007/s10639-018-9816-1 Sun XG, 2022, J CIRCUIT SYST COMP, V31, DOI 10.1142/S0218126622300070 Tenpipat W., 2020, 2020 1 INT C BIG DAT TEQSA, 2019, Contract No.: 2.3 Ulriksen L, 2010, STUD SCI EDUC, V46, P209, DOI 10.1080/03057267.2010.504549 Vahdat Mehrnoosh, 2015, Design for Teaching and Learning in a Networked World. 10th European Conference on Technology-Enhanced Learning, EC-TEL 2015. Proceedings: LNCS 9307, P352, DOI 10.1007/978-3-319-24258-3_26 Venable J.R., 2006, First International Conference on Design Science Research in Information Systems and Technology, Claremont, California, V1, P1 Venable J, 2016, EUR J INFORM SYST, V25, P77, DOI 10.1057/ejis.2014.36 Xu J, 2017, IEEE J-STSP, V11, P742, DOI 10.1109/JSTSP.2017.2692560 NR 68 TC 0 Z9 0 U1 12 U2 30 PU SPRINGERNATURE PI LONDON PA CAMPUS, 4 CRINAN ST, LONDON, N1 9XW, ENGLAND EI 2196-1115 J9 J BIG DATA-GER JI J. Big Data PD OCT 13 PY 2023 VL 10 IS 1 AR 159 DI 10.1186/s40537-023-00835-z PG 19 WC Computer Science, Theory & Methods WE Science Citation Index Expanded (SCI-EXPANDED) SC Computer Science GA U0LZ2 UT WOS:001081820100001 OA gold, Green Accepted DA 2024-09-05 ER PT C AU Ye, QS AF Ye, Qiusun BE Wang, H Zhang, BJ Liu, XZ Luo, DZ Zhong, SB TI AI-VCR Computational Research on Visibility of 3D Materials Solids Reality Pictures SO SMART MATERIALS AND INTELLIGENT SYSTEMS, PTS 1 AND 2 SE Advanced Materials Research LA English DT Proceedings Paper CT International Conference on Smart Materials and Intelligent Systems CY DEC 17-20, 2010 CL Chongqing, PEOPLES R CHINA DE Showing plane; sighting plane; visibility; 3D Materials solids; VCR(Variable Carrying Rules); AI(Artificial Intelligence) AB An optional spatial 3D material solid reality picture may be showed on a 2D showing plane, its surface is commonly consisted of too many sub-surfaces of the 3D solid reality picture in both dispersal and continuation. It was a difficult problem to express all exact visibilities of solids subsurfaces; because of some numerals computational error properties of visibilities are always unknown. So far, we cannot choose but select a proper dispersal degree of materials sub-surfaces, an approaching function of an optional material sub-surfaces B-Rep (Bound Representation), and numerals computation without any perturbation motion, etc. A novel numeral computational method of expressing exact visibilities of 3D spatial materials solids reality pictures with intelligent properties of VCR is given in this paper. C1 Wuyi Univ, Dept Math & Comp Sci Engn, Wuyishan 354300, Fujian, Peoples R China. C3 Wuyi University, Fujian RP Ye, QS (corresponding author), Wuyi Univ, Dept Math & Comp Sci Engn, Wuyishan 354300, Fujian, Peoples R China. EM qsye2005@yahoo.com.cn CR CAI W, 1997, EXTENSION METHOD ENG FU KS, 1988, ARTIFICIAL INTELLIGE GUAN QX, 1990, J COMPUTER AIDED DES LIANG YD, 1989, ALGORITHM BASIS COMP STAUDHAMMER J, 1991, P SECOND INT C CAD C WU WT, 2003, P CAAI 10 YAO KR, 1993, COMPUTER APPL SOFTWA YE QS, 1993, COMPUTER AIDED ENG, V2, P22 YE QS, 1995, MATH APPL, P140 YE QS, 1995, IEEE INT C NEUR NETW, V2, P910 YE QS, 1997, COMPUTER AIDED ENG, V6, P38 YE QS, 1994, P 3 PAC RIM INT IFIP, V1, P142 2004, MASTER TOPICS NUMBER NR 13 TC 0 Z9 0 U1 0 U2 0 PU TRANS TECH PUBLICATIONS LTD PI STAFA-ZURICH PA LAUBLSRUTISTR 24, CH-8717 STAFA-ZURICH, SWITZERLAND SN 1022-6680 BN 978-0-87849-223-7 J9 ADV MATER RES-SWITZ PY 2011 VL 143-144 BP 592 EP 597 DI 10.4028/www.scientific.net/AMR.143-144.592 PG 6 WC Computer Science, Artificial Intelligence; Materials Science, Multidisciplinary WE Conference Proceedings Citation Index - Science (CPCI-S) SC Computer Science; Materials Science GA BUC64 UT WOS:000288884700116 DA 2024-09-05 ER PT J AU Doan, LP Nguyen, LH Auquier, P Boyer, L Fond, G Nguyen, HT Latkin, CA Vu, GT Hall, BJ Ho, CSH Ho, RCM AF Doan, Linh Phuong Nguyen, Long Hoang Auquier, Pascal Boyer, Laurent Fond, Guillaume Nguyen, Hien Thu Latkin, Carl A. Vu, Giang Thu Hall, Brian J. Ho, Cyrus S. H. Ho, Roger C. M. TI Social network and HIV/AIDS: A bibliometric analysis of global literature SO FRONTIERS IN PUBLIC HEALTH LA English DT Article DE social network; HIV; bibliometric; topic modeling; Latent Dirichlet Allocation ID INJECTION-DRUG USERS; HIV-RELATED RISK; RANDOMIZED CONTROLLED-TRIAL; PREVENTION; BEHAVIORS; SUPPORT; WOMEN; SEX; MEN; INTERVENTIONS AB Social networks (SN) shape HIV risk behaviors and transmission. This study was performed to quantify research development, patterns, and trends in the use of SN in the field of HIV/AIDS, and used Global publications extracted from the Web of Science Core Collection database. Networks of countries, research disciplines, and most frequently used terms were visualized. The Latent Dirichlet Allocation method was used for topic modeling. A linear regression model was utilized to identify the trend of research development. During the period 1991-2019, in a total of 5,698 publications, topics with the highest volume of publications consisted of (1) mental disorders (16.1%); (2) HIV/sexually transmitted infections prevalence in key populations (9.9%); and (3) HIV-related stigma (9.3%). Discrepancies in the geographical distribution of publications were also observed. This study highlighted (1) the rapid growth of publications on a wide range of topics regarding SN in the field of HIV/AIDS, and (2) the importance of SN in HIV prevention, treatment, and care. The findings of this study suggest the need for interventions using SN and the improvement of research capacity via regional collaborations to reduce the HIV burden in low- and middle-income countries. C1 [Doan, Linh Phuong; Nguyen, Hien Thu] Duy Tan Univ, Inst Global Hlth Innovat, Da Nang, Vietnam. [Doan, Linh Phuong; Nguyen, Hien Thu] Duy Tan Univ, Fac Med, Da Nang, Vietnam. [Nguyen, Long Hoang] Karolinska Inst, Dept Global Publ Hlth, Stockholm, Sweden. [Auquier, Pascal; Boyer, Laurent; Fond, Guillaume] Aix Marseille Univ, Res Ctr Hlth Serv & Qual Life, Marseille, France. [Latkin, Carl A.] Johns Hopkins Univ, Bloomberg Sch Publ Hlth, Baltimore, MD USA. [Vu, Giang Thu] Nguyen Tat Thanh Univ, Ctr Excellence Hlth Serv & Syst Res, Ho Chi Minh, Vietnam. [Hall, Brian J.] NYU, Sch Global Publ Hlth, New York, NY USA. [Ho, Cyrus S. H.; Ho, Roger C. M.] Natl Univ Singapore, Yong Loo Lin Sch Med, Dept Psychol Med, Singapore, Singapore. [Ho, Roger C. M.] Natl Univ Singapore, Inst Hlth Innovat & Technol iHealthtech, Singapore, Singapore. C3 Duy Tan University; Duy Tan University; Karolinska Institutet; Aix-Marseille Universite; Johns Hopkins University; Johns Hopkins Bloomberg School of Public Health; Nguyen Tat Thanh University (NTTU); New York University; National University of Singapore; National University of Singapore RP Doan, LP (corresponding author), Duy Tan Univ, Inst Global Hlth Innovat, Da Nang, Vietnam.; Doan, LP (corresponding author), Duy Tan Univ, Fac Med, Da Nang, Vietnam. EM doanphuonglinh@duytan.edu.vn RI Hall, Brian J./B-7694-2016; Ho, Roger C./ABD-9061-2021; Nguyen, Long H/E-6145-2015; Nguyen, Hien Thi/JKH-4812-2023; nguyen, long/KHV-1588-2024; Boyer, Laurent/E-5728-2016 OI Hall, Brian J./0000-0001-9358-2377; Ho, Roger C./0000-0001-9629-4493; Nguyen, Hien Thi/0000-0003-1444-3120; Boyer, Laurent/0000-0003-1229-6622; Vu, Giang Thu/0000-0002-3470-4458; Ho, Cyrus SH/0000-0002-7092-9566 FU NUS Department of Psychological Medicine; [R-177-000-100-001/R-177-000-003-001]; [R-722-000-004-731] FX Funding The article process charge of this paper is supported by NUS Department of Psychological Medicine (R-177-000-100-001/R-177-000-003-001) and NUS iHeathtech Other Operating Expenses (R-722-000-004-731). CR Albarracin D, 2010, AIDS BEHAV, V14, pS239, DOI 10.1007/s10461-010-9801-1 [Anonymous], 2010, Social Networks and Health: Models, Methods and Applications [Anonymous], 2000, SOCIAL EPIDEMIOLOGY, DOI DOI 10.1016/S0277-9536(00)00065-4 AUERBACH DM, 1984, AM J MED, V76, P487, DOI 10.1016/0002-9343(84)90668-5 Tran BX, 2021, AIDS REV, V23, P91, DOI 10.24875/AIDSRev.20000135 Tran BX, 2019, AIDS REV, V21, P93, DOI 10.24875/AIDSRev.19000062 Tran BX, 2019, INT J ENV RES PUB HE, V16, DOI 10.3390/ijerph16101772 Baral S, 2013, BMC PUBLIC HEALTH, V13, DOI 10.1186/1471-2458-13-482 Barman-Adhikari A, 2016, J HEALTH COMMUN, V21, P809, DOI 10.1080/10810730.2016.1177139 Berger BE, 2001, RES NURS HEALTH, V24, P518, DOI 10.1002/nur.10011 Beyrer C, 2012, LANCET, V380, P367, DOI 10.1016/S0140-6736(12)60821-6 Cederbaum JA, 2017, WOMEN HEALTH, V57, P268, DOI 10.1080/03630242.2016.1157126 Cepeda JA, 2017, JAIDS-J ACQ IMM DEF, V75, P257, DOI 10.1097/QAI.0000000000001372 Choi KH, 2004, AIDS EDUC PREV, V16, P19, DOI 10.1521/aeap.16.1.19.27721 Clarivate Analytics, 2019, WEB SCI DAT COBB S, 1976, PSYCHOSOM MED, V38, P300, DOI 10.1097/00006842-197609000-00003 Costenbader EC, 2006, ADDICTION, V101, P1003, DOI 10.1111/j.1360-0443.2006.01431.x Davey-Rothwell MA, 2011, AIDS BEHAV, V15, P1654, DOI 10.1007/s10461-011-9943-9 De P, 2008, J URBAN HEALTH, V85, P77, DOI 10.1007/s11524-007-9225-z De P, 2007, ADDICTION, V102, P1730, DOI 10.1111/j.1360-0443.2007.01936.x Eames KTD, 2002, P NATL ACAD SCI USA, V99, P13330, DOI 10.1073/pnas.202244299 El-Bassel N, 1998, AIDS CARE, V10, P735, DOI 10.1080/09540129848352 Farmer Paul., 2006, AIDS and Accusation: Haiti and the Geography of Blame, Updated with a New Preface Friedman SR, 2006, AIDS, V20, P959, DOI 10.1097/01.aids.0000222066.30125.b9 Ghosh D, 2017, AIDS BEHAV, V21, P1183, DOI 10.1007/s10461-016-1413-y Vu GT, 2020, INT J ENV RES PUB HE, V17, DOI 10.3390/ijerph17062127 GORDON AJ, 1991, J SUBST ABUSE TREAT, V8, P143, DOI 10.1016/0740-5472(91)90005-U Gross A, 2014, NEURAL NETWORKS, V58, P38, DOI 10.1016/j.neunet.2014.05.008 Hall V P, 1999, J Assoc Nurses AIDS Care, V10, P74, DOI 10.1016/S1055-3290(05)60121-5 ISRAEL BA, 1985, HEALTH EDUC QUART, V12, P65, DOI 10.1177/109019818501200106 Latkin CA, 1996, DRUG ALCOHOL DEPEN, V42, P175, DOI 10.1016/S0376-8716(96)01279-3 Latkin CA, 2003, SOC SCI MED, V56, P465, DOI 10.1016/S0277-9536(02)00047-3 Latkin C, 2013, ADDICTION, V108, P934, DOI 10.1111/add.12095 Latkin C, 2010, AIDS BEHAV, V14, pS222, DOI 10.1007/s10461-010-9804-y Latkin CA, 2015, BEHAV MED, V41, P90, DOI 10.1080/08964289.2015.1034645 Latkin CA, 2013, JAIDS-J ACQ IMM DEF, V63, pS54, DOI 10.1097/QAI.0b013e3182928e2a Latkin CA, 2009, SOC SCI MED, V68, P740, DOI 10.1016/j.socscimed.2008.11.019 Li YL, 2019, QUAL LIFE RES, V28, P1441, DOI 10.1007/s11136-019-02132-w Luke DA, 2007, ANNU REV PUBL HEALTH, V28, P69, DOI 10.1146/annurev.publhealth.28.021406.144132 Magnani R, 2005, AIDS, V19, pS67, DOI 10.1097/01.aids.0000172879.20628.e1 Major B, 2005, ANNU REV PSYCHOL, V56, P393, DOI 10.1146/annurev.psych.56.091103.070137 Martín-Martín A, 2018, SCIENTOMETRICS, V116, P2175, DOI 10.1007/s11192-018-2820-9 McCreesh N, 2012, EPIDEMIOLOGY, V23, P138, DOI 10.1097/EDE.0b013e31823ac17c Mitchell J.Clyde., 1969, SOCIAL NETWORKS URBA Mitchell JW, 2015, CURR HIV-AIDS REP, V12, P516, DOI 10.1007/s11904-015-0290-8 Muessig KE, 2015, CURR HIV-AIDS REP, V12, P173, DOI 10.1007/s11904-014-0239-3 Qiao S, 2014, AIDS BEHAV, V18, P419, DOI 10.1007/s10461-013-0561-6 ROOK KS, 1987, J PERS SOC PSYCHOL, V52, P1132, DOI 10.1037/0022-3514.52.6.1132 Rosser BRS, 2011, AIDS BEHAV, V15, pS91, DOI 10.1007/s10461-011-9910-5 Shushtari ZJ, 2018, BMC PUBLIC HEALTH, V18, DOI 10.1186/s12889-018-5944-1 SITKIN SB, 1993, ORGAN SCI, V4, P367, DOI 10.1287/orsc.4.3.367 Smith AMA, 2004, SEX TRANSM INFECT, V80, P455, DOI 10.1136/sti.2004.010355 Thelwall M, 2016, PROF INFORM, V25, P47, DOI 10.3145/epi.2016.ene.06 Tong Z., 2016, DOCUMENT EXPLORING S UNAIDS, 2016, COLL GLOB AIDS FUND Valente TW, 2012, SCIENCE, V337, P49, DOI 10.1126/science.1217330 Valente TW, 1997, SOC SCI MED, V45, P677, DOI 10.1016/S0277-9536(96)00385-1 Valle D, 2018, GLOBAL CHANGE BIOL, V24, P5560, DOI 10.1111/gcb.14412 Wang KD, 2011, AIDS BEHAV, V15, P1298, DOI 10.1007/s10461-011-0020-1 Wang WQ, 2017, BMC PUBLIC HEALTH, V17, DOI 10.1186/s12889-017-4409-2 Yang X, 2020, SEX TRANSM INFECT, V96, P485, DOI 10.1136/sextrans-2019-054349 Young SD, 2014, AM J PUBLIC HEALTH, V104, P1707, DOI 10.2105/AJPH.2014.301992 NR 62 TC 0 Z9 1 U1 3 U2 14 PU FRONTIERS MEDIA SA PI LAUSANNE PA AVENUE DU TRIBUNAL FEDERAL 34, LAUSANNE, CH-1015, SWITZERLAND EI 2296-2565 J9 FRONT PUBLIC HEALTH JI Front. Public Health PD NOV 2 PY 2022 VL 10 AR 1015023 DI 10.3389/fpubh.2022.1015023 PG 10 WC Public, Environmental & Occupational Health WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Public, Environmental & Occupational Health GA 6H7GP UT WOS:000885603400001 PM 36408016 OA gold, Green Published DA 2024-09-05 ER PT C AU Chandrasekaran, MK Mayr, P Yasunaga, M Freitag, D Radev, D Kan, MY AF Chandrasekaran, Muthu Kumar Mayr, Philipp Yasunaga, Michihiro Freitag, Dayne Radev, Dragomir Kan, Min-Yen GP ACM TI Joint Workshop on Bibliometric-enhanced Information Retrieval and Natural Language Processing for Digital Libraries (BIRNDL 2019) SO PROCEEDINGS OF THE 42ND INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL (SIGIR '19) LA English DT Proceedings Paper CT 42nd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR) CY JUL 21-25, 2019 CL Paris, FRANCE DE Scientometrics; Information Retrieval; Digital Libraries; NLP; Summarization; Information Extraction; Citation analysis AB The deluge of scholarly publication poses a challenge for scholars find relevant research and policy makers to seek in-depth information and understand research impact. Information retrieval (IR), natural language processing (NLP) and bibliometrics could enhance scholarly search, retrieval and user experience, but their use in digital libraries is not widespread. To address this gap, we propose the 4th Joint Workshop on BIRNDL and the 5th CL-SciSumm Shared Task. We seek to foster collaboration among researchers in NLP, IR and Digital Libraries (DL), and to stimulate the development of new methods in NLP, IR, recommendation systems and scientometrics toward improved scholarly document understanding, analysis, and retrieval at scale. C1 [Chandrasekaran, Muthu Kumar] SRI Int, 333 Ravenswood Ave, Menlo Pk, CA 94025 USA. [Mayr, Philipp] GESIS Leibniz Inst Social Sci, Mannheim, Germany. [Yasunaga, Michihiro; Radev, Dragomir] Yale Univ, New Haven, CT 06520 USA. [Freitag, Dayne] SRI Int, San Diego, CA USA. [Kan, Min-Yen] Natl Univ Singapore, Sch Comp, Singapore, Singapore. C3 SRI International; Leibniz Institut fur Sozialwissenschaften (GESIS); Yale University; SRI International; National University of Singapore RP Chandrasekaran, MK (corresponding author), SRI Int, 333 Ravenswood Ave, Menlo Pk, CA 94025 USA. EM cmkumar087@gmail.com; philipp.mayr@gesis.org; michi@yale.edu; freitag@ai.sri.com; dragomir.radev@yale.edu; kanmy@comp.nus.edu.sg RI Radev, Dragomir/E-9641-2012; Yasunaga, Michihiro/GPW-9499-2022 FU SRI International; Chan-Zuckerberg Initiative (CZI); CZI; Deutsche Forschungsgemeinschaft (DFG), the "Establishing Contextual Dataset Retrieval - transferring concepts from document to dataset retrieval (ConDATA)" project [MA 3964/10-1] FX We thank SRI International and Chan-Zuckerberg Initiative (CZI) for their generous support in funding the organization of the CL-SciSumm Shared Task 2019. CZI sponsored Alex Wade's keynote. We immensely than Prof. Dragomir Radev and Michihiro Yasunaga from Yale University for sharing the SciSummNet dataset for CL-SciSumm 2019 and co-organising this time. This work by Philipp Mayr was partly funded by Deutsche Forschungsgemeinschaft (DFG) under grant number MA 3964/10-1, the "Establishing Contextual Dataset Retrieval - transferring concepts from document to dataset retrieval (ConDATA)" project. CR Atanassova Iana, 2019, Front Res Metr Anal, V4, P2, DOI 10.3389/frma.2019.00002 Cabanac G., 2017, SIGIR FORUM, V50, P36, DOI [10.1145/3053408.3053417, DOI 10.1145/3053408.3053417] Cabanac G, 2018, SCIENTOMETRICS, V116, P1225, DOI 10.1007/s11192-018-2861-0 Jaidka Kokil, 2014, The computational linguistics summarization pilot task Mayr Philipp, 2014, Advances in Information Retrieval. 36th European Conference on IR Research, ECIR 2014. Proceedings: LNCS 8416, P798, DOI 10.1007/978-3-319-06028-6_99 Mayr P, 2018, INT J DIGIT LIBRARIE, V19, P107, DOI 10.1007/s00799-017-0230-x Mayr Philipp, 2018, SIGIR FORUM, V52, P105 Philipp Mayr, 2017, SIGIR FORUM, V51, P107 Wolfram D, 2016, P JOINT WORKSH BIBL, P6 Yasunaga Michihiro, 2019, SCISUMMNET LARGE ANN NR 10 TC 0 Z9 1 U1 1 U2 8 PU ASSOC COMPUTING MACHINERY PI NEW YORK PA 1515 BROADWAY, NEW YORK, NY 10036-9998 USA BN 978-1-4503-6172-9 PY 2019 BP 1441 EP 1443 DI 10.1145/3331184.3331650 PG 3 WC Computer Science, Information Systems; Information Science & Library Science WE Conference Proceedings Citation Index - Science (CPCI-S); Conference Proceedings Citation Index - Social Science & Humanities (CPCI-SSH) SC Computer Science; Information Science & Library Science GA BO1LU UT WOS:000501488900248 OA Green Submitted DA 2024-09-05 ER PT J AU Romanov, D Molokanov, V Kazantsev, N Jha, AK AF Romanov, Dmitry Molokanov, Valentin Kazantsev, Nikolai Jha, Ashish Kumar TI Removing order effects from human-classified datasets: A machine learning method to improve decision making systems SO DECISION SUPPORT SYSTEMS LA English DT Article DE Order effect; Machine learning; Artificial intelligence; Decision-making; Information systems (IS) research ID DESIGN SCIENCE RESEARCH; QUESTION ORDER; INFORMATION; BIAS; JUDGMENTS; MEMORY; MODEL AB Although recent developments in Artificial Intelligence (AI) and machine learning (ML) aim to enhance the fairness and transparency of decision-making systems, research has found that neural networks (or other similar AI techniques) are still effected by human cognitive biases due to the training datasets. In this study, we focus on order effects, i.e., when the input of information impacts human perception and the decisions resulting from this information. We propose the Order Effect Removal Method (OERM) for handling the order effect which leads to bias and for helping organizations remove these biases from their training datasets and, therefore, from auto-mated decision-making systems. Using design science principles to theoretically create, test, and validate the method, we can eliminate the order bias even in basic classification systems. Furthermore, the method can be applied in a multidisciplinary context, where an AI-based algorithm substitutes for manual work. C1 [Romanov, Dmitry] HSE Univ, Grad Sch Business, Business Informat, Moscow, Russia. [Molokanov, Valentin] IQMen Business Intelligence, Moscow, Russia. [Kazantsev, Nikolai] Univ Cambridge, Inst Mfg, Cambridge, England. [Jha, Ashish Kumar] Trinity Coll Dublin, Trinity Business Sch, Dublin, Ireland. C3 HSE University (National Research University Higher School of Economics); University of Cambridge; Trinity College Dublin RP Jha, AK (corresponding author), Trinity Coll Dublin, Trinity Business Sch, Dublin, Ireland. EM dromanov@hse.ru; nk622@cam.ac.uk; akjha@tcd.ie RI Jha, Ashish Kumar/AAG-9098-2021 OI Jha, Ashish Kumar/0000-0002-5450-9983 FU EPSRC [EP/T022566/1]; Science Foundation Ireland research Centre ADAPT [13/RC/2106_P2] FX The authors wish to thank HSE University students for their assis- tance in this research: Ekaterina Semenova, Ekaterina Shilova, Daria Davydova, Elina Zaytseva (Edgeeva) , and Nikita Pronin. The third author acknowledges the EPSRC funding via ?Next Stage Digital Econ- omy Centre? and UKRI funding, grant reference EP/T022566/1. The last author acknowledges the support of Science Foundation Ireland research Centre ADAPT through Grant 13/RC/2106_P2. CR Aerts D, 2009, J MATH PSYCHOL, V53, P314, DOI 10.1016/j.jmp.2009.04.005 Akter S, 2021, INT J INFORM MANAGE, V60, DOI 10.1016/j.ijinfomgt.2021.102387 Andreassen A., 2021, ARXIV [Anonymous], 2000, Introduction to Markov Chains with Special Emphasis on Rapid Mixing [Anonymous], 2019, PHYS REV J [Anonymous], 2017, U.S. Arad A, 2013, ORGAN BEHAV HUM DEC, V121, P267, DOI 10.1016/j.obhdp.2013.01.006 Bansback N, 2014, PATIENT EDUC COUNS, V96, P197, DOI 10.1016/j.pec.2014.05.021 Baskerville R, 2018, J ASSOC INF SYST, V19, P358, DOI 10.17705/1jais.00495 Bergus GR, 2002, J GEN INTERN MED, V17, P612, DOI 10.1046/j.1525-1497.2002.11001.x Bergus GR, 1998, MED DECIS MAKING, V18, P412, DOI 10.1177/0272989X9801800409 Berrar D, 2018, Reference Module in Life Sciences Buda R., 2003, INT J MANAGEMENT, V20, P156 Camilleri AR, 2020, DECIS SUPPORT SYST, V133, DOI 10.1016/j.dss.2020.113307 Chau M, 2021, MIS QUART, V45, P985, DOI 10.25300/MISQ/2021/15324 Chen E, 2014, ELECT STUD, V35, P115, DOI 10.1016/j.electstud.2014.04.018 Chinander KR, 2003, ORGAN BEHAV HUM DEC, V91, P243, DOI 10.1016/S0749-5978(03)00025-6 Clemmensen ML, 2016, J DOC, V72, P194, DOI 10.1108/JD-04-2015-0051 Coussement K, 2021, DECIS SUPPORT SYST, V150, DOI 10.1016/j.dss.2021.113664 Das TK, 1999, J MANAGE STUD, V36, P757, DOI 10.1111/1467-6486.00157 Dastin J., 2018, Insight - Amazon scraps secret AI recruiting tool that showed bias against women, DOI DOI 10.1017/CBO9781139025751 De Martino B, 2006, SCIENCE, V313, P684, DOI 10.1126/science.1128356 Dickey D., 2005, PRACTICAL ASSESSMENT, V10, P1, DOI DOI 10.7275/8FDY-VR38 Felfernig A, 2007, LECT NOTES COMPUT SC, V4744, P283, DOI 10.1007/978-3-540-77006-0_34 Grant D, 2017, PUBLIC CHOICE, V172, P421, DOI 10.1007/s11127-017-0454-8 Gregor S., 2007, ANATOMY DESIGN THEOR Gregor S, 2013, MIS QUART, V37, P337, DOI 10.25300/MISQ/2013/37.2.01 Guiral-Contreras A, 2007, ACCOUNT FINANC, V47, P285, DOI 10.1111/j.1467-629x.2006.00208.x HAUGTVEDT CP, 1994, J CONSUM RES, V21, P205, DOI 10.1086/209393 Hevner A.R., 2007, Scandinavian Journal of Information Systems, V19, P4 Highhouse S, 1997, HUM PERFORM, V10, P31, DOI 10.1207/s15327043hup1001_2 Huber M, 2011, ORGAN BEHAV HUM DEC, V115, P283, DOI 10.1016/j.obhdp.2011.03.003 Hunt Elle, 2016, GUARDIAN Jackson P., 2007, NATURAL LANGUAGE PRO Joshi D., 2014, INT J RES COMMER MAN, V5, P46 Kaviani P., 2017, INT J ADV RES COMPUT, V04 Khrennikov A.Y, 2014, Ubiquitous Quantum Structure Kliegr T, 2021, ARTIF INTELL-AMST, V295, DOI 10.1016/j.artint.2021.103458 Kolmogorov A.N., 2018, Foundations of the theory of probability, VSecond Kung L., 2022, DE BIAS TECHNIQUES C Li C, 2010, J CONSUM BEHAV, V9, P32, DOI 10.1002/cb.291 MARCH ST, 1995, DECIS SUPPORT SYST, V15, P251, DOI 10.1016/0167-9236(94)00041-2 Marcus B., 2021, WE FIX IT MCFARLAND SG, 1981, PUBLIC OPIN QUART, V45, P208, DOI 10.1086/268651 Mehrabi N, 2021, ACM COMPUT SURV, V54, DOI 10.1145/3457607 Mogiliansky AL, 2009, J MATH PSYCHOL, V53, P349, DOI 10.1016/j.jmp.2009.01.001 Moreira C, 2021, DECIS SUPPORT SYST, V150, DOI 10.1016/j.dss.2021.113561 Mueller S.T., 2019, ARXIV Ntoutsi E, 2020, WIRES DATA MIN KNOWL, V10, DOI 10.1002/widm.1356 Oppewal H, 2015, TOURISM MANAGE, V48, P467, DOI 10.1016/j.tourman.2014.12.016 Pieters R, 2006, ORGAN BEHAV HUM DEC, V99, P34, DOI 10.1016/j.obhdp.2005.05.004 Pothos EM, 2013, BEHAV BRAIN SCI, V36, P255, DOI 10.1017/S0140525X12001525 Rai A, 2020, J ACAD MARKET SCI, V48, P137, DOI 10.1007/s11747-019-00710-5 Rey A, 2020, PSYCHOL RES-PSYCH FO, V84, P1739, DOI 10.1007/s00426-019-01178-2 Romanov D., 2019, PRESENCE ORDER EFFEC, P337 Schlosser AE, 2018, ORGAN BEHAV HUM DEC, V144, P112, DOI 10.1016/j.obhdp.2017.11.001 Seeber I, 2020, INFORM MANAGE-AMSTER, V57, DOI 10.1016/j.im.2019.103174 Serenko A, 2013, J INFORMETR, V7, P138, DOI 10.1016/j.joi.2012.10.005 SHANTEAU J, 1992, ORGAN BEHAV HUM DEC, V53, P95, DOI 10.1016/0749-5978(92)90057-E Shrestha YR, 2019, CALIF MANAGE REV, V61, P66, DOI 10.1177/0008125619862257 Sohn K, 2019, FINANC RES LETT, V30, P314, DOI 10.1016/j.frl.2018.10.014 STONE VA, 1969, J COMMUN, V19, P239, DOI 10.1111/j.1460-2466.1969.tb00846.x Sumner E, 2019, PLOS ONE, V14, DOI 10.1371/journal.pone.0217207 Theis J.C., 2012, J MANAG CONTROL, V23, P133, DOI DOI 10.1007/s00187-012-0160-0 Tripathi S, 2022, INT J ENVIRON SCI TE, V19, P2025, DOI 10.1007/s13762-021-03233-1 Trueblood Jennifer S, 2014, Front Psychol, V5, P322, DOI 10.3389/fpsyg.2014.00322 Veganzones D, 2018, DECIS SUPPORT SYST, V112, P111, DOI 10.1016/j.dss.2018.06.011 vom Brocke J., 2018, BUSINESS PROCESS MAN, DOI [DOI 10.1007/978-3-319-58307-5_1, 10.1007/978-3-319-58307-5_1] Wang BY, 2016, ENTROPY-SWITZ, V18, DOI 10.3390/e18040144 Wang Z., 2019, PROC ASS INF SCI TEC, V56, P803 Wang Z, 2013, TOP COGN SCI, V5, P689, DOI 10.1111/tops.12040 Wilson V, 2021, COMMUN ASSOC INF SYS, V49, P760, DOI 10.17705/1CAIS.04940 Xu YJ, 2008, J RETAILING, V84, P477, DOI 10.1016/j.jretai.2008.09.007 Yan P, 2021, KNOWL-BASED SYST, V234, DOI 10.1016/j.knosys.2021.107557 Yearsley JM, 2016, J MATH PSYCHOL, V74, P99, DOI 10.1016/j.jmp.2015.11.005 Zare S, 2018, INT J TOUR CITIES, V4, P194, DOI 10.1108/IJTC-08-2017-0042 Zhou SS, 2017, DECIS SUPPORT SYST, V93, P77, DOI 10.1016/j.dss.2016.09.016 NR 77 TC 5 Z9 5 U1 18 U2 44 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS SN 0167-9236 EI 1873-5797 J9 DECIS SUPPORT SYST JI Decis. Support Syst. PD FEB PY 2023 VL 165 AR 113891 DI 10.1016/j.dss.2022.113891 EA DEC 2022 PG 12 WC Computer Science, Artificial Intelligence; Computer Science, Information Systems; Operations Research & Management Science WE Science Citation Index Expanded (SCI-EXPANDED) SC Computer Science; Operations Research & Management Science GA 8H7MO UT WOS:000921214800001 OA Green Submitted DA 2024-09-05 ER PT J AU Savithri, S Prathap, G AF Savithri, S. Prathap, Gangan TI Indian and Chinese higher education institutions compared using an end-to-end evaluation SO CURRENT SCIENCE LA English DT Article DE Bibliometrics indicators; higher education institutions; principal component analysis; research performance ID BIBLIOMETRIC INDICATORS AB The latest (2014) release of the SCImago Institutions Rankings (SIR) allows to compare the research performance of leading higher education institutions in India and China using an end-to-end bibliometric performance analysis procedure. Six carefully chosen primary and secondary bibliometric indicators summarize the chain of activity: input output excellence outcome productivity. From principal component analysis it is established that the primary indicators are orthogonal and represent size-dependent quantity and size-independent quality/productivity dimensions respectively. Using this insight two-dimensional maps can be used to visualize the results. C1 [Savithri, S.; Prathap, Gangan] CSIR, Natl Inst Interdisciplinary Sci & Technol, Thiruvananthapuram 695019, Kerala, India. C3 Council of Scientific & Industrial Research (CSIR) - India; CSIR - National Institute Interdisciplinary Science & Technology (NIIST) RP Savithri, S (corresponding author), CSIR, Natl Inst Interdisciplinary Sci & Technol, Thiruvananthapuram 695019, Kerala, India. EM sivakumarsavi@gmail.com RI S, Savithri/H-1145-2013; Prathap, Gangan/T-4054-2019; s, s/GYR-2278-2022; QI, DANDAN/GVR-9324-2022 CR Franceschet M, 2009, J AM SOC INF SCI TEC, V60, P1950, DOI 10.1002/asi.21152 Hendrix D, 2008, J MED LIBR ASSOC, V96, P324, DOI 10.3163/1536-5050.96.4.007 NR 2 TC 8 Z9 10 U1 1 U2 21 PU INDIAN ACAD SCIENCES PI BANGALORE PA C V RAMAN AVENUE, SADASHIVANAGAR, P B #8005, BANGALORE 560 080, INDIA SN 0011-3891 J9 CURR SCI INDIA JI Curr. Sci. PD MAY 25 PY 2015 VL 108 IS 10 BP 1922 EP 1926 PG 5 WC Multidisciplinary Sciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Science & Technology - Other Topics GA CK0JF UT WOS:000355890800033 DA 2024-09-05 ER PT J AU Xu, ZY AF Xu, Ziyun TI Doctoral Dissertations in Chinese Interpreting Studies: A Scientometric Survey Using Topic Modeling SO FORUM-REVUE INTERNATIONALE D INTERPRETATION ET DE TRADUCTION-INTERNATIONAL JOURNAL OF INTERPRETATION AND TRANSLATION LA English DT Article DE Machine learning; scientometrics; Chinese interpreting studies; doctoral dissertations; topic modeling C1 [Xu, Ziyun] Univ Rovira & Virgili, Intercultural Studies Grp, Tarragona, Spain. C3 Universitat Rovira i Virgili RP Xu, ZY (corresponding author), Univ Rovira & Virgili, Intercultural Studies Grp, Tarragona, Spain. EM xuziyun@gmail.com CR [Anonymous], 2010, THESIS [Anonymous], 2004, THESIS CORNELL U ITH [Anonymous], 2005, THESIS U TEXAS AUSTI [Anonymous], 2012, Introducing psycholinguistics [Anonymous], 2004, Introducing Interpreting Studies, DOI DOI 10.4324/9781315649573 [Anonymous], THESIS [Anonymous], 2013, Master thesis [Anonymous], 2012, Thesis [Anonymous], 2014, CHINESE TRANSLATORS [Anonymous], 2011, THESIS BADDELEY A, 1992, Science (Washington D C), V255, P556, DOI 10.1016/j.cub.2009.12.014 Baker Mona., 1998, ROUTLEDGE ENCY TRANS Blei D, 2006, P 23 INT C MACH LEAR, P113 Blei DM, 2007, ANN APPL STAT, V1, P17, DOI 10.1214/07-AOAS114 Blei DM, 2012, COMMUN ACM, V55, P77, DOI 10.1145/2133806.2133826 Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993 Cai Xiaohong, 2001, CHINESE TRANSLATORS, V22, P26 Chernov G.V., 2004, Inference and Anticipation in Simultaneous Interpreting: A Probability-prediction Model Fadde P.J., 2009, Technology, Instruction, Cognition and Learning, V7, P77 Gao B., 2008, THESIS Gile D., 1994, Bridging the gap: empirical research in simultaneous interpretation, P39 Gile D., 2000, TARGET-NETH, V12, P297, DOI [DOI 10.1075/TARGET.12.2.07GIL, https://doi.org/10.1075/target.12.2.07gil] Gile D, 2013, INTERLINGUA, V120, P9 Gile D, 2009, MONTI, V1, P135 GraphLab Inc, 2014, GRAPHLAB CREAT VERS Griffiths TL, 2004, P NATL ACAD SCI USA, V101, P5228, DOI 10.1073/pnas.0307752101 Grimmer J, 2011, POLIT ANAL, V19, P32, DOI [10.1093/pan/mpq027, 10.1093/pan/mpp034] Guo L, 2011, THESIS Hall David, 2008, P 2008 C EMP METH NA, P363, DOI DOI 10.3115/1613715.1613763 Hu L, 2008, THESIS Jia D., 2010, THESIS Kang Z., 2011, THESIS Kushkowski J. D., 2003, THESIS Li X., 2007, NEW W, V2, P206 Liu M., 2001, THESIS Liu M., 2010, Understanding the mechanical strength of microcapsules and their adhesion on fabric surfaces Liu Q., 2011, THESIS Liu S., 2007, J GUANGDONG U FOREIG, V1, P37 Lovitts B. E., 2001, LEAVING IVORY TOWER Moser-Mercer Barbara., 1997, TRANSLATIONSDIDAKTIK, P255 Paul M.J., 2011, ICWSM, P265 Peng K., 2006, THESIS Ren W., 2008, THESIS Seleskovitch D., 1978, Interpreting for International Conferences: Problems of Language and Communication Setton R., 1999, Simultaneous Interpretation. A Cognitive-pragmatic Analysis: John Benjamins, DOI [10.1075/btl.28, DOI 10.1075/BTL.28] Setton R, 2009, TRANSL INTERPRET STU, V4, P210, DOI 10.1075/tis.4.2.05set Sha L., 2004, THESIS SISU, 2014, GRAD CER 2014 SHANGH Sowell R., 2008, THESIS Su W., 2011, THESIS Sun SG, 2012, THESIS TIANJIN U TIA Sun X., 2010, THESIS Tzou Y., 2008, THESIS WAN HD, 2006, THESIS Wang Y., 2008, THESIS Xu Q., 2012, THESIS Xu ZY, 2014, FORUM-REV INT INTERP, V12, P159, DOI 10.1075/forum.12.2.08xuz Xu ZY, 2015, PERSPECT STUD TRANSL, V23, P284, DOI 10.1080/0907676X.2015.1011175 Yang L., 2012, THESIS Yu W., 2012, THESIS Yunkai Zhang, 2010, 2010 2nd International Conference on Intelligent Human-Machine Systems and Cybernetics (IHMSC 2010), P7, DOI 10.1109/IHMSC.2010.99 Zhan C., 2011, THESIS Zhan C., 2012, CHINESE TRANSLATORS, V1, P107 Zhang J., 2008, Microstructure Study of Cementitious Materials Using Resistivity Measurement Zhang Q., 2010, THESIS Zhang W., 2011, THESIS, P1 Zhang Wei, 2012, CHINESE TRANSLATORS, V3, P13 Zhao Q, 2011, LECT NOTES COMPUT SC, V7064, P139, DOI 10.1007/978-3-642-24965-5_16 NR 68 TC 3 Z9 3 U1 0 U2 3 PU JOHN BENJAMINS PUBLISHING CO PI AMSTERDAM PA PO BOX 36224, 1020 ME AMSTERDAM, NETHERLANDS SN 1598-7647 EI 2451-909X J9 FORUM-REV INT INTERP JI Forum-Rev. Int. Interpret. Trad. PY 2015 VL 13 IS 1 BP 131 EP 165 DI 10.1075/forum.13.1.07xuz PG 35 WC Language & Linguistics WE Emerging Sources Citation Index (ESCI) SC Linguistics GA V5R8G UT WOS:000219880900007 DA 2024-09-05 ER PT J AU Siche, R Siche, N AF Siche, Raul Siche, Nikol TI The language model based on sensitive artificial intelligence-ChatGPT: Bibliometric analysis and possible uses in agriculture and livestock SO SCIENTIA AGROPECUARIA LA English DT Article DE autoregressive language model; deep learning; text production; text mining; data mining; artificial intelligence; chatbot AB ChatGPT adds to the list of artificial intelligence-based systems designed to perform specific tasks and answer questions by interacting with ChatGPT works using OpenAI's GPT (Generative Pretrained Transformer) language model and is capable of learning from users' preferences scientific writing, communication, cell biology, and biotechnology, where there is already evidence. The aim of this work was to analyze the question: What are the main applications in which ChatGTP will revolutionize agriculture (or livestock) in the world? ChatGPT responded: (a) in the agricultural field: improvement of agricultural decision-making, optimization of agricultural production, detection and prevention of plant diseases, climate management, and supply chain management; and (b) in the livestock field: improvement of animal health and welfare, optimization of animal production, supply chain management, detection and prevention of zoonotic diseases, and climate is enough scientific evidence to conclude, in this case, that its answers were correct. While ChatGPT does not necessarily scientifically substantiate its answers, users should. There is a lack of studies on the use of Artificial Intelligence and its relationship with ethics. C1 [Siche, Raul; Siche, Nikol] Univ Nacl Trujillo, Escuela Ingn Agroind, Fac Ciencias Agr, Trujillo, Peru. Univ Nacl Trujillo, Escuela Ingn Zootecnia, Fac Ciencias Agr, Trujillo, Peru. C3 Universidad Nacional de Trujillo; Universidad Nacional de Trujillo RP Siche, R (corresponding author), Univ Nacl Trujillo, Escuela Ingn Agroind, Fac Ciencias Agr, Trujillo, Peru. EM rsiche@unitru.edu.pe OI Siche, Nikol/0000-0002-7174-8337 CR Agtecher, 2022, OPENAI CHATGPT CAN U Bockting CL, 2023, NATURE, V614, P224, DOI 10.1038/d41586-023-00288-7 Cahan P, 2023, STEM CELL REP, V18, P1, DOI 10.1016/j.stemcr.2022.12.009 Di Y, 2022, AGRONOMY-BASEL, V12, DOI 10.3390/agronomy12123194 Dimitriadou E, 2023, SMART LEARN ENVIRON, V10, DOI 10.1186/s40561-023-00231-3 Else H, 2023, NATURE, V613, P423, DOI 10.1038/d41586-023-00056-7 Ezanno P, 2021, VET RES, V52, DOI 10.1186/s13567-021-00902-4 Gallardo M, 2020, AGR WATER MANAGE, V240, DOI 10.1016/j.agwat.2020.106209 Ganesh D, 2022, COMPUT IND ENG, V169, DOI 10.1016/j.cie.2022.108206 García R, 2023, J IND INF INTEGR, V31, DOI 10.1016/j.jii.2022.100425 Hassan SM, 2021, ELECTRONICS-SWITZ, V10, DOI 10.3390/electronics10121388 Holzinger A, 2023, NEW BIOTECHNOL, V74, P16, DOI 10.1016/j.nbt.2023.02.001 Huh S, 2023, J EDUC EVAL HEALTH P, V20, DOI 10.3352/jeehp.2023.20.5 Janzen T., 2023, WHAT ARE 5 WAYS CHAT Ji BY, 2020, BIOSYST ENG, V199, P4, DOI 10.1016/j.biosystemseng.2020.07.009 Kumar P, 2023, ENVIRON MONIT ASSESS, V195, DOI 10.1007/s10661-022-10529-3 Matthew N. O. S., 2021, International Journal of Scientific Advances, V2, P5, DOI 10.51542/ijscia.v2i1.2 Pavlik V. J., 2023, Journalism Mass Communication Educator, V78, P84, DOI DOI 10.1177/10776958221149577 Reagan KL, 2022, J VET DIAGN INVEST, V34, P612, DOI 10.1177/10406387221096781 Sajith G, 2022, AGR WATER MANAGE, V269, DOI 10.1016/j.agwat.2022.107638 Singh AK, 2021, SPAN J AGRIC RES, V19, DOI 10.5424/sjar/2021194-17801 Stokel-Walker C, 2023, NATURE, V614, P214, DOI 10.1038/d41586-023-00340-6 Stokel-Walker C, 2023, NATURE, V613, P620, DOI 10.1038/d41586-023-00107-z Tedeschi LO, 2022, J ANIM SCI, V100, DOI 10.1093/jas/skac111 Thorp HH, 2023, SCIENCE, V379, P313, DOI 10.1126/science.adg7879 Uyeh DD, 2022, FRONT PLANT SCI, V13, DOI 10.3389/fpls.2022.929672 Vidyarthi VK, 2023, J WATER RES PLAN MAN, V149, DOI 10.1061/(ASCE)WR.1943-5452.0001631 Wilkinson JM, 2020, GRASS FORAGE SCI, V75, P1, DOI 10.1111/gfs.12458 Wong LW, 2024, INT J PROD RES, V62, P5535, DOI 10.1080/00207543.2022.2063089 Yag I, 2022, BIOLOGY-BASEL, V11, DOI 10.3390/biology11121732 NR 30 TC 7 Z9 9 U1 21 U2 93 PU UNIV NACL TRUJILLO, FAC CIENCIAS AGROPECUARIAS PI TRUJILLO PA AV JUAN PABLO II S-N, TRUJILLO, 00000, PERU SN 2077-9917 EI 2306-6741 J9 SCI AGROPEC JI Sci. Agropecu. PD JAN-MAR PY 2023 VL 14 IS 1 BP 111 EP 116 DI 10.17268/sci.agropecu.2023.010 PG 6 WC Agriculture, Dairy & Animal Science WE Emerging Sources Citation Index (ESCI) SC Agriculture GA E5HW5 UT WOS:000975859700010 OA gold DA 2024-09-05 ER PT J AU Idnay, B Fang, YL Dreisbach, C Marder, K Weng, CH Schnall, R AF Idnay, Betina Fang, Yilu Dreisbach, Caitlin Marder, Karen Weng, Chunhua Schnall, Rebecca TI Clinical research staff perceptions on a natural language processing-driven tool for eligibility prescreening: An iterative usability assessment SO INTERNATIONAL JOURNAL OF MEDICAL INFORMATICS LA English DT Article DE Eligibility prescreening; Cohort identification; Clinical research; Natural language processing; Usability; Cognitive walkthrough ID TRUSTWORTHINESS; CRITERIA AB Background: Participant recruitment is a barrier to successful clinical research. One strategy to improve recruitment is to conduct eligibility prescreening, a resource-intensive process where clinical research staff manually reviews electronic health records data to identify potentially eligible patients. Criteria2Query (C2Q) was developed to address this problem by capitalizing on natural language processing to generate queries to identify eligible participants from clinical databases semi-autonomously.Objective: We examined the clinical research staff's perceived usability of C2Q for clinical research eligibility prescreening.Methods: Twenty clinical research staff evaluated the usability of C2Q using a cognitive walkthrough with a think-aloud protocol and a Post-Study System Usability Questionnaire. On-screen activity and audio were recorded and transcribed. After every-five evaluators completed an evaluation, usability problems were rated by informatics experts and prioritized for system refinement. There were four iterations of system refinement based on the evaluation feedback. Guided by the Organizational Framework for Intuitive Human-computer Interaction, we performed a directed deductive content analysis of the verbatim transcriptions. Results: Evaluators aged from 24 to 46 years old (33.8; SD: 7.32) demonstrated high computer literacy (6.36; SD:0.17); female (75 %), White (35 %), and clinical research coordinators (45 %). C2Q demonstrated high usability during the final cycle (2.26 out of 7 [lower scores are better], SD: 0.74). The number of unique usability issues decreased after each refinement. Fourteen subthemes emerged from three themes: seeking user goals, performing well-learned tasks, and determining what to do next.Conclusions: The cognitive walkthrough with a think-aloud protocol informed iterative system refinement and demonstrated the usability of C2Q by clinical research staff. Key recommendations for system development and implementation include improving system intuitiveness and overall user experience through comprehensive consideration of user needs and requirements for task completion. C1 [Idnay, Betina; Schnall, Rebecca] Columbia Univ, Sch Nursing, New York, NY USA. [Idnay, Betina; Marder, Karen] Columbia Univ, Dept Neurol, New York, NY USA. [Idnay, Betina; Fang, Yilu; Weng, Chunhua] Columbia Univ, Dept Biomed Informat, New York, NY USA. [Dreisbach, Caitlin] Columbia Univ, Data Sci Inst, New York, NY USA. [Schnall, Rebecca] Columbia Univ, Mailman Sch Publ Hlth, Dept Populat & Family Hlth, New York, NY USA. [Idnay, Betina] Columbia Univ, Dept Biomed Informat, 622 West 168th St, New York, NY 10032 USA. C3 Columbia University; Columbia University; Columbia University; Columbia University; Columbia University; Columbia University RP Idnay, B (corresponding author), Columbia Univ, Dept Biomed Informat, 622 West 168th St, New York, NY 10032 USA. EM bsi2102@cumc.columbia.edu OI Fang, Yilu/0000-0002-2681-1931; Idnay, Betina/0000-0002-4318-5987; Schnall, Rebecca/0000-0003-2184-4045; Dreisbach, Caitlin/0000-0003-3964-3161 FU Agency for Healthcare Research and Quality [R36HS028752]; National Institute of Nursing Research [T32NR007969, P30NR016587, K24NR018621]; National Library of Medicine [R01LM009886]; National Center for Advancing Clinical and Translational Science [UL1TR001873, OT2TR003434] FX This work was supported by the Agency for Healthcare Research and Quality grant R36HS028752, the National Institute of Nursing Research grants T32NR007969, P30NR016587, and K24NR018621, the National Library of Medicine grant R01LM009886, and the National Center for Advancing Clinical and Translational Science grants UL1TR001873 and OT2TR003434. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. CR Alwashmi MF, 2019, JMIR MHEALTH UHEALTH, V7, DOI 10.2196/11656 [Anonymous], 2021, Dedoose Version 9.0.17, cloud application for managing, analyzing, and presenting qualitative and mixed method research data [Anonymous], Usability engineering Bannon L. J., 1995, READINGS HUMAN COMPU, P205, DOI DOI 10.1016/B978-0-08-051574-8.50024-8 Bhutkar Ganesh, 2013, Biomed Instrum Technol, VSuppl, P45, DOI 10.2345/0899-8205-47.s2.45 Birt L, 2016, QUAL HEALTH RES, V26, P1802, DOI 10.1177/1049732316654870 Butler Alex, 2018, AMIA Jt Summits Transl Sci Proc, V2017, P320 Centers for Medicare & Medicaid Services, 20082010 CMS Cummings J, 2020, ALZH DEMENT-TRCI, V6, DOI 10.1002/trc2.12050 Dorner D. G., 2004, Library Hi Tech, V22, P182, DOI 10.1108/07378830410543502 Dumas J. S., 2004, Interactions, V11, P24, DOI 10.1145/1005261.1005274 England I, 2000, Aust Health Rev, V23, P176 Fang YL, 2022, J AM MED INFORM ASSN, V29, P1161, DOI 10.1093/jamia/ocac051 Fang YL, 2021, STUD HEALTH TECHNOL, V281, P984, DOI 10.3233/SHTI210325 GOODWIN NC, 1987, COMMUN ACM, V30, P229, DOI 10.1145/214748.214758 GUBA EG, 1981, ECTJ-EDUC COMMUN TEC, V29, P75 Hinderer D., 2003, 234 Tips and Tricks for Recruiting Users as Participants in Usability Studies Hsieh HF, 2005, QUAL HEALTH RES, V15, P1277, DOI 10.1177/1049732305276687 Idnay B, 2021, J AM MED INFORM ASSN, V29, P197, DOI 10.1093/jamia/ocab228 Jain NM, 2019, JCO CLIN CANCER INFO, V3, DOI 10.1200/CCI.19.00033 Jaspers MWM, 2009, INT J MED INFORM, V78, P340, DOI 10.1016/j.ijmedinf.2008.10.002 Ji MT, 2021, J MED INTERNET RES, V23, DOI 10.2196/25929 Kaufman DR, 2016, JMIR MED INF, V4, P21, DOI 10.2196/medinform.5544 Kennell Timothy Jr, 2016, AMIA Annu Symp Proc, V2016, P696 Khajouei R, 2017, J AM MED INFORM ASSN, V24, pE55, DOI 10.1093/jamia/ocw100 Lai YS, 2019, CLIN TRIALS, V16, P194, DOI 10.1177/1740774519829709 Lewis JR, 2002, INT J HUM-COMPUT INT, V14, P463, DOI 10.1080/10447318.2002.9669130 LEWIS JR, 1992, PROCEEDINGS OF THE HUMAN FACTORS SOCIETY, 36TH ANNUAL MEETING, VOLS 1 AND 2, P1259, DOI 10.1177/154193129203601617 Li Xinhang, 2021, AMIA Jt Summits Transl Sci Proc, V2021, P394 Lin TC, 2011, J NURS RES, V19, P305, DOI 10.1097/JNR.0b013e318236d03f Liu H, 2021, J BIOMED INFORM, V117, DOI 10.1016/j.jbi.2021.103771 Metzker E., 2005, ADOPTION CENTRIC USA Meystre S M, 2008, Yearb Med Inform, P128 Meystre SM, 2019, INT J MED INFORM, V129, P13, DOI 10.1016/j.ijmedinf.2019.05.018 Nelson SD, 2016, APPL CLIN INFORM, V7, P22, DOI 10.4338/ACI-2015-07-CR-0091 Ni YZ, 2019, JMIR MED INF, V7, DOI 10.2196/14185 Nielsen J., 1994, Usability Engineering | Guidebooks, pp 362, DOI DOI 10.5555/2821575 Nielsen J., 1995, SEVERITY RATINGS USA O'Brien Marita A, 2008, Proc Hum Factors Ergon Soc Annu Meet, V52, P1645, DOI 10.1518/107118108X352850 Obeid JS, 2017, J CLIN TRANSL SCI, V1, P246, DOI 10.1017/cts.2017.301 Obeid Jihad S, 2013, AMIA Jt Summits Transl Sci Proc, V2013, P189 Penberthy LT, 2012, J ONCOL PRACT, V8, P365, DOI 10.1200/JOP.2012.000646 POLSON PG, 1992, INT J MAN MACH STUD, V36, P741, DOI 10.1016/0020-7373(92)90039-N Pressler TR, 2012, BMC MED INFORM DECIS, V12, DOI 10.1186/1472-6947-12-47 Rad MS, 2018, UNIVERSAL ACCESS INF, V17, P361, DOI 10.1007/s10209-017-0534-z Rimel BJ, 2016, FRONT ONCOL, V6, DOI 10.3389/fonc.2016.00103 Sauro J, 2016, QUANTIFYING THE USER EXPERIENCE: PRACTICAL STATISTICS FOR USER RESEARCH, 2ND EDITION, P185, DOI 10.1016/B978-0-12-802308-2.00008-4 Schnall R, 2016, J BIOMED INFORM, V60, P243, DOI 10.1016/j.jbi.2016.02.002 Scott E, 2019, CONT CLIN TRIAL COMM, V15, DOI 10.1016/j.conctc.2019.100424 Shivade C, 2015, J BIOMED INFORM, V58, pS211, DOI 10.1016/j.jbi.2015.09.008 Stubbs A, 2019, J AM MED INFORM ASSN, V26, P1163, DOI 10.1093/jamia/ocz163 Terry M., 2002, P 4 C CREATIVITY COG, P38, DOI 10.1145/581710.581718 Thadani SR, 2009, J AM MED INFORM ASSN, V16, P869, DOI 10.1197/jamia.M3119 Tissot HC, 2020, IEEE J BIOMED HEALTH, V24, P2950, DOI 10.1109/JBHI.2020.2977925 Treweek S, 2018, COCHRANE DB SYST REV, DOI 10.1002/14651858.MR000013.pub6 Wang J, 2020, J MED INTERNET RES, V22, DOI 10.2196/16816 Yoon Y, 2015, 2015 IEEE/ACM 37TH IEEE INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING, VOL 1, P223, DOI 10.1109/ICSE.2015.43 Yuan C, 2019, J AM MED INFORM ASSN, V26, P294, DOI 10.1093/jamia/ocy178 NR 58 TC 3 Z9 3 U1 0 U2 5 PU ELSEVIER IRELAND LTD PI CLARE PA ELSEVIER HOUSE, BROOKVALE PLAZA, EAST PARK SHANNON, CO, CLARE, 00000, IRELAND SN 1386-5056 EI 1872-8243 J9 INT J MED INFORM JI Int. J. Med. Inform. PD MAR PY 2023 VL 171 AR 104985 DI 10.1016/j.ijmedinf.2023.104985 EA JAN 2023 PG 12 WC Computer Science, Information Systems; Health Care Sciences & Services; Medical Informatics WE Science Citation Index Expanded (SCI-EXPANDED) SC Computer Science; Health Care Sciences & Services; Medical Informatics GA G7UE0 UT WOS:000991155600001 PM 36638583 OA Green Accepted DA 2024-09-05 ER PT C AU Li, MJ Xu, JG Ge, BF Liu, J Jiang, J Zhao, QS AF Li, Mengjun Xu, Jianguo Ge, Bingfeng Liu, Jia Jiang, Jiang Zhao, Qingsong GP IEEE TI A Deep Learning Methodology for Citation Count Prediction with Large-scale Biblio-Features SO 2019 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN AND CYBERNETICS (SMC) SE IEEE International Conference on Systems Man and Cybernetics Conference Proceedings LA English DT Proceedings Paper CT IEEE International Conference on Systems, Man and Cybernetics (SMC) CY OCT 06-09, 2019 CL Bari, ITALY ID NETWORK AB Recently, many efforts have been devoted to the impact of scientific papers within different citation windows. However, it is still an elusive task to predict scientific impact shortly after the publication date. In this paper, a deep learning methodology is proposed to predict long-term citation count. First, large-scale biblio-features are extracted from heterogeneous information network based on five types of links. Next, a deep learning model is designed by taking it as a regression and prediction task. Then Pearson coefficient is used to confirm the correlations between input features and future citation count. Finally, as a case study, papers of Markov Chain published in 1980 are analyzed. The result shows the proposed methodology outperforms the state-of-the-art models and gives accurate prediction of future citations. C1 [Li, Mengjun; Xu, Jianguo; Ge, Bingfeng; Liu, Jia; Jiang, Jiang; Zhao, Qingsong] Natl Univ Def Technol, Coll Syst Engn, Changsha 410073, Peoples R China. C3 National University of Defense Technology - China RP Xu, JG (corresponding author), Natl Univ Def Technol, Coll Syst Engn, Changsha 410073, Peoples R China. EM mjli11260774@sina.com; jgxu1992@hotmail.com; bingfengge@nudt.edu.cn; JLiu1223@163.com; jiangjiangnudt@nudt.com; qingsongzhao99@163.com RI jiang, jiang/GRX-1861-2022; jiang, jun/GWC-9329-2022 OI zhao, qingsong/0000-0003-1392-845X FU National Natural Science Foundation of China [71690233, 71671186, 71571185] FX Research supported in part by the National Natural Science Foundation of China under Grants 71690233, 71671186, and 71571185.. CR Abrishami A, 2019, J INFORMETR, V13, P485, DOI 10.1016/j.joi.2019.02.011 Acuna DE, 2012, NATURE, V489, P201, DOI 10.1038/489201a Bai XM, 2018, IEEE ACCESS, V6, P11842, DOI 10.1109/ACCESS.2018.2812804 Bruns SB, 2016, SCIENTOMETRICS, V108, P917, DOI 10.1007/s11192-016-1979-1 Clauset A, 2017, SCIENCE, V355, P477, DOI 10.1126/science.aal4217 Fortunato S, 2018, SCIENCE, V359, DOI 10.1126/science.aao0185 Hu YQ, 2018, P NATL ACAD SCI USA, V115, P7468, DOI 10.1073/pnas.1710547115 Kosteas VD, 2018, SCIENTOMETRICS, V115, P1395, DOI 10.1007/s11192-018-2703-0 Sebastian Y, 2017, KNOWL-BASED SYST, V115, P66, DOI 10.1016/j.knosys.2016.10.015 Waltman L, 2016, J INFORMETR, V10, P365, DOI 10.1016/j.joi.2016.02.007 Wang DS, 2013, SCIENCE, V342, P127, DOI 10.1126/science.1237825 Yan R, 2012, P 12 ACM IEEE CS JOI, P51, DOI DOI 10.1145/2232817.2232831 Yuxiao Dong, 2016, IEEE Transactions on Big Data, V2, P18, DOI 10.1109/TBDATA.2016.2521657 Zeng A, 2017, PHYS REP, V714, P1, DOI 10.1016/j.physrep.2017.10.001 Zhang J, 2018, IEEE ACCESS, V6, P55661, DOI 10.1109/ACCESS.2018.2863938 NR 15 TC 10 Z9 10 U1 0 U2 7 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA SN 1062-922X BN 978-1-7281-4569-3 J9 IEEE SYS MAN CYBERN PY 2019 BP 1172 EP 1176 PG 5 WC Computer Science, Cybernetics; Computer Science, Information Systems WE Conference Proceedings Citation Index - Science (CPCI-S) SC Computer Science GA BO6NM UT WOS:000521353901032 DA 2024-09-05 ER PT J AU ul Haq, MI Li, QM Hou, J Iftekhar, A AF ul Haq, Muhammad Inaam Li, Qianmu Hou, Jun Iftekhar, Adnan TI Detecting the research structure and topic trends of social media using static and dynamic probabilistic topic models SO ASLIB JOURNAL OF INFORMATION MANAGEMENT LA English DT Article DE Social media; Topic models; Latent dirichlet allocation; DTM; Topic trends; Temporal evolution ID HEALTH-CARE; IMPACT; FUTURE; INFORMATION; CHALLENGES; ADOLESCENT; EVOLUTION; FRAMEWORK; TOURISM; TWITTER AB PurposeA huge volume of published research articles is available on social media which evolves because of the rapid scientific advances and this paper aims to investigate the research structure of social media.Design/methodology/approachThis study employs an integrated topic modeling and text mining-based approach on 30381 Scopus index titles, abstracts, and keywords published between 2006 and 2021. It combines analytical analysis of top-cited reviews with topic modeling as means of semantic validation. The output sequences of the dynamic model are further analyzed using the statistical techniques that facilitate the extraction of topic clusters, communities, and potential inter-topic research directions.FindingsThis paper brings into vision the research structure of social media in terms of topics, temporal topic evolutions, topic trends, emerging, fading, and consistent topics of this domain. It also traces various shifts in topic themes. The hot research topics are the application of the machine or deep learning towards social media in general, alcohol consumption in different regions and its impact, Social engagement and media platforms. Moreover, the consistent topics in both models include food management in disaster, health study of diverse age groups, and emerging topics include drug violence, analysis of social media news for misinformation, and problems of Internet addiction.Originality/valueThis study extends the existing topic modeling-based studies that analyze the social media literature from a specific disciplinary viewpoint. It focuses on semantic validations of topic-modeling output and correlations among the topics and also provides a two-stage cluster analysis of the topics. C1 [ul Haq, Muhammad Inaam; Li, Qianmu] Nanjing Univ Sci & Technol, Nanjing, Peoples R China. [Hou, Jun] Nanjing Vocat Univ Ind Technol, Nanjing, Peoples R China. [Iftekhar, Adnan] Wuhan Univ, Wuhan, Peoples R China. C3 Nanjing University of Science & Technology; Nanjing Vocational University of Industry Technology; Wuhan University RP ul Haq, MI (corresponding author), Nanjing Univ Sci & Technol, Nanjing, Peoples R China. EM Minaamulhaq@hotmail.com RI Iftekhar, Adnan/ABB-1590-2020; Inaam ul haq, Muhammad/HKO-1217-2023 OI Iftekhar, Adnan/0000-0002-8249-6876; Inaam ul haq, Muhammad/0000-0002-5759-073X FU Research Project of Nanjing Polytechnic Institute [2020SKYJo3]; major project of philosophy and social science research in colleges and universities of Jiangsu Province "Research on the Construction of Selective Compulsory Courses of Ideological and Political Science in Higher vocational Colleges" [2022SJZDSZ011] FX This work was supported by the major project of philosophy and social science research in colleges and universities of Jiangsu Province "Research on the Construction of Selective Compulsory Courses of Ideological and Political Science in Higher vocational Colleges" (2022SJZDSZ011) and the Research Project of Nanjing Polytechnic Institute (2020SKYJo3). CR Acquisti A, 2018, The Cambridge Handbook of Consumer Privacy, P184 Aichner T, 2021, CYBERPSYCH BEH SOC N, V24, P215, DOI 10.1089/cyber.2020.0134 Aichner T, 2015, INT J MARKET RES, V57, P257, DOI 10.2501/IJMR-2015-018 Alalwan AA, 2017, TELEMAT INFORM, V34, P1177, DOI 10.1016/j.tele.2017.05.008 Aletras N, 2013, P 10 INT C COMP SEM, P13, DOI [10.1145/2537052, DOI 10.1145/2537052] Alexander DE, 2014, SCI ENG ETHICS, V20, P717, DOI 10.1007/s11948-013-9502-z Ambrosino A, 2018, J ECON METHODOL, V25, P329, DOI 10.1080/1350178X.2018.1529215 Andreassen CS, 2014, CURR PHARM DESIGN, V20, P4053, DOI 10.2174/13816128113199990616 Asmussen CB, 2019, J BIG DATA-GER, V6, DOI 10.1186/s40537-019-0255-7 Bercovici J., 2010, Forbes Bickel MW, 2019, ENERGY SUSTAIN SOC, V9, DOI 10.1186/s13705-019-0226-z Bird S., 2009, Natural language processing with Python: analyzing text with the natural lan-guage toolkit Blei DM, 2012, COMMUN ACM, V55, P77, DOI 10.1145/2133806.2133826 Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993 Bornmann L, 2014, J INFORMETR, V8, P895, DOI 10.1016/j.joi.2014.09.005 Bouma G., 2009, From Form to Meaning. Processing Texts Automatically. Proceedings of the Biennial GSCL Conference. Ed. by, P31 Boyd-Graber JordanL., 2009, Advances in neural information processing systems, P185 Carnot ML, 2020, ENTROPY-SWITZ, V22, DOI 10.3390/e22111303 Chae B, 2019, TELECOMMUN POLICY, V43, DOI 10.1016/j.telpol.2019.101848 Chang YH, 2020, J CLIN PSYCHIAT, V81, DOI 10.4088/JCP.20l13454 Chen Q, 2017, CHIN MED-UK, V12, DOI 10.1186/s13020-017-0148-7 Chen XL, 2021, MULTIMED TOOLS APPL, V80, P17335, DOI 10.1007/s11042-020-09062-7 Chen X, 2020, COMPUT EDUC, V151, DOI 10.1016/j.compedu.2020.103855 Cheng X, 2022, J INF SCI, V48, P304, DOI 10.1177/0165551520954674 Cheng X, 2018, AGR ECOSYST ENVIRON, V267, P1, DOI 10.1016/j.agee.2018.07.022 Cheston CC, 2013, ACAD MED, V88, P893, DOI 10.1097/ACM.0b013e31828ffc23 Choi HS, 2017, COMPUT SECUR, V67, P244, DOI 10.1016/j.cose.2017.03.007 Chomutare T, 2011, J MED INTERNET RES, V13, DOI 10.2196/jmir.1874 Chou Wen-ying Sylvia, 2013, Am J Public Health, V103, pe9, DOI 10.2105/AJPH.2012.301071 Crawford K, 2009, CONTINUUM-J MEDIA CU, V23, P525, DOI 10.1080/10304310903003270 De Vries NJ, 2014, J BRAND MANAG, V21, P495, DOI 10.1057/bm.2014.18 Ding ZK, 2018, AUTOMAT CONSTR, V96, P398, DOI 10.1016/j.autcon.2018.10.008 El-Gayar Omar, 2013, J Diabetes Sci Technol, V7, P247 Eysenbach G, 2009, J MED INTERNET RES, V11, DOI 10.2196/jmir.1157 Filo K, 2015, SPORT MANAG REV, V18, P166, DOI 10.1016/j.smr.2014.11.001 Geng Y, 2017, J CLEAN PROD, V159, P301, DOI 10.1016/j.jclepro.2017.05.091 Ghose A, 2011, IEEE T KNOWL DATA EN, V23, P1498, DOI 10.1109/TKDE.2010.188 Grajales FJ III, 2014, J MED INTERNET RES, V16, DOI 10.2196/jmir.2912 Gralinski LE, 2020, VIRUSES-BASEL, V12, DOI 10.3390/v12020135 Griffiths TL, 2007, PSYCHOL REV, V114, P211, DOI 10.1037/0033-295X.114.2.211 Griffiths TL, 2004, P NATL ACAD SCI USA, V101, P5228, DOI 10.1073/pnas.0307752101 Guessoum SB, 2020, PSYCHIAT RES, V291, DOI 10.1016/j.psychres.2020.113264 Gurcan F, 2021, INT J HUM-COMPUT INT, V37, P267, DOI 10.1080/10447318.2020.1819668 Guse K, 2012, J ADOLESCENT HEALTH, V51, P535, DOI 10.1016/j.jadohealth.2012.03.014 Hahn A, 2017, LECT N BIOINFORMAT, V10330, P279, DOI 10.1007/978-3-319-59575-7_25 Hida R, 2018, PROCEEDINGS OF THE 56TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, VOL 2, P516 Hirschberg J, 2015, SCIENCE, V349, P261, DOI 10.1126/science.aaa8685 Hoffman Matthew D., 2010, Adv. Neural Inf. Process. Syst. (NIPS), DOI DOI 10.5555/2997189.2997285 Hurle MR, 2013, CLIN PHARMACOL THER, V93, P335, DOI 10.1038/clpt.2013.1 Jungherr A, 2016, J INF TECHNOL POLITI, V13, P72, DOI 10.1080/19331681.2015.1132401 Kamel Boulos Maged N, 2011, Int J Health Geogr, V10, P67, DOI 10.1186/1476-072x-10-67 Kane GC, 2014, MIS QUART, V38, P275, DOI 10.25300/MISQ/2014/38.1.13 Karl A, 2015, WIRES COMPUT STAT, V7, DOI 10.1002/wics.1361 Kitsos C., 2017, British Journal of Mathematics Computer Science, VVol. 21, P1, DOI DOI 10.9734/BJMCS/2017/32229 Krawczyk B, 2016, PROG ARTIF INTELL, V5, P221, DOI 10.1007/s13748-016-0094-0 Kuss DJ, 2017, INT J ENV RES PUB HE, V14, DOI 10.3390/ijerph14030311 Laranjo L, 2015, J AM MED INFORM ASSN, V22, P243, DOI 10.1136/amiajnl-2014-002841 Lee JH, 2021, SUSTAINABILITY-BASEL, V13, DOI 10.3390/su13031269 Lee M, 2016, BMC BIOINFORMATICS, V17, DOI 10.1186/s12859-016-1225-0 Leung D, 2013, J TRAVEL TOUR MARK, V30, P3, DOI 10.1080/10548408.2013.750919 Liang TP, 2011, INT J ELECTRON COMM, V16, P5, DOI 10.2753/JEC1086-4415160201 Liu S, 2021, PSYCHOL HEALTH MED, V26, P395, DOI 10.1080/13548506.2020.1738019 Madathil KC, 2015, HEALTH INFORM J, V21, P173, DOI 10.1177/1460458213512220 Malthouse EC, 2013, J INTERACT MARK, V27, P270, DOI 10.1016/j.intmar.2013.09.008 Manolio TA, 2013, GENET MED, V15, P258, DOI 10.1038/gim.2012.157 Mäntylä MV, 2018, COMPUT SCI REV, V27, P16, DOI 10.1016/j.cosrev.2017.10.002 Mathew G, 2023, IEEE T SOFTWARE ENG, V49, P1397, DOI 10.1109/TSE.2018.2870388 Minka T.P., 2002, Uncertainty in Artificial Intelligence, P352 Mongeon P, 2016, SCIENTOMETRICS, V106, P213, DOI 10.1007/s11192-015-1765-5 Moorhead SA, 2013, J MED INTERNET RES, V15, DOI 10.2196/jmir.1933 Moro S, 2015, EXPERT SYST APPL, V42, P1314, DOI 10.1016/j.eswa.2014.09.024 Moses H, 2013, JAMA-J AM MED ASSOC, V310, P1947, DOI 10.1001/jama.2013.281425 Muchene L, 2021, PLOS ONE, V16, DOI 10.1371/journal.pone.0243208 Nassirtoussi AK, 2014, EXPERT SYST APPL, V41, P7653, DOI 10.1016/j.eswa.2014.06.009 Nicola M, 2020, INT J SURG, V78, P185, DOI 10.1016/j.ijsu.2020.04.018 O'Keeffe GS, 2011, PEDIATRICS, V127, P800, DOI 10.1542/peds.2011-0054 Piotrowicz W, 2014, INT J ELECTRON COMM, V18, P5, DOI 10.2753/JEC1086-4415180400 Puhl RM, 2013, BEST PRACT RES CL EN, V27, P117, DOI 10.1016/j.beem.2012.12.002 Randriamihamison N, 2021, J CLASSIF, V38, P363, DOI 10.1007/s00357-020-09377-y Rehurek R., 2010, Proceedings of the LREC 2010 Workshop on New Challenges for NLP Frameworks Sahoo B., 2018, INT J INFORM DISSEMI, V8, P99, DOI [DOI 10.5958/2249-5576.2018.00021.3, 10.5958/2249-5576.2018.00021.3] Sallam M., 2021, VACCINES-BASEL, P1 Sarker A, 2015, J BIOMED INFORM, V54, P202, DOI 10.1016/j.jbi.2015.02.004 Saw J, 2016, J AM COLL CARDIOL, V68, P297, DOI 10.1016/j.jacc.2016.05.034 Sawyer SM, 2012, LANCET, V379, P1630, DOI 10.1016/S0140-6736(12)60072-5 Seabrook EM, 2016, JMIR MENT HEALTH, V3, DOI 10.2196/mental.5842 Shah AM, 2021, INT J MED INFORM, V149, DOI 10.1016/j.ijmedinf.2021.104434 Simon T, 2015, INT J INFORM MANAGE, V35, P609, DOI 10.1016/j.ijinfomgt.2015.07.001 Sinnenberg L, 2017, AM J PUBLIC HEALTH, V107, pE1, DOI 10.2105/AJPH.2016.303512 Som A., 2015, LUXURY ROAD EVOLUTIO Son Changwon, 2020, J Med Internet Res, V22, pe21279, DOI 10.2196/21279 Sui D, 2011, INT J GEOGR INF SCI, V25, P1737, DOI 10.1080/13658816.2011.604636 Sun LJ, 2017, TRANSPORT RES C-EMER, V77, P49, DOI 10.1016/j.trc.2017.01.013 Syed S, 2018, REV FISH SCI AQUAC, V26, P319, DOI 10.1080/23308249.2017.1416331 Talafidaryani M, 2021, MANAG RES REV, V44, P236, DOI 10.1108/MRR-03-2020-0139 Taneja SL, 2021, J MED INTERNET RES, V23, DOI 10.2196/26956 Thaha A R., 2021, Library Philosophy and Practice, V2021, P1 Thakur K, 2022, NEW REV ACAD LIBR, V28, P279, DOI 10.1080/13614533.2021.1918190 Torous John, 2020, JMIR Ment Health, V7, pe18848, DOI 10.2196/18848 Ul Haq MI, 2022, COMPUT J, V65, P2589, DOI 10.1093/comjnl/bxab091 Ul Haq MI, 2019, IEEE ACCESS, V7, P162254, DOI 10.1109/ACCESS.2019.2950045 Vaccari C., 2013, ITAL POLIT SCI REV, V43, P381, DOI [10.1426/75245, DOI 10.1426/75245] van Gemert-Pijnen JEWC, 2011, J MED INTERNET RES, V13, DOI 10.2196/jmir.1672 Vance K, 2009, DERMATOL CLIN, V27, P133, DOI 10.1016/j.det.2008.11.010 Wallach H. M., 2006, P 23 INT C MACH LEAR, V23, P977, DOI [10.1145/1143844.1143967, DOI 10.1145/1143844.1143967] Wallach HM, 2009, ADV NEURAL INFORM PR, V22, P1973, DOI DOI 10.1007/S10708-008-9161-9 Wang J, 2016, P IEEE, V104, P34, DOI 10.1109/JPROC.2015.2487976 Wang YX, 2019, SOC SCI MED, V240, DOI 10.1016/j.socscimed.2019.112552 Wang ZY, 2020, ISPRS INT J GEO-INF, V9, DOI 10.3390/ijgi9110632 Welch V, 2016, HEALTH PROMOT CHRON, V36, P63, DOI 10.24095/hpcdp.36.4.01 Whitaker C, 2017, J MED INTERNET RES, V19, DOI 10.2196/jmir.7071 Xiong H, 2019, COMPUT IND ENG, V135, P333, DOI 10.1016/j.cie.2019.06.010 Xiong JQ, 2020, J AFFECT DISORDERS, V277, P55, DOI 10.1016/j.jad.2020.08.001 Yaqub O, 2014, SOC SCI MED, V112, P1, DOI 10.1016/j.socscimed.2014.04.018 Yip PSF, 2012, LANCET, V379, P2393, DOI 10.1016/S0140-6736(12)60521-2 You Y, 2015, J MARKETING, V79, P19, DOI 10.1509/jm.14.0169 Zebrack B, 2012, J CLIN ONCOL, V30, P1221, DOI 10.1200/JCO.2011.39.5467 Zeng BX, 2014, TOUR MANAG PERSPECT, V10, P27, DOI 10.1016/j.tmp.2014.01.001 Zhang Y, 2020, J MED INTERNET RES, V22, DOI 10.2196/17582 Zou C, 2018, EXPERT OPIN DRUG SAF, V17, P629, DOI 10.1080/14740338.2018.1458838 Zyoud SH, 2018, INT J MENT HEALTH SY, V12, DOI 10.1186/s13033-018-0182-6 NR 121 TC 1 Z9 1 U1 10 U2 56 PU EMERALD GROUP PUBLISHING LTD PI BINGLEY PA HOWARD HOUSE, WAGON LANE, BINGLEY BD16 1WA, W YORKSHIRE, ENGLAND SN 2050-3806 EI 1758-3748 J9 ASLIB J INFORM MANAG JI Aslib J. Inf. Manag. PD MAR 23 PY 2023 VL 75 IS 2 BP 215 EP 245 DI 10.1108/AJIM-02-2022-0091 EA SEP 2022 PG 31 WC Computer Science, Information Systems; Information Science & Library Science WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Computer Science; Information Science & Library Science GA A4BU1 UT WOS:000853140500001 DA 2024-09-05 ER PT J AU Alp, ZZ Ögüdücü, SG AF Alp, Zeynep Zengin Oguducu, Sule Gunduz TI Identifying topical influencers on twitter based on user behavior and network topology SO KNOWLEDGE-BASED SYSTEMS LA English DT Article DE Social influence; Topical influence; Twitter; User modeling; Page Rank; Topic modeling; LDA; Evaluation metrics; Viral marketing ID MODELS AB Social media web sites have become major media platforms to share personal information, news, photos, videos and more. Users can even share live streams whenever they want to reach out to many other. This prevalent usage of social media attracted companies, data scientists, and researchers who are trying to infer meaningful information from this vast amount of data. Information diffusion and maximizing the spread of words is one of the most important focus for researchers working on social media. This information can serve many purposes such as; user or content recommendation, viral marketing, and user modeling. In this research, finding topical influential/authority users on Twitter is addressed. Since Twitter is a good platform to spread knowledge as a word of mouth approach and it has many more public profiles than protected ones, it is a target media for marketers. In this paper, we introduce a novel methodology, called Personalized PageRank, that integrates both the information obtained from network topology and the information obtained from user actions and activities in Twitter. The proposed approach aims to determine the topical influencers who are experts on a specific topic. Experimental results on a large dataset consisting of Turkish tweets show that using user specific features like topical focus rate, activeness, authenticity and speed of getting reaction on specific topics positively affects identifying influencers and lead to higher information diffusion. Algorithms are implemented on a distributed computing environment which makes high-cost graph processing more efficient. (C) 2017 Elsevier B.V. All rights reserved. C1 [Alp, Zeynep Zengin] Istanbul Tech Univ Maslak, Inst Sci & Technol, TR-34469 Istanbul, Turkey. [Oguducu, Sule Gunduz] Istanbul Tech Univ Maslak, Dept Comp Engn, TR-34469 Istanbul, Turkey. C3 Istanbul Technical University; Istanbul Technical University RP Alp, ZZ (corresponding author), Istanbul Tech Univ Maslak, Inst Sci & Technol, TR-34469 Istanbul, Turkey. EM zzalp@itu.edu.tr; sgunduz@itu.edu.tr RI Alp, Zeynep/KHX-4733-2024; Oguducu, Sule Gunduz/C-7710-2009 OI Oguducu, Sule Gunduz/0000-0002-0288-4757 FU 2211 - TUBITAK BIDEB Ph.D. Scholarship Fund FX This research is partially funded by 2211 - TUBITAK BIDEB Ph.D. Scholarship Fund. CR Alp ZZ, 2016, PROCEEDINGS OF THE 2016 IEEE/ACM INTERNATIONAL CONFERENCE ON ADVANCES IN SOCIAL NETWORKS ANALYSIS AND MINING ASONAM 2016, P1321, DOI 10.1109/ASONAM.2016.7752407 Alp ZZ, 2015, 2015 IEEE 14TH INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS (ICMLA), P644, DOI 10.1109/ICMLA.2015.73 Altinel B, 2016, KNOWL-BASED SYST, V108, P50, DOI 10.1016/j.knosys.2016.06.021 Anger I., 2011, P 11 INT C KNOWL TEC, P1, DOI DOI 10.1145/2024288.2024326 [Anonymous], 2011, P 20 INT C WORLD WID [Anonymous], 2003, P 9 ACM SIGKDD INT C [Anonymous], 2002, Proceedings of the 11th international conference on World Wide Web, DOI [DOI 10.1145/511446.511513, 10.1145/511446.511513] [Anonymous], 2010, ICWSM, DOI DOI 10.1016/J.IPM.2016.04.003 [Anonymous], THESIS Aral S, 2014, MANAGE SCI, V60, P1352, DOI 10.1287/mnsc.2014.1936 Aral S, 2012, SCIENCE, V337, P337, DOI 10.1126/science.1215842 Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993 Bravo-Marquez F, 2016, KNOWL-BASED SYST, V108, P65, DOI 10.1016/j.knosys.2016.05.018 Cohen A R., 1959, SOME IMPLICATIONS SE DEUTSCH MORTON, 1955, JOUR ABNORMAL AND SOCIAL PSYCHOL, V51-31, P629, DOI 10.1037/h0046408 Goldenberg J, 2001, MARKET LETT, V12, P211, DOI 10.1023/A:1011122126881 Goyal A, 2011, PROC VLDB ENDOW, V5, P73, DOI 10.14778/2047485.2047492 GRANOVETTER M, 1978, AM J SOCIOL, V83, P1420, DOI 10.1086/226707 Guille Adrien, 2012, P 21 INT C WORLD WID, P1145, DOI [DOI 10.1145/2187980.2188254, 10.1145/2187980.2188254] Hong Liangjie, 2010, Proceedings of the First Workshop on Social Media Analytics, P80, DOI [DOI 10.1145/1964858.1964870, 10.1145/1964858.1964870] Jendoubi S, 2017, KNOWL-BASED SYST, V121, P58, DOI 10.1016/j.knosys.2017.01.014 Katz E., 1957, CAN J EC POLIT SCI, V6 Kitsak M, 2010, NAT PHYS, V6, P888, DOI [10.1038/NPHYS1746, 10.1038/nphys1746] Kleinberg JM, 1999, J ACM, V46, P604, DOI 10.1145/324133.324140 Kwak H., WWW'10, DOI DOI 10.1145/1772690.1772751 Lippitt R, 1952, HUM RELAT, V5, P37, DOI 10.1177/001872675200500102 Liu L, 2012, DATA MIN KNOWL DISC, V25, P511, DOI 10.1007/s10618-012-0252-3 Liu WY, 2016, KNOWL-BASED SYST, V109, P266, DOI 10.1016/j.knosys.2016.07.008 Long C, 2014, INFORM SYST, V46, P1, DOI 10.1016/j.is.2014.05.003 Lou Tiancheng, 2013, P 22 INT C WORLD WID, P825, DOI [DOI 10.1145/2488388.2488461, 10.1145/2488388.2488461] Lu WX, 2016, KNOWL-BASED SYST, V113, P143, DOI 10.1016/j.knosys.2016.09.020 McCallum Andrew Kachites, 2002, MALLET: A machine learning for language toolkit Mehrotra R., 2013, Improving LDA topic models for microblogs via tweet pooling and automatic labeling, P889, DOI DOI 10.1145/2484028.2484166 Muhammad A, 2016, KNOWL-BASED SYST, V108, P92, DOI 10.1016/j.knosys.2016.05.032 Page L., 1999, Technical Report Stanford InfoLab Pal A., 2011, P 4 ACM INT C WEB SE, P45, DOI [10.1145/1935826.1935843, DOI 10.1145/1935826.1935843] Petz Gerald, 2013, Human-Computer Interaction and Knowledge Discovery in Complex, Unstructured, Big Data. Third International Workshop, HCI-KDD 2013. Held at SouthCHI 2013. Proceedings: LNCS 7947, P35, DOI 10.1007/978-3-642-39146-0_4 Poria S, 2016, KNOWL-BASED SYST, V108, P42, DOI 10.1016/j.knosys.2016.06.009 Rill S, 2014, KNOWL-BASED SYST, V69, P24, DOI 10.1016/j.knosys.2014.05.008 Riquelme F, 2016, INFORM PROCESS MANAG, V52, P949, DOI 10.1016/j.ipm.2016.04.003 Saito K, 2011, LECT NOTES COMPUT SC, V6804, P153, DOI 10.1007/978-3-642-21916-0_18 Sankar CP, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0168125 Sulis E, 2016, KNOWL-BASED SYST, V108, P132, DOI 10.1016/j.knosys.2016.05.035 Weng J., 2010, P 3 ACM INT C WEB SE, P261, DOI [10.1145/1718487.1718520, DOI 10.1145/1718487.1718520] Yang Y, 2015, AAAI CONF ARTIF INTE, P367 Yildiz E, 2016, AAAI CONF ARTIF INTE, P2863 Zhao WNX, 2011, LECT NOTES COMPUT SC, V6611, P338, DOI 10.1007/978-3-642-20161-5_34 NR 47 TC 72 Z9 75 U1 2 U2 133 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0950-7051 EI 1872-7409 J9 KNOWL-BASED SYST JI Knowledge-Based Syst. PD FEB 1 PY 2018 VL 141 BP 211 EP 221 DI 10.1016/j.knosys.2017.11.021 PG 11 WC Computer Science, Artificial Intelligence WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Computer Science GA FU1ZP UT WOS:000423648300015 DA 2024-09-05 ER PT J AU Konkiel, S AF Konkiel, Stacy TI Approaches to creating 'humane' research evaluation metrics for the humanities SO INSIGHTS-THE UKSG JOURNAL LA English DT Article DE Humanities; research metrics; bibliometrics; evaluation; indicators AB There are many complexities and challenges associated with developing 'humane' research evaluation metrics in the humanities. This monumental task can only be addressed by reverse engineering evaluation metrics based upon the practices and values that funders, institutions, professional societies and individuals want to encourage in their disciplines. The work of the HuMetricsHSS initiative is described in this article as a framework for doing so. EM s.konkiel@digital-science.com OI Konkiel, Stacy/0000-0002-0546-8257 FU Andrew W Mellon Foundation FX The author gratefully acknowledges the support of the Andrew W Mellon Foundation, which has made the HuMetricsHSS initiative's work possible, and Nicky Agate, for her valuable input on this article. CR American Anthropological Association, 2017, AAA Guidelines for Tenure and Promotion Review: Communicating Public Scholarship in Anthropology [Anonymous], 2012, GUID EV WORK DIG HUM [Anonymous], 2015, GUID PROF EV DIG SCH Ball C, 2017, OPEN SCHOLARSHIP INI, V2 Belfiore E, 2015, ARTS HUM HIGH EDUC, V14, P95, DOI 10.1177/1474022214531503 Butler L, 2003, RES EVALUAT, V12, P39, DOI 10.3152/147154403781776780 Curry S, 2018, NATURE, V554, P147, DOI 10.1038/d41586-018-01642-w de Rijcke S, 2016, RES EVALUAT, V25, P161, DOI 10.1093/reseval/rvv038 Gogolin I, 2014, ASSESSING QUALITY EU, DOI [10.1007/978-3-658-05969-9_1, DOI 10.1007/978-3-658-05969-9_1] Guetzkow J, 2004, AM SOCIOL REV, V69, P190, DOI 10.1177/000312240406900203 Hammarfelt B., 2012, Following the footnotes: A bibliometric analysis of citation patterns in literary studies Hammarfelt B, 2013, PRO INT CONF SCI INF, P720 Haustein S., 2014, Incentives and Performance, P121, DOI [DOI 10.1007/978-3-319-09785-5_8, 10.1007/978-3-319-09785, DOI 10.1007/978-3-319-09785] Hoffman A., 2017, INSIDE HIGHER ED Moore S, 2017, PALGR COMMUN, V3, DOI 10.1057/palcomms.2016.105 Ochsner M., 2016, Research Assessment in the Humanities, DOI DOI 10.1007/978-3-319-29016-4 Ochsner M, 2017, PALGR COMMUN, V3, DOI 10.1057/palcomms.2017.20 Schimanski L.A., 2018, F1000Research, V7, DOI DOI 10.12688/F1000RESEARCH.16493.1 Sivertsen G, 2016, SCIENTOMETRICS, V107, P357, DOI 10.1007/s11192-016-1845-1 NR 19 TC 5 Z9 5 U1 0 U2 4 PU UBIQUITY PRESS LTD PI LONDON PA 2N, 6 OSBORNE ST, LONDON, E1 6TD, ENGLAND SN 2048-7754 J9 INSIGHTS JI Insights PD NOV 15 PY 2018 VL 31 AR 44 DI 10.1629/uksg.445 PG 7 WC Information Science & Library Science WE Emerging Sources Citation Index (ESCI) SC Information Science & Library Science GA HY4EV UT WOS:000468081700001 OA gold, Green Submitted DA 2024-09-05 ER PT J AU Bai, XM Zhang, FL Hou, J Xia, F Tolba, A Elashkar, E AF Bai, Xiaomei Zhang, Fuli Hou, Jie Xia, Feng Tolba, Amr Elashkar, Elsayed TI Implicit Multi-Feature Learning for Dynamic Time Series Prediction of the Impact of Institutions SO IEEE ACCESS LA English DT Article DE Scientific impact; prediction; feature selection; machine learning; scientometrics AB Predicting the impact of research institutions is an important tool for decision makers, such as resource allocation for funding bodies. Despite significant effort of adopting quantitative indicators to measure the impact of research institutions, little is known that how the impact of institutions evolves in time. Previous studies have focused on using the historical relevance scores of different institutions to predict potential future impact for these institutions. In this paper, we explore the factors that can drive the changes of the impact of institutions, finding that the impact of an institution, as measured by the number of the accepted papers of the institution, more is determined by the authors' influence of the institution. Geographic location of institution feature and state GDP can drive the changes of the impact of institutions. Identifying these features allows us to formulate a predictive model that integrates the effects of individual ability, location of institution, and state GDP. The model unveils the underlying factors driving the future impact of institutions, which can be used to accurately predict the future impact of institutions. C1 [Bai, Xiaomei; Hou, Jie; Xia, Feng] Dalian Univ Technol, Key Lab Ubiquitous Network & Serv Software Liaoni, Sch Software, Dalian 116620, Peoples R China. [Bai, Xiaomei] Anshan Normal Univ, Ctr Comp, Anshan 114007, Peoples R China. [Zhang, Fuli] Anshan Normal Univ, Anshan 114007, Peoples R China. [Tolba, Amr] King Saud Univ, Dept Comp Sci, Community Coll, Riyadh 11437, Saudi Arabia. [Tolba, Amr] Menoufia Univ, Fac Sci, Math Dept, Shibin Al Kawm 32511, Egypt. [Elashkar, Elsayed] King Saud Univ, Adm Sci Dept, Community Coll, Riyadh 11437, Saudi Arabia. [Elashkar, Elsayed] Mansoura Univ, Fac Commerce, Dept Appl Stat, Mansoura 35516, Egypt. C3 Dalian University of Technology; Anshan Normal University; Anshan Normal University; King Saud University; Egyptian Knowledge Bank (EKB); Menofia University; King Saud University; Egyptian Knowledge Bank (EKB); Mansoura University RP Xia, F (corresponding author), Dalian Univ Technol, Key Lab Ubiquitous Network & Serv Software Liaoni, Sch Software, Dalian 116620, Peoples R China. EM f.xia@ieee.org RI Tolba, Amr/O-8464-2016; Xia, Feng/Y-2859-2019; Elashkar, Elsayed Elsherbini/AAV-9503-2021; Elashkar, Elsayed/O-6416-2018 OI Tolba, Amr/0000-0003-3439-6413; Xia, Feng/0000-0002-8324-1859; Elashkar, Elsayed/0000-0003-2326-6779 FU King Saud University [RGP-1438-27] FX The authors extend their appreciation to the Deanship of Scientific Research at King Saud University for funding this work through research group NO (RGP-1438-27). CR Acuna DE, 2012, NATURE, V489, P201, DOI 10.1038/489201a [Anonymous], 2010, The evaluation of research by scientometric indicators [Anonymous], 2016, PROC IEEE INT C PROG, DOI DOI 10.1109/ICPHM.2016.7542845 Bai XM, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0162364 Bensman SJ, 2011, J AM SOC INF SCI TEC, V62, P208, DOI 10.1002/asi.21417 Bornmann L, 2017, J KOREAN MED SCI, V32, P180, DOI 10.3346/jkms.2017.32.2.180 Bornmann L, 2014, ONLINE INFORM REV, V38, P43, DOI 10.1108/OIR-12-2012-0214 Bruns SB, 2016, SCIENTOMETRICS, V108, P917, DOI 10.1007/s11192-016-1979-1 Cao XY, 2016, J INFORMETR, V10, P471, DOI 10.1016/j.joi.2016.02.006 Chen Chen T. T., KDD16 P 22 ACM, V785, P785, DOI [DOI 10.1145/2939672.2939785, 10.1145/2939672.2939785] Hastie T., 2009, Springer series in statistics Hirsch JE, 2005, P NATL ACAD SCI USA, V102, P16569, DOI 10.1073/pnas.0507655102 Klimek P, 2016, SCIENTOMETRICS, V107, P1265, DOI 10.1007/s11192-016-1926-1 Orouskhani Y., 2016, RANKING RES I BASED Pan RK, 2014, SCI REP-UK, V4, DOI 10.1038/srep04880 Penner O, 2013, SCI REP-UK, V3, DOI 10.1038/srep03052 Petersen AM, 2014, P NATL ACAD SCI USA, V111, P15316, DOI 10.1073/pnas.1323111111 Sandulescu V., 2016, CoRR Setti G, 2013, IEEE ACCESS, V1, P232, DOI 10.1109/ACCESS.2013.2261115 Sinatra R, 2016, SCIENCE, V354, DOI 10.1126/science.aaf5239 Stegehuis C, 2015, J INFORMETR, V9, P642, DOI 10.1016/j.joi.2015.06.005 Svider P. F., 2016, LARYNGOSCOPE, V127, P87 Wang W, 2017, SCIENTOMETRICS, V112, P329, DOI 10.1007/s11192-017-2388-9 Xia F, 2017, IEEE T BIG DATA, V3, P18, DOI 10.1109/TBDATA.2016.2641460 Xia F, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0165997 Yuxiao Dong, 2016, IEEE Transactions on Big Data, V2, P18, DOI 10.1109/TBDATA.2016.2521657 NR 26 TC 28 Z9 30 U1 0 U2 16 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 2169-3536 J9 IEEE ACCESS JI IEEE Access PY 2017 VL 5 BP 16372 EP 16382 DI 10.1109/ACCESS.2017.2739179 PG 11 WC Computer Science, Information Systems; Engineering, Electrical & Electronic; Telecommunications WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Computer Science; Engineering; Telecommunications GA FF9PS UT WOS:000409349400017 OA gold, Green Submitted DA 2024-09-05 ER PT J AU Albanese, F Pinto, S Semeshenko, V Balenzuela, P AF Albanese, Federico Pinto, Sebastian Semeshenko, Viktoriya Balenzuela, Pablo TI Analyzing mass media influence using natural language processing and time series analysis SO JOURNAL OF PHYSICS-COMPLEXITY LA English DT Article DE mass media influence; sentiment analysis; topic detection; time series analysis ID PUBLIC-OPINION; AGENDA; NEWS; ECONOMY AB A key question of collective social behavior is related to the influence of mass media on public opinion. Different approaches have been developed to address quantitatively this issue, ranging from field experiments to mathematical models. In this work we propose a combination of tools involving natural language processing and time series analysis. We compare selected features of mass media news articles with measurable manifestation of public opinion. We apply our analysis to news articles belonging to the 2016 US presidential campaign. We compare variations in polls (as a proxy of public opinion) with changes in the connotation of the news (sentiment) or in the agenda (topics) of a selected group of media outlets. Our results suggest that the sentiment content by itself is not enough to understand the differences in polls, but the combination of topics coverage and sentiment content provides an useful insight of the context in which public opinion varies. The methodology employed in this work is far general and can be easily extended to other topics of interest. C1 [Albanese, Federico] Univ Buenos Aires, Inst Ciencias Computac, CONICET, Buenos Aires, DF, Argentina. [Pinto, Sebastian; Balenzuela, Pablo] Consejo Nacl Invest Cient & Tecn, Inst Fis Buenos Aires IFIBA, Ave Cantilo S-N,Pabellon 1,Ciudad Univ, RA-1428 Buenos Aires, DF, Argentina. [Pinto, Sebastian; Balenzuela, Pablo] Univ Buenos Aires, Fac Ciencias Exactas & Nat, Dept Fis, Ave Cantilo S-N,Pabellon 1,Ciudad Univ, RA-1428 Buenos Aires, DF, Argentina. [Semeshenko, Viktoriya] Univ Buenos Aires, Fac Ciencias Econ, Buenos Aires, DF, Argentina. [Semeshenko, Viktoriya] Univ Buenos Aires, Inst Interdisciplinario Econ Polit Buenos Aires, CONICET, Ave Cordoba 2122,C1120 AAQ, Buenos Aires, DF, Argentina. C3 Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET); University of Buenos Aires; Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET); University of Buenos Aires; University of Buenos Aires; University of Buenos Aires; University of Buenos Aires; Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET) RP Albanese, F (corresponding author), Univ Buenos Aires, Inst Ciencias Computac, CONICET, Buenos Aires, DF, Argentina. EM falbanese@dc.uba.ar RI Semeshenko, Viktoriya/HTS-8922-2023 OI Semeshenko, Viktoriya/0000-0003-0295-5946; Albanese, Federico/0000-0001-7140-2910; Balenzuela, Pablo/0000-0002-8581-4892 FU Agencia Nacional de Promocion Cientifica of Argentina [PICT 201-0215] FX We thank Marcos Trevisan for careful reading of the manuscript and helpful comments. This work was partially funded by the Agencia Nacional de Promocion Cientifica of Argentina via grant PICT 201-0215. CR Albanese F., 2019, ARXIV190910554PHYSIC Allcott H, 2017, J ECON PERSPECT, V31, P211, DOI 10.1257/jep.31.2.211 [Anonymous], 2016, REALCLEARPOLITICS [Anonymous], 2005, JMP BASIC UNIVARIATE Bae Y, 2012, J AM SOC INF SCI TEC, V63, P2521, DOI 10.1002/asi.22768 Besley T, 2002, Q J ECON, V117, P1415, DOI 10.1162/003355302320935061 Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993 Brians CL, 1996, AM J POLIT SCI, V40, P172, DOI 10.2307/2111699 De Vreese CH, 2006, JCMS-J COMMON MARK S, V44, P419, DOI 10.1111/j.1468-5965.2006.00629.x Efron B, 2003, STAT SCI, V18, P135, DOI 10.1214/ss/1063994968 Efron B., 1993, MONOGRAPHS STAT APPL Fortunato JA, 2016, J INFORM POLICY, V6, P129, DOI 10.5325/jinfopoli.6.2016.0129 Gerber AS, 2009, AM ECON J-APPL ECON, V1, P35, DOI 10.1257/app.1.2.35 Gerlach M, 2019, NAT MACH INTELL, V1, P606, DOI 10.1038/s42256-019-0112-6 González-Avella JC, 2006, PHYS REV E, V73, DOI 10.1103/PhysRevE.73.046119 Gorodnichenko Yuriy, 2018, Technical Report GRANGER CWJ, 1969, ECONOMETRICA, V37, P424, DOI 10.2307/1912791 Haribhakta Y., 2017, INT J SCI RES COMPUT, V2, P52 Hopkins DJ, 2017, RES POLITICS, V4, DOI 10.1177/2053168017737900 King G, 2017, SCIENCE, V358, P776, DOI 10.1126/science.aao1100 Koltsova O, 2013, POLICY INTERNET, V5, P207, DOI 10.1002/1944-2866.POI331 Koreni D., 2015, Proceedings of the 2015 Workshop on Topic Models: PostProcessing and Applications, P61 Lee DD, 1999, NATURE, V401, P788, DOI 10.1038/44565 Lischka JA, 2015, J MASS COMMUN Q, V92, P374, DOI 10.1177/1077699015574098 Manning CD, 2014, PROCEEDINGS OF 52ND ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS: SYSTEM DEMONSTRATIONS, P55, DOI 10.3115/v1/p14-5010 McCombs M. E., 2005, JOURNALISM STUD, V6, P543, DOI [10.1080/14616700500250438, DOI 10.1080/14616700500250438, https://doi.org/10.1080/14616700500250438] MCCOMBS ME, 1972, PUBLIC OPIN QUART, V36, P176, DOI 10.1086/267990 Muhammad A, 2016, KNOWL-BASED SYST, V108, P92, DOI 10.1016/j.knosys.2016.05.032 Oberholzer-Gee F, 2009, AM ECON REV, V99, P2120, DOI 10.1257/aer.99.5.2120 Pinto S, 2019, PHYSICA A, V524, P614, DOI 10.1016/j.physa.2019.04.108 Pinto S, 2016, PHYSICA A, V458, P378, DOI 10.1016/j.physa.2016.04.024 Seabold S., 2010, SciPy, DOI 10.25080/Majora-92bf1922-011 Shibanai Y, 2001, J CONFLICT RESOLUT, V45, P80, DOI 10.1177/0022002701045001004 Shumway R. H., 2016, Springer Texts in Statistics, V4th, DOI [DOI 10.1007/978-3-319-52452-8, 10.1007/978-3-319-52452-8] Socher R., 2013, J P 2013 C EMP METH, P1631 Soroka SN, 2015, AM J POLIT SCI, V59, P457, DOI 10.1111/ajps.12145 Taboada M, 2011, COMPUT LINGUIST, V37, P267, DOI 10.1162/COLI_a_00049 Xu W., 2003, INT ACM SIGIR C RES, P267, DOI DOI 10.1145/860435.860485 Yasseri T, 2016, EPJ DATA SCI, V5, DOI 10.1140/epjds/s13688-016-0083-3 NR 39 TC 10 Z9 11 U1 3 U2 16 PU IOP Publishing Ltd PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND EI 2632-072X J9 J PHYS-COMPLEXITY JI J. Phys.-Complex. PD SEP PY 2020 VL 1 IS 2 AR 025005 DI 10.1088/2632-072X/ab8784 PG 12 WC Mathematics, Interdisciplinary Applications; Multidisciplinary Sciences; Physics, Mathematical WE Emerging Sources Citation Index (ESCI) SC Mathematics; Science & Technology - Other Topics; Physics GA SQ6MF UT WOS:000660466800001 OA gold, Green Submitted, Green Published DA 2024-09-05 ER PT C AU Hong, XY Li, ZX AF Yun Hong Xu Xian Li Zuo BE Yang, BJ Chen, J Cai, XQ Qin, KD Zhou, C TI A LDA Model Based Text-Mining Method to Recommend Reviewer for Proposal of Research Project Selection SO 2016 13TH INTERNATIONAL CONFERENCE ON SERVICE SYSTEMS AND SERVICE MANAGEMENT SE International Conference on Service Systems and Service Management LA English DT Proceedings Paper CT 13th International Conference on Service Systems and Service Management (ICSSSM) CY JUN 24-26, 2016 CL Kunming Univ Sci & Technol, Sch Management & Econ, Kumming, PEOPLES R CHINA HO Kunming Univ Sci & Technol, Sch Management & Econ DE Reviewer recommendation; Research project proposal; Latent Dirichlet Allocation Model; Text mining; Expert evaluation model AB Reviewer recommendation for research projects proposals plays an indispensable role in funding agencies, because the opinions or feedback of reviewers will exert a direct impact on the result of the projects selection. Current methods mainly focus on grouping the proposals by declared disciplines or evaluating the reviewers with their individual profile, however, the two methods ignore the rich information with different types and formats of proposals and experts, such as subjective information (e.g., evaluation of colleague), objective information (e.g., publications' number). Besides, prior studies mostly applied to English documents, which has limitations when dealing with projects proposals in Chinese. In order to effectively solve the research gap that ignored the different information forms and Chinese contexts, this paper proposes firstly extract the topics words in proposal by LDA and expert's profile with text-mining; secondly automatically classify the information of proposal and profile, and integrate the information into several categories according to its different types. Each category represents the different dimensions of information of proposal and expert. Thirdly, we calculate the similarity of information in each category, and sort the similarity to select top 8 experts as candidate reviewers. Finally, we establish the evaluation model for the candidate reviewers to decide several reviewers to review proposal. A recommendation approach is proposed by integrating these categories of information. In future research, we will try to evaluate the proposed approach using real data. C1 [Yun Hong Xu; Xian Li Zuo] Kunming Univ Sci & Technol, Fac Econ & Management, Kunming, Peoples R China. C3 Kunming University of Science & Technology RP Hong, XY (corresponding author), Kunming Univ Sci & Technol, Fac Econ & Management, Kunming, Peoples R China. EM xuyunhong@gmail.com; 1029035822@qq.com CR Amiri MP, 2010, EXPERT SYST APPL, V37, P6218, DOI 10.1016/j.eswa.2010.02.103 [Anonymous], 2006, TEXT MINING HDB ADV Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993 Chang PT, 2012, COMPUT OPER RES, V39, P112, DOI 10.1016/j.cor.2010.10.021 Das GS, 2014, COMPUT IND ENG, V72, P50, DOI 10.1016/j.cie.2014.02.014 Konchady Manu., 2006, Text Mining Application Programming Ma Jian, 2012, ONTOLOGY BASED TEXT Preethi T., 2013, IMPLEMENTATION CLUST Sun YH, 2008, EXPERT SYST APPL, V34, P817, DOI 10.1016/j.eswa.2006.10.021 Wang Yibo, 2015, 48 HAW INT C SYST SC Watanabe Toyohide, 2013, PROCEDIA COMPUTER SC, V22, P633 Xu YH, 2010, EXPERT SYST APPL, V37, P6948, DOI 10.1016/j.eswa.2010.03.027 NR 12 TC 0 Z9 0 U1 0 U2 5 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA SN 2161-1890 BN 978-1-5090-2842-9 J9 I C SERV SYST SERV M PY 2016 PG 5 WC Computer Science, Information Systems; Engineering, Electrical & Electronic WE Conference Proceedings Citation Index - Science (CPCI-S) SC Computer Science; Engineering GA BG6DX UT WOS:000390104400130 DA 2024-09-05 ER PT J AU Lopez-Martinez, RE Sierra, G AF Lopez-Martinez, Roberto E. Sierra, Gerardo TI Research Trends in the International Literature on Natural Language Processing, 2000-2019 - A Bibliometric Study SO JOURNAL OF SCIENTOMETRIC RESEARCH LA English DT Article DE Bibliometrics; Natural language processing; Computational linguistics ID EVOLUTION; TECHNOLOGIES; INFORMATICS; NETWORKS; BUSINESS AB This work presents a review, using bibliometric methods, of the state of research on the whole field of natural language processing (NLP), understanding this as the methods to process human language, including semantic techniques, statistical techniques or a combination of both. Particularly we focus on the trends of research in NLP, since there are not in the literature studies that embrace in an integral way bibliometric studies about natural language processing, its applications and related topics. Our work includes an identification of the main sources where research is published, the most productive and influential countries and research institutions, the main actors involved in research, as well as the main topics that are investigated. We found that research in the field and subfields has increased continuously during the period under study: conference proceedings are the preferred media to communicate results and that biomedical informatics is one relevant field of application of NLP. We conclude with both, a synchronic and a diachronic characterization of research topics carried out internationally on natural language processing and related topics, which showed that several subfields of artificial intelligence are closely related to natural language processing in recent years. C1 [Lopez-Martinez, Roberto E.] Univ Nacl Autonoma Mexico, Inst Ingn, Mexico City, DF, Mexico. C3 Universidad Nacional Autonoma de Mexico RP Lopez-Martinez, RE (corresponding author), Edificio 12 Inst Ingn, Ciudad De Mexico 04510, Mexico. EM robertol@unam.mx RI Lopez-Martinez, Roberto Ernesto/A-4547-2009 OI Sierra, Gerardo/0000-0002-6724-1090 CR Alejo-Machado OJ, 2015, SCIENTOMETRICS, V102, P1669, DOI 10.1007/s11192-014-1467-4 Alom MZ, 2019, ELECTRONICS-SWITZ, V8, DOI 10.3390/electronics8030292 [Anonymous], 2002, P 8 ACM SIGKDD INT C [Anonymous], 2018, WIRELESS COMMUNICATI Tran BX, 2019, J CLIN MED, V8, DOI 10.3390/jcm8030360 Barakhnin VB, 2018, J PHYS CONF SER, V1117, DOI 10.1088/1742-6596/1117/1/012001 Bhattacharya S, 2019, J SCIENTOMETR RES, V8, pS85, DOI 10.5530/jscires.8.2.26 Börner K, 2003, ANNU REV INFORM SCI, V37, P179, DOI 10.1002/aris.1440370106 CALLON M, 1983, SOC SCI INFORM, V22, P191, DOI 10.1177/053901883022002003 CALLON M, 1991, SCIENTOMETRICS, V22, P155, DOI 10.1007/BF02019280 Chen G, 2016, J INFORMETR, V10, P212, DOI 10.1016/j.joi.2016.01.006 Cobo MJ, 2011, J INFORMETR, V5, P146, DOI 10.1016/j.joi.2010.10.002 Crane D., 1972, Invisible colleges. Diffusion of knowledge in scientific communities De Nooy W., 2018, EXPLORATORY SOCIAL N dos Santos BS, 2019, COMPUT IND ENG, V138, DOI 10.1016/j.cie.2019.106120 Ellegaard O, 2015, SCIENTOMETRICS, V105, P1809, DOI 10.1007/s11192-015-1645-z Gupta S, 2019, EXPERT SYST APPL, V121, P49, DOI 10.1016/j.eswa.2018.12.011 Henkel M, 2017, INT J INFORM MANAGE, V37, P1507, DOI 10.1016/j.ijinfomgt.2016.05.008 Io HN, 2017, IN C IND ENG ENG MAN, P215, DOI 10.1109/IEEM.2017.8289883 Jia YX, 2018, COMPUT METH PROG BIO, V166, P19, DOI 10.1016/j.cmpb.2018.08.017 Kalantari Ali, 2017, Journal of Big Data, V4, DOI 10.1186/s40537-017-0088-1 Keramatfar A, 2019, J INF SCI, V45, P3, DOI 10.1177/0165551518761013 Khasmakhi NN, 2019, ENG APPL ARTIF INTEL, V82, P126, DOI 10.1016/j.engappai.2019.03.020 Li K, 2018, SCIENTOMETRICS, V115, P1, DOI 10.1007/s11192-017-2622-5 Liang TP, 2018, EXPERT SYST APPL, V111, P2, DOI 10.1016/j.eswa.2018.05.018 Liao HC, 2018, SUSTAINABILITY-BASEL, V10, DOI 10.3390/su10010166 Makawana PR, 2018, LECT NOTE NETW SYST, V19, P213, DOI 10.1007/978-981-10-5523-2_20 Mäntylä MV, 2018, COMPUT SCI REV, V27, P16, DOI 10.1016/j.cosrev.2017.10.002 Mao M., 2018, LNCS, V0943 Mosavi A, 2019, ENERGIES, V12, DOI 10.3390/en12071301 Persson I, 2009, TLS-TIMES LIT SUPPL, P9 Piryani R, 2017, INFORM PROCESS MANAG, V53, P122, DOI 10.1016/j.ipm.2016.07.001 PRICE DJD, 1965, SCIENCE, V149, P510 Randhawa K, 2016, J PROD INNOVAT MANAG, V33, P750, DOI 10.1111/jpim.12312 Saheb T, 2019, HEALTHC INFORM RES, V25, P61 Tran BX, 2019, INT J ENV RES PUB HE, V16, DOI 10.3390/ijerph16122150 van Eck NJ, 2010, J AM SOC INF SCI TEC, V61, P2405, DOI 10.1002/asi.21421 van Eck NJ, 2010, SCIENTOMETRICS, V84, P523, DOI 10.1007/s11192-009-0146-3 Wang XY, 2019, J CANCER, V10, P2643, DOI 10.7150/jca.32739 Xu ZS, 2019, INT J MACH LEARN CYB, V10, P2375, DOI 10.1007/s13042-018-0875-9 Yeung AWK, 2017, CURR SCI INDIA, V112, P725, DOI 10.18520/cs/v112/i04/725-734 Yu D., 2019, J. Data. Infor. Manag, V1, P3, DOI [10.3390/su10010166, 10.1007/s42488-019-00001-2, DOI 10.1007/S42488-019-00001-2] Yu DJ, INT J MACHINE LEARNI, DOI 10.1007/s13042-019-01028-y Zimbra D, 2018, ACM TRANS MANAG INF, V9, DOI 10.1145/3185045 Zupic I, 2015, ORGAN RES METHODS, V18, P429, DOI 10.1177/1094428114562629 NR 45 TC 7 Z9 7 U1 4 U2 31 PU PHCOG NET PI KARNATAKA PA 17, 2ND FLR, BUDDHA VIHAR RD, NEAR SPORTS ZONE, COX TOWN, BENGALURU, KARNATAKA, 560005, INDIA SN 2321-6654 EI 2320-0057 J9 J SCIENTOMETR RES JI J. Scientometr. Res. PD SEP-DEC PY 2020 VL 9 IS 3 BP 310 EP 318 DI 10.5530/jscires.9.3.38 PG 9 WC Information Science & Library Science WE Emerging Sources Citation Index (ESCI) SC Information Science & Library Science GA PP1WG UT WOS:000605658100008 OA hybrid DA 2024-09-05 ER PT C AU Wen, J AF Wen, Ji BE MizeraPietraszko, J Pichappan, P TI Research on Effect Evaluation of Physical Education Teaching Based on Artificial Intelligence Expert Decision Making System SO LECTURE NOTES IN REAL-TIME INTELLIGENT SYSTEMS (RTIS 2016) SE Advances in Intelligent Systems and Computing LA English DT Proceedings Paper CT 1st Beijing International Conference on Real-Time Intelligent Systems (RTIS) CY SEP 01-03, 2016 CL Beijing, PEOPLES R CHINA DE Artificial intelligence; Expert system; Physical education AB Teaching Result Evaluation in physical education plays an extremely important role in the link of the teaching of Physical Education. The development is accompanied with the development of evaluation and evaluation of education. The principle, data, mathematical model and human computer interaction model were used in the evaluation of Physical Education teaching according to artificial intelligence expert decision system, and the index system of evaluation of physical education teaching work was constructed, based on this, the sports evaluation and monitoring system with functions of diagnostic evaluation, data statistics and assistant decision making was studied in this paper, then the math model was built by calling a variety of sports teaching information resources and a large number of analytical tools, and the simulation process of decision making and the environment of analysis and execution were provided. The results show that the evaluation results of physical education teaching effect based on artificial intelligence expert decision-making system can provide theoretical basis for decision-making and evaluation of relevant competent departments, which plays a positive role in promoting the reform of physical education and improving the quality of physical education. C1 [Wen, Ji] Hohai Univ, Dept Phys Educ, Nanjing, Jiangsu, Peoples R China. C3 Hohai University RP Wen, J (corresponding author), Hohai Univ, Dept Phys Educ, Nanjing, Jiangsu, Peoples R China. EM JIW2541JW@163.com CR Alder H., 2014, INT J RHEUMATOL, V2014, P672 Bravo C, 2014, SPE J, V19, P547, DOI 10.2118/150314-PA Páez-Logreira HD, 2015, REV FAC ING-UPTC, V24, P109, DOI 10.19053/01211129.3555 Ericsson K. A., 2013, THINKING PROBLEM SOL, V2, P37 Ghadirli H M, 2013, ARXIV PREPRINT ARXIV, V1304, P4619 Crespo RG, 2013, EXPERT SYST APPL, V40, P7381, DOI 10.1016/j.eswa.2013.06.054 Koedinger KR, 2013, AI MAG, V34, P27, DOI 10.1609/aimag.v34i3.2484 Luxton DD, 2014, PROF PSYCHOL-RES PR, V45, P332, DOI 10.1037/a0034559 Mellit A, 2014, ENERGY, V70, P1, DOI 10.1016/j.energy.2014.03.102 Piltan Farzin, 2013, International Journal of Information Engineering and Electronic Business, V5, P44, DOI 10.5815/ijieeb.2013.02.07 Piltan Farzin, 2013, International Journal of Intelligent Systems and Applications, V5, P83, DOI 10.5815/ijisa.2013.08.10 Piltan Farzin, 2013, International Journal of Intelligent Systems and Applications, V5, P1, DOI 10.5815/ijisa.2013.05.01 Raza MQ, 2015, RENEW SUST ENERG REV, V50, P1352, DOI 10.1016/j.rser.2015.04.065 Shiavi R., 2000, COMP INSTRUCTIONAL M, V1, P14 Wang D, 2013, J CONVERG INF TECHNO, V8, P716 NR 15 TC 4 Z9 4 U1 4 U2 32 PU SPRINGER INTERNATIONAL PUBLISHING AG PI CHAM PA GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND SN 2194-5357 EI 2194-5365 BN 978-3-319-60744-3; 978-3-319-60743-6 J9 ADV INTELL SYST PY 2018 VL 613 BP 289 EP 298 DI 10.1007/978-3-319-60744-3_31 PG 10 WC Computer Science, Artificial Intelligence; Computer Science, Interdisciplinary Applications; Neurosciences WE Conference Proceedings Citation Index - Science (CPCI-S) SC Computer Science; Neurosciences & Neurology GA BL5XT UT WOS:000452919900031 DA 2024-09-05 ER PT C AU Chen, XL Zou, D Cheng, G Xie, HR AF Chen, Xieling Zou, Di Cheng, Gary Xie, Haoran BE Chang, M Chen, NS Sampson, DG Tlili, A TI Artificial intelligence-assisted personalized language learning: systematic review and co-citation analysis SO IEEE 21ST INTERNATIONAL CONFERENCE ON ADVANCED LEARNING TECHNOLOGIES (ICALT 2021) SE IEEE International Conference on Advanced Learning Technologies LA English DT Proceedings Paper CT 21st IEEE International Conference on Advanced Learning Technologies (ICALT) CY JUL 12-15, 2021 CL ELECTR NETWORK DE artificial intelligence; personalized language learning; systematic review; co-citation network analysis ID TECHNOLOGY AB Artificial intelligence (AI) for personalized learning has attracted increasing attention in various educational contexts and domains, including language learning. This study systematically reviewed academic studies on AI-assisted personalized language learning (PLL) from the perspectives of article trends, top journals, countries/regions and institutions, AI technology types, learning outcomes and supports, participants, scientific collaborations, and co-citation relations. Results indicated Taiwanese institutions' predominance in the field and the prevalent use of intelligent tutoring systems, natural language processing, and artificial neural network in facilitating personalized diagnosis and learning path and material recommendations in language learning. Furthermore, students' improved language outcomes and positive perception, satisfaction, or motivation towards language learning and AI technologies were commonly reported. The co-authorship analysis results indicated the close inter-regional collaborations, while the cross-regional collaborations are expected to be enhanced. The co-citation network analysis results highlighted the significance of fuzzy systems and item response theory. Additionally, learner profiling mining and learning resource adaptation were important directions to realize mobile- and web-based PLL. C1 [Chen, Xieling; Cheng, Gary] Educ Univ Hong Kong, Dept Math & Informat Technol, Hong Kong, Peoples R China. [Zou, Di] Educ Univ Hong Kong, Dept English Language Educ, Hong Kong, Peoples R China. [Xie, Haoran] Lingnan Univ, Dept Comp & Decis Sci, Hong Kong, Peoples R China. C3 Education University of Hong Kong (EdUHK); Education University of Hong Kong (EdUHK); Lingnan University RP Chen, XL (corresponding author), Educ Univ Hong Kong, Dept Math & Informat Technol, Hong Kong, Peoples R China. EM xielingchen0708@gmail.com; dizoudaisy@gmail.com; chengks@eduhk.hk; hrxie2@gmail.com RI Xie, Haoran/AFS-3515-2022 OI Xie, Haoran/0000-0003-0965-3617; ZOU, Di/0000-0001-8435-9739; PV, THAYYIB/0000-0001-8929-0398 CR Bastian M., 2009, Association for the Advancement of Artificial Intelligence, DOI 10.13140/2.1.1341.1520 Chang C.-Y., COMPUT EDUC Chen CM, 2006, IEEE SYS MAN CYBERN, P4898, DOI 10.1109/ICSMC.2006.385081 Chen CM, 2007, EXPERT SYST APPL, V33, P6, DOI 10.1016/j.eswa.2006.04.025 Chen CM, 2006, EXPERT SYST APPL, V30, P378, DOI 10.1016/j.eswa.2005.07.029 Chen XL, 2021, EDUC TECHNOL SOC, V24, P205 Chih-Ming C., 2011, EDUC TECHNOL SOC, P153 Demenko G, 2010, ARCH ACOUST, V35, P309, DOI 10.2478/v10168-010-0027-z Gaheen MM, 2021, EDUC INF TECHNOL, V26, P1165, DOI 10.1007/s10639-020-10300-6 Hsu CK, 2010, COMPUT EDUC, V55, P76, DOI 10.1016/j.compedu.2009.12.004 Hsu MH, 2008, EXPERT SYST APPL, V34, P683, DOI 10.1016/j.eswa.2006.10.004 Hsu YC, 2012, EDUC TECHNOL SOC, V15, P354 Ismail HM, 2016, IEEE INT CONF INNOV, P197 Kim WH, 2020, IEEE ACCESS, V8, P27927, DOI 10.1109/ACCESS.2020.2972167 Kong SC, 2014, J COMPUT EDUC, V1, P187, DOI 10.1007/s40692-014-0011-0 Lee CS, 2005, IEEE T SYST MAN CY B, V35, P859, DOI 10.1109/TSMCB.2005.845032 Lian AP, 2017, GEMA ONLINE J LANG S, V17, P1, DOI 10.17576/gema-2017-1704-01 Lin CT, 1996, IEEE T SYST MAN CY B, V26, P744, DOI 10.1109/3477.537316 Liu Y, 2018, NEUROQUANTOLOGY, V16, P881, DOI 10.14704/nq.2018.16.5.1416 Lo HY, 2014, COMPUT EDUC, V78, P250, DOI 10.1016/j.compedu.2014.06.007 Shang J., 2006, Learning by effective utilization of technologies: Facilitating intercultural, P503 Tang KY, 2023, INTERACT LEARN ENVIR, V31, P2134, DOI 10.1080/10494820.2021.1875001 Troussas C, 2019, EXPERT SYST APPL, V127, P85, DOI 10.1016/j.eswa.2019.03.003 van Eck NJ, 2010, SCIENTOMETRICS, V84, P523, DOI 10.1007/s11192-009-0146-3 Wang YH, 2011, EXPERT SYST APPL, V38, P6480, DOI 10.1016/j.eswa.2010.11.098 Wible D, 2011, J COMPUT ASSIST LEAR, V27, P530, DOI 10.1111/j.1365-2729.2011.00413.x NR 26 TC 9 Z9 9 U1 6 U2 69 PU IEEE COMPUTER SOC PI LOS ALAMITOS PA 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1264 USA SN 2161-3761 BN 978-1-6654-4106-3 J9 IEEE INT CONF ADV LE PY 2021 BP 241 EP 245 DI 10.1109/ICALT52272.2021.00079 PG 5 WC Computer Science, Information Systems; Computer Science, Interdisciplinary Applications; Computer Science, Theory & Methods; Education & Educational Research WE Conference Proceedings Citation Index - Science (CPCI-S); Conference Proceedings Citation Index - Social Science & Humanities (CPCI-SSH) SC Computer Science; Education & Educational Research GA BS4HI UT WOS:000719352000072 DA 2024-09-05 ER PT J AU Corrales-Garay, D Rodríguez-Sánchez, JL Montero-Navarro, A AF Corrales-Garay, Diego Rodriguez-Sanchez, Jose-Luis Montero-Navarro, Antonio TI Co-Creating Value With Artificial Intelligence: A Bibliometric Approach to the Use of AI in Open Innovation Ecosystems SO IEEE ACCESS LA English DT Article DE AI; artificial intelligence; bibliometric analysis; innovation ecosystems; OI; open innovation; value co-creation ID INDUSTRY 4.0; ABSORPTIVE-CAPACITY AB Open innovation, which blurs the boundaries of organizations using inflows and outflows of knowledge to boost their innovation processes, has transformed the innovation paradigm, evolving from higher degrees of protectionism to cooperative relationships. Nevertheless, frequently the management of the huge amount of information and data generated in an open innovation ecosystem requires the use of information and communication technologies. In this context, artificial intelligence can be a major help to profit from all the opportunities derived from open innovation. Considering the growing body of academic literature dealing with the use of artificial intelligence tools in the context of open innovation environments, the objective of this article is revealing the main references, the academic trends and the hottest topics dealing with this subject, disentangling the knowledge structure of the research through a bibliometric analysis carried out over 63 papers selected from Web of Science database, using both co-word analysis and bibliographic coupling. The recent burst in the academic production anticipates a potentially massive interest in this topic, which is studied by the literature at three different levels (operational, managerial, and social). This study reveals the existence of relevant research opportunities, specially related with the management of the potential conflicts that may stem from the fuzzy ownership of the data generated by an artificial intelligence, and the roles of the different agents in such context. C1 [Corrales-Garay, Diego; Rodriguez-Sanchez, Jose-Luis; Montero-Navarro, Antonio] Univ Rey Juan Carlos, Fac Ciencias Econ & Empresa, Dept Business Econ Adm Dir & Org, Appl Econ & Fundamentals Econ Anal 2, Madrid 28032, Spain. C3 Universidad Rey Juan Carlos RP Corrales-Garay, D (corresponding author), Univ Rey Juan Carlos, Fac Ciencias Econ & Empresa, Dept Business Econ Adm Dir & Org, Appl Econ & Fundamentals Econ Anal 2, Madrid 28032, Spain. EM diego.corrales@urjc.es RI castro wanderley, lorenna/HGA-7990-2022; Rodriguez-Sanchez, Jose-Luis/N-6040-2018; Corrales-Garay, Diego/N-6024-2018 OI Rodriguez-Sanchez, Jose-Luis/0000-0001-7913-8747; Corrales-Garay, Diego/0000-0003-2362-6367; Montero-Navarro, Antonio/0000-0001-8096-5352 FU OPENINNOVA High Performance Research Group (Grupo de investigacin de alto rendimiento en Innovacin abierta de la Universidad Rey Juan Carlos) FX No Statement Available CR Abdurrahman A., 2022, J. Inf. Syst. Eng. Bus. Intell., V8, P100, DOI [10.20473/jisebi.8.2.100-108, DOI 10.20473/JISEBI.8.2.100-108.[53]H] Abouzeedan A, 2012, WORLD J SCI TECHNOL, V9, P6, DOI 10.1108/20425941211223598 Alam MA, 2022, J PROD INNOVAT MANAG, V39, P177, DOI 10.1111/jpim.12615 Allal-Chérif O, 2023, J BUS RES, V154, DOI 10.1016/j.jbusres.2022.113379 Alvarez-Aros Erick Leobardo, 2022, Rev. adm. empres., V62, pe2020, DOI 10.1590/s0034-759020220301 Aquilani B, 2020, SUSTAINABILITY-BASEL, V12, DOI 10.3390/su12218943 Arias-P rez J., 2023, BusProcess Manage. J., V29, P1791, DOI [10.1108/bpmj-10-2022-0484, DOI 10.1108/BPMJ-10-2022-0484] Arias-Pérez J, 2023, IND MARKET MANAG, V111, P30, DOI 10.1016/j.indmarman.2023.03.005 Arias-Pérez J, 2022, J STRATEGY MANAG, V15, P1, DOI 10.1108/JSMA-09-2020-0262 Baban CF, 2021, SCI TECHNOL SOC, V26, P482, DOI 10.1177/09717218211020475 Bahoo S, 2023, TECHNOL FORECAST SOC, V188, DOI 10.1016/j.techfore.2022.122264 Bautista-Bernal I, 2021, SAFETY SCI, V137, DOI 10.1016/j.ssci.2021.105167 Bogers M, 2018, CALIF MANAGE REV, V60, P5, DOI 10.1177/0008125617745086 Broekhuizen T, 2023, J BUS RES, V167, DOI 10.1016/j.jbusres.2023.114196 CALLON M, 1991, SCIENTOMETRICS, V22, P155, DOI 10.1007/BF02019280 Cammarano A, 2023, IEEE T ENG MANAGE, DOI 10.1109/TEM.2023.3240213 Cantú-Ortiz FJ, 2020, INT J INTERACT DES M, V14, P1195, DOI 10.1007/s12008-020-00702-8 Capozzi F, 2021, NUTRIENTS, V13, DOI 10.3390/nu13113948 Cetindamar D, 2020, THUNDERBIRD INT BUS, V62, P457, DOI 10.1002/tie.22158 Chesbrough H., 2006, Open Innovation:Researching a New Paradigm, P15 Chesbrough H. W., 2003, Open Innovation: The New Imperative for Creating and Profiting from Technology Chung H, 2023, MANAG DECIS ECON, V44, P4404, DOI 10.1002/mde.3958 Cirjevskis A, 2022, J RISK FINANC MANAG, V15, DOI 10.3390/jrfm15090411 Cirule I, 2022, EUR INTEGR STUD, P111, DOI 10.5755/j01.eis.0.16.31635 Cobo MJ, 2012, J AM SOC INF SCI TEC, V63, P1609, DOI 10.1002/asi.22688 Cobo MJ, 2011, J AM SOC INF SCI TEC, V62, P1382, DOI 10.1002/asi.21525 Coco N, 2024, R&D MANAGE, V54, P118, DOI 10.1111/radm.12645 COHEN WM, 1990, ADMIN SCI QUART, V35, P128, DOI 10.2307/2393553 Corrales-Garay D, 2020, IEEE ACCESS, V8, P34696, DOI 10.1109/ACCESS.2020.2974378 Corrales-Garay D, 2019, GOV INFORM Q, V36, P77, DOI 10.1016/j.giq.2018.10.008 Culot G, 2020, INT J PROD ECON, V226, DOI 10.1016/j.ijpe.2020.107617 Dabic M, 2023, TECHNOL FORECAST SOC, V194, DOI 10.1016/j.techfore.2023.122720 Dabrowska A., R&D Manage Donthu N, 2021, INT J RES MARK, V38, P232, DOI 10.1016/j.ijresmar.2020.10.006 Donthu N, 2021, J BUS RES, V133, P285, DOI 10.1016/j.jbusres.2021.04.070 Fernandes S, 2019, INT J INNOV LEARN, V26, P82 Ferràs X, 2020, J CASES INF TECHNOL, V22, P1, DOI 10.4018/JCIT.2020010101 Ferrás-Hernández X, 2020, INT J BUS ENVIRON, V11, P404, DOI 10.1504/IJBE.2020.111403 Frias L.V, 2022, ESICMarket, V53, pe281, DOI [10.7200/esicm.53.281, DOI 10.7200/ESICM.53.281] Füller J, 2021, INT J PROJ MANAG, V39, P183, DOI 10.1016/j.ijproman.2021.01.005 Guggenberger T, 2021, INT J INNOV TECHNOL, V18, DOI 10.1142/S0219877021400022 Hall CM, 2011, TOURISM MANAGE, V32, P16, DOI 10.1016/j.tourman.2010.07.001 Harif MAAM, 2022, HELIYON, V8, DOI 10.1016/j.heliyon.2022.e10441 Harison E, 2010, RES POLICY, V39, P351, DOI 10.1016/j.respol.2010.01.008 Hartmann P, 2020, ACAD MANAG DISCOV, V6, P359, DOI 10.5465/amd.2019.0043 He Q, 1999, LIBR TRENDS, V48, P133 Himanen L, 2019, ADV SCI, V6, DOI 10.1002/advs.201900808 Hofmann E, 2017, COMPUT IND, V89, P23, DOI 10.1016/j.compind.2017.04.002 Hozdic E, 2023, APPL SYST INNOV, V6, DOI 10.3390/asi6020049 Huizingh EKRE, 2011, TECHNOVATION, V31, P2, DOI 10.1016/j.technovation.2010.10.002 Jagatheesaperumal SK, 2022, IEEE INTERNET THINGS, V9, P12861, DOI 10.1109/JIOT.2021.3139827 Jing G., 2023, Kybernetes, early access, DOI [10.1108/k-05-2023-0825.[35]X, DOI 10.1108/K-05-2023-0825.[35]X] Kamada Y, 2023, J GASTROENTEROL, V58, P79, DOI 10.1007/s00535-022-01932-1 Keathley-Herring H, 2016, SCIENTOMETRICS, V109, P927, DOI 10.1007/s11192-016-2096-x Kelly BS, 2023, RADIOGRAPHY, V29, pS103, DOI 10.1016/j.radi.2023.03.009 Kim K, 2022, INFORMATION, V13, DOI 10.3390/info13050253 Kumar S, 2022, PROD OPER MANAG, V31, P4488, DOI 10.1111/poms.13859 Kuzior A, 2023, SUSTAINABILITY-BASEL, V15, DOI 10.3390/su15097205 Lee H, 2018, IND MANAGE DATA SYST, V118, P683, DOI 10.1108/IMDS-02-2017-0044 Li T, 2023, SUSTAINABILITY-BASEL, V15, DOI 10.3390/su151813779 Liu ZG, 2015, SCIENTOMETRICS, V103, P135, DOI 10.1007/s11192-014-1517-y Luthra S, 2018, PROCESS SAF ENVIRON, V117, P168, DOI 10.1016/j.psep.2018.04.018 Majumdarr S, 2023, MANAGE DECIS, DOI 10.1108/MD-10-2022-1484 MARTYN J, 1964, J DOC, V20, P236, DOI 10.1108/eb026352 Masucci M, 2020, RES POLICY, V49, DOI 10.1016/j.respol.2019.103823 McCarthy J, 2007, WHAT IS ARTIFICIAL INTELLIGENCE? McKinsey & Company, 2022, What are Industry 4.0,the Fourth Industrial Revolution, and 4IR Mikalef P, 2021, INFORM MANAGE-AMSTER, V58, DOI 10.1016/j.im.2021.103434 Minati V., IEEE Access, V7 Misra NN, 2022, IEEE INTERNET THINGS, V9, P6305, DOI 10.1109/JIOT.2020.2998584 Nuryakin, 2022, MANAG SYST PROD ENG, V30, P214, DOI 10.2478/mspe-2022-0027 Nylund PA, 2020, REV MANAG SCI, V14, P269, DOI 10.1007/s11846-018-0294-z Ottonicar M. L. P., 2021, AtoZ: Novas Praticas emInformacao e Conhecimento, V10, P1, DOI [10.5380/atoz.v10i3.81882, DOI 10.5380/ATOZ.V10I3.81882] Ouechtati S, 2022, INT J INNOV MANAG, V26, DOI 10.1142/S1363919622500013 Oztemel E, 2020, J INTELL MANUF, V31, P127, DOI 10.1007/s10845-018-1433-8 Park SH, 2020, QUAL INNOV PROSPER, V24, P1, DOI [10.12776/QIP.V24I1.1430, 10.15814/jpr.2020.24.1.1] Pedota M, 2023, RES POLICY, V52, DOI 10.1016/j.respol.2023.104812 Poje T, 2022, J BUS ETHICS, V179, P451, DOI 10.1007/s10551-021-04846-9 Priestley M, 2022, DATA POLICY, V4, DOI 10.1017/dap.2022.8 Rana J, 2023, OPER MANAGE RES, V16, P1641, DOI 10.1007/s12063-022-00335-y Roblek V, 2021, ORGANIZACIJA, V54, P293, DOI 10.2478/orga-2021-0020 Schmidt A, 2023, RES TECHNOL MANAGE, V66, P36, DOI 10.1080/08956308.2023.2235535 Schwab K., 2017, 4 IND REVOLUTION Sie RLL, 2011, J UNIVERS COMPUT SCI, V17, P1659 Skulimowski AMJ, 2023, J ASSOC INF SCI TECH, V74, P905, DOI 10.1002/asi.24763 Tahamtan I, 2016, SCIENTOMETRICS, V107, P1195, DOI 10.1007/s11192-016-1889-2 Teece DJ, 1997, STRATEGIC MANAGE J, V18, P509, DOI 10.1002/(SICI)1097-0266(199708)18:7<509::AID-SMJ882>3.0.CO;2-Z Thomas A, 2020, BUS PROCESS MANAG J, V26, P707, DOI 10.1108/BPMJ-01-2019-0001 Tripathi V, 2022, SUSTAINABILITY-BASEL, V14, DOI 10.3390/su14127452 Uribe-Echeberria R, 2020, DYNA-BILBAO, V95, P74, DOI 10.6036/9166 van Eck NJ, 2010, SCIENTOMETRICS, V84, P523, DOI 10.1007/s11192-009-0146-3 Wang SY, 2020, CURR OPIN OPHTHALMOL, V31, P318, DOI 10.1097/ICU.0000000000000676 Westerman George, 2014, MIT SLOAN MANAGEMENT Xue ZB, 2023, J RETAIL CONSUM SERV, V72, DOI 10.1016/j.jretconser.2023.103299 Yang JL, 2022, CALIF MANAGE REV, V64, P24, DOI 10.1177/00081256211041787 Yang XP, 2020, INT J TECHNOL MANAGE, V82, P151 Yigitcanlar T, 2020, ENERGIES, V13, DOI 10.3390/en13061473 Yoon B, 2014, IND MANAGE DATA SYST, V114, P1068, DOI 10.1108/IMDS-03-2014-0086 Yun JJ, 2021, SCI TECHNOL SOC, V26, P183, DOI 10.1177/09717218211006969 Yun JJ, 2016, SUSTAINABILITY-BASEL, V8, DOI 10.3390/su8080797 Zahra SA, 2002, ACAD MANAGE REV, V27, P185, DOI 10.2307/4134351 Zupic I, 2015, ORGAN RES METHODS, V18, P429, DOI 10.1177/1094428114562629 NR 102 TC 0 Z9 0 U1 15 U2 15 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 2169-3536 J9 IEEE ACCESS JI IEEE Access PY 2024 VL 12 BP 56860 EP 56871 DI 10.1109/ACCESS.2024.3391054 PG 12 WC Computer Science, Information Systems; Engineering, Electrical & Electronic; Telecommunications WE Science Citation Index Expanded (SCI-EXPANDED) SC Computer Science; Engineering; Telecommunications GA OQ8Z6 UT WOS:001208844400001 OA gold DA 2024-09-05 ER PT J AU Rover, A AF Jose Rover, Aires TI A bibliometric overview of data protection and privacy in the context of the advance of artificial intelligence SO SCIRE-REPRESENTACION Y ORGANIZACION DEL CONOCIMIENTO LA English DT Article DE Bibliographic reviews; Data protection; Artificial intelligence; Privacy AB A new societal landscape is taking form, marked by a myriad of emerging themes warranting thorough examination. Chief among these discussions is the pivotal role of artificial intelligence (AI), particularly machine learning and its predictive applications. Despite extensive exploration of issues pertaining to personal data protection and privacy across scientific literature, there remains a conspicuous dearth of studies integrating this analysis with the latest AI methodologies. Hence, this study endeavors to undertake a predominantly quantitative mapping of the most influential scientific works addressing these interconnected themes. Our approach, conducted over the span of March and April 2024, employs a bibliometric methodology, prioritizing an inductive analysis framework and adopting the case study methodology to fulfill this objective. C1 [Jose Rover, Aires] Univ Fed Santa Catarina, Fac Derecho, Florianopolis, SC, Brazil. C3 Universidade Federal de Santa Catarina (UFSC) RP Rover, A (corresponding author), Univ Fed Santa Catarina, Fac Derecho, Florianopolis, SC, Brazil. EM aires.j.r@ufsc.br CR Assuncao Luis, Lex Machinae. Beck Ulrich, 2022, Prim@ Facie., V1, P18 Bufrem L., 2005, Ciencia da Informacao, V34, P9, DOI 10.1590/S0100-19652005000200002 Castells M., 1999, SOC REDE Fonseca E. N., 1986, Bibliometria: teoria e pratica. Gehlen A., 1980, Man in the Age of Technology Medeiros Nelma, 2003, Novamente Revista., V4, P247 Minsky M., 1985, SOC MIND Ribeiro C.J. S., 2014, Informacao Tecnologia, V1, P96 Rover Aires Jose, 1995, Revista sequencia., V30, P65 ROVER Aires Jose., 2001, Informatica no direito: inteligencia artificial Sarlet Ingo Wolfgang, 2022, Serie Direito, Tecnologia, Inovacao e Protecao de Dados num Mundo em Transformacao NR 12 TC 0 Z9 0 U1 2 U2 2 PU UNIV ZARAGOZA PI ZARAGOZA PA C/PEDRO CERBUNA 12, ZARAGOZA, 50009, SPAIN SN 1135-3716 EI 2340-7042 J9 SCIRE JI Scire PD JAN-JUN PY 2024 VL 30 IS 1 BP 49 EP 58 PG 10 WC Information Science & Library Science WE Emerging Sources Citation Index (ESCI) SC Information Science & Library Science GA WC9J0 UT WOS:001252784900003 DA 2024-09-05 ER PT J AU Shevchuk, R Martsenyuk, V AF Shevchuk, Ruslan Martsenyuk, Vasyl TI Neural Networks Toward Cybersecurity: Domaine Map Analysis of State-of-the-Art Challenges SO IEEE ACCESS LA English DT Article DE Neural networks; Computer security; Market research; Bibliometrics; Visualization; Knowledge engineering; Databases; Neural network; cybersecurity; scientometric database; domaine map analysis; CiteSpace ID DEEP LEARNING APPROACH; CYBER SECURITY; ARTIFICIAL-INTELLIGENCE; ATTACK DETECTION; IOT; INTERNET; SCIENCE; DATASET; WEB AB The growing interest in applying neural networks for cybersecurity has prompted a substantial increase in related research. This paper presents a comprehensive bibliometric analysis of research on cybersecurity towards neural networks published in the Web of Science over the past two decades (2003-2023) using bibliometric methods and CiteSpace software. The analysis encompasses yearly publication trends, types of publications, and trends across various dimensions such as publishing sources, organizations, researchers, countries, and keywords. Additionally, timeline and burst detection analyses were conducted to identify significant topic trends and citations in the last two decades. It also outlines the latest trends, under-explored topics, and open challenges. C1 [Shevchuk, Ruslan; Martsenyuk, Vasyl] Univ Bielsko Biala, Dept Comp Sci & Automat, PL-43309 Biala, Poland. [Shevchuk, Ruslan] West Ukrainian Natl Univ, Dept Comp Sci, UA-46009 Ternopol, Ukraine. C3 University of Bielsko-Biala; Ministry of Education & Science of Ukraine; West Ukrainian National University RP Shevchuk, R (corresponding author), Univ Bielsko Biala, Dept Comp Sci & Automat, PL-43309 Biala, Poland.; Shevchuk, R (corresponding author), West Ukrainian Natl Univ, Dept Comp Sci, UA-46009 Ternopol, Ukraine. EM rshevchuk@ubb.edu.pl RI Shevchuk, Ruslan/G-5668-2017 OI Shevchuk, Ruslan/0000-0001-5381-9528 FU European Union through the ERASMUS+ Project: The Future is in Applied Artificial Intelligence FX No Statement Available CR Abdullahi M, 2022, ELECTRONICS-SWITZ, V11, DOI 10.3390/electronics11020198 Al-Garadi MA, 2020, IEEE COMMUN SURV TUT, V22, P1646, DOI 10.1109/COMST.2020.2988293 AL-Hawawreh M, 2018, J INF SECUR APPL, V41, P1, DOI 10.1016/j.jisa.2018.05.002 Al-Khater WA, 2020, IEEE ACCESS, V8, P137293, DOI 10.1109/ACCESS.2020.3011259 Al-Turaiki I, 2021, BIG DATA-US, V9, P233, DOI 10.1089/big.2020.0263 Alazab M, 2019, ADV SCI TECH SEC APP, P1, DOI 10.1007/978-3-030-13057-2 AlEroud A, 2020, PROCEEDINGS OF THE SIXTH INTERNATIONAL WORKSHOP ON SECURITY AND PRIVACY ANALYTICS (IWSPA'20), P53, DOI 10.1145/3375708.3380315 Ali S, 2022, ELECTRONICS-SWITZ, V11, DOI 10.3390/electronics11233934 Alkadi O, 2021, IEEE INTERNET THINGS, V8, P9463, DOI 10.1109/JIOT.2020.2996590 Alohali MA, 2022, COGN NEURODYNAMICS, V16, P1045, DOI 10.1007/s11571-022-09780-8 Alom MZ, 2019, ELECTRONICS-SWITZ, V8, DOI 10.3390/electronics8030292 Alotaibi I., 2020, P 3 INT C COMP APPL, P1 Alsaedi A, 2020, IEEE ACCESS, V8, P165130, DOI 10.1109/ACCESS.2020.3022862 [Anonymous], 2024, Citespace 6.2.r7, [Anonymous], 2019, Int. J. Adv. Res. Comput. Sci., V10, P1 Bailey T., 2014, McKinsey Quarterly, V2, P17 Berman DS, 2019, INFORMATION, V10, DOI 10.3390/info10040122 Biggio B, 2018, PROCEEDINGS OF THE 2018 ACM SIGSAC CONFERENCE ON COMPUTER AND COMMUNICATIONS SECURITY (CCS'18), P2154, DOI 10.1145/3243734.3264418 Birkle C, 2020, QUANT SCI STUD, V1, P363, DOI 10.1162/qss_a_00018 Bozkir AS, 2023, COMPUT SECUR, V124, DOI 10.1016/j.cose.2022.102964 Buczak AL, 2016, IEEE COMMUN SURV TUT, V18, P1153, DOI 10.1109/COMST.2015.2494502 Capuano N, 2022, IEEE ACCESS, V10, P93575, DOI 10.1109/ACCESS.2022.3204171 Carlini N, 2017, P IEEE S SECUR PRIV, P39, DOI 10.1109/SP.2017.49 Chaudhary Harsh, 2020, Proceedings of the 3rd International Conference on Intelligent Sustainable Systems (ICISS 2020), P829, DOI 10.1109/ICISS49785.2020.9316003 Choras M, 2021, NEUROCOMPUTING, V452, P705, DOI 10.1016/j.neucom.2020.07.138 Dasgupta D, 2022, J DEF MODEL SIMUL-AP, V19, P57, DOI 10.1177/1548512920951275 Davis S., 2020, P IEEE INT IOT EL ME, P1 Deora R S., 2021, Journal of communication engineering Systems, V11, P1 DILEK S., 2015, Applications of artificial intelligence techniques to combating cyber crimes: A review Ding DR, 2018, NEUROCOMPUTING, V275, P1674, DOI 10.1016/j.neucom.2017.10.009 Ding YX, 2016, IEEE IJCNN, P3901, DOI 10.1109/IJCNN.2016.7727705 Diro AA, 2018, FUTURE GENER COMP SY, V82, P761, DOI 10.1016/j.future.2017.08.043 Dixit S., 2021, Comput. Sci. Rev., V39, P16 Drewek-Ossowicka A, 2021, J AMB INTEL HUM COMP, V12, P497, DOI 10.1007/s12652-020-02014-x Feng F, 2015, J INFORMETR, V9, P118, DOI 10.1016/j.joi.2014.11.009 Ferrag MA, 2020, J INF SECUR APPL, V50, DOI 10.1016/j.jisa.2019.102419 Ford A., 2014, P 27 INT C COMP APPL, P1 Gamage S, 2020, J NETW COMPUT APPL, V169, DOI 10.1016/j.jnca.2020.102767 Garg V., 2021, P 49 RES C COMM INF, P17 Goldstein V. C., Preventing DNN model IP theft via hardware obfuscation Goodfellow I, 2016, ADAPT COMPUT MACH LE, P1 Halgas L, 2020, LECT NOTES COMPUT SC, V11897, P219, DOI 10.1007/978-3-030-39303-8_17 Hasan M, 2019, INTERNET THINGS-NETH, V7, DOI 10.1016/j.iot.2019.100059 Hassan MM, 2020, INFORM SCIENCES, V513, P386, DOI 10.1016/j.ins.2019.10.069 HE KM, 2016, PROC CVPR IEEE, P770, DOI DOI 10.1109/CVPR.2016.90 Imtiaz SI, 2021, FUTURE GENER COMP SY, V115, P844, DOI 10.1016/j.future.2020.10.008 Jha S, 2020, COMPUT SECUR, V99, DOI 10.1016/j.cose.2020.102037 Jiang XY, 2023, COMPUT BIOL MED, V167, DOI 10.1016/j.compbiomed.2023.107604 Jinpei Yan, 2018, Security and Communication Networks, V2018, DOI 10.1155/2018/7247095 Kingma D. P., 2014, INT C LEARNING REPRE Kleinberg J, 2003, DATA MIN KNOWL DISC, V7, P373, DOI 10.1023/A:1024940629314 Kolias C, 2017, COMPUTER, V50, P80, DOI 10.1109/MC.2017.201 Koroniotis N, 2019, FUTURE GENER COMP SY, V100, P779, DOI 10.1016/j.future.2019.05.041 Kovalchuk O, 2023, INT J ELECTRON TELEC, V69, P301, DOI 10.24425/ijet.2023.144365 Kovalchuk O, 2023, INFORMATION, V14, DOI 10.3390/info14030161 Lai M., 2024, ACMComput. Surv., V56, P1 Li C., 2016, CiteSpace: Text Mining and Visualization in ScientificLiterature, P149 Li DQ, 2021, IEEE T NETW SCI ENG, V8, P736, DOI 10.1109/TNSE.2021.3051354 Li JH, 2018, FRONT INFORM TECH EL, V19, P1462, DOI 10.1631/FITEE.1800573 Liu WS, 2019, SCIENTOMETRICS, V121, P1815, DOI 10.1007/s11192-019-03238-1 Macas M, 2022, COMPUT NETW, V212, DOI 10.1016/j.comnet.2022.109032 Mandavifar S, 2019, NEUROCOMPUTING, V347, P149, DOI 10.1016/j.neucom.2019.02.056 Mbaziira AV, 2015, PROCEEDINGS OF THE 2018 2ND INTERNATIONAL CONFERENCE ON COMPUTE AND DATA ANALYSIS (ICCDA 2018), P42, DOI 10.1145/3193077.3193080 Mei Yang, 2021, 2021 2nd International Conference on Artificial Intelligence and Education (ICAIE), P460, DOI 10.1109/ICAIE53562.2021.00102 Meidan Y, 2018, IEEE PERVAS COMPUT, V17, P12, DOI 10.1109/MPRV.2018.03367731 Mirsky Y, 2018, Arxiv, DOI arXiv:1802.09089 Mohammad RM, 2014, NEURAL COMPUT APPL, V25, P443, DOI 10.1007/s00521-013-1490-z Moustafa N, 2016, INF SECUR J, V25, P18, DOI 10.1080/19393555.2015.1125974 Mukkamala S, 2002, IEEE IJCNN, P1702, DOI 10.1109/IJCNN.2002.1007774 Papernot N, 2016, 1ST IEEE EUROPEAN SYMPOSIUM ON SECURITY AND PRIVACY, P372, DOI 10.1109/EuroSP.2016.36 Pawlicki M, 2022, NEUROCOMPUTING, V500, P1075, DOI 10.1016/j.neucom.2022.06.002 Podder S., 2021, arXiv Qiu JY, 2021, ACM COMPUT SURV, V53, DOI 10.1145/3417978 Rahmani M., 2021, J. Netw. Comput. Appl., V187 Rodriguez E, 2021, IEEE COMMUN SURV TUT, V23, P1920, DOI 10.1109/COMST.2021.3086296 Sarker IH., 2021, SN COMPUT SCI, V2, P1, DOI DOI 10.1007/S42979-021-00535-6 Shahapure KR, 2020, PR INT CONF DATA SC, P747, DOI 10.1109/DSAA49011.2020.00096 Sharafaldin I, 2018, ICISSP: PROCEEDINGS OF THE 4TH INTERNATIONAL CONFERENCE ON INFORMATION SYSTEMS SECURITY AND PRIVACY, P108, DOI 10.5220/0006639801080116 Sharif M.H. U., 2022, World J Adv Res Rev, V15, P138, DOI DOI 10.30574/WJARR.2022.15.1.0573 Shaukat K, 2020, IEEE ACCESS, V8, P222310, DOI 10.1109/ACCESS.2020.3041951 Shen ZF, 2023, SCI JUSTICE, V63, P19, DOI 10.1016/j.scijus.2022.10.005 Shone N, 2018, IEEE T EM TOP COMP I, V2, P41, DOI 10.1109/TETCI.2017.2772792 SMALL H, 1973, J AM SOC INFORM SCI, V24, P265, DOI 10.1002/asi.4630240406 Srivastava N, 2014, J MACH LEARN RES, V15, P1929 Sukhvinder Singh Dari E. A., 2024, Electr. Syst, V19, P78 Sundararaj V, 2019, WIRELESS PERS COMMUN, V104, P173, DOI 10.1007/s11277-018-6014-9 Sundararaj V, 2018, COMPUT SECUR, V77, P277, DOI 10.1016/j.cose.2018.04.009 Sykes D, 2021, NAT LANG ENG, V27, P203, DOI 10.1017/S1351324920000509 Tariq N. A., 2020, Mobile Inf. Syst., P1 Nguyen TD, 2019, INT CON DISTR COMP S, P756, DOI 10.1109/ICDCS.2019.00080 Tobiyama S, 2016, P INT COMP SOFTW APP, P577, DOI 10.1109/COMPSAC.2016.151 Tsimenidis S, 2022, J NETW SYST MANAG, V30, DOI 10.1007/s10922-021-09621-9 Ulsch M., 2014, Cyber Threat!: How to Manage the Growing Risk of CyberAttacks, DOI 10.1002/9781118915028 Vera-Baceta MA, 2019, SCIENTOMETRICS, V121, P1803, DOI 10.1007/s11192-019-03264-z Vinayakumar R, 2019, IEEE ACCESS, V7, P41525, DOI 10.1109/ACCESS.2019.2895334 Xin Y, 2018, IEEE ACCESS, V6, P35365, DOI 10.1109/ACCESS.2018.2836950 Xu Y. Zhu, 2022, World Neurosurgery, V162, P21 Yi F, 2020, IEEE ACCESS, V8, P63214, DOI 10.1109/ACCESS.2020.2984582 Yin CL, 2017, IEEE ACCESS, V5, P21954, DOI 10.1109/ACCESS.2017.2762418 Yinka-Banjo C, 2020, ARTIF INTELL REV, V53, P1721, DOI 10.1007/s10462-019-09717-4 Yushko Andriy, 2023, 2023 13th International Conference on Advanced Computer Information Technologies (ACIT), P393, DOI 10.1109/ACIT58437.2023.10275630 Zhang-Kennedy L, 2021, ACM COMPUT SURV, V54, DOI 10.1145/3427920 Zheng H, 2007, PROCEEDINGS OF THE 7TH IEEE INTERNATIONAL SYMPOSIUM ON BIOINFORMATICS AND BIOENGINEERING, VOLS I AND II, P1220 Zheng ZB, 2018, IEEE T IND INFORM, V14, P1606, DOI 10.1109/TII.2017.2785963 NR 104 TC 1 Z9 1 U1 2 U2 2 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 2169-3536 J9 IEEE ACCESS JI IEEE Access PY 2024 VL 12 BP 81265 EP 81280 DI 10.1109/ACCESS.2024.3411632 PG 16 WC Computer Science, Information Systems; Engineering, Electrical & Electronic; Telecommunications WE Science Citation Index Expanded (SCI-EXPANDED) SC Computer Science; Engineering; Telecommunications GA UL2E1 UT WOS:001248140800001 OA gold DA 2024-09-05 ER PT J AU Dai, R Donohue, L Drechsler, Q Jiang, W AF Dai, Rui Donohue, Lawrence Drechsler, Qingyi (Freda) Jiang, Wei TI Dissemination, Publication, and Impact of Finance Research: When Novelty Meets Conventionality* SO REVIEW OF FINANCE LA English DT Article DE Finance research; Impact; Publication; Innovation; Machine learning; Textual analysis ID CAREER CONCERNS; PRODUCTIVITY; CITATIONS; NETWORKS; JOURNALS; ANALYSTS AB Using numeric and textual data extracted from over 50,000 finance articles in Social Science Research Network (SSRN) during 2001-19, we examine the relationship between measured qualities and a paper's readership, eventual outlet, and impact. Conventionality (semantic similarity with existent research) helps boost readership and publication prospects. However, novelty in the forms of emerging topics and databases are associated with better publishing outcomes. Studies that do not easily map into established finance subfields or that introduce nonfinance elements face a higher hurdle. Finally, papers whose research questions span multiple fields are a hard sell, but those building on prior knowledge from multiple fields are valued. C1 [Dai, Rui; Donohue, Lawrence; Drechsler, Qingyi (Freda)] Univ Penn, Wharton Res Data Serv WRDS, Philadelphia, PA 19104 USA. [Jiang, Wei] Columbia Business Sch, New York, NY USA. C3 University of Pennsylvania; Columbia University RP Dai, R (corresponding author), Univ Penn, Wharton Res Data Serv WRDS, Philadelphia, PA 19104 USA. RI Jiang, Wei/KCX-8643-2024 OI Jiang, Wei/0000-0003-3256-4938; Dai, Rui/0000-0002-0690-1980 CR ALEXANDER JC, 1994, J FINANC, V49, P697, DOI 10.1111/j.1540-6261.1994.tb05158.x Arnold T, 2003, J BUS, V76, P343, DOI 10.1086/367753 Bajo E, 2016, J FINANC ECON, V122, P376, DOI 10.1016/j.jfineco.2015.12.001 Balsmeier B, 2017, J FINANC ECON, V123, P536, DOI 10.1016/j.jfineco.2016.12.005 Bena J, 2014, J FINANC, V69, P1923, DOI 10.1111/jofi.12059 Berninger M., 2021, COMMERCIAL DATA FINA Bernstein S, 2015, J FINANC, V70, P1364, DOI 10.1111/jofi.12275 BLACK F, 1973, J POLIT ECON, V81, P637, DOI 10.1086/260062 BOROKHOVICH KA, 1995, J FINANC, V50, P1691, DOI 10.2307/2329331 Brogaard J., 2020, CAUSAL EFFECT FAME C Brogaard J, 2014, J FINANC ECON, V111, P251, DOI 10.1016/j.jfineco.2013.10.006 Card D, 2020, Q J ECON, V135, P269, DOI 10.1093/qje/qjz035 Card D, 2013, J ECON LIT, V51, P144, DOI 10.1257/jel.51.1.144 Cer D, 2018, ARXIV PREPRINT ARXIV, DOI DOI 10.48550/ARXIV.1803.11175 Chen CR, 2007, J CORP FINANC, V13, P1008, DOI 10.1016/j.jcorpfin.2007.04.011 Chevalier J, 1999, Q J ECON, V114, P389, DOI 10.1162/003355399556034 Chung KH, 2001, FINANC MANAGE, V30, P99, DOI 10.2307/3666378 Cohen L, 2013, REV FINANC STUD, V26, P635, DOI 10.1093/rfs/hhs183 Currie RR, 2020, J BANK FINANC, V111, DOI 10.1016/j.jbankfin.2019.105717 Ductor L, 2014, REV ECON STAT, V96, P936, DOI 10.1162/REST_a_00430 Dyer T, 2017, J ACCOUNT ECON, V64, P221, DOI 10.1016/j.jacceco.2017.07.002 Ellison G, 2002, J POLIT ECON, V110, P994, DOI 10.1086/341871 Ferreira D, 2014, REV FINANC STUD, V27, P256, DOI 10.1093/rfs/hhs070 Goldstein I, 2019, REV FINANC STUD, V32, P1647, DOI 10.1093/rfs/hhz025 Hall BH., 2001, NBER WORKING PAPER W, DOI [10.3386/w8498, DOI 10.3386/W8498] Hamermesh DS, 2018, J ECON LIT, V56, P115, DOI 10.1257/jel.20161326 Hanley KW, 2019, REV FINANC STUD, V32, P4543, DOI 10.1093/rfs/hhz023 Hirshleifer D, 2018, REV FINANC STUD, V31, P2553, DOI 10.1093/rfs/hhx101 Hirshleifer D, 2015, REV FINANC STUD, V28, P637, DOI 10.1093/rfs/hhu093 Hoberg G, 2016, J POLIT ECON, V124, P1423, DOI 10.1086/688176 HOLMSTROM B, 1989, J ECON BEHAV ORGAN, V12, P305, DOI 10.1016/0167-2681(89)90025-5 Hong H, 2000, RAND J ECON, V31, P121, DOI 10.2307/2601032 Hong H, 2003, J FINANC, V58, P313, DOI 10.1111/1540-6261.00526 Hong H, 2020, REV FINANC STUD, V33, P1011, DOI 10.1093/rfs/hhz146 Hope OK, 2016, REV ACCOUNT STUD, V21, P1005, DOI 10.1007/s11142-016-9371-1 Kennedy G., 1988, ETC: A Review of General Semantics, V45, P164 Kerr WR, 2015, ANNU REV FINANC ECON, V7, P445, DOI 10.1146/annurev-financial-111914-041825 Kim EH, 2009, J FINANC ECON, V93, P353, DOI 10.1016/j.jfineco.2008.09.007 Kogan L, 2017, Q J ECON, V132, P665, DOI 10.1093/qje/qjw040 Lee CJ, 2013, J AM SOC INF SCI TEC, V64, P2, DOI 10.1002/asi.22784 Lerner J., 2017, The use and misuse of patent data: Issues for corporate finance and beyond, Technical report Manso G, 2011, J FINANC, V66, P1823, DOI 10.1111/j.1540-6261.2011.01688.x Martín-Martín A, 2018, J INFORMETR, V12, P1160, DOI 10.1016/j.joi.2018.09.002 Mikolov T., 2013, ADV NEURAL INFORM PR, P3111, DOI DOI 10.48550/ARXIV.1310.4546 Schaefer SM, 1998, SCAND J ECON, V100, P425, DOI 10.1111/1467-9442.00111 Schilling MA, 2011, RES POLICY, V40, P1321, DOI 10.1016/j.respol.2011.06.009 Shepherd GB, 1995, REJECTED LEADING EC Sinha A, 2015, WWW'15 COMPANION: PROCEEDINGS OF THE 24TH INTERNATIONAL CONFERENCE ON WORLD WIDE WEB, P243, DOI 10.1145/2740908.2742839 Spiegel M, 2012, REV FINANC STUD, V25, P1331, DOI 10.1093/rfs/hhs052 Stephan P, 2017, NATURE, V544, P411, DOI 10.1038/544411a Swanson EP, 2004, CONTEMP ACCOUNT RES, V21, P223, DOI 10.1506/RCKM-13FM-GK0E-3W50 TRAJTENBERG M, 1997, Econ Innovat New Technol, V5, P19, DOI 10.1080/10438599700000006 Uzzi B, 2013, SCIENCE, V342, P468, DOI 10.1126/science.1240474 Wang J, 2017, RES POLICY, V46, P1416, DOI 10.1016/j.respol.2017.06.006 Wang KS, 2019, FRONT BIG DATA, V2, DOI 10.3389/fdata.2019.00045 Welch I, 2014, REV FINANC STUD, V27, P2773, DOI 10.1093/rfs/hhu029 West JD, 2013, J AM SOC INF SCI TEC, V64, P787, DOI 10.1002/asi.22790 Zingales L, 2015, J FINANC, V70, P1327, DOI 10.1111/jofi.12295 NR 58 TC 3 Z9 3 U1 23 U2 65 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 1572-3097 EI 1573-692X J9 REV FINANC JI Rev. Financ. PD JAN 6 PY 2023 VL 27 IS 1 BP 79 EP 141 DI 10.1093/rof/rfac018 EA MAR 2022 PG 63 WC Business, Finance; Economics WE Social Science Citation Index (SSCI) SC Business & Economics GA 7O9OO UT WOS:000786168700001 OA hybrid DA 2024-09-05 ER PT C AU Wan, YC AF Wan Yucheng BE Zhu, KL Zhang, H TI The Evaluation Method for Science Research Project Based on Logistic Regression Analysis Model SO COMPREHENSIVE EVALUATION OF ECONOMY AND SOCIETY WITH STATISTICAL SCIENCE LA English DT Proceedings Paper CT 2nd Conference of the International-Institute-of-Applied-Statistics-Studies CY JUL 24-29, 2009 CL Qingdao, PEOPLES R CHINA DE Forecast; Logistic Regression; Research Project Supported by Science Foundation; Science Research Management AB In order to improve the accurateness of science research project, a comprehensive evaluation model for evaluating the applying of science research project is presented by applying the logistic regression analysis model. To solve the parameter estimation problem by taking maximum likelihood method, the logistic module in SPSS package is used. Compared with general methods, it is very easy to calculate and realize on computer using logistic regression models. By using this method, science foundation can get more theoretical guidance in evaluating the applying of science research project. An example of practical application is given to show the high correct-rate of forecast backward, the effectiveness of this model and the rationality of the evaluating results. C1 [Wan Yucheng] Xuzhou AF Coll, Dept Air Mat Management, Xuzhou 221002, Peoples R China. EM wanyucheng@126.com CR ALBERT A, 1984, BIOMETRIKA, V71, P1 [Anonymous], SPSS REGR MOD 10 0 [Anonymous], SPSS ADV MOD 10 0 [Anonymous], 2001, Applied logistic regression analysis Demaris A., 1992, LOGIT MODELING Eliason SR, 1993, Maximum likelihood estimation: Logic and practice FEINBERG S, 1985, ANAL CROSSCLASSFIED [高歌 Gao Ge], 2003, [同济大学学报. 自然科学版, Journal of Tongji University], V31, P1237 Hou X.M., 1995, J NORTHEAST FOR UNIV, V23, P102, DOI [10.13759/j.cnki.dlxb.1995.01.016., DOI 10.13759/J.CNKI.DLXB.1995.01.016] Li Pinfang, 2006, Journal of Tongji University (Natural Science), V34, P701 Liao T.F., 1994, INTERPRETING PROBABI Liu J, 2001, PROG NAT SCI-MATER, V11, P40 Liu Kaidi, 2000, SYSTEMS ENG THEORY P, V20, P110 McCullagh P., 1989, Monographs on Statistics and Applied Probability, V2 Pan B., 2002, Strait J Prev Med, V8, P1, DOI [10.3969/j.issn.1007-2705.2002.06.001, DOI 10.3969/J.ISSN.1007-2705.2002.06.001] PANG SL, 2006, MATH PRACTICE THEORY, V36, P129 [孙传恒 Sun Chuanheng], 2004, [昆虫知识, Entomological Knowledge], V41, P599 WAN YC, 2007, P P INT C IND ENG SY Wang J., 2001, Logistic Regression Model-Methodology and Application [王冀宁 Wang Jining], 2003, [系统工程理论与实践, Systems Engineering-Theory & Practice], V23, P22 XIAO JH, 2001, SCI RES MANAGEMENT, V22, P8 ZHOU RL, 2006, J SHANGHAI JIAOTONG, V40 ZHU X, 2004, J BEIJING I TECHNOLO, V6, P89 NR 23 TC 0 Z9 0 U1 0 U2 2 PU AUSSINO ACAD PUBL HOUSE PI MARRICKVILLE PA PO BOX 893, MARRICKVILLE, NSW 2204 00000, AUSTRALIA BN 978-0-9806057-7-8 PY 2009 BP 471 EP 476 PG 6 WC Agricultural Economics & Policy; Economics; Education & Educational Research; Environmental Sciences; Environmental Studies; Social Sciences, Mathematical Methods; Statistics & Probability WE Conference Proceedings Citation Index - Science (CPCI-S); Conference Proceedings Citation Index - Social Science & Humanities (CPCI-SSH) SC Agriculture; Business & Economics; Education & Educational Research; Environmental Sciences & Ecology; Mathematical Methods In Social Sciences; Mathematics GA BOE48 UT WOS:000276383800082 DA 2024-09-05 ER PT J AU Li, KC Wong, BTM AF Li, Kam Cheong Wong, Billy Tak-Ming TI Artificial intelligence in personalised learning: a bibliometric analysis SO INTERACTIVE TECHNOLOGY AND SMART EDUCATION LA English DT Article; Early Access DE Personalised learning; Personalised education; Personalisation; Artificial intelligence; AI; Bibliometric analysis ID EMERGING TRENDS; REGENERATIVE MEDICINE; TUTORING SYSTEMS; EDUCATION; STYLE AB PurposeThis paper aims to present a comprehensive overview of the patterns and trends of publications on artificial intelligence (AI) in personalised learning. It addresses the need to investigate the intellectual structure and development of this area in view of the growing amount of related research and practices. Design/methodology/approachA bibliometric analysis was conducted to cover publications on AI in personalised learning published from 2000 to 2022, including a total of 1,005 publications collected from the Web of Science and Scopus. The patterns and trends in terms of sources of publications, intellectual structure and major topics were analysed. FindingsResearch on AI in personalised learning has been widely published in various sources. The intellectual bases of related work were mostly on studies on the application of AI technologies in education and personalised learning. The relevant research covered mainly AI technologies and techniques, as well as the design and development of AI systems to support personalised learning. The emerging topics have addressed areas such as big data, learning analytics and deep learning. Originality/valueThis study depicted the research hotspots of personalisation in learning with the support of AI and illustrated the evolution and emerging trends in the field. The results highlight its latest developments and the need for future work on diverse means to support personalised learning with AI, the pedagogical issues, as well as teachers' roles and teaching strategies. C1 [Li, Kam Cheong] Hong Kong Metropolitan Univ, Sch Open Learning, Kowloon, Hong Kong, Peoples R China. [Wong, Billy Tak-Ming] Hong Kong Metropolitan Univ, Inst Res Open & Innovat Educ, Kowloon, Hong Kong, Peoples R China. C3 Hong Kong Metropolitan University; Hong Kong Metropolitan University RP Wong, BTM (corresponding author), Hong Kong Metropolitan Univ, Inst Res Open & Innovat Educ, Kowloon, Hong Kong, Peoples R China. EM kcli@hkmu.edu.hk; tamiwong@hkmu.edu.hk FU Hong Kong Metropolitan University [2021/011] FX The work described in this paper was partially supported by a grant from Hong Kong Metropolitan University (2021/011). CR Almohammadi K, 2017, J ARTIF INTELL SOFT, V7, P47, DOI 10.1515/jaiscr-2017-0004 Alsobhi AY, 2019, DATA TECHNOL APPL, V53, P189, DOI 10.1108/DTA-10-2018-0092 Aryadoust V, 2021, COMPUT ASSIST LANG L, V34, P898, DOI 10.1080/09588221.2019.1647251 Baas J, 2020, QUANT SCI STUD, V1, P377, DOI 10.1162/qss_a_00019 Baek C., 2020, International Journal of Learning Analytics and Artificial Intelligence for Education (iJAI), V2, P67, DOI [10.3991/ijai.v2i1.14481, DOI 10.3991/IJAI.V2I1.14481] Baker RS, 2016, INT J ARTIF INTELL E, V26, P600, DOI 10.1007/s40593-016-0105-0 Ben Ammar M, 2010, EXPERT SYST APPL, V37, P3013, DOI 10.1016/j.eswa.2009.09.031 Brusilovsky P., 2007, The Adaptive Web. Methods and Strategies of Web Personalization, P3, DOI 10.1007/978-3-540-72079-9_1 Cha HJ, 2014, ASIA PAC EDUC REV, V15, P511, DOI 10.1007/s12564-014-9337-6 Chassignol M, 2018, PROCEDIA COMPUT SCI, V136, P16, DOI 10.1016/j.procs.2018.08.233 Chen CM, 2008, DATA KNOWL ENG, V67, P234, DOI 10.1016/j.datak.2008.05.004 Chen CM, 2017, J DATA INFO SCI, V2, P1, DOI 10.1515/jdis-2017-0006 Chen CM, 2014, EXPERT OPIN BIOL TH, V14, P1295, DOI 10.1517/14712598.2014.920813 Chen CM, 2012, EXPERT OPIN BIOL TH, V12, P593, DOI 10.1517/14712598.2012.674507 Chen CM, 2010, J AM SOC INF SCI TEC, V61, P1386, DOI 10.1002/asi.21309 Chen CM, 2006, J AM SOC INF SCI TEC, V57, P359, DOI 10.1002/asi.20317 Chen LJ, 2020, IEEE ACCESS, V8, P75264, DOI 10.1109/ACCESS.2020.2988510 Chen X., 2020, Computers and Education: Artificial Intelligence, V1, P100002, DOI DOI 10.1016/J.CAEAI.2020.100002 Chen X., 2020, Comput Educ Artif Intell, V1, DOI DOI 10.1016/J.CAEAI.2020.100005 Chen XL, 2022, EDUC TECHNOL SOC, V25, P28 Chen XL, 2021, INT J EDUC TECHNOL H, V18, DOI 10.1186/s41239-020-00239-6 Chiu MC, 2024, INTERACT LEARN ENVIR, V32, P824, DOI 10.1080/10494820.2022.2100426 Choi SPM, 2018, EDUC TECHNOL SOC, V21, P273 Chu S T., 2022, Computers and Education: Artificial Intelligence, V3, P100091, DOI [10.1016/j.caeai.2022.100091, DOI 10.1016/J.CAEAI.2022.100091, 10.1016/J.CAEAI.2022.100091] Costa N, 2019, IEEE INT CONF ADV LE, P57, DOI 10.1109/ICALT.2019.00021 Demetriou A, 2011, EDUC PSYCHOL REV, V23, P601, DOI 10.1007/s10648-011-9178-3 Fiorella L, 2016, EDUC PSYCHOL REV, V28, P717, DOI 10.1007/s10648-015-9348-9 Goksu I, 2021, TELEMAT INFORM, V56, DOI 10.1016/j.tele.2020.101491 Hinojo-Lucena FJ, 2019, EDUC SCI, V9, DOI 10.3390/educsci9010051 Holmes W., 2019, Artificial intelligence in Education: Promises and implications for teaching & learning Hwang GJ, 2021, MATHEMATICS-BASEL, V9, DOI 10.3390/math9060584 Ingkavara T., 2022, Computers and Education: Artificial Intelligence, V3, P100086, DOI DOI 10.1016/J.CAEAI.2022.100086 Jia K, 2022, FRONT PSYCHOL, V13, DOI 10.3389/fpsyg.2022.795039 Kabudi T., 2021, P PACIFIC ASIA C INF Klasnja-Milicevic A, 2011, COMPUT EDUC, V56, P885, DOI 10.1016/j.compedu.2010.11.001 Li H., 2019, J DISTANCE ED, V2019, P63 Li J., 2022, LECT NOTES DATA ENG, V98, P798 Li J., 2022, LECT NOTES DATA ENG, V98, P803 Li J., 2015, CITESPACE MANUAL CHI Li KC, 2023, J COMPUT HIGH EDUC, V35, P186, DOI 10.1007/s12528-022-09341-2 Li KC, 2022, INTERACT TECHNOL SMA, V19, P3, DOI 10.1108/ITSE-05-2021-0083 Li KC, 2021, INTERACT LEARN ENVIR, V29, P182, DOI 10.1080/10494820.2020.1811735 Liang JC, 2023, INTERACT LEARN ENVIR, V31, P4270, DOI 10.1080/10494820.2021.1958348 Lu Y, 2019, J MANAG ANAL, V6, P1, DOI 10.1080/23270012.2019.1570365 Lu Y, 2021, AAAI CONF ARTIF INTE, V35, P16087 Luckin R., 2016, INTELLIGENCE UNLEASH Magomadov V. S., 2020, Journal of Physics: Conference Series, V1691, DOI 10.1088/1742-6596/1691/1/012169 Mehigan T., 2019, 12 ANN INT C ED RES, DOI [10.21125/iceri.2019.0509, DOI 10.21125/ICERI.2019.0509] Mehigan T., 2019, P 11 INT C ED NEW LE, DOI [10.21125/edulearn.2019.1380, DOI 10.21125/EDULEARN.2019.1380] Miaomiao Zhang, 2020, International Journal of Information and Education Technology, V10, P394, DOI 10.18178/ijiet.2020.10.5.1396 Moreno-Guerrero AJ, 2020, FUTURE INTERNET, V12, DOI 10.3390/fi12080124 Mousavinasab E, 2021, INTERACT LEARN ENVIR, V29, P142, DOI 10.1080/10494820.2018.1558257 Murtaza M, 2022, IEEE ACCESS, V10, P81323, DOI 10.1109/ACCESS.2022.3193938 Niazi MA, 2016, COMPLEX ADAPT SYST M, V4, DOI 10.1186/s40294-016-0036-5 Ou C, 2019, ONLINE LEARN, V23, P82, DOI 10.24059/olj.v23i2.1449 Pedregosa F, 2011, J MACH LEARN RES, V12, P2825 Phillips T, 2020, TECHTRENDS, V64, P878, DOI 10.1007/s11528-020-00519-y Piech C., 2015, NEURIPS, V28, P505 Popenici Stefan A D, 2017, Res Pract Technol Enhanc Learn, V12, P22, DOI 10.1186/s41039-017-0062-8 Popescu E, 2009, LECT NOTES COMPUT SC, V5686, P332, DOI 10.1007/978-3-642-03426-8_40 Rawat KS, 2021, COMPUT APPL ENG EDUC, V29, P1324, DOI 10.1002/cae.22388 Roll I, 2016, INT J ARTIF INTELL E, V26, P582, DOI 10.1007/s40593-016-0110-3 Rusk N, 2016, NAT METHODS, V13, P35, DOI 10.1038/nmeth.3707 Salas-Pilco SZ, 2022, INT J EDUC TECHNOL H, V19, DOI 10.1186/s41239-022-00326-w Song P, 2020, ASIA PAC EDUC REV, V21, P473, DOI 10.1007/s12564-020-09640-2 SU X, 2019, SAGE OPEN, V9, DOI DOI 10.1177/2F2158244019840119 Tang HL, 2022, J MATH-UK, V2022, DOI 10.1155/2022/4428416 Tang KY, 2023, INTERACT LEARN ENVIR, V31, P2134, DOI 10.1080/10494820.2021.1875001 TAVAKOLI M, 2022, ACM INT C PROCEEDING, P563 VanLehn K, 2011, EDUC PSYCHOL-US, V46, P197, DOI 10.1080/00461520.2011.611369 Wang S, 2023, INTERACT LEARN ENVIR, V31, P793, DOI 10.1080/10494820.2020.1808794 Wong BTM, 2023, J COMPUT HIGH EDUC, V35, P371, DOI 10.1007/s12528-022-09324-3 Woo Jin Ha, 2021, [Journal of Digital Contents Society, 디지털콘텐츠학회논문지], V22, P1783, DOI 10.9728/dcs.2021.22.11.1783 Xia P., 2020, ADV INTELLIGENT SYST, V1282, P194 Xie H, 2019, COMPUT EDUC, V140, DOI 10.1016/j.compedu.2019.103599 Xu SS, 2022, COMPUT INTEL NEUROSC, V2022, DOI 10.1155/2022/3502992 Xu WQ, 2022, INT J STEM EDUC, V9, DOI 10.1186/s40594-022-00377-5 Zhang Y, 2022, INT J SYST ASSUR ENG, V13, P1102, DOI 10.1007/s13198-021-01440-0 Zheng LQ, 2021, EDUC TECHNOL SOC, V24, P174 Zhu WW, 2018, SUSTAINABILITY-BASEL, V10, DOI 10.3390/su10051510 NR 80 TC 6 Z9 6 U1 25 U2 31 PU EMERALD GROUP PUBLISHING LTD PI Leeds PA Floor 5, Northspring 21-23 Wellington Street, Leeds, W YORKSHIRE, ENGLAND SN 1741-5659 EI 1758-8510 J9 INTERACT TECHNOL SMA JI Interact. Technol. Smart Educ. PD 2023 MAY 26 PY 2023 DI 10.1108/ITSE-01-2023-0007 EA MAY 2023 PG 24 WC Education & Educational Research WE Emerging Sources Citation Index (ESCI) SC Education & Educational Research GA H0EQ1 UT WOS:000992785800001 DA 2024-09-05 ER PT J AU Gelman, A AF Gelman, Andrew TI Criticism as asynchronous collaboration: An example from social science research SO STAT LA English DT Article DE causal inference; regression; social sciences; subject areas ID FAILURE AB I discuss a published paper in political science that made a claim that aroused skepticism. The reanalysis is an example of how we, as consumers as well as producers of science, can engage with published work. This can be viewed as a sort of collaboration performed implicitly between the authors of a published paper and later researchers who want to understand or use the published work. C1 [Gelman, Andrew] Columbia Univ, New York, NY 10027 USA. C3 Columbia University RP Gelman, A (corresponding author), Columbia Univ, New York, NY 10027 USA. EM gelman@stat.columbia.edu OI Gelman, Andrew/0000-0002-6975-2601 FU U.S. Office of Naval Research, Institute for Education Sciences; Sloan Foundation FX To appear in Stat., I thank Erik Gahner Larsen, Bill Harris, and two anonymous reviewers for helpful comments and the U.S. Office of Naval Research, Institute for Education Sciences, and Sloan Foundation for partial support of this work. CR Barfort S, 2021, POLIT SCI RES METH, V9, P658, DOI 10.1017/psrm.2019.63 Bem DJ, 2011, J PERS SOC PSYCHOL, V100, P407, DOI 10.1037/a0021524 Borgschulte M, 2019, J ECON BEHAV ORGAN, V167, P18, DOI 10.1016/j.jebo.2019.09.003 Button KS, 2013, NAT REV NEUROSCI, V14, P365, DOI 10.1038/nrn3475 Gelman A., 2013, The garden of forking paths: Why multiple comparisons can be a problem, even when there is no fishing expedition or phacking and the research hypothesis was posited ahead of time Gelman A., 2019, ANOTHER REGRESSION D Gelman A., 2020, COMMENT Gelman A, 2015, RES POLITICS, V2, DOI 10.1177/2053168015569830 Gelman A, 2019, J BUS ECON STAT, V37, P447, DOI 10.1080/07350015.2017.1366909 Gelman A, 2018, PERS SOC PSYCHOL B, V44, P16, DOI 10.1177/0146167217729162 Gelman A, 2014, AM SCI, V102, P460, DOI 10.1511/2014.111.460 Gelman A, 2009, AM SCI, V97, P310, DOI 10.1511/2009.79.310 Kahneman Daniel., 2011, Thinking, fast and slow Kanazawa S, 2007, J THEOR BIOL, V244, P133, DOI 10.1016/j.jtbi.2006.07.017 Kim JB, 2021, J CORP FINANC, V69, DOI 10.1016/j.jcorpfin.2021.101991 Larsen E.G, 2020, RESPONSE A GELMAN Nosek BA, 2012, PERSPECT PSYCHOL SCI, V7, P615, DOI 10.1177/1745691612459058 Simmons JP, 2011, PSYCHOL SCI, V22, P1359, DOI 10.1177/0956797611417632 Simonsohn U, 2016, P HACKED HYPOTHESES NR 19 TC 2 Z9 2 U1 0 U2 1 PU WILEY PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 2049-1573 J9 STAT-US JI Stat PD DEC PY 2022 VL 11 IS 1 AR e464 DI 10.1002/sta4.464 PG 12 WC Statistics & Probability WE Science Citation Index Expanded (SCI-EXPANDED) SC Mathematics GA 2J5IM UT WOS:000815690400001 DA 2024-09-05 ER PT J AU Abbas, K Hasan, MK Abbasi, A Mokhtar, UA Khan, A Abdullah, SNHS Dong, S Islam, S Alboaneen, D Ahmed, FRA AF Abbas, Khushnood Hasan, Mohammad Kamrul Abbasi, Alireza Mokhtar, Umi Asma Khan, Asif Abdullah, Siti Norul Huda Sheikh Dong, Shi Islam, Shayla Alboaneen, Dabiah Ahmed, Fatima Rayan Awad TI Predicting the Future Popularity of Academic Publications Using Deep Learning by Considering It as Temporal Citation Networks SO IEEE ACCESS LA English DT Article DE Citation prediction; citation networks; node ranking; deep learning; temporal networks; and popularity prediction ID RANKING; IMPACT; CENTRALITY; PAGERANK; INDEX AB One of the key goals of Informetrics is to identify citation-based popular articles among so many other aspects, such as determining popular research topics, identifying influential scholars, and predicting hot trends in science. These can be achieved by applying network science approaches to scientific networks and formulating the problem as a popular (most-cited) node ranking task. To rank the papers based on their future citation gain. In this work a deep learning based framework is proposed. Which helps in automatic node level feature extraction and can make node level prediction in dynamic graphs such as citation networks. To achieve this we have learned global ranking preserve d dimensional node embedding. We have only considered temporal features, which makes it suitable for generalisation to other networks. Although our model can consider node level explicit features also. Further we have given novel cost function which can be easily solve ranking problem for dynamic graphs using probabilistic regression method. Which can be easily optimised. Another novelty of our work is that our model can be trained using different snapshots of the graph and different time. Further trained model can be used to make future prediction. The proposed model has been tested on an arXiv paper citation network using six standard information retrieval-based metrics. The results show that our proposed model outperforms, on average, other state-of-the-art static models as well as dynamic node ranking models. The outcome of this research study leads to informed data-driven decision-making in science, such as the allocation and distribution of research funds and investment in strategic research centers. When considering past time window size as 10 months and making prediction after 10 months our proposed model's performance on various ranking based evaluation metrics are as follows: AUC-0.974, Kendal's rank correlation tau-0.455, Precision- 0.643, Novelty-0.0456, Temporal novelty-0.375 and on NDCG-0.949. Our model is able to make long term trend prediction with just training on short time window. C1 [Abbas, Khushnood; Dong, Shi] Zhoukou Normal Univ, Sch Comp Sci & Technol, Zhoukou 466000, Henan, Peoples R China. [Abbas, Khushnood; Abbasi, Alireza] Univ New South Wales UNSW, Sch Engn & IT, Sydney, NSW 2052, Australia. [Hasan, Mohammad Kamrul; Mokhtar, Umi Asma] Univ Kebangsaan Malaysia, Fac Informat Sci & Technol, Bangi 43600, Selangor, Malaysia. [Khan, Asif] Integral Univ, Sch Comp Applicat, Lucknow 226026, India. [Islam, Shayla] UCSI Univ, Inst Comp Sci & Digital Innovat, Kuala Lumpur 56000, Malaysia. [Alboaneen, Dabiah] Imam Abdulrahman Bin Faisal Univ, Coll Sci & Humanities, Comp Sci Dept, Al Jubail 34212, Saudi Arabia. [Ahmed, Fatima Rayan Awad] Prince Sattam Bin Abdulaziz Univ, Coll Comp Engn & Sci, Comp Sci Dept, Al Kharj 16273, Saudi Arabia. C3 Zhoukou Normal University; University of New South Wales Sydney; Universiti Kebangsaan Malaysia; Integral University; UCSI University; Imam Abdulrahman Bin Faisal University; Prince Sattam Bin Abdulaziz University RP Hasan, MK (corresponding author), Univ Kebangsaan Malaysia, Fac Informat Sci & Technol, Bangi 43600, Selangor, Malaysia.; Khan, A (corresponding author), Integral Univ, Sch Comp Applicat, Lucknow 226026, India. EM hasankamrul@ieee.org; asif05amu@gmail.com RI Abbasi, Alireza/HLW-8556-2023; dong, shi/AAC-6333-2022; Abbas, Khushnood/I-6735-2017; Sheikh Abdullah, Siti Norul Huda/J-7949-2015; mokhtar, umi asma/G-7121-2017 OI Abbasi, Alireza/0000-0001-9136-1837; dong, shi/0000-0003-4616-6519; Abbas, Khushnood/0000-0002-0096-3179; Hasan, Dr. Mohammad Kamrul/0000-0001-5511-0205; Islam, Dr. Shayla/0000-0002-0490-7799; Sheikh Abdullah, Siti Norul Huda/0000-0002-2602-7805; mokhtar, umi asma/0000-0002-9097-3441; Alboaneen, Dabiah/0000-0003-2215-9963 FU Ministry of Higher Education Malaysia [FRGS/1/2020/ICT03/UKM/02/6] FX This work was supported in part by the Ministry of Higher Education Malaysia through the Research Grant Scheme under Grant FRGS/1/2020/ICT03/UKM/02/6. CR Abbas K., 2018, Scientific Reports, V8, P1 Abbas Khushnood, 2018, Mendeley Data, V1, DOI 10.17632/csm9vrmhzd.1 Abbas K, 2017, PHYSICA A, V484, P506, DOI 10.1016/j.physa.2017.04.156 Abbasi A, 2013, SCIENTOMETRICS, V96, P633, DOI 10.1007/s11192-013-0959-y Amanlou S, 2021, COMPUT NETW, V199, DOI 10.1016/j.comnet.2021.108465 [Anonymous], 2000, ICML [Anonymous], 2018, Searching for activation functions Asatani K, 2018, PLOS ONE, V13, DOI 10.1371/journal.pone.0197260 Barabási AL, 1999, SCIENCE, V286, P509, DOI 10.1126/science.286.5439.509 Basak D., 2007, Neural Information Processing-Letters and Reviews, V11, P203, DOI DOI 10.1007/978-1-4302-5990-9_4 Bengio Y, 2021, COMMUN ACM, V64, P58, DOI 10.1145/3448250 Bhagat S, 2011, SOCIAL NETWORK DATA ANALYTICS, P115 Bhat HS, 2015, 2015 IEEE INTERNATIONAL CONFERENCE ON DATA MINING WORKSHOP (ICDMW), P589, DOI 10.1109/ICDMW.2015.131 BONACICH P, 1987, AM J SOCIOL, V92, P1170, DOI 10.1086/228631 Boyack KW, 2011, PRO INT CONF SCI INF, P123 Brin S, 1998, COMPUT NETWORKS ISDN, V30, P107, DOI 10.1016/S0169-7552(98)00110-X Bromley J., 1993, International Journal of Pattern Recognition and Artificial Intelligence, V7, P669, DOI 10.1142/S0218001493000339 Butun E, 2020, IEEE T CYBERNETICS, V50, P4518, DOI 10.1109/TCYB.2019.2900495 Chen CM, 2012, J AM SOC INF SCI TEC, V63, P431, DOI 10.1002/asi.21694 Cui P, 2019, IEEE T KNOWL DATA EN, V31, P833, DOI 10.1109/TKDE.2018.2849727 Defferrard M, 2016, ADV NEUR IN, V29 Deng HB, 2009, KDD-09: 15TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, P239 Dong S, 2021, COMPUT SCI REV, V40, DOI 10.1016/j.cosrev.2021.100379 Eger S, 2019, Arxiv, DOI arXiv:1901.02671 Fiala D, 2008, SCIENTOMETRICS, V76, P135, DOI 10.1007/s11192-007-1908-4 Fiala D, 2012, J INFORMETR, V6, P370, DOI 10.1016/j.joi.2012.02.002 FREEMAN LC, 1977, SOCIOMETRY, V40, P35, DOI 10.2307/3033543 Gao Bin, 2011, P 17 ACM SIGKDD INT, P96, DOI DOI 10.1145/2020408 GARFIELD E, 1979, SCIENTOMETRICS, V1, P359, DOI 10.1007/BF02019306 Glänzel W, 2003, SCIENTOMETRICS, V56, P357, DOI 10.1023/A:1022378804087 Glorot X., 2011, P 14 INT C ARTIFICIA, V15, P315 HANLEY JA, 1982, RADIOLOGY, V143, P29, DOI 10.1148/radiology.143.1.7063747 Hasan MK, 2022, IEEE T IND INFORM, V18, P9153, DOI 10.1109/TII.2022.3164066 Hasan MK, 2022, IEEE T IND INFORM, V18, P8895, DOI [10.4018/IJTD.304381, 10.1109/TII.2022.3148250] Hasan MK, 2021, FRONT PUBLIC HEALTH, V9, DOI 10.3389/fpubh.2021.737149 Herlocker JL, 2004, ACM T INFORM SYST, V22, P5, DOI 10.1145/963770.963772 Hirsch JE, 2005, P NATL ACAD SCI USA, V102, P16569, DOI 10.1073/pnas.0507655102 Hsu CC, 2017, WSDM'17: PROCEEDINGS OF THE TENTH ACM INTERNATIONAL CONFERENCE ON WEB SEARCH AND DATA MINING, P771, DOI 10.1145/3018661.3018668 Iñiguez G, 2022, NAT COMMUN, V13, DOI 10.1038/s41467-022-29256-x Järvelin K, 2002, ACM T INFORM SYST, V20, P422, DOI 10.1145/582415.582418 Ke Q, 2015, P NATL ACAD SCI USA, V112, P7426, DOI 10.1073/pnas.1424329112 Kingma D. P., 2014, INT C LEARNING REPRE Ko K., 2008, CONNECTIONS, V28, P4 Korn A, 2009, PHYSICA A, V388, P2221, DOI 10.1016/j.physa.2009.02.013 Kumar A, 2020, PHYSICA A, V553, DOI 10.1016/j.physa.2020.124289 Lai Y.-A., ADV NEURAL INFORM PR, V30 Lai YA, 2019, DATA MIN KNOWL DISC, V33, P474, DOI 10.1007/s10618-018-0601-y Lecun Y, 1998, P IEEE, V86, P2278, DOI 10.1109/5.726791 LeCun Y, 2015, NATURE, V521, P436, DOI 10.1038/nature14539 Li CT, 2015, LECT NOTES ARTIF INT, V9077, P659, DOI 10.1007/978-3-319-18038-0_51 Li SQ, 2019, 2019 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING AND THE 9TH INTERNATIONAL JOINT CONFERENCE ON NATURAL LANGUAGE PROCESSING (EMNLP-IJCNLP 2019), P4914 Li YJ, 2017, Arxiv, DOI arXiv:1511.05493 Liao H, 2017, PHYS REP, V689, P1, DOI 10.1016/j.physrep.2017.05.001 Litjens G, 2017, MED IMAGE ANAL, V42, P60, DOI 10.1016/j.media.2017.07.005 Long L, 2020, PROCEEDINGS OF 2020 2ND INTERNATIONAL CONFERENCE ON IMAGE PROCESSING AND MACHINE VISION AND INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION AND MACHINE LEARNING, IPMV 2020, P146, DOI 10.1145/3421558.3421582 Ma ZY, 2013, J AM SOC INF SCI TEC, V64, P1399, DOI 10.1002/asi.22844 Maggini M., 2003, RESEARCHGATE, P356 Mahayuddin ZR, 2020, Asia-Pacific Journal of Information Technology and Multimedia, V09, P28, DOI DOI 10.17576/APJITM-2020-0901-03 Mariani MS, 2016, J INFORMETR, V10, P1207, DOI 10.1016/j.joi.2016.10.005 Mariani MS, 2015, SCI REP-UK, V5, DOI 10.1038/srep16181 Newman MEJ, 2009, EPL-EUROPHYS LETT, V86, DOI 10.1209/0295-5075/86/68001 Pasumarthi R. K., P 25 ACM SIGKDD INT PRICE DJD, 1965, SCIENCE, V149, P510 Radicchi F, 2008, P NATL ACAD SCI USA, V105, P17268, DOI 10.1073/pnas.0806977105 Radicchi F, 2011, PHYS REV E, V83, DOI 10.1103/PhysRevE.83.046116 Ruan XM, 2020, J INFORMETR, V14, DOI 10.1016/j.joi.2020.101039 Scarselli F, 2009, IEEE T NEURAL NETWOR, V20, P61, DOI 10.1109/TNN.2008.2005605 Skrlj B, 2021, Arxiv, DOI arXiv:1902.03964 SUBRAMANYAM K, 1983, J INFORM SCI, V6, P33, DOI 10.1177/016555158300600105 Tahamtan I, 2016, SCIENTOMETRICS, V107, P1195, DOI 10.1007/s11192-016-1889-2 Vieira ES, 2009, SCIENTOMETRICS, V81, P587, DOI 10.1007/s11192-009-2178-0 Waltman L, 2016, J INFORMETR, V10, P365, DOI 10.1016/j.joi.2016.02.007 Wang G, 2023, WORLD WIDE WEB, V26, P683, DOI 10.1007/s11280-022-01109-z Wang X, 2017, AAAI CONF ARTIF INTE, P203 Wang Y, 2021, STRUCT HEALTH MONIT, V20, P861, DOI 10.1177/1475921719850641 Wilsdon J, 2016, METRIC TIDE INDEPEND Wouters P, 2019, NATURE, V569, P621, DOI 10.1038/d41586-019-01643-3 Yan E, 2010, J AM SOC INF SCI TEC, V61, P1635, DOI 10.1002/asi.21349 Yan E, 2011, J AM SOC INF SCI TEC, V62, P467, DOI 10.1002/asi.21461 Zeng A, 2013, ADV COMPLEX SYST, V16, DOI 10.1142/S0219525913500240 Zhang CT, 2009, EMBO REP, V10, P416, DOI 10.1038/embor.2009.74 Zhang SL, 2019, INFORM SCIENCES, V488, P257, DOI 10.1016/j.ins.2019.03.021 Zhao SX, 2011, J INFORMETR, V5, P668, DOI 10.1016/j.joi.2011.06.005 Zhou JL, 2016, SCIENTOMETRICS, V106, P805, DOI 10.1007/s11192-015-1805-1 Zhou YB, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0120735 Zhou YH, 2020, J INFORMETR, V14, DOI 10.1016/j.joi.2020.101038 NR 86 TC 9 Z9 9 U1 5 U2 16 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 2169-3536 J9 IEEE ACCESS JI IEEE Access PY 2023 VL 11 BP 83052 EP 83068 DI 10.1109/ACCESS.2023.3290906 PG 17 WC Computer Science, Information Systems; Engineering, Electrical & Electronic; Telecommunications WE Science Citation Index Expanded (SCI-EXPANDED) SC Computer Science; Engineering; Telecommunications GA O9UA9 UT WOS:001047184200001 OA gold DA 2024-09-05 ER PT C AU Liao, Q Zheng, JB Shen, Y Me, J AF Liao, Qin Zheng, Jiabi Shen, Ying Me, Jing GP Univ Academic Press Toronto TI Research on evaluation and optimized structure of managerial competence SO INTERNATIONAL CONFERENCE ON MANAGEMENT INNOVATION, VOLS 1 AND 2 LA English DT Proceedings Paper CT 1st International Conference on Management Innovation CY JUN 04-06, 2007 CL Shanghai, PEOPLES R CHINA DE managerial competence; factor analysis; logistic regression; genetic algorithms AB Managerial competence is a hot issue in the field of human resource (HR). Based on the questionnaires from Want Want group, Guangzhou Pepsi Cola group and other enterprises, this paper extracts the main influencing factors of managerial competence in specified industry with Factor Analysis and establishes evaluation & prediction & optimization model with combination of Logistic Regression and Genetic Algorithms. This paper designs fitness with the influence of factor score to competence, designs chromosome & crossover & mutation with different position and different competence, searches the optimal collocation of persons and structure of position in the condition of limited competence resource, so that enterprise & person & position can match each other authentically. Demonstration indicates that the way in this paper is valid and practicable for evaluation, prediction and optimization in HR management (HRM). C1 S China Univ Technol, Sch Math Sci, Guangzhou 510640, Peoples R China. C3 South China University of Technology RP Liao, Q (corresponding author), S China Univ Technol, Sch Math Sci, Guangzhou 510640, Peoples R China. EM maqliao@scut.edu.cn; zhengjiabi123@163.com CR BUTLER FC, 1978, ED TECHNOLOGY CHEN YC, 2004, SCI RES MANAGEMENT GUANGMAN X, 2000, PUBLISHING HOUSE SCI JING X, 2006, THESIS S CHINA U TEC LONG Y, 2003, CHINA SOFT SCI MCCLELLAND, 1973, AM PSYCHOL Shippmann J. S., 2000, PERSONNEL PSYCHOL WEI X, 2004, PUBLISHING HOUSE ELE, P326 XIAOQUN H, 2001, PUBLISHING HOUSE REN, P49 ZHONG LF, 2003, NANKAI BUSINESS NR 10 TC 0 Z9 0 U1 0 U2 1 PU UNIV ACADEMIC PRESS TORONTO PI TORONTO PA UNIV TORONTO, 409 HURON STREET, TORONTO, ON M5S 2G5, CANADA BN 978-0-9783350-0-7 PY 2007 BP 761 EP 764 PG 4 WC Business; Business, Finance; Management WE Conference Proceedings Citation Index - Social Science & Humanities (CPCI-SSH) SC Business & Economics GA BGN47 UT WOS:000248620600142 DA 2024-09-05 ER PT J AU Kanakaris, N Giarelis, N Siachos, I Karacapilidis, N AF Kanakaris, Nikos Giarelis, Nikolaos Siachos, Ilias Karacapilidis, Nikos TI Shall I Work with Them? A Knowledge Graph-Based Approach for Predicting Future Research Collaborations SO ENTROPY LA English DT Article DE knowledge graph; link prediction; natural language processing; document representation; future research collaborations; graph kernels; word embeddings ID LINK PREDICTION; NEIGHBORS AB We consider the prediction of future research collaborations as a link prediction problem applied on a scientific knowledge graph. To the best of our knowledge, this is the first work on the prediction of future research collaborations that combines structural and textual information of a scientific knowledge graph through a purposeful integration of graph algorithms and natural language processing techniques. Our work: (i) investigates whether the integration of unstructured textual data into a single knowledge graph affects the performance of a link prediction model, (ii) studies the effect of previously proposed graph kernels based approaches on the performance of an ML model, as far as the link prediction problem is concerned, and (iii) proposes a three-phase pipeline that enables the exploitation of structural and textual information, as well as of pre-trained word embeddings. We benchmark the proposed approach against classical link prediction algorithms using accuracy, recall, and precision as our performance metrics. Finally, we empirically test our approach through various feature combinations with respect to the link prediction problem. Our experimentations with the new COVID-19 Open Research Dataset demonstrate a significant improvement of the abovementioned performance metrics in the prediction of future research collaborations. C1 [Kanakaris, Nikos; Giarelis, Nikolaos; Siachos, Ilias; Karacapilidis, Nikos] Univ Patras, Ind Management & Informat Syst Lab, MEAD, Rion 26504, Greece. C3 University of Patras RP Kanakaris, N (corresponding author), Univ Patras, Ind Management & Informat Syst Lab, MEAD, Rion 26504, Greece. EM nkanakaris@upnet.gr; giarelis@ceid.upatras.gr; ilias.siachos@upnet.gr; karacap@upatras.gr OI Kanakaris, Nikos/0000-0001-9352-5807; Karacapilidis, Nikos/0000-0002-6581-6831; Giarelis, Nikolaos/0000-0003-2611-3129; Siachos, Ilias/0000-0001-5489-3500 FU European Union; Greek national funds through the Operational Program Competitiveness, Entrepreneurship and Innovation, under the call RESEARCHCREATE-INNOVATE [T2EDK-04389] FX The work presented in this paper is supported by the inPOINT project (https://inpointproject.eu/), which is co-financed by the European Union and Greek national funds through the Operational Program Competitiveness, Entrepreneurship and Innovation, under the call RESEARCHCREATE-INNOVATE (Project id: T2EDK-04389). CR Abadi M, 2016, PROCEEDINGS OF OSDI'16: 12TH USENIX SYMPOSIUM ON OPERATING SYSTEMS DESIGN AND IMPLEMENTATION, P265 Adamic LA, 2003, SOC NETWORKS, V25, P211, DOI 10.1016/S0378-8733(03)00009-1 Aggarwal C. C., 2018, MACHINE LEARNING TEX Albert R, 2002, REV MOD PHYS, V74, P47, DOI 10.1103/RevModPhys.74.47 Almeida F., 2019, Word embeddings: a survey, V1901 Andreas J, 2014, PROCEEDINGS OF THE 52ND ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, VOL 2, P822 [Anonymous], 2008, WSDM [Anonymous], 2014, P INT C MACH LEARN [Anonymous], 2017, P 31 INT C NEUR INF [Anonymous], 2018, CSIROS DATA61 STELLA Borgwardt KM, 2005, Fifth IEEE International Conference on Data Mining, Proceedings, P74, DOI 10.1109/ICDM.2005.132 Fey M., 2019, ARXIV190302428V3 Fire M., 2011, Proceedings of the 2011 IEEE Third International Conference on Privacy, Security, Risk and Trust and IEEE Third International Conference on Social Computing (PASSAT/SocialCom 2011), P73, DOI 10.1109/PASSAT/SocialCom.2011.20 Gärtner T, 2003, LECT NOTES ARTIF INT, V2777, P129, DOI 10.1007/978-3-540-45167-9_11 Giarelis Nikolaos, 2020, Discovery Science. 23rd International Conference, DS 2020. Proceedings. Lecture Notes in Artificial Intelligence. Subseries of Lecture Notes in Computer Science (LNAI 12323), P437, DOI 10.1007/978-3-030-61527-7_29 Giarelis N., 2020, P IFIP INT C ART INT, P96, DOI [10.1007/978-3-030-49161-1_9, DOI 10.1007/978-3-030-49161-1_9] Giarelis N., 2020, P 12 KES INT C INTEL Guns R, 2014, SCIENTOMETRICS, V101, P1461, DOI 10.1007/s11192-013-1228-9 Jaccard P., 1901, Distribution de la Flore Alpine: dans le Bassin des dranses et dans quelques regions voisines, V37, P547 Joulin A., 2016, P INT C LANG RES EV Julian K., 2016, APPL MACH LEARN LINK Kholghi M., 2016, P AUSTR LANG TECHN A Kusner M.J., 2015, P 32 INT C INT C MAC Li SB, 2018, SCI REP-UK, V8, DOI 10.1038/s41598-018-35423-2 Liben-Nowell D, 2007, J AM SOC INF SCI TEC, V58, P1019, DOI 10.1002/asi.20591 Linardatos P, 2021, ENTROPY-SWITZ, V23, DOI 10.3390/e23010018 Lundberg SM, 2017, ADV NEUR IN, V30 Mikolov T., 2013, P 26 INT C NEURAL IN Molokwu BC, 2019, COMM COM INF SC, V1143, P573, DOI 10.1007/978-3-030-36802-9_61 Nathani D., 2019, P 57 ANN M ASS COMP Neumann M, 2016, MACH LEARN, V102, P209, DOI 10.1007/s10994-015-5517-9 Nikolentzos G., 2019, ARXIV190412218 Nikolentzos G, 2017, AAAI CONF ARTIF INTE, P2429 Panagopoulos G, 2017, J INFORMETR, V11, P198, DOI 10.1016/j.joi.2016.11.003 Pedregosa F., 2011, J MACH LEARN RES, V11, P198 Pennington J., 2014, P 2014 C EMP METH NA, P1532, DOI 10.3115/v1/D14-1162 Tran PV, 2018, PR INT CONF DATA SC, P237, DOI 10.1109/DSAA.2018.00034 Pho P, 2020, J BIG DATA-GER, V7, DOI 10.1186/s40537-020-00366-x Ponomariov B, 2016, SCIENTOMETRICS, V109, P1939, DOI 10.1007/s11192-016-2127-7 Ramon J., 2003, P 1 INT WORKSH MIN G Rousseau F, 2013, PROCEEDINGS OF THE 22ND ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT (CIKM'13), P59, DOI 10.1145/2505515.2505671 Rousseau F, 2015, PROCEEDINGS OF THE 53RD ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS AND THE 7TH INTERNATIONAL JOINT CONFERENCE ON NATURAL LANGUAGE PROCESSING, VOL 1, P1702 Siglidis G., 2018, ARXIV, V21, P1 Sun YZ, 2011, 2011 INTERNATIONAL CONFERENCE ON ADVANCES IN SOCIAL NETWORKS ANALYSIS AND MINING (ASONAM 2011), P121, DOI 10.1109/ASONAM.2011.112 Vahdati S, 2018, LECT NOTES COMPUT SC, V11057, P103, DOI 10.1007/978-3-030-00066-0_9 Van Der Heijden N., 2020, P AAAI C ART INT NEW Vathy-Fogarassy A., 2013, Graph-based clustering and data visualization algorithms Veira N., 2019, P 28 INT JOINT C ART Vishwanathan SVN, 2010, J MACH LEARN RES, V11, P1201 Wang L.L., 2020, ARXIV200410706V4 Wang Q, 2017, IEEE T KNOWL DATA EN, V29, P2724, DOI 10.1109/TKDE.2017.2754499 Wang ZY, 2018, LECT NOTES COMPUT SC, V10882, P745, DOI 10.1007/978-3-319-93000-8_84 West DB., 2001, INTRO GRAPH THEORY Ye X, 2016, PROC INT CONF SOFTW, P404, DOI 10.1145/2884781.2884862 Ying R., 2019, ARXIV 190303894V4 Yu Q, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0101214 NR 56 TC 6 Z9 6 U1 0 U2 20 PU MDPI PI BASEL PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND EI 1099-4300 J9 ENTROPY-SWITZ JI Entropy PD JUN PY 2021 VL 23 IS 6 AR 664 DI 10.3390/e23060664 PG 18 WC Physics, Multidisciplinary WE Science Citation Index Expanded (SCI-EXPANDED) SC Physics GA SX7BG UT WOS:000665355000001 PM 34070422 OA gold, Green Published DA 2024-09-05 ER PT J AU Safder, I Saeed-Ul Hassan AF Safder, Iqra Saeed-Ul Hassan TI Bibliometric-enhanced information retrieval: a novel deep feature engineering approach for algorithm searching from full-text publications SO SCIENTOMETRICS LA English DT Article DE Algorithm search; Bibliometric-enhanced information retrieval; Full-text; Deep learning; Bi-directional LSTM ID SCHOLARLY DATA AB Recently, tremendous advances have been observed in information retrieval systems designed to search for relevant knowledge in scientific publications. Although these techniques are quite powerful, there is still room for improvement in the area of searching for metadata relating to algorithms in full-text publication datasetsfor instance, efficiency-related metrics such as precision, recall, f-measure and accuracy, and other useful metadata such as the datasets deployed and the algorithmic run-time complexity. In this study, we proposed a novel deep learning-based feature engineering approach that improves search capabilities by mining algorithmic-specific metadata from full-text scientific publications. Typically, traditional term frequency-inverse document frequency (TF-IDF)-based approaches function like a bag of words' model and thus fail to capture either the text's semantics or the word sequence. In this work, we designed a semantically enriched synopsis of each full-text document by adding algorithmic-specific deep metadata text lines to enhance the search mechanism of algorithm search systems. These text lines are classified by our deployed deep learning-based bi-directional long short term memory (LSTM) model. The designed bi-directional LSTM model outperformed the support vector machine by 9.46%, with a 0.81f1-score on a dataset of 37,000 algorithm-specific deep metadata text lines that had been tagged by four human experts. Lastly, we present a case study on 21,940 full-text publications downloaded from ACL (https://aclweb.org/) to show the effectiveness of deep learning-based advanced feature engineering search compared to the conventional TF-IDF-based (Lucene) search. C1 [Safder, Iqra; Saeed-Ul Hassan] Informat Technol Univ, 346-B Ferozepur Rd, Lahore, Pakistan. RP Safder, I (corresponding author), Informat Technol Univ, 346-B Ferozepur Rd, Lahore, Pakistan. EM iqra.safder@itu.edu.pk RI Safder, Iqra/JXN-8069-2024; Hassan, Saeed-Ul/G-1889-2016 OI Hassan, Saeed-Ul/0000-0002-6509-9190 FU NRPU - Higher Education Commission of Pakistan [6857] FX This research work is supported by the NRPU Grant #6857, funded by the Higher Education Commission of Pakistan. CR Al-Zaidy RA, 2017, AAAI CONF ARTIF INTE, P4644 Al-Zaidy RA, 2018, IEEE INT C SEMANT CO, P56, DOI 10.1109/ICSC.2018.00017 Al-Zaidy RA, 2017, PROCEEDINGS OF THE 2017 ACM SYMPOSIUM ON DOCUMENT ENGINEERING (DOCENG 17), P149, DOI 10.1145/3103010.3121043 Bengio Y, 2013, IEEE T PATTERN ANAL, V35, P1798, DOI 10.1109/TPAMI.2013.50 Bhatia S, 2012, ACM T INFORM SYST, V30, DOI 10.1145/2094072.2094075 Bornmann L, 2015, J ASSOC INF SCI TECH, V66, P2215, DOI 10.1002/asi.23329 Cabanac G, 2018, SCIENTOMETRICS, V116, P1225, DOI 10.1007/s11192-018-2861-0 Chen Q, 2017, PROCEEDINGS OF THE 55TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2017), VOL 1, P1657, DOI 10.18653/v1/P17-1152 Collobert R, 2011, J MACH LEARN RES, V12, P2493 Hassan SU, 2017, INT C AS DIG LIB, P119 Hassan SU, 2018, SCIENTOMETRICS, V8, P1 Heffernan K, 2018, SCIENTOMETRICS, V116, P1367, DOI 10.1007/s11192-018-2718-6 Hingmire S., 2017, P KNOWL CAPT C Hingmire S, 2013, SIGIR'13: THE PROCEEDINGS OF THE 36TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH & DEVELOPMENT IN INFORMATION RETRIEVAL, P877 Huang ML, 2017, ACM T INFORM SYST, V35, DOI 10.1145/3052770 Karimi S, 2018, SCIENTOMETRICS, V116, P1331, DOI 10.1007/s11192-018-2785-8 Khabsa Madian., 2012, PROC ACMIEEE JOINT C, P185, DOI DOI 10.1145/2232817.2232852 Khan S, 2017, INFORM PROCESS MANAG, V53, P923, DOI 10.1016/j.ipm.2017.03.006 Lai SW, 2015, AAAI CONF ARTIF INTE, P2267 Lee PS, 2016, PROCEEDINGS OF THE 25TH INTERNATIONAL CONFERENCE ON WORLD WIDE WEB (WWW'16 COMPANION), P413, DOI 10.1145/2872518.2890523 Li CL, 2016, CIKM'16: PROCEEDINGS OF THE 2016 ACM CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, P85, DOI 10.1145/2983323.2983721 Lin YM, 2017, J INTELL FUZZY SYST, V33, P3949, DOI 10.3233/JIFS-17781 Ma ST, 2018, SCIENTOMETRICS, V116, P1303, DOI 10.1007/s11192-018-2754-2 Mayr P, 2018, INT J DIGIT LIBRARIE, V19, P107, DOI 10.1007/s00799-017-0230-x Mesbah S, 2017, LECT NOTES COMPUT SC, V10249, P321, DOI 10.1007/978-3-319-58068-5_20 Mitra P., 2007, CIMS '07: Proceedings of the ACM first workshop on CyberInfrastructure: Information Management in eScience, P7, DOI DOI 10.1145/1317353.1317356 Osborne F, 2017, K-CAP 2017: PROCEEDINGS OF THE KNOWLEDGE CAPTURE CONFERENCE, DOI 10.1145/3148011.3148080 Robertson S. E., 1995, Text REtrieval Conference (TREC-3) (NIST SP 500-225), P109 Rose S., 2010, Text Min. Appl. Theory, P1, DOI DOI 10.1002/9780470689646.CH1 Saeed-Ul Hassan, 2017, ACM-IEEE J CONF DIG, P41 SAEEDULHASSAN, 2018, SCIENTOMETRICS, V116, P973, DOI DOI 10.1007/S11192-018-2767-X Safder I, 2018, COMPANION PROCEEDINGS OF THE WORLD WIDE WEB CONFERENCE 2018 (WWW 2018), P251, DOI 10.1145/3184558.3186334 Safder I, 2018, INT CONF DAT MIN WOR, P1308, DOI 10.1109/ICDMW.2018.00186 Safder I, 2017, LECT NOTES COMPUT SC, V10647, P30, DOI 10.1007/978-3-319-70232-2_3 Siegel N, 2018, ACM-IEEE J CONF DIG, P223, DOI 10.1145/3197026.3197040 Siegel N, 2016, LECT NOTES COMPUT SC, V9911, P664, DOI 10.1007/978-3-319-46478-7_41 Nguyen TTH, 2017, PROC INT CONF DOC, P242, DOI 10.1109/ICDAR.2017.48 Tuarob Suppawong, 2016, IEEE Transactions on Big Data, V2, P3, DOI 10.1109/TBDATA.2016.2546302 Tuarob S., 2016, P INT COMP SCI ENG C, P1 Tuarob S, 2015, PROC INT CONF DOC, P1081, DOI 10.1109/ICDAR.2015.7333927 Tuarob S, 2013, PROC INT CONF DOC, P738, DOI 10.1109/ICDAR.2013.151 Wang CL, 2017, KDD'17: PROCEEDINGS OF THE 23RD ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, P2061, DOI 10.1145/3097983.3098140 Xia F, 2017, IEEE T BIG DATA, V3, P18, DOI 10.1109/TBDATA.2016.2641460 NR 43 TC 34 Z9 34 U1 1 U2 39 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0138-9130 EI 1588-2861 J9 SCIENTOMETRICS JI Scientometrics PD APR PY 2019 VL 119 IS 1 BP 257 EP 277 DI 10.1007/s11192-019-03025-y PG 21 WC Computer Science, Interdisciplinary Applications; Information Science & Library Science WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Computer Science; Information Science & Library Science GA HS1QS UT WOS:000463637600013 DA 2024-09-05 ER PT J AU Memisevic, H Pasalic, A Mujkanovic, E Memisevic, M AF Memisevic, Haris Pasalic, Arnela Mujkanovic, Edin Memisevic, Mahira TI In Search of a Silver Bullet: Evaluating Researchers' Performance in Bosnia and Herzegovina SO JOURNAL OF SCIENTOMETRIC RESEARCH LA English DT Article DE Academic performance; Evaluation; h-index; Principal component analysis; Bosnia and Herzegovina ID GOOGLE-SCHOLAR; H-INDEX; SCOPUS; JOURNALS; SCIENCE; WEB; INDICATOR AB Background: Evaluating academic production and researchers' impact has become a common practice in many areas of academic life. Researchers are being evaluated for many purposes such as getting employment, promotion, tenure and winning grants. Achieving full objectivity of the evaluation is a rather difficult, if not the impossible task. The goal of the present paper was to evaluate research performance of scholars from Bosnia and Herzegovina (BiH and to propose a single number that captures several scientometric indices. Methods: We took data from 303 scholars from 4 public universities in BiH on their number of citations and h-indexes derived from four databases/services: Web of Science, Scopus, Google Scholar and Research Gate. In addition to this, we performed a Principal Component Analysis of number of citations and h-indexes from these indices to come up with a single number that best captures the scientific impact of the researchers. Results: The results of this study indicate a strong relationship between all indices of scholarly achievement as measured through citations and h-indexes. Principal component analysis has shown that it is possible to obtain a single number that captures researchers' scientific impact. Conclusion: Many metrics can be useful in evaluating researchers' scientific impact. As the researchers in BiH have a low scientific production, universities in BiH need to adapt a strategy to stimulate the increase in their scientific productivity. C1 [Memisevic, Haris; Pasalic, Arnela] Univ Sarajevo, Fac Educ Sci, Sarajevo 71000, Bosnia & Herceg. [Mujkanovic, Edin] Herzegovina Univ, Dept Special Educ, Mostar, Bosnia & Herceg. [Memisevic, Mahira] Univ Sarajevo, Fac Sci, Sarajevo, Bosnia & Herceg. C3 University of Sarajevo; University of Sarajevo RP Memisevic, H (corresponding author), Univ Sarajevo, Fac Educ Sci, Sarajevo 71000, Bosnia & Herceg. EM hmemisevic@gmail.com RI Memisevic, Haris/N-3458-2016 OI Memisevic, Haris/0000-0001-7340-3618 CR Abdi H, 2010, WIRES COMPUT STAT, V2, P433, DOI 10.1002/wics.101 Aguillo IF, 2012, SCIENTOMETRICS, V91, P343, DOI 10.1007/s11192-011-0582-8 Asefeh A, 2018, J SCIENTOMETRIC RES, V7 Bar-Ilan J, 2008, SCIENTOMETRICS, V74, P257, DOI 10.1007/s11192-008-0216-y Bollen J, 2009, PLOS ONE, V4, DOI [10.1371/journal.pone.0006022, 10.1371/journal.pone.0004803] Bornmann L, 2007, J AM SOC INF SCI TEC, V58, P1381, DOI 10.1002/asi.20609 Bornmann L, 2009, EMBO REP, V10, P2, DOI 10.1038/embor.2008.233 Cadez S, 2017, STUD HIGH EDUC, V42, P1455, DOI 10.1080/03075079.2015.1104659 Eck NJV, 2013, PLOS ONE, V8 Falagas ME, 2008, FASEB J, V22, P338, DOI 10.1096/fj.07-9492LSF García-Gallego A, 2015, APPL ECON, V47, P4868, DOI 10.1080/00036846.2015.1037438 Gasparyan AY, 2013, RHEUMATOL INT, V33, P277, DOI 10.1007/s00296-012-2582-2 Ghazavi R, 2019, J SCIENTOMETR RES, V8, P9, DOI 10.5530/jscires.8.1.2 Harzing AW, 2009, J AM SOC INF SCI TEC, V60, P41, DOI 10.1002/asi.20953 Hirsch JE, 2005, P NATL ACAD SCI USA, V102, P16569, DOI 10.1073/pnas.0507655102 Hornstein HA, 2017, COGENT EDUC, V4, DOI 10.1080/2331186X.2017.1304016 Jacsó P, 2008, ONLINE INFORM REV, V32, P524, DOI 10.1108/14684520810897403 Lacasse JR, 2011, RES SOCIAL WORK PRAC, V21, P599, DOI 10.1177/1049731511405069 Lane J, 2010, NATURE, V464, P488, DOI 10.1038/464488a Martín-Martín A, 2018, J INFORMETR, V12, P1160, DOI 10.1016/j.joi.2018.09.002 Marusic A, 1999, CROAT MED J, V40, P508 Memisevic Haris, 2017, Acta Inform Med, V25, P187, DOI 10.5455/aim.2017.25.187-190 Miller JC, 2013, SCIENTOMETRICS, V97, P519, DOI 10.1007/s11192-013-0987-7 Onyancha O.B., 2009, MOUSAION, V27, P43 Ovadia S., 2014, BSSL, V33, P165, DOI DOI 10.1080/01639269.2014.934093 Payne A. A., 2003, ADV EC ANAL POLICY, V3, P1018, DOI [DOI 10.2202/1538-0637.1018, 10.2202/1538-0637.1018] Petersen AM, 2010, PHYS REV E, V82, DOI 10.1103/PhysRevE.82.036114 Purvis A, 2006, TRENDS ECOL EVOL, V21, P422, DOI 10.1016/j.tree.2006.05.014 Rivera H, 2018, J KOREAN MED SCI, V33, DOI 10.3346/jkms.2018.33.e105 Sinatra R, 2016, SCIENCE, V354, DOI 10.1126/science.aaf5239 Thelwall M, 2017, SCIENTOMETRICS, V112, P1125, DOI 10.1007/s11192-017-2400-4 Uttl B, 2017, STUD EDUC EVAL, V54, P22, DOI 10.1016/j.stueduc.2016.08.007 Wislar JS, 2011, BRIT MED J, V343, DOI 10.1136/bmj.d6128 Yong A., 2014, Not. Am. Math. Soc., V61, P1040, DOI [DOI 10.1090/NOTI1164, DOI 10.1090/N0TI1164] Yu MC, 2016, COMPUT HUM BEHAV, V55, P1001, DOI 10.1016/j.chb.2015.11.007 Zerem E, 2017, J BIOMED INFORM, V75, P107, DOI 10.1016/j.jbi.2017.10.007 NR 36 TC 4 Z9 4 U1 0 U2 2 PU PHCOG NET PI KARNATAKA PA 17, 2ND FLR, BUDDHA VIHAR RD, NEAR SPORTS ZONE, COX TOWN, BENGALURU, KARNATAKA, 560005, INDIA SN 2321-6654 EI 2320-0057 J9 J SCIENTOMETR RES JI J. Scientometr. Res. PD SEP-DEC PY 2019 VL 8 IS 3 BP 125 EP 130 DI 10.5530/jscires.8.3.27 PG 6 WC Information Science & Library Science WE Emerging Sources Citation Index (ESCI) SC Information Science & Library Science GA KA8GC UT WOS:000506038800001 OA hybrid DA 2024-09-05 ER PT J AU Geraci, M Esposti, M AF Geraci, Marco Degli Esposti, M. TI Where do Italian universities stand? An in-depth statistical analysis of national and international rankings SO SCIENTOMETRICS LA English DT Article DE Ranking; Higher education; Principal component analysis; Correlation; Reform law; h-index AB In a previous article (Degli Esposti and Geraci. Bulletin of Italian Politics, 2011), we presented an historical survey of the university reform laws that took place in Italy in the last 30 years. On that occasion, we stressed how important is merit evaluation for academics and their institutions, especially in view of the much debated but not yet implemented 'Gelmini' reform with its long awaited new regulation for accessing academic positions (concorsi) and for determining individual weight in financial resource allocation among universities. Here, we present and compare several rankings used to evaluate the prestige and merit of Italian universities. We also consider alternative approaches to academic rankings that highlight peculiar aspects of the universities in Italy which cannot be reasonably accounted for by other international rankings. Finally, we propose a new approach that combines both national and international standing of Italian universities. It is hoped that this study will provide practical guidance to policy makers for establishing the criteria upon which merit should be assessed. C1 [Geraci, Marco] UCL Inst Child Hlth, MRC Ctr Epidemiol Child Hlth, London WC1N 1EH, England. [Degli Esposti, M.] Univ Manchester, Fac Life Sci, Manchester M13 9PT, Lancs, England. C3 University of London; University College London; University of Manchester RP Geraci, M (corresponding author), UCL Inst Child Hlth, MRC Ctr Epidemiol Child Hlth, 30 Guilford St, London WC1N 1EH, England. EM m.geraci@ucl.ac.uk RI Geraci, Marco/B-9588-2009; Degli Esposti, Mauro/C-3270-2012 OI Geraci, Marco/0000-0002-6311-8685; FU MRC [G0400546] Funding Source: UKRI CR *CAMP, 2009, GUIDA ALL U DEGLIESPOSTI M, 2011, B ITALIAN P IN PRESS Everitt B., 1998, The Cambridge Dictionary of Statistics GRAZIOSI A, 2010, U TUTTI Hirsch JE, 2005, P NATL ACAD SCI USA, V102, P16569, DOI 10.1073/pnas.0507655102 Lazaridis T, 2010, SCIENTOMETRICS, V82, P211, DOI 10.1007/s11192-009-0048-4 Marchant T, 2009, SCIENTOMETRICS, V80, P325, DOI 10.1007/s11192-008-2075-y Tocci W, 2009, QUALE RIFORMA U *UDU, 2009, MIST MIN *VIS, 2009, U NUOV CLASS VIS *VIS, 2009, CLASS U IT NR 11 TC 10 Z9 12 U1 0 U2 14 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0138-9130 J9 SCIENTOMETRICS JI Scientometrics PD JUN PY 2011 VL 87 IS 3 BP 667 EP 681 DI 10.1007/s11192-011-0350-9 PG 15 WC Computer Science, Interdisciplinary Applications; Information Science & Library Science WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Computer Science; Information Science & Library Science GA 753PS UT WOS:000289792600016 DA 2024-09-05 ER PT C AU Kongthon, A Haruechaiyasak, C Thaiprayoon, S AF Kongthon, Alisa Haruechaiyasak, Choochart Thaiprayoon, Santipong BE Buchanan, G Masoodian, M Cunningham, SJ TI Enhancing the Literature Review Using Author-Topic Profiling SO DIGITAL LIBRARIES: UNIVERSAL AND UBIQUITOUS ACCESS TO INFORMATION, PROCEEDINGS SE Lecture Notes in Computer Science LA English DT Proceedings Paper CT 11th International Conference on Asian Digital Libraries CY DEC 02-05, 2008 CL Bali, INDONESIA DE Bibliographic data; text mining; Latent Dirichlet Allocation (LDA); author-topic profiling; literature review AB In this paper, we utilize bibliographic data for identifying author-topic relations which call be used to enhance the traditional literature review. When writing a research paper, researchers often cite oil the order of tens of references which do not provide the complete coverage of the research context especially when the targeted research is multidisciplinary. Author-topic profiling can help researchers discover a broader picture of their topic of interest including topical relationships and research community. We apply the Latent Dirichlet Allocation (LDA) to generate multinomial distributions over words and topics to discover author-topic relations from text collections. As ail illustration, we apply the methodology to bibliographic abstracts related to Emerging Infectious Diseases (ElDs) research topic. C1 [Kongthon, Alisa; Haruechaiyasak, Choochart; Thaiprayoon, Santipong] Natl Elect & Comp Technol Ctr NECTEC, Human Language Technol Lab HLT, Klongluang 12120, Pathumthani, Thailand. C3 National Science & Technology Development Agency - Thailand; National Electronics & Computer Technology Center (NECTEC) EM alisa.kon@nectec.or.th; choochart.har@nectec.or.th; santipong.tha@nectec.or.th RI Kongthon, Alisa/E-4470-2011 OI Kongthon, Alisa/0009-0009-8682-5006 CR Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993 DEERWESTER S, 1990, J AM SOC INFORM SCI, V41, P391, DOI 10.1002/(SICI)1097-4571(199009)41:6<391::AID-ASI1>3.0.CO;2-9 Hofmann T, 1999, SIGIR'99: PROCEEDINGS OF 22ND INTERNATIONAL CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, P50, DOI 10.1145/312624.312649 Steyvers M., 2006, LATENT SEMANTIC ANAL Steyvers M., 2004, Proceedings of the International Conference on Knowledge Discovery and Data Mining (SIGKDD), P306, DOI [10.1145/1014052.1014087, 10.1145/1014052, DOI 10.1145/1014052] NR 5 TC 0 Z9 0 U1 0 U2 3 PU SPRINGER-VERLAG BERLIN PI BERLIN PA HEIDELBERGER PLATZ 3, D-14197 BERLIN, GERMANY SN 0302-9743 BN 978-3-540-89532-9 J9 LECT NOTES COMPUT SC PY 2008 VL 5362 BP 335 EP 338 PG 4 WC Computer Science, Information Systems; Computer Science, Theory & Methods; Information Science & Library Science WE Conference Proceedings Citation Index - Science (CPCI-S); Conference Proceedings Citation Index - Social Science & Humanities (CPCI-SSH) SC Computer Science; Information Science & Library Science GA BIT31 UT WOS:000262503100038 OA Bronze DA 2024-09-05 ER PT C AU Guo, J Yan, YM Zhang, B Ma, QM AF Guo Jun Yan Yongming Zhang Bin Ma Qingmin GP IEEE TI SLA-Oriented Research on Prediction and Evaluation of Service Components Performance SO 2015 12TH WEB INFORMATION SYSTEM AND APPLICATION CONFERENCE (WISA) LA English DT Proceedings Paper CT 12th Web Information System and Application Conference (WISA) CY SEP 11-13, 2015 CL Shandong Univ, Jinan, PEOPLES R CHINA HO Shandong Univ DE cloud service component; performance prediction; non-negative matrix factorization; response time sequence AB The application services which deployed in cloud environment have some characteristics, such as the variability of concurrent requests and the differences of resource demands among components, which bring certain influence on service performance even cause some potential problems. Therefore, making an effective service performance prediction mechanism has become a research hotspot for application services based cloud service components. This paper proposes SLA-oriented research on prediction of service component and introduces the fundamental process of performance prediction. It adopts the non-negative matrix factorization method for performance prediction and makes an evaluation on component performance. The experiment result indicates the method in this paper is feasible and valid, and the accuracy is higher than the traditional approaches. C1 [Guo Jun; Yan Yongming; Zhang Bin; Ma Qingmin] Northeastern Univ, Coll Informat Sci & Engn, Shenyang, Peoples R China. C3 Northeastern University - China RP Guo, J (corresponding author), Northeastern Univ, Coll Informat Sci & Engn, Shenyang, Peoples R China. EM guojun@ise.neu.edu.cn; yym_sy@163.com; zhangbing@ise.neu.edu.cn; maqingmin10@163.com RI Zhang, Bin/U-9174-2019 OI Zhang, Bin/0000-0002-2127-9560 CR Armbrust M, 2010, COMMUN ACM, V53, P50, DOI 10.1145/1721654.1721672 Calheiros R. N., 2011, 2011 International Conference on Parallel Processing, P295, DOI 10.1109/ICPP.2011.17 Chauhan T., 2011, Proceedings of the 2011 World Congress on Information and Communication Technologies (WICT), P564, DOI 10.1109/WICT.2011.6141307 [陈光 Chen Guang], 2012, [计算机科学与探索, Journal of Frontiers of Computer Science & Technology], V6, P495 Chen Hanwei, 2011, COMPUTER APPL SOFTWA, V28, P4 Fito JO, 2010, EC GRIDS CLOUDS SYST, P34 García AG, 2014, FUTURE GENER COMP SY, V31, P1, DOI 10.1016/j.future.2013.10.005 Hauck Michael, 2011, Proceedings of the 1st International Conference on Cloud Computing and Services Science. CLOSER 2011, P616 Iosup A, 2011, IEEE T PARALL DISTR, V22, P931, DOI 10.1109/TPDS.2011.66 Kebbal D, 2001, DOA'01: 3RD INTERNATIONAL SYMPOSIUM ON DISTRIBUTED OBJECTS & APPLICATIONS, PROCEEDINGS, P125, DOI 10.1109/DOA.2001.954078 Khan A, 2012, IEEE IFIP NETW OPER, P1287, DOI 10.1109/NOMS.2012.6212065 Lee DD, 1999, NATURE, V401, P788, DOI 10.1038/44565 Nasridinov A, 2012, SECOND INTERNATIONAL CONFERENCE ON CLOUD AND GREEN COMPUTING / SECOND INTERNATIONAL CONFERENCE ON SOCIAL COMPUTING AND ITS APPLICATIONS (CGC/SCA 2012), P799, DOI 10.1109/CGC.2012.123 Pacheco-Sanchez S., 2011, Proceedings of the 2011 IEEE 4th International Conference on Cloud Computing (CLOUD 2011), P147, DOI 10.1109/CLOUD.2011.100 Patel SG, 2012, INT J ENG, V1 Shao L, 2007, IEEE ICCE, P439, DOI 10.1109/ICWS.2007.140 Song Huanhuan, 2011, DESIGN IMPLEMENT CLO Truong HL, 2010, PROCEDIA COMPUT SCI, V1, P2169, DOI 10.1016/j.procs.2010.04.243 Zhang YL, 2011, SYM REL DIST SYST, P1, DOI 10.1109/SRDS.2011.10 Zheng ZB, 2012, IEEE T SERV COMPUT, V5, P540, DOI 10.1109/TSC.2011.42 NR 20 TC 0 Z9 0 U1 0 U2 0 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA BN 978-1-4673-9372-0 PY 2015 BP 136 EP 141 DI 10.1109/WISA.2015.33 PG 6 WC Computer Science, Information Systems; Computer Science, Theory & Methods; Engineering, Electrical & Electronic WE Conference Proceedings Citation Index - Science (CPCI-S) SC Computer Science; Engineering GA BF1EO UT WOS:000380387900026 DA 2024-09-05 ER PT J AU Ye, ZY Li, Z Zhong, SY Xing, QC Li, KH Sheng, WC Shi, X Bao, YJ AF Ye, Ziyin Li, Zhi Zhong, Shiyu Xing, Qichen Li, Kunhang Sheng, Weichen Shi, Xin Bao, Yijun TI The recent two decades of traumatic brain injury: a bibliometric analysis and systematic review SO INTERNATIONAL JOURNAL OF SURGERY LA English DT Article DE bibliometric analysis; Latent Dirichlet Allocation; topic modeling; traumatic brain injury ID RAISED INTRACRANIAL-PRESSURE; FIBRILLARY ACIDIC PROTEIN; C-TERMINAL HYDROLASE-L1; HYPERTONIC SALINE; DECOMPRESSIVE CRANIECTOMY; UNITED-STATES; CLINICAL-TRIAL; HEAD TRAUMA; CARE; ENCEPHALOPATHY AB Background:Traumatic brain injury (TBI) is a serious public health burden worldwide, with a mortality rate of 20-30%; however, reducing the incidence and mortality rates of TBI remains a major challenge. This study provides a multidimensional analysis to explore the potential breakthroughs in TBI over the past two decades.Materials and methods:The authors used bibliometric and Latent Dirichlet Allocation (LDA) analyses to analyze publications focusing on TBI published between 2003 and 2022 from the Web of Science Core Collection (WOSCC) database to identify core journals and collaborations among countries/regions, institutions, authors, and research trends.Results:Over the past 20 years, 41 545 articles on TBI from 3043 journals were included, with 12 916 authors from 20 449 institutions across 145 countries/regions. The annual number of publications has increased 10-fold compared to previous publications. This study revealed that high-income countries, especially the United States, have a significant influence. Collaboration was limited to several countries/regions. The LDA results indicated that the hotspots included four main areas: 'Clinical finding', 'Molecular mechanism', 'Epidemiology', and 'Prognosis'. Epidemiological research has consistently increased in recent years. Through epidemiological topic analysis, the main etiology of TBI has shifted from traffic accidents to falls in a demographically aging society.Conclusion:Over the past two decades, TBI research has developed rapidly, and its epidemiology has received increasing attention. Reducing the incidence of TBI from a preventive perspective is emerging as a trend to alleviate the future social burden; therefore, epidemiological research might bring breakthroughs in TBI. C1 [Ye, Ziyin; Zhong, Shiyu; Xing, Qichen; Li, Kunhang; Sheng, Weichen; Bao, Yijun] China Med Univ, Hosp 4, Dept Neurosurg, 4 Chongshandong, Shenyang 110084, Peoples R China. [Li, Zhi] China Med Univ, Hosp 1, Dept Oncol, Shenyang, Heping, Peoples R China. [Shi, Xin] China Med Univ, Sch Hlth Management, 77 Puhe Rd, Shenyang, Liaoning, Peoples R China. C3 China Medical University; China Medical University; China Medical University RP Bao, YJ (corresponding author), China Med Univ, Hosp 4, Dept Neurosurg, 4 Chongshandong, Shenyang 110084, Peoples R China.; Shi, X (corresponding author), China Med Univ, Sch Hlth Management, 77 Puhe Rd, Shenyang, Liaoning, Peoples R China. EM y18924280072@163.com; zli@cmu.edu.cn; zsy757301823@163.com; tonyxxv@Hotmail.com; khli@cmu.edu.cn; sWeiccc1201@163.com; 20221010@cmu.edu.cn; yjbao@cmu.edu.cn FU Liaoning Provincial Natural Science Foundation [2020-MS-155]; China Medical University novel coronavirus pneumonia prevention and control research project [2020-12-11]; Shenyang Planning Foundation for Science and Technology [21-173-9-38]; China Medical University [YDJK2021011]; National Science Foundation of China [72074104]; Immersive Smart Devices for Healthcare System R&D and Industrial Application Innovation Platform (2022) of Immersion Technology and Evaluation Shandong Engineering Research Center (2022); Research Project on Undergraduate Teaching Reform of Liaoning General Higher Education - Educational Department of Liaoning Province [2022-10159-479]; Research Project on Postgraduate Teaching Reform - Educational Department of Liaoning Province [2022-10159-311]; China Stroke Association Whole Course Management of Cerebrovascular Disease Sailing Fund [202001]; The 2023 Undergraduate Teaching Reform Research Project of China Medical University - 2022 Provincial First-class Curriculum Construction Specialization; Natural Science Foundation of Liaoning Province of China [2021-MS-179] FX This study was funded by Liaoning Provincial Natural Science Foundation (2020-MS-155), China Medical University novel coronavirus pneumonia prevention and control research project (2020-12-11), Shenyang Planning Foundation for Science and Technology (21-173-9-38), the first batch of medical education scientific research project of China Medical University for the 14th Five-Year Plan (YDJK2021011), National Science Foundation of China (72074104), Immersive Smart Devices for Healthcare System R&D and Industrial Application Innovation Platform (2022) of Immersion Technology and Evaluation Shandong Engineering Research Center (2022) , Research Project on Undergraduate Teaching Reform of Liaoning General Higher Education sponsored by Educational Department of Liaoning Province (2022-10159-479), Research Project on Postgraduate Teaching Reform sponsored by Educational Department of Liaoning Province (2022-10159-311), China Stroke Association Whole Course Management of Cerebrovascular Disease Sailing Fund (202001), 2023 Undergraduate Teaching Reform Research Project of China Medical University - 2022 Provincial First-class Curriculum Construction Specialization, and The Natural Science Foundation of Liaoning Province of China (2021-MS-179). The researchers are grateful for the support of several organizations. CR [Anonymous], 1999, JAMA, V282, P974 Appiah AB, 2023, INJURY PREV, V29, P50, DOI 10.1136/ip-2022-044683 Arun R, 2010, LECT NOTES ARTIF INT, V6118, P391 Bazarian JJ, 2021, JAMA NETW OPEN, V4, DOI 10.1001/jamanetworkopen.2020.37349 Berger RP, 2005, J NEUROSURG, V103, P61, DOI 10.3171/ped.2005.103.1.0061 Blei D, 2010, IEEE SIGNAL PROC MAG, V27, P55, DOI 10.1109/MSP.2010.938079 Brazinova A, 2021, J NEUROTRAUM, V38, P1411, DOI 10.1089/neu.2015.4126 Bulger EM, 2010, JAMA-J AM MED ASSOC, V304, P1455, DOI 10.1001/jama.2010.1405 Cao J, 2009, NEUROCOMPUTING, V72, P1775, DOI 10.1016/j.neucom.2008.06.011 Cheng PC, 2017, PLOS MED, V14, DOI 10.1371/journal.pmed.1002332 Chesnut RM, 2012, NEW ENGL J MED, V367, P2471, DOI 10.1056/NEJMoa1207363 Chong SL, 2015, BMC MED RES METHODOL, V15, DOI 10.1186/s12874-015-0015-0 Chou YY, 2022, INFLAMM REGEN, V42, DOI 10.1186/s41232-022-00244-4 Clark D, 2022, LANCET NEUROL, V21, P438, DOI 10.1016/S1474-4422(22)00037-0 CLIFTON GL, 1995, J NEUROTRAUM, V12, P923, DOI 10.1089/neu.1995.12.923 Clifton GL, 2011, LANCET NEUROL, V10, P131, DOI 10.1016/S1474-4422(10)70300-8 Coats T, 2005, CROAT MED J, V46, P146 Cooper DJ, 2018, JAMA-J AM MED ASSOC, V320, P2211, DOI 10.1001/jama.2018.17075 Cooper DJ, 2011, NEW ENGL J MED, V364, P1493, DOI 10.1056/NEJMoa1102077 Czeiter E, 2020, EBIOMEDICINE, V56, DOI 10.1016/j.ebiom.2020.102785 Dewan MC, 2019, J NEUROSURG, V130, P1080, DOI 10.3171/2017.10.JNS17352 Dewan Y, 2012, TRIALS, V13, DOI 10.1186/1745-6215-13-87 Douglas David B, 2015, Top Magn Reson Imaging, V24, P241, DOI 10.1097/RMR.0000000000000062 Engrand N, 2019, JAMA-J AM MED ASSOC, V321, P1725, DOI 10.1001/jama.2019.1534 Feigin VL, 2013, LANCET NEUROL, V12, P53, DOI 10.1016/S1474-4422(12)70262-4 Francony G, 2008, CRIT CARE MED, V36, P795, DOI 10.1097/CCM.0B013E3181643B41 Geng M, 2022, TRANSL PEDIATR, V11, P909, DOI 10.21037/tp-22-180 Ghaith HS, 2022, MOL NEUROBIOL, V59, P4141, DOI 10.1007/s12035-022-02822-6 Goldstein LE, 2012, SCI TRANSL MED, V4, DOI 10.1126/scitranslmed.3003716 Hale AT, 2018, NEUROSURG FOCUS, V45, DOI 10.3171/2018.8.FOCUS17773 Hawryluk GWJ, 2020, NEUROSURGERY, V87, P427, DOI 10.1093/neuros/nyaa278 Hazrati LN, 2013, FRONT HUM NEUROSCI, V7, DOI 10.3389/fnhum.2013.00222 Hirsch JE, 2005, P NATL ACAD SCI USA, V102, P16569, DOI 10.1073/pnas.0507655102 Hui JY, 2021, ECLINICALMEDICINE, V32, DOI 10.1016/j.eclinm.2021.100732 Hutchinson PJ, 2016, NEW ENGL J MED, V375, P1119, DOI 10.1056/NEJMoa1605215 James SL, 2019, LANCET NEUROL, V18, P56, DOI [10.1016/S1474-4422(18)30415-0, 10.1016/S1474-4422(18)30499-X, 10.1016/S1474-4422(19)30034-1] Jiang JY, 2007, SURG NEUROL, V68, P2, DOI 10.1016/j.surneu.2007.09.016 Jiang JY, 2019, LANCET NEUROL, V18, P286, DOI 10.1016/S1474-4422(18)30469-1 Kamel H, 2011, CRIT CARE MED, V39, P554, DOI 10.1097/CCM.0b013e318206b9be Karagianni MD, 2022, NEUROCRIT CARE, V36, P1044, DOI 10.1007/s12028-021-01428-5 Karydakis P, 2020, IRISH J MED SCI, V189, P315, DOI 10.1007/s11845-019-02085-6 Kawata K, 2018, HAND CLINIC, V158, P217, DOI 10.1016/B978-0-444-63954-7.00022-7 Khellaf A, 2019, J NEUROL, V266, P2878, DOI 10.1007/s00415-019-09541-4 Korley FK, 2022, LANCET NEUROL, V21, P803, DOI 10.1016/S1474-4422(22)00256-3 Kulbe JR, 2016, EXP NEUROL, V275, P334, DOI 10.1016/j.expneurol.2015.05.004 Kuo CY, 2015, IRAN J PUBLIC HEALTH, V44, P470 Lepard JR, 2021, PLOS MED, V18, DOI 10.1371/journal.pmed.1003795 Lewis SR, 2017, COCHRANE DB SYST REV, DOI 10.1002/14651858.CD001048.pub5 Li L, 2018, WORLD NEUROSURG, V113, pE82, DOI 10.1016/j.wneu.2018.01.164 Liu NT, 2017, SHOCK, V48, P504, DOI 10.1097/SHK.0000000000000898 Lui YW, 2014, NEUROLOGY, V83, P1235, DOI 10.1212/WNL.0000000000000834 Maas AIR, 2008, LANCET NEUROL, V7, P728, DOI 10.1016/S1474-4422(08)70164-9 Maas AIR, 2022, LANCET NEUROL, V21, P1004, DOI 10.1016/S1474-4422(22)00309-X Maas AIR, 2022, LANCET NEUROL, V21, P768, DOI 10.1016/S1474-4422(22)00307-6 Maas AIR, 2017, LANCET NEUROL, V16, P987, DOI 10.1016/S1474-4422(17)30371-X Mangat HS, 2015, J NEUROSURG, V122, P202, DOI 10.3171/2014.10.JNS132545 Marion DW, 1997, NEW ENGL J MED, V336, P540, DOI 10.1056/NEJM199702203360803 Marion DW, 2000, CRIT CARE MED, V28, P16, DOI 10.1097/00003246-200001000-00003 Martinez BI, 2019, J BIOL ENG, V13, DOI 10.1186/s13036-019-0145-8 Masel BE, 2010, J NEUROTRAUM, V27, P1529, DOI 10.1089/neu.2010.1358 McIntyre LA, 2003, JAMA-J AM MED ASSOC, V289, P2992, DOI 10.1001/jama.289.22.2992 McKee AC, 2016, ACTA NEUROPATHOL, V131, P75, DOI 10.1007/s00401-015-1515-z McKee AC, 2015, BRAIN PATHOL, V25, P350, DOI 10.1111/bpa.12248 Mckee AC, 2009, J NEUROPATH EXP NEUR, V68, P709, DOI 10.1097/NEN.0b013e3181a9d503 Melinosky C, 2018, FRONT NEUROL, V9, DOI 10.3389/fneur.2018.00761 Mena A., 2021, Topic Identification from Spanish Unstructured Health Texts Applied Technologies Metting Z, 2012, NEUROLOGY, V78, P1428, DOI 10.1212/WNL.0b013e318253d5c7 Meyfroidt G, 2022, INTENS CARE MED, V48, P649, DOI 10.1007/s00134-022-06702-4 MILLER H, 1966, P ROY SOC MED, V59, P257, DOI 10.1177/003591576605900327 Mimno David, 2011, P C EMPIRICAL METHOD, P262 Mitra J, 2016, NEUROIMAGE, V129, P247, DOI 10.1016/j.neuroimage.2016.01.056 Mojgani P, 2022, NEUROPSYCHOL REHABIL, V32, P51, DOI 10.1080/09602011.2020.1796714 Mondello S, 2012, NEUROSURGERY, V70, P666, DOI 10.1227/NEU.0b013e318236a809 Mondello S, 2011, CRIT CARE, V15, DOI 10.1186/cc10286 Mortazavi MM, 2012, J NEUROSURG, V116, P210, DOI 10.3171/2011.7.JNS102142 Münch E, 2000, NEUROSURGERY, V47, P315, DOI 10.1097/00006123-200008000-00009 Ogden AT, 2005, NEUROSURGERY, V57, P207, DOI 10.1227/01.NEU.0000166533.79031.D8 Okonkwo DO, 2017, CRIT CARE MED, V45, P1907, DOI 10.1097/CCM.0000000000002619 Olivera A, 2015, JAMA NEUROL, V72, P1109, DOI 10.1001/jamaneurol.2015.1383 Omalu BI, 2006, NEUROSURGERY, V59, P1086, DOI 10.1227/01.NEU.0000245601.69451.27 Omalu BI, 2005, NEUROSURGERY, V57, P128, DOI 10.1227/01.NEU.0000163407.92769.ED Papa L, 2010, CRIT CARE MED, V38, P138, DOI 10.1097/CCM.0b013e3181b788ab Perel P, 2010, COCHRANE DB SYST REV, DOI 10.1002/14651858.CD007877.pub2 Peters ME, 2016, INT PSYCHOGERIATR, V28, P1931, DOI 10.1017/S1041610216001666 Peterson AB, 2021, MMWR-MORBID MORTAL W, V70, P1664, DOI 10.15585/mmwr.mm7048a3 Peterson AB, 2020, MMWR-MORBID MORTAL W, V69, P225, DOI 10.15585/mmwr.mm6909a2 Posti JP, 2016, NEUROSURGERY, V79, P456, DOI 10.1227/NEU.0000000000001226 Postolache TT, 2020, J ALZHEIMERS DIS, V74, P1, DOI 10.3233/JAD-191150 Puvenna V, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0096296 Rauchman SH, 2023, FRONT NEUROSCI-SWITZ, V17, DOI 10.3389/fnins.2023.1090672 Roberts I, 2019, LANCET, V394, P1713, DOI 10.1016/S0140-6736(19)32233-0 ROOF RL, 1992, RESTOR NEUROL NEUROS, V4, P425, DOI 10.3233/RNN-1992-4608 Roozenbeek B, 2013, NAT REV NEUROL, V9, P231, DOI 10.1038/nrneurol.2013.22 Roquilly A, 2021, JAMA-J AM MED ASSOC, V325, P2056, DOI 10.1001/jama.2021.5561 Rosenfeld JV, 2012, LANCET, V380, P1088, DOI 10.1016/S0140-6736(12)60864-2 Ruchika F, 2023, INT J MOL SCI, V24, DOI 10.3390/ijms24031847 Sakellaridis N, 2011, J NEUROSURG, V114, P545, DOI 10.3171/2010.5.JNS091685 Sarmiento K, 2017, J SAFETY RES, V63, P105, DOI 10.1016/j.jsr.2017.08.003 Saunders RN, 2018, AM J SURG, V215, P424, DOI 10.1016/j.amjsurg.2017.09.033 Schwarz S, 2002, STROKE, V33, P136, DOI 10.1161/hs0102.100877 Shahim P, 2020, NEUROLOGY, V95, pE623, DOI 10.1212/WNL.0000000000009985 Shahim P, 2016, JAMA NEUROL, V73, P1308, DOI 10.1001/jamaneurol.2016.2038 Shao JB, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0051634 Shen L, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0168901 Shi J, 2021, FRONT NEUROL, V12, DOI 10.3389/fneur.2021.687796 Singh RD, 2022, WORLD NEUROSURG, V161, P410, DOI 10.1016/j.wneu.2021.11.092 Skolnick BE, 2014, NEW ENGL J MED, V371, P2467, DOI 10.1056/NEJMoa1411090 Stein SC, 2010, J NEUROTRAUM, V27, P1343, DOI 10.1089/neu.2009.1206 Stern RA, 2016, J ALZHEIMERS DIS, V51, P1099, DOI 10.3233/JAD-151028 Stern RA, 2013, NEUROLOGY, V81, P1122, DOI 10.1212/WNL.0b013e3182a55f7f Steyerberg EW, 2019, LANCET NEUROL, V18, P923, DOI 10.1016/S1474-4422(19)30232-7 Stout NL, 2018, JNCI-J NATL CANCER I, V110, P815, DOI 10.1093/jnci/djy108 Takala RSK, 2016, WORLD NEUROSURG, V87, P8, DOI 10.1016/j.wneu.2015.10.066 Taylor A, 2001, CHILD NERV SYST, V17, P154, DOI 10.1007/s003810000410 Taylor CA, 2017, MMWR SURVEILL SUMM, V66, P1, DOI 10.15585/mmwr.ss6609a1 van Eck NJ, 2010, SCIENTOMETRICS, V84, P523, DOI 10.1007/s11192-009-0146-3 Vialet R, 2003, CRIT CARE MED, V31, P1683, DOI 10.1097/01.CCM.0000063268.91710.DF Walcott BP, 2012, J NEUROTRAUM, V29, P1879, DOI 10.1089/neu.2012.2382 WANG CC, 1986, ARCH NEUROL-CHICAGO, V43, P570, DOI 10.1001/archneur.1986.00520060034013 WISE BL, 1962, J NEUROSURG, V19, P1038, DOI 10.3171/jns.1962.19.12.1038 Wright DW, 2007, ANN EMERG MED, V49, P391, DOI 10.1016/j.annemergmed.2006.07.932 Wu X, 2008, J TRAUMA, V64, P1313, DOI 10.1097/TA.0b013e318165c803 Xiao GM, 2008, CRIT CARE, V12, DOI 10.1186/cc6887 Yue JK, 2019, LANCET NEUROL, V18, P953, DOI 10.1016/S1474-4422(19)30282-0 Zehtabchi S, 2014, AM J EMERG MED, V32, P1503, DOI 10.1016/j.ajem.2014.09.023 Zhang DF, 2017, SCI REP-UK, V7, DOI 10.1038/s41598-017-08959-y Zhao YD, 2001, WORLD J SURG, V25, P1202 NR 127 TC 1 Z9 1 U1 19 U2 19 PU LIPPINCOTT WILLIAMS & WILKINS PI PHILADELPHIA PA TWO COMMERCE SQ, 2001 MARKET ST, PHILADELPHIA, PA 19103 USA SN 1743-9191 EI 1743-9159 J9 INT J SURG JI Int. J. Surg. PD JUN PY 2024 VL 110 IS 6 BP 3745 EP 3759 DI 10.1097/JS9.0000000000001367 PG 15 WC Surgery WE Science Citation Index Expanded (SCI-EXPANDED) SC Surgery GA UL4X2 UT WOS:001248212000058 PM 38608040 OA hybrid DA 2024-09-05 ER PT J AU Wang, Q Huang, R Li, RR AF Wang, Qiang Huang, Rui Li, Rongrong TI Renewable energy and sustainable development goals: Insights from latent dirichlet allocation thematic and bibliometric analysis SO SUSTAINABLE DEVELOPMENT LA English DT Article; Early Access DE comprehensive evolution; renewable energy; sustainable development goals; topic modeling ID ECONOMIC-POLICY UNCERTAINTY; NONRENEWABLE ENERGY; CONSUMPTION; CHALLENGES; EMISSIONS; WIND; GROWTH; STATES; NEXUS AB This research conducts a comprehensive analysis of the intricate relationship between renewable energy and the sustainable development goals (SDGs). Employing diverse methodologies including latent dirichlet allocation (LDA) topic modeling, bibliometrics, citation analysis, and regression modeling, the study explores the evolving landscape of renewable energy research and its implications for SDGs. The analysis identifies a pronounced scholarly interest in renewable energy, reflected in the escalating publication volumes and citations across environmental sciences, green technology, and energy studies. Through meticulous examination, it uncovers interconnected research themes; encompassing policy uncertainty, Environmental Kuznets Curve, and ecological footprint, elucidating the multifaceted impact of renewable energy on the SDGs. Geographical distributions underscore diverse regional focuses, emphasizing the need for nuanced, context-specific approaches. Regression analysis highlights influential factors like carbon dioxide emissions and gross domestic product (GDP) growth, delineating their pivotal roles in shaping scholarly attention toward renewable energy research. Furthermore, the study delves into the economic, environmental, and social dimensions of renewable energy's influence. It reveals its contributions to employment generation, sustainable production, energy access, and infrastructure development while navigating challenges related to climate change mitigation and biodiversity conservation. This comprehensive investigation offers crucial insights into the complex interplay between renewable energy and the SDGs. It predicts future research directions and highlights the urgency for interdisciplinary collaboration, international cooperation, and policy innovations to harness renewable energy's transformative potential for global sustainable development. C1 [Wang, Qiang; Li, Rongrong] Xinjiang Univ, Sch Econ & Management, Urumqi, Peoples R China. [Wang, Qiang; Huang, Rui; Li, Rongrong] China Univ Petr East China, Sch Econ & Management, Qingdao 266580, Peoples R China. C3 Xinjiang University; China University of Petroleum RP Wang, Q; Li, RR (corresponding author), China Univ Petr East China, Sch Econ & Management, Qingdao 266580, Peoples R China. EM wangqiang7@upc.edu.cn; lirr@upc.edu.cn RI Wang, Qiang/F-4618-2011 OI Wang, Qiang/0000-0002-8751-8093 FU National Natural Science Foundation of China; [72104246] FX The authors would like to thank the editor and the anonymous reviewer for their helpful and constructive comments that greatly contributed to improving the final version of the manuscript. This work is supported by the National Natural Science Foundation of China (Grant No. 72104246). CR Abu Hamed T, 2020, RENEW ENERG FOCUS, V35, P97, DOI 10.1016/j.ref.2020.09.006 Ahmad T, 2020, ENERGY REP, V6, P1973, DOI 10.1016/j.egyr.2020.07.020 Algarni S, 2023, SUSTAIN ENERGY TECHN, V56, DOI 10.1016/j.seta.2023.103098 Hoang AT, 2021, ENERG POLICY, V154, DOI 10.1016/j.enpol.2021.112322 Anwar A, 2023, ENVIRON SCI POLLUT R, DOI 10.1007/s11356-023-28761-w Aydin M, 2023, GONDWANA RES, V118, P105, DOI 10.1016/j.gr.2023.01.013 Baerwald TJ, 2013, INT REGIONAL SCI REV, V36, P29, DOI 10.1177/0160017612441202 Bai B, 2021, J CLEAN PROD, V284, DOI 10.1016/j.jclepro.2020.124684 Swain RB, 2022, INT J SUST DEV WORLD, V29, P695, DOI 10.1080/13504509.2022.2078902 Baños R, 2011, RENEW SUST ENERG REV, V15, P1753, DOI 10.1016/j.rser.2010.12.008 Bekun FV, 2019, SCI TOTAL ENVIRON, V657, P1023, DOI 10.1016/j.scitotenv.2018.12.104 Bergmann A, 2006, ENERG POLICY, V34, P1004, DOI 10.1016/j.enpol.2004.08.035 Çelik O, 2021, ENVIRON SCI POLLUT R, V28, P13047, DOI 10.1007/s11356-021-12414-x Cheng X, 2021, ENVIRON DEV, V40, DOI 10.1016/j.envdev.2021.100679 Chernysh Y, 2020, SUSTAINABILITY-BASEL, V12, DOI 10.3390/su122410384 Cherp A, 2021, NAT ENERGY, V6, P742, DOI 10.1038/s41560-021-00863-0 Chien FS, 2021, TECHNOL SOC, V65, DOI 10.1016/j.techsoc.2021.101587 Cui LB, 2022, RENEW ENERG, V184, P215, DOI 10.1016/j.renene.2021.11.075 Deveci M, 2021, ENG APPL ARTIF INTEL, V103, DOI 10.1016/j.engappai.2021.104311 Diggon S, 2022, MAR POLICY, V142, DOI 10.1016/j.marpol.2020.104065 Doesburg SM, 2009, PLOS ONE, V4, DOI [10.1371/journal.pone.0006142, 10.1371/journal.pone.0006802] Dogan E, 2016, RENEW SUST ENERG REV, V60, P1074, DOI 10.1016/j.rser.2016.02.006 El-Fadel M, 2003, RENEW ENERG, V28, P1257, DOI 10.1016/S0960-1481(02)00229-X Elavarasan RM, 2020, IEEE ACCESS, V8, P74432, DOI 10.1109/ACCESS.2020.2988011 Gulaliyev MG, 2020, SUSTAINABILITY-BASEL, V12, DOI 10.3390/su12031116 Haberl H, 2020, ENVIRON RES LETT, V15, DOI 10.1088/1748-9326/ab842a Hasan M, 2022, ENERGY STRATEG REV, V44, DOI 10.1016/j.esr.2022.101005 Huang FB, 2021, J CLEAN PROD, V283, DOI 10.1016/j.jclepro.2020.124586 Ibn-Mohammed T, 2021, RESOUR CONSERV RECY, V164, DOI 10.1016/j.resconrec.2020.105169 Ike GN, 2020, SCI TOTAL ENVIRON, V721, DOI 10.1016/j.scitotenv.2020.137813 Jelodar H, 2019, MULTIMED TOOLS APPL, V78, P15169, DOI 10.1007/s11042-018-6894-4 Jia X, 2021, INT J TECHNOL MANAGE, V87, P113, DOI 10.1504/IJTM.2021.120937 Khan I, 2021, SCI TOTAL ENVIRON, V754, DOI 10.1016/j.scitotenv.2020.142222 Khan SAR, 2022, SUSTAIN DEV, V30, P275, DOI 10.1002/sd.2243 Khandelwal C, 2022, INT J DISCL GOV, V19, P129, DOI 10.1057/s41310-022-00141-9 Khasseh AA, 2017, INFORM PROCESS MANAG, V53, P705, DOI 10.1016/j.ipm.2017.02.001 Kim JE, 2020, ENERGY RES SOC SCI, V70, DOI 10.1016/j.erss.2020.101613 Kumar JCR, 2020, ENERGY SUSTAIN SOC, V10, DOI 10.1186/s13705-019-0232-1 Li FY, 2022, J CLEAN PROD, V372, DOI 10.1016/j.jclepro.2022.133726 Li R, 2021, ENERGY REP, V7, P1712, DOI 10.1016/j.egyr.2021.03.030 Li RR, 2024, J ENVIRON MANAGE, V351, DOI 10.1016/j.jenvman.2023.119663 Li RR, 2023, RESOUR POLICY, V85, DOI 10.1016/j.resourpol.2023.103890 Liang C, 2022, TECHNOL FORECAST SOC, V182, DOI 10.1016/j.techfore.2022.121810 Lin XC, 2021, ENVIRON IMPACT ASSES, V86, DOI 10.1016/j.eiar.2020.106496 Maier D, 2018, COMMUN METHODS MEAS, V12, P93, DOI 10.1080/19312458.2018.1430754 Mitra M, 2023, SUSTAIN ENERGY TECHN, V57, DOI 10.1016/j.seta.2023.103295 Mohsin M, 2021, J ENVIRON MANAGE, V284, DOI 10.1016/j.jenvman.2021.111999 Nakhli MS, 2022, RENEW ENERG, V185, P75, DOI 10.1016/j.renene.2021.12.046 Ostergaard PA, 2022, RENEW ENERG, V199, P1145, DOI 10.1016/j.renene.2022.09.065 Rani M, 2021, COMPOS PART B-ENG, V215, DOI 10.1016/j.compositesb.2021.108768 Raza MY, 2021, SUSTAIN ENERGY TECHN, V44, DOI 10.1016/j.seta.2020.100966 Sarkis J, 2021, INT J OPER PROD MAN, V41, P63, DOI 10.1108/IJOPM-08-2020-0568 Savvidis G, 2019, ENERG POLICY, V125, P503, DOI 10.1016/j.enpol.2018.10.033 Smyth K, 2015, MAR POLLUT BULL, V90, P247, DOI 10.1016/j.marpolbul.2014.10.045 Sun HP, 2021, TECHNOL FORECAST SOC, V167, DOI 10.1016/j.techfore.2021.120659 Sun LJ, 2017, TRANSPORT RES C-EMER, V77, P49, DOI 10.1016/j.trc.2017.01.013 Tan H, 2021, J ENVIRON MANAGE, V297, DOI 10.1016/j.jenvman.2021.113382 Tan QF, 2021, APPL ENERG, V285, DOI 10.1016/j.apenergy.2021.116442 Tariq A, 2023, J CLEAN PROD, V413, DOI 10.1016/j.jclepro.2023.137425 Tawalbeh M, 2021, SCI TOTAL ENVIRON, V759, DOI 10.1016/j.scitotenv.2020.143528 Ullah A, 2021, J ENVIRON MANAGE, V295, DOI 10.1016/j.jenvman.2021.113073 Usman M, 2022, SCI TOTAL ENVIRON, V841, DOI 10.1016/j.scitotenv.2022.156662 Wang Q, 2024, J CLEAN PROD, V447, DOI 10.1016/j.jclepro.2024.141298 Wang Q, 2024, TELECOMMUN POLICY, V48, DOI 10.1016/j.telpol.2023.102699 Wang Q, 2023, ENERG ENVIRON-UK, DOI 10.1177/0958305X231220520 Wang Q, 2024, SUSTAIN DEV, V32, P1700, DOI 10.1002/sd.2743 Wang Q, 2024, SUSTAIN DEV, V32, P876, DOI 10.1002/sd.2703 Wang ZL, 2020, SCI TOTAL ENVIRON, V726, DOI 10.1016/j.scitotenv.2020.138574 Yadav P, 2019, ENERGY RES SOC SCI, V48, P1, DOI 10.1016/j.erss.2018.09.013 Yi S, 2023, RENEW ENERG, V202, P1357, DOI 10.1016/j.renene.2022.11.089 Yu ZY, 2021, ADV MATER, V33, DOI 10.1002/adma.202007100 Zafar MW, 2020, J CLEAN PROD, V268, DOI 10.1016/j.jclepro.2020.122149 Zakari A, 2022, ENERG POLICY, V169, DOI 10.1016/j.enpol.2022.113183 Zhang H, 2021, TECHNOL FORECAST SOC, V167, DOI 10.1016/j.techfore.2021.120729 Zhang Y, 2017, OCEAN COAST MANAGE, V149, P69, DOI 10.1016/j.ocecoaman.2017.09.014 NR 75 TC 1 Z9 1 U1 24 U2 24 PU WILEY PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0968-0802 EI 1099-1719 J9 SUSTAIN DEV JI Sustain. Dev. PD 2024 MAY 8 PY 2024 DI 10.1002/sd.3027 EA MAY 2024 PG 21 WC Development Studies; Green & Sustainable Science & Technology; Regional & Urban Planning WE Social Science Citation Index (SSCI) SC Development Studies; Science & Technology - Other Topics; Public Administration GA PR9L1 UT WOS:001215926500001 DA 2024-09-05 ER PT J AU Seeber, M Alon, I Pina, DG Piro, FN Seeber, M AF Seeber, Marco Alon, Ilan Pina, David G. Piro, Fredrik Niclas Seeber, Michele TI Predictors of applying for and winning an ERC Proof-of-Concept grant: An automated machine learning model SO TECHNOLOGICAL FORECASTING AND SOCIAL CHANGE LA English DT Article DE Research proposals evaluation; Automated machine learning; ERC; PoC; Research valorization; Research funding; Likelihood to apply; Artificial intelligence ID GENDER-DIFFERENCES; KNOWLEDGE TRANSFER; LIFE SCIENCES; UNIVERSITY; COMMERCIALIZATION; DETERMINANTS; ENGAGEMENT; BIAS; GAP; TECHNOLOGIES AB Research often fails to be translated into applications because of lack of financial support. The Proof of Concept (PoC) funding scheme from the European Research Council (ERC) supports the early stages of the valorization process of the research conducted by its grantees. This article explores the factors that predict who will apply for ERC grants and which grant proposals will prove successful. By combining information from two datasets of 10,074 ERC grants (representing 8361 individual grantees) and 2186 PoC proposals, and using automated machine learning, we can identify the main predictors of the propensity to apply and to win. Doing so fills a void in the literature on likelihood to apply. The results reveal major differences between potential and actual ben-eficiaries, due to decisions about applying for a grant and evaluations of the proposals. The decision to apply is affected by the interaction between the characteristics of the PoC funding scheme, the ERC grantee, and his/her environment. Grantees in countries that invest little in innovation, with low cost of personnel, and strong collaboration in innovation are more likely to apply. Male grantees are more likely to apply but have similar chances of winning as women. C1 [Seeber, Marco] Univ Agder, Dept Polit Sci & Management, Kristiansand, Norway. [Alon, Ilan] Univ Ariel, Dept Econ, Business Adm, Ariel, Israel. [Alon, Ilan] Univ Agder, Sch Business & Law, POB 422, Kristiansand, Norway. [Pina, David G.] European Res Execut Agcy, European Commiss, Brussels, Belgium. [Piro, Fredrik Niclas] Nord Inst Studies Innovat, Educ & Res NIFU, Oslo, Norway. [Seeber, Michele] Univ Modena & Reggio Emilia, Dept Life Sci, Modena, Italy. C3 University of Agder; Ariel University; University of Agder; Universita di Modena e Reggio Emilia RP Seeber, M (corresponding author), Univ Agder, Dept Polit Sci & Management, Kristiansand, Norway. EM marco.seeber@uia.no; ilanal@ariel.ac.il; david.pina@ec.europa.eu; fredrik.piro@nifu.no; michele.seeber@unimore.it RI seeber, marco/AFO-9598-2022 OI seeber, marco/0000-0002-0162-6289; Pina, David/0000-0002-4930-748X CR Abdoul H., 2012, PLoS ONE, V7, P1 Albarrán P, 2010, SCIENTOMETRICS, V85, P329, DOI 10.1007/s11192-010-0223-7 Albers CJ, 2015, P NATL ACAD SCI USA, V112, pE6828, DOI 10.1073/pnas.1518936112 Alon I., 2001, Journal of Retailing and Consumer Services, V8, P147, DOI [10.1016/S0969-6989, DOI 10.1016/S0969-6989] Alon I, 2015, COMPET REV, V25, P205, DOI 10.1108/CR-10-2014-0034 Truong A, 2019, PROC INT C TOOLS ART, P1471, DOI 10.1109/ICTAI.2019.00209 [Anonymous], 2000, Presidency Conclusions [Anonymous], 2017, Europe's New Scientific Elite: Social Mechanisms of Science in the European Research Area [Anonymous], 1995, COM95688 EUR COMM [Anonymous], 2020, European Innovation Scoreboard 2020 Auerswald PE., 2003, The Journal of Technology Transfer, V28, P227 Azoulay P, 2007, J ECON BEHAV ORGAN, V63, P599, DOI 10.1016/j.jebo.2006.05.015 Blondel M, 2013, MACH LEARN, V93, P31, DOI 10.1007/s10994-013-5367-2 Bol T, 2018, P NATL ACAD SCI USA, V115, P4887, DOI 10.1073/pnas.1719557115 Bornmann L, 2011, ANNU REV INFORM SCI, V45, P199, DOI 10.1002/aris.2011.1440450112 Boudreau K., 2012, 13053 HARV BUS SCH Boyack KW, 2018, SCIENTOMETRICS, V114, P449, DOI 10.1007/s11192-017-2609-2 Bradley SR, 2013, J TECHNOL TRANSFER, V38, P349, DOI 10.1007/s10961-013-9309-8 Bromham L, 2016, NATURE, V534, P684, DOI 10.1038/nature18315 Bruneel J, 2010, RES POLICY, V39, P858, DOI 10.1016/j.respol.2010.03.006 Chang CC, 2011, ACM T INTEL SYST TEC, V2, DOI 10.1145/1961189.1961199 CLARK B.R., 1998, CREATING ENTREPRENEU COLE S, 1981, SCIENCE, V214, P881, DOI 10.1126/science.7302566 D'Este P, 2007, RES POLICY, V36, P1295, DOI 10.1016/j.respol.2007.05.002 Doornenbal BM, 2022, LEADERSHIP QUART, V33, DOI 10.1016/j.leaqua.2021.101515 Dosi G, 2006, RES POLICY, V35, P1450, DOI 10.1016/j.respol.2006.09.012 Enger SG, 2018, SCI PUBL POLICY, V45, P884, DOI 10.1093/scipol/scy029 Enger SG, 2016, SCIENTOMETRICS, V109, P1611, DOI 10.1007/s11192-016-2145-5 European Commission, 1994, EUR REP SCI TECHN IN European Commission, 2015, BIBL ASS REP EC European Commission, 2021, SHE FIG 2021 Fisher A, 2019, J MACH LEARN RES, V20 Friedman JH, 2001, ANN STAT, V29, P1189, DOI 10.1214/aos/1013203451 Gabrilovich E, 2007, 20TH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, P1606 García-Quevedo J, 2018, TECHNOL FORECAST SOC, V127, P127, DOI 10.1016/j.techfore.2017.05.029 Gerbin A, 2016, J TECHNOL TRANSFER, V41, P979, DOI 10.1007/s10961-015-9457-0 Geuna A, 1998, RES POLICY, V26, P677, DOI 10.1016/S0048-7333(97)00050-4 Giuri P, 2019, TECHNOL FORECAST SOC, V138, P261, DOI 10.1016/j.techfore.2018.09.030 Gulbrandsen M, 2005, RES POLICY, V34, P932, DOI 10.1016/j.respol.2005.05.004 Haeussler C, 2011, RES POLICY, V40, P41, DOI 10.1016/j.respol.2010.09.012 Henriques L, 2009, JRC technical notes, V53681 King DA, 2004, NATURE, V430, P311, DOI 10.1038/430311a Kuhn M., 2013, Applied Predictive Modeling Lam A, 2011, RES POLICY, V40, P1354, DOI 10.1016/j.respol.2011.09.002 Larsen K. R., 2021, Automated Machine Learning for Business Laudel G., 2006, Science and Public Policy, V33, P489, DOI DOI 10.3152/147154306781778777 Lee CJ, 2013, J AM SOC INF SCI TEC, V64, P2, DOI 10.1002/asi.22784 Lepori B, 2015, SCIENTOMETRICS, V105, P2149, DOI 10.1007/s11192-015-1768-2 Lockett A, 2005, RES POLICY, V34, P1043, DOI 10.1016/j.respol.2005.05.006 Mantere S, 2013, ACAD MANAGE REV, V38, P70, DOI 10.5465/amr.2011.0188 Marsh HW, 2008, AM PSYCHOL, V63, P160, DOI 10.1037/0003-066X.63.3.160 Mayo NE, 2006, J CLIN EPIDEMIOL, V59, P842, DOI 10.1016/j.jclinepi.2005.12.007 Meng Y, 2016, RES POLICY, V45, P56, DOI 10.1016/j.respol.2015.07.004 Munari F, 2021, RES POLICY, V50, DOI 10.1016/j.respol.2021.104211 Munari F, 2018, TECHNOL FORECAST SOC, V127, P70, DOI 10.1016/j.techfore.2017.07.024 Munim ZH, 2021, MARIT ECON LOGIST, V23, P310, DOI 10.1057/s41278-020-00156-5 Munim ZH, 2019, J RISK FINANC MANAG, V12, DOI 10.3390/jrfm12020103 Murray DL, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0155876 Murray F, 2007, IND CORP CHANGE, V16, P657, DOI 10.1093/icc/dtm021 Mutz R, 2012, Z PSYCHOL, V220, P121, DOI 10.1027/2151-2604/a000103 Neufeld J, 2013, RES EVALUAT, V22, P237, DOI 10.1093/reseval/rvt014 O'Gorman C, 2008, J TECHNOL TRANSFER, V33, P23, DOI 10.1007/s10961-006-9010-2 Perkmann M, 2013, RES POLICY, V42, P423, DOI 10.1016/j.respol.2012.09.007 Piro FN, 2020, SCI PUBL POLICY, V47, P581, DOI 10.1093/scipol/scaa037 Rasmussen E, 2008, TECHNOVATION, V28, P506, DOI 10.1016/j.technovation.2007.12.002 Rasmussen E, 2012, TECHNOL ANAL STRATEG, V24, P663, DOI 10.1080/09537325.2012.705119 Research Council of Norway, 2021, SCI TECHN IND NORW 2 Rodríguez-Navarro A, 2018, SCI PUBL POLICY, V45, P14, DOI 10.1093/scipol/scx021 Sandström U, 2008, SCIENTOMETRICS, V74, P175, DOI 10.1007/s11192-008-0211-3 Schiffbaenker Helene, ELEPHANT ROOM, P109 Seeber M, 2022, J ASSOC INF SCI TECH, V73, P1106, DOI 10.1002/asi.24617 Seeber M, 2021, RES EVALUAT, V30, P349, DOI 10.1093/reseval/rvab011 Seeber M, 2013, STUD HIGH EDUC, V38, P20, DOI 10.1080/03075079.2011.561308 Sellenthin MO, 2009, J TECHNOL TRANSFER, V34, P603, DOI 10.1007/s10961-009-9108-4 Stephan PE, 2007, ECON INNOV NEW TECH, V16, P71, DOI 10.1080/10438590600982806 Stuart TE, 2006, AM J SOCIOL, V112, P97, DOI 10.1086/502691 Tamblyn R, 2018, CAN MED ASSOC J, V190, pE489, DOI 10.1503/cmaj.170901 Tartari V, 2015, RES POLICY, V44, P1176, DOI 10.1016/j.respol.2015.01.014 Thune T, 2016, SCI PUBL POLICY, V43, P774, DOI 10.1093/scipol/scw019 van den Besselaar P, 2018, SCIENTOMETRICS, V117, P313, DOI 10.1007/s11192-018-2848-x van den Besselaar P, 2009, RES EVALUAT, V18, P273, DOI 10.3152/095820209X475360 Vilkkumaa E, 2015, TECHNOL FORECAST SOC, V96, P173, DOI 10.1016/j.techfore.2015.03.001 Volker B, 2015, P NATL ACAD SCI USA, V112, pE7036, DOI 10.1073/pnas.1519046112 Wanzenböck I, 2020, QUANT SCI STUD, V1, P1136, DOI 10.1162/qss_a_00067 NR 84 TC 5 Z9 5 U1 1 U2 14 PU ELSEVIER SCIENCE INC PI NEW YORK PA STE 800, 230 PARK AVE, NEW YORK, NY 10169 USA SN 0040-1625 EI 1873-5509 J9 TECHNOL FORECAST SOC JI Technol. Forecast. Soc. Chang. PD NOV PY 2022 VL 184 AR 122009 DI 10.1016/j.techfore.2022.122009 EA SEP 2022 PG 16 WC Business; Regional & Urban Planning WE Social Science Citation Index (SSCI) SC Business & Economics; Public Administration GA 5B0AE UT WOS:000863238800013 OA hybrid DA 2024-09-05 ER PT J AU Tseng, CY Ting, PH AF Tseng, Chun-Yao Ting, Ping-Ho TI Patent analysis for technology development of artificial intelligence: A country-level comparative study SO INNOVATION-ORGANIZATION & MANAGEMENT LA English DT Article DE artificial intelligence; technology development; patent and citation analysis; technology flow ID INDICATORS AB Artificial intelligence (AI) plays a key role in knowledge economies, because it can be used to develop systems that think like humans, act like humans, think rationally, and act rationally (Russell & Norvig, 2010). In this study, we divide AI into four sub-technological fields: Problem reasoning and solving, machine learning, network structures, and knowledge processing systems. This study investigates three main issues related to the technology development of AI. First, the aggregate technology development of AI is examined, and the four sub-technological fields of AI are compared. Second, we employ measures of patent quantity and patent quality to demonstrate the technology development of AI in different countries. Finally, we investigate the technology positions of different countries in the four sub-technological fields of AI. By analyzing a patent and citation dataset comprised of all patents granted by the United States patent and trademark office from 1976 to 2010, we obtain empirical findings that help us understand the technology development of AI in different countries. The major contributions of this study are four measures of patent quantity (PCA, PCI, SHAI, and SHIA) and three measures of patent quality (citation ratios, CII, and TCT). These measures are helpful in understanding technological development of AI in different counties. Moreover, we use patent citation data and investigate the technology flow in AI, in order to determine the technology position of different countries in the four sub-technological fields of AI. C1 [Tseng, Chun-Yao] Tunghai Univ, Dept Business Adm, Taichung 40704, Taiwan. [Ting, Ping-Ho] Chi Nan Univ, Dept Hosp Management, Nantou, Taiwan. [Ting, Ping-Ho] Chi Nan Univ, Dept Leisure Studies & Tourism Management, Nantou, Taiwan. C3 Tunghai University RP Tseng, CY (corresponding author), Tunghai Univ, Dept Business Adm, Taichung 40704, Taiwan. CR Alfonso-Gil J, 2003, INT J TECHNOL MANAGE, V26, P346 Bergek A, 2010, RES POLICY, V39, P1321, DOI 10.1016/j.respol.2010.08.002 Bloom N, 2002, ECON J, V112, pC97, DOI 10.1111/1468-0297.00022 Dernis H., 2001, STI Review, V27, P129 Grupp H, 1999, RES POLICY, V28, P377, DOI 10.1016/S0048-7333(98)00125-5 Guellec D, 2001, RES POLICY, V30, P1253, DOI 10.1016/S0048-7333(00)00149-9 Hu AGZ, 2003, INT J IND ORGAN, V21, P849, DOI 10.1016/S0167-7187(03)00035-3 Jaffe A.B., 1999, Econ. Innov. N. Technol., V8, P105 JAFFE AB, 1993, Q J ECON, V108, P577, DOI 10.2307/2118401 Lukach R, 2005, BEYOND BORDERS: INTERNATIONALISATION OF R&D AND POLICY IMPLICATIONS FOR SMALL OPEN ECONOMIES, P331 MacGarvie M, 2005, ECON LETT, V87, P121, DOI 10.1016/j.econlet.2004.09.011 Russell S. J., 2010, Articial intelligence: A modern approach, Vthird Schoenecker T, 2002, IEEE T ENG MANAGE, V49, P36, DOI 10.1109/17.985746 Sherry EF, 2004, RES POLICY, V33, P179, DOI 10.1016/S0048-7333(03)00088-X Spector L, 2006, ARTIF INTELL, V170, P1251, DOI 10.1016/j.artint.2006.10.009 Tseng CY, 2007, INT J TECHNOL MANAGE, V37, P162, DOI 10.1504/IJTM.2007.011809 Tseng CY, 2009, INT J TECHNOL MANAGE, V45, P50, DOI 10.1504/IJTM.2009.021519 Tseng FM, 2011, TECHNOL FORECAST SOC, V78, P332, DOI 10.1016/j.techfore.2010.10.010 United States Patent and Trademark Office, 2008, CLASS SCHEDULE FOR C Waltz DL, 2006, IEEE INTELL SYST, V21, P66, DOI 10.1109/MIS.2006.46 NR 20 TC 37 Z9 40 U1 10 U2 120 PU ROUTLEDGE JOURNALS, TAYLOR & FRANCIS LTD PI ABINGDON PA 2-4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND SN 1447-9338 EI 2204-0226 J9 INNOV-ORGAN MANAG JI Innov.-Organ. Manag. PD DEC PY 2013 VL 15 IS 4 BP 463 EP 475 DI 10.5172/impp.2013.15.4.463 PG 13 WC Management WE Social Science Citation Index (SSCI) SC Business & Economics GA AA4KT UT WOS:000331065200006 DA 2024-09-05 ER PT J AU Gil, R Virgili-Goma, J López-Gil, JM García, R AF Gil, Rosa Virgili-Goma, Jordi Lopez-Gil, Juan-Miguel Garcia, Roberto TI Deepfakes: evolution and trends SO SOFT COMPUTING LA English DT Article DE Deepfakes; Artificial intelligence; Deep learning; Bibliometrics ID ARTIFICIAL-INTELLIGENCE; FACE MANIPULATION; NEURAL-NETWORKS; DEEP FAKES; VIDEOS; CHALLENGES; IMAGES; TOOL; RECOGNITION; TECHNOLOGY AB This study conducts research on deepfakes technology evolution and trends based on a bibliometric analysis of the articles published on this topic along with six research questions: What are the main research areas of the articles in deepfakes? What are the main current topics in deepfakes research and how are they related? Which are the trends in deepfakes research? How do topics in deepfakes research change over time? Who is researching deepfakes? Who is funding deepfakes research? We have found a total of 331 research articles about deepfakes in an analysis carried out on the Web of Science and Scopus databases. This data serves to provide a complete overview of deepfakes. Main insights include: different areas in which deepfakes research is being performed; which areas are the emerging ones, those that are considered basic, and those that currently have the most potential for development; most studied topics on deepfakes research, including the different artificial intelligence methods applied; emerging and niche topics; relationships among the most prominent researchers; the countries where deepfakes research is performed; main funding institutions. This paper identifies the current trends and opportunities in deepfakes research for practitioners and researchers who want to get into this topic. C1 [Gil, Rosa; Virgili-Goma, Jordi; Garcia, Roberto] Univ Lleida, Lleida 25001, Spain. [Lopez-Gil, Juan-Miguel] Univ Basque Country, Donostia San Sebastian 20018, Spain. C3 Universitat de Lleida; University of Basque Country RP García, R (corresponding author), Univ Lleida, Lleida 25001, Spain. EM rosamaria.gil@udl.cat; jordi.virgili@udl.cat; juanmiguel.lopez@ehu.eus; roberto.garcia@udl.cat RI Garcia, Roberto/B-3388-2008; Lopez-Gil, Juan-Miguel/GVT-9867-2022 OI Garcia, Roberto/0000-0003-2207-9605; Lopez-Gil, Juan-Miguel/0000-0001-7730-0472; Virgili Goma, Jordi/0000-0002-7144-7489 FU CRUE-CSIC agreement; Springer Nature; MCIN/AEI [PID2020-117912RB-C22]; Research Group program of the University of the Basque Country; [GIU21/037] FX Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature. This work has been partially supported by the project "ANGRU: Applying kNowledge Graphs to research data ReUsability" with reference PID2020-117912RB-C22 and funded by MCIN/AEI/10.13039/501100011033. Additionally, this research benefits from funding from the Research Group program of the University of the Basque Country under contract GIU21/037. CR Aboueldahab S, 2021, INT CRIM LAW REV, V21, P505, DOI 10.1163/15718123-BJA10061 Agarwal H., 2021, 2 INT C EL SUST COMM, P1245 Agarwal S., 2019, PROC CVPR 2019 WORKS, P38, DOI DOI 10.1109/ICCV.2015.425 Agarwal S, 2020, IEEE COMPUT SOC CONF, P2814, DOI 10.1109/CVPRW50498.2020.00338 Agarwal S, 2021, IEEE COMPUT SOC CONF, P981, DOI 10.1109/CVPRW53098.2021.00109 Agarwal S, 2020, IEEE INT WORKS INFOR, DOI 10.1109/WIFS49906.2020.9360904 Agrawal Ronak, 2021, Proceedings of the 2021 8th International Conference on Computing for Sustainable Global Development (INDIACom), P663, DOI 10.1109/INDIACom51348.2021.00117 Ahmed M, 2021, 2021 INT C ADV TECHN, DOI [10.1109/ICOTEN52080.2021.9493549, DOI 10.1109/ICOTEN52080.2021.9493549] Ahmed SRA, 2021, APPL NANOSCI, DOI 10.1007/s13204-021-02072-3 Ahmed S, 2021, PERS INDIV DIFFER, V182, DOI 10.1016/j.paid.2021.111074 Ahmed S, 2023, NEW MEDIA SOC, V25, P1108, DOI 10.1177/14614448211019198 Ahmed S, 2021, TELEMAT INFORM, V57, DOI 10.1016/j.tele.2020.101508 Ajoy Atmik, 2021, 2021 Third International Conference on Inventive Research in Computing Applications (ICIRCA), P1329, DOI 10.1109/ICIRCA51532.2021.9544734 Alattar A, 2020, IS T INT S EL IM SCI, DOI 10.2352/ Albahar M., 2019, J. Theor. Appl. Inf. Technol., V97, P3242 Aliman NM, 2020, 2020 IEEE INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND VIRTUAL REALITY (AIVR 2020), P130, DOI 10.1109/AIVR50618.2020.00031 Amelin R., 2020, COMMUN COMPUT INF SC, V1242, P223, DOI [10.1007/978-3-030-65218-0_17, DOI 10.1007/978-3-030-65218-0_17] Amerini Irene, 2020, IH&MMSec '20: Proceedings of the 2020 ACM Workshop on Information Hiding and Multimedia Security, P97, DOI 10.1145/3369412.3395070 Amerini I, 2021, FOUND TRENDS COMPUT, V12, P309, DOI 10.1561/0600000096 Amerini I, 2019, IEEE INT CONF COMP V, P1205, DOI 10.1109/ICCVW.2019.00152 [Anonymous], 2021, CEUR WORKSHOP PROC Aria M, 2017, J INFORMETR, V11, P959, DOI 10.1016/j.joi.2017.08.007 Ayers D, 2021, CONVERGENCE-US, V27, P1018, DOI 10.1177/13548565211027810 Baek JY, 2020, IEEE ACCESS, V8, P45421, DOI 10.1109/ACCESS.2020.2968612 Bailer W, 2021, P 2021 IEEE C COGN C, P133, DOI [10.1109/CogSIMA51574.2021.9475929, DOI 10.1109/COGSIMA51574.2021.9475929] Biswas A., 2021, Journal of Information Systems and Telecommunication (JIST), V9, P161 Bode L, 2021, CONVERGENCE-US, V27, P849, DOI 10.1177/13548565211034044 Bode L, 2021, CONVERGENCE-US, V27, P919, DOI 10.1177/13548565211030454 Bondi L, 2020, IEEE INT WORKS INFOR, DOI 10.1109/WIFS49906.2020.9360901 Bonettini N, 2021, INT C PATT RECOG, P5012, DOI 10.1109/ICPR48806.2021.9412711 Bonomi M, 2021, J VIS COMMUN IMAGE R, V79, DOI 10.1016/j.jvcir.2021.103239 Bore J., 2020, Cyber Defence in the Age of AI, Smart Societies and Augmented Humanity, DOI [10.1007/978-3-030-35746-7_19, DOI 10.1007/978-3-030-35746-7_19] Bose AJ, 2019, IEEE INT WORKSH MULT, DOI 10.1109/mmsp.2019.8901744 Brooks CF, 2021, CYBERPSYCH BEH SOC N, V24, P159, DOI 10.1089/cyber.2020.0183 Burroughs SJ, 2020, IEEE APP IMG PAT, DOI 10.1109/AIPR50011.2020.9425347 Caldelli R, 2021, PATTERN RECOGN LETT, V146, P31, DOI 10.1016/j.patrec.2021.03.005 CALLON M, 1991, SCIENTOMETRICS, V22, P155, DOI 10.1007/BF02019280 Camacho IC, 2021, J IMAGING, V7, DOI 10.3390/jimaging7040069 Caporusso N., 2020, Advances in Intelligent Systems and Computing, P235, DOI [10.1007/978-3-030-51328-3_33, DOI 10.1007/978-3-030-51328-3_33] Carlini N, 2020, IEEE COMPUT SOC CONF, P2804, DOI 10.1109/CVPRW50498.2020.00337 Carter M, 2021, IEEE INTERNET COMPUT, V25, P73, DOI 10.1109/MIC.2020.3032323 Chang X, 2020, CHIN CONTR CONF, P7252, DOI [10.23919/CCC50068.2020.9189596, 10.23919/ccc50068.2020.9189596] Du CXT, 2020, 2020 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (SSCI), P707, DOI 10.1109/SSCI47803.2020.9308305 Chawla R., 2019, International Journal for Advance Research and Development, V4, P4 Chen BY, 2021, SECUR COMMUN NETW, V2021, DOI 10.1155/2021/9942754 Chen P, 2020, IEEE INT CON MULTI, DOI 10.1109/icme46284.2020.9102914 Chesney B, 2019, CALIF LAW REV, V107, P1753, DOI 10.15779/Z38RV0D15J Chi H., 2021, ADV INTELL SYST COMP, V1288, P588, DOI [10.1007/978-3-030-63128-4_45, DOI 10.1007/978-3-030-63128-4_45] Chintha A, 2020, IEEE/IAPR INTERNATIONAL JOINT CONFERENCE ON BIOMETRICS (IJCB 2020), DOI 10.1109/ijcb48548.2020.9304936 Chintha A, 2020, IEEE J-STSP, V14, P1024, DOI 10.1109/JSTSP.2020.2999185 Cho M, 2017, SOFT COMPUT, V21, P3429, DOI 10.1007/s00500-015-2019-4 Choras M, 2021, APPL SOFT COMPUT, V101, DOI 10.1016/j.asoc.2020.107050 Chowdhury S, 2020, 2020 11 INT C COMP C, DOI [10.1109/ICCCNT49239.2020.9225630, DOI 10.1109/ICCCNT49239.2020.9225630] Chugh K, 2020, MM '20: PROCEEDINGS OF THE 28TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, P439, DOI 10.1145/3394171.3413700 Chunlei Peng, 2020, Machine Learning for Cyber Security. Third International Conference, ML4CS 2020. Proceedings. Lecture Notes in Computer Science (LNCS 12488), P55, DOI 10.1007/978-3-030-62463-7_6 Ciftci U, 2020, IJCB 2020, DOI [10.1109/IJCB48548.2020.9304909, DOI 10.1109/IJCB48548.2020.9304909] Cobo MJ, 2011, J AM SOC INF SCI TEC, V62, P1382, DOI 10.1002/asi.21525 Colon MJM, 2020, IOWA LAW REV, V106, P411 Cozzolino Davide, 2019, P IEEE CVF C COMP VI, P130 D'Alessandra F, 2021, J INT CRIM JUSTICE, V19, P9, DOI 10.1093/jicj/mqab034 da Silva RB, 2022, INT CRIM LAW REV, V22, P941, DOI 10.1163/15718123-bja10083 Dal Cortivo D, 2021, J IMAGING, V7, DOI 10.3390/jimaging7080135 Dang H, 2020, PROC CVPR IEEE, P5780, DOI 10.1109/CVPR42600.2020.00582 Davis M., 2020, IFIP ADV INF COMMUN, V590, P291, DOI [10.1007/978-3-030-62803-1_23, DOI 10.1007/978-3-030-62803-1_23] de Ruiter A., 2021, PHILOS TECHNOLOGY, V34, P1311, DOI DOI 10.1007/S13347-021-00459-2 de Seta G, 2021, CONVERGENCE-US, V27, P935, DOI 10.1177/13548565211030185 Demir I, 2021, PROCEEDINGS ETRA 2021: ACM SYMPOSIUM ON EYE TRACKING RESEARCH AND APPLICATIONS, DOI 10.1145/3448017.3457387 Deshmukh Anushree, 2021, Intelligent Computing and Networking. Proceedings of IC-ICN 2020. Lecture Notes in Networks and Systems (LNNS 146), P293, DOI 10.1007/978-981-15-7421-4_27 Diakopoulos N, 2021, NEW MEDIA SOC, V23, P2072, DOI 10.1177/1461444820925811 Dobber T, 2021, INT J PRESS/POLIT, V26, P69, DOI 10.1177/1940161220944364 Dondero M., 2021, LEXIA, V2021, P439, DOI [10.4399/978882553853321, DOI 10.4399/978882553853321] Du MN, 2020, CIKM '20: PROCEEDINGS OF THE 29TH ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT, P325, DOI 10.1145/3340531.3411892 Echizen I, 2021, IEICE T INF SYST, VE104D, P12, DOI 10.1587/transinf.2020MUI0002 El Rai M.C., 2020, 2020 3 INT C SIGN PR, P1, DOI [10.1109/ICSPIS51252.2020.9340138, DOI 10.1109/ICSPIS51252.2020.9340138] England P, 2021, MMSYS '21: PROCEEDINGS OF THE 2021 MULTIMEDIA SYSTEMS CONFERENCE, P108, DOI 10.1145/3458305.3459599 Fagni T, 2021, PLOS ONE, V16, DOI 10.1371/journal.pone.0251415 Fallis Don, 2021, Philos Technol, V34, P623, DOI 10.1007/s13347-020-00419-2 Farish K, 2020, J INTELLET PROP LAW, V15, P40, DOI 10.1093/jiplp/jpz139 Fei JW, 2021, MULTIMED TOOLS APPL, V80, P30789, DOI 10.1007/s11042-020-09147-3 Feng D., 2020, ICONIP, V1333, P316, DOI [DOI 10.1007/978-3-030-63823-8_37, 10.1007/978-3-030-63823-8_37] Fernandes Steven Lawrence, 2020, Computer Vision - ECCV 2020 Workshops. Proceedings. Lecture Notes in Computer Science (LNCS 12535), P220, DOI 10.1007/978-3-030-66415-2_14 Fernandes S, 2020, IEEE COMPUT SOC CONF, P1250, DOI 10.1109/CVPRW50498.2020.00162 Fernando T, 2021, IEEE T INF FOREN SEC, V16, P1973, DOI 10.1109/TIFS.2020.3047768 Fletcher J, 2018, THEATRE J, V70, P455, DOI 10.1353/tj.2018.0097 Frank J, 2020, 37 INT C MACH LEARN, P3205 Freeman L, 2021, J INT CRIM JUSTICE, V19, P35, DOI 10.1093/jicj/mqab013 Frick R, 2021, IS T INT S EL IM SCI, DOI 10.2352/ Fung SO, 2021, IEEE IJCNN, DOI 10.1109/IJCNN52387.2021.9534089 Gandhi A, 2020, IEEE IJCNN, DOI 10.1109/ijcnn48605.2020.9207034 García-Ull FJ, 2021, ANALISI, P103, DOI 10.5565/rev/analisi.3378 Godulla A, 2021, SCM STUD COMM MEDIA, V10, P72, DOI 10.5771/2192-4007-2021-1-72 Goebel M, 2021, IS T INT S EL IM SCI, DOI 10.2352/ Gong D., 2020, International Journal of Advanced Trends in Computer Science and Engineering, V9, P2861, DOI [DOI 10.30534/IJATCSE/2020/58932020, 10.30534/ijatcse/2020/58932020] Gong DF, 2021, INT J ADV COMPUT SC, V12, P201 Gosse C, 2020, CRIT STUD MEDIA COMM, V37, P497, DOI 10.1080/15295036.2020.1832697 Guan HY, 2019, IEEE WINT CONF APPL, P63, DOI 10.1109/WACVW.2019.00018 Guo ZQ, 2021, COMPUT VIS IMAGE UND, V204, DOI 10.1016/j.cviu.2021.103170 Gupta Parul, 2020, ICMI '20: Proceedings of the 2020 International Conference on Multimodal Interaction, P519, DOI 10.1145/3382507.3418857 Hancock JT, 2021, CYBERPSYCH BEH SOC N, V24, P149, DOI 10.1089/cyber.2021.29208.jth Hanska M, 2021, COMMUNICATION DOMINA, DOI [10.4324/9780429280795, DOI 10.4324/9780429280795] Hartmann K, 2020, INT CONF CYBER CONFL, P233, DOI [10.23919/CyCon49761.2020.9131716, 10.23919/cycon49761.2020.9131716] Hasan HR, 2019, IEEE ACCESS, V7, P41596, DOI 10.1109/ACCESS.2019.2905689 Hashmi MF, 2020, IEEE ACCESS, V8, P101293, DOI 10.1109/ACCESS.2020.2998330 Hayward KJ, 2021, CRIME MEDIA CULT, V17, P209, DOI 10.1177/1741659020917434 Hazan Susan, 2020, Culture and Computing. 8th International Conference, C&C 2020 Held as Part of the 22nd HCI International Conference, HCII 2020. Proceedings. Lecture Notes in Computer Science (LNCS 12215), P65, DOI 10.1007/978-3-030-50267-6_6 Hewage C, 2020, FUTURE INTERNET, V12, DOI 10.3390/fi12070121 Higgins JP., 2019, COCHRANE HDB SYSTEMA, DOI [10.1002/9781119536604.ch10, 10.1002/9781119536604] Holliday C, 2021, CONVERGENCE-US, V27, P899, DOI 10.1177/13548565211029412 Hosier BC, 2020, IEEE COMPUT SOC CONF, P2860, DOI 10.1109/CVPRW50498.2020.00343 Hosler B, 2021, IEEE COMPUT SOC CONF, P1013, DOI 10.1109/CVPRW53098.2021.00112 Houde S, 2020, CEUR WORKSHOP PROC Hu S, 2021, 2021 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP 2021), P2500, DOI 10.1109/ICASSP39728.2021.9414582 Huang R, 2020, IEEE IMAGE PROC, P2236, DOI [10.1109/ICIP40778.2020.9190678, 10.1109/icip40778.2020.9190678] Huang YH, 2020, MM '20: PROCEEDINGS OF THE 28TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, P1217, DOI 10.1145/3394171.3413732 Huber E, 2021, P 2021 IEEE INT C CO, P127, DOI [10.1109/CogSIMA51574.2021.9475926, DOI 10.1109/COGSIMA51574.2021.9475926] Hussain S, 2021, IEEE WINT CONF APPL, P3347, DOI 10.1109/WACV48630.2021.00339 Iacobucci S, 2021, CYBERPSYCH BEH SOC N, V24, P194, DOI 10.1089/cyber.2020.0149 Ismail A, 2021, SENSORS-BASEL, V21, DOI 10.3390/s21165413 Ivanov Nikita S., 2020, 2020 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus). Proceedings, P326, DOI 10.1109/EIConRus49466.2020.9039498 Jafar Mousa Tayseer, 2020, 2020 11th International Conference on Information and Communication Systems (ICICS), P053, DOI 10.1109/ICICS49469.2020.239493 Javed AR, 2021, ENG APPL ARTIF INTEL, V106, DOI 10.1016/j.engappai.2021.104456 Jeong D, 2020, IEEE ACCESS, V8, P184560, DOI 10.1109/ACCESS.2020.3029280 Jeong Y, 2021, LNCS, P83, DOI 10.1007/978-3-030-69544-6_6 Jian Han, 2021, Computer Vision - ACCV 2020 15th Asian Conference on Computer Vision. Revised Selected Papers. Lecture Notes in Computer Science (LNCS 12626), P121, DOI 10.1007/978-3-030-69541-5_8 Jian Wu, 2020, HPCCT & BDAI 2020: Proceedings of the 2020 4th High Performance Computing and Cluster Technologies Conference & 2020 3rd International Conference on Big Data and Artificial Intelligence, P104, DOI 10.1145/3409501.3409544 Jiang J, 2021, 2021 INTERNATIONAL JOINT CONFERENCE ON BIOMETRICS (IJCB 2021), DOI 10.1109/IJCB52358.2021.9484396 Jiang LM, 2020, PROC CVPR IEEE, P2886, DOI 10.1109/CVPR42600.2020.00296 Jin XL, 2021, SECUR COMMUN NETW, V2021, DOI 10.1155/2021/6626974 Johnson DG, 2021, COMMUN ACM, V64, P33, DOI 10.1145/3447255 Johnson J, 2021, J STRATEGIC STUD, DOI 10.1080/01402390.2020.1867541 Jongman B., 2020, PERSPECT TERROR, V14, P155 Jung T, 2020, IEEE ACCESS, V8, P83144, DOI 10.1109/ACCESS.2020.2988660 Kang Minguk, 2020, Advances in Neural Information Processing Systems (NeurIPS) Karandikar A., 2020, Int. J. Adv. Trends Comput. Sci. Eng., V9, P1311, DOI 10.30534/ijatcse/2020/62922020 Karasavva V, 2021, CYBERPSYCH BEH SOC N, V24, P203, DOI 10.1089/cyber.2020.0272 Katarya Rahul, 2020, 2020 Fourth International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC), P485, DOI 10.1109/I-SMAC49090.2020.9243588 Kaur S, 2020, J ELECTRON IMAGING, V29, DOI 10.1117/1.JEI.29.3.033013 Kawa P, 2021, SECRYPT 2021: PROCEEDINGS OF THE 18TH INTERNATIONAL CONFERENCE ON SECURITY AND CRYPTOGRAPHY, P779, DOI 10.5220/0010581707790784 Kaye BK, 2020, ATL J COMMUN, V28, P257, DOI 10.1080/15456870.2020.1720023 Kha-Luan Pham, 2020, 2020 7th NAFOSTED Conference on Information and Computer Science (NICS), P344, DOI 10.1109/NICS51282.2020.9335837 Khalid H, 2020, IEEE COMPUT SOC CONF, P2794, DOI 10.1109/CVPRW50498.2020.00336 Khalil Hady A., 2021, 2021 International Mobile, Intelligent, and Ubiquitous Computing Conference (MIUCC), P24, DOI 10.1109/MIUCC52538.2021.9447642 Khalil SS, 2021, FUTURE INTERNET, V13, DOI 10.3390/fi13040093 Kharbat F.F., 2019, I C COMP SYST APPLIC, DOI [10.1109/AICCSA47632.2019.9035360, DOI 10.1109/aiccsa47632.2019.9035360] Khodabakhsh A, 2020, 2020 INT C BIOMETRIC Khormali A, 2021, BIG DATA COGN COMPUT, V5, DOI 10.3390/bdcc5040049 Ki Chan Christopher Chun, 2020, 2020 IEEE/ITU International Conference on Artificial Intelligence for Good (AI4G), P55, DOI 10.1109/AI4G50087.2020.9311067 Kietzmann J, 2021, INT J ADVERT, V40, P473, DOI 10.1080/02650487.2020.1834211 Kietzmann J, 2020, BUS HORIZONS, V63, P135, DOI 10.1016/j.bushor.2019.11.006 Kikerpill K., 2020, Porn Stud, V7, P352, DOI [DOI 10.1080/23268743.2020.1765851, 10.1080/23268743.2020.1765851] Kim KS, 2021, LIBR INFORM SCI RES, V43, DOI 10.1016/j.lisr.2021.101104 Kim M, 2021, IEEE COMPUT SOC CONF, P1001, DOI 10.1109/CVPRW53098.2021.00111 Kohli A, 2021, MULTIMED TOOLS APPL, V80, P18461, DOI 10.1007/s11042-020-10420-8 Korshunov P, 2021, 2021 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP 2021), P2510, DOI 10.1109/ICASSP39728.2021.9414258 Korshunov P, 2019, INT CONF BIOMETR Kozyreva A, 2020, PSYCHOL SCI PUBL INT, V21, P103, DOI 10.1177/1529100620946707 Kuang ZZ, 2021, NEUROCOMPUTING, V457, P322, DOI 10.1016/j.neucom.2021.06.061 Kubanek M, 2021, ADV INTELLIGENT SYST, V1267, P197, DOI [10.1007/978-3-030-57805-3_19, DOI 10.1007/978-3-030-57805-3_19] Kui Zhu, 2020, 2020 IEEE Fifth International Conference on Data Science in Cyberspace (DSC). Proceedings, P257, DOI 10.1109/DSC50466.2020.00046 Kukanov I, 2020, ASIAPAC SIGN INFO PR, P1300 Kwok AOJ, 2021, CURR ISSUES TOUR, V24, P1798, DOI 10.1080/13683500.2020.1738357 Lai XJ, 2021, COMPUT HUM BEHAV, V124, DOI 10.1016/j.chb.2021.106894 Laishram L, 2021, COMM COM INF SC, V1405, P131, DOI 10.1007/978-3-030-81638-4_11 Lees D, 2021, CONVERGENCE-US, V27, P954, DOI 10.1177/13548565211030452 Lewis JK, 2020, IEEE APP IMG PAT, DOI 10.1109/AIPR50011.2020.9425167 Li HD, 2020, SIGNAL PROCESS, V174, DOI 10.1016/j.sigpro.2020.107616 Li LZ, 2020, PROC CVPR IEEE, P5000, DOI 10.1109/CVPR42600.2020.00505 Li M, 2021, I W BIOMETRIC FORENS, DOI 10.1109/IWBF50991.2021.9465076 Li M, 2021, INT C PATT RECOG, P5184, DOI 10.1109/ICPR48806.2021.9413139 Li WX, 2021, LECT NOTES COMPUT SC, V12919, P3, DOI 10.1007/978-3-030-88052-1_1 Li Y, 2021, ADV COMPUTER VISION, P247, DOI [10.1007/978-3-030-74697-1_12, DOI 10.1007/978-3-030-74697-1_12] Li YZ, 2020, PROC CVPR IEEE, P3204, DOI 10.1109/CVPR42600.2020.00327 Liang JH, 2021, 2021 INTERNATIONAL JOINT CONFERENCE ON BIOMETRICS (IJCB 2021), DOI 10.1109/IJCB52358.2021.9484400 Liang T, 2020, PROC INT C TOOLS ART, P675, DOI 10.1109/ICTAI50040.2020.00108 Ling HF, 2021, IEEE IJCNN, DOI 10.1109/IJCNN52387.2021.9533912 Trinh L, 2021, IEEE WINT CONF APPL, P1972, DOI 10.1109/WACV48630.2021.00202 Lomnitz M, 2020, IEEE APP IMG PAT, DOI 10.1109/AIPR50011.2020.9425192 Lu YJ, 2021, SECUR COMMUN NETW, V2021, DOI 10.1155/2021/5524930 Luo YF, 2021, SECUR COMMUN NETW, V2021, DOI 10.1155/2021/4280328 Luochen Lv, 2021, 2021 IEEE 6th International Conference on Computer and Communication Systems (ICCCS), P380, DOI 10.1109/ICCCS52626.2021.9449287 Lyu SQ, 2020, PLATELETS, V31, P971, DOI 10.1080/09537104.2020.1780205 Maddocks S., 2020, PORN STUDIES, V7, P415, DOI DOI 10.1080/23268743.2020.1757499 Maksutov Artem A., 2020, 2020 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus). Proceedings, P408, DOI 10.1109/EIConRus49466.2020.9039057 Malolan B, 2020, 2020 3RD INTERNATIONAL CONFERENCE ON INFORMATION AND COMPUTER TECHNOLOGIES (ICICT 2020), P289, DOI 10.1109/ICICT50521.2020.00051 Maras MH, 2019, INT J EVID PROOF, V23, P255, DOI 10.1177/1365712718807226 Marcon F, 2021, J IMAGING, V7, DOI 10.3390/jimaging7100193 Masi Iacopo, 2020, Computer Vision - ECCV 2020. 16th European Conference. Proceedings. Lecture Notes in Computer Science (LNCS 12352), P667, DOI 10.1007/978-3-030-58571-6_39 Masood M, 2021, 2021 INTERNATIONAL CONFERENCE ON DIGITAL FUTURES AND TRANSFORMATIVE TECHNOLOGIES (ICODT2), DOI 10.1109/ICoDT252288.2021.9441519 Matern F, 2019, IEEE WINT CONF APPL, P83, DOI 10.1109/WACVW.2019.00020 McGlynn Clare., 2021, Cyberflashing: Recognising harms, reforming laws Medoff N, 2021, INTERCONNECTED INTER, DOI [10.4324/9781003020721-5, DOI 10.4324/9781003020721-5] Megahed Amr, 2020, 2020 IEEE 19th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom), P1260, DOI 10.1109/TrustCom50675.2020.00169 Megias D, 2021, ACM INT C P SERIES, DOI [10.1145/3465481.3470088, DOI 10.1145/3465481.3470088] Meskys E, 2020, J INTELLET PROP LAW, V15, P24, DOI 10.1093/jiplp/jpz167 Mi ZJ, 2020, IEEE J-STSP, V14, P969, DOI 10.1109/JSTSP.2020.2994523 Mihailova M, 2021, CONVERGENCE-US, V27, P882, DOI 10.1177/13548565211029401 Mirsky Y, 2021, ACM COMPUT SURV, V54, DOI 10.1145/3425780 Mitra A, 2020, 2020 6TH IEEE INTERNATIONAL SYMPOSIUM ON SMART ELECTRONIC SYSTEMS (ISES 2020) (FORMERLY INIS), P91, DOI 10.1109/iSES50453.2020.00031 Mittal H, 2020, 2020 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (SSCI), P989, DOI 10.1109/SSCI47803.2020.9308337 Mittal T, 2020, MM '20: PROCEEDINGS OF THE 28TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, P2823, DOI 10.1145/3394171.3413570 Montserrat DM, 2020, IEEE COMPUT SOC CONF, P2851, DOI 10.1109/CVPRW50498.2020.00342 Murphy G, 2022, MEMORY, V30, P480, DOI 10.1080/09658211.2021.1919715 Nasar Bismi Fathima, 2020, 2020 IEEE Recent Advances in Intelligent Computational Systems (RAICS), P74, DOI 10.1109/RAICS51191.2020.9332516 Neves JC, 2020, IEEE J-STSP, V14, P1038, DOI 10.1109/JSTSP.2020.3007250 Nguyen H, 2020, BIOSIG 2020 Nguyen X., 2021, FORENSIC SCI INT DIG, DOI 10.1016/j.fsidi.2021.301108 Nygren T, 2021, INFORMATION, V12, DOI 10.3390/info12050201 O'Donnell N, 2021, U ILLINOIS LAW REV, P701 P Swathi, 2021, 2021 Third International Conference on Inventive Research in Computing Applications (ICIRCA), P584, DOI 10.1109/ICIRCA51532.2021.9544522 Pan D, 2020, 2020 IEEE/ACM INTERNATIONAL CONFERENCE ON BIG DATA COMPUTING, APPLICATIONS AND TECHNOLOGIES (BDCAT 2020), P134, DOI 10.1109/BDCAT50828.2020.00001 Pan ZG, 2021, MULTIMEDIA SYST, V27, P353, DOI 10.1007/s00530-021-00756-y Pant K, 2020, AACL-IJCNLP 2020: THE 1ST CONFERENCE OF THE ASIA-PACIFIC CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS AND THE 10TH INTERNATIONAL JOINT CONFERENCE ON NATURAL LANGUAGE PROCESSING: PROCEEDINGS OF THE STUDENT RESEARCH WORKSHOP, P37 Pantserev K, 2020, P EUR C IMP ART INT, P93, DOI [10.34190/EAIR.20.003, DOI 10.34190/EAIR.20.003] Partadiredja RA, 2020, 2020 13TH CMI CONFERENCE ON CYBERSECURITY AND PRIVACY (CMI) - DIGITAL TRANSFORMATION - POTENTIALS AND CHALLENGES(51275), P45, DOI 10.1109/CMI51275.2020.9322673 Pashentsev E, 2020, P EUROPEAN C IMPACT, P100, DOI [10.34190/EAIR.20.025, DOI 10.34190/EAIR.20.025] Patil Ujwal, 2021, 2021 Third International Conference on Inventive Research in Computing Applications (ICIRCA), P1646, DOI 10.1109/ICIRCA51532.2021.9544854 Patil Ujwal, 2021, 2021 Second International Conference on Electronics and Sustainable Communication Systems (ICESC), P1110, DOI 10.1109/ICESC51422.2021.9532725 Pavis M, 2021, CONVERGENCE-US, V27, P974, DOI 10.1177/13548565211033418 PAVLIKOVA Miroslava - SENKYROVA, 2021, Challenging online propaganda and disinformation in the 21st century, P43, DOI DOI 10.1007/978-3-030-58624 Dasilva JP, 2021, MEDIA COMMUN-LISBON, V9, P301, DOI 10.17645/mac.v9i1.3433 Perot E, 2020, J INTELLET PROP LAW, V15, P32, DOI 10.1093/jiplp/jpz164 Pertsch K., 2020, ADV NEURAL INFORM PR, p2020a Pokroy AA, 2021, IEEE NW RUSS YOUNG, P598, DOI 10.1109/ElConRus51938.2021.9396092 Prajwal KR, 2020, MM '20: PROCEEDINGS OF THE 28TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, P484, DOI 10.1145/3394171.3413532 Pu JM, 2021, PROCEEDINGS OF THE WORLD WIDE WEB CONFERENCE 2021 (WWW 2021), P981, DOI 10.1145/3442381.3449978 Pu JM, 2020, ANN COMPUT SECURITY, P913, DOI 10.1145/3427228.3427285 Ramadhani Kurniawan Nur, 2020, 2020 3rd International Conference on Information and Communications Technology (ICOIACT), P394, DOI 10.1109/ICOIACT50329.2020.9331963 Ranjan P, 2020, 2020 3RD INTERNATIONAL CONFERENCE ON INFORMATION AND COMPUTER TECHNOLOGIES (ICICT 2020), P86, DOI 10.1109/ICICT50521.2020.00021 Ranjith Kumar M., 2020, J ADV RES DYN CONTRO, V12, P792, DOI [10.5373/JARDCS/V12I2/S20201098, DOI 10.5373/JARDCS/V12I2/S20201098] Rao SJ, 2021, EXPERT SYST APPL, V186, DOI 10.1016/j.eswa.2021.115742 Rössler A, 2019, IEEE I CONF COMP VIS, P1, DOI 10.1109/ICCV.2019.00009 Ross A, 2020, PATTERN RECOGN LETT, V138, P346, DOI 10.1016/j.patrec.2020.07.009 Ru YW, 2021, 2021 INTERNATIONAL JOINT CONFERENCE ON BIOMETRICS (IJCB 2021), DOI 10.1109/IJCB52358.2021.9484408 Samek W, 2021, P IEEE, V109, P247, DOI 10.1109/JPROC.2021.3060483 Sanghvi Bhavik, 2021, Proceedings of 5th International Conference on Computing Methodologies and Communication (ICCMC 2021), P1238, DOI 10.1109/ICCMC51019.2021.9418008 Sankaranarayanan A, 2021, CEUR WORKSHOP PROC, P57 Schwarcz S, 2021, IEEE COMPUT SOC CONF, P933, DOI 10.1109/CVPRW53098.2021.00104 Sener O, 2020, NEW LITERACIES DISIN Sepec M., 2020, BALKAN SOCIAL SCI RE, V15, P117 Shah Yash, 2020, 2020 Fourth International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC), P564, DOI 10.1109/I-SMAC49090.2020.9243530 Shahar H, 2020, FIN PROGR P IS T SID, P175, DOI [10.2352/issn.2169-2629.2020.28.27, DOI 10.2352/ISSN.2169-2629.2020.28.27] Shang ZH, 2021, PATTERN RECOGN, V116, DOI 10.1016/j.patcog.2021.107950 Shelke NA, 2021, MULTIMED TOOLS APPL, V80, P6247, DOI 10.1007/s11042-020-09974-4 Siegel D, 2021, J IMAGING, V7, DOI 10.3390/jimaging7070108 Singh Raj Kumar, 2021, Proceedings of 5th International Conference on Computing Methodologies and Communication (ICCMC 2021), P1290, DOI 10.1109/ICCMC51019.2021.9418477 Sohrawardi SJ, 2019, PROCEEDINGS OF THE 2019 ACM SIGSAC CONFERENCE ON COMPUTER AND COMMUNICATIONS SECURITY (CCS'19), P2613, DOI 10.1145/3319535.3363269 Su YS, 2021, NEURAL PROCESS LETT, V53, P4159, DOI 10.1007/s11063-021-10588-6 Sun P, 2021, LECT NOTES COMPUT SC, V12878, P346, DOI 10.1007/978-3-030-86608-2_38 Suratkar S, 2020, 2020 IEEE 17 IND COU, DOI [10.1109/INDICON49873.2020.9342252, DOI 10.1109/INDICON49873.2020.9342252] Suratkar S., 2020, 2020 11 INT C COMP C, P1, DOI [10.1109/ICCCNT49239.2020.9225400, DOI 10.1109/ICCCNT49239.2020.9225400] Sybrandt J, 2021, PLOS ONE, V16, DOI 10.1371/journal.pone.0253905 Tahir Rashid, 2021, P 2021 CHI C HUM FAC, P1 Tarasiou M, 2020, IEEE IMAGE PROC, P1821, DOI [10.1109/ICIP40778.2020.9190714, 10.1109/icip40778.2020.9190714] Tariq S, 2021, PROCEEDINGS OF THE WORLD WIDE WEB CONFERENCE 2021 (WWW 2021), P3625, DOI 10.1145/3442381.3449809 Tesfagergish SG, 2021, LECT NOTES COMPUT SC, V12954, P523, DOI 10.1007/978-3-030-86979-3_37 Thaw N. N., 2021, P 23 HCI INT C HCI 1, P631, DOI [10.1007/978-3-030-78635-980, DOI 10.1007/978-3-030-78635-980] Tjon E, 2021, INT CONF UBIQUIT INF, DOI 10.1109/IMCOM51814.2021.9377373 Tolosana Ruben, 2021, Pattern Recognition. ICPR International Workshops and Challenges. Proceedings. Lecture Notes in Computer Science (LNCS 12665), P442, DOI 10.1007/978-3-030-68821-9_38 Tolosana R, 2020, INFORM FUSION, V64, P131, DOI 10.1016/j.inffus.2020.06.014 Tran VN, 2021, APPL SCI-BASEL, V11, DOI 10.3390/app11167678 Jesso ST, 2020, FRONT ROBOT AI, V7, DOI 10.3389/frobt.2020.531805 Tursman E, 2020, IEEE COMPUT SOC CONF, P2784, DOI 10.1109/CVPRW50498.2020.00335 Valenzuela A, 2021, IEEE COMPUT SOC CONF, P1023, DOI 10.1109/CVPRW53098.2021.00113 Verdoliva L, 2020, IEEE J-STSP, V14, P910, DOI 10.1109/JSTSP.2020.3002101 Vizoso A, 2021, MEDIA COMMUN-LISBON, V9, P291, DOI 10.17645/mac.v9i1.3494 Wahl-Jorgensen K, 2021, JOURNAL PRACT, V15, P803, DOI 10.1080/17512786.2021.1908838 Wang Fazheng, 2021, 2021 IEEE 4th International Conference on Big Data and Artificial Intelligence (BDAI), P192, DOI 10.1109/BDAI52447.2021.9515222 Wang R, 2020, MM '20: PROCEEDINGS OF THE 28TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, P1207, DOI 10.1145/3394171.3413716 Wang R, 2020, PROCEEDINGS OF THE TWENTY-NINTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, P3444 Wang X., 2020, INT C NEURAL INFORM, P313 Wang YH, 2020, IEEE INT CONF AUTOMA, P515, DOI 10.1109/FG47880.2020.00089 Ward J., 2019, JUDICATURE, V103, P12 Westerlund M, 2019, TECHNOL INNOV MANAG, V9, P39, DOI 10.22215/timreview/1282 Whler L, 2021, P 2021 CHI C HUM FAC, DOI DOI 10.1145/3411764.3445627 Wu X, 2020, INT CONF ACOUST SPEE, P2952, DOI [10.1109/icassp40776.2020.9053969, 10.1109/ICASSP40776.2020.9053969] Xiang ZY, 2021, IEEE COMPUT SOC CONF, P1042, DOI 10.1109/CVPRW53098.2021.00115 Xie D, 2020, 2020 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (SSCI), P1866, DOI 10.1109/SSCI47803.2020.9308428 Xu BZ, 2021, CMC-COMPUT MATER CON, V68, P1375, DOI 10.32604/cmc.2021.016760 Xu YT, 2021, 2021 INTERNATIONAL JOINT CONFERENCE ON BIOMETRICS (IJCB 2021), DOI 10.1109/IJCB52358.2021.9484407 Xuan XS, 2019, LECT NOTES COMPUT SC, V11818, P134, DOI 10.1007/978-3-030-31456-9_15 Yang C, 2020, PROC CVPR IEEE, P5920, DOI 10.1109/CVPR42600.2020.00596 Yang CF, 2021, IEEE IJCNN, DOI 10.1109/IJCNN52387.2021.9533868 Yang CZ, 2021, IEEE T INF FOREN SEC, V16, P1841, DOI 10.1109/TIFS.2020.3045937 Yang JC, 2021, IEEE T INF FOREN SEC, V16, P4234, DOI 10.1109/TIFS.2021.3102487 Yang JC, 2021, FUTURE GENER COMP SY, V125, P127, DOI 10.1016/j.future.2021.06.043 Yang TF, 2020, CHIN CONTR CONF, P7247, DOI 10.23919/CCC50068.2020.9188580 Yang X, 2019, INT CONF ACOUST SPEE, P8261, DOI 10.1109/ICASSP.2019.8683164 Yao T, 2021, arXiv Yavuzkilic S, 2021, SYMMETRY-BASEL, V13, DOI 10.3390/sym13081352 Yewei Gu, 2021, Digital Forensics and Watermarking 19th International Workshop, IWDW 2020. Revised Selected Papers. Lecture Notes in Computer Science (LNCS 12617), P168, DOI 10.1007/978-3-030-69449-4_13 Yifeng Tu, 2021, ICMLC 2021: 2021 13th International Conference on Machine Learning and Computing, P356, DOI 10.1145/3457682.3457736 Younus M, 2020, 2020 INT C COMP SCI, P186, DOI 10.1109/CSASE48920.2020.9142077 Younus Mohammed A., 2020, 2020 6th International Engineering Conference, Sustainable Technology and Development (IEC). Proceedings, P115, DOI 10.1109/IEC49899.2020.9122916 Yu MM, 2021, IET IMAGE PROCESS, V15, P2478, DOI 10.1049/ipr2.12234 Zendran M, 2021, PROCEDIA COMPUT SCI, V192, P834, DOI 10.1016/j.procs.2021.08.086 Zeng Y, 2020, COMMUN COMPUT PHYS, V1253, P536, DOI [10.1007/978-981-15-8086-4_51, DOI 10.1007/978-981-15-8086-4_51] Zhang HC, 2021, ELECTRON LETT, V57, P183, DOI 10.1049/ell2.12015 Zhang Hongmeng, 2020, HPCCT & BDAI 2020: Proceedings of the 2020 4th High Performance Computing and Cluster Technologies Conference & 2020 3rd International Conference on Big Data and Artificial Intelligence, P98, DOI 10.1145/3409501.3409542 Zhang KJ, 2019, IEEE ACCESS, V7, P129494, DOI 10.1109/ACCESS.2019.2939812 Zhang WG, 2020, ENTROPY-SWITZ, V22, DOI 10.3390/e22020249 Zhang X, 2019, IEEE INT WORKS INFOR, DOI 10.1109/wifs47025.2019.9035107 Zhang Y, 2021, PROC SPIE, V11878, DOI 10.1117/12.2600889 Zhao B, 2021, CARTOGR GEOGR INF SC, V48, P338, DOI 10.1080/15230406.2021.1910075 Zhao YR, 2020, LECT NOTES COMPUT SC, V11999, P630, DOI 10.1007/978-3-030-41579-2_37 Zhao Z, 2021, INT J DIGIT CRIME FO, V13, P26, DOI 10.4018/IJDCF.20210701.oa3 Zheng QH, 2018, IEEE ACCESS, V6, P15844, DOI 10.1109/ACCESS.2018.2810849 Zheng Zhao, 2020, ICCAI '20: Proceedings of the 2020 6th International Conference on Computing and Artificial Intelligence, P291, DOI 10.1145/3404555.3404564 Zhu BQ, 2020, PROCEEDINGS OF THE 3RD AAAI/ACM CONFERENCE ON AI, ETHICS, AND SOCIETY AIES 2020, P414, DOI 10.1145/3375627.3375849 Zhu H, 2020, ADV NEURAL INFORM PR Zi BJ, 2020, MM '20: PROCEEDINGS OF THE 28TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, P2382, DOI 10.1145/3394171.3413769 Zotov S, 2020, SSPS 2020: 2020 2ND SYMPOSIUM ON SIGNAL PROCESSING SYSTEMS, P43, DOI 10.1145/3421515.3421532 NR 311 TC 3 Z9 3 U1 26 U2 63 PU SPRINGER PI NEW YORK PA ONE NEW YORK PLAZA, SUITE 4600, NEW YORK, NY, UNITED STATES SN 1432-7643 EI 1433-7479 J9 SOFT COMPUT JI Soft Comput. PD AUG PY 2023 VL 27 IS 16 BP 11295 EP 11318 DI 10.1007/s00500-023-08605-y EA JUN 2023 PG 24 WC Computer Science, Artificial Intelligence; Computer Science, Interdisciplinary Applications WE Science Citation Index Expanded (SCI-EXPANDED) SC Computer Science GA J9AG9 UT WOS:001008460000001 OA hybrid DA 2024-09-05 ER PT J AU Thelwall, M Kousha, K AF Thelwall, Mike Kousha, Kayvan TI Technology assisted research assessment: algorithmic bias and transparency issues SO ASLIB JOURNAL OF INFORMATION MANAGEMENT LA English DT Article; Early Access DE Technology assisted research assessment; Bibliometrics; Research evaluation; Machine learning; Algorithmic bias; Transparency ID CITATION BIAS; SCIENCE; COVERAGE; ARTICLES; DISTANCE; BEHAVIOR AB PurposeTechnology is sometimes used to support assessments of academic research in the form of automatically generated bibliometrics for reviewers to consult during their evaluations or by replacing some or all human judgements. With artificial intelligence (AI), there is increasing scope to use technology to assist research assessment processes in new ways. Since transparency and fairness are widely considered important for research assessment and AI introduces new issues, this review investigates their implications.Design/methodology/approachThis article reviews and briefly summarises transparency and fairness concerns in general terms and through the issues that they raise for various types of Technology Assisted Research Assessment (TARA).FindingsWhilst TARA can have varying levels of problems with both transparency and bias, in most contexts it is unclear whether it worsens the transparency and bias problems that are inherent in peer review.Originality/valueThis is the first analysis that focuses on algorithmic bias and transparency issues for technology assisted research assessment. C1 [Thelwall, Mike; Kousha, Kayvan] Univ Wolverhampton, Stat Cybermetr Res Grp, Wolverhampton, England. C3 University of Wolverhampton RP Thelwall, M (corresponding author), Univ Wolverhampton, Stat Cybermetr Res Grp, Wolverhampton, England. EM m.a.thelwall@sheffield.ac.uk RI Thelwall, Mike/JDV-4700-2023 OI Thelwall, Mike/0000-0001-6065-205X FU Research England; Scottish Funding Council; Higher Education Funding Council for Wales; Department for the Economy, Northern Ireland, Future Research Assessment Programme FX This study was funded by Research England, Scottish Funding Council, Higher Education Funding Council for Wales, and Department for the Economy, Northern Ireland as part of the Future Research Assessment Programme (https://www.jisc.ac.uk/future-research-assessment-programme).The content is solely the responsibility of the authors and does not necessarily represent the officialviews of the funders. CR Aksnes DW, 2003, RES EVALUAT, V12, P159, DOI 10.3152/147154403781776645 Ancaiani A, 2015, RES EVALUAT, V24, P242, DOI 10.1093/reseval/rvv008 Antonakis J, 2014, LEADERSHIP QUART, V25, P152, DOI 10.1016/j.leaqua.2013.10.014 Bader H, 2021, J COMMUNITY HOSP INT, V11, P817, DOI 10.1080/20009666.2021.1965704 Biggs J, 2018, SEX ROLES, V78, P394, DOI 10.1007/s11199-017-0800-9 Bornmann L, 2013, J INFORMETR, V7, P158, DOI 10.1016/j.joi.2012.10.001 Boudreau KJ, 2016, MANAGE SCI, V62, P2765, DOI 10.1287/mnsc.2015.2285 Case DO, 2000, J AM SOC INFORM SCI, V51, P635, DOI 10.1002/(SICI)1097-4571(2000)51:7<635::AID-ASI6>3.0.CO;2-H Ceci SJ, 2011, P NATL ACAD SCI USA, V108, P3157, DOI 10.1073/pnas.1014871108 Checco A, 2021, HUM SOC SCI COMMUN, V8, DOI 10.1057/s41599-020-00703-8 Chen JP, 2015, PROCEEDINGS OF 2015 IEEE 14TH INTERNATIONAL CONFERENCE ON COGNITIVE INFORMATICS & COGNITIVE COMPUTING (ICCI*CC), P434, DOI 10.1109/ICCI-CC.2015.7259421 Chen T., 2015, R package version 0.4-2, V1, P1 Cheuk T, 2021, SCI EDUC, V105, P825, DOI 10.1002/sce.21671 Culumber ZW, 2019, BIOSCIENCE, V69, P631, DOI 10.1093/biosci/biz063 Diakopoulos N, 2017, DIGIT JOURNAL, V5, P809, DOI 10.1080/21670811.2016.1208053 Duma SM, 2021, ANN BIOMED ENG, V49, P947, DOI 10.1007/s10439-021-02739-6 Fairclough R, 2022, LEARN PUBL, V35, P241, DOI 10.1002/leap.1417 Feiyu Xu, 2019, Natural Language Processing and Chinese Computing. 8th CCF International Conference, NLPCC 2019. Proceedings. Lecture Notes in Artificial Intelligence, Subseries of Lecture Notes in Computer Science (LNAI 11839), P563, DOI 10.1007/978-3-030-32236-6_51 Fiez T, 2020, PR MACH LEARN RES, V124, P580 Furl N, 2002, COGNITIVE SCI, V26, P797, DOI 10.1016/S0364-0213(02)00084-8 GANS JS, 1994, J ECON PERSPECT, V8, P165, DOI 10.1257/jep.8.1.165 Gunning D, 2019, SCI ROBOT, V4, DOI 10.1126/scirobotics.aay7120 Harzing A., 2017, Web of Science: how to be robbed of 10 years of citations in one week! HEFCE, 2015, METR TID CORR AN REF Hicks D, 2015, NATURE, V520, P429, DOI 10.1038/520429a Hojat M, 2003, ADV HEALTH SCI EDUC, V8, P75, DOI 10.1023/A:1022670432373 Hook DW., 2018, FRONT RES METR ANAL, V3, P23, DOI DOI 10.3389/FRMA.2018.00023 Hutchins BI, 2016, PLOS BIOL, V14, DOI 10.1371/journal.pbio.1002541 van Eck NJ, 2019, Arxiv, DOI arXiv:1906.07011 Jannot AS, 2013, J CLIN EPIDEMIOL, V66, P296, DOI 10.1016/j.jclinepi.2012.09.015 Karhulahti VM, 2021, RES INTEGR PEER REV, V6, DOI 10.1186/s41073-021-00116-4 Klavans R, 2017, J ASSOC INF SCI TECH, V68, P984, DOI 10.1002/asi.23734 Kordzadeh N, 2022, EUR J INFORM SYST, V31, P388, DOI 10.1080/0960085X.2021.1927212 Kumar S, 2022, ACM-IEEE J CONF DIG, DOI 10.1145/3529372.3530937 Lambrecht A, 2019, MANAGE SCI, V65, P2966, DOI 10.1287/mnsc.2018.3093 Barrantes BSL, 2012, J AM SOC INF SCI TEC, V63, P481, DOI 10.1002/asi.21682 Lee CJ, 2013, J AM SOC INF SCI TEC, V64, P2, DOI 10.1002/asi.22784 Lee NT, 2018, J INF COMMUN ETHICS, V16, P252, DOI 10.1108/JICES-06-2018-0056 Mahoney M. J., 1977, Cognitive Therapy and Research, V1, P161, DOI [DOI 10.1007/BF01173636, 10.1007/BF01173636] Mañana-Rodríguez J, 2015, RES EVALUAT, V24, P343, DOI 10.1093/reseval/rvu008 Mehrabi N, 2021, ACM COMPUT SURV, V54, DOI 10.1145/3457607 MERTON RK, 1968, SCIENCE, V159, P56, DOI 10.1126/science.159.3810.56 Campanario JM, 2009, SCIENTOMETRICS, V81, P549, DOI 10.1007/s11192-008-2141-5 Mongeon P, 2016, SCIENTOMETRICS, V106, P213, DOI 10.1007/s11192-015-1765-5 Moys J.L., 2014, Visible Language, V48, P881 Navarro CLA, 2021, BMJ-BRIT MED J, V375, DOI 10.1136/bmj.n2281 Prates MOR, 2020, NEURAL COMPUT APPL, V32, P6363, DOI 10.1007/s00521-019-04144-6 Rinia EJ, 2001, RES POLICY, V30, P357, DOI 10.1016/S0048-7333(00)00082-2 Ruiz-Castillo J, 2015, J INFORMETR, V9, P102, DOI 10.1016/j.joi.2014.11.010 Sandström U, 2008, SCIENTOMETRICS, V74, P175, DOI 10.1007/s11192-008-0211-3 Siler K, 2015, P NATL ACAD SCI USA, V112, P360, DOI 10.1073/pnas.1418218112 Thelwall M., 2022, arXiv Thelwall M, 2023, QUANT SCI STUD, V4, P547, DOI 10.1162/qss_a_00258 Thelwall M, 2023, J ASSOC INF SCI TECH, V74, P941, DOI 10.1002/asi.24767 Thelwall M, 2021, LIBR INFORM SCI RES, V43, DOI 10.1016/j.lisr.2021.101094 Thelwall M, 2020, J ASSOC INF SCI TECH, V71, P979, DOI 10.1002/asi.24316 Thelwall M, 2018, ONLINE INFORM REV, V42, P343, DOI 10.1108/OIR-05-2017-0153 Thelwall M, 2017, J INFORMETR, V11, P128, DOI 10.1016/j.joi.2016.12.002 Thelwall M, 2015, J ASSOC INF SCI TECH, V66, P1124, DOI 10.1002/asi.23252 Tincani M, 2019, PERSPECT BEHAV SCI, V42, P59, DOI 10.1007/s40614-019-00191-5 Traag VA, 2019, PALGR COMMUN, V5, DOI 10.1057/s41599-019-0233-x Tran D, 2020, Arxiv, DOI [arXiv:2010.05137, 10.48550/arXiv.2010.05137] Urlings MJE, 2021, J CLIN EPIDEMIOL, V132, P71, DOI 10.1016/j.jclinepi.2020.11.019 van Leeuwen TN, 2001, SCIENTOMETRICS, V51, P335, DOI 10.1023/A:1010549719484 Vera-Baceta MA, 2019, SCIENTOMETRICS, V121, P1803, DOI 10.1007/s11192-019-03264-z Vilone G, 2020, Arxiv, DOI arXiv:2006.00093 Waltman L, 2011, SCIENTOMETRICS, V87, P467, DOI 10.1007/s11192-011-0354-5 Wang J, 2017, RES POLICY, V46, P1416, DOI 10.1016/j.respol.2017.06.006 Wang Q, 2015, RES EVALUAT, V24, P271, DOI 10.1093/reseval/rvv009 Wilsdon J., 2015, REPORT INDEPENDENT R, DOI 10.13140/RG.2.1.4929.1363 Wren JD, 2018, EMBO J, V37, DOI 10.15252/embj.201899651 Zhang H, 2010, LEARN PUBL, V23, P9, DOI 10.1087/20100103 NR 72 TC 0 Z9 0 U1 16 U2 36 PU EMERALD GROUP PUBLISHING LTD PI Leeds PA floor 5, Northspring 21-23 Wellington Street, Leeds, W YORKSHIRE, ENGLAND SN 2050-3806 EI 1758-3748 J9 ASLIB J INFORM MANAG JI Aslib J. Inf. Manag. PD 2023 OCT 2 PY 2023 DI 10.1108/AJIM-04-2023-0119 EA OCT 2023 PG 16 WC Computer Science, Information Systems; Information Science & Library Science WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Computer Science; Information Science & Library Science GA T0QX6 UT WOS:001075132200001 OA Green Accepted DA 2024-09-05 ER PT J AU Kong, XJ Zhang, J Zhang, D Bu, Y Ding, Y Xia, F AF Kong, Xiangjie Zhang, Jun Zhang, Da Bu, Yi Ding, Ying Xia, Feng TI The Gene of Scientific Success SO ACM TRANSACTIONS ON KNOWLEDGE DISCOVERY FROM DATA LA English DT Article DE Scientific impact; academic networks; machine learning; feature selection ID IMPACT AB This article elaborates how to identify and evaluate causal factors to improve scientific impact. Currently, analyzing scientific impact can be beneficial to various academic activities including funding application, mentor recommendation, discovering potential cooperators, and the like. It is universally acknowledged that high-impact scholars often have more opportunities to receive awards as an encouragement for their hard work. Therefore, scholars spend great efforts in making scientific achievements and improving scientific impact during their academic life. However, what are the determinate factors that control scholars' academic success? The answer to this question can help scholars conduct their research more efficiently. Under this consideration, our article presents and analyzes the causal factors that are crucial for scholars' academic success. We first propose five major factors including article-centered factors, author-centered factors, venue-centered factors, institution-centered factors, and temporal factors. Then, we apply recent advanced machine learning algorithms and jackknife method to assess the importance of each causal factor. Our empirical results show that author-centered and article-centered factors have the highest relevancy to scholars' future success in the computer science area. Additionally, we discover an interesting phenomenon that the h-index of scholars within the same institution or university are actually very close to each other. C1 [Kong, Xiangjie] Zhejiang Univ Technol, Coll Comp Sci & Technol, 288 Liuhe Rd, Hangzhou 310023, Zhejiang, Peoples R China. [Zhang, Jun] Dalian Univ Technol, Grad Sch Educ, 2 Linggong Rd, Dalian 116024, Liaoning, Peoples R China. [Zhang, Da] Univ Miami, Dept Elect & Comp Engn, 5952 Coral Gables, Coral Gables, FL 33129 USA. [Bu, Yi] Peking Univ, Dept Informat Management, 5 Yiheyuan Rd, Beijing 100871, Peoples R China. [Ding, Ying] Univ Texas Austin, Sch Informat, 1616 Guadalupe St, Austin, TX 78701 USA. [Xia, Feng] Federat Univ Australia, Sch Sci Engn & Informat Technol, POB 663, Ballarat, Vic 3353, Australia. C3 Zhejiang University of Technology; Dalian University of Technology; University of Miami; Peking University; University of Texas System; University of Texas Austin; Federation University Australia RP Xia, F (corresponding author), Federat Univ Australia, Sch Sci Engn & Informat Technol, POB 663, Ballarat, Vic 3353, Australia. EM xjkong@acm.org; junzhang@dlut.edu.cn; zhang.1855@miami.edu; buyipku@gmail.com; ying.ding@austin.utexas.edu; f.xia@acm.org RI Ding, Ying/X-3657-2019; Kong, Xiangjie/B-8809-2016; Xia, Feng/Y-2859-2019 OI Kong, Xiangjie/0000-0003-2698-3319; Xia, Feng/0000-0002-8324-1859; Zhang, Da/0000-0003-3321-1835 CR Acuna DE, 2012, NATURE, V489, P201, DOI 10.1038/489201a Amjad T, 2017, J INFORMETR, V11, P307, DOI 10.1016/j.joi.2017.01.004 Amjad T, 2016, INFORM PROCESS MANAG, V52, P374, DOI 10.1016/j.ipm.2015.12.001 Amjad T, 2015, SCIENTOMETRICS, V104, P313, DOI 10.1007/s11192-015-1601-y [Anonymous], 2018, APPL BIONICS BIOMECH [Anonymous], 1999, WWW 1999 [Anonymous], 2016, ARXIV160803251 Bai XM, 2017, IEEE ACCESS, V5, P17607, DOI 10.1109/ACCESS.2017.2740226 Bornmann L, 2016, SCIENTOMETRICS, V107, P1405, DOI 10.1007/s11192-016-1893-6 Cao XY, 2016, J INFORMETR, V10, P471, DOI 10.1016/j.joi.2016.02.006 Clauset A, 2017, SCIENCE, V355, P477, DOI 10.1126/science.aal4217 Costas R, 2015, J ASSOC INF SCI TECH, V66, P2003, DOI 10.1002/asi.23309 Dunaiski M, 2016, J INFORMETR, V10, P392, DOI 10.1016/j.joi.2016.01.010 Egghe L, 2006, SCIENTOMETRICS, V69, P131, DOI 10.1007/s11192-006-0144-7 Fortunato S, 2018, SCIENCE, V359, DOI 10.1126/science.aao0185 Garfield E, 2006, JAMA-J AM MED ASSOC, V295, P90, DOI 10.1001/jama.295.1.90 Hirsch JE, 2005, P NATL ACAD SCI USA, V102, P16569, DOI 10.1073/pnas.0507655102 Kleinberg JM, 1999, J ACM, V46, P604, DOI 10.1145/324133.324140 Klimek P, 2016, SCIENTOMETRICS, V107, P1265, DOI 10.1007/s11192-016-1926-1 Kong XJ, 2019, IEEE T COMPUT SOC SY, V6, P1318, DOI 10.1109/TCSS.2019.2950445 Li LY, 2015, KDD'15: PROCEEDINGS OF THE 21ST ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, P655, DOI 10.1145/2783258.2783340 Liang RH, 2016, AAAI CONF ARTIF INTE, P20 Liu JY, 2021, IEEE T KNOWL DATA EN, V33, P1763, DOI 10.1109/TKDE.2019.2946825 Liu L, 2018, NATURE, V559, P396, DOI 10.1038/s41586-018-0315-8 Liu Y, 2016, AAAI CONF ARTIF INTE, P201 Severiano A, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0019539 Shiffrin RM, 2016, P NATL ACAD SCI USA, V113, P7308, DOI 10.1073/pnas.1608845113 Sinatra R, 2016, SCIENCE, V354, DOI 10.1126/science.aaf5239 Spirtes Peter, 2016, Appl Inform (Berl), V3, P3 Stegehuis C, 2015, J INFORMETR, V9, P642, DOI 10.1016/j.joi.2015.06.005 Le TD, 2013, BIOINFORMATICS, V29, P765, DOI 10.1093/bioinformatics/btt048 Valenzuela Marco, 2015, P WORKSH 29 AAAI C A Van Houten B, 2000, ENVIRON HEALTH PERSP, V108, pA392, DOI 10.1289/ehp.108-a392 VANHOUTEN B, 2000, ENVIRON HEALTH PERSP, V108, pA39 Wang DS, 2013, SCIENCE, V342, P127, DOI 10.1126/science.1237825 Wang SZ, 2016, ACM T INTEL SYST TEC, V7, DOI 10.1145/2897371 Wang W, 2017, SCIENTOMETRICS, V112, P329, DOI 10.1007/s11192-017-2388-9 Wei Y, 2016, J STRUCT FIRE ENG, V7, P2, DOI 10.1108/JSFE-03-2016-001 Wu H, 2018, ACM T KNOWL DISCOV D, V12, DOI 10.1145/3047017 Xia F, 2017, IEEE T BIG DATA, V3, P18, DOI 10.1109/TBDATA.2016.2641460 Xia F, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0165997 Yu DJ, 2017, SCIENTOMETRICS, V111, P521, DOI 10.1007/s11192-017-2262-9 Yuxiao Dong, 2016, IEEE Transactions on Big Data, V2, P18, DOI 10.1109/TBDATA.2016.2521657 Zhang J, 2017, SCIENTOMETRICS, V112, P1301, DOI 10.1007/s11192-017-2458-z NR 44 TC 19 Z9 19 U1 2 U2 37 PU ASSOC COMPUTING MACHINERY PI NEW YORK PA 2 PENN PLAZA, STE 701, NEW YORK, NY 10121-0701 USA SN 1556-4681 EI 1556-472X J9 ACM T KNOWL DISCOV D JI ACM Trans. Knowl. Discov. Data PD JUL PY 2020 VL 14 IS 4 AR 41 DI 10.1145/3385530 PG 19 WC Computer Science, Information Systems; Computer Science, Software Engineering WE Science Citation Index Expanded (SCI-EXPANDED) SC Computer Science GA OI9ZB UT WOS:000583626600004 OA Green Published, Green Submitted DA 2024-09-05 ER PT J AU Thiem, A AF Thiem, Alrik TI Beyond the Facts: Limited Empirical Diversity and Causal Inference in Qualitative Comparative Analysis SO SOCIOLOGICAL METHODS & RESEARCH LA English DT Article DE Boolean algebra; causal inference; configurational comparative methods; empirical research methods; method evaluation; qualitative comparative analysis ID MINIMIZATION AB Qualitative Comparative Analysis (QCA) is a relatively young method of causal inference that continues to diffuse across the social sciences. However, recent methodological research has found the conservative (QCA-CS) and the intermediate solution type (QCA-IS) of QCA to fail fundamental tests of correctness. Even under conditions otherwise ideal for causal discovery, both solution types frequently committed causal fallacies by presenting inferences that were in direct disagreement with the underlying data-generating structure to be discovered by QCA. None of these problems affected the parsimonious solution type (QCA-PS). These findings conflict with conventional wisdom in the QCA literature, which has it that QCA-CS uses empirical information only and that QCA-IS is preferable to both QCA-CS and QCA-PS. The present article resolves these contradictions. It shows that QCA-CS and QCA-IS systematically supplement empirical data with matching artificial data. These artificial data, however, regularly induce causal fallacies of severe magnitude. Researchers who employ QCA-CS or QCA-IS in empirical analyses thus always risk moving further away from the truth rather than closer to it. C1 [Thiem, Alrik] Univ Lucerne, Dept Polit Sci, Luzern, Switzerland. C3 University of Lucerne RP Thiem, A (corresponding author), Univ Lucerne, CH-6002 Luzern, Switzerland. EM alrik.thiem@unilu.ch OI Thiem, Alrik/0000-0002-4769-2185 FU Swiss National Science Foundation [PP00P1_170442]; Swiss National Science Foundation (SNF) [PP00P1_170442] Funding Source: Swiss National Science Foundation (SNF) FX The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: Swiss National Science Foundation (PP00P1_170442). CR [Anonymous], 1987, The Comparative Method: Moving Beyond Qualitative and Quantitative Strategies [Anonymous], 2000, Fuzzy-set social science, DOI DOI 10.2307/3089736 Baumgartner M, 2020, SOCIOL METHOD RES, V49, P279, DOI 10.1177/0049124117701487 Baumgartner M, 2017, SOCIOL METHOD RES, V46, P954, DOI 10.1177/0049124115610351 Baumgartner M, 2015, QUAL QUANT, V49, P839, DOI 10.1007/s11135-014-0026-7 Baumgartner M, 2008, PHILOSOPHIA, V36, P327, DOI 10.1007/s11406-007-9114-4 Cartwright N, 2007, HUNTING CAUSES AND USING THEM: APPROACHES IN PHILOSOPHY AND ECONOMICS, P1, DOI 10.2277/ 0521860814 Cooper B, 2016, FIELD METHOD, V28, P300, DOI 10.1177/1525822X15598974 De Meur Gisele., 2009, CONFIGURATIONAL COMP, P147 Dusa A, 2015, J MATH SOCIOL, V39, P92, DOI 10.1080/0022250X.2014.897949 Grasshoff G., 2001, CURRENT ISSUES CAUSA, P85 HUG S, 2014, QUALITATIVE MULTIMET, V12, P24 Hug S, 2013, POLIT ANAL, V21, P252, DOI 10.1093/pan/mps061 Krogslund C, 2015, POLIT ANAL, V23, P21, DOI 10.1093/pan/mpu016 Lucas SR, 2014, SOCIOL METHODOL, V44, P1, DOI 10.1177/0081175014532763 Mackie J.L., 1974, CEMENT UNIVERSE STUD MACKIE JL, 1965, AM PHILOS QUART, V2, P245 Paine J, 2016, COMP POLIT STUD, V49, P703, DOI 10.1177/0010414014564851 Ragin C.C., 2005, VERGLEICHEN POLITIKW, P180, DOI [10.1007/978-3-322-80441-9_9, DOI 10.1007/978-3-322-80441-9_9] Ragin CC, 2008, SOCIOL METHOD RES, V36, P431, DOI 10.1177/0049124107313903 Ragin Charles C., 2008, Redesigning social inquiry: Fuzzy sets and beyond, DOI 10.7208/chicago/9780226702797.001.0001 Ragin CharlesC., 2009, CONFIGURATIONAL COMP, P87, DOI [10.4135/9781452226569.n5, DOI 10.4135/9781452226569.N5] Rihoux B, 2013, POLIT RES QUART, V66, P175, DOI 10.1177/1065912912468269c Rohlfing I, 2015, RES POLITICS, V2, DOI 10.1177/2053168015623562 Schneider CQ, 2012, STRAT SOC INQ, P1 Schneider CQ, 2018, POLIT ANAL, V26, P246, DOI 10.1017/pan.2017.45 Schneider CQ, 2016, FIELD METHOD, V28, P316, DOI 10.1177/1525822X15598977 Schneider CQ, 2016, SOCIOL METHOD RES, V45, P526, DOI 10.1177/0049124114532446 Schneider CQ, 2013, POLIT RES QUART, V66, P211, DOI 10.1177/1065912912468269h Thiem A., 2014, QUALITATIVE MULTIMET, V12, P19 Thiem A, 2018, J WATER SANIT HYG DE, V8, P622, DOI 10.2166/washdev.2018.149 Thiem A, 2017, AM J EVAL, V38, P420, DOI 10.1177/1098214016673902 Thiem A, 2016, SOCIOL METHODOL, V46, P345, DOI 10.1177/0081175016654736 Thiem A, 2016, POLIT ANAL, V24, P478, DOI 10.1093/pan/mpw024 Thiem A, 2016, POLIT ANAL, V24, P104, DOI 10.1093/pan/mpv028 Thiem A, 2016, COMP POLIT STUD, V49, P801, DOI 10.1177/0010414015626455 Thiem A, 2016, COMP POLIT STUD, V49, P742, DOI 10.1177/0010414014565892 Thiem A, 2013, SOC SCI COMPUT REV, V31, P505, DOI 10.1177/0894439313478999 Vis B, 2012, SOCIOL METHOD RES, V41, P168, DOI 10.1177/0049124112442142 Wagemann C., 2015, Qualitative & Multi-Method Research, V13, P38 NR 40 TC 30 Z9 32 U1 24 U2 33 PU SAGE PUBLICATIONS INC PI THOUSAND OAKS PA 2455 TELLER RD, THOUSAND OAKS, CA 91320 USA SN 0049-1241 EI 1552-8294 J9 SOCIOL METHOD RES JI Sociol. Methods. Res. PD MAY PY 2022 VL 51 IS 2 BP 527 EP 540 AR 0049124119882463 DI 10.1177/0049124119882463 EA NOV 2019 PG 14 WC Social Sciences, Mathematical Methods; Sociology WE Social Science Citation Index (SSCI) SC Mathematical Methods In Social Sciences; Sociology GA 0N5YZ UT WOS:000496361300001 OA hybrid DA 2024-09-05 ER PT J AU Mohsen, MA Althebi, S Albahooth, M AF Mohsen, Mohammed Ali Althebi, Sultan Albahooth, Mohammed TI A scientometric study of three decades of machine translation research: Trending issues, hotspot research, and co-citation analysis SO COGENT ARTS & HUMANITIES LA English DT Article DE machine translation; research; scientometric; translation studies; co-citation ID EMERGING TRENDS; COMMUNITY AB This study aims to examine machine translation research in journals indexed in the Web of Science to find out the research trending issue, hotspot areas of research, and document co-citation analysis. To this end, 541 documents published between 1992 and 2022 were retrieved and analyzed using CiteSpace, and Bibexcel. Many metrics were analyzed such as document co-citation analysis, sources co-citation analyses, authors' keywords analysis, and Hirsch index. Data were coded and filtered to include research related to machine translation from the perspectives of language and translation studies. We identified 11 clusters that represented the hotspot research during the period of almost three decades of research. We also discovered that a significant focus of research in machine translation centered around enhancing the translation process through the implementation of neural networks integrated with artificial intelligence. Additionally, we observed the incorporation of human post-editing as a means to refine and improve machine-translated outputs. We found that translation studies journals were the most highly co-cited journals and Google translate was the most highly used machine translation. This study highlights the trending issues and hotspots in machine translation research within language and translation studies. The integration of neural networks with artificial intelligence and human post-editing emerged as prominent areas of focus for enhancing translation quality. The findings of the current study inform future research and technological advancements in machine translation, guiding efforts to improve translation processes and outcomes. C1 [Mohsen, Mohammed Ali; Althebi, Sultan; Albahooth, Mohammed] Najran Univ, Coll Languages & Translat, Najran, Saudi Arabia. C3 Najran University RP Mohsen, MA (corresponding author), Najran Univ, Coll Languages & Translat, Najran, Saudi Arabia. EM mamohsen@nu.edu.sa RI AlThebi, Sultan/GQQ-3465-2022; MOHSEN, MOHAMMED/K-1861-2015 OI AlThebi, Sultan/0000-0002-8459-6969; MOHSEN, MOHAMMED/0000-0003-3169-102X FU Literature, Publishing and Translation Commission, Ministry of Culture, Kingdom of Saudi Arabia [102/022] FX This study was funded by the Literature, Publishing and Translation Commission, Ministry of Culture, Kingdom of Saudi Arabia under [102/022] as part of the Arabic Observatorof Translation. CR Al Mahasees Z., 2020, Master's thesis Allen J., 2003, Computers and Translation: A Translators Guide, P297 Andrabi S. A. B., 2021, Turk J Comp Mathematics Educ, V12, P1134 [Anonymous], 2017, PERSPECT STUD TRANSL, V25, P2, DOI 10.1080/0907676X.2017.1246219 [Anonymous], 2006, AMTA Aryadoust V, 2020, SYSTEM, V88, DOI 10.1016/j.system.2019.102180 Brandes U, 2001, J MATH SOCIOL, V25, P163, DOI 10.1080/0022250X.2001.9990249 Brown P.F., 1993, The mathematics of statistical machine translation: Parameter estimation Chen CM, 2012, EXPERT OPIN BIOL TH, V12, P593, DOI 10.1517/14712598.2012.674507 Chen CM, 2006, J AM SOC INF SCI TEC, V57, P359, DOI 10.1002/asi.20317 Dong DH, 2015, SCIENTOMETRICS, V105, P1111, DOI 10.1007/s11192-015-1769-1 European Association of Machine Translation, WHAT IS MACH TRANSL Fiederer R, 2009, J SPEC TRANSL, P52 Garcia I, 2011, MACH TRANSL, V25, P217, DOI 10.1007/s10590-011-9115-8 Garcia I, 2011, COMPUT ASSIST LANG L, V24, P471, DOI 10.1080/09588221.2011.582687 Garcia I, 2010, TARGET-NETH, V22, P7, DOI 10.1075/target.22.1.02gar Gimenez Jesus, 2010, Prague Bulletin of Mathematical Linguistics, P77, DOI 10.2478/v10108-010-0022-6 Gupta BM, 2019, DESIDOC J LIB INF TE, V39, P31, DOI 10.14429/djlit.39.1.13558 Huang Q, 2019, TRANSLATION REV, V105, P34, DOI 10.1080/07374836.2019.1664959 Kahlon NK, 2023, UNIVERSAL ACCESS INF, V22, P1, DOI 10.1007/s10209-021-00823-1 Klimova B, 2023, EDUC INF TECHNOL, V28, P663, DOI 10.1007/s10639-022-11194-2 Krings Hans P., 2001, Repairing Texts: Empirical Investigations of Machine Translation Post-Editing Processes Lee SM, 2023, COMPUT ASSIST LANG L, V36, P103, DOI 10.1080/09588221.2021.1901745 Lee SM, 2020, COMPUT ASSIST LANG L, V33, P157, DOI 10.1080/09588221.2018.1553186 Li XD, 2015, PERSPECT STUD TRANSL, V23, P183, DOI 10.1080/0907676X.2015.1006645 Lim MH, 2022, COMPUT ASSIST LANG L, V35, P2675, DOI 10.1080/09588221.2021.1892768 Mi CG, 2022, NEURAL NETWORKS, V148, P194, DOI 10.1016/j.neunet.2022.01.016 Mohsen MA, 2024, EDUC INF TECHNOL, V29, P3571, DOI 10.1007/s10639-023-11968-2 Mohsen MA, 2024, INTERACT LEARN ENVIR, V32, P1763, DOI 10.1080/10494820.2022.2127780 Mohsen MA, 2021, ELECTRON LIBR, V39, P865, DOI 10.1108/EL-06-2021-0121 Newman MEJ, 2006, P NATL ACAD SCI USA, V103, P8577, DOI 10.1073/pnas.0601602103 O'Brien S, 2012, TRANSL SPACES, V1, P101, DOI 10.1075/ts.1.05obr Papineni K, 2002, 40TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, PROCEEDINGS OF THE CONFERENCE, P311, DOI 10.3115/1073083.1073135 Plitt Mirko, 2010, Prague Bulletin of Mathematical Linguistics, P7, DOI 10.2478/v10108-010-0010-X Quah CK, 2006, PALG TXB TRANSL INTE, P1, DOI 10.1057/9780230287105 Rivera-Trigueros I, 2022, LANG RESOUR EVAL, V56, P593, DOI 10.1007/s10579-021-09537-5 ROUSSEEUW PJ, 1987, J COMPUT APPL MATH, V20, P53, DOI 10.1016/0377-0427(87)90125-7 Rovira-Esteva S, 2015, PERSPECT STUD TRANSL, V23, P159, DOI 10.1080/0907676X.2015.1026361 Stahlschmidt S., 2020, Comparison of Web of Science, Scopus and Dimensions databases KB Forschungspoolprojekt 2020, P37 Tan ZX, 2020, AI OPEN, V1, P5, DOI 10.1016/j.aiopen.2020.11.001 van Doorslaer L, 2015, PERSPECT STUD TRANSL, V23, P305, DOI 10.1080/0907676X.2015.1026360 van Eck NJ, 2017, SCIENTOMETRICS, V111, P1053, DOI 10.1007/s11192-017-2300-7 Vanroy B., 2021, SYNTACTIC DIFFICULTI Voβ S., 2005, P 23 IASTED INT MULT, P651 Wang HF, 2022, ENGINEERING-PRC, V18, P143, DOI 10.1016/j.eng.2021.03.023 Zhu XL, 2023, TARGET-NETH, V35, P157, DOI 10.1075/target.20154.zhu NR 46 TC 2 Z9 2 U1 6 U2 28 PU TAYLOR & FRANCIS AS PI OSLO PA KARL JOHANS GATE 5, NO-0154 OSLO, NORWAY SN 2331-1983 J9 COGENT ARTS HUMANITE JI Cogent Art Humanities PD DEC 31 PY 2023 VL 10 IS 1 AR 2242620 DI 10.1080/23311983.2023.2242620 PG 16 WC Humanities, Multidisciplinary WE Emerging Sources Citation Index (ESCI) SC Arts & Humanities - Other Topics GA O0ZX1 UT WOS:001041200900001 OA gold DA 2024-09-05 ER PT J AU Zhang, J Yu, MX He, K AF Zhang, Jia Yu, Mengxia He, Ke TI Research on high-efficiency optimization algorithm applied to near-field effect error correction SO INTERNATIONAL JOURNAL OF RF AND MICROWAVE COMPUTER-AIDED ENGINEERING LA English DT Article DE BP-GA; hybrid algorithm; neural networks; PSO; PSO-SVM ID PARTICLE SWARM OPTIMIZATION; HYBRID AB In order to achieve a more efficient and accurate correction of near-field error in the semiphysical radio frequency simulation system, the precise control parameters of the three antenna elements need to be obtained. This article is based on the method of moments electromagnetic simulation, and propose corresponding improvement ideas for the problems of limited optimization accuracy and low calculation efficiency in the near-field error correction process. From the aspects of high-precision intelligent inversion algorithm and high-efficiency electromagnetic forward modeling, systematic optimization design and verification were carried out. The results prove that the control parameter filtering scheme based on PSO-GA hybrid method has better optimization efficiency and accuracy than single genetic algorithm or differential evolution algorithm, which can provide more ideal initial amplitude and phase parameters for the subsequent selection of electromagnetic simulation and forward verification. In order to solve the problem of time-consuming in the electromagnetic simulation, the multivariate vector forward model based on GA-BP network and PSO-SVM network are established, which can achieve high-precision positioning of synthetic vector target points. The neural network method has been proved to be feasible on the basis of the current sample size. The paper selects hybrid algorithms to improve the shortcomings of single algorithm and uses algorithms to optimize neural networks, thereby obtaining better optimization results and reducing the time-consuming of electromagnetic simulations, which can realize efficient correction of near-field error. C1 [Zhang, Jia; Yu, Mengxia; He, Ke] Univ Elect Sci & Technol China, Sch Phys, Chengdu, Sichuan, Peoples R China. C3 University of Electronic Science & Technology of China RP Yu, MX (corresponding author), Univ Elect Sci & Technol China, Sch Phys, Chengdu, Sichuan, Peoples R China. EM yumengxia@uestc.edu.cn RI ripert, marion/HHN-5115-2022; Yu, Mengxia/AAD-9435-2021 CR Ababneh J, 2006, INT J RF MICROW C E, V16, P322, DOI 10.1002/mmce.20141 Cervantes J, 2020, NEUROCOMPUTING, V408, P189, DOI 10.1016/j.neucom.2019.10.118 Cui YF, 2017, ENERGY, V125, P681, DOI 10.1016/j.energy.2017.02.174 Garg H, 2016, APPL MATH COMPUT, V274, P292, DOI 10.1016/j.amc.2015.11.001 Gonçalves JF, 2011, J HEURISTICS, V17, P487, DOI 10.1007/s10732-010-9143-1 Gong YJ, 2016, IEEE T CYBERNETICS, V46, P2277, DOI 10.1109/TCYB.2015.2475174 Jarndal A, 2021, INT J RF MICROW C E, V31, DOI 10.1002/mmce.22542 Joó A, 2012, IEEE T EVOLUT COMPUT, V16, P749, DOI 10.1109/TEVC.2011.2159270 Li WT, 2010, INT J RF MICROW C E, V20, P190, DOI 10.1002/mmce.20421 Lin SW, 2008, EXPERT SYST APPL, V35, P1817, DOI 10.1016/j.eswa.2007.08.088 Luthra I, 2017, 2017 INTERNATIONAL CONFERENCE OF ELECTRONICS, COMMUNICATION AND AEROSPACE TECHNOLOGY (ICECA), VOL 2, P143, DOI 10.1109/ICECA.2017.8212781 Min Duan, 2018, 2018 International Conference on Intelligent Transportation, Big Data & Smart City (ICITBS). Proceedings, P41, DOI 10.1109/ICITBS.2018.00018 Omidi A, 2009, 2009 2ND IEEE INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND INFORMATION TECHNOLOGY, VOL 2, P369, DOI 10.1109/ICCSIT.2009.5234707 Soleimani H, 2015, APPL MATH MODEL, V39, P3990, DOI 10.1016/j.apm.2014.12.016 Sun XG, 2007, SPECTROSC SPECT ANAL, V27, P213 Varnamkhasti MJ, 2013, J INTELL FUZZY SYST, V25, P793, DOI 10.3233/IFS-120685 Wang DS, 2018, SOFT COMPUT, V22, P387, DOI 10.1007/s00500-016-2474-6 Wang Y, 2016, 2016 IEEE INTERNATIONAL CONFERENCE ON ELECTRONIC INFORMATION AND COMMUNICATION TECHNOLOGY ICEICT 2016 PROCEEDINGS, P470, DOI 10.1109/ICEICT.2016.7879743 Xi YH, 2019, IET GENER TRANSM DIS, V13, P3968, DOI 10.1049/iet-gtd.2018.6148 Yang ZR, 2010, METHODS MOL BIOL, V609, P197, DOI 10.1007/978-1-60327-241-4_12 Zhan ZH, 2011, IEEE T EVOLUT COMPUT, V15, P832, DOI 10.1109/TEVC.2010.2052054 NR 21 TC 0 Z9 0 U1 2 U2 8 PU WILEY PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1096-4290 EI 1099-047X J9 INT J RF MICROW C E JI Int. J. RF Microw. Comput-Aid. Eng. PD DEC PY 2022 VL 32 IS 12 DI 10.1002/mmce.23530 EA NOV 2022 PG 10 WC Computer Science, Interdisciplinary Applications; Engineering, Electrical & Electronic WE Science Citation Index Expanded (SCI-EXPANDED) SC Computer Science; Engineering GA 7H4QP UT WOS:000877594200001 DA 2024-09-05 ER PT J AU Zhen-Wu AF Zhen-Wu TI Application research of bel canto performance based on artificial intelligence technology SO APPLIED MATHEMATICS AND NONLINEAR SCIENCES LA English DT Article; Early Access DE artificial intelligence; bel canto; performance; science and technology AB In the 21st century, with the rapid development of information processing technology, neurophysiology, non-linear dynamics, fuzzy mathematics and other disciplines, artificial intelligence (AI) has come to be widely used in many aspects. Considering AI music, music, art, AI and music media fuse together. For the perfect combination of modern technology and traditional art, a variety of technologies, including machine learning, machine perception, neural network, genetic algorithm, knowledge representation, knowledge system and so on, form a new category in AI. The advent of this technology has dramatically changed traditional music. Therefore, this paper applies AI technology to bel canto singing and combines it with AI technology, summarises the corresponding algorithm principle and analyses its development trend and characteristics with specific application cases, in order to better serve music. C1 [Zhen-Wu] Xiamen Univ, Tan Kah Kee Coll, Zhangzhou 363105, Fujian, Peoples R China. C3 Xiamen University RP Zhen-Wu (corresponding author), Xiamen Univ, Tan Kah Kee Coll, Zhangzhou 363105, Fujian, Peoples R China. EM Zhenwu1225@outlook.com CR Aissani N, 2009, ENG APPL ARTIF INTEL, V22, P1089, DOI 10.1016/j.engappai.2009.01.014 Angel G, 2010, LOGICAL FDN ARTIFICI [Anonymous], 1995, APPL MECH MAT [Anonymous], 2003, APPL MECH MAT Bel-Enguix G, 2011, FRONT ARTIF INTEL AP, V228, P85, DOI 10.3233/978-1-60750-762-8-85 Chaudhri K., 2013, AI MAG Chaudhri VK, 2013, AI MAG, V34, P10 Chen Y Q., 2009, J CHUXIONG NORMAL U Fox M, 1994, HDB LOGIC ARTIFICIAL, V1 Haugeland J., 1985, PHILOS REV, V7, P3 Intelligence C, TOTSE COM James S, 2014, MODELING DECISIONS A Kirschenbaum M G., POETICS ARTIFICIAL I Kohavi R, 1997, ARTIF INTELL, V97, P273, DOI 10.1016/S0004-3702(97)00043-X Kojima K., 2004, SPEECH PROSODY LEHMANN D, 1992, ARTIF INTELL, V55, P1, DOI 10.1016/0004-3702(92)90041-U Ligeza A., 2009, Artificial Intelligence: A Modern Approach, V263, P2829, DOI DOI 10.4028/WWW.SCIENTIFIC.NET/AMM.263-266.2829 Negnevitsky M, 2005, Inf & Comput Sci, V48, P284 Nilsson N J., 1982, PRINCIPLE ARTIFICIAL Norvig P, 1995, APPL MECH MAT, V263, P2829 Rossi F, 2006, FOUND ARTIF INTELL, P1 Russell S., 2009, Artificial Intelligence: A Modern Approach, V3rd Russell Stuart, 2010, Artificial intelligence, a modern approach, V3 Vinod B, 2021, MANAGEMENT PROFESSIO Wang F, 2011, PROC NATL CONF ARTIF, V36, P823 Wei E., 2021, INTONATION CHARACTER Zhang L K., 2011, J QINGHAI NATIONALIT Zhu Xiaojin, 2009, Synth. Lectures Artif. Intell. Mach. Learn., V3, P1, DOI 10.2200/S00196ED1V01Y200906AIM006 NR 28 TC 0 Z9 0 U1 1 U2 8 PU WALTER DE GRUYTER GMBH PI BERLIN PA GENTHINER STRASSE 13, D-10785 BERLIN, GERMANY EI 2444-8656 J9 APPL MATH NONLIN SCI JI Appl. Math. Nonlinear Sci. PD 2022 NOV 30 PY 2022 DI 10.2478/amns.2021.2.00255 EA NOV 2022 PG 12 WC Mathematics, Applied WE Emerging Sources Citation Index (ESCI) SC Mathematics GA 7E2SQ UT WOS:000901025000001 OA gold DA 2024-09-05 ER PT J AU Anderson, BS Schueler, J Baum, M Wales, WJ Gupta, VK AF Anderson, Brian S. Schueler, Jens Baum, Matthias Wales, William J. Gupta, Vishal K. TI The Chicken or the Egg? Causal Inference in Entrepreneurial Orientation-Performance Research SO ENTREPRENEURSHIP THEORY AND PRACTICE LA English DT Article DE causality; endogeneity; research design; entrepreneurial orientation; firm performance ID FIRM PERFORMANCE; STRATEGIC MANAGEMENT; MEDIATING ROLE; RESOURCE ORCHESTRATION; BUSINESS PERFORMANCE; MODERATING ROLE; ENDOGENEITY; CONSTRUCT; MARKET; RECOMMENDATIONS AB While entrepreneurial orientation (EO) correlates with many organizational phenomena, we lack convincing evidence of causal relationships within EO's nomological network. We explore the challenges to establishing causal relationships with a systematic review of EO-performance research. We then use a simulation to illustrate how popular research designs in EO research limit our ability to make causal claims. We conclude by outlining the research design considerations to move from associational to causal EO-performance research. Our message is that while experiments may not be practical or feasible in many areas of organizational research, including EO, scholars can nevertheless move towards causal understanding. C1 [Anderson, Brian S.] Univ Missouri Kansas City, Henry W Bloch Sch Management, 5108 Cherry St, Kansas City, MO 64110 USA. [Anderson, Brian S.] Univ Ghent, Ctr Entrepreneurship Res, Ghent, Belgium. [Schueler, Jens; Baum, Matthias] Unvers Kaiserslautern, Dept Law Business & Econ, Kaiserslautern, Germany. [Wales, William J.] SUNY Albany, Sch Business, Albany, NY 12222 USA. [Gupta, Vishal K.] Univ Alabama, Culverhouse Coll Business, Tuscaloosa, AL USA. C3 University of Missouri System; University of Missouri Kansas City; Ghent University; State University of New York (SUNY) System; State University of New York (SUNY) Albany; University of Alabama System; University of Alabama Tuscaloosa RP Anderson, BS (corresponding author), Univ Missouri Kansas City, Henry W Bloch Sch Management, 5108 Cherry St, Kansas City, MO 64110 USA. EM andersonbri@umkc.edu RI Wales, William/C-3837-2016; Anderson, Brian/E-6102-2017 OI Wales, William/0000-0001-6565-6439; Anderson, Brian/0000-0001-9749-4104; Schuler, Jens/0000-0002-8899-3718 CR Adams RB, 2016, LEADERSHIP QUART, V27, P371, DOI 10.1016/j.leaqua.2015.11.001 Aguinis H, 2018, ACAD MANAG ANN, V12, P83, DOI 10.5465/annals.2016.0011 Aguinis H, 2012, J BUS VENTURING, V27, P493, DOI 10.1016/j.jbusvent.2012.01.002 Amrhein V, 2019, AM STAT, V73, P262, DOI 10.1080/00031305.2018.1543137 Anderson BS, 2019, J BUS VENTURING, V34, DOI 10.1016/j.jbusvent.2019.02.001 Anderson BS, 2019, STRATEG ENTREP J, V13, P199, DOI 10.1002/sej.1306 Anderson BS, 2015, STRATEGIC MANAGE J, V36, P1579, DOI 10.1002/smj.2298 Anderson BS, 2013, J BUS VENTURING, V28, P413, DOI 10.1016/j.jbusvent.2011.10.001 Angrist JD, 2009, MOSTLY HARMLESS ECONOMETRICS: AN EMPIRICISTS COMPANION, P1 Antonakis J, 2010, LEADERSHIP QUART, V21, P1086, DOI 10.1016/j.leaqua.2010.10.010 Bergh DD, 2002, STRATEGIC MANAGE J, V23, P359, DOI 10.1002/smj.232 Bernerth JB, 2016, PERS PSYCHOL, V69, P229, DOI 10.1111/peps.12103 Bollen KA., 1989, STRUCTURAL EQUATIONS Bradley SW, 2011, J BUS VENTURING, V26, P537, DOI 10.1016/j.jbusvent.2010.03.002 Certo ST, 2017, STRATEGIC MANAGE J, V38, P1536, DOI 10.1002/smj.2586 Certo ST, 2016, STRATEGIC MANAGE J, V37, P2639, DOI 10.1002/smj.2475 Chenhall RH, 2007, EUR ACCOUNT REV, V16, P173, DOI 10.1080/09638180701265937 Chirico F, 2011, STRATEG ENTREP J, V5, P307, DOI 10.1002/sej.121 Clougherty JA, 2016, ORGAN RES METHODS, V19, P286, DOI 10.1177/1094428115619013 Cook T. D., 2002, Experimental and quasi-experimental designs for generalized causal inference, DOI DOI 10.1198/JASA.2005.S22 Covin J.G., 1991, ENTREP THEORY PRACT, V16, P7 Covin JG, 2011, ENTREP THEORY PRACT, V35, P855, DOI 10.1111/j.1540-6520.2011.00482.x Covin JG, 2012, ENTREP THEORY PRACT, V36, P677, DOI 10.1111/j.1540-6520.2010.00432.x COVIN JG, 1989, STRATEGIC MANAGE J, V10, P75, DOI 10.1002/smj.4250100107 COVIN JG, 2019, ENTREP THEORY PRACT, V43, P3, DOI [DOI 10.1177/1042258718773181, 10.1177/1042258718773181] Davidsson P, 2016, ENTREP THEORY PRACT, V40, P915, DOI 10.1111/etap.12152 De Clercq D, 2010, J BUS VENTURING, V25, P87, DOI 10.1016/j.jbusvent.2009.01.004 DESS GG, 1984, ADMIN SCI QUART, V29, P52, DOI 10.2307/2393080 Deutscher F, 2016, J BUS RES, V69, P849, DOI 10.1016/j.jbusres.2015.07.005 Edwards JR, 2001, ORGAN RES METHODS, V4, P265, DOI 10.1177/109442810143005 Engelen A, 2016, J MANAGE, V42, P698, DOI 10.1177/0149206313495413 Engelen A, 2015, J MANAGE, V41, P1069, DOI 10.1177/0149206312455244 Engelen A, 2014, RES POLICY, V43, P1353, DOI 10.1016/j.respol.2014.03.002 Eshima Y, 2017, STRATEGIC MANAGE J, V38, P770, DOI 10.1002/smj.2532 Feldman E.R., 2020, STRATEGIC MANAGE J, V63, P1 Flammer C, 2016, MANAGE SCI, V62, P1982, DOI 10.1287/mnsc.2015.2229 Gelman A., 2013, Bayesian Data Analysis, V3rd ed. George BA, 2011, ENTREP THEORY PRACT, V35, P989, DOI 10.1111/j.1540-6520.2011.00455.x George BA, 2011, J MANAGE STUD, V48, P1291, DOI 10.1111/j.1467-6486.2010.01004.x Ghoshal S, 2005, ACAD MANAG LEARN EDU, V4, P75, DOI 10.5465/AMLE.2005.16132558 Goldfarb B, 2016, STRATEGIC MANAGE J, V37, P167, DOI 10.1002/smj.2459 Grühn B, 2017, ENTREP THEORY PRACT, V41, P591, DOI [10.1111/etap.12239, 10.1111/etp.12239] Gupta V, 2018, REV MANAG SCI, V12, P1, DOI 10.1007/s11846-016-0210-3 Gupta V, 2015, FOUND TRENDS ENTREP, V11, P55, DOI 10.1561/0300000054 Gupta VK, 2020, REV MANAG SCI, V14, P1123, DOI 10.1007/s11846-019-00327-6 Gupta VK, 2019, REV MANAG SCI, V13, P649, DOI 10.1007/s11846-017-0262-z Gupta VK, 2016, INT SMALL BUS J, V34, P660, DOI 10.1177/0266242615577708 Hakala H, 2011, INT J MANAG REV, V13, P199, DOI 10.1111/j.1468-2370.2010.00292.x HAMBRICK DC, 1983, ACAD MANAGE J, V26, P5, DOI 10.5465/256132 Hernández-Linares R, 2018, FAM BUS REV, V31, P318, DOI 10.1177/0894486518781940 HOLLAND PW, 1986, J AM STAT ASSOC, V81, P945, DOI 10.2307/2289064 Ireland RD, 2009, ENTREP THEORY PRACT, V33, P19, DOI 10.1111/j.1540-6520.2008.00279.x Ireland RD, 2003, J MANAGE, V29, P963, DOI 10.1016/S0149-2063(03)00086-2 Kang JH, 2016, J BUS VENTURING, V31, P628, DOI 10.1016/j.jbusvent.2016.08.002 Keil T., 2017, Entrepreneurship theory and practice, V41, P475, DOI [DOI 10.1111/ETAP.12213, DOI 10.1111/ETP.12213] Ketokivi M, 2017, J OPER MANAG, V52, P1, DOI 10.1016/j.jom.2017.05.001 Kline R.B., 2015, Principles and practice of structural equation modeling Kollmann T, 2014, ENTREP THEORY PRACT, V38, P1001, DOI 10.1111/j.1540-6520.2012.00530.x Kreiser PM, 2020, ENTREP THEORY PRACT, V44, P1174, DOI 10.1177/1042258719891389 Levinthal DA, 2011, STRATEGIC MANAGE J, V32, P1517, DOI 10.1002/smj.963 Li YA, 2010, J MANAGE STUD, V47, P1457, DOI 10.1111/j.1467-6486.2010.00949.x Loken E, 2017, SCIENCE, V355, P584, DOI 10.1126/science.aal3618 Lomberg C, 2017, ENTREP THEORY PRACT, V41, P973, DOI 10.1111/etap.12237 Lumpkin GT, 1996, ACAD MANAGE REV, V21, P135, DOI 10.2307/258632 MacKenzie SB, 2011, MIS QUART, V35, P293 Matsuno K, 2014, J PROD INNOVAT MANAG, V31, P1106, DOI 10.1111/jpim.12147 McKenny AF, 2018, J MANAGE, V44, P2909, DOI 10.1177/0149206316657594 Menguc B, 2010, J BUS ETHICS, V94, P279, DOI 10.1007/s10551-009-0264-0 Messersmith JG, 2013, INT SMALL BUS J, V31, P115, DOI 10.1177/0266242611416141 MILLER D, 1983, MANAGE SCI, V29, P770, DOI 10.1287/mnsc.29.7.770 Miller D, 2011, ENTREP THEORY PRACT, V35, P1051, DOI 10.1111/j.1540-6520.2011.00447.x Morgan SL, 2007, ANAL METHOD SOC RES, P1, DOI 10.1017/CBO9780511804564 Morgan T, 2015, INT SMALL BUS J, V33, P731, DOI 10.1177/0266242614521054 Morris MH, 2011, ENTREP THEORY PRACT, V35, P947, DOI 10.1111/j.1540-6520.2011.00453.x O'Boyle EH Jr, 2012, J BUS VENTURING, V27, P1, DOI 10.1016/j.jbusvent.2011.09.002 Patel PC, 2015, STRATEGIC MANAGE J, V36, P1739, DOI 10.1002/smj.2310 Pearl Judea, 2009, Causality: Models, reasoning, and inference, V2 Rauch A, 2009, ENTREP THEORY PRACT, V33, P761, DOI 10.1111/j.1540-6520.2009.00308.x Real JC, 2014, BRIT J MANAGE, V25, P186, DOI 10.1111/j.1467-8551.2012.00848.x Rocha V, 2019, ORGAN RES METHODS, V22, P740, DOI 10.1177/1094428118757313 Rosenbusch N, 2013, J MANAGE, V39, P633, DOI 10.1177/0149206311425612 Rubin DB, 2005, J AM STAT ASSOC, V100, P322, DOI 10.1198/016214504000001880 RUBIN DB, 1974, J EDUC PSYCHOL, V66, P688, DOI 10.1037/h0037350 Saeed S, 2014, ENTREP THEORY PRACT, V38, P255, DOI 10.1111/etap.12097 Sampson RC, 2023, STRATEGIC MANAGE J, V44, P231, DOI 10.1002/smj.3158 Schneider M, 2015, J WORLD BUS, V50, P439, DOI 10.1016/j.jwb.2014.06.001 Semadeni M, 2014, STRATEGIC MANAGE J, V35, P1070, DOI 10.1002/smj.2136 Shaver JM, 1998, MANAGE SCI, V44, P571, DOI 10.1287/mnsc.44.4.571 Shepherd DA, 2010, ENTREP THEORY PRACT, V34, P59, DOI 10.1111/j.1540-6520.2009.00313.x Slevin DP, 2011, ENTREP THEORY PRACT, V35, P973, DOI 10.1111/j.1540-6520.2011.00483.x Spector PE, 2011, ORGAN RES METHODS, V14, P287, DOI 10.1177/1094428110369842 Taeuscher K, 2021, STRATEGIC MANAGE J, V42, P435, DOI 10.1002/smj.3229 Tajeddini K, 2010, TOURISM MANAGE, V31, P221, DOI 10.1016/j.tourman.2009.02.013 Tang JT, 2017, ENTREP THEORY PRACT, V41, P883, DOI 10.1111/etap.12235 Taras V, 2018, MANAG RES REV, V41, P225, DOI 10.1108/MRR-05-2017-0150 Van Doorn S, 2013, J PROD INNOVAT MANAG, V30, P821, DOI 10.1111/jpim.12032 Wales W, 2015, INT SMALL BUS J, V33, P351, DOI 10.1177/0266242613506023 Wales W, 2011, ENTREP THEORY PRACT, V35, P895, DOI 10.1111/j.1540-6520.2011.00451.x Wales WJ, 2020, STRATEG ENTREP J, V14, P639, DOI 10.1002/sej.1344 Wales WJ, 2013, INT SMALL BUS J, V31, P357, DOI 10.1177/0266242611418261 Wales WJ, 2013, STRATEG ENTREP J, V7, P93, DOI 10.1002/sej.1153 Wales WJ, 2016, INT SMALL BUS J, V34, P3, DOI 10.1177/0266242615613840 Wang TY, 2017, STRATEG ENTREP J, V11, P373, DOI 10.1002/sej.1246 Wennberg K, 2020, J BUS VENTURING, V35, DOI 10.1016/j.jbusvent.2019.05.002 Wiklund J, 2011, ENTREP THEORY PRACT, V35, P925, DOI 10.1111/j.1540-6520.2011.00454.x Zaefarian G, 2017, IND MARKET MANAG, V65, P39, DOI 10.1016/j.indmarman.2017.05.006 Zhao YB, 2011, ENTREP THEORY PRACT, V35, P293, DOI 10.1111/j.1540-6520.2009.00359.x NR 107 TC 16 Z9 16 U1 12 U2 60 PU SAGE PUBLICATIONS INC PI THOUSAND OAKS PA 2455 TELLER RD, THOUSAND OAKS, CA 91320 USA SN 1042-2587 EI 1540-6520 J9 ENTREP THEORY PRACT JI Entrep. Theory Pract. PD NOV PY 2022 VL 46 IS 6 BP 1569 EP 1596 AR 1042258720976368 DI 10.1177/1042258720976368 EA DEC 2020 PG 28 WC Business WE Social Science Citation Index (SSCI) SC Business & Economics GA 5D7FX UT WOS:000631599500001 DA 2024-09-05 ER PT J AU Luechtefeld, T Bozada, T Jr Goel, R Wang, L Paller, CJ AF Luechtefeld, Thomas Bozada Jr, Thomas Goel, Rahul Wang, Lin Paller, Channing J. TI Applications for open access normalized synthesis in metastatic prostate cancer trials SO FRONTIERS IN ARTIFICIAL INTELLIGENCE LA English DT Article DE data curation; prostate cancer; biomarker; text mining; natural language processing; machine learning ID ABIRATERONE ACETATE; SURVIVAL ANALYSIS; PLUS PREDNISONE; DOUBLE-BLIND; ENZALUTAMIDE; INHIBITORS AB Recent metastatic castration-resistant prostate cancer (mCRPC) clinical trials have integrated homologous recombination and DNA repair deficiency (HRD/DRD) biomarkers into eligibility criteria and secondary objectives. These trials led to the approval of some PARP inhibitors for mCRPC with HRD/DRD indications. Unfortunately, biomarker-trial outcome data is only discovered by reviewing publications, a process that is error-prone, time-consuming, and laborious. While prostate cancer researchers have written systematic evidence reviews (SERs) on this topic, given the time involved from the last search to publication, an SER is often outdated even before publication. The difficulty in reusing previous review data has resulted in multiple reviews of the same trials. Thus, it will be useful to create a normalized evidence base from recently published/presented biomarker-trial outcome data that one can quickly update. We present a new approach to semi-automating normalized, open-access data tables from published clinical trials of metastatic prostate cancer using a data curation and SER platform. and were used to collect mCRPC clinical trial publications with HRD/DRD biomarkers. We extracted data from 13 publications covering ten trials that started before 22nd Apr 2021. We extracted 585 hazard ratios, response rates, duration metrics, and 543 adverse events. Across 334 patients, we also extracted 8,180 patient-level survival and biomarker values. Data tables were populated with survival metrics, raw patient data, eligibility criteria, adverse events, and timelines. A repeated strong association between HRD and improved PARP inhibitor response was observed. Several use cases for the extracted data are demonstrated via analyses of trial methods, comparison of treatment hazard ratios, and association of treatments with adverse events. Machine learning models are also built on combined and normalized patient data to demonstrate automated discovery of therapy/biomarker relationships. Overall, we demonstrate the value of systematically extracted and normalized data. We have also made our code open-source with simple instructions on updating the analyses as new data becomes available, which anyone can use even with limited programming knowledge. Finally, while we present a novel method of SER for mCRPC trials, one can also implement such semi-automated methods in other clinical trial domains to advance precision medicine. C1 [Luechtefeld, Thomas; Bozada Jr, Thomas] Insilica LLC, Bethesda, MD USA. [Wang, Lin] Johns Hopkins Univ, Dept Epidemiol, Bloomberg Sch Publ Hlth, Baltimore, MD USA. [Paller, Channing J.] Johns Hopkins Univ, Sidney Kimmel Comprehens Canc Ctr, Sch Med, Baltimore, MD 21205 USA. C3 Johns Hopkins University; Johns Hopkins Bloomberg School of Public Health; Johns Hopkins University; Johns Hopkins Medicine RP Paller, CJ (corresponding author), Johns Hopkins Univ, Sidney Kimmel Comprehens Canc Ctr, Sch Med, Baltimore, MD 21205 USA. EM cpaller1@jhmi.edu RI goel, rahul/KMY-8257-2024 OI Bozada, Thomas/0000-0002-6100-0384; Wang, Lin/0000-0003-2046-4366 CR Annala M, 2018, CANCER DISCOV, V8, P444, DOI 10.1158/2159-8290.CD-17-0937 Antonarakis ES, 2020, EUR UROL ONCOL, V3, P594, DOI 10.1016/j.euo.2020.07.005 Antonarakis ES, 2020, JCO PRECIS ONCOL, V4, P370, DOI [10.1200/PO.19.00399, 10.1200/po.19.00399] Bairoch A., 2009, NAT PRECED, V2009, P1, DOI [10.1038/npre.2009.3092.1, DOI 10.1038/NPRE.2009.3092.1] Balduzzi S, 2019, EVID-BASED MENT HEAL, V22, P153, DOI 10.1136/ebmental-2019-300117 Beer TM, 2014, NEW ENGL J MED, V371, P424, DOI 10.1056/NEJMoa1405095 Beller EM, 2013, SYST REV-LONDON, V2, DOI 10.1186/2046-4053-2-36 Borkovec Martin, 2019, CRAN Bozada T, 2021, FRONT ARTIF INTELL, V4, DOI 10.3389/frai.2021.685298 Clarke N, 2018, LANCET ONCOL, V19, P975, DOI 10.1016/S1470-2045(18)30365-6 Colaprico A, 2016, NUCLEIC ACIDS RES, V44, DOI 10.1093/nar/gkv1507 COX DR, 1972, J R STAT SOC B, V34, P187 de Bono J, 2020, NEW ENGL J MED, V382, P2091, DOI 10.1056/NEJMoa1911440 Dolgalev Igor, 2022, CRAN Dziadkowiec KN, 2016, MENOPAUSE REV, V15, P215, DOI 10.5114/pm.2016.65667 FDA, 2020, LYNPARZA FDA DRUG LA Fischbach A, 2018, NUCLEIC ACIDS RES, V46, P804, DOI 10.1093/nar/gkx1205 Fizazi K, 2017, NEW ENGL J MED, V377, P352, DOI 10.1056/NEJMoa1704174 Fizazi K, 2012, LANCET ONCOL, V13, P983, DOI 10.1016/S1470-2045(12)70379-0 Garge NR, 2013, BMC BIOINFORMATICS, V14, DOI 10.1186/1471-2105-14-125 Graff JN, 2020, J IMMUNOTHER CANCER, V8, DOI 10.1136/jitc-2020-000642 Hussain M, 2020, NEW ENGL J MED, V383, P2345, DOI 10.1056/NEJMoa2022485 Hussain M, 2018, J CLIN ONCOL, V36, P991, DOI 10.1200/JCO.2017.75.7310 Hussain M, 2017, J CLIN ONCOL, V35, DOI 10.1200/JCO.2017.35.15_suppl.5001 Jang A, 2020, CANCERS, V12, DOI 10.3390/cancers12113467 Kaufman B, 2015, J CLIN ONCOL, V33, P244, DOI 10.1200/JCO.2014.56.2728 Luechtefeld T., 2021, PROSPERO 2021 Luechtefeld T, 2020, SCI REP-UK, V10, DOI 10.1038/s41598-020-65369-3 Luo J, 2019, NAT REV UROL, V16, P4, DOI 10.1038/s41585-018-0129-3 Maertens A, 2020, SCI REP-UK, V10, DOI 10.1038/s41598-020-60456-x McLaren W, 2016, GENOME BIOL, V17, DOI 10.1186/s13059-016-0974-4 Mounir M, 2019, PLOS COMPUT BIOL, V15, DOI 10.1371/journal.pcbi.1006701 Page MJ, 2021, INT J SURG, V88, DOI [10.1186/s13643-021-01626-4, 10.1016/j.jclinepi.2021.02.003, 10.1016/j.ijsu.2021.105906] Pedersen Thomas Lin, 2024, CRAN Rivera SC, 2020, LANCET DIGIT HEALTH, V2, pE549, DOI [10.1016/S2589-7500(20)30219-3, 10.1136/bmj.m3210, 10.1038/s41591-020-1037-7] Ryan CJ, 2015, LANCET ONCOL, V16, P152, DOI 10.1016/S1470-2045(14)71205-7 Sachs M., 2020, GGKM SURVIVAL PLOTS Scher HI, 2012, NEW ENGL J MED, V367, P1187, DOI 10.1056/NEJMoa1207506 Sievert C, 2020, INTERACTIVE WEB BASE Silva Tiago C, 2016, F1000Res, V5, P1542, DOI 10.12688/f1000research.8923.2 Sumanasuriya S, 2018, CSH PERSPECT MED, V8, DOI 10.1101/cshperspect.a030635 Tasneem A, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0033677 Therneau Terry M, 2024, CRAN Therneau Terry M, 2000, STAT BIOL HEALTH, DOI 10.1007/978-1-4757-3294-8_3 Viechtbauer W, 2010, J STAT SOFTW, V36, P1, DOI 10.18637/jss.v036.i03 Wickham H., 2007, GGPLOT PACKAGE Zeileis A., 2010, party with the mob: Model-Based Recursive Partitioning in R. R package version 0.9-9999 NR 47 TC 0 Z9 0 U1 2 U2 2 PU FRONTIERS MEDIA SA PI LAUSANNE PA AVENUE DU TRIBUNAL FEDERAL 34, LAUSANNE, CH-1015, SWITZERLAND EI 2624-8212 J9 FRONT ARTIF INTELL JI Front. Artif. Intell. PD SEP 12 PY 2022 VL 5 AR 984836 DI 10.3389/frai.2022.984836 PG 15 WC Computer Science, Artificial Intelligence; Computer Science, Information Systems WE Emerging Sources Citation Index (ESCI) SC Computer Science GA 8D1JO UT WOS:000918055500001 PM 36171797 OA gold, Green Published DA 2024-09-05 ER PT J AU Zong, QJ Huang, ZH Huang, JR AF Zong, Qianjin Huang, Zhihong Huang, Jiaru TI Can open access increase LIS research's policy impact? Using regression analysis and causal inference SO SCIENTOMETRICS LA English DT Article DE Policy impact; Open access; Evidence-based policy-making; Policy-makers; Policy citation counts; Unpaywall; Dimensions ID HEALTH-POLICY; INFORMATION; GOVERNMENT; PUBLICATIONS; CITATIONS; JOURNALS; EFFICACY; DATABASE; LIBRARY; STATE AB The relationship between open access and academic impact (usually measured as citations received from academic publications) has been extensively studied but remains a very controversial topic. However, the effect of open access on policy impact (measured as citations received from policy documents) is still unknown. The purpose of this study was to examine the effect of open access on the policy impact, which might initiate a new controversial topic. Research articles in the field of library and information science (LIS) were selected as the data sample (n = 48,884). Negative binomial regression models were used to examine the dataset. Furthermore, propensity score matching (PSM) analysis, a causal inference approach, was used to estimate the effect of open access on the policy impact based on a selected LIS journal (Scientometrics, n = 4019) that received the most policy citations among the LIS journals. Linear regression models, logit regression models, four other matching methods, open access status provided by different databases, and different sizes of data samples were used to check the robustness of the main results. This study revealed that open access had significant and positive effects on the policy impact. C1 [Zong, Qianjin; Huang, Zhihong; Huang, Jiaru] South China Normal Univ, Sch Econ & Management, Guangzhou, Peoples R China. C3 South China Normal University RP Zong, QJ (corresponding author), South China Normal Univ, Sch Econ & Management, Guangzhou, Peoples R China. EM zongqj@m.scnu.edu.cn RI lan, xueyao/JZD-4201-2024; Zong, Qianjin/ABD-0454-2022 OI Zong, Qianjin/0000-0002-7517-8191; Huang, Zhihong/0000-0001-6679-2133 CR Adie E., 2020, SEPTENTRIO C SERIES, DOI [10.7557/5.5571, DOI 10.7557/5.5571] Aguillo IF, 2020, SCIENTOMETRICS, V123, P1181, DOI 10.1007/s11192-020-03424-6 Airoldi G, 2021, HIST PHIL LIFE SCI, V43, DOI 10.1007/s40656-021-00419-1 Alkhawtani RHM, 2020, EUR RADIOL, V30, P482, DOI 10.1007/s00330-019-06389-0 AlRyalat SA, 2021, CURR UROL, V15, P59, DOI 10.1097/CU9.0000000000000007 AlRyalat SA, 2019, J GASTROINTEST ONCOL, V10, P777, DOI 10.21037/jgo.2019.02.13 Altmetric, 2020, WHAT ARE ALTM Atchison A, 2015, PS-POLIT SCI POLIT, V48, P129, DOI 10.1017/S1049096514001668 Basson I, 2022, PLOS ONE, V17, DOI 10.1371/journal.pone.0265545 Basson I, 2021, SCIENTOMETRICS, V126, P459, DOI 10.1007/s11192-020-03734-9 Beaujean AA., 2016, Pract. Assess. Res. Eval, V21, P2, DOI [DOI 10.7275/PJ8C-H254, 10.7275/pj8c-h254] Cho J, 2021, SCIENTOMETRICS, V126, P7623, DOI 10.1007/s11192-021-04084-w Cho J, 2021, SERIALS REV, V47, P17, DOI 10.1080/00987913.2021.1882652 Clarivate, 2020, SEARCH GROUP AUTH FI Clarivate, 2021, OPEN ACCESS Clayson PE, 2021, INT J PSYCHOPHYSIOL, V164, P103, DOI 10.1016/j.ijpsycho.2021.03.006 Combs T, 2022, HEALTH SERV RES, V57, P122, DOI 10.1111/1475-6773.13916 Davis PM, 2008, BMJ-BRIT MED J, V337, DOI 10.1136/bmj.a568 Dickersin K, 2002, JAMA-J AM MED ASSOC, V287, P2772, DOI 10.1001/jama.287.21.2772 Dorta-González P, 2020, SCIENTOMETRICS, V124, P2619, DOI 10.1007/s11192-020-03557-8 Estakhr Z, 2021, INFORM RES, V26, DOI 10.47989/irpaper897 EuropeanUnion, 2020, EU SUPP OP ACC Eysenbach G, 2006, J MED INTERNET RES, V8, DOI 10.2196/jmir.8.2.e8 Ferreras-Fernández T, 2015, THIRD INTERNATIONAL CONFERENCE ON TECHNOLOGICAL ECOSYSTEMS FOR ENHANCING MULTICULTURALITY, PROCEEDINGS TEEM'15, P419, DOI 10.1145/2808580.2808643 Fiebig A, 2019, ERWERBS-OBSTBAU, V61, P1, DOI 10.1007/s10341-018-0394-6 Funk T, 2022, HEALTH POLICY, V126, P16, DOI 10.1016/j.healthpol.2021.10.001 Glänzel W, 2020, SCIENTOMETRICS, V125, P1011, DOI 10.1007/s11192-020-03473-x Guo F, 2014, J SCHOLARLY PUBL, V45, P336, DOI 10.3138/jsp.45.4.02 Hartemink AE, 2019, GEODERMA REG, V18, DOI 10.1016/j.geodrs.2019.e00231 Holmberg K, 2020, SCIENTOMETRICS, V122, P645, DOI 10.1007/s11192-019-03301-x Hook D., 2019, ASCENT OPEN ACCESS Huang ZH, 2022, SCIENTOMETRICS, V127, P6453, DOI 10.1007/s11192-022-04532-1 Jeffery S, 2020, ENVIRON SCI POLICY, V112, P371, DOI 10.1016/j.envsci.2020.07.006 Jewell CJ, 2008, MILBANK Q, V86, P177, DOI 10.1111/j.1468-0009.2008.00519.x Joosse IR, 2023, HEALTH POLICY, V134, DOI 10.1016/j.healthpol.2022.03.003 Jukola S, 2021, HIST PHIL LIFE SCI, V43, DOI 10.1007/s40656-021-00410-w Kale B, 2017, PROCEEDINGS OF THE 2017 ACM WEB SCIENCE CONFERENCE (WEBSCI '17), P389, DOI 10.1145/3091478.3098865 Kolpekwar JA, 2021, CYTOJOURNAL, V18, DOI 10.25259/Cytojournal_32_2021 Konno K, 2020, ENVIRON SCI POLICY, V114, P256, DOI 10.1016/j.envsci.2020.08.021 Kuballa S, 2017, STUD HEALTH TECHNOL, V245, P901, DOI 10.3233/978-1-61499-830-3-901 Kumar MB, 2020, HEALTH POLICY PLANN, V35, P799, DOI 10.1093/heapol/czaa027 Laakso M, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0020961 Leopold SS, 2014, CLIN ORTHOP RELAT R, V472, P1665, DOI 10.1007/s11999-014-3615-9 Liao CH, 2018, SCIENTOMETRICS, V117, P1991, DOI 10.1007/s11192-018-2925-1 Lin WYC, 2021, SCIENTOMETRICS, V126, P4841, DOI 10.1007/s11192-021-03956-5 Lohse S, 2021, EUR J PHILOS SCI, V11, DOI 10.1007/s13194-021-00416-y Loubère L, 2019, INFORM RES, V24 Lynch CP, 2022, CLIN SPINE SURG, V35, pE558, DOI 10.1097/BSD.0000000000001303 Malkawi L, 2019, AM J ROENTGENOL, V213, P736, DOI 10.2214/AJR.19.21215 Malkov D, 2023, QUANT SCI STUD, V4, P68, DOI 10.1162/qss_a_00243 McCabe MJ, 2021, MANAG DECIS ECON, V42, P1960, DOI 10.1002/mde.3353 McCann TV, 2018, J ADV NURS, V74, P809, DOI 10.1111/jan.13483 Miller GW, 2021, CLIN ANAT, V34, P660, DOI 10.1002/ca.23580 Milojevic S, 2011, J AM SOC INF SCI TEC, V62, P1933, DOI 10.1002/asi.21602 Ming W, 2022, J ASSOC INF SCI TECH, V73, P1608, DOI 10.1002/asi.24699 Morillo F, 2020, SCIENTOMETRICS, V125, P689, DOI 10.1007/s11192-020-03652-w Nabavi M, 2022, LEARN PUBL, V35, P617, DOI 10.1002/leap.1492 Newman J, 2017, PUBLIC MANAG REV, V19, P157, DOI 10.1080/14719037.2016.1148191 Newson R, 2018, HEALTH RES POLICY SY, V16, DOI [10.1186/s12961-018-0326-9, 10.1186/s12961-018-0310-4] Nogrady B, 2023, NATURE, V615, P175, DOI 10.1038/d41586-023-00575-3 O'Kelly F, 2019, J PEDIATR UROL, V15, DOI 10.1016/j.jpurol.2018.08.019 Oliver K, 2014, BMC HEALTH SERV RES, V14, DOI 10.1186/1472-6963-14-2 Ottaviani J, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0159614 Overton, 2023, SHOW SOURC Overton, 2022, WHAT IS OV COV COMP Patel RB, 2019, AM J MED, V132, P1103, DOI 10.1016/j.amjmed.2019.02.009 Peterson AT, 2019, PLOS BIOL, V17, DOI 10.1371/journal.pbio.3000352 Pinheiro H, 2021, QUANT SCI STUD, V2, P616, DOI 10.1162/qss_a_00137 Piwowar Heather, 2018, PeerJ, V6, pe4375, DOI 10.7717/peerj.4375 Priem Jason, 2010, First Monday, V15, DOI 10.5210/fm.v15i7.2874 Priem J., 2010, Altmetrics: A manifesto Purtle J, 2022, HEALTH SERV RES, V57, P842, DOI 10.1111/1475-6773.13955 Rahmouni M, 2021, RISK MANAG HEALTHC P, V14, P3091, DOI 10.2147/RMHP.S312511 Richards GW, 2017, CAN PUBLIC POL, V43, P165, DOI 10.3138/cpp.2016-046 Ritter A, 2009, INT J DRUG POLICY, V20, P70, DOI 10.1016/j.drugpo.2007.11.017 Roemer R.C., 2015, Library Technology Reports, V51, P5 ROSENBAUM PR, 1983, BIOMETRIKA, V70, P41, DOI 10.1093/biomet/70.1.41 Saberi MK, 2019, PERFORM MEAS METR, V20, P37, DOI 10.1108/PMM-10-2018-0025 Salisbury Lutishoor, 2017, Science & Technology Libraries, V36, P187, DOI 10.1080/0194262X.2016.1273815 Segerholm C, 2022, SCAND J EDUC RES, V66, P642, DOI 10.1080/00313831.2021.1897882 Serra R, 2020, GLOB FOOD SECUR-AGR, V26, DOI 10.1016/j.gfs.2020.100428 Sotudeh H, 2009, SCIENTOMETRICS, V81, P7, DOI 10.1007/s11192-009-1870-4 Szomszor M, 2022, QUANT SCI STUD, V3, P624, DOI 10.1162/qss_a_00204 Tahamtan I, 2020, PROF INFORM, V29, DOI 10.3145/epi.2020.ene.02 Tattersall A., 2018, FRONTIERS RES METRIC, V2, P9, DOI [DOI 10.3389/FRMA.2017.00009, 10.3389/frma.2017.00009] Taylor M, 2020, SCIENTOMETRICS, V125, P2523, DOI 10.1007/s11192-020-03735-8 Valderrama-Zurián JC, 2019, SCIENTOMETRICS, V120, P1031, DOI 10.1007/s11192-019-03175-z van den Akker W., 2017, PRODUCTIVE INTERACTI Vilkins S, 2017, SCIENTOMETRICS, V113, P1681, DOI 10.1007/s11192-017-2544-2 Wang JX, 2021, PHARM STAT, V20, P15, DOI 10.1002/pst.2051 Wassef DW, 2022, ANN OTO RHINOL LARYN, V131, P704, DOI 10.1177/00034894211039627 Wei MK, 2020, SCIENTOMETRICS, V122, P1027, DOI 10.1007/s11192-019-03306-6 Wilsdon J., 2017, NEXT GENERATION METR, P1 Wu SS, 2020, HEALTH POLICY PLANN, V35, P665, DOI 10.1093/heapol/czaa025 Wyatt JC, 2019, J MED INTERNET RES, V21, DOI 10.2196/16532 Yingling DL, 2020, EVID POLICY, V16, P579, DOI 10.1332/174426419X15752577942927 Zanti Sharon, 2021, Glob Implement Res Appl, V1, P304, DOI 10.1007/s43477-021-00028-x Zhang DF, 2021, J AM ACAD ORTHOP SUR, V29, pE1239, DOI 10.5435/JAAOS-D-20-01074 Zhang L, 2022, SCIENTOMETRICS, V127, P7653, DOI 10.1007/s11192-022-04407-5 Zong QJ, 2023, LEARN PUBL, V36, P266, DOI 10.1002/leap.1523 NR 100 TC 4 Z9 4 U1 19 U2 80 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0138-9130 EI 1588-2861 J9 SCIENTOMETRICS JI Scientometrics PD AUG PY 2023 VL 128 IS 8 BP 4825 EP 4854 DI 10.1007/s11192-023-04750-1 EA MAY 2023 PG 30 WC Computer Science, Interdisciplinary Applications; Information Science & Library Science WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Computer Science; Information Science & Library Science GA L4VQ8 UT WOS:000999292600007 DA 2024-09-05 ER PT J AU Hu, ZW Cui, JJ Lin, AEL AF Hu, Zewen Cui, Jingjing Lin, Angela TI Identifying potentially excellent publications using a citation-based machine learning approach SO INFORMATION PROCESSING & MANAGEMENT LA English DT Article DE Machine learning; Artificial intelligence; Excellent papers; Highly cited papers; Sleeping beauty; Citation -based measures; Citation peak; Neural network; LightGBM; TabNet ID HIGHLY CITED PAPERS; SLEEPING BEAUTIES; IMPACT; COUNTS; PREDICTION; PATTERNS; FEATURES; PROBE AB Excellent research papers are vital to science and technology advances. Thus, the early identification of potentially excellent research papers and recognizing their value in science and technology is high on the research agenda. This study used a set of 5 static and 8 time-dependent citation features to explore six machine learning methods and identify the method with the best performance to identify potentially excellent papers. The study modelled Random Forest, LightGBM, Naive Bayes, Support Vector Machine, Neural Network, and TabNet to identify PEPs in the artificial intelligence field. The study defined highly cited papers using the threshold of the top 1% and top 5% and collected the data from the Web of Science (R). Bibliometric and citation data from 485,041 research articles, proceeding papers, and reviews published in AI between 1990 and 2010 were collected initially. The data was screened and processed, and the final dataset consists of 96,169 papers for the training and test sets. The findings suggest that the timedependent citation features are more important than the static features, and citation peak features are more significant than the citation features in identifying potentially excellent papers. The findings demonstrate the effect of threshold on machine learning outcomes (e.g., the top 1% and 5%); therefore, the study argues that the decision about threshold selection should be carefully made. LightGBM and Random Forest both performed with the given conditions and achieved the same score in accuracy and recall. Nevertheless, when comparing their performance in other indicators, such as F1 and cross-entropy loss, LightGBM performed better. The study concluded that LightGBM was the best-performing model for identifying potentially excellent papers. The papers identified the contributions and recommended future research. C1 [Hu, Zewen; Cui, Jingjing] Nanjing Univ Informat Sci & Technol, Sch Management Sci & Engn, Nanjing 210044, Peoples R China. [Lin, Angela] Univ Sheffield, Informat Sch, Sheffield S10 2TN, England. C3 Nanjing University of Information Science & Technology; University of Sheffield RP Lin, AEL (corresponding author), Univ Sheffield, Informat Sch, Sheffield S10 2TN, England. EM a.lin@sheffield.ac.uk OI hu, ze wen/0000-0002-9518-7204 FU National Social Science Fund of China ? [20CTQ031] FX This study was supported by the National Social Science Fund of China ?The Identification Method and Its Application in Iden-tifying the ?Hidden Treasures? from Massive Scientifical and Technical Literature? (Grant No. 20CTQ031) . CR Abramo G, 2019, J INFORMETR, V13, P32, DOI 10.1016/j.joi.2018.11.003 Abrishami A, 2019, J INFORMETR, V13, P485, DOI 10.1016/j.joi.2019.02.011 Akella AP, 2021, J INFORMETR, V15, DOI 10.1016/j.joi.2020.101128 Aksnes DW, 2004, SCIENTOMETRICS, V59, P213, DOI 10.1023/B:SCIE.0000018529.58334.eb Aksnes DW, 2003, RES EVALUAT, V12, P159, DOI 10.3152/147154403781776645 Arik SO, 2021, AAAI CONF ARTIF INTE, V35, P6679 AVERSA ES, 1985, SCIENTOMETRICS, V7, P383, DOI 10.1007/BF02017156 AVRAMESCU A, 1979, J AM SOC INFORM SCI, V30, P296, DOI 10.1002/asi.4630300509 Bornmann L, 2020, SCIENTOMETRICS, V124, P1457, DOI 10.1007/s11192-020-03512-7 Bornmann L, 2014, RES EVALUAT, V23, P166, DOI 10.1093/reseval/rvu002 Bornmann L, 2013, J INFORMETR, V7, P158, DOI 10.1016/j.joi.2012.10.001 Bornmann L, 2010, PLOS ONE, V5, DOI [10.1371/journal.pone.0013327, 10.1371/journal.pone.0011344] Dey R, 2017, SCIENTOMETRICS, V113, P1645, DOI 10.1007/s11192-017-2543-3 Didegah F, 2013, J AM SOC INF SCI TEC, V64, P1055, DOI 10.1002/asi.22806 Du W., 2022, PROC CVPR IEEE, P1 Falagas ME, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0049476 Fiala D, 2021, COMPUTERS, V10, DOI 10.3390/computers10080096 Friedman JH, 2001, ANN STAT, V29, P1189, DOI 10.1214/aos/1013203451 Fu LD, 2010, SCIENTOMETRICS, V85, P257, DOI 10.1007/s11192-010-0237-1 Garfield E, 1979, CITATION INDEXING IT Glänzel W, 2004, SCIENTIST, V18, P8 GLANZEL W, 1992, SCIENTOMETRICS, V25, P373, DOI 10.1007/BF02016926 Hafeez DM, 2019, J PSYCHIATR RES, V108, P90, DOI 10.1016/j.jpsychires.2018.07.010 Hasan S, 2021, SCIENTOMETRICS, V126, P7583, DOI 10.1007/s11192-021-04083-x Huang SZ, 2022, INFORM PROCESS MANAG, V59, DOI 10.1016/j.ipm.2021.102799 Iqbal W, 2019, SCIENTOMETRICS, V119, P1121, DOI 10.1007/s11192-019-03086-z Ke GL, 2017, ADV NEUR IN, V30 Lachance C, 2014, J INFORMETR, V8, P863, DOI 10.1016/j.joi.2014.08.002 Lavrakas P. J., 2008, Encyclopedia of Survey Research Methods, V1-0, DOI [DOI 10.4135/9781412963947, DOI 10.1136/BMJ.F6304] Lee S, 2014, EXPERT SYST APPL, V41, P3041, DOI 10.1016/j.eswa.2013.10.034 Li J, 2016, SCIENTOMETRICS, V108, P821, DOI 10.1007/s11192-016-1977-3 Li J, 2014, MALAYS J LIBR INF SC, V19, P17 Li Lingying, 2019, Journal of the China Society for Scientific and Technical Information, V38, P697, DOI 10.3772/j.issn.1000-0135.2019.07.004 Liang ZT, 2021, INFORM PROCESS MANAG, V58, DOI 10.1016/j.ipm.2021.102611 Lu W, 2021, INFORM PROCESS MANAG, V58, DOI 10.1016/j.ipm.2021.102594 Mistele T, 2019, SCIENTOMETRICS, V120, P87, DOI 10.1007/s11192-019-03110-2 Ohba N, 2012, SCIENTOMETRICS, V93, P253, DOI 10.1007/s11192-012-0667-z Peng-hui Lyu, 2018, Proceedings of the Association for Information Science and Technology, V55, DOI 10.1002/pra2.2018.14505501035 Ponomarev IV, 2014, TECHNOL FORECAST SOC, V81, P49, DOI 10.1016/j.techfore.2012.09.017 Robson BJ, 2016, ENVIRON MODELL SOFTW, V75, P94, DOI 10.1016/j.envsoft.2015.10.007 Ruan XM, 2020, J INFORMETR, V14, DOI 10.1016/j.joi.2020.101039 So M, 2015, QUAL QUANT, V49, P1513, DOI 10.1007/s11135-014-0110-z Tahamtan I, 2018, J INFORMETR, V12, P203, DOI 10.1016/j.joi.2018.01.002 Tahamtan I, 2016, SCIENTOMETRICS, V107, P1195, DOI 10.1007/s11192-016-1889-2 Teixeira AAC, 2017, SCIENTOMETRICS, V110, P541, DOI 10.1007/s11192-016-2186-9 Tijssen RJW, 2002, SCIENTOMETRICS, V54, P381, DOI 10.1023/A:1016082432660 Uddin S, 2016, J INFORMETR, V10, P1166, DOI 10.1016/j.joi.2016.10.004 van Leeuwen TN, 2003, SCIENTOMETRICS, V57, P257, DOI 10.1023/A:1024141819302 van Leeuwen TN, 1999, J INFORM SCI, V25, P489, DOI 10.1177/016555159902500605 van Raan AFJ, 2004, SCIENTOMETRICS, V59, P467, DOI 10.1023/B:SCIE.0000018543.82441.f1 Vanclay JK, 2013, J INFORMETR, V7, P265, DOI 10.1016/j.joi.2012.11.009 Wacker D, 2013, SCIENCE, V340, P615, DOI 10.1126/science.1232808 Weihs L, 2017, ACM-IEEE J CONF DIG, P49 Wendzel S, 2020, SCIENTOMETRICS, V122, P267, DOI 10.1007/s11192-019-03279-6 Wong TC, 2017, APPL SOFT COMPUT, V52, P1169, DOI 10.1016/j.asoc.2016.09.011 Wong TC, 2015, INT J PROD RES, V53, P4050, DOI 10.1080/00207543.2014.988886 Xie J, 2019, SCIENTOMETRICS, V119, P1429, DOI 10.1007/s11192-019-03094-z Xu JG, 2019, IEEE ACCESS, V7, P92248, DOI 10.1109/ACCESS.2019.2927011 Yoon SJ, 2017, AM J ROENTGENOL, V209, P248, DOI 10.2214/AJR.16.17769 Yu T, 2014, SCIENTOMETRICS, V101, P1233, DOI 10.1007/s11192-014-1279-6 Yuan Sha, 2022, arXiv Zhao SX, 2015, CURR SCI INDIA, V109, P1523 NR 62 TC 7 Z9 7 U1 21 U2 75 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0306-4573 EI 1873-5371 J9 INFORM PROCESS MANAG JI Inf. Process. Manage. PD MAY PY 2023 VL 60 IS 3 AR 103323 DI 10.1016/j.ipm.2023.103323 EA FEB 2023 PG 22 WC Computer Science, Information Systems; Information Science & Library Science WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Computer Science; Information Science & Library Science GA 9V4SR UT WOS:000948384700001 OA Green Accepted, hybrid DA 2024-09-05 ER PT J AU Zhu, XD Turney, P Lemire, D Vellino, A AF Zhu, Xiaodan Turney, Peter Lemire, Daniel Vellino, Andre TI Measuring Academic Influence: Not All Citations Are Equal SO JOURNAL OF THE ASSOCIATION FOR INFORMATION SCIENCE AND TECHNOLOGY LA English DT Article DE natural language processing ID H-INDEX; FREQUENCY; ARTICLES; OUTCOMES AB The importance of a research article is routinely measured by counting how many times it has been cited. However, treating all citations with equal weight ignores the wide variety of functions that citations perform. We want to automatically identify the subset of references in a bibliography that have a central academic influence on the citing paper. For this purpose, we examine the effectiveness of a variety of features for determining the academic influence of a citation. By asking authors to identify the key references in their own work, we created a data set in which citations were labeled according to their academic influence. Using automatic feature selection with supervised machine learning, we found a model for predicting academic influence that achieves good performance on this data set using only four features. The best features, among those we evaluated, were those based on the number of times a reference is mentioned in the body of a citing paper. The performance of these features inspired us to design an influence-primed h-index (the hip-index). Unlike the conventional h-index, it weights citations by how many times a reference is mentioned. According to our experiments, the hip-index is a better indicator of researcher performance than the conventional h-index. C1 [Zhu, Xiaodan; Turney, Peter] Natl Res Council Canada, Ottawa, ON K1A 0R6, Canada. [Lemire, Daniel] Univ Quebec, TELUQ, Montreal, PQ H2S 3L5, Canada. [Vellino, Andre] Univ Ottawa, Sch Informat Studies, Ottawa, ON K1N 6N5, Canada. C3 National Research Council Canada; University of Quebec; Universite TELUQ; University of Quebec Montreal; University of Ottawa RP Zhu, XD (corresponding author), Natl Res Council Canada, 1200 Montreal Rd,Bldg M50, Ottawa, ON K1A 0R6, Canada. EM Xiaodan.Zhu@nrc-cnrc.gc.ca; peter.turney@nrc-cnrc.gc.ca; lemire@acm.org; avellino@uottawa.ca RI Turney, Peter/AAI-8278-2021; Lemire, Daniel/N-7632-2017; Vellino, Andre/E-8105-2017 OI Turney, Peter/0000-0003-0909-4085; Lemire, Daniel/0000-0003-3306-6922; Vellino, Andre/0000-0003-4304-2801 FU Natural Sciences and Engineering Research Council of Canada (NSERC) [26143] FX We are grateful to the volunteers who identified key citations in their own work. Daniel Lemire acknowledges support from the Natural Sciences and Engineering Research Council of Canada (NSERC) with grant number 26143. We thank M. Couture, V. Lariviere, and the anonymous reviewers for their helpful comments. CR Abu-Jbara A., 2011, P 49 ANN M ASS COMP, P500 Adler R, 2009, STAT SCI, V24, P1, DOI 10.1214/09-STS285 Agarwal Shashank, 2010, AMIA Annu Symp Proc, V2010, P11 Ajiferuke I, 2010, J AM SOC INF SCI TEC, V61, P2086, DOI 10.1002/asi.21383 [Anonymous], 2007, College and Research Libraries News, DOI DOI 10.5860/CRLN.68.5.7804 Athar Awais., 2012, PROC ACL WORKSHOP DE, P18 Balaban AT, 2012, SCIENTOMETRICS, V92, P241, DOI 10.1007/s11192-012-0637-5 Bollen J, 2009, PLOS ONE, V4, DOI [10.1371/journal.pone.0006022, 10.1371/journal.pone.0004803] Bornmann L., 2008, European Science Editing, V34, P35 Bornmann L, 2008, J DOC, V64, P45, DOI 10.1108/00220410810844150 Bornmann L, 2008, J AM SOC INF SCI TEC, V59, P830, DOI 10.1002/asi.20806 Buckley C., 2000, P 23 ANN INT ACM SIG, P33, DOI DOI 10.1145/345508.345543 Chang CC, 2011, ACM T INTEL SYST TEC, V2, DOI 10.1145/1961189.1961199 CHUBIN DE, 1975, SOC STUD SCI, V5, P423, DOI 10.1177/030631277500500403 Councill I. G., 2008, P LANG RES EV C Darwin C., 1859, ORIGIN SPECIES MEANS, DOI DOI 10.5962/BHL.TITLE.82303 Di Marco C, 2006, INFORM RETRIEVAL SER, V20, P247 Dietz L., 2007, ICML, P233, DOI DOI 10.1145/1273496.1273526 Ding Y, 2011, J AM SOC INF SCI TEC, V62, P236, DOI 10.1002/asi.21452 Ding Y, 2011, INFORM PROCESS MANAG, V47, P80, DOI 10.1016/j.ipm.2010.01.002 Dubin D, 2004, LIBR TRENDS, V52, P748 Egghe L, 2006, SCIENTOMETRICS, V69, P131, DOI 10.1007/s11192-006-0144-7 Garfield E, 2006, JAMA-J AM MED ASSOC, V295, P90, DOI 10.1001/jama.295.1.90 Garfield E., 1965, NBS MISCELLANEOUS PU, V269, P188 Garfield E., 1968, 135 ANN M AM ASS ADV Garzone M, 2000, LECT NOTES ARTIF INT, V1822, P337 GILBERT GN, 1977, SOC STUD SCI, V7, P113 Giles C. L., 1998, Digital 98 Libraries. Third ACM Conference on Digital Libraries, P89, DOI 10.1145/276675.276685 Gingras Y, 2010, SCIENTOMETRICS, V82, P401, DOI 10.1007/s11192-009-0035-9 González-Pereira B, 2010, J INFORMETR, V4, P379, DOI 10.1016/j.joi.2010.03.002 Hanney S, 2005, SCIENTOMETRICS, V65, P357, DOI 10.1007/s11192-005-0279-y Haque A., 2011, P 11 ANN INT ACM IEE, P25 Hirsch JE, 2007, P NATL ACAD SCI USA, V104, P19193, DOI 10.1073/pnas.0707962104 Hirsch JE, 2005, P NATL ACAD SCI USA, V102, P16569, DOI 10.1073/pnas.0507655102 Hou WR, 2011, BIOESSAYS, V33, P724, DOI 10.1002/bies.201100067 Ioannidis JPA, 2006, PLOS ONE, V1, DOI 10.1371/journal.pone.0000005 Kaplan D., 2009, Proceedings of the 2009 Workshop on Text and Citation Analysis for Scholarly Digital Libraries (NLPIR4DL), P88 Le MH, 2006, LECT NOTES ARTIF INT, V3918, P265 Lehmann S, 2006, NATURE, V444, P1003, DOI 10.1038/4441003a Leskovec J, 2009, KDD-09: 15TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, P497 Lewis D., 1991, HLT WORKSHOP SPEECH, P312, DOI DOI 10.3115/112405.112471 Liang YC, 2011, LECT NOTES COMPUT SC, V6897, P403, DOI 10.1007/978-3-642-23535-1_35 Long J.S., 2011, Regression models for categorical and limited dependent variables Marchant T, 2009, J AM SOC INF SCI TEC, V60, P1132, DOI 10.1002/asi.21059 Mazloumian A, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0049246 Mercer RE, 2004, LECT NOTES ARTIF INT, V3060, P75 Mohammad S.M., 2010, Proceedings of the NAACL HLT 2010 Workshop on Computational Approaches to Analysis and Generation of Emotion in Text, P26, DOI DOI 10.5555/1860631.1860635 MORAVCSIK MJ, 1975, SOC STUD SCI, V5, P86, DOI 10.1177/030631277500500106 Nanba H, 1999, IJCAI-99: PROCEEDINGS OF THE SIXTEENTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOLS 1 & 2, P926 Osgood C., 1957, The measurement of meaning Peroni S, 2012, J WEB SEMANT, V17, P33, DOI 10.1016/j.websem.2012.08.001 Pham SB, 2003, LECT NOTES ARTIF INT, V2903, P759 PINSKI G, 1976, INFORM PROCESS MANAG, V12, P297, DOI 10.1016/0306-4573(76)90048-0 Porter MF, 2006, PROGRAM-ELECTRON LIB, V40, P211, DOI 10.1108/eb046814 Qazvinian V, 2008, P 22 INT C COMP LING, V1, P689, DOI DOI 10.3115/1599081.1599168 Qazvinian V, 2010, ACL 2010: 48TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, P555 QI X, 2007, P 3 INT WORKSH ADV I, P49 RADEV DR, 2009, P ACL WORKSH NAT LAN Ritchie A., 2008, P 17 ACM C INF KNOWL, P213, DOI DOI 10.1145/1458082.1458113 Rokach L, 2011, J AM SOC INF SCI TEC, V62, P2456, DOI 10.1002/asi.21638 Schreiber M, 2008, NEW J PHYS, V10, DOI 10.1088/1367-2630/10/4/040201 Shotton David, 2010, J Biomed Semantics, V1 Suppl 1, pS6, DOI 10.1186/2041-1480-1-S1-S6 Simkin MV., 2003, COMPLEX SYSTEMS, V14, P269, DOI [DOI 10.1111/J.1740-9713.2006.00202.X, 10.25088/ComplexSystems.14.3.269] Small H., 1982, PROGR COMMUNICATION, V3, P287 Soon WM, 2001, COMPUT LINGUIST, V27, P521, DOI 10.1162/089120101753342653 Stone Philip J, 1966, The General Inquirer: A computer approach to content analysis Taheriyan M., 2011, Proceedings of the 2011 workshop on Knowledge discovery, modeling and simulation, P39, DOI [DOI 10.1145/2023568.2023579, 10.1145/2023568.2023579] Teufel S., 2006, P C EMP METH NAT LAN, DOI 10.3115/1610075.1610091 Turney P., 1996, P WORKSHOP LEARNING, P60 Turney PD, 2003, ACM T INFORM SYST, V21, P315, DOI 10.1145/944012.944013 TURNEY PD, 1993, INDUSTRIAL AND ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE AND EXPERT SYSTEMS - IEA/AIE 93, P268 Turney PD, 2010, J ARTIF INTELL RES, V37, P141, DOI 10.1613/jair.2934 Vanclay JK, 2013, J INFORMETR, V7, P265, DOI 10.1016/j.joi.2012.11.009 Vellino A., 2010, Proceedings of the American Society for Information Science and Technology, V47, P1, DOI DOI 10.1002/MEET.14504701330 Waltman L, 2012, J AM SOC INF SCI TEC, V63, P406, DOI 10.1002/asi.21678 Wilhite AW, 2012, SCIENCE, V335, P542, DOI 10.1126/science.1212540 Witten IH, 2011, MOR KAUF D, P1 Yan E, 2010, J AM SOC INF SCI TEC, V61, P1635, DOI 10.1002/asi.21349 Zitt M, 2008, J AM SOC INF SCI TEC, V59, P1856, DOI 10.1002/asi.20880 NR 79 TC 155 Z9 170 U1 10 U2 118 PU WILEY PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 2330-1635 EI 2330-1643 J9 J ASSOC INF SCI TECH PD FEB PY 2015 VL 66 IS 2 BP 408 EP 427 DI 10.1002/asi.23179 PG 20 WC Computer Science, Information Systems; Information Science & Library Science WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Computer Science; Information Science & Library Science GA CA2HR UT WOS:000348730000013 OA Green Accepted, Green Submitted DA 2024-09-05 ER PT J AU Ibáñez, A Armañanzas, R Bielza, C Larrañaga, P AF Ibanez, Alfonso Armananzas, Ruben Bielza, Concha Larranaga, Pedro TI Genetic algorithms and Gaussian Bayesian networks to uncover the predictive core set of bibliometric indices SO JOURNAL OF THE ASSOCIATION FOR INFORMATION SCIENCE AND TECHNOLOGY LA English DT Article DE machine learning; predictive models; bibliometrics ID H-INDEX; INDICATORS; MODEL; OPTIMIZATION AB The diversity of bibliometric indices today poses the challenge of exploiting the relationships among them. Our research uncovers the best core set of relevant indices for predicting other bibliometric indices. An added difficulty is to select the role of each variable, that is, which bibliometric indices are predictive variables and which are response variables. This results in a novel multioutput regression problem where the role of each variable (predictor or response) is unknown beforehand. We use Gaussian Bayesian networks to solve the this problem and discover multivariate relationships among bibliometric indices. These networks are learnt by a genetic algorithm that looks for the optimal models that best predict bibliometric data. Results show that the optimal induced Gaussian Bayesian networks corroborate previous relationships between several indices, but also suggest new, previously unreported interactions. An extended analysis of the best model illustrates that a set of 12 bibliometric indices can be accurately predicted using only a smaller predictive core subset composed of citations, g-index, q(2)-index, and h(r)-index. This research is performed using bibliometric data on Spanish full professors associated with the computer science area. C1 [Ibanez, Alfonso; Bielza, Concha; Larranaga, Pedro] Univ Politecn Madrid, Computat Intelligence Grp, Dept Inteligencia Artificial, Campus Montegancedo S-N, Boadilla Del Monte 28660, Spain. [Armananzas, Ruben] George Mason Univ, Krasnow Inst Adv Study, 4400 Univ Dr, Fairfax, VA 22030 USA. C3 Universidad Politecnica de Madrid; George Mason University RP Ibáñez, A (corresponding author), Univ Politecn Madrid, Computat Intelligence Grp, Dept Inteligencia Artificial, Campus Montegancedo S-N, Boadilla Del Monte 28660, Spain. EM fonsoim@gmail.com; rarmanan@gmu.edu; mcbielza@fi.upm.es; plarranaga@fi.upm.es RI Armañanzas, Rubén/O-7403-2019; Bielza, Concha/F-9277-2013; Ibáñez, Alfonso/B-3423-2010; Larranaga, Pedro/F-9293-2013 OI Armañanzas, Rubén/0000-0003-4049-0000; Bielza, Concha/0000-0001-7109-2668; Larranaga, Pedro/0000-0003-0652-9872 FU Spanish Ministry of Economy and Competitiveness [TIN2013-41592-P]; Cajal Blue Brain Project (Spanish partner of the Blue Brain Project initiative from EPFL); National Institutes of Health (NINDS) [R01 NS39600] FX Research partially supported by the Spanish Ministry of Economy and Competitiveness (grant no. TIN2013-41592-P) and the Cajal Blue Brain Project (Spanish partner of the Blue Brain Project initiative from EPFL). R.A. is currently supported by grant R01 NS39600 from the National Institutes of Health (NINDS). CR Acuna DE, 2012, NATURE, V489, P201, DOI 10.1038/489201a AKAIKE H, 1974, IEEE T AUTOMAT CONTR, VAC19, P716, DOI 10.1109/TAC.1974.1100705 Alonso S, 2010, SCIENTOMETRICS, V82, P391, DOI 10.1007/s11192-009-0047-5 Alonso S, 2009, J INFORMETR, V3, P273, DOI 10.1016/j.joi.2009.04.001 Anderson Theodore Wilbur, 1962, An introduction to multivariate statistical analysis Bui AT, 2012, PATTERN RECOGN LETT, V33, P2134, DOI 10.1016/j.patrec.2012.06.013 [Anonymous], 1998, TUTORIAL LEARNING BA [Anonymous], 1988, Probabilistic Reasoning in Intelligent Systems [Anonymous], 1975, Ann Arbor [Anonymous], P AISTATS 95 [Anonymous], 2005, AAAI [Anonymous], P WORLD C ENG [Anonymous], 15 C UNC ART INT UAI [Anonymous], P 2010 WORLD C COMP Batista PD, 2006, SCIENTOMETRICS, V68, P179, DOI 10.1007/s11192-006-0090-4 Blanco R, 2004, INT J PATTERN RECOGN, V18, P1373, DOI 10.1142/S0218001404003800 Bollen J, 2009, PLOS ONE, V4, DOI 10.1371/journal.pone.0006022 Bornmann L, 2008, RES EVALUAT, V17, P149, DOI 10.3152/095820208X319166 Bornmann L, 2008, J AM SOC INF SCI TEC, V59, P830, DOI 10.1002/asi.20806 Breiman L, 1997, J ROY STAT SOC B MET, V59, P3, DOI 10.1111/1467-9868.00054 Cabezas-Clavijo A, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0068258 Cabrerizo FJ, 2010, J INFORMETR, V4, P23, DOI 10.1016/j.joi.2009.06.005 Castillo E., 1997, Expert Systems and Probabilistic Network Models Cheng J, 2002, ARTIF INTELL, V137, P43, DOI 10.1016/S0004-3702(02)00191-1 COOPER GF, 1992, MACH LEARN, V9, P309, DOI 10.1023/A:1022649401552 Costas R, 2008, SCIENTOMETRICS, V77, P267, DOI 10.1007/s11192-007-1997-0 Costas R, 2007, J INFORMETR, V1, P193, DOI 10.1016/j.joi.2007.02.001 de Campos LM, 2002, INT J APPROX REASON, V31, P291, DOI 10.1016/S0888-613X(02)00091-9 De Campos LM, 1998, J EXP THEOR ARTIF IN, V10, P511, DOI 10.1080/095281398146743 De Jong K.A., 1990, International Conference on Parallel Problem Solving from Nature, P38, DOI [DOI 10.1007/BFB0029729, 10.1007/BFb0029729] Egghe L., 2006, ISSI NEWSLETTER, V2, P8 Egghe L, 2007, J AM SOC INF SCI TEC, V58, P452, DOI 10.1002/asi.20473 Egghe L, 2010, ANNU REV INFORM SCI, V44, P65, DOI 10.1002/aris.2010.1440440109 Etxeberria R, 1997, PATTERN RECOGN LETT, V18, P1269, DOI 10.1016/S0167-8655(97)00106-2 Franceschet M, 2010, J INFORMETR, V4, P239, DOI 10.1016/j.joi.2009.12.002 Franceschet M, 2009, J AM SOC INF SCI TEC, V60, P1950, DOI 10.1002/asi.21152 Friedman N., 1998, Uncertainty in Artificial Intelligence. Proceedings of the Fourteenth Conference (1998), P139 Fu LD, 2010, SCIENTOMETRICS, V85, P257, DOI 10.1007/s11192-010-0237-1 Garfield E, 1996, SCIENTIST, V10, P13 Geiger D., 1994, Uncertainty in Artificial Intelligence. Proceedings of the Tenth Conference (1994), P235 GREFENSTETTE JJ, 1986, IEEE T SYST MAN CYB, V16, P122, DOI 10.1109/TSMC.1986.289288 HECKERMAN D, 1995, MACH LEARN, V20, P197, DOI 10.1007/BF00994016 Hirsch JE, 2007, P NATL ACAD SCI USA, V104, P19193, DOI 10.1073/pnas.0707962104 Hirsch JE, 2005, P NATL ACAD SCI USA, V102, P16569, DOI 10.1073/pnas.0507655102 Huang S, 2013, IEEE T PATTERN ANAL, V35, P1328, DOI 10.1109/TPAMI.2012.129 Ibanez A., 2011, Proceedings of the 2011 11th International Conference on Intelligent Systems Design and Applications (ISDA), P599, DOI 10.1109/ISDA.2011.6121721 Ibáñez A, 2014, NEUROCOMPUTING, V135, P42, DOI 10.1016/j.neucom.2013.08.042 Ibáñez A, 2011, SCIENTOMETRICS, V89, P523, DOI 10.1007/s11192-011-0486-7 Ibáñez A, 2009, BIOINFORMATICS, V25, P3303, DOI 10.1093/bioinformatics/btp585 Jensen F.V., 2007, Bayesian networks and decision graphs Jensen P, 2009, SCIENTOMETRICS, V78, P467, DOI 10.1007/s11192-007-2014-3 Jia HY, 2005, PROCEEDINGS OF 2005 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS, VOLS 1-9, P2934 Jin Bihui, 2006, SCI FOCUS, V1, P1 Kellegöz T, 2008, APPL MATH COMPUT, V199, P590, DOI 10.1016/j.amc.2007.10.013 Kissin I, 2011, SCIENTOMETRICS, V86, P785, DOI 10.1007/s11192-010-0320-7 Krampen G, 2011, SCIENTOMETRICS, V87, P687, DOI 10.1007/s11192-011-0357-2 Larranaga P, 1996, IEEE T PATTERN ANAL, V18, P912, DOI 10.1109/34.537345 Larrañaga P, 2012, J HEURISTICS, V18, P795, DOI 10.1007/s10732-012-9208-4 Lauritzen S.L., 1996, OXFORD STAT SCI SERI LAURITZEN SL, 1992, J AM STAT ASSOC, V87, P1098, DOI 10.2307/2290647 LAURITZEN SL, 1989, ANN STAT, V17, P31, DOI 10.1214/aos/1176347003 Levitt JM, 2011, INFORM PROCESS MANAG, V47, P300, DOI 10.1016/j.ipm.2010.09.005 Leydesdorff L, 2009, J AM SOC INF SCI TEC, V60, P1327, DOI 10.1002/asi.21024 Marchant T, 2009, J AM SOC INF SCI TEC, V60, P1132, DOI 10.1002/asi.21059 Mascherini M, 2006, INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE FOR MODELLING, CONTROL & AUTOMATION JOINTLY WITH INTERNATIONAL CONFERENCE ON INTELLIGENT AGENTS, WEB TECHNOLOGIES & INTERNET COMMERCE, VOL 2, PROCEEDINGS, P61 Morales MM, 2004, PROCEEDINGS OF THE FIFTH MEXICAN INTERNATIONAL CONFERENCE IN COMPUTER SCIENCE (ENC 2004), P176 Pinto PC, 2008, IEEE C EVOL COMPUTAT, P2741, DOI 10.1109/CEC.2008.4631166 Provan G.M., 1995, P 5 INT WORKSHOP ART, P450 RISSANEN J, 1978, AUTOMATICA, V14, P465, DOI 10.1016/0005-1098(78)90005-5 Ruane F, 2008, SCIENTOMETRICS, V75, P395, DOI 10.1007/s11192-007-1869-7 Ruiz-Pérez R, 2002, J MED LIBR ASSOC, V90, P411 Schreiber M, 2008, J AM SOC INF SCI TEC, V59, P1513, DOI 10.1002/asi.20856 SCHWARZ G, 1978, ANN STAT, V6, P461, DOI 10.1214/aos/1176344136 SHACHTER RD, 1989, MANAGE SCI, V35, P527, DOI 10.1287/mnsc.35.5.527 Sidiropoulos A, 2007, SCIENTOMETRICS, V72, P253, DOI 10.1007/s11192-007-1722-z Sivaraj R., 2011, International Journal of Engineering Science and Technology, V3, P3792 Smith PWF, 1998, NATO ADV SCI I D-BEH, V89, P555 Soler JM, 2007, J INFORMETR, V1, P123, DOI 10.1016/j.joi.2006.10.004 Spears W., 1991, Proceedings of the 6th International Symposium on Methodologies for Intelligent Systems, P409, DOI DOI 10.1007/3-540-54563-8_104 Spirtes P., 2000, Causation, prediction, and search STONE M, 1974, J R STAT SOC B, V36, P111, DOI 10.1111/j.2517-6161.1974.tb00994.x Tucker A, 2001, INT J INTELL SYST, V16, P621, DOI 10.1002/int.1027 van Dijk S, 2003, LECT NOTES COMPUT SC, V2723, P886 Vidaurre D, 2010, IEEE T SYST MAN CY B, V40, P1231, DOI 10.1109/TSMCB.2009.2036593 Vieira ES, 2014, J ASSOC INF SCI TECH, V65, P560, DOI 10.1002/asi.22981 Vieira ES, 2014, J INFORMETR, V8, P390, DOI 10.1016/j.joi.2014.01.012 Waltman L, 2012, J AM SOC INF SCI TEC, V63, P406, DOI 10.1002/asi.21678 Ye FY, 2008, J INFORMETR, V2, P288, DOI 10.1016/j.joi.2008.09.002 Yehezkel R, 2009, J MACH LEARN RES, V10, P1527 NR 89 TC 7 Z9 7 U1 3 U2 47 PU WILEY PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 2330-1635 EI 2330-1643 J9 J ASSOC INF SCI TECH PD JUL PY 2016 VL 67 IS 7 BP 1703 EP 1721 DI 10.1002/asi.23467 PG 19 WC Computer Science, Information Systems; Information Science & Library Science WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Computer Science; Information Science & Library Science GA DP6YB UT WOS:000378644700011 OA Green Accepted DA 2024-09-05 ER PT C AU Tkaczyk, D Collins, A Sheridan, P Beel, J AF Tkaczyk, Dominika Collins, Andrew Sheridan, Paraic Beel, Joeran GP Assoc Comp Machinery TI Machine Learning vs. Rules and Out-of-the-Box vs. Retrained: An Evaluation of Open-Source Bibliographic Reference and Citation Parsers SO JCDL'18: PROCEEDINGS OF THE 18TH ACM/IEEE JOINT CONFERENCE ON DIGITAL LIBRARIES SE ACM-IEEE Joint Conference on Digital Libraries JCDL LA English DT Proceedings Paper CT 18th ACM/IEEE-CS Joint Conference on Digital Libraries (JCDL) CY JUN 03-07, 2018 CL Univ N Texas Coll Informat, Fort Worth, TX HO Univ N Texas Coll Informat DE bibliographic reference parsing; citation parsing; machine learning; sequence tagging ID METADATA; METHODOLOGY; EXTRACTION AB Bibliographic reference parsing refers to extracting machine-readable metadata, such as the names of the authors, the title, or journal name, from bibliographic reference strings. Many approaches to this problem have been proposed so far, including regular expressions, knowledge bases and supervised machine learning. Many open source reference parsers based on various algorithms are also available. In this paper, we apply, evaluate and compare ten reference parsing tools in a specific business use case. The tools are Anystyle-Parser, Biblio, CERMINE, Citation, Citation-Parser, GROBID, ParsCit, PDFSSA4MET, Reference Tagger and Science Parse, and we compare them in both their out-of-the-box versions and versions tuned to the project-specific data. According to our evaluation, the best performing out-of-the-box tool is GROBID (F1 0.89), followed by CERMINE (F1 0.83) and ParsCit (F1 0.75). We also found that even though machine learning-based tools and tools based on rules or regular expressions achieve on average similar precision (0.77 for ML-based tools vs. 0.76 for non-ML-based tools), applying machine learning-based tools results in a recall three times higher than in the case of non-ML-based tools (0.66 vs. 0.22). Our study also confirms that tuning the models to the task-specific data results in the increase in the quality. The retrained versions of reference parsers are in all cases better than their out-of-the-box counterparts; for GROBID F1 increased by 3% 0.92 vs. 0.89), for CERMINE by 11% (0.92 vs. 0.83), and for ParsCit by 16% (0.87 vs. 0.75). C1 [Tkaczyk, Dominika; Collins, Andrew; Sheridan, Paraic; Beel, Joeran] Trinity Coll Dublin, ADAPT Ctr, Sch Comp Sci & Stat, Dublin, Ireland. C3 Trinity College Dublin RP Tkaczyk, D (corresponding author), Trinity Coll Dublin, ADAPT Ctr, Sch Comp Sci & Stat, Dublin, Ireland. EM Dominika.Tkaczyk@adaptcentre.ie; Andrew.Collins@adaptcentre.ie; Paraic.Sheridan@adaptcentre.ie; Joeran.Beel@adaptcentre.ie OI Beel, Joeran/0000-0002-4537-5573 FU Science Foundation Ireland (SFI) [13/RC/2016]; European Union [713567] FX This publication has emanated from research conducted with the financial support of Science Foundation Ireland (SFI) under Grant Number 13/RC/2016. The project has also received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 713567. CR Ahlgren P, 2009, J INFORMETR, V3, P49, DOI 10.1016/j.joi.2008.11.003 Alonso S, 2009, J INFORMETR, V3, P273, DOI 10.1016/j.joi.2009.04.001 Beel J., 2017, VIRTUAL CITATION PRO Beel J., 2017, JCDL Beel J, 2016, INT J DIGIT LIBRARIE, V17, P305, DOI 10.1007/s00799-015-0156-0 Braun T, 2006, SCIENTOMETRICS, V69, P169, DOI 10.1007/s11192-006-0147-4 Chen CC, 2012, IEEE T KNOWL DATA EN, V24, P236, DOI 10.1109/TKDE.2010.231 Constantin Alexandru., 2013, Proceedings of the 2013 ACM symposium on Document engineering, P177, DOI DOI 10.1145/2494266.2494271 Cortez E, 2009, J AM SOC INF SCI TEC, V60, P1144, DOI 10.1002/asi.21049 Councill I., 2008, INT C LANG RES EV Day MY, 2007, DECIS SUPPORT SYST, V43, P152, DOI 10.1016/j.dss.2006.08.006 Fedoryszak M., 2013, INT C THEOR PRACT DI González-Pereira B, 2010, J INFORMETR, V4, P379, DOI 10.1016/j.joi.2010.03.002 Gupta D., 2009, INT C CONT COMP Hetzner E., 2008, JOINT C DIG LIB PITT Hirsch JE, 2010, SCIENTOMETRICS, V85, P741, DOI 10.1007/s11192-010-0193-9 Hsieh Y.-L., 2014, TECHNOLOGIES APPL AR Khabsa M, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0093949 Kim Y.-M., 2012, ACM S DOC ENG Lange C., 2015, SEMWEBEVAL ESWC Lopez P, 2009, LECT NOTES COMPUT SC, V5714, P473, DOI 10.1007/978-3-642-04346-8_62 Matsuoka D., 2016, INT C DIG INF MAN Molinari JF, 2008, SCIENTOMETRICS, V75, P163, DOI 10.1007/s11192-007-1853-2 Ojokoh B, 2011, INFORM SCIENCES, V181, P1538, DOI 10.1016/j.ins.2011.01.014 Tkaczyk D., 2015, SEMANTIC WEB EVALUAT Tkaczyk D, 2015, INT J DOC ANAL RECOG, V18, P317, DOI 10.1007/s10032-015-0249-8 Torres-Salinas D, 2011, SCIENTOMETRICS, V88, P771, DOI 10.1007/s11192-011-0418-6 Wu J, 2015, AI MAG, V36, P35, DOI 10.1609/aimag.v36i3.2601 Xiong Chenyan, 2017, WWW Yin P., 2004, INT C AS DIG LIB Zhang Q, 2011, COMPUT BIOL MED, V41, P190, DOI 10.1016/j.compbiomed.2011.02.005 Zhang XL, 2011, BMC BIOINFORMATICS, V12, DOI 10.1186/1471-2105-12-S3-S7 Zou J, 2010, INT J DOC ANAL RECOG, V13, P107, DOI 10.1007/s10032-009-0105-9 NR 33 TC 27 Z9 28 U1 0 U2 6 PU ASSOC COMPUTING MACHINERY PI NEW YORK PA 1515 BROADWAY, NEW YORK, NY 10036-9998 USA SN 2575-7865 EI 2575-8152 BN 978-1-4503-5178-2 J9 ACM-IEEE J CONF DIG PY 2018 BP 99 EP 108 DI 10.1145/3197026.3197048 PG 10 WC Computer Science, Information Systems; Computer Science, Interdisciplinary Applications; Information Science & Library Science WE Conference Proceedings Citation Index - Science (CPCI-S); Conference Proceedings Citation Index - Social Science & Humanities (CPCI-SSH) SC Computer Science; Information Science & Library Science GA BL9RX UT WOS:000458178700017 DA 2024-09-05 ER PT J AU Blank, S Mason, C Steinicke, F Herzog, C AF Blank, Sabrina Mason, Celeste Steinicke, Frank Herzog, Christian TI Tailoring responsible research and innovation to the translational context: the case of AI-supported exergaming SO ETHICS AND INFORMATION TECHNOLOGY LA English DT Article DE Responsible research and innovation; Industry; Trustworthiness; Medical artificial intelligence; Interdisciplinary collaboration ID DILEMMA AB We discuss the implementation of Responsible Research and Innovation (RRI) within a project for the development of an AI-supported exergame for assisted movement training, outline outcomes and reflect on methodological opportunities and limitations. We adopted the responsibility-by-design (RbD) standard (CEN CWA 17796:2021) supplemented by methods for collaborative, ethical reflection to foster and support a shift towards a culture of trustworthiness inherent to the entire development process. An embedded ethicist organised the procedure to instantiate a collaborative learning effort and implement RRI in a translational context. Within the interdisciplinary setting of the collaboration and with the support of a technoethicist, we successfully identified relevant, project-specific challenges and developed a roadmap with derived actions, thus meaningfully integrating RRI into the development process. We discuss the methodological procedure in terms of its effectiveness and efficiency, the allocation of responsibilities and roles, particularly regarding potential frictions in the interdisciplinary context with embedded ethics, and the challenges of the translational context. We conclude that the responsibility-by-design standard effectively established a productive workflow for collaborative investigation and work on ethical challenges. We reflect on methodological difficulties and propose possible avenues to our approach. C1 [Blank, Sabrina; Herzog, Christian] Univ Lubeck, Eth Innovat Hub, Ratzeburger Allee 160, D-23562 Lubeck, Germany. [Mason, Celeste; Steinicke, Frank] Univ Hamburg, Dept Informat, Vogt Kolln Str 30, D-22527 Hamburg, Germany. C3 University of Lubeck; University of Hamburg RP Blank, S (corresponding author), Univ Lubeck, Eth Innovat Hub, Ratzeburger Allee 160, D-23562 Lubeck, Germany. EM sabrina.blank@uni-luebeck.de; celeste.mason@uni-hamburg.de; frank.steinicke@uni-hamburg.de; christian.herzog@uni-luebeck.de RI Steinicke, Frank/AAC-2976-2020 OI Steinicke, Frank/0000-0001-9879-7414; Herzog, Christian/0000-0003-2513-2563 CR Auer A, 2018, SUSTAINABILITY-BASEL, V10, DOI 10.3390/su10010017 Benzing V, 2018, J CLIN MED, V7, DOI 10.3390/jcm7110422 Bhattacharya I., 2022, Global Bioethics Enquiry Journal, V10, P75, DOI [10.38020/GBE.10.2.2022.75-79, DOI 10.38020/GBE.10.2.2022.75-79] Blok V., 2020, Zenodo, DOI [10.5281/zenodo.4972691, DOI 10.5281/ZENODO.4972691] Breyer S., 2022, Novel innovation design for the future of health: Entrepreneurial concepts for patient empowerment and health democratization, P253, DOI [10.1007/978-3-031-08191-0_23, DOI 10.1007/978-3-031-08191-0_23] Burget M, 2017, SCI ENG ETHICS, V23, P1, DOI 10.1007/s11948-016-9782-1 Business Model Foundry AG, 2014, Business Model Canvas CEN CWA, 2021, CEN CWA 17796:2021 Demers-Payette O, 2016, J RESPONSIBLE INNOV, V3, P188, DOI 10.1080/23299460.2016.1256659 Dreyer M, 2017, SUSTAINABILITY-BASEL, V9, DOI 10.3390/su9101719 Floridi L, 2020, MIND MACH, V30, P77, DOI 10.1007/s11023-020-09521-y Floridi L, 2018, MIND MACH, V28, P689, DOI 10.1007/s11023-018-9482-5 Gohar F, 2019, FRONT MED-LAUSANNE, V6, DOI 10.3389/fmed.2019.00035 Goirand M, 2021, SCI ENG ETHICS, V27, DOI 10.1007/s11948-021-00336-3 Grunwald A., 2011, ENTERPRISE WORK INNO, V31, P9 Gurzawska A, 2017, SUSTAINABILITY-BASEL, V9, DOI 10.3390/su9101759 Hallensleben S., 2020, From principles to practice. An interdisciplinary framework to operationalise ai ethics Herzog C, 2022, ETHICS, V2, P219, DOI [10.1007/s43681-021-00121-9, DOI 10.1007/S43681-021-00121-9] Koene A, 2017, IEEE TECHNOL SOC MAG, V36, P31, DOI 10.1109/MTS.2017.2697080 Kuzma J, 2018, J RESPONSIBLE INNOV, V5, P338, DOI 10.1080/23299460.2018.1511329 Li JH, 2018, J MED INTERNET RES, V20, DOI 10.2196/10486 Martinuzzi A, 2018, SUSTAINABILITY-BASEL, V10, DOI 10.3390/su10030702 McLennan S, 2022, BMC MED ETHICS, V23, DOI 10.1186/s12910-022-00746-3 Mittelstadt B, 2019, NAT MACH INTELL, V1, P501, DOI 10.1038/s42256-019-0114-4 Morley J, 2020, SCI ENG ETHICS, V26, P2141, DOI 10.1007/s11948-019-00165-5 Morrison M, 2020, LIFE SCI SOC POLICY, V16, DOI 10.1186/s40504-020-00109-z Nazarko L., 2020, J. Open Innov. Technol. Mark. Complex, V6, P12, DOI [10.3390/joitmc6010012, DOI 10.3390/JOITMC6010012] Owen R, 2012, SCI PUBL POLICY, V39, P751, DOI 10.1093/scipol/scs093 Petersen E, 2022, IEEE ACCESS, V10, P58375, DOI 10.1109/ACCESS.2022.3178382 Porcari A., 2019, PRISMA RRI-CSR Roadmap Reijers W., 2018, This changes everything-ICT and climate change: what can we do?, DOI [10.1007/978-3-319-99605-9_23, DOI 10.1007/978-3-319-99605-9_23] Ribeiro B, 2018, J RESPONSIBLE INNOV, V5, P316, DOI 10.1080/23299460.2018.1495033 Rommetveit K., 2019, International handbook on responsible innovation, P83, DOI 10.4337/9781784718862.00012Ruth Rüth M, 2021, FRONT PSYCHOL, V12, DOI 10.3389/fpsyg.2021.644036 Silva HP, 2018, HEALTH RES POLICY SY, V16, DOI 10.1186/s12961-018-0362-5 Stahl BC, 2021, J RESPONSIBLE INNOV, V8, P175, DOI 10.1080/23299460.2021.1955613 Tobaigy Abdullah, 2018, J Phys Ther Sci, V30, P555, DOI 10.1589/jpts.30.555 Tsujimoto M, 2018, TECHNOL FORECAST SOC, V136, P49, DOI 10.1016/j.techfore.2017.06.032 van de Poel I, 2017, SUSTAINABILITY-BASEL, V9, DOI 10.3390/su9112045 von Schomberg R., 2013, Responsible Innovation, P51, DOI [10.1002/9781118551424.ch3, DOI 10.1002/9781118551424.CH3] Wachter S, 2021, COMPUT LAW SECUR REV, V41, DOI 10.1016/j.clsr.2021.105567 Whittlestone J, 2019, AIES '19: PROCEEDINGS OF THE 2019 AAAI/ACM CONFERENCE ON AI, ETHICS, AND SOCIETY, P195, DOI 10.1145/33066183314289 Yaghmaei E., 2020, Assessment of Responsible Innovation. Methods and Practices, DOI [10.4324/9780429298998, DOI 10.4324/9780429298998] Zwart Hub, 2014, Life Sci Soc Policy, V10, P11, DOI 10.1186/s40504-014-0011-x NR 44 TC 0 Z9 0 U1 4 U2 4 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 1388-1957 EI 1572-8439 J9 ETHICS INF TECHNOL JI Ethics Inf. Technol. PD JUN PY 2024 VL 26 IS 2 AR 22 DI 10.1007/s10676-024-09753-x PG 16 WC Ethics; Information Science & Library Science; Philosophy WE Social Science Citation Index (SSCI); Arts & Humanities Citation Index (A&HCI) SC Social Sciences - Other Topics; Information Science & Library Science; Philosophy GA MB9W2 UT WOS:001191294700001 OA hybrid DA 2024-09-05 ER PT J AU Arora, M Gupta, J Mittal, A Prakash, A AF Arora, Meenal Gupta, Jaya Mittal, Amit Prakash, Anshika TI Achieving sustainable development goals (SDGs) through corporate sustainability: a topic modeling-based bibliometric analysis approach SO KYBERNETES LA English DT Article; Early Access DE Bibliometric analysis; Corporate sustainability; VOSviewer; Latent Dirichlet allocation; Sustainable development goals ID SOCIAL-RESPONSIBILITY; PERSPECTIVE; CHALLENGES; STRATEGIES; SYSTEMS; TRENDS; WASTE AB PurposeConsidering the swift adoption of innovative sustainability practices in businesses to accomplish sustainable development goals (SDGs), research on corporate sustainability has increased significantly over the years. This research intends to analyze the published literature, emphasizing the existing, emerging and future research directions on achieving the SDGs through corporate sustainability.Design/methodology/approachThis research analyzed the growing trends in corporate sustainability by incorporating 2,038 Scopus articles published between 1999 and 2022 using latent Dirichlet allocation (LDA) topic modeling, bibliometrics and qualitative content analysis techniques. The bibliometric data were analyzed using performance and science mapping. Thereafter, topic modeling and content analysis uncovered the topics included under the corporate sustainability umbrella.FindingsThe findings indicate that investigation into corporate sustainability has considerably increased from 2015 to date. Additionally, the majority of studies on corporate sustainability are from the United States of America, the United Kingdom and Germany. Besides, the USA has the most collaboration in terms of co-authorship. S. Schaltegger was considered the most productive author. However, P. Bansal was ranked as the top author based on a co-citation analysis of authors. Further, bibliometric data were evaluated to analyze leading publications, journals and institutions. Besides, keyword co-occurrence analysis, topic modeling and content analysis highlighted the theoretical underpinnings and new patterns and provided directions for further research.Originality/valueThis study demonstrates various existing and emerging themes in corporate sustainability, which have various repercussions for academicians and organizations. This research also examines the lagging themes in the current domain. C1 [Arora, Meenal; Mittal, Amit] Chitkara Univ, Chitkara Business Sch, Rajpura, India. [Gupta, Jaya] New Delhi Inst Management, New Delhi, India. [Prakash, Anshika] KR Mangalam Univ, Sch Management & Commerce, Gurugram, India. C3 Chitkara University, Punjab RP Arora, M (corresponding author), Chitkara Univ, Chitkara Business Sch, Rajpura, India. EM meenal.bajaj20@gmail.com RI MITTAL, AMIT/AAD-2112-2019; Arora, Meenal/ADH-7267-2022 OI MITTAL, AMIT/0000-0002-1191-4620; Arora, Meenal/0000-0001-7670-6948 CR Aggarwal C.C., 2012, MINING TEXT DATA, P77, DOI 10.1007/978-1-4614-3223-4 Ajayi SO, 2016, J BUILD ENG, V5, P185, DOI 10.1016/j.jobe.2015.12.007 Almeida F, 2023, SOC BUS REV, V18, P28, DOI 10.1108/SBR-12-2021-0233 Alodat AY, 2022, MANAG ENVIRON QUAL, DOI 10.1108/MEQ-07-2021-0182 Alosi A, 2023, BUS STRATEG ENVIRON, V32, P3529, DOI 10.1002/bse.3314 [Anonymous], 2015, AUST J EMERG MANAG, V30, P9 [Anonymous], 1993, Handbook of National Accounting - Integrated Environmental and Economic Accounting [Anonymous], 2021, IFC ESG Guidebook Arora M, 2023, INF DISCOV DELIV, V51, P267, DOI 10.1108/IDD-05-2022-0038 Barbosa AD, 2023, HUM SOC SCI COMMUN, V10, DOI 10.1057/s41599-023-01919-0 Barreiro-Gen M, 2020, SUSTAINABILITY-BASEL, V12, DOI 10.3390/su12125031 Martínez JB, 2016, EUR J MANAG BUS ECON, V25, P8, DOI 10.1016/j.redee.2015.11.002 Basuki B., 2018, Asian Journal of Accounting Research, V3, P169, DOI [10.1108/AJAR-06-2018-0013, DOI 10.1108/AJAR-06-2018-0013] Benckendorff P, 2009, J HOSP TOUR MANAG, V16, P1, DOI 10.1375/jhtm.16.1.1 Bero BN, 2012, INT J SUST HIGHER ED, V13, P133, DOI 10.1108/14676371211211827 Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993 Bohoslavsky J.P., 2018, Journal of Financial Crime, V25, P750, DOI [10.1108/JFC-04-2017-0029, DOI 10.1108/JFC-04-2017-0029] Centobelli P, 2021, INT J PROD ECON, V242, DOI 10.1016/j.ijpe.2021.108297 Centobelli P, 2020, BUS STRATEG ENVIRON, V29, P1563, DOI 10.1002/bse.2453 Chen ZS, 2020, J COMPUT APPL MATH, V365, DOI 10.1016/j.cam.2019.112395 Cheng X, 2022, J INF SCI, V48, P304, DOI 10.1177/0165551520954674 Choudhury A, 2021, BENCHMARKING, V28, P2075, DOI 10.1108/BIJ-08-2020-0461 Cole LB, 2019, INT J STEM EDUC, V6, DOI 10.1186/s40594-019-0171-6 Cosma S, 2022, J APPL ACCOUNT RES, V23, P207, DOI 10.1108/JAAR-04-2021-0102 de Oliveira UR, 2024, ENVIRON DEV SUSTAIN, V26, P3045, DOI 10.1007/s10668-023-02933-7 Dhanda U, 2021, QUAL RES ORGAN MANAG, V16, P464, DOI 10.1108/QROM-01-2020-1886 Jordao RVD, 2022, BOTTOM LINE, V35, P1, DOI 10.1108/BL-11-2021-0103 Doni F, 2020, MEDITARI ACCOUNT RES, V28, P781, DOI 10.1108/MEDAR-12-2018-0423 Dwivedi A, 2019, J SCI TECHNOL POLICY, V10, P319, DOI 10.1108/JSTPM-06-2018-0054 Dyllick T., 2002, BUSINESS STRATEGY EN, V11, P130, DOI [10.1002/bse.323, DOI 10.1002/BSE.323] Edgeman Rick, 2014, TQM Journal, V26, P368, DOI 10.1108/TQM-01-2014-0012 Eltayeb TK, 2011, RESOUR CONSERV RECY, V55, P495, DOI 10.1016/j.resconrec.2010.09.003 European Parliament, 2014, Directive 2014/95/EU of the European Parliament and of the Council of 22 October 2014 Farooq MB, 2021, SUSTAIN ACCOUNT MANA, V12, P1108, DOI 10.1108/SAMPJ-05-2020-0166 Fatima Tahniyath, 2020, International Journal of Customer Relationship Marketing and Management, V11, P25, DOI 10.4018/IJCRMM.2020070102 Fatima T, 2023, MANAGE DECIS, V61, P1677, DOI 10.1108/MD-06-2022-0748 Ferrero-Ferrero I, 2023, MARK INTELL PLAN, V41, P457, DOI 10.1108/MIP-07-2022-0332 Freeman E., 2013, Umwelt Wirtschafts Forum, V21, P5, DOI DOI 10.1007/S00550-013-0266-3 Fukuda-Parr S., 2015, Journal of Global Ethics, V11, P10, DOI DOI 10.1080/17449626.2015.1004738 Galeazzo A, 2024, J MANAG GOV, V28, P113, DOI 10.1007/s10997-023-09671-y Gangwar H, 2023, INT J QUAL RELIAB MA, V40, P965, DOI 10.1108/IJQRM-07-2021-0224 Garcia-Meca E., 2021, Journal of Cleaner Production, V298, P1 Geng MM, 2021, SUSTAINABILITY-BASEL, V13, DOI 10.3390/su13073960 Gold NO, 2023, SOC RESPONSIB J, V19, P184, DOI 10.1108/SRJ-06-2021-0228 Green KW, 2012, SUPPLY CHAIN MANAG, V17, P290, DOI 10.1108/13598541211227126 Gupta S, 2018, BENCHMARKING, V25, P797, DOI 10.1108/BIJ-06-2017-0140 Gupta SK, 2018, MANAG ENVIRON QUAL, V29, P406, DOI 10.1108/MEQ-06-2017-0051 Gurcan F, 2023, INTERACT LEARN ENVIR, V31, P1007, DOI 10.1080/10494820.2020.1815795 Hahn T, 2018, J BUS ETHICS, V148, P235, DOI 10.1007/s10551-017-3587-2 Hahn T, 2017, BUS SOC, V56, P155, DOI 10.1177/0007650315576152 Halkos G, 2017, MANAGE DECIS, V55, P595, DOI 10.1108/MD-12-2016-0868 Heras-Saizarbitoria I, 2022, CORP SOC RESP ENV MA, V29, P316, DOI 10.1002/csr.2202 Jan AA, 2023, ENVIRON SCI POLLUT R, V30, P36521, DOI 10.1007/s11356-022-24842-4 Jha NK, 2023, MANAG ENVIRON QUAL, V34, P865, DOI 10.1108/MEQ-04-2022-0098 Johnston P, 2007, ENVIRON SCI POLLUT R, V14, P60, DOI 10.1065/espr2007.01.375 Kainzbauer A, 2021, SUSTAINABILITY-BASEL, V13, DOI 10.3390/su132111745 Kang J, 2019, SUSTAINABILITY-BASEL, V11, DOI 10.3390/su11123478 Kapkiyai C., 2020, African Journal of Education, Science and Technology, V5, P92 Karagiannopoulou S, 2023, ENERGIES, V16, DOI 10.3390/en16031102 Karl AA, 2022, J HUMANIT LOGIST SUP, V12, P382, DOI 10.1108/JHLSCM-11-2020-0104 Ketprapakorn N, 2019, J CLEAN PROD, V239, DOI 10.1016/j.jclepro.2019.117995 Khatter A, 2019, INT J CONTEMP HOSP M, V31, P2394, DOI 10.1108/IJCHM-08-2018-0670 Khural RA, 2024, ENG CONSTR ARCHIT MA, V31, P1608, DOI 10.1108/ECAM-02-2022-0138 Kiymalioglu A, 2024, MANAGE DECIS, V62, P614, DOI 10.1108/MD-11-2022-1566 Kumar S, 2022, BENCHMARKING, V29, P1640, DOI 10.1108/BIJ-02-2021-0086 Kushkowski JD, 2020, J DOC, V76, P1313, DOI 10.1108/JD-10-2019-0207 Latif B, 2020, SUSTAINABILITY-BASEL, V12, DOI 10.3390/su12114506 Lozano R, 2021, J ORGAN CHANGE MANAG, V34, P613, DOI 10.1108/JOCM-09-2020-0276 Lozano R, 2018, CORP SOC RESP ENV MA, V25, P508, DOI 10.1002/csr.1475 Lozano R, 2015, CORP SOC RESP ENV MA, V22, P32, DOI 10.1002/csr.1325 Lu MX, 2020, RENEW SUST ENERG REV, V119, DOI 10.1016/j.rser.2019.109545 Lueg R, 2016, EUR MANAG J, V34, P158, DOI 10.1016/j.emj.2015.11.005 Luque-Vílchez M, 2023, SUSTAIN DEV, V31, P1845, DOI 10.1002/sd.2488 Lytras MD, 2019, SUSTAINABILITY-BASEL, V11, DOI 10.3390/su11185067 Makhlouf H, 2023, INT J QUAL RELIAB MA, V40, P2592, DOI 10.1108/IJQRM-10-2022-0291 Matten D, 2004, J BUS ETHICS, V54, P323, DOI 10.1007/s10551-004-1822-0 Mio C, 2020, BUS STRATEG ENVIRON, V29, P306, DOI 10.1002/bse.2390 Mishra S, 2020, SOC RESPONSIB J, V16, P1341, DOI 10.1108/SRJ-04-2019-0135 Nolting B., 2022, Sustainability Management Forum | NachhaltigkeitsManagementForum, V30, P11, DOI [10.1007/s00550-022-00528-w, DOI 10.1007/S00550-022-00528-W] Ozyurt O, 2022, EDUC INF TECHNOL, V27, P11025, DOI 10.1007/s10639-022-11071-y Page MJ, 2021, BMJ-BRIT MED J, V372, DOI [10.1136/bmj.n71, 10.1016/j.ijsu.2021.105906, 10.1136/bmj.n160] Reb J., 2014, Mindfulness in organizations Rounaghi MM, 2019, INT J ETHICS SYST, V35, P504, DOI 10.1108/IJOES-03-2019-0056 Sakshi, 2020, BUS STRATEG ENVIRON, V29, P1109, DOI 10.1002/bse.2420 Sari Y, 2021, INT J PRODUCT PERFOR, V70, P1162, DOI 10.1108/IJPPM-10-2019-0481 Schaltegger S, 2011, BUS STRATEG ENVIRON, V20, P222, DOI 10.1002/bse.682 Shahbaz W, 2021, CORP GOV-INT J BUS S, V21, P433, DOI 10.1108/CG-06-2020-0242 Shi Y, 2023, FINANC INNOV, V9, DOI 10.1186/s40854-023-00506-1 Simões-Coelho Marco F., 2021, BAR, Braz. Adm. Rev., V18, pe190042 Steurer R, 2005, J BUS ETHICS, V61, P263, DOI 10.1007/s10551-005-7054-0 Sudha S, 2020, MANAG ENVIRON QUAL, V31, P1497, DOI 10.1108/MEQ-01-2020-0011 Topleva SA, 2020, BRIT FOOD J, V122, P1463, DOI 10.1108/BFJ-03-2019-0208 Tunji-Olayeni P, 2024, SMART SUSTAIN BUILT, V13, P291, DOI 10.1108/SASBE-06-2022-0126 ul Haq MI, 2023, ASLIB J INFORM MANAG, V75, P215, DOI 10.1108/AJIM-02-2022-0091 Ülker P, 2023, J HOSP TOUR INSIGHTS, V6, P797, DOI 10.1108/JHTI-10-2021-0291 UN, 2019, UN: environment programme-annual report United Nations, 1948, Universal Declaration of Human Rights van Eck NJ, 2010, SCIENTOMETRICS, V84, P523, DOI 10.1007/s11192-009-0146-3 Wackernagel Mathis., 1996, Green Teacher, V45, P5 Wang YM, 2023, MANAG ENVIRON QUAL, V34, P1225, DOI 10.1108/MEQ-05-2022-0136 World Commission on Environment and Development, 1987, United Nations General Assembly document A/42/427, DOI DOI 10.1017/S0376892900016702 Xia L, 2020, ENVIRON IMPACT ASSES, V85, DOI 10.1016/j.eiar.2020.106459 Zerbini F, 2017, J BUS ETHICS, V146, P1, DOI 10.1007/s10551-015-2922-8 Zhang B, 2019, TECHNOL FORECAST SOC, V144, P436, DOI 10.1016/j.techfore.2018.03.001 NR 104 TC 1 Z9 1 U1 11 U2 11 PU EMERALD GROUP PUBLISHING LTD PI Leeds PA Floor 5, Northspring 21-23 Wellington Street, Leeds, W YORKSHIRE, ENGLAND SN 0368-492X EI 1758-7883 J9 KYBERNETES JI Kybernetes PD 2024 MAR 7 PY 2024 DI 10.1108/K-09-2023-1802 EA MAR 2024 PG 27 WC Computer Science, Cybernetics WE Science Citation Index Expanded (SCI-EXPANDED) SC Computer Science GA KG0P2 UT WOS:001178689200001 DA 2024-09-05 ER PT J AU Bara, A Oprea, SV AF Bara, Adela Oprea, Simona-Vasilica TI The Impact of Academic Publications over the Last Decade on Historical Bitcoin Prices Using Generative Models SO JOURNAL OF THEORETICAL AND APPLIED ELECTRONIC COMMERCE RESEARCH LA English DT Article DE cryptocurrency; research publication; topic modelling; latent Dirichlet allocation; sentiment analysis; Bitcoin prices ID BLOCKCHAIN; SENTIMENT; MARKET AB Since 2012, researchers have explored various factors influencing Bitcoin prices. Up until the end of July 2023, more than 9100 research papers on cryptocurrencies were published and indexed in the Web of Science Clarivate platform. The objective of this paper is to analyze the impact of publications on Bitcoin prices. This study aims to uncover significant themes within these research articles, focusing on cryptocurrencies in general and Bitcoin specifically. The research employs latent Dirichlet allocation to identify key topics from the unstructured abstracts. To determine the optimal number of topics, perplexity and topic coherence metrics are calculated. Additionally, the abstracts are processed using BERT-transformers and Word2Vec and their potential to predict Bitcoin prices is assessed. Based on the results, while the research helps in understanding cryptocurrencies, the potential of academic publications to influence Bitcoin prices is not significant, demonstrating a weak connection. In other words, the movements of Bitcoin prices are not influenced by the scientific writing in this specific field. The primary topics emerging from the analysis are the blockchain, market dynamics, transactions, pricing trends, network security, and the mining process. These findings suggest that future research should pay closer attention to issues like the energy demands and environmental impacts of mining, anti-money laundering measures, and behavioral aspects related to cryptocurrencies. C1 [Bara, Adela] Acad Romanian Scientists, Ilfov 3, Bucharest 050044, Romania. [Oprea, Simona-Vasilica] Bucharest Univ Econ Studies, Dept Econ Informat & Cybernet, 6 Piata Romana, Bucharest 010374, Romania. C3 Romanian Academy of Sciences; Bucharest University of Economic Studies RP Oprea, SV (corresponding author), Bucharest Univ Econ Studies, Dept Econ Informat & Cybernet, 6 Piata Romana, Bucharest 010374, Romania. EM bara.adela@ie.ase.ro; simona.oprea@csie.ase.ro OI Oprea, Simona Vasilica/0000-0002-9005-5181; Bara, Adela/0000-0002-0961-352X FU Academy of Romanian Scientists FX This paper was supported by Academy of Romanian Scientists, Ilfov 3, 050044 Bucharest, Romania, project title: "Solutii informatice pentru analiza impactului retelelor de social media asupra instrumentelor investitionale cu grad ridicat de risc: cryptomonede si bursa". CR Aghashahi M, 2023, INT J MANAG SCI ENG, V18, P126, DOI 10.1080/17509653.2022.2032442 Ahmed WMA, 2022, N AM J ECON FINANC, V62, DOI 10.1016/j.najef.2022.101728 Alahi I., 2019, P 2019 IEEE 43 ANN C Azzi R, 2019, COMPUT IND ENG, V135, P582, DOI 10.1016/j.cie.2019.06.042 Bâra A, 2023, KYBERNETES, DOI 10.1108/K-01-2023-0032 Bashir HA, 2023, MANAG FINANC, V49, P620, DOI 10.1108/MF-09-2021-0414 Bejan CA, 2023, APPL ECON, V55, P1497, DOI 10.1080/00036846.2022.2097194 Bello A, 2023, SENSORS-BASEL, V23, DOI 10.3390/s23010506 Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993 Bohmecke-Schwafert M, 2023, TECHNOL FORECAST SOC, V191, DOI 10.1016/j.techfore.2023.122446 Bouri E, 2023, FINANC INNOV, V9, DOI 10.1186/s40854-023-00464-8 Burnie A., 2019, P 42 INT ACM SIGIR C Caliciotti A, 2024, ANN OPER RES, V336, P359, DOI 10.1007/s10479-023-05444-w Cevik EI, 2023, FINANC RES LETT, V54, DOI 10.1016/j.frl.2023.103768 CHANG J., 2009, Advances in Neural Information Processing Systems, V22, P288 Chawki M, 2022, J TRANSP SECUR, V15, P173, DOI 10.1007/s12198-022-00252-y Chen JW, 2023, J RISK FINANC MANAG, V16, DOI 10.3390/jrfm16010051 Chursook A, 2022, TEM J, V11, P44, DOI 10.18421/TEM111-06 Cotfas LA, 2023, VACCINES-BASEL, V11, DOI 10.3390/vaccines11081381 Coulter KA, 2022, ROY SOC OPEN SCI, V9, DOI 10.1098/rsos.220276 de Vries A, 2022, JOULE, V6, P498, DOI 10.1016/j.joule.2022.02.005 Devlin J, 2019, 2019 CONFERENCE OF THE NORTH AMERICAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS: HUMAN LANGUAGE TECHNOLOGIES (NAACL HLT 2019), VOL. 1, P4171 Dias R, 2023, ENERGIES, V16, DOI 10.3390/en16135232 Dwivedi D.N., 2023, Lecture Notes in Computer Science Erik-Robert K, 2024, J INFORM TELECOMMUN, V8, P108, DOI 10.1080/24751839.2023.2262067 Farimani SA, 2022, KNOWL-BASED SYST, V247, DOI 10.1016/j.knosys.2022.108742 Feng WJ, 2023, J INT MONEY FINANC, V132, DOI 10.1016/j.jimonfin.2023.102811 Grassman R, 2021, REV SOCIONETWORK STR, V15, P169, DOI 10.1007/s12626-021-00069-6 Gurrib I, 2022, STUD ECON FINANC, V39, P347, DOI 10.1108/SEF-07-2021-0293 Hajek P, 2023, RES INT BUS FINANC, V64, DOI 10.1016/j.ribaf.2022.101836 Hassan MK, 2022, STUD ECON FINANC, V39, P365, DOI 10.1108/SEF-06-2021-0237 Ibba G., 2023, P 2023 IEEE INT C SO Jakubik J, 2023, QUANT FINANC, V23, P335, DOI 10.1080/14697688.2022.2130085 Jelodar H, 2019, MULTIMED TOOLS APPL, V78, P15169, DOI 10.1007/s11042-018-6894-4 Jia D, 2023, FINANC RES LETT, V52, DOI 10.1016/j.frl.2022.103529 Köse N, 2023, FINANC UVER, V73, P189, DOI 10.32065/CJEF.2023.02.04 Koutmos D, 2023, REV QUANT FINANC ACC, V60, P1, DOI 10.1007/s11156-022-01086-4 Kyriazis N, 2023, RES INT BUS FINANC, V64, DOI 10.1016/j.ribaf.2022.101832 Kyriazis N, 2023, Q REV ECON FINANC, V89, P307, DOI 10.1016/j.qref.2022.09.004 Kyriazis NA, 2023, ECON MODEL, V128, DOI 10.1016/j.econmod.2023.106502 Liu F, 2023, HELIYON, V9, DOI 10.1016/j.heliyon.2023.e15099 Liu F, 2023, FRONT BLOCKCHAIN, V6, DOI 10.3389/fbloc.2023.996070 Liu F, 2023, IEEE T COMPUT SOC SY, DOI 10.1109/TCSS.2023.3239031 Liu F, 2022, APPL SCI-BASEL, V12, DOI 10.3390/app12115342 Liu F, 2022, ENTROPY-SWITZ, V24, DOI 10.3390/e24040557 Liu YL, 2022, SCI DATA, V9, DOI 10.1038/s41597-022-01254-0 Mikolov T., 2013, ARXIV Mikolov T., 2006, Neural Inf. Process. Syst, V26 Moustapha BA, 2020, DIGIT COMMUN NETW, V6, P157, DOI 10.1016/j.dcan.2019.01.006 Mulahuwaish A, 2023, IT PROF, V25, P52, DOI 10.1109/MITP.2023.3253103 Oprea SV, 2023, IEEE ACCESS, V11, P18461, DOI 10.1109/ACCESS.2023.3247964 Oprea SV, 2022, SUSTAIN ENERGY TECHN, V53, DOI 10.1016/j.seta.2022.102738 Oprea SV, 2021, ENERG POLICY, V152, DOI 10.1016/j.enpol.2021.112237 Ortu M, 2022, MACH LEARN APPL, V7, DOI 10.1016/j.mlwa.2021.100229 Papadamou S, 2021, J BEHAV EXP FINANC, V30, DOI 10.1016/j.jbef.2021.100469 Papadamou S, 2021, N AM J ECON FINANC, V56, DOI 10.1016/j.najef.2020.101343 Parino F, 2018, EPJ DATA SCI, V7, DOI 10.1140/epjds/s13688-018-0170-8 Pathak AR, 2021, APPL SOFT COMPUT, V108, DOI 10.1016/j.asoc.2021.107440 Pritchard JK, 2000, GENETICS, V155, P945 Prybila C, 2020, FUTURE GENER COMP SY, V107, P816, DOI 10.1016/j.future.2017.08.024 Rathore RK, 2022, INFORM PROCESS MANAG, V59, DOI 10.1016/j.ipm.2022.102968 Sapra N, 2023, MANAG FINANC, V49, P1828, DOI 10.1108/MF-03-2023-0179 Schulte M., 2021, Lecture Notes in Information Systems and Organisation Seow KT, 2020, IEEE T SYST MAN CY-S, V50, P159, DOI 10.1109/TSMC.2019.2895345 Shahzad MK, 2021, I C INF COMM TECH CO, P119, DOI 10.1109/ICTC52510.2021.9620216 Sharif A, 2023, ENERG ECON, V120, DOI 10.1016/j.eneco.2023.106594 Sharma C, 2022, MULTIMED TOOLS APPL, V81, P36805, DOI 10.1007/s11042-022-13500-z Song Y, 2023, FINANC INNOV, V9, DOI 10.1186/s40854-022-00445-3 Treiblmaier H, 2021, DATA BASE ADV INF SY, V52, P27, DOI 10.1145/3447934.3447938 Van Wegberg R., 2018, J. Financ. Crime, V25, P419, DOI [DOI 10.1108/JFC-11-2016-0067, 10.1108/JFC-11-2016-0067] Wang F, 2023, INT REV FINANC ANAL, V88, DOI 10.1016/j.irfa.2023.102692 Welekar R., 2023, Int. J. Next-Gener. Comput, V14, DOI [10.47164/ijngc.v14i1.1043, DOI 10.47164/IJNGC.V14I1.1043] Wu XY, 2020, ECON COMPUT ECON CYB, V54, P77, DOI 10.24818/18423264/54.3.20.05 Yen JC, 2021, INT J ACCOUNT INF SY, V40, DOI 10.1016/j.accinf.2021.100499 Zaghloul E, 2020, IEEE INTERNET THINGS, V7, P10288, DOI 10.1109/JIOT.2020.3004273 Zaman S, 2023, GLOB KNOWL MEM COMMU, V72, P341, DOI 10.1108/GKMC-09-2021-0154 Zhou L, 2021, INF SYST E-BUS MANAG, V19, P757, DOI 10.1007/s10257-020-00461-9 NR 77 TC 1 Z9 1 U1 8 U2 8 PU MDPI PI BASEL PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND SN 0718-1876 J9 J THEOR APPL EL COMM JI J. Theor. Appl. Electron. Commer. Res. PD MAR PY 2024 VL 19 IS 1 BP 538 EP 560 DI 10.3390/jtaer19010029 PG 23 WC Business WE Social Science Citation Index (SSCI) SC Business & Economics GA MG3Y9 UT WOS:001192446400001 OA gold DA 2024-09-05 ER PT C AU Woo, SH Choi, MS Duffy, VG AF Woo, Seung Ho Choi, Min Soo Duffy, Vincent G. BE Duffy, VG Kromker, H Streitz, NA Konomi, S TI Artificial Intelligence and Transportations on Road Safety: A Bibliometric Review SO HCI INTERNATIONAL 2023 LATE BREAKING PAPERS, HCII 2023,PT IV SE Lecture Notes in Computer Science LA English DT Proceedings Paper CT 25th International Conference on Human-Computer Interaction (HCI International) CY JUL 23-28, 2023 CL Copenhagen, DENMARK DE Artificial Intelligence; machine learning; road safety; transportation; human-computer interaction ID DRIVING SAFETY; SYSTEMS AB The topic of road safety modeling by applying artificial intelligence has been aroused in the research field. The purpose of this study was to explore artificial intelligence enhancing road safety using bibliometric analyses. The data sources were collected from three databases: Scopus, ProQuest, and Web of Science. Numerous analysis tools were applied to visualize the trends and get meaningful outcomes, such as MaxQDA, Vicinitas, Scopus, etc. The measures of analysis were shown in five individual analysis results which include content, co-citation, keyword, trend, and statistical analysis. Statistical analysis was performed by ANOVA to distinguish the significant predictors in publication yields with interpretation. The recent trend in artificial intelligence and road safety has increased in the field of research. All analysis and findings are shown in the analysis section. We briefly mention the future work area ideas in various aspects of the study. C1 [Woo, Seung Ho; Choi, Min Soo; Duffy, Vincent G.] Purdue Univ, Sch Ind Engn, W Lafayette, IN 47906 USA. C3 Purdue University System; Purdue University RP Choi, MS (corresponding author), Purdue Univ, Sch Ind Engn, W Lafayette, IN 47906 USA. EM woo44@purdue.edu; choi502@purdue.edu; duffy@purdue.edu OI Woo, Seung Ho/0000-0001-9839-8616 CR Abduljabbar R, 2019, SUSTAINABILITY-BASEL, V11, DOI 10.3390/su11010189 Anderson TK, 2009, ACCIDENT ANAL PREV, V41, P359, DOI 10.1016/j.aap.2008.12.014 Arbabzadeh N, 2018, IEEE T INTELL TRANSP, V19, P446, DOI 10.1109/TITS.2017.2700869 Barodi A., 2021, Adv. Sci. Technol. Eng. Syst. J., V6, P672 Bhatti S., 2022, 2022 1 INT C ARTIFIC, P1, DOI 10.1109/ICECET55527 Carroll JM, 1997, ANNU REV PSYCHOL, V48, P61, DOI 10.1146/annurev.psych.48.1.61 Donthu N, 2021, J BUS RES, V133, P285, DOI 10.1016/j.jbusres.2021.04.070 Gao XW, 2006, J VIS COMMUN IMAGE R, V17, P675, DOI 10.1016/j.jvcir.2005.10.003 Goerlandt F, 2022, J SAF SCI RESIL, V3, P189, DOI 10.1016/j.jnlssr.2022.02.003 Gostin L., 2018, JAMA Forum, DOI DOI 10.1001/JAMAHEALTHFORUM.2018.0009 Halim Z, 2016, ARTIF INTELL REV, V46, P351, DOI 10.1007/s10462-016-9467-9 Harzing A.W., 2007, Publish or perish Hochreiter S, 1997, NEURAL COMPUT, V9, P1735, DOI [10.1162/neco.1997.9.1.1, 10.1007/978-3-642-24797-2] Kala R, 2016, ON-ROAD INTELLIGENT VEHICLES: MOTION PLANNING FOR INTELLIGENT TRANSPORTATION SYSTEMS, P59, DOI 10.1016/B978-0-12-803729-4.00004-0 Katreddi S, 2022, ENERGIES, V15, DOI 10.3390/en15207457 Krizhevsky A, 2017, COMMUN ACM, V60, P84, DOI 10.1145/3065386 Laurell C, 2017, TECHNOL FORECAST SOC, V125, P58, DOI 10.1016/j.techfore.2017.05.038 LeCun Y, 2015, NATURE, V521, P436, DOI 10.1038/nature14539 Mandal V, 2020, SUSTAINABILITY-BASEL, V12, DOI 10.3390/su12219177 maxqda, VERBI Software. "Online Manual McCulloch WS, 2016, EMBODIMENTS OF MIND, P19 Michel JB, 2011, SCIENCE, V331, P176, DOI 10.1126/science.1199644 Mogelmose A, 2012, IEEE T INTELL TRANSP, V13, P1484, DOI 10.1109/TITS.2012.2209421 Olugbade S, 2022, MATH COMPUT APPL, V27, DOI 10.3390/mca27050077 Panda C, 2023, INT J CRASHWORTHINES, V28, P186, DOI 10.1080/13588265.2022.2074643 Rai A, 2019, MICROBIAL DIVERSITY IN ECOSYSTEM SUSTAINABILITY AND BIOTECHNOLOGICAL APPLICATIONS: VOL 1. MICROBIAL DIVERSITY IN NORMAL & EXTREME ENVIRONMENTS, P3, DOI 10.1007/978-981-13-8315-1_1 Sagberg F, 2015, HUM FACTORS, V57, P1248, DOI 10.1177/0018720815591313 selentis D.I., 2023, IEEE Open J. Intell. Transp. Syst. Silva PB, 2020, J TRAFFIC TRANSP ENG, V7, P775, DOI 10.1016/j.jtte.2020.07.004 Stanton NA, 2001, SAFETY SCI, V39, P189, DOI 10.1016/S0925-7535(01)00010-8 Szegedy C, 2015, PROC CVPR IEEE, P1, DOI 10.1109/CVPR.2015.7298594 Taib R., 2014, P CHI14 EXT ABSTR HU, P1777 Torbaghan ME, 2022, ACCIDENT ANAL PREV, V166, DOI 10.1016/j.aap.2021.106543 van Eck NJ, 2010, SCIENTOMETRICS, V84, P523, DOI 10.1007/s11192-009-0146-3 Vecino-Ortiz AI, 2015, J URBAN HEALTH, V92, P940, DOI 10.1007/s11524-015-9975-y Vural Esra., 2008, Automated drowsiness detection for improved driving safety Wang P, 2010, TRAFFIC INJ PREV, V11, P425, DOI 10.1080/15389581003754593 Woo H, 2019, APPL SCI-BASEL, V9, DOI 10.3390/app9224875 World Health Organization, 2018, Global Status Report on alcohol and health 2018 Yu H, 2014, ACCIDENT ANAL PREV, V66, P80, DOI 10.1016/j.aap.2014.01.017 Zheng L, 2021, ANAL METHODS ACCID R, V29, DOI 10.1016/j.amar.2020.100142 NR 41 TC 0 Z9 0 U1 5 U2 5 PU SPRINGER INTERNATIONAL PUBLISHING AG PI CHAM PA GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND SN 0302-9743 EI 1611-3349 BN 978-3-031-48046-1; 978-3-031-48047-8 J9 LECT NOTES COMPUT SC PY 2023 VL 14057 BP 450 EP 464 DI 10.1007/978-3-031-48047-8_30 PG 15 WC Computer Science, Artificial Intelligence; Computer Science, Cybernetics; Computer Science, Theory & Methods WE Conference Proceedings Citation Index - Science (CPCI-S) SC Computer Science GA BW5EV UT WOS:001159620100030 DA 2024-09-05 ER PT J AU Jia, K Wang, PH Li, Y Chen, ZZ Jiang, XY Lin, CL Chin, T AF Jia, Kan Wang, Penghui Li, Yang Chen, Zezhou Jiang, Xinyue Lin, Chien-Liang Chin, Tachia TI Research Landscape of Artificial Intelligence and e-Learning: A Bibliometric Research SO FRONTIERS IN PSYCHOLOGY LA English DT Article DE artificial intelligence; online learning; technological education; bibliometrics research; Web of Science Publications ID ONLINE TEACHER; SYSTEM; STYLE; IMPLEMENTATION; ENVIRONMENTS; PRECISION; ANALYTICS; PATTERNS; MODEL; TOOL AB While an increasing number of organizations have introduced artificial intelligence as an important facilitating tool for learning online, the application of artificial intelligence in e-learning has become a hot topic for research in recent years. Over the past few decades, the importance of online learning has also been a concern in many fields, such as technological education, STEAM, AR/VR apps, online learning, amongst others. To effectively explore research trends in this area, the current state of online learning should be understood. Systematic bibliometric analysis can address this problem by providing information on publishing trends and their relevance in various topics. In this study, the literary application of artificial intelligence combined with online learning from 2010 to 2021 was analyzed. In total, 64 articles were collected to analyze the most productive countries, universities, authors, journals and publications in the field of artificial intelligence combined with online learning using VOSviewer through WOS data collection. In addition, the mapping of co-citation and co-occurrence was explored by analyzing a knowledge map. The main objective of this study is to provide an overview of the trends and pathways in artificial intelligence and online learning to help researchers understand global trends and future research directions. C1 [Jia, Kan; Wang, Penghui; Chin, Tachia] Zhejiang Univ Technol, Sch Management, Hangzhou, Peoples R China. [Li, Yang] Commun Univ Zhejiang, Sch Cultural Creat & Management, Hangzhou, Peoples R China. [Chen, Zezhou; Jiang, Xinyue] Zhejiang Univ Technol, Sch Econ, Hangzhou, Peoples R China. [Lin, Chien-Liang] Ningbo Univ, Coll Sci & Technol, Ningbo, Peoples R China. C3 Zhejiang University of Technology; Communication University of Zhejiang; Zhejiang University of Technology; Ningbo University RP Li, Y (corresponding author), Commun Univ Zhejiang, Sch Cultural Creat & Management, Hangzhou, Peoples R China.; Lin, CL (corresponding author), Ningbo Univ, Coll Sci & Technol, Ningbo, Peoples R China. EM 20040096@cuz.edu.com; linjianliang@nbu.edu.cn FU First Batch of Industry University Collaborative Education Project of the Ministry of Education-"Social Practice Training Camp Plan Based on Science and Technology Innovation and Entrepreneurship Projects" [202002143051]; National Social Science Late Funding Project of China [20FXWB020]; KC Wong Magna Fund in Ningbo University [RC190015]; China Postdoctoral Science Foundation [2016M60283] FX This research was supported by the First Batch of Industry University Collaborative Education Project of the Ministry of Education--"Social Practice Training Camp Plan Based on Science and Technology Innovation and Entrepreneurship Projects" (Grant No. 202002143051), the National Social Science Late Funding Project of China (Grant No. 20FXWB020), KC Wong Magna Fund in Ningbo University (Grant No. RC190015), and the China Postdoctoral Science Foundation (Grant No. 2016M60283). CR Ally M, 2019, INT REV RES OPEN DIS, V20, P302 Almohammadi K, 2017, J ARTIF INTELL SOFT, V7, P47, DOI 10.1515/jaiscr-2017-0004 Alsobhi AY, 2019, DATA TECHNOL APPL, V53, P189, DOI 10.1108/DTA-10-2018-0092 Barlybayev A, 2020, IEEE ACCESS, V8, P58829, DOI 10.1109/ACCESS.2020.2979277 Ben Ammar M, 2010, EXPERT SYST APPL, V37, P3013, DOI 10.1016/j.eswa.2009.09.031 Bywater JP, 2019, COMPUT EDUC, V139, P16, DOI 10.1016/j.compedu.2019.05.004 Caputi V, 2015, J NETW COMPUT APPL, V53, P115, DOI 10.1016/j.jnca.2015.04.001 Chan-Olmsted SM, 2019, JMM-INT J MEDIA MANA, V21, P193, DOI 10.1080/14241277.2019.1695619 Chang TY, 2013, J NETW COMPUT APPL, V36, P533, DOI 10.1016/j.jnca.2012.04.002 Chen CM, 2017, J DATA INFO SCI, V2, P1, DOI 10.1515/jdis-2017-0006 Chen CM, 2006, J AM SOC INF SCI TEC, V57, P359, DOI 10.1002/asi.20317 Colares GS, 2020, SCI TOTAL ENVIRON, V714, DOI 10.1016/j.scitotenv.2020.136776 Conde A, 2020, INFORM PROCESS MANAG, V57, DOI 10.1016/j.ipm.2020.102232 Corsini F, 2012, WORLD CONGRESS ON SUSTAINABLE TECHNOLOGIES (WCST-2012), P95 Dias SB, 2015, EXPERT SYST APPL, V42, P7399, DOI 10.1016/j.eswa.2015.05.048 Donthu N, 2020, J BUS RES, V109, P1, DOI 10.1016/j.jbusres.2019.10.039 Duque-Acevedo M, 2020, GLOB ECOL CONSERV, V22, DOI 10.1016/j.gecco.2020.e00902 Dwivedi YK, 2020, INT J INFORM MANAGE, V55, DOI 10.1016/j.ijinfomgt.2020.102211 Faust O, 2018, COMPUT METH PROG BIO, V161, P1, DOI 10.1016/j.cmpb.2018.04.005 Ferasso M, 2020, BUS STRATEG ENVIRON, V29, P3006, DOI 10.1002/bse.2554 Flis I, 2018, HIST PSYCHOL, V21, P334, DOI 10.1037/hop0000067 Franzoni V, 2020, APPL SCI-BASEL, V10, DOI 10.3390/app10207195 Gálvez-Sánchez FJ, 2021, SUSTAINABILITY-BASEL, V13, DOI 10.3390/su13063156 García P, 2007, COMPUT EDUC, V49, P794, DOI 10.1016/j.compedu.2005.11.017 George G, 2019, COMPUT EDUC, V142, DOI 10.1016/j.compedu.2019.103642 Crespo RG, 2013, EXPERT SYST APPL, V40, P7381, DOI 10.1016/j.eswa.2013.06.054 Hallinger P, 2019, REV EDUC RES, V89, P335, DOI 10.3102/0034654319830380 He JX, 2019, NAT MED, V25, P30, DOI 10.1038/s41591-018-0307-0 Hinton GE, 2006, SCIENCE, V313, P504, DOI 10.1126/science.1127647 Hinton G. E., 2012, ARXIV12070580, DOI DOI 10.9774/GLEAF.978-1-909493-38-4_2 Hu N., 2014, GINECO RO, V8, P90 Huang F, 2020, ETR&D-EDUC TECH RES, V68, P575, DOI 10.1007/s11423-019-09695-y Hung IC, 2014, COMPUT EDUC, V70, P80, DOI 10.1016/j.compedu.2013.08.007 Hwang GJ., 2014, Smart Learn. Environ, V1, P4, DOI [DOI 10.1186/S40561-014-0004-5, 10.1186/s40561-014-0004-5] Hwang GJ, 2021, MATHEMATICS-BASEL, V9, DOI 10.3390/math9060584 Ivanitskaya LV, 2021, J RELIG HEALTH, V60, P3759, DOI 10.1007/s10943-021-01255-0 Iyanda Abimbola R., 2018, International Journal of Modern Education and Computer Science, V10, P1, DOI 10.5815/ijmecs.2018.06.01 Jalal A, 2019, EDUC INF TECHNOL, V24, P2797, DOI 10.1007/s10639-019-09892-5 Jia XF, 2014, SCIENTOMETRICS, V99, P881, DOI 10.1007/s11192-013-1220-4 Jin YQ, 2021, FRONT PSYCHOL, V12, DOI 10.3389/fpsyg.2021.632787 Katz Y. J., 2000, Educational Media International, V37, P25, DOI 10.1080/095239800361482 Katz YJ, 2002, J COMPUT ASSIST LEAR, V18, P2, DOI 10.1046/j.0266-4909.2001.00202.x Kavitha V, 2019, CLUSTER COMPUT, V22, pS6985, DOI 10.1007/s10586-018-2017-2 Khumrin P, 2017, STUD HEALTH TECHNOL, V245, P447, DOI 10.3233/978-1-61499-830-3-447 Kocak M, 2019, SCIENTOMETRICS, V121, P1339, DOI 10.1007/s11192-019-03259-w Kok JN., 2009, ARTIF INTELL, V1, P1 Kose U, 2016, INT J ENG EDUC, V32, P185 Krizhevsky A, 2017, COMMUN ACM, V60, P84, DOI 10.1145/3065386 Kuk KV, 2017, ACTA POLYTECH HUNG, V14, P121, DOI 10.12700/APH.14.4.2017.4.7 Kurilovas E, 2015, COMPUT HUM BEHAV, V51, P945, DOI 10.1016/j.chb.2014.10.027 Kurilovas E, 2014, COMPUT HUM BEHAV, V30, P550, DOI 10.1016/j.chb.2013.06.036 Latham A, 2012, COMPUT EDUC, V59, P95, DOI 10.1016/j.compedu.2011.11.001 Li A., 2020, Journal of Intelligent and Fuzzy Systems, V40, P1 Li AY, 2021, J INTELL FUZZY SYST, V40, P3547, DOI 10.3233/JIFS-189391 Liang TP, 2018, EXPERT SYST APPL, V111, P2, DOI 10.1016/j.eswa.2018.05.018 Liao HC, 2018, SUSTAINABILITY-BASEL, V10, DOI 10.3390/su10010166 Lin CL, 2021, ASIA-PAC EDUC RES, V30, P229, DOI 10.1007/s40299-021-00570-0 Lu T, 2018, EURASIA J MATH SCI T, V14, P1719, DOI 10.29333/ejmste/85110 Martins LL, 2004, ACAD MANAG LEARN EDU, V3, P7, DOI 10.5465/AMLE.2004.12436815 Mas-Verdu F, 2021, EUR POLIT SCI, V20, P85, DOI 10.1057/s41304-021-00320-2 Miao TC, 2023, BEHAV INFORM TECHNOL, V42, pXIV, DOI 10.1080/0144929X.2020.1831074 Miyazawa AA, 2019, HEART, V105, P1214, DOI 10.1136/heartjnl-2018-314464 Mo CY, 2021, SUSTAINABILITY-BASEL, V13, DOI 10.3390/su13105471 Moral-Muñoz JA, 2020, PROF INFORM, V29, DOI 10.3145/epi.2020.ene.03 Mou J, 2019, J ELECTRON COMMER RE, V20, P219 Mulder RH, 2013, EUR J TRAIN DEV, V37, P49, DOI 10.1108/03090591311293284 Orduña-Malea E, 2021, SCIENTOMETRICS, V126, P8153, DOI 10.1007/s11192-021-04082-y Osmanbegovic E., 2012, J ECON BUS, VX, P3 Gonçalves MCP, 2019, PROCESS BIOCHEM, V76, P95, DOI 10.1016/j.procbio.2018.09.016 Petit J, 2018, IEEE T LEARN TECHNOL, V11, P321, DOI 10.1109/TLT.2017.2723389 Piccoli G, 2001, MIS QUART, V25, P401, DOI 10.2307/3250989 Rastegarmoghadam M, 2017, EDUC INF TECHNOL, V22, P1067, DOI 10.1007/s10639-016-9472-2 Samarakou M, 2018, EDUC TECHNOL SOC, V21, P126 Santos OC, 2015, EXPERT SYST, V32, P293, DOI 10.1111/exsy.12041 Sarkodie SA, 2019, SCI TOTAL ENVIRON, V649, P128, DOI 10.1016/j.scitotenv.2018.08.276 SMALL H, 1973, J AM SOC INFORM SCI, V24, P265, DOI 10.1002/asi.4630240406 Song P, 2020, ASIA PAC EDUC REV, V21, P473, DOI 10.1007/s12564-020-09640-2 Song YH, 2023, LIBR HI TECH, V41, P1145, DOI 10.1108/LHT-06-2020-0126 Stantchev V, 2015, COMPUT HUM BEHAV, V51, P762, DOI 10.1016/j.chb.2014.11.092 Su YS, 2020, LIBR HI TECH, V38, P420, DOI 10.1108/LHT-01-2019-0028 Sweileh WM, 2017, GLOBALIZATION HEALTH, V13, DOI 10.1186/s12992-017-0233-9 Tang KY, 2023, INTERACT LEARN ENVIR, V31, P2134, DOI 10.1080/10494820.2021.1875001 Tarus JK, 2017, FUTURE GENER COMP SY, V72, P37, DOI 10.1016/j.future.2017.02.049 Teo T, 2016, INTERACT LEARN ENVIR, V24, P745, DOI 10.1080/10494820.2014.917110 Trentin G, 1997, J COMPUT ASSIST LEAR, V13, P261, DOI 10.1046/j.1365-2729.1997.00029.x Turchet L, 2018, IEEE ACCESS, V6, P61994, DOI 10.1109/ACCESS.2018.2872625 van Eck NJ, 2017, SCIENTOMETRICS, V111, P1053, DOI 10.1007/s11192-017-2300-7 van Eck NJ, 2010, SCIENTOMETRICS, V84, P523, DOI 10.1007/s11192-009-0146-3 Vílchez-Román C, 2021, LIBR HI TECH, V39, P263, DOI 10.1108/LHT-10-2019-0209 Voskoglou MG, 2020, MATHEMATICS-BASEL, V8, DOI 10.3390/math8040611 Wang Q, 2020, IND MANAGE DATA SYST, V120, P1863, DOI 10.1108/IMDS-12-2019-0671 Wang T, 2021, SUSTAINABILITY-BASEL, V13, DOI 10.3390/su13084586 Wu J, 2021, INFORM PROCESS MANAG, V58, DOI 10.1016/j.ipm.2021.102562 Xie HY, 2021, J INTELL FUZZY SYST, V40, P7335, DOI 10.3233/JIFS-189558 Yang CCY, 2021, EDUC TECHNOL SOC, V24, P152 Zawacki-Richter O, 2019, INT J EDUC TECHNOL H, V16, DOI 10.1186/s41239-019-0171-0 Zhang CY, 2020, TOUR MANAG PERSPECT, V35, DOI 10.1016/j.tmp.2020.100715 Zhao YX, 2020, J MED INTERNET RES, V22, DOI 10.2196/18825 Zou X, 2018, ACCIDENT ANAL PREV, V118, P131, DOI 10.1016/j.aap.2018.06.010 NR 99 TC 14 Z9 14 U1 11 U2 111 PU FRONTIERS MEDIA SA PI LAUSANNE PA AVENUE DU TRIBUNAL FEDERAL 34, LAUSANNE, CH-1015, SWITZERLAND SN 1664-1078 J9 FRONT PSYCHOL JI Front. Psychol. PD FEB 16 PY 2022 VL 13 AR 795039 DI 10.3389/fpsyg.2022.795039 PG 14 WC Psychology, Multidisciplinary WE Social Science Citation Index (SSCI) SC Psychology GA ZW0OS UT WOS:000770921500001 PM 35250730 OA Green Published, gold DA 2024-09-05 ER PT J AU Huang, SZ Huang, Y Bu, Y Luo, ZR Lu, W AF Huang, Shengzhi Huang, Yong Bu, Yi Luo, Zhuoran Lu, Wei TI Disclosing the interactive mechanism behind scientists' topic selection behavior from the perspective of the productivity and the impact SO JOURNAL OF INFORMETRICS LA English DT Article DE Scientometrics; Topic selection behavior; Random walk; Reinforcement learning ID RESEARCH PERFORMANCE AB The productivity and the impact are two most recognized aspects to evaluate the research per-formance of scientists. Figuring out whether and how these two factors shape the evolution of scientists' research interests may facilitate researchers to go deep into scientists' topic selection behavior. In this paper, we employ Microsoft Academic Graph as our data source, and propose two correlation metrics, by which over 20,000 scientists' publication sequence from the com-puter science field are analyzed. We confirm that the productivity and the impact are related to the evolution of scientists' research interests, and scientists tend to select topics which help them produce the productivity and the impact. To further explore how these two factors affects topic selection behavior, we propose a novel Q seashore walk model based on the interactive mech-anism hypothesis. Our analysis results based on the simulation data are consistent with those based on the empirical data, which confirms the validity of our model and reports the evidence for the interactive mechanism. Based on the simulation data, we also analyze the role of reward for scientists' research performance, and find that "too much is as bad as too little ". This research may help researchers deeply understand the process of topic selection, and provide a theoretical basis for research and development policy formulation. C1 [Huang, Shengzhi; Huang, Yong; Luo, Zhuoran; Lu, Wei] Wuhan Univ, Sch Informat Management, Wuhan, Hubei, Peoples R China. [Huang, Shengzhi; Huang, Yong; Luo, Zhuoran; Lu, Wei] Wuhan Univ, Informat Retrieval & Knowledge Min Lab, Wuhan, Hubei, Peoples R China. [Bu, Yi] Peking Univ, Dept Informat Management, Beijing, Peoples R China. C3 Wuhan University; Wuhan University; Peking University RP Lu, W (corresponding author), Wuhan Univ, Sch Informat Management, Wuhan, Hubei, Peoples R China. EM weilu@whu.edu.cn RI Bu, Yi/B-4964-2018 OI Bu, Yi/0000-0003-2549-4580; Luo, Zhuoran/0000-0003-0677-8350; lu, wei/0000-0002-0929-7416; Huang, Shengzhi/0000-0002-7035-4627 FU Youth Science Foundation of the National Natural Science Foundation of China [72004168] FX Acknowledgments This work was supported by the Youth Science Foundation of the National Natural Science Foundation of China (grant no. 72004168) . CR Bu Y, 2018, J ASSOC INF SCI TECH, V69, P87, DOI 10.1002/asi.23911 Buehling K, 2021, J INFORMETR, V15, DOI 10.1016/j.joi.2021.101199 Ciranka S, 2022, NAT HUM BEHAV, V6, P555, DOI 10.1038/s41562-021-01263-w De Domenico Manlio, 2016, Appl Netw Sci, V1, P15, DOI 10.1007/s41109-016-0017-9 Duan XY, 2021, INFORM PROCESS MANAG, V58, DOI 10.1016/j.ipm.2021.102540 Duch J, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0051332 Fadhly F Z., 2018, English Review, Journal of English Education, V7, P157, DOI DOI 10.25134/ERJEE.V7I1.1535 Foster JG, 2015, AM SOCIOL REV, V80, P875, DOI 10.1177/0003122415601618 Hoonlor A, 2013, COMMUN ACM, V56, P74, DOI 10.1145/2500892 Huang SZ, 2022, INFORM PROCESS MANAG, V59, DOI 10.1016/j.ipm.2022.103110 Huang SZ, 2022, J ASSOC INF SCI TECH, V73, P1025, DOI 10.1002/asi.24610 Huang SZ, 2022, INFORM PROCESS MANAG, V59, DOI 10.1016/j.ipm.2021.102799 Jia T, 2017, NAT HUM BEHAV, V1, DOI 10.1038/s41562-017-0078 Jin C, 2021, NAT COMMUN, V12, DOI 10.1038/s41467-021-25712-2 Keshavarz H, 2020, LIBR INFORM SCI RES, V42, DOI 10.1016/j.lisr.2020.101052 Khosrowjerdi M, 2021, J INFORMETR, V15, DOI 10.1016/j.joi.2021.101160 Kuhn TS., 1977, The essential tension: Selected studies in scientific tradition and change, DOI [10.7208/chicago/9780226217239.001.0001, DOI 10.7208/CHICAGO/9780226217239.001.0001] Lakeh AB, 2017, SCI REP-UK, V7, DOI 10.1038/s41598-017-04527-6 Laudel G., 2006, Science and Public Policy, V33, P489, DOI DOI 10.3152/147154306781778777 Li MH, 2017, J INFORMETR, V11, P598, DOI 10.1016/j.joi.2017.04.004 Mandelbrote S., 2001, FOOTPRINTS LION Mnih V, 2013, Arxiv, DOI arXiv:1312.5602 Perianes-Rodriguez A, 2018, J ASSOC INF SCI TECH, V69, P1046, DOI 10.1002/asi.24017 Qiu J, 2010, NATURE, V463, P142, DOI 10.1038/463142a Shen ZH, 2018, 56TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2018): PROCEEDINGS OF SYSTEM DEMONSTRATIONS, P87 Silver D, 2017, NATURE, V550, P354, DOI 10.1038/nature24270 Sinatra R, 2016, SCIENCE, V354, DOI 10.1126/science.aaf5239 Sinha A, 2015, WWW'15 COMPANION: PROCEEDINGS OF THE 24TH INTERNATIONAL CONFERENCE ON WORLD WIDE WEB, P243, DOI 10.1145/2740908.2742839 Sutton RS, 2018, ADAPT COMPUT MACH LE, P1 Tang J., 2008, KDD, P990, DOI DOI 10.1145/1401890.1402008 van Hasselt H, 2016, AAAI CONF ARTIF INTE, P2094 Wacker D, 2013, SCIENCE, V340, P615, DOI 10.1126/science.1232808 Wallace ML, 2018, RES POLICY, V47, P1975, DOI 10.1016/j.respol.2018.07.005 Wang ZY, 2016, PR MACH LEARN RES, V48 Watkins C. J. C. H., 1989, Learning from Delayed Rewards WATKINS CJCH, 1992, MACH LEARN, V8, P279, DOI 10.1007/BF00992698 Wei T., 2013, SCI REP-UK, V3, P1 Yu XY, 2021, J INFORMETR, V15, DOI 10.1016/j.joi.2021.101193 Zeng A, 2019, NAT COMMUN, V10, DOI 10.1038/s41467-019-11401-8 Zhang FJ, 2019, KDD'19: PROCEEDINGS OF THE 25TH ACM SIGKDD INTERNATIONAL CONFERENCCE ON KNOWLEDGE DISCOVERY AND DATA MINING, P2585, DOI 10.1145/3292500.3330785 Zhu NB, 2021, J INFORMETR, V15, DOI 10.1016/j.joi.2021.101205 NR 41 TC 3 Z9 3 U1 21 U2 65 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS SN 1751-1577 EI 1875-5879 J9 J INFORMETR JI J. Informetr. PD MAY PY 2023 VL 17 IS 2 AR 101409 DI 10.1016/j.joi.2023.101409 EA APR 2023 PG 15 WC Computer Science, Interdisciplinary Applications; Information Science & Library Science WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Computer Science; Information Science & Library Science GA G5SA0 UT WOS:000989740500001 DA 2024-09-05 ER PT J AU Smith, JG Tissing, R AF Smith, Justin G. Tissing, Reid TI Using Computational Text Classification for Qualitative Research and Evaluation in Extension SO JOURNAL OF EXTENSION LA English DT Article DE qualitative research; natural language processing; machine learning; text classification AB This article introduces a process for computational text classification that can be used in a variety of qualitative research and evaluation settings. The process leverages supervised machine learning based on an implementation of a multinomial Bayesian classifier. Applied to a community of inquiry framework, the algorithm was used to identify evidence of cognitive presence, social presence, and teaching presence in the text contributions (44,000 unique posts) of more than 4,000 participants in an online environmental education course. Results indicate that computational text classification can significantly reduce labor costs and can help Extension research faculty scale, accelerate, and ensure reproducibility of their research. C1 [Smith, Justin G.; Tissing, Reid] Washington State Univ, Shelton, WA 98584 USA. C3 Washington State University RP Smith, JG (corresponding author), Washington State Univ, Shelton, WA 98584 USA. EM justingriffis@wsu.edu; reid.tissing@wsu.edu CR Diao Q., 2011, IMPROVED NEAREST NEI Lai SW, 2015, AAAI CONF ARTIF INTE, P2267 Loria S., 2014, Secondary TextBlob: Simplified Text Processing Pang B., 2008, INFORM RETRIEVAL, V2, P1, DOI DOI 10.1561/1500000011 Pedregosa F, 2011, J MACH LEARN RES, V12, P2825 Rehurek R., 2011, GENSIM PYTHON FRAMEW, V3, P2 Saldana Johnny, 2015, The coding manual for qualitative researchers, Vfourth Sebastiani F, 2002, ACM COMPUT SURV, V34, P1, DOI 10.1145/505282.505283 Skelly J., 2014, J EXT, V52 Smith M. F., 1984, J EXTENSION, V22 Swan K., 2009, Information technology and constructivism in higher education: Progressive learning frameworks, P43, DOI DOI 10.4018/978-1-60566-654-9.CH004 NR 11 TC 1 Z9 1 U1 0 U2 1 PU UNIV OF WISCONSIN EXTENSION JOURNAL INC PI MADISON PA 605 EXTENSION BLDG 432 NORTH LAKE ST, MADISON, WI 53706 USA SN 0022-0140 EI 1077-5315 J9 J EXT JI J. Ext. PD APR PY 2018 VL 56 IS 2 AR 2TOT2 PG 7 WC Education & Educational Research WE Emerging Sources Citation Index (ESCI) SC Education & Educational Research GA GQ0LA UT WOS:000441309200024 DA 2024-09-05 ER PT J AU Chen, YL Chen, XH AF Chen, Yen-Liang Chen, Xiang-Han TI An evolutionary PageRank approach for journal ranking with expert judgements SO JOURNAL OF INFORMATION SCIENCE LA English DT Article DE citation-based approach; experts' survey method; journal ranking; PageRank; Particle Swarm Optimization ID PARTICLE SWARM OPTIMIZATION; IMPACT; MANAGEMENT; ALGORITHM; QUALITY; MIS; CITATIONS; SINGLE; FORUMS; MODEL AB The journal ranking problem has drawn a great deal of attention from researchers in various fields due to its importance in the evaluation of academic performance. Most previous studies solved the problem with either a subjective approach, based on expert survey metrics, or an objective approach, based on citation-based metrics. Since both have their own advantages and disadvantages, and since they are usually complementary, this work proposes a brand new approach that integrates the two. In this work, we propose the Evolutionary PageRank algorithm, which first uses the PageRank algorithm to evaluate journal prestige and then uses the Multi-Objective Particle Swarm Optimization to balance citation analysis and expert opinion. Experiments evaluating ranking quality were carried out with citation records and experts' surveys to show the effectiveness of the proposed method. The results indicate that the proposed method can improve PageRank journal ranking results. C1 [Chen, Yen-Liang; Chen, Xiang-Han] Natl Cent Univ, Dept Informat Management, Jung Li City 32001, Taoyuan County, Taiwan. C3 National Central University RP Chen, YL (corresponding author), Natl Cent Univ, Dept Informat Management, 300 Jung Da Rd, Jung Li City 32001, Taoyuan County, Taiwan. EM ylchen@mgt.ncu.edu.tw CR Agarwal A., 2006, Proceedings of the 12th ACM SIGKDD international conference on Knowledge discovery and data mining, KDD '06, ACM, New York, NY, USA, P14 [Anonymous], 2003, J INFORM TECHNOLOGY [Anonymous], 2002, Proceedings of the 11th international conference on World Wide Web, DOI [DOI 10.1145/511446.511513, 10.1145/511446.511513] Bar-Ilan J, 2006, COMPUT NETW, V50, P1448, DOI 10.1016/j.comnet.2005.10.020 Bar-Ilan J, 2010, J INFORMETR, V4, P141, DOI 10.1016/j.joi.2009.11.006 Barnes SJ, 2005, COMMUN ACM, V48, P110, DOI 10.1145/1039539.1039573 Bergstrom CT, 2008, NEUROLOGY, V71, P1850, DOI 10.1212/01.wnl.0000338904.37585.66 Bollen J, 2006, SCIENTOMETRICS, V69, P669, DOI 10.1007/s11192-006-0176-z Brin S, 1998, COMPUT NETWORKS ISDN, V30, P107, DOI 10.1016/S0169-7552(98)00110-X Cagnina L, 2005, J COMPUT SCI TECHNOL, V5, P204 Chen P, 2007, J INFORMETR, V1, P8, DOI 10.1016/j.joi.2006.06.001 Clerc M, 2004, STUD FUZZ SOFT COMP, V141, P219 Coello CAC, 2004, IEEE T EVOLUT COMPUT, V8, P256, DOI [10.1109/TEVC.2004.826067, 10.1109/tevc.2004.826067] Coleman A, 2007, J AM SOC INF SCI TEC, V58, P1148, DOI 10.1002/asi.20599 Davis PM, 2008, J AM SOC INF SCI TEC, V59, P2186, DOI 10.1002/asi.20943 Dellavalle RP, 2007, J AM ACAD DERMATOL, V57, P116, DOI 10.1016/j.jaad.2007.03.005 Ding Y, 2009, J AM SOC INF SCI TEC, V60, P2229, DOI 10.1002/asi.21171 DOKE ER, 1995, J COMPUT INFORM SYST, V36, P49 Garfield E, 2006, JAMA-J AM MED ASSOC, V295, P90, DOI 10.1001/jama.295.1.90 GARFIELD E, 1972, SCIENCE, V178, P471, DOI 10.1126/science.178.4060.471 GILLENSON ML, 1991, MIS QUART, V15, P447, DOI 10.2307/249448 Goodacre A., 2006, ACCOUNT BUS RES, V36, P65, DOI [10.1080/00014788.2006.9730011, DOI 10.1080/00014788.2006.9730011] Habibzadeh F, 2008, J INFORMETR, V2, P164, DOI 10.1016/j.joi.2008.02.001 Hardgrave BC, 1997, COMMUN ACM, V40, P119, DOI 10.1145/265684.265700 Harris C, 2008, J SCHOLARLY PUBL, V39, P373, DOI 10.3138/jsp.39.4.373 Herbrich R, 2000, ADV NEUR IN, P115 Hofacker CF, 2009, J ACAD MARKET SCI, V37, P238, DOI 10.1007/s11747-008-0124-y Jing Y, 2008, IEEE T PATTERN ANAL, V30, P1877, DOI 10.1109/TPAMI.2008.121 Katerattanakul P, 2003, COMMUN ACM, V46, P111, DOI 10.1145/944217.944221 Kennedy J, 1995, 1995 IEEE INTERNATIONAL CONFERENCE ON NEURAL NETWORKS PROCEEDINGS, VOLS 1-6, P1942, DOI 10.1109/icnn.1995.488968 Krink T., 2002, P IEEE C EV COMP CEC LIM A, 2007, J RANKING Lim A, 2009, COMMUN ACM, V52, P111, DOI 10.1145/1536616.1536645 Lowry P., 2004, J ASSOC INF SYST, V5, P29, DOI DOI 10.17705/1JAIS.00045 Ma N, 2008, INFORM PROCESS MANAG, V44, P800, DOI 10.1016/j.ipm.2007.06.006 Marsh SJ, 2006, J MANAGE INQUIRY, V15, P301, DOI 10.1177/1056492606291208 Maslov S, 2008, J NEUROSCI, V28, P11103, DOI 10.1523/JNEUROSCI.0002-08.2008 Mylonopoulos NA, 2001, COMMUN ACM, V44, P29, DOI 10.1145/383694.383701 NORD JH, 1995, INFORM MANAGE, V29, P29, DOI 10.1016/0378-7206(95)00010-T Olson JE, 2005, INTERFACES, V35, P323, DOI 10.1287/inte.1050.0149 Page L., 1998, The pagerank citation ranking: Bringing order to the web Pillai SU, 2005, IEEE SIGNAL PROC MAG, V22, P62, DOI 10.1109/MSP.2005.1406483 PINSKI G, 1976, INFORM PROCESS MANAG, V12, P297, DOI 10.1016/0306-4573(76)90048-0 Rainer RK, 2005, COMMUN ACM, V48, P91, DOI 10.1145/1042091.1042096 Rasmussen TK, 2003, BIOSYSTEMS, V72, P5, DOI 10.1016/s0303-2647(03)00131-X Ratnaweera A, 2004, IEEE T EVOLUT COMPUT, V8, P240, DOI 10.1109/tevc.2004.826071 Serenko A, 2009, J KNOWL MANAG, V13, P4, DOI 10.1108/13673270910931125 Svensson G, 2008, MARK INTELL PLAN, V26, P340, DOI 10.1108/02634500810879250 Tasgetiren MF, 2007, EUR J OPER RES, V177, P1930, DOI 10.1016/j.ejor.2005.12.024 Tripathi PK, 2007, INFORM SCIENCES, V177, P5033, DOI 10.1016/j.ins.2007.06.018 Via BJ, 2007, PORTAL-LIBR ACAD, V7, P333, DOI 10.1353/pla.2007.0038 WALSTROM KA, 1995, COMMUN ACM, V38, P93, DOI 10.1145/203330.203348 WEST J, 2007, EIGENFACTOR ORG RANK Zhang H, 2004, LECT NOTES COMPUT SC, V3201, P501 Zhao L, 2009, EXPERT SYST APPL, V36, P2805, DOI 10.1016/j.eswa.2008.01.061 NR 55 TC 11 Z9 12 U1 1 U2 30 PU SAGE PUBLICATIONS LTD PI LONDON PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND SN 0165-5515 EI 1741-6485 J9 J INF SCI JI J. Inf. Sci. PD JUN PY 2011 VL 37 IS 3 BP 254 EP 272 DI 10.1177/0165551511402421 PG 19 WC Computer Science, Information Systems; Information Science & Library Science WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Computer Science; Information Science & Library Science GA 775QC UT WOS:000291476000004 DA 2024-09-05 ER PT J AU Warin, T Stojkov, A AF Warin, Thierry Stojkov, Aleksandar TI Discursive dynamics and local contexts on Twitter: The refugee crisis in Europe SO DISCOURSE & COMMUNICATION LA English DT Article DE Agenda-setting theory; authority; discourse analysis; influence; natural language processing; refugee crisis; social media; structural topic modeling ID MEDIA BIAS; COVERAGE; NEWS AB In today's hybrid media environment, traditional news organizations extend their presence on Online Social Networks (OSNs) and compete with political and civil society organizations, public figures, and other influential digital storytelling individuals. This article examines conversations on Twitter, one of the most widely used OSNs, about Europe's refugee crisis in 2014 and 2015. We use, in particular, topic modeling techniques to deduce the existence of a complex network of Twitter topics formed in response to coverage of and opinion formation surrounding the European refugee crisis. We collected more than 11 million tweets in six different languages. One of our most significant findings is that while most conversations happen in English, the refugee crisis has had different rhythms in other languages. Our assumption is that this could be evidence that the power of mainstream local media on Twitter to set the agenda is considerable, at least regarding refugee-related conversations in Europe. C1 [Warin, Thierry] HEC Montreal, Montreal, PQ, Canada. [Stojkov, Aleksandar] Ss Cyril & Methodius Univ, Skopje, North Macedonia. [Warin, Thierry] Dept Int Business, 3000,chemin Cote Sainte Catherine, Montreal, PQ H3T2A7, Canada. C3 Universite de Montreal; HEC Montreal; Saints Cyril & Methodius University of Skopje RP Warin, T (corresponding author), Dept Int Business, 3000,chemin Cote Sainte Catherine, Montreal, PQ H3T2A7, Canada. EM thierry.warin@hec.ca CR Agarwal N., 2012, Behavior Computing, P3, DOI [DOI 10.1007/978-1-4471-2969-1_1, 10.1007/978-1-4471-2969-1_1] Ahmed R, 2020, MCGILL-QUEENS REFUG, V2, P151 Alencar A, 2018, INFORM COMMUN SOC, V21, P1588, DOI 10.1080/1369118X.2017.1340500 Alford JH, 2014, ENGL TEACH-PRACT CRI, V13, P71 Althaus SL, 2002, COMMUN RES, V29, P180, DOI 10.1177/0093650202029002004 [Anonymous], 1922, Public Opinion Antonakaki D, 2021, EXPERT SYST APPL, V164, DOI 10.1016/j.eswa.2020.114006 Barbera Pablo., 2020, The SAGE Handbook of Research Methods in Political Science and International Relations, P404, DOI [10.4135/9781526486387, DOI 10.4135/9781526486387, DOI 10.4135/9781526486387.N26] Bestgen Y, 2012, BEHAV RES METHODS, V44, P998, DOI 10.3758/s13428-012-0195-z Chadwick Andrew., 2013, HYBRID MEDIA SYSTEM Costa DL, 2017, ECONOMICA, V84, P393, DOI 10.1111/ecca.12227 Crepaz K, 2022, J ETHN MIGR STUD, V48, P1448, DOI 10.1080/1369183X.2020.1851471 DellaVigna S, 2007, Q J ECON, V122, P1187, DOI 10.1162/qjec.122.3.1187 Fraga I, 2012, Q J EXP PSYCHOL, V65, P1740, DOI 10.1080/17470218.2012.662989 Gao B, 2014, LECT NOTES SOC NETW, P129, DOI 10.1007/978-3-319-13590-8_7 Gentzkow M, 2006, J POLIT ECON, V114, P280, DOI 10.1086/499414 Groseclose T, 2005, Q J ECON, V120, P1191, DOI 10.1162/003355305775097542 Guess A, 2019, SCI ADV, V5, DOI 10.1126/sciadv.aau4586 Honeycutt C., 2009, Beyond microblogging: Conversation and collaboration via twitter, P1, DOI 10.1109/HICSS.2009.602 Jungherr A, 2015, CONTRIBUT POLIT SCI, P1, DOI 10.1007/978-3-319-20319-5 Jungherr A, 2016, J COMPUT-MEDIAT COMM, V21, P50, DOI 10.1111/jcc4.12143 Jungherr A, 2014, J COMMUN, V64, P239, DOI 10.1111/jcom.12087 Kahn KF, 2002, AM POLIT SCI REV, V96, P381 Kreis R, 2017, DISCOURSE COMMUN, V11, P498, DOI 10.1177/1750481317714121 Larcinese V, 2007, J THEOR POLIT, V19, P249, DOI 10.1177/0951629807077569 Leveau N, 2012, BEHAV RES METHODS, V44, P1007, DOI 10.3758/s13428-012-0208-y Lott JR, 2014, PUBLIC CHOICE, V160, P65, DOI 10.1007/s11127-014-0171-5 Nerghes A, 2019, MEDIA COMMUN-LISBON, V7, P275, DOI 10.17645/mac.v7i2.1983 Pearce W, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0094785 Puglisi R, 2011, BE J ECON ANAL POLI, V11 Purcell, 2019, WERE DANGER WHO WILL Roberts ME, 2019, J STAT SOFTW, V91, P1, DOI 10.18637/jss.v091.i02 Rogers E. M., 1988, Communication yearbook 11, V11, P555, DOI [10.1080/23808985.1988.11678708, DOI 10.1080/23808985.1988.11678708] Scott GG, 2012, J EXP PSYCHOL LEARN, V38, P783, DOI 10.1037/a0027209 Shaw E.F., 1977, GAZETTE LEIDEN NETHE, V23, P230 Siapera E, 2018, SOC MEDIA SOC, V4, DOI 10.1177/2056305118764437 Small TA, 2011, INFORM COMMUN SOC, V14, P872, DOI 10.1080/1369118X.2011.554572 The Pew Research Center for the People and the Press, 2004, NEWS AUD INCR POL Verona E, 2012, J ABNORM PSYCHOL, V121, P498, DOI 10.1037/a0025308 Vestergaard KT, 2020, J CONTEMP EUR STUD, V28, P411, DOI 10.1080/14782804.2020.1773775 Vinson D, 2014, COGNITION EMOTION, V28, P737, DOI 10.1080/02699931.2013.851068 Wigger I, 2022, EUR J COMMUN, V37, P21, DOI 10.1177/02673231211012173 Yardi Sarita, 2010, Bulletin of Science, Technology Society, V30, P316, DOI [10.1177/0270467610380011, DOI 10.1177/0270467610380011] NR 43 TC 0 Z9 0 U1 3 U2 16 PU SAGE PUBLICATIONS INC PI THOUSAND OAKS PA 2455 TELLER RD, THOUSAND OAKS, CA 91320 USA SN 1750-4813 EI 1750-4821 J9 DISCOURSE COMMUN JI Discourse Commun. PD JUN PY 2023 VL 17 IS 3 BP 354 EP 380 DI 10.1177/17504813231155739 EA MAR 2023 PG 27 WC Communication WE Social Science Citation Index (SSCI) SC Communication GA AR8J0 UT WOS:000941813000001 OA hybrid DA 2024-09-05 ER PT J AU Hou, JH Zheng, BL Wang, DY Zhang, Y Chen, CM AF Hou, Jianhua Zheng, Bili Wang, Dongyi Zhang, Yang Chen, Chaomei TI How Boundary-spanning Paper Sparkles Citation: From Citation Count to Citation Network SO JOURNAL OF INFORMETRICS LA English DT Article DE Boundary-spanning; Paper's role definition; Sentence-BERT; Knowledge diffusion; Citation network ID PROPENSITY SCORE; IMPACT; CLASSIFICATION; INNOVATION; BEHAVIORS; KNOWLEDGE; DYNAMICS; ARTICLES; SEARCH; ROLES AB Previous studies diverged on whether boundary-spanning papers are cited more heavily, how-ever, there is as yet no research that explains how boundary-spanning papers affect citation counts from a causal view and how they influence knowledge diffusion in citation network. To this end, we utilized Propensity Score Matching to clarify the relationship between the citation counts and the degree of boundary-spanning of 281,707 papers in the field of Astronomy (AS), Natural Language Processing (NLP), Library and Information Science (LIS) based on causal inference. We also adopted Sentence-BERT to compute the content similarity among seed papers, cited papers, citing papers, to imply how seed paper affects citation network when knowledge diffuses. According to the similarity between seed paper and citing paper, cited paper and citing paper, we defined paper's role in citation network as four types: Disseminator, Broker, Trigger, and Outlier. The major findings are as follows: (1) Papers with a higher degree of boundary-spanning are more likely to be cited heavily; (2) Disseminator and Outlier account for a larger proportion in three disciplines, while Broker and Trigger account for a smaller proportion; (3) The degree of boundary-spanning and citation counts of four types vary in three disciplines. This work, which reveals paper's value and role in citation network from the perspective of content, has implica-tions to provide some enlightenment for the paper's evaluation. C1 [Hou, Jianhua; Zheng, Bili; Wang, Dongyi; Zhang, Yang] Sun Yat Sen Univ, Guangzhou Higher Educ Mega Ctr, Sch Informat Management, 132 Waihuan East Rd, Guangzhou 510006, Peoples R China. [Chen, Chaomei] Drexel Univ, Coll Comp & Informat, 3675 Market St, Philadelphia, PA 19104 USA. C3 Sun Yat Sen University; Drexel University RP Zhang, Y (corresponding author), Sun Yat Sen Univ, Guangzhou Higher Educ Mega Ctr, Sch Informat Management, 132 Waihuan East Rd, Guangzhou 510006, Peoples R China. EM houjh5@mail.sysu.edu.cn; zhengbli@mail2.sysu.edu.cn; wangdy37@mail2.sysu.edu.cn; zhyang2@mail.sysu.edu.cn; cc345@drexel.edu RI Chen, Chaomei/A-1252-2007; Hou, Jianhua/JQI-1081-2023 OI Chen, Chaomei/0000-0001-8584-1041; FU Natural Science Foundation of Guangdong Province [2021A1515012291] FX This research was support by the Natural Science Foundation of Guangdong Province under Grant 2021A1515012291. CR [Anonymous], 2007, P 9 WEBKDD 1 SNA KDD, DOI DOI 10.1145/1348549.1348556 Austin PC, 2007, STAT MED, V26, P734, DOI 10.1002/sim.2580 Barabási AL, 1999, SCIENCE, V286, P509, DOI 10.1126/science.286.5439.509 BARBER B, 1961, SCIENCE, V134, P596, DOI 10.1126/science.134.3479.596 Bianconi G, 2001, EUROPHYS LETT, V54, P436, DOI 10.1209/epl/i2001-00260-6 Bornmann L, 2020, J INFORMETR, V14, DOI 10.1016/j.joi.2020.101098 Bornmann L, 2020, SCIENTOMETRICS, V123, P1149, DOI 10.1007/s11192-020-03406-8 Bornmann L, 2015, SCIENTOMETRICS, V102, P455, DOI 10.1007/s11192-014-1425-1 Brooks D, 2013, PHYSIOTHER CAN, V65, P1, DOI 10.3138/ptc.65.1.GEE Bu Y, 2021, J ASSOC INF SCI TECH, V72, P523, DOI 10.1002/asi.24433 Burt RS, 2004, AM J SOCIOL, V110, P349, DOI 10.1086/421787 Chang YW, 2013, INFORM PROCESS MANAG, V49, P983, DOI 10.1016/j.ipm.2013.03.003 Chen CM, 2012, J AM SOC INF SCI TEC, V63, P431, DOI 10.1002/asi.21694 Cheng QK, 2020, SCIENTOMETRICS, V124, P1923, DOI 10.1007/s11192-020-03576-5 Jabbour CJC, 2013, SERIALS REV, V39, P93, DOI 10.1016/j.serrev.2013.03.001 CHUBIN DE, 1975, SOC STUD SCI, V5, P423, DOI 10.1177/030631277500500403 Devlin J, 2019, 2019 CONFERENCE OF THE NORTH AMERICAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS: HUMAN LANGUAGE TECHNOLOGIES (NAACL HLT 2019), VOL. 1, P4171 Fazel I, 2015, J ENGL ACAD PURP, V20, P203, DOI 10.1016/j.jeap.2015.10.002 Feng M., 2009, CHINESE J LIB INFORM, V2, P28 Foster JG, 2015, AM SOCIOL REV, V80, P875, DOI 10.1177/0003122415601618 FROST CO, 1979, LIBR QUART, V49, P399 Funk RJ, 2017, MANAGE SCI, V63, P791, DOI 10.1287/mnsc.2015.2366 Gordon M, 2019, MED TEACH, V41, P1232, DOI 10.1080/0142159X.2018.1513642 GRUBER TR, 1993, KNOWL ACQUIS, V5, P199, DOI 10.1006/knac.1993.1008 He ZY, 2018, J ASSOC INF SCI TECH, V69, P1148, DOI 10.1002/asi.24041 Hou JH, 2022, J INFORMETR, V16, DOI 10.1016/j.joi.2022.101306 Hou JH, 2021, SCIENTOMETRICS, V126, P5945, DOI 10.1007/s11192-021-03979-y Hou JH, 2020, PLOS ONE, V15, DOI 10.1371/journal.pone.0234347 Jones BF, 2009, REV ECON STUD, V76, P283, DOI 10.1111/j.1467-937X.2008.00531.x Kuhn T.S., 1962, The structure of scientific revolutions Kwan BSC, 2014, J ENGL ACAD PURP, V14, P29, DOI 10.1016/j.jeap.2013.11.004 Lyu DQ, 2021, SCIENTOMETRICS, V126, P3243, DOI 10.1007/s11192-021-03908-z Ma YF, 2018, P NATL ACAD SCI USA, V115, P12608, DOI 10.1073/pnas.1800485115 Mäkinen EI, 2020, MINERVA, V58, DOI 10.1007/s11024-019-09381-6 MARCUS RA, 1956, J CHEM PHYS, V24, P966, DOI 10.1063/1.1742723 Min C, 2021, TECHNOL FORECAST SOC, V164, DOI 10.1016/j.techfore.2020.120502 PERITZ BC, 1983, SCIENTOMETRICS, V5, P303, DOI 10.1007/BF02147226 Peters ME, 2017, PROCEEDINGS OF THE 55TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2017), VOL 1, P1756, DOI 10.18653/v1/P17-1161 Plantec Q, 2021, TECHNOL FORECAST SOC, V168, DOI 10.1016/j.techfore.2021.120782 Reimers N, 2019, 2019 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING AND THE 9TH INTERNATIONAL JOINT CONFERENCE ON NATURAL LANGUAGE PROCESSING (EMNLP-IJCNLP 2019), P3982 Rostami F, 2014, SCIENTOMETRICS, V98, P2007, DOI 10.1007/s11192-013-1118-1 Roth C, 2012, J INFORMETR, V6, P111, DOI 10.1016/j.joi.2011.08.005 Sang CY, 2020, PHYSICA A, V537, DOI 10.1016/j.physa.2019.122639 Schilling MA, 2011, RES POLICY, V40, P1321, DOI 10.1016/j.respol.2011.06.009 Scripps J, 2007, IEEE DATA MINING, P649, DOI 10.1109/ICDM.2007.37 Sebastian Y, 2021, PLOS ONE, V16, DOI 10.1371/journal.pone.0254744 Shi L, 2010, APPL LINGUIST, V31, P1, DOI 10.1093/applin/amn045 Shurong X. U., 2017, CHINESE J SCI TECHNI, V28, P28 Sinha A, 2015, WWW'15 COMPANION: PROCEEDINGS OF THE 24TH INTERNATIONAL CONFERENCE ON WORLD WIDE WEB, P243, DOI 10.1145/2740908.2742839 SMALL H, 1973, J AM SOC INFORM SCI, V24, P265, DOI 10.1002/asi.4630240406 Smojver V, 2021, J KNOWL MANAG, V25, P433, DOI 10.1108/JKM-01-2020-0079 Spreeuwenberg MD, 2010, MED CARE, V48, P166, DOI 10.1097/MLR.0b013e3181c1328f Stuart EA, 2010, STAT SCI, V25, P1, DOI 10.1214/09-STS313 Tahamtan Iman, 2016, Scientometrics, V107, P1195, DOI 10.1007/s11192-016-1889-2 Tahamtan I, 2018, J INFORMETR, V12, P203, DOI 10.1016/j.joi.2018.01.002 Tahamtan I, 2016, SCIENTOMETRICS, V107, P1195, DOI 10.1007/s11192-016-1889-2 Tan HX, 2015, SCIENTOMETRICS, V102, P885, DOI 10.1007/s11192-014-1393-5 Tang SJ, 2022, SCI CHINA LIFE SCI, V65, P753, DOI 10.1007/s11427-021-1974-7 Teixeira AAC, 2011, SCIENTOMETRICS, V89, P1, DOI 10.1007/s11192-011-0445-3 Teplitskiy M, 2022, RES POLICY, V51, DOI 10.1016/j.respol.2022.104484 Uzzi B, 2013, SCIENCE, V342, P468, DOI 10.1126/science.1240474 VINKLER P, 1987, SCIENTOMETRICS, V12, P47, DOI 10.1007/BF02016689 Wager S, 2018, J AM STAT ASSOC, V113, P1228, DOI 10.1080/01621459.2017.1319839 Wang DS, 2013, SCIENCE, V342, P127, DOI 10.1126/science.1237825 Wang J, 2017, RES POLICY, V46, P1416, DOI 10.1016/j.respol.2017.06.006 White MD, 1997, LIBR QUART, V67, P122, DOI 10.1086/629929 Wu LF, 2019, NATURE, V566, P378, DOI 10.1038/s41586-019-0941-9 Xie J, 2019, SCIENTOMETRICS, V119, P1429, DOI 10.1007/s11192-019-03094-z Xie Q, 2020, J INFORMETR, V14, DOI 10.1016/j.joi.2020.101055 Yan E, 2013, J INFORMETR, V7, P249, DOI 10.1016/j.joi.2012.11.008 Yayavaram S, 2008, ADMIN SCI QUART, V53, P333, DOI 10.2189/asqu.53.2.333 Ye X., 2014, INFORM RES, P17 Zeng A, 2017, PHYS REP, V714, P1, DOI 10.1016/j.physrep.2017.10.001 Zhang CZ, 2021, J INFORMETR, V15, DOI 10.1016/j.joi.2021.101134 Zhang JJ, 2019, TECHNOL FORECAST SOC, V143, P260, DOI 10.1016/j.techfore.2019.01.022 Zhang L, 2011, J INFORMETR, V5, P583, DOI 10.1016/j.joi.2011.05.004 Zhuge H, 2010, J AM SOC INF SCI TEC, V61, P1824, DOI 10.1002/asi.21353 NR 77 TC 4 Z9 4 U1 26 U2 69 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS SN 1751-1577 EI 1875-5879 J9 J INFORMETR JI J. Informetr. PD AUG PY 2023 VL 17 IS 3 AR 101434 DI 10.1016/j.joi.2023.101434 EA JUL 2023 PG 19 WC Computer Science, Interdisciplinary Applications; Information Science & Library Science WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Computer Science; Information Science & Library Science GA Q6WJ8 UT WOS:001058905500001 DA 2024-09-05 ER PT J AU Gupta, BM Dhawan, SM Mamdapur, GMN AF Gupta, B. M. Dhawan, S. M. Mamdapur, Ghouse Modin N. TI Research trends in the field of natural language processing : A scientometric study based on global publications during 2001-2020 SO COLLNET JOURNAL OF SCIENTOMETRICS AND INFORMATION MANAGEMENT LA English DT Article DE Natural language processing; Global publications; Scientometrics; Bibliometrics AB The study provides a quantitative and qualitative description of global research in "Natural Language Processing" ( NLP) using bibliometric methods. The analysis is based on publications data sourced from Scopus database for the period 2001-2020. The purpose of the study is to understand the status of NLP research at the global, national, institutional, and author level. The study highlights the productivity and performance of NLP research on a series of metrics as well as provides a visual view of collaborative network relationship between authors, research institutions, and leading countries using standard software tools. In addition, the study identified the leading players in NLP research such as key countries, institutions, authors, and areas of research. According to the study, the USA leads in global publications output as well as it leads in terms of relative citation index. C1 [Gupta, B. M.] CSIR NISTADS, Delhi 110012, India. [Dhawan, S. M.] CSIR NPL, Delhi 110012, India. [Mamdapur, Ghouse Modin N.] Synthite Ind P Ltd, New Prod Dev & Res, Kolenchery 682311, Kerala, India. C3 Council of Scientific & Industrial Research (CSIR) - India; CSIR - National Institute of Science Communication & Policy Research (NIScPR); Council of Scientific & Industrial Research (CSIR) - India; CSIR - National Physical Laboratory (NPL) RP Mamdapur, GMN (corresponding author), Synthite Ind P Ltd, New Prod Dev & Res, Kolenchery 682311, Kerala, India. EM bmgupta1@gmail.com; smdhawan@yahoo.com; ghouse@synthite.com OI Mamdapur, Ghouse Modin/0000-0003-4155-1987 CR Banerjee Dibyendu, 2020, NATURAL LANGUAGE PRO Chen XL, 2020, APPL SCI-BASEL, V10, DOI 10.3390/app10062157 Chen XL, 2018, WIREL COMMUN MOB COM, DOI 10.1155/2018/1827074 Chen XL, 2018, BMC MED INFORM DECIS, V18, DOI [10.1186/s12911-018-0594-x, 10.1186/s12870-018-1555-3] Dhawan S. M., 2021, International Journal of Knowledge Content Development & Technology, V11, P29 IBM Cloud Education, 2020, WHAT IS NAT LANG PRO Lopez-Martinez RE, 2020, J SCIENTOMETR RES, V9, P310, DOI 10.5530/jscires.9.3.38 Raghavan VV, 2016, COGNITIVE COMPUTING Reshamwala A., 2013, REV NATURAL LANGUAGE Rybkin Yuriy, 2020, NLP APPL BUSINESS Wang J, 2020, J MED INTERNET RES, V22, DOI 10.2196/16816 NR 11 TC 0 Z9 0 U1 2 U2 4 PU TARU PUBLICATIONS PI NEW DELHI PA G-159, PUSHKAR ENCLAVE, PASHCHIM VIHAR, NEW DELHI, 110 063, INDIA SN 0973-7766 EI 2168-930X J9 COLLNET J SCIENTOMET JI Collnet J. Scientometr. Inf. Manag. PD JUN PY 2023 VL 17 IS 1 BP 61 EP 79 DI 10.47974/CJSIM-2022-0023 PG 19 WC Information Science & Library Science WE Emerging Sources Citation Index (ESCI) SC Information Science & Library Science GA M8KC9 UT WOS:001032640000005 DA 2024-09-05 ER PT J AU Alnowaiser, K AF Alnowaiser, Khaled TI Scientific text citation analysis using CNN features and ensemble learning model SO PLOS ONE LA English DT Article ID BIBLIOMETRICS; CONTEXT; COUNTS; INDEX AB Citation illustrates the link between citing and cited documents. Different aspects of achievements like the journal's impact factor, author's ranking, and peers' judgment are analyzed using citations. However, citations are given the same weight for determining these important metrics. However academics contend that not all citations can ever have equal weight. Predominantly, such rankings are based on quantitative measures and the qualitative aspect is completely ignored. For a fair evaluation, qualitative evaluation of citations is needed in addition to quantitative ones. Many existing works that use qualitative evaluation consider binary class and categorize citations as important or unimportant. This study considers multi-class tasks for citation sentiments on imbalanced data and presents a novel framework for sentiment analysis in in-text citations of research articles. In the proposed technique, features are retrieved using a convolutional neural network (CNN), and classification is performed using a voting classifier that combines Logistic Regression (LR) and Stochastic Gradient Descent (SGD). The class imbalance problem is handled by the synthetic minority oversampling technique (SMOTE). Extensive experiments are performed in comparison with the proposed approach using SMOTE-generated data and machine learning models by term frequency (TF), and term frequency-inverse document frequency (TF-IDF) to evaluate the efficacy of the proposed approach for citation analysis. It is found that the proposed voting classifier using CNN features achieves an accuracy, precision, recall, and F1 score of 0.99 for all. This work not only advances the field of sentiment analysis in academic citations but also underscores the importance of incorporating qualitative aspects in evaluating the impact and sentiments conveyed through citations. C1 [Alnowaiser, Khaled] Prince Sattam Bin Abdulaziz Univ, Coll Comp Engn & Sci, Dept Comp Engn, Al Kharj, Saudi Arabia. C3 Prince Sattam Bin Abdulaziz University RP Alnowaiser, K (corresponding author), Prince Sattam Bin Abdulaziz Univ, Coll Comp Engn & Sci, Dept Comp Engn, Al Kharj, Saudi Arabia. EM k.alnowaiser@psau.edu.sa RI Alnowaiser, Khaled/GQY-5062-2022 OI Alnowaiser, Khaled/0009-0007-2717-6902 FU Prince Sattam bin Abdulaziz University [PSAU/2024/R/1445] FX This study was supported by Prince Sattam bin Abdulaziz University in the form of a grant to KA [PSAU/2024/R/1445]. CR Aljuaid H, 2021, TELEMAT INFORM, V56, DOI 10.1016/j.tele.2020.101492 Amjad Z, 2020, INT J ADV COMPUT SC, V11, P621 [Anonymous], 2012, 2012 Conference of the North American Chapter of the Association for Computational Linguistics [Anonymous], 2017, INT C COMP SCI APPL Ashraf I, 2019, APPL SCI-BASEL, V9, DOI 10.3390/app9112337 Athar A., 2011, P ACL 2011 STUD SESS, P81 Bar-Ilan J, 2017, SCIENTOMETRICS, V113, P547, DOI 10.1007/s11192-017-2242-0 Bornmann L, 2008, J DOC, V64, P45, DOI 10.1108/00220410810844150 Brijain M., 2014, International Journal Of Science And Research (IJSR) Catal C, 2017, APPL SOFT COMPUT, V50, P135, DOI 10.1016/j.asoc.2016.11.022 Chawla NV, 2010, DATA MINING AND KNOWLEDGE DISCOVERY HANDBOOK, SECOND EDITION, P875, DOI 10.1007/978-0-387-09823-4_45 CORTES C, 1995, MACH LEARN, V20, P273, DOI 10.1023/A:1022627411411 Freund Y, 1997, J COMPUT SYST SCI, V55, P119, DOI 10.1006/jcss.1997.1504 Garfield E, 2006, JAMA-J AM MED ASSOC, V295, P90, DOI 10.1001/jama.295.1.90 Garfield E., 1998, 41 ANN M COUNC BIOL Ghosh S., 2020, P 53 HAW INT C SYST Gregorutti B, 2017, STAT COMPUT, V27, P659, DOI 10.1007/s11222-016-9646-1 Herther NK, 2009, ELECTRON LIBR, V27, P361, DOI 10.1108/02640470910966835 Hirsch JE, 2005, P NATL ACAD SCI USA, V102, P16569, DOI 10.1073/pnas.0507655102 HJERPPE R, 1982, SCIENTOMETRICS, V4, P241, DOI 10.1007/BF02021064 Huggett S, 2013, ATHEROSCLEROSIS, V230, P275, DOI 10.1016/j.atherosclerosis.2013.07.051 Ikram MT, 2019, SCIENTOMETRICS, V119, P73, DOI 10.1007/s11192-019-03028-9 Ishaq A, 2021, IEEE ACCESS, V9, P39707, DOI 10.1109/ACCESS.2021.3064084 Karim M, 2022, APPL SCI-BASEL, V12, DOI 10.3390/app12063203 Khan S., 2018, Synthesis Lect. Comp. Vision, V8, P1, DOI DOI 10.2200/S00822ED1V01Y201712COV015 Kochhar SK, 2020, ICT EXPRESS, V6, P253, DOI 10.1016/j.icte.2020.02.001 Moed HF, 2012, SCIENTOMETRICS, V92, P367, DOI 10.1007/s11192-012-0679-8 Nazir S, 2022, IEEE ACCESS, V10, P87990, DOI 10.1109/ACCESS.2022.3199420 Oppenheim C, 1997, J DOC, V53, P477, DOI 10.1108/EUM0000000007207 Pan RK, 2014, SCI REP-UK, V4, DOI 10.1038/srep04880 Rustam F, 2021, IEEE ACCESS, V9, P33675, DOI 10.1109/ACCESS.2021.3061592 Rustam F, 2019, ENTROPY-SWITZ, V21, DOI 10.3390/e21111078 SAFAVIAN SR, 1991, IEEE T SYST MAN CYB, V21, P660, DOI 10.1109/21.97458 Sebastiani F, 2002, ACM COMPUT SURV, V34, P1, DOI 10.1145/505282.505283 Umer M, 2022, SENSORS-BASEL, V22, DOI 10.3390/s22072431 Umer M, 2021, ETRI J, V43, P95, DOI 10.4218/etrij.2019-0443 Wang MY, 2020, SCIENTOMETRICS, V125, P2109, DOI 10.1007/s11192-020-03677-1 West JD, 2013, J AM SOC INF SCI TEC, V64, P787, DOI 10.1002/asi.22790 Wildgaard L, 2014, SCIENTOMETRICS, V101, P125, DOI 10.1007/s11192-014-1423-3 Xu Jun, 2015, AMIA Annu Symp Proc, V2015, P1334 Yousif A, 2019, ARTIF INTELL REV, V52, P1805, DOI 10.1007/s10462-017-9597-8 Yu Bei., 2013, P 76 ASIST ANN M CLO, P1, DOI [10.1002/meet.14505001084, DOI 10.1002/MEET.14505001084] ZADROZNY B, 2002, P 8 ACM SIGKDD INT C, P694, DOI DOI 10.1145/775047.775151 Zhang Y., 2014, Abstract And Applied Analysis, V2014 Zhu XD, 2015, J ASSOC INF SCI TECH, V66, P408, DOI 10.1002/asi.23179 NR 45 TC 0 Z9 0 U1 7 U2 7 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA SN 1932-6203 J9 PLOS ONE JI PLoS One PD MAY 28 PY 2024 VL 19 IS 5 AR e0302304 DI 10.1371/journal.pone.0302304 PG 19 WC Multidisciplinary Sciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Science & Technology - Other Topics GA SI9G2 UT WOS:001233936700036 PM 38805427 OA gold, Green Published DA 2024-09-05 ER PT J AU Lang, J Repp, H AF Lang, Johannes Repp, Holger TI Artificial intelligence in medical education and the meaning of interaction with natural intelligence - an interdisciplinary approach SO GMS JOURNAL FOR MEDICAL EDUCATION LA English DT Article DE artificial intelligence; interdisciplinary research; interdisciplinary learning; evaluation; teaching AB Introduction: The practice of medicine is characterized by decision making in which digital techniques can provide good support. In this context, artificial intelligence (AI) is becoming increasingly important. The challenge for physicians, however, is to maintain an overview of the potential applications and usefulness of AI in order to be able to apply it efficiently and safely in their work. Therefore, appropriate skills must be imparted during the course of medical studies so that future practitioners can meet this requirement. Project description: The interdisciplinary research-related teaching and learning project "(Natural) Science and Technology in Medicine NWTmed" brings together students at the Justus-Liebig-University Giessen (JLU) from the fields of medicine and other (natural) scientific disciplines in structured courses with the aim of thinking, learning, and working in an interdisciplinary and research-oriented manner already during their medical education. With the involvement of local researchers, a "multi-disciplinary" seminar on the basic premises, methods, and applications of AI was established. Results: The participants of the course came from a wide variety of fields of study, which promoted an interdisciplinary exchange and animated discussions. A gain in knowledge and an increase in interest in the topic of AI was noted in the evaluations, and a willingness on the part of the students to pursue further independent study was also expressed. Discussion and conclusion: The topic of AI and its relevance to the field of medicine is not yet sufficiently represented in medical education. It will require integration in the curriculum and performance evaluations as well as interdisciplinary and research-related teaching formats. C1 [Lang, Johannes; Repp, Holger] Justus Liebig Univ Giessen, Med Fac, Div Study & Teaching, Deans Off, Klin Str 29, D-35392 Giessen, Germany. C3 Justus Liebig University Giessen RP Lang, J (corresponding author), Justus Liebig Univ Giessen, Med Fac, Div Study & Teaching, Deans Off, Klin Str 29, D-35392 Giessen, Germany. EM johannes.lang@dekanat.med.uni-giessen.de FU central and decentralized QSL funds of the JLU Giessen; study structure program of the State of Hesse FX The work is supported by central and decentralized QSL funds of the JLU Giessen as well as by funds from the study structure program of the State of Hesse. CR Ertl G, 2018, DEUT MED WOCHENSCHR, V143, P1421, DOI 10.1055/a-0669-1618 Haag M, 2018, GMS J MED EDU, V35, DOI 10.3205/zma001189 Heinz S, 2019, GEMEINSAME JAHRESTAG, DOI [10.3205/19gma202, DOI 10.3205/19GMA202] Lang J, 2018, JAHRESTAGUNG GESELLS, DOI [10.3205/18gma050, DOI 10.3205/18GMA050] Linnyk O., 2015, DILEPTONS PHOTONS PR Obert M, 2019, EUR RESPIR J, V54, DOI 10.1183/13993003.01185-2019 Schreibgruppe Digitalisierung, 2018, SCHW ARZTEZ, V99, P1441 Topol Eric, 2019, How artificial intelligence can make healthcare human again NR 8 TC 7 Z9 8 U1 1 U2 10 PU GERMAN MEDICAL SCIENCE-GMS PI DUESSELDORF PA UBIERSTRASSE 20, DUESSELDORF, 40223, GERMANY SN 2366-5017 J9 GMS J MED EDU JI GMS J. Med. Educ. PY 2020 VL 37 IS 6 AR Doc59 DI 10.3205/zma001352 PG 3 WC Education, Scientific Disciplines WE Emerging Sources Citation Index (ESCI) SC Education & Educational Research GA OU6XD UT WOS:000591668800005 PM 33225051 DA 2024-09-05 ER PT J AU Ruiz-Sánchez, R Arencibia-Jorge, R Tagüeña, J Jiménez-Andrade, JL Carrillo-Calvet, H AF Ruiz-Sanchez, Ricardo Arencibia-Jorge, Ricardo Taguena, Julia Jimenez-Andrade, Jose Luis Carrillo-Calvet, Humberto TI Exploring research on ecotechnology through artificial intelligence and bibliometric maps SO ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY LA English DT Article DE Ecotechnologies; Bibliometrics; Sustainable development goals; Network analysis; SOM neural networks ID WASTE-WATER TREATMENT; DEA ENVIRONMENTAL ASSESSMENT; CONSTRUCTED WETLANDS; TECHNOLOGY DEVELOPMENT; TREATMENT PERFORMANCES; CARBON; SUSTAINABILITY; EFFICIENCY; NIGERIA; RECOVERY AB Ecotechnology, quintessential for crafting sustainable socio-environmental strategies, remains tantalizingly uncharted. Our analysis, steered by the nuances of machine learning and augmented by bibliometric insights, delineates the expansive terrain of this domain, elucidates pivotal research themes and conundrums, and discerns the vanguard nations in this field. Furthermore, we deftly connect our discoveries to the United Nations' 2030 Sustainable Development Goals, thereby accentuating the profound societal ramifications of ecotechnology. (c) 2024 The Authors. Published by Elsevier B.V. on behalf of Chinese Society for Environmental Sciences, Harbin Institute of Technology, Chinese Research Academy of Environmental Sciences. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). C1 [Ruiz-Sanchez, Ricardo] Inst Politecn Nacl, Unidad Profes Interdisciplinaria Ingn Palenque UPI, Palenque 29960, Chiapas, Mexico. [Ruiz-Sanchez, Ricardo; Arencibia-Jorge, Ricardo; Taguena, Julia; Jimenez-Andrade, Jose Luis; Carrillo-Calvet, Humberto] Natl Autonomous Univ Mex, Complex Sci Ctr, Circuito Ctr Cultural S-N, Coyoacan 04510, Mexico City, Mexico. [Taguena, Julia] Univ Nacl Autonoma Mexico, Inst Renewable Energies IER, Priv Xochicalco S-N, Temixco 62580, Morelos, Mexico. [Jimenez-Andrade, Jose Luis; Carrillo-Calvet, Humberto] Univ Nacl Autonoma Mexico, Fac Sci, Circuito Ctr Cultural S-N, Coyoacan 04510, Mexico City, Mexico. C3 Universidad Nacional Autonoma de Mexico; Universidad Nacional Autonoma de Mexico RP Arencibia-Jorge, R (corresponding author), Natl Autonomous Univ Mex, Complex Sci Ctr, Circuito Ctr Cultural S-N, Coyoacan 04510, Mexico City, Mexico. EM ricardo.arencibia@c3.unam.mx RI Carrillo Calvet, Humberto/E-2265-2012; Jiménez-Andrade, José-Luis Luis Jiménez/T-1666-2018; Arencibia-Jorge, Ricardo/B-1330-2016 OI Carrillo Calvet, Humberto/0000-0003-3659-6769; Jiménez-Andrade, José-Luis Luis Jiménez/0000-0003-3453-7159; Arencibia-Jorge, Ricardo/0000-0001-8907-2454 FU UNAM- DGAPA postdoctoral fellowship program; [OPP-00534251STEAMINC] FX This research is a result of the program "Scientometrics, Complexity, and Science of Science ", at the Complexity Science Center of the National Autonomous University of Mexico (UNAM) . Ricardo Ruiz-Sanchez was partially supported by the UNAM- DGAPA postdoctoral fellowship program. We are very grateful to Clarivate Analytics for granting us a temporary license to use In-Cites. Contract ID: OPP-00534251STEAMINC, Subscription Name: UNIVERSIDAD NACIONAL AUTONOMA DE MEXICO_OPP- 00534251STEAMINC_1. CR Aba RP, 2021, WATER-SUI, V13, DOI 10.3390/w13101403 Ademiluyi YS, 2021, AMA-AGR MECH ASIA AF, V52, P82 Afzal M, 2019, NAT SUSTAIN, V2, P863, DOI 10.1038/s41893-019-0350-y Agnhage T, 2016, IND CROP PROD, V86, P334, DOI 10.1016/j.indcrop.2016.04.016 Akbari M, 2020, COGENT BUS MANAG, V7, DOI 10.1080/23311975.2020.1751906 Aniskevich S, 2017, LATV J PHYS TECH SCI, V54, P10, DOI 10.1515/lpts-2017-0037 [Anonymous], 2002, Netdraw Network Visualization Villaseñor EA, 2017, SCIENTOMETRICS, V110, P77, DOI 10.1007/s11192-016-2166-0 Bannister JR, 2018, RESTOR ECOL, V26, P1039, DOI 10.1111/rec.12880 Boetzkes A., 2010, Ecotechnology and the Receptive Surface, DOI [10.5749/j.cttttt24.8, DOI 10.5749/J.CTTTTT24.8] Brown MT, 1997, ECOL ENG, V9, P51, DOI 10.1016/S0925-8574(97)00033-5 Button M, 2015, ECOL ENG, V80, P162, DOI 10.1016/j.ecoleng.2014.09.073 Chen LM, 2020, SCI TOTAL ENVIRON, V749, DOI 10.1016/j.scitotenv.2020.141352 Chen LM, 2019, WATER-SUI, V11, DOI 10.3390/w11030444 Coello J, 2018, FOREST SYST, V27, DOI 10.5424/fs/2018273-13540 Czekala W, 2017, ICEE INT C ENERG, P574 Alvarez-Castañón LD, 2019, CIENCIAUAT, V13, P83, DOI 10.29059/cienciauat.v13i2.1121 Alvarez-Castañon LD, 2018, WORLD SUSTAIN SER, P139, DOI 10.1007/978-3-319-70560-6_9 Ewald N, 2020, WASTE MANAGE, V102, P40, DOI 10.1016/j.wasman.2019.10.014 Silva PYF, 2021, ESTUD DEMOGR URBANOS, V36, P563, DOI 10.24201/edu.v36i2.1950 Gustavsson E, 2017, J URBAN TECHNOL, V24, P93, DOI 10.1080/10630732.2016.1175806 Haddaway NR, 2019, ENVIRON EVID, V8, DOI 10.1186/s13750-018-0145-z Haddaway NR, 2019, ENVIRON EVID, V8, DOI 10.1186/s13750-019-0150-x Haddaway NR, 2018, ECOHYDROL HYDROBIOL, V18, P247, DOI 10.1016/j.ecohyd.2018.06.008 Han R, 2021, WATER AIR SOIL POLL, V232, DOI 10.1007/s11270-021-05285-y Houmoller AP, 2017, RENEWABLE ENERGY INTEGRATION: PRACTICAL MANAGEMENT OF VARIABILITY, UNCERTAINTY, AND FLEXIBILITY IN POWER GRIDS, 2ND EDITION, P55, DOI 10.1016/B978-0-12-809592-8.00005-6 Irandoust M, 2016, ECOL INDIC, V69, P118, DOI 10.1016/j.ecolind.2016.03.051 Johannesdottir SL, 2020, ENVIRON EVID, V9, DOI 10.1186/s13750-020-00207-7 Jurmalietis R, 2015, INT MULTIDDISCIP SCI, P325 Kasprzyk M, 2021, RESOUR CONSERV RECY, V168, DOI 10.1016/j.resconrec.2020.105335 Kataki S, 2021, RENEW SUST ENERG REV, V148, DOI 10.1016/j.rser.2021.111261 Kataki S, 2021, J ENVIRON MANAGE, V283, DOI 10.1016/j.jenvman.2021.111986 Kesavan PC, 2008, PHILOS T R SOC B, V363, P877, DOI 10.1098/rstb.2007.2189 KESSLER MM, 1963, AM DOC, V14, P10, DOI 10.1002/asi.5090140103 Khalifa J, 2020, DESALIN WATER TREAT, V178, P53, DOI 10.5004/dwt.2020.24950 Kim SL, 2018, ASIA-PAC J ACCOUNT E, V25, P433, DOI 10.1080/16081625.2017.1339617 Kluczka J, 2020, POLYMERS-BASEL, V12, DOI 10.3390/polym12030635 Knapp S, 2019, SUSTAINABILITY-BASEL, V11, DOI 10.3390/su11205846 Knights P, 2011, ENVIRON ETHICS, V33, P339, DOI 10.5840/enviroethics201133441 Kobayashi H, 2011, SUSTAINABILITY-BASEL, V3, P1282, DOI 10.3390/su3081282 Kohonen T, 2013, NEURAL NETWORKS, V37, P52, DOI 10.1016/j.neunet.2012.09.018 Konur O, 2020, Handbook of Algal Science, Technology and Medicine, P319, DOI [10.1016/B978-0-12-818305-2.00020-6, DOI 10.1016/B978-0-12-818305-2.00020-6] Korkusuz EA, 2005, ECOL ENG, V24, P187, DOI 10.1016/j.ecoleng.2004.10.002 Krichevsky S, 2018, PHILOS COSMOL, V20, P92, DOI 10.29202/phil-cosm/20/8 Kronbergs E, 2003, ENVIRONMENT, TECHNOLOGY, RESOURCES, PROCEEDINGS, P145 Lai HX, 2021, INT J HYDROGEN ENERG, V46, P5612, DOI 10.1016/j.ijhydene.2020.11.032 Latrach L, 2018, ECOL ENG, V117, P140, DOI 10.1016/j.ecoleng.2018.04.003 Ldnl-Unam, 2020, Zenodo, DOI 10.5281/ZENODO.3630581 Limnios EAM, 2009, ECOL ECON, V68, P2525, DOI 10.1016/j.ecolecon.2009.04.020 Liu JC, 2023, FORESTS, V14, DOI 10.3390/f14071442 Lopes IG, 2020, FRONT MICROBIOL, V11, DOI 10.3389/fmicb.2020.01616 Lopes IG, 2020, J CLEAN PROD, V251, DOI 10.1016/j.jclepro.2019.119753 Lopes IG, 2019, WASTE MANAGE RES, V37, P590, DOI 10.1177/0734242X19830170 Macura B, 2019, ENVIRON EVID, V8, DOI 10.1186/s13750-019-0173-3 Mahlberg B, 2014, EUR J OPER RES, V234, P885, DOI 10.1016/j.ejor.2013.11.017 Malaviya P, 2016, CRIT REV MICROBIOL, V42, P607, DOI 10.3109/1040841X.2014.974501 Merlin G, 2002, HYDROBIOLOGIA, V469, P87, DOI 10.1023/A:1015567325463 Mitsch WJ, 2003, ECOL ENG, V20, P363, DOI 10.1016/j.ecoleng.2003.05.001 Mitsch WJ, 1998, ECOL ENG, V10, P119, DOI 10.1016/S0925-8574(98)00009-3 Morken J, 2013, ENERG POLICY, V60, P98, DOI 10.1016/j.enpol.2013.04.081 Moser A, 1996, ECOL ENG, V7, P117, DOI 10.1016/0925-8574(96)00005-5 Murray T, 2014, DIACRITICS, V42, P10, DOI 10.1353/dia.2014.0012 Nilsson M, 2016, NATURE, V534, P320, DOI 10.1038/534320a Ofori J, 2005, ECOL ENG, V24, P235, DOI 10.1016/j.ecoleng.2004.12.017 Oladele OI, 2012, J FOOD AGRIC ENVIRON, V10, P772 Oladele OI, 2010, J FOOD AGRIC ENVIRON, V8, P1014 Osmundsen TC, 2022, MAR POLICY, V138, DOI 10.1016/j.marpol.2022.104978 Ostergaard C.R., 2021, Sustainable Development Goals Series, P195, DOI [10.1007/978-3-030-61923, DOI 10.1007/978-3-030-61923] Pagliarini L, 2020, J ROBOT NETW ARTIF L, V6, P217, DOI 10.2991/jrnal.k.200222.002 Pradhan P, 2017, EARTHS FUTURE, V5, P1169, DOI 10.1002/2017EF000632 Rai UN, 2013, BIORESOURCE TECHNOL, V148, P535, DOI 10.1016/j.biortech.2013.09.005 Rene ER, 2023, CLEAN TECHNOL ENVIR, V25, P311, DOI 10.1007/s10098-022-02417-8 Roy ED, 2017, ECOL ENG, V98, P213, DOI 10.1016/j.ecoleng.2016.10.076 Saglam I, 2023, B ECON RES, V75, P180, DOI 10.1111/boer.12349 Sandhu HS, 2010, ENVIRON SCI POLICY, V13, P1, DOI 10.1016/j.envsci.2009.11.002 Schirone B, 2011, LANDSC ECOL ENG, V7, P81, DOI 10.1007/s11355-010-0117-0 Sharma R, 2022, CHEMOSPHERE, V290, DOI 10.1016/j.chemosphere.2021.133358 STRASKRABA M, 1994, ECOL MODEL, V74, P1, DOI 10.1016/0304-3800(94)90108-2 STRASKRABA M, 1993, ECOL ENG, V2, P311, DOI 10.1016/0925-8574(93)90001-V Sueyoshi T, 2016, ENERG ECON, V55, P173, DOI 10.1016/j.eneco.2016.01.004 Sueyoshi T, 2015, ENERG ECON, V52, P69, DOI 10.1016/j.eneco.2015.09.006 Sueyoshi T, 2015, ENERG ECON, V51, P329, DOI 10.1016/j.eneco.2015.07.010 Sun CW, 2018, ENERG POLICY, V123, P8, DOI 10.1016/j.enpol.2018.08.029 Techato K, 2014, AGRIC AGRIC SCI PROC, V10, P49, DOI 10.1016/j.apcbee.2014.10.014 Nguyen TTT, 2023, ARAB J SCI ENG, V48, P8835, DOI 10.1007/s13369-022-07391-3 Tsai DDW, 2017, ECOL ENG, V98, P17, DOI 10.1016/j.ecoleng.2016.10.049 Tsai DDW, 2016, ECOL ENG, V92, P106, DOI 10.1016/j.ecoleng.2016.03.021 Umans L, 2022, GEOFORUM, V131, P61, DOI 10.1016/j.geoforum.2022.03.008 Valipour A, 2016, ENVIRON SCI POLLUT R, V23, P180, DOI 10.1007/s11356-015-5713-y van Eck NJ, 2010, SCIENTOMETRICS, V84, P523, DOI 10.1007/s11192-009-0146-3 Verasoundarapandian G, 2022, AGRONOMY-BASEL, V12, DOI 10.3390/agronomy12010117 Verma S, 2023, CLEAN TECHNOL ENVIR, V25, P1485, DOI 10.1007/s10098-021-02029-8 Wei X, 2023, INT J ENV RES PUB HE, V20, DOI 10.3390/ijerph20010520 Wesselink A, 2020, EARTH SYST GOV-NETH, V4, DOI 10.1016/j.esg.2020.100062 Wu YH, 2020, INT J ENV RES PUB HE, V17, DOI 10.3390/ijerph17072253 Zhang RW, 1998, ECOL ENG, V11, P17, DOI 10.1016/S0925-8574(98)00041-X Zhang YQ, 2022, SUSTAINABILITY-BASEL, V14, DOI 10.3390/su14148288 Zhang Y, 2021, ENVIRON IMPACT ASSES, V89, DOI 10.1016/j.eiar.2021.106580 NR 98 TC 0 Z9 0 U1 19 U2 20 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS SN 2666-4984 J9 ENVIRON SCI ECOTECH JI Env. Sci. Ecotechnol. PD SEP PY 2024 VL 21 AR 100386 DI 10.1016/j.ese.2023.100386 EA FEB 2024 PG 8 WC Green & Sustainable Science & Technology; Environmental Sciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Science & Technology - Other Topics; Environmental Sciences & Ecology GA KE7H7 UT WOS:001178342000001 PM 38328508 OA Green Published, gold DA 2024-09-05 ER PT J AU Heo, GE Ko, YS Xie, Q Song, M AF Heo, Go Eun Ko, Young Soo Xie, Qing Song, Min TI High acknowledgement index: Characterizing research supporters with factors of acknowledgement affecting paper citation counts SO JOURNAL OF INFORMETRICS LA English DT Article DE Acknowledgement type; Named entity recognition; Academic performance; Citation count; Sensitivity analysis; Neural network ID PATTERNS; TRENDS AB The acknowledgments section of scientific papers is paramount in academic production, providing valuable insights into the individuals and organizations involved in the research process. Developing a standard index of acknowledgments would provide a significant metric for measuring institutional and researcher influence. However, the absence of standardized formats has impeded effective analysis of information in acknowledgement sections. This study develop an acknowledgement index utilizing automated text-mining techniques to address these limitations. In addition, we propose two methods to disambiguate research supporters in the acknowledgement section: entity scores based on specific keywords and research similarity scores calculated through co-references. Based on our investigation, we explore the characteristics of research supporters with high acknowledgement index scores and examine the correlation between each acknowledgement index and their performance. Notably, paper citation strongly correlates with research supporters' performance. Next, our analysis delves into the impact of acknowledgement and entity types on paper citations. Our findings reveal that acknowledgments with only person names exert the most significant impact on paper citation. C1 [Heo, Go Eun; Ko, Young Soo; Song, Min] Yonsei Univ, Dept Lib & Informat Sci, 50 Yonsei Ro, Seoul 03722, South Korea. [Xie, Qing] Shenzhen Polytech, Sch Management, Shenzhen 518055, Guangdong, Peoples R China. C3 Yonsei University; Shenzhen Polytechnic University RP Song, M (corresponding author), Yonsei Univ, Dept Lib & Informat Sci, 50 Yonsei Ro, Seoul 03722, South Korea. EM min.song@yonsei.ac.kr RI song, min/KPA-7030-2024 OI Song, Min/0000-0003-3255-1600 FU Ministry of Education of the Republic of Korea; National Research Foundation of Korea [72204167]; Yonsei University; National Natural Science Foundation of China (NSFC); [NRF-2020S1A5B1104865] FX This work was supported by the Ministry of Education of the Republic of Korea and the National Research Foundation of Korea (NRF-2020S1A5B1104865) . In addition, this work was supported by the Yonsei University Research Grant of 2023. This work was also supported by the National Natural Science Foundation of China (NSFC) , Grant No. 72204167. CR Akbik A, 2019, NAACL HLT 2019: THE 2019 CONFERENCE OF THE NORTH AMERICAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS: HUMAN LANGUAGE TECHNOLOGIES: PROCEEDINGS OF THE DEMONSTRATIONS SESSION, P54 [Anonymous], 1964, The Use of Citation Data in Writing the History of Science BAZERMAN C, 1984, SOC STUD SCI, V14, P163, DOI 10.1177/030631284014002001 Bazerman C., 1988, SHAPING WRITTEN KNOW Costas R, 2012, J AM SOC INF SCI TEC, V63, P1647, DOI 10.1002/asi.22692 CRAWFORD ET, 1970, SOC SC INFORM, V9, P51 Cronin B, 2001, J DOC, V57, P427, DOI 10.1108/EUM0000000007089 CRONIN B, 1991, J DOC, V47, P227, DOI 10.1108/eb026878 CRONIN B, 1992, J DOC, V48, P107, DOI 10.1108/eb026893 Cronin B., 1995, REV ESP DOC CIENT, V18, P172, DOI DOI 10.3989/REDC.1995.V18.I2.654 Desrochers N, 2017, J ASSOC INF SCI TECH, V68, P2821, DOI 10.1002/asi.23903 Díaz-Faes AA, 2014, J ASSOC INF SCI TECH, V65, P1834, DOI 10.1002/asi.23081 Garson G. D., 1991, AI Expert, V6, P46 Giles CL, 2004, P NATL ACAD SCI USA, V101, P17599, DOI 10.1073/pnas.0407743101 Khabsa Madian., 2012, PROC ACMIEEE JOINT C, P185, DOI DOI 10.1145/2232817.2232852 KOLMOGOROV AN, 1957, DOKL AKAD NAUK SSSR+, V114, P953 Mackintosh K. H., 1972, Acknowledgement patterns in sociology McCain KW, 2018, SCIENTOMETRICS, V114, P605, DOI 10.1007/s11192-017-2598-1 Paul-Hus A, 2019, PLOS ONE, V14, DOI 10.1371/journal.pone.0226727 Paul-Hus A, 2017, PLOS ONE, V12, DOI 10.1371/journal.pone.0185578 Paul-Hus A, 2016, SCIENTOMETRICS, V108, P167, DOI 10.1007/s11192-016-1953-y Song M, 2020, PLOS ONE, V15, DOI 10.1371/journal.pone.0228928 Tang L, 2010, SCIENTOMETRICS, V84, P763, DOI 10.1007/s11192-010-0196-6 Xie Q, 2021, J INFORMETR, V15, DOI 10.1016/j.joi.2021.101142 NR 24 TC 1 Z9 1 U1 4 U2 14 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS SN 1751-1577 EI 1875-5879 J9 J INFORMETR JI J. Informetr. PD NOV PY 2023 VL 17 IS 4 AR 101447 DI 10.1016/j.joi.2023.101447 EA AUG 2023 PG 11 WC Computer Science, Interdisciplinary Applications; Information Science & Library Science WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Computer Science; Information Science & Library Science GA Q7FL9 UT WOS:001059143000001 DA 2024-09-05 ER PT J AU Bornmann, L AF Bornmann, Lutz TI Bibliometrics-based decision trees (BBDTs) based on bibliometrics-based heuristics (BBHs): Visualized guidelines for the use of bibliometrics in research evaluation SO QUANTITATIVE SCIENCE STUDIES LA English DT Article DE bibliometrics; heuristics; bibliometrics-based heuristic (BBH); bibliometrics-based decision tree (BBDT) ID CITATION IMPACT; FRUGAL; NORMALIZATION; MODELS AB Fast-and-frugal heuristics are simple strategies that base decisions on only a few predictor variables. In so doing, heuristics may not only reduce complexity but also boost the accuracy of decisions, their speed, and transparency. In this paper, bibliometrics-based decision trees (BBDTs) are introduced for research evaluation purposes. BBDTs visualize bibliometrics-based heuristics (BBHs), which are judgment strategies solely using publication and citation data. The BBDT exemplar presented in this paper can be used as guidance to find an answer on the question in which situations simple indicators such as mean citation rates are reasonable and in which situations more elaborated indicators (i.e., [sub-]field-normalized indicators) should be applied. C1 [Bornmann, Lutz] Adm Headquarters Max Planck Soc, Div Sci & Innovat Studies, Hofgartenstr 8, D-80539 Munich, Germany. C3 Max Planck Society RP Bornmann, L (corresponding author), Adm Headquarters Max Planck Soc, Div Sci & Innovat Studies, Hofgartenstr 8, D-80539 Munich, Germany. EM bornmann@gv.mpg.de RI Bornmann, Lutz/A-3926-2008 OI Bornmann, Lutz/0000-0003-0810-7091 CR [Anonymous], 2010, The evaluation of research by scientometric indicators [Anonymous], 2016, HDB BIBLIOMETRIC IND, DOI DOI 10.1002/ANIE.201608447 [Anonymous], 2012, ECOLOGICAL RATIONALI, DOI DOI 10.1093/ACPROF Bornmann L., 2008, ETHICS SCI ENV POLIT, V8, P93, DOI [10.3354/esep00084, DOI 10.3354/ESEP00084] Bornmann L., 2019, arXiv Bornmann L., Encyclopedia of Research Methods Bornmann L, 2019, SCIENTOMETRICS, V120, P419, DOI 10.1007/s11192-019-03018-x Bornmann L, 2019, SCIENTOMETRICS, V120, P841, DOI 10.1007/s11192-019-03140-w Bornmann L, 2014, BEYOND BIBLIOMETRICS: HARNESSING MULTIDIMENSIONAL INDICATORS OF SCHOLARLY IMPACT, P201 Bornmann L, 2013, PUBLICATIONS, V1, P78, DOI 10.3390/publications1020078 Bornmann L, 2014, SCIENTOMETRICS, V98, P487, DOI 10.1007/s11192-013-1161-y Boyack KW, 2004, P NATL ACAD SCI USA, V101, P5192, DOI 10.1073/pnas.0307509100 Czerlinski J., 1999, Simple heuristics that make us smart, P97 De Bellis N, 2009, Bibliometrics and Citation Analysis: From the Science Citation Index to Cybermetrics Gigerenzer G, 1996, PSYCHOL REV, V103, P650, DOI 10.1037/0033-295X.103.4.650 Gigerenzer G., 1999, Simple heuristics that make us smart, P3 Hammarfelt B, 2018, J ASSOC INF SCI TECH, V69, P924, DOI 10.1002/asi.24043 Harzing A.-W., 2017, Running the REF on a rainy Sunday afternoon: Do metrics match peer review? Hertwig Ralph., 2003, THINKING PSYCHOL PER, P213, DOI [DOI 10.1002/047001332X.CH11, 10.1002/047001332X.ch11] Hicks D, 2015, NATURE, V520, P429, DOI 10.1038/520429a Jappe A, 2018, PLOS ONE, V13, DOI 10.1371/journal.pone.0199031 Julian N. Marewski, 2010, [心理学报, Acta Psychologica Sinica], V42, P72 Katsikopoulos KV, 2011, DECIS ANAL, V8, P10, DOI 10.1287/deca.1100.0191 Kelman MarkG., 2011, HEURISTICS DEBATE Kurz-Milcke E., 2007, Marketing JRM, P48 Leydesdorff L, 2016, SCIENTOMETRICS, V109, P2129, DOI 10.1007/s11192-016-2150-8 Luan SH, 2017, ORGAN BEHAV HUM DEC, V141, P29, DOI 10.1016/j.obhdp.2017.05.003 Martignon L., 2011, HEURISTICS FDN ADAPT, P4 Martignon L, 2008, J MATH PSYCHOL, V52, P352, DOI 10.1016/j.jmp.2008.04.003 Merton R.K., 1965, SHOULDERS GIANTS Moed H. F., 2017, Applied evaluative informetrics, DOI DOI 10.1007/978-3-319-60522-7 MOED HF, 1985, RES POLICY, V14, P131, DOI 10.1016/0048-7333(85)90012-5 Mousavi S., 2017, Homo Oeconomicus, V34, P361, DOI [10.1007/s41412-017-0058-z, DOI 10.1007/S41412-017-0058-Z] Narin F., 1987, Science and Public Policy, V14, P99, DOI DOI 10.1093/spp/14.2.99 Opthof T, 2010, J INFORMETR, V4, P423, DOI 10.1016/j.joi.2010.02.003 Phillips ND, 2017, JUDGM DECIS MAK, V12, P344 Pride D, 2018, LECT NOTES COMPUT SC, V11057, P195, DOI 10.1007/978-3-030-00066-0_17 Raab M, 2015, FRONT PSYCHOL, V6, DOI 10.3389/fpsyg.2015.01672 Radicchi F, 2011, PHYS REV E, V83, DOI 10.1103/PhysRevE.83.046116 Robinson-Garcia N, 2019, RES EVALUAT, V28, P232, DOI 10.1093/reseval/rvz014 Rodriguez Navarro A., 2019, LIKE FOR LIKE BIBLOM Scheibehenne B., 2009, Making Essential Choices with Scant Information; Front-end Decision Making in Major Projects, P194 SIMON HA, 1990, ANNU REV PSYCHOL, V41, P1, DOI 10.1146/annurev.ps.41.020190.000245 SIMON HA, 1956, PSYCHOL REV, V63, P129, DOI 10.1037/h0042769 Teplitskiy M., 2016, Socius: Sociological Research for a Dynamic World, V2, DOI DOI 10.1177/2378023116640278 Traag VA, 2019, PALGR COMMUN, V5, DOI 10.1057/s41599-019-0233-x Tuccio W.A., 2011, The Journal of Aviation/Aerospace Education Research, V20, P39 van Raan AFJ, 2004, HANDBOOK OF QUANTITATIVE SCIENCE AND TECHNOLOGY RESEARCH: THE USE OF PUBLICATION AND PATENT STATISTICS IN STUDIES OF S&T SYSTEMS, P19 van Raan AFJ, 2010, J INFORMETR, V4, P431, DOI 10.1016/j.joi.2010.03.008 Waltman L., 2018, STI 2018 C P, P526 Waltman L, 2016, J INFORMETR, V10, P365, DOI 10.1016/j.joi.2016.02.007 Waltman L, 2012, J AM SOC INF SCI TEC, V63, P2419, DOI 10.1002/asi.22708 Wegwarth O, 2009, MED EDUC, V43, P721, DOI 10.1111/j.1365-2923.2009.03359.x NR 53 TC 3 Z9 3 U1 18 U2 19 PU MIT PRESS PI CAMBRIDGE PA ONE ROGERS ST, CAMBRIDGE, MA 02142-1209 USA EI 2641-3337 J9 QUANT SCI STUD JI Quant. Sci. Stud. PD WIN PY 2020 VL 1 IS 1 BP 171 EP 182 DI 10.1162/qss_a_00012 PG 12 WC Information Science & Library Science WE Emerging Sources Citation Index (ESCI) SC Information Science & Library Science GA UK2XH UT WOS:000691837400009 OA gold DA 2024-09-05 ER PT J AU Mazzei, D Chiarello, F Fantoni, G AF Mazzei, Daniele Chiarello, Filippo Fantoni, Gualtiero TI Analyzing Social Robotics Research with Natural Language Processing Techniques SO COGNITIVE COMPUTATION LA English DT Article DE Social robotics; Human-robot interaction; Bibliometric analysis; Topic modelling; Natural language processing ID SOFT SKILLS; ANTHROPOMORPHISM; CHILDREN; EMOTION AB The fast growth of social robotics (SR) has not been unidirectional, but rather towards a multidisciplinary scenario, creating a need for collaboration between different fields. This divergent expansion calls for a clear analysis of the field aimed at better orienting the research, thus paving the future of social robotics. This paper aims at understanding how the SR research field evolved in the last two decades by analyzing academic publications in SR and human-robot interaction using natural language processing (NLP) techniques. The analysis spotted an overlap between SR and human-robot interaction research fields that have been disambiguated using a data-driven approach that leads to the identification of a new group of papers we clustered under the concept of "soft HRI." This research topic has been analyzed by extracting trends and insights. Finally, another topic modelling step has been applied to identify seven sub-topics that have been discussed and analyzed picturing the current state of the art of SR. The paper reports a complete overview of the SR research field identifying various topics and sub-topics helping researchers in understanding the evolution of this field, thus supporting the strategic placing and evolution of their research activities. C1 [Mazzei, Daniele] Univ Pisa, Comp Sci Dept, Largo Bruno Pontecorvo 3, I-56127 Pisa, Italy. [Chiarello, Filippo] Univ Pisa, Dept Energy Proc & Syst Engn, Pisa, Italy. [Fantoni, Gualtiero] Univ Pisa, Dept Civil & Ind Engn, Pisa, Italy. C3 University of Pisa; University of Pisa; University of Pisa RP Mazzei, D (corresponding author), Univ Pisa, Comp Sci Dept, Largo Bruno Pontecorvo 3, I-56127 Pisa, Italy. EM daniele.mazzei@unipi.it; filippo.chiarello@unipi.it; gualtiero.fantoni@unipi.it RI Fantoni, Gualtiero/GWZ-8445-2022; Mazzei, Daniele/AAB-9819-2019 OI Fantoni, Gualtiero/0000-0003-0772-600X; Mazzei, Daniele/0000-0001-8383-3355 CR Amami M, 2016, LECT NOTES COMPUT SC, V9612, P200, DOI 10.1007/978-3-319-41754-7_17 Arun R, 2010, LECT NOTES ARTIF INT, V6118, P391 Bartneck C, 2009, INT J SOC ROBOT, V1, P71, DOI 10.1007/s12369-008-0001-3 Belpaeme T, 2018, SCI ROBOT, V3, DOI 10.1126/scirobotics.aat5954 Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993 Breazeal C, 2003, INT J HUM-COMPUT ST, V59, P119, DOI 10.1016/S1071-5819(03)00018-1 Breazeal C, 2003, ROBOT AUTON SYST, V42, P167, DOI 10.1016/S0921-8890(02)00373-1 Breazeal C, 1999, IJCAI-99: PROCEEDINGS OF THE SIXTEENTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOLS 1 & 2, P1146 Breazeal C., 2004, DESIGNING SOCIABLE R, DOI 10.7551/mitpress/2376.001.0001 Breazeal C, 2016, SPRINGER HANDBOOK OF ROBOTICS, P1935 Calinon S, 2007, IEEE T SYST MAN CY B, V37, P286, DOI 10.1109/TSMCB.2006.886952 Cao J, 2009, NEUROCOMPUTING, V72, P1775, DOI 10.1016/j.neucom.2008.06.011 Cascini G, 2013, DESIGN STUD, V34, P636, DOI 10.1016/j.destud.2012.12.001 Chiarello F, 2019, P DES SOC INT C ENG, V1, P2765, DOI [10.1017/dsi.2019.283, DOI 10.1017/DSI.2019.283] Cimatti B, 2016, INT J QUAL RES, V10, P97, DOI 10.18421/IJQR10.01-05 Dagan I, 1997, 35TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS AND THE 8TH CONFERENCE OF THE EUROPEAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, PROCEEDINGS OF THE CONFERENCE, P56, DOI 10.3115/979617.979625 Dashtipour K, 2020, NEUROCOMPUTING, V380, P1, DOI 10.1016/j.neucom.2019.10.009 Dautenhahn Kerstin, 2009, Applied Bionics and Biomechanics, V6, P369, DOI 10.1080/11762320903123567 Dautenhahn K, 2007, PHILOS T R SOC B, V362, P679, DOI 10.1098/rstb.2006.2004 Dawe J, 2019, BMJ PAEDIATR OPEN, V3, DOI 10.1136/bmjpo-2018-000371 DEVEAUD R, 2014, DOCUMENT NUMERIQUE, V0017 Duffy BR, 2003, ROBOT AUTON SYST, V42, P177, DOI 10.1016/S0921-8890(02)00374-3 Fischer K, 2020, ACMIEEE INT CONF HUM, P195, DOI 10.1145/3371382.3378377 Fong T, 2003, ROBOT AUTON SYST, V42, P143, DOI 10.1016/S0921-8890(02)00372-X Gácsi M, 2016, COMPUT HUM BEHAV, V59, P411, DOI 10.1016/j.chb.2016.02.043 Goodrich Michael A., 2007, Foundations and Trends in Human-Computer Interaction, V1, P203, DOI 10.1561/1100000005 Griffiths TL, 2004, P NATL ACAD SCI USA, V101, P5228, DOI 10.1073/pnas.0307752101 Hancock PA, 2011, HUM FACTORS, V53, P517, DOI 10.1177/0018720811417254 Hodson H., 2014, 1 FAMILY ROBOT Johal W., 2020, Curr Robot Rep, V1, P75, DOI DOI 10.1007/S43154-020-00008-3 Kozima H, 2009, INT J SOC ROBOT, V1, P3, DOI 10.1007/s12369-008-0009-8 Kumari R, 2021, J INF SCI, V47, P658, DOI 10.1177/0165551519887878 Laker DR, 2011, HUM RESOUR DEV Q, V22, P111, DOI 10.1002/hrdq.20063 Lazzeri N, 2015, FRONT BIOENG BIOTECH, V3, DOI 10.3389/fbioe.2015.00064 Leite I, 2013, INT J SOC ROBOT, V5, P291, DOI 10.1007/s12369-013-0178-y Li YJ, 2007, IEEE T PATTERN ANAL, V29, P1091, DOI 10.1109/TPAMI.2007.1070 Liu R, 2011, J TAIYUAN U TECHNOL, P2 Lu YC, 2014, PROCEEDINGS OF THE 2014 INTERNATIONAL CONFERENCE ON INNOVATIVE DESIGN AND MANUFACTURING (ICIDM), P78, DOI 10.1109/IDAM.2014.6912674 Mazzei D, 2012, P IEEE RAS-EMBS INT, P195 Mazzei D, 2010, 2010 IEEE RO-MAN, P791, DOI 10.1109/ROMAN.2010.5598683 Mejia C, 2017, APPL SCI-BASEL, V7, DOI 10.3390/app7121316 Metta G., 2008, PERFORMANCE METRICS, P50, DOI DOI 10.1145/1774674.1774683 Mitchinson B, 2016, LECT NOTES COMPUT SC, V9793, P179, DOI 10.1007/978-3-319-42417-0_17 Newman D., 2012, COLING, P2077 Ng K. W., 2011, DIRICHLET RELATED DI Nishio Shuichi, 2007, Humanoid robots: New developments, V14, P10, DOI [10.5772/4876, DOI 10.5772/4876] Nocentini O, 2019, ROBOTICS, V8, DOI 10.3390/robotics8030054 Paiva A, 2017, ACM T INTERACT INTEL, V7, DOI 10.1145/2912150 Persson P, 2001, IEEE T SYST MAN CY A, V31, P349, DOI 10.1109/3468.952710 Pineau J, 2003, ROBOT AUTON SYST, V42, P271, DOI 10.1016/S0921-8890(02)00381-0 Robinson NL, 2019, J MED INTERNET RES, V21, DOI 10.2196/13203 Salvador MJ, 2015, IEEE INT CONF ROBOT, P6128, DOI 10.1109/ICRA.2015.7140059 Schulz B., 2008, Nawa Journal of Communication, V2, P146, DOI DOI 10.9790/7388-0251929 Sheridan TB, 2020, CURR OPIN PSYCHOL Siddiqi S., 2015, International Journal of Computer Applications, V109, P18, DOI [DOI 10.5120/19161-0607, 10.5120/19161-0607] Straka M., 2017, P CONLL 2017 SHARE, P88, DOI [10.18653/v1/K17-3009, DOI 10.18653/V1/K17-3009] Tarabella A, 2019, BRIT FOOD J Taylor Estelle, 2016, Interdisciplinary Journal of e-Learning and Learning Objects, V12, P1 Wainer J, 2014, IEEE T AUTON MENT DE, V6, P183, DOI 10.1109/TAMD.2014.2303116 Wang Chong, 2011, P ACM SIGKDD INT C K, P448, DOI DOI 10.1145/2020408.2020480 NR 60 TC 8 Z9 8 U1 3 U2 18 PU SPRINGER PI NEW YORK PA ONE NEW YORK PLAZA, SUITE 4600, NEW YORK, NY, UNITED STATES SN 1866-9956 EI 1866-9964 J9 COGN COMPUT JI Cogn. Comput. PD MAR PY 2021 VL 13 IS 2 BP 308 EP 321 DI 10.1007/s12559-020-09799-1 EA JAN 2021 PG 14 WC Computer Science, Artificial Intelligence; Neurosciences WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Computer Science; Neurosciences & Neurology GA QU0DI UT WOS:000608081500001 DA 2024-09-05 ER PT J AU Gao, H Ding, XH AF Gao, Hui Ding, Xiuhao TI The research landscape on the artificial intelligence: a bibliometric analysis of recent 20 years SO MULTIMEDIA TOOLS AND APPLICATIONS LA English DT Article DE Artificial intelligence (AI); Bibliometric methods; Patent analysis; Visualization ID STRATEGIC-MANAGEMENT; PATTERNS; PERSPECTIVE; SCIENCE; TRENDS; DOMAIN; MODEL AB Artificial intelligence (AI), a general term that implies the imitation of information process of intelligent behavior and sense with minimal intervention, is one of the most promising research areas and has received a considerable attention with coexisting pros and cons. In order to understand the research status quo and future trends on AI technology, this work uses bibliometric analysis method to obtain this objective. By analyzing the datasets including journal article data collected from Web of Science (WOS), conference paper data retrieved from Scopus and the patent data extracted from Derwent Innovations Index (DII) in the period of 2000-2019, we primarily provide a comprehensive overview to better understand the research status of AI. Bibliometric analysis results can also shed light on the evolution and trends in AI. C1 [Gao, Hui] Hubei Univ, Sch Business, Youyi Ave 368, Wuhan, Peoples R China. [Ding, Xiuhao] Huazhong Univ Sci & Technol, Sch Management, Luoyu Rd 1037, Wuhan, Peoples R China. C3 Hubei University; Huazhong University of Science & Technology RP Gao, H (corresponding author), Hubei Univ, Sch Business, Youyi Ave 368, Wuhan, Peoples R China. EM gaohui-hust@qq.com OI Gao, Hui/0000-0001-8629-6532 CR Browne M, 2007, COAST ENG, V54, P445, DOI 10.1016/j.coastaleng.2006.11.007 Carvalho MM, 2013, TECHNOL FORECAST SOC, V80, P1418, DOI 10.1016/j.techfore.2012.11.008 Castelfranchi C, 2013, TOPOI-INT REV PHILOS, V32, P293, DOI 10.1007/s11245-013-9182-y Chen CM, 2017, J DATA INFO SCI, V2, P1, DOI 10.1515/jdis-2017-0006 Chen CM, 2014, J ASSOC INF SCI TECH, V65, P334, DOI 10.1002/asi.22968 Chen CM, 2010, J AM SOC INF SCI TEC, V61, P1386, DOI 10.1002/asi.21309 Chen CM, 2009, J INFORMETR, V3, P191, DOI 10.1016/j.joi.2009.03.004 Chen CM, 2006, J AM SOC INF SCI TEC, V57, P359, DOI 10.1002/asi.20317 Chen CM, 2004, P NATL ACAD SCI USA, V101, P5303, DOI 10.1073/pnas.0307513100 Cobo MJ, 2015, KNOWL-BASED SYST, V80, P3, DOI 10.1016/j.knosys.2014.12.035 Érdi P, 2013, SCIENTOMETRICS, V95, P225, DOI 10.1007/s11192-012-0796-4 Fernandes C, 2017, SCIENTOMETRICS, V112, P529, DOI 10.1007/s11192-017-2397-8 Fujii H, 2018, ECON ANAL POLICY, V58, P60, DOI 10.1016/j.eap.2017.12.006 Hamet P, 2017, METABOLISM, V69, pS36, DOI 10.1016/j.metabol.2017.01.011 He JX, 2019, NAT MED, V25, P30, DOI 10.1038/s41591-018-0307-0 Hinojo-Lucena FJ, 2019, EDUC SCI, V9, DOI 10.3390/educsci9010051 INTELLIGENCE BY AM TURING, 1950, Computing Machinery and Intelligence, V59, P433, DOI [10.1093/mind/LIX.236.433, DOI 10.1093/MIND/LIX.236.433] Koyuncugil AS, 2012, EXPERT SYST APPL, V39, P6238, DOI 10.1016/j.eswa.2011.12.021 Liu JY, 2018, IEEE ACCESS, V6, P34403, DOI 10.1109/ACCESS.2018.2819688 MARR D, 1977, ARTIF INTELL, V9, P37, DOI 10.1016/0004-3702(77)90013-3 Mikhaylov SJ, 2018, PHILOS T R SOC A, V376, DOI 10.1098/rsta.2017.0357 Najmi A, 2017, SCIENTOMETRICS, V110, P843, DOI 10.1007/s11192-016-2171-3 Niu JQ, 2016, ISPRS INT J GEO-INF, V5, DOI 10.3390/ijgi5050066 Palaniappan R, 2014, BIOMED ENG-BIOMED TE, V59, P7, DOI 10.1515/bmt-2013-0074 Parkes DC, 2015, SCIENCE, V349, P267, DOI 10.1126/science.aaa8403 Patrício DI, 2018, COMPUT ELECTRON AGR, V153, P69, DOI 10.1016/j.compag.2018.08.001 Prasad S, 2005, INFORM MANAGE-AMSTER, V42, P1137, DOI 10.1016/j.im.2005.01.003 Ramos-Rodríguez AR, 2004, STRATEGIC MANAGE J, V25, P981, DOI 10.1002/smj.397 Rodriguez A, 2016, IEEE T ENG MANAGE, V63, P426, DOI 10.1109/TEM.2016.2580619 ROUSSEEUW PJ, 1987, J COMPUT APPL MATH, V20, P53, DOI 10.1016/0377-0427(87)90125-7 Salah K, 2019, IEEE ACCESS, V7, P10127, DOI 10.1109/ACCESS.2018.2890507 Sikdar S, 2018, CLEAN TECHNOL ENVIR, V20, P1, DOI 10.1007/s10098-017-1478-y Soranzo B, 2016, J ENG TECHNOL MANAGE, V42, P15, DOI 10.1016/j.jengtecman.2016.08.002 Tseng CY, 2013, INNOV-ORGAN MANAG, V15, P463, DOI 10.5172/impp.2013.15.4.463 Wang FY, 2017, IEEE INTEL TRANSP SY, V9, P6, DOI 10.1109/MITS.2017.2746407 Wang MG, 2018, APPL ENERG, V220, P480, DOI 10.1016/j.apenergy.2018.03.148 Youssef A, 2017, RENEW SUST ENERG REV, V78, P72, DOI 10.1016/j.rser.2017.04.046 Zeng Y, 2017, NATL SCI REV, V4, P490, DOI 10.1093/nsr/nwx060 NR 38 TC 6 Z9 6 U1 15 U2 78 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 1380-7501 EI 1573-7721 J9 MULTIMED TOOLS APPL JI Multimed. Tools Appl. PD APR PY 2022 VL 81 IS 9 BP 12973 EP 13001 DI 10.1007/s11042-022-12208-4 EA FEB 2022 PG 29 WC Computer Science, Information Systems; Computer Science, Software Engineering; Computer Science, Theory & Methods; Engineering, Electrical & Electronic WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Computer Science; Engineering GA 0P3ES UT WOS:000760059700008 DA 2024-09-05 ER PT J AU Shi, JC Wang, YC AF Shi, Jincheng Wang, Yingchun TI Prerequisites for the Innovation Performance of Artificial Intelligence Laboratory: A Fuzzy-Set Qualitative Comparative Analysis SO IEEE TRANSACTIONS ON ENGINEERING MANAGEMENT LA English DT Article DE Artificial intelligence; Technological innovation; Research and development; Organizations; Ecosystems; Patents; Particle measurements; Artificial intelligence (AI) laboratory; basic research; engineering breakthrough; innovation performance; qualitative comparative analysis (QCA) ID KNOWLEDGE; CONFIGURATIONS; MANAGEMENT; STRATEGY; SYSTEM AB Artificial intelligence (AI) is widely adopted as a general-purpose technology, bringing about disruptive innovative changes. R&D laboratories (labs) from universities, enterprises, and public institutions drive AI innovation. However, research on the factors affecting AI innovation in R&D labs is rarely discussed. To address this gap, we constructed an adjusted technology-organization-environment framework to analyze different configurations that influence AI basic research and engineering breakthroughs. This article uses fuzzy set qualitative comparative analysis for analysis aimed at 43 international typical AI labs. The results indicate that technological, organizational, and environmental conditions jointly impact AI labs' innovation. Specifically, AI basic research depends on strong computing resources and a high-quality innovation ecology, and it is moving from academia to industry. AI Engineering breakthroughs rely on public R&D institutions and leading firms, and high-quality data has a significant impact on applications. The findings highlight the equivalent effect of different configurations in AI innovation. In addition, this study provides implications for the government's AI innovation policies and the technological management of AI labs. C1 [Shi, Jincheng; Wang, Yingchun] Shanghai Artificial Intelligence Lab, Governance Res Ctr, Shanghai 200232, Peoples R China. RP Shi, JC (corresponding author), Shanghai Artificial Intelligence Lab, Governance Res Ctr, Shanghai 200232, Peoples R China. EM shijincheng0819@163.com; wangyingchun@pjlab.org.cn RI Wang, Yingchun/N-1864-2018 OI Shi, Jincheng/0000-0002-9877-0710 FU National Key Ramp;D Program of China FX No Statement Available CR Adams P, 2019, J BUS RES, V97, P129, DOI 10.1016/j.jbusres.2018.12.071 Adner R, 2006, HARVARD BUS REV, V84, P98 Adner R, 2017, J MANAGE, V43, P39, DOI 10.1177/0149206316678451 Adner R, 2010, STRATEGIC MANAGE J, V31, P306, DOI 10.1002/smj.821 Ameye N, 2023, TECHNOVATION, V127, DOI 10.1016/j.technovation.2023.102846 Arenal A, 2020, TELECOMMUN POLICY, V44, DOI 10.1016/j.telpol.2020.101960 Balzano M, 2023, TECHNOVATION, V128, DOI 10.1016/j.technovation.2023.102878 Bentley PJ, 2015, HIGH EDUC, V70, P689, DOI 10.1007/s10734-015-9861-2 Borges AFS, 2021, INT J INFORM MANAGE, V57, DOI 10.1016/j.ijinfomgt.2020.102225 Bouschery SG, 2023, J PROD INNOVAT MANAG, V40, P139, DOI 10.1111/jpim.12656 Brem A, 2023, IEEE T ENG MANAGE, V70, P770, DOI 10.1109/TEM.2021.3109983 Carayol N, 2004, RES POLICY, V33, P1081, DOI 10.1016/j.respol.2004.03.004 Choi H, 2022, IEEE T ENG MANAGE, V69, P1011, DOI 10.1109/TEM.2020.2972347 Coccia M, 2004, R&D MANAGE, V34, P267, DOI 10.1111/j.1467-9310.2004.00338.x Coccia M, 2008, J INFORMETR, V2, P183, DOI 10.1016/j.joi.2008.04.001 Coccia M, 2020, TECHNOL ANAL STRATEG, V32, P1462, DOI 10.1080/09537325.2020.1785415 Coccia M, 2017, TECHNOL ANAL STRATEG, V29, P1048, DOI 10.1080/09537325.2016.1268682 Conti A, 2015, RES POLICY, V44, P1633, DOI 10.1016/j.respol.2015.01.001 Della Peruta MR, 2018, J KNOWL ECON, V9, P680, DOI 10.1007/s13132-016-0356-x Di Stefano G, 2012, RES POLICY, V41, P1283, DOI 10.1016/j.respol.2012.03.021 Doloreux D, 2021, REG STUD, V55, P1751, DOI 10.1080/00343404.2021.1919610 Fecher F, 2020, J BUS RES, V110, P567, DOI 10.1016/j.jbusres.2018.05.039 Giczy AV, 2022, J TECHNOL TRANSFER, V47, P476, DOI 10.1007/s10961-021-09900-2 Greckhamer T, 2018, STRATEG ORGAN, V16, P482, DOI 10.1177/1476127018786487 Gupta S, 2021, IEEE T ENG MANAGE, DOI 10.1109/TEM.2021.3116770 Haefner N, 2021, TECHNOL FORECAST SOC, V162, DOI 10.1016/j.techfore.2020.120392 Haenlein M, 2019, CALIF MANAGE REV, V61, P5, DOI 10.1177/0008125619864925 Henfridsson O, 2013, MIS QUART, V37, P907, DOI 10.25300/MISQ/2013/37.3.11 Hung CL, 2014, RES EVALUAT, V23, P366, DOI 10.1093/reseval/rvu022 Intarakumnerd P, 2018, RES POLICY, V47, P1309, DOI 10.1016/j.respol.2018.04.011 Jee SJ, 2023, J EVOL ECON, V33, P209, DOI 10.1007/s00191-022-00804-4 Kinkel S, 2022, TECHNOVATION, V110, DOI 10.1016/j.technovation.2021.102375 Lewis M., 2005, Creativity and Innovation Management, V14, P73, DOI DOI 10.1111/J.1467-8691.2005.00327.X Li JZ, 2020, INT J TECHNOL MANAGE, V84, P8, DOI 10.1504/IJTM.2020.112122 Lin HF, 2014, TECHNOL FORECAST SOC, V86, P80, DOI 10.1016/j.techfore.2013.09.001 Llanos-Paredes P, 2023, RES EVALUAT, V32, P566, DOI 10.1093/reseval/rvad028 Lundvall BÅ, 2022, RES POLICY, V51, DOI 10.1016/j.respol.2021.104395 Lungeanu A, 2014, J INFORMETR, V8, P59, DOI 10.1016/j.joi.2013.10.006 Marrucci A, 2023, MANAGE DECIS, DOI 10.1108/MD-05-2022-0644 Maurseth PB, 2020, RES POLICY, V49, DOI 10.1016/j.respol.2020.104012 Moller C, 2007, ENTERP INF SYST-UK, V1, P113, DOI 10.1080/17517570601092143 Nambisan S, 2019, RES POLICY, V48, DOI 10.1016/j.respol.2019.03.018 Ordanini A, 2014, J SERV RES-US, V17, P134, DOI 10.1177/1094670513513337 Osorio F, 2019, CREAT INNOV MANAG, V28, P82, DOI 10.1111/caim.12301 Park MY, 2021, 2021 21ST ACIS INTERNATIONAL WINTER CONFERENCE ON SOFTWARE ENGINEERING, ARTIFICIAL INTELLIGENCE, NETWORKING AND PARALLEL/DISTRIBUTED COMPUTING (SNPD-WINTER 2021), P119, DOI 10.1109/SNPDWinter52325.2021.00034 Robertson J, 2022, IEEE T ENG MANAGE, V69, P3913, DOI 10.1109/TEM.2021.3088382 Rohrbeck R, 2015, TECHNOL FORECAST SOC, V97, P115, DOI 10.1016/j.techfore.2013.09.015 Rothschild L, 2005, TECHNOVATION, V25, P59, DOI 10.1016/S0166-4972(03)00064-6 Scaringella L, 2018, TECHNOL FORECAST SOC, V136, P59, DOI 10.1016/j.techfore.2017.09.023 Schiuma G, 2023, TECHNOVATION, V123, DOI 10.1016/j.technovation.2023.102690 Schmidt S, 2014, Z WIRTSCHAFTSGEOGR, V58, P232 Siegel D, 2023, RES POLICY, V52, DOI 10.1016/j.respol.2022.104646 Tappeiner G, 2008, RES POLICY, V37, P861, DOI 10.1016/j.respol.2007.07.013 Tijssen RJW, 2012, RES EVALUAT, V21, P204, DOI 10.1093/reseval/rvs013 Tubaro P, 2019, J IND BUS ECON, V46, P333, DOI 10.1007/s40812-019-00121-1 Vanino E, 2019, RES POLICY, V48, P1714, DOI 10.1016/j.respol.2019.04.001 Verendel V, 2023, NAT CLIM CHANGE, DOI 10.1038/s41558-022-01536-w Wei FF, 2022, IEEE T ENG MANAGE, V69, P3648, DOI 10.1109/TEM.2021.3102321 Weterings A, 2009, IND INNOV, V16, P11, DOI 10.1080/13662710902728035 Wu H, 2020, KNOWL MAN RES PRACT, DOI 10.1080/14778238.2020.1813642 Xu Y, 2022, J INNOV KNOWL, V7, DOI 10.1016/j.jik.2022.100195 Yu Z, 2022, REG STUD, V56, P619, DOI 10.1080/00343404.2021.1954610 Zhang NN, 2023, RES POLICY, V52, DOI 10.1016/j.respol.2023.104738 NR 63 TC 0 Z9 0 U1 114 U2 114 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9391 EI 1558-0040 J9 IEEE T ENG MANAGE JI IEEE Trans. Eng. Manage. PY 2024 VL 71 BP 5341 EP 5356 DI 10.1109/TEM.2024.3355235 PG 16 WC Business; Engineering, Industrial; Management WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Business & Economics; Engineering GA IT6G4 UT WOS:001168619400001 OA hybrid DA 2024-09-05 ER PT J AU O'Donovan, J Kahn, K MacRae, M Namanda, AS Hamala, R Kabali, K Geniets, A Lakati, A Mbae, SM Winters, N AF O'Donovan, James Kahn, Ken MacRae, MacKenzie Namanda, Allan Saul Hamala, Rebecca Kabali, Ken Geniets, Anne Lakati, Alice Mbae, Simon M. Winters, Niall TI Analysing 3429 digital supervisory interactions between Community Health Workers in Uganda and Kenya: the development, testing and validation of an open access predictive machine learning web app SO HUMAN RESOURCES FOR HEALTH LA English DT Article DE Machine learning; Artificial intelligence; Supervision; Community Health Worker; Digital Health; Training ID COUNTRIES AB Background Despite the growth in mobile technologies (mHealth) to support Community Health Worker (CHW) supervision, the nature of mHealth-facilitated supervision remains underexplored. One strategy to support supervision at scale could be artificial intelligence (AI) modalities, including machine learning. We developed an open access, machine learning web application (CHWsupervisor) to predictively code instant messages exchanged between CHWs based on supervisory interaction codes. We document the development and validation of the web app and report its predictive accuracy. Methods CHWsupervisor was developed using 2187 instant messages exchanged between CHWs and their supervisors in Uganda. The app was then validated on 1242 instant messages from a separate digital CHW supervisory network in Kenya. All messages from the training and validation data sets were manually coded by two independent human coders. The predictive performance of CHWsupervisor was determined by comparing the primary supervisory codes assigned by the web app, against those assigned by the human coders and calculating observed percentage agreement and Cohen's kappa coefficients. Results Human inter-coder reliability for the primary supervisory category of messages across the training and validation datasets was 'substantial' to 'almost perfect', as suggested by observed percentage agreements of 88-95% and Cohen's kappa values of 0.7-0.91. In comparison to the human coders, the predictive accuracy of the CHWsupervisor web app was 'moderate', suggested by observed percentage agreements of 73-78% and Cohen's kappa values of 0.51-0.56. Conclusions Augmenting human coding is challenging because of the complexity of supervisory exchanges, which often require nuanced interpretation. A realistic understanding of the potential of machine learning approaches should be kept in mind by practitioners, as although they hold promise, supportive supervision still requires a level of human expertise. Scaling-up digital CHW supervision may therefore prove challenging. Trial registration: This was not a clinical trial and was therefore not registered as such. C1 [O'Donovan, James; MacRae, MacKenzie; Namanda, Allan Saul; Hamala, Rebecca; Kabali, Ken] Omni Med Uganda, Div Res & Hlth Equ, Makata, Uganda. [O'Donovan, James; Kahn, Ken; Geniets, Anne; Winters, Niall] Univ Oxford, Dept Educ, Learning & New Technol Res Grp, Oxford, England. [MacRae, MacKenzie] Tufts Univ, Sch Med, Dept Med, Boston, MA 02111 USA. [Lakati, Alice] Amref Int Univ, Div Hlth & Social Sci, Nairobi, Kenya. [Mbae, Simon M.] Med Mobile, Div Res, Nairobi, Kenya. C3 University of Oxford; Tufts University RP O'Donovan, J (corresponding author), Omni Med Uganda, Div Res & Hlth Equ, Makata, Uganda. EM jamesodonovan@post.harvard.edu OI Lakati, Alice Sipyian/0000-0003-3246-6924; O'Donovan, James/0000-0002-7248-5436 FU Economic and Social Research Council (ESRC) [ES/P000649/1]; ESRC-DFID Joint Scheme for Research on International Development [ES/J018619/2] FX Funding for this study was provided jointly by grants from the Economic and Social Research Council (ESRC) (ES/P000649/1) and the ESRC-DFID Joint Scheme for Research on International Development (ES/J018619/2). CR Abadi Martin, 2016, arXiv [Anonymous], How WhatsApp is used and misused in Africa [Anonymous], CONTEXT EFFECTIVE SU Baxter MS, 2021, J GLOB HEALTH, V11, DOI 10.7189/jogh.11.03017 Bowles J, 2020, PLOS ONE, V15, DOI 10.1371/journal.pone.0240005 Cer D, 2018, CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING (EMNLP 2018): PROCEEDINGS OF SYSTEM DEMONSTRATIONS, P169 Feroz A, 2020, BMC PUBLIC HEALTH, V20, DOI 10.1186/s12889-020-8173-3 Harvey B, P CONSTR 2010, P1 Henry JV, 2016, GLOB HEALTH-SCI PRAC, V4, P311, DOI 10.9745/GHSP-D-15-00386 Kadirire J, 2007, INT REV RES OPEN DIS, P8 Källander K, 2013, J MED INTERNET RES, V15, DOI 10.2196/jmir.2130 Kahn K., 2020, CONSTRUCTIONISM 2020 Limb M, 2016, BMJ-BRIT MED J, V354, DOI 10.1136/bmj.i5169 O'Donovan J, 2018, BMJ OPEN, V8, DOI 10.1136/bmjopen-2017-021467 Olaniran A, 2017, GLOBAL HEALTH ACTION, V10, DOI 10.1080/16549716.2017.1272223 Payne J, 2017, J COMMUN HEALTH, V42, P983, DOI 10.1007/s10900-017-0345-4 Perry H, 2013, DEV STRENGTHENING CO Perry H, 2017, HUM RESOUR HEALTH, V15, DOI 10.1186/s12960-016-0178-8 Pimmer C, 2017, GLOBAL HEALTH ACTION, V10, DOI 10.1080/16549716.2017.1368236 Pimmer C, 2018, KNOWL MANAG E-LEARN, V10, P334 Tan TE, 2021, LANCET DIGIT HEALTH, V3, pE317, DOI 10.1016/S2589-7500(21)00055-8 Ting DSW, 2019, BRIT J OPHTHALMOL, V103, P167, DOI 10.1136/bjophthalmol-2018-313173 Tong Y, 2020, EYE VISION, V7, DOI 10.1186/s40662-020-00183-6 Wang SJ, 2012, MED IMAGE ANAL, V16, P933, DOI 10.1016/j.media.2012.02.005 WhatsApp Inc, 2019, WHATSAPP MESS VERS 2 Whidden C, 2018, J GLOB HEALTH, V8, DOI 10.7189/jogh.08.020418 Winters N, 2018, BMJ OPEN, V8, DOI 10.1136/bmjopen-2017-019827 Winters N, 2018, LANCET GLOB HEALTH, V6, pE489, DOI 10.1016/S2214-109X(18)30072-X Winters N, 2017, COMP EDUC, V53, P115, DOI 10.1080/03050068.2017.1254983 GLOBAL EXPERIENCE CO NR 30 TC 1 Z9 1 U1 2 U2 13 PU BMC PI LONDON PA CAMPUS, 4 CRINAN ST, LONDON N1 9XW, ENGLAND EI 1478-4491 J9 HUM RESOUR HEALTH JI Hum. Resour. Health PD MAR 16 PY 2022 VL 20 IS 1 AR 6 DI 10.1186/s12960-021-00699-5 PG 8 WC Health Policy & Services; Industrial Relations & Labor WE Social Science Citation Index (SSCI) SC Health Care Sciences & Services; Business & Economics GA ZT9HJ UT WOS:000769459300001 PM 35292073 OA Green Published, gold DA 2024-09-05 ER PT J AU Wang, SM Yang, WP Chou, HP Chen, FM Hou, JL Sheu, JJ AF Wang, Sheng-Ming Yang, Wei-Pang Chou, Hsin-Ping Chen, Fu-Mei Hou, Jia-Li Sheu, Jyh-Jian TI Automatic Bibliographic Component Extraction Using Conditional Random Fields SO JOURNAL OF INTERNET TECHNOLOGY LA English DT Article DE Conditional random field; Citation analysis; Machine learning AB Bibliographic data and publication data are composed of subficlds such as "author," "title," "journal," and "year." Citation analysis of articles in scholarly journals is a very effective method for their evaluation. This paper proposes a system for analyzing bibliographic component strings, which is based on the technique of Conditional Random Fields (CRF). The system is composed of two major modules: the Bibliographic Extraction Module (BEM) and the Statistical Evaluation Module (SEM). The objective of the Bibliographic Extraction Module is to extract the bibliographic components based on the machine learning technique, and the objective of the Statistical Evaluation Module is to turn the extracted bibliographic information into a statistical report. In this paper, we apply the CRF technique to build a probability model for dividing sequential data and giving proper tags to the components according to their characteristics. This is the framework for building the BEM to segment and label bibliographic information, identifying the author's name, journal's name, date of publication and so on. Then we employ the SEM to filter and match the intermediate representations produced by the BEM. In the end, the SEM will output the final evaluation report. Experimental results show that our system is reliable, with excellent overall efficiency. C1 [Wang, Sheng-Ming] Natl Taipei Univ Technol, Grad Inst Interact Media Design, Taipei, Taiwan. [Yang, Wei-Pang; Chou, Hsin-Ping; Hou, Jia-Li] Natl Dong Hwa Univ, Dept Informat Management, Taipei, Taiwan. [Chen, Fu-Mei] Natl Taipei Univ Technol, Ctr Res & Dev, Taipei, Taiwan. [Sheu, Jyh-Jian] Natl Chengchi Univ, College Commun, Taipei, Taiwan. C3 National Taipei University of Technology; National Dong Hwa University; National Taipei University of Technology; National Chengchi University RP Wang, SM (corresponding author), Natl Taipei Univ Technol, Grad Inst Interact Media Design, Taipei, Taiwan. EM ryan5885@mail.ntut.edu.tw; wpyang@mail.ndhu.edu.tw; shean@ms49.url.com.tw; chenfmei@mail.ntut.edu.tw; alexhou@mail.ndhu.edu.tw; jjshezi@nccu.edu.tw RI Wang, Ryan/JFJ-0465-2023 CR [Anonymous], 2002, P ACL 02 WORKSHOP NA, DOI [10.3115/1118149.1118150, DOI 10.3115/1118149.1118150] [Anonymous], 2003, SIGIR 03, DOI DOI 10.1145/860435.860479 [Anonymous], 2003, Proceedings of the Seventh Conference on Natural Language Learning at HLT-NAACL 2003 [Anonymous], P 2003 C N AM CHAPT Chen GX, 2008, FIFTH INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS AND KNOWLEDGE DISCOVERY, VOL 2, PROCEEDINGS, P245, DOI 10.1109/FSKD.2008.94 Chien HL, 2002, EIGHTEENTH NATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE (AAAI-02)/FOURTEENTH INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE (IAAI-02), PROCEEDINGS, P786 CLEVERDON CW, 1972, J DOC, V28, P195, DOI 10.1108/eb026538 Freitag D, 2000, SEVENTEENTH NATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE (AAAI-2001) / TWELFTH INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE (IAAI-2000), P577 Granitzer Michael, 2012, P 2 INT C WEB INT MI, DOI [10.1145/2254129.2254154, DOI 10.1145/2254129.2254154] Guo BF, 2008, IEEE T IMAGE PROCESS, V17, P622, DOI 10.1109/TIP.2008.918955 Lafferty John, 2001, PROC 18 INT C MACH L PROC 18 INT C MACH L PROC 18 INT C MACH L PROC 18 INT C MACH L PROC 18 INT C MACH L PROC 18 INT C MACH L PROC 18 INT C MACH L PROC 18 INT C MACH L, V1, P282 Li K., 2011, INT J DIGITAL CONTEN, V5, P244 Mansouri A, 2008, PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND INFORMATION TECHNOLOGY, P24, DOI 10.1109/ICCSIT.2008.187 Ohta M., 2012, Proceedings of the 10th IAPR International Workshop on Document Analysis Systems (DAS 2012), P276, DOI 10.1109/DAS.2012.28 Peng FC, 2004, HLT-NAACL 2004: HUMAN LANGUAGE TECHNOLOGY CONFERENCE OF THE NORTH AMERICAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, PROCEEDINGS OF THE MAIN CONFERENCE, P329 Prajapati Gend Lal, 2011, P IMECS 2011 HONG KO RABINER LR, 1989, P IEEE, V77, P257, DOI 10.1109/5.18626 Seymore Kristie, 1999, AAAI 99 WORKSH MACH, P37 Sproat R., 1990, Computer Processing of Chinese & Oriental Languages, V4, P336 Stewart L, 2008, IEEE T PATTERN ANAL, V30, P1415, DOI 10.1109/TPAMI.2007.70790 Torii M, 2011, J AM MED INFORM ASSN, V18, P580, DOI 10.1136/amiajnl-2011-000155 Vapnik Vladimir N., 1995, The nature of statistical learning theory Wang HC, 2012, J INTERNET TECHNOL, V13, P45 Wermter Stefan., 1996, Connectionist, Statistical and Symbolic Approaches to Learning for Natural Language Processing Wu DL, 2011, IEEE T AUDIO SPEECH, V19, P1652, DOI 10.1109/TASL.2010.2096213 Xiwu Han, 2004, Natural Language Processing - IJCNLP 2004. First International Joint Conference. Revised Selected Papers (Lecture Notes in Artificial Intelligence Vol. 3248), P664 NR 26 TC 0 Z9 0 U1 0 U2 6 PU LIBRARY & INFORMATION CENTER, NAT DONG HWA UNIV PI HUALIEN PA LIBRARY & INFORMATION CENTER, NAT DONG HWA UNIV, HUALIEN, 00000, TAIWAN SN 1607-9264 EI 2079-4029 J9 J INTERNET TECHNOL JI J. Internet Technol. PD SEP PY 2012 VL 13 IS 5 BP 737 EP 747 PG 11 WC Computer Science, Information Systems; Telecommunications WE Science Citation Index Expanded (SCI-EXPANDED) SC Computer Science; Telecommunications GA 018UL UT WOS:000309691900005 DA 2024-09-05 ER PT J AU Mariani, J Francopoulo, G Paroubek, P AF Mariani, Joseph Francopoulo, Gil Paroubek, Patrick TI Reuse and plagiarism in Speech and Natural Language Processing publications SO INTERNATIONAL JOURNAL ON DIGITAL LIBRARIES LA English DT Article DE Plagiarism; Detection; Text reuse; Natural Language Processing; Speech Processing; Scientometrics; Informetrics AB The aim of this experiment is to present an easy way to compare fragments of texts in order to detect (supposed) results of copy and paste operations between articles in the domain of Natural Language Processing (NLP), including Speech Processing. The search space of the comparisons is a corpus labeled as NLP4NLP, which includes 34 different conferences and journals and gathers a large part of the NLP activity over the past 50 years. This study considers the similarity between the papers of each individual event and the complete set of papers in the whole corpus, according to four different types of relationship (self-reuse, self-plagiarism, reuse and plagiarism) and in both directions: a paper borrowing a fragment of text from another paper of the corpus (that we will call the source paper), or in the reverse direction, fragments of text from the source paper being borrowed and inserted in another paper of the corpus. The results show that self-reuse is rather a common practice, but that plagiarism seems to be very unusual, and that both stay within legal and ethical limits. C1 [Mariani, Joseph; Francopoulo, Gil; Paroubek, Patrick] Univ Paris Saclay, CNRS, LIMSI, Orsay, France. [Francopoulo, Gil] Tagmatica, Paris, France. C3 Centre National de la Recherche Scientifique (CNRS); Universite Paris Cite; Universite Paris Saclay RP Mariani, J (corresponding author), Univ Paris Saclay, CNRS, LIMSI, Orsay, France. EM joseph.mariani@limsi.fr; gil.francopoulo@wanadoo.fr; pap@limsi.fr CR [Anonymous], 2014, Transactions of the Association for Computational Linguistics, DOI [DOI 10.1162/TACL_A_00179, DOI 10.1162/TACLA00179] [Anonymous], P 23 INT C COMP LING [Anonymous], ACL 2012 SPEC WORKSH [Anonymous], 2011, IJCNLP Barron-Cedeno A., 2010, P 7 INT C LANG RES E, P771 Barrón-Cedeño A, 2013, COMPUT LINGUIST, V39, P917, DOI 10.1162/COLI_a_00153 Bensalem I., 2014, C EMPIRICAL METHODS, P1459 Bird S, 2008, SIXTH INTERNATIONAL CONFERENCE ON LANGUAGE RESOURCES AND EVALUATION, LREC 2008, P1755 Calzolari N, 2012, LREC 2012 - EIGHTH INTERNATIONAL CONFERENCE ON LANGUAGE RESOURCES AND EVALUATION, P1084 Ceska Zdenek., 2009, International conference RANLP-Borovets, P55 Chong M., 2011, P REC ADV NAT LANG P, P704 Citron DT, 2015, P NATL ACAD SCI USA, V112, P25, DOI 10.1073/pnas.1415135111 Clough P, 2002, 40TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, PROCEEDINGS OF THE CONFERENCE, P152 Clough P., 2002, Proceedings of the 3rd International Conference on Language Resources and Evaluation, V5, P1678 Clough P, 2011, LANG RESOUR EVAL, V45, P5, DOI 10.1007/s10579-009-9112-1 Councill IG, 2008, SIXTH INTERNATIONAL CONFERENCE ON LANGUAGE RESOURCES AND EVALUATION, LREC 2008, P661 Francopoulo G., 2013, LMF Lexical Markup Framework Francopoulo G., 2008, P ICGL INT C GLOB IN Francopoulo G., 2016, P LREC 2016, P72 Francopoulo G, 2015, D LIB MAG, V21 Frey M., 2015, D LIB MAG, V21 Gaizauskas R., 2001, P CORP LING 2001 C, V2001, P214 Grove J., 2014, TIMES HIGHER ED Hoad TC, 2003, J AM SOC INF SCI TEC, V54, P203, DOI 10.1002/asi.10170 Kasprzak J., 2010, P UNC PLAG AUTH SOC Lyon C, 2001, PROCEEDINGS OF THE 2001 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING, P118 Mariani J., 2013, P INT 2013, P4632 Nawab Rao Muhammad Adeel, 2012, P 1 JOINT C LEX COMP, V2, P54 Potthast M., 2010, An evaluation framework for plagiarism detection, P997 Radev DR, 2013, LANG RESOUR EVAL, V47, P919, DOI 10.1007/s10579-012-9211-2 SAMUELSON P, 1994, COMMUN ACM, V37, P21 Stamatatos E, 2011, J AM SOC INF SCI TEC, V62, P2512, DOI 10.1002/asi.21630 Stamatatos E, 2011, LANG RESOUR EVAL, V45, P1, DOI 10.1007/s10579-011-9136-1 Stein B, 2011, LANG RESOUR EVAL, V45, P63, DOI 10.1007/s10579-010-9115-y Vilnat Anne, 2010, P LREC 2010, P2478 NR 35 TC 5 Z9 5 U1 0 U2 11 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1432-5012 EI 1432-1300 J9 INT J DIGIT LIBRARIE JI Int. J. Digit. Llibraries PD SEP PY 2018 VL 19 IS 2-3 SI SI BP 113 EP 126 DI 10.1007/s00799-017-0211-0 PG 14 WC Information Science & Library Science WE Emerging Sources Citation Index (ESCI) SC Information Science & Library Science GA GQ5QB UT WOS:000441741300002 DA 2024-09-05 ER PT J AU Momeni, F Dietze, S Mayr, P Biesenbender, K Peters, I AF Momeni, Fakhri Dietze, Stefan Mayr, Philipp Biesenbender, Kristin Peters, Isabella TI Which factors are associated with Open Access publishing? A Springer Nature case study SO QUANTITATIVE SCIENCE STUDIES LA English DT Article DE APC policies; bibliometrics; citation impact; machine learning; open access ID AUTHOR-PAYS MODEL; CITATION ADVANTAGE; IMPACT; OA AB Open Access (OA) facilitates access to research articles. However, authors or funders often must pay the publishing costs, preventing authors who do not receive financial support from participating in OA publishing and gaining citation advantage for OA articles. OA may exacerbate existing inequalities in the publication system rather than overcome them. To investigate this, we studied 522,411 articles published by Springer Nature. Employing correlation and regression analyses, we describe the relationship between authors affiliated with countries from different income levels, their choice of publishing model, and the citation impact of their papers. A machine learning classification method helped us to explore the importance of different features in predicting the publishing model. The results show that authors eligible for article processing charge (APC) waivers publish more in gold OA journals than others. In contrast, authors eligible for an APC discount have the lowest ratio of OA publications, leading to the assumption that this discount insufficiently motivates authors to publish in gold OA journals. We found a strong correlation between the journal rank and the publishing model in gold OA journals, whereas the OA option is mostly avoided in hybrid journals. Also, results show that the countries' income level, seniority, and experience with OA publications are the most predictive factors for OA publishing in hybrid journals. C1 [Momeni, Fakhri; Dietze, Stefan; Mayr, Philipp] GESIS Leibniz Inst Social Sci, Cologne, Germany. [Dietze, Stefan] Heinrich Heine Univ Dusseldorf, Dept Comp Sci, Dusseldorf, Germany. [Biesenbender, Kristin; Peters, Isabella] ZBW Leibniz Informat Ctr Econ, Kiel, Germany. C3 Leibniz Institut fur Sozialwissenschaften (GESIS); Heinrich Heine University Dusseldorf; Deutsche Zentralbibliothek fur Wirtschaftswissenschaften (ZBW) RP Momeni, F (corresponding author), GESIS Leibniz Inst Social Sci, Cologne, Germany. EM fakhri.momeni@t-online.de RI Momeni, Fakhri/I-8012-2018; Mayr, Philipp/C-4359-2013; Peters, Isabella/C-9891-2012 OI Momeni, Fakhri/0000-0002-5572-575X; Mayr, Philipp/0000-0002-6656-1658; Biesenbender, Kristin/0000-0003-2497-5411; Peters, Isabella/0000-0001-5840-0806 FU BMBF project OASE [01PU17005A]; German Competence Center for Bibliometrics [01PQ17001] FX This work is financially supported by BMBF project OASE, grant number 01PU17005A. We acknowledge the support of the German Competence Center for Bibliometrics (grant:01PQ17001) for maintaining the used data set for the analyses. CR Bahlai CA, 2019, AM SCI, V107, P78 Barner JR, 2014, BRIT J SOC WORK, V44, P2448, DOI 10.1093/bjsw/bct161 Bautista-Puig N, 2020, SCIENTOMETRICS, V124, P2551, DOI 10.1007/s11192-020-03546-x Behr A, 2020, JAHRB NATL STAT, V240, P743, DOI 10.1515/jbnst-2019-0006 Bornmann L, 2020, SCIENTOMETRICS, V124, P1457, DOI 10.1007/s11192-020-03512-7 Bornmann L, 2014, J ASSOC INF SCI TECH, V65, P1939, DOI 10.1002/asi.23152 Ekstrom J., 2011, J KOREAN STAT SOC, V42, P323, DOI [10.1016/j.jkss.2012.10.002, DOI 10.1016/J.JKSS.2012.10.002] Evans JA, 2009, SCIENCE, V323, P1025, DOI 10.1126/science.1154562 Farys R, 2021, QUANT SCI STUD, V2, P505, DOI 10.1162/qss_a_00129 Fox J, 2021, J COMMUN, V71, P764, DOI 10.1093/joc/jqab029 Fraser N, 2020, QUANT SCI STUD, V1, P618, DOI 10.1162/qss_a_00043 Gargouri Y, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0013636 Henrich J, 2010, BEHAV BRAIN SCI, V33, P61, DOI 10.1017/S0140525X0999152X Hodge DR, 2011, RES SOCIAL WORK PRAC, V21, P222, DOI 10.1177/1049731510369141 Iyandemye J, 2019, PLOS ONE, V14, DOI 10.1371/journal.pone.0220229 Jannot AS, 2013, J CLIN EPIDEMIOL, V66, P296, DOI 10.1016/j.jclinepi.2012.09.015 Karimi F, 2016, PROCEEDINGS OF THE 25TH INTERNATIONAL CONFERENCE ON WORLD WIDE WEB (WWW'16 COMPANION), P53, DOI 10.1145/2872518.2889385 King DA, 2004, NATURE, V430, P311, DOI 10.1038/430311a Kumar N, 2019, ASIA JT CONF INF SEC, P16, DOI [10.1109/AsiaJCIS.2019.00011, 10.1109/AsiaJCIS.2019.00-10] Langham-Putrow A, 2021, PLOS ONE, V16, DOI 10.1371/journal.pone.0253129 Lawson S, 2015, PUBLICATIONS, V3, P155, DOI 10.3390/publications3030155 LeBlanc V, 2017, QUANT METH PSYCHOL, V13, P46, DOI 10.20982/tqmp.13.1.p046 Lewis C, 2018, INFORM TECHNOL LIBR, V37, P50, DOI 10.6017/ital.v37i3.10604 Liu WS, 2018, LEARN PUBL, V31, P107, DOI 10.1002/leap.1114 Matthias L, 2019, PUBLICATIONS, V7, DOI 10.3390/publications7020023 McKiernan EC, 2016, ELIFE, V5, DOI 10.7554/eLife.16800 Momeni F, 2022, Arxiv, DOI arXiv:2207.09655 Momeni F, 2021, SCIENTOMETRICS, V126, P9811, DOI 10.1007/s11192-021-03972-5 Munafò MR, 2017, NAT HUM BEHAV, V1, DOI 10.1038/s41562-016-0021 Olejniczak AJ, 2020, QUANT SCI STUD, V1, P1429, DOI 10.1162/qss_a_00091 Ottaviani J, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0159614 Piwowar H, 2018, PEERJ, V6, DOI 10.7717/peerj.4375 Rimmert C., 2017, DISAMBIGUATION AUTHO Ross-Hellauer T, 2022, ROY SOC OPEN SCI, V9, DOI 10.1098/rsos.211032 Rouhi S., 2022, SCI EDITOR, V45, P5, DOI [10.36591/SE-D-4501-5, DOI 10.36591/SE-D-4501-5] Roy SS, 2020, INT J AD HOC UBIQ CO, V33, P62, DOI 10.1504/IJAHUC.2020.104715 Samimi Ahmad Jafari., 2011, Journal of Education and Vocational Research, V2, P38, DOI [10.22610/jevr.v2i2.23, DOI 10.22610/JEVR.V2I2.23] Santamaría L, 2018, PEERJ COMPUT SCI, DOI 10.7717/peerj-cs.156 Schroter S, 2005, BMJ-BRIT MED J, V330, P756, DOI 10.1136/bmj.38359.695220.82 Simard MA, 2021, PRO INT CONF SCI INF, P1033 Smith AC, 2022, QUANT SCI STUD, V2, P1123, DOI 10.1162/qss_a_00157 Sotudeh H, 2015, SCIENTOMETRICS, V104, P581, DOI 10.1007/s11192-015-1607-5 Spelmen VS, 2018, 2018 INT C CURR TREN, P1, DOI DOI 10.1109/ICCTCT.2018.8551020 Sullo E, 2016, EVID BASED LIB INF P, V11, P60, DOI 10.18438/B84W67 Wang ZQ, 2020, SCIENTOMETRICS, V125, P1403, DOI 10.1007/s11192-020-03612-4 Xia JF, 2012, COLL RES LIBR, V73, P134, DOI 10.5860/crl-234 Yamak Z, 2016, PROCEEDINGS OF THE 25TH INTERNATIONAL CONFERENCE ON WORLD WIDE WEB (WWW'16 COMPANION), P955, DOI 10.1145/2872518.2890586 Zhu YM, 2017, SCIENTOMETRICS, V111, P557, DOI 10.1007/s11192-017-2316-z NR 48 TC 2 Z9 2 U1 10 U2 24 PU MIT PRESS PI CAMBRIDGE PA ONE ROGERS ST, CAMBRIDGE, MA 02142-1209 USA EI 2641-3337 J9 QUANT SCI STUD JI Quant. Sci. Stud. PD MAY 1 PY 2023 VL 4 IS 2 BP 353 EP 371 DI 10.1162/qss_a_00253 PG 19 WC Information Science & Library Science WE Emerging Sources Citation Index (ESCI) SC Information Science & Library Science GA K5CJ2 UT WOS:001016613900003 OA Green Published, Green Submitted, gold, Green Accepted DA 2024-09-05 ER PT C AU Schröder, S Thiele, T Jooss, C Vossen, R Richert, A Isenhardt, I Jeschke, S AF Schroeder, Stefan Thiele, Thomas Jooss, Claudia Vossen, Rene Richert, Anja Isenhardt, Ingrid Jeschke, Sabina BE Ribiere, V Worasinchai, L TI Text Mining Analytics as a Method of Benchmarking Interdisciplinary Research Collaboration SO PROCEEDINGS OF THE 12TH INTERNATIONAL CONFERENCE ON INTELLECTUAL CAPITAL KNOWLEDGE MANAGEMENT & ORGANISATIONAL LEARNING (ICICKM 2015) SE Proceedings of the International Conference on Intellectual Capital Knowledge Management & Organizational Learning LA English DT Proceedings Paper CT 12th International Conference on Intellectual Capital Knowledge Management and Organisational Learning (ICICKM) CY NOV 05-06, 2015 CL Bangkok Univ, Inst Knowledge Innovat, Bangkok, THAILAND HO Bangkok Univ, Inst Knowledge Innovat DE benchmarking; interdisciplinarity; text mining; clustering; k-means; principal component analysis AB This paper introduces the process of adopting and implementing modern text mining approaches of analysis within the Cluster of Excellence (CoE) Tailor-Made Fuels from Biomass (TMFB) at RWTH Aachen University and presents initial results of the analysis of research output by use of common clustering algorithms, namely Principal Component Analysis and k-means. As one main part of this paper the data driven approach is classified into benchmarking efforts, which are part of the research work of the so called Supplementary Cluster Activities. The SCA, supporting the cluster management, are initiated in order to promote interdisciplinary collaboration of CoE researchers with different disciplinary backgrounds. This cross-linking is aided by means of knowledge engineering and knowledge transfer strategies, such as the exploration of synergies and benchmarking of research results as well as progress. In this course an adoption of current benchmarking efforts to the specific cluster research framework conditions is described. At this, in case of differing data sources according to those used in widespread business organisational benchmarking, possible TMFB data sources are outlined and a selection for analysis is reasoned. While benchmarking is usually differentiated in internal and external benchmarking, in this case focus lies on internal analysis of publications in order to reflect research work. Benchmarking of publications is used and implemented to identify (best) methods, practices and processes of CoE to improve the research organization. Second major part and central question within the scope of this paper is in which way text mining respectively clustering algorithms are sensitive applicable to TMFB publications and are able to be used as benchmark for research clusters. Thus thematically priorities of TMFB researchers will be investigated in order to create an overview according to research topics, keywords and methods. In case of an outlook further steps, e.g. dealing with generated results, data visualisation or further acquisition of data corpora, are formulated. C1 [Schroeder, Stefan] Rhein Westfal TH Aachen, Inst Informat Management Mech Engn IMA, Aachen, Germany. Rhein Westfal TH Aachen, Ctr Learning & Knowledge Management ZLW, Aachen, Germany. Rhein Westfal TH Aachen, Assoc Inst Management Cybernet IfU, Aachen, Germany. C3 RWTH Aachen University; RWTH Aachen University; RWTH Aachen University RP Schröder, S (corresponding author), Rhein Westfal TH Aachen, Inst Informat Management Mech Engn IMA, Aachen, Germany. EM stefan.schroeder@ima-zlw-ifu.rwth-aachen.de; thomas.thiele@ima-zlw-ifu.rwth-aachen.de; claudia.jooss@ima-zlw-ifu.rwth-aachen.de; rene.vossen@ima-zlw-ifu.rwth-aachen.de; anja.richert@ima-zlw-ifu.rwth-aachen.de; ingrid.isenhardt@ima-zlw-ifu.rwth-aachen.de; sabina.jeschke@ima-zlw-ifu.rwth-aachen.de RI Thiele, Thomas/J-7334-2016; Jeschke, Sabina/M-9453-2013 OI Isenhardt, Ingrid/0000-0002-5645-5341 CR Agrawal R., 1993, SIGMOD Record, V22, P207, DOI 10.1145/170036.170072 [Anonymous], 2010, PRINCIPAL COMPONENT [Anonymous], 1977, CLUSTERANALYSE EINFU Backhaus K., 1990, MULTIVARIATE ANALYSE, V6th Berry M. W., 2010, TEXT MINING APPL THE Bishop C.M., 2006, J ELECTRON IMAGING, V16, P049901, DOI DOI 10.1117/1.2819119 Bogetoft P., 2012, Performance benchmarking-Measuring and managing performance Chisholm A., 2013, Exploring Data with RapidMiner Cluster of Excellence, 2011, REN PROP CLUST UNPUB Dai XF, 2014, OMEGA-INT J MANAGE S, V42, P179, DOI 10.1016/j.omega.2013.05.007 Ding C., 2004, 21st International Conference on Machine Learning, P1 Dzwonnek D., 2012, MIN C GERM RES COUNC Fodor I.K, 2002, SURVEY DIMENSION RED, DOI DOI 10.2172/15002155 German Research Foundation-DFG, 2013, EXZ BLICK WETTB BUND German Research Foundation - DFG, 2008, ECKP WEIT EXZ Hall MA, 2003, IEEE T KNOWL DATA EN, V15, P1437, DOI 10.1109/TKDE.2003.1245283 HARTUNG J, 1984, MULTIVARIATE STAT LE Hener Y., 2008, 103 U LEIPZ CHE CTR Höppner F, 2010, DATA MINING AND KNOWLEDGE DISCOVERY HANDBOOK, SECOND EDITION, P299, DOI 10.1007/978-0-387-09823-4_15 Hofmann Markus., 2014, RapidMiner Data Mining Use Cases and Business Analytics Applications, Vfirst Jackson N.Lund., 2000, Benchmarking for Higher Education Joo C., 2014, GESTALTUNG KOOPERATI Kempf S., 1995, BENCHMARKING PRAXIS Krcmar H., 2015, EINFUHRUNG INFORMATI Levy G. D., 2012, BENCHMARKING I RES N Levy G.D., 2012, New Directions for Institutional Research, V2012, P5, DOI [10.1002/ir.20026, DOI 10.1002/IR.20026] Maimon O, 2010, DATA MINING AND KNOWLEDGE DISCOVERY HANDBOOK, SECOND EDITION, P1, DOI 10.1007/978-0-387-09823-4 Miner G, 2012, PRACTICAL TEXT MINING AND STATISTICAL ANALYSIS FOR NON-STRUCTURED TEXT DATA APPLICATIONS, P1 Monfreda M., 2012, PRINCIPAL COMPONENT, P49 Nisbet R., 2009, HDB STAT ANAL DATA M Rehauser Jakob, 1999, PROZESSORIENTIERTES Ronco S.L., 2012, New Directions for Institutional Research, V2012, P15 Sanguansat P., 2012, Principal Component Analysis-Engineering Applications Smith AE, 2006, BEHAV RES METHODS, V38, P262, DOI 10.3758/BF03192778 Svensen M., 2009, Pattern Recognition and Machine Learning: Solutions to the Exercises Thiele T., 2015, P 19 TRIENN C INT ER P 19 TRIENN C INT ER NR 36 TC 1 Z9 1 U1 0 U2 5 PU ACAD CONFERENCES LTD PI NR READING PA CURTIS FARM, KIDMORE END, NR READING, RG4 9AY, ENGLAND SN 2048-9803 BN 978-1-910810-74-3 J9 PROC INT CONF INTELL PY 2015 BP 408 EP 417 PG 10 WC Business; Psychology, Applied; Management WE Conference Proceedings Citation Index - Social Science & Humanities (CPCI-SSH) SC Business & Economics; Psychology GA BE4JO UT WOS:000371799600049 DA 2024-09-05 ER PT J AU Chen, XL Xie, HR Wang, FL Liu, ZQ Xu, J Hao, TY AF Chen, Xieling Xie, Haoran Wang, Fu Lee Liu, Ziqing Xu, Juan Hao, Tianyong TI A bibliometric analysis of natural language processing in medical research SO BMC MEDICAL INFORMATICS AND DECISION MAKING LA English DT Article; Proceedings Paper CT 3rd China Health Information Processing Conference (CHIP) CY NOV 24-25, 2017 CL Shenzhen, PEOPLES R CHINA DE Natural language processing; Medical; Bibliometrics; Statistical characteristics; Scientific collaboration; Thematic discovery and evolution ID NETWORK ANALYSIS; SCIENCE; ALGORITHM; EVOLUTION; EDUCATION; TRENDS; DOMAIN; FIELD AB Background: Natural language processing (NLP) has become an increasingly significant role in advancing medicine. Rich research achievements of NLP methods and applications for medical information processing are available. It is of great significance to conduct a deep analysis to understand the recent development of NLP-empowered medical research field. However, limited study examining the research status of this field could be found. Therefore, this study aims to quantitatively assess the academic output of NLP in medical research field. Methods: We conducted a bibliometric analysis on NLP-empowered medical research publications retrieved from PubMed in the period 2007-2016. The analysis focused on three aspects. Firstly, the literature distribution characteristics were obtained with a statistics analysis method. Secondly, a network analysis method was used to reveal scientific collaboration relations. Finally, thematic discovery and evolution was reflected using an affinity propagation clustering method. Results: There were 1405 NLP-empowered medical research publications published during the 10 years with an average annual growth rate of 18.39%. 10 most productive publication sources together contributed more than 50% of the total publications. The USA had the highest number of publications. A moderately significant correlation between country's publications and GDP per capita was revealed. Denny, Joshua C was the most productive author. Mayo Clinic was the most productive affiliation. The annual co-affiliation and co-country rates reached 64.04% and 15.79% in 2016, respectively. 10 main great thematic areas were identified including Computational biology, Terminology mining, Information extraction, Text classification, Social medium as data source, Information retrieval, etc. Conclusions: A bibliometric analysis of NLP-empowered medical research publications for uncovering the recent research status is presented. The results can assist relevant researchers, especially newcomers in understanding the research development systematically, seeking scientific cooperation partners, optimizing research topic choices and monitoring new scientific or technological activities. C1 [Chen, Xieling] Jinan Univ, Coll Econ, Guangzhou, Guangdong, Peoples R China. [Xie, Haoran] Educ Univ Hong Kong, Dept Math & Informat Technol, Hong Kong, Hong Kong, Peoples R China. [Wang, Fu Lee] Open Univ Hong Kong, Sch Sci & Technol, Hong Kong, Hong Kong, Peoples R China. [Liu, Ziqing] Guangzhou Univ Chinese Med, Clin Med Coll 2, Guangzhou, Guangdong, Peoples R China. [Xu, Juan] Nanjing Audit Univ, Res Inst Natl Supervis & Audit Law, Nanjing, Jiangsu, Peoples R China. [Hao, Tianyong] Guangdong Univ Foreign Studies, Sch Informat Sci & Technol, Guangzhou, Guangdong, Peoples R China. [Hao, Tianyong] South China Normal Univ, Sch Comp, Guangzhou, Guangdong, Peoples R China. C3 Jinan University; Education University of Hong Kong (EdUHK); Hong Kong Metropolitan University; Guangzhou University of Chinese Medicine; Nanjing Audit University; Guangdong University of Foreign Studies; South China Normal University RP Hao, TY (corresponding author), Guangdong Univ Foreign Studies, Sch Informat Sci & Technol, Guangzhou, Guangdong, Peoples R China.; Hao, TY (corresponding author), South China Normal Univ, Sch Comp, Guangzhou, Guangdong, Peoples R China. EM haoty@gdufs.edu.cn RI Hao, Tianyong/HJH-2742-2023; Wang, Fu Lee/AAD-9782-2021; Xie, Haoran/AFS-3515-2022; Xie, Haoran/AAW-8845-2020 OI Hao, Tianyong/0000-0002-9792-3949; Wang, Fu Lee/0000-0002-3976-0053; Xie, Haoran/0000-0003-0965-3617; Zhang, Dong/0000-0001-8186-4692; PV, THAYYIB/0000-0001-8929-0398; Chen, Xieling/0000-0003-3417-7421; xing, libo/0000-0002-8918-7128 FU National Natural Science Foundation of China [61772146]; Research Grants Council of Hong Kong Special Administrative Region, China [UGC/FDS11/E04/16]; Innovative School Project in Higher Education of Guangdong Province [YQ2015062] FX Publication of the article is supported by grants from National Natural Science Foundation of China (No. 61772146), Research Grants Council of Hong Kong Special Administrative Region, China (UGC/FDS11/E04/16), and Innovative School Project in Higher Education of Guangdong Province (No. YQ2015062). CR Albers DJ, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0096443 Martínez MA, 2015, RES SOCIAL WORK PRAC, V25, P257, DOI 10.1177/1049731514522101 [Anonymous], 2007, Introductory statistics [Anonymous], 2017, Knowledge Solutions, DOI 10.1007/978-981-10-0983-9_9 Batet M, 2011, J BIOMED INFORM, V44, P118, DOI 10.1016/j.jbi.2010.09.002 Bodenhofer U, 2011, BIOINFORMATICS, V27, P2463, DOI 10.1093/bioinformatics/btr406 Boudry C, 2016, PEERJ, V4, DOI 10.7717/peerj.1557 Boudry C, 2015, EUR J OPHTHALMOL, V25, P357, DOI 10.5301/ejo.5000556 Cambria E, 2014, IEEE COMPUT INTELL M, V9, P48, DOI 10.1109/MCI.2014.2307227 Chasin R, 2014, J AM MED INFORM ASSN, V21, P842, DOI 10.1136/amiajnl-2013-002133 Chen XL, 2017, LECT NOTES COMPUT SC, V10594, P89, DOI 10.1007/978-3-319-69182-4_10 Cobo MJ, 2015, KNOWL-BASED SYST, V80, P3, DOI 10.1016/j.knosys.2014.12.035 Cobo MJ, 2014, IEEE T INTELL TRANSP, V15, P901, DOI 10.1109/TITS.2013.2284756 Cobo MJ, 2011, J INFORMETR, V5, P146, DOI 10.1016/j.joi.2010.10.002 Dehdarirad T, 2014, SCIENTOMETRICS, V101, P273, DOI 10.1007/s11192-014-1327-2 Demner-Fushman D, 2016, Yearb Med Inform, P224 Diem A, 2013, RES HIGH EDUC, V54, P86, DOI 10.1007/s11162-012-9264-5 El-Samak AF, 2015, J ARTIF INTELL SOFT, V5, P239, DOI 10.1515/jaiscr-2015-0032 Fan XM, 2016, BURNS, V42, P1463, DOI 10.1016/j.burns.2016.02.002 Frey BJ, 2007, SCIENCE, V315, P972, DOI 10.1126/science.1136800 Frey BJ, 2008, SCIENCE, V319, DOI 10.1126/science.1151268 Geaney F, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0133009 Hao T, 2015, METHOD INFORM MED, V54, P164, DOI 10.3414/ME13-01-0130 Hao TY, 2016, METHOD INFORM MED, V55, P266, DOI 10.3414/ME15-01-0112 Hao TY, 2014, J BIOMED INFORM, V52, P112, DOI 10.1016/j.jbi.2014.01.009 HARANDE YI, 2014, J LIB INFORM SCI, V2, P49 Heo GE, 2017, BMC BIOINFORMATICS, V18, DOI 10.1186/s12859-017-1640-x Holliday EB, 2015, INT J RADIAT ONCOL, V92, P721, DOI 10.1016/j.ijrobp.2015.03.011 Hussain A., 2011, WEBOLOGY, V8, P87 Jiang HC, 2016, RENEW SUST ENERG REV, V57, P226, DOI 10.1016/j.rser.2015.12.194 Khan A, 2016, OBES REV, V17, P377, DOI 10.1111/obr.12372 Kramer PF, 2016, DENT TRAUMATOL, V32, P341, DOI 10.1111/edt.12262 Li L, 2017, COMPUT GEOSCI-UK, V99, P1, DOI 10.1016/j.cageo.2016.10.006 Li Q, 2015, BMC MED INFORM DECIS, V15, DOI 10.1186/s12911-015-0160-8 Liddy E.D, 2001, Encyclopedia of Library and Information Science, V2nd Lin C, 2016, J AM MED INFORM ASSN, V23, P387, DOI 10.1093/jamia/ocv113 MacEachren AM, 1998, IEEE SYMPOSIUM ON INFORMATION VISUALIZATION - PROCEEDINGS, P87, DOI 10.1109/INFVIS.1998.729563 MacQueen James, 1967, 5 BERK S MATH STAT P, P281 Meystre Stephane, 2005, BMC Med Inform Decis Mak, V5, P30, DOI 10.1186/1472-6947-5-30 Muñoz-Leiva F, 2012, QUAL QUANT, V46, P1077, DOI 10.1007/s11135-011-9565-3 Neveol A, 2016, Yearb Med Inform, P234 Newman MEJ, 2004, P NATL ACAD SCI USA, V101, P5200, DOI 10.1073/pnas.0307545100 Nikfarjam A, 2015, J AM MED INFORM ASSN, V22, P671, DOI 10.1093/jamia/ocu041 Osborne JD, 2016, J AM MED INFORM ASSN, V23, P1077, DOI 10.1093/jamia/ocw006 Otte E, 2002, J INF SCI, V28, P441, DOI 10.1177/016555150202800601 Radev DR, 2016, J ASSOC INF SCI TECH, V67, P683, DOI 10.1002/asi.23394 Ramos JM, 2008, INT J TUBERC LUNG D, V12, P1461 Romesburg C., 2004, Cluster Analysis for Researchers Shental N, 2004, ADV NEUR IN, V16, P185 Shi JB, 2000, IEEE T PATTERN ANAL, V22, P888, DOI 10.1109/34.868688 Sidorov G, 2014, EXPERT SYST APPL, V41, P853, DOI 10.1016/j.eswa.2013.08.015 Sun WY, 2015, J AM MED INFORM ASSN, V22, P1001, DOI 10.1093/jamia/ocu004 Tianyong Hao, 2015, Advances in Web-Based Learning - ICWL 2015. 14th International Conference. Proceedings: LNCS 9412, P3, DOI 10.1007/978-3-319-25515-6_1 Velmurugan C., 2013, LIB PHILOS PRACT, V1043, P1 Venable GT, 2014, WORLD NEUROSURG, V81, P468, DOI 10.1016/j.wneu.2013.11.013 Wallace ML, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0033339 Wang PW, 2017, J ASSOC INF SCI TECH, V68, P2649, DOI 10.1002/asi.23876 Wang Yue, 2016, AMIA Annu Symp Proc, V2016, P2062 Wasserman S., 1994, Social Network Analysis Xiao B, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0143055 Xieling Chen, 2017, Emerging Technologies for Education. Second International Symposium, SETE 2017 Held in Conjunction with ICWL 2017. Revised Selected Papers: LNCS 10676, P507, DOI 10.1007/978-3-319-71084-6_60 Yadav K, 2016, ACAD EMERG MED, V23, P171, DOI 10.1111/acem.12859 Yeung AWK, 2017, FRONT NEUROSCI-SWITZ, V11, DOI 10.3389/fnins.2017.00120 Zhang YY, 2015, J AM MED INFORM ASSN, V22, P967, DOI 10.1093/jamia/ocu048 Zheng L, 2016, JMIR MED INF, V4, P38, DOI 10.2196/medinform.6328 NR 65 TC 98 Z9 103 U1 3 U2 67 PU BMC PI LONDON PA CAMPUS, 4 CRINAN ST, LONDON N1 9XW, ENGLAND EI 1472-6947 J9 BMC MED INFORM DECIS JI BMC Med. Inform. Decis. Mak. PD MAR 22 PY 2018 VL 18 SU 1 AR 14 DI 10.1186/s12911-018-0594-x PG 14 WC Medical Informatics WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI); Conference Proceedings Citation Index - Science (CPCI-S) SC Medical Informatics GA GA9CN UT WOS:000428638800001 PM 29589569 OA gold, Green Published DA 2024-09-05 ER PT J AU Chuang, CW Chang, A Chen, MC Selvamani, MJP Shia, BC AF Chuang, Chien-Wei Chang, Ariana Chen, Mingchih Selvamani, Maria John P. Shia, Ben-Chang TI A Worldwide Bibliometric Analysis of Publications on Artificial Intelligence and Ethics in the Past Seven Decades SO SUSTAINABILITY LA English DT Article; Data Paper DE AI; ethics; bibliometric analysis; citation analysis; worldwide trend ID BIG DATA ANALYTICS; AI AB Issues related to artificial intelligence (AI) and ethics have gained much traction worldwide. The impact of AI on society has been extensively discussed. This study presents a bibliometric analysis of research results, citation relationships among researchers, and highly referenced journals on AI and ethics on a global scale. Papers published on AI and ethics were recovered from the Microsoft Academic Graph Collection data set, and the subject terms included "artificial intelligence" and "ethics." With 66 nations' researchers contributing to AI and ethics research, 1585 papers on AI and ethics were recovered, up to 5 July 2021. North America, Western Europe, and East Asia were the regions with the highest productivity. The top ten nations produced about 94.37% of the wide variety of papers. The United States accounted for 47.59% (286 articles) of all papers. Switzerland had the highest research production with a million-person ratio (1.39) when adjusted for populace size. It was followed by the Netherlands (1.26) and the United Kingdom (1.19). The most productive authors were found to be Khatib, O. (n = 10), Verner, I. (n = 9), Bekey, G. A. (n = 7), Gennert, M. A. (n = 7), and Chatila, R., (n = 7). Current research shows that research on artificial intelligence and ethics has evolved dramatically over the past 70 years. Moreover, the United States is more involved with AI and ethics research than developing or emerging countries. C1 [Chuang, Chien-Wei; Chen, Mingchih; Shia, Ben-Chang] Fu Jen Catholic Univ, Grad Inst Business Adm, New Taipei 242062, Taiwan. [Chuang, Chien-Wei; Chen, Mingchih; Shia, Ben-Chang] Fu Jen Catholic Univ, Artificial Intelligence Dev Ctr, New Taipei 242062, Taiwan. [Chang, Ariana] Fu Jen Catholic Univ, Interdisciplinary Studies Program, New Taipei 242062, Taiwan. [Selvamani, Maria John P.] Fu Jen Catholic Univ, Sch Med, New Taipei 242062, Taiwan. [Selvamani, Maria John P.] Fu Jen Catholic Univ, Fu Jen Acad Catholica, New Taipei 242062, Taiwan. C3 Fu Jen Catholic University; Fu Jen Catholic University; Fu Jen Catholic University; Fu Jen Catholic University; Fu Jen Catholic University RP Shia, BC (corresponding author), Fu Jen Catholic Univ, Grad Inst Business Adm, New Taipei 242062, Taiwan.; Shia, BC (corresponding author), Fu Jen Catholic Univ, Artificial Intelligence Dev Ctr, New Taipei 242062, Taiwan. EM 025674@mail.fju.edu.tw OI Chuang, Chien-wei/0000-0002-3592-4794; Shia, Ben-Chang/0000-0003-2854-8361 FU [7100397]; [A0110152] FX This manuscript was partially funded byGrant number: 7100397 and Grant number: A0110152. CR Akter S, 2016, INT J PROD ECON, V182, P113, DOI 10.1016/j.ijpe.2016.08.018 [Anonymous], 2017, Nature, V550, P301, DOI 10.1038/550301b [Anonymous], 2019, visNetwork: Network Visualization using 'vis.js' Library. R package version 2.0.9 Brundage M, 2018, ARXIV Castañeda K, 2022, SUSTAINABILITY-BASEL, V14, DOI 10.3390/su14095544 Cetindamar D, 2020, THUNDERBIRD INT BUS, V62, P457, DOI 10.1002/tie.22158 Demir E, 2020, J FORENSIC LEG MED, V69, DOI 10.1016/j.jflm.2019.101885 Donthu N, 2021, J BUS RES, V133, P285, DOI 10.1016/j.jbusres.2021.04.070 Fiandrino S, 2022, J BUS ETHICS, V180, P959, DOI 10.1007/s10551-022-05189-9 Hermann E., 2022, AI Ethics, V2, P29, DOI [10.1007/s43681-021-00114-8, DOI 10.1007/S43681-021-00114-8] Jobin A, 2019, NAT MACH INTELL, V1, P389, DOI 10.1038/s42256-019-0088-2 Kazim E, 2021, PATTERNS, V2, DOI 10.1016/j.patter.2021.100314 Mela GS, 2003, EUR RADIOL, V13, P657, DOI 10.1007/s00330-002-1640-7 Merigó JM, 2018, INFORM SCIENCES, V432, P245, DOI 10.1016/j.ins.2017.11.054 Mikalef P, 2021, INFORM MANAGE-AMSTER, V58, DOI 10.1016/j.im.2021.103434 Mikalef P, 2019, J BUS RES, V98, P261, DOI 10.1016/j.jbusres.2019.01.044 Radu V, 2021, INT J COMPUT COMMUN, V16, DOI 10.15837/ijccc.2021.1.4120 Ryan M, 2021, J INF COMMUN ETHICS, V19, P61, DOI 10.1108/JICES-12-2019-0138 Singh S, 2020, TECHNOL FORECAST SOC, V154, DOI 10.1016/j.techfore.2020.119963 Sinha A, 2015, WWW'15 COMPANION: PROCEEDINGS OF THE 24TH INTERNATIONAL CONFERENCE ON WORLD WIDE WEB, P243, DOI 10.1145/2740908.2742839 Sivarajah U, 2017, J BUS RES, V70, P263, DOI 10.1016/j.jbusres.2016.08.001 Stahl BC, 2022, AI SOC, V37, P23, DOI 10.1007/s00146-021-01148-6 Wang KS, 2019, FRONT BIG DATA, V2, DOI 10.3389/fdata.2019.00045 Wilson J, 2018, HARVARD BUS REV, V96, P115 Zhang Y, 2021, KNOWL-BASED SYST, V222, DOI 10.1016/j.knosys.2021.106994 Zhang Y, 2016, TECHNOL FORECAST SOC, V105, P179, DOI 10.1016/j.techfore.2016.01.015 Zou J, 2018, NATURE, V559, P324, DOI 10.1038/d41586-018-05707-8 NR 27 TC 2 Z9 2 U1 9 U2 39 PU MDPI PI BASEL PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND EI 2071-1050 J9 SUSTAINABILITY-BASEL JI Sustainability PD SEP PY 2022 VL 14 IS 18 AR 11125 DI 10.3390/su141811125 PG 13 WC Green & Sustainable Science & Technology; Environmental Sciences; Environmental Studies WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Science & Technology - Other Topics; Environmental Sciences & Ecology GA 4R9PZ UT WOS:000857087700001 OA gold DA 2024-09-05 ER PT J AU Nastasa, A Dumitra, TC Grigorescu, A AF Nastasa, Anamaria Dumitra, Teodora-Catalina Grigorescu, Adriana TI Artificial intelligence and sustainable development during the pandemic: An overview of the scientific debates SO HELIYON LA English DT Article DE Artificial intelligence; Sustainable development; Bibliometric analysis; Text mining; LDA ID DEVELOPMENT GOALS; INFORMATION-TECHNOLOGY; USER ACCEPTANCE; R PACKAGE; PERSPECTIVE; EVOLUTION; ACHIEVE AB The current work aims to analyze the main themes related to artificial intelligence (AI) and sustainable development during the pandemic period. This study provides an overview of the specialized literature related to AI and sustainability from the beginning of the pandemic through 2023. The present paper analyses scientific literature emphasizing both artificial intelligence's positive and negative impacts on sustainable development objectives (SDGs). To conduct the research, we employed bibliometric analysis and text-mining techniques to identify the major themes in the literature indexed in the Web of Science and Scopus databases. Firstly, we used descriptive measures to identify the authors' impact, the article production by country, the main keywords used, and other descriptive data. We further used data reduction methods based on coword analysis (such as multiple correspondence analysis) on authors' keywords to show patterns in the themes explored in the literature. Bibliometric analysis was supplemented by text mining using Latent Dirichlet allocation (LDA) and structural topic modeling on abstracts to provide a comprehensive view of scientific debates on AI and sustainable development. Our research has identified various themes in the literature related to AI and sustainable development. These themes include social sustainability, health-related issues, AI technologies for energy efficiency, sustainability in industry and innovation, IoT technologies for smart and sustainable cities, urban planning, technologies for education and knowledge production, and the impact of technologies on SDGs. We also found that there is a significant positivity bias in the literature when discussing the impact of AI on sustainable development. Despite acknowledging certain risks, the literature tends to focus on the potential benefits of AI across various sectors. In addition, the analysis shows a growing emphasis on energy efficiency, which is facilitated by the use of AI technologies. Our study contributes to a better understanding of current scholarly discussion trends and emerging scientific avenues regarding AI and sustainable development. It also highlights the areas where research is needed and the implications for practitioners and policymakers. C1 [Nastasa, Anamaria; Dumitra, Teodora-Catalina] Natl Sci Res Inst Lab & Social Protect, 6-8 Povernei St, Bucharest 010643, Romania. [Nastasa, Anamaria] Univ Bucharest, Doctoral Sch Sociol, 36-46 Mihail Kogalniceanu Blvd, Bucharest 050107, Romania. [Dumitra, Teodora-Catalina] Bucharest Univ Econ Studies, Bucharest 010552, Romania. [Grigorescu, Adriana] Natl Univ Polit Studies & Publ Adm, 30A Expozitiei Bd, Bucharest 012104, Romania. C3 University of Bucharest; Bucharest University of Economic Studies; National University of Political Studies & Public Administration (SNSPA) - Romania RP Nastasa, A (corresponding author), Natl Sci Res Inst Lab & Social Protect, 6-8 Povernei St, Bucharest 010643, Romania. EM anamaria.nastasa@incsmps.ro; teodora.dumitra@incsmps.ro; adriana.grigorescu@snspa.ro RI Nastasa, Anamaria/AED-5337-2022 OI Nastasa, Anamaria/0000-0002-4641-1273 FU Romanian Ministry of Research, Innovation and Digitalization [PN 22_10_0103] FX Part of this work was supported by the NUCLEU Program funded by the Romanian Ministry of Research, Innovation and Digitalization (Project PN 22_10_0103-"Development of digital skills for the new socio-economic normality"/"Dezvoltarea competentelor digitale pentru noua normalitate socio-economica") CR Agrawal R, 2022, OPER MANAGE RES, V15, P609, DOI 10.1007/s12063-021-00212-0 Ahad MA, 2020, SUSTAIN CITIES SOC, V61, DOI 10.1016/j.scs.2020.102301 AJZEN I, 1991, ORGAN BEHAV HUM DEC, V50, P179, DOI 10.1016/0749-5978(91)90020-T Al-Emran M, 2023, TECHNOL SOC, V75, DOI 10.1016/j.techsoc.2023.102383 Alonso RS, 2020, AD HOC NETW, V98, DOI 10.1016/j.adhoc.2019.102047 [Anonymous], 2023, CointelegraphSeptember 12 [Anonymous], 2023, The Important Role of AI in Supply Chain Management & Logistics-the Quantic Blog Anthopoulos LeonidasG., 2012, The Future Internet: Future Internet Assembly 2012: From Promises to Reality, P178, DOI DOI 10.1007/978-3-642-30241-1_16 Aria M, 2017, J INFORMETR, V11, P959, DOI 10.1016/j.joi.2017.08.007 Baena-Morales S, 2021, INT J ENV RES PUB HE, V18, DOI 10.3390/ijerph18042129 Bajwa Junaid, 2021, Future Healthc J, V8, pe188, DOI 10.7861/fhj.2021-0095 Baker J, 2010, INTEGR SER INFORM SY, V28, P231, DOI 10.1007/978-1-4419-6108-2_12 Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993 BranE RughinisC, 2023, 2023 24 INT C CONTR, P391, DOI [10.1109/CSCS59211.2023.00068, DOI 10.1109/CSCS59211.2023.00068] Brock University, 2023, Sustainability versus sustainable development: what's the difference? Cao J, 2009, NEUROCOMPUTING, V72, P1775, DOI 10.1016/j.neucom.2008.06.011 Castro GD, 2021, J CLEAN PROD, V280, DOI 10.1016/j.jclepro.2020.122204 Chaney Nathan, 2020, CRAN Chen X, 2020, COMPUT EDUC, V151, DOI 10.1016/j.compedu.2020.103855 Cobo MJ, 2011, J INFORMETR, V5, P146, DOI 10.1016/j.joi.2010.10.002 Cowls J, 2023, AI SOC, V38, P283, DOI 10.1007/s00146-021-01294-x Dalmia N., 2023, The Economic TimesApril 25 Davenport Thomas, 2019, Future Healthc J, V6, P94, DOI 10.7861/futurehosp.6-2-94 David LO, 2022, J CLEAN PROD, V363, DOI 10.1016/j.jclepro.2022.132522 Davidescu AA, 2022, ECON ANAL POLICY, V73, P683, DOI 10.1016/j.eap.2021.12.016 DAVIS FD, 1989, MIS QUART, V13, P319, DOI 10.2307/249008 DEVEAUD R, 2014, DOCUMENT NUMERIQUE, V0017 Di Vaio A, 2020, J BUS RES, V121, P283, DOI 10.1016/j.jbusres.2020.08.019 DiMaggio P, 2013, POETICS, V41, P570, DOI 10.1016/j.poetic.2013.08.004 Drage Eleanor, 2022, Philos Technol, V35, P89, DOI 10.1007/s13347-022-00543-1 Du SL, 2021, J BUS RES, V129, P961, DOI 10.1016/j.jbusres.2020.08.024 Duggal N., 2023, Simplilearn Eden L, 2021, J INT BUS POLICY, V4, P28, DOI 10.1057/s42214-020-00054-w Elavarasan RM, 2021, APPL ENERG, V292, DOI 10.1016/j.apenergy.2021.116665 F.N. Horizons, 2023, How AI can impact agriculture Fu HZ, 2022, CLIMATIC CHANGE, V170, DOI 10.1007/s10584-022-03324-z Gerschke A., 2023, The environmental impacts of AI Ghosh A, 2018, CAAI T INTELL TECHNO, V3, P208, DOI 10.1049/trit.2018.1008 Goralski MA, 2020, INT J MANAG EDUC-OXF, V18, DOI 10.1016/j.ijme.2019.100330 Greenacre M.J., 2013, Statistical Analysis, V2 Grün B, 2011, J STAT SOFTW, V40, P1 Gue IHV, 2020, CLEAN TECHNOL ENVIR, V22, P1449, DOI 10.1007/s10098-020-01883-2 Halkos G, 2021, ECON ANAL POLICY, V70, P94, DOI 10.1016/j.eap.2021.02.001 Hamidi A, 2024, CURR PSYCHOL, V43, P155, DOI 10.1007/s12144-023-04264-2 He Q, 1999, LIBR TRENDS, V48, P133 He XZ, 2023, SUSTAIN DEV, V31, P1888, DOI 10.1002/sd.2491 HILL RJ, 1977, CONTEMP SOCIOL, V6, P244, DOI 10.2307/2065853 Husson F, 2014, COMP SCI DATA ANAL S, P165 Isabelle DA, 2022, SUSTAINABILITY-BASEL, V14, DOI 10.3390/su14041979 Jamali SM, 2023, INT J TECHNOL DES ED, V33, P819, DOI 10.1007/s10798-022-09762-1 Joyce K, 2021, SOCIUS, V7, DOI 10.1177/2378023121999581 Kamalov F, 2023, SUSTAINABILITY-BASEL, V15, DOI 10.3390/su151612451 Kanungo A., 2023, Earth Kaplan A, 2019, BUS HORIZONS, V62, P15, DOI 10.1016/j.bushor.2018.08.004 Klein HK, 2002, SCI TECHNOL HUM VAL, V27, P28, DOI 10.1177/016224390202700102 Kreinin H, 2022, EMPIRICA, V49, P281, DOI 10.1007/s10663-021-09526-5 Kulkov I, 2024, SUSTAIN DEV, V32, P2253, DOI 10.1002/sd.2773 Leal W, 2023, ENVIRON DEV SUSTAIN, V25, P4957, DOI 10.1007/s10668-022-02252-3 Lenzen M, 2022, NAT SUSTAIN, V5, P157, DOI 10.1038/s41893-021-00811-6 Li R., 2023, Insights Lindstedt NC, 2019, SOC CURR, V6, P307, DOI 10.1177/2329496519846505 Liu J, 2022, INT J ENV RES PUB HE, V19, DOI 10.3390/ijerph19042091 MacIntyre CR, 2023, J INT MED RES, V51, DOI 10.1177/03000605231159335 Maer-Matei M.M., 2019, Logos Univ. Mentality Educ. Novelty: Econ. Adm. Sci., V4, P21, DOI [10.18662/lumeneas/10, DOI 10.18662/LUMENEAS/10] Manzoor B, 2021, APPL SYST INNOV, V4, DOI 10.3390/asi4030052 Maretti M, 2019, INT REV SOCIOL, V29, P142, DOI 10.1080/03906701.2019.1641270 Marope P., 2015, Unleashing the potential. Transforming technical and vocational education and training McKinsey & Company, 2023, What is AI? Mhlanga D, 2022, INT J ENV RES PUB HE, V19, DOI 10.3390/ijerph19031879 Mirbabaie M, 2021, HEALTH TECHNOL-GER, V11, P693, DOI 10.1007/s12553-021-00555-5 Mlteva S., 2022, How Can AI Help in Achieving the Sustainable Development Goals? Mocanu C., 2022, Circular Economy and Sustainability, P71 Mondejar ME, 2021, SCI TOTAL ENVIRON, V794, DOI 10.1016/j.scitotenv.2021.148539 Muresan M., 2023, Impact of Artificial Intelligence on Education, DOI [10.5281/ZENODO.8132828, DOI 10.5281/ZENODO.8132828] Murgado-Armenteros EM, 2015, SCIENTOMETRICS, V102, P519, DOI 10.1007/s11192-014-1443-z Napolitano E., 2023, Report Says-CBS News, CBS NewsJune 2 Nhamo G, 2021, GLOB PUBLIC HEALTH, V16, P319, DOI 10.1080/17441692.2020.1860249 Nishant R, 2020, INT J INFORM MANAGE, V53, DOI 10.1016/j.ijinfomgt.2020.102104 Noyons ECM, 1999, J AM SOC INFORM SCI, V50, P115, DOI 10.1002/(SICI)1097-4571(1999)50:2<115::AID-ASI3>3.3.CO;2-A O'Sullivan K, 2021, NAT COMMUN, V12, DOI 10.1038/s41467-021-26217-8 Ogunsakin RE, 2022, INT J ENV RES PUB HE, V19, DOI 10.3390/ijerph19052508 Ordonez de Pablos P., 2023, 5G, artificial intelligence, and next generation internet of things: digital innovation for green and sustainable economies Ravikumar Ghiath Shabsigh E.B.B., 2022, Powering the Digital Economy: Opportunities and Risks of Artificial Intelligence in Finance Roberts ME, 2019, J STAT SOFTW, V91, P1, DOI 10.18637/jss.v091.i02 Rogers, 2003, DIFFUSION INNOVATION Rousseau S, 2021, J ECON SURV, V35, P1428, DOI 10.1111/joes.12415 Ruhanen L, 2015, J SUSTAIN TOUR, V23, P517, DOI 10.1080/09669582.2014.978790 Ryan M, 2023, AI SOC, V38, P2473, DOI 10.1007/s00146-021-01377-9 Sachithra V, 2023, ARTIF INTELL AGR, V8, P46, DOI 10.1016/j.aiia.2023.04.002 Saheb T, 2022, SUSTAIN COMPUT-INFOR, V35, DOI 10.1016/j.suscom.2022.100699 Sanchez TW, 2023, INT J URBAN SCI, V27, P179, DOI 10.1080/12265934.2022.2102538 Scheyvens R, 2019, J SUSTAIN TOUR, V27, P1061, DOI 10.1080/09669582.2018.1551404 Schoormann T, 2023, COMMUN ASSOC INF SYS, V52 Schwalbe N, 2020, LANCET, V395, P1579, DOI 10.1016/S0140-6736(20)30226-9 Singh A, 2024, SUSTAIN DEV, V32, P724, DOI 10.1002/sd.2706 Sun J, 2021, SCI BULL, V66, P1493, DOI 10.1016/j.scib.2021.03.014 Sustainability for All, 2024, Active Sustainability Tennant JP., 2020, Eur. Sci. Ed, V46, pe51987, DOI [10.3897/ese.2020.e51987, DOI 10.3897/ESE.2020.E51987] Thamik H, 2022, SUSTAINABILITY-BASEL, V14, DOI 10.3390/su14063568 Tschang FT, 2021, ACAD MANAGE PERSPECT, V35, P642, DOI 10.5465/amp.2019.0062 University of Nebraska-Lincoln, 2023, Sustainable Development Goals van Wynsberghe A., 2021, AI and Ethics, V1, P3, DOI [10.1007/s43681-021-00043-6, DOI 10.1007/S43681-021-00043-6] Venkatesh V, 2003, MIS QUART, V27, P425, DOI 10.2307/30036540 Venkatesh V, 2012, MIS QUART, V36, P157 Viana CM, 2022, SCI TOTAL ENVIRON, V806, DOI 10.1016/j.scitotenv.2021.150718 Vinuesa R, 2020, NAT COMMUN, V11, DOI 10.1038/s41467-019-14108-y Violante G.L., 2018, The New Palgrave Dictionary of Economics, P12389, DOI [10.1057/978-1-349-95189-52388, DOI 10.1057/978-1-349-95189-52388] Wang J, 2022, SUSTAINABILITY-BASEL, V14, DOI 10.3390/su14010010 Xiang XJ, 2021, ENVIRON IMPACT ASSES, V86, DOI 10.1016/j.eiar.2020.106515 Yamasaki K, 2022, SUSTAIN CITIES SOC, V84, DOI 10.1016/j.scs.2022.104002 Yang SH, 2023, ENVIRON DEV, V48, DOI 10.1016/j.envdev.2023.100922 Ye N, 2020, J CLEAN PROD, V272, DOI 10.1016/j.jclepro.2020.122679 Yeh SC, 2021, SUSTAINABILITY-BASEL, V13, DOI 10.3390/su13169165 Yigitcanlar T, 2020, ENERGIES, V13, DOI 10.3390/en13061473 Zaleniene I, 2021, GEOGR SUSTAIN, V2, P99, DOI 10.1016/j.geosus.2021.05.001 Zamponi ME, 2022, SMART CITIES-BASEL, V5, P728, DOI 10.3390/smartcities5020038 Zengin Y, 2021, SUSTAINABILITY-BASEL, V13, DOI 10.3390/su13052682 Zia T., 2023, Technopedia Zlatanovic S.S., 2023, Stanovnistvo, V61, P53, DOI [10.2298/STNV230220001S, DOI 10.2298/STNV230220001S] Zupic I, 2015, ORGAN RES METHODS, V18, P429, DOI 10.1177/1094428114562629 NR 120 TC 0 Z9 0 U1 8 U2 8 PU CELL PRESS PI CAMBRIDGE PA 50 HAMPSHIRE ST, FLOOR 5, CAMBRIDGE, MA 02139 USA EI 2405-8440 J9 HELIYON JI Heliyon PD MAY 15 PY 2024 VL 10 IS 9 AR e30412 DI 10.1016/j.heliyon.2024.e30412 PG 27 WC Multidisciplinary Sciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Science & Technology - Other Topics GA TC2J1 UT WOS:001238990800001 PM 38711639 OA gold, Green Published DA 2024-09-05 ER PT J AU Fu, LD Aliferis, CF AF Fu, Lawrence D. Aliferis, Constantin F. TI Using content-based and bibliometric features for machine learning models to predict citation counts in the biomedical literature SO SCIENTOMETRICS LA English DT Article DE Bibliometrics; Citation analysis; Machine learning; Information retrieval ID TEXT CATEGORIZATION AB The most popular method for judging the impact of biomedical articles is citation count which is the number of citations received. The most significant limitation of citation count is that it cannot evaluate articles at the time of publication since citations accumulate over time. This work presents computer models that accurately predict citation counts of biomedical publications within a deep horizon of 10 years using only predictive information available at publication time. Our experiments show that it is indeed feasible to accurately predict future citation counts with a mixture of content-based and bibliometric features using machine learning methods. The models pave the way for practical prediction of the long-term impact of publication, and their statistical analysis provides greater insight into citation behavior. C1 [Fu, Lawrence D.; Aliferis, Constantin F.] NYU Med Ctr, Ctr Hlth Informat & Bioinformat, New York, NY 10016 USA. C3 New York University RP Fu, LD (corresponding author), NYU Med Ctr, Ctr Hlth Informat & Bioinformat, 333 E 38th St,6th Floor, New York, NY 10016 USA. EM lawrence.fu@nyumc.org CR ALIFERIS C, 2009, JMLR IN PRESS Aliferis CF, 2006, CANCER INFORM, V2, P133 Aphinyanaphongs Y, 2005, J AM MED INFORM ASSN, V12, P207, DOI 10.1197/jamia.M1641 Burges CJC, 1998, DATA MIN KNOWL DISC, V2, P121, DOI 10.1023/A:1009715923555 Feitelson DG, 2004, J DOC, V60, P44, DOI 10.1108/00220410410516644 FU L, 2008, AMIA S Garfield E., 1977, ESSAYS INFORM SCI, V1, P84 Getoor L., 2003, SIGKDD EXPLORATIONS, V5, P84 Gross P L, 1927, Science, V66, P385, DOI 10.1126/science.66.1713.385 Leopold E, 2002, MACH LEARN, V46, P423, DOI 10.1023/A:1012491419635 Lokker C., 2008, BMJ MacRoberts MH, 1996, SCIENTOMETRICS, V36, P435, DOI 10.1007/BF02129604 Phelan TJ, 1999, SCIENTOMETRICS, V45, P117, DOI 10.1007/BF02458472 PORTER MF, 1980, PROGRAM-AUTOM LIBR, V14, P130, DOI 10.1108/eb046814 Rattigan M., 2003, SIGKDD EXPLORATIONS, V5, P41 Seglen PO, 1998, ACTA ORTHOP SCAND, V69, P224, DOI 10.3109/17453679809000920 NR 16 TC 75 Z9 84 U1 8 U2 108 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0138-9130 EI 1588-2861 J9 SCIENTOMETRICS JI Scientometrics PD OCT PY 2010 VL 85 IS 1 BP 257 EP 270 DI 10.1007/s11192-010-0237-1 PG 14 WC Computer Science, Interdisciplinary Applications; Information Science & Library Science WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Computer Science; Information Science & Library Science GA 639CC UT WOS:000280947400019 OA Bronze DA 2024-09-05 ER PT J AU Tam, J Lagisz, M Cornwell, W Nakagawa, S AF Tam, Jessica Lagisz, Malgorzata Cornwell, Will Nakagawa, Shinichi TI Quantifying research interests in 7,521 mammalian species with h-index: a case study SO GIGASCIENCE LA English DT Article DE bibliometrics; research bias; meta-research; scientific mapping; research on research; topic modeling ID TAXONOMIC BIAS; MODELS AB Background Taxonomic bias is a known issue within the field of biology, causing scientific knowledge to be unevenly distributed across species. However, a systematic quantification of the research interest that the scientific community has allocated to individual species remains a big data problem. Scalable approaches are needed to integrate biodiversity data sets and bibliometric methods across large numbers of species. The outputs of these analyses are important for identifying understudied species and directing future research to fill these gaps. Findings In this study, we used the species h-index to quantity the research interest in 7,521 species of mammals. We tested factors potentially driving species h-index, by using a Bayesian phylogenetic generalized linear mixed model (GLMM). We found that a third of the mammals had a species h-index of zero, while a select few had inflated research interest. Further, mammals with higher species h-index had larger body masses; were found in temperate latitudes; had their humans uses documented, including domestication; and were in lower-risk International Union for Conservation of Nature Red List categories. These results surprisingly suggested that critically endangered mammals are understudied. A higher interest in domesticated species suggested that human use is a major driver and focus in mammalian scientific literature. Conclusions Our study has demonstrated a scalable workflow and systematically identified understudied species of mammals, as well as identified the likely drivers of this taxonomic bias in the literature. This case study can become a benchmark for future research that asks similar biological and meta-research questions for other taxa. C1 Univ New South Wales, Evolut & Ecol Res Ctr, Sydney, NSW 2052, Australia. Univ New South Wales, Sch Biol Earth & Environm Sci, Sydney, NSW 2052, Australia. C3 University of New South Wales Sydney; University of New South Wales Sydney RP Tam, J (corresponding author), UNSW, Level 5 West,Biol Sci South E26, Kensington, NSW 2052, Australia. EM jessicatin-ying.tam@unsw.edu.au RI Lagisz, Malgorzata/A-3100-2010; Nakagawa, Shinichi/B-5571-2011 OI Lagisz, Malgorzata/0000-0002-3993-6127; Nakagawa, Shinichi/0000-0002-7765-5182; Cornwell, Will/0000-0003-4080-4073; Tam, Jesse / Jess/0000-0003-3655-1974 FU Research Technology Services at UNSW Sydney FX We are grateful for the comments from Prof. Ian Suthers and A/Prof. Tracy Ainsworth from UNSW Sydney. This research includes computations using the computational cluster Katana supported by Research Technology Services at UNSW Sydney. CR Adamo M, 2021, NAT PLANTS, V7, P574, DOI 10.1038/s41477-021-00912-2 Albert C, 2018, PLOS ONE, V13, DOI 10.1371/journal.pone.0199149 Bar-On YM, 2018, P NATL ACAD SCI USA, V115, P6506, DOI 10.1073/pnas.1711842115 Berti E, 2020, BIOL CONSERV, V251, DOI 10.1016/j.biocon.2020.108790 Bonnet X, 2002, TRENDS ECOL EVOL, V17, P1, DOI 10.1016/S0169-5347(01)02381-3 Borges R, 2019, BIOINFORMATICS, V35, P1862, DOI 10.1093/bioinformatics/bty800 Bryda Elizabeth C, 2013, Mo Med, V110, P207 Burgin CJ, 2018, J MAMMAL, V99, P1, DOI 10.1093/jmammal/gyx147 Ceballos G, 2006, P NATL ACAD SCI USA, V103, P19374, DOI 10.1073/pnas.0609334103 Chamberlain S., 2020, TAXIZE TAXONOMIC INF Colléony A, 2017, BIOL CONSERV, V206, P263, DOI 10.1016/j.biocon.2016.11.035 Cox R, 2016, TRANSBOUND EMERG DIS, V63, P79, DOI 10.1111/tbed.12221 Crotty D, 2017, EUR HEART J, V38, P2646, DOI 10.1093/eurheartj/ehx446 Culumber ZW, 2019, BIOSCIENCE, V69, P631, DOI 10.1093/biosci/biz063 da Silva AF, 2020, J NAT CONSERV, V56, DOI 10.1016/j.jnc.2020.125829 Di Marco M, 2017, GLOB ECOL CONSERV, V10, P32, DOI 10.1016/j.gecco.2017.01.008 Donaldson MR, 2016, FACETS, V1, P105, DOI 10.1139/facets-2016-0011 dos Reis M, 2012, P ROY SOC B-BIOL SCI, V279, P3491, DOI 10.1098/rspb.2012.0683 dos Santos JW, 2020, ANIM CONSERV, V23, P679, DOI 10.1111/acv.12586 Ducatez S, 2019, REV FISH BIOL FISHER, V29, P355, DOI 10.1007/s11160-019-09556-0 Fleming PA, 2016, MAMMAL REV, V46, P241, DOI 10.1111/mam.12066 Gerlach J, 2014, J INSECT CONSERV, V18, P573, DOI 10.1007/s10841-014-9660-6 Global Biodiversity Information Facility: GBIF, 2022, GLOBAL BIODIVERSITY Google: Google Trends, 2021, GOOGLE TRENDS Hadfield JD, 2010, J EVOLUTION BIOL, V23, P494, DOI 10.1111/j.1420-9101.2009.01915.x Hadfield JD, 2010, J STAT SOFTW, V33, P1, DOI 10.18637/jss.v033.i02 Harris E, 2004, EMBO REP, V5, P7, DOI 10.1038/sj.embor.7400058 Hirsch JE, 2005, P NATL ACAD SCI USA, V102, P16569, DOI 10.1073/pnas.0507655102 IUCN, 2021, IUCN RED LIST THREAT Jaffe K, 2020, PLOS ONE, V15, DOI 10.1371/journal.pone.0232458 Massicotte P., 2021, GTRENDSR PERFORM DIS McKenzie AJ, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0131004 McTavish EJ, 2015, BIOINFORMATICS, V31, P2794, DOI 10.1093/bioinformatics/btv276 Michonneau F, 2016, METHODS ECOL EVOL, V7, P1476, DOI 10.1111/2041-210X.12593 Miralles A, 2019, SCI REP-UK, V9, DOI 10.1038/s41598-019-56006-9 Nakagawa S, 2019, SYST BIOL, V68, P632, DOI 10.1093/sysbio/syy089 Nakagawa S, 2017, J R SOC INTERFACE, V14, DOI 10.1098/rsif.2017.0213 Nakagawa S, 2015, ECOLOGICAL STATISTICS: CONTEMPORARY THEORY AND APPLICATION, P81 Noruzi Alireza., 2016, Webology, V13, P1 Remsen D, 2016, ZOOKEYS, P207, DOI 10.3897/zookeys.550.9546 Renfrew C, 1997, NATURE, V386, P339, DOI 10.1038/386339a0 Research, 2020, MICROSOFT NNI Research Techonology Services UNSW, 2010, KATANA, DOI [DOI 10.26190/669X-A286, 10.26190/669X-A286] Ripple WJ, 2017, P NATL ACAD SCI USA, V114, P10678, DOI 10.1073/pnas.1702078114 Robertson PA, 2015, MAMMAL REV, V45, P128, DOI 10.1111/mam.12038 Rosenthal MF, 2017, ANIM BEHAV, V127, P83, DOI 10.1016/j.anbehav.2017.02.017 RStudio Team, 2020, RSTUDIO INT DEV R RUBIN DB, 1976, BIOMETRIKA, V63, P581, DOI 10.2307/2335739 Rudd MA, 2011, CONSERV BIOL, V25, P860, DOI 10.1111/j.1523-1739.2011.01712.x Schiesari L, 2007, CONSERV BIOL, V21, P465, DOI 10.1111/j.1523-1739.2006.00616.x Seddon PJ, 2005, ANIM CONSERV, V8, P51, DOI 10.1017/S1367943004001799 Sulzner K, 2021, ZOO BIOL, V40, P44, DOI 10.1002/zoo.21572 Tam J., 2021, **DATA OBJECT**, DOI 10.5281/zenodo.5711932 Tam J, 2020, SPECIESHINDEX VERSIO Tam J., 2022, **DATA OBJECT**, DOI 10.5281/zenodo.6672954 Tam J., 2022, **DATA OBJECT**, DOI 10.5281/zenodo.6644032 Tam J., 2022, GIGASCIENCE DATABASE, DOI 10.5524/102237 Tensen L, 2018, GLOB ECOL CONSERV, V15, DOI 10.1016/j.gecco.2018.e00423 The World Bank, 2019, GDP CURR US Titley MA, 2017, PLOS ONE, V12, DOI 10.1371/journal.pone.0189577 Trimble MJ, 2010, CONSERV BIOL, V24, P886, DOI 10.1111/j.1523-1739.2010.01453.x Troudet J, 2017, SCI REP-UK, V7, DOI 10.1038/s41598-017-09084-6 Tuck N, 2020, ANIMALS-BASEL, V10, DOI 10.3390/ani10040629 Upham NS, 2019, PLOS BIOL, V17, DOI 10.1371/journal.pbio.3000494 van Buuren S, 2011, J STAT SOFTW, V45, P1 van Helden P, 2012, EMBO REP, V13, P395, DOI 10.1038/embor.2012.43 Vose P. B., 1983, International Atomic Energy Agency Bulletin, V25, P37 Wang ZY, 2021, INSECT CONSERV DIVER, V14, P700, DOI 10.1111/icad.12499 Watkins HV, 2021, CONSERV LETT, V14, DOI 10.1111/conl.12802 Wiens JJ, 2016, PLOS BIOL, V14, DOI 10.1371/journal.pbio.2001104 Wikipedia, 2021, LIST DOM AN Wilman H., 2014, Ecology, V95, P2027, DOI [10.1890/13-1917.1, DOI 10.1890/13-1917.1] NR 72 TC 4 Z9 4 U1 1 U2 5 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 2047-217X J9 GIGASCIENCE JI GigaScience PY 2022 VL 11 AR giac074 DI 10.1093/gigascience/giac074 PG 11 WC Biology; Multidisciplinary Sciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Life Sciences & Biomedicine - Other Topics; Science & Technology - Other Topics GA 4C9BL UT WOS:000846739000088 PM 35962776 OA gold, Green Published DA 2024-09-05 ER PT J AU Isgüzar, S Fendoglu, E Simsek, AI AF Isguzar, Seda Fendoglu, Eda Simsek, Ahmed Ihsan TI INNOVATIVE APPLICATIONS IN BUSINESSES: AN EVALUATION ON GENERATIVE ARTIFICIAL INTELLIGENCE SO AMFITEATRU ECONOMIC LA English DT Article DE ChatGPT; artificial intelligence (AI); generative artificial intelligence (GenAI); OpenAI; business; business management; technology adoption; bibliometric analysis AB The utilisation of Chat Generative Pre -Trained Transformer (ChatGPT) and generative artificial intelligence (GenAI) technologies has started to demonstrate its impact across several domains. The swift shift and widespread implementation of efficient artificial intelligence (AI) present distinct prospects such as optimisation, advancement, enhanced efficiency, boosted sales and marketing, expansion, reduced costs, and heightened profitability. GenAI has the potential to create a competition crisis between technologically advanced enterprises and less developed ones. Additionally, it may give rise to legal, moral, and ethical issues such as copyright infringement and the production of fake and false information. Hence, it is crucial for organisations to ensure that the productivity of AI is maximized in order to maximise its benefits and minimise any potential harm. The aim of this study is to provide suggestions regarding the use and potential of GenAI technologies in the corporate sector and to emphasise the potential research areas of future GenAI. This study contributes to research and practice in business and management and also identifies future research avenues. This study examines the benefits and disadvantages of using GenAI tools in businesses and individual departments, and it highlights the potential risks and dangers. A bibliometric analysis of 198 studies in the discipline of Business & Management from the Scopus database was conducted using the R program's bibliometrix package. The study focuses on descriptive data, annual scientific production, most productive journals, most productive authors and authors dominance factor, most cited publications, and most relevant keywords. The findings show that GenAI is likely to continue with a strong and rapidly rising trend in 2024 and beyond. C1 [Isguzar, Seda; Fendoglu, Eda] Malatya Turgut Ozal Univ, Malatya, Turkiye. [Simsek, Ahmed Ihsan] Firat Univ, Elazig, Turkiye. C3 Malatya Turgut Ozal University; Firat University RP Fendoglu, E (corresponding author), Malatya Turgut Ozal Univ, Malatya, Turkiye. EM eda.fendoglu@ozal.edu.tr RI Simsek, Ahmed Ihsan/W-3881-2018 OI Simsek, Ahmed Ihsan/0000-0002-2900-3032 CR Aguinis H, 2024, ORGAN DYN, V53, DOI 10.1016/j.orgdyn.2024.101029 Al Naqbi H, 2024, SUSTAINABILITY-BASEL, V16, DOI 10.3390/su16031166 Arenas A.D., 2018, INDIAN J SCI TECHNOL, V11, P1, DOI DOI 10.17485/ijst/2018/v11i18/122604 Aria M, 2017, J INFORMETR, V11, P959, DOI 10.1016/j.joi.2017.08.007 Beerbaum D., 2023, Generative artificial intelligence (GAI) with chat gpt for accounting -a business case Carvalho I, 2024, TOUR REV, V79, P290, DOI 10.1108/TR-02-2023-0088 Chen BY, 2023, J CHIN ECON BUS STUD, V21, P471, DOI 10.1080/14765284.2023.2245279 Chuma E. L., 2023, Management Science and Business Decisions, V3, P5, DOI [10.52812/msbd.63, DOI 10.52812/MSBD.63] Crane D., 1972, Invisible colleges. Diffusion of knowledge in scientific communities Donthu N, 2021, J BUS RES, V133, P285, DOI 10.1016/j.jbusres.2021.04.070 Dwivedi YK, 2023, INT J INFORM MANAGE, V71, DOI 10.1016/j.ijinfomgt.2023.102642 Gill SS, 2022, INTERNET THINGS-NETH, V19, DOI 10.1016/j.iot.2022.100514 GROOS OV, 1969, J DOC, V25, P344, DOI 10.1108/eb026482 Gupta V., 2024, Internet Reference Services Quarterly, V28, P1, DOI [10.1080/10875301.2023.2300114, DOI 10.1080/10875301.2023.2300114] Gursoy D, 2022, J HOSP MARKET MANAG, V31, P527, DOI 10.1080/19368623.2022.2072504 Han J, 2020, J BIOMED INFORM, V109, DOI 10.1016/j.jbi.2020.103516 Hassani H, 2023, BIG DATA COGN COMPUT, V7, DOI 10.3390/bdcc7020062 Herubel J.P.V.M., 1999, LIB CULTURE, P380, DOI [10.2307/25548766, DOI 10.2307/25548766] Isguzar S., 2021, Dijital Yozlasma ve Etik Iskender A, 2023, EUR J TOUR RES, V34, DOI 10.54055/ejtr.v34i.3169 Kanbach DK, 2024, REV MANAG SCI, V18, P1189, DOI 10.1007/s11846-023-00696-z Khan MS, 2024, HELIYON, V10, DOI 10.1016/j.heliyon.2024.e24890 Knight W, 2017, MIT Technology Review Korzynski P, 2023, CENT EUR MANAG J, V31, P3, DOI 10.1108/CEMJ-02-2023-0091 Lewis S., 2017, Journal of the Medical Library Association, V105, P385, DOI [10.5195/jmla.2017, DOI 10.5195/JMLA.2017] Lim WM, 2023, INT J MANAG EDUC-OXF, V21, DOI 10.1016/j.ijme.2023.100790 Ruiz-Real JL, 2018, INT J ENV RES PUB HE, V15, DOI 10.3390/ijerph15122699 Lyu Q, 2023, VIS COMPUT IND BIOME, V6, DOI 10.1186/s42492-023-00136-5 OpenAI, 2023, Introducing ChatGPT Enterprise OpenAI, 2023, Learning from human preferences Paul J, 2023, INT J CONSUM STUD, V47, P1213, DOI 10.1111/ijcs.12928 Pereira V, 2023, HUM RESOUR MANAGE R, V33, DOI 10.1016/j.hrmr.2021.100857 Peres R, 2023, INT J RES MARK, V40, P269, DOI 10.1016/j.ijresmar.2023.03.001 Rane N., 2023, Role and Challenges of ChatGPT and Similar Generative Artificial Intelligence in Human Resource Management Rane N., 2023, ChatGPT and similar generative artificial intelligence (AI) for smart industry: role, challenges and opportunities for industry 4.0, industry 5.0 and society 5.0 Rane N., 2024, Intelligent Manufacturing through Generative Artificial Intelligence, Such as ChatGPT or Bard Rane N., 2023, PREPRINT Say C., 2018, 50 Soruda Yapay Zeka Serdaliyev Y., 2023, e-journal, V24, P129, DOI [10.47526/2023-1/2524, DOI 10.47526/2023-1/2524] Shahedul A. M., 2024, J. Comp. Sci. Tech. Stud., V6, P58, DOI [10.32996/jcsts.2024.6.1.7, DOI 10.32996/JCSTS.2024.6.1.7] Soni V., 2023, Reviews of Contemporary Business Analytics, e-journal, V6, P133 Soni V., 2023, Sage Sci. Rev. Appl. Mach. Learn, V6, P1 Wamba SF, 2023, INT J PROD ECON, V265, DOI 10.1016/j.ijpe.2023.109015 Wang Q, 2020, COMPUT SCI REV, V37, DOI 10.1016/j.cosrev.2020.100275 NR 44 TC 0 Z9 0 U1 34 U2 34 PU EDITURA ASE PI BUCURESTI PA PIATA ROMANA, NR 6, SECTOR 1, BUCURESTI, 701731, ROMANIA SN 1582-9146 EI 2247-9104 J9 AMFITEATRU ECON JI Amfiteatru Econ. PD MAY PY 2024 VL 26 IS 66 DI 10.24818/EA/2024/66/511 PG 283 WC Business; Economics; Management WE Social Science Citation Index (SSCI) SC Business & Economics GA UL5C7 UT WOS:001248217500007 OA gold DA 2024-09-05 ER PT C AU Dunn, AG Arachi, D Bourgeois, FT AF Dunn, Adam G. Arachi, Diana Bourgeois, Florence T. BE Sarkar, IN Georgiou, A Marques, PMD TI Identifying Clinical Study Types from PubMed Metadata: The Active (Machine) Learning Approach SO MEDINFO 2015: EHEALTH-ENABLED HEALTH SE Studies in Health Technology and Informatics LA English DT Proceedings Paper CT 15th World Congress on Health and Biomedical Informatics (MEDINFO) CY AUG 19-23, 2015 CL Int Med Informat Assoc, Brazilian Hlth Informat Soc, Sao Paulo, BRAZIL HO Int Med Informat Assoc, Brazilian Hlth Informat Soc DE Machine Learning; Databases; Bibliographic; Antidepressants ID OPTIMAL SEARCH STRATEGIES; RETRIEVING SCIENTIFICALLY STRONG; MEDLINE; CLASSIFICATION; CATEGORIZATION; MESH AB We examined a process for automating the classification of articles in MEDLINE aimed at minimising manual effort without sacrificing accuracy. From 22,808 articles pertaining to 19 antidepressants, 1000 were randomly selected and manually labelled according to article type (including, randomised controlled trials, editorials, etc.). We applied a machine learning approach termed 'active learning', where the learner (machine) selects the order in which the user (human) labels examples. Via simulation, we determined the number of articles a user needed to label to produce a classifier with at least 95% recall and 90% precision in three scenarios related to evidence synthesis. We found that the active learning process reduced the number of training instances required by 70%, 19%, and 14% in the three scenarios. The results show that the active learning method may be used in some scenarios to produce accurate classifiers that meet the needs of evidence synthesis tasks and reduce manual effort. C1 [Dunn, Adam G.; Arachi, Diana] Macquarie Univ, Ctr Hlth Informat, Australian Inst Hlth Innovat, N Ryde, NSW 2109, Australia. [Bourgeois, Florence T.] Boston Childrens Hosp, Childrens Hosp Informat Program, Boston, MA USA. [Bourgeois, Florence T.] Harvard Med Sch, Dept Pediat, Boston, MA USA. C3 Macquarie University; Harvard University; Boston Children's Hospital; Harvard University; Harvard Medical School RP Dunn, AG (corresponding author), Macquarie Univ, Ctr Hlth Informat, Australian Inst Hlth Innovat, N Ryde, NSW 2109, Australia. EM adam.dunn@mq.edu.au RI Dunn, Adam/H-4425-2019; Arachi, Diana/AAY-8129-2020; Bourgeois, Florence/H-6710-2016 OI Dunn, Adam/0000-0002-1720-8209; Arachi, Diana/0000-0003-2446-7011; Bourgeois, Florence/0000-0001-7798-4560 CR [Anonymous], 2004, BMC MED [Anonymous], ECP Aphinyanaphongs Y, 2005, J AM MED INFORM ASSN, V12, P207, DOI 10.1197/jamia.M1641 Cohen Aaron M, 2008, AMIA Annu Symp Proc, P121 Ertekin S., 2007, INT C INF KNOWL MANA, P127, DOI [DOI 10.1145/1321440.1321461, 10.1145/1321440.1321461] Gay Clifford W, 2005, AMIA Annu Symp Proc, P271 Haynes RB, 2004, BMJ-BRIT MED J, V328, P1040, DOI 10.1136/bmj.38068.557998.EE Haynes RB, 2005, BMJ-BRIT MED J, V330, P1179, DOI 10.1136/bmj.38446.498542.8F HAYNES RB, 1994, J AM MED INFORM ASSN, V1, P447, DOI 10.1136/jamia.1994.95153434 Joachims T., 1998, Machine Learning: ECML-98. 10th European Conference on Machine Learning. Proceedings, P137, DOI 10.1007/BFb0026683 Kilicoglu H, 2009, J AM MED INFORM ASSN, V16, P25, DOI 10.1197/jamia.M2996 Liu Y, 2004, J CHEM INF COMP SCI, V44, P1936, DOI 10.1021/ci049810a Montori VM, 2005, BMJ-BRIT MED J, V330, P68, DOI 10.1136/bmj.38336.804167.47 Névéol A, 2008, BMC BIOINFORMATICS, V9, DOI 10.1186/1471-2105-9-S11-S11 Nguyen H.T., 2004, P 21 INT C MACH LEAR, P79 Rak R, 2007, IEEE ENG MED BIOL, V26, P47, DOI 10.1109/MEMB.2007.335581 Robinson KA, 2002, INT J EPIDEMIOL, V31, P150, DOI 10.1093/ije/31.1.150 Sebastiani F, 2002, ACM COMPUT SURV, V34, P1, DOI 10.1145/505282.505283 Tong S, 2002, J MACH LEARN RES, V2, P45, DOI 10.1162/153244302760185243 Trieschnigg D, 2009, BIOINFORMATICS, V25, P1412, DOI 10.1093/bioinformatics/btp249 Tsafnat G, 2014, SYST REV-LONDON, V3, DOI 10.1186/2046-4053-3-74 Wallace BC, 2010, BMC BIOINFORMATICS, V11, DOI 10.1186/1471-2105-11-55 Warmuth MK, 2003, J CHEM INF COMP SCI, V43, P667, DOI 10.1021/ci025620t Wilczynski NL, 2004, CAN MED ASSOC J, V171, P1179, DOI 10.1503/cmaj.1040512 Yepes Antonio Jose Jimeno, 2013, AMIA Annu Symp Proc, V2013, P709 Yetisgen-Yildiz Meliha, 2005, AMIA Annu Symp Proc, P849 NR 26 TC 2 Z9 2 U1 0 U2 0 PU IOS PRESS PI AMSTERDAM PA NIEUWE HEMWEG 6B, 1013 BG AMSTERDAM, NETHERLANDS SN 0926-9630 EI 1879-8365 BN 978-1-61499-564-7; 978-1-61499-563-0 J9 STUD HEALTH TECHNOL PY 2015 VL 216 BP 867 EP 871 DI 10.3233/978-1-61499-564-7-867 PG 5 WC Computer Science, Interdisciplinary Applications; Health Care Sciences & Services; Medical Informatics WE Conference Proceedings Citation Index - Science (CPCI-S) SC Computer Science; Health Care Sciences & Services; Medical Informatics GA BL7ZK UT WOS:000455836700178 PM 26262175 DA 2024-09-05 ER PT J AU Gendron, Y Andrew, J Cooper, C AF Gendron, Yves Andrew, Jane Cooper, Christine TI The perils of artificial intelligence in academic publishing* SO CRITICAL PERSPECTIVES ON ACCOUNTING LA English DT Article DE Academia; artificial intelligence; Deskilling; Editorial systems; Evaluation of research; Selection of reviewers; Algorithms AB This essay aims to reflect on the potentially perilous implications of artificial intelligence in academic publishing. Our main point is that the colonization of academia by artificial intelligence technologies may erode, deskill and degrade core academic activities, where the role of key actors historically involved in the evaluation of research could become less and less tangible and significant. We are concerned particularly with the gradual removal of human involvement in journal editor and reviewer roles, as artificial intelligence and automated expert systems become increasingly influential across a range of tasks and judgments historically carried out and performed by people. Although these thoughts are exploratory, we believe it is imperative that researchers from all paradigmatic allegiances and geographies engage in initiatives that document, reflect, and debate the implications of artificial intelligence on the ways we evaluate research. The future of academic publishing as a meaningful human activity is at stake. C1 [Gendron, Yves] Univ Laval, Fac Sci Adm, Pavillon Palasis Prince,2325 rue Terrasse,Local 26, Quebec City, PQ G1V 0A6, Canada. [Andrew, Jane] Univ Sydney, H69 Codrington, Sydney, NSW 2006, Australia. [Cooper, Christine] Univ Edinburgh, 29 Buccleuch Pl, Edinburgh EH8 9JS, Scotland. C3 Laval University; University of Sydney; University of Edinburgh RP Gendron, Y (corresponding author), Univ Laval, Fac Sci Adm, Pavillon Palasis Prince,2325 rue Terrasse,Local 26, Quebec City, PQ G1V 0A6, Canada. EM yves.gendron@fsa.ulaval.ca; jane.andrew@sydney.edu.au; christine.cooper@ed.ac.uk RI Cooper, Christine/KMY-8758-2024 CR Alvesson M, 2016, J ORGAN CHANGE MANAG, V29, P29, DOI 10.1108/JOCM-11-2015-0221 Alvesson M, 2014, ORGAN STUD, V35, P967, DOI 10.1177/0170840614530916 Alvesson M, 2013, J MANAGE STUD, V50, P128, DOI 10.1111/j.1467-6486.2012.01070.x [Anonymous], 2017, GUARDIAN 0627 [Anonymous], 2001, HANSARD, V365 Bazari N, 2018, HELPING HAND FINDING Becker H., 1986, Writing for social scientists Bonsall SB, 2017, J ACCOUNT ECON, V63, P329, DOI 10.1016/j.jacceco.2017.03.002 Bourdieu P., 1984, Homo Academicus Cabitza Federico, 2017, Recenti Progressi in Medicina, V108, P397, DOI 10.1701/2802.28353 CALLON M, 1986, SOCIOL RE MONOGR, P196, DOI 10.1111/j.1467-954X.1984.tb00113.x Checco A, 2021, HUM SOC SCI COMMUN, V8, DOI 10.1057/s41599-020-00703-8 Chomsky Noam., 2003, CHOMSKY DEMOCRACY ED Courtois C, 2020, QUAL RES ACCOUNT MAN, V17, P465, DOI 10.1108/QRAM-11-2019-0127 Crawford K., 2021, COSTS OF WAR Dirsmith W. M., 1982, J ACCOUNTING AUDITIN, P214 Dourish P, 2016, BIG DATA SOC, V3, P1, DOI 10.1177/2053951716665128 Elsevier, 2021, ELS Elsevier, 2021, SEARCH REV US REV RE Elsevier, 2018, I US NEW REV REC EV Foucault M., 1977, DISCIPLINE PUNISH BI Gabriel Y, 2010, ORGAN STUD, V31, P757, DOI 10.1177/0170840610372574 Gendron Y, 2008, EUR ACCOUNT REV, V17, P97, DOI 10.1080/09638180701705973 Giles P, 2019, J CULT ECON-UK, V12, P612, DOI 10.1080/17530350.2019.1639068 Golden-Biddle K., 2007, COMPOSING QUALITATIV, V2nd Han B.-C., 2017, PSYCHOPOLITICS NEOLI Heaven D, 2018, NATURE, V563, P609, DOI 10.1038/d41586-018-07245-9 Humphrey C, 2015, CRIT PERSPECT ACCOUN, V26, P47, DOI 10.1016/j.cpa.2014.09.008 Impelsys, 2019, ARTIF INTELL Latour B., 1987, Science in Action Lord S., 2017, LES AFFAIRES Lyon D., 2001, SURVEILLANCE SOC MON MacKenzie D., 2006, An Engine, Not a Camera: How Financial Models Shape Markets Malsch B, 2016, AUDITING-J PRACT TH, V35, P1, DOI 10.2308/ajpt-51170 Malsch B, 2015, CRIT PERSPECT ACCOUN, V26, P84, DOI 10.1016/j.cpa.2014.02.006 Nilsson Patricia., 2018, FINANC TIMES Pare I., 2017, DEVOIR Parker M, 2014, ORGANIZATION, V21, P281, DOI 10.1177/1350508413502646 Picard CF, 2019, EUR ACCOUNT REV, V28, P737, DOI 10.1080/09638180.2018.1535323 Porter T. M., 1995, TRUST NUMBERS PURSUI RELX, 2019, ANN REP FIN STAT 201 Rettino-Parazelli K., 2018, DEVOIR 1205 Taylor A, 2018, Logic Magazine, V5 Tedford A., 2015, HELPING EDITORS FIND Viale T, 2017, ACCOUNT AUDIT ACCOUN, V30, P270, DOI 10.1108/AAAJ-12-2014-1887 WEICK KE, 1989, ACAD MANAGE REV, V14, P516, DOI 10.2307/258556 Willmott H, 2011, ORGANIZATION, V18, P429, DOI 10.1177/1350508411403532 NR 47 TC 20 Z9 20 U1 8 U2 47 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS SN 1045-2354 EI 1095-9955 J9 CRIT PERSPECT ACCOUN JI Crit. Perspect. Account. PD SEP PY 2022 VL 87 AR 102411 DI 10.1016/j.cpa.2021.102411 EA SEP 2022 PG 12 WC Business, Finance WE Social Science Citation Index (SSCI) SC Business & Economics GA 4U8SF UT WOS:000859056500004 OA Green Accepted, Green Submitted DA 2024-09-05 ER PT J AU Hückstädt, M AF Hueckstaedt, Malte TI Ten reasons why research collaborations succeed-a random forest approach SO SCIENTOMETRICS LA English DT Article DE Research collaboration success; Team science; Collaboration effectiveness; Random forest; Machine Learning ID INTERDISCIPLINARY RESEARCH; TEAM CLIMATE; PERFORMANCE; INNOVATION; STRATEGIES; CONFLICT; MODEL; TASK AB The state of research in the Science of Team Science is characterised by a wide range of findings on how successful research collaboration should be structured. However, it remains unclear how the multitude of findings can be put into a hierarchical order with regard to their significance for the success of cooperation. This is where the article comes in: based on the state of research, the question of which intra- and interpersonal factors are most significant for the success of a research team is investigated. In order to explore the ten most important reasons for the success of a research collaboration, a Random Forest classifier is specified that predicts the success of research collaborations on the basis of 51 input variables. The analyses presented in the paper are based on representative survey data on n = 1.417 principal investigators and spokespersons of ongoing and completed research clusters funded by the German Research Foundation. The success of a research cluster is operationalised as the extent to which it has achieved the goals that it communicated to the funding agency before it began. Highly realistic and clear research objectives are central to the success of research clusters, as are comprehensive agreement on objectives, close interconnection of the subprojects' research work and a fair and trusting cooperation climate. C1 [Hueckstaedt, Malte] German Ctr Higher Educ Res & Sci Studies, Lange Laube 12, D-30159 Hannover, Germany. RP Hückstädt, M (corresponding author), German Ctr Higher Educ Res & Sci Studies, Lange Laube 12, D-30159 Hannover, Germany. EM hueckstaedt@dzhw.eu OI Huckstadt, Malte/0000-0002-0185-4230 FU Projekt DEAL; German Federal Ministry of Education and Research; Projekt DEAL [M527800]; German Federal Ministry of Education and Research FX Open Access funding enabled and organized by Projekt DEAL. This research was supported by the German Federal Ministry of Education and Research [grant number M527800]. CR Aboelela SW, 2007, HEALTH SERV RES, V42, P329, DOI 10.1111/j.1475-6773.2006.00621.x Abramo G, 2017, J INFORMETR, V11, P1016, DOI 10.1016/j.joi.2017.09.007 Abramo G, 2014, SCIENTOMETRICS, V98, P2275, DOI 10.1007/s11192-013-1185-3 Ambrasat J., 2022, DZHW WISSENSCHAFTSBE Andersen H, 2013, SYNTHESE, V190, P1881, DOI 10.1007/s11229-012-0172-1 Anderson N., 2000, TEAM CLIMATE INVENTO Anderson NR, 1998, J ORGAN BEHAV, V19, P235, DOI 10.1002/(SICI)1099-1379(199805)19:3<235::AID-JOB837>3.0.CO;2-C [Anonymous], 1990, INNOVATION CREATIVIT [Anonymous], 2005, Transdisziplinaritat: systematisch-vergleichende Untersuchung disziplinenubergreifender Wissenschaftspraxis [Transdisciplinarity: systematic-comparative study of cross-disciplinary scientific practice] [Anonymous], 1984, Die Fabrikation von Erkenntnis. Zur Anthropologie der Naturwissenschaft [Anonymous], 2003, Linked: How everything is connected to everything else and what it means for business, sciense and everyday life [Anonymous], 2007, Structures of scientific collaboration Antoni, 2000, TEAMARBEIT GESTALTEN Arriaga RI, 2019, STRATEGIES FOR TEAM SCIENCE SUCCESS: HANDBOOK OF EVIDENCE-BASED PRINCIPLES FOR CROSS-DISCIPLINARY SCIENCE AND PRACTICAL LESSONS LEARNED FROM HEALTH RESEARCHERS, P81, DOI 10.1007/978-3-030-20992-6_5 Aubé C, 2005, GROUP DYN-THEOR RES, V9, P189, DOI 10.1037/1089-2699.9.3.189 Bachrach C, 2019, STRATEGIES FOR TEAM SCIENCE SUCCESS: HANDBOOK OF EVIDENCE-BASED PRINCIPLES FOR CROSS-DISCIPLINARY SCIENCE AND PRACTICAL LESSONS LEARNED FROM HEALTH RESEARCHERS, P455, DOI 10.1007/978-3-030-20992-6_35 Bain PG, 2001, SMALL GR RES, V32, P55, DOI 10.1177/104649640103200103 Baurmann M., 2014, POLITIK STRATEGIE MA, V2, P73 Beer A., 2020, INTEGRIEREN KOMMUNIZ Bennett LM, 2019, STRATEGIES FOR TEAM SCIENCE SUCCESS: HANDBOOK OF EVIDENCE-BASED PRINCIPLES FOR CROSS-DISCIPLINARY SCIENCE AND PRACTICAL LESSONS LEARNED FROM HEALTH RESEARCHERS, P295, DOI 10.1007/978-3-030-20992-6_22 Andrade HB, 2009, RES EVALUAT, V18, P301, DOI 10.3152/095820209X451041 Blanckenburg C., 2005, PROJEKTE INITIIEREN Blot WJ, 2019, STRATEGIES FOR TEAM SCIENCE SUCCESS: HANDBOOK OF EVIDENCE-BASED PRINCIPLES FOR CROSS-DISCIPLINARY SCIENCE AND PRACTICAL LESSONS LEARNED FROM HEALTH RESEARCHERS, P207, DOI 10.1007/978-3-030-20992-6_16 Boehmke B, 2019, HANDS ON MACHINE LEA, DOI DOI 10.1201/9780367816377 Bozeman B, 2004, RES POLICY, V33, P599, DOI 10.1016/j.respol.2004.01.008 Bozeman B, 2001, INT J TECHNOL MANAGE, V22, P716, DOI 10.1504/IJTM.2001.002988 Bozeman B., 2014, Research collaboration and team science: A state-of-the-art review and agenda Bozeman B, 2007, RES POLICY, V36, P694, DOI 10.1016/j.respol.2007.01.007 Bozeman Barry., 2017, The strength in numbers: the new science of team science Breiman L., 2001, Machine Learning, V45, P5, DOI 10.1023/A:1010933404324 Breiman L., 1984, CLASSIFICATION REGRE, DOI DOI 10.1201/9781315139470 Breiman L, 2004, 666 UC BERK DEP STAT Bruce P, 2017, PRACTICAL STAT DATA Bukvova, 2010, WORK PAPERS INFORM S, V3, P1 Chawla A, 1998, SCIENTOMETRICS, V43, P373, DOI 10.1007/BF02457405 Choi BCK, 2007, CLIN INVEST MED, V30, pE224, DOI 10.25011/cim.v30i6.2950 Cooke NJ., 2015, OVERVIEW RES TEAM EF Crow MM, 2019, STRATEGIES FOR TEAM SCIENCE SUCCESS: HANDBOOK OF EVIDENCE-BASED PRINCIPLES FOR CROSS-DISCIPLINARY SCIENCE AND PRACTICAL LESSONS LEARNED FROM HEALTH RESEARCHERS, P477, DOI 10.1007/978-3-030-20992-6_37 Crutchfield R. S., 1973, SCHADLICHE AUSWIRKUN De Dreu CKW, 2003, J APPL PSYCHOL, V88, P741, DOI 10.1037/0021-9010.88.4.741 Defila R., 2006, FORSCHUNGSVERBUNDMAN Defila R., 2008, Management von Forschungsverbuenden: Moeglichkeiten der Professionalisierung und Unterstuetzung Defila R., 2015, MANAGEMENTVERANTWORT Derry S.J., 2005, Interdisciplinary Collabora- tion: An Emerging Cognitive Science Di Giulio A., 2008, FORSCHUNG, V1, P69 Doring N., 2016, Forschungsmethoden und Evaluation in den Sozialund Humanwissenschaften DuRussel LA, 2005, INTERDISCIPLINARY COLLABORATION: AN EMERGING COGNITIVE SCIENCE, P187 Elias N., 1982, Scientific establishments and hierarchies Falcone M, 2019, STRATEGIES FOR TEAM SCIENCE SUCCESS: HANDBOOK OF EVIDENCE-BASED PRINCIPLES FOR CROSS-DISCIPLINARY SCIENCE AND PRACTICAL LESSONS LEARNED FROM HEALTH RESEARCHERS, P69, DOI 10.1007/978-3-030-20992-6_4 Fiore S. M., 2015, RES MANAGING GROUPS Genuer R., 2020, Random forests with R German Research Foundation, 2019, GUID CLUST EXC German Research Foundation, 2015, GUID PRIOR PROGR German Research Foundation, 2010, GUID RES CTR German Research Foundation, 2021, GEPRIS DAT German Research Foundation, 2021, GUID RES UN German Research Foundation, 2020, GUID COLL RES CTR Ghatak A., 2017, MACHINE LEARNING R Gibbs KD, 2019, STRATEGIES FOR TEAM SCIENCE SUCCESS: HANDBOOK OF EVIDENCE-BASED PRINCIPLES FOR CROSS-DISCIPLINARY SCIENCE AND PRACTICAL LESSONS LEARNED FROM HEALTH RESEARCHERS, P197, DOI 10.1007/978-3-030-20992-6_15 Hall KL, 2008, AM J PREV MED, V35, pS161, DOI 10.1016/j.amepre.2008.03.035 Hall KL, 2012, TRANSL BEHAV MED, V2, P415, DOI 10.1007/s13142-012-0167-y Hastie T., 2009, The Elements of Statistical Learning Hendren CO, 2019, STRATEGIES FOR TEAM SCIENCE SUCCESS: HANDBOOK OF EVIDENCE-BASED PRINCIPLES FOR CROSS-DISCIPLINARY SCIENCE AND PRACTICAL LESSONS LEARNED FROM HEALTH RESEARCHERS, P363, DOI 10.1007/978-3-030-20992-6_27 Holbrook JB, 2013, SYNTHESE, V190, P1865, DOI 10.1007/s11229-012-0179-7 Hollaender K., 2003, INTERDISZIPLINARE FO James G, 2013, SPRINGER TEXTS STAT, V103, P1, DOI 10.1007/978-1-4614-7138-7_1 Janis I. L., 1972, VICTIMS GROUPTHINK P Janitza S., 2014, 174 DEP STAT U MUN John M., 2019, MANAGEMENT INTERDISZ, P21 Kern C, 2019, SURV RES METHODS-GER, V13, P73, DOI 10.18148/srm/2019.v13i1.7395 Khalilia M, 2011, BMC MED INFORM DECIS, V11, DOI 10.1186/1472-6947-11-51 Klein J.T., 2012, CASE STUDIES INTERDI, P283, DOI [10.4135/9781483349541.n10, DOI 10.4135/9781483349541.N10] Kozlowski S.W. J., 2003, Handbook of psychology: Industrial and organizational psychology, V12, P333, DOI DOI 10.1002/0471264385.WEI1214 Krott M., 1996, OKOLOGIE INTERDISZIP, P87 Laudel, 1999, INTERDISZIPLINARE FO Laudel G, 2002, RES EVALUAT, V11, P3, DOI 10.3152/147154402781776961 Liaw A., 2018, RANDOMFOREST BREIMAN MeiSSner Florian, 2021, Front Res Metr Anal, V6, P778176, DOI 10.3389/frma.2021.778176 Misra S, 2011, CONVERGING DISCIPLINES: A TRANSDISCIPLINARY RESEARCH APPROACH TO URBAN HEALTH PROBLEMS, P97, DOI 10.1007/978-1-4419-6330-7_8 Munch R, 2007, Die akademische Elite: zur sozialen Konstruktion wissenschaftlicher Exzellenz Neufeld J., 2016, WISSENSCHAFTLERBEFRA Nurius PS, 2019, STRATEGIES FOR TEAM SCIENCE SUCCESS: HANDBOOK OF EVIDENCE-BASED PRINCIPLES FOR CROSS-DISCIPLINARY SCIENCE AND PRACTICAL LESSONS LEARNED FROM HEALTH RESEARCHERS, P171, DOI 10.1007/978-3-030-20992-6_13 Nwanganga Fred., 2020, PRACTICAL MACHINE LE O'Rourke M, 2019, STRATEGIES FOR TEAM SCIENCE SUCCESS: HANDBOOK OF EVIDENCE-BASED PRINCIPLES FOR CROSS-DISCIPLINARY SCIENCE AND PRACTICAL LESSONS LEARNED FROM HEALTH RESEARCHERS, P21, DOI 10.1007/978-3-030-20992-6_2 Olechnicka A., 2019, The geography of scientific collaboration Paluszynska A., 2020, randomForestExplainer: explaining and visualizing random forests in terms of variable importance Pohl C., 2007, Principles for Designing Transdisciplinary Research Porter JJ, 2018, ENVIRON SCI POLICY, V89, P100, DOI 10.1016/j.envsci.2018.07.004 ROSSINI FA, 1979, RES POLICY, V8, P70, DOI 10.1016/0048-7333(79)90030-1 Rufibach K, 2010, J CLIN EPIDEMIOL, V63, P938, DOI 10.1016/j.jclinepi.2009.11.009 Salas E., 2017, The Wiley Blackwell Handbook ofthe Psychology of Team Working and Collaborative Processes Salazar MR, 2019, STRATEGIES FOR TEAM SCIENCE SUCCESS: HANDBOOK OF EVIDENCE-BASED PRINCIPLES FOR CROSS-DISCIPLINARY SCIENCE AND PRACTICAL LESSONS LEARNED FROM HEALTH RESEARCHERS, P313, DOI 10.1007/978-3-030-20992-6_24 Shinn T., 2004, KOOPERATION NIEMANDS Shrum W, 2001, SOC STUD SCI, V31, P681, DOI 10.1177/030631201031005002 Stokols D, 2008, AM J PREV MED, V35, pS96, DOI 10.1016/j.amepre.2008.05.003 Strobl C, 2009, PSYCHOL METHODS, V14, P323, DOI 10.1037/a0016973 Strobl C, 2008, BMC BIOINFORMATICS, V9, DOI 10.1186/1471-2105-9-307 Thompson JL, 2009, J APPL COMMUN RES, V37, P278, DOI 10.1080/00909880903025911 Twyman M, 2019, STRATEGIES FOR TEAM SCIENCE SUCCESS: HANDBOOK OF EVIDENCE-BASED PRINCIPLES FOR CROSS-DISCIPLINARY SCIENCE AND PRACTICAL LESSONS LEARNED FROM HEALTH RESEARCHERS, P217, DOI 10.1007/978-3-030-20992-6_17 Vinck D, 2010, PRIME SER RES INNOV, P1 Vowe G., 2020, KONSEQUENZEN PUBLIZI, V65, P151, DOI [10.1007/s11616-020-00575-7, DOI 10.1007/S11616-020-00575-7] Weisberg H. F., 2009, The total survey error approach West M.A., 1990, INNOVATION CREATIVIT Winter S, 2019, STRATEGIES FOR TEAM SCIENCE SUCCESS: HANDBOOK OF EVIDENCE-BASED PRINCIPLES FOR CROSS-DISCIPLINARY SCIENCE AND PRACTICAL LESSONS LEARNED FROM HEALTH RESEARCHERS, P329, DOI 10.1007/978-3-030-20992-6_25 Yuan L., 2008, INT C INFORM MANAGEM, DOI [10.1109/ICIII.2008.249, DOI 10.1109/ICIII.2008.249] Zaccaro SJ, 2001, LEADERSHIP QUART, V12, P451, DOI 10.1016/S1048-9843(01)00093-5 NR 106 TC 5 Z9 6 U1 6 U2 27 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0138-9130 EI 1588-2861 J9 SCIENTOMETRICS JI Scientometrics PD MAR PY 2023 VL 128 IS 3 BP 1923 EP 1950 DI 10.1007/s11192-022-04629-7 EA JAN 2023 PG 28 WC Computer Science, Interdisciplinary Applications; Information Science & Library Science WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Computer Science; Information Science & Library Science GA 9M3IZ UT WOS:000911272900003 OA hybrid DA 2024-09-05 ER PT C AU Han, H Giles, L Zha, H Li, C Tsioutsiouliklis, K AF Han, H Giles, L Zha, H Li, C Tsioutsiouliklis, K BE Chen, H Christel, M Lim, EP TI Two supervised learning approaches for name disambiguation in author citations SO JCDL 2004: PROCEEDINGS OF THE FOURTH ACM/IEEE JOINT CONFERENCE ON DIGITAL LIBRARIES: GLOBAL REACH AND DIVERSE IMPACT SE ACM-IEEE Joint Conference on Digital Libraries JCDL LA English DT Proceedings Paper CT 4th Joint Conference on Digital Libraries CY JUN 07-11, 2004 CL Tucson, AZ DE naive Bayes; name disambiguation; Support Vector Machine AB Due to name abbreviations, identical names, name misspellings, and pseudonyms in publications or bibliographies (citations), an author may have multiple names and multiple authors may share the same name. Such name ambiguity affects the performance of document retrieval, web search, database integration, and may cause improper attribution to authors. This paper investigates two supervised teaming approaches to disambiguate authors in the citations'. One approach uses the naive Bayes probability model, a generative model; the other uses Support Vector Machines(SVMs) [39] and the vector space representation of citations, a discriminative model. Both approaches utilize three types of citation attributes: co-author names, the title of the paper, and the title of the journal or proceeding. We illustrate these two approaches on two types of data, one collected from the web, mainly publication lists from homepages, the other collected from the DBLP citation databases. C1 Penn State Univ, Dept Comp Sci & Engn, University Pk, PA 16802 USA. C3 Pennsylvania Commonwealth System of Higher Education (PCSHE); Pennsylvania State University; Pennsylvania State University - University Park EM hhan@cse.psu.edu; giles@ist.psu.edu; zha@cse.psu.edu; cli@hsph.harvard.edu; kt@nec-labs.com CR [Anonymous], P 16 ANN INT ACM SIG [Anonymous], M ASS COMP LING [Anonymous], 1988, Tracking and Data Association Baker L. D., 1998, Proceedings of the 21st Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, P96, DOI 10.1145/290941.290970 Banerjee A., 2003, P 9 ACM SIGKDD INT C, P19, DOI DOI 10.1145/956755.956757 BANERJEE S, P 3 INT C INT TEXT P Bilenko M, 2003, IEEE INTELL SYST, V18, P16, DOI 10.1109/MIS.2003.1234765 BITTON D, 1983, ACM T DATABASE SYST, V8, P255, DOI 10.1145/319983.319987 BRANTING LK, 2002, J INFORMATION LAW TE, P1 Califf ME, 1999, SIXTEENTH NATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE (AAAI-99)/ELEVENTH INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE (IAAI-99), P328 Cohen W. W., 2000, Proceedings. KDD-2000. Sixth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, P255, DOI 10.1145/347090.347141 Cristianini N., 2000, Support Vector Machines and other kernel-based learning methods DAGAN I, 1994, M ASS COMP LING, P272 Dhillon I. S., 2003, Journal of Machine Learning Research, V3, P1265, DOI 10.1162/153244303322753661 DiLauro T., 2001, D-Lib Magazine, V7 ESCUDERO G, 2000, P 14 EUR C ART INT E FELLEGI IP, 1969, J AM STAT ASSOC, V64, P1183, DOI 10.2307/2286061 Giles C. L., 1998, P 3 ACM C DIGITAL LI, P89 GILLMAN P, 1998, 91 BRIT LIB BOARD Han H, 2003, ACM-IEEE J CONF DIG, P37 Han H., 2003, P 2 INT SEM WEB C IS Hernandez MA, 1998, DATA MIN KNOWL DISC, V2, P9, DOI 10.1023/A:1009761603038 Hofmann T., 1999, UAI Joachims T., 2001, Proceedings of the 24th ACM-SIGIR international conference on research and development in information retrieval, P128, DOI DOI 10.1145/383952.383974 LIN D, 2002, P C COMP LING, P577 McCallum A., 2000, Proceedings. KDD-2000. Sixth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, P169, DOI 10.1145/347090.347123 Mong Li Loo, 2000, Proceedings. KDD-2000. Sixth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, P290 MONGE AE, 1997, RES ISSUES DATA MINI, P23 PASULA H, 2002, P NEUR INF PROC SYST Petinot Y, 2003, ACM-IEEE J CONF DIG, P199, DOI 10.1109/JCDL.2003.1204864 Seymore K, 1999, P AAAI 99 WORKSH MAC Skounakis M., 2003, P 18 INT JOINT C ART Takasu A, 2003, ACM-IEEE J CONF DIG, P49, DOI 10.1109/JCDL.2003.1204843 TAKEUCHI K, 2002, USE SUPPORT VECTOR M TEJADA S, 2002, P 8 ACM SIGKDD INT C, P350 Tsuruoka Y., 2003, Proceedings of NAACL, P127, DOI DOI 10.3115/1119176.1119193 Vapnik Vladimir N., 1995, The nature of statistical learning theory WARNER JW, 2001, P 1 ACM IEEE CS JOIN Yao YY, 1995, INT J GEN SYST, V23, P343, DOI 10.1080/03081079508908047 Zha H., 2001, Proceedings of the tenth international conference on Information and knowledge management, P25 ZHANG X, 2001, RECURSIVE SAMPLE CLA NR 41 TC 166 Z9 209 U1 1 U2 16 PU ASSOC COMPUTING MACHINERY PI NEW YORK PA 1515 BROADWAY, NEW YORK, NY 10036-9998 USA SN 2575-7865 EI 2575-8152 BN 1-58113-832-6 J9 ACM-IEEE J CONF DIG PY 2004 BP 296 EP 305 DI 10.1145/996350.996419 PG 10 WC Computer Science, Information Systems; Computer Science, Interdisciplinary Applications; Information Science & Library Science WE Conference Proceedings Citation Index - Science (CPCI-S); Conference Proceedings Citation Index - Social Science & Humanities (CPCI-SSH) SC Computer Science; Information Science & Library Science GA BAM92 UT WOS:000222881400052 OA Green Submitted DA 2024-09-05 ER PT J AU Sánchez-Bello, NF Quiroga, JEM Pérez-Martelo, CB AF Sanchez-Bello, Nubia Fernanda Quiroga, Jorge Enrique Mejia Perez-Martelo, Constanza Beatriz TI Factors Associated with Citation of Colombian Biomedical Articles: Analysis with Machine Learning SO INVESTIGACION BIBLIOTECOLOGICA LA English DT Article DE Citation Analysis; Machine Learning; Biomedical Research; Colombia ID COLLABORATION; COUNTS AB Citation indicators can be used to measure the impact or usefulness of research results in a scientific article; however, this usage can be controversial. Intrinsic and extrinsic factors influence the citation of an article, not to mention that citation behavior can differ between thematic areas, which hinders the comparison between articles and disciplines. Understanding that context can affect citation analysis is essential to interpret indicators properly; for this reason, we want to recognize the fac- tors that influence the citation of Colombian biomedical journals indexed in Scopus using Machine Learning al- gorithms. With 'Gradient Boosting Classifier' and 'Light Gradient Boosting Machine' algorithms, we find char- acteristics of importance such as the h -index of the first and last author, open access, number of authors and key- words of the article, in addition to identifying the num- ber of pages. These characteristics are relevant to the ar- ea of interest and can provide context for future analyses, always considering that what should be relevant about an article is not how many citations it attracts but whether it helps to fill gaps in knowledge. C1 [Sanchez-Bello, Nubia Fernanda] Univ Cent, Fac Ingn & Ciencias Basicas, Bogota, Colombia. [Quiroga, Jorge Enrique Mejia; Perez-Martelo, Constanza Beatriz] Univ Cent, Fac Ingn & Ciencias Basicas, Grp Invest Prod Innovac Desarrollo & Org, Bogota, Colombia. RP Sánchez-Bello, NF (corresponding author), Univ Cent, Fac Ingn & Ciencias Basicas, Bogota, Colombia. EM nsanchezb1@ucentral.edu.co; jmejiaq@ucentral.edu.co; cperezm@ucentral.edu.co CR Aksnes DW, 2019, SAGE OPEN, V9, DOI 10.1177/2158244019829575 Ali Moez, 2020, PyCaret: An open source, low-code machine learning library in Python Alohali YAA, 2022, BIOMED RES INT, V2022, DOI 10.1155/2022/2239152 Anderson Caleb, 2021, J Prim Care Community Health, V12, p21501327211015592, DOI 10.1177/21501327211015592 Aphinyanaphongs Y, 2006, J AM MED INFORM ASSN, V13, P446, DOI 10.1197/jamia.M2031 Ronda-Pupo GA, 2022, INVESTIG BIBLIOTECOL, V36, P109, DOI 10.22201/iibi.24488321xe.2022.91.58505 Arrizabalaga Olatz, 2020, F1000Res, V9, P649, DOI 10.12688/f1000research.24136.1 Basson I, 2021, SCIENTOMETRICS, V126, P459, DOI 10.1007/s11192-020-03734-9 Bordons M, 2013, SCIENTOMETRICS, V96, P443, DOI 10.1007/s11192-012-0890-7 Cáceres Castellanos Gustavo, 2014, Rev. Fac. ing., V23, P7 Crespo Juan, 2012, Working Papers Economic Series, V12, P1 Crespo JA, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0058727 Cronin B, 2006, J AM SOC INF SCI TEC, V57, P1275, DOI 10.1002/asi.20354 Datos Abiertos Colombia, 2022, Ciencia, Tecnologia e Innovacion Figg WD, 2006, PHARMACOTHERAPY, V26, P759, DOI 10.1592/phco.26.6.759 Fu LD, 2010, SCIENTOMETRICS, V85, P257, DOI 10.1007/s11192-010-0237-1 Grover V, 2014, COMMUN ASSOC INF SYS, V34, P1435 Harzing A.W., 2007, Publish or perish He ZL, 2009, J AM SOC INF SCI TEC, V60, P2151, DOI 10.1002/asi.21150 Iqbal S, 2021, SCIENTOMETRICS, V126, P6551, DOI 10.1007/s11192-021-04055-1 Langham-Putrow A, 2021, PLOS ONE, V16, DOI 10.1371/journal.pone.0253129 Martínez-Plumed F, 2021, IEEE T KNOWL DATA EN, V33, P3048, DOI 10.1109/TKDE.2019.2962680 Martinovich V, 2020, DADOS-REV CIENC SOC, V63, DOI 10.1590/001152582020218 MERTON RK, 1988, ISIS, V79, P606, DOI 10.1086/354848 Mingers J, 2015, EUR J OPER RES, V246, P1, DOI 10.1016/j.ejor.2015.04.002 Navarrete L, 2019, REV MED CLIN CONDES, V30, P219, DOI 10.1016/j.rmclc.2019.04.002 Onodera N, 2015, J ASSOC INF SCI TECH, V66, P739, DOI 10.1002/asi.23209 Pedregosa F, 2011, J MACH LEARN RES, V12, P2825 Piwowar Heather, 2018, PeerJ, V6, pe4375, DOI 10.7717/peerj.4375 Pradhan DK, 2019, PROCEEDINGS OF THE 6TH ACM IKDD CODS AND 24TH COMAD, P330, DOI 10.1145/3297001.3297053 Repiso R., 2021, Iberoam J Sci Meas Commun, V1, P007, DOI [10.47909/ijsmc.09, DOI 10.47909/IJSMC.08, 10.47909/ijsmc.08] Rose ME, 2019, SOFTWAREX, V10, DOI 10.1016/j.softx.2019.100263 Stephan P, 2017, NATURE, V544, P411, DOI 10.1038/544411a The pandas development team, 2023, Zenodo Zhongqi Su, 2020, 2020 Proceedings of Asia-Pacific Conference on Image Processing, Electronics and Computers (IPEC), P101, DOI 10.1109/IPEC49694.2020.9114959 NR 35 TC 0 Z9 0 U1 0 U2 0 PU UNIV NACIONAL AUTONOMA MEXICO PI MEXICO CITY PA CIUDAD UNIV, CENTRO UNIV BIBLIOTECOLOGICAS, TORRE II HUMANIDADES, PISO 11, 12 & 13, MEXICO CITY, CP 04510, MEXICO SN 0187-358X EI 2448-8321 J9 INVESTIG BIBLIOTECOL JI Investig. Bibliotecol. PD APR-JUN PY 2024 VL 38 IS 99 BP 89 EP 107 DI 10.22201/iibi.24488321xe.2024.99.58857 PG 19 WC Information Science & Library Science WE Social Science Citation Index (SSCI) SC Information Science & Library Science GA LY6J1 UT WOS:001190408500001 OA gold DA 2024-09-05 ER PT J AU Huang, LT Shi, FF Hu, D Kang, DY AF Huang, Litao Shi, Fanfan Hu, Dan Kang, Deying TI Analysis of research topics and trends in investigator-initiated research/trials (IIRs/IITs): A topic modeling study SO MEDICINE LA English DT Article DE bibliometric; investigator-initiated trials; latent Dirichlet allocation; Web of Science ID ATRIAL-FIBRILLATION; CLINICAL-TRIALS AB Background:With the exponential growth of publications in the field of investigator-initiated research/trials (IIRs/IITs), it has become necessary to employ text mining and bibliometric analysis as tools for gaining deeper insights into this area of study. By using these methods, researchers can effectively identify and analyze research topics within the field.Methods:This study retrieved relevant publications from the Web of Science Core Collection and conducted bioinformatics analysis. The latent Dirichlet allocation model, which is based on machine learning, was utilized to identify subfield research topics.Results:A total of 4315 articles related to IIRs/IITs were obtained from the Web of Science Core Collection. After excluding duplicates and articles with missing abstracts, a final dataset of 3333 articles was included for bibliometric analysis. The number of publications showed a steady increase over time, particularly since 2000. The United States, Germany, the United Kingdom, the Netherlands, Canada, Denmark, Japan, Switzerland, and France emerged as the most productive countries in terms of IIRs/IITs. The citation analysis revealed intriguing trends, with certain highly cited articles showing a significant increase in citation frequency in recent years. A model with 45 topics was deemed the best fit for characterizing the extensively researched fields within IIRs/IITs. Our analysis revealed 10 top topics that have garnered significant attention, spanning domains such as community health, cancer treatment, brain development and disease mechanisms, nursing research, and stem cell therapy. These top topics offer researchers valuable directions for further investigation and innovation. Additionally, we identified 12 hot topics, which represent the most cutting-edge and highly regarded research areas within the field.Conclusion:This study contributes to a comprehensive understanding of the current research landscape and provides valuable insights for researchers working in this domain. C1 [Huang, Litao] Sichuan Univ, West China Hosp, Chinese Evidence Based Med Ctr, Natl Clin Res Ctr Geriatr, Chengdu, Sichuan, Peoples R China. [Huang, Litao; Shi, Fanfan; Hu, Dan; Kang, Deying] Sichuan Univ, Dept Clin Res Management, West China Hosp, Chengdu, Peoples R China. [Kang, Deying] Sichuan Univ, West China Hosp, Dept Evidence Based Med & Clin Epidemiol, Chengdu, Peoples R China. C3 Sichuan University; Sichuan University; Sichuan University RP Kang, DY (corresponding author), Sichuan Univ, Dept Clin Res Management, West China Hosp, Chengdu, Peoples R China.; Kang, DY (corresponding author), Sichuan Univ, West China Hosp, Dept Evidence Based Med & Clin Epidemiol, Chengdu, Peoples R China. EM huanglitao@wchscu.cn; shifanfan0706@163.com; deyingkang@126.com FU National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University [Z20192005]; The 1.3.5 project for disciplines of excellence, West China Hospital, Sichuan University [ZYGD23002] FX This work was supported by the National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University (Z20192005); 1.3.5 project for disciplines of excellence, West China Hospital, Sichuan University (ZYGD23002). CR Backhouse A, 2020, BMJ-BRIT MED J, V368, DOI 10.1136/bmj.m865 Devaiah A, 2016, LARYNGOSCOPE, V126, pE300, DOI 10.1002/lary.25942 Dézsi CA, 2017, EUR J INTERN MED, V40, P1, DOI 10.1016/j.ejim.2017.01.001 Enck P, 2019, HANDB EXP PHARMACOL, V260, P399, DOI 10.1007/164_2019_269 Etemadi A, 2020, LANCET GASTROENTEROL, V5, P42, DOI 10.1016/S2468-1253(19)30328-0 Feinberg BA, 2020, VALUE HEALTH, V23, P1358, DOI 10.1016/j.jval.2020.06.006 Fink R, 2000, Proc (Bayl Univ Med Cent), V13, P236 Gray DM, 2021, LANCET GASTROENTEROL, V6, P605, DOI 10.1016/S2468-1253(21)00228-4 Hatfield LA, 2016, J NURS ADMIN, V46, P245, DOI 10.1097/NNA.0000000000000338 Heravi AT, 2022, PLOS ONE, V17, DOI 10.1371/journal.pone.0264427 Herfarth HH, 2017, INFLAMM BOWEL DIS, V23, P14, DOI 10.1097/MIB.0000000000000907 Heyland DK, 2023, LANCET, V401, P568, DOI 10.1016/S0140-6736(22)02469-2 Istaiti M, 2021, AM J HEMATOL, V96, P545, DOI 10.1002/ajh.26131 Jelodar H, 2019, MULTIMED TOOLS APPL, V78, P15169, DOI 10.1007/s11042-018-6894-4 Jung YJ, 2023, HELIYON, V9, DOI 10.1016/j.heliyon.2023.e14208 Kandiah J, 2022, CLIN TRANSL GASTROEN, V13, DOI 10.14309/ctg.0000000000000516 Kistler PM, 2023, JAMA-J AM MED ASSOC, V329, P127, DOI 10.1001/jama.2022.23722 McDonald HG, 2023, SURG ONCOL CLIN N AM, V32, P13, DOI 10.1016/j.soc.2022.07.003 Mills A, 2014, NEW ENGL J MED, V370, P552, DOI 10.1056/NEJMra1110897 Mori N, 2021, FRONT HUM NEUROSCI, V15, DOI 10.3389/fnhum.2021.786225 Mudaranthakam DP, 2020, CONT CLIN TRIAL COMM, V18, DOI 10.1016/j.conctc.2020.100579 Nury E, 2020, BMC MED RES METHODOL, V20, DOI 10.1186/s12874-020-01125-5 Otokiti A, 2019, INT J HEALTH CARE Q, V32, P425, DOI 10.1108/IJHCQA-03-2018-0062 Poulsen CH, 2022, TRIALS, V23, DOI 10.1186/s13063-022-06670-6 Ralapanawa U, 2021, J EPIDEMIOL GLOB HEA, V11, P169, DOI 10.2991/jegh.k.201217.001 Saesen R, 2023, ESMO OPEN, V8, P1, DOI 10.1016/j.esmoop.2023.100878 Stephenson D, 2022, CLIN PHARMACOL THER, V111, P799, DOI 10.1002/cpt.2528 Suvarna Viraj, 2012, Perspect Clin Res, V3, P119, DOI 10.4103/2229-3485.103591 Tanemura N, 2021, TRIALS, V22, DOI 10.1186/s13063-021-05143-6 Teufel-Shone NI, 2019, INT J ENV RES PUB HE, V16, DOI 10.3390/ijerph16010044 Yan J, 2022, NAT LANG ENG, V28, P137, DOI 10.1017/S1351324920000649 Yildirim O, 2016, FRONT PHARMACOL, V7, DOI 10.3389/fphar.2016.00461 Zhao Y, 2015, BMC BIOINFORMATICS, V16, DOI 10.1186/s12859-015-0558-4 NR 33 TC 0 Z9 0 U1 0 U2 0 PU LIPPINCOTT WILLIAMS & WILKINS PI PHILADELPHIA PA TWO COMMERCE SQ, 2001 MARKET ST, PHILADELPHIA, PA 19103 USA SN 0025-7974 EI 1536-5964 J9 MEDICINE JI Medicine (Baltimore) PD MAR 8 PY 2024 VL 103 IS 10 AR e37375 DI 10.1097/MD.0000000000037375 PG 8 WC Medicine, General & Internal WE Science Citation Index Expanded (SCI-EXPANDED) SC General & Internal Medicine GA QS0C1 UT WOS:001222731500056 PM 38457583 OA gold DA 2024-09-05 ER PT J AU Taskin, Z Al, U AF Taskin, Zehra Al, Umut TI Natural language processing applications in library and information science SO ONLINE INFORMATION REVIEW LA English DT Article DE Social network analysis; Bibliometrics; Library and information science; Citespace; VOSviewer; Natural language processing ID COMBINING BIBLIOMETRICS; RETRIEVAL; RELEVANCE; CITATIONS; NLP AB Purpose With the recent developments in information technologies, natural language processing (NLP) practices have made tasks in many areas easier and more practical. Nowadays, especially when big data are used in most research, NLP provides fast and easy methods for processing these data. The purpose of this paper is to identify subfields of library and information science (LIS) where NLP can be used and to provide a guide based on bibliometrics and social network analyses for researchers who intend to study this subject. Design/methodology/approach Within the scope of this study, 6,607 publications, including NLP methods published in the field of LIS, are examined and visualized by social network analysis methods. Findings After evaluating the obtained results, the subject categories of publications, frequently used keywords in these publications and the relationships between these words are revealed. Finally, the core journals and articles are classified thematically for researchers working in the field of LIS and planning to apply NLP in their research. Originality/value The results of this paper draw a general framework for LIS field and guides researchers on new techniques that may be useful in the field. C1 [Taskin, Zehra; Al, Umut] Hacettepe Univ, Dept Informat Management, Ankara, Turkey. C3 Hacettepe University RP Taskin, Z (corresponding author), Hacettepe Univ, Dept Informat Management, Ankara, Turkey. EM ztaskin@hacettepe.edu.tr; umutal@hacettepe.edu.tr RI Al, Umut/E-9584-2013; Taskin, Zehra/H-3025-2011 OI Taskin, Zehra/0000-0001-7102-493X FU Turkish Scientific and Technological Research Center [115K440] FX This paper was supported in part by a research grant from the Turkish Scientific and Technological Research Center (115K440). CR Adedayo AV, 2015, PERFORM MEAS METR, V16, P303, DOI 10.1108/PMM-01-2015-0001 Akbulut M., 2016, THESIS [Anonymous], 1979, INFORM RETRIEVAL [Anonymous], 2017, Oxford Living Dictionary [Anonymous], 1983, INTRO MODERN INFORM [Anonymous], 1999, Foundations of statistical natural language processing Arisoy E, 2010, INT CONF ACOUST SPEE, P5538, DOI 10.1109/ICASSP.2010.5495226 Avram S, 2014, CONTROL ENG APPL INF, V16, P62 BATES MJ, 1989, ONLINE REV, V13, P407, DOI 10.1108/eb024320 BELKIN NJ, 1982, J DOC, V38, P61, DOI 10.1108/eb026722 BIRNDL2018, 2018, 3 JOINT WORKSH BIBL Blair D.C., 1990, ANNU REV INFORM SCI, V44, P159 Blake C., 2013, ANNU REV INFORM SCI, V45, P121 Cambria E, 2014, IEEE COMPUT INTELL M, V9, P48, DOI 10.1109/MCI.2014.2307227 Carevic Z., 2014, 13 EUR NETW KNOWL OR Çarki K, 2000, INT CONF ACOUST SPEE, P1563, DOI 10.1109/ICASSP.2000.861971 Catalini C, 2015, P NATL ACAD SCI USA, V112, P13823, DOI 10.1073/pnas.1502280112 Chen C., 2018, THE CITESPACE MANUAL Chen CM, 2010, J AM SOC INF SCI TEC, V61, P1386, DOI 10.1002/asi.21309 Chen XL, 2018, BMC MED INFORM DECIS, V18, DOI [10.1186/s12911-018-0594-x, 10.1186/s12870-018-1555-3] Chowdhury GG, 2003, ANNU REV INFORM SCI, V37, P51, DOI 10.1002/aris.1440370103 Clarivate Analytics, 2018, WEB SCI COR COLL FIE Ding Y, 2001, INFORM PROCESS MANAG, V37, P817, DOI 10.1016/S0306-4573(00)00051-0 Eryiit G., 2014, ITU TURKISH NATURAL Feldman S, 1999, ONLINE, V23, P62 Fiszman M, 2009, J BIOMED INFORM, V42, P801, DOI 10.1016/j.jbi.2008.10.002 Galvez C, 2007, SCIENTOMETRICS, V70, P3, DOI 10.1007/s11192-007-0101-0 Garfield E., 2001, BIBLIO COUPLING COCI Glänzel W, 2017, SCIENTOMETRICS, V111, P1897, DOI 10.1007/s11192-017-2336-8 Gumpenberger C, 2013, SCIENTOMETRICS, V95, P277, DOI 10.1007/s11192-012-0829-z Hooper CJ, 2015, LECT NOTES COMPUT SC, V9089, P63, DOI 10.1007/978-3-319-18609-2_5 Ingwersen P, 1996, J DOC, V52, P3, DOI 10.1108/eb026960 Jha R., 2016, NAT LANG ENG, V23, P93 Kim IC, 2014, IEEE SYS MAN CYBERN, P1991, DOI 10.1109/SMC.2014.6974213 KUHLTHAU CC, 1991, J AM SOC INFORM SCI, V42, P361, DOI 10.1002/(SICI)1097-4571(199106)42:5<361::AID-ASI6>3.0.CO;2-# Lewis DD, 1996, COMMUN ACM, V39, P92, DOI 10.1145/234173.234210 Li K, 2018, SCIENTOMETRICS, V115, P1, DOI 10.1007/s11192-017-2622-5 Liddy E.D., 2010, ENCY LIB INFORM SCI, P3864 Maricic S, 1998, J AM SOC INFORM SCI, V49, P530, DOI 10.1002/(SICI)1097-4571(19980501)49:6<530::AID-ASI5>3.0.CO;2-U Mayr P, 2015, SCIENTOMETRICS, V102, P2191, DOI 10.1007/s11192-015-1529-2 MCCAIN KW, 1991, J AM SOC INFORM SCI, V42, P290, DOI 10.1002/(SICI)1097-4571(199105)42:4<290::AID-ASI5>3.0.CO;2-9 Mikova N, 2016, INNOV TECH KNOWL MAN, P59, DOI 10.1007/978-3-319-39056-7_4 Nanba H, 1999, IJCAI-99: PROCEEDINGS OF THE SIXTEENTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOLS 1 & 2, P926 Neveol A, 2016, Yearb Med Inform, P234 ROBERTSON SE, 1976, J AM SOC INFORM SCI, V27, P129, DOI 10.1002/asi.4630270302 Rotto E, 1997, SCIENTOMETRICS, V40, P83, DOI 10.1007/BF02459263 SARACEVIC T, 1975, J AM SOC INFORM SCI, V26, P321, DOI 10.1002/asi.4630260604 Schultz T, 2001, SPEECH COMMUN, V35, P31, DOI 10.1016/S0167-6393(00)00094-7 Sedighi M, 2016, LIBR REV, V65, P52, DOI 10.1108/LR-07-2015-0075 Shen HP, 2015, ACM T ASIAN LOW-RESO, V14, DOI 10.1145/2661637 Silahtarolu G., 2013, VERI MADENCILII KAVR Su HN, 2010, SCIENTOMETRICS, V85, P65, DOI 10.1007/s11192-010-0259-8 Takn Z., 2017, STI2017 OPEN INDICAT Taskin Z, 2018, SCIENTOMETRICS, V114, P335, DOI 10.1007/s11192-017-2560-2 Taskin Z, 2014, SCIENTOMETRICS, V98, P347, DOI 10.1007/s11192-013-1004-x Taskin Z, 2013, PROCD SOC BEHV, V73, P544, DOI 10.1016/j.sbspro.2013.02.089 Trujillo CM, 2018, SCI ADV, V4, DOI 10.1126/sciadv.1701130 Van Eck N.J., 2018, VOSviewer Manual White HD, 2007, J AM SOC INF SCI TEC, V58, P536, DOI 10.1002/asi.20543 White H, 2018, SCIENTOMETRICS, V114, P757, DOI 10.1007/s11192-017-2610-9 NR 60 TC 19 Z9 22 U1 6 U2 107 PU EMERALD GROUP PUBLISHING LTD PI BINGLEY PA HOWARD HOUSE, WAGON LANE, BINGLEY BD16 1WA, W YORKSHIRE, ENGLAND SN 1468-4527 EI 1468-4535 J9 ONLINE INFORM REV JI Online Inf. Rev. PD AUG 12 PY 2019 VL 43 IS 4 BP 676 EP 690 DI 10.1108/OIR-07-2018-0217 PG 15 WC Computer Science, Information Systems; Information Science & Library Science WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Computer Science; Information Science & Library Science GA IX7UX UT WOS:000485891600012 DA 2024-09-05 ER PT J AU Cao, EW AF Cao, Enwei TI Research on students' classroom performance evaluation algorithm based on machine learning SO INTERNATIONAL JOURNAL OF CONTINUING ENGINEERING EDUCATION AND LIFE-LONG LEARNING LA English DT Article DE machine learning; students' classroom performance; evaluation; test statistics; intelligent teaching AB In order to overcome the poor accuracy of traditional classroom performance evaluation algorithm, a machine learning-based classroom performance evaluation algorithm was designed. This paper makes an empirical analysis of the statistical data and constructs a statistical information analysis model for students' classroom performance evaluation. According to the mining results of students' classroom performance evaluation information, the adaptive mining and feature clustering of students' classroom performance evaluation data are carried out. This paper uses quantitative game method to evaluate students' classroom performance, constructs the explanatory variable and control variable model of students' classroom performance evaluation, and then uses machine learning method to optimise the evaluation of students' classroom performance. The simulation results show that the evaluation accuracy of the proposed method is always above 0.77, which has high reliability and adaptability, and improves the quantitative evaluation ability of students' classroom performance. C1 [Cao, Enwei] Jingdezhen Ceram Inst, Sch Management & Econ, Jingdezhen 333000, Jiangxi, Peoples R China. C3 Jingdezhen Ceramic Institute RP Cao, EW (corresponding author), Jingdezhen Ceram Inst, Sch Management & Econ, Jingdezhen 333000, Jiangxi, Peoples R China. EM enweicao@36haojie.com CR Allawi MF, 2018, ENVIRON EARTH SCI, V77, DOI 10.1007/s12665-018-7546-8 Bao Y., 2017, FUZZY SYSTEMS MATH, V31, P73 Chen Y-r., 2018, LIGHT IND TECHNOLOGY, V234 [贾建鑫 Jia Jianxin], 2017, [计算机工程, Computer Engineering], V43, P144 Liang JJ, 2014, NEUROCOMPUTING, V137, P252, DOI 10.1016/j.neucom.2013.03.069 Liu Z., 2017, STAT DECISION, V427, P55 Torres EL, 2015, MED PHYS, V42, P1477, DOI 10.1118/1.4907970 [罗会兰 Luo Huilan], 2016, [电子与信息学报, Journal of Electronics & Information Technology], V38, P1594 Pan Chengsheng, 2019, Computer Engineering, V45, P85, DOI 10.19678/j.issn.1000-3428.0049722 Ren Q, 2016, EDUC RES-UK, V435, P107 Wang Q., 2017, CHINA SCI TECHNOLOGY, V13, P40 Wang WK, 2019, ACTA MATH APPL SIN-E, V35, P386, DOI 10.1007/s10255-019-0817-7 Wang Y., 2015, J NATL ACAD ED ADM, V77, P79 Xie J., 2017, MODERN DISTANCE ED R, V5, P95 Yang J, 2019, ACTA MATH APPL SIN-E, V35, P401, DOI 10.1007/s10255-019-0808-8 Yin CL, 2017, IEEE ACCESS, V5, P21954, DOI 10.1109/ACCESS.2017.2762418 [张景祥 Zhang Jingxiang], 2014, [自动化学报, Acta Automatica Sinica], V40, P236 Zhang X, 2019, ACTA MATH APPL SIN-E, V35, P327, DOI 10.1007/s10255-019-0823-9 Zheng Q., 2017, CHINA U TEACHING, V12 Zhou Qi, 2019, Computer Engineering, V45, P41, DOI 10.19678/j.issn.1000-3428.0052189 Zhou Z., 2017, MODERN ELECT TECHNIQ, V40, P74 NR 21 TC 0 Z9 0 U1 2 U2 43 PU INDERSCIENCE ENTERPRISES LTD PI GENEVA PA WORLD TRADE CENTER BLDG, 29 ROUTE DE PRE-BOIS, CASE POSTALE 856, CH-1215 GENEVA, SWITZERLAND SN 1560-4624 EI 1741-5055 J9 INT J CONTIN ENG EDU JI Int. J. Contin. Eng. Educ. Life-Long Learn. PY 2022 VL 32 IS 2 BP 227 EP 239 PG 13 WC Education & Educational Research WE Emerging Sources Citation Index (ESCI) SC Education & Educational Research GA 0I4VV UT WOS:000779420000008 DA 2024-09-05 ER PT J AU Nivash, JP Babu, LDD AF Nivash, J. P. Babu, L. D. Dhinesh TI Analyzing the impact of news trends on research publications and scientific collaboration networks SO CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE LA English DT Article DE bibliometric analysis; citation networks; LDA; scientific collaboration networks ID CITATION; SCIENCE AB Scientific collaboration plays a vital role in generating novel ideas and innovative research progress among the researchers. Similarly, news diffusion also has an important role among the research communities. Though the collaboration networks have made an impact in scientific activities and attracted the attention of scientific communities, no work so far analyzed the cause which can determine the future research publications. The objective of this paper is to study influence of news trends on scientific collaboration and research publications. For this purpose, we have collected the top technological news trends and applied the LDA model to identify top research keywords from the articles. The results show that the news trends play a significant role on scientific collaborations and innovative research progress. It is found that the researchers identify their research gap, make future collaborations and does interdisciplinary research. Our results highlight the important role of diffusion of news, which influence the young researchers to generate novel ideas and tend to collaborate more with different scientific communities. C1 [Nivash, J. P.; Babu, L. D. Dhinesh] VIT Univ, Sch Informat Technol & Engn, Vellore 632014, Tamil Nadu, India. C3 Vellore Institute of Technology (VIT); VIT Vellore RP Nivash, JP (corresponding author), VIT Univ, Sch Informat Technol & Engn, Vellore 632014, Tamil Nadu, India. EM nivash.jeevan@vit.ac.in RI d, d/GZL-3202-2022; D, D/HNJ-1774-2023; L D, Dhinesh Babu/K-6683-2017 OI L D, Dhinesh Babu/0000-0002-3354-8713; JP, NIVASH/0000-0002-2977-5593 CR [Anonymous], 2012, Formal concept analysis: mathematical foundations Baker L, 1967, 3 INFORM SCI Belohlavek R, 2005, CLA 2005 INT WORKSH BLEI DM, 2006, 23 INT C MACH LEARN Cashmore P, CNN Dang Q, 2016, EXPERT SYST APPL, V57, P285, DOI 10.1016/j.eswa.2016.03.050 Garvey W., 1979, COMMUNICATION ESSENC Ihler A, 2006, 12 ACM SIGKDD INT C Kiernan V, 1997, SCI COMMUN, V18, P297, DOI 10.1177/1075547097018004002 Kim HJ, 2016, J INFORMETR, V10, P954, DOI 10.1016/j.joi.2016.07.007 Kleinberg J, 2003, DATA MIN KNOWL DISC, V7, P373, DOI 10.1023/A:1024940629314 LEWENSTEIN BV, 1995, SOC STUD SCI, V25, P403, DOI 10.1177/030631295025003001 Moed HF, 2009, ARCH IMMUNOL THER EX, V57, P13, DOI 10.1007/s00005-009-0001-5 Nerur S, 2005, COMMUN ACM, V48, P71, DOI 10.1145/1096000.1096007 Number AD, 1968, UNCLASSIFIED AD NUMB PHILLIPS DP, 1991, NEW ENGL J MED, V325, P1180, DOI 10.1056/NEJM199110173251620 Pratama M, 2016, NEUROCOMPUTING, V191, P304, DOI 10.1016/j.neucom.2016.01.049 PRICE DJD, 1965, SCIENCE, V149, P510 Richmond S, TECHNOLOGY 2012 YEAR Rosen-Zvi M., 2004, 20 C UNC ART INT UAI Shane R, TECHNOLOGY TRENDS 20 Shane R, TOP 10 TECHNOLOGY TR Shane R, TOP 10 TECHNOLOGY HI Sutter JD, TOP 10 TECH TRENDS 2 van Dalen HP, 2005, SCIENTOMETRICS, V64, P209, DOI 10.1007/s11192-005-0248-5 Wang NX, 2016, DECIS SUPPORT SYST, V86, P35, DOI 10.1016/j.dss.2016.03.006 Wang X., 2006, 12 ACM SIGKDD INT C Wang X, 2007, 13 ACM SIGKDD INT C WILLEMS J, 1993, SCIENTOMETRICS, V28, P205, DOI 10.1007/BF02016900 NR 29 TC 3 Z9 3 U1 3 U2 30 PU WILEY PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1532-0626 EI 1532-0634 J9 CONCURR COMP-PRACT E JI Concurr. Comput.-Pract. Exp. PD JUL 25 PY 2019 VL 31 IS 14 AR e5058 DI 10.1002/cpe.5058 PG 10 WC Computer Science, Software Engineering; Computer Science, Theory & Methods WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Computer Science GA IF0NW UT WOS:000472775300015 DA 2024-09-05 ER PT J AU Lyu, DQ Gong, KL Ruan, XM Cheng, Y Li, J AF Lyu, Dongqing Gong, Kaile Ruan, Xuanmin Cheng, Ying Li, Jiang TI Does research collaboration influence the "disruption" of articles? Evidence from neurosciences SO SCIENTOMETRICS LA English DT Article DE Disruption index; Collaboration; Neurosciences; Logistic regression ID INTERNATIONAL COLLABORATION; SCIENTIFIC COLLABORATION; TECHNOLOGICAL NOVELTY; TEAM SCIENCE; IMPACT; INNOVATION; KNOWLEDGE; BEHAVIOR; AUTHORS; SEARCH AB A new indicator (the disruption index) quantifying the extent to which a paper disrupts or consolidates established knowledge was recently introduced from the perspective of subsequent use of the current knowledge. This study explored whether different types of collaboration (i.e., at the author, institution, and country levels) equally affect the disruption of papers. We selected 505,168 papers from Neurosciences indexed in the Web of Science from 1954-2011 and employed logistic regression analysis. Our principal findings are that team size and international collaboration are negatively associated with the disruption of articles, while an additional increase in the number of domestic institutions of a team statistically favors disruption. C1 [Lyu, Dongqing; Ruan, Xuanmin; Cheng, Ying; Li, Jiang] Nanjing Univ, Sch Informat Management, Nanjing 210023, Peoples R China. [Gong, Kaile] Nanjing Normal Univ, Sch Journalism & Commun, Nanjing 210097, Peoples R China. C3 Nanjing University; Nanjing Normal University RP Li, J (corresponding author), Nanjing Univ, Sch Informat Management, Nanjing 210023, Peoples R China. EM lijiang@nju.edu.cn RI Cheng, Yongzhi/AAY-9109-2020; Li, Jiang/JHV-1585-2023; Li, Jiang/Z-1709-2019; Gong, Kaile/T-2945-2019 OI Li, Jiang/0000-0001-5769-8647; Gong, Kaile/0000-0001-9269-8669 FU National Natural Science Foundation of China [71874077] FX This work uses Web of Science data by Clarivate Analytics provided by the Indiana University Network Science Institute and the Cyberinfrastructure for Network Science Center at Indiana University. We also acknowledge the National Natural Science Foundation of China Grant 71874077 for financial support. CR Adams JD, 2005, RES POLICY, V34, P259, DOI 10.1016/j.respol.2005.01.014 Aksnes DW, 2003, RES EVALUAT, V12, P159, DOI 10.3152/147154403781776645 ALDRICH HE, 1976, ANNU REV SOCIOL, V2, P79, DOI 10.1146/annurev.so.02.080176.000455 [Anonymous], 1962, The Structure of Scientific Revolutions Arthur WB, 2007, RES POLICY, V36, P274, DOI 10.1016/j.respol.2006.11.005 Asubiaro T, 2019, SCIENTOMETRICS, V120, P1261, DOI 10.1007/s11192-019-03157-1 Asubiaro TV, 2018, AFR J LIBR ARCH INFO, V28, P17 Azoulay P, 2019, NATURE, V566, P330, DOI 10.1038/d41586-019-00350-3 Bartneck C, 2010, SCIENTOMETRICS, V85, P41, DOI 10.1007/s11192-010-0242-4 Beaver D. deB., 1978, Scientometrics, V1, P65, DOI 10.1007/BF02016840 Bercovitz J, 2011, RES POLICY, V40, P81, DOI 10.1016/j.respol.2010.09.008 Bikard M, 2019, ORGAN SCI, V30, P426, DOI 10.1287/orsc.2018.1235 Bloch C, 2019, J INFORMETR, V13, P593, DOI 10.1016/j.joi.2019.03.003 Bordons M, 2013, SCIENTOMETRICS, V96, P443, DOI 10.1007/s11192-012-0890-7 Bornmann L, 2020, SCIENTOMETRICS, V123, P1149, DOI 10.1007/s11192-020-03406-8 Bornmann L, 2019, PROF INFORM, V28, DOI 10.3145/epi.2019.mar.07 Bornmann L, 2019, SCIENTOMETRICS, V120, P331, DOI 10.1007/s11192-019-03113-z Bornmann L, 2017, J ASSOC INF SCI TECH, V68, P1036, DOI 10.1002/asi.23728 Bunderson JS, 2002, ACAD MANAGE J, V45, P875, DOI 10.2307/3069319 Burright MA, 2005, COLL RES LIBR, V66, P198, DOI 10.5860/crl.66.3.198 Christensen C.M., 1997, INNOVATORS DILEMMA N Cummings JN, 2005, SOC STUD SCI, V35, P703, DOI 10.1177/0306312705055535 Cummings JN, 2007, RES POLICY, V36, P1620, DOI 10.1016/j.respol.2007.09.001 Cummings JN, 2013, PSYCHOL SCI, V24, P880, DOI 10.1177/0956797612463082 Dahlin KB, 2005, RES POLICY, V34, P717, DOI 10.1016/j.respol.205.03.009 DAVIS RA, 1987, NEUROSURGERY, V20, P652, DOI 10.1227/00006123-198704000-00028 DEWAR RD, 1986, MANAGE SCI, V32, P1422, DOI 10.1287/mnsc.32.11.1422 Didegah F, 2013, J INFORMETR, V7, P861, DOI 10.1016/j.joi.2013.08.006 Ettarh RR, 2015, CARDIOVASC DIAGN THE, V5, P311, DOI 10.3978/j.issn.2223-3652.2015.07.04 ETTLIE JE, 1984, MANAGE SCI, V30, P682, DOI 10.1287/mnsc.30.6.682 FLEISHMAN JA, 1980, J PERS SOC PSYCHOL, V38, P629, DOI 10.1037/0022-3514.38.4.629 Fleming L, 2001, MANAGE SCI, V47, P117, DOI 10.1287/mnsc.47.1.117.10671 FOSTER RN, 1986, RES MANAGE, V29, P17, DOI 10.1080/00345334.1986.11756976 FOX MF, 1984, J HIGH EDUC, V55, P347, DOI 10.2307/1981888 Franceschet M, 2010, J INFORMETR, V4, P540, DOI 10.1016/j.joi.2010.06.003 Funk RJ, 2017, MANAGE SCI, V63, P791, DOI 10.1287/mnsc.2015.2366 Garrity PA, 2005, NAT NEUROSCI, V8, P1635, DOI 10.1038/nn1205-1635 Gazni A, 2016, SCIENTOMETRICS, V109, P1209, DOI 10.1007/s11192-016-2101-4 Gazni A, 2011, SCIENTOMETRICS, V87, P251, DOI 10.1007/s11192-011-0343-8 Glänzel W, 2002, LIBR TRENDS, V50, P461 Glänzel W, 2001, SCIENTOMETRICS, V50, P199, DOI 10.1023/A:1010561321723 González-Alvarez J, 2017, J INFORMETR, V11, P232, DOI 10.1016/j.joi.2016.12.007 Bote VPG, 2013, J AM SOC INF SCI TEC, V64, P392, DOI 10.1002/asi.22754 Hall KL, 2008, AM J PREV MED, V35, pS243, DOI 10.1016/j.amepre.2008.05.007 He ZL, 2009, J AM SOC INF SCI TEC, V60, P2151, DOI 10.1002/asi.21150 Hsu JW, 2011, SCIENTOMETRICS, V86, P317, DOI 10.1007/s11192-010-0265-x Iribarren-Maestro I, 2009, SCIENTOMETRICS, V79, P191, DOI 10.1007/s11192-009-0412-4 Jones BF, 2008, SCIENCE, V322, P1259, DOI 10.1126/science.1158357 Jones BF, 2009, REV ECON STUD, V76, P283, DOI 10.1111/j.1467-937X.2008.00531.x KAPLAN N, 1965, AM DOC, V16, P179, DOI 10.1002/asi.5090160305 Kaplan S, 2015, STRATEGIC MANAGE J, V36, P1435, DOI 10.1002/smj.2294 Katila R, 2002, ACAD MANAGE J, V45, P1183, DOI 10.5465/3069433 Katz JS, 1997, RES POLICY, V26, P1, DOI 10.1016/S0048-7333(96)00917-1 Kim DJ, 1996, ORGAN SCI, V7, P283, DOI 10.1287/orsc.7.3.283 Kim DI, 2016, IEEE WIREL COMMUN LE, V5, P1, DOI 10.1109/LWC.2016.2520159 Barrantes BSL, 2012, J AM SOC INF SCI TEC, V63, P481, DOI 10.1002/asi.21682 Larivière V, 2015, J ASSOC INF SCI TECH, V66, P1323, DOI 10.1002/asi.23266 Ledford H, 2015, NATURE, V525, P308, DOI 10.1038/525308a Lee YN, 2015, RES POLICY, V44, P684, DOI 10.1016/j.respol.2014.10.007 Lin JY, 2010, INT J TECHNOL MANAGE, V49, P174, DOI 10.1504/IJTM.2010.029417 Menard SW, 2002, APPL LOGISTIC REGRES NARIN F, 1978, SCIENTOMETRICS, V1, P35, DOI 10.1007/BF02016838 NONAKA I, 1994, ORGAN SCI, V5, P14, DOI 10.1287/orsc.5.1.14 Persson O, 2004, SCIENTOMETRICS, V60, P421, DOI 10.1023/B:SCIE.0000034384.35498.7d Ponomarev IV, 2014, SCIENTOMETRICS, V100, P755, DOI 10.1007/s11192-014-1320-9 Qin J, 1997, J AM SOC INFORM SCI, V48, P893, DOI 10.1002/(SICI)1097-4571(199710)48:10<893::AID-ASI5>3.0.CO;2-X SALANCIK GR, 1978, US SOC PSYCHOL, V41, P246, DOI 10.2307/3033561 Schilling MA, 2011, RES POLICY, V40, P1321, DOI 10.1016/j.respol.2011.06.009 Shpilko I, 2015, LIBR COLLECT ACQUIS, V39, P9, DOI 10.1080/14649055.2015.1121067 Sonnenwald DH, 2007, ANNU REV INFORM SCI, V41, P643, DOI 10.1002/aris.2007.1440410121 Sooryamoorthy R, 2009, SCIENTOMETRICS, V81, P177, DOI 10.1007/s11192-009-2126-z Strumsky D, 2015, RES POLICY, V44, P1445, DOI 10.1016/j.respol.2015.05.008 Subelj L, 2019, J INFORMETR, V13, P10, DOI 10.1016/j.joi.2018.11.005 SUBRAMANYAM K, 1983, J INFORM SCI, V6, P33, DOI 10.1177/016555158300600105 Sud P, 2016, J ASSOC INF SCI TECH, V67, P1849, DOI 10.1002/asi.23515 TRAJTENBERG M, 1990, RAND J ECON, V21, P172, DOI 10.2307/2555502 TRAJTENBERG M, 1997, Econ Innovat New Technol, V5, P19, DOI 10.1080/10438599700000006 Uzzi B, 2013, SCIENCE, V342, P468, DOI 10.1126/science.1240474 Van Raan AFJ, 1998, SCIENTOMETRICS, V42, P423, DOI 10.1007/BF02458380 van Raan AFJ, 2004, SCIENTOMETRICS, V59, P467, DOI 10.1023/B:SCIE.0000018543.82441.f1 Verhoeven D, 2016, RES POLICY, V45, P707, DOI 10.1016/j.respol.2015.11.010 Wagner CS, 2019, RES POLICY, V48, P1260, DOI 10.1016/j.respol.2019.01.002 Wagner CS, 2017, SCIENTOMETRICS, V110, P1633, DOI 10.1007/s11192-016-2230-9 Wagner CS, 2005, RES POLICY, V34, P1608, DOI 10.1016/j.respol.2005.08.002 Walsh JP, 2007, J COMPUT-MEDIAT COMM, V12, P712, DOI 10.1111/j.1083-6101.2007.00346.x Wang J, 2017, RES POLICY, V46, P1416, DOI 10.1016/j.respol.2017.06.006 Wu LF, 2019, NATURE, V566, P378, DOI 10.1038/s41586-019-0941-9 Wuchty S, 2007, SCIENCE, V316, P1036, DOI 10.1126/science.1136099 Xu JY, 2010, NAT NEUROSCI, V13, P22, DOI 10.1038/nn.2459 Yu D, 2010, INT J MANAG REV, V12, P435, DOI 10.1111/j.1468-2370.2009.00272.x NR 90 TC 11 Z9 15 U1 18 U2 185 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0138-9130 EI 1588-2861 J9 SCIENTOMETRICS JI Scientometrics PD JAN PY 2021 VL 126 IS 1 BP 287 EP 303 DI 10.1007/s11192-020-03757-2 EA OCT 2020 PG 17 WC Computer Science, Interdisciplinary Applications; Information Science & Library Science WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Computer Science; Information Science & Library Science GA PU7XL UT WOS:000582810200011 DA 2024-09-05 ER PT C AU Li, HJ Li, L Yu, YQ AF Li Haijun Li Lin Yu Yongqing BE Fang, J Wang, Z TI Research on simulation methods of evaluation for diagnostic Bayesian networks SO SIGNAL ANALYSIS, MEASUREMENT THEORY, PHOTO-ELECTRONIC TECHNOLOGY, AND ARTIFICIAL INTELLIGENCE, PTS 1 AND 2 SE Proceedings of SPIE LA English DT Proceedings Paper CT 6th International Symposium on Instrumentation and Control Technology CY OCT 13-15, 2006 CL Beijing, PEOPLES R CHINA DE Bayesian Networks; diagnostic models; evaluation; algorithm; faults injection; faults propagation AB Bayesian Networks that based on probability inference is proposed to solve problems of uncertainty and imperfection. It has more advantages to solve faults caused by uncertainty and relevancy of complex devices. Diagnostic models of Bayesian Networks must be evaluated roundly before used for diagnosis. The usual way to evaluate diagnostic models is using standard cases to test the model, but the cases are limited and the quality of these cases depend on their source, and these cases could not include all instances. Based on sample means of Monte Carlo, an algorithm of evaluation for diagnostic models is proposed this article; this algorithm does not need special diagnostic cases. Faults injecting algorithm with equal probability of every components are adopted, test cases are produced by this algorithm of system itself, and course of faults propagation is simulated by this algorithm of system too. This algorithm could test diagnostic models roundly, and make overall evaluation of diagnostic models. C1 [Li Haijun; Li Lin] Naval Aero Engn Acad, Yantai 264001, Peoples R China. [Yu Yongqing] Mil Deputy Off NAD 8357 Inst, Tianjin 300141, Peoples R China. RP Li, HJ (corresponding author), Naval Aero Engn Acad, Yantai 264001, Peoples R China. CR Darwiche Adnan, 2000, AI MAGAZINE SUM JAMES S, 1992, BAYESIAN STAT PRINCI, P152 Jensen F.V., 1996, AISB Quarterly, V94, P9 LI HJ, 2006, RES INTEGRATED DIAGN PRZYTULA KW, 2002, 187 IEEEAC VEHTAR A, 2002, NEURAL COMPUTATION, V14 NR 6 TC 0 Z9 0 U1 0 U2 1 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X EI 1996-756X BN 0-8194-6452-X J9 PROC SPIE PY 2006 VL 6357 AR 63574Q DI 10.1117/12.717469 PN 1-2 PG 5 WC Computer Science, Artificial Intelligence; Engineering, Electrical & Electronic; Instruments & Instrumentation; Optics; Imaging Science & Photographic Technology WE Conference Proceedings Citation Index - Science (CPCI-S) SC Computer Science; Engineering; Instruments & Instrumentation; Optics; Imaging Science & Photographic Technology GA BFM84 UT WOS:000243123200170 DA 2024-09-05 ER PT J AU Krishna, D Mohan, SR Murthy, BSN Rao, AR AF Krishna, D Mohan, SR Murthy, BSN Rao, AR TI Performance evaluation of public research institutes using principal component analysis SO JOURNAL OF SCIENTIFIC & INDUSTRIAL RESEARCH LA English DT Article AB Public research institutes are the organisations, which carry out scientific research and tender technological services. Owing to the phenomenon of globalisation, resource constraints and increased accountability, public research institutes, especially in the developing countries, are under tremendous pressure to improve their performance. The need to improve performance of these organizations necessitates evaluating the performance of the institution in relation to other institutes. In this study, public research institutes are considered as systems and some models based on statistical concepts are utilized to compare performance of different research institutes by measuring productivity index of those institutes. Performance ranking is done, based on productivity index values. Ranks obtained with the study are also compared with those of the experts judgment for studying the accuracy of the methodologies. C1 Indian Inst Chem Technol, Hyderabad 500007, Andhra Pradesh, India. Sri Venkateswara Univ, Coll Engn, Tirupati 517502, Andhra Pradesh, India. C3 Council of Scientific & Industrial Research (CSIR) - India; CSIR - Indian Institute of Chemical Technology (IICT); Sri Venkateswara University RP Mohan, SR (corresponding author), Indian Inst Chem Technol, Hyderabad 500007, Andhra Pradesh, India. CR Anderson T.W, 1998, An Introduction to Multivariate Statistical Analysis BROWN MG, 1988, RES TECHNOL MANAGE, V31, P11, DOI 10.1080/08956308.1988.11670531 Coccia M, 2001, R&D MANAGE, V31, P453, DOI 10.1111/1467-9310.00231 Gupta AK, 2000, R&D MANAGE, V30, P289, DOI 10.1111/1467-9310.00182 Kendall M., 1980, Multivariate Analysis KRISHNA D, 1994, CHEMOMETR INTELL LAB, V22, P273, DOI 10.1016/0169-7439(94)80003-0 Mohan SR, 2001, J SCI IND RES INDIA, V60, P929 MOHAN SR, R D MANAGE MORRISON, 1978, MULIVARIATE STAT MET MUNDEL, 1976, IND ENG J, V10, P50 NR 10 TC 7 Z9 7 U1 0 U2 7 PU NATL INST SCIENCE COMMUNICATION PI NEW DELHI PA DR K S KRISHNAN MARG, NEW DELHI 110 012, INDIA SN 0022-4456 J9 J SCI IND RES INDIA JI J. Sci. Ind. Res. PD NOV PY 2002 VL 61 IS 11 BP 940 EP 947 PG 8 WC Engineering, Multidisciplinary WE Science Citation Index Expanded (SCI-EXPANDED) SC Engineering GA 614RK UT WOS:000179204100004 DA 2024-09-05 ER PT J AU Wao, H Wang, Y Wao, MA Were, JA AF Wao, Hesborn Wang, Yan Wao, Melvin A. Were, Juliana A. TI Factors associated with North-South research collaboration focusing on HIV/AIDS: lessons from ClinicalTrials.gov SO AIDS RESEARCH AND THERAPY LA English DT Article DE Clinical trials; HIV; AIDS; Logistic regression; North-South collaborations; Research capacity strengthening ID HEALTH; CAPACITY AB Background A North-South (N-S) research collaboration is one way through which research capacity of developing countries can be strengthened. Whereas N-S collaboration in HIV/AIDS area may result in research capacity strengthening of Southern partners, it is not clear what factors are associated with this type of collaboration. The study aims to characterize N-S research collaboration focusing on HIV/AIDS and to determine factors associated with such N-S research collaborations. Methods Clinical trial data on HIV/AIDS-related studies conducted between 2000 and 2019 were obtained from ClinicalTrials.gov. Using these data, we characterized N-S collaborative studies focusing on HIV/AIDS and summarized them using frequencies and percentages. To determine factors associated with these studies, we used logistic regression and reported results as adjusted odds ratios with Wald 95% confidence intervals. Results and discussion Of the 4,832 HIV/AIDS-related studies retrieved from the registry, less than one-quarter (n = 1133, 23%) involved a Southern institution, with 77% of these studies classified as N-S collaborations. Majority of these studies have single PI (50%), are conducted at single location (39%); have large sample sizes (41%); are federally-funded (32%) or receive funding from other sources (32%); are intervention studies (64%); and involve a mixture of male and female participants (58%) and adult participants (54%). Single PIs (as opposed to multiple PIs) were more likely to be from the North than South institution (odds ratio = 5.59, 95%CI: 4.16 - 11.57). Trend analyses showed that N-S research collaborations produced HIV/AIDS-related studies at a faster rate than S-S research collaborations. N-S collaborations involving female or children produced HIV/AIDS-related studies between 2000 and 2019 at a significantly faster rate than S-S collaborations involving females and children during the same period. Holding other factors constant, N-S collaborative research focusing on HIV/AIDS are associated with: multiple PIs as opposed to single PI, multiple institutions as opposed to a single institution, multiple locations as opposed to a single location, large number of participants as opposed to small sample sizes, and public funding as opposed to industry funding. Almost half of these studies had a Northern PI only, about one-third had a Southern PI only, and much fewer had PIs from both North and South. However, these studies were less likely to receive funding from other sources than industry funding. Conclusions HIV/AIDS-related research is increasingly becoming a more collaborative global research involving more N-S collaborations than S-S collaborations. Factors associated with N-S collaborative studies focusing on HIV/AIDS include multiple PIs, institutions, and locations; large sample sizes; publicly funded; and involve vulnerable populations such as women and children. Whereas almost half of these studies have a Northern PI only, about one-third have a Southern PI only, and much fewer have PIs from both North and South. Our results inform future design and implementation of N-S research collaborations in this area. Suggestions for improvement of ClinicalTrials.gov registry are provided. C1 [Wao, Hesborn; Wang, Yan] African Populat & Hlth Res Ctr, APHRC Campus,Manga Close,Kirawa Rd,POB 10-8-00100, Nairobi, Kenya. [Wang, Yan] Drexel Univ, Dornsife Sch Publ Hlth, Urban Hlth Collaborat, 3600 Market St,7th Floor, Philadelphia, PA 19104 USA. [Wang, Yan] Univ Calif Los Angeles, Div Infect Dis, 10833 Conte Ave, Los Angeles, CA 90095 USA. [Wao, Melvin A.] US Int Univ Africa USIU Africa, USIU Rd,Thika Rd Exit 7,POB 14634-00800, Nairobi, Kenya. [Were, Juliana A.] Management Univ Africa MUA, Popo Rd,Mombasa Rd,Belleview,South C,POB 29677-00, Nairobi, Kenya. C3 African Population & Health Research Centre; Drexel University; University of California System; University of California Los Angeles RP Wang, Y (corresponding author), African Populat & Hlth Res Ctr, APHRC Campus,Manga Close,Kirawa Rd,POB 10-8-00100, Nairobi, Kenya.; Wang, Y (corresponding author), Drexel Univ, Dornsife Sch Publ Hlth, Urban Hlth Collaborat, 3600 Market St,7th Floor, Philadelphia, PA 19104 USA.; Wang, Y (corresponding author), Univ Calif Los Angeles, Div Infect Dis, 10833 Conte Ave, Los Angeles, CA 90095 USA. EM wangyan@ucla.edu RI Wao, Melvin/AAB-8890-2022 FU NIH [T32MH080634]; National Institute on Minority Health and Health Disparities [1T37MD014251] FX This work was supported by NIH [Grant Number T32MH080634] and National Institute on Minority Health and Health Disparities [Grant Number NIMHD #1T37MD014251]. CR Analytical Services, 2019, HIV AIDS RES INS IMP [Anonymous], 2018, LANCET GLOB HEALTH, V6, pE593, DOI 10.1016/S2214-109X(18)30239-0 [Anonymous], 2014, 7 PRINC STRENGTH RES Califf RM, 2012, JAMA-J AM MED ASSOC, V307, P1838, DOI 10.1001/jama.2012.3424 Cash-Gibson L, 2015, HEALTH RES POLICY SY, V13, DOI 10.1186/s12961-015-0048-1 Ciaranello A, 2014, PEDIATR INFECT DIS J, V33, P623, DOI 10.1097/INF.0000000000000223 Corbin JH, 2008, HEALTH PROMOT INT, V23, P365, DOI 10.1093/heapro/dan029 Ezeh AC, 2010, GLOBAL HEALTH ACTION, V3, DOI 10.3402/gha.v3i0.5693 Färnman R, 2016, GLOBAL HEALTH ACTION, V9, DOI 10.3402/gha.v9.30522 Gaillard J., 1994, Knowledge and Policy: The International Journal of Knowledge Transfer and Utilization, V7, P31, DOI DOI 10.1007/BF02692761 Ghaffar A., 2008, Changing Mindsets: Research Capacity Strengthening in Low and Middle -Income Countries Girum T, 2018, ARCH PUBLIC HEALTH, V76, DOI 10.1186/s13690-018-0299-8 Goswami ND, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0077086 Hofman K, 2013, GLOBAL HEALTH ACTION, V6, P1, DOI 10.3402/gha.v6i0.19668 IHSN, 2004, AIDS IMP SURV 2 2004 Kempton J, 2019, J VIRUS ERAD, V5, P92, DOI 10.1016/S2055-6640(20)30058-3 Lakeh AB, 2017, SCI REP-UK, V7, DOI 10.1038/s41598-017-04527-6 Magnus M, 2016, AIDS BEHAV, V20, pS273, DOI 10.1007/s10461-016-1487-6 Martin NA, 2019, ANN GLOB HEALTH, V85, DOI 10.5334/aogh.2564 McCoy CB, 2017, GLOBAL VIROLOGY 2 HI, P1 Michel C, 2013, EVIDENCE POLICY SERI, V15 Mirzoev T, 2014, HEALTH POLICY PLANN, V29, P831, DOI 10.1093/heapol/czt065 Mugabo L, 2015, HEALTH RES POLICY SY, V13, DOI 10.1186/s12961-015-0017-8 Murunga VI, 2020, HEALTH RES POLICY SY, V18, DOI 10.1186/s12961-019-0524-0 Parker M, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0163579 Sibanda M, 2018, PAN AFR MED J, V29, DOI 10.11604/pamj.2018.29.224.12683 Tagoe N, 2019, BMJ GLOB HEALTH, V4, DOI 10.1136/bmjgh-2018-001318 UN, 2019, WHAT IS S S COOP WHY Van der Veken K, 2017, HEALTH RES POLICY SY, V15, DOI 10.1186/s12961-017-0202-z Zarin DA, 2011, NEW ENGL J MED, V364, P852, DOI 10.1056/NEJMsa1012065 NR 30 TC 2 Z9 2 U1 0 U2 2 PU BMC PI LONDON PA CAMPUS, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1742-6405 J9 AIDS RES THER JI Aids Res. Ther. PD AUG 25 PY 2021 VL 18 IS 1 AR 54 DI 10.1186/s12981-021-00376-6 PG 10 WC Infectious Diseases WE Science Citation Index Expanded (SCI-EXPANDED) SC Infectious Diseases GA UF4IH UT WOS:000688538400001 PM 34433475 OA Green Published, gold DA 2024-09-05 ER PT C AU Tsuji, K Yoshikane, F Sato, S Itsumura, H AF Tsuji, Keita Yoshikane, Fuyuki Sato, Sho Itsumura, Hiroshi GP IEEE TI Book Recommendation Using Machine Learning Methods Based on Library Loan Records and Bibliographic Information SO 2014 IIAI 3RD INTERNATIONAL CONFERENCE ON ADVANCED APPLIED INFORMATICS (IIAI-AAI 2014) LA English DT Proceedings Paper CT 3rd IIAI International Conference on Advanced Applied Informatics (IIAI-AAI) CY AUG 31-SEP 04, 2014 CL Kitakyushu, JAPAN DE Book Recommendation; Recommender System; Library Loan Records; Support Vector Machine (SVM); Random Forest; Adaboost AB We propose a method to recommend books through machine learning modules based on several features, including library loan records. We evaluated the most effective method among ones using (a) a Support Vector Machine (SVM), (b) Random Forest and (c) Adaboost, as well as the most effective combination of relevant features among (1) library loan records, (2) book titles, (3) Nippon Decimal Classification categories, (4) publication year and (5) frequencies at which books were borrowed. We performed an experiment involving 40 subjects who are students at T University. The books that our methods recommended and the loan records that we used were obtained from the T University Library. The results show that books recommended by the SVM based on features (1), (2), (3) and (5) were rated most favorably by the subjects. Our method outperforms preceding ones, such as the method proposed by Tsuji et al. (2013), and is comparable in performance to the recommendation by the website Amazon.co.jp. C1 [Tsuji, Keita] Univ Tsukuba, Fac Lib Informat & Media Sci, Tsuchiura, Ibaraki 3058550, Japan. Doshisha Univ, Fac Social Studies, Kamigyo Ku, Kyoto 6028580, Japan. C3 University of Tsukuba; Doshisha University RP Tsuji, K (corresponding author), Univ Tsukuba, Fac Lib Informat & Media Sci, 1-2 Kasuga, Tsuchiura, Ibaraki 3058550, Japan. EM keita@slis.tsukuba.ac.jp; fuyuki@slis.tsukuba.ac.jp; min2fly@gmail.com; hits@slis.tsukuba.ac.jp CR Breiman L, 2001, MACH LEARN, V45, P5, DOI 10.1023/A:1010933404324 Chen CC, 2007, ELECTRON LIBR, V25, P711, DOI 10.1108/02640470710837137 Friedman J, 2000, ANN STAT, V28, P337, DOI 10.1214/aos/1016218223 Harada T., 2010, DIGITAL LIB, V38, P54 Harada T., 2009, DIGITAL LIB, V36, P22 Tsuji, 2013, P 3 INT C INT INF IC Tsuji K., 2012, 2012 IIAI International Conference on Advanced Applied Informatics (IIAIAAI 2012), P30, DOI 10.1109/IIAI-AAI.2012.16 Whitney C., 2006, D LIB MAGAZINE, V12 Yongcheng Luo, 2009, Proceedings of the 2009 Second International Workshop on Computer Science and Engineering (WCSE 2009), P323, DOI 10.1109/WCSE.2009.822 NR 9 TC 7 Z9 8 U1 1 U2 18 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA BN 978-1-4799-4173-5 PY 2014 BP 76 EP 79 DI 10.1109/IIAI-AAI.2014.26 PG 4 WC Computer Science, Theory & Methods; Engineering, Electrical & Electronic WE Conference Proceedings Citation Index - Science (CPCI-S) SC Computer Science; Engineering GA BD1PY UT WOS:000358256400014 OA Green Submitted DA 2024-09-05 ER PT C AU Guo, PF Wang, PY Zhou, JY Jiang, SS Patel, VM AF Guo, Pengfei Wang, Puyang Zhou, Jinyuan Jiang, Shanshan Patel, Vishal M. GP IEEE COMP SOC TI Multi-institutional Collaborations for Improving Deep Learning-based Magnetic Resonance Image Reconstruction Using Federated Learning SO 2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021 SE IEEE Conference on Computer Vision and Pattern Recognition LA English DT Proceedings Paper CT IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) CY JUN 19-25, 2021 CL ELECTR NETWORK AB Fast and accurate reconstruction of magnetic resonance (MR) images from under-sampled data is important in many clinical applications. In recent years, deep learning-based methods have been shown to produce superior performance on MR image reconstruction. However, these methods require large amounts of data which is difficult to collect and share due to the high cost of acquisition and medical data privacy regulations. In order to overcome this challenge, we propose a federated learning (FL) based solution in which we take advantage of the MR data available at different institutions while preserving patients' privacy. However, the generalizability of models trained with the FL setting can still be suboptimal due to domain shift, which results from the data collected at multiple institutions with different sensors, disease types, and acquisition protocols, etc. With the motivation of circumventing this challenge, we propose a cross-site modeling for MR image reconstruction in which the learned intermediate latent features among different source sites are aligned with the distribution of the latent features at the target site. Extensive experiments are conducted to provide various insights about FL for MR image reconstruction. Experimental results demonstrate that the proposed framework is a promising direction to utilize multi-institutional data without compromising patients' privacy for achieving improved MR image reconstruction. C1 [Guo, Pengfei; Wang, Puyang; Zhou, Jinyuan; Jiang, Shanshan; Patel, Vishal M.] Johns Hopkins Univ, Baltimore, MD 21218 USA. C3 Johns Hopkins University RP Guo, PF (corresponding author), Johns Hopkins Univ, Baltimore, MD 21218 USA. EM pguo4@jhu.edu; pwang47@jhu.edu; jzhou2@jhmi.edu; sjiang21@jhmi.edu; vpatel36@jhu.edu RI guo, peng/AAG-4052-2019; Jiang, Shanshan/O-8265-2019; Wang, Puyang/ITU-4535-2023; Guo, Peng/GWC-0572-2022; Guo, Peng/IZQ-0331-2023 OI Jiang, Shanshan/0000-0003-2853-9991; FU National Science Foundation [1910141]; National Institutes of Health [R01CA248077]; Direct For Computer & Info Scie & Enginr; Div Of Information & Intelligent Systems [1910141] Funding Source: National Science Foundation FX Vishal M. Patel was supported by the National Science Foundation grant 1910141. This work was supported in part by grants from the National Institutes of Health (R01CA248077). CR Akçakaya M, 2019, MAGN RESON MED, V81, P439, DOI 10.1002/mrm.27420 Bonawitz K, 2017, CCS'17: PROCEEDINGS OF THE 2017 ACM SIGSAC CONFERENCE ON COMPUTER AND COMMUNICATIONS SECURITY, P1175, DOI 10.1145/3133956.3133982 Candès EJ, 2006, IEEE T INFORM THEORY, V52, P489, DOI 10.1109/TIT.2005.862083 Guo Pengfei, 2020, Med Image Comput Comput Assist Interv, V12262, P104, DOI 10.1007/978-3-030-59713-9_11 Guo Pengfei, 2020, IEEE T MED IMAGING Guo Pengfei, 2020, ARXIV200802859 Han Y, 2020, IEEE T MED IMAGING, V39, P377, DOI 10.1109/TMI.2019.2927101 Hoffman J, 2018, PR MACH LEARN RES, V80 Jiang SS, 2019, CLIN CANCER RES, V25, P552, DOI 10.1158/1078-0432.CCR-18-1233 Kelekis NL, 1998, AM J ROENTGENOL, V170, P1005, DOI 10.2214/ajr.170.4.9530051 Knoll F, 2020, RADIOL-ARTIF INTELL, V2, DOI 10.1148/ryai.2020190007 Knoll F, 2020, IEEE SIGNAL PROC MAG, V37, P128, DOI 10.1109/MSP.2019.2950640 Lee DW, 2018, IEEE T BIO-MED ENG, V65, P1985, DOI 10.1109/TBME.2018.2821699 Li T, 2020, IEEE SIGNAL PROC MAG, V37, P50, DOI 10.1109/MSP.2020.2975749 Li WQ, 2019, LECT NOTES COMPUT SC, V11861, P133, DOI 10.1007/978-3-030-32692-0_16 Li XX, 2020, MED IMAGE ANAL, V65, DOI 10.1016/j.media.2020.101765 Liang Dong, 2019, ARXIV190711711 Long MS, 2015, PR MACH LEARN RES, V37, P97 Lundervold AS, 2019, Z MED PHYS, V29, P102, DOI 10.1016/j.zemedi.2018.11.002 Lustig M, 2007, MAGN RESON MED, V58, P1182, DOI 10.1002/mrm.21391 Ma SQ, 2008, PROC CVPR IEEE, P389 Mardani M., 2017, ARXIV PREPRINT McMahan HB, 2017, PR MACH LEARN RES, V54, P1273 Menze BH, 2015, IEEE T MED IMAGING, V34, P1993, DOI 10.1109/TMI.2014.2377694 Mohassel P, 2018, PROCEEDINGS OF THE 2018 ACM SIGSAC CONFERENCE ON COMPUTER AND COMMUNICATIONS SECURITY (CCS'18), P35, DOI 10.1145/3243734.3243760 Peng X., 2019, INT C LEARN REPR Qin C, 2019, IEEE T MED IMAGING, V38, P280, DOI 10.1109/TMI.2018.2863670 Ravishankar S, 2020, P IEEE, V108, P86, DOI 10.1109/JPROC.2019.2936204 Ronneberger O, 2015, LECT NOTES COMPUT SC, V9351, P234, DOI 10.1007/978-3-319-24574-4_28 Roski J, 2014, HEALTH AFFAIR, V33, P1115, DOI 10.1377/hlthaff.2014.0147 Sahu A. K., 2018, arXiv preprint arXiv:1812.06127 Sandfort V, 2019, SCI REP-UK, V9, DOI 10.1038/s41598-019-52737-x Sheller Micah J, 2018, LECT NOTES COMPUT SC, P92, DOI [DOI 10.1007/978-3-030-11723-8_9, 10.1007/978-3-030-11723-8_9] Suresh, 2019, ARXIV190200146 Tzeng E, 2015, IEEE I CONF COMP VIS, P4068, DOI 10.1109/ICCV.2015.463 van der Maaten L, 2008, J MACH LEARN RES, V9, P2579 Wang Puyang, 2020, Med Image Comput Comput Assist Interv, V12262, P3, DOI 10.1007/978-3-030-59713-9_1 Wang Puyang, 2019, ARXIV191200543 Wang SS, 2022, NMR BIOMED, V35, DOI 10.1002/nbm.4131 Yan Wenjun, 2020, RADIOL ARTIF INTELL, V2 Yang Q, 2019, ACM T INTEL SYST TEC, V10, DOI 10.1145/3298981 NR 41 TC 92 Z9 99 U1 3 U2 10 PU IEEE COMPUTER SOC PI LOS ALAMITOS PA 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1264 USA SN 1063-6919 BN 978-1-6654-4509-2 J9 PROC CVPR IEEE PY 2021 BP 2423 EP 2432 DI 10.1109/CVPR46437.2021.00245 PG 10 WC Computer Science, Artificial Intelligence; Imaging Science & Photographic Technology WE Conference Proceedings Citation Index - Science (CPCI-S) SC Computer Science; Imaging Science & Photographic Technology GA BS5QS UT WOS:000739917302060 PM 35444379 OA Green Accepted, Green Submitted DA 2024-09-05 ER PT C AU Chakraborty, J Maity, B Pradhan, DK Nandi, S AF Chakraborty, Joyita Maity, Biswajit Pradhan, Dinesh K. Nandi, Subrata GP ACM TI CiteDEK: A hybrid EMD-kNN-DTW model for classification of paper citation trajectories SO PROCEEDINGS OF 7TH JOINT INTERNATIONAL CONFERENCE ON DATA SCIENCE AND MANAGEMENT OF DATA, CODS-COMAD 2024 LA English DT Proceedings Paper CT 7th ACM India Joint International Conference on Data Science and Management of Data (CODS-COMAD) / 11th ACM IKDD CODS Conference / 29th COMAD Conference CY JAN 04-07, 2024 CL IIIT Bangalore, Bangalore, INDIA HO IIIT Bangalore DE Time-series classification; Citation trajectory classification; Supervised machine learning; EMD; kNN; DTW; Bibliographic databases AB Classifying citation trajectories of scientific publications is crucial. However, they diffuse anomalously due to non-linear, non-stationary, and long-ranged correlations. Previous studies define hard thresholds, arbitrary parameters, and subjective rules to classify based on their rise and fall patterns. It leads to substantial variance and, thus, ambiguous classification. This paper proposes CiteDEK, a hybrid EMD-kNN-DTW classification model framework. It predicts the nature of 5,039 trajectories, each 30 years in length, using only raw time series. We get a classification accuracy of similar to 76%, and Cohen's kappa-statistic is 0.63, which is significant. C1 [Chakraborty, Joyita; Nandi, Subrata] Natl Inst Technol, Durgapur, India. [Maity, Biswajit] Inst Engn & Management, Kolkata, India. [Pradhan, Dinesh K.] Dr BC Roy Engn Coll, Durgapur, India. C3 National Institute of Technology (NIT System); National Institute of Technology Durgapur; Institute of Engineering & Management (IEM), Kolkata; Dr. B. C. Roy Engineering College RP Chakraborty, J (corresponding author), Natl Inst Technol, Durgapur, India. EM joyita.ckra@gmail.com; biswajit.maity1@gmail.com; dineshkrp@gmail.com; subrata.nandi@gmail.com RI Pradhan, Dinesh K./AAE-4386-2019 OI Pradhan, Dinesh K./0000-0001-9132-9255; MAITY, BISWAJIT/0000-0002-3891-7469; Nandi, Subrata/0000-0002-8743-4770 CR Chakraborty J, 2023, Arxiv, DOI arXiv:2309.04949 Chakraborty T, 2015, COMMUN ACM, V58, P82, DOI 10.1145/2701412 Colavizza G, 2016, J INFORMETR, V10, P1037, DOI 10.1016/j.joi.2016.07.009 Gou ZY, 2022, SCIENTOMETRICS, V127, P5027, DOI 10.1007/s11192-022-04437-z Pradhan DK, 2019, PROCEEDINGS OF THE 6TH ACM IKDD CODS AND 24TH COMAD, P330, DOI 10.1145/3297001.3297053 Quinn AndrewJ, 2021, Journal of open source software, V6, P59 Ye FY, 2018, J ASSOC INF SCI TECH, V69, P359, DOI 10.1002/asi.23846 Zamani M, 2021, J PHYS-COMPLEXITY, V2, DOI 10.1088/2632-072X/ac24f1 NR 8 TC 0 Z9 0 U1 1 U2 1 PU ASSOC COMPUTING MACHINERY PI NEW YORK PA 1601 Broadway, 10th Floor, NEW YORK, NY, UNITED STATES BN 979-8-4007-1634-8 PY 2024 BP 576 EP 577 DI 10.1145/3632410.3632481 PG 2 WC Computer Science, Artificial Intelligence; Computer Science, Information Systems; Computer Science, Theory & Methods WE Conference Proceedings Citation Index - Science (CPCI-S) SC Computer Science GA BW5HU UT WOS:001160848200085 DA 2024-09-05 ER PT J AU Parteka, A Kordalska, A AF Parteka, Aleksandra Kordalska, Aleksandra TI Artificial intelligence and productivity: global evidence from AI patent and bibliometric data SO TECHNOVATION LA English DT Article DE Technological innovation; Productivity paradox; Productivity growth; Artificial intelligence; Patents ID UNITED-STATES; GROWTH; TECHNOLOGY; ROBOTS; SLOWDOWN; PARADOX; ICT; INFORMATION; INDICATORS; EUROPE AB In this paper we analyse the relationship between technological innovation in the artificial intelligence (AI) domain and macroeconomic productivity. We embed recently released data on patents and publications related to AI in an augmented model of productivity growth, which we estimate for the OECD countries and compare to an extended sample including non-OECD countries. Our estimates provide evidence in favour of the modern productivity paradox. We show that the development of AI technologies remains a niche innovation phenomenon with a negligible role in the officially recorded productivity growth process. This general result, i.e. a lack of a strong relationship between AI and registered macroeconomic productivity growth, is robust to changes in the country sample, in the way we quantify labour productivity and technology (including AI stock), in the specification of the empirical model (control variables) and in estimation methods. C1 [Parteka, Aleksandra; Kordalska, Aleksandra] Gdansk Univ Technol, Fac Management & Econ, Narutowicza 11-12, PL-80233 Gdansk, Poland. C3 Fahrenheit Universities; Gdansk University of Technology RP Parteka, A (corresponding author), Gdansk Univ Technol, Fac Management & Econ, Narutowicza 11-12, PL-80233 Gdansk, Poland. EM aparteka@zie.pg.edu.pl; Aleksandra.Kordalska@zie.pg.edu.pl RI Kordalska, Aleksandra/R-8011-2016; Parteka, Aleksandra/AAN-5881-2020 OI Kordalska, Aleksandra/0000-0002-8842-4777; Parteka, Aleksandra/0000-0003-1149-6614 FU National Science Centre, Poland [2020/37/B/HS4/01302] FX Acknowledgment The research has been conducted within the project financed by the National Science Centre, Poland (2020/37/B/HS4/01302) . All remain-ing errors are the authors' responsibility. CR Acemoglu D, 2005, HANDB ECON, V22, P385 Acemoglu D, 2020, AEA PAP P, V110, P383, DOI 10.1257/pandp.20201003 Acemoglu D, 2018, AM ECON REV, V108, P1488, DOI 10.1257/aer.20160696 Acemoglu D, 2014, AM ECON REV, V104, P394, DOI 10.1257/aer.104.5.394 AGHION P, 1992, ECONOMETRICA, V60, P323, DOI 10.2307/2951599 Aghion P., 2019, ARTIF INTELL, P237 Agrawal A., 2019, EC ARTIFICIAL INTELL, DOI DOI 10.7208/CHICAGO/9780226613475.003.0005 [Anonymous], OECD Compendium of Productivity Indicators, DOI DOI 10.1787/F25CDB25-EN [Anonymous], 1960, Energy in the American Economy, 1850-1975 Archibugi D., 1992, TECHNOLOGICAL SPECIA, V13188 Barro RJ, 2013, J DEV ECON, V104, P184, DOI 10.1016/j.jdeveco.2012.10.001 Baruffaldi S., 2020, Identifying and measuring developments in artificial intelligence: Making the impossible possible Bassetti T., 2020, 30428 EUR EN, DOI [10.2760/333292,JRC122268, DOI 10.2760/333292,JRC122268] Belderbos RA, 2022, REG STUD, V56, P210, DOI 10.1080/00343404.2021.1947486 Benassi M, 2022, IND CORP CHANGE, V31, P112, DOI 10.1093/icc/dtab041 Bloom N, 2020, AM ECON REV, V110, P1104, DOI 10.1257/aer.20180338 Botev J, 2019, OECD EC DEP WORKING, V1575, DOI [10.1787/d12d7305-en, DOI 10.1787/D12D7305-EN] BRESNAHAN TF, 1995, J ECONOMETRICS, V65, P83, DOI 10.1016/0304-4076(94)01598-T BRYNJOLFSSON E, 1993, COMMUN ACM, V36, P67, DOI 10.1145/163298.163309 Brynjolfsson E., 2014, The Second Machine Age, DOI DOI 10.1080/15228053.2014.943094 Brynjolfsson E., 2019, The Economics of Artificial Intelligence: An Agenda, P23 Brynjolfsson E, 2021, AM ECON J-MACROECON, V13, P333, DOI 10.1257/mac.20180386 Buccirossi P, 2013, REV ECON STAT, V95, P1324, DOI 10.1162/REST_a_00304 Bughin J., 2018, McKinsey Glob. Inst., V4 Byrne DM, 2016, BROOKINGS PAP ECO AC, P109 Castellani D, 2022, J IND BUS ECON, V49, P51, DOI 10.1007/s40812-021-00204-y Ceccobelli M, 2012, TELECOMMUN POLICY, V36, P282, DOI 10.1016/j.telpol.2011.12.012 Corrado C, 2021, OXFORD REV ECON POL, V37, P435, DOI 10.1093/oxrep/grab018 Corrado C, 2009, REV INCOME WEALTH, V55, P661, DOI 10.1111/j.1475-4991.2009.00343.x Crafts N, 2004, J ECON HIST, V64, P521 Crafts N, 2020, NATL INST ECON REV, V251, pR47, DOI 10.1017/nie.2020.6 Crafts N, 2018, OXFORD REV ECON POL, V34, P443, DOI 10.1093/oxrep/gry001 Cugno M, 2022, TECHNOVATION, V114, DOI 10.1016/j.technovation.2021.102443 Dalla Benetta A., 2021, WATCH 2020 EU INVEST, DOI [10.2760/017514,2021, DOI 10.2760/017514,2021] Damioli G, 2021, EURASIAN BUS REV, V11, P1, DOI 10.1007/s40821-020-00172-8 Dernis H., 2019, JRC117068 Elstner Steffen, 2018, CESifo Working Paper 7231 EPO European Patent Office, 2020, PAT 4 IND REV GLOB T Feenstra RC, 2015, AM ECON REV, V105, P3150, DOI 10.1257/aer.20130954 Foster-McGregor N., 2019, MERIT WORKING PAPERS, V053 Frietsch R, 2014, TECHNOVATION, V34, P546, DOI 10.1016/j.technovation.2014.05.007 Fujii H, 2018, ECON ANAL POLICY, V58, P60, DOI 10.1016/j.eap.2017.12.006 Gal P, 2019, INT PRODUCT MONIT, V37, P39 Gordon R. J, 2018, Why has economic growth slowed when innovation appears to be accelerating?' (No. w24554 Graetz G, 2018, REV ECON STAT, V100, P753, DOI 10.1162/rest_a_00754 GRILICHES Z, 1990, J ECON LIT, V28, P1661, DOI 10.3386/w3301 Growiec J., ACCELERATING EC GROW Growiec J., 2020, SGH KAE WORKING PAPE, V2019/042 Growiec J, 2022, MACROECON DYN, V26, P1731, DOI 10.1017/S1365100521000031 Haskel J., 2017, CAPITALISM CAPITAL R Hilbert M, 2011, SCIENCE, V332, P60, DOI 10.1126/science.1200970 Igna I, 2023, RES POLICY, V52, DOI 10.1016/j.respol.2022.104661 Inklaar R, 2005, REV INCOME WEALTH, P505 IPO, 2019, ARTIF INTELL Jaffe A.B., 2005, PATENTS CITATIONS IN Jones CI, 2005, HANDB ECON, V22, P1063 JONES CI, 1995, J POLIT ECON, V103, P759, DOI 10.1086/262002 Jorgenson DW, 2008, J ECON PERSPECT, V22, P3, DOI 10.1257/jep.22.1.3 Koch M, 2021, ECON J, V131, P2553, DOI 10.1093/ej/ueab009 Kromann L, 2020, IND CORP CHANGE, V29, P265, DOI 10.1093/icc/dtz039 Lewbel A, 2012, J BUS ECON STAT, V30, P67, DOI 10.1080/07350015.2012.643126 Miller SM, 2000, J DEV ECON, V63, P399, DOI 10.1016/S0304-3878(00)00112-7 Miyagawa T, 2021, J JPN INT ECON, V61, DOI 10.1016/j.jjie.2021.101137 Nordhaus WD, 2021, AM ECON J-MACROECON, V13, P299, DOI 10.1257/mac.20170105 OECD, 2021, SCI TECHN PAT OECD, 2022, OECD EC OUTL 2022 OECD, 2021, Main science and technology indicators OECD.AI, 2022, VIS POW JSI US DAT M Oliner SD, 2007, BROOKINGS PAP ECO AC, P81 Pieri F, 2018, RES POLICY, V47, P1842, DOI 10.1016/j.respol.2018.06.013 Pilat D., 2003, OECD Economic Studies, V2002, P47, DOI [10.1787/eco_studies-v2002-art9-en, DOI 10.1787/ECO_STUDIES-V2002-ART9-EN] Polák P, 2017, INF ECON POLICY, V38, P38, DOI 10.1016/j.infoecopol.2016.11.003 Purdy M., 2016, Why artificial intelligence is the future of growth Righi R., 2022, AI WATCH INDEX 2021, DOI [10.2760/435020JRC128744, DOI 10.2760/435020JRC128744] ROMER PM, 1990, J POLIT ECON, V98, pS71, DOI 10.1086/261725 SalaiMartin XX, 1996, ECON J, V106, P1019, DOI 10.2307/2235375 SCHANKERMAN M, 1986, ECON J, V96, P1052, DOI 10.2307/2233173 Schwab K., 2017, 4 IND REVOLUTION SOLOW RM, 1987, NEW YORK TIMES BK R, P36 SOLOW RM, 1956, Q J ECON, V70, P65, DOI 10.2307/1884513 Syverson C, 2017, J ECON PERSPECT, V31, P165, DOI 10.1257/jep.31.2.165 Ballestar MT, 2020, J BUS RES, V108, P119, DOI 10.1016/j.jbusres.2019.11.017 The Conference Board, 2022, TOT EC DAT SUMM TABL Timmer MP, 2005, OXFORD ECON PAP, V57, P693, DOI 10.1093/oep/gpi032 Tseng CY, 2013, INNOV-ORGAN MANAG, V15, P463, DOI 10.5172/impp.2013.15.4.463 UNIDO, 2019, UNIDOS IND DEV REP 2 Uspto, 2020, INV AI TRAC DIFF ART Van Ark B., 2019, EUROPEAN EC DISCUSSI, V2015 van Ark B, 2008, J ECON PERSPECT, V22, P25, DOI 10.1257/jep.22.1.25 van Ark B, 2016, INT PRODUCT MONIT, V31, P3 Van Roy V., 2020, Handbook of Labor, Human Resources and Population Economics, DOI DOI 10.1007/978-3-319-57365-6_12-1 Venturini F, 2022, J ECON BEHAV ORGAN, V194, P220, DOI 10.1016/j.jebo.2021.12.018 Watanabe C, 2018, TECHNOL FORECAST SOC, V137, P226, DOI 10.1016/j.techfore.2018.07.053 WIPO, 2019, WIPO Technology Trends 2019: Artificial Intelligence World Bank, 2021, The Worldwide Governance Indicators (WGI) World Bank, 2020, WORLD DEV IND World Bank, 2021, LAC SEMIANNUAL REPOR Zeira J, 1998, Q J ECON, V113, P1091, DOI 10.1162/003355398555847 Zhang D., 2022, AI INDEX 2022 ANN RE Zhang Y, 2021, PROCEEDINGS OF 2021 48TH ANNUAL REVIEW OF PROGRESS IN QUANTITATIVE NONDESTRUCTIVE EVALUATION (QNDE2021) NR 100 TC 11 Z9 11 U1 93 U2 194 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS SN 0166-4972 EI 1879-2383 J9 TECHNOVATION JI Technovation PD JUL PY 2023 VL 125 AR 102764 DI 10.1016/j.technovation.2023.102764 EA MAY 2023 PG 15 WC Engineering, Industrial; Management; Operations Research & Management Science WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Engineering; Business & Economics; Operations Research & Management Science GA H8AN2 UT WOS:000998126000001 OA Green Submitted, hybrid DA 2024-09-05 ER PT J AU Singh, A Kanaujia, A Singh, VK Vinuesa, R AF Singh, Aakash Kanaujia, Anurag Singh, Vivek Kumar Vinuesa, Ricardo TI Artificial intelligence for Sustainable Development Goals: Bibliometric patterns and concept evolution trajectories SO SUSTAINABLE DEVELOPMENT LA English DT Article DE artificial intelligence (AI); bibliometrics; path analysis; Sustainable Development Goals (SDGs) ID CITATION NETWORK ANALYSIS; INTEGRATED APPROACH; PARADIGM SHIFTS; PATH-ANALYSIS; TECHNOLOGY; PREDICTION; MANAGEMENT; RADIOMICS AB The development of artificial intelligence (AI) as a field has impacted almost all aspects of human life. More recently it has found a role in addressing developmental challenges, specifically the Sustainable Development Goals (SDGs). However, there are not enough systematic studies on analysis of the role of AI research towards the SDGs. Therefore, this article attempts to bridge this gap by identifying the major bibliometric trends and concept-evolution trajectories in the area of AI applications for sustainable-development goals. The research publication data for the last 20 years in the areas of artificial intelligence, machine learning, deep learning, and so forth, is obtained and computationally analysed using a framework comprising bibliometrics, path analysis and content analysis. The findings show an incremental trend in overall publications on the application of AI for SDGs across the different regions of the world. SDGs 3 (good health & well-being) and 7 (affordable and clean energy) are found as the areas with the most applications of AI. In SDG3, the literature reflects application of AI techniques such as deep learning for precision and personalised medicine while in SDG7, a number of studies have employed AI techniques for the integration of systems for efficient generation of solar power and improving the energy efficiency of a building. Furthermore, SDG 4 (quality education), SDG 13 (climate action), SDG 11 (sustainable cities and communities) and SDG 16 (peace, justice and strong institutions) are the other SDGs where AI approaches and techniques are applied. The analytical results present a detailed insight of application of AI for achieving the SDGs. C1 [Singh, Aakash; Kanaujia, Anurag; Singh, Vivek Kumar] Banaras Hindu Univ, Dept Comp Sci, Varanasi 221005, India. [Vinuesa, Ricardo] KTH Royal Inst Technol, FLOW, Engn Mech, SE-10044 Stockholm, Sweden. C3 Banaras Hindu University (BHU); Royal Institute of Technology RP Singh, VK (corresponding author), Banaras Hindu Univ, Dept Comp Sci, Varanasi 221005, India.; Vinuesa, R (corresponding author), KTH Royal Inst Technol, FLOW, Engn Mech, SE-10044 Stockholm, Sweden. EM vivek@bhu.ac.in; rvinuesa@mech.ktc.se RI Vinuesa, Ricardo/ABG-6234-2020; Singh, Vivek Kumar/O-5699-2019; Kanaujia, Anurag/GOK-0097-2022 OI Vinuesa, Ricardo/0000-0001-6570-5499; Singh, Vivek Kumar/0000-0002-7348-6545; Singh, Aakash/0000-0002-6213-718X FU Science and Engineering Research Board (SERB), India [MTR/2020/000625]; [M-22-69] FX ACKNOWLEDGEMENTSThe authors would like to acknowledge the support in form of the extramural research grant no. MTR/2020/000625 from Science and Engineering Research Board (SERB), India, and by HPE Aruba Centre for Research in Information Systems at BHU (No. M-22-69 of BHU). CR Allen C, 2020, SUSTAIN SCI, V15, P521, DOI 10.1007/s11625-019-00711-x Anderson EF, 2010, VIRTUAL REAL-LONDON, V14, P255, DOI 10.1007/s10055-010-0177-3 [Anonymous], 1964, The Use of Citation Data in Writing the History of Science Arrieta AB, 2020, INFORM FUSION, V58, P82, DOI 10.1016/j.inffus.2019.12.012 Batagelj Vladimir., 2003, Efficient algorithms for citation network analysis Baum K, 2023, FRONT COMP SCI-SWITZ, V5, DOI 10.3389/fcomp.2023.1210421 Biswas G, 2005, APPL ARTIF INTELL, V19, P363, DOI 10.1080/08839510590910200 Borgatti SP, 2005, SOC NETWORKS, V27, P55, DOI 10.1016/j.socnet.2004.11.008 Brughmans T, 2013, LIT LINGUIST COMPUT, V28, P538, DOI 10.1093/llc/fqt048 Chaouachi A, 2013, IEEE T IND ELECTRON, V60, P1688, DOI 10.1109/TIE.2012.2188873 Chiang M, 2016, IEEE INTERNET THINGS, V3, P854, DOI 10.1109/JIOT.2016.2584538 Chui M., 2018, MCKINSEY GLOBAL I Deng L, 2013, IEEE T AUDIO SPEECH, V21, P1060, DOI 10.1109/TASL.2013.2244083 Donthu N, 2021, J BUS RES, V133, P285, DOI 10.1016/j.jbusres.2021.04.070 Dressel J, 2018, SCI ADV, V4, DOI 10.1126/sciadv.aao5580 Farrukh M, 2020, BUS STRATEG ENVIRON, V29, P2572, DOI 10.1002/bse.2521 Foley AM, 2012, RENEW ENERG, V37, P1, DOI 10.1016/j.renene.2011.05.033 Fotovatikhah F, 2018, ENG APPL COMP FLUID, V12, P411, DOI 10.1080/19942060.2018.1448896 Goh HH, 2021, DISCOV SUSTAIN, V2, DOI 10.1007/s43621-021-00064-5 Goralski MA, 2020, INT J MANAG EDUC-OXF, V18, DOI 10.1016/j.ijme.2019.100330 Graesser AC, 2004, BEHAV RES METH INS C, V36, P180, DOI 10.3758/BF03195563 Gupta S., 2021, Transportation Engineering, V4, P100064, DOI DOI 10.1016/J.TRENG.2021.100064 Haenlein M, 2019, CALIF MANAGE REV, V61, P5, DOI 10.1177/0008125619864925 HUMMON NP, 1989, SOC NETWORKS, V11, P39, DOI 10.1016/0378-8733(89)90017-8 Jain RK, 2014, APPL ENERG, V123, P168, DOI 10.1016/j.apenergy.2014.02.057 Jo SJ, 2009, HUM RESOUR DEV Q, V20, P503, DOI 10.1002/hrdq.20023 Jung M, 2010, NATURE, V467, P951, DOI 10.1038/nature09396 Kessler RC, 2015, JAMA PSYCHIAT, V72, P49, DOI 10.1001/jamapsychiatry.2014.1754 Kong WC, 2019, IEEE T SMART GRID, V10, P841, DOI 10.1109/TSG.2017.2753802 Kumar S, 2021, BUS STRATEG ENVIRON, V30, P3454, DOI 10.1002/bse.2813 Lambin P, 2017, NAT REV CLIN ONCOL, V14, P749, DOI 10.1038/nrclinonc.2017.141 Lathabai HH, 2018, SCIENTOMETRICS, V117, P1871, DOI 10.1007/s11192-018-2917-1 Lathabai HH, 2017, SCIENTOMETRICS, V110, P711, DOI 10.1007/s11192-016-2202-0 Lathabai HH, 2015, PHYSICA A, V429, P157, DOI 10.1016/j.physa.2015.01.085 Li L., 2020, Radiology, V296, pE65, DOI [DOI 10.1148/RADIOL.2020200905, 10.1148/radiol.2020200905] Li X, 2017, ENVIRON POLLUT, V231, P997, DOI 10.1016/j.envpol.2017.08.114 Liengpunsakul S, 2021, CHIN ECON, V54, P235, DOI 10.1080/10971475.2020.1857062 Liu JS, 2012, J AM SOC INF SCI TEC, V63, P528, DOI 10.1002/asi.21692 Liu Y, 2023, COMMUN EARTH ENVIRON, V4, DOI 10.1038/s43247-023-00730-8 Mina A, 2007, RES POLICY, V36, P789, DOI 10.1016/j.respol.2006.12.007 Moavenzadeh J., 2015, DHL GLOB ENG MAN SUM, P57 Muthukrishnan N, 2020, NEUROIMAG CLIN N AM, V30, P393, DOI 10.1016/j.nic.2020.07.004 National Stratregy for Artificial Intelligence, 2018, NITI AAYOG Prabhakaran T, 2018, SCIENTOMETRICS, V117, P1611, DOI 10.1007/s11192-018-2931-3 Prabhakaran T, 2015, TECHNOL FORECAST SOC, V91, P124, DOI 10.1016/j.techfore.2014.02.003 PRICE DJD, 1965, SCIENCE, V149, P510 Rajkomar A, 2018, NPJ DIGIT MED, V1, DOI 10.1038/s41746-018-0029-1 Rudin C, 2019, NAT MACH INTELL, V1, P206, DOI 10.1038/s42256-019-0048-x Sætra HS, 2021, SUSTAINABILITY-BASEL, V13, DOI 10.3390/su13041738 Sanderman J, 2017, P NATL ACAD SCI USA, V114, P9575, DOI 10.1073/pnas.1706103114 Scardoni G., 2012, New Frontiers in Graph Theory, 2008, P323, DOI DOI 10.5772/35846 Singh A, 2022, J SCI IND RES INDIA, V81, P1147, DOI 10.56042/jsir.v81i11.64456 Singh VK, 2021, SCIENTOMETRICS, V126, P5113, DOI 10.1007/s11192-021-03948-5 Stefanov DH, 2004, IEEE T NEUR SYS REH, V12, P228, DOI 10.1109/TNSRE.2004.828423 Tampubolon G., 2007, Graduate Journal of Social Science, V4, P54 van Griethuysen JJM, 2017, CANCER RES, V77, pE104, DOI 10.1158/0008-5472.CAN-17-0339 Vinuesa R, 2021, NAT MACH INTELL, V3, P926, DOI 10.1038/s42256-021-00414-y Vinuesa R, 2020, RESULTS ENG, V8, DOI 10.1016/j.rineng.2020.100163 Vinuesa R, 2020, NAT COMMUN, V11, DOI 10.1038/s41467-019-14108-y Voyant C, 2017, RENEW ENERG, V105, P569, DOI 10.1016/j.renene.2016.12.095 Wamba SF, 2021, TECHNOL FORECAST SOC, V164, DOI 10.1016/j.techfore.2020.120482 Yeh SC, 2021, SUSTAINABILITY-BASEL, V13, DOI 10.3390/su13169165 Zhao HX, 2012, RENEW SUST ENERG REV, V16, P3586, DOI 10.1016/j.rser.2012.02.049 NR 63 TC 21 Z9 21 U1 25 U2 59 PU WILEY PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0968-0802 EI 1099-1719 J9 SUSTAIN DEV JI Sustain. Dev. PD FEB PY 2024 VL 32 IS 1 BP 724 EP 754 DI 10.1002/sd.2706 EA JUL 2023 PG 31 WC Development Studies; Green & Sustainable Science & Technology; Regional & Urban Planning WE Social Science Citation Index (SSCI) SC Development Studies; Science & Technology - Other Topics; Public Administration GA HI0K6 UT WOS:001038163500001 OA hybrid DA 2024-09-05 ER PT J AU Mukhamediev, RI Yakunin, K Mussabayev, R Buldybayev, T Yan, KC Murzakhmetov, S Yelis, M AF Mukhamediev, Ravil, I Yakunin, Kirill Mussabayev, Rustam Buldybayev, Timur Yan Kuchin Murzakhmetov, Sanzhar Yelis, Marina TI Classification of Negative Information on Socially Significant Topics in Mass Media SO SYMMETRY-BASEL LA English DT Article DE Bayesian rules; journalism; mass media; multimodal mass media assessment; natural language processing; social influence; social significance; topic modeling ID RENEWABLE ENERGY; DECISION-MAKING; SYSTEM AB Mass media not only reflect the activities of state bodies but also shape the informational context, sentiment, depth, and significance level attributed to certain state initiatives and social events. Multilateral and quantitative (to the practicable extent) assessment of media activity is important for understanding their objectivity, role, focus, and, ultimately, the quality of the society's "fourth power". The paper proposes a method for evaluating the media in several modalities (topics, evaluation criteria/properties, classes), combining topic modeling of the text corpora and multiple-criteria decision making. The evaluation is based on an analysis of the corpora as follows: the conditional probability distribution of media by topics, properties, and classes is calculated after the formation of the topic model of the corpora. Several approaches are used to obtain weights that describe how each topic relates to each evaluation criterion/property and to each class described in the paper, including manual high-level labeling, a multi-corpora approach, and an automatic approach. The proposed multi-corpora approach suggests assessment of corpora topical asymmetry to obtain the weights describing each topic's relationship to a certain criterion/property. These weights, combined with the topic model, can be applied to evaluate each document in the corpora according to each of the considered criteria and classes. The proposed method was applied to a corpus of 804,829 news publications from 40 Kazakhstani sources published from 01 January 2018 to 31 December 2019, to classify negative information on socially significant topics. A BigARTM model was derived (200 topics) and the proposed model was applied, including to fill a table of the analytical hierarchical process (AHP) and all of the necessary high-level labeling procedures. Experiments confirm the general possibility of evaluating the media using the topic model of the text corpora, because an area under receiver operating characteristics curve (ROC AUC) score of 0.81 was achieved in the classification task, which is comparable with results obtained for the same task by applying the BERT (Bidirectional Encoder Representations from Transformers) model. C1 [Mukhamediev, Ravil, I; Yakunin, Kirill; Yelis, Marina] Satbayev Univ KazNRTU, Inst Cybernet & Informat Technol, Satpayev Str 22A, Alma Ata 050013, Kazakhstan. [Mukhamediev, Ravil, I] ISMA Univ, Dept Nat Sci & Comp Technol, Lomonosov Str 1, LV-1011 Riga, Latvia. [Mukhamediev, Ravil, I; Yakunin, Kirill; Mussabayev, Rustam; Yan Kuchin; Murzakhmetov, Sanzhar] Inst Informat & Computat Technol, Pushkin Str 125, Alma Ata 050010, Kazakhstan. [Buldybayev, Timur] Informat Analyt Ctr, Dostyk Str 18, Nur Sultan 010000, Kazakhstan. C3 Institute of Information & Computational Technologies RP Mukhamediev, RI; Yakunin, K; Yelis, M (corresponding author), Satbayev Univ KazNRTU, Inst Cybernet & Informat Technol, Satpayev Str 22A, Alma Ata 050013, Kazakhstan.; Mukhamediev, RI (corresponding author), ISMA Univ, Dept Nat Sci & Comp Technol, Lomonosov Str 1, LV-1011 Riga, Latvia.; Mukhamediev, RI; Yakunin, K; Mussabayev, R (corresponding author), Inst Informat & Computat Technol, Pushkin Str 125, Alma Ata 050010, Kazakhstan. EM ravil.muhamedyev@gmail.com; Yakunin.k@mail.ru; rustam@iict.kz; Timur.Buldybayev@iac.kz; ykuchin@mail.ru; sanzharmrz@gmail.com; k.marina92@gmail.com RI Kuchin, Yan/IUO-8562-2023; Mussabayev, Rustam/AAQ-9781-2020; Yelis, Marina/AAD-8506-2021; Murzakhmetov, Sanzhar/AAD-8637-2021; Mukhamediev, Ravil I./X-1461-2019 OI Kuchin, Yan/0000-0002-5271-9071; Mussabayev, Rustam/0000-0001-7283-5144; Mukhamediev, Ravil I./0000-0002-3727-043X; Yelis, Marina/0000-0003-4203-800X; Yakunin, Kirill/0000-0002-7378-9212 FU Committee of Science under the Ministry of Education and Science of the Republic of Kazakhstan [BR05236839] FX This research was funded by the Committee of Science under the Ministry of Education and Science of the Republic of Kazakhstan, grant BR05236839. CR Abaei MM, 2017, RENEW ENERG, V102, P341, DOI 10.1016/j.renene.2016.10.054 Agilitypr, MED MON ULT GUID [Anonymous], 2019, ARXIV190305987 Atanayeva M., 2019, SCI ASP, V3, P277 Bandari R., 2012, PULSE NEWS SOCIAL ME Barakhnin VB, 2019, BIZN INFORM, V13, P60, DOI 10.17323/1998-0663.2019.4.60.72 Barile F, 2019, 2019 IEEE/WIC/ACM INTERNATIONAL CONFERENCE ON WEB INTELLIGENCE (WI 2019), P132, DOI 10.1145/3350546.3352510 Barysevich A., TOP BEST SOCIAL MEDI Basnyat PEB, 2017, 2017 IEEE INTERNATIONAL CONFERENCE ON SMART COMPUTING (SMARTCOMP), P411 Bauer M.W., 2016, OECD Blue Sky Forum on Science and Innovation Indicators, P19 Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993 BRANS JP, 1985, MANAGE SCI, V31, P647, DOI 10.1287/mnsc.31.6.647 Bushman B., 2017, NEUROSCIENCE BIOBEHA Bushman B., 2012, Encyclopedia of human behavior, P571 Charabi Y, 2011, RENEW ENERG, V36, P2554, DOI 10.1016/j.renene.2010.10.037 Curiskis SA, 2020, INFORM PROCESS MANAG, V57, DOI 10.1016/j.ipm.2019.04.002 Detlof V.W., 1975, UTILITY PROBABILITY, P47 Devlin J, BERT PRETRAINING DEE EDELMAN R, EDELMAN TRUST BAROME Figueira J, 2005, INT SER OPER RES MAN, V78, P133, DOI 10.1007/0-387-23081-5_4 Guo Y, 2017, TOURISM MANAGE, V59, P467, DOI 10.1016/j.tourman.2016.09.009 Hansen P, 2008, J MULTI-CRITERIA DEC, V15, P87, DOI 10.1002/mcda.428 Hoceini Youssef, 2011, Prague Bulletin of Mathematical Linguistics, P19, DOI 10.2478/v10108-011-0002-5 Ionel DM, 1998, IEEE IND APPLIC SOC, P65, DOI 10.1109/IAS.1998.732260 Ko H, 2019, COGN SYST RES, V55, P77, DOI 10.1016/j.cogsys.2018.12.018 Kumar A, 2017, RENEW SUST ENERG REV, V69, P596, DOI 10.1016/j.rser.2016.11.191 LAI YJ, 1994, EUR J OPER RES, V76, P486, DOI 10.1016/0377-2217(94)90282-8 Macharia S., 2020, INT ENCY GENDER MEDI, P1, DOI DOI 10.1002/9781119429128.IEGMC074 Mardani A, 2015, SUSTAINABILITY-BASEL, V7, P13947, DOI 10.3390/su71013947 [Машечкин И.В. Mashechkin I.V.], 2013, [Вычислительные методы и программирование: новые вычислительные технологии, Vychislitel'nye metody i programmirovanie: novye vychislitel'nye tekhnologii], V14, P91 Mimno David, 2011, P C EMPIRICAL METHOD, P262 Mishra S, 2016, CIKM'16: PROCEEDINGS OF THE 2016 ACM CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, P1069, DOI 10.1145/2983323.2983812 Mukhamediev R.I., 2020, CLOUD SCI, V7, P87 Mukhamediev RI, 2019, IEEE ACCESS, V7, P122275, DOI 10.1109/ACCESS.2019.2937627 Neresini F, 2016, PUBLIC UNDERST SCI, V25, P171, DOI 10.1177/0963662514551506 Newberry C., SOCIAL MEDIA MONITOR Nikulchev E, 2020, DATA, V5, DOI 10.3390/data5040095 Opricovic S, 2007, EUR J OPER RES, V178, P514, DOI 10.1016/j.ejor.2006.01.020 Ospanova U., 2019, SOCIOLOGIA, V2, P259 [Пархоменко П.А. Parhomenko P.A.], 2017, [Труды Института системного программирования РАН, Trudy Instituta sistemnogo programmirovaniya RAN], V29, P161, DOI 10.15514/ISPRAS-2017-29(2)-6 Saaty T. L., 2015, CLOUD SCI, V2, P5 Saaty T.L., 1990, DECISION MAKING LEAD Saaty TL, 2000, FUNDAMENTALS DECISIO, DOI [10.1007/978-3-642-50244-64, DOI 10.1007/978-3-642-50244-64] Scott J, 2015, INT J PROD ECON, V166, P226, DOI 10.1016/j.ijpe.2014.11.008 Stacks DW., 2015, INT ENCY SOCIAL BEHA, VSecond, P29 Tatar A, 2012, 2012 IEEE/ACM INTERNATIONAL CONFERENCE ON ADVANCES IN SOCIAL NETWORKS ANALYSIS AND MINING (ASONAM), P106, DOI 10.1109/ASONAM.2012.28 Thanasopon Bundit, 2017, 2017 9th International Conference on Information Technology and Electrical Engineering (ICITEE), DOI 10.1109/ICITEED.2017.8250454 [Воронцов Константин Вячеславович Vorontsov K.V.], 2012, [Компьютерные исследования и моделирование, Computer Research and Modeling, Komp'yuternye issledovaniya i modelirovanie], V4, P693 Vorontsov K, 2015, COMM COM INF SC, V542, P370, DOI 10.1007/978-3-319-26123-2_36 Wanderer T, 2015, ENVIRON IMPACT ASSES, V52, P2, DOI 10.1016/j.eiar.2014.09.002 Willaert T, 2020, SOC MEDIA SOC, V6, DOI 10.1177/2056305119898778 YAGER RR, 1988, IEEE T SYST MAN CYB, V18, P183, DOI 10.1109/21.87068 Yakunin K., AIRFLOW DAGS NLPMONI Yakunin K., THIS REPO PRESENTS D Yakunin K., MEDIA MONITORING SYS NR 55 TC 9 Z9 9 U1 1 U2 15 PU MDPI PI BASEL PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND EI 2073-8994 J9 SYMMETRY-BASEL JI Symmetry-Basel PD DEC PY 2020 VL 12 IS 12 AR 1945 DI 10.3390/sym12121945 PG 23 WC Multidisciplinary Sciences WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Science & Technology - Other Topics GA PK3WF UT WOS:000602378900001 OA gold DA 2024-09-05 ER PT J AU Umer, M Aljrees, T Ullah, S Bashir, AK AF Umer, Muhammad Aljrees, Turki Ullah, Saleem Bashir, Ali Kashif TI Novel approach for quantitative and qualitative authors research profiling using feature fusion and tree-based learning approach SO PEERJ COMPUTER SCIENCE LA English DT Article DE Citation sentiment analysis; Ensemble learning; Feature engineering; Feature fusion; Intelligent recommendation and text analysis; Authors research profiling; Self citation analysis ID SELF-CITATION RATES; H-INDEX; IMPACT; CLASSIFICATION; PATTERNS; MACRO; SMOTE AB Article citation creates a link between the cited and citing articles and is used as a basis for several parameters like author and journal impact factor, H-index, i10 index, etc., for scientific achievements. Citations also include self-citation which refers to article citation by the author himself. Self-citation is important to evaluate an author's research profile and has gained popularity recently. Although different criteria are found in the literature regarding appropriate self-citation, self-citation does have a huge impact on a researcher's scientific profile. This study carries out two cases in this regard. In case 1, the qualitative aspect of the author's profile is analyzed using hand-crafted feature engineering techniques. The sentiments conveyed through citations are integral in assessing research quality, as they can signify appreciation, critique, or serve as a foundation for further research. Analyzing sentiments within in-text citations remains a formidable challenge, even with the utilization of automated sentiment annotations. For this purpose, this study employs machine learning models using term frequency (TF) and term frequency-inverse document frequency (TF-IDF). Random forest using TF with Synthetic Minority Oversampling Technique (SMOTE) achieved a 0.9727 score of accuracy. Case 2 deals with quantitative analysis and investigates direct and indirect self-citation. In this study, the top 2% of researchers in 2020 is considered as a baseline. For this purpose, the data of the top 25 Pakistani researchers are manually retrieved from this dataset, in addition to the citation information from the Web of Science (WoS). The self citation is estimated using the proposed model and results are compared with those obtained from WoS. Experimental results show a substantial difference between the two, as the ratio of self-citation from the proposed approach is higher than WoS. It is observed that the citations from the WoS for authors are overstated. For a comprehensive evaluation of the researcher's profile, both direct and indirect self citation must be included. C1 [Umer, Muhammad; Ullah, Saleem] Khwaja Fareed Univ Engn & IT, Dept Comp Sci, Rahim Yar Khan, Punjab, Pakistan. [Aljrees, Turki] Univ Hafr Al Batin, Dept Comp Sci & Engn, Hafar Al Batin, Saudi Arabia. [Bashir, Ali Kashif] Manchester Metropolitan Univ, Dept Comp & Math, Manchester, England. C3 Hafr Albatin University; Manchester Metropolitan University RP Ullah, S (corresponding author), Khwaja Fareed Univ Engn & IT, Dept Comp Sci, Rahim Yar Khan, Punjab, Pakistan. EM saleem.ullah@kfueit.edu.pk RI Aljrees, Turki/HLQ-3139-2023; Umer, Muhammad/AAX-4594-2020; Umer, Muhammad/KHU-2339-2024; Ullah, Dr. Saleem/D-2644-2014 OI Aljrees, Turki/0000-0002-7473-7115; Umer, Muhammad/0000-0002-6015-9326; Umer, Muhammad/0009-0001-8751-6100; Bashir, Ali Kashif/0000-0003-2601-9327; Ullah, Dr. Saleem/0000-0003-3747-1263 FU Turki Aljrees FX The funding is supported by Turki Aljrees with the support of the University of Hafr-Al Batin. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. CR Aksnes DW, 2019, SAGE OPEN, V9, DOI 10.1177/2158244019829575 Aksnes DW, 2003, SCIENTOMETRICS, V56, P235, DOI 10.1023/A:1021919228368 [Anonymous], 2012, 2012 Conference of the North American Chapter of the Association for Computational Linguistics [Anonymous], 2017, INT C COMP SCI APPL Athar A., 2011, P ACL 2011 STUD SESS, P81 Ben HE., 2003, Proceedings of the Twelfth International Conference on Information and Knowledge Management, CIKM '03, P10, DOI DOI 10.1145/956863.956867 Budimir G, 2021, SCIENTOMETRICS, V126, P2249, DOI 10.1007/s11192-021-03862-w Case DO, 2000, J AM SOC INFORM SCI, V51, P635, DOI 10.1002/(SICI)1097-4571(2000)51:7<635::AID-ASI6>3.0.CO;2-H Catal C, 2017, APPL SOFT COMPUT, V50, P135, DOI 10.1016/j.asoc.2016.11.022 Chawla NV, 2010, DATA MINING AND KNOWLEDGE DISCOVERY HANDBOOK, SECOND EDITION, P875, DOI 10.1007/978-0-387-09823-4_45 Christian H., 2016, COMTECH COMPUT MATH, V7, P285, DOI DOI 10.21512/COMTECH.V7I4.3746 CORTES C, 1995, MACH LEARN, V20, P273, DOI 10.1023/A:1022627411411 Costas R, 2010, SCIENTOMETRICS, V82, P517, DOI 10.1007/s11192-010-0187-7 Foley JA, 2010, CORTEX, V46, P802, DOI 10.1016/j.cortex.2010.01.004 Fowler JH, 2007, SCIENTOMETRICS, V72, P427, DOI 10.1007/s11192-007-1777-2 Garfield E, 1997, BRIT MED J, V314, P1765, DOI 10.1136/bmj.314.7096.1765a Garfield E, 2006, JAMA-J AM MED ASSOC, V295, P90, DOI 10.1001/jama.295.1.90 Garfield E., 1998, 41 ANN M COUNC BIOL Ghosh S., 2020, P 53 HAW INT C SYST Gianoli E, 2009, J AM SOC INF SCI TEC, V60, P1283, DOI 10.1002/asi.21042 Glänzel W, 2006, SCIENTOMETRICS, V67, P263, DOI 10.1556/Scient.67.2006.2.8 Glänzel W, 2004, SCIENTOMETRICS, V59, P281, DOI 10.1023/B:SCIE.0000018535.99885.e9 Gregorutti B, 2017, STAT COMPUT, V27, P659, DOI 10.1007/s11222-016-9646-1 Herther NK, 2009, ELECTRON LIBR, V27, P361, DOI 10.1108/02640470910966835 Hirsch JE, 2005, P NATL ACAD SCI USA, V102, P16569, DOI 10.1073/pnas.0507655102 Ikram MT, 2019, SCIENTOMETRICS, V119, P73, DOI 10.1007/s11192-019-03028-9 Ioannidis JPA, 2020, PLOS BIOL, V18, DOI 10.1371/journal.pbio.3000918 Ishaq A, 2021, IEEE ACCESS, V9, P39707, DOI 10.1109/ACCESS.2021.3064084 Jaffe K, 2011, INTERCIENCIA, V36, P694 Karim M, 2022, APPL SCI-BASEL, V12, DOI 10.3390/app12063203 Kochhar SK, 2020, ICT EXPRESS, V6, P253, DOI 10.1016/j.icte.2020.02.001 LAWANI SM, 1982, J AM SOC INFORM SCI, V33, P281 Livas C, 2018, J EVID-BASED DENT PR, V18, P269, DOI 10.1016/j.jebdp.2017.09.001 Lopez J, 2016, J SURG EDUC, V73, P317, DOI 10.1016/j.jsurg.2015.10.012 Mavrogenis AF, 2010, CLIN ORTHOP RELAT R, V468, P2803, DOI 10.1007/s11999-010-1480-8 Medoff MH, 2006, SCIENTOMETRICS, V69, P69, DOI 10.1007/s11192-006-0139-4 Moed HF, 2012, SCIENTOMETRICS, V92, P367, DOI 10.1007/s11192-012-0679-8 Oppenheim C, 1997, J DOC, V53, P477, DOI 10.1108/EUM0000000007207 Pan RK, 2014, SCI REP-UK, V4, DOI 10.1038/srep04880 Pride D, 2017, PRO INT CONF SCI INF, P1357 Rustam F, 2019, ENTROPY-SWITZ, V21, DOI 10.3390/e21111078 SAFAVIAN SR, 1991, IEEE T SYST MAN CYB, V21, P660, DOI 10.1109/21.97458 Schreiber M, 2007, EPL-EUROPHYS LETT, V78, DOI 10.1209/0295-5075/78/30002 Sebastiani F, 2002, ACM COMPUT SURV, V34, P1, DOI 10.1145/505282.505283 Sharma Himani., 2016, International Journal of Science and Research (IJSR), V5 Shehatta I, 2019, SCIENTOMETRICS, V120, P775, DOI 10.1007/s11192-019-03139-3 Simoes N, 2020, J INFORMETR, V14, DOI 10.1016/j.joi.2019.100990 Snyder H, 1998, J INF SCI, V24, P431, DOI 10.1177/016555159802400606 Sundaram K, 2020, EUR J ORTHOP SURG TR, V30, P629, DOI 10.1007/s00590-019-02616-y Szomszor M, 2020, SCIENTOMETRICS, V123, P1119, DOI 10.1007/s11192-020-03417-5 TAGLIACOZZO R, 1977, J DOC, V33, P251, DOI 10.1108/eb026644 Umer M, 2022, PATTERN RECOGN LETT, V164, P224, DOI 10.1016/j.patrec.2022.11.012 Umer M, 2022, SENSORS-BASEL, V22, DOI 10.3390/s22072431 Umer M, 2021, PATTERN RECOGN LETT, V150, P250, DOI 10.1016/j.patrec.2021.07.009 Van Noorden R, 2019, NATURE, V572, P578, DOI 10.1038/d41586-019-02479-7 Vinkler P, 2007, J INF SCI, V33, P481, DOI 10.1177/0165551506072165 West JD, 2013, J AM SOC INF SCI TEC, V64, P787, DOI 10.1002/asi.22790 Wildgaard L, 2014, SCIENTOMETRICS, V101, P125, DOI 10.1007/s11192-014-1423-3 WoS, 2023, Web of science journal citation reports: suppression policy-clarivate Xu Jun, 2015, AMIA Annu Symp Proc, V2015, P1334 ZADROZNY B, 2002, P 8 ACM SIGKDD INT C, P694, DOI DOI 10.1145/775047.775151 Zhang Y., 2014, Abstract And Applied Analysis, V2014 Zhao DZ, 2018, J ASSOC INF SCI TECH, V69, P949, DOI 10.1002/asi.24046 Zhu XD, 2015, J ASSOC INF SCI TECH, V66, P408, DOI 10.1002/asi.23179 NR 64 TC 0 Z9 0 U1 3 U2 3 PU PEERJ INC PI LONDON PA 341-345 OLD ST, THIRD FLR, LONDON, EC1V 9LL, ENGLAND EI 2376-5992 J9 PEERJ COMPUT SCI JI PeerJ Comput. Sci. PD DEC 19 PY 2023 VL 9 AR e1752 DI 10.7717/peerj-cs.1752 PG 26 WC Computer Science, Artificial Intelligence; Computer Science, Information Systems; Computer Science, Theory & Methods WE Science Citation Index Expanded (SCI-EXPANDED) SC Computer Science GA DK4Q8 UT WOS:001131925400003 PM 38192451 OA gold DA 2024-09-05 ER PT J AU Nadathur, SG Warren, JR AF Nadathur, Shyamala G. Warren, James R. TI Formal-Transfer In and Out of Stroke Care Units: An Analysis Using Bayesian Networks SO INTERNATIONAL JOURNAL OF HEALTHCARE INFORMATION SYSTEMS AND INFORMATICS LA English DT Article DE Administrative Data; Bayesian Networks; Health Services Research; Outcome and Process Assessment; Patient Care; Stroke Units AB The positive impact of stroke care units (SCUs) on patient outcome has been previously reported. In this study, long-term stroke patients that are formally admitted to teaching-hospitals are compared with and without SCUs. The authors focus on the patients' experience with ongoing care or formal transfers following current care as this cohort is often high users of the system with associated high costs. Bayesian Networks were employed to analyze routinely collected public-hospital administrative data. The results illustrate that the teaching-hospitals with SCUs, while achieving shorter length of stay, in fact deal with younger patients with lower overall patient complexity than non-SCU teaching-hospitals. Other differences include SCUs predominantly treating subarachnoid hemorrhages whereas the non-SCUs treat more cerebral infarctions. This study illustrates the power of Bayesian Networks to expose the nature of caseload and outcomes recorded in hospital-administrative data as a means to gain insight on current practice and create opportunities for benchmarking and improving care. C1 [Nadathur, Shyamala G.] Monash Univ, Clayton, Vic, Australia. [Warren, James R.] Univ Auckland, Dept Comp Sci, Auckland, New Zealand. [Warren, James R.] Univ Auckland, Sch Populat Hlth, Auckland, New Zealand. [Warren, James R.] Univ Natl Inst Hlth Innovat, Auckland, New Zealand. C3 Monash University; University of Auckland; University of Auckland RP Nadathur, SG (corresponding author), Monash Univ, Clayton, Vic, Australia. OI Warren, James/0000-0002-8660-8951 CR Abston KC, 1997, J AM MED INFORM ASSN, P168 Bidyuk PI, 2005, CYBERN SYST ANAL+, V41, P587, DOI 10.1007/s10559-005-0094-8 Bonavita V, 2008, NEUROL SCI, V29, pS99, DOI 10.1007/s10072-008-0898-1 Brown RD, 1996, STROKE, V27, P373 Cadilhac D, 1998, Aust Nurs J, V5, P18 Candelise L, 2007, LANCET, V369, P299, DOI 10.1016/S0140-6736(07)60152-4 Claesson L, 2003, AGE AGEING, V32, P109, DOI 10.1093/ageing/32.1.109 Cloutier LM, 2008, DRUG DISCOV TODAY, V13, P536, DOI 10.1016/j.drudis.2008.03.022 Collins D, 2000, Ir Med J, V93, P84 COUNSELL C, 1995, STROKE, V26, P498, DOI 10.1161/01.STR.26.3.498 Crimmins DS, 2009, INTERN MED J, V39, P325, DOI 10.1111/j.1445-5994.2009.01935.x Curtis JR, 2008, MED CARE, V46, P969, DOI 10.1097/MLR.0b013e318179253b Dai HH, 1997, INT JOINT CONF ARTIF, P1304 Díez-Tejedor E, 2001, CEREBROVASC DIS, V11, P31, DOI 10.1159/000049123 Dion J.E., 2004, J VASCULAR INTERVENT, V15, P133 Donnan GA, 2008, LANCET, V371, P1612, DOI 10.1016/S0140-6736(08)60694-7 Dunbabin D, 1992, Pharmacoeconomics, V2, P468 el-Darzi E, 1998, Health Care Manag Sci, V1, P143 Elixhauser A, 1998, MED CARE, V36, P8, DOI 10.1097/00005650-199801000-00004 Evans A, 2002, STROKE, V33, P449, DOI 10.1161/hs0202.102364 Fischer U, 2006, ACTA NEUROL SCAND, V113, P108, DOI 10.1111/j.1600-0404.2005.00551.x Fuentes B, 2009, INT J STROKE, V4, P28, DOI 10.1111/j.1747-4949.2009.00244.x Indredavik B, 2000, STROKE, V31, P2989, DOI 10.1161/01.STR.31.12.2989 Kalra L, 2000, LANCET, V356, P894, DOI 10.1016/S0140-6736(00)02679-9 Karatepe AG, 2008, J REHABIL MED, V40, P831, DOI 10.2340/16501977-0269 Kazmierski R, 2006, EXPERT REV NEUROTHER, V6, P1349, DOI 10.1586/14737175.6.9.1349 Kim I.-C., 2003, P 3 INT C MACH LEARN, P5 Klon AE, 2006, J CHEM INF MODEL, V46, P1945, DOI 10.1021/ci0601315 Launois R, 2004, STROKE, V35, P770, DOI 10.1161/01.STR.0000117574.19517.80 Lee SM, 2003, J BIOMED INFORM, V36, P389, DOI 10.1016/j.jbi.2003.09.022 Lorenzano S, 2006, CLIN EXP HYPERTENS, V28, P377, DOI 10.1080/10641960600549728 Lucas Peter, 2004, Curr Opin Crit Care, V10, P399, DOI 10.1097/01.ccx.0000141546.74590.d6 Lucas PJF, 2004, ARTIF INTELL MED, V30, P201, DOI 10.1016/j.artmed.2003.11.001 Luthi JC, 2007, INT J QUAL HEALTH C, V19, P225, DOI 10.1093/intqhc/mzm017 MALENKA DJ, 1994, J CLIN EPIDEMIOL, V47, P1027, DOI 10.1016/0895-4356(94)90118-X Monash University Data Mining Centre (MDMC), 2002, INTRODUCTION Nadathur S. G., 2010, BMC HLTH SERVICES RE NADATHUR SG, 2006, HEALTH INF MANAG J, V37, P33 NADATHUR SG, 2009, DYNAMIC ADV DATA MIN, P342, DOI DOI 10.4018/978-1-60566-908-3.CH014 NADATHUR SG, 2010, AUST HEALTH REV, V34, P1, DOI DOI 10.1071/AH09801 Norsys, 2008, NER BAYES NETW DEV S O'Donnell RT, 2006, LECT NOTES COMPUT SC, V4304, P192 Read SJ, 2005, INTERN MED J, V35, P447, DOI 10.1111/j.1445-5994.2005.00882.x Roe C J, 1996, J Qual Clin Pract, V16, P203 Ronning OM, 1998, STROKE, V29, P586, DOI 10.1161/01.STR.29.3.586 Ronning OM, 1998, STROKE, V29, P58, DOI 10.1161/01.STR.29.1.58 Rudd AG, 2005, STROKE, V36, P103, DOI 10.1161/01.STR.0000149618.14922.8a Saka Ö, 2009, STROKE, V40, P24, DOI 10.1161/STROKEAHA.108.518043 Sarker SJ, 2008, J NEUROL NEUROSUR PS, V79, P260, DOI 10.1136/jnnp.2007.129189 Seenan P, 2007, STROKE, V38, P1886, DOI 10.1161/STROKEAHA.106.480871 Sierra B, 2001, ARTIF INTELL MED, V22, P233, DOI 10.1016/S0933-3657(00)00111-1 Slany J, 2002, DEUT MED WOCHENSCHR, V127, P1575, DOI 10.1055/s-2002-32942 Smith WP, 2009, ARTIF INTELL MED, V46, P119, DOI 10.1016/j.artmed.2008.12.002 Somerford PJ, 2004, ANN EPIDEMIOL, V14, P773, DOI 10.1016/j.annepidem.2004.02.003 Stroke Unit Trialists' Collaboration, 2007, COCHRANE DATABASE SY, V4 Terént A, 2009, J NEUROL NEUROSUR PS, V80, P881, DOI 10.1136/jnnp.2008.169102 Tervo-Heikkinen T, 2009, J NURS MANAGE, V17, P986, DOI 10.1111/j.1365-2834.2009.01020.x Tessier A, 2008, ARCH PHYS MED REHAB, V89, P1276, DOI 10.1016/j.apmr.2007.11.049 Twardy C. R., 2005, AUSTR RES COUNC NETW Valderas JM, 2009, ANN FAM MED, V7, P357, DOI 10.1370/afm.983 van der Gaag L.C., 2008, Aligning Bayesian Network Classifiers with Medical Contexts van Gerven MAJ, 2008, J BIOMED INFORM, V41, P515, DOI 10.1016/j.jbi.2008.01.006 Verduijn M, 2007, J BIOMED INFORM, V40, P609, DOI 10.1016/j.jbi.2007.07.003 Wallace C. S., 1999, CAUSAL MODELS INTELL, DOI [10.1007/978-3-642-58648-4_7, DOI 10.1007/978-3-642-58648-4_] Young JA, 2009, TOP STROKE REHABIL, V16, P389, DOI 10.1310/tsr1606-389 Zhu HF, 2009, STROKE, V40, P18, DOI 10.1161/STROKEAHA.108.527606 NR 66 TC 0 Z9 0 U1 0 U2 0 PU IGI GLOBAL PI HERSHEY PA 701 E CHOCOLATE AVE, STE 200, HERSHEY, PA 17033-1240 USA SN 1555-3396 EI 1555-340X J9 INT J HEALTHC INF SY JI Int. J. Healthc. Inf. Syst. Inf. PD JUL-SEP PY 2011 VL 6 IS 3 BP 32 EP 45 DI 10.4018/jhisi.2011070103 PG 14 WC Medical Informatics WE Emerging Sources Citation Index (ESCI) SC Medical Informatics GA V14ZL UT WOS:000214518800003 DA 2024-09-05 ER PT J AU Lee, C AF Lee, Changsoo TI A topic modeling analysis of Korea's T&I research trends in the 2010s SO BABEL-REVUE INTERNATIONALE DE LA TRADUCTION-INTERNATIONAL JOURNAL OF TRANSLATION LA English DT Article DE research trends; bibliographic study; text mining; topic modeling; Korean T&I research ID TRANSLATION AB The present study aims to demonstrate the relevance of topic modeling as a new research tool for analyzing research trends in the T&I field. Until now, most efforts to this end have relied on manual classification based on pre-established typologies. This method is time- and labor-consuming, prone to subjective biases, and limited in describing a vast amount of research output. As a key component of text mining, topic modeling offers an efficient way of summarizing topic structure and trends over time in a collection of documents while being able to describe the entire system without having to rely on sampling. As a case study, the present paper applies the technique to analyzing a collection of abstracts from four Korean Language T&I journals for the 2010s decade (from 2010 to 2019). The analysis proves the technique to be highly successful in uncovering hidden topical structure and trends in the abstract corpus. The results are discussed along with implications of the technique for the T&I field. C1 [Lee, Changsoo] Hankuk Univ Foreign Studies, Seoul, South Korea. C3 Hankuk University Foreign Studies RP Lee, C (corresponding author), Hankuk Univ Foreign Studies, Grad Sch Interpretat & Translat, Imunro 107, Seoul 02450, South Korea. EM dewywag@gmail.com FU Hankuk University of Foreign Studies Research Fund FX This work was supported by the Hankuk University of Foreign Studies Research Fund of 2021. CR [Anonymous], 2012, DESCRIPTIVE TRANSLAT Ball R., 2018, INTRO BIBLIOMETRICS Cheong Ho-Jeong, 2013, [Interpretation and Translation, 통역과 번역], V15, P235 Das BijayKumar., 2005, Handbook of Translation Studies Dilley Paul., 2016, Ancient Worlds in Digital Culture, P17 Fortuna B., 2009, Text Mining: Classification, Clustering, and Applications, P27 Guo W, 2011, P 2011 C EMPIRICAL M, P552 Hao TY, 2018, SOFT COMPUT, V22, P7875, DOI 10.1007/s00500-018-3511-4 Hee Han Hyun, 2016, [The Journal of Translation Studies, 번역학연구], V17, P251 Jacobi C, 2016, DIGIT JOURNAL, V4, P89, DOI 10.1080/21670811.2015.1093271 Kim Hye-Rim, 2013, [The Journal of Translation Studies, 번역학연구], V14, P95 Lafferty J.D, 2009, Topic Models, P71, DOI [10.1145/1143844.1143859, DOI 10.1145/1143844.1143859] Lee Chang-Soo, 2019, [The Journal of Translation Studies, 번역학연구], V20, P107 Lee Chang-Soo, 2013, [Interpretation and Translation, 통역과 번역], V15, P99 Lee Jieun, 2018, [Interpretation and Translation, 통역과 번역], V20, P75, DOI 10.20305/it201803075104 Li XD, 2015, PERSPECT STUD TRANSL, V23, P183, DOI 10.1080/0907676X.2015.1006645 OHagan Minako., 2013, The Routledge Handbook of Translation Studies, P503 Rani J, 2015, J BIOSCIENCES, V40, P671, DOI 10.1007/s12038-015-9552-2 Reisenbichler M., 2019, J BUSINESS EC, V89, P327, DOI DOI 10.1007/S11573-018-0915-7 Roberts Roda., 1997, CRITICAL LINK INTERP, P7, DOI [10.1075/btl.19.03rob, DOI 10.1075/BTL.19.03ROB] Rovira-Esteva S, 2015, PERSPECT STUD TRANSL, V23, P159, DOI 10.1080/0907676X.2015.1026361 Saori Hasegawa, 2018, [Interpretation and Translation, 통역과 번역], V20, P163, DOI 10.20305/it201803163194 Simon C, 2019, BMC BIOINFORMATICS, V19, DOI 10.1186/s12859-019-2607-x Snell-Hornby M, 2018, BENJAMIN TRANSL LIB, V142, P143, DOI 10.1075/btl.142.19sne Snell-Hornby Mary, 2006, The Turns of Translation Studies Sun LJ, 2017, TRANSPORT RES C-EMER, V77, P49, DOI 10.1016/j.trc.2017.01.013 Turovsky Barak, 2016, TRANSLATE 1115 van Doorslaer L, 2015, PERSPECT STUD TRANSL, V23, P305, DOI 10.1080/0907676X.2015.1026360 van Kessel Patrick, 2018, MAKING SENSE TOPIC M Venuti Lawrence., 2008, TRANSLATORS INVISIBI, V2nd Waldlierr A., 2016, Political Communication in the Online World: Theoretical Approaches and Research Designs, P201 Wiedemann G., 2016, TEXT MINING QUALITAT Zanettin F, 2015, PERSPECT STUD TRANSL, V23, P161, DOI 10.1080/0907676X.2015.1010551 Zhang MF, 2015, PERSPECT STUD TRANSL, V23, P223, DOI 10.1080/0907676X.2015.1021260 임현경, 2015, [Interpretation and Translation, 통역과 번역], V17, P27 NR 35 TC 0 Z9 0 U1 0 U2 4 PU JOHN BENJAMINS PUBLISHING CO PI AMSTERDAM PA PO BOX 36224, 1020 ME AMSTERDAM, NETHERLANDS SN 0521-9744 EI 1569-9668 J9 BABEL-AMSTERDAM JI Babel PY 2021 VL 67 IS 4 BP 482 EP 499 DI 10.1075/babel.00228.lee PG 18 WC Linguistics; Language & Linguistics WE Social Science Citation Index (SSCI); Arts & Humanities Citation Index (A&HCI) SC Linguistics GA WT6EP UT WOS:000715956200005 DA 2024-09-05 ER PT C AU Correia, A Jameel, S Schneider, D Paredes, H Fonseca, B AF Correia, Antonio Jameel, Shoaib Schneider, Daniel Paredes, Hugo Fonseca, Benjamim BE Wu, XT Jermaine, C Xiong, L Hu, XH Kotevska, O Lu, SY Xu, WJ Aluru, S Zhai, CX Al-Masri, E Chen, ZY Saltz, J TI A Workflow-Based Methodological Framework for Hybrid Human-AI Enabled Scientometrics SO 2020 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA) SE IEEE International Conference on Big Data LA English DT Proceedings Paper CT 8th IEEE International Conference on Big Data (Big Data) CY DEC 10-13, 2020 CL ELECTR NETWORK DE artificial intelligence; crowdsourcing; human-AI hybrid interaction; human-machine symbiosis; science mapping; research evaluation; scientometrics; workflows ID INFORMATION-SCIENCE; SOFTWARE; KNOWLEDGE; TOOL; NETWORKS; MODEL AB With cutting edge scientific breakthroughs, human-centred algorithmic approaches have proliferated in recent years and information technology (IT) has begun to redesign socio-technical systems in the context of human-AI collaboration. As a result, distinct forms of interaction have emerged in tandem with the proliferation of infrastructures aiding interdisciplinary work practices and research teams. Concomitantly, large volumes of heterogeneous datasets are produced and consumed at a rapid pace across many scientific domains. This results in difficulties in the reliable analysis of scientific production since current tools and algorithms are not necessarily able to provide acceptable levels of accuracy when analyzing the content and impact of publication records from large continuous scientific data streams. On the other hand, humans cannot consider all the information available and may be adversely influenced by extraneous factors. Using this rationale, we propose an initial design of a human-AI enabled pipeline for performing scientometric analyses that exploits the intersection between human behavior and machine intelligence. The contribution is a model for incorporating central principles of human-machine symbiosis (HMS) into scientometric workflows, demonstrating how hybrid intelligence systems can drive and encapsulate the future of research evaluation. C1 [Correia, Antonio; Paredes, Hugo; Fonseca, Benjamim] INESC TEC, Apartado 1013, Vila Real, Portugal. [Correia, Antonio; Paredes, Hugo; Fonseca, Benjamim] Univ Tras Os Montes & Alto Douro, UTAD, Apartado 1013, Vila Real, Portugal. [Jameel, Shoaib] Univ Essex, Sch Comp Sci & Elect Engn, Colchester Campus, Colchester, Essex, England. [Schneider, Daniel] Univ Fed Rio de Janeiro, Tercio Pacitti Inst Comp Applicat & Res NCE, Rio De Janeiro, RJ, Brazil. C3 INESC TEC; University of Tras-os-Montes & Alto Douro; University of Essex; Universidade Federal do Rio de Janeiro RP Correia, A (corresponding author), INESC TEC, Apartado 1013, Vila Real, Portugal.; Correia, A (corresponding author), Univ Tras Os Montes & Alto Douro, UTAD, Apartado 1013, Vila Real, Portugal. EM antonio.g.correia@inesctec.pt RI Correia, António/AAJ-3347-2021; Paredes, Hugo/D-8347-2010 OI Correia, António/0000-0002-2736-3835; Paredes, Hugo/0000-0002-4274-4783; Fonseca, Benjamim/0000-0002-0850-9755 FU National Funds through the Portuguese funding agency, FCT -Fundacao para a Ciencia e a Tecnologia [UIDB/50014/2020] FX This work is financed by National Funds through the Portuguese funding agency, FCT -Fundacao para a Ciencia e a Tecnologia within project UIDB/50014/2020. CR Aria M, 2017, J INFORMETR, V11, P959, DOI 10.1016/j.joi.2017.08.007 Bailón-Moreno R, 2005, SCIENTOMETRICS, V63, P259, DOI 10.1007/s11192-005-0212-4 Barbosa NM, 2019, CHI 2019: PROCEEDINGS OF THE 2019 CHI CONFERENCE ON HUMAN FACTORS IN COMPUTING SYSTEMS, DOI 10.1145/3290605.3300773 Börner K, 2011, COMMUN ACM, V54, P60, DOI 10.1145/1897852.1897871 Börner K, 2010, SCIENTOMETRICS, V83, P863, DOI 10.1007/s11192-009-0149-0 Börner K, 2003, ANNU REV INFORM SCI, V37, P179, DOI 10.1002/aris.1440370106 Brereton P., 2014, P INT C EV ASS SOFTW, P1 BRUSILOVSKY BY, 1978, TECHNOL FORECAST SOC, V12, P193, DOI 10.1016/0040-1625(78)90055-0 Chan Joel, 2018, Proceedings of the ACM on Human-Computer Interaction, V2, DOI 10.1145/3274300 Chen CM, 2006, J AM SOC INF SCI TEC, V57, P359, DOI 10.1002/asi.20317 Cobo MJ, 2012, J AM SOC INF SCI TEC, V63, P1609, DOI 10.1002/asi.22688 Cobo MJ, 2011, J AM SOC INF SCI TEC, V62, P1382, DOI 10.1002/asi.21525 Comins JA, 2016, SCIENTOMETRICS, V107, P1509, DOI 10.1007/s11192-016-1928-z Correia Antonio, 2013, Human Factors in Computing and Informatics. Proceedings of the First International Conference (SouthCHI 2013): LNCS 7946, P137, DOI 10.1007/978-3-642-39062-3_9 Correia A., 2020, P HAW INT C SYST SCI, P4630 Correia A, 2018, 2018 14TH CONFERENCE ON PHD RESEARCH IN MICROELECTRONICS AND ELECTRONICS (PRIME 2018), P33, DOI 10.1109/PRIME.2018.8430338 Correia A, 2019, IEEE SYS MAN CYBERN, P1372, DOI 10.1109/SMC.2019.8914637 Correia A, 2019, IEEE SYS MAN CYBERN, P4013, DOI 10.1109/SMC.2019.8914075 Correia A, 2019, INT C COMP SUPP COOP, P129, DOI [10.1109/cscwd.2019.8791855, 10.1109/CSCWD.2019.8791855] Correia A, 2018, LECT NOTES COMPUT SC, V11001, P133, DOI 10.1007/978-3-319-99504-5_11 Correia A, 2018, SCIENTOMETRICS, V114, P31, DOI 10.1007/s11192-017-2562-0 Correia Antonio., 2019, Macrotask Crowdsourcing, P149 Daniel F, 2018, ACM COMPUT SURV, V51, DOI 10.1145/3148148 Dellermann D, 2019, PROCEEDINGS OF THE 52ND ANNUAL HAWAII INTERNATIONAL CONFERENCE ON SYSTEM SCIENCES, P274 Dobrkovic A, 2018, ADV INTELL SYST COMP, V722, P361, DOI 10.1007/978-3-319-73888-8_56 Dong ZA, 2017, CLUSTER COMPUT, V20, P3629, DOI 10.1007/s10586-017-1089-8 Dresbeck R, 2015, J MED LIBR ASSOC, V103, P164, DOI 10.3163/1536-5050.103.3.018 Endert A., 2014, Proceedings of the ACM SIGKDD Workshop on Interactive Data Exploration and Analytics (IDEA'14), P52 Enojas MJB, 2019, 2019 4TH ASIA-PACIFIC CONFERENCE ON INTELLIGENT ROBOT SYSTEMS (ACIRS 2019), P1, DOI [10.1109/acirs.2019.8935969, 10.1109/ACIRS.2019.8935969] Feger S.S., 2020, PROC ACM HUM INTERAC, V4, P1, DOI [10.1145/3415212, DOI 10.1145/3415212] Frehe V., 2014, INFORMATIK, P1699 Gadiraju Ujwal, 2017, Evaluation in the Crowd. Crowdsourcing and Human-Centered Experiments. Revised Contributions: LNCS 10264, P6, DOI 10.1007/978-3-319-66435-4_2 Gagolewski M, 2011, J INFORMETR, V5, P678, DOI 10.1016/j.joi.2011.06.006 Garfield E., 2004, P ANN M AM SOC INF S, V83 Gil Y, 2007, COMPUTER, V40, P24, DOI 10.1109/MC.2007.421 Gil Y, 2014, SCIENCE, V346, P171, DOI 10.1126/science.1259439 Gil Y, 2009, SCI PROGRAMMING-NETH, V17, P231, DOI [10.3233/SPR-2009-0261, 10.1155/2009/167604] Goh YC, 2020, SCIENTOMETRICS, V125, P1197, DOI 10.1007/s11192-020-03614-2 Grauwin S, 2011, SCIENTOMETRICS, V89, P943, DOI 10.1007/s11192-011-0482-y Guler AT, 2016, SCIENTOMETRICS, V107, P385, DOI 10.1007/s11192-016-1885-6 Harzing A., 2008, Ethics in Science and Environmental Politics, V8, P61, DOI [DOI 10.3354/ESEP00076, 10.3354/esep00076] Hou H, 2008, SCIENTOMETRICS, V75, P189, DOI 10.1007/s11192-007-1771-3 Hussain I, 2017, KNOWL ENG REV, V32, DOI 10.1017/S0269888917000182 Jonkers K, 2013, RES POLICY, V42, P1366, DOI 10.1016/j.respol.2013.05.005 Kobayashi M, 2020, WWW'20: COMPANION PROCEEDINGS OF THE WEB CONFERENCE 2020, P118, DOI 10.1145/3366424.3382727 Krivosheev Evgeny, 2018, Proceedings of the ACM on Human-Computer Interaction, V2, DOI 10.1145/3274366 Leydesdorff L, 2009, J INFORMETR, V3, P353, DOI 10.1016/j.joi.2009.05.005 Liu HR, 2021, SEP SCI TECHNOL, V56, P558, DOI 10.1080/01496395.2020.1717532 Liu Y., 2016, PEERJ PREPRINTS, V4 Loglisci C, 2011, LECT NOTES ARTIF INT, V6912, P358, DOI 10.1007/978-3-642-23783-6_23 McLevey J, 2017, J INFORMETR, V11, P176, DOI 10.1016/j.joi.2016.12.005 Mills MC, 2019, COMMUN BIOL, V2, DOI 10.1038/s42003-018-0261-x Moral-Muñoz JA, 2020, PROF INFORM, V29, DOI 10.3145/epi.2020.ene.03 Mortensen ML, 2017, RES SYNTH METHODS, V8, P366, DOI 10.1002/jrsm.1252 Nama N, 2019, J MED INTERNET RES, V21, DOI 10.2196/12953 Persson O., 2009, CELEBRATING SCHOLARL, V5, P9 Porter A.L., 2004, Tech mining: Exploiting new technologies for competitive advantage Rahi S., 2019, P INT C SMART INF CO, P357 Rosen-Zvi Michal., 2004, UAI Ruiz-Rosero J, 2019, SCIENTOMETRICS, V121, P1165, DOI 10.1007/s11192-019-03213-w Safder I, 2019, SCIENTOMETRICS, V119, P257, DOI 10.1007/s11192-019-03025-y Savov P, 2020, INFORM PROCESS MANAG, V57, DOI 10.1016/j.ipm.2019.102168 Schildt H. A., 2002, HELSINKI I STRATEGY, V6, P1 Shannon P, 2003, GENOME RES, V13, P2498, DOI 10.1101/gr.1239303 Siniksaran E, 2020, SCIENTOMETRICS, V122, P701, DOI 10.1007/s11192-019-03269-8 SMALL H, 1974, SCI STUD, V4, P17, DOI 10.1177/030631277400400102 Thilakaratne M, 2019, PEERJ COMPUT SCI, DOI 10.7717/peerj-cs.235 Thomas J, 2017, J CLIN EPIDEMIOL, V91, P31, DOI 10.1016/j.jclinepi.2017.08.011 Thor A, 2016, J INFORMETR, V10, P503, DOI 10.1016/j.joi.2016.02.005 Ting-HaoKenneth Huang Chieh-Yang, 2020, ARXIV200502367 Trappey AJC, 2019, APPL SCI-BASEL, V9, DOI 10.3390/app9071478 Tseng YH, 2013, SCIENTOMETRICS, V95, P503, DOI 10.1007/s11192-013-0964-1 Uddin A, 2016, SCIENTOMETRICS, V106, P1135, DOI 10.1007/s11192-016-1836-2 Uhlmann EL, 2019, PERSPECT PSYCHOL SCI, V14, P711, DOI 10.1177/1745691619850561 van Eck NJ, 2014, J INFORMETR, V8, P802, DOI 10.1016/j.joi.2014.07.006 van Eck NJ, 2010, SCIENTOMETRICS, V84, P523, DOI 10.1007/s11192-009-0146-3 Wang JT, 2019, COMPUTER, V52, P46, DOI 10.1109/MC.2018.2890174 Wise JA, 1999, J AM SOC INFORM SCI, V50, P1224, DOI 10.1002/(SICI)1097-4571(1999)50:13<1224::AID-ASI8>3.0.CO;2-4 Wyatt S., 2015, SSRN ELECT J Yang J, 2018, WEB CONFERENCE 2018: PROCEEDINGS OF THE WORLD WIDE WEB CONFERENCE (WWW2018), P23, DOI 10.1145/3178876.3186033 Yu J, 2005, SIGMOD REC, V34, P44, DOI 10.1145/1084805.1084814 Zhang Q, 2019, SCIENTOMETRICS, V119, P1497, DOI 10.1007/s11192-019-03100-4 Zhang Y., 2020, P 1 INT WORKSH LIT B Zhao T., 2020, P 58 ANN ANN M ASS C Zhou Y, 2019, SCIENTOMETRICS, V120, P167, DOI 10.1007/s11192-019-03126-8 Zhu X, 2014, GREEN CHEM SUSTAIN T, P1, DOI 10.1007/978-3-642-54646-4_1 Zupic I, 2015, ORGAN RES METHODS, V18, P429, DOI 10.1177/1094428114562629 NR 87 TC 4 Z9 4 U1 5 U2 37 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA SN 2639-1589 BN 978-1-7281-6251-5 J9 IEEE INT CONF BIG DA PY 2020 BP 2876 EP 2883 DI 10.1109/BigData50022.2020.9378096 PG 8 WC Computer Science, Artificial Intelligence; Computer Science, Information Systems; Computer Science, Theory & Methods WE Conference Proceedings Citation Index - Science (CPCI-S) SC Computer Science GA BR6NZ UT WOS:000662554703001 DA 2024-09-05 ER PT J AU Ivanovic, I AF Ivanovic, Igor TI CAN AI-ASSISTED ESSAY ASSESSMENT SUPPORT TEACHERS? A CROSS-SECTIONAL MIXED-METHODS RESEARCH CONDUCTED AT THE UNIVERSITY OF MONTENEGRO SO ANNALES-ANALI ZA ISTRSKE IN MEDITERANSKE STUDIJE-SERIES HISTORIA ET SOCIOLOGIA LA English DT Article DE ChatGPT; automated grading; AI language models; essay assessment; essay feedback; assessment metrics; natural language processing ID MAGICAL NUMBER AB In this study, we will try to answer the question if an AI language model can provide teachers with essay assessment solutions that are on a par with the solutions provided by experienced professors. We designed a study with the aim of comparing the essay assessment outputs of the AI language model and three of our colleagues working at the University of Montenegro. The main aim of this paper is to investigate if this AI language model can be a viable teachers' assistance tool that provides immediate and meaningful feedback to teachers and students. Our hypothesis is, with some caveats, that the AI language model is more than a viable and useful tool, capable of providing meaningful and immediate feedback, greatly reducing the assessment time, and thus helping the teachers become more efficient and consistent. We will compare the results of 78 essays assessed by three teachers with the results provided by ChatGPT and see where the two sets of results converge or diverge in terms of their individual and overall scores. C1 [Ivanovic, Igor] Univ Montenegro, Fac Philol, Danila Bojov Bb, Niksic 81400, Montenegro. C3 University of Montenegro RP Ivanovic, I (corresponding author), Univ Montenegro, Fac Philol, Danila Bojov Bb, Niksic 81400, Montenegro. EM iggybosnia@ucg.ac.me CR [Anonymous], 2013, Qualitative Inquiry and Research Design: Choosing Among Five Approaches, DOI DOI 10.1089/TMJ.2009.0067 [Anonymous], 2000, Field Methods, DOI [10.1177/1525822X0001200301, DOI 10.1177/1525822X0001200301] Brace I., 2004, QUESTIONNAIRE DESIGN Brewer J., 2006, FDN MULTIMETHOD RES Cowan N, 2015, PSYCHOL REV, V122, P536, DOI 10.1037/a0039035 Creswell J., 2009, Research design: qualitative, quantitative, and mixed methods approaches, V3rd Creswell J. W., 2018, Designing and conducting mixed methods research, V3rd Davis James, 2005, ICPSR04295V1 NAT OP de Leeuw E. D., 2008, International Handbook of Survey Methodology, DOI DOI 10.4324/9780203843123.CH7 Dehouche Nassim, 2021, Ethics in Science and Environmental Politics, V21, P17, DOI DOI 10.3354/ESEP00195 Dillman D. A., 2007, Mail and internet surveys: The tailored design method, V2nd ed. Elkins K., 2020, J CULTURAL ANAL, V5, P1, DOI DOI 10.22148/001C.17212 Elpidorou A, 2023, REV PHILOS PSYCHOL, V14, P959, DOI 10.1007/s13164-021-00599-6 Erturk S, 2022, MOTIV EMOTION, V46, P264, DOI 10.1007/s11031-022-09929-2 Floridi L, 2020, MIND MACH, V30, P681, DOI 10.1007/s11023-020-09548-1 Gabrijelcic MK, 2015, ANN-ANAL ISTRSKE MED, V25, P385 Gao CA., 2023, npj Digit Med., V6, P75, DOI [10.1038/s41746-023-00819-6, DOI 10.1038/S41746-023-00819-6, DOI 10.1101/2022.12.23.521610, 10.1101/2022.12.23.521610] Gao JM, 2021, INT J EMERG TECHNOL, V16, P322, DOI 10.3991/ijet.v16i11.19657 Gray PS, 2007, RESEARCH IMAGINATION: AN INTRODUCTION TO QUALITATIVE AND QUANTITATIVE METHODS, P1, DOI 10.1017/CBO9780511819391 Grillon C, 2015, EMOTION, V15, P383, DOI 10.1037/emo0000058 Kiger ME, 2020, MED TEACH, V42, P846, DOI 10.1080/0142159X.2020.1755030 Koo TK, 2016, J CHIROPR MED, V15, P155, DOI 10.1016/j.jcm.2016.02.012 Marcora SM, 2009, J APPL PHYSIOL, V106, P857, DOI 10.1152/japplphysiol.91324.2008 MILLER GA, 1956, PSYCHOL REV, V63, P81, DOI 10.1037/h0043158 Mizuno K, 2011, BEHAV BRAIN FUNCT, V7, DOI 10.1186/1744-9081-7-17 O'Muircheartaigh C., 2000, HARRIS SCH PUBLIC PO Peterson R.A., 2000, CONSTRUCTING EFFECTI Ryan GW., 2003, FIELD METHOD, V15, P85, DOI [DOI 10.1177/1525822X02239569, 10.1177/1525822X02239569] Sauro J, 2012, QUANTIFYING THE USER EXPERIENCE: PRACTICAL STATISTICS FOR USER RESEARCH, P1 Tuzzi Arjuna, 2001, ADV CLASSIFICATION D Wallis Allen, 2014, NATURE STAT ILLUSTRA NR 31 TC 0 Z9 0 U1 11 U2 11 PU HISTORICAL SOC SOUTHERN PRIMORSKA KOPER-HSSP PI KOPER PA GARIBALDIJEVA 18, KOPER, 6000, SLOVENIA SN 1408-5348 EI 2591-1775 J9 ANN-ANAL ISTRSKE MED JI Ann.-Anal. Istrske Mediteranske PY 2023 VL 33 IS 3 BP 571 EP 590 DI 10.19233/ASHS.2023.30 PG 20 WC Humanities, Multidisciplinary WE Arts & Humanities Citation Index (A&HCI) SC Arts & Humanities - Other Topics GA HX9Y5 UT WOS:001162939500010 DA 2024-09-05 ER PT J AU Liu, JHC AF Liu, Juhong Christie TI Evaluating Online Learning Orientation Design With a Readiness Scale SO ONLINE LEARNING LA English DT Article DE student online learning readiness; orientation for online learning; design research; structure and interaction; evaluation ID HIGHER-EDUCATION; SOCIAL PRESENCE; MOTIVATION; STUDENTS; SATISFACTION; SUCCESS AB Student online learning readiness (SOLR) has been identified as being closely associated with the success of learning in online environments. Online learning orientations have also been used as a key intervention to support students. However, the evaluation practice and research of online learning orientation design are limited. This research studied the effects of an orientation course on SOLR, using a multiyear design-based research with a one-group pretest and posttest method as the evaluation measurement. The design and implementation of a self-paced orientation course in Canvas learning management system was detailed as the intervention. A 20-item SOLR questionnaire was selected as the pretest and posttest instrument. After the initial cycles, a sample of 2,590 college students were invited to participate in the 2017 orientation and respond to the pretest and posttest. Because separate consent forms were distributed and collected at the pretest and posttest stages, the researcher was able to use 445 pretest and 624 posttest datasets. The independent samples t-test results indicated statistically significant improvement of SOLR competencies. The exploratory factor analysis results also indicated changes of items associated with the SOLR constructs. The reliability coefficients of all subscales were > .90, with an increase in the reliability of the SOLR instrument as a whole from pretest (alpha = .92) to posttest (alpha = .95). Implications for the design and evaluation of online learning orientations and preparing student online learning readiness are discussed toward future design and implementation. C1 [Liu, Juhong Christie] James Madison Univ, Harrisonburg, VA 22807 USA. C3 James Madison University RP Liu, JHC (corresponding author), James Madison Univ, Harrisonburg, VA 22807 USA. OI Liu, Juhong Christie/0000-0002-3384-4379 CR Alem F, 2014, ELECTRON J E-LEARN, V12, P375 [Anonymous], TURKISH ONLINE J DIS [Anonymous], ONLINE LEARNING [Anonymous], 1991, MOTIVATED STRATEGIES [Anonymous], QUAL SCOR ADM ONL PR [Anonymous], 2019, THE GUARDIAN [Anonymous], LEARNING KNOWLEDGE A Bandura A., 1989, The multidimensional self-efficacy scale (unpublished test) Barab S., 2013, Handbook of research on educational communications and technology, P208 Beckford M.M., 2015, Distance Learning, V12, P43 Benson R, 2009, DISTANCE EDUC, V30, P5, DOI 10.1080/01587910902845972 Brooks D.C., 2017, ECAR Study of undergraduate students and information technology Carruth AK, 2010, J NURS EDUC, V49, P687, DOI 10.3928/01484834-20100831-06 Chan M., 2017, College University, V92, P12 Cheon J, 2012, COMPUT EDUC, V59, P1054, DOI 10.1016/j.compedu.2012.04.015 Cho MH, 2015, DISTANCE EDUC, V36, P80, DOI 10.1080/01587919.2015.1019963 Cho MH, 2012, ETR&D-EDUC TECH RES, V60, P1051, DOI 10.1007/s11423-012-9271-4 Coleman A., 2013, Journal of Communication, V4, P95 Creswell J., 2009, Research design: qualitative, quantitative, and mixed methods approaches, V3rd Dabbagh Nada, 2007, Contemporary Issues in Technology and Teacher Education, V7 Demir Kaymak Z, 2013, KURAM UYGUL EGIT BIL, V13, P1792 Diamond R.M., 2011, Designing and assessing courses and curricula: A practical guide Dray BJ, 2011, DISTANCE EDUC, V32, P29, DOI 10.1080/01587919.2011.565496 Entwistle N., 2015, Understanding student learning Fraenkel J.R., 2015, How to Design and Evaluate Research in Education Gilmore M, 2012, NURS EDUC PERSPECT, V33, P45 Glazer HR, 2015, AM J DISTANCE EDUC, V29, P135, DOI 10.1080/08923647.2015.1023093 Gray B., 2004, Journal of Distance Education, V19, P20 Horzum MB, 2015, EDUC SCI-THEOR PRACT, V15, P759, DOI 10.12738/estp.2015.3.2410 Hung ML, 2010, COMPUT EDUC, V55, P1080, DOI 10.1016/j.compedu.2010.05.004 Johnson R, 2015, INTERACT LEARN ENVIR, V23, P528, DOI 10.1080/10494820.2013.788037 Kaptelinin V., 2006, ACTING TECHNOLOGY AC Kauffman H, 2015, RES LEARN TECHNOL, V23, DOI 10.3402/rlt.v23.26507 Kim J, 2011, COMPUT EDUC, V57, P1512, DOI 10.1016/j.compedu.2011.02.005 Kvavik R.B., 2005, Educating the Next Generation Lee SM, 2014, INTERNET HIGH EDUC, V21, P41, DOI 10.1016/j.iheduc.2013.12.002 Lieberman M., 2017, Inside Higher Ed Liu JW, 2016, IEEE INT SYM MULTIM, P216, DOI [10.1109/ISM.2016.0050, 10.1109/ISM.2016.92] McKenney S., 2019, Conducting educational design research Moore M.G., 2011, Distance Education: A Systems View of Online Learning, V3rd Mosa A. A., 2016, Computer and Information Science, V9, P113, DOI [10.5539/cis.v9n1p113, DOI 10.5539/CIS.V9N1P113] Robichaud W., 2016, DISTANCE LEARNING, V13, P57 Scagnoli N. L., 2001, Journal of Research on Computing in Education, V34, P19 Scanlon E, 2005, J COMPUT ASSIST LEAR, V21, P430, DOI 10.1111/j.1365-2729.2005.00153.x Seaman J.E., 2018, Grade Increase: Tracking Distance Education in the United States Smith P., 2003, Distance Education, V24, P57, DOI DOI 10.1080/01587910303043 Smith P.L., 2005, Instructional Design So HJ, 2008, COMPUT EDUC, V51, P318, DOI 10.1016/j.compedu.2007.05.009 Swan K., 2002, ED COMMUNICATION INF, V2, P23, DOI DOI 10.1080/1463631022000005016 Swan K., 2001, Distance Education, V22, P306, DOI [10.1080/0158791010220208, 10. 1080/0158791010220208, DOI 10.1080/0158791010220208, https://doi.org/10.1080/0158791010220208] TINTO V, 1975, REV EDUC RES, V45, P89, DOI 10.3102/00346543045001089 Tomei LA, 2009, INT J INF COMMUN TEC, V5, P73, DOI 10.4018/jicte.2009040107 Uden L., 2007, International Journal of Mobile Learning and Organisation, V1, P81, DOI 10.1504/IJMLO.2007.011190 van Rooij SW, 2016, INTERNET HIGH EDUC, V28, P1, DOI 10.1016/j.iheduc.2015.08.001 Williams PE, 2004, RES HIGH EDUC, V45, P71, DOI 10.1023/B:RIHE.0000010047.46814.78 Yilmaz R, 2017, COMPUT HUM BEHAV, V70, P251, DOI 10.1016/j.chb.2016.12.085 Yu T, 2018, ONLINE LEARN, V22, P277, DOI 10.24059/olj.v22i4.1297 Yu T, 2015, ONLINE LEARN, V19, P120 Yukselturk E, 2007, EDUC TECHNOL SOC, V10, P71 NR 59 TC 20 Z9 36 U1 0 U2 13 PU ONLINE LEARNING CONSORTIUM PI NEWBURYPORT PA PO BOX 1238, NEWBURYPORT, MA 01950 USA SN 2472-5749 EI 2472-5730 J9 ONLINE LEARN JI Online Learn. PD DEC PY 2019 VL 23 IS 4 BP 42 EP 61 DI 10.24059/olj.v23i4.2078 PG 20 WC Education & Educational Research WE Emerging Sources Citation Index (ESCI) SC Education & Educational Research GA JR9TU UT WOS:000499959500004 OA gold DA 2024-09-05 ER PT J AU Sekli, GM AF Sekli, Giulio Marchena TI The research landscape on generative artificial intelligence: a bibliometric analysis of transformer-based models SO KYBERNETES LA English DT Article; Early Access DE Generative artificial intelligence; Transformer-based models; Bibliometrics; Co-citation analysis; Co-word analysis; Strategic diagram ID ABSORPTIVE-CAPACITY; INFORMATION; COCITATION; INNOVATION; EVOLUTION; INTERVIEW; NETWORK; TOOL AB Purpose - The aim of this study is to offer valuable insights to businesses and facilitate better understanding on transformer-based models (TBMs), which are among the widely employed generative artificial intelligence (GAI) models, garnering substantial attention due to their ability to process and generate complex data. Design/methodology/approach - Existing studies on TBMs tend to be limited in scope, either focusing on specific fields or being highly technical. To bridge this gap, this study conducts robust bibliometric analysis to explore the trends across journals, authors, affiliations, countries and research trajectories using science mapping techniques - co-citation, co-words and strategic diagram analysis. Findings - Identified research gaps encompass the evolution of new closed and open-source TBMs; limited exploration across industries like education and disciplines like marketing; a lack of in-depth exploration on TBMs' adoption in the health sector; scarcity of research on TBMs' ethical considerations and potential TBMs' performance research in diverse applications, like image processing. Originality/value - The study offers an updated TBMs landscape and proposes a theoretical framework for TBMs' adoption in organizations. Implications for managers and researchers along with suggested research questions to guide future investigations are provided. C1 [Sekli, Giulio Marchena] Ctr Catolica Grad Business Sch, Lima, Peru. [Sekli, Giulio Marchena] Pontificia Univ Catolica Peru, Lima, Peru. C3 Pontificia Universidad Catolica del Peru RP Sekli, GM (corresponding author), Ctr Catolica Grad Business Sch, Lima, Peru.; Sekli, GM (corresponding author), Pontificia Univ Catolica Peru, Lima, Peru. EM gmarchena@pucp.pe RI MARCHENA SEKLI, GIULIO FRANZ/IST-0279-2023 OI Marchena Sekli, Giulio/0000-0003-3854-2879 CR Acheampong FA, 2021, ARTIF INTELL REV, V54, P5789, DOI 10.1007/s10462-021-09958-2 Adam Nawal Abdalla, 2021, J Innov Entrep, V10, P15, DOI 10.1186/s13731-021-00156-6 Agarwal N., 2023, National Bureau of Economic Research Working Paper Series, DOI DOI 10.3386/W31422 Akbari F, 2022, IEEE INT CONF HEALT, P27, DOI 10.1109/ICHI54592.2022.00016 Alayrac JB, 2022, Arxiv, DOI arXiv:2204.14198 Benítez-Andrades JA, 2022, JMIR MED INF, V10, DOI 10.2196/34492 Alkaissi H, 2023, CUREUS J MED SCIENCE, V15, DOI 10.7759/cureus.35179 Alqahtani Y, 2023, APPL SCI-BASEL, V13, DOI 10.3390/app13031387 Alsentzer E, 2019, Arxiv, DOI arXiv:1904.03323 Amatriain X, 2024, Arxiv, DOI [arXiv:2302.07730, DOI 10.48550/ARXIV.2302.07730] Ameen N, 2022, PSYCHOL MARKET, V39, P1802, DOI 10.1002/mar.21699 Martínez MA, 2015, RES SOCIAL WORK PRAC, V25, P257, DOI 10.1177/1049731514522101 Angelis GF, 2023, IEEE T CONSUM ELECTR, V69, P308, DOI 10.1109/TCE.2023.3237862 Aria M, 2017, J INFORMETR, V11, P959, DOI 10.1016/j.joi.2017.08.007 Yeung JA, 2023, FRONT DIGIT HEALTH, V5, DOI 10.3389/fdgth.2023.1161098 Ayling J., 2022, AI and Ethics, V2, P405, DOI DOI 10.1007/S43681-021-00084-X Beeri I, 2013, J BUS ETHICS, V112, P59, DOI 10.1007/s10551-012-1232-7 Beltagy I, 2019, 2019 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING AND THE 9TH INTERNATIONAL JOINT CONFERENCE ON NATURAL LANGUAGE PROCESSING (EMNLP-IJCNLP 2019), P3615 Bhattacharya K, 2023, INDIAN J SURG, V85, P1346, DOI 10.1007/s12262-023-03727-x Bird JJ, 2023, PROCEEDINGS OF THE 16TH ACM INTERNATIONAL CONFERENCE ON PERVASIVE TECHNOLOGIES RELATED TO ASSISTIVE ENVIRONMENTS, PETRA 2023, P475, DOI 10.1145/3594806.3596520 Bockting CL, 2023, NATURE, V614, P224, DOI 10.1038/d41586-023-00288-7 Botelle R, 2022, BMJ OPEN, V12, DOI 10.1136/bmjopen-2021-052911 Bouschery SG, 2023, J PROD INNOVAT MANAG, V40, P139, DOI 10.1111/jpim.12656 Brown T., 2020, ADV NEURAL INFORM PR, V33, P1877, DOI DOI 10.48550/ARXIV.2005.14165 CALLON M, 1991, SCIENTOMETRICS, V22, P155, DOI 10.1007/BF02019280 Castelli M, 2022, APPL SCI-BASEL, V12, DOI 10.3390/app12094127 Chandra A, 2023, ELIFE, V12, DOI 10.7554/eLife.82819 Chang YW, 2015, SCIENTOMETRICS, V105, P2071, DOI 10.1007/s11192-015-1762-8 Chen LJ, 2023, Arxiv, DOI [arXiv:2307.09009, 10.48550/arXiv.2307.09009] Chen YB, 2022, AIR QUAL ATMOS HLTH, V15, P1533, DOI 10.1007/s11869-022-01197-w Cheng KM, 2023, ANN BIOMED ENG, V51, P1645, DOI 10.1007/s10439-023-03221-1 Cheng KM, 2023, ANN BIOMED ENG, V51, P1658, DOI 10.1007/s10439-023-03213-1 Cheng M., 2023, P IEEECVF C COMPUTER, P1702 Chui M., 2022, Generative AI Is Here: How Tools like ChatGPT Could Change Your Business Cobo MJ, 2011, J INFORMETR, V5, P146, DOI 10.1016/j.joi.2010.10.002 COHEN WM, 1990, ADMIN SCI QUART, V35, P128, DOI 10.2307/2393553 Crawford J, 2023, J UNIV TEACH LEARN P, V20, DOI 10.53761/1.20.3.02 Cuevas-Vargas H, 2022, J BUS RES, V140, P11, DOI 10.1016/j.jbusres.2021.11.058 Hernández IMD, 2023, ARTIF INTELL REV, V56, P1699, DOI 10.1007/s10462-022-10206-4 Dennean K., 2023, Let's chat about ChatGPT Devlin J, 2019, Arxiv, DOI arXiv:1810.04805 Dogru T, 2023, J HOSP TOUR RES, DOI 10.1177/10963480231188663 Donthu N, 2021, J BUS RES, V133, P285, DOI 10.1016/j.jbusres.2021.04.070 Dosovitskiy A., 2020, ARXIV, DOI 10.48550/arXiv.1412.11929 Dwivedi R., 2023, International Journal of Information Management Data Insights, V3, P100185 El-Alami FZ, 2022, J KING SAUD UNIV-COM, V34, P8422, DOI 10.1016/j.jksuci.2021.02.005 Espejel JL, 2023, Arxiv, DOI arXiv:2303.12869 Fan LZ, 2023, Arxiv, DOI arXiv:2304.02020 Fang ZY, 2022, PROC CVPR IEEE, P17988, DOI 10.1109/CVPR52688.2022.01748 Farahani M, 2021, NEURAL PROCESS LETT, V53, P3831, DOI 10.1007/s11063-021-10528-4 Fazlija B, 2022, MATHEMATICS-BASEL, V10, DOI 10.3390/math10132156 Fedorova E, 2022, INT J ACCOUNT INF MA, V30, P73, DOI 10.1108/IJAIM-06-2021-0117 Floridi L, 2020, MIND MACH, V30, P681, DOI 10.1007/s11023-020-09548-1 Franzoni Valentina, 2023, Computational Science and Its Applications - ICCSA 2023 Workshops: Proceedings. Lecture Notes in Computer Science (14107), P118, DOI 10.1007/978-3-031-37114-1_9 Fu Y, 2023, Arxiv, DOI arXiv:2305.17306 Gad G, 2022, ELECTRONICS-SWITZ, V11, DOI 10.3390/electronics11111785 Gao H, 2022, MULTIMED TOOLS APPL, V81, P12973, DOI 10.1007/s11042-022-12208-4 Gillioz Anthony, 2020, 2020 15th Conference on Computer Science and Information Systems (FedCSIS), P179, DOI 10.15439/2020F20 Goktas P, 2023, J ALLER CL IMM-PRACT, V11, P2697, DOI 10.1016/j.jaip.2023.05.042 Goodfellow IJ, 2014, ADV NEUR IN, V27, P2672, DOI 10.1145/3422622 Gozalo-Brizuela R., 2023, GRACE: Global Review of AI Community Ethics, V1 Grant RM, 1996, STRATEGIC MANAGE J, V17, P109, DOI 10.1002/smj.4250171110 Hadwan M, 2023, CMC-COMPUT MATER CON, V74, P3471, DOI 10.32604/cmc.2023.033457 Han K, 2023, IEEE T PATTERN ANAL, V45, P87, DOI 10.1109/TPAMI.2022.3152247 He KM, 2016, PROC CVPR IEEE, P770, DOI 10.1109/CVPR.2016.90 Hongqi Han, 2013, 2013 International Conference on Information Science and Cloud Computing Companion (ISCC-C), P653, DOI 10.1109/ISCC-C.2013.121 Howard J, 2018, Arxiv, DOI arXiv:1801.06146 Illia L, 2023, BUS ETHICS ENV RESP, V32, P201, DOI 10.1111/beer.12479 Iskender A, 2023, EUR J TOUR RES, V34, DOI 10.54055/ejtr.v34i.3169 Islam Md Nurul, 2024, Science & Technology Libraries, V43, P31, DOI 10.1080/0194262X.2023.2185919 Ivanov S, 2021, J TOUR FUTURES, V9, P214, DOI 10.1108/JTF-02-2023-0038 Jacobides MG, 2021, STRATEG SCI, V6, P412, DOI 10.1287/stsc.2021.0148 Johnson AEW, 2016, SCI DATA, V3, DOI 10.1038/sdata.2016.35 Johnson DR, 2023, BEHAV RES METHODS, V55, P3726, DOI 10.3758/s13428-022-01986-2 Jovanovic M, 2022, COMPUTER, V55, P107, DOI 10.1109/MC.2022.3192720 Jumper J, 2021, NATURE, V596, P583, DOI 10.1038/s41586-021-03819-2 Kabullar E., 2022, INT IST MOD SCI RES Kalyan K. S., 2021, arXiv Kaplan-Rakowski R., 2023, Journal of Interactive Learning Research, V34, P313 Khaltar O, 2020, PUBLIC INTEGR, V22, P372, DOI 10.1080/10999922.2019.1615163 Kim M.S., 2023, SENTIMENT ANAL DEEP, P1, DOI [10.1007/978-981-19-5443-61, DOI 10.1007/978-981-19-5443-61] Kim Y, 2022, AUTOMAT CONSTR, V134, DOI 10.1016/j.autcon.2021.104061 Kingma D. P., 2014, INT C LEARNING REPRE Kingma D.P., 2013, INT C LEARN REPR Tamala JK, 2022, CLEAN ENG TECHNOL, V7, DOI 10.1016/j.clet.2022.100437 Knani M, 2022, INT J HOSP MANAG, V107, DOI 10.1016/j.ijhm.2022.103317 Krizhevsky A, 2017, COMMUN ACM, V60, P84, DOI 10.1145/3065386 Kucharavy A., 2023, arXiv, DOI [10.48550/arXiv.2303.1213, DOI 10.48550/ARXIV.2303.1213] Kulkarni S, 2014, BUS ETHICS, V23, P15, DOI 10.1111/beer.12035 Kumar L., 2022, PREPRINT Lanz Z., 2022, International Journal of Cybersecurity Intelligence Cybercrime, V5, P43, DOI [10.52306/FWOZ7041, DOI 10.52306/FWOZ7041] Le NQK, 2022, COMPUT BIOL CHEM, V99, DOI 10.1016/j.compbiolchem.2022.107732 Lecler A, 2023, DIAGN INTERV IMAG, V104, P269, DOI 10.1016/j.diii.2023.02.003 Lecun Y, 1998, P IEEE, V86, P2278, DOI 10.1109/5.726791 Lee J, 2020, BIOINFORMATICS, V36, P1234, DOI 10.1093/bioinformatics/btz682 Leung XY, 2017, INT J HOSP MANAG, V66, P35, DOI 10.1016/j.ijhm.2017.06.012 Li B, 2022, COGN COMPUT, V14, P989, DOI 10.1007/s12559-022-09993-3 Li F, 2019, JMIR MED INF, V7, DOI 10.2196/14830 Liao WX, 2021, APPL INTELL, V51, P3522, DOI 10.1007/s10489-020-01964-1 Lim WM, 2023, INT J MANAG EDUC-OXF, V21, DOI 10.1016/j.ijme.2023.100790 Liu Y, 2023, J MATERIOMICS, V9, P798, DOI 10.1016/j.jmat.2023.05.001 Liu Z, 2021, 2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), P9992, DOI 10.1109/ICCV48922.2021.00986 Lopez-Garcia G, 2021, IEEE ACCESS, V9, P72387, DOI 10.1109/ACCESS.2021.3080085 Lotka A.J., 1926, J Wash Acad Sci Wash D C, V16, P23 Lu HX, 2022, BMC MED RES METHODOL, V22, DOI 10.1186/s12874-022-01665-y Lyu CL, 2022, J INNOV KNOWL, V7, DOI 10.1016/j.jik.2022.100187 Magni D, 2022, ASIA PAC J MANAG, DOI 10.1007/s10490-022-09813-0 Menzel D.C., 2012, Ethics Management for Public Administrators: Building Organizations of Integrity, DOI [10.4324/9781315704500, DOI 10.4324/9781315704500] Mezzi R, 2022, SENSORS-BASEL, V22, DOI 10.3390/s22030846 Mich L, 2023, INF TECHNOL TOUR, V25, P1, DOI 10.1007/s40558-023-00248-x Mikolov T., 2013, ADV NEURAL INFORM PR, P3111, DOI DOI 10.48550/ARXIV.1310.4546 Mondal S, 2023, TECHNOLOGIES, V11, DOI 10.3390/technologies11020044 Moreland, 2023, iNFTs: bringing NFT characters to life Nájera-Sánchez JJ, 2020, SUSTAINABILITY-BASEL, V12, DOI 10.3390/su12010278 Naveen S, 2021, IMAGE VISION COMPUT, V115, DOI 10.1016/j.imavis.2021.104284 Ng QX, 2022, VACCINES-BASEL, V10, DOI 10.3390/vaccines10091457 Noorian A, 2024, COMPUT STAND INTER, V87, DOI 10.1016/j.csi.2023.103766 Oppenlaender J, 2024, Arxiv, DOI arXiv:2306.05036 Pal KK, 2023, Arxiv, DOI arXiv:2302.10346 Pan RH, 2023, PROCES LENG NAT, P27, DOI 10.26342/2023-70-2?2023 Paszke A, 2019, ADV NEUR IN, V32 Pearce K., 2023, P AAAI C ART INT, V37, P16025, DOI [10.1609/aaai.v37i13.26903, DOI 10.1609/AAAI.V37I13.26903] Peng GQ, 2023, COMPUT BIOL MED, V154, DOI 10.1016/j.compbiomed.2023.106537 Peng YF, 2019, Arxiv, DOI [arXiv:1906.05474, 10.48550/arXiv.1906.05474, DOI 10.48550/ARXIV.1906.05474] Perkins M, 2023, J UNIV TEACH LEARN P, V20, DOI 10.53761/1.20.02.07 Qiu CP, 2022, IEEE J-STARS, V15, P4104, DOI 10.1109/JSTARS.2022.3175200 Ho QT, 2021, COMPUT BIOL MED, V131, DOI 10.1016/j.compbiomed.2021.104258 Radford A., 2018, Improving language understanding by generative pre-training Radford A., 2019, LANGUAGE MODELS ARE Raffel C, 2020, J MACH LEARN RES, V21 Rahali A, 2023, AI-BASEL, V4, P54, DOI 10.3390/ai4010004 Reimers N, 2019, Arxiv, DOI [arXiv:1908.10084, DOI 10.48550/ARXIV.1908.10084] Reisenbichler M, 2022, MARKET SCI, V41, P441, DOI 10.1287/mksc.2022.1354 Ren YK, 2023, PROCEEDINGS OF THE 46TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, SIGIR 2023, P3364, DOI 10.1145/3539618.3591855 Rogers A, 2020, T ASSOC COMPUT LING, V8, P842, DOI 10.1162/tacl_a_00349 Rojas-Lamorena AJ, 2022, J BUS RES, V139, P1067, DOI 10.1016/j.jbusres.2021.10.025 Roumeliotis K I., 2023, Llama 2: Early Adopters' Utilization of Meta's New Open-Source Pretrained Model, DOI [DOI 10.20944/PREPRINTS202307.2142.V2, 10.20944/PREPRINTS202307.2142.V2] Salvagno M, 2023, CRIT CARE, V27, DOI 10.1186/s13054-023-04380-2 Sanderson K, 2023, NATURE, V615, P773, DOI 10.1038/d41586-023-00816-5 Sawhney R, 2020, PROCEEDINGS OF THE 2020 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING (EMNLP), P7685 Sezgin E, 2022, JMIR MED INF, V10, DOI 10.2196/32875 Shamshad F, 2023, MED IMAGE ANAL, V88, DOI 10.1016/j.media.2023.102802 Si YQ, 2019, J AM MED INFORM ASSN, V26, P1297, DOI 10.1093/jamia/ocz096 Sidhu AS, 2022, MATER TODAY-PROC, V50, P1248, DOI 10.1016/j.matpr.2021.08.132 Siegle D., 2023, Gifted Child Today, V46, P211, DOI [DOI 10.1177/10762175231168443, 10.1177/10762175231168443] Socher Richard, 2014, Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), P1532, DOI [10.3115/v1/D14-1162.https, DOI 10.3115/V1/D14-1162.HTTPS, 10.3115/v1/D14-1162] Sohl-Dickstein J, 2015, PR MACH LEARN RES, V37, P2256 Stokel-Walker C, 2023, NATURE, V614, P214, DOI 10.1038/d41586-023-00340-6 Su JH, 2023, ECNU REV EDUC, V6, P355, DOI 10.1177/20965311231168423 Sumbal MS, 2024, KYBERNETES, DOI 10.1108/K-06-2023-1126 Sun C, 2019, LECT NOTES ARTIF INT, V11856, P194, DOI 10.1007/978-3-030-32381-3_16 Sun PYT, 2010, INT J MANAG REV, V12, P130, DOI 10.1111/j.1468-2370.2008.00256.x Tan L, 2022, IEEE T INTELL TRANSP, V23, P2830, DOI 10.1109/TITS.2021.3119921 Tang KY, 2023, INTERACT LEARN ENVIR, V31, P2134, DOI 10.1080/10494820.2021.1875001 Tang XC, 2022, REMOTE SENS-BASEL, V14, DOI 10.3390/rs14122884 Tiwari D, 2022, NEW GENERAT COMPUT, V40, P1165, DOI 10.1007/s00354-022-00182-2 Todorova G, 2007, ACAD MANAGE REV, V32, P774, DOI 10.5465/AMR.2007.25275513 Tomas David, 2023, Journal of Ambient Intelligence and Humanized Computing, P7399, DOI 10.1007/s12652-022-04447-y Tornatzky L. G., 1990, The Processes of Technological Innovation Touvron H, 2023, Arxiv, DOI arXiv:2307.09288 Touvron H, 2022, LECT NOTES COMPUT SC, V13684, P516, DOI 10.1007/978-3-031-20053-3_30 Üzen H, 2022, EXPERT SYST APPL, V209, DOI 10.1016/j.eswa.2022.118269 Vaismoradi M, 2013, NURS HEALTH SCI, V15, P398, DOI 10.1111/nhs.12048 Van Eck N.J., 2020, VOSviewer Manual Version 1.6.16, P1 Vaswani A, 2017, ADV NEUR IN, V30 Velez-Estevez A, 2022, SCIENTOMETRICS, V127, P7517, DOI 10.1007/s11192-022-04486-4 Wan CX, 2022, J SUPERCOMPUT, V78, P6503, DOI 10.1007/s11227-021-04097-5 Wang Guan, 2020, CCRIS 2020: 2020 International Conference on Control, Robotics and Intelligent System, P176, DOI 10.1145/3437802.3437832 Wang W, 2022, IEEE GEOSCI REMOTE S, V19, DOI 10.1109/LGRS.2022.3187135 Wang YS, 2018, J BIOMED INFORM, V77, P34, DOI 10.1016/j.jbi.2017.11.011 Watanabe T, 2022, JMIR CANCER, V8, DOI 10.2196/37840 Xie J, 2022, IEEE T NEUR SYS REH, V30, P2126, DOI 10.1109/TNSRE.2022.3194600 Xie XM, 2018, J BUS RES, V88, P289, DOI 10.1016/j.jbusres.2018.01.019 Yan D, 2024, KYBERNETES, DOI 10.1108/K-09-2023-1933 Yang L, 2023, KYBERNETES, DOI 10.1108/K-06-2023-1011 Yang M, 2023, AUTOMAT CONSTR, V146, DOI 10.1016/j.autcon.2022.104703 Yu KP, 2021, IEEE COMMUN MAG, V59, P76, DOI 10.1109/MCOM.101.2001126 Zhang M, 2021, FUND RES-CHINA, V1, P831, DOI 10.1016/j.fmre.2021.11.011 Zhang XY, 2024, Arxiv, DOI arXiv:2312.09911 Zhu GX, 2023, ACM T WEB, V17, DOI 10.1145/3577032 Zupic I, 2015, ORGAN RES METHODS, V18, P429, DOI 10.1177/1094428114562629 NR 181 TC 0 Z9 0 U1 3 U2 3 PU EMERALD GROUP PUBLISHING LTD PI Leeds PA Floor 5, Northspring 21-23 Wellington Street, Leeds, W YORKSHIRE, ENGLAND SN 0368-492X EI 1758-7883 J9 KYBERNETES JI Kybernetes PD 2024 JUL 19 PY 2024 DI 10.1108/K-03-2024-0554 EA JUL 2024 PG 37 WC Computer Science, Cybernetics WE Science Citation Index Expanded (SCI-EXPANDED) SC Computer Science GA ZB4L0 UT WOS:001272816000001 DA 2024-09-05 ER PT J AU Habib, R Afzal, MT AF Habib, Raja Afzal, Muhammad Tanvir TI Paper recommendation using citation proximity in bibliographic coupling SO TURKISH JOURNAL OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCES LA English DT Article DE Paper recommendation; bibliographic coupling; citation proximity analysis; DBSCAN AB Research paper recommendation has been a hot research area for the last few decades. Thus far, numerous different paper recommendation approaches have been proposed. Some of these include methods based on metadata, content similarity, collaborative filtering, and citation analysis, among others. Citation analysis methods include bibliographic coupling and co-citation analysis. Much research has been done in the area of co-citation analysis. Researchers have also performed experiments using the proximity of in-text citations in co-citation analysis and have found that it improves the accuracy of paper recommendation. In co-citation analysis, the similarity is discovered based on the frequency of co-cited papers in different research papers and those citing papers may belong to different areas. However, when proximity is used to calculate co-citation, the accuracy of recommendations improves significantly. Bibliographic coupling finds bibliographic coupling strength based on the common references between two papers. In bibliographic coupling, a large number of common references of two papers means that they belong to the same area, unlike co-citation analysis, in which there is a possibility that the citing papers may belong to different areas. Based on the observation that with the use of proximity analysis the accuracy in cases of co-citation analysis has improved, this paper investigates if the accuracy of paper recommendation can be further improved by using proximity analysis in bibliographic coupling. This paper proposes an approach that extends the traditional bibliographic coupling by exploiting the proximity of in-text citations of bibliographically coupled articles. The proposed approach takes into account the proximity of in-text citations by clustering the in-text citations using a density-based algorithm called DBSCAN. Experiments on a data set of research papers are presented to show that there is a substantial increase in accuracy of the recommendations produced by DBSCAN based on proximity analysis of in-text citations compared to traditional bibliographic coupling and content-based approaches. C1 [Habib, Raja; Afzal, Muhammad Tanvir] Capital Univ Sci & Technol, Dept Comp Sci, Islamabad, Pakistan. C3 Capital University of Science & Technology RP Habib, R (corresponding author), Capital Univ Sci & Technol, Dept Comp Sci, Islamabad, Pakistan. EM r_habib_pk@yahoo.com RI Afzal, Muhammad/D-3741-2019 OI Afzal, Muhammad/0000-0002-7851-2327; Afzal, Muhammad Tanvir/0000-0002-9765-8815 FU Higher Education Commission (HEC) of Pakistan FX This research was supported by Higher Education Commission (HEC) of Pakistan. We thank the Capital University of Science and Technology Islamabad for assistance. We thank Ansar Mehmood for assistance with compilation of the gold standard dataset and for important recommendations and comments during this research and previous versions of the manuscript. CR Afzal MT, 2007, J UNIVERS COMPUT SCI, V13, P1234 [Anonymous], 2010, Proceedings of the 10th Joint Conference on Digital Libraries, DOI DOI 10.1145/1816123.1816129 Beel Joeran., 2013, P INT WORKSH REPR RE, P15, DOI 10.1145/2532508.2532512 Ding Y, 2014, J ASSOC INF SCI TECH, V65, P1820, DOI 10.1002/asi.23256 Doerfel S, 2012, P 4 ACM RECSYS WORKS, P9, DOI DOI 10.1145/2365934.2365937 GARFIELD E, 1972, SCIENCE, V178, P471, DOI 10.1126/science.178.4060.471 Gipp B, 2009, PRO INT CONF SCI INF, V2, P571 Goldberg K, 2001, INFORM RETRIEVAL, V4, P133, DOI 10.1023/A:1011419012209 Hongyan P, 2006, J CHINA SOC SCI TECH, V1 KESSLER MM, 1963, AM DOC, V14, P10, DOI 10.1002/asi.5090140103 Khabsa M, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0093949 Kuhn T, 2014, PHYS REV X, V4, DOI 10.1103/PhysRevX.4.041036 Lee J, 2008, ARXIV13045457 McNee SM, 2002, P 2002 ACM C COMP SU, P116, DOI DOI 10.1145/587078.587096 Nassiri I, 2013, J INFORMETR, V7, P91, DOI 10.1016/j.joi.2012.08.006 Perc M, 2014, J R SOC INTERFACE, V11, DOI 10.1098/rsif.2014.0378 Perc M, 2010, J INFORMETR, V4, P358, DOI 10.1016/j.joi.2010.03.001 Ratprasartporn N, 2007, LECT NOTES COMPUT SC, V4675, P271 Shahid A, 2011, Australian Journal of Basic and Applied Sciences, V5, P1599 SMALL H, 1973, J AM SOC INFORM SCI, V24, P265, DOI 10.1002/asi.4630240406 Spearman C, 1904, AM J PSYCHOL, V15, P72, DOI 10.2307/1412159 NR 21 TC 18 Z9 20 U1 3 U2 40 PU Tubitak Scientific & Technological Research Council Turkey PI ANKARA PA ATATURK BULVARI NO 221, KAVAKLIDERE, TR-06100 ANKARA, TURKIYE SN 1300-0632 EI 1303-6203 J9 TURK J ELECTR ENG CO JI Turk. J. Electr. Eng. Comput. Sci. PY 2017 VL 25 IS 4 BP 2708 EP 2718 DI 10.3906/elk-1608-180 PG 11 WC Computer Science, Artificial Intelligence; Engineering, Electrical & Electronic WE Science Citation Index Expanded (SCI-EXPANDED) SC Computer Science; Engineering GA FC7AR UT WOS:000406993300013 OA Bronze DA 2024-09-05 ER PT J AU Miranda, O Kiehl, SM Qi, XG Brannock, MD Kosten, T Ryan, ND Kirisci, L Wang, YS Wang, LR AF Miranda, Oshin Kiehl, Sophie Marie Qi, Xiguang Brannock, M. Daniel Kosten, Thomas Ryan, Neal David Kirisci, Levent Wang, Yanshan Wang, Lirong TI Enhancing post-traumatic stress disorder patient assessment: leveraging natural language processing for research of domain criteria identification using electronic medical records SO BMC MEDICAL INFORMATICS AND DECISION MAKING LA English DT Article DE Post-traumatic stress disorder; Research of domain criteria; Real-world evidence; Clinical notes; Natural language processing ID SYMPTOM SEVERITY; PTSD; ALCOHOL AB Background Extracting research of domain criteria (RDoC) from high-risk populations like those with post-traumatic stress disorder (PTSD) is crucial for positive mental health improvements and policy enhancements. The intricacies of collecting, integrating, and effectively leveraging clinical notes for this purpose introduce complexities.Methods In our study, we created a natural language processing (NLP) workflow to analyze electronic medical record (EMR) data and identify and extract research of domain criteria using a pre-trained transformer-based natural language model, all-mpnet-base-v2. We subsequently built dictionaries from 100,000 clinical notes and analyzed 5.67 million clinical notes from 38,807 PTSD patients from the University of Pittsburgh Medical Center. Subsequently, we showcased the significance of our approach by extracting and visualizing RDoC information in two use cases: (i) across multiple patient populations and (ii) throughout various disease trajectories.Results The sentence transformer model demonstrated high F1 macro scores across all RDoC domains, achieving the highest performance with a cosine similarity threshold value of 0.3. This ensured an F1 score of at least 80% across all RDoC domains. The study revealed consistent reductions in all six RDoC domains among PTSD patients after psychotherapy. We found that 60.6% of PTSD women have at least one abnormal instance of the six RDoC domains as compared to PTSD men (51.3%), with 45.1% of PTSD women with higher levels of sensorimotor disturbances compared to men (41.3%). We also found that 57.3% of PTSD patients have at least one abnormal instance of the six RDoC domains based on our records. Also, veterans had the higher abnormalities of negative and positive valence systems (60% and 51.9% of veterans respectively) compared to non-veterans (59.1% and 49.2% respectively). The domains following first diagnoses of PTSD were associated with heightened cue reactivity to trauma, suicide, alcohol, and substance consumption.Conclusions The findings provide initial insights into RDoC functioning in different populations and disease trajectories. Natural language processing proves valuable for capturing real-time, context dependent RDoC instances from extensive clinical notes. C1 [Miranda, Oshin; Qi, Xiguang; Wang, Lirong] Univ Pittsburgh, Computat Chem Genom Screening Ctr, Sch Pharm, Dept Pharmaceut Sci, Pittsburgh, PA 15213 USA. [Kiehl, Sophie Marie] Colorado State Univ, Ft Collins, CO 80521 USA. [Brannock, M. Daniel] RTI Int, Durham, NC 27709 USA. [Kosten, Thomas] Baylor Coll Med, Menninger Dept Psychiat, Houston, TX 77030 USA. [Ryan, Neal David] Univ Pittsburgh, Sch Med, Dept Psychiat, Pittsburgh, PA 15213 USA. [Kirisci, Levent] Univ Pittsburgh, Sch Pharm, Pittsburgh, PA 15213 USA. [Wang, Yanshan] Univ Pittsburgh, Sch Hlth & Rehabil Sci, Pittsburgh, PA 15213 USA. C3 Pennsylvania Commonwealth System of Higher Education (PCSHE); University of Pittsburgh; Colorado State University; Research Triangle Institute; Baylor College of Medicine; Pennsylvania Commonwealth System of Higher Education (PCSHE); University of Pittsburgh; Pennsylvania Commonwealth System of Higher Education (PCSHE); University of Pittsburgh; Pennsylvania Commonwealth System of Higher Education (PCSHE); University of Pittsburgh RP Wang, LR (corresponding author), Univ Pittsburgh, Computat Chem Genom Screening Ctr, Sch Pharm, Dept Pharmaceut Sci, Pittsburgh, PA 15213 USA. EM liw30@pitt.edu OI Brannock, Daniel/0000-0001-8095-547X FU Office of the Assistant Secretary of Defense for Health Affairs through the Alcohol and Substance Abuse Research Program; University of Pittsburgh Center for Research Computing through the NIH [S10OD028483-01A1]; NIH [UL1 TR001857]; [W81XWH-22-2-0081 (PASA3)] FX The U.S. Army Medical Research Acquisition Activity, 820 Chandler Street, Fort Detrick MD 21702-5014 is the awarding and administering acquisition office. This work was supported by the Office of the Assistant Secretary of Defense for Health Affairs through the Alcohol and Substance Abuse Research Program under Award No. W81XWH-22-2-0081 (PASA3). Opinions, interpretations, conclusions, and recommendations are those of the author and are not necessarily endorsed by the Department of Defense. This research was supported in part by the University of Pittsburgh Center for Research Computing through the NIH S10OD028483-01A1 grant and NIH UL1 TR001857 grant. CR Arioli M, 2018, BIOMED RES INT, V2018, DOI 10.1155/2018/4283427 Beam E, 2021, NAT NEUROSCI, V24, P1733, DOI 10.1038/s41593-021-00948-9 Blum Kenneth, 2008, Neuropsychiatr Dis Treat, V4, P893 Bomyea J, 2012, NEUROPHARMACOLOGY, V62, P607, DOI 10.1016/j.neuropharm.2011.05.028 Boyd JE, 2018, EUR J PSYCHOTRAUMATO, V9, DOI 10.1080/20008198.2018.1463794 Cain CK, 2012, EXPERT OPIN INV DRUG, V21, P1323, DOI 10.1517/13543784.2012.704020 Charuvastra A, 2008, ANNU REV PSYCHOL, V59, P301, DOI 10.1146/annurev.psych.58.110405.085650 Chen J., 2021, ANN OPER RES Clark C, 2017, J BIOMED INFORM, V75, pS120, DOI 10.1016/j.jbi.2017.07.005 Coffey SF, 2016, PSYCHOL ADDICT BEHAV, V30, P778, DOI 10.1037/adb0000201 Compean E, 2019, PROG NEURO-PSYCHOPH, V88, P265, DOI 10.1016/j.pnpbp.2018.08.001 COONEY NL, 1987, J CONSULT CLIN PSYCH, V55, P150, DOI 10.1037/0022-006X.55.2.150 CS. W, 2014, Front Psychiatry, V5 Cuthbert BN, 2022, CURR DIR PSYCHOL SCI, V31, P107, DOI 10.1177/09637214211051363 Dalgleish T, 2020, J CONSULT CLIN PSYCH, V88, P179, DOI 10.1037/ccp0000482 Damme KSF, 2021, SCHIZOPHRENIA BULL, V47, P332, DOI 10.1093/schbul/sbaa138 Dugré JR, 2022, SCI REP-UK, V12, DOI 10.1038/s41598-022-08909-3 Eder-Moreau E, 2022, FRONT PSYCHIATRY, V13, DOI 10.3389/fpsyt.2022.862476 Elixhauser A, 2006, Healthcare Cost and Utilization Project (HCUP) Statistical Briefs Fani N, 2019, J PSYCHIATR RES, V116, P34, DOI 10.1016/j.jpsychires.2019.05.009 Ferrafiat V, 2020, FRONT PSYCHIATRY, V11, DOI 10.3389/fpsyt.2020.00724 Filannino M, 2017, J BIOMED INFORM, V75, pS62, DOI 10.1016/j.jbi.2017.04.017 GA, 2018, Neurobiol Stress, V9, P214 Gates MA, 2012, PSYCHOL SERV, V9, P361, DOI 10.1037/a0027649 Goodwin TR, 2017, J BIOMED INFORM, V75, pS71, DOI 10.1016/j.jbi.2017.05.020 Hart KL, 2021, J ACAD CONSULT-LIAIS, V62, P430, DOI 10.1016/j.jaclp.2021.01.002 Hasratian AM, 2022, BEHAV THER, V53, P1092, DOI 10.1016/j.beth.2022.04.009 Hayes JP, 2012, FRONT INTEGR NEUROSC, V6, DOI 10.3389/fnint.2012.00089 Hearst MPE, 2019, ation of semantically grouped word cloud designs, P1 Hori H, 2020, SCI REP-UK, V10, DOI 10.1038/s41598-020-60096-1 Jiang S, 2019, FRONT PSYCHIATRY, V10, DOI 10.3389/fpsyt.2019.00808 Karstoft KI, 2015, BMC PSYCHIATRY, V15, DOI 10.1186/s12888-015-0399-8 Kip A, 2022, PSYCHOL MED, V52, P2201, DOI 10.1017/S0033291722001866 Koenigs M, 2009, NEUROSCIENTIST, V15, P540, DOI 10.1177/1073858409333072 Koyuncu Ahmet, 2019, Drugs Context, V8, P212573, DOI 10.7573/dic.212573 Lei CL, 2022, FRONT PSYCHIATRY, V13, DOI 10.3389/fpsyt.2022.857087 López-Castro T, 2019, J TRAUMA STRESS, V32, P484, DOI 10.1002/jts.22411 Lucarini VAA, 2023, BMC Psychiatry, P23 Mann S., 2023, Posttraumatic Stress Disorder Maren S, 2016, NEUROPSYCHOPHARMACOL, V41, P58, DOI 10.1038/npp.2015.180 Markatou M, 2023, FRONT MED-LAUSANNE, V10, DOI 10.3389/fmed.2023.1076794 McCauley JL, 2012, CLIN PSYCHOL-SCI PR, V19, P283, DOI 10.1111/cpsp.12006 Miles SR, 2023, PSYCHOL TRAUMA-US, V15, P1398, DOI 10.1037/tra0001292 Morris SE, 2022, BMC MED, V20, DOI 10.1186/s12916-022-02414-0 Pace-Schott EF, 2015, BIOL MOOD ANXIETY DI, V5, DOI 10.1186/s13587-015-0018-9 Pineles SL, 2016, PSYCHOPHYSIOLOGY, V53, P1377, DOI 10.1111/psyp.12679 Posada JD, 2017, J BIOMED INFORM, V75, pS94, DOI 10.1016/j.jbi.2017.05.019 Rini PL, 2024, INT J LANG COMM DIS, V59, P1110, DOI 10.1111/1460-6984.12973 Rios A, 2017, J BIOMED INFORM, V75, pS85, DOI 10.1016/j.jbi.2017.05.008 Sadeghi MMA, 2022, PLoS ONE, V17 Sanderson MBAG, 2020, EClinicalMedicine, P20 Scheurwegs E, 2017, J BIOMED INFORM, V75, pS112, DOI 10.1016/j.jbi.2017.06.007 Seidemann Rebecca, 2021, Chronic Stress (Thousand Oaks), V5, p2470547021996006, DOI 10.1177/2470547021996006 Sentence-Transformers, 2022, Sentence-Transformers Tran T, 2017, J BIOMED INFORM, V75, pS138, DOI 10.1016/j.jbi.2017.06.010 Watkins LE, 2018, FRONT BEHAV NEUROSCI, V12, DOI 10.3389/fnbeh.2018.00258 Williams T, 2022, COCHRANE DB SYST REV, DOI 10.1002/14651858.CD002795.pub3 Zambrano-Vazquez L, 2017, PSYCHOL TRAUMA-US, V9, P679, DOI 10.1037/tra0000257 Zoellner LA, 2014, DEPRESS ANXIETY, V31, P97, DOI 10.1002/da.22133 NR 59 TC 0 Z9 0 U1 1 U2 1 PU BMC PI LONDON PA CAMPUS, 4 CRINAN ST, LONDON N1 9XW, ENGLAND EI 1472-6947 J9 BMC MED INFORM DECIS JI BMC Med. Inform. Decis. Mak. PD JUN 4 PY 2024 VL 24 IS 1 AR 154 DI 10.1186/s12911-024-02554-8 PG 14 WC Medical Informatics WE Science Citation Index Expanded (SCI-EXPANDED) SC Medical Informatics GA TB0M8 UT WOS:001238679900001 PM 38835009 OA gold, Green Published DA 2024-09-05 ER PT C AU Saravanan, TM Ajmal, MM Manoranjith, M Sanjaay, BG Mishra, JP AF Saravanan, T. M. Ajmal, M. Mohammed Manoranjith, M. Sanjaay, B. G. Mishra, Jay Prakash TI Rumour influence minimization and topic modelling for twitter dataset using machine learning schemes SO MATERIALS TODAY-PROCEEDINGS LA English DT Proceedings Paper CT International Conference on Artificial Intelligence and Energy Systems (AIES) CY DEC 08-09, 2021 CL St Josephs Coll Engn & Technol, Palai, INDIA HO St Josephs Coll Engn & Technol DE Sentiment analysis; Support Vector Machine (SVM); Greedy and Dynamic Blocking Algorithm; Tweet AB We advocate a joint combined trend sentiment categorization method to guide sentiment classifiers for a couple of tweets at the same time. Distinctively, putrefy the sentiment classifier of all trends linked to two additives, namely the specific trend and the global trend. Our method gives a green way to as it should sort out trendy subjects devoid of the lack of outside facts making news channels to find out the infringement news in a particular time or to rush out viral memes to enhance marketing decisions with competitors. The analysis of social functions also reveals styles associated with all kinds of trends, such as tweets with approximately ongoing activities of trendsetters. The unique version of the Trends Greedy and Dynamic Blocking Algorithms can capture the precise expressions of sentiment in each Trend. In addition, we extract trends unique sentimental knowledge from each of the classified and unmarked samples in each Trend and use it to embellish the mastery of Trends precise sentiment clas-sifiers. In addition, we are introducing green algorithms to resolve the version of our technique. These schemes can effectively boost the performance of the combined trends group and outperform traditional methods with experimental effects on benchmark datasets. Copyright (C) 2022 Elsevier Ltd. All rights reserved. C1 [Saravanan, T. M.; Ajmal, M. Mohammed; Manoranjith, M.; Sanjaay, B. G.; Mishra, Jay Prakash] Kongu Engn Coll, Dept Comp Applicat, Perundurai 638060, Tamil Nadu, India. C3 Kongu Engineering College RP Mishra, JP (corresponding author), Kongu Engn Coll, Dept Comp Applicat, Perundurai 638060, Tamil Nadu, India. EM tmskec@gmail.com NR 0 TC 0 Z9 0 U1 0 U2 1 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS SN 2214-7853 J9 MATER TODAY-PROC JI Mater. Today-Proc. PY 2022 VL 58 SI SI BP 535 EP 539 DI 10.1016/j.matpr.2022.03.059 EA MAY 2022 PN 1 PG 5 WC Materials Science, Multidisciplinary WE Conference Proceedings Citation Index - Science (CPCI-S) SC Materials Science GA 1S5DF UT WOS:000804070100028 DA 2024-09-05 ER PT J AU Sandu, A Cotfas, LA Stanescu, A Delcea, C AF Sandu, Andra Cotfas, Liviu-Adrian Stanescu, Aurelia Delcea, Camelia TI A Bibliometric Analysis of Text Mining: Exploring the Use of Natural Language Processing in Social Media Research SO APPLIED SCIENCES-BASEL LA English DT Article DE text mining; natural language processing; social media; bibliometric; Biblioshiny ID SENTIMENT ANALYSIS AB Natural language processing (NLP) plays a pivotal role in modern life by enabling computers to comprehend, analyze, and respond to human language meaningfully, thereby offering exciting new opportunities. As social media platforms experience a surge in global usage, the imperative to capture and better understand the messages disseminated within these networks becomes increasingly crucial. Moreover, the occurrence of adverse events, such as the emergence of a pandemic or conflicts in various parts of the world, heightens social media users' inclinations towards these platforms. In this context, this paper aims to explore the scientific literature dedicated to the utilization of NLP in social media research, with the goal of highlighting trends, keywords, and collaborative networks within the authorship that contribute to the proliferation of papers in this field. To achieve this objective, we extracted and analyzed 1852 papers from the ISI Web of Science database. An initial observation reveals a remarkable annual growth rate of 62.18%, underscoring the heightened interest of the academic community in this domain. This paper includes an n-gram analysis and a review of the most cited papers in the extracted database, offering a comprehensive bibliometric analysis. The insights gained from these efforts provide essential perspectives and contribute to identifying pertinent issues in social media analysis addressed through the application of NLP. C1 [Sandu, Andra; Cotfas, Liviu-Adrian; Delcea, Camelia] Bucharest Univ Econ Studies, Dept Econ Informat & Cybernet, Bucharest 010552, Romania. [Stanescu, Aurelia] Bucharest Univ Econ Studies, Dept Management, Bucharest 010552, Romania. C3 Bucharest University of Economic Studies; Bucharest University of Economic Studies RP Cotfas, LA (corresponding author), Bucharest Univ Econ Studies, Dept Econ Informat & Cybernet, Bucharest 010552, Romania. EM liviu.cotfas@ase.ro RI Delcea, Camelia/C-4343-2011 OI Delcea, Camelia/0000-0003-3589-1969 CR Al-Saif HF, 2023, APPL SCI-BASEL, V13, DOI 10.3390/app13158815 [Anonymous], WoS Document Types [Anonymous], WOS WEB SCI Aria M, 2017, J INFORMETR, V11, P959, DOI 10.1016/j.joi.2017.08.007 Arora S, 2022, EXPERT SYST APPL, V200, DOI 10.1016/j.eswa.2022.117000 Bakir M, 2022, J AIR TRANSP MANAG, V104, DOI 10.1016/j.jairtraman.2022.102273 Block JH., 2020, Manage Rev Q, V70, P307, DOI [10.1007/s11301-020-00188-4, DOI 10.1007/S11301-020-00188-4] Boon-Itt S, 2020, JMIR PUBLIC HLTH SUR, V6, P245, DOI 10.2196/21978 Callier V, 2022, P NATL ACAD SCI USA, V119, DOI 10.1073/pnas.2205058119 Camelia Delcea, 2015, Grey Systems: Theory and Application, V5, P244, DOI 10.1108/GS-03-2015-0005 Cancino CA, 2017, J INNOV KNOWL, V2, P106, DOI 10.1016/j.jik.2017.03.006 Chang KH, 2023, APPL SCI-BASEL, V13, DOI 10.3390/app132011395 Cobo MJ, 2015, KNOWL-BASED SYST, V80, P3, DOI 10.1016/j.knosys.2014.12.035 Cucari N, 2023, CORP SOC RESP ENV MA, V30, P1, DOI 10.1002/csr.2346 Deans PC, 2018, J ORG COMP ELECT COM, V28, P173, DOI 10.1080/10919392.2018.1484597 Delcea C, 2023, AXIOMS, V12, DOI 10.3390/axioms12121083 Domenteanu A, 2023, APPL SCI-BASEL, V13, DOI 10.3390/app132312693 Edosomwan S., 2011, J APPL MANAGEMENT EN, V16, P79, DOI DOI 10.1108/JHTT-11-2014-0067 El Barachi M, 2022, J COMMUN SOFTW SYS, V18, P193, DOI 10.24138/jcomss-2022-0031 Gan CM, 2014, IFIP ADV INF COMM TE, V445, P23 Gu YM, 2016, TRANSPORT RES C-EMER, V67, P321, DOI 10.1016/j.trc.2016.02.011 Hirschberg J, 2015, SCIENCE, V349, P261, DOI 10.1126/science.aaa8685 Jiang YQ, 2023, APPL SCI-BASEL, V13, DOI 10.3390/app132212346 Kim J, 2021, J MED INTERNET RES, V23, DOI 10.2196/24870 Lee D, 2018, MANAGE SCI, V64, P5105, DOI 10.1287/mnsc.2017.2902 Li LF, 2020, IEEE T COMPUT SOC SY, V7, P556, DOI 10.1109/TCSS.2020.2980007 Li YY, 2020, J MARKETING RES, V57, P1, DOI 10.1177/0022243719881113 Lin Lianghong, 2023, Cancer Innov, V2, P219, DOI 10.1002/cai2.68 Liu F, 2023, SCIENTOMETRICS, V128, P853, DOI 10.1007/s11192-022-04540-1 Liu WS, 2019, SCIENTOMETRICS, V121, P1815, DOI 10.1007/s11192-019-03238-1 Ljubobratovic D, 2022, SENSORS-BASEL, V22, DOI 10.3390/s22155791 Mahajan R., 2021, J. Content Community Commun, V14, P218, DOI [10.31620/JCCC.12.21/18, DOI 10.31620/JCCC.12.21/18] Aiello LM, 2013, IEEE T MULTIMEDIA, V15, P1268, DOI 10.1109/TMM.2013.2265080 Michailidis PD, 2022, INFORMATION, V13, DOI 10.3390/info13080372 Middleton SE, 2014, IEEE INTELL SYST, V29, P9, DOI 10.1109/MIS.2013.126 Montoyo A, 2012, DECIS SUPPORT SYST, V53, P675, DOI 10.1016/j.dss.2012.05.022 Mulet-Forteza C, 2018, J TRAVEL TOUR MARK, V35, P1201, DOI 10.1080/10548408.2018.1487368 Nikfarjam A, 2015, J AM MED INFORM ASSN, V22, P671, DOI 10.1093/jamia/ocu041 Ortiz-Garces I, 2024, APPL SCI-BASEL, V14, DOI 10.3390/app14051737 Pandey Kamal Kishor, 2023, 2023 3rd International Conference on Advance Computing and Innovative Technologies in Engineering (ICACITE), P326, DOI 10.1109/ICACITE57410.2023.10182590 Puteh N., 2021, Turk. J. Comput. Math. Educ, V12, P1509 Ravi K, 2015, KNOWL-BASED SYST, V89, P14, DOI 10.1016/j.knosys.2015.06.015 RDRR Website Bradford, Bradford's Law in Bibliometrix: Comprehensive Science Mapping Analysis Reyes A, 2012, DATA KNOWL ENG, V74, P1, DOI 10.1016/j.datak.2012.02.005 Sandu A, 2024, ALGORITHMS, V17, DOI 10.3390/a17020070 Sandu A, 2024, INFORMATION, V15, DOI 10.3390/info15010060 Sandu A, 2023, INFORMATION, V14, DOI 10.3390/info14120659 Sarirete Akila, 2021, Procedia Comput Sci, V194, P280, DOI 10.1016/j.procs.2021.10.083 Sarker A, 2015, J BIOMED INFORM, V53, P196, DOI 10.1016/j.jbi.2014.11.002 Sharma S., 2018, Social Media Marketing: Emerging Concepts and Applications, V1st, P19, DOI [DOI 10.1007/978-981-10-5323-8_2, 10.1007/978-981-10-5323-8, DOI 10.1007/978-981-10-5323-8] Telikani A, 2021, ACM COMPUT SURV, V54, DOI 10.1145/3467477 Wardikar V., 2013, Libr. Philos. Pract, V15, P1 Yan L, 2023, SAGE OPEN, V13, DOI 10.1177/21582440231158562 Zhang D.D., 2020, ResearchGate, V3, P38, DOI [10.23977/jaip.2020.030107, DOI 10.23977/JAIP.2020.030107] Zubiaga A, 2018, ACM COMPUT SURV, V51, DOI 10.1145/3161603 NR 55 TC 3 Z9 3 U1 5 U2 5 PU MDPI PI BASEL PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND EI 2076-3417 J9 APPL SCI-BASEL JI Appl. Sci.-Basel PD APR PY 2024 VL 14 IS 8 AR 3144 DI 10.3390/app14083144 PG 34 WC Chemistry, Multidisciplinary; Engineering, Multidisciplinary; Materials Science, Multidisciplinary; Physics, Applied WE Science Citation Index Expanded (SCI-EXPANDED) SC Chemistry; Engineering; Materials Science; Physics GA OW1B1 UT WOS:001210212300001 OA gold DA 2024-09-05 ER PT J AU Curiac, CD Micea, MV AF Curiac, Christian-Daniel Micea, Mihai V. TI Identifying Hot Information Security Topics Using LDA and Multivariate Mann-Kendall Test SO IEEE ACCESS LA English DT Article DE Market research; Bibliometrics; Natural language processing; Databases; Data mining; Time series analysis; Information security; Metadata; LDA topic modeling; multivariate Mann-Kendall test; natural language processing; paper metadata; research theme; research trend ID NONPARAMETRIC-TESTS; TREND AB Discovering promising research themes in a scientific domain by evaluating semantic information extracted from bibliometric databases represents a challenging task for Natural Language Processing (NLP). While existing NLP methods generally characterize the research topics using unique key terms, we take a step further by more accurately modeling the research themes as finite sets of key terms. The proposed approach involves two stages: identifying the research themes from paper metadata using LDA topic modeling; and, evaluation of research theme trends by employing a version of the Mann-Kendall test that is able to cope with multivariate time series of term occurrences. The results obtained by applying this general methodology to Information Security domain confirm its viability. C1 [Curiac, Christian-Daniel; Micea, Mihai V.] Politehn Univ Timisoara, Comp & Informat Technol Dept, Timisoara 300223, Romania. C3 Universitatea Politehnica Timisoara RP Curiac, CD (corresponding author), Politehn Univ Timisoara, Comp & Informat Technol Dept, Timisoara 300223, Romania. EM christian.curiac@cs.upt.ro OI Curiac, Christian-Daniel/0000-0002-2253-7226 CR Barua A, 2014, EMPIR SOFTW ENG, V19, P619, DOI 10.1007/s10664-012-9231-y Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993 Burauskaite-Harju A, 2012, INT J CLIMATOL, V32, P86, DOI 10.1002/joc.2263 Cai CW, 2019, ABACUS, V55, P709, DOI 10.1111/abac.12179 Curiac C.-D., 2022, PROC 15 INT S ELECT, P15 Curiac CD, 2022, MATHEMATICS-BASEL, V10, DOI 10.3390/math10173115 Curiac CD, 2022, SCIENTOMETRICS, V127, P5661, DOI 10.1007/s11192-022-04481-9 Curiac CD, 2022, MATHEMATICS-BASEL, V10, DOI 10.3390/math10020233 Daradkeh M, 2022, ELECTRONICS-SWITZ, V11, DOI 10.3390/electronics11132066 Fang DB, 2018, LIBR HI TECH, V36, P400, DOI 10.1108/LHT-06-2017-0132 Ferragina Paolo, 2010, P 19 ACM INT C INFOR, P1625, DOI DOI 10.1145/1871437.1871689 Gal D, 2019, EUR HEART J, V40, P2363, DOI 10.1093/eurheartj/ehz282 Griffiths TL, 2004, P NATL ACAD SCI USA, V101, P5228, DOI 10.1073/pnas.0307752101 Harris ZS, 1954, WORD, V10, P146, DOI 10.1080/00437956.1954.11659520 Hoffman MD, 2013, J MACH LEARN RES, V14, P1303 Hussain M., 2019, J OPEN SOURCE SOFTW, V4, P1556, DOI [DOI 10.21105/JOSS.01556, 10.21105/joss.01556] Katsurai Marie, 2017, 2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA), P115, DOI 10.1109/ICBDA.2017.8078788 KENDALL K, 1975, J PHYS D APPL PHYS, V8, P1449, DOI 10.1088/0022-3727/8/13/005 Khalid MA, 2008, LECT NOTES COMPUT SC, V4956, P705 Korzycki M, 2017, COGNITIVE APPROACH TO NATURAL LANGUAGE PROCESSING, P21 Kumar S, 2020, INT J ACCOUNT INF SY, V39, DOI 10.1016/j.accinf.2020.100488 Lee H, 2018, J TECHNOL TRANSFER, V43, P1291, DOI 10.1007/s10961-017-9561-4 Lei L, 2023, LIBR HI TECH, V41, P570, DOI 10.1108/LHT-12-2019-0247 LETTENMAIER DP, 1988, WATER RESOUR BULL, V24, P505 Libiseller C, 2002, ENVIRONMETRICS, V13, P71, DOI 10.1002/env.507 Mane KK, 2004, P NATL ACAD SCI USA, V101, P5287, DOI 10.1073/pnas.0307626100 Mann HB, 1945, ECONOMETRICA, V13, P245, DOI 10.2307/1907187 Marrone M, 2020, SCIENTOMETRICS, V122, P357, DOI 10.1007/s11192-019-03274-x Pohlert T., 2022, NONPARAMETRIC TREND Sharma D., 2019, Int J Intel Syst Appl, V11, P70, DOI [10.5815/ijisa.2019.02.08, DOI 10.5815/IJISA.2019.02.08] Swacha J, 2022, EDUC SCI, V12, DOI 10.3390/educsci12100640 Vangara R, 2021, IEEE ACCESS, V9, P117217, DOI 10.1109/ACCESS.2021.3106879 Wang B, 2014, SCIENTOMETRICS, V101, P685, DOI 10.1007/s11192-014-1342-3 Xiong Chenyan, 2016, P 2016 ACM INT C THE, P181, DOI 10.1145/2970398.2970423 Zhao DZ, 2014, J ASSOC INF SCI TECH, V65, P995, DOI 10.1002/asi.23027 NR 35 TC 0 Z9 0 U1 4 U2 26 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 2169-3536 J9 IEEE ACCESS JI IEEE Access PY 2023 VL 11 BP 18374 EP 18384 DI 10.1109/ACCESS.2023.3247588 PG 11 WC Computer Science, Information Systems; Engineering, Electrical & Electronic; Telecommunications WE Science Citation Index Expanded (SCI-EXPANDED) SC Computer Science; Engineering; Telecommunications GA 9M5IO UT WOS:000942263400001 OA gold DA 2024-09-05 ER PT J AU McCardle, JR AF McCardle, JR TI The challenge of integrating AI & Smart Technology in design education SO INTERNATIONAL JOURNAL OF TECHNOLOGY AND DESIGN EDUCATION LA English DT Article DE artificial intelligence; industrial design; research dissemination; technology integration; tertiary education AB This paper examines some of the many problems and issues associated with integrating new and developing technologies into the education of future designers. As technology in general races ahead challenges arise for both commercial designers and educators on how best to keep track and utilise the advances. The challenge is particularly acute within tertiary education where the introduction of new cutting edge technology is often encouraged. Although this is generally achieved through the feedback of research activity, integrating new concepts at an appropriate level is a major task. Of particular concern is how focussed areas of applied technology can be made part of the multidisciplinary scope of design education. The paper describes the model used to introduce areas of Artificial Intelligence (AI) to undergraduate industrial design students. The successful interaction of research and education within a UK higher education establishment are discussed and project examples given. It is shown that, through selective tuition of research topics and appropriate technical support, innovative design solutions can result. In addition, it shows that by introducing leading edge and, in some cases, underdeveloped technology, specific key skills of independent learning, communication and research methods can be encouraged. C1 Loughborough Univ Technol, Bridgeman Ctr, Dept Design & Technol, Loughborough LE11 3TU, Leics, England. C3 Loughborough University RP McCardle, JR (corresponding author), Loughborough Univ Technol, Bridgeman Ctr, Dept Design & Technol, Loughborough LE11 3TU, Leics, England. RI McCardle, John/AAP-4557-2020 OI McCardle, John/0000-0002-5358-5765 CR Aleksander I., 1979, IEE Journal on Computers and Digital Techniques, V2, P29, DOI 10.1049/ij-cdt.1979.0009 ALEKSANDER I, 1984, SENSOR REV, P120 [Anonymous], 1998, IQ HUMAN INTELLIGENC Bonner JVH, 1999, HUMAN FACTORS IN PRODUCT DESIGN: CURRENT PRACTICE AND FUTURE TRENDS, P56 Ewing P. D, 1987, CURRICULUM DEV REPOR Gardner Howard., 1993, FRAMES MIND, V2d Hofstadter D., 2000, Godel, Escher, Bach Jordan P.W., 1998, INTRO USABILITY MCCARDLE JR, 1998, MONET NEWSLETTER EUR *MONET, 2000, EUR NETW EXC MOD BAS MYERSON J, 1991, TECHNOLOGICAL CHANGE Neumann PeterG., 1995, COMPUTER RELATED RIS *OXF, 1997, ART INT Rich E, 1991, ARTIF INTELL SLOMAN A, 1995, P 14 INT JOINT C ART SLOMAN A, 2000, AISB Q, P31 Stanton N.A., 1998, Human factors in consumer products WAYT GW, 1996, SCI AM EXPLORATI MAY NR 18 TC 12 Z9 12 U1 3 U2 54 PU KLUWER ACADEMIC PUBL PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0957-7572 J9 INT J TECHNOL DES ED JI Int. J. Technol. Des. Educ. PY 2002 VL 12 IS 1 BP 59 EP 76 DI 10.1023/A:1013089404168 PG 18 WC Education & Educational Research; Education, Scientific Disciplines; Engineering, Multidisciplinary WE Science Citation Index Expanded (SCI-EXPANDED) SC Education & Educational Research; Engineering GA 497HG UT WOS:000172448900004 OA Green Accepted DA 2024-09-05 ER PT J AU Zheng, B Chen, WF Zhao, H AF Zheng, Bin Chen, Wenfeng Zhao, Hui TI The Spatial and Temporal Characteristics of Industry-University Research Collaboration Efficiency in Chinese Mainland Universities SO SUSTAINABILITY LA English DT Article DE IUR collaboration; potential; spatio-temporal distribution; principal component analysis ID INNOVATION; KNOWLEDGE; COOPERATION; PERFORMANCE; EDUCATION AB The aim of this study was to investigate the spatio-temporal characteristics of the industry-university research (IUR) collaboration efficiency of Chinese mainland colleges and universities, from 2008 to 2018. A comparative analysis method was used to analyze the data from the Statistical Yearbook of China's Education Funds, the Compilation of Science and Technology Statistics of Colleges and Universities, and the China Statistical Yearbook. The principal components were extracted from relevant indicators of IUR capability in colleges and universities, with a principal component analysis (PCA) method. The principal component scores and comprehensive scores of 31 provinces in mainland China were calculated. The results showed that the efficiency of IUR collaboration in Chinese colleges and universities has increased rapidly within the 11 years studied. The efficiency in the eastern region has grown faster than that in the western region, and the gap between the southern region and the northern region has also continued to widen. The results also showed that the development of IUR collaboration efficiency of colleges and universities in mainland China is unbalanced. Scientific and technological funds, and scientific and technological manpower, were excessively concentrated in the southeast. Therefore, there is large room for improvement in the overall development of IUR collaboration in Chinese colleges and universities. C1 [Zheng, Bin] China Univ Min & Technol, Sch Management, Xuzhou 221116, Jiangsu, Peoples R China. [Zheng, Bin] Wuxi Taihu Univ, Scotland Acad, Wuxi 214063, Jiangsu, Peoples R China. [Chen, Wenfeng] Wuxi Univ, Grad Sch, Wuxi 214105, Jiangsu, Peoples R China. [Zhao, Hui] Fudan Univ, Dept Environm Sci & Engn, Shanghai 200438, Peoples R China. C3 China University of Mining & Technology; Wuxi University; Fudan University RP Zhao, H (corresponding author), Fudan Univ, Dept Environm Sci & Engn, Shanghai 200438, Peoples R China. EM zhengbin5202@163.com; wenf_chen@163.com; zhaohui_nuist@163.com RI Zheng, Bin/ACR-9720-2022; Zheng, Bin/CAF-2106-2022 OI Zheng, Bin/0000-0003-3476-5936; Zhao, Hui/0000-0001-8585-8222 CR Ali D. A., 2014, Policy Research Working Paper - World Bank Anderson TR, 2007, TECHNOVATION, V27, P306, DOI 10.1016/j.technovation.2006.10.003 Bai XJ, 2020, TECHNOL SOC, V62, DOI 10.1016/j.techsoc.2020.101310 Bellucci A, 2016, J TECHNOL TRANSFER, V41, P730, DOI 10.1007/s10961-015-9408-9 Calero C, 2007, SCIENTOMETRICS, V71, P87, DOI 10.1007/s11192-007-1650-y Cao X, 2020, SCI REP-UK, V10, DOI 10.1038/s41598-020-60974-8 Chang A, 2014, J GEN INTERN MED, V29, P940, DOI 10.1007/s11606-013-2752-2 Chen FY, 2016, SCI TECHNOL SOC, V21, P181, DOI 10.1177/0971721816640617 Chen Y., 2018, ED MOD, V5, P4 Chiu WH, 2016, TECHNOL ANAL STRATEG, V28, P965, DOI 10.1080/09537325.2016.1181735 Chu G.G, 2018, RES MODEL MECH CULTI Chunjia Han, 2017, Journal of High Technology Management Research, V28, P93, DOI 10.1016/j.hitech.2017.04.007 Costa M., 2004, Stat. Methods Appl, V13, P375, DOI [10.1007/s10260-004-0088-0, DOI 10.1007/S10260-004-0088-0] Cui Y, 2010, TECHNOL MARK, V17, P27 Etzkowitz H, 2000, RES POLICY, V29, P313, DOI 10.1016/S0048-7333(99)00069-4 Farrell M, 2001, J ADV NURS, V36, P765, DOI 10.1046/j.1365-2648.2001.02042.x Feng C, 2010, ASIAN SOC SCI, V7, P102, DOI [10.5539/ass.v7n1p102, DOI 10.5539/ASS.V7N1P102] Gao X, 2014, SCIENTOMETRICS, V98, P247, DOI 10.1007/s11192-013-1048-y Gray DO, 2003, SCIENTOMETRICS, V58, P281, DOI 10.1023/A:1026236626942 Guo HX, 2012, EXPERT SYST APPL, V39, P8514, DOI 10.1016/j.eswa.2011.12.032 He G.M, 2013, CASE STUDY COURSE AP He YB., 2012, STUDIES SCI SCI, V30, P165, DOI DOI 10.16192/J.CNKI.1003-2053.2012.02.002 Hermans J, 2017, KNOWL MAN RES PRACT, V15, P68, DOI 10.1057/s41275-016-0002-1 Hossain KMZ, 2014, EUR POLYM J, V53, P270, DOI 10.1016/j.eurpolymj.2014.02.001 Huo Y, 2008, CHINA ADULT ED, V5, P16 Kang J, 2014, SCI RES MANAG, V35, P19 Kwon KS, 2012, SCIENTOMETRICS, V90, P177, DOI 10.1007/s11192-011-0513-8 Laursen K, 2004, RES POLICY, V33, P1201, DOI 10.1016/j.respol.2004.07.004 Li C.P, 2017, CHIN U SCI TECHNOL, V8, P14 Li J.P, 2013, SOFT SCI, V5, P136 Li PY, 2016, EXPOS HEALTH, V8, P305, DOI 10.1007/s12403-016-0210-1 Li-Ping F.U, 2013, RES KNOWLEDGE SPILLO Madsen JB, 2007, J INT ECON, V72, P464, DOI 10.1016/j.jinteco.2006.12.001 Muller U., 2013, MULTICULT ED TECHNOL, V7, P207, DOI [10.1108/17504971311328080, DOI 10.1108/17504971311328080] Pugach MC, 2009, TEACH TEACH EDUC, V25, P575, DOI 10.1016/j.tate.2009.02.007 Schartinger D, 2002, RES POLICY, V31, P303, DOI 10.1016/S0048-7333(01)00111-1 Song YW, 2020, TECHNOL FORECAST SOC, V157, DOI 10.1016/j.techfore.2020.120094 Su Y., 2016, China Soft Sci. Mag, V3, P44, DOI DOI 10.3969/J.ISSN.1002-9753.2016.03.005 Wang X, 2018, SUSTAINABILITY-BASEL, V10, DOI 10.3390/su10041243 Wei Y.Q., 2020, CHINESE FOREIGN ENTR Xia CY, 2021, EDUC RES INT, V2021, DOI 10.1155/2021/9699640 Xia HS, 2022, INT J INOV SCI, V14, P62, DOI 10.1108/IJIS-08-2020-0122 Ying Q.M, 2012, RES U ENTERPRISE COO Yu C.H., 2019, RES SELECTION MODES Zhang SP, 2022, TECHNOL ANAL STRATEG, V34, P1038, DOI 10.1080/09537325.2021.1942446 Zhou J. Z., 2005, SCI TECHNOL PROG CO, V3, P70 Zhou X.S, 2012, J TAIYUAN U TECHNOL, P68 Zhu Z.H, 2021, J MUDANJIANG U, V30, P29 NR 48 TC 4 Z9 4 U1 2 U2 40 PU MDPI PI BASEL PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND EI 2071-1050 J9 SUSTAINABILITY-BASEL JI Sustainability PD DEC PY 2021 VL 13 IS 23 AR 13180 DI 10.3390/su132313180 PG 13 WC Green & Sustainable Science & Technology; Environmental Sciences; Environmental Studies WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Science & Technology - Other Topics; Environmental Sciences & Ecology GA XU9YJ UT WOS:000734610600001 OA gold DA 2024-09-05 ER PT J AU Verstegen, DML Dailey-Hebert, A Fonteijn, HTH Clarebout, G Spruijt, A AF Verstegen, D. M. L. Dailey-Hebert, A. Fonteijn, H. T. H. Clarebout, G. Spruijt, A. TI How do Virtual Teams Collaborate in Online Learning Tasks in a MOOC? SO INTERNATIONAL REVIEW OF RESEARCH IN OPEN AND DISTRIBUTED LEARNING LA English DT Article DE MOOC; problem-based learning; PBL; open educational resources; online learning; virtual teams; team collaboration; design-based research AB Modern learning theories stress the importance of student-centered and self-directed learning. Problem-Based Learning (PBL) supports this by focusing on small group learning centered around authentic problems. PBL, however, usually relies heavily on face-to-face team collaboration and tutor guidance. Yet, when applied in online/blended environments, such elements may not be feasible or even desirable. This study explores how virtual teams collaborate in online learning tasks in the context of a nine-week Massive Open Online Course (MOOC) where international, virtual teams worked on PBL-like tasks. Twenty-one self-formed teams were observed. An inductive thematic analysis resulted in five themes: 1) team formation and team composition, 2) team process (organization and leadership), 3) approach to task work (task division and interaction), 4) use of tools, and 5) external factors (MOOC design and interaction with others). Overall findings revealed that online, virtual teams can collaborate on learning tasks without extensive guidance, but this requires additional communication and technological skills and support. Explicit discussion about group organization and task work, a positive atmosphere, and acceptance of unequal contributions seem to be positive factors. Additional support is required to prepare participants for virtual team work, develop digital literacy, and stimulate more elaborate brainstorming and discussion. C1 [Verstegen, D. M. L.] Maastricht Univ, Sch Hlth Profess Educ SHE, Maastricht, Netherlands. [Dailey-Hebert, A.] Pk Univ, Parkville, MO USA. [Dailey-Hebert, A.] Maastricht Univ, SBE, Maastricht, Netherlands. [Fonteijn, H. T. H.] Maastricht Univ, Dept Work & Social Psychol, Maastricht, Netherlands. [Clarebout, G.] Univ Leuven, Ctr Instruct Psychol & Technol, Leuven, Belgium. [Clarebout, G.; Spruijt, A.] Maastricht Univ, SHE, Maastricht, Netherlands. [Spruijt, A.] Univ Utrecht, Fac Vet Med, Utrecht, Netherlands. C3 Maastricht University; Maastricht University; Maastricht University; KU Leuven; Maastricht University; Utrecht University RP Verstegen, DML (corresponding author), Maastricht Univ, Sch Hlth Profess Educ SHE, Maastricht, Netherlands. RI Spruijt, Annemarie/ABB-2416-2021 OI Spruijt, Annemarie/0000-0002-0995-5503 CR Ahn J., 2013, J ONLINE LEARNING TE, V9, P2 [Anonymous], 1980, Problem-based learning: An approach to medical education. Volume [Anonymous], 2010, EDUCAUSE REV Barber W, 2015, ELECTRON J E-LEARN, V13, P59 Bergman Esther, 2012, Acad Med, V87, P545, DOI 10.1097/ACM.0b013e31824fbc8a Blaschke LM, 2012, INT REV RES OPEN DIS, V13, P56, DOI 10.19173/irrodl.v13i1.1076 Braun V., 2006, QUAL RES PSYCHOL, V3, P77, DOI [10.1191/1478088706qp063oa, DOI 10.1191/1478088706QP063OA] Clark D., 2016, Classcentral Dailey-Hebert A, 2015, ADV BUS EDUC TRAIN, V6, P97, DOI 10.1007/978-3-319-09247-8_6 de Freitas SI, 2015, BRIT J EDUC TECHNOL, V46, P455, DOI 10.1111/bjet.12268 de Jong N, 2014, PERSPECT MED EDUC, V3, P278, DOI 10.1007/s40037-014-0108-1 Dolmans DHJM, 2005, MED EDUC, V39, P732, DOI 10.1111/j.1365-2929.2005.02205.x Ertmer PA, 2015, J COMPUT HIGH EDUC, V27, P69, DOI 10.1007/s12528-015-9094-5 Espasa A, 2010, HIGH EDUC, V59, P277, DOI 10.1007/s10734-009-9247-4 Evans BJ, 2016, J HIGH EDUC, V87, P206, DOI 10.1353/jhe.2016.0006 Fernández-Díaz E, 2017, INT REV RES OPEN DIS, V18, P18 Fournier H., 2015, Int. J. e Learn., V14, P289 Gurtner A, 2007, ORGAN BEHAV HUM DEC, V102, P127, DOI 10.1016/j.obhdp.2006.05.002 Hagedoorn T. R., 2017, THESIS Haines R, 2014, COMPUT HUM BEHAV, V39, P213, DOI 10.1016/j.chb.2014.07.019 Hayashi S, 2013, BMC MED EDUC, V13, DOI 10.1186/1472-6920-13-158 Hollands F.M., 2014, MOOCs: Expectations and reality: Full report Kauffman H, 2015, RES LEARN TECHNOL, V23, DOI 10.3402/rlt.v23.26507 Khalil H., 2014, EDMEDIA INNOVATE LEA, P1236, DOI DOI 10.1007/S11575-006-0100-Z Littlejohn A, 2016, INTERNET HIGH EDUC, V29, P40, DOI 10.1016/j.iheduc.2015.12.003 Mackness J, 2013, INT REV RES OPEN DIS, V14, P140 Mayer L., 2016, THESIS Moust J., 2014, INTRO PROBLEM BASED Salazar-Márquez R, 2017, INT REV RES OPEN DIS, V18, P231 Toven-Lindsey B, 2015, INTERNET HIGH EDUC, V24, P1, DOI 10.1016/j.iheduc.2014.07.001 Van Tilburg J., 2014, THESIS Veletsianos G, 2016, INT REV RES OPEN DIS, V17, P198 Verstegen D, 2016, MOOCS PBL PROJECT RE Verstegen D, WILEY HDB PROBLEM BA Verstegen DML, 2016, ADV MED EDUC, V5, P9, DOI 10.1007/978-3-319-08275-2_2 Wen MM, 2015, LECT NOTES ARTIF INT, V9112, P820, DOI 10.1007/978-3-319-19773-9_124 Woods DR, 1996, AM J PHARM EDUC, V60, P231 NR 37 TC 10 Z9 13 U1 0 U2 32 PU ATHABASCA UNIV PRESS PI ATHABASCA PA 1 UNIVERSITY DR, ATHABASCA, AB T9S 3A3, CANADA SN 1492-3831 J9 INT REV RES OPEN DIS JI Int. Rev. Res. Open Distrib. Learn. PD SEP PY 2018 VL 19 IS 4 BP 39 EP 55 PG 17 WC Education & Educational Research WE Social Science Citation Index (SSCI) SC Education & Educational Research GA GV1BS UT WOS:000445802700003 DA 2024-09-05 ER PT J AU Koltcov, S Ignatenko, V Boukhers, Z Staab, S AF Koltcov, Sergei Ignatenko, Vera Boukhers, Zeyd Staab, Steffen TI Analyzing the Influence of Hyper-parameters and Regularizers of Topic Modeling in Terms of Renyi Entropy SO ENTROPY LA English DT Article DE topic modeling; Renyi entropy; regularization ID ADDITIVE REGULARIZATION AB Topic modeling is a popular technique for clustering large collections of text documents. A variety of different types of regularization is implemented in topic modeling. In this paper, we propose a novel approach for analyzing the influence of different regularization types on results of topic modeling. Based on Renyi entropy, this approach is inspired by the concepts from statistical physics, where an inferred topical structure of a collection can be considered an information statistical system residing in a non-equilibrium state. By testing our approach on four models-Probabilistic Latent Semantic Analysis (pLSA), Additive Regularization of Topic Models (BigARTM), Latent Dirichlet Allocation (LDA) with Gibbs sampling, LDA with variational inference (VLDA)-we, first of all, show that the minimum of Renyi entropy coincides with the "true" number of topics, as determined in two labelled collections. Simultaneously, we find that Hierarchical Dirichlet Process (HDP) model as a well-known approach for topic number optimization fails to detect such optimum. Next, we demonstrate that large values of the regularization coefficient in BigARTM significantly shift the minimum of entropy from the topic number optimum, which effect is not observed for hyper-parameters in LDA with Gibbs sampling. We conclude that regularization may introduce unpredictable distortions into topic models that need further research. C1 [Koltcov, Sergei; Ignatenko, Vera] Natl Res Univ Higher Sch Econ, Soyuza Pechatnikov St 16, St Petersburg 190121, Russia. [Boukhers, Zeyd] Univ Koblenz Landau, Inst Web Sci & Technol, Univ Str 1, D-56070 Koblenz, Germany. [Staab, Steffen] Univ Stuttgart, Inst Parallel & Distributed Syst IPVS, Univ Str 32, D-50569 Stuttgart, Germany. [Staab, Steffen] Univ Southampton, Web & Internet Sci Res Grp, Univ Rd, Southampton SO17 1BJ, Hants, England. C3 HSE University (National Research University Higher School of Economics); University of Koblenz & Landau; University of Stuttgart; University of Southampton RP Koltcov, S (corresponding author), Natl Res Univ Higher Sch Econ, Soyuza Pechatnikov St 16, St Petersburg 190121, Russia. EM skoltsov@hse.ru; vignatenko@hse.ru; boukhers@uni-koblenz.de; Steffen.Staab@ipvs.uni-stuttgart.de RI Boukhers, Zeyd/HZL-0733-2023 OI Boukhers, Zeyd/0000-0001-9778-9164; Ignatenko, Vera/0000-0003-1407-0168; Staab, Steffen/0000-0002-0780-4154; Koltcov, Sergei/0000-0002-2932-2746 FU Basic Research Program at the National Research University Higher School of Economics in 2019; German Research Foundation (DFG) through the project grant 'Extraction of Citations from PDF Documents (EXCITE)' [STA 572/14-1]; German Research Foundation (DFG) [STA 572/18-1] FX Sergei Koltcov and Vera Ignatenko were supported by the Basic Research Program at the National Research University Higher School of Economics in 2019. Zeyd Boukhers and Steffen Staab were previously supported by the German Research Foundation (DFG) through the project grant 'Extraction of Citations from PDF Documents (EXCITE)' under grant number STA 572/14-1. Steffen Staab is now supported by the German Research Foundation (DFG) through the project grant "Open Argument Mining" (grant number STA 572/18-1). CR [Anonymous], 2018, Weekly epidemiological record; Meeting of the Strategic Advisory Group of Experts on immunization, April 2018 - conclusions and recommendations [Anonymous], 2007, Probability Theory [Anonymous], TECHNICAL REPORT Apishev M, 2017, LECT NOTES ARTIF INT, V10061, P169, DOI 10.1007/978-3-319-62434-1_14 Asuncion A., 2009, C UNC ART INT UAI QU, P27, DOI DOI 10.1080/10807030390248483 Balasubramanyan Ramnath, 2013, Machine Learning and Knowledge Discovery in Databases. European Conference (ECML PKDD 2013). Proceedings: LNCS 8189, P628, DOI 10.1007/978-3-642-40991-2_40 Basu S, 2009, CH CRC DATA MIN KNOW, P1 Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993 BUGRA, ENTR PERPL IM TEXT Chang V, 2007, I C DIGIT ECOSYST TE, P7 Chernyavsky Ilya., 2012, German Conference on Bioinformatics 2012, V26, P39 De Waal Alta., 2008, 19 ANN S PATTERN REC, V5221, P79 GEMAN S, 1984, IEEE T PATTERN ANAL, V6, P721, DOI 10.1109/TPAMI.1984.4767596 George C. P., 2017, Journal of Machine Learning Research, V18, P5937 Goodman JT, 2001, COMPUT SPEECH LANG, V15, P403, DOI 10.1006/csla.2001.0174 Griffiths TL, 2004, P NATL ACAD SCI USA, V101, P5228, DOI 10.1073/pnas.0307752101 Heinrich Gregor., 2004, Parameter estimation for text analysis Hofmann T, 1999, SIGIR'99: PROCEEDINGS OF 22ND INTERNATIONAL CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, P50, DOI 10.1145/312624.312649 Hofmann T, 2001, MACH LEARN, V42, P177, DOI 10.1023/A:1007617005950 Hu PF, 2014, PATTERN RECOGN, V47, P1138, DOI 10.1016/j.patcog.2013.06.010 Koltcov S., 2014, P 2014 ACM C WEB SCI, P161, DOI [DOI 10.1145/2615569.2615680, 10.1145/2615569.2615680] Koltcov S, 2019, ENTROPY-SWITZ, V21, DOI 10.3390/e21070660 Koltcov S, 2018, PHYSICA A, V512, P1192, DOI 10.1016/j.physa.2018.08.050 Koltcov S, 2016, LECT NOTES COMPUT SC, V9934, P176, DOI 10.1007/978-3-319-45982-0_16 Mimno David, 2011, P C EMPIRICAL METHOD, P262 Nelson C, 2012, 2012 IEEE INTERNATIONAL CONFERENCE ON TECHNOLOGIES FOR HOMELAND SECURITY, P637, DOI 10.1109/THS.2012.6459923 Newman D, 2009, J MACH LEARN RES, V10, P1801 ROSE K, 1990, PHYS REV LETT, V65, P945, DOI 10.1103/PhysRevLett.65.945 Rosen-Zvi M, 2010, ACM T INFORM SYST, V28, DOI 10.1145/1658377.1658381 Steyvers M., 2007, PROBABILISTIC TOPIC, P427 Teh YW, 2006, J AM STAT ASSOC, V101, P1566, DOI 10.1198/016214506000000302 Teh YeeW., 2007, Advances in neural information processing systems, P1481 Tikhonov A.N., 1977, Solution of Ill-Posed Problems Vorontsov KV, 2014, DOKL MATH, V89, P301, DOI 10.1134/S1064562414020185 Vorontsov K, 2014, COMM COM INF SC, V436, P29, DOI 10.1007/978-3-319-12580-0_3 Wallach Hanna M., 2009, P 26 ANN INT C MACH, P1105, DOI DOI 10.1145/1553374.1553515 Wallach HM, 2009, ADV NEURAL INFORM PR, V22, P1973, DOI DOI 10.1007/S10708-008-9161-9 Wang Chong., 2012, Advances in neural information processing systems, P413 Wang L, 2011, ACTA POLYM SIN, P752, DOI 10.3724/SP.J.1105.2011.10220 Yau CK, 2014, SCIENTOMETRICS, V100, P767, DOI 10.1007/s11192-014-1321-8 Zhao WZ, 2015, BMC BIOINFORMATICS, V16, DOI 10.1186/1471-2105-16-S13-S8 NR 41 TC 8 Z9 9 U1 0 U2 4 PU MDPI PI BASEL PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND EI 1099-4300 J9 ENTROPY-SWITZ JI Entropy PD APR PY 2020 VL 22 IS 4 AR 394 DI 10.3390/e22040394 PG 13 WC Physics, Multidisciplinary WE Science Citation Index Expanded (SCI-EXPANDED) SC Physics GA LT7BS UT WOS:000537222600057 PM 33286169 OA Green Published, Green Submitted, gold DA 2024-09-05 ER PT J AU Bornmann, L Hug, S AF Bornmann, Lutz Hug, Sven TI Bibliometrics-based heuristics: What is their definition and how can they be studied? - Research note SO PROFESIONAL DE LA INFORMACION LA English DT Article DE Bibliometrics; Heuristics; Bibliometrics-based heuristics; Research evaluation; Decision strategies ID SCIENCE; FRUGAL; MODELS; INDEX AB When scientists study the phenomena they are interested in, they apply sound methods and base their work on theoretical considerations. In contrast, when the fruits of their research are being evaluated, basic scientific standards do not seem to matter. Instead, simplistic bibliometric indicators (i.e., publication and citation counts) are, paradoxically, both widely used and criticized without any methodological and theoretical framework that would serve to ground both use and critique. Recently, however Bornmann and Marewski (2019) proposed such a framework. They developed bibliometrics-based heuristics (BBHs) based on the fast-and-frugal heuristics approach (Gigerenzer; Todd; ABC Research Group, 1999) to decision making, in order to conceptually understand and empirically investigate the quantitative evaluation of research as well as to effectively train end-users of bibliometrics (e.g., science managers, scientists). Heuristics are decision strategies that use part of the available information and ignore the rest. By exploiting the statistical structure of task environments, they can aid to make accurate, fast, effortless, and cost-efficient decisions without that trade-offs are incurred. Because of their simplicity, heuristics are easy to understand and communicate, enhancing the transparency of decision processes. In this commentary, we explain several BBHs and discuss how such heuristics can be employed in practice (using the evaluation of applicants for funding programs as one example). Furthermore, we outline why heuristics can perform well, and how they and their fit to task environments can be studied. In pointing to the potential of research on BBHs and to the risks that come with an under-researched, mindless usage of bibliometrics, this commentary contributes to make research evaluation more scientific. C1 [Bornmann, Lutz] Max Planck Gesell, Div Sci & Innovat Studies, Hofgartenstr 8, D-80539 Munich, Germany. [Hug, Sven] Univ Zurich, Dept Psychol, Binzmuhlestr 14, CH-8050 Zurich, Switzerland. C3 Max Planck Society; University of Zurich RP Bornmann, L (corresponding author), Max Planck Gesell, Div Sci & Innovat Studies, Hofgartenstr 8, D-80539 Munich, Germany. EM bornmann@gv.mpg.de; sven.hug@uzh.ch RI Hug, Sven E./G-7810-2015; Bornmann, Lutz/A-3926-2008 OI Hug, Sven E./0000-0002-7624-9529; Bornmann, Lutz/0000-0003-0810-7091 CR [Anonymous], 2014, Research Excellence Framework [Anonymous], 2008, Rationality for mortals: how people cope with uncertainty Binmore K, 2009, GORMAN LECT ECON, P1 Binmore K., 2007, ANN EC STAT, V86, P25, DOI DOI 10.2307/20079192 Bishop Doroty, 2018, NATURE INDEX 0507 Bornmann L., 2019, SAGE research methods foundations Bornmann L, 2008, J AM SOC INF SCI TEC, V59, P830, DOI 10.1002/asi.20806 Bornmann L, 2020, QUANT SCI STUD, V1, P331, DOI 10.1162/qss_a_00008 Bornmann L, 2019, SCIENTOMETRICS, V120, P419, DOI 10.1007/s11192-019-03018-x Brighton H., 2006, AAAI SPRING S COGN S, P17 Czerlinski J., 1999, Simple heuristics that make us smart, P97 de Rijcke S, 2016, RES EVALUAT, V25, P161, DOI 10.1093/reseval/rvv038 EMBO, 2018, EMBO YOUNG INV PROGR Evans JSBT, 2008, ANNU REV PSYCHOL, V59, P255, DOI 10.1146/annurev.psych.59.103006.093629 Gigerenzer G, 1996, PSYCHOL REV, V103, P650, DOI 10.1037/0033-295X.103.4.650 Gigerenzer G., 1999, Simple heuristics that make us smart, P3 Gigerenzer G, 2015, J MANAGE, V41, P421, DOI 10.1177/0149206314547522 Gigerenzer G, 2011, ANNU REV PSYCHOL, V62, P451, DOI 10.1146/annurev-psych-120709-145346 Gigerenzer Gerd, 2011, Heuristics: The foundation of adaptive behavior Goldstein DG, 2009, INT J FORECASTING, V25, P760, DOI 10.1016/j.ijforecast.2009.05.010 Hafenbrädl S, 2016, J APPL RES MEM COGN, V5, P215, DOI 10.1016/j.jarmac.2016.04.011 HAUSER JR, 1990, J CONSUM RES, V16, P393, DOI 10.1086/209225 Hertwig Ralph., 2003, THINKING PSYCHOL PER, P213, DOI [DOI 10.1002/047001332X.CH11, 10.1002/047001332X.ch11] Hertwig Ralph, 2013, SIMPLE HEURISTICS SO, DOI [10.1093/acprofoso/9780195388435.001.0001, DOI 10.1093/ACPR0F0S0/9780195388435.001.0001] Hicks Diana, 2015, Nature, V520, P429, DOI 10.1038/520429a Hirsch JE, 2019, SCIENTOMETRICS, V118, P673, DOI 10.1007/s11192-018-2994-1 Kahnemann D., 1982, JUDGMENT UNCERTAINTY Katsikopoulos KV, 2011, DECIS ANAL, V8, P10, DOI 10.1287/deca.1100.0191 Kelman MarkG., 2011, HEURISTICS DEBATE Knight F. H., 1921, RISK UNCERTAINTY PRO MacRoberts MH, 2018, J ASSOC INF SCI TECH, V69, P474, DOI 10.1002/asi.23970 Marewski JN, 2011, PSYCHOL REV, V118, P393, DOI 10.1037/a0024143 Marewski JN, 2010, PSYCHON B REV, V17, P287, DOI 10.3758/PBR.17.3.287 Marewski JN, 2010, COGN PROCESS, V11, P103, DOI 10.1007/s10339-009-0337-0 Marx W, 2014, ANN PHYS-BERLIN, V526, pA41, DOI 10.1002/andp.201400806 MERTON RK, 1968, SCIENCE, V159, P56, DOI 10.1126/science.159.3810.56 Raab M, 2015, FRONT PSYCHOL, V6, DOI 10.3389/fpsyg.2015.01672 Rothenfluh Tomas, 2009, CHANCEN GEFAHREN GEG, P259 Savage L. J., 1972, The foundations of statistics SIMON HA, 1990, ANNU REV PSYCHOL, V41, P1, DOI 10.1146/annurev.ps.41.020190.000245 SIMON HA, 1956, PSYCHOL REV, V63, P129, DOI 10.1037/h0042769 Todd Peter M., 2012, ECOLOGICAL RATIONALI, DOI [10.1093/acprof:oso/9780195315448.001.0001, DOI 10.1093/ACPR0F:0S0/9780195315448.001.0001] Waltman L., 2018, STI 2018 C P, P526 NR 43 TC 2 Z9 3 U1 2 U2 38 PU EDICIONES PROFESIONALES INFORMACION SL-EPI PI BARCELONA PA MISTRAL, 36, BARCELONA, ALBOLOTE, SPAIN SN 1386-6710 EI 1699-2407 J9 PROF INFORM JI Prof. Inf. PD JUL-AUG PY 2020 VL 29 IS 4 AR e290420 DI 10.3145/epi.2020.jul.20 PG 9 WC Communication; Information Science & Library Science WE Social Science Citation Index (SSCI) SC Communication; Information Science & Library Science GA NK5HY UT WOS:000566763500016 OA Bronze DA 2024-09-05 ER PT C AU Alexandru, D Iftene, A Gîfu, D AF Alexandru, Dan Iftene, Adrian Gifu, Daniela BE Mititelu, VB Irimia, E Tufis, D Cristea, D TI WHAT INDICATORS TELL US ABOUT MAKING ACCURATE RANK OF THE BEST PAPER PREDICTIONS SO PROCEEDINGS OF THE 15TH INTERNATIONAL CONFERENCE LINGUISTIC RESOURCES AND TOOLS FOR NATURAL LANGUAGE PROCESSING SE Linguistic Resources and Tools for Romanian Language Processing LA English DT Proceedings Paper CT 15th International Conference on Linguistic Resources and Tools for Natural Language Processing CY OCT 14-15, 2020 CL ELECTR NETWORK DE arXiv collection; h-index; machine learning; paper ranking ID QUALITY AB We propose a pilot research methodology intended to predict the best paper ranking, including machine learning algorithms based on arXiv collection. Our approach plans to link the author's h-index, identified in the Semantic Scholar, with the quality of a paper. It is well known that the h-index is a significant indicator of research impact realised by one author or a team, based on citation measurement. Out of these considerations of paper ranking use, we will concentrate in this survey only on the one or more of the authors on the search results page, by checking the h-index for each of them. C1 [Alexandru, Dan; Iftene, Adrian; Gifu, Daniela] Alexandru Ioan Cuza Univ, Fac Comp Sci, 16 Berthelot St, Iasi, Romania. [Gifu, Daniela] Romanian Acad, Inst Comp Sci, 2 Codrescu St, Iasi, Romania. C3 Alexandru Ioan Cuza University; Romanian Academy of Sciences RP Alexandru, D (corresponding author), Alexandru Ioan Cuza Univ, Fac Comp Sci, 16 Berthelot St, Iasi, Romania. EM dan.alexandru@info.uaic.ro; adiftene@info.uaic.ro; daniela.gifu@info.uaic.ro RI Gifu, Daniela/D-1805-2015 FU [848098]; [H2020-SC1-BHC2018-2020/H2020-SC1-2019-Two-Stage-RTD] FX This work was supported by project REVERT (taRgeted thErapy for adVanced colorEctal canceR paTients), Grant Agreement number: 848098, H2020-SC1-BHC2018-2020/H2020-SC1-2019-Two-Stage-RTD. CR Alexandru D, 2019, 28 INT C INF SYST DE Athalye A., 2017, ARXIV PREPRINT ARXIV Baboi M, 2019, PROCEDIA COMPUT SCI, V159, P1035, DOI 10.1016/j.procs.2019.09.271 Bensman S.J., 2014, ARXIV PREPRINT ARXIV Buckman J, 2018, P INT C LEARN REPR I Ciaccio Edward J., 2019, Informatics in Medicine Unlocked, V15, P210, DOI 10.1016/j.imu.2019.100166 Cioffi R, 2020, SUSTAINABILITY-BASEL, V12, DOI 10.3390/su12020492 Erfani S. M., 2018, ARXIV PREPRINT ARXIV Gifu D, 2014, INT LETT SOCIAL HUMA, V29, P48 Gschwend T, 2005, FR POLITICS, V3, P88, DOI 10.1057/palgrave.fp.8200068 Gupta N.A., 2017, LIT SURVEY ARTIFICIA Horzyk, 2014, P INDEX A FAIR ALTER Klein M, 2019, INT J DIGIT LIBRARIE, V20, P335, DOI 10.1007/s00799-018-0234-1 Lee PS, 2018, IEEE T BIG DATA, V4, P117, DOI 10.1109/TBDATA.2017.2689038 Lee YH, 2018, KOREAN J INTERN MED, V33, P277, DOI 10.3904/kjim.2016.195 MILMAN VD, 1986, LECT NOTES MATH, V1200, P1 Sinha A, 2015, WWW'15 COMPANION: PROCEEDINGS OF THE 24TH INTERNATIONAL CONFERENCE ON WORLD WIDE WEB, P243, DOI 10.1145/2740908.2742839 Szklo M, 2006, REV SAUDE PUBL, V40, P30, DOI 10.1590/S0034-89102006000400005 Talagrand M, 1999, ANN PROBAB, P1 Tang J., 2008, KDD, P990, DOI DOI 10.1145/1401890.1402008 Wagner D., 2018, INT C MACHINE LEARNI Waltman L, 2012, J AM SOC INF SCI TEC, V63, P406, DOI 10.1002/asi.21678 Wickson F, 2014, J RESPONSIBLE INNOV, V1, P254, DOI 10.1080/23299460.2014.963004 Yokus G., 2019, International Journal of Eurasia Social Sciences, V10, P516, DOI [10.35826/IJOESS.2479, DOI 10.35826/IJOESS.2479] NR 24 TC 0 Z9 0 U1 0 U2 2 PU EDITURA UNIV ALEXANDRU IOAN CUZA IASI PI IASI PA STR PINULUI NR 1A, IASI, 700109, ROMANIA SN 1843-911X J9 LING RES T ROM L PRO PY 2020 BP 173 EP 182 PG 10 WC Computer Science, Artificial Intelligence; Computer Science, Interdisciplinary Applications; Linguistics; Language & Linguistics WE Conference Proceedings Citation Index - Science (CPCI-S); Conference Proceedings Citation Index - Social Science & Humanities (CPCI-SSH) SC Computer Science; Linguistics GA BR6BE UT WOS:000659362800016 DA 2024-09-05 ER PT J AU Kuppler, M AF Kuppler, Matthias TI Predicting the future impact of Computer Science researchers: Is there a gender bias? SO SCIENTOMETRICS LA English DT Article DE Impact prediction; h-index; Gender; Discrimination; Machine learning ID RISING STARS; EMPLOYMENT; STEREOTYPES; SCIENTISTS; WOMEN; INDEX AB The advent of large-scale bibliographic databases and powerful prediction algorithms led to calls for data-driven approaches for targeting scarce funds at researchers with high predicted future scientific impact. The potential side-effects and fairness implications of such approaches are unknown, however. Using a large-scale bibliographic data set of N = 111,156 Computer Science researchers active from 1993 to 2016, I build and evaluate a realistic scientific impact prediction model. Given the persistent under-representation of women in Computer Science, the model is audited for disparate impact based on gender. Random forests and Gradient Boosting Machines are used to predict researchers' h-index in 2010 from their bibliographic profiles in 2005. Based on model predictions, it is determined whether the researcher will become a high-performer with an h-index in the top-25% of the discipline-specific h-index distribution. The models predict the future h-index with an accuracy of R-2 = 0.875 and correctly classify 91.0% of researchers as high-performers and low-performers. Overall accuracy does not vary strongly across researcher gender. Nevertheless, there is indication of disparate impact against women. The models underestimate the true h-index of female researchers more strongly than the h-index of male researchers. Further, women are 8.6% less likely to be predicted to become high-performers than men. In practice, hiring, tenure, and funding decisions that are based on model predictions risk to perpetuate the under-representation of women in Computer Science. C1 [Kuppler, Matthias] Univ Siegen, Dept Social Sci, Adolf Reichwein Str 2, D-57076 Siegen, Germany. C3 Universitat Siegen RP Kuppler, M (corresponding author), Univ Siegen, Dept Social Sci, Adolf Reichwein Str 2, D-57076 Siegen, Germany. EM matthias.kuppler@uni-siegen.de OI Kuppler, Matthias/0000-0002-7324-4722 FU Projekt DEAL FX Open Access funding enabled and organized by Projekt DEAL. CR Abramo G, 2015, J INFORMETR, V9, P25, DOI 10.1016/j.joi.2014.11.002 Abramo G, 2013, J INFORMETR, V7, P811, DOI 10.1016/j.joi.2013.07.002 Acuna DE, 2012, NATURE, V489, P201, DOI 10.1038/489201a AIGNER DJ, 1977, IND LABOR RELAT REV, V30, P175, DOI 10.2307/2522871 Alonso S, 2009, J INFORMETR, V3, P273, DOI 10.1016/j.joi.2009.04.001 AlShebli BK, 2018, NAT COMMUN, V9, DOI 10.1038/s41467-018-07634-8 [Anonymous], 2018, Science engineering indicators 2018: Higher education in science and engineering [Anonymous], 2016, ARXIV160605752 Arrow KJ., 1973, Discrimination in labor markets Ayaz S, 2018, SCIENTOMETRICS, V114, P993, DOI 10.1007/s11192-017-2618-1 Barocas S, 2016, CALIF LAW REV, V104, P671, DOI 10.15779/Z38BG31 Beaudry C, 2016, RES POLICY, V45, P1790, DOI 10.1016/j.respol.2016.05.009 Bendels MHK, 2018, PLOS ONE, V13, DOI 10.1371/journal.pone.0189136 Bertsimas D, 2015, OPER RES, V63, P1246, DOI 10.1287/opre.2015.1447 Blau FD, 2010, AM ECON REV, V100, P348, DOI 10.1257/aer.100.2.348 Breiman L., 2001, Machine Learning, V45, P5, DOI 10.1023/A:1010933404324 Brin S, 1998, COMPUT NETWORKS ISDN, V30, P107, DOI 10.1016/S0169-7552(98)00110-X Burton JW, 2020, J BEHAV DECIS MAKING, V33, P220, DOI 10.1002/bdm.2155 Carli LL, 2016, PSYCHOL WOMEN QUART, V40, P244, DOI 10.1177/0361684315622645 Caton S., 2020, ARXIV PREPRINT ARXIV Ceci SJ, 2014, PSYCHOL SCI PUBL INT, V15, P75, DOI 10.1177/1529100614541236 Chen TQ, 2016, KDD'16: PROCEEDINGS OF THE 22ND ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, P785, DOI 10.1145/2939672.2939785 Chouldechova A, 2017, BIG DATA-US, V5, P153, DOI 10.1089/big.2016.0047 Daud A, 2020, SCIENTOMETRICS, V124, P633, DOI 10.1007/s11192-020-03466-w Daud A, 2017, WWW'17 COMPANION: PROCEEDINGS OF THE 26TH INTERNATIONAL CONFERENCE ON WORLD WIDE WEB, P33, DOI 10.1145/3041021.3054137 Demetrescu C, 2020, SCIENTOMETRICS, V124, P2207, DOI 10.1007/s11192-020-03548-9 Dwork Cynthia, 2012, P 3 INN THEOR COMP S, P214, DOI DOI 10.1145/2090236.2090255 Eaton AA, 2020, SEX ROLES, V82, P127, DOI 10.1007/s11199-019-01052-w European Commission, 2018, She Figures 2018 Report Flanagin A, 1998, JAMA-J AM MED ASSOC, V280, P222, DOI 10.1001/jama.280.3.222 Friedman JH, 2001, ANN STAT, V29, P1189, DOI 10.1214/aos/1013203451 Heilman ME, 2012, RES ORGAN BEHAV, V32, P113, DOI 10.1016/j.riob.2012.11.003 Hicks Diana, 2015, Nature, V520, P429, DOI 10.1038/520429a Hirsch JE, 2007, P NATL ACAD SCI USA, V104, P19193, DOI 10.1073/pnas.0707962104 Hirsch JE, 2005, P NATL ACAD SCI USA, V102, P16569, DOI 10.1073/pnas.0507655102 Hofstra B, 2020, P NATL ACAD SCI USA, V117, P9284, DOI 10.1073/pnas.1915378117 Holman L, 2018, PLOS BIOL, V16, DOI 10.1371/journal.pbio.2004956 Huang JM, 2020, P NATL ACAD SCI USA, V117, P4609, DOI 10.1073/pnas.1914221117 Jadidi M, 2018, ADV COMPLEX SYST, V21, DOI 10.1142/S0219525917500114 James G, 2013, SPRINGER TEXTS STAT, V103, P1, DOI 10.1007/978-1-4614-7138-7_1 Kessels U, 2006, BRIT J EDUC PSYCHOL, V76, P761, DOI 10.1348/000709905X59961 Knobloch-Westerwick S, 2013, SCI COMMUN, V35, P603, DOI 10.1177/1075547012472684 Koch AJ, 2015, J APPL PSYCHOL, V100, P128, DOI 10.1037/a0036734 Lane KA, 2012, SEX ROLES, V66, P220, DOI 10.1007/s11199-011-0036-z Leavy S., 2020, BIAS SOCIAL ASPECTS, P12, DOI DOI 10.1007/978-3-030-52485-2_2 Lepri B., 2018, PHILOS TECHNOLOGY, V31, P611, DOI DOI 10.1007/S13347-017-0279-X Leslie SJ, 2015, SCIENCE, V347, P262, DOI 10.1126/science.1261375 Li XL, 2009, LECT NOTES COMPUT SC, V5463, P288, DOI 10.1007/978-3-642-00887-0_25 LONG JS, 1992, SOC FORCES, V71, P159, DOI 10.2307/2579971 Mazloumian A, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0049246 MERTON RK, 1968, SCIENCE, V159, P56, DOI 10.1126/science.159.3810.56 Miller DI, 2015, FRONT PSYCHOL, V6, DOI 10.3389/fpsyg.2015.00037 Mitchell S, 2021, ANNU REV STAT APPL, V8, P141, DOI 10.1146/annurev-statistics-042720-125902 Moss-Racusin CA, 2012, P NATL ACAD SCI USA, V109, P16474, DOI 10.1073/pnas.1211286109 National Center for Science and Engineering Statistics (NCSES), 2021, Women, Minorities, and Persons with Disabilities in Science and Engineering Special Report NSF 21-321 NCSES, 2019, 21320 NCSES NSF Nie YB, 2019, SCIENTOMETRICS, V120, P461, DOI 10.1007/s11192-019-03131-x Nielsen MW, 2017, P NATL ACAD SCI USA, V114, P1740, DOI 10.1073/pnas.1700616114 Nosek BA, 2002, J PERS SOC PSYCHOL, V83, P44, DOI 10.1037//0022-3514.83.1.44 Panagopoulos G, 2017, J INFORMETR, V11, P198, DOI 10.1016/j.joi.2016.11.003 Penner O, 2013, PHYS TODAY, V66, P8, DOI 10.1063/PT.3.1928 Reskin BF, 2000, AM SOCIOL REV, V65, P210, DOI 10.2307/2657438 Reskin BF, 2000, CONTEMP SOCIOL, V29, P319, DOI 10.2307/2654387 Reymert I, 2021, MINERVA, V59, P53, DOI 10.1007/s11024-020-09419-0 Santamaría L, 2018, PEERJ COMPUT SCI, DOI 10.7717/peerj-cs.156 Sanyal DK, 2021, J INF SCI, V47, P227, DOI 10.1177/0165551519888605 Sarsons H, 2017, AM ECON REV, V107, P141, DOI 10.1257/aer.p20171126 Seeber M, 2019, RES POLICY, V48, P478, DOI 10.1016/j.respol.2017.12.004 Sheltzer JM, 2014, P NATL ACAD SCI USA, V111, P10107, DOI 10.1073/pnas.1403334111 Sugimoto CR, 2013, NATURE, V504, P211, DOI 10.1038/504211a Symonds MRE, 2006, PLOS ONE, V1, DOI 10.1371/journal.pone.0000127 Tang SJ, 2022, SCI CHINA LIFE SCI, V65, P753, DOI 10.1007/s11427-021-1974-7 Tekles, 2019, ARXIV190412746CS van Anders SM, 2004, SEX ROLES, V51, P511, DOI 10.1007/s11199-004-5461-9 van Arensbergen P, 2012, SCIENTOMETRICS, V93, P857, DOI 10.1007/s11192-012-0712-y van der Lee R, 2015, P NATL ACAD SCI USA, V112, P12349, DOI 10.1073/pnas.1510159112 Weihs L, 2017, ACM-IEEE J CONF DIG, P49 Wenneras C, 1997, NATURE, V387, P341, DOI 10.1038/387341a0 West JD, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0066212 Wilhite AW, 2012, SCIENCE, V335, P542, DOI 10.1126/science.1212540 Witteman HO, 2019, LANCET, V393, P531, DOI 10.1016/S0140-6736(18)32611-4 Yuxiao Dong, 2016, IEEE Transactions on Big Data, V2, P18, DOI 10.1109/TBDATA.2016.2521657 Zhang J, 2016, ACM-IEEE J CONF DIG, P211, DOI 10.1145/2910896.2925436 Zhu XD, 2015, J ASSOC INF SCI TECH, V66, P408, DOI 10.1002/asi.23179 Zuo ZY, 2021, J ASSOC INF SCI TECH, V72, P454, DOI 10.1002/asi.24415 NR 85 TC 4 Z9 4 U1 7 U2 29 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0138-9130 EI 1588-2861 J9 SCIENTOMETRICS JI Scientometrics PD NOV PY 2022 VL 127 IS 11 BP 6695 EP 6732 DI 10.1007/s11192-022-04337-2 EA APR 2022 PG 38 WC Computer Science, Interdisciplinary Applications; Information Science & Library Science WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Computer Science; Information Science & Library Science GA 5U5FU UT WOS:000779267100001 OA hybrid DA 2024-09-05 ER PT J AU Chen, H Hu, WZ AF Chen, Hong Hu, WenZhe TI Research on exchange rate pass-through effect based on artificial intelligence approach SO CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE LA English DT Article DE artificial intelligence; exchange rate pass-through; Hermite polynomial; neural network ID IMPORT PRICES; COMPETITION; QUALITY; TRADE AB Artificial intelligence is widely believed to reshape many industries in the future. This paper analyzes the chaotic characteristics of Chinese export price index, exchange rate data, and studies the predictive ability of the neural network model in exchange rate passthrough (ERPT) prediction. The Hermite neural network model, one of artificial intelligence models, is selected to forecast the rate of pass-through effect. Hermite neural network model demonstrates a superior forecasting accuracy, and its forecasting error is less than that of the general neural network model. C1 [Chen, Hong; Hu, WenZhe] Wuhan Univ, Econ & Management Sch, Wuhan 430072, Peoples R China. C3 Wuhan University RP Hu, WZ (corresponding author), Wuhan Univ, Econ & Management Sch, Wuhan 430072, Peoples R China. EM wenzhe.hu@whu.edu.cn CR Alvarez R, 2012, EMERG MARK FINANC TR, V48, P100, DOI 10.2753/REE1540-496X480106 [Anonymous], APPL RES COMPUT Antoniades A, 2016, INT ECON REV, V57, P1425, DOI 10.1111/iere.12203 Aron J, 2014, J DEV STUD, V50, P144, DOI 10.1080/00220388.2013.847179 Auer RA, 2015, J MONEY CREDIT BANK, V47, P1617, DOI 10.1111/jmcb.12286 Bahrammirzaee A, 2010, NEURAL COMPUT APPL, V19, P1165, DOI 10.1007/s00521-010-0362-z Ben Cheikh N, 2016, REV WORLD ECON, V152, P69, DOI 10.1007/s10290-015-0233-x Bernini M, 2015, EUR ECON REV, V77, P117, DOI 10.1016/j.euroecorev.2015.04.005 Bussiere M, 2013, OXFORD B ECON STAT, V75, P731, DOI 10.1111/j.1468-0084.2012.00711.x Chen N, 2016, J INT ECON, V100, P61, DOI 10.1016/j.jinteco.2016.02.003 Chen P, 1988, SYST DYNAM REV, V4, P81, DOI 10.1002/sdr.4260040106 Donayre L, 2016, J INT MONEY FINANC, V64, P170, DOI 10.1016/j.jimonfin.2016.02.018 Guresen E, 2011, EXPERT SYST APPL, V38, P10389, DOI 10.1016/j.eswa.2011.02.068 Gust C, 2010, J MONETARY ECON, V57, P309, DOI 10.1016/j.jmoneco.2010.02.001 Jammazi R, 2015, J INT FINANC MARK I, V34, P173, DOI 10.1016/j.intfin.2014.11.011 [李哲敏 Li Zhemin], 2015, [系统工程理论与实践, Systems Engineering-Theory & Practice], V35, P2083 LIU HY, 2017, FINANCE, V5 Marazzi M, 2005, INT FINANCE DISCUSS, V2005, P883 Olivei GP, 2002, NEW ENGL ECON REV, P3 [潘昊 PAN Hao], 2005, [计算机应用, Computer Applications], V25, P2777 ROSENSTEIN MT, 2001, PHYSICA D, V65, P117 Sun Q, 2011, SEEKER, P11 Trippi Robert R, 1992, Neural networks in finance and investing: using artificial intelligence to improve real-world performance Turner P, 2017, APPL ECON, V49, P397, DOI 10.1080/00036846.2016.1197374 Winkelried D, 2014, EMPIR ECON, V46, P1181, DOI 10.1007/s00181-013-0715-4 Xie C, 2015, MATH PROBL ENG, V2015, DOI 10.1155/2015/635345 XIONG Z, 2011, QUANT TECHN ECON, V6, P64 Zhang G, 1998, OMEGA-INT J MANAGE S, V26, P495, DOI 10.1016/S0305-0483(98)00003-6 Zou AJ, 2019, CLUSTER COMPUT, V22, pS9941, DOI 10.1007/s10586-017-1020-3 NR 29 TC 2 Z9 2 U1 0 U2 28 PU WILEY PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1532-0626 EI 1532-0634 J9 CONCURR COMP-PRACT E JI Concurr. Comput.-Pract. Exp. PD MAY 10 PY 2019 VL 31 IS 9 SI SI AR e4986 DI 10.1002/cpe.4986 PG 9 WC Computer Science, Software Engineering; Computer Science, Theory & Methods WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Computer Science GA HU1NF UT WOS:000465038400010 DA 2024-09-05 ER PT C AU Jangid, N Saha, S Narasimhamurthy, A Mathur, A AF Jangid, Neelam Saha, Snehanshu Narasimhamurthy, Anand Mathur, Archana BE Mitra, S McIntosh, S Nair, I Bedi, P Rajasree, MS TI Computing the Prestige of a journal: A Revised Multiple Linear Regression Approach SO PROCEEDING OF THE THIRD INTERNATIONAL SYMPOSIUM ON WOMEN IN COMPUTING AND INFORMATICS (WCI-2015) LA English DT Proceedings Paper CT 3rd International Symposium on Women in Computing and Informatics (WCI) CY AUG 10-13, 2015 CL SCMS Sch Engn & Technol, Aluva, INDIA HO SCMS Sch Engn & Technol DE Revised Multiple Linear Regression Model (RMLRM); Journal ranking; PCA ID SCIENCE; IMPACT AB The evaluation of journals based on their influence is of interest for numerous reasons. Various methods of computing a score have been proposed for measuring the scientific influence of scholarly journals. Typically the computation of any of these scores involves compiling the citation information pertaining to the journal under consideration. This involves significant overhead since the article citation information of not only the journal under consideration but also that of other journals for the recent few years need to be stored. Our work is motivated by the idea of developing a computationally lightweight scheme that does not require any data storage, yet yields a score which is useful for measuring the importance of journals. In this paper, a Journal Influence Score is mooted and a regression analysis based method is proposed to calculate the score. We validated our model using historical data from the SCImago portal. The results are promising, the rankings obtained using the proposed method compare favourably with the SCImago Journal Rank, thus indicating that the proposed approach is a feasible and effective method of calculating scientific impact of journals. C1 [Jangid, Neelam; Saha, Snehanshu; Mathur, Archana] PESIT South, Dept Comp Sci & Engn, Bangalore, Karnataka, India. [Narasimhamurthy, Anand] BITS, Dept Comp Sci & Engn, Hyderabad, Andhra Pradesh, India. C3 PES University; Birla Institute of Technology & Science Pilani (BITS Pilani) RP Jangid, N (corresponding author), PESIT South, Dept Comp Sci & Engn, Bangalore, Karnataka, India. EM neelu.jangid88@gmail.com; snehanshusaha@pes.edu; anandmnl@gmail.com; archanamathur@pes.edu RI ; Saha, Snehanshu/R-1028-2018 OI Mathur, Archana/0000-0003-4522-6890; Saha, Snehanshu/0000-0002-8458-604X CR Abrizah A, 2013, SCIENTOMETRICS, V94, P721, DOI 10.1007/s11192-012-0813-7 [Anonymous], 2006, Google's PageRank and Beyond: The Science of Search Engine Rankings Buela-Casal G, 2006, SCIENTOMETRICS, V67, P45, DOI 10.1556/Scient.67.2006.1.4 GARFIELD E, 1972, SCIENCE, V178, P471, DOI 10.1126/science.178.4060.471 Haddow G, 2010, SCIENTOMETRICS, V85, P471, DOI 10.1007/s11192-010-0198-4 Jain Raj, 2009, ART COMPUTER SYSTEM Kao C, 2009, SCIENTOMETRICS, V81, P123, DOI 10.1007/s11192-009-2093-4 Svensson G, 2008, MARK INTELL PLAN, V26, P340, DOI 10.1108/02634500810879250 NR 8 TC 2 Z9 2 U1 0 U2 1 PU ASSOC COMPUTING MACHINERY PI NEW YORK PA 1515 BROADWAY, NEW YORK, NY 10036-9998 USA BN 978-1-4503-3361-0 PY 2015 BP 1 EP 4 DI 10.1145/2791405.2791407 PG 4 WC Computer Science, Information Systems; Computer Science, Interdisciplinary Applications; Computer Science, Theory & Methods WE Conference Proceedings Citation Index - Science (CPCI-S) SC Computer Science GA BH0PF UT WOS:000395824100001 DA 2024-09-05 ER PT C AU Cabanac, G Chandrasekaran, MK Frommholz, I Jaidka, K Kan, MY Mayr, P Wolfram, D AF Cabanac, Guillaume Chandrasekaran, Muthu Kumar Frommholz, Ingo Jaidka, Kokil Kan, Min-Yen Mayr, Philipp Wolfram, Dietmar GP IEEE TI Joint Workshop on Bibliometric-enhanced Information Retrieval and Natural Language Processing for Digital Libraries (BIRNDL 2016) SO 2016 IEEE/ACM JOINT CONFERENCE ON DIGITAL LIBRARIES (JCDL) SE ACM-IEEE Joint Conference on Digital Libraries JCDL LA English DT Proceedings Paper CT 16th ACM/IEEE-CS Joint Conference on Digital Libraries (JCDL) CY JUN 19-23, 2016 CL Newark, NJ DE Bibliometrics; Information Retrieval; Digital Libraries; Natural Language Processing; Text Mining AB The large scale of scholarly publications poses a challenge for scholars in information-seeking and sensemaking. Bibliometric, information retrieval (IR), text mining and NLP techniques could help in these activities, but are not yet widely used in digital libraries. This workshop is intended to stimulate IR researchers and digital library professionals to elaborate on new approaches in natural language processing, information retrieval, scientometric and recommendation techniques which can advance the state-of-the-art in scholarly document understanding, analysis and retrieval at scale. C1 [Cabanac, Guillaume] Univ Toulouse, Toulouse, France. [Chandrasekaran, Muthu Kumar; Kan, Min-Yen] NUS Sch Comp, Singapore, Singapore. [Frommholz, Ingo] Univ Bedfordshire, Luton, Beds, England. [Jaidka, Kokil] Adobe Syst Inc, Bangalore, Karnataka, India. [Mayr, Philipp] GESIS Leibniz Inst Social Sci, Leibniz, Germany. [Wolfram, Dietmar] Univ Wisconsin, Milwaukee, WI 53201 USA. C3 Universite de Toulouse; University of Bedfordshire; Adobe Systems Inc.; Leibniz Institut fur Sozialwissenschaften (GESIS); University of Wisconsin System; University of Wisconsin Milwaukee RP Cabanac, G (corresponding author), Univ Toulouse, Toulouse, France. EM guillaume.cabanac@univ-tlse3.fr; muthu.chandra@comp.nus.edu.sg; ingo.frommholz@beds.ac.uk; jaidka@adobe.com; kanmy@comp.nus.edu.sg; philipp.mayr@gesis.org; dwolfram@uwn.edu RI Jaidka, Kokil/AAK-2618-2020; Cabanac, Guillaume/C-5913-2011; Frommholz, Ingo/IUM-8186-2023 OI Jaidka, Kokil/0000-0002-8127-1157; Cabanac, Guillaume/0000-0003-3060-6241; Frommholz, Ingo/0000-0002-5622-5132 CR Atanassova Iana, 2015, P 1 WORKSH MIN SCI C Jaidka Kokil, 2014, P TEXT AN C GAITH Mayr Philipp, 2016, P 3 WORKSH BIBL ENH Nakov P. I., 2004, P SIGIR 04 WORKSH SE, P81 NR 4 TC 2 Z9 2 U1 2 U2 10 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA SN 2575-7865 EI 2575-8152 BN 978-1-4503-4229-2 J9 ACM-IEEE J CONF DIG PY 2016 BP 299 EP 300 DI 10.1145/2910896.2926734 PG 2 WC Computer Science, Interdisciplinary Applications WE Conference Proceedings Citation Index - Science (CPCI-S) SC Computer Science GA BG5HY UT WOS:000389502300078 OA Green Submitted DA 2024-09-05 ER PT J AU Bollen, J Van de Sompel, H Hagberg, A Chute, R AF Bollen, Johan Van de Sompel, Herbert Hagberg, Aric Chute, Ryan TI A Principal Component Analysis of 39 Scientific Impact Measures SO PLOS ONE LA English DT Article ID JOURNAL IMPACT AB Background: The impact of scientific publications has traditionally been expressed in terms of citation counts. However, scientific activity has moved online over the past decade. To better capture scientific impact in the digital era, a variety of new impact measures has been proposed on the basis of social network analysis and usage log data. Here we investigate how these new measures relate to each other, and how accurately and completely they express scientific impact. Methodology: We performed a principal component analysis of the rankings produced by 39 existing and proposed measures of scholarly impact that were calculated on the basis of both citation and usage log data. Conclusions: Our results indicate that the notion of scientific impact is a multi-dimensional construct that can not be adequately measured by any single indicator, although some measures are more suitable than others. The commonly used citation Impact Factor is not positioned at the core of this construct, but at its periphery, and should thus be used with caution. RP Bollen, J (corresponding author), Los Alamos Natl Lab, Res Lib, Digital Lib Res & Prototyping Team, Los Alamos, NM 87545 USA. EM jbollen@lanl.gov CR AGGARWAL CC, 1998, IEEE DATA ENG B, V21 [Anonymous], 2006, PLOS MED, V3, P707, DOI 10.1371/journal.pmed.0030291 [Anonymous], 2002, Principal components analysis [Anonymous], BRIT MED J FEB [Anonymous], 2009, Social Network Analysis. Methods and Applications Bollen J, 2005, INFORM PROCESS MANAG, V41, P1419, DOI 10.1016/j.ipm.2005.03.024 BOLLEN J, 2008, J AM SOC INFORM SCI, V59 BOLLEN J, 2008, JOINT C DIG LIBR JCD Bollen J, 2006, SCIENTOMETRICS, V69, P669, DOI 10.1007/s11192-006-0176-z Bollen J, 2009, PLOS ONE, V4, DOI [10.1371/journal.pone.0006022, 10.1371/journal.pone.0004803] Bordons M, 2002, SCIENTOMETRICS, V53, P195, DOI 10.1023/A:1014800407876 Braun T, 2005, SCIENTIST, V19, P8 Brin S, 1998, COMPUT NETWORKS ISDN, V30, P107, DOI 10.1016/S0169-7552(98)00110-X Brody T, 2006, J AM SOC INF SCI TEC, V57, P1060, DOI 10.1002/asi.20373 Chen P, 2007, J INFORMETR, V1, P8, DOI 10.1016/j.joi.2006.06.001 Darmoni SJ, 2002, J MED LIBR ASSOC, V90, P323 Dellavalle RP, 2007, J AM ACAD DERMATOL, V57, P116, DOI 10.1016/j.jaad.2007.03.005 EGGHE L, 1998, INFORM PROCESSING MA, V24, P567 Egghe L, 2006, SCIENTOMETRICS, V69, P131, DOI 10.1007/s11192-006-0144-7 Garfield E, 1999, CAN MED ASSOC J, V161, P979 Harter SP, 1997, J AM SOC INFORM SCI, V48, P1146, DOI 10.1002/(SICI)1097-4571(199712)48:12<1146::AID-ASI9>3.0.CO;2-U Hirsch JE, 2005, P NATL ACAD SCI USA, V102, P16569, DOI 10.1073/pnas.0507655102 Jin BH, 2007, CHINESE SCI BULL, V52, P855, DOI 10.1007/s11434-007-0145-9 Leydesdorff L, 2007, J AM SOC INF SCI TEC, V58, P1303, DOI 10.1002/asi.20614 Leydesdorff L, 2007, J AM SOC INF SCI TEC, V58, P25, DOI 10.1002/asi.20406 Opthof T, 1997, CARDIOVASC RES, V33, P1, DOI 10.1016/S0008-6363(96)00215-5 PINSKI G, 1976, INFORM PROCESS MANAG, V12, P297, DOI 10.1016/0306-4573(76)90048-0 Rousseau R, 2005, SCIENTOMETRICS, V63, P431, DOI 10.1007/s11192-005-0223-1 SHEPHERD PT, 2007, J SERIALS COMMUNITY, V20, P117, DOI DOI 10.1629/20117 NR 29 TC 222 Z9 226 U1 2 U2 160 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA SN 1932-6203 J9 PLOS ONE JI PLoS One PD JUN 29 PY 2009 VL 4 IS 6 AR e6022 DI 10.1371/journal.pone.0006022 PG 11 WC Multidisciplinary Sciences WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Science & Technology - Other Topics GA 463XB UT WOS:000267465900001 OA Green Published, Green Submitted, gold DA 2024-09-05 ER PT J AU Thijs, B Zhang, L Glänzel, W AF Thijs, Bart Zhang, Lin Glanzel, Wolfgang TI Bibliographic coupling and hierarchical clustering for the validation and improvement of subject-classification schemes SO SCIENTOMETRICS LA English DT Article DE Bibliographic coupling; Journal clustering; Second order similarities; Subject classification AB An attempt is made to cluster journals from the complete Web of Science database by using bibliographic coupling similarities. Since the sparseness of the underlying similarity matrix proved inappropriate for this exercise, second-order similarities have been used. Only 0.12 % out of 8282 journals had to be removed from the classification as being singletons. The quality at three hierarchical levels with 6, 14 and 24 clusters substantiated the applicability of this method. Cluster labelling was made on the basis of the about 70 subfields of the Leuven-Budapest subject-classification scheme that also allowed the comparison with the existing two-level journal classification system developed in Leuven. The further comparison with the 22 field classification system of the Essential Science Indicators does, however, reveal larger deviations. C1 [Thijs, Bart; Zhang, Lin; Glanzel, Wolfgang] Katholieke Univ Leuven, Dept MSI, ECOOM, Louvain, Belgium. [Zhang, Lin] North China Univ Water Conservancy & Elect Power, Dept Management & Econ, Zhengzhou, Peoples R China. [Glanzel, Wolfgang] Lib Hungarian Acad Sci, Dept Sci Policy & Scientometr, Budapest, Hungary. C3 KU Leuven; North China University of Water Resources & Electric Power; Hungarian Academy of Sciences RP Thijs, B (corresponding author), Katholieke Univ Leuven, Dept MSI, ECOOM, Louvain, Belgium. EM Bart.Thijs@econ.kuleuven.be RI Glanzel, Wolfgang/AAE-4395-2021; zhang, lin/M-3007-2017 OI zhang, lin/0000-0003-0526-9677 FU National Natural Science Foundation of China [71103064] FX This is a revised and extended version of a paper presented at the 14th International Conference on Scientometrics and Informetrics, Vienna, Austria, 15-19 July 2013 (Thijs et al. 2013b). The authors wish to thank the reviewers for their comments which helped us to improve and extend the paper. Lin Zhang acknowledges the support from the National Natural Science Foundation of China under Grant 71103064. CR Ahlgren P, 2009, J INFORMETR, V3, P49, DOI 10.1016/j.joi.2008.11.003 Bassecoulard E, 1999, SCIENTOMETRICS, V44, P323, DOI 10.1007/BF02458483 Bastian M., 2009, Gephi: An open source software for exploring and manipulating networks GARFIELD E, 1998, 150 ANN M AAAS PHIL Glänzel W, 2011, SCIENTOMETRICS, V88, P297, DOI 10.1007/s11192-011-0347-4 Glänzel W, 2003, SCIENTOMETRICS, V56, P357, DOI 10.1023/A:1022378804087 Glanzel W, 1996, SCIENTOMETRICS, V37, P195, DOI 10.1007/BF02093621 Janssens F., 2007, THESIS Janssens F, 2008, SCIENTOMETRICS, V75, P607, DOI 10.1007/s11192-007-2002-7 Janssens F, 2009, INFORM PROCESS MANAG, V45, P683, DOI 10.1016/j.ipm.2009.06.003 Jarneving B., 2005, THESIS Leydesdorff L, 2004, J DOC, V60, P371, DOI 10.1108/00220410410548144 NARIN F, 1972, J AM SOC INFORM SCI, V23, P323, DOI 10.1002/asi.4630230508 Narin F., 1976, Evaluative Bibliometrics: The Use of Publication and Citation Analysis in the Evaluation of Scientific Activity ROUSSEEUW PJ, 1987, J COMPUT APPL MATH, V20, P53, DOI 10.1016/0377-0427(87)90125-7 Sen S.K., 1983, Annals of library science and documentation, V30, P78 Thijs B, 2013, PRO INT CONF SCI INF, P237 Thijs B, 2013, SCIENTOMETRICS, V96, P667, DOI 10.1007/s11192-012-0896-1 Zhang L, 2010, SCIENTOMETRICS, V82, P687, DOI 10.1007/s11192-010-0180-1 NR 19 TC 23 Z9 25 U1 1 U2 97 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0138-9130 EI 1588-2861 J9 SCIENTOMETRICS JI Scientometrics PD DEC PY 2015 VL 105 IS 3 BP 1453 EP 1467 DI 10.1007/s11192-015-1641-3 PG 15 WC Computer Science, Interdisciplinary Applications; Information Science & Library Science WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Computer Science; Information Science & Library Science GA CW6TG UT WOS:000365130100006 DA 2024-09-05 ER PT J AU Sharma, D Mittal, R Sekhar, R Shah, PT Renz, M AF Sharma, Deepak Mittal, Ruchi Sekhar, Ravi Shah, Pritesh Renz, Matthias TI A bibliometric analysis of cyber security and cyber forensics research SO RESULTS IN CONTROL AND OPTIMIZATION LA English DT Article DE Anomaly detection; Cyber security; Cyber forensics; Cyber attack; Malware detection; Machine learning; Deep learning; Bibliometry ID SOCIAL NETWORK ANALYSIS; TOURISM; JOURNALS; SCIENCE AB Cybersecurity is one of the most important concerns associated with ever expanding internet based technologies, products, services and networks. If cybersecurity is prevention then cyber forensics is the cure. Both are equally important pillars of digital security. This paper presents an extensive bibliometric analysis of cybersecurity and cyberforensic research published in Web of Science during the past decade (2011-2021). The analysis included yearly publications, publication types and trends across different verticals such as publishing sources, organizations, researchers, countries and keywords. Full counting method was used for citation analysis, whereas fractional counting method was implemented to analyze co-citation, co-author collaborations as well as keyword co-occurrences across all these verticals. Furthermore, timeline and burst detection analyses were carried out to unravel significant topic trends and citations in the last decade. The study presents bibliometric results in terms of the authors, organizations, countries, keywords, sources and documents with the highest collaborative link strengths worldwide in the field of cybersecurity and forensics. Latest trends, under-investigated topics and future directions are also presented. C1 [Sharma, Deepak; Renz, Matthias] Christian Albrechts Univ Kiel, Dept Comp Sci, D-24118 Kiel, Germany. [Mittal, Ruchi] Ganga Inst Technol & Management, Dept Comp Sci, Bahadurgarh Jhajjar Rd Kablana, Jhajjar 124104, Haryana, India. [Sekhar, Ravi; Shah, Pritesh] Symbiosis Int Deemed Univ, Symbiosis Inst Technol, Pune 412115, India. C3 University of Kiel; Symbiosis International University; Symbiosis Institute of Technology (SIT) RP Shah, PT (corresponding author), Symbiosis Int Deemed Univ, Symbiosis Inst Technol, Pune 412115, India. EM deepak.btg@gmail.com; ruchi.mittal138@gmail.com; ravi.sekhar@sitpune.edu.in; pritesh.ic@gmail.com; mr@informatik.uni-kiel.de RI dbs, hunzla/HZL-0324-2023; Shah, Pritesh/Q-7269-2016 OI Shah, Pritesh/0000-0002-7504-2323 CR Aafer Y, 2013, L N INST COMP SCI SO, V127, P86 Ahmed U., 2015, J Reliab Intell Environ, V1, P123 Arp D, 2014, 21ST ANNUAL NETWORK AND DISTRIBUTED SYSTEM SECURITY SYMPOSIUM (NDSS 2014), DOI 10.14722/ndss.2014.23247 Azambuja AJGd, 2021, Res Soc Dev, P1 Azmoodeh A, 2019, Handbook of big data and IoT security, P1 Baggio R, 2008, P EUTO, P1 Baldwin J, 2018, ADV INFORM SECUR, V70, P311, DOI 10.1007/978-3-319-73951-9_16 Benckendorff P, 2013, ANN TOURISM RES, V43, P121, DOI 10.1016/j.annals.2013.04.005 Benckendorff P, 2009, J HOSP TOUR MANAG, V16, P1, DOI 10.1375/jhtm.16.1.1 Bhuyan MH, 2014, IEEE COMMUN SURV TUT, V16, P303, DOI 10.1109/SURV.2013.052213.00046 Bolbot Victor, 2022, International Journal of Critical Infrastructure Protection, DOI 10.1016/j.ijcip.2022.100571 Borgman CL, 2002, ANNU REV INFORM SCI, V36, P3 Breiman L, 2001, MACH LEARN, V45, P5, DOI 10.1023/A:1010933404324 Chabrow E., 2015, Data Breach Today, V1 Chang CC, 2011, ACM T INTEL SYST TEC, V2, DOI 10.1145/1961189.1961199 Chatfield K, 2014, Arxiv, DOI arXiv:1405.3531 Chen CM, 2004, P NATL ACAD SCI USA, V101, P5303, DOI 10.1073/pnas.0307513100 Cheng CK, 2011, TOURISM MANAGE, V32, P53, DOI 10.1016/j.tourman.2009.11.004 Cobo MJ, 2011, J AM SOC INF SCI TEC, V62, P1382, DOI 10.1002/asi.21525 Cojocaru I, 2019, Central and Eastern European eDem and eGov days, V335, P151 CORTES C, 1995, MACH LEARN, V20, P273, DOI 10.1023/A:1022627411411 Elango B, 2020, P INT C RECENT ADV C Erfani SM, 2016, PATTERN RECOGN, V58, P121, DOI 10.1016/j.patcog.2016.03.028 Gill J, 2018, ADV INFORM SECUR, V70, P297, DOI 10.1007/978-3-319-73951-9_15 Gokhale Angelina, 2020, Science & Technology Libraries, V39, P96, DOI 10.1080/0194262X.2020.1714529 Goodfellow IJ, 2014, ADV NEUR IN, V27, P2672, DOI 10.1145/3422622 Gou XQ, 2022, SAFETY SCI, V147, DOI 10.1016/j.ssci.2021.105617 Goyal Reema, 2021, 2021 3rd International Conference on Advances in Computing, Communication Control and Networking (ICAC3N), P1570, DOI 10.1109/ICAC3N53548.2021.9725660 Grooby S, 2019, Handbook of big data and IoT security, P25 Hochreiter S, 1997, NEURAL COMPUT, V9, P1735, DOI [10.1162/neco.1997.9.1.1, 10.1007/978-3-642-24797-2] Hu C, 2008, INT J HOSP MANAG, V27, P302, DOI 10.1016/j.ijhm.2007.01.002 Ismayilova N, 2015, Comput Commun, V616, P1 Jalali MS, 2019, J MED INTERNET RES, V21, DOI 10.2196/12644 Jamal T, 2008, TOURISM MANAGE, V29, P66, DOI 10.1016/j.tourman.2007.04.001 Jiang YW, 2019, CURR ISSUES TOUR, V22, P1925, DOI 10.1080/13683500.2017.1408574 Khan S, 2018, MECH SYST SIGNAL PR, V107, P241, DOI 10.1016/j.ymssp.2017.11.024 Kingma D. P., 2014, INT C LEARNING REPRE Krizhevsky A, 2017, COMMUN ACM, V60, P84, DOI 10.1145/3065386 Kusuma Mandahadi, 2021, 2021 IEEE Mysore Sub Section International Conference (MysuruCon), P13, DOI 10.1109/MysuruCon52639.2021.9641641 LeCun Y, 2015, NATURE, V521, P436, DOI 10.1038/nature14539 Mahmud M, 2021, Libr Philos Pract, P1 Makawana PR, 2018, LECT NOTE NETW SYST, V19, P213, DOI 10.1007/978-981-10-5523-2_20 McKercher B, 2008, TOURISM MANAGE, V29, P1226, DOI 10.1016/j.tourman.2008.03.003 McKercher B, 2006, TOURISM MANAGE, V27, P1235, DOI 10.1016/j.tourman.2005.06.008 Miskiewicz R, 2020, MARK MANAG INNOV, P371, DOI 10.21272/mmi.2020.3-27 Mohammadi S, 2019, J INF SECUR APPL, V44, P80, DOI 10.1016/j.jisa.2018.11.007 Nakhodchi S, 2020, Security of cyber-physical systems: Vulnerability and impact, P203 Pedregosa F, 2011, J MACH LEARN RES, V12, P2825 Pei KX, 2017, PROCEEDINGS OF THE TWENTY-SIXTH ACM SYMPOSIUM ON OPERATING SYSTEMS PRINCIPLES (SOSP '17), P1, DOI 10.1145/3132747.3132785 Perianes-Rodriguez A, 2016, J INFORMETR, V10, P1178, DOI 10.1016/j.joi.2016.10.006 Perozzi B, 2014, PROCEEDINGS OF THE 20TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING (KDD'14), P701, DOI 10.1145/2623330.2623732 Pimentel MAF, 2014, SIGNAL PROCESS, V99, P215, DOI 10.1016/j.sigpro.2013.12.026 Prasad NR, 2009, CMC-COMPUT MATER CON, V14, P1, DOI 10.1145/1541880.1541882 Rahim N, 2021, Cybersecurity threats with new perspectives Ramim M, 2006, J CASES INF TECHNOL, V8, P24, DOI 10.4018/jcit.2006100103 Rieck K, 2011, J COMPUT SECUR, V19, P639, DOI 10.3233/JCS-2010-0410 Rouzbahani HM, 2020, Advances in Information Security, V79, P129, DOI DOI 10.1007/978-3-030-38181-37 Santos I, 2013, INFORM SCIENCES, V231, P64, DOI 10.1016/j.ins.2011.08.020 Schlegl T, 2017, LECT NOTES COMPUT SC, V10265, P146, DOI 10.1007/978-3-319-59050-9_12 SCOTT N., 2008, Network Analysis and Tourism: From Theory to Practice Sekhar R, 2021, APPL SYST INNOV, V4, DOI 10.3390/asi4040086 Shabtai A, 2012, J INTELL INF SYST, V38, P161, DOI 10.1007/s10844-010-0148-x Sharafaldin I, 2018, ICISSP: PROCEEDINGS OF THE 4TH INTERNATIONAL CONFERENCE ON INFORMATION SYSTEMS SECURITY AND PRIVACY, P108, DOI 10.5220/0006639801080116 Sharma D, 2021, Metaheuristic algorithms in industry 4.0, P1 Shone N, 2018, IEEE T EM TOP COMP I, V2, P41, DOI 10.1109/TETCI.2017.2772792 Shukla G., 2020, Eur J Mol Clin Med, V7, P2567 Srivastava N, 2014, J MACH LEARN RES, V15, P1929 Tavallaee M., 2009, P IEEE S COMP INT SE, P1 Thakur Hardik, 2022, AIP Conference Proceedings, V2519, DOI 10.1063/5.0112569 Van Eck NJ, 2007, STUD CLASS DATA ANAL, P299 van Raan AFJ, 2005, MEAS-INTERDISCIP RES, V3, P50, DOI 10.1207/s15366359mea0301_7 White HD, 1998, J AM SOC INFORM SCI, V49, P327, DOI 10.1002/(SICI)1097-4571(19980401)49:4<327::AID-ASI4>3.0.CO;2-W Wu DJ, 2012, ASIA JT CONF INF SEC, P62, DOI 10.1109/AsiaJCIS.2012.18 Yarovenko HM, 2022, Dynamic and bibliometric analysis of terms identifying the combating financial and cyber fraud system Ye Q, 2012, TOUR MANAG PERSPECT, V2-3, P55, DOI 10.1016/j.tmp.2012.03.002 Ying TY, 2012, J HOSP TOUR RES, V36, P450, DOI 10.1177/1096348011400745 Zhou YJ, 2012, P IEEE S SECUR PRIV, P95, DOI 10.1109/SP.2012.16 Zou S, 2012, Proceedings of the 10th international conference on Mobile systems, applications, and services, P281, DOI 10.1145/2307636.2307663 Zupic I, 2015, ORGAN RES METHODS, V18, P429, DOI 10.1177/1094428114562629 NR 79 TC 4 Z9 4 U1 2 U2 2 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS EI 2666-7207 J9 RESULTS CONTROL OPTI JI Results Control Optim. PD MAR PY 2023 VL 10 AR 100204 DI 10.1016/j.rico.2023.100204 PG 32 WC Mathematics, Applied WE Emerging Sources Citation Index (ESCI) SC Mathematics GA OR3Z4 UT WOS:001208974200005 OA gold DA 2024-09-05 ER PT J AU de Winter, J AF de Winter, Joost TI Can ChatGPT be used to predict citation counts, readership, and social media interaction? An exploration among 2222 scientific abstracts SO SCIENTOMETRICS LA English DT Article DE Citation prediction; Scientometrics; Altmetrics; ChatGPT; GPT-4; Scientific abstracts; Artificial intelligence AB This study explores the potential of ChatGPT, a large language model, in scientometrics by assessing its ability to predict citation counts, Mendeley readers, and social media engagement. In this study, 2222 abstracts from PLOS ONE articles published during the initial months of 2022 were analyzed using ChatGPT-4, which used a set of 60 criteria to assess each abstract. Using a principal component analysis, three components were identified: Quality and Reliability, Accessibility and Understandability, and Novelty and Engagement. The Accessibility and Understandability of the abstracts correlated with higher Mendeley readership, while Novelty and Engagement and Accessibility and Understandability were linked to citation counts (Dimensions, Scopus, Google Scholar) and social media attention. Quality and Reliability showed minimal correlation with citation and altmetrics outcomes. Finally, it was found that the predictive correlations of ChatGPT-based assessments surpassed traditional readability metrics. The findings highlight the potential of large language models in scientometrics and possibly pave the way for AI-assisted peer review. C1 [de Winter, Joost] Delft Univ Technol, Fac Mech Engn, Dept Cognit Robot, Delft, Netherlands. C3 Delft University of Technology RP de Winter, J (corresponding author), Delft Univ Technol, Fac Mech Engn, Dept Cognit Robot, Delft, Netherlands. EM j.c.f.dewinter@tudelft.nl OI de Winter, Joost/0000-0002-1281-8200 CR Aiyappa R., 2023, P 3 WORKSH TRUSTW NA, P47, DOI [10.18653/v1/2023.trustnlp-1.5, DOI 10.18653/V1/2023.TRUSTNLP-1.5] Akcan D, 2013, SCIENTOMETRICS, V96, P297, DOI 10.1007/s11192-013-0949-0 Akella AP, 2021, J INFORMETR, V15, DOI 10.1016/j.joi.2020.101128 Aksnes DW, 2019, SAGE OPEN, V9, DOI 10.1177/2158244019829575 Altmetric, 2023, ALTMETRIC [Anonymous], 1967, Report No. AMRL-TR-66-220 Ante L, 2022, J INFORMETR, V16, DOI 10.1016/j.joi.2022.101252 Antonakis J, 2014, LEADERSHIP QUART, V25, P152, DOI 10.1016/j.leaqua.2013.10.014 Baldwin C, 2002, J PROF NURS, V18, P8, DOI 10.1053/jpnu.2002.30896 Bornmann L, 2015, SCIENTOMETRICS, V103, P1123, DOI 10.1007/s11192-015-1565-y Bornmann L, 2014, J INFORMETR, V8, P895, DOI 10.1016/j.joi.2014.09.005 Bubeck S., 2023, ARXIV Caon M, 2020, PHYS ENG SCI MED, V43, P1145, DOI 10.1007/s13246-020-00941-9 CATTELL RB, 1966, MULTIVAR BEHAV RES, V1, P245, DOI 10.1207/s15327906mbr0102_10 Cohen J., 1977, STAT POWER ANAL BEHA COLEMAN M, 1975, J APPL PSYCHOL, V60, P283, DOI 10.1037/h0076540 Croux C, 2010, STAT METHOD APPL-GER, V19, P497, DOI 10.1007/s10260-010-0142-z de Winter JCF, 2015, SCIENTOMETRICS, V102, P1773, DOI 10.1007/s11192-014-1445-x de Winter JCF, 2023, INT J ARTIF INTELL E, DOI 10.1007/s40593-023-00372-z de Winter JCF, 2016, PSYCHOL METHODS, V21, P273, DOI 10.1037/met0000079 de Winter JCF, 2015, PEERJ, V3, DOI 10.7717/peerj.733 Dimensions, 2023, DIMENSIONS Dowling M, 2018, ECON LETT, V173, P100, DOI 10.1016/j.econlet.2018.09.023 Ferguson CJ, 2009, PROF PSYCHOL-RES PR, V40, P532, DOI 10.1037/a0015808 Flesch R, 1948, J APPL PSYCHOL, V32, P221, DOI 10.1037/h0057532 Gignac GE, 2016, PERS INDIV DIFFER, V102, P74, DOI 10.1016/j.paid.2016.06.069 Gunning R., 1952, TECHNIQUE CLEAR WRIT, P36 HANCOCK PA, IN PRESS, DOI DOI 10.1080/1463922X.2022.2157066 Hardwicke TE, 2021, ADV METH PRACT PSYCH, V4, DOI 10.1177/25152459211040837 Hartley J, 2016, SCIENTOMETRICS, V107, P1523, DOI 10.1007/s11192-016-1920-7 Harzing A.W., 2007, Publish or perish Haustein Stefanie, 2015, PLoS One, V10, pe0120495, DOI 10.1371/journal.pone.0120495 Haustein S, 2014, SCIENTOMETRICS, V101, P1145, DOI 10.1007/s11192-013-1221-3 Hu HT, 2021, ONLINE INFORM REV, V45, P1290, DOI 10.1108/OIR-05-2020-0188 Huang F, 2023, COMPANION OF THE WORLD WIDE WEB CONFERENCE, WWW 2023, P294, DOI 10.1145/3543873.3587368 Ioannidis JPA, 2019, AM STAT, V73, P20, DOI 10.1080/00031305.2018.1447512 Ipeirotis P., 2023, READABILITY METRICS Jimenez S, 2020, SCIENTOMETRICS, V125, P3187, DOI 10.1007/s11192-020-03526-1 Katz DM, 2024, PHILOS T R SOC A, V382, DOI 10.1098/rsta.2023.0254 Kincaid J.P., 1975, Derivation of new readability formulas (automated readability index, fog count and flesch reading ease formula) for navy enlisted personnel Kousha K., 2022, ARXIV, DOI DOI 10.48550/ARXIV.2212.06574 Liu XY, 2023, SCIENTOMETRICS, V128, P3107, DOI 10.1007/s11192-023-04679-5 Lu C, 2019, J INFORMETR, V13, P817, DOI 10.1016/j.joi.2019.07.004 Ma AQ, 2021, SCIENTOMETRICS, V126, P6803, DOI 10.1007/s11192-021-04033-7 MCLAUGHLIN GH, 1969, J READING, V12, P639 Mendeley, 2023, MENDELEY Murray R, 2008, J FURTH HIGHER EDUC, V32, P119, DOI 10.1080/03098770701851854 Nori H., 2023, ARXIV, DOI DOI 10.48550/ARXIV.2303.13375 OpenAI, 2023, GPT-4 technical report OpenAI, 2023, TEXT COMPL OpenAI, 2022, INTR CHATGPT Pei ZR, 2023, NAT COMMUN, V14, DOI 10.1038/s41467-022-35766-5 Peterson R.A., 2000, MARKET LETT, V11, P261, DOI [10.1023/A:1008191211004, DOI 10.1023/A:1008191211004] Pulido CM, 2018, PLOS ONE, V13, DOI 10.1371/journal.pone.0203117 Saeed-Ul Hassan, 2020, KNOWL-BASED SYST, V192, DOI 10.1016/j.knosys.2019.105383 Saeed-Ul Hassan, 2017, SCIENTOMETRICS, V113, P1037, DOI 10.1007/s11192-017-2512-x Sand-Jensen K, 2007, OIKOS, V116, P723, DOI 10.1111/j.2007.0030-1299.15674.x Scopus, 2023, SCOPUS Sienkiewicz J, 2016, ROY SOC OPEN SCI, V3, DOI 10.1098/rsos.160140 Sommer V, 2017, APPL ECON LETT, V24, P809, DOI 10.1080/13504851.2016.1229410 Tabone W, 2023, ROY SOC OPEN SCI, V10, DOI 10.1098/rsos.231053 Tahamtan Iman, 2016, Scientometrics, V107, P1195, DOI 10.1007/s11192-016-1889-2 Thelwall M, 2018, SCIENTOMETRICS, V115, P1231, DOI 10.1007/s11192-018-2715-9 Wang S, 2022, SCIENTOMETRICS, V127, P4697, DOI 10.1007/s11192-022-04427-1 Warren HR, 2017, JAMA-J AM MED ASSOC, V317, P131, DOI 10.1001/jama.2016.18346 Weijters B, 2012, J MARKETING RES, V49, P737, DOI 10.1509/jmr.11.0368 Xie J, 2019, SCIENTOMETRICS, V118, P763, DOI 10.1007/s11192-019-03015-0 Yang X., 2023, ARXIV, DOI [10.48550/arXiv.2302.08081, DOI 10.48550/ARXIV.2302.08081] Zhang B., 2022, ARXIV, DOI DOI 10.48550/ARXIV.2212.14548 Zhong Q., 2023, ARXIV, DOI DOI 10.48550/ARXIV.2302.10198 NR 70 TC 3 Z9 3 U1 55 U2 61 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0138-9130 EI 1588-2861 J9 SCIENTOMETRICS JI Scientometrics PD APR PY 2024 VL 129 IS 4 BP 2469 EP 2487 DI 10.1007/s11192-024-04939-y EA FEB 2024 PG 19 WC Computer Science, Interdisciplinary Applications; Information Science & Library Science WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Computer Science; Information Science & Library Science GA QV6H9 UT WOS:001162583700002 OA hybrid DA 2024-09-05 ER PT J AU Hove, D Olugbara, O Singh, A AF Hove, Dickson Olugbara, Oludayo Singh, Alveen TI Bibliometric Analysis of Recent Trends in Machine Learning for Online Credit Card Fraud Detection SO JOURNAL OF SCIENTOMETRIC RESEARCH LA English DT Article DE Bibliometric analysis; Credit card; Deep learning; Ensemble learning; Machine; learning; Online fraud.; transaction. Online Credit Card Fraud (OCCF) occurs exclusively AB Online credit card fraud (OCCF) is the malicious act of using credit card details belonging to another person to complete fraudulent transactions over the Internet. Naturally, masses of researchers have engaged in the imperative search for effective solutions across a wide range of disciplines. The result is a rich tapestry of methodologies, models, frameworks, and inventions exhibiting dramatic spread and growth. However, this also results in an unorganized research domain. In this state, a bibliometric analysis is a useful technique for establishing a reconciled snapshot of the OCCF research domain. This paper has particular interest in determining the intellectual structure of the knowledge of machine learning, deep learning, and ensemble learning models for early detection of OCCF. This bibliometric analysis is conducted using 524 publications between 2013 and 2022 extracted from the SCOPUS core collection database. Microsoft Excel, VOSViewer, and Biblioshiny software tools were used for data analysis. The findings indicate that ensemble learning models are trending and the three most authoritative authors have been exposed in this study. There is a sharp rise in global publications annually and India has the most publications with the most impactful authors. Five broad clusters of knowledge are imbalanced data, anomaly detection, machine learning, decision trees, and ensemble learning. Intellectual collaboration across regions is strong amongst Asia, Europe, and North America with weak associations between Africa and South America. This is the first bibliometric analysis in the domain of OCCF detection to the best of the author's ability. The findings significantly contribute to the application of OCCF detection through the creation of intellectual patterns in existing literature. The results bring about synthesis within a domain of research that is currently disorganized. This in turn helps researchers to identify research gaps, and areas for further research and formulate a curriculum. C1 [Hove, Dickson; Olugbara, Oludayo; Singh, Alveen] Durban Univ Technol, MICT SETA Ctr Excellence 4IR, Dept Informat Technol, Durban, South Africa. C3 Durban University of Technology RP Hove, D (corresponding author), Durban Univ Technol, MICT SETA Ctr Excellence 4IR, Dept Informat Technol, Durban, South Africa. EM hovedickson@gmail.com CR Abakarim Y, 2018, INT CONF INTELL SYS, DOI 10.1145/3289402.3289530 Al Rubaie EMH, 2021, INT J NONLINEAR ANAL, V12, P1240, DOI 10.22075/IJNAA.2021.5228 Alarfaj FK, 2022, IEEE ACCESS, V10, P39700, DOI 10.1109/ACCESS.2022.3166891 Ali I, 2020, IEEE 23 INT MULT C I [Anonymous], 2013, Using OpenRefine Aria M, 2017, J INFORMETR, V11, P959, DOI 10.1016/j.joi.2017.08.007 Ata O, 2020, TEH VJESN, V27, P618, DOI 10.17559/TV-20180427091048 Bayram B, 2020, 19 IEEE INT C MACH L Benchaji I, 2021, J ADV INFORM TECHNOL, V12, P113, DOI 10.12720/jait.12.2.113-118 Chen YX, 2022, CHEMOSPHERE, V297, DOI 10.1016/j.chemosphere.2022.133932 Cobo MJ, 2012, J AM SOC INF SCI TEC, V63, P1609, DOI 10.1002/asi.22688 Crocetti E, 2016, EMERG ADULTHOOD, V4, P3, DOI 10.1177/2167696815617076 Dhankhad S, 2018, 2018 IEEE INTERNATIONAL CONFERENCE ON INFORMATION REUSE AND INTEGRATION (IRI), P122, DOI 10.1109/IRI.2018.00025 Divya P., 2021, ICCCE 2020. Proceedings of the 3rd International Conference on Communications and Cyber Physical Engineering. Lecture Notes in Electrical Engineering (LNEE 698), P243, DOI 10.1007/978-981-15-7961-5_24 Dong XB, 2020, FRONT COMPUT SCI-CHI, V14, P241, DOI 10.1007/s11704-019-8208-z Esna-Ashari M, 2022, Journal of Mathematics and Modeling in Finance, V2, P167 Feng H, 2021, 2 INT C COMP DAT SCI Fiore U, 2019, INFORM SCIENCES, V479, P448, DOI 10.1016/j.ins.2017.12.030 Forough J, 2021, APPL SOFT COMPUT, V99, DOI 10.1016/j.asoc.2020.106883 González S, 2020, INFORM FUSION, V64, P205, DOI 10.1016/j.inffus.2020.07.007 Guo YQ, 2020, J MED INTERNET RES, V22, DOI 10.2196/18228 Gupta K, 2022, INT C APPL ART INT C Hallinger P, 2019, REV EDUC RES, V89, P335, DOI 10.3102/0034654319830380 Karthik VSS, 2022, ARAB J SCI ENG, V47, P1987, DOI 10.1007/s13369-021-06147-9 Laveti RN, 2021, 2021 6TH INTERNATIONAL CONFERENCE FOR CONVERGENCE IN TECHNOLOGY (I2CT), DOI 10.1109/I2CT51068.2021.9417896 Maurya A, 2022, IEEE INT C CYB COMP Nguyen VB, 2022, arXiv Padhi B. K., 2020, Advances in Intelligent Computing and Communication. Proceedings of ICAC 2019. Lecture Notes in Networks and Systems (LNNS 109), P413, DOI 10.1007/978-981-15-2774-6_49 Prabha N., 2022, 2022 Second International Conference on Artificial Intelligence and Smart Energy (ICAIS), P131, DOI 10.1109/ICAIS53314.2022.9742878 Rao GM, 2022, INT J COMPUT SCI ENG, V25, P166, DOI 10.1504/IJCSE.2022.122212 Riehmann P, 2005, INFOVIS 05: IEEE SYMPOSIUM ON INFORMATION VISUALIZATION, PROCEEDINGS, P233, DOI 10.1109/INFVIS.2005.1532152 Sadgali I, 2019, 1 INT C SMART SYST D Shaji A, 2021, INT C UB COMM NETW C Showalter S, 2019, arXiv Shukla S, 2020, IEEE 17 IND COUNC IN Singh A, 2022, J EXP THEOR ARTIF IN, V34, P571, DOI 10.1080/0952813X.2021.1907795 Stellwall M., 2019, Oracle AI & Data Science Blog Thennakoon A, 2019, 2019 9TH INTERNATIONAL CONFERENCE ON CLOUD COMPUTING, DATA SCIENCE & ENGINEERING (CONFLUENCE 2019), P488, DOI [10.1109/CONFLUENCE.2019.8776942, 10.1109/confluence.2019.8776942] Tomar P, 2021, 5 C INF COMM TECHN C Trisanto D., 2021, INT J INTELL ENG SYS, V14, P350, DOI DOI 10.22266/IJIES2021.0831.31 Yang Y, 2022, 14 INT C COMP RES DE Yuan M, 2022, 7 INT C MACH LEARN T Zadafiya N, 2022, 2022 4 INT C SMART S Zhang LL, 2022, ENERGY REP, V8, P14072, DOI 10.1016/j.egyr.2022.10.347 Zhang ZH, 2020, IEEE ACCESS, V8, P25210, DOI 10.1109/ACCESS.2020.2970614 NR 45 TC 0 Z9 0 U1 2 U2 2 PU PHCOG NET PI KARNATAKA PA 17, 2ND FLR, BUDDHA VIHAR RD, NEAR SPORTS ZONE, COX TOWN, BENGALURU, KARNATAKA, 560005, INDIA SN 2321-6654 EI 2320-0057 J9 J SCIENTOMETR RES JI J. Scientometr. Res. PD JAN-APR PY 2024 VL 13 IS 1 BP 43 EP 57 DI 10.5530/jscires.13.1.4 PG 15 WC Information Science & Library Science WE Emerging Sources Citation Index (ESCI) SC Information Science & Library Science GA TZ7J6 UT WOS:001245143700004 OA hybrid DA 2024-09-05 ER PT C AU Terziyan, V Kaikova, O Golovianko, M Vitko, O AF Terziyan, Vagan Kaikova, Olena Golovianko, Mariia Vitko, Oleksandra BE Longo, F Shen, W Padovano, A TI Can ChatGPT Challenge the Scientific Impact of Published Research, Particularly in the Context of Industry 4.0 and Smart Manufacturing? SO 5TH INTERNATIONAL CONFERENCE ON INDUSTRY 4.0 AND SMART MANUFACTURING, ISM 2023 SE Procedia Computer Science LA English DT Proceedings Paper CT 5th International Conference on Industry 4.0 and Smart Manufacturing (ISM) CY NOV 22-24, 2023 CL Lisbon, PORTUGAL DE Artificial Intelligence; ChatGPT; Industry 4.0; Smart Manufacturing; academic impact AB The released ChatGPT as a powerful language model is capable of assisting with a wide range of tasks, including answering questions, summarizing, paraphrasing, proofreading, classifying, and integrating texts. In this study, we tested ChatGPT capability to assist researchers in evaluating the academic articles' contribution. We suggest a dialogue schema in which ChatGPT is asked to answer research questions from the target article and then to compare its own answers with the answers from the article. Finally, ChatGPT is asked to integrate both solutions coherently. We experimented with Proceedings of ISM-2022 Conference on Industry 4.0 and Smart Manufacturing, utilizing explicit research questions. The chat context enabled assessing studied articles' contributions to Industry 4.0, uncovering advancements beyond the state-of-the-art. However, ChatGPT demonstrates limitations in content understanding and contribution evaluation. We conclude that while it collaborates with humans on academic tasks, human guidance remains essential, while ChatGPT's assistance efficiently complements traditional academic processes. C1 [Terziyan, Vagan; Kaikova, Olena] Univ Jyvaskyla, Fac Informat Technol, Jyvaskyla 40014, Finland. [Golovianko, Mariia; Vitko, Oleksandra] Kharkiv Natl Univ Radio Elect, Dept Artificial Intelligence, UA-61166 Kharkiv, Ukraine. C3 University of Jyvaskyla; Ministry of Education & Science of Ukraine; Kharkiv National University of Radio Electronics RP Terziyan, V (corresponding author), Univ Jyvaskyla, Fac Informat Technol, Jyvaskyla 40014, Finland. EM vagan.terziyan@jyu.fi RI Terziyan, Vagan/C-4899-2018 OI Terziyan, Vagan/0000-0001-7732-2962; Kaikova, Olena/0000-0002-8427-6236 CR Ali Omar, 2023, Procedia Comput Sci, V217, P205, DOI 10.1016/j.procs.2022.12.216 Bockting CL, 2023, NATURE, V614, P224, DOI 10.1038/d41586-023-00288-7 Deng J., 2023, Frontiers in Computing and Intelligent Systems, V2, P81, DOI [10.54097/fcis.v2i2.4465, DOI 10.54097/FCIS.V2I2.4465] Dunn P.K., 2021, Scientific Research and Methodology: An introduction to quantitative research in science and health Golovianko Mariia, 2023, Procedia Computer Science, P102, DOI 10.1016/j.procs.2022.12.206 Lin H, 2020, LANGUAGE MODELS ARE, V33, P1877 Lin T., 2022, AI Open, V3, P111, DOI [DOI 10.1016/J.AIOPEN.2022.10.001, 10.1016/j.aiopen.2022.10.001] Longo F., 2023, PROCEDIA COMPUTER SC, V217, P1 Opara E., 2023, Glob. Acad. J. Human. Soc. Sci, V5, P33, DOI DOI 10.36348/GAJHSS.2023.V05I02.001 OpenAI, 2021, ChatGPT Radford A., 2019, LANGUAGE MODELS ARE Rudolph J., 2023, Journal of Applied Learning and Teaching, V6, P342, DOI [10.37074/jalt.2023.6.1.9, DOI 10.37074/JALT.2023.6.1.23, DOI 10.37074/JALT.2023.6.1.9] Terziyan Vagan, 2023, Procedia Computer Science, P495, DOI 10.1016/j.procs.2022.12.245 Thelwall M, 2020, QUANT SCI STUD, V1, P730, DOI 10.1162/qss_a_00041 Trevino-Elizondo Bertha Leticia, 2023, Procedia Computer Science, P876, DOI 10.1016/j.procs.2022.12.284 Vaswani A, 2017, ARXIV Wooldridge M., 2022, INTELL COMPUT, V2022, DOI [10.34133/2022/9847630, DOI 10.34133/2022/9847630] Zhou J, 2024, FRONT INFORM TECH EL, V25, P6, DOI 10.1631/FITEE.2300089 NR 18 TC 0 Z9 0 U1 1 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA SARA BURGERHARTSTRAAT 25, PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1877-0509 J9 PROCEDIA COMPUT SCI PY 2024 VL 232 BP 2540 EP 2550 DI 10.1016/j.procs.2024.02.072 PG 11 WC Computer Science, Theory & Methods; Engineering, Industrial; Engineering, Manufacturing WE Conference Proceedings Citation Index - Science (CPCI-S) SC Computer Science; Engineering GA BW7UP UT WOS:001196800602057 OA Green Published, gold DA 2024-09-05 ER PT J AU Loi, CK Lim, JMH Suki, NM Lee, HA AF Loi, Chek-Kim Lim, Jason Miin-Hwa Suki, Norazah Mohd Lee, Hock -Ann TI Exploring University Students' Online Learning Readiness: A Mixed Methods Study of Forced Online Learning SO JOURNAL OF LANGUAGE AND EDUCATION LA English DT Article DE institutional support; online learning; social influence; students' readiness; technology accessibility ID DENTAL EDUCATION; USER ACCEPTANCE; SAUDI-ARABIA; TECHNOLOGY; SATISFACTION; ENVIRONMENTS; PERCEPTIONS; ASSESSMENTS; SUPPORT AB Background: Despite the advancement achieved in previous research into online learning, few studies have used both quantitative and qualitative data to examine how students' readiness to learn online is affected by three different external factors, comprising (i) the degrees to which technology is available to students, (ii) the support provided by the institutions of learning, and (iii) the social influence affecting the students engaged in forced online learning in a pandemic situation. Purpose: To fill this research gap, this study explored university students' forced online learning readiness in relation to technological accessibility, institutional support and social influence during a pandemic, in an attempt to furnish insights into how educators can maximize the benefits of adopting online learning methods. Method: A mixed methods research design was employed in this study. Quantitative data, elicited via self-administered questionnaires completed by 211 participants, was analyzed using the frequencies, means, standard deviations and Pearson correlation analysis involving the Statistical Package for the Social Sciences (SPSS) software version 27. Qualitative data, elicited via 11 open-ended questions posed to 41 students through in-depth interviews, was then studied using a thematic analysis of the participants' feedback concerning the three constructs in online learning. Results: Our quantitative analysis showed that institutional support had the strongest positive correlation with online learning readiness, and this was followed by technology accessibility and social influence in relation to students' readiness to learn online. Qualitative findings further indicated that students were largely concerned about Internet accessibility and the setting where their roles were restricted to being mere listeners in online sessions. Apart from being apprehensive about excessive online assignments, students also acknowledged that their online interactions were influenced by their friends and family members, and they would prefer practical work that could inspire them to reflect and engage actively with the course material given during the pandemic. Conclusion: While lecturers can make online classes more interactive and discussion -generative, university administrators need to aptly facilitate their institution's transition to the forced online learning mode, moderate social influence, improve the learning management system, and provide training to teachers and students on the use of emerging technology. C1 [Loi, Chek-Kim; Lee, Hock -Ann] Univ Malaysia Sabah, Kota Kinabalu, Malaysia. [Lim, Jason Miin-Hwa] Jiangsu Univ Technol, Zhenjiang, Peoples R China. [Suki, Norazah Mohd] Univ Utara Malaysia, Sintok, Malaysia. C3 Universiti Malaysia Sabah; Jiangsu University of Technology; Universiti Utara Malaysia RP Loi, CK (corresponding author), Univ Malaysia Sabah, Kota Kinabalu, Malaysia.; Lim, JMH (corresponding author), Jiangsu Univ Technol, Zhenjiang, Peoples R China. EM lck734@yahoo.com; drjasonlim@gmail.com RI MOHD SUKI, NORAZAH/C-9312-2016 OI MOHD SUKI, NORAZAH/0000-0002-8422-2449 CR Adnan M., 2020, J. Pedagogical Sociology Psychol, V2, P45, DOI [DOI 10.33902/JPSP.2020261309, 10.33902/jpsp.2020261309] Ahmad N., 2020, Journal of Computing Research and Innovation (JCRINN), V5, P54, DOI [10.24191/jcrinn.v5i2.134, DOI 10.24191/JCRINN.V5I2.134] Al-Ammary Jaflah H., 2014, International Journal of Information and Education Technology, V4, P208, DOI 10.7763/IJIET.2014.V4.400 Al-Shehri AM, 2010, J FAM COMMUNITY MED, V17, P147, DOI 10.4103/1319-1683.74333 Albrecht JR, 2018, J EXP EDUC, V86, P1, DOI 10.1080/00220973.2017.1380593 Alkis N., 2014, ACM INT C P SERIES, P55, DOI DOI 10.1145/2662253.2662308 Allen I.E., 2003, Sizing the opportunity: The quality and extent of online education in the United States, 2002 and 2003 Almaiah MA, 2020, EDUC INF TECHNOL, V25, P5261, DOI 10.1007/s10639-020-10219-y Azlan CA, 2020, PHYS MEDICA, V80, P10, DOI 10.1016/j.ejmp.2020.10.002 Baber H, 2021, INT J MANAG EDUC-OXF, V19, DOI 10.1016/j.ijme.2021.100503 Betlej P., 2013, Studia Ekonomiczne, V152, P9 Bowen J., 2012, Teaching naked: How moving technology out of your classromm will improve student learning, VFirst Britt Rebecca, 2006, Radiol Technol, V77, P183 Buzzetto-More N., 2013, Issues in Informing Science and Information Technology, V10, P81 Cao WJ, 2020, PSYCHIAT RES, V287, DOI 10.1016/j.psychres.2020.112934 Creswell J., 2009, Research design: qualitative, quantitative, and mixed methods approaches, V3rd DAVIS FD, 1989, MIS QUART, V13, P319, DOI 10.2307/249008 de Luca K, 2021, CHIROPR MAN THER, V29, DOI 10.1186/s12998-021-00364-7 Dhawan Shivangi, 2020, Journal of Educational Technology Systems, V49, P5, DOI 10.1177/0047239520934018 Dogruer N, 2011, PROCD SOC BEHV, V28, DOI 10.1016/j.sbspro.2011.11.115 Elkaseh A M., 2015, IPASJ International Journal of Information Technology (IIJIT), V3, P1 Farahat T, 2012, PROCD SOC BEHV, V64, P95, DOI 10.1016/j.sbspro.2012.11.012 Favale T, 2020, COMPUT NETW, V176, DOI 10.1016/j.comnet.2020.107290 Ferri F, 2020, SOCIETIES, V10, DOI 10.3390/soc10040086 Fitzpatrick T., 2012, US-China Education Review, P789 Gherghel C, 2023, COMPUT EDUC, V200, DOI 10.1016/j.compedu.2023.104795 Golladay RM, 2000, J COMPUT INFORM SYST, V40, P69 Graham C.R., 2008, HDB RES ED COMMUNICA, P269 Greenhow Christine, 2011, International Journal of Cyber Behavior, Psychology and Learning, V1, P36, DOI 10.4018/ijcbpl.2011010104 Hai L.C., 2015, Asian Social Science, V11 Hara N., 2000, Information Communication & Society, V3, P557, DOI 10.1080/13691180010002297 Hodges C. B., 2020, DIFFERENCE EMERGENCY Holden H, 2011, J RES TECHNOL EDUC, V43, P343 Hoss T, 2021, FRONT PSYCHOL, V12, DOI 10.3389/fpsyg.2021.642616 Jaffar MN, 2022, FRONT EDUC, V7, DOI 10.3389/feduc.2022.813679 Khan S, 2019, EDUC INF TECHNOL, V24, P661, DOI 10.1007/s10639-018-9797-0 Kuriakose RB, 2016, PROCD SOC BEHV, V228, P78, DOI 10.1016/j.sbspro.2016.07.012 Laugasson E, 2016, LECT NOTES COMPUT SC, V9753, P695, DOI 10.1007/978-3-319-39483-1_63 Lee J, 2021, INT J EDUC TECHNOL H, V18, DOI 10.1186/s41239-021-00286-7 Lee SJ, 2011, INTERNET HIGH EDUC, V14, P158, DOI 10.1016/j.iheduc.2011.04.001 Lim J, 2023, EDUC INF TECHNOL, V28, P4109, DOI 10.1007/s10639-022-11241-y Lim YJ, 2016, PROC ECON FINANC, V35, P401, DOI 10.1016/S2212-5671(16)00050-2 Lind D.A., 2010, STAT TECHNIQUES BUSI, V14th Linjawi AI, 2012, EUR J DENT EDUC, V16, pE3, DOI 10.1111/j.1600-0579.2010.00662.x Linjawi AI, 2018, ADV MED EDUC PRACT, V9, P855, DOI 10.2147/AMEP.S175395 Loyd B. H., 1984, AEDS Journal, V18, P67 Maheshwari G, 2021, EDUC INF TECHNOL, V26, P6629, DOI 10.1007/s10639-021-10465-8 Mailizar AlmanthariA., 2020, EURASIA J MATH SCI T, V16, pem1860, DOI DOI 10.29333/EJMSTE/8240 Mills G.E., 2019, ED RES COMPETENCIES Mukhtar K, 2020, PAK J MED SCI, V36, pS27, DOI 10.12669/pjms.36.COVID19-S4.2785 Murphy MPA, 2020, CONTEMP SECUR POL, V41, P492, DOI 10.1080/13523260.2020.1761749 Nunnally J.C., 1978, Psychometric Theory, Vsecond Odriozola-González P, 2020, PSYCHIAT RES, V290, DOI 10.1016/j.psychres.2020.113108 Patricia Aguilera-Hermida A, 2020, Int J Educ Res Open, V1, P100011, DOI 10.1016/j.ijedro.2020.100011 Pedro NS, 2020, ONLINE LEARN, V24, P50, DOI 10.24059/olj.v24i3.2309 Piccoli G, 2001, MIS QUART, V25, P401, DOI 10.2307/3250989 Reyes-Millán M, 2023, HELIYON, V9, DOI 10.1016/j.heliyon.2023.e22070 Ryan S., 2001, AM AGENT BROKER, V73, P54 Saafin S., 2008, Learning and Teaching in Higher Education: Gulf Perspectives, V5, P1, DOI DOI 10.18538/LTHE.V5.N2.02 Salloum S. A., 2018, Investigating students' acceptance of e-learning system in higher educational environments in the UAE: Applying the extended Technology Acceptance Model (TAM) Scherer R, 2021, COMPUT HUM BEHAV, V118, DOI 10.1016/j.chb.2020.106675 Singh V, 2019, AM J DISTANCE EDUC, V33, P289, DOI 10.1080/08923647.2019.1663082 Tabang M. P., 2022, International Journal of Humanities and Education Development (IJHED), V4, P237, DOI [10.22161/jhed.4.3.28, DOI 10.22161/JHED.4.3.28] Tuntirojanawong S., 2013, Journal of Learning in Higher Education, V9, P59 Veletsianos G, 2012, INT REV RES OPEN DIS, V13, P144, DOI 10.19173/irrodl.v13i1.1078 Venkatesh V, 2003, MIS QUART, V27, P425, DOI 10.2307/30036540 Webb A, 2021, WORLD J SCI TECHNOL, V18, P1, DOI 10.1108/WJSTSD-11-2020-0090 Yukselturk E, 2008, EDUC TECHNOL SOC, V11, P51 NR 68 TC 0 Z9 0 U1 1 U2 1 PU NATL RESEARCH UNIV HIGHER SCH ECONOMICS PI MOSCOW PA SHABOLOVKA, 26, MOSCOW, 119049, RUSSIA EI 2411-7390 J9 J LANG EDUC JI J. Lang. Educ. PY 2024 VL 10 IS 1 BP 49 EP 67 DI 10.17323/jle.2024.16016 PG 19 WC Education & Educational Research; Linguistics WE Emerging Sources Citation Index (ESCI) SC Education & Educational Research; Linguistics GA RN1Q4 UT WOS:001228253300009 OA gold DA 2024-09-05 ER PT J AU Baminiwatta, A AF Baminiwatta, Anuradha TI Global trends of machine learning applications in psychiatric research over 30 years: A bibliometric analysis SO ASIAN JOURNAL OF PSYCHIATRY LA English DT Article DE Machine learning; Artificial intelligence; Psychiatry; Mental health; Trends; Bibliometrics ID BIOMARKERS; DISEASE AB This bibliometric analysis aimed to identify active research areas and trends in machine learning applications within the psychiatric literature. An exponential growth in the number of related publications indexed in Web of Science during the last decade was noted. Document co-citation analysis revealed 10 clusters of knowledge, which included several mental health conditions, albeit with visible structural overlap. Several influential publications in the co-citation network were identified. Keyword trends illustrated a recent shift of focus from "psychotic" to "neurotic" conditions. Despite a relative lack of literature from the developing world, a recent rise in publications from Asian countries was observed. Data Availability: Bibliographic data for this study were downloaded from the Web of Science. The search strategy is included in the Supplementary file. C1 [Baminiwatta, Anuradha] Univ Kelaniya, Fac Med, Dept Psychiat, Colombo, Sri Lanka. C3 University Kelaniya; University of Colombo RP Baminiwatta, A (corresponding author), Univ Kelaniya, Fac Med, Dept Psychiat, Colombo, Sri Lanka. EM baminiwatta@kln.ac.lk CR Ashburner J, 2007, NEUROIMAGE, V38, P95, DOI 10.1016/j.neuroimage.2007.07.007 Bzdok D, 2018, BIOL PSYCHIAT-COGN N, V3, P223, DOI 10.1016/j.bpsc.2017.11.007 Chekroud AM, 2016, LANCET PSYCHIAT, V3, P243, DOI 10.1016/S2215-0366(15)00471-X Chen CM, 2006, J AM SOC INF SCI TEC, V57, P359, DOI 10.1002/asi.20317 Dwyer DB, 2018, ANNU REV CLIN PSYCHO, V14, P91, DOI [10.1146/annurev-clinpsy-032816-045037, 10.1146/annurev-clinpsy-032816045037] Koutsouleris N, 2009, ARCH GEN PSYCHIAT, V66, P700, DOI 10.1001/archgenpsychiatry.2009.62 Orrù G, 2012, NEUROSCI BIOBEHAV R, V36, P1140, DOI 10.1016/j.neubiorev.2012.01.004 Perera IR, 2020, ASIAN J PSYCHIATR, V49, DOI 10.1016/j.ajp.2020.101977 Shatte ABR, 2019, PSYCHOL MED, V49, P1426, DOI 10.1017/S0033291719000151 Woo CW, 2017, NAT NEUROSCI, V20, P365, DOI 10.1038/nn.4478 NR 10 TC 6 Z9 6 U1 5 U2 38 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS SN 1876-2018 EI 1876-2026 J9 ASIAN J PSYCHIATR JI Asian J. Psychiatr. PD MAR PY 2022 VL 69 AR 102986 DI 10.1016/j.ajp.2021.102986 EA JAN 2022 PG 4 WC Psychiatry WE Science Citation Index Expanded (SCI-EXPANDED) SC Psychiatry GA YF1CN UT WOS:000741553300003 PM 34990914 DA 2024-09-05 ER PT C AU Zhang, W Zeng, XY Ming, DY Wang, JH AF Zhang, Wei Zeng, Xinyao Ming, Daoyang Wang, Jihan GP IEEE TI Research on the Construction of Evaluation Indicators of Students' Computational Thinking Based on Spectral Clustering SO 2022 10TH INTERNATIONAL CONFERENCE ON INFORMATION AND EDUCATION TECHNOLOGY (ICIET 2022) LA English DT Proceedings Paper CT 10th International Conference on Information and Education Technology (ICIET) CY APR 09-11, 2022 CL Matsue, JAPAN DE CT concepts; spectral clustering; evaluation indicators; CT practice; CT perspective AB The scientific and reasonable evaluation indicators that can fully reflect the various dimensions of students' computational thinking (CT) skills is the basis and premise of accurately evaluating students' CT skills, which is of great significance to the cultivation of students' CT skills. However, the current research on how to construct the evaluation indicators is still inadequate, and most of the research is put forward by the subjective experience of researchers, lacking objectivity and the universality of ability. In the paper, we comprehensively reviewed the concepts of CT in the theoretical literature of CT, aiming to construct the comprehensive and effective evaluation indicators of CT for students by clustering the keywords of CT concepts and extracting indicators. The validity of indicators is verified by qualitative analysis, quantitative analysis and expert evaluation. The results show that the evaluation indicators of CT constructed by spectral clustering technology are a more scientific, more comprehensive reflection of the ability dimensions of CT. It has unique advantages in constructing objective and comprehensive evaluation indicators and provides an evaluation basis for the evaluation practice of CT skills. C1 [Zhang, Wei; Zeng, Xinyao; Ming, Daoyang; Wang, Jihan] Cent China Normal Univ, Fac Artificial Intelligence Educ, Wuhan, Peoples R China. C3 Central China Normal University RP Zhang, W (corresponding author), Cent China Normal Univ, Fac Artificial Intelligence Educ, Wuhan, Peoples R China. EM zwccnu@mail.ccnu.edu.cn; zengxy_98@mails.ccuu.edu.cn; mingdaoyang@qq.com; 2110401398@qq.com FU National Natural Science Foundation of China [61977031] FX This study was funded by the National Natural Science Foundation of China [grant number 61977031]. CR Adams C., 2019, INTERACT LEARN ENVIR, V26, P386 Allsop Yasemin, 2019, International Journal of Child-Computer Interaction, V19, P30, DOI 10.1016/j.ijcci.2018.10.004 Angeli C, 2020, COMPUT HUM BEHAV, V105, DOI 10.1016/j.chb.2019.106185 Blaschko MB, 2008, PROC CVPR IEEE, P93, DOI 10.1109/CVPR.2008.4587353 Chen X., 2020, J DISTANCE ED ISTE and CSTA, OP DEF COMP THINK K Janani R, 2019, EXPERT SYST APPL, V134, P192, DOI 10.1016/j.eswa.2019.05.030 Kong SC, 2021, COMPUT HUM BEHAV, V122, DOI 10.1016/j.chb.2021.106836 Lee I, 2020, J SCI EDUC TECHNOL, V29, P9, DOI 10.1007/s10956-019-09802-x Li Yeping, 2020, J STEM Educ Res, V3, P1, DOI 10.1007/s41979-020-00030-2 Liu JL, 2014, CH CRC DATA MIN KNOW, P177 Moreno-Leon J., 2015, RED-REV EDUC DISTANC, V46, P1, DOI 10.6018/red/46/10 Nie Y., THESIS QUFU NORMAL U So HJ, 2020, ASIA-PAC EDUC RES, V29, P1, DOI 10.1007/s40299-019-00494-w Wang L, 2009, LECT NOTES ARTIF INT, V5476, P134, DOI 10.1007/978-3-642-01307-2_15 Weintrop D, 2021, COMPUT SCI EDUC, V31, P113, DOI 10.1080/08993408.2021.1918380 Wing JM, 2006, COMMUN ACM, V49, P33, DOI 10.1145/1118178.1118215 Yagci M, 2019, EDUC INF TECHNOL, V24, P929, DOI 10.1007/s10639-018-9801-8 Yasar O, 2017, COMPUT SCI ENG, V19, P74, DOI 10.1109/MCSE.2017.3151241 YEON PARK JU, 2019, [JOURNAL OF The Korean Association of information Education, 정보교육학회논문지], V23, P207 Ying Liu, 2009, Proceedings of the 2009 Sixth International Conference on Fuzzy Systems and Knowledge Discovery (FSKD 2009), P529, DOI 10.1109/FSKD.2009.792 Yu SX, 2003, NINTH IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION, VOLS I AND II, PROCEEDINGS, P313, DOI 10.1109/iccv.2003.1238361 Zhang L, 2017, CHIN CONTR CONF, P5629, DOI 10.23919/ChiCC.2017.8028251 NR 23 TC 0 Z9 0 U1 3 U2 8 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA BN 978-1-6654-8048-2 PY 2022 BP 104 EP 112 DI 10.1109/ICIET55102.2022.9779003 PG 9 WC Computer Science, Cybernetics; Computer Science, Information Systems; Computer Science, Interdisciplinary Applications WE Conference Proceedings Citation Index - Science (CPCI-S) SC Computer Science GA BT5WU UT WOS:000839122100021 DA 2024-09-05 ER PT J AU Li, JY Bao, QF AF Li, Junying Bao, Qingfen TI Research on the coordinated development of agglomeration economy and environmental performance based on artificial intelligence SO PHYSICS AND CHEMISTRY OF THE EARTH LA English DT Article DE Artificial intelligence; Agglomeration economy; Environmental performance; Coordinated development ID TAX AB In order to promote the coordinated development of agglomeration economy and environmental performance, this paper combines artificial intelligence technology to conduct research on the coordinated development of agglomeration economy and environmental performance, and presents an easy-to-implement controller design. For discrete linear multi-agent systems under asynchronous packet loss, all communication edges are indepen-dent and random. In this paper, from the perspective of the overall change of communication topology, a switching model based on Markov packet loss channel is constructed and the sufficient conditions for the system to achieve almost certain consistency are given. In addition, this paper constructs an analysis model for the coordinated development of agglomeration economy and environmental performance based on artificial intel-ligence. The simulation study verifies that the model proposed in this paper has certain effects. C1 [Li, Junying; Bao, Qingfen] Inner Mongolia Agr Univ, Coll Econ Management, Hohhot 010018, Peoples R China. [Li, Junying] Inner Mongolia Univ Finance & Econ, Coll Business Adm, Hohhot 010070, Peoples R China. C3 Inner Mongolia Agricultural University; Inner Mongolia University of Finance & Economics RP Li, JY (corresponding author), Inner Mongolia Agr Univ, Coll Econ Management, Hohhot 010018, Peoples R China. EM ljyljgf@163.com CR Alkhazali R.C.A., 2021, PALARCHS J ARCHAEOL, V18, P806 Bulikova M., 2021, ENVIRON DEV SUSTAIN, V10, P19 Christians A., 2022, CAN J FOREST RES, V70, P97 Nguyen HH, 2019, J ASIAN FINANC ECON, V6, P129, DOI 10.13106/jafeb.2019.vol6.no4.129 Jacobs B, 2018, INT TAX PUBLIC FINAN, V25, P883, DOI 10.1007/s10797-017-9481-0 Klenert D, 2018, ENVIRON RESOUR ECON, V71, P605, DOI 10.1007/s10640-016-0070-y Knezevic G, 2020, LEX LOCALIS, V18, P503, DOI 10.4335/18.3.503-522(2020) Li YM, 2022, ENVIRON SCI POLLUT R, V29, P15931, DOI 10.1007/s11356-021-16650-z Pérez SDL, 2021, SUSTAINABILITY-BASEL, V13, DOI 10.3390/su132011269 Mahajan A., 2021, INDIAN ECON J, V69, P705 Martynenko V, 2019, BALT J ECON STUD, V5, P124, DOI 10.30525/2256-0742/2019-5-2-124-130 Muhammad I, 2022, AIMS ENVIRON SCI, V9, P145, DOI 10.3934/environsci.20220012 Mwangoka B.G., 2022, TANZANIA J SOCIOL, V7, P42 Nakada M, 2020, ECON GOV, V21, P335, DOI 10.1007/s10101-020-00243-6 Shahzad U, 2020, ENVIRON SCI POLLUT R, V27, P24848, DOI 10.1007/s11356-020-08349-4 Steenkamp LA, 2021, CLIM POLICY, V21, P897, DOI 10.1080/14693062.2021.1946381 Timmermans B, 2018, INT J LIFE CYCLE ASS, V23, P2217, DOI 10.1007/s11367-018-1439-7 Xu Q, 2020, J COASTAL RES, P506, DOI 10.2112/JCR-SI115-139.1 Zamani Eskandari E., 2021, INT J FINANCE MANAGE, V6, P193 Zvereva A., 2020, INT MULTIDISCIPLINAR, P279 NR 20 TC 0 Z9 0 U1 5 U2 13 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1474-7065 EI 1873-5193 J9 PHYS CHEM EARTH JI Phys. Chem. Earth PD JUN PY 2023 VL 130 AR 103371 DI 10.1016/j.pce.2023.103371 EA FEB 2023 PG 11 WC Geosciences, Multidisciplinary; Meteorology & Atmospheric Sciences; Water Resources WE Science Citation Index Expanded (SCI-EXPANDED) SC Geology; Meteorology & Atmospheric Sciences; Water Resources GA 9C2YZ UT WOS:000935290300001 DA 2024-09-05 ER PT C AU Pride, D Cancellieri, M Knoth, P AF Pride, David Cancellieri, Matteo Knoth, Petr BE Alonso, O Cousijn, H Silvello, G Marrero, M Lopes, CT Marchesin, S TI CORE-GPT: Combining Open Access Research and Large Language Models for Credible, Trustworthy Question Answering SO LINKING THEORY AND PRACTICE OF DIGITAL LIBRARIES, TPDL 2023 SE Lecture Notes in Computer Science LA English DT Proceedings Paper CT 27th International Conference on Theory and Practice of Digital Libraries (TPDL) CY SEP 26-29, 2023 CL Zadar, CROATIA AB In this paper, we present CORE-GPT, a novel question-answering platform that combines GPT-based language models and more than 32 million full-text open access scientific articles from CORE (https://core.ac.uk). We first demonstrate that GPT3.5 and GPT4 cannot be relied upon to provide references or citations for generated text. We then introduce CORE-GPT which delivers evidence-based answers to questions, along with citations and links to the cited papers, greatly increasing the trustworthiness of the answers and reducing the risk of hallucinations. CORE-GPT's performance was evaluated on a dataset of 100 questions covering the top 20 scientific domains in CORE, resulting in 100 answers and links to 500 relevant articles. The quality of the provided answers and relevance of the links were assessed by two annotators. Our results demonstrate that CORE-GPT can produce comprehensive and trustworthy answers across the majority of scientific domains, complete with links to genuine, relevant scientific articles. C1 [Pride, David; Cancellieri, Matteo; Knoth, Petr] Open Univ, Knowledge Media Inst, Milton Keynes, Bucks, England. C3 Open University - UK RP Pride, D (corresponding author), Open Univ, Knowledge Media Inst, Milton Keynes, Bucks, England. EM david.pride@open.ac.uk; matteo.cancellieri@open.ac.uk; petr.knoth@open.ac.uk OI Cancellieri, Matteo/0000-0002-9558-9772 CR Alkaissi H, 2023, CUREUS J MED SCIENCE, V15, DOI 10.7759/cureus.35179 Armstrong K., 2023, BBC Beltagy I, 2019, 2019 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING AND THE 9TH INTERNATIONAL JOINT CONFERENCE ON NATURAL LANGUAGE PROCESSING (EMNLP-IJCNLP 2019), P3615 Brown T., 2020, ADV NEURAL INFORM PR, V33, P1877, DOI DOI 10.48550/ARXIV.2005.14165 Fan LZ, 2023, Arxiv, DOI arXiv:2304.02020 Gao C.A., 2022, bioRxiv Gusenbauer M, 2022, SCIENTOMETRICS, V127, P2683, DOI 10.1007/s11192-022-04289-7 Kasneci E, 2023, LEARN INDIVID DIFFER, V103, DOI 10.1016/j.lindif.2023.102274 Knoth P., 2023, CORE: A Global Aggregation Service for Open Access Papers Liu YH, 2019, Arxiv, DOI arXiv:1907.11692 LSE: LSE, 2022, New AI tools that can write student essays require educators to rethink teaching and assessment McMichael J., 2023, ARTIFICIAL INTELLIGE OpenAI. OpenAI, 2023, GPT-4 Techincal Report Radford A., 2019, LANGUAGE MODELS ARE Shen Y., 2023, Chatgpt and other large language models are double-edged swords Zhao WX, 2023, Arxiv, DOI [arXiv:2303.18223, DOI 10.48550/ARXIV.2303.18223, 10.48550/arXiv.2303.18223] NR 16 TC 5 Z9 5 U1 7 U2 8 PU SPRINGER INTERNATIONAL PUBLISHING AG PI CHAM PA GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND SN 0302-9743 EI 1611-3349 BN 978-3-031-43848-6; 978-3-031-43849-3 J9 LECT NOTES COMPUT SC PY 2023 VL 14241 BP 146 EP 159 DI 10.1007/978-3-031-43849-3_13 PG 14 WC Computer Science, Information Systems; Computer Science, Interdisciplinary Applications; Information Science & Library Science WE Conference Proceedings Citation Index - Science (CPCI-S); Conference Proceedings Citation Index - Social Science & Humanities (CPCI-SSH) SC Computer Science; Information Science & Library Science GA BW4WR UT WOS:001156311600014 DA 2024-09-05 ER PT J AU Kochhar, SK Ojha, U AF Kochhar, Sarabjeet Kaur Ojha, Uma TI Index for objective measurement of a research paper based on sentiment analysis SO ICT EXPRESS LA English DT Article DE Impact factor; Index; Metric; Sentiment analysis; SentiWordNet; Citation sentiment analysis; Sentiment scores; Citation extraction; Publication impact factor; ACL anthology ID IMPACT FACTOR; CITATION; TRACKING AB Establishing impact of a research paper is essential for academia, industry and research community alike. The attempts made in this direction are hitherto limited to some objective metrics, largely based on the citation count. The number of citations has always been used as a measure for ascertaining quality and popularity of research papers. Though, citations play an essential role in academic research, sometimes researchers may cite a paper to just point out its weaknesses and infirmities. A subjective look into the sentiments behind citations of a research paper aids in understanding the opinion of the peer research community for a paper. Objective measures such as citing author's impact factor and the publication's impact factor, may help to quantify the weightage of citations themselves and should also be included in the assessment of impact of a research paper. In this paper, we formulate a model that combines both the objective and subjective metrics and forms basis for an index to objectively convey the impact of a research paper. (C) 2020 The Korean Institute of Communications and Information Sciences (KICS). Publishing services by Elsevier B.V. C1 [Kochhar, Sarabjeet Kaur] Univ Delhi, Dept Comp Sci, Indraprastha Coll Women, New Delhi, India. [Ojha, Uma] Univ Delhi, Dept Comp Sci, Atma Ram Sanatan Dharma Coll, New Delhi, India. C3 University of Delhi; Atma Ram Sanatan Dharma College; University of Delhi RP Ojha, U (corresponding author), Univ Delhi, Dept Comp Sci, Atma Ram Sanatan Dharma Coll, New Delhi, India. EM sarabjeet.kochhar@gmail.com; uojha@arsd.du.ac.in RI Kochhar, Sarabjeet Kaur/HMV-8788-2023 OI Kochhar, Sarabjeet Kaur/0000-0001-9406-7414 CR Agarwal A, 2016, ASIAN J ANDROL, V18, P296, DOI 10.4103/1008-682X.171582 [Anonymous], 2012, 2012 Conference of the North American Chapter of the Association for Computational Linguistics Baccianella S, 2010, LREC 2010 - SEVENTH INTERNATIONAL CONFERENCE ON LANGUAGE RESOURCES AND EVALUATION Bergstrom CT, 2008, NEUROLOGY, V71, P1850, DOI 10.1212/01.wnl.0000338904.37585.66 Bienert IRC, 2015, REV BRAS CIR CARDIOV, V30, P254, DOI 10.5935/1678-9741.20150019 Bornmann L., 2014, ARXIV1409, pv1 Bornmann L, 2008, J DOC, V64, P45, DOI 10.1108/00220410810844150 Cavalcanti DC, 2011, PROC INT C TOOLS ART, P156, DOI 10.1109/ICTAI.2011.32 Egghe L, 2006, SCIENTOMETRICS, V69, P131, DOI 10.1007/s11192-006-0144-7 Falagas ME, 2008, FASEB J, V22, P2623, DOI 10.1096/fj.08-107938 Garfield E, 2006, JAMA-J AM MED ASSOC, V295, P90, DOI 10.1001/jama.295.1.90 González-Pereira B, 2010, J INFORMETR, V4, P379, DOI 10.1016/j.joi.2010.03.002 Hirsch JE, 2005, P NATL ACAD SCI USA, V102, P16569, DOI 10.1073/pnas.0507655102 Huggett S, 2013, ATHEROSCLEROSIS, V230, P275, DOI 10.1016/j.atherosclerosis.2013.07.051 Ikram MT, 2019, SCIENTOMETRICS, V119, P73, DOI 10.1007/s11192-019-03028-9 Kaur Sarabjeet, SENT AN 1 INT C SUST Kazi P, 2016, SCIENTOMETRICS, V107, P103, DOI 10.1007/s11192-016-1844-2 Leydesdorff L, 2010, J AM SOC INF SCI TEC, V61, P2365, DOI 10.1002/asi.21371 Melero R, 2015, BIOCHEM MEDICA, V25, P152, DOI 10.11613/BM.2015.016 Pan RK, 2014, SCI REP-UK, V4, DOI 10.1038/srep04880 Papakostidis C., 2018, MED WRITING RES METH Pronin E, 2007, TRENDS COGN SCI, V11, P37, DOI 10.1016/j.tics.2006.11.001 Radev DR, 2013, LANG RESOUR EVAL, V47, P919, DOI 10.1007/s10579-012-9211-2 Sevinc A, 2004, SWISS MED WKLY, V134, P410 Thelwall M, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0064841 Wang K, 2018, ACM/SIGIR PROCEEDINGS 2018, P175, DOI 10.1145/3209978.3210056 West JD, 2013, J AM SOC INF SCI TEC, V64, P787, DOI 10.1002/asi.22790 Xu Jun, 2015, AMIA Annu Symp Proc, V2015, P1334 NR 28 TC 4 Z9 4 U1 3 U2 14 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS SN 2405-9595 J9 ICT EXPRESS JI ICT Express PD SEP PY 2020 VL 6 IS 3 BP 253 EP 257 DI 10.1016/j.icte.2020.02.001 PG 5 WC Computer Science, Information Systems; Telecommunications WE Science Citation Index Expanded (SCI-EXPANDED) SC Computer Science; Telecommunications GA NF8SG UT WOS:000563562300019 OA gold DA 2024-09-05 ER PT J AU Zhu, WD Liu, F Chen, YW Yang, JB Xu, DL Wang, DP AF Zhu, Wei-dong Liu, Fang Chen, Yu-wang Yang, Jian-bo Xu, Dong-ling Wang, Dong-peng TI Research project evaluation and selection: an evidential reasoning rule-based method for aggregating peer review information with reliabilities SO SCIENTOMETRICS LA English DT Article DE Research project evaluation and selection; Evidential reasoning; Reliability; Confusion matrix ID DECISION-ANALYSIS; NETWORK; MODEL AB Research project evaluation and selection is mainly concerned with evaluating a number of research projects and then choosing some of them for implementation. It involves a complex multiple-experts multiple-criteria decision making process. Thus this paper presents an effective method for evaluating and selecting research projects by using the recently-developed evidential reasoning (ER) rule. The proposed ER rule based evaluation and selection method mainly includes (1) using belief structures to represent peer review information provided by multiple experts, (2) employing a confusion matrix for generating experts' reliabilities, (3) implementing utility based information transformation to handle qualitative evaluation criteria with different evaluation grades, and (4) aggregating multiple experts' evaluation information on multiple criteria using the ER rule. An experimental study on the evaluation and selection of research proposals submitted to the National Science Foundation of China demonstrates the applicability and effectiveness of the proposed method. The results show that (1) the ER rule based method can provide consistent and informative support to make informed decisions, and (2) the reliabilities of the review information provided by different experts should be taken into account in a rational research project evaluation and selection process, as they have a significant influence to the selection of eligible projects for panel review. C1 [Zhu, Wei-dong] Hefei Univ Technol, Sch Econ, Hefei 230009, Anhui, Peoples R China. [Liu, Fang; Yang, Jian-bo; Xu, Dong-ling; Wang, Dong-peng] Hefei Univ Technol, Sch Management, Hefei 230009, Anhui, Peoples R China. [Liu, Fang; Chen, Yu-wang; Yang, Jian-bo; Xu, Dong-ling] Univ Manchester, Manchester Business Sch, Manchester M15 6PB, Lancs, England. C3 Hefei University of Technology; Hefei University of Technology; University of Manchester RP Liu, F (corresponding author), Hefei Univ Technol, Sch Management, 193 Tunxi Rd, Hefei 230009, Anhui, Peoples R China. EM liu_fang2014@163.com RI Xu, Dong-Ling/AFO-9481-2022; Chen, Yu-wang/A-1129-2019; Yang, Jian-Bo/D-8047-2016 OI Xu, Dong-Ling/0000-0003-4480-1611; Chen, Yu-wang/0000-0002-2007-1821; Yang, Jian-Bo/0000-0001-8953-1550; Yang, Jian-Bo/0000-0002-1368-5294 FU National Natural Science Foundation of China [71071048]; China Scholarship Council [201306230047] FX This research is partially supported by the National Natural Science Foundation of China under Grant No. 71071048 and the Scholarship from China Scholarship Council under Grant No. 201306230047. CR Agarski B, 2012, ENVIRON MODEL ASSESS, V17, P255, DOI 10.1007/s10666-011-9294-y [Anonymous], 2007, ENG TECHNOLOGY Bulathsinhala N. A., 2014, SCI PUBL POLICY, Vscu035, P1 Carlsson C, 2007, INT J APPROX REASON, V44, P93, DOI 10.1016/j.ijar.2006.07.003 Chen X. T., 2009, NATL SCI FUND MANAGE Coffin MA, 1996, COMPUT OPER RES, V23, P207, DOI 10.1016/0305-0548(96)81768-0 Feng B, 2011, EXPERT SYST APPL, V38, P5532, DOI 10.1016/j.eswa.2010.10.083 Henriksen AD, 1999, IEEE T ENG MANAGE, V46, P158, DOI 10.1109/17.759144 Horrobin DF, 1996, LANCET, V348, P1293, DOI 10.1016/S0140-6736(96)08029-4 Hsu YG, 2003, R&D MANAGE, V33, P539, DOI 10.1111/1467-9310.00315 Huang CC, 2008, OMEGA-INT J MANAGE S, V36, P1038, DOI 10.1016/j.omega.2006.05.003 Jayasinghe UW, 2006, SCIENTOMETRICS, V69, P591, DOI 10.1007/s11192-006-0171-4 Juznic P, 2010, SCIENTOMETRICS, V85, P429, DOI 10.1007/s11192-010-0230-8 Khalili-Damghani K, 2013, INFORM SCIENCES, V252, P42, DOI 10.1016/j.ins.2013.05.005 Lawson CP, 2006, TECHNOVATION, V26, P242, DOI 10.1016/j.technovation.2004.07.017 Linton JD, 2002, R&D MANAGE, V32, P139, DOI 10.1111/1467-9310.00246 Meade LA, 2002, IEEE T ENG MANAGE, V49, P59, DOI 10.1109/17.985748 Olsson NOE, 2010, TRANSPORT POLICY, V17, P251, DOI 10.1016/j.tranpol.2010.01.008 Oral M, 2001, EUR J OPER RES, V130, P332, DOI 10.1016/S0377-2217(00)00040-0 Provost F, 1998, MACH LEARN, V30, P127, DOI 10.1023/A:1007442505281 Shafer G., 1976, MATH THEORY EVIDENCE, DOI DOI 10.1080/00401706.1978.10489628 Silva T., 2015, ACM T MANAG INF SYST, V5, P21 Silva T, 2013, DECIS SUPPORT SYST, V55, P957, DOI 10.1016/j.dss.2013.01.005 Smarandache F., 2010, alpha‐Discounting Method for Multi‐Criteria Decision Making (alpha‐D MCDM), P1 Solak S, 2010, EUR J OPER RES, V207, P420, DOI 10.1016/j.ejor.2010.04.032 Tavana M, 2013, COMPUT IND ENG, V66, P10, DOI 10.1016/j.cie.2013.06.002 Tian QJ, 2005, DECIS SUPPORT SYST, V39, P403, DOI 10.1016/j.dss.2003.08.005 Wang D. P., 2015, SCI SCI MANAGEMENT S, V36, P22 Wang JT, 2007, OMEGA-INT J MANAGE S, V35, P247, DOI 10.1016/j.omega.2005.06.002 Xu DL, 2012, ANN OPER RES, V195, P163, DOI 10.1007/s10479-011-0945-9 YANG JB, 1994, IEEE T SYST MAN CYB, V24, P1, DOI 10.1109/21.259681 Yang JB, 2001, EUR J OPER RES, V131, P31, DOI 10.1016/S0377-2217(99)00441-5 Yang JB, 2002, IEEE T SYST MAN CY A, V32, P289, DOI 10.1109/TSMCA.2002.802746 Yang JB, 2013, ARTIF INTELL, V205, P1, DOI 10.1016/j.artint.2013.09.003 NR 34 TC 25 Z9 27 U1 2 U2 73 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0138-9130 EI 1588-2861 J9 SCIENTOMETRICS JI Scientometrics PD DEC PY 2015 VL 105 IS 3 BP 1469 EP 1490 DI 10.1007/s11192-015-1770-8 PG 22 WC Computer Science, Interdisciplinary Applications; Information Science & Library Science WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Computer Science; Information Science & Library Science GA CW6TG UT WOS:000365130100007 DA 2024-09-05 ER PT C AU Cao, L Zhang, A Wang, QA AF Cao, Lu Zhang, An Wang, Qiang BE Li, K Fei, MR Jia, L Irwin, GW TI Research on Situation Assessment of UCAV Based on Dynamic Bayesian Networks in Complex Environment SO LIFE SYSTEM MODELING AND INTELLIGENT COMPUTING, PT II SE Lecture Notes in Computer Science LA English DT Proceedings Paper CT International Conference on Life System Modeling and Simulation / International Conference on Intelligent Computing for Sustainable Energy and Environment (LSMS-ICSEE) CY SEP 17-20, 2010 CL Wuxi, PEOPLES R CHINA DE situation assessment; UCAV; dynamic Bayesian networks; complex environment AB UCAV is an inevitable trend of the future intelligent and uninhabited flight platform. Situation assessment (SA) is an effective method to solve the problem of the autonomous decision-making in UCAV investigation. The concepts, contents and process of SA are put forward and the methods about the implementation of SA are analyzed. Then the concept and inference of dynamic Bayesian networks (DBN) are introduced, and SA configuration of UCAV autonomous decision system is given. Finally, the SA is applied to the UCAV autonomous decision system, especially SA based on DBN is used and the model is propounded. The simulation result indicates that the inference results are consistent with the theoretical analysis. The subjectivity of the assessment is reduced and the accuracy is greatly improved. C1 [Cao, Lu; Zhang, An; Wang, Qiang] NW Ploytech Univ, Dept Elect & Informat, Xian 710129, Peoples R China. RP Cao, L (corresponding author), NW Ploytech Univ, Dept Elect & Informat, Xian 710129, Peoples R China. EM cao1u2563@126.com; zhangan@nwpu.edu.cn; 15076686@qq.com RI zhang, an/JMR-3763-2023; Wang, Qiang/AAV-7131-2021 CR Ba Hong-xin, 2004, Journal of PLA University of Science and Technology (Natural Science Edition), V5, P10 Chao X.L., 2001, FLIGHT DYNAMIC, V19, P1 ENDSLEY MR, 1987, 8783 NOR DOC NORTHR Gonsalves PG, 2003, FUSION 2003: PROCEEDINGS OF THE SIXTH INTERNATIONAL CONFERENCE OF INFORMATION FUSION, VOLS 1 AND 2, P965 Hinman ML, 2002, PROCEEDINGS OF THE FIFTH INTERNATIONAL CONFERENCE ON INFORMATION FUSION, VOL I, P687, DOI 10.1109/ICIF.2002.1021221 Howard C, 2005, Third International Conference on Information Technology and Applications, Vol 1, Proceedings, P383 Jan T, 2004, IEEE IJCNN, P1309 MURPHY K, 2002, THESIS U C BERKELEY Sanghai S, 2005, J ARTIF INTELL RES, V24, P759, DOI 10.1613/jair.1625 [唐强 Tang Qiang], 2004, [系统工程与电子技术, Systems engineering & electronics], V26, P418 White F.E., 1987, DATA FUSION SUBPANEL Yu Zhou-yi, 2005, Journal of System Simulation, V17, P555 NR 12 TC 1 Z9 3 U1 0 U2 1 PU SPRINGER-VERLAG BERLIN PI BERLIN PA HEIDELBERGER PLATZ 3, D-14197 BERLIN, GERMANY SN 0302-9743 EI 1611-3349 BN 978-3-642-15596-3 J9 LECT NOTES COMPUT SC PY 2010 VL 6329 BP 58 EP 68 DI 10.1007/978-3-642-15597-0_7 PG 11 WC Automation & Control Systems; Computer Science, Artificial Intelligence; Computer Science, Theory & Methods WE Conference Proceedings Citation Index - Science (CPCI-S) SC Automation & Control Systems; Computer Science GA BTD67 UT WOS:000286579100007 DA 2024-09-05 ER PT J AU Burns, GA Li, XC Peng, NY AF Burns, Gully A. Li, Xiangci Peng, Nanyun TI Building deep learning models for evidence classification from the open access biomedical literature SO DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION LA English DT Article AB We investigate the application of deep learning to biocuration tasks that involve classification of text associated with biomedical evidence in primary research articles. We developed a large-scale corpus of molecular papers derived from PubMed and PubMed Central open access records and used it to train deep learning word embeddings under the GloVe, FastText and ELMo algorithms. We applied those models to a distant supervised method classification task based on text from figure captions or fragments surrounding references to figures in the main text using a variety or models and parameterizations. We then developed document classification (triage) methods for molecular interaction papers by using deep learning mechanisms of attention to aggregate classification-based decisions over selected paragraphs in the document. We were able to obtain triage performance with an accuracy of 0.82 using a combined convolutional neural network, bi-directional long short-term memory architecture augmented by attention to produce a single decision for triage. In this work, we hope to encourage biocuration systems developers to apply deep learning methods to their specialized tasks by repurposing large-scale word embedding to apply to their data. C1 [Burns, Gully A.] Chan Zuckerberg Initiat, Redwood City, CA 94063 USA. [Li, Xiangci; Peng, Nanyun] Univ Southern Calif, Viterbi Sch Engn, Informat Sci Inst, Marina Del Rey, CA 90292 USA. C3 Chan Zuckerberg Initiative (CZI); University of Southern California RP Burns, GA (corresponding author), Chan Zuckerberg Initiat, Redwood City, CA 94063 USA. EM gullyburns@gmail.com OI Li, Xiangci/0000-0002-7493-9534 FU National Institute of Health's National Library of Medicine [LM012592] FX National Institute of Health's National Library of Medicine (LM012592). CR [Anonymous], CORR [Anonymous], DATABASE OXFORD [Anonymous], CORR [Anonymous], 2015, P ICLR [Anonymous], 2016, ABS160704606 CORR, DOI DOI 10.1162/TACL_A_00051 [Anonymous], METHOD CLASSIFICATIO [Anonymous], P 4 BIOCREATIVE CHAL [Anonymous], SEMSCI 2017 WORKSH I [Anonymous], 2018, P 2018 C N AM CHAPTE [Anonymous], 2016, DEEP LEARNING [Anonymous], SEMSCI 2018 WORKSH I [Anonymous], NAACL HLT 2018 [Anonymous], BIONLP ACL 2011 [Anonymous], TEXT RETRIEVAL C TRE [Anonymous], 2013, P LBM 2013 Björne J, 2018, SIGBIOMED WORKSHOP ON BIOMEDICAL NATURAL LANGUAGE PROCESSING (BIONLP 2018), P98 Burns GAPC, 2016, DATABASE-OXFORD, DOI 10.1093/database/baw122 Casteleiro MA, 2018, J BIOMED SEMANT, V9, DOI 10.1186/s13326-018-0181-1 Cohen Aaron M, 2006, J Biomed Discov Collab, V1, P4, DOI 10.1186/1747-5333-1-4 Craven M, 1999, Proc Int Conf Intell Syst Mol Biol, P77 Devlin J, 2019, 2019 CONFERENCE OF THE NORTH AMERICAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS: HUMAN LANGUAGE TECHNOLOGIES (NAACL HLT 2019), VOL. 1, P4171 Lee K, 2018, PLOS COMPUT BIOL, V14, DOI 10.1371/journal.pcbi.1006390 Mikolov T., 2013, ADV NEURAL INFORM PR, DOI DOI 10.48550/ARXIV.1310.4546 Mohan S, 2018, WEB CONFERENCE 2018: PROCEEDINGS OF THE WORLD WIDE WEB CONFERENCE (WWW2018), P77, DOI 10.1145/3178876.3186049 Russ TA, 2011, BMC BIOINFORMATICS, V12, DOI 10.1186/1471-2105-12-351 Wang YS, 2018, J BIOMED INFORM, V87, P12, DOI 10.1016/j.jbi.2018.09.008 NR 26 TC 16 Z9 24 U1 0 U2 8 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 1758-0463 J9 DATABASE-OXFORD JI Database PD APR 2 PY 2019 AR baz034 DI 10.1093/database/baz034 PG 9 WC Mathematical & Computational Biology WE Science Citation Index Expanded (SCI-EXPANDED) SC Mathematical & Computational Biology GA IA9NG UT WOS:000469883300001 PM 30938776 OA gold, Green Published, Green Submitted DA 2024-09-05 ER PT C AU Zeng, XF AF Zeng Xianfeng GP IEEE TI Research on Security Assessment and Maintenance Decision of Trains based on Bayesian Networks SO 2014 SIXTH INTERNATIONAL CONFERENCE ON MEASURING TECHNOLOGY AND MECHATRONICS AUTOMATION (ICMTMA) SE International Conference on Measuring Technology and Mechatronics Automation LA English DT Proceedings Paper CT 6th International Conference on Measuring Technology and Mechatronics Automation (ICMTMA) CY JAN 10-11, 2014 CL Zhangjiajie, PEOPLES R CHINA DE Magler Train; Security Assessment; Fault Tree; Bayesian Networks; Maintenance Decision AB With the medium and low speed maglev train plays the role of commercial operation gradually, people put forward higher requirements for train safety reliability, which makes train security assessment even more prominent. Aiming at the characteristics of the maglev train equipments as well as the limitations of traditional security assessment, the establishment of a multi-state security assessment based on Bayesian network model has better diagnostic reasoning and causal reasoning ability. Finally, using the model to analysis the train traction system quantitatively, fmding the weaknesses of the system and the relationship between the equipments to make rational maintenance decision. This will provide a basis to improve the reliability of train equipment and repair and maintenance work. C1 Guangzhou Inst Railway Technol, Guangzhou, Guangdong, Peoples R China. RP Zeng, XF (corresponding author), Guangzhou Inst Railway Technol, Guangzhou, Guangdong, Peoples R China. EM wujing2013c@163.com CR Bobbio A., 2001, RELIABILITY ENG SYST, V71 Li Haijun, 2003, APPL EQUIPMENT FAILU Yasuda Y., 2004, MAGLEV 2004 PROC 18 Zhou Zhongbao, 2009, SYSTEM ENG ACAD J, V24 NR 4 TC 1 Z9 1 U1 0 U2 5 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA SN 2157-1473 BN 978-1-4799-3434-8 J9 INT CONF MEAS PY 2014 BP 534 EP 537 DI 10.1109/ICMTMA.2014.129 PG 4 WC Automation & Control Systems; Engineering, Electrical & Electronic; Engineering, Mechanical WE Conference Proceedings Citation Index - Science (CPCI-S) SC Automation & Control Systems; Engineering GA BC7WU UT WOS:000355260500126 DA 2024-09-05 ER PT C AU Yuan, XE Shi, MW Song, CM AF Yuan, Xiu-e Shi, Meng-wei Song, Chun-mei BE Muhin, VE Ye, Z TI Research on Supply Chain Performance Evaluation Based on Rough set and SVM SO IEEC 2009: FIRST INTERNATIONAL SYMPOSIUM ON INFORMATION ENGINEERING AND ELECTRONIC COMMERCE, PROCEEDINGS LA English DT Proceedings Paper CT 1st International Symposium on Information Engineering and Electronic Commerce CY MAY 16-17, 2009 CL Ternopil, UKRAINE DE Supply Chain; Rough set; SVM AB For implementing supply chain management effectively, a manufacturing supply chain performance evaluation nethod was very important. Based on the comprehensive evaluation index system of supply Chain Performance Evaluation, a new evaluation model with Support vector machine (SVM) and Rough set Is founded. Rough Set is introduced to reduce numbers of evaluation indicators, thus reducing the dimensions of the input space of SVM. Finally, a example is provided to validate the proposed method. The findings indicate that the method proposed in this paper is a useful tool for solving the supply chain performance evaluation. C1 [Yuan, Xiu-e; Shi, Meng-wei] North China Elect Power Univ, Business & Management Dept, Beijing, Peoples R China. [Song, Chun-mei] ShiJiaZhuang Foreign Affair Coll, Foreign Affair Management Dept, Shijiazhuang, Peoples R China. C3 North China Electric Power University RP Yuan, XE (corresponding author), North China Elect Power Univ, Business & Management Dept, Beijing, Peoples R China. EM hdyxe@126.com; scm780929@sina.com CR [Anonymous], INTELLIGENT CONTROL [Anonymous], 1991, ROUGH SETS THEORETIC, DOI [DOI 10.1007/978-94-011-3534-4, 10.1007/978-94-011-3534-4] FANG QL, 2006, MATH PRACTICE THEORY, V36, P244 LIU H, 2005, STAT DECISION, P142 Pawlak Z, 2002, EUR J OPER RES, V136, P181, DOI 10.1016/S0377-2217(01)00029-7 Su Jian, 2003, Chinese Journal of Computers, V26, P737 [王铁男 WANG Tienan], 2006, [中国软科学, China Soft Science], P136 YE CM, 2005, IND ENG MANAGEMENT, P35 [张利 ZHANG Li], 2006, [系统工程理论方法应用, Systems engineering theory methodology applications], V15, P220 ZHANG WX, 2005, UNCERTAIN DECISION B NR 10 TC 0 Z9 0 U1 0 U2 1 PU IEEE COMPUTER SOC PI LOS ALAMITOS PA 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1264 USA BN 978-0-7695-3686-6 PY 2009 BP 276 EP + DI 10.1109/IEEC.2009.182 PG 2 WC Computer Science, Information Systems; Computer Science, Software Engineering; Engineering, Electrical & Electronic WE Conference Proceedings Citation Index - Science (CPCI-S) SC Computer Science; Engineering GA BNT86 UT WOS:000275528800057 DA 2024-09-05 ER PT J AU Saarela, M Kärkkäinen, T AF Saarela, Mirka Kaerkkaeinen, Tommi TI Can we automate expert-based journal rankings? Analysis of the Finnish publication indicator SO JOURNAL OF INFORMETRICS LA English DT Article DE Performance-based research funding system; Machine learning; Automation; Feature importance ID NORWEGIAN MODEL; SOCIAL-SCIENCES; PERFORMANCE; INTERNATIONALIZATION; CITATIONS; QUALITY; IMPACT; SNIP AB The publication indicator of the Finnish research funding system is based on a manual ranking of scholarly publication channels. These ranks, which represent the evaluated quality of the channels, are continuously kept up to date and thoroughly reevaluated every four years by groups of nominated scholars belonging to different disciplinary panels. This expert-based decision-making process is informed by available citation-based metrics and other relevant metadata characterizing the publication channels. The purpose of this paper is to introduce various approaches that can explain the basis and evolution of the quality of publication channels, i.e., ranks. This is important for the academic community, whose research work is being governed using the system. Data-based models that, with sufficient accuracy, explain the level of or changes in ranks provide assistance to the panels in their multi-objective decision making, thus suggesting and supporting the need to use more cost-effective, automated ranking mechanisms. The analysis relies on novel advances in machine learning systems for classification and predictive analysis, with special emphasis on local and global feature importance techniques (C) 2020 Published by Elsevier Ltd. C1 [Saarela, Mirka; Kaerkkaeinen, Tommi] Univ Jyvaskyla, Fac Informat Technol, POB 35, FI-40014 Jyvaskyla, Finland. C3 University of Jyvaskyla RP Saarela, M (corresponding author), Univ Jyvaskyla, Fac Informat Technol, POB 35, FI-40014 Jyvaskyla, Finland. EM mirka.saarela@jyu.fi RI Saarela, Mirka/AAC-4087-2019 OI Saarela, Mirka/0000-0002-1559-154X; Karkkainen, Tommi/0000-0003-0327-1167 FU Academy of Finland [315550, 311877]; Academy of Finland (AKA) [315550] Funding Source: Academy of Finland (AKA) FX This research was supported by the Academy of Finland (grants no. 315550 and 311877) and is related to the the matic research area DEMO (Decision Analytics Utilizing Causal Models and Multiobjective Optimization, jyu.fi/demo) of the University of Jyvaskyla. CR Aagaard K., 2019, INFORM SCI, V3, P20 Aagaard K, 2015, RES EVALUAT, V24, P106, DOI 10.1093/reseval/rvv003 Abrishami A, 2019, J INFORMETR, V13, P485, DOI 10.1016/j.joi.2019.02.011 Ahlgren P, 2014, J INFORMETR, V8, P985, DOI 10.1016/j.joi.2014.09.010 Akusok A, 2019, PROC ADAPT LEARN OPT, V10, P240, DOI 10.1007/978-3-030-01520-6_22 Bach M, 2017, INFORM SCIENCES, V384, P174, DOI 10.1016/j.ins.2016.09.038 Bai XM, 2019, J INFORMETR, V13, P407, DOI 10.1016/j.joi.2019.01.010 Bensman SJ, 2010, J AM SOC INF SCI TEC, V61, P1440, DOI 10.1002/asi.21332 Boemer F, 2018, NEUROCOMPUTING, V277, P228, DOI 10.1016/j.neucom.2017.05.096 Bornmann L, 2018, J INFORMETR, V12, P931, DOI 10.1016/j.joi.2018.07.009 Breiman L., 2001, Machine Learning, V45, P5, DOI 10.1023/A:1010933404324 Breiman L., 2017, Classification And Regression Trees, V1st, DOI DOI 10.1201/9781315139470-8 Breiman L, 1997, Arcing The Edge Butler L, 2003, RES POLICY, V32, P143, DOI 10.1016/S0048-7333(02)00007-0 Chawla NV, 2002, J ARTIF INTELL RES, V16, P321, DOI 10.1613/jair.953 Daud A, 2015, SCIENTOMETRICS, V102, P1687, DOI 10.1007/s11192-014-1455-8 Dondio P, 2019, J INFORMETR, V13, P708, DOI 10.1016/j.joi.2019.03.018 Friedman JH, 2001, ANN STAT, V29, P1189, DOI 10.1214/aos/1013203451 González-Pereira B, 2010, J INFORMETR, V4, P379, DOI 10.1016/j.joi.2010.03.002 Guyon I, 2003, J MACH LEARN RES, V3, P1157, DOI DOI 10.1162/153244303322753616 Haddawy P, 2016, J INFORMETR, V10, P162, DOI 10.1016/j.joi.2015.12.005 Halim Z, 2019, SCIENTOMETRICS, V119, P393, DOI 10.1007/s11192-019-03035-w Hammarfelt B, 2018, J DATA INFO SCI, V3, P85, DOI 10.2478/jdis-2018-0023 Heinisch DP, 2018, SCIENTOMETRICS, V117, P351, DOI 10.1007/s11192-018-2840-5 Hicks Diana, 2015, Nature, V520, P429, DOI 10.1038/520429a Kim J, 2018, SCIENTOMETRICS, V117, P511, DOI 10.1007/s11192-018-2865-9 Kolesnikov S, 2018, SCIENTOMETRICS, V116, P1995, DOI 10.1007/s11192-018-2793-8 Kulczycki E., 2018, PUBLICATION PATTERNS, P1 Kulczycki E, 2017, J INFORMETR, V11, P282, DOI 10.1016/j.joi.2017.01.001 Letto-Vanamo P, 2019, EVALUATING ACADEMIC LEGAL RESEARCH IN EUROPE: THE ADVANTAGE OF LAGGING BEHIND, P218 Leydesdorff L, 2010, J AM SOC INF SCI TEC, V61, P2365, DOI 10.1002/asi.21371 Li XD, 2018, SYST CONTROL LETT, V116, P1, DOI 10.1016/j.sysconle.2018.04.001 Little R.J., 2014, Statistical analysis with missing data, V793 Meho LI, 2019, J INFORMETR, V13, P419, DOI 10.1016/j.joi.2019.02.006 Moed HF, 2010, J INFORMETR, V4, P265, DOI 10.1016/j.joi.2010.01.002 Molnar C., 2022, Interpretable machine learning: A guide for making Black Box models explainable, V2nd edn Mutz R, 2019, J INFORMETR, V13, P643, DOI 10.1016/j.joi.2019.03.007 Olson R., 2018, DATA DRIVEN ADVICE A, V23, P192 Pölönen J, 2018, J DATA INFO SCI, V3, P31, DOI 10.2478/jdis-2018-0019 Ribeiro MT, 2016, KDD'16: PROCEEDINGS OF THE 22ND ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, P1135, DOI 10.1145/2939672.2939778 Rodríguez-Navarro A, 2019, SCIENTOMETRICS, V119, P213, DOI 10.1007/s11192-019-03022-1 Saarela M., 2015, JEDM J ED DATA MIN, V7, P3 Saarela M, 2019, ARTIF INTELL MED, V95, P88, DOI 10.1016/j.artmed.2018.09.004 Saarela M, 2016, J INFORMETR, V10, P693, DOI 10.1016/j.joi.2016.03.004 Saeed-Ul Hassan, 2018, SCIENTOMETRICS, V116, P973, DOI 10.1007/s11192-018-2767-x Sandström U, 2018, J INFORMETR, V12, P365, DOI 10.1016/j.joi.2018.01.007 Sandström U, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0166149 Serenko A, 2018, J ASSOC INF SCI TECH, V69, P749, DOI 10.1002/asi.23985 Sile L, 2019, SCIENTOMETRICS, V118, P71, DOI 10.1007/s11192-018-2963-8 Sivertsen G., 2019, Data and Information Management, V3, P61, DOI [DOI 10.2478/DIM-2019-0008, 10.2478/dim-2019-0008] Sivertsen G, 2018, J DATA INFO SCI, V3, P3, DOI 10.2478/jdis-2018-0017 Sivertsen G, 2016, RESEARCH ASSESSMENT IN THE HUMANITIES: TOWARDS CRITERIA AND PROCEDURES, P79, DOI 10.1007/978-3-319-29016-4_7 Sivertsen G, 2016, SCIENTOMETRICS, V107, P357, DOI 10.1007/s11192-016-1845-1 Sivertsen G, 2012, SCIENTOMETRICS, V91, P567, DOI 10.1007/s11192-011-0615-3 Small H, 2018, J INFORMETR, V12, P461, DOI 10.1016/j.joi.2018.03.007 Subochev A, 2018, J INFORMETR, V12, P416, DOI 10.1016/j.joi.2018.03.001 Thelwall M, 2017, J INFORMETR, V11, P128, DOI 10.1016/j.joi.2016.12.002 Tibshirani R, 1996, J ROY STAT SOC B, V58, P267, DOI 10.1111/j.2517-6161.1996.tb02080.x Treeratpituk P, 2009, ACM-IEEE J CONF DIG, P39 Tüselmann H, 2015, OMEGA-INT J MANAGE S, V51, P11, DOI 10.1016/j.omega.2014.08.002 van den Besselaar P, 2017, J INFORMETR, V11, P905, DOI 10.1016/j.joi.2017.05.016 van Vlokhoven H, 2019, J INFORMETR, V13, P751, DOI 10.1016/j.joi.2019.04.001 Vanhoeyveld J, 2018, DATA MIN KNOWL DISC, V32, P25, DOI 10.1007/s10618-017-0517-y Verleysen FT, 2014, SCIENTOMETRICS, V101, P1431, DOI 10.1007/s11192-014-1267-x Vieira ES, 2010, J INFORMETR, V4, P1, DOI 10.1016/j.joi.2009.06.002 Vrettas G, 2015, J ASSOC INF SCI TECH, V66, P2674, DOI 10.1002/asi.23349 Wallace FH, 2018, SCIENTOMETRICS, V115, P749, DOI 10.1007/s11192-018-2690-1 Walters WH, 2019, SCIENTOMETRICS, V118, P321, DOI 10.1007/s11192-018-2972-7 Walters WH, 2017, J INFORMETR, V11, P730, DOI 10.1016/j.joi.2017.05.001 Waltman L, 2017, J INFORMETR, V11, P904, DOI 10.1016/j.joi.2017.05.015 Yu XY, 2019, IEEE T NEUR NET LEAR, V30, P2805, DOI 10.1109/TNNLS.2018.2886017 Zacharewicz T, 2019, SCI PUBL POLICY, V46, P105, DOI 10.1093/scipol/scy041 Zhang RZ, 2017, J INFORMETR, V11, P629, DOI 10.1016/j.joi.2017.05.007 NR 73 TC 17 Z9 17 U1 4 U2 48 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS SN 1751-1577 EI 1875-5879 J9 J INFORMETR JI J. Informetr. PD MAY PY 2020 VL 14 IS 2 AR 101008 DI 10.1016/j.joi.2020.101008 PG 17 WC Computer Science, Interdisciplinary Applications; Information Science & Library Science WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Computer Science; Information Science & Library Science GA NG7GI UT WOS:000564148300006 OA Green Accepted DA 2024-09-05 ER PT J AU Timko, C Niederstadt, M Goel, N Faltings, B AF Timko, Christina Niederstadt, Malte Goel, Naman Faltings, Boi TI Incentive Mechanism Design for Responsible Data Governance: A Large-scale Field Experiment SO ACM JOURNAL OF DATA AND INFORMATION QUALITY LA English DT Article DE Data quality assessment; experimental; quantitative research; incentive mechanism design; responsible AI ID PREDICTION AB A crucial building block of responsible artificial intelligence is responsible data governance, including data collection. Its importance is also underlined in the latest EU regulations. The data should be of high quality, foremost correct and representative, and individuals providing the data should have autonomy over what data is collected. In this article, we consider the setting of collecting personally measured fitness data (physical activity measurements), in which some individuals may not have an incentive to measure and report accurate data. This can significantly degrade the quality of the collected data. On the other hand, high-quality collective data of this nature could be used for reliable scientific insights or to build trustworthy artificial intelligence applications. We conduct a framed field experiment (N = 691) to examine the effect of offering fixed and quality-dependent monetary incentives on the quality of the collected data. We use a peer-based incentive-compatible mechanism for the quality-dependent incentives without spot-checking or surveilling individuals. We find that the incentive-compatible mechanism can elicit good-quality data while providing a good user experience and compensating fairly, although, in the specific study context, the data quality does not necessarily differ under the two incentive schemes. We contribute new design insights from the experiment and discuss directions that future field experiments and applications on explainable and transparent data collection may focus on. C1 [Timko, Christina; Niederstadt, Malte] Ruhr Univ Bochum, Univ Str 150, D-44801 Bochum, Germany. [Goel, Naman] Univ Oxford, Wolf Son Bldg,Parks Rd, Oxford OX1 3QD, England. [Faltings, Boi] EPFL IC IINFCOM LIA, Stn 14, CH-1015 Lausanne, Switzerland. C3 Ruhr University Bochum; University of Oxford RP Timko, C (corresponding author), Ruhr Univ Bochum, Univ Str 150, D-44801 Bochum, Germany. EM christina.timko@rub.de; malte.niederstadt@rub.de; naman.goel@cs.ox.ac.uk; boi.faltings@epfl.ch FU Research Department Closed Carbon Cycle Economy at the Ruhr-Universitat Bochum FX Christina Timko was supported by a personal research grant of the Research Department Closed Carbon Cycle Economy at the Ruhr-Universitat Bochum. CR Abiteboul S, 2019, ACM J DATA INF QUAL, V11, DOI 10.1145/3310231 Agley J, 2022, BEHAV RES METHODS, V54, P885, DOI 10.3758/s13428-021-01665-8 Aguinis H, 2021, J MANAGE, V47, P823, DOI 10.1177/0149206320969787 Baillon A, 2022, J ECON PSYCHOL, V93, DOI 10.1016/j.joep.2022.102552 Biermann Jan, 2022, ZEW DISCUSSION PAPER, V22, P071 Chen DL, 2016, J BEHAV EXP FINANC, V9, P88, DOI 10.1016/j.jbef.2015.12.001 European Commission, 2022, Press Release Faltings B., 2017, Synth. Lect. Artif. Intell. Mach. Learn., V11, P1, DOI DOI 10.2200/S00788ED1V01Y201707AIM035 Faltings Boi, 2014, HCOMP 2014, P59, DOI DOI 10.1609/HCOMP.V2I1.13145 Frank MR, 2017, PLOS ONE, V12, DOI 10.1371/journal.pone.0177385 Gao X. A., 2014, P 15 ACM C EC COMPUT, P507, DOI DOI 10.1145/2600057.2602865 Giles P, 2019, J CULT ECON-UK, V12, P612, DOI 10.1080/17530350.2019.1639068 Gneezy U, 2018, AM ECON REV, V108, P419, DOI 10.1257/aer.20161553 Gneiting T, 2007, J AM STAT ASSOC, V102, P359, DOI 10.1198/016214506000001437 Goel N, 2019, AAAI CONF ARTIF INTE, P1996 Goel Naman, 2020, THESIS EPFL Goel Naman, 2019, UNCERTAINTY ARTIFICI, P18 Harrison GW, 2004, J ECON LIT, V42, P1009, DOI 10.1257/0022051043004577 Heinrich B, 2018, ACM J DATA INF QUAL, V9, DOI 10.1145/3148238 Hussam Reshmaan, 2017, TARGETING HIGH UNPUB John LK, 2012, PSYCHOL SCI, V23, P524, DOI 10.1177/0956797611430953 Jung I, 2017, ARCH PLAST SURG-APS, V44, P93, DOI 10.5999/aps.2017.44.2.93 Liu Y, 2017, EC'17: PROCEEDINGS OF THE 2017 ACM CONFERENCE ON ECONOMICS AND COMPUTATION, P63, DOI 10.1145/3033274.3085126 Madnick S.E., 2009, Data Inf. Quality, V1, P1, DOI [DOI 10.1145/1515693.1516680, 10.1145/1515693.1516680] Miller N, 2005, MANAGE SCI, V51, P1359, DOI 10.1287/mnsc.1050.0379 Mohan K, 2021, J AM STAT ASSOC, V116, P1023, DOI 10.1080/01621459.2021.1874961 NeCamp T, 2019, PROCEEDINGS OF THE 9TH INTERNATIONAL CONFERENCE ON LEARNING ANALYTICS & KNOWLEDGE (LAK'19), P539, DOI 10.1145/3303772.3303812 NIST/SEMATECH, 2013, E HDB STAT METH Prelec D, 2004, SCIENCE, V306, P462, DOI 10.1126/science.1102081 Radanovic Goran, 2016, ACM Transactions on Intelligent Systems and Technology, V7, DOI 10.1145/2856102 Rigol Natalia, 2016, PAYING TRUTH E UNPUB Roe BE, 2009, AM J AGR ECON, V91, P1266, DOI 10.1111/j.1467-8276.2009.01295.x Sambasivan Nithya, 2021, CHI '21: Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems, DOI 10.1145/3411764.3445518 Saravanos Antonios, 2021, LECT NOTES COMPUTER, V13094 Shnayder V, 2016, EC'16: PROCEEDINGS OF THE 2016 ACM CONFERENCE ON ECONOMICS AND COMPUTATION, P179, DOI 10.1145/2940716.2940790 Waggoner Bo, 2014, 2 AAAI C HUMAN COMPU Weaver R, 2013, J MARKETING RES, V50, P289, DOI 10.1509/jmr.09.0039 Zhou L, 2022, J BUS RES, V139, P354, DOI 10.1016/j.jbusres.2021.09.056 NR 38 TC 0 Z9 0 U1 4 U2 7 PU ASSOC COMPUTING MACHINERY PI NEW YORK PA 1601 Broadway, 10th Floor, NEW YORK, NY USA SN 1936-1955 J9 ACM J DATA INF QUAL JI ACM J. Data Inf. Qual. PD JUN PY 2023 VL 15 IS 2 AR 16 DI 10.1145/3592617 PG 18 WC Computer Science, Information Systems WE Emerging Sources Citation Index (ESCI) SC Computer Science GA L0RD5 UT WOS:001020404600007 OA Green Submitted, Bronze DA 2024-09-05 ER PT J AU Radu, C Ciocoiu, CN Veith, C Dobrea, RC AF Radu, Catalina Ciocoiu, Carmen Nadia Veith, Cristina Dobrea, Razvan Catalin TI ARTIFICIAL INTELLIGENCE AND COMPETENCY-BASED EDUCATION: A BIBLIOMETRIC ANALYSIS SO AMFITEATRU ECONOMIC LA English DT Article DE artificial intelligence (AI); competency-based education (CBE); bibliometric analysis; thematic map; Web of Science (WoS) AB In the context of the educational transition toward a competency -based approach, this study aimed to identify trends, challenges, and emerging opportunities generated by the intersection of Artificial Intelligence (AI) and Competency -Based Education (CBE). The research was carried out using a bibliometric analysis of 1,028 articles included in the Web of Science database and based on reports provided by the biblioshiny application, the graphical interface of the bibliometrix R package. The results included a quantitative analysis of scientific production, collaborations, and cocitations, as well as the evolution and thematic map of the field. These revealed an annual increase of 8.43% in publications with acceleration after 2017 and global involvement, with the United States and China in leading positions. Thematic analyses have shown the field's evolution from technological foundations to an interdisciplinary approach, highlighting the influences of global events, such as COVID-19. The research confirmed the profound interaction between AI and CBE, demonstrating its potential, complexity, and the need for collaborative and interdisciplinary approaches. The bibliometric analysis performed can serve as a guide for future research directions and for identifying strategic directions in the implementation of AI in education. C1 [Radu, Catalina; Ciocoiu, Carmen Nadia; Dobrea, Razvan Catalin] Bucharest Univ Econ Studies, Bucharest, Romania. [Veith, Cristina] Univ Bucharest, Bucharest, Romania. C3 Bucharest University of Economic Studies; University of Bucharest RP Radu, C (corresponding author), Bucharest Univ Econ Studies, Bucharest, Romania. EM catalina.radu@man.ase.ro RI Veith, Cristina/KIH-8901-2024 OI Veith, Cristina/0000-0002-3592-8779 CR Akgun Selin, 2022, AI Ethics, V2, P431, DOI 10.1007/s43681-021-00096-7 Almohammadi K, 2017, J ARTIF INTELL SOFT, V7, P47, DOI 10.1515/jaiscr-2017-0004 Anderson-Levitt K, 2021, COMP EDUC, V57, P1, DOI 10.1080/03050068.2020.1852719 Nguyen A, 2023, EDUC INF TECHNOL, V28, P4221, DOI 10.1007/s10639-022-11316-w Aria M, 2017, J INFORMETR, V11, P959, DOI 10.1016/j.joi.2017.08.007 Azañedo D, 2022, TROP MED INFECT DIS, V7, DOI 10.3390/tropicalmed7080198 Baek C., 2020, International Journal of Learning Analytics and Artificial Intelligence for Education (iJAI), V2, P67, DOI [10.3991/ijai.v2i1.14481, DOI 10.3991/IJAI.V2I1.14481] Baker RS, 2022, INT J ARTIF INTELL E, V32, P1052, DOI 10.1007/s40593-021-00285-9 Borenstein Jason, 2021, AI Ethics, V1, P61, DOI 10.1007/s43681-020-00002-7 Brammer M.K., 2021, SOC SCI J, P1, DOI [10.1080/03623319.2021.1883380, DOI 10.1080/03623319.2021.1883380] Brandes U, 2001, J MATH SOCIOL, V25, P163, DOI 10.1080/0022250X.2001.9990249 Burnette DM, 2016, J CONTIN HIGH EDUC, V64, P84, DOI 10.1080/07377363.2016.1177704 Chen LJ, 2020, IEEE ACCESS, V8, P75264, DOI 10.1109/ACCESS.2020.2988510 Chen SQ, 2022, PLOS ONE, V17, DOI 10.1371/journal.pone.0277484 Ellahi RM, 2019, PROCEDIA COMPUT SCI, V151, P699, DOI 10.1016/j.procs.2019.04.093 Evans CM., 2020, The Journal of Competency-Based Education, V5, DOI DOI 10.1002/CBE2.1228 Harto B., 2022, 1 WOW SAIPIS 2021, P385, DOI [10.2478/9788366675827-067, DOI 10.2478/9788366675827-067] Hinojo-Lucena FJ, 2019, EDUC SCI, V9, DOI 10.3390/educsci9010051 Holmes W, 2022, INT J ARTIF INTELL E, V32, P504, DOI 10.1007/s40593-021-00239-1 Hwang G.-J., 2020, Computers and Education: Artificial Intelligence, V1, P100001, DOI [DOI 10.1016/J.CAEAI.2020.100001, 10.1016/j.caeai.2020.100001] Jia K, 2022, FRONT PSYCHOL, V13, DOI 10.3389/fpsyg.2022.795039 Johnstone S.M., 2014, Change: The Magazine of Higher Learning, V46, P12, DOI DOI 10.1080/00091383.2014.896705 Kanungo RP, 2022, TECHNOL FORECAST SOC, V182, DOI 10.1016/j.techfore.2022.121808 Kaplan A, 2019, BUS HORIZONS, V62, P15, DOI 10.1016/j.bushor.2018.08.004 Kasneci E, 2023, LEARN INDIVID DIFFER, V103, DOI 10.1016/j.lindif.2023.102274 Kuleto V, 2021, SUSTAINABILITY-BASEL, V13, DOI 10.3390/su131810424 Lazaroiu G, 2023, OECON COPERNIC, V14, P703, DOI 10.24136/oc.2023.020 Lindsay T., 2018, Forbes Mehall S., 2019, The Journal of Competency-Based Education, V4, DOI DOI 10.1002/CBE2.1201 Mhlanga D, 2021, SUSTAINABILITY-BASEL, V13, DOI 10.3390/su13115788 Paek S, 2021, EDUC SCI, V11, DOI 10.3390/educsci11060303 Peters M, 2023, ETR&D-EDUC TECH RES, DOI 10.1007/s11423-023-10234-z Poria S, 2019, IEEE ACCESS, V7, P100943, DOI 10.1109/ACCESS.2019.2929050 Prahani BK, 2022, INT J EMERG TECHNOL, V17, P169, DOI 10.3991/ijet.v17i08.29833 Talan T., 2021, International Journal of Research in Education and Science, V7, P822, DOI [DOI 10.46328/IJRES.2409, 10.46328/ijres.2409] Wamba SF, 2021, TECHNOL FORECAST SOC, V164, DOI 10.1016/j.techfore.2020.120482 Winkler-Schwartz A, 2019, J SURG EDUC, V76, P1681, DOI 10.1016/j.jsurg.2019.05.015 Yip HK, 2000, BRIT DENT J, V189, P324, DOI 10.1038/sj.bdj.4800758a NR 38 TC 0 Z9 0 U1 6 U2 6 PU EDITURA ASE PI BUCURESTI PA PIATA ROMANA, NR 6, SECTOR 1, BUCURESTI, 701731, ROMANIA SN 1582-9146 EI 2247-9104 J9 AMFITEATRU ECON JI Amfiteatru Econ. PD FEB PY 2024 VL 26 IS 65 BP 220 EP 240 DI 10.24818/EA/2024/65/220 PG 21 WC Business; Economics; Management WE Social Science Citation Index (SSCI) SC Business & Economics GA UX2M3 UT WOS:001251298900013 OA gold, Green Published DA 2024-09-05 ER PT J AU Pitkäaho, T Ryynänen, OP Partanen, P Vehviläinen-Julkunen, K AF Pitkaaho, Taina Ryynanen, Olli-Pekka Partanen, Pirjo Vehvilainen-Julkunen, Katri TI Data-based nurse staffing indicators with Bayesian networks explain nurse job satisfaction: a pilot study SO JOURNAL OF ADVANCED NURSING LA English DT Article DE Bayesian networks; nurse job satisfaction; outcome research; register data; time series ID LARGE DATA SETS; PATIENT MORTALITY; WORK ENVIRONMENTS; OUTCOMES; CARE; QUALITY; MODELS; DISSATISFACTION; REGRESSION; DATABASES AB P>Aim. This paper is a report of a pilot study to examine the relationship of nursing intensity, work environment intensity and nursing resources to nurse job satisfaction. Background. There is an ever increasing amount of information in hospital information systems; however, still very little of it is actually used in nursing management and leadership. Methods. The combination of a retrospective time series and cross-sectional survey data was used. The time series patient data of 9704 in/outpatients and nurse data of 110 nurses were collected from six inpatient units in a medical clinic of a university hospital in Finland in 2006. A unit-level measure of nurse job satisfaction was collected with a survey (n = 98 nurses) in the autumn of 2006. Bayesian networks were applied to examine a model that explains nurse job satisfaction. Results. In a hospital data system, 18 usable nurse staffing indicators were identified. There were four nurse staffing indicators: patient acuity from nursing intensity subgroup, diagnosis-related group volume from work environment subgroup, and skill mix and nurse turnover from nursing resources subgroup that explained the likelihood of nurse job satisfaction in the final model. The Bayesian networks also revealed the elusive non-linear relationship between nurse job satisfaction and patient acuity. Conclusion. Survey-based information on nurse job satisfaction can be modelled with data-based nurse staffing indicators. Nurse researchers could use the Bayesian approach to obtain information about the effects of nurse staffing on nursing outcomes. C1 [Pitkaaho, Taina; Partanen, Pirjo; Vehvilainen-Julkunen, Katri] Univ Eastern Finland, Dept Nursing Sci, Kuopio, Finland. [Pitkaaho, Taina; Ryynanen, Olli-Pekka; Vehvilainen-Julkunen, Katri] Kuopio Univ Hosp, SF-70210 Kuopio, Finland. [Ryynanen, Olli-Pekka] Univ Eastern Finland, Fac Med, Kuopio, Finland. C3 University of Eastern Finland; University of Eastern Finland; Kuopio University Hospital; University of Eastern Finland RP Pitkäaho, T (corresponding author), Univ Eastern Finland, Dept Nursing Sci, Kuopio Campus, Kuopio, Finland. EM taina.pitkaaho@kuh.fi FU Northern-Savo Cultural Foundation; Kuopio University Hospital FX We are grateful to Northern-Savo Cultural Foundation and Kuopio University Hospital for funding this study. CR Adewale AJ, 2007, NURS RES, V56, pS40, DOI 10.1097/01.NNR.0000280634.71278.a0 Aiken LH, 2002, JAMA-J AM MED ASSOC, V288, P1987, DOI 10.1001/jama.288.16.1987 Aiken LH, 2008, J NURS ADMIN, V38, P223, DOI 10.1097/01.NNA.0000312773.42352.d7 Aiken LH, 2008, J CLIN NURS, V17, P3330, DOI 10.1111/j.1365-2702.2008.02640.x [Anonymous], 2008, GLOB ATL HLTH WORKF [Anonymous], NEW PALGRAVE DICT EC [Anonymous], 2002, NIPS Balogh Ruth, 2006, J Nurs Manag, V14, P366, DOI 10.1111/j.1365-2934.2006.00623.x Beecroft PC, 2008, J ADV NURS, V62, P41, DOI 10.1111/j.1365-2648.2007.04570.x BULLARD F, 2001, BRIEF INTRO BAYESIAN Carpenter J, 2008, NURS RES, V57, P214, DOI 10.1097/01.NNR.0000319495.59746.b8 Cowin LS, 2008, INT J NURS STUD, V45, P1449, DOI 10.1016/j.ijnurstu.2007.10.009 Cummings GG, 2008, J NURS MANAGE, V16, P508, DOI 10.1111/j.1365-2834.2008.00897.x DONABEDIAN A, 1988, JAMA-J AM MED ASSOC, V260, P1743, DOI 10.1001/jama.260.12.1743 Gajewski BJ, 2008, BMC MED RES METHODOL, V8, DOI 10.1186/1471-2288-8-77 GOODSON J, 2008, HLTH CARE MANAGEMENT, V11, P328 Halm M, 2005, CLIN NURSE SPEC, V19, P241, DOI 10.1097/00002800-200509000-00007 Harbison J, 2006, J CLIN NURS, V15, P1489, DOI 10.1111/j.1365-2702.2005.01487.x Harris M, 2009, APPL NURS RES, V22, P146, DOI 10.1016/j.apnr.2009.02.002 Hurst K, 2005, INT J NURS STUD, V42, P75, DOI 10.1016/j.ijnurstu.2004.05.011 Hyun S, 2008, NURS ECON, V26, P151 Jackson CH, 2009, BIOSTATISTICS, V10, P335, DOI 10.1093/biostatistics/kxn041 Jacobson AK, 1999, NURS ECON, V17, P55 Jiang HJ, 2006, J NURS SCHOLARSHIP, V38, P187, DOI 10.1111/j.1547-5069.2006.00099.x Kane RL, 2007, MED CARE, V45, P1195, DOI 10.1097/MLR.0b013e3181468ca3 Kramer Marlene, 2005, Nurs Adm Q, V29, P275 Ladouceur M, 2007, BIOMETRICS, V63, P272, DOI 10.1111/j.1541-0420.2006.00665.x Lake ET, 2006, APPL NURS RES, V19, P51, DOI 10.1016/j.apnr.2005.10.002 Lee SM, 2005, NURS RES, V54, P133 Lee SM, 2003, J BIOMED INFORM, V36, P389, DOI 10.1016/j.jbi.2003.09.022 Lucas Peter, 2004, Curr Opin Crit Care, V10, P399, DOI 10.1097/01.ccx.0000141546.74590.d6 Lucas PJF, 2004, ARTIF INTELL MED, V30, P201, DOI 10.1016/j.artmed.2003.11.001 Lundgren Solveig M, 2005, J Nurs Manag, V13, P322, DOI 10.1111/j.1365-2934.2005.00565.x Magee T, 2006, NURS RES, V55, pS50, DOI 10.1097/00006199-200603001-00009 Mark BA, 2006, WESTERN J NURS RES, V28, P694, DOI 10.1177/0193945905277354 McClure M.L., 2002, MAGNET HOSP REVISITE Murrells T, 2009, J NURS MANAGE, V17, P120, DOI 10.1111/j.1365-2834.2008.00854.x Murrells T, 2008, HUM RESOUR HEALTH, V6, DOI 10.1186/1478-4491-6-22 Myllymaki P., 2002, International Journal on Artificial Intelligence Tools (Architectures, Languages, Algorithms), V11, P369, DOI 10.1142/S0218213002000940 NOJONEN K, 2001, SAIRAALAVIESTI, V4, P10 O'Brien-Pallas L, 2008, J CLIN NURS, V17, P3338, DOI 10.1111/j.1365-2702.2008.02641.x Park S, 2005, NURS RES, V54, P406, DOI 10.1097/00006199-200511000-00007 PARTANEN P, 2002, THESIS KUOPIO U PU E, V99 Rafferty AM, 2007, INT J NURS STUD, V44, P175, DOI 10.1016/j.ijnurstu.2006.08.003 RYYNANEN OP, 2006, SUOM LAAKARILEHTI, V61, P5353 Sales AE, 2007, NURS RES, V56, pS67, DOI 10.1097/01.NNR.0000280632.86525.8f Savitz L., 2005, Quality indicators sensitive to nurse staffing in acute care settings Schmalenberg C, 2008, CRIT CARE NURSE, V28, P65 Schmalenberg C, 2008, NURS RES, V57, P2, DOI 10.1097/01.NNR.0000280657.04008.2a Smaldone AM, 2003, APPL NURS RES, V16, P205, DOI 10.1016/S0897-1897(03)00040-5 Soini EJO, 2009, DATA KNOWL ENG, V68, P1427, DOI 10.1016/j.datak.2009.07.005 Spiegelhalter D J, 2000, Health Technol Assess, V4, P1 Szydlowski Steven, 2009, Hosp Top, V87, P3, DOI 10.3200/HTPS.87.1.3-9 Tervo-Heikkinen T, 2009, J NURS MANAGE, V17, P986, DOI 10.1111/j.1365-2834.2009.01020.x Tervo-Heikkinen T, 2008, INT J NURS PRACT, V14, P357, DOI 10.1111/j.1440-172X.2008.00707.x TERVOHEIKKINEN T, 2008, THESIS KUOPIO U PU E, V162 Tourangeau AE, 2007, J ADV NURS, V57, P32, DOI 10.1111/j.1365-2648.2006.04084.x Unruh L, 2009, WESTERN J NURS RES, V31, P66, DOI 10.1177/0193945908319992 Van den Heede K, 2007, J NURS SCHOLARSHIP, V39, P290, DOI 10.1111/j.1547-5069.2007.00183.x 2002, B COURS VERS 2 0 0 W NR 60 TC 18 Z9 26 U1 3 U2 26 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0309-2402 J9 J ADV NURS JI J. Adv. Nurs. PD MAY PY 2011 VL 67 IS 5 BP 1053 EP 1066 DI 10.1111/j.1365-2648.2010.05538.x PG 14 WC Nursing WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Nursing GA 749LW UT WOS:000289469600014 PM 21198804 DA 2024-09-05 ER PT C AU Sridhar, P Karanji, D Sampatrao, GS Danda, S Saha, S AF Sridhar, Pragnya Karanji, Deepika Sampatrao, Gambhire Swati Danda, Sravan Saha, Snehanshu BE Kotsis, G Tjoa, AM Khalil, I Moser, B Mashkoor, A Sametinger, J Fensel, A Martinez-Gil, J Fischer, L Czech, G Sobieczky, F Khan, S TI Semantic Influence Score: Tracing Beautiful Minds Through Knowledge Diffusion and Derivative Works SO DATABASE AND EXPERT SYSTEMS APPLICATIONS - DEXA 2021 WORKSHOPS SE Communications in Computer and Information Science LA English DT Proceedings Paper CT 32nd International Conference on Database and Expert Systems Applications (DEXA) CY SEP 27-30, 2021 CL ELECTR NETWORK DE Big scholarly data; Semantic influence; Reference mining; Citation analysis; Machine learning; Research impact networks; AI ID TECHNOLOGY DOMAIN AB Articles judged on the basis of raw citations or citation counts (or similar) are biased with "Rich gets Richer" conjecture, and continue to propagate a perceived notion of paper quality and influence among scientific communities. This perception of preferential attachment, overlooking important factors such as context and the age of the paper has been criticized recently. In this paper, we propose 'Semantic Influence Score (SIS)', an unbiased alternative to metrics which rely on raw citation counts. We compute the semantic influence of a paper on its derivative works by developing a multilevel influence network, which takes into account references, domain intersection and influence scores of the articles in the network. SIS provides a robust alternative to the widely used mechanism of raw citation counts i.e., the number of citations it receives. C1 [Sridhar, Pragnya; Karanji, Deepika; Sampatrao, Gambhire Swati] PES Univ, Dept CSE, Bengaluru, India. [Danda, Sravan; Saha, Snehanshu] BITS Pilani, CSIS, KK Birla Goa Campus, Sancoale, Goa, India. [Danda, Sravan; Saha, Snehanshu] BITS Pilani, APPCAIR, KK Birla Goa Campus, Sancoale, Goa, India. C3 PES University; Birla Institute of Technology & Science Pilani (BITS Pilani); Birla Institute of Technology & Science Pilani (BITS Pilani) RP Sridhar, P (corresponding author), PES Univ, Dept CSE, Bengaluru, India. RI Danda, Sravan/E-7881-2019; Saha, Snehanshu/R-1028-2018 OI Saha, Snehanshu/0000-0002-8458-604X; Karanji, Deepika/0000-0002-1290-9233 FU BITS Pilani K K Birla Goa Campus FX Supported by BITS Pilani K K Birla Goa Campus. CR [Anonymous], GOOGL SCHOL TOP AI J Barabási AL, 1999, SCIENCE, V286, P509, DOI 10.1126/science.286.5439.509 Beltagy I., 2020, ARXIV190407248 EMNLP Bergstrom CT, 2008, J NEUROSCI, V28, P11433, DOI 10.1523/JNEUROSCI.0003-08.2008 Jangid N, 2014, IERI PROC, V10, P57, DOI 10.1016/j.ieri.2014.09.091 Lo K., S2ORC SEMANTIC SCHOL Mingers J, 2014, J INFORMETR, V8, P890, DOI 10.1016/j.joi.2014.09.004 Moed H.F., MEASURING CONTEXTUAL Saha S, 2016, COLLNET J SCIENTOMET, V10, P41, DOI 10.1080/09737766.2016.1177939 Shen ZH, 2018, 56TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2018): PROCEEDINGS OF SYSTEM DEMONSTRATIONS, P87 Sinha A, 2015, WWW'15 COMPANION: PROCEEDINGS OF THE 24TH INTERNATIONAL CONFERENCE ON WORLD WIDE WEB, P243, DOI 10.1145/2740908.2742839 Tang J., 2008, KDD, P990, DOI DOI 10.1145/1401890.1402008 Teixeira da Silva JA, 2017, SCIENTOMETRICS, V111, P553, DOI 10.1007/s11192-017-2250-0 NR 13 TC 0 Z9 0 U1 0 U2 1 PU SPRINGER INTERNATIONAL PUBLISHING AG PI CHAM PA GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND SN 1865-0929 EI 1865-0937 BN 978-3-030-87101-7; 978-3-030-87100-0 J9 COMM COM INF SC PY 2021 VL 1479 BP 106 EP 115 DI 10.1007/978-3-030-87101-7_11 PG 10 WC Computer Science, Artificial Intelligence; Computer Science, Information Systems; Computer Science, Interdisciplinary Applications; Computer Science, Theory & Methods WE Conference Proceedings Citation Index - Science (CPCI-S) SC Computer Science GA BS3IK UT WOS:000711896000011 DA 2024-09-05 ER PT C AU Khiat, H AF Khiat, Henry BE Chova, LG Martinez, AL Torres, IC TI WHAT CONSTITUTES AN EFFECTIVE ONLINE LEARNING EXPERIENCE FOR MATHEMATICS STUDENTS? SO INTED2012: INTERNATIONAL TECHNOLOGY, EDUCATION AND DEVELOPMENT CONFERENCE SE INTED Proceedings LA English DT Proceedings Paper CT 6th International Conference of Technology, Education and Development (INTED) CY MAR 05-07, 2012 CL Valencia, SPAIN DE Mathematics learning; online learning; content delivery; self evaluation; qualitative research AB This study reported on the students' perceptions of an effective online mathematics learning programme. 194 sets of qualitative data were collected from an open ended question that was part of a survey used to capture student perceptions of an online preparatory mathematics programme in a polytechnic. There were 376 students who responded to this online survey, from a total of 1095 students who had completed this programme. From the analysis, through coding and categorisation, the students identified important features of an effective online mathematics programme in two areas. In the area of content delivery, an online mathematics programme has to be diagnostic, recapitulative, connected, incremental, dynamic, meaningful, challenging, sufficient and monitoring. On the other hand, in the domain of self evaluation, an online mathematics programme has to be consistent, convenient, friendly, scaffolding, detailed, intelligent, challenging, sufficient and monitoring. In summary, this study has implications in the future design of online courses, specifically in mathematics, as it illuminated some of its desirable unique features as compared to other content areas. C1 [Khiat, Henry] SIM Univ, Singapore, Singapore. C3 Singapore University of Social Sciences (SUSS) EM henrykhiat@unisim.edu.sg CR Chang CC, 2008, COMPUT HUM BEHAV, V24, P1753, DOI 10.1016/j.chb.2007.07.005 Dinov ND, 2008, COMPUT EDUC, V50, P284, DOI 10.1016/j.compedu.2006.06.003 Golanics JD, 2008, J COMPUT ASSIST LEAR, V24, P167, DOI 10.1111/j.1365-2729.2007.00251.x Grant LK, 2007, PSYCHOL REC, V57, P265, DOI 10.1007/BF03395576 Janicki T., 2001, J ASYNCHRONOUS LEARN, V5, P58 Rourke L., 1999, Journal of Distance Education, V14, P50, DOI DOI 10.1080/08923640109527071 Tselios N.K., 2001, International Journal of Educational Telecommunications, V7, P355 Zhang DS, 2005, AM J DISTANCE EDUC, V19, P149, DOI 10.1207/s15389286ajde1903_3 NR 8 TC 0 Z9 0 U1 0 U2 2 PU IATED-INT ASSOC TECHNOLOGY EDUCATION & DEVELOPMENT PI VALENICA PA LAURI VOLPI 6, VALENICA, BURJASSOT 46100, SPAIN SN 2340-1079 BN 978-84-615-5563-5 J9 INTED PROC PY 2012 BP 6754 EP 6760 PG 7 WC Education & Educational Research WE Conference Proceedings Citation Index - Social Science & Humanities (CPCI-SSH) SC Education & Educational Research GA BHQ76 UT WOS:000326396406100 DA 2024-09-05 ER PT C AU Wu, D Zhang, QP AF Wu, David Zhang, Qiping GP IEEE TI An Altmetric Study of Artificial Intelligence in Medicine SO 2021 INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE AND COMPUTATIONAL INTELLIGENCE (CSCI 2021) LA English DT Proceedings Paper CT International Conference on Computational Science and Computational Intelligence (CSCI) CY DEC 15-17, 2021 CL Las Vegas, NV DE Altmetric; artificial intelligence; medicine AB Artificial Intelligence (AI) and its powered technologies have been crucial for medical research and clinical practice In While AI in medicine is a rapidly evolving field, this study provides a new perspective to review its related bodies of literature through a bibliometric analysis of Altmetric data. Altimetric is a system that tracks the attention that research outputs such as scholarly articles receive from different web sources (e.g. social media, mainstream news, blogs). Altmetric Explorer is an online platform that enables users to browse and report on citation-based attention metric data for a given scholarly output (including journal articles and dataset). The purpose of this study is to perform an Altmetric analysis to systematically study research trends on AI in medicine. The study identifies various aspects of research outputs on AI in medicine (mentions, attention scores, a timeline of mentions, a timeline of yearly publication, top journals, top research affiliations, and twitter demographics). These findings would be of interest to both researchers and practitioners in the field. In conclusion, research of AI in medicine has been attracting significant attention in the past 4-5 years and top journals and top research affiliations follow the trend of Bradford's law and Lotka's law. C1 [Wu, David] Great Neck North High Sch, 35 Polo Rd, Great Neck, NY 11023 USA. [Zhang, Qiping] Long Isl Univ, Palmer Sch Lib & Informat Sci, Brookville, NY USA. C3 Long Island University Post RP Wu, D (corresponding author), Great Neck North High Sch, 35 Polo Rd, Great Neck, NY 11023 USA. EM david.zn.wu@gmail.com; Qiping.Zhang@liu.edu CR Amisha, 2019, J FAM MED PRIM CARE, V8, P2328, DOI 10.4103/jfmpc.jfmpc_440_19 Briganti G, 2020, FRONT MED-LAUSANNE, V7, DOI 10.3389/fmed.2020.00027 Buch VH, 2018, BRIT J GEN PRACT, V68, P143, DOI 10.3399/bjgp18X695213 Donepudi PK., 2018, ABC J Adv Res, V7, P109, DOI DOI 10.18034/ABCJAR.V7I2.514 Gameiro J, 2020, J CLIN MED, V9, DOI 10.3390/jcm9030678 Laguarta J, 2020, IEEE OPEN J ENG MED, V1, P275, DOI 10.1109/OJEMB.2020.3026928 Porumb M, 2020, SCI REP-UK, V10, DOI 10.1038/s41598-019-56927-5 NR 7 TC 0 Z9 0 U1 0 U2 10 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA BN 978-1-6654-5841-2 PY 2021 BP 196 EP 198 DI 10.1109/CSCI54926.2021.00105 PG 3 WC Computer Science, Artificial Intelligence; Computer Science, Interdisciplinary Applications; Computer Science, Theory & Methods WE Conference Proceedings Citation Index - Science (CPCI-S) SC Computer Science GA BT4NL UT WOS:000832229300034 DA 2024-09-05 ER PT C AU Leidner, JL AF Leidner, Jochen L. GP ACM TI Nobody Said it Would be Easy: A Decade of R&D Projects in Information Access from Thomson over Reuters to Refinitiv SO PROCEEDINGS OF THE 42ND INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL (SIGIR '19) LA English DT Proceedings Paper CT 42nd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR) CY JUL 21-25, 2019 CL Paris, FRANCE DE Information retrieval; information extraction; natural language processing; machine learning; innovation; academic collaboration; professional information services; corporate research & development AB In this talk, I survey a small, non-random sample of research projects in information access carried out as part of the Thomson Reuters family of companies over the course of a 10+-year period. I analyse into how these projects are similar and different when compared to academic research efforts and attempt a critical (and personal, so certainly subjective) assessment of what academia can do for industry, and what industry can do for research in terms of R&D efforts. I will conclude with some advice for academic-industry collaboration initiatives in several areas of vertical information services (legal, finance, pharma and regulatory/compliance) as well as news. C1 [Leidner, Jochen L.] Refinitiv Labs, London, England. [Leidner, Jochen L.] Univ Sheffield, Sheffield, S Yorkshire, England. C3 Refinitiv; University of Sheffield RP Leidner, JL (corresponding author), Refinitiv Labs, London, England.; Leidner, JL (corresponding author), Univ Sheffield, Sheffield, S Yorkshire, England. EM leidner@acm.org RI Leidner, Jochen L./AAP-6871-2021 OI Leidner, Jochen L./0000-0002-1219-4696 CR Leidner J. L., 2017, P 1 ACL WORKSHOP ETH, P30, DOI [10.18653/v1/W17-1604, DOI 10.18653/V1/W17-1604] Leidner JL., 2010, Proceedings of the association for computational linguistics (ACL), association for computational linguistics, Stroudsburg, PA, P54 Nugent T, 2016, INT CONF DAT MIN WOR, P1308, DOI [10.1109/ICDMW.2016.176, 10.1109/ICDMW.2016.0191] Petroni F, 2018, KDD'18: PROCEEDINGS OF THE 24TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING, P626, DOI 10.1145/3219819.3219827 Pfeifer Daniel, 2019, Advances in Information Retrieval. 41st European Conference on IR Research, ECIR 2019. Proceedings: Lecture Notes in Computer Science (LNCS 11437), P590, DOI 10.1007/978-3-030-15712-8_38 Plachouras V., 2016, International Conference on Social Media Society, P1, DOI DOI 10.1145/2930971.2930977 Plachouras V, 2016, SIGIR'16: PROCEEDINGS OF THE 39TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, P1121, DOI 10.1145/2911451.2911457 Smiley C., 2016, P 9 INT NAT LANG GEN, P36, DOI DOI 10.18653/V1/W16-6606 NR 8 TC 0 Z9 0 U1 1 U2 11 PU ASSOC COMPUTING MACHINERY PI NEW YORK PA 1515 BROADWAY, NEW YORK, NY 10036-9998 USA BN 978-1-4503-6172-9 PY 2019 BP 1387 EP 1388 DI 10.1145/3331184.3331444 PG 2 WC Computer Science, Information Systems; Information Science & Library Science WE Conference Proceedings Citation Index - Science (CPCI-S); Conference Proceedings Citation Index - Social Science & Humanities (CPCI-SSH) SC Computer Science; Information Science & Library Science GA BO1LU UT WOS:000501488900224 DA 2024-09-05 ER PT J AU Whipple, EE Hughes, A Bowden, S AF Whipple, Ellen Hughes, Anne Bowden, Susan TI Evaluation of a BSW Research Experience: Improving Student Research Competency SO JOURNAL OF TEACHING IN SOCIAL WORK LA English DT Article DE active learning; evaluation; mentoring; research methods; social work education ID SOCIAL-WORK EDUCATION AB This article examines the experience of 24 BSW students in a faculty- mentored undergraduate research experience (URE) over the course of 1 academic year. In particular, we sought to better understand students' self-perceived sense of competency across 15 specific research skills. In addition, we examined the URE's impact on students' knowledge about and attitudes toward research, as well as anxiety levels about research. A cross-sectional pre- and posttest design utilized both quantitative (survey) and qualitative (focus group) methodologies. All of the students' ratings of their 15 research skills improved over time; 3 were statistically significant. Students demonstrated the most gain in evidence-based practice, ability to use statistical software, and data entry and analysis. Both knowledge about and attitude toward research improved significantly. Anxiety levels were surprisingly low. The importance of faculty mentoring is discussed, and suggestions for future research are provided. C1 [Whipple, Ellen; Hughes, Anne; Bowden, Susan] Michigan State Univ, Sch Social Work, 655 Auditorium Rd,244 Baker Hall, E Lansing, MI 48824 USA. C3 Michigan State University RP Whipple, EE (corresponding author), Michigan State Univ, Sch Social Work, 655 Auditorium Rd,244 Baker Hall, E Lansing, MI 48824 USA. EM whipple@msu.edu CR Adedokun OA., 2011, J STEM ED INNOVATION, V12 [Anonymous], J BACCALAUREATE SOCI [Boyer Commission] Boyer Commission on Educating Undergraduates in the Research University, 1998, REINV UND ED BLUEPR Corcoran K, 2007, RES SOCIAL WORK PRAC, V17, P548, DOI 10.1177/1049731507301036 Epstein I., 1987, Journal of Teaching in Social Work, V1, P71, DOI DOI 10.1300/J067V01N0106 Gambrill E, 2006, RES SOCIAL WORK PRAC, V16, P338, DOI 10.1177/1049731505284205 Green RG, 2001, J SOC WORK EDUC, V37, P333, DOI 10.1080/10437797.2001.10779058 Harder J, 2010, J TEACH SOC WORK, V30, P195, DOI 10.1080/08841231003705404 Howitt S, 2010, HIGH EDUC RES DEV, V29, P405, DOI 10.1080/07294361003601883 Jacobson M., 2006, J BACCALAUREATE SOCI, V12, P87, DOI DOI 10.18084/1084-7219.12.1.87 Kardash CM, 2000, J EDUC PSYCHOL, V92, P191, DOI 10.1037//0022-0663.92.1.191 Maschi T, 2009, J BACCALAUREATE SOCI, V14, P63 Maschi T., 2007, J BACCALAUREATE SOCI, V13, P8 Moore LS, 2008, SOC WORK RES, V32, P231, DOI 10.1093/swr/32.4.231 Rubin D, 2010, J SOC WORK EDUC, V46, P39, DOI 10.5175/JSWE.2010.200800040 Secret M, 2003, J SOC WORK EDUC, V39, P411, DOI 10.1080/10437797.2003.10779146 Tompkins C., 2009, The Journal Of Baccalaureate Social Work, V14, P1 WAINSTOCK SL, 1994, J TEACHING SOCIAL WO, V9, P3, DOI [DOI 10.1300/J067V09N01_, DOI 10.1300/J067V09N01_02] Zlotnik JL, 2007, RES SOCIAL WORK PRAC, V17, P625, DOI 10.1177/1049731507300168 NR 19 TC 11 Z9 14 U1 0 U2 7 PU ROUTLEDGE JOURNALS, TAYLOR & FRANCIS LTD PI ABINGDON PA 2-4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND SN 0884-1233 EI 1540-7349 J9 J TEACH SOC WORK JI J. Teach. Soc. Work PY 2015 VL 35 IS 4 BP 397 EP 409 DI 10.1080/08841233.2015.1063568 PG 13 WC Education & Educational Research WE Emerging Sources Citation Index (ESCI) SC Education & Educational Research GA V56RN UT WOS:000210577400004 DA 2024-09-05 ER PT J AU Ghosal, T Tiwary, P Patton, R Stahl, C AF Ghosal, Tirthankar Tiwary, Piyush Patton, Robert Stahl, Christopher TI Towards establishing a research lineage via identification of significant citations SO QUANTITATIVE SCIENCE STUDIES LA English DT Article DE academic influence; citation classification; citation graph; citation significance detection; machine learning; research lineage ID MEASURING ACADEMIC INFLUENCE AB Finding the lineage of a research topic is crucial for understanding the prior state of the art and advancing scientific displacement. The deluge of scholarly articles makes it difficult to locate the most relevant previous work. It causes researchers to spend a considerable amount of time building up their literature list. Citations play a crucial role in discovering relevant literature. However, not all citations are created equal. The majority of the citations that a paper receives provide contextual and background information to the citing papers. In those cases, the cited paper is not central to the theme of citing papers. However, some papers build upon a given paper and further the research frontier. In those cases, the concerned cited paper plays a pivotal role in the citing paper. Hence, the nature of the citation that the former receives from the latter is significant. In this work, we discuss our investigations towards discovering significant citations of a given paper. We further show how we can leverage significant citations to build a research lineage via a significant citation graph. We demonstrate the efficacy of our idea with two real-life case studies. Our experiments yield promising results with respect to the current state of the art in classifying significant citations, outperforming the earlier ones by a relative margin of 20 points in terms of precision. We hypothesize that such an automated system can facilitate relevant literature discovery and help identify knowledge flow for a particular category of papers. C1 [Ghosal, Tirthankar] Charles Univ Prague, Fac Math & Phys, Inst Formal & Appl Linguist, Prague, Czech Republic. [Tiwary, Piyush] Indian Inst Sci, Bengaluru, India. [Patton, Robert; Stahl, Christopher] Oak Ridge Natl Lab, Oak Ridge, TN USA. C3 Charles University Prague; Indian Institute of Science (IISC) - Bangalore; United States Department of Energy (DOE); Oak Ridge National Laboratory RP Ghosal, T (corresponding author), Charles Univ Prague, Fac Math & Phys, Inst Formal & Appl Linguist, Prague, Czech Republic. EM ghosal@ufal.mff.cuni.cz FU U.S. Department of Energy (DOE) [DE-AC0500OR22725]; Oak Ridge Institute for Science and Education (ORISE); Digital India Corporation under Ministry of Electronics and Information Technology, Government of India [VISPHD-MEITY-2518] FX This manuscript has been authored by UT-Battelle, LLC under Contract No. DE-AC0500OR22725 with the U.S. Department of Energy (DOE). The views expressed in the article do not necessarily represent the views of the DOE or the U.S. government. The U.S. government retains and the publisher, by accepting the article for publication, acknowledges that the U.S. government retains a nonexclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for U.S. government purposes. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (https://energy.gov/downloads/doe-public-access-plan).TG also thanks the Oak Ridge Institute for Science and Education (ORISE) for sponsorship for the Advanced Short-Term Research Opportunity (ASTRO) program at the Oak Ridge National Laboratory (ORNL). The ASTRO program is administered by the Oak Ridge Institute for Science and Education (ORISE) for the U.S. Department of Energy. TG also acknowledges the Visvesvaraya PhD fellowship award VISPHD-MEITY-2518 from Digital India Corporation under Ministry of Electronics and Information Technology, Government of India. CR Aljuaid H, 2021, TELEMAT INFORM, V56, DOI 10.1016/j.tele.2020.101492 Allan J., 2003, P 26 ANN INT ACM SIG, P314, DOI [DOI 10.1145/860435.860493, 10.1145/860435.860493] Amjad Z, 2020, INT J ADV COMPUT SC, V11, P621 [Anonymous], 2016, Advances in Neural Information Processing Systems Ronda-Pupo GA, 2018, SCIENTOMETRICS, V116, P363, DOI 10.1007/s11192-018-2761-3 Athar A., 2011, P ACL 2011 STUD SESS, P81 Bai XM, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0162364 Baldi P, 2014, NAT COMMUN, V5, DOI 10.1038/ncomms5308 Bartneck C, 2011, SCIENTOMETRICS, V87, P85, DOI 10.1007/s11192-010-0306-5 Bottou L, 2010, COMPSTAT'2010: 19TH INTERNATIONAL CONFERENCE ON COMPUTATIONAL STATISTICS, P177, DOI 10.1007/978-3-7908-2604-3_16 Camacho-Miñano MDM, 2009, J AM SOC INF SCI TEC, V60, P754, DOI 10.1002/asi.21018 Campos R, 2018, LECT NOTES COMPUT SC, V10772, P806, DOI 10.1007/978-3-319-76941-7_80 Cerda J.H.C., 2009, D LIB MAGAZINE, V15, DOI [10.1045/march2009-canos, DOI 10.1045/MARCH2009-CANOS] Chae J, 2019, IEEE INT CONF BIG DA, P4498, DOI 10.1109/BigData47090.2019.9006470 Chawla NV, 2002, J ARTIF INTELL RES, V16, P321, DOI 10.1613/jair.953 Ciresan D, 2012, PROC CVPR IEEE, P3642, DOI 10.1109/CVPR.2012.6248110 Cohan A, 2019, 2019 CONFERENCE OF THE NORTH AMERICAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS: HUMAN LANGUAGE TECHNOLOGIES (NAACL HLT 2019), VOL. 1, P3586 Colomo-Palacios R., 2010, REDUNDANCY NOVELTY M Dong C., 2011, P 5 INT JOINT C NAT, P623 Ghosal T., 2018, P 27 INT C COMPUTATI, P2802 Ghosal T, 2018, PROCEEDINGS OF THE ELEVENTH INTERNATIONAL CONFERENCE ON LANGUAGE RESOURCES AND EVALUATION (LREC 2018), P3541 Ghosal T, 2021, NAT LANG ENG, V27, P427, DOI 10.1017/S1351324920000194 Ghosal T, 2019, IEEE IJCNN Ghosal T, 2019, ACM-IEEE J CONF DIG, P237, DOI 10.1109/JCDL.2019.00040 Gilbert C., 2014, Proceedings of the International AAAI Conference on Web and Social Media, V81, P82 Hernández-Alvarez M, 2017, NAT LANG ENG, V23, P561, DOI 10.1017/S1351324916000346 Ihsan I., 2019, CORP J CORPUS LINGUI, V2, P25 Ji C., 2019, EMERGING TECHNOLOGIE, V1984, P214, DOI [10.1007/978-3-030-38778-5_24, DOI 10.1007/978-3-030-38778-5_24] Jia YQ, 2014, PROCEEDINGS OF THE 2014 ACM CONFERENCE ON MULTIMEDIA (MM'14), P675, DOI 10.1145/2647868.2654889 Johnston T, 2019, PROCEEDINGS OF 2019 5TH IEEE/ACM WORKSHOP ON MACHINE LEARNING IN HIGH PERFORMANCE COMPUTING ENVIRONMENTS (MLHPC 2019), P9, DOI 10.1109/MLHPC49564.2019.00007 Johnston Travis, 2017, P MACHINE LEARNING H Karkali M, 2013, LECT NOTES COMPUT SC, V8180, P57, DOI 10.1007/978-3-642-41230-1_5 Kusner MJ, 2015, PR MACH LEARN RES, V37, P957 Laloe F., 2009, EUR NEWS, V40, P26, DOI [10.1051/epn/2009704, DOI 10.1051/EPN/2009704] Li X., 2005, P 14 ACM INT C INFOR, P744 Lopez P, 2009, LECT NOTES COMPUT SC, V5714, P473, DOI 10.1007/978-3-642-04346-8_62 Lucchi A, 2015, IEEE T MED IMAGING, V34, P1096, DOI 10.1109/TMI.2014.2376274 Manju G, 2017, INT J INTELL INF TEC, V13, P1, DOI 10.4018/IJIIT.2017010101 McCann B, 2017, ADV NEUR IN, V30 Nazir S., 2020, P INT C ENG EM TECHN, P1, DOI [10.1109/ICEET48479.2020.9048224, DOI 10.1109/ICEET48479.2020.9048224] Nazir S, 2020, PLOS ONE, V15, DOI 10.1371/journal.pone.0228885 Noh H, 2015, IEEE I CONF COMP VIS, P1520, DOI 10.1109/ICCV.2015.178 Patton RM, 2019, IEEE INT CONF BIG DA, P1488, DOI [10.1109/bigdata47090.2019.9006467, 10.1109/BigData47090.2019.9006467] Patton RM, 2018, PROCEEDINGS OF THE INTERNATIONAL CONFERENCE FOR HIGH PERFORMANCE COMPUTING, NETWORKING, STORAGE, AND ANALYSIS (SC'18) Perier-Camby J., 2019, CEUR WORKSHOP PROC, P125 Pileggi SF, 2018, UNIVERSAL ACCESS INF, V17, P541, DOI 10.1007/s10209-017-0565-5 Pride D., 2020, P ACM IEEE JOINT C D, P337, DOI [DOI 10.1145/3383583.3398617, 10.1145/3383583.3398617] Pride D, 2017, PRO INT CONF SCI INF, P1357 Pride D, 2017, LECT NOTES COMPUT SC, V10450, P572, DOI 10.1007/978-3-319-67008-9_48 Qayyum F, 2019, SCIENTOMETRICS, V118, P21, DOI 10.1007/s11192-018-2961-x Radford A., 2018, OPENAI Rousseau R, 2007, J INFORMETR, V1, P2, DOI 10.1016/j.joi.2006.05.001 Saltz J, 2018, CELL REP, V23, P181, DOI 10.1016/j.celrep.2018.03.086 Schiffman B., 2005, P HUM LANG TECHN C E, P716, DOI 10.3115/1220575.1220665 Shen J., 2016, SCHOL BIG DAT PERSP Shi C, 2019, IEEE ACCESS, V7, P113853, DOI 10.1109/ACCESS.2019.2932051 Soboroff I., 2005, HLT 05, P105 Soboroff Ian., 2003, Proceedings of The Twelfth Text Retrieval Conference, P38 Tang WY, 2010, EXPERT SYST APPL, V37, P5172, DOI 10.1016/j.eswa.2009.12.075 Teufel S., 2006, P C EMP METH NAT LAN, DOI 10.3115/1610075.1610091 Thorsson V, 2019, IMMUNITY, V51, P411, DOI [10.1016/j.immuni.2019.08.004, 10.1016/j.immuni.2018.03.023] Valenzuela M., 2015, WORKSHOPS 20 9 AAAI Van Noorden R, 2019, NATURE, V572, P578, DOI 10.1038/d41586-019-02479-7 Van Noorden R, 2017, NATURE, V552, P162, DOI 10.1038/d41586-017-08404-0 Vîiu GA, 2016, J INFORMETR, V10, P552, DOI 10.1016/j.joi.2016.04.010 Wang FF, 2019, PRO INT CONF SCI INF, P2528 Wang MY, 2020, SCIENTOMETRICS, V125, P2109, DOI 10.1007/s11192-020-03677-1 West R., 2017, Publishing addiction science, P191, DOI 10.5334/bbd.j Wilhite AW, 2012, SCIENCE, V335, P542, DOI 10.1126/science.1212540 Xie Y, 2016, INT C COMP SUPP COOP, P539, DOI 10.1109/CSCWD.2016.7566047 Yi Zhang, 2002, Proceedings of SIGIR 2002. Twenty-Fifth Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, P81 Young S R., 2017, Proceedings of the Machine Learning on HPC Environments, P1 Young S.R., 2015, P WORKSH MACH LEARN, P1 Zhang F, 2020, J INFORMETR, V14, DOI 10.1016/j.joi.2020.101035 Zhang FZ, 2015, PROCEEDINGS OF THE 24TH INTERNATIONAL CONFERENCE ON WORLD WIDE WEB (WWW 2015), P1362, DOI 10.1145/2736277.2741095 Zhao F, 2019, SCIENTOMETRICS, V118, P1119, DOI 10.1007/s11192-019-03010-5 Zhao PF, 2016, SIGIR'16: PROCEEDINGS OF THE 39TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, P315, DOI 10.1145/2911451.2911488 Zhu XD, 2015, J ASSOC INF SCI TECH, V66, P408, DOI 10.1002/asi.23179 NR 78 TC 5 Z9 6 U1 1 U2 12 PU MIT PRESS PI CAMBRIDGE PA ONE ROGERS ST, CAMBRIDGE, MA 02142-1209 USA EI 2641-3337 J9 QUANT SCI STUD JI Quant. Sci. Stud. PD FEB 4 PY 2022 VL 2 IS 4 BP 1511 EP 1528 DI 10.1162/qss_a_00170 PG 18 WC Information Science & Library Science WE Emerging Sources Citation Index (ESCI) SC Information Science & Library Science GA YU4AT UT WOS:000751988600016 OA gold DA 2024-09-05 ER PT J AU Zhang, MJ Li, JT Huang, QX Kan, HB AF Zhang, Mengjie Li, Jingtao Huang, Qixuan Kan, Haibin TI Learning counterfactual outcomes of MOOC multiple learning behaviors SO COMPUTER APPLICATIONS IN ENGINEERING EDUCATION LA English DT Article DE action research; assessment tools; causal inference; counterfactual outcome; research methods ID PROPENSITY SCORE AB The absence of counterfactual outcomes presents a fundamental challenge in causal inference. However, existing work typically does not apply to multiple learning behaviors of Massive Open Online Courses. This paper proposes a counterfactual representation learning model based on multitask learning, applicable to any dimension, and any type of treatment. The model consists of a potential outcome network and a propensity score encoder, which shares feature information from the base layer. The propensity scores calculated by the encoder are then utilized in the potential outcome network to mitigate selection bias. Experiments based on real-world data sets demonstrate the superior performance of our model compared with baselines. C1 [Zhang, Mengjie; Li, Jingtao; Huang, Qixuan] Fudan Univ, Software Sch, Shanghai, Peoples R China. [Li, Jingtao; Kan, Haibin] Shanghai Engn Res Ctr Blockchain, Shanghai, Peoples R China. [Kan, Haibin] Fudan Univ, Sch Comp Sci, Shanghai Key Lab Intelligent Informat Proc, Shanghai, Peoples R China. [Li, Jingtao] Fudan Univ, Cross 2 Bldg,Jiangwan Campus, Shanghai, Peoples R China. C3 Fudan University; Fudan University; Fudan University RP Li, JT (corresponding author), Fudan Univ, Cross 2 Bldg,Jiangwan Campus, Shanghai, Peoples R China. EM lijt@fudan.edu.cn RI zhang, mengjie/GRN-9277-2022; HUANG, QIXUAN/JXN-6677-2024; Li, Jingtao/IST-9889-2023 OI Li, Jingtao/0000-0002-0263-9831 FU Computer Course Teaching Reform Project of Shanghai Municipal Education Commission "Information Security Course" [202111]; National Natural Science Foundation of China [62272107, U19A2066]; National Key Ramp;D Program of China [2019YFB2101703]; Key Ramp;D Program of Guangdong Province [2020B0101090001]; Undergraduate Key Course construction Project of Shanghai Municipal Education Commission "Computer Network" [2019021]; Innovation Action Plan of Shanghai Science and Technology [21511102200] FX Computer Course Teaching Reform Project of Shanghai Municipal Education Commission "Information Security Course", Grant/Award Number: 202111; National Natural Science Foundation of China, Grant/Award Number: 62272107;U19A2066; National Key R&D Program of China, Grant/Award Number: 2019YFB2101703; The Key R&D Program of Guangdong Province, Grant/Award Number: 2020B0101090001; Undergraduate Key Course construction Project of Shanghai Municipal Education Commission "Computer Network", Grant/Award Number: 2019021; The Innovation Action Plan of Shanghai Science and Technology, Grant/Award Number: 21511102200 CR Alaa A. M., 2017, INT C MACH LEARN DEE, P1 [Anonymous], 2018, ARXIV181000656 Borrella I, 2019, L@S '19: PROCEEDINGS OF THE SIXTH (2019) ACM CONFERENCE ON LEARNING @ SCALE, DOI 10.1145/3330430.3333634 Clarke RT, 2007, HYDROL EARTH SYST SC, V11, P408, DOI 10.5194/hess-11-408-2007 Daxberger E, 2021, PR MACH LEARN RES, V139 Fong C, 2018, ANN APPL STAT, V12, P156, DOI 10.1214/17-AOAS1101 Gulen H., 2021, HETEROGENEOUS EFFECT [何升 He Sheng], 2016, [计算机应用研究, Application Research of Computers], V33, P1399 Hmedna Brahim., 2017, International Journal of Innovation and Applied Studies, V19, P267 Hong Guo, 2021, 2021 7th IEEE Intl Conference on Big Data Security on Cloud (BigDataSecurity), IEEE Intl Conference on High Performance and Smart Computing, (HPSC) and IEEE Intl Conference on Intelligent Data and Security (IDS), P63, DOI 10.1109/BigDataSecurityHPSCIDS52275.2021.00022 Imbens GW, 2009, J ECON LIT, V47, P5, DOI 10.1257/jel.47.1.5 Imbens GW, 2000, BIOMETRIKA, V87, P706, DOI 10.1093/biomet/87.3.706 Karimi A.-H., 2020, Advances in Neural Information Processing Systems Li S., 2017, CHINA ED TECHNOL, V3, P88 Lin WY, 2021, PR MACH LEARN RES, V139 Pang YX, 2018, COMPUT APPL ENG EDUC, V26, P2071, DOI 10.1002/cae.21995 Pardos ZA, 2017, PROCEEDINGS OF THE FOURTH (2017) ACM CONFERENCE ON LEARNING @ SCALE (L@S'17), P23, DOI 10.1145/3051457.3051471 Park Jungwuk, 2021, ADV NEURAL INFORM PR, V34 Pearl J, 2018, WSDM'18: PROCEEDINGS OF THE ELEVENTH ACM INTERNATIONAL CONFERENCE ON WEB SEARCH AND DATA MINING, P3, DOI 10.1145/3159652.3160601 Prado E. B., 2021, ARXIV PREPRINT ARXIV Ren Z., 2016, P 9 INT C ED DAT MIN, P484, DOI DOI 10.48550/ARXIV.1605.02269 Ressa Maria, 2021, NOBEL PEACE PRIZE 20 ROSENBAUM PR, 1983, BIOMETRIKA, V70, P41, DOI 10.1093/biomet/70.1.41 Schwab P, 2020, AAAI CONF ARTIF INTE, V34, P5612 Shah D., 2021, By the numbers: MOOCs in 2021, class central Sunar AS, 2020, COMPUT HUM BEHAV, V107, DOI 10.1016/j.chb.2018.12.013 Tang S, 2017, ADJUNCT PUBLICATION OF THE 25TH CONFERENCE ON USER MODELING, ADAPTATION AND PERSONALIZATION (UMAP'17), P165, DOI 10.1145/3099023.3099038 Wang HY, 2016, 2016 IEEE 14TH INTL CONF ON DEPENDABLE, AUTONOMIC AND SECURE COMPUTING, 14TH INTL CONF ON PERVASIVE INTELLIGENCE AND COMPUTING, 2ND INTL CONF ON BIG DATA INTELLIGENCE AND COMPUTING AND CYBER SCIENCE AND TECHNOLOGY CONGRESS (DASC/PICOM/DATACOM/CYBERSC, P202, DOI 10.1109/DASC-PICom-DataCom-CyberSciTec.2016.53 Wang JX, 2021, PR MACH LEARN RES, V130, P721 Wang X., 2021, DIGIT ED, V7, P68 Wang YR, 2020, COMPUT APPL ENG EDUC, V28, P1421, DOI 10.1002/cae.22310 Xiliang Z., 2017, MOSTLY USEFUL SCI EC Xiong Feng., 2019, Proceedings of the ACM Turing Celebration Conference-China, P1, DOI DOI 10.1145/3321408.3322855 Xu CX, 2019, PROCEEDINGS OF THE 28TH ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT (CIKM '19), P1853, DOI 10.1145/3357384.3357864 Zhan L., 2021, STATIST RES, V38, P130 Zhang K., 2020, ADV NEURAL INFORM PR, V33, P4965 NR 36 TC 0 Z9 0 U1 3 U2 7 PU WILEY PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1061-3773 EI 1099-0542 J9 COMPUT APPL ENG EDUC JI Comput. Appl. Eng. Educ. PD NOV PY 2023 VL 31 IS 6 BP 1678 EP 1689 DI 10.1002/cae.22666 EA JUL 2023 PG 12 WC Computer Science, Interdisciplinary Applications; Education, Scientific Disciplines; Engineering, Multidisciplinary WE Science Citation Index Expanded (SCI-EXPANDED) SC Computer Science; Education & Educational Research; Engineering GA Y7FP1 UT WOS:001036516100001 OA Bronze DA 2024-09-05 ER PT J AU Xie, Y Seth, I Rozen, WM Hunter-Smith, DJ AF Xie, Yi Seth, Ishith Rozen, Warren M. M. Hunter-Smith, David J. J. TI Evaluation of the Artificial Intelligence Chatbot on Breast Reconstruction and Its Efficacy in Surgical Research: A Case Study SO AESTHETIC PLASTIC SURGERY LA English DT Article DE ChatGPT; Artificial intelligence; Chatbot; Breast reconstruction AB Background ChatGPT is an open-source artificial intelligence (AI) chatbot that uses deep learning to produce human-like text dialog. Its potential applications in the scientific community are vast; however, its efficacy on performing comprehensive literature searches, data analysis and report writing in aesthetic plastic surgery topics remains unknown. This study aims to evaluate both the accuracy and comprehensiveness of ChatGPT's responses to assess its suitability for use in aesthetic plastic surgery research.Methods Six questions were prompted to ChatGPT on post-mastectomy breast reconstruction. First two questions focused on the current evidence and options for breast reconstruction post-mastectomy, and remaining four questions focused specifically on autologous breast reconstruction. Using the Likert framework, the responses provided by ChatGPT were qualitatively assessed for accuracy and information content by two specialist plastic surgeons with extensive experience in the field.Results ChatGPT provided relevant, accurate information; however, it lacked depth. It could provide no more than a superficial overview in response to more esoteric questions and generated incorrect references. It created non-existent references, cited wrong journal and date, which poses a significant challenge in maintaining academic integrity and caution of its use in academia.Conclusion While ChatGPT demonstrated proficiency in summarizing existing knowledge, it created fictitious references which poses a significant concern of its use in academia and healthcare. Caution should be exercised in interpreting its responses in the aesthetic plastic surgical field and should only be used for such with sufficient oversight. C1 [Xie, Yi; Seth, Ishith; Rozen, Warren M. M.; Hunter-Smith, David J. J.] Peninsula Hlth, Dept Plast Surg, Melbourne, Vic 3199, Australia. [Seth, Ishith; Rozen, Warren M. M.; Hunter-Smith, David J. J.] Monash Univ, Fac Med, Melbourne, Vic 3004, Australia. C3 Peninsula Health; Monash University RP Seth, I (corresponding author), Peninsula Hlth, Dept Plast Surg, Melbourne, Vic 3199, Australia.; Seth, I (corresponding author), Monash Univ, Fac Med, Melbourne, Vic 3004, Australia. EM ishithseth1@gmail.com RI Seth, Ishith/IXX-0725-2023 OI Seth, Ishith/0000-0001-5444-8925 FU CAUL FX Open Access funding enabled and organized by CAUL and its Member Institutions. No authors have received any funding orsupport. CR Al-Ghazal SK, 2000, EUR J SURG ONCOL, V26, P17, DOI 10.1053/ejso.1999.0733 Bockting CL, 2023, NATURE, V614, P224, DOI 10.1038/d41586-023-00288-7 Broyles JM, 2022, PRS-GLOB OPEN, V10, DOI 10.1097/GOX.0000000000004180 Cordova LZ, 2019, GLAND SURG, V8, P441, DOI 10.21037/gs.2019.07.02 Devlin J., 2018, ARXIV Else H, 2023, NATURE, V613, P423, DOI 10.1038/d41586-023-00056-7 Extance A, 2018, NATURE, V561, P273, DOI 10.1038/d41586-018-06617-5 Frey JD, 2019, PLAST RECONSTR SURG, V143, p404E, DOI 10.1097/PRS.0000000000005290 Huang JT, 2023, J DIABETES SCI TECHN, V17, P853, DOI 10.1177/19322968231161095 Itahashi K, 2018, FRONT MED-LAUSANNE, V5, DOI 10.3389/fmed.2018.00305 King MR, 2023, CELL MOL BIOENG, V16, P1, DOI 10.1007/s12195-022-00754-8 Macdonald C, 2023, J GLOB HEALTH, V13, DOI 10.7189/jogh.13.01003 Panchal H, 2017, PLAST RECONSTR SURG, V140, p7S, DOI 10.1097/PRS.0000000000003941 Radford A., 2018, OPENAI Seth I, 2021, BREAST CANCER-TARGET, V13, P711, DOI 10.2147/BCTT.S256393 van Hartskamp M, 2019, INTERACT J MED RES, V8, DOI 10.2196/12100 Xie Y, 2023, AESTHET PLAST SURG, V47, P1985, DOI 10.1007/s00266-023-03338-7 NR 17 TC 16 Z9 16 U1 3 U2 26 PU SPRINGER PI NEW YORK PA ONE NEW YORK PLAZA, SUITE 4600, NEW YORK, NY, UNITED STATES SN 0364-216X EI 1432-5241 J9 AESTHET PLAST SURG JI Aesthet. Plast. Surg. PD DEC PY 2023 VL 47 IS 6 BP 2360 EP 2369 DI 10.1007/s00266-023-03443-7 EA JUN 2023 PG 10 WC Surgery WE Science Citation Index Expanded (SCI-EXPANDED) SC Surgery GA MM6Z2 UT WOS:001010426300003 PM 37314466 OA hybrid DA 2024-09-05 ER PT J AU Deike, M AF Deike, Michael TI Evaluating the performance of ChatGPT and Perplexity AI in Business Reference SO JOURNAL OF BUSINESS & FINANCE LIBRARIANSHIP LA English DT Article DE Artificial intelligence; assessment; business reference services; business libraries; business librarians; ChatGPT; Perplexity AI; research assistance AB The Thomas Mahaffey Jr. Business Library conducted a study to assess the performance of two competing generative AI products, ChatGPT and Perplexity AI, in answering business reference questions. The study used a data set consisting of a sample of anonymized reference questions submitted through the library's ServiceNow ticketing system between January 2018 and May 2022. The questions were input as prompts to each competing AI. Responses were collected and evaluated by their performance in four separate dimensions relevant to business reference: accessibility, library referral, quality, and serendipity. Each dimension was scored on a 0-5 Likert scale resulting in a final composite performance score for each AI. Results showed similar and underwhelming performance between each AI at the composite level. Analysis of scores in each individual scoring dimension showed greater variance in the score distributions between the competing AI. Through the evaluation process, key strengths, weaknesses, and trends emerged between each AI. The study provides a quantitative measure of where generative AI stands in its capabilities in a business library reference context, and it recommends, based on the results of the evaluation, making use of generative AI in its current iteration as a supplementary tool for business reference as opposed to considering it as a replacement. C1 [Deike, Michael] Univ Notre Dame, Notre Dame, IN 46556 USA. C3 University of Notre Dame RP Deike, M (corresponding author), Univ Notre Dame, Notre Dame, IN 46556 USA. EM mdeike@nd.edu CR Adetayo A. J., 2023, Internet Reference Services Quarterly, V27, P131, DOI [https://doi.org/10.1080/10875301.2023.2203681, DOI 10.1080/10875301.2023.2203681] Alkaissi H, 2023, CUREUS J MED SCIENCE, V15, DOI 10.7759/cureus.35179 Buckley A., 2019, BUSINESS RES COMPETE Chen L., 2023, arXiv Chen X., 2023, Internet Reference Services Quarterly, V27, P1, DOI [10.1080/10875301.2023.2181262, DOI 10.1080/10875301.2023.2181262] Drapkin A., 2023, DOES CHATGPT SAVE MY Fostikov A., 2023, PREPRINT, DOI [10.17613/9t6p-2229, DOI 10.17613/9T6P-2229] Giray L, 2023, ANN BIOMED ENG, V51, P2629, DOI 10.1007/s10439-023-03272-4 Gupta V., 2023, Internet Reference Services Quarterly, P1, DOI [10.1080/10875301.2023.2240773, DOI 10.1080/10875301.2023.2240773] Houston AB, 2023, TECH SERV Q, V40, P76, DOI 10.1080/07317131.2023.2187110 Jalil S., 2023, CHATGPT SOFTWARE TES, DOI [10.1109/ICSTW58534.2023.00078, DOI 10.1109/ICSTW58534.2023.00078] Lo CK, 2023, EDUC SCI, V13, DOI 10.3390/educsci13040410 Lund Brady D., 2023, Library Hi Tech News, P26, DOI 10.1108/LHTN-01-2023-0009 Lund BD, 2020, COLL RES LIBR, V81, P865 Marr B., 2023, Forbes OpenAI, 2023, GPT-4 is OpenAI's most advanced system, producing safer and more useful responses Panda Subhajit, 2023, Library Hi Tech News, P22, DOI 10.1108/LHTN-02-2023-0032 Panda Subhajit, 2022, Library Hi Tech News, P12, DOI 10.1108/LHTN-11-2021-0081 perplexity-ai.notion, 2023, PERPLEXITY FAQS Roumeliotis KI, 2023, FUTURE INTERNET, V15, DOI 10.3390/fi15060192 Southern M. G., 2023, SEARCH ENGINE J United States Census Bureau, 2023, DID AM FACTFINDER GO Whitlatch J. B., 2008, PROFESSIONAL COMPETE NR 23 TC 2 Z9 2 U1 30 U2 30 PU ROUTLEDGE JOURNALS, TAYLOR & FRANCIS LTD PI ABINGDON PA 2-4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND SN 0896-3568 EI 1547-0644 J9 J BUS FINANC LIBR JI J. Bus. Financ. Libr. PD APR 2 PY 2024 VL 29 IS 2 BP 125 EP 154 DI 10.1080/08963568.2024.2317534 EA FEB 2024 PG 30 WC Information Science & Library Science WE Emerging Sources Citation Index (ESCI) SC Information Science & Library Science GA LI0S1 UT WOS:001170173900001 DA 2024-09-05 ER PT J AU Bao, T Gao, JS Wang, JY Chen, Y Xu, F Qiao, GZ Li, F AF Bao, Tong Gao, Jiasi Wang, Jinyi Chen, Yang Xu, Feng Qiao, Guanzhong Li, Fei TI A global bibliometric and visualized analysis of gait analysis and artificial intelligence research from 1992 to 2022 SO FRONTIERS IN ROBOTICS AND AI LA English DT Article DE gait analysis; artificial intelligence (AI); wearable device; sensor; bibliometric analysis ID ANTERIOR CRUCIATE LIGAMENT; CEREBRAL-PALSY; PARKINSONS-DISEASE; PATHOLOGICAL GAIT; CLASSIFICATION; CHILDREN; MOVEMENT; WALKING; RECOGNITION; PARAMETERS AB Gait is an important basic function of human beings and an integral part of life. Many mental and physical abnormalities can cause noticeable differences in a person's gait. Abnormal gait can lead to serious consequences such as falls, limited mobility and reduced life satisfaction. Gait analysis, which includes joint kinematics, kinetics, and dynamic Electromyography (EMG) data, is now recognized as a clinically useful tool that can provide both quantifiable and qualitative information on performance to aid in treatment planning and evaluate its outcome. With the assistance of new artificial intelligence (AI) technology, the traditional medical environment has undergone great changes. AI has the potential to reshape medicine, making gait analysis more accurate, efficient and accessible. In this study, we analyzed basic information about gait analysis and AI articles that met inclusion criteria in the WoS Core Collection database from 1992-2022, and the VosViewer software was used for web visualization and keyword analysis. Through bibliometric and visual analysis, this article systematically introduces the research status of gait analysis and AI. We introduce the application of artificial intelligence in clinical gait analysis, which affects the identification and management of gait abnormalities found in various diseases. Machine learning (ML) and artificial neural networks (ANNs) are the most often utilized AI methods in gait analysis. By comparing the predictive capability of different AI algorithms in published studies, we evaluate their potential for gait analysis in different situations. Furthermore, the current challenges and future directions of gait analysis and AI research are discussed, which will also provide valuable reference information for investors in this field. C1 [Bao, Tong; Wang, Jinyi] Tsinghua Univ, Sch Med, Beijing, Peoples R China. [Bao, Tong; Li, Fei] Tsinghua Univ, Inst Precis Med, Beijing, Peoples R China. [Bao, Tong; Wang, Jinyi; Chen, Yang; Xu, Feng; Qiao, Guanzhong; Li, Fei] Tsinghua Univ, Affiliated Hosp 1, Orthoped Dept, Beijing, Peoples R China. [Gao, Jiasi] Tsinghua Univ, Inst AI Ind Res, Beijing, Peoples R China. C3 Tsinghua University; Tsinghua University; Tsinghua University; Tsinghua University RP Li, F (corresponding author), Tsinghua Univ, Inst Precis Med, Beijing, Peoples R China.; Li, F (corresponding author), Tsinghua Univ, Affiliated Hosp 1, Orthoped Dept, Beijing, Peoples R China. EM lifeisulker@126.com FU Tsinghua University Initiative Scientific Research Program of Precision Medicine [2022TS008] FX The authors declare financial support was received for the research, authorship, and/or publication of this article. Supported by Tsinghua University Initiative Scientific Research Program of Precision Medicine (2022TS008). CR Alaqtash M, 2011, IEEE ENG MED BIO, P453, DOI 10.1109/IEMBS.2011.6090063 Alaqtash M, 2011, ENG APPL ARTIF INTEL, V24, P1018, DOI 10.1016/j.engappai.2011.04.010 Alharthi AS, 2019, IEEE SENS J, V19, P9575, DOI 10.1109/JSEN.2019.2928777 [Anonymous], BIOMECHANICS MOTOR C Anwary AR, 2019, IEEE J BIOMED HEALTH, V23, P2021, DOI 10.1109/JBHI.2018.2875812 Arnold AS, 2006, GAIT POSTURE, V23, P273, DOI 10.1016/j.gaitpost.2005.03.003 Baker R, 2006, J NEUROENG REHABIL, V3, DOI 10.1186/1743-0003-3-4 Begg R., 2006, AUSTRALASIAN PHYSICAL & ENGINEERING SCIENCES IN MEDICINE, V29, P188, DOI 10.1007/BF03178892 Begg RK, 2005, IEEE T BIO-MED ENG, V52, P828, DOI 10.1109/TBME.2005.845241 Bergamini E, 2014, SENSORS-BASEL, V14, P18625, DOI 10.3390/s141018625 Berlinberg A, 2019, INT J DERMATOL, V58, P1023, DOI 10.1111/ijd.14261 Bin Altaf MU, 2015, IEEE T BIO-MED ENG, V62, P2001, DOI 10.1109/TBME.2015.2410142 Brandt JS, 2010, AM J OBSTET GYNECOL, V203, DOI 10.1016/j.ajog.2010.07.025 Brassard P, 2014, FRONT PHYSIOL, V5, DOI 10.3389/fphys.2014.00204 Brognara L, 2019, DISEASES-BASEL, V7, DOI 10.3390/diseases7010018 Camomilla V, 2018, SENSORS-BASEL, V18, DOI 10.3390/s18030873 Casamassima F, 2014, SENSORS-BASEL, V14, P6229, DOI 10.3390/s140406229 Celik Y, 2021, MED ENG PHYS, V87, P9, DOI 10.1016/j.medengphy.2020.11.005 Chan HP, 2020, ADV EXP MED BIOL, V1213, P3, DOI 10.1007/978-3-030-33128-3_1 Chang PC, 2009, 2009 11TH IEEE INTERNATIONAL SYMPOSIUM ON MULTIMEDIA (ISM 2009), P88, DOI 10.1109/ISM.2009.81 Chen KY, 2005, MED SCI SPORT EXER, V37, pS490, DOI 10.1249/01.mss.0000185571.49104.82 Clarivate, 2023, J CITATION REPORTS Cooper C, 2018, BMC MED RES METHODOL, V18, DOI 10.1186/s12874-018-0545-3 Corazza S, 2006, ANN BIOMED ENG, V34, P1019, DOI 10.1007/s10439-006-9122-8 Costa A, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0154136 Cunningham CB, 2010, J EXP BIOL, V213, P790, DOI 10.1242/jeb.038984 Dehzangi O, 2017, SENSORS-BASEL, V17, DOI 10.3390/s17122735 Devanne M, 2016, INT C PATT RECOG, P895, DOI 10.1109/ICPR.2016.7899749 Dobson F, 2007, GAIT POSTURE, V25, P140, DOI 10.1016/j.gaitpost.2006.01.003 Duan P, 2017, APPL SCI-BASEL, V7, DOI 10.3390/app7111130 Duffy CM, 1996, J PEDIATR ORTHOPED, V16, P786, DOI 10.1097/01241398-199611000-00016 Souza ADE, 2018, J CONTROL AUTOM ELEC, V29, P586, DOI 10.1007/s40313-018-0401-z Farah JD, 2019, J NEUROENG REHABIL, V16, DOI 10.1186/s12984-019-0486-z Farmer S, 2014, J NEURAL ENG, V11, DOI 10.1088/1741-2560/11/5/056027 Nicolas-Alonso LF, 2012, SENSORS-BASEL, V12, P1211, DOI 10.3390/s120201211 Fleischer C, 2008, IEEE T ROBOT, V24, P872, DOI 10.1109/TRO.2008.926860 Gage Jr, 2004, CLIN DEV MED, P42 Galna B, 2013, GAIT POSTURE, V37, P580, DOI 10.1016/j.gaitpost.2012.09.025 Ganea R, 2012, J CHILD NEUROL, V27, P30, DOI 10.1177/0883073811413581 Gao Q, 2020, ARCH OSTEOPOROS, V15, DOI 10.1007/s11657-020-0705-z García-Cossio E, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0137910 Gil CR, 2019, APPL SCI-BASEL, V9, DOI 10.3390/app9030502 Goh SK, 2018, IEEE T NEUR SYS REH, V26, P1858, DOI 10.1109/TNSRE.2018.2864119 Graham HK, 2007, J BONE JOINT SURG BR, V89B, P993, DOI 10.1302/0301-620X.89B8 Guo GD, 2017, NEUROINFORMATICS, V15, P13, DOI 10.1007/s12021-016-9313-x Harle R, 2012, COMPUT COMMUN, V35, P650, DOI 10.1016/j.comcom.2011.03.019 Hasson CJ, 2015, FRONT HUM NEUROSCI, V9, DOI 10.3389/fnhum.2015.00459 Hecht GG, 2022, J AM ACAD ORTHOP SUR, V30, pE1366, DOI 10.5435/JAAOS-D-21-00785 Heinen M. R., 2006, Advances in artificial intelligence-iberamia-sbia 2006, proceedings Herold F, 2018, J CLIN MED, V7, DOI 10.3390/jcm7120466 Hong KS, 2018, FRONT HUM NEUROSCI, V12, DOI 10.3389/fnhum.2018.00246 Hong KS, 2017, FRONT NEUROROBOTICS, V11, DOI 10.3389/fnbot.2017.00035 Ilesan RR, 2022, BIOSENSORS-BASEL, V12, DOI 10.3390/bios12040189 Inam S, 2010, AMYOTROPH LATERAL SC, V11, P558, DOI 10.3109/17482961003792958 Sburlea AI, 2015, J NEUROENG REHABIL, V12, DOI 10.1186/s12984-015-0087-4 Jarchi Delaram, 2018, IEEE Rev Biomed Eng, V11, P177, DOI 10.1109/RBME.2018.2807182 Jun K, 2020, IEEE ACCESS, V8, P139881, DOI 10.1109/ACCESS.2020.3013029 Kaczmarczyk K, 2009, GAIT POSTURE, V30, P207, DOI 10.1016/j.gaitpost.2009.04.010 Kaur R, 2021, IEEE T BIO-MED ENG, V68, P2666, DOI 10.1109/TBME.2020.3048142 Khan H, 2021, FRONT HUM NEUROSCI, V14, DOI 10.3389/fnhum.2020.613254 Khan RA, 2018, J NEUROENG REHABIL, V15, DOI 10.1186/s12984-018-0346-2 Khera Preeti, 2020, Journal of Medical Engineering & Technology, V44, P441, DOI 10.1080/03091902.2020.1822940 Klöpfer-Krämer I, 2020, INJURY, V51, pS90, DOI 10.1016/j.injury.2019.11.011 Kluge F, 2018, GAIT POSTURE, V66, P194, DOI 10.1016/j.gaitpost.2018.08.026 Knippenberg E, 2017, J NEUROENG REHABIL, V14, DOI 10.1186/s12984-017-0270-x Lai DTH, 2009, IEEE T INF TECHNOL B, V13, P687, DOI 10.1109/TITB.2009.2022913 Lazarou I, 2018, FRONT HUM NEUROSCI, V12, DOI 10.3389/fnhum.2018.00014 LeCun Y, 2015, NATURE, V521, P436, DOI 10.1038/nature14539 Leightley D, 2017, IEEE J BIOMED HEALTH, V21, P939, DOI 10.1109/JBHI.2016.2558540 Li FM, 2016, SENSORS-BASEL, V16, DOI 10.3390/s16111809 Li TY, 2020, INFORM FUSION, V60, P41, DOI 10.1016/j.inffus.2020.02.001 Lin F, 2016, IEEE T IND INFORM, V12, P2281, DOI 10.1109/TII.2016.2585643 Liu DX, 2016, 2016 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND BIOMIMETICS (ROBIO), P1058, DOI 10.1109/ROBIO.2016.7866465 Liu ZY, 2006, IEEE T PATTERN ANAL, V28, P863, DOI 10.1109/TPAMI.2006.122 Lu HP, 2008, IEEE T NEURAL NETWOR, V19, P18, DOI 10.1109/TNN.2007.901277 Nguyen LV, 2016, IEEE T HUM-MACH SYST, V46, P822, DOI 10.1109/THMS.2016.2586741 Madgwick SOH, 2011, INT C REHAB ROBOT Mahlknecht P, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0069627 Mahony R, 2008, IEEE T AUTOMAT CONTR, V53, P1203, DOI 10.1109/TAC.2008.923738 Mao GZ, 2018, SCI TOTAL ENVIRON, V635, P1081, DOI 10.1016/j.scitotenv.2018.04.173 Mazilu S., 2012, 2012 6th International Conference on Pervasive Computing Technologies for Healthcare, P123, DOI 10.4108/icst.pervasivehealth.2012.248680 Melin R, 2003, J REHABIL MED, V35, P84, DOI 10.1080/16501970306119 Mirelman A, 2018, HAND CLINIC, V159, P119, DOI 10.1016/B978-0-444-63916-5.00007-0 Moed HF, 2009, ARCH IMMUNOL THER EX, V57, P13, DOI 10.1007/s00005-009-0001-5 Moore MM, 2003, IEEE T NEUR SYS REH, V11, P162, DOI 10.1109/TNSRE.2003.814433 Morshed B.I., 2014, J. Bioeng. Biomed. Sci, V4, P1, DOI DOI 10.4172/2155-9538.1000128 Mündermann L, 2006, J NEUROENG REHABIL, V3, DOI 10.1186/1743-0003-3-6 Muro-de-la-Herran A, 2014, SENSORS-BASEL, V14, P3362, DOI 10.3390/s140203362 Nandy A, 2016, NEUROCOMPUTING, V191, P117, DOI 10.1016/j.neucom.2016.01.002 Nazeer H, 2020, J NEURAL ENG, V17, DOI 10.1088/1741-2552/abb417 Nijboer F, 2008, J NEUROSCI METH, V167, P43, DOI 10.1016/j.jneumeth.2007.02.009 OUNPUU S, 1993, J PEDIATR ORTHOPED, V13, P331, DOI 10.1097/01241398-199305000-00011 Palmieri-Smith RM, 2013, J ATHL TRAINING, V48, P186, DOI 10.4085/1062-6050-48.2.10 Patel S, 2012, J NEUROENG REHABIL, V9, DOI 10.1186/1743-0003-9-21 Paulo J, 2019, INTEL SERV ROBOT, V12, P255, DOI 10.1007/s11370-019-00280-z Perry J, 2010, GAIT ANALYSIS: NORMAL AND PATHOLOGICAL FUNCTION, SECOND EDITION, P1 Pfurtscheller G, 2010, FRONT NEUROSCI-SWITZ, V4, DOI 10.3389/fnpro.2010.00003 Pinti P, 2019, FRONT HUM NEUROSCI, V12, DOI 10.3389/fnhum.2018.00505 Pla A, 2017, NEUROCOMPUTING, V268, P109, DOI 10.1016/j.neucom.2016.11.084 Prakash C, 2018, ARTIF INTELL REV, V49, P1, DOI 10.1007/s10462-016-9514-6 Prasanth H, 2021, SENSORS-BASEL, V21, DOI 10.3390/s21082727 Pratheepan Y, 2009, 2009 13TH INTERNATIONAL MACHINE VISION AND IMAGE PROCESSING CONFERENCE, P111, DOI 10.1109/IMVIP.2009.27 Prentice SD, 2001, J ELECTROMYOGR KINES, V11, P19, DOI 10.1016/S1050-6411(00)00038-9 Qiu S, 2018, MICROMACHINES-BASEL, V9, DOI 10.3390/mi9090442 Ramesh AN, 2004, ANN ROY COLL SURG, V86, P334, DOI 10.1308/147870804290 Rea M, 2014, NEUROREHAB NEURAL RE, V28, P564, DOI 10.1177/1545968313520410 Rehman RZU, 2020, IEEE OPEN J ENG MED, V1, P65, DOI 10.1109/OJEMB.2020.2966295 Rigoll G., 2000, Proceedings Fourth IEEE International Conference on Automatic Face and Gesture Recognition (Cat. No. PR00580), P342, DOI 10.1109/AFGR.2000.840657 Saab M, 2019, ORTHOP TRAUMATOL-SUR, V105, P1439, DOI 10.1016/j.otsr.2019.09.018 Sabatini AM, 2011, SENSORS-BASEL, V11, P1489, DOI 10.3390/s110201489 Samson MM, 2001, AGING CLIN EXP RES, V13, P16, DOI 10.1007/BF03351489 Sander K, 2012, ORTHOPADE, V41, P802, DOI 10.1007/s00132-012-1947-2 Sarkodie SA, 2019, SCI TOTAL ENVIRON, V649, P128, DOI 10.1016/j.scitotenv.2018.08.276 Schollhorn W., 2008, Routledge Handbook of Biomechanics and Human Movement Science, P50 Semwal VB, 2015, ROBOT AUTON SYST, V63, P122, DOI 10.1016/j.robot.2014.09.001 Senanayake CM, 2010, IEEE T INF TECHNOL B, V14, P1173, DOI 10.1109/TITB.2010.2058813 Senanayake SMNA, 2014, APPL SOFT COMPUT, V20, P127, DOI 10.1016/j.asoc.2013.11.010 Seniorou M, 2007, GAIT POSTURE, V26, P475, DOI 10.1016/j.gaitpost.2007.07.008 Shibasaki Hiroshi, 2010, Brain and Nerve (Tokyo), V62, P1109 Shim HM, 2015, J CENT SOUTH UNIV, V22, P1801, DOI 10.1007/s11771-015-2698-0 Shull PB, 2014, GAIT POSTURE, V40, P11, DOI 10.1016/j.gaitpost.2014.03.189 Sobral H, 2018, IEEE ANN INT CONF CY, P701, DOI 10.1109/CYBER.2018.8688159 Sprager S, 2015, SENSORS-BASEL, V15, P22089, DOI 10.3390/s150922089 Stöggl T, 2017, J SPORT SCI, V35, P196, DOI 10.1080/02640414.2016.1161205 SUTHERLAND DH, 1980, J BONE JOINT SURG AM, V62, P336, DOI 10.2106/00004623-198062030-00004 Sutherland DH, 2002, GAIT POSTURE, V16, P159, DOI 10.1016/S0966-6362(02)00004-8 Sutherland DH, 2001, GAIT POSTURE, V14, P61, DOI 10.1016/S0966-6362(01)00100-X Szczerbik E, 2011, ACTA BIOENG BIOMECH, V13, P43 Taborri J, 2014, SENSORS-BASEL, V14, P16212, DOI 10.3390/s140916212 Takakusaki K, 2013, MOVEMENT DISORD, V28, P1483, DOI 10.1002/mds.25669 Tang N, 2021, ORTHOP J SPORTS MED, V9, DOI 10.1177/2325967120976372 Tao WJ, 2012, SENSORS-BASEL, V12, P2255, DOI 10.3390/s120202255 Ngo TT, 2014, PATTERN RECOGN, V47, P228, DOI 10.1016/j.patcog.2013.06.028 Theologis TN, 2011, CHILDREN'S NEUROMUSCULAR DISORDERS, P1 Thongsook A, 2019, 2019 FIRST INTERNATIONAL SYMPOSIUM ON INSTRUMENTATION, CONTROL, ARTIFICIAL INTELLIGENCE, AND ROBOTICS (ICA-SYMP 2019), P69, DOI [10.1109/ica-symp.2019.8646253, 10.1109/ICA-SYMP.2019.8646253] Troje NF, 2002, J VISION, V2, P371, DOI 10.1167/2.5.2 Van Gestel L, 2011, RES DEV DISABIL, V32, P2542, DOI 10.1016/j.ridd.2011.07.004 Verghese J, 2010, J NEUROL, V257, P392, DOI 10.1007/s00415-009-5332-y Vikara D, 2020, UPSTREAM OIL GAS TEC, V4, DOI 10.1016/j.upstre.2020.100007 Sang VNT, 2018, SENSORS-BASEL, V18, DOI 10.3390/s18113612 Waltman L, 2010, J INFORMETR, V4, P629, DOI 10.1016/j.joi.2010.07.002 Washabaugh EP, 2017, GAIT POSTURE, V55, P87, DOI 10.1016/j.gaitpost.2017.04.013 Wei WC, 2018, IEEE INT CONF HEALT, P180, DOI 10.1109/ICHI.2018.00028 Whittle M. W., 2007, Gait Analysis: An Introduction, V4th Williams G, 2014, BRAIN INJURY, V28, P610 Xiong BP, 2019, IEEE ACCESS, V7, P29973, DOI 10.1109/ACCESS.2019.2900591 Yang CC, 2010, SENSORS-BASEL, V10, P7772, DOI 10.3390/s100807772 Yang CP, 2016, OPTIK, V127, P1797, DOI 10.1016/j.ijleo.2015.11.084 Yang L, 2017, J SEMICOND, V38, DOI 10.1088/1674-4926/38/10/105004 Yoo TK, 2013, IEEE ENG MED BIO, P192, DOI 10.1109/EMBC.2013.6609470 Yuwono M, 2014, APPL SOFT COMPUT, V14, P72, DOI 10.1016/j.asoc.2013.07.027 Zago M, 2018, GAIT POSTURE, V61, P408, DOI 10.1016/j.gaitpost.2018.02.007 Zeng W, 2020, SOFT COMPUT, V24, P1851, DOI 10.1007/s00500-019-04017-z Zhang J, 2014, ANN BIOMED ENG, V42, P600, DOI 10.1007/s10439-013-0917-0 Zhao HH, 2017, AUTON ROBOT, V41, P725, DOI 10.1007/s10514-016-9565-1 Zhu ML, 2019, ACS NANO, V13, P1940, DOI 10.1021/acsnano.8b08329 Zhu YL, 2021, ORTHOP TRAUMATOL-SUR, V107, DOI 10.1016/j.otsr.2021.102988 NR 157 TC 2 Z9 2 U1 6 U2 12 PU FRONTIERS MEDIA SA PI LAUSANNE PA AVENUE DU TRIBUNAL FEDERAL 34, LAUSANNE, CH-1015, SWITZERLAND SN 2296-9144 J9 FRONT ROBOT AI JI Front. Robot. AI PD NOV 17 PY 2023 VL 10 AR 1265543 DI 10.3389/frobt.2023.1265543 PG 23 WC Robotics WE Emerging Sources Citation Index (ESCI) SC Robotics GA Z4IG7 UT WOS:001111722400001 PM 38047061 OA gold, Green Published DA 2024-09-05 ER PT C AU Butkute, V Lapin, K AF Butkute, Viktorija Lapin, Kristina BE Targamadze, A Butleris, R Butkiene, R TI USABILITY HEURISTICS FOR ONLINE VIRTUAL WORLDS SO INFORMATION TECHNOLOGIES' 2010 SE Information Technologies Conference Proceedings LA English DT Proceedings Paper CT 16th International conference on Information and Software Technologies (IT 2010) CY APR 21-23, 2010 CL Kaunas, LITHUANIA DE virtual world; usability evaluation; heuristic evaluations; online communication and collaboration; user research; user needs AB This paper explores a set of usability heuristics developed for the EU FP7 ICT VirtualLife project. The purpose of the project is to create a three-dimensional online virtual world - in the form of a safe, democratic and legally ruled collaboration platform. 3D virtual worlds are a relatively new expression of online communication and collaboration tools. The most essential aspect - usability - still is in tentative phase. Consequently, conventional usability heuristics are not suitable for 3D virtual worlds. The paper identifies major differences between 3D virtual worlds and other online collaboration and communication tools. Specific user needs are discussed considering the users' real experience, mistakes and problems. C1 [Butkute, Viktorija; Lapin, Kristina] Vilnius State Univ, Fac Math & Informat, LT-03225 Vilnius, Lithuania. C3 Vilnius University RP Butkute, V (corresponding author), Vilnius State Univ, Fac Math & Informat, Naugarduko 24, LT-03225 Vilnius, Lithuania. EM Viktorija.Butkute@mif.stud.vu.lt; Kristina.Lapin@mif.vu.lt RI Lapin, Kristina/ISS-9336-2023 CR [Anonymous], 2003, HUM FAC ER Bogdanov D., 2009, EBOOK P 2009 NEM SUM, P124 Bradner E., P EUR COMP SUPP COOP Cyras V., 2009, INT S METH ART INT A Dourish P., 1992, CHI '92 Conference Proceedings. ACM Conference on Human Factors in Computing Systems. Striking a Balance, P541, DOI 10.1145/142750.142982 Eastgate R. M., 2001, THESIS U NOTTINGHAM FITZPATRICK G, 1998, CHI 98 C SUMM HUM FA, P281 Geumacs, 2008, VIRT LIF D2 1 END US Knudtzon K., 2002, Social and cultural theories Nielsen J., 1990, SIGCHI Bulletin, P249 Nielsen J., 1994, Usability Inspection Methods Computer, P413, DOI [10.1145/259963.260531, DOI 10.1145/259963.260531] Preece J., 2003, HUM FAC ER, P596 Preece J., 2002, INTERACTION DESIGN H, P105 Schroder H., 2002, VIRTUAL COMMUNITY DE Sutcliffe A, 2004, INTERACT COMPUT, V16, P831, DOI 10.1016/j.intcom.2004.05.001 University of Minnesota's Collaborative Wiki, 2008, DES GUID Villanueva R., 2004, P 16 ANN C SPAT INF WHITTAKER S, 1997, WIDENING NET Williams S. D., 2008, STC UUX COMMUNITY NE, V13 NR 19 TC 0 Z9 0 U1 0 U2 2 PU KAUNAS UNIV TECHNOLOGY PRESS PI KAUNAS PA K DONELAICIO 73, KAUNAS LT 3006, LITHUANIA SN 2029-0020 J9 INFORM TECHNOL C PR PY 2010 BP 285 EP 291 PG 7 WC Computer Science, Information Systems WE Conference Proceedings Citation Index - Science (CPCI-S) SC Computer Science GA BDN77 UT WOS:000314082000036 DA 2024-09-05 ER PT J AU Liu, XY Zhu, HR AF Liu, Xueying Zhu, Haoran TI Linguistic positivity in soft and hard disciplines: temporal dynamics, disciplinary variation, and the relationship with research impact SO SCIENTOMETRICS LA English DT Article DE Linguistic positivity; Sentiment analysis; Disciplinary variation; Research impact ID ARTICLES; SCIENCE; SENTIMENT; LANGUAGE; CITATION; QUALITY; PUBLISH; HYPE AB Previous studies have investigated the use of positive/negative language in academic discourse, and have found a tendency toward using more positive language in academic writing. However, little is known about whether the features and dynamics of linguistic positivity vary across disciplines. In addition, the relationship between linguistic positivity and research impact deserves further evaluation. To address these issues, the present study investigated linguistic positivity in academic writing from a cross-disciplinary perspective. Based on a 111-million-word corpus of research article abstracts collected from the Web of Science, the study examined the diachronic trends of positive/negative language in eight academic disciplines, and explored the relationship between linguistic positivity and citation counts. The results demonstrated that the increase in linguistic positivity is a common phenomenon across the examined academic disciplines. In addition, hard disciplines showed a higher and faster-growing degree of linguistic positivity compared with soft disciplines. Last, a significant positive correlation was identified between citation counts and the degree of linguistic positivity. Reasons for the temporal dynamics and disciplinary variation of linguistic positivity were explored, and implications for the scientific community were discussed. C1 [Liu, Xueying; Zhu, Haoran] Huazhong Univ Sci & Technol, 1037 Luoyu Rd, Wuhan, Peoples R China. C3 Huazhong University of Science & Technology RP Zhu, HR (corresponding author), Huazhong Univ Sci & Technol, 1037 Luoyu Rd, Wuhan, Peoples R China. EM hrzhu@hust.edu.cn RI Haoran, Zhu/GPW-7084-2022 FU Humanities and Social Sciences Youth Foundation, Ministry of Education of the People's Republic of China [21YJC740085] FX This study was supported by Humanities and Social Sciences Youth Foundation, Ministry of Education of the People's Republic of China (Grant No. 21YJC740085). CR Afros E, 2009, ENGL SPECIF PURP, V28, P58, DOI 10.1016/j.esp.2008.09.001 Alluqmani A, 2018, SCIENTOMETRICS, V115, P1071, DOI 10.1007/s11192-018-2688-8 [Anonymous], 2017, NATURE, V551, P414, DOI 10.1038/d41586-017-07325-2 [Anonymous], 2015, NATURE, V521, P259, DOI 10.1038/521259a Ball P., 2015, NATURE NEWS, DOI [10.1038/nature.2015.19024, DOI 10.1038/NATURE.2015.19024] Bednarek M, 2021, MEDIA INT AUST, V181, P131, DOI 10.1177/1329878X20947124 Biagioli M, 2016, NATURE, V535, P201, DOI 10.1038/535201a Boeckx C, 2005, LINGUIST REV, V22, P447, DOI 10.1515/tlir.2005.22.2-4.447 Bordignon F, 2021, LEARN PUBL, V34, P622, DOI 10.1002/leap.1411 Boyack KW, 2005, ISSI 2005: Proceedings of the 10th International Conference of the International Society for Scientometrics and Informetrics, Vols 1 and 2, P335 Bradley A, 2019, INT GAMBL STUD, V19, P451, DOI 10.1080/14459795.2019.1606927 Browman HI, 1999, MAR ECOL PROG SER, V191, P301, DOI 10.3354/meps191301 Cao XK, 2021, LEARN PUBL, V34, P82, DOI 10.1002/leap.1322 Casal JE, 2021, J ENGL ACAD PURP, V52, DOI 10.1016/j.jeap.2021.100996 Caulfield T, 2012, PUBLIC HEALTH GENOM, V15, P209, DOI 10.1159/000336533 Caulfield T, 2016, SCIENCE, V352, P776, DOI 10.1126/science.aaf4620 Chen BK, 2020, SCIENTOMETRICS, V122, P1769, DOI 10.1007/s11192-020-03361-4 Degaetano-Ortlieb S, 2014, LREC 2014 - NINTH INTERNATIONAL CONFERENCE ON LANGUAGE RESOURCES AND EVALUATION, P1327 Didegah F, 2013, J INFORMETR, V7, P861, DOI 10.1016/j.joi.2013.08.006 Dodds P.S., 2015, P NAT AC SCI US AM Doyle J, 2015, HIGH EDUC RES DEV, V34, P671, DOI 10.1080/07294360.2015.1025467 Dwan K, 2008, PLOS ONE, V3, DOI 10.1371/journal.pone.0003081 El Ouardighi F, 2010, EUR J OPER RES, V206, P329, DOI 10.1016/j.ejor.2010.02.035 Fanelli D, 2012, SCIENTOMETRICS, V90, P891, DOI 10.1007/s11192-011-0494-7 Gazni A, 2011, J INF SCI, V37, P273, DOI 10.1177/0165551511401658 Harwood N, 2005, APPL LINGUIST, V26, P343, DOI 10.1093/applin/ami012 Holtz P, 2017, J CROSS CULT PSYCHOL, V48, P1410, DOI 10.1177/0022022117724902 Hulme PE, 2022, BIOL INVASIONS, V24, P1651, DOI 10.1007/s10530-022-02740-7 Hussain M., 2019, J OPEN SOURCE SOFTW, V4, P1556, DOI [DOI 10.21105/JOSS.01556, 10.21105/joss.01556] Hyland K., 2005, Metadiscourse: Exploring interaction in writing Hyland K, 2007, TESOL QUART, V41, P235, DOI 10.2307/40264352 Hyland K, 2021, J PRAGMATICS, V182, P189, DOI 10.1016/j.pragma.2021.06.018 Hyland K, 2009, INT J ENGL STUD, V9, P111 Jiang F, 2021, LINGUA, V252, DOI 10.1016/j.lingua.2020.103017 Jiang F, 2017, INT J CORPUS LINGUIS, V22, P85, DOI 10.1075/ijcl.22.1.04jia Jin T, 2021, SCIENTOMETRICS, V126, P8471, DOI 10.1007/s11192-021-04112-9 Kellsey C, 2004, COLL RES LIBR, V65, P194, DOI 10.5860/crl.65.3.194 Knight J, 2003, NATURE, V422, P554, DOI 10.1038/422554a Kosteas VD, 2018, SCIENTOMETRICS, V115, P1395, DOI 10.1007/s11192-018-2703-0 Lerchenmueller MJ, 2019, BMJ-BRIT MED J, V367, DOI 10.1136/bmj.l6573 Lexchin J, 2003, BMJ-BRIT MED J, V326, P1167, DOI 10.1136/bmj.326.7400.1167 Lillis T, 2013, CRIT LANG LIT STUD, V17, P220 Liu DL, 2018, DISCOURSE CONTEXT ME, V25, P143, DOI 10.1016/j.dcm.2018.05.001 Liu WS, 2018, LEARN PUBL, V31, P107, DOI 10.1002/leap.1114 Lozano GA, 2014, SCI ENG ETHICS, V20, P363, DOI 10.1007/s11948-013-9451-6 Lu C, 2019, J INFORMETR, V13, P817, DOI 10.1016/j.joi.2019.07.004 Lu XF, 2021, SYSTEM, V100, DOI 10.1016/j.system.2021.102543 Millar N, 2020, ENGL SPECIF PURP, V60, P53, DOI 10.1016/j.esp.2020.07.001 Millar N, 2019, ENGL SPECIF PURP, V54, P139, DOI 10.1016/j.esp.2019.02.004 Mohammadi E, 2015, J ASSOC INF SCI TECH, V66, P1832, DOI 10.1002/asi.23286 Mukhtar N, 2018, TELEMAT INFORM, V35, P2173, DOI 10.1016/j.tele.2018.08.003 Neill US, 2008, J CLIN INVEST, V118, P2368, DOI 10.1172/JCI36371 Pautasso M, 2010, SCIENTOMETRICS, V85, P193, DOI 10.1007/s11192-010-0233-5 Scott SL, 2017, ACS CATAL, V7, P2218, DOI 10.1021/acscatal.7b00566 Sienkiewicz J, 2016, ROY SOC OPEN SCI, V3, DOI 10.1098/rsos.160140 Sud P, 2014, SCIENTOMETRICS, V98, P1131, DOI 10.1007/s11192-013-1117-2 Swales J., 2004, RES GENRES EXPLORATI, DOI DOI 10.1017/CBO9781139524827 Taboada M, 2011, COMPUT LINGUIST, V37, P267, DOI 10.1162/COLI_a_00049 Vergeer M, 2020, COMMUN STUD, V71, P373, DOI 10.1080/10510974.2020.1733038 Vinkers CH, 2015, BMJ-BRIT MED J, V351, DOI 10.1136/bmj.h6467 Wei YY, 2018, SCIENTOMETRICS, V117, P1771, DOI 10.1007/s11192-018-2948-7 Weidmann NB, 2018, PS-POLIT SCI POLIT, V51, P625, DOI 10.1017/S1049096518000124 Wen J, 2022, APPL LINGUIST, V43, P340, DOI 10.1093/applin/amab037 Yan EJ, 2020, QUANT SCI STUD, V1, P664, DOI 10.1162/qss_a_00040 Yuan ZM, 2022, SCIENTOMETRICS, V127, P6191, DOI 10.1007/s11192-022-04515-2 Zhang HL, 2014, 2014 11TH WEB INFORMATION SYSTEM AND APPLICATION CONFERENCE (WISA), P262, DOI 10.1109/WISA.2014.55 Zhu HR, 2021, LEARN PUBL, V34, P578, DOI 10.1002/leap.1404 NR 67 TC 6 Z9 6 U1 13 U2 43 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0138-9130 EI 1588-2861 J9 SCIENTOMETRICS JI Scientometrics PD MAY PY 2023 VL 128 IS 5 BP 3107 EP 3127 DI 10.1007/s11192-023-04679-5 EA MAR 2023 PG 21 WC Computer Science, Interdisciplinary Applications; Information Science & Library Science WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Computer Science; Information Science & Library Science GA U5FW4 UT WOS:000954476500005 PM 37101976 OA Bronze, Green Published DA 2024-09-05 ER PT J AU Bevern, R Komusiewicz, C Niedermeier, R Sorge, M Walsh, T AF van Bevern, Rene Komusiewicz, Christian Niedermeier, Rolf Sorge, Manuel Walsh, Toby TI H-index manipulation by merging articles: Models, theory, and experiments SO ARTIFICIAL INTELLIGENCE LA English DT Article DE Citation index; Hirsch index; Parameterized complexity; Exact algorithms; AI's 10 to watch ID MULTIVARIATE ALGORITHMICS; GOOGLE SCHOLAR; COMPLEXITY AB An author's profile on Google Scholar consists of indexed articles and associated data, such as the number of citations and the H-index. The author is allowed to merge articles; this may affect the H-index. We analyze the (parameterized) computational complexity of maximizing the H-index using article merges. Herein, to model realistic manipulation scenarios, we define a compatibility graph whose edges correspond to plausible merges. Moreover, we consider several different measures for computing the citation count of a merged article. For the measure used by Google Scholar, we give an algorithm that maximizes the H-index in linear time if the compatibility graph has constant-size connected components. In contrast, if we allow to merge arbitrary articles (that is, for compatibility graphs that are cliques), then already increasing the H-index by one is NP-hard. Experiments on Google Scholar profiles of AI researchers show that the H-index can be manipulated substantially only if one merges articles with highly dissimilar titles. (C) 2016 Elsevier B.V. All rights reserved. C1 [van Bevern, Rene] Novosibirsk State Univ, Ul Pirogova 2, Novosibirsk 630090, Russia. [van Bevern, Rene] Russian Acad Sci, Siberian Branch, Sobolev Inst Math, Novosibirsk, Russia. [Komusiewicz, Christian] Univ Jena, Inst Informat, D-07745 Jena, Germany. [van Bevern, Rene; Komusiewicz, Christian; Niedermeier, Rolf; Sorge, Manuel; Walsh, Toby] TU Berlin, Inst Softwaretech & Theoret Informat, Berlin, Germany. [Walsh, Toby] Univ New South Wales, Sydney, NSW, Australia. [Walsh, Toby] Data61, Sydney, NSW, Australia. C3 Novosibirsk State University; Russian Academy of Sciences; Sobolev Institute of Mathematics; Friedrich Schiller University of Jena; Technical University of Berlin; University of New South Wales Sydney; Commonwealth Scientific & Industrial Research Organisation (CSIRO) RP Bevern, R (corresponding author), Novosibirsk State Univ, Ul Pirogova 2, Novosibirsk 630090, Russia. EM rvb@nsu.ru; christian.komusiewicz@uni-jena.de; rolf.niedermeier@tu-berlin.de; manuel.sorge@tu-berlin.de; toby.walsh@nicta.com.au RI van Bevern, René/L-1374-2016; Komusiewicz, Christian/X-2452-2019; Walsh, Toby/Q-9043-2016 OI van Bevern, René/0000-0002-4805-218X; Komusiewicz, Christian/0000-0003-0829-7032; Walsh, Toby/0000-0003-2998-8668 FU German Research Foundation (DFG), project DAPA [NI 369/12]; Russian Foundation for Basic Research (RFBR) [16-31-60007 mol_a_dk]; DFG project MAGZ [KO 3669/4-1]; Alexander von Humboldt Foundation, Bonn, Germany FX Rene van Bevern was supported by the German Research Foundation (DFG), project DAPA (NI 369/12), at TU Berlin, and by the Russian Foundation for Basic Research (RFBR), project 16-31-60007 mol_a_dk, at Novosibirsk State University. Christian Komusiewicz was supported by the DFG project MAGZ (KO 3669/4-1) and Manuel Sorge was supported by the DFG project DAPA (NI 369/12). Toby Walsh was supported by the Alexander von Humboldt Foundation, Bonn, Germany, while at TU Berlin. The main work was done while Toby Walsh was affiliated with University of New South Wales and Data61, Sydney, Australia. CR ASSMANN SF, 1984, J ALGORITHM, V5, P502, DOI 10.1016/0196-6774(84)90004-X Bartneck C, 2011, SCIENTOMETRICS, V87, P85, DOI 10.1007/s11192-010-0306-5 Bevern R. van, 2016, FRONTIERS ARTIFICIAL Bodlaender HL, 2015, INFORM PROCESS LETT, V115, P965, DOI 10.1016/j.ipl.2015.07.003 Coffman E. G., 2013, Bin Packing Approximation Algorithms: Survey and Classification, P455, DOI DOI 10.1007/978-1-4419-7997-135 Cygan M., 2015, PARAMETERIZED ALGORI, V5 de Keijzer B, 2013, BULL EUR ASSOC THEOR, P79 López-Cózar ED, 2014, J ASSOC INF SCI TECH, V65, P446, DOI 10.1002/asi.23056 Denman R, 2009, DISCRETE APPL MATH, V157, P1655, DOI 10.1016/j.dam.2008.09.011 Downey Rodney G., 2013, Undergraduate Texts in Computer Science Dutta B, 2001, ECONOMETRICA, V69, P1013, DOI 10.1111/1468-0262.00228 Egghe L, 2006, SCIENTOMETRICS, V69, P131, DOI 10.1007/s11192-006-0144-7 Faliszewski P, 2010, AI MAG, V31, P53, DOI 10.1609/aimag.v31i4.2314 Faliszewski P, 2010, COMMUN ACM, V53, P74, DOI 10.1145/1839676.1839696 Fellows MR, 2013, EUR J COMBIN, V34, P541, DOI 10.1016/j.ejc.2012.04.008 Fellows MR, 2009, THEOR COMPUT SCI, V410, P53, DOI 10.1016/j.tcs.2008.09.065 Flum Jorg, 2006, TEXT THEORET COMP S FRIESEN DK, 1981, MATH OPER RES, V6, P74, DOI 10.1287/moor.6.1.74 Guo J., 2007, SIGACT News, V38, P31, DOI 10.1145/1233481.1233493 Hirsch JE, 2005, P NATL ACAD SCI USA, V102, P16569, DOI 10.1073/pnas.0507655102 Komusiewicz C, 2012, LECT NOTES COMPUT SC, V7464, P19, DOI 10.1007/978-3-642-32589-2_2 Kratsch Stefan, 2014, Bulletin of the European Association for Theoretical Computer Science, V113, P58 Niedermeier R., 2006, OXFORD LECT SERIES M, V31 Niedermeier R, 2010, LEIBNIZ INT PR INFOR, V5, P17, DOI 10.4230/LIPIcs.STACS.2010.2495 Pavlou C, 2016, AAMAS'16: PROCEEDINGS OF THE 2016 INTERNATIONAL CONFERENCE ON AUTONOMOUS AGENTS & MULTIAGENT SYSTEMS, P32 van Bevern R, 2015, PROCEEDINGS OF THE TWENTY-FOURTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE (IJCAI), P808 Vinkler P, 2013, J INFORMETR, V7, P72, DOI 10.1016/j.joi.2012.08.001 Walter R., 2016, J SCHED IN PRESS Wang FY, 2011, IEEE INTELL SYST, V26, P5 Woeginger GJ, 2008, J INFORMETR, V2, P364, DOI 10.1016/j.joi.2008.05.002 Woeginger GJ, 2008, MATH SOC SCI, V56, P224, DOI 10.1016/j.mathsocsci.2008.03.001 Yong A., 2014, Not. Am. Math. Soc., V61, P1040, DOI [DOI 10.1090/NOTI1164, DOI 10.1090/N0TI1164] Zeng D, 2013, IEEE INTELL SYST, V28, P86, DOI 10.1109/MIS.2013.57 NR 33 TC 13 Z9 13 U1 1 U2 15 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS SN 0004-3702 EI 1872-7921 J9 ARTIF INTELL JI Artif. Intell. PD NOV PY 2016 VL 240 BP 19 EP 35 DI 10.1016/j.artint.2016.08.001 PG 17 WC Computer Science, Artificial Intelligence WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Computer Science GA DY1JM UT WOS:000384851300002 OA Green Submitted, Green Published, hybrid DA 2024-09-05 ER PT J AU Lu, QQ Chai, YX Ren, LH Ren, PY Zhou, JH Lin, CL AF Lu, Qianqian Chai, Yongxiang Ren, Lihui Ren, Pengyu Zhou, Junhui Lin, Chunlei TI Research on quality evaluation of innovation and entrepreneurship education for college students based on random forest algorithm and logistic regression model SO PEERJ COMPUTER SCIENCE LA English DT Article DE Innovation; Entrepreneurship; Random forest; Logistic regression; Entrepreneurial education; Curriculum development AB The quality evaluation of innovation and entrepreneurship (I&E) in the education sector is achieving worldwide attention as empowering nations with high quality talents is quintessential for economic progress. China, a pioneer in the world market in almost all sectors have transformed its educational policies and incorporated entrepreneurial skills as a part of their education models to further catalyst the country's economic progress. This research focuses on building a novel hybrid Machine Learning (ML) model by integrating two powerful algorithms namely Random Forest (RF) and Logistic Regression (LR) to assess the intensity of the I&E in education from the data acquired from 25 leading Higher Educational Institution's (HEI) in different provinces. The major contributions to the work are, (1) construction of quality index for each topic of interest using individual RF, (2) ranking the indicators based on the quality index to assess the strength and weaknesses, (3) and finally use the LR algorithm study the quality of each indicator. The efficacy of the proposed hybrid model is validated using the benchmark classification metrics to assess its learning and prediction performance in evaluating the quality of I&E education. The result of the research portrays that the universities have now started to integrate entrepreneurship skills as a part of the curriculum, which is evident from the better ranking of the topic curriculum development which is followed by the enrichment of skills. This comprehensive research will help the institutions to identify the potential areas of growth to boost the economic development and improve the skill set necessary for I&E education among college students. C1 [Lu, Qianqian] Zhejiang Guangsha Vocat & Tech Univ Construct, Adm Off, Dongyang, Peoples R China. [Chai, Yongxiang] Zhejiang Guangsha Vocat & Tech Univ Construct, Sch Informat, Dongyang, Peoples R China. [Ren, Lihui; Ren, Pengyu; Zhou, Junhui] Zhejiang Guangsha Vocat & Tech Univ Construct, Dept Publ Phys Educ, Dongyang, Peoples R China. [Lin, Chunlei] Zhejiang Guangsha Vocat & Tech Univ Construct, Dept Educ & Engn, Dongyang, Peoples R China. RP Ren, LH (corresponding author), Zhejiang Guangsha Vocat & Tech Univ Construct, Dept Publ Phys Educ, Dongyang, Peoples R China. EM renlihui578@163.com CR Arqawi SM, 2022, INT J ADV COMPUT SC, V13, P315 Boldureanu G, 2020, SUSTAINABILITY-BASEL, V12, DOI 10.3390/su12031267 Chen XX, 2022, MOB INF SYST, V2022, DOI 10.1155/2022/6176675 Chen Y, ED LANGUAGE SOCIOLOG, V3, P1, DOI [10.22158/ELSR.V3N2P1, DOI 10.22158/ELSR.V3N2P1] Dirik M., 2022, Journal of Fuzzy Extension and Applications, P302, DOI DOI 10.22105/JFEA.2022.345344.1223 Duan LH, 2022, FRONT PSYCHOL, V12, DOI 10.3389/fpsyg.2022.627818 Edwards AS, 2021, TRANSPLANTATION, V105, P699, DOI 10.1097/TP.0000000000003316 Eisinga R, 2013, INT J PUBLIC HEALTH, V58, P637, DOI 10.1007/s00038-012-0416-3 Fawagreh K, 2014, SYST SCI CONTROL ENG, V2, P602, DOI 10.1080/21642583.2014.956265 Geng L, 2022, COMPUT INTEL NEUROSC, V2022, DOI 10.1155/2022/7228833 Gkiokas A, 2018, COMPUT INTELL-US, V34, P603, DOI 10.1111/coin.12167 Gong YJ, 2020, ED MODERNIZATION, V7, P19, DOI [10.16541/j.cnki.2095-8420.2020.12.007, DOI 10.16541/J.CNKI.2095-8420.2020.12.007] Gordon A, 2022, J ED RES POLICIES, V4, P42, DOI [10.53469/JERP.2022.04(06).09, DOI 10.53469/JERP.2022.04(06).09] Graham B, 2022, J BUS RES, V152, P42, DOI 10.1016/j.jbusres.2022.07.043 Guo K, 2022, JIANGSU COMMERCIAL F, V458, P108, DOI [10.13395/j.cnki.issn.1009-0061.2022.12.008, DOI 10.13395/J.CNKI.ISSN.1009-0061.2022.12.008] Han G, 2018, J SHENYANG I ENG, V14, P134, DOI [10.13888/j.cnki.jsie(ss).2018.01.022, DOI 10.13888/J.CNKI.JSIE(SS).2018.01.022] He W, 2022, CONT ED CULTURE, V14, P103, DOI [10.13749/j.cnki.cn62-1202/g4.2022.05.001, DOI 10.13749/J.CNKI.CN62-1202/G4.2022.05.001] Jiang YZ, 2021, SCI PROGRAMMING-NETH, V2021, DOI 10.1155/2021/8971588 Jing G, 2022, MATH PROBL ENG, V2022, DOI 10.1155/2022/1802156 Karahan M, 2022, Journal of Fuzzy Extension and Applications, V3, P219, DOI [10.22105/jfea.2022.328472.1201, DOI 10.22105/JFEA.2022.328472.1201] Karen W, 2008, ENTREPRENEURSHIP ED Knox J., 2019, Education and technological unemployment, P297 Li J, 2021, SCI PROGRAMMING-NETH, V2021, DOI 10.1155/2021/1833979 Liñán F, 2015, INT ENTREP MANAG J, V11, P907, DOI 10.1007/s11365-015-0356-5 Liu XY, 2022, EDUC INF TECHNOL, V27, P9913, DOI 10.1007/s10639-022-11010-x Mehbodniya A, 2022, EXPERT SYST, V39, DOI 10.1111/exsy.12899 Meyners M, 2022, FOOD QUAL PREFER, V95, DOI 10.1016/j.foodqual.2021.104339 Niu L, 2020, EDUC REV, V72, P41, DOI 10.1080/00131911.2018.1483892 Onesmus M., 2020, Introduction to random forest in machine learning Rastrollo-Guerrero JL, 2020, APPL SCI-BASEL, V10, DOI 10.3390/app10031042 Ratten V, 2021, INT J MANAG EDUC-OXF, V19, DOI 10.1016/j.ijme.2020.100367 Sabahi S, 2020, INT J PROD ECON, V226, DOI 10.1016/j.ijpe.2020.107621 Setiawan A, 2021, TECHNIUM SOC SCI J, V23, P134, DOI [10.47577/tssj.v23i1.4500, DOI 10.47577/TSSJ.V23I1.4500] Trakunphutthirak R, 2022, J EDUC COMPUT RES, V60, P742, DOI 10.1177/07356331211048777 Vij S, 2020, WIRELESS PERS COMMUN, V111, P1271, DOI 10.1007/s11277-019-06913-x Wang CL, 2022, FRONT PSYCHOL, V12, DOI 10.3389/fpsyg.2021.767310 Wang H, 2022, ED J, V11, P249 Wang J, 2022, J NATL ACAD ED ADM, V298, P50 Wang WH, 2023, COMPUT APPL ENG EDUC, V31, P100, DOI 10.1002/cae.22573 Wenfeng Huang, 2019, Journal of Physics: Conference Series, V1423, DOI 10.1088/1742-6596/1423/1/012058 Xiong WY, 2022, CHINA ECON REV, V72, DOI 10.1016/j.chieco.2022.101752 Xu HJ, 2023, ENVIRON SCI POLLUT R, V30, P21708, DOI 10.1007/s11356-022-23770-7 Yang Q, 2021, J INTELL FUZZY SYST, V40, P6517, DOI 10.3233/JIFS-189490 Yulian F, 2014, P 2014 2 INT C SOCIA, P101 Zhang JL, 2020, FRONT PSYCHOL, V11, DOI 10.3389/fpsyg.2020.01605 Zhou YL, 2021, SAGE OPEN, V11, DOI 10.1177/21582440211031616 NR 46 TC 1 Z9 1 U1 8 U2 18 PU PEERJ INC PI LONDON PA 341-345 OLD ST, THIRD FLR, LONDON, EC1V 9LL, ENGLAND EI 2376-5992 J9 PEERJ COMPUT SCI JI PeerJ Comput. Sci. PD APR 17 PY 2023 VL 9 AR e1329 DI 10.7717/peerj-cs.1329 PG 22 WC Computer Science, Artificial Intelligence; Computer Science, Information Systems; Computer Science, Theory & Methods WE Science Citation Index Expanded (SCI-EXPANDED) SC Computer Science GA P8TE7 UT WOS:001053334400005 PM 37346726 OA gold, Green Published DA 2024-09-05 ER PT C AU Zhang, K AF Zhang, Ke BE Li, K Fei, M Irwin, GW Ma, SW TI Research on coaxiality errors evaluation based on ant colony optimization algorithm SO BIO-INSPIRED COMPUTATIONAL INTELLIGENCE AND APPLICATIONS SE Lecture Notes in Computer Science LA English DT Proceedings Paper CT International Conference on Life System Modeling and Simulation (LSMS) CY SEP 14-17, 2007 CL Shanghai, PEOPLES R CHINA ID FLATNESS AB Based on the analysis of existent evaluation methods for coaxiality errors, an intelligent evaluation method is provided in this paper. The evolutional optimum model and the calculation process are introduced in detail. According to characteristics of coaxiality error evaluation, ant colony optimization (ACO) algorithm is proposed to evaluate the minimum zone error. Compared with conventional optimum evaluation methods such as simplex search and Powell method, it can find the global optimal solution, and the precision of calculating result is very good. Then, the objective function calculation approaches for using the ACO algorithm to evaluate minimum zone error are formulated. Finally, the control experiment results evaluated by different method such as the least square, simplex search, Powell optimum methods and GA, indicate that the proposed method does provide better accuracy on coaxiality error evaluation, and it has fast convergent speed as well as using computer expediently and popularizing application easily. C1 [Zhang, Ke] Shanghai Inst Technol, Sch Mech & Automat Engn, Shanghai 200235, Peoples R China. C3 Shanghai Institute of Technology RP Zhang, K (corresponding author), Shanghai Inst Technol, Sch Mech & Automat Engn, Shanghai 200235, Peoples R China. EM zkwy@hotmail.com CR [Anonymous], 2004, ANT COLONY OPTIMIZAT [Anonymous], 1999, Swarm Intelligence BESTEN M, 2000, PPSN 6 LNCS, V1917 Botee H., 1999, APPEAR ADV COMPLEX S, V1, P149 Cheraghi SH, 1996, PRECIS ENG, V18, P30, DOI 10.1016/0141-6359(95)00033-X Colorni A., 1991, Distributed optimization by ant colonies, V142, P134 Gambardella LM, 1999, J OPER RES SOC, V50, P167, DOI 10.2307/3010565 GAMBARDELLA LM, 2002, PPSN 7 LNCS, V2439 HUANG ST, 1993, PRECIS ENG, V15, P25, DOI 10.1016/0141-6359(93)90275-F KANADA T, 1993, PRECIS ENG, V15, P93, DOI 10.1016/0141-6359(93)90343-9 Singiresu S. R., 1996, ENG OPTIMIZATION NR 11 TC 0 Z9 0 U1 0 U2 1 PU SPRINGER-VERLAG BERLIN PI BERLIN PA HEIDELBERGER PLATZ 3, D-14197 BERLIN, GERMANY SN 0302-9743 EI 1611-3349 BN 978-3-540-74768-0 J9 LECT NOTES COMPUT SC PY 2007 VL 4688 BP 267 EP 276 PG 10 WC Computer Science, Artificial Intelligence; Computer Science, Information Systems; Computer Science, Software Engineering; Computer Science, Theory & Methods; Mathematical & Computational Biology WE Conference Proceedings Citation Index - Science (CPCI-S) SC Computer Science; Mathematical & Computational Biology GA BGV86 UT WOS:000250830800030 DA 2024-09-05 ER PT J AU Romanello, M Najem-Meyer, S AF Romanello, Matteo Najem-Meyer, Sven TI A Named Entity-Annotated Corpus of 19th Century Classical Commentaries SO JOURNAL OF OPEN HUMANITIES DATA LA English DT Article; Data Paper DE historical commentaries; classics; named entity recognition; entity linking; bibliographic reference extraction AB We release a multilingual named entity (NE) corpus of 19th century commentaries to Sophocles' Ajax. Selected commentaries are written in English, German and French, but are also replete with Latin and Greek quotes. Bibliographic entities were annotated along traditional named entities following our guidelines (Romanello & Najem-Meyer, 2022). The corpus contains about 300 annotated pages, 111,216 tokens and 7,334 entity mentions and was featured in the HIPE-2022 shared task. Although named entity recognition (NER) showed reassuring results, optical character recognition (OCR) mistakes and extensive use of abbreviation kept entity linking (EL) a challenging task. With such characteristics, this corpus offers an excellent way to assess the adaptability of information extraction systems to noisy, domain-specific multilingual and multiscript environments. C1 [Romanello, Matteo] Univ Lausanne, Inst Archeol & Class Studies, Lausanne, Switzerland. [Najem-Meyer, Sven] Swiss Fed Inst Technol Lausanne, Digital Humanities Lab, Lausanne, Switzerland. C3 University of Lausanne; Swiss Federal Institutes of Technology Domain; Ecole Polytechnique Federale de Lausanne RP Romanello, M (corresponding author), Univ Lausanne, Inst Archeol & Class Studies, Lausanne, Switzerland. EM matteo.romanello@unil.ch OI Romanello, Matteo/0000-0002-7406-6286 FU Swiss National Science Foundation under the Ambizione scheme [PZ00P1_186033]; Swiss National Science Foundation (SNF) [PZ00P1_186033] Funding Source: Swiss National Science Foundation (SNF) FX This research was funded by the Swiss National Science Foundation under the Ambizione scheme (Grant number: PZ00P1_186033) . CR Bugert M., 2018, P 27 INT C COMP LING, P5 Colavizza G., 2019, Journal of European Periodical Studies, V4, DOI [DOI 10.21825/JEPS.V4I1.10120, 10.21825/jeps.v4i1.10120] Colavizza Giovanni, 2017, J. Open Human. Data, V3, P2, DOI DOI 10.5334/JOHD.9 Ehrmann M., 2022, P WORKING NOTES CLEF, V3180, DOI [10.1007/978-3-031- 13643-6_26, DOI 10.1007/978-3-031-13643-6_26] Ehrmann M, 2024, ACM COMPUT SURV, V56, DOI 10.1145/3604931 Hamacher Marius, 2022, Zenodo, DOI 10.5281/ZENODO.5654690 Romanello M, 2021, PROCEEDINGS OF THE 6TH INTERNATIONAL WORKSHOP ON HISTORICAL DOCUMENT IMAGING AND PROCESSING, HIP 2021, P1, DOI 10.1145/3476887.3476911 Romanello Matteo, 2022, Guidelines for the annotation of named entities in the domain of classics, DOI [10.5281/zenodo.6368101, DOI 10.5281/ZENODO.6368101] SCHwETER Stefan, 2022, P CLEF 2022 C LABS E, P1109 NR 9 TC 0 Z9 0 U1 0 U2 0 PU UBIQUITY PRESS LTD PI LONDON PA Unit 3N, 6 Osborn Street, LONDON, E1 6TD, ENGLAND EI 2059-481X J9 J OPEN HUMANIT DATA JI J. Open Humanit. Data PY 2024 VL 10 AR 1 DI 10.5334/johd.150 PG 7 WC Humanities, Multidisciplinary; Social Sciences, Interdisciplinary WE Emerging Sources Citation Index (ESCI) SC Arts & Humanities - Other Topics; Social Sciences - Other Topics GA OR0S7 UT WOS:001208889500008 OA gold DA 2024-09-05 ER PT J AU Yu, SS Carroll, F Bentley, BL AF Yu, Shasha Carroll, Fiona Bentley, Barry L. TI Insights Into Privacy Protection Research in AI SO IEEE ACCESS LA English DT Article DE AI; artificial intelligence; bibliometric analysis; privacy protection ID ARTIFICIAL-INTELLIGENCE; BIBLIOMETRIC ANALYSIS; SCIENCE; SECURITY; INDEX AB This paper presents a systematic bibliometric analysis of the artificial intelligence (AI) domain to explore privacy protection research as AI technologies integrate and data privacy concerns rise. Understanding evolutionary patterns and current trends in this research is crucial. Leveraging bibliometric techniques, the authors analyze 8,322 papers from the Web of Science (WoS) database, spanning 1990 to 2023. The analysis highlights IEEE Transactions on Knowledge and Data Engineering and IEEE Access journals as highly influential, the former being an early contributor and the latter emerging as a pivotal source. The study demonstrates substantial disparities in scientific productivity across countries. Specifically, the top 10 countries collectively accounted for 74.8% of the articles, with China and the USA making up nearly half of the total contribution (46.1%). In contrast, regions in Africa and South America exhibited lower scientific production. The evolution of privacy preservation research is reflected, shifting from an algorithm-oriented approach to a focus on data orientation, and subsequently, to privacy solutions centered around Cloud Computing. In recent years, there has been a shift towards embracing Federated Learning and Differential Privacy. The analysis brings to light emerging themes and identifies research gaps, notably a global disparity in research output and a lag in ethical and legal inquiry. It asserts that enhanced interdisciplinary collaboration is imperative to formulate comprehensive privacy solutions for AI. Specifically, the paper imparts invaluable insights that are pivotal for effectively addressing the evolving privacy concerns in the era of AI and big data. C1 [Yu, Shasha] Clark Univ, Sch Profess Studies, Worcester, MA 01610 USA. [Carroll, Fiona; Bentley, Barry L.] Cardiff Metropolitan Univ, Cardiff Sch Technol, Cardiff CF5 2YB, Wales. C3 Clark University; Cardiff Metropolitan University RP Yu, SS (corresponding author), Clark Univ, Sch Profess Studies, Worcester, MA 01610 USA. EM ShaYu@clarku.edu RI Bentley, Barry L./K-2802-2017 OI Bentley, Barry L./0000-0002-4360-5902; Carroll, Fiona/0000-0002-9967-2207 CR Abadi M, 2016, CCS'16: PROCEEDINGS OF THE 2016 ACM SIGSAC CONFERENCE ON COMPUTER AND COMMUNICATIONS SECURITY, P308, DOI 10.1145/2976749.2978318 Abduljabbar R, 2019, SUSTAINABILITY-BASEL, V11, DOI 10.3390/su11010189 Agustí MA, 2023, SPAN J FINANC ACCOUN, V52, P412, DOI 10.1080/02102412.2022.2099675 Al-Rubaie M, 2019, IEEE SECUR PRIV, V17, P49, DOI 10.1109/MSEC.2018.2888775 Alepis E, 2017, IEEE ACCESS, V5, P17841, DOI 10.1109/ACCESS.2017.2747626 Ali A. S., 2023, Bull. Electr. Eng. Informat., V12, P587 [Anonymous], 2021, UN NewsNov. [Anonymous], ART INT Arachchige PCM, 2020, IEEE INTERNET THINGS, V7, P5827, DOI 10.1109/JIOT.2019.2952146 Aria M, 2022, SUSTAINABILITY-BASEL, V14, DOI 10.3390/su14063643 Aria M, 2020, SOC INDIC RES, V149, P803, DOI 10.1007/s11205-020-02281-3 Aria M, 2017, J INFORMETR, V11, P959, DOI 10.1016/j.joi.2017.08.007 Bansal G, 2010, DECIS SUPPORT SYST, V49, P138, DOI 10.1016/j.dss.2010.01.010 Bolton T, 2021, SENSORS-BASEL, V21, DOI 10.3390/s21072312 Bonawitz K, 2017, CCS'17: PROCEEDINGS OF THE 2017 ACM SIGSAC CONFERENCE ON COMPUTER AND COMMUNICATIONS SECURITY, P1175, DOI 10.1145/3133956.3133982 Cao L., 2020, Journal of Information Technology, V1, P1, DOI [10.2139/ssrn.3647625, DOI 10.2139/SSRN.3647625] Chan AB, 2008, PROC CVPR IEEE, P1766, DOI 10.1109/cvpr.2008.4587569 Darko A, 2020, AUTOMAT CONSTR, V112, DOI 10.1016/j.autcon.2020.103081 Donthu N, 2021, J BUS RES, V133, P285, DOI 10.1016/j.jbusres.2021.04.070 Egghe L, 2006, SCIENTOMETRICS, V69, P131, DOI 10.1007/s11192-006-0144-7 Entezari A, 2023, ENERGY STRATEG REV, V45, DOI 10.1016/j.esr.2022.101017 European Parliament, 2021, Artificial Intelligence Act Fast NJ, 2020, CURR OPIN PSYCHOL, V31, P44, DOI 10.1016/j.copsyc.2019.07.011 Feng CM, 2021, AUSTRALAS MARK J, V29, P252, DOI 10.1016/j.ausmj.2020.07.006 Garfield E, 2004, J INF SCI, V30, P119, DOI 10.1177/0165551504042802 Goodell JW, 2021, J BEHAV EXP FINANC, V32, DOI 10.1016/j.jbef.2021.100577 Haenlein M, 2019, CALIF MANAGE REV, V61, P5, DOI 10.1177/0008125619864925 Hajkowicz S, 2023, TECHNOL SOC, V74, DOI 10.1016/j.techsoc.2023.102260 Hao M, 2020, IEEE T IND INFORM, V16, P6532, DOI 10.1109/TII.2019.2945367 Hinds J, 2020, INT J HUM-COMPUT ST, V143, DOI 10.1016/j.ijhcs.2020.102498 Hirsch JE, 2007, P NATL ACAD SCI USA, V104, P19193, DOI 10.1073/pnas.0707962104 Hirsch JE, 2005, P NATL ACAD SCI USA, V102, P16569, DOI 10.1073/pnas.0507655102 Islam MM, 2021, HEALTHCARE-BASEL, V9, DOI 10.3390/healthcare9040441 Jha K, 2019, ARTIF INTELL AGR, V2, P1, DOI 10.1016/j.aiia.2019.05.004 Kaissis GA, 2020, NAT MACH INTELL, V2, P305, DOI 10.1038/s42256-020-0186-1 Kantarcioglu M, 2004, IEEE T KNOWL DATA EN, V16, P1026, DOI 10.1109/TKDE.2004.45 Li P, 2017, FUTURE GENER COMP SY, V74, P76, DOI 10.1016/j.future.2017.02.006 Liang JC, 2023, INTERACT LEARN ENVIR, V31, P4270, DOI 10.1080/10494820.2021.1958348 Lin HC, 2016, INFORMATION, V7, DOI 10.3390/info7030044 Linden T, 2019, Arxiv, DOI [arXiv:1809.08396, 10.48550/arXiv.1809.08396, DOI 10.48550/ARXIV.1809.08396] Liu K, 2006, IEEE T KNOWL DATA EN, V18, P92, DOI 10.1109/TKDE.2006.14 Liu N, 2021, SCIENTOMETRICS, V126, P3153, DOI 10.1007/s11192-021-03868-4 Lu YL, 2020, IEEE T IND INFORM, V16, P4177, DOI 10.1109/TII.2019.2942190 Ma C, 2022, LIBR HI TECH, V40, P786, DOI 10.1108/LHT-01-2021-0006 Manheim Kari, 2019, YALE J LAW TECHNOLOG, V21, P106 McCarthy J, 2006, AI MAG, V27, P12 Melin G, 1996, SCIENTOMETRICS, V36, P363, DOI 10.1007/BF02129600 Mohassel P, 2017, P IEEE S SECUR PRIV, P19, DOI [10.1109/SP.2017.12, 10.1145/3132747.3132768] Mongeon P, 2016, SCIENTOMETRICS, V106, P213, DOI 10.1007/s11192-015-1765-5 Morris SA, 2008, ANNU REV INFORM SCI, V42, P213 Mothukuri V, 2021, FUTURE GENER COMP SY, V115, P619, DOI 10.1016/j.future.2020.10.007 Munim ZH, 2020, MARIT POLICY MANAG, V47, P577, DOI 10.1080/03088839.2020.1788731 Murdoch B, 2021, BMC MED ETHICS, V22, DOI 10.1186/s12910-021-00687-3 Naker S., 2017, BUJ Sci. Tech. L., V23, P88 Nasr M, 2019, P IEEE S SECUR PRIV, P739, DOI 10.1109/SP.2019.00065 Nasr M, 2018, PROCEEDINGS OF THE 2018 ACM SIGSAC CONFERENCE ON COMPUTER AND COMMUNICATIONS SECURITY (CCS'18), P634, DOI 10.1145/3243734.3243855 Newton EM, 2005, IEEE T KNOWL DATA EN, V17, P232, DOI 10.1109/TKDE.2005.32 Nikolaenko V, 2013, P IEEE S SECUR PRIV, P334, DOI 10.1109/SP.2013.30 Noyons ECM, 1999, J AM SOC INFORM SCI, V50, P115, DOI 10.1002/(SICI)1097-4571(1999)50:2<115::AID-ASI3>3.3.CO;2-A OECD AI Policy Observatory, 2023, National AI Policies. Perianes-Rodriguez A, 2016, J INFORMETR, V10, P1178, DOI 10.1016/j.joi.2016.10.006 PETERS HPF, 1991, SCIENTOMETRICS, V20, P235, DOI 10.1007/BF02018157 Pfeifle A, 2018, WASH LAW REV, V93, P421 Phan N, 2017, IEEE DATA MINING, P385, DOI 10.1109/ICDM.2017.48 Phong LT, 2018, IEEE T INF FOREN SEC, V13, P1333, DOI 10.1109/TIFS.2017.2787987 PRITCHARD A, 1969, J DOC, V25, P348 Rezende IN, 2020, NEW J EUR CRIM LAW, V11, P375, DOI 10.1177/2032284420948161 Saheb T, 2021, COMPUT BIOL MED, V135, DOI 10.1016/j.compbiomed.2021.104660 Sharma S., 2019, Data Privacy and GDPR Handbook Shokri R, 2015, ANN ALLERTON CONF, P909, DOI 10.1109/ALLERTON.2015.7447103 Shukla AK, 2019, ENG APPL ARTIF INTEL, V85, P517, DOI 10.1016/j.engappai.2019.06.010 Small H, 1997, SCIENTOMETRICS, V38, P275, DOI 10.1007/BF02457414 SMALL H, 1973, J AM SOC INFORM SCI, V24, P265, DOI 10.1002/asi.4630240406 Sweeney L, 2002, INT J UNCERTAIN FUZZ, V10, P557, DOI 10.1142/S0218488502001648 Sweileh WM, 2017, MULTIDISCIP RESP MED, V11, DOI 10.1186/s40248-016-0081-0 Szolovits P., 2019, Artificial intelligence in medicine Taeihagh A, 2019, TRANSPORT REV, V39, P103, DOI 10.1080/01441647.2018.1494640 The White House, 2023, FACT SHEET PRES BID Ünal Z, 2020, IEEE ACCESS, V8, P105587, DOI 10.1109/ACCESS.2020.3000175 UNESCO, 2021, REC ETH ART INT Vaidya J, 2008, VLDB J, V17, P879, DOI 10.1007/s00778-006-0041-y van Eck NJ, 2010, SCIENTOMETRICS, V84, P523, DOI 10.1007/s11192-009-0146-3 Wamba SF, 2021, TECHNOL FORECAST SOC, V164, DOI 10.1016/j.techfore.2020.120482 Wang C, 2018, ENGINEERING-PRC, V4, P21, DOI 10.1016/j.eng.2018.02.005 Wang N, 2019, PROC INT CONF DATA, P638, DOI 10.1109/ICDE.2019.00063 Wei K, 2020, IEEE T INF FOREN SEC, V15, P3454, DOI 10.1109/TIFS.2020.2988575 Yin Y., 2022, Open J. Bus. Manage, V10, P3024 Yu S., 2023, Data Protection in a Post-Pandemic Society: Laws, Regulations, Best Practices and Recent Solutions, P145 Yu S., 2022, Artificial Intelligence in Cyber Security: Impact and Implications: Security Challenges, Technical and Ethical Issues, Forensic Investigative Challenges, P157 Yuan JW, 2014, IEEE T PARALL DISTR, V25, P212, DOI 10.1109/TPDS.2013.18 Zhang D., 2022, Tech. Rep. Zhang QC, 2016, IEEE T COMPUT, V65, P1351, DOI 10.1109/TC.2015.2470255 Zhang Y, 2021, KNOWL-BASED SYST, V222, DOI 10.1016/j.knosys.2021.106994 Zhu JW, 2020, SCIENTOMETRICS, V123, P321, DOI 10.1007/s11192-020-03387-8 NR 94 TC 0 Z9 0 U1 14 U2 14 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 2169-3536 J9 IEEE ACCESS JI IEEE Access PY 2024 VL 12 BP 41704 EP 41726 DI 10.1109/ACCESS.2024.3378126 PG 23 WC Computer Science, Information Systems; Engineering, Electrical & Electronic; Telecommunications WE Science Citation Index Expanded (SCI-EXPANDED) SC Computer Science; Engineering; Telecommunications GA MF5R3 UT WOS:001192229700001 OA gold DA 2024-09-05 ER PT C AU Ho, TKT Bui, QV Bui, M AF Thi Kim Thoa Ho Quang Vu Bui Bui, Marc GP Assoc Comp Machinery TI Co-author Relationship Prediction in Bibliographic Network: A New Approach Using Geographic Factor and Latent Topic Information SO SOICT 2019: PROCEEDINGS OF THE TENTH INTERNATIONAL SYMPOSIUM ON INFORMATION AND COMMUNICATION TECHNOLOGY LA English DT Proceedings Paper CT 10th International Symposium on Information and Communication Technology (SoICT) CY DEC 04-06, 2019 CL VIETNAM DE Link prediction; bibliographic network; multi-relation network; topic modeling AB In this research, we propose a novel approach for co-author relationship prediction in a bibliographic network utilizing geographic factor and latent topic information. We utilize a supervised method to predict the co-author relationship formation where combining dissimilar features with the dissimilar measuring coefficient. Firstly, besides existing relations have been studied in previous researches, we exploit new relation related to the geographic factor which contributes as a topological feature. Moreover, we discover content feature based on textual information from author's papers using topic modeling. Finally, we amalgamate topological features and content feature in co-author relationship prediction. We conducted experiments on dissimilar datasets of the bibliographic network and have attained satisfactory results. C1 [Thi Kim Thoa Ho; Bui, Marc] PSL Res Univ, CHArt Lab EA 4004, EPHE, Paris, France. [Thi Kim Thoa Ho] Hue Univ, Univ Educ, Hue, Vietnam. [Quang Vu Bui] Hue Univ Vietnam, Univ Sci, Hue, Vietnam. C3 Universite PSL; Ecole Pratique des Hautes Etudes (EPHE); Universite Paris-Est-Creteil-Val-de-Marne (UPEC); Hue University; Hue University RP Ho, TKT (corresponding author), PSL Res Univ, CHArt Lab EA 4004, EPHE, Paris, France.; Ho, TKT (corresponding author), Hue Univ, Univ Educ, Hue, Vietnam. EM thi-kim-thoa.ho@etu.ephe.psl.eu; buiquangvu@hueuni.edu.vn; marc.bui@ephe.psl.eu CR Adamic LA, 2003, SOC NETWORKS, V25, P211, DOI 10.1016/S0378-8733(03)00009-1 Al Hasan Mohammad, LINK PREDICTION USIN, P10 [Anonymous], P ACM KDD, DOI DOI 10.1145/1835804.1835837 [Anonymous], 2005, ACM SIGKDD EXPLOR NE Blei DM, 2002, ADV NEUR IN, V14, P601 Buntine W, 2009, LECT NOTES ARTIF INT, V5828, P51, DOI 10.1007/978-3-642-05224-8_6 Gao F, 2015, SCI PROGRAMMING-NETH, V2015, DOI 10.1155/2015/172879 Liben-Nowell D, 2007, J AM SOC INF SCI TEC, V58, P1019, DOI 10.1002/asi.20591 Lü LY, 2011, PHYSICA A, V390, P1150, DOI 10.1016/j.physa.2010.11.027 Popescul Alexandrin, 2003, STAT RELATIONAL LEAR Bui QV, 2017, LECT NOTES ARTIF INT, V10191, P248, DOI 10.1007/978-3-319-54472-4_24 Rosen-Zvi Michal., 2004, UAI SALTON G, 1988, INFORM PROCESS MANAG, V24, P513, DOI 10.1016/0306-4573(88)90021-0 Srinivas V, 2016, SPRINGERBRIEF COMPUT, P57, DOI 10.1007/978-3-319-28922-9_5 Sun YZ, 2011, 2011 INTERNATIONAL CONFERENCE ON ADVANCES IN SOCIAL NETWORKS ANALYSIS AND MINING (ASONAM 2011), P121, DOI 10.1109/ASONAM.2011.112 Taskar B., 2003, Advances in neural information processing systems, P659 Wang C, 2007, IEEE DATA MINING, P322, DOI 10.1109/ICDM.2007.108 Yang Y, 2015, KNOWL INF SYST, V45, P751, DOI 10.1007/s10115-014-0789-0 NR 18 TC 1 Z9 1 U1 0 U2 1 PU ASSOC COMPUTING MACHINERY PI NEW YORK PA 1515 BROADWAY, NEW YORK, NY 10036-9998 USA BN 978-1-4503-7245-9 PY 2019 BP 69 EP 77 DI 10.1145/3368926.3369668 PG 9 WC Computer Science, Theory & Methods; Engineering, Electrical & Electronic; Telecommunications WE Conference Proceedings Citation Index - Science (CPCI-S) SC Computer Science; Engineering; Telecommunications GA BP3MI UT WOS:000548118100011 DA 2024-09-05 ER PT J AU Hu, ZW Luo, JM Chi, CGQ Gursoy, D AF Hu, Zongwei Luo, Jian Ming Chi, Christina Geng-Qing Gursoy, Dogan TI Examination of experience attributes of parks in urban tourist destinations and their influence on visitor satisfaction: a topic modelling approach SO LEISURE STUDIES LA English DT Article; Early Access DE Urban destinations; park experience; user-generated content (UGC); latent Dirichlet allocation (LDA); seasonal ID CITY; REVIEWS; HEALTH; MANAGEMENT; BENEFITS; SEASON; SPACES AB Understanding visitors' park experience in urban tourist destinations to enhance their satisfaction is crucial for effective park management and urban planning. Through a topic modelling analysis using user-generated data from TripAdvisor and employing the Latent Dirichlet Allocation (LDA) algorithm, 20 attributes of urban park experience are identified and grouped into three categories and five dimensions. Besides confirming some of the attributes of park experience identified in previous research, this study also uncovers new attributes that provide insights into visitors' urban park experience related to the historical and cultural aspects (e.g. filming location, carriage rides and rickshaws). Furthermore, positive and negative effects of each attribute on visitor satisfaction are identified. Findings also suggest significant seasonal difference in attributes of visitors' urban park experience. C1 [Hu, Zongwei] Macau Univ Sci & Technol, Fac Hospitality & Tourism Management, Macau, Peoples R China. [Luo, Jian Ming] Macau Univ Sci & Technol, Sch Liberal Arts, Macau, Peoples R China. [Chi, Christina Geng-Qing; Gursoy, Dogan] Washington State Univ, Carson Coll Business, Sch Hospitality Business Management, Pullman, WA USA. [Chi, Christina Geng-Qing; Gursoy, Dogan] Univ Johannesburg, Sch Tourism & Hospitality, Johannesburg, South Africa. C3 Macau University of Science & Technology; Macau University of Science & Technology; Washington State University; University of Johannesburg RP Luo, JM (corresponding author), Macau Univ Sci & Technol, Sch Liberal Arts, Macau, Peoples R China. EM kenny.luo@connect.polyu.hk RI ; Chi, Christina G/AGE-9108-2022; Gursoy, Dogan/A-3493-2008 OI Hu, Zongwei/0000-0002-7456-0006; Chi, Christina G/0000-0002-8265-1768; Gursoy, Dogan/0000-0002-3602-9433 FU Macau University of Science and Technology Faculty Research Grants [FRG-24-004-SLA] FX This work was supported by the Macau University of Science and Technology Faculty Research Grants [FRG-24-004-SLA]. CR Ahas R, 2007, TOURISM MANAGE, V28, P898, DOI 10.1016/j.tourman.2006.05.010 Albayrak T, 2024, J HOSP MARKET MANAG, DOI 10.1080/19368623.2024.2327077 Ali T, 2022, METHODSX, V9, DOI 10.1016/j.mex.2022.101894 Ayala-Azcárraga C, 2019, LANDSCAPE URBAN PLAN, V189, P27, DOI 10.1016/j.landurbplan.2019.04.005 Barnes MR, 2019, FRONT PSYCHOL, V9, DOI 10.3389/fpsyg.2018.02617 Bilotta E., 2019, Environmental psychology: An introduction, V2nd, P36, DOI DOI 10.1002/9781119241072.CH4 Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993 Brooks AM, 2017, J ENVIRON PSYCHOL, V54, P91, DOI 10.1016/j.jenvp.2017.10.004 Calheiros AC, 2017, J HOSP MARKET MANAG, V26, P675, DOI 10.1080/19368623.2017.1310075 Chi CGQ, 2009, J HOSP MARKET MANAG, V18, P4, DOI 10.1080/19368620801988891 Churchman A., 2002, Handbook of environmental psychology COHEN E, 1985, ANN TOURISM RES, V12, P5, DOI 10.1016/0160-7383(85)90037-4 Fan YL, 2021, J OUTDOOR REC TOUR, V33, DOI 10.1016/j.jort.2020.100360 Frumkin P, 2001, AM J PREV MED, V20, P234, DOI 10.1016/S0749-3797(00)00317-2 Garzia F., 2020, International Journal of Safety and Security Engineering (IJSSE), V10, P11, DOI [https://doi.org/10.18280/ijsse.100102, DOI 10.18280/IJSSE.100102] Gatti ETJ, 2022, J OUTDOOR REC TOUR, V37, DOI 10.1016/j.jort.2021.100366 Godovykh M, 2020, TOUR MANAG PERSPECT, V35, DOI 10.1016/j.tmp.2020.100694 Grilli G, 2020, LANDSCAPE URBAN PLAN, V199, DOI 10.1016/j.landurbplan.2020.103814 Grossi L, 2021, TOURISM MANAGE, V84, DOI 10.1016/j.tourman.2021.104289 Guan C, 2021, URBAN FOR URBAN GREE, V58, DOI 10.1016/j.ufug.2020.126973 Guo Y, 2017, TOURISM MANAGE, V59, P467, DOI 10.1016/j.tourman.2016.09.009 Halkos G, 2021, ECON ANAL POLICY, V70, P502, DOI 10.1016/j.eap.2021.04.005 Hannam K, 2021, TOURIST STUD, V21, P57, DOI 10.1177/1468797621992931 Hu N, 2019, TOURISM MANAGE, V72, P417, DOI 10.1016/j.tourman.2019.01.002 Huai S, 2022, LANDSCAPE URBAN PLAN, V218, DOI 10.1016/j.landurbplan.2021.104307 Hwang J, 2018, ASIA PAC J TOUR RES, V23, P359, DOI 10.1080/10941665.2018.1444648 Jelodar H, 2019, MULTIMED TOOLS APPL, V78, P15169, DOI 10.1007/s11042-018-6894-4 Jones KR, 2018, ENVIRON HIST-UK, V24, P39, DOI 10.3197/096734018X15137949591837 Kladou S, 2015, J DESTIN MARK MANAGE, V4, P187, DOI 10.1016/j.jdmm.2015.04.003 Kuo TM, 2024, J HOSP MARKET MANAG, V33, P169, DOI 10.1080/19368623.2023.2241048 Lee ACK, 2011, J PUBLIC HEALTH-UK, V33, P212, DOI 10.1093/pubmed/fdq068 Lee JS, 2023, TOURISM MANAGE, V98, DOI 10.1016/j.tourman.2023.104746 Li FX, 2021, CURR ISSUES TOUR, V24, P2130, DOI 10.1080/13683500.2020.1820456 Liu RX, 2021, INT J ENV RES PUB HE, V18, DOI 10.3390/ijerph18010253 Liu ZW, 2015, TOURISM MANAGE, V47, P140, DOI 10.1016/j.tourman.2014.09.020 Lu WL, 2015, J HOSP MARKET MANAG, V24, P119, DOI 10.1080/19368623.2014.907758 Lucas C, 2015, POLIT ANAL, V23, P254, DOI 10.1093/pan/mpu019 Luo JM, 2024, INT J HOSP MANAG, V119, DOI 10.1016/j.ijhm.2024.103721 Luo JM, 2020, J TRAVEL TOUR MARK, V37, P272, DOI 10.1080/10548408.2020.1740138 Ma K, 2023, COMPLEX INTELL SYST, V9, P2571, DOI 10.1007/s40747-020-00223-7 Maier D, 2018, COMMUN METHODS MEAS, V12, P93, DOI 10.1080/19312458.2018.1430754 Mak BKL, 2019, CITIES, V92, P97, DOI 10.1016/j.cities.2019.03.008 Maniruzzaman KM, 2021, AIN SHAMS ENG J, V12, P3365, DOI 10.1016/j.asej.2020.11.020 Manning R.E., 2011, STUDIES OUTDOOR RECR, V3rd McCormack GR, 2010, HEALTH PLACE, V16, P712, DOI 10.1016/j.healthplace.2010.03.003 Meng F., 2008, J VACAT MARK, V14, P41, DOI [https://doi.org/10.1177/1356766707084218, DOI 10.1177/1356766707084218] Kaosiri YN, 2019, J TRAVEL RES, V58, P253, DOI 10.1177/0047287517746014 Nghiem-Phu Binh, 2021, Leisure/Loisir, V45, P121, DOI 10.1080/14927713.2021.1872409 Nordh H, 2009, URBAN FOR URBAN GREE, V8, P225, DOI 10.1016/j.ufug.2009.06.003 Özgüner H, 2006, LANDSCAPE URBAN PLAN, V74, P139, DOI 10.1016/j.landurbplan.2004.10.003 Perles-Ribes JF, 2021, ANATOLIA, V32, P489, DOI 10.1080/13032917.2021.1901752 Pine B.Joseph., 1999, EXPERIENCE EC WORK I Plunz RA, 2019, LANDSCAPE URBAN PLAN, V189, P235, DOI 10.1016/j.landurbplan.2019.04.024 Raboti B., 2010, INT C TOUR ENV PHIL, P353364 Roberts H, 2019, URBAN STUD, V56, P818, DOI 10.1177/0042098017748544 Roberts H, 2017, GEO-GEOGR ENVIRON, V4, DOI 10.1002/geo2.41 Roemmich JN, 2014, PREV CHRONIC DIS, V11, DOI 10.5888/pcd11.140175 Rusu V., 2016, DESIGN USER EXPERIEN Senbeto DL, 2024, TOUR ANAL, V29, P175, DOI 10.3727/108354224X17076820300692 Shang ZY, 2023, CURR ISSUES TOUR, V26, P2317, DOI 10.1080/13683500.2022.2086107 Shin S, 2024, J HOSP MARKET MANAG, V33, P602, DOI 10.1080/19368623.2023.2279166 Shirazi S.F. Mostafavi., 2011, Journal of Relationship Marketing, V10, P76, DOI DOI 10.1080/15332667.2011.577731 Shoukat MH, 2022, J HOSP MARKET MANAG, V31, P757, DOI 10.1080/19368623.2022.2062692 Sorakunnas E, 2020, J OUTDOOR REC TOUR, V31, DOI 10.1016/j.jort.2020.100311 Taecharungroj V, 2024, J PLACE MANAG DEV, V17, P49, DOI 10.1108/JPMD-04-2023-0041 Taecharungroj V, 2019, TOURISM MANAGE, V75, P550, DOI 10.1016/j.tourman.2019.06.020 Turrión-Prats J, 2017, TOUR ANAL, V22, P583, DOI 10.3727/108354217X15023805737701 Tyrväinen L, 2017, SCAND J FOREST RES, V32, P349, DOI 10.1080/02827581.2016.1241892 Veitch J, 2022, BMC PUBLIC HEALTH, V22, DOI 10.1186/s12889-022-13064-5 Veitch J, 2019, LANDSCAPE URBAN PLAN, V185, P173, DOI 10.1016/j.landurbplan.2019.02.013 Veitch J, 2017, LANDSCAPE URBAN PLAN, V161, P52, DOI 10.1016/j.landurbplan.2016.12.004 Wan C, 2021, URBAN FOR URBAN GREE, V62, DOI 10.1016/j.ufug.2021.127172 Wan C, 2020, URBAN FOR URBAN GREE, V51, DOI 10.1016/j.ufug.2020.126691 Wang WF, 2012, ANN TOURISM RES, V39, P1763, DOI 10.1016/j.annals.2012.05.029 Wilkins EJ, 2021, ENVIRON MANAGE, V67, P120, DOI 10.1007/s00267-020-01373-7 Wolf ID, 2015, J SUSTAIN TOUR, V23, P358, DOI 10.1080/09669582.2014.959968 WTO, 2007, A practical guide to tourism destination management, DOI [https://doi.org/10.18111/9789284412433, DOI 10.18111/9789284412433] Zhao ChunRong Zhao ChunRong, 2013, Journal of Landscape Research, V5, P48 Zhu X, 2021, URBAN FOR URBAN GREE, V62, DOI 10.1016/j.ufug.2021.127133 Zolfaghari A, 2023, J OUTDOOR REC TOUR, V43, DOI 10.1016/j.jort.2023.100666 NR 80 TC 0 Z9 0 U1 0 U2 0 PU ROUTLEDGE JOURNALS, TAYLOR & FRANCIS LTD PI ABINGDON PA 2-4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND SN 0261-4367 EI 1466-4496 J9 LEISURE STUD JI Leis. Stud. PD 2024 AUG 23 PY 2024 DI 10.1080/02614367.2024.2392583 EA AUG 2024 PG 16 WC Hospitality, Leisure, Sport & Tourism WE Social Science Citation Index (SSCI) SC Social Sciences - Other Topics GA D4Z7V UT WOS:001296288700001 DA 2024-09-05 ER PT J AU Murphy, J AF Murphy, Jackie TI Exploring the Impact of an Open Access Mindfulness Course with Online Graduate Students: A Mixed Methods Explanatory Sequential Study SO ONLINE LEARNING LA English DT Article DE mindfulness; stress; online learning; graduate students; open access; mind wandering ID RANDOMIZED CONTROLLED-TRIAL; STRESS REDUCTION; NURSING-STUDENTS; MIND; INTERVENTION; PERFORMANCE; ATTENTION; ANXIETY; STATES AB As enrollment in online graduate education increases, retention continues to be problematic for many colleges and universities across the United States. Non-traditional students, who represent the majority of online graduate student enrollment, have unique issues related to persistence considering they often must juggle the demands of graduate school with work and families. The competing demands can lead to increased levels of perceived stress, which can impact academic performance due to increased mind wandering and decreased attention. Mindfulness is a practice that has been shown in the literature to decrease levels of perceived stress and mind wandering, therefore, the integration of mindfulness practice could have a positive effect on student persistence in online graduate education. Therefore, an online open access mindfulness course was created at one large urban university. The purpose of this explanatory sequential study was to explore the impact of teaching mindfulness to online graduate students. Self-report levels of perceived stress and mind wandering were significantly lower after students completed Module One of an open access mindfulness course. Self-reported perceived persistence levels were found to be significantly higher after Module One with students in the first or second quarter of their program, students with little or no mindfulness experience, and students who meditated four or more times a week. Furthermore, students interviewed felt that the course provided excellent foundational information about mindfulness that could be immediately applied, and therefore should be a requirement for all incoming students. C1 [Murphy, Jackie] Drexel Univ, Philadelphia, PA 19104 USA. C3 Drexel University RP Murphy, J (corresponding author), Drexel Univ, Philadelphia, PA 19104 USA. OI Murphy, Jackie/0000-0003-3736-2032 CR [Anonymous], 2017, REP [Anonymous], 2009, J ASYNCHRONOUS LEARN Banks JB, 2017, COGNITION EMOTION, V31, P1023, DOI 10.1080/02699931.2016.1179174 Bawa P, 2016, SAGE OPEN, V6, DOI 10.1177/2158244015621777 Beck HP, 2014, INTERNET HIGH EDUC, V20, P51, DOI 10.1016/j.iheduc.2013.09.002 Bennike IH, 2017, J COGN ENHANCE, V1, P172, DOI 10.1007/s41465-017-0020-9 Call D, 2014, MINDFULNESS, V5, P658, DOI 10.1007/s12671-013-0218-6 Caruth G. D, 2018, PARTICIP ED RES, V5, P17 Cavanagh K, 2018, MINDFULNESS, V9, P1191, DOI 10.1007/s12671-017-0856-1 Cavanagh K, 2013, BEHAV RES THER, V51, P573, DOI 10.1016/j.brat.2013.06.003 Cheyne JA, 2009, COGNITION, V111, P98, DOI 10.1016/j.cognition.2008.12.009 COHEN S, 1983, J HEALTH SOC BEHAV, V24, P385, DOI 10.2307/2136404 Cohen S, 2012, J APPL SOC PSYCHOL, V42, P1320, DOI 10.1111/j.1559-1816.2012.00900.x Creswell J.W., 2019, ED RES PLANNING COND Crosswell AD, 2020, EMOTION, V20, P403, DOI 10.1037/emo0000548 Davidson WB, 2009, J COLL STUDENT DEV, V50, P373, DOI 10.1353/csd.0.0079 Dixon P, 2013, CAN J EXP PSYCHOL, V67, P1, DOI 10.1037/a0031234 Economides M, 2018, MINDFULNESS, V9, P1584, DOI 10.1007/s12671-018-0905-4 Epel ES, 2004, P NATL ACAD SCI USA, V101, P17312, DOI 10.1073/pnas.0407162101 Farley J, 2013, FRONT PSYCHOL, V4, DOI 10.3389/fpsyg.2013.00619 Farrington C.A., 2012, Teaching adolescents to become learners: The role of noncognitive factors in shaping school performance Farruggia SP, 2018, J COLL STUD RETENT-R, V20, P308, DOI 10.1177/1521025116666539 Friedman Z., 2019, Student loan debt statistics in 2019: A .5 trillion crisis Halladay JE, 2019, MINDFULNESS, V10, P397, DOI 10.1007/s12671-018-0979-z Hindman RK, 2015, MINDFULNESS, V6, P873, DOI 10.1007/s12671-014-0331-1 Hölzel BK, 2010, SOC COGN AFFECT NEUR, V5, P11, DOI 10.1093/scan/nsp034 Iani L, 2019, MINDFULNESS, V10, P366, DOI 10.1007/s12671-018-0981-5 Janssen M, 2018, PLOS ONE, V13, DOI 10.1371/journal.pone.0191332 Ju YJ, 2018, CONSCIOUS COGN, V63, P1, DOI 10.1016/j.concog.2018.06.006 Kabat-Zinn J, 1990, FULL CATASTROPHE LIV Killingsworth MA, 2010, SCIENCE, V330, P932, DOI 10.1126/science.1192439 Klein K, 2001, APPL COGNITIVE PSYCH, V15, P565, DOI 10.1002/acp.727 Lam A. G., 2015, J PSYCHOL CLIN PSYCH, V2 Langer E. J., 2014, MINDFULNESS Leland M., 2015, Journal of Adult Education, V44, P19 Lukasik KM, 2019, FRONT PSYCHOL, V10, DOI 10.3389/fpsyg.2019.00004 McKinney B., 2017, VAHPERD Journal, V38, P4 Mrazek MD, 2013, PSYCHOL SCI, V24, P776, DOI 10.1177/0956797612459659 Muljana PS, 2019, J INF TECHNOL EDUC-R, V18, P19, DOI 10.28945/4182 Napora L., 2013, The impact of classroom-based meditation practice on cognitive engagement, mindfulness and academic performance of undergraduate college students Ramsburg JT, 2014, MINDFULNESS, V5, P431, DOI 10.1007/s12671-013-0199-5 Saldana Johnny, 2015, The coding manual for qualitative researchers, Vfourth Salkind N.J., 2017, STAT PEOPLE WHO THIN, V6th Sampl J, 2017, MINDFULNESS, V8, P1393, DOI 10.1007/s12671-017-0715-0 Sanko J, 2016, NURS EDUC TODAY, V45, P142, DOI 10.1016/j.nedt.2016.07.006 Schwind JK, 2017, NURS EDUC TODAY, V50, P92, DOI 10.1016/j.nedt.2016.12.017 Seaman J.E., 2018, Grade Increase: Tracking Distance Education in the United States Shapiro SL, 2012, J POSIT PSYCHOL, V7, P504, DOI 10.1080/17439760.2012.723732 Shapiro SL, 2006, J CLIN PSYCHOL, V62, P373, DOI 10.1002/jclp.20237 Smallwood J, 2015, ANNU REV PSYCHOL, V66, P487, DOI 10.1146/annurev-psych-010814-015331 Smallwood J, 2011, COGNITION EMOTION, V25, P1481, DOI 10.1080/02699931.2010.545263 Song Y, 2015, NURS EDUC TODAY, V35, P86, DOI 10.1016/j.nedt.2014.06.010 Sorensen C, 2017, ONLINE LEARN, V21, P206, DOI 10.24059/olj.v21i3.935 Spadaro KC, 2016, NURS EDUC TODAY, V39, P163, DOI 10.1016/j.nedt.2016.02.006 Stelnicki AM, 2015, CAN J HIGH EDUC, V45, P214 Tang YY, 2007, P NATL ACAD SCI USA, V104, P17152, DOI 10.1073/pnas.0707678104 Vago DR, 2016, ANN NY ACAD SCI, V1373, P96, DOI 10.1111/nyas.13171 van der Riet P, 2015, NURS EDUC TODAY, V35, P44, DOI 10.1016/j.nedt.2014.05.003 Van Doorn JR, 2014, FRONT PSYCHOL, V5, DOI 10.3389/fpsyg.2014.00324 Wahbeh Helane, 2014, Open Med J, V1, P66 Wammes JD., 2016, SCHOLARSHIP TEACHING, V2, P33, DOI DOI 10.1037/STL0000055 Warttig SL, 2013, J HEALTH PSYCHOL, V18, P1617, DOI 10.1177/1359105313508346 Willgens A.M., 2015, Journal of Physical Therapy Education, V29, P70 Zeidan F, 2010, CONSCIOUS COGN, V19, P597, DOI 10.1016/j.concog.2010.03.014 Zimmerman TD, 2012, INT REV RES OPEN DIS, V13, P152, DOI 10.19173/irrodl.v13i4.1302 NR 65 TC 3 Z9 6 U1 1 U2 11 PU ONLINE LEARNING CONSORTIUM PI NEWBURYPORT PA PO BOX 1238, NEWBURYPORT, MA 01950 USA SN 2472-5749 EI 2472-5730 J9 ONLINE LEARN JI Online Learn. PD JUN PY 2021 VL 25 IS 2 BP 299 EP 323 DI 10.24059/olj.v25i2.2292 PG 25 WC Education & Educational Research WE Emerging Sources Citation Index (ESCI) SC Education & Educational Research GA SO1PR UT WOS:000658752000014 OA gold DA 2024-09-05 ER PT C AU Wang, YH He, XC AF Wang, Yong-Hong He, Xiang-Chun BE Rodrigo, MMT Iyer, S Mitrovic, A TI Research on the Application of College Students' Online Learning Cognitive Engagement Evaluation SO 29TH INTERNATIONAL CONFERENCE ON COMPUTERS IN EDUCATION (ICCE 2021), VOL I LA English DT Proceedings Paper CT 29th International Conference on Computers in Education (ICCE) CY NOV 22-26, 2021 CL ELECTR NETWORK DE Online learning; cognitive engagement; evaluation index system AB College Students' online learning is gradually becoming more and more normalized. There is a correlation between learning engagement and learning quality. Cognitive engagement is important components of online learning engagement. Through literature research, expert consultation and analytic hierarchy process, this paper constructs the "online cognitive engagement evaluation index system of college students", which includes two first-class indicators, four second-class indicators, and determines the weight of each level of indicators. Through the design and development of the evaluation index system, based on the structural equation model of the observed variables on the corresponding latent variables of the factor load, the experimental class of college students online cognitive engagement was evaluated and analyzed, which provides reference for the development of online learning engagement evaluation of college students. C1 [Wang, Yong-Hong; He, Xiang-Chun] Northwest Normal Univ, Coll Educ Technol, Lanzhou, Peoples R China. C3 Northwest Normal University - China RP Wang, YH (corresponding author), Northwest Normal Univ, Coll Educ Technol, Lanzhou, Peoples R China. EM wangyh4437@nwnu.edu.cn RI Wang, Yonghong/AAN-4845-2020 FU Northwest Normal University Young Teachers' scientific research ability improvement plan project [SKQN2021-29] FX This research is supported by the 2021 Northwest Normal University Young Teachers' scientific research ability improvement plan project "Research on data literacy model construction and cultivation strategy of primary and secondary school teachers under the background of big data". Project No: NWNU-SKQN2021-29. CR Heflin H, 2017, COMPUT EDUC, V107, P91, DOI 10.1016/j.compedu.2017.01.006 Lee E, 2015, TECHTRENDS, V59, P54, DOI 10.1007/s11528-015-0871-9 NR 2 TC 0 Z9 0 U1 0 U2 8 PU ASIA PACIFIC SOC COMPUTERS IN EDUCATION PI TAOYUAN CITY PA NO 300, JUNGDA RD, JHONGLI DISTRICT, TAOYUAN CITY, 320, TAIWAN BN 978-986-97214-7-9 PY 2021 BP 182 EP 184 PG 3 WC Computer Science, Interdisciplinary Applications; Education & Educational Research WE Conference Proceedings Citation Index - Science (CPCI-S); Conference Proceedings Citation Index - Social Science & Humanities (CPCI-SSH) SC Computer Science; Education & Educational Research GA BS8GL UT WOS:000772144100027 DA 2024-09-05 ER PT J AU Altememy, HA Mohammed, BA Hsony, MK Hassan, AY Mazhair, R Dawood, II Al Jouani, ISH Zearah, SA Sharif, HR AF Altememy, Haady Abdilnibi Mohammed, Bahira Abdulrazzaq Hsony, Mizher Khlif Hassan, Aalaa Yaseen Mazhair, Rabaa Dawood, Imad Ibrahim Al Jouani, Isra Shakir Hassan Zearah, Sajad Ali Sharif, Hedab Rasoul TI The influence of the artificial intelligence capabilities of higher education institutions in Iraq on students' academic performance: The role of AI-based technology application as a mediator SO EURASIAN JOURNAL OF EDUCATIONAL RESEARCH LA English DT Article DE Artificial intelligence; Capability; higher education; Iraq AB Objective: Artificial intelligence ( AI) plays a crucial role in promoting unbiased and effective advancements in the field of education. The benefits of these state-of-the-art technologies in the areas of teaching methods and the acquisition of knowledge have attracted considerable attention in current discussions. The present study aims to investigate the influence of artificial intelligence capabilities (AIC) within Iraqi higher education institutions on students' academic performance. Additionally, the study has also investigated the mediating role of AI-based technology applications (AIBTA). Methodology: The research employed a quantitative survey-based approach to gather data, utilizing a questionnaire as the data collection instrument. For the analysis, Smart-PLS 3, a software tool known for its implementation of the PLS-SEM (partial least squares structural equation modeling) analysis method, was utilized (Sarstedt et al., 2022). The study achieved a response rate of 64.3 percent from the participants. Results: The findings of the study reveal a significant influence of AIBTA (Artificial Intelligence-Based Teaching and Assessment) on student performance within the context of Iraqi higher education. Moreover, there exists a positive and notable correlation between the AI capabilities integrated into Iraqi higher education and the academic achievements of university students in Iraq. The study's results also suggest that AI capabilities substantially impact the AIBTA framework within Iraqi higher education. Furthermore, the mediating role of AIBTA in Iraqi higher education is identified in relation to the relationship between the AI capabilities of the educational system and the academic performance of university students in Iraq. Implication: The outcomes of this study hold considerable implications for the landscape of higher education in Iraq. The results underscore that the incorporation of AI-driven technology bears a substantial influence on students' academic achievements. This relationship serves as a pivotal connection, linking the AI capabilities present within higher education institutions to the attainment of academic excellence by students. Novelty: This study stands as one of the pioneering efforts in exploring the realm of AIBTA within the context of Iraqi higher education. (c) 2023 Ani Publishing Ltd. All rights reserved. C1 [Altememy, Haady Abdilnibi] Islamic Univ Najaf, Coll Islamic Sci, Najaf, Iraq. [Mohammed, Bahira Abdulrazzaq] Al Hadi Univ Coll, Dept Med Engn, Baghdad 10011, Iraq. [Hsony, Mizher Khlif] Al Manara Coll Med Sci, Maysan, Iraq. [Hassan, Aalaa Yaseen] Al Nisour Univ Coll, Dept Educ, Baghdad, Iraq. [Mazhair, Rabaa] Al Nisour Univ Coll, Coll Educ, English Dept, Baghdad, Iraq. [Dawood, Imad Ibrahim] Mazaya Univ Coll, Dept Media, Nasiriyah, Iraq. [Al Jouani, Isra Shakir Hassan] Al Esraa Univ, Dept Media, Coll Arts, Baghdad, Iraq. [Zearah, Sajad Ali] Al ayen Univ, Sci Res Ctr, Thi Qar, Iraq. [Sharif, Hedab Rasoul] Natl Univ Sci & Technol, Coll Nursing, Dhi Qar, Iraq. C3 Islamic University College; Al-Nisour University College; Al-Nisour University College; Al-Esraa University College; Al-Ayen University RP Altememy, HA (corresponding author), Islamic Univ Najaf, Coll Islamic Sci, Najaf, Iraq. EM haady.altememy@gmail.com; dr.bahera@huc.edu.iq; mizherkhlifhsony@uomanara.edu.iq; alaa.y.english@nuc.edu.iq; mizherrabaa4@gmail.com; prof.dr.imad.i.dawood@mpu.edu.iq; isramasar@gmail.com; sajad@alayen.edu.iq; hadab.r.sh@nust.edu.iq OI Ali Zearah, Sajad/0009-0001-4827-0128 CR Alamoudi A., 2021, 2021 INT C ADV COMP, P1, DOI DOI 10.1109/ICAC353642.2021.9697300 Ardito L, 2021, J BUS RES, V123, P44, DOI 10.1016/j.jbusres.2020.09.022 Basheer H., 2023, Doctoral dissertation Becirovic S., 2023, Digital pedagogy: The use of digital technologies in contemporary education, DOI [10.1007/978-981-99-0444-0, DOI 10.1007/978-981-99-0444-0] Celik V, 2013, COMPUT EDUC, V60, P148, DOI 10.1016/j.compedu.2012.06.008 Chen X., 2020, Computers and Education: Artificial Intelligence, V1, P100002, DOI DOI 10.1016/J.CAEAI.2020.100002 Chou CM, 2022, EDUC INF TECHNOL, V27, P8723, DOI 10.1007/s10639-021-10866-9 Cote A.- M., 2022, The Impact of Artificial Intelligence on Higher Education: Transformations, Challenges and Opportunities, DOI [10.2139/ssrn.4012883, DOI 10.2139/SSRN.4012883] Ding F., 2021, First Year in a Multilingual University: Double Transitions, P5, DOI [10.1007/978-981-16-0796-7_2, DOI 10.1007/978-981-16-0796-7_2] Doroudi S, 2023, INT J ARTIF INTELL E, V33, P885, DOI 10.1007/s40593-022-00313-2 Dwivedi YK, 2023, INT J INFORM MANAGE, V71, DOI 10.1016/j.ijinfomgt.2023.102642 El Said GR, 2021, ADV HUM-COMPUT INTER, V2021, DOI 10.1155/2021/6649524 Eliezer J., 2021, Journal Of Education and Learning (Edulearn), V15, P88, DOI [10.11591/Edulearn.V15i1.17392, DOI 10.11591/EDULEARN.V15I1.17392] Garcia SD, 2020, J ALZHEIMERS DIS, V78, P1547, DOI 10.3233/JAD-200888 Guo XR, 2021, SUSTAINABILITY-BASEL, V13, DOI 10.3390/su132413776 Hong JC, 2021, COMPUT EDUC, V166, DOI 10.1016/j.compedu.2021.104172 Hradecky D, 2022, INT J INFORM MANAGE, V65, DOI 10.1016/j.ijinfomgt.2022.102497 Huang ZY, 2020, ACM T INFORM SYST, V38, DOI 10.1145/3379507 Kamruzzaman MM, 2023, SUSTAINABILITY-BASEL, V15, DOI 10.3390/su15108354 Kock F, 2021, TOURISM MANAGE, V86, DOI 10.1016/j.tourman.2021.104330 Lee HS, 2021, SUSTAINABILITY-BASEL, V13, DOI 10.3390/su13010351 Liu YR, 2022, FRONT PSYCHOL, V13, DOI 10.3389/fpsyg.2022.872014 Lund BD, 2023, J ASSOC INF SCI TECH, V74, P570, DOI 10.1002/asi.24750 Malinka K, 2023, PROCEEDINGS OF THE 2023 CONFERENCE ON INNOVATION AND TECHNOLOGY IN COMPUTER SCIENCE EDUCATION, ITICSE 2023, VOL 1, P47, DOI 10.1145/3587102.3588827 Mikalef P, 2021, INFORM MANAGE-AMSTER, V58, DOI 10.1016/j.im.2021.103434 Mogavi RH, 2023, Arxiv, DOI arXiv:2305.13114 Nikou S, 2023, INT J ENTREP BEHAV R, V29, P81, DOI 10.1108/IJEBR-08-2022-0760 Okunlaya RO, 2022, LIBR HI TECH, V40, P1869, DOI 10.1108/LHT-07-2021-0242 Purwanto, 2021, J IND ENG MANAG-JIEM, V2, P114, DOI [DOI 10.7777/JIEMAR.V2I4.168, DOI 10.7777/JIEMAR.V2I4] Qasim A, 2020, J EMERG TECHNOL ACCO, V17, P107, DOI 10.2308/jeta-52649 Rekha IS, 2023, EDUC INF TECHNOL, V28, P4265, DOI 10.1007/s10639-022-11308-w Salajan FD, 2019, EUR J EDUC, V54, P591, DOI 10.1111/ejed.12362 Sarstedt M, 2022, PSYCHOL MARKET, V39, P1035, DOI 10.1002/mar.21640 Sawangchai A, 2020, POL J MANAG STUD, V22, P502, DOI 10.17512/pjms.2020.22.2.33 Sunday OJ, 2021, COMPUT HUM BEHAV REP, V4, DOI 10.1016/j.chbr.2021.100114 Waer H, 2023, INNOV LANG LEARN TEA, V17, P47, DOI 10.1080/17501229.2021.1914062 Wang SF, 2023, EDUC INF TECHNOL, V28, P4919, DOI 10.1007/s10639-022-11338-4 NR 37 TC 1 Z9 1 U1 16 U2 36 PU ANI YAYINCILIK PI BAKANLIKLAR PA KIZILIRMAK SOK NO 10-A, BAKANLIKLAR, ANKARA 00000, Turkiye SN 1302-597X EI 2528-8911 J9 EURASIAN J EDUC RES JI Egit. Arast. PY 2023 IS 104 BP 267 EP 282 DI 10.14689/ejer.2023.104.015 PG 16 WC Education & Educational Research WE Emerging Sources Citation Index (ESCI) SC Education & Educational Research GA R4HA0 UT WOS:001063960700015 DA 2024-09-05 ER PT C AU Bredikhin, S Scherbakova, N AF Bredikhin, Sergey Scherbakova, Natalya GP IEEE TI Normalized Spectral Clustering of the Journal Citation Network SO 2019 15TH INTERNATIONAL ASIAN SCHOOL-SEMINAR OPTIMIZATION PROBLEMS OF COMPLEX SYSTEMS (OPCS 2019) LA English DT Proceedings Paper CT 15th International Asian School-Seminar on Optimization Problems of Complex Systems (OPCS) CY AUG 26-30, 2019 CL Novosibirsk, RUSSIA DE spectral clustering; normalized cut; generalized weighted cut; journal citation network AB The task of clustering of a set of objects is treated as the graph partitioning problem. The normalized cut criterion is used for a weighted graph partitioning and the approach is applied in two implemented algorithms. The results of testing the method for the journal citation network clustering are presented. C1 [Bredikhin, Sergey; Scherbakova, Natalya] SB RAS, Inst Computat Math & Math Geophys, Novosibirsk, Russia. C3 Russian Academy of Sciences RP Bredikhin, S (corresponding author), SB RAS, Inst Computat Math & Math Geophys, Novosibirsk, Russia. EM bredikhin@sscc.ru; scherbakova@sscc.ru RI Bredikhin, Sergey I/C-8139-2016 CR ALPERT CJ, 1995, DES AUT CON, P195 Arthur D, 2007, PROCEEDINGS OF THE EIGHTEENTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, P1027 Bredikhin S. V., 2018, PROBLEMY INFORM, P24 Bredikhin S. V., 2017, PROBLEMY INFORM, P38 Bredikhin S. V., 2014, PROBLEMY INFORM, P36 Chung F R K., 1997, Spectral graph theory Fortunato S, 2010, PHYS REP, V486, P75, DOI 10.1016/j.physrep.2009.11.002 Lancaster P., 1965, THEORY MATRICES Meila M., 2001, P INT WORKSH AI STAT Meila M, 2007, PROCEEDINGS OF THE SEVENTH SIAM INTERNATIONAL CONFERENCE ON DATA MINING, P135 Shi JB, 2000, IEEE T PATTERN ANAL, V22, P888, DOI 10.1109/34.868688 von Luxburg U, 2007, STAT COMPUT, V17, P395, DOI 10.1007/s11222-007-9033-z WEI YC, 1989, 1989 IEEE INTERNATIONAL CONFERENCE ON COMPUTER-AIDED DESIGN, P298 WU Z, 1993, IEEE T PATTERN ANAL, V15, P1101, DOI 10.1109/34.244673 NR 14 TC 0 Z9 0 U1 0 U2 3 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA BN 978-1-7281-2986-0 PY 2019 BP 17 EP 20 DI 10.1109/opcs.2019.8880205 PG 4 WC Engineering, Electrical & Electronic; Operations Research & Management Science WE Conference Proceedings Citation Index - Science (CPCI-S) SC Engineering; Operations Research & Management Science GA BO7WE UT WOS:000525749600004 DA 2024-09-05 ER PT J AU Chikhaoui, B Chiazzaro, M Wang, S Sotir, M AF Chikhaoui, Belkacem Chiazzaro, Mauricio Wang, Shengrui Sotir, Martin TI Detecting Communities of Authority and Analyzing Their Influence in Dynamic Social Networks SO ACM TRANSACTIONS ON INTELLIGENT SYSTEMS AND TECHNOLOGY LA English DT Article DE Community of authority; meta-community; topic modeling; betweenness centrality; community influence; granger causality AB Users in real-world social networks are organized into communities that differ from each other in terms of influence, authority, interest, size, etc. This article addresses the problems of detecting communities of authority and of estimating the influence of such communities in dynamic social networks. These are new issues that have not yet been addressed in the literature, and they are important in applications such as marketing and recommender systems. To facilitate the identification of communities of authority, our approach first detects communities sharing common interests, which we call "meta-communities,"by incorporating topic modeling based on users' community memberships. Then, communities of authority are extracted with respect to each meta-community, using a new measure based on the betweenness centrality. To assess the influence between communities over time, we propose a new model based on the Granger causality method. Through extensive experiments on a variety of social network datasets, we empirically demonstrate the suitability of our approach for community-of-authority detection and assessment of the influence between communities over time. C1 [Chikhaoui, Belkacem; Sotir, Martin] Comp Res Inst Montreal, 405 Ave Ogilvy,Bur 101, Montreal, PQ, Canada. [Chiazzaro, Mauricio; Wang, Shengrui] Univ Sherbrooke, Dept Comp Sci, Prospectus Lab, 2500 Blvd Univ, Sherbrooke, PQ, Canada. C3 University of Sherbrooke RP Chikhaoui, B (corresponding author), Comp Res Inst Montreal, 405 Ave Ogilvy,Bur 101, Montreal, PQ, Canada. EM belkacem.chikhaoui@crim.ca; mauricio.chiazzaro@usherbrooke.ca; shengrui.wang@usherbrooke.ca; martin.sotir@crim.ca CR Anagnostopoulos A., 2008, P 14 ACM SIGKDD INT, P7, DOI [10.1145/1401890.1401897, DOI 10.1145/1401890.1401897] [Anonymous], 2010, P 19 INT C WORLD WID, DOI [10.1145/1772690.1772755, DOI 10.1145/1772690.1772755] [Anonymous], 2010, WSDM [Anonymous], 2009, SDM, DOI DOI 10.1137/1.9781611972795.84 [Anonymous], 2012, 2012 ASIA PACIFIC PO [Anonymous], 2003, Linked: How everything is connected to everything else and what it means for business, sciense and everyday life Aral S, 2009, P NATL ACAD SCI USA, V106, P21544, DOI 10.1073/pnas.0908800106 Asimakopoulos I, 2000, ECON LETT, V68, P25, DOI 10.1016/S0165-1765(00)00219-6 Aufaure, 2013, P 28 ANN ACM S APPL Barbieri N., 2014, P SIAM INT C DAT MIN Barbieri N., 2013, Proc. ACM Intl. Conf. on Web search and data mining (WSDM), P33, DOI DOI 10.1145/2433396.2433403 Belak Vaclav, 2012, P INT C WEB SOC MED Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993 BONACICH P, 1972, J MATH SOCIOL, V2, P113, DOI 10.1080/0022250X.1972.9989806 Bouguessa Mohamed, 2009, IEEE T KNOWL DATA EN, V21, P4 Bouguessa Mohamed., 2008, SIGKDD, P866 Brandes U, 2001, J MATH SOCIOL, V25, P163, DOI 10.1080/0022250X.2001.9990249 Budalakoti S., 2012, Proc. of the 21st international confer- ence on World Wide Web (WWW), P709 Chen J, 2012, IEEE T KNOWL DATA EN, V24, P1216, DOI 10.1109/TKDE.2010.271 Chen W, 2009, KDD-09: 15TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, P199, DOI 10.1145/1557019.1557047 Chikhaoui B, 2015, AAAI CONF ARTIF INTE, P51 Crandall DavidJ., 2008, KDD, P160 Cui P, 2013, 19TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING (KDD'13), P901 Cui P, 2011, PROCEEDINGS OF THE 34TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL (SIGIR'11), P185 Dietz Laura, 2009, P NIPS WORKSH APPL T Fortunato S, 2010, PHYS REP, V486, P75, DOI 10.1016/j.physrep.2009.11.002 FREEMAN LC, 1979, SOC NETWORKS, V1, P215, DOI 10.1016/0378-8733(78)90021-7 Galeotti A, 2009, RAND J ECON, V40, P509, DOI 10.1111/j.1756-2171.2009.00075.x Goyal A, 2011, PROC VLDB ENDOW, V5, P73, DOI 10.14778/2047485.2047492 GRANGER CWJ, 1969, ECONOMETRICA, V37, P424, DOI 10.2307/1912791 Griffiths TL, 2004, P NATL ACAD SCI USA, V101, P5228, DOI 10.1073/pnas.0307752101 Heinrich G., 2008, TECHNICAL REPORT Hinz O, 2011, J MARKETING, V75, P55, DOI 10.1509/jm.10.0088 Kempe D., 2005, Automata, Languages and Programming. 32nd International Colloquium, ICALP 2005. Proceedings (Lecture Notes in Computer Science Vol. 3580), P1127, DOI 10.1007/11523468_91 Kim M. H., 2013, 2013 Abstracts IEEE International Conference on Plasma Science (ICOPS), DOI 10.1109/PLASMA.2013.6633482 Lai DR, 2010, PHYSICA A, V389, P2443, DOI 10.1016/j.physa.2010.02.014 Liu Dong-Sheng, 2011, SENSORS, V11, P6494, DOI DOI 10.1109/W Liu L, 2012, DATA MIN KNOWL DISC, V25, P511, DOI 10.1007/s10618-012-0252-3 Liu Lu., 2010, CIKM McPherson M, 2001, ANNU REV SOCIOL, V27, P415, DOI 10.1146/annurev.soc.27.1.415 Mehmood Yasir, 2013, Machine Learning and Knowledge Discovery in Databases. European Conference (ECML PKDD 2013). Proceedings: LNCS 8189, P48, DOI 10.1007/978-3-642-40991-2_4 Minka T.P., 2002, Uncertainty in Artificial Intelligence, P352 Myers Seth A., 2012, P 18 ACM SIGKDD INT, P33, DOI [10.1145/956750.956769, DOI 10.1145/2339530.2339540] Newman MEJ, 2006, PHYS REV E, V74, DOI 10.1103/PhysRevE.74.036104 Probst F, 2013, BUS INFORM SYST ENG+, V5, P179, DOI 10.1007/s12599-013-0263-7 Shuai X, 2012, INT J SEMANT WEB INF, V8, P20, DOI 10.4018/jswis.2012100102 Tang J, 2009, KDD-09: 15TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, P807 Teh YW, 2006, J AM STAT ASSOC, V101, P1566, DOI 10.1198/016214506000000302 Trusov M, 2010, J MARKETING RES, V47, P643, DOI 10.1509/jmkr.47.4.643 Ye M, 2012, SIGIR 2012: PROCEEDINGS OF THE 35TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, P671, DOI 10.1145/2348283.2348373 Yin ZB, 2012, Proceedings of 2012 ASE/IEEE International Conference on Privacy, Security, Risk and Trust and 2012 ASE/IEEE International Conference on Social Computing (SocialCom/PASSAT 2012), P502, DOI 10.1109/SocialCom-PASSAT.2012.10 Zhang Haizheng, 2007, 2007 IEEE INT SEC IN, P200 Zhang Jing, 2013, IJCAI Zhou D., 2006, WWW '06, P173 Zhou Ding., 2006, P 15 ACM INT C INFOR, P248, DOI DOI 10.1145/1183614.1183653 NR 55 TC 1 Z9 1 U1 1 U2 19 PU ASSOC COMPUTING MACHINERY PI NEW YORK PA 2 PENN PLAZA, STE 701, NEW YORK, NY 10121-0701 USA SN 2157-6904 EI 2157-6912 J9 ACM T INTEL SYST TEC JI ACM Trans. Intell. Syst. Technol. PD SEP PY 2017 VL 8 IS 6 AR 82 DI 10.1145/3070658 PG 28 WC Computer Science, Artificial Intelligence; Computer Science, Information Systems WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Computer Science GA FL5XE UT WOS:000414319000011 DA 2024-09-05 ER PT J AU Aljohani, NR Fayoumi, A Hassan, SU AF Aljohani, Naif Radi Fayoumi, Ayman Hassan, Saeed-Ul TI A Novel Deep Neural Network-Based Approach to Measure Scholarly Research Dissemination Using Citations Network SO APPLIED SCIENCES-BASEL LA English DT Article DE citations context classification; citation network analysis; deep learning ID ARCHITECTURE; KNOWLEDGE; SYSTEMS; IMPACT; GRAPH AB We investigated the scientific research dissemination by analyzing the publications and citation data, implying that not all citations are significantly important. Therefore, as alluded to existing state-of-the-art models that employ feature-based techniques to measure the scholarly research dissemination between multiple entities, our model implements the convolutional neural network (CNN) with fastText-based pre-trained embedding vectors, utilizes only the citation context as its input to distinguish between important and non-important citations. Moreover, we speculate using focal-loss and class weight methods to address the inherited class imbalance problems in citation classification datasets. Using a dataset of 10 K annotated citation contexts, we achieved an accuracy of 90.7% along with a 90.6% f1-score, in the case of binary classification. Finally, we present a case study to measure the comprehensiveness of our deployed model on a dataset of 3100 K citations taken from the ACL Anthology Reference Corpus. We employed state-of-the-art graph visualization open-source tool Gephi to analyze the various aspects of citation network graphs, for each respective citation behavior. C1 [Aljohani, Naif Radi; Fayoumi, Ayman] King Abdulaziz Univ, Fac Comp & Informat Technol, Jeddah 21589, Saudi Arabia. [Hassan, Saeed-Ul] Manchester Metropolitan Univ, Dept Comp & Math, Manchester M15 6BH, Lancs, England. C3 King Abdulaziz University; Manchester Metropolitan University RP Aljohani, NR (corresponding author), King Abdulaziz Univ, Fac Comp & Informat Technol, Jeddah 21589, Saudi Arabia. EM nraljohani@kau.edu.sa; afayoumi@kau.edu.sa; s.ul-hassan@mmu.ac.uk RI Aljohani, Naif R/S-1109-2017; Fayoumi, Ayman/E-7236-2014; Hassan, Saeed-Ul/G-1889-2016 OI Fayoumi, Ayman/0000-0002-4160-3305; Hassan, Saeed-Ul/0000-0002-6509-9190 FU Deanship of Scientific Research (DSR), King Abdulaziz University, Jeddah [RG-14-611-40] FX This project was funded by the Deanship of Scientific Research (DSR), King Abdulaziz University, Jeddah, under Grant No. RG-14-611-40. The authors, therefore, gratefully acknowledge DSR's technical and financial support. CR Agarwal N, 2005, LECT NOTES COMPUT SC, V3739, P475 Aljohani NR, 2021, SCIENTOMETRICS, V126, P5509, DOI 10.1007/s11192-021-03986-z Aljohani NR, 2023, J INF SCI, V49, P79, DOI 10.1177/0165551521991022 Aljohani NR, 2020, SOFT COMPUT, V24, P11109, DOI 10.1007/s00500-020-04689-y Arshad N, 2022, LIBR HI TECH, V40, P115, DOI 10.1108/LHT-02-2019-0048 Basiri ME, 2021, FUTURE GENER COMP SY, V115, P279, DOI 10.1016/j.future.2020.08.005 Bastian M., 2009, Gephi: An open source software for exploring and manipulating networks Berger M, 2017, IEEE T VIS COMPUT GR, V23, P691, DOI 10.1109/TVCG.2016.2598667 Blondel VD, 2008, J STAT MECH-THEORY E, DOI 10.1088/1742-5468/2008/10/P10008 Bonacich P, 2007, SOC NETWORKS, V29, P555, DOI 10.1016/j.socnet.2007.04.002 Bornmann L, 2018, SCIENTOMETRICS, V114, P427, DOI 10.1007/s11192-017-2591-8 Brandes U, 2001, J MATH SOCIOL, V25, P163, DOI 10.1080/0022250X.2001.9990249 Chang J., 2009, AISTATS Drongstrup D, 2020, SCIENTOMETRICS, V125, P1541, DOI 10.1007/s11192-020-03613-3 Ebesu T, 2017, SIGIR'17: PROCEEDINGS OF THE 40TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, P1093, DOI 10.1145/3077136.3080730 Eto M, 2019, INFORM PROCESS MANAG, V56, DOI 10.1016/j.ipm.2019.05.007 Fang H., 2017, J LIBR INF SCI, V20, P13 Frandsen T.F, 2004, ASLIB PROC Ganguly S, 2017, LECT NOTES COMPUT SC, V10193, P383, DOI 10.1007/978-3-319-56608-5_30 Gori M, 2006, 2006 IEEE/WIC/ACM INTERNATIONAL CONFERENCE ON WEB INTELLIGENCE, (WI 2006 MAIN CONFERENCE PROCEEDINGS), P778, DOI 10.1109/WI.2006.149 Guo YC, 2019, CMC-COMPUT MATER CON, V58, P829, DOI 10.32604/cmc.2019.03729 Hassan S.U., 2017, MEASURING SCI KNOWLE, P322 Hassan S.U., 2020, ARXIV200813023 Hassan SU, 2021, J INF SCI, V47, P712, DOI 10.1177/0165551520930917 Hassan SU, 2021, INT J INFORM MANAGE, V56, DOI 10.1016/j.ijinfomgt.2019.102045 Hassan SU, 2015, SCIENTOMETRICS, V103, P33, DOI 10.1007/s11192-015-1528-3 Hassan SU, 2013, SCIENTOMETRICS, V94, P163, DOI 10.1007/s11192-012-0786-6 Imran M., 2018, 23 INT C SCI TECHN I Iqbal S, 2021, SCIENTOMETRICS, V126, P6551, DOI 10.1007/s11192-021-04055-1 Jurgens D., 2018, T ASSOC COMPUT LING, DOI 10.1162/tacl_a_00028 Kong XJ, 2021, IEEE T EMERG TOP COM, V9, P226, DOI 10.1109/TETC.2018.2830698 Kucuktunc Onur, 2012, ARXIV12051143 Lancichinetti A, 2009, PHYS REV E, V80, DOI 10.1103/PhysRevE.80.016118 Latapy M, 2008, THEOR COMPUT SCI, V407, P458, DOI 10.1016/j.tcs.2008.07.017 Li DY, 2020, CMC-COMPUT MATER CON, V64, P623, DOI 10.32604/cmc.2020.09800 Liu Y., 2009, PROC 26 ANN INT C M, P665, DOI DOI 10.1145/1553374.1553460 Lu C, 2017, SCIENTOMETRICS, V112, P927, DOI 10.1007/s11192-017-2398-7 Meng FQ, 2013, PROCEEDINGS OF THE 22ND ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT (CIKM'13), P1509 Mikolov T., 2013, Advances in Neural Information Processing Systems, P3111 Patsopoulos NA, 2005, JAMA-J AM MED ASSOC, V293, P2362, DOI 10.1001/jama.293.19.2362 Peng H, 2020, INTELL AUTOM SOFT CO, V26, P609, DOI 10.32604/iasc.2020.013939 Qasim MA, 2017, LIBR HI TECH, V35, P577, DOI 10.1108/LHT-04-2017-0076 Rahi S., 2019, P INT C SMART INF CO, P357 Rowlands I, 2002, ASLIB PROC, V54, P77, DOI 10.1108/00012530210435211 Saeed-Ul Hassan, 2019, SCIENTOMETRICS, V119, P481, DOI 10.1007/s11192-019-03044-9 Sagnika S, 2021, NEURAL COMPUT APPL, V33, P17425, DOI 10.1007/s00521-021-06328-5 Said A, 2021, FUTURE GENER COMP SY, V119, P166, DOI 10.1016/j.future.2021.02.005 Said A, 2019, SCIENTOMETRICS, V120, P217, DOI 10.1007/s11192-019-03112-0 Tarjan R., 1972, SIAM Journal on Computing, V1, P146, DOI 10.1137/0201010 Teufel S., 2006, P C EMP METH NAT LAN, DOI 10.3115/1610075.1610091 Wang J, 2020, J INTERNET TECHNOL, V21, P393, DOI 10.3966/160792642020032102008 Wang MS, 2019, CMC-COMPUT MATER CON, V60, P781, DOI 10.32604/cmc.2019.05595 Wu BR, 2021, ENERGY, V226, DOI 10.1016/j.energy.2021.120403 Wu BR, 2021, MEASUREMENT, V168, DOI 10.1016/j.measurement.2020.108468 Wu HP, 2020, CMC-COMPUT MATER CON, V63, P1309, DOI 10.32604/cmc.2020.010172 Xu YB, 2020, CMC-COMPUT MATER CON, V62, P137, DOI 10.32604/cmc.2020.05825 Yang LB, 2018, IEEE ACCESS, V6, P59618, DOI 10.1109/ACCESS.2018.2872730 Zhang JY, 2020, J INTERNET TECHNOL, V21, P1, DOI 10.3966/160792642020012101001 Zhang Q, 2013, SCI REP-UK, V3, DOI 10.1038/srep01640 Zhou P, 2007, J AM SOC INF SCI TEC, V58, P223, DOI 10.1002/asi.20475 Zhu QN, 2020, AAAI CONF ARTIF INTE, V34, P6999 Zhuge H, 2006, COMMUN ACM, V49, P101, DOI 10.1145/1125944.1125948 NR 62 TC 7 Z9 7 U1 3 U2 18 PU MDPI PI BASEL PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND EI 2076-3417 J9 APPL SCI-BASEL JI Appl. Sci.-Basel PD NOV PY 2021 VL 11 IS 22 AR 10970 DI 10.3390/app112210970 PG 14 WC Chemistry, Multidisciplinary; Engineering, Multidisciplinary; Materials Science, Multidisciplinary; Physics, Applied WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Chemistry; Engineering; Materials Science; Physics GA XJ3JO UT WOS:000726689000001 OA gold DA 2024-09-05 ER PT J AU Senter, MS AF Senter, Mary Scheuer TI Integrating Program Assessment and a Career Focus into a Research Methods Course SO TEACHING SOCIOLOGY LA English DT Article DE research methods; program assessment; active learning; careers ID TEACHING-RESEARCH METHODS; STUDENTS AB Sociology research methods students in 2013 and 2016 implemented a series of real world data gathering activities that enhanced their learning while assisting the department with ongoing program assessment and program review. In addition to the explicit collection of program assessment data on both students' development of sociological concepts and skills while undergraduates and alumni's use of such knowledge after graduation, an effort was made throughout the semesters to highlight key research methods knowledge using examples that focused on job searching and careers appropriate for baccalaureate-trained sociologists. Students reported that these real-world activities both increased their interest in and their learning about research methods. These explicit and implicit experiences with an employment focus also led them to increase their own thinking about their eventual careers and preparing job search materials, such as resumes, that include skills developed in their undergraduate sociology courses. C1 [Senter, Mary Scheuer] Cent Michigan Univ, Sociol, Mt Pleasant, MI 48859 USA. C3 Central Michigan University RP Senter, MS (corresponding author), Cent Michigan Univ, Dept Sociol, 312B Anspach Hall, Mt Pleasant, MI 48859 USA. EM Mary.Senter@cmich.edu CR Blank G, 2004, SOC SCI COMPUT REV, V22, P187, DOI 10.1177/0894439303262559 Crull SR, 2004, TEACH SOCIOL, V32, P206, DOI 10.1177/0092055X0403200206 Earl Babbie., 2014, The basics of social research Ferguson SJ, 2016, TEACH SOCIOL, V44, P163, DOI 10.1177/0092055X16651478 Jennings PK, 2006, TEACH SOCIOL, V34, P286, DOI 10.1177/0092055X0603400307 Kathleen McKinney, 2004, LIBERAL LEARNING SOC Macheski GE, 2008, TEACH SOCIOL, V36, P42, DOI 10.1177/0092055X0803600106 Pfeffer CA, 2012, TEACH SOCIOL, V40, P368, DOI 10.1177/0092055X12446783 Potter SJ, 2003, TEACH SOCIOL, V31, P38, DOI 10.2307/3211423 Raddon MB, 2008, TEACH SOCIOL, V36, P141, DOI 10.1177/0092055X0803600204 Roberta Spalter-Roth, 2010, LAUNCHING MAJORS SAT Roberta Spalter-Roth, 2008, PATHWAYS JOB SATISFA Roberta Spalter-Roth, 2012, RECRUITING SOCIOLOGY Roberta Spalter-Roth, 2013, VICTORY ASSESSMENT W Scheuer Senter Mary, 2001, ASSESSING STUDENT LE, P14 Senter Mary S., 2015, JOBS CAREERS SOCIOLO Singleton RA, 2007, TEACH SOCIOL, V35, P48 Spalter-Roth R, 2010, TEACH SOCIOL, V38, P314, DOI 10.1177/0092055X10378827 Sweet S, 2014, TEACH SOCIOL, V42, P287, DOI 10.1177/0092055X14541551 Wiegers Vitullo Margaret, 2009, FOOTNOTES, V37 NR 20 TC 7 Z9 7 U1 0 U2 5 PU SAGE PUBLICATIONS INC PI THOUSAND OAKS PA 2455 TELLER RD, THOUSAND OAKS, CA 91320 USA SN 0092-055X EI 1939-862X J9 TEACH SOCIOL JI Teach. Sociol. PD APR PY 2017 VL 45 IS 2 BP 131 EP 141 DI 10.1177/0092055X16686151 PG 11 WC Education & Educational Research; Sociology WE Social Science Citation Index (SSCI) SC Education & Educational Research; Sociology GA ET2XH UT WOS:000400138500003 DA 2024-09-05 ER PT J AU Fan, LP Wang, YF Ding, SC Qi, BB AF Fan, Lipeng Wang, Yuefen Ding, Shengchun Qi, Binbin TI Productivity trends and citation impact of different institutional collaboration patterns at the research units' level SO SCIENTOMETRICS LA English DT Article DE Institutional collaboration pattern; Productivity trends; Citation impact; Negative binomial; Artificial intelligence ID INTERNATIONAL COLLABORATION; SCIENTIFIC COLLABORATION; COMPUTER-SCIENCE; UNIVERSITIES; PERFORMANCE AB In order to gain a deeper understanding of how research performance and collaboration patterns of institutions affect productivity trends and citations, this paper classifies institutions into two types: main and normal institutions, and then divides the dataset into six types: M and N as intra-institution collaboration types, and M&M, M&N, N&M, N&N as inter-institution types (M: main institutions, N: normal institutions). After analysing the productivity trends and citation impact at the research units' level, the main results are shown as following: through a large-scale and long-span data, M papers account for the highest percentage, and play an important leading role in the beginning, and the average citation value of M&M papers is significantly higher than other types; although the number of papers with multi-authors is increasing over time, the impact of the number of authors on citations may vary from discipline to discipline, and there is a slightly negative relationship between them in artificial intelligence field in our data; despite the number of institutions and countries has a positive impact on citations in whole dataset, it differs when considering different institutional collaboration patterns and the first author's country; no matter what institutional collaboration pattern is, the papers with USA as first author's country always have a significant greater impact than China as first author's country. After analysing two negative binomial regression models, some results support the above conclusions. Moreover, we find that the number of M institutions has a significant greatest impact on citations, while M institution as first author's affiliation only has a slightly influence; China as first author's country has a negative impact, while USA as first author's country has a moderately positive impact, and slightly lower than that of the number of countries, moderately higher than that of the number of institutions. C1 [Fan, Lipeng; Wang, Yuefen; Ding, Shengchun] Nanjing Univ Sci & Technol, Sch Econ & Management, Nanjing, Peoples R China. [Wang, Yuefen] Jiangsu Collaborat Innovat Ctr Social Safety Sci, Nanjing, Peoples R China. [Qi, Binbin] Nanjing Univ, Sch Informat Management, Nanjing, Peoples R China. C3 Nanjing University of Science & Technology; Nanjing University RP Wang, YF (corresponding author), Nanjing Univ Sci & Technol, Sch Econ & Management, Nanjing, Peoples R China.; Wang, YF (corresponding author), Jiangsu Collaborat Innovat Ctr Social Safety Sci, Nanjing, Peoples R China. EM yuefen163@163.com RI fan, lipeng/IWM-3409-2023 FU National Social Science of China [16ZDA224] FX The authors are grateful to anonymous referees and editors for their invaluable and insightful comments, and thank for the support by the National Social Science of China (16ZDA224). CR Abramo G, 2011, SCIENTOMETRICS, V86, P347, DOI 10.1007/s11192-010-0297-2 [Anonymous], QUALITY QUANTITY, DOI DOI 10.1007/s11135-014-0110-z Beaver DD, 2001, SCIENTOMETRICS, V52, P365, DOI 10.1023/A:1014254214337 Didegah F, 2013, J INFORMETR, V7, P861, DOI 10.1016/j.joi.2013.08.006 Franceschet M, 2011, J AM SOC INF SCI TEC, V62, P1992, DOI 10.1002/asi.21614 Gazni A, 2012, J AM SOC INF SCI TEC, V63, P323, DOI 10.1002/asi.21688 Gazni A, 2011, SCIENTOMETRICS, V87, P251, DOI 10.1007/s11192-011-0343-8 Han P, 2014, SCIENTOMETRICS, V98, P53, DOI 10.1007/s11192-013-1146-x Ibáñez A, 2013, SCIENTOMETRICS, V95, P689, DOI 10.1007/s11192-012-0883-6 Katz JS, 1997, RES POLICY, V26, P1, DOI 10.1016/S0048-7333(96)00917-1 Barrantes BSL, 2012, J AM SOC INF SCI TEC, V63, P481, DOI 10.1002/asi.21682 Lee DH, 2012, SCIENTOMETRICS, V91, P925, DOI 10.1007/s11192-011-0602-8 Liu HI, 2012, SCIENTOMETRICS, V92, P145, DOI 10.1007/s11192-012-0719-4 Nguyen TV, 2017, SCIENTOMETRICS, V110, P1035, DOI 10.1007/s11192-016-2201-1 Ni P, 2018, SCIENTOMETRICS, V116, P863, DOI 10.1007/s11192-018-2784-9 Onodera N, 2015, J ASSOC INF SCI TECH, V66, P739, DOI 10.1002/asi.23209 Peng TQ, 2012, J AM SOC INF SCI TEC, V63, P1789, DOI 10.1002/asi.22649 Puuska HM, 2014, SCIENTOMETRICS, V98, P823, DOI 10.1007/s11192-013-1181-7 Reingewertz Y, 2018, J INFORMETR, V12, P74, DOI 10.1016/j.joi.2017.11.006 Sooryamoorthy R, 2009, SCIENTOMETRICS, V81, P177, DOI 10.1007/s11192-009-2126-z Sud P, 2016, J ASSOC INF SCI TECH, V67, P1849, DOI 10.1002/asi.23515 TRENCHARD PM, 1992, J INFORM SCI, V18, P69, DOI 10.1177/016555159201800108 Van Raan AFJ, 2005, SCIENTOMETRICS, V62, P133, DOI 10.1007/s11192-005-0008-6 VanHooydonk G, 1997, J AM SOC INFORM SCI, V48, P944, DOI 10.1002/(SICI)1097-4571(199710)48:10<944::AID-ASI8>3.0.CO;2-1 Wang W, 2017, SCIENTOMETRICS, V112, P329, DOI 10.1007/s11192-017-2388-9 Wang WC, 2014, SCIENTOMETRICS, V98, P1535, DOI 10.1007/s11192-013-1072-y Yuan LL, 2018, SCIENTOMETRICS, V116, P401, DOI 10.1007/s11192-018-2753-3 NR 27 TC 8 Z9 9 U1 8 U2 73 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0138-9130 EI 1588-2861 J9 SCIENTOMETRICS JI Scientometrics PD NOV PY 2020 VL 125 IS 2 BP 1179 EP 1196 DI 10.1007/s11192-020-03609-z EA JUL 2020 PG 18 WC Computer Science, Interdisciplinary Applications; Information Science & Library Science WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Computer Science; Information Science & Library Science GA OT3PI UT WOS:000547804200009 DA 2024-09-05 ER PT C AU Koni, I AF Koni, I BE Chova, LG Martinez, AL Torres, IC TI HOW TO SUCCESSFULLY COLLABORATE IN AN ONLINE COURSE? SO 12TH INTERNATIONAL CONFERENCE OF EDUCATION, RESEARCH AND INNOVATION (ICERI2019) SE ICERI Proceedings LA English DT Proceedings Paper CT 12th Annual International Conference of Education, Research and Innovation (ICERI) CY NOV 11-13, 2019 CL Seville, SPAIN DE Collaboration; online learning; study skills; action research AB The contemporary educational system evaluates life-long learning and knowledgeable application of skills [1], [2]. One of these skills that help the learner to learn and relearn in new contexts are study skills. Although the field of study skills is rich in variety, one of the essential study skills, emphasized both in learning and working context, is a skill to collaborate [3], [4]. The collaboration skill is, also, considered as one of the 21st-century learning skills [5]. Research has shown that collaborative learning leads to higher achievement, less stress and greater student satisfaction [6]. Moreover, the online environment, as compared to the classroom, allows students to gain deeper experience in team-work and communication [7]. In recent years, the number of online courses has increased along with the development of technology. These courses might challenge collaboration between participants who are strangers to each other but working together towards the same aim in the learning process. This action research is about restructuring the online course with the team-work assignment to enhance collaboration among participants taking the online course. The restructuring process involved adding a team-work assignment to previous assignments (in 2018). In the process of this assignment, the student looked back to their learning experience acquired from the online course and created a virtual poster in team-work following assessment rubric. Therefore, to study the effectiveness of the assignment, the aim was to find out student opinions about what developed in their collaboration as a study skill within the assignment and their suggestions on how to enhance the collaboration within the assignment. This action research involves 43 high school students participating in an online course on study skills in 2018. The data was gathered via the feedback questionnaire and analyzed using qualitative inductive content analysis. The results indicate that within the assignment, participants had an opportunity to develop their skills related to leadership, communication, and compromising. To enhance the collaboration within the assignment, the participants suggested that the lecturer should make random groups to facilitate collaboration between the students who are strangers to each other, and the personal data for contacting each other should be provided. Participants also highlighted that the technical tool for forming the groups should prevent the possibility to erase other members from the team. Further research will address the question of why some of the participants 'disappear' from the team-work assignment or prefer to do the assignment alone, from which the latter annuls the aim of the team-work. C1 [Koni, I] Tartu Univ, Tartu, Estonia. C3 University of Tartu RP Koni, I (corresponding author), Tartu Univ, Tartu, Estonia. CR [Anonymous], 2006, J ASYNCHRONOUS LEARN, DOI DOI 10.24059/OLJ.V10I1.1770 [Anonymous], FRAM 21 CENT LEARN Cottrell S., 2013, The study skills handbook Fadel C., 2008, 21 CENTURY SKILLS CA Garrison D. R., 1999, Internet and Higher Education, V2, P87, DOI 10.1016/S1096-7516(00)00016-6 Hoag A, 2000, J Educ Techno Soc, V3, P337 Hsieh HF, 2005, QUAL HEALTH RES, V15, P1277, DOI 10.1177/1049732305276687 Mayring P., 2002, Forum: Qualitative Social Research, V1 Moore S., 2010, ULTIMATE STUDY SKILL Taylor A, 2011, BIOCHEM MOL BIOL EDU, V39, P219, DOI 10.1002/bmb.20511 NR 10 TC 0 Z9 0 U1 0 U2 0 PU IATED-INT ASSOC TECHNOLOGY EDUCATION & DEVELOPMENT PI VALENICA PA LAURI VOLPI 6, VALENICA, BURJASSOT 46100, SPAIN SN 2340-1095 BN 978-84-09-14755-7 J9 ICERI PROC PY 2019 BP 6841 EP 6845 PG 5 WC Education & Educational Research WE Conference Proceedings Citation Index - Social Science & Humanities (CPCI-SSH) SC Education & Educational Research GA BO8YP UT WOS:000530212402115 DA 2024-09-05 ER PT C AU Liu, HM AF Liu Huimin GP IEEE COMP SOC TI Research on Practice Evaluation System of Higher Vocational Preschool Education Based on Artificial Intelligence SO 2021 13TH INTERNATIONAL CONFERENCE ON MEASURING TECHNOLOGY AND MECHATRONICS AUTOMATION (ICMTMA 2021) SE International Conference on Measuring Technology and Mechatronics Automation LA English DT Proceedings Paper CT 13th International Conference on Measuring Technology and Mechatronics Automation (ICMTMA) CY JAN 16-17, 2021 CL Beihai, PEOPLES R CHINA DE BP neural network; GA; artificial intelligence; practice evaluation; higher vocational college teaching AB To improve the quality of practical teaching and promote the synchronization of practical teaching and practice, the theory of artificial intelligence network is introduced into the evaluation of practical teaching quality, and the relevant mathematical model is established. Firstly, a perfect practical teaching evaluation index system is provided, and the related index system and quality standard are established. Then, when the convergence speed of BP algorithm training network is slow, genetic algorithm is used to optimize the operation parameters of the network, the optimization results are taken as the initial value of BP algorithm, and BP algorithm is used to train the network until the required accuracy is reached. Finally, by using data cleaning, network training and rationalization test, a more reasonable result is obtained, which provides a new idea for teaching quality evaluation. C1 [Liu Huimin] Shanxi Vocat Acad Art, Xian 710054, Shaanxi, Peoples R China. RP Liu, HM (corresponding author), Shanxi Vocat Acad Art, Xian 710054, Shaanxi, Peoples R China. EM a0Zhangyanzz@outlook.com FU Infant School Education Research Project of Shaanxi Province [ZdKT1914] FX This work was supported by Infant School Education Research Project of Shaanxi Province in 2019 (Key Project) under grant no. ZdKT1914. Title of the Project: Research on the Talent Cultivation of Infant School Education in Higher Vocational Colleges Based on Market Demand. CR Cox JL, 2010, J EVAL CLIN PRACT, V16, P315, DOI 10.1111/j.1365-2753.2010.01391.x Das S, 2016, BMC MICROBIOL, V16, DOI 10.1186/s12866-016-0723-6 Elfgren IMH, 2016, PRIM HEALTH CARE RES, V17, P549, DOI 10.1017/S1463423616000098 Frykman PK, 2013, J LAPAROENDOSC ADV S, V23, P639, DOI 10.1089/lap.2013.0125 Huang R, 2014, CENT EUR J IMMUNOL, V39, P488, DOI 10.5114/ceji.2014.47734 Katz DL, 2008, J EVAL CLIN PRACT, V14, P294, DOI 10.1111/j.1365-2753.2007.00853.x Li H., 2018, INT J ENV RES PUB HE, V15, P146 Liaw Siaw-Teng, 2011, AMIA Annu Symp Proc, V2011, P785 Xia LM, 2012, APPL MECH MATER, V174-177, P2925, DOI 10.4028/www.scientific.net/AMM.174-177.2925 NR 9 TC 0 Z9 0 U1 2 U2 11 PU IEEE COMPUTER SOC PI LOS ALAMITOS PA 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1264 USA SN 2157-1473 BN 978-1-6654-3892-6 J9 INT CONF MEAS PY 2021 BP 615 EP 618 DI 10.1109/ICMTMA52658.2021.00142 PG 4 WC Automation & Control Systems; Engineering, Electrical & Electronic; Engineering, Mechanical; Instruments & Instrumentation WE Conference Proceedings Citation Index - Science (CPCI-S) SC Automation & Control Systems; Engineering; Instruments & Instrumentation GA BR8SH UT WOS:000672818900134 DA 2024-09-05 ER PT C AU Ramírez-de-la-Rosa, G Villatoro-Tello, E Jiménez-Salazar, H Sánchez-Sánchez, C AF Ramirez-de-la-Rosa, Gabriela Villatoro-Tello, Esau Jimenez-Salazar, Hector Sanchez-Sanchez, Christian BE Gelbukh, A Espinoza, FC GaliciaHaro, SN TI Towards Automatic Detection of User Influence in Twitter by Means of Stylistic and Behavioral Features SO HUMAN-INSPIRED COMPUTING AND ITS APPLICATIONS, PT I SE Lecture Notes in Artificial Intelligence LA English DT Proceedings Paper CT 13th Mexican International Conference on Artificial Intelligence (MICAI) CY NOV 16-22, 2014 CL Tuxtla Gutierrez, MEXICO DE Opinion Leaders; User Influence; Author Profiling; Machine Learning; Natural Language Processing AB Online communities are filled with comments of loyal readers or first-time viewers, that are constantly creating and sharing information at an unprecedented level, resulting in millions of messages containing opinions, ideas, needs and beliefs of Internet users. Therefore, businesses companies are very interested in finding influential users and encouraging them to create positive influence. Influential users represent users with the ability to influence individual's attitudes in a desired way with relative frequency. We present an empirical analysis on influential users identification problem in Twitter. Our proposed approach considers that the influential level of users can be detected by considering its communication patterns, by means of particular writing style features as well as behavioral features. Performed experiments on more that 7000 users profiles, indicate that it is possible to automatically identify influential users among the members of a social networking community, and also it obtains competitive results against several state-of-the-art methods C1 [Ramirez-de-la-Rosa, Gabriela; Villatoro-Tello, Esau; Jimenez-Salazar, Hector; Sanchez-Sanchez, Christian] Univ Autonoma Metropolitana, Dept Tecnol Informac, Unidad Cuajimalpa, Mexico City, DF, Mexico. C3 Universidad Autonoma Metropolitana - Mexico RP Ramírez-de-la-Rosa, G (corresponding author), Univ Autonoma Metropolitana, Dept Tecnol Informac, Unidad Cuajimalpa, Mexico City, DF, Mexico. EM gramirez@correo.cua.uam.mx; evillatoro@correo.cua.uam.mx; hjimenez@correo.cua.uam.mx; csanchez@correo.cua.uam.mx OI VILLATORO-TELLO, ESAU/0000-0002-1322-0358 CR [Anonymous], 1999, TECH REPORT STANFORD [Anonymous], 2014, INFORM ACCESS EVALUA Cha M., 2010, MEASURING USER INFLU Chakravarthy S., 2011, International Journal of Management Business Studies, V1, P61 Dong Liu, 2013, Advances in Swarm Intelligence. 4th International Conference, ICSI 2013. Proceedings, P146, DOI 10.1007/978-3-642-38715-9_18 Hastie T., 2009, Springer series in statistics Horrigan J.B., 2001, Online communities: Networks that nurture long-distance relationships and local ties Huffaker D, 2010, HUM COMMUN RES, V36, P593, DOI 10.1111/j.1468-2958.2010.01390.x Kong SB, 2011, LECT NOTES ARTIF INT, V7120, P138 Ma N, 2014, EXPERT SYST APPL, V41, P1357, DOI 10.1016/j.eswa.2013.08.033 Rad AA, 2011, LECT NOTES BUS INF P, V78, P227 Stephen R, 1995, P NZ COMP SCI RES ST, P57 Trusov M, 2010, J MARKETING RES, V47, P643, DOI 10.1509/jmkr.47.4.643 NR 13 TC 13 Z9 13 U1 0 U2 12 PU SPRINGER-VERLAG BERLIN PI BERLIN PA HEIDELBERGER PLATZ 3, D-14197 BERLIN, GERMANY SN 0302-9743 EI 1611-3349 BN 978-3-319-13647-9; 978-3-319-13646-2 J9 LECT NOTES ARTIF INT PY 2014 VL 8856 BP 245 EP 256 PG 12 WC Computer Science, Artificial Intelligence; Computer Science, Theory & Methods WE Conference Proceedings Citation Index - Science (CPCI-S) SC Computer Science GA BC7JE UT WOS:000354931600023 DA 2024-09-05 ER PT J AU Ebadi, A Schiffauerova, A AF Ebadi, Ashkan Schiffauerova, Andrea TI iSEER: an intelligent automatic computer system for scientific evaluation of researchers SO SCIENTOMETRICS LA English DT Article; Proceedings Paper CT 15th International Conference of the International-Society-for-Scientometrics-and-Informetrics (ISSI) on Scientometrics and Informetrics CY JUN 29-JUL 04, 2015 CL Bogazici Univ, Istanbul, TURKEY HO Bogazici Univ DE Machine learning; Scientific output; Funding; Research performance; Scientific evaluation ID RESEARCH PRODUCTIVITY; CITATION; IMPACT; PERFORMANCE; COLLABORATION; UNIVERSITIES; DYNAMICS; MODELS AB Funding is one of the crucial drivers of scientific activities. The increasing number of researchers and the limited financial resources have caused a tight competition among scientists to secure research funding. On the other side, it is now even harder for funding allocation organizations to select the most proper researchers. Number of publications and citation counts based indicators are the most common methods in the literature for analyzing the performance of researchers. However, the mentioned indicators are highly correlated with the career age and reputation of the researchers, since they accumulate over time. This makes it almost impossible to evaluate the performance of a researcher based on quantity and impact of his/her articles at the time of the publication. This article proposes an intelligent machine learning framework for scientific evaluation of researchers (iSEER). iSEER may help decision makers to better allocate the available funding to the distinguished scientists through providing fair comparative results, regardless of the career age of the researchers. Our results show that iSEER performs well in predicting the performance of the researchers with high accuracy, as well as classifying them based on collaboration patterns, research performance, and efficiency. C1 [Ebadi, Ashkan; Schiffauerova, Andrea] Concordia Univ, CIISE, Montreal, PQ, Canada. [Schiffauerova, Andrea] Masdar Inst Sci & Technol, Dept Engn Syst & Management, Abu Dhabi, U Arab Emirates. C3 Concordia University - Canada; Khalifa University of Science & Technology RP Ebadi, A (corresponding author), Concordia Univ, CIISE, Montreal, PQ, Canada. EM a_ebad@encs.concordia.ca RI Ebadi, Ashkan/AAI-5123-2020; Ebadi, Ashkan/GWZ-9018-2022 OI Ebadi, Ashkan/0000-0002-4542-9105; CR Abbasi A, 2011, J INFORMETR, V5, P594, DOI 10.1016/j.joi.2011.05.007 Allen L, 2009, PLOS ONE, V4, DOI 10.1371/journal.pone.0005910 [Anonymous], 2011, EXPLORATORY SOCIAL N, DOI DOI 10.1017/CBO9780511996368 [Anonymous], 1970, INFORM SCI [Anonymous], 2011, BIG DATA NEXT FRONTI [Anonymous], 2008, WSDM [Anonymous], 1997, OECD SCI TECHNOLOGY [Anonymous], 2009, Social Network Analysis. Methods and Applications [Anonymous], 2005, GRAPH THEORY Beaudry C, 2012, RES POLICY, V41, P1589, DOI 10.1016/j.respol.2012.03.022 BELL JG, 1978, ECON INQ, V16, P599, DOI 10.1111/j.1465-7295.1978.tb00530.x Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993 BONACICH P, 1972, J MATH SOCIOL, V2, P113, DOI 10.1080/0022250X.1972.9989806 Borgatti SP, 2005, SOC NETWORKS, V27, P55, DOI 10.1016/j.socnet.2004.11.008 Breiman L, 1996, MACH LEARN, V24, P123, DOI 10.1023/A:1018054314350 Breunig MM, 2000, SIGMOD REC, V29, P93, DOI 10.1145/335191.335388 BUSS AR, 1976, CAN PSYCHOL REV, V17, P143, DOI 10.1037/h0081831 Butler L., 2005, HDB QUANTITATIVE SCI, P389, DOI DOI 10.1007/1-4020-2755-9_18 Cowan R, 2003, J ECON BEHAV ORGAN, V52, P513, DOI 10.1016/S0167-2681(03)00091-X Creamer E.G., 1998, ASHE ERIC HIGHER ED, V26 Creamer E.G., 1998, ASSESSING FACULTY PU, V26 De Bellis N, 2009, Bibliometrics and Citation Analysis: From the Science Citation Index to Cybermetrics Deng HT, 2011, LECT NOTES COMPUT SC, V6792, P293, DOI 10.1007/978-3-642-21738-8_38 Dundar H, 1998, RES HIGH EDUC, V39, P607, DOI 10.1023/A:1018705823763 Ebadi A, 2015, PRO INT CONF SCI INF, P425 Ebadi A, 2015, J INFORMETR, V9, P809, DOI 10.1016/j.joi.2015.08.002 Ebadi A, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0133061 Ebadi A, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0121129 Ebadi A, 2013, J INF KNOWL MANAG, V12, DOI 10.1142/S0219649213500378 Elzinga Aant., 1995, HDB SCI TECHNOLOGY S Eslami H, 2013, SCIENTOMETRICS, V97, P99, DOI 10.1007/s11192-013-1069-6 Fu LD, 2013, SCIENTOMETRICS, V97, P871, DOI 10.1007/s11192-013-0983-y Fu LD, 2010, SCIENTOMETRICS, V85, P257, DOI 10.1007/s11192-010-0237-1 Gingras Y., 1996, Bibliometric Analysis of Funded Research. A Feasibility Study Godin B., 2003, IMPACT RES GRANTS PO Gross P L, 1927, Science, V66, P385, DOI 10.1126/science.66.1713.385 Hanneman R.a., 2014, The SAGE handbook of social network analysis, DOI 10.4135/9781446294413.n24 Hicks D, 2004, RES EVALUAT, V13, P78 Huffman W. E., 2005, 3029 IOW STAT U DEP Jacob BA, 2011, J PUBLIC ECON, V95, P1168, DOI 10.1016/j.jpubeco.2011.05.005 Katz JS, 1997, RES POLICY, V26, P1, DOI 10.1016/S0048-7333(96)00917-1 KING J, 1987, J INFORM SCI, V13, P261, DOI 10.1177/016555158701300501 Kyvik S, 2008, SCIENTOMETRICS, V76, P439, DOI 10.1007/s11192-007-1767-z Lee S, 2005, SOC STUD SCI, V35, P673, DOI 10.1177/0306312705052359 LUUKKONENGRONOW T, 1987, R&D MANAGE, V17, P207, DOI 10.1111/j.1467-9310.1987.tb00055.x MacRoberts MH, 1996, SCIENTOMETRICS, V36, P435, DOI 10.1007/BF02129604 MCALLISTER PR, 1983, J AM SOC INFORM SCI, V34, P123, DOI 10.1002/asi.4630340205 Merton R. K., 1974, SOCIOLOGY SCI THEORE Nicolaisen J, 2002, J DOC, V58, P383, DOI 10.1108/00220410210431118 Payne A. A., 2003, ADV EC ANAL POLICY, V3, P1018, DOI [DOI 10.2202/1538-0637.1018, 10.2202/1538-0637.1018] PERITZ BC, 1990, SCIENTOMETRICS, V19, P199, DOI 10.1007/BF02095347 Phelan TJ, 1999, SCIENTOMETRICS, V45, P117, DOI 10.1007/BF02458472 Plume A., 2014, TRENDS J SCI RES, V38 Polster C, 2007, HIGH EDUC, V53, P599, DOI 10.1007/s10734-005-1118-z Porter SR, 2001, RES HIGH EDUC, V42, P171, DOI 10.1023/A:1026573503271 Provost F., 1998, Mach. Learn, V30, P271, DOI 10.1023/A:1017181826899 Quinlan J. R., 1993, C4 5 PROGRAMS MACHIN Sanz Menendez L, 2000, Working Paper 00-01 SEGLEN PO, 1992, J AM SOC INFORM SCI, V43, P628, DOI 10.1002/(SICI)1097-4571(199210)43:9<628::AID-ASI5>3.0.CO;2-0 Sonnenwald DH, 2007, ANNU REV INFORM SCI, V41, P643, DOI 10.1002/aris.2007.1440410121 TAN DL, 1986, RES HIGH EDUC, V24, P223, DOI 10.1007/BF00992074 Tijssen RJW, 2004, RES POLICY, V33, P709, DOI 10.1016/j.respol.2003.11.002 Van Raan AFJ, 2005, SCIENTOMETRICS, V62, P133, DOI 10.1007/s11192-005-0008-6 WANNER RA, 1981, SOCIOL EDUC, V54, P238, DOI 10.2307/2112566 Watts DJ, 1998, NATURE, V393, P440, DOI 10.1038/30918 Weiss S.M., 1991, Computer Systems that Learn: Classification and Prediction Methods from Statistics, Neural Nets, Machine Learning, and Expert Systems NR 66 TC 5 Z9 5 U1 0 U2 54 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0138-9130 EI 1588-2861 J9 SCIENTOMETRICS JI Scientometrics PD MAY PY 2016 VL 107 IS 2 BP 477 EP 498 DI 10.1007/s11192-016-1852-2 PG 22 WC Computer Science, Interdisciplinary Applications; Information Science & Library Science WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI); Conference Proceedings Citation Index - Social Science & Humanities (CPCI-SSH); Conference Proceedings Citation Index - Science (CPCI-S) SC Computer Science; Information Science & Library Science GA DM3VA UT WOS:000376273600009 DA 2024-09-05 ER PT C AU Freire, N Borbinha, J Martins, B AF Freire, Nuno Borbinha, Jose Martins, Bruno BE Buchanan, G Masoodian, M Cunningham, SJ TI Consolidation of References to Persons in Bibliographic Databases SO DIGITAL LIBRARIES: UNIVERSAL AND UBIQUITOUS ACCESS TO INFORMATION, PROCEEDINGS SE Lecture Notes in Computer Science LA English DT Proceedings Paper CT 11th International Conference on Asian Digital Libraries CY DEC 02-05, 2008 CL Bali, INDONESIA DE Entity resolution; bibliographic metadata; similarity metrics; machine learning AB Entity resolution is the process of determining if, in a specific context, two or more references correspond to the same entity. In this work, we address this problem in the context of references to persons as they are found in bibliographic data, specifically in the case of consolidating multiple datasets. Or solution follows the extraction, transformation and loading (ETL) process, typical in data warehouses. It computes the similarities of the attribute values for the references, and employs a decision tree to decide when the references match. We describe the characteristics of these references within bibliographic datasets, and how we explored those characteristics by developing new similarity metrics to improve the quality of the consolidation process. We evaluated our work by designing an experiment with data from four national libraries. The results show that the proposed similarity metrics contribute significantly to the consolidation process. C1 [Freire, Nuno; Borbinha, Jose; Martins, Bruno] Univ Tecn Lisboa, Inst Super Tecn, P-1049001 Lisbon, Portugal. C3 Universidade de Lisboa EM nuno.freire@ist.utl.pt; jlb@ist.utl.pt; bruno.g.martins@ist.utl.pt RI da Graça Martins, Bruno Emanuel/J-9735-2015; Freire, Nuno/AAD-9410-2022; Borbinha, Jose/A-7355-2010 OI da Graça Martins, Bruno Emanuel/0000-0002-3856-2936; Freire, Nuno/0000-0002-3632-8046; Borbinha, Jose/0000-0001-5463-8438 CR *ALA CLA CILIP, 2002, ANGL CAT RUL 2002 RE [Anonymous], 2005, Proceedings of the 2nd international workshop on Information quality in information systems Dong Xin., 2005, Proceedings of the 2005 ACM SIGMOD international conference on Management of data, P85 Elmagarmid AK, 2007, IEEE T KNOWL DATA EN, V19, P1, DOI 10.1109/TKDE.2007.250581 Freund Y, 1999, MACHINE LEARNING, PROCEEDINGS, P124 Jaro M.A., 1989, J AM STAT SOC, V64, P1183 KAISER M, 2003, D LIB MAGAZINE, V9 LAWRENCE S, 1999, P 3 INT C AUT AG Levenshtein V. I., 1966, Soviet Physics Doklady, V10, P707 MANGUINHAS H, 2008, 3 ICA WORKSH DIG APP MARTINS B, 2008, P 2 IEEE INT C SEM C MARTINS B, 2008, INT C AS PAC DIG LIB Pasula H., 2002, Advances in Neural Information Processing NR 13 TC 1 Z9 1 U1 0 U2 4 PU SPRINGER-VERLAG BERLIN PI BERLIN PA HEIDELBERGER PLATZ 3, D-14197 BERLIN, GERMANY SN 0302-9743 EI 1611-3349 BN 978-3-540-89532-9 J9 LECT NOTES COMPUT SC PY 2008 VL 5362 BP 256 EP 265 PG 10 WC Computer Science, Information Systems; Computer Science, Theory & Methods; Information Science & Library Science WE Conference Proceedings Citation Index - Science (CPCI-S); Conference Proceedings Citation Index - Social Science & Humanities (CPCI-SSH) SC Computer Science; Information Science & Library Science GA BIT31 UT WOS:000262503100026 DA 2024-09-05 ER PT J AU Wang, J Feng, QM Tam, A Sun, T Zhou, PJ So, S AF Wang, Jing Feng, Qiming Tam, Andrew Sun, Tong Zhou, Peijing So, Samuel TI Evaluation of the first open-access hepatitis B and safe injection online training course for health professionals in China SO BMC MEDICAL EDUCATION LA English DT Article DE Hepatitis B; Internet based education; Open-access education; Online learning; Continuing medical education; Online learning evaluation ID BURDEN; CARE; DISEASES AB Background: Despite the high prevalence of chronic hepatitis B virus (HBV) infection in China, HBV infection prevention and long-term care knowledge of health professionals is inadequate. To address this knowledge gap, we developed an open-access evidence-based online training course, "KnowHBV", to train health professionals on prevention of HBV transmission and safe injections. We conducted an evaluation of the course with health professionals in China to examine its effectiveness in improving knowledge and learner's satisfaction of the course. Methods: Between July and December 2011, 1015 health professionals from selected hospitals and disease control institutions of Shandong province registered for the course and 932 (92 %) completed the three-module course. Participants' demographic information, pre- and post-course knowledge test results and learner's feedback were collected through the course website. Results: Pre-course knowledge assessment confirmed gaps in HBV transmission routes, prevention and long-term care knowledge. Only 50.4 % of participants correctly identified all of the transmission routes of HBV, and only 40.7 % recognized all of the recommended tests to monitor chronically infected persons. The number of participants that answered all six multi-part multiple-choice knowledge questions correctly increased from 183 (19.7 %) before taking the course to 395 (42.4 %) on their first attempt upon completion of the course. Over 90 % of the 898 participants who completed the learner-feedback questionnaire rated the course as 'good' or 'very good'; over 94 % found the course instructional design helpful; 57.5 %, 65.7 % and 68.5 % reported that half or more than half of the course content in modules 1, 2 and 3 respectively provided new information; and 93.2 % of the participants indicated they preferred the online learning over traditional face-to-face classroom learning. Conclusions: The "KnowHBV" online training course appears to be an effective online training tool to improve HBV prevention and care knowledge of the health professionals in China. C1 [Wang, Jing; Tam, Andrew; So, Samuel] Stanford Univ, Asian Liver Ctr, 780 Welch Rd,CJ130, Palo Alto, CA 94304 USA. [Feng, Qiming] Guangxi Med Univ, Sch Publ Hlth, 22 Shuangyong Rd, Nanning, Guangxi Provinc, Peoples R China. [Sun, Tong; Zhou, Peijing] Shandong Prov Ctr Dis Control & Prevent, 16992 Jingshi Rd, Jinan, Shandong, Peoples R China. C3 Stanford University; Guangxi Medical University RP Wang, J; So, S (corresponding author), Stanford Univ, Asian Liver Ctr, 780 Welch Rd,CJ130, Palo Alto, CA 94304 USA. EM alcjwang@gmail.com; samso@stanford.edu FU Zeshan Foundation (Hongkong); Zeshan Foundation (Hongkong) FX We would like to thank Zeshan Foundation (Hongkong) and Mr. Paul Davis for providing funding support for this project. Dr. Yvan Hutin from the China office of the World Health Organization provided suggestions for the course content development. We are also most grateful to Michael Mohrman and Paul Davis at Videx Inc for their technical support. Dr. Mehlika Toy contributed to the editing of the manuscript. Portions of this study have been presented at the poster session at the 14th International Symposium on Viral Hepatitis and Liver Disease (ISVHLD) in Shanghai, China, 2012. The study group and the study have no conflict of interests with any other institutions. CR [Anonymous], 2011, Xinhua News Agency Bloom BS, 2005, INT J TECHNOL ASSESS, V21, P380, DOI 10.1017/S026646230505049X Chao J, 2010, BMC PUBLIC HEALTH, V10, DOI 10.1186/1471-2458-10-98 China Internet Network Information Center, 2015, 36 CHIN INT NETW INF Curran VR, 2005, MED EDUC, V39, P561, DOI 10.1111/j.1365-2929.2005.02173.x Fleisher L, 2012, J HEALTH COMMUN, V17, P41, DOI 10.1080/10810730.2011.571338 Jia Ji-dong, 2004, Zhonghua Gan Zang Bing Za Zhi, V12, P698 Kirkpatrick D.L., 1994, EVALUATING TRAINING Lavanchy D, 2004, J VIRAL HEPATITIS, V11, P97, DOI 10.1046/j.1365-2893.2003.00487.x Li Qin, 2003, Zhonghua Liu Xing Bing Xue Za Zhi, V24, P176 Liang XF, 2009, VACCINE, V27, P6550, DOI 10.1016/j.vaccine.2009.08.048 Lu JJ, 2013, BMC HEALTH SERV RES, V13, DOI 10.1186/1472-6963-13-37 Maloney S, 2012, J MED INTERNET RES, V14, DOI 10.2196/jmir.2040 Naghavi M, 2015, LANCET, V385, P117, DOI 10.1016/S0140-6736(14)61682-2 Olson Curtis A, 2004, J Contin Educ Health Prof, V24, P100, DOI 10.1002/chp.1340240207 Ruiz JG, 2006, ACAD MED, V81, P207, DOI 10.1097/00001888-200603000-00002 Sullivan TM, 2012, J HEALTH COMMUN, V17, P5, DOI 10.1080/10810730.2012.666629 [孙奕 Sun Yi], 2005, [中国循证医学杂志, Chinese Journal of Evidence-Based Medicine], V5, P394 [王静 Wang Jing], 2013, [中国全科医学, Chinese General Practice], V16, P919 Wang LD, 2008, LANCET, V372, P1598, DOI 10.1016/S0140-6736(08)61365-3 Wang T, 2011, CHINA PRIMARY HLTH C, V9, P32 World Health Organization, 2008, DISEASE AND INJURY C World Health Organization, 2006, INJ SAF Xu Y, 2010, CHIN J DIS CONTROL P, V14, P1109 Yang T, 2011, LANCET, V378, P1059, DOI 10.1016/S0140-6736(11)61460-8 NR 25 TC 5 Z9 5 U1 0 U2 25 PU BMC PI LONDON PA CAMPUS, 4 CRINAN ST, LONDON N1 9XW, ENGLAND EI 1472-6920 J9 BMC MED EDUC JI BMC Med. Educ. PD MAR 8 PY 2016 VL 16 AR 81 DI 10.1186/s12909-016-0608-2 PG 8 WC Education & Educational Research; Education, Scientific Disciplines WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Education & Educational Research GA DG0ON UT WOS:000371764700001 PM 26952079 OA gold, Green Published DA 2024-09-05 ER PT J AU Garay-Jiménez, LI Romero-Lujambio, JF Santiago-Horta, A Tovar-Corona, B Gómez-Miranda, P Mata-Rivera, MF AF Garay-Jimenez, Laura I. Romero-Lujambio, Jose Fausto Santiago-Horta, Amaury Tovar-Corona, Blanca Gomez-Miranda, Pilar Mata-Rivera, Miguel Felix TI Collaboration System for Multidisciplinary Research with Essential Data Analysis Toolkit Built-In SO INFORMATION LA English DT Article DE data visualization; multidimensional dataset; fuzzy searching; collaborative research; t-SNE; microservices; approximate string-matching; knowledge-sharing behaviors ID INFORMATION AB Environmental research calls for a multidisciplinary approach, where highly specialized research teams collaborate in data analysis. Nevertheless, managing the data lifecycle and research artifacts becomes challenging because the project teams require techniques and tools tailored to their study fields. Another pain point is the unavailability of essential analysis and data representation formats for querying and interpreting the shared results. In addition, managing progress reports across the teams is demanding because they manage different platforms and systems. These concerns discourage the knowledge-sharing process and lead to researchers' low adherence to the system. A hybrid methodology based on Design Thinking and an Agile approach enables us to understand and attend to the research process needs. As a result, a microservices-based architecture of the system, which can be deployed in cloud, hybrid, or standalone environments and adapt the computing resources according to the actual requirements with an access control system based on users and roles, enables the security and confidentiality, allowing the team's lead to share or revoke access. Additionally, intelligent assistance is available for document searches and dataset analyses. A multidisciplinary researchers' team that uses this system as a knowledge-sharing workspace reported an 83% acceptance. C1 [Garay-Jimenez, Laura I.; Tovar-Corona, Blanca] Inst Politecn Nacl, UPIITA, SEPI, LIPS, Mexico City 07340, Mexico. [Romero-Lujambio, Jose Fausto; Santiago-Horta, Amaury] Inst Politecn Nacl, UPIITA, Mexico City 07340, Mexico. [Gomez-Miranda, Pilar] Inst Politecn Nacl, UPIICSA, SEPI, Mexico City 08400, Mexico. [Mata-Rivera, Miguel Felix] Inst Politecn Nacl, UPIITA, SEPI, Lab Geospatial Intelligence & Mobile Comp, Mexico City 07340, Mexico. C3 Instituto Politecnico Nacional - Mexico; Instituto Politecnico Nacional - Mexico; Instituto Politecnico Nacional - Mexico; Instituto Politecnico Nacional - Mexico RP Garay-Jiménez, LI (corresponding author), Inst Politecn Nacl, UPIITA, SEPI, LIPS, Mexico City 07340, Mexico. EM lgaray@ipn.mx; jromerol0902@alumno.ipn.mx; asantiagoh2300@alumno.ipn.mx; bltovar@ipn.mx; pgomezm@ipn.mx; mmatar@ipn.mx RI Gomez Miranda, Pilar/KFB-8604-2024; Garay Jimenez, Laura/S-5637-2018 OI Garay Jimenez, Laura/0000-0001-9478-4835; Santiago Horta, Amaury/0000-0003-3497-5546; Romero-Lujambio, Jose Fausto/0009-0001-5416-9771 FU Instituto Politcnico National FX No Statement Available CR Akhavan Peyman, 2013, VINE, V43, P357, DOI 10.1108/VINE-06-2012-0020 [Anonymous], 2012, SOFTWARE FOR PEOPLE [Anonymous], 2012, Information Technology-Procedures for the Operation of Object Identifier Registration Authorities: Generation of Universally Unique Identifiers and Their Use in Object Identifiers Attwal KPS, 2020, ADV APPL MATH SCI, V19, P451 BaezaYates RA, 1996, INFORM PROCESS LETT, V59, P21, DOI 10.1016/0020-0190(96)00083-X Bisong E., 2019, Matplotlib and seaborn. Building machine learning and deep learning models on google cloud platform: A comprehensive guide for beginners, P151, DOI DOI 10.1007/978-1-4842-4470-8_12 Lopes MAD, 2020, IEEE ACCESS, V8, P11482, DOI 10.1109/ACCESS.2020.2964413 de Paula D, 2022, IEEE T ENG MANAGE, V69, P1664, DOI 10.1109/TEM.2021.3084884 Direccion General de Informacion en Salud, Datos Abiertos Figma Co, About us Fisher RA, 1936, ANN EUGENIC, V7, P179, DOI 10.1111/j.1469-1809.1936.tb02137.x Franz M, 2016, BIOINFORMATICS, V32, P309, DOI 10.1093/bioinformatics/btv557 GitHub Inc, GitHub Platform Halladin-Dabrowska A, 2020, REMOTE SENS-BASEL, V12, DOI 10.3390/rs12010039 Jain Shivani., 2021, International Journal of Information Management Data Insights, V1, P100009, DOI DOI 10.1016/J.JJIMEI.2021.100009 Janssen M, 2020, GOV INFORM Q, V37, DOI 10.1016/j.giq.2020.101493 kanbantool, Shore Labs Kanban Tool Kulkarni E.G., 2016, Int. J. Comput. Appl, V975, P8887 Kuriakose Teneema, 2023, Curr Top Microbiol Immunol, V442, P65, DOI 10.1007/82_2019_189 Leach P, 2005, A universally unique identifier (uuid) urn namespace, DOI [10.17487/RFC4122, DOI 10.17487/RFC4122, 10.17487/rfc4122] Li YJ, 2007, IEEE T PATTERN ANAL, V29, P1091, DOI 10.1109/TPAMI.2007.1070 Liu HH, 2021, J HYDROL, V597, DOI 10.1016/j.jhydrol.2021.126146 Lubell M, 2015, CURR OPIN ENV SUST, V12, P41, DOI 10.1016/j.cosust.2014.08.011 Medina-Quispe Fernando, 2020, Ingeniare. Rev. chil. ing., V28, P596 Morales J., 2019, Ingeniare, V27, P495, DOI [10.4067/s0718-33052019000300495, DOI 10.4067/S0718-33052019000300495] Moriarty K., 2017, PKCS #5: Password-Based Cryptography Specification Version 2.1 Mullon PA, 2019, REC MANAG J, V29, P103, DOI 10.1108/RMJ-09-2018-0030 Ou JH, 2019, NAT METHODS, V16, P453, DOI 10.1038/s41592-019-0430-y Qin XD, 2020, VLDB J, V29, P93, DOI 10.1007/s00778-019-00588-3 Sandhu Ravi S, 1998, Advances in computers, V46, P237 Schmidt J, 2020, IVAPP: PROCEEDINGS OF THE 15TH INTERNATIONAL JOINT CONFERENCE ON COMPUTER VISION, IMAGING AND COMPUTER GRAPHICS THEORY AND APPLICATIONS, VOL 3: IVAPP, P309, DOI 10.5220/0009181903090316 Shao XY, 2006, J MANUF SYST, V25, P95, DOI 10.1016/S0278-6125(07)00007-6 Singhal S., 2013, International Journal of Innovative technology and exploring engineering (IJItee), V2, P250 Srivastava A, 2017, 2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTING, COMMUNICATION AND AUTOMATION (ICCCA), P864, DOI 10.1109/CCAA.2017.8229928 Sutherland J, 2005, AGILE 2005, PROCEEDINGS, P90, DOI 10.1109/ADC.2005.28 Swimm Team, Popular Collaborative Coding Practices Taivalsaari A, 2017, 2017 IEEE INTERNATIONAL CONFERENCE ON SOFTWARE ARCHITECTURE (ICSA 2017), P51, DOI 10.1109/ICSA.2017.23 Taivalsaari A, 2008, PROCEEDINGS OF THE 34TH EUROMICRO CONFERENCE ON SOFTWARE ENGINEERING AND ADVANCED APPLICATIONS, P293, DOI 10.1109/SEAA.2008.17 van der Maaten L, 2008, J MACH LEARN RES, V9, P2579 Van Rossum G., 2014, The Python Language Reference Villamizar M, 2015, COMPUT COLOMB CONF, P583, DOI 10.1109/ColumbianCC.2015.7333476 Waseem M, 2020, J SYST SOFTWARE, V170, DOI 10.1016/j.jss.2020.110798 Yalim C., 2023, P MOD SIM VIS STUD C, DOI [10.25776/y65q-qy42, DOI 10.25776/Y65Q-QY42] Yoon SW, 2011, J INTELL MANUF, V22, P101, DOI 10.1007/s10845-009-0282-x NR 44 TC 0 Z9 0 U1 0 U2 0 PU MDPI PI BASEL PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND EI 2078-2489 J9 INFORMATION JI Information PD DEC PY 2023 VL 14 IS 12 AR 626 DI 10.3390/info14120626 PG 21 WC Computer Science, Information Systems WE Emerging Sources Citation Index (ESCI) SC Computer Science GA DI4N5 UT WOS:001131389900001 OA gold DA 2024-09-05 ER PT J AU Kulakli, A Osmanaj, V AF Kulakli, Atik Osmanaj, Valmira TI Global Research on Big Data in Relation with Artificial Intelligence (A Bibliometric Study: 2008-2019) SO INTERNATIONAL JOURNAL OF ONLINE AND BIOMEDICAL ENGINEERING LA English DT Article DE Bibliometric analysis; big data; artificial intelligence; business intelligence; citations; research evaluation and Impact; SCI-Expanded; SSCI ID CHALLENGES; PREDICTION AB The purpose of this paper is to analyze and explore the research studies on Big Data in relation with Artificial Intelligence domain, which published in Peer Review Journals and indexed in Web of Science Core Collection for the period of 2008-2019 years. The publication data for our research analysis "Big Data in relation with Artificial Intelligence" has been derived from the Web of Science (WoS) Core Collection database (Indexes included SCI Expanded and SSCI). The Bibliometric Analysis Methods is applied for the study in order to find out the relations between two domains and to investigate the status of scientific development level in the research era. Therefore, our research concentrates and highlights the current issues discussed and studied by the scholars around the globe. This paper would useful for researchers to show the publication trends on big data in relation with artificial intelligence research outcomes in highly reputable SCI-Exp and SSCI journal (ranked by WoS). C1 [Kulakli, Atik; Osmanaj, Valmira] Amer Univ Middle East, Coll Business Adm, Egaila, Kuwait. C3 American University of the Middle East RP Kulakli, A (corresponding author), Amer Univ Middle East, Coll Business Adm, Egaila, Kuwait. EM atik.kulakli@aum.edu.kw RI Kulakli, Atik/D-6033-2016; Osmanaj, Valmira Hysen/B-7175-2019 OI Kulakli, Atik/0000-0002-2368-3225; Osmanaj, Valmira Hysen/0000-0002-9864-8627 CR Abbass HA, 2016, IEEE ACCESS, V4, P2808, DOI 10.1109/ACCESS.2016.2571058 Altman RB, 2015, CIRCULATION, V131, P232, DOI 10.1161/CIRCULATIONAHA.114.014106 Carlos RC, 2018, J AM COLL RADIOL, V15, P497, DOI 10.1016/j.jacr.2018.01.029 Casey AJ, 2016, U TORONTO LAW J, V66, P429, DOI 10.3138/UTLJ.4006 Chen M, 2018, IEEE COMMUN MAG, V56, P16, DOI 10.1109/MCOM.2018.1700788 Coates J, 2016, FRONT ONCOL, V6, DOI 10.3389/fonc.2016.00149 Dilsizian SE, 2014, CURR CARDIOL REP, V16, DOI 10.1007/s11886-013-0441-8 Draxl C, 2018, MRS BULL, V43, P676, DOI 10.1557/mrs.2018.208 Gani A, 2016, KNOWL INF SYST, V46, P241, DOI 10.1007/s10115-015-0830-y Griffen EJ, 2018, DRUG DISCOV TODAY, V23, P1373, DOI 10.1016/j.drudis.2018.03.011 Jing YK, 2018, AAPS J, V20, DOI 10.1208/s12248-018-0210-0 Kanevsky J, 2016, PLAST RECONSTR SURG, V137, p890E, DOI 10.1097/PRS.0000000000002088 Kiral-Kornek I, 2018, EBIOMEDICINE, V27, P103, DOI 10.1016/j.ebiom.2017.11.032 Kolle SR, 2016, COLLECT BUILD, V35, P84, DOI 10.1108/CB-05-2016-0008 Lei YG, 2016, IEEE T IND ELECTRON, V63, P3137, DOI 10.1109/TIE.2016.2519325 Li YZ, 2018, IEEE COMMUN MAG, V56, P56, DOI 10.1109/MCOM.2018.1700425 Ma TJ, 2017, INF DISCOV DELIV, V45, P79, DOI 10.1108/IDD-01-2017-0004 Muhammed S., 2018, J BUSINESS TURK, V10, P15, DOI [10.20491/isarder.2018.460, DOI 10.20491/ISARDER.2018.460] O'Leary DE, 2013, IEEE INTELL SYST, V28, P96, DOI 10.1109/MIS.2013.39 Özdemir V, 2018, OMICS, V22, P65, DOI 10.1089/omi.2017.0194 Syeda-Mahmood T, 2018, J AM COLL RADIOL, V15, P569, DOI 10.1016/j.jacr.2018.01.028 Wolfert S, 2017, AGR SYST, V153, P69, DOI 10.1016/j.agsy.2017.01.023 Wolff JG, 2014, IEEE ACCESS, V2, P301, DOI 10.1109/ACCESS.2014.2315297 Xing EP, 2016, ENGINEERING-PRC, V2, P179, DOI 10.1016/J.ENG.2016.02.008 Yan HH, 2018, IEEE ACCESS, V6, P17190, DOI 10.1109/ACCESS.2018.2809681 Zhou YZ, 2018, ACTA PETROL SIN, V34, P255 Zhuang YT, 2017, FRONT INFORM TECH EL, V18, P3, DOI 10.1631/FITEE.1601883 NR 27 TC 12 Z9 13 U1 0 U2 18 PU INT ASSOC ONLINE ENGINEERING PI WIEN PA KIRCHENGASSE 10-200, WIEN, A-1070, AUSTRIA EI 2626-8493 J9 INT J ONLINE BIOMED JI Int. J. Online Biomed. Eng. PY 2020 VL 16 IS 2 BP 31 EP 46 DI 10.3991/ijoe.v16i02.12617 PG 16 WC Computer Science, Interdisciplinary Applications WE Emerging Sources Citation Index (ESCI) SC Computer Science GA KM5WB UT WOS:000514209100003 OA gold DA 2024-09-05 ER PT J AU Chen, KH Tang, MC Wang, CM Hsiang, J AF Chen, Kuang-hua Tang, Muh-chyun Wang, Chun-mei Hsiang, Jieh TI Exploring alternative metrics of scholarly performance in the social sciences and humanities in Taiwan SO SCIENTOMETRICS LA English DT Article DE Research evaluation; Bibliometrics; Evaluation metrics; Altmetrics ID BIBLIOMETRIC INDICATORS; IMPACT; WEB; COMMUNICATION; WEBOMETRICS AB Research output and impact metrics derived from commercial citation databases such as Web of Science and Scopus have become the de facto indicators of scholarly performance across different disciplines and regions. However, it has been pointed out that the existing metrics are largely inadequate to reflect scholars' overall peer-mediated performance, especially in the social sciences and humanities (SSH) where publication channels are more diverse. In this paper alternative metrics exploring a variety of formal and informal communication channels were proposed, with the aim of better reflecting SSH scholarship. Data for a group of SSH scholars in Taiwan on these metrics were collected. Principal component analysis revealed four underlying dimensions represented by the 18 metrics. Multiple-regression analyses were then performed to examine how well each of these dimensions predicted the academic standing of the scholars, measured by the number of public grants awarded and prestigious research awards received. Differences in the significance of the predictors were found between the social sciences and humanities. The results suggest the need to consider disciplinary differences when evaluating scholarly performance. C1 [Chen, Kuang-hua; Tang, Muh-chyun; Wang, Chun-mei] Natl Taiwan Univ, Dept Lib & Informat Sci, Taipei 10617, Taiwan. [Hsiang, Jieh] Natl Taiwan Univ, Dept Comp Sci & Informat Engn, Taipei 10617, Taiwan. C3 National Taiwan University; National Taiwan University RP Tang, MC (corresponding author), Natl Taiwan Univ, Dept Lib & Informat Sci, 1,Sec 4,Roosevelt Rd, Taipei 10617, Taiwan. EM mctang@ntu.edu.tw RI muh-chyun, Tang/O-9385-2019 OI muh-chyun, Tang/0000-0001-7321-6927; HSIANG, JIEH/0000-0002-2649-4331 FU "The Aim for the Top University Project, Integrated Platform of Digital Humanities" at National Taiwan University in Taiwan FX The study was sponsored by "The Aim for the Top University Project, Integrated Platform of Digital Humanities" at National Taiwan University in Taiwan. CR Aguillo I., 2008, HIGHER ED EUROPE, V33, P233, DOI [10.1080/03797720802254031, DOI 10.1080/03797720802254031] Aguillo IF, 2006, J AM SOC INF SCI TEC, V57, P1296, DOI 10.1002/asi.20433 Allen L, 2009, PLOS ONE, V4, DOI 10.1371/journal.pone.0005910 [Anonymous], 2010, 1 MONDAY [Anonymous], METR 2011 S INF SCIE [Anonymous], 2012, ARXIV12055611 [Anonymous], 2007, 1 MONDAY, DOI DOI 10.5210/FM.V12I8.1997 Björneborn L, 2004, J AM SOC INF SCI TEC, V55, P1216, DOI 10.1002/asi.20077 Bollen J, 2009, PLOS ONE, V4, DOI 10.1371/journal.pone.0006022 Bornmann L, 2013, J INFORMETR, V7, P286, DOI 10.1016/j.joi.2012.12.003 CLEMENS ES, 1995, AM J SOCIOL, V101, P433, DOI 10.1086/230730 Fry J, 2004, P ASIST ANNU, V41, P20, DOI 10.1002/meet.1450410103 Fry J, 2006, INFORM PROCESS MANAG, V42, P299, DOI 10.1016/j.ipm.2004.09.004 Haustein S, 2011, J INFORMETR, V5, P446, DOI 10.1016/j.joi.2011.04.002 Huang MH, 2008, J AM SOC INF SCI TEC, V59, P1819, DOI 10.1002/asi.20885 Kousha K, 2008, J AM SOC INF SCI TEC, V59, P2060, DOI 10.1002/asi.20920 Li XM, 2012, SCIENTOMETRICS, V91, P461, DOI 10.1007/s11192-011-0580-x Meho LI, 2007, J AM SOC INF SCI TEC, V58, P2105, DOI 10.1002/asi.20677 Must Ü, 2012, SCIENTOMETRICS, V91, P527, DOI 10.1007/s11192-011-0596-2 Nederhof A., 1993, CWTS9309 Nederhof AJ, 2006, SCIENTOMETRICS, V66, P81, DOI 10.1007/s11192-006-0007-2 NEDERHOF AJ, 1988, SCIENTOMETRICS, V14, P475, DOI 10.1007/BF02017103 Norris M, 2007, J INFORMETR, V1, P161, DOI 10.1016/j.joi.2006.12.001 Piwowar H, 2013, NATURE, V493, P159, DOI 10.1038/493159a Priem J., 2010, ALTMETRICS MANIFESTO Priem J., 2010, Proceedings of the American Society for Information Science and Technology, V47, P1, DOI [DOI 10.1002/MEET.14504701201, 10.1002/meet.14504701201] Rousseau R, 2013, CHINESE SCI BULL, V58, P10 Shema H, 2014, J ASSOC INF SCI TECH, V65, P1018, DOI 10.1002/asi.23037 Sud P, 2014, SCIENTOMETRICS, V98, P1131, DOI 10.1007/s11192-013-1117-2 Thelwall M, 2004, J AM SOC INF SCI TEC, V55, P149, DOI 10.1002/asi.10362 Thelwall M, 2008, J INF SCI, V34, P605, DOI 10.1177/0165551507087238 VANDERMEULEN B, 1991, SCI TECHNOL HUM VAL, V16, P288, DOI 10.1177/016224399101600302 Waltman L, 2014, J ASSOC INF SCI TECH, V65, P433, DOI 10.1002/asi.23040 White HD, 2009, J AM SOC INF SCI TEC, V60, P1083, DOI 10.1002/asi.21045 Zahedi Z, 2014, SCIENTOMETRICS, V101, P1491, DOI 10.1007/s11192-014-1264-0 NR 35 TC 32 Z9 34 U1 2 U2 120 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0138-9130 EI 1588-2861 J9 SCIENTOMETRICS JI Scientometrics PD JAN PY 2015 VL 102 IS 1 BP 97 EP 112 DI 10.1007/s11192-014-1420-6 PG 16 WC Computer Science, Interdisciplinary Applications; Information Science & Library Science WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Computer Science; Information Science & Library Science GA AY0OZ UT WOS:000347297400006 DA 2024-09-05 ER PT J AU Scaccia, JP Scott, VC AF Scaccia, Jonathan P. Scott, Victoria C. TI 5335 days of Implementation Science: using natural language processing to examine publication trends and topics SO IMPLEMENTATION SCIENCE LA English DT Article DE Implementation science; Natural language processing; Synthesis and translation; Bibliometric study; Systematic review ID HEALTH; FRAMEWORK; SUPPORT; SCOPE AB Introduction Moving evidence-based practices into the hands of practitioners requires the synthesis and translation of research literature. However, the growing pace of scientific publications across disciplines makes it increasingly difficult to stay abreast of research literature. Natural language processing (NLP) methods are emerging as a valuable strategy for conducting content analyses of academic literature. We sought to apply NLP to identify publication trends in the journal Implementation Science, including key topic clusters and the distribution of topics over time. A parallel study objective was to demonstrate how NLP can be used in research synthesis. Methods We examined 1711 Implementation Science abstracts published from February 22, 2006, to October 1, 2020. We retrieved the study data using PubMed's Application Programming Interface (API) to assemble a database. Following standard preprocessing steps, we use topic modeling with Latent Dirichlet allocation (LDA) to cluster the abstracts following a minimization algorithm. Results We examined 30 topics and computed topic model statistics of quality. Analyses revealed that published articles largely reflect (i) characteristics of research, or (ii) domains of practice. Emergent topic clusters encompassed key terms both salient and common to implementation science. HIV and stroke represent the most commonly published clinical areas. Systematic reviews have grown in topic prominence and coherence, whereas articles pertaining to knowledge translation (KT) have dropped in prominence since 2013. Articles on HIV and implementation effectiveness have increased in topic exclusivity over time. Discussion We demonstrated how NLP can be used as a synthesis and translation method to identify trends and topics across a large number of (over 1700) articles. With applicability to a variety of research domains, NLP is a promising approach to accelerate the dissemination and uptake of research literature. For future research in implementation science, we encourage the inclusion of more equity-focused studies to expand the impact of implementation science on disadvantaged communities. C1 [Scaccia, Jonathan P.] Dawn Chorus Grp, 1014 Hartman Rd, Reading, PA 19606 USA. [Scott, Victoria C.] Univ North Carolina Charlotte, Dept Psychol Sci, 9201 Univ City Blvd, Charlotte, NC 28223 USA. C3 University of North Carolina; University of North Carolina Charlotte RP Scaccia, JP (corresponding author), Dawn Chorus Grp, 1014 Hartman Rd, Reading, PA 19606 USA. EM jon@dawnchrousgroup.com OI Scaccia, Jonathan/0000-0001-6800-1286 CR Asatani K, 2020, ENERGIES, V13, DOI 10.3390/en13040975 Atkinson M, 2008, J NURS CARE QUAL, V23, P362, DOI 10.1097/01.NCQ.0000336675.48466.37 Bahadori Mohammadkarim, 2016, J Educ Health Promot, V5, P14, DOI 10.4103/2277-9531.184553 Balas E A, 2000, Yearb Med Inform, P65 Bauer Mark S, 2015, BMC Psychol, V3, P32, DOI 10.1186/s40359-015-0089-9 Bender E. M., 2021, P 2021 ACM C FAIRN A, DOI [10.1145/3442188.3445922, DOI 10.1145/3442188.3445922] Bergstrom C. T., 2021, Calling Bullshit: The Art of Skepticism in a Data- Driven World Borah R, 2017, BMJ OPEN, V7, DOI 10.1136/bmjopen-2016-012545 Boyd-Graber J., 2014, Handbook of mixed membership models and their applications Chen HN, 2019, ADV ENG INFORM, V42, DOI 10.1016/j.aei.2019.100959 Conway Mike, 2019, Yearb Med Inform, V28, P208, DOI 10.1055/s-0039-1677918 Eccles MP, 2006, IMPLEMENT SCI, V1, DOI 10.1186/1748-5908-1-1 Eccles MP, 2012, IMPLEMENT SCI, V7, DOI 10.1186/1748-5908-7-71 Fudge N, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0160475 Gal D, 2019, EUR HEART J, V40, P2363, DOI 10.1093/eurheartj/ehz282 Grant J, 2003, RES EVALUAT, V12, P217, DOI 10.3152/147154403781776618 Greenhalgh T, 2011, J ROY SOC MED, V104, P501, DOI 10.1258/jrsm.2011.110285 Grün B, 2011, J STAT SOFTW, V40, P1 Jelodar H, 2019, MULTIMED TOOLS APPL, V78, P15169, DOI 10.1007/s11042-018-6894-4 Jivani Anjali Ganesh, 2011, Int. J. Comp. Tech. Appl, V2, P1930 Lessick S, 2016, J MED LIBR ASSOC, V104, P166, DOI 10.3163/1536-5050.104.2.015 Li K, 2018, SCIENTOMETRICS, V115, P1, DOI 10.1007/s11192-017-2622-5 McGuffie K, ARXIV200906807 Michie S, 2017, IMPLEMENT SCI, V12, DOI 10.1186/s13012-017-0641-5 Mizen LAM, 2012, IMPLEMENT SCI, V7, DOI 10.1186/1748-5908-7-42 Morris ZS, 2011, J ROY SOC MED, V104, P510, DOI 10.1258/jrsm.2011.110180 ONeil C., 2016, Weapons of math destruction Pham MT, 2014, RES SYNTH METHODS, V5, P371, DOI 10.1002/jrsm.1123 Sales AE, 2019, IMPLEMENT SCI, V14, DOI 10.1186/s13012-019-0922-2 Scott VC., 2020, USING EVALUATION PRO Selles OA, 2020, LAND USE POLICY, V94, DOI 10.1016/j.landusepol.2020.104483 Shaikh A, 2019, MEHRAN UNIV RES J EN, V38, P901, DOI 10.22581/muet1982.1904.04 Silge J., 2019, Text Mining with R: A Tidy Approach Vincent J., 2020, VERGE Wandersman A, 2008, AM J COMMUN PSYCHOL, V41, P171, DOI 10.1007/s10464-008-9174-z Wandersman A, 2012, AM J COMMUN PSYCHOL, V50, P445, DOI 10.1007/s10464-012-9509-7 Wang JC, 2020, SYMMETRY-BASEL, V12, DOI 10.3390/sym12060903 Woodward EN, 2019, IMPLEMENT SCI, V14, DOI 10.1186/s13012-019-0861-y Wu L., 2018, P 2018 C EMP METH NA Xu JM., 2012, C N AM CHAPT ASS COM, P665 Zhao WZ, 2015, BMC BIOINFORMATICS, V16, DOI 10.1186/1471-2105-16-S13-S8 NR 41 TC 14 Z9 17 U1 2 U2 19 PU BMC PI LONDON PA CAMPUS, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1748-5908 J9 IMPLEMENT SCI JI Implement. Sci. PD APR 26 PY 2021 VL 16 IS 1 AR 47 DI 10.1186/s13012-021-01120-4 PG 12 WC Health Care Sciences & Services; Health Policy & Services WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Health Care Sciences & Services GA RT7QQ UT WOS:000644652300001 PM 33902657 OA Green Submitted, gold, Green Published DA 2024-09-05 ER PT J AU Wu, J Ou, GY Liu, XH Dong, K AF Wu, Jiang Ou, Guiyan Liu, Xiaohui Dong, Ke TI How does academic education background affect top researchers' performance? Evidence from the field of artificial intelligence SO JOURNAL OF INFORMETRICS LA English DT Article DE Educational background; Research performance; AI; Academic career ID FACULTY RESEARCH PRODUCTIVITY; PUBLICATION PRODUCTIVITY; GENDER-DIFFERENCES; SCIENTIFIC PERFORMANCE; UNIVERSITY RANKINGS; IMPACT; DETERMINANTS; OUTPUT; COLLABORATION; MANAGEMENT AB The early academic beginning is critical in the development of a researcher's academic career because it helps determine one's further success. We aim to shed light on the path that drives the success of talents in the field of artificial intelligence (AI) by investigating the academic education background of distinguished AI researchers and analyzing the contribution of different educational factors to their research performance. In this study, we collected and coded the curriculum vitae of 1832 AI researchers. Results show that most AI researchers were educated in the United States and obtained their highest degrees from top universities. As for their educational background, approximately 18.27% of AI researchers chose non-AI majors, such as mathematics, physics, and chemistry, instead of AI-related majors, such as computer science. Furthermore, negative binomial regression analysis demonstrates that individuals who publish more during study period will have better research output, whether they are currently in academia or industry. Researchers in academia with overseas degrees published more articles than those without overseas degrees. In terms of interdisciplinary education, a mathematics background leads to increased research visibility of AI researchers in the industry but depresses the scholarly productivity of AI researchers in academia. Academic qualification is the main factor determining the scientific performance of AI researchers in industry, which is not the case in academia. The analysis also showed that individuals who graduated from more prestigious universities tended to receive more citations than those graduating from less famous universities. Moreover, AI researchers in academia who have graduated from prestigious universities seem to pay more attention to the quality of the papers rather than the quantity. C1 [Wu, Jiang; Ou, Guiyan; Dong, Ke] Wuhan Univ, Ctr Studies Informat Resources, Wuhan 430072, Peoples R China. [Wu, Jiang; Ou, Guiyan; Liu, Xiaohui; Dong, Ke] Wuhan Univ, Sch Informat Management, Wuhan 430072, Peoples R China. C3 Wuhan University; Wuhan University RP Dong, K (corresponding author), Wuhan Univ, Ctr Studies Informat Resources, Wuhan 430072, Peoples R China. EM dongke@whu.edu.cn FU Ministry of Education Key Projects of Philosophy and Social Sciences Research, People's Republic of China [20JZD024]; National Social Science Foundation of China [21CTQ017] FX This research was supported by Ministry of Education Key Projects of Philosophy and Social Sciences Research, People's Republic of China (Grant No. 20JZD024) and National Social Science Foundation of China (Grant No. 21CTQ017) . The authors would like to thank the anonymous reviewers for their kind help. CR Abramo G, 2014, SCIENTOMETRICS, V98, P891, DOI 10.1007/s11192-013-1075-8 Akbaritabar A, 2018, SCIENTOMETRICS, V114, P859, DOI 10.1007/s11192-017-2606-5 ALLISON PD, 1990, AM SOCIOL REV, V55, P469, DOI 10.2307/2095801 Babu AR, 1998, SCIENTOMETRICS, V43, P309 Baccini A, 2014, SCIENTOMETRICS, V101, P2035, DOI 10.1007/s11192-014-1395-3 Barnett WP, 1997, ADMIN SCI QUART, V42, P128, DOI 10.2307/2393811 Beaudry C, 2016, RES POLICY, V45, P1790, DOI 10.1016/j.respol.2016.05.009 Bentley P, 2012, J SOCIOL, V48, P85, DOI 10.1177/1440783311411958 Biamonte J, 2017, NATURE, V549, P195, DOI 10.1038/nature23474 Blaine B.E., 2018, The SAGE encyclopedia of educational research, measurement, and evaluation, V1, P1818, DOI [DOI 10.4135/9781506326139.N747, 10.4135/9781506326139.n747, DOI 10.4135/9781506326139] Borrego A, 2010, SCIENTOMETRICS, V83, P93, DOI 10.1007/s11192-009-0025-y Buchmueller TC, 1999, ECON EDUC REV, V18, P65, DOI 10.1016/S0272-7757(98)00019-3 Chan HF, 2015, SCIENTOMETRICS, V102, P847, DOI 10.1007/s11192-014-1367-7 Cole J. R., 1984, ADV MOTIVATION ACHIE Cooper T, 2019, INFORM RES COX DR, 1983, BIOMETRIKA, V70, P269, DOI 10.1093/biomet/70.1.269 Dhillon SK, 2015, TECHNOL SOC, V42, P160, DOI 10.1016/j.techsoc.2015.04.004 Diem A, 2013, RES HIGH EDUC, V54, P86, DOI 10.1007/s11162-012-9264-5 Dietz JS, 2005, RES POLICY, V34, P349, DOI 10.1016/j.respol.2005.01.008 Doh S, 2018, REV POLICY RES, V35, P31, DOI 10.1111/ropr.12261 Fennewald J, 2008, COLL RES LIBR, V69, P104, DOI 10.5860/crl.69.2.104 Fox MF, 2021, HIGH EDUC, V81, P1237, DOI 10.1007/s10734-020-00609-z Fox MF, 2005, SOC STUD SCI, V35, P131, DOI 10.1177/0306312705046630 Frandsen TF, 2015, J INFORMETR, V9, P1007, DOI 10.1016/j.joi.2015.09.006 Frank MR, 2019, NAT MACH INTELL, V1, P79, DOI 10.1038/s42256-019-0024-5 Frick B. L., 2016, POSTGRADUATE SUPERVI, P203 Fursov K., 2016, DETERMINANTS RES PRO, V10 Gobeyn S, 2019, ECOL MODEL, V392, P179, DOI 10.1016/j.ecolmodel.2018.11.013 Gomes UE, 2011, AN ACAD BRAS CIENC, V83, P1121, DOI 10.1590/S0001-37652011005000011 Gonzalez-Brambila C, 2007, RES POLICY, V36, P1035, DOI 10.1016/j.respol.2007.03.005 Harris T, 2014, STATA J, V14, P562, DOI 10.1177/1536867X1401400306 HazelKorn E., 2017, Centre for Global Higher Education Hollister C.V., 2015, BEHAV SOCIAL SCI LIB, V34, P97, DOI DOI 10.1080/01639269.2015.1062584 Horta H, 2016, RES HIGH EDUC, V57, P28, DOI 10.1007/s11162-015-9380-0 Hunter LA, 2010, SOC STUD SCI, V40, P433, DOI 10.1177/0306312709358472 Jin YY, 2021, SCIENTOMETRICS, V126, P2329, DOI 10.1007/s11192-020-03860-4 Jonkers K, 2008, SCIENTOMETRICS, V77, P309, DOI 10.1007/s11192-007-1971-x Kang YK, 2021, RES POLICY, V50, DOI 10.1016/j.respol.2020.104098 Krampen G, 2007, SCIENTOMETRICS, V71, P191, DOI 10.1007/s11192-007-1659-2 Kusters R, 2020, FRONT BIG DATA, V3, DOI 10.3389/fdata.2020.577974 Larivière V, 2010, RES EVALUAT, V19, P45, DOI 10.3152/095820210X492495 Laurance WF, 2013, BIOSCIENCE, V63, P817, DOI 10.1525/bio.2013.63.10.9 Leahey E, 2017, ADMIN SCI QUART, V62, P105, DOI 10.1177/0001839216665364 Li WH, 2019, NAT COMMUN, V10, DOI 10.1038/s41467-019-13130-4 Lin Min-Wei., 2006, Journal of Technology Transfer, V31, P269, DOI DOI 10.1007/S10961-005-6111-2 Lindahl J, 2020, SCIENTOMETRICS, V122, P309, DOI 10.1007/s11192-019-03262-1 Liu JY, 2018, IEEE ACCESS, V6, P34403, DOI 10.1109/ACCESS.2018.2819688 Long J. S., 2006, Regression models for categorical dependent variables using Stata, V7 LONG JS, 1979, AM SOCIOL REV, V44, P816, DOI 10.2307/2094529 Long JS, 1997, REGRESSION MODELS CA Long R, 2009, SCIENTOMETRICS, V78, P231, DOI 10.1007/s11192-007-1990-7 Long RG, 1998, ACAD MANAGE J, V41, P704, DOI 10.5465/256966 Lotka A.J., 1926, J Wash Acad Sci Wash D C, V16, P23 Mamun SAK, 2015, SCIENTOMETRICS, V105, P2179, DOI 10.1007/s11192-015-1759-3 Más-Bleda A, 2013, SCIENTOMETRICS, V96, P51, DOI 10.1007/s11192-013-0952-5 Mayer SJ, 2018, SCIENTOMETRICS, V117, P1663, DOI 10.1007/s11192-018-2933-1 Miller JC, 2013, SCIENTOMETRICS, V97, P519, DOI 10.1007/s11192-013-0987-7 Mishra V, 2013, SCIENTOMETRICS, V96, P411, DOI 10.1007/s11192-012-0886-3 Moed H. F., 2006, CITATION ANAL RES EV Möller T, 2016, SCIENTOMETRICS, V109, P2217, DOI 10.1007/s11192-016-2090-3 Neufeld J, 2016, RES EVALUAT, V25, P50, DOI 10.1093/reseval/rvv029 Pfeiffer M, 2016, BMC MED EDUC, V16, DOI 10.1186/s12909-016-0712-3 Pinheiro D, 2014, TECHNOL FORECAST SOC, V81, P56, DOI 10.1016/j.techfore.2012.09.008 Piro FN, 2016, SCIENTOMETRICS, V109, P2263, DOI 10.1007/s11192-016-2056-5 Prpic K, 2002, SCIENTOMETRICS, V55, P27, DOI 10.1023/A:1016046819457 Puuska HM, 2010, SCIENTOMETRICS, V82, P419, DOI 10.1007/s11192-009-0037-7 Rorstad K, 2015, J INFORMETR, V9, P317, DOI 10.1016/j.joi.2015.02.003 Safon V, 2019, SCIENTOMETRICS, V121, P897, DOI 10.1007/s11192-019-03214-9 Shen HJ, 2022, RES POLICY, V51, DOI 10.1016/j.respol.2021.104372 Shin JC, 2014, MINERVA, V52, P467, DOI 10.1007/s11024-014-9259-9 Shuang Li, 2019, IOP Conference Series: Materials Science and Engineering, V677, DOI 10.1088/1757-899X/677/5/052023 Sinclair J, 2014, STUD HIGH EDUC, V39, P1972, DOI 10.1080/03075079.2013.806460 Sinclair J, 2014, HIGH EDUC RES DEV, V33, P1007, DOI 10.1080/07294360.2014.890574 Sugimoto CR, 2013, NATURE, V504, P211, DOI 10.1038/504211a Tang J, 2016, PROCEEDINGS OF THE NINTH ACM INTERNATIONAL CONFERENCE ON WEB SEARCH AND DATA MINING (WSDM'16), P467, DOI 10.1145/2835776.2835849 Thelwall M, 2014, J INFORMETR, V8, P963, DOI 10.1016/j.joi.2014.09.011 Tien FF, 1996, J HIGH EDUC-UK, V67, P2, DOI 10.2307/2943901 Wang W, 2017, SCIENTOMETRICS, V112, P329, DOI 10.1007/s11192-017-2388-9 Way SF, 2017, P NATL ACAD SCI USA, V114, pE9216, DOI 10.1073/pnas.1702121114 Williamson IO, 2003, J ORGAN BEHAV, V24, P25, DOI 10.1002/job.178 Xu F, 2021, J INFORMETR, V15, DOI 10.1016/j.joi.2021.101153 Yuan S, 2020, SCIENTOMETRICS, V124, P993, DOI 10.1007/s11192-020-03423-7 Yue ML, 2020, SCIENTOMETRICS, V125, P1559, DOI 10.1007/s11192-020-03562-x Zhang J, 2021, SCI CHINA INFORM SCI, V64, DOI 10.1007/s11432-019-9884-y NR 84 TC 5 Z9 6 U1 30 U2 136 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS SN 1751-1577 EI 1875-5879 J9 J INFORMETR JI J. Informetr. PD MAY PY 2022 VL 16 IS 2 AR 101292 DI 10.1016/j.joi.2022.101292 EA MAY 2022 PG 17 WC Computer Science, Interdisciplinary Applications; Information Science & Library Science WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Computer Science; Information Science & Library Science GA 1T2KG UT WOS:000804563600002 DA 2024-09-05 ER PT C AU Lin, LC Wang, F AF Lin, Longcheng Wang, Fang BE ACM TI Research on the relationship between learning engagement and learning performance in online learning SO PROCEEDINGS OF THE 15TH INTERNATIONAL CONFERENCE ON EDUCATION TECHNOLOGY AND COMPUTERS, ICETC 2023 LA English DT Proceedings Paper CT 15th International Conference on Education Technology and Computers (ICETC) CY SEP 26-28, 2023 CL Univ Barcelona, Barcelona, SPAIN HO Univ Barcelona DE online learning; learning engagement; learning performance; relationship AB With the continuous development and popularisation of internet technology, online learning has become an indispensable learning method in the field of education. However, the relationship between learning engagement and learning performance in online learning has always been of great concern. This paper investigates the relationship between learning engagement and learning performance in an online learning environment. This study used scale surveys and experimental research methods to analyse learning engagement from behavioural, cognitive and emotional perspectives and to investigate the relationship between learning engagement and learning performance. The research findings indicate that in online learning, emotional engagement is relatively high and students have a strong willingness to learn, but cognitive and behavioural engagement are relatively low. There is a positive correlation between learning engagement and learning performance, and students with high learning engagement tend to have higher learning performance. Classifying students into three categories based on learning engagement and learning performance is useful for understanding the characteristics of learners' learning engagement and for providing data support and reference for improving the quality of learning. C1 [Lin, Longcheng; Wang, Fang] Nantong Hlth Coll Jiangsu Prov, Nantong, Peoples R China. RP Lin, LC (corresponding author), Nantong Hlth Coll Jiangsu Prov, Nantong, Peoples R China. EM 754289407@qq.com FU Jiangsu Vocational Education Research Project [XHYBLX2023136] FX This study is supported by the Jiangsu Vocational Education Research Project (Project Number: XHYBLX2023136): Research on the Impact Mechanism and Improvement Strategies of Vocational School Students' Learning Engagement under Blended Learning. CR Akyol Z, 2011, INTERNET HIGH EDUC, V14, P183, DOI 10.1016/j.iheduc.2011.01.005 ASTIN AW, 1984, J COLL STUDENT DEV, V25, P297 Buelow JR, 2018, ONLINE LEARN, V22, P313, DOI 10.24059/olj.v22i4.1384 Chan SCH, 2019, J EDUC BUS, V94, P234, DOI 10.1080/08832323.2018.1520684 FINN JD, 1993, J NEGRO EDUC, V62, P249, DOI 10.2307/2295464 Fredricks JA, 2004, REV EDUC RES, V74, P59, DOI 10.3102/00346543074001059 Hill JR, 2009, AM J DISTANCE EDUC, V23, P88, DOI 10.1080/08923640902857713 Lai CH, 2019, INT J DIST EDUC, V17, P66, DOI 10.4018/IJDET.2019010105 Lee E, 2015, TECHTRENDS, V59, P54, DOI 10.1007/s11528-015-0871-9 Ong Ardvin Kester S., 2022, International Journal of Information and Education Technology, P555, DOI 10.18178/ijiet.2022.12.6.1653 Pi ZL, 2023, EDUC INF TECHNOL, V28, P3493, DOI 10.1007/s10639-022-11361-5 Qureshi MA, 2023, INTERACT LEARN ENVIR, V31, P2371, DOI 10.1080/10494820.2021.1884886 Rosmadi Ainil Fauzani, 2023, International Journal of Information and Education Technology, P114, DOI 10.18178/ijiet.2023.13.1.1786 Tseng CJ., 2020, CONTEMP EDUC TECHNOL, V12 NR 14 TC 0 Z9 0 U1 33 U2 33 PU ASSOC COMPUTING MACHINERY PI NEW YORK PA 1601 Broadway, 10th Floor, NEW YORK, NY, UNITED STATES BN 979-8-4007-0911-1 PY 2023 BP 201 EP 206 DI 10.1145/3629296.3629327 PG 6 WC Computer Science, Interdisciplinary Applications; Education & Educational Research; Education, Scientific Disciplines WE Conference Proceedings Citation Index - Science (CPCI-S); Conference Proceedings Citation Index - Social Science & Humanities (CPCI-SSH) SC Computer Science; Education & Educational Research GA BW5RO UT WOS:001166851900031 DA 2024-09-05 ER PT J AU Liu, G Pan, L Jiang, WQ Fan, S Buhari, A AF Liu, Gang Pan, Lei Jiang, Weiqiang Fan, Shuai Buhari, Abudhahir TI Dynamic performance and optimization research for six-link mechanism considering the coupling effect of flexible structure and wear clearances SO NONLINEAR DYNAMICS LA English DT Article DE Wear clearance; Flexible structure; Six-link mechanism; Dynamic performance; Optimization research; Simulated annealing algorithm ID SYSTEM AB The adverse effects of flexible structure and wear clearances on dynamic performance of mechanical systems cannot be ignored. At present, scholars have carried out extensive research on mechanism with clearance, but few consider the coupling effect of wear clearance and flexible structure on dynamic performance of mechanism. Therefore, this paper develops a dynamic model of six-link mechanism considering multiple wear clearances and flexible structure through Lagrange method. The influence of clearance size and frictional coefficient on dynamic performance and nonlinear characteristics of mechanism is investigated. In view of the adverse effects of wear clearances and flexible structure on the performance of mechanism, a new optimization method of mechanism based on simulated annealing algorithm (SAA) is proposed. This method takes the mass parameters of each component for mechanism as the design variables and minimizes the maximal wear depth of clearance as the objective function. The results indicate that the optimization method can reduce the vibration and error, and improve the overall dynamic performance of mechanism. C1 [Liu, Gang; Buhari, Abudhahir] Infrastruct Univ Kuala Lumpur, Fac Engn Sci & Technol, Jln Ikram Uniten, Kajang 43000, Selangor, Malaysia. [Liu, Gang; Pan, Lei; Jiang, Weiqiang] Weifang Vocat Coll, Weifang 261041, Shandong, Peoples R China. [Fan, Shuai] Chengdu Univ Technol, Sch Mech & Elect Engn, Chengdu 610059, Peoples R China. C3 Infrastructure University Kuala Lumpur (IUKL); Chengdu University of Technology RP Jiang, WQ (corresponding author), Weifang Vocat Coll, Weifang 261041, Shandong, Peoples R China. EM jiangweiqiang_wfvc@163.com FU Development Path and Industrialization Research Project of Kinetic Energy Coupling Technology for Large Composite Intelligent Agricultural Machinery Equipment [2022RKX027] FX This work was supported by the [Development Path and Industrialization Research Project of Kinetic Energy Coupling Technology for Large Composite Intelligent Agricultural Machinery Equipment: 2022RKX027]. CR Ahmedalbashir M, 2017, J MECH SCI TECHNOL, V31, P1023, DOI 10.1007/s12206-017-0201-6 Alves DS, 2021, TRIBOL INT, V153, DOI 10.1016/j.triboint.2020.106640 Amiri A, 2019, MULTIBODY SYST DYN, V47, P363, DOI 10.1007/s11044-019-09684-2 Askari E, 2015, NONLINEAR DYNAM, V82, P1039, DOI 10.1007/s11071-015-2216-9 Bai ZF, 2013, SCI CHINA PHYS MECH, V56, P1581, DOI 10.1007/s11433-013-5125-2 Ben Abdallah MA, 2016, MULTIBODY SYST DYN, V38, P173, DOI 10.1007/s11044-016-9526-7 Chen Y, 2023, MECCANICA, V58, P43, DOI 10.1007/s11012-022-01629-y Erkaya S, 2018, STROJ VESTN-J MECH E, V64, P82, DOI 10.5545/sv-jme.2017.4534 Gao H, 2021, P I MECH ENG C-J MEC, V235, P7569, DOI 10.1177/09544062211025566 Gao SZ, 2023, TRIBOL INT, V182, DOI 10.1016/j.triboint.2023.108330 Geng XY, 2016, MECH MACH THEORY, V104, P202, DOI 10.1016/j.mechmachtheory.2016.05.013 Guo J, 2020, MECH MACH THEORY, V149, DOI 10.1016/j.mechmachtheory.2020.103824 Li HQ, 2018, MULTIBODY SYST DYN, V44, P277, DOI 10.1007/s11044-018-9625-8 Li P, 2016, J COMPUT NONLIN DYN, V11, DOI 10.1115/1.4030539 Li YY, 2019, MECH SYST SIGNAL PR, V117, P188, DOI 10.1016/j.ymssp.2018.07.037 Liu N, 2018, WIRELESS PERS COMMUN, V102, P1683, DOI 10.1007/s11277-017-5227-7 Ordiz M, 2021, MECH MACH THEORY, V160, DOI 10.1016/j.mechmachtheory.2021.104293 Salahshoor E, 2018, MECH MACH THEORY, V126, P429, DOI 10.1016/j.mechmachtheory.2018.04.027 Singh A, 2021, MECCANICA, V56, P73, DOI 10.1007/s11012-020-01259-2 Sun DY, 2016, EUR J MECH A-SOLID, V58, P256, DOI 10.1016/j.euromechsol.2016.02.007 Tan X, 2020, J COMPUT NONLIN DYN, V15, DOI 10.1115/1.4045240 Tang LL, 2018, NONLINEAR DYNAM, V94, P2423, DOI 10.1007/s11071-018-4500-y Wang GX, 2019, MECH MACH THEORY, V137, P83, DOI 10.1016/j.mechmachtheory.2019.03.017 Wang GX, 2015, J TRIBOL-T ASME, V137, DOI 10.1115/1.4029277 Yu XD, 2022, J APPL FLUID MECH, V15, P505, DOI 10.47176/jafm.15.02.33039 Zheng EL, 2019, MECH MACH THEORY, V131, P234, DOI 10.1016/j.mechmachtheory.2018.09.023 Zheng XD, 2018, APPL MATH MECH-ENGL, V39, P1239, DOI 10.1007/s10483-018-2371-9 Zhuang XC, 2019, ENG FAIL ANAL, V96, P543, DOI 10.1016/j.engfailanal.2018.10.017 NR 28 TC 0 Z9 0 U1 27 U2 29 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0924-090X EI 1573-269X J9 NONLINEAR DYNAM JI Nonlinear Dyn. PD MAR PY 2024 VL 112 IS 6 BP 4299 EP 4320 DI 10.1007/s11071-023-09247-3. PG 22 WC Engineering, Mechanical; Mechanics WE Science Citation Index Expanded (SCI-EXPANDED) SC Engineering; Mechanics GA ZO5V5 UT WOS:001276261600013 DA 2024-09-05 ER PT J AU Buehling, K AF Buehling, Kilian TI Changing research topic trends as an effect of publication rankings-The case of German economists and the Handelsblatt Ranking SO JOURNAL OF INFORMETRICS LA English DT Article DE Research rankings; Topic modeling; Text classification; Topic change; Research field mapping ID PERFORMANCE; INNOVATION; BUSINESS; SCIENCE; IMPACT; DYNAMICS; JOURNALS; VALIDITY; SYSTEMS AB In order to arrive at informed judgments about the quality of research institutions and individual scholars, funding agencies, academic employers and researchers have turned to publication rankings. While such rankings, often based on journal citations, promise a more efficient and transparent funding allocation, individual researchers are at risk of showing adaptive behavior. This paper investigates whether the use of journal rankings in assessing the quality of scholarly research results in the unintended consequence of researchers adapting their research topics to the publishing interests of high-ranked journals. The introduction of the Handelsblatt Ranking (HBR) for economists in German language institutions serves as a quasi-natural experiment, allowing for an examination of research topic dynamics in economics via topic modeling and text classification . It is found that the Handelsblatt Ranking did not cause a significant shift of topics researched by German-affiliated authors in comparison to their international counterparts, even though topic convergence is apparent. C1 [Buehling, Kilian] Tech Univ Dresden, Res Grp Knowledge & Technol Transfer, Muenchner Pl 2-3, D-01062 Dresden, Germany. C3 Technische Universitat Dresden RP Buehling, K (corresponding author), Tech Univ Dresden, Res Grp Knowledge & Technol Transfer, Muenchner Pl 2-3, D-01062 Dresden, Germany. EM kilian.buehling@tu-dresden.de OI Buehling, Kilian/0000-0002-5244-7547 CR Aagaard K, 2015, RES EVALUAT, V24, P106, DOI 10.1093/reseval/rvv003 Adler NJ, 2009, ACAD MANAG LEARN EDU, V8, P72, DOI 10.5465/AMLE.2009.37012181 Alberts B, 2014, P NATL ACAD SCI USA, V111, P5773, DOI 10.1073/pnas.1404402111 Alvarez-Bornstein B, 2021, J INFORMETR, V15, DOI 10.1016/j.joi.2020.101102 Anderson D., 1996, PERFORMANCEBASED FUN Anderson MS, 2007, SCI ENG ETHICS, V13, P437, DOI 10.1007/s11948-007-9042-5 Angrist J, 2017, AM ECON REV, V107, P293, DOI 10.1257/aer.p20171117 [Anonymous], 2019, HANDELSBLATT VWL RAN [Anonymous], 2000, Health Technol Assess [Anonymous], 2000, Practising Interdisciplinarity Azoulay P, 2015, REV ECON STAT, V97, P1118, DOI 10.1162/REST_a_00469 Azoulay P, 2011, RAND J ECON, V42, P527, DOI 10.1111/j.1756-2171.2011.00140.x Baum JAC, 2011, ORGANIZATION, V18, P449, DOI 10.1177/1350508411403531 Beise M, 1999, RES POLICY, V28, P397, DOI 10.1016/S0048-7333(98)00126-7 Bergstrom C. T., 2016, ARXIV160505822PHYSIC Bergstrom CT, 2008, NEUROLOGY, V71, P1850, DOI 10.1212/01.wnl.0000338904.37585.66 Berlemann M, 2015, RES POLICY, V44, P1108, DOI 10.1016/j.respol.2014.12.002 Biagioli M., 2018, ACAD MISCONDUCT MISR Birkmaier D, 2014, J INFORMETR, V8, P880, DOI 10.1016/j.joi.2014.08.005 Blei DM, 2012, COMMUN ACM, V55, P77, DOI 10.1145/2133806.2133826 Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993 Bornmann L, 2015, J ASSOC INF SCI TECH, V66, P2215, DOI 10.1002/asi.23329 Bornmann L, 2010, J INFORMETR, V4, P211, DOI 10.1016/j.joi.2009.10.004 Bruns SB, 2019, RES POLICY, V48, DOI 10.1016/j.respol.2019.05.005 Butler L, 2003, RES POLICY, V32, P143, DOI 10.1016/S0048-7333(02)00007-0 Butz A, 2016, OKONOMEN RANKINGS 20 Cokol M, 2007, EMBO REP, V8, P422, DOI 10.1038/sj.embor.7400970 Combes P.-P., 2010, Inferring Missing Citations: A Quantitative Multi-Criteria Ranking of all Journals in Economics Combes PP, 2003, J EUR ECON ASSOC, V1, P1250, DOI 10.1162/154247603322752548 Corsi M, 2010, AM J ECON SOCIOL, V69, P1495, DOI 10.1111/j.1536-7150.2010.00754.x DiNardo J., 2010, Microeconometrics, P139, DOI DOI 10.1057/9780230280816_18 Dwan K, 2008, PLOS ONE, V3, DOI 10.1371/journal.pone.0003081 Elango B., 2018, Library Philosophy and Practice, V2018, P1 Erola J, 2015, SOCIOLOGY, V49, P374, DOI 10.1177/0038038514542495 Etzkowitz H, 2000, RES POLICY, V29, P109, DOI 10.1016/S0048-7333(99)00055-4 Fanelli D, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0010271 Fang FC, 2012, P NATL ACAD SCI USA, V109, P17028, DOI 10.1073/pnas.1212247109 Ferlie E., 1996, The new public management in action Fortunato S, 2018, SCIENCE, V359, DOI 10.1126/science.aao0185 Foster JG, 2015, AM SOCIOL REV, V80, P875, DOI 10.1177/0003122415601618 Frey B. S., 2006, SSRN ELECT J, DOI [10.2139/ssrn.928354, DOI 10.2139/SSRN.928354] Frey BS, 2003, PUBLIC CHOICE, V116, P205, DOI 10.1023/A:1024208701874 GANS JS, 1994, J ECON PERSPECT, V8, P165, DOI 10.1257/jep.8.1.165 Geissler M., 2021, U IND KNOWLEDGE INTE Gralka S, 2019, J HIGH EDUC POLICY M, V41, P322, DOI 10.1080/1360080X.2019.1588492 Gygli Savina, 2017, HANDELSBLATT RANKING Gyorffy B, 2020, J INFORMETR, V14, DOI 10.1016/j.joi.2020.101050 Haunschild R., 2021, GRUYTER SAUR, DOI [10.1515/9783110646610-028, DOI 10.1515/9783110646610-028] Hazelkorn E, 2015, RANKINGS AND THE RESHAPING OF HIGHER EDUCATION: THE BATTLE FOR WORLD-CLASS EXCELLENCE, 2ND EDITION, P1, DOI 10.1057/9781137446671 Heckman JJ, 2020, J ECON LIT, V58, P419, DOI 10.1257/jel.20191574 Hofmeister R., 2008, PERSPEKTIVEN WIRTSCH, V9, P254 Hornbostel S, 2001, SCIENTOMETRICS, V50, P523, DOI 10.1023/A:1010566916697 Kelly MA, 2011, ECON INQ, V49, P658, DOI 10.1111/j.1465-7295.2010.00282.x Laband DN, 2013, ECON J, V123, pF223, DOI 10.1111/ecoj.12067 Larivière V, 2019, SPRINGER HBK, P3, DOI 10.1007/978-3-030-02511-3_1 Larivière V, 2010, J AM SOC INF SCI TEC, V61, P126, DOI 10.1002/asi.21226 Laudel G., 2006, Science and Public Policy, V33, P489, DOI DOI 10.3152/147154306781778777 Lee FS, 2013, CAMB J ECON, V37, P693, DOI 10.1093/cje/bet031 Leimu R, 2005, TRENDS ECOL EVOL, V20, P28, DOI 10.1016/j.tree.2004.10.010 Linkova M, 2014, HUM AFF, V24, P78, DOI 10.2478/s13374-014-0207-z Malsch B, 2015, CRIT PERSPECT ACCOUN, V26, P84, DOI 10.1016/j.cpa.2014.02.006 Martin B., 2010, UK RES ASSESSMENT EX, DOI [10.1093/acprof:oso/9780199590193.001.0001/acprof-9780199590193-chapter-2, DOI 10.1093/ACPROF:OSO/9780199590193.001.0001/ACPROF-9780199590193-CHAPTER-2] Merigó JM, 2016, J BUS ECON MANAG, V17, P397, DOI 10.3846/16111699.2013.807868 MERTON RK, 1968, SCIENCE, V159, P56, DOI 10.1126/science.159.3810.56 MERTON RK, 1988, ISIS, V79, P606, DOI 10.1086/354848 Merton RK., 1973, The sociology of science, P267 MOED HF, 1985, RES POLICY, V14, P131, DOI 10.1016/0048-7333(85)90012-5 Nederhof AJ, 2008, SCIENTOMETRICS, V74, P163, DOI 10.1007/s11192-008-0109-0 Nuredini K., 2021, 4 3 SOCIAL MEDIA ALT, DOI [10.1515/9783110646610-021, DOI 10.1515/9783110646610-021] Osterloh M, 2020, RES POLICY, V49, DOI 10.1016/j.respol.2019.103831 Osterloh M, 2015, EVALUATION REV, V39, P102, DOI 10.1177/0193841X14524957 Oswald AJ, 2007, ECONOMICA, V74, P21, DOI 10.1111/j.1468-0335.2006.00575.x Rafols I, 2012, RES POLICY, V41, P1262, DOI 10.1016/j.respol.2012.03.015 Rath K, 2016, APPL ECON LETT, V23, P897, DOI 10.1080/13504851.2015.1119783 Rath K, 2016, APPL ECON LETT, V23, P660, DOI 10.1080/13504851.2015.1095998 Rehs A, 2020, SCIENTOMETRICS, V125, P1229, DOI 10.1007/s11192-020-03640-0 Reymert I, 2021, MINERVA, V59, P53, DOI 10.1007/s11024-020-09419-0 Roberts ME, 2019, J STAT SOFTW, V91, P1, DOI 10.18637/jss.v091.i02 Roberts ME, 2014, AM J POLIT SCI, V58, P1064, DOI 10.1111/ajps.12103 Schlapfer F., 2010, PERSPEKTIVEN WIRTSCH, V11, P325 Schwemmer C, 2020, SOCIOLOGY, V54, P3, DOI 10.1177/0038038519853146 Spiewanowski P, 2021, SCIENTOMETRICS, V126, P3227, DOI 10.1007/s11192-021-03891-5 Stephan P. E., 2012, EC SHAPES SCI, V1 Stern Nicholas., 2016, Building on success and learning from experience: An independent review of the research excellence framework Stöckelová T, 2012, SCI TECHNOL HUM VAL, V37, P286, DOI 10.1177/0162243911415872 Tunger D, 2021, 4 1 FUTURE HAS ALREA, DOI [10.1515/9783110646610-019, DOI 10.1515/9783110646610-019] van Arensbergen P, 2014, RES EVALUAT, V23, P298, DOI 10.1093/reseval/rvu017 van den Besselaar P, 2015, J INFORMETR, V9, P826, DOI 10.1016/j.joi.2015.07.011 Wallace ML, 2018, RES POLICY, V47, P1975, DOI 10.1016/j.respol.2018.07.005 Weingart P, 2005, SCIENTOMETRICS, V62, P117, DOI 10.1007/s11192-005-0007-7 Wouters, 2019, HDB SCI PUBLIC POLIC, DOI 10.4337/9781784715946.00035 Zhang N, 2018, SCIENTOMETRICS, V116, P1039, DOI 10.1007/s11192-018-2786-7 NR 92 TC 8 Z9 8 U1 0 U2 18 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS SN 1751-1577 EI 1875-5879 J9 J INFORMETR JI J. Informetr. PD AUG PY 2021 VL 15 IS 3 AR 101199 DI 10.1016/j.joi.2021.101199 EA AUG 2021 PG 13 WC Computer Science, Interdisciplinary Applications; Information Science & Library Science WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Computer Science; Information Science & Library Science GA WB5KY UT WOS:000703611800002 OA Green Accepted DA 2024-09-05 ER PT C AU Liu, ZD Wang, BH AF Liu, Zhendong Wang, Beihai BE Long, S Dhillon, BS TI Research on Text Visual Effect of Multimedia Courseware for Mobile Online Learning SO MAN-MACHINE-ENVIRONMENT SYSTEM ENGINEERING, MMESE SE Lecture Notes in Electrical Engineering LA English DT Proceedings Paper CT 21st International Conference on Man-Machine-Environment System Engineering (MMESE) CY OCT 23-25, 2021 CL Beijing, PEOPLES R CHINA DE Online learning; Mobile learning; Visual design; Courseware AB The purpose of this study is to make the multimedia courseware, which designed on the computer, can terminal obtain satisfactory visual effect on the mobile screen. Methods interviews and questionnaires were conducted to online learning students to determine the factors that affect visual effect. Then an experiment on visual effect with font, font size, color and spacing as variables was conducted with 20 subjects. Results the influence of each variable on visual effect was obtained. Conclusion the study gives the clear suggestions on the parameterization of font designed on computer to ensure good visual effect on the mobile screen. C1 [Liu, Zhendong; Wang, Beihai] Wuhan Polytech Univ, Wuhan, Peoples R China. C3 Wuhan Polytechnic University RP Wang, BH (corresponding author), Wuhan Polytech Univ, Wuhan, Peoples R China. RI ZHAO, S/IWV-4219-2023 CR Cheng H, 2015, EFFECTS FONT SIZE SP Ge L, 2016, ENG PSHCHOLOGY [宫殿坤 Gong Diankun], 2009, [心理科学, Psychological Science], V32, P1142 Li H., 2011, APPL PSYCHOL, V17, P62 Li Xixia, 2016, Renmin chubanshe, P48 Li Y, 2012, EFFECTS FONT SIZE SP Liu L, 2015, EFFECTS FONT SIZE FO Peng Y., 2010, SCI TECHNOL ASS FORU, V6, P92 Zhang L., 2014, ERGONOMICS, V20, P32 NR 9 TC 0 Z9 0 U1 0 U2 11 PU SPRINGER-VERLAG SINGAPORE PTE LTD PI SINGAPORE PA 152 BEACH ROAD, #21-01/04 GATEWAY EAST, SINGAPORE, 189721, SINGAPORE SN 1876-1100 EI 1876-1119 BN 978-981-16-5963-8; 978-981-16-5962-1 J9 LECT NOTES ELECTR EN PY 2022 VL 800 BP 841 EP 847 DI 10.1007/978-981-16-5963-8_115 PG 7 WC Automation & Control Systems; Engineering, Electrical & Electronic WE Conference Proceedings Citation Index - Science (CPCI-S) SC Automation & Control Systems; Engineering GA BS4UW UT WOS:000722635300115 DA 2024-09-05 ER PT C AU Djen, RAM Nurmandi, A Muallidin, I Kurniawan, D Loilatu, MJ AF Djen, Risman A. M. Nurmandi, Achmad Muallidin, Isnaini Kurniawan, Danang Loilatu, Mohammad Jafar BE Yang, XS Sherratt, S Dey, N Joshi, A TI Artificial Intelligence: Bibliometric Analysis in Government Studies SO PROCEEDINGS OF SEVENTH INTERNATIONAL CONGRESS ON INFORMATION AND COMMUNICATION TECHNOLOGY, VOL 4 SE Lecture Notes in Networks and Systems LA English DT Proceedings Paper CT 7th International Congress of Information and Communication Technology (ICICT) CY FEB 21-24, 2022 CL London, ENGLAND DE Artificial intelligence; Government; Public policy AB Artificial intelligence systems have become a massive thing in all sectors, both in the business world and government institutions and in the development of technology and information. Therefore, this research focuses on mapping the trend of the study of artificial Intelligence in a government study. This research uses a qualitative method with a literature study. In this bibliometric research, the data collected are journals and articles taken from Scopus using the keyword "artificial intelligence" and processed through NVivo 12 Plus and VOSviewer. Through this research, the researcher finds a tendency in the artificial intelligence discourse more directed to alternative system improvements in government, both in policymaking and public sector management. This research is expected to be a trigger for improving the government system, especially in a more transparent and democratic policymaking plan, seeing that several countries have started to develop research on artificial intelligence, of course, this research will help analyze the direction of the development of synthetic intelligence studies which are more directed toward the improvement of the policymaking system in government institutions. C1 [Djen, Risman A. M.; Nurmandi, Achmad; Muallidin, Isnaini; Kurniawan, Danang; Loilatu, Mohammad Jafar] Univ Muhammadiyah Yogyakarta, Jusuf Kalla Sch Govt, Dept Govt Affairs & Adm, Yogyakarta, Indonesia. C3 Universitas Muhammadiyah Yogyakarta RP Djen, RAM (corresponding author), Univ Muhammadiyah Yogyakarta, Jusuf Kalla Sch Govt, Dept Govt Affairs & Adm, Yogyakarta, Indonesia. EM djenrisman03@gmail.com; nurmandi_achmad@umy.ac.id RI Nurmandi, Achmad/J-4428-2019 OI Nurmandi, Achmad/0000-0002-6730-0273; Kurniawan, Danang/0000-0003-2013-6821; Jafar Loilatu, Mohammad/0000-0001-6921-6879 CR Janssen M, 2022, SOC SCI COMPUT REV, V40, P478, DOI 10.1177/0894439320980118 Kim J, 2018, SUSTAINABILITY-BASEL, V10, DOI 10.3390/su10010115 Kindylidi I, 2021, SUSTAINABILITY-BASEL, V13, DOI 10.3390/su132112064 MotomuraY, 2021, SYNTHESIOLOGY, V13, P1, DOI [10.5571/synth.13.1_1, DOI 10.5571/SYNTH.13.1_1] Richardson L, 2019, GEOFORUM, V99, P278, DOI 10.1016/j.geoforum.2017.09.014 Sætra HS, 2020, TECHNOL SOC, V62, DOI 10.1016/j.techsoc.2020.101283 Scholz RW, 2018, SUSTAINABILITY SWITZ, V10 Sima V, 2020, SUSTAINABILITY-BASEL, V12, DOI 10.3390/su12104035 Sipior JC, 2020, INT J INFORM MANAGE, V55, DOI 10.1016/j.ijinfomgt.2020.102170 NR 9 TC 1 Z9 1 U1 10 U2 40 PU SPRINGER INTERNATIONAL PUBLISHING AG PI CHAM PA GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND SN 2367-3370 EI 2367-3389 BN 978-981-19-2397-5; 978-981-19-2396-8 J9 LECT NOTE NETW SYST PY 2023 VL 465 BP 411 EP 418 DI 10.1007/978-981-19-2397-5_39 PG 8 WC Computer Science, Information Systems; Computer Science, Theory & Methods; Telecommunications WE Conference Proceedings Citation Index - Science (CPCI-S) SC Computer Science; Telecommunications GA BU3ZT UT WOS:000894285700038 DA 2024-09-05 ER PT J AU Ghalambaz, S Abbaszadeh, M Sadrehaghighi, I Younis, O Ghalambaz, M Ghalambaz, M AF Ghalambaz, Sepideh Abbaszadeh, Mohammad Sadrehaghighi, Ideen Younis, Obai Ghalambaz, Mehdi Ghalambaz, Mohammad TI A forty years scientometric investigation of artificial intelligence for fluid-flow and heat-transfer (AIFH) during 1982 and 2022 SO ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE LA English DT Article DE Scientometric; Bibliometric analysis; Artificial intelligence (AI); Fluid -flow and heat -transfer (FH) ID SOLAR-RADIATION; NEURAL-NETWORKS; PREDICTION AB A scientometric approach is utilized to investigate the dynamic maps of relationships among researchers, institutes, and countries in the field of Artificial Intelligence for Fluid-flow and Heat-transfer (AIFH). The Web of Science database was searched for related publications during the last 40 years (1982 and 2022). A total of 6151 articles were discovered, which were analyzed in detail. Using a bibliometric analysis, the most relevant and most cited sources of publications were identified. The most active researchers, institutions, and countries leading AIFH were reported. Then, the worldwide dynamic collaboration maps and coupling maps of relation-ships were reported. The Islamic Azad University (1893 T.C.), the Chinese Academy of Sciences (1374 T.C.), and Beihang University (1266 T.C.) were the most influential institutes in AIFH. The most influential countries were China, the USA, and Iran. The dynamic map of collaborations shows a good worldwide collaboration distribution. The USA and China established the most connection with the rest of the world. ANNs are the most studied topic (19.5% of publications), followed by Machine Learning (17.9%) and Neural Networks (15.4%). Support Vector Machines lag behind at 1.4%. ANNs boast the highest total citations (17,064) and H-index (63). Most ANIF papers were published by Medical Physics (119 T.P.). Half of the articles in AIFH were published by five journals of Medical Physics, Neurocomputing, International Journal of Heat and Mass Transfer, International Journal of Radiation Oncology Biology Physics, and IEEE Access. The International Journal of Heat and Mass Transfer received the most citations in AIFH. C1 [Ghalambaz, Sepideh] Payame Noor Univ, Dept Knowledge & Informat Sci, Tehran, Iran. [Abbaszadeh, Mohammad] Shiraz Univ, Hydroaeronaut Res Ctr, Shiraz, Iran. [Sadrehaghighi, Ideen] Old Dominion Univ, Mech Engn, Norfolk, VA USA. [Younis, Obai] Prince Sattam Bin Abdulaziz Univ, Coll Engn Wadi Alddwasir, Dept Mech Engn, Al Kharj, Saudi Arabia. [Younis, Obai] Univ Khartoum, Fac Engn, Dept Mech Engn, Khartoum, Sudan. [Ghalambaz, Mehdi] Almaaqal Univ, Coll Engn, Basra 61003, Iraq. [Ghalambaz, Mohammad] Tomsk State Univ, Lab Convect Heat & Mass Transfer, Tomsk 634050, Russia. C3 Payame Noor University; Shiraz University; Old Dominion University; Prince Sattam Bin Abdulaziz University; University of Khartoum; Tomsk State University RP Ghalambaz, S (corresponding author), Payame Noor Univ, Dept Knowledge & Informat Sci, Tehran, Iran.; Ghalambaz, M (corresponding author), Tomsk State Univ, Lab Convect Heat & Mass Transfer, Tomsk 634050, Russia. EM sepideh_ghalambaz@pnu.ac.ir; mabbaszadeh@shirazu.ac.ir; ghalambaz.mehdi@gmail.com; m.ghalambaz@gmail.com RI Ghalambaz, Mehdi/AGI-3994-2022; younis, obai/HHZ-8864-2022 OI Ghalambaz, Mehdi/0000-0001-8762-5510; younis, obai/0000-0002-1701-9387; Ghalambaz, Sepideh/0000-0001-8916-8245; Abbaszadeh, Mohammad/0000-0002-7754-4191 FU Prince sattam bin Abdulaziz University [PSAU/2023/R/1445] FX This study is supported via funding from Prince sattam bin Abdulaziz University project number (PSAU/2023/R/1445) . CR Adnan RM, 2023, ENG APPL COMP FLUID, V17, DOI 10.1080/19942060.2023.2192258 Alagumalai A, 2021, NANO ENERGY, V83, DOI 10.1016/j.nanoen.2021.105844 Ali N, 2021, NANOMATERIALS-BASEL, V11, DOI 10.3390/nano11061628 Alizadeh R, 2021, J TAIWAN INST CHEM E, V124, P75, DOI 10.1016/j.jtice.2021.04.067 Alizadeh R, 2021, J TAIWAN INST CHEM E, V124, P290, DOI 10.1016/j.jtice.2021.03.043 Azad AK, 2022, ENERGY REP, V8, P2699, DOI 10.1016/j.egyr.2022.01.182 Bawack RE, 2022, ELECTRON MARK, V32, P297, DOI 10.1007/s12525-022-00537-z Borri E, 2021, APPL THERM ENG, V189, DOI 10.1016/j.applthermaleng.2021.116666 Brunton SL, 2020, ANNU REV FLUID MECH, V52, P477, DOI 10.1146/annurev-fluid-010719-060214 Duraisamy K, 2019, ANNU REV FLUID MECH, V51, P357, DOI 10.1146/annurev-fluid-010518-040547 Ghalambaz S, 2022, J MAGN MAGN MATER, V561, DOI 10.1016/j.jmmm.2022.169685 Goodell JW, 2021, J BEHAV EXP FINANC, V32, DOI 10.1016/j.jbef.2021.100577 Han X, 2017, MED PHYS, V44, P1408, DOI 10.1002/mp.12155 Hay T, 2021, STEEL RES INT, V92, DOI 10.1002/srin.202000395 Ikram RMA, 2023, J MAR SCI ENG, V11, DOI 10.3390/jmse11020259 Ikram RMA, 2022, APPL SOFT COMPUT, V131, DOI 10.1016/j.asoc.2022.109739 Kumar S, 2021, J ENERG RESOUR-ASME, V143, DOI 10.1115/1.4050081 Lafon S, 2006, IEEE T PATTERN ANAL, V28, P1784, DOI 10.1109/TPAMI.2006.223 Lafon S, 2006, IEEE T PATTERN ANAL, V28, P1393, DOI 10.1109/TPAMI.2006.184 Ling J, 2016, J FLUID MECH, V807, P155, DOI 10.1017/jfm.2016.615 Lu JG, 2008, CHAOS SOLITON FRACT, V35, P116, DOI 10.1016/j.chaos.2007.05.002 Ma T, 2021, RENEW SUST ENERG REV, V138, DOI 10.1016/j.rser.2020.110494 Manzoor B, 2022, APPL SCI-BASEL, V12, DOI 10.3390/app12042136 MARTYN J, 1964, J DOC, V20, P236, DOI 10.1108/eb026352 Mohandes M, 1998, RENEW ENERG, V14, P179, DOI 10.1016/S0960-1481(98)00065-2 Paoli C, 2010, SOL ENERGY, V84, P2146, DOI 10.1016/j.solener.2010.08.011 Rehman S, 2008, ENERG POLICY, V36, P571, DOI 10.1016/j.enpol.2007.09.033 Sadeghianjahromi A, 2021, RENEW SUST ENERG REV, V137, DOI 10.1016/j.rser.2020.110470 Sahiner B, 2019, MED PHYS, V46, pe1, DOI 10.1002/mp.13264 Sfetsos A, 2000, SOL ENERGY, V68, P169, DOI 10.1016/S0038-092X(99)00064-X Sharma M., 2021, CFD ANAL SOLAR AIR H Sridharan M., 2020, Advanced Analytic and Control Techniques for Thermal Systems with Heat Exchangers, P325 Tymvios FS, 2005, SOL ENERGY, V78, P752, DOI 10.1016/j.solener.2004.09.007 Varsha PS, 2021, J GLOB INF MANAG, V29, P221, DOI 10.4018/JGIM.20210701.oa10 Verma R, 2021, APPL MATH MODEL, V89, P1177, DOI 10.1016/j.apm.2020.07.004 Verma VK., 2021, Partial Differ Equ Appl Math, V3, P100034, DOI [10.1016/j.padiff.2021.100034, DOI 10.1016/J.PADIFF.2021.100034] Voyant C, 2017, RENEW ENERG, V105, P569, DOI 10.1016/j.renene.2016.12.095 Yadav AK, 2014, RENEW SUST ENERG REV, V33, P772, DOI 10.1016/j.rser.2013.08.055 Yang XS, 2013, SIAM J CONTROL OPTIM, V51, P3486, DOI 10.1137/120897341 Yuan XH, 2018, STOCH ENV RES RISK A, V32, P2199, DOI 10.1007/s00477-018-1560-y Zhang YJ, 2022, FRONT BIOSCI-LANDMRK, V27, DOI 10.31083/j.fbl2708224 Zhu ZC, 2013, REMOTE SENS-BASEL, V5, P927, DOI 10.3390/rs5020927 NR 42 TC 2 Z9 2 U1 0 U2 8 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0952-1976 EI 1873-6769 J9 ENG APPL ARTIF INTEL JI Eng. Appl. Artif. Intell. PD JAN PY 2024 VL 127 AR 107334 DI 10.1016/j.engappai.2023.107334 EA OCT 2023 PN B PG 19 WC Automation & Control Systems; Computer Science, Artificial Intelligence; Engineering, Multidisciplinary; Engineering, Electrical & Electronic WE Science Citation Index Expanded (SCI-EXPANDED) SC Automation & Control Systems; Computer Science; Engineering GA Y3IB9 UT WOS:001104228600001 DA 2024-09-05 ER PT C AU Plancher, B Reddi, VJ AF Plancher, Brian Reddi, Vijay Janapa GP ACM TI TinyMLedu: The Tiny Machine Learning Open Education Initiative SO PROCEEDINGS OF THE 53RD ACM TECHNICAL SYMPOSIUM ON COMPUTER SCIENCE EDUCATION (SIGCSE 2022), VOL 2 LA English DT Proceedings Paper CT 53rd Annual ACM SIGCSE Technical Symposium on Computer Science Education (SIGCSE) CY MAR 02-05, 2022 CL Providence, RI DE Computing Education; TinyML; Applied Machine Learning; Embedded Systems; Open-Access Materials; Global Network AB TinyML is a cutting-edge field that brings the transformative power of machine learning (ML) to the performance and power-constrained domain of embedded systems. This opens new avenues of opportunity for a smarter and cheaper internet of things (IoT). TinyML is also a great educational tool as it touches on topics from across the computer science curriculum, ranging from machine learning to embedded systems. TinyMLedu is working to build an international coalition of researchers and practitioners advancing TinyML in the developing world, and to develop and share highquality, open-access educational materials globally. To date, we have helped launch two courses derived from our materials, taught in Portuguese in Brazil, held an outreach workshop for middle and high school teachers and students of the Navajo nation, and launched an Academic Network of over 20 universities from around the globe. Moving forward we want to grow our impact by helping develop more workshops and courses, in more languages, targeting an even broader audience, to introduce the world to TinyML. C1 [Plancher, Brian; Reddi, Vijay Janapa] Harvard John A Paulson Sch Engn & Appl Sci, Boston, MA 02134 USA. RP Plancher, B (corresponding author), Harvard John A Paulson Sch Engn & Appl Sci, Boston, MA 02134 USA. RI Plancher, Brian/HKW-7966-2023 OI Plancher, Brian/0000-0002-0078-3653 CR Reddi Vijay Janapa, 2021, arXiv Warden Pete, 2019, TinyML: Machine Learning with TensorflowLite on Arduino and Ultra Low Power Microcontrollers NR 2 TC 0 Z9 0 U1 0 U2 0 PU ASSOC COMPUTING MACHINERY PI NEW YORK PA 1601 Broadway, 10th Floor, NEW YORK, NY, UNITED STATES BN 978-1-4503-9070-5 PY 2022 BP 1159 EP 1159 DI 10.1145/3478432.3499093 PG 1 WC Computer Science, Theory & Methods; Education, Scientific Disciplines WE Conference Proceedings Citation Index - Science (CPCI-S) SC Computer Science; Education & Educational Research GA BU8GR UT WOS:000947124200113 DA 2024-09-05 ER PT J AU Yan, RH Liu, TY Peng, YG Peng, XX AF Yan, Ruohua Liu, Tianyi Peng, Yaguang Peng, Xiaoxia TI Can statistical adjustment guided by causal inference improve the accuracy of effect estimation? A simulation and empirical research based on meta-analyses of case-control studies SO BMC MEDICAL INFORMATICS AND DECISION MAKING LA English DT Article DE Simulation; Confounder; Causal inference; Case– control study; Meta-analysis ID BREAST-CANCER; PASSIVE SMOKING; SYSTEMATIC REVIEWS; RISK AB Background Statistical adjustment is often considered to control confounding bias in observational studies, especially case-control studies. However, different adjustment strategies may affect the estimation of odds ratios (ORs), and in turn affect the results of their pooled analyses. Our study is aimed to investigate how to deal with the statistical adjustment in case-control studies to improve the validity of meta-analyses. Methods Three types of adjustment strategies were evaluated including insufficient adjustment (not all preset confounders were adjusted), full adjustment (all confounders were adjusted under the guidance of causal inference), and improper adjustment (covariates other than confounders were adjusted). We carried out a series of Monte Carlo simulation experiments based on predesigned scenarios, and assessed the accuracy of effect estimations from meta-analyses of case-control studies by combining ORs calculated according to different adjustment strategies. Then we used the data from an empirical review to illustrate the replicability of the simulation results. Results For all scenarios with different strength of causal relations, combining ORs that were comprehensively adjusted for confounders would get the most precise effect estimation. By contrast, combining ORs that were not sufficiently adjusted for confounders or improperly adjusted for mediators or colliders would easily introduce bias in causal interpretation, especially when the true effect of exposure on outcome was weak or none. The findings of the simulation experiments were further verified by the empirical research. Conclusions Statistical adjustment guided by causal inference are recommended for effect estimation. Therefore, when conducting meta-analyses of case-control studies, the causal relationship formulated by exposure, outcome, and covariates should be firstly understood through a directed acyclic graph, and then reasonable original ORs could be extracted and combined by suitable methods. C1 [Yan, Ruohua; Liu, Tianyi; Peng, Yaguang; Peng, Xiaoxia] Capital Med Univ, Beijing Childrens Hosp, Ctr Clin Epidemiol & Evidence Based Med, Natl Ctr Childrens Hlth, Nanlishilu 56, Beijing 100045, Peoples R China. [Liu, Tianyi] AstraZenaca, Int Fortune Ctr, Evidence Generat, Med Affairs, Level 22,Jianguomenwai Ave 8, Beijing 100010, Peoples R China. C3 Capital Medical University RP Peng, XX (corresponding author), Capital Med Univ, Beijing Childrens Hosp, Ctr Clin Epidemiol & Evidence Based Med, Natl Ctr Childrens Hlth, Nanlishilu 56, Beijing 100045, Peoples R China. EM pengxiaoxia@bch.com.cn RI Peng, Xiao/ITR-9448-2023; Yan, Ruohua/HGE-2321-2022; Guo, yongqing/KDS-5864-2024; Li, Huizhen/JPX-2563-2023 OI Peng, Yaguang/0000-0002-7987-6464; Yan, Ruohua/0000-0003-1423-5962 FU Beijing Municipal Administration of Hospitals Clinical Medicine Development of Special Funding Support [ZYLX201840]; Special Fund of the Pediatric Medical Coordinated Development Center of Beijing Hospitals Authority [XTCX201812] FX This study is funded by the Beijing Municipal Administration of Hospitals Clinical Medicine Development of Special Funding Support (No. ZYLX201840) and the Special Fund of the Pediatric Medical Coordinated Development Center of Beijing Hospitals Authority (No. XTCX201812). The funding bodies had no role in the design of the study and collection, analysis, and interpretation of data and in writing the manuscript. CR Al Janabi S, 2017, I C DEV ESYST ENG, P37, DOI 10.1109/DeSE.2017.23 Al-Janabi S, 2019, INT J GRID UTIL COMP, V10, P512 Al-Janabi S, 2020, SOFT COMPUT, V24, P555, DOI 10.1007/s00500-019-03972-x Al-Janabi S, 2014, 2014 INTERNATIONAL CONGRESS ON TECHNOLOGY, COMMUNICATION AND KNOWLEDGE (ICTCK) Ali SH, 2012, 2012 6TH INTERNATIONAL CONFERENCE ON SCIENCES OF ELECTRONICS, TECHNOLOGIES OF INFORMATION AND TELECOMMUNICATIONS (SETIT), P962, DOI 10.1109/SETIT.2012.6482043 [Anonymous], 2013, Simulating data with SAS Blettner M, 1999, INT J EPIDEMIOL, V28, P1, DOI 10.1093/ije/28.1.1 Burton A, 2006, STAT MED, V25, P4279, DOI 10.1002/sim.2673 Chen C, 2014, CHIN J CANCER, V33, P306, DOI 10.5732/cjc.013.10248 Chen ZH, 2015, ASIA-PAC J PUBLIC HE, V27, pNP58, DOI 10.1177/1010539513481493 Egger M, 1997, BMJ-BRIT MED J, V315, P1533, DOI 10.1136/bmj.315.7121.1533 Evangelou E, 2013, NAT REV GENET, V14, P379, DOI 10.1038/nrg3472 Glass G.V., 1976, Educational Researcher, V5, P3, DOI [10.3102/0013189x005010003, DOI 10.3102/0013189X005010003, 10.2307/1174772ISSN0536-1036, DOI 10.2307/1174772] Higgins JPT, 2010, REV MANAGER, V5 Higgins JPT, 2008, INT J EPIDEMIOL, V37, P1158, DOI 10.1093/ije/dyn204 IntHout J, 2014, BMC MED RES METHODOL, V14, DOI 10.1186/1471-2288-14-25 Jackson D, 2018, STAT MED, V37, P1059, DOI 10.1002/sim.7588 Jadad AR, 1998, JAMA-J AM MED ASSOC, V280, P278, DOI 10.1001/jama.280.3.278 Johnson KC, 2005, INT J CANCER, V117, P619, DOI 10.1002/ijc.21150 Khuder SA, 2000, EUR J EPIDEMIOL, V16, P1117, DOI 10.1023/A:1010967513957 Kontopantelis E, 2012, STAT METHODS MED RES, V21, P657, DOI 10.1177/0962280211413451 Langan D, 2019, RES SYNTH METHODS, V10, P83, DOI 10.1002/jrsm.1316 Lee PN, 2016, INHAL TOXICOL, V28, P431, DOI 10.1080/08958378.2016.1210701 Li HK, 2016, BMC MED RES METHODOL, V16, DOI 10.1186/s12874-016-0206-3 Liu TY, 2017, BMC MED RES METHODOL, V17, DOI 10.1186/s12874-017-0454-x Metelli S, 2020, EVID-BASED MENT HEAL, V23, P83, DOI 10.1136/ebmental-2019-300129 Morris TP, 2019, STAT MED, V38, P2074, DOI 10.1002/sim.8086 Pirie K, 2008, INT J EPIDEMIOL, V37, P1069, DOI 10.1093/ije/dyn110 Senn S, 2011, STAT PROBABIL LETT, V81, P842, DOI 10.1016/j.spl.2011.02.010 Shapiro S, 1997, J CLIN EPIDEMIOL, V50, P223, DOI 10.1016/S0895-4356(96)00360-5 Shrier I, 2007, AM J EPIDEMIOL, V166, P1203, DOI 10.1093/aje/kwm189 Stang A, 2010, EUR J EPIDEMIOL, V25, P603, DOI 10.1007/s10654-010-9491-z Stroup DF, 2000, JAMA-J AM MED ASSOC, V283, P2008, DOI 10.1001/jama.283.15.2008 Tadano Kiichi, 2016, Igaku Butsuri, V36, P148, DOI 10.11323/jjmp.36.3_148 Valentine JC, 2013, RES SYNTH METHODS, V4, P26, DOI 10.1002/jrsm.1064 Wang MH, 2019, SEMIN CANCER BIOL, V55, P53, DOI 10.1016/j.semcancer.2018.04.008 WHITEHEAD A, 1991, STAT MED, V10, P1665, DOI 10.1002/sim.4780101105 Yang WY, 2010, DIABETES RES CLIN PR, V88, pS3, DOI 10.1016/S0168-8227(10)70002-4 NR 38 TC 3 Z9 4 U1 0 U2 7 PU BMC PI LONDON PA CAMPUS, 4 CRINAN ST, LONDON N1 9XW, ENGLAND EI 1472-6947 J9 BMC MED INFORM DECIS JI BMC Med. Inform. Decis. Mak. PD DEC 11 PY 2020 VL 20 IS 1 AR 333 DI 10.1186/s12911-020-01343-3 PG 11 WC Medical Informatics WE Science Citation Index Expanded (SCI-EXPANDED) SC Medical Informatics GA PD6RU UT WOS:000597810600001 PM 33308213 OA Green Submitted, gold, Green Published DA 2024-09-05 ER PT J AU Khalid, S Wu, SL Zhang, F AF Khalid, Shah Wu, Shengli Zhang, Fang TI A multi-objective approach to determining the usefulness of papers in academic search SO DATA TECHNOLOGIES AND APPLICATIONS LA English DT Article DE Academic search; Citation analysis; Usefulness; Relevance; Impact; Publication age; Evaluation metrics AB Purpose How to provide the most useful papers for searchers is a key issue for academic search engines. A lot of research has been carried out to address this problem. However, when evaluating the effectiveness of an academic search engine, most of the previous investigations assume that the only concern of the user is the relevancy of the paper to the query. The authors believe that the usefulness of a paper is determined not only by its relevance to the query but also by other aspects including its publication age and impact in the research community. This is vital, especially when a large number of papers are relevant to the query. Design/methodology/approach This paper proposes a group of metrics to measure the usefulness of a ranked list of papers. When defining these metrics, three factors, including relevance, publication age and impact, are considered at the same time. To accommodate this, the authors propose a framework to rank papers by a combination of their relevance, publication age and impact scores. Findings The framework is evaluated with the ACL (Association for Computational Linguistics Anthology Network) dataset. It demonstrates that the proposed ranking algorithm is effective for improving usefulness when two or three aspects of academic papers are considered at the same time, while the relevance of the retrieved papers is slightly down compared with the relevance-only retrieval. Originality/value To the best of the authors' knowledge, the proposed multi-objective academic search framework is the first of its kind that is proposed and evaluated with a group of new evaluation metrics. C1 [Khalid, Shah; Wu, Shengli; Zhang, Fang] Jiangsu Univ, Sch Comp Sci & Commun Engn, Zhenjiang, Jiangsu, Peoples R China. [Khalid, Shah] Natl Univ Sci & Technol, Sch Comp Sci, Islamabad, Pakistan. C3 Jiangsu University; National University of Sciences & Technology - Pakistan RP Wu, SL (corresponding author), Jiangsu Univ, Sch Comp Sci & Commun Engn, Zhenjiang, Jiangsu, Peoples R China. EM shahkhalid@ujs.edu.cn; swu@ujs.edu.cn; fangzh_1014@126.com RI Khalid, Shah/AAC-8325-2021 OI Khalid, Shah/0000-0001-5735-5863; wu, shengli/0000-0003-2008-1736 CR Agrawal Rakesh, 2009, P 2 INT C WEB SEARCH, P5, DOI DOI 10.1145/1498759.1498766 Amolochitis E, 2013, INFORM PROCESS MANAG, V49, P1326, DOI 10.1016/j.ipm.2013.07.002 [Anonymous], 2014, ACAD SEARCH ENGINES [Anonymous], 2003, ACM Trans Internet Technol, DOI DOI 10.1145/857166.857170 [Anonymous], 2007, P 30 ANN INT ACM SIG, DOI DOI 10.1145/1277741.1277756 Buckley C., 2004, Proceedings of Sheffield SIGIR 2004. The Twenty-Seventh Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, P25, DOI 10.1145/1008992.1009000 Chen H, 2006, P 29 ANN INT ACM SIG, P429, DOI [DOI 10.1145/1148170.1148245, 10.1145/1148170.1148245] Clarke C., 2008, P 31 ANN INT ACM SIG, P659, DOI DOI 10.1145/1390334.1390446 DASDAN A, 2009, P 18 INT C WORLD WID, P1129 Hagen Matthias, 2016, Advances in Information Retrieval. 38th European Conference on IR Research, ECIR 2016. Proceedings; LNCS 9626, P507, DOI 10.1007/978-3-319-30671-1_37 Han JC, 2004, IEEE/WIC/ACM INTERNATIONAL CONFERENCE ON WEB INTELLIGENCE (WI 2004), PROCEEDINGS, P677 Järvelin K, 2002, ACM T INFORM SYST, V20, P422, DOI 10.1145/582415.582418 Khalid S, 2020, ENG TECHNOL APPL SCI, V10, P6102 Khalid S, 2021, J INF SCI, V47, P3, DOI 10.1177/0165551519863346 Khazaei T, 2017, INT J DIGIT LIBRARIE, V18, P59, DOI 10.1007/s00799-016-0170-x KLUCK M, 2004, WORKSH CROSS LANG EV, P260 KLUCK M, 2005, WORKSH CROSS LANG EV, P212 Li XY, 2017, INFORM PROCESS MANAG, V53, P666, DOI 10.1016/j.ipm.2017.01.005 Liu XZ, 2013, J AM SOC INF SCI TEC, V64, P1852, DOI 10.1002/asi.22883 MIRYLENKA D, 2015, THESIS Moffat A, 2009, ACM T INFORM SYST, V27, DOI 10.1145/1416950.1416952 Radev DR, 2013, LANG RESOUR EVAL, V47, P919, DOI 10.1007/s10579-012-9211-2 Salehi Sara., 2015, P 26 ACM C HYPERTEXT, P103, DOI DOI 10.1145/2700171.2791039 Shogen S, 2015, LECT NOTES COMPUT SC, V9460, P56, DOI 10.1007/978-3-319-28940-3_5 Sugiyama K, 2015, INT J DIGIT LIBRARIE, V16, P91, DOI 10.1007/s00799-014-0122-2 Terzi, 2012, P 2012 ACM SIGMOD IN, P621 VERBERNE S, 2014, EUR C INF RETR, P560 VERBERNE S, 2018, ABS180411131 CORR Wu D, 2018, ASLIB J INFORM MANAG, V70, P2, DOI 10.1108/AJIM-03-2017-0063 Wu S, 2012, ADAPT LEARN OPTIM, V13, P1, DOI 10.1007/978-3-642-28866-1 Wu SL, 2006, LECT NOTES COMPUT SC, V4042, P86 Xiong CY, 2017, PROCEEDINGS OF THE 26TH INTERNATIONAL CONFERENCE ON WORLD WIDE WEB (WWW'17), P1271, DOI 10.1145/3038912.3052558 NR 32 TC 12 Z9 12 U1 2 U2 31 PU EMERALD GROUP PUBLISHING LTD PI BINGLEY PA HOWARD HOUSE, WAGON LANE, BINGLEY BD16 1WA, W YORKSHIRE, ENGLAND SN 2514-9288 EI 2514-9318 J9 DATA TECHNOL APPL JI Data Technol. Appl. PD OCT 11 PY 2021 VL 55 IS 5 BP 734 EP 748 DI 10.1108/DTA-05-2020-0104 EA MAY 2021 PG 15 WC Computer Science, Information Systems; Information Science & Library Science WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Computer Science; Information Science & Library Science GA WF5PG UT WOS:000653156700001 DA 2024-09-05 ER PT J AU Liu, G Pan, L Jiang, WQ Fan, S Buhari, A AF Liu, Gang Pan, Lei Jiang, Weiqiang Fan, Shuai Buhari, Abudhahir TI Dynamic performance and optimization research for six-link mechanism considering the coupling effect of flexible structure and wear clearances SO NONLINEAR DYNAMICS LA English DT Article DE Wear clearance; Flexible structure; Six-link mechanism; Dynamic performance; Optimization research; Simulated annealing algorithm ID SYSTEM AB The adverse effects of flexible structure and wear clearances on dynamic performance of mechanical systems cannot be ignored. At present, scholars have carried out extensive research on mechanism with clearance, but few consider the coupling effect of wear clearance and flexible structure on dynamic performance of mechanism. Therefore, this paper develops a dynamic model of six-link mechanism considering multiple wear clearances and flexible structure through Lagrange method. The influence of clearance size and frictional coefficient on dynamic performance and nonlinear characteristics of mechanism is investigated. In view of the adverse effects of wear clearances and flexible structure on the performance of mechanism, a new optimization method of mechanism based on simulated annealing algorithm (SAA) is proposed. This method takes the mass parameters of each component for mechanism as the design variables and minimizes the maximal wear depth of clearance as the objective function. The results indicate that the optimization method can reduce the vibration and error, and improve the overall dynamic performance of mechanism. C1 [Liu, Gang; Buhari, Abudhahir] Infrast Univ Kuala Lumpur, Fac Engn Sci & Technol, Jln Ikram Uniten, Kajang 43000, Selangor, Malaysia. [Liu, Gang; Pan, Lei; Jiang, Weiqiang] Weifang Vocat Coll, Weifang 261041, Shandong, Peoples R China. [Fan, Shuai] Chengdu Univ Technol, Sch Mech & Elect Engn, Chengdu 610059, Sichuan, Peoples R China. C3 Chengdu University of Technology RP Jiang, WQ (corresponding author), Weifang Vocat Coll, Weifang 261041, Shandong, Peoples R China. EM jiangweiqiang_wfvc@163.com FU Development Path and Industrialization Research Project of Kinetic Energy Coupling Technology for Large Composite Intelligent Agricultural Machinery Equipment; [2022RKX027] FX This work was supported by the [Development Path and Industrialization Research Project of Kinetic Energy Coupling Technology for Large Composite Intelligent Agricultural Machinery Equipment: 2022RKX027]. CR Ahmedalbashir M, 2017, J MECH SCI TECHNOL, V31, P1023, DOI 10.1007/s12206-017-0201-6 Alves DS, 2021, TRIBOL INT, V153, DOI 10.1016/j.triboint.2020.106640 Amiri A, 2019, MULTIBODY SYST DYN, V47, P363, DOI 10.1007/s11044-019-09684-2 Askari E, 2015, NONLINEAR DYNAM, V82, P1039, DOI 10.1007/s11071-015-2216-9 Bai ZF, 2013, SCI CHINA PHYS MECH, V56, P1581, DOI 10.1007/s11433-013-5125-2 Ben Abdallah MA, 2016, MULTIBODY SYST DYN, V38, P173, DOI 10.1007/s11044-016-9526-7 Chen Y, 2023, MECCANICA, V58, P43, DOI 10.1007/s11012-022-01629-y Erkaya S, 2018, STROJ VESTN-J MECH E, V64, P82, DOI 10.5545/sv-jme.2017.4534 Gao H, 2021, P I MECH ENG C-J MEC, V235, P7569, DOI 10.1177/09544062211025566 Gao SZ, 2023, TRIBOL INT, V182, DOI 10.1016/j.triboint.2023.108330 Geng XY, 2016, MECH MACH THEORY, V104, P202, DOI 10.1016/j.mechmachtheory.2016.05.013 Guo J, 2020, MECH MACH THEORY, V149, DOI 10.1016/j.mechmachtheory.2020.103824 Li HQ, 2018, MULTIBODY SYST DYN, V44, P277, DOI 10.1007/s11044-018-9625-8 Li P, 2016, J COMPUT NONLIN DYN, V11, DOI 10.1115/1.4030539 Li YY, 2019, MECH SYST SIGNAL PR, V117, P188, DOI 10.1016/j.ymssp.2018.07.037 Liu N, 2018, WIRELESS PERS COMMUN, V102, P1683, DOI 10.1007/s11277-017-5227-7 Ordiz M, 2021, MECH MACH THEORY, V160, DOI 10.1016/j.mechmachtheory.2021.104293 Salahshoor E, 2018, MECH MACH THEORY, V126, P429, DOI 10.1016/j.mechmachtheory.2018.04.027 Singh A, 2021, MECCANICA, V56, P73, DOI 10.1007/s11012-020-01259-2 Sun DY, 2016, EUR J MECH A-SOLID, V58, P256, DOI 10.1016/j.euromechsol.2016.02.007 Tan X, 2020, J COMPUT NONLIN DYN, V15, DOI 10.1115/1.4045240 Tang LL, 2018, NONLINEAR DYNAM, V94, P2423, DOI 10.1007/s11071-018-4500-y Wang GX, 2019, MECH MACH THEORY, V137, P83, DOI 10.1016/j.mechmachtheory.2019.03.017 Wang GX, 2015, J TRIBOL-T ASME, V137, DOI 10.1115/1.4029277 Yu XD, 2022, J APPL FLUID MECH, V15, P505, DOI 10.47176/jafm.15.02.33039 Zheng EL, 2019, MECH MACH THEORY, V131, P234, DOI 10.1016/j.mechmachtheory.2018.09.023 Zheng XD, 2018, APPL MATH MECH-ENGL, V39, P1239, DOI 10.1007/s10483-018-2371-9 Zhuang XC, 2019, ENG FAIL ANAL, V96, P543, DOI 10.1016/j.engfailanal.2018.10.017 NR 28 TC 0 Z9 0 U1 27 U2 29 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0924-090X EI 1573-269X J9 NONLINEAR DYNAM JI Nonlinear Dyn. PD MAR PY 2024 VL 112 IS 6 BP 4929 EP 4950 DI 10.1007/s11071-023-09247-3 EA JAN 2024 PG 22 WC Engineering, Mechanical; Mechanics WE Science Citation Index Expanded (SCI-EXPANDED) SC Engineering; Mechanics GA ZO5V5 UT WOS:001147898600007 DA 2024-09-05 ER PT J AU Gurcan, F Ayaz, A Dalveren, GGM Derawi, M AF Gurcan, Fatih Ayaz, Ahmet Dalveren, Gonca Gokce Menekse Derawi, Mohammad TI Business Intelligence Strategies, Best Practices, and Latest Trends: Analysis of Scientometric Data from 2003 to 2023 Using Machine Learning SO SUSTAINABILITY LA English DT Article DE business intelligence; topic modeling; text mining; trend analysis; machine learning ID SEMANTIC CONTENT-ANALYSIS; BIG DATA ANALYTICS; EXPLORATORY ANALYSIS; SYSTEMS; MANAGEMENT; INTERESTS; EVOLUTION; INTENTION; IMPACT AB The widespread use of business intelligence products, services, and applications piques the interest of researchers in this field. The interest of researchers in business intelligence increases the number of studies significantly. Identifying domain-specific research patterns and trends is thus a significant research problem. This study employs a topic modeling approach to analyze domain-specific articles in order to identify research patterns and trends in the business intelligence field over the last 20 years. As a result, 36 topics were discovered that reflect the field's research landscape and trends. Topics such as "Organizational Capability", "AI Applications", "Data Mining", "Big Data Analytics", and "Visualization" have recently gained popularity. A systematic taxonomic map was also created, revealing the research background and BI perspectives based on the topics. This study may be useful to researchers and practitioners interested in learning about the most recent developments in the field. Topics generated by topic modeling can also be used to identify gaps in current research or potential future research directions. C1 [Gurcan, Fatih] Karadeniz Tech Univ, Fac Econ & Adm Sci, Dept Management Informat Syst, TR-61080 Trabzon, Turkiye. [Ayaz, Ahmet] Karadeniz Tech Univ, Digital Transformat Off, TR-61080 Trabzon, Turkiye. [Dalveren, Gonca Gokce Menekse] Atilim Univ, Fac Engn, Dept Software Engn, TR-06830 Ankara, Turkiye. [Derawi, Mohammad] Norwegian Univ Sci & Technol, Fac Informat Technol & Elect Engn, Dept Elect Syst, N-7034 Gjovik, Norway. C3 Karadeniz Technical University; Karadeniz Technical University; Atilim University; Norwegian University of Science & Technology (NTNU) RP Derawi, M (corresponding author), Norwegian Univ Sci & Technol, Fac Informat Technol & Elect Engn, Dept Elect Syst, N-7034 Gjovik, Norway. EM mohammad.derawi@ntnu.no RI Ayaz, Ahmet/JBJ-2146-2023; Menekse Dalveren, Gonca Gokce/HHS-4591-2022; GURCAN, Fatih/AAJ-7503-2021 OI Menekse Dalveren, Gonca Gokce/0000-0002-8649-1909; GURCAN, Fatih/0000-0001-9915-6686; Ayaz, Ahmet/0000-0003-1405-0546 CR Ain N, 2019, DECIS SUPPORT SYST, V125, DOI 10.1016/j.dss.2019.113113 Al-Ramahi NM, 2022, SUSTAINABILITY-BASEL, V14, DOI 10.3390/su141912744 [Anonymous], 2017, INT J BIBLIOMETR BUS, DOI DOI 10.1504/IJBBM.2017.082422 [Anonymous], 2004, P DOLAP ACM INT WORK [Anonymous], 2008, Business Intelligence. Em: Handbook on Decision Support Systems 2, DOI [DOI 10.1007/978-3-540-48716-6_9, 10.1007/978-3-540-48716-6_9] Bach MP, 2016, PROCEDIA COMPUT SCI, V100, P995, DOI 10.1016/j.procs.2016.09.270 Bharadwaj AS, 2000, MIS QUART, V24, P169, DOI 10.2307/3250983 Blei DM, 2012, COMMUN ACM, V55, P77, DOI 10.1145/2133806.2133826 Brum L. M. da L., 2019, Journal of Agricultural Science (Toronto), V11, P353 BYRD TA, 1991, INT J PROD RES, V29, P2471, DOI 10.1080/00207549108948097 Campbell JC., 2003, The Art and Science of Analyzing Software Data, V3, P139, DOI DOI 10.1016/B978-0-12-411519-4.00006-9 Chang YW, 2014, COGN TECHNOL WORK, V16, P247, DOI 10.1007/s10111-013-0261-z Chen HC, 2012, MIS QUART, V36, P1165 Chen YS, 2021, INT J INFORM MANAGE, V57, DOI 10.1016/j.ijinfomgt.2020.102232 Cheng C, 2020, J BUS RES, V110, P95, DOI 10.1016/j.jbusres.2020.01.003 Niño HAC, 2020, INT J INFORM MANAGE, V50, P405, DOI 10.1016/j.ijinfomgt.2018.11.012 De Mauro A, 2018, INFORM PROCESS MANAG, V54, P807, DOI 10.1016/j.ipm.2017.05.004 Debortoli S, 2014, BUS INFORM SYST ENG+, V6, P289, DOI 10.1007/s12599-014-0344-2 Donthu N, 2021, J BUS RES, V133, P285, DOI 10.1016/j.jbusres.2021.04.070 Dorti A., 2021, ONLINE J SCI TECHNOL, V11, P82 Doucet MS., 2003, Encyclopedia of Information Systems, P601, DOI [10.1016/B0-12-227240-4/00143-X, DOI 10.1016/B0-12-227240-4/00143-X] Fan SK, 2015, BIG DATA RES, V2, P28, DOI 10.1016/j.bdr.2015.02.006 Gallinucci E, 2015, INFORM SYST, V53, P87, DOI 10.1016/j.is.2015.04.005 gartner.com, GARTNER ANALYTICS BU George J. F., 1991, Journal of Management Information Systems, V8, P109 Golden B., 2013, AMAZON WEB SERVICES Griffiths TL, 2004, P NATL ACAD SCI USA, V101, P5228, DOI 10.1073/pnas.0307752101 Gurcan F., 2020, Journal of Computer and Education Research, DOI [10.18009/jcer.769349, DOI 10.18009/769349] Gurcan F., 2019, P 1 INT INFORMATICS Gurcan F, 2023, PEERJ COMPUT SCI, V9, DOI 10.7717/peerj-cs.1361 Gurcan F, 2023, SUSTAINABILITY-BASEL, V15, DOI 10.3390/su15097496 Gurcan F, 2023, EDUC INF TECHNOL, V28, P15067, DOI 10.1007/s10639-023-11803-8 Gurcan F, 2022, IEEE ACCESS, V10, P123349, DOI 10.1109/ACCESS.2022.3224034 Gurcan F, 2022, IEEE ACCESS, V10, P106093, DOI 10.1109/ACCESS.2022.3211949 Gurcan F, 2022, IEEE ACCESS, V10, P74638, DOI 10.1109/ACCESS.2022.3190632 Gurcan F, 2022, IEEE ACCESS, V10, P31480, DOI 10.1109/ACCESS.2022.3160795 Gürcan F, 2018, 2018 INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND DATA PROCESSING (IDAP) Hare J., 2019, MARKET SHARE ANALYTI Hedberg J. G., 2002, Educational Media International, V39, P111, DOI 10.1080/09523980210153471 Herschel R. T., 2005, Journal of Knowledge Management, V9, P45, DOI 10.1108/13673270510610323 Hou CK, 2016, INFORM DEV, V32, P1359, DOI 10.1177/0266666915599588 Kapetaneas N., 2022, P LECT NOTES BUSINES Kherwa P, 2020, EAI ENDORSED TRANS S, V7, DOI 10.4108/eai.13-7-2018.159623 Konrad M, TEXT MINING TOPIC MO Lee MC, 2007, INT J INNOV LEARN, V4, P145, DOI 10.1504/IJIL.2007.011690 Lee M, 2019, INT J CONTEMP HOSP M, V31, P4313, DOI 10.1108/IJCHM-03-2018-0263 Liang TP, 2018, EXPERT SYST APPL, V111, P2, DOI 10.1016/j.eswa.2018.05.018 Liu JY, 2021, BIG DATA RES, V25, DOI 10.1016/j.bdr.2021.100236 López-Robles JR, 2018, FRONT ARTIF INTEL AP, V303, P395, DOI 10.3233/978-1-61499-900-3-395 LUHN HP, 1958, IBM J RES DEV, V2, P314, DOI 10.1147/rd.24.0314 Marine-Roig E, 2015, J DESTIN MARK MANAGE, V4, P162, DOI 10.1016/j.jdmm.2015.06.004 McAfee A, 2012, HARVARD BUS REV, V90, P60 Meramveliotakis G, 2021, ADM SCI, V11, DOI 10.3390/admsci11030090 Mimno David, 2011, P C EMPIRICAL METHOD, P262 Mohan KK, 2010, INT J SYST ASSUR ENG, V1, P316, DOI 10.1007/s13198-011-0029-x Moro S, 2015, EXPERT SYST APPL, V42, P1314, DOI 10.1016/j.eswa.2014.09.024 Muntean M, 2021, SUSTAINABILITY-BASEL, V13, DOI 10.3390/su13020638 Nedelcu B., 2013, DATABASE SYSTEMS J, V4, P12, DOI DOI 10.1007/978-3-319-77679-8_3 Negnevitsky Michael, 2005, Artificial intelligence: a guide to intelligent systems Negro A.R., 2020, J APPL BUS EC, V22, DOI [10.33423/jabe.v22i2.2807, DOI 10.33423/JABE.V22I2.2807] Ozyurt O, 2022, APPL SCI-BASEL, V12, DOI 10.3390/app12199787 Ozyurt O, 2022, EDUC INF TECHNOL, V27, P11025, DOI 10.1007/s10639-022-11071-y Power D.J., 2007, A Brief History of Decision Support Systems Purnomo A, 2021, 2021 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATION, NETWORKS AND SATELLITE (COMNETSAT 2021), P32, DOI 10.1109/COMNETSAT53002.2021.9530790 Raghupathi We., 2013, J Health Med Informat, V4, P21577420, DOI [DOI 10.4172/2157-7420.1000132, 10.4172/2157-7420.1000132] Rajaraman V, 2016, RESONANCE, V21, P695, DOI 10.1007/s12045-016-0376-7 Rehani B., 2011, 2011 Annual IEEE India Conference, Hyderabad, P1, DOI DOI 10.1109/INDCON.2011.6139618 Rossmann B, 2018, TECHNOL FORECAST SOC, V130, P135, DOI 10.1016/j.techfore.2017.10.005 Seeley C.P., 2006, KNOWLEDGE MANAGEMENT, V8, P10 Shah M, 2014, PROCD SOC BEHV, V116, P2799, DOI 10.1016/j.sbspro.2014.01.659 Sharma M., 2019, ICT Unbounded, Social Impact of Bright ICT Adoption: Proceedings from IFIP WG 8.6 International Conference on Transfer and Diffusion of IT, P212 Shollo A, 2016, INFORM SYST J, V26, P339, DOI 10.1111/isj.12071 Sousa MJ, 2019, J MED SYST, V43, DOI 10.1007/s10916-019-1419-x Romero CAT, 2021, SUSTAINABILITY-BASEL, V13, DOI 10.3390/su131810026 Trieu VH, 2017, DECIS SUPPORT SYST, V93, P111, DOI 10.1016/j.dss.2016.09.019 Václav C, 2021, TRANSP RES PROC, V53, P212, DOI 10.1016/j.trpro.2021.02.028 Vayansky I, 2020, INFORM SYST, V94, DOI 10.1016/j.is.2020.101582 Venter P, 2009, SOUTH AFR BUS REV, V13, P88 Wyskwarski M., 2019, SCI PAP SILESIAN U T, V2019, P263, DOI [10.29119/1641-3466.2019.137.17, DOI 10.29119/1641-3466.2019.137.17] Yasuda K., 2014, P ASIA PACIFIC IND E, P62 Yeoh W, 2016, J ASSOC INF SCI TECH, V67, P134, DOI 10.1002/asi.23366 Yurtay Y., 2014, J MANAG EC RES, V12, P228, DOI [10.11611/JMER353, DOI 10.11611/JMER353] Zohuri B., 2020, J. Mater. Sci. Manuf. Res, V3, P231, DOI [10.32474/MAMS.2020.02.000137, DOI 10.32474/MAMS.2020.02.000137] Zou ZF, 2019, J PHYS CONF SER, V1176, DOI 10.1088/1742-6596/1176/4/042089 NR 84 TC 3 Z9 3 U1 11 U2 27 PU MDPI PI BASEL PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND EI 2071-1050 J9 SUSTAINABILITY-BASEL JI Sustainability PD JUL PY 2023 VL 15 IS 13 AR 9854 DI 10.3390/su15139854 PG 23 WC Green & Sustainable Science & Technology; Environmental Sciences; Environmental Studies WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Science & Technology - Other Topics; Environmental Sciences & Ecology GA M1VP2 UT WOS:001028127500001 OA gold DA 2024-09-05 ER PT J AU Enduri, MK Sankar, VU Hajarathaiah, K AF Enduri, Murali Krishna Sankar, V. Udaya Hajarathaiah, Koduru TI Empirical Study on Citation Count Prediction of Research Articles SO JOURNAL OF SCIENTOMETRIC RESEARCH LA English DT Article DE PACS codes; Citation; APS journals; Machine learning ID IMPACT; FEATURES; TITLE AB Citation is a measure that quantifies the impact of the researcher, research article and journal's quality. Investigating the citation of articles and/or researchers is one of the important tasks in the research community. So, understanding and predicting citation patterns of research articles has become popular in scientific research fields. In this work, we give a machine learning approach to predict the citations of research articles using the keywords. We study the citation impact based on keywords motioned in the articles using the data set of publications which are published in the various physical review journals from 1985-2012. In this dataset, for each publication is allocated some PACS codes (keywords) by their authors which represent a sub-field of Physics. In this work, we are investigating the impact of PACS codes of article on article's citation. We are performing our analysis on the first (sub-field of physics), second (sub area of sub-field of physics) and third level of PACS codes. We observed that compared to the first level, every pair of citation patterns of the second level is highly correlated. We also obtained a universal approximation curve for the third level that matches with the average value of the first level. This curve looks like a shifted and scaled version of the Gaussian function and is right skewed. We can also predict the citations based on the keywords by using this universal curve. C1 [Enduri, Murali Krishna; Hajarathaiah, Koduru] SRM Univ, Dept Comp Sci & Engn, Amaravati, Andhra Pradesh, India. [Sankar, V. Udaya] SRM Univ, Dept Elect & Commun Engn, Amaravati, Andhra Pradesh, India. [Enduri, Murali Krishna] SRM Univ, Dept Comp Sci & Engn, Amaravati 522502, Andhra Pradesh, India. C3 SRM University-AP; SRM University-AP; SRM University-AP RP Enduri, MK (corresponding author), SRM Univ, Dept Comp Sci & Engn, Amaravati 522502, Andhra Pradesh, India. EM muralikrishna.e@srmap.edu.in RI Enduri, Murali Krishna/AEK-0968-2022 CR Alimoradi F, 2016, ANN LIBR INF STUD, V63, P74, DOI 10.56042/alis.v63i1.11571 Anderson DavidL., 2013, New Zealand Economic Papers, V47, P140, DOI DOI 10.1080/00779954.2013.772879 Baba T, 2019, J WEB ENG, V18, P207, DOI 10.13052/jwe1540-9589.18136 Bai XM, 2019, J INFORMETR, V13, P407, DOI 10.1016/j.joi.2019.01.010 Bornmann L, 2012, J INFORMETR, V6, P11, DOI 10.1016/j.joi.2011.08.004 Brizan DG, 2016, SCIENTOMETRICS, V108, P183, DOI 10.1007/s11192-016-1950-1 Contreras EJ, 2009, P WORKSHOP EUROPEAN Crowe SF, 2020, AUST PSYCHOL, V55, P468, DOI 10.1111/ap.12453 Didegah F, 2013, J AM SOC INF SCI TEC, V64, P1055, DOI 10.1002/asi.22806 Enduri MK, 2015, 2015 11TH INTERNATIONAL CONFERENCE ON SIGNAL-IMAGE TECHNOLOGY & INTERNET-BASED SYSTEMS (SITIS), P505, DOI 10.1109/SITIS.2015.60 Fu LD, 2010, SCIENTOMETRICS, V85, P257, DOI 10.1007/s11192-010-0237-1 Fumani MRFQ, 2015, ANN LIBR INF STUD, V62, P126 Garfield E, 2006, JAMA-J AM MED ASSOC, V295, P90, DOI 10.1001/jama.295.1.90 Gazni A, 2012, J AM SOC INF SCI TEC, V63, P323, DOI 10.1002/asi.21688 Guns R, 2009, J INFORMETR, V3, P64, DOI 10.1016/j.joi.2008.11.004 Hirsch JE, 2007, P NATL ACAD SCI USA, V104, P19193, DOI 10.1073/pnas.0707962104 Jamali HR, 2020, J INF SCI, V46, P131, DOI 10.1177/0165551519837191 Janavi E, 2020, SCIENTOMETRICS, V125, P2229, DOI 10.1007/s11192-020-03685-1 Khan A, 2016, OBES REV, V17, P377, DOI 10.1111/obr.12372 Madani F, 2018, INT J GEN SYST, V47, P821, DOI 10.1080/03081079.2018.1524892 Martin T, 2013, Arxiv, DOI arXiv:1304.0473 Mryglod O, 2013, SCIENTOMETRICS, V97, P767, DOI 10.1007/s11192-013-1058-9 Radicchi F, 2011, PHYS REV E, V83, DOI 10.1103/PhysRevE.83.046116 Redner S, 2005, Arxiv, DOI arXiv:physics/0506056 Reed WJ, 2004, COMMUN STAT-THEOR M, V33, P1733, DOI 10.1081/STA-120037438 Robson BJ, 2016, ENVIRON MODELL SOFTW, V75, P94, DOI 10.1016/j.envsoft.2015.10.007 Stegehuis C, 2015, J INFORMETR, V9, P642, DOI 10.1016/j.joi.2015.06.005 Uddin S, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0057546 Wang DS, 2013, SCIENCE, V342, P127, DOI 10.1126/science.1237825 Yu T, 2014, SCIENTOMETRICS, V101, P1233, DOI 10.1007/s11192-014-1279-6 NR 30 TC 3 Z9 3 U1 1 U2 10 PU PHCOG NET PI KARNATAKA PA 17, 2ND FLR, BUDDHA VIHAR RD, NEAR SPORTS ZONE, COX TOWN, BENGALURU, KARNATAKA, 560005, INDIA SN 2321-6654 EI 2320-0057 J9 J SCIENTOMETR RES JI J. Scientometr. Res. PD MAY-AUG PY 2022 VL 11 IS 2 BP 155 EP 163 DI 10.5530/jscires.11.2.17 PG 9 WC Information Science & Library Science WE Emerging Sources Citation Index (ESCI) SC Information Science & Library Science GA 5B1PC UT WOS:000863346300002 DA 2024-09-05 ER PT J AU Yin, YM AF Yin, Yamei TI Research on ideological and political evaluation model of university students based on data mining artificial intelligence technology SO JOURNAL OF INTELLIGENT & FUZZY SYSTEMS LA English DT Article DE Data mining; artificial intelligence; ideology and politics; teaching evaluation AB The teaching evaluation index system based on artificial intelligence not only evaluates and reflects the teaching situation of ideological and political theory courses in universities as a whole, but also provides specific feasible goals and direction guidance for the construction of ideological and political theory courses in universities. Based on data mining technology, this paper combines machine learning algorithms and dimensional analysis to study the ideological and political evaluation model of colleges and universities and builds an artificial intelligence teaching evaluation model based on actual needs. Moreover, this study transforms the model selection problem into a hybrid optimization algorithm optimization problem, and the algorithm attempts to find the optimal model from the model set. In addition, this study designs a control experiment to perform model performance analysis. The results of the study show that the performance of the model meets the expected goals and can be applied to practice. C1 [Yin, Yamei] Hebei Inst Int Business & Econ, Qinhuangdao 066311, Hebei, Peoples R China. RP Yin, YM (corresponding author), Hebei Inst Int Business & Econ, Qinhuangdao 066311, Hebei, Peoples R China. EM yameiyin@tutanota.com CR Al-Maamari F., 2015, Higher Education Studies, V5, P9, DOI [DOI 10.5539/HES.V9N6P9, 10.5539/hes.v5n6p9, DOI 10.5539/HES.V5N6P9] Tewell E, 2017, COMMUN INF LIT, V11, P95 Brkovic M., 2016, FACTA U, V14, P1, DOI DOI 10.2298/FUACE1601001B Eckler U, 2017, INT J HLTH PROF, V4, P109 Garofalo F, 2017, WORLD J SURG, V41, P100, DOI 10.1007/s00268-016-3710-z Heitkamp SJ, 2018, BMC MED EDUC, V18, DOI 10.1186/s12909-018-1220-4 Jiang Y., 2016, J COMPUT THEOR NANOS, V13, P9848, DOI DOI 10.1166/JCTN.2016.5939 Khalaf O.I., 2019, PERIODICALS ENG NATU, V7, P1096, DOI DOI 10.21533/PEN.V7I3.645 Lalvarmawi F., 2015, NATL J PHYSL PHARM P, V5, P1 Son L, 2020, IEEE INTELL SYST, V35, P6, DOI 10.1109/MIS.2019.2938441 Li AF, 2015, J COMPUT, V10, P166, DOI 10.17706/jcp.10.3.166-175 Liu, 2016, OPEN J SOCIAL SCI, V4, P82, DOI DOI 10.4236/JSS.2016.47013 Müller T, 2017, BMC MED EDUC, V17, DOI 10.1186/s12909-017-0970-8 Oliveros M.A., 2015, CREATIVE ED, V6, P1768 Porozovs L., 2015, J. Pedagogy Psychol.Signum Temporis, V7, P60 Prathik A., 2019, INT J ENG ADV TECHNO, V9, P2330, DOI DOI 10.35940/IJEAT.AL377.109119 Reisenwitz T.H., 2015, J MARKETING ED, V38, P139 Royal KD, 2016, J VET MED EDUC, V43, P1, DOI 10.3138/jvme.0315-030R Sánchez Cerón Manuel, 2015, RMIE, V20, P1233 Shuang Liu, 2015, International Journal of Modern Education and Computer Science, V7, P12, DOI 10.5815/ijmecs.2015.11.02 Tran ND, 2015, ISS EDUC RES, V25, P50 Zhao H., 2015, OPEN CYBERNETICS SYS, V9, P2017, DOI DOI 10.2174/1874110X01509012017 Zhou T, 2016, HUM MOVEMENT SCI, V46, P1, DOI 10.1016/j.humov.2015.12.002 NR 23 TC 5 Z9 5 U1 6 U2 45 PU IOS PRESS PI AMSTERDAM PA NIEUWE HEMWEG 6B, 1013 BG AMSTERDAM, NETHERLANDS SN 1064-1246 EI 1875-8967 J9 J INTELL FUZZY SYST JI J. Intell. Fuzzy Syst. PY 2021 VL 40 IS 2 BP 3689 EP 3698 DI 10.3233/JIFS-189403 PG 10 WC Computer Science, Artificial Intelligence WE Science Citation Index Expanded (SCI-EXPANDED) SC Computer Science GA QH1ZP UT WOS:000618076700173 DA 2024-09-05 ER PT J AU Nakatoh, T Hirokawa, S Minami, T Nanri, T Funamori, M AF Nakatoh, Tetsuya Hirokawa, Sachio Minami, Toshiro Nanri, Takeshi Funamori, Miho TI Attribute-based quality classification of academic papers SO ARTIFICIAL LIFE AND ROBOTICS LA English DT Article DE Bibliometrics; Academic paper; Feature selection; Machine learning; SVM AB Investigating the relevant literature is very important for research activities. However, it is difficult to select the most appropriate and important academic papers from the enormous number of papers published annually. Researchers search paper databases by combining keywords, and then select papers to read using some evaluation measure-often, citation count. However, the citation count of recently published papers tends to be very small because citation count measures accumulated importance. This paper focuses on the possibility of classifying high-quality papers superficially using attributes such as publication year, publisher, and words in the abstract. To examine this idea, we construct classifiers by applying machine-learning algorithms and evaluate these classifiers using cross-validation. The results show that our approach effectively finds high-quality papers. C1 [Nakatoh, Tetsuya; Hirokawa, Sachio; Nanri, Takeshi] Kyushu Univ, Res Inst Informat Technol, Nishi Ku, 744 Motooka, Fukuoka, Fukuoka 8190395, Japan. [Minami, Toshiro] Kyushu Inst Informat Sci, Fukuoka, Fukuoka, Japan. [Funamori, Miho] Natl Inst Informat, Tokyo, Japan. C3 Kyushu University; Research Organization of Information & Systems (ROIS); National Institute of Informatics (NII) - Japan RP Nakatoh, T (corresponding author), Kyushu Univ, Res Inst Informat Technol, Nishi Ku, 744 Motooka, Fukuoka, Fukuoka 8190395, Japan. EM nakatoh@cc.kyushu-u.ac.jp; hirokawa@cc.kyushu-u.ac.jp; minamitoshiro@gmail.com; nanri.takeshi.995@m.kyushu-u.ac.jp; funamori@nii.ac.jp FU JSPS KAKENHI Grant [JP15K00426] FX This work was supported by JSPS KAKENHI Grant Number JP15K00426. The computation was mainly carried out using the computer facilities at Research Institute for Information Technology, Kyushu University. CR Ashok V.G., 2013, P 2013 C EMPIRICAL M, P1753 GARFIELD E, 1955, SCIENCE, V122, P108, DOI 10.1126/science.122.3159.108 Garfield E, 2006, JAMA-J AM MED ASSOC, V295, P90, DOI 10.1001/jama.295.1.90 Hirsch JE, 2005, P NATL ACAD SCI USA, V102, P16569, DOI 10.1073/pnas.0507655102 Martin BR, 1996, SCIENTOMETRICS, V36, P343, DOI 10.1007/BF02129599 Nakatoh T, 2015, 2015 IIAI 4TH INTERNATIONAL CONGRESS ON ADVANCED APPLIED INFORMATICS (IIAI-AAI), P166, DOI 10.1109/IIAI-AAI.2015.282 Otani S, 2014, 2014 IIAI 3RD INTERNATIONAL CONFERENCE ON ADVANCED APPLIED INFORMATICS (IIAI-AAI 2014), P216, DOI 10.1109/IIAI-AAI.2014.53 Sakai T., 2012, P IIWAS2012, P360, DOI [10.1145/2428736.2428803, DOI 10.1145/2428736.2428803] Zahedi Z, 2014, SCIENTOMETRICS, V101, P1491, DOI 10.1007/s11192-014-1264-0 NR 9 TC 0 Z9 0 U1 0 U2 7 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1433-5298 EI 1614-7456 J9 ARTIF LIFE ROBOT JI Artif. Life Robot. PD JUN PY 2018 VL 23 IS 2 BP 235 EP 240 DI 10.1007/s10015-017-0412-z PG 6 WC Robotics WE Emerging Sources Citation Index (ESCI) SC Robotics GA GT0UR UT WOS:000444164800010 DA 2024-09-05 ER PT J AU Zhang, BJ AF Zhang, Bangjin TI Research on performance evaluation of intelligent manufacturing enterprises supported by machine learning and big data technology SO INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY LA English DT Article DE Machine learning; Big data technology; Intelligent manufacturing; Performance evaluation AB Intelligent manufacturing, as a pillar of the manufacturing industry, provides crucial support for achieving China's strategic goal of becoming a manufacturing powerhouse. The operation and management process of intelligent manufacturing enterprises requires a large amount of capital investment, and the efficiency of capital utilization directly affects the economic benefits of intelligent manufacturing enterprises. Relevant enterprises continue to improve the performance evaluation mechanism and enhance their performance evaluation ability, so as to effectively promote the realization of corporate strategic objectives and continue to become a solid support for the steady operation of China's economy. On this basis, the performance of intelligent manufacturing enterprises was deeply explored, and a set of performance evaluation indicator framework for intelligent manufacturing enterprises was established by using machine learning and big data technology. Through empirical analysis, machine learning methods are introduced into performance evaluation to establish an assessment mechanism for intelligent manufacturing enterprises that is suitable for China's national conditions. For ridge regression, lasso regression, and elastic network regression in machine algorithm, we have conducted in-depth research and built a set of performance evaluation system using the model of lightGBM. Construct a framework of performance evaluation system for intelligent manufacturing enterprises based on machine learning and big data technology support, and use TOPSIS method to conduct empirical analysis, thus further highlighting the importance of evaluation and feedback mechanism for intelligent manufacturing enterprises. C1 [Zhang, Bangjin] Guangzhou Coll Commerce, Sch Accounting, Guangzhou 511363, Peoples R China. C3 Guangzhou College of Commerce RP Zhang, BJ (corresponding author), Guangzhou Coll Commerce, Sch Accounting, Guangzhou 511363, Peoples R China. EM zhangbangjin001@163.com CR Alharthi A, 2017, BUS HORIZONS, V60, P285, DOI 10.1016/j.bushor.2017.01.002 Bakare BI., 2019, INT J ELECT COMMUNIC, V10, P60 Balaji TK, 2021, COMPUT SCI REV, V40, DOI 10.1016/j.cosrev.2021.100395 Chen M., 2017, International Journal of Performability Engineering, V13, DOI [10.23940/ijpe.17.08.p7.12461256, DOI 10.23940/IJPE.17.08.P7.12461256] Dey A., 2016, Int. J. Sci. Res., V7, P1174 Fan CX, 2020, IEEE ACCESS, V8, P126927, DOI 10.1109/ACCESS.2020.3006078 Günther WA, 2017, J STRATEGIC INF SYST, V26, P191, DOI 10.1016/j.jsis.2017.07.003 Li BH, 2017, FRONT INFORM TECH EL, V18, P86, DOI 10.1631/FITEE.1601885 Osisanwo FY., 2017, International Journal of Computer Trends and Technology, V48, P128, DOI [10.14445/22312803/IJCTT-V48P126, DOI 10.14445/22312803/IJCTT-V48P126] Pham CTA, 2022, INNOV-ORGAN MANAG, V24, P290, DOI 10.1080/14479338.2021.1894942 Shen F, 2021, APPL SOFT COMPUT, V98, DOI 10.1016/j.asoc.2020.106852 Singh B, 2021, J AIR TRANSP MANAG, V94, DOI 10.1016/j.jairtraman.2021.102080 Wang BC, 2021, ENGINEERING-PRC, V7, P738, DOI 10.1016/j.eng.2020.07.017 Wang CC, 2019, ENERGIES, V12, DOI 10.3390/en12244620 Wu WD, 2018, J COMPUT CIVIL ENG, V32, DOI 10.1061/(ASCE)CP.1943-5487.0000722 Zhang L, 2019, COMPUT IND, V112, DOI 10.1016/j.compind.2019.08.004 NR 16 TC 0 Z9 0 U1 15 U2 21 PU SPRINGER LONDON LTD PI LONDON PA 236 GRAYS INN RD, 6TH FLOOR, LONDON WC1X 8HL, ENGLAND SN 0268-3768 EI 1433-3015 J9 INT J ADV MANUF TECH JI Int. J. Adv. Manuf. Technol. PD JAN PY 2024 VL 130 IS 5-6 BP 2811 EP 2832 DI 10.1007/s00170-023-12864-2 EA DEC 2023 PG 22 WC Automation & Control Systems; Engineering, Manufacturing WE Science Citation Index Expanded (SCI-EXPANDED) SC Automation & Control Systems; Engineering GA HH7Q7 UT WOS:001127127300002 DA 2024-09-05 ER PT J AU Zhang, XY Shi, WB AF Zhang, Xiaoyue Shi, Wanbing TI Research about the university teaching performance evaluation under the data envelopment method SO COGNITIVE SYSTEMS RESEARCH LA English DT Article DE Principal component analysis; Data envelopment analysis; Performance evaluation AB How to take active and effective measures to evaluate the university scientifically and rationally has been an eternal topic that the educational circles are constantly exploring. Based on the principle of index construction, the current educational performance evaluation index system is improved and a more reasonable evaluation index system is formed. On this basis, taking the sample data in 2017 as an example, the principal component analysis method is used to reduce the dimension of input and output indicators and eliminate the correlation between indicators, and three principal components of input and three principal components of output are obtained. Secondly, data envelopment analysis model is established, and the data processed are analyzed with the help of MATLAB and DEAP2.1 operation software. The efficiency of these 24 colleges and universities is compared to understand the efficiency and differences of each college. Moreover, projection analysis of non-DEA effective DMU is completed and the direction of improvement and the specific adjustment value are pointed out. (C) 2018 Elsevier B.V. All rights reserved. C1 [Zhang, Xiaoyue; Shi, Wanbing] Northeastern Univ, Sch Humanities & Law, Shenyang, Liaoning, Peoples R China. C3 Northeastern University - China RP Zhang, XY (corresponding author), Northeastern Univ, Sch Humanities & Law, Shenyang, Liaoning, Peoples R China. EM sherylyue@live.com FU National Fund Pedagogy Project of Social Sciences "The Evaluation System Research of Universities' Scientific Research Performance of Humanistic and Social Science" [BFA150043] FX The project was supported by the National Fund Pedagogy Project of Social Sciences "The Evaluation System Research of Universities' Scientific Research Performance of Humanistic and Social Science" (Project No.: BFA150043). CR Hosseinzadeh-Bandbafha H, 2017, ENERGY, V120, P652, DOI 10.1016/j.energy.2016.11.117 Hsiao B, 2017, ANN OPER RES, V259, P119, DOI 10.1007/s10479-016-2190-8 Liu Q., 2018, Eurasia J. Math. Sci. Technol. Educ, V14, P2255 Liu WL, 2017, ANN OPER RES, V259, P241, DOI 10.1007/s10479-017-2524-1 Otay I, 2017, KNOWL-BASED SYST, V133, P90, DOI 10.1016/j.knosys.2017.06.028 Ouanteur C, 2017, WIREL NETW, V23, P1343, DOI 10.1007/s11276-016-1226-y Pinamonti M, 2017, MON NOT R ASTRON SOC, V468, P3775, DOI 10.1093/mnras/stx664 Rakha MS, 2017, IEEE T SOFTWARE ENG, VPP, P1 Ruan L., 2018, EURASIA J MATH SCI T, V14, P3245, DOI [10.29333/ejmste/90627, DOI 10.29333/EJMSTE/90627] Shen CW, 2019, COMPUT HUM BEHAV, V101, P474, DOI 10.1016/j.chb.2018.09.031 Thanassoulis E, 2017, J OPER RES SOC, V68, P431, DOI 10.1057/s41274-016-0165-4 Yang F., 2018, ANN OPER RES, P1 Yu K., 2018, Eurasia Journal Mathematics, Science Technology Education, V14, P2987, DOI DOI 10.29333/EJMSTE/90628 Zu TP, 2017, MICROELECTRON RELIAB, V75, P283, DOI 10.1016/j.microrel.2017.03.033 NR 14 TC 32 Z9 32 U1 5 U2 54 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS SN 2214-4366 EI 1389-0417 J9 COGN SYST RES JI Cogn. Syst. Res. PD AUG PY 2019 VL 56 BP 108 EP 115 DI 10.1016/j.cogsys.2018.11.004 PG 8 WC Computer Science, Artificial Intelligence; Neurosciences; Psychology, Experimental WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Computer Science; Neurosciences & Neurology; Psychology GA HZ6PP UT WOS:000468975100015 DA 2024-09-05 ER PT J AU Griggs, DM Crain-Dorough, M AF Griggs, Dana M. Crain-Dorough, Mindy TI Appreciative inquiry's potential in program evaluation and research SO QUALITATIVE RESEARCH JOURNAL LA English DT Article DE Appreciative inquiry; Qualitative research; AI as a research tool; AI and program evaluation ID TOOL AB Purpose The purposes of this paper are to provide a description of AI and to document and compare two applications of AI, one in program evaluation and another in an applied research study. Design/methodology/approach Focus groups, interviews and observations were used to gather rich qualitative data which was used to detail Appreciative Inquiry's value in evaluation and research. Findings AI aided the researcher in connecting with the participants and valuing what they shared. In both studies, the use of AI amassed information that answered the research questions, provided a rich description of the context and findings, and led to data saturation. The authors describe and compare experiences with two applications of AI: program evaluation and a research study. This paper contributes further understanding of the use of AI in public education institutions. The researchers also explore the efficacy of using AI in qualitative research and recommend its use for multiple purposes. Research limitations/implications Limitations occurred in the AI-Design Stage by using a positive viewpoint and because both program and partnership studied were new with limited data to use for designing a better future. So, the authors recommend a revisit of both studies through the same 4D Model. Practical implications This manuscript shows that AI is useful for evaluation and research. It amplifies the participants' voices through favorite stories and successes. AI has many undiscovered uses. Social implications Through the use of AI the authors can: improve theoretical perspectives; conduct research that yields more authentic data; enable participants to deeply reflect on their practice and feel empowered; and ultimately impact and improve the world. Originality/value AI is presented as an evaluation tool for a high-school program and as a research approach identifying strengths and perceptions of an educational partnership. In both studies, AI crumbled the walls that are often erected by interviewees when expecting to justify or defend decisions and actions. This paper contributes further understanding of the use of AI in public education institutions. C1 [Griggs, Dana M.] Columbus State Univ, Coll Educ & Hlth Profess, Educ Leadership, Columbus, GA 31907 USA. [Crain-Dorough, Mindy] Southeastern Louisiana Univ, Educ Leadership & Technol, Hammond, LA 70402 USA. C3 University System of Georgia; Columbus State University; University of Louisiana System; Southeastern Louisiana University RP Griggs, DM (corresponding author), Columbus State Univ, Coll Educ & Hlth Profess, Educ Leadership, Columbus, GA 31907 USA. EM dgriggs0011@gmail.com; Mindy.Dorough@southeastern.edu CR Barge JK, 2003, ACAD MANAGE REV, V28, P124 Barrett F.J., 2005, APPRECIATIVE INQUIRY Berger R, 2015, QUAL RES, V15, P219, DOI 10.1177/1468794112468475 Best J.W., 2005, Research in education, V10th Bright DS, 2013, ADV APPREC INQ, V4, P135, DOI 10.1108/S1475-9152(2013)0000004005 Bushe G., 2012, AI Practitioner, V14, P8 Bushe G.R., 2012, The Routledge companion to organizational change, P87, DOI 10.4324/9780203810279 Calabrese R, 2013, QUAL REP, V18 Coghlin A.T., 2003, NEW DIRECTIONS EVALU, V10, P36 Cooperrider D.L., 2006, Organization development: A Jossey-Bass reader, P223 Cooperrider D.L., 2001, APPRECIATIVE INQUIRY, P9 Cooperrider D.L., 1998, Appreciative Inquiry Cooperrider D.L., 1987, RES ORG CHANGE DEV, V1, P129 Cooperrider DL, 2013, ADV APPREC INQ, V4, P3, DOI 10.1108/S1475-9152(2013)0000004001 Creswell J., 2009, Research design: qualitative, quantitative, and mixed methods approaches, V3rd Creswell J. W., 1998, QUAL INQ Crous F., 2019, AI Practitioner, V21, P11, DOI [10.12781/978-1-907549-38-0-3, DOI 10.12781/978-1-907549-38-0-3] Davis C.R., 2010, Encyclopedia of research design, DOI [DOI 10.4135/9781412961288, 10.4135/9781412961288] Elleven R., 2007, EDUCATION, V127, P451 Frey B.B., 2018, The SAGE Encyclopedia of Educational Research, Measurement, and Evaluation, DOI DOI 10.4135/9781506326139.N Golembiewski R.T., 2000, ORG DEV PRACTITIONER, V32, P53 Griggs D.M., 2015, THESIS AUBURN U Hammond SueAnnis., 2013, The thin book of appreciative inquiry, V3rd Hays D.G., 2012, Qualitative Inquiry in Clinical and Educational Settings Hirschman AlbertO., 1995, DEV PROJECTS OBSERVE Ludema J.D., 2000, HDB ACTION RES, P189 Marshak RJ, 2008, BRIT J MANAGE, V19, pS7, DOI 10.1111/j.1467-8551.2008.00567.x MESSERSCHMIDT DA, 1988, WORLD DEV, V16, P733, DOI 10.1016/0305-750X(88)90179-9 Messerschmidt D, 2008, HUM ORGAN, V67, P454, DOI 10.17730/humo.67.4.xp341p168m141641 Michael S, 2005, DEV PRACT, V15, P222, DOI 10.1080/09614520500042094 Patton M. Q., 2015, Qualitative Research and Evaluation Methods, V4th ed. Preskill H., 2006, REFRAMING EVALUATION Ravitch S., 2021, QUALITATIVE RES BRID, V2nd Reames, 2017, SE J ED ADM, V17, P71 Schiller M., 2001, APPRECIATIVE LEADERS SHUAYB Maha., 2009, USING APPRECIATIVE I Tendler J., 1997, Good government in the Tropics. Tosey, 2007, ED MANAGEMENT ADM LE, V35, P1 Uphoff Norman., 1998, Reasons for Success: Learning from Instructive Experiences in Rural Development Watkins J.M., 2019, AI Practitioner, P4 Watkins JM., 2001, Organization Development Journal, V19, P92 Webb L., 2005, AI PRACTITIONER INT, P1 Whitney Diana., 2003, POWER APPRECIATIVE I NR 43 TC 1 Z9 6 U1 2 U2 9 PU EMERALD GROUP PUBLISHING LTD PI Leeds PA Floor 5, Northspring 21-23 Wellington Street, Leeds, W YORKSHIRE, ENGLAND SN 1443-9883 EI 1448-0980 J9 QUAL RES J JI Qual. Res. J. PD OCT 12 PY 2021 VL 21 IS 4 BP 375 EP 393 DI 10.1108/QRJ-06-2020-0059 EA JAN 2021 PG 19 WC Social Sciences, Interdisciplinary WE Emerging Sources Citation Index (ESCI) SC Social Sciences - Other Topics GA WF4QN UT WOS:000614469100001 DA 2024-09-05 ER PT J AU Hajkowicz, S Sanderson, C Karimi, S Bratanova, A Naughtin, C AF Hajkowicz, Stefan Sanderson, Conrad Karimi, Sarvnaz Bratanova, Alexandra Naughtin, Claire TI Artificial intelligence adoption in the physical sciences, natural sciences, life sciences, social sciences and the arts and humanities: A bibliometric analysis of research publications from 1960-2021 SO TECHNOLOGY IN SOCIETY LA English DT Article DE Artificial intelligence; Machine learning; Bibliometric analysis; Technology adoption; Technology diffusion ID DEFINITION AB Analysing historical patterns of artificial intelligence (AI) adoption can inform decisions about AI capability uplift, but research to date has provided a limited view of AI adoption across different fields of research. In this study we examine worldwide adoption of AI technology within 333 fields of research during 1960-2021. We do this by using bibliometric analysis with 137 million peer-reviewed publications captured in The Lens database. We define AI using a list of 214 phrases developed by expert working groups at the Organisation for Economic Cooperation and Development (OECD). We found that 3.1 million of the 137 million peer-reviewed research publications during the entire period were AI-related, with a surge in AI adoption across practically all research fields (physical science, natural science, life science, social science and the arts and humanities) in recent years. The diffusion of AI beyond computer science was early, rapid and widespread. In 1960 14% of 333 research fields were related to AI (many in computer science), but this increased to cover over half of all research fields by 1972, over 80% by 1986 and over 98% in current times. We note AI has experienced boom-bust cycles historically; the AI "springs" and "winters". We conclude that the context of the current surge appears different, and that interdisciplinary AI application is likely to be sustained. C1 [Hajkowicz, Stefan; Sanderson, Conrad; Karimi, Sarvnaz; Bratanova, Alexandra; Naughtin, Claire] CSIRO, Eveleigh, Australia. C3 Commonwealth Scientific & Industrial Research Organisation (CSIRO) RP Hajkowicz, S (corresponding author), CSIRO, Eveleigh, Australia. EM stefan.hajkowicz@csiro.au RI Naughtin, Claire/LCD-8181-2024 OI Karimi, Sarvnaz/0000-0002-4927-3937 CR Acemoglu D, 2014, AM ECON REV, V104, P394, DOI 10.1257/aer.104.5.394 [Anonymous], 2008, IEEE Intelligent Systems, DOI DOI 10.1109/MIS.2008.20 Baruffaldi S., 2020, Identifying and measuring developments in artificial intelligence: Making the impossible possible Baum ZJ, 2021, J CHEM INF MODEL, V61, P3197, DOI 10.1021/acs.jcim.1c00619 Bianchini S, 2022, RES POLICY, V51, DOI 10.1016/j.respol.2022.104604 Bloom N, 2020, AM ECON REV, V110, P1104, DOI 10.1257/aer.20180338 Boeing P, 2020, ECON LETT, V197, DOI 10.1016/j.econlet.2020.109646 Bratanova A, 2022, TECHNOL SOC, V71, DOI 10.1016/j.techsoc.2022.102104 Brown A., 2018, TECHOPEDIA, V23, P31 Crew B., 2020, NATURE NEWS LON 0713 Damioli G, 2021, EURASIAN BUS REV, V11, P1, DOI 10.1007/s40821-020-00172-8 De la Vega I, 2015, TECHNOL SOC, V42, P123, DOI 10.1016/j.techsoc.2015.03.007 Donthu N, 2021, J BUS RES, V133, P285, DOI 10.1016/j.jbusres.2021.04.070 Else H., 2018, NATURE NEWS Q A 0411 Ezanno P, 2021, VET RES, V52, DOI 10.1186/s13567-021-00902-4 Frank MR, 2019, NAT MACH INTELL, V1, P79, DOI 10.1038/s42256-019-0024-5 Gobble MM, 2019, RES TECHNOL MANAGE, V62, P55, DOI 10.1080/08956308.2019.1587336 Guo YQ, 2020, J MED INTERNET RES, V22, DOI 10.2196/18228 Haak LL, 2012, LEARN PUBL, V25, P259, DOI 10.1087/20120404 Haenlein M, 2019, CALIF MANAGE REV, V61, P5, DOI 10.1177/0008125619864925 Hajkowicz S., 2022, ARTIF INTELL Hajkowicz S.A., 2019, ARTIF INTELL Harrison S, 2009, J MACROECON, V31, P363, DOI 10.1016/j.jmacro.2009.05.003 Hu Q, 2016, J PUBL ADM RES THEOR, V26, P593, DOI 10.1093/jopart/muv032 Jefferson OA, 2021, TRANSGENIC RES, V30, P585, DOI 10.1007/s11248-021-00237-y Jefferson OA, 2021, NAT BIOTECHNOL, V39, P401, DOI 10.1038/s41587-021-00849-z John W.L., 1995, 1995 INT S, P33 Kitano H, 2021, NPJ SYST BIOL APPL, V7, DOI 10.1038/s41540-021-00189-3 Kumar I, 2021, J FOOD QUALITY, V2021, DOI 10.1155/2021/4535567 Lavallin A., 2021, MACHINE LEARNING GEO LEHMANWILZIG SN, 1981, FUTURES, V13, P442, DOI 10.1016/0016-3287(81)90100-2 Lichtenthaler U, 2018, RES TECHNOL MANAGE, V61, P12, DOI 10.1080/08956308.2018.1495962 Liu N, 2021, SCIENTOMETRICS, V126, P3153, DOI 10.1007/s11192-021-03868-4 Malcolm E., 2021, FLEXIBLE SOLAR PANEL Malde K, 2020, ICES J MAR SCI, V77, P1274, DOI 10.1093/icesjms/fsz057 McCarthy J., 2006, DARTM WORKSH AAS PLA Miyagawa T., 2019, RIETI DISCUSSION PAP, V052 Mullainathan S, 2017, J ECON PERSPECT, V31, P87, DOI 10.1257/jep.31.2.87 Naughtin C., 2022, Our Future World: Global Megatrends Impacting the Way We Live Over Coming Decades Nikolaev P, 2016, NPJ COMPUT MATER, V2, DOI 10.1038/npjcompumats.2016.31 Nolan A., 2021, ARTIF INTELL Norouzzadeh MS, 2018, P NATL ACAD SCI USA, V115, pE5716, DOI 10.1073/pnas.1719367115 OECD OECD, 2021, POL OBS DAT NAT AI P Orduna-Malea E., 2017, FRONTIERS RES METRIC Palos-Sánchez PR, 2022, APPL ARTIF INTELL, V36, DOI 10.1080/08839514.2022.2145631 Pandey V, 2022, TECHNOL SOC, V69, DOI 10.1016/j.techsoc.2022.101954 Pei Wang, 2019, Journal of Artificial General Intelligence, V10, P1, DOI 10.2478/jagi-2019-0002 Penfold R, 2020, J MED LIBR ASSOC, V108, P341 Pizzi S, 2021, TECHNOL SOC, V67, DOI 10.1016/j.techsoc.2021.101738 Pontika Nancy, 2016, LIBER Quarterly, V25, P172, DOI 10.18352/lq.10138 Purkayastha S, 2021, J AM COLL RADIOL, V18, P517, DOI 10.1016/j.jacr.2020.11.008 Riahi Y, 2021, EXPERT SYST APPL, V173, DOI 10.1016/j.eswa.2021.114702 Roberts M, 2021, NAT MACH INTELL, V3, P199, DOI 10.1038/s42256-021-00307-0 Ruiz-Real JL, 2020, AGRONOMY-BASEL, V10, DOI 10.3390/agronomy10111839 Scopus, 2021, WHAT AR SCOP SUBJ AR Shehu H.A., 2021, PLOMS AI, P1 Shin YJ, 2019, IEEE ANN HIST COMPUT, V41, P71, DOI 10.1109/MAHC.2019.2922909 Shukla AK, 2019, ENG APPL ARTIF INTEL, V85, P517, DOI 10.1016/j.engappai.2019.06.010 Shum V, 2019, RES TECHNOL MANAGE, V62, P34, DOI 10.1080/08956308.2019.1541728 SIMMONS AB, 1988, IEEE J OCEANIC ENG, V13, P14, DOI 10.1109/48.551 Song P, 2020, ASIA PAC EDUC REV, V21, P473, DOI 10.1007/s12564-020-09640-2 Strickland E., 2021, IEEE SPECTRUM Tandon Divya, 2020, J Oral Biol Craniofac Res, V10, P391, DOI 10.1016/j.jobcr.2020.07.015 Van Roy V., 2021, AI watch-national strategies on artificial intelligence: A European perspective. No. JRC122684 Waltman L, 2016, J INFORMETR, V10, P365, DOI 10.1016/j.joi.2016.02.007 Wang KS, 2020, QUANT SCI STUD, V1, P396, DOI 10.1162/qss_a_00021 Wang Q, 2016, J INFORMETR, V10, P347, DOI 10.1016/j.joi.2016.02.003 White Jacob, 2020, Medical Reference Services Quarterly, V39, P382, DOI 10.1080/02763869.2020.1826228 Wynants L, 2020, BMJ-BRIT MED J, V369, DOI 10.1136/bmj.m1328 Yang CH, 2022, RES POLICY, V51, DOI 10.1016/j.respol.2022.104536 Yasnitsky LN, 2020, LECT NOTE NETW SYST, V78, P13, DOI 10.1007/978-3-030-22493-6_2 Ying MS, 2010, ARTIF INTELL, V174, P162, DOI 10.1016/j.artint.2009.11.009 Zhang LL, 2022, ENERGY REP, V8, P14072, DOI 10.1016/j.egyr.2022.10.347 Zhang WQ, 2020, NAT ELECTRON, V3, P371, DOI 10.1038/s41928-020-0435-7 Zhang Y, 2021, PROCEEDINGS OF 2021 48TH ANNUAL REVIEW OF PROGRESS IN QUANTITATIVE NONDESTRUCTIVE EVALUATION (QNDE2021) NR 75 TC 12 Z9 12 U1 18 U2 56 PU ELSEVIER SCI LTD PI London PA 125 London Wall, London, ENGLAND SN 0160-791X EI 1879-3274 J9 TECHNOL SOC JI Technol. Soc. PD AUG PY 2023 VL 74 AR 102260 DI 10.1016/j.techsoc.2023.102260 EA JUN 2023 PG 8 WC Social Issues; Social Sciences, Interdisciplinary WE Social Science Citation Index (SSCI) SC Social Issues; Social Sciences - Other Topics GA K6JX9 UT WOS:001017495300001 OA Green Published, Green Submitted, hybrid DA 2024-09-05 ER PT C AU Tang, L Li, XM He, L Zhang, SH AF Tang Li Li Xiaomei He Li Zhang Shuhua BE Zhang, Y TI A Research on the Evaluation of Scientific Researchers in Chinese Universities from the Perspective of Sustainable Development SO PROCEEDINGS OF THE 12TH EURO-ASIA CONFERENCE ON ENVIRONMENT AND CSR: TOURISM, SOCIETY AND EDUCATION SESSION, PT II LA English DT Proceedings Paper CT 12th Euro-Asian Conference on Corporate Social Responsibility and Environmental Management - Tourism, Society and Education CY AUG 29-30, 2016 CL Hanover, GERMANY DE Support Vector Machine (SVM); Evaluation of Scientific Researchers; Scientific Research Management; Machine Learning Theory AB The evaluation of scientific researchers is an important part of scientific research management in Chinese colleges and universities from the perspective of sustainable development. Focusing on the evaluation of scientific researchers in universities, this paper designs an evaluation model, and constructs an evaluation index system by combining the basic personal information of scientific researchers with their achievements. Furthermore, a new evaluation method for scientific researchers based on Support Vector Machine (EMSR-SVM) is proposed. Finally, the comparative experiments have been done with a large number of data sets from the scientific research platform of the university. The experimental results show that this method is simple, rapid and accurate. It can efficiently improve the evaluation of scientific researchers. C1 [Tang Li; He Li] Tianjin Univ Finance & Econ, Inst Technol, Tianjin, Peoples R China. [Li Xiaomei] Tianjin Univ Finance & Econ, Sci Res Off, Tianjin, Peoples R China. [Zhang Shuhua] Tianjin Univ Finance & Econ, Coordinated Innovat Ctr Computable Modeling Manag, Tianjin, Peoples R China. C3 Tianjin University of Finance & Economics; Tianjin University of Finance & Economics; Tianjin University of Finance & Economics RP Tang, L (corresponding author), Tianjin Univ Finance & Econ, Inst Technol, Tianjin, Peoples R China. EM tangli0831@tjufe.edu.cn; lixiaomei@tjufe.edu.cn; renkeheli@163.com; shuhua55@126.com FU General project of Humanities and social science research of the Ministry of Education [14YJA630025]; Tianjin Natural Science Foundation [15JCYBJC16000]; Tianjin Social Science Foundation [TJYY15-017] FX This work is partly supported by the General project of Humanities and social science research of the Ministry of Education (14YJA630025), Tianjin Natural Science Foundation (15JCYBJC16000) and Tianjin Social Science Foundation (TJYY15-017). CR Du Cong, 2009, RES APPL DATA MINING Gao T., 2011, SCI TECHNOLOGY MANAG, V31, P131 [孟溦 Meng Wei], 2007, [科研管理, Science Research Management], V28, P1 Li L., 2014, J CHONGQING U TECHNO, V28, P69 [孙佰清 Sun Baiqing], 2010, [哈尔滨工程大学学报, Journal of Harbin Engineering University], V31, P803 VAPNIK, 2000, NATURE STAT LEARNING Zhang J., 2014, RES EVALUATION MODEL NR 7 TC 0 Z9 0 U1 0 U2 3 PU WISSENSCHAFTLICHER VERLAG BERLIN PI BERLIN PA OLAF GAUDIG & KLAUS-PETER VEIT GBR, VERKEHRSNUMMER 96258, KORTESTR 10, BERLIN, 10967, GERMANY BN 978-3-86573-963-6 PY 2016 BP 31 EP 37 PG 7 WC Hospitality, Leisure, Sport & Tourism WE Conference Proceedings Citation Index - Social Science & Humanities (CPCI-SSH) SC Social Sciences - Other Topics GA BH4RP UT WOS:000400597800005 DA 2024-09-05 ER PT C AU Hassan, SU Iqbal, S Imran, M Aljohani, NR Nawaz, R AF Hassan, Saeed-Ul Iqbal, Sehrish Imran, Mubashir Aljohani, Naif Radi Nawaz, Raheel BE Dobreva, M Hinze, A Zumer, M TI Mining the Context of Citations in Scientific Publications SO MATURITY AND INNOVATION IN DIGITAL LIBRARIES, ICADL 2018 SE Lecture Notes in Computer Science LA English DT Proceedings Paper CT 20th International Conference on Asia-Pacific Digital Libraries (ICADL) CY NOV 19-22, 2018 CL Univ Waikato, Hamilton, NEW ZEALAND HO Univ Waikato DE Citation context analysis; Influential citations; Machine learning; Self-organizing maps AB Recent advancements in information retrieval systems significantly rely on the context-based features and semantic matching techniques to provide relevant information to users from ever-growing digital libraries. Scientific communities seek to understand the implications of research, its importance and its applicability for future research directions. To mine this information, absolute citations merely fail to measure the importance of scientific literature, as a citation may have a specific context in full text. Thus, a comprehensive contextual understanding of cited references is necessary. For this purpose, numerous techniques have been proposed that tap the power of artificial intelligence models to detect important or incidental (non-important) citations in full text scholarly publications. In this paper, we compare and build upon on four state-of-the-art models that detect important citations using 450 manually annotated citations by experts - randomly selected from 20,527 papers from the Association for Computational Linguistics corpus. Of the total 64 unique features proposed by the four selected state-of-the-art models, the top 29 were chosen using the Extra-Trees classifier. These were then fed it to our supervised machine learning based models: Random Forest (RF) and Support Vector Machine. The RF model outperforms existing selected systems by more than 10%, with 89% precision-recall curve. Finally, we qualitatively assessed important and non-important citations by employing and self-organizing maps. Overall, our research work supports information retrieval algorithms that detect and fetch scientific articles on the basis of both qualitative and quantitative indices in scholarly big data. C1 [Hassan, Saeed-Ul; Iqbal, Sehrish] Informat Technol Univ, Ferozepur Rd, Lahore, Pakistan. [Imran, Mubashir] Univ Queensland, St Lucia, Qld 4072, Australia. [Aljohani, Naif Radi] King Abdulaziz Univ, Al Malaeb St, Jeddah, Saudi Arabia. [Nawaz, Raheel] Manchester Metropolitan Univ, Manchester M15 6BH, Lancs, England. C3 University of Queensland; King Abdulaziz University; Manchester Metropolitan University RP Hassan, SU (corresponding author), Informat Technol Univ, Ferozepur Rd, Lahore, Pakistan. EM saeed-ul-hassan@itu.edu.pk RI Aljohani, Naif R/S-1109-2017; Nawaz, Raheel/AAX-5293-2021; Hassan, Saeed-Ul/G-1889-2016 OI Nawaz, Raheel/0000-0001-9588-0052; Imran, Mubashir/0000-0003-4721-499X; Hassan, Saeed-Ul/0000-0002-6509-9190; Iqbal, Sehrish/0000-0003-1956-1572 CR Abu-Jbara A., 2013, NAACL, P596 Auria L., 2008, Support vector machines (SVM) as a technique for solvency analysis, DOI 10.2139/ssrn.1424949 Bornmann L, 2018, SCIENTOMETRICS, V114, P427, DOI 10.1007/s11192-017-2591-8 Breiman L, 2001, MACH LEARN, V45, P5, DOI 10.1023/A:1010933404324 Cao H, 2008, 1 INT WORKSH MACH LE Cohan A, 2018, INT J DIGIT LIBRARIE, V19, P287, DOI 10.1007/s00799-017-0216-8 Geurts P, 2006, MACH LEARN, V63, P3, DOI 10.1007/s10994-006-6226-1 Hassan S.-U., 2017, Digital Libraries: Data, Information, and Knowledge for Digital Lives, P119, DOI DOI 10.1007/978-3-319-70232-2_10 Hassannejad S., 2017, 2017 ACM IEEE JOINT, V14, P1, DOI [DOI 10.1109/JCDL.2017.7991558, 10.9734/ARRB/2017/27339] MORAVCSIK MJ, 1975, SOC STUD SCI, V5, P86, DOI 10.1177/030631277500500106 Saeed-Ul Hassan, 2018, SCIENTOMETRICS, V116, P973, DOI 10.1007/s11192-018-2767-x Teufel S., 2006, P C EMP METH NAT LAN, DOI 10.3115/1610075.1610091 Valenzuela M., 2015, WORKSHOPS 20 9 AAAI Zhu XD, 2015, J ASSOC INF SCI TECH, V66, P408, DOI 10.1002/asi.23179 NR 14 TC 4 Z9 5 U1 2 U2 5 PU SPRINGER INTERNATIONAL PUBLISHING AG PI CHAM PA GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND SN 0302-9743 EI 1611-3349 BN 978-3-030-04257-8; 978-3-030-04256-1 J9 LECT NOTES COMPUT SC PY 2018 VL 11279 BP 316 EP 322 DI 10.1007/978-3-030-04257-8_32 PG 7 WC Computer Science, Artificial Intelligence; Computer Science, Information Systems; Computer Science, Interdisciplinary Applications; Information Science & Library Science WE Conference Proceedings Citation Index - Science (CPCI-S); Conference Proceedings Citation Index - Social Science & Humanities (CPCI-SSH) SC Computer Science; Information Science & Library Science GA BS8PU UT WOS:000775537800032 DA 2024-09-05 ER PT J AU Eke, G Holttum, S Hayward, M AF Eke, Gemma Holttum, Sue Hayward, Mark TI Testing a Model of Research Intention Among UK Clinical Psychologists: A Logistic Regression Analysis SO JOURNAL OF CLINICAL PSYCHOLOGY LA English DT Article DE clinical psychologist; research output; research intention; research training environment (RTE); subjective norm; research self-efficacy; control belief; outcome expectancy; value ID RESEARCH TRAINING ENVIRONMENT; SCIENTIST-PRACTITIONER MODEL; HOLLAND PERSONALITY TYPE; SOCIAL COGNITIVE THEORY; RESEARCH SELF-EFFICACY; RESEARCH PRODUCTIVITY; SCHOLARLY PRODUCTIVITY; STUDENTS; CAREER; IMPACT AB Objectives: Previous research highlights barriers to clinical psychologists conducting research, but has rarely examined U. K. clinical psychologists. The study investigated U. K. clinical psychologists' self-reported research output and tested part of a theoretical model of factors influencing their intention to conduct research. Methods: Questionnaires were mailed to 1,300 U.K. clinical psychologists. Results: Three hundred and seventy-four questionnaires were returned (29% response-rate). This study replicated in a U.K. sample the finding that the modal number of publications was zero, highlighted in a number of U.K. and U.S. studies. Research intention was bimodally distributed, and logistic regression classified 78% of cases successfully. Outcome expectations, perceived behavioral control and normative beliefs mediated between research training environment and intention. Conclusions: Further research should explore how research is negotiated in clinical roles, and this issue should be incorporated into prequalification training. (C) 2012 Wiley Periodicals, Inc. J. Clin. Psychol 68:263-278, 2012. C1 [Eke, Gemma] Sussex Partnership NHS Fdn Trust, Linwood Community Mental Hlth Ctr, Haywards Heath RH16 4BE, W Sussex, England. [Holttum, Sue] Canterbury Christ Church Univ, Sussex Partnership NHS Fdn Trust, Canterbury, New Zealand. C3 University of Canterbury RP Eke, G (corresponding author), Sussex Partnership NHS Fdn Trust, Linwood Community Mental Hlth Ctr, Butlers Green Rd, Haywards Heath RH16 4BE, W Sussex, England. EM gemma.eke@sussexpartnership.nhs.uk RI Hayward, Mark/AAJ-9858-2020 OI Hayward, Mark/0000-0001-6567-7723; Holttum, Sue/0000-0003-2618-8518 CR AJZEN I, 1991, ORGAN BEHAV HUM DEC, V50, P179, DOI 10.1016/0749-5978(91)90020-T [Anonymous], 2008, FRAM HIGH ED QUAL EN [Anonymous], 1988, Non parametric Statistics for the Behavioral Sciences [Anonymous], NEW WAYS WORK APPL P [Anonymous], 1992, Questionnaire Design, Interviewing and Attitude Measurement [Anonymous], ACCR PARTN HDB GUID Armitage CJ, 2001, BRIT J SOC PSYCHOL, V40, P471, DOI 10.1348/014466601164939 Bandura A., 1986, SOCIAL FDN THOUGHT A Barkham M., 2010, DEVELOPING DELIVERIN, P175 BARON RM, 1986, J PERS SOC PSYCHOL, V51, P1173, DOI 10.1037/0022-3514.51.6.1173 Bieschke KJ, 2000, J CAREER ASSESSMENT, V8, P303, DOI 10.1177/106907270000800307 Bishop R. M., 1994, RES OUTCOME EX UNPUB Bishop RM, 1998, J COUNS PSYCHOL, V45, P182, DOI 10.1037/0022-0167.45.2.182 Brems C, 1996, J CLIN PSYCHOL, V52, P723, DOI 10.1002/(SICI)1097-4679(199611)52:6<723::AID-JCLP15>3.0.CO;2-O British Psychological Society, 2006, COR COMP CLIN PSYCH Ceci SJ, 2009, PSYCHOL BULL, V135, P218, DOI 10.1037/a0014412 CHAMBERS MJ, 1993, PROF PSYCHOL-RES PR, V24, P20, DOI 10.1037/0735-7028.24.1.20 Clearing House for Postgraduate Courses in Clinical Psychology, 2010, EQ OPP NUMB Cooper M, 2007, CLIN PSYCHOL PSYCHOT, V14, P54, DOI 10.1002/cpp.513 Corrie S, 2001, BRIT J MED PSYCHOL, V74, P135, DOI 10.1348/000711201160858 Davey G, 2002, PSYCHOLOGIST, V15, P331 Department of Health, 2005, TREATM CHOIC PSYCH T Field A., 2018, Discovering Statistics Using SPSS, V5th Forester M, 2004, J CAREER ASSESSMENT, V12, P3, DOI 10.1177/1069072703257719 Francis J, 2004, Quality of life and management of living resources, DOI DOI 10.1177/0018726707075703 GELSO CJ, 1993, PROF PSYCHOL-RES PR, V24, P468, DOI 10.1037/0735-7028.24.4.468 Gelso CJ, 1996, COUNS PSYCHOL, V24, P304, DOI 10.1177/0011000096242010 GELSO CJ, 2006, TRAIN EDUC PROF PSYC, P3, DOI DOI 10.1037/1931-3918.S.1.3 HAYNES SN, 1987, PROF PSYCHOL-RES PR, V18, P515, DOI 10.1037/0735-7028.18.5.515 Hollingsworth MA, 2002, J COUNS PSYCHOL, V49, P324, DOI 10.1037//0022-0167.49.3.330 Holttum S, 2006, CLIN PSYCHOL PSYCHOT, V13, P339, DOI 10.1002/cpp.501 Jefferis P., 1997, CLIN PSYCHOL FORUM, V108, P13 Kahn JH, 1997, COUNS PSYCHOL, V25, P22, DOI 10.1177/0011000097251004 Kahn JH, 1997, COUNS PSYCHOL, V25, P38, DOI 10.1177/0011000097251005 Kahn JH, 2001, J COUNS PSYCHOL, V48, P344 Krippendorff K., 2018, CONTENT ANAL INTRO I Lavender J., 2003, Clinical Psychology, V27, P11 LeBlanc M, 2000, SCHOOL PSYCHOL QUART, V15, P344, DOI 10.1037/h0088791 LENT RW, 1994, J VOCAT BEHAV, V45, P79, DOI 10.1006/jvbe.1994.1027 Leonard D., 2001, WOMANS GUIDE DOCTORA LEVY LH, 1962, AM PSYCHOL, V17, P244, DOI 10.1037/h0048838 Lilienfeld S.O., 2003, Science and pseudoscience in clinical psychology Long CG, 1997, CLIN PSYCHOL PSYCHOT, V4, P75, DOI 10.1002/(SICI)1099-0879(199706)4:2<75::AID-CPP116>3.0.CO;2-E MALLINCKRODT B, 1990, PROF PSYCHOL-RES PR, V21, P26, DOI 10.1037/0735-7028.21.1.26 Mallinckrodt B, 2002, J COUNS PSYCHOL, V49, P60, DOI 10.1037//0022-0167.49.1.60 Milne D., 1990, CLIN PSYCHOL FORUM, V96, P24 National Mental Health Development Unit/IAPT Programme, 2010, REAL BEN IAPT PROGR NEWNES C, 2005, CLIN PSYCHOL, V46, P10 Norcross JC, 2005, J CLIN PSYCHOL, V61, P1467, DOI 10.1002/jclp.20135 Pallant J., 2001, SPSS SURVIVAL MANUAL, DOI DOI 10.1080/17439760701756946 Park SM, 1996, J HIGH EDUC, V67, P46, DOI 10.2307/2943903 PHILLIPS JC, 1994, COUNS PSYCHOL, V22, P628, DOI 10.1177/0011000094224008 Preacher KJ, 2008, BEHAV RES METHODS, V40, P879, DOI 10.3758/BRM.40.3.879 Roth A., 2005, WHAT WORKS WHOM, V2nd ROYALTY GM, 1985, J COUNS PSYCHOL, V32, P458, DOI 10.1037/0022-0167.32.3.458 Shapiro D, 2002, PSYCHOLOGIST, V15, P232 Szymanski DM, 2007, TRAIN EDUC PROF PSYC, V1, P135, DOI 10.1037/1931-3918.1.2.135 Tabachnick B.G., 2005, USING MULTIVARIATE S, V5th Thomas GV, 2002, PSYCHOLOGIST, V15, P286 WEINER G, 1998, EUR C ED RES SLOV Wenneras C, 1997, NATURE, V387, P341, DOI 10.1038/387341a0 Wright AB, 2012, CLIN PSYCHOL PSYCHOT, V19, P46, DOI 10.1002/cpp.732 NR 62 TC 9 Z9 13 U1 0 U2 12 PU WILEY PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0021-9762 EI 1097-4679 J9 J CLIN PSYCHOL JI J. Clin. Psychol. PD MAR PY 2012 VL 68 IS 3 BP 263 EP 278 DI 10.1002/jclp.20860 PG 16 WC Psychology, Clinical WE Social Science Citation Index (SSCI) SC Psychology GA 908XJ UT WOS:000301526100004 PM 22422562 DA 2024-09-05 ER PT J AU Lee, JL Kim, Y AF Lee, Jung Lim Kim, Youngji TI Research Topic Trends on Turnover Intention among Korean Registered Nurses: An Analysis Using Topic Modeling SO HEALTHCARE LA English DT Article DE nurses; employee turnover; data mining; social network analysis AB This study aimed to explore research topic trends on turnover intention among Korean hospital nurses by analyzing the keywords and topics of related articles. Methods: This text-mining study collected, processed, and analyzed text data from 390 nursing articles published between 1 January 2010 and 30 June 2021 that were collected via search engines. The collected unstructured text data were preprocessed, and the NetMiner program was used to perform keyword analysis and topic modeling. Results: The word with the highest degree centrality was "job satisfaction", the word with the highest betweenness centrality was "job satisfaction", and the word with the highest closeness centrality and frequency was "job stress". The top 10 keywords in both the frequency analysis and the 3 centrality analyses included "job stress", "burnout", "organizational commitment", "emotional labor", "job", and "job embeddedness". The 676 preprocessed key words were categorized into five topics: "job", "burnout", "workplace bullying", "job stress", and "emotional labor". Since many individual-level factors have already been thoroughly investigated, future research should concentrate on enabling successful organizational interventions that extend beyond the microsystem. C1 [Lee, Jung Lim] Daejeon Univ, Dept Nursing, Daejeon Si 34520, South Korea. [Kim, Youngji] Kongju Natl Univ, Coll Nursing & Hlth, Dept Nursing, Kongju Si 32588, South Korea. C3 Daejeon University; Kongju National University RP Kim, Y (corresponding author), Kongju Natl Univ, Coll Nursing & Hlth, Dept Nursing, Kongju Si 32588, South Korea. EM leejl@dju.kr; superdr1@hanmail.net OI Lee, Jung Lim/0000-0001-9464-383X FU Daejeon University fund FX This research was supported by the Daejeon University fund (2021). CR Al Muharraq EH, 2022, SAGE OPEN NURS, V8, DOI 10.1177/23779608221074655 [Anonymous], 2021, HOSP NURSING WORKFOR [Anonymous], 2010 2019 HOSP NURSI Bae SH, 2022, INT NURS REV, V69, P392, DOI 10.1111/inr.12769 Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993 Bronfenbrenner U., 1979, Ecology of Human Development: Experiments by Nature and Design, P21 Fasbender U, 2019, J ADV NURS, V75, P327, DOI 10.1111/jan.13842 Griffiths P, 2019, BMJ QUAL SAF, V28, P609, DOI 10.1136/bmjqs-2018-008043 Hariyati R.T.S., 2018, INT J NURSING HLTH S, V1, P99, DOI DOI 10.35654/IJNHS.V1I2.47 Hong KJ, 2017, Perspect Nurs Sci, V14, P55, DOI [10.16952/pns.2017.14.2.55, DOI 10.16952/PNS.2017.14.2.55] Kang J, 2019, J KOREAN ACAD NURS, V49, P736, DOI 10.4040/jkan.2019.49.6.736 이영옥, 2018, [Korean Journal of Adult Nursing, 성인간호학회지], V30, P1, DOI 10.7475/kjan.2018.30.1.1 Kim E, 2014, Perspect Nurs Sci, DOI DOI 10.16952/PNS.2014.11.2.109 Kim Jinhyun, 2017, Journal of The Korean Data Analysis Society, V19, P1083, DOI 10.37727/jkdas.2017.19.2.1083 Kramer Marlene, 2010, Nurs Adm Q, V34, P4, DOI 10.1097/NAQ.0b013e3181c95ef4 최미건, 2015, [Journal of Korea Academia-Industrial cooperation Society, 한국산학기술학회논문지], V16, P3257 Lafferty J.D, 2009, Topic Models, P71, DOI [10.1145/1143844.1143859, DOI 10.1145/1143844.1143859] Lee K, 2009, GLOB INST, P1 Lee Soosang, 2014, [Journal of the Korean Society for Information Management, 정보관리학회지], V31, P49, DOI 10.3743/KOSIM.2014.31.4.049 Lee Sungjick, 2009, [The Journal of Society for e-Business Studies, 한국전자거래학회지], V14, P59 Lu H, 2019, INT J NURS STUD, V94, P21, DOI 10.1016/j.ijnurstu.2019.01.011 Nei D, 2015, HEALTH CARE MANAGE R, V40, P237, DOI 10.1097/HMR.0000000000000025 Nelson-Brantley HV, 2018, J NURS ADMIN, V48, P31, DOI 10.1097/NNA.0000000000000567 Niskala J, 2020, J ADV NURS, V76, P1498, DOI 10.1111/jan.14342 Roche MA, 2015, COLLEGIAN, V22, P353, DOI 10.1016/j.colegn.2014.05.002 sil choi jeong, 2019, [Korean Journal of Occupational Health Nursing, 한국직업건강간호학회지], V28, P221, DOI 10.5807/kjohn.2019.28.4.221 Taylor-Clark TM, 2022, J NURS ADMIN, V52, P73, DOI 10.1097/NNA.0000000000001106 Wasserman S., 1994, SOCIAL NETWORK ANAL, P177 Woodward KF, 2022, NURS OUTLOOK, V70, P664, DOI 10.1016/j.outlook.2022.04.005 NR 29 TC 0 Z9 0 U1 2 U2 5 PU MDPI PI BASEL PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND EI 2227-9032 J9 HEALTHCARE-BASEL JI Healthcare PD APR PY 2023 VL 11 IS 8 AR 1139 DI 10.3390/healthcare11081139 PG 10 WC Health Care Sciences & Services; Health Policy & Services WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Health Care Sciences & Services GA F7IM8 UT WOS:000984042800001 PM 37107972 OA gold, Green Published DA 2024-09-05 ER PT J AU Campbell, DG Mayhew, A AF Campbell, D. Grant Mayhew, Alex TI Repositioning the Base Level of Bibliographic Relationships: Or, a Cataloguer, a Post-Modernist and a Chatbot Walk Into a Bar SO KNOWLEDGE ORGANIZATION LA English DT Article DE bibliographic relationships; superwork; cataloguing; literary theory; artificial intelligence AB Designers and maintainers of library catalogues are facing fresh challenges representing bibliographic relationships, due both to changes in cataloguing standards and to a broader information environment that has grown increasingly diverse, sophisticated and complex. This paper presents three different paradigms, drawn from three different fields of study, for representing relationships between bibliographic entities beyond the FRBR/LRM models: superworks, as developed in information studies; adaptation, as developed in literary studies; and artificial intelligence, as developed in computer science. Theories of literary adaptation remain focused on "the work," as traditionally conceived. The concept of the superwork reminds us that there are some works which serve as ancestors for entire families of works, and that those familial relationships are still useful. Crowd-sourcing projects often make more granular connections, a trend which has escalated significantly with current and emerging artificial intelligence systems. While the artificial intelligence paradigm is proving more pervasive outside conventional library systems, it could lead to a seismic shift in knowledge organization, a shift in which the power both to arrange information and to use it are moving beyond the control of users and intermediaries alike. C1 [Campbell, D. Grant; Mayhew, Alex] Univ Western Ontario, Fac Informat & Media Studies, London, ON, Canada. C3 Western University (University of Western Ontario) RP Campbell, DG (corresponding author), Univ Western Ontario, Fac Informat & Media Studies, London, ON, Canada. EM gcampbel@uwo.ca; amayhew@uwo.ca CR [Anonymous], 2000, The intellectual foundation of information organization [Anonymous], 1968, Two Kinds of Power: An Essay on Bibliographic Control [Anonymous], 2007, Understanding FRBR: What it is and How it Will Affect Our Retrieval Tools Campbell DG, 2020, ADV KNOW OR, V17, P69 Campbell DG, 2004, J ACAD LIBR, V30, P382, DOI 10.1016/j.acalib.2004.06.007 Dawkins Richard., 1989, The Selfish Gene Domanovszky Akos, 1973, Libri, V23, P307, DOI [10.1515/libr.1973.23.4.307, DOI 10.1515/LIBR.1973.23.4.307] Future of Life Institute, 2023, Pause Giant AI Experiments: An Open Letter Hune-Brown Nicolas, 2023, The Walrus, P60 Hutcheon Linda., 2006, A Theory of Adaptation Iuchanka Anna, 2022, ITechArtMarch 22 Maeda John, 2023, Microsoft Semantic KernelMay 23 OLIVER C., 2021, Introducing RDA: A guide to the basics after 3R, V2 Pettee J, 1936, LIBR QUART, V6, P270, DOI 10.1086/613854 Propp V., 1968, MORPHOLOGY FOLKTALE Smiraglia RP, 2012, LIBR TRENDS, V61, P35, DOI 10.1353/lib.2012.0026 Smiraglia RP, 1999, J AM SOC INFORM SCI, V50, P493, DOI 10.1002/(SICI)1097-4571(1999)50:6<493::AID-ASI4>3.0.CO;2-U Weinberger David, 2006, KM World MagazineSeptember 29 NR 18 TC 0 Z9 0 U1 5 U2 5 PU NOMOS VERLAGSGESELLSCHAFT MBH & CO KG PI BADEN-BADEN PA WALDSEESTR 3 5, BADEN-BADEN, 76530, GERMANY SN 0943-7444 J9 KNOWL ORGAN JI Knowl. Organ. PY 2023 VL 50 IS 8 BP 519 EP 525 DI 10.5771/0943-7444-2023-8-519 PG 7 WC Information Science & Library Science WE Social Science Citation Index (SSCI) SC Information Science & Library Science GA IF8G5 UT WOS:001165000100002 DA 2024-09-05 ER PT C AU Triebus, C Geiger, C AF Triebus, Charlotte Geiger, Christian BE Olivero, LF DaVeiga, PA Araujo, AB Dourado, P DaSilva, BM TI Precious Camouflage - A Dance Performance Interweaving Human Movement and Artificial Intelligence Artistic Research for Exploring the Communication Between Dancers and AI SO PROCEEDINGS OF THE 11TH INTERNATIONAL CONFERENCE ON DIGITAL AND INTERACTIVE ARTS, ARTECH 2023 LA English DT Proceedings Paper CT 11th International Conference on Digital and Interactive Arts (ARTECH) - Digital Creation Processes CY NOV 28-30, 2023 CL Faro, PORTUGAL DE Performance Art; Dance; AI; Digital Art; Agency; Body; Live Interaction; Ethics AB This paper presents the layout created for Precious Camouflage, a dance performance that entangles human movement and artificial intelligence (AI) in a museal space. The performance, which features four dancers and five AI systems, challenges traditional notions of performance and authorship, and serves as a reflection on the rapid development of digital technologies and their societal implications. This is done by staging different kinds of agency in a communicative setup and a mesh of interactions accompanied by extended research on ethical questions with a focus point on bodies in datasets. In this paper we present the research to develop the piece. Background information and the recorded performance can be found at http://www.precious.dance. C1 [Triebus, Charlotte; Geiger, Christian] Univ Appl Sci, Dept Media, Dusseldorf, Nrw, Germany. RP Triebus, C (corresponding author), Univ Appl Sci, Dept Media, Dusseldorf, Nrw, Germany. EM charlotte.triebus@hs-duesseldorf.de; geiger@hs-duesseldorf.de FU Nationales Performance Netz, Neustart Kultur and Dachverband Tanz; Federal Government Commissioner for Culture and Media; German Federal Ministry of Education and Research (BMBF) [16SV8878] FX This work has been supported by Nationales Performance Netz, Neustart Kultur and Dachverband Tanz. Funded by the Federal Government Commissioner for Culture and Media within the framework of the initiative NEUSTART KULTUR. Assistance Program for Dance tanz:digital by German Dance Association. The research was partially funded by the German Federal Ministry of Education and Research (BMBF) within the scope of the HIVAM project, Grant Number: 16SV8878. CR Gatys LA, 2015, Arxiv, DOI [arXiv:1508.06576, DOI 10.48550/ARXIV.1508.06576, 10.1167/16.12.326] Chicau Joana, 2022, Anatomies of Intelligence Chung Sougwen, 2018, Drawing Operations Crawford Kate, 2020, Fondazione Prada Crawford Kate, 2020, Training Humans Experiments with Google, 2019, Living Archive by Wayne McGregor Experiments with Google, 2019, Body, Movement, Language: AI Sketches With Bill T. Jones Glanz Berit, 2023, Filter Juliane Laura, State of the deep McDonald Kyle, Discrete figures Memo Aktens, 2016, Review of machine / deep learning in an artistic context Memo Aktens, 2017, Gloomy Sunday Pettee Mariel, 2019, Beyond Imitation: Generative and Variational Choreography via Machine Learning Roth Christian, 2012, P 11 INT C ENT COMP Stokel-Walker Chris, 2022, This couple is launching an organization to protect artists in the AI era NR 15 TC 0 Z9 0 U1 0 U2 0 PU ASSOC COMPUTING MACHINERY PI NEW YORK PA 1601 Broadway, 10th Floor, NEW YORK, NY, UNITED STATES BN 979-8-4007-0872-5 PY 2023 AR 49 DI 10.1145/3632776.3632810 PG 4 WC Art; Computer Science, Interdisciplinary Applications WE Conference Proceedings Citation Index - Science (CPCI-S); Conference Proceedings Citation Index - Social Science & Humanities (CPCI-SSH) SC Art; Computer Science GA BW9DF UT WOS:001211709700049 DA 2024-09-05 ER PT C AU Pradhan, DK Chakraborty, J Nandi, S AF Pradhan, Dinesh K. Chakraborty, Joyita Nandi, Subrata GP Assoc Comp Machinery TI Applications of Machine Learning in Analysis of Citation Network SO PROCEEDINGS OF THE 6TH ACM IKDD CODS AND 24TH COMAD LA English DT Proceedings Paper CT ACM India Joint International Conference on Data Science and Management of Data (CoDS-COMAD) CY JAN 03-05, 2019 CL Kolkata, INDIA DE Machine learning models; bibliographic dataset analysis; clustering; temporal citation profiles ID PREDICTION AB Research standard and quality should be continuously monitored to direct progress of science in right direction. With exponential growth and continuous expansion in citation network, manual and static analysis is becoming insignificant. To fill in the gap, application of machine learning models might prove to be useful. In this paper, we propose some of the problems that we intend to solve using machine learning. Among various applications outlier analysis for early detection of anomalies in citation network, long term prediction of high impact and seminal authors, papers and field of study, deriving inherent features on diverse temporal and demographic scale governing citation structure etc. Starting with empirical analysis of open academic graph dataset, we try to understand the complex relational citation structure of entities. As a preliminary step, we do time series clustering of citation data and study characteristics of diverse profiles of citation curves. When compared to static classification in past literature, we overcome drawbacks of past study and get better insights. C1 [Pradhan, Dinesh K.; Chakraborty, Joyita; Nandi, Subrata] NIT Durgapur, Dept Comp Sci & Engn, Durgapur, W Bengal, India. C3 National Institute of Technology (NIT System); National Institute of Technology Durgapur RP Pradhan, DK (corresponding author), NIT Durgapur, Dept Comp Sci & Engn, Durgapur, W Bengal, India. RI Pradhan, Dinesh K/AAN-3592-2021; Pradhan, Dinesh K./AAE-4386-2019 OI Pradhan, Dinesh K./0000-0001-9132-9255 FU West Bengal | Department of Higher Education, Science Technology FX We would like to thank `West Bengal | Department of Higher Education, Science & Technology' for funding the research work. CR Chakraborty Joyita, 2018, J COMPUTER SCI Chakraborty T, 2015, COMMUN ACM, V58, P82, DOI 10.1145/2701412 Daud A, 2015, SCIENTOMETRICS, V102, P1687, DOI 10.1007/s11192-014-1455-8 Dey R, 2017, SCIENTOMETRICS, V113, P1645, DOI 10.1007/s11192-017-2543-3 Fister I, 2016, FRONT PHYS, V4, DOI 10.3389/fphy.2016.00049 Guns R, 2014, SCIENTOMETRICS, V101, P1461, DOI 10.1007/s11192-013-1228-9 Heneberg P, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0153730 MONGEON P, 2016, WHAT DO WE KNOW J CI Pradhan D, 2016, PROCEEDINGS OF THE 2016 ACM WEB SCIENCE CONFERENCE (WEBSCI'16), P318, DOI 10.1145/2908131.2908185 Redner S, 2004, PHYSICS0407137 ARXIV Wang DS, 2013, SCIENCE, V342, P127, DOI 10.1126/science.1237825 NR 11 TC 12 Z9 12 U1 0 U2 8 PU ASSOC COMPUTING MACHINERY PI NEW YORK PA 1515 BROADWAY, NEW YORK, NY 10036-9998 USA BN 978-1-4503-6207-8 PY 2019 BP 330 EP 333 DI 10.1145/3297001.3297053 PG 4 WC Computer Science, Theory & Methods WE Conference Proceedings Citation Index - Science (CPCI-S) SC Computer Science GA BP5OG UT WOS:000557252800052 DA 2024-09-05 ER PT J AU Zhang, WY Mukerjee, S Qin, HZ AF Zhang, Weiyu Mukerjee, Subhayan Qin, Huazhi TI Topics and Sentiments Influence Likes: A Study of Facebook Public Pages' Posts About COVID-19 Vaccination SO CYBERPSYCHOLOGY BEHAVIOR AND SOCIAL NETWORKING LA English DT Article DE COVID-19; Facebook; likes; sentiment analysis; topic modeling ID EMOTION; NEWS; MEDIA AB In this study, we analyzed >200,000 posts collected from Facebook public pages that were published in December 2020 during the rollout of the first dose of the Pfizer-BioNTech vaccine to the American public. We ran both topic modeling and sentiment analysis of the posts and found that first Facebook posts talked about not only treatment effectiveness such as trial results and testing approaches but also other issues that surround vaccines such as approval and distribution. Second, although the general sentiment during this period was positive and anticipation was the highest emotion, Facebook posts expressed a salient amount of fear and sadness, especially when discussing emergency approval and trial results. Finally, we found that both topics and sentiments have a significant influence on user likes. Using the topic of vaccine distribution as a baseline, posts that discuss related aspects of vaccines (e.g., effectiveness, shipment, and testing), call for actions (e.g., use of masks) and indicate care to vulnerable groups (e.g., health care workers and seniors) received more likes. Posts with bad news (e.g., new cases and deaths) and doubts over the usefulness of vaccines received fewer likes. Regardless of their valences, approach emotions lead to more likes whereas withdrawal emotions lead to fewer likes. Our study suggests that to facilitate actions, using certain topics and approach emotions in the posts could be helpful. C1 [Zhang, Weiyu; Mukerjee, Subhayan] Natl Univ Singapore, Dept Commun & New Media, Singapore, Singapore. [Qin, Huazhi] Univ Chicago, Div Social Sci, Chicago, IL USA. C3 National University of Singapore; University of Chicago RP Zhang, WY (corresponding author), Natl Univ Singapore, Dept Commun & New Media, Singapore, Singapore. EM weiyu.zhang@nus.edu.sg RI Zhang, Weiyu/KIE-1785-2024; Mukerjee, Subhayan/AAK-6864-2020; Qin, Huazhi/JAX-6031-2023 OI Mukerjee, Subhayan/0000-0002-1885-5440; Qin, Huazhi/0009-0006-5365-2282 CR Al-Zaman Md Sayeed, 2021, F1000Res, V10, P236, DOI 10.12688/f1000research.51210.2 Ceron A, 2016, J INF TECHNOL POLITI, V13, P159, DOI 10.1080/19331681.2016.1160266 Chang YC, 2019, PLOS ONE, V14, DOI 10.1371/journal.pone.0223317 Damiano AD, 2020, CYBERPSYCH BEH SOC N, V23, P889, DOI 10.1089/cyber.2020.0425 Feezell JT, 2018, POLIT RES QUART, V71, P482, DOI 10.1177/1065912917744895 Gilbert C., 2014, Proceedings of the International AAAI Conference on Web and Social Media, V81, P82 Hussain A, 2021, J MED INTERNET RES, V23, DOI 10.2196/26627 Kalichman SC, 2022, J PUBLIC HEALTH-UK, V44, pE96, DOI 10.1093/pubmed/fdab093 Kaminski M, 2021, CYBERPSYCH BEH SOC N, V24, P123, DOI 10.1089/cyber.2020.0336 Khoo CSG, 2012, ONLINE INFORM REV, V36, P858, DOI 10.1108/14684521211287936 Kurten S, 2021, CYBERPSYCH BEH SOC N, V24, P117, DOI 10.1089/cyber.2020.0341 Mohammad SM, 2013, COMPUT INTELL-US, V29, P436, DOI 10.1111/j.1467-8640.2012.00460.x Preotiuc-Pietro D., 2016, P 7 WORKSHOP COMPUTA Rianto A., 2021, Journal Riset Informatika, V3, P353, DOI DOI 10.34288/JRI.V3I4.282 Salganik MJ, 2006, SCIENCE, V311, P854, DOI 10.1126/science.1121066 Skogerbo E, 2015, JOURNAL PRACT, V9, P350, DOI 10.1080/17512786.2014.950471 Spielberg JM, 2008, SOC PERSONAL PSYCHOL, V2, P135, DOI 10.1111/j.1751-9004.2007.00064.x Statista, Most Popular Social Networks Worldwide as of April 2020 Tandoc EC, 2018, NEW MEDIA SOC, V20, P1679, DOI 10.1177/1461444817702398 Ballestar MT, 2020, SUSTAINABILITY-BASEL, V12, DOI 10.3390/su12052122 Vargo CJ, 2018, NEW MEDIA SOC, V20, P2028, DOI 10.1177/1461444817712086 Weismueller J, 2022, COMPUT HUM BEHAV, V129, DOI 10.1016/j.chb.2021.107150 WHO, 2020, Top ten threats to global health in 2019: vaccine hesitancy Yang A., 2021, HARV KENNEDY SCH MIS, V2, DOI 10.37016/mr-2020-78 NR 24 TC 3 Z9 3 U1 15 U2 28 PU MARY ANN LIEBERT, INC PI NEW ROCHELLE PA 140 HUGUENOT STREET, 3RD FL, NEW ROCHELLE, NY 10801 USA SN 2152-2715 EI 2152-2723 J9 CYBERPSYCH BEH SOC N JI Cyberpsychology Behav. Soc. Netw. PD SEP 1 PY 2022 VL 25 IS 9 BP 552 EP 560 DI 10.1089/cyber.2022.0063 EA AUG 2022 PG 9 WC Psychology, Social WE Social Science Citation Index (SSCI) SC Psychology GA 6J0MB UT WOS:000840772800001 PM 35969378 DA 2024-09-05 ER PT J AU Zhong, ZL Guo, H Qian, K AF Zhong, Zilong Guo, Hui Qian, Kun TI Deciphering the impact of machine learning on education: Insights from a bibliometric analysis using bibliometrix R-package SO EDUCATION AND INFORMATION TECHNOLOGIES LA English DT Article; Early Access DE Artificial intelligence; Machine learning; Educational research; Bibliometric analysis; Bibliometrix R-package ID PREDICTING STUDENTS PERFORMANCE AB This study leverages bibliometric analysis through the bibliometrix R-package to dissect the expansive influence of machine learning on education, a field where machine learning's adaptability and data-processing capabilities promise to revolutionize teaching and learning methods. Despite its potential, the integration of machine learning in education requires a nuanced understanding to navigate the associated challenges and ethical considerations effectively. Our investigation spans articles from 2000 to 2023, focusing on identifying growth patterns, key contributors, and emerging trends within this interdisciplinary domain. By analyzing 970 selected articles, this study uncovers the developmental trajectory of machine learning in education, revealing significant insights into publication trends, prolific authors, influential institutions, and the geographical distribution of research. Furthermore, it highlights the journals pivotal in disseminating machine learning education research, the most cited works that shape the field, and the dynamic evolution of research themes. This bibliometric exploration not only charts the current landscape but also anticipates future directions, suggesting areas for further inquiry and potential breakthroughs. Through a detailed examination of empirical evidence and a critical analysis of machine learning applications in educational settings, this study aims to provide a foundational understanding of the field's complexities and potentials. The anticipated outcome is a comprehensive roadmap that guides researchers, educators, and policymakers towards a thoughtful integration of machine learning in education, balancing innovation with ethical stewardship. C1 [Zhong, Zilong] Beijing Foreign Studies Univ, Res Inst Foreign Languages, 2 Xisanhuan North Rd, Beijing 100089, Peoples R China. [Guo, Hui] Harbin Normal Univ, Coll Comp Sci & Informat Engn, Harbin, Peoples R China. [Qian, Kun] Chongqing Univ, Sch Elect Engn, Chongqing, Peoples R China. C3 Beijing Foreign Studies University; Harbin Normal University; Chongqing University RP Zhong, ZL (corresponding author), Beijing Foreign Studies Univ, Res Inst Foreign Languages, 2 Xisanhuan North Rd, Beijing 100089, Peoples R China. EM zhongzilong1106@bfsu.edu.cn RI Zhong, Zilong/HSC-9312-2023 OI Zhong, Zilong/0000-0002-8512-4701 FU Zhejiang Provincial Philosophy and Social Science Planning Project FX We thank editors and reviewers for their valuable feedback, which has greatly improved this manuscript. Their insights and suggestions have been instrumental in refining our work. CR Alshamaila Y, 2024, MULTIMED TOOLS APPL, DOI 10.1007/s11042-024-18262-4 Aria M, 2017, J INFORMETR, V11, P959, DOI 10.1016/j.joi.2017.08.007 Basnet RB, 2022, EDUC INF TECHNOL, V27, P11499, DOI 10.1007/s10639-022-11068-7 Botvin M, 2023, EDUC INF TECHNOL, V28, P489, DOI 10.1007/s10639-022-11176-4 Brungard CW, 2015, GEODERMA, V239, P68, DOI 10.1016/j.geoderma.2014.09.019 Carcillo F, 2021, INFORM SCIENCES, V557, P317, DOI 10.1016/j.ins.2019.05.042 Chen Z, 2020, BRIEF BIOINFORM, V21, P1047, DOI 10.1093/bib/bbz041 Choi H, 2023, IEEE ACCESS, V11, P15002, DOI 10.1109/ACCESS.2023.3244614 Cui X, 2024, SOFT COMPUT, V28, P3533, DOI 10.1007/s00500-023-09618-3 de Oliveira O.J., 2019, Scientometrics Recent Advances, DOI [10.5772/intechopen.85856, DOI 10.5772/INTECHOPEN.85856] Delen D, 2010, DECIS SUPPORT SYST, V49, P498, DOI 10.1016/j.dss.2010.06.003 Donthu N, 2021, J BUS RES, V133, P285, DOI 10.1016/j.jbusres.2021.04.070 Dworkin JD, 2020, NAT NEUROSCI, V23, P918, DOI 10.1038/s41593-020-0658-y Earhart AE, 2021, DIGIT SCHOLARSH HUM, V36, P581, DOI 10.1093/llc/fqaa011 Evangelista E, 2021, INT J EMERG TECHNOL, V16, P255, DOI 10.3991/ijet.v16i24.26151 Fernandez-Morante C, 2022, SUSTAINABILITY-BASEL, V14, DOI 10.3390/su14010124 Gordon C, 2002, BRIT J EDUC PSYCHOL, V72, P483, DOI 10.1348/00070990260377488 Greener S, 2022, INTERACT LEARN ENVIR, V30, P1168, DOI 10.1080/10494820.2022.2118463 Hew KF, 2020, COMPUT EDUC, V145, DOI 10.1016/j.compedu.2019.103724 Holmes W, 2022, INT J ARTIF INTELL E, V32, P504, DOI 10.1007/s40593-021-00239-1 Hussain MT, 2019, ARTIF INTELL REV, V52, P381, DOI 10.1007/s10462-018-9620-8 Hussain S, 2021, EDUC INF TECHNOL, V26, P783, DOI 10.1007/s10639-020-10241-0 Jing YH, 2023, EDUC INF TECHNOL, DOI 10.1007/s10639-023-12178-6 Kabudi T., 2021, Computers and Education: Artificial Intelligence, V2, DOI DOI 10.1016/J.CAEAI.2021.100017 Kimmons R, 2021, TECHTRENDS, V65, P125, DOI 10.1007/s11528-021-00589-6 Kokol P, 2022, SCI PROGRESS-UK, V105, DOI 10.1177/00368504211029777 Korkmaz C, 2019, EDUC MEDIA INT, V56, P250, DOI 10.1080/09523987.2019.1669875 Kotsiantis S, 2004, APPL ARTIF INTELL, V18, P411, DOI 10.1080/08839510490442058 Liu MC, 2023, EDUC INF TECHNOL, V28, P7845, DOI 10.1007/s10639-022-11479-6 Liu SJ, 2021, IEEE T GEOSCI REMOTE, V59, P5085, DOI 10.1109/TGRS.2020.3018879 Mao GZ, 2021, ENVIRON POLLUT, V275, DOI 10.1016/j.envpol.2020.115785 Masiero S, 2021, Arxiv, DOI [arXiv:2108.12255, 10.48550/arXiv.2108.12255, DOI 10.48550/ARXIV.2108.12255] Moral-Muñoz JA, 2020, PROF INFORM, V29, DOI 10.3145/epi.2020.ene.03 Munir H, 2022, INFORMATION, V13, DOI 10.3390/info13040203 Nagao K., 2019, Artificial intelligence accelerates human learning: Discussion data analytics, DOI [10.1007/978-981-13-6175-3, DOI 10.1007/978-981-13-6175-3] Odden TOB, 2020, PHYS REV PHYS EDUC R, V16, DOI 10.1103/PhysRevPhysEducRes.16.010142 Oducado RMF, 2022, EDUC INF TECHNOL, V27, P9713, DOI 10.1007/s10639-022-11017-4 Qian K, 2023, BIOMED ENG-BIOMED TE, V68, P445, DOI 10.1515/bmt-2023-0113 Raihan MZ, 2023, J EDUC-US, V203, P73, DOI 10.1177/00220574211016444 Ranjeeth S., 2021, Recent Advances in Computer Science and Communications (Formerly: Recent Patents on Computer Science), V14, P1728, DOI [10.2174/2666255813666191116150319, DOI 10.2174/2666255813666191116150319] Riemann S., 2022, bioRxiv, DOI [10.1101/2022.07.28.501862, DOI 10.1101/2022.07.28.501862] Sabharwal R, 2024, SOC NETW ANAL MIN, V14, DOI 10.1007/s13278-023-01195-5 Saltz J, 2019, ACM T COMPUT EDUC, V19, DOI 10.1145/3341164 Sommer C, 2013, J CELL SCI, V126, P5529, DOI 10.1242/jcs.123604 Su M, 2021, EXPERT SYST APPL, V186, DOI 10.1016/j.eswa.2021.115728 Su YS, 2022, FRONT NEUROSCI-SWITZ, V16, DOI 10.3389/fnins.2022.1018005 Tekles A, 2022, PLOS ONE, V17, DOI 10.1371/journal.pone.0274810 Tiwari R., 2023, International Journal of Scientific Research in Engineering and Management, V7, P1, DOI [DOI 10.55041/IJSREM17592, 10.55041/IJSREM17592] Vos N, 2011, COMPUT EDUC, V56, P127, DOI 10.1016/j.compedu.2010.08.013 Waheed H, 2020, COMPUT HUM BEHAV, V104, DOI 10.1016/j.chb.2019.106189 Webb ME, 2021, ETR&D-EDUC TECH RES, V69, P2109, DOI 10.1007/s11423-020-09858-2 Xu SS, 2022, COMPUT INTEL NEUROSC, V2022, DOI 10.1155/2022/3502992 Yang CS, 2021, J EDUC COMPUT RES, V59, P1015, DOI 10.1177/0735633120986256 Yang J, 2020, PHYS REV PHYS EDUC R, V16, DOI 10.1103/PhysRevPhysEducRes.16.020130 Zeng KL, 2022, IEEE ROBOT AUTOM LET, V7, P12251, DOI 10.1109/LRA.2022.3214057 Zhong ZL, 2023, SAGE OPEN, V13, DOI 10.1177/21582440231211657 NR 56 TC 0 Z9 0 U1 27 U2 27 PU SPRINGER PI NEW YORK PA ONE NEW YORK PLAZA, SUITE 4600, NEW YORK, NY, UNITED STATES SN 1360-2357 EI 1573-7608 J9 EDUC INF TECHNOL JI Educ. Inf. Technol. PD 2024 MAY 6 PY 2024 DI 10.1007/s10639-024-12734-8 EA MAY 2024 PG 28 WC Education & Educational Research WE Social Science Citation Index (SSCI) SC Education & Educational Research GA PN5T9 UT WOS:001214778100006 DA 2024-09-05 ER PT J AU Ofer, D Kaufman, H Linial, M AF Ofer, Dan Kaufman, Hadasah Linial, Michal TI What's next? Forecasting scientific research trends SO HELIYON LA English DT Article DE PubMed; NLP; MeSH; Bibliometrics; Time series; Machine learning; Citation analysis ID CITATION; PUBLICATION; PATENTS; SCIENCE AB Scientific research trends and interests evolve over time. The ability to identify and forecast these trends is vital for educational institutions, practitioners, investors, and funding organizations. In this study, we predict future trends in scientific publications using heterogeneous sources, including historical publication time series from PubMed, research and review articles, pre -trained language models, and patents. We demonstrate that scientific topic popularity levels and changes (trends) can be predicted five years in advance across 40 years and 125 diverse topics, including life-science concepts, biomedical, anatomy, and other science, technology, and engineering topics. Preceding publications and future patents are leading indicators for emerging scientific topics. We find the ratio of reviews to original research articles informative for identifying increasing or declining topics, with declining topics having an excess of reviews. We find that language models provide improved insights and predictions into temporal dynamics. In temporal validation, our models substantially outperform the historical baseline. Our findings suggest that similar dynamics apply across other scientific and engineering research topics. We present SciTrends, a user-friendly webtool for predicting future publication trends for any topic covered in PubMed. C1 [Ofer, Dan; Kaufman, Hadasah; Linial, Michal] Hebrew Univ Jerusalem, Inst Life Sci, Dept Biol Chem, Jerusalem, Israel. [Linial, Michal] Hebrew Univ Jerusalem, Inst Life Sci, Dept Biol Chem, IL-91904 Jerusalem, Israel. C3 Hebrew University of Jerusalem; Hebrew University of Jerusalem RP Linial, M (corresponding author), Hebrew Univ Jerusalem, Inst Life Sci, Dept Biol Chem, IL-91904 Jerusalem, Israel. EM dan.ofer@mail.huji.ac.il; hadasah.kaufman@mail.huji.ac.il; michall@cc.huji.ac.il RI Linial, Michal/AAQ-9259-2020; Ofer, Dan/GPK-5264-2022 OI Linial, Michal/0000-0002-9357-4526; Ofer, Dan/0000-0001-5136-8014 FU Center for Interdisciplinary Data Science Research (CIDR) at the Hebrew University, Jerusalem [3035000440] FX We thank the members from D. Shahaf and M. Linial laboratories for sharing their ideas and valuable discussions. We thank N. Rappoport and R. Zucker for supporting the web application. This work was partially supported by the Center for Interdisciplinary Data Science Research (CIDR, #3035000440) at the Hebrew University, Jerusalem. CR ABELSON PH, 1964, SCIENCE, V143, P218, DOI 10.1126/science.143.3603.218 Abuhay TM, 2018, PROCEDIA COMPUT SCI, V136, P304, DOI 10.1016/j.procs.2018.08.284 Ahmad T, 2021, HUM VACC IMMUNOTHER, V17, P2367, DOI 10.1080/21645515.2021.1886806 Bornmann L, 2022, J INFORMETR, V16, DOI 10.1016/j.joi.2022.101253 Bornmann L, 2015, J ASSOC INF SCI TECH, V66, P2215, DOI 10.1002/asi.23329 Bornmann L, 2013, J INFORMETR, V7, P722, DOI 10.1016/j.joi.2013.05.002 BRAAM RR, 1991, J AM SOC INFORM SCI, V42, P233, DOI 10.1002/(SICI)1097-4571(199105)42:4<233::AID-ASI1>3.0.CO;2-I Brandes N, 2022, BIOINFORMATICS, V38, P2102, DOI 10.1093/bioinformatics/btac020 Chu JSG, 2021, P NATL ACAD SCI USA, V118, DOI 10.1073/pnas.2021636118 Cohen S, 2021, IEEE ACCESS, V9, P91584, DOI 10.1109/ACCESS.2021.3091622 Devlin J, 2019, Arxiv, DOI arXiv:1810.04805 Effendy S, 2017, WWW'17 COMPANION: PROCEEDINGS OF THE 26TH INTERNATIONAL CONFERENCE ON WORLD WIDE WEB, P1245, DOI 10.1145/3041021.3053064 Fairclough R, 2022, LEARN PUBL, V35, P241, DOI 10.1002/leap.1417 Gatherer D, 2009, J CLIN VIROL, V45, P174, DOI 10.1016/j.jcv.2009.06.004 Griffin TD, 2010, ADV EXP MED BIOL, V680, P737, DOI 10.1007/978-1-4419-5913-3_82 Grossmann I, 2023, NAT HUM BEHAV, V7, P484, DOI 10.1038/s41562-022-01517-1 Hancock JT, 2020, J BIG DATA-GER, V7, DOI 10.1186/s40537-020-00369-8 Hope T, 2017, KDD'17: PROCEEDINGS OF THE 23RD ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, P235, DOI 10.1145/3097983.3098038 Kittur A, 2019, P NATL ACAD SCI USA, V116, P1870, DOI 10.1073/pnas.1807185116 Klein DB, 2009, INDEP REV, V13, P585 Kleminski R, 2022, J INF SCI, V48, P349, DOI 10.1177/0165551520962775 Krizhevsky A, 2017, COMMUN ACM, V60, P84, DOI 10.1145/3065386 Larsen PO, 2010, SCIENTOMETRICS, V84, P575, DOI 10.1007/s11192-010-0202-z Makridakis S, 2022, INT J FORECASTING, V38, P1346, DOI 10.1016/j.ijforecast.2021.11.013 Mao YQ, 2017, J BIOMED SEMANT, V8, DOI 10.1186/s13326-017-0123-3 Marx W, 2016, SCIENTOMETRICS, V109, P1397, DOI 10.1007/s11192-016-2111-2 Mazov NA, 2020, SCI TECH INF PROCESS, V47, P221, DOI 10.3103/S0147688220040036 Nájera GS, 2021, SCI REP-UK, V11, DOI 10.1038/s41598-021-94897-9 Nezhad F.G., 2022, International Journal of Information Science & Management, V20 Nsoesie EO, 2014, INFLUENZA OTHER RESP, V8, P309, DOI 10.1111/irv.12226 Ofer D., 2022, arXiv Ofer D, 2022, FRONT MOL BIOSCI, V9, DOI 10.3389/fmolb.2022.916639 Ofer D, 2021, COMPUT STRUCT BIOTEC, V19, P1750, DOI 10.1016/j.csbj.2021.03.022 Park M, 2023, NATURE, V613, P138, DOI 10.1038/s41586-022-05543-x Pedregosa F, 2011, J MACH LEARN RES, V12, P2825 Prabhakaran V., 2016, Long Papers, V1 Reimers N, 2019, Arxiv, DOI [arXiv:1908.10084, DOI 10.48550/ARXIV.1908.10084] Salganik MJ, 2023, NAT HUM BEHAV, V7, P478, DOI 10.1038/s41562-023-01535-7 Sander JD, 2014, NAT BIOTECHNOL, V32, P347, DOI 10.1038/nbt.2842 Savov P, 2020, INFORM PROCESS MANAG, V57, DOI 10.1016/j.ipm.2019.102168 Sperr EV, 2006, MOL CANCER, V5, DOI 10.1186/1476-4598-5-58 Tahamtan I, 2019, SCIENTOMETRICS, V121, P1635, DOI 10.1007/s11192-019-03243-4 Tang L, 2015, J ASSOC INF SCI TECH, V66, P1923, DOI 10.1002/asi.23302 Tattershall E, 2020, SCIENTOMETRICS, V122, P681, DOI 10.1007/s11192-019-03307-5 Van Noorden R., 2013, News, Nature, V3 Dorogush AV, 2018, Arxiv, DOI arXiv:1810.11363 Viboud C, 2019, P NATL ACAD SCI USA, V116, P2802, DOI 10.1073/pnas.1822167116 Voytek JB, 2012, J NEUROSCI METH, V208, P92, DOI 10.1016/j.jneumeth.2012.04.019 Wang WH, 2021, Arxiv, DOI arXiv:2012.15828 Zhang CS, 2017, EXPERT SYST APPL, V82, P128, DOI 10.1016/j.eswa.2017.04.003 NR 50 TC 0 Z9 0 U1 4 U2 8 PU CELL PRESS PI CAMBRIDGE PA 50 HAMPSHIRE ST, FLOOR 5, CAMBRIDGE, MA 02139 USA EI 2405-8440 J9 HELIYON JI Heliyon PD JAN 15 PY 2024 VL 10 IS 1 AR e23781 DI 10.1016/j.heliyon.2023.e23781 EA DEC 2023 PG 12 WC Multidisciplinary Sciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Science & Technology - Other Topics GA FE3C3 UT WOS:001144036600001 PM 38223716 OA Green Submitted, gold DA 2024-09-05 ER PT S AU Ho, DE Rubin, DB AF Ho, Daniel E. Rubin, Donald B. BE Hagan, J Scheppele, KL Tyler, TR TI Credible Causal Inference for Empirical Legal Studies SO ANNUAL REVIEW OF LAW AND SOCIAL SCIENCE, VOL 7 SE Annual Review of Law and Social Science LA English DT Article; Book Chapter DE research design; policy evaluation; matching; regression discontinuity ID REGRESSION DISCONTINUITY DESIGNS; PROPENSITY SCORE; MATCHING METHODS; PRINCIPAL STRATIFICATION; RANDOMIZED EXPERIMENTS; CLASS-SIZE; BIAS; CLASSIFICATION; IDENTIFICATION; ENVIRONMENT AB We review advances toward credible causal inference that have wide application for empirical legal studies. Our chief point is simple: Research design trumps methods of analysis. We explain matching and regression discontinuity approaches in intuitive (nontechnical) terms. To illustrate, we apply these to existing data on the impact of prison facilities on inmate misconduct, which we compare to experimental evidence. What unifies modern approaches to causal inference is the prioritization of research design to create-without reference to any outcome data-subsets of comparable units. Within those subsets, outcome differences may then be plausibly attributed to exposure to the treatment rather than control condition. Traditional methods of analysis play a small role in this venture. Credible causal inference in law turns on substantive legal, not mathematical, knowledge. C1 [Ho, Daniel E.] Stanford Univ, Stanford Law Sch, Stanford, CA 94305 USA. [Rubin, Donald B.] Harvard Univ, Dept Stat, Cambridge, MA 02138 USA. C3 Stanford University; Harvard University RP Ho, DE (corresponding author), Stanford Univ, Stanford Law Sch, Stanford, CA 94305 USA. EM dho@law.stanford.edu; rubin@stat.harvard.edu OI Ho, Daniel/0000-0002-2195-5469 CR Abadie A, 2003, AM ECON REV, V93, P113, DOI 10.1257/000282803321455188 Abadie A, 2001, STAT SOFTWARE Abrams DS, 2007, U CHICAGO LAW REV, V74, P1145, DOI 10.2307/20141859 Angrist JD, 1999, Q J ECON, V114, P533, DOI 10.1162/003355399556061 Angrist JD, 1996, J AM STAT ASSOC, V91, P444, DOI 10.2307/2291629 Angrist JD, 2009, MOSTLY HARMLESS ECONOMETRICS: AN EMPIRICISTS COMPANION, P1 ANGRIST JD, 1990, AM ECON REV, V80, P1284 Angrist JD, 2010, J ECON PERSPECT, V24, P3, DOI 10.1257/jep.24.2.3 [Anonymous], 1995, Identification Problems in the Social Sciences [Anonymous], 2004, Applied Bayesian modeling and causal inference from incomplete-data perspectives [Anonymous], 1978, Specification searches: Ad hoc inference with nonexperimental data [Anonymous], 2022, gam: Generalized Additive Models [Anonymous], 2004, Regression Analysis: A Constructive Critique [Anonymous], 2007, American Law and Economics Review [Anonymous], 2000, CAUSALITY [Anonymous], 1999, Handbook of Labor Economics, DOI [DOI 10.1016/S1573-4463(99)03004-7, 10.1016/S1573-4463(99)03004-7] Autor DH, 2004, AM ECON REV, V94, P440, DOI 10.1257/0002828041302091 AYRES I, 1991, HARVARD LAW REV, V104, P817, DOI 10.2307/1341506 Ayres I., 2008, Super crunchers: Why thinking-by-numbers is the new way to be smart Barnard J, 2003, J AM STAT ASSOC, V98, P299, DOI 10.1198/016214503000071 Bayer P, 2009, Q J ECON, V124, P105, DOI 10.1162/qjec.2009.124.1.105 Becker SO, 2002, STAT SOFTWARE Bench LL, 2003, PRISON J, V83, P367, DOI 10.1177/0032885503260143 Berk R.A., 2003, Criminology and Public Policy, V2, P215, DOI DOI 10.1111/J.1745-9133.2003.TB00121.X BERK RA, 1985, AM SOCIOL REV, V50, P253, DOI 10.2307/2095413 Berk RA, 1999, J AM STAT ASSOC, V94, P1045, DOI 10.2307/2669918 Berry CR, 2007, HARRIS SCH WORK PAP Bertrand M, 2004, Q J ECON, V119, P249, DOI 10.1162/003355304772839588 Black Bernard S., 2008, 1032005 ECGI Boyd CL, 2010, AM J POLIT SCI, V54, P389, DOI 10.1111/j.1540-5907.2010.00437.x Brady HE, 2007, MIDW POL SCI ASS CHI Bubb R., 2009, STATES LAW PROPERTY Calif. Dep. Correct. (CDC), 2000, OP MAN Camp SD, 2005, CRIME DELINQUENCY, V51, P425, DOI 10.1177/0011128704271471 CARD D, 1994, AM ECON REV, V84, P772 Card D, 2008, AM ECON REV, V98, P2242, DOI 10.1257/aer.98.5.2242 Chay KY, 2005, J POLIT ECON, V113, P376, DOI 10.1086/427462 Chen M.Keith., 2007, American Law and Economics Review, V9, P1, DOI [DOI 10.1093/ALER/AHM006, 10.1093/aler/ahm006] Clark W, 1930, YALE LAW J, V39, P1013, DOI 10.2307/790111 Dehejia RH, 1999, J AM STAT ASSOC, V94, P1053, DOI 10.2307/2669919 Dehejia RH, 2002, REV ECON STAT, V84, P151, DOI 10.1162/003465302317331982 DiNardo J, 2004, Q J ECON, V119, P1383, DOI 10.1162/0033553042476189 Donohue J.J., 2007, Journal of Empirical Legal Studies, V4, P69 Donohue JJ, 2005, STANFORD LAW REV, V58, P791 Douglas W.O., 1950, YALE LAW J, V59, P187 Eggers AC, 2009, AM POLIT SCI REV, V103, P513, DOI 10.1017/S0003055409990190 Epstein L, 2005, NEW YORK U LAW REV, V80, P1 Epstein L, 2002, U CHICAGO LAW REV, V69, P1, DOI 10.2307/1600349 Fisher R.A., 1925, STAT METHODS RES WOR Fisher RA., 1935, DESIGN EXPT Frangakis CE, 2002, BIOMETRICS, V58, P21, DOI 10.1111/j.0006-341X.2002.00021.x Galiani S, 2005, J POLIT ECON, V113, P83, DOI 10.1086/426041 Gerber Alan, 2008, 14206 NBER Gerber AS, 2000, AM POLIT SCI REV, V94, P653, DOI 10.2307/2585837 Gibson JL, 2008, AM POLIT SCI REV, V102, P59, DOI 10.1017/S0003055408080015 Green DP, 2010, CRIMINOLOGY, V48, P357, DOI 10.1111/j.1745-9125.2010.00189.x Greiner DJ, 2008, HARVARD LAW REV, V122, P533 Greiner DJ, 2010, REV EC STAT IN PRESS Grogger J, 2006, J AM STAT ASSOC, V101, P878, DOI 10.1198/016214506000000168 Guttentag MD, 2008, J EMPIR LEGAL STUD, V5, P239, DOI 10.1111/j.1740-1461.2008.00124.x Hahn Jinyong., 1999, NBER Working Paper 7131 Hahn JY, 2001, ECONOMETRICA, V69, P201, DOI 10.1111/1468-0262.00183 Hansen BB, 2004, J AM STAT ASSOC, V99, P609, DOI 10.1198/016214504000000647 Hansen BB, 2010, STAT SOFTWARE Heckman J, 1998, ECONOMETRICA, V66, P1017, DOI 10.2307/2999630 Heckman J.J., 1999, Handbook of Labor Economics, V3A, P1865, DOI DOI 10.1016/S1573-4463(99)03012-6 Heckman JJ, 1998, REV ECON STUD, V65, P261, DOI 10.1111/1467-937X.00044 Helland E, 2004, J LAW ECON, V47, P93, DOI 10.1086/378694 Hirano K, 2000, Biostatistics, V1, P69, DOI 10.1093/biostatistics/1.1.69 Hirano K., 2004, Applied Bayesian Modeling and Causal Inference from Incomplete-Data Perspectives, V226164, P73 Hjalmarsson R, 2009, AM LAW ECON REV, V11, P209, DOI 10.1093/aler/ahn016 Hjalmarsson R, 2009, J LAW ECON, V52, P778 Ho DE, 2007, POLIT ANAL, V15, P199, DOI 10.1093/pan/mpl013 Ho DE, 2006, J AM STAT ASSOC, V101, P888, DOI 10.1198/016214505000001258 Ho DE, 2005, YALE LAW J, V114, P2011 Ho DE, 2005, YALE LAW J, V114, P1997 Ho DE, 2004, STAT SOFTWARE HOLLAND PW, 1986, J AM STAT ASSOC, V81, P945, DOI 10.2307/2289064 Hopkins DJ, 2009, CELS 2009 4 ANN C EM Iacus SM, 2009, STAT SOFTWARE Iacus SM, 2009, POLIT ANAL IN PRESS Imai K, 2004, J AM STAT ASSOC, V99, P854, DOI 10.1198/016214504000001187 Imbens GW, 2008, J ECONOMETRICS, V142, P615, DOI 10.1016/j.jeconom.2007.05.001 Imbens GW, 2000, BIOMETRIKA, V87, P706, DOI 10.1093/biomet/87.3.706 Imbens GW, 2005, J ROY STAT SOC A STA, V168, P109, DOI 10.1111/j.1467-985X.2004.00339.x Imbens GW, 2004, REV ECON STAT, V86, P4, DOI 10.1162/003465304323023651 Joffe MM, 1999, AM J EPIDEMIOL, V150, P327 Kane ThomasJ., 2006, American Law and Economics Review, V8, P183, DOI DOI 10.1093/ALER/AHL007 King G, 2007, J POLICY ANAL MANAG, V26, P479, DOI 10.1002/pam.20279 King G, 2007, INT STUD QUART, V51, P183, DOI 10.1111/j.1468-2478.2007.00445.x Kritzer Herbert., 2010, OXFORD HDB EMPIRICAL, P875 Lalive R, 2008, J ECONOMETRICS, V142, P785, DOI 10.1016/j.jeconom.2007.05.013 LALONDE RJ, 1986, AM ECON REV, V76, P604 LEAMER EE, 1983, AM ECON REV, V73, P31 Lee DS, 2008, J ECONOMETRICS, V142, P675, DOI 10.1016/j.jeconom.2007.05.004 Lee DS, 2010, J ECON LIT, V48, P281, DOI 10.1257/jel.48.2.281 Lee DavidS., 2005, CRIME PUNISHMENT MYO Lemieux T, 2008, J ECONOMETRICS, V142, P807, DOI 10.1016/j.jeconom.2007.05.014 List J. A., 2006, 12777 NBER Listokin Y, 2009, AM LAW ECON REV, V11, P608, DOI 10.1093/aler/ahp015 Listokin Y, 2008, AM LAW ECON REV, V10, P159, DOI 10.1093/aler/ahn010 Litvak K, 2007, MICH LAW REV, V105, P1857 Ludwig J, 2007, Q J ECON, V122, P159, DOI 10.1162/qjec.122.1.159 MANSKI CF, 1990, AM ECON REV, V80, P319 McCrary J, 2008, J ECONOMETRICS, V142, P698, DOI 10.1016/j.jeconom.2007.05.005 Mocan N.H., 2006, Contributions to Economic Analysis and Policy, V5, P13 Moore U, 1943, YALE LAW J, V53, P1, DOI 10.2307/792883 Morantz AD, 2010, 413 STANF LAW EC Morgan SL, 2007, ANAL METHOD SOC RES, P1, DOI 10.1017/CBO9780511804564 Pager D, 2003, AM J SOCIOL, V108, P937, DOI 10.1086/374403 Papachristos T.M., 2007, J EMPIR LEGAL STUD, V4, P223, DOI DOI 10.1111/J.1740-1461.2007.00096.X Persson T, 2002, EUR ECON REV, V46, P908, DOI 10.1016/S0014-2921(01)00224-0 Petersilia J, 2008, CRIME JUSTICE, V37, P207, DOI 10.1086/520944 Petersilia Joan., 1986, Prison versus Probation in California: Implications for Crime and Offender Recidivism Pfaff J, 2010, PLEA MORE AGGREGATIO Qian Y, 2007, REV ECON STAT, V89, P436, DOI 10.1162/rest.89.3.436 Ridgeway G, 2006, J QUANT CRIMINOL, V22, P1, DOI 10.1007/s10940-005-9000-9 Rosenbaum P. R., 2002, OBSERVATIONAL STUDIE ROSENBAUM PR, 1983, BIOMETRIKA, V70, P41, DOI 10.1093/biomet/70.1.41 ROSENBAUM PR, 1984, J AM STAT ASSOC, V79, P516, DOI 10.2307/2288398 ROSENBAUM PR, 1983, J ROY STAT SOC B MET, V45, P212 Rubin D., 1977, J EDUC STAT, V2, P1, DOI DOI 10.3102/10769986002001001 RUBIN DB, 1979, J AM STAT ASSOC, V74, P318, DOI 10.2307/2286330 RUBIN DB, 1976, BIOMETRICS, V32, P109, DOI 10.2307/2529342 RUBIN DB, 1973, BIOMETRICS, V29, P159, DOI 10.2307/2529684 Rubin DB, 2006, MATCHED SAMPLING FOR CAUSAL EFFECTS, P1, DOI 10.2277/ 0521674360 RUBIN DB, 1974, J EDUC PSYCHOL, V66, P688, DOI 10.1037/h0037350 RUBIN DB, 1978, ANN STAT, V6, P34, DOI 10.1214/aos/1176344064 Rubin DB, 1976, P SOC STAT SECT AM S, P233 Rubin DB, 2008, ANN APPL STAT, V2, P808, DOI 10.1214/08-AOAS187 Rubinfeld DL, 2010, J INST THEOR ECON, V166, P62, DOI 10.1628/093245610790711519 Schlegel JohnHenry., 1995, American Legal Realism and Empirical Social Science Sekhon JS, 2009, ANNU REV POLIT SCI, V12, P487, DOI 10.1146/annurev.polisci.11.060606.135444 Sekhon JS, 2011, J STAT SOFT IN PRESS Sobel ME, 2000, J AM STAT ASSOC, V95, P647, DOI 10.2307/2669410 STIGLER SM, 1977, J AM STAT ASSOC, V72, P493, DOI 10.2307/2286206 Stuart Elizabeth A, 2008, Best practices in quantitative methods, P155 THISTLETHWAITE DL, 1960, J EDUC PSYCHOL, V51, P309, DOI 10.1037/h0044319 Urquiola M, 2009, AM ECON REV, V99, P179, DOI 10.1257/aer.99.1.179 van der Klaauw W, 2002, INT ECON REV, V43, P1249, DOI 10.1111/1468-2354.t01-1-00055 Zimring FranklinE. Gordon J. Hawkins., 1973, DETERRENCE LEGAL THR NR 141 TC 37 Z9 41 U1 1 U2 29 PU ANNUAL REVIEWS PI PALO ALTO PA 4139 EL CAMINO WAY, PO BOX 10139, PALO ALTO, CA 94303-0897 USA SN 1550-3585 BN 978-0-8243-4107-7 J9 ANNU REV LAW SOC SCI JI Annu. Rev. Law. Soc. Sci. PY 2011 VL 7 BP 17 EP 40 DI 10.1146/annurev-lawsocsci-102510-105423 PG 24 WC Law; Sociology WE Book Citation Index – Social Sciences & Humanities (BKCI-SSH); Social Science Citation Index (SSCI) SC Government & Law; Sociology GA BYL92 UT WOS:000299297100002 DA 2024-09-05 ER PT J AU Zheng, C Zhang, Q Long, GD Zhang, CQ Young, SD Wang, W AF Zheng, Cheng Zhang, Qin Long, Guodong Zhang, Chengqi Young, Sean D. Wang, Wei TI Measuring Time-Sensitive and Topic-Specific Influence in Social Networks With LSTM and Self-Attention SO IEEE ACCESS LA English DT Article DE Social influence; time-sensitive; topic-specific; LSTM; self-attention AB Influence measurement in social networks is vital to various real-world applications, such as online marketing and political campaigns. In this paper, we investigate the problem of measuring time-sensitive and topic-specific influence based on streaming texts and dynamic social networks. A user & x2019;s influence can change rapidly in response to a new event and vary on different topics. For example, the political influence of Douglas Jones increased dramatically after winning the Alabama special election, and then rapidly decreased after the election week. During the same period, however, Douglas Jones & x2019; influence on sports remained low. Most existing approaches can only model the influence based on static social network structures and topic distributions. Furthermore, as popular social networking services embody many features to connect their users, multi-typed interactions make it hard to learn the roles that different interactions play when propagating information. To address these challenges, we propose a Time-sensitive and Topic-specific Influence Measurement (TTIM) method, to jointly model the streaming texts and dynamic social networks. We simulate the influence propagation process with a self-attention mechanism to learn the contributions of different interactions and track the influence dynamics with a matrix-adaptive long short-term memory. To the best of our knowledge, this is the first attempt to measure time-sensitive and topic-specific influence. Furthermore, the TTIM model can be easily adapted to supporting online learning which consumes constant training time on newly arrived data for each timestamp. We comprehensively evaluate the proposed TTIM model on five datasets from Twitter and Reddit. The experimental results demonstrate promising performance compared to the state-of-the-art social influence analysis models and the potential of TTIM in visualizing influence dynamics and topic distribution. C1 [Zheng, Cheng; Wang, Wei] Univ Calif Los Angeles, Dept Comp Sci, Los Angeles, CA 90095 USA. [Zhang, Qin; Long, Guodong; Zhang, Chengqi] Univ Technol Sydney, Ctr Artificial Intelligence, Fac Engn & IT FEIT, Ultimo, NSW 2007, Australia. [Young, Sean D.] Univ Calif Irvine, Irvine, CA 92697 USA. C3 University of California System; University of California Los Angeles; University of Technology Sydney; University of California System; University of California Irvine RP Wang, W (corresponding author), Univ Calif Los Angeles, Dept Comp Sci, Los Angeles, CA 90095 USA. EM weiwang@cs.ucla.edu RI zhang, chao/IXD-9965-2023; zhang, chao/HTO-2468-2023; Zhang, Cheng/JAD-2236-2023 OI Wang, Wei/0000-0002-8180-2886; Zhang, Chengqi/0000-0001-5715-7154 FU National Institutes of Health [U01HG008488]; National Institute of Allergy and Infectious Diseases [R56AI125105, 7R01AI132030]; National Institute of Mental Health [5R01MH106415] FX The work was supported in part by the National Institutes of Health under Grant U01HG008488, in part by the National Institute of Allergy and Infectious Diseases under Grant R56AI125105 and Grant 7R01AI132030, and in part by the National Institute of Mental Health under Grant 5R01MH106415. CR Abadi M, 2016, PROCEEDINGS OF OSDI'16: 12TH USENIX SYMPOSIUM ON OPERATING SYSTEMS DESIGN AND IMPLEMENTATION, P265 Aggarwal C. C., 2012, P SIAM INT C DAT MIN, P636, DOI DOI 10.1137/1.9781611972825.55 [Anonymous], 2013, PREPRINT ARXIV 1308 [Anonymous], Proceedings of the 20th international conference on World wide web, DOI DOI 10.1145/1963405.1963504 [Anonymous], 2005, SIGKDD Badashian AS, 2016, 2016 IEEE/ACM 3RD INTERNATIONAL WORKSHOP ON CROWDSOURCING IN SOFTWARE ENGINEERING (CSI-SE), P15, DOI [10.1109/CSI-SE.2016.011, 10.1145/2897659.2897663] Bakshy E., 2011, P 4 ACM INT C WEB SE, P65 Bi B, 2014, WSDM'14: PROCEEDINGS OF THE 7TH ACM INTERNATIONAL CONFERENCE ON WEB SEARCH AND DATA MINING, P513, DOI 10.1145/2556195.2556229 Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993 Campbell C.S., 2003, P 12 INT C INFORM KN, P528, DOI DOI 10.1145/956863.956965 Cao Q, 2020, PROCEEDINGS OF THE 13TH INTERNATIONAL CONFERENCE ON WEB SEARCH AND DATA MINING (WSDM '20), P70, DOI 10.1145/3336191.3371834 Chen S, 2015, PROC VLDB ENDOW, V8, P666, DOI 10.14778/2735703.2735706 Chen W, 2009, KDD-09: 15TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, P199, DOI 10.1145/1557019.1557047 Cossu JV, 2015, SECOND EUROPEAN NETWORK INTELLIGENCE CONFERENCE (ENIC 2015), P83, DOI 10.1109/ENIC.2015.20 Domingos P., 2001, KDD-2001. Proceedings of the Seventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, P57, DOI 10.1145/502512.502525 Gao Bin, 2011, P 17 ACM SIGKDD INT, P96, DOI DOI 10.1145/2020408 Garimella K, 2016, PROCEEDINGS OF THE 2016 ACM WEB SCIENCE CONFERENCE (WEBSCI'16), P200, DOI 10.1145/2908131.2908170 Gers FA, 2000, IEEE IJCNN, P189, DOI 10.1109/IJCNN.2000.861302 Glorot X., 2010, JMLR Workshop and Conference Proceedings., P249 Hochreiter S., 1997, Neural Comput., V9, P1735, DOI 10.1162/neco.1997.9.8.1735 Huang J, 2005, IEEE T KNOWL DATA EN, V17, P299, DOI 10.1109/TKDE.2005.50 Jagarlamudi J., 2012, EACL 2012 13 C EUROP, P204 Kelman H. C., 1958, Journal of Conflict Resolution, P51, DOI [10.1177/002200275800200106, DOI 10.1177/002200275800200106] Kempe David, 2003, Theory Comput., P137, DOI DOI 10.1145/956750.956769 Kingma D. P., 2014, INT C LEARNING REPRE Pal A., 2011, P 4 ACM INT C WEB SE, P45, DOI [10.1145/1935826.1935843, DOI 10.1145/1935826.1935843] Qiu JZ, 2018, KDD'18: PROCEEDINGS OF THE 24TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING, P2110, DOI 10.1145/3219819.3220077 Ranganath S, 2016, PROCEEDINGS OF THE NINTH ACM INTERNATIONAL CONFERENCE ON WEB SEARCH AND DATA MINING (WSDM'16), P43, DOI 10.1145/2835776.2835807 Richardson M., 2002, KDD 2002, P61, DOI DOI 10.1145/775047.775057 Riquelme F, 2016, INFORM PROCESS MANAG, V52, P949, DOI 10.1016/j.ipm.2016.04.003 Serdyukov P., 2008, P 17 ACM C INF KNOWL, P1133, DOI [10.1145/1458082.1458232, DOI 10.1145/1458082.1458232] Sha M, 2018, INT CONF DAT MIN WOR, P1429, DOI 10.1109/ICDMW.2018.00203 Tang J, 2013, 19TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING (KDD'13), P347 Tang J, 2009, KDD-09: 15TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, P807 Tinati R., 2012, WWW, DOI DOI 10.1145/2187980.2188256 Vaswani A., 2017, PROC NEURIPS, P5998 Velickovic P., 2018, PROC INT C LEARN REP Wang X., 2019, PROC ACM TURING CELE, P1 Weng J., 2010, P 3 ACM INT C WEB SE, P261, DOI [10.1145/1718487.1718520, DOI 10.1145/1718487.1718520] Yang Y, 2017, IEEE T KNOWL DATA EN, V29, P2615, DOI 10.1109/TKDE.2017.2734667 Yu WC, 2018, KDD'18: PROCEEDINGS OF THE 24TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING, P2663, DOI 10.1145/3219819.3220000 Zhang Jiani, 2018, ARXIV180307294 Zhuang HL, 2013, IEEE DATA MINING, P1313, DOI 10.1109/ICDM.2013.145 NR 43 TC 15 Z9 16 U1 1 U2 8 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 2169-3536 J9 IEEE ACCESS JI IEEE Access PY 2020 VL 8 BP 82481 EP 82492 DI 10.1109/ACCESS.2020.2991683 PG 12 WC Computer Science, Information Systems; Engineering, Electrical & Electronic; Telecommunications WE Science Citation Index Expanded (SCI-EXPANDED) SC Computer Science; Engineering; Telecommunications GA ML5JL UT WOS:000549502200065 PM 32577335 OA Green Submitted, Green Accepted, gold DA 2024-09-05 ER PT C AU Amato, F Di Cicco, F Fonisto, M Giacalone, M AF Amato, Flora Di Cicco, Francesco Fonisto, Mattia Giacalone, Marco BE Barolli, L Hussain, F Enokido, T TI A Survey on Neural Recommender Systems: Insights from a Bibliographic Analysis SO ADVANCED INFORMATION NETWORKING AND APPLICATIONS, AINA-2022, VOL 3 SE Lecture Notes in Networks and Systems LA English DT Proceedings Paper CT 36th International Conference on Advanced Information Networking and Applications (AINA) CY APR 13-15, 2022 CL Sydney, AUSTRALIA DE Recommender systems; Deep learning; Research trend analysis AB In recent years, deep learning has gotten a lot of attention, notably in fields like Computer Vision and Natural Language Processing. With the growing amount of online information, recommender systems have shown to be an effective technique for coping with information overload. The purpose of this article is to provide a comprehensive overview of recent deep learning-based recommender systems. Furthermore, it provides an experimental assessment of prominent topics within the latest published papers in the field. Results showed that explainable AI and Graph Neural Networks are two of the most attractive topics in the field to this day, and that the adoption of deep learning methods is increasing over. C1 [Amato, Flora; Fonisto, Mattia] Univ Naples Federico II, I-80125 Naples, Italy. [Di Cicco, Francesco] Univ Turin, I-10124 Turin, Italy. [Giacalone, Marco] Vrije Univ Brussel, B-1050 Brussels, Belgium. C3 University of Naples Federico II; University of Turin; Vrije Universiteit Brussel RP Fonisto, M (corresponding author), Univ Naples Federico II, I-80125 Naples, Italy. EM flora.amato@unina.it; francesco.dicicco@unito.it; mattia.fonisto@unina.it; marco.giacalone@vub.be RI Giacalone, Marco/IAN-6488-2023; Amato, Flora/N-1408-2016 OI Giacalone, Marco/0000-0001-7097-4394; Amato, Flora/0000-0002-5128-5558 FU European Union [101046629] FX This paper has been produced with the financial support of the Justice Programme of the European Union, 101046629 CREA2, JUST-2021-EJUSTICE, JUST2027 Programme. The contents of this report are the sole responsibility of the authors and can in no way be taken to reflect the views of the European Commission. NR 0 TC 0 Z9 0 U1 3 U2 4 PU SPRINGER INTERNATIONAL PUBLISHING AG PI CHAM PA GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND SN 2367-3370 EI 2367-3389 BN 978-3-030-99619-2; 978-3-030-99618-5 J9 LECT NOTE NETW SYST PY 2022 VL 451 BP 104 EP 114 DI 10.1007/978-3-030-99619-2_10 PG 11 WC Computer Science, Information Systems; Computer Science, Theory & Methods; Telecommunications WE Conference Proceedings Citation Index - Science (CPCI-S) SC Computer Science; Telecommunications GA BU6OK UT WOS:000926702400010 DA 2024-09-05 ER PT C AU Boukhers, Z Mayr, P Peroni, S AF Boukhers, Zeyd Mayr, Philipp Peroni, Silvio GP ASSOC COMP MACHINERY TI BiblioDAP'21: The 1st Workshop on Bibliographic Data Analysis and Processing SO KDD '21: PROCEEDINGS OF THE 27TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING LA English DT Proceedings Paper CT 27th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD) CY AUG 14-18, 2021 CL ELECTR NETWORK DE Bibliographic data; Digital libraries; Machine Learning; Data Science AB Automatic processing of bibliographic data becomes very important in digital libraries, data science and machine learning due to its importance in keeping pace with the significant increase of published papers every year from one side and to the inherent challenges from the other side. This processing has several aspects including but not limited to I) Automatic extraction of references from PDF documents, II) Building an accurate citation graph, III) Author name disambiguation, etc. Bibliographic data is heterogeneous by nature and occurs in both structured (e.g. citation graph) and unstructured (e.g. publications) formats. Therefore, it requires data science and machine learning techniques to be processed and analysed. Here we introduce BiblioDAP'21: The 1st Workshop on Bibliographic Data Analysis and Processing. C1 [Boukhers, Zeyd] Univ Koblenz Landau, Inst Web Sci & Technol, Koblenz, Germany. [Mayr, Philipp] GESIS Leibniz Inst Social Sci, Cologne, Germany. [Peroni, Silvio] Univ Bologna, Dept Class Philol & Italian Studies, Res Ctr Open Scholarly Metadata, Bologna, Italy. C3 University of Koblenz & Landau; Leibniz Institut fur Sozialwissenschaften (GESIS); University of Bologna RP Boukhers, Z (corresponding author), Univ Koblenz Landau, Inst Web Sci & Technol, Koblenz, Germany. EM boukhers@uni-koblenz.de; philipp.mayr@gesis.org; silvio.peroni@unibo.it RI Boukhers, Zeyd/HZL-0733-2023 OI Boukhers, Zeyd/0000-0001-9778-9164 CR Boukhers Zeyd, 2021, 2021 ACM IEEE JOINT, P1 Cabanac Guillaume, 2020, ADV INFORM RETRIEVAL, V12036, P641 Chang M., 2020, EUR C COMP VIS SPRIN, P171, DOI DOI 10.1007/978-3-030-58577-8_11 Ferreira Anderson A., 2020, AUTOMATIC DISAMBIGUA, DOI DOI 10.2200/S01011ED1V01Y202005ICR070 Hosseini A, 2019, ACM-IEEE J CONF DIG, P432, DOI 10.1109/JCDL.2019.00105 Jeong C, 2020, SCIENTOMETRICS, V124, P1907, DOI 10.1007/s11192-020-03561-y Tekles A, 2020, QUANT SCI STUD, V1, P1510, DOI 10.1162/qss_a_00081 Visser M, 2021, QUANT SCI STUD, V2, P20, DOI [10.1162/qss_a_00112, 10.1162/qes_a_00112] NR 8 TC 0 Z9 0 U1 0 U2 1 PU ASSOC COMPUTING MACHINERY PI NEW YORK PA 1601 Broadway, 10th Floor, NEW YORK, NY, UNITED STATES BN 978-1-4503-8332-5 PY 2021 BP 4110 EP 4111 DI 10.1145/3447548.3469482 PG 2 WC Computer Science, Artificial Intelligence; Computer Science, Information Systems; Computer Science, Theory & Methods WE Conference Proceedings Citation Index - Science (CPCI-S) SC Computer Science GA BS6LU UT WOS:000749556804051 OA Green Submitted, Green Published DA 2024-09-05 ER PT J AU Wu, H Gu, XM Zhao, YJ Liu, W AF Wu, Hui Gu, Xiaomin Zhao, Yuanjun Liu, Wei TI Research on the Relationship between Structural Hole Location, Knowledge Management and Cooperative Innovation Performance in Artificial Intelligence SO KNOWLEDGE MANAGEMENT RESEARCH & PRACTICE LA English DT Article; Early Access DE Structure hole location; collaborative innovation performance; knowledge management; artificial intelligence ID SOCIAL NETWORK; DECISION AB This paper builds a conceptual model of the relationship between structural hole location, knowledge management, and collaborative innovation performance in the artificial intelligence environment. A questionnaire survey was conducted on 267 companies, and sample data were analysed using SEM statistics. In the artificial intelligence environment, under the influence of the embedded relationship of the collaborative innovation network structure, the influence of network structure hole position on the performance of collaborative innovation is discussed. The research results show that the location of network structure holes has a direct impact on the performance of collaborative innovation; At the same time, the location of network structure holes has a significant positive impact on knowledge management, and knowledge management plays a part of the mediating role in the process of network structure hole locations affecting collaborative innovation performance. C1 [Wu, Hui; Gu, Xiaomin] Shanghai Lixin Univ Accounting & Finance, Sch Financial Technol, Shanghai, Peoples R China. [Zhao, Yuanjun] Shanghai Lixin Univ Accounting & Finance, Sch Business Adm, Shanghai, Peoples R China. [Liu, Wei] Qingdao Univ, Business Sch, Qingdao, Peoples R China. C3 Shanghai Lixin University of Accounting & Finance; Shanghai Lixin University of Accounting & Finance; Qingdao University RP Gu, XM (corresponding author), 2800 Wenxiang Rd, Shanghai 201620, Peoples R China. EM guxiaomin126@163.com RI Liu, Wei/ABB-7317-2021 FU National Social Science Fund of China [18CGL015] FX This work was supported by the National Social Science Fund of China [(Grant No. 18CGL015)]. CR Abubakar AM, 2019, INT J INFORM MANAGE, V49, P45, DOI 10.1016/j.ijinfomgt.2019.02.006 Bettiol M, 2011, KNOWL MAN RES PRACT, V9, P305, DOI 10.1057/kmrp.2011.35 Gloor PA, 2008, INT J PROD RES, V46, P1357, DOI 10.1080/00207540701224582 Kane GC, 2017, INFORM ORGAN-UK, V27, P37, DOI 10.1016/j.infoandorg.2017.01.001 Liu Z, 2020, COMPLEXITY, V2020, DOI 10.1155/2020/2145951 Liu Z, 2020, IEEE ACCESS, V8, P48264, DOI 10.1109/ACCESS.2020.2978911 Liu Z, 2019, IEEE ACCESS, V7, P141404, DOI 10.1109/ACCESS.2019.2944000 Liu Z, 2018, ASIA PAC J OPER RES, V35, DOI 10.1142/S0217595918400043 Maleszka M, 2019, ENTERP INF SYST-UK, V13, P1120, DOI 10.1080/17517575.2018.1526325 Nemati HR, 2002, DECIS SUPPORT SYST, V33, P143, DOI 10.1016/S0167-9236(01)00141-5 Park JY, 2017, KNOWL MAN RES PRACT, V15, P560, DOI 10.1057/s41275-017-0071-9 Sun L, 2020, NEURAL COMPUT APPL, V32, P15357, DOI 10.1007/s00521-019-04125-9 Sun WQ, 2020, INT J INFORM MANAGE, V50, P557, DOI 10.1016/j.ijinfomgt.2018.11.017 Vaccaro A, 2010, TECHNOL FORECAST SOC, V77, P1076, DOI 10.1016/j.techfore.2010.02.006 Valkokari K, 2012, KNOWL MAN RES PRACT, V10, P27, DOI 10.1057/kmrp.2011.39 Wang FT, 2020, INF SYST E-BUS MANAG, V18, P311, DOI 10.1007/s10257-019-00414-x Xie MH, 2020, J COMPUT APPL MATH, V372, DOI 10.1016/j.cam.2020.112723 Yang RJ, 2020, INT J INFORM MANAGE, V50, P452, DOI 10.1016/j.ijinfomgt.2019.05.027 NR 18 TC 11 Z9 11 U1 17 U2 170 PU TAYLOR & FRANCIS LTD PI ABINGDON PA 2-4 PARK SQUARE, MILTON PARK, ABINGDON OR14 4RN, OXON, ENGLAND SN 1477-8238 EI 1477-8246 J9 KNOWL MAN RES PRACT JI Knowl. Manag. Res. Pract. PD 2020 SEP 3 PY 2020 DI 10.1080/14778238.2020.1813642 EA SEP 2020 PG 10 WC Information Science & Library Science; Management WE Social Science Citation Index (SSCI) SC Information Science & Library Science; Business & Economics GA NH9YD UT WOS:000565015600001 DA 2024-09-05 ER PT C AU Wen, Z Rui, W AF Wen, Zhang Rui, Wang BE Deng, MG Ye, JM Kaminishi, K Duysters, G DeHoyos, A TI Research on the Multilevel Indicator Evaluation Model of Online Learning Based on Fuzzy Set SO PROCEEDINGS OF THE 7TH INTERNATIONAL CONFERENCE ON INNOVATION AND MANAGEMENT, VOLS I AND II LA English DT Proceedings Paper CT 7th International Conference on Innovation and Management CY DEC 04-05, 2010 CL Wuhan Univ Technol, Wuhan, PEOPLES R CHINA HO Wuhan Univ Technol DE Entropy; Online learning; Weight; Fuzzy Comprehensive evaluation AB Learning evaluation is an effective way to ensure the quality of online education. However, most of online learning evaluation models are not fully consider the characteristics of online learning. This paper, from the view of the characteristics of online learning, establishes an index system of evaluation of the online learning's effect. Besides, weight of every factor affecting online learning is calculated by using entropy method. At the same time, a model based on entropy weight of the fuzzy comprehensive evaluation is established and its calculation is given out. At last, the learning effects of a learner are evaluated and its result is analyzed by this model. C1 [Wen, Zhang] Gannan Normal Univ, Off Recruitment & Employment, Ganzhou 341000, Peoples R China. [Rui, Wang] Gannan Normal Univ, Sch Business, Ganzhou 341000, Peoples R China. C3 Gannan Normal University; Gannan Normal University RP Wen, Z (corresponding author), Gannan Normal Univ, Off Recruitment & Employment, Ganzhou 341000, Peoples R China. EM djwhsdlk1982@126.com; 80772557@qq.com RI ruirui, WANG/KCY-0880-2024 CR BUCKLEY JJ, 1995, FUZZY SET SYSTEMS, P233 Hrieko Mary, 2005, ONLINE ASSESSMENT ME, V10, P299 Qi Huan, 2004, SYSTEM MODELING SIMU, P28 NR 3 TC 0 Z9 0 U1 0 U2 2 PU WUHAN UNIV TECHNOLOGY PRESS PI WUHAN PA 122 LUOSHI RD, WUHAN 430070, PEOPLES R CHINA BN 978-7-5629-3370-0 PY 2010 BP 1456 EP + PG 2 WC Business; Computer Science, Information Systems; Management; Operations Research & Management Science WE Conference Proceedings Citation Index - Science (CPCI-S); Conference Proceedings Citation Index - Social Science & Humanities (CPCI-SSH) SC Business & Economics; Computer Science; Operations Research & Management Science GA BUX78 UT WOS:000290638901026 DA 2024-09-05 ER PT J AU Montague-Hellen, B AF Montague-Hellen, Beth TI Empowering knowledge through AI: open scholarship proactively supporting well trained generative AI SO INSIGHTS-THE UKSG JOURNAL LA English DT Article DE AI; licensing; Creative Commons; open access; ChatGPT; copyright; BETH MONTAGUE AB Generative AI has taken the world by storm over the last few years, and the world of scholarly communications has not been immune to this. Most discussions in this area address how we can integrate these tools into our workflows, concerns about how researchers and students might misuse the technology or the unauthorised use of copyrighted work. This article argues for a novel viewpoint that librarians and publishers should be encouraging the use of their scholarly content in the training of AI algorithms. Inclusion of scholarly works would advance the reliability and accuracy of the information in training datasets and ensure that this content is included in new knowledge discovery platforms. The article also argues that inclusion can be achieved by improving linkage to content, and, by making sure that licences explicitly allow inclusion in AI training datasets, it advocates for a more collaborative approach to shaping the future of the information landscape in academia. C1 [Montague-Hellen, Beth] Francis Crick Inst, Lib & Informat Serv, London, England. C3 Francis Crick Institute RP Montague-Hellen, B (corresponding author), Francis Crick Inst, Lib & Informat Serv, London, England. EM beth.montague-hellen@crick.ac.uk OI Montague-Hellen, Beth/0000-0003-0946-1842 FU Francis Crick Institute - Cancer Research UK [CC0103]; UK Medical Research Council [CC0103]; Wellcome Trust [CC0103] FX This work was supported by the Francis Crick Institute which receives its core funding from Cancer Research UK (CC0103) , the UK Medical Research Council (CC0103) and the Wellcome Trust (CC0103) . CR Achiam OJ, 2023, Arxiv, DOI [arXiv:2303.08774, DOI 10.48550/ARXIV.2303.08774] Aithal S., 2023, SSRN Scholarly Paper 4453581, DOI [10.2139/ssrn.4453581, DOI 10.2139/SSRN.4453581] [Anonymous], OpenAI Brown T., 2020, ADV NEURAL INFORM PR, V33, P1877, DOI DOI 10.48550/ARXIV.2005.14165 Chang Edward Y, 2023, 10 INT C COMP SCI CO Contractor Danish, 2022, FAccT '22: 2022 ACM Conference on Fairness, Accountability, and Transparency, P778, DOI 10.1145/3531146.3533143 Creative Commons, 2009, Defining 'Noncommercial': a study of how the online population understands 'noncommercial use' Creative Commons, Defining 'Noncommercial' Creative Commons, CC BY 4.0 License Fenwick M, 2023, COMPUT LAW SECUR REV, V51, DOI 10.1016/j.clsr.2023.105892 Fricke S, 2018, J MED LIBR ASSOC, V106, P145, DOI 10.5195/jmla.2018.280 Gaudino M, 2021, J AM HEART ASSOC, V10, DOI 10.1161/JAHA.120.019903 Gendron Y, 2022, CRIT PERSPECT ACCOUN, V87, DOI 10.1016/j.cpa.2021.102411 Guadamuz Andre, 2023, TechnoLlama (blog)November 19 Hong Z, 2021, JOM-US, V73, P3383, DOI 10.1007/s11837-021-04902-9 Hosseini M, 2023, COLL RES LIBR, V84, P836 Huang XL, 2023, SCIENTOMETRICS, V128, P2337, DOI 10.1007/s11192-023-04649-x Jasani Bhavin M., 2015, International Journal of Computer Applications, V120, DOI [10.5120/21258-4115, DOI 10.5120/21258-4115] Kaebnick Gregory E, 2023, Med Health Care Philos, V26, P499, DOI 10.1007/s11019-023-10176-6 Kahveci, Attribution problem of generative AI, P796 Kahveci ZU, 2023, J INTELLET PROP LAW, V18, P796, DOI 10.1093/jiplp/jpad076 Kraker Peter, 2021, ABI Technik, V41, P3, DOI 10.1515/abitech-2021-0003 Layton, ChatGPT-Show me Layton Dennis, 2023, Medium (blog)January 30 Lee M, 2023, MATHEMATICS-BASEL, V11, DOI 10.3390/math11102320 Lemley M.A., 2020, FAIR LEARNING, DOI [DOI 10.2139/SSRN.3528447, 10.2139/ssrn.3528447] Lingard L, 2023, PERSPECT MED EDUC, V12, P261, DOI 10.5334/pme.1072 Lucchi, ChatGPT: a case study, P1 Lucchi N, 2023, EUR J RISK REGUL, DOI 10.1017/err.2023.59 Lund Brady D., 2023, Library Hi Tech News, P26, DOI 10.1108/LHTN-01-2023-0009 Margoni Thomas, 2016, Editorial Office News, V9, DOI [10.2139/ssrn.2746044, DOI 10.2139/SSRN.2746044] Matulionyte Rita, 2023, Intellectual Property Forum: journal of the Intellectual and Industrial Property Society of Australia and New Zealand, V134, P33, DOI [10.3316/informit.485601143177392, DOI 10.3316/INFORMIT.485601143177392] Mehdi Yusuf, 2023, Official Microsoft Blog (blog) Meyer JG, 2023, BIODATA MIN, V16, DOI 10.1186/s13040-023-00339-9 Mishra Pooja, 2022, The Serials Librarian, V83, P166, DOI [10.1080/0361526X.2022.2138682, DOI 10.1080/0361526X.2022.2138682] Morrison Rob, 2011, Faculty Publications, V6 Nah F. F., 2023, Journal of Information Technology Case and Application Research, V25, P277, DOI DOI 10.1080/15228053.2023.2233814 Ojala Marydee, 2020, The Serials Librarian, V78, P98, DOI [10.1080/0361526X.2020.1722894, DOI 10.1080/0361526X.2020.1722894] Opderbeck DW., 2024, Oklahoma Law Rev, DOI [10.2139/ssrn.4679299, DOI 10.2139/SSRN.4679299] OpenAI, GPT-4 technical report OpenAI, 2023, GPT 4 TECHN REP OpenAI, 2024, OpenAI.com (blog)January 10 Pride D, 2023, LECT NOTES COMPUT SC, V14241, P146, DOI 10.1007/978-3-031-43849-3_13 Priem J, 2022, Arxiv, DOI [arXiv:2205.01833, DOI 10.48550/ARXIV.2205.01833, 10.48550/arXiv.2205.01833] Rao Dana, 2023, Adobe Blog (blog)March 21 Rathinasabapathy G., 2023, Indian Journal of Information Library & Society, V36, P163 Razack HIA, 2021, SCI EDIT, V8, P134, DOI 10.6087/kcse.244 Romain Danielle, 2023, The Keyword (blog)July 6 Saetra HS, 2023, TECHNOL SOC, V75, DOI 10.1016/j.techsoc.2023.102372 Samuelson P, 2024, COMMUN ACM, V67, P25, DOI 10.1145/3637627 Samuelson P, 2023, SCIENCE, V381, P158, DOI 10.1126/science.adi0656 Sankaran Vishwam, 2024, The IndependentJanuary 9 Schwartz Vered, 2024, UBC Science (blog)January 11 Seibert H., 2019, The Serials Librarian, V76, P103, DOI [10.1080/0361526X.2019.1589893, DOI 10.1080/0361526X.2019.1589893] Senftleben M, 2023, IIC-INT REV INTELL P, V54, P1535, DOI 10.1007/s40319-023-01399-4 Stihler Catherine, 2023, Creative Commons (blog)August 31 Suber P., 2012, Open access, DOI [10.7551/mitpress/9286.001.0001, DOI 10.7551/MITPRESS/9286.001.0001] Vezina and Pearson, Should CC-licensed content Vezina Brigitte, 2021, Creative Commons (blog)March 4 Wodecki Ben, 2023, AI BusinessAugust 8 Wu TY, 2023, IEEE-CAA J AUTOMATIC, V10, P1122, DOI 10.1109/JAS.2023.123618 Zheng HY, 2023, AM J MED, V136, P725, DOI 10.1016/j.amjmed.2023.02.011 NR 62 TC 0 Z9 0 U1 2 U2 2 PU UBIQUITY PRESS LTD PI LONDON PA Unit 3N, 6 Osborn Street, LONDON, E1 6TD, ENGLAND SN 2048-7754 J9 INSIGHTS JI Insights PD JUN 18 PY 2024 VL 37 BP 1 EP 9 DI 10.1629/uksg.649 PG 9 WC Information Science & Library Science WE Emerging Sources Citation Index (ESCI) SC Information Science & Library Science GA XA1C5 UT WOS:001258858200001 OA gold DA 2024-09-05 ER PT J AU Javed, S Adewumi, TP Liwicki, FS Liwicki, M AF Javed, Saleha Adewumi, Tosin P. Liwicki, Foteini Simistira Liwicki, Marcus TI Understanding the Role of Objectivity in Machine Learning and Research Evaluation SO PHILOSOPHIES LA English DT Article DE objectivity; machine learning; ethics; naturalism; philosophy of science AB This article makes the case for more objectivity in Machine Learning (ML) research. Any research work that claims to hold benefits has to be scrutinized based on many parameters, such as the methodology employed, ethical considerations and its theoretical or technical contribution. We approach this discussion from a Naturalist philosophical outlook. Although every analysis may be subjective, it is important for the research community to keep vetting the research for continuous growth and to produce even better work. We suggest standardizing some of the steps in ML research in an objective way and being aware of various biases threatening objectivity. The ideal of objectivity keeps research rational since objectivity requires beliefs to be based on facts. We discuss some of the current challenges, the role of objectivity in the two elements (product and process) that are up for consideration in ML and make recommendations to support the research community. C1 [Javed, Saleha; Adewumi, Tosin P.; Liwicki, Foteini Simistira; Liwicki, Marcus] Lulea Univ Technol, EISLAB, Dept Comp Sci Elect & Space Engn, Machine Learning Grp, S-97187 Lulea, Sweden. C3 Lulea University of Technology RP Javed, S (corresponding author), Lulea Univ Technol, EISLAB, Dept Comp Sci Elect & Space Engn, Machine Learning Grp, S-97187 Lulea, Sweden. EM saleha.javed@ltu.se; oluwatosin.adewumi@ltu.se; foteini.liwicki@ltu.se; marcus.liwicki@ltu.se RI Javed, saleha/GWZ-8529-2022; Liwicki, Marcus/D-5572-2014 OI Javed, saleha/0000-0002-2123-8187; Adewumi, Tosin/0000-0002-5582-2031; Liwicki, Marcus/0000-0003-4029-6574 CR Adewumi T.P., 2007, ARXIV EPRINTS Adewumi TP, 2019, PHILOSOPHIES, V4, DOI 10.3390/philosophies4030041 Adler E.S., 2007, How it's done: An invitation to social research, V3rd Anney V., 2014, J EMERGING TRENDS ED, V5, P272, DOI DOI 10.1080/13623699.2018.1518748 [Anonymous], 2001, The fate of knowledge [Anonymous], 2012, From statistics to neural networks: theory and pattern recognition applications Balci O, 1998, 1998 WINTER SIMULATION CONFERENCE PROCEEDINGS, VOLS 1 AND 2, P41, DOI 10.1109/WSC.1998.744897 Blackwell SE, 2017, SPAN J PSYCHOL, V20, DOI 10.1017/sjp.2017.41 Bornmann L, 2015, J ASSOC INF SCI TECH, V66, P2215, DOI 10.1002/asi.23329 Cherkassky V., 2007, LEARN DATA CONCEPTS, DOI DOI 10.1002/9780470140529.CH4.[38]L Creath R., 2020, EMPIRICISM STANFORD DASTON L, 1992, REPRESENTATIONS, P81 de Jesus SN, 2013, CREATIVITY RES J, V25, P80, DOI 10.1080/10400419.2013.752235 Dictionary Cambridge., 2008, Cambridge Advance Learner's Dictionary, V3rd Douglas C.M., 2001, DESIGN ANAL EXPT GORDON DF, 1995, MACH LEARN, V20, P5, DOI 10.1007/BF00993472 Hagan M.T., 2000, NEURAL NETWORK DESIG, V2nd HARAWAY D, 1988, FEMINIST STUD, V14, P575, DOI 10.2307/3178066 Hartman J., 2013, NATURE NATURALISM PH Hennessey B.A., 2010, CREATIVITY MOTIVATIO Indurkhya N, 2010, HDB NATURAL LANGUAGE, V2 Jukola S., 2015, LONGINOS THEORY OBJE, P127 Kazmier L., 1976, Schaum's outline of theory and problems of business statistics Lavesson Niklas, 2007, International Journal of Intelligent Information and Database Systems, V1, P37, DOI 10.1504/IJIIDS.2007.013284 Lei Y, 2017, PATTERN RECOGN, V65, P58, DOI 10.1016/j.patcog.2016.12.003 Longino H., 2002, SCI SOCIAL KNOWLEDGE McDermott MBA, ARXIV190701463 Mikolov T., 2013, ARXIV Morse JM, 2015, QUAL HEALTH RES, V25, P1212, DOI 10.1177/1049732315588501 Musgrave K., ARXIV200308505 Olorisade B.K., 2017, P ML WORKSH 34 INT C Onwuegbuzie AJ, 2007, QUAL QUANT, V41, P233, DOI 10.1007/s11135-006-9000-3 Papineni K, 2002, 40TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, PROCEEDINGS OF THE CONFERENCE, P311, DOI 10.3115/1073083.1073135 Parry W.T., 1991, ARISTOTELIAN LOGIC Reimers N., ARXIV180309578 Reiss J., 2017, SCI OBJECTIVITY STAN RUBIN HR, 1993, J GEN INTERN MED, V8, P255, DOI 10.1007/BF02600092 SEGERSTRALE U, 1992, CONTEMP SOCIOL, V21, P138, DOI 10.2307/2074813 Shamoo A. E., 2009, RESPONSIBLE CONDUCT, DOI 10.1093/acprof:oso/9780195368246.001.0001 Shamoun D., 2015, OBJECTIVE RISK Stevens E., 2019, Deep learning with PyTorch essential excerpts THAGARD P, 1990, CAN J PHILOS, V20, P261 Ware M., 2008, Peer Review: Benefits, Perceptions and Alternatives White MD, 2009, HANDBOOK OF ECONOMICS AND ETHICS, P301 Zahedi Z, 2014, SCIENTOMETRICS, V101, P1491, DOI 10.1007/s11192-014-1264-0 Zhang, ARXIV191100536 NR 46 TC 6 Z9 6 U1 0 U2 7 PU MDPI PI BASEL PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND EI 2409-9287 J9 PHILOSOPHIES JI Philosophies PD MAR PY 2021 VL 6 IS 1 AR 22 DI 10.3390/philosophies6010022 PG 8 WC History & Philosophy Of Science; Philosophy WE Emerging Sources Citation Index (ESCI) SC History & Philosophy of Science; Philosophy GA RG6WP UT WOS:000635676500001 OA gold DA 2024-09-05 ER PT J AU van de Laar, M West, RE Cosma, P Katwal, D Mancigotti, C AF van de Laar, Mindel West, Richard E. Cosma, Paris Katwal, Dennis Mancigotti, Cristina TI The value of educational microcredentials in open access online education: a doctoral education case SO OPEN LEARNING LA English DT Article; Early Access DE Educational open microcredentials; online learning; Higher Education; open access; Sub-Saharan Africa; doctoral education ID PERFORMANCE AB This research explores the effect of implementing educational open microcredentials on student motivation, engagement, and completion in open access online courses. Our case study reviews the impact on the Community of Learning for African PhD Fellows, a capacity-building project supporting PhD fellows in Sub-Saharan Africa. It builds on an analysis of data from learning analytics, surveys, and semi-structured interviews. Our case study findings indicate that course completion was low, in course offering rounds with and without online certification. Main hurdles to completion are lack of time and lack of direct career benefits or academic value attached to the course completion. We found that, while open access online courses are appreciated by PhD fellows, the implementation of open microcredentials did not provide an incentive towards completion of online courses for this population. Hard and soft copy certificates at this point are more appreciated. C1 [van de Laar, Mindel; Cosma, Paris; Katwal, Dennis; Mancigotti, Cristina] Maastricht Univ, UNU MERIT, Boschstr 24, NL-6211 AX Maastricht, Netherlands. [West, Richard E.] Brigham Young Univ, McKay Sch Educ, Provo, UT 84602 USA. C3 Maastricht University; Brigham Young University RP van de Laar, M (corresponding author), Maastricht Univ, UNU MERIT, Boschstr 24, NL-6211 AX Maastricht, Netherlands. EM mindel.vandelaar@maastrichtuniversity.nl OI West, Richard/0000-0002-1417-0823; van de Laar, Mindel/0000-0003-4028-9630; Mancigotti, Cristina/0000-0002-6222-6027 FU Sustainablity Theme Group of the School of Business and Economics, Maastricht University FX This work was supported by The Sustainablity Theme Group of the School of Business and Economics, Maastricht University, which supported the educational round offered to the African Doctoral students in Fall 2019 financially. CR African Union, 2020, POL GUID DIG TEACH L Asunka S., 2008, INT REV RES OPEN DIS, V9, P1, DOI 10.19173/irrodl.v9i3.586 Atchley W, 2013, INT REV RES OPEN DIS, V14, P104 Bisaso R, 2010, J HIGH EDUC POLICY M, V32, P343, DOI 10.1080/1360080X.2010.491108 Botha A, 2018, ELECTR J INF SYS DEV, V84, DOI 10.1002/isd2.12007 British Council, 2018, BUILD PHD CAP SUBS A Cheng Z, 2020, J COMPUT HIGH EDUC, V32, P406, DOI 10.1007/s12528-019-09240-z Cheng Z, 2018, TECHTRENDS, V62, P190, DOI 10.1007/s11528-018-0249-x Cloete N, 2014, STUD HIGH EDUC, V39, P1355, DOI 10.1080/03075079.2014.949533 Cross S., 2014, International Journal of e-Assessment, V4 European Commission, 2021, A European approach to micro-credentials Jarvinen S., 2020, THESIS OULU U APPL S MICROBOL, 2020, MICR LINK BOL KEY CO Motheeram P, 2018, TD-J TRANSDISCIPL RE, V14, DOI 10.4102/td.v14i1.463 Randall DL, 2022, OPEN LEARN, V37, P65, DOI 10.1080/02680513.2020.1752166 Sorensen C, 2017, ONLINE LEARN, V21, P206, DOI 10.24059/olj.v21i3.935 UNESCO, 2021, Open educational resources Van de Laar M., 2017, Transformation in Higher Education. Vol, V2, P1, DOI DOI 10.4102/THE.V2I0.17 West R.E., 2022, HDB OPEN DISTANCE DI, DOI [https://doi.org/10.1007/978-981-19-0351-9, DOI 10.1007/978-981-19-0351-9] Whitehead Clive., 2017, Sharing higher educations promise beyond the few in Sub-Saharan Africa, DOI [DOI 10.1596/978-1-4648-1050-3, 10.1596/978-1-4648-1050-3] World Bank, 2020, The COVID-19 Crisis Response: Supporting Tertiary Education for Continuity, Adaptation, and Innovation, DOI DOI 10.1596/33738 NR 21 TC 0 Z9 1 U1 3 U2 13 PU ROUTLEDGE JOURNALS, TAYLOR & FRANCIS LTD PI ABINGDON PA 2-4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND SN 0268-0513 EI 1469-9958 J9 OPEN LEARN JI Open Learn. PD 2022 MAY 11 PY 2022 DI 10.1080/02680513.2022.2072721 EA MAY 2022 PG 14 WC Education & Educational Research WE Emerging Sources Citation Index (ESCI) SC Education & Educational Research GA 1C3VR UT WOS:000793051400001 OA hybrid DA 2024-09-05 ER PT J AU Liu, H AF Liu, Huan TI Research on Performance Prediction of Technological Innovation Enterprises Based on Deep Learning SO WIRELESS COMMUNICATIONS & MOBILE COMPUTING LA English DT Article ID SYSTEM; NETWORK AB High-tech enterprises are the leaders in promoting economic development. The study of the relationship between their scientific and technological innovation capabilities and corporate performance is of far-reaching practical significance for guiding companies to formulate independent innovation strategies scientifically, improving their independent innovation capabilities, and promoting further transformation into an innovative country. In view of the large-scale technological innovation enterprise network, the traditional technological innovation enterprise performance prediction method cannot fully reflect the real-time technological innovation enterprise status. Aiming at the deficiencies of the existing short-term technology innovation enterprise forecasting methods, this paper proposes a technology innovation enterprise performance forecasting method based on deep learning. I analyze the temporal and spatial characteristics of the data of technological innovation enterprises and divide the data according to the temporal characteristics of technological innovation enterprises. According to the spatial relevance of technological innovation enterprises, grouping is carried out by setting different correlation coefficient thresholds. The method of spectral decomposition is used to divide the data of scientific and technological innovation enterprises into trend items and random fluctuation items, to decompose the matrix of scientific and technological innovation enterprises, and to construct a compressed matrix using correlation. Using the deep belief network model in deep learning combined with support vector regression to establish a prediction model for technological innovation enterprises, this paper proposes a convolutional neural network model for performance prediction of scientific and technological innovation enterprises. Through the convolution operation and subsampling operation based on the concept of local window, the feature learning from the local to the whole is completed. This article uses the Naive Bayes model, logistic regression model, support vector regression model, and other mainstream methods to predict and compare the performance of technological innovation enterprises. I use the dropout method to reduce the impact of overfitting during training. The experimental results show that the deep neural network model method used in this article can achieve better prediction results than mainstream methods under the same characteristics. The experimental results on the data set confirm that the method of performance prediction of technology innovation enterprises based on deep learning used in this paper can effectively improve the results of performance prediction of technology innovation enterprises. C1 [Liu, Huan] Northwest Univ, Sch Econ & Management, Xian 710000, Shaanxi, Peoples R China. C3 Northwest University Xi'an RP Liu, H (corresponding author), Northwest Univ, Sch Econ & Management, Xian 710000, Shaanxi, Peoples R China. EM jiuyue010318@163.com CR Abudureheman A, 2020, J INTELL FUZZY SYST, V39, P1563, DOI 10.3233/JIFS-179929 [Anonymous], 2018, IEEE T IND INFORM, DOI [10.1109/TII.2018.2809730, DOI 10.1109/TII.2018.2809730] Beynon MJ, 2015, EXPERT SYST, V32, P141, DOI 10.1111/exsy.12067 Fan C, 2017, APPL ENERG, V195, P222, DOI 10.1016/j.apenergy.2017.03.064 Finn C, 2017, PR MACH LEARN RES, V70 Ge ZQ, 2019, IEEE T CONTR SYST T, V27, P323, DOI 10.1109/TCST.2017.2767022 Guo JJ, 2020, IEEE T WIREL COMMUN, V19, P2827, DOI [10.1109/TWC.2020.2968430, 10.1109/TNSE.2020.2997359] Han Y, 2019, IEEE T COMMUN, V67, P4020, DOI 10.1109/TCOMM.2019.2900625 He HT, 2019, IEEE WIREL COMMUN, V26, P77, DOI 10.1109/MWC.2019.1800447 Jin HP, 2016, CHEMOMETR INTELL LAB, V151, P228, DOI 10.1016/j.chemolab.2016.01.009 Borrajo ML, 2011, INT J NEURAL SYST, V21, P277, DOI 10.1142/S0129065711002833 Risquet C.P., 2009, INT C ICT INN 2009 S, P217 Saeed-Ul Hassan, 2019, INT J INTELL SYST, V34, P1935, DOI 10.1002/int.22129 Schmidhuber J, 2015, NEURAL NETWORKS, V61, P85, DOI 10.1016/j.neunet.2014.09.003 Souza FAA, 2014, CHEMOMETR INTELL LAB, V130, P192, DOI 10.1016/j.chemolab.2013.11.006 Truong HM, 2016, COMPUT HUM BEHAV, V55, P1185, DOI 10.1016/j.chb.2015.02.014 Vafeiadis T, 2015, SIMUL MODEL PRACT TH, V55, P1, DOI 10.1016/j.simpat.2015.03.003 Varisco M, 2018, IFAC PAPERSONLINE, V51, P7, DOI 10.1016/j.ifacol.2018.08.226 Wang K, 2019, IEEE ACCESS, V7, P22554, DOI 10.1109/ACCESS.2019.2894764 Wang XF, 2015, IEEE ACCESS, V3, P1379, DOI 10.1109/ACCESS.2015.2467174 Wen CK, 2018, IEEE WIREL COMMUN LE, V7, P748, DOI 10.1109/LWC.2018.2818160 Westerski A, 2011, IEEE INT ENTERP, P395, DOI 10.1109/EDOCW.2011.14 Xing WL, 2016, COMPUT HUM BEHAV, V58, P119, DOI 10.1016/j.chb.2015.12.007 Yang YW, 2019, IEEE ACCESS, V7, P36579, DOI 10.1109/ACCESS.2019.2901066 Yuan XF, 2018, IEEE T IND ELECTRON, V65, P1508, DOI 10.1109/TIE.2017.2733443 Yuan XF, 2017, IEEE T CONTR SYST T, V25, P1124, DOI 10.1109/TCST.2016.2579609 Zhang JM, 2021, J AMB INTEL HUM COMP, V12, P8427, DOI 10.1007/s12652-020-02572-0 Zhang JM, 2020, MULTIMED TOOLS APPL, V79, P15095, DOI 10.1007/s11042-018-6562-8 Zhang JX, 2019, IEEE T CYBERNETICS, V49, P198, DOI 10.1109/TCYB.2017.2771229 Zhen Z, 2021, NEURAL COMPUT APPL, V33, P755, DOI 10.1007/s00521-020-05106-z NR 30 TC 1 Z9 1 U1 2 U2 30 PU WILEY-HINDAWI PI LONDON PA ADAM HOUSE, 3RD FL, 1 FITZROY SQ, LONDON, WIT 5HE, ENGLAND SN 1530-8669 EI 1530-8677 J9 WIREL COMMUN MOB COM JI Wirel. Commun. Mob. Comput. PD SEP 25 PY 2021 VL 2021 AR 1682163 DI 10.1155/2021/1682163 PG 12 WC Computer Science, Information Systems; Engineering, Electrical & Electronic; Telecommunications WE Science Citation Index Expanded (SCI-EXPANDED) SC Computer Science; Engineering; Telecommunications GA WB1IF UT WOS:000703332200004 OA gold DA 2024-09-05 ER PT J AU Yang, YQ Chen, LBY He, WM Sun, DN Salas-Pilco, SZ AF Yang, Yuqin Chen, Linbaiyu He, Wenmeng Sun, Daner Salas-Pilco, Sdenka Zobeida TI Artificial Intelligence for Enhancing Special Education for K-12: A Decade of Trends, Themes, and Global Insights (2013-2023) SO INTERNATIONAL JOURNAL OF ARTIFICIAL INTELLIGENCE IN EDUCATION LA English DT Article; Early Access DE Artificial intelligence (AI); Special education; Special needs students; Bibliometric analysis ID ASSISTIVE TECHNOLOGIES; LEARNING-DISABILITIES; BIBLIOMETRIC ANALYSIS; AMBIENT INTELLIGENCE; MOBILE TECHNOLOGY; AUGMENTED REALITY; SCHOOL-STUDENTS; CHILDREN; DESIGN; NEEDS AB This paper provided a review of 210 studies on AI-enhanced special education from 2013 to 2023. Through bibliometric analysis, this review aimed to explore trends, focus areas, developments, and evolving themes of the field of AI for enhancing special education. Several noteworthy findings emerged from our analysis. The trend analysis of publications and citations revealed distinct phases, including an initial exploratory phase (2013-2016) followed by a period of rapid development (2017-2023). keyword co-occurrence networks and emergent word mapping highlight AI's transformative potential, especially in autism spectrum disorder interventions and advancements in learning environments. Emerging trends focus on mathematics learning outcomes and educational equity, evolving through phases of understanding AI's support and integrating advanced tools like virtual reality and educational robots. Topic clustering analysis revealed categories including cognitive rehabilitation and ethical AI integration, emphasizing personalized instructional environments. Implications for research stress the need to bolster foundational skills and explore innovative teaching methods, including addressing challenges in gamified learning and integrating AI seamlessly. The review reveals a need for larger sample sizes and longitudinal studies to enhance statistical robustness and real-world relevance. In educational practices, using AI tools like apps, robots, and simulations can boost engagement and support social and academic progress. Tailored interventions for specific learning difficulties, such as dyslexia and dyscalculia, through intelligent tutoring systems, offer promise for positive learning outcomes. Policymakers are crucial in facilitating technology integration by ensuring comprehensive teacher training, increased funding for tech infrastructure, and strong leadership. Initiatives targeting underserved communities aim to promote equity and access to transformative resources. This study highlights AI's transformative potential in special education, advocating for inclusive and personalized learning environments with ethical Al solutions to address unique challenges faced by special needs students. C1 [Chen, Linbaiyu; Salas-Pilco, Sdenka Zobeida] Cent China Normal Univ, Fac Artificial Intelligence Educ, 152 Luoyu Rd, Wuhan 430079, Hubei, Peoples R China. [He, Wenmeng] Wuhan Univ Technol, Wuhan, Hubei, Peoples R China. [Sun, Daner] Educ Univ Hong Kong, Dept Math & Informat Technol, Hong Kong, Peoples R China. [Yang, Yuqin] Cent China Normal Univ, Fac Artificial Intelligence Educ, Hubei Key Lab Digital Educ, Wuhan, Peoples R China. C3 Central China Normal University; Wuhan University of Technology; Education University of Hong Kong (EdUHK); Central China Normal University RP Salas-Pilco, SZ (corresponding author), Cent China Normal Univ, Fac Artificial Intelligence Educ, 152 Luoyu Rd, Wuhan 430079, Hubei, Peoples R China.; Yang, YQ (corresponding author), Cent China Normal Univ, Fac Artificial Intelligence Educ, Hubei Key Lab Digital Educ, Wuhan, Peoples R China. EM yangyuqin@ccnu.edu.cn; chenlinbaiyu@mails.ccnu.edu.cn; hwm20041016@whut.edu.cn; dsun@eduhk.hk; sdenkasp@ccnu.edu.cn OI Sun, Daner/0000-0002-9813-6306 FU National Natural Science Foundation of China FX No Statement AvailableDAS:The data of this study are available upon reasonable request from the corresponding author. CR Al Jaffal M, 2023, INT J MENT HEALTH PR, V25, P881, DOI 10.32604/ijmhp.2023.028982 Alqarni T, 2021, J BALT SCI EDUC, V20, P558, DOI 10.33225/jbse/21.20.558 Badilla-Quintana MG, 2022, AULA ABIERTA, V51, P227, DOI 10.17811/rifie.51.3.2022.227-236 Badilla-Quintana MG, 2020, SUSTAINABILITY-BASEL, V12, DOI 10.3390/su12198116 Bagon S, 2018, INT J EMERG TECHNOL, V13, P56, DOI 10.3991/ijet.v13i06.8051 Baldassarri S, 2021, UNIVERSAL ACCESS INF, V20, P239, DOI 10.1007/s10209-020-00725-8 Baragash RS, 2022, J SPEC EDUC TECHNOL, V37, P74, DOI 10.1177/0162643420910413 Bargagna S, 2019, TECHNOL KNOWL LEARN, V24, P315, DOI 10.1007/s10758-018-9366-z Bates T, 2020, INT J EDUC TECHNOL H, V17, DOI 10.1186/s41239-020-00218-x Becker BE, 2002, EDUC PSYCHOL-US, V37, P197, DOI 10.1207/S15326985EP3704_1 Berry RAW, 2005, LEARN DISABILITY Q, V28, P35, DOI 10.2307/4126972 Bono-Nuez A, 2014, J AMB INTEL SMART EN, V6, P57, DOI 10.3233/AIS-130241 Bridges SA, 2020, J SPEC EDUC TECHNOL, V35, P3, DOI 10.1177/0162643419836411 Burdette P.J., 2013, J ASYNCHRONOUS LEARN, V17, P65, DOI [DOI 10.24059/OLJ.VL7I3.327, 10.24059/olj.v17i3.327, DOI 10.24059/OLJ.V17I3.327] Cai S, 2014, COMPUT HUM BEHAV, V37, P31, DOI 10.1016/j.chb.2014.04.018 Cascales-Martínez A, 2017, EURASIA J MATH SCI T, V13, P355, DOI 10.12973/eurasia.2017.00621a Cataudella S, 2021, FRONT PSYCHOL, V11, DOI 10.3389/fpsyg.2020.611818 Cavus N, 2021, SUSTAINABILITY-BASEL, V13, DOI 10.3390/su131910532 Chang CHS, 2022, COMPUT HUM BEHAV, V128, DOI 10.1016/j.chb.2021.107085 Chang CY., 2018, International Journal of Mobile Learning and Organisation, V12, P373, DOI [10.1504/ijmlo.2018.095153, DOI 10.1504/IJMLO.2018.095153] Chen CM, 2019, UNIVERSAL ACCESS INF, V18, P141, DOI 10.1007/s10209-017-0576-2 Chen CM, 2006, J AM SOC INF SCI TEC, V57, P359, DOI 10.1002/asi.20317 Chen JH, 2023, OCEAN COAST MANAGE, V244, DOI 10.1016/j.ocecoaman.2023.106775 Chen J, 2020, EARLY CHILD RES Q, V53, P1, DOI 10.1016/j.ecresq.2020.02.002 Cheng SC, 2020, J COMPUT EDUC, V7, P131, DOI 10.1007/s40692-019-00150-8 Cheng YF, 2024, INTERACT TECHNOL SMA, V21, P44, DOI 10.1108/ITSE-04-2022-0045 Cinquin PA, 2019, COMPUT EDUC, V130, P152, DOI 10.1016/j.compedu.2018.12.004 Clabaugh C, 2019, ANNU REV CONTR ROBOT, V2, P33, DOI 10.1146/annurev-control-060117-104911 Cobo MJ, 2011, J AM SOC INF SCI TEC, V62, P1382, DOI 10.1002/asi.21525 Cook DJ, 2009, PERVASIVE MOB COMPUT, V5, P277, DOI 10.1016/j.pmcj.2009.04.001 D'Amico A, 2019, ROBOTICS, V8, DOI 10.3390/robotics8010008 Dai David Y., 2022, Journal of East China Normal University (Educational Sciences), V40, P4, DOI [10.16382/j.cnki.1000-5560.2022.11.002, DOI 10.16382/J.CNKI.1000-5560.2022.11.002] Di Lieto MC, 2020, FRONT PSYCHOL, V10, DOI 10.3389/fpsyg.2019.02813 Díez-Palomar J, 2021, FRONT PSYCHOL, V12, DOI 10.3389/fpsyg.2021.662867 Donmez M, 2023, EDUC INF TECHNOL, V28, P6515, DOI 10.1007/s10639-022-11456-z Donthu N, 2021, J BUS RES, V133, P285, DOI 10.1016/j.jbusres.2021.04.070 Donthu N, 2021, J INT MARKETING, V29, P1, DOI 10.1177/1069031X211004234 Donthu N, 2021, MARK INTELL PLAN, V39, P48, DOI 10.1108/MIP-02-2020-0066 Drigas A, 2022, SUSTAINABILITY-BASEL, V14, DOI 10.3390/su141610170 du Boulay B, 2016, IEEE INTELL SYST, V31, P76, DOI 10.1109/MIS.2016.93 Erdem E, 2022, J ARTIF INTELL RES, V73, P1131 Fonseca D, 2018, J EDUC COMPUT RES, V56, P940, DOI 10.1177/0735633117733995 Garnier P, 2023, J RES SPEC EDUC NEED, V23, P163, DOI 10.1111/1471-3802.12588 Genc Z, 2021, INT J EMERG TECHNOL, V16, P69, DOI 10.3991/ijet.v16i19.26025 Górriz JM, 2023, INFORM FUSION, V100, DOI 10.1016/j.inffus.2023.101945 Guarini A, 2021, J LEARN DISABIL-US, V54, P83, DOI 10.1177/0022219420950651 Guilford J.P., 1971, The analysis of intelligence Habgood MPJ, 2011, J LEARN SCI, V20, P169, DOI 10.1080/10508406.2010.508029 Han L., 2018, P INT C ED E LEARN M, V220, P608, DOI [DOI 10.2991/ICEEMT-18.2018.118, 10.2991/iceemt-18.2018.118] Hofmann V, 2021, LEARN CULT SOC INTER, V30, DOI 10.1016/j.lcsi.2021.100534 Holmes J, 2021, J ABNORM PSYCHOL, V130, P909, DOI 10.1037/abn0000710 Hutson J, 2022, SOCIETIES, V12, DOI 10.3390/soc12040102 Irvine KN, 2018, J NAT CONSERV, V46, P1, DOI 10.1016/j.jnc.2018.08.010 Ojeda-Castelo JJ, 2018, MULTIMED TOOLS APPL, V77, P24013, DOI 10.1007/s11042-018-5678-1 Kacetl J, 2019, EDUC SCI, V9, DOI 10.3390/educsci9030179 Khalfaoui A, 2020, SOC SCI-BASEL, V9, DOI 10.3390/socsci9070116 Khalil M, 2024, J COMPUT HIGH EDUC, V36, P202, DOI 10.1007/s12528-023-09363-4 Khamparia A, 2020, EDUC INF TECHNOL, V25, P3881, DOI 10.1007/s10639-020-10142-2 Khare SK, 2023, INFORM FUSION, V99, DOI 10.1016/j.inffus.2023.101898 Kong SC, 2024, RES PRACT TECH ENHAN, V19, DOI 10.58459/rptel.2024.19030 Kosanic A, 2022, CURR OPIN ENV SUST, V55, DOI 10.1016/j.cosust.2022.101159 Kosmas P, 2018, TECHTRENDS, V62, P594, DOI 10.1007/s11528-018-0294-5 Kramarenko T., 2021, Journal of Physics: Conference Series, V1840, DOI 10.1088/1742-6596/1840/1/012009 Kraus S, 2022, REV MANAG SCI, V16, P2577, DOI 10.1007/s11846-022-00588-8 Kumar S, 2022, TECHNOL FORECAST SOC, V175, DOI 10.1016/j.techfore.2021.121393 Kumar S, 2021, BUS STRATEG ENVIRON, V30, P3454, DOI 10.1002/bse.2813 Lane HC, 2023, INT J ARTIF INTELL E, V33, P427, DOI 10.1007/s40593-023-00359-w Lee H, 2012, INT J SCI EDUC, V34, P925, DOI 10.1080/09500693.2011.625505 Lin CY, 2016, DISPLAYS, V42, P51, DOI 10.1016/j.displa.2015.02.004 Liu J, 2022, ASIA-PAC EDUC RES, V31, P635, DOI 10.1007/s40299-021-00614-5 Liua Y., 2021, International Journal of Innovation, Creativity and Change, P891, DOI [10.53333/ijicc2013/15369, DOI 10.53333/IJICC2013/15369] Lorusso ML, 2018, SENSORS-BASEL, V18, DOI 10.3390/s18072368 Lu Y, 2019, J MANAG ANAL, V6, P1, DOI 10.1080/23270012.2019.1570365 Ma Y., 2017, e-Education Research, V38, P123 Maher AJ, 2021, PHYS EDUC SPORT PEDA, V26, P317, DOI 10.1080/17408989.2020.1806996 Makarius EE, 2020, J BUS RES, V120, P262, DOI 10.1016/j.jbusres.2020.07.045 Marino MT, 2023, J SPEC EDUC TECHNOL, V38, P404, DOI 10.1177/01626434231165977 Mazon C, 2023, EDUC INF TECHNOL, V28, P9325, DOI 10.1007/s10639-022-11129-x Mazon C, 2019, COMPUT HUM BEHAV, V93, P235, DOI 10.1016/j.chb.2018.12.001 Mehmood RM, 2017, SENSORS-BASEL, V17, DOI 10.3390/s17020317 Milano S, 2023, NAT MACH INTELL, V5, P333, DOI 10.1038/s42256-023-00644-2 Mitsea E, 2023, EDUC SCI, V13, DOI 10.3390/educsci13070639 Ali MA, 2021, SAGE OPEN, V11, DOI 10.1177/21582440211054494 Moral-Muñoz JA, 2020, PROF INFORM, V29, DOI 10.3145/epi.2020.ene.03 Mosher MA, 2022, REV J AUTISM DEV DIS, V9, P334, DOI 10.1007/s40489-021-00259-6 Mukherjee D, 2024, AUTISM, V28, P6, DOI 10.1177/13623613221133176 Muller CM, 2021, J APPL DEV PSYCHOL, V76, DOI 10.1016/j.appdev.2021.101327 Mustak M, 2021, J BUS RES, V124, P389, DOI 10.1016/j.jbusres.2020.10.044 Narin F, 1996, SCIENTOMETRICS, V36, P293, DOI 10.1007/BF02129596 Nguyen UP, 2020, SIMULAT GAMING, V51, P744, DOI 10.1177/1046878120941569 Nilsen S, 2020, INT J INCLUSIVE EDUC, V24, P980, DOI 10.1080/13603116.2018.1503348 Ouherrou N, 2019, EDUC INF TECHNOL, V24, P1777, DOI 10.1007/s10639-018-09852-5 Özgüç CS, 2016, EGIT BILIM, V41, P197, DOI 10.15390/EB.2016.6691 Bastias MP, 2021, PIXEL-BIT, P231, DOI 10.12795/pixelbit.78020 Pincock K, 2024, DISABIL SOC, V39, P571, DOI 10.1080/09687599.2022.2087488 Polychronis SC, 2023, FOCUS AUTISM DEV DIS, V38, P199, DOI 10.1177/10883576221124805 PRITCHARD A, 1969, J DOC, V25, P348 Qahmash AIM, 2018, TECHTRENDS, V62, P647, DOI 10.1007/s11528-018-0298-1 Que EN, 2021, PERTANIKA J SOC SCI, V29, P1487, DOI 10.47836/pjssh.29.3.02 Rashid S, 2021, PUBLICATIONS-BASEL, V9, DOI 10.3390/publications9020017 Rawat KS, 2021, COMPUT APPL ENG EDUC, V29, P1324, DOI 10.1002/cae.22388 Rimu AJ, 2022, TRANSPORT RES REC, V2676, P250, DOI 10.1177/03611981221092386 Ros M, 2013, INFORM SCIENCES, V220, P86, DOI 10.1016/j.ins.2011.10.005 Safi MF, 2023, INT J DEV DISABIL, V69, P555, DOI 10.1080/20473869.2021.1977596 Sánchez J, 2007, EDUC INF TECHNOL, V12, P149, DOI 10.1007/s10639-007-9039-3 Segaran TC, 2024, HELIYON, V10, DOI 10.1016/j.heliyon.2024.e28418 Sivakova V, 2020, PEDAGOGIKA, V92, P122 Smakman MHJ, 2022, FRONT ROBOT AI, V9, DOI 10.3389/frobt.2022.734955 Smith SJ, 2016, J SPEC EDUC TECHNOL, V31, P123, DOI 10.1177/0162643416660839 Snell J, 2018, AM EDUC RES J, V55, P40, DOI 10.3102/0002831217730010 Song P, 2020, ASIA PAC EDUC REV, V21, P473, DOI 10.1007/s12564-020-09640-2 Spitzer MWH, 2021, PLOS ONE, V16, DOI 10.1371/journal.pone.0255629 Starks AC, 2023, COMPUT EDUC, V193, DOI 10.1016/j.compedu.2022.104665 Sulaimani MF, 2023, ASSIST TECHNOL, V35, P235, DOI 10.1080/10400435.2022.2035017 Sun D, 2024, INTERACT LEARN ENVIR, V32, P693, DOI 10.1080/10494820.2022.2096640 Sun Y, 2024, EDUC STUD-UK, V50, P186, DOI 10.1080/03055698.2021.1937945 Takahashi I, 2018, INT J DES, V12, P111 Tan SZK, 2024, TECHNOL KNOWL LEARN, V29, P781, DOI 10.1007/s10758-023-09648-8 Tang KY, 2023, INTERACT LEARN ENVIR, V31, P2134, DOI 10.1080/10494820.2021.1875001 Tedre M, 2021, IEEE ACCESS, V9, P110558, DOI 10.1109/ACCESS.2021.3097962 Thapliyal M, 2022, J COMPUT HIGH EDUC, V34, P60, DOI 10.1007/s12528-021-09278-y Tohara AJT., 2021, Turkish Journal of Computer and Mathematics Education (Turcomat), V12, P3345, DOI DOI 10.17762/TURCOMAT.V12I9.5741 Tomaino MAE, 2022, BEHAV ANAL PRACT, V15, P243, DOI 10.1007/s40617-020-00549-1 Tomlin KA, 2021, J BUS ETHICS, V169, P731, DOI 10.1007/s10551-019-04294-6 Tosto C, 2021, VIRTUAL REAL-LONDON, V25, P879, DOI 10.1007/s10055-020-00485-z Ugalde L, 2021, FRONT PSYCHOL, V12, DOI 10.3389/fpsyg.2021.674033 Vahabzadeh A, 2018, BEHAV SCI-BASEL, V8, DOI 10.3390/bs8100085 Vaquero-Blasco MA, 2020, SENSORS-BASEL, V20, DOI 10.3390/s20216211 Verma S, 2020, J BUS RES, V118, P253, DOI 10.1016/j.jbusres.2020.06.057 Warnock M., 1978, SPECIAL ED NEEDS REP Wei QH, 2023, J BIOMED INFORM, V137, DOI 10.1016/j.jbi.2022.104254 Wu YP, 2020, RES PRACT PERS SEV D, V45, P178, DOI 10.1177/1540796919900955 Yakubu MN, 2020, EDUC INF TECHNOL, V25, P3515, DOI 10.1007/s10639-020-10110-w Yang X., 2019, ECNU Review of Education, V2, P347, DOI DOI 10.1177/2096531119878590 Yankova Z., 2020, Access to quality inclusive education for children and students with special educational needs, V92, P1300, DOI [10.37547/tajssei/volume03issue03-74, DOI 10.37547/TAJSSEI/VOLUME03ISSUE03-74] Yenioglu BY, 2023, INTERACT LEARN ENVIR, V31, P4572, DOI 10.1080/10494820.2021.1976802 Yildiz G, 2022, BRIT J EDUC TECHNOL, V53, P2029, DOI 10.1111/bjet.13235 Yu DJ, 2023, EXPERT SYST APPL, V225, DOI 10.1016/j.eswa.2023.120114 Yun-Fang Tu, 2018, International Journal of Mobile Learning and Organisation, V12, P42 Zafar A, 2015, COMPUT APPL ENG EDUC, V23, P542, DOI 10.1002/cae.21625 Zainuddin Z, 2020, EDUC RES REV-NETH, V30, DOI 10.1016/j.edurev.2020.100326 Zeki U, 2023, INTELL AUTOM SOFT CO, V36, P1121, DOI 10.32604/iasc.2023.032554 Zou D, 2022, EDUC INF TECHNOL, V27, P10585, DOI 10.1007/s10639-022-10991-z NR 143 TC 0 Z9 0 U1 3 U2 3 PU SPRINGER PI NEW YORK PA ONE NEW YORK PLAZA, SUITE 4600, NEW YORK, NY, UNITED STATES SN 1560-4292 EI 1560-4306 J9 INT J ARTIF INTELL E JI Int. J. Artif. Intell. Educ. PD 2024 AUG 19 PY 2024 DI 10.1007/s40593-024-00422-0 EA AUG 2024 PG 49 WC Computer Science, Interdisciplinary Applications WE Emerging Sources Citation Index (ESCI) SC Computer Science GA D0V9T UT WOS:001293460100001 DA 2024-09-05 ER PT J AU Mubin, O Alnajjar, F Trabelsi, Z Ali, L Parambil, MMA Zou, Z AF Mubin, Omar Alnajjar, Fady Trabelsi, Zouheir Ali, Luqman Parambil, Medha Mohan Ambali Zou, Zhao TI Tracking ChatGPT Research: Insights From the Literature and the Web SO IEEE ACCESS LA English DT Article DE Chatbots; Bibliometrics; Education; Artificial intelligence; Task analysis; Market research; Search engines; Natural language processing; Open Access; ChatGPT; artificial intelligence; natural language processing; NLM ID ARTIFICIAL-INTELLIGENCE; SCIENCE AB This article presents a scientometric and literature analysis of current research on ChatGPT, a conversational AI technology developed by OpenAI. Using various databases, 103 relevant articles were retrieved and analyzed through scientometric, quantitative, and application-based approaches. A Google trend analysis and comparison with other generative AI and chatbot technologies were also carried out. The study provides insights into the distribution of ChatGPT publications across different countries and regions, the network of co-occurring keywords, authorship analysis, article typology, and publishing entities. The findings offer a comprehensive overview of the current state of ChatGPT research, highlighting key directions for future research. The study finds that ChatGPT has gained significant attention and interest in online platforms, particularly in technology, education, and healthcare, and highlights potential ethical and legal concerns related to its use. Its applications extend to several literary and text generation areas. We do note that the sample of extracted publications is lower than anticipated due to the niche area of investigation. The article is relevant to researchers, practitioners, and policymakers interested in the field of AI-powered language models, especially ChatGPT. C1 [Mubin, Omar; Zou, Zhao] Western Sydney Univ, Sch Comp Data & Math Sci, Sydney, NSW 2751, Australia. [Alnajjar, Fady; Trabelsi, Zouheir; Ali, Luqman; Parambil, Medha Mohan Ambali] United Arab Emirates Univ UAEU, Coll IT, Al Ain, U Arab Emirates. C3 Western Sydney University RP Alnajjar, F (corresponding author), United Arab Emirates Univ UAEU, Coll IT, Al Ain, U Arab Emirates. EM fady.alnajjar@uaeu.ac.ae RI ALI, LUQMAN/LDF-2311-2024; Alnajjar, Fady/GRX-4246-2022 OI Alnajjar, Fady/0000-0001-6102-3765; Zou, Zhao/0000-0002-2867-7246; , Medha Mohan Ambali Parambil/0000-0002-9336-2902 CR Alawi F, 2023, OR SURG OR MED OR PA, V135, P313, DOI 10.1016/j.oooo.2023.01.002 Aljanabi M., Iraqi J. Comput. Sci. Math., V4, P65 Alshater M., 2022, M EXPLORING ROLE ART, DOI DOI 10.2139/SSRN.4312358 [Anonymous], 2023, ChatGPT Is Dangerous For Islamic Questions and Fatwas Antaki F, 2023, OPHTHALMOL SCI, V3, DOI 10.1016/j.xops.2023.100324 Armstrong Ashley B, 2023, Who's Afraid of ChatGPT? An Examination of ChatGPT's Implications for LegalWriting, DOI DOI 10.2139/SSRN.4336929 Bartneck C, 2011, SCIENTOMETRICS, V86, P487, DOI 10.1007/s11192-010-0281-x Bishop L., 2023, Tech. Rep., DOI [10.2139/ssrn.4338995, DOI 10.2139/SSRN.4338995] Bishop L., 2023, Res. Writ, DOI DOI 10.2139/SSRN.4338981 Blanco-González A, 2022, Arxiv, DOI arXiv:2212.08104 Brown T., 2020, ADV NEURAL INFORM PR, V33, P1877, DOI DOI 10.48550/ARXIV.2005.14165 Cahan P, 2023, STEM CELL REP, V18, P1, DOI 10.1016/j.stemcr.2022.12.009 Chatterjee J, 2023, PATTERNS, V4, DOI 10.1016/j.patter.2022.100676 Chen YR, 2023, Arxiv, DOI [arXiv:2212.10522, 10.48550/arXiv.2212.10522] Choi J., 2022, J. Legal Educ., V71 Cotton DRE, 2024, INNOV EDUC TEACH INT, V61, P228, DOI 10.1080/14703297.2023.2190148 Dave T, 2023, FRONT ARTIF INTELL, V6, DOI 10.3389/frai.2023.1169595 Day T, 2023, PROF GEOGR, V75, P1024, DOI 10.1080/00330124.2023.2190373 De Angelis L, 2023, FRONT PUBLIC HEALTH, V11, DOI 10.3389/fpubh.2023.1166120 Devlin J, 2019, Arxiv, DOI arXiv:1810.04805 Di Girolamo N, 2020, SCIENTOMETRICS, V125, P795, DOI 10.1007/s11192-020-03632-0 Dowling M, 2023, FINANC RES LETT, V53, DOI 10.1016/j.frl.2023.103662 Fuentes S. P., 2023, Tech. Rep, DOI [10.53593/n3579a, DOI 10.53593/N3579A] Gilson Aidan, 2023, JMIR Med Educ, V9, pe45312, DOI 10.2196/45312 Google Trends, About us Gupta B. M., 2019, Int. J. Inf. Dissemination Technol., V9, P18, DOI [10.5958/2249-5576.2019.00004.9, DOI 10.5958/2249-5576.2019.00004.9] Gwak GT., 2023, J Musculoskelet Sci Technol, V7, P8 Huh S, 2023, J EDUC EVAL HEALTH P, V20, DOI 10.3352/jeehp.2023.20.1 Iqbal W, 2019, SCIENTOMETRICS, V119, P1121, DOI 10.1007/s11192-019-03086-z Jiao WX, 2023, Arxiv, DOI [arXiv:2301.08745, DOI 10.48550/ARXIV.2301.08745, 10.48550/ARXIV.2301.08745] Kamran M, 2020, COMPUT ELECTR ENG, V81, DOI 10.1016/j.compeleceng.2019.106525 Kasneci E, 2023, LEARN INDIVID DIFFER, V103, DOI 10.1016/j.lindif.2023.102274 Klang E, 2023, J THROMB HAEMOST, V21, P1055, DOI 10.1016/j.jtha.2023.01.011 Kung Tiffany H, 2023, PLOS Digit Health, V2, pe0000198, DOI 10.1371/journal.pdig.0000198 Lehnert K, 2023, Arxiv, DOI arXiv:2301.08155 Li ZH, 2023, Arxiv, DOI arXiv:2304.14347 Lin JL, 2020, SCIENTOMETRICS, V124, P555, DOI 10.1007/s11192-020-03430-8 Lin ZC, 2023, ROY SOC OPEN SCI, V10, DOI 10.1098/rsos.230658 Lund Brady D., 2023, Library Hi Tech News, P26, DOI 10.1108/LHTN-01-2023-0009 Lund BD, 2023, J ASSOC INF SCI TECH, V74, P570, DOI 10.1002/asi.24750 Magnone E, 2014, SCIENTOMETRICS, V101, P179, DOI 10.1007/s11192-014-1378-4 Mann DL, 2023, JACC-BASIC TRANSL SC, V8, P221, DOI 10.1016/j.jacbts.2023.01.001 McKee F, 2022, Arxiv, DOI [arXiv:2212.11126, 10.5121/ijci.2023.120207] Mejia C, 2017, APPL SCI-BASEL, V7, DOI 10.3390/app7121316 Mhlanga D., 2023, FinTech and Artificial Intelligence for Sustainable Development: The Role of Smart Technologies in Achieving Development Goals, P387, DOI DOI 10.1007/978-3-031-37776-1172 Moran Chris., 2014, Guardian Mubin O, 2022, INT J HUM-COMPUT INT, V38, P1546, DOI 10.1080/10447318.2021.2004701 Nisar S., 2023, Is ChatGPT a good tool for T&CM students in studying pharmacology?, DOI [10.2139/ssrn.4324310, DOI 10.2139/SSRN.4324310] Nov Oded, 2023, arXiv, DOI DOI 10.48550/ARXIV.2301.1003537428540 O'Connor S, 2023, NURSE EDUC PRACT, V66, DOI 10.1016/j.nepr.2022.103537 onlinechatgpt, Online-ChatGPT-Optimizing Language Models for Dialogue-Onlinechatgpt.com Pavlik V. J., 2023, Journalism Mass Communication Educator, V78, P84, DOI DOI 10.1177/10776958221149577 Raban DR, 2020, SCIENTOMETRICS, V122, P1563, DOI 10.1007/s11192-020-03371-2 Rahimi F, 2023, ARCH MED RES, V54, P272, DOI 10.1016/j.arcmed.2023.03.004 Ray P. P., 2023, Internet of Things and CyberPhysical Systems, V3, P121, DOI DOI 10.1016/J.IOTCPS.2023.04.003 Reuters, 2023, REUTERS Sallam M, 2023, HEALTHCARE-BASEL, V11, DOI 10.3390/healthcare11060887 Sharma G, 2023, chemRxiv, DOI [10.26434/chemrxiv-2023-qgs3k, 10.26434/chemrxiv-2023-qgs3k, DOI 10.26434/CHEMRXIV-2023-QGS3K] Shen YQ, 2023, RADIOLOGY, V307, DOI 10.1148/radiol.230163 similarweb, ChatGPT Tops 25 Million Daily Visits Sison AJG, 2023, INT J HUM-COMPUT INT, DOI 10.1080/10447318.2023.2225931 Statista Infographics, 2023, Infographic: ChatGPT Sprints To One Million Users Tang XL, 2020, J INFORMETR, V14, DOI 10.1016/j.joi.2020.101094 Topsakal O., 2022, The Journal of Cognitive Systems, V7, P33, DOI 10.52876/jcs.1227392 van Eck NJ, 2010, SCIENTOMETRICS, V84, P523, DOI 10.1007/s11192-009-0146-3 Ventayen R. J. M., 2023, Soft Computing for Security Applications, P215 Xia WJ, 2021, J SCIENTOMETR RES, V10, P18, DOI 10.5530/jscires.10.1.3 Yeadon Will, 2023, Physics Education, DOI 10.1088/1361-6552/acc5cf Zhai Xiaoming, 2023, XRDS: Crossroads, The ACM Magazine for Students, P42, DOI 10.1145/3589649 Zhai X., 2022, CHATGPT USER EXPERIE, DOI DOI 10.2139/SSRN.4312418 Zhang BW, 2024, Arxiv, DOI [arXiv:2212.14548, DOI 10.48550/ARXIV.2212.14548] Zhang SR, 2022, Arxiv, DOI [arXiv:2206.05442, 10.48550/ARXIV.2206.05442, DOI 10.48550/ARXIV.2206.05442] Zhou JL, 2023, Arxiv, DOI arXiv:2305.10646 Zhou L, 2021, INF SYST E-BUS MANAG, V19, P757, DOI 10.1007/s10257-020-00461-9 Zhuo TY, 2023, Arxiv, DOI arXiv:2301.12867 NR 75 TC 0 Z9 0 U1 19 U2 19 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 2169-3536 J9 IEEE ACCESS JI IEEE Access PY 2024 VL 12 BP 30518 EP 30532 DI 10.1109/ACCESS.2024.3356584 PG 15 WC Computer Science, Information Systems; Engineering, Electrical & Electronic; Telecommunications WE Science Citation Index Expanded (SCI-EXPANDED) SC Computer Science; Engineering; Telecommunications GA JW4V1 UT WOS:001176194200001 OA gold DA 2024-09-05 ER PT J AU Tomic, BB Kijevcanin, AD Sevarac, ZV Jovanovic, JM AF Tomic, Bojan B. Kijevcanin, Anisja D. Sevarac, Zoran, V Jovanovic, Jelena M. TI An AI-based Approach for Grading Students' Collaboration SO IEEE TRANSACTIONS ON LEARNING TECHNOLOGIES LA English DT Article DE Collaboration; Codes; Software engineering; Measurement; Teamwork; Market research; Electronic mail; Automatic assessment tools; collaboration; computer science education; fuzzy systems; machine learning (ML); soft skills ID SOFT SKILLS AB Soft skills (such as communication and collaboration) are rarely addressed in programming courses, mostly because they are difficult to teach, assess, and grade. A quantitative, modular, AI-based approach for assessing and grading students' collaboration has been examined in this article. The pedagogical underpinning of the approach includes a pedagogical framework and a quantitative soft skill assessment rubric, which have been adapted and used in an extracurricular Java programming course. The objective was to identify pros and cons of using different AI methods within this approach when it comes to assessing and grading collaboration in group programming projects. More specifically, fuzzy rules and several machine learning methods (ML onward) have been examined to see which one would yield the best results regarding performance, interpretability/explainability of recommendations, and feasibility/practicality. The data used for training and testing span four academic years, and the results suggest that almost all of the examined AI methods, when used within the proposed AI-based approach, can provide adequate grading recommendations as long as teachers cover other aspects of the assessment not covered by the rubrics: code quality, plagiarism, and project completion. The fuzzy-rule-based method requires time and effort to be spent on (manual) creation and tuning of fuzzy rules and sets, whereas the examined ML methods require lesser initial investments but do need historical data for training. On the other hand, the fuzzy-rule-based method can provide the best explanations on how the assessment/grading was made-something that proved to be very important to teachers. C1 [Tomic, Bojan B.; Kijevcanin, Anisja D.; Sevarac, Zoran, V; Jovanovic, Jelena M.] Univ Belgrade, Fac Org Sci, Dept Software Engn, Belgrade 11000, Serbia. C3 University of Belgrade RP Tomic, BB (corresponding author), Univ Belgrade, Fac Org Sci, Dept Software Engn, Belgrade 11000, Serbia. EM bojan.tomic@fon.bg.ac.rs; anisjakijevcanin@gmail.com; zoran.sevarac@fon.bg.ac.rs; jelena.jovanovic@fon.bg.ac.rs OI Sevarac, Zoran/0000-0001-9418-6915; Jovanovic, Jelena/0000-0002-1904-0446 CR Ahmed F, 2012, IT PROF, V14, P44, DOI 10.1109/MITP.2012.7 Beckett C., 2018, THESIS UTAH STATE U Binkley M, 2012, ASSESSMENT AND TEACHING OF 21ST CENTURY SKILLS, P17, DOI 10.1007/978-94-007-2324-5_2 Capretz L. F., 2018, Psychol. Cogn. Sci. Open J, V4, pe1, DOI [DOI 10.17140/PCSOJ-4-E011, 10.17140/PCSOJ-4-e011] Cawsey A., 1993, User Modeling and User-Adapted Interaction, V3, P221, DOI 10.1007/BF01257890 Chawla NV, 2002, J ARTIF INTELL RES, V16, P321, DOI 10.1613/jair.953 Cingolani P, 2013, INT J COMPUT INT SYS, V6, P61, DOI 10.1080/18756891.2013.818190 Cinque M., 2016, Tuning Journal for Higher Education, V3, DOI [DOI 10.18543/TJHE-3(2)-2016PP389-427, https://doi.org/10.18543/tjhe-3(2)-2016pp389-427] Coman ID, 2014, J SYST SOFTWARE, V91, P124, DOI 10.1016/j.jss.2013.12.037 Dascalu M, 2015, INT J COMP-SUPP COLL, V10, P395, DOI 10.1007/s11412-015-9226-y Devedzic V, 2018, APPL MEAS EDUC, V31, P283, DOI 10.1080/08957347.2018.1495212 Eraslan S, 2020, J SYST SOFTWARE, V167, DOI 10.1016/j.jss.2020.110613 Florea R, 2018, LECT NOTES BUS INF P, V314, P54, DOI 10.1007/978-3-319-91602-6_4 Gitinabard N., 2020, P 13 INT C ED DAT MI, P409 GRASS Project, 2014, GRASS D2 2 SUPP DOC GRASS Project, 2015, GRASS D3 2 SUPP DOC GRASS Project, 2014, GRASS D2 2 PED APPR ITL Research, 2015, 21CLD STUD WORK RUBR ITL Research, 2015, 21CLD LEARN ACT RUBR Kumar Padhi D. P., 2014, IOSR J HUMANITIES SO, V19, P1 Le K, 2017, 2017 24TH ASIA-PACIFIC SOFTWARE ENGINEERING CONFERENCE WORKSHOPS (APSECW), P78, DOI 10.1109/APSECW.2017.19 Lee HJ, 2017, INNOV EDUC TEACH INT, V54, P418, DOI 10.1080/14703297.2015.1105754 Lee HJ, 2012, EDUC TECHNOL SOC, V15, P214 Main J.B., 2015, 2015 IEEE Frontiers in Education Conference (FIE), P1 Martinez-Maldonado R, 2021, J LEARN ANAL, V8, P126, DOI 10.18608/jla.2021.7227 Matturro G, 2019, J UNIVERS COMPUT SCI, V25, P16 Matturro G, 2013, 2013 6TH INTERNATIONAL WORKSHOP ON COOPERATIVE AND HUMAN ASPECTS OF SOFTWARE ENGINEERING (CHASE), P133, DOI 10.1109/CHASE.2013.6614749 Menardi G, 2014, DATA MIN KNOWL DISC, V28, P92, DOI 10.1007/s10618-012-0295-5 Miaomiao Wen, 2017, Proceedings of the ACM on Human-Computer Interaction, V1, DOI 10.1145/3134744 Molnar C., 2020, Lulu. com Näykki P, 2014, INT J EDUC RES, V68, P1, DOI 10.1016/j.ijer.2014.07.001 Northrup S., 2006, PROC 36 ANN C FRONT OECD, 2017, PISA 2015 DRAFT COLL Parikh R, 2018, 2018 2ND INTERNATIONAL CONFERENCE ON ELECTRONICS, MATERIALS ENGINEERING & NANO-TECHNOLOGY (IEMENTECH), P268 Petkovic D., 2016, 2016 IEEE FRONT ED C, P1, DOI 10.1109/FIE.2016.7757406 Radermacher Alex, P 44 ACM TECHN S COM, P525, DOI [10.1145/2445196.2445351, DOI 10.1145/2445196.2445351] Schneider B., 2016, ED MEDIA TECHNOLOGY, P99 Sedelmaier Y, 2015, INT J ENG PEDAGOG, V5, P20, DOI 10.3991/ijep.v5i1.4047 Som A, 2021, FRONT COMP SCI-SWITZ, V3, DOI 10.3389/fcomp.2021.728801 Tomic B, 2019, BRIT J EDUC TECHNOL, V50, P518, DOI 10.1111/bjet.12564 van der Duim L, 2007, PROC INT CONF SOFTW, P698 YE LR, 1995, MIS QUART, V19, P157, DOI 10.2307/249686 NR 42 TC 4 Z9 4 U1 13 U2 29 PU IEEE COMPUTER SOC PI LOS ALAMITOS PA 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1314 USA SN 1939-1382 J9 IEEE T LEARN TECHNOL JI IEEE Trans. Learn. Technol. PD JUN 1 PY 2023 VL 16 IS 3 BP 292 EP 305 DI 10.1109/TLT.2022.3225432 PG 14 WC Computer Science, Interdisciplinary Applications; Education & Educational Research WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Computer Science; Education & Educational Research GA J9IH3 UT WOS:001012684000001 DA 2024-09-05 ER PT J AU Wang, KS AF Wang, Kuansan TI Opportunities in Open Science With AI SO FRONTIERS IN BIG DATA LA English DT Article DE open science; big data; microsoft academic graph; artificial intelligence; research assessment AB Bolstered by ever affordable computational power and open big datasets, artificial intelligence (AI) technologies are bringing revolutionary changes to our lives. This article examines the current trends and elaborates the future potentials of AI in its role for making science more open and accessible. Based on the experience derived from a research project called Microsoft Academic, the advocates have reasons to be optimistic about the future of open science as the advanced discovery, ranking, and distribution technologies enabled by AI are offering strong incentives for scientists, funders and research managers to make research articles, data and software freely available and accessible. C1 [Wang, Kuansan] Microsoft Res, Redmond, WA 98052 USA. C3 Microsoft RP Wang, KS (corresponding author), Microsoft Res, Redmond, WA 98052 USA. EM kuansanw@microsoft.com CR Candela L, 2015, J ASSOC INF SCI TECH, V66, P1747, DOI 10.1002/asi.23358 Dong YX, 2017, KDD'17: PROCEEDINGS OF THE 23RD ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, P1437, DOI 10.1145/3097983.3098016 Fortunato S, 2018, SCIENCE, V359, DOI 10.1126/science.aao0185 Gibbs P.E, 2013, PRESPACETIME J, V4, P7 Gleeson P, 2017, NEURON, V96, P964, DOI 10.1016/j.neuron.2017.10.013 HARARI YuVAL NoAH, 2011, SAPIENS: A BRIEF HISToRY oF HuMANKIND, V1st Kanakia A, 2019, WWW 2019, DOI [10.1145/3308558.3313700, DOI 10.1145/3308558.3313700] Li Y, 2018, PLOS ONE, V13, DOI 10.1371/journal.pone.0201885 Mann F, 2009, COMMUN ACM, V52, P135, DOI 10.1145/1467247.1467279 Microsoft Academic FAQ, DOES MICR AC RANK PU Osborne R, 2015, ONLINE INFORM REV, V39, P637, DOI 10.1108/OIR-03-2015-0083 Perkel J, 2016, NATURE, V538, P127, DOI 10.1038/538127a Pinfield S, 2016, SAGE OPEN, V6, DOI 10.1177/2158244015625447 Piwowar H, 2018, PEERJ, V6, DOI 10.7717/peerj.4375 Piwowar H, 2013, NATURE, V493, P159, DOI 10.1038/493159a Rougier NP, 2017, PEERJ COMPUT SCI, DOI 10.7717/peerj-cs.142 Shen ZH, 2018, 56TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2018): PROCEEDINGS OF SYSTEM DEMONSTRATIONS, P87 Sinha A, 2015, WWW'15 COMPANION: PROCEEDINGS OF THE 24TH INTERNATIONAL CONFERENCE ON WORLD WIDE WEB, P243, DOI 10.1145/2740908.2742839 Solomon DJ, 2012, J AM SOC INF SCI TEC, V63, P98, DOI 10.1002/asi.21660 NR 19 TC 4 Z9 4 U1 5 U2 21 PU FRONTIERS MEDIA SA PI LAUSANNE PA AVENUE DU TRIBUNAL FEDERAL 34, LAUSANNE, CH-1015, SWITZERLAND EI 2624-909X J9 FRONT BIG DATA JI Front. Big Data PD SEP 27 PY 2019 VL 2 AR 26 DI 10.3389/fdata.2019.00026 PG 4 WC Computer Science, Information Systems; Computer Science, Interdisciplinary Applications; Multidisciplinary Sciences WE Emerging Sources Citation Index (ESCI) SC Computer Science; Science & Technology - Other Topics GA TW9KI UT WOS:000682708800001 PM 33693349 OA Green Published, gold DA 2024-09-05 ER PT J AU Oosthuizen, R Pretorius, L AF Oosthuizen, Rudolph Pretorius, Leon TI Analysis of INCOSE Systems Engineering journal and international symposium research topics SO SYSTEMS ENGINEERING LA English DT Article DE bibliometrics; natural language processing; research; systems engineering; topic modeling ID TECHNOLOGY; SCIENCE AB The pressure on systems engineering is ever-increasing to support the development and implementation of systems that meet a complex environment's demands. As a growing discipline, systems engineering requires insight into past research to identify opportunities for future growth. Analyzing the bibliometric data on published research provides valuable information on a scientific discipline's past progress and future prospects. Therefore, this paper extracts the research topics published in INCOSE's journal Systems Engineering and the annual international symposium proceedings to analyze their composition and allocation to papers. The implemented process applies natural language processing and topic modeling to extract the main topics from these papers' titles and abstracts. Analyzing these research topics' composition and mapping them to processed articles helps to understand their relative importance. The analysis's output confirms the importance of modeling in systems engineering, as it is the most popular topic. The additional focus of research papers on the systems engineering process, practice, and methodologies also indicates that the field is still growing and evolving. Some important topics to systems engineering, which were not found as prominent topics, are humans' roles in systems, verification and validation, and other specialty fields. This new knowledge about the structure of research into systems engineering can identify future research project opportunities to continue growing the field. C1 [Oosthuizen, Rudolph] CSIR, Def & Safety, Pretoria, South Africa. [Oosthuizen, Rudolph; Pretorius, Leon] Univ Pretoria, Grad Sch Technol Management, Pretoria, South Africa. C3 Council for Scientific & Industrial Research (CSIR) - South Africa; University of Pretoria RP Oosthuizen, R (corresponding author), Univ Pretoria, Grad Sch Technol Management, Pretoria, South Africa. EM rudolph.oosthuizen@up.ac.za RI Pretorius, Leon/M-7573-2017; Oosthuizen, Rudolph/AAH-9253-2021 OI Pretorius, Leon/0000-0002-2842-3596; Oosthuizen, Rudolph/0000-0002-2333-6995 CR Agrawal A, 2018, INFORM SOFTWARE TECH, V98, P74, DOI 10.1016/j.infsof.2018.02.005 [Anonymous], 2015, Systems Engineering Handbook: A Guide for System Life Cycle Pro- cesses and Activities Antons D, 2016, J PROD INNOVAT MANAG, V33, P726, DOI 10.1111/jpim.12300 Aria M, 2017, J INFORMETR, V11, P959, DOI 10.1016/j.joi.2017.08.007 Asmussen CB, 2019, J BIG DATA-GER, V6, DOI 10.1186/s40537-019-0255-7 Axelsson J, 2015, 2015 10th System of Systems Engineering Conference (SoSE), P18, DOI 10.1109/SYSOSE.2015.7151918 Bashri M. F. A., 2017, PROC 5 INT C INF COM, P1 Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993 Brill J.H., 1998, Systems Engineering, V1, P258, DOI [10.1002/(SICI)1520-6858(1998)1:43.0.CO;2-E, DOI 10.1002/(SICI)15206858(1998)] Broniatowski DA, 2018, SYSTEMS ENG, V21, P259, DOI 10.1002/sys.21426 Chitra, 2015, INT J INNOVATIONS EN, V5 Cook SC., 2013, INCOSE INT S, V23, P933 Eker S, 2019, ENVIRON MODELL SOFTW, V117, P43, DOI 10.1016/j.envsoft.2019.03.009 Ferris TLJ, 2009, P 7 ANN C SYST ENG R, P20 Ferris TLJ., 2009, INCOSE INT S, V19, P1378 Gonzalez-Aleu F., 2015, P INT ANN C AM SOC E Hagen L, 2018, INFORM PROCESS MANAG, V54, P1292, DOI 10.1016/j.ipm.2018.05.006 Hecking T, 2019, RES EVALUAT, V28, P263, DOI 10.1093/reseval/rvz015 Hood WW, 2001, SCIENTOMETRICS, V52, P291, DOI 10.1023/A:1017919924342 Isoaho K, 2021, POLICY STUD J, V49, P300, DOI 10.1111/psj.12343 Jia YX, 2018, COMPUT METH PROG BIO, V166, P19, DOI 10.1016/j.cmpb.2018.08.017 Jiang HC, 2016, RENEW SUST ENERG REV, V57, P226, DOI 10.1016/j.rser.2015.12.194 Kalantari Ali, 2017, Journal of Big Data, V4, DOI 10.1186/s40537-017-0088-1 Kuhn T.S., 1962, The structure of scientific revolutions Kunc M, 2018, J SIMUL, V12, P115, DOI 10.1080/17477778.2018.1468950 Lamba M, 2019, SCIENTOMETRICS, V120, P477, DOI 10.1007/s11192-019-03137-5 Lee H, 2018, J TECHNOL TRANSFER, V43, P1291, DOI 10.1007/s10961-017-9561-4 Li J, 2015, PROCEDIA ENGINEER, V84, P70, DOI 10.1016/j.proeng.2014.10.411 Lin JR, 2016, COMPUT-AIDED CIV INF, V31, P18, DOI 10.1111/mice.12151 Maier D, 2018, COMMUN METHODS MEAS, V12, P93, DOI 10.1080/19312458.2018.1430754 Muller G, 2013, PROCEDIA COMPUT SCI, V16, P1092, DOI 10.1016/j.procs.2013.01.115 Oosthuizen R., 2020, Bibliometric Analysis of Technology Management Research Topic Trends Patel F., 2012, International Journal of Advanced Computer Research, V2, P243 Rose ME, 2019, SOFTWAREX, V10, DOI 10.1016/j.softx.2019.100263 Sage A. P., 1998, SYSTEMS ENG, V1, P1 Sahraoui AEK, 2008, J SYST SCI SYST ENG, V17, P319, DOI 10.1007/s11518-008-5083-9 Squires Alice., 2012, INT COUNCIL SYSTEMS, V22, P1967 Suominen A, 2016, J ASSOC INF SCI TECH, V67, P2464, DOI 10.1002/asi.23596 Tong Z., 2016, INT C COMP SCI ENG I, V6, DOI [DOI 10.5121/CSIT.2016.60616, 10.5121/csit.2016.60616] Valerdi R, 2009, SYSTEMS ENG, V12, P169, DOI 10.1002/sys.20117 Verma Dinesh, 2018, INSIGHT, V21, P48, DOI 10.1002/inst.12190 NR 41 TC 1 Z9 3 U1 3 U2 15 PU WILEY PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1098-1241 EI 1520-6858 J9 SYSTEMS ENG JI Syst. Eng. PD JUL PY 2021 VL 24 IS 4 BP 203 EP 220 DI 10.1002/sys.21575 EA MAR 2021 PG 18 WC Engineering, Industrial; Operations Research & Management Science WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Engineering; Operations Research & Management Science GA TH9HD UT WOS:000635351900001 OA Green Submitted DA 2024-09-05 ER PT J AU Zhou, YZ Lin, ZP Tu, L Shi, JH Yang, YL AF Zhou, Yuzhong Lin, Zhengping Tu, Liang Shi, Jiahao Yang, Yuliang TI Research on the Performance of Text Mining and Processing in Power Grid Networks SO EAI ENDORSED TRANSACTIONS ON SCALABLE INFORMATION SYSTEMS LA English DT Article DE Text mining; performance analysis; deep learning ID TRANSMISSION AB This paper employs deep learning technique to perform the research of text mining for power grid networks, focusing on fundamental elements such as loss and activation functions. Through some analysis and formulas, we explain how these functions contribute to deep learning. We also introduce major deep learning training models, including CNN and RNN, and provide visual aids to aid understanding. To demonstrate the impact of various factors on deep learning training, we employ control variable experiments to analyze the influence of factors such as learning rate, batch size, and data noise on model training trends. While the influence of hyperparameters and data noise are covered in this paper, other factors such as CPU and memory frequency, as well as GPU performance, also play a crucial role in deep learning training. Therefore, continuous adjustments to various factors are necessary to achieve optimal training results for deep learning models in power grid networks. C1 [Zhou, Yuzhong; Lin, Zhengping; Tu, Liang; Shi, Jiahao; Yang, Yuliang] Res Inst China Southern Power Grid, Guangzhou, Peoples R China. RP Zhou, YZ (corresponding author), Res Inst China Southern Power Grid, Guangzhou, Peoples R China. EM yuzhong_zhou@hotmail.com CR Cai Y, 2023, IEEE T COMMUN, V71, P256, DOI 10.1109/TCOMM.2022.3225186 Chaieb C, 2023, IEEE T COMMUN, V71, P187, DOI 10.1109/TCOMM.2022.3225163 Fang XR, 2023, IEEE T WIREL COMMUN, V22, P138, DOI 10.1109/TWC.2022.3191719 Fisch ATM, 2022, IEEE T SIGNAL PROCES, V70, P47, DOI 10.1109/TSP.2021.3125136 Gonzalez ME, 2022, IEEE T SIGNAL PROCES, V70, P158, DOI 10.1109/TSP.2021.3135689 Guo SA, 2023, IEEE T COMMUN, V71, P131, DOI 10.1109/TCOMM.2022.3222460 Gupta A, 2023, IEEE T COMMUN, V71, P199, DOI 10.1109/TCOMM.2022.3225460 Han JH, 2023, IEEE T VEH TECHNOL, V72, P162, DOI 10.1109/TVT.2022.3203056 Hong W, 2022, LECT NOTES COMPUT SC, V13787, P86, DOI 10.1007/978-3-031-23020-2_5 Hui HM, 2023, IEEE T WIREL COMMUN, V22, P107, DOI 10.1109/TWC.2022.3191361 Lin ZY, 2023, IEEE T COMMUN, V71, P282, DOI 10.1109/TCOMM.2022.3226190 Lu JG, 2023, EAI ENDORSED TRANS S, V10, DOI 10.4108/eetsis.v10i1.2527 Mosharafian S, 2023, IEEE T VEH TECHNOL, V72, P136, DOI 10.1109/TVT.2022.3202084 Orlando D, 2023, IEEE T WIREL COMMUN, V22, P205, DOI 10.1109/TWC.2022.3192225 Xiao F, 2023, IEEE T VEH TECHNOL, V72, P253, DOI 10.1109/TVT.2022.3205710 Yin J, 2023, IEEE T IND INFORM, V19, P5593, DOI 10.1109/TII.2022.3192027 Yin J, 2022, WORLD WIDE WEB, V25, P401, DOI 10.1007/s11280-021-00909-z ZHOU Y., 2022, EAI Endorsed Transactions on Scalable Information Systems, V10 Zhou YZ, 2023, EAI ENDORSED TRANS S, V10, DOI 10.4108/eetsis.v9i6.2642 NR 19 TC 0 Z9 0 U1 2 U2 2 PU INST COMPUTER SCIENCES, SOCIAL INFORMATICS & TELECOMMUNICATIONS ENG-ICST PI GHENT PA BEGIJNHOFLAAN 93, GHENT, 90000, BELGIUM SN 2032-9407 J9 EAI ENDORSED TRANS S JI EAI Endorsed Trans. Scalable Inform. Syst. PY 2023 VL 10 IS 5 AR 3094 DI 10.4108/eetsis.v10i4.3094 PG 7 WC Computer Science, Information Systems WE Emerging Sources Citation Index (ESCI) SC Computer Science GA IE4R4 UT WOS:001164642900002 OA gold DA 2024-09-05 ER PT J AU Das, K Patel, JD Sharma, A Shukla, Y AF Das, Kallol Patel, Jayesh D. Sharma, Anuj Shukla, Yupal TI Creativity in marketing: Examining the intellectual structure using scientometric analysis and topic modeling SO JOURNAL OF BUSINESS RESEARCH LA English DT Article DE Creativity; Marketing; Scientometric Analysis; Topic Modeling ID CONSUMER-BRAND RELATIONSHIPS; SERVICE EMPLOYEE CREATIVITY; ADVERTISING CREATIVITY; SOCIAL MEDIA; PRODUCT CREATIVITY; INNOVATION; CONSEQUENCES; TECHNOLOGY; IMPACT; FUTURE AB Creativity helps marketers better address customer needs, competitive actions, and challenges of an unpredictable environment. However, marketing academics have been debating the value added by creativity. This confusion can be best addressed by a comprehensive analysis of the creativity in marketing (CiM) literature, which we attempt to achieve. In this endeavor, we conducted citation, keyword, and authorship analyses from a corpus comprising 375 scholarly papers from 1973 to 2021. The most frequent keywords (e.g., advertising, co-creation, consumer creativity) may aid interested researchers in effectively exploring/understanding this domain. The domain's most productive journals (e.g., JBR, JA, P&M) are recommended target journals. We used structural topic modeling to extract ten key topics and content-analyzed them to develop an organizing framework. Furthermore, we used the six trending topics (e.g., creativity and branding, consumer creativity, new product creativity) to suggest implications for theory, practice, and future research. C1 [Das, Kallol] MICA, Ahmadabad, Gujarat, India. [Patel, Jayesh D.] Ganpat Univ, VM Patel Inst Management Ganpat, Ganpat Vidyanagar, Gujarat, India. [Sharma, Anuj] OP Jindal Global Univ, Jindal Global Business Sch, Sonipat, Haryana, India. [Shukla, Yupal] Univ Bologna, Dept Management, Bologna, Italy. C3 MICA; Ganpat University; O.P. Jindal Global University; University of Bologna RP Das, K (corresponding author), MICA, Ahmadabad, Gujarat, India. EM kallol.das@micamail.in; jayesh.patel@ganpatuniversity.ac.in; f09anujs@iimidr.ac.in; yupal.shukla3@unibo.it RI Patel, Jayesh D./AAM-4121-2020; Sharma, Anuj/JTS-4887-2023 OI Sharma, Anuj/0000-0002-6281-6115; Das, Kallol/0000-0002-3601-707X; Sharma, Anuj/0000-0001-6602-9285 CR ABERNATHY WJ, 1985, RES POLICY, V14, P3, DOI 10.1016/0048-7333(85)90021-6 Acar OA, 2018, MARKET LETT, V29, P177, DOI 10.1007/s11002-018-9454-9 Alexander B, 2016, J FASH MARK MANAG, V20, P254, DOI 10.1108/JFMM-09-2015-0075 Amabile T.M., 1996, Creativity in context: The social psychology of creativity AMABILE TM, 1983, J PERS SOC PSYCHOL, V45, P357, DOI 10.1037/0022-3514.45.2.357 Anderson N, 2014, J MANAGE, V40, P1297, DOI 10.1177/0149206314527128 Andrews J, 1996, J MARKETING RES, V33, P174, DOI 10.2307/3152145 Ang SH, 2007, J ACAD MARKET SCI, V35, P220, DOI 10.1007/s11747-007-0042-4 Animesh A, 2011, INFORM SYST RES, V22, P153, DOI 10.1287/isre.1090.0254 Aria M, 2017, J INFORMETR, V11, P959, DOI 10.1016/j.joi.2017.08.007 Ashley C, 2015, PSYCHOL MARKET, V32, P15, DOI 10.1002/mar.20761 Baack DW, 2016, IND MARKET MANAG, V55, P169, DOI 10.1016/j.indmarman.2015.10.001 Baker HK, 2023, CONTEMP ACCOUNT RES, V40, P196, DOI 10.1111/1911-3846.12779 Bayus BL, 2013, MANAGE SCI, V59, P226, DOI 10.1287/mnsc.1120.1599 Bicen P, 2014, J BUS RES, V67, P2877, DOI 10.1016/j.jbusres.2012.06.007 Bilby J, 2023, J ADVERTISING, V52, P57, DOI 10.1080/00913367.2021.1981497 Bilby J, 2016, J ADVERTISING RES, V56, P245, DOI 10.2501/JAR-2016-018 Bollinger SR, 2020, EUR J INNOV MANAG, V23, P214, DOI 10.1108/EJIM-07-2018-0153 Bonchek M., 2017, HARVARD BUS REV, V22, P2 Bornmann L, 2008, J DOC, V64, P45, DOI 10.1108/00220410810844150 Bose M, 2013, J CONSUM MARK, V30, P400, DOI 10.1108/JCM-02-2013-0475 Bruner Jerome S., 1962, The conditions of creativity, P1, DOI DOI 10.1037/13117-001 Burroughs JE, 2004, J CONSUM RES, V31, P402, DOI 10.1086/422118 CALLON M, 1983, SOC SCI INFORM, V22, P191, DOI 10.1177/053901883022002003 Camarero C, 2019, J TRAVEL TOUR MARK, V36, P144, DOI 10.1080/10548408.2018.1497567 Castillo-Vergara M, 2018, J BUS RES, V85, P1, DOI 10.1016/j.jbusres.2017.12.011 Chang SH, 2015, J TRAVEL TOUR MARK, V32, P438, DOI 10.1080/10548408.2014.908158 Chen LS, 2021, ASIA PAC J MARKET LO, V33, P1630, DOI 10.1108/APJML-05-2020-0363 Coelho F, 2010, J SERV RES-US, V13, P426, DOI 10.1177/1094670510369379 Das K, 2022, MARK INTELL PLAN, V40, P693, DOI 10.1108/MIP-11-2021-0393 Dean D, 2019, ASIA PAC J TOUR RES, V24, P393, DOI 10.1080/10941665.2019.1572631 Donthu N, 2021, J BUS RES, V133, P285, DOI 10.1016/j.jbusres.2021.04.070 El-Murad J, 2004, J ADVERTISING RES, V44, P188, DOI 10.1017/S0021849904040097 Eyvazian M, 2008, INT J ADV MANUF TECH, V39, P261, DOI 10.1007/s00170-007-1213-7 Felber J., 2020, IMPORTANCE CREATIVIT Fetscherin M, 2015, J BUS RES, V68, P380, DOI 10.1016/j.jbusres.2014.06.010 Finch D, 2013, J MARKET EDUC, V35, P54, DOI 10.1177/0273475312465091 Fischer G, 2000, KNOWL-BASED SYST, V13, P527, DOI 10.1016/S0950-7051(00)00065-4 Gouvea R., 2018, Creat. Ind. J, V11, P22, DOI [https://doi.org/10.1080/17510694.2017.1416529, DOI 10.1080/17510694.2017.1416529] Gretzel U, 2009, TOUR ANAL, V14, P471, DOI 10.3727/108354209X12596287114219 Groza MD, 2016, J BUS RES, V69, P4185, DOI 10.1016/j.jbusres.2016.03.006 Guiltinan J, 2009, J BUS ETHICS, V89, P19, DOI 10.1007/s10551-008-9907-9 HAMEL G, 1991, HARVARD BUS REV, V69, P81 Herd KB, 2019, J CONSUM RES, V46, P36, DOI 10.1093/jcr/ucy058 Hewer P, 2010, J MARKET MANAG-UK, V26, P428, DOI 10.1080/02672570903458730 Hildebrand C, 2013, INFORM SYST RES, V24, P14, DOI 10.1287/isre.1120.0455 Hu N, 2019, TOURISM MANAGE, V72, P417, DOI 10.1016/j.tourman.2019.01.002 Hur WM, 2021, ASIA PAC J MARKET LO, V33, P888, DOI 10.1108/APJML-03-2019-0138 Hur WM, 2016, J SERV MARK, V30, P302, DOI 10.1108/JSM-10-2014-0342 Im S, 2004, J MARKETING, V68, P114, DOI 10.1509/jmkg.68.2.114.27788 Im S, 2013, J PROD INNOVAT MANAG, V30, P170, DOI 10.1111/j.1540-5885.2012.00887.x Jensen MB, 2009, J BRAND MANAG, V16, P468, DOI 10.1057/palgrave.bm.2550138 Jimenez R, 2020, WHY YOU SHOULD INCLU Kampylis PG, 2010, J CREATIVE BEHAV, V44, P191, DOI 10.1002/j.2162-6057.2010.tb01333.x Kandampully J, 2016, J HOSP TOUR MANAG, V29, P154, DOI 10.1016/j.jhtm.2016.07.003 KELLY G, 1982, IND MARKET MANAG, V11, P105, DOI 10.1016/0019-8501(82)90003-7 Kim N, 2013, J PROD INNOVAT MANAG, V30, P136, DOI 10.1111/j.1540-5885.2012.00992.x Kneller GeorgeF., 1965, ART SCI CREATIVITY Kozinets RV, 2008, J MACROMARKETING, V28, P339, DOI 10.1177/0276146708325382 Kraus S, 2022, INT J INFORM MANAGE, V63, DOI 10.1016/j.ijinfomgt.2021.102466 Kraus S, 2023, J SMALL BUS MANAGE, V61, P1095, DOI 10.1080/00472778.2021.1955128 Kraus S, 2020, INT ENTREP MANAG J, V16, P1023, DOI 10.1007/s11365-020-00635-4 Kristensson P, 2004, J PROD INNOVAT MANAG, V21, P4, DOI 10.1111/j.0737-6782.2004.00050.x Kucharska W, 2018, J PROD BRAND MANAG, V27, P249, DOI 10.1108/JPBM-01-2017-1391 Kuhn KD, 2018, TRANSPORT RES C-EMER, V87, P105, DOI 10.1016/j.trc.2017.12.018 Kumar V, 2018, J MARKETING, V82, P1, DOI 10.1509/jm.82.41 Lalicic L, 2019, TECHNOL FORECAST SOC, V144, P233, DOI 10.1016/j.techfore.2017.02.024 Lee J, 2016, INT J INFORM MANAGE, V36, P360, DOI 10.1016/j.ijinfomgt.2016.01.001 Lee T, 2021, J RETAIL CONSUM SERV, V63, DOI 10.1016/j.jretconser.2021.102726 Lehnert K, 2014, J ADVERTISING, V43, P274, DOI 10.1080/00913367.2013.851630 Levitt T, 2002, HARVARD BUS REV, V80, P137 Luo H, 2021, MANAGE SCI, V67, P6358, DOI 10.1287/mnsc.2020.3815 MacInnis DJ, 2011, J MARKETING, V75, P136, DOI 10.1509/jmkg.75.4.136 Maia SC, 2019, SCIENTOMETRICS, V120, P929, DOI 10.1007/s11192-019-03165-1 Martinaityte I, 2019, J MANAGE, V45, P728, DOI 10.1177/0149206316672532 Mas-Tur A, 2020, REV MANAG SCI, V14, P933, DOI 10.1007/s11846-020-00406-z Meinel M, 2020, EUR MANAG J, V38, P661, DOI 10.1016/j.emj.2020.02.002 Miao CF, 2016, J BUS RES, V69, P6021, DOI 10.1016/j.jbusres.2016.05.017 Modig E, 2020, J ADVERTISING RES, V60, P324, DOI 10.2501/JAR-2019-009 Modig E, 2014, J PROD BRAND MANAG, V23, P452, DOI 10.1108/JPBM-06-2014-0651 Moldovan S, 2019, J INTERACT MARK, V47, P102, DOI 10.1016/j.intmar.2019.02.004 Moreau CP, 2016, J MARKETING RES, V53, P18, DOI 10.1509/jmr.13.0499 Moreau CP, 2005, J CONSUM RES, V32, P13, DOI 10.1086/429597 Mukherjee D, 2022, J BUS RES, V148, P101, DOI 10.1016/j.jbusres.2022.04.042 Nakata C, 2018, J PROD INNOVAT MANAG, V35, P939, DOI 10.1111/jpim.12436 O'Connor TS, 2009, J BUS RES, V62, P1002, DOI 10.1016/j.jbusres.2008.09.013 Okhuysen G, 2011, ACAD MANAGE REV, V36, P6, DOI 10.5465/amr.2011.55662498 Pandey N, 2023, CORP GOV-OXFORD, V31, P127, DOI 10.1111/corg.12444 Pera R, 2021, J BUS RES, V128, P222, DOI 10.1016/j.jbusres.2021.01.058 Pitta DA, 2008, J CONSUM MARK, V25, P137, DOI 10.1108/07363760810870635 Piyathasanan B, 2018, J SERV MARK, V32, P19, DOI 10.1108/JSM-02-2017-0044 Powell S, 2008, J CONSUM MARK, V25, P158, DOI 10.1108/07363760810870653 Qiao F, 2022, J PROD BRAND MANAG, V31, P177, DOI 10.1108/JPBM-05-2019-2363 Radhakrishnan S, 2017, PLOS ONE, V12, DOI 10.1371/journal.pone.0172778 Rank J, 2004, APPL PSYCHOL-INT REV, V53, P518, DOI 10.1111/j.1464-0597.2004.00185.x Rauwers F, 2018, INT J ADVERT, V37, P749, DOI 10.1080/02650487.2018.1480167 RHODES M, 1961, PHI DELTA KAPPAN, V42, P305 Richards G, 2006, TOURISM MANAGE, V27, P1209, DOI 10.1016/j.tourman.2005.06.002 Roberts ME, 2019, J STAT SOFTW, V91, P1, DOI 10.18637/jss.v091.i02 Roberts ME, 2016, J AM STAT ASSOC, V111, P988, DOI 10.1080/01621459.2016.1141684 Roggeveen AL, 2021, J RETAILING, V97, P81, DOI 10.1016/j.jretai.2020.11.006 Rosa JA, 2014, J BUS RES, V67, P386, DOI 10.1016/j.jbusres.2012.12.023 Rosengren S, 2020, J MARKETING, V84, P39, DOI 10.1177/0022242920929288 Rovelli P, 2022, J FAM BUS STRATEG, V13, DOI 10.1016/j.jfbs.2021.100422 Ryan RM, 2000, CONTEMP EDUC PSYCHOL, V25, P54, DOI 10.1006/ceps.1999.1020 Sasser SL, 2008, J ADVERTISING, V37, P5, DOI 10.2753/JOA0091-3367370401 Schlee RP, 2010, J MARKET EDUC, V32, P341, DOI 10.1177/0273475310380881 Septianto F, 2022, ASIA PAC J MARKET LO, V34, P1145, DOI 10.1108/APJML-04-2021-0274 Sethi R, 2001, J MARKETING RES, V38, P73, DOI 10.1509/jmkr.38.1.73.18833 Sharma A, 2021, INT J INFORM MANAGE, V58, DOI 10.1016/j.ijinfomgt.2021.102316 Shen WB, 2020, J CLEAN PROD, V271, DOI 10.1016/j.jclepro.2020.122618 Simonton DK, 2000, AM PSYCHOL, V55, P151, DOI 10.1037/0003-066X.55.1.151 Singh S, 2020, TECHNOL FORECAST SOC, V154, DOI 10.1016/j.techfore.2020.119963 Slater SF, 2010, IND MARKET MANAG, V39, P551, DOI 10.1016/j.indmarman.2008.03.007 SMALL H, 1973, J AM SOC INFORM SCI, V24, P265, DOI 10.1002/asi.4630240406 Smith RE, 2007, MARKET SCI, V26, P819, DOI 10.1287/mksc.1070.0272 Smith RE, 2008, J ADVERTISING, V37, P47, DOI 10.2753/JOA0091-3367370404 Sok P, 2018, J SERV RES-US, V21, P365, DOI 10.1177/1094670517746778 Song M, 2001, ACAD MANAGE J, V44, P61, DOI 10.5465/3069337 Stathopoulou A, 2017, PSYCHOL MARKET, V34, P448, DOI 10.1002/mar.20999 Trujillo CA, 2017, INT J CONSUM STUD, V41, P576, DOI 10.1111/ijcs.12369 Vallaster C, 2019, J BUS RES, V99, P226, DOI 10.1016/j.jbusres.2019.02.050 Van Eck N.J., 2014, Measuring Scholarly Impact: Methods and Practice, P285, DOI 10.1007/978-3-319-10377-8_13(InEng.) Vanhala M, 2020, J BUS RES, V106, P46, DOI 10.1016/j.jbusres.2019.09.009 Verma S, 2021, J INTERACT MARK, V53, P111, DOI 10.1016/j.intmar.2020.07.001 Wales WJ, 2021, J BUS RES, V128, P564, DOI 10.1016/j.jbusres.2020.10.046 Wang F, 2020, MARK INTELL PLAN, V38, P653, DOI 10.1108/MIP-07-2019-0408 Wang XY, 2021, INT J HOSP MANAG, V94, DOI 10.1016/j.ijhm.2020.102846 WOODMAN RW, 1993, ACAD MANAGE REV, V18, P293, DOI 10.2307/258761 Xu B, 2020, J PROD BRAND MANAG, V29, P999, DOI 10.1108/JPBM-10-2018-2075 Yang HY, 2012, J CONSUM PSYCHOL, V22, P573, DOI 10.1016/j.jcps.2012.04.002 Yang X., 2004, MARKETING THEOR, V4, P31, DOI DOI 10.1177/1470593104044086 Zampetakis LA, 2014, J STRATEG MARK, V22, P59, DOI 10.1080/0965254X.2013.876062 NR 133 TC 9 Z9 9 U1 14 U2 53 PU ELSEVIER SCIENCE INC PI NEW YORK PA STE 800, 230 PARK AVE, NEW YORK, NY 10169 USA SN 0148-2963 EI 1873-7978 J9 J BUS RES JI J. Bus. Res. PD JAN PY 2023 VL 154 AR 113384 DI 10.1016/j.jbusres.2022.113384 EA OCT 2022 PG 21 WC Business WE Social Science Citation Index (SSCI) SC Business & Economics GA 6Y1TQ UT WOS:000896885200011 DA 2024-09-05 ER PT J AU Yang, ZB Zhang, SH Shen, WJ Xing, XF Gao, Y AF Yang, Zongbao Zhang, Shaohong Shen, Wenjun Xing, Xiaofei Gao, Ying TI Artificial Intelligence Related Publication Analysis Based on Citation Counting SO IEEE ACCESS LA English DT Article DE Artificial intelligence; citation counting; recommendation lists ID POWER-LAW DISTRIBUTIONS; CREDIT ALLOCATION; ARTICLES AB Artificial intelligence is one of the most popular technologies in recently years. Journals and conferences are widely viewed as major tools to track the development of technologies. Citation counting analysis is one of the most acknowledged metrics in spite of its controversial drawbacks. To the best of our knowledge, most methods based on citation counting do not taken into account the citation weight in different years. In this paper, we focused on citation counting and designed a scheme to calculate both the citation weight and weighting of the cited credits of different publications, which are used to verify the efficiency of the proposed scheme. We also evaluated the popularity of publications by calculating their popularity scores. Unlike other ranking regulations, our proposed measure was able to compare journals and conferences simultaneously. In addition, we extracted ranking results to calculate the pairwise similarity via a generalized measure, which provided a more objective insight into the differences between publications. Several interesting observations were found from the experimental results with real data. C1 [Yang, Zongbao; Zhang, Shaohong; Xing, Xiaofei; Gao, Ying] Guangzhou Univ, Sch Comp Sci & Educ Software, Guangzhou 510006, Guangdong, Peoples R China. [Shen, Wenjun] Shantou Univ, Med Coll, Shantou 515041, Peoples R China. C3 Guangzhou University; Shantou University RP Zhang, SH (corresponding author), Guangzhou Univ, Sch Comp Sci & Educ Software, Guangzhou 510006, Guangdong, Peoples R China. EM zimzsh@qq.com RI shen, Wen-jun/ACG-0761-2022 OI shen, Wen-jun/0000-0001-5150-1698 FU Scientific and Technological Project of Guangzhou [201607010053, 201607010191, 201604016045, 201707010284]; Natural Science Foundation of China [61772007, 61502292]; Guangdong Natural Science Foundation of China [2014A030313524, 2016A030313540]; Science and Technology Projects of Guangdong Province, China [2016B010127001]; Guangzhou Education Scientific Research Project [1201730714]; Education Reform Project of Guangdong Province under Research on Construction and Mining methods in Knowledge Graphs of Computer Sciences Courses Project [426, (2016)236]; Guangzhou Education Bureau Science Foundation [1201430560]; Postgraduate Educational Reform Project of Guangdong Province [2017JGXM-MS45]; Graduate Innovative Research Grant Program of Guangzhou University [2017GDJC-M15] FX This work was supported by the Scientific and Technological Project of Guangzhou under Project 201607010053, Project 201607010191, Project 201604016045, and Project 201707010284, in part by the Natural Science Foundation of China under Grant 61772007 and Grant 61502292, in part by the Guangdong Natural Science Foundation of China under Grant 2014A030313524 and Grant 2016A030313540, in part by the Science and Technology Projects of Guangdong Province, China, under Grant 2016B010127001, in part by the Funding of the Guangzhou Education Scientific Research Project under Grant 1201730714, in part by the 2016 Education Reform Project of Guangdong Province under Research on Construction and Mining methods in Knowledge Graphs of Computer Sciences Courses Project under Grant 426, File [(2016)236], in part bqy the Guangzhou Education Bureau Science Foundation under Grant 1201430560, in part by the Postgraduate Educational Reform Project of Guangdong Province under Grant 2017JGXM-MS45, and in part by the Graduate Innovative Research Grant Program of Guangzhou University under Grant 2017GDJC-M15. CR [Anonymous], BEAUTY MATH [Anonymous], 2010, Commun ACM, DOI [10.1145/1839676.1839701, DOI 10.1145/1839676.1839701] Bao P, 2017, SCIENTOMETRICS, V112, P595, DOI 10.1007/s11192-017-2335-9 Bouyssou D, 2016, J INFORMETR, V10, P183, DOI 10.1016/j.joi.2015.12.006 Calma A, 2017, SCIENTOMETRICS, V110, P1579, DOI 10.1007/s11192-016-2228-3 Chakraborty T., 2017, CORR Chakraborty T, 2018, SCIENTOMETRICS, V114, P1011, DOI 10.1007/s11192-017-2628-z Ding Y, 2011, INFORM PROCESS MANAG, V47, P80, DOI 10.1016/j.ipm.2010.01.002 Farooq M, 2017, IEEE ACCESS, V5, P19588, DOI 10.1109/ACCESS.2017.2744798 Farys R, 2017, J ASSOC INF SCI TECH, V68, P2201, DOI 10.1002/asi.23802 Franceschet M, 2010, Commun. ACM, V53, P129, DOI [10.1145/1859204.1859234, DOI 10.1145/1859204.1859234] HUBERT L, 1985, J CLASSIF, V2, P193, DOI 10.1007/BF01908075 Leydesdorff L, 2011, J AM SOC INF SCI TEC, V62, P1146, DOI 10.1002/asi.21511 Luo FH, 2018, SCIENTOMETRICS, V114, P1, DOI 10.1007/s11192-017-2571-z MACROBERTS MH, 1989, J AM SOC INFORM SCI, V40, P342, DOI 10.1002/(SICI)1097-4571(198909)40:5<342::AID-ASI7>3.0.CO;2-U Pal A., 2017, CORR Qian YF, 2017, SCIENTOMETRICS, V110, P1351, DOI 10.1007/s11192-016-2235-4 Shen HW, 2014, P NATL ACAD SCI USA, V111, P12325, DOI 10.1073/pnas.1401992111 Thelwall M., 2016, CORR Thelwall M, 2016, SCIENTOMETRICS, V108, P337, DOI 10.1007/s11192-016-1973-7 Thelwall M, 2016, J INFORMETR, V10, P454, DOI 10.1016/j.joi.2016.03.001 Thelwall M, 2016, J INFORMETR, V10, P336, DOI 10.1016/j.joi.2015.12.007 Thelwall M, 2015, J INFORMETR, V9, P263, DOI 10.1016/j.joi.2015.02.004 Thelwall M, 2014, J INFORMETR, V8, P824, DOI 10.1016/j.joi.2014.08.001 Wang CM, 2010, PROCEEDINGS OF THE ASME 29TH INTERNATIONAL CONFERENCE ON OCEAN, OFFSHORE AND ARCTIC ENGINEERING 2010, VOL 3, P203 Wang W, 2017, WWW'17 COMPANION: PROCEEDINGS OF THE 26TH INTERNATIONAL CONFERENCE ON WORLD WIDE WEB, P303, DOI 10.1145/3041021.3054159 Wu TY, 2010, DATA MIN KNOWL DISC, V21, P371, DOI 10.1007/s10618-009-0161-2 Yan E, 2010, J AM SOC INF SCI TEC, V61, P1635, DOI 10.1002/asi.21349 Zhang SH, 2012, PATTERN RECOGN, V45, P2214, DOI 10.1016/j.patcog.2011.11.017 Zitt M, 2012, SCIENTOMETRICS, V92, P485, DOI 10.1007/s11192-012-0697-6 NR 30 TC 2 Z9 2 U1 0 U2 22 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 2169-3536 J9 IEEE ACCESS JI IEEE Access PY 2018 VL 6 BP 52205 EP 52217 DI 10.1109/ACCESS.2018.2869140 PG 13 WC Computer Science, Information Systems; Engineering, Electrical & Electronic; Telecommunications WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Computer Science; Engineering; Telecommunications GA GX5OC UT WOS:000447797200001 OA gold DA 2024-09-05 ER PT J AU Jha, R Jbara, AA Qazvinian, V Radev, DR AF Jha, Rahul Jbara, Amjad-Abu Qazvinian, Vahed Radev, Dragomir R. TI NLP-driven citation analysis for scientometrics SO NATURAL LANGUAGE ENGINEERING LA English DT Article ID SCIENCE; INDEX; PREDICTORS; REFERENCES; AGREEMENT; ARTICLES; IMPACT; USAGE AB This paper summarizes ongoing research in Natural-Language-Processing-driven citation analysis and describes experiments and motivating examples of how this work can be used to enhance traditional scientometrics analysis that is based on simply treating citations as a ` vote' from the citing paper to cited paper. In particular, we describe our dataset for citation polarity and citation purpose, present experimental results on the automatic detection of these indicators, and demonstrate the use of such annotations for studying research dynamics and scientific summarization. We also look at two complementary problems that show up in Natural-Language-Processing-driven citation analysis for a specific target paper. The first problem is extracting citation context, the implicit citation sentences that do not contain explicit anchors to the target paper. The second problem is extracting reference scope, the target relevant segment of a complicated citing sentence that cites multiple papers. We show how these tasks can be helpful in improving sentiment analysis and citation-based summarization. C1 [Jha, Rahul; Jbara, Amjad-Abu] Microsoft Corp, Redmond, WA 98052 USA. [Jha, Rahul; Jbara, Amjad-Abu; Qazvinian, Vahed] Univ Michigan, Ann Arbor, MI 48109 USA. [Radev, Dragomir R.] Univ Michigan, EECS & SI, Ann Arbor, MI 48109 USA. C3 Microsoft; University of Michigan System; University of Michigan; University of Michigan System; University of Michigan RP Jha, R (corresponding author), Microsoft Corp, Redmond, WA 98052 USA. EM rajh@microsoft.com; amjada@microsoft.com; vahed@umich.edu; radev@umich.edu RI Radev, Dragomir/E-9641-2012 CR Abu-Jbara A., 2011, P 49 ANN M ASS COMP, P500 Abu-Jbara A., 2013, NAACL, P596 Abu-Jbara Amjad., 2012, NAACL-HLT, P80 [Anonymous], CITATION INDEXES [Anonymous], USE CITATION DATA WR [Anonymous], 2012, 2012 Conference of the North American Chapter of the Association for Computational Linguistics [Anonymous], 1995, P 33 ANN M ASS COMP [Anonymous], P 7 EUR C RES ADV TE [Anonymous], P LREC 2008 MARR MOR [Anonymous], LIT ANAL CHEM SCIENT [Anonymous], ARXIV E PRINTS [Anonymous], ARXIV E PRINTS [Anonymous], P EMN LP 06 SYDN AUS [Anonymous], 2009, P HUM LANG TECHN 200, DOI DOI 10.3115/1620754.1620839 [Anonymous], 2013, P 1 AUSTR WEB C SYDN [Anonymous], 1968, Public Knowledge: An Essay Concerning the Social Dimension of Science [Anonymous], 2004, P ASIS CHIC IL US [Anonymous], 2007, COLL RES LIBR NEWS, DOI DOI 10.5860/CRLN.68.5.7804 [Anonymous], P N AM CHAPT ASS COM [Anonymous], 2013, J ARTIF INTELL RES [Anonymous], THESIS Athar A., 2011, P ACL 2011 STUD SESS, P81 Athar Awais., 2012, PROC ACL WORKSHOP DE, P18 Bergstrom CT, 2008, J NEUROSCI, V28, P11433, DOI 10.1523/JNEUROSCI.0003-08.2008 Biber D, 1988, Variation across speech and writing, DOI [10.1017/CBO9780511621024, DOI 10.1017/CBO9780511621024] Bletsas A, 2009, J AM SOC INF SCI TEC, V60, P2577, DOI 10.1002/asi.21197 BONZI S, 1991, SCIENTOMETRICS, V21, P245, DOI 10.1007/BF02017571 BONZI S, 1982, J AM SOC INFORM SCI, V33, P208, DOI 10.1002/asi.4630330404 Bornmann L, 2014, J ASSOC INF SCI TECH, V65, P1288, DOI 10.1002/asi.23100 Braun T, 2006, SCIENTOMETRICS, V69, P169, DOI 10.1007/s11192-006-0147-4 Brody T, 2006, J AM SOC INF SCI TEC, V57, P1060, DOI 10.1002/asi.20373 Bunescu Razvan C, 2005, P C HUM LANG TECHN E Cheang B, 2014, J ASSOC INF SCI TECH, V65, P2581, DOI 10.1002/asi.23133 CHUBIN DE, 1975, SOC STUD SCI, V5, P423, DOI 10.1177/030631277500500403 Church K. W., 1988, Second Conference on Applied Natural Language Processing, P136 COHEN J, 1968, PSYCHOL BULL, V70, P213, DOI 10.1037/h0026256 Cormode G, 2013, J INFORMETR, V7, P718, DOI 10.1016/j.joi.2013.05.001 Ding Y, 2014, J ASSOC INF SCI TECH, V65, P1820, DOI 10.1002/asi.23256 Egghe L, 2014, J ASSOC INF SCI TECH, V65, P2152, DOI 10.1002/asi.23168 Elkiss A, 2008, J AM SOC INF SCI TEC, V59, P51, DOI 10.1002/asi.20707 Erkan G, 2004, J ARTIF INTELL RES, V22, P457, DOI 10.1613/jair.1523 Eysenbach G, 2011, J MED INTERNET RES, V13, DOI 10.2196/jmir.2012 Ferrara E, 2013, J AM SOC INF SCI TEC, V64, P2332, DOI 10.1002/asi.22976 Frandsen TF, 2013, J AM SOC INF SCI TEC, V64, P437, DOI 10.1002/asi.22785 Garfield E, 2006, INT J EPIDEMIOL, V35, P1123, DOI 10.1093/ije/dyl189 Gorraiz J, 2014, SCIENTOMETRICS, V101, P1077, DOI 10.1007/s11192-014-1271-1 Halevi G, 2013, J AM SOC INF SCI TEC, V64, P1903, DOI 10.1002/asi.22897 Haustein S, 2014, J ASSOC INF SCI TECH, V65, P656, DOI 10.1002/asi.23101 Heneberg P, 2013, J AM SOC INF SCI TEC, V64, P334, DOI 10.1002/asi.22753 Hou WR, 2011, BIOESSAYS, V33, P724, DOI 10.1002/bies.201100067 Jonkers K, 2014, SCIENTOMETRICS, V101, P1179, DOI 10.1007/s11192-014-1411-7 Kaplan D., 2009, Proceedings of the 2009 Workshop on Text and Citation Analysis for Scholarly Digital Libraries (NLPIR4DL), P88 Kim Hyun Duk, 2009, CIKM, P385, DOI DOI 10.1145/1645953.1646004 Klosik DF, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0113184 Kostoff RN, 2001, J AM SOC INF SCI TEC, V52, P1148, DOI 10.1002/asi.1181 Lafferty John, 2001, em Proceedings of the Eighteenth International Conference on Machine Learning LANDIS JR, 1977, BIOMETRICS, V33, P159, DOI 10.2307/2529310 Li R, 2014, J ASSOC INF SCI TECH, V65, P1007, DOI 10.1002/asi.23054 Liu JS, 2014, J ASSOC INF SCI TECH, V65, P2479, DOI 10.1002/asi.23135 Liu SB, 2014, SCIENTOMETRICS, V101, P1293, DOI 10.1007/s11192-014-1233-7 Liu YX, 2014, J ASSOC INF SCI TECH, V65, P281, DOI 10.1002/asi.22978 MACROBERTS MH, 1984, SOC STUD SCI, V14, P91, DOI 10.1177/030631284014001006 Milard B, 2014, J ASSOC INF SCI TECH, V65, P2459, DOI 10.1002/asi.23149 Morante R, 2012, SEM MONTREAL, V2012, P265 MORAVCSIK MJ, 1975, SOC STUD SCI, V5, P86, DOI 10.1177/030631277500500106 Nakov PreslavI., 2004, SIGIR, DOI DOI 10.1016/j.techfore.2018.05.018 Nanba H, 1999, IJCAI-99: PROCEEDINGS OF THE SIXTEENTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOLS 1 & 2, P926 Och FJ, 2003, COMPUT LINGUIST, V29, pc, DOI 10.1162/089120103321337421 Papineni K, 2002, 40TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, PROCEEDINGS OF THE CONFERENCE, P311, DOI 10.3115/1073083.1073135 Prathap G, 2014, J ASSOC INF SCI TECH, V65, P1506, DOI 10.1002/asi.23120 Qazvinian V., 2010, P 23 INT C COMP LING, P895 Qazvinian V, 2008, P 22 INT C COMP LING, V1, P689, DOI DOI 10.3115/1599081.1599168 Qazvinian V, 2010, ACL 2010: 48TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, P555 Quirk Randolph, 1985, A Comprehensive Grammar of the English Language Radev DR, 2013, LANG RESOUR EVAL, V47, P919, DOI 10.1007/s10579-012-9211-2 Radicchi F, 2013, SCIENTOMETRICS, V97, P627, DOI 10.1007/s11192-013-1027-3 Rafols I, 2010, SCIENTOMETRICS, V82, P263, DOI 10.1007/s11192-009-0041-y Shen JT, 2013, J AM SOC INF SCI TEC, V64, P2157, DOI 10.1002/asi.22890 Small H., 1982, PROGR COMMUNICATION, V3, P287 Socher R., 2013, ADV NEURAL INFORM PR, V26, DOI DOI 10.1371/JOURNAL.PONE.0073791 SPIEGELROSING I, 1977, SOC STUD SCI, V7, P97, DOI 10.1177/030631277700700111 Surowiecki, 2004, The wisdom of crowds why the many are smarter than the few and how collective wisdom shapes business, economies, societies, and nations Swales J. M., 1990, Genre analysis: English in academic and research settings Teufel S, 2006, INFORM RETRIEVAL SER, V20, P159 Thelwall M, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0064841 THOMPSON G, 1991, APPL LINGUIST, V12, P365, DOI 10.1093/applin/12.4.365 Velden T, 2013, J AM SOC INF SCI TEC, V64, P2405, DOI 10.1002/asi.22929 Vinkler P, 2010, CHANDOS INF PROF SER, P1 Waltman L, 2013, J INFORMETR, V7, P635, DOI 10.1016/j.joi.2013.04.001 Wan XJ, 2014, J ASSOC INF SCI TECH, V65, P2509, DOI 10.1002/asi.23151 White HD, 2004, APPL LINGUIST, V25, P89, DOI 10.1093/applin/25.1.89 Wilson T., 2005, Proceedings of HLT/EMNLP on Interactive Demonstrations -, P34 Xiaojun Wan, 2014, Journal of the Association for Information Science and Technology, V65, P1929, DOI 10.1002/asi.23083 Yarowsky David, 1995, 33 ANN M ASS COMP LI, P189, DOI 10.3115/981658.981684 Yin XS, 2011, INFORM PROCESS MANAG, V47, P53, DOI 10.1016/j.ipm.2010.03.010 Zhang CT, 2009, PLOS ONE, V4, DOI 10.1371/journal.pone.0005429 Zhao DZ, 2014, J ASSOC INF SCI TECH, V65, P2348, DOI 10.1002/asi.23107 NR 97 TC 55 Z9 62 U1 5 U2 71 PU CAMBRIDGE UNIV PRESS PI CAMBRIDGE PA EDINBURGH BLDG, SHAFTESBURY RD, CB2 8RU CAMBRIDGE, ENGLAND SN 1351-3249 EI 1469-8110 J9 NAT LANG ENG JI Nat. Lang. Eng. PD JAN PY 2017 VL 23 IS 1 BP 93 EP 130 DI 10.1017/S1351324915000443 PG 38 WC Computer Science, Artificial Intelligence; Linguistics; Language & Linguistics WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI); Arts & Humanities Citation Index (A&HCI) SC Computer Science; Linguistics GA EI1VN UT WOS:000392274300005 DA 2024-09-05 ER PT J AU Ali, N Halim, Z Hussain, SF AF Ali, Nisar Halim, Zahid Hussain, Syed Fawad TI An artificial intelligence-based framework for data-driven categorization of computer scientists: a case study of world's Top 10 computing departments SO SCIENTOMETRICS LA English DT Article DE Scientists ranking; Data driven decision-making; Artificial intelligence; Clustering; Classification; Research output measurement ID RANKING AUTHORS; CITATION ANALYSIS; INDEX AB The total number of published articles and the resulting citations are generally acknowledged as suitable criteria of the scientist's evaluation. However, it is challenging to determine the ranking of scientists as the value of their scientific work (at times) is not directly reflective of the abovementioned aspects. In this regard, multiple other elements needs to be examined in combination for better evaluating the scientific worth of an individual. This work presents a learning-based technique, i.e., an Artificial Intelligence (AI)-based solution towards categorizing scientists utilizing a multifaceted criteria. In this context, a novel ranking metric is proposed which is grounded on authorship, experience, publications count, total citations, i10-index, and h-index. To assess the proposed framework's performance, a dataset is collected considering the world's top ten computing departments and ten domestic ones. This results in a data of 1000 computer scientists. The dataset is preprocessed and afterwards three techniques for feature selection are employed, i.e., Mutual Information (MI), Chi-Square (X-2), and Fisher-Test (F-Test) to rank the features in the data. To validate the collected data, the framework has three clustering techniques as well, namely, k-medoids, k-means, and spectral clustering to identify the optimum number of heterogeneous groups. Three cluster validity indices are used to evaluate the clustering outcomes, namely, Calinski-Harabasz Index (CHI), Davies Bouldin Index (DBI), and Silhouette Coefficient (SC). Once the optimum clusters are obtained, five classification procedures are used, including, Artificial Neural Network (ANN), k-Nearest Neighbor (k-NN), Decision Tree (DT), Gaussian Naive Bayes (GNB), and Linear Regression Classifier (LRC) to predict the category of a previously unknown scientist. Among all classifiers, an average accuracy of 94.44% is shown by the ANN to predict an unknown/new scientist category. The current proposal is also compared with closely related past works. The proposed framework offers the possibility to independently classify scientists based on AI techniques. C1 [Ali, Nisar; Halim, Zahid] Ghulam Ishaq Khan Inst Engn Sci & Technol, Fac Comp Sci & Engn, Machine Intelligence Res Grp MInG, Topi, Pakistan. [Ali, Nisar] Univ Regina, Fac Engn & Appl Sci, Regina, SK, Canada. [Hussain, Syed Fawad] Univ Birmingham, Sch Comp Sci, Birmingham, England. C3 GIK Institute Engineering Science & Technology; University of Regina; University of Birmingham RP Halim, Z (corresponding author), Ghulam Ishaq Khan Inst Engn Sci & Technol, Fac Comp Sci & Engn, Machine Intelligence Res Grp MInG, Topi, Pakistan. EM zahid.halim@giki.edu.pk RI Ali, Nisar/HMD-4203-2023 OI Ali, Nisar/0000-0001-5926-0569 FU GIK Institute graduate research fund under PSS; GIK Institute graduate research fund under PSS [CS1917] FX This work was sponsored by the GIK Institute graduate research fund under PSS scheme. Grant number CS1917. CR Amjad T, 2018, LIBR HI TECH, V36, P97, DOI 10.1108/LHT-05-2017-0090 [Anonymous], 1999, PAGERANK CITATION RA Bartneck C, 2010, SCIENTOMETRICS, V85, P41, DOI 10.1007/s11192-010-0242-4 Bornmann L, 2007, J AM SOC INF SCI TEC, V58, P1381, DOI 10.1002/asi.20609 Bouyssou D, 2016, J INFORMETR, V10, P183, DOI 10.1016/j.joi.2015.12.006 CARPENTER MP, 1981, J AM SOC INFORM SCI, V32, P430, DOI 10.1002/asi.4630320606 Chu W, 2007, NEURAL COMPUT, V19, P792, DOI 10.1162/neco.2007.19.3.792 Connor James., 2011, Google Scholar Citations Dey L., 2016, PREPRINT, DOI DOI 10.48550/ARXIV.1610.09982DHAMDHERE Dhamdhere S., 2018, International Journal of Library and Information Science, V10, P1, DOI DOI 10.5897/IJLIS2017.0797 Ding Y, 2014, J ASSOC INF SCI TECH, V65, P1820, DOI 10.1002/asi.23256 Ding Y, 2011, J AM SOC INF SCI TEC, V62, P236, DOI 10.1002/asi.21452 Dorogovtsev SN, 2015, NAT PHYS, V11, P882, DOI 10.1038/nphys3533 Dunaiski M, 2012, PROCEEDINGS OF THE SOUTH AFRICAN INSTITUTE FOR COMPUTER SCIENTISTS AND INFORMATION TECHNOLOGISTS CONFERENCE, P21 Egghe L, 2006, SCIENTOMETRICS, V69, P131, DOI 10.1007/s11192-006-0144-7 Fang Y, 2010, SIGIR 2010: PROCEEDINGS OF THE 33RD ANNUAL INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH DEVELOPMENT IN INFORMATION RETRIEVAL, P683 Gao BJ, 2019, IEEE INT CONF BIG DA, P6055, DOI 10.1109/BigData47090.2019.9006349 Gao C, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0161755 Gao WF, 2018, PATTERN RECOGN, V79, P328, DOI 10.1016/j.patcog.2018.02.020 Granik M, 2017, 2017 IEEE FIRST UKRAINE CONFERENCE ON ELECTRICAL AND COMPUTER ENGINEERING (UKRCON), P900, DOI 10.1109/UKRCON.2017.8100379 Guggari Shankru, 2018, Future Computing and Informatics Journal, V3, P275, DOI 10.1016/j.fcij.2018.06.003 Halaweh M, 2020, COMM COM INF SC, V1177, P93, DOI 10.1007/978-3-030-39905-4_10 Halim Z, 2020, INFORM FUSION, V53, P66, DOI 10.1016/j.inffus.2019.06.006 Halim Z, 2019, IEEE T AFFECT COMPUT, V10, P568, DOI 10.1109/TAFFC.2017.2751602 Halim Z, 2019, SCIENTOMETRICS, V119, P393, DOI 10.1007/s11192-019-03035-w Hirsch JE, 2005, P NATL ACAD SCI USA, V102, P16569, DOI 10.1073/pnas.0507655102 Hug SE, 2017, SCIENTOMETRICS, V111, P371, DOI 10.1007/s11192-017-2247-8 Jiang XR, 2019, J INFORMETR, V13, DOI 10.1016/j.joi.2019.100977 Joachims T, 2006, P 12 ACM SIGKDD INT, P217, DOI DOI 10.1145/1150402.1150429 Jokar K., 2021, SCIENTOMETRICS RES J, DOI [10.22070/RSCI.2021.13633, DOI 10.22070/RSCI.2021.13633] Jozaghi, 2019, METHODOLOGICAL INNOV, V12 Kalachikhin PA, 2018, AUTOM DOC MATH LINGU, V52, P187, DOI 10.3103/S0005105518040076 Kremelberg D., 2010, PRACTICAL STAT QUICK Liang HG, 2016, INFORM MANAGE-AMSTER, V53, P227, DOI 10.1016/j.im.2015.10.001 Lima H, 2013, ACM-IEEE J CONF DIG, P97 Liu JS, 2012, J AM SOC INF SCI TEC, V63, P528, DOI 10.1002/asi.21692 Livas C, 2021, PROG ORTHOD, V22, DOI 10.1186/s40510-020-00348-y Moreira C, 2011, LECT NOTES ARTIF INT, V7026, P431, DOI 10.1007/978-3-642-24769-9_32 Pappalardo L, 2019, ACM T INTEL SYST TEC, V10, DOI 10.1145/3343172 Rahangdale A, 2019, INT J SOFTW ENG KNOW, V29, P729, DOI 10.1142/S021819401930001X Santos J.R.Q., 1999, Journal of Extension, V37, DOI DOI 10.1080/09500690802187025 Senanayake U, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0134794 Sidiropoulos A, 2005, SIGMOD REC, V34, P54, DOI 10.1145/1107499.1107506 Sidiropoulos A, 2005, INFORM PROCESS MANAG, V41, P289, DOI 10.1016/j.ipm.2003.09.002 Usmani A., 2017, INTERNA TIONAL ARAB, V14 Vavrycuk V, 2018, PLOS ONE, V13, DOI 10.1371/journal.pone.0195509 Xie Z, 2021, IEEE T COMPUT SOC SY, V8, P423, DOI 10.1109/TCSS.2020.3032568 Yang L, 2010, THIRD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING: WKDD 2010, PROCEEDINGS, P355, DOI 10.1109/WKDD.2010.13 Yang Zhang, 2009, Proceedings of the 2009 International Conference on Computational Intelligence and Security (CIS 2009), P1, DOI 10.1109/CIS.2009.263 Yisong Yue, 2007, 30th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, P271 Zerem E, 2017, J BIOMED INFORM, V75, P107, DOI 10.1016/j.jbi.2017.10.007 Zhou D, 2007, IEEE DATA MINING, P739, DOI 10.1109/ICDM.2007.57 Zhu JH, 2010, KNOWL INF SYST, V23, P29, DOI 10.1007/s10115-009-0202-6 NR 53 TC 6 Z9 6 U1 4 U2 13 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0138-9130 EI 1588-2861 J9 SCIENTOMETRICS JI Scientometrics PD MAR PY 2023 VL 128 IS 3 BP 1513 EP 1545 DI 10.1007/s11192-022-04627-9 EA DEC 2022 PG 33 WC Computer Science, Interdisciplinary Applications; Information Science & Library Science WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Computer Science; Information Science & Library Science GA 9M3IZ UT WOS:000906311800003 DA 2024-09-05 ER PT J AU Sued, GE AF Sued, Gabriela Elisa TI Mexican Scientific Production on Artificial Intelligence: A Bibliometric Analysis SO INVESTIGACION BIBLIOTECOLOGICA LA English DT Article DE Artificial Intelligence; Bibliometrics; Scientific Production; Mexico ID SCIENCE AB This article surveys the current state of AI scientific pro - duction in Mexico using bibliometric techniques. It examines AI specialization across six subfields. As a meth - odology, it utilizes metadata from 13 265 publications -collected from the OpenAlex catalogue- and conducts a quantitative productivity analysis based on metrics of publications, authors, citations, and international collaborations, identifying key research themes and their development. Findings reveal a broad local scientific structure with significant international collaborations. Both mature subfields, developed over three decades, including robotics and neural networks, and emerging subfields, developed in the last five years, encompassing machine learning, natural language processing, and computer vision, were identified. The article highlights recent applications in the health, environment, finance, natural language processing, and acoustics fields. C1 [Sued, Gabriela Elisa] Univ Nacl Autonoma Mexico, Inst Invest Matemat Aplicadas & Sistemas, Coyoacan, Mexico. C3 Universidad Nacional Autonoma de Mexico RP Sued, GE (corresponding author), Univ Nacl Autonoma Mexico, Inst Invest Matemat Aplicadas & Sistemas, Coyoacan, Mexico. EM gabriela.sued@iimas.unam.mx OI Sued, Gabriela Elisa/0000-0002-4516-678X CR Amaro Rosales Marcela, 2020, PAAKAT: rev. tecnol. soc., V10, pe415, DOI 10.32870/pk.a10n18.415 [Anonymous], 2022, OpenAlex Arencibia-Jorge R, 2023, TRANSINFORMACAO, V35, DOI 10.1590/2318-0889202335e237320 Aria Massimo, 2023, openalexR: Getting Bibliographic Records from 'OpenAlex' Database Using 'DSL' API". V. 1.3.1 Bastian M., 2009, Gephi: An open source software for exploring and manipulating networks Bredahl Laura, 2022, The Current and Evolving Landscape of Bibliometric Tools and Technologies CALLON M, 1991, SCIENTOMETRICS, V22, P155, DOI 10.1007/BF02019280 Cornejo J, 2023, Emerging Science Journal, V7, P1430, DOI [10.28991/ESJ-2023-07-04-025, DOI 10.28991/ESJ-2023-07-04-025] Demografix ApS, Genderize.io Donthu N, 2021, J BUS RES, V133, P285, DOI 10.1016/j.jbusres.2021.04.070 Eck Nees Jan van, 2019, VosViewer. V. 1.6.20, V1 Garg KC, 2000, SCIENTOMETRICS, V49, P359, DOI 10.1023/A:1010529405152 Girasa Rosario., 2020, Artificial Intelligence as a Disruptive Technology: Economic Transformation and Government Regulation Gomez-Mont Constanza, 2020, La inteligencia artificial al servicio del bien social en America Latina y el Caribe. Panoramica regional e instantaneas de doce paises, DOI [10.18235/0002393, DOI 10.18235/0002393] Kaplan A, 2019, BUS HORIZONS, V62, P15, DOI 10.1016/j.bushor.2018.08.004 Lancho-Barrantes BS, 2019, SCIENTOMETRICS, V118, P499, DOI 10.1007/s11192-018-2985-2 Loan FA, 2021, COLLNET J SCIENTOMET, V15, P27, DOI 10.1080/09737766.2021.1938742 Lopez-Martinez RE., 2021, Journal of Data, Information and Management, V3, P183, DOI [10.1007/s42488-021-00051-5, DOI 10.1007/S42488-021-00051-5] Pedersen Thomas Lin, 2024, CRAN Priem J, 2022, Arxiv, DOI [arXiv:2205.01833, DOI 10.48550/ARXIV.2205.01833, 10.48550/arXiv.2205.01833] Queiroz Gabriela de, 2023, tidytext: Text Mining Using 'dplyr', 'ggplot2', and Other Tidy Tools". V. 0.4.2. RStudio Team, 2020, RSTUDIO INT DEV R Ruiz Leon Alejandro, 2018, Redes. Revista Hispana para el Analisis de Redes Sociales, V29, P1, DOI [10.5565/rev/redes.755, DOI 10.5565/REV/REDES.755] Sued Gabriela Elisa, 2024, Zenodo, DOI 10.5281/ZENODO.10642462 Sued Gabriela Elisa, 2024, BibliometriadelaIAenMexico.R Villegas OOV, 2021, INT J COMB OPTIM PRO, V12, P1 Wickham H., 2023, dplyr: A Grammar of Data Manipulation Wickham H., 2023, tidyr: Tidy messy data NR 28 TC 0 Z9 0 U1 2 U2 2 PU UNIV NACIONAL AUTONOMA MEXICO PI MEXICO CITY PA CIUDAD UNIV, CENTRO UNIV BIBLIOTECOLOGICAS, TORRE II HUMANIDADES, PISO 11, 12 & 13, MEXICO CITY, CP 04510, MEXICO SN 0187-358X EI 2448-8321 J9 INVESTIG BIBLIOTECOL JI Investig. Bibliotecol. PD JUL-SEP PY 2024 VL 38 IS 100 BP 87 EP 105 DI 10.22201/iibi.24488321xe.2024.100.58893 PG 19 WC Information Science & Library Science WE Social Science Citation Index (SSCI) SC Information Science & Library Science GA UK4Z2 UT WOS:001247952400002 OA gold DA 2024-09-05 ER PT C AU Han, XD Baldwin, T Cohn, T AF Han, Xudong Baldwin, Timothy Cohn, Trevor BE Vlachos, A Augenstein, I TI Fair Enough: Standardizing Evaluation and Model Selection for Fairness Research in NLP SO 17TH CONFERENCE OF THE EUROPEAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, EACL 2023 LA English DT Proceedings Paper CT 17th Conference of the European-Chapter of the Association-for-Computational-Linguistics (EACL) CY MAY 02-06, 2023 CL Dubrovnik, CROATIA AB Modern NLP systems exhibit a range of biases, which a growing literature on model debiasing attempts to correct. However current progress is hampered by a plurality of definitions of bias, means of quantification, and oftentimes vague relation between debiasing algorithms and theoretical measures of bias. This paper seeks to clarify the current situation and plot a course for meaningful progress in fair learning, with two key contributions: (1) making clear inter-relations among the current gamut of methods, and their relation to fairness theory; and (2) addressing the practical problem of model selection, which involves a trade-off between fairness and accuracy and has led to systemic issues in fairness research. Putting them together, we make several recommendations to help shape future work.1 C1 [Han, Xudong; Baldwin, Timothy; Cohn, Trevor] Univ Melbourne, Melbourne, Australia. [Han, Xudong; Baldwin, Timothy] MBZUAI, Abu Dhabi, U Arab Emirates. C3 University of Melbourne; Mohamed Bin Zayed University of Artificial Intelligence RP Han, XD (corresponding author), Univ Melbourne, Melbourne, Australia.; Han, XD (corresponding author), MBZUAI, Abu Dhabi, U Arab Emirates. EM xudongh1@student.unimelb.edu.au; tbaldwin@unimelb.edu.au; t.cohn@unimelb.edu.au FU Australian Research Council [DP200102519]; Australian Research Council [DP200102519] Funding Source: Australian Research Council FX We thank Lea Frermann, Aili Shen, and Shivashankar Subramanian for their discussions and inputs. We thank the anonymous reviewers for their helpful feedback and suggestions. This work was funded by the Australian Research Council, Discovery grant DP200102519. CR [Anonymous], 2022, P 2022 C N AM CHAPT Badjatiya P, 2019, WEB CONFERENCE 2019: PROCEEDINGS OF THE WORLD WIDE WEB CONFERENCE (WWW 2019), P49, DOI 10.1145/3308558.3313504 Barocas S., 2019, FAIRNESS MACHINE LEA Berk R, 2021, SOCIOL METHOD RES, V50, P3, DOI 10.1177/0049124118782533 Bird S., 2020, MSRTR202032 Bolukbasi T, 2016, ADV NEUR IN, V29 Caliskan A, 2017, SCIENCE, V356, DOI 10.1126/science.aal4230 Chouldechova A, 2017, BIG DATA-US, V5, P153, DOI 10.1089/big.2016.0047 De-Arteaga M, 2019, FAT*'19: PROCEEDINGS OF THE 2019 CONFERENCE ON FAIRNESS, ACCOUNTABILITY, AND TRANSPARENCY, P120, DOI 10.1145/3287560.3287572 Dev S, 2019, PR MACH LEARN RES, V89, P879 Devlin J, 2019, 2019 CONFERENCE OF THE NORTH AMERICAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS: HUMAN LANGUAGE TECHNOLOGIES (NAACL HLT 2019), VOL. 1, P4171 Díaz M, 2018, PROCEEDINGS OF THE 2018 CHI CONFERENCE ON HUMAN FACTORS IN COMPUTING SYSTEMS (CHI 2018), DOI 10.1145/3173574.3173986 Dodge J, 2019, 2019 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING AND THE 9TH INTERNATIONAL JOINT CONFERENCE ON NATURAL LANGUAGE PROCESSING (EMNLP-IJCNLP 2019), P2185 Dwork C., 2012, P 3 INNOVATIONS THEO, P214 Elazar Y, 2018, 2018 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING (EMNLP 2018), P11 Feldman M, 2015, KDD'15: PROCEEDINGS OF THE 21ST ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, P259, DOI 10.1145/2783258.2783311 Goldfarb-Tarrant S, 2021, 59TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS AND THE 11TH INTERNATIONAL JOINT CONFERENCE ON NATURAL LANGUAGE PROCESSING, VOL 1 (ACL-IJCNLP 2021), P1926 Hadsell R, 2020, ADV NEURAL INFORM PR, P728 Han Xudong, 2022, 2022 IEEE International Power Electronics and Application Conference and Exposition (PEAC), P60, DOI 10.1109/PEAC56338.2022.9959530 Han XD, 2021, 16TH CONFERENCE OF THE EUROPEAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (EACL 2021), P2760 Han Xudong, 2022, P 2022 C EMPIRICAL M, P11335 Han Xudong, 2022, ARXIV220306317 Hardt M, 2016, ADV NEUR IN, V29 Hashimoto TB, 2018, PR MACH LEARN RES, V80 Kearns M, 2018, PR MACH LEARN RES, V80 Kearns Michael, 2019, P C FAIRN ACC TRANSP Li YT, 2018, PROCEEDINGS OF THE 56TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, VOL 2, P25 Lum Kristian, 2022, 2022 ACM C FAIRN ACC Marler RT, 2004, STRUCT MULTIDISCIP O, V26, P369, DOI 10.1007/s00158-003-0368-6 May C, 2019, 2019 CONFERENCE OF THE NORTH AMERICAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS: HUMAN LANGUAGE TECHNOLOGIES (NAACL HLT 2019), VOL. 1, P622 Ravfogel Shauli, 2020, P 58 ANN M ASS COMPU, P7237 Rawls J, 2001, Justice as Fairness. A Restatement Roh Yuji, 2021, P 9 INT C LEARN REPR Romanov A, 2019, 2019 CONFERENCE OF THE NORTH AMERICAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS: HUMAN LANGUAGE TECHNOLOGIES (NAACL HLT 2019), VOL. 1, P4187 Salukvadze M. E., 1971, Avtomatika i Telemekhanika, P5 Shen Aili, 2022, FINDINGS ASS COMPUTA, P81 Subramanian S, 2021, 2021 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING (EMNLP 2021), P2492 Wang TL, 2019, IEEE I CONF COMP VIS, P5309, DOI 10.1109/ICCV.2019.00541 Yang F, 2020, ADV NEURAL INFORM PR, V33, P4067 Zafar MB, 2017, PR MACH LEARN RES, V54, P962 Zhao H., 2019, INT C LEARN REPR NR 41 TC 0 Z9 0 U1 0 U2 0 PU ASSOC COMPUTATIONAL LINGUISTICS-ACL PI STROUDSBURG PA 209 N EIGHTH STREET, STROUDSBURG, PA 18360 USA BN 978-1-959429-44-9 PY 2023 BP 297 EP 312 PG 16 WC Computer Science, Artificial Intelligence; Computer Science, Theory & Methods WE Conference Proceedings Citation Index - Science (CPCI-S) SC Computer Science GA BW6RX UT WOS:001181056902006 DA 2024-09-05 ER PT J AU Bittermann, A Fischer, A AF Bittermann, Andre Fischer, Andreas TI How to Identify Hot Topics in Psychology Using Topic Modeling SO ZEITSCHRIFT FUR PSYCHOLOGIE-JOURNAL OF PSYCHOLOGY LA English DT Article DE topic modeling; hotspots; scientometrics; trends; controlled terms ID BIG DATA; SCIENCE AB Latent topics and trends in psychological publications were examined to identify hotspots in psychology. Topic modeling was contrasted with a classification-based scientometric approach in order to demonstrate the benefits of the former. Specifically, the psychological publication output in the German-speaking countries containing German-and English-language publications from 1980 to 2016 documented in the PSYNDEX database was analyzed. Topic modeling based on latent Dirichlet allocation (LDA) was applied to a corpus of 314,573 publications. Input for topic modeling was the controlled terms of the publications, that is, a standardized vocabulary of keywords in psychology. Based on these controlled terms, 500 topics were determined and trending topics were identified. Hot topics, indicated by the highest increasing trends in this data, were facets of neuropsychology, online therapy, cross-cultural aspects, traumatization, and visual attention. In conclusion, the findings indicate that topics can reveal more detailed insights into research trends than standardized classifications. Possible applications of this method, limitations, and implications for research synthesis are discussed. C1 [Bittermann, Andre] Leibniz Inst Psychol Informat ZPID, Univ Ring 15, D-54296 Trier, Germany. [Fischer, Andreas] F Bb, Nurnberg, Germany. C3 Leibniz Institute for Psychology Information & Documentation RP Bittermann, A (corresponding author), Leibniz Inst Psychol Informat ZPID, Univ Ring 15, D-54296 Trier, Germany. EM abi@leibniz-psychology.org RI Bittermann, André/AAA-5600-2019; Fischer, Andreas/E-9202-2012 OI Bittermann, André/0000-0003-2942-9831; Fischer, Andreas/0009-0006-0748-6076 CR Atkins DC, 2012, J FAM PSYCHOL, V26, P816, DOI 10.1037/a0029607 Awati Kailash, 2015, A gentle introduction to topic modeling using R. Eight to Late Blei D.M., 2006, P 23 INT C MACH LEAR, DOI [DOI 10.1145/1143844.1143859, 10.1145/1143844.1143859] Blei DM, 2007, ANN APPL STAT, V1, P17, DOI 10.1214/07-AOAS114 Blei DM, 2012, COMMUN ACM, V55, P77, DOI 10.1145/2133806.2133826 Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993 Chaney A.J.B., 2012, P 6 INT AAAI C WEBL Chen EE, 2016, PSYCHOL METHODS, V21, P458, DOI 10.1037/met0000111 Coppersmith G., 2014, P WORKSHOP COMPUTATI, P51 De Battisti F, 2015, SCIENTOMETRICS, V103, P413, DOI 10.1007/s11192-015-1554-1 Erdfelder E, 2016, Z PSYCHOL, V224, P141, DOI 10.1027/2151-2604/a000249 Feinerer I, 2008, J STAT SOFTW, V25, P1 Fischer A, 2015, ECOL MODEL, V309, P60, DOI 10.1016/j.ecolmodel.2015.04.015 Friedman DP, 2008, J NEUROSCI, V28, P11743, DOI 10.1523/JNEUROSCI.0005-08.2008 Goldstone A., 2014, SIGNS AT 40, P40 Griffiths TL, 2007, PSYCHOL REV, V114, P211, DOI 10.1037/0033-295X.114.2.211 Griffiths TL, 2004, P NATL ACAD SCI USA, V101, P5228, DOI 10.1073/pnas.0307752101 Grün B, 2011, J STAT SOFTW, V40, P1 Imel ZE, 2015, PSYCHOTHERAPY, V52, P19, DOI 10.1037/a0036841 Jiang HC, 2016, RENEW SUST ENERG REV, V57, P226, DOI 10.1016/j.rser.2015.12.194 Kosinski M, 2016, PSYCHOL METHODS, V21, P493, DOI 10.1037/met0000105 Krampen G., 2013, HDB PSYCHOL EMOTIONS, V1, P63 Krampen G, 2016, SCIENTOMETRICS, V106, P1217, DOI 10.1007/s11192-016-1834-4 Lu K, 2012, J AM SOC INF SCI TEC, V63, P1973, DOI 10.1002/asi.22628 Mimno David M., 2009, Proceedings of the 2009 Conference on Empirical Methods in Natural Language Processing: Volume 2, P880 Natale F, 2012, SCIENTOMETRICS, V90, P983, DOI 10.1007/s11192-011-0562-z Park G, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0155885 Paul M., 2009, INT C RANLP 2009, P337 Ponweiser M., 2014, Advances in Latent Variables, P93, DOI 10.1007/10104_ 2014_11 R Core Team, 2017, R LANG ENV STAT COMP Resnik P., 2013, EMNLP, P1348 Rosen-Zvi Michal., 2004, UAI RStudio Team, 2016, RSTUDIO INT DEV R CO SCHOFIELD A, 2017, P 15 C EUR CHAPT ASS, V2, P432, DOI DOI 10.18653/V1/E17-2069 Sievert C., 2014, P WORKSH INT LANG LE, P63, DOI [10.3115/v1/W14-3110, DOI 10.3115/V1/W14-3110, 10.3115/v1/w14-3110] Sievert Carson., 2015, LDAvis: Interactive Visualization of Topic Models (0.3.2) Steyvers M., 2008, The probabilistic mind: Prospects for a Bayesian cognitive science, P329, DOI DOI 10.1093/ACPROF:OSO/9780199216093.003.0015 Tang J, 2014, PR MACH LEARN RES, V32 Thelwall M, 2016, PROF INFORM, V25, P47, DOI 10.3145/epi.2016.ene.06 Tuleya LG., 2007, Thesaurus of Psychological Index Terms, V11th Vulic I, 2015, INFORM PROCESS MANAG, V51, P111, DOI 10.1016/j.ipm.2014.08.003 Wallach HM, 2009, ADV NEURAL INFORM PR, V22, P1973, DOI DOI 10.1007/S10708-008-9161-9 Wang Chong, 2011, P ACM SIGKDD INT C K, P448, DOI DOI 10.1145/2020408.2020480 Yau CK, 2014, SCIENTOMETRICS, V100, P767, DOI 10.1007/s11192-014-1321-8 Zheng B, 2006, BMC BIOINFORMATICS, V7, DOI 10.1186/1471-2105-7-58 ZPID, 2016, PSYNDEX TERMS NR 46 TC 34 Z9 36 U1 4 U2 44 PU HOGREFE & HUBER PUBLISHERS PI GOTTINGEN PA MERKELSTR 3, D-37085 GOTTINGEN, GERMANY SN 2190-8370 EI 2151-2604 J9 Z PSYCHOL JI Z. Psychol.-J. Psychol. PD JAN PY 2018 VL 226 IS 1 BP 3 EP 13 DI 10.1027/2151-2604/a000318 PG 11 WC Psychology, Multidisciplinary WE Social Science Citation Index (SSCI) SC Psychology GA FZ0XO UT WOS:000427298600002 DA 2024-09-05 ER PT J AU Tomas, C Jessop, T AF Tomas, Carmen Jessop, Tansy TI Struggling and juggling: a comparison of student assessment loads across research and teaching-intensive universities SO ASSESSMENT & EVALUATION IN HIGHER EDUCATION LA English DT Article DE Assessment load; programme assessment; deep learning ID FORMATIVE ASSESSMENT; ASSESSMENT PATTERNS; FEEDBACK; EXPERIENCE; DESIGN; WORK AB In spite of the rising tide of metrics in UK higher education, there has been scant attention paid to assessment loads, when evidence demonstrates that heavy demands lead to surface learning. Our study seeks to redress the situation by defining assessment loads and comparing them across research and teaching intensive universities. We clarify the concept of 'assessment load' in response to findings about high volumes of summative assessment on modular degrees. We define assessment load across whole undergraduate degrees, according to four measures: the volume of summative assessment; volume of formative assessment; proportion of examinations to coursework; number of different varieties of assessment. All four factors contribute to the weight of an assessment load, and influence students' approaches to learning. Our research compares programme assessment data from 73 programmes in 14 UK universities, across two institutional categories. Research-intensives have higher summative assessment loads and a greater proportion of examinations; teaching-intensives have higher varieties of assessment. Formative assessment does not differ significantly across both university groups. These findings pose particular challenges for students in different parts of the sector. Our study questions the wisdom that 'more' is always better, proposing that lighter assessment loads may make room for 'slow' and deep learning. C1 [Tomas, Carmen] Univ Nottingham, Teaching Transformat Programme, Nottingham, England. [Jessop, Tansy] Solent Univ, Solent Learning & Teaching Inst, Southampton, Hants, England. C3 University of Nottingham RP Jessop, T (corresponding author), Solent Univ, Solent Learning & Teaching Inst, Southampton, Hants, England. EM tansy.jessop@solent.ac.uk OI Tomas, Carmen/0000-0001-6163-2907 CR Adams J, 2013, ARTS HUM HIGH EDUC, V12, P36, DOI 10.1177/1474022212460743 Ainley P, 2008, STUD HIGH EDUC, V33, P615, DOI 10.1080/03075070802373222 [Anonymous], 2009, PROGR ASS STRAT [Anonymous], EDUCAUSE [Anonymous], SUPP HIGH ED STUD SP Arum R., 2011, Academically adrift: Limited learning on college campuses Barlow A., 2016, ED DEV, V17, P12 Becker H.S., 1968, Making the grade: The academic side of college life Berg M., 2016, SLOW PROFESSOR CHALL Black P., 1998, INSIDE BLACK BOX RAI, DOI [10.1080/02671520600615612, DOI 10.1080/02671520600615612] Bloxham S., 2007, Developing Effective Assessment in Higher Education: a practical guide Boud D., 2006, ASSESS EVAL HIGH EDU, V31, P399, DOI DOI 10.1080/02602930600679050 Boud D., 2000, STUDIES INCONTINUING, V22, P151167, DOI DOI 10.1080/713695728 Bovill C, 2011, INT J ACAD DEV, V16, P133, DOI 10.1080/1360144X.2011.568690 Brew A, 2010, HIGH EDUC RES DEV, V29, P139, DOI 10.1080/07294360903552451 Bridges P., 2002, Assessment Evaluation in Higher Education, V27, P35, DOI DOI 10.1080/02602930120105045 Carless D, 2007, INNOV EDUC TEACH INT, V44, P57, DOI 10.1080/14703290601081332 ENTWISTLE NJ, 1991, HIGH EDUC, V22, P205, DOI 10.1007/BF00132288 Fung D., 2017, Excellent education in researchrich universities Fung D., 2017, CONNECTED CURRICULUM, P1, DOI DOI 10.14324/111.9781911576358 GIBBS G., 2007, The Effects of Programme Assessment Environments on Student Learning Gibbs G., 2005, LEARNING TEACHING HI, P3, DOI DOI 10.1007/978-3-8348-9837-1 Gibbs G., 2017, CAPTURE, V5, P55 Gibbs G, 2013, INT J ACAD DEV, V18, P4, DOI 10.1080/1360144X.2013.751691 Gibbs G, 2009, ASSESS EVAL HIGH EDU, V34, P481, DOI 10.1080/02602930802071114 Hanney R, 2013, LOND REV EDUC, V11, P7, DOI 10.1080/14748460.2012.761816 Harland T, 2015, ASSESS EVAL HIGH EDU, V40, P528, DOI 10.1080/02602938.2014.931927 Jessop T, 2017, ASSESS EVAL HIGH EDU, V42, P990, DOI 10.1080/02602938.2016.1217501 Jessop T, 2016, STUD HIGH EDUC, V41, P696, DOI 10.1080/03075079.2014.943170 Jessop T, 2012, ACT LEARN HIGH EDUC, V13, P143, DOI 10.1177/1469787412441285 Jessop T, 2014, ASSESS EVAL HIGH EDU, V39, P73, DOI 10.1080/02602938.2013.792108 Kalyuga S, 2011, EDUC PSYCHOL REV, V23, P1, DOI 10.1007/s10648-010-9150-7 Knight PT, 2002, STUD HIGH EDUC, V27, P275, DOI 10.1080/03075070220000662 Lizzio A, 2002, STUD HIGH EDUC, V27, P27, DOI 10.1080/03075070120099359 Lizzio A, 2013, ASSESS EVAL HIGH EDU, V38, P389, DOI 10.1080/02602938.2011.637156 MARTON F, 1976, BRIT J EDUC PSYCHOL, V46, P4, DOI 10.1111/j.2044-8279.1976.tb02980.x McLean M, 2013, BRIT J SOCIOL EDUC, V34, P262, DOI 10.1080/01425692.2012.710007 Miller C.M., 1974, MARK STUDY EXAMINATI Neves J., 2017, 2017 Student Academic Experience Survey Neves J., 2016, The 2016 Student Academic Experience Survey, DOI Accessed 19th January 2017 At Newstead S. E., 1997, PSYCHOL TEACHING REV, V6, P14 Nicol D, 2010, ASSESS EVAL HIGH EDU, V35, P501, DOI 10.1080/02602931003786559 Pitt E, 2017, ASSESS EVAL HIGH EDU, V42, P499, DOI 10.1080/02602938.2016.1142500 Price M, 2010, ASSESS EVAL HIGH EDU, V35, P277, DOI 10.1080/02602930903541007 Pryor J, 2010, ASSESS EVAL HIGH EDU, V35, P265, DOI 10.1080/02602930903512891 Richardson JTE, 2015, ASSESS EVAL HIGH EDU, V40, P439, DOI 10.1080/02602938.2014.919628 SADLER DR, 1989, INSTR SCI, V18, P119, DOI 10.1007/BF00117714 Tuck J, 2012, TEACH HIGH EDUC, V17, P209, DOI 10.1080/13562517.2011.611870 Warren Piper D., 1996, EXAMINATION PRACTICE Wass R, 2015, HIGH EDUC RES DEV, V34, P1324, DOI 10.1080/07294360.2015.1052351 Wu Q., 2018, ASSESSMENT EVALUATIO NR 51 TC 21 Z9 24 U1 2 U2 20 PU ROUTLEDGE JOURNALS, TAYLOR & FRANCIS LTD PI ABINGDON PA 2-4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND SN 0260-2938 EI 1469-297X J9 ASSESS EVAL HIGH EDU JI Assess. Eval. High. Educ. PD JAN 2 PY 2019 VL 44 IS 1 BP 1 EP 10 DI 10.1080/02602938.2018.1463355 PG 10 WC Education & Educational Research WE Social Science Citation Index (SSCI) SC Education & Educational Research GA HD7LT UT WOS:000452734400001 DA 2024-09-05 ER PT J AU Xu, JG Li, MY Gao, Y Liu, M Shi, SZ Shi, JY Yang, KL Zhou, Z Tian, JH AF Xu, Jianguo Li, Muyang Gao, Ya Liu, Ming Shi, Shuzhen Shi, Jiyuan Yang, Kelu Zhou, Zheng Tian, Jinhui TI Using Mendelian randomization as the cornerstone for causal inference in epidemiology SO ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH LA English DT Article DE Mendelian randomization analysis; Bibliometric analysis; Citation analysis; Visualization ID GENETIC EPIDEMIOLOGY; FUTURE-PROSPECTS; RISK; DETERMINANTS; METAANALYSIS; DISEASE; TRENDS AB Mendelian randomization (MR) is attracting considerable critical attention. This paper aimed to explore the characteristics of the publications of MR, to reach an insight in this field and prospect the future trend. A bibliometric analysis was performed to identify published MR-related research. The articles were selected from the Web of Science Core Collection database. Excel 2019, VOSviewer 1.6.9, and CiteSpace 5.7.R3 were used to analyze the information. A total of 1783 papers of MR were identified, and the first included literature appeared in 2003. A total of 2829 institutions from 72 countries participated in the relevant research, while the UK contributed to 852 articles and were in a leading position. The most productive institution was the University of Bristol, and Smith GD who has posted the most articles (n=202) was also from there. The Int J Epidemiol (100 publications, 6861 citations) was the most prolific and high citation journal. Related topics of frontiers will still focus on coronary heart disease, diabetes, cancer, psychiatric disorder, body mass index, and lifestyle factors. We summarized the publication information of MR-related literature from 2003 to 2020, including country and institution of origin, authors, and publication journal. We analyzed former research hotspots in the field of MR and predicted future areas of interest. Exposures and outcomes detected in this paper will be the hotspots and frontiers of research in the next few years. C1 [Xu, Jianguo; Gao, Ya; Liu, Ming; Shi, Shuzhen; Shi, Jiyuan; Yang, Kelu; Zhou, Zheng; Tian, Jinhui] Lanzhou Univ, Evidence Based Med Ctr, Lanzhou, Peoples R China. [Xu, Jianguo; Gao, Ya; Liu, Ming; Shi, Shuzhen; Zhou, Zheng; Tian, Jinhui] Lanzhou Univ, Sch Basic Med Sci, Lanzhou, Peoples R China. [Li, Muyang] Lanzhou Univ, Clin Med Coll 2, Lanzhou, Peoples R China. [Tian, Jinhui] Lanzhou Univ, Evidence Based Med Ctr, Sch Basic Med Sci, 199 Donggang West Rd, Lanzhou 730000, Gansu, Peoples R China. C3 Lanzhou University; Lanzhou University; Lanzhou University; Lanzhou University RP Tian, JH (corresponding author), Lanzhou Univ, Evidence Based Med Ctr, Lanzhou, Peoples R China.; Tian, JH (corresponding author), Lanzhou Univ, Sch Basic Med Sci, Lanzhou, Peoples R China.; Tian, JH (corresponding author), Lanzhou Univ, Evidence Based Med Ctr, Sch Basic Med Sci, 199 Donggang West Rd, Lanzhou 730000, Gansu, Peoples R China. EM tjh996@163.com RI Gao, Ya/HGA-2705-2022; shi, jiyuan/ACB-6953-2022; xu, jianguo/JZD-9552-2024 OI Gao, Ya/0000-0002-9280-4457 CR Agarwal A, 2016, ASIAN J ANDROL, V18, P296, DOI 10.4103/1008-682X.171582 Analytics Clarivate, 2020, WEB SCI DAT Bochud M, 2008, EUR HEART J, V29, P2456, DOI 10.1093/eurheartj/ehn428 Bochud M, 2008, INT J EPIDEMIOL, V37, P414, DOI 10.1093/ije/dym186 Bowden J, 2019, RES SYNTH METHODS, V10, P486, DOI 10.1002/jrsm.1346 Burgess Stephen, 2019, Wellcome Open Res, V4, P186, DOI 10.12688/wellcomeopenres.15555.3 Burton PR, 2007, NATURE, V447, P661, DOI 10.1038/nature05911 Chen CM, 2006, J AM SOC INF SCI TEC, V57, P359, DOI 10.1002/asi.20317 Chen CM, 2004, P NATL ACAD SCI USA, V101, P5303, DOI 10.1073/pnas.0307513100 Clayton D, 2001, LANCET, V358, P1356, DOI 10.1016/S0140-6736(01)06418-2 Ebrahim S, 2008, HUM GENET, V123, P15, DOI 10.1007/s00439-007-0448-6 Egghe L, 2008, J AM SOC INF SCI TEC, V59, P1276, DOI 10.1002/asi.20809 Emdin CA, 2017, JAMA-J AM MED ASSOC, V318, P1925, DOI 10.1001/jama.2017.17219 Gao Y, 2019, ENVIRON SCI POLLUT R, V26, P17809, DOI 10.1007/s11356-019-05071-8 Gao Y, 2019, INT IMMUNOPHARMACOL, V72, P374, DOI 10.1016/j.intimp.2019.03.045 GARFIELD E, 1980, CURR CONTENTS, P5 GRAY R, 1991, BONE MARROW TRANSPL, V7, P9 Katikireddi SV, 2018, ADDICTION, V113, P764, DOI 10.1111/add.14038 Keating S, 1998, BRIT J HAEMATOL, V102, P1344, DOI 10.1111/j.1365-2141.1998.896hm3674.x Larsson SC, 2020, EUR HEART J, V41, P3304, DOI 10.1093/eurheartj/ehaa193 Lauridsen BK, 2018, EUR HEART J, V39, P385, DOI 10.1093/eurheartj/ehx662 Lawlor DA, 2008, STAT MED, V27, P1133, DOI 10.1002/sim.3034 Levin MG, 2020, PLOS MED, V17, DOI 10.1371/journal.pmed.1003288 Lin BD, 2019, INT J EPIDEMIOL, V48, P1505, DOI 10.1093/ije/dyz176 Liu M, 2020, FUTURE ONCOL, V16, P597, DOI 10.2217/fon-2019-0810 Locke AE, 2015, NATURE, V518, P197, DOI 10.1038/nature14177 McGue M, 2010, PERSPECT PSYCHOL SCI, V5, P546, DOI 10.1177/1745691610383511 Mendel Gregor., 1865, EXPT PLANT HYBRIDIZA Nienaber CA, 2020, EUR HEART J, V41, P3921, DOI 10.1093/eurheartj/ehaa225 Nordestgaard BG, 2012, PLOS MED, V9, DOI 10.1371/journal.pmed.1001212 Pierce BL, 2018, CURR EPIDEMIOL REP, V5, P184, DOI 10.1007/s40471-018-0144-1 Pigeyre M, 2020, DIABETES CARE, V43, P835, DOI 10.2337/dc19-1973 Pingault JB, 2018, NAT REV GENET, V19, P566, DOI 10.1038/s41576-018-0020-3 Richardson TG, 2020, BMJ-BRIT MED J, V369, DOI 10.1136/bmj.m1203 Richmond RC, 2019, BMJ-BRIT MED J, V365, DOI 10.1136/bmj.l2327 Sheehan NA, 2020, HUM GENET, V139, P121, DOI 10.1007/s00439-019-02027-3 Sheehan NA, 2008, PLOS MED, V5, P1205, DOI 10.1371/journal.pmed.0050177 Siedlinski M, 2020, CIRCULATION, V142, pE191, DOI 10.1161/CIRCULATIONAHA.120.049870 Smith GD, 2004, INT J EPIDEMIOL, V33, P30, DOI 10.1093/ije/dyh132 Smith GD, 2003, INT J EPIDEMIOL, V32, P1, DOI 10.1093/ije/dyg070 Smith GD, 2007, PLOS MED, V4, P1985, DOI 10.1371/journal.pmed.0040352 Smith GD, 2010, PERSPECT PSYCHOL SCI, V5, P527, DOI 10.1177/1745691610383505 Valdes-Marquez E, 2019, NEUROLOGY, V92, pE1176, DOI 10.1212/WNL.0000000000007091 van Eck NJ, 2010, SCIENTOMETRICS, V84, P523, DOI 10.1007/s11192-009-0146-3 Venable GT, 2016, J NEUROSURG, V124, P569, DOI 10.3171/2015.3.JNS15149 Voight Benjamin F, 2012, Lancet, V380, P572, DOI 10.1016/S0140-6736(12)60312-2 Waltman L, 2010, J INFORMETR, V4, P629, DOI 10.1016/j.joi.2010.07.002 Willer Cristen J, 2013, Nat Genet, V45, P1274, DOI 10.1038/ng.2797 Williams DM, 2019, AM J CLIN NUTR, V109, P90, DOI 10.1093/ajcn/nqy225 Wium-Andersen MK, 2015, INT J EPIDEMIOL, V44, P526, DOI 10.1093/ije/dyu220 World Health Organization, 2019, INT STAT CLASS DIS R Xu SJ, 2019, INT J EPIDEMIOL, V48, P899, DOI 10.1093/ije/dyz070 Youngman LD, 2000, CIRCULATION, V102, P31 Zhang CA, 2015, HUM MOL GENET, V24, P5356, DOI 10.1093/hmg/ddv252 Zheng Jie, 2017, Curr Epidemiol Rep, V4, P330, DOI 10.1007/s40471-017-0128-6 Zupic I, 2015, ORGAN RES METHODS, V18, P429, DOI 10.1177/1094428114562629 NR 56 TC 15 Z9 17 U1 7 U2 38 PU SPRINGER HEIDELBERG PI HEIDELBERG PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY SN 0944-1344 EI 1614-7499 J9 ENVIRON SCI POLLUT R JI Environ. Sci. Pollut. Res. PD JAN PY 2022 VL 29 IS 4 BP 5827 EP 5839 DI 10.1007/s11356-021-15939-3 EA AUG 2021 PG 13 WC Environmental Sciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Environmental Sciences & Ecology GA YH3ZR UT WOS:000687964300009 PM 34431050 DA 2024-09-05 ER PT C AU Chatzopoulos, S Deligiannis, P Vergoulis, T Kanellos, I Tryfonopoulos, C Dalamagas, T AF Chatzopoulos, Serafeim Deligiannis, Panagiotis Vergoulis, Thanasis Kanellos, Ilias Tryfonopoulos, Christos Dalamagas, Theodore BE Doucet, A Isaac, A Golub, K Aalberg, T Jatowt, A TI SciTo Trends: Visualising Scientific Topic Trends SO DIGITAL LIBRARIES FOR OPEN KNOWLEDGE, TPDL 2019 SE Lecture Notes in Computer Science LA English DT Proceedings Paper CT 23rd International Conference on Theory and Practice of Digital Libraries (TPDL) CY SEP 09-12, 2019 CL Oslo Metropolitan Univ, Oslo, NORWAY HO Oslo Metropolitan Univ DE Information retrieval; Scientific impact; Topic modeling AB Monitoring trends in scientific disciplines is a common task for researchers and other professionals in the broad research and academic community, like research and innovation policy makers and research fund managers. We demonstrate SciTo, a powerful tool that assists in the monitoring of trends in scientific disciplines. SciTo supports keyword-based search for the identification of scientific topics of interest and comparison of interesting topics to each other in terms of their popularity inside the academic community. C1 [Chatzopoulos, Serafeim; Deligiannis, Panagiotis; Tryfonopoulos, Christos] Univ Peloponnese, Dept Informat & Tel Tions, Tripoli 22100, Greece. [Chatzopoulos, Serafeim; Vergoulis, Thanasis; Kanellos, Ilias; Dalamagas, Theodore] IMSI Athena Res & Innovat Ctr, Athens 15125, Greece. [Kanellos, Ilias] NTUA, Sch Elect & Comp Engn, Athens 15780, Greece. C3 University of Peloponnese; National Technical University of Athens RP Vergoulis, T (corresponding author), IMSI Athena Res & Innovat Ctr, Athens 15125, Greece. EM schatz@athenarc.gr; cst11017@uop.gr; vergoulis@athenarc.gr; ilias.kanellos@athenarc.gr; trifon@uop.gr; dalamag@athenarc.gr RI Dalamagas, Theodore/ABE-9542-2020; Tryfonopoulos, Christos/AAL-8960-2021; Tryfonopoulos, Christos/HKW-5651-2023; Vergoulis, Thanasis/GSO-2837-2022 OI Dalamagas, Theodore/0000-0002-5002-7901; Vergoulis, Thanasis/0000-0003-0555-4128; Tryfonopoulos, Christos/0000-0003-0640-9088; Chatzopoulos, Serafeim/0000-0003-1714-5225; Kanellos, Ilias/0000-0003-2146-3795 FU Operational Programme "Competitiveness, Entrepreneurship and Innovation" (NSRF) [MIS 5002437/3]; European Union (European Regional Development Fund) FX We acknowledge support of this work by the project "Moving from Big Data Management to Data Science" (MIS 5002437/3) which is implemented under the Action "Re-inforcement of the Research and Innovation Infrastructure", funded by the Operational Programme "Competitiveness, Entrepreneurship and Innovation" (NSRF 2014-2020) and co-financed by Greece and the European Union (European Regional Development Fund). CR Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993 Ghosh R., 2011, 2011 IEEE International Conference on Data Mining Workshops, P373, DOI 10.1109/ICDMW.2011.183 Sinha A, 2015, WWW'15 COMPANION: PROCEEDINGS OF THE 24TH INTERNATIONAL CONFERENCE ON WORLD WIDE WEB, P243, DOI 10.1145/2740908.2742839 Tang J., 2008, KDD, P990, DOI DOI 10.1145/1401890.1402008 Wu J, 2015, AI MAG, V36, P35, DOI 10.1609/aimag.v36i3.2601 NR 5 TC 1 Z9 1 U1 0 U2 3 PU SPRINGER INTERNATIONAL PUBLISHING AG PI CHAM PA GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND SN 0302-9743 EI 1611-3349 BN 978-3-030-30760-8; 978-3-030-30759-2 J9 LECT NOTES COMPUT SC PY 2019 VL 11799 BP 393 EP 396 DI 10.1007/978-3-030-30760-8_41 PG 4 WC Information Science & Library Science WE Conference Proceedings Citation Index - Social Science & Humanities (CPCI-SSH) SC Information Science & Library Science GA BP4BL UT WOS:000550576600041 DA 2024-09-05 ER PT J AU Keramatfar, A Amirkhani, H AF Keramatfar, Abdalsamad Amirkhani, Hossein TI Bibliometrics of sentiment analysis literature SO JOURNAL OF INFORMATION SCIENCE LA English DT Article DE Bibliometrics; keyword analysis; opinion mining; sentiment analysis; Twitter ID SOCIAL MEDIA; MARKET PREDICTION; FEATURES; WEB; COLLABORATION; OPINIONS; SCIENCE; TWITTER; SYSTEM; MOOD AB This article provides a bibliometric study of the sentiment analysis literature based on Web of Science (WoS) until the end of 2016 to evaluate current research trends, quantitatively and qualitatively. We concentrate on the analysis of scientific documents, distribution of subject categories, languages of documents and languages that have been more investigated in sentiment analysis, most prolific and impactful authors and institutions, venues of publications and their geographic distribution, most cited and hot documents, trends of keywords and future works. Our investigations demonstrate that the most frequent subject categories in this field are computer science, engineering, telecommunications, linguistics, operations research and management science, information science and library science, business and economics, automation and control systems, robotics and social sciences. In addition, the most active venue of publication in this field is Lecture Notes in Computer Science (LNCS). The United States, China and Singapore have the most prolific or impactful institutions. A keyword analysis demonstrates that sentiment analysis is a more accepted term than opinion mining. Twitter is the most used social network for sentiment analysis and Support Vector Machine (SVM) is the most used classification method. We also present the most cited and hot documents in this field and authors' suggestions for future works. C1 [Keramatfar, Abdalsamad; Amirkhani, Hossein] Univ Qom, Tehran, Iran. C3 University of Qom RP Keramatfar, A (corresponding author), Univ Qom, Tehran, Iran. EM keramatfar.a.s@gmail.com RI Keramatfar, Abdalsamad/AAH-7414-2019; Keramatfar, Abdalsamad/D-7117-2015 OI Keramatfar, Abdalsamad/0000-0001-6826-4692; Amirkhani, Hossein/0000-0002-8679-0634 CR Abbasi Ahmed, 2008, ACM Transactions on Information Systems, V26, DOI 10.1145/1361684.1361685 Akehurst G, 2009, SERV BUS, V3, P51, DOI 10.1007/s11628-008-0054-2 Ambika P, 2016, INT C RES ADV INT NA Annalingam A, 2014, SPRINGERPLUS, V3, DOI 10.1186/2193-1801-3-140 Appel O, 2015, ACTA POLYTECH HUNG, V12, P87, DOI 10.12700/APH.12.3.2015.3.6 Archak N, 2011, MANAGE SCI, V57, P1485, DOI 10.1287/mnsc.1110.1370 Bae Y, 2012, J AM SOC INF SCI TEC, V63, P2521, DOI 10.1002/asi.22768 Baek H, 2012, INT J ELECTRON COMM, V17, P99, DOI 10.2753/JEC1086-4415170204 Banerjee H, 2017, 2017 8 ANN IND AUT E Banshal SK, 2015, ANNU IEEE IND CONF Bhat SY, 2013, WIRES DATA MIN KNOWL, V3, P408, DOI 10.1002/widm.1105 Bifet A, 2010, INT C DISC SCI KYOT Biyani P, 2014, KNOWL-BASED SYST, V69, P170, DOI 10.1016/j.knosys.2014.04.048 Boiy E, 2009, INFORM RETRIEVAL, V12, P526, DOI 10.1007/s10791-008-9070-z Bornmann L, 2005, SCIENTOMETRICS, V65, P391, DOI 10.1007/s11192-005-0281-4 Cambria E., 2012, Sentic Computing: Techniques, Tools, and Applications Cambria E., 2015, SENTIC COMPUTING COM, DOI [10.1007/978-3-319-23654-4, DOI 10.1007/978-3-319-23654-4] Cambria E, 2017, SOCIO AFFECT COMPUT, V5, P1, DOI 10.1007/978-3-319-55394-8_1 Cambria E, 2013, IEEE INTELL SYST, V28, P15, DOI 10.1109/MIS.2013.30 Ceron A, 2016, NEW MEDIA SOC, V18, P1935, DOI 10.1177/1461444815571915 Chae B, 2015, INT J PROD ECON, V165, P247, DOI 10.1016/j.ijpe.2014.12.037 Chaturvedi I, 2017, BASIC TASKS SENTIMEN, DOI [10.1007/978-1-4614-7163-9_110159-1, DOI 10.1007/978-1-4614-7163-9_110159-1] Chi PS, 2017, SCIENTOMETRICS, V112, P403, DOI 10.1007/s11192-017-2356-4 Ding Y, 2010, J INF SCI, V36, P335, DOI 10.1177/0165551510365295 Estévez-Ortiz FJ, 2016, PROF INFORM, V25, P851, DOI 10.3145/epi.2016.nov.02 Esuli A, 2007, Evaluation, V17, P1 Feldman R, 2013, COMMUN ACM, V56, P82, DOI 10.1145/2436256.2436274 Fernández-Gavilanes M, 2016, EXPERT SYST APPL, V58, P57, DOI 10.1016/j.eswa.2016.03.031 Garrard WC, 2017, DEV TOOLS ANAL MESSA Ghiassi M, 2013, EXPERT SYST APPL, V40, P6266, DOI 10.1016/j.eswa.2013.05.057 Ghose A, 2011, IEEE T KNOWL DATA EN, V23, P1498, DOI 10.1109/TKDE.2010.188 He W, 2015, INFORM MANAGE-AMSTER, V52, P801, DOI 10.1016/j.im.2015.04.006 Heimerl F, 2014, P ANN HICSS, P1833, DOI 10.1109/HICSS.2014.231 Huang W, 2016, WEB INTELL, V14, P211, DOI 10.3233/WEB-160340 Ibáñez A, 2013, SCIENTOMETRICS, V95, P689, DOI 10.1007/s11192-012-0883-6 Indurkhya N, 2015, WIRES DATA MIN KNOWL, V5, P155, DOI 10.1002/widm.1154 Jiang HC, 2016, ENVIRON IMPACT ASSES, V61, P38, DOI 10.1016/j.eiar.2016.06.004 Li M, 2016, J INF SCI, V43, P725 Li N, 2010, DECIS SUPPORT SYST, V48, P354, DOI 10.1016/j.dss.2009.09.003 Li Q, 2014, INFORM SCIENCES, V278, P826, DOI 10.1016/j.ins.2014.03.096 Li Y, 2017, COGN COMPUT, V9, P843, DOI 10.1007/s12559-017-9492-2 Lin CL, 2011, 2011 5 INT C NEW TRE Lippi M, 2016, EXPERT SYST APPL, V65, P292, DOI 10.1016/j.eswa.2016.08.050 Liu B, 2015, SENTIMENT ANALYSIS: MINING OPINIONS, SENTIMENTS, AND EMOTIONS, P1 Liu FL, 2016, SCIENTOMETRICS, V106, P751, DOI 10.1007/s11192-015-1789-x Lokker C, 2008, BMJ-BRIT MED J, V336, P655, DOI 10.1136/bmj.39482.526713.BE Mattern F, 2008, BIBLIOMETRIC EVALUAT Mongeon P, 2016, SCIENTOMETRICS, V106, P213, DOI 10.1007/s11192-015-1765-5 Moraes R, 2013, EXPERT SYST APPL, V40, P621, DOI 10.1016/j.eswa.2012.07.059 Mostafa MM, 2013, EXPERT SYST APPL, V40, P4241, DOI 10.1016/j.eswa.2013.01.019 Nassirtoussi AK, 2015, EXPERT SYST APPL, V42, P306, DOI 10.1016/j.eswa.2014.08.004 Nassirtoussi AK, 2014, EXPERT SYST APPL, V41, P7653, DOI 10.1016/j.eswa.2014.06.009 Nasukawa T., 2003, Proceedings of the International Conference on Knowledge Capture - K-CAP'03, P70, DOI [DOI 10.1145/945645.945658, 10.1145/945645.945658] Nourmohammadi H, 2016, COLLABORATION SCI TE Onodera N, 2015, J ASSOC INF SCI TECH, V66, P739, DOI 10.1002/asi.23209 Persson O, 2008, INT SOC SCIENTOMETR, V4, P8 Prabowo R, 2009, J INFORMETR, V3, P143, DOI 10.1016/j.joi.2009.01.003 Qiu GA, 2011, COMPUT LINGUIST, V37, P9, DOI 10.1162/coli_a_00034 Rafie M, 2016, SCI EVALUATION Ravi K, 2015, KNOWL-BASED SYST, V89, P14, DOI 10.1016/j.knosys.2015.06.015 Rodrigues RG, 2016, INT J MED INFORM, V85, P80, DOI 10.1016/j.ijmedinf.2015.09.007 Sammut C., 2017, ENCY MACHINE LEARNIN, Vsecond, DOI DOI 10.1007/978-1-4899-7687-1 Schouten K, 2016, IEEE T KNOWL DATA EN, V28, P813, DOI 10.1109/TKDE.2015.2485209 SCImago Research Group, 2008, DESCR SCIM J RANK IN Smr P, 2006, P 3 INT WORDNET C S Sobkowicz P, 2012, GOV INFORM Q, V29, P470, DOI 10.1016/j.giq.2012.06.005 Strapparava C, 2008, APPLIED COMPUTING 2008, VOLS 1-3, P1556 Taboada M, 2011, COMPUT LINGUIST, V37, P267, DOI 10.1162/COLI_a_00049 Tan SB, 2008, EXPERT SYST APPL, V34, P2622, DOI 10.1016/j.eswa.2007.05.028 Thelwall M, 2012, J AM SOC INF SCI TEC, V63, P163, DOI 10.1002/asi.21662 Thelwall M, 2010, J AM SOC INF SCI TEC, V61, P190, DOI 10.1002/asi.21180 Thet TT, 2010, J INF SCI, V36, P823, DOI 10.1177/0165551510388123 Nguyen TH, 2015, EXPERT SYST APPL, V42, P9603, DOI 10.1016/j.eswa.2015.07.052 Tumasjan A, 2011, SOC SCI COMPUT REV, V29, P402, DOI 10.1177/0894439310386557 van Dam Joost W., MARINE ENZYMES BIOTE, V112, P427, DOI [10.1016/j.marpolbul.2016.07.015, DOI 10.1016/BS.AFNR.2016.12.003, DOI 10.1016/J.IJINFOMGT.2016.03.015] Wang Y, 2015, 2015 IEEE INT C DAT Warriner AB, 2013, BEHAV RES METHODS, V45, P1191, DOI 10.3758/s13428-012-0314-x Wilson T, 2009, COMPUT LINGUIST, V35, P399, DOI 10.1162/coli.08-012-R1-06-90 Yang K., 2006, Proc. Am. Soc. Inf. Sci. Technol, V43, P1, DOI DOI 10.1002/MEET.14504301185 [杨立公 Yang Ligong], 2013, [计算机应用, Journal of Computer Applications], V33, P1574 Yao J, 2007, 2007 GRC 2007 IEEE I Yi J, 2003, 2003 ICDM 2003 3 IEE Yu Y, 2013, DECIS SUPPORT SYST, V55, P919, DOI 10.1016/j.dss.2012.12.028 NR 83 TC 43 Z9 44 U1 6 U2 167 PU SAGE PUBLICATIONS LTD PI LONDON PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND SN 0165-5515 EI 1741-6485 J9 J INF SCI JI J. Inf. Sci. PD FEB PY 2019 VL 45 IS 1 BP 3 EP 15 DI 10.1177/0165551518761013 PG 13 WC Computer Science, Information Systems; Information Science & Library Science WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Computer Science; Information Science & Library Science GA HG4KY UT WOS:000454945400001 DA 2024-09-05 ER PT C AU Zhang, Q Liu, TN AF Zhang, Qian Liu, Tongna BE Mahadevan, V Jianhong, Z TI Research on Performance Evaluation of Project Management Based on SVM and Wavelet Neural Network SO 2010 2ND INTERNATIONAL CONFERENCE ON COMPUTER AND AUTOMATION ENGINEERING (ICCAE 2010), VOL 2 SE International Conference on Computer and Automation Engineering LA English DT Proceedings Paper CT 2nd International Conference on Computer and Automation Engineering (ICCAE) CY FEB 26-28, 2010 CL Singapore, SINGAPORE DE SVM; Project Management; Performance Evaluation; Neural Network AB The principle and step of performance evaluation of project management based on SVM and wavelet neural network are studied. The index system of performance evaluation of project management is set up. Then we built up the evaluation model on SVM and wavelet neural network. Finally, take some samples of project for an example, we carry on this model to instance. It can take a preferably evaluation, so that it is a viable method. C1 [Zhang, Qian] North China Elect Power Univ, Dept Econ Management, Baoding 071000, Hebei, Peoples R China. [Liu, Tongna] North China Elect Power Univ, Dept Elect & Commun Engn, Baoding, Hebei, Peoples R China. C3 North China Electric Power University; North China Electric Power University RP Zhang, Q (corresponding author), North China Elect Power Univ, Dept Econ Management, Baoding 071000, Hebei, Peoples R China. EM hdzhq@yeah.net; hdltn@yeah.net FU Hebei Natural Science Fund [G2009001410] FX This research was supported by Hebei Natural Science Fund. (G2009001410) CR [Anonymous], 2000, THESIS [Anonymous], 2000, 17th International Conference on Machine Learning Meinard M, 2005, P ACM SIGGRAPH, V24, P677 Russell S, 2002, ARFIFICIAL INTELLIGE Webb GI, 2000, MACH LEARN, V40, P159, DOI 10.1023/A:1007659514849 ZHANG GL, 2002, FUZZY CONTROL APPL M Zhu Jing, 1995, THEORY FUZZY CONTROL NR 7 TC 17 Z9 17 U1 0 U2 5 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA SN 2154-4352 BN 978-1-4244-5569-0 J9 INT CONF COMPUT AUTO PY 2010 BP 91 EP 94 DI 10.1109/ICCAE.2010.5451393 PG 4 WC Automation & Control Systems; Computer Science, Theory & Methods; Engineering, Electrical & Electronic WE Conference Proceedings Citation Index - Science (CPCI-S) SC Automation & Control Systems; Computer Science; Engineering GA BH0ZA UT WOS:000397218200021 DA 2024-09-05 ER PT J AU Saeed-Ul Hassan Safder, I Akram, A Kamiran, F AF Saeed-Ul Hassan Safder, Iqra Akram, Anam Kamiran, Faisal TI A novel machine-learning approach to measuring scientific knowledge flows using citation context analysis SO SCIENTOMETRICS LA English DT Article DE Knowledge flows; Machine learning; Citation context classification; Influential citations; Citation analysis ID INFORMATION-SCIENCE; PATENT CITATIONS; INSTITUTIONS; SPECIALTY; DIFFUSION; SPACE; US AB We measure the knowledge flows between countries by analysing publication and citation data, arguing that not all citations are equally important. Therefore, in contrast to existing techniques that utilize absolute citation counts to quantify knowledge flows between different entities, our model employs a citation context analysis technique, using a machine-learning approach to distinguish between important and non-important citations. We use 14 novel features (including context-based, cue words-based and text-based) to train a Support Vector Machine (SVM) and Random Forest classifier on an annotated dataset of 20,527 publications downloaded from the Association for Computational Linguistics anthology (http://allenai.org/data.html). Our machine-learning models outperform existing state-of-the-art citation context approaches, with the SVM model reaching up to 61% and the Random Forest model up to a very encouraging 90% Precision-Recall Area Under the Curve, with 10-fold cross-validation. Finally, we present a case study to explain our deployed method for datasets of PLoS ONE full-text publications in the field of Computer and Information Sciences. Our results show that a significant volume of knowledge flows from the United States, based on important citations, are consumed by the international scientific community. Of the total knowledge flow from China, we find a relatively smaller proportion (only 4.11%) falling into the category of knowledge flow based on important citations, while The Netherlands and Germany show the highest proportions of knowledge flows based on important citations, at 9.06 and 7.35% respectively. Among the institutions, interestingly, the findings show that at the University of Malaya more than 10% of the knowledge produced falls into the category of important. We believe that such analyses are helpful to understand the dynamics of the relevant knowledge flows across nations and institutions. C1 [Saeed-Ul Hassan; Safder, Iqra; Akram, Anam; Kamiran, Faisal] Informat Technol Univ, 346-B,Ferozepur Rd, Lahore 54700, Pakistan. RP Saeed-Ul Hassan (corresponding author), Informat Technol Univ, 346-B,Ferozepur Rd, Lahore 54700, Pakistan. EM saeedulhassan@gmail.com RI Safder, Iqra/JXN-8069-2024; Hassan, Saeed-Ul/G-1889-2016 OI Hassan, Saeed-Ul/0000-0002-6509-9190 CR BONZI S, 1982, J AM SOC INFORM SCI, V33, P208, DOI 10.1002/asi.4630330404 BORGMAN CL, 1992, J AM SOC INFORM SCI, V43, P397, DOI 10.1002/(SICI)1097-4571(199207)43:6<397::AID-ASI1>3.0.CO;2-M Börner K, 2006, SCIENTOMETRICS, V68, P415, DOI 10.1007/s11192-006-0120-2 Breiman L., 2001, Machine Learning, V45, P5, DOI 10.1023/A:1010933404324 CHUBIN DE, 1975, SOC STUD SCI, V5, P423, DOI 10.1177/030631277500500403 Garzone M. A., 1997, THESIS Guevara MR, 2016, SCIENTOMETRICS, V109, P1695, DOI 10.1007/s11192-016-2125-9 Hagel J., 2010, DELOITTE CTR EDGE, V2 Hassan S. U., 2017, JOINT INT C DIG LIB Hassan SU, 2015, SCIENTOMETRICS, V103, P33, DOI 10.1007/s11192-015-1528-3 Hassan SU, 2013, SCIENTOMETRICS, V94, P163, DOI 10.1007/s11192-012-0786-6 Hassan SU, 2015, ISSI Hicks D, 2001, RES POLICY, V30, P681, DOI 10.1016/S0048-7333(00)00147-5 Hu AGZ, 2003, INT J IND ORGAN, V21, P849, DOI 10.1016/S0167-7187(03)00035-3 Hu ZG, 2013, J INFORMETR, V7, P887, DOI 10.1016/j.joi.2013.08.005 Ingwersen P., 2000, WEB KNOWLEDGE FESTSC JAFFE AB, 1993, Q J ECON, V108, P577, DOI 10.2307/2118401 Khasseh AA, 2017, INFORM PROCESS MANAG, V53, P705, DOI 10.1016/j.ipm.2017.02.001 Leydesdorff L, 2009, J AM SOC INF SCI TEC, V60, P1709, DOI 10.1002/asi.21052 Liu SB, 2012, SCIENTOMETRICS, V91, P495, DOI 10.1007/s11192-011-0575-7 Liu X, 2014, J NANOPART RES, V16, DOI 10.1007/s11051-014-2613-x Lockett A, 2005, J MANAGE INQUIRY, V14, P139, DOI 10.1177/1056492605276645 Luo XF, 2010, NEW GENERAT COMPUT, V28, P113, DOI 10.1007/s00354-009-0078-8 Luo XF, 2009, CONCURR COMP-PRACT E, V21, P2018, DOI 10.1002/cpe.1460 LUUKKONEN T, 1992, SCIENTOMETRICS, V24, P297, DOI 10.1007/BF02017913 Mete Mahendra V., 1996, ANN LIB SCI DOCUM, V43, P11 MEYER M., 2002, ECON SYST RES, V14, P323, DOI [10.1080/0953531022000024824, DOI 10.1080/0953531022000024824] MORAVCSIK MJ, 1975, SOC STUD SCI, V5, P86, DOI 10.1177/030631277500500106 OPPENHEIM C, 1978, J AM SOC INFORM SCI, V29, P225, DOI 10.1002/asi.4630290504 Patel P, 1998, 111998 IDEA Ponomariov B, 2014, RES POLICY, V43, P588, DOI 10.1016/j.respol.2013.09.002 Ribeiro LC, 2014, SCIENTOMETRICS, V101, P61, DOI 10.1007/s11192-014-1351-2 Rosvall M, 2008, P NATL ACAD SCI USA, V105, P1118, DOI 10.1073/pnas.0706851105 Saeed-Ul Hassan, 2017, PRO INT CONF SCI INF, P322 SCHOTT T, 1994, SOC SCI RES, V23, P23, DOI 10.1006/ssre.1994.1002 SMALL H, 1986, J AM SOC INFORM SCI, V37, P97, DOI 10.1002/asi.4630370302 STIGLER SM, 1994, STAT SCI, V9, P94, DOI 10.1214/ss/1177010655 Suykens JAK, 1999, NEURAL PROCESS LETT, V9, P293, DOI 10.1023/A:1018628609742 Teufel S., 2006, P C EMP METH NAT LAN, DOI 10.3115/1610075.1610091 Valenzuela M., 2015, 29 AAAI C ART INT Yan EJ, 2016, J ASSOC INF SCI TECH, V67, P2223, DOI 10.1002/asi.23541 Yan E, 2015, J ASSOC INF SCI TECH, V66, P2357, DOI 10.1002/asi.23324 Yan E, 2013, J INFORMETR, V7, P249, DOI 10.1016/j.joi.2012.11.008 Yan EJ, 2011, J AM SOC INF SCI TEC, V62, P1498, DOI 10.1002/asi.21556 Yang SL, 2015, J INFORMETR, V9, P208, DOI 10.1016/j.joi.2015.01.001 Zhang Q., 2013, APS M ABSTRACTS, V1, P28001 Zhuge H, 1997, INFORM SOFTWARE TECH, V39, P463, DOI 10.1016/S0950-5849(96)00008-0 Zhuge H, 2011, ARTIF INTELL, V175, P988, DOI 10.1016/j.artint.2010.09.009 Zhuge H, 2009, IEEE T KNOWL DATA EN, V21, P785, DOI 10.1109/TKDE.2008.141 Ziman J.M., 1968, Public knowledge: An essay concerning the social dimension of science, V519 NR 50 TC 44 Z9 51 U1 10 U2 120 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0138-9130 EI 1588-2861 J9 SCIENTOMETRICS JI Scientometrics PD AUG PY 2018 VL 116 IS 2 BP 973 EP 996 DI 10.1007/s11192-018-2767-x PG 24 WC Computer Science, Interdisciplinary Applications; Information Science & Library Science WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Computer Science; Information Science & Library Science GA GP1SS UT WOS:000440597800015 DA 2024-09-05 ER PT J AU Xu, HL Ge, SL Yuan, F AF Xu, Hailing Ge, Shilun Yuan, Feng TI Research on the Mechanism of Influence of Game Competition Mode on Online Learning Performance SO BEHAVIORAL SCIENCES LA English DT Article DE online learning; learning performance; competition; gamification; curriculum platform ID TO-STUDENT CONNECTEDNESS; GAMIFICATION; MOTIVATION; CLASSROOM AB With the rapid development of information technology and the influence of the COVID-19 pandemic, online learning has become an important supplement to the teaching organization form of basic education and higher education. In order to increase user stickiness and improve learning performance, gamification elements are widely introduced into online learning situations. However, scholars have drawn different conclusions on the impact of game-based competition on online learning performance. This study is based on field theory and constructivist learning theory. Taking the online interaction of the curriculum platform as the situation, psychological capital as the intermediary variable and connected classroom atmosphere as the adjustment variable, this paper constructs an interaction model between game competition and online learning performance and discusses in depth the intermediary effect of psychological capital and the adjustment effect of a connected classroom atmosphere. The results show that game-based competition has a significant positive effect on learning performance, and the effect of direct competition is better than that of indirect competition; the self-efficacy dimension of psychological capital plays an intermediary role between direct competition and learning performance, and the resilience dimension plays an intermediary role between competition and learning performance; and a connected classroom atmosphere plays a regulating role in the dimensions of game competition, knowledge mastery and knowledge innovation. C1 [Xu, Hailing] Jiangsu Univ Sci & Technol, Acad Affairs Off, Zhenjiang 212003, Jiangsu, Peoples R China. [Xu, Hailing; Ge, Shilun] Jiangsu Univ Sci & Technol, Sch Econ & Management, Zhenjiang 212003, Jiangsu, Peoples R China. [Yuan, Feng] Jiangsu Univ Sci & Technol, Grad Sch, Zhenjiang 212003, Jiangsu, Peoples R China. C3 Jiangsu University of Science & Technology; Jiangsu University of Science & Technology; Jiangsu University of Science & Technology RP Xu, HL (corresponding author), Jiangsu Univ Sci & Technol, Acad Affairs Off, Zhenjiang 212003, Jiangsu, Peoples R China.; Xu, HL (corresponding author), Jiangsu Univ Sci & Technol, Sch Econ & Management, Zhenjiang 212003, Jiangsu, Peoples R China. EM xhl@just.edu.cn; jzgsl@jzerp.com; yfjuster1979@163.com FU Humanities and Social Sciences Project of Ministry of Education [21JDSZ3091]; Jiangsu Higher Education Reform Research Project [2021JSJG365]; Philosophy and Social Sciences Project of Universities in Jiangsu Province [2021SJZDA169, 2021SJA2102] FX Humanities and Social Sciences Project of Ministry of Education (21JDSZ3091); Jiangsu Higher Education Reform Research Project (2021JSJG365); Philosophy and Social Sciences Project of Universities in Jiangsu Province (2021SJZDA169 and 2021SJA2102). CR Agrawal S, 2021, BEHAV SCI-BASEL, V11, DOI 10.3390/bs11110145 Anderson C, 2015, PSYCHOL BULL, V141, P574, DOI 10.1037/a0038781 Avey JB, 2011, HUM RESOUR DEV Q, V22, P127, DOI 10.1002/hrdq.20070 Ibáñez MB, 2014, COMPUT EDUC, V71, P1, DOI 10.1016/j.compedu.2013.09.004 Burguillo JC, 2010, COMPUT EDUC, V55, P566, DOI 10.1016/j.compedu.2010.02.018 Cagiltay NE, 2015, COMPUT EDUC, V87, P35, DOI 10.1016/j.compedu.2015.04.001 Cheng G., 2020, J MANAG SCI CHINA, V23, P16 Cheong C., 2013, PACIS, P156 Christy KR, 2014, COMPUT EDUC, V78, P66, DOI 10.1016/j.compedu.2014.05.005 CNNIC (China Internet Network Information Center), 2021, The 47th Statistical Report on China's Internet Development de-Marcos L, 2014, COMPUT EDUC, V75, P82, DOI 10.1016/j.compedu.2014.01.012 Gu JH., 2018, NANKAI BUS REV NT, V21, P107 Hanus MD, 2015, COMPUT EDUC, V80, P152, DOI 10.1016/j.compedu.2014.08.019 Peris FJSI, 2015, EDUC KNOWL SOC, V16, P13, DOI 10.14201/eks20151621315 Li S., 2020, Open Education Research, P99, DOI [10.13966/j.cnki.kfjyyj.2020.03.011, DOI 10.13966/J.CNKI.KFJYYJ.2020.03.011] Li X., 2020, RES REPRESENTATION E Naugle K.A., 2000, EDUCATION, V121, P135 Ortega-Arranz A, 2019, COMPUT EDUC, V142, DOI 10.1016/j.compedu.2019.103639 Hernández-Ramos JP, 2020, EDUC KNOWL SOC, V21, DOI 10.14201/eks.22910 Pan J., 2015, RES RELATIONSHIP MOO Rajeev P, 2009, CURR SCI INDIA, V96, P272 Rice JW, 2012, INT J GAMING COMPUT-, V4, P81, DOI 10.4018/jgcms.2012100106 Sarmiento B.R., 2021, J MEDIA ED, V12, P53, DOI DOI 10.36253/ME-10262 Sidelinger RJ, 2011, COMMUN EDUC, V60, P340, DOI 10.1080/03634523.2011.554991 Sidelinger RJ, 2010, COMMUN EDUC, V59, P165, DOI 10.1080/03634520903390867 Su CH, 2015, J COMPUT ASSIST LEAR, V31, P268, DOI 10.1111/jcal.12088 Sun T., 2017, DISTANCE ED CHINA, V10, P55 Wang W, 2019, BEHAV INFORM TECHNOL, V38, P621, DOI 10.1080/0144929X.2018.1549595 Yue X., 2020, RES RELATIONSHIP PSY Zhang H., 2013, J MANAG WORLD, V10, P170 NR 30 TC 5 Z9 5 U1 7 U2 81 PU MDPI PI BASEL PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND EI 2076-328X J9 BEHAV SCI-BASEL JI Behav. Sci. PD JUL PY 2022 VL 12 IS 7 AR 225 DI 10.3390/bs12070225 PG 16 WC Psychology, Multidisciplinary WE Social Science Citation Index (SSCI) SC Psychology GA 3G8KI UT WOS:000831596400001 PM 35877295 OA gold, Green Published DA 2024-09-05 ER PT J AU Özköse, H Ozyurt, O Ayaz, A AF Ozkose, Hakan Ozyurt, Ozcan Ayaz, Ahmet TI Management Information Systems Research: A Topic Modeling Based Bibliometric Analysis SO JOURNAL OF COMPUTER INFORMATION SYSTEMS LA English DT Article DE Management information systems; topic modeling; bibliometric analysis; research trends ID COVID-19; POINTS; WORK; MIS AB Management information systems (MIS) have an interdisciplinary structure. Naturally, it develops and changes with the influence of other fields. This study tries to analyze MIS through academic studies on this topic. In this context, the analysis included 25304 articles published in the Scopus database from 2016 to 2021. Then, the performance analysis, part of bibliometric analysis, was used to measure the research productivity and impact of authors, institutions, countries, and journals. This way, the field's most influential authors, institutions, countries, and journals were determined. Afterward, the articles were gathered under 15 categories with topic modeling. These categories were examined on an annual basis, and more detailed results were tried to be revealed. This study both revealed the primary lines of the MIS field and ended up being a guide for researchers about the topics they can focus on in the future. C1 [Ozkose, Hakan] Bartin Univ, Dept Management Informat Syst, Bartin, Turkey. [Ozyurt, Ozcan] Karadeniz Tech Univ, Dept Software Engn, Trabzon, Turkey. [Ayaz, Ahmet] Karadeniz Tech Univ, Digital Transformat Off, Trabzon, Turkey. C3 Bartin University; Karadeniz Technical University; Karadeniz Technical University RP Ayaz, A (corresponding author), Karadeniz Tech Univ, Digital Transformat Off, Trabzon, Turkey. EM ahmetayaz@ktu.edu.tr RI Ayaz, Ahmet/JBJ-2146-2023; ÖZYURT, Özcan/AAG-4556-2019; Özköse, Hakan/HLX-2774-2023; Ayaz, Ahmet/ABF-5870-2021 OI ÖZYURT, Özcan/0000-0002-0047-6813; Özköse, Hakan/0000-0002-4628-3056; Ayaz, Ahmet/0000-0003-1405-0546 CR Abid M., 2008, OPERATION RES MANAGE Aday S, 2020, FOOD QUAL SAF-OXFORD, V4, P167, DOI 10.1093/fqsafe/fyaa024 Adeoti-Adekeye WB., 1997, LIBR REV, V46, P318 Aggarwal C.C., 2012, Mining Text Data, P1, DOI DOI 10.1007/978-1-4614-3223-4_1 ARGYRIS C, 1971, MANAGE SCI B-APPL, V17, pB275 Barbier EB, 2020, WORLD DEV, V135, DOI 10.1016/j.worlddev.2020.105082 Basile LJ, 2023, TECHNOVATION, V120, DOI 10.1016/j.technovation.2022.102482 Baskerville RL, 2002, MIS QUART, V26, P1, DOI 10.2307/4132338 Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993 Boyle MJ., 2022, WHAT IS FINANCE EC Can GF, 2023, IEEE T ENG MANAGE, V70, P3587, DOI 10.1109/TEM.2021.3100795 Chen K., 2011, REV TECHNOLOGY ACCEP CHEON MJ, 1992, DATA BASE, V23, P21, DOI 10.1145/141342.141355 CULNAN MJ, 1986, MIS QUART, V10, P289, DOI 10.2307/249263 CULNAN MJ, 1987, MIS QUART, V11, P341, DOI 10.2307/248680 CULNAN MJ, 1986, MANAGE SCI, V32, P156, DOI 10.1287/mnsc.32.2.156 Damar M., 2021, INT J MANAG INF SYST, V5, P194, DOI [10.33461/uybisbbd.1011767, DOI 10.33461/UYBISBBD.1011767] Donthu N, 2021, J BUS RES, V133, P285, DOI 10.1016/j.jbusres.2021.04.070 Du HS, 2017, ONLINE INFORM REV, V41, P454, DOI 10.1108/OIR-05-2017-0142 FARHOOMAND AF, 1987, DATA BASE, V18, P48, DOI 10.1145/1017816.1017821 Fell R., 2005, Proceedings of the International Conference on Landslide Risk Management, Vancouver, Canada, P3 Girard J., 2015, ONLINE J APPL KNOWLE, V3 Gurcan F, 2021, INT REV RES OPEN DIS, V22, P1 Holsapple CW, 2008, J ORG COMP ELECT COM, V18, P333, DOI 10.1080/10919390802453617 Hsu WCJ, 2021, DECIS SUPPORT SYST, V141, DOI 10.1016/j.dss.2020.113447 Hu YN, 2014, MACH LEARN, V95, P423, DOI 10.1007/s10994-013-5413-0 Kang J, 2019, J KOREAN ACAD NURS, V49, P736, DOI 10.4040/jkan.2019.49.6.736 Keeble BR., 1988, BRUNDTLAND REPORT OU Laudon KennethC., 2014, Management Information Systems: Managing the Digital Firm, V13th Opoku D., 2020, Humanities, V5, P151, DOI [10.20448/801.51.151.168, DOI 10.20448/801.51.151.168] Özköse H, 2017, GAZI U J SCI, V30, P356 Ozyurt O, 2023, EDUC INF TECHNOL, V28, P3557, DOI 10.1007/s10639-022-11325-9 Ozyurt O, 2022, EDUC INF TECHNOL, V27, P11025, DOI 10.1007/s10639-022-11071-y PANPATTE Suraj., 2019, The International Journal of Business Management and Technology, V3, P73 Power D.J., 2002, Decision Support Systems: Concepts and Resources for Managers Pujari A.K., 2001, Data Mining Techniques Risley C, 2020, J LIBR ADM, V60, P653, DOI 10.1080/01930826.2020.1773716 Rume T, 2020, HELIYON, V6, DOI 10.1016/j.heliyon.2020.e04965 Seo SN, 2017, BEHAVIORAL ECONOMICS OF CLIMATE CHANGE: ADAPTATION BEHAVIORS, GLOBAL PUBLIC GOODS, BREAKTHROUGH TECHNOLOGIES, AND POLICY-MAKING, P139, DOI 10.1016/B978-0-12-811874-0.00005-2 Shaker RR, 2015, APPL GEOGR, V63, P304, DOI 10.1016/j.apgeog.2015.07.009 Shiferaw A., 1997, COGNITIVE TECHNIQUES Stevens G. C., 1989, International Journal of Physical Distribution & Materials Management, V19, P3, DOI 10.1108/EUM0000000000329 Tönnissen S, 2020, INT J INFORM MANAGE, V52, DOI 10.1016/j.ijinfomgt.2019.05.009 Van HGE, 2021, J ASIAN FINANC ECON, V8, P303, DOI 10.13106/jafeb.2021.vol8.no5.0303 Wang J, 2018, IND MANAGE DATA SYST, V118, P2, DOI 10.1108/IMDS-12-2016-0540 Wong LW, 2020, INT J INFORM MANAGE, V52, DOI 10.1016/j.ijinfomgt.2019.08.005 Wu KJ, 2016, IND MANAGE DATA SYST, V116, P777, DOI 10.1108/IMDS-08-2015-0327 NR 47 TC 7 Z9 7 U1 8 U2 50 PU TAYLOR & FRANCIS INC PI PHILADELPHIA PA 530 WALNUT STREET, STE 850, PHILADELPHIA, PA 19106 USA SN 0887-4417 EI 2380-2057 J9 J COMPUT INFORM SYST JI J. Comput. Inf. Syst. PD SEP 3 PY 2023 VL 63 IS 5 BP 1166 EP 1182 DI 10.1080/08874417.2022.2132429 EA OCT 2022 PG 17 WC Computer Science, Information Systems WE Science Citation Index Expanded (SCI-EXPANDED) SC Computer Science GA U2VV9 UT WOS:000869520900001 DA 2024-09-05 ER PT J AU Williams, K Berman, G Michalska, S AF Williams, Kate Berman, Glen Michalska, Sandra TI Investigating hybridity in artificial intelligence research SO BIG DATA & SOCIETY LA English DT Article DE Artificial intelligence; hybridity; knowledge production; research value; bibliometrics ID INSTITUTIONAL LOGICS; RESEARCH IMPACT; ALTMETRICS; INDUSTRY; PATENT AB Research in the global field of artificial intelligence is increasingly hybrid in orientation. Researchers are beholden to the requirements of multiple intersecting spheres, such as scholarly, public, and commercial, each with their own language and logic. Relatedly, collaboration across disciplinary, sector and national borders is increasingly expected, or required. Using a dataset of 93,482 artificial intelligence publications, this article operationalises scholarly, public, and commercial spheres through citations, news mentions, and patent mentions, respectively. High performing publications (99th percentile) for each metric were separated into eight categories of influence. These comprised four blended categories of influence (news, patents and citations; news and patents; news and citations; patents and citations) and three single categories of influence (citations; news; patents), in addition to the 'Other' category of non-high performing publications. The article develops and applies two components of a new hybridity lens: evaluative hybridity and generative hybridity. Using multinomial logistic regression, selected aspects of knowledge production - research context, focus, artefacts, and collaborative configurations - were examined. The results elucidate key characteristics of knowledge production in the artificial intelligence field and demonstrate the utility of the proposed lens. C1 [Williams, Kate] Univ Melbourne, Sch Social & Polit Sci, Melbourne, Vic, Australia. [Berman, Glen] Australian Natl Univ, Sch Engn, Canberra, ACT, Australia. [Michalska, Sandra] Kings Coll London, Policy Inst, London, England. [Williams, Kate] Univ Melbourne, Sch Social & Polit Sci, 420 John Medley Bldg, Melbourne, Vic 3010, Australia. C3 University of Melbourne; Australian National University; University of London; King's College London; University of Melbourne RP Williams, K (corresponding author), Univ Melbourne, Sch Social & Polit Sci, 420 John Medley Bldg, Melbourne, Vic 3010, Australia. EM kate.williams@unimelb.edu.au OI Berman, Glen/0000-0003-3249-0190 FU Economic and Social Research Council [ES/V004123/1]; ESRC [ES/V004123/1] Funding Source: UKRI FX The author(s) disclosed receipt of the following financial support forthe research, authorship, and/or publication of this article: This workwas supported by the Economic and Social Research Council grant ES/V004123/1, awarded to Kate Williams and Jonathan Grant. CR Abadi HHN, 2020, IEEE ACCESS, V8, P183448, DOI 10.1109/ACCESS.2020.3029231 Abadi HHN, 2020, IEEE ACCESS, V8, P81633, DOI 10.1109/ACCESS.2020.2988815 Abbas A, 2014, WORLD PAT INF, V37, P3, DOI 10.1016/j.wpi.2013.12.006 Adler N, 2009, RES POLICY, V38, P1136, DOI 10.1016/j.respol.2009.05.001 Ahmed N, 2020, Arxiv, DOI arXiv:2010.15581 Aksnes DW, 2019, SAGE OPEN, V9, DOI 10.1177/2158244019829575 Albert M, 2003, HIGH EDUC, V45, P147, DOI 10.1023/A:1022428802287 Baruffaldi S., 2020, OECD Science, Technology and Industry Working Papers, V2020/05, DOI [10.1787/5f65ff7--en, DOI 10.1787/5F65FF7--EN] Bastow S., 2014, The Impact of the Social Sciences: How Academics and Their Research Make a Difference Battilana J., 2017, The SAGE handbook of organizational institutionalism, V2, P128, DOI [10.4135/9781446280669.n6, DOI 10.4135/9781446280669.N6] Bornmann L, 2014, J INFORMETR, V8, P895, DOI 10.1016/j.joi.2014.09.005 Brennen JS, 2022, JOURNALISM, V23, P22, DOI 10.1177/1464884920947535 Bughin J., 2017, McKinsey Quarterly Chuan CH, 2019, AIES '19: PROCEEDINGS OF THE 2019 AAAI/ACM CONFERENCE ON AI, ETHICS, AND SOCIETY, P339, DOI 10.1145/3306618.3314285 Cockburn IM, 2018, 24449 NBER Crespo M, 2007, HIGH EDUC, V54, P61, DOI 10.1007/s10734-006-9046-0 Echterholter A., 2021, PREPRINT, DOI [10.33767/osf.io/28pnx, DOI 10.33767/OSF.IO/28PNX] Enders J., 2004, Higher Education Policy, V17, P135 Fast E, 2017, AAAI CONF ARTIF INTE, P963 Fournier-Tombs E, 2021, BIG DATA SOC, V8, DOI 10.1177/20539517211039493 Frank MR, 2019, NAT MACH INTELL, V1, P79, DOI 10.1038/s42256-019-0024-5 Gargiulo F, 2022, Arxiv, DOI [arXiv:2212.12263, 10.48550/arXiv.2212.12263, DOI 10.48550/ARXIV.2212.12263] Gumpenberger C, 2016, SCIENTOMETRICS, V108, P977, DOI 10.1007/s11192-016-1991-5 Hagendorff T, 2023, AI SOC, V38, P35, DOI 10.1007/s00146-021-01284-z Hammarfelt B, 2014, SCIENTOMETRICS, V101, P1419, DOI 10.1007/s11192-014-1261-3 Haney BS., 2020, SSRN ELECT J, DOI [10.2139/ssrn.3570254, DOI 10.2139/SSRN.3570254] Haustein S, 2014, SCIENTOMETRICS, V101, P1145, DOI 10.1007/s11192-013-1221-3 Jobin A, 2019, NAT MACH INTELL, V1, P389, DOI 10.1038/s42256-019-0088-2 Jurowetzki R, 2021, Arxiv, DOI [arXiv:2102.01648, 10.48550/arXiv.2102.01648, DOI 10.48550/ARXIV.2102.01648] Kazuyuki M., 2020, SCI TECHNOLOGY COEVO Klinger J., 2020, Social Science Research Network, DOI DOI 10.2139/SSRN.3698698 LAWANI SM, 1981, LIBRI, V31, P294 Li X, 2021, J INF SCI, V47, P161, DOI 10.1177/0165551519877049 Luitse D, 2021, BIG DATA SOC, V8, DOI 10.1177/20539517211047734 Mikolajczak P, 2020, VOLUNTAS, V31, P472, DOI 10.1007/s11266-020-00195-9 Mirowski P, 2018, SOC STUD SCI, V48, P171, DOI 10.1177/0306312718772086 Motohashi K., 2018, UNDERSTANDING AI DRI Niu JQ, 2016, ISPRS INT J GEO-INF, V5, DOI 10.3390/ijgi5050066 Ortega JL., 2019, J ALTMETRICS, V2, P4, DOI DOI 10.29024/JOA.14 Roemer R.C., 2015, MEANINGFUL METRICS 2 Samoili S, 2021, AI Watch, Defining Artificial Intelligence 2.0 Saran Samir, 2018, PURSUIT AUTONOMY NAT Borg JS, 2021, BIG DATA SOC, V8, DOI 10.1177/20539517211040197 Siebert M., 2018, TECHNICAL BACKGROUND STAR SL, 1989, SOC STUD SCI, V19, P387, DOI 10.1177/030631289019003001 Stark David., 2011, The Sense of Dissonance Strubell E, 2019, 57TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2019), P3645 Thornton P.H., 2012, The Institutional Logics Perspective: A New Approach to Culture, Structure, and Process Thornton PH, 1999, AM J SOCIOL, V105, P801, DOI 10.1086/210361 Wang AL, 2019, Arxiv, DOI arXiv:1804.07461 Williams K, 2022, SCI PUBL POLICY, V49, P518, DOI 10.1093/scipol/scac004 Williams K, 2020, RES EVALUAT, V29, P191, DOI 10.1093/reseval/rvaa001 Ylijoki OH, 2003, HIGH EDUC, V45, P307, DOI 10.1023/A:1022667923715 Zhang BB, 2020, PROCEEDINGS OF THE 3RD AAAI/ACM CONFERENCE ON AI, ETHICS, AND SOCIETY AIES 2020, P187, DOI 10.1145/3375627.3375827 Zhao SX, 2018, SCIENTOMETRICS, V115, P153, DOI 10.1007/s11192-018-2662-5 NR 55 TC 3 Z9 3 U1 8 U2 28 PU SAGE PUBLICATIONS INC PI THOUSAND OAKS PA 2455 TELLER RD, THOUSAND OAKS, CA 91320 USA SN 2053-9517 J9 BIG DATA SOC JI Big Data Soc. PD JUL PY 2023 VL 10 IS 2 AR 20539517231180577 DI 10.1177/20539517231180577 PG 17 WC Social Sciences, Interdisciplinary WE Social Science Citation Index (SSCI) SC Social Sciences - Other Topics GA L5MG1 UT WOS:001023699400001 OA gold DA 2024-09-05 ER PT C AU Zhang, ZY Xie, X AF Zhang, Zhenyu Xie, Xiaoyao BE Salem, MA ElHadidi, MT TI Intelligent cognitive radio: Research on learning and evaluation of CR based on neural network SO MEDIA CONVERGENCE: MOVING TO THE NEXT GENERATION LA English DT Proceedings Paper CT ITI 5th International Conference on Information and Communications Technology CY DEC 16-18, 2007 CL Cairo, EGYPT DE cognitive radio; artificial intelligence; neural network; cognitive radio engine; genetic algorithms AB This paper introduces the research of cognitive engine and application of artificial intelligence techniques in cognitive radio. The limitation of CR engine based on GA is analyzed, propose for improvement is proposed. The decision maker of CR engine should consider both the changeable factors and the unchangeable factors such as cost, bandwidth, signal rate and ARQ. Based on Neural Network, the method of evaluating and learning best decision is proposed. Several key architectural issues for cognitive radio engine based on Neural Network are discussed, including knowledge base information model and learning model Neural Network design. C1 [Zhang, Zhenyu] Guizhoi Univ, Inst Comp Sci, Guizhoi, Peoples R China. [Xie, Xiaoyao] Guizhou Normal Univ, Comp Sci Guizhou, Key Lab Informat, Guiyang 550002, Peoples R China. C3 Guizhou Normal University RP Zhang, ZY (corresponding author), Guizhoi Univ, Inst Comp Sci, Guizhoi, Peoples R China. EM zhangzy3@vip.sina.com; xyx@gznu.edu.cn FU International Cooperate Science Foundation of GuiZhou Province (China) FX This work was supported by the International Cooperate Science Foundation of GuiZhou Province (China). CR [Anonymous], 2004, THESIS VIRGINIA POLY BOSTAIN CW, 2004, P INT S ADV RAD TECH Haykin S., 2004, Neural Networks - A Comprehensive Foundation, V2, P41, DOI DOI 10.1017/S0269888998214044 MITCHELL T, 1989, ANNU REV COMPUT SCI, V4, P417 MITOLA J, THESIS ROYAL I TECHN Mitola J. III, 1999, 1999 IEEE International Workshop on Mobile Multimedia Communications (MoMuC'99) (Cat. No.99EX384), P3, DOI 10.1109/MOMUC.1999.819467 Narazaki H., 1993, IEEE Transactions on Fuzzy Systems, V1, P125, DOI 10.1109/91.227385 NEEL J, 2006, COGNITIVE RADIO NETW NEEL J, 2006, SDRFORUM WORKSH COGN Neel J.O., 2006, ANAL DESIGN COGNITIV Negnevitsky M., 2002, Artificial Intelligence - A Guide to Intelligence Systems, V1st RIESER CJ, 2004, IN PRESS IEEE MILCOM Wakuya H, 2001, NEURAL NETWORKS, V14, P1307, DOI 10.1016/S0893-6080(01)00087-9 Wasserman P.D., 1989, Neural Computing: Theory and Practice YU TC, 2004, J ZHEJIANG U, V38 NR 15 TC 20 Z9 21 U1 0 U2 0 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA BN 978-1-4244-1430-7 PY 2007 BP 33 EP 37 PG 5 WC Computer Science, Hardware & Architecture; Computer Science, Information Systems; Computer Science, Theory & Methods; Information Science & Library Science; Social Issues WE Conference Proceedings Citation Index - Science (CPCI-S); Conference Proceedings Citation Index - Social Science & Humanities (CPCI-SSH) SC Computer Science; Information Science & Library Science; Social Issues GA BHM92 UT WOS:000254392000006 DA 2024-09-05 ER PT J AU Vinkenburg, CJ Ossenkop, C Schiffbaenker, H AF Vinkenburg, Claartje J. Ossenkop, Carolin Schiffbaenker, Helene TI Selling science: optimizing the research funding evaluation and decision process SO EQUALITY DIVERSITY AND INCLUSION LA English DT Article DE Research funding; Panel evaluation; Decision making; Bias mitigation; Discretion elimination; Process optimization; Inclusion; Selling science ID LINGUISTIC ANALYSIS; GENDER AB Purpose In this contribution to EDI's professional insights, the authors develop practical and evidence-based recommendations that are developed for bias mitigation, discretion elimination and process optimization in panel evaluations and decisions in research funding. An analysis is made of how the expectation of "selling science" adds layers of complexity to the evaluation and decision process. The insights are relevant for optimization of similar processes, including publication, recruitment and selection, tenure and promotion. Design/methodology/approach The recommendations are informed by experiences and evidence from commissioned projects with European research funding organizations. The authors distinguish between three aspects of the evaluation process: written applications, enacted performance and group dynamics. Vignettes are provided to set the stage for the analysis of how bias and (lack of) fit to an ideal image makes it easier for some than for others to be funded. Findings In research funding decisions, (over)selling science is expected but creates shifting standards for evaluation, resulting in a narrow band of acceptable behavior for applicants. In the authors' recommendations, research funding organizations, evaluators and panel chairs will find practical ideas and levers for process optimization, standardization and customization, in terms of awareness, accountability, biased language, criteria, structure and time. Originality/value Showing how "selling science" in research funding adds to the cumulative disadvantage of bias, the authors offer design specifications for interventions to mitigate the negative effects of bias on evaluations and decisions, improve selection habits, eliminate discretion and create a more inclusive process. C1 [Ossenkop, Carolin] Connectify, Wijchen, Netherlands. [Ossenkop, Carolin] Radboud Univ Nijmegen, Inst Management Res, Nijmegen, Netherlands. [Schiffbaenker, Helene] Joanneum Res Forsch Gesell MbH, Graz, Austria. C3 Radboud University Nijmegen EM c.j.vinkenburg@gmail.com RI ; Vinkenburg, Claartje/F-1664-2013 OI Ossenkop, Carolin/0000-0002-2139-9984; Vinkenburg, Claartje/0000-0002-4607-7287 CR Bickmore W, 2018, NATURE, V562, P192, DOI 10.1038/d41586-018-06979-w Biernat M, 2020, PERS SOC PSYCHOL B, V46, P140, DOI 10.1177/0146167219845921 Bleijenbergh IL, 2012, EQUAL DIVERS INCL, V32, P22, DOI 10.1108/02610151311305597 Bloch C, 2014, MINERVA, V52, P77, DOI 10.1007/s11024-014-9247-0 Bol T, 2018, P NATL ACAD SCI USA, V115, P4887, DOI 10.1073/pnas.1719557115 Correll SJ, 2020, AM SOCIOL REV, V85, P1022, DOI 10.1177/0003122420962080 Fox MF., 2017, Handbook of Science and Technology Studies, V4, P701 Heilman M.E., 2015, Handbook of gendered careers in management: Getting in, getting on, getting out, P90, DOI [DOI 10.4337/9781782547709.00014, 10.4337/9781782547709.00014] Herschberg C., 2019, THESIS RADBOUD U Kaatz A, 2015, ACAD MED, V90, P69, DOI 10.1097/ACM.0000000000000442 King EB, 2018, J MANAGE, V44, P843, DOI 10.1177/0149206317743553 Leslie SJ, 2015, SCIENCE, V347, P262, DOI 10.1126/science.1261375 Madera JM, 2019, J BUS PSYCHOL, V34, P287, DOI 10.1007/s10869-018-9541-1 Malmström M, 2017, ENTREP THEORY PRACT, V41, P833, DOI 10.1111/etap.12275 Markowitz DM, 2019, J LANG SOC PSYCHOL, V38, P264, DOI 10.1177/0261927X18824859 Régner I, 2019, NAT HUM BEHAV, V3, P1171, DOI 10.1038/s41562-019-0686-3 Rivera LA, 2017, AM SOCIOL REV, V82, P1111, DOI 10.1177/0003122417739294 van den Besselaar P, 2018, SCIENTOMETRICS, V117, P313, DOI 10.1007/s11192-018-2848-x van Veelen R., 2020, British Journal of Social Psychology, V2021, P1, DOI DOI 10.31234/OSF.IO/C3K56 Vinkenburg CJ, 2017, J APPL BEHAV SCI, V53, P212, DOI 10.1177/0021886317703292 Vinkenburg CJ, 2014, GROUP ORGAN MANAGE, V39, P33, DOI 10.1177/1059601113492846 White-Lewis DK, 2020, J HIGH EDUC-UK, V91, P833, DOI 10.1080/00221546.2020.1775058 NR 22 TC 2 Z9 2 U1 0 U2 8 PU EMERALD GROUP PUBLISHING LTD PI BINGLEY PA HOWARD HOUSE, WAGON LANE, BINGLEY BD16 1WA, W YORKSHIRE, ENGLAND SN 2040-7149 EI 2040-7157 J9 EQUAL DIVERS INCL JI Equal. Divers. Incl. PD OCT 27 PY 2021 VL 41 IS 9 BP 1 EP 14 DI 10.1108/EDI-01-2021-0028 EA OCT 2021 PG 14 WC Management WE Emerging Sources Citation Index (ESCI) SC Business & Economics GA 0D9YO UT WOS:000711609600001 OA hybrid, Green Submitted DA 2024-09-05 ER PT J AU Engström, A Pittino, D Mohlin, A Johansson, A Mirzaei, NE AF Engstrom, Annika Pittino, Daniel Mohlin, Alice Johansson, Anette Mirzaei, Nina Edh TI Artificial intelligence and work transformations: integrating sensemaking and workplace learning perspectives SO INFORMATION TECHNOLOGY & PEOPLE LA English DT Article; Early Access DE Action research; Sensemaking; Socio-technical theory; Organizational learning; Collaboration; Organizational change; Management practices ID INFORMATION-TECHNOLOGY; USER ACCEPTANCE; FOCUS GROUP; FUTURE; FRAMEWORK; INSIGHTS; LEVEL AB PurposeThe purpose of this study is to explore the process of initial sensemaking that organizational members activate when they reflect on AI adoption in their work settings, and how the perceived features of AI technologies trigger sensemaking processes which in turn have the potential to influence workplace learning modes and trajectories.Design/methodology/approachWe adopted an explorative qualitative and interactive approach to capture free fantasies and imaginative ideas of AI among people within the industry. We adopt a conceptual perspective that combines theories on initial sensemaking and workplace learning as a theoretical lens to analyze data collected during 23 focus groups held at four large Swedish manufacturing companies. The data were analyzed using the Gioia method.FindingsTwo aggregated dimensions were defined and led to the development of an integrated conceptualization of the initial sensemaking of AI technology adoption. Specifically, sensemaking triggered by abstract features of AI technology mainly pointed to an exploitative learning path. Sensemaking triggered by concrete features of the technology mainly pointed to explorative paths, where socio-technical processes appear to be crucial in the process of AI adoption.Originality/valueThis is one of the first studies that attempts to explore and conceptualize how organizations make sense of prospective workplace learning in the context of AI adoption. C1 [Engstrom, Annika; Mohlin, Alice; Johansson, Anette; Mirzaei, Nina Edh] Jonkoping Univ, Sch Engn, Jonkoping, Sweden. [Pittino, Daniel] Jonkoping Univ, Jonkoping Int Business Sch, Jonkoping, Sweden. [Pittino, Daniel] Univ Udine, DMIF, Udine, Italy. C3 Jonkoping University; Jonkoping University; University of Udine RP Engström, A (corresponding author), Jonkoping Univ, Sch Engn, Jonkoping, Sweden. EM annika.engstrom@ju.se FU Knowledge Intensive Product Realization SPARK at Joenkoeping University, Sweden [20200223] FX The authors acknowledge the Knowledge Foundation, Joenkoeping University, and the industrial partners for funding the research and education environment on Knowledge Intensive Product Realization SPARK at Joenkoeping University, Sweden. Project: AFAIR (No: 20200223). CR Akundi A, 2022, APPL SYST INNOV, V5, DOI 10.3390/asi5010027 Balarezo JD, 2023, MANAGE LEARN, DOI 10.1177/13505076231210635 Bednar PM, 2020, INFORM SYST FRONT, V22, P281, DOI 10.1007/s10796-019-09921-1 Belanger France, 2012, Australasian Journal of Information Systems, V17, P109 Berente N., 2021, MIS QUART, V45, P1433, DOI [DOI 10.25300/MISQ/2021/16274, DOI 10.25300/MISQ/2021/16565] Boyd JA, 2019, FUTURES, V111, P104, DOI 10.1016/j.futures.2019.06.002 Bryman A., 2006, Qualitative Research, V6, P97, DOI [10.1177/1468794106058877, DOI 10.1177/1468794106058877] Canhoto AI, 2020, BUS HORIZONS, V63, P183, DOI 10.1016/j.bushor.2019.11.003 Cheikh-Ammar M, 2018, EUR J INFORM SYST, V27, P278, DOI 10.1080/0960085X.2018.1436025 Ciborra C.U., 1997, Scandinavian Journal of Information Systems, V9, P67 Colville I, 2016, MANAGE LEARN, V47, P3, DOI 10.1177/1350507615616542 Crossan MM, 1999, ACAD MANAGE REV, V24, P522, DOI 10.2307/259140 Cyr J, 2016, SOCIOL METHOD RES, V45, P231, DOI 10.1177/0049124115570065 DAVIS FD, 1989, MIS QUART, V13, P319, DOI 10.2307/249008 Denscombe M., 2017, EBOOK: The Good Research Guide: For Small-Scale Social Research Projects Dietzmann C., 2022, P 55 HAW INT C SYST, P5923 Edmondson A., 2012, Innovate, and Compete in the Knowledge Economy Ellstrom P.E., 2006, Learning, P33 Ellström PE, 2020, J MANUF TECHNOL MANA, V31, P1517, DOI 10.1108/JMTM-09-2018-0304 Farjoun M, 2010, ACAD MANAGE REV, V35, P202, DOI 10.5465/AMR.2010.48463331 Ganzin M, 2020, ORGAN STUD, V41, P77, DOI 10.1177/0170840618819035 GIOIA DA, 1994, ORGAN SCI, V5, P363, DOI 10.1287/orsc.5.3.363 Gioia DA, 2013, ORGAN RES METHODS, V16, P15, DOI 10.1177/1094428112452151 Goto M, 2022, J PROF ORGAN, V9, P77, DOI 10.1093/jpo/joab022 Griffith TL, 1999, ACAD MANAGE REV, V24, P472, DOI 10.2307/259137 Henfridsson O., 2000, ACCOUNTING MANAGEMEN, V10, P33, DOI [10.1016/s0959-8022(99)00012-0, DOI 10.1016/S0959-8022(99)00012-0] Hyo-Jeong Kim, 2009, International Journal of Accounting Information Systems, V10, P214, DOI 10.1016/j.accinf.2009.09.001 Jarrahi Mohammad Hossein, 2023, Journal of Business Strategy, P126, DOI 10.1108/JBS-11-2021-0182 Jarrahi MH, 2018, BUS HORIZONS, V61, P577, DOI 10.1016/j.bushor.2018.03.007 Kaplan S, 2013, ORGAN SCI, V24, P965, DOI 10.1287/orsc.1120.0792 Konlechner S, 2019, HUM RELAT, V72, P706, DOI 10.1177/0018726718773157 Lindgren S., 2020, Journal of Digital Social Research, V2, P1 Lunt P, 1996, J COMMUN, V46, P79, DOI 10.1111/j.1460-2466.1996.tb01475.x Maitlis S, 2005, ACAD MANAGE J, V48, P21, DOI 10.2307/20159639 Maitlis S, 2014, ACAD MANAG ANN, V8, P57, DOI 10.1080/19416520.2014.873177 Makarius EE, 2020, J BUS RES, V120, P262, DOI 10.1016/j.jbusres.2020.07.045 Malloch M., 2010, SAGE HDB WORKPLACE L March JG, 1991, ORGAN SCI, V2, P71, DOI 10.1287/orsc.2.1.71 Markova I., 2007, DIALOGUE FOCUS GROUP Meijerink J, 2023, HUM RESOUR MANAGE R, V33, DOI 10.1016/j.hrmr.2021.100876 Misra SK, 2023, TECHNOL FORECAST SOC, V194, DOI 10.1016/j.techfore.2023.122721 Nadkarni S, 2007, ORGAN SCI, V18, P688, DOI 10.1287/orsc.1070.0268 Nahavandi S, 2019, SUSTAINABILITY-BASEL, V11, DOI 10.3390/su11164371 Nyumba TO, 2018, METHODS ECOL EVOL, V9, P20, DOI 10.1111/2041-210X.12860 Randhawa K, 2021, J PROD INNOVAT MANAG, V38, P668, DOI 10.1111/jpim.12599 Richter I, 1998, MANAGE LEARN, V29, P299, DOI 10.1177/1350507698293003 Sagodi A., 2023, ECIS 2023 Research Papers, V390 Santana M, 2020, EUR MANAG J, V38, P846, DOI 10.1016/j.emj.2020.04.010 Sawyer S, 2023, INFORM TECHNOL PEOPL, V36, P1, DOI 10.1108/ITP-12-2020-0857 Schwandt DR, 2005, ACAD MANAG LEARN EDU, V4, P176, DOI 10.5465/AMLE.2005.17268565 Sony M, 2020, PROD PLAN CONTROL, V31, P799, DOI 10.1080/09537287.2019.1691278 Stigliani I, 2012, ACAD MANAGE J, V55, P1232, DOI 10.5465/amj.2010.0890 Thomas JB, 2001, ORGAN SCI, V12, P331, DOI 10.1287/orsc.12.3.331.10105 Trist EL, 1951, HUM RELAT, V4, P3, DOI 10.1177/001872675100400101 van Giffen B, 2022, J BUS RES, V144, P93, DOI 10.1016/j.jbusres.2022.01.076 Venkatesh V, 2003, MIS QUART, V27, P425, DOI 10.2307/30036540 Vuori N, 2023, J MANAGE STUD, V60, P1341, DOI 10.1111/joms.12891 Weick, 1995, SENSEMAKING ORG Wiesböck F, 2020, ELECTRON MARK, V30, P75, DOI 10.1007/s12525-019-00364-9 Wijnhoven F, 2022, INFORM SYST FRONT, V24, P731, DOI 10.1007/s10796-021-10206-9 Wilkinson S., 1998, International Journal of Social Research Methodology Theory and Practice, V1, P181, DOI [10.1080/13645579.1998.10846874, DOI 10.1080/13645579.1998.10846874] Zammuto RF, 2007, ORGAN SCI, V18, P749, DOI 10.1287/orsc.1070.0307 NR 62 TC 0 Z9 0 U1 4 U2 4 PU EMERALD GROUP PUBLISHING LTD PI Leeds PA Floor 5, Northspring 21-23 Wellington Street, Leeds, W YORKSHIRE, ENGLAND SN 0959-3845 EI 1758-5813 J9 INFORM TECHNOL PEOPL JI Inf. Technol. People PD 2024 JUL 15 PY 2024 DI 10.1108/ITP-01-2023-0048 EA JUL 2024 PG 21 WC Information Science & Library Science WE Social Science Citation Index (SSCI) SC Information Science & Library Science GA YF1E0 UT WOS:001266970800001 DA 2024-09-05 ER PT J AU Sahran, F Altarturi, HHM Anuar, NB Bouras, CJ Liu, YM Zhang, Z Meng, Y AF Sahran, Firdaus Altarturi, Hamza H. M. Anuar, Nor Badrul Bouras, Christos J. Liu, Yiming Zhang, Zhi Meng, Yue TI Exploring the Landscape of AI-SDN: A Comprehensive Bibliometric Analysis and Future Perspectives SO ELECTRONICS LA English DT Article DE artificial intelligence; Software-Defined Networking; bibliometrics; machine learning; data visualization ID SOFTWARE-DEFINED NETWORKING; INTRUSION DETECTION; FRAMEWORK; SCIENCE AB The rising influence of artificial intelligence (AI) enables widespread adoption of the technology in every aspect of computing, including Software-Defined Networking (SDN). Technological adoption leads to the convergence of AI and SDN, producing solutions that overcome limitations present in traditional networking architecture. Although numerous review articles discuss the convergence of these technologies, there is a lack of bibliometric trace in this field, which is important for identifying trends, new niches, and future directions. Therefore, this study aims to fill the gap by presenting a thorough bibliometric analysis of AI-related SDN studies, referred to as AI-SDN. The study begins by identifying 474 unique documents in the Web of Science (WoS) database published from 2009 until recently. The study uses bibliometric analysis to identify the general information, countries, authorship, and content of the selected articles, thereby providing insights into the geographical and institutional landscape shaping AI-SDN research. The findings provide a robust roadmap for further investigation in this field, including the background and taxonomy of the AI-SDN field. Finally, the article discusses several challenges and the future of AI-SDN in academic research. C1 [Sahran, Firdaus; Altarturi, Hamza H. M.; Anuar, Nor Badrul] Univ Malaya, Fac Comp Sci & Informat Technol, Dept Comp Syst & Technol, Kuala Lumpur 50603, Malaysia. C3 Universiti Malaya RP Anuar, NB (corresponding author), Univ Malaya, Fac Comp Sci & Informat Technol, Dept Comp Syst & Technol, Kuala Lumpur 50603, Malaysia. EM firdaussahran@um.edu.my; hamza.altarturi@um.edu.my; badrul@um.edu.my RI Yiming, Liu/GYJ-8249-2022; wang, yi/HOF-6668-2023 OI Sahran, Firdaus/0000-0002-3470-0086 CR Aldoseri A, 2023, APPL SCI-BASEL, V13, DOI 10.3390/app13127082 Alhilali AH, 2023, INTERNET THINGS-NETH, V22, DOI 10.1016/j.iot.2023.100814 Ali M, 2020, IEEEAAIA DIGIT AVION, DOI 10.1109/dasc50938.2020.9256597 Ali TE, 2023, APPL SCI-BASEL, V13, DOI 10.3390/app13053183 Altarturi HHM, 2020, CHILD YOUTH SERV REV, V116, DOI 10.1016/j.childyouth.2020.105134 Alvizu R, 2017, J OPT COMMUN NETW, V9, pD19, DOI 10.1364/JOCN.9.000D19 Aria M, 2017, J INFORMETR, V11, P959, DOI 10.1016/j.joi.2017.08.007 Bagaa M, 2020, IEEE ACCESS, V8, P114066, DOI 10.1109/ACCESS.2020.2996214 Bahashwan AA, 2023, SENSORS-BASEL, V23, DOI 10.3390/s23094441 Bakhshi T, 2017, INT CONF FRONT INFO, P23, DOI 10.1109/FIT.2017.00012 Bakhshi T, 2016, J COMPUT NETW COMMUN, V2016, DOI 10.1155/2016/2048302 Belgaum MR, 2022, CMC-COMPUT MATER CON, V70, P251, DOI 10.32604/cmc.2022.018211 Boero L, 2017, 2017 29TH INTERNATIONAL TELETRAFFIC CONGRESS (ITC 29), VOL 3, P25, DOI [10.1109/JTC29.147, 10.23919/ITC.2017.8065806] Bornmann L, 2016, J INFORMETR, V10, P875, DOI 10.1016/j.joi.2016.07.002 Bouacida N, 2017, IEEE ICC Bouzidi E, 2019, IEEE GLOB COMM CONF, DOI 10.1109/globecom38437.2019.9013221 Budhraja KK, 2017, IEEE INT CONF CLOUD, P761, DOI 10.1109/CLOUD.2017.109 Chan KY, 2018, I C INF COMM TECH CO, P396, DOI 10.1109/ICTC.2018.8539715 Changhe Yu, 2018, Procedia Computer Science, V131, P1209, DOI 10.1016/j.procs.2018.04.331 Chen C, 2022, WIREL COMMUN MOB COM, V2022, DOI 10.1155/2022/5124960 Chen JY, 2023, SENSORS-BASEL, V23, DOI 10.3390/s23010429 Cobo MJ, 2011, J AM SOC INF SCI TEC, V62, P1382, DOI 10.1002/asi.21525 Cranford N., How SDN Can Benefit Healthcare Della Corte V, 2019, SUSTAINABILITY-BASEL, V11, DOI 10.3390/su11216114 Greene Kate., 2009, TR10: Software-Defined Networking" Hark R, 2019, 2019 IEEE CONFERENCE ON NETWORK FUNCTION VIRTUALIZATION AND SOFTWARE DEFINED NETWORKS (IEEE NFV-SDN), DOI 10.1109/nfv-sdn47374.2019.9040030 Heigl M, 2021, ELECTRONICS-SWITZ, V10, DOI 10.3390/electronics10172160 Jefferson J., 2021, Libr. Philos. Pract Jiang JF, 2023, DIGIT COMMUN NETW, V9, P1351, DOI 10.1016/j.dcan.2022.07.001 Khan N, 2023, J KING SAUD UNIV-COM, V35, P176, DOI 10.1016/j.jksuci.2023.02.001 Ko KM, 2023, APPL SCI-BASEL, V13, DOI 10.3390/app13179488 Koskinen J, 2008, NORD J PSYCHIAT, V62, P136, DOI 10.1080/08039480801961667 Kumar S, 2020, 2020 34TH INTERNATIONAL CONFERENCE ON INFORMATION NETWORKING (ICOIN 2020), P602, DOI [10.1109/ICOIN48656.2020.9016529, 10.1109/icoin48656.2020.9016529] Latah M., 2016, INDIAN J SCI TECHNOL, V9, P1, DOI [10.17485/ijst/2016/v9i44/89812, DOI 10.17485/ijst/2016/v9i44/89812] Latah M, 2019, IET NETW, V8, P79, DOI 10.1049/iet-net.2018.5082 Latah M, 2018, IET NETW, V7, P453, DOI 10.1049/iet-net.2018.5080 Lin YH, 2021, J SYST ARCHITECT, V116, DOI 10.1016/j.sysarc.2021.102141 Linnenluecke MK, 2020, AUST J MANAGE, V45, P175, DOI 10.1177/0312896219877678 Ma XH, 2022, SYMMETRY-BASEL, V14, DOI 10.3390/sym14020195 Mongeon P, 2016, SCIENTOMETRICS, V106, P213, DOI 10.1007/s11192-015-1765-5 Muhamedyev RI, 2018, ANN LIBR INF STUD, V65, P62, DOI 10.56042/alis.v65i1.18656 Naeem F, 2023, IEEE COMMUN MAG, V61, P88, DOI 10.1109/MCOM.001.2200533 Naibaho Lamhot, 2023, 2023 3rd International Conference on Advance Computing and Innovative Technologies in Engineering (ICACITE), P513, DOI 10.1109/ICACITE57410.2023.10182618 Nisar K, 2020, INTERNET THINGS-NETH, V12, DOI 10.1016/j.iot.2020.100289 Nuage Networks, SDN in Finance & Banking Rahman A, 2022, CLUSTER COMPUT, V25, P2351, DOI 10.1007/s10586-021-03367-4 Rahouti M, 2021, IEEE ACCESS, V9, P12083, DOI 10.1109/ACCESS.2020.3047996 Sacco A, 2020, PROCEEDINGS OF THE 2020 6TH IEEE CONFERENCE ON NETWORK SOFTWARIZATION (NETSOFT 2020): BRIDGING THE GAP BETWEEN AI AND NETWORK SOFTWARIZATION, P150, DOI [10.1109/NetSoft48620.2020.9165506, 10.1109/netsoft48620.2020.9165506] Savi M, 2018, OPT SWITCH NETW, V30, P71, DOI 10.1016/j.osn.2018.06.005 Setiawan Sumadi F.D., 2022, IAES Int. J. Artif. Intell. IJ-AI, V11, P1094, DOI [10.11591/ijai.v11.i3.pp1094-1100, DOI 10.11591/IJAI.V11.I3.PP1094-1100] Srinivasan SM, 2018, 2018 IEEE 6TH INTERNATIONAL CONFERENCE ON FUTURE INTERNET OF THINGS AND CLOUD (FICLOUD 2018), P25, DOI 10.1109/FiCloud.2018.00012 Thormundsson B., Artificial Intelligence (AI) Market Size Worldwide in 2021 with a Forecast until 2030 Uddin R, 2022, INT CONF WIREL SPAC, P71, DOI [10.1109/WiSEE49342.2022.9926943, 10.1109/WISEE49342.2022.9926943] Wang P, 2016, P IEEE I C SERV COMP, P760, DOI 10.1109/SCC.2016.133 Wijethilaka S, 2021, IEEE COMMUN SURV TUT, V23, P957, DOI 10.1109/COMST.2021.3067807 Wu YJ, 2020, APPL SCI-BASEL, V10, DOI 10.3390/app10186564 Xing ZY, 2023, FRONT INFORM TECH EL, V24, P844, DOI 10.1631/FITEE.2200507 Yang CP, 2022, SENSORS-BASEL, V22, DOI 10.3390/s22218222 Yenduri G., Proceedings of the Proceedings of the 24th International Conference on Distributed Computing and Networking, Kharagpur, India, 4-7 January 2023, P402 Yoo Y, 2023, 2023 IEEE/ACM 23RD INTERNATIONAL SYMPOSIUM ON CLUSTER, CLOUD AND INTERNET COMPUTING, CCGRID, P273, DOI 10.1109/CCGRID57682.2023.00034 Zhang X, 2016, BEHAV INFORM TECHNOL, V35, P1130, DOI 10.1080/0144929X.2016.1212403 Zhong J, 2016, 2016 3RD MEC INTERNATIONAL CONFERENCE ON BIG DATA AND SMART CITY (ICBDSC), P23 NR 62 TC 0 Z9 0 U1 13 U2 16 PU MDPI PI BASEL PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND EI 2079-9292 J9 ELECTRONICS-SWITZ JI Electronics PD JAN PY 2024 VL 13 IS 1 AR 26 DI 10.3390/electronics13010026 PG 33 WC Computer Science, Information Systems; Engineering, Electrical & Electronic; Physics, Applied WE Science Citation Index Expanded (SCI-EXPANDED) SC Computer Science; Engineering; Physics GA EM3J5 UT WOS:001139301200001 OA gold DA 2024-09-05 ER PT J AU Della Corte, D Morris, CJ Billings, WM Stern, J Jarrett, AJ Hedelius, B Bennion, A AF Della Corte, Dennis Morris, Connor J. Billings, Wendy M. Stern, Jacob Jarrett, Austin J. Hedelius, Bryce Bennion, Adam TI Training undergraduate research assistants with an outcome-oriented and skill-based mentoring strategy SO ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY LA English DT Article DE mentoring; undergraduates; CASP; protein structure prediction; deep learning AB Effective mentoring of undergraduate students is a growing requirement for the promotion of faculty at many universities. It is often challenging for young investigators to define a successful mentoring strategy, partially due to the absence of a broadly accepted definition of what mentoring should entail. To overcome this, an outcome-oriented mentoring framework was developed and used with more than 25 students over three years. It was found that a systematic mentoring approach can help students quickly realize their scientific potential and result in meaningful contributions to science. This report especially shows how the Critical Assessment of Protein Structure Prediction (CASP14) challenge was used to amplify student research efforts. As a result of this challenge, multiple publications, presentations and scholarships were awarded to the participating students. The mentoring framework continues to see much success in allowing undergraduate students, including students from under-represented groups, to foster scientific talent and make meaningful contributions to the scientific community. C1 [Della Corte, Dennis; Morris, Connor J.; Billings, Wendy M.; Stern, Jacob; Jarrett, Austin J.; Hedelius, Bryce; Bennion, Adam] Brigham Young Univ, Dept Phys & Astron, Provo, UT 84602 USA. C3 Brigham Young University RP Della Corte, D; Bennion, A (corresponding author), Brigham Young Univ, Dept Phys & Astron, Provo, UT 84602 USA. EM dennis.dellacorte@byu.edu; adam_bennion@byu.edu OI Della Corte, Dennis/0000-0002-8884-9724; Bennion, Adam/0000-0003-2524-7360; Jarrett, Austin/0000-0001-8522-0309 FU College of Physical and Mathematical Sciences at BYU FX DDC thanks the College of Physical and Mathematical Sciences at BYU for start-up and undergraduate funds. All authors thank the Office of Research Computing at BYU for access to compute resources. Author contributions are as follows. DDC developed the strategy and mentored the students. CM, WMB and BH prepared and executed the CASP experiment. JS and AJ contributed to the CASP conference and related publications. AB performed the postexperiment interviews and analysis. All authors contributed to the writing of this article. CR ADLER PA, 1995, CONTEMP SOCIOL, V24, P420, DOI 10.2307/2076552 [Anonymous], 2019, BIORXIV Billings WM, 2021, SCI REP-UK, V11, DOI 10.1038/s41598-021-87524-0 Boutros PC, 2014, GENOME BIOL, V15, DOI 10.1186/s13059-014-0462-7 Gannon JM, 2012, EDUC TRAIN, V54, P440, DOI 10.1108/00400911211254244 Gee K. L, 2019, P M ACOUST, V39 Gee K.L., 2017, Acoustics Today, V13, P27 Gershenfeld S, 2014, REV EDUC RES, V84, P365, DOI 10.3102/0034654313520512 González C, 2001, SCIENCE, V293, P1624, DOI 10.1126/science.1062714 Goodman-Wilson M, 2021, MENTOR TUTOR, V29, P328, DOI 10.1080/13611267.2021.1927439 Haeger H, 2016, CBE-LIFE SCI EDUC, V15, DOI 10.1187/cbe.16-01-0016 Johnson WB, 2015, MENTOR TUTOR, V23, P441, DOI 10.1080/13611267.2015.1126167 Kettler T., 2021, SPECIALIZED SCH HIGH, P177 Kinch LN, 2021, PROTEINS, V89, P1618, DOI 10.1002/prot.26202 Koch C., 2000, COUNC UNDERGRAD RES, V19, P172 Kryshtafovych A, 2021, PROTEINS, V89, P1987, DOI 10.1002/prot.26231 Marshall M, 2021, MENTOR TUTOR, V29, P89, DOI 10.1080/13611267.2021.1899587 Maxwell JosephA., 2013, Qualitative Research Design: An Interactive Approach, P1 Mello LV, 2021, FEBS OPEN BIO, V11, P1524, DOI 10.1002/2211-5463.13158 Mello LV, 2017, HIGH EDUC PEDAGOG, V2, P43, DOI 10.1080/23752696.2017.1339287 Morales DX, 2021, STUD HIGH EDUC, V46, P423, DOI 10.1080/03075079.2019.1639041 Morris C. J., 2020, CASP14 VIRT C Morris C. J., 2020, CASP14 VIRT S Morris C. J., 2021, ASBMB PDB50 S Pereira J, 2021, PROTEINS, V89, P1687, DOI 10.1002/prot.26171 Stern J, 2021, INT J MOL SCI, V22, DOI 10.3390/ijms222312835 Trosset C., 2018, CHANG MAG HIGH LEARN, V50, P47 NR 27 TC 0 Z9 0 U1 1 U2 3 PU INT UNION CRYSTALLOGRAPHY PI CHESTER PA 2 ABBEY SQ, CHESTER, CH1 2HU, ENGLAND SN 2059-7983 J9 ACTA CRYSTALLOGR D JI Acta Crystallogr. Sect. D-Struct. Biol. PD AUG 1 PY 2022 VL 78 BP 936 EP 944 DI 10.1107/S2059798322005861 PN 8 PG 9 WC Biochemical Research Methods; Biochemistry & Molecular Biology; Biophysics; Crystallography WE Science Citation Index Expanded (SCI-EXPANDED) SC Biochemistry & Molecular Biology; Biophysics; Crystallography GA 3O7WU UT WOS:000837045300002 PM 35916219 OA hybrid, Green Published DA 2024-09-05 ER PT C AU Mohamed, B AF Mohamed, Bahaaeldin BE Chova, LG Martinez, AL Torres, IC TI RESEARCH FOR SILLY BILLY: TECHNICAL COLLEGES' STUDENTS CONDUCT A SCIENTIFIC RESEARCH SO 9TH INTERNATIONAL CONFERENCE ON EDUCATION AND NEW LEARNING TECHNOLOGIES (EDULEARN17) SE EDULEARN Proceedings LA English DT Proceedings Paper CT 9th International Conference on Education and New Learning Technologies (EDULEARN) CY JUL 03-05, 2017 CL Barcelona, SPAIN DE Conducting research; Digital research; e-Science; communication; collaboration; learning evaluation; Social online learning; Research-based learning; Academic writing; Research methodology; teaching to conduct research ID ATTITUDES AB The purpose of this study is to create a new framework to help the Saudi Technical College students to conduct a first piece of research mainly, the bachelor's thesis. The research proposed a framework in helping students to understand not only resource referencing, data collection, data analysis and problem solving but the academic writing and project management as well. The data were collected from Saudi Bachelor students at Technical Trainer College in Riyadh, Kingdom of Saudi Arabia. Students were asked to conduct a bachelor's thesis within 3 months in order for them to obtain their Bachelor's Degree in Engineering. The researcher conducted an experiment to test the impact of the proposed framework on students' learning and attitudes towards research. The proposed framework consists of 7 weekly lectures and individuals' consultation face to face and online. The students were asked to fill out a survey expressing their attitudes towards the program. In addition, the researcher conducted a brainstorming within the focused group to investigate qualitative data. The results indicate not only a positive attitude among students for learning academic writing and research methodology, but a reduced number of falsifications and acquisition of plagiarism. C1 [Mohamed, Bahaaeldin] Lincoln Coll Int Riyadh, Res Methodol & Vocat Pedag, Bachelor Thesis, Riyadh, Saudi Arabia. RP Mohamed, B (corresponding author), Lincoln Coll Int Riyadh, Res Methodol & Vocat Pedag, Bachelor Thesis, Riyadh, Saudi Arabia. FU Lincoln College International in Saudi Arabia FX This research was supported by Lincoln College International in Saudi Arabia. The researcher would like to give his deepest appreciation to Mr. Riccy Longden, the Vice Dean and the Bachelor Thesis Committee Head for his trust and support. The researcher would also like to show his gratitude to Dr. Garry Sharkey, the Head of English and Education Enterprise (EEE) department and the Bachelor's Thesis Committee support team for his trust and support. The researcher also appreciates Mr. Gavin Jenkins, the General Coordinator and Bachelor's Thesis Committee support team for the assistance and support. CR Al-Harbi K.A., 2011, Computing and Informatics, V9, P31, DOI DOI 10.1016/J.ACI.2010.03.002 Al-Zubaidi KO, 2012, PROCD SOC BEHV, V66, P46, DOI 10.1016/j.sbspro.2012.11.246 Alothman M, 2017, COMPUT EDUC, V110, P127, DOI 10.1016/j.compedu.2017.02.010 [Anonymous], 2016, Al Arabiya Bagozzi R. P., 1988, EVALUATION STRUCTURA, DOI [10.1007/BF02723327, DOI 10.1007/BF02723327, 10.1007/Bf02723327] Cigdem H, 2016, COMPUT HUM BEHAV, V61, P522, DOI 10.1016/j.chb.2016.03.070 Gerçek E, 2016, NURS EDUC TODAY, V46, P50, DOI 10.1016/j.nedt.2016.08.015 Gray Peter., 2015, FREE LEARN WHY UNLEA Hulland J, 1999, STRATEGIC MANAGE J, V20, P195, DOI 10.1002/(SICI)1097-0266(199902)20:2<195::AID-SMJ13>3.0.CO;2-7 Keib C, 2017, NURSE ED TODAY Khan MA, 2014, PROCD SOC BEHV, V112, P702, DOI 10.1016/j.sbspro.2014.01.1220 Lipton B.H, 2008, BIOL BELIEVE UNLEASI Mohamed B, 2013, ESCIENCE 2 NETW C 11 Mohamed B, 2011, THESIS Mohamed B., 2013, 2 ESCIENCE NETW C DR Mohamed B, 2015, INT C ED RES INN ICE Mohamed B, 2013, 15 GEN ONL RES C GOR Parkinson J, 2017, ENGL SPECIF PURP, V46, P29, DOI 10.1016/j.esp.2016.12.003 Ringle C.M., 2015, SMARTPLS 3 Simmons A., 2007, Whoever tells the best story wins: How to use your own stories to communicate with power and impact Wong K.K.-K., 2013, MARKETING B, V24, P1, DOI DOI 10.1108/EBR-10-2013-0128 Xu D, 2013, ECON EDUC REV, V37, P46, DOI 10.1016/j.econedurev.2013.08.001 NR 22 TC 0 Z9 0 U1 0 U2 1 PU IATED-INT ASSOC TECHNOLOGY EDUCATION & DEVELOPMENT PI VALENICA PA LAURI VOLPI 6, VALENICA, BURJASSOT 46100, SPAIN SN 2340-1117 BN 978-84-697-3777-4 J9 EDULEARN PROC PY 2017 BP 8985 EP 8995 PG 11 WC Education & Educational Research; Education, Scientific Disciplines WE Conference Proceedings Citation Index - Science (CPCI-S); Conference Proceedings Citation Index - Social Science & Humanities (CPCI-SSH) SC Education & Educational Research GA BO0RJ UT WOS:000493048104014 DA 2024-09-05 ER PT C AU Xiao, T Liu, GH Xu, GP Li, Y Cheng, XZ Xu, LX Cheng, C Zhou, SY AF Xiao, Tian Liu, Guanghai Xu, Guoping Li, Yi Cheng, Xinzhou Xu, Lexi Cheng, Chen Zhou, Shiyu GP IEEE TI Research on Coverage Ability Assessment of High and Low Frequency based on Machine Learning SO 2021 INTERNATIONAL CONFERENCE ON INFORMATION AND COMMUNICATION TECHNOLOGIES FOR DISASTER MANAGEMENT (ICT-DM) LA English DT Proceedings Paper CT International Conference on Information and Communication Technologies for Disaster Management (ICT-DM) CY DEC 03-05, 2021 CL Hangzhou, PEOPLES R CHINA DE Coverage Ability; Propagation Model; Machine Learning AB With the rapid construction of 5G network in China, how to guide reasonable network planning and construction through accurate network coverage ability assessment, and build a 5G high-low-frequency hybrid network with low cost and high efficiency, has become an important topic urgently needed to be studied by telecommunication suppliers. Firstly, the propagation models applicable to 2.1G and 3.5G are studied and theoretically calculated. Next, reasonable suggestions are put forward for the problems existed in the calibration for traditional Propagation Model, and the accuracy of the propagation model is improved by adopting the machine learning algorithm and model. Finally, based on outfield test results, the propagation model calibrations for 3.5G and 2.1G bands are conducted, and reasonable suggestions are put forward for 5G high and low frequency hybrid networking scheme. C1 [Xiao, Tian; Liu, Guanghai; Li, Yi; Cheng, Xinzhou; Xu, Lexi; Cheng, Chen; Zhou, Shiyu] China United Network Commun Corp, Res Inst, Beijing, Peoples R China. [Xu, Guoping] China United Network Commun Grp Co Ltd, Beijing, Peoples R China. C3 China United Network Communications Limited; China United Network Communications Limited RP Xiao, T (corresponding author), China United Network Commun Corp, Res Inst, Beijing, Peoples R China. EM xiaot6@chinaunicom.cn; liugh124@chinaunicom.cn; xugp5@chinaunicom.cn; liy360@chinaunicom.cn; chengxz11@chinaunicom.cn; xulx29@chinaunicom.cn; chengc40@chinaunicom.cn; zhousy60@chinaunicom.cn RI zhang, luyu/JJC-4227-2023; Xu, Lexi/ABT-2601-2022; LI, Xiang-Yang/JZE-0275-2024; cheng, cheng/JBR-8359-2023 OI Xu, Lexi/0000-0003-4338-7252; FU Ministry of Industry and Information Technology of P.R.China FX This work was supported in partially by Ministry of Industry and Information Technology of P.R.China -Big data industry development pilot demonstration project: Integrated heterogeneous data and deep learning based civil big data innovative application and pilot demonstration, 5G big data cross industry heterogeneous integration innovation application pilot demonstration. CR 3GPP RAN-1, 2018, 36873 3GPP RAN1 TR [Anonymous], 2019, 38866 3GPP TR Chao K., 2017, P ICSINC SEPT CHONGQ, P389 Chao K., 2015, P ICSINC OCT BEIJ CH Cheng XZ, 2016, SIGNAL AND INFORMATION PROCESSING, NETWORKING AND COMPUTERS, P385 Eiza M., 2020, SUSTAINABLE EC SMART Eiza M.H., 2020, Toward Sustainable and Economic Smart Mobility: Shaping the Future of Smart Cities Gao J., 2015, PROC ICSINC Gao J, 2016, 2016 16TH INTERNATIONAL SYMPOSIUM ON COMMUNICATIONS AND INFORMATION TECHNOLOGIES (ISCIT), P246, DOI 10.1109/ISCIT.2016.7751630 Jia J, 2013, P IEEE VTC JUN DRESD, P1 Lexi Xu, 2019, 2019 IEEE International Conferences on Ubiquitous Computing & Communications (IUCC) and Data Science and Computational Intelligence (DSCI) and Smart Computing, Networking and Services (SmartCNS), P756, DOI 10.1109/IUCC/DSCI/SmartCNS.2019.00155 Lexi Xu, 2010, Proceedings of the 2010 IEEE 10th International Conference on Computer and Information Technology (CIT 2010), P791, DOI 10.1109/CIT.2010.151 Liu YW, 2018, IEEE WIREL COMMUN, V25, P17, DOI 10.1109/MWC.2018.1700080 Simonsson A, 2017, IEEE VTS VEH TECHNOL Tan FT, 2020, PROC CVPR IEEE, P647, DOI 10.1109/CVPR42600.2020.00073 Wang Y., 2015, PROC ICSINC Xing HL, 2016, LECT NOTES COMPUT SC, V9787, P34, DOI 10.1007/978-3-319-42108-7_3 Xu L., 2018, P ICSINC, P237 Xu L., 2020, P ICSINC SEPT RIZH C, P1000 Xu LX, 2019, 2019 IEEE SMARTWORLD, UBIQUITOUS INTELLIGENCE & COMPUTING, ADVANCED & TRUSTED COMPUTING, SCALABLE COMPUTING & COMMUNICATIONS, CLOUD & BIG DATA COMPUTING, INTERNET OF PEOPLE AND SMART CITY INNOVATION (SMARTWORLD/SCALCOM/UIC/ATC/CBDCOM/IOP/SCI 2019), P1521, DOI 10.1109/SmartWorld-UIC-ATC-SCALCOM-IOP-SCI.2019.00274 Xu LX, 2017, INT J DISTRIB SYST T, V8, P27, DOI 10.4018/IJDST.2017040103 Xu LX, 2014, 2014 IEEE 25TH ANNUAL INTERNATIONAL SYMPOSIUM ON PERSONAL, INDOOR, AND MOBILE RADIO COMMUNICATION (PIMRC), P1597, DOI 10.1109/PIMRC.2014.7136423 Xu LX, 2016, 2016 16TH INTERNATIONAL SYMPOSIUM ON COMMUNICATIONS AND INFORMATION TECHNOLOGIES (ISCIT), P263, DOI 10.1109/ISCIT.2016.7751633 Xu LX, 2016, SIGNAL AND INFORMATION PROCESSING, NETWORKING AND COMPUTERS, P249 Xu LX, 2011, PROCEEDINGS OF 2011 INTERNATIONAL CONFERENCE ON COMMUNICATION TECHNOLOGY AND APPLICATION, ICCTA2011, P306, DOI 10.1049/cp.2011.0680 Xu Lexi, 2012, P EUR WIR POZN POL, P1 Yong Zhang, 2019, 2019 IEEE International Conferences on Ubiquitous Computing & Communications (IUCC) and Data Science and Computational Intelligence (DSCI) and Smart Computing, Networking and Services (SmartCNS), P611, DOI 10.1109/IUCC/DSCI/SmartCNS.2019.00128 Yongsheng Chi, 2019, 2019 IEEE International Conferences on Ubiquitous Computing & Communications (IUCC) and Data Science and Computational Intelligence (DSCI) and Smart Computing, Networking and Services (SmartCNS), P621, DOI 10.1109/IUCC/DSCI/SmartCNS.2019.00130 Zhang D., 2017, IEEE T COMMUN, V65 Zhu H, 2019, PROC CVPR IEEE, P4486, DOI 10.1109/CVPR.2019.00462 Zhu H, 2018, PROC CVPR IEEE, P4450, DOI 10.1109/CVPR.2018.00468 Zhu H, 2017, IEEE T CIRC SYST VID, V27, P760, DOI 10.1109/TCSVT.2016.2596118 Zhu H, 2017, FRONT COMPUT SCI-CHI, V11, P175, DOI 10.1007/s11704-016-5520-8 NR 33 TC 0 Z9 0 U1 0 U2 4 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA BN 978-1-6654-3285-6 PY 2021 BP 86 EP 92 DI 10.1109/ICT-DM52643.2021.9664166 PG 7 WC Computer Science, Information Systems; Telecommunications WE Conference Proceedings Citation Index - Science (CPCI-S) SC Computer Science; Telecommunications GA BT7HR UT WOS:000848659700014 DA 2024-09-05 ER PT J AU Ali, Z Qi, GL Muhammad, K Bhattacharyya, S Ullah, I Abro, W AF Ali, Zafar Qi, Guilin Muhammad, Khan Bhattacharyya, Siddhartha Ullah, Irfan Abro, Waheed TI Citation recommendation employing heterogeneous bibliographic network embedding SO NEURAL COMPUTING & APPLICATIONS LA English DT Article DE Recommender systems; Citation recommendations; Network embedding; Deep learning; Network sparsity ID GRAPH AB The massive number of research articles on the Web makes it troublesome for researchers to identify related works that could meet their preferences and interests. Consequently, various network representation learning-based models have been proposed to produce citation recommendations. Nevertheless, these models do not exploit semantic relations and contextual information between the objects of bibliographic papers' networks, which can result in inadequate citation recommendations. Moreover, existing citation recommendation methods face problems such as lack of personalization, cold-start, and network sparsity. To mitigate such problems and produce individualized citation recommendations, we propose a heterogeneous network embedding model that jointly learns node representations by exploiting semantics corresponding to the author, time, context, field of study, citations, and topics. Compared to baseline models, the results produced by the proposed model over the DBLP datasets prove 10% and 12% improvement on mean average precision (MAP) and normalized discounted cumulative gain (nDCG@10) metrics, respectively. Also, the effectiveness of our model is analyzed on the cold-start papers and network sparsity problems, where it gains 12% and 9% better MAP and recall@10 scores, respectively. C1 [Ali, Zafar; Qi, Guilin; Abro, Waheed] Southeast Univ, Sch Comp Sci & Engn, Nanjing, Peoples R China. [Muhammad, Khan] Sejong Univ, Dept Software, Visual Analyt Knowledge Lab VIS2KNOW Lab, Seoul 143747, South Korea. [Bhattacharyya, Siddhartha] Rajnagar Mahavidyalaya, Birbhum, India. [Ullah, Irfan] Shaheed Benazir Bhutto Univ, Dept Comp Sci, Sheringal, Pakistan. C3 Southeast University - China; Sejong University RP Ali, Z (corresponding author), Southeast Univ, Sch Comp Sci & Engn, Nanjing, Peoples R China.; Muhammad, K (corresponding author), Sejong Univ, Dept Software, Visual Analyt Knowledge Lab VIS2KNOW Lab, Seoul 143747, South Korea. EM zafarali@seu.edu.cn; khan.muhammad@ieee.org RI Ullah, Irfan/C-9213-2014; Muhammad, Khan/L-9059-2016; Zhang, Yihao/JGM-3514-2023; Khan, Muhammad/IXN-8470-2023; Ullah, Irfan/CAA-4310-2022; Cheng, Yuan/JKJ-0794-2023; Wang, Peilin/JWP-6008-2024; Ali, Zafar/D-7320-2017 OI Ullah, Irfan/0000-0003-0693-5467; Muhammad, Khan/0000-0003-4055-7412; Ullah, Irfan/0000-0003-0693-5467; Ullah, Irfan/0000-0003-3961-888X; Muhammad, Khan/0000-0002-5302-1150; Ali, Zafar/0000-0002-6404-645X CR Abro WA, 2019, IEEE IJCNN, DOI 10.1109/ijcnn.2019.8852246 Achakulvisut T, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0158423 Ali Z, 2021, EXPERT SYST APPL, V180, DOI 10.1016/j.eswa.2021.114888 Ali Z, 2021, 2021 55TH ANNUAL CONFERENCE ON INFORMATION SCIENCES AND SYSTEMS (CISS), DOI 10.1109/CISS50987.2021.9400311 Ali Z, 2020, EXPERT SYST APPL, V162, DOI 10.1016/j.eswa.2020.113790 Ali Z, 2020, ARTIF INTELL REV, V53, P5217, DOI 10.1007/s10462-020-09819-4 Ali Z, 2016, INTERNATIONAL CONFERENCE ON INFORMATICS AND SYSTEMS (INFOS 2016), P68, DOI 10.1145/2908446.2908481 Aliannejadi M., 2019, IEEE T KNOWL DATA EN, P1 Amami M, 2016, LECT NOTES COMPUT SC, V9612, P200, DOI 10.1007/978-3-319-41754-7_17 [Anonymous], 2013, P 7 ACM C REC SYST R, DOI DOI 10.1145/2507157.2507212 Ayala-Gómez F, 2018, J INTELL FUZZY SYST, V34, P3089, DOI 10.3233/JIFS-169493 Bansal T, 2016, PROCEEDINGS OF THE 10TH ACM CONFERENCE ON RECOMMENDER SYSTEMS (RECSYS'16), P107, DOI 10.1145/2959100.2959180 Beltagy I, 2019, 2019 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING AND THE 9TH INTERNATIONAL JOINT CONFERENCE ON NATURAL LANGUAGE PROCESSING (EMNLP-IJCNLP 2019), P3615 Bhagavatula C., 2018, Long Papers, V1, P238, DOI DOI 10.18653/V1/N18-1022 Cai XY, 2019, IEEE ACCESS, V7, P457, DOI 10.1109/ACCESS.2018.2885507 Cai XY, 2018, AAAI CONF ARTIF INTE, P5747 Cai XY, 2018, IEEE T NEUR NET LEAR, V29, P6026, DOI 10.1109/TNNLS.2018.2817245 Chakraborty T, 2015, PROC INT CONF DATA, P555, DOI 10.1109/ICDE.2015.7113314 Chen J, 2019, IEEE INT CON MULTI, P31, DOI 10.1109/ICME.2019.00014 Christoforidis G, 2021, KNOWL INF SYST, V63, P791, DOI 10.1007/s10115-020-01541-5 Covington P, 2016, PROCEEDINGS OF THE 10TH ACM CONFERENCE ON RECOMMENDER SYSTEMS (RECSYS'16), P191, DOI 10.1145/2959100.2959190 Cui P, 2019, IEEE T KNOWL DATA EN, V31, P833, DOI 10.1109/TKDE.2018.2849727 Du ZX, 2019, LECT NOTES ARTIF INT, V11052, P675, DOI 10.1007/978-3-030-10928-8_40 Ebesu T, 2017, SIGIR'17: PROCEEDINGS OF THE 40TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, P1093, DOI 10.1145/3077136.3080730 Galke L, 2018, PROCEEDINGS OF THE 26TH CONFERENCE ON USER MODELING, ADAPTATION AND PERSONALIZATION (UMAP'18), P197, DOI 10.1145/3209219.3209236 Ganguly S, 2017, LECT NOTES COMPUT SC, V10193, P383, DOI 10.1007/978-3-319-56608-5_30 Gazdar A, 2020, KNOWL-BASED SYST, V188, DOI 10.1016/j.knosys.2019.105058 Goyal P, 2018, KNOWL-BASED SYST, V151, P78, DOI 10.1016/j.knosys.2018.03.022 Grover A, 2016, KDD'16: PROCEEDINGS OF THE 22ND ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, P855, DOI 10.1145/2939672.2939754 Gu WR, 2016, NEURAL COMPUT APPL, V27, P1263, DOI 10.1007/s00521-015-1932-x Gupta S, 2017, WWW'17 COMPANION: PROCEEDINGS OF THE 26TH INTERNATIONAL CONFERENCE ON WORLD WIDE WEB, P1267, DOI 10.1145/3041021.3053062 Huang T, 2020, NAT FOOD, V1, DOI 10.1038/s43016-020-0066-1 Huang WY, 2015, AAAI CONF ARTIF INTE, P2404 Khusro S., 2016, Information Science and Applications (ICISA) 2016, P1179, DOI DOI 10.1007/978-981-10-0557-2_112 Kim SB, 2017, DECIS SUPPORT SYST Kobayashi Y, 2018, ACM-IEEE J CONF DIG, P243, DOI 10.1145/3197026.3197059 Kong XJ, 2021, IEEE T EMERG TOP COM, V9, P226, DOI 10.1109/TETC.2018.2830698 Kunaver M, 2017, KNOWL-BASED SYST, V123, P154, DOI 10.1016/j.knosys.2017.02.009 Li BT, 2020, NEURAL COMPUT APPL, V32, P16647, DOI 10.1007/s00521-020-04908-5 Lops P, 2011, RECOMMENDER SYSTEMS HANDBOOK, P73, DOI 10.1007/978-0-387-85820-3_3 Martin A, 2020, IEEE C EVOL COMPUTAT, DOI 10.1109/ICLO48556.2020.9285922 Martin A, 2020, APPL SOFT COMPUT, V90, DOI 10.1016/j.asoc.2020.106144 Mikolov Tomas, 2013, NIPS NIPS, P3111, DOI DOI 10.48550/ARXIV.1310.4546 Muhammad K, 2021, SCIENTOMETRICS, P1 Pazzani M. J., 2007, The Adaptive Web. Methods and Strategies of Web Personalization, P325 Pradhan T, 2020, KNOWL-BASED SYST, V204, DOI 10.1016/j.knosys.2020.106181 Le Q, 2014, PR MACH LEARN RES, V32, P1188 Ribeiro LFR, 2017, KDD'17: PROCEEDINGS OF THE 23RD ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, P385, DOI 10.1145/3097983.3098061 Sugiyama K, 2013, ACM-IEEE J CONF DIG, P153 Tang J, 2015, PROCEEDINGS OF THE 24TH INTERNATIONAL CONFERENCE ON WORLD WIDE WEB (WWW 2015), P1067, DOI 10.1145/2736277.2741093 Walek B, 2020, EXPERT SYST APPL, V158, DOI 10.1016/j.eswa.2020.113452 Wang Chong, 2011, P ACM SIGKDD INT C K, P448, DOI DOI 10.1145/2020408.2020480 Wang H, 2015, IEEE T KNOWL DATA EN, V27, P1343, DOI 10.1109/TKDE.2014.2365789 Wang J, 2020, NEUROCOMPUTING, V410, P103, DOI 10.1016/j.neucom.2020.05.047 Weld, 2020, P 58 ANN M ASS COMP, P1 Yang LB, 2018, IEEE ACCESS, V6, P59618, DOI 10.1109/ACCESS.2018.2872730 Yin J, 2017, LECT NOTES COMPUT SC, V10367, P285, DOI 10.1007/978-3-319-63564-4_23 Zhao J, 2016, 2016 IEEE MTT-S INTERNATIONAL WIRELESS SYMPOSIUM (IWS), DOI 10.1109/ICSSSM.2016.7538614 NR 58 TC 16 Z9 17 U1 2 U2 38 PU SPRINGER LONDON LTD PI LONDON PA 236 GRAYS INN RD, 6TH FLOOR, LONDON WC1X 8HL, ENGLAND SN 0941-0643 EI 1433-3058 J9 NEURAL COMPUT APPL JI Neural Comput. Appl. PD JUL PY 2022 VL 34 IS 13 SI SI BP 10229 EP 10242 DI 10.1007/s00521-021-06135-y EA AUG 2021 PG 14 WC Computer Science, Artificial Intelligence WE Science Citation Index Expanded (SCI-EXPANDED) SC Computer Science GA 2J4QQ UT WOS:000690716700002 DA 2024-09-05 ER PT C AU Liu, YL Molenaar, M Jiao, LM Liu, YF AF Liu, YL Molenaar, M Jiao, LM Liu, YF BE Owe, M DUrso, G Moreno, JF Calera, A TI Research on land evaluation based on fuzzy neural network SO REMOTE SENSING FOR AGRICULTURE, ECOSYSTEMS, AND HYDROLOGY V SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Remote Sensing for Agriculture, Ecosystems and Hydrology V CY SEP 08-10, 2003 CL Barcelona, SPAIN DE land suitability evaluation; fuzzy neural networks (FNN); fuzzy system AB This paper focuses on application of artificial neural networks (ANN) in land suitability evaluation. There are some problems in applying fuzzy system to land suitability evaluation such as self-adjusting ability of the membership functions and rules of fuzzy evaluation system. In this paper, the model of fuzzy neural network is designed for land suitability evaluation. This model is the result of integrated fuzzy system and artificial neural network. This fuzzy neural network model has five layers. The learning algorithm of the model has been designed based on the principle of error back propagation of neural networks. The learning strategy, algorithm and efficiency of the model have been tested and the results of test are satisfied. C1 Wuhan Univ, Sch Resource & Environm, Wuhan 430079, Peoples R China. C3 Wuhan University RP Wuhan Univ, Sch Resource & Environm, Wuhan 430079, Peoples R China. EM yaolin@itc.nl; molenaar@itc.nl CR [Anonymous], 1990, IEEE T NEURAL NETWOR Benitez JM, 1997, IEEE T NEURAL NETWOR, V8, P1156, DOI 10.1109/72.623216 EMMERSON MD, 1993, IEEE T NEURAL NETWOR, V4, P788, DOI 10.1109/72.248456 JANG JSR, 1993, IEEE T NEURAL NETWOR, V4, P156, DOI 10.1109/72.182710 JIAO LM, 2002, THESIS WUHAN U Kasabov NK, 1996, FUZZY SET SYST, V82, P135, DOI 10.1016/0165-0114(95)00300-2 LIU JF, 1995, FULLERENE SCI TECHN, V3, P45 Mao Jianxu, 2001, TECHNOLOGY APPL REMO, V3, P62 Pican N, 1996, IEEE EXPERT, V11, P22, DOI 10.1109/64.482953 SARTORI MA, 1991, IEEE T NEURAL NETWOR, V2, P467, DOI 10.1109/72.88168 SPERDUTI A, 1993, NEURAL NETWORKS, V6, P365, DOI 10.1016/0893-6080(93)90004-G SUDKAMP T, 1994, IEEE T SYST MAN CYB, V24, P332, DOI 10.1109/21.281432 Systems F.R., 2002, GEO-SPAT INF SCI, V5, P55, DOI DOI 10.1007/BF02863495 Tang Shiwei, 2002, J DAQIN PETROLEUM CO, V6, P48 Zhao Xiang, 2001, Control Theory & Applications, V18, P395 Zhou CS, 1997, PHYS REV E, V55, P2580, DOI 10.1103/PhysRevE.55.2580 NR 16 TC 2 Z9 3 U1 0 U2 4 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X EI 1996-756X BN 0-8194-5115-0 J9 PROC SPIE PY 2004 VL 5232 BP 565 EP 574 DI 10.1117/12.510895 PG 10 WC Agriculture, Multidisciplinary; Environmental Sciences; Remote Sensing; Water Resources WE Conference Proceedings Citation Index - Science (CPCI-S) SC Agriculture; Environmental Sciences & Ecology; Remote Sensing; Water Resources GA BY77H UT WOS:000189459600056 DA 2024-09-05 ER PT J AU Williams, K Michalska, S Cohen, E Szomszor, M Grant, J AF Williams, Kate Michalska, Sandra Cohen, Eliel Szomszor, Martin Grant, Jonathan TI Exploring the application of machine learning to expert evaluation of research impact SO PLOS ONE LA English DT Article ID REF 2014; READABILITY AB The objective of this study is to investigate the application of machine learning techniques to the large-scale human expert evaluation of the impact of academic research. Using publicly available impact case study data from the UK's Research Excellence Framework (2014), we trained five machine learning models on a range of qualitative and quantitative features, including institution, discipline, narrative style (explicit and implicit), and bibliometric and policy indicators. Our work makes two key contributions. Based on the accuracy metric in predicting high- and low-scoring impact case studies, it shows that machine learning models are able to process information to make decisions that resemble those of expert evaluators. It also provides insights into the characteristics of impact case studies that would be favoured if a machine learning approach was applied for their automated assessment. The results of the experiments showed strong influence of institutional context, selected metrics of narrative style, as well as the uptake of research by policy and academic audiences. Overall, the study demonstrates promise for a shift from descriptive to predictive analysis, but suggests caution around the use of machine learning for the assessment of impact case studies. C1 [Williams, Kate] Univ Melbourne, Sch Social & Polit Sci, Melbourne, Vic, Australia. [Michalska, Sandra; Cohen, Eliel] Kings Coll London, Policy Inst, London, England. [Szomszor, Martin] Elect Data Solut, London, England. [Grant, Jonathan] Different Angles, Cambridge, England. C3 University of Melbourne; University of London; King's College London RP Williams, K (corresponding author), Univ Melbourne, Sch Social & Polit Sci, Melbourne, Vic, Australia. EM kate.williams@unimelb.edu.au RI Szomszor, Martin/N-9188-2018 OI Cohen, Eliel/0000-0002-7064-4552 FU UK Economic and Social Research Council (ESRC) [ES/V004123/1]; ESRC [ES/V004123/1] Funding Source: UKRI FX KW & JG. ES/V004123/1 UK Economic and Social Research Council (ESRC) https://www.ukri.org/councils/esrc/ The funder had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. CR Adams J., 2015, DIGITAL RES REPORTS [Anonymous], 2022, REF IMP Arras L, 2017, PLOS ONE, V12, DOI 10.1371/journal.pone.0181142 Balbuena LD, 2018, PLOS ONE, V13, DOI 10.1371/journal.pone.0207919 Bonaccorsi A, 2021, SCIENTOMETRICS, V126, P1745, DOI 10.1007/s11192-020-03803-z Boswell C, 2017, PALGR COMMUN, V3, DOI 10.1057/s41599-017-0042-z Brook L, 2018, J ART MANAG LAW SOC, V48, P57, DOI 10.1080/10632921.2017.1386148 Casnici N., J ASS INFORM SCI TEC, V68, P1763 Chauvin A, 2015, BMC MED, V13, DOI 10.1186/s12916-015-0395-3 Chipman HA, 2010, ANN APPL STAT, V4, P266, DOI 10.1214/09-AOAS285 Chowdhury G, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0156978 Coutinho E, 2017, PLOS ONE, V12, DOI 10.1371/journal.pone.0179289 Cui ZH, 2018, IEEE T IND INFORM, V14, P3187, DOI 10.1109/TII.2018.2822680 Curry S, 2022, REF 2021 METRIC TIDE Dale E, 1948, EDUC RES BULL, V27, P37 Farla Kristine, 2015, REF Accountability Review: Costs, Benefits and Burden' Flesch R, 1948, J APPL PSYCHOL, V32, P221, DOI 10.1037/h0057532 Fry E, 2002, READ TEACH, V56, P286 Gandomi A, 2015, INT J INFORM MANAGE, V35, P137, DOI 10.1016/j.ijinfomgt.2014.10.007 Gimenez C., 2005, RES METHODOLOGIES SU, P315 Grant J., 2015, The Nature, Scale and Beneficiaries of Research Impact: An Initial Analysis of the Research Excellence Framework (REF) 2014 Impact Case Studies' Gunning D, 2019, SCI ROBOT, V4, DOI 10.1126/scirobotics.aay7120 Harris T.L., 1995, The literacy dictionary: The vocabulary of reading and writing Hughes T, 2019, STUD HIGH EDUC, V44, P628, DOI 10.1080/03075079.2017.1393059 Joachims T., 2002, LEARNING CLASSIFY TE, P668 Jordan K, 2018, IMPACT SOCIAL SCI BL Kecman V, 2005, STUD FUZZ SOFT COMP, V177, P1 Kelly D, 2016, J RES NURS, V21, P256, DOI 10.1177/1744987116646153 Kim S., 2020, DEEP LEARNING R FRAN, P123 Kincaid J.P., 1975, Derivation of new readability formulas (automated readability index, fog count and flesch reading ease formula) for navy enlisted personnel Kinne J, 2021, PLOS ONE, V16, DOI 10.1371/journal.pone.0249071 Lasker SP., 2018, BANGLADESH J BIOETH, V9 Lilleberg J, 2015, PROCEEDINGS OF 2015 IEEE 14TH INTERNATIONAL CONFERENCE ON COGNITIVE INFORMATICS & COGNITIVE COMPUTING (ICCI*CC), P136, DOI 10.1109/ICCI-CC.2015.7259377 Lipton Z. C., 2018, Queue, V16, P31, DOI DOI 10.1145/3236386.3241340 Lotriet CJ, 2012, AUSTRALAS MED J, V5, P26, DOI 10.4066/AMJ.2012.1165 Manville C., 2015, PREPARING IMPACT SUB Marcella R, 2016, J INF SCI, V42, P369, DOI 10.1177/0165551516636291 Mayumi Oshiro Thais, 2012, Machine Learning and Data Mining in Pattern Recognition. Proceedings 8th International Conference, MLDM 2012, P154, DOI 10.1007/978-3-642-31537-4_13 McGarity TO., 1994, High Technology Law Journal, V9, P1 MCLAUGHLIN GH, 1969, J READING, V12, P639 Medvedeva M, 2023, ARTIF INTELL LAW, V31, P195, DOI 10.1007/s10506-021-09306-3 Nelson APK, 2022, PATTERNS, V3, DOI 10.1016/j.patter.2022.100508 Nelson APK, 2022, PATTERNS Oancea A, 2013, EUR EDUC RES J, V12, P242, DOI 10.2304/eerj.2013.12.2.242 Priem J, 2022, Arxiv, DOI [arXiv:2205.01833, DOI 10.48550/ARXIV.2205.01833, 10.48550/arXiv.2205.01833] Reddick Gavin, 2021, F1000Res, V10, P1291, DOI 10.12688/f1000research.74374.3 Reichard B, 2020, PALGR COMMUN, V6, DOI 10.1057/s41599-020-0394-7 Research England, REF2021 REF 2021 Sirikulviriya N, 2011, INT PROC COMPUT SCI, V6, P194 Slyder JB, 2011, SCIENTOMETRICS, V89, P955, DOI 10.1007/s11192-011-0467-x Smith E A, 1967, AMRL TR, P1 Smith K. E., 2020, IMPACT AGENDA CONTRO Szomszor M, 2022, Arxiv, DOI [arXiv:2201.07643, 10.1162/qss_a_00204] Tennant Jonathan P, 2017, F1000Res, V6, P1151, DOI 10.12688/f1000research.12037.2 Terämä E, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0168533 Tickell A., 2021, REV RES BUREAUCRACY Tomkins A, 2017, P NATL ACAD SCI USA, V114, P12708, DOI 10.1073/pnas.1707323114 Varghese Arun, 2020, Environment Systems & Decisions, V40, P465, DOI 10.1007/s10669-020-09763-2 Venkataraman GR, 2020, PLOS ONE, V15, DOI 10.1371/journal.pone.0234647 Weis JW, 2021, NAT BIOTECHNOL, V39, P1300, DOI 10.1038/s41587-021-00907-6 Williams K, 2018, RES EVALUAT, V27, P93, DOI 10.1093/reseval/rvx042 Wilsdon James., 2015, METRIC TIDE INDEPEND Wroblewska MN, 2019, 01 ENRESSH Yoo TK, 2020, PLOS ONE, V15, DOI 10.1371/journal.pone.0231322 Yuan WZ, 2021, Arxiv, DOI arXiv:2102.00176 Zielinski B, 2020, PLOS ONE, V15, DOI 10.1371/journal.pone.0234806 NR 66 TC 1 Z9 1 U1 1 U2 5 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA SN 1932-6203 J9 PLOS ONE JI PLoS One PD AUG 3 PY 2023 VL 18 IS 8 AR e0288469 DI 10.1371/journal.pone.0288469 PG 18 WC Multidisciplinary Sciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Science & Technology - Other Topics GA O4DI4 UT WOS:001043333000039 PM 37535633 OA Green Published, gold DA 2024-09-05 ER PT J AU Gao, XY Wu, Q Liu, YY Yang, RL AF Gao, Xingyu Wu, Qiang Liu, Yuanyuan Yang, Ruilu TI Pasteur's quadrant in AI: do patent-cited papers have higher scientific impact? SO SCIENTOMETRICS LA English DT Article DE Artificial intelligence; Pasteur's quadrant; Patent citation; Scientific citation; Usage count ID CITATION COUNTS; COMPUTER-SCIENCE; H-INDEX; PUBLICATIONS; TECHNOLOGY; INNOVATION; KNOWLEDGE; TIME; DETERMINANTS; RESEARCHERS AB In scientific research, basic research that is both curiosity-driven and use-inspired is known as Pasteur's Quadrant. The research on the impact and attention of Pasteur's Quadrant is an essential research topic in academia. In view of the many milestone breakthroughs that Artificial Intelligence (AI) has brought to humanity, this paper delves into Pasteur's Quadrant in AI through the citation of papers by patents. We empirically analyse the scientific impact of 3322 patent-cited papers and 6587 non-patent-cited papers published from 1999 to 2013, where scientific impact is measured by scientific citations and usage counts. Our main results show that patent-cited papers have a stronger scientific impact than non-patent-cited papers, and this impact is further enhanced in conference publications than in journal publications. Further, the relationship between the multidimensional characteristics of patent citations and scientific impact is investigated in terms of patent-cited papers. We find an inverted U-shaped relationship between the intensity of a paper's patent citations and its scientific citations, as well as between the breadth of a paper's patent citations and its scientific citations. In addition, the patent citation lag of a paper negatively relates to its scientific impact. C1 [Gao, Xingyu; Wu, Qiang; Liu, Yuanyuan; Yang, Ruilu] Univ Sci & Technol China, Sch Management, 96 Jinzhai Rd, Hefei 230026, Peoples R China. C3 Chinese Academy of Sciences; University of Science & Technology of China, CAS RP Wu, Q (corresponding author), Univ Sci & Technol China, Sch Management, 96 Jinzhai Rd, Hefei 230026, Peoples R China. EM qiangwu@ustc.edu.cn OI Gao, Xingyu/0000-0002-0905-3227; Wu, Qiang/0000-0002-1308-1669 FU National Natural Science Foundation of China [71874173, 72374188]; National Natural Science Foundation of China [FSSF-A-230204]; Featured Social Science Fund of the University of Science and Technology of China FX This research was supported by the National Natural Science Foundation of China (Grant No. 71874173 and 72374188) and the Featured Social Science Fund of the University of Science and Technology of China (FSSF-A-230204). We would like to thank the editor and anonymous reviewers for their constructive comments and suggestions, which helped us to improve the paper. CR Ahmadpoor M, 2017, SCIENCE, V357, P583, DOI 10.1126/science.aam9527 Angori G, 2024, J TECHNOL TRANSFER, V49, P609, DOI 10.1007/s10961-023-10001-5 [Anonymous], 2010, Commun ACM, DOI [10.1145/1839676.1839701, DOI 10.1145/1839676.1839701] Archibugi D., 1992, SCI PUBL POLICY, V19, P357, DOI [DOI 10.1093/SPP/19.6.357, 10.1016/j.intacc.2008.06.004, DOI 10.1016/J.INTACC.2008.06.004] Arthur W. B., 2009, The Nature of Technology: What It Is and How It Evolves, DOI DOI 10.20396/RBI.V8I2.8648990 Bol T, 2018, P NATL ACAD SCI USA, V115, P4887, DOI 10.1073/pnas.1719557115 Börner K, 2018, P NATL ACAD SCI USA, V115, P12573, DOI 10.1073/pnas.1818750115 Bornmann L, 2008, J DOC, V64, P45, DOI 10.1108/00220410810844150 Bornmann L, 2012, J INFORMETR, V6, P11, DOI 10.1016/j.joi.2011.08.004 Bush Vannevar, 1945, Science: The Endless FrontierA Report to the President by Vannevar Bush, Director of the Office of Scientific Research and Development, July 1945, DOI DOI 10.2307/3625196 Callaert J, 2006, SCIENTOMETRICS, V69, P3, DOI 10.1007/s11192-006-0135-8 Chakraborty T, 2018, SCIENTOMETRICS, V114, P1011, DOI 10.1007/s11192-017-2628-z Chen CM, 2012, J AM SOC INF SCI TEC, V63, P431, DOI 10.1002/asi.21694 COLLINS P, 1988, RES POLICY, V17, P65, DOI 10.1016/0048-7333(88)90022-4 COZZENS SE, 1989, SCIENTOMETRICS, V15, P437, DOI 10.1007/BF02017064 Didegah F, 2013, J AM SOC INF SCI TEC, V64, P1055, DOI 10.1002/asi.22806 Ding CG, 2017, J INFORMETR, V11, P244, DOI 10.1016/j.joi.2016.12.004 Donner P, 2020, SCIENTOMETRICS, V124, P1411, DOI 10.1007/s11192-020-03516-3 Drivas K, 2020, RES POLICY, V49, DOI 10.1016/j.respol.2020.103951 Du J, 2020, J INFORMETR, V14, DOI 10.1016/j.joi.2020.101017 Duy J, 2006, J ACAD LIBR, V32, P512, DOI 10.1016/j.acalib.2006.05.005 Eckmann M, 2012, SCIENTOMETRICS, V90, P617, DOI 10.1007/s11192-011-0527-2 Finardi U, 2011, SCIENTOMETRICS, V89, P37, DOI 10.1007/s11192-011-0443-5 Fortnow L, 2009, COMMUN ACM, V52, P33, DOI 10.1145/1536616.1536631 Frank MR, 2019, NAT MACH INTELL, V1, P79, DOI 10.1038/s42256-019-0024-5 Fukuzawa N, 2016, SCIENTOMETRICS, V106, P629, DOI 10.1007/s11192-015-1795-z Gazni A, 2020, TECHNOL SOC, V62, DOI 10.1016/j.techsoc.2020.101276 Gazni A, 2019, SCIENTOMETRICS, V120, P1411, DOI 10.1007/s11192-019-03161-5 Geuna A, 2006, RES POLICY, V35, P790, DOI 10.1016/j.respol.2006.04.005 Glänzel W, 2011, SCIENTOMETRICS, V86, P505, DOI 10.1007/s11192-010-0269-6 Gu TT, 2022, APPL ARTIF INTELL, V36, DOI 10.1080/08839514.2022.2080336 Haans RFJ, 2016, STRATEGIC MANAGE J, V37, P1177, DOI 10.1002/smj.2399 Harzing AW, 2009, J AM SOC INF SCI TEC, V60, P41, DOI 10.1002/asi.20953 Hicks D., 2000, Science and Public Policy, V27, P310, DOI [10.3152/147154300781781805, DOI 10.3152/147154300781781805] Hu XJ, 2015, SCIENTOMETRICS, V102, P1401, DOI 10.1007/s11192-014-1464-7 Huang MH, 2015, J INFORMETR, V9, P237, DOI 10.1016/j.joi.2015.02.001 Jefferson OA, 2018, NAT BIOTECHNOL, V36, P31, DOI 10.1038/nbt.4049 Jin T, 2021, SCIENTOMETRICS, V126, P8471, DOI 10.1007/s11192-021-04112-9 Ke Q, 2020, RES POLICY, V49, DOI 10.1016/j.respol.2020.104071 Ke Q, 2018, J INFORMETR, V12, P706, DOI 10.1016/j.joi.2018.06.010 Kuhn T.S., 1962, The structure of scientific revolutions Larivière V, 2010, J AM SOC INF SCI TEC, V61, P424, DOI 10.1002/asi.21232 Lind JT, 2010, OXFORD B ECON STAT, V72, P109, DOI 10.1111/j.1468-0084.2009.00569.x Lu XF, 2012, MOD LANG J, V96, P190, DOI 10.1111/j.1540-4781.2011.01232.x Mammola S, 2022, SCIENTOMETRICS, V127, P4123, DOI 10.1007/s11192-022-04421-7 Manjunath A, 2021, NAT BIOTECHNOL, V39, P678, DOI 10.1038/s41587-021-00940-5 MERTON RK, 1968, SCIENCE, V159, P56, DOI 10.1126/science.159.3810.56 Meyer M, 2002, SCIENTOMETRICS, V54, P193, DOI 10.1023/A:1016057727209 Meyer M, 2010, SCIENTOMETRICS, V85, P527, DOI 10.1007/s11192-009-0154-3 Mingers J, 2012, INFORM PROCESS MANAG, V48, P234, DOI 10.1016/j.ipm.2011.03.009 Montesi M, 2008, J AM SOC INF SCI TEC, V59, P816, DOI 10.1002/asi.20805 Nelson RR., 1993, National innovation systems, DOI [10.1093/oso/9780195076165.001.0001, DOI 10.1093/OSO/9780195076165.001.0001] Ning LT, 2022, RES POLICY, V51, DOI 10.1016/j.respol.2021.104406 Onodera N, 2015, J ASSOC INF SCI TECH, V66, P739, DOI 10.1002/asi.23209 Papazoglou ME, 2018, RES POLICY, V47, P1713, DOI 10.1016/j.respol.2018.06.006 Park HW, 2009, SCIENTOMETRICS, V81, P811, DOI 10.1007/s11192-008-2224-3 Park MS, 2023, J ASSOC INF SCI TECH, V74, P846, DOI 10.1002/asi.24760 Poege F, 2019, SCI ADV, V5, DOI 10.1126/sciadv.aay7323 Qi YS, 2018, SCIENTOMETRICS, V115, P893, DOI 10.1007/s11192-018-2693-y Qian YF, 2017, SCIENTOMETRICS, V110, P1351, DOI 10.1007/s11192-016-2235-4 ROSENBERG N, 1994, RES POLICY, V23, P323, DOI 10.1016/0048-7333(94)90042-6 Salimi N, 2015, TECHNOVATION, V41-42, P51, DOI 10.1016/j.technovation.2015.03.007 Sanberg PR, 2014, P NATL ACAD SCI USA, V111, P6542, DOI 10.1073/pnas.1404094111 Schmoch U, 2019, SCIENTOMETRICS, V118, P1141, DOI 10.1007/s11192-018-03002-x Shaw J, 2022, RES POLICY, V51, DOI 10.1016/j.respol.2022.104610 Shneiderman B, 2018, P NATL ACAD SCI USA, V115, P12590, DOI 10.1073/pnas.1802918115 SPENCE M, 1973, Q J ECON, V87, P355, DOI 10.2307/1882010 Stokes Donald E, 1997, Pasteur's quadrant: Basic science and technological innovation Tahamtan Iman, 2016, Scientometrics, V107, P1195, DOI 10.1007/s11192-016-1889-2 Tijssen RJW, 2000, SCIENTOMETRICS, V47, P389 Tijssen RJW, 2018, RES POLICY, V47, P1626, DOI 10.1016/j.respol.2018.05.010 Toole A, 2020, INVENTING AI TRACING Van Looy B, 2004, RES POLICY, V33, P425, DOI 10.1016/j.respol.2003.09.004 Van Looy B, 2006, RES POLICY, V35, P596, DOI 10.1016/j.respol.2006.02.003 van Raan AFJ, 2018, SCIENTOMETRICS, V114, P701, DOI 10.1007/s11192-017-2603-8 van Raan AFJ, 2017, SCIENTOMETRICS, V110, P1123, DOI 10.1007/s11192-016-2215-8 Van-Raan AFJ., 2004, HDB QUANTITATIVE SCI, P19, DOI [DOI 10.1007/1-4020-2755-9_2, DOI 10.1007/1-4020-2755-92] Veugelers R, 2019, RES POLICY, V48, P1362, DOI 10.1016/j.respol.2019.01.019 Vrettas G, 2015, J ASSOC INF SCI TECH, V66, P2674, DOI 10.1002/asi.23349 Wang J, 2014, J INFORMETR, V8, P329, DOI 10.1016/j.joi.2014.01.006 Wang YZ, 2022, SCIENTOMETRICS, V127, P3793, DOI 10.1007/s11192-022-04444-0 Zhang GJ, 2017, SCIENTOMETRICS, V111, P1287, DOI 10.1007/s11192-017-2357-3 Zhang X, 2019, SCIENTOMETRICS, V119, P1311, DOI 10.1007/s11192-019-03088-x Zong QJ, 2019, SCIENTOMETRICS, V119, P1715, DOI 10.1007/s11192-019-03108-w NR 84 TC 1 Z9 1 U1 36 U2 49 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0138-9130 EI 1588-2861 J9 SCIENTOMETRICS JI Scientometrics PD FEB PY 2024 VL 129 IS 2 BP 909 EP 932 DI 10.1007/s11192-023-04925-w EA JAN 2024 PG 24 WC Computer Science, Interdisciplinary Applications; Information Science & Library Science WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Computer Science; Information Science & Library Science GA HK8Z0 UT WOS:001137293300001 DA 2024-09-05 ER PT J AU Nicholson, JM Mordaunt, M Lopez, P Uppala, A Rosati, D Rodrigues, NP Grabitz, P Rife, SC AF Nicholson, Josh M. Mordaunt, Milo Lopez, Patrice Uppala, Ashish Rosati, Domenic Rodrigues, Neves P. Grabitz, Peter Rife, Sean C. TI scite: A smart citation index that displays the context of citations and classifies their intent using deep learning SO QUANTITATIVE SCIENCE STUDIES LA English DT Article DE bibliometrics; citations; evaluation; machine learning; publishing; scientometrics ID INCREASED AMYGDALA; ASSOCIATION; ACTIVATION; ANXIETY; SCIENCE; FACES AB Citation indices are tools used by the academic community for research and research evaluation that aggregate scientific literature output and measure impact by collating citation counts. Citation indices help measure the interconnections between scientific papers but fall short because they fail to communicate contextual information about a citation. The use of citations in research evaluation without consideration of context can be problematic because a citation that presents contrasting evidence to a paper is treated the same as a citation that presents supporting evidence. To solve this problem, we have used machine learning, traditional document ingestion methods, and a network of researchers to develop a "smart citation index" called scite, which categorizes citations based on context. Scite shows how a citation was used by displaying the surrounding textual context from the citing paper and a classification from our deep learning model that indicates whether the statement provides supporting or contrasting evidence for a referenced work, or simply mentions it. Scite has been developed by analyzing over 25 million full-text scientific articles and currently has a database of more than 880 million classified citation statements. Here we describe how scite works and how it can be used to further research and research evaluation. C1 [Nicholson, Josh M.; Mordaunt, Milo; Uppala, Ashish; Rosati, Domenic; Rodrigues, Neves P.; Grabitz, Peter; Rife, Sean C.] Scite, Brooklyn, NY 11211 USA. [Lopez, Patrice] Sci Miner, Naves, France. [Grabitz, Peter] Charite Univ Med Berlin, Berlin, Germany. [Rife, Sean C.] Murray State Univ, Murray, KY 42071 USA. C3 Berlin Institute of Health; Free University of Berlin; Humboldt University of Berlin; Charite Universitatsmedizin Berlin; Murray State University RP Nicholson, JM (corresponding author), Scite, Brooklyn, NY 11211 USA. EM josh@scite.al OI Rosati, Domenic/0000-0003-2666-7615; Rife, Sean/0000-0002-6748-0841; Grabitz, Peter/0000-0001-5658-2482; Mordaunt, Milo/0000-0001-5395-4252; Nicholson, Joshua/0000-0002-1111-1828 FU NIDA grant [4R44DA050155-02] FX This work was supported by NIDA grant 4R44DA050155-02. CR [Anonymous], 2014, U CAMBRIDGE COMPUTER [Anonymous], 2018, P C N AM CHAPT ASS C, DOI [DOI 10.18653/V1/N18-1202, 10.18653/v1/N18-1202] Athar A., 2011, P ACL 2011 STUD SESS, P81 Beltagy I, 2019, 2019 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING AND THE 9TH INTERNATIONAL JOINT CONFERENCE ON NATURAL LANGUAGE PROCESSING (EMNLP-IJCNLP 2019), P3615 Bird Steven, 2009, Natural language processing with python Bordignon F, 2020, SCIENTOMETRICS, V124, P1225, DOI 10.1007/s11192-020-03536-z Ciancarini Paolo, 2014, The Semantic Web: Trends and Challenges. 11th International Conference (ESWC 2014). Proceedings: LNCS 8465, P580, DOI 10.1007/978-3-319-07443-6_39 Cohan A, 2019, 2019 CONFERENCE OF THE NORTH AMERICAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS: HUMAN LANGUAGE TECHNOLOGIES (NAACL HLT 2019), VOL. 1, P3586 Constantin A., 2014, Automatic Structure and Keyphrase Analysis of Scientific Publications Devlin J., 2018, ARXIV Else H, 2018, NATURE, V560, P290, DOI 10.1038/d41586-018-05968-3 Fujiwara T, 2015, J BIOMED SEMANT, V6, DOI 10.1186/s13326-015-0037-x GARFIELD E, 1955, SCIENCE, V122, P108, DOI 10.1126/science.122.3159.108 GARFIELD E, 1965, STAT ASSOC METHOD M, V1964, P189 GARFIELD E, 1972, SCIENCE, V178, P471, DOI 10.1126/science.178.4060.471 Garfield E, 1959, COMMUNICATION Greenberg SA, 2009, BMJ-BRIT MED J, V339, DOI 10.1136/bmj.b2680 Halevi G, 2018, Journal of Altmetrics, V1, P2, DOI DOI 10.29024/JOA.1 Hassan SU, 2018, SCIENTOMETRICS, V117, P1645, DOI 10.1007/s11192-018-2944-y Hirsch JE, 2005, P NATL ACAD SCI USA, V102, P16569, DOI 10.1073/pnas.0507655102 Honnibal M., 2018, DOI 10.5281/ZENODO.1212304 Johnson JM, 2019, J BIG DATA-GER, V6, DOI 10.1186/s40537-019-0192-5 Landhuis E, 2016, NATURE, V535, P457, DOI 10.1038/nj7612-457a Lehman J., 2005, W ENCY AM LAW, V9, P162 Letrud K, 2019, PLOS ONE, V14, DOI 10.1371/journal.pone.0222213 Leung PTM, 2017, NEW ENGL J MED, V376, P2194, DOI 10.1056/NEJMc1700150 Lo K., 2020, Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, P4969, DOI [DOI 10.18653/V1/2020.ACL-MAIN.447, 10.18653/v1/2020.acl-main.447] Lopez P., 2020, GROBID Lopez P., 2020, PUB2TEI Lopez P., 2020, DELFT Lopez P., 2020, BIBLIO GLUTTON Murray D, 2019, PRO INT CONF SCI INF, P2370 Nakayama H.etal, 2018, DOCCANO TEXT ANNOTAT Nicholson JM, 2021, FEBS J, V288, P4242, DOI 10.1111/febs.15608 Nicholson JM, 2015, ELIFE, V4, DOI 10.7554/eLife.05068 Nizzoli L, 2019, PROCEEDINGS OF THE 11TH ACM CONFERENCE ON WEB SCIENCE (WEBSCI'19), P203, DOI 10.1145/3292522.3326050 Peroni S, 2020, QUANT SCI STUD, V1, P428, DOI 10.1162/qss_a_00023 Peroni S, 2012, J WEB SEMANT, V17, P33, DOI 10.1016/j.websem.2012.08.001 Phan KL, 2006, BIOL PSYCHIAT, V59, P424, DOI 10.1016/j.biopsych.2005.08.012 Piwowar H., 2019, bioRxiv, P795310, DOI DOI 10.1101/795310 PLOS, 2015, RICH CIT PORTER J, 1980, NEW ENGL J MED, V302, P123 Pride D, 2019, ACM-IEEE J CONF DIG, P329, DOI 10.1109/JCDL.2019.00055 Schneider J, 2020, SCIENTOMETRICS, V125, P2877, DOI 10.1007/s11192-020-03631-1 Stein MB, 2002, ARCH GEN PSYCHIAT, V59, P1027, DOI 10.1001/archpsyc.59.11.1027 Stein MB, 2007, AM J PSYCHIAT, V164, P318, DOI 10.1176/appi.ajp.164.2.318 Suelzer EM, 2019, JAMA NETW OPEN, V2, DOI 10.1001/jamanetworkopen.2019.15552 Teufel S., 2006, P C EMP METH NAT LAN, DOI 10.3115/1610075.1610091 Tkaczyk D, 2018, ACM-IEEE J CONF DIG, P99, DOI 10.1145/3197026.3197048 Viganó C, 2018, MOL BIOL CELL, V29, P1031, DOI 10.1091/mbc.E17-10-0577 Volanakis A, 2018, SCI REP-UK, V8, DOI 10.1038/s41598-018-24571-0 Wakefield AJ, 1998, LANCET, V351, P637, DOI 10.1016/S0140-6736(97)11096-0 Wang Lucy Lu, 2020, arXiv Ware M., 2015, STM REPORT OVERVIEW, P181 Yan EJ, 2020, QUANT SCI STUD, V1, P664, DOI 10.1162/qss_a_00040 Yousif A, 2019, ARTIF INTELL REV, V52, P1805, DOI 10.1007/s10462-017-9597-8 NR 56 TC 40 Z9 43 U1 4 U2 37 PU MIT PRESS PI CAMBRIDGE PA ONE ROGERS ST, CAMBRIDGE, MA 02142-1209 USA EI 2641-3337 J9 QUANT SCI STUD JI Quant. Sci. Stud. PD NOV 5 PY 2021 VL 2 IS 3 BP 882 EP 898 DI 10.1162/qss_a_00146 PG 17 WC Information Science & Library Science WE Emerging Sources Citation Index (ESCI) SC Information Science & Library Science GA XQ8PQ UT WOS:000731804900003 OA gold, Green Submitted DA 2024-09-05 ER PT J AU Yee, JY Tsai, CJ Hsu, TY Lin, JY Cheng, PC AF Yee, Jen-Yuan Tsai, Cheng-Jung Hsu, Tien-Yu Lin, Jung-Yi Cheng, Pei-Cheng TI FEATURE SELECTION AND CLASSIFICATION INTEGRATED METHOD FOR IDENTIFYING CITED TEXT SPANS FOR CITANCES ON IMBALANCED DATA SO MALAYSIAN JOURNAL OF COMPUTER SCIENCE LA English DT Article DE Citation analysis; cited text spans identification; feature selection; classification; class imbalance; performance evaluation; scientific paper summarization AB Recent studies in scientific paper summarization have explored a new form of structured summary for a reference paper by grouping all cited and citing sentences together by facet. This involves three main tasks: (1) identifying cited text spans for citances (i.e., citing sentences), (2) classifying their discourse facets, and (3) generating a structured summary from the cited text spans and citances. This paper focuses on the first task, and approaches the task as binary classification to distinguish relevant pairs of citances and reference sentences from irrelevant pairs. We propose a new method that integrates feature selection and classification techniques to enhance classification performance. The proposed method investigates combinations of six feature selection methods (chi(2)-Statistics, Information Gain, Gain Ratio, Relief-F, Significance Attribute Evaluation, and Symmetrical Uncertainty), and five classification algorithms (k-Nearest Neighbors, Decision Tree, Support Vector Machine, Naive Bayes, and Random Forest). Additionally, to address imbalanced data during training, we apply SMOTE (Synthetic Minority Over sampling Technique) to introduce synthetic biases towards the minority. Experiments are conducted using the CLSciSumm corpora to compare the effect of feature selection applied to classification. The results reveal the benefits of feature selection in significantly boosting performance of F-1 score metric, and show that our method is competitive to the state-of-the-art methods in the CL-SciSumm evaluations. C1 [Yee, Jen-Yuan] Natl Museum Nat Sci, Visitor Serv, Dept Operat, Collect & Informat Management, Taichung 40453, Taiwan. [Tsai, Cheng-Jung] Natl Changhua Univ Educ, Grad Inst Stat & Informat Sci, Changhua 50007, Taiwan. [Hsu, Tien-Yu] Natl Museum Nat Sci, Dept Sci Educ, Taichung 40453, Taiwan. [Lin, Jung-Yi] Hon Hai Precis IndCo Ltd Foxconn, IP Affairs Div, Taipei 11492, Taiwan. [Cheng, Pei-Cheng] Chien Hsin Univ Sci & Technol, Dept Informat Management, Taoyuan 32097, Taiwan. C3 National Changhua University of Education; Chien Hsin University of Science & Technology RP Yee, JY (corresponding author), Natl Museum Nat Sci, Visitor Serv, Dept Operat, Collect & Informat Management, Taichung 40453, Taiwan. EM jenyuan@nmns.edu.tw; cjtsai@cc.ncue.edu.tw; dan@nmns.edu.tw; jungyilin@gmail.com; pccheng@uch.edu.tw CR Abu-Jbara A., 2011, P 49 ANN M ASS COMP, P500 Abu-Jbara Amjad., 2012, NAACL-HLT, P80 AbuRa'ed A., 2017, P 2 JOINT WORKSH BIB AbuRaed A., 2018, P 3 JOINT WORKSH BIB, V2132, P150 AHA DW, 1991, MACH LEARN, V6, P37, DOI 10.1007/BF00153759 Ahmad A, 2005, PATTERN RECOGN LETT, V26, P43, DOI 10.1016/j.patrec.2004.08.015 Bartlett P, 1999, ADVANCES IN KERNEL METHODS, P43 Baruah G., 2018, BIRNDL SIGIR, V2132, P134 Breiman L, 2001, MACH LEARN, V45, P5, DOI 10.1023/A:1010933404324 Cao Z, 2016, P JOINT WORKSH BIBL, P132 Chawla NV, 2002, J ARTIF INTELL RES, V16, P321, DOI 10.1613/jair.953 Cohan Arman, 2015, P 2015 C EMP METH NA, P390, DOI [DOI 10.18653/V1/D15-1045, 10.18653/v1/D15-1045] CORTES C, 1995, MACH LEARN, V20, P273, DOI 10.1023/A:1022627411411 Debnath D, 2018, BIRNDL SIGIR, P164 Elkiss A, 2008, J AM SOC INF SCI TEC, V59, P51, DOI 10.1002/asi.20707 Felber T., 2017, P 3 COMP LING SCI SU, P67 Guyon I., 2003, Journal of Machine Learning Research, V3, P1157, DOI 10.1162/153244303322753616 Hall M., 2009, SIGKDD EXPLORATIONS, V11, P10, DOI DOI 10.1145/1656274.1656278 Hoang C. D. V., 2010, P COLING 10 23 INT C, P427 Hunt E. B., 1966, EXPT INDUCTION Jaidka K., 2016, P JOINT WORKSH BIBLI, P93 Jaidka Kokil, 2013, P 14 EUROPEAN WORKSH, P125 John G. H., 1995, Uncertainty in Artificial Intelligence. Proceedings of the Eleventh Conference (1995), P338 Karimi S., 2017, P 3 COMP LING SCI SU, P73 KIRA K, 1992, MACHINE LEARNING /, P249 Klampfl Stefan., 2016, BIRNDL at JCDL, P122 Kononenko I., 1994, Machine Learning: ECML-94. European Conference on Machine Learning. Proceedings, P171 Kuncheva LI, 2007, PROCEEDINGS OF THE IASTED INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND APPLICATIONS, P390 Lauscher A, 2017, CEUR WORKSHOP P RWTH, P33 Li L., 2017, P 2 JOINT WORKSH BIB Li L, 2016, P JOINT WORKSH BIBL, P156 Li L., 2018, BIRNDL SIGIR CEUR WO, V2132, P84 Lippman D., 2017, MATH IN SOC Liu H, 1995, PROC INT C TOOLS ART, P388, DOI 10.1109/TAI.1995.479783 Ma S., 2017, P 2 JOINT WORKSH BIB Malenfant B., 2016, P JOINT WORKSHOP BIB, P146 MILLER GA, 1995, COMMUN ACM, V38, P39, DOI 10.1145/219717.219748 Mohammad S., 2009, P HUMAN LANGUAGE TEC, P584 Mora LuisMiguel Garcia., 2016, The Politics of the Second Slavery, P113 Nakov P. I., 2004, P SIGIR 04 WORKSH SE, P81 Nomoto T., 2016, P JOINT WORKSH BIBL, P168 Pramanick A., 2017, P 3 COMP LING SCI SU, P94 Prasad Animesh, 2017, BIRNDL SIGIR, P26 Press W. H., 2002, Numerical recipes in C++ Qazvinian V, 2008, P 22 INT C COMP LING, V1, P689, DOI DOI 10.3115/1599081.1599168 Qazvinian V, 2013, J ARTIF INTELL RES, V46, P165, DOI 10.1613/jair.3732 Qazvinian V, 2010, ACL 2010: 48TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, P555 Quinlan J. R., 1986, Machine Learning, V1, P81, DOI 10.1023/A:1022643204877 Quinlan Ross., 1992, C4.5: Programs for Machine Learning Seiffert Chris, 2008, 2008 IEEE International Conference on Data Mining Workshops, P46, DOI 10.1109/ICDMW.2008.119 Teufel S, 2002, COMPUT LINGUIST, V28, P409, DOI 10.1162/089120102762671936 Wang P., 2018, BIRNDL SIGIR, P102 Yeh JY, 2019, J INF SCI ENG, V35, P61, DOI 10.6688/JISE.201901_35(1).0004 Zhang D., 2017, P 2 JOINT WORKSH BIB NR 54 TC 0 Z9 0 U1 0 U2 6 PU UNIV MALAYA, FAC COMPUTER SCIENCE & INFORMATION TECH PI KUALA LUMPUR PA UNIV MALAYA, FAC COMPUTER SCIENCE & INFORMATION TECH, KUALA LUMPUR, 50603, MALAYSIA SN 0127-9084 J9 MALAYS J COMPUT SCI JI Malayas. J. Comput. Sci. PY 2021 VL 34 IS 4 BP 355 EP 373 DI 10.22452/mjcs.vol34no4.3 PG 19 WC Computer Science, Artificial Intelligence; Computer Science, Theory & Methods WE Science Citation Index Expanded (SCI-EXPANDED) SC Computer Science GA WS2WM UT WOS:000715047500003 OA Bronze DA 2024-09-05 ER PT J AU Ashraf, QM Tahir, M Habaebi, MH Isoaho, J AF Ashraf, Qazi Mamoon Tahir, Mohammad Habaebi, Mohamed Hadi Isoaho, Jouni TI Toward Autonomic Internet of Things: Recent Advances, Evaluation Criteria, and Future Research Directions SO IEEE INTERNET OF THINGS JOURNAL LA English DT Article DE Artificial intelligence (AI); autonomic comput-ing; blockchain; edge computing; Internet of Things (IoT); machine learning (ML); self-* paradigm ID MOBILE EDGE; RESOURCE-MANAGEMENT; IOT; CHALLENGES; SECURITY; INTELLIGENCE; MECHANISMS; PARADIGM; SYSTEMS; CLOUD AB With the rise of the Internet of Things (IoT), tiny devices capable of computation and data transmission are being deployed across various technological domains. Due to the wide deployment of these devices, manual setup and management are infeasible and inefficient. To address this inefficiency, intelligent procedures must be established to enable autonomy that allows devices and networks to operate efficiently with minimal human intervention. In the traditional client-server paradigm, autonomic computing has been proven effective in minimizing user intervention in computer systems management and will benefit IoT networks. However, IoT networks tend to be heterogeneous, distributed, and resource constrained, mandating the need for new approaches to implement autonomic principles compared to traditional approaches. We begin by introducing the basic principles of autonomic computing and its significance in IoT. We then discuss the self-* paradigm and monitor, analyze, plan, and execute (MAPE) loop from an IoT perspective, followed by recent works in IoT and key enabling technologies for enabling autonomic properties in IoT. Based on the self-* paradigm and MAPE loop analysis from the existing literature, we propose a set of qualitative characteristics for evaluating the autonomy of the IoT network. Finally, we provide a comprehensive list of challenges associated with achieving autonomic IoT and directions for future research. C1 [Ashraf, Qazi Mamoon] Telekom Malaysia Res & Dev, Dept Res & Innovat, Cyberjaya 63000, Malaysia. [Tahir, Mohammad; Isoaho, Jouni] Univ Turku, Dept Comp, Turku 20014, Finland. [Habaebi, Mohamed Hadi] Int Islamic Univ Malaysia, Dept Elect & Comp Engn, Kuala Lumpur 53100, Malaysia. C3 University of Turku; International Islamic University Malaysia RP Tahir, M (corresponding author), Univ Turku, Dept Comp, Turku 20014, Finland. EM mamoon@tmrnd.com.my; tahir.mohammad@utu.fi; habaebi@iium.edu.my; jisoaho@utu.fi RI Tahir, Mohammad/ABA-8684-2020; Habaebi, Mohamed Hadi/P-2128-2017 OI Tahir, Mohammad/0000-0002-6273-4603; Habaebi, Mohamed Hadi/0000-0002-2263-0850; Isoaho, Jouni/0000-0002-5789-3992 CR Agrawal N, 2021, T EMERG TELECOMMUN T, V32, DOI 10.1002/ett.4349 Akgül ÖU, 2016, COMPUT COMMUN, V74, P52, DOI 10.1016/j.comcom.2014.07.004 Al-Kaseem BR, 2017, IEEE INTERNET THINGS, V4, P1787, DOI 10.1109/JIOT.2017.2704921 Al-Shara Z, 2018, FUTURE GENER COMP SY, V86, P339, DOI 10.1016/j.future.2018.03.039 Alam MGR, 2019, FUTURE GENER COMP SY, V90, P149, DOI 10.1016/j.future.2018.07.050 Ammar M, 2018, J INF SECUR APPL, V38, P8, DOI 10.1016/j.jisa.2017.11.002 [Anonymous], 2012, P 1 ACM MCC WORKSH M P 1 ACM MCC WORKSH M P 1 ACM MCC WORKSH M P 1 ACM MCC WORKSH M P 1 ACM MCC WORKSH M P 1 ACM MCC WORKSH M P 1 ACM MCC WORKSH M P 1 ACM MCC WORKSH M P 1 ACM MCC WORKSH M P 1 ACM MCC WORKSH M P 1 ACM MCC WORKSH M P 1 ACM MCC WORKSH M P 1 ACM MCC WORKSH M P 1 ACM MCC WORKSH M P 1 ACM MCC WORKSH M P 1 ACM MCC WORKSH M P 1 ACM MCC WORKSH M P 1 ACM MCC WORKSH M P 1 ACM MCC WORKSH M P 1 ACM MCC WORKSH M P 1 ACM MCC WORKSH M P 1 ACM MCC WORKSH M P 1 ACM MCC WORKSH M P 1 ACM MCC WORKSH M P 1 ACM MCC WORKSH M P 1 ACM MCC WORKSH M P 1 ACM MCC WORKSH M P 1 ACM MCC WORKSH M P 1 ACM MCC WORKSH M P 1 ACM MCC WORKSH M P 1 ACM MCC WORKSH M P 1 ACM MCC WORKSH M [Anonymous], 2013, Managing and mining sensor data, DOI [DOI 10.1007/978-1-4614-6309-2_12, 10.1007/978-1-4614-6309-2_12] Arcaini P, 2015, 2015 IEEE/ACM 10TH INTERNATIONAL SYMPOSIUM ON SOFTWARE ENGINEERING FOR ADAPTIVE AND SELF-MANAGING SYSTEMS, P13, DOI 10.1109/SEAMS.2015.10 Ashraf Q. M, 2017, AM J DATA MINING KNO, V2, P69 Ashraf Q.M., 2014, INT C CONTR ENG INF Ashraf QM, 2015, J NETW COMPUT APPL, V49, P112, DOI 10.1016/j.jnca.2014.11.011 Aslanpour MS, 2020, INTERNET THINGS-NETH, V12, DOI 10.1016/j.iot.2020.100273 Atzori L, 2010, COMPUT NETW, V54, P2787, DOI 10.1016/j.comnet.2010.05.010 Azimi I, 2017, ACM T EMBED COMPUT S, V16, DOI 10.1145/3126501 Babaoglu Ozalp., 2005, Self-star properties in complex information systems: conceptual and practical foundations, V3460 Bajaj K, 2022, COMPLEX INTELL SYST, V8, P3641, DOI 10.1007/s40747-021-00434-6 Barbuto V, 2023, BIG DATA COGN COMPUT, V7, DOI 10.3390/bdcc7010044 Behzadan V, 2017, L N INST COMP SCI SO, V212, P74, DOI 10.1007/978-3-319-67540-4_7 Benzaïd C, 2022, IEEE NETWORK, V36, P165, DOI 10.1109/MNET.104.2100495 Berns A, 2009, INT CONF SELF SELF, P10, DOI 10.1109/SASO.2009.25 Domingo MC, 2012, J NETW COMPUT APPL, V35, P1879, DOI 10.1016/j.jnca.2012.07.012 Chen BT, 2018, IEEE COMMUN MAG, V56, P103, DOI 10.1109/MCOM.2018.1701231 Chen JN, 2019, IEEE INTERNET THINGS, V6, P7011, DOI 10.1109/JIOT.2019.2913162 Chen N, 2019, IEEE COMMUN MAG, V57, P91, DOI 10.1109/MCOM.001.1900094 Chen Q, 2014, IEEE INTERNET THINGS, V1, P446, DOI 10.1109/JIOT.2014.2349899 Chun I, 2010, INT CONF ADV COMMUN, P1009 Colakovic A, 2018, COMPUT NETW, V144, P17, DOI 10.1016/j.comnet.2018.07.017 Dai WB, 2017, IEEE T IND INFORM, V13, P725, DOI 10.1109/TII.2016.2595401 Dawod A, 2022, SENSORS-BASEL, V22, DOI 10.3390/s22041344 Dehraj P, 2021, J SUPERCOMPUT, V77, P388, DOI 10.1007/s11227-020-03268-0 Dobson S, 2006, ACM T AUTON ADAP SYS, V1, P223, DOI 10.1145/1186778.1186782 Dressler F, 2008, COMPUT COMMUN, V31, P3018, DOI 10.1016/j.comcom.2008.02.001 Edwards C. P., 2005, U.S. Patent, Patent No. [6870816B1, 6870816] Elgendy IA, 2019, FUTURE GENER COMP SY, V100, P531, DOI 10.1016/j.future.2019.05.037 Etemadi M, 2020, COMPUT COMMUN, V161, P109, DOI 10.1016/j.comcom.2020.07.028 Fizza K, 2023, IEEE COMMUN SURV TUT, V25, P567, DOI 10.1109/COMST.2022.3205377 Gatouillat A, 2018, LECT NOTES COMPUT SC, V10797, P93, DOI 10.1007/978-3-319-91764-1_8 Ghobaei-Arani M, 2022, EXPERT SYST APPL, V200, DOI 10.1016/j.eswa.2022.117012 Ghobaei-Arani M, 2018, FUTURE GENER COMP SY, V78, P191, DOI 10.1016/j.future.2017.02.022 Gill SS, 2022, INTERNET THINGS-NETH, V19, DOI 10.1016/j.iot.2022.100514 Huebscher MC, 2008, ACM COMPUT SURV, V40, DOI 10.1145/1380584.1380585 Jaleel A, 2022, ICT EXPRESS, V8, P507, DOI 10.1016/j.icte.2021.10.010 Jazayeri F, 2021, J AMB INTEL HUM COMP, V12, P8265, DOI 10.1007/s12652-020-02561-3 Kang B, 2017, IEEE T MULTI-SCALE C, V3, P206, DOI 10.1109/TMSCS.2017.2705683 Kayal P, 2019, I S WORLD WIREL MOBI, DOI 10.1109/wowmom.2019.8792989 Kephart JO, 2003, COMPUTER, V36, P41, DOI 10.1109/MC.2003.1160055 Keshavarzi A, 2019, IEEE DES TEST, V36, P41, DOI 10.1109/MDAT.2019.2899075 Koehler J., 2003, RZ3487 IBM RES ZUR R Lalanda P, 2013, AUTONOMIC COMPUTING Lee E, 2018, INFORM SOFTWARE TECH, V93, P200, DOI 10.1016/j.infsof.2017.09.008 Lei L, 2020, IEEE COMMUN SURV TUT, V22, P1722, DOI 10.1109/COMST.2020.2988367 Lu YL, 2020, IEEE T IND INFORM, V16, P4177, DOI 10.1109/TII.2019.2942190 Lucas-Estañ MC, 2019, IEEE T IND INFORM, V15, P5052, DOI 10.1109/TII.2019.2898173 Ma HD, 2011, J COMPUT SCI TECH-CH, V26, P919, DOI 10.1007/s11390-011-1189-5 Maati B., 2020, J AMBIENT INTELL HUM, P1 Mahmud R., 2018, INTERNET EVERYTHING, P103, DOI DOI 10.1007/978-981-10-5861-5_5 Marchal S, 2019, IEEE J SEL AREA COMM, V37, P1402, DOI 10.1109/JSAC.2019.2904364 Miorandi D, 2012, AD HOC NETW, V10, P1497, DOI 10.1016/j.adhoc.2012.02.016 Mitola J, 2009, P IEEE, V97, P626, DOI 10.1109/JPROC.2009.2013012 Zarca AM, 2019, IEEE INTERNET THINGS, V6, P8005, DOI 10.1109/JIOT.2019.2904123 Mukhandi M., 2022, P IEEE 19 ANN CONSUM, P433 Ngu AH, 2017, IEEE INTERNET THINGS, V4, P1, DOI 10.1109/JIOT.2016.2615180 Ochoa-Aday L, 2018, SYMMETRY-BASEL, V10, DOI 10.3390/sym10050163 Ou QH, 2012, 2012 THIRD FTRA INTERNATIONAL CONFERENCE ON MOBILE, UBIQUITOUS, AND INTELLIGENT COMPUTING (MUSIC), P96, DOI 10.1109/MUSIC.2012.24 Ouedraogo CA, 2018, 2018 4TH IEEE CONFERENCE ON NETWORK SOFTWARIZATION AND WORKSHOPS (NETSOFT), P323, DOI 10.1109/NETSOFT.2018.8459955 Palattella MR, 2013, IEEE COMMUN SURV TUT, V15, P1389, DOI 10.1109/SURV.2012.111412.00158 Poor R., 2003, ACM Queue, V1, P52, DOI 10.1145/846057.864027 Qiu XY, 2019, IEEE T VEH TECHNOL, V68, P8050, DOI 10.1109/TVT.2019.2924015 Ramakrishnan Berbers Arun Kishore., 2013, 10th International Conference on Autonomic Computing ({ICAC} 13), P213 Ray PP, 2018, J KING SAUD UNIV-COM, V30, P291, DOI 10.1016/j.jksuci.2016.10.003 Riker A, 2022, INT J COMMUN SYST, V35, DOI 10.1002/dac.5200 Sahni Y, 2017, IEEE ACCESS, V5, P16441, DOI 10.1109/ACCESS.2017.2739804 Sampaio HV, 2021, COMPUT ELECTR ENG, V93, DOI 10.1016/j.compeleceng.2021.107246 Sari RF, 2021, INFORMATION, V12, DOI 10.3390/info12080292 Sarma S., 2017, IND INTELLIGENCE AIS Savaglio C., 2019, 2019 28th International Conference on Computer Communication and Networks (ICCCN), P1 Savaglio C, 2015, LECT NOTES COMPUT SC, V9258, P39, DOI 10.1007/978-3-319-23237-9_5 Semasinghe P, 2017, IEEE COMMUN MAG, V55, P121, DOI 10.1109/MCOM.2017.1600568CM Sezer OB, 2018, IEEE INTERNET THINGS, V5, P1, DOI 10.1109/JIOT.2017.2773600 Sfar AR, 2018, DIGIT COMMUN NETW, V4, P118, DOI 10.1016/j.dcan.2017.04.003 Sheng ZG, 2013, IEEE WIREL COMMUN, V20, P91, DOI 10.1109/MWC.2013.6704479 Shi WS, 2016, IEEE INTERNET THINGS, V3, P637, DOI 10.1109/JIOT.2016.2579198 Shi WB, 2015, PEER PEER NETW APPL, V8, P881, DOI 10.1007/s12083-014-0249-3 Sittón-Candanedo I, 2020, ELECTRONICS-SWITZ, V9, DOI 10.3390/electronics9010048 Slabicki M, 2018, IEEE IFIP NETW OPER Sood K, 2016, IEEE INTERNET THINGS, V3, P453, DOI 10.1109/JIOT.2015.2480421 Steiner J., 2014, 3672437 US DEP EN LU Sterritt Roy, 2010, Proceedings of the 2010 7th IEEE International Conference and Workshops on Engineering of Autonomic and Autonomous Systems (EASe 2010), P119, DOI 10.1109/EASe.2010.29 Tadakamalla U, 2022, IEEE T CLOUD COMPUT, V10, P2334, DOI 10.1109/TCC.2021.3064629 Tahir M., P IEEE INT C DEP AUT Nguyen TD, 2019, INT CON DISTR COMP S, P756, DOI 10.1109/ICDCS.2019.00080 Truszkowski WF, 2006, IEEE T SYST MAN CY C, V36, P279, DOI 10.1109/TSMCC.2006.871600 Turber Stefanie, 2014, Advancing the Impact of Design Science: Moving from Theory to Practice. 9th International Conference, DESRIST 2014. Proceedings: LNCS 8463, P17, DOI 10.1007/978-3-319-06701-8_2 Tynan R, 2007, IEEE INT C NETW SENS, P7, DOI 10.1109/ICNSC.2007.372924 Vassev E., 2013, SELF ORG EMBEDDED RE, P151 Veena P., 2015, IBM Inst. Business Value, V17 Vermesan O., 2017, COGNITIVE HYPERCONNE, P79 Wang JD, 2021, IEEE T EMERG TOP COM, V9, P1529, DOI 10.1109/TETC.2019.2902661 Xiaoyang Zhu, 2017, 2017 International Conference on Cloud and Autonomic Computing (ICCAC), P69, DOI 10.1109/ICCAC.2017.14 Xu LD, 2014, IEEE T IND INFORM, V10, P2233, DOI 10.1109/TII.2014.2300753 Xue M, 2022, IEEE T SERV COMPUT, V15, P640, DOI 10.1109/TSC.2021.3116597 Zarca AM, 2020, IEEE J SEL AREA COMM, V38, P1262, DOI 10.1109/JSAC.2020.2986621 Zhao Y, 2021, IEEE INTERNET THINGS, V8, P1817, DOI 10.1109/JIOT.2020.3017377 Zheng JC, 2015, IEEE COMMUN MAG, V53, P150, DOI 10.1109/MCOM.2015.7321985 Zhu J, 2018, IEEE INTERNET THINGS, V5, P2375, DOI 10.1109/JIOT.2017.2759728 NR 106 TC 3 Z9 3 U1 3 U2 5 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 2327-4662 J9 IEEE INTERNET THINGS JI IEEE Internet Things J. PD AUG 15 PY 2023 VL 10 IS 16 BP 14725 EP 14748 DI 10.1109/JIOT.2023.3285359 PG 24 WC Computer Science, Information Systems; Engineering, Electrical & Electronic; Telecommunications WE Science Citation Index Expanded (SCI-EXPANDED) SC Computer Science; Engineering; Telecommunications GA O7WQ3 UT WOS:001045875700042 OA hybrid DA 2024-09-05 ER PT J AU Borah, A Skiera, B AF Borah, Abhishek Skiera, Bernd TI Marketing and investor behavior: Insights, introspections, and indications SO INTERNATIONAL JOURNAL OF RESEARCH IN MARKETING LA English DT Article DE Marketing-finance; Firm value; Historical analysis; Citation analysis; Topic modelling; Latent dirichlet allocation AB This article introduces three exemplary articles that speak to novel, current, and important issues in marketing and investor behavior. One proposes a novel measure of quality using warranties, another examines the context of common ownership, and another provides a sweeping review of the marketing-finance interface. In addition to introducing these articles in the special section, we examine the major topics and their impact in a quartercentury of research on the marketing-finance interface encompassing 373 articles. We identify ten major topics from which the topic stock performance had the highest coverage (19%). The remaining nine topics are covered roughly equally. The topic with the highest average number of citations is marketing spending followed by new products & innovations. We also identify an increasing number of articles over the last quarter-century that underlines the importance of the research on the marketing-finance interface. Finally, we put forward opportunities for the future of marketing-finance interface fusing novel data sources with decisive firm value outcomes. (C) 2021 Elsevier B.V. All rights reserved. C1 [Borah, Abhishek] INSEAD, Mkt Area, Europe Campus Blvd Constance, F-77305 Fontainebleau, France. [Skiera, Bernd] Goethe Univ Frankfurt Main, Fac Econ & Business, Dept Mkt, Theodor W Adorno Pl 4, D-60629 Frankfurt, Germany. C3 INSEAD Business School; Goethe University Frankfurt RP Borah, A (corresponding author), INSEAD, Mkt Area, Europe Campus Blvd Constance, F-77305 Fontainebleau, France. EM abhishek.borah@insead.edu; skiera@wiwi.uni-frankfurt.de RI Skiera, Bernd/B-6978-2013 CR Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993 Borah A., 2018, SSRN Electronic Journal, P146, DOI [10.2139/ssrn.3129115, DOI 10.2139/SSRN.3129115] Edeling A, 2021, INT J RES MARK, V38 Healey J, 2021, INT J RES MARK, V38 Kireyev P, 2020, INFINITE RARE VALUAT Kurt D, 2021, INT J RES MARK, V38 Liaukonyte J, 2021, MANAGEMENT SCI, DOI [10.1287/mnsc.2021.4003, DOI 10.1287/MNSC.2021.4003] Mai F, 2018, J MANAGE INFORM SYST, V35, P19, DOI 10.1080/07421222.2018.1440774 Srinivasan S, 2009, J MARKETING RES, V46, P293, DOI 10.1509/jmkr.46.3.293 Wedel M, 2016, J MARKETING, V80, P97, DOI 10.1509/jm.15.0413 NR 10 TC 4 Z9 5 U1 6 U2 17 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS SN 0167-8116 EI 1873-8001 J9 INT J RES MARK JI Int. J. Res. Mark. PD DEC PY 2021 VL 38 IS 4 BP 811 EP 816 DI 10.1016/j.ijresmar.2021.09.011 EA DEC 2021 PG 6 WC Business WE Social Science Citation Index (SSCI) SC Business & Economics GA YY9HM UT WOS:000755095900003 OA hybrid DA 2024-09-05 ER PT J AU Yun, GW Lee, KM Choi, HH AF Yun, Gawon Lee, Kewman M. Choi, Hailey Hyunjin TI Empowering Student Learning Through Artificial Intelligence: A Bibliometric Analysis SO JOURNAL OF EDUCATIONAL COMPUTING RESEARCH LA English DT Article; Early Access DE artificial intelligence; student learning; education; bibliometric analysis ID EDUCATION; CHATGPT; MODELS AB Scholarly interest in artificial intelligence (AI) has surged as researchers delve into its transformative impact on various aspects of our lives. AI poses both benefits and challenges, particularly in the context of educators' endeavors to comprehend the intricacies of students' learning processes. Although the use of AI to enhance and assist student learning is relatively new, the exponential growth of scholarly attention and publications in AI and student learning in recent years underscores the compelling necessity for further inquiry. Investigating this area is crucial for understanding the emerging trends in this research domain. This study aims to provide insights into the burgeoning research trajectories on AI from a student learning perspective. Using a bibliometric approach, this study examined 663 scholarly articles pertaining to the interface between AI and student learning published between 1961 and 2024. Our findings reveal four major thematic areas including AI in education and educational technology, AI-driven learning environments, essential AI enablers, and human learning and highlight promising avenues at this intersection. C1 [Yun, Gawon] Missouri State Univ, Coll Business, Springfield, MO USA. [Lee, Kewman M.; Choi, Hailey Hyunjin] Missouri State Univ, Coll Educ, 901 S Natl Ave Hill Hall 307, Springfield, MO 65897 USA. C3 Missouri State University; Missouri State University RP Choi, HH (corresponding author), Missouri State Univ, Coll Educ, 901 S Natl Ave Hill Hall 307, Springfield, MO 65897 USA. EM hchoi@missouristate.edu CR Afzaal M, 2024, TECHNOL KNOWL LEARN, V29, P331, DOI 10.1007/s10758-023-09650-0 Aguillo IF, 2012, SCIENTOMETRICS, V91, P343, DOI 10.1007/s11192-011-0582-8 Albdrani RN, 2023, INT J ADV COMPUT SC, V14, P1208 AlRyalat SAS, 2019, JOVE-J VIS EXP, DOI 10.3791/58494 Andriessen J., 1999, International Journal of Artificial Intelligence in Education, V10, P130 Nguyen A, 2023, EDUC INF TECHNOL, V28, P4221, DOI 10.1007/s10639-022-11316-w Anhong Guo, 2020, ACM SIGACCESS Accessibility and Computing, DOI 10.1145/3386296.3386298 Aria M, 2017, J INFORMETR, V11, P959, DOI 10.1016/j.joi.2017.08.007 Ausin MS, 2023, INT J ARTIF INTELL E, V33, P1031, DOI 10.1007/s40593-022-00312-3 Bearman M, 2023, HIGH EDUC, V86, P369, DOI 10.1007/s10734-022-00937-2 Bielsa S., 2016, PLEURA, V3, p237399751664655, DOI [10.1177/2373997516646555, DOI 10.1177/2373997516646555] Bornmann L, 2018, SCIENTOMETRICS, V114, P427, DOI 10.1007/s11192-017-2591-8 Boyack KW, 2010, J AM SOC INF SCI TEC, V61, P2389, DOI 10.1002/asi.21419 BUDD JM, 1988, RES HIGH EDUC, V28, P180, DOI 10.1007/BF00992890 Bumann EE, 2024, J DENT, V140, DOI 10.1016/j.jdent.2023.104779 Camacho D., 2008, Advances in E-Learning: Experiences and Methodologies, P149, DOI DOI 10.4018/978-1-59904-756-0.CH009 Cao Q., 2022, Journal of Engineering Science Technology Review, V15, P227, DOI [10.25103/jestr.153.25, DOI 10.25103/JESTR.153.25] Chai CS, 2021, EDUC TECHNOL SOC, V24, P89 Chang CC, 2023, INTERACT LEARN ENVIR, V31, P5995, DOI 10.1080/10494820.2022.2027457 Chassignol M, 2018, PROCEDIA COMPUT SCI, V136, P16, DOI 10.1016/j.procs.2018.08.233 Chen LJ, 2020, IEEE ACCESS, V8, P75264, DOI 10.1109/ACCESS.2020.2988510 Chen S, 2023, IEEE T COMPUT SOC SY, V10, P220, DOI 10.1109/TCSS.2021.3132957 Chen XM, 2023, SYSTEMS-BASEL, V11, DOI 10.3390/systems11110548 Chen Z, 2023, FRONT PSYCHOL, V13, DOI 10.3389/fpsyg.2022.910677 Cheng KH, 2022, ETR&D-EDUC TECH RES, V70, P169, DOI 10.1007/s11423-021-10070-z Chiu T. K. F., 2023, Computers and Education: Artificial Intelligence, V4, P100118, DOI DOI 10.1016/J.CAEAI.2022.100118 Chiu TKF, 2023, INTERACT LEARN ENVIR, DOI 10.1080/10494820.2023.2253861 Chu HB, 2024, J MANUF SYST, V73, P287, DOI 10.1016/j.jmsy.2024.02.008 Crompton H, 2023, INT J EDUC TECHNOL H, V20, DOI 10.1186/s41239-023-00392-8 Cuevas-Nunez M, 2023, J DENT EDUC, V87, P1735, DOI 10.1002/jdd.13375 Cui X, 2024, SOFT COMPUT, V28, P3533, DOI 10.1007/s00500-023-09618-3 Della Corte V, 2019, SUSTAINABILITY-BASEL, V11, DOI 10.3390/su11216114 Dervis H, 2019, J SCIENTOMETR RES, V8, P156, DOI 10.5530/jscires.8.3.32 Ding Y., 2023, Computer-Aided Design and Applications, V20, P113, DOI [10.14733/cadaps.2023.S10.113-123, DOI 10.14733/CADAPS.2023.S10.113-123] Donthu N, 2021, J BUS RES, V133, P285, DOI 10.1016/j.jbusres.2021.04.070 Fahimnia B, 2015, INT J PROD ECON, V162, P101, DOI 10.1016/j.ijpe.2015.01.003 Fan XY, 2022, COMPUT ELECTR ENG, V100, DOI 10.1016/j.compeleceng.2022.107957 Farooq R, 2023, VINE J INF KNOWL MAN, V53, P1178, DOI 10.1108/VJIKMS-06-2021-0089 Fleuret F, 2011, P NATL ACAD SCI USA, V108, P17621, DOI 10.1073/pnas.1109168108 GENNARI JH, 1989, ARTIF INTELL, V40, P11, DOI 10.1016/0004-3702(89)90046-5 Gibson BR, 2013, TOP COGN SCI, V5, P132, DOI 10.1111/tops.12010 Grewal P., 2014, IOSR J. Comput. Eng., V16, P9, DOI DOI 10.9790/0661-16210913 Gupta S, 2024, MULTIMED TOOLS APPL, DOI 10.1007/s11042-023-18021-x Hebebci MT, 2021, INT J TECHNOL EDUC, V4, P796, DOI 10.46328/ijte.199 Hmoud M, 2024, INFORMATION, V15, DOI 10.3390/info15010033 Holmes W, 2022, EUR J EDUC, V57, P542, DOI 10.1111/ejed.12533 Hopcan S, 2023, INTERACT LEARN ENVIR, V31, P7335, DOI 10.1080/10494820.2022.2067186 Huang AYQ, 2023, COMPUT EDUC, V194, DOI 10.1016/j.compedu.2022.104684 Huang C, 2020, EDUC REV, V72, P281, DOI 10.1080/00131911.2019.1566212 Jamil F, 2023, EXPERT SYST APPL, V231, DOI 10.1016/j.eswa.2023.120640 Jia K, 2022, FRONT PSYCHOL, V13, DOI 10.3389/fpsyg.2022.795039 Jiao PC, 2022, ARTIF INTELL REV, V55, P6321, DOI 10.1007/s10462-022-10155-y Joy J, 2019, J ENABLING TECHNOL, V13, P173, DOI 10.1108/JET-03-2019-0014 Kelly S, 2023, TELEMAT INFORM, V77, DOI 10.1016/j.tele.2022.101925 Kim K., 2024, Education and Information Technologies, V23, P1, DOI [10.1080/17483107.2024.2393701, DOI 10.1080/17483107.2024.2393701] Kim M, 2024, TECHTRENDS, V68, P37, DOI 10.1007/s11528-023-00899-x Koon VY, 2023, INTERACT LEARN ENVIR, V31, P7122, DOI 10.1080/10494820.2022.2061010 Lee CS, 2020, INT J UNCERTAIN FUZZ, V28, P1023, DOI 10.1142/S0218488520500440 Lee MJ, 2024, J COMPUT CIVIL ENG, V38, DOI 10.1061/JCCEE5.CPENG-5632 Li KC, 2023, INTERACT TECHNOL SMA, DOI 10.1108/ITSE-01-2023-0007 Li X, 2022, INT J ENV RES PUB HE, V19, DOI 10.3390/ijerph19148733 Liao XF, 2024, BRIT J EDUC TECHNOL, V55, DOI 10.1111/bjet.13424 Lin KC, 2023, IEEE T LEARN TECHNOL, V16, P780, DOI 10.1109/TLT.2023.3292215 Malacina I, 2022, INT J PROD ECON, V251, DOI 10.1016/j.ijpe.2022.108540 Maulidiya D, 2024, HELIYON, V10, DOI 10.1016/j.heliyon.2024.e26191 Mishra D, 2018, ANN OPER RES, V270, P313, DOI 10.1007/s10479-016-2236-y Mohammad AS, 2023, MATHEMATICS-BASEL, V11, DOI 10.3390/math11143153 Mouta A, 2024, EDUC INF TECHNOL, V29, P10473, DOI 10.1007/s10639-023-12229-y Muoz S. A. S., 2023, Przestrzen Spoleczna, V23, P1 Murtaza M, 2022, IEEE ACCESS, V10, P81323, DOI 10.1109/ACCESS.2022.3193938 Nguyen T. T. K., 2023, International Journal of Evaluation and Research in Education, V12, P2387, DOI [10.11591/ijere.v12i4.26623, DOI 10.11591/IJERE.V12I4.26623] Ni Qin, 2024, IEEE Transactions on Artificial Intelligence, V5, P2422, DOI 10.1109/TAI.2023.3320118 Niemi H, 2021, J PAC RIM PSYCHOL, V15, DOI 10.1177/18344909211038105 Orrù G, 2023, FRONT ARTIF INTELL, V6, DOI 10.3389/frai.2023.1199350 Phillips TM, 2023, INT J ARTIF INTELL E, V33, P635, DOI 10.1007/s40593-022-00295-1 Popenici Stefan A D, 2017, Res Pract Technol Enhanc Learn, V12, P22, DOI 10.1186/s41039-017-0062-8 Press G., 2022, What happened to AI in 2022? Rivas-Posada E, 2024, NEURAL COMPUT APPL, DOI 10.1007/s00521-024-09549-6 Savitha R, 2012, NEURAL NETWORKS, V32, P209, DOI 10.1016/j.neunet.2012.02.015 Seo K, 2021, INT J EDUC TECHNOL H, V18, DOI 10.1186/s41239-021-00292-9 Shen C., 2023, Computer-Aided Design and Applications, V20, P106, DOI [10.14733/cadaps.2023.S5.106-115, DOI 10.14733/CADAPS.2023.S5.106-115] Shi LZ, 2023, COGENT EDUC, V10, DOI 10.1080/2331186X.2023.2282804 Shi SJ, 2024, ASIA PAC J EDUC, V44, P112, DOI 10.1080/02188791.2024.2305161 Siemens G., 2022, Computers and Education: Artificial Intelligence, V3, P100107, DOI DOI 10.1016/J.CAEAI.2022.100107 SIMMONS AB, 1988, IEEE J OCEANIC ENG, V13, P14, DOI 10.1109/48.551 Song P, 2020, ASIA PAC EDUC REV, V21, P473, DOI 10.1007/s12564-020-09640-2 Talan T., 2021, International Journal of Research in Education and Science, V7, P822, DOI [DOI 10.46328/IJRES.2409, 10.46328/ijres.2409] Tang KY, 2023, INTERACT LEARN ENVIR, V31, P2134, DOI 10.1080/10494820.2021.1875001 Tossell CC, 2024, IEEE T LEARN TECHNOL, V17, P1069, DOI 10.1109/TLT.2024.3355015 Waltman L, 2010, J INFORMETR, V4, P629, DOI 10.1016/j.joi.2010.07.002 Wang F, 2023, EVOL INTELL, V16, P1461, DOI 10.1007/s12065-022-00733-y Wang YK, 2023, J COMPUT METHODS SCI, V23, P663, DOI 10.3233/JCM-226630 Wangoo D. P., 2021, Artificial Intelligence and Speech Technology, P427 Webb ME, 2021, ETR&D-EDUC TECH RES, V69, P2109, DOI 10.1007/s11423-020-09858-2 Wu R, 2024, BRIT J EDUC TECHNOL, V55, DOI 10.1111/bjet.13334 Xia ZC, 2024, IEEE T LEARN TECHNOL, V17, P32, DOI 10.1109/TLT.2023.3301011 Xie C., 2023, Computer-Aided Design and Applications, V20, P168, DOI [10.14733/cadaps.2023.S5.168-179, DOI 10.14733/CADAPS.2023.S5.168-179] Xiong Y, 2023, EDUC INF TECHNOL, DOI 10.1007/s10639-023-12058-z Yakdan S., 2023, Seminars in Spine Surgery, V35, P101048, DOI [10.1016/j.semss.2023.101048, DOI 10.1016/J.SEMSS.2023.101048] Zawacki-Richter O, 2019, INT J EDUC TECHNOL H, V16, DOI 10.1186/s41239-019-0171-0 Zhang J, 2016, J ASSOC INF SCI TECH, V67, P967, DOI 10.1002/asi.23437 Zhang Y., 2024, Applied Mathematics and Nonlinear Sciences, V9, P8, DOI [10.2478/amns.2023.2.01319, DOI 10.2478/AMNS.2023.2.01319] Zhong L, 2023, J CLOUD COMPUT-ADV S, V12, DOI 10.1186/s13677-023-00426-6 Zhou Y., 2024, Applied Mathematics and Nonlinear Sciences, V9, P28, DOI [10.2478/amns.2023.2.01486, DOI 10.2478/AMNS.2023.2.01486] Zimmerman BJ, 2002, THEOR PRACT, V41, P64, DOI 10.1207/s15430421tip4102_2 Zirar A, 2023, REV EDUC-US, V11, DOI 10.1002/rev3.3433 NR 106 TC 0 Z9 0 U1 0 U2 0 PU SAGE PUBLICATIONS INC PI THOUSAND OAKS PA 2455 TELLER RD, THOUSAND OAKS, CA 91320 USA SN 0735-6331 EI 1541-4140 J9 J EDUC COMPUT RES JI J. Educ. Comput. Res. PD 2024 AUG 28 PY 2024 DI 10.1177/07356331241278636 EA AUG 2024 PG 34 WC Education & Educational Research WE Social Science Citation Index (SSCI) SC Education & Educational Research GA E0S4D UT WOS:001300188900001 DA 2024-09-05 ER PT J AU Zhang, Y Wu, MJ Tian, GY Zhang, GQ Lu, J AF Zhang, Yi Wu, Mengjia Tian, George Yijun Zhang, Guangquan Lu, Jie TI Ethics and privacy of artificial intelligence: Understandings from bibliometrics SO KNOWLEDGE-BASED SYSTEMS LA English DT Article DE Artificial intelligence; Ethics; Privacy; Bibliometrics; Topic analysis ID TOPIC EXTRACTION; TECHNOLOGY; AI; METHODOLOGY; SCIENCE AB Artificial intelligence (AI) and its broad applications are disruptively transforming the daily lives of human beings and a discussion of the ethical and privacy issues surrounding AI is a topic of growing interest, not only among academics but also the general public This review identifies the key entities (i.e., leading research institutions and their affiliated countries/regions, core research journals, and communities) that contribute to the research on the ethical and privacy issues in relation to AI and their intersections using co-occurrence analysis. Topic analyses profile the topical landscape of AI ethics using a topical hierarchical tree and the changing interest of society in AI ethics over time through scientific evolutionary pathways. We also paired 15 selected AI techniques with 17 major ethical issues and identify emerging ethical issues from a core set of the most recent articles published in Nature, Science, and Proceedings of the National Science Academy of the United States. These insights bridging the knowledge base of AI techniques and ethical issues in the literature, are of interest to the AI community and audiences in science policy, technology management, and public administration. (C) 2021 Elsevier B.V. All rights reserved. C1 [Zhang, Yi; Wu, Mengjia; Zhang, Guangquan; Lu, Jie] Univ Technol Sydney, Australian Artificial Intelligence Inst, Fac Engn & Informat Technol, Sydney, NSW, Australia. [Tian, George Yijun] Univ Technol Sydney, Fac Law, Sydney, NSW, Australia. C3 University of Technology Sydney; University of Technology Sydney RP Zhang, Y (corresponding author), Univ Technol Sydney, Australian Artificial Intelligence Inst, Fac Engn & Informat Technol, Sydney, NSW, Australia. EM yi.zhang@uts.edu.au; mengjia.wu@student.uts.edu.au; yijun.tian@uts.edu.au; guangquan.zhang@uts.edu.au; jie.lu@uts.edu.au RI Wu, Mengjia/AFU-9852-2022; Zhang, Yi/AAT-6945-2021; Lu, Jie/S-3581-2016; Zhang, Guangquan/G-2553-2017 OI Wu, Mengjia/0000-0003-3956-7808; Zhang, Yi/0000-0002-7731-0301; Tian, George/0000-0003-4472-5428; Lu, Jie/0000-0003-0690-4732; Zhang, Guangquan/0000-0003-3960-0583 FU Australian Research Council [DE190100994]; Australian Research Council [DE190100994] Funding Source: Australian Research Council FX This work is supported by the Australian Research Council under Discovery Early Career Researcher Award DE190100994. CR [Anonymous], 2019, ETH AL DES PRIOR HUM Attfield R., 2012, ETHICS OVERVIEW Bastian M., 2009, Gephi: An open source software for exploring and manipulating networks Baumann D, 2017, J COSMOL ASTROPART P, DOI 10.1088/1475-7516/2017/11/007 Blei DM, 2012, COMMUN ACM, V55, P77, DOI 10.1145/2133806.2133826 Blei DM, 2004, ADV NEUR IN, V16, P17 Bonnefon JF, 2016, SCIENCE, V352, P1573, DOI 10.1126/science.aaf2654 Bossmann J., 2020, WORLD EC FORUM Cath C, 2018, SCI ENG ETHICS, V24, P505, DOI 10.1007/s11948-017-9901-7 Cetindamar D, 2020, THUNDERBIRD INT BUS, V62, P457, DOI 10.1002/tie.22158 Collins FS, 2015, NEW ENGL J MED, V372, P793, DOI 10.1056/NEJMp1500523 Drew L, 2019, NATURE, V571, pS19, DOI 10.1038/d41586-019-02214-2 Floridi Luciano, 2018, Philosophy & Technology, V31, P317, DOI [DOI 10.1007/S13347-018-0325-3, 10.1007/s13347-018-0325-3] Grace K, 2018, J ARTIF INTELL RES, V62, P729, DOI 10.1613/jair.1.11222 Guo JF, 2016, TECHNOL FORECAST SOC, V105, P27, DOI 10.1016/j.techfore.2016.01.028 Hagendorff T, 2020, MIND MACH, V30, P99, DOI 10.1007/s11023-020-09517-8 Harper R., 2006, Inside the smart home Hossain MS, 2020, IEEE NETWORK, V34, P126, DOI 10.1109/MNET.011.2000458 Huang L, 2019, PATHOBIOLOGY, V86, P111, DOI 10.1159/000493013 Huq AZ, 2020, VA LAW REV, V106, P611 Jobin A, 2019, NAT MACH INTELL, V1, P389, DOI 10.1038/s42256-019-0088-2 Kalluri P, 2020, NATURE, V583, P169, DOI 10.1038/d41586-020-02003-2 Kerry C. F., 2020, Protecting privacy in an AI-driven world King TC, 2020, SCI ENG ETHICS, V26, P89, DOI 10.1007/s11948-018-00081-0 Krzywinski M, 2009, GENOME RES, V19, P1639, DOI 10.1101/gr.092759.109 Mikolov T., 2013, ADV NEURAL INFORM PR, P3111, DOI DOI 10.48550/ARXIV.1310.4546 Mittelstadt, 2019, ARXIV190606668 Muller V. C., 2020, STANFORD ENCY PHILOS Newman MEJ, 2006, P NATL ACAD SCI USA, V103, P8577, DOI 10.1073/pnas.0601602103 Price D. J. d. S., 1963, Little Science, Big Science Price WN, 2019, JAMA-J AM MED ASSOC, V322, P1765, DOI 10.1001/jama.2019.15064 PRITCHARD A, 1969, J DOC, V25, P348 Tian G. Y, 2016, WISCONSIN INT LAW J, V34, P367 Velden T, 2017, SCIENTOMETRICS, V111, P1169, DOI 10.1007/s11192-017-2306-1 Wallach W., 2008, Moral Machines: Teaching Robots Right fromWrong Walter A, 2017, P NATL ACAD SCI USA, V114, P6148, DOI 10.1073/pnas.1707462114 Waltman L, 2010, J INFORMETR, V4, P629, DOI 10.1016/j.joi.2010.07.002 Webber BL, 2015, P NATL ACAD SCI USA, V112, P10565, DOI 10.1073/pnas.1514258112 Wu M., 2021, P 18 INT C SCI INF Wu M., 2020, TECHNOL FORECAST SOC Yan EJ, 2014, J INFORMETR, V8, P295, DOI 10.1016/j.joi.2014.01.008 Yi Zhang, 2018, Proceedings of the Association for Information Science and Technology, V55, DOI 10.1002/pra2.2018.14505501065 Zhang Y., 2020, QUANTITATIVE SCI STU Zhang Y., 2020, TOPIC EVOLUTION DISR, DOI [10.2139/ssrn.3675020, DOI 10.2139/SSRN.3675020] Zhang Y, 2021, IEEE T ENG MANAGE, V68, P1259, DOI 10.1109/TEM.2020.2974761 Zhang Y, 2018, J INFORMETR, V12, P1099, DOI 10.1016/j.joi.2018.09.004 Zhang Y, 2017, KNOWL-BASED SYST, V133, P255, DOI 10.1016/j.knosys.2017.07.011 Zhang Y, 2017, J ASSOC INF SCI TECH, V68, P1925, DOI 10.1002/asi.23814 Zhang Y, 2016, TECHNOL FORECAST SOC, V105, P179, DOI 10.1016/j.techfore.2016.01.015 Zhang Y, 2014, SCIENTOMETRICS, V101, P1375, DOI 10.1007/s11192-014-1262-2 Zhang Y, 2014, TECHNOL FORECAST SOC, V85, P26, DOI 10.1016/j.techfore.2013.12.019 Zhang Y, 2013, TECHNOL ANAL STRATEG, V25, P707, DOI 10.1080/09537325.2013.803064 NR 52 TC 29 Z9 29 U1 30 U2 209 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS SN 0950-7051 EI 1872-7409 J9 KNOWL-BASED SYST JI Knowledge-Based Syst. PD JUN 21 PY 2021 VL 222 AR 106994 DI 10.1016/j.knosys.2021.106994 EA APR 2021 PG 14 WC Computer Science, Artificial Intelligence WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Computer Science GA RS5ZQ UT WOS:000643857400001 OA Green Submitted DA 2024-09-05 ER PT J AU Shueb, S Gul, S Hussain, A AF Shueb, Sheikh Gul, Sumeer Hussain, Aabid TI Are Pay-Walled Doors of Access Open During the Pandemic? Analysing the Open-Access Landscape of COVID-19 Research SO JOURNAL OF SCHOLARLY PUBLISHING LA English DT Article DE altmetrics; bibliometrics; big data analytics; indexing databases; information retrieval; open access; predatory publishers; scholarly communication; scientometrics; sentiment analysis; social media AB Open access (OA) to research results is indispensable for knowing more about COVID-19 and ways to contain it. The study investigates the OA status of the research output on COVID-19 using the Web of Science. The results show that about 85 per cent of the publications are available as OA, which shows a decline over time. Almost an equal proportion of articles are funded and non-funded, with the Department of Health and Human Services and the National Institutes of Health, both in the United States, as the leading sponsors. Although the United States and China were the top contributors, Sweden and the Netherlands share the highest percentage of OA articles. Among publishers, Elsevier, Springer Nature, the Multidisciplinary Publishing Institute, and Wiley were the leading OA publishers, and universities mainly dominated OA research on COVID-19. This study will be helpful for researchers and policymakers to identify the leading contributors to OA research during public health emergencies of international concern. C1 [Shueb, Sheikh] Islamic Univ Sci & Technol, Rumi Lib, Awantipora, Jammu & Kashmir, India. [Gul, Sumeer] Univ Kashmir, Dept Lib & Informat Sci, Jammu, Jammu & Kashmir, India. [Hussain, Aabid] Film Div, Directorate Informat & Publ Relat, Jammu, Jammu & Kashmir, India. C3 University of Kashmir RP Shueb, S (corresponding author), Islamic Univ Sci & Technol, Rumi Lib, Awantipora, Jammu & Kashmir, India. EM shkhshb@gmail.com RI Gul, Sumeer/H-8253-2012; Shueb, Sheikh/AAT-9257-2021 OI Shueb, Sheikh/0000-0002-4323-4363; Gul, Sumeer/0000-0002-0258-1182 CR [Anonymous], 2022, Open Access Information for Journal Authors [Anonymous], 2013, Recommendations for the conduct, reporting, editing, and publication of scholarly work in medical journals [Anonymous], 2022, Coronavirus: COVID-19 Variants Detected in Peru Apuzzo M, 2020, New York Times, P14 Arrizabalaga Olatz, 2020, F1000Research, P9, DOI [10.12688/fl1000research.24136.2, DOI 10.12688/FL1000RESEARCH.24136.2] Belli S, 2020, SCIENTOMETRICS, V124, P2661, DOI 10.1007/s11192-020-03590-7 Bose Priyom, 2022, News Medical Life Sciences7 July Capocasa M, 2022, INFORM RES, V27, DOI 10.47989/irpaper929 Cheng X, 2022, J INF SCI, V48, P304, DOI 10.1177/0165551520954674 Clarivate, 2023, Open Access European Council, 2020, JOINT STAT MEMB EUR Fan JC, 2020, FRONT PUBLIC HEALTH, V8, DOI 10.3389/fpubh.2020.00477 Feng X, 2021, LIBR HI TECH, V39, P722, DOI 10.1108/LHT-06-2020-0141 Greaves S., 2020, Publisher Collaboration to Keep COVID Research Moving JSTOR, 2022, Free Access to Selected COVID-19-Related Articles Lee JJ, 2021, HIGH EDUC, V81, P949, DOI 10.1007/s10734-020-00589-0 Malekpour MR, 2021, PLOS ONE, V16, DOI 10.1371/journal.pone.0258064 Nane GF, 2023, SCIENTOMETRICS, V128, P345, DOI 10.1007/s11192-022-04536-x National Institutes of Health Office of Data Strategy, 2020, Open-Access Data and Computational Resources to Address COVID-19 Osborne R, 2015, ONLINE INFORM REV, V39, P637, DOI 10.1108/OIR-03-2015-0083 Raman R, 2021, SUSTAINABILITY-BASEL, V13, DOI 10.3390/su13147555 Shueb S, 2022, LIBR HI TECH, V40, P421, DOI 10.1108/LHT-04-2021-0136 Teixeira da Silva JA, 2021, SCIENTOMETRICS, V126, P831, DOI 10.1007/s11192-020-03675-3 UNESCO, Open Access to Facilitate Research and Information on COVID-19 Vincent-Lamarre P, 2016, J ASSOC INF SCI TECH, V67, P2815, DOI 10.1002/asi.23601 Xia S, 2020, SIGNAL TRANSDUCT TAR, V5, DOI 10.1038/s41392-020-0184-0 Yu YT, 2020, ANN TRANSL MED, V8, DOI 10.21037/atm-20-4235 NR 27 TC 0 Z9 0 U1 5 U2 5 PU UNIV TORONTO PRESS INC PI TORONTO PA JOURNALS DIVISION, 5201 DUFFERIN ST, DOWNSVIEW, TORONTO, ON M3H 5T8, CANADA SN 1198-9742 EI 1710-1166 J9 J SCHOLARLY PUBL JI J. Sch. Publ. PD JAN 1 PY 2024 VL 55 IS 1 BP 54 EP 83 DI 10.3138/jsp-2023-0005 PG 30 WC Humanities, Multidisciplinary; Information Science & Library Science WE Social Science Citation Index (SSCI); Arts & Humanities Citation Index (A&HCI) SC Arts & Humanities - Other Topics; Information Science & Library Science GA RC6D1 UT WOS:001225502100001 DA 2024-09-05 ER PT J AU Rivest, M Vignola-Gagné, E Archambault, É AF Rivest, Maxime Vignola-Gagne, Etienne Archambault, Eric TI Article-level classification of scientific publications: A comparison of deep learning, direct citation and bibliographic coupling SO PLOS ONE LA English DT Article AB Classification schemes for scientific activity and publications underpin a large swath of research evaluation practices at the organizational, governmental, and national levels. Several research classifications are currently in use, and they require continuous work as new classification techniques becomes available and as new research topics emerge. Convolutional neural networks, a subset of "deep learning" approaches, have recently offered novel and highly performant methods for classifying voluminous corpora of text. This article benchmarks a deep learning classification technique on more than 40 million scientific articles and on tens of thousands of scholarly journals. The comparison is performed against bibliographic coupling-, direct citation-, and manual-based classifications-the established and most widely used approaches in the field of bibliometrics, and by extension, in many science and innovation policy activities such as grant competition management. The results reveal that the performance of this first iteration of a deep learning approach is equivalent to the graph-based bibliometric approaches. All methods presented are also on par with manual classification. Somewhat surprisingly, no machine learning approaches were found to clearly outperform the simple label propagation approach that is direct citation. In conclusion, deep learning is promising because it performed just as well as the other approaches but has more flexibility to be further improved. For example, a deep neural network incorporating information from the citation network is likely to hold the key to an even better classification algorithm. C1 [Rivest, Maxime; Vignola-Gagne, Etienne; Archambault, Eric] Sci Metrix Inc, Montreal, PQ, Canada. [Rivest, Maxime; Vignola-Gagne, Etienne; Archambault, Eric] Elsevier BV, Amsterdam, Netherlands. [Archambault, Eric] 1Science, Montreal, PQ, Canada. C3 Reed Elsevier; Elsevier RP Rivest, M (corresponding author), Sci Metrix Inc, Montreal, PQ, Canada.; Rivest, M (corresponding author), Elsevier BV, Amsterdam, Netherlands. EM maxime.rivest@science-metrix.com RI Archambault, Eric JA/G-5808-2019 OI Archambault, Eric JA/0000-0002-4422-1054; Vignola-Gagne, Etienne/0000-0002-4948-4363; Rivest, Maxime/0000-0002-1196-4679 FU Elsevier BV FX The funder, Elsevier BV and its daughter company Science-Metrix Inc., 1science, provided support in the form of salaries for authors MR, EVG, EA, but did not have any additional role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript. The specific roles of these authors are articulated in the `author contributions' section. CR Archambault É, 2011, PRO INT CONF SCI INF, P66 BAKER DB, 1980, J CHEM INF COMP SCI, V20, P193, DOI 10.1021/ci60024a001 Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993 Börner K, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0039464 Boyack KW, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0018029 Boyack KW, 2010, J AM SOC INF SCI TEC, V61, P2389, DOI 10.1002/asi.21419 Dworkin JD, 2019, PLOS ONE, V14, DOI 10.1371/journal.pone.0216146 Elsevier, SCOPUS DOCUMENT SEAR Elsevier, 1FINDR Gläser J, 2017, SCIENTOMETRICS, V111, P981, DOI 10.1007/s11192-017-2296-z Glänzel W, 2017, SCIENTOMETRICS, V111, P1071, DOI 10.1007/s11192-017-2301-6 Ioannidis JPA, 2019, PLOS BIOL, V17, DOI 10.1371/journal.pbio.3000384 Klavans R, 2017, J ASSOC INF SCI TECH, V68, P984, DOI 10.1002/asi.23734 Larivière V, 2009, J AM SOC INF SCI TEC, V60, P858, DOI 10.1002/asi.21011 Nentidis A, 2020, OVERVIEW BIOASQ 8A 8 Pfeiffer R., 1968, HIST CLASSICAL SCHOL Schneider JW, 2015, SCIENTOMETRICS, V102, P411, DOI 10.1007/s11192-014-1251-5 Shu F, 2019, J INFORMETR, V13, P202, DOI 10.1016/j.joi.2018.12.005 Sjögårde P, 2020, QUANT SCI STUD, V1, P207, DOI 10.1162/qss_a_00004 Sjögårde P, 2018, J INFORMETR, V12, P133, DOI 10.1016/j.joi.2017.12.006 Slater WJ., 1989, PHOENIX, V43, P111 Subelj L, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0154404 Tsatsaronis G, 2015, BMC BIOINFORMATICS, V16, DOI 10.1186/s12859-015-0564-6 Velden T, 2017, SCIENTOMETRICS, V111, P1169, DOI 10.1007/s11192-017-2306-1 Waltman L., 2018, SPRINGER HDB SCI TEC, P281 Waltman L, 2015, J INFORMETR, V9, P872, DOI 10.1016/j.joi.2015.08.001 Waltman L, 2012, J AM SOC INF SCI TEC, V63, P2378, DOI 10.1002/asi.22748 Yu DJ, 2017, PLOS ONE, V12, DOI 10.1371/journal.pone.0187164 Zhang X, 2015, ADV NEUR IN, V28 NR 29 TC 18 Z9 20 U1 0 U2 22 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA SN 1932-6203 J9 PLOS ONE JI PLoS One PD MAY 11 PY 2021 VL 16 IS 5 AR e0251493 DI 10.1371/journal.pone.0251493 PG 18 WC Multidisciplinary Sciences WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Science & Technology - Other Topics GA SW6LY UT WOS:000664626600046 PM 33974653 OA gold, Green Published DA 2024-09-05 ER PT J AU Wang, N Guo, JL Zhang, J Fan, Y AF Wang, Ning Guo, Jinling Zhang, Jian Fan, Yu TI Comparing eco-civilization theory and practice: Big-data evidence from China SO JOURNAL OF CLEANER PRODUCTION LA English DT Article DE Eco-civilization; Bibliometric analysis; Latent Dirichlet Allocation (LDA); Big data; Difference analysis ID ECOLOGICAL CIVILIZATION; BEAUTIFUL CHINA; YELLOW-RIVER; CITY; TRENDS AB Constructing an eco-civilization is crucial in achieving green, low-carbon development, and thus bridging the gap between theory and practice is imperative to better promote urban ecological transformation. At present, there are inconsistencies and imbalances between theoretical research and practical efforts to achieve an eco-civilization. This paper uses bibliometric analysis and Latent Dirichlet Allocation to analyze China's progress towards an eco-civilization at the theoretical and practical levels. The 'theory' is analyzed using 632 articles, while the 'practice' is analyzed using 100 eco-civilization pilot zone reports. The two are compared, with results showing: First: from 2015 onwards, the theory is moving in an interdisciplinary direction, with seven themes focusing on macro topics. Second: eco-civilization construction projects have multiple overlapping themes, and the growing connection between energy consumption, economic growth and environmental impacts driven by significant projects is the key to improving the level of regional ecological development. Third: the theory and practice are similar in that both are concerned with environmental protection, ecological education, and ecotourism. However, eco-civilization construction projects lack forward-looking and dynamic development tracking of low-carbon research. Finally: the paper proposes that dynamic evaluation and project tracking methods should be applied to monitor critical indicators to achieve a solid link between the theory and practice during eco-construction projects. This paper also proposes academia should do more research on townships and other micro level phenomena to promote climate change and energy revolution in the construction of a Chinese eco-civilization. C1 [Wang, Ning; Zhang, Jian; Fan, Yu] Beijing Informat Sci & Technol Univ, Beijing 100192, Peoples R China. [Wang, Ning; Zhang, Jian] Beijing Int Sci & Technol Cooperat Base Intelligen, Beijing 100192, Peoples R China. [Wang, Ning; Zhang, Jian] Beijing Key Lab Big Data Decis Making Green Dev, Beijing 100192, Peoples R China. [Guo, Jinling] China Univ Min & Technol Beijing, Beijing 100083, Peoples R China. C3 Beijing Information Science & Technology University; China University of Mining & Technology RP Zhang, J (corresponding author), Beijing Informat Sci & Technol Univ, Beijing 100192, Peoples R China. EM zhangjian@bistu.edu.cn OI Wang, Ning/0000-0002-6155-212X FU National Natural Science Foundationof China; [72204027] FX Acknowledgments This work was supported by the National Natural Science Foundationof China (72204027) . We would like to thank the anonymous reviewers for their valuable suggestions. The contents of this paper reflect the views of the authors and do not necessarily indicate acceptance by the sponsors. CR Black PF, 2014, REV SCI TECH OIE, V33, P465, DOI 10.20506/rst.33.2.2293 [曹静 Cao Jing], 2018, [系统工程学报, Journal of Systems Engineering], V33, P698 CCCPC (Central Committee of the Communist Party of China), 2015, B STATE COUNCIL PEOP, P5 Chai JX, 2020, SUSTAINABILITY-BASEL, V12, DOI 10.3390/su12218845 Chang IS, 2019, SUSTAINABILITY-BASEL, V11, DOI 10.3390/su11174661 Chen CM, 2006, J AM SOC INF SCI TEC, V57, P359, DOI 10.1002/asi.20317 Chen MX, 2020, J GEOGR SCI, V30, P705, DOI 10.1007/s11442-020-1751-6 Cheng C, 2019, SCI TOTAL ENVIRON, V685, P1255, DOI 10.1016/j.scitotenv.2019.03.200 Cobo MJ, 2011, J AM SOC INF SCI TEC, V62, P1382, DOI 10.1002/asi.21525 de Jong M, 2016, J CLEAN PROD, V134, P31, DOI 10.1016/j.jclepro.2016.03.083 de Jong M, 2015, J CLEAN PROD, V109, P25, DOI 10.1016/j.jclepro.2015.02.004 de Jong M, 2013, J CLEAN PROD, V57, P209, DOI 10.1016/j.jclepro.2013.06.036 DeBoom MJ, 2020, ANN AM ASSOC GEOGR, V111, P900, DOI 10.1080/24694452.2020.1843995 Dobbs C, 2019, URBAN ECOSYST, V22, P173, DOI 10.1007/s11252-018-0805-3 Dong F, 2020, INT J ENV RES PUB HE, V17, DOI 10.3390/ijerph17155334 Donthu N, 2020, J BUS RES, V109, P1, DOI 10.1016/j.jbusres.2019.10.039 Feng JM, 2006, ENVIRON MONIT ASSESS, V122, P125, DOI 10.1007/s10661-005-9169-2 Griffiths S, 2020, ENERGY RES SOC SCI, V62, DOI 10.1016/j.erss.2019.101368 Hansen MH, 2018, GLOBAL ENVIRON CHANG, V53, P195, DOI 10.1016/j.gloenvcha.2018.09.014 Hansen MH, 2018, CHINA QUART, V234, P320, DOI 10.1017/S0305741017001394 Hassan AM, 2015, LAND USE POLICY, V48, P199, DOI 10.1016/j.landusepol.2015.04.029 He CS, 2005, WATER INT, V30, P261, DOI 10.1080/02508060508691865 Liu HB, 2019, J CLEAN PROD, V214, P195, DOI 10.1016/j.jclepro.2018.12.046 Liu T, 2019, SUSTAINABILITY-BASEL, V11, DOI 10.3390/su11185048 Lu X, 2020, ENGINEERING-PRC, V6, P1423, DOI 10.1016/j.eng.2020.03.014 Marinelli M, 2018, J CHIN POLIT SCI, V23, P365, DOI 10.1007/s11366-018-9538-7 Meng FX, 2021, SCI TOTAL ENVIRON, V755, DOI 10.1016/j.scitotenv.2020.142633 Mi LY, 2022, INT J ENV RES PUB HE, V19, DOI 10.3390/ijerph19010388 Motoh H, 2013, ACTA HISTRIAE, V21, P651 Naustdalslid J, 2014, INT J SUST DEV WORLD, V21, P303, DOI 10.1080/13504509.2014.914599 NDRC (National Development and Reform Commission, 2020, NOT NAT DEV REF COMM Noyons ECM, 1999, J AM SOC INFORM SCI, V50, P115, DOI 10.1002/(SICI)1097-4571(1999)50:2<115::AID-ASI3>3.3.CO;2-A PARK ST, 2020, PERS UBIQUIT COMPUT, V1, P1 Peng T, 2021, ENVIRON SCI POLLUT R, V28, P6941, DOI 10.1007/s11356-020-11020-7 Qu QZ, 2016, SUSTAINABILITY-BASEL, V8, DOI 10.3390/su8121267 Rao CJ, 2021, INT J FUZZY SYST, V23, P369, DOI 10.1007/s40815-020-00975-x Rapoport E, 2014, GEOGR COMPASS, V8, P137, DOI 10.1111/gec3.12113 Raza MY, 2020, SCI TOTAL ENVIRON, V730, DOI 10.1016/j.scitotenv.2020.139000 Schönfeld M, 2012, UNIVERSITAS-TAIWAN, V39, P69 Tian P, 2021, ECOL INDIC, V123, DOI 10.1016/j.ecolind.2021.107351 UN (United Nations) Department of Economic and Social Affairs Population Division, 2019, STESASERA420 van Eck NJ, 2010, SCIENTOMETRICS, V84, P523, DOI 10.1007/s11192-009-0146-3 Wang HM, 2020, RESOUR CONSERV RECY, V163, DOI 10.1016/j.resconrec.2020.105070 Wang R, 2020, J CLEAN PROD, V243, DOI 10.1016/j.jclepro.2019.118464 Weaver D, 2020, ANN TOURISM RES, V81, DOI 10.1016/j.annals.2020.102890 Zuo ZL, 2021, ECOL INDIC, V127, DOI 10.1016/j.ecolind.2021.107789 NR 46 TC 13 Z9 13 U1 9 U2 57 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0959-6526 EI 1879-1786 J9 J CLEAN PROD JI J. Clean Prod. PD DEC 20 PY 2022 VL 380 AR 134754 DI 10.1016/j.jclepro.2022.134754 EA NOV 2022 PN 1 PG 10 WC Green & Sustainable Science & Technology; Engineering, Environmental; Environmental Sciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Science & Technology - Other Topics; Engineering; Environmental Sciences & Ecology GA 6F5KC UT WOS:000884098500002 DA 2024-09-05 ER PT J AU Mertala, P López-Pernas, S Vartiainen, H Saqr, M Tedre, M AF Mertala, Pekka Lopez-Pernas, Sonsoles Vartiainen, Henriikka Saqr, Mohammed Tedre, Matti TI Digital natives in the scientific literature: A topic modeling approach SO COMPUTERS IN HUMAN BEHAVIOR LA English DT Article DE Digital natives; Bibliometrics; Structured topic modeling; Digital immigrants ID HEALTH INFORMATION-SEEKING; AUGMENTED REALITY; NET GENERATION; SOCIAL MEDIA; STUDENTS; ONLINE; IMMIGRANTS; EDUCATION; MYTH; CAPACITY AB The term "digital natives" was introduced in 2001 to describe a generation that has grown up surrounded by technology and the internet. The accompanying claims of a new way of thinking among digital natives were influential in shaping educational policy. Still, they were challenged by research that found no evidence of generation-wide cognitive changes in learners. Yet, the digital natives narrative persists in popular media and the education discourse. This study set out to investigate the reasons for the persistence of the digital native myth. It analyzed the metadata from 1886 articles related to the term between 2001 and 2022 using bibliometric methods and structural topic modeling. The results show that the concept of "digital native" is still both warmly embraced and fiercely criticized by scholars mostly from western and high income countries, and the volume of research on the topic is growing. However, the results suggest that what appears as the persistence of the idea is actually evolution and complete reinvention: The way the "digital native" concept is operationalized has shifted over time through a series of (metaphorical) mutations. The concept of digital native is one (albeit a highly successful) mutation of the generational gap discourse dating back to the early 1900s. While the initial digital native literature relied on Prensky's unvalidated claims and waned upon facing empirical challenges, subsequent versions have sought more nuanced interpretations. Notably, a burgeoning third mutation now co-opts the "digital native" terminology for diverse purposes, often completely decoupled from the foundational literature and its critiques. This study explains the concept's persistence as dynamic evolution of the digital native discourse in contemporary academic and public spheres. C1 [Mertala, Pekka] Univ Jyvaskyla, Fac Educ & Psychol, PL 35, Jyvaskyla 40014, Finland. [Lopez-Pernas, Sonsoles; Saqr, Mohammed; Tedre, Matti] Univ Eastern Finland, Sch Comp, Joensuu 80100, Finland. [Vartiainen, Henriikka] Univ Eastern Finland, Sch Appl Educ Sci & Teacher Educ, Joensuu 80100, Finland. C3 University of Jyvaskyla; University of Eastern Finland; University of Eastern Finland RP Mertala, P (corresponding author), Univ Jyvaskyla, Fac Educ & Psychol, PL 35, Jyvaskyla 40014, Finland. EM pekka.o.mertala@jyu.fi; sonsoles.lopez@uef.fi; henriikka.vartiainen@uef.fi; mohammed.saqr@uef.fi; matti.tedre@uef.fi RI Saqr, Mohammed/AAH-2520-2020; López-Pernas, Sonsoles/M-7375-2019 OI Saqr, Mohammed/0000-0001-5881-3109; López-Pernas, Sonsoles/0000-0002-9621-1392 CR Adams D, 2018, MALAYS J LEARN INSTR, V15, P227 Agárdi I, 2022, ELECTRON COMMER RES, DOI 10.1007/s10660-022-09537-9 Alkhattabi M, 2017, INT J EMERG TECHNOL, V12, P91, DOI 10.3991/ijet.v12i02.6158 Ames M.G., 2013, P 2013 C COMPUTER SU, P1487, DOI DOI 10.1145/2441776.2441945 [Anonymous], 2010, Curriculum, technology & transformation for an unknown future [Anonymous], 2011, The net generation and digital natives: Implications for higher education [Anonymous], 2001, On the Horizon, DOI [DOI 10.1108/10748120110424816, 10.1108/10748120110424843, 10.1108/10748120110424816] Aria M, 2017, J INFORMETR, V11, P959, DOI 10.1016/j.joi.2017.08.007 Baas J, 2020, QUANT SCI STUD, V1, P377, DOI 10.1162/qss_a_00019 Banaji S, 2011, DECONSTRUCTING DIGITAL NATIVES: YOUNG PEOPLE, TECHNOLOGY, AND THE NEW LITERACIES, P49 Batsell J., 2012, Electronic News, V6, P111 BENGTSON VL, 1970, YOUTH SOC, V2, P7, DOI 10.1177/0044118X7000200102 Bennett S, 2010, J COMPUT ASSIST LEAR, V26, P321, DOI 10.1111/j.1365-2729.2010.00360.x Bennett S, 2008, BRIT J EDUC TECHNOL, V39, P775, DOI 10.1111/j.1467-8535.2007.00793.x Berns A, 2016, SPRINGERPLUS, V5, DOI 10.1186/s40064-016-2971-1 Bittman M, 2011, AUST J EDUC, V55, P161, DOI 10.1177/000494411105500206 Braccini A. M., 2013, Organizational change and information systems: Working and living together in new ways, P11 Braccini A.M., 2016, LECT NOTES INFORM SY, P103 Burch VRF, 2019, TOTAL QUAL MANAG BUS, V30, P320, DOI 10.1080/14783363.2017.1303330 Chan CKY, 2023, Arxiv, DOI arXiv:2305.02878 Colasante T, 2022, AM PSYCHOL, V77, P186, DOI 10.1037/amp0000708 Comer DR, 2015, J EDUC BUS, V90, P145, DOI 10.1080/08832323.2015.1007906 Coovert SA, 2015, COMPUT HUM BEHAV, V53, P289, DOI 10.1016/j.chb.2015.07.021 Corrin L, 2010, LEARN MEDIA TECHNOL, V35, P387, DOI 10.1080/17439884.2010.531024 Cozma R., 2019, Journalism and Mass Communication Educator, V74, P306 Dastane O., 2023, FIIB BUS REV De Bruyckere Pedro P. A. K., 2015, Urban myths about learning and education Depura K, 2012, 2012 THIRD INTERNATIONAL CONFERENCE ON SERVICES IN EMERGING MARKETS (ICSEM), P153, DOI 10.1109/ICSEM.2012.29 Donthu N, 2021, J BUS RES, V133, P285, DOI 10.1016/j.jbusres.2021.04.070 Eliot L., 2022, Forbes Magazine June, 12 Enyon R., 2020, Education in the Digital Age: Healthy and Happy Children, DOI DOI 10.1787/2DAC420B-EN Evans C, 2020, HUM BEHAV EMERG TECH, V2, P269, DOI 10.1002/hbe2.196 Flores JFF, 2015, DIGIT EDUC REV, P40 Gandini A, 2021, MEDIA CULT SOC, V43, P369, DOI 10.1177/0163443720948018 Guran Adriana-Mihaela, 2020, EASEAI 2020: Proceedings of the 2nd ACM SIGSOFT International Workshop on Education through Advanced Software Engineering and Artificial Intelligence, P20, DOI 10.1145/3412453.3423197 Haluza D, 2017, HEALTH COMMUN, V32, P1342, DOI 10.1080/10410236.2016.1220044 Harvey F, 2011, CARTOGR GEOGR INF SC, V38, P269, DOI 10.1559/1523040638269 Herrero R, 2019, INTERNET INTERV, V16, P43, DOI 10.1016/j.invent.2018.03.005 Hoffmann CP, 2014, J MANAGE INFORM SYST, V31, P138, DOI 10.1080/07421222.2014.995538 Hsiao Y, 2018, NEW MEDIA SOC, V20, P3457, DOI 10.1177/1461444817749519 Huang RH, 2014, LECT N EDUC TECHNOL, P3, DOI 10.1007/978-3-642-38291-8_1 Hubbard P, 2013, CALICO J, V30, P163, DOI 10.11139/cj.30.2.163-178 Jones C, 2010, LEARN MEDIA TECHNOL, V35, P365, DOI 10.1080/17439884.2010.531278 Judd T, 2018, AUSTRALAS J EDUC TEC, V34, P99, DOI 10.14742/ajet.3821 Keil FC, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0067777 Kennedy G, 2010, J COMPUT ASSIST LEAR, V26, P332, DOI 10.1111/j.1365-2729.2010.00371.x Kennedy G., 2008, ANN C AUSTR SOC COMP, P484 Kennedy G., 2006, Faculty of Education-Papers Kennedy GE, 2008, AUSTRALAS J EDUC TEC, V24, P108 Kirschner PA, 2017, TEACH TEACH EDUC, V67, P135, DOI 10.1016/j.tate.2017.06.001 Kiryakova G, 2018, TEM J, V7, P556, DOI 10.18421/TEM73-11 Kopalle PK, 2020, J ACAD MARKET SCI, V48, P114, DOI 10.1007/s11747-019-00694-2 Kraus S, 2022, REV MANAG SCI, V16, P2577, DOI 10.1007/s11846-022-00588-8 Kulkarni Anushka., 2017, Journal of Content, Community Communication, V6, P13, DOI DOI 10.2139/SSRN.3501366 Laru J, 2015, IEEE T LEARN TECHNOL, V8, P69, DOI 10.1109/TLT.2014.2360862 Lim WM, 2022, SERV IND J, V42, P481, DOI 10.1080/02642069.2022.2047941 Lim WM, 2024, Glob Bus Organ Excell, V43, P17, DOI [DOI 10.1002/JOE.22229, 10.1002/joe.22229] Livingstone S., 2019, Children's data and privacy online: Growing up in a digital age. An evidence review Lopez-Pernas S., 2023, Past, present and future of computing education research Madhavan K, 2014, CAMBRIDGE HANDBOOK OF ENGINEERING EDUCATION RESEARCH, P633 Mäntymäki M, 2014, INT J INFORM MANAGE, V34, P210, DOI 10.1016/j.ijinfomgt.2013.12.010 Margaryan A, 2011, COMPUT EDUC, V56, P429, DOI 10.1016/j.compedu.2010.09.004 Mayer JH, 2012, BUS INFORM SYST ENG+, V4, P331, DOI 10.1007/s12599-012-0233-5 McGloin R, 2016, COMMUN RES REP, V33, P370, DOI 10.1080/08824096.2016.1224169 MEAD M, 1969, SCIENCE, V164, P135, DOI 10.1126/science.164.3876.135 Mertala P, 2024, LEARN MEDIA TECHNOL, V49, P216, DOI 10.1080/17439884.2022.2141253 Mertala P, 2021, LEARN MEDIA TECHNOL, V46, P230, DOI 10.1080/17439884.2021.1868501 Mertala P, 2020, LEARN MEDIA TECHNOL, V45, P179, DOI 10.1080/17439884.2020.1696362 Miglino O, 2014, J E-LEARN KNOWL SOC, V10, P89 Mills KA, 2010, J ADOLESC ADULT LIT, V54, P35, DOI 10.1598/JAAL.54.1.4 Montagni I, 2018, JMIR MHEALTH UHEALTH, V6, DOI 10.2196/mhealth.9131 Mozelius P, 2015, PROC EUR CONF ELEARN, P417 Mozelius P, 2014, PROC EUR CONF GAME, P415 Musa S.M., 2022, International Journal of Trend in Scientific Research and Development (IJTSRD), V6, P939 Nash C, 2018, LECT NOTES COMPUT SC, V10766, P207, DOI 10.1007/978-3-319-78105-1_25 Naszay M, 2018, INFORM HEALTH SOC CA, V43, P390, DOI 10.1080/17538157.2017.1399131 Nezami S., 2021, International security management: New solutions to complexity, P255 Nikou Shahrokh, 2020, Sustainable Digital Communities. 15th International Conference, iConference 2020. Proceedings. Lecture Notes in Computer Science (LNCS 12051), P343, DOI 10.1007/978-3-030-43687-2_27 Nikou S., 2020, ECIS 2019 PROCEESING Noronha-sousa Dulce, 2022, Perspectives and Trends in Education and Technology: Selected Papers from ICITED 2021. Smart Innovation, Systems and Technologies (256), P973, DOI 10.1007/978-981-16-5063-5_80 O'Bannon BW, 2014, COMPUT EDUC, V74, P15, DOI 10.1016/j.compedu.2014.01.006 O'Neil C., 2016, WEAPONS MATH DESTRUC Oblinger Diana G., 2005, Educating the net generation, V272 Ohme J, 2019, INFORM COMMUN SOC, V22, P1903, DOI 10.1080/1369118X.2018.1469657 Ohme J, 2019, J INF TECHNOL POLITI, V16, P119, DOI 10.1080/19331681.2019.1613279 Olsen S, 2012, VOLTA REV, V112, P267, DOI 10.17955/tvr.112.3.m.702 Palmgren-Neuvonen L, 2015, SCAND J EDUC RES, V59, P255, DOI 10.1080/00313831.2014.996599 Parmenter D., 2019, CIO Dive June 24 Porat E, 2018, COMPUT EDUC, V126, P23, DOI 10.1016/j.compedu.2018.06.030 Radin J, 2017, OSIRIS, V32, P43, DOI 10.1086/693853 Reid L, 2023, NURS REP, V13, P573, DOI 10.3390/nursrep13020052 Rich M, 2014, JAMA PEDIATR, V168, P404, DOI 10.1001/jamapediatrics.2014.55 Richard JE, 2013, J MARKET MANAG-UK, V29, P698, DOI 10.1080/0267257X.2013.770051 Roberts ME, 2019, J STAT SOFTW, V91, P1, DOI 10.18637/jss.v091.i02 Roberts S., 2017, Stm: R package for structural topic models. R Package Version 0.6. Roberts-Holmes G, 2014, EARLY CHILD DEV CARE, V184, P1, DOI 10.1080/03004430.2013.772991 Robinson M, 2008, LIBR MANAGE, V29, P67, DOI 10.1108/01435120810844658 Rohm A, 2013, J RES INTERACT MARK, V7, P295, DOI 10.1108/JRIM-01-2013-0009 Rosas SR, 2017, QUAL QUANT, V51, P1403, DOI 10.1007/s11135-016-0340-3 Rosen L.D., 2010, REWIRED UNDERSTANDIN Salajan FD, 2010, COMPUT EDUC, V55, P1393, DOI 10.1016/j.compedu.2010.06.017 Selwyn N, 2015, DISCOURSE AND DIGITAL PRACTICES: DOING DISCOURSE ANALYSIS IN THE DIGITAL AGE, P226 Selwyn N, 2009, ASLIB PROC, V61, P364, DOI 10.1108/00012530910973776 Singh VK, 2021, SCIENTOMETRICS, V126, P5113, DOI 10.1007/s11192-021-03948-5 Sixto-García J, 2020, COMMUN SOC-SPAIN, V33, P187, DOI 10.15581/003.33.3.187-199 Smith E.E., 2012, CANADIAN J LEARNING, V38, P1 Smith V., 2012, Toni morrison: Writing the moral imagination, P1 Stoilova M, 2020, MEDIA COMMUN-LISBON, V8, P197, DOI 10.17645/mac.v8i4.3407 Tandoc EC, 2018, NEW MEDIA SOC, V20, P1679, DOI 10.1177/1461444817702398 Tao Donghua, 2017, JMIR Hum Factors, V4, pe25, DOI 10.2196/humanfactors.6455 Tapscott D, 1999, EDUC LEADERSHIP, V56, P6 Tapscott D., 2008, Grown up digital: How the net generation is changing your world Teo T, 2013, COMPUT EDUC, V67, P51, DOI 10.1016/j.compedu.2013.02.012 Thomas M, 2011, DECONSTRUCTING DIGITAL NATIVES: YOUNG PEOPLE, TECHNOLOGY, AND THE NEW LITERACIES, P1 Thompson P, 2015, EDUC INF TECHNOL, V20, P467, DOI 10.1007/s10639-013-9295-3 Ting YL, 2015, INTERNET HIGH EDUC, V26, P25, DOI 10.1016/j.iheduc.2015.04.004 Twenge Jean M., 2017, iGen: Why today's super-connected kids are growing up less rebellious, more tolerant, less happy-And completely unprepared for adulthood (and what this means for the rest of us), DOI DOI 10.2307/2930152 van Houwelingen CTM, 2017, J NURS EDUC, V56, P717, DOI 10.3928/01484834-20171120-03 Vázquez-Herrero J, 2019, SOC MEDIA SOC, V5, DOI 10.1177/2056305119888657 Veen W, 2007, CERI NEW MILL LEARN Vitvitskaya O., 2022, Academic Journal of Interdisciplinary Studies, V11, P38, DOI [DOI 10.36941/AJIS-2022-0066, 10.36941/ajis-2022-0066] Vodanovich S, 2010, INFORM SYST RES, V21, P711, DOI 10.1287/isre.1100.0324 Waycott J., 2007, Faculty of Education-Papers Waycott J, 2010, COMPUT EDUC, V54, P1202, DOI 10.1016/j.compedu.2009.11.006 Williamson B, 2021, CRIT STUD EDUC, V62, P50, DOI 10.1080/17508487.2020.1737556 Wilson ML, 2022, J RES TECHNOL EDUC, V54, P249, DOI 10.1080/15391523.2020.1846146 Wyld DC, 2010, MANAG RES REV, V33, P529, DOI 10.1108/01409171011050181 Yang JF, 2021, SUSTAINABILITY-BASEL, V13, DOI 10.3390/su13105593 Zevenbergen R, 2008, AUST J EARLY CHILD, V33, P37, DOI 10.1177/183693910803300107 NR 129 TC 1 Z9 1 U1 12 U2 19 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0747-5632 EI 1873-7692 J9 COMPUT HUM BEHAV JI Comput. Hum. Behav. PD MAR PY 2024 VL 152 AR 108076 DI 10.1016/j.chb.2023.108076 EA DEC 2023 PG 12 WC Psychology, Multidisciplinary; Psychology, Experimental WE Social Science Citation Index (SSCI) SC Psychology GA EE8O4 UT WOS:001137337500001 OA Green Published, hybrid DA 2024-09-05 ER PT J AU Pérez, CP Perdomo, B AF Perez, Carlos Perez Perdomo, Bexi TI Artificial Intelligence in Communication: A Biblio- metric Review in Web of Science SO INVESTIGACION BIBLIOTECOLOGICA LA English DT Article DE Bibliometrics; Artificial Intelligence; Communication; Scientometrics ID BIG DATA; RISE AB The accelerated increase of scientific production on Ar - tificial Intelligence requires investigating trends and orienting researchers on new research areas. The study aimed to analyze the scientific production of AI in com - munications. A bibliometric review was performed in the Web of Science database using a five -phase methodology and different bibliometric techniques. We analyzed 994 papers published between 2013 and 2023 and recurred to RS tudio, Bibliometrix, Microsoft Excel and IBM SPSS for the analysis and visualization processes. The United States of America stands out as the country with higher publication rates and it must be said that there is no Latin American representation among the top ten countries with higher publishing production. The thematic analysis shows gaps and emerging topics that contribute to build scientific evidence on AI in communications. In conclu - sion, the article shows an increasing trend in the produc - tion of this topic and that AI from the human perspec - tive seems to be the focus of study in communications. New studies are needed to fill the observed gaps and to strengthen both the driving and basic topics. C1 [Perez, Carlos Perez] Ctr Invest Innovac Desarrollo & Gest CIIDEG SAC, Lima, Peru. [Perdomo, Bexi] Univ Ciencias & Artes Amer Latina UCAL, Ctr Invest Creat, Lima, Peru. RP Pérez, CP (corresponding author), Ctr Invest Innovac Desarrollo & Gest CIIDEG SAC, Lima, Peru. EM Carlosperez100@gmail.com; bjperdomod@crear.ucal.edu.pe RI Pérez Pérez, Carlos/JPA-2212-2023 OI Pérez Pérez, Carlos/0000-0001-8425-1875 CR Ahn J, 2022, J BUS RES, V141, P50, DOI 10.1016/j.jbusres.2021.12.007 Alqahtani M. M., 2023, International Journal of Data and Network Science, V7, P695, DOI [https://doi.org/10.5267/j.ijdns.2023.3.002, DOI 10.5267/J.IJDNS.2023.3.002] Bawack RE, 2022, ELECTRON MARK, V32, P297, DOI 10.1007/s12525-022-00537-z Birkle C, 2020, QUANT SCI STUD, V1, P363, DOI 10.1162/qss_a_00018 Brennen JS, 2022, JOURNALISM, V23, P22, DOI 10.1177/1464884920947535 Bucher T, 2017, INFORM COMMUN SOC, V20, P30, DOI 10.1080/1369118X.2016.1154086 Cobo MJ, 2015, KNOWL-BASED SYST, V80, P3, DOI 10.1016/j.knosys.2014.12.035 Cuervo Sanchez Carlos Antonio, 2021, ADResearch Esic. Revista Internacional de Investigacion en Comunicacion, V24, P26 Diakopoulos N., 2019, Automating the News: How Algorithms Are Rewriting the Media Ding X, 2022, ELECTRON COMMER RES, V22, P787, DOI 10.1007/s10660-020-09410-7 Donthu N, 2021, J BUS RES, V133, P285, DOI 10.1016/j.jbusres.2021.04.070 Elish MC, 2018, COMMUN MONOGR, V85, P57, DOI 10.1080/03637751.2017.1375130 Gonzalez-Esteban Elsa, 2023, Daimon. Revista Internacional de Filosofia, V90, P131, DOI [10.6018/daimon.557391, DOI 10.6018/DAIMON.557391] Guzman AL, 2020, NEW MEDIA SOC, V22, P70, DOI 10.1177/1461444819858691 Hajkowicz S, 2023, TECHNOL SOC, V74, DOI 10.1016/j.techsoc.2023.102260 Helberger N, 2019, DIGIT JOURNAL, V7, P993, DOI 10.1080/21670811.2019.1623700 Hepp A, 2020, MEDIA CULT SOC, V42, P1410, DOI 10.1177/0163443720916412 Ho A, 2018, J COMMUN, V68, P712, DOI 10.1093/joc/jqy026 Karaboga T, 2020, CONNECTIST, P169, DOI 10.26650/CONNECTIST2020-0083 Kietzmann J, 2018, J ADVERTISING RES, V58, P263, DOI 10.2501/JAR-2018-035 Laor T, 2022, ONLINE INFORM REV, V46, P40, DOI 10.1108/OIR-07-2020-0324 Lawelai H, 2023, TEM J, V12, P798, DOI 10.18421/TEM122-24 Lewis SC, 2019, J MASS COMMUN Q, V96, P673, DOI 10.1177/1077699019859901 Lim S, 2022, Arxiv, DOI [arXiv:2212.07507, 10.48550/ARXIV.2212.07507, DOI 10.48550/ARXIV.2212.07507] Magrani E, 2019, INTERNET POLICY REV, V8, DOI 10.14763/2019.3.1420 Mari Saenz Victor, 2023, Transinformacao, V35, P1 Mayta-Tovalino F., 2024, Educacin Mdica, V25, P100873, DOI [10.1016/j.edumed.2023.100873, DOI 10.1016/J.EDUMED.2023.100873] McCornack SA, 2014, J LANG SOC PSYCHOL, V33, P348, DOI 10.1177/0261927X14534656 Montero-Díaz J, 2018, COMUNICAR, V26, P81, DOI 10.3916/C55-2018-08 Oppegaard B, 2013, MOB MEDIA COMMUN, V1, P356, DOI 10.1177/2050157913496421 Ouzzani M, 2016, SYST REV-LONDON, V5, DOI 10.1186/s13643-016-0384-4 Ozcinar M, 2021, ONLINE J COMMUN MEDI, V11, DOI 10.30935/ojcmt/11084 Perdomo Bexi, 2023, Contratexto, P171, DOI 10.26439/contratexto2023.n40.6181 Perdomo B, 2022, INVESTIG BIBLIOTECOL, V36, P135, DOI 10.22201/iibi.24488321xe.2022.93.58650 Peter J, 2018, MEDIA COMMUN-LISBON, V6, P73, DOI 10.17645/mac.v6i3.1596 Prahani BK, 2023, TEM J, V12, P918, DOI 10.18421/TEM122-38 Pranckute R, 2021, PUBLICATIONS-BASEL, V9, DOI 10.3390/publications9010012 Prieto-Gutierrez Juan-Jose, 2023, Human Technology, V19, P149, DOI [10.14254/1795-6889.2023.19-2.1, DOI 10.14254/1795-6889.2023.19-2.1] Rangel C, 2022, REV MEDITERR COMUN, V13, P17, DOI 10.14198/MEDCOM.20749 Ricaurte P, 2022, MEDIA CULT SOC, V44, P726, DOI 10.1177/01634437221099612 Sanchez-Holgado P, 2021, DOXA COMUN, P235, DOI 10.31921/doxacom.n33a1126 Santandreu-Calonge D, 2023, PROF INFORM, V32, DOI 10.3145/epi.2023.mar.19 Saurwein F, 2023, NEW MEDIA SOC, DOI 10.1177/14614448231203310 Smith N, 2019, INFORM COMMUN SOC, V22, P1310, DOI 10.1080/1369118X.2017.1418406 Soto-Sanfiel MT, 2022, JOURNALISM STUD, V23, P1197, DOI 10.1080/1461670X.2022.2075786 Sundar SS, 2020, J COMPUT-MEDIAT COMM, V25, P74, DOI 10.1093/jcmc/zmz026 Vaccari C, 2020, SOC MEDIA SOC, V6, DOI 10.1177/2056305120903408 Wang Y, 2021, PUBLIC RELAT REV, V47, DOI 10.1016/j.pubrev.2021.102081 Zupic Ivan, 2013, ACAD MANAGEMENT ANN, V2013, DOI [10.5465/ambpp.2013.13426abstract, DOI 10.5465/AMBPP.2013.13426ABSTRACT] NR 49 TC 0 Z9 0 U1 5 U2 5 PU UNIV NACIONAL AUTONOMA MEXICO PI MEXICO CITY PA CIUDAD UNIV, CENTRO UNIV BIBLIOTECOLOGICAS, TORRE II HUMANIDADES, PISO 11, 12 & 13, MEXICO CITY, CP 04510, MEXICO SN 0187-358X EI 2448-8321 J9 INVESTIG BIBLIOTECOL JI Investig. Bibliotecol. PD APR-JUN PY 2024 VL 38 IS 99 BP 165 EP 185 DI 10.22201/iibi.24488321xe.2024.99.58882 PG 21 WC Information Science & Library Science WE Social Science Citation Index (SSCI) SC Information Science & Library Science GA PZ1U9 UT WOS:001217817300001 OA gold DA 2024-09-05 ER PT J AU Khalid, N AF Khalid, Nadeem TI Artificial intelligence learning and entrepreneurial performance among university students: evidence from malaysian higher educational institutions SO JOURNAL OF INTELLIGENT & FUZZY SYSTEMS LA English DT Article DE Artificial intelligence learning; higher educational institutions; strategic entrepreneurship; government funding; entrepreneurial orientation; performance; entrepreneurial attitude ID STRATEGIC ENTREPRENEURSHIP; FIRM PERFORMANCE; EXPLOITATION; ORIENTATION; EXPLORATION; AMBIDEXTERITY; OPPORTUNITIES; INFORMATION; TECHNOLOGY; NETWORKS AB Artificial intelligence learning at higher educational institutions is one of the emerging concepts having vital importance to promote entrepreneurship activities among the university students. However, Malaysian Universities are lacking with the artificial intelligence learning activities. The objective of the study is to examine the role of artificial intelligence learning to promote entrepreneurship performance with the help of entrepreneurial orientation and strategic entrepreneurship. Moreover, the moderating role of government funding and attitude towards entrepreneurship is also examined. To achieve the objective of this study, a survey was carried out among the Malaysian universities. 500 questionnaires were distributed among the universities and data were collected from the teaching staff. After collection of data, it was analysed with the help of Partial Least Square (PLS)-Structural Equation Modeling (SEM). It is concluded that artificial intelligence learning is most significant to promote entrepreneurial performance among university students. Entrepreneurial orientation and strategic entrepreneurship play a key role to transfer the positive effect of artificial intelligence learning on entrepreneurial performance. Additionally, government funding and attitude towards entrepreneurship also has significant role. C1 [Khalid, Nadeem] KIMEP Univ, Alma Ata, Kazakhstan. C3 KIMEP University RP Khalid, N (corresponding author), KIMEP Univ, Alma Ata, Kazakhstan. EM nadeem.k@kimep.kz OI Khalid, Nadeem/0009-0004-2300-6760 CR Adedoyin O., 2017, GLOB J SOC SCI STUD, V3, P13 Adelakun OJ, 2019, J AGRIC EXT, V23, P13, DOI 10.4314/jae.v23i1.2 Adewale A.A., 2016, American Journal of Social Sciences and Humanities, V1, P10 AJZEN I, 1991, ORGAN BEHAV HUM DEC, V50, P179, DOI 10.1016/0749-5978(91)90020-T Alhawiti M., 2017, Journal of education and e-Learning research, V4, P15 Anderson R.B., 2003, ABORIGINAL ENTREPREN, P141 Anyi E. M. E., 2017, INT J EDUC TECH LEAR, V1, P11 Arzubiaga U, 2018, INT ENTREP MANAG J, V14, P217, DOI 10.1007/s11365-017-0473-4 Autio E., 2001, Enterprise Innovation Management Studies, V2, P145, DOI DOI 10.1080/14632440110094632 Caruana A, 2002, SERV IND J, V22, P43, DOI 10.1080/714005076 Centobelli P., 2019, MANAGEMENT DECISION Chin WW, 1998, QUANT METH SER, P295 Cockerill M., 2018, International Journal of Education and Practice, V6, P14, DOI [10.18488/journal.61.2018.61.14.27, DOI 10.18488/JOURNAL.61.2018.61.14.27] Comfrey A., 1992, A first course in factor analysis Dayan M, 2016, J BUS IND MARK, V31, P668, DOI 10.1108/JBIM-02-2015-0023 Ebert T., 2018, BIG DATA ARTIFICIAL Eghbal M.M., 2018, J ENTREPRENEURSHIP D, V11, P1 Fei R, 2019, DESTECH TRANS SOC FORNELL C, 1981, J MARKETING RES, V18, P39, DOI 10.2307/3151312 Garg V, 2016, RSC ADV, V6, P26216, DOI 10.1039/c5ra25575a Ghazali Z., 2012, ASIAN SOCIAL SCI, V9, P1 Griffis StanelyE., 2003, J BUS LOGIST, V24, P237, DOI 10.1002/j.2158-1592.2003.tb00053.x Gualandris J, 2018, INT J OPER PROD MAN, V38, P667, DOI 10.1108/IJOPM-03-2017-0162 Gupta P.K., 2019, USE MODERN TECHNOLOG, P173 Hair J, 2017, IND MANAGE DATA SYST, V117, P442, DOI 10.1108/IMDS-04-2016-0130 Hasnah H. Noor, 2014, FACTORS INFLUENCING Hitt MA, 2001, STRATEGIC MANAGE J, V22, P479, DOI 10.1002/smj.196 Ito T., 2016, J INNOVATION ENTREPR, V5, P1, DOI [10.1186/s13731-016-0037-9, DOI 10.1186/S13731-016-0037-9] Jahanshahi Asghar Afshar, 2011, Journal of Technology Management & Innovation, V6, P66 Jakob E.A., J VOCATIONAL BEHAV, V112, P431 Jansen S, 2015, INT J MANAG EDUC, V13, P170, DOI 10.1016/j.ijme.2015.03.001 Jayakumar R., 2016, AMER J EDUC LEARN, V1, P45 Jufri M., 2018, J ENTREPRENEURSHIP E Kallmuenzer A, 2018, REV MANAG SCI, V12, P855, DOI 10.1007/s11846-017-0231-6 Karlsen A., 2019, ENTREPRENEURIAL DISC Kgagara M.R., 2011, An assessment of the attitude towards entrepreneurship among higher education students in Sedibeng district Khaksar SMS, 2011, AFR J BUS MANAGE, V5, P5152 Kropp F, 2006, INT MARKET REV, V23, P504, DOI 10.1108/02651330610703427 Laureiro-Martínez D, 2015, STRATEGIC MANAGE J, V36, P319, DOI 10.1002/smj.2221 Lugo J.E., 2017, ASME 2017 INT DES EN March JG, 1991, ORGAN SCI, V2, P71, DOI 10.1287/orsc.2.1.71 Maritz A., 2016, INT J ORG INNOVATION, V8 Martin SL, 2016, J BUS RES, V69, P2040, DOI 10.1016/j.jbusres.2015.10.149 Mustafa MJ, 2016, J ENTREP EMERG ECON, V8, P162, DOI 10.1108/JEEE-10-2015-0058 Muthuselvi L., 2017, INT J EMERGING TREND, V1, P68 Negash E., 2012, INVESTIGATION HIGHER Nye BD, 2015, INT J ARTIF INTELL E, V25, P177, DOI 10.1007/s40593-014-0028-6 Parida V, 2016, INT ENTREP MANAG J, V12, P1147, DOI 10.1007/s11365-016-0387-6 Pathak S, 2016, J TECHNOL TRANSFER, V41, P506, DOI 10.1007/s10961-015-9423-x Paul M., 2014, INT J PUBLIC POLICY, V1, P26 Petridou E, 2009, GEND MANAG, V24, P286, DOI 10.1108/17542410910961569 PIHIE ZAL, 2011, INT J BUSINESS SOCIA, V29, DOI DOI 10.1016/J.SBSPRO.2011.11.340 Redford D.T. Trigo., 2007, The Silicon Valley Review of Global Entrepreneurship Research, V3, P19 Schindehutte M, 2009, ENTREP THEORY PRACT, V33, P241, DOI 10.1111/j.1540-6520.2008.00288.x Sharma R., 2004, Journal of Higher Education Policy and Management, V26, P109 Shields Justin, 2018, J MARSHALL L REV, V51, P279 Shirokova G, 2013, CRIT PERSPECT INT BU, V9, P173, DOI 10.1108/17422041311299941 Shukri BakarM., 2014, ADV MANAGEMENT APPL, V4, P109 Soni N., 2019, Journal of Business Research, P1 Sumo R, 2016, INT J OPER PROD MAN, V36, P1482, DOI 10.1108/IJOPM-05-2015-0305 Tabaro C., 2018, INT J ED PRACTICE, V6, DOI DOI 10.18488/JOURNAL.61.2018.62.64.75 van Doom S, 2017, LONG RANGE PLANN, V50, P134, DOI 10.1016/j.lrp.2016.06.003 Vasilchenko E, 2011, J INT MARKETING, V19, P88, DOI 10.1509/jim.10.0134 Venkataramani S., 2017, 2017 26 INT C PAR AR Yanga J.Y., 2016, ASIAN J ED TRAINING, V2, P53 Zhang L, 2017, CURR OPIN GREEN SUST, V3, P17, DOI 10.1016/j.cogsc.2016.11.003 NR 66 TC 16 Z9 16 U1 14 U2 64 PU IOS PRESS PI AMSTERDAM PA NIEUWE HEMWEG 6B, 1013 BG AMSTERDAM, NETHERLANDS SN 1064-1246 EI 1875-8967 J9 J INTELL FUZZY SYST JI J. Intell. Fuzzy Syst. PY 2020 VL 39 IS 4 BP 5417 EP 5435 DI 10.3233/JIFS-189026 PG 19 WC Computer Science, Artificial Intelligence WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Computer Science GA OH1HF UT WOS:000582322000059 DA 2024-09-05 ER PT J AU Rokach, L AF Rokach, Lior TI Applying the Publication Power Approach to Artificial Intelligence Journals SO JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE AND TECHNOLOGY LA English DT Article DE bibliographic records ID AUTHOR-AFFILIATION-INDEX; IMPACT FACTOR; SCIENTIFIC JOURNALS; H-INDEX; QUALITY; MANAGEMENT; BUSINESS; SYSTEMS; RANKINGS AB This study evaluates the utility of a publication power approach (PPA) for assessing the quality of journals in the field of artificial intelligence. PPA is compared with the Thomson-Reuters Institute for Scientific Information (TR) 5-year and 2-year impact factors and with expert opinion. The ranking produced by the method under study is only partially correlated with citation-based measures (TR), but exhibits close agreement with expert survey rankings. A simple average of TR and power rankings results in a new ranking that is highly correlated with the expert survey rankings. This evidence suggests that power ranking can contribute to evaluating artificial intelligence journals. C1 Ben Gurion Univ Negev, Dept Informat Syst Engn, IL-84105 Beer Sheva, Israel. C3 Ben Gurion University RP Rokach, L (corresponding author), Ben Gurion Univ Negev, Dept Informat Syst Engn, POB 653, IL-84105 Beer Sheva, Israel. EM liorrk@bgu.ac.il RI Rokach, Lior/F-8247-2010 CR Adler NJ, 2009, ACAD MANAG LEARN EDU, V8, P72, DOI 10.5465/AMLE.2009.37012181 Agrawal VK, 2011, PROD OPER MANAG, V20, P280, DOI 10.1111/J.1937-5956.2010.01212.X [Anonymous], 2007, COLL RES LIBR NEWS, DOI DOI 10.5860/CRLN.68.5.7804 Antelman K, 2004, COLL RES LIBR, V65, P372, DOI 10.5860/crl.65.5.372 Burke R, 2002, USER MODEL USER-ADAP, V12, P331, DOI 10.1023/A:1021240730564 Calver MC, 2009, SCIENTOMETRICS, V81, P611, DOI 10.1007/s11192-008-2229-y Cheng CH, 1996, AI MAG, V17, P87 Cook WD, 2010, ACCOUNT PERSPECT, V9, P217, DOI 10.1111/j.1911-3838.2010.00011.x Cronin B, 2008, J AM SOC INF SCI TEC, V59, P1861, DOI 10.1002/asi.20895 Elkins MR, 2010, SCIENTOMETRICS, V85, P81, DOI 10.1007/s11192-010-0262-0 Gallivan MJ, 2007, EUR J INFORM SYST, V16, P36, DOI 10.1057/palgrave.ejis.3000667 Garfield E, 2006, JAMA-J AM MED ASSOC, V295, P90, DOI 10.1001/jama.295.1.90 Gorman MF., 2005, MANUFACTURING SERVIC, V7, P3, DOI [DOI 10.1287/MS0M.1040.0062, 10.1287/msom.1040.0062] Harless D., 1998, REVISION J LIS UNPUB Harnad S., 2008, ETHICS SCI ENV POLIT, V8 Harzing AW, 2009, J AM SOC INF SCI TEC, V60, P41, DOI 10.1002/asi.20953 Hodge DR, 2011, RES SOCIAL WORK PRAC, V21, P222, DOI 10.1177/1049731510369141 Holsapple CW, 2008, J AM SOC INF SCI TEC, V59, P166, DOI 10.1002/asi.20679 Holsapple CW, 2010, OMEGA-INT J MANAGE S, V38, P167, DOI 10.1016/j.omega.2009.08.002 Holsapple CW, 2009, J AM SOC INF SCI TEC, V60, P318, DOI 10.1002/asi.20986 Lowry PB, 2007, IEEE T PROF COMMUN, V50, P352, DOI 10.1109/TPC.2007.908733 MCALLISTER PR, 1980, J AM SOC INFORM SCI, V31, P147, DOI 10.1002/asi.4630310304 Olson JE, 2005, INTERFACES, V35, P323, DOI 10.1287/inte.1050.0149 Rokach L, 2011, J AM SOC INF SCI TEC, V62, P2456, DOI 10.1002/asi.21638 Rokach L, 2009, COMPUT STAT DATA AN, V53, P1015, DOI 10.1016/j.csda.2008.12.001 Rousseau R, 1999, SCIENTOMETRICS, V44, P521, DOI 10.1007/BF02458493 Saha S, 2003, J MED LIBR ASSOC, V91, P42 Schloegl C, 2004, J AM SOC INF SCI TEC, V55, P1155, DOI 10.1002/asi.20070 Seglen P. O., 2006, WHY IMPACT FACTOR J Seglen PO, 1997, BRIT MED J, V314, P498 Serenko A., 2011, INVESTIGATING INFORM, DOI [10.1002/cjas.214, DOI 10.1002/CJAS.214] Serenko A, 2011, J INFORMETR, V5, P629, DOI 10.1016/j.joi.2011.06.002 Serenko A, 2011, J INFORMETR, V5, P219, DOI 10.1016/j.joi.2010.07.005 Serenko A, 2010, J INFORMETR, V4, P447, DOI 10.1016/j.joi.2010.04.001 Serenko A, 2009, J KNOWL MANAG, V13, P4, DOI 10.1108/13673270910931125 Sevinc A, 2004, SWISS MED WKLY, V134, P410 Tahai A, 1999, STRATEGIC MANAGE J, V20, P279 Truex D, 2009, J ASSOC INF SYST, V10, P560 NR 38 TC 6 Z9 7 U1 0 U2 16 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1532-2882 J9 J AM SOC INF SCI TEC JI J. Am. Soc. Inf. Sci. Technol. PD JUN PY 2012 VL 63 IS 6 BP 1270 EP 1277 DI 10.1002/asi.22616 PG 8 WC Computer Science, Information Systems; Information Science & Library Science WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Computer Science; Information Science & Library Science GA 943OO UT WOS:000304133900014 OA Green Submitted DA 2024-09-05 ER PT J AU Chakraborti, N AF Chakraborti, Nirupam TI Critical Assessment 3: The unique contributions of multi-objective evolutionary and genetic algorithms in materials research SO MATERIALS SCIENCE AND TECHNOLOGY LA English DT Article DE Genetic algorithms; Multi-objective optimisation; Materials design and processing; Reviews; Critical assessments ID ZN-COATED FE; NEURAL-NETWORK; MATERIALS SCIENCE; OPTIMAL-DESIGN; OPTIMIZATION; MODEL; PART; SIMULATION AB The current state of the art of materials research using multi-objective genetic and evolutionary algorithms is briefly presented with critical analyses. The basic concepts of multi-objective optimisation and Pareto optimality are explained in simple terms and the advantages of an evolutionary approach are emphasised. Current materials related research in this area is summarised, focusing on the achievements to date and the specific needs for further improvement. C1 Indian Inst Technol, Kharagpur 721302, W Bengal, India. C3 Indian Institute of Technology System (IIT System); Indian Institute of Technology (IIT) - Kharagpur RP Chakraborti, N (corresponding author), Indian Inst Technol, Kharagpur 721302, W Bengal, India. EM nchakrab@iitkgp.ac.in RI Chakraborti, Nirupam/C-7082-2011; Chakraborti, Nirupam/HDN-8793-2022 CR Agarwal A, 2010, IRONMAK STEELMAK, V37, P353, DOI 10.1179/030192310X12683075004672 [Anonymous], 2007, EVOLUTIONARY ALGORIT [Anonymous], 2001, Multi-objective optimization using evolutionary algorithms Bag S, 2009, MATER MANUF PROCESS, V24, P384, DOI 10.1080/10426910802679915 Bansal A, 2013, MATER MANUF PROCESS, V28, P733, DOI 10.1080/10426914.2013.763961 Bhattacharya B, 2009, COMP MATER SCI, V46, P821, DOI 10.1016/j.commatsci.2009.04.023 Bigi G, 2004, APPL MATH LETT, V17, P1285, DOI 10.1016/j.aml.2003.10.011 Chakraborti N, 2004, INT MATER REV, V49, P246, DOI 10.1179/095066004225021909 Chakraborti N, 2014, SURF ENG, V30, P79, DOI 10.1179/1743294413Y.0000000219 Chakraborti N., 2013, INFORM MAT SCI ENG, P71 CHAKRABORTI N, 2006, HDB RES NATURE INSPI Coello CAC, 2009, MATER MANUF PROCESS, V24, P119, DOI 10.1080/10426910802609110 Datta S, 2013, INT MATER REV, V58, P475, DOI 10.1179/1743280413Y.0000000021 Datta S, 2013, MATER MANUF PROCESS, V28, P741, DOI 10.1080/10426914.2013.773020 Dulikravich GS, 2008, MODEL SIMUL MATER SC, V16, DOI 10.1088/0965-0393/16/7/075010 Farina M, 2002, 2002 ANNUAL MEETING OF THE NORTH AMERICAN FUZZY INFORMATION PROCESSING SOCIETY PROCEEDINGS, P233, DOI 10.1109/NAFIPS.2002.1018061 Ganguly S, 2013, MATER MANUF PROCESS, V28, P726, DOI 10.1080/10426914.2012.736660 Ghosh A., 2012, J ASTM Int(Mater Perform Charact), V1 Giri BK, 2013, MATER MANUF PROCESS, V28, P776, DOI 10.1080/10426914.2013.763953 Giri BK, 2013, APPL SOFT COMPUT, V13, P2613, DOI 10.1016/j.asoc.2012.11.025 Gujarathi AM, 2013, MATER MANUF PROCESS, V28, P803, DOI 10.1080/10426914.2012.746706 Hariharan K, 2014, STEEL RES INT, V85, P1597, DOI 10.1002/srin.201300471 Hariharan K, 2014, METALL MATER TRANS A, V45A, P2704, DOI 10.1007/s11661-014-2274-5 HILL R, 1948, PROC R SOC LON SER-A, V193, P281, DOI 10.1098/rspa.1948.0045 Jha R, 2014, STEEL RES INT, V85, P219, DOI 10.1002/srin.201300074 Kant A, 2013, NEURAL COMPUT APPL, V23, pS231, DOI 10.1007/s00521-013-1344-8 Kotas P, 2012, MATER SCI TECH-LOND, V28, P911, DOI 10.1179/1743284712Y.0000000026 Kovacic M, 2013, MATER MANUF PROCESS, V28, P783, DOI 10.1080/10426914.2012.718475 Kumar A, 2012, STEEL RES INT, V83, P169, DOI 10.1002/srin.201100189 Li YM, 2013, MATER MANUF PROCESS, V28, P761, DOI 10.1080/10426914.2013.792433 Lotov AV, 2005, APPL MATH MODEL, V29, P653, DOI 10.1016/j.apm.2004.10.009 Miettinen K, 2012, NONLINEAR MULTIOBJEC, V12 Mitra K, 2008, INT MATER REV, V53, P275, DOI 10.1179/174328008X348174 Mitra K, 2013, MATER MANUF PROCESS, V28, P768, DOI 10.1080/10426914.2012.736668 Mitra K, 2010, CHEM ENG J, V162, P322, DOI 10.1016/j.cej.2010.05.004 Mondal DN, 2011, HYDROMETALLURGY, V107, P112, DOI 10.1016/j.hydromet.2011.02.008 Nandan R, 2008, PROG MATER SCI, V53, P980, DOI 10.1016/j.pmatsci.2008.05.001 Nandan R, 2005, MATER MANUF PROCESS, V20, P459, DOI 10.1081/AMP-200053462 Nandi AK, 2013, MATER MANUF PROCESS, V28, P753, DOI 10.1080/10426914.2013.773022 Nandi AK, 2012, APPL SOFT COMPUT, V12, P28, DOI 10.1016/j.asoc.2011.08.059 Nishimoto K, 2003, SCI TECHNOL WELD JOI, V8, P29, DOI 10.1179/136217103225008946 Palani PK, 2006, MATER SCI TECH-LOND, V22, P1193, DOI 10.1179/174328406X118294 Paszkowicz W, 2013, MATER MANUF PROCESS, V28, P708, DOI 10.1080/10426914.2012.746707 Pettersson F, 2007, APPL SOFT COMPUT, V7, P387, DOI 10.1016/j.asoc.2005.09.001 Rajak P, 2012, COMP MATER SCI, V62, P266, DOI 10.1016/j.commatsci.2012.05.002 Rajak P, 2011, COMP MATER SCI, V50, P2502, DOI 10.1016/j.commatsci.2011.03.034 Saxén H, 2006, COMPUT CHEM ENG, V30, P1038, DOI 10.1016/j.compchemeng.2006.01.007 Sharma TK, 2013, MATER MANUF PROCESS, V28, P788, DOI 10.1080/10426914.2012.736650 Sinha A, 2013, MATER DESIGN, V46, P227, DOI 10.1016/j.matdes.2012.10.023 Sun XM, 2013, MATER MANUF PROCESS, V28, P823, DOI 10.1080/10426914.2012.736657 Tancret F, 2013, MODEL SIMUL MATER SC, V21, DOI 10.1088/0965-0393/21/4/045013 Tancret F, 2012, MODEL SIMUL MATER SC, V20, DOI 10.1088/0965-0393/20/4/045012 Tutum CC, 2011, SCI TECHNOL WELD JOI, V16, P318, DOI 10.1179/1362171811Y.0000000011 Tutum CC, 2013, MATER MANUF PROCESS, V28, P816, DOI 10.1080/10426914.2012.736654 Ulutan D, 2013, MATER MANUF PROCESS, V28, P835, DOI 10.1080/10426914.2012.718474 Zhang Q, 2012, SCI TECHNOL WELD JOI, V17, P681, DOI 10.1179/1362171812Y.0000000062 NR 56 TC 33 Z9 34 U1 0 U2 22 PU TAYLOR & FRANCIS LTD PI ABINGDON PA 2-4 PARK SQUARE, MILTON PARK, ABINGDON OR14 4RN, OXON, ENGLAND SN 0267-0836 EI 1743-2847 J9 MATER SCI TECH-LOND JI Mater. Sci. Technol. PD SEP PY 2014 VL 30 IS 11 BP 1259 EP 1262 DI 10.1179/1743284714Y.0000000578 PG 4 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering WE Science Citation Index Expanded (SCI-EXPANDED) SC Materials Science; Metallurgy & Metallurgical Engineering GA AQ9WU UT WOS:000343209500001 DA 2024-09-05 ER PT J AU SPROW, FB AF SPROW, FB TI EVALUATION OF RESEARCH EXPENDITURES USING TRIANGULAR DISTRIBUTION FUNCTIONS AND MONTE CARLO METHODS SO INDUSTRIAL AND ENGINEERING CHEMISTRY LA English DT Article CR BIERMAN H, 1966, CAPITAL BUDGETING DE GRUBBS FE, 1962, OPER RES, V10, P912, DOI 10.1287/opre.10.6.912 Hertz D.A., 1964, HARVARD BUSINESS JAN, P95 HESS SW, 1963, CHEMICAL ENGINEER 42 MACCRIMMON KR, 1964, OPER RES, V12, P16, DOI 10.1287/opre.12.1.16 VANSLYKE RM, 1963, OPER RES, V11, P839, DOI 10.1287/opre.11.5.839 1959, C208011 INT BUS MACH 1955, MILLION RANDOM DIGIT NR 8 TC 16 Z9 17 U1 0 U2 0 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 SN 0019-7866 J9 IND ENG CHEM PY 1967 VL 59 IS 7 BP 35 EP & DI 10.1021/ie50691a009 PG 0 WC Chemistry, Applied WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Chemistry GA 94973 UT WOS:A19679497300007 DA 2024-09-05 ER PT J AU Stepanov, VK Madzhumder, MS Begunova, DD AF Stepanov, V. K. Madzhumder, M. Sh. Begunova, D. D. TI Exploring the Potential of Applying the Artificial Intelligence Language Model ChatGPT-3.5 in Library and Bibliographic Activities SO SCIENTIFIC AND TECHNICAL INFORMATION PROCESSING LA English DT Article DE library processes; artificial intelligence; benchmarking; enhancement of library work efficiency; ChatGPT-3.5 AB An experiment on the use of the artificial intelligence model ChatGPT-3.5 to perform typical tasks in the field of library and bibliographic activities as well as similar tasks of virtual reference services in several federal libraries in the Russian Federation is described. The strong and weak aspects of the language model were identified. The results of the experiment demonstrate that ChatGPT even in its current version 3.5 is well suited to perform a number of information processes with the necessary supervision and control by a qualified library specialist. C1 [Stepanov, V. K.] Russian Acad Sci INION RAN, Inst Sci Informat Social Sci, Moscow, Russia. [Stepanov, V. K.; Madzhumder, M. Sh.; Begunova, D. D.] Moscow State Linguist Univ, Informat & Analyt Act Dept, Moscow, Russia. C3 Russian Academy of Sciences; Institute of Scientific Information on Social Sciences of the Russian Academy of Sciences; Moscow State Linguistic University RP Stepanov, VK (corresponding author), Russian Acad Sci INION RAN, Inst Sci Informat Social Sci, Moscow, Russia.; Stepanov, VK (corresponding author), Moscow State Linguist Univ, Informat & Analyt Act Dept, Moscow, Russia. EM stepanov@vadimstepanov.ru; mmadzhumder@gmail.com; dbegunova01@gmail.com RI Stepanov, Vadim K./HNR-6340-2023 OI Stepanov, Vadim K./0000-0002-3439-9537 CR Achiam OJ, 2023, Arxiv, DOI [arXiv:2303.08774, DOI 10.48550/ARXIV.2303.08774] [Anonymous], AI in focus: Artificial intelligence and libraries [Anonymous], And there are clouds in the sky Introducing ChatGPT, OpenAI Mizintseva M.F., 2020, The COVID-19 Pandemic. Biology and Economy NR 5 TC 1 Z9 1 U1 35 U2 72 PU PLEIADES PUBLISHING INC PI NEW YORK PA PLEIADES HOUSE, 7 W 54 ST, NEW YORK, NY, UNITED STATES SN 0147-6882 EI 1934-8118 J9 SCI TECH INF PROCESS JI Sci. Tech. Inf. Process. PD SEP PY 2023 VL 50 IS 3 BP 166 EP 175 DI 10.3103/S0147688223030036 PG 10 WC Information Science & Library Science WE Emerging Sources Citation Index (ESCI) SC Information Science & Library Science GA W7HT8 UT WOS:001093305800002 DA 2024-09-05 ER PT J AU Prabowo, H Ikhsan, RB Yuniarty, Y AF Prabowo, Hartiwi Ikhsan, Ridho Bramulya Yuniarty, Yuniarty TI Student performance in online learning higher education: A preliminary research SO FRONTIERS IN EDUCATION LA English DT Article DE overall quality; course quality; e-learning technology; online learning; student engagement; student and institutional factors; instructor characteristics; student performance ID HIGH-SCHOOL-STUDENTS; CONTINUANCE INTENTION; INSTRUCTIONAL-DESIGN; ACCEPTANCE; PERCEPTIONS; ENGAGEMENT; EXTENSION; MODEL; TTF AB The impact of student performance is the focus of online learning because it can determine the success of students and higher education institutions to get good ratings and public trust. This study explores comprehensively the factors that can affect the impact of student performance in online learning. An empirical model of the impact of student performance has been developed from the literature review and previous research. The test of reliability and validity of the empirical model was evaluated through linguist reviews and statistically tested with construct reliability coefficients and confirmatory factor analysis (CFA). Overall, the results of this study prove that the structural model with second-order measurements produces a good fit, while the structural model with first-order measurements shows a poor fit. C1 [Prabowo, Hartiwi; Ikhsan, Ridho Bramulya; Yuniarty, Yuniarty] Bina Nusantara Univ, Dept Management, Binus Online Learning, Jakarta, Indonesia. C3 Universitas Bina Nusantara RP Ikhsan, RB (corresponding author), Bina Nusantara Univ, Dept Management, Binus Online Learning, Jakarta, Indonesia. EM ridho.bramulya.i@binus.ac.id RI Ikhsan, Ridho Bramulya/AAA-3716-2019 OI Ikhsan, Ridho Bramulya/0000-0002-1499-3264 FU [3481/LL3/KR/2021] FX Funding This work was supported by "Model Evaluasi Pembelajaran Daring Dalam Menilai Kualitas Sistem Pendidikan Tinggi Di Indonesia" (contract number: 3481/LL3/KR/2021 and contract date: 12 July 2021). CR Al-Adwan AS, 2021, SUSTAINABILITY-BASEL, V13, DOI 10.3390/su13169453 Aldholay A, 2018, INT J INF LEARN TECH, V35, P285, DOI 10.1108/IJILT-11-2017-0116 Almaiah Mohammed Amin, 2019, Education and Information Technologies, V24, P885, DOI 10.1007/s10639-018-9810-7 Ameri A, 2020, EDUC INF TECHNOL, V25, P419, DOI 10.1007/s10639-019-09965-5 Archambault L, 2022, EDUC PSYCHOL-US, V57, P178, DOI 10.1080/00461520.2022.2051513 Arghode V, 2018, EUR J TRAIN DEV, V42, P366, DOI 10.1108/EJTD-12-2017-0110 Bailey DR, 2022, EDUC INF TECHNOL, V27, P7679, DOI 10.1007/s10639-022-10949-1 Bandura A., 2010, Corsini encyclopedia of psychology, V4th, P1, DOI DOI 10.1002/9780470479216.CORPSY0836/ABSTRACT Barczyk CC, 2017, AM J DISTANCE EDUC, V31, P173, DOI 10.1080/08923647.2017.1316151 Bashir A, 2021, FRONT EDUC, V6, DOI 10.3389/feduc.2021.711619 Basir M, 2021, INT J EDUC MANAG, V35, P1277, DOI 10.1108/IJEM-12-2020-0563 Bokolo A, 2020, J RES TECHNOL EDUC, V52, P37, DOI 10.1080/15391523.2019.1675203 Bower M, 2019, BRIT J EDUC TECHNOL, V50, P1035, DOI 10.1111/bjet.12771 Büchele S, 2021, ASSESS EVAL HIGH EDU, V46, P132, DOI 10.1080/02602938.2020.1754330 Caruana A, 2016, J MARKET EDUC, V38, P107, DOI 10.1177/0273475316652442 Chakraborty P, 2021, HUM BEHAV EMERG TECH, V3, P357, DOI 10.1002/hbe2.240 Daouk Z, 2016, J APPL RES HIGH EDUC, V8, P360, DOI 10.1108/JARHE-05-2015-0037 Debattista M, 2018, INT J INF LEARN TECH, V35, P93, DOI 10.1108/IJILT-09-2017-0092 DeLone W. H., 2016, FDN TRENDS INFORM SY, V1, P1, DOI [10.1561/2900000005, DOI 10.1561/2900000005] Duchatelet D, 2019, HIGH EDUC RES DEV, V38, P733, DOI 10.1080/07294360.2019.1581143 Fauzi MA, 2022, HELIYON, V8, DOI 10.1016/j.heliyon.2022.e09433 Gatignon H., 2010, Confirmatory Factor Analysis in Statistical analysis of management data, DOI [10.1007/978-1-4419-1270-1_4, DOI 10.1007/978-1-4419-1270-1_4, 10.1007/978-1-4419-1270-14] George D., 2020, IBM SPSS STAT 26 STE, DOI DOI 10.4324/9780429056765 Glassman M, 2021, COMPUT EDUC OPEN, V2, DOI 10.1016/j.caeo.2021.100031 Gonzalez T, 2020, PLOS ONE, V15, DOI 10.1371/journal.pone.0239490 Gopal R, 2021, EDUC INF TECHNOL, V26, P6923, DOI 10.1007/s10639-021-10523-1 Hadullo K, 2018, INT REV RES OPEN DIS, V19, P138 Hair J.F., 2009, A Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM), Vseventh Hair JF, 2019, EUR BUS REV, V31, P2, DOI 10.1108/EBR-11-2018-0203 Halonen Raija, 2010, International Journal of Information Systems and Social Change, V1, P36, DOI 10.4018/jissc.2010040103 Henseler J, 2015, J ACAD MARKET SCI, V43, P115, DOI 10.1007/s11747-014-0403-8 Ho LA, 2010, INTERNET RES, V20, P55, DOI 10.1108/10662241011020833 Hodges C. B., 2020, DIFFERENCE EMERGENCY Hu M, 2016, FIFTH INTERNATIONAL CONFERENCE ON EDUCATIONAL INNOVATION THROUGH TECHNOLOGY (EITT 2016), P122, DOI 10.1109/EITT.2016.31 Hulland J, 2018, J ACAD MARKET SCI, V46, P92, DOI 10.1007/s11747-017-0532-y Ikhsan RB, 2019, PROCEEDINGS OF 2019 5TH INTERNATIONAL CONFERENCE ON NEW MEDIA STUDIES (CONMEDIA 2019), P68, DOI [10.1109/conmedia46929.2019.8981813, 10.1109/CONMEDIA46929.2019.8981813] Isaac O., 2017, SCI INT, V29, P737 Isaac O., 2017, RES J APPL SCI, V12, P205 Isaac O., 2017, Asian Journal of Information Technology, V16, P100 Isaac O, 2017, INT J INF LEARN TECH, V34, P210, DOI 10.1108/IJILT-11-2016-0051 Jaggars SS, 2016, COMPUT EDUC, V95, P270, DOI 10.1016/j.compedu.2016.01.014 Jimenez-Bucarey C, 2021, SUSTAINABILITY-BASEL, V13, DOI 10.3390/su132111960 Kemp A, 2019, BRIT J EDUC TECHNOL, V50, P2394, DOI 10.1111/bjet.12833 Kim C, 2015, EDUC TECHNOL SOC, V18, P261 Kim D, 2021, COMPUT EDUC, V166, DOI 10.1016/j.compedu.2021.104171 Kim S, 2021, SUSTAINABILITY-BASEL, V13, DOI 10.3390/su13126734 Kissi PS, 2018, ETR&D-EDUC TECH RES, V66, P1547, DOI 10.1007/s11423-018-9623-9 Kline R.B., 2015, Principles and practice of structural equation modeling Lee E, 2015, TECHTRENDS, V59, P54, DOI 10.1007/s11528-015-0871-9 Legon R., 2017, The changing landscape of online education (CHLOE): Quality Matters Eduventures survey of chief online officers Maheshwari G, 2021, EDUC TRAIN, V63, P1138, DOI 10.1108/ET-02-2021-0074 McAvoy P, 2022, STUD HIGH EDUC, V47, P1761, DOI 10.1080/03075079.2021.1960302 Mensink PJ, 2020, BRIT J EDUC TECHNOL, V51, P10, DOI 10.1111/bjet.12752 METROPOLIS N, 1949, J AM STAT ASSOC, V44, P335, DOI 10.2307/2280232 Muir T, 2019, DISTANCE EDUC, V40, P262, DOI 10.1080/01587919.2019.1600367 Narad A, 2016, RUPKATHA J INTERDISC, V8, P12, DOI 10.21659/rupkatha.v8n2.02 Patricia Aguilera-Hermida A, 2020, Int J Educ Res Open, V1, P100011, DOI 10.1016/j.ijedro.2020.100011 Paul R., 2019, Services Marketing Quarterly, V40, P245, DOI [DOI 10.1080/15332969.2019.1630177, 10.1080/15332969.2019] Preaux J, 2023, TELEMED E-HEALTH, V29, P156, DOI 10.1089/tmj.2022.0089 Rahman MHA, 2021, J COMPUT ASSIST LEAR, V37, P1513, DOI 10.1111/jcal.12535 Ralston-Berg P., 2014, Internet Learning, DOI DOI 10.18278/IL.3.1.9 Roca JC, 2006, INT J HUM-COMPUT ST, V64, P683, DOI 10.1016/j.ijhcs.2006.01.003 Rohde F, 2021, ENERGY RES SOC SCI, V74, DOI 10.1016/j.erss.2021.101974 Roque-Hernández RV, 2023, INTERACT LEARN ENVIR, V31, P2841, DOI 10.1080/10494820.2021.1912112 Scharf P., 2017, IMPORTANCE COURSE QU Seaman J.E., 2018, Grade Increase: Tracking Distance Education in the United States Semeshkina M., 2021, FORBES Sheppard M, 2019, EDUC INF TECHNOL, V24, P3205, DOI 10.1007/s10639-019-09916-0 Singh S, 2020, J COMMUNITY PSYCHOL, V48, P1660, DOI 10.1002/jcop.22362 Sullivan T.J., 2021, P 2021 ASEE VIRTUAL Sweta S, 2021, Modern approach to educational data mining and its applications. SpringerBriefs in Applied Sciences and Technology, DOI [10.1007/978-981-33-4681-9_1, DOI 10.1007/978-981-33-4681-9_1] Tarhini A, 2015, BRIT J EDUC TECHNOL, V46, P739, DOI 10.1111/bjet.12169 Thongsri N, 2019, BEHAV INFORM TECHNOL, V38, P1243, DOI 10.1080/0144929X.2019.1581259 West S. G., 2012, Handbook of Structural Equation Modeling, P209, DOI DOI 10.1002/9780470024737 Wilde N, 2019, INT J EDUC TECHNOL H, V16, DOI 10.1186/s41239-019-0158-x Wu B, 2017, COMPUT HUM BEHAV, V67, P221, DOI 10.1016/j.chb.2016.10.028 Xavier M, 2021, INT REV RES OPEN DIS, V22, P72 Yadegaridehkordi E, 2020, EDUC INF TECHNOL, V25, P791, DOI 10.1007/s10639-019-09993-1 Yakubu MN, 2019, INFORM DEV, V35, P492, DOI 10.1177/0266666918765907 Zhou T, 2010, COMPUT HUM BEHAV, V26, P760, DOI 10.1016/j.chb.2010.01.013 Zimmerman T, 2017, INT REV RES OPEN DIS, V18, P25 Montesdioca GPZ, 2015, COMPUT SECUR, V48, P267, DOI 10.1016/j.cose.2014.10.015 NR 82 TC 0 Z9 0 U1 3 U2 23 PU FRONTIERS MEDIA SA PI LAUSANNE PA AVENUE DU TRIBUNAL FEDERAL 34, LAUSANNE, CH-1015, SWITZERLAND EI 2504-284X J9 FRONT EDUC JI Front. Educ. PD NOV 3 PY 2022 VL 7 AR 916721 DI 10.3389/feduc.2022.916721 PG 16 WC Education & Educational Research WE Emerging Sources Citation Index (ESCI) SC Education & Educational Research GA 6H8WE UT WOS:000885711500001 OA gold DA 2024-09-05 ER PT J AU Hoppe, TA Arabi, S Hutchins, BI AF Hoppe, Travis A. Arabi, Salsabil Hutchins, B. Ian TI Predicting substantive biomedical citations without full text SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE science policy; machine learning; citation analysis; artificial intelligence; bench to bedside translation ID PREPRINTS AB Insights from biomedical citation networks can be used to identify promising avenues for accelerating research and its downstream bench-to-bedside translation. Citation analy-sis generally assumes that each citation documents substantive knowledge transfer that informed the conception, design, or execution of the main experiments. Citations may exist for other reasons. In this paper, we take advantage of late-stage citations added during peer review because these are less likely to represent substantive knowledge flow. Using a large, comprehensive feature set of open access data, we train a predictive model to identify late-stage citations. The model relies only on the title, abstract, and citations to previous articles but not the full-text or future citations patterns, making it suitable for publications as soon as they are released, or those behind a paywall (the vast majority). We find that high prediction scores identify late-stage citations that were likely added during the peer review process as well as those more likely to be rhetorical, such as journal self-citations added during review. Our model conversely gives low prediction scores to early-stage citations and citation classes that are known to represent substantive knowledge transfer. Using this model, we find that US federally funded biomedical research publications represent 30% of the predicted early-stage (and more likely to be substantive) knowledge transfer from basic studies to clinical research, even though these comprise only 10% of the literature. This is a threefold overrepresentation in this important type of knowledge flow. C1 [Hoppe, Travis A.] CDCP, Off Director, Natl Ctr Hlth Stat, Hyattsville, MD 20782 USA. [Arabi, Salsabil; Hutchins, B. Ian] Univ Wisconsin Madison, Informat Sch, Sch Comp Data & Informat Sci, Coll Letters & Sci, Madison, WI 53706 USA. C3 Centers for Disease Control & Prevention - USA; CDC National Center for Health Statistics (NCHS); University of Wisconsin System; University of Wisconsin Madison RP Hutchins, BI (corresponding author), Univ Wisconsin Madison, Informat Sch, Sch Comp Data & Informat Sci, Coll Letters & Sci, Madison, WI 53706 USA. EM bihutchins@wisc.edu OI Hutchins, B. Ian/0000-0001-7657-552X; Hoppe, Travis/0000-0002-4694-3050 FU Office of the Vice Chancellor for Research and Graduate Education at the University of Wisconsin-Madison; Wisconsin Alumni Research Foundation FX B.I.H. is funded through the Office of the Vice Chancellor for Research and Graduate Education at the University of Wisconsin-Madison and through funding from the Wisconsin Alumni Research Foundation. Disclaimer: This work was performed prior to T.A.H. joining the Centers for Disease Control and Prevention and should not be considered a research product of that agency. CR Akbaritabar A, 2022, J INFORMETR, V16, DOI 10.1016/j.joi.2022.101258 [Anonymous], 2015, iCite Bianchi F, 2022, J INFORMETR, V16, DOI 10.1016/j.joi.2022.101316 Boyack KW, 2018, J INFORMETR, V12, P59, DOI 10.1016/j.joi.2017.11.005 Bravo G, 2018, J INFORMETR, V12, P101, DOI 10.1016/j.joi.2017.12.002 Brierley L, 2022, PLOS BIOL, V20, DOI 10.1371/journal.pbio.3001285 BROOKS TA, 1986, J AM SOC INFORM SCI, V37, P34 CANO V, 1989, J AM SOC INFORM SCI, V40, P284, DOI 10.1002/(SICI)1097-4571(198907)40:4<284::AID-ASI10>3.0.CO;2-Z Carneiro CFD, 2020, RES INTEGR PEER REV, V5, DOI 10.1186/s41073-020-00101-3 Catalini C, 2015, P NATL ACAD SCI USA, V112, P13823, DOI 10.1073/pnas.1502280112 Chen LY, 2022, J ASSOC INF SCI TECH, V73, P671, DOI 10.1002/asi.24569 Chen TQ, 2016, KDD'16: PROCEEDINGS OF THE 22ND ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, P785, DOI 10.1145/2939672.2939785 Cohan A, 2020, Arxiv, DOI arXiv:2004.07180 Collins F., 2021, NIHWide Strategic Plan, Fiscal Years 2021-2025 Collins F. S., 2017, Testimony on the Implementation of the 21st Century Cures Act: Progress and the Path Forward for Medical Innovation Collins FS., 2016, Nih-wide strategic plan, fiscal years 2016-2020: Turning discovery into health Ding Y, 2014, J ASSOC INF SCI TECH, V65, P1820, DOI 10.1002/asi.23256 Distributed Deep Machine Learning Community, 2016, XGBoost: EXtreme gradient boosting in GitHub Flatt JW, 2017, PUBLICATIONS, V5, DOI 10.3390/publications5030020 Fu Yuanxi, 2020, Proc ACM/IEEE Joint Conf Digit Libr, V2020, P217, DOI 10.1145/3383583.3398514 Fujiwara T, 2015, J BIOMED SEMANT, V6, DOI 10.1186/s13326-015-0037-x Hassan SU, 2018, SCIENTOMETRICS, V117, P1645, DOI 10.1007/s11192-018-2944-y Hoppe TA, 2019, SCI ADV, V5, DOI 10.1126/sciadv.aaw7238 Hutchins B. I., iCite database snapshots (NIH Open Citation Collection), DOI [10.35092/yhjc.c.4586573, DOI 10.35092/YHJC.C.4586573] Hutchins BI, 2021, QUANT SCI STUD, V2, P433, DOI 10.1162/qss_c_00138 Hutchins BI, 2019, PLOS BIOL, V17, DOI 10.1371/journal.pbio.3000416 Hutchins BI, 2019, PLOS BIOL, V17, DOI 10.1371/journal.pbio.3000385 Hutchins BI, 2017, PLOS BIOL, V15, DOI 10.1371/journal.pbio.2003552 Hutchins BI, 2016, PLOS BIOL, V14, DOI 10.1371/journal.pbio.1002541 Itani D, 2022, J CLIN EPIDEMIOL, V149, P146, DOI 10.1016/j.jclinepi.2022.06.008 Jefferson OA, 2018, NAT BIOTECHNOL, V36, P31, DOI 10.1038/nbt.4049 Jinek M, 2012, SCIENCE, V337, P816, DOI 10.1126/science.1225829 Kim YH, 2020, SCIENTOMETRICS, V125, P2349, DOI 10.1007/s11192-020-03668-2 Klein M, 2019, INT J DIGIT LIBRARIE, V20, P335, DOI 10.1007/s00799-018-0234-1 Lin J, 2009, BMC BIOINFORMATICS, V10, DOI 10.1186/1471-2105-10-46 McGuinness LA, 2021, PLOS ONE, V16, DOI 10.1371/journal.pone.0250887 Mishra S, 2018, PLOS ONE, V13, DOI 10.1371/journal.pone.0195773 Moravcsik M. J., 1985, Soc. Behav. Sci., V18 Muppidi S., 2021, 2021 INNOVATIONS POW, P1 National Institutes of Health, 2021, ExPORTER National Library of Medicine, 2020, Download MEDLINE/PubMed data Nelson L., 2022, The Lancet Global Health, V10, pe1684 Nicholson DN, 2022, PLOS BIOL, V20, DOI 10.1371/journal.pbio.3001470 Oikonomidi T, 2020, BMC MED, V18, DOI 10.1186/s12916-020-01880-8 Peroni S, 2020, QUANT SCI STUD, V1, P428, DOI 10.1162/qss_a_00023 Pride D, 2017, PRO INT CONF SCI INF, P1357 Santangelo GM, 2017, MOL BIOL CELL, V28, P1401, DOI 10.1091/mbc.E16-01-0037 Shaffer C, 2022, NAT BIOTECHNOL, V40, P445, DOI 10.1038/d41587-022-00004-2 Shaner NC, 2004, NAT BIOTECHNOL, V22, P1567, DOI 10.1038/nbt1037 Shi XT, 2021, JAMA NETW OPEN, V4, DOI 10.1001/jamanetworkopen.2021.2110 Sinatra R, 2016, SCIENCE, V354, DOI 10.1126/science.aaf5239 Takahashi K, 2006, CELL, V126, P663, DOI 10.1016/j.cell.2006.07.024 Teplitskiy M, 2022, RES POLICY, V51, DOI 10.1016/j.respol.2022.104484 Teufel S., 2006, P C EMP METH NAT LAN, DOI 10.3115/1610075.1610091 Valenzuela M., 2015, WORKSHOPS 20 9 AAAI Wacker D, 2013, SCIENCE, V340, P615, DOI 10.1126/science.1232808 Wan XJ, 2014, J ASSOC INF SCI TECH, V65, P1929, DOI 10.1002/asi.23083 Wang YJ, 2021, INT J INFECT DIS, V104, P1, DOI 10.1016/j.ijid.2020.12.040 Weber GM, 2013, J TRANSL MED, V11, DOI 10.1186/1479-5876-11-126 Wilhite AW, 2012, SCIENCE, V335, P542, DOI 10.1126/science.1212540 Williams RS, 2015, CELL, V163, P21, DOI 10.1016/j.cell.2015.09.007 Yu JY, 2007, SCIENCE, V318, P1917, DOI 10.1126/science.1151526 Zhu XD, 2015, J ASSOC INF SCI TECH, V66, P408, DOI 10.1002/asi.23179 NR 63 TC 1 Z9 1 U1 6 U2 11 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 EI 1091-6490 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD JUL 25 PY 2023 VL 120 IS 30 AR e2213697120 DI 10.1073/pnas.2213697120 PG 11 WC Multidisciplinary Sciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Science & Technology - Other Topics GA U2WO5 UT WOS:001083458500002 PM 37463199 OA hybrid, Green Published DA 2024-09-05 ER PT J AU Halepoto, H Gong, T Noor, S Memon, H AF Halepoto, Habiba Gong, Tao Noor, Saleha Memon, Hafeezullah TI Bibliometric Analysis of Artificial Intelligence in Textiles SO MATERIALS LA English DT Article DE bibliometric analysis; textiles; research trend; artificial intelligence; Web of Science ID FABRIC DEFECT DETECTION AB Generally, comprehensive documents are needed to provide the research community with relevant details of any research direction. This study conducted the first descriptive bibliometric analysis to examine the most influential journals, institutions, and countries in the field of artificial intelligence in textiles. Furthermore, bibliometric mapping analysis was also used to examine diverse research topics of artificial intelligence in textiles. VOSviewer was used to process 996 articles retrieved from Web of Science-Core Collection from 2007 to 2020. The results show that China and the United States have the largest number of publications, while Donghua University and Jiangnan University have the highest output. These three themes have also appeared in textile artificial intelligence publications and played a significant role in the textile structure, textile inspection, and textile clothing production. The authors believe that this research will unfold new research domains for researchers in computer science, electronics, material science, imaging science, and optics and will benefit academic and industrial circles. C1 [Halepoto, Habiba; Gong, Tao] Donghua Univ, Engn Res Ctr Digitized Text & Fash Technol, Shanghai 201620, Peoples R China. [Gong, Tao] Donghua Univ, Coll Informat Sci & Technol, Shanghai 201620, Peoples R China. [Noor, Saleha] East China Sci & Technol Univ, Sch Informat Sci & Engn, Shanghai 200237, Peoples R China. [Memon, Hafeezullah] Zhejiang Sci Tech Univ, Coll Text Sci & Engn, Hangzhou 310018, Peoples R China. C3 Donghua University; Donghua University; Zhejiang Sci-Tech University RP Gong, T (corresponding author), Donghua Univ, Engn Res Ctr Digitized Text & Fash Technol, Shanghai 201620, Peoples R China.; Gong, T (corresponding author), Donghua Univ, Coll Informat Sci & Technol, Shanghai 201620, Peoples R China. EM 317111@mail.dhu.edu.cn; taogong@dhu.edu.cn; saleha.noor@yahoo.com; hm@zstu.edu.cn RI Memon, Hafeezullah/K-7126-2015 OI Memon, Hafeezullah/0000-0001-5985-5394; Gong, Tao/0000-0003-0248-9404; Halepoto, Habiba/0000-0003-1045-6530 FU National Natural Science Foundation of China [61673007]; Research Fund for International Scientists [RFIS-52150410416]; National Natural Science Foundation of China; Research Startup grant of ZSTU [20202294-Y] FX This work was supported by the National Natural Science Foundation of China (No. 61673007), Research Fund for International Scientists (RFIS-52150410416), National Natural Science Foundation of China, and the Research Startup grant of ZSTU (20202294-Y). CR Abolafia MY, 2010, ORGAN STUD, V31, P349, DOI 10.1177/0170840609357380 Baier-Fuentes H, 2019, INT ENTREP MANAG J, V15, P385, DOI 10.1007/s11365-017-0487-y Bowman S, 2018, MOLECULES, V23, DOI 10.3390/molecules23030547 Cai YC, 2018, ACS NANO, V12, P56, DOI 10.1021/acsnano.7b06251 Chen ZY, 2015, 2015 12TH ANNUAL IEEE INTERNATIONAL CONFERENCE ON SENSING, COMMUNICATION, AND NETWORKING (SECON), P524, DOI 10.1109/SAHCN.2015.7338354 Croeser S., 2019, THEORIES PARENTING T, P423 Ding H, 2020, IEEE-ASME T MECH, V25, P2143, DOI 10.1109/TMECH.2020.3022983 Dobkin BH, 2011, NEUROREHAB NEURAL RE, V25, P788, DOI 10.1177/1545968311425908 Dong K, 2020, ADV MATER, V32, DOI 10.1002/adma.201902549 Dutta S, 2020, P IEEE, V108, P1219, DOI 10.1109/JPROC.2020.2986362 Flores-Sosa M, 2022, INT J FINANC ECON, V27, P1419, DOI 10.1002/ijfe.2223 Gahegan M, 2020, INT J GEOGR INF SCI, V34, P1, DOI 10.1080/13658816.2019.1652304 Gao T., 2022, ADV TEXTILE TECHNOLO, V30, P197 Geng DY, 2020, ENVIRON SCI POLLUT R, V27, P29824, DOI 10.1007/s11356-020-09283-1 Giri C, 2019, IEEE ACCESS, V7, P95376, DOI 10.1109/ACCESS.2019.2928979 Huang SY, 2019, IEEE I CONF COMP VIS, P2010, DOI 10.1109/ICCV.2019.00210 Huang ZB, 2019, IOP C SER EARTH ENV, V252, DOI 10.1088/1755-1315/252/3/032103 Jacobsen BN, 2022, INFORM COMMUN SOC, V25, P1082, DOI 10.1080/1369118X.2020.1834603 Jamali N, 2011, IEEE T ROBOT, V27, P508, DOI 10.1109/TRO.2011.2127110 Kara K, 2019, PROC VLDB ENDOW, V12, P1818, DOI 10.14778/3352063.3352074 Kumar A, 2008, IEEE T IND ELECTRON, V55, P348, DOI 10.1109/TIE.1930.896476 Lemasle B, 2020, ASTRON ASTROPHYS, V641, DOI 10.1051/0004-6361/202038277 Leung K, 2019, IEEE INT VEH SYM, P185, DOI 10.1109/IVS.2019.8814167 [李细珍 Li Xizhen], 2020, [丝绸, Journal of Silk], V57, P25 Li ZQ, 2021, J TEXT I, V112, P1472, DOI 10.1080/00405000.2020.1824434 Lis A, 2020, SUSTAINABILITY-BASEL, V12, DOI 10.3390/su12103987 Lu JB, 2013, PROC CVPR IEEE, P1854, DOI 10.1109/CVPR.2013.242 Mair M, 2021, QUAL RES, V21, P341, DOI 10.1177/1468794120975988 Martínez-López FJ, 2020, IND MARKET MANAG, V84, P19, DOI 10.1016/j.indmarman.2019.07.014 Mas-Tur A, 2019, SUSTAINABILITY-BASEL, V11, DOI 10.3390/su11164367 Min L., 2021, ADV TEXT TECHNOL, V29, P62, DOI [10.19398/j.att.202011002, DOI 10.19398/J.ATT.202011002] Morfino V, 2020, SOFT COMPUT, V24, P7417, DOI 10.1007/s00500-019-04366-9 Ngan HYT, 2011, IMAGE VISION COMPUT, V29, P442, DOI 10.1016/j.imavis.2011.02.002 Niu ZJ, 2019, IEEE T SERV COMPUT, V12, P865, DOI 10.1109/TSC.2016.2635133 Noor S, 2020, LECT NOTES COMPUT SC, V12274, P341, DOI 10.1007/978-3-030-55130-8_30 Patel AJ, 2010, COMPOS PART A-APPL S, V41, P360, DOI 10.1016/j.compositesa.2009.11.002 [彭梅 Peng Mei], 2021, [丝绸, Journal of Silk], V58, P53 Phon-Amnuaisuk S, 2009, LECT NOTES COMPUT SC, V5484, P547, DOI 10.1007/978-3-642-01129-0_61 Poblet M, 2020, INT J COMMONS, V14, P481, DOI 10.5334/ijc.1029 Schmitt J, 2008, MOBILE NETW APPL, V13, P583, DOI 10.1007/s11036-008-0095-8 Shah SHH, 2021, IRAN J PUBLIC HEALTH, V50, P2283, DOI 10.18502/ijph.v50i11.7584 Shyamasundar L.B., 2019, P 2019 PHD C ETH DRI, P1 Siddiqui M.Q., 2020, Cotton Science and Processing Technology: Gene, Ginning, Garment and Green Recycling, P99, DOI [10.1007/978-981-15-9169-3_6, DOI 10.1007/978-981-15-9169-3_6] Tasdemir K, 2009, IEEE T NEURAL NETWOR, V20, P549, DOI 10.1109/TNN.2008.2005409 Tian M, 2019, TEXT RES J, V89, P3203, DOI 10.1177/0040517518809044 Verma R, 2021, APPL MATH MODEL, V89, P1177, DOI 10.1016/j.apm.2020.07.004 [王丹书 Wang Danshu], 2021, [丝绸, Journal of Silk], V58, P27 Wang H., 2020, COTTON SCI PROCESSIN, P547 Wang H, 2019, INT J POLYM SCI, V2019, DOI 10.1155/2019/8732520 Wang XW, 2016, SCIENTOMETRICS, V109, P917, DOI 10.1007/s11192-016-2093-0 Wijayapala U.G.S., 2022, TEXTILE FASHION ED I, P119, DOI DOI 10.1007/978-981-16-8854-6_7 Xiang F., 2022, ADV TEXT TECHNOL, V30, P9, DOI [10.19398/j.att.20201100, DOI 10.19398/J.ATT.20201100] Xu S. B., 2022, Adv. Textile Technol., V30, P48 Yan XT, 2022, TRAFFIC INJ PREV, V23, P321, DOI 10.1080/15389588.2022.2072491 [杨奎浪 Yang Kuilang], 2021, [丝绸, Journal of Silk], V58, P48 Yanmeng W., 2022, ADV TEXT TECHNOL, V30, P41, DOI [10.19398/j.att.202103006, DOI 10.19398/J.ATT.202103006] [张建新 Zhang Jianxin], 2021, [丝绸, Journal of Silk], V58, P62 Zheng WJ, 2019, PROC INT CONF PARAL, DOI 10.1145/3337821.3337868 NR 58 TC 15 Z9 15 U1 16 U2 70 PU MDPI PI BASEL PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND EI 1996-1944 J9 MATERIALS JI Materials PD APR PY 2022 VL 15 IS 8 AR 2910 DI 10.3390/ma15082910 PG 14 WC Chemistry, Physical; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering; Physics, Applied; Physics, Condensed Matter WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Chemistry; Materials Science; Metallurgy & Metallurgical Engineering; Physics GA 0Q7GA UT WOS:000785081100001 PM 35454603 OA Green Published, gold DA 2024-09-05 ER PT J AU Yigitcanlar, T Senadheera, S Marasinghe, R Bibri, SE Sanchez, T Cugurullo, F Sieber, R AF Yigitcanlar, Tan Senadheera, Sajani Marasinghe, Raveena Bibri, Simon Elias Sanchez, Thomas Cugurullo, Federico Sieber, Renee TI Artificial intelligence and the local government: A five-decade scientometric analysis on the evolution, state-of-the-art, and emerging trends SO CITIES LA English DT Article DE Artificial intelligence (AI); GeoAI; Local government; Municipality; Technology adoption; Smart city ID EXPERT SYSTEMS; SMART; TECHNOLOGY; CHALLENGES; PREDICTION; MANAGEMENT AB In recent years, the rapid advancement of artificial intelligence (AI) technologies has significantly impacted various sectors, including public governance at the local level. However, there exists a limited understanding of the overarching narrative surrounding the adoption of AI in local governments and its future. Therefore, this study aims to provide a comprehensive overview of the evolution, current state-of-the-art, and emerging trends in the adoption of AI in local government. A comprehensive scientometric analysis was conducted on a dataset comprising 7112 relevant literature records retrieved from the Scopus database in October 2023, spanning over the last five decades. The study findings revealed the following key insights: (a) exponential technological advancements over the last decades ushered in an era of AI adoption by local governments; (b) the primary purposes of AI adoption in local governments include decision support, automation, prediction, and service delivery; (c) the main areas of AI adoption in local governments encompass planning, analytics, security, surveillance, energy, and modelling; and (d) under-researched but critical research areas include ethics of and public participation in AI adoption in local governments. This study informs research, policy, and practice by offering a comprehensive understanding of the literature on AI applications in local governments, providing valuable insights for stakeholders and decision-makers. C1 [Yigitcanlar, Tan] Queensland Univ Technol, Sch Architecture & Built Environm, City 4 0 Lab, 2 George St, Brisbane, Qld 4000, Australia. [Senadheera, Sajani; Marasinghe, Raveena] Queensland Univ Technol, Sch Architecture & Built Environm, City 4 0 Lab, Brisbane, Australia. [Bibri, Simon Elias] Ecole Polytech Fed Lausanne, Sch Architecture Civil & Environm Engn, Lausanne, Switzerland. [Sanchez, Thomas] Texas A&M Univ, Dept Landscape Architecture & Urban Planning, College Stn, TX USA. [Cugurullo, Federico] Trinity Coll Dublin, Sch Nat Sci, Dublin, Ireland. [Sieber, Renee] McGill Univ, Dept Geog, Montreal, PQ, Canada. C3 Queensland University of Technology (QUT); Queensland University of Technology (QUT); Swiss Federal Institutes of Technology Domain; Ecole Polytechnique Federale de Lausanne; Texas A&M University System; Texas A&M University College Station; Trinity College Dublin; McGill University RP Yigitcanlar, T (corresponding author), Queensland Univ Technol, Sch Architecture & Built Environm, City 4 0 Lab, 2 George St, Brisbane, Qld 4000, Australia. EM tan.yigitcanlar@qut.edu.au; sajanisuwanka.senadheera@hdr.qut.edu.au; raveena.pelige@hdr.qut.edu.au; simon.bibri@epfl.ch; twsanchez@tamu.edu; cugurulf@tcd.ie; renee.sieber@mcgill.ca RI Yigitcanlar, Tan/J-1142-2012 OI Yigitcanlar, Tan/0000-0001-7262-7118; Cugurullo, Federico/0000-0002-0625-8868 FU Australian Research Council Discovery Grant Scheme [DP220101255] FX This research was funded by the Australian Research Council Discovery Grant Scheme, grant number DP220101255. CR Abramo G, 2018, J INFORMETR, V12, P590, DOI 10.1016/j.joi.2018.05.001 Ahmed ST, 2023, IEEE INTERNET THINGS, V10, P11497, DOI 10.1109/JIOT.2023.3243235 Allam Z, 2022, SUSTAINABILITY-BASEL, V14, DOI 10.3390/su14095275 Allam Z, 2019, CITIES, V89, P80, DOI 10.1016/j.cities.2019.01.032 Alquwayzani A., 2023, MOBILE COMPUTING SUS, P45, DOI [10.1007/978-981-99-0835-6_4, DOI 10.1007/978-981-99-0835-6_4] Androutsopoulou A, 2019, GOV INFORM Q, V36, P358, DOI 10.1016/j.giq.2018.10.001 [Anonymous], 2018, Int. J. Adv. Sci. Eng. Inf. Technol, DOI DOI 10.18517/IJASEIT.8.1.4954 Ansell C, 2018, J PUBL ADM RES THEOR, V28, P16, DOI 10.1093/jopart/mux030 Ansell C, 2020, PUBLIC ADMIN, V98, P261, DOI 10.1111/padm.12636 Arya M, 2023, ELECTRONICS-SWITZ, V12, DOI 10.3390/electronics12040894 Awan FM, 2020, SENSORS-BASEL, V20, DOI 10.3390/s20010322 Baas J, 2020, QUANT SCI STUD, V1, P377, DOI 10.1162/qss_a_00019 Barroca J., 2023, Forbes Barrow O., 2023, Fiscal Note Benefo EO., 2022, AI and Ethics, DOI DOI 10.1007/S43681-021-00124-6 Bibri S., 2024, Environmental Science and Ecotechnology Bibri S., 2024, Sustainable Cities and Society Bibri S., 2015, The human face of ambient intelligence. Atlantis ambient and pervasive intelligence, V9, DOI [10.2991/978-94-6239-130-7_8, DOI 10.2991/978-94-6239-130-7_8] Bibri SE, 2024, ENVIRON SCI ECOTECH, V19, DOI 10.1016/j.ese.2023.100330 Bibri SE, 2023, SMART CITIES-BASEL, V6, P1345, DOI 10.3390/smartcities6030065 Bibri Simon Elias, 2023, Energy Inform, V6, P9, DOI 10.1186/s42162-023-00259-2 Bora A., 2019, Challenges of fake news: Mis-information, dis-information, mal-information in an increasingly-networked human world, P71 Brand D., 2022, eJournal of eDemocracy and Open Government, V14, P1, DOI [10.29379/jedem.v14i1.678, DOI 10.29379/JEDEM.V14I1.678] Brandusescu A., 2022, AI in the city: Building meaningful civic engagement and public trust Burgess Matt, 2023, This Algorithm Could Ruin Your Life' Wired Cambria E, 2014, IEEE COMPUT INTELL M, V9, P48, DOI 10.1109/MCI.2014.2307227 Carrasco M., 2023, Generative AI for the public sector: From opportunities to value Chang-Silva Roberto, 2023, Chemosphere, V335, P139071, DOI 10.1016/j.chemosphere.2023.139071 Chinese Academy of Sciences, 2024, Chinese Academy of Sciences Corea F., 2018, Forbes Cugurullo F., 2024, AI and Ethics, DOI [10.1007/s43681-024-00476-9, DOI 10.1007/S43681-024-00476-9] Cugurullo F., 2024, Artificial intelligence and the city: Urbanistic perspectives on AI D'Amico G, 2020, SENSORS-BASEL, V20, DOI 10.3390/s20164391 Dargan S, 2020, ARCH COMPUT METHOD E, V27, P1071, DOI 10.1007/s11831-019-09344-w Dinakaran RK, 2020, ADV INTELL SYST COMP, V1038, P588, DOI 10.1007/978-3-030-29513-4_43 Dogru N, 2018, 2018 15TH LEARNING AND TECHNOLOGY CONFERENCE (L&T), P40, DOI 10.1109/LT.2018.8368509 Dubey S, 2020, PROCEDIA COMPUT SCI, V167, P1950, DOI 10.1016/j.procs.2020.03.222 Duggal N., 2023, Simplilearn Fedchenkov P, 2018, LECT NOTES COMPUT SC, V11118, P33, DOI 10.1007/978-3-030-01168-0_4 Fuller A, 2020, IEEE ACCESS, V8, P108952, DOI 10.1109/ACCESS.2020.2998358 Ghosh D, 2016, P 17 INT DIG GOV RES, DOI [10.1145/2912160.2912205, DOI 10.1145/2912160.2912205] Giannini F, 2022, 2022 IEEE INTL CONF ON DEPENDABLE, AUTONOMIC AND SECURE COMPUTING, INTL CONF ON PERVASIVE INTELLIGENCE AND COMPUTING, INTL CONF ON CLOUD AND BIG DATA COMPUTING, INTL CONF ON CYBER SCIENCE AND TECHNOLOGY CONGRESS (DASC/PICOM/CBDCOM/CYBERSCITECH), P1048, DOI 10.1109/DASC/PiCom/CBDCom/Cy55231.2022.9927840 GOH ATC, 1994, ROBOT CIM-INT MANUF, V11, P213, DOI 10.1016/0736-5845(94)90036-1 Gong ZY, 2019, SUSTAINABILITY-BASEL, V11, DOI 10.3390/su11226424 Grieve P., 2023, Deep learning vs. machine learning Grinev AV, 2020, IOP CONF SER-MAT SCI, V940, DOI 10.1088/1757-899X/940/1/012149 Guthier B, 2015, 2015 INTERNATIONAL CONFERENCE ON COMPUTING, NETWORKING AND COMMUNICATIONS (ICNC), P630, DOI 10.1109/ICCNC.2015.7069418 Haque M., 2022, EAI Endorsed Transactions on AI and Robotics, V1, P15 Harris B., 1993, J PLAN EDUC RES, V12, P184, DOI [10.1177/0739456X9301200302, DOI 10.1177/0739456X9301200302] Haveri A, 2023, INT REV ADM SCI, V89, P3, DOI 10.1177/00208523211005855 HEIKKILA EJ, 1992, J AM PLANN ASSOC, V58, P72, DOI 10.1080/01944369208975536 Helmond A, 2019, INTERNET HIST, V3, P123, DOI 10.1080/24701475.2019.1593667 Herath H. M. K. K. M. B., 2022, International Journal of Information Management Data Insights, V2, DOI [DOI 10.1016/J.JJIMEI.2022.100076, 10.1016/j.jjimei.2022.100076] Hodo E, 2016, 2016 INTERNATIONAL SYMPOSIUM ON NETWORKS, COMPUTERS AND COMMUNICATIONS (ISNCC) Hodorog A, 2022, SUSTAIN CITIES SOC, V85, DOI 10.1016/j.scs.2022.104026 Hossain S., 2023, Local government cybersecurity landscape: A systematic review and conceptual framework Huang CJ, 2018, SENSORS-BASEL, V18, DOI 10.3390/s18072220 Huang YT, 2023, J TRANSP ENG B-PAVE, V149, DOI 10.1061/JPEODX.PVENG-1194 Ingwersen P, 2018, SCIENTOMETRICS, V117, P1205, DOI 10.1007/s11192-018-2901-9 Ippolito A, 2020, PROCEEDINGS OF THE 22ND INTERNATIONAL CONFERENCE ON ENTERPRISE INFORMATION SYSTEMS (ICEIS), VOL 1, P452, DOI 10.5220/0009564704520459 Ishengoma FR, 2022, DIGIT POLICY REGUL G, V24, P449, DOI 10.1108/DPRG-06-2022-0067 Issar S, 2022, SOCIOL COMPASS, V16, DOI 10.1111/soc4.12955 Jagatheesaperumal SK, 2023, COMPUT URBAN SCI, V3, DOI 10.1007/s43762-023-00104-y Janiesch C, 2021, ELECTRON MARK, V31, P685, DOI 10.1007/s12525-021-00475-2 Jiang S, 2022, SENSORS-BASEL, V22, DOI 10.3390/s22207814 Kapoor C., 2023, 2023 IEEE INT C PERV, P154, DOI [10.1109/PerComWorkshops56833.2023.10150374, DOI 10.1109/PERCOMWORKSHOPS56833.2023.10150374] Kumar P, 2023, MULTIMED TOOLS APPL, V82, P38249, DOI 10.1007/s11042-023-15136-z LAUT PR, 1988, LANDSCAPE URBAN PLAN, V15, P303, DOI 10.1016/0169-2046(88)90054-0 Lefoane M., 2021, P 5 INT C FUT NETW D, P195 Lepelaar M, 2022, J SENS ACTUAT NETW, V11, DOI 10.3390/jsan11010007 Li WD, 2023, SMART CITIES-BASEL, V6, P1996, DOI 10.3390/smartcities6040093 Lorenz L, 2021, INFORM POLITY, V26, P71, DOI 10.3233/IP-200279 Lourenço V, 2018, IEEE IJCNN Mackey DC, 1999, SPINAL DRUG DELIVERY, P1 MACROBERTS MH, 1989, J AM SOC INFORM SCI, V40, P342, DOI 10.1002/(SICI)1097-4571(198909)40:5<342::AID-ASI7>3.0.CO;2-U Madan R, 2023, GOV INFORM Q, V40, DOI 10.1016/j.giq.2022.101774 Mahdavinejad MS, 2018, DIGIT COMMUN NETW, V4, P161, DOI 10.1016/j.dcan.2017.10.002 Mai G, 2022, P 30 INT C ADV GEOGR, P1 Marasinghe R, 2024, SUSTAIN CITIES SOC, V100, DOI 10.1016/j.scs.2023.105047 Mellit A, 2010, SOL ENERGY, V84, P807, DOI 10.1016/j.solener.2010.02.006 Mingers J, 2015, EUR J OPER RES, V246, P1, DOI 10.1016/j.ejor.2015.04.002 Minor J., 2004, Paste Magazine Mishra C., 2017, IAES Int. J. Artif. Intell., V6, P66, DOI [10.11591/ijai.v6.i2.pp66-73, 10.3390/ma14247625] Mortaheb R, 2023, J URBAN MANAG, V12, P4, DOI 10.1016/j.jum.2022.08.001 Moselhi O., 2000, J INFRASTRUCT SYST, P97, DOI DOI 10.1061/(ASCE)1076-0342(2000)6:3(97) Mugari I, 2021, SOC SCI-BASEL, V10, DOI 10.3390/socsci10060234 Nagy AM, 2018, PERVASIVE MOB COMPUT, V50, P148, DOI 10.1016/j.pmcj.2018.07.004 O'Dwyer E, 2019, APPL ENERG, V237, P581, DOI 10.1016/j.apenergy.2019.01.024 Olnes S, 2017, GOV INFORM Q, V34, P355, DOI 10.1016/j.giq.2017.09.007 Ozmen M, 2021, PROCEEDINGS OF THE 6TH INTERNATIONAL CONFERENCE ON INVENTIVE COMPUTATION TECHNOLOGIES (ICICT 2021), P1152, DOI 10.1109/ICICT50816.2021.9358666 Palmini O., 2023, Discover Artificial Intelligence, V3, P15, DOI [DOI 10.1007/S44163-023-00060-W, 10.1007/s44163-023-00060-w] Podoletz L, 2023, AI SOC, V38, P1067, DOI 10.1007/s00146-022-01435-w Pott LP, 2021, ISPRS J PHOTOGRAMM, V176, P196, DOI 10.1016/j.isprsjprs.2021.04.015 Regona M, 2024, SUSTAIN CITIES SOC, V108, DOI 10.1016/j.scs.2024.105499 Regona M, 2023, BUILDINGS-BASEL, V13, DOI 10.3390/buildings13092346 Salim MM, 2021, APPL SOFT COMPUT, V113, DOI 10.1016/j.asoc.2021.107859 Samak T, 2023, ROBOTICS, V12, DOI 10.3390/robotics12030077 Sanchez TW, 2023, INT J URBAN SCI, V27, P179, DOI 10.1080/12265934.2022.2102538 SANGYUN H, 1989, J AM PLANN ASSOC, V55, P296 Sarker Iqbal H, 2021, SN Comput Sci, V2, P160, DOI 10.1007/s42979-021-00592-x Schwalbert RA, 2020, AGR FOREST METEOROL, V284, DOI 10.1016/j.agrformet.2019.107886 Setiawan A, 2022, ECONOMIES, V10, DOI 10.3390/economies10120323 Shaamala A, 2024, SUSTAIN CITIES SOC, V101, DOI 10.1016/j.scs.2024.105182 Shaikh PW, 2022, IEEE T INTELL TRANSP, V23, P48, DOI 10.1109/TITS.2020.3014296 Sieber R, 2024, PUBLIC UNDERST SCI, V33, P634, DOI 10.1177/09636625231219853 Smuha Nathalie A., 2021, Law, Innovation and Technology, V13, P57, DOI 10.1080/17579961.2021.1898300 Soe RM, 2018, GOV INFORM Q, V35, P323, DOI 10.1016/j.giq.2017.11.010 Son TH, 2023, SUSTAIN CITIES SOC, V94, DOI 10.1016/j.scs.2023.104562 Springer, 2024, Lecture Notes in Computer Science (LNCS) Tang JQ, 2022, CITIES, V129, DOI 10.1016/j.cities.2022.103833 Tian YX, 2015, 2015 IEEE INTERNATIONAL CONFERENCE ON SMART CITY/SOCIALCOM/SUSTAINCOM (SMARTCITY), P153, DOI 10.1109/SmartCity.2015.63 Ullah Z, 2023, SUSTAIN CITIES SOC, V97, DOI 10.1016/j.scs.2023.104697 UNESCO, 2021, UNESCO Science Report van Eck N. J., 2012, VOSviewer manual van Eck NJ, 2010, SCIENTOMETRICS, V84, P523, DOI 10.1007/s11192-009-0146-3 van Noordt C, 2022, GOV INFORM Q, V39, DOI 10.1016/j.giq.2022.101714 Vogl TM, 2020, PUBLIC ADMIN REV, V80, P946, DOI 10.1111/puar.13286 VOSviewer, 2024, VOSviewer Walker J., 2017, Azure government Chatbot reduces email by 50% Walker RM, 2015, J PUBL ADM RES THEOR, V25, P101, DOI 10.1093/jopart/mut038 Wu WJ, 2022, LANDSCAPE URBAN PLAN, V224, DOI 10.1016/j.landurbplan.2022.104428 Xing J, 2023, T GIS, V27, P626, DOI 10.1111/tgis.13045 Xu Y, 2024, J URBAN TECHNOL, DOI 10.1080/10630732.2023.2292823 Yang BY, 2021, ENVIRON HEALTH PERSP, V129, DOI 10.1289/EHP8429 Yanxu Zheng, 2015, 2015 IEEE Tenth International Conference on Intelligent Sensors, Sensor Networks and Information Processing (ISSNIP), P1, DOI 10.1109/ISSNIP.2015.7106902 Yao HX, 2018, AAAI CONF ARTIF INTE, P2588 Yeon H, 2023, SCI REP-UK, V13, DOI 10.1038/s41598-023-32326-9 Yigitcanlar T., 2021, J Open Innov Technol Market Complex, V7, P71, DOI DOI 10.3390/JOITMC7010071 Yigitcanlar T, 2023, GOV INFORM Q, V40, DOI 10.1016/j.giq.2023.101833 Yigitcanlar T, 2023, AI SOC, V38, P1135, DOI 10.1007/s00146-022-01450-x Yigitcanlar T, 2022, CITIES, V120, DOI 10.1016/j.cities.2021.103434 Yigitcanlar T, 2020, ENERGIES, V13, DOI 10.3390/en13061473 Yigitcanlar T, 2016, J URBAN TECHNOL, V23, P115, DOI 10.1080/10630732.2015.1090198 Zeng JC, 2023, COMPUT COMMUN, V208, P29, DOI 10.1016/j.comcom.2023.05.021 NR 134 TC 1 Z9 1 U1 9 U2 9 PU ELSEVIER SCI LTD PI London PA 125 London Wall, London, ENGLAND SN 0264-2751 EI 1873-6084 J9 CITIES JI Cities PD SEP PY 2024 VL 152 AR 105151 DI 10.1016/j.cities.2024.105151 EA JUN 2024 PG 21 WC Urban Studies WE Social Science Citation Index (SSCI) SC Urban Studies GA WV6X2 UT WOS:001257697800001 OA hybrid DA 2024-09-05 ER PT J AU Chen, HS Jin, QQ Wang, XM Xiong, F AF Chen, Hongshu Jin, Qianqian Wang, Ximeng Xiong, Fei TI Profiling academic-industrial collaborations in bibliometric-enhanced topic networks: A case study on digitalization research SO TECHNOLOGICAL FORECASTING AND SOCIAL CHANGE LA English DT Article DE Topic networks; Topic vectorization; Topic modeling; Word2Vec; Academic-industrial collaboration ID KNOWLEDGE NETWORKS; TECHNOLOGY; FIELD; TRANSFORMATION; EVOLUTION; SCIENCE AB Collaborations between industry and academia provide a key pathway for innovation and serve as a stimulus for basic and applied research. The collaborative innovations of the two communities are embedded in both the collaborative networks of these organizations and the knowledge networks established by coupling among knowledge elements in the collaborative content. However, existing studies on academic-industrial collabora-tions have mainly been concerned with analyzing these interactions at the institutional level. To fill the gap of profiling collaborative content and to inspire related studies, this paper provides a bibliometric-enhanced method of mapping topic networks and measuring the semantic structures of academic-industrial collabora-tion. Via this method, topics can be extracted, vectorized, and correlated to construct a bibliometric-enhanced topic network as a representation of the collaborative content generated by these partnerships. Examining the structural properties of the topic network can provide comprehensive insights for future academic-industrial research collaborations. To showcase these insights, we conducted a case study involving both articles and patents in the field of digitalization. As the case study shows, the method provided in this paper can serve as a tool for cooperative research planning, innovation management, and problem-solving in a given target area of research. C1 [Chen, Hongshu; Jin, Qianqian] Beijing Inst Technol, Sch Management & Econ, Beijing, Peoples R China. [Wang, Ximeng] Postal Savings Bank China, Cyber Finance Dept, Beijing, Peoples R China. [Xiong, Fei] Beijing Jiaotong Univ, Sch Elect & Informat Engn, Beijing, Peoples R China. C3 Beijing Institute of Technology; Beijing Jiaotong University RP Chen, HS (corresponding author), Beijing Inst Technol, Sch Management & Econ, Beijing, Peoples R China. EM hongshu.chen@bit.edu.cn RI Chen, Hongshu/O-2926-2017 OI Chen, Hongshu/0000-0002-0893-1817; Wang, Ximeng/0000-0002-2445-6737 FU National Natural Science Foundation of China [72004009, 61872033]; Beijing Institute of Technology Research Fund Program for Young Scholars and Beijing Nova Program under the Beijing Municipal Science & Technology Commission [Z201100006820015] FX This work was supported by: the National Natural Science Foundation of China under Grant Nos. 72004009 and 61872033; the Beijing Institute of Technology Research Fund Program for Young Scholars and Beijing Nova Program (Z201100006820015) under the Beijing Municipal Science & Technology Commission. CR Akhtar P, 2019, R&D MANAGE, V49, P7, DOI 10.1111/radm.12253 [Anonymous], 2015, Transactions of the Association for Computational Linguistics, DOI [DOI 10.1186/1472-6947-15-S2-S2.ARXIV:1103.0398, DOI 10.1162/TACLA00134, DOI 10.1162/TACL_A_00134] Blei DM, 2012, COMMUN ACM, V55, P77, DOI 10.1145/2133806.2133826 Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993 Cao JC, 2013, PROCEEDINGS OF THE ASME 32ND INTERNATIONAL CONFERENCE ON OCEAN, OFFSHORE AND ARCTIC ENGINEERING - 2013 - VOL 6 Chang SH, 2017, TECHNOL FORECAST SOC, V118, P107, DOI 10.1016/j.techfore.2017.02.006 Chen BT, 2017, J INFORMETR, V11, P1175, DOI 10.1016/j.joi.2017.10.003 Chen HS, 2021, IEEE T ENG MANAGE, V68, P1232, DOI 10.1109/TEM.2019.2903115 Chen HS, 2015, PORTL INT CONF MANAG, P2049, DOI 10.1109/PICMET.2015.7273098 De Battisti F, 2015, SCIENTOMETRICS, V103, P413, DOI 10.1007/s11192-015-1554-1 Fan X, 2015, SCIENTOMETRICS, V104, P489, DOI 10.1007/s11192-015-1618-2 Firth J.R., 1957, Studies in Linguistic Analysis Giunta A, 2016, J TECHNOL TRANSFER, V41, P818, DOI 10.1007/s10961-015-9402-2 Greiner-Petter A, 2020, SCIENTOMETRICS, V125, P3017, DOI 10.1007/s11192-020-03502-9 Griffiths TL, 2004, P NATL ACAD SCI USA, V101, P5228, DOI 10.1073/pnas.0307752101 Guan JC, 2017, J INFORMETR, V11, P407, DOI 10.1016/j.joi.2017.02.007 Guan JC, 2016, RES POLICY, V45, P97, DOI 10.1016/j.respol.2015.08.002 Heinrich Gregor, 2005, TECHNICAL REPORT Hellsten I, 2020, J ASSOC INF SCI TECH, V71, P3, DOI 10.1002/asi.24207 Hess T, 2016, MIS Q EXEC, V15, P123 Huang AH, 2018, MANAGE SCI, V64, P2833, DOI 10.1287/mnsc.2017.2751 Huang MH, 2015, SCIENTOMETRICS, V105, P1301, DOI 10.1007/s11192-015-1748-6 Jung S, 2020, J INFORMETR, V14, DOI 10.1016/j.joi.2020.101040 Khan S., 2016, Leadership in the digital age - A study on the effects of digitalisation on top management leadership Kong XJ, 2019, J NETW COMPUT APPL, V132, P86, DOI 10.1016/j.jnca.2019.01.029 Lamba M, 2019, SCIENTOMETRICS, V120, P477, DOI 10.1007/s11192-019-03137-5 Lee H, 2018, J TECHNOL TRANSFER, V43, P1291, DOI 10.1007/s10961-017-9561-4 Lee Y., 2000, J TECHNOL TRANSFER, V25, P111, DOI [10.1023/A:1007895322042, DOI 10.1023/A:1007895322042, 10.1023/A] Lee YY, 2020, J ASSOC INF SCI TECH, V71, P657, DOI 10.1002/asi.24289 Lin JY, 2017, TECHNOL FORECAST SOC, V123, P216, DOI 10.1016/j.techfore.2016.03.016 MAGAZINIK A, 2019, 2019 PORTLAND INT C, P1 Mao CF, 2020, TECHNOL FORECAST SOC, V151, DOI 10.1016/j.techfore.2019.119746 Mikolov T., 2013, ADV NEURAL INFORM PR, P3111, DOI DOI 10.48550/ARXIV.1310.4546 Nsanzumuhire SU, 2020, J CLEAN PROD, V258, DOI 10.1016/j.jclepro.2020.120861 Perkmann M, 2011, R&D MANAGE, V41, P202, DOI 10.1111/j.1467-9310.2011.00637.x PETERS HPF, 1993, RES POLICY, V22, P23, DOI 10.1016/0048-7333(93)90031-C Phelps C, 2012, J MANAGE, V38, P1115, DOI 10.1177/0149206311432640 Le Q, 2014, PR MACH LEARN RES, V32, P1188 Rehurek R., 2010, Proceedings of the LREC 2010 Workshop on New Challenges for NLP Frameworks Roth C, 2010, SOC NETWORKS, V32, P16, DOI 10.1016/j.socnet.2009.04.005 Skute Igors, 2019, Journal of Technology Transfer, V44, P916, DOI 10.1007/s10961-017-9637-1 Song B, 2019, TECHNOL FORECAST SOC, V138, P115, DOI 10.1016/j.techfore.2018.08.013 Sousa MJ, 2019, FUTURE GENER COMP SY, V91, P327, DOI 10.1016/j.future.2018.08.048 SUOMINEN A, 2019, IEEE T ENG MANAGE Suominen A, 2016, J ASSOC INF SCI TECH, V67, P2464, DOI 10.1002/asi.23596 Teixeira AAC, 2012, SCIENTOMETRICS, V93, P719, DOI 10.1007/s11192-012-0823-5 Wang CH, 2014, TECHNOL FORECAST SOC, V81, P331, DOI 10.1016/j.techfore.2013.04.008 Wang YD, 2016, SCIENTOMETRICS, V106, P1037, DOI 10.1007/s11192-015-1818-9 Wang YD, 2015, SCIENTOMETRICS, V103, P725, DOI 10.1007/s11192-015-1552-3 Wasserman S., 1994, Social Network Analysis Woltmann SL, 2018, SCIENTOMETRICS, V117, P449, DOI 10.1007/s11192-018-2849-9 Zhang Y, 2018, J INFORMETR, V12, P1099, DOI 10.1016/j.joi.2018.09.004 Zhao RY, 2019, SCIENTOMETRICS, V121, P323, DOI 10.1007/s11192-019-03182-0 NR 53 TC 18 Z9 18 U1 14 U2 99 PU ELSEVIER SCIENCE INC PI NEW YORK PA STE 800, 230 PARK AVE, NEW YORK, NY 10169 USA SN 0040-1625 EI 1873-5509 J9 TECHNOL FORECAST SOC JI Technol. Forecast. Soc. Chang. PD FEB PY 2022 VL 175 AR 121402 DI 10.1016/j.techfore.2021.121402 EA DEC 2021 PG 12 WC Business; Regional & Urban Planning WE Social Science Citation Index (SSCI) SC Business & Economics; Public Administration GA XN3NS UT WOS:000729415700003 DA 2024-09-05 ER PT C AU Wang, W Liu, XT AF Wang Wei Liu Xi-tao BE Zhu, XN TI Research on the Performance Evaluation of Government Portal Based on Public Satisfaction Degree SO PROCEEDINGS OF 2009 INTERNATIONAL CONFERENCE ON PUBLIC ADMINISTRATION (5TH), VOL II LA English DT Proceedings Paper CT 5th International Conference on Public Administration CY OCT 23-25, 2009 CL UESTC, Sch Polit Sci & Public Adm, Chengdu, PEOPLES R CHINA HO UESTC, Sch Polit Sci & Public Adm DE Government portal; Performance evaluation; Public satisfaction degree; Principal component analysis AB In order to promote the openness of government affairs, improve public services and the effectiveness of administration, we must pay attention to the development of government portal. According to the analysis of government portal characteristics, this paper forms an appraisal index system of government portal website, based on public satisfaction, and then designs a questionnaire used for data collection. Besides this paper uses principal component analysis and regression equation studies public satisfaction to government portal. Finally this paper suggests the mainly solution to improve the public satisfaction degree of government portal, that is increase the awareness of service and government websites establishment, improve the efficiency of the government online website and enhance the interactive capabilities of the public. C1 [Wang Wei; Liu Xi-tao] Harbin Univ Commerce, Sch Publ Finance & Management, Harbin 150028, Peoples R China. C3 Harbin University of Commerce CR Kantner L., 1997, Proceedings of the 15th annual international conference on Computer documentation, P153, DOI [10.1145/263367.263388, DOI 10.1145/263367.263388] LI JH, 2005, SCI RES LIU, 2008, COMPUTER MODERNIZATI LIU Y, 2003, CONT FINANCE EC, P57 MATT C, 2007, XIANGTAN U NATURAL S, P46 OLIVE M, 1994, NEUROPEDIATRICS, V25, P48, DOI 10.1055/s-2008-1071583 OLIVER RL, 1981, J RETAILING, V57, P25 SHI JL, 2003, INFORM TECHNOLOGY EC, V13, P216 TONG Y, 2007, J OFFICE AUTOMATION Wang Liming, 2005, E GOVT, P15 WANG Y, 2007, INFORM SCI, P1496 Wen J.B., 2007, GOVT WORK REPORT XU Y, 2008, LIB FORUM YANG DX, CHINAS E GOVT PORTAL YANG XF, 2009, INTELLIGENCE MAGAZIN, P3 Yu C., 2007, SPSS STAT ANAL ZHAI LN, 2008, G2B PORTAL OUR LOCAL, P6 ZHANG XY, 2008, KNOWLEDGE LIB INFORM, P14 ZHAO JQ, 2007, CHINESE ADM ZHOU W, 2007, GROUP EC RES, P257 NR 20 TC 0 Z9 0 U1 0 U2 2 PU UNIV ELECTRONIC SCIENCE & TECHNOLOGY CHINA PRESS PI CHENGDU PA UESTC PRESS, CHENGDU, 610054, PEOPLES R CHINA BN 978-7-5647-0139-0 PY 2009 BP 633 EP 640 PG 8 WC Public Administration WE Conference Proceedings Citation Index - Social Science & Humanities (CPCI-SSH) SC Public Administration GA BMV79 UT WOS:000273673900092 DA 2024-09-05 ER PT J AU Edelmann, A Moody, J Light, R AF Edelmann, Achim Moody, James Light, Ryan TI Disparate foundations of scientists' policy positions on contentious biomedical research SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE science-public relations; opinion formation; biomedical research; topic modeling; collaboration networks ID AIRBORNE TRANSMISSION; SOCIAL-INFLUENCE; DECISION-MAKING; INFLUENZA-VIRUS; ADVICE; SCIENCE AB What drives scientists' position taking on matters where empirical answers are unavailable or contradictory? We examined the contentious debate on whether to limit experiments involving the creation of potentially pandemic pathogens. Hundreds of scientists, including Nobel laureates, have signed petitions on the debate, providing unique insights into how scientists take a public stand on important scientific policies. Using 19,257 papers published by participants, we reconstructed their collaboration networks and research specializations. Although we found significant peer associations overall, those opposing "gain-of-function" research are more sensitive to peers than are proponents. Conversely, specializing in fields directly related to gain-of-function research (immunology, virology) predicts public support better than specializing in fields related to potential pathogenic risks (such as public health) predicts opposition. These findings suggest that different social processes might drive support compared with opposition. Supporters are embedded in a tight-knit scholarly community that is likely both more familiar with and trusting of the relevant risk mitigation practices. Opponents, on the other hand, are embedded in a looser federation of widely varying academic specializations with cognate knowledge of disease and epidemics that seems to draw more heavily on peers. Understanding how scientists' social embeddedness shapes the policy actions they take is important for helping sides interpret each other's position accurately, avoiding echo-chamber effects, and protecting the role of scientific expertise in social policy. C1 [Edelmann, Achim] Univ Bern, Inst Sociol, CH-3012 Bern, Switzerland. [Edelmann, Achim; Moody, James] Duke Univ, Duke Network Anal Ctr, Durham, NC 27708 USA. [Moody, James] Duke Univ, Dept Sociol, Durham, NC 27708 USA. [Moody, James] King Abdulaziz Univ, Jeddah 21589, Saudi Arabia. [Light, Ryan] Univ Oregon, Dept Sociol, Eugene, OR 97403 USA. C3 University of Bern; Duke University; Duke University; King Abdulaziz University; University of Oregon RP Edelmann, A (corresponding author), Univ Bern, Inst Sociol, CH-3012 Bern, Switzerland.; Edelmann, A (corresponding author), Duke Univ, Duke Network Anal Ctr, Durham, NC 27708 USA. EM achim.edelmann@gmail.com RI Light, Ryan/AAA-1684-2019 OI Edelmann, Achim/0000-0001-8293-674X; Light, Ryan/0000-0002-1508-154X FU James S. McDonnell Foundation Complexity Scholars award; NIH [HD075712] FX We thank participants in the Duke Network Analysis Center Seminar Series and Katharina V. Koelle for valuable input on earlier drafts, the editor and two anonymous reviewers for their careful reading of our manuscript and constructive comments, as well as Faculty of 1000 for providing us with a list of their members. We acknowledge partial support from the James S. McDonnell Foundation Complexity Scholars award and from an NIH Grant (HD075712). CR Abelson R. P., 1968, Theories of Cognitive Consistency: A Sourcebook [Anonymous], US DEP HLTH HUMAN SE [Anonymous], SCI SCI POSITION STA [Anonymous], 2009, EPISTEMIC CULTURES S [Anonymous], SCI NOW [Anonymous], SCI NOW [Anonymous], PUBLIC PAPERS PRESID [Anonymous], 2013, LAB LIFE CONSTRUCTIO, DOI DOI 10.1515/9781400820412 [Anonymous], CAMBRIDGE WORKING GR [Anonymous], BIOL CHOOSE SIDES SA [Anonymous], 2013, SCIENCE, DOI DOI 10.1126/science.1235140 [Anonymous], 1957, Selective Exposure Theory Azoulay P, 2017, AM J SOCIOL, V122, P1223, DOI 10.1086/689890 Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993 Bonaccio S, 2006, ORGAN BEHAV HUM DEC, V101, P127, DOI 10.1016/j.obhdp.2006.07.001 Bond RM, 2012, NATURE, V489, P295, DOI 10.1038/nature11421 Bourdieu P., 2004, POLITY Casadevall A, 2014, MBIO, V5, DOI 10.1128/mBio.01730-14 Cetina Karin Knorr, 1981, MANUFACTURE KNOWLEDG COLLINS HM, 1974, SCI STUD, V4, P165, DOI 10.1177/030631277400400203 Crane D., 1972, Invisible colleges. Diffusion of knowledge in scientific communities Evans JA, 2010, AM J SOCIOL, V116, P389, DOI 10.1086/653834 Fouchier RAM, 2012, SCIENCE, V335, P400, DOI [10.1126/science.335.6067.400, 10.1126/science.1219412] Frickel S, 2005, AM SOCIOL REV, V70, P204, DOI 10.1177/000312240507000202 Friedkin NoahE., 2011, Structural Analysis in the Social Sciences Gauchat G, 2015, SOC FORCES, V94, P723, DOI 10.1093/sf/sov040 GIERYN TF, 1983, AM SOCIOL REV, V48, P781, DOI 10.2307/2095325 Habermas Jurgen, 1985, THEORY COMMUNICATIVE, V2 Harvey N, 1997, ORGAN BEHAV HUM DEC, V70, P117, DOI 10.1006/obhd.1997.2697 Herfst S, 2012, SCIENCE, V336, P1534, DOI 10.1126/science.1213362 Herfst S, 2012, J INFECT DIS, V205, P1628, DOI 10.1093/infdis/jis257 Imai M, 2012, NATURE, V486, P420, DOI 10.1038/nature10831 Irwin Alan., 2003, Misunderstanding Science?: The Public Reconstruction of Science and Technology Shwed U, 2010, AM SOCIOL REV, V75, P817, DOI 10.1177/0003122410388488 Steglich C, 2010, SOCIOL METHODOL, V40, P329, DOI 10.1111/j.1467-9531.2010.01225.x Sutton TC, 2014, J VIROL, V88, P6623, DOI 10.1128/JVI.02765-13 Watanabe T, 2014, CELL HOST MICROBE, V15, P692, DOI 10.1016/j.chom.2014.05.006 Yaniv I, 2000, ORGAN BEHAV HUM DEC, V83, P260, DOI 10.1006/obhd.2000.2909 Yaniv I, 2004, ORGAN BEHAV HUM DEC, V93, P1, DOI 10.1016/j.obhdp.2003.08.002 Zaraket H, 2013, J VIROL, V87, P4826, DOI 10.1128/JVI.03110-12 NR 40 TC 15 Z9 15 U1 1 U2 13 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 EI 1091-6490 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD JUN 13 PY 2017 VL 114 IS 24 BP 6262 EP 6267 DI 10.1073/pnas.1613580114 PG 6 WC Multidisciplinary Sciences WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Science & Technology - Other Topics GA EX4BV UT WOS:000403179300045 PM 28559310 OA Green Published, Bronze DA 2024-09-05 ER PT J AU Li, XL Long, YJ Fan, MX Chen, Y AF Li, Xueling Long, Yujie Fan, Meixi Chen, Yong TI Drilling down artificial intelligence in entrepreneurial management: A bibliometric perspective SO SYSTEMS RESEARCH AND BEHAVIORAL SCIENCE LA English DT Article DE artificial intelligence; bibliometrics; entrepreneurial management; knowledge mapping ID PERFORMANCE; SCIENCE; IMPACT; AI; TECHNOLOGY; KNOWLEDGE; FRAMEWORK; INTERNET; SYSTEMS; SERVICE AB Artificial intelligence (AI) has been adopted in entrepreneurial practices and generates huge economic benefits. It creates a number of digital start-ups and changes the way in which entrepreneurial research and practice interact. Existing studies on the cross-field of AI and entrepreneurial management are scattered. Accordingly, this paper conducts a comprehensive and systematic review of existing studies on AI in entrepreneurial management by applying VOSviewer, a knowledge graph tool, based on the data obtained from the Web of Science. The study standardizes and analyses prominent research topics, interprets research hotspots and points out directions for further research. C1 [Li, Xueling; Long, Yujie; Fan, Meixi] Jilin Univ, Sch Business & Management, 2699 Qianjin St, Changchun 130015, Peoples R China. [Chen, Yong] Texas A&M Int Univ, Sch Business, Laredo, TX USA. C3 Jilin University; Texas A&M University System; Texas A&M International University RP Long, YJ (corresponding author), Jilin Univ, Sch Business & Management, 2699 Qianjin St, Changchun 130015, Peoples R China. EM jlulyj@163.com OI Long, Yujie/0000-0001-7307-5773 FU National Natural Science Foundation of China [71872068, 72091310-72091315]; Social Science Foundation of Jilin Province [2020A06]; 2021 Jilin University "New Liberal Arts" Innovation Team Project; Postgraduate Education and Teaching Reform Project of Jilin University [2021JGZ11]; School-based Application Project of Jilin University [2020XGZX07]; Postgraduate Innovation Research Program of Jilin University [101832020CX053] FX National Natural Science Foundation of China, Grant/Award Numbers: 71872068, 72091310-72091315; Social Science Foundation of Jilin Province, Grant/Award Number: 2020A06; 2021 Jilin University "New Liberal Arts" Innovation Team Project; Postgraduate Education and Teaching Reform Project of Jilin University, Grant/Award Number: 2021JGZ11; School-based Application Project of Jilin University, Grant/Award Number: 2020XGZX07; Postgraduate Innovation Research Program of Jilin University, Grant/Award Number: 101832020CX053 CR Akgün AA, 2010, TIJDSCHR ECON SOC GE, V101, P538, DOI 10.1111/j.1467-9663.2010.00630.x Akman E, 2020, J MANAG ANAL, V7, P231, DOI 10.1080/23270012.2020.1731719 Akter S, 2022, ANN OPER RES, V308, P7, DOI 10.1007/s10479-020-03620-w Analytics C., 2017, Web of Science Core Collection, Citation database Aquilani B, 2020, SUSTAINABILITY-BASEL, V12, DOI 10.3390/su12218943 Bandara R, 2020, ELECTRON MARK, V30, P629, DOI 10.1007/s12525-019-00375-6 Basri W, 2020, INT J COMPUT INT SYS, V13, P142, DOI 10.2991/ijcis.d.200127.002 Batova M, 2021, J IND INTEGR MANAG, V06, P15, DOI 10.1142/S2424862220500256 Borgman CL, 2002, ANNU REV INFORM SCI, V36, P3 Brown TE, 2017, BUS HORIZONS, V60, P819, DOI 10.1016/j.bushor.2017.07.008 Cai HM, 2018, ENTERP INF SYST-UK, V12, P1239, DOI 10.1080/17517575.2018.1442933 Cai YJ, 2020, INT J PROD ECON, V229, DOI 10.1016/j.ijpe.2020.107729 Chen H, 2021, J MANAG ANAL, V8, P36, DOI 10.1080/23270012.2020.1852895 Chen H, 2022, J MANAG ANAL, V9, P17, DOI 10.1080/23270012.2021.1980445 Chong AYL, 2014, EXPERT SYST APPL, V41, P221, DOI 10.1016/j.eswa.2013.07.023 Coad A, 2020, SMALL BUS ECON, V55, P541, DOI 10.1007/s11187-019-00203-3 Denton DK, 1997, INT J TECHNOL MANAGE, V14, P249, DOI 10.1504/IJTM.1997.001716 Duan L, 2012, IEEE T IND INFORM, V8, P679, DOI 10.1109/TII.2012.2188804 Eckhardt JT, 2003, J MANAGE, V29, P333, DOI 10.1177/014920630302900304 Faheem M, 2021, J IND INF INTEGR, V24, DOI 10.1016/j.jii.2021.100236 Fossen FM, 2021, J BUS RES, V125, P548, DOI 10.1016/j.jbusres.2019.09.019 Garbuio M, 2019, CALIF MANAGE REV, V61, P59, DOI 10.1177/0008125618811931 Garfield E, 2006, INT J EPIDEMIOL, V35, P1123, DOI 10.1093/ije/dyl189 Gashenko IV, 2020, J INTELLECT CAP, V21, P531, DOI 10.1108/JIC-11-2019-0275 Ghobakhloo M, 2019, J IND INF INTEGR, V16, DOI 10.1016/j.jii.2019.100107 GORDON WL, 1987, J SYST MANAGE, V38, P24 Gunning D, 2016, AI MAG, V37, P5, DOI 10.1609/aimag.v37i2.2624 Hämäläinen E, 2019, J IND INF INTEGR, V16, DOI 10.1016/j.jii.2019.100105 Hengstler M, 2016, TECHNOL FORECAST SOC, V105, P105, DOI 10.1016/j.techfore.2015.12.014 Huang BM, 2019, ENTERP INF SYST-UK, V13, P132, DOI 10.1080/17517575.2018.1493145 Huang CX, 2019, FUTURE GENER COMP SY, V101, P197, DOI 10.1016/j.future.2019.05.075 Huang MH, 2018, J SERV RES-US, V21, P155, DOI 10.1177/1094670517752459 Iandolo F, 2021, SYST RES BEHAV SCI, V38, P738, DOI 10.1002/sres.2731 Iansiti M, 2020, HARVARD BUS REV, V98, P59 Ilie C, 2019, SUSTAINABILITY-BASEL, V11, DOI 10.3390/su11082384 Ingaldi M, 2019, SUSTAINABILITY-BASEL, V11, DOI 10.3390/su11184830 Jarrahi MH, 2018, BUS HORIZONS, V61, P577, DOI 10.1016/j.bushor.2018.03.007 Jiang YX, 2009, SYST RES BEHAV SCI, V26, P661, DOI 10.1002/sres.967 Jin BE, 2020, BUS HORIZONS, V63, P301, DOI 10.1016/j.bushor.2020.01.004 Kalia P, 2021, COMPUT HUM BEHAV, V115, DOI 10.1016/j.chb.2020.106608 Kaminski JC, 2020, SMALL BUS ECON, V55, P627, DOI 10.1007/s11187-019-00218-w Kang Y, 2020, J MANAG ANAL, V7, P139, DOI 10.1080/23270012.2020.1756939 Lei JS, 2019, J IND INTEGR MANAG, V4, DOI 10.1142/S2424862219500088 Li FC, 2012, EXPERT SYST APPL, V39, P12213, DOI 10.1016/j.eswa.2012.04.055 Li HX, 2003, EXPERT SYST, V20, P60, DOI 10.1111/1468-0394.00226 Li SC, 2018, J IND INF INTEGR, V10, P1, DOI 10.1016/j.jii.2018.01.005 Li SC, 2013, IEEE T IND INFORM, V9, P2177, DOI 10.1109/TII.2012.2189222 Liebregts W, 2020, SMALL BUS ECON, V55, P589, DOI 10.1007/s11187-019-00205-1 Lin SJ, 2019, J INTELL FUZZY SYST, V37, P1893, DOI 10.3233/JIFS-179251 Lu Y, 2018, J IND INTEGR MANAG, V3, DOI 10.1142/S242486221850015X Lu Y, 2019, J MANAG ANAL, V6, P1, DOI 10.1080/23270012.2019.1570365 Makridakis S, 2017, FUTURES, V90, P46, DOI 10.1016/j.futures.2017.03.006 Mariani M, 2020, TOUR REV, V75, P299, DOI 10.1108/TR-06-2019-0259 Masurel E, 2002, GROWTH CHANGE, V33, P238, DOI 10.1111/0017-4815.00189 Miao ZY, 2020, FRONT PSYCHOL, V11, DOI 10.3389/fpsyg.2020.01615 Momtaz PP, 2021, STRATEGIC MANAGE J, V42, P558, DOI 10.1002/smj.3235 Munoko I, 2020, J BUS ETHICS, V167, P209, DOI 10.1007/s10551-019-04407-1 Norinder U, 2022, J MANAG ANAL, V9, P1, DOI 10.1080/23270012.2022.2031324 Obschonka M, 2020, SMALL BUS ECON, V55, P529, DOI 10.1007/s11187-019-00202-4 Omoteso K, 2012, EXPERT SYST APPL, V39, P8490, DOI 10.1016/j.eswa.2012.01.098 Palmié M, 2020, TECHNOL FORECAST SOC, V151, DOI 10.1016/j.techfore.2019.119779 Paschen J, 2019, J BUS IND MARK, V34, P1410, DOI 10.1108/JBIM-10-2018-0295 Perianes-Rodriguez A, 2016, J INFORMETR, V10, P1178, DOI 10.1016/j.joi.2016.10.006 Popkova EG, 2020, J INTELLECT CAP, V21, P565, DOI 10.1108/JIC-09-2019-0224 Prüfer J, 2020, SMALL BUS ECON, V55, P651, DOI 10.1007/s11187-019-00208-y QINGZHI Z, 2018, J IND INTEGR MANAG, V3 Reis C, 2020, J BUS RES, V117, P232, DOI 10.1016/j.jbusres.2020.05.053 Roberge J, 2020, BIG DATA SOC, V7, DOI 10.1177/2053951720919968 Samet RH, 2011, FUTURES, V43, P831, DOI 10.1016/j.futures.2011.05.025 Santos AI., 2017, The Sun Shines on Europe: Transparency of Financial Relationships in the Healthcare Sector Shi ZZ, 2007, DECIS SUPPORT SYST, V42, P2016, DOI 10.1016/j.dss.2004.11.006 Tan A., 2007, 13 ANN FUELS LUBES A Tan WA, 2008, IEEE T SYST MAN CY C, V38, P745, DOI 10.1109/TSMCC.2008.2001571 Townsend D M., 2019, Journal of Business Venturing Insights, V11, pe00126, DOI DOI 10.1016/J.JBVI.2019.E00126 Tung K, 2019, J MANAG ANAL, V6, P390, DOI 10.1080/23270012.2019.1671242 Van Eck N.J., 2014, Measuring Scholarly Impact: Methods and Practice, P285, DOI 10.1007/978-3-319-10377-8_13(InEng.) van Eck NJ, 2010, SCIENTOMETRICS, V84, P523, DOI 10.1007/s11192-009-0146-3 Vanhala M, 2020, J BUS RES, V106, P46, DOI 10.1016/j.jbusres.2019.09.009 Vidgen R, 2020, EUR J OPER RES, V281, P491, DOI 10.1016/j.ejor.2019.04.036 Viriyasitavat W, 2019, IEEE INTERNET THINGS, V6, P8155, DOI 10.1109/JIOT.2019.2925825 Waltman L, 2015, J INFORMETR, V9, P872, DOI 10.1016/j.joi.2015.08.001 Wang P, 2010, EXPERT SYST APPL, V37, P1071, DOI 10.1016/j.eswa.2009.06.104 Wang XL, 2021, J MANAG ANAL, V8, P351, DOI 10.1080/23270012.2021.1961318 Warner KSR, 2019, LONG RANGE PLANN, V52, P326, DOI 10.1016/j.lrp.2018.12.001 Wilson-Nash C, 2020, EUR J MARKETING, V54, P2621, DOI 10.1108/EJM-07-2019-0555 Wolfert S, 2017, AGR SYST, V153, P69, DOI 10.1016/j.agsy.2017.01.023 Wong LW, 2020, INT J INFORM MANAGE, V52, DOI 10.1016/j.ijinfomgt.2019.08.005 Xie XF, 2019, INT ENTREP MANAG J, V15, P503, DOI 10.1007/s11365-019-00562-z Xu L, 2005, INT J PROD RES, V43, P2397, DOI 10.1080/00207540500047259 Xu L.D., 2021, Systems Research and Behavioral Science, V38, P187, DOI 10.1002/sres.2776 Xu LD., 2014, ENTERPRISE INTEGRATI Xu LD, 2020, J IND INF INTEGR, V17, DOI 10.1016/j.jii.2020.100128 Da Xu L, 2013, SYST RES BEHAV SCI, V30, P211, DOI 10.1002/sres.2186 Xu LD, 2011, IEEE T IND INFORM, V7, P630, DOI 10.1109/TII.2011.2167156 Xu S, 2020, INT J CONTEMP HOSP M, V32, P2217, DOI 10.1108/IJCHM-05-2019-0505 Yuan RX, 2010, INFORM SYST FRONT, V12, P149, DOI 10.1007/s10796-008-9131-2 Zeng L, 2012, INFORM TECHNOL MANAG, V13, P297, DOI 10.1007/s10799-012-0123-z Zhang CM, 2021, J IND INF INTEGR, V23, DOI 10.1016/j.jii.2021.100224 Zhang CM, 2020, J IND INTEGR MANAG, V5, P165, DOI 10.1142/S2424862219500192 Zhang SX, 2020, SMALL BUS ECON, V55, P607, DOI 10.1007/s11187-019-00217-x Zhao R, 2019, MECH SYST SIGNAL PR, V115, P213, DOI 10.1016/j.ymssp.2018.05.050 Zhou SM, 2003, EXPERT SYST, V20, P163, DOI 10.1111/1468-0394.00240 Zhou SM, 2001, KNOWL-BASED SYST, V14, P243, DOI 10.1016/S0950-7051(01)00102-2 NR 103 TC 2 Z9 2 U1 16 U2 106 PU WILEY PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1092-7026 EI 1099-1743 J9 SYST RES BEHAV SCI JI Syst. Res. Behav. Sci. PD MAY PY 2022 VL 39 IS 3 SI SI BP 379 EP 396 DI 10.1002/sres.2855 EA JUN 2022 PG 18 WC Management; Social Sciences, Interdisciplinary WE Social Science Citation Index (SSCI) SC Business & Economics; Social Sciences - Other Topics GA 2P0YQ UT WOS:000804474900001 DA 2024-09-05 ER PT C AU Parra-Domínguez, J Manzano, S De la Prieta, F Prieto, J AF Parra-Dominguez, Javier Manzano, Sergio De la Prieta, Fernando Prieto, Javier BE Omatu, S Mehmood, R Sitek, P Cicerone, S Rodriguez, S TI The Importance of Classifying Artificial Intelligence as a Digital Asset. A Bibliometric Study. SO 19TH INTERNATIONAL SYMPOSIUM ON DISTRIBUTED COMPUTING AND ARTIFICIAL INTELLIGENCE SE Lecture Notes in Networks and Systems LA English DT Proceedings Paper CT 19th International Symposium on Distributed Computing and Artificial Intelligence CY JUL 13-15, 2022 CL L'Aquila, ITALY DE Digital assets; Artificial intelligence; Bibliometrics ID BLOCKCHAIN; PRODUCTIVITY AB The importance of Artificial Intelligence technology is manifested in the advancement of society. However, there is a growing need for the economic and business support that Artificial Intelligence can offer to be considered in its involvement as a digital asset. The motivation of this paper is precise to reflect the importance for academia of the concept of Artificial Intelligence as a digital asset since its capacity to generate intangible value for companies will make them more competitive. The main result is that Artificial Intelligence represents a significant percentage of the studies on digital assets, but not the other way around; this shows that most writings published so far have addressed the issue by focusing more on the technical aspect of the study (understood as the development of IT systems or solutions, for example). All shows the concern of the scientific community for the technological progress of the link between Artificial Intelligence and digital assets, but not in the sense of progress towards greater valuation of entities and organisations in economic and financial terms, which will make companies more competitive in their access to financing, for example. All of the above is refuted by the conceptualisation of current work, which works from the point of view of the advancement of artificial intelligence in specific areas of the company, such as marketing or finance, or sectors such as manufacturing, but not from an aggregate point of view as presented here. C1 [Parra-Dominguez, Javier; Manzano, Sergio; De la Prieta, Fernando; Prieto, Javier] Univ Salamanca, BISITE Res Grp, Salamanca, Spain. [Parra-Dominguez, Javier; Manzano, Sergio; De la Prieta, Fernando; Prieto, Javier] IoT Digital Innovat Hub, Valladolid, Spain. [Prieto, Javier] AIR Inst, Deep Tech Lab, Valladolid, Spain. C3 University of Salamanca RP Manzano, S (corresponding author), Univ Salamanca, BISITE Res Grp, Salamanca, Spain.; Manzano, S (corresponding author), IoT Digital Innovat Hub, Valladolid, Spain. EM javierparra@usal.es; smanzano@usal.es; fer@usal.es; javierp@usal.es RI Parra, Javier/ABE-5866-2021; Prieto, Javier/H-3704-2015; De la Prieta, Fernando/H-4738-2015 OI Parra, Javier/0000-0002-1088-9152; Prieto, Javier/0000-0001-8175-2201; De la Prieta, Fernando/0000-0002-8239-5020 FU European Regional Development Fund (ERDF) through the Interreg Spain-Portugal V -A Program (POCTEP) [0677_DISRUPTIVE_2_E] FX This work has been partially supported by the European Regional Development Fund (ERDF) through the Interreg Spain-Portugal V -A Program (POCTEP) under gran 0677_DISRUPTIVE_2_E (Intensifying the activity of Digital Innovation Hubs within the PocTep region to boost the development of disruptive and last generation ICTs through cross-border cooperation). CR Abrishambaf O, 2017, ENERGIES, V10, DOI 10.3390/en10060806 Agrawal D, 2020, ADCAIJ-ADV DISTRIB C, V9, P91, DOI 10.14201/ADCAIJ20209291105 Ahmad P, 2021, ADCAIJ-ADV DISTRIB C, V10, P197, DOI 10.14201/ADCAIJ2021102197208 [Anonymous], 2013, P 2013 WORKSHOP LIVI [Anonymous], 2019, C BUS LAW REV, V443 Belanche D, 2021, J RETAIL CONSUM SERV, V61, DOI 10.1016/j.jretconser.2021.102585 Bertrand Sebastien, 2021, Distributed Computing and Artificial Intelligence, Special Sessions, 17th International Conference. Advances in Intelligent Systems and Computing (AISC 1242), P201, DOI 10.1007/978-3-030-53829-3_21 Blanke T, 2014, CHANDOS INF PROF SER, P1 Capel E.H., 2015, BERKELEY TECHNOLOGY, V30, P1211 Casado-Vara R, 2018, BLOCKSYS'18: PROCEEDINGS OF THE 1ST BLOCKCHAIN-ENABLED NETWORKED SENSOR SYSTEMS, P19, DOI 10.1145/3282278.3282282 Schmidt WC, 2020, ADCAIJ-ADV DISTRIB C, V9, P51, DOI 10.14201/ADCAIJ2020915159 Chen G, 2019, J ADVERTISING, V48, P347, DOI 10.1080/00913367.2019.1654421 Cock Vasquez S., 2016, THESIS U EAFIT Corchado JM, 2021, SENSORS-BASEL, V21, DOI 10.3390/s21010236 Corrado C, 2021, OXFORD REV ECON POL, V37, P435, DOI 10.1093/oxrep/grab018 Dhamija P, 2020, TQM J, V32, P869, DOI 10.1108/TQM-10-2019-0243 Gazafroudi AS, 2019, IET RENEW POWER GEN, V13, P952, DOI 10.1049/iet-rpg.2018.6023 Goodell JW, 2021, J BEHAV EXP FINANC, V32, DOI 10.1016/j.jbef.2021.100577 Han RY, 2021, IND MANAGE DATA SYST, V121, P2467, DOI 10.1108/IMDS-05-2021-0300 Harish AR, 2021, COMPUT IND ENG, V151, DOI 10.1016/j.cie.2020.107001 Hernandez-Nieves Elena., 2020, DISTRIBUTED COMPUTIN, P303, DOI DOI 10.1007/978-3-030-53036-5_33 Iotti Eleonora, 2021, Distributed Computing and Artificial Intelligence, 17th International Conference. Advances in Intelligent Systems and Computing (AISC 1237), P60, DOI 10.1007/978-3-030-53036-5_7 Kaplan AM, 2010, BUS HORIZONS, V53, P59, DOI 10.1016/j.bushor.2009.09.003 Khan R, 2021, ADCAIJ-ADV DISTRIB C, V10, P281, DOI 10.14201/ADCAIJ2021103281291 Kumar S., 2020, Libr. Philos. Pract., V2020, P1 La Rosa A., 2016, Correspondencias & Analisis, V6, P47, DOI [10.24265/cian.2016.n6.03, DOI 10.24265/CIAN.2016.N6.03] Li TC, 2019, INFORM FUSION, V51, P233, DOI 10.1016/j.inffus.2019.02.009 Loukanova Roussanka, 2021, Distributed Computing and Artificial Intelligence, 17th International Conference. Advances in Intelligent Systems and Computing (AISC 1237), P321, DOI 10.1007/978-3-030-53036-5_35 Mezquita Yeray, 2021, Distributed Computing and Artificial Intelligence, Special Sessions, 17th International Conference. Advances in Intelligent Systems and Computing (AISC 1242), P189, DOI 10.1007/978-3-030-53829-3_20 Mezquita Y, 2022, LOG J IGPL, V30, P1017, DOI 10.1093/jigpal/jzac010 Miric M, 2019, RES POLICY, V48, DOI 10.1016/j.respol.2019.01.012 Nielsen Izabela, 2021, Distributed Computing and Artificial Intelligence, Special Sessions, 17th International Conference. Advances in Intelligent Systems and Computing (AISC 1242), P5, DOI 10.1007/978-3-030-53829-3_1 Pérez-Pons ME, 2020, ADCAIJ-ADV DISTRIB C, V9, P47, DOI 10.14201/ADCAIJ2020944754 Plaza-Hernandez Marta, 2021, Distributed Computing and Artificial Intelligence, Special Sessions, 17th International Conference. Advances in Intelligent Systems and Computing (AISC 1242), P215, DOI 10.1007/978-3-030-53829-3_24 Queiroz J, 2020, ADCAIJ-ADV DISTRIB C, V9, P31, DOI 10.14201/ADCAIJ2020943145 Ramo DE, 2012, J MED INTERNET RES, V14, DOI 10.2196/jmir.1878 Riahi Y, 2021, EXPERT SYST APPL, V173, DOI 10.1016/j.eswa.2021.114702 Rodgers S, 2021, J ADVERTISING, V50, P1, DOI 10.1080/00913367.2020.1868233 Roseiro P, 2020, ADCAIJ-ADV DISTRIB C, V9, P95, DOI 10.14201/ADCAIJ20209495106 Sifah EB, 2018, J SUPERCOMPUT, V74, P4945, DOI 10.1007/s11227-018-2308-7 Toygar A., 2013, J. Int. Technol. Inf. Manag, V22, P7 Vakratsas D, 2020, J ADVERTISING, V50, P39, DOI 10.1080/00913367.2020.1843090 Yigitcanlar T., 2020, Journal of Open Innovation: Technology, Market, and Complexity, V6, P187, DOI DOI 10.3390/JOITMC6040187 NR 43 TC 0 Z9 0 U1 2 U2 10 PU SPRINGER INTERNATIONAL PUBLISHING AG PI CHAM PA GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND SN 2367-3370 EI 2367-3389 BN 978-3-031-20858-4; 978-3-031-20859-1 J9 LECT NOTE NETW SYST PY 2023 VL 583 BP 154 EP 164 DI 10.1007/978-3-031-20859-1_16 PG 11 WC Computer Science, Artificial Intelligence; Computer Science, Theory & Methods WE Conference Proceedings Citation Index - Science (CPCI-S) SC Computer Science GA BU6TO UT WOS:000929025600016 DA 2024-09-05 ER PT J AU de Stefano, E Santos, MPD Balassiano, R AF de Stefano, Ercilia de Sequeira Santos, Marcio Peixoto Balassiano, Ronaldo TI Development of a software for metric studies of transportation engineering journals SO SCIENTOMETRICS LA English DT Article DE Scientometrics; Informetrics; Bibliometrics; Artificial intelligence; Natural language processing; Transportation engineering AB This study intends to describe the development and results of a software designed to analyze millions of articles in the area of Transportation Engineering. This tool intends to support Transportation Planning activities by providing additional information about trends, references and technologies. In order to develop this software, techniques from scientometrics, bibliometrics and informetrics were employed with the support of tools from Computer Science, such as Artificial Intelligence, Data Mining and Natural Language Processing. The result of this study is a structured database that allows browsing the change of interest in different topics along the years in areas related to Transportation Engineering. When analyzing a given area, the database is capable of identifying which authors published works in that area, allowing the identification of specialists and related papers. In addition, the software responsible for creating this database is capable of performing the same analysis in academic corpora of other areas of study. C1 [de Stefano, Ercilia; de Sequeira Santos, Marcio Peixoto; Balassiano, Ronaldo] COPPE UFRJ, Transportat Engn Program PET, Rio De Janeiro, Brazil. C3 Universidade Federal do Rio de Janeiro RP de Stefano, E (corresponding author), COPPE UFRJ, Transportat Engn Program PET, Rio De Janeiro, Brazil. EM ercilia@pet.coppe.ufrj.br; marcio@pet.coppe.ufrj.br; ronaldo@pet.coppe.ufrj.br CR Aggarwal N, 2012, ADV ENG SOFTW, V47, P164, DOI 10.1016/j.advengsoft.2011.12.013 Aizawa A, 2003, INFORM PROCESS MANAG, V39, P45, DOI 10.1016/S0306-4573(02)00021-3 [Anonymous], 2001, CHALLENGE SCIENTOMET Björneborn L, 2004, J AM SOC INF SCI TEC, V55, P1216, DOI 10.1002/asi.20077 Brin S., 2001, TECHNICAL REPORT Furlan B, 2013, DECIS SUPPORT SYST, V55, P710, DOI 10.1016/j.dss.2013.02.002 Garfield E., 2000, USE J CITATION REPOR He W, 2013, INT J INFORM MANAGE, V33, P464, DOI 10.1016/j.ijinfomgt.2013.01.001 Hong TP, 2013, APPL INTELL, V38, P502, DOI 10.1007/s10489-012-0377-5 Jacomy M., 2009, 3 INT AAAI C WEBL SO Jurish B., 2013, JLCL, V28, P61 Leskovec J, 2014, MINING OF MASSIVE DATASETS, 2ND EDITION, P1 Leydesdorff L., 2013, SCIENTOMETRICS SCH I Markscheffel B., 2011, ONTOLOGY BASED VISUA Princeton University, 2015, WORDNET Sage AP., 1990, Concise Encyclopedia of Information Processing in Systems [18] Silva J. A. D., 2001, CIENTOMETRIA METRICA, DOI [10.1590/S0103-863X2001000200002, DOI 10.1590/S0103-863X2001000200002] Spinak E., 1996, Diccionario Enciclopedico de Bibliometria, Cienciometria e Informetria Tague-Sutcliffe J., 1992, INTRO INFORMETRICS Van Noorden R, 2014, GLOBAL SCI OUTPUT DO Yue X., 2012, INT WORKSH INF EL EN NR 21 TC 3 Z9 3 U1 0 U2 53 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0138-9130 EI 1588-2861 J9 SCIENTOMETRICS JI Scientometrics PD DEC PY 2016 VL 109 IS 3 BP 1579 EP 1591 DI 10.1007/s11192-016-2152-6 PG 13 WC Computer Science, Interdisciplinary Applications; Information Science & Library Science WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Computer Science; Information Science & Library Science GA EE1JA UT WOS:000389336100010 DA 2024-09-05 ER PT C AU Scanlon, E O'Shea, T McAndrew, P AF Scanlon, Eileen O'Shea, Tim McAndrew, Patrick GP Assoc Comp Machinery TI Learning in the Open: A Research Agenda for MOOCs SO CSCW'17: COMPANION OF THE 2017 ACM CONFERENCE ON COMPUTER SUPPORTED COOPERATIVE WORK AND SOCIAL COMPUTING LA English DT Proceedings Paper CT ACM Conference on Computer Supported Cooperative Work and Social Computing (CSCW) CY FEB 25-MAR 01, 2017 CL Portland, OR DE collaboration; distance learning; online learning; research agenda; evidence hub AB The development of online distance learning and the early years of the recent MOOC phenomenon leads to a mix of lessons from experience and emergent findings from studies in new contexts that require further reflection and research. Seven issues are identified from this combination each of which require attention to allow evidence-based practice in MOOC design and development. Some preliminary hypotheses are presented and an approach to interrogating evidence to develop and evaluate these hypotheses by the construction of an Evidence Hub is proposed as a next step to this work in progress. C1 [Scanlon, Eileen; McAndrew, Patrick] IET Open Univ, Milton Keynes MK7 6AA, Bucks, England. [O'Shea, Tim] Univ Edinburgh, Edinburgh EH8 9YL, Midlothian, Scotland. C3 University of Edinburgh RP Scanlon, E (corresponding author), IET Open Univ, Milton Keynes MK7 6AA, Bucks, England. EM eileen.scanlon@open.ac.uk; principal@ed.ac.uk; IET-Director@open.ac.uk CR [Anonymous], 2013, 3 INT C LEARN AN KNO Ferguson R., 2016, MOOCs: What the Open University research tells us Ferguson Rebecca, 2014, MOOC SUPPORT STRUCTU Jordan K, 2014, INT REV RES OPEN DIS, V15, DOI 10.19173/irrodl.v15i1.1651 McAndrew P, 2013, SCIENCE, V342, P1450, DOI 10.1126/science.1239686 McAndrew Patrick, 2013, OPEN ED RESOURCES IN, P65 McAuley B., 2010, The MOOC model for digital practice Papathoma Tina, 2015, Design for Teaching and Learning in a Networked World. 10th European Conference on Technology-Enhanced Learning, EC-TEL 2015. Proceedings: LNCS 9307, P617, DOI 10.1007/978-3-319-24258-3_72 Ross S., 1995, OPEN SCI DISTANCE TE Sharples M, 2016, LECT NOTES COMPUT SC, V9891, P490, DOI 10.1007/978-3-319-45153-4_48 Siemens G., 2012, WHAT IS THEORY UNDER NR 11 TC 0 Z9 0 U1 0 U2 1 PU ASSOC COMPUTING MACHINERY PI NEW YORK PA 1515 BROADWAY, NEW YORK, NY 10036-9998 USA BN 978-1-4503-4688-7 PY 2017 BP 303 EP 306 DI 10.1145/3022198.3026323 PG 4 WC Computer Science, Information Systems; Computer Science, Software Engineering; Social Sciences, Interdisciplinary WE Conference Proceedings Citation Index - Science (CPCI-S); Conference Proceedings Citation Index - Social Science & Humanities (CPCI-SSH) SC Computer Science; Social Sciences - Other Topics GA BL7JF UT WOS:000455085000075 DA 2024-09-05 ER PT J AU Saeed, MA Al Qunayeer, HS AF Saeed, Murad Abdu Al Qunayeer, Huda Suleiman TI Can we engage postgraduates in active research methodology learning? Challenges, strategies and evaluation of learning SO INTERNATIONAL JOURNAL OF RESEARCH & METHOD IN EDUCATION LA English DT Article DE Research methodology; active learning; postgraduates; challenges; evaluation of learning ID TEACHING-RESEARCH METHODS; STUDENTS; PEDAGOGY; SCIENCE AB Due to the complex nature of research methodology courses, the current study focused on implementing the active teaching and learning approach to a postgraduate research method course in a Malaysian university over an academic semester. A qualitative analysis of observations, instructor-learner interactional exchanges, students' drafts of tasks and pre-course and focus group discussion was performed. The findings revealed three types of challenges: student-oriented challenges, subject-matter-related challenges and instructor-oriented challenges. Three main pedagogical strategies: instructional scaffolding, peer scaffolding and engaging the postgraduates in drafting their tasks were employed as a response to these challenges. Although the active teaching and learning practices resulted into students' enhancement of the assigned research methodology tasks and positive research learning experience, such practices were time and effort-consuming. Therefore, future research will need to examine the applicability of our active teaching and learning approach to research methodology courses in different contexts. C1 [Saeed, Murad Abdu] Qassim Univ, Unaizah Coll Sci & Arts, Qasim, Saudi Arabia. [Al Qunayeer, Huda Suleiman] Qassim Univ, Unaizah Coll Sci & Arts, Dept English, Qasim, Saudi Arabia. C3 Qassim University; Qassim University RP Saeed, MA (corresponding author), Qassim Univ, Unaizah Coll Sci & Arts, Qasim, Saudi Arabia. EM muradsaeed16@yahoo.com RI Saeed, Murad Abdu/R-7669-2017 OI Saeed, Murad Abdu/0000-0003-2933-7929 CR An H, 2009, COMPUT EDUC, V53, P749, DOI 10.1016/j.compedu.2009.04.015 [Anonymous], 2005, J U TEACHING LEARNIN Ball C., 2006, INT J TEACHING LEARN, V17, P147, DOI DOI 10.5430/IJHE.V7N2P175 Benson A., 2003, Active Learning in Higher Education, V4, P39, DOI DOI 10.1177/1469787403004001004 Braguglia K.H., 2012, American Journal of Business Education, V5, P347 Braun V., 2006, QUAL RES PSYCHOL, V3, P77, DOI [10.1191/1478088706qp063oa, DOI 10.1191/1478088706QP063OA] Llamas JMC, 2011, INT J SOC RES METHOD, V14, P77, DOI 10.1080/13645579.2010.492136 Earley MA, 2014, TEACH HIGH EDUC, V19, P242, DOI 10.1080/13562517.2013.860105 Edwards D., 2004, J FURTH HIGHER EDUC, V28, P195 Ellis R. A., 2016, REV EDUC, V4, P49 Engbers TA, 2016, TEACH PUBLIC ADMIN, V34, P270, DOI 10.1177/0144739416640850 Faust JL., 1998, Journal onExcellence in College Teaching, V9, P3, DOI [10.5926/arepj1962.47.029, DOI 10.5926/AREPJ1962.47.029] Gibbons P, 2003, TESOL QUART, V37, P247, DOI 10.2307/3588504 Greenwald M., 2006, Communication Disorder Quarterly, V27, P173, DOI [10.1177/15257401060270030501, DOI 10.1177/15257401060270030501] Howard C, 2015, INT J SOC RES METHOD, V18, P511, DOI 10.1080/13645579.2015.1062625 Hudson B, 2006, BRIT J EDUC TECHNOL, V37, P577, DOI 10.1111/j.1467-8535.2006.00553.x Jakeman RC, 2017, TEACH HIGH EDUC, V22, P207, DOI 10.1080/13562517.2016.1237494 Keenan K, 2012, J GEOGR, V111, P224, DOI 10.1080/00221341.2011.653651 Kilburn D, 2014, BRIT J EDUC STUD, V62, P191, DOI 10.1080/00071005.2014.918576 Kothari C. R., 2004, Research Methodology Lewthwaite S, 2016, BRIT J EDUC STUD, V64, P413, DOI 10.1080/00071005.2016.1197882 Lundahl BW, 2008, J TEACH SOC WORK, V28, P273, DOI 10.1080/08841230802179373 Lyster R., 2002, International Journal of Educational Research, V37, P237 Murtonen M, 2015, TEACH HIGH EDUC, V20, P684, DOI 10.1080/13562517.2015.1072152 Nind M, 2018, INT J RES METHOD EDU, V41, P398, DOI 10.1080/1743727X.2018.1427057 Nind M, 2018, INT J INCLUSIVE EDUC, V22, P74, DOI 10.1080/13603116.2017.1355413 Roman TA, 2018, INT J RES METHOD EDU, V41, P447, DOI 10.1080/1743727X.2018.1452199 Vandiver D.M., 2010, Active Learning in Higher Education, V11, P31, DOI DOI 10.1177/1469787409355877 Vygotsky LS, 1978, Mind in Society: Development of Higher Psychological Processes, DOI [DOI 10.2307/J.CTVJF9VZ4, 10.2307/j.ctvjf9vz4] Wagner C, 2011, STUD HIGH EDUC, V36, P75, DOI 10.1080/03075070903452594 Woo Y., 2007, Internet and Higher Education, V10, P15, DOI 10.1016/j.iheduc.2006.10.005 Yao CW, 2019, J FURTH HIGHER EDUC, V43, P959, DOI 10.1080/0309877X.2018.1429583 NR 32 TC 4 Z9 4 U1 1 U2 9 PU ROUTLEDGE JOURNALS, TAYLOR & FRANCIS LTD PI ABINGDON PA 2-4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND SN 1743-727X EI 1743-7288 J9 INT J RES METHOD EDU JI Int. J. Res. Method Educ. PD JAN 1 PY 2021 VL 44 IS 1 BP 3 EP 19 DI 10.1080/1743727X.2020.1728526 EA FEB 2020 PG 17 WC Education & Educational Research WE Emerging Sources Citation Index (ESCI) SC Education & Educational Research GA PW9WL UT WOS:000514976200001 DA 2024-09-05 ER PT C AU Sayce, S AF Sayce, Susan BE Remenyi, D TI Managing the Fear Factor (or how a Mini-Viva Assessment can Improve the Process of Learning for International Students) SO ECRM 2007: 6TH EUROPEAN CONFERENCE ON RESEARCH METHODOLOGY FOR BUSINESS AND MANAGEMENT STUDIES LA English DT Proceedings Paper CT 6th European Conference on Research Methodology for Business and Management Studies (ECRM) CY JUL 09-10, 2007 CL Univ Nova Lisboa, Lisbon, PORTUGAL HO Univ Nova Lisboa DE International students; research methods; mini-viva; deep learning; assessment ID EDUCATION AB This paper is about an exploration of international business student's learning through the use of mini-vivas as a form of assessment. It also includes an investigation of the meaning of a mini-viva for students who have a wide range of nationalities. Pedagogical research has indicated that using this form of summative assessment for large cohorts of international students maybe problematic (Carless 2002). However, experimentation with this model of assessment with MA business students in research methods has indicated that mini-vivas can enhance and consolidate the learning potential of international students. So in effect this paper is also about explaining why this has happened in relation to student's learning. C1 [Sayce, Susan] Bournemouth Univ, Bournemouth, Dorset, England. C3 Bournemouth University EM ssayce@bournemouth.ac.uk CR Ashcroft K, 2002, MANAGING TEACHING LE Berg B., 2004, Qualitative research methods for the social sciences, DOI DOI 10.2307/1317652 Boud D., 1995, Assessment for learning in higher education Brooks I., 2003, Organisational Behaviour, V2nd Bryman Alan., 2003, Social Research Methods, V4th Carless D., 2002, Assessment and Evaluation in Higher Education, V27, P353, DOI [https://doi.org/10.1080/0260293022000001364, DOI 10.1080/0260293022000001364] Case J, 2004, STUD HIGH EDUC, V29, P605, DOI 10.1080/0307507042000261571 Collis J., 2003, BUSINESS RES ENTWISTLE NJ, 1991, HIGH EDUC, V22, P205, DOI 10.1007/BF00132288 Flick U., 2009, INTRO QUALITATIVE RE, DOI DOI 10.1287/ORSC.13.6.618.493 Greer L., 2001, Assessment and Evaluation in Higher Education, V26, P127, DOI [https://doi.org/10.1080/02602930020018962, DOI 10.1080/02602930020018962] James D., 2000, Assessment: Social Practice and Social Product Leathwood C, 2006, HIGH EDUC, V52, P611, DOI 10.1007/s10734-005-2414-3 Mehta R., 2005, J. Macromol. Sci. Part C Polym. Rev, V45, P325, DOI DOI 10.1080/02602930500099102 Prosser M., 1999, UNDERSTANDING LEARNI Ramsden P., 2003, Learning to Teach in Higher Education, V2nd, DOI DOI 10.1080/03075079312331382498 Rust C., 1998, IMPROVING STUDENT LE Trigwell K, 1999, HIGH EDUC, V37, P57, DOI 10.1023/A:1003548313194 Yorke M, 2003, HIGH EDUC, V45, P477, DOI 10.1023/A:1023967026413 NR 19 TC 0 Z9 0 U1 0 U2 1 PU ACAD CONFERENCES LTD PI NR READING PA CURTIS FARM, KIDMORE END, NR READING, RG4 9AY, ENGLAND BN 978-1-905305-50-6 PY 2007 BP 275 EP 282 PG 8 WC Business; Management WE Conference Proceedings Citation Index - Social Science & Humanities (CPCI-SSH) SC Business & Economics GA BYT73 UT WOS:000300195700030 DA 2024-09-05 ER PT J AU Shaikh, AR Alhoori, H Sun, MY AF Shaikh, Abdul Rahman Alhoori, Hamed Sun, Maoyuan TI YouTube and science: models for research impact SO SCIENTOMETRICS LA English DT Article DE Social media; YouTube; Societal impact; Research impact; Science of science; MetaScience; Machine learning; Altmetrics; Scientometrics; Scholarly communication ID ALTMETRICS AB Video communication has been rapidly increasing over the past decade, with YouTube providing a medium where users can post, discover, share, and react to videos. There has also been an increase in the number of videos citing research articles, especially since it has become relatively commonplace for academic conferences to require video submissions. However, the relationship between research articles and YouTube videos is not clear, and the purpose of the present paper is to address this issue. We created new datasets using YouTube videos and mentions of research articles on various online platforms. We found that most of the articles cited in the videos are related to medicine and biochemistry. We analyzed these datasets through statistical techniques and visualization, and built machine learning models to predict (1) whether a research article is cited in videos, (2) whether a research article cited in a video achieves a level of popularity, and (3) whether a video citing a research article becomes popular. The best models achieved F1 scores between 80% and 94%. According to our results, research articles mentioned in more tweets and news coverage have a higher chance of receiving video citations. We also found that video views are important for predicting citations and increasing research articles' popularity and public engagement with science. C1 [Shaikh, Abdul Rahman; Alhoori, Hamed; Sun, Maoyuan] Northern Illinois Univ, De Kalb, IL 60115 USA. C3 Northern Illinois University RP Shaikh, AR (corresponding author), Northern Illinois Univ, De Kalb, IL 60115 USA. EM ashaikh2@niu.edu; alhoori@niu.edu; smaoyuan@niu.edu RI Rahman, Abdul/KBD-0934-2024 OI Alhoori, Hamed/0000-0002-4733-6586; Shaikh, Abdul Rahman/0000-0002-6046-4638; Sun, Maoyuan/0000-0002-0990-2620 FU NSF; Research and Artistry Opportunity Grant from Northern Illinois University; [SMA-2022443]; [IIS-2002082] FX AcknowledgementsThis research is supported in part by NSF Grants SMA-2022443, IIS-2002082, and the Research and Artistry Opportunity Grant from Northern Illinois University. CR AAO, 2021, VID SUBM INSTR AAO Agazio J, 2009, NURS EDUC, V34, P23, DOI 10.1097/01.NNE.0000343403.13234.a2 Akella AP, 2021, J INFORMETR, V15, DOI 10.1016/j.joi.2020.101128 Alexa, 2021, Alexa-top sites [Anonymous], 2012, P 21 INT C WORLD WID, DOI DOI 10.1145/2187836.2187870 [Anonymous], 2015, Incentives and Performance Beehler, 2020, GOING VIRAL TAKING Y Bonifati A., 2020, HOLDING C ONLINE LIV Borghol Y., 2012, Proceedings of the 18th ACM SIGKDD international conference on knowledge discovery and data mining, P1186, DOI [DOI 10.1145/2339530.2339717, 10.1145/2339530.2339717] Bornmann L, 2019, J INFORMETR, V13, P325, DOI 10.1016/j.joi.2019.01.008 Bornmann L, 2014, J INFORMETR, V8, P895, DOI 10.1016/j.joi.2014.09.005 CHI, 2021, TECHN REQ GUID VID C Chtouki Y., 2012, 2012 INT C INF TECHN, P1, DOI [DOI 10.1109/ITHET.2012.6246045, 10.1109/ITHET.2012.6246045] Falk MT, 2021, SCIENTOMETRICS, V126, P707, DOI 10.1007/s11192-020-03754-5 Figueiredo F, 2014, 32ND ANNUAL ACM CONFERENCE ON HUMAN FACTORS IN COMPUTING SYSTEMS (CHI 2014), P979, DOI 10.1145/2556288.2557285 Freeman C., 2020, PROC ACM HUM COMPUT, V4 Freeman C, 2019, ACM-IEEE J CONF DIG, P301, DOI 10.1109/JCDL.2019.00050 Hemminger BM, 2014, J ASSOC INF SCI TECH, V65, P2278, DOI 10.1002/asi.23124 Hovden R, 2013, J AM SOC INF SCI TEC, V64, P2326, DOI 10.1002/asi.22936 Jaffar AA, 2012, ANAT SCI EDUC, V5, P158, DOI 10.1002/ase.1268 Johnston ANB, 2018, NURSE EDUC PRACT, V31, P151, DOI 10.1016/j.nepr.2018.06.002 June S., 2014, Internal Education Studies, V7, P56, DOI [10.5539/ies.v7n8p56, DOI 10.5539/IES.V7N8P56] Khan GF, 2014, INTERNET RES, V24, P629, DOI 10.1108/IntR-05-2013-0085 Kousha K, 2022, SCIENTOMETRICS, V127, P3489, DOI 10.1007/s11192-022-04398-3 Liu MJ, 2022, J ASSOC INF SCI TECH, V73, P1065, DOI 10.1002/asi.24612 Ma CS, 2017, CIKM'17: PROCEEDINGS OF THE 2017 ACM CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, P467, DOI 10.1145/3132847.3132997 Madathil KC, 2015, HEALTH INFORM J, V21, P173, DOI 10.1177/1460458213512220 Pedregosa F, 2011, J MACH LEARN RES, V12, P2825 Pinto H., 2013, P 6 ACM INT C WEB SE, P365, DOI DOI 10.1145/2433396.2433443 Price M., 2020, COVID 19 FORCES C ON Rodriguez, 2021, YOUTUBE IS SOCIAL ME Shahzad M, 2022, J INFORMETR, V16, DOI 10.1016/j.joi.2022.101288 Shahzad M, 2022, J DATA INFO SCI, V7, P97, DOI 10.2478/jdis-2022-0003 Shaikh A.R, 2022, 2022 IEEE VIS C Shaikh AR, 2019, ACM-IEEE J CONF DIG, P400, DOI 10.1109/JCDL.2019.00089 Snelson C, 2012, BRIT J EDUC TECHNOL, V43, P119, DOI 10.1111/j.1467-8535.2010.01168.x Suciu, 2021, YOUTUBE REMAINS MOST Sud P, 2014, SCIENTOMETRICS, V98, P1131, DOI 10.1007/s11192-013-1117-2 Sugimoto CR, 2017, J ASSOC INF SCI TECH, V68, P2037, DOI 10.1002/asi.23833 Sun M., 2021, IEEE T VIS COMPUT GR, V28, P4741 Sun MY, 2022, IEEE T VIS COMPUT GR, V28, P54, DOI 10.1109/TVCG.2021.3114801 Susarla A, 2012, INFORM SYST RES, V23, P23, DOI 10.1287/isre.1100.0339 TechPostPlus, 2019, YOUT VID CAT LIST Thelwall M, 2018, J INFORMETR, V12, P237, DOI 10.1016/j.joi.2018.01.008 Trzcinski T, 2017, IEEE T MULTIMEDIA, V19, P2561, DOI 10.1109/TMM.2017.2695439 Welbourne DJ, 2016, PUBLIC UNDERST SCI, V25, P706, DOI 10.1177/0963662515572068 Xie L., 2015, 9 INT AAAI C WEB SOC YouTube, 2021, PRESS YOUT NR 48 TC 6 Z9 7 U1 6 U2 38 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0138-9130 EI 1588-2861 J9 SCIENTOMETRICS JI Scientometrics PD FEB PY 2023 VL 128 IS 2 BP 933 EP 955 DI 10.1007/s11192-022-04574-5 EA DEC 2022 PG 23 WC Computer Science, Interdisciplinary Applications; Information Science & Library Science WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Computer Science; Information Science & Library Science GA 8W6QB UT WOS:000895039100004 PM 36530773 OA Green Published, Bronze DA 2024-09-05 ER PT J AU Singh, N AF Singh, Nitin TI Big data technology: developments in current research and emerging landscape SO ENTERPRISE INFORMATION SYSTEMS LA English DT Article DE Big data; analytics; research themes; principal component analysis; citation analysis; co-citation analysis ID DATA ANALYTICS; INFORMATION-SYSTEMS; BUSINESS ANALYTICS; CITATION ANALYSIS; OPPORTUNITIES; CHALLENGES; COCITATION; IMPACT AB In this study, big data studies (01/2015-6/2018) are reviewed and several highly cited papers are identified, which indicates a growing interest in the area of big data. The papers and proceedings from international peer-reviewed journals and ranked conferences were reviewed. We employed Principal component analysis and citation and co-citation analysis to identify themes of research emanating from these studies. Citation and co-citation analysis reveals that there is cross-functional nature of big data research, which permeates different business sectors and is influenced by themes in engineering and information management. C1 [Singh, Nitin] IIM, Kashipur, India. C3 Indian Institute of Management (IIM System); Indian Institute of Management Kashipur RP Singh, N (corresponding author), IIM, Kashipur, India. EM nitin.singh@iimkashipur.ac.in RI SINGH, NITIN/JEO-5380-2023 CR Ahmad F., 2016, ENTERPRISE INFORM SY, V11, P1352 Ahmed MS, 2015, IEEE ST CONF RES DEV, P32, DOI 10.1109/SCORED.2015.7449348 [Anonymous], 2011, BIG DATA NEXT FRONTI [Anonymous], 2015, COMMUNICATIONS ASS I [Anonymous], HARVARD BUSINESS REV [Anonymous], 2015, PRINCIPAL COMPONENT Babiceanu RF, 2016, COMPUT IND, V81, P128, DOI 10.1016/j.compind.2016.02.004 Back B.-H., 2017, ACM INT C BIG DAT RE, P12, DOI [10.2460/ajvr.78.1.12, DOI 10.2460/AJVR.78.1.12] Baesens B., 2014, MIS Quarterly, V38, P629 Baesens B, 2017, MIT SLOAN MANAGE REV, V58, P20 Baughman AK, 2016, INTERFACES, V46, P33, DOI 10.1287/inte.2015.0820 Baumann P, 2017, IEEE INT CONF BIG DA, P67, DOI 10.1109/BigData.2017.8257912 Baumann P, 2016, INT J DIGIT EARTH, V9, P3, DOI 10.1080/17538947.2014.1003106 Benbernou S, 2017, IEEE INT CONF BIG DA, P74, DOI 10.1109/BigData.2017.8257913 Bhimani A, 2015, J INF TECHNOL-UK, V30, P66, DOI 10.1057/jit.2014.29 Bichler M, 2017, BUS INFORM SYST ENG+, V59, P77, DOI 10.1007/s12599-016-0461-1 Blei D, 2017, COMMUN ACM, V60, P24, DOI 10.1145/3079064 Brynjolfsson E., 2015, MIS Q, V40, P941, DOI DOI 10.25300/MISQ/2016/40.4.07 Chai S, 2017, MIT SLOAN MANAGE REV, V58, P57 Chen CLP, 2014, INFORM SCIENCES, V275, P314, DOI 10.1016/j.ins.2014.01.015 de Almeida PDC, 2015, IEEE INT CONGR BIG, P268, DOI 10.1109/BigDataCongress.2015.45 Constantiou ID, 2015, J INF TECHNOL-UK, V30, P44, DOI 10.1057/jit.2014.17 Date S, 2016, COMMUN ACM, V59, P44, DOI 10.1145/2909493 Demirkan H., 2015, CAIS, V37, P35, DOI DOI 10.17705/1CAIS.03735 Desouza KC, 2017, ADMIN SOC, V49, P1043, DOI 10.1177/0095399714555751 Elshater Y, 2015, IEEE INT CONGR BIG, P174, DOI 10.1109/BigDataCongress.2015.33 Emmanuel I., 2016, INT C BIG DAT ADV WI Fitzgerald M., 2015, ENHANCING INTUITION GARFIELD E, 1979, SCIENTOMETRICS, V1, P359, DOI 10.1007/BF02019306 GARFIELD E, 1972, SCIENCE, V178, P471, DOI 10.1126/science.178.4060.471 Gartner, 2017, HYP CYCL DAT MAN Gates M., 2015, IEEE INT C BIG DAT S Ghose A, 2016, MIS QUART, V40, P889, DOI 10.25300/MISQ/2016/40.4.05 Ghosh J, 2016, J GLOB INF TECH MAN, V19, P217, DOI 10.1080/1097198X.2016.1249667 Holden G, 2016, RES TECHNOL MANAGE, V59, P22, DOI 10.1080/08956308.2016.1208044 Holmes A., 2014, Hadoop in practice Hong J, 2016, IEEE INT CONGR BIG, P9, DOI 10.1109/BigDataCongress.2016.11 IDC, 2017, DOUBL DIG GROWTH FOR Itoh M., 2015, IEEE INT C BIG DAT Jollife I.T., 2002, Principal component analysis KAISER HF, 1974, PSYCHOMETRIKA, V39, P31, DOI 10.1007/BF02291575 Kalantari Ali, 2017, Journal of Big Data, V4, DOI 10.1186/s40537-017-0088-1 Kallinikos J, 2015, J INF TECHNOL-UK, V30, P70, DOI 10.1057/jit.2014.36 Ketter W, 2016, MIS QUART, V40, P1057, DOI 10.25300/MISQ/2016/40.4.12 King JL, 2015, COMMUN ACM, V58, P31, DOI 10.1145/2723675 Kiron D., 2017, MIT SLOAN MANAGE REV, V58 Kugler L, 2016, COMMUN ACM, V59, P15, DOI 10.1145/2911975 Madhavji NH, 2015, 2015 IEEE/ACM 1ST INTERNATIONAL WORKSHOP ON BIG DATA SOFTWARE ENGINEERING, P11, DOI 10.1109/BIGDSE.2015.10 Markham SK, 2015, RES TECHNOL MANAGE, V58, P30, DOI 10.5437/08956308X5802291 Markus ML, 2015, J INF TECHNOL-UK, V30, P58, DOI 10.1057/jit.2014.28 Martens D, 2016, MIS QUART, V40, P869, DOI 10.25300/MISQ/2016/40.4.04 Menon S, 2016, MIS QUART, V40, P963, DOI 10.25300/MISQ/2016/40.4.08 Metcalf J, 2016, BIG DATA SOC, V3, DOI 10.1177/2053951716650211 Metcalf J, 2016, COMMUN ACM, V59, P31, DOI 10.1145/2935882 Mishra D, 2017, BUS PROCESS MANAG J, V23, P555, DOI 10.1108/BPMJ-10-2015-0149 Mohan A, 2016, IEEE INT CONGR BIG, P52, DOI 10.1109/BigDataCongress.2016.15 Nadal S, 2017, INFORM SOFTWARE TECH, V90, P75, DOI 10.1016/j.infsof.2017.06.001 Nair R, 2015, COMMUN ACM, V58, P104, DOI 10.1145/2688072 Ng CK, 2018, ENTERP INF SYST-UK, V12, P820, DOI 10.1080/17517575.2018.1464666 Osvaldo SS, 2017, INFORM SOFTWARE TECH, V92, P30, DOI 10.1016/j.infsof.2017.07.006 Palvia P., 2003, COMMUN ASS INF SYST, V11, P288 Palvia P, 2007, INFORM MANAGE-AMSTER, V44, P1, DOI 10.1016/j.im.2006.10.002 Pham H, 2016, PROBAB UNCERTAIN QUA, V1, DOI 10.1186/s41546-016-0008-x Phillips-Wren G, 2015, COMMUN ASSOC INF SYS, V37, P448 Pilkington A, 2009, J OPER MANAG, V27, P185, DOI 10.1016/j.jom.2008.08.001 Qazi R.U. R., 2016, The International Technology Management Review, V6, P50, DOI DOI 10.2991/ITMR.2016.6.2.3 Ransbotham S., 2015, MIT Sloan Management Review, V56, P1 Reed DA, 2015, COMMUN ACM, V58, P56, DOI 10.1145/2699414 Saboo AR, 2016, MIS QUART, V40, P911, DOI 10.25300/MISQ/2016/40.4.06 Sahay S, 2016, COMMUN ASSOC INF SYS, V39, P419, DOI 10.17705/1CAIS.03920 Seref B., 2016, INT C BIG DAT ADV WI Shiau WL, 2016, ENTERP INF SYST-UK, V10, P815, DOI 10.1080/17517575.2015.1019570 Shim JP, 2016, COMMUN ACM, V59, P84, DOI 10.1145/2786752 Simmhan Y, 2013, COMPUT SCI ENG, V15, P38, DOI 10.1109/MCSE.2013.39 SMALL H, 1973, J AM SOC INFORM SCI, V24, P265, DOI 10.1002/asi.4630240406 Turel O, 2016, COMMUN ASSOC INF SYS, V39, P96, DOI 10.17705/1CAIS.03906 Villanustre F, 2015, 2015 IEEE/ACM 1ST INTERNATIONAL WORKSHOP ON BIG DATA SOFTWARE ENGINEERING, P1, DOI 10.1109/BIGDSE.2015.8 Wang NX, 2016, DECIS SUPPORT SYST, V86, P35, DOI 10.1016/j.dss.2016.03.006 Winig L., 2017, MIT SLOAN MANAGE REV, V58 Woerner SL, 2015, J INF TECHNOL-UK, V30, P60, DOI 10.1057/jit.2014.31 XU LD, 2018, ENTERPRISE INFORM SY, V13, P148, DOI DOI 10.1080/17517575.2018.1442934 Yahav I., 2015, MIS Q, V40, P819 Yan Z, 2017, ACM INT C BIG DAT RE, P18 Yang JJ, 2015, COMPUT IND, V69, P3, DOI 10.1016/j.compind.2015.01.012 Yang X., 2015, IEEE C BIG DAT SANT Yoo Y, 2015, J INF TECHNOL-UK, V30, P63, DOI 10.1057/jit.2014.30 Zaharia M, 2016, COMMUN ACM, V59, P56, DOI 10.1145/2934664 Zuboff S, 2015, J INF TECHNOL-UK, V30, P75, DOI 10.1057/jit.2015.5 NR 88 TC 18 Z9 18 U1 4 U2 34 PU TAYLOR & FRANCIS LTD PI ABINGDON PA 2-4 PARK SQUARE, MILTON PARK, ABINGDON OR14 4RN, OXON, ENGLAND SN 1751-7575 EI 1751-7583 J9 ENTERP INF SYST-UK JI Enterp. Inf. Syst. PD JUL 3 PY 2019 VL 13 IS 6 BP 801 EP 831 DI 10.1080/17517575.2019.1612098 PG 31 WC Computer Science, Information Systems WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Computer Science GA IL0BG UT WOS:000476960400002 DA 2024-09-05 ER PT J AU Zhang, J AF Zhang, Jing TI Research on Sentiment Analysis and Satisfaction Evaluation of Online Teaching in Universities During Epidemic Prevention SO FRONTIERS IN PSYCHOLOGY LA English DT Article DE sentiment analysis; online teaching; satisfaction evaluation; fuzzy Bayesian theory; evaluation index system of online teaching AB Sentiment analysis of online and offline integrated teaching in universities is being paid more and more attention. Many universities have carried out online teaching activities. However, due to the lack of face-to-face teaching, the lack of emotional communication is the key problem affecting the quality of online teaching. We analyze the relations from the perspectives of the change of teaching mode, the reconstruction of teacher-student relationship, and the transmission of emotional attitude of teachers and students in this paper. Then based on the Bayesian network (BN) theory, the satisfaction of online teaching can be evaluated from the aspects of emotion analysis, learning investment, and teaching interaction. Further, some suggestions are put forward to improve the satisfaction of online teaching. C1 [Zhang, Jing] Wuxi Inst Technol, Sch Mech Technol, Wuxi, Jiangsu, Peoples R China. C3 Wuxi Institute of Technology RP Zhang, J (corresponding author), Wuxi Inst Technol, Sch Mech Technol, Wuxi, Jiangsu, Peoples R China. EM zhangjing@wxit.edu.cn FU Jiangsu Province education system party building research key project [2019JSJYDJ01018]; Jiangsu University philosophy and social science research project [2019SJB281, 2021SJB1394]; Jiangsu Social Science Application Research Project [21SZB-013] FX This work was supported in part by the Jiangsu Province education system party building research key project (Grant No. 2019JSJYDJ01018); the Jiangsu University philosophy and social science research project (Grant Nos. 2019SJB281 and 2021SJB1394); the Jiangsu Social Science Application Research Project (Special Topic of Ideological and Political Education in Colleges): (Grant No. 21SZB-013). CR Guo R.R., 2020, J COMMUN U CHINA SCI, V27, P48 Li Li, 2021, J MICROCOMPUT APPL, V37, P45 Liu L., 2019, APPL RES COMPUT, V36, P1619 Nie Y, 2008, J GUANGDONG POLYTECH, V1, P96 Wang B.H., 2021, RES AUDIO VIS ED, V4, P101 Zhang D.M., 2019, Modernization of Education, V6, P175 Zhou T.H., 2020, WIREL INTERNET TECHN, V9, P115 NR 7 TC 2 Z9 2 U1 0 U2 83 PU FRONTIERS MEDIA SA PI LAUSANNE PA AVENUE DU TRIBUNAL FEDERAL 34, LAUSANNE, CH-1015, SWITZERLAND SN 1664-1078 J9 FRONT PSYCHOL JI Front. Psychol. PD OCT 18 PY 2021 VL 12 AR 738776 DI 10.3389/fpsyg.2021.738776 PG 7 WC Psychology, Multidisciplinary WE Social Science Citation Index (SSCI) SC Psychology GA WS6EB UT WOS:000715270900001 PM 34733212 OA Green Published, gold DA 2024-09-05 ER PT J AU Pandey, AK Chakraborty, A Khandal, V AF Pandey, Ajay Kumar Chakraborty, Arnab Khandal, Vijay TI Scientometric Study of Research on AI & ML Application in Defence Technology and Military Operations SO DESIDOC JOURNAL OF LIBRARY & INFORMATION TECHNOLOGY LA English DT Article DE Scientometrics; Artificial intelligence; Machine learning; Defence technology; Military operations; Research trend AB Application of AI and machine learning in different domains of defence system in increasing rapidly to bring automation and to facilitate all the benefits of modern technologies in military. This article conducts a scientometric analysis on articles that are on application of Ai and Ml in military equipment, military intelligence, cyber security, decision making, military operations, defence medical systems etc. This study has executed a search query on Web of Science for identifying peer reviewed current resources that are contributing to the application of modern technologies in military systems. With extensive query and filtering this study has identified 417 articles with in the period of 1991 to 2023. With analysing all the data, it determines that a lot of varied research is there on the defence system that promotes use of modern technologies in development of weapon, conducting strategic military operation, prioritising military society etc. Prioritising legal and ethical parameters. This study has also highlighted legal, and security concerns surrounding using autonomous systems in military applications. The authorship pattern, document types, country production over time, and most cited countries have also been studied. Bradford's scattering law was applied to identify the core journals, and Lotka's law to check authors' productivity patterns. C1 [Pandey, Ajay Kumar] DRDO Armament Res & Dev Estab ARDE, Pune 411021, India. [Chakraborty, Arnab] Indian Inst Trop Meteorol, Pune 411021, India. [Khandal, Vijay] Rashtrasant Tukadoji Maharaj Nagpur Univ, Nagpur 440033, India. C3 Ministry of Earth Sciences (MoES) - India; Indian Institute of Tropical Meteorology (IITM); Rashtrasant Tukadoji Maharaj Nagpur University RP Pandey, AK (corresponding author), DRDO Armament Res & Dev Estab ARDE, Pune 411021, India. EM akpandey.arde@gov.in OI , Arnab Chakraborty/0009-0000-1423-6610 CR Chadegani AA, 2013, Arxiv, DOI [arXiv:1305.0377, DOI 10.5539/ASS.V9N5P18] Bartneck C., 2021, An introduction to ethics in robotics and AI, P93 BROOKES BC, 1977, J DOC, V33, P180, DOI 10.1108/eb026641 Cioffi R, 2020, APPL SCI-BASEL, V10, DOI 10.3390/app10082897 Darko A, 2020, AUTOMAT CONSTR, V112, DOI 10.1016/j.autcon.2020.103081 Ha QP, 2019, AUTOMAT CONSTR, V107, DOI 10.1016/j.autcon.2019.102934 Hallaq B., 2017, EUR C INF WARF SEC E, P153 Jiang S, 2022, SENSORS-BASEL, V22, DOI 10.3390/s22207814 Johnson M., 2021, Glob. J. Flex. Syst. Manag., V22, P197, DOI [10.1007/s40171-021-00272-y, DOI 10.1007/S40171-021-00272-Y] Morgan Forrest E., 2020, Military applications of artificial intelligence: Ethical concerns in an uncertain world Report, DOI [10.7249/RR3139-1, DOI 10.7249/RR3139-1] Nassehi A, 2022, Design and Operation of Production Networks for Mass Personalization in the Era of Cloud Technology, P317, DOI DOI 10.1016/B978-0-12-823657-4.00002-6 Rasch R, 2003, IEEE INTELL SYST, V18, P18, DOI 10.1109/MIS.2003.1217624 Rickli JM, 2021, Clinical Neurotechnology Meets Artificial Intelligence: Advances in Neuroethics, P197 Rodríguez JV, 2022, WIRES DATA MIN KNOWL, V12, DOI 10.1002/widm.1476 Svenmarck P., 2018, P NATO BIG DAT ART I, P1 Szabadfldi I., 2021, Land Forces Academy Review, V26, P157, DOI 10.2478/raft-2021-0022 Tsaramirsis G, 2022, J SENSORS, V2022, DOI 10.1155/2022/5023011 Ullah Z, 2020, COMPUT NETW, V182, DOI 10.1016/j.comnet.2020.107478 NR 18 TC 0 Z9 0 U1 5 U2 5 PU DEFENCE SCIENTIFIC INFORMATION DOCUMENTATION CENTRE PI DELHI PA METCALFE HOUSE, DELHI 110054, INDIA SN 0974-0643 EI 0976-4658 J9 DESIDOC J LIB INF TE JI DESIDOC J. Lib. Inf. Technol. PD MAR PY 2024 VL 44 IS 2 BP 61 EP 68 DI 10.14429/djlit.44.2.19496 PG 8 WC Information Science & Library Science WE Emerging Sources Citation Index (ESCI) SC Information Science & Library Science GA NW7G9 UT WOS:001203551800008 OA gold DA 2024-09-05 ER PT J AU Zhang, GT Du, YH Zhu, XB Liu, XL AF Zhang, Guoting Du, Yonghao Zhu, Xiaobin Liu, Xiaolu TI Hybrid Operator and Strengthened Diversity Improving for Multimodal Multi-Objective Optimization: Electronic Supplementary Material SO TSINGHUA SCIENCE AND TECHNOLOGY LA English DT Article DE Sensitivity; Topology; Particle swarm optimization; Optimization; Open Access; Benchmark testing RI Liu, Xiaolu/P-1404-2019 CR Yue CT, 2018, IEEE T EVOLUT COMPUT, V22, P805, DOI 10.1109/TEVC.2017.2754271 NR 1 TC 0 Z9 0 U1 0 U2 0 PU TSINGHUA UNIV PRESS PI BEIJING PA B605D, XUE YAN BUILDING, BEIJING, 100084, PEOPLES R CHINA SN 1007-0214 EI 1878-7606 J9 TSINGHUA SCI TECHNOL JI Tsinghua Sci. Technol. PD OCT PY 2024 VL 29 IS 5 BP 1 EP 4 PG 4 WC Computer Science, Information Systems; Computer Science, Software Engineering; Engineering, Electrical & Electronic WE Science Citation Index Expanded (SCI-EXPANDED) SC Computer Science; Engineering GA PP6N7 UT WOS:001215322000005 DA 2024-09-05 ER PT J AU Luo, ZL Shao, XF Ma, XC AF Luo, Zhilin Shao, Xuefeng Ma, Xiaochun TI Enhancing Learners' Performance in Contest Through Knowledge Mapping Algorithm: The Roles of Artificial Intelligence and Blockchain in Scoring and Data Integrity SO JOURNAL OF ORGANIZATIONAL AND END USER COMPUTING LA English DT Article DE Artificial Intelligence; Blockchain; Contest Research; End User; Learner Performance; Learning Motivation; Vocational Education ID ACADEMIC-PERFORMANCE; EXTRINSIC MOTIVATIONS; LANGUAGE; ENGLISH; ACHIEVEMENT; EXPECTANCY; ANXIETY AB The fairness of vocational contest scoring is key to generating reliable competency assessments. This study examined the performance impact of the motivation of English-as-a-foreign-language learners in contests with vocabulary knowledge antecedents in the contexts of artificial intelligence (AI) and blockchain (BC). The sample comprised 185 participants of an oral English contest at higher vocational institution in China. AI-powered scoring of learners' contest performance and a survey were used to collect data. The findings revealed that learners' intrinsic drive was the main positive factor, outweighing their extrinsic motivation, and that AI and BC increased the trustworthiness and integrity of contest records, thus providing new opportunities to build learner trust and form psychological incentives. This study enriches foreign language motivation theory in the context of contest research and highlights the importance of using AI and BC to enhance the scoring accuracy and credibility of contests as authoritative evaluation instruments in vocational education. C1 [Luo, Zhilin] Chongqing Ind Polytech Coll, Gen Educ Sch, Chongqing, Peoples R China. [Shao, Xuefeng] Univ Newcastle, Management, Callaghan, Australia. [Ma, Xiaochun] Chongqing Coll Elect Engn, Gen Educ Sch, Chongqing, Peoples R China. [Ma, Xiaochun] Chongqing Coll Elect Engn, Gen Educ Sch, Chongqing 400030, Peoples R China. [Shao, Xuefeng] Univ Newcastle, Newcastle, NSW 2300, Australia. C3 Chongqing Industry Polytechnic College; University of Newcastle; Chongqing College of Electronic Engineering; Chongqing College of Electronic Engineering; University of Newcastle RP Ma, XC (corresponding author), Chongqing Coll Elect Engn, Gen Educ Sch, Chongqing 400030, Peoples R China.; Shao, XF (corresponding author), Univ Newcastle, Newcastle, NSW 2300, Australia. EM david.shao@newcastle.edu.au; maxiaochun@cqcet.edu.cn RI Luo, Zhilin/IXD-8511-2023 OI Luo, Zhilin/0000-0003-4352-1984; Shao, Xuefeng/0000-0002-4267-9600 FU Hubei Education Science Planning 2022 Annual general project: Research on the deep integration mode and practice Path of "Five-dimensional Integration", Production and Education in applicationoriented undergraduate colleges [2022GB088] FX Hubei Education Science Planning 2022 Annual general project: Research on the deep integration mode and practice Path of "Five-dimensional Integration", Production and Education in applicationoriented undergraduate colleges (2022GB088). Funding for this research was covered by the author(s) of the article. CR Idowu AI, 2014, J NEW APPROACHES EDU, V3, P93, DOI 10.7821/naer.3.2.93-99 Adamma O.N., 2018, Online Submission, V2, P52, DOI [10.35706/sjme.v2i2.1322, DOI 10.5281/ZENODO.1405857] Al-Hoorie AH, 2020, SAGE OPEN, V10, DOI 10.1177/2158244020945702 Anwar A. S., 2022, International Journal of Artificial Intelegence Research, V6, DOI [10.29099/ijair.v6i1.258, DOI 10.29099/IJAIR.V6I1.258] Astuti E. S., 2020, Journey: Journal of English Language and Pedagogy, V3, P52, DOI [10.33503/journey.v3i1.705, DOI 10.33503/JOURNEY.V3I1.705] Atkinson JW., 1974, MOTIVATION ACHIEVEME, P193 Azeez N. A., 2021, Journal of Cyber Security and Mobility, V10, P745, DOI [10.13052/jcsm2245-1439.1046, DOI 10.13052/JCSM2245-1439.1046] Becirovic S, 2017, EUR J CONTEMP EDUC, V6, P210, DOI 10.13187/ejced.2017.2.210 Bodkyn C., 2015, The Caribbean Teaching Scholar, V5, P79 Bolifaar A. H., 2020, Ayer Journal, V27, P143 BRUNSTEIN JC, 1993, J PERS SOC PSYCHOL, V65, P1061, DOI 10.1037/0022-3514.65.5.1061 Chang X., 2015, English Square: Academy Research, P113 Chowdhury S, 2022, INT J CHEM REACT ENG, V20, P237, DOI 10.1515/ijcre-2020-0230 Deckers L., 2005, MOTIVATION BIOL PSYC, V2nd, DOI [DOI 10.4324/9781315178615, 10.4324/9781315178615] Di Gangi PM, 2017, J ORGAN END USER COM, V29, P68, DOI 10.4018/JOEUC.2017070104 Dogan ME, 2023, APPL SCI-BASEL, V13, DOI 10.3390/app13053056 Dörnyei Z, 2003, LANG LEARN, V53, P3, DOI 10.1111/1467-9922.53222 Dornyei Z., 2005, The psychology of the language learner: Individual differences in second language acquisition, DOI [10.4324/9781410613349, DOI 10.4324/9781410613349] Elborolosy S.A.M., 2020, English Language Teaching, V13, P83, DOI [10.5539/elt.v13n9p83, DOI 10.5539/ELT.V13N9P83] Elbow Peter., 1997, New Directions for Teaching and Learning, V69, P127 Fabisiak L, 2018, J ORGAN END USER COM, V30, P1, DOI 10.4018/JOEUC.2018100101 Fernet C, 2013, CAN PSYCHOL, V54, P72, DOI 10.1037/a0031058 Friedman BA, 2009, J COLL STUD RETENT-R, V11, P227, DOI 10.2190/CS.11.2.d Gao YH., 2003, Modern Foreign Languages, V26, P28 GARDNER RC, 1959, CAN J PSYCHOLOGY, V13, P266, DOI 10.1037/h0083787 Guo Y., 2019, Journal of Radio and Television University, P120, DOI [10.16161/j.issn.1008-0597.2019.02.018, DOI 10.16161/J.ISSN.1008-0597.2019.02.018] Han Y, 2021, J GLOB INF MANAG, V29, DOI 10.4018/JGIM.20211101.oa42 Handoko E, 2019, INT REV RES OPEN DIS, V20, P39 Hart W, 2013, J EXP SOC PSYCHOL, V49, P922, DOI 10.1016/j.jesp.2013.05.002 Hernández-Orallo J, 2017, ARTIF INTELL REV, V48, P397, DOI 10.1007/s10462-016-9505-7 Hwang GJ, 2017, COMPUT EDUC, V106, P26, DOI 10.1016/j.compedu.2016.11.010 JAMIESON DW, 1987, J EDUC PSYCHOL, V79, P461, DOI 10.1037/0022-0663.79.4.461 Jawahar I. M., 2001, Journal of End User Computing, V13, P40, DOI 10.4018/joeuc.2001040104 Jiang C., 2018, Foreign Language Teaching, P37 Jin H., 2013, Foreign Language Research, P127 Jin H., 2016, Heilongjiang Researches on Higher Education, P125 Kim B, 2009, COMPUT EDUC, V52, P800, DOI 10.1016/j.compedu.2008.12.004 Kizil AS, 2018, COMPUT ASSIST LANG L, V31, P599, DOI 10.1080/09588221.2018.1428201 Lai E.R., 2011, MOTIVATION LIT REV R Leong L.M., 2017, INT J RES ENGLISH ED, V2, P34, DOI [10.18869/acadpub.ijree.2.1.34, DOI 10.18869/ACADPUB.IJREE.2.1.34] Li J., 2015, Foreign Language World, P34 Li R, 2021, COMPUT ASSIST LANG L, V34, P483, DOI 10.1080/09588221.2019.1619585 Liu C., 2014, Studies in Literature and Language, V9, P51 Liu F, 2020, LEARN MOTIV, V72, DOI 10.1016/j.lmot.2020.101675 Liu MH, 2011, EDUC RES INT, V2011, DOI 10.1155/2011/493167 Liu W, 2020, INT J ENV RES PUB HE, V17, DOI 10.3390/ijerph17072304 Lu J., 2010, China Journal of Health Psychology, V18, P885 Mahankali S., 2020, Blockchain Technology Applications in Education, DOI [https://doi.org/10.4018/978-1-5225-9478-9.ch014, DOI 10.4018/978-1-5225-9478-9.CH014] Matsuda S., 2004, SYSTEM, V32, P21, DOI DOI 10.1016/J.SYSTEM.2003.08.002 Menggo S., 2018, Journal of Psychology and Instruction, V2, P70, DOI 10.23887/jpai.v2i2.15979 Min Y., 2015, Chinese Vocational and Technical Education, P89 Moneta GB, 2002, J COLL STUDENT DEV, V43, P664 Mozumder M. A. I., 2023, 2023 25 INT C ADV CO Niyifasha P., 2019, Doctoral dissertation Noguera PA, 2003, URBAN EDUC, V38, P431, DOI 10.1177/0042085903038004005 Nurhidayah A., 2008, Doctoral dissertation NYE SM, 1991, J AM DIET ASSOC, V91, P912 Qian DD, 2020, ROUT HANDB LINGUIST, P66 Quijano Zavala G. G., 2017, Doctoral dissertation Rahman S., 2005, ASIAN EFL J, V7, P29 Ryan RM, 2000, CONTEMP EDUC PSYCHOL, V25, P54, DOI 10.1006/ceps.1999.1020 Saadati Z, 2023, INTERACT LEARN ENVIR, V31, P3148, DOI 10.1080/10494820.2021.1920429 Schippers MC, 2020, CONTEMP EDUC PSYCHOL, V60, DOI 10.1016/j.cedpsych.2019.101823 Schmidt R., 1996, Working Papers Shi Y., 2000, Foreign Language Teaching Abroad, P8 Singh I., 2020, Journal of Green Engineering, V10, P7479 Singh K., 2011, International Journal of Educational Planning Administration, V1, P161 Syakur A., 2020, Britain International of Linguistics Arts and Education (BIoLAE) Journal, V2, P467, DOI [10.33258/biolae.v2i1.216, DOI 10.33258/BIOLAE.V2I1.216] Tao W., 1981, People's Education, P57 Taylor G, 2014, CONTEMP EDUC PSYCHOL, V39, P342, DOI 10.1016/j.cedpsych.2014.08.002 Wang F., 2008, North American Journal of Psychology, V10, P633 Wang H., 2021, Overseas English, P249 Wen L., 2021, Overseas English, P272 Williams M., 2001, MOTIVATION 2 LANGUAG, P171 Wu ZX, 2022, J GLOB INF MANAG, V30, DOI 10.4018/JGIM.20220701.oa1 Yang JC, 2018, EDUC TECHNOL SOC, V21, P174 Yu FY, 2011, COMPUT EDUC, V57, P2167, DOI 10.1016/j.compedu.2011.05.012 Yuan R. E., 2007, Chinese Adult Education, P93, DOI [10.3969/j.issn.1004-6577.2007.22.057, DOI 10.3969/J.ISSN.1004-6577.2007.22.057] Zhang X., 2015, Foreign Language World, P80 Zhang X, 2018, J POWER SOURCES, V376, P191, DOI 10.1016/j.jpowsour.2017.11.068 Zhang Y., 2019, 2019 3 INT C EC MANA Zhao Y., 2023, 2023 IEEE 6 EURASIAN Zhu Z., 2010, Shandong Foreign Languages Teaching Journal, V31, P108, DOI [10.3969/j.issn.1002-2643.2010.02.020, DOI 10.3969/J.ISSN.1002-2643.2010.02.020] 김미숙, 2018, [Philosophy of Movement : Journal of the Korean Society for the Philosophy of Sport, Dance & Martial Arts, 움직임의 철학 : 한국체육철학회지], V26, P111, DOI 10.31694/PM.2018.09.26.3.009 NR 84 TC 0 Z9 0 U1 20 U2 20 PU IGI GLOBAL PI HERSHEY PA 701 E CHOCOLATE AVE, STE 200, HERSHEY, PA 17033-1240 USA SN 1546-2234 EI 1546-5012 J9 J ORGAN END USER COM JI J. Organ. End User Comput. PY 2024 VL 36 IS 1 AR 336277 DI 10.4018/JOEUC.336277 PG 21 WC Computer Science, Information Systems; Information Science & Library Science; Management WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Computer Science; Information Science & Library Science; Business & Economics GA II1V4 UT WOS:001165615200004 OA gold DA 2024-09-05 ER PT J AU Yaniasih, Y Budi, I AF Yaniasih, Yaniasih Budi, Indra TI Systematic Design and Evaluation of a Citation Function Classification Scheme in Indonesian Journals SO PUBLICATIONS LA English DT Article DE citation function; classification scheme; annotator agreement; machine learning; deep learning ID REFERENCES; CONTEXT AB Classifying citations according to function has many benefits when it comes to information retrieval tasks, scholarly communication studies, and ranking metric developments. Many citation function classification schemes have been proposed, but most of them have not been systematically designed for an extensive literature-based compilation process. Many schemes were also not evaluated properly before being used for classification experiments utilizing large datasets. This paper aimed to build and evaluate new citation function categories based upon sufficient scientific evidence. A total of 2153 citation sentences were collected from Indonesian journal articles for our dataset. To identify the new categories, a literature survey was conducted, analyses and groupings of category meanings were carried out, and then categories were selected based on the dataset's characteristics and the purpose of the classification. The evaluation used five criteria: coherence, ease, utility, balance, and coverage. Fleiss' kappa and automatic classification metrics using machine learning and deep learning algorithms were used to assess the criteria. These methods resulted in five citation function categories. The scheme's coherence and ease of use were quite good, as indicated by an inter-annotator agreement value of 0.659 and a Long Short-Term Memory (LSTM) F1-score of 0.93. According to the balance and coverage criteria, the scheme still needs to be improved. This research data was limited to journals in food science published in Indonesia. Future research will involve classifying the citation function using a massive dataset collected from various scientific fields and published from some representative countries, as well as applying improved annotation schemes and deep learning methods. C1 [Yaniasih, Yaniasih; Budi, Indra] Univ Indonesia, Fac Comp Sci, Depok 16424, Indonesia. [Yaniasih, Yaniasih] Indonesian Inst Sci LIPI, Res Ctr Informat, Bandung 40135, Indonesia. C3 University of Indonesia; National Research & Innovation Agency of Indonesia (BRIN); Indonesian Institute of Sciences (LIPI) RP Budi, I (corresponding author), Univ Indonesia, Fac Comp Sci, Depok 16424, Indonesia. EM yaniasih@ui.ac.id; indra@cs.ui.ac.id OI Yaniasih, Yaniasih/0000-0002-3389-6742; Budi, Indra/0000-0002-2107-6552 FU Universitas Indonesia [BA-733/UN2.RST/PPM.00.03.01/2020] FX This study was supported by research grants from Universitas Indonesia (Hibah Publikasi Doktoral Tahun 2021 and Publikasi Terindeks International (PUTI) Doktor 2020 No: BA-733/UN2.RST/PPM.00.03.01/2020). CR Abu-Jbara A., 2013, NAACL, P596 Ahmad R, 2017, IEEE ACCESS, V5, P5819, DOI 10.1109/ACCESS.2017.2689925 Bakhti K., 2019, P 2018 INT C CONTR A, P43 Bertin M., 2014, P 1 WORKSH BIBL ENH, V1567, P14 Bertin M, 2016, J ASSOC INF SCI TECH, V67, P164, DOI 10.1002/asi.23367 Boldrini Ester, 2009, Proceedings of the 2009 International Conference on Data Mining. DMIN 2009, P491 CHUBIN DE, 1975, SOC STUD SCI, V5, P423, DOI 10.1177/030631277500500403 Cohan A, 2019, 2019 CONFERENCE OF THE NORTH AMERICAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS: HUMAN LANGUAGE TECHNOLOGIES (NAACL HLT 2019), VOL. 1, P3586 Ferrod R, 2019, LECT NOTES COMPUT SC, V11503, P101, DOI 10.1007/978-3-030-21348-0_7 Hernández-Alvarez M, 2017, NAT LANG ENG, V23, P561, DOI 10.1017/S1351324916000346 Hussain SJ, 2019, INT J ADV COMPUT SC, V10, P209 Ibanez M.P.V., 2014, C P 28 AS PAC C LANG, P234 Jurgens David., 2016, CoRR Khan AM, 2019, IEEE ACCESS, V7, P137090, DOI 10.1109/ACCESS.2019.2942322 Krippendorff K., 2018, CONTENT ANAL INTRO I LANDIS JR, 1977, BIOMETRICS, V33, P159, DOI 10.2307/2529310 Lane H., 2019, Natural Language Processing in Action: Understanding, Analyzing, and Generating Text with Python Lopez P, 2009, LECT NOTES COMPUT SC, V5714, P473, DOI 10.1007/978-3-642-04346-8_62 Lukman L, 2018, SCI ED, V5, P135, DOI 10.6087/kcse.138 Maricic S, 1998, J AM SOC INFORM SCI, V49, P530, DOI 10.1002/(SICI)1097-4571(19980501)49:6<530::AID-ASI5>3.0.CO;2-U MORAVCSIK MJ, 1975, SOC STUD SCI, V5, P86, DOI 10.1177/030631277500500106 Nanba H., 2000, ADV CLASSIFICATION R, V11, P117, DOI [DOI 10.7152/ACRO.V11I1.12774, DOI 10.7152/ACR0.V11I1.12774] Neuendorf KA., 2017, CONTENT ANAL GUIDEBO, P1, DOI [DOI 10.4135/9781071802878, 10.4135/9781071802878] Ovrelid L., 2009, P 12 C EUR CHAPT ACL, P630 Palmer Alexis, 2020, Journal for Language Technology and Computational Linguistics, V34, P1 Perier-Camby J., 2019, CEUR WORKSHOP PROC, P125 Rachman Ghoziyah Haitan, 2019, 2019 4th International Conference on Information Technology, Information Systems and Electrical Engineering (ICITISEE), P347, DOI 10.1109/ICITISEE48480.2019.9003736 Ramyachitra D., 2014, International Journal of Computing and Business Research (IJCBR), V5, P1, DOI DOI 10.18533/IJBSR.V4I4.470 Ritz J, 2008, SIXTH INTERNATIONAL CONFERENCE ON LANGUAGE RESOURCES AND EVALUATION, LREC 2008, P2137 Saeed-Ul Hassan, 2018, SCIENTOMETRICS, V116, P973, DOI 10.1007/s11192-018-2767-x Su X, 2019, ACM-IEEE J CONF DIG, P394, DOI 10.1109/JCDL.2019.00122 S┬u┬aghdha D.O., 2007, P 4 CORP LING C CL 0, P1 Taskin Z, 2018, SCIENTOMETRICS, V114, P335, DOI 10.1007/s11192-017-2560-2 Teufel S., 2006, P 7 SIGDIAL WORKSHOP, P80, DOI [10.3115/1654595.1654612, DOI 10.3115/1654595.1654612] Yousif A, 2019, NEUROCOMPUTING, V335, P195, DOI 10.1016/j.neucom.2019.01.021 Zhao H., 2020, P EMNLP IJCNLP HONG, P5206 Zhao H, 2019, PROCEEDINGS OF THE 42ND INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL (SIGIR '19), P1041, DOI 10.1145/3331184.3331348 NR 37 TC 1 Z9 1 U1 1 U2 4 PU MDPI PI BASEL PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND EI 2304-6775 J9 PUBLICATIONS JI Publications PD SEP PY 2021 VL 9 IS 3 AR 27 DI 10.3390/publications9030027 PG 14 WC Information Science & Library Science WE Emerging Sources Citation Index (ESCI) SC Information Science & Library Science GA UZ2MO UT WOS:000702044600001 OA Green Published, gold DA 2024-09-05 ER PT J AU Jadhav, MS Dhas, J Joshi, D Jadhavrao, N Kadam, S AF Jadhav, Madhumita Satish Dhas, Jyoti Joshi, Deepali Jadhavrao, Namrata Kadam, Sayali TI Citation Clustering for Identifying Research Contribution SO JOURNAL OF COMPUTERS LA English DT Article DE Leacock-Chodorow similarity vector; WordNet; hierarchical clustering ID QUALITY; SCIENCE AB The h-index is an index that measures productivity and citation impact of the published work but it has been criticized because it does not consider context of citation and reason behind citation. This indicates that there is a need for an improved h-index by a new approach which includes important citations received by a paper instead of the whole list of citations. Citation classification is an emerging area of research that categorizes citations based on the purpose behind the citation. To perform citation classification there is need of a standard set of classes called as classification scheme. Such standard scheme is not available so we aim to generate a citation classification scheme automatically i.e. by using hierarchical clustering. The clustering is performed by using similarity vectors. The main contribution of this research is to generate similarity distance matrix of keywords and verbs extracted from the citation sentences with the help of WordNet. C1 [Jadhav, Madhumita Satish; Dhas, Jyoti; Joshi, Deepali; Jadhavrao, Namrata; Kadam, Sayali] Vishwakarma Inst Technol, Dept Comp, Pune, Maharashtra, India. RP Jadhav, MS (corresponding author), Vishwakarma Inst Technol, Dept Comp, Pune, Maharashtra, India. EM mitujadhav@gmail.com RI Joshi, Deepali Jayant/ACG-9456-2022 OI Joshi, Deepali Jayant/0000-0002-8832-9294 CR [Anonymous], 1988, ALGORITHMS CLUSTERIN Dong C., 2011, P 5 INT JOINT C NAT, P623 Fellbaum C., 1998, SER LANGUAGE SPEECH Hirsch JE, 2005, P NATL ACAD SCI USA, V102, P16569, DOI 10.1073/pnas.0507655102 Jain AK, 1999, ACM COMPUT SURV, V31, P264, DOI 10.1145/331499.331504 Lawrence PA, 2007, CURR BIOL, V17, pR583, DOI 10.1016/j.cub.2007.06.014 Leacock Claudia., 1998, COMBINING LOCAL CONT, P305 LINDSEY D, 1989, SCIENTOMETRICS, V15, P189, DOI 10.1007/BF02017198 MORAVCSIK MJ, 1975, SOC STUD SCI, V5, P86, DOI 10.1177/030631277500500106 NR 9 TC 0 Z9 0 U1 0 U2 4 PU ACAD PUBL PI OULU PA PO BOX 40, OULU, 90571, FINLAND SN 1796-203X J9 J COMPUT JI J. Comput. PD NOV PY 2015 VL 10 IS 6 BP 406 EP 411 DI 10.17706/jcp.10.6.406-411 PG 6 WC Computer Science, Interdisciplinary Applications WE Emerging Sources Citation Index (ESCI) SC Computer Science GA CY4UP UT WOS:000366404400006 OA gold DA 2024-09-05 ER PT J AU Galgani, F Compton, P Hoffmann, A AF Galgani, Filippo Compton, Paul Hoffmann, Achim TI LEXA: Building knowledge bases for automatic legal citation classification SO EXPERT SYSTEMS WITH APPLICATIONS LA English DT Article DE Knowledge acquisition; Natural language processing; Citation analysis; Legal documents ID DOCUMENT MANAGEMENT; ACQUISITION; INFORMATION; SYSTEMS AB This paper presents a new approach to building legal citation classification systems. Our approach is based on Ripple-down Rules (RDA), an efficient knowledge acquisition methodology. The main contributions of the paper (over existing expert-systems approaches) are extensions to the traditional RDR approach introducing new automatic methods to assist in the creation of rules: using the available dataset to provide performance estimates and relevant examples, automatically suggesting and validating synonyms, re-using exceptions in different portions of the knowledge base. We compare our system LEXA with baseline machine learning techniques. LEXA obtains better results both in clean and noisy subsets of our corpus. Compared to machine learning approaches, LEXA also has other advantages such as supporting continuous extension of the rule base, and the opportunity to proceed without an annotated data set and to validate class labels while building rules. Crown Copyright (C) 2015 Published by Elsevier Ltd. All rights reserved. C1 [Galgani, Filippo; Compton, Paul; Hoffmann, Achim] Univ New S Wales, Sch Engn & Comp Sci, Sydney, NSW 2052, Australia. C3 University of New South Wales Sydney RP Galgani, F (corresponding author), Univ New S Wales, Sch Engn & Comp Sci, Sydney, NSW 2052, Australia. EM galganif@cse.unsw.edu.au; compton@cse.unsw.edu.au; achim@cse.unsw.edu.au RI Galgani, Filippo/C-7003-2011 OI Compton, Paul/0000-0002-7282-8814 CR Angheluta, 2003, P 9 INT C ART INT LA, P142 [Anonymous], VALIDATION VERIFICAT [Anonymous], 2009, P ICAIL 2009, DOI DOI 10.1145/1568234.1568246 [Anonymous], 2012, 2012 Conference of the North American Chapter of the Association for Computational Linguistics [Anonymous], 2009, P HUM LANG TECHN 200, DOI DOI 10.3115/1620754.1620839 [Anonymous], 2008, P ACL 08 HLT Athar A., 2011, P ACL 2011 STUD SESS, P81 Bird Steven, 2009, Natural language processing with python Bo Pang, 2008, Foundations and Trends in Information Retrieval, V2, P1, DOI 10.1561/1500000001 COMPTON P, 1990, LECT NOTES ARTIF INT, V406, P292 Compton P., 2011, Proceedings of Sixth International Conference on Knowledge, P49 Conrad J. G., 2001, Proceedings of the 2001 ACM CIKM. Tenth International Conference on Information and Knowledge Management, P287, DOI 10.1145/502585.502634 Cunningham H, 2002, 40TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, PROCEEDINGS OF THE CONFERENCE, P168 de Maat E, 2006, FRONT ARTIF INTEL AP, V152, P41 Ding Y, 2014, J ASSOC INF SCI TECH, V65, P1820, DOI 10.1002/asi.23256 EDWARDS G, 1993, PATHOLOGY, V25, P27, DOI 10.3109/00313029309068898 Elkiss A, 2008, J AM SOC INF SCI TEC, V59, P51, DOI 10.1002/asi.20707 Farzindar A, 2009, LECT NOTES COMPUT SC, V5549, P64, DOI 10.1007/978-3-642-01818-3_9 Galgani F., 2012, 13 INT C INT TEXT PR, P415 Galgani F, 2015, INFORM PROCESS MANAG, V51, P1, DOI 10.1016/j.ipm.2014.08.001 Galgani F, 2014, INT J HUM-COMPUT ST, V72, P584, DOI 10.1016/j.ijhcs.2014.03.002 Galgani F, 2010, LECT NOTES ARTIF INT, V6464, P445, DOI 10.1007/978-3-642-17432-2_45 GOTTI F, 2008, AMTA 2008 8 C ASS MA, P1 Greenleaf G., 1995, J LAW INFORM SCI, V6, P49 Hachey B, 2006, ARTIF INTELL LAW, V14, P305, DOI 10.1007/s10506-007-9039-z Hall M., 2009, ACM SIGKDD Explor. Newsl., V11, P10, DOI DOI 10.1145/1656274.1656278 Ho V, 2003, IEEE/WIC INTERNATIONAL CONFERENCE ON INTELLIGENT AGENT TECHNOLOGY, PROCEEDINGS, P67 Hoffmann A., 2003, P 2 INT C KNOWL CAPT, P28 Kaplan D., 2009, Proceedings of the 2009 Workshop on Text and Citation Analysis for Scholarly Digital Libraries (NLPIR4DL), P88 Kim M, 2006, INT J HUM-COMPUT ST, V64, P15, DOI 10.1016/j.ijhcs.2005.06.006 Kim M, 2004, INT J HUM-COMPUT ST, V60, P201, DOI 10.1016/j.ijhcs.2003.10.004 Kim M. H, 2011, P 6 INT C KNOWL CAPT, P105, DOI DOI 10.1145/1999676.1999696 Krzywicki A, 2009, LECT NOTES ARTIF INT, V5866, P250, DOI 10.1007/978-3-642-10439-8_26 Martínez-González M, 2005, LECT NOTES COMPUT SC, V3776, P218 Menzies T, 1999, INT J HUM-COMPUT ST, V51, P715, DOI 10.1006/ijhc.1999.0336 MILLER GA, 1995, COMMUN ACM, V38, P39, DOI 10.1145/219717.219748 Moens M.-F., 2001, Artificial Intelligence and Law, V9, P29, DOI 10.1023/A:1011297104922 Moens MF, 2007, INFORM PROCESS MANAG, V43, P1748, DOI 10.1016/j.ipm.2007.01.005 Mowbray A., 2009, FREE ACCESS QUALITY, P285 Nakov P. I., 2004, P SIGIR 04 WORKSH SE, P81 Nanba H, 1999, IJCAI-99: PROCEEDINGS OF THE SIXTEENTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOLS 1 & 2, P926 Palmirani M., 2003, PROC 9 INT C ARTIFIC, P105 Peters W, 2007, ARTIF INTELL LAW, V15, P117, DOI 10.1007/s10506-007-9034-4 Pham SB, 2004, LECT NOTES ARTIF INT, V3336, P292 Pham SB, 2003, LECT NOTES ARTIF INT, V2903, P759 Piao SS., 2007, International Workshop on Computational Semantics (IWCS), P366 PORTER MF, 1980, PROGRAM-AUTOM LIBR, V14, P130, DOI 10.1108/eb046814 Posner R. A., 1999, 83 U CHIC LAW SCH JM Qazvinian V., 2010, P 23 INT C COMP LING, P895 Qazvinian V, 2008, P 22 INT C COMP LING, V1, P689, DOI DOI 10.3115/1599081.1599168 Qazvinian V, 2010, ACL 2010: 48TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, P555 Rennie JD. M., 1973, Proceedings of the Twentieth International Conference on Machine Learning (ICML)-2003), V20, P616, DOI [10.1186/1477-3155-8-16, DOI 10.1186/1477-3155-8-16] Richards D, 2009, KNOWL ENG REV, V24, P159, DOI 10.1017/S0269888909000241 Ritchie A., 2008, P 17 ACM C INF KNOWL, P213, DOI DOI 10.1145/1458082.1458113 Ritchie Anna., 2006, Proceedings of the Workshop on How Can Computational Linguistics Improve Information Retrieval? CLIIR'06, P25, DOI DOI 10.3115/1629808.1629813 Roth D., 2009, P 13 C COMP NAT LANG, P66 Ruiz-Sánchez JM, 2003, EXPERT SYST APPL, V25, P77, DOI 10.1016/S0957-4174(03)00008-3 Schreiber AT, 1996, INT J HUM-COMPUT ST, V44, P275, DOI 10.1006/ijhc.1996.0015 Shadbolt N, 1999, INT J HUM-COMPUT ST, V51, P729, DOI 10.1006/ijhe.1999.0327 Teufel S., 2006, P C EMP METH NAT LAN, DOI 10.3115/1610075.1610091 Valencia-García R, 2004, EXPERT SYST APPL, V26, P291, DOI 10.1016/j.eswa.2003.09.001 van Opijnen M, 2010, FRONT ARTIF INTEL AP, V223, P97, DOI 10.3233/978-1-60750-682-9-97 Xu H, 2014, 2014 IEEE INTERNATIONAL CONFERENCE ON DATA MINING WORKSHOP (ICDMW), P613, DOI 10.1109/ICDMW.2014.26 Xu H, 2010, LECT NOTES ARTIF INT, V6232, P165 Yousfi-Monod M, 2010, LECT NOTES ARTIF INT, V6085, P51 Zacharias V, 2008, LECT NOTES COMPUT SC, V5321, P6, DOI 10.1007/978-3-540-88808-6_4 Zhang P., 2007, Proceedings of the 11th international conference on Artificial intelligence and law, P123, DOI DOI 10.1145/1276318.1276342 Zhu XD, 2015, J ASSOC INF SCI TECH, V66, P408, DOI 10.1002/asi.23179 [No title captured] [No title captured] [No title captured] [No title captured] NR 72 TC 15 Z9 19 U1 0 U2 36 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0957-4174 EI 1873-6793 J9 EXPERT SYST APPL JI Expert Syst. Appl. PD OCT PY 2015 VL 42 IS 17-18 BP 6391 EP 6407 DI 10.1016/j.eswa.2015.04.022 PG 17 WC Computer Science, Artificial Intelligence; Engineering, Electrical & Electronic; Operations Research & Management Science WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Computer Science; Engineering; Operations Research & Management Science GA CK3NE UT WOS:000356122000011 DA 2024-09-05 ER PT C AU Han, Y Guo, C Fang, ZY Chen, FX AF Han, Yu Guo, Cheng Fang, Zhengyun Chen, Fengxian BE Liu, J Liu, Y TI Voltage Overrun Evaluation and Prediction Research Based on Combinatorial Weighting and CNN-GRU SO 2023 2ND ASIAN CONFERENCE ON FRONTIERS OF POWER AND ENERGY, ACFPE LA English DT Proceedings Paper CT 2nd Asian Conference on Frontiers of Power and Energy (ACFPE) CY OCT 20-22, 2023 CL Chengdu, PEOPLES R CHINA DE Voltage overrun; Combinatorial assignment; Convolutional neural network; Gated recurrent unit; Comprehensive evaluation; Predictive warning AB Aiming at the problem of assessing the severity of voltage overrun in distribution networks, a voltage overrun assessment and prediction and warning method based on combinatorial assignment and the CNN-GRU model is proposed. Firstly, a new type of voltage overrun assessment index considering the influence of user density is selected, the subjective and objective weights are optimized and coordinated based on the theory of combinatorial assignment, and the regional division of monitoring points is used to give appropriate weight correction from the perspective of voltage propagation to establish the voltage deviation severity assessment level and determine the voltage deviation severity degree of assessment samples; the data features are extracted based on the assessment results after the overrun assessment of the data; then the data features are extracted through the gating network (CNN), and the data features are extracted through the gating network (CNN). (CNN) for the extraction of data features, and then through the gated recirculation unit (GRU) for the prediction and judgment of the voltage overrun problem in the next time period and timely warning; finally, some of the measured voltage data in a certain area are analyzed as an example to verify the effectiveness of the assessment level system and prediction and warning model C1 [Han, Yu] Kunming Univ Sci & Technol, Sch Mech & Elect Engn, Kunming, Yunnan, Peoples R China. [Guo, Cheng] Kunming Univ Sci & Technol, Sch Elect Power Engn, Kunming, Yunnan, Peoples R China. [Fang, Zhengyun] Kunming Univ Sci & Technol, Sch Land & Resources Engn, Kunming, Yunnan, Peoples R China. [Chen, Fengxian] Yunnan Power Grid Co Ltd, Qujing Power Supply Bur, Qujing, Peoples R China. C3 Kunming University of Science & Technology; Kunming University of Science & Technology; Kunming University of Science & Technology; China Southern Power Grid RP Han, Y (corresponding author), Kunming Univ Sci & Technol, Sch Mech & Elect Engn, Kunming, Yunnan, Peoples R China. EM 1512497432@qq.com; gc325@126.com; 57592715@qq.com; 690704018@qq.com FU Yunnan Major Scientific and Technological Projects [202202AG050002]; Special project of Yunnan Provincial Joint Fund [202201BE070001-15] FX The authors would like to acknowledge the support of Yunnan Major Scientific and Technological Projects (grant NO. 202202AG050002); Special project of Yunnan Provincial Joint Fund(202201BE070001-15). CR CHEN Haihua, 2023, Journal of Power Supply., P1 Duan Xiangxi, 2020, Electronic Measurement Technology., V43, P81 FENG Yuqi, 2022, China Electric Power., V55, P163 He Chunguang, 2022, Journal of Electric Power Science and Technology, V37, P161 Jiao Zhan, 2021, Science, Technology and Engineering., V21, P14769 Li Jinyou, 2022, Journal of Solar Energy., V43, P340 Liu Wei-Lin, 2017, Thermal limit and voltage overrun solution based on online network topology optimization Zou Wenjun, 2022, Urban Rail Transportation Research., V25, P70 NR 8 TC 0 Z9 0 U1 1 U2 1 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA BN 979-8-3503-0389-6 PY 2023 BP 94 EP 98 DI 10.1109/ACFPE59335.2023.10455120 PG 5 WC Computer Science, Artificial Intelligence; Energy & Fuels; Engineering, Electrical & Electronic WE Conference Proceedings Citation Index - Science (CPCI-S) SC Computer Science; Energy & Fuels; Engineering GA BW6SH UT WOS:001181159800017 DA 2024-09-05 ER PT S AU Atibuni, DZ AF Atibuni, Dennis Zami BE Cross, M Long, C Ndlovu, S Nyoni, P TI 'Assessment for Learning' over 'Assessment of Learning' A Quest for Mastery Rather Than Performance Orientation in Postgraduate Research Degrees SO TRANSFORMATIVE CURRICULA, PEDAGOGIES AND EPISTEMOLOGIES: Teaching and Learning in Diverse Higher Education Contexts SE African Higher Education-Developments and Perspectives LA English DT Article; Book Chapter DE assessment of learning; assessment for learning; deep learning; surface learning; mastery orientation; performance orientation ID MOTIVATION; GOALS; STUDENTS; SELF AB At higher education, students are terminally assessed through a research output that demonstrates their originality, creativity, innovativeness, and contribution to knowledge and problem solving in society. However, the research assessment process, unlike the traditional pencil-and-paper and other performance assessments which are thoroughly proctored by the examiner, is one that is loosely structured. Depending on whether the student engrosses in undertaking research as an assessment by mastery orientation or performance orientation or both will determine whether the research process serves as an assessment for learning rather than assessment of learning. In this chapter it is argued using a critical review of literature that postgraduate students who use mastery orientation in carrying out their research will pursue a deep learning of both the theoretical and practical demands of the research process, in which case what is learned is enduring. Hence research as a terminal assessment will serve as an assessment for learning. On the other hand, students engaged in research through performance orientation are likely to engage in surface learning; taking ethical shortcuts in the pursuit and just wanting the work done, presented, and passed. In this case, what is learned from the research process is not enduring, and hence the process serves as assessment of learning for a short while. It is recommended among others that institutional policies and faculty practices regarding research conduct should engender deep learning through mastery orientation as opposed to surface learning through performance orientation so as to foster research as an assessment for learning rather than assessment of learning. CR Acton C., 2014, Engaging students in quantitative research methods: An evaluation of assessment for learning strategies on an undergraduate social research methods module AMES C, 1992, J EDUC PSYCHOL, V84, P261, DOI 10.1037/0022-0663.84.3.261 [Anonymous], 2001, Criteria and guidelines for assessment of NQF registered unit standards and qualifications Aronson J., 2005, HDB COMPETENCE MOTIV, P436 Atibuni D. Z., 2018, Journal of Educational Assessment in Africa, V12, P32 Atibuni D. Z., 2017, International Journal of Educational Policy Research and Review, V4, P19 BANDURA A, 1978, J COMMUN, V28, P12, DOI 10.1111/j.1460-2466.1978.tb01621.x Dweck C.S., 2000, SELF THEORIES THEIR Dweck C.S., 1996, IMPLICIT THEORIES OR Dweck C.S., 2005, HDB COMPETENCE MOTIV, P122 DWECK CS, 1988, PSYCHOL REV, V95, P256, DOI 10.1037/0033-295X.95.2.256 Elliot A.J., 2005, Handbook of Competence and Motivation, DOI DOI 10.1037/0022-0167.51.1.115 Elliot AJ, 1996, J PERS SOC PSYCHOL, V70, P461, DOI 10.1037/0022-3514.70.3.461 Frascati Manual, 2015, The measurement of scientific, technological and innovation activities: Guidelines for collecting and reporting data on research and experimental development Geuna A, 2003, MINERVA, V41, P277, DOI 10.1023/B:MINE.0000005155.70870.bd Harackiewicz JM, 2002, J EDUC PSYCHOL, V94, P638, DOI 10.1037//0022-0663.94.3.638 Heyman GD, 1998, CHILD DEV, V69, P391, DOI 10.1111/j.1467-8624.1998.tb06197.x Hodges K, 1990, Child and Adolescent Functional Assessment Scale (CAFAS), P7 HODSON D, 1992, INT J SCI EDUC, V14, P541, DOI 10.1080/0950069920140506 Hong YY, 1999, J PERS SOC PSYCHOL, V77, P588, DOI 10.1037/0022-3514.77.3.588 Kolb D. A., 1984, EXPERIENTIAL LEARNIN Midgley C, 2001, J EDUC PSYCHOL, V93, P77, DOI 10.1037//0022-0663.93.1.77 Murtagh L, 2012, Reflective Learning and Teaching in Primary Schools, V107 Nicol DJ, 2006, STUD HIGH EDUC, V31, P199, DOI 10.1080/03075070600572090 Organisation for Economic Co-operation and Development (OECD), 2008, Assessment for learning formative assessment Richardson V, 2003, TEACH COLL REC, V105, P1623, DOI 10.1046/j.1467-9620.2003.00303.x Sadler D.R., 1998, Assessment In Education, V5, P77, DOI [10.1080/0969595980050104, DOI 10.1080/0969595980050104] Scriven M., 1991, Evaluation thesaurus, V4 Soltani J. L., 2007, PhD dissertation Stokking K, 2004, BRIT EDUC RES J, V30, P93, DOI 10.1080/01411920310001629983 Van Tilburg P. A., 2000, Tijdschrift voor Didactiek der Beta-wetenschappen, V17, P60 Weidman JC, 2003, RES HIGH EDUC, V44, P641, DOI 10.1023/A:1026123508335 WEINER B, 1972, REV EDUC RES, V42, P203, DOI 10.3102/00346543042002203 Weiner B., 2005, Handbook of competence and motivation, P73 NR 34 TC 0 Z9 0 U1 1 U2 1 PU BRILL PI LEIDEN PA PO BOX 9000, 2300 PA LEIDEN, NETHERLANDS SN 2666-2663 BN 978-90-04-46842-9; 978-90-04-46844-3; 978-90-04-46843-6 J9 AFRICA HIGH ED-DEVEL PY 2021 VL 11 BP 194 EP 213 DI 10.1163/9789004468443_011 PG 20 WC Education & Educational Research; Social Issues; Social Sciences, Interdisciplinary WE Book Citation Index – Social Sciences & Humanities (BKCI-SSH) SC Education & Educational Research; Social Issues; Social Sciences - Other Topics GA BV8GF UT WOS:001077070100012 DA 2024-09-05 ER PT J AU Rahman, QM Corke, P Dayoub, F AF Rahman, Quazi Marufur Corke, Peter Dayoub, Feras TI Run-Time Monitoring of Machine Learning for Robotic Perception: A Survey of Emerging Trends SO IEEE ACCESS LA English DT Article DE Monitoring; Robots; Predictive models; Market research; Task analysis; Training; Safety; Machine learning; performance evaluation; reliability; robot learning AB As deep learning continues to dominate all state-of-the-art computer vision tasks, it is increasingly becoming an essential building block for robotic perception. This raises important questions concerning the safety and reliability of learning-based perception systems. There is an established field that studies safety certification and convergence guarantees of complex software systems at design-time. However, the unknown future deployment environments of an autonomous system and the complexity of learning-based perception make the generalization of design-time verification to run-time problematic. In the face of this challenge, more attention is starting to focus on run-time monitoring of performance and reliability of perception systems with several trends emerging in the literature in the face of this challenge. This paper attempts to identify these trends and summarize the various approaches to the topic. C1 [Rahman, Quazi Marufur; Corke, Peter; Dayoub, Feras] Queensland Univ Technol, ARC Ctr Excellence Robot Vis, Brisbane, Qld 4000, Australia. C3 Queensland University of Technology (QUT); Australian Centre for Robotic Vision RP Rahman, QM (corresponding author), Queensland Univ Technol, ARC Ctr Excellence Robot Vis, Brisbane, Qld 4000, Australia. EM quazi.rahman@qut.edu.au RI Corke, Peter/C-6770-2009 OI Corke, Peter/0000-0001-6650-367X; Rahman, Quazi Marufur/0000-0001-6538-0225; Dayoub, Feras/0000-0002-4234-7374 FU Australian Research Council (ARC) Centre of Excellence for Robotic Vision [CE140100016]; QUT Centre for Robotics FX This work was supported in part by the Australian Research Council (ARC) Centre of Excellence for Robotic Vision under Grant CE140100016, and in part by the QUT Centre for Robotics. CR Abdar M., 2020, ARXIV201106225 [Anonymous], 2019, IEEE INT C INT ROBOT [Anonymous], 2019, PROC CVPR IEEE, DOI DOI 10.1109/CVPR.2019.00463 [Anonymous], 2017, Advances in Neural Information Processing Systems Antonante P., 2020, P 2021 IEEERSJ INT C Cai FY, 2020, ACM IEEE INT CONF CY, P174, DOI 10.1109/ICCPS48487.2020.00024 Che T., 2019, ARXIV191107421 Chen LC, 2018, IEEE T PATTERN ANAL, V40, P834, DOI 10.1109/TPAMI.2017.2699184 Cheng CH, 2019, DES AUT TEST EUROPE, P300, DOI [10.23919/DATE.2019.8714971, 10.23919/date.2019.8714971] Chow C. K., 1957, IRE Trans. Electron. Comput., V6, P247, DOI [DOI 10.1109/TEC.1957.5222035, 10.1109/TEC.1957.5222035] CHOW CK, 1970, IEEE T INFORM THEORY, V16, P41, DOI 10.1109/TIT.1970.1054406 Churchill W, 2015, IEEE INT CONF ROBOT, P4238, DOI 10.1109/ICRA.2015.7139783 Codevilla F, 2018, IEEE INT CONF ROBOT, P4693 Corbiere C., 2019, P ADV NEUR INF PROC, V32, P2898 Cortes C., 2016, NIPS, P1660 Cortes C, 2016, LECT NOTES ARTIF INT, V9925, P67, DOI 10.1007/978-3-319-46379-7_5 Costante G, 2020, IEEE T ROBOT, V36, P1738, DOI 10.1109/TRO.2020.3001674 Daftry S, 2016, 2016 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS 2016), P1743, DOI 10.1109/IROS.2016.7759279 Dequaire J, 2016, IEEE INT CONF ROBOT, P795, DOI 10.1109/ICRA.2016.7487209 Feng D., 2020, ARXIV201110671 Feng D, 2018, IEEE INT C INTELL TR, P3266, DOI 10.1109/ITSC.2018.8569814 Fumera G, 2002, LECT NOTES COMPUT SC, V2388, P68 Gal Y, 2016, PR MACH LEARN RES, V48 Gal Yarin, 2016, UNCERTAINTY DEEP LEA, V1 Geifman Y., 2017, Advances in neural information processing systems Grimmett H, 2016, INT J ROBOT RES, V35, P743, DOI 10.1177/0278364915587924 Gupta A., 2020, ARXIV200505451 Gurau C, 2018, INT J ROBOT RES, V37, P981, DOI 10.1177/0278364917730603 Hall D, 2018, COMPUT ELECTRON AGR, V148, P107, DOI 10.1016/j.compag.2018.02.023 Harakeh A, 2020, IEEE INT CONF ROBOT, P87, DOI [10.1109/ICRA40945.2020.9196544, 10.1109/icra40945.2020.9196544] Hawke J., 2015, P FSR, P173 Hecker S., 2018, P IEEE INT VEH S IV, P1792 HELLMAN ME, 1970, IEEE T SYST SCI CYB, VSSC6, P179, DOI 10.1109/TSSC.1970.300339 Hendrycks D., 2017, ARXIV161002136 Henne M., 2020, P SAFEAI, V2560, P83 Henzinger T. A., 2019, ARXIV191109032 Huang XW, 2020, COMPUT SCI REV, V37, DOI 10.1016/j.cosrev.2020.100270 Hubschneider C, 2019, IEEE INT C INTELL TR, P1511, DOI [10.1109/ITSC.2019.8917207, 10.1109/itsc.2019.8917207] Jafarzadeh M., 2020, ARXIV201105506 Jammalamadaka N, 2012, LECT NOTES COMPUT SC, V7574, P114, DOI 10.1007/978-3-642-33712-3_9 Kendall A, 2017, NEURAL INFORM PROCES, P3581 Lakshminarayanan B., 2017, P NIPS, P1 Liu L, 2020, INT J COMPUT VISION, V128, P261, DOI 10.1007/s11263-019-01247-4 Maag K, 2020, PROC INT C TOOLS ART, P502, DOI 10.1109/ICTAI50040.2020.00084 MACKAY DJC, 1992, NEURAL COMPUT, V4, P448, DOI 10.1162/neco.1992.4.3.448 Masana M., 2018, P BRIT MACHINE VISIO Michelmore R., 2018, Evaluating Uncertainty Quantification in End-to-End Autonomous Driving Control Miller Dimity, 2019, 2019 International Conference on Robotics and Automation (ICRA), P2348, DOI 10.1109/ICRA.2019.8793821 Mohseni S., 2019, ARXIV190507679 Nitsch J., 2020, ARXIV201101413 Ovadia Y., 2019, Proceedings of the Advances in Neural Information Processing Systems Phan B., 2019, P SAFECOMP WORKSH, P378 Rabanser Stephan, 2018, ARXIV181011953 Rabiee S., 2020, ARXIV200802760 Rabiee S., 2019, ARXIV190301028 Rahman QM, 2021, IEEE WINT CONF APPL, P152, DOI 10.1109/WACVW52041.2021.00021 Rahman Quazi Marufur, 2020, ARXIV201107750 Ramanagopal MS, 2018, IEEE ROBOT AUTOM LET, V3, P3860, DOI 10.1109/LRA.2018.2857402 Recht B, 2019, PR MACH LEARN RES, V97 Richter C, 2017, ROBOTICS: SCIENCE AND SYSTEMS XIII Robinson R, 2018, LECT NOTES COMPUT SC, V11073, P578, DOI 10.1007/978-3-030-00937-3_66 Rottmann M., 2020, PREDICTION ERROR MET, P1 Ruff L., 2020, ARXIV200911732 Sa I, 2017, IEEE ROBOT AUTOM LET, V2, P765, DOI 10.1109/LRA.2017.2651952 Saxena D. M., 2017, P IEEE INT C ROB AUT, P5824 Schubert M., 2020, ARXIV201001695 Shafaei Alireza, 2018, ARXIV180904729 Shafer G, 2008, J MACH LEARN RES, V9, P371 Shao Z., P WORKSH ART INT SAF, V2020, P1 Sünderhauf N, 2016, IEEE INT CONF ROBOT, P5729, DOI 10.1109/ICRA.2016.7487796 Tan M., 2019, P 2020 IEEE CVF C CO, P6105 Tian JJ, 2020, IEEE INT CONF ROBOT, P5716, DOI [10.1109/ICRA40945.2020.9197266, 10.1109/icra40945.2020.9197266] Valindria VV, 2017, IEEE T MED IMAGING, V36, P1597, DOI 10.1109/TMI.2017.2665165 Wang Pei, 2018, P EUR C COMP VIS ECC, P36 Yang H, 2015, PROC CVPR IEEE, P4685, DOI 10.1109/CVPR.2015.7299100 Zhang P, 2014, PROC CVPR IEEE, P3566, DOI 10.1109/CVPR.2014.456 Zhao C., 2020, SCI CHINA TECHNOL SC, V63, P1 Zhou W, 2020, IEEE T INTELL TRANSP, V21, P1951, DOI 10.1109/TITS.2019.2909066 NR 78 TC 26 Z9 26 U1 0 U2 8 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 2169-3536 J9 IEEE ACCESS JI IEEE Access PY 2021 VL 9 BP 20067 EP 20075 DI 10.1109/ACCESS.2021.3055015 PG 9 WC Computer Science, Information Systems; Engineering, Electrical & Electronic; Telecommunications WE Science Citation Index Expanded (SCI-EXPANDED) SC Computer Science; Engineering; Telecommunications GA QC7VN UT WOS:000615041000001 OA Green Submitted, gold DA 2024-09-05 ER PT J AU Yu, ZG AF Yu, Zhonggen TI Visualizing Artificial Intelligence Used in Education Over Two Decades SO JOURNAL OF INFORMATION TECHNOLOGY RESEARCH LA English DT Article DE Artificial Intelligence; Bibliometric Evaluation; Cluster; Education; Taxonomy ID ENTREPRENEURSHIP EDUCATION; COCITATION ANALYSIS; LEARNING COMPANION; PERSPECTIVES; PERFORMANCE; JOURNALS; SYSTEM; IMPACT; FIELD AB With the rapid development of computer science, use of artificial intelligence (AI) in education has caught much attention across the world although it is still a young field with many under-explored research elements. Through visualizing study with bibliometric evaluation and taxonomy of the literature using both VOSviewer and CiteSpace, this study provided references for readers in terms of cluster mapping on the basis of keywords, bibliographic coupling of countries, cluster mapping on the basis of co-citations, citation counts, bursts, betweenness centrality, and sigma. Researchers could also take the findings of this study into serious consideration when they set about researching effectiveness, efficiency, or usefulness of AI in education. Future research into use of AI in education will most likely need interdisciplinary cooperation between computer science, statistics, education, cognition, and robotics. C1 [Yu, Zhonggen] Beijing Language & Culture Univ, Dept English Studies, Fac Foreign Studies, Beijing, Peoples R China. C3 Beijing Language & Culture University RP Yu, ZG (corresponding author), Beijing Language & Culture Univ, Dept English Studies, Fac Foreign Studies, Beijing, Peoples R China. RI Yu, Zhonggen/AAE-5514-2020; Yu, Zhonggen/AAJ-3063-2020 OI Yu, Zhonggen/0000-0002-3873-980X; Yu, Zhonggen/0000-0002-3873-980X FU Chinese national fund for the humanities and social sciences (Chinese Academic translation) [17WSS005]; MOOCs of Beijing Language and Culture University (Important) "An introduction to Linguistics" in 2019 [MOOC201902]; Beijing Language and Culture University; research and reform fund of the "Undergraduate Teaching Reform and Innovation Project" of Beijing higher education in 2020-innovative "multilingual +" excellent talent training system FX We would like to extend our gratitude to those who contributed to this work and the funds that supported this research: Chinese national fund for the humanities and social sciences (Chinese Academic translation) (17WSS005); MOOCs of Beijing Language and Culture University (Important) "An introduction to Linguistics" in 2019 (MOOC201902); An online and offline hybrid course "Introduction to Linguistics" of Beijing Language and Culture University in 2020; The research and reform fund of the "Undergraduate Teaching Reform and Innovation Project" of Beijing higher education in 2020-innovative "multilingual +" excellent talent training system. CR Aleven V, 2003, ARTIF INTELL, V150, P183, DOI 10.1016/S0004-3702(03)00105-X [Anonymous], 1974, Essays of an Information Scientist Boyack KW, 2010, J AM SOC INF SCI TEC, V61, P2389, DOI 10.1002/asi.21419 Brandes U, 2001, J MATH SOCIOL, V25, P163, DOI 10.1080/0022250X.2001.9990249 Calo MR, 2011, ARTIF INTELL, V175, P940, DOI 10.1016/j.artint.2010.11.025 Chen CM, 2009, J INFORMETR, V3, P191, DOI 10.1016/j.joi.2009.03.004 Chou CY, 2003, COMPUT EDUC, V40, P255, DOI 10.1016/S0360-1315(02)00130-6 CORNELIUS R, 1986, ACS SYM SER, V306, P125, DOI 10.1021/bk-1986-0306.ch011 Dimiduk DM, 2018, INTEGR MATER MANUF I, V7, P157, DOI 10.1007/s40192-018-0117-8 Fellnhofer K, 2019, EDUC RES REV-NETH, V27, P28, DOI 10.1016/j.edurev.2018.10.002 Franceschet M, 2010, SCIENTOMETRICS, V83, P243, DOI 10.1007/s11192-009-0021-2 Gadanidis G, 2017, INT J INF LEARN TECH, V34, P133, DOI 10.1108/IJILT-09-2016-0048 García P, 2007, COMPUT EDUC, V49, P794, DOI 10.1016/j.compedu.2005.11.017 Gulson KN, 2017, RES EDUC, V98, P14, DOI 10.1177/0034523717723385 Harzing AW, 2009, J AM SOC INF SCI TEC, V60, P41, DOI 10.1002/asi.20953 Hinojo-Lucena FJ, 2019, EDUC SCI, V9, DOI 10.3390/educsci9010051 Hsieh SW, 2013, EURASIA J MATH SCI T, V9, P337, DOI 10.12973/eurasia.2013.943a Hsieh SW, 2011, EDUC TECHNOL SOC, V14, P161 Jordan MI, 2015, SCIENCE, V349, P255, DOI 10.1126/science.aaa8415 Kakouris A., 2016, Journal of Global Entrepreneurship Research, V6 Kayser K, 2009, FOLIA HISTOCHEM CYTO, V47, P355, DOI 10.2478/v10042-009-0087-y Kleinberg J. M., 2002, P 8 ACM SIGKDD INT C, P91, DOI DOI 10.1145/775047.775061 Labhart N, 2012, J UNIVERS COMPUT SCI, V18, P2542 Leydesdorff L, 2005, J AM SOC INF SCI TEC, V56, P769, DOI 10.1002/asi.20130 Linnaeus C., 1758, SYSTEM NATURE 3 KING Lynn LA, 2019, PATIENT SAF SURG, V13, DOI 10.1186/s13037-019-0188-2 MCCAIN KW, 1990, J AM SOC INFORM SCI, V41, P433, DOI 10.1002/(SICI)1097-4571(199009)41:6<433::AID-ASI11>3.0.CO;2-Q Meskó B, 2018, BMC HEALTH SERV RES, V18, DOI 10.1186/s12913-018-3359-4 Nederhof AJ, 2006, SCIENTOMETRICS, V66, P81, DOI 10.1007/s11192-006-0007-2 Nerur SP, 2008, STRATEG MANAGE J, V29, P319, DOI 10.1002/smj.659 Nourbakhsh IR, 1999, ARTIF INTELL, V114, P95, DOI 10.1016/S0004-3702(99)00027-2 Petersen K, 2008, P 12 INT C EV ASS SO, V12, P1, DOI DOI 10.14236/EWIC/EASE2008.8 Pittaway L, 2007, INT SMALL BUS J, V25, P479, DOI 10.1177/0266242607080656 Roll I, 2016, INT J ARTIF INTELL E, V26, P582, DOI 10.1007/s40593-016-0110-3 Timms MJ, 2016, INT J ARTIF INTELL E, V26, P701, DOI 10.1007/s40593-016-0095-y Ting DSW, 2019, BRIT J OPHTHALMOL, V103, P167, DOI 10.1136/bjophthalmol-2018-313173 Van Eck N.J., 2018, VOSviewer Manual van Eck N.J., 2011, Text mining and visualization using VOSviewer, DOI DOI 10.48550/ARXIV.1109.2058 Wartman SA, 2018, ACAD MED, V93, P1107, DOI 10.1097/ACM.0000000000002044 Wen J, 2018, ADV INTELL SYST, V613, P289, DOI 10.1007/978-3-319-60744-3_31 Yoon DM, 2015, IEEE ACCESS, V3, P793, DOI 10.1109/ACCESS.2015.2442680 Zhao YX, 2017, AGRO FOOD IND HI TEC, V28, P683 Zheng XH, 2017, AGRO FOOD IND HI TEC, V28, P555 NR 43 TC 20 Z9 20 U1 14 U2 124 PU IGI GLOBAL PI HERSHEY PA 701 E CHOCOLATE AVE, STE 200, HERSHEY, PA 17033-1240 USA SN 1938-7857 EI 1938-7865 J9 J INF TECHNOL RES JI J. Inf. Technol. Res. PD OCT-DEC PY 2020 VL 13 IS 4 BP 32 EP 46 DI 10.4018/JITR.2020100103 PG 15 WC Computer Science, Interdisciplinary Applications WE Emerging Sources Citation Index (ESCI) SC Computer Science GA OH4QC UT WOS:000582557600003 DA 2024-09-05 ER PT C AU Song, XM Xiong, T AF Song, Xinmeng Xiong, Ting GP IEEE TI A Survey of Published Literature on Conversational Artificial Intelligence SO 2021 7TH INTERNATIONAL CONFERENCE ON INFORMATION MANAGEMENT (ICIM 2021) LA English DT Proceedings Paper CT 7th International Conference on Information Management (ICIM) CY MAR 27-29, 2021 CL Imperial Coll London, S Kensington Campus, London, ENGLAND HO Imperial Coll London, S Kensington Campus DE conversational artificial intelligence; literature review; scientometrics; CiteSpace ID EMERGING TRENDS AB Conversational artificial intelligence (AI), as a rapidly emerging technology, has made a huge impact in the fields of e-commerce, education, entertainment, health, journalism and productivity, and thus arousing the interest of governments, businesses and research institutions. Therefore, it is necessary to generate an overview of the recent developments in the field in order to plan further study effectively. To achieve the goal, we analyze the conversational AI literature between 2015 and 2020 with CiteSpace, which is used for the systematic evaluation of the knowledge structures. Based on the results of the analysis, we find the following insights: (1) The evolution of conversational AI research involves many categories while two major disciplines-computer science and ergonomics-lead the way. (2) The current research can be divided into two research areas: underlying technology architecture and smart scene applications. By using multiple complementary scientometric methods, our study visually presents the research history, current research hotspots and emerging trends in the field of conversational AI, to further promote its technology and application research. C1 [Song, Xinmeng; Xiong, Ting] Sichuan Univ, Sch Publ Adm, Chengdu, Peoples R China. C3 Sichuan University RP Song, XM (corresponding author), Sichuan Univ, Sch Publ Adm, Chengdu, Peoples R China. EM songxinmeng@stu.scu.edu.cn; xiongting@stu.scu.edu.cn CR Adam M, 2021, PROD PLAN CONTROL, V32, P443, DOI 10.1080/09537287.2020.1742375 Chen CM, 2012, EXPERT OPIN BIOL TH, V12, P593, DOI 10.1517/14712598.2012.674507 Chen CM, 2006, J AM SOC INF SCI TEC, V57, P359, DOI 10.1002/asi.20317 El-Zein M, 2019, CANCER EPIDEM BIOMAR, V28, P1134, DOI 10.1158/1055-9965.EPI-18-1338 Gao JF, 2019, FOUND TRENDS INF RET, V13, P127, DOI 10.1561/1500000074 Hauser-Ulrich S, 2020, JMIR MHEALTH UHEALTH, V8, DOI 10.2196/15806 Kerly A, 2007, KNOWL-BASED SYST, V20, P177, DOI 10.1016/j.knosys.2006.11.014 Kim J, 2019, APPL SCI-BASEL, V9, DOI 10.3390/app9183908 Piau A, 2019, INT J MED INFORM, V128, P18, DOI 10.1016/j.ijmedinf.2019.05.013 Qiu LY, 2010, INT J HUM-COMPUT ST, V68, P669, DOI 10.1016/j.ijhcs.2010.05.005 Roca S, 2020, J BIOMED INFORM, V102, DOI 10.1016/j.jbi.2019.103305 Zarouali B, 2018, BEHAV INFORM TECHNOL, V37, P502, DOI 10.1080/0144929X.2018.1458903 Zhou L, 2021, INF SYST E-BUS MANAG, V19, P757, DOI 10.1007/s10257-020-00461-9 NR 13 TC 3 Z9 3 U1 2 U2 33 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA BN 978-1-6654-4380-7 PY 2021 BP 113 EP 117 DI 10.1109/ICIM52229.2021.9417135 PG 5 WC Computer Science, Theory & Methods WE Conference Proceedings Citation Index - Science (CPCI-S) SC Computer Science GA BR8WH UT WOS:000674460200021 DA 2024-09-05 ER PT J AU Gyory, JT Kotovsky, K Cagan, J AF Gyory, Joshua T. Kotovsky, Kenneth Cagan, Jonathan TI The Influence of Process Management: Uncovering the Impact of Real-Time Managerial Interventions via a Topic Modeling Approach SO JOURNAL OF MECHANICAL DESIGN LA English DT Article DE cognitive-based design; design representation; design teams; topic modeling; process management ID DESIGN AB Computationally studying team discourse can provide valuable, real-time insights into the state of design teams and design cognition during problem-solving. The particular experimental design, adopted from previous work by the authors, places one of the design team conditions under the guidance of a human process manager. In that work, teams under this process management outperformed the unmanaged teams in terms of their design performance. This opens the opportunity to not only model design discourse during problem-solving, but more critically, to explore process manager interventions and their impact on design cognition. Utilizing this experimental framework, a topic model is trained on the discourse of human designers of both managed and unmanaged teams collaboratively solving a conceptual engineering design task. Results show that the two team conditions significantly differ in a number of the extracted topics and, in particular, those topics that most pertain to the manager interventions. A dynamic look during the design process reveals that the largest differences between the managed and unmanaged teams occur during the latter half of problem-solving. Furthermore, a before and after analysis of the topic-motivated interventions reveals that the process manager interventions significantly shift the topic mixture of the team members' discourse immediately after intervening. Taken together, these results from this work not only corroborate the effect of the process manager interventions on design team discourse and cognition but provide promise for the computational detection and facilitation of design interventions based on real-time, discourse data. C1 [Gyory, Joshua T.; Cagan, Jonathan] Carnegie Mellon Univ, Dept Mech Engn, Pittsburgh, PA 15213 USA. [Kotovsky, Kenneth] Carnegie Mellon Univ, Dept Psychol, Pittsburgh, PA 15213 USA. C3 Carnegie Mellon University; Carnegie Mellon University RP Cagan, J (corresponding author), Carnegie Mellon Univ, Dept Mech Engn, Pittsburgh, PA 15213 USA. EM jgyory@andrew.cmu.edu; kotovsky@cmu.edu; cagan@cmu.edu OI Gyory, Joshua/0000-0001-9946-4179; Cagan, Jonathan/0000-0002-3935-9219 FU Air Force Office of Scientific Research (AFOSR) [FA9550-18-0088] FX This work was supported by the Air Force Office of Scientific Research (AFOSR) under Grant No. FA9550-18-0088. Any opinions, findings, and conclusions or recommendations expressed in this paper are those of the authors and do not necessarily reflect the views of the sponsors. A previous version of this paper was published in the proceedings of the 2020 ASME IDETC Design Theory and Methodology Conference. CR Agogué M, 2014, J CREATIVE BEHAV, V48, P1, DOI 10.1002/jocb.37 Ahmed F., 2016, INT DES ENG TECHN C, V50190 Ahmed F, 2018, DES SCI, V4, DOI 10.1017/dsj.2018.5 AlSumait L, 2008, IEEE DATA MINING, P3, DOI 10.1109/ICDM.2008.140 [Anonymous], 2014, Handbook of mixed membership models and their applications Asuncion A., 2009, C UNC ART INT UAI QU, P27, DOI DOI 10.1080/10807030390248483 Ball Z, 2020, J MECH DESIGN, V142, DOI 10.1115/1.4048455 Bhowmik T, 2015, REQUIR ENG, V20, P253, DOI 10.1007/s00766-015-0226-2 Blei DM, 2007, ANN APPL STAT, V1, P17, DOI 10.1214/07-AOAS114 Blei DM, 2012, COMMUN ACM, V55, P77, DOI 10.1145/2133806.2133826 Blei DavidM., 2006, P ICML Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993 Bull LJ, 2019, DESIGN STUD, V65, P35, DOI 10.1016/j.destud.2019.10.003 Crain SP., 2012, MINING TEXT DATA, P129, DOI [DOI 10.1007/978-1-4614-3223-4_52,4, DOI 10.1007/978-1-4614-3223-4_5] Cross Nigel, 2001, DESIGN KNOWING LEARN, P79, DOI DOI 10.1016/B978-008043868-9/50005-X DEERWESTER S, 1990, J AM SOC INFORM SCI, V41, P391, DOI 10.1002/(SICI)1097-4571(199009)41:6<391::AID-ASI1>3.0.CO;2-9 den Otter A, 2007, ENG CONSTR ARCHIT MA, V14, P408, DOI 10.1108/09699980710780728 Dong A, 2005, DESIGN STUD, V26, P445, DOI 10.1016/j.destud.2004.10.003 Dong A, 2004, J MECH DESIGN, V126, P378, DOI 10.1115/1.1711818 Dong A, 2013, DESIGN STUD, V34, P1, DOI 10.1016/j.destud.2012.05.003 Foulds J, 2013, 19TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING (KDD'13), P446 Fu K, 2013, J MECH DESIGN, V135, DOI 10.1115/1.4023484 Fu K, 2013, J MECH DESIGN, V135, DOI 10.1115/1.4023158 Fu K, 2010, J MECH DESIGN, V132, DOI 10.1115/1.4002202 Goucher-Lambert K, 2020, J MECH DESIGN, V142, DOI 10.1115/1.4046077 Griffiths TL, 2004, P NATL ACAD SCI USA, V101, P5228, DOI 10.1073/pnas.0307752101 Gyory J.T., 2018, INT C ON DES COMP CO Gyory JT, 2018, PROCEEDINGS OF THE ASME INTERNATIONAL DESIGN ENGINEERING TECHNICAL CONFERENCES AND COMPUTERS AND INFORMATION IN ENGINEERING CONFERENCE, 2018, VOL 7 Gyory JT, 2019, RES ENG DES, V30, P85, DOI 10.1007/s00163-018-00303-3 Handler A., 2016, P 2016 EMNLP WORKSHO, P114 Heinrich Gregor, 2005, TECHNICAL REPORT Hey J, 2008, INT J ENG EDUC, V24, P283 Hoffman MD, 2013, J MACH LEARN RES, V14, P1303 Hofmann Thomas, 2017, ACM SIGIR Forum, V51, P211, DOI 10.1145/3130348.3130370 Huang L, 2017, 2017 24TH ASIA-PACIFIC SOFTWARE ENGINEERING CONFERENCE WORKSHOPS (APSECW), P71, DOI 10.1109/APSECW.2017.11 Isaksen S.G., 2013, FACILITATING CREATIV Joung J, 2021, J MECH DESIGN, V143, DOI 10.1115/1.4048960 Juan Ramos, 2003, Using TF-IDF to determine word relevance in document queries, V242, P29 Kapoor R, 2018, MEASUREMENT, V126, P134, DOI 10.1016/j.measurement.2018.05.053 Kim T.Y., 2010, SCIS ISIS KULLBACK S, 1951, ANN MATH STAT, V22, P79, DOI 10.1214/aoms/1177729694 Linsey JS, 2012, J MECH DESIGN, V134, DOI 10.1115/1.4006145 Liu Y, 2015, AAAI CONF ARTIF INTE, P2418 Lloyd P., 1995, DESIGN STUD, V16, P237, DOI DOI 10.1016/0142-694X(94)00011-2 Loper E., 2004, P ACL 2004 INT POST Martin M.J., 2004, P HUMAN LANGUAGE TEC, P97 Mehrotra R, 2013, SIGIR'13: THE PROCEEDINGS OF THE 36TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH & DEVELOPMENT IN INFORMATION RETRIEVAL, P889 Merriam-Webster M.W.S.C., 1977, DICTIONARY Mohr JW, 2013, POETICS, V41, P545, DOI 10.1016/j.poetic.2013.10.001 Newman D., 2010, P HUM LANG TECHN ANN, P100 Newman D, 2010, J WEB SEMANT, V8, P169, DOI 10.1016/j.websem.2010.03.005 Nguyen V.-A., 2012, P ASS COMPUTATIONAL, P78 Nijstad BA, 2006, PERS SOC PSYCHOL REV, V10, P186, DOI 10.1207/s15327957pspr1003_1 Pérez-Cruz F, 2008, IEEE INT SYMP INFO, P1666, DOI 10.1109/ISIT.2008.4595271 Pujara J., 2012, NIPS WORKSH BIG LEAR, V128 Purver M, 2006, COLING/ACL 2006, VOLS 1 AND 2, PROCEEDINGS OF THE CONFERENCE, P17 Rosa K.D., 2011, P ACM SIGIR SWSM Rosen-Zvi Michal., 2004, UAI Shlens J., 2014, arXiv Song BY, 2017, DES SCI, V3, DOI 10.1017/dsj.2017.27 Stempfe J., 2002, DESIGN STUD, V23, P473, DOI [10.1016/S0142- 694X(02)00004-2, DOI 10.1016/S0142-694X(02)00004-2] Suryadi D, 2019, J MECH DESIGN, V141, DOI 10.1115/1.4044523 Teh YW, 2007, ADV NEURAL INFORM PR, P1353, DOI DOI 10.7551/MITPRESS/7503.003.0174 Yilmaz S, 2010, 11TH INTERNATIONAL DESIGN CONFERENCE (DESIGN 2010), VOL 1-3, P1007 NR 64 TC 6 Z9 6 U1 1 U2 3 PU ASME PI NEW YORK PA TWO PARK AVE, NEW YORK, NY 10016-5990 USA SN 1050-0472 EI 1528-9001 J9 J MECH DESIGN JI J. Mech. Des. PD NOV 1 PY 2021 VL 143 IS 11 AR 111401 DI 10.1115/1.4050748 PG 12 WC Engineering, Mechanical WE Science Citation Index Expanded (SCI-EXPANDED) SC Engineering GA UZ8RJ UT WOS:000702466200011 OA Bronze DA 2024-09-05 ER PT J AU Haga, WJ Zviran, M AF Haga, W. J. Zviran, M. TI Information systems effectiveness: research designs for causal inference SO INFORMATION SYSTEMS JOURNAL LA English DT Article DE effectiveness; effectiveness measurement; productivity; productivity assessment; research design; validity AB This paper examines the capacity of the research designs of 37 empirical studies of information systems (IS) effectiveness to provide a basis for the development of theories about behaviour related to IS effectiveness. The power of each study to support causal inference was evaluated in terms of (a) its handling of the time dimension, (b) its ability to weigh differences and (c) its resistance to internal validity threats that pose alternative explanations for its reported findings. Of the reviewed studies, 29.7% could account for the time dimension, 32.4% employed a comparison group and 16.2% were not susceptible to any internal validity threats. Only 13.5% of the studies combined an accounting for the time dimension with the use of a comparison group. Of these, however, only 5.4% were also invulnerable to internal validity threats. The research designs of nearly 95% of these published studies were deficient in supporting causal inference. In those studies, suggestions that one variable was causally related to another variable could not be substantiated. Encouragement for the future capacity of IS effectiveness research to support causal inference was found in a trend towards the use of quasiexperimental designs. Recommendations are made regarding ways to increase the inferential capacity of research designs employed in the study of IS effectiveness. C1 [Haga, W. J.; Zviran, M.] Naval Postgrad Sch, Dept Syst Management, Monterey, CA 93943 USA. C3 United States Department of Defense; United States Navy; Naval Postgraduate School RP Haga, WJ (corresponding author), Naval Postgrad Sch, Dept Syst Management, Monterey, CA 93943 USA. CR ALAVI M, 1989, PROCEEDINGS OF THE TENTH INTERNATIONAL CONFERENCE ON INFORMATION SYSTEMS, P363, DOI 10.1145/75034.75065 ALDAG RJ, 1986, DECISION SCI, V17, P572, DOI 10.1111/j.1540-5915.1986.tb00243.x Altmeyer A.S., 1981, PUBLIC PRODUCTIVITY, V5, P16 Amovick G. N., 1978, INFORM PROCESSING MA, V14, P369 [Anonymous], SLOAN MANAGEMENT REV [Anonymous], 1961, The Structure of Science: Problems in the Logic of Scientific Explanation [Anonymous], 1950, PHILOS SCI METHOD BAILEY JE, 1983, MANAGE SCI, V29, P530, DOI 10.1287/mnsc.29.5.530 Ball L. D., 1980, PUBLIC PRODUCTIVITY, V4, P51 Ball L, 1982, MIS QUART, V6, P19, DOI 10.2307/248752 Barkin S. R., 1977, Information and Management, V1, P35, DOI 10.1016/0378-7206(77)90007-6 Baroudi J. J., 1988, Journal of Management Information Systems, V4, P44 BAROUDI JJ, 1989, MIS QUART, V13, P87, DOI 10.2307/248704 BAROUDI JJ, 1986, COMMUN ACM, V29, P232, DOI 10.1145/5666.5669 BEARMAN TC, 1985, J AM SOC INFORM SCI, V36, P369, DOI 10.1002/asi.4630360605 Blalock H., 1964, CAUSAL INFERENCES NO, P9 BORKO H, 1983, INFORM PROCESS MANAG, V19, P203, DOI 10.1016/0306-4573(83)90017-1 BOWEN W, 1986, FORTUNE 0526, P20 BRANCHEAU JC, 1987, MIS QUART, V11, P23, DOI 10.2307/248822 Bruwer P. J. S., 1984, INFORM MANAGE, V1, P6347 Calista D. J., 1985, PUBLIC PRODUCTIVITY, V9, P121 Campbell D.T., 1966, Experimental and quasi-experimental designs for research CAMPBELL DT, 1975, COMP POLIT STUD, V8, P178, DOI 10.1177/001041407500800204 CARLSON ED, 1974, MANAGE INFORM, V3, P57 Chandler JS, 1982, MIS QUART, V6, P61, DOI 10.2307/248755 Chervany N. L., 1970, DECISION SCI, V1, P296 Coleman R. J., 1972, J SYST MANAGE, V23, P13 COLTON KW, 1973, SLOAN MANAGE REV, V14, P75 CRON WL, 1983, INFORM MANAGE, V6, P171, DOI 10.1016/0378-7206(83)90034-4 Cronan T. P., 1990, Journal of Management Information Systems, V6, P21 Decker J. E., 1985, PUBLIC PRODUCTIVITY, V9, P213 Denzin N. K., 1968, PREPRINT Denzin N.K., 1989, RES ACT, V3rd DICKSON GW, 1977, MANAGE SCI, V23, P913, DOI 10.1287/mnsc.23.9.913 DICKSON GW, 1984, MIS QUART, V8, P135, DOI 10.2307/248662 DOMINICK WD, 1987, INFORM PROCESS MANAG, V23, P7, DOI 10.1016/0306-4573(87)90034-3 DURAND DE, 1987, INFORM MANAGE, V13, P111, DOI 10.1016/0378-7206(87)90018-8 Edelman F, 1981, MIS QUART, V5, P1, DOI 10.2307/249287 EDSTROM A, 1977, HUM RELAT, V30, P589, DOI 10.1177/001872677703000702 Eichesen D. R., 1978, J AM SOC INFORM SCI, V29, P56 Englander V., 1985, PUBLIC PRODUCTIVITY, V9, P271 EOYANG CK, 1977, BEHAV SCI, V22, P53, DOI 10.1002/bs.3830220109 EPSTEIN BJ, 1982, OMEGA-INT J MANAGE S, V10, P249, DOI 10.1016/0305-0483(82)90095-0 FRANZ CR, 1986, DECISION SCI, V17, P329, DOI 10.1111/j.1540-5915.1986.tb00230.x FRANZ CR, 1986, MIS QUART, V10, P29, DOI 10.2307/248877 Fuerst W. L., 1982, Decision Sciences, V13, P554, DOI 10.1111/j.1540-5915.1982.tb01182.x GALLAGHER CA, 1974, ACAD MANAGE J, V17, P46, DOI 10.5465/254770 GALLUPE RB, 1988, MIS QUART, V12, P277, DOI 10.2307/248853 Ginzberg M. J., 1982, DATA BASE FAL, P19 GINZBERG M.J., 1980, Accounting Organizations and Society, V5, P369, DOI [10.1016/0361-3682(80)90036-7, DOI 10.1016/0361-3682(80)90036-7] GINZBERG MJ, 1981, MANAGE SCI, V27, P459, DOI 10.1287/mnsc.27.4.459 GINZBERG MJ, 1978, INTERFACES, V8, P59, DOI 10.1287/inte.8.4.59 Gremillion L. L., 1985, Journal of Management Information Systems, V2, P5 HABERMAN P, 1963, J CLIN PSYCHOL, V19, P245, DOI 10.1002/1097-4679(196304)19:2<245::AID-JCLP2270190235>3.0.CO;2-P Haga W. J., 1993, DEFENSE ANAL, V9, P197 Hall P. G., 1976, MANAGEMENT DATAMATIC, V5, P262 HAMILTON S, 1983, DATA BASE, V14, P3, DOI 10.1145/1040676.1040677 Hamilton S., 1982, Information and Management, V5, P339, DOI 10.1016/0378-7206(82)90033-7 HARTOG C, 1986, MIS QUART, V10, P351, DOI 10.2307/249189 HILL T, 1987, J APPL PSYCHOL, V72, P307, DOI 10.1037/0021-9010.72.2.307 HOGUE JT, 1985, INFORM MANAGE, V8, P205, DOI 10.1016/0378-7206(85)90017-5 Homans GeorgeC., 1964, Handbook of Modern Sociology, P951 Hummel R. P., 1989, AM SOC PUBL ADM ANN IVES B, 1984, MANAGE SCI, V30, P586, DOI 10.1287/mnsc.30.5.586 JARVENPAA SL, 1985, MIS QUART, V9, P141, DOI 10.2307/249115 KAPSALES P, 1986, J SYST MANAGE, V37, P7 KEIM RT, 1982, J SYST MANAGE, V33, P20 KING JL, 1978, COMPUT SURV, V10, P19, DOI 10.1145/356715.356718 King W.R., 1978, MIS Quarterly, V2, P43 King W.R., 1983, DECISION SCI, V14, P34, DOI [DOI 10.1111/J.1540-5915.1983.TB00167.X, 10.1111/j.1540-5915.1983.tb00167.x] KLEIJNEN JPC, 1979, OMEGA-INT J MANAGE S, V7, P539, DOI 10.1016/0305-0483(79)90072-0 LaPlante A., 1988, INFOWORLD, P5 Larcker D.F., 1980, DECISION SCI, V11, P121, DOI DOI 10.1111/J.1540-5915.1980.TB01130.X LAY PMW, 1985, J SYST MANAGE, V36, P30 LINCOLN T, 1986, INFORM MANAGE, V11, P25, DOI 10.1016/0378-7206(86)90073-X Linson D. D., 1988, THESIS NAVAL POSTGRA Lucas H., 1975, ACCOUNTING REV L, P735 Lucas H. C. Jr., 1978, Decision Sciences, V9, P68, DOI 10.1111/j.1540-5915.1978.tb01367.x LUCAS HC, 1975, MANAGE SCI B-APPL, V21, P908, DOI 10.1287/mnsc.21.8.908 LUCAS HC, 1974, MANAGE INFORM, V3, P207 MAGGIOLINI P, 1986, INFORM MANAGE, V10, P75, DOI 10.1016/0378-7206(86)90049-2 Maginnis N. B., 1980, COMPUTERWORLD, P197 MANSOUR AH, 1980, ACAD MANAGE J, V23, P521, DOI 10.5465/255516 MARKUS ML, 1983, HUM RELAT, V36, P203, DOI 10.1177/001872678303600301 MARSDEN JR, 1988, INFORM MANAGE, V14, P75, DOI 10.1016/0378-7206(88)90051-1 MARTIN MP, 1986, J SYST MANAGE, V37, P7 Mason A., 1984, PUBLIC PRODUCTIVITY, V8, P70 Mason R. O., 1978, Information and Management, V1, P219, DOI 10.1016/0378-7206(78)90028-9 MASON RO, 1973, MANAGE SCI, V19, P475, DOI 10.1287/mnsc.19.5.475 Matlin G, 1979, MIS QUART, V3, P5, DOI 10.2307/248786 MICK CK, 1980, J AM SOC INFORM SCI, V31, P347, DOI 10.1002/asi.4630310506 MILLER J, 1987, MIS QUART, V11, P107, DOI 10.2307/248832 MONEY A, 1988, MIS QUART, V12, P223, DOI 10.2307/248847 MONTAZEMI AR, 1988, MIS QUART, V12, P239, DOI 10.2307/248849 Neumann S., 1979, Information and Management, V2, P271, DOI 10.1016/0378-7206(79)90025-9 Nolan RL, 1980, MIS QUART, V4, P1, DOI 10.2307/249333 Popper K., 1968, LOGIC SCI DISOVERY Pournelle J., 1987, INFOWORLD, P57 POWERS RF, 1973, CALIF MANAGE REV, V15, P147, DOI 10.2307/41164448 RADECKI T, 1976, INFORM PROCESS MANAG, V12, P319, DOI 10.1016/0306-4573(76)90050-9 Raghunathan T.S., 1987, OMEGA, V16, P85 Rescher N., 1970, SCI EXPLANATION, P32 Roach S., 1990, BUS WEEK, P202 ROBEY D, 1978, INTERFACES, V8, P70, DOI 10.1287/inte.8.2.70 ROBEY D, 1979, ACAD MANAGE J, V22, P527, DOI 10.5465/255742 ROUSE WB, 1987, INFORM PROCESS MANAG, V23, P593, DOI 10.1016/0306-4573(87)90063-X SCHEWE CD, 1976, ACAD MANAGE J, V19, P577, DOI 10.5465/255792 SNITKIN SR, 1986, INFORM MANAGE-AMSTER, V10, P83, DOI 10.1016/0378-7206(86)90050-9 SOERGEL D, 1976, J AM SOC INFORM SCI, V27, P256, DOI 10.1002/asi.4630270411 SRINIVASAN A, 1985, MIS QUART, V9, P243, DOI 10.2307/248951 STRASSMANN PA, 1976, HARVARD BUS REV, V54, P133 STRASSMANN PA, 1985, DATAMATION, V31, P82 SULLIVAN RS, 1985, INTERFACES, V15, P46, DOI 10.1287/inte.15.5.46 SWANSON EB, 1974, MANAGE SCI B-APPL, V21, P178, DOI 10.1287/mnsc.21.2.178 TAIT P, 1988, MIS QUART, V12, P91, DOI 10.2307/248809 THARP MO, 1976, MANAGE DATAMAT, V5, P231 TORONTO RS, 1975, BEHAV SCI, V20, P145, DOI 10.1002/bs.3830200302 TRICE AW, 1988, DATA BASE, V19, P33, DOI 10.1145/65766.65771 Vitalari N.P., 1985, RES METHODS INFORM S, P243 Vogel D.R., 1984, DATA BASE, V15, P3 Worthley J.A., 1980, Public Productivity Review, V4, P10 NR 121 TC 4 Z9 6 U1 2 U2 11 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1350-1917 EI 1365-2575 J9 INFORM SYST J JI Inf. Syst. J. PD APR PY 1994 VL 4 IS 2 BP 141 EP 166 DI 10.1111/j.1365-2575.1994.tb00048.x PG 26 WC Information Science & Library Science WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Information Science & Library Science GA V34KM UT WOS:000209085300005 DA 2024-09-05 ER PT J AU Ballestar, MT Doncel, LM Sainz, J Ortigosa-Blanch, A AF Teresa Ballestar, Maria Miguel Doncel, Luis Sainz, Jorge Ortigosa-Blanch, Arturo TI A novel machine learning approach for evaluation of public policies: An application in relation to the performance of university researchers SO TECHNOLOGICAL FORECASTING AND SOCIAL CHANGE LA English DT Article DE Research evaluation; Machine learning; Longitudinal clustering; Incentive-based policies ID FINANCIAL INCENTIVES; PREDICTION; PRODUCTIVITY; VALIDATION; SCIENCE; IMPACT; TENURE; STATE AB Research has become the main reference point for academic life in modern universities. Research incentives have been a controversial issue, because of the difficulty of identifying who are the main beneficiaries and what are the long-term effects. Still, new policies including financial incentives have been adopted to increase the research output at all possible levels. Little literature has been devoted to the response to those incentives. To bridge this gap, we carry out our analysis with data of a six years program developed in Madrid (Spain). Instead of using a traditional econometric approach, we design a machine learning multilevel model to discover on whom, when, and for how long those policies have an effect. The empirical model consists of an automated nested longitudinal clustering (ANLC) performed in two stages. Firstly, it performs a stratification of academics, and secondly, it performs a longitudinal segmentation for each group. The second part considers the researchers' sociodemographic, academic information and the evolution of their performance over time in the form of the annual percentage variation of their marks over the period. The new methodology, whose robustness is tested with a multilayer perceptron artificial neural network with a back-propagation learning algorithm, shows that tenure track researchers present a better response to incentives than tenured researches, and also that gender plays an important role in academia. These discoveries are relevant to administrations and universities for understanding the productivity of academics working under long-term incentive-based programs, the drawbacks and the inequalities for maximizing the generation of knowledge. C1 [Teresa Ballestar, Maria; Ortigosa-Blanch, Arturo] ESIC Business & Mkt Sch, Barcelona, Spain. [Miguel Doncel, Luis; Sainz, Jorge] Univ Rey Juan Carlos, Mostoles, Spain. [Sainz, Jorge] Univ Bath, Bath, Avon, England. C3 ESIC; ESIC Business & Marketing School; Universidad Rey Juan Carlos; University of Bath RP Ballestar, MT (corresponding author), ESIC Business & Mkt Sch, Barcelona, Spain. EM mariateresa.ballestar@esic.edu; luismiguel.doncel@urjc.es; js3189@bath.ac.uk; arturo.ortigosa@esic.edu RI SAINZ, JORGE/AAG-5379-2021; Sainz, jorge/AGW-3813-2022; Doncel-Pedrera, Luis/H-4711-2015 OI SAINZ, JORGE/0000-0001-8491-3154; Ortigosa-Blanch, Arturo/0000-0002-8332-4195; Doncel-Pedrera, Luis/0000-0002-0156-8058; Ballestar de las Heras, Maria Teresa/0000-0001-8526-7561 CR Aghion P, 2010, ECON POLICY, P7 Anderson K, 2009, INST CHEM E, P170 Anderson S., 1980, Statistical Methods for Comparative Studies [Anonymous], 2017, MULTILEVEL ANAL TECH [Anonymous], REV MANAG SCI [Anonymous], SPSS 13 0 STAT PROCE [Anonymous], STERN REV RES EXCELL [Anonymous], 2015, ICTACT J SOFT COMPUT [Anonymous], 2013, APPL LOGISTIC REGRES [Anonymous], 2009, Finding groups in data: an introduction to cluster analysis Athey S, 2017, J ECON PERSPECT, V31, P3, DOI 10.1257/jep.31.2.3 Athey S, 2017, SCIENCE, V355, P483, DOI 10.1126/science.aal4321 Auranen O, 2010, RES POLICY, V39, P822, DOI 10.1016/j.respol.2010.03.003 Austin PC, 2004, STAT MED, V23, P1159, DOI 10.1002/sim.1687 Austin PC, 2011, MULTIVAR BEHAV RES, V46, P119, DOI 10.1080/00273171.2011.540480 Ballestar M.T., 2018, EC IND, P47 Batterbury S, 2008, POLICY FUTURES EDUC, V6, P286, DOI 10.2304/pfie.2008.6.3.286 Camerer CF, 1999, J RISK UNCERTAINTY, V19, P7, DOI 10.1023/A:1007850605129 Chait R., 2009, The questions of tenure Chalfin A, 2016, AM ECON REV, V106, P124, DOI 10.1257/aer.p20161029 Chambers CD, 2015, CORTEX, V66, pA1, DOI 10.1016/j.cortex.2015.03.022 COCHRAN WG, 1968, BIOMETRICS, V24, P295, DOI 10.2307/2528036 Cvecic I, 2018, ECON RES-EKON ISTRAZ, V31, P2060, DOI 10.1080/1331677X.2018.1480970 Dnes A, 2005, ECON INQ, V43, P831, DOI 10.1093/ei/cbi061 Dobbin F, 2007, ANNU REV SOCIOL, V33, P449, DOI 10.1146/annurev.soc.33.090106.142507 Dolnicar S., 2002, FACULTY COMMERCE PAP, V10, P1 Easterly W, 1997, Q J ECON, V112, P1203, DOI 10.1162/003355300555466 Edwards MA, 2017, ENVIRON ENG SCI, V34, P51, DOI 10.1089/ees.2016.0223 Epstein N, 2017, PLOS ONE, V12, DOI 10.1371/journal.pone.0184543 Formann A.K., 1984, Die Latent-Class-Analyse: Einfuhrung in Theorie und Anwendung Frank KA, 2000, SOCIOL METHOD RES, V29, P147, DOI 10.1177/0049124100029002001 Heggeseth B, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0131443 Hicks D, 2012, RES POLICY, V41, P251, DOI 10.1016/j.respol.2011.09.007 Hu XF, 2009, REMOTE SENS ENVIRON, V113, P2089, DOI 10.1016/j.rse.2009.05.014 Jaffe AB, 2005, ECOL ECON, V54, P164, DOI 10.1016/j.ecolecon.2004.12.027 Jenkins GD, 1998, J APPL PSYCHOL, V83, P777, DOI 10.1037/0021-9010.83.5.777 Jones BL, 2007, SOCIOL METHOD RES, V35, P542, DOI 10.1177/0049124106292364 Kattge J, 2011, GLOBAL CHANGE BIOL, V17, P2905, DOI 10.1111/j.1365-2486.2011.02451.x Kavzoglu T, 2003, INT J REMOTE SENS, V24, P4907, DOI 10.1080/0143116031000114851 Kleinberg J, 2018, Q J ECON, V133, P237, DOI 10.1093/qje/qjx032 Kleinberg J, 2015, AM ECON REV, V105, P491, DOI 10.1257/aer.p20151023 LaConte S, 2005, NEUROIMAGE, V26, P317, DOI 10.1016/j.neuroimage.2005.01.048 Lakens D, 2018, NAT HUM BEHAV, V2, P168, DOI 10.1038/s41562-018-0311-x Mjolsness E, 2001, SCIENCE, V293, P2051, DOI 10.1126/science.293.5537.2051 Musselin C, 2005, HIGH EDUC, V49, P135, DOI 10.1007/s10734-004-2918-2 Pers TH, 2009, PLOS ONE, V4, DOI 10.1371/journal.pone.0006287 Pontille D, 2010, RES EVALUAT, V19, P347, DOI 10.3152/095820210X12809191250889 Pourhoseingholi Mohamad Amin, 2012, Gastroenterol Hepatol Bed Bench, V5, P79 Rauber M, 2008, GER ECON REV, V9, P431, DOI 10.1111/j.1468-0475.2008.00448.x Rothstein B, 2005, WORLD POLIT, V58, P41, DOI 10.1353/wp.2006.0022 ROUSSEEUW PJ, 1987, J COMPUT APPL MATH, V20, P53, DOI 10.1016/0377-0427(87)90125-7 Taylor J, 2011, BRIT J MANAGE, V22, P202, DOI 10.1111/j.1467-8551.2010.00722.x Ballestar MT, 2018, J BUS RES, V88, P407, DOI 10.1016/j.jbusres.2017.11.047 Tietze S, 2018, EUR J INT MANAG, V12, P28, DOI 10.1504/EJIM.2018.10009384 Wagstaff K, 2004, ST CLASS DAT ANAL, P649 Wang DS, 2019, ECON RES-EKON ISTRAZ, V32, P1, DOI 10.1080/1331677X.2018.1546123 Wang J, 2018, RES POLICY, V47, P1070, DOI 10.1016/j.respol.2018.03.014 Wright PM, 2002, J MANAGE, V28, P247, DOI 10.1177/014920630202800302 Yu H, 2014, LECT NOTES ARTIF INT, V8818, P765, DOI 10.1007/978-3-319-11740-9_70 NR 59 TC 20 Z9 20 U1 3 U2 47 PU ELSEVIER SCIENCE INC PI NEW YORK PA STE 800, 230 PARK AVE, NEW YORK, NY 10169 USA SN 0040-1625 EI 1873-5509 J9 TECHNOL FORECAST SOC JI Technol. Forecast. Soc. Chang. PD DEC PY 2019 VL 149 AR 119756 DI 10.1016/j.techfore.2019.119756 PG 9 WC Business; Regional & Urban Planning WE Social Science Citation Index (SSCI) SC Business & Economics; Public Administration GA JU8TU UT WOS:000501943200021 DA 2024-09-05 ER PT J AU LoPresto, MC Slater, TF AF LoPresto, Michael C. Slater, Timothy F. TI A New Comparison Of Active Learning Strategies To Traditional Lectures For Teaching College Astronomy SO JOURNAL OF ASTRONOMY AND EARTH SCIENCES EDUCATION LA English DT Article DE Astronomy Education Research; Active Learning; Lecture-Tutorials; Visual-Assessments; Formative Assessment AB Although traditional lectures are still the dominant form of undergraduate instruction, there have been relatively few studies comparing various learner-centered and active learning teaching strategies to one another in order to guide professors in making informed instructional decisions. To study the impact of different active learning approaches, pre-test to posttest learning gains for students receiving instruction on introductory astronomy solar system topics through a combination of collaborative learning activities and formative assessment-driven activities were compared to the gains of students being taught the same topics by traditional lectures only. After traditional lectures, students improved from a pre-test score of 42% (n=144) to 49% (n=49). After lecture tutorials and classroom voting response systems improvement was to 73% (n=72) Using a multiple-group comparison approach, similar earning gains were also observed when using visual-assessment and tutorial activities. Moreover, data from a Likert-style attitude survey of 264 undergraduates showed that, although they did not report a clear preference for one instructional mode over the other, the majority of students believed that the active and collaborative nature of the activities helped them learn. The results of this study add weight to the notion that most modern pedagogies are superior to traditional lecture, and that although the relative impacts of particular pedagogies are mostly indistinguishable from one another, they are all are better than traditional lecture alone. C1 [LoPresto, Michael C.] Henry Ford Coll, Dearborn, MI 48128 USA. [LoPresto, Michael C.] Henry Ford Coll, Introductory Phys & Astron, Dearborn, MI USA. [LoPresto, Michael C.] Univ Michigan, Dept Astron, Ann Arbor, MI 48109 USA. [Slater, Timothy F.] Univ Wyoming, Sci Educ, Laramie, WY 82071 USA. C3 University of Michigan System; University of Michigan; University of Wyoming RP LoPresto, MC (corresponding author), Henry Ford Coll, Dearborn, MI 48128 USA. EM lopresto@hfcc.edu; tslater@uwyo.edu FU NASA/JPL Center for Astronomy Education (CAE) at the University of Arizona; University of Michigan Department of Astronomy - University's Third Century Initiative; NSF [AST-1514835] FX This work was supported in part by the NASA/JPL Center for Astronomy Education (CAE) at the University of Arizona as part of the Collaboration of Astronomy Teaching Scholars (CATS) project, Solar System Concept Inventory (SSCI) & Solar System Lecture-Tutorials Project and a through a Post-Doctoral Fellowship in the University of Michigan Department of Astronomy funded by University's Third Century Initiative and NSF grant AST-1514835. CR Alexander W. R., 2004, ASTRON ED REV, V3, P178 [Anonymous], 1997, Peer Instruction - A User's Manual [Anonymous], 2002, ASTRONOMY ED REV, V1, P1 [Anonymous], 2012, Discipline-based education research [Anonymous], 1999, How people learn Bok D., 2009, Our underachieving colleges: A candid look at how much students learn and why they should be learning more Bonwell C., 1991, Active Learning: Creating Excitement in the Classroom, V1 Bransford J.D., 2005, How students learn: History, mathematics, and science in the classroom Brogt Erik, 2007, Astronomy Education Review, V6, P50, DOI 10.3847/AER2007005 Chickering A.W., 1999, New Directions for Teaching and Learning, V80, P75, DOI [10.1002/tl.8006, DOI 10.1002/TL.8006] Duncan D, 2007, CLICKERS ASTRONOMY C Duncan D., 2006, ASTRONOMY ED REV, V5, P70 Fairweather J., 2008, Linking evidence and promising practices in science, technology, engineering, and mathematics (STEM) undergraduate education: A status report for the National Academies National Research Council Board of Science Education Gokhale A.A., 1995, Journal of Technology Education, V7 Green P., 2003, Peer Instruction for Astronomy Hake RR, 1998, AM J PHYS, V66, P64, DOI 10.1119/1.18809 James Mark C., 2008, Astronomy Education Review, V7, DOI 10.3847/AER2008004 Keeley P., 2012, UNCOVERING STUDENT I Kober N., 2015, Reaching students: What research says about effective instruction in undergraduate science and engineering Lasry N., 2008, PHYS TEACH, V46, P242 Lasry N, 2008, AM J PHYS, V76, P1066, DOI 10.1119/1.2978182 LoPresto Michael C., 2010, Physics Education, V45, P196, DOI 10.1088/0031-9120/45/2/012 LoPresto M. C., 2012, THESIS LoPresto M. C., 2010, ASTRONOMY ED REV, V9, P1 Mazur E, 2009, SCIENCE, V323, P50, DOI 10.1126/science.1168927 Michael C., 2010, PHYS TEACH, V48, P296 NAP, 2007, RIS GATH STORM EN EM Nielsen N., 2011, Promising practices in undergraduate science, technology, engineering, and mathematics education: A summary of two workshops Prather E.E., 2012, Lecture-Tutorials for Introductory Astronomy Prather E.E., 2009, Astronomy Education Review, V8 Prather E.E., 2004, Astronomy Education Review, V3, P122, DOI [10.3847/AER2004019, DOI 10.3847/AER2004019] Prather E. E., 2009, LECT TUTORIALS Prather EE, 2009, PHYS TODAY, V62, P41, DOI 10.1063/1.3248478 Prather EE, 2009, AM J PHYS, V77, P320, DOI 10.1119/1.3065023 Slater S.J., 2015, Conducting Astronomy Education Research, V2nd Slater StephanieJ., 2015, Discipline-Based Education Research: A Guide for Scientists Slater T. F., 2013, ASTROLRNER JAN Slater T. F., 2003, LEARNER CENTERED AST Slater T.F., 2010, The Physics Teacher, V48, P618, DOI DOI 10.1119/1.3517037 Weimer M., 2002, LEARNER CTR TEACHING NR 40 TC 13 Z9 29 U1 0 U2 3 PU CLUTE INT PI LITTLETON PA 6901 S PIERCE STR, STE 301, LITTLETON, CO 80128 USA SN 2374-6246 EI 2374-6254 J9 J ASTRON EARTH SCI E JI J. Astron. Earth Sci. Educ. PD JUN PY 2016 VL 3 IS 1 BP 59 EP 75 DI 10.19030/jaese.v3i1.9685 PG 17 WC Education, Scientific Disciplines WE Emerging Sources Citation Index (ESCI) SC Education & Educational Research GA FF2ZF UT WOS:000408764600004 OA gold DA 2024-09-05 ER PT C AU Wang, Y Kanagavelu, R Wei, QS Yang, YC Liu, Y AF Wang, Yuan Kanagavelu, Renuga Wei, Qingsong Yang, Yechao Liu, Yong BE Bakas, S Crimi, A Baid, U Malec, S Pytlarz, M Baheti, B Zenk, M Dorent, R TI Model Aggregation for Federated Learning Considering Non-IID and Imbalanced Data Distribution SO BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES, BRAINLES 2022, PT II SE Lecture Notes in Computer Science LA English DT Proceedings Paper CT 8th International Workshop on Brain Lesion - Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries (BrainLes) CY SEP 18-22, 2022 CL Singapore, SINGAPORE DE Federated Learning; Multi-institutional Collaboration; Medical Imaging; Brain Tumor Segmentation AB With the ever increasing importance and requirements to ensure data privacy, federated learning emerges as an promising technology for training deep learning models without having hospitals to share the raw data. MICCAI Federated Tumor Segmentation Challenge 2021 is the first international challenge on federated learning to strengthen the understanding of real-world challenges and create practical solutions in the related area. In the challenge of this year, we proposed a series of new aggregation strategies towards improving the learning performance in the context of non-IID and imbalanced data distribution. We also designed a simple collaborator selection scheme to shorten the training time while achieving a good level of model performance for brain tumor segmentation. C1 [Wang, Yuan; Kanagavelu, Renuga; Wei, Qingsong; Yang, Yechao; Liu, Yong] Inst High Performance Comp, Singapore, Singapore. C3 Agency for Science Technology & Research (A*STAR); A*STAR - Institute of High Performance Computing (IHPC) RP Wang, Y (corresponding author), Inst High Performance Comp, Singapore, Singapore. EM wang_yuan@ihpc.a-star.edu.sg; renuga_k@ihpc.a-star.edu.sg; wei_qingsong@ihpc.a-star.edu.sg; yang_yechao@ihpc.a-star.edu.sg; liuyong@ihpc.a-star.edu.sg CR Baid U, 2021, Arxiv, DOI [arXiv:2107.02314, 10.48550/arXiv.2107.02314, 10.48550/ARXIV.2107.02314] Chen M, 2020, IEEE T CLOUD COMPUT, V8, P1274, DOI 10.1109/TCC.2016.2617382 cnbc, Modern Medicine FeTS, 2022, Challenge Guo PF, 2021, PROC CVPR IEEE, P2423, DOI [10.1109/cvpr46437.2021.00245, 10.1109/CVPR46437.2021.00245] Hsu TMH, 2019, Arxiv, DOI arXiv:1909.06335 Karargyris A, 2021, Arxiv, DOI [arXiv:2110.01406, DOI 10.48550/ARXIV.2110.01406] Li WQ, 2019, LECT NOTES COMPUT SC, V11861, P133, DOI 10.1007/978-3-030-32692-0_16 Li X., 2019, INT C LEARNING REPRE McMahan HB, 2017, PR MACH LEARN RES, V54, P1273 Pati S, 2021, Arxiv, DOI arXiv:2105.05874 psnet, Diagnostic Errors Reina GA., 2021, arXiv Sheller MJ, 2020, SCI REP-UK, V10, DOI 10.1038/s41598-020-69250-1 Sheller MJ, 2019, LECT NOTES COMPUT SC, V11383, P92, DOI 10.1007/978-3-030-11723-8_9 Tresp V, 2016, P IEEE, V104, P2180, DOI 10.1109/JPROC.2016.2615052 Yi LP, 2020, LECT NOTES COMPUT SC, V12396, P761, DOI 10.1007/978-3-030-61609-0_60 NR 17 TC 0 Z9 0 U1 0 U2 0 PU SPRINGER INTERNATIONAL PUBLISHING AG PI CHAM PA GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND SN 0302-9743 EI 1611-3349 BN 978-3-031-44152-3; 978-3-031-44153-0 J9 LECT NOTES COMPUT SC PY 2023 VL 14092 BP 196 EP 208 DI 10.1007/978-3-031-44153-0_19 PG 13 WC Computer Science, Artificial Intelligence; Computer Science, Interdisciplinary Applications; Radiology, Nuclear Medicine & Medical Imaging WE Conference Proceedings Citation Index - Science (CPCI-S) SC Computer Science; Radiology, Nuclear Medicine & Medical Imaging GA BW8RG UT WOS:001206018200019 DA 2024-09-05 ER PT J AU Han, N Wen, YY Wang, BW Huang, F Liu, XQ Li, LY Zhu, TS AF Han, Nuo Wen, Yeye Wang, Bowen Huang, Feng Liu, Xiaoqian Li, Linyan Zhu, Tingshao TI Developing a machine learning-based instrument for subjective well-being assessment on Weibo and its psychological significance: An evaluative and interpretive research SO APPLIED PSYCHOLOGY-HEALTH AND WELL BEING LA English DT Article; Early Access DE domain knowledge; life satisfaction; machine learning; social media; subjective well-being; Weibo ID AFFECT SCHEDULE PANAS; SOCIAL MEDIA; PERSONALITY; FACEBOOK; TWITTER; HAPPINESS; VALIDITY; REFLECT; CULTURE; EVENTS AB Demystifying machine learning (ML) approaches through the synergy of psychology and artificial intelligence can achieve a balance between predictive and explanatory power in model development while enhancing rigor in validation and reporting standards. Accordingly, this study aimed to bridge this research gap by developing a subjective well-being (SWB) prediction model on Weibo, serving as a psychological assessment instrument and explaining the model construction based on psychological knowledge. The model establishment involved the collection of SWB scores and posts from 1,427 valid Weibo users. Multiple machine learning algorithms were employed to train the model and fine-tune its parameters. The optimal model was selected by comparing its criterion validity and split-half reliability performance. Furthermore, SHAP values were calculated to rank the importance of features, which were then used for model interpretation. The criterion validity for the three dimensions of SWB ranged from 0.50 to 0.52 (P < 0.001), and the split-half reliability ranged from 0.94 to 0.96 (P < 0.001). The identified relevant features were related to four main aspects: cultural values, emotions, morality, and time and space. This study expands the application scope of SWB-related psychological theories from a data-driven perspective and provides a theoretical reference for further well-being prediction. C1 [Han, Nuo] Beijing Normal Univ, Fac Arts & Sci, Dept Psychol, Zhuhai, Peoples R China. [Han, Nuo; Li, Linyan] City Univ Hong Kong, Sch Data Sci, Hong Kong, Peoples R China. [Wen, Yeye] Univ Chinese Acad Sci, Sch Elect Elect & Commun Engn, Beijing, Peoples R China. [Wang, Bowen] Helmholtz Ctr Potsdam, GFZ German Res Ctr Geosci, Potsdam, Germany. [Huang, Feng; Liu, Xiaoqian; Zhu, Tingshao] Chinese Acad Sci, Inst Psychol, CAS Key Lab Behav Sci, Beijing, Peoples R China. [Huang, Feng; Zhu, Tingshao] Univ Chinese Acad Sci, Dept Psychol, Beijing, Peoples R China. [Li, Linyan] City Univ Hong Kong, Jockey Club Coll Vet Med & Life Sci, Dept Infect Dis & Publ Hlth, Hong Kong, Peoples R China. C3 Beijing Normal University; City University of Hong Kong; Chinese Academy of Sciences; University of Chinese Academy of Sciences, CAS; Helmholtz Association; Helmholtz-Center Potsdam GFZ German Research Center for Geosciences; Chinese Academy of Sciences; Institute of Psychology, CAS; Chinese Academy of Sciences; University of Chinese Academy of Sciences, CAS; City University of Hong Kong RP Zhu, TS (corresponding author), Chinese Acad Sci, Inst Psychol, 16 Lincui Rd, Beijing, Peoples R China.; Li, LY (corresponding author), City Univ Hong Kong, Kowloon, Tat Chee Ave, Hong Kong, Peoples R China. EM linyanli@cityu.edu.hk; tszhu@psych.ac.cn RI Wang, Bowen/GZN-1670-2022; Han, Nuo/GYU-5016-2022 OI Wang, Bowen/0000-0002-0975-1412; Han, Nuo/0000-0002-8090-4581; Wen, Yeye/0000-0001-6009-2101; HUANG, Feng/0000-0003-2156-0915; Li, Linyan/0000-0001-5736-2115; Zhu, Tingshao/0000-0003-0020-3812 FX We sincerely thank all participants and staff who participated in this study. CR Back MD, 2010, PSYCHOL SCI, V21, P372, DOI 10.1177/0956797609360756 Blome C., 2016, Measuring change in subjective wellbeing: Methods to quantify recall bias and recalibration response shift Brunswik E., 2001, The essential brunswik: Beginnings, explications, applications, DOI [10.1093/oso/9780195130133.003.0016, DOI 10.1093/OSO/9780195130133.003.0016] Chancellor S, 2020, NPJ DIGIT MED, V3, DOI 10.1038/s41746-020-0233-7 Chen NH, 2023, LECT NOTES ARTIF INT, V13714, P241, DOI 10.1007/978-3-031-26390-3_15 Chiang I.C. A., 2015, Reliability and validity of measurement Chua LW, 2015, J YOUTH ADOLESCENCE, V44, P2028, DOI 10.1007/s10964-014-0230-8 Crawford JR, 2004, BRIT J CLIN PSYCHOL, V43, P245, DOI 10.1348/0144665031752934 Cui P, 2021, INT J ENV RES PUB HE, V18, DOI 10.3390/ijerph18189795 Curren R, 2020, J MORAL EDUC, V49, P295, DOI 10.1080/03057240.2020.1793744 Das KV, 2020, PUBLIC HEALTH REV, V41, DOI 10.1186/s40985-020-00142-5 de Carvalho HW, 2013, REV BRAS PSIQUIATR, V35, P169, DOI 10.1590/1516-4446-2012-0957 Della Longa L, 2022, FRONT PSYCHOL, V12, DOI 10.3389/fpsyg.2021.795283 Diener E, 2003, ANNU REV PSYCHOL, V54, P403, DOI 10.1146/annurev.psych.54.101601.145056 DIENER E, 1984, PSYCHOL BULL, V95, P542, DOI 10.1037/0033-2909.95.3.542 DIENER E, 1985, J PERS ASSESS, V49, P71, DOI 10.1207/s15327752jpa4901_13 Diener Ed., 2009, OXFORD HDB POSITIVE, P187 Dolan P, 2008, J ECON PSYCHOL, V29, P94, DOI 10.1016/j.joep.2007.09.001 [董颖红 Dong Yinghong], 2015, [心理科学, Journal of Psychological Science], V38, P1141 Eid M., 2008, SCI SUBJECTIVE WELL FURNHAM A, 1986, PERS INDIV DIFFER, V7, P385, DOI 10.1016/0191-8869(86)90014-0 Gao R., Developing simplified Chinese psychological linguistic analysis dictionary for microblog, P10 Graham J, 2009, J PERS SOC PSYCHOL, V96, P1029, DOI 10.1037/a0015141 Hamamura T, 2015, J CROSS CULT PSYCHOL, V46, P930, DOI 10.1177/0022022115592968 Han N, 2023, FRONT PSYCHIATRY, V14, DOI 10.3389/fpsyt.2023.1052844 Han N, 2023, J MED INTERNET RES, V25, DOI 10.2196/41823 HEADEY B, 1984, SOC INDIC RES, V15, P203, DOI 10.1007/BF00668671 Hofman JM, 2021, NATURE, V595, P181, DOI 10.1038/s41586-021-03659-0 Hofstede G., 2003, CULTURES CONSEQUENCE Humboldt S.V., 2017, Review of European Studies, V9, P10, DOI DOI 10.5539/RES.V9N2P10 Jaidka K, 2020, P NATL ACAD SCI USA, V117, P10165, DOI 10.1073/pnas.1906364117 Kline R. B., 2023, PRINCIPLES PRACTICE Kosinski M, 2015, AM PSYCHOL, V70, P543, DOI 10.1037/a0039210 Lin XL, 2016, COMPUT HUM BEHAV, V65, P576, DOI 10.1016/j.chb.2016.04.032 Liu P, 2015, CYBERPSYCH BEH SOC N, V18, P373, DOI 10.1089/cyber.2015.0022 Lundberg SM, 2017, ADV NEUR IN, V30 Lundberg SM, 2020, NAT MACH INTELL, V2, P56, DOI 10.1038/s42256-019-0138-9 Lundberg SM, 2018, NAT BIOMED ENG, V2, P749, DOI 10.1038/s41551-018-0304-0 Ogihara Y, 2014, FRONT PSYCHOL, V5, DOI 10.3389/fpsyg.2014.00135 Oishi S, 2004, J PERS SOC PSYCHOL, V86, P460, DOI 10.1037/0022-3514.86.3.460 Orrù G, 2020, FRONT PSYCHOL, V10, DOI 10.3389/fpsyg.2019.02970 Paliwal S., 2019, International Journal of Current Research and Review, V11, P17, DOI [10.31782/IJCRR.2019.11403, DOI 10.31782/IJCRR.2019.11403] Parry DA, 2022, CURR OPIN PSYCHOL, V45, DOI 10.1016/j.copsyc.2021.11.005 Pavot W., 2008, J F POSITIVE PSYCHOL, V3, P137, DOI [10.1080/17439760701756946, DOI 10.1080/17439760701756946] Pennebaker J. W., 2013, The Oxford handbook of health psychology, P417 Phillips J, 2017, J EXP PSYCHOL GEN, V146, P165, DOI 10.1037/xge0000252 Qiu L., 2008, CHINESE J APPL PSYCH, V3, P249 Qiu L, 2012, J RES PERS, V46, P710, DOI 10.1016/j.jrp.2012.08.008 Ren X., 2017, Journal of Inner Mongolia Normal University (PhilosophySocial Science), V46, P59, DOI [10.3969/j.issn.1001-7623.2017.06.011, DOI 10.3969/J.ISSN.1001-7623.2017.06.011] Ryan R., 2009, Social Psychology, V84, P848 Ryan RM, 2001, ANNU REV PSYCHOL, V52, P141, DOI 10.1146/annurev.psych.52.1.141 Ryan RM, 2000, AM PSYCHOL, V55, P68, DOI 10.1037/0003-066X.55.1.68 Schober P, 2018, ANESTH ANALG, V126, P1763, DOI 10.1213/ANE.0000000000002864 Simm J, 2014, IEICE T INF SYST, VE97D, P1677, DOI 10.1587/transinf.E97.D.1677 Tausczik YR, 2010, J LANG SOC PSYCHOL, V29, P24, DOI 10.1177/0261927X09351676 Tov W., 2013, The Encyclopedia of Cross-Cultural Psychology, First Edition, P1, DOI [10.1002/9781118339893.wbeccp518, DOI 10.1002/9781118339893.WBECCP518] Uban AS, 2021, FUTURE GENER COMP SY, V124, P480, DOI 10.1016/j.future.2021.05.032 Vaish A, 2008, PSYCHOL BULL, V134, P383, DOI 10.1037/0033-2909.134.3.383 VanderWeele TJ, 2017, P NATL ACAD SCI USA, V114, P8148, DOI 10.1073/pnas.1702996114 Weidong Z., 2004, Psychological Science (China) Wu S., 2019, The Chinese version of moral foundations dictionary: A brief introduction and pilot analysis Xiong CQ., 2009, China Journal of Health Psychology, V17, P948, DOI [10.13342/j.cnki.cjhp.2009.08.026, DOI 10.13342/J.CNKI.CJHP.2009.08.026] Xu ZZ, 2021, SOC SCI MED, V283, DOI 10.1016/j.socscimed.2021.114176 Yarkoni T, 2017, PERSPECT PSYCHOL SCI, V12, P1100, DOI 10.1177/1745691617693393 Zhang Y, 2018, EMERG MARK FINANC TR, V54, P792, DOI 10.1080/1540496X.2017.1321984 NR 65 TC 0 Z9 0 U1 1 U2 1 PU WILEY PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1758-0846 EI 1758-0854 J9 APPL PSYCHOL-HLTH WE JI Appl. Psychol.-Health Well Being PD 2024 AUG 21 PY 2024 DI 10.1111/aphw.12590 EA AUG 2024 PG 20 WC Psychology, Applied WE Social Science Citation Index (SSCI) SC Psychology GA D3R9F UT WOS:001295402200001 PM 39168488 DA 2024-09-05 ER PT J AU Kurtz, JB Lourie, MA Holman, EE Grob, KL Monrad, SU AF Kurtz, Josh B. Lourie, Michael A. Holman, Elizabeth E. Grob, Karri L. Monrad, Seetha U. TI Creating assessments as an active learning strategy: what are students' perceptions? A mixed methods study SO MEDICAL EDUCATION ONLINE LA English DT Article DE Qualitative research methods; quantitative research methods; curriculum development; evaluation; active learning; multiple-choice questions ID MULTIPLE-CHOICE QUESTIONS; MEDICAL-EDUCATION; GENERATION AB Background: Teaching students how to create assessments, such as those involving multiple-choice questions (MCQs), has the potential to be a useful active learning strategy. In order to optimize students' learning, it is essential to understand how they engage with such activities. Objective: To explore medical students' perceptions of how completing rigorous MCQ training and subsequently writing MCQs affects their learning. Design: In this mixed methods exploratory qualitative study, eighteen second-year medical students, trained in MCQ-writing best practices, collaboratively generated a question bank. Subsequently, the authors conducted focus groups with eight students to probe impressions of the process and the effect on learning. Responses partially informed a survey consisting of open-ended and Likert rating scale questions that the remaining ten students completed. Focus group and survey data from the eighteen participants were iteratively coded and categorized into themes related to perceptions of training and of collaborative MCQ writing. Results: Medical students felt that training in MCQ construction affected their appreciation for MCQ examinations and their test-taking strategy. They perceived that writing MCQs required more problem-solving and content-integration compared to their preferred study strategies. Specifically, generating plausible distractors required the most critical reasoning to make subtle distinctions between diagnoses and treatments. Additionally, collaborating with other students was beneficial in providing exposure to different learning and question-writing approaches. Conclusions: Completing MCQ-writing training increases appreciation for MCQ assessments. Writing MCQs requires medical students to make conceptual connections, distinguish between diagnostic and therapeutic options, and learn from colleagues, but requires extensive time and knowledge base. C1 [Kurtz, Josh B.; Lourie, Michael A.; Holman, Elizabeth E.; Grob, Karri L.; Monrad, Seetha U.] Univ Michigan, Med Sch, Div Rheumatol, Dept Internal Med, Ann Arbor, MI 48109 USA. C3 University of Michigan System; University of Michigan RP Monrad, SU (corresponding author), Univ Michigan, Med Sch, Taubman Hlth Sci Lib 6125, 1135 Catherine St, Ann Arbor, MI 48109 USA. EM seetha@med.umich.edu OI Monrad, Seetha/0000-0002-3374-2989; Kurtz, Joshua/0000-0001-7528-1722 FU Whitaker fund grant at the University of Michigan; Summer Biological Research Program at the University of Michigan Medical School; Whitaker Fund - Institutional Grant FX This study was funded by the Whitaker fund grant at the University of Michigan and the Summer Biological Research Program at the University of Michigan Medical School; Whitaker Fund - Institutional Grant [(none)]; CR [Anonymous], 2015, RES MED ED [Anonymous], 2003, HDB MIXED METHODS SO Baerheim A, 2003, MED EDUC, V37, P734, DOI 10.1046/j.1365-2923.2003.01578.x Bobby Z, 2012, BIOCHEM MOL BIOL EDU, V40, P169, DOI 10.1002/bmb.20611 Bottomley S., 2001, BIOCH MOL BIOL ED, V5, P352 Cobb P., 1998, MIND CULT ACT, V5, P187, DOI DOI 10.1207/s15327884mca0503_4 Coderre S, 2009, MED TEACH, V31, P359, DOI 10.1080/01421590802225770 Creswell J. W., 2013, RES DESIGN QUALITATI DIJKSTRA W, 1983, QUAL QUANT, V17, P179, DOI 10.1007/BF00167582 FOOS PW, 1994, J EDUC PSYCHOL, V86, P567, DOI 10.1037/0022-0663.86.4.567 Gonzalez-Cabezas C, 2015, J DENT EDUC, V79, P1295 Gooi ACC, 2015, MED TEACH, V37, P892, DOI 10.3109/0142159X.2014.970624 Graffam B, 2007, MED TEACH, V29, P38, DOI 10.1080/01421590601176398 Grainger R, 2018, BMC MED EDUC, V18, DOI 10.1186/s12909-018-1312-1 Harris BHL, 2015, TEACH LEARN MED, V27, P182, DOI 10.1080/10401334.2015.1011651 Hilliard RI, 2009, TEACH LEARN MED, V7, P201 Hudson SL, 2018, AM J PHARM EDUC, V82, DOI 10.5688/ajpe6315 Hutchinson D., 2013, Creative Education, V4, P117, DOI DOI 10.4236/CE.2013.47A2014 JACOBY LL, 1978, J VERB LEARN VERB BE, V17, P649, DOI 10.1016/S0022-5371(78)90393-6 Jobs A, 2013, BMC MED EDUC, V13, DOI 10.1186/1472-6920-13-89 Johnson RB, 2007, J MIX METHOD RES, V1, P112, DOI 10.1177/1558689806298224 Kennedy TJT, 2006, MED EDUC, V40, P101, DOI 10.1111/j.1365-2929.2005.02378.x Mavis BE, 2001, TEACH LEARN MED, V13, P74, DOI 10.1207/S15328015TLM1302_1 MORSE JM, 1991, NURS RES, V40, P120 Nowell LS, 2017, INT J QUAL METH, V16, DOI 10.1177/1609406917733847 Nwosu A, 2013, CLIN TEACH, V10, P151, DOI 10.1111/j.1743-498X.2012.00632.x Palmer E, 2006, ANN ACAD MED SINGAP, V35, P604 Papinczak T, 2012, ASSESS EVAL HIGH EDU, V37, P439, DOI 10.1080/02602938.2010.538666 PITTENGER AL, 2011, AM J PHARM EDUC, V75, P1 Radley A, 1996, SOCIOL HEALTH ILL, V18, P220, DOI 10.1111/1467-9566.ep10934984 Rajendiren S., 2014, J CONT MED ED, V2, P123 Rosenshine B, 1996, REV EDUC RES, V66, P181, DOI 10.3102/00346543066002181 Schifferdecker KE, 2009, MED EDUC, V43, P637, DOI 10.1111/j.1365-2923.2009.03386.x Shakurnia Abdolhussein, 2018, J Adv Med Educ Prof, V6, P70 Temple B., 1998, International Journal of Social Research Methodology, V1, P205 Walsh J, 2016, CLIN TEACH, V13, P352, DOI 10.1111/tct.12445 WONG BYL, 1985, REV EDUC RES, V55, P227, DOI 10.3102/00346543055002227 NR 37 TC 18 Z9 20 U1 1 U2 7 PU TAYLOR & FRANCIS LTD PI ABINGDON PA 2-4 PARK SQUARE, MILTON PARK, ABINGDON OR14 4RN, OXON, ENGLAND SN 1087-2981 J9 MED EDUC ONLINE JI Med. Educ. Online PD JAN 1 PY 2019 VL 24 IS 1 AR 1630239 DI 10.1080/10872981.2019.1630239 PG 10 WC Education & Educational Research WE Social Science Citation Index (SSCI) SC Education & Educational Research GA IF5VE UT WOS:000473149700001 PM 31248355 OA gold, Green Published DA 2024-09-05 ER PT J AU Liang, Y Tan, JW Xie, ZS Chen, ZT Lin, DQ Yang, ZH AF Liang, Yong Tan, Junwen Xie, Zhisong Chen, Zetao Lin, Daoqian Yang, Zhenhao TI Research on Convolutional Neural Network Inference Acceleration and Performance Optimization for Edge Intelligence SO SENSORS LA English DT Article DE FPGA; HLS; edge intelligence; deep learning; heterogeneous computing ID DNN INFERENCE; ARCHITECTURE AB In recent years, edge intelligence (EI) has emerged, combining edge computing with AI, and specifically deep learning, to run AI algorithms directly on edge devices. In practical applications, EI faces challenges related to computational power, power consumption, size, and cost, with the primary challenge being the trade-off between computational power and power consumption. This has rendered traditional computing platforms unsustainable, making heterogeneous parallel computing platforms a crucial pathway for implementing EI. In our research, we leveraged the Xilinx Zynq 7000 heterogeneous computing platform, employed high-level synthesis (HLS) for design, and implemented two different accelerators for LeNet-5 using loop unrolling and pipelining optimization techniques. The experimental results show that when running at a clock speed of 100 MHz, the PIPELINE accelerator, compared to the UNROLL accelerator, experiences an 8.09% increase in power consumption but speeds up by 14.972 times, making the PIPELINE accelerator superior in performance. Compared to the CPU, the PIPELINE accelerator reduces power consumption by 91.37% and speeds up by 70.387 times, while compared to the GPU, it reduces power consumption by 93.35%. This study provides two different optimization schemes for edge intelligence applications through design and experimentation and demonstrates the impact of different quantization methods on FPGA resource consumption. These experimental results can provide a reference for practical applications, thereby providing a reference hardware acceleration scheme for edge intelligence applications. C1 [Liang, Yong; Tan, Junwen] Guilin Univ Technol, Educ Dept Guangxi Zhuang, Key Lab Adv Mfg & Automat Technol, Guilin 541006, Peoples R China. [Liang, Yong; Tan, Junwen; Xie, Zhisong; Chen, Zetao; Lin, Daoqian; Yang, Zhenhao] Guilin Univ Technol, Coll Mech & Control Engn, Guilin 541006, Peoples R China. C3 Guilin University of Technology; Guilin University of Technology RP Tan, JW (corresponding author), Guilin Univ Technol, Educ Dept Guangxi Zhuang, Key Lab Adv Mfg & Automat Technol, Guilin 541006, Peoples R China.; Tan, JW (corresponding author), Guilin Univ Technol, Coll Mech & Control Engn, Guilin 541006, Peoples R China. EM void414@163.com; 2120211120@glut.edu.cn; xiezs1972@163.com; chenzetao2021@163.com; lindq1997@163.com; 19950909667@163.com RI Tan, Junwen/ISA-4718-2023 OI Liang, Yong/0000-0001-6021-2791 FU Science and Technology Program of Guangxi, China FX No Statement Available CR Ahmad A, 2019, DES AUT TEST EUROPE, P1106, DOI [10.23919/date.2019.8715272, 10.23919/DATE.2019.8715272] Ajili MT, 2022, IEEE ACCESS, V10, P9603, DOI 10.1109/ACCESS.2022.3144977 Bao C, 2020, IEEE ACCESS, V8, P94307, DOI 10.1109/ACCESS.2020.2995330 Benardos PG, 2007, ENG APPL ARTIF INTEL, V20, P365, DOI 10.1016/j.engappai.2006.06.005 Bi QF, 2019, AM J EPIDEMIOL, V188, P2222, DOI 10.1093/aje/kwz189 Bjerge K, 2021, MICROPROCESS MICROSY, V87, DOI 10.1016/j.micpro.2021.104363 Chen K, 2018, IEEE T CIRC SYST VID, V28, P3377, DOI 10.1109/TCSVT.2017.2757061 Chetlur S, 2014, Arxiv, DOI arXiv:1410.0759 Ghaderzadeh M, 2022, SCI PROGRAMMING-NETH, V2022, DOI 10.1155/2022/4801671 Guan YJ, 2017, ANN IEEE SYM FIELD P, P152, DOI 10.1109/FCCM.2017.25 Guo XT, 2023, OPTIK, V281, DOI 10.1016/j.ijleo.2023.170809 Herkle A, 2020, IEEE INT SYMP CIRC S, DOI [10.1109/ISCAS45731.2020.9180678, 10.1109/ISCAS45731.2020.9181272] Hinton GE, 2006, SCIENCE, V313, P504, DOI 10.1126/science.1127647 Hu X., 2021, Int. Core J. Eng, V7, P195 Huang KY, 2021, SENSORS-BASEL, V21, DOI 10.3390/s21144634 Jiang JF, 2022, IEEE T CIRCUITS-II, V69, P2947, DOI 10.1109/TCSII.2022.3167022 Kaijie Wei, 2020, 2020 Eighth International Symposium on Computing and Networking (CANDAR), P228, DOI 10.1109/CANDAR51075.2020.00039 Lammie C, 2019, IEEE ACCESS, V7, P51171, DOI 10.1109/ACCESS.2019.2911709 Li E, 2018, MECOMM'18: PROCEEDINGS OF THE 2018 WORKSHOP ON MOBILE EDGE COMMUNICATIONS, P31, DOI 10.1145/3229556.3229562 Li Z., 2017, PloS one, P12 Liang Y, 2020, IEEE T COMPUT AID D, V39, P857, DOI 10.1109/TCAD.2019.2897701 Liu Z, 2017, IEEE I CONF COMP VIS, P2755, DOI 10.1109/ICCV.2017.298 Ma NN, 2018, LECT NOTES COMPUT SC, V11218, P122, DOI 10.1007/978-3-030-01264-9_8 Medus LD, 2019, IEEE ACCESS, V7, P76084, DOI 10.1109/ACCESS.2019.2920885 Nannipieri P., 2022, P 2022 IEEE AEROSPAC, P1 Park SS, 2018, 2018 2ND INTERNATIONAL CONFERENCE ON DIGITAL SIGNAL PROCESSING (ICDSP 2018), P161, DOI 10.1145/3193025.3193041 Podili A, 2017, IEEE INT CONF ASAP, P11, DOI 10.1109/ASAP.2017.7995253 Qijing Huang, 2021, FPGA '21: The 2021 ACM/SIGDA International Symposium on Field-Programmable, P206, DOI 10.1145/3431920.3439295 Qin HT, 2020, PROC CVPR IEEE, P2247, DOI 10.1109/CVPR42600.2020.00232 Qiu JT, 2016, PROCEEDINGS OF THE 2016 ACM/SIGDA INTERNATIONAL SYMPOSIUM ON FIELD-PROGRAMMABLE GATE ARRAYS (FPGA'16), P26, DOI 10.1145/2847263.2847265 Rajabi M, 2023, BIOMED SIGNAL PROCES, V85, DOI 10.1016/j.bspc.2023.105042 Rajabi M, 2021, SENS IMAGING, V22, DOI 10.1007/s11220-021-00364-0 Slam W, 2023, SENSORS-BASEL, V23, DOI 10.3390/s23229096 Tang Zhen-tao, 2017, Control Theory & Applications, V34, P1529, DOI 10.7641/CTA.2017.70808 Venkat A, 2014, CONF PROC INT SYMP C, P121, DOI 10.1109/ISCA.2014.6853218 Wang XF, 2020, IEEE COMMUN SURV TUT, V22, P869, DOI 10.1109/COMST.2020.2970550 Wang XF, 2019, IEEE NETWORK, V33, P156, DOI 10.1109/MNET.2019.1800286 Yu GY, 2023, SENSORS-BASEL, V23, DOI 10.3390/s23229242 Zeng LK, 2021, IEEE ACM T NETWORK, V29, P595, DOI 10.1109/TNET.2020.3042320 Zhai JQ, 2023, SENSORS-BASEL, V23, DOI 10.3390/s23042208 Zhang C, 2016, I SYMPOS LOW POWER E, P326, DOI 10.1145/2934583.2934644 Zhang JF, 2019, SYMP VLSI CIRCUITS, pC306, DOI 10.23919/VLSIC.2019.8778193 Zhang WT, 2021, IEEE T VEH TECHNOL, V70, P7605, DOI 10.1109/TVT.2021.3068255 Zhang XF, 2018, ANN IEEE SYM FIELD P, P210, DOI 10.1109/FCCM.2018.00044 Zulberti L., 2023, Authorea Prepr, DOI [10.36227/techrxiv.24100671.v1, DOI 10.36227/TECHRXIV.24100671.V1] NR 45 TC 0 Z9 0 U1 5 U2 11 PU MDPI PI BASEL PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND EI 1424-8220 J9 SENSORS-BASEL JI Sensors PD JAN PY 2024 VL 24 IS 1 AR 240 DI 10.3390/s24010240 PG 16 WC Chemistry, Analytical; Engineering, Electrical & Electronic; Instruments & Instrumentation WE Science Citation Index Expanded (SCI-EXPANDED) SC Chemistry; Engineering; Instruments & Instrumentation GA ER0L4 UT WOS:001140531900001 PM 38203102 OA Green Published, gold DA 2024-09-05 ER PT J AU Rüdiger, MS Antons, D Salge, TO AF Ruediger, Matthias Sebastian Antons, David Salge, Torsten-Oliver TI The explanatory power of citations: a new approach to unpacking impact in science SO SCIENTOMETRICS LA English DT Article DE Citation analysis; Content-based citation analysis; Topic modeling; Information systems ID INFORMATION-TECHNOLOGY; SCIENTIFIC ARTICLES; USER ACCEPTANCE; COUNTS MEASURE; REFERENCES; CLASSICS; SECURITY; CONTEXT AB Citation analysis has been applied to map the landscape of scientific disciplines and to assess the impact of publications. However, it is limited in that it assumes all citations to be of equal weight. Doing away with this assumption could make such studies even more insightful. Current developments in this regard focus on the evaluation of the syntactic and semantic qualities of the text that surrounds citations. Still lacking, however, are computational techniques to unpack the thematic context in which citations appear. It is against this backdrop that we propose a text clustering approach to derive contextual aspects of individual citations and the relationship between cited and citing work in an automated and scalable fashion. The method reveals a focal publication's absorption and use within the scientific community. It can also facilitate impact assessments at all levels. In addition to analyzing individual publications, the method can also be extended to creating impact profiles for authors, institutions, disciplines, and regions. We illustrate our results based on a large corpus of full-text articles from the field of Information systems (IS) with the help of exemplary visualizations. In addition, we provide a case study, the scientific impact of the Technology acceptance model. This way, we not only show the usefulness of our method in comparison to existing techniques but also enhance the understanding of the field by providing an in-depth analysis of the absorption of a key IS theoretical base. C1 [Ruediger, Matthias Sebastian; Antons, David; Salge, Torsten-Oliver] Rhein Westfal TH Aachen, Inst Technol & Innovat Management, Aachen, Germany. C3 RWTH Aachen University RP Rüdiger, MS (corresponding author), Rhein Westfal TH Aachen, Inst Technol & Innovat Management, Aachen, Germany. EM ruediger@time.rwth-aachen.de; antons@time.rwth-aachen.de; salge@time.rwth-aachen.de OI Rudiger, Matthias/0000-0002-7086-1370 FU Federal Ministry of Education and Research (BMBF) Germany [01PU17020] FX Open Access funding enabled and organized by Projekt DEAL. This work was supported by Federal Ministry of Education and Research (BMBF) Germany, Grant No. 01PU17020. CR AJZEN I, 1991, ORGAN BEHAV HUM DEC, V50, P179, DOI 10.1016/0749-5978(91)90020-T Ajzen I., 1980, UNDERSTANDING ATTITU, DOI DOI 10.1007/978-3-642-69746-3_2 AMSTERDAMSKA O, 1989, SCIENTOMETRICS, V15, P449, DOI 10.1007/BF02017065 Ang S, 1998, MIS QUART, V22, P535, DOI 10.2307/249554 Angrosh M., 2010, Proceedings of the 10th annual joint conference on Digital libraries, P293, DOI [DOI 10.1145/1816123.1816168, DOI 10.1145/1816123.1816168.1816168] [Anonymous], 2003, Proceedings of Advances in Neural Information Processing Systems [Anonymous], 1984, The citation process: The role and significance of citations in scientific communication Baldi S, 1998, AM SOCIOL REV, V63, P829, DOI 10.2307/2657504 Bertin M, 2008, P 21 INT FLOR ART IN, P456 Bornmann L, 2008, J DOC, V64, P45, DOI 10.1108/00220410810844150 Bouma G., 2009, From Form to Meaning. Processing Texts Automatically. Proceedings of the Biennial GSCL Conference. Ed. by, P31 Boyack KW, 2018, J INFORMETR, V12, P59, DOI 10.1016/j.joi.2017.11.005 BROOKS TA, 1985, J AM SOC INFORM SCI, V36, P223, DOI 10.1002/asi.4630360402 Case DO, 2000, J AM SOC INFORM SCI, V51, P635, DOI 10.1002/(SICI)1097-4571(2000)51:7<635::AID-ASI6>3.0.CO;2-H Chaney A., 2021, P INT AAAI C WEB SOC, V6, P419 CHANG J., 2009, Advances in Neural Information Processing Systems, V22, P288 Chen Y, 2019, KNOWL-BASED SYST, V163, P1, DOI 10.1016/j.knosys.2018.08.011 Chuang J., 2014, ADV NEURAL INFORM PR, P1 Chuang J, 2012, PROCEEDINGS OF THE INTERNATIONAL WORKING CONFERENCE ON ADVANCED VISUAL INTERFACES, P74, DOI 10.1145/2254556.2254572 CHUBIN DE, 1975, SOC STUD SCI, V5, P423, DOI 10.1177/030631277500500403 Davis F. D., 1985, TECHNOLOGY ACCEPTANC DAVIS FD, 1989, MANAGE SCI, V35, P982, DOI 10.1287/mnsc.35.8.982 De Bellis N, 2009, Bibliometrics and Citation Analysis: From the Science Citation Index to Cybermetrics Ding Y, 2014, J ASSOC INF SCI TECH, V65, P1820, DOI 10.1002/asi.23256 Ding Y, 2013, J INFORMETR, V7, P583, DOI 10.1016/j.joi.2013.03.003 Fetscherin M, 2008, J ELECTRON COMMER RE, V9, P231 GARFIELD E, 1965, STAT ASSOC METHOD M, V1964, P189 Gefen D., 2000, COMMUN ASSOC INF SYS, V4, P1, DOI DOI 10.17705/1CAIS.00407 Gefen D, 2005, COMMUN ASSOC INF SYS, V16, P91, DOI 10.17705/1CAIS.01605 Gläser J, 2017, SCIENTOMETRICS, V111, P981, DOI 10.1007/s11192-017-2296-z Grover V, 2012, J ASSOC INF SYST, V13, P254 Han J, 2012, MOR KAUF D, P1 HERLACH G, 1978, J AM SOC INFORM SCI, V29, P308, DOI 10.1002/asi.4630290608 Hernández-Alvarez M, 2016, NAT LANG ENG, V22, P327, DOI 10.1017/S1351324915000388 Hindle A, 2013, EMPIR SOFTW ENG, V18, P1125, DOI 10.1007/s10664-012-9209-9 Hu ZG, 2013, J INFORMETR, V7, P887, DOI 10.1016/j.joi.2013.08.005 Jha R, 2017, NAT LANG ENG, V23, P93, DOI 10.1017/S1351324915000443 Karahanna E, 1999, INFORM MANAGE-AMSTER, V35, P237, DOI 10.1016/S0378-7206(98)00096-2 Karahanna E, 1999, MIS QUART, V23, P183, DOI 10.2307/249751 Koh C, 2004, INFORM SYST RES, V15, P356, DOI 10.1287/isre.1040.0035 Lee DD, 2001, ADV NEUR IN, V13, P556 Leydesdorff Loet., 2012, ARXIV12084566 Liu XZ, 2013, J AM SOC INF SCI TEC, V64, P1852, DOI 10.1002/asi.22883 Maricic S, 1998, J AM SOC INFORM SCI, V49, P530, DOI 10.1002/(SICI)1097-4571(19980501)49:6<530::AID-ASI5>3.0.CO;2-U Mei QZ, 2007, KDD-2007 PROCEEDINGS OF THE THIRTEENTH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, P490 Merton R. K., 1973, The sociology of science: theoretical and empirical investigations Moravcsik MichaelJ., 1973, RES POLICY, V2, P266, DOI [DOI 10.1016/0048-7333(73)90006-1, 10.1016/0048-7333(73)90006-1] MORAVCSIK MJ, 1975, SOC STUD SCI, V5, P86, DOI 10.1177/030631277500500106 Mortenson MJ, 2016, INT J INFORM MANAGE, V36, P1248, DOI 10.1016/j.ijinfomgt.2016.07.007 Nolasco D, 2016, P ANN HICSS, P358, DOI 10.1109/HICSS.2016.51 Phelan TJ, 1999, SCIENTOMETRICS, V45, P117, DOI 10.1007/BF02458472 Ritchie A., 2008, P 17 ACM C INF KNOWL, P213, DOI DOI 10.1145/1458082.1458113 SALTON G, 1975, COMMUN ACM, V18, P613, DOI 10.1145/361219.361220 SHNEIDERMAN B, 1992, ACM T GRAPHIC, V11, P92, DOI 10.1145/102377.115768 Sievert C., 2014, P WORKSH INT LANG LE, P63, DOI [10.3115/v1/W14-3110, DOI 10.3115/V1/W14-3110, 10.3115/v1/w14-3110] Straub D., 2004, Commun. Assoc. Inf. Syst., V13, P24, DOI [DOI 10.17705/1CAIS.01324, 10.17705/1CAIS.01324] Straub DW, 1990, INFORM SYST RES, V1, P255, DOI 10.1287/isre.1.3.255 STRAUB DW, 1989, MIS QUART, V13, P147, DOI 10.2307/248922 Straub DW, 1998, MIS QUART, V22, P441, DOI 10.2307/249551 Tahamtan I, 2019, SCIENTOMETRICS, V121, P1635, DOI 10.1007/s11192-019-03243-4 Teufel S., 2006, P C EMP METH NAT LAN, DOI 10.3115/1610075.1610091 Tkaczyk D, 2018, ACM-IEEE J CONF DIG, P99, DOI 10.1145/3197026.3197048 Valenzuela M., 2015, WORKSHOPS 20 9 AAAI van Eck NJ, 2010, SCIENTOMETRICS, V84, P523, DOI 10.1007/s11192-009-0146-3 Venkatesh V, 2003, MIS QUART, V27, P425, DOI 10.2307/30036540 VINKLER P, 1987, SCIENTOMETRICS, V12, P47, DOI 10.1007/BF02016689 Voos H., 1976, The Journal of Academic Librarianship, V1, P19 Walstrom KA, 2000, INFORM MANAGE, V38, P59, DOI 10.1016/S0378-7206(00)00054-9 Whitley EA, 2007, INFORM MANAGE-AMSTER, V44, P441, DOI 10.1016/j.im.2007.04.004 Zhu XD, 2015, J ASSOC INF SCI TECH, V66, P408, DOI 10.1002/asi.23179 Zupic I, 2015, ORGAN RES METHODS, V18, P429, DOI 10.1177/1094428114562629 NR 71 TC 6 Z9 7 U1 2 U2 30 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0138-9130 EI 1588-2861 J9 SCIENTOMETRICS JI Scientometrics PD DEC PY 2021 VL 126 IS 12 BP 9779 EP 9809 DI 10.1007/s11192-021-04103-w EA AUG 2021 PG 31 WC Computer Science, Interdisciplinary Applications; Information Science & Library Science WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Computer Science; Information Science & Library Science GA XF4WA UT WOS:000681571100001 OA hybrid DA 2024-09-05 ER PT J AU Maphosa, V Maphosa, M AF Maphosa, Vusumuzi Maphosa, Mfowabo TI Artificial intelligence in higher education: a bibliometric analysis and topic modeling approach SO APPLIED ARTIFICIAL INTELLIGENCE LA English DT Article ID BIG DATA; ANALYTICS; STUDENTS; INDEX AB Artificial intelligence (AI) has brought unprecedented growth and productivity in every socioeconomic sector. AI adoption in education is transformational through reduced teacher workload, individualized learning, intelligent tutors, profiling and prediction, high-precision education, collaboration, and learner tracking. This paper highlights the trajectory of AI research in higher education (HE) through bibliometric analysis and topic modeling approaches. We used the PRISMA guidelines to select 304 articles published in the Scopus database between 2012 and 2021. VOSviewer was used for visualization and text-mining to identify hotspots in the field. Latent Dirichlet Allocation analysis reveals distinct topics in the dynamic relationship between AI and HE. Only 9.6% of AI research in HE was achieved in the first seven years, with the last three years contributing 90.4%. China, the United States, Russia and the United Kingdom dominated publications. Four themes emerged - data as the catalyst, the development of AI, the adoption of AI in HE and emerging trends and the future of AI in HE. Topic modeling on the abstracts revealed the 10 most frequent topics and the top 30 most salient terms. This research contributes to the literature by synthesizing AI adoption opportunities in HE, topic modeling and future research areas. C1 [Maphosa, Vusumuzi] Natl Univ Sci & Technol, Dept Informat & Commun Technol Serv, Bulawayo, Zimbabwe. [Maphosa, Mfowabo] Univ Pretoria, Fac Engn Built Environm & Informat Technol, Pretoria, South Africa. C3 National University of Science & Technology - Zimbabwe; University of Pretoria RP Maphosa, V (corresponding author), Natl Univ Sci & Technol, Dept Informat & Commun Technol Serv, Bulawayo, Zimbabwe. EM vusumuzi.maphosa@nust.ac.zw RI ; Maphosa, Vusumuzi/HGU-1754-2022 OI Maphosa, Mfowabo/0000-0003-3702-6821; Maphosa, Vusumuzi/0000-0002-2595-3890 CR Abbas J, 2019, SUSTAINABILITY-BASEL, V11, DOI 10.3390/su11061683 Akgun Selin, 2022, AI Ethics, V2, P431, DOI 10.1007/s43681-021-00096-7 Aldowah H, 2019, TELEMAT INFORM, V37, P13, DOI 10.1016/j.tele.2019.01.007 Almohammadi K, 2017, J ARTIF INTELL SOFT, V7, P47, DOI 10.1515/jaiscr-2017-0004 Azer SA, 2013, MED TEACH, V35, P433, DOI 10.3109/0142159X.2013.775413 Bahadir E, 2016, EDUC SCI-THEOR PRACT, V16, P943, DOI 10.12738/estp.2016.3.0214 Bertoli-Barsotti L, 2017, SCIENTOMETRICS, V111, P1415, DOI 10.1007/s11192-017-2351-9 Bhardwaj D, 2019, J CLIN DIAGN RES, V13, pZE1, DOI 10.7860/JCDR/2019/38035.12453 Blei DM, 2012, COMMUN ACM, V55, P77, DOI 10.1145/2133806.2133826 Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993 Bornmann L, 2007, J AM SOC INF SCI TEC, V58, P1381, DOI 10.1002/asi.20609 Bowdre P., 2020, Journal of Education Social Policy, V7, P22, DOI [10.30845/jesp.v7n3p3, DOI 10.30845/JESP.V7N3P3] Chatterjee S, 2020, EDUC INF TECHNOL, V25, P3443, DOI 10.1007/s10639-020-10159-7 Chaudhry Muhammad Ali, 2022, AI Ethics, V2, P157, DOI 10.1007/s43681-021-00074-z Christie M, 2017, EUR J ENG EDUC, V42, P5, DOI 10.1080/03043797.2016.1254160 Daniel B, 2015, BRIT J EDUC TECHNOL, V46, P904, DOI 10.1111/bjet.12230 Daniel B, 2019, BRIT J EDUC TECHNOL, V50, P101, DOI 10.1111/bjet.12595 Daws R., 2019, ABI research: USA reclaims the top spot from China for AI investments. (ABI research) Durieux V, 2010, RADIOLOGY, V255, P342, DOI 10.1148/radiol.09090626 Elbadrawy A, 2016, PROCEEDINGS OF THE 10TH ACM CONFERENCE ON RECOMMENDER SYSTEMS (RECSYS'16), P183, DOI 10.1145/2959100.2959133 Ellis L, 2019, BRIT J RADIOL, V92, DOI 10.1259/bjr.20190779 Gobert J.D., 2012, Journal of Educational Data Mining, V4, P104 Greenhow C, 2020, TEACH COLL REC, V122 Herr H, 2015, NEW SCI, V227, P24 Hinojo-Lucena FJ, 2019, EDUC SCI, V9, DOI 10.3390/educsci9010051 Hirsch JE, 2005, P NATL ACAD SCI USA, V102, P16569, DOI 10.1073/pnas.0507655102 Holmes W, 2018, LECT NOTES ARTIF INT, V10948, P551 Huang AYQ, 2020, INTERACT LEARN ENVIR, V28, P206, DOI 10.1080/10494820.2019.1636086 Jordan MI, 2015, SCIENCE, V349, P255, DOI 10.1126/science.aaa8415 Khosravi H., 2022, COMPUTERS ED ARTIFIC, V3, P100074, DOI 10.1016/j.caeai.2022.100074 Klasnja-Milicevic A, 2017, COMPUT APPL ENG EDUC, V25, P1066, DOI 10.1002/cae.21844 Kumar D.N.M., 2019, J. Artif. Intell. Capsul. Netw., V1, P1 Lang C., 2017, The handbook of learning analytics, DOI [10.18608/hla17, DOI 10.18608/HLA17] Laurillard D., 2002, Rethinking university teaching: A conversational framework for the effective use of learning technologies, DOI [10.4324/9781315012940, DOI 10.4324/9781315012940] Lazer D, 2014, SCIENCE, V343, P1203, DOI 10.1126/science.1248506 Lu HM, 2018, MOBILE NETW APPL, V23, P368, DOI 10.1007/s11036-017-0932-8 Lu Y, 2019, J MANAG ANAL, V6, P1, DOI 10.1080/23270012.2019.1570365 Luan H, 2020, FRONT PSYCHOL, V11, DOI 10.3389/fpsyg.2020.580820 Maphosa M., 2021, INT C ART INT BIG DA, P1 Maphosa M., 2020, P 2 INT C INT INN CO, P1, DOI [10.1145/3415088.3415096, DOI 10.1145/3415088.3415096] Maphosa M, 2020, INT J ADV COMPUT SC, V11, P287 Maphosa V., 2023, 2023 INT C ART INT B, P1 Mislevy R.J., 2020, Handbook of automated scoring, P403 Moro S, 2015, EXPERT SYST APPL, V42, P1314, DOI 10.1016/j.eswa.2014.09.024 Mou X., 2019, Artificial intelligence: Investment trends and selected industry uses Naqvi A., 2020, Artificial intelligence for audit, forensic accounting, and valuation: A strategic perspective, DOI [10.1002/9781119601906, DOI 10.1002/9781119601906] Nguyen Thai-Nghe, 2011, 2011 Proceedings of 3rd International Conference on Computer Supported Education (CSEDU 2011), P69 Page MJ, 2021, J CLIN EPIDEMIOL, V134, P178, DOI 10.1016/j.jclinepi.2021.03.001 Pardo A, 2014, BRIT J EDUC TECHNOL, V45, P438, DOI 10.1111/bjet.12152 Popenici Stefan A D, 2017, Res Pract Technol Enhanc Learn, V12, P22, DOI 10.1186/s41039-017-0062-8 Regan PM, 2019, ETHICS INF TECHNOL, V21, P167, DOI 10.1007/s10676-018-9492-2 Riahi Youssra., 2018, International Journal of Research and Engineering, P524, DOI [10.21276/ijre.2018.5.9.5, DOI 10.21276/IJRE.2018.5.9.5] Roll I, 2016, INT J ARTIF INTELL E, V26, P582, DOI 10.1007/s40593-016-0110-3 Seo K, 2021, INT J EDUC TECHNOL H, V18, DOI 10.1186/s41239-021-00292-9 Sievert C., 2014, P WORKSH INT LANG LE, P63, DOI [10.3115/v1/W14-3110, DOI 10.3115/V1/W14-3110, 10.3115/v1/w14-3110] Smutny P, 2020, COMPUT EDUC, V151, DOI 10.1016/j.compedu.2020.103862 Steele G.E., 2018, NEW DIR HIGHER EDUC, V184, P59 Tsai SC, 2020, INT J EDUC TECHNOL H, V17, DOI 10.1186/s41239-020-00186-2 van Eck NJ, 2010, SCIENTOMETRICS, V84, P523, DOI 10.1007/s11192-009-0146-3 Weber, 2019, Horizon Report 2019 Higher Education Edition Williamson Ben., 2019, Postdigital Science and Education, V1, P65, DOI DOI 10.1007/S42438-018-0008-5 Xu B, 2021, COMPLEXITY, V2021, DOI 10.1155/2021/9919401 Yu ZG, 2020, J INF TECHNOL RES, V13, P32, DOI 10.4018/JITR.2020100103 Zawacki-Richter O, 2019, INT J EDUC TECHNOL H, V16, DOI 10.1186/s41239-019-0171-0 Zemel Rich, 2013, JMLR WORKSHOP C P, P325 Zhang K., 2021, Computers and Education: Artificial Intelligence, V2, P100025, DOI [DOI 10.1016/J.CAEAI.2021.100025, 10.1016/j.caeai.2021.100025, https://doi.org/10.1016/j.caeai.2021.100025] Zhang YP, 2021, FRONT PSYCHOL, V12, DOI 10.3389/fpsyg.2021.698490 Zupic I, 2015, ORGAN RES METHODS, V18, P429, DOI 10.1177/1094428114562629 NR 68 TC 7 Z9 7 U1 29 U2 79 PU TAYLOR & FRANCIS INC PI PHILADELPHIA PA 530 WALNUT STREET, STE 850, PHILADELPHIA, PA 19106 USA SN 0883-9514 EI 1087-6545 J9 APPL ARTIF INTELL JI Appl. Artif. Intell. PD DEC 31 PY 2023 VL 37 IS 1 AR 2261730 DI 10.1080/08839514.2023.2261730 PG 23 WC Computer Science, Artificial Intelligence; Engineering, Electrical & Electronic WE Science Citation Index Expanded (SCI-EXPANDED) SC Computer Science; Engineering GA U6IU4 UT WOS:001085827700001 OA gold DA 2024-09-05 ER PT J AU Sonni, AF Putri, VCC Irwanto, I AF Sonni, Alem Febri Putri, Vinanda Cinta Cendekia Irwanto, Irwanto TI Bibliometric and Content Analysis of the Scientific Work on Artificial Intelligence in Journalism SO JOURNALISM AND MEDIA LA English DT Article DE artificial intelligence; journalism; bibliometric; news; Scopus AB This paper presents a comprehensive bibliometric review of the development of artificial intelligence (AI) in journalism based on the analysis of 331 articles indexed in the Scopus database between 2019 and 2023. This research combines bibliometric approaches and quantitative content analysis to provide an in-depth conceptual and structural overview of the field. In addition to descriptive measures, co-citation and co-word analyses are also presented to reveal patterns and trends in AI- and journalism-related research. The results show a significant increase in the number of articles published each year, with the largest contributions coming from the United States, Spain, and the United Kingdom, serving as the most productive countries. Terms such as "fake news", "algorithms", and "automated journalism" frequently appear in the reviewed articles, reflecting the main topics of concern in this field. Furthermore, ethical aspects of journalism were highlighted in every discussion, indicating a new paradigm that needs to be considered for the future development of journalism studies and professionalism. C1 [Sonni, Alem Febri; Putri, Vinanda Cinta Cendekia] Hasanuddin Univ, Fac Social & Polit Sci, Commun Studies, Makassar 90245, Indonesia. [Irwanto, Irwanto] Bina Nusantara Univ, Sch Design, Film Dept, Jakarta 15143, Indonesia. C3 Universitas Hasanuddin; Universitas Bina Nusantara RP Sonni, AF (corresponding author), Hasanuddin Univ, Fac Social & Polit Sci, Commun Studies, Makassar 90245, Indonesia. EM alemfebris@unhas.ac.id; vinanda.cinta@gmail.com; irwanto001@binus.ac.id RI Sonni, Alem Febri/GOV-6689-2022; Irwanto, Irwanto/KFQ-9741-2024 OI Sonni, Alem Febri/0000-0002-6785-5033; Irwanto, Irwanto/0000-0003-0474-5141 CR [Anonymous], 2010, Mass communication theory Chen Q, 2020, INFORM PROCESS MANAG, V57, DOI 10.1016/j.ipm.2020.102370 Cobley P, 2013, HANDB COMMUN SCI, V1, P1, DOI 10.1515/9783110240450 Das R, 2022, IIM KOZHIKODE SOC MA, V11, P146, DOI 10.1177/22779752211027382 de-Lima-Santos MF, 2022, JOURNAL MEDIA, V3, P13, DOI 10.3390/journalmedia3010002 Deuze M., 2004, JOURNALISM STUD, V5, P139, DOI [10.1080/1461670042000211131, DOI 10.1080/1461670042000211131] Di Domenico G, 2021, J BUS RES, V124, P329, DOI 10.1016/j.jbusres.2020.11.037 Diakopoulos N, 2019, DIGIT JOURNAL, V7, P1180, DOI 10.1080/21670811.2019.1682938 Díaz-Campo J, 2015, TELEMAT INFORM, V32, P735, DOI 10.1016/j.tele.2015.03.004 Dorr KN, 2017, DIGIT JOURNAL, V5, P404, DOI 10.1080/21670811.2016.1167612 Doyle Gillian., 2013, Understanding Media Economics, V2nd Garibay OO, 2023, INT J HUM-COMPUT INT, DOI 10.1080/10447318.2022.2153320 Graefe A., 2016, Guide to Automated Journalism, DOI DOI 10.7916/D80G3XDJ Grzybowski A, 2024, CLIN DERMATOL, V42, P221, DOI 10.1016/j.clindermatol.2023.12.016 Helberger N, 2019, DIGIT JOURNAL, V7, P993, DOI 10.1080/21670811.2019.1623700 Holt K, 2019, DIGIT JOURNAL, V7, P860, DOI 10.1080/21670811.2019.1625715 Horska Kateryna., 2020, Science and Education a New Dimension, VVIII, P26, DOI [10.31174/send-hs2020-231viii39-06, DOI 10.31174/SEND-HS2020-231VIII39-06] Ireton C., 2018, Journalism, Fake News, and Disinformation Karlsson M, 2019, JOURNALISM STUD, V20, P1184, DOI 10.1080/1461670X.2018.1499436 Kieslich K, 2022, BIG DATA SOC, V9, DOI 10.1177/20539517221092956 Kng Lucy., 2024, Strategic Management in the Media: From Theory to Practice, DOI [10.4135/9781446280003, DOI 10.4135/9781446280003] Kotenidis E, 2021, JOURNAL MEDIA, V2, P244, DOI 10.3390/journalmedia2020014 Kovach B., 2021, The elements of journalism, V4th ed. Lazer DMJ, 2018, SCIENCE, V359, P1094, DOI 10.1126/science.aao2998 Lewis SC, 2019, DIGIT JOURNAL, V7, P409, DOI 10.1080/21670811.2019.1577147 Martin K, 2019, J BUS ETHICS, V160, P835, DOI 10.1007/s10551-018-3921-3 Martnez Garca Luisa del Carmen., 2023, Comunicacao e Sociedade, V44, P1, DOI [10.17231/COMSOC.44(2023).4751, DOI 10.17231/COMSOC.44(2023).4751] Mejia Cristian, 2021, Front Res Metr Anal, V6, P742311, DOI 10.3389/frma.2021.742311 Moed HF, 2009, ARCH IMMUNOL THER EX, V57, P13, DOI 10.1007/s00005-009-0001-5 Napoli P.M., 2011, Audience evolution: new technologies and the transformation of media audiences Nasir J. A., 2021, IJIM Data Insights, V1, DOI [10.1016/j.jjimei.2020.100007, DOI 10.1016/J.JJIMEI.2020.100007] Newman N., 2019, Journalism, media and technology trends and predictions Newman N., 2024, Journalism, Media, and Technology Trends and Predictions 2024 Pavlik V. J., 2023, Journalism Mass Communication Educator, V78, P84, DOI DOI 10.1177/10776958221149577 Putri Vinanda Cinta Cendekia., 2023, Ketika Cadar Jadi Alat Persuasi: Strategi Beauty Influencer di era Digital Rudolph J., 2023, Journal of Applied Learning and Teaching, V6, P342, DOI [10.37074/jalt.2023.6.1.9, DOI 10.37074/JALT.2023.6.1.23, DOI 10.37074/JALT.2023.6.1.9] Shin D, 2021, INT J HUM-COMPUT ST, V146, DOI 10.1016/j.ijhcs.2020.102551 Silberring J, 2019, WIL SER MASS SPECTR, P1 Trattner C., 2021, AI Ethics, V2, P585, DOI [DOI 10.1007/S43681-021-00126-4, 10.1007/S43681-021-00126-4] Vaccari C, 2020, SOC MEDIA SOC, V6, DOI 10.1177/2056305120903408 Volberda HW, 2021, LONG RANGE PLANN, V54, DOI 10.1016/j.lrp.2021.102110 Wang Yongming., 2021, International Journal of Librarianship, V6, P105, DOI [10.23974/ijol.2021.vol6.1.195, DOI 10.23974/IJOL.2021.VOL6.1.195] Weikmann T, 2023, DIGIT JOURNAL, DOI 10.1080/21670811.2023.2194665 Witschge T., 2016, The Sage Handbook of Digital Journalism Xiaocui Wang, 2021, Journal of Physics: Conference Series, V1757, DOI 10.1088/1742-6596/1757/1/012062 NR 45 TC 0 Z9 0 U1 1 U2 1 PU MDPI PI BASEL PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND EI 2673-5172 J9 JOURNAL MEDIA JI Journal. Media PD JUN PY 2024 VL 5 IS 2 BP 787 EP 798 DI 10.3390/journalmedia5020051 PG 12 WC Communication WE Emerging Sources Citation Index (ESCI) SC Communication GA WO9C2 UT WOS:001255924600001 OA gold DA 2024-09-05 ER PT J AU Al-Jaishi, AA Taljaard, M Al-Jaishi, MD Abdullah, SS Thabane, L Devereaux, PJ Dixon, SN Garg, AX AF Al-Jaishi, Ahmed A. Taljaard, Monica Al-Jaishi, Melissa D. Abdullah, Sheikh S. Thabane, Lehana Devereaux, P. J. Dixon, Stephanie N. Garg, Amit X. TI Machine learning algorithms to identify cluster randomized trials from MEDLINE and EMBASE SO SYSTEMATIC REVIEWS LA English DT Article DE Cluster randomized controlled trial; Machine learning; Bibliographic databases; Sensitivity and specificity; Prediction ID PRAGMATIC TRIALS AB Background: Cluster randomized trials (CRTs) are becoming an increasingly important design. However, authors of CRTs do not always adhere to requirements to explicitly identify the design as cluster randomized in titles and abstracts, making retrieval from bibliographic databases difficult. Machine learning algorithms may improve their identification and retrieval. Therefore, we aimed to develop machine learning algorithms that accurately determine whether a bibliographic citation is a CRT report. Methods: We trained, internally validated, and externally validated two convolutional neural networks and one support vector machine (SVM) algorithm to predict whether a citation is a CRT report or not. We exclusively used the information in an article citation, including the title, abstract, keywords, and subject headings. The algorithms' output was a probability from 0 to 1. We assessed algorithm performance using the area under the receiver operating characteristic (AUC) curves. Each algorithm's performance was evaluated individually and together as an ensemble. We randomly selected 5000 from 87,633 citations to train and internally validate our algorithms. Of the 5000 selected citations, 589 (12%) were confirmed CRT reports. We then externally validated our algorithms on an independent set of 1916 randomized trial citations, with 665 (35%) confirmed CRT reports. Results: In internal validation, the ensemble algorithm discriminated best for identifying CRT reports with an AUC of 98.6% (95% confidence interval: 97.8%, 99.4%), sensitivity of 97.7% (94.3%, 100%), and specificity of 85.0% (81.8%, 88.1%). In external validation, the ensemble algorithm had an AUC of 97.8% (97.0%, 98.5%), sensitivity of 97.6% (96.4%, 98.6%), and specificity of 78.2% (75.9%, 80.4%)). All three individual algorithms performed well, but less so than the ensemble. Conclusions: We successfully developed high-performance algorithms that identified whether a citation was a CRT report with high sensitivity and moderately high specificity. We provide open-source software to facilitate the use of our algorithms in practice. C1 [Al-Jaishi, Ahmed A.; Dixon, Stephanie N.; Garg, Amit X.] Lawson Hlth Res Inst, 800 Commissioners Rd E, London, ON, Canada. [Taljaard, Monica] Univ Ottawa, Ottawa Hosp Res Inst, Sch Epidemiol & Publ Hlth, Clin Epidemiol Program, 501 Smyth Rd, Ottawa, ON, Canada. [Al-Jaishi, Melissa D.] London Hlth Sci Ctr, 800 Commissioners Rd E, London, ON, Canada. [Abdullah, Sheikh S.] Western Univ, Dept Comp Sci, 1151 Richmond St, Richmond, ON, Canada. [Thabane, Lehana; Devereaux, P. J.] McMaster Univ, Dept Hlth Res Methods Evidence & Impact, 1280 Main St W, Hamilton, ON, Canada. C3 Western University (University of Western Ontario); University of Ottawa; Ottawa Hospital Research Institute; London Health Sciences Centre; McMaster University RP Al-Jaishi, AA (corresponding author), Lawson Hlth Res Inst, 800 Commissioners Rd E, London, ON, Canada. EM Ahmed.AlJaishi@lhsc.on.ca RI Taljaard, Monica/AFJ-8820-2022 OI Taljaard, Monica/0000-0002-3978-8961; Al-Jaishi, Ahmed/0000-0003-0376-2214 FU Allied Health Doctoral Fellowship from the Kidney Foundation of Canada; CIHR Doctoral Award; McMaster University Michael DeGroote Scholarship; Canadian Institutes of Health Research (CIHR) [MYG-151209]; Dr. Adam Linton Chair in Kidney Health Analytics; CIHR FX Ahmed Al-Jaishi was supported by the Allied Health Doctoral Fellowship from the Kidney Foundation of Canada, CIHR Doctoral Award, and McMaster University Michael DeGroote Scholarship. Stephanie Dixon's research is supported through a SPOR Innovative Clinical Trial Multi-Year Grant (Grant number: MYG-151209) from the Canadian Institutes of Health Research (CIHR). Amit Garg was supported by the Dr. Adam Linton Chair in Kidney Health Analytics and a Clinician Investigator Award from the CIHR. The funders had no role in study design, data collection and analysis, decision to publish, or manuscript preparation. CR Abadi M, 2016, PROCEEDINGS OF OSDI'16: 12TH USENIX SYMPOSIUM ON OPERATING SYSTEMS DESIGN AND IMPLEMENTATION, P265 Ajmera Yamini, 2021, Perspect Clin Res, V12, P66, DOI 10.4103/picr.PICR_138_20 Al-Jaishi AA, 2020, TRIALS, V21, DOI 10.1186/s13063-020-04657-9 [Anonymous], 2020, US Awasthi S, 2013, LANCET, V381, P1469, DOI 10.1016/S0140-6736(12)62125-4 Beel J, 2016, INT J DIGIT LIBRARIE, V17, P305, DOI 10.1007/s00799-015-0156-0 Bergstra James, 2015, Computational Science and Discovery, V8, DOI 10.1088/1749-4699/8/1/014008 Bergstra J., 2013, PROC 30 INT C INT C, V28, pI Bergstra J., 2011, 25 ANN C NEUR INF PR, P2546, DOI DOI 10.5555/2986459.2986743 Bojanowski P., 2017, Transactions of the Association for Computational Linguistics, V5, P135, DOI [DOI 10.1162/TACLA00051, 10.1162/tacl_a_00051, DOI 10.1162/TACL_A_00051] Buda M, 2018, NEURAL NETWORKS, V106, P249, DOI 10.1016/j.neunet.2018.07.011 Buitinck Lars, 2013, ECML PKDD WORKSH LAN, P108, DOI DOI 10.48550/ARXIV.1309.0238 Campbell MK, 2012, BMJ-BRIT MED J, V345, DOI 10.1136/bmj.e5661 Chollet F., 2015, Keras Cohen AM, 2015, J AM MED INFORM ASSN, V22, P707, DOI 10.1093/jamia/ocu025 Devlin J, 2018, Google AI Blog Devlin J, 2019, 2019 CONFERENCE OF THE NORTH AMERICAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS: HUMAN LANGUAGE TECHNOLOGIES (NAACL HLT 2019), VOL. 1, P4171 Dietterich TG, 2000, LECT NOTES COMPUT SC, V1857, P1, DOI 10.1007/3-540-45014-9_1 Dron L, 2021, LANCET GLOB HEALTH, V9, pE701, DOI 10.1016/S2214-109X(20)30541-6 Eldridge S., 2012, PRACTICAL GUIDE CLUS, DOI [10.1002/9781119966241, DOI 10.1002/9781119966241] Hayes RJ, 2009, INTERD STAT, P1, DOI 10.1201/9781584888178 Hemming K, 2019, J CLIN EPIDEMIOL, V107, P77, DOI 10.1016/j.jclinepi.2018.11.017 Hunter JD, 2007, COMPUT SCI ENG, V9, P90, DOI 10.1109/MCSE.2007.55 Kessler JS, 2017, PROCEEDINGS OF THE 55TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2017): SYSTEM DEMONSTRATIONS, P85, DOI 10.18653/v1/P17-4015 Kim Y, 2014, IEEE ASME INT C ADV, P1747, DOI 10.1109/AIM.2014.6878336 Krizhevsky A, 2017, COMMUN ACM, V60, P84, DOI 10.1145/3065386 Marshall IJ, 2018, RES SYNTH METHODS, V9, P602, DOI 10.1002/jrsm.1287 McKinney W, 2010, P 9 PYTH SCI C, V445, P51, DOI DOI 10.25080/MAJORA-92BF1922-00A.SCIPY Mikolov T., 2013, ARXIV Muller AC, 2017, INTRO PYTHON LEARNIN Nicholls SG, 2021, J CLIN EPIDEMIOL, V137, P45, DOI 10.1016/j.jclinepi.2021.03.021 Oliphant T. E., 2015, Guide to NumPy, V2nd OSSU, 2020, OUR IMP ONT SUPP UN Pedregosa F, 2011, J MACH LEARN RES, V12, P2825 Pournelle G. H., 1953, Journal of Mammalogy, V34, P133, DOI 10.1890/0012-9658(2002)083[1421:SDEOLC]2.0.CO;2 Raschka S., 2015, Python Machine Learning Rehurek R., 2010, Proceedings of the LREC 2010 Workshop on New Challenges for NLP Frameworks Robin X, 2011, BMC BIOINFORMATICS, V12, DOI 10.1186/1471-2105-12-77 Srivastava N, 2014, J MACH LEARN RES, V15, P1929 Taljaard M, 2020, J CLIN EPIDEMIOL, V124, P75, DOI 10.1016/j.jclinepi.2020.05.003 Taljaard M, 2020, CLIN TRIALS, V17, P253, DOI 10.1177/1740774519896799 Taljaard M, 2010, BMC MED RES METHODOL, V10, DOI 10.1186/1471-2288-10-15 The pandas development team, 2020, PAND DEV PAND Wallace BC, 2017, J AM MED INFORM ASSN, V24, P1165, DOI 10.1093/jamia/ocx053 Wang J, 2019, dissertation Waters E, 2011, BMC PUBLIC HEALTH, V11, DOI 10.1186/1471-2458-11-34 WHO, VIT SUPPL INF CHILDR Young T, 2018, IEEE COMPUT INTELL M, V13, P55, DOI 10.1109/MCI.2018.2840738 Zhang Ye, 2015, ARXIV PREPRINT ARXIV NR 49 TC 0 Z9 0 U1 0 U2 0 PU BMC PI LONDON PA CAMPUS, 4 CRINAN ST, LONDON N1 9XW, ENGLAND EI 2046-4053 J9 SYST REV-LONDON JI Syst. Rev. PD OCT 25 PY 2022 VL 11 IS 1 AR 229 DI 10.1186/s13643-022-02082-4 PG 10 WC Medicine, General & Internal WE Science Citation Index Expanded (SCI-EXPANDED) SC General & Internal Medicine GA 5N7NZ UT WOS:000871976500001 PM 36284336 OA gold, Green Published, Green Submitted DA 2024-09-05 ER PT J AU Burstein, J Elliot, N Molloy, H AF Burstein, Jill Elliot, Norbert Molloy, Hillary TI Informing Automated Writing Evaluation Using the Lens of Genre: Two Studies SO CALICO JOURNAL LA English DT Article DE AUTOMATED WRITING EVALUATION; NATURAL LANGUAGE PROCESSING; WRITING RESEARCH ID HIGH-SCHOOL; UNIVERSITY; STUDENTS AB Genre serves as a useful lens to investigate the range of evidence derived from automated writing evaluation ( AWE). To support construct-relevant systems used for writing instruction and assessment, two investigations were conducted that focused on postsecondary writing requirements and faculty perceptions of student writing proficiency. Survey research is described from a national study and a second site study at American University, a 4-year private university in Washington, DC, to illustrate writing requirements and perceptions of writing proficiency in school and workplace settings. A mixed-methods analysis of faculty focus groups in the site study afforded more detailed discussions that were used to understand student writing support needs. Through the lens of genre, study results illustrated how the role of AWE might be expanded and aligned with instruction in four-year postsecondary institutions. C1 [Burstein, Jill; Molloy, Hillary] Educ Testing Serv, Princeton, NJ 08541 USA. [Elliot, Norbert] New Jersey Inst Technol, Newark, NJ 07102 USA. C3 Educational Testing Service (ETS); New Jersey Institute of Technology RP Burstein, J (corresponding author), Educ Testing Serv, Princeton, NJ 08541 USA. EM jburstein@ets.org CR [Anonymous], 25 INT C COMP LING C [Anonymous], DIALOGUE DISCOURSE [Anonymous], P 1 WORKSH MET NLP A [Anonymous], RHETORIC LITERATE AC [Anonymous], COORD SESS ANN M NAT [Anonymous], RESITUATING WRITING [Anonymous], CRIS COR PREP STUD C [Anonymous], RR1437 ETS [Anonymous], J HIGHER ED [Anonymous], 2014, American psychological association, & national council on measurement in education. Standards for educational and psychological testing [Anonymous], COMM COR STAT STAND [Anonymous], ENGLISH J [Anonymous], 2012, The nations report card: Writing 2011 [html] [Anonymous], FRAM INF LIT HIGH ED [Anonymous], RR1105 ED TEST SERV Applebee A., 1984, CONTEXTS LEARNING WR APPLEBEE AN, 1981, ENGL J, V70, P78, DOI 10.2307/817387 APPLEMAN D, 1993, COLL COMPOS COMMUN, V44, P191, DOI 10.2307/358838 Banks A, 2015, COLL COMPOS COMMUN, V67, P267 Bazerman Charles., 1991, TEXTUAL DYNAMICS PRO Beck SW, 2009, J LIT RES, V41, P228, DOI 10.1080/10862960902908483 Bridgeman B., 1984, WRIT COMMUN, V1, P247 Britton J., 1992, Language and learning: The importance of speech in children's development, V2nd Britton James., 1975, DEV WRITING ABILITIE, P11 Casner-Lotto J., 2006, Are They Really Ready to Work? Employers' Perspectives on the Basic Knowledge and Applied Skills of New Entrants to the 21st Century U.S. Workforce: Partnership for 21st Century Skills Coppola NW, 2010, TECH COMMUN-STC, V57, P11 Cotos E, 2011, CALICO J, V28, P420, DOI 10.11139/cj.28.2.420-459 Council of Writing Program Administrators, 2014, Writing Program Administration, V38, P142 Crusius TimothyW., 1989, DISCOURSE CRITIQUE S EBLEN C, 1983, RES TEACH ENGL, V17, P343 ELLIOT N, 1991, J TECH WRIT COMMUN, V21, P411, DOI 10.2190/HL9K-3WL3-NNVK-UP2D Ferris DR, 2014, ASSESS WRIT, V19, P6, DOI 10.1016/j.asw.2013.09.004 Gardner S, 2013, APPL LINGUIST, V34, P25, DOI 10.1093/applin/ams024 Gere AR, 2013, COLL COMPOS COMMUN, V64, P605 Graham S, 2007, J EDUC PSYCHOL, V99, P445, DOI 10.1037/0022-0663.99.3.445 Harris Jeanette., 1985, Writing Program Administration, V8, P7 Heath S., 1993, Theory and Practice in the Teaching of Writing, P105 HERRINGTON AJ, 1985, RES TEACH ENGL, V19, P331 HOROWITZ DM, 1986, TESOL QUART, V20, P445, DOI 10.2307/3586294 Jenkins S., 1993, ENGL SPECIF PURP, V12, P51 Kane MT, 2013, J EDUC MEAS, V50, P1, DOI 10.1111/jedm.12000 Kiuhara SA, 2009, J EDUC PSYCHOL, V101, P136, DOI 10.1037/a0013097 Klebanov BB, 2014, PROCEEDINGS OF THE 52ND ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, VOL 2, P247 Klebanov Beata Beigman, 2013, Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), P1148 Krueger R. A., 2000, FOCUS GROUPS PRACTIC Melzer D., 2009, College Composition and Communication, V61, pW240 Melzer Dan., 2014, Assignments across the Curriculum: A National Study of College Writing Miller C R., 1994, Rhetorical Community: the Cultural Basis of Genre, P67 MILLER CR, 1984, Q J SPEECH, V70, P151, DOI 10.1080/00335638409383686 Odell L., 1983, Research on Writing, P220 Pellegrino J.W., 2012, Education for life and work: Developing transferable knowledge and skills in the 21st century Pimentel S., 2013, College and career readiness standards for adult education ROSE M, 1983, COLL ENGL, V45, P109, DOI 10.2307/377219 Shermis M., 2016, Handbook of writing research, P395 Song Y., 2014, Proceedings of the First Workshop on Argumentation Mining, P69 Thrift Nigel., 2005, Knowing Capitalism Wardle E, 2009, COLL COMPOS COMMUN, V60, P765 NR 57 TC 19 Z9 20 U1 1 U2 14 PU EQUINOX PUBLISHING LTD PI SHEFFIELD PA 415, THE WORKSTATION, 15 PATERNOSTER ROW, SHEFFIELD, S1 2BX, ENGLAND SN 2056-9017 J9 CALICO J JI CALICO J. PY 2016 VL 33 IS 1 BP 117 EP 141 DI 10.1558/cj.v33i1.26374 PG 25 WC Education & Educational Research WE Emerging Sources Citation Index (ESCI) SC Education & Educational Research GA ER8CR UT WOS:000399044800007 DA 2024-09-05 ER PT J AU Arnesen, K Walters, S Borup, J Barbour, MK AF Arnesen, Karen Walters, Shea Borup, Jered Barbour, Michael K. TI Irrelevant, Overlooked, or Lost? Trends in 20 Years of Uncited and Low-cited K-12 Online Learning Articles SO ONLINE LEARNING LA English DT Article DE distance education; telelearning; e-learning; K-12 online learning; virtual school; cyber school; citation analysis; journal analysis ID DISTANCE EDUCATION; SCIENCE; SCHOOLS AB In this study, we analyzed a subset of uncited or low-cited articles from the data reported in Arnesen, Hveem, Short, West, and Barbour (2019), who examined the trends in K-12 online learning articles from 1994 to 2016. We identified 62 articles that had 5 or fewer citations, and analyzed them for trends in authorship, publication outlets, dates of publication, and topics that could help explain their low citation numbers. We also analyzed topics to see what contribution they might have made and can still make to the field of K-12 online learning. We found that the majority of these articles had been published in many different, less well-known journals. We also found that these articles may have attracted fewer readers because they addressed topics that seemed to have a narrow focus, often outside of the U.S. The articles were also authored by both well-known researchers in the field, as well as a number of one-time authors. What we did not find were articles that were uninteresting, poorly researched, or irrelevant. Many of the articles described and discussed programs that grappled with and overcame some of the same challenges online learning still faces today: issues of interaction, community, technology, management, etc. Some of the early articles gave interesting insights into the history of K-12 online learning, especially as it involved rural learners and programs. Others addressed less mainstream but still interesting topics such as librarians in online learning, cross-border AP history classes, policies that helped or hindered the growth of online learning, and practical considerations of cost and access. C1 [Arnesen, Karen] Brigham Young Univ, Provo, UT 84602 USA. [Walters, Shea; Borup, Jered] George Mason Univ, Fairfax, VA 22030 USA. [Barbour, Michael K.] Touro Univ Calif, Vallejo, CA USA. C3 Brigham Young University; George Mason University; Touro University California RP Arnesen, K (corresponding author), Brigham Young Univ, Provo, UT 84602 USA. RI Barbour, Michael/F-9514-2011 OI Barbour, Michael/0000-0001-9037-3350 CR [Anonymous], 2011, Educ. Technol. [Anonymous], 2015, INT REV RES OPEN DIS [Anonymous], 2016, ED TECHNOLOGY Arnesen KT, 2019, DISTANCE EDUC, V40, P32, DOI 10.1080/01587919.2018.1553566 Barbour M, 2005, BRIT J EDUC TECHNOL, V36, P1055, DOI 10.1111/j.1467-8535.2005.00574.x Barbour M., 2011, Education In Rural Australia, V21, P1, DOI DOI 10.3316/IELAPA.183958620656095 Barbour M., 2018, HDB RES K 12 ONLINE, V2nd, P21, DOI 10.1184/R1/6686813.v1 Barbour M. K., 2013, MORNING WATCH, V41, P66 Barbour M. K., 2003, J ILLINOIS COUNCIL S, V63, P25 Barbour M.K., 2007, Distance Learning, V4, P7 Barbour M. K., 2001, OHIO COUNCIL SOCIAL, V37, P18 Barbour M. K., 2002, INT ELECT J LEADERSH, V6 Barbour M, 2013, QUAL REP, V18 Barbour MK, 2009, COMPUT EDUC, V52, P402, DOI 10.1016/j.compedu.2008.09.009 Beck D, 2015, TECHTRENDS, V59, P77, DOI 10.1007/s11528-015-0856-8 Benson G., 1998, HIGH SCH MAGAZINE, V6, P42 Burgess-Watkins K., 2011, Distance Learning, V8, P1 Carr-Chellman A. A., 2015, E LEARN MAGAZINE Cavanaugh C., 2015, Journal of Online Learning Research, V1, P9 Cavanaugh C., 2008, REV MEXICANA BACHILL, V1 Clark T., 2018, HDB RES K 12 ONLINE, P121 Coy K., 2014, INT J DYSLEXIA, V40, P17 Curtis H., 2015, J ONLINE LEARNING RE, V1, P163 Davis N. E., 2012, COMPUTERS NZ SCH, V24, P70 Furey D., 2005, THE MORNING WATCH, V32 Gill B., 2015, Inside online charter schools Goss M.W., 2011, Distance Learning, V8, P41 Greer D., 2013, Journal of Education, V193, P41, DOI DOI 10.1177/002205741319300205 Greer D L., 2014, Journal of American Academy of Special Education Professionals, P150 HAMILTON DP, 1990, SCIENCE, V250, P1331, DOI 10.1126/science.2255902 Haughey M., 1999, OPEN ED RES, V2/3, P13 Hu M., 2019, Journal of Online Learning Research, V5, P123 Jeurissen M., 2015, J OPEN FLEXIBLE DIST, V19 Kane J., 2004, FLORIDA J HLTH PHYS, V42, P8 Kirby D, 2010, CAN J CAREER DEV, V9, P4 Kirschner PA, 2013, EDUC PSYCHOL-US, V48, P169, DOI 10.1080/00461520.2013.804395 Li Y, 2018, ASIA-PAC J CHEM ENG, V13, P1, DOI DOI 10.1109/bigmm.2018.8499097 Lim Byungro, 2008, [Multimedia-Assisted Language Learning, 멀티미디어 언어교육], V11, P9 Lin C H., 2015, Journal of Online Learning Research, V1, P275 Lokey-Vega A., 2018, Handbook of research on K-12 online and blended learning, V2nd, P65 Lowes S., 2018, Handbook of research on K-12 online and blended learning, V2nd, P91 Lowes S., 2015, J. Learn. Anal, V2, P169, DOI [DOI 10.18608/JLA.2015.22.13, 10.18608/jla.2015.22.13] Lowes S., 2014, HDB RES K 12 ONLINE, P83 Lueken M., 2015, J ONLINE LEARNING RE, V1, P305 Mann Bryan, 2014, International Journal of Cyber Ethics in Education, V3, P39, DOI 10.4018/ijcee.2014040104 McAuley A., 1998, TECHNOS, V7, P11 McWatters G., 1997, J DISTANCE ED, V12, P277 Molnar A., 2019, VIRTUAL SCH US 2019 Murphy E., 2008, E-Learning, V5, P384, DOI DOI 10.2304/ELEA.2008.5.4.384 Pettyjohn T., 2014, NCPEA ED LEADERSHIP, V1 Piwowar H, 2018, PEERJ, V6, DOI 10.7717/peerj.4375 Rice M., 2018, Handbook of research on K-12 online and blended learning, P189, DOI DOI 10.1184/R1/6686813 RUSSELL G, 2003, WELSH J ED, V12, P40 Russell G, 2006, AUST J EDUC, V50, P140, DOI 10.1177/000494410605000204 Ryan T. G., 2009, TURKISH ONLINE J DIS, V20 Sakar A.N., 2011, TURKISH ONLINE J DIS, V12 Shafer-Mayse D., 2015, Journal of Online Learning Research, V1, P337 Smith SJ, 2014, OPEN LEARN, V29, P222, DOI 10.1080/02680513.2014.992402 STEVENS AJ, 1995, MECHATRONICS, V5, P1, DOI 10.1016/0957-4158(94)00043-Q Stevens K., 2000, GEOCARREFOUR REV GEO, V75, P87, DOI 10.3406/geoca.2000.2458 Stevens K., 2002, INNOVATION J, V8 Stevens K., 2001, J DISTANCE LEARNING, V6, P45 Stevens K., 1997, THE MORNING WATCH, V25 Stevens K, 2009, RURAL SOC, V19, P118, DOI 10.5172/rsj.19.2.118 TAINER JA, 1991, SCIENCE, V251, P1408, DOI 10.1126/science.2006414 Tysinger P.D., 2013, School Psychology Forum, V7, P76 Van Noorden R, 2017, NATURE, V552, P162, DOI 10.1038/d41586-017-08404-0 Wang Y., 2014, International Journal of Educational Reform, V23, P294 Zawacki-Richter O, 2009, INT REV RES OPEN DIS, V10, P21, DOI 10.19173/irrodl.v10i6.741 NR 69 TC 4 Z9 8 U1 2 U2 11 PU ONLINE LEARNING CONSORTIUM PI NEWBURYPORT PA PO BOX 1238, NEWBURYPORT, MA 01950 USA SN 2472-5749 EI 2472-5730 J9 ONLINE LEARN JI Online Learn. PD JUN PY 2020 VL 24 IS 2 BP 187 EP 206 DI 10.24059/olj.v24i2.2080 PG 20 WC Education & Educational Research WE Emerging Sources Citation Index (ESCI) SC Education & Educational Research GA LU8QU UT WOS:000538014200012 OA gold DA 2024-09-05 ER PT J AU Ribeiro, GAS Barbosa, RM Reis, MD Costa, NL AF Ribeiro, Guilherme Alberto Sousa Barbosa, Rommel Melgaco da Cunha Reis, Marcio Costa, Nattane Luiza TI From bibliometrics to text mining: exploring feature selection methods in microarray research SO COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION LA English DT Article; Early Access DE Bibliometric; Feature selection; Microarray; Text mining ID MACHINE; CLASSIFICATION; BUSINESS; DATASETS; MODEL; TOOL AB Text mining (TM) is a technique that aims to extract knowledge from unstructured data sources by transforming them into structured data. TM algorithms can be used to detect hidden patterns in large amounts of data, including bibliometric data. Feature selection has been used to reduce the high dimensionality and complexity of computational problems, including microarray data that have a large number of features. In this context, this study aims to use text mining to discover trends in the use of feature selection techniques on microarray data based on bibliometric data such as titles, abstracts, and keywords. A total of 1448 studies published in journals indexed in the Web of Science database were collected to perform a bibliometric and TM analysis. One of the main goals of this study was to determine the patterns related to the roles of medical and machine learning methods. The results demonstrated the trends between microarray and other medical/biological topics, and machine learning techniques such as feature selection and classification, including the identification of commonly used databases and algorithms. Colon, lung, and breast were the most commonly studied cancers identified using microarray data and feature selection techniques. In addition, SVM was frequently used for dimensionality reduction and classification tasks. Despite the insightful results based on text mining, more studies are needed to investigate the performance, strength, and weakness of different types of feature selectors to microarray data. C1 [Ribeiro, Guilherme Alberto Sousa; Barbosa, Rommel Melgaco] Univ Fed Goias, Inst Informat, Samambaia Campus, BR-74690900 Goiania, Go, Brazil. [Ribeiro, Guilherme Alberto Sousa; da Cunha Reis, Marcio] Fed Inst Goias IFG, Studies & Res Sci & Technol Grp GCITE, Goiania, Go, Brazil. [Barbosa, Rommel Melgaco; da Cunha Reis, Marcio] Hosp Israelita Albert Einstein, Image Ctr, Sao Paulo, SP, Brazil. [Costa, Nattane Luiza] Fed Inst Goiano, Urutai, Go, Brazil. C3 Universidade Federal de Goias; Instituto Federal de Goias (IFG); Hospital Israelita Albert Einstein; Instituto Federal Goiano RP Ribeiro, GAS (corresponding author), Univ Fed Goias, Inst Informat, Samambaia Campus, BR-74690900 Goiania, Go, Brazil. EM guilherme.ufma@gmail.com OI Sousa Ribeiro, Guilherme Alberto/0000-0002-2230-9573 CR Aggarwal C.C., 2015, Mining text data Alhenawi E, 2022, COMPUT BIOL MED, V140, DOI 10.1016/j.compbiomed.2021.105051 Alonso-Betanzos A, 2019, METHODS MOL BIOL, V1986, P65, DOI 10.1007/978-1-4939-9442-7_4 Ananiadou S, 2006, TRENDS BIOTECHNOL, V24, P571, DOI 10.1016/j.tibtech.2006.10.002 Aria M, 2017, J INFORMETR, V11, P959, DOI 10.1016/j.joi.2017.08.007 Benchimol J, 2022, MACH LEARN APPL, V8, DOI 10.1016/j.mlwa.2022.100286 Bessonov K, 2016, GENET EPIDEMIOL, V40, P767, DOI 10.1002/gepi.22017 Blum AL, 1997, ARTIF INTELL, V97, P245, DOI 10.1016/S0004-3702(97)00063-5 Bolón-Canedo V, 2014, INFORM SCIENCES, V282, P111, DOI 10.1016/j.ins.2014.05.042 Bremer EG, 2004, LECT NOTES ARTIF INT, V3303, P84 Cao KAL, 2011, BMC BIOINFORMATICS, V12, DOI 10.1186/1471-2105-12-253 Chandrashekar G, 2014, COMPUT ELECTR ENG, V40, P16, DOI 10.1016/j.compeleceng.2013.11.024 Chaudhuri A, 2022, KNOWL-BASED SYST, V236, DOI 10.1016/j.knosys.2021.107804 Chen X, 2009, PROCEEDINGS OF THE 3RD INTERNATIONAL CONFERENCE ON ANTI-COUNTERFEITING, SECURITY, AND IDENTIFICATION IN COMMUNICATION, P124, DOI 10.1109/ICASID.2009.5276941 Chiang D Y, 2001, Bioinformatics, V17 Suppl 1, pS49 Cobo MJ, 2015, KNOWL-BASED SYST, V80, P3, DOI 10.1016/j.knosys.2014.12.035 Ding C, 2003, PROCEEDINGS OF THE 2003 IEEE BIOINFORMATICS CONFERENCE, P523, DOI 10.1109/CSB.2003.1227396 Donthu N, 2021, J INT MARKETING, V29, P1, DOI 10.1177/1069031X211004234 Donthu N, 2021, PSYCHOL MARKET, V38, P834, DOI 10.1002/mar.21472 Donthu N, 2020, J BUS RES, V109, P1, DOI 10.1016/j.jbusres.2019.10.039 dos Santos BS, 2019, COMPUT IND ENG, V138, DOI 10.1016/j.cie.2019.106120 Dudoit S, 2002, J AM STAT ASSOC, V97, P77, DOI 10.1198/016214502753479248 El Kafrawy P, 2021, IEEE ACCESS, V9, P155353, DOI 10.1109/ACCESS.2021.3123090 Faro A, 2012, BRIEF BIOINFORM, V13, P61, DOI 10.1093/bib/bbr018 Feinerer I, 2008, J STAT SOFTW, V25, P1 Feldman R., 2007, TEXT MINING HDB ADV Guyon I., 2003, Journal of Machine Learning Research, V3, P1157, DOI 10.1162/153244303322753616 Huang CL, 2009, EXPERT SYST APPL, V36, P1529, DOI 10.1016/j.eswa.2007.11.062 Huynh-Thu VA, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0012776 Jiang XM, 2018, LECT NOTES ARTIF INT, V11012, P772, DOI 10.1007/978-3-319-97304-3_59 Karim Shahiratul A. Abd, 2021, Journal of Physics: Conference Series, DOI 10.1088/1742-6596/1997/1/012017 Khan MA, 2021, J BUS RES, V125, P295, DOI 10.1016/j.jbusres.2020.12.015 Königstorfer F, 2020, J BEHAV EXP FINANC, V27, DOI 10.1016/j.jbef.2020.100352 Kumar V, 2019, NEURAL COMPUT APPL, V31, P3647, DOI 10.1007/s00521-017-3321-0 Lazar C, 2012, IEEE ACM T COMPUT BI, V9, P1106, DOI 10.1109/TCBB.2012.33 Lee J, 2020, BIOINFORMATICS, V36, P1234, DOI 10.1093/bioinformatics/btz682 Li JY, 2019, J VIS COMMUN IMAGE R, V64, DOI 10.1016/j.jvcir.2019.102605 Li T, 2004, BIOINFORMATICS, V20, P2429, DOI 10.1093/bioinformatics/bth267 Liang YY, 2017, ENG APPL ARTIF INTEL, V62, P96, DOI 10.1016/j.engappai.2017.03.009 Liu H., 2012, FEATURE SELECTION KN, V454 Liu Q, 2017, COMPUT BIOL MED, V91, P103, DOI 10.1016/j.compbiomed.2017.10.008 Lockhart DJ, 1996, NAT BIOTECHNOL, V14, P1675, DOI 10.1038/nbt1296-1675 Manning Christopher D., 2008, Introduction to Information Retrieval Manoharan Sharanya, 2022, Methods Mol Biol, V2496, P41, DOI 10.1007/978-1-0716-2305-3_3 Mhlanga D, 2020, INT J FINANC STUD, V8, DOI 10.3390/ijfs8030045 Natarajan J., 2013, ISRN Computational Biology, V2013, P1, DOI [10.1155/2013/159135, DOI 10.1155/2013/159135] Natarajan J, 2006, BMC BIOINFORMATICS, V7, DOI 10.1186/1471-2105-7-373 Onan A, 2023, EXPERT SYST APPL, V232, DOI 10.1016/j.eswa.2023.120908 Onan A, 2021, IEEE ACCESS, V9, P7701, DOI 10.1109/ACCESS.2021.3049734 Onan A, 2019, IEEE ACCESS, V7, P145614, DOI 10.1109/ACCESS.2019.2945911 Onan A, 2021, CONCURR COMP-PRACT E, V33, DOI 10.1002/cpe.5909 Onan A, 2021, COMPUT APPL ENG EDUC, V29, P572, DOI 10.1002/cae.22253 Onan A, 2020, COMPUT APPL ENG EDUC, V28, P117, DOI 10.1002/cae.22179 Onan A, 2018, COMPUT MATH METHOD M, V2018, DOI 10.1155/2018/2497471 Onan A, 2018, J INF SCI, V44, P28, DOI 10.1177/0165551516677911 Papacharalampous G, 2022, Arxiv, DOI arXiv:2206.08998 PRITCHARD A, 1969, J DOC, V25, P348 R Core Team, 2023, R LANG ENV STAT COMP Remeseiro B, 2019, COMPUT BIOL MED, V112, DOI 10.1016/j.compbiomed.2019.103375 SCHENA M, 1995, SCIENCE, V270, P467, DOI 10.1126/science.270.5235.467 Sebastiani F, 2002, ACM COMPUT SURV, V34, P1, DOI 10.1145/505282.505283 Song QB, 2013, IEEE T KNOWL DATA EN, V25, P1, DOI 10.1109/TKDE.2011.181 Spasic I, 2014, INT J MED INFORM, V83, P605, DOI 10.1016/j.ijmedinf.2014.06.009 Sun L, 2017, BMC BIOINFORMATICS, V18, DOI 10.1186/s12859-017-1468-4 Sun WC, 2018, J HEALTHC ENG, V2018, DOI 10.1155/2018/4302425 Tang EK, 2005, Proceedings of the 2005 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology, P9 Teschendorff AE, 2007, GENOME BIOL, V8, DOI 10.1186/gb-2007-8-8-r157 Trieu HL, 2022, BIOINFORMATICS, V38, P872, DOI 10.1093/bioinformatics/btab702 van Eck NJ, 2010, SCIENTOMETRICS, V84, P523, DOI 10.1007/s11192-009-0146-3 Verma S, 2020, J BUS RES, V118, P253, DOI 10.1016/j.jbusres.2020.06.057 Wang AG, 2022, COMPUT BIOL MED, V142, DOI 10.1016/j.compbiomed.2021.105208 Wang JL, 2014, IEEE T KNOWL DATA EN, V26, P698, DOI 10.1109/TKDE.2013.32 Wang R, 2009, INT CONF DAT MIN WOR, P400, DOI 10.1109/ICDMW.2009.25 Wang Y, 2005, COMPUT BIOL CHEM, V29, P37, DOI 10.1016/j.compbiolchem.2004.11.001 Wang YH, 2004, 2004 IEEE COMPUTATIONAL SYSTEMS BIOINFORMATICS CONFERENCE, PROCEEDINGS, P497 Wang Z, 2009, NAT REV GENET, V10, P57, DOI 10.1038/nrg2484 Weston J, 2001, ADV NEUR IN, V13, P668 Xie JY, 2016, LECT NOTES ARTIF INT, V9773, P116, DOI 10.1007/978-3-319-42297-8_12 Yang PY, 2010, CURR BIOINFORM, V5, P296, DOI 10.2174/157489310794072508 Yuan XH, 2020, IEEE ACCESS, V8, P22672, DOI 10.1109/ACCESS.2020.2969293 Zagoruiko N., 2006, P 5 TH INT C BIOINFO, P16 Zhang Y, 2021, KNOWL-BASED SYST, V222, DOI 10.1016/j.knosys.2021.106994 Zhang Y, 2017, KNOWL-BASED SYST, V133, P255, DOI 10.1016/j.knosys.2017.07.011 Xuan Z, 2017, PATTERN RECOGN, V63, P56, DOI 10.1016/j.patcog.2016.09.007 Zia A, 2022, J PERS MED, V12, DOI 10.3390/jpm12091359 NR 85 TC 0 Z9 0 U1 8 U2 8 PU TAYLOR & FRANCIS INC PI PHILADELPHIA PA 530 WALNUT STREET, STE 850, PHILADELPHIA, PA 19106 USA SN 0361-0918 EI 1532-4141 J9 COMMUN STAT-SIMUL C JI Commun. Stat.-Simul. Comput. PD 2024 MAR 25 PY 2024 DI 10.1080/03610918.2024.2331083 EA MAR 2024 PG 17 WC Statistics & Probability WE Science Citation Index Expanded (SCI-EXPANDED) SC Mathematics GA MQ1D9 UT WOS:001194992900001 DA 2024-09-05 ER PT C AU Zhang, CT Zhang, HX Yuan, DF Zhang, MG AF Zhang, Chuanting Zhang, Haixia Yuan, Dongfeng Zhang, Minggao BE Liu, X Qiu, T Guo, B Lu, K Ning, Z Dong, M Li, Y TI Deep Learning Based Link Prediction with Social Pattern and External Attribute Knowledge in Bibliographic Networks SO 2016 IEEE INTERNATIONAL CONFERENCE ON INTERNET OF THINGS (ITHINGS) AND IEEE GREEN COMPUTING AND COMMUNICATIONS (GREENCOM) AND IEEE CYBER, PHYSICAL AND SOCIAL COMPUTING (CPSCOM) AND IEEE SMART DATA (SMARTDATA) LA English DT Proceedings Paper CT 9th IEEE Int Conf on Internet of Things / 12th IEEE Int Conf on Green Comp and Communicat / 9th IEEE Int Conf on Cyber, Phys, and Social Comp / IEEE Int Conf on Smart Data CY DEC 16-19, 2016 CL Chengdu, PEOPLES R CHINA AB The problem of predicting links for information entities is an important task in network analysis. In this regard, link prediction between authors in bibliographic networks has attracted much attention. However, most of these works only center around exploiting network topology features to do prediction, and other factors affecting link formation are rarely considered. In this paper, we introduce two kinds of novel features based on social pattern and external attribute knowledge (SPEAK), then integrate the SPEAK features and topological features into a deep learning framework using deep neural networks (DNNs). We present the performance based on a real world academic social network from AMiner. Experimental results demonstrate that the SPEAK features can significantly boost the link prediction performance especially when potential links span large geodesic distance. In addition, these features are helpful in understanding the mechanisms behind the link formation. C1 [Zhang, Chuanting; Zhang, Haixia; Yuan, Dongfeng; Zhang, Minggao] Shandong Univ, Shandong Prov Key Lab Wireless Commun Technol, Jinan 250100, Peoples R China. C3 Shandong University RP Zhang, CT (corresponding author), Shandong Univ, Shandong Prov Key Lab Wireless Commun Technol, Jinan 250100, Peoples R China. EM chuanting.zhang@gmail.com; haixia.zhang@sdu.edu.cn; dfyuan@sdu.edu.cn RI Zhang, Chuanting/AAD-4183-2020 FU Special Project for Independent Innovation and Achievement Transformation of Shandong Province [2013ZHZX2C0102, 2014ZZCX03401] FX The work presented in this paper was supported in part by the Special Project for Independent Innovation and Achievement Transformation of Shandong Province (2013ZHZX2C0102, 2014ZZCX03401). CR AlHasan M., 2006, P SDM 06 WORKSH LINK [Anonymous], 2005, ACM SIGKDD EXPLOR NE [Anonymous], 2010, KDD Backstrom L., 2011, WSDM, P635 Dong YX, 2012, IEEE DATA MINING, P181, DOI 10.1109/ICDM.2012.140 Grover A, 2016, KDD'16: PROCEEDINGS OF THE 22ND ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, P855, DOI 10.1145/2939672.2939754 Han X, 2015, IEEE ICC, P1250, DOI 10.1109/ICC.2015.7248494 Hinton G, 2012, IEEE SIGNAL PROC MAG, V29, P82, DOI 10.1109/MSP.2012.2205597 LeCun Y, 2015, NATURE, V521, P436, DOI 10.1038/nature14539 Li X., 2014, Proceedings of the 2014 SIAM international conference on data mining, P289, DOI DOI 10.1137/1.9781611973440.33 Liben-Nowell D, 2007, J AM SOC INF SCI TEC, V58, P1019, DOI 10.1002/asi.20591 Liu F, 2015, ENTROPY-SWITZ, V17, P2140, DOI 10.3390/e17042140 Lü LY, 2011, PHYSICA A, V390, P1150, DOI 10.1016/j.physa.2010.11.027 Tang J., 2008, KDD, P990, DOI DOI 10.1145/1401890.1402008 Wang P, 2015, SCI CHINA INFORM SCI, V58, DOI 10.1007/s11432-014-5237-y NR 15 TC 7 Z9 7 U1 1 U2 2 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA BN 978-1-5090-5880-8 PY 2016 BP 815 EP 821 DI 10.1109/iThings-GreenCom-CPSCom-SmartData.2016.170 PG 7 WC Computer Science, Theory & Methods; Green & Sustainable Science & Technology; Telecommunications WE Conference Proceedings Citation Index - Science (CPCI-S) SC Computer Science; Science & Technology - Other Topics; Telecommunications GA BS5HS UT WOS:000730823200143 DA 2024-09-05 ER PT C AU Omotayo, AH Gamal, M Ehab, E Dovonon, G Akinjobi, Z Lukman, I Turki, H Abdien, M Tondji, I Oppong, A Pimi, Y Gamal, K Roya Siam, M AF Omotayo, Abdul-Hakeem Gamal, Mai Ehab, Eman Dovonon, Gbetondji Akinjobi, Zainab Lukman, Ismaila Turki, Houcemeddine Abdien, Mahmod Tondji, Idriss Oppong, Abigail Pimi, Yvan Gamal, Karim Roya Siam, Mennatullah GP ACM TI Towards a Better Understanding of the Computer Vision Research Community in Africa SO PROCEEDINGS OF 2023 ACM CONFERENCE ON EQUITY AND ACCESS IN ALGORITHMS, MECHANISMS, AND OPTIMIZATION, EAAMO 2023 LA English DT Proceedings Paper CT ACM Conference on Equity and Access in Algorithms, Mechanisms, and Optimization (EAAMO) CY OCT 30-NOV 01, 2023 CL Boston Univ, Boston, MA HO Boston Univ DE computer vision; participatory approach; bibliometric study ID BIBLIOMETRIC ANALYSIS; SCIENCE; HEALTH; BIAS AB Computer vision is a broad field of study that encompasses different tasks (e.g., object detection, semantic segmentation, 3D reconstruction). Although computer vision is relevant to the African communities in various applications, yet computer vision research is under-explored in the continent and constructs only 0.06% of top-tier publications in the last ten years. In this paper, our goal is to have a better understanding of the computer vision research conducted in Africa and provide pointers on whether there is equity in research or not. We do this through an empirical analysis of the African computer vision publications that are Scopus indexed, where we collect around 63,000 publications over the period 2012-2022. We first study the opportunities available for African institutions to publish in top-tier computer vision venues. We show that African publishing trends in top-tier venues over the years do not exhibit consistent growth, unlike other continents such as North America or Asia. Moreover, we study all computer vision publications beyond top-tier venues in different African regions to find that mainly Northern and Southern Africa are publishing in computer vision with 68.5% and 15.9% of publications, resp. Nonetheless, we highlight that both Eastern and Western Africa are exhibiting a promising increase with the last two years closing the gap with Southern Africa. Additionally, we study the collaboration patterns in these publications to find that most of these exhibit international collaborations rather than African ones. We also show that most of these publications include an African author that is a key contributor as the first or last author. Finally, we present the most recurring keywords in computer vision publications per African region. In summary, our analysis reveals that African researchers are key contributors to African research, yet there exists multiple barriers to publish in top-tier venues and establish African collaborations. Additionally, the question on whether there is an alignment between the current computer vision topics published in Africa and the most urgent needs in African communities remains unanswered. In this work we took the first step of documenting per-region published topics and we leave it for future work to investigate the latter question. This work is part of a community based effort that is focused on improving the computer vision research in Africa, where we question whether researchers across the different regions have access to equal opportunities to lead their research or not. C1 [Omotayo, Abdul-Hakeem] Univ Calif Davis, Davis, CA 95616 USA. [Gamal, Mai] German Univ Cairo, Cairo, Egypt. [Ehab, Eman] Nile Univ, Giza, Egypt. [Dovonon, Gbetondji] UCL, London, England. [Akinjobi, Zainab] New Mexicos State Univ, Las Cruces, NM USA. [Lukman, Ismaila] Univ Angers, Angers, France. [Turki, Houcemeddine] Univ Sfax, Sfax, Tunisia. [Abdien, Mahmod; Gamal, Karim] Queens Univ, Kingston, ON, Canada. [Tondji, Idriss; Pimi, Yvan] African Masters Machine Intelligence AMMI AIMS, Mbour Thies, Senegal. [Oppong, Abigail] Ashesi Univ, Berekuso, Ghana. [Roya] Grassroots, Comp Vis Africa, Kampala, Uganda. [Siam, Mennatullah] Ontario Tech Univ, Oshawa, ON, Canada. C3 University of California System; University of California Davis; Egyptian Knowledge Bank (EKB); German University in Cairo; Egyptian Knowledge Bank (EKB); Nile University; University of London; University College London; Universite d'Angers; Universite de Sfax; Queens University - Canada RP Roya (corresponding author), Grassroots, Comp Vis Africa, Kampala, Uganda. EM ormorteey@gmail.com; mai.tharwat@guc.edu.eg; e.ehab@nu.edu.eg; gbetondji.dovonon.22@ucl.ac.uk; akinzayn@gmail.com; ismailukman@gmail.com; turkiabdelwaheb@hotmail.fr; 21mmah@queensu.ca; itondji@aimsammi.org; abigoppong@gmail.com; ypimi@aimsammi.org; 21kgmm@queensu.ca; roya.cv4africa@gmail.com; mennatullah.siam@ontariotechu.ca RI Turki, Houcemeddine/J-8929-2013; Omotayo, Abdul-Hakeem/KDP-2885-2024 OI Turki, Houcemeddine/0000-0003-3492-2014; Omotayo, Abdul-Hakeem/0009-0009-4558-0356 CR African Development Bank Group, African Countries Bender EM, 2021, PROCEEDINGS OF THE 2021 ACM CONFERENCE ON FAIRNESS, ACCOUNTABILITY, AND TRANSPARENCY, FACCT 2021, P610, DOI 10.1145/3442188.3445922 Bin Jin, 2017, PROC CVPR IEEE, P1705, DOI 10.1109/CVPR.2017.185 Birhane A, 2020, Arxiv, DOI [arXiv:2009.14258, DOI 10.48550/ARXIV.2009.14258] Bommasani Rishi, 2021, On the opportunities and risks of foundation models Bondi E, 2021, AIES '21: PROCEEDINGS OF THE 2021 AAAI/ACM CONFERENCE ON AI, ETHICS, AND SOCIETY, P425, DOI 10.1145/3461702.3462612 Buolamwini J, 2018, PMLR, P77 Chen H, 2020, IEEE ACCESS, V8, P155417, DOI 10.1109/ACCESS.2020.3019336 Currin Christopher Brian, 2023, 2023 ICLR 1 WORKSH M De-Arteaga M, 2018, ACM TRANS MANAG INF, V9, DOI 10.1145/3210548 Deng J, 2009, PROC CVPR IEEE, P248, DOI 10.1109/CVPRW.2009.5206848 Doaemo W, 2020, LAND-BASEL, V9, DOI 10.3390/land9090282 Fielding Ezra, 2022, P INT C EL COMP EN T, P1 Google Scholar, Most cited computer vision researchers Grauman K, 2022, PROC CVPR IEEE, P18973, DOI 10.1109/CVPR52688.2022.01842 Guleid FH, 2021, BMJ GLOB HEALTH, V6, DOI 10.1136/bmjgh-2021-005690 Hamed MSG, 2020, SOL ENERGY, V195, P310, DOI 10.1016/j.solener.2019.11.068 Iqbal U, 2023, WATER ENVIRON J, V37, P373, DOI 10.1111/wej.12845 Jun H, 2022, MEDICINE, V101, DOI 10.1097/MD.0000000000028614 Kalluri P, 2020, NATURE, V583, P169, DOI 10.1038/d41586-020-02003-2 Khamparia A, 2020, SUSTAIN COMPUT-INFOR, V28, DOI 10.1016/j.suscom.2019.07.003 Kinyanjui N. M, 2020, INT C MED IM COMP CO, P320 Krizhevsky A, 2017, COMMUN ACM, V60, P84, DOI 10.1145/3065386 Lewis Jason Edward, 2020, Indigenous protocol and artificial intelligence position paper Manescu Petru, 2020, Medical Image Computing and Computer Assisted Intervention - MICCAI 2020. 23rd International Conference. Proceedings. Lecture Notes in Computer Science (LNCS 12265), P226, DOI 10.1007/978-3-030-59722-1_22 McCoy JT, 2018, IFAC PAPERSONLINE, V51, P141, DOI 10.1016/j.ifacol.2018.09.406 Mehrabi N, 2021, ACM COMPUT SURV, V54, DOI 10.1145/3457607 Mhlambi Sabelo, 2020, Carr Center Discussion Paper Mohamed Shakir, 2020, Philosophy Technology, V33, P659, DOI DOI 10.1007/S13347-020-00405-8 Musa TH, 2022, AFR HEALTH SCI, V22, P704, DOI 10.4314/ahs.v22i2.80 Nakasi R, 2020, IEEE COMPUT SOC CONF, P4238, DOI 10.1109/CVPRW50498.2020.00500 Obermeyer Z, 2019, SCIENCE, V366, P447, DOI 10.1126/science.aax2342 Pouris A, 2014, SCIENTOMETRICS, V98, P2169, DOI 10.1007/s11192-013-1156-8 Roshanitabrizi P, 2022, LECT NOTES COMPUT SC, V13431, P602, DOI 10.1007/978-3-031-16431-6_57 Sefala Raesetje, 2021, P C NEUR INF PROC SY Shirley R, 2021, MON NOT R ASTRON SOC, V507, P129, DOI 10.1093/mnras/stab1526 Sirko W, 2021, Arxiv, DOI [arXiv:2107.12283, DOI 10.48550/ARXIV.2107.12283] Sirohi A., 2020, Communications in Computer and Information Science, P487, DOI [DOI 10.1007/978-981-16-3660-8_46, 10.1007/978-981-16-3660-8_46] Sooryamoorthy R, 2021, J SCIENTOMETR RES, V10, P366, DOI 10.5530/jscires.10.3.54 Su NM, 2021, PROC CVPR IEEE, P9287, DOI 10.1109/CVPR46437.2021.00917 Sweeney L, 2013, COMMUN ACM, V56, P44, DOI 10.1145/2447976.2447990 Szeliski R., 2022, Computer vision: algorithms and applications Tlili A, 2022, PLOS ONE, V17, DOI 10.1371/journal.pone.0262615 Tomkins A, 2017, P NATL ACAD SCI USA, V114, P12708, DOI 10.1073/pnas.1707323114 Turki Houcemeddine, 2023, Machine Learning for Healthcare: A Bibliometric Study of Contributions from Africa Whittaker Meredith, 2019, AI Now Institute, P8 Young M, 2018, PERSPECT MED EDUC, V7, P182, DOI 10.1007/s40037-018-0433-x NR 47 TC 0 Z9 0 U1 0 U2 0 PU ASSOC COMPUTING MACHINERY PI NEW YORK PA 1601 Broadway, 10th Floor, NEW YORK, NY, UNITED STATES BN 979-8-4007-0381-2 PY 2023 AR 1 DI 10.1145/3617694.3623221 PG 12 WC Computer Science, Interdisciplinary Applications; Social Sciences, Mathematical Methods; Social Sciences, Interdisciplinary WE Conference Proceedings Citation Index - Science (CPCI-S); Conference Proceedings Citation Index - Social Science & Humanities (CPCI-SSH) SC Computer Science; Mathematical Methods In Social Sciences; Social Sciences - Other Topics GA BW2SD UT WOS:001124266900001 OA Green Submitted DA 2024-09-05 ER PT C AU Dogan, RI Wilbur, WJ Comeau, DC AF Dogan, Rezarta Islamaj Wilbur, W. John Comeau, Donald C. BE Calzolari, N Choukri, K Declerck, T Loftsson, H Maegaard, B Mariani, J Moreno, A Odijk, J Piperidis, S TI BioC and Simplified Use of the PMC Open Access Dataset for Biomedical Text Mining SO LREC 2014 - NINTH INTERNATIONAL CONFERENCE ON LANGUAGE RESOURCES AND EVALUATION LA English DT Proceedings Paper CT 9th International Conference on Language Resources and Evaluation (LREC) CY MAY 26-31, 2014 CL Reykjavik, ICELAND DE interoperability; PubMed Central; biomedical natural language processing; BioC; annotations ID INFORMATION EXTRACTION; FULL-TEXT AB High quality easily-accessible resources are crucial for developing reliable applications in the health and biomedical domain. At the same time, interoperability, broad use, and reuse are vital considerations when developing useful systems. As a response, BioC has recently been put forward as a convenient XML format to share text documents and annotations, and as an accompanying input/output library to promote interoperability of data and tools. The BioC approach allows a large number of different textual annotations to be represented, and permits developers to more easily and efficiently share training data, supportive software modules and produced results. Here we give a brief overview of BioC resources. We also present the BioC-PMC dataset as a new resource, which contains all the articles available from the PubMed Central Open Access collection conveniently packaged in the BioC format. We show how this valuable resource can be easily used for text-mining tasks. Code and data are available for download at the BioC site: http://bioc.sourceforge.net. C1 [Dogan, Rezarta Islamaj; Wilbur, W. John; Comeau, Donald C.] Natl Lib Med, Natl Ctr Biotechnol Informat, Bethesda, MD 20894 USA. C3 National Institutes of Health (NIH) - USA; NIH National Library of Medicine (NLM) RP Dogan, RI (corresponding author), Natl Lib Med, Natl Ctr Biotechnol Informat, Bethesda, MD 20894 USA. EM Rezarta.Islamaj@nih.gov; wilbur@ncbi.nlm.nih.gov; comeau@ncbi.nlm.nih.gov CR [Anonymous], 2003, P 41 ANN M ASS COMP Arighi CN, 2011, BMC BIOINFORMATICS, V12, DOI 10.1186/1471-2105-12-S8-S1 Blaschke C, 2001, COMP FUNCT GENOM, V2, P196, DOI 10.1002/cfg.91 Cohen AM, 2005, BRIEF BIOINFORM, V6, P57, DOI 10.1093/bib/6.1.57 Comeau D.C., 2013, P 4 BIOCREATIVE CHAL, P38 Corney DPA, 2004, BIOINFORMATICS, V20, P3206, DOI 10.1093/bioinformatics/bth386 Divoli A, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0009619 Dogan R.I., 2014, J BIOMED INFORM Dogan R.L, 2013, P 4 BIOCREATIVE CHAL, P23 Hearst MA, 2007, BIOINFORMATICS, V23, P2196, DOI 10.1093/bioinformatics/btm301 Hirschman L, 2005, BMC BIOINFORMATICS, V6, DOI 10.1186/1471-2105-6-S1-S1 Hirschman L, 2012, DATABASE-OXFORD, DOI 10.1093/database/bas020 Jimeno Yepes A.M.N., 2013, P BIOCREATIVE 4 WORK, V1, P46 Khare R., 2013, P 4 BIOCREATIVE CHAL, V1, P10 Krallinger M, 2008, GENOME BIOL, V9, DOI 10.1186/gb-2008-9-S2-S1 Kuo CJ, 2009, BMC BIOINFORMATICS, V10, DOI 10.1186/1471-2105-10-S15-S7 Lai P., 2013, P 4 BIOCREATIVE CHAL, P54 Liu W., 2013, P 4 BIOCREATIVE CHAL, P31 Peng Yifan., 2013, Proceedings of the BioCreative IV Challenge Evaluation Workshop, P5 Rak R., 2013, P 4 BIOCREATIVE CHAL, V1, P61 Rinaldi F, 2013, P P 4 BIOCREATIVE CH, V1, P2 Schwartz Ariel S, 2003, Pac Symp Biocomput, P451 Shah PK, 2003, BMC BIOINFORMATICS, V4, DOI 10.1186/1471-2105-4-20 Smith L, 2004, BIOINFORMATICS, V20, P2320, DOI 10.1093/bioinformatics/bth227 Sohn S, 2008, BMC BIOINFORMATICS, V9, DOI 10.1186/1471-2105-9-402 Wei CH, 2013, NUCLEIC ACIDS RES, V41, pW518, DOI 10.1093/nar/gkt441 Wu CH, 2012, DATABASE-OXFORD, DOI 10.1093/database/bas049 Yeganova L, 2011, BMC BIOINFORMATICS, V12, DOI 10.1186/1471-2105-12-S3-S6 Yu H, 2003, BIOINFORMATICS, V19, pi340, DOI 10.1093/bioinformatics/btg1047 NR 29 TC 0 Z9 0 U1 0 U2 1 PU EUROPEAN LANGUAGE RESOURCES ASSOC-ELRA PI PARIS PA 55-57, RUE BRILLAT-SAVARIN, PARIS, 75013, FRANCE BN 978-2-9517408-8-4 PY 2014 PG 8 WC Linguistics; Language & Linguistics WE Conference Proceedings Citation Index - Social Science & Humanities (CPCI-SSH) SC Linguistics GA BC8FH UT WOS:000355611000008 DA 2024-09-05 ER PT C AU Marshall, GC Jay, C Freitas, A AF Marshall, Guy Clarke Jay, Caroline Freitas, Andre BE Basu, A Stapleton, G Linker, S Legg, C Manalo, E Viana, P TI Number and Quality of Diagrams in Scholarly Publications is Associated with Number of Citations SO DIAGRAMMATIC REPRESENTATION AND INFERENCE, DIAGRAMS 2021 SE Lecture Notes in Artificial Intelligence LA English DT Proceedings Paper CT 12th International Conference on the Theory and Application of Diagrams (Diagrams) CY SEP 28-30, 2021 CL ELECTR NETWORK DE Neural networks; Scholarly diagrams; Corpus analysis; Bibliometrics; Graphicacy AB Diagrams are often used in scholarly communication. We analyse a corpus of diagrams found in scholarly computational linguistics conference proceedings (ACL 2017), and find inclusion of a system diagram to be correlated with higher numbers of citations after three years. Inclusion of more than three diagrams in this 8-page limit conference was found to correlate with a lower citation count. Focusing on neural network system diagrams, we find a correlation between highly cited papers and "good diagramming practice" quantified by level of compliance with a set of diagramming guidelines. This study suggests that diagrams may be a useful source of quality data for predicting citations, and that "graphicacy" is a key skill for scholars with insufficient support at present. C1 [Marshall, Guy Clarke; Jay, Caroline; Freitas, Andre] Univ Manchester, Dept Comp Sci, Manchester, Lancs, England. [Freitas, Andre] Idiap Res Inst, Martigny, Switzerland. C3 University of Manchester RP Marshall, GC (corresponding author), Univ Manchester, Dept Comp Sci, Manchester, Lancs, England. EM guy.marshall@postgrad.manchester.ac.uk; caroline.jay@manchester.ac.uk; andre.freitas@manchester.ac.uk RI Freitas, Andre/AAT-9885-2020 OI Freitas, Andre/0000-0002-4430-4837; Jay, Caroline/0000-0002-6080-1382 CR Abrishami A, 2019, J INFORMETR, V13, P485, DOI 10.1016/j.joi.2019.02.011 Ainsworth SE, 2021, CURR DIR PSYCHOL SCI, V30, P61, DOI 10.1177/0963721420979582 Clark C, 2016, ACM-IEEE J CONF DIG, P143, DOI 10.1145/2910896.2910904 Divvala S., 2016, PDFFIGURES 2 0 READM Fan J. E., 2015, Translational Issues in Psychological Science, V1, P170, DOI DOI 10.1037/TPS0000037 Gwet KL, 2014, Handbook of inter-rater reliability: the definitive guide to measuring the extent of agreement among raters, V4th Jay C., 2021, STAT PAP RETH WE SHA Kan M.Y., 2017, ACCEPTED PAPERS DEMO Lechner VE, 2020, LECT NOTES ARTIF INT, V12169, P110, DOI 10.1007/978-3-030-54249-8_9 Lee PS, 2018, IEEE T BIG DATA, V4, P117, DOI 10.1109/TBDATA.2017.2689038 Marshall G., **DATA OBJECT**, DOI 10.6084/m9.figshare.14812959 Marshall G., 2020, ARXIV PREPRINT ARXIV Marshall Guy Clarke, 2021, Diagrammatic Representation and Inference: 12th International Conference, Diagrams 2021, Proceedings. Lecture Notes in Computer Science, Lecture Notes in Artificial Intelligence (12909), P480, DOI 10.1007/978-3-030-86062-2_49 Marshall G.C., ARXIV PREPRINT ARXIV Olah C., 2015, Understanding LSTM networks, 2015 Pournelle G. H., 1953, Journal of Mammalogy, V34, P133, DOI 10.1890/0012-9658(2002)083[1421:SDEOLC]2.0.CO;2 Roy A, 2020, IEEE IMAGE PROC, P2581, DOI 10.1109/ICIP40778.2020.9191234 Wickham H., 2016, GGPLOT2, DOI DOI 10.1007/978-3-319-24277-4 Yan R, 2012, P 12 ACM IEEE CS JOI, P51, DOI DOI 10.1145/2232817.2232831 Yang Sean T., 2019, 2019 International Conference on Document Analysis and Recognition (ICDAR). Proceedings, P1063, DOI 10.1109/ICDAR.2019.00173 NR 20 TC 2 Z9 2 U1 0 U2 3 PU SPRINGER INTERNATIONAL PUBLISHING AG PI CHAM PA GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND SN 2945-9133 EI 1611-3349 BN 978-3-030-86062-2; 978-3-030-86061-5 J9 LECT NOTES ARTIF INT PY 2021 VL 12909 BP 512 EP 519 DI 10.1007/978-3-030-86062-2_52 PG 8 WC Computer Science, Artificial Intelligence; Computer Science, Software Engineering; Mathematics, Applied; Logic WE Conference Proceedings Citation Index - Science (CPCI-S) SC Computer Science; Mathematics; Science & Technology - Other Topics GA BS3IM UT WOS:000711901600052 DA 2024-09-05 ER PT C AU Olensky, M AF Olensky, Marlies BE Gorraiz, J Schiebel, E Gumpenberger, C Horlesberger, M Moed, H TI ACCURACY ASSESSMENT FOR BIBLIOGRAPHIC DATA SO 14TH INTERNATIONAL SOCIETY OF SCIENTOMETRICS AND INFORMETRICS CONFERENCE (ISSI) SE Proceedings of the International Conference on Scientometrics and Informetrics LA English DT Proceedings Paper CT 14th International-Society-of-Scientometrics-and-Informetrics Conference (ISSI) CY JUL 15-20, 2013 CL Vienna, AUSTRIA C1 Humboldt Univ, Berlin Sch Lib & Informat Sci, D-10099 Berlin, Germany. C3 Humboldt University of Berlin RP Olensky, M (corresponding author), Humboldt Univ, Berlin Sch Lib & Informat Sci, Unter Linden 6, D-10099 Berlin, Germany. EM marlies.olensky@ibi.hu-berlin.de OI Kirchner (Olensky), Marlies/0000-0002-4727-8531 CR [Anonymous], 1997, Data Quality for the Information Age Batini C., 2008, International Journal of Innovative Computing and Applications, V1, P205, DOI 10.1109/icdim.2007.369236 Hildebrandt A. L., 2008, REFERENCE CITATION E Larsen B., 2008, ERROR RATES ERROR TY Meho LI, 2007, J AM SOC INF SCI TEC, V58, P2105, DOI 10.1002/asi.20677 MOED HF, 1989, J INFORM SCI, V15, P95, DOI 10.1177/016555158901500205 Olensky M., 2012, P 17 INT C SCI TECHN, P628 NR 7 TC 2 Z9 2 U1 0 U2 3 PU INT SOC SCIENTOMETRICS & INFORMETRICS-ISSI PI LEUVEN PA KATHOLIEKE UNIV LEUVEN, FACULTEIT E T E W, DEKENSTRAAT 2, LEUVEN, B-3000, BELGIUM SN 2175-1935 BN 978-3-200-03135-7 J9 PRO INT CONF SCI INF PY 2013 BP 1850 EP 1853 PG 4 WC Information Science & Library Science WE Conference Proceedings Citation Index - Social Science & Humanities (CPCI-SSH) SC Information Science & Library Science GA BC6IG UT WOS:000353961700146 DA 2024-09-05 ER PT J AU Malkin, A Rehfeldt, RA Shayter, AM AF Malkin, Albert Rehfeldt, Ruth Anne Shayter, Ashley M. TI An Investigation of the Efficacy of Asynchronous Discussion on Students' Performance in an Online Research Method Course SO BEHAVIOR ANALYSIS IN PRACTICE LA English DT Article DE Teaching behavior analysis; Online learning; Asynchronous discussion; Active learning ID SATISFACTION AB Online instruction has become increasingly a commonplace in higher education, broadly and within the field of behavior analysis. Given the increased availability of online instruction, it is important to establish how learning outcomes are influenced by various teaching methods, in order to effectively train the next generation of behavior analysts. This study used a between-group design to evaluate the use of asynchronous online class discussion. Results indicate greater group mean performance on quizzes for students who were required to participate in asynchronous discussion as a component of instruction.Demonstration of the effectiveness of a typical component of online instructionProcedures can be used to evaluate instructional methods in behavior analytic courseworkAsynchronous online discussion is a promising component of online courseworkActive learning pedagogy is more effective when compared with passive learning pedagogy C1 [Malkin, Albert; Rehfeldt, Ruth Anne; Shayter, Ashley M.] Southern Illinois Univ, Behav Anal & Therapy Program, Carbondale, IL 62901 USA. C3 Southern Illinois University System; Southern Illinois University RP Malkin, A (corresponding author), Southern Illinois Univ, Behav Anal & Therapy Program, Carbondale, IL 62901 USA. EM amalkin@siu.edu RI Malkin, Albert/AAB-1492-2021 OI Malkin, Albert/0000-0002-8652-6390 CR Austin J.L., 2000, HDB APPL BEHAV ANAL, P449 Behavior Analyst Certification Board, 2016, APPR U TRAIN Coppola NW, 2002, J MANAGE INFORM SYST, V18, P169, DOI 10.1080/07421222.2002.11045703 Driscoll A, 2012, TEACH SOCIOL, V40, P312, DOI 10.1177/0092055X12446624 Jorczak R. L., 2014, J ASYNCHRONOUS LEARN, V18 Ocker RJ, 1999, GROUP DECIS NEGOT, V8, P427, DOI 10.1023/A:1008621827601 Querol B.I. D., 2015, Scholarship of Teaching and Learning in Psychology, V1, P390, DOI DOI 10.1037/STL0000048 Roll-Pettersson L., 2010, European Journal of Behavior Analysis, V11, P247 Williams L.W., 2012, The Behavior Analyst Today, V13, P12, DOI [DOI 10.1037/H0100713, 10.1037/h0100713] NR 9 TC 19 Z9 33 U1 0 U2 17 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1998-1929 EI 2196-8934 J9 BEHAV ANAL PRACT JI Behav. Anal. Pract. PD SEP PY 2018 VL 11 IS 3 SI SI BP 274 EP 278 DI 10.1007/s40617-016-0157-5 PG 5 WC Psychology, Clinical WE Emerging Sources Citation Index (ESCI) SC Psychology GA GW7HQ UT WOS:000447138100016 PM 30363852 OA Green Published DA 2024-09-05 ER PT J AU Carrasco, RC Serrano, A Castillo-Buergo, R AF Carrasco, Rafael C. Serrano, Aureo Castillo-Buergo, Reydi TI A parser for authority control of author names in bibliographic records SO INFORMATION PROCESSING & MANAGEMENT LA English DT Article DE Digital libraries; Cataloguing standards; Natural language processing ID DISAMBIGUATION AB Bibliographic collections in traditional libraries often compile records from distributed sources where variable criteria have been applied to the normalization of the data. Furthermore, the source records often follow classical standards, such as MARC21, where a strict normalization of author names is not enforced. The identification of equivalent records in large catalogues is therefore required, for example, when migrating the data to new repositories which apply modern specifications for cataloguing, such as the FRBR and RDA standards. An open-source tool has been implemented to assist authority control in bibliographic catalogues when external features (such as the citations found in scientific articles) are not available for the disambiguation of creator names. This tool is based on similarity measures between the variants of author names combined with a parser which interprets the dates and periods associated with the creator. An efficient data structure (the unigram frequency vector trie) has been used to accelerate the identification of variants. The algorithms employed and the attribute grammar are described in detail and their implementation is distributed as an open-source resource to allow for an easier uptake. (C) 2016 Elsevier Ltd. All rights reserved. C1 [Carrasco, Rafael C.; Serrano, Aureo] Univ Alicante, Dept Lenguajes & Sistemas Informat, Alicante, Spain. [Castillo-Buergo, Reydi] Univ Agr La Habana, Dept Computac, Havana, Cuba. C3 Universitat d'Alacant RP Carrasco, RC (corresponding author), Univ Alicante, Dept Lenguajes & Sistemas Informat, Alicante, Spain. EM carrasco@ua.es RI Carrasco, Rafael C/JWP-5402-2024 OI Carrasco, Rafael C./0000-0002-4726-9694 FU Spanish Government [TIN2012-32615] FX This work has been partially supported by the Spanish Government through Project TIN2012-32615. CR [Anonymous], CATALOGING CLASSIFIC [Anonymous], 2011, Journal of Information and Data Management [Anonymous], RES DESCR ACC RDA [Anonymous], MARC 21 FORM BIBL DA [Anonymous], D LIB MAGAZINE Boytsov L., 2011, J. Exp. Algorithmics (JEA), V16, p1.1, DOI DOI 10.1145/1963190.1963191 Chavez-Aragon Alberto, 2009, Proceedings of the Tenth Mexican International Conference on Computer Science (ENC 2009), P176, DOI 10.1109/ENC.2009.38 Cohen W.W., 2003, IIWeb, P73 Cota RG, 2010, J AM SOC INF SCI TEC, V61, P1853, DOI 10.1002/asi.21363 de Sompel H.V., 2004, D-Lib Magazine, V10 Ferreira AA, 2014, J ASSOC INF SCI TECH, V65, P1257, DOI 10.1002/asi.22992 Ferreira AA, 2012, SIGMOD REC, V41, P15, DOI 10.1145/2350036.2350040 Han H., 2005, P 2005 ACM S APPL CO, P1065, DOI [10.1145/1066677.1066920, DOI 10.1145/1066677.1066920] Hickey Thomas B., 2014, D-Lib Magazine, V20, P1, DOI 10.1045/july2014-hickey Lee D, 2007, INT J DIGIT LIBRARIE, V6, P313, DOI 10.1007/s00799-007-0014-9 Levenshtein V. I., 1966, Soviet Physics Doklady, V10, P707 Monge A.E., 1997, PROC ACM SIGMOD DMKD, P23 Navarro G, 2001, ACM COMPUT SURV, V33, P31, DOI 10.1145/375360.375365 Cardona PAN, 2015, CUAD ACT, P154 Rozenberg G., 1997, Handbook of Formal Languages, VI Santana AF, 2015, INT J DIGIT LIBRARIE, V16, P229, DOI 10.1007/s00799-015-0158-y Snyman M. M. M., 2000, ACM 2000. Digital Libraries. Proceedings of the Fifth ACM Conference on Digital Libraries, P185, DOI 10.1145/336597.336660 Tang J, 2012, IEEE T KNOWL DATA EN, V24, P975, DOI 10.1109/TKDE.2011.13 Torvik VI, 2009, ACM T KNOWL DISCOV D, V3, DOI 10.1145/1552303.1552304 WAGNER RA, 1974, J ACM, V21, P168, DOI 10.1145/321796.321811 Warner J.W., 2001, Proceedings of the ACM/IEEE Joint Conference on Digital Libraries, P21 NR 26 TC 2 Z9 3 U1 2 U2 29 PU ELSEVIER SCI LTD PI London PA 125 London Wall, London, ENGLAND SN 0306-4573 EI 1873-5371 J9 INFORM PROCESS MANAG JI Inf. Process. Manage. PD SEP PY 2016 VL 52 IS 5 BP 753 EP 764 DI 10.1016/j.ipm.2016.02.002 PG 12 WC Computer Science, Information Systems; Information Science & Library Science WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Computer Science; Information Science & Library Science GA DT5RP UT WOS:000381540600003 DA 2024-09-05 ER PT J AU Harnal, S Sharma, G Malik, S Kaur, G Khurana, S Kaur, P Simaiya, S Bagga, D AF Harnal, Shilpi Sharma, Gaurav Malik, Swati Kaur, Gagandeep Khurana, Savita Kaur, Prabhjot Simaiya, Sarita Bagga, Deepak TI Bibliometric Mapping of Trends, Applications and Challenges of Artificial Intelligence in Smart Cities SO EAI ENDORSED TRANSACTIONS ON SCALABLE INFORMATION SYSTEMS LA English DT Article DE Artificial Intelligence; Education; Smart cities; Science mapping; Text mining; Data analysis; Artificial Intelligence Trends; Artificial Intelligence Survey; Artificial Intelligence Applications; Artificial Intelligence challenges; Health care; Traffic management; E-governance; Surveillance; Environment; Water management; Energy management; Garbage management; Mobility ID ENERGY-SYSTEMS; BIG DATA; IOT; EDGE; ENVIRONMENTS; CONSUMPTION; INTERNET AB INTRODUCTION: The continued growth of urbanization presents new challenges. This, in turn, will lead to pressure for sustainable environment initiatives, with demands for more and better infrastructure in the diminishing space available and improved quality of life for city dwellers at a more affordable cost. Smart Cities are part of the solution to the growing challenges of urbanization. The adoption of new technologies like artificial intelligence (AI) is transforming cities, making them smarter, faster, and predicting opportunities for improvement. OBJECTIVES: This study is conducting a detailed bibliometric survey to investigate the applications and trends of Artificial Intelligence research for different areas of smart cities and emphasizing the potential effects and challenges of AI adaptation in smart cities over the past 30.5 years. METHODS: For this study, the Scopus database was used to collect a total of 1925 documents published between 1991-2021 (July). The bibliometric analysis includes document types, subject categorization, document growth, as well as top contributing sources, countries, authors, and funding sponsors. It also analyses keywords, abstracts, titles, and characteristics of most cited documents. RESULTS: The analyzed findings of this research study reflect not only the significance of AI technology for various applications within numerous sectors in the smart city but also major obstacles in AI research for various sectors of smart cities. CONCLUSION: The research demonstrates that AI has the ability to construct today's and tomorrow's smart cities, but that each region's potentials, conditions, and circumstances must be addressed in order to achieve a smooth internet city development. C1 [Harnal, Shilpi; Malik, Swati; Kaur, Gagandeep; Kaur, Prabhjot; Simaiya, Sarita] Chitkara Univ, Inst Engn & Technol, Rajpura, Punjab, India. [Sharma, Gaurav; Khurana, Savita] Seth Jai Parkash Mukand Lal Inst Engn & Technol, Radaur, India. [Bagga, Deepak] SafeXplore, Yamunanagar, Haryana, India. C3 Chitkara University, Punjab RP Harnal, S (corresponding author), Chitkara Univ, Inst Engn & Technol, Rajpura, Punjab, India. EM shilpi13n@gmail.com RI Harnal, Shilpi/JVM-8172-2024; Kaur, Prabhjot/JXN-0073-2024 OI Harnal, Shilpi/0000-0002-7692-2349; khurana, savita/0000-0002-8657-0017; Malik, Swati/0000-0002-3125-4332; Kaur, Prabhjot/0000-0002-3539-0622; Kaur, Gagandeep/0000-0003-1897-034X; SIMAIYA, SARITA/0000-0001-7686-8496; sharma, gaurav/0000-0002-9306-4227 CR Ahmad K., 2020, Developing Future Human-Centered Smart Cities: Critical Analysis of Smart City Security, Interpretability, and Ethical Challenges Al-Hader Mahmoud, 2009, Proceedings of the 2009 First International Conference on Computational Intelligence, Modelling and Simulation. CSSim 2009 Information Getting Started, P93, DOI 10.1109/CSSim.2009.34 Alam F, 2016, PROCEDIA COMPUT SCI, V98, P437, DOI 10.1016/j.procs.2016.09.068 Alam F, 2017, IEEE ACCESS, V5, P9533, DOI 10.1109/ACCESS.2017.2697839 Alawadhi Suha, 2012, Electronic Government. Proceedings of the 11th IFIP WG 8.5 International Conference, EGOV 2012, P40, DOI 10.1007/978-3-642-33489-4_4 Allam Z, 2019, CITIES, V89, P80, DOI 10.1016/j.cities.2019.01.032 [Anonymous], 2021, DYNAMIC URBAN PLANNI Bose BK, 2017, P IEEE, V105, P2262, DOI 10.1109/JPROC.2017.2756596 Braun T, 2018, SUSTAIN CITIES SOC, V39, P499, DOI 10.1016/j.scs.2018.02.039 Chamoso P, 2018, WIREL COMMUN MOB COM, DOI 10.1155/2018/3086854 CHO K, 2019, 2019 IEEE INT C CONS, P1, DOI DOI 10.1109/ICCE.2019.8662045 De Paz JF, 2016, INFORM SCIENCES, V372, P241, DOI 10.1016/j.ins.2016.08.045 Diro AA, 2018, FUTURE GENER COMP SY, V82, P761, DOI 10.1016/j.future.2017.08.043 Eltoweissy M., 2010, INT C AD HOC NETW, P1 Farzaneh H, 2021, APPL SCI-BASEL, V11, DOI 10.3390/app11020763 Fernández J, 2013, SENSORS-BASEL, V13, P7414, DOI 10.3390/s130607414 Garlík B, 2017, NEURAL NETW WORLD, V27, P415, DOI 10.14311/NNW.2017.27.023 Ge YF, 2022, VLDB J, V31, P957, DOI 10.1007/s00778-021-00718-w Heng T.M., 1993, Technology Analysis & Strategic Management, V5, P187 Idowu S, 2016, ENERG BUILDINGS, V133, P478, DOI 10.1016/j.enbuild.2016.09.068 IEEE, 2014, SMART HOM SMART CIT IEEE, 2018, Artificial intelligence framework for smart city microgrids: State of the art, challenges, and opportunities IEEE, 2015, Predicting short-term traffic flow by long shortterm memory recurrent neural network IEEE, 2015, PARK AV PRED SENS CA IEEE, 2001, Developing GIS-supported location -based services, P2 IOP Publishing, 2021, Smart City Development Innovation Strategy and Challenges for the Government of Jember Regency, P717 IOP Publishing, 2021, Artificial Intelligence and Human Resources: A Challenge in Implementing Artificial Intelligence in Village Government, P717 Iqbal R, 2019, IEEE NETWORK, V33, P23, DOI 10.1109/MNET.2019.1800459 Jan F, 2021, WATER-SUI, V13, DOI 10.3390/w13131729 Kalinin M, 2021, MACHINES, V9, DOI 10.3390/machines9040078 Komninos N, 2011, INTELL BUILD INT, V3, P172, DOI 10.1080/17508975.2011.579339 Liu Y, 2019, IEEE NETWORK, V33, P111, DOI 10.1109/MNET.2019.1800254 Medvedev A, 2015, LECT NOTES COMPUT SC, V9247, P104, DOI 10.1007/978-3-319-23126-6_10 Mishra AM, 2022, J PLANT DIS PROTECT, V129, P593, DOI 10.1007/s41348-022-00595-7 Mohammadi M, 2018, IEEE COMMUN MAG, V56, P94, DOI 10.1109/MCOM.2018.1700298 Morley J, 2020, SOC SCI MED, V260, DOI 10.1016/j.socscimed.2020.113172 Multidisciplinary Digital Publishing Institute, 2020, On the coronavirus (COVID-19) outbreak and the smart city network: universal data sharing standards coupled with artificial intelligence (AI) to benefit urban health monitoring and management, P8 O'Dwyer E, 2019, APPL ENERG, V237, P581, DOI 10.1016/j.apenergy.2019.01.024 O'Grady M, 2012, SCIENCE, V335, P1581, DOI 10.1126/science.1217637 Patel P, 2017, IEEE INTELL SYST, V32, P64, DOI 10.1109/MIS.2017.3711653 Radu LD, 2020, SMART CITIES-BASEL, V3, P1022, DOI 10.3390/smartcities3030051 Rahman A, 2018, APPL ENERG, V212, P372, DOI 10.1016/j.apenergy.2017.12.051 Reddy S, 2020, J AM MED INFORM ASSN, V27, P491, DOI 10.1093/jamia/ocz192 Roll I, 2016, INT J ARTIF INTELL E, V26, P582, DOI 10.1007/s40593-016-0110-3 SARKI R., 2022, EAI ENDORSED T SCALA, pe15 Serey J, 2020, SUSTAINABILITY-BASEL, V12, DOI 10.3390/su122410249 Shi JD, 2020, ADV MATER, V32, DOI 10.1002/adma.201901958 Singh R., 2020, EAI ENDORSED T SCALA, V8, pe2 Sivanathan A, 2019, IEEE T MOBILE COMPUT, V18, P1745, DOI 10.1109/TMC.2018.2866249 Sohn K, 2020, TELEMAT INFORM, V47, DOI 10.1016/j.tele.2019.101324 Springer, 2001, LITTL BOX GLOC NETW Ullah Z, 2020, COMPUT COMMUN, V154, P313, DOI 10.1016/j.comcom.2020.02.069 Wang LD, 2021, ARTIF INTELL REV, V54, P469, DOI 10.1007/s10462-020-09853-2 Wang PZ, 2019, SCI TOTAL ENVIRON, V693, DOI 10.1016/j.scitotenv.2019.07.246 Wang XF, 2020, IEEE COMMUN SURV TUT, V22, P869, DOI 10.1109/COMST.2020.2970550 Yigitcanlar T, 2020, SUSTAINABILITY-BASEL, V12, DOI 10.3390/su12208548 Yigitcanlar T, 2020, ENERGIES, V13, DOI 10.3390/en13061473 NR 57 TC 1 Z9 1 U1 5 U2 22 PU INST COMPUTER SCIENCES, SOCIAL INFORMATICS & TELECOMMUNICATIONS ENG-ICST PI GHENT PA BEGIJNHOFLAAN 93, GHENT, 90000, BELGIUM SN 2032-9407 J9 EAI ENDORSED TRANS S JI EAI Endorsed Trans. Scalable Inform. Syst. PY 2022 VL 9 IS 4 AR e8 DI 10.4108/eetsis.vi.489 EA JUN 2022 PG 21 WC Computer Science, Information Systems WE Emerging Sources Citation Index (ESCI) SC Computer Science GA DL9V8 UT WOS:000846907900001 OA gold DA 2024-09-05 ER PT J AU Cruz-Jesus, F Castelli, M Oliveira, T Mendes, R Nunes, C Sa-Velho, M Rosa-Louro, A AF Cruz-Jesus, Frederico Castelli, Mauro Oliveira, Tiago Mendes, Ricardo Nunes, Catarina Sa-Velho, Mafalda Rosa-Louro, Ana TI Using artificial intelligence methods to assess academic achievement in public high schools of a European Union country SO HELIYON LA English DT Article DE Education; Applied computing; Information systems; Data analysis; Evaluation in education; Teaching research; Achievement; Education reform; Quantitative research; Artificial intelligence; Data science ID PARENTAL INVOLVEMENT; STUDENT-ACHIEVEMENT; CLASS-SIZE; GENDER-DIFFERENCES; INTERNET USE; DATA-DRIVEN; PERFORMANCE; ANALYTICS; TEACHERS; GROWTH AB Understanding academic achievement (AA) is one of the most global challenges, as there is evidence that it is deeply intertwined with economic development, employment, and countries' wellbeing. However, the research conducted on this topic grounds in traditional (statistical) methods employed in survey (sample) data. This paper presents a novel approach, using state-of-the-art artificial intelligence (AI) techniques to predict the academic achievement of virtually every public high school student in Portugal, i.e., 110,627 students in the academic year of 2014/2015. Different AI and non-Al methods are developed and compared in terms of performance Moreover, important insights to policymakers are addressed. C1 [Cruz-Jesus, Frederico; Castelli, Mauro; Oliveira, Tiago; Mendes, Ricardo; Nunes, Catarina; Sa-Velho, Mafalda; Rosa-Louro, Ana] Univ Nova Lisboa, NOVA Informat Management Sch NOVA IMS, Campus Campolide, P-1070312 Lisbon, Portugal. C3 Universidade Nova de Lisboa RP Cruz-Jesus, F (corresponding author), Univ Nova Lisboa, NOVA Informat Management Sch NOVA IMS, Campus Campolide, P-1070312 Lisbon, Portugal. EM fjesus@novaims.unl.pt RI Castelli, Mauro/O-8809-2019; Oliveira, Tiago/B-4090-2011; Oliveira, Tiago/GSD-3675-2022; Castelli, Mauro/U-5599-2017 OI Oliveira, Tiago/0000-0001-6523-0809; Costa-Mendes, Ricardo/0000-0002-9259-4576; Cruz-Jesus, Frederico/0000-0002-4446-5980; Castelli, Mauro/0000-0002-8793-1451 FU national funds through FCT (Fundacao para a Ciencia e a Tecnologia) [DSAIPA/DS/0032/2018 (DS4AA)]; Fundação para a Ciência e a Tecnologia [DSAIPA/DS/0032/2018] Funding Source: FCT FX This work was partially supported by national funds through FCT (Fundacao para a Ciencia e a Tecnologia) under project DSAIPA/DS/0032/2018 (DS4AA). CR Ahmed Z, 2019, INT J MANAG EDUC-OXF, V17, P286, DOI 10.1016/j.ijme.2019.04.003 [Anonymous], 2014, DATA CLASSIFICATION [Anonymous], 2016, Pattern Recognition and Machine Learning, Softcover Reprint of the Original 1st ed., Information Science and Statistics Archibald S., 2006, Peabody Journal of Education, V81, P23, DOI [DOI 10.1207/S15327930PJE8104_2, 10.1207/s15327930pje8104_2] AVERY PG, 1993, J TEACH EDUC, V44, P27, DOI 10.1177/0022487193044001005 Barnett R.R., 2002, EDUC ECON, V10, P291, DOI [10.1080/09645290210127516, DOI 10.1080/09645290210127516] Batista Gustavo EAPA, 2004, ACM SIGKDD Explorations Newsletter Bosworth R, 2014, EDUC ECON, V22, P141, DOI 10.1080/09645292.2011.568698 Breiman L., 1984, CLASSIFICATION REGRE, DOI DOI 10.1201/9781315139470 Brunner M, 2013, INTELLIGENCE, V41, P378, DOI 10.1016/j.intell.2013.05.009 Caison AL, 2007, RES HIGH EDUC, V48, P435, DOI 10.1007/s11162-006-9032-5 Caro D.H., 2009, CAN J EDUC, V32, P558 Castelli M., 2019, ENCY BIOINFORMATICS, P342 Chawla NV, 2002, J ARTIF INTELL RES, V16, P321, DOI 10.1613/jair.953 Choi Y, 2018, ANN OPER RES, V270, P75, DOI 10.1007/s10479-016-2281-6 Codjoe H.M., 2007, CAN J EDUC, V30, P137, DOI DOI 10.2307/20466629 Coleman J, 1966, EQUALITY ED OPPORTUN, P666 Côrte-Real N, 2019, J BUS RES, V97, P160, DOI 10.1016/j.jbusres.2018.12.072 CORTES C, 1995, MACH LEARN, V20, P273, DOI 10.1023/A:1022627411411 COVER TM, 1967, IEEE T INFORM THEORY, V13, P21, DOI 10.1109/TIT.1967.1053964 Croninger RG, 2007, ECON EDUC REV, V26, P312, DOI 10.1016/j.econedurev.2005.05.008 Delen D, 2018, J BUS RES, V90, P186, DOI 10.1016/j.jbusres.2018.05.013 Delen D, 2010, DECIS SUPPORT SYST, V49, P498, DOI 10.1016/j.dss.2010.06.003 Dosilovic FK, 2018, 2018 41ST INTERNATIONAL CONVENTION ON INFORMATION AND COMMUNICATION TECHNOLOGY, ELECTRONICS AND MICROELECTRONICS (MIPRO), P210, DOI 10.23919/MIPRO.2018.8400040 Driessen G, 2005, BRIT EDUC RES J, V31, P509, DOI 10.1080/01411920500148713 Dronkers J, 2012, EUR EDUC RES J, V11, P11, DOI 10.2304/eerj.2012.11.1.11 Dunn KE, 2013, J EXP EDUC, V81, P222, DOI 10.1080/00220973.2012.699899 Erevelles S, 2016, J BUS RES, V69, P897, DOI 10.1016/j.jbusres.2015.07.001 European Commission, 2017, EARL SCH LEAV Fan XT, 2001, EDUC PSYCHOL REV, V13, P1, DOI 10.1023/A:1009048817385 Fan XT, 2001, J EXP EDUC, V70, P27, DOI 10.1080/00220970109599497 Geurts P, 2006, MACH LEARN, V63, P3, DOI 10.1007/s10994-006-6226-1 Ghasemaghaei M, 2019, J BUS RES, V104, P69, DOI 10.1016/j.jbusres.2019.07.006 Greenwald R, 1996, REV EDUC RES, V66, P361, DOI 10.2307/1170528 Hanushek EA, 2000, AM ECON REV, V90, P1184, DOI 10.1257/aer.90.5.1184 Hanushek EA, 2012, J DEV ECON, V99, P497, DOI 10.1016/j.jdeveco.2012.06.004 Hartas D, 2011, BRIT EDUC RES J, V37, P893, DOI 10.1080/01411926.2010.506945 Hastie T., 2017, MATH INTELL Hattie JAC, 2009, VISIBLE LEARNING: A SYNTHESIS OF OVER 800 META-ANALYSES RELATING TO ACHIEVEMENT, P1 Haykin S., 1994, Neural networks: a comprehensive foundation History of neural networks, 2015, SPRINGERBRIEFS APPL Hodis FA, 2015, BRIT EDUC RES J, V41, P1125, DOI 10.1002/berj.3189 Hoxby CM, 2000, Q J ECON, V115, P1239, DOI 10.1162/003355300555060 Huang CJ, 2018, COMPUT EDUC, V119, P76, DOI 10.1016/j.compedu.2017.12.010 Huang S, 2013, COMPUT EDUC, V61, P133, DOI 10.1016/j.compedu.2012.08.015 Jackson LA, 2006, DEV PSYCHOL, V42, P429, DOI 10.1037/0012-1649.42.3.429 Jayanthi S.V., 2014, AM J ED RES, V2, P752, DOI DOI 10.12691/EDUCATION-2-9-8 Jeynes WH, 2007, URBAN EDUC, V42, P82, DOI 10.1177/0042085906293818 Kleinberg EM, 1996, ANN STAT, V24, P2319 Krassel KF, 2014, EDUC ECON, V22, P412, DOI 10.1080/09645292.2014.902428 Kubey RW, 2001, J COMMUN, V51, P366, DOI 10.1093/joc/51.2.366 Kutaka TS, 2017, J TEACH EDUC, V68, P140, DOI 10.1177/0022487116687551 Lee CL, 2015, PAC RIM PROP RES J, V21, P3, DOI 10.1080/14445921.2015.1026128 Lee H., 2007, J NEGRO EDUC, V76, P154 Lee JS, 2006, AM EDUC RES J, V43, P193, DOI 10.3102/00028312043002193 Lei J, 2007, COMPUT EDUC, V49, P284, DOI 10.1016/j.compedu.2005.06.013 Leithwood K, 2009, REV EDUC RES, V79, P464, DOI 10.3102/0034654308326158 Ma Y, 2012, ENSEMBLE MACHINE LEARNING: METHODS AND APPLICATIONS, P1, DOI 10.1007/978-1-4419-9326-7 Marks GN, 2006, EDUC RES EVAL, V12, P105, DOI 10.1080/13803610600587040 Mensah FK, 2010, BRIT EDUC RES J, V36, P239, DOI 10.1080/01411920902802198 Miguéis VL, 2018, DECIS SUPPORT SYST, V115, P36, DOI 10.1016/j.dss.2018.09.001 Noell GH, 2019, J TEACH EDUC, V70, P128, DOI 10.1177/0022487118800708 Olson J.F., 2008, TIMSS 2007 Technical Report, DOI [10.1787/9789264130852-en, DOI 10.1787/9789264130852-EN] Otani M, 2019, INT J EDUC RES, V94, P168, DOI 10.1016/j.ijer.2019.01.005 Patterson MM, 2011, SEX ROLES, V65, P737, DOI 10.1007/s11199-010-9904-1 Pedregosa F, 2011, J MACH LEARN RES, V12, P2825 Preece A, 2018, INTELL SYST ACCOUNT, V25, P63, DOI 10.1002/isaf.1422 Ribeiro M.T., 2016, WHY SHOULD TRUST YOU, DOI DOI 10.1145/2939672.2939778 Rivkin SG, 2005, ECONOMETRICA, V73, P417, DOI 10.1111/j.1468-0262.2005.00584.x Sagi O, 2018, WIRES DATA MIN KNOWL, V8, DOI 10.1002/widm.1249 Scherer R, 2019, COMPUT EDUC, V138, P13, DOI 10.1016/j.compedu.2019.04.011 Schmidhuber J, 2015, NEURAL NETWORKS, V61, P85, DOI 10.1016/j.neunet.2014.09.003 Sirin SR, 2005, REV EDUC RES, V75, P417, DOI 10.3102/00346543075003417 Sivarajah U, 2017, J BUS RES, V70, P263, DOI 10.1016/j.jbusres.2016.08.001 Steinmayr R, 2008, EUR J PERSONALITY, V22, P185, DOI 10.1002/per.676 Steinmayr R, 2010, EUR J PERSONALITY, V24, P535, DOI 10.1002/per.755 Tomek I., 1976, IEEE T SYST MAN CYB Sánchez EMT, 2019, INT J EDUC RES, V96, P111, DOI 10.1016/j.ijer.2019.06.002 van der Scheer EA, 2018, J TEACH EDUC, V69, P307, DOI 10.1177/0022487117704170 Vigdor JL, 2014, ECON INQ, V52, P1103, DOI 10.1111/ecin.12089 Wakefield J, 2020, COMPUT EDUC, V144, DOI 10.1016/j.compedu.2019.103694 Wally-Dima L., 2013, International Education Studies, V6, P13, DOI [DOI 10.5539/IES.V6N10P13, https://doi.org/10.5539/ies.v6n10p13] Weerakkody V, 2017, INFORM SYST FRONT, V19, P285, DOI 10.1007/s10796-016-9679-1 Wilder S, 2014, EDUC REV, V66, P377, DOI 10.1080/00131911.2013.780009 Wössmann L, 2006, EUR ECON REV, V50, P695, DOI 10.1016/j.euroecorev.2004.11.005 Yagci A, 2019, EDUC INF TECHNOL, V24, P2741, DOI 10.1007/s10639-019-09885-4 NR 86 TC 32 Z9 34 U1 12 U2 49 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND EI 2405-8440 J9 HELIYON JI Heliyon PD JUN PY 2020 VL 6 IS 6 AR e04081 DI 10.1016/j.heliyon.2020.e04081 PG 11 WC Multidisciplinary Sciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Science & Technology - Other Topics GA NW9XK UT WOS:000575372400009 PM 32551378 OA Green Published, gold DA 2024-09-05 ER PT J AU Li, X Chen, HC Dang, Y Lin, YL Larson, CA Roco, MC AF Li, Xin Chen, Hsinchun Dang, Yan Lin, Yiling Larson, Catherine A. Roco, Mihail C. TI A longitudinal analysis of nanotechnology literature: 1976-2004 SO JOURNAL OF NANOPARTICLE RESEARCH LA English DT Article DE Bibliographic analysis; Citation analysis; Information visualization; Self-organizing maps; Nanoscale science and engineering; Nanotechnology papers; Research and development (R&D); Technological innovation ID TECHNOLOGY; INTERDISCIPLINARITY; COLLABORATION; INSTITUTION; NANOSCIENCE; PATTERNS; COUNTRY; SCIENCE; FIELD; USPTO AB Nanotechnology research and applications have experienced rapid growth in recent years. We assessed the status of nanotechnology research worldwide by applying bibliographic, content map, and citation network analysis to a data set of about 200,000 nanotechnology papers published in the Thomson Science Citation Index Expanded database (SCI) from 1976 to 2004. This longitudinal study shows a quasi-exponential growth of nanotechnology articles with an average annual growth rate of 20.7% after 1991. The United States had the largest contribution of nanotechnology research and China and Korea had the fastest growth rates. The largest institutional contributions were from the Chinese Academy of Sciences and the Russian Academy of Sciences. The high-impact papers generally described tools, theories, technologies, perspectives, and over-views of nanotechnology. From the top 20 institutions, based on the average number of paper citations in 1976-2004, 17 were in the Unites States, 2 in France and I in Germany. Content map analysis identified the evolution of the major topics researched from 1976 to 2004, including investigative tools, physical phenomena, and experiment environments. Both the country citation network and the institution citation network had relatively high clustering, indicating the existence of citation communities in the two networks, and specific patterns in forming citation communities. The United States, Germany, Japan, and China were major citation centers in nanotechnology research with close inter-citation relationships. C1 [Li, Xin; Chen, Hsinchun; Dang, Yan; Lin, Yiling; Larson, Catherine A.] Univ Arizona, Artificial Intelligence Lab, Dept Management Informat Syst, Eller Coll Management, Tucson, AZ 85721 USA. [Roco, Mihail C.] Natl Sci Fdn, Arlington, VA 22230 USA. C3 University of Arizona; National Science Foundation (NSF) RP Li, X (corresponding author), Univ Arizona, Artificial Intelligence Lab, Dept Management Informat Syst, Eller Coll Management, Tucson, AZ 85721 USA. EM xinli@email.arizona.edu; mroco@nsf.gov RI ; Li, Xin/K-8045-2015 OI Lin, Yi-Ling/0000-0003-0004-1278; Li, Xin/0000-0002-0041-3134 FU National Science Foundation (NSF); Directorate for Engineering, NSF; [CMMI-0549663]; [CMMI-0533749] FX This research was supported by the following awards: National Science Foundation (NSF), "Mapping Nanotechnology Development Based on the ISI Literature-Citation Database,"CMMI-0549663 and "Mapping Nanotechnology Development,"CMMI-0533749. The last coauthor was supported by the Directorate for Engineering, NSF. The literature data was purchased from Thomson ISI and we thank them for their support. CR Braun T, 1997, SCIENTOMETRICS, V38, P321, DOI 10.1007/BF02457417 Chen HC, 1996, J VIS COMMUN IMAGE R, V7, P88, DOI 10.1006/jvci.1996.0008 Chen HC, 2008, NAT NANOTECHNOL, V3, P123, DOI 10.1038/nnano.2008.51 Gansner ER, 2000, SOFTWARE PRACT EXPER, V30, P1203, DOI 10.1002/1097-024X(200009)30:11<1203::AID-SPE338>3.0.CO;2-N Huang Z, 2004, J NANOPART RES, V6, P325, DOI 10.1007/s11051-004-4117-6 Huang Z, 2003, J NANOPART RES, V5, P333, DOI 10.1023/A:1025556800994 Hullmann A, 2006, NAT NANOTECHNOL, V1, P81, DOI 10.1038/nnano.2006.110 Karki M.M.S., 1997, WORLD PAT INF, V19, P269, DOI DOI 10.1016/S0172-2190(97)00033-1 Kostoff RN, 2006, J NANOPART RES, V8, P301, DOI 10.1007/s11051-005-9035-8 Kostoff RN, 2006, J NANOPART RES, V8, P193, DOI 10.1007/s11051-005-9034-9 Li X, 2007, J NANOPART RES, V9, P977, DOI 10.1007/s11051-007-9273-z Li X, 2007, J NANOPART RES, V9, P337, DOI 10.1007/s11051-006-9194-2 Meyer M, 1998, SCIENTOMETRICS, V42, P195, DOI 10.1007/BF02458355 Meyer MS, 2001, SCIENTOMETRICS, V51, P163, DOI 10.1023/A:1010572914033 Ong TH, 2005, DECIS SUPPORT SYST, V39, P583, DOI 10.1016/j.dss.2004.03.008 Oppenheim C, 2000, ASIST MON SER, P405 PORTER AL, 1995, FORESIGHT UPDATE, V21, P4 Roco M.C., 2000, NANOTECHNOLOGY RES D Roco MC, 2005, J NANOPART RES, V7, P707, DOI 10.1007/s11051-005-3141-5 Schummer J, 2004, SCIENTOMETRICS, V59, P425, DOI 10.1023/B:SCIE.0000018542.71314.38 TOLLE K, 2000, J AM SOC INFORM SCI, V51, P518 NR 21 TC 29 Z9 35 U1 0 U2 24 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 1388-0764 EI 1572-896X J9 J NANOPART RES JI J. Nanopart. Res. PY 2008 VL 10 SU 1 BP 3 EP 22 DI 10.1007/s11051-008-9473-1 PG 20 WC Chemistry, Multidisciplinary; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Chemistry; Science & Technology - Other Topics; Materials Science GA 404QA UT WOS:000263166900002 DA 2024-09-05 ER PT J AU Dao, SD Abhary, K Marian, R AF Dao, Son Duy Abhary, Kazem Marian, Romeo TI A bibliometric analysis of Genetic Algorithms throughout the history SO COMPUTERS & INDUSTRIAL ENGINEERING LA English DT Article DE Genetic algorithms; Bibliometric analysis; Publication statistics; Survey ID SELECTION; DESIGN AB In this article, a bibliometric analysis of Genetic Algorithms (GA) throughout the history is conducted. A big picture of publications associated with GA is created. A number of dominant statistics of GA publications by years, research fields, document types, source titles, countries, institutions and authors are provided herein. In addition, some insights as well as future perspectives of publications associated with GA are discussed. (C) 2017 Elsevier Ltd. All rights reserved. C1 [Dao, Son Duy; Abhary, Kazem; Marian, Romeo] Univ South Australia, Sch Engn, Room M2-14,Bldg M,Mawson Lakes Campus, Toki, Gifu 5095, Japan. RP Dao, SD (corresponding author), Univ South Australia, Sch Engn, Room M2-14,Bldg M,Mawson Lakes Campus, Toki, Gifu 5095, Japan. EM son.dao@mymail.unisa.edu.au RI Dao, Son Duy/D-8696-2012; Abhary, Kazem/F-3976-2013 OI Dao, Son Duy/0000-0002-5253-6398; CR Aguilar-Rivera R, 2015, EXPERT SYST APPL, V42, P7684, DOI 10.1016/j.eswa.2015.06.001 Chang PC, 2007, APPL SOFT COMPUT, V7, P800, DOI 10.1016/j.asoc.2006.02.002 Chen JC, 2002, INT J ADV MANUF TECH, V20, P163, DOI 10.1007/s001700200140 Cheng BW, 2007, EXPERT SYST APPL, V32, P415, DOI 10.1016/j.eswa.2005.12.002 Dao SD, 2015, LECT NOTES ENG COMP, P455 Dao SD, 2014, EXPERT SYST APPL, V41, P6701, DOI 10.1016/j.eswa.2014.04.030 Fahimnia Behnam, 2008, WSEAS Transactions on Business and Economics, V5, P52 Hyun CJ, 1998, COMPUT OPER RES, V25, P675, DOI 10.1016/S0305-0548(98)00026-4 Lee K, 2012, EXPERT SYST APPL, V39, P12975, DOI 10.1016/j.eswa.2012.05.057 Ren QDEJ, 2012, COMPUT OPER RES, V39, P2291, DOI 10.1016/j.cor.2011.12.005 Scopus, 2015, AB SCOP Stern H, 2006, EUR J OPER RES, V175, P1890, DOI 10.1016/j.ejor.2005.02.078 Su W, 2015, COMPUT IND ENG, V84, P32, DOI 10.1016/j.cie.2015.01.015 Tang PH, 2013, APPL SOFT COMPUT, V13, P600, DOI 10.1016/j.asoc.2012.08.035 TTP, 2015, ADV MAT RES TTP, 2015, APPL MECH MAT Wang L, 2002, INT J ADV MANUF TECH, V20, P72, DOI 10.1007/s001700200126 Wang YM, 2009, INT J ADV MANUF TECH, V44, P977, DOI 10.1007/s00170-008-1898-2 Wu XD, 2007, EUR J OPER RES, V181, P156, DOI 10.1016/j.ejor.2006.05.035 Zhou W, 2011, INT J ADV MANUF TECH, V52, P715, DOI 10.1007/s00170-010-2738-8 NR 20 TC 51 Z9 52 U1 3 U2 29 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0360-8352 EI 1879-0550 J9 COMPUT IND ENG JI Comput. Ind. Eng. PD AUG PY 2017 VL 110 BP 395 EP 403 DI 10.1016/j.cie.2017.06.009 PG 9 WC Computer Science, Interdisciplinary Applications; Engineering, Industrial WE Science Citation Index Expanded (SCI-EXPANDED) SC Computer Science; Engineering GA FD6SE UT WOS:000407657400035 DA 2024-09-05 ER PT J AU Marques, PC Reis, J Santos, R AF Marques, P. Carmona Reis, Joao Santos, Ricardo TI Artificial Intelligence and Disruptive Technologies in Service Systems: A Bibliometric Analysis SO INTERNATIONAL JOURNAL OF INNOVATION AND TECHNOLOGY MANAGEMENT LA English DT Article DE Artificial intelligence; service systems; bibliometric analysis; smart services ID USER ACCEPTANCE; INTERNET; THINGS; SMART; FUTURE; IOT; MANAGEMENT; KNOWLEDGE; PARADIGM; CITIES AB Artificial intelligence (AI) is being used in our daily lives, in all situations and in particular those concerning service systems. However, there is an absence of the ability of the conceptual structure, thematic structure, intellectual structure, and research trends of AI and disruptive technologies in service systems. The main purpose of this study was to carry out a bibliometric analysis of the scientific production of AI and disruptive technologies in service systems based on Elsevier's Scopus database. To do so, keywords were chosen and then data outputs such as the number of published documents, top authors and citations, top journals, countries, and affiliations with the highest number of productions, and network analysis using R-based "biblioshiny" software. The main results showed the growing interest in the subject in the last five years, pointed out current themes and research trends, and revealed the intellectual structure of the field, namely the importance of smart services, cloud computing, and smart sustainable cities. The number of articles for this study reached 1,323, the growth rate has increased in the last five years and the main sources have been reported. China, South Korea and the USA were the leading countries on the subject, and the top 10 authors of influence showed. The word cloud and word growth were presented, as well as the co-citation clusters and co-occurrence network revealed important aspects, and finally the thematic map and the thematic evolution of the subject showed the important concepts. It is hoped that this research will supply future directions for researchers in the area while highlighting the potential of quantitative methods. C1 [Marques, P. Carmona; Reis, Joao] Lusofona Univ, Ind Engn & Management, Fac Engn, P-1749024 Lisbon, Portugal. [Marques, P. Carmona] Inst Politecn Lisboa, Inst Super Engn Lisboa ISEL, P-1959007 Lisbon, Portugal. [Santos, Ricardo] Univ Aveiro, Competitiveness Governance & Publ Policy GOVCOPP U, P-3810193 Aveiro, Portugal. C3 Lusofona University; Polytechnic Institute of Lisbon; Universidade de Aveiro RP Marques, PC (corresponding author), Lusofona Univ, Ind Engn & Management, Fac Engn, P-1749024 Lisbon, Portugal.; Marques, PC (corresponding author), Inst Politecn Lisboa, Inst Super Engn Lisboa ISEL, P-1959007 Lisbon, Portugal. EM p4803@ulusofona.pt RI Marques, Pedro/H-3387-2013; Santos, Ricardo/KUD-2638-2024; dos Reis, João Carlos Gonçalves/L-6686-2017 OI Marques, Pedro/0000-0003-4891-1754; dos Reis, João Carlos Gonçalves/0000-0002-8504-0065 CR Agrawal R, 2022, BUS STRATEG ENVIRON, V31, P559, DOI 10.1002/bse.2910 Allmendinger G, 2005, HARVARD BUS REV, V83, P131 Aria M, 2022, SUSTAINABILITY-BASEL, V14, DOI 10.3390/su14063643 Aria M, 2017, J INFORMETR, V11, P959, DOI 10.1016/j.joi.2017.08.007 Baines TS, 2009, J MANUF TECHNOL MANA, V20, P547, DOI 10.1108/17410380910960984 Bandyopadhyay D, 2011, WIRELESS PERS COMMUN, V58, P49, DOI 10.1007/s11277-011-0288-5 Benhamaid S, 2022, J NETW COMPUT APPL, V198, DOI 10.1016/j.jnca.2021.103257 Bibri Simon Elias, 2017, Journal of Big Data, V4, DOI 10.1186/s40537-017-0091-6 Bibri SE, 2017, SUSTAIN CITIES SOC, V31, P183, DOI 10.1016/j.scs.2017.02.016 Cardoso J., 2015, Fundamentals of service systems Chauhan C, 2022, TECHNOL FORECAST SOC, V177, DOI 10.1016/j.techfore.2022.121508 Chettri L, 2020, IEEE INTERNET THINGS, V7, P16, DOI 10.1109/JIOT.2019.2948888 COELHO H, 1982, INFORM SYST, V7, P163, DOI 10.1016/0306-4379(82)90027-8 DAVIS FD, 1989, MIS QUART, V13, P319, DOI 10.2307/249008 Ding Y, 2011, INFORM PROCESS MANAG, V47, P80, DOI 10.1016/j.ipm.2010.01.002 Donthu N, 2021, J BUS RES, V133, P285, DOI 10.1016/j.jbusres.2021.04.070 Dzogbewu TC, 2022, MANUF REV, V9, DOI 10.1051/mfreview/2021032 Flavián C, 2022, J SERV MANAGE, V33, P293, DOI 10.1108/JOSM-10-2020-0378 Friedman A, 2015, ROM STAT REV, P69 Gubbi J, 2013, FUTURE GENER COMP SY, V29, P1645, DOI 10.1016/j.future.2013.01.010 Hettiarachchi BD, 2022, OPER MANAGE RES, V15, P858, DOI 10.1007/s12063-022-00275-7 Huang MH, 2018, J SERV RES-US, V21, P155, DOI 10.1177/1094670517752459 JARVELIN K, 1982, J INFORM SCI, V5, P79, DOI 10.1177/016555158200500204 Kantaros A, 2022, APPL SYST INNOV, V5, DOI 10.3390/asi5010007 Kitchin R, 2014, GEOJOURNAL, V79, P1, DOI 10.1007/s10708-013-9516-8 Leal B, 2010, INTERNET OF THINGS-BOOK, P3, DOI 10.1007/978-1-4419-1674-7_1 MCCAIN KW, 1990, J AM SOC INFORM SCI, V41, P433, DOI 10.1002/(SICI)1097-4571(199009)41:6<433::AID-ASI11>3.0.CO;2-Q Moiceanu G, 2022, SENSORS-BASEL, V22, DOI 10.3390/s22041388 Neuhuttler Jens, 2020, Advances in the Human Side of Service Engineering. Proceedings of the AHFE 2020 Virtual Conference on The Human Side of Service Engineering. Advances in Intelligent Systems and Computing (AISC 1208), P212, DOI 10.1007/978-3-030-51057-2_30 Ng ICL, 2017, INT J RES MARK, V34, P3, DOI 10.1016/j.ijresmar.2016.11.003 Ostrom AL, 2015, J SERV RES-US, V18, P127, DOI 10.1177/1094670515576315 Page MJ, 2021, PLOS MED, V18, DOI 10.1371/journal.pmed.1003583 Porter ME, 2014, HARVARD BUS REV, V92, P64 Ramos-Rodríguez AR, 2004, STRATEGIC MANAGE J, V25, P981, DOI 10.1002/smj.397 Reis Joao, 2020, Trends and Innovations in Information Systems and Technologies. Advances in Intelligent Systems and Computing (AISC 1159), P222, DOI 10.1007/978-3-030-45688-7_23 Reis J, 2022, APPL SCI-BASEL, V12, DOI 10.3390/app12168328 Shi HZ, 2014, IEEE COMMUN SURV TUT, V16, P5, DOI 10.1109/SURV.2013.050113.00015 Singh PK, 2022, COMPUT ELECTR ENG, V100, DOI 10.1016/j.compeleceng.2022.107912 Souri A, 2022, T EMERG TELECOMMUN T, V33, DOI 10.1002/ett.3736 Tao F, 2017, IEEE ACCESS, V5, P20418, DOI 10.1109/ACCESS.2017.2756069 Tao F, 2014, IEEE T IND INFORM, V10, P1435, DOI 10.1109/TII.2014.2306383 Tran-Dang H, 2022, IETE TECH REV, V39, P93, DOI 10.1080/02564602.2020.1827308 Tranfield D, 2003, BRIT J MANAGE, V14, P207, DOI 10.1111/1467-8551.00375 Valinejadshoubi M, 2022, J FACIL MANAG, V20, P385, DOI 10.1108/JFM-08-2020-0055 Venkatesh V, 2003, MIS QUART, V27, P425, DOI 10.2307/30036540 Wu QH, 2014, IEEE INTERNET THINGS, V1, P129, DOI 10.1109/JIOT.2014.2311513 Xiao L, 2018, IEEE SIGNAL PROC MAG, V35, P41, DOI 10.1109/MSP.2018.2825478 Yan Z, 2014, J NETW COMPUT APPL, V42, P120, DOI 10.1016/j.jnca.2014.01.014 Zhou XK, 2022, IEEE INTERNET THINGS, V9, P9310, DOI 10.1109/JIOT.2021.3130434 Zimmerman J., 2014, ENCY HUMAN COMPUTER NR 50 TC 0 Z9 0 U1 6 U2 15 PU WORLD SCIENTIFIC PUBL CO PTE LTD PI SINGAPORE PA 5 TOH TUCK LINK, SINGAPORE 596224, SINGAPORE SN 0219-8770 EI 1793-6950 J9 INT J INNOV TECHNOL JI Int. J. Innov. Technol. Manag. PD NOV PY 2023 VL 20 IS 07 DI 10.1142/S0219877023300033 EA JUN 2023 PG 33 WC Management WE Emerging Sources Citation Index (ESCI) SC Business & Economics GA W1KX4 UT WOS:001013913000002 DA 2024-09-05 ER PT J AU Huang, CQ Zhang, Q AF Huang, Cuiqing Zhang, Qiang TI Research on Music Emotion Recognition Model of Deep Learning Based on Musical Stage Effect SO SCIENTIFIC PROGRAMMING LA English DT Article ID FRIGHT AB The change of life style of the times has also prompted the reform of many art forms (including musicals). Nowadays, the audience can not only enjoy the wonderful performances of offline musicals but also feel the charm of musicals online. However, how to bring the emotional integrity of musicals to the audience is a technical problem. In this paper, the deep learning music emotion recognition model based on musical stage effect is studied. Firstly, there is little difference between the emotional results identified by the CRNN model test and the actual feelings of people, and the coincidence degree of emotional responses is as high as 95.68%. Secondly, the final recognition rate of the model is 98.33%, and the final average accuracy rate is as high as 93.22%. Finally, compared with other methods on CASIA emotion set, the CRNN-AttGRU has only 71.77% and 71.60% of WAR and UAR, and only this model has the highest recognition degree. This model also needs to update iteration and use other learning methods to learn at different levels so as to make this model widely used and bring more perfect enjoyment to the audience. C1 [Huang, Cuiqing; Zhang, Qiang] Chengdu Univ, China ASEAN Coll Arts, Sch Mus & Dance, Chengdu 610106, Sichuan, Peoples R China. C3 Chengdu University RP Zhang, Q (corresponding author), Chengdu Univ, China ASEAN Coll Arts, Sch Mus & Dance, Chengdu 610106, Sichuan, Peoples R China. EM huangcuiqing1234@163.com; zhangqiang01@cdu.edu.cn FU key project of Curriculum Ideological and Political Research of Chengdu University [2021KCSZ01] FX This research was supported by the phased achievement of the Hidden Infiltration of Red Culture in Instrumental Music Teaching (2021KCSZ01) and the key project of Curriculum Ideological and Political Research of Chengdu University in 2021. CR [Anonymous], 2003, International Journal of Sustainability in Higher Education 박소영, 2010, [Journal of the Korea Institute Of Information and Communication Engineering, 한국정보통신학회논문지], V14, P1557 Chunjun Zheng, 2021, Journal of Physics: Conference Series, V1873, DOI 10.1088/1742-6596/1873/1/012092 Diaz-Perez A.H., P 2006 IEEE INT C AC Diaz-Perez AH, 2007, J COMPUT, V2, P40 FREDRIKSON M, 1992, BIOL PSYCHOL, V33, P51, DOI 10.1016/0301-0511(92)90005-F Kim J, 2008, IEEE T PATTERN ANAL, V30, P2067, DOI 10.1109/TPAMI.2008.26 Levine S, 2018, INT J ROBOT RES, V37, P421, DOI 10.1177/0278364917710318 Li C, 2016, NEUROCOMPUTING, V178, P103, DOI 10.1016/j.neucom.2015.07.112 Lin YP, 2010, IEEE T BIO-MED ENG, V57, P1798, DOI 10.1109/TBME.2010.2048568 Litjens G, 2017, MED IMAGE ANAL, V42, P60, DOI 10.1016/j.media.2017.07.005 LYU Y, 2021, J INTELL FUZZY SYST, P1 Mengyao Chen, 2019, Journal of Physics: Conference Series, V1237, DOI 10.1088/1742-6596/1237/5/052020 Neoh SC, 2015, APPL SOFT COMPUT, V34, P72, DOI 10.1016/j.asoc.2015.05.006 Panda R, 2020, IEEE T AFFECT COMPUT, V11, P614, DOI 10.1109/TAFFC.2018.2820691 Pandeya YR, 2021, MULTIMED TOOLS APPL, V80, P2887, DOI 10.1007/s11042-020-08836-3 Patel AD, 2008, BEHAV BRAIN SCI, V31, P589, DOI 10.1017/S0140525X0800544X Sarkar R, 2020, MULTIMED TOOLS APPL, V79, P765, DOI 10.1007/s11042-019-08192-x Studer R, 2011, INT ARCH OCC ENV HEA, V84, P761, DOI 10.1007/s00420-010-0608-1 Takehara T, 2016, Q J EXP PSYCHOL, V69, P1508, DOI 10.1080/17470218.2015.1086393 Ulukaya S, 2014, DIGIT SIGNAL PROCESS, V32, P11, DOI 10.1016/j.dsp.2014.05.013 Wong JJ, 2009, EXPERT SYST APPL, V36, P804, DOI 10.1016/j.eswa.2007.10.030 Xu K, 2021, SCI PROGRAMMING-NETH, V2021, DOI 10.1155/2021/2348494 Zhang T, 2015, 2015 IEEE CHINA SUMMIT & INTERNATIONAL CONFERENCE ON SIGNAL AND INFORMATION PROCESSING, P524, DOI 10.1109/ChinaSIP.2015.7230458 Zhou J, 2015, NAT METHODS, V12, P931, DOI [10.1038/NMETH.3547, 10.1038/nmeth.3547] NR 25 TC 1 Z9 1 U1 0 U2 8 PU HINDAWI LTD PI LONDON PA ADAM HOUSE, 3RD FLR, 1 FITZROY SQ, LONDON, W1T 5HF, ENGLAND SN 1058-9244 EI 1875-919X J9 SCI PROGRAMMING-NETH JI Sci. Program. PD OCT 26 PY 2021 VL 2021 AR 3807666 DI 10.1155/2021/3807666 PG 10 WC Computer Science, Software Engineering WE Science Citation Index Expanded (SCI-EXPANDED) SC Computer Science GA WW1LF UT WOS:000717686300006 OA gold DA 2024-09-05 ER PT C AU Tan, L Chen, YL Yang, RH Lai, L AF Tan, Lin Chen, Yali Yang, Runhan Lai, Li GP Assoc Comp Machinery TI Empirical Research on the Effect of Collaborative Learning in Blended Learning Mode Based on KNN Algorithm SO ICIET 2020: 2020 8TH INTERNATIONAL CONFERENCE ON INFORMATION AND EDUCATION TECHNOLOGY LA English DT Proceedings Paper CT 8th International Conference on Information and Education Technology (ICIET) CY MAR 28-30, 2020 CL ELECTR NETWORK DE Blended Learning; Collaborative Learning; KNN algorithm ID CRITICAL THINKING AB The quality of collaborative learning is one of the essential factors that determine the quality of teaching. Therefore, it is a significant work for educators to explore scientific and reasonable grouping methods. In this paper, first we design a Blended Learning mode in which there are a variety of online and offline learning activities. The quantified learning behavior information becomes the original data and basis for grouping. Then we combined KNN (k-Nearest Neighbor) algorithm and grouping principle to implement grouping for the pilot class. Finally, the effect of this grouping method is demonstrated by comparing the final examination results and analyzing the number of students who have finished the preview. The results show that the class with the new grouping method has achieved good performance in the final examination. C1 [Tan, Lin; Chen, Yali; Yang, Runhan; Lai, Li] Southwest Petr Univ, Sch Sci, Chengdu, Sichuan, Peoples R China. C3 Southwest Petroleum University RP Tan, L (corresponding author), Southwest Petr Univ, Sch Sci, Chengdu, Sichuan, Peoples R China. EM 673233182@qq.com; 21620285@qq.com; 1930858707@qq.com; laili_swpu@126.com RI Liu, Shao/JFK-0166-2023 CR Barker R, 2002, BUS WEEK, P85 Bodemer D, 2011, COMPUT HUM BEHAV, V27, P1043, DOI 10.1016/j.chb.2010.07.014 COVER TM, 1967, IEEE T INFORM THEORY, V13, P21, DOI 10.1109/TIT.1967.1053964 Davis HC, 2007, BRIT J EDUC TECHNOL, V38, P817, DOI 10.1111/j.1467-8535.2007.00756.x Earle A., 2002, J INTERACTIVE MEDIA, V2002 Goodyear VA, 2015, PHYS EDUC SPORT PEDA, V20, P186, DOI 10.1080/17408989.2013.817012 Graham C.R., 2007, Blended learning: Research perspectives, P83 Guldberg K, 2007, EDUC TECHNOL SOC, V10, P61 Heimbuch S, 2018, INT J COMP-SUPP COLL, V13, P331, DOI 10.1007/s11412-018-9283-0 Kirschner PA, 2013, EDUC PSYCHOL-US, V48, P169, DOI 10.1080/00461520.2013.804395 Law N, 2018, INT J COMP-SUPP COLL, V13, P131, DOI 10.1007/s11412-018-9280-3 Norberg A, 2011, HORIZON, V19, P207, DOI 10.1108/10748121111163913 Olsen J, 2005, J POLITICAL SCI EDUC, V1, P323, DOI 10.1080/15512160500261186 Pithers RT, 2000, EDUC RES-UK, V42, P237, DOI 10.1080/001318800440579 Salmon G.Y., 2004, E-moderating: The key to teaching and learning online, V2nd Stahl G, 2017, INT J COMP-SUPP COLL, V12, P113, DOI 10.1007/s11412-017-9251-0 NR 16 TC 0 Z9 0 U1 0 U2 4 PU ASSOC COMPUTING MACHINERY PI NEW YORK PA 1515 BROADWAY, NEW YORK, NY 10036-9998 USA BN 978-1-4503-7705-8 PY 2020 BP 48 EP 52 DI 10.1145/3395245.3395251 PG 5 WC Computer Science, Information Systems WE Conference Proceedings Citation Index - Science (CPCI-S) SC Computer Science GA BR0KK UT WOS:000629453900009 DA 2024-09-05 ER PT J AU Gordon, S Li, Z Marthinsen, J AF Gordon, Steven Li, Zhi Marthinsen, John TI A deep analysis of the economics and finance research on cryptocurrencies SO ECONOMICS LETTERS LA English DT Article DE Cryptocurrency; Topic modeling; Bibliographic analysis AB Growth in academic research on cryptocurrencies has paralleled crypto-markets' development. Still unknown are the research areas receiving the greatest attention, remaining relatively unexplored, and changing significantly. This article uses semantic topic analysis of top-journal publications to address these questions.(c) 2023 Elsevier B.V. All rights reserved. C1 [Gordon, Steven; Li, Zhi; Marthinsen, John] Babson Coll, Babson Pk, MA 02457 USA. C3 Babson College RP Gordon, S (corresponding author), Babson Coll, Babson Pk, MA 02457 USA. EM gordon@babson.edu; zli@babson.edu; marthinsen@babson.edu OI Marthinsen, John/0000-0001-7288-7569; Gordon, Steven/0000-0002-9015-2547 CR Akyildirim E, 2023, FINANC RES LETT, V53, DOI 10.1016/j.frl.2023.103643 Briola A, 2023, FINANC RES LETT, V51, DOI 10.1016/j.frl.2022.103358 CoinMarketCap, 2023, ABOUT US Halaburda H., 2023, W30923 NAT BUR EC RE Roberts ME, 2019, J STAT SOFTW, V91, P1, DOI 10.18637/jss.v091.i02 Schmiedel T, 2019, ORGAN RES METHODS, V22, P941, DOI 10.1177/1094428118773858 NR 6 TC 0 Z9 0 U1 0 U2 3 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0165-1765 EI 1873-7374 J9 ECON LETT JI Econ. Lett. PD JUL PY 2023 VL 228 AR 111136 DI 10.1016/j.econlet.2023.111136 EA MAY 2023 PG 4 WC Economics WE Social Science Citation Index (SSCI) SC Business & Economics GA J1SF6 UT WOS:001007472200001 DA 2024-09-05 ER PT J AU Schultz, SK Slater, TF AF Schultz, Sara K. Slater, Timothy F. TI Use Of Formative Assessment-Based Active Learning By Astronomy Educators Teaching In Live Planetarium Learning Environments SO JOURNAL OF ASTRONOMY AND EARTH SCIENCES EDUCATION LA English DT Article DE Discipline-Based Astronomy Education Research; Planetarium Education; Active Learning; Formative Assessment AB Planetariums were created to teach astronomy by simulating motions of the star-filled night sky; however, simply having a virtual reality facility to immerse learners beneath a projected night sky in and of itself is insufficient to automatically ensure student learning occurs. Modern teaching strategies, like active learning, have consistently shown to move students toward deeper understanding in classrooms; yet, active learning approaches seem to be only rarely observed in planetariums. Use of Ruiz-Primo and Furtak's (2006) coding scheme to define and analyze formative assessment conversations between classroom teachers and students reveals that unless teachers are formally taught how to use formative assessment-based active learning, such approaches are largely absent in classrooms studied. The goal of this 2-phase study was to evaluate the nature of active learning-based formative assessment conversation cycles in the planetarium. The first phase systematically analyzes 26 recordings of live planetarium programs to describe and document presence of active learning teaching strategies. The second phase conducts interviews to determine rewards and barriers to using formative assessment-based active learning in the planetarium. Analysis suggests scant evidence of complete formative assessment conversation cycles, despite that varying degrees of interactivity between the planetarium lecturer and the audience do exist. It is not that planetarians don't ask questions, but responses rarely serve to systematically guide instructional decisions aligned with modern pedagogy. Moreover, these planetarians hold a wide range of definitions of what constitutes active learning and often view their primary responsibility as inspiration rather than education, lending explanatory power to why active learning is largely absent. C1 [Schultz, Sara K.] Minnesota State Univ, Moorhead, MN 56563 USA. [Slater, Timothy F.] Univ Wyoming, Excellence Higher Educ Endowed Chair Sci Educ, Laramie, WY 82071 USA. C3 Minnesota State Colleges & Universities; Minnesota State University Moorhead; University of Wyoming RP Schultz, SK (corresponding author), Minnesota State Univ, Moorhead, MN 56563 USA. EM sarakschultz@gmail.com CR Abbatantuono B.P., 1995, PLANETARIAN, V24, P14 Ausubel D., 1968, ED PSYCHOL COGNITIVE Ball D.L., 2007, Educational Researcher, V36, P529, DOI [https://doi.org/10.3102/0013189X07312896, DOI 10.3102/0013189X07312896] Bell B, 2001, SCI EDUC, V85, P536, DOI 10.1002/sce.1022.abs Bell B., 2000, Improving science education: The contribution of research p, P48 Bishop J. E., 1980, THESIS U AKRON Black P., 1993, STUD SCI EDUC, V21, P49, DOI DOI 10.1080/03057269308560014 Bonwell C., 1991, Active Learning: Creating Excitement in the Classroom, V1 Chandler M. A., 2010, WASHINGTONPOSTCOM Creswell J., 2009, Research design: qualitative, quantitative, and mixed methods approaches, V3rd Dewey J., 1938, KAPPA DELTA PI LECT Duschl R. A., 2003, EVERYDAY ASSESSMENT, P41, DOI DOI 10.2505/9781935155706 Duschl R.A. Gitomer., 1997, EDUC ASSESS, V4, P37, DOI [10.1207/s15326977ea0401_2, DOI 10.1207/S15326977EA0401_2] Francis G.E., 1998, The Physics Teacher, V36, P488 Lemke, 1990, TALKING SCI LANGUAGE Neece M., 2013, American Astronomical Society Meeting Abstracts# 221, V221 Petersen M, 2018, TALLYING WORLDS PLAN Plummer Julia D., 2013, Astronomy Education Review, V12, DOI 10.3847/AER2013004 Plummer J. D., 2010, ASTRONOMY ED REV, V9, DOI [10.3847/AER2009077, DOI 10.3847/AER2009077] Plummer JD., 2015, Planetarian, V44, P8 Plummer JD, 2011, INT J SCI EDUC, V33, P1963, DOI 10.1080/09500693.2010.537707 Plummer JD, 2014, INT J SCI EDUC, V36, P1083, DOI 10.1080/09500693.2013.843211 Ruiz-Primo MA, 2007, J RES SCI TEACH, V44, P57, DOI 10.1002/tea.20163 Ruiz-Primo MA, 2006, EDUC ASSESS, V11, P205, DOI 10.1080/10627197.2006.9652991 Ruiz-Primo MariaAraceli., 2011, Educational Assessment, V37, P15, DOI [10.1016/j.stueduc.2011.04.003, DOI 10.1016/J.STUEDUC.2011.04.003] Sandholtz J.H., 2011, Teacher Education Quarterly, V38, P27 Schultz S. K., 2020, THESIS U WYOMING Schultz SK, 2020, J ASTRON EARTH SCI E, V7, P25 Shavelson RJ, 2008, APPL MEAS EDUC, V21, P295, DOI 10.1080/08957340802347647 Slater SJ, 2016, J ASTRON EARTH SCI E, V3, P125, DOI 10.19030/jaese.v3i2.9845 Slater SJ, 2014, J ASTRON EARTH SCI E, V1, P1 Slater StephanieJ., 2015, Discipline-Based Education Research: A Guide for Scientists Slater T.F., 2020, Active Learning in College Science, P803 Slater T. F., 2006, B AM ASTRON SOC, V38, P98 Slater T. F, 2017, PLANETARIAN, V46, P32 Slater T.F., 2017, Research on Teaching Astronomy in the Planetarium Small Kim J., 2010, Astronomy Education Review, V9, DOI 10.3847/AER2010016 Thomas G., 2017, How To Do Your Research Project: A Guide For Students, V2nd Vygotsky L.S., 1987, Including the volume Thinking and speech Wiggin G., 2005, UNDERSTANDING DESIGN, DOI DOI 10.14483/CALJ.V19N1.11490 Yang FY, 2018, RES SCI EDUC, V48, P325, DOI 10.1007/s11165-016-9570-6 NR 41 TC 0 Z9 0 U1 0 U2 3 PU CLUTE INT PI LITTLETON PA 6901 S PIERCE STR, STE 301, LITTLETON, CO 80128 USA SN 2374-6246 EI 2374-6254 J9 J ASTRON EARTH SCI E JI J. Astron. Earth Sci. Educ. PD JUN PY 2021 VL 8 IS 1 BP 27 EP 38 PG 12 WC Education, Scientific Disciplines WE Emerging Sources Citation Index (ESCI) SC Education & Educational Research GA 1X5SN UT WOS:000807513500003 DA 2024-09-05 ER PT C AU Wang, JY Guo, YK Fang, Y Zhang, XY AF Wang, Jin-Ying Guo, Yu-Kun Fang, Yin Zhang, Xin-Ye BE Hu, Q TI Evaluation Research on Micro-blog Marketing Effect of 5A Scenic Spot in China SO PROCEEDINGS OF THE 2014 INTERNATIONAL CONFERENCE ON MANAGEMENT SCIENCE AND MANAGEMENT INNOVATION LA English DT Proceedings Paper CT International Conference on Management Science and Management Innovation (MSMI) CY JUN 14-15, 2014 CL Changsha, PEOPLES R CHINA DE Micro-blog; Marketing effect; 5A Scenic Spot; Principal component analysis (PCA) AB In order to evaluate the micro-blog marketing effect of the 5A Scenic Spots in China scientifically and provide some constructive suggestions, the thesis establishes a kind of evaluation index system on the basis of the user coverage, micro-blog active degree, and the propagation force. With Sina micro-blog as a platform, we select the officially certificated micro-blogs of 74 5A Scenic Spots as data sources, and collect the related data. Using the principal component analysis (PCA), we find out the four principal factors which have great influences on the micro-blog marketing of scenic spots, i.e., the customers' attention to the resort, the scenic spots' emphasis on the micro-blog, the interaction between scenic spots and their fans, and the innovation degrees of scenic spots. Through analysis, the thesis classifies the official micro-blogs of these scenic spots: type I (wonderful), type II (fine), type III (ordinary), type IV (poor). The thesis also evaluates the basic situation of the 5A Scenic Spots in China and the shortcomings in micro-blogs' operation. C1 [Wang, Jin-Ying; Guo, Yu-Kun; Fang, Yin; Zhang, Xin-Ye] Southwest Univ Nationalities, Inst Management, Chengdu, Sichuan, Peoples R China. C3 Southwest Minzu University RP Wang, JY (corresponding author), Southwest Univ Nationalities, Inst Management, Chengdu, Sichuan, Peoples R China. EM 1039497813@qq.com; 77528934@qq.com; 362467183@qq.com; 248638743@qq.com CR Du Zijian, 2011, ENTERPRISE MICROBLOG Jianhua Xu, 2002, MATH METHOD MODERN G, P85 Jin Yongsheng, 2011, MANAGE SCI, V2, P71 Murdough Chris, 2009, J INTERACTIVE ADVERT, P94 Wang Lepeng, 2011, J INNER MONGOLIA SCI, V231, P31 Wiser Neal Mr., 2009, MARKET WATCH TECHNOL, P16 Zhang Wenyong, 2012, MODERN DECORATION, P187 NR 7 TC 1 Z9 1 U1 0 U2 5 PU ATLANTIS PRESS PI PARIS PA 29 AVENUE LAVMIERE, PARIS, 75019, FRANCE BN 978-94-6252-015-8 PY 2014 BP 479 EP 484 PG 6 WC Operations Research & Management Science WE Conference Proceedings Citation Index - Science (CPCI-S) SC Operations Research & Management Science GA BB8BS UT WOS:000346261200085 DA 2024-09-05 ER PT C AU Oliveira, LR Fontes, R Collus, J Cerisier, JF AF Oliveira, L. R. Fontes, R. Collus, J. Cerisier, J. F. BE Chova, LG Martinez, AL Torres, IC TI VIDEO AND ONLINE LEARNING IN HIGHER EDUCATION: A BIBLIOMETRIC ANALYSIS OF THE OPEN ACCESS SCIENTIFIC PRODUCTION, THROUGH WEB OF SCIENCE SO 13TH INTERNATIONAL TECHNOLOGY, EDUCATION AND DEVELOPMENT CONFERENCE (INTED2019) SE INTED Proceedings LA English DT Proceedings Paper CT 13th International Technology, Education and Development Conference (INTED) CY MAR 11-13, 2019 CL Valencia, SPAIN DE Educational video; podcasting; MOOC; OCW; OER; university pedagogy; online learning; online distance education; e-learning; bibliometric review; web of science AB Video is used, today and generally, as a preferential technology for the online broadcast of educational contents, in higher education. This exploratory bibliometric analysis surveys scientific publications written in English, in Open Access, in the field of Education, in the period between 2007 and 2017, considering the following topics: video, higher education, online learning, distance learning and MOOC. Three strings of searches have been used, in total, 96 publications have been identified, mainly articles in journals and respective affiliated authors, also primarily, to institutions of European countries. C1 [Oliveira, L. R.; Collus, J.] Univ Minho, Braga, Portugal. [Fontes, R.] Univ Vigo, Vigo, Spain. [Cerisier, J. F.] Univ Poitiers, Poitiers, France. C3 Universidade do Minho; Universidade de Vigo; Universite de Poitiers RP Oliveira, LR (corresponding author), Univ Minho, Braga, Portugal. RI Fontes, Rosa/GRS-0711-2022 FU CIEd-Research Centre on Education, Institute of Education, University of Minho, Portugal, through national funds of FCT/MCTES-PT [UID/CED/1661/2013, UID/CED/1661/2016]; FCT/MCTES-PT [SFRH/BSAB/135571/2018]; Fundação para a Ciência e a Tecnologia [SFRH/BSAB/135571/2018, UID/CED/1661/2016] Funding Source: FCT FX This work is funded by CIEd-Research Centre on Education, projects UID/CED/1661/2013 and UID/CED/1661/2016, Institute of Education, University of Minho, Portugal, through national funds of FCT/MCTES-PT. The first author is also funded by FCT/MCTES-PT, sabbatical grant SFRH/BSAB/135571/2018 and hosted by Laboratoire TECHNE, University of Poitiers, France. CR Bufrem L., 2005, Ciencia da Informacao, V34, P9, DOI 10.1590/S0100-19652005000200002 Daniel J, 2012, J INTERACT MEDIA EDU, DOI 10.5334/2012-18 Downes S., 2012, RISE MOOCS Hansch A., 2015, HIIG Discussion Paper Series JOCE, 2002, EAC4602 JOCE DG Lankshear C., 2008, New Literacies: Everyday Practices Classroom Learning, VSecond Lattanzio L., 2003, MEDIA ED JAPON Martins ACR, 2015, ICERI PROC, P1909 Oliveira L. R., 2009, AT 10 C INT GAL PORT, p[5570, 5570] Oliveira L. R., 2002, P E LEARN 2002 WORLD, P2001 Oliveira L. R., 2013, 12 C INT GAL PORT PS, P6482 Peraya D., 2017, DISTANCES MEDIATIONS, DOI [10.4000/dms.1738, DOI 10.4000/DMS.1738] Peraya D, 2016, INT J TECHNOL HIGH E, V13, P6 PRITCHARD A, 1969, J DOC, V25, P348 NR 14 TC 2 Z9 2 U1 3 U2 19 PU IATED-INT ASSOC TECHNOLOGY EDUCATION & DEVELOPMENT PI VALENICA PA LAURI VOLPI 6, VALENICA, BURJASSOT 46100, SPAIN SN 2340-1079 BN 978-84-09-08619-1 J9 INTED PROC PY 2019 BP 8562 EP 8567 DI 10.21125/inted.2019.2137 PG 6 WC Education & Educational Research; Psychology, Educational WE Conference Proceedings Citation Index - Social Science & Humanities (CPCI-SSH) SC Education & Educational Research; Psychology GA BP1XC UT WOS:000541042203099 DA 2024-09-05 ER PT J AU Chen, XL Zou, D Xie, HR Cheng, GR AF Chen, Xieling Zou, Di Xie, Haoran Cheng, Gary TI Twenty Years of Personalized Language Learning: Topic Modeling and Knowledge Mapping SO EDUCATIONAL TECHNOLOGY & SOCIETY LA English DT Article DE Personalized language learning; Topic modeling; Knowledge mapping; Bibliometrics; Precision education ID VOCABULARY; ANALYTICS; SYSTEM AB Personalized language learning (PLL), a popular approach to precision language education, plays an increasingly essential role in effective language education to meet diverse learner needs and expectations. Research on PLL has become an active sub-field of research on technology-enhanced language learning and artificial intelligence applications in education. Based on the PLL literature from the Web of Science and Scopus databases, this study identified trends and prominent research issues within the field from 2000 to 2019 using structural topic modeling and bibliometrics. Trend analysis of articles demonstrated increasing interest in PLL research. Journals such as Educational Technology & Society and Computers & Education had contributed much to PLL research. PLL associated closely with mobile learning, game-based learning, and online/web-based learning. Moreover, personalized feedback and recommendations were important issues in PLL. Additionally, there was an increasing interest in adopting learning analytics and artificial intelligence in PLL research. Results obtained could help practitioners and scholars better understand the trends and status of PLL research and become aware of the hot topics and future directions. C1 [Chen, Xieling; Cheng, Gary] Educ Univ Hong Kong, Dept Math & Informat Technol, Hong Kong, Peoples R China. [Zou, Di] Educ Univ Hong Kong, Dept English Language Educ, Hong Kong, Peoples R China. [Xie, Haoran] Lingnan Univ, Dept Comp & Decis Sci, Hong Kong, Peoples R China. C3 Education University of Hong Kong (EdUHK); Education University of Hong Kong (EdUHK); Lingnan University RP Zou, D (corresponding author), Educ Univ Hong Kong, Dept English Language Educ, Hong Kong, Peoples R China. EM xielingchen0708@gmail.com; dizoudaisy@gmail.com; hrxie2@gmail.com; chengks@eduhk.hk RI Xie, Haoran/AFS-3515-2022 OI Xie, Haoran/0000-0003-0965-3617; Cheng, Gary/0000-0002-5614-3348; PV, THAYYIB/0000-0001-8929-0398; ZOU, Di/0000-0001-8435-9739 FU Faculty Research Fund of Lingnan University, Hong Kong [102041]; Lam Woo Research Fund of Lingnan University, Hong Kong [LWI20011]; One-off Special Fund from Central and Faculty Fund in Support of Research from 2019/20 to 2021/22 [MIT02/19-20]; Research Cluster Fund of The Education University of Hong Kong, Hong Kong [RG 78/2019-2020R]; Interdisciplinary Research Scheme of the Dean's Research Fund 2019-20 of The Education University of Hong Kong, Hong Kong [FLASS/DRF/IDS-2] FX This research was supported by the Faculty Research Fund (102041) and the Lam Woo Research Fund (LWI20011) of Lingnan University, Hong Kong, the One-off Special Fund from Central and Faculty Fund in Support of Research from 2019/20 to 2021/22 (MIT02/19-20), the Research Cluster Fund (RG 78/2019-2020R), and the Interdisciplinary Research Scheme of the Dean's Research Fund 2019-20 (FLASS/DRF/IDS-2) of The Education University of Hong Kong, Hong Kong. CR Chen CM, 2016, INTERACT LEARN ENVIR, V24, P681, DOI 10.1080/10494820.2014.917107 Chen CM, 2010, INTERACT LEARN ENVIR, V18, P341, DOI 10.1080/10494820802602329 Chen MP, 2019, COMPUT EDUC, V140, DOI 10.1016/j.compedu.2019.103602 Chen X., 2020, Computers and Education: Artificial Intelligence, V1, P100002, DOI DOI 10.1016/J.CAEAI.2020.100002 Chen X, 2020, COMPUT EDUC, V151, DOI 10.1016/j.compedu.2020.103855 Chen XL, 2020, BRIT J EDUC TECHNOL, V51, P692, DOI 10.1111/bjet.12907 Chen XL, 2018, BMC MED INFORM DECIS, V18, DOI [10.1186/s12911-018-0594-x, 10.1186/s12870-018-1555-3] Chen X, 2021, AUTOPHAGY, V17, P2054, DOI 10.1080/15548627.2020.1810918 Cheng G, 2017, 25TH INTERNATIONAL CONFERENCE ON COMPUTERS IN EDUCATION (ICCE 2017), P884 Chrysafiadi K, 2013, IEEE T EDUC, V56, P385, DOI 10.1109/TE.2013.2243914 Connor CM, 2018, J SCHOOL PSYCHOL, V66, P97, DOI 10.1016/j.jsp.2017.04.005 Fang LT, 2018, EXPERT SYST, V35, DOI 10.1111/exsy.12244 Gelan A, 2018, COMPUT ASSIST LANG L, V31, P294, DOI 10.1080/09588221.2017.1418382 Hao TY, 2018, SOFT COMPUT, V22, P7875, DOI 10.1007/s00500-018-3511-4 Haristiani N, 2019, J ENG SCI TECHNOL, V14, P3158 Harper F, 2018, LANG LEARN J, V46, P277, DOI 10.1080/09571736.2015.1061586 Hooshyar D, 2018, J COMPUT ASSIST LEAR, V34, P731, DOI 10.1111/jcal.12280 Hung STA, 2016, COMPUT EDUC, V98, P90, DOI 10.1016/j.compedu.2016.03.009 Ismail HM, 2016, IEEE INT CONF INNOV, P197 KRASHEN S, 1989, MOD LANG J, V73, P440, DOI 10.2307/326879 Lee A., 2016, THESIS Lian AP, 2017, GEMA ONLINE J LANG S, V17, P1, DOI 10.17576/gema-2017-1704-01 Lu OHT, 2018, EDUC TECHNOL SOC, V21, P220 Ming Y, 2013, SPEECH COMMUN, V55, P71, DOI 10.1016/j.specom.2012.06.007 Pereira A, 2012, 2012 BRAZILIAN SYMPO, P134 Pérez-Paredes P, 2018, COMPUT ASSIST LANG L, V31, P522, DOI 10.1080/09588221.2017.1418754 Roberts ME, 2014, AM J POLIT SCI, V58, P1064, DOI 10.1111/ajps.12103 Schmid R, 2019, COMPUT EDUC, V136, P75, DOI 10.1016/j.compedu.2019.03.006 Tang XY, 2019, BRIT J MATH STAT PSY, V72, P108, DOI 10.1111/bmsp.12144 US Department of Education, 2017, REIMAGINING ROLE TEC Wu TT, 2014, INFORM SCIENCES, V257, P248, DOI 10.1016/j.ins.2011.07.021 Xie H, 2019, COMPUT EDUC, V140, DOI 10.1016/j.compedu.2019.103599 Xie HR, 2016, IEEE MULTIMEDIA, V23, P60, DOI 10.1109/MMUL.2015.91 Pham XL, 2018, 2018 2ND INTERNATIONAL CONFERENCE ON EDUCATION AND E-LEARNING (ICEEL 2018), P16, DOI 10.1145/3291078.3291115 Yang S. J. H., 2019, P 27 INT C COMP ED K Zhang L, 2020, EDUC RES REV-NETH, V31, DOI 10.1016/j.edurev.2020.100339 Zhang RF, 2022, COMPUT ASSIST LANG L, V35, P696, DOI 10.1080/09588221.2020.1744666 Zou D, 2018, EDUC TECHNOL SOC, V21, P233 NR 38 TC 53 Z9 54 U1 12 U2 66 PU INT FORUM EDUCATIONAL TECHNOLOGY & SOC-IFETS PI DOULIU CITY PA NATL YUNLIN UNIV SCIENCE & TECHNOLOGY, NO 123, SECTION 3, DAXUE RD, DOULIU CITY, YUNLIN COUNTY, TAIWAN SN 1176-3647 EI 1436-4522 J9 EDUC TECHNOL SOC JI Educ. Technol. Soc. PD JAN PY 2021 VL 24 IS 1 BP 205 EP 222 PG 18 WC Education & Educational Research WE Social Science Citation Index (SSCI) SC Education & Educational Research GA QQ5RX UT WOS:000624582400016 DA 2024-09-05 ER PT J AU An, X Sun, X Xu, S AF An, Xin Sun, Xin Xu, Shuo TI Important citations identification with semi-supervised classification model SO SCIENTOMETRICS LA English DT Article DE Important citation; Semi-supervised learning; Self-training; Expert-labeled dataset; Author-labeled dataset AB Given that citations are not equally important, various techniques have been presented to identify important citations on the basis of supervised machine learning models. However, only a small volume of instances have been annotated manually with the labels. To make full use of unlabeled instances and promote the identification performance, the semi-supervised self-training technique is utilized here to identify important citations in this work. After six groups of features are engineered, the SVM and RF models are chosen as the base classifiers for self-training strategy. Then two experiments based on two different types of datasets are conducted. The experiment on the expert-labeled dataset from one single discipline shows that the semi-supervised versions of SVM and RF models significantly improve the performance of the conventional supervised versions when unannotated samples under 75% and 95% confidence level are rejoined to the training set, respectively. The AUC-PR and AUC-ROC of SVM model are 0.8102 and 0.9622, and those of RF model reach 0.9248 and 0.9841, which outperform their counterparts and the benchmark methods in the literature. This demonstrates the effectiveness of our semi-supervised self-training strategy for important citation identification. Another experiment on the author-labeled dataset from multiple disciplines, semi-supervised learning models can perform better than their supervised learning counterparts in term of AUC-PR when the ratio of labeled instances is less than 20%. Compared to our first experiment, insufficient amount of instances from each discipline in our second experiment enables the performance of the models to be unsatisfactory. C1 [An, Xin] Beijing Forestry Univ, Sch Econ & Management, Beijing 100083, Peoples R China. [Sun, Xin] Inst Sci & Tech Informat China, Beijing 100038, Peoples R China. [Xu, Shuo] Beijing Univ Technol, Coll Econ & Management, Beijing 100124, Peoples R China. C3 Beijing Forestry University; Beijing University of Technology RP An, X (corresponding author), Beijing Forestry Univ, Sch Econ & Management, Beijing 100083, Peoples R China. EM anxin@bjfu.edu.cn; sunx@istic.ac.cn; xushuo@bjut.edu.cn RI Xu, Shuo/KVY-0402-2024 OI Xu, Shuo/0000-0002-8602-1819 FU National Natural Science Foundation of China [72004012, 72074014] FX The present study is an extended version of an article (An et al., 2021b) presented at the first Workshop on AI + Informetrics at the iConference 2021, 17 March, 2021. This research received the financial support from the National Natural Science Foundation of China under grant number 72004012 and 72074014. CR Abu-Jbara A., 2013, NAACL, P596 Aljuaid H, 2021, TELEMAT INFORM, V56, DOI 10.1016/j.tele.2020.101492 An X., 2021, 1 WORKSH AI INF ICON An X, 2023, J INF SCI, V49, P107, DOI 10.1177/0165551521991034 [Anonymous], 2008, Semi-Supervised Learning Literature Survey [Anonymous], 2001, Proc. Int. Conf. Machine Learning (ICML'01) Bennett KP, 1999, ADV NEUR IN, V11, P368 Blum A., 1998, Proceedings of the Eleventh Annual Conference on Computational Learning Theory, P92, DOI 10.1145/279943.279962 Chapelle O, 2008, J MACH LEARN RES, V9, P203 Councill IG, 2008, SIXTH INTERNATIONAL CONFERENCE ON LANGUAGE RESOURCES AND EVALUATION, LREC 2008, P661 Davis J., 2006, P 23 INT C MACH LEAR, P233, DOI 10.1145/1143844.1143874 Dietz L., 2007, ICML, P233, DOI DOI 10.1145/1273496.1273526 Dong C., 2011, P 5 INT JOINT C NAT, P623 GARFIELD E, 1965, STAT ASSOC METHOD M, V1964, P189 Garfield E, 2006, INT J EPIDEMIOL, V35, P1123, DOI 10.1093/ije/dyl189 Hassan SU, 2018, SCIENTOMETRICS, V117, P1645, DOI 10.1007/s11192-018-2944-y Hassannejad S., 2017, 2017 ACM IEEE JOINT, V14, P1, DOI [DOI 10.1109/JCDL.2017.7991558, 10.9734/ARRB/2017/27339] He YL, 2011, INFORM PROCESS MANAG, V47, P606, DOI 10.1016/j.ipm.2010.11.003 Hirsch JE, 2005, P NATL ACAD SCI USA, V102, P16569, DOI 10.1073/pnas.0507655102 Iqbal S, 2021, SCIENTOMETRICS, V126, P6551, DOI 10.1007/s11192-021-04055-1 Joachims T, 1999, MACHINE LEARNING, PROCEEDINGS, P200 Lazaridis T, 2010, SCIENTOMETRICS, V82, P211, DOI 10.1007/s11192-009-0048-4 Li X., 2013, Proceedings of Recent Advances in Natural Language Processing, P402 Li YQ, 2008, PATTERN RECOGN LETT, V29, P1285, DOI 10.1016/j.patrec.2008.01.030 Qayyum F, 2019, SCIENTOMETRICS, V118, P21, DOI 10.1007/s11192-018-2961-x Radoulov, 2008, THESIS U WATERLOO Rosenberg C, 2005, WACV 2005: SEVENTH IEEE WORKSHOP ON APPLICATIONS OF COMPUTER VISION, PROCEEDINGS, P29 Saeed-Ul Hassan, 2018, SCIENTOMETRICS, V116, P973, DOI 10.1007/s11192-018-2767-x Tanha J, 2017, INT J MACH LEARN CYB, V8, P355, DOI 10.1007/s13042-015-0328-7 Teufel S., 2006, P C EMP METH NAT LAN, DOI 10.3115/1610075.1610091 Valenzuela M., 2015, WORKSHOPS 20 9 AAAI van Engelen JE, 2020, MACH LEARN, V109, P373, DOI 10.1007/s10994-019-05855-6 Vapnik V.N, 1998, Statistical Learning Theory Wang B, 2008, LECT NOTES ARTIF INT, V5032, P344 Wang MY, 2020, SCIENTOMETRICS, V125, P2109, DOI 10.1007/s11192-020-03677-1 Xu S, 2011, J INF COMPUT SCI, V8, P885, DOI DOI 10.1145/1390681.1390688 Xu S, 2007, ADV INTEL SYS RES, DOI 10.2991/iske.2007.13 Xu S, 2019, J INFORMETR, V13, DOI 10.1016/j.joi.2019.100983 Yarowsky David, 1995, 33 ANN M ASS COMP LI, P189, DOI 10.3115/981658.981684 Zeng T, 2020, SCIENTOMETRICS, V124, P399, DOI 10.1007/s11192-020-03421-9 Zhang F., 2021, IEEE T GEOSCI ELECT, V60, P1 Zhu X., 2003, ICML, P912 Zhu X. J., 2005, SEMISUPERVISED LEARN Zhu XD, 2015, J ASSOC INF SCI TECH, V66, P408, DOI 10.1002/asi.23179 NR 44 TC 6 Z9 6 U1 5 U2 35 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0138-9130 EI 1588-2861 J9 SCIENTOMETRICS JI Scientometrics PD NOV PY 2022 VL 127 IS 11 BP 6533 EP 6555 DI 10.1007/s11192-021-04212-6 EA JAN 2022 PG 23 WC Computer Science, Interdisciplinary Applications; Information Science & Library Science WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Computer Science; Information Science & Library Science GA 5U5FU UT WOS:000744421100002 DA 2024-09-05 ER PT C AU Zhang, YY Jiang, YR Wu, Y Su, J AF Zhang, Yuyao Jiang, Yuru Wu, Yu Su, Jing BE Liu, M Kit, C Su, Q TI A Research on the Generation Model and Evaluation Model of Chinese Wu-Qing Couplets SO CHINESE LEXICAL SEMANTICS (CLSW 2020) SE Lecture Notes in Artificial Intelligence LA English DT Proceedings Paper CT 21st Chinese Lexical Semantics Workshop (CLSW) CY MAY 28-30, 2020 CL City Univ Hong Kong, Dept Linguist & Translat, ELECTR NETWORK HO City Univ Hong Kong, Dept Linguist & Translat DE Wu-Qing couplet; Transfer learning; Sequence to sequence AB The Wu-Qing couplet is a unique form of expressions in couplets and an important part of Chinese traditional culture. It shows the profoundness and interesting features of Chinese. However, there is still no research on the automatic generation of Wu-Qing couplets because the corpus of Wu-Qing couplets is scarce and it cannot support the training process of deep learning. This paper proposes a sequence-to-sequence Wu-Qing couplet generation model based on the idea of transfer learning. At the same time, in order to further improve the effectiveness of the model, based on the characteristics of Wu-Qing couplets, such as coherence, rhythm change, and semantic separation, this paper proposes an evaluation model, which can reorder the output of the generation model for better results. Finally, a complete Chinese Wu-Qing couplet automatic generation system is constructed based on the generation model and the evaluation model. C1 [Zhang, Yuyao; Jiang, Yuru; Wu, Yu; Su, Jing] Beijing Informat Sci & Technol Univ, Beijing, Peoples R China. C3 Beijing Information Science & Technology University RP Jiang, YR (corresponding author), Beijing Informat Sci & Technol Univ, Beijing, Peoples R China. EM jiangyuru@bistu.edu.cn RI Zhang, Yuyao/KEH-7175-2024 FU National Natural Science Foundation of China [61602044]; Beijing Information Science and Technology University [5102010805] FX Thiswork is supported by the National Natural Science Foundation of China (Grant No. 61602044) and the funds for improving the quality of personnel training in 2020 of Beijing Information Science and Technology University (Grant No. 5102010805). CR Bahdanau D, 2016, Arxiv, DOI arXiv:1409.0473 Fan HS, 2019, LECT NOTES ARTIF INT, V11670, P314, DOI 10.1007/978-3-030-29908-8_25 Fei Y, 1999, THESIS I AUTOMATION Hua B., 2005, XIAM U P CLSW 6 XIAM, P90 Jiang Long, 2008, PROC 22 INT C COMPUT, P377, DOI DOI 10.3115/1599081.1599129 Ott M., 2019, P NAACL HLT DEM Sutskever I, 2014, ADV NEUR IN, V27 Tian Z, 2012, ZHONG HUA YING LIAN Wu X, 2008, CHIN CULT, P28 Zhang K., 2009, J CHIN INF PROCESS, V23, P101 Zou Z, 2008, CHONGQING SOC SCI, P105 NR 11 TC 0 Z9 0 U1 0 U2 3 PU SPRINGER INTERNATIONAL PUBLISHING AG PI CHAM PA GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND SN 2945-9133 EI 1611-3349 BN 978-3-030-81197-6; 978-3-030-81196-9 J9 LECT NOTES ARTIF INT PY 2021 VL 12278 BP 536 EP 548 DI 10.1007/978-3-030-81197-6_46 PG 13 WC Computer Science, Artificial Intelligence; Computer Science, Interdisciplinary Applications; Linguistics; Language & Linguistics WE Conference Proceedings Citation Index - Science (CPCI-S); Conference Proceedings Citation Index - Social Science & Humanities (CPCI-SSH) SC Computer Science; Linguistics GA BS4ZP UT WOS:000724573500046 DA 2024-09-05 ER PT J AU Ozyurt, O Ayaz, A AF Ozyurt, Ozcan Ayaz, Ahmet TI Twenty-five years of education and information technologies: Insights from a topic modeling based bibliometric analysis SO EDUCATION AND INFORMATION TECHNOLOGIES LA English DT Article DE Topic modeling; Bibliometric analysis; Research themes and trends ID ACCEPTANCE; DECADES; MANAGEMENT; KNOWLEDGE AB Education and Information Technologies (EAIT) has been a leading journal in education & educational research since 1996. To celebrate its 25th anniversary and provide a comprehensive overview of the field, a topic modeling-based bibliometric analysis was conducted on the articles published in this journal. The study is constructed upon two methods, bibliometric analysis, and topic modeling. The study aims to find out the trends in publications and citations, prominent countries, affiliations and the status of authors, the prominent topics, and the thematic characteristics of these topics, as well as research interests and trends. The results show that the articles are grouped under the 21 topics. The top five most studied of them have been determined as "Technology acceptance", "Social network-based learning", "Teacher education", "Satisfaction of e-learning" and "E-learning". Finally, the acceleration results of each topic within itself and compared to other topics show that the most accelerated topic is "Gamification", while the most accelerated topic compared to other topics has been determined as "Technology acceptance". The general results of the study shed light on future studies in terms of determining the research interests and trends of publications in the field of educational technologies, EAIT. C1 [Ozyurt, Ozcan] Karadeniz Tech Univ, OF Technol Fac, Dept Software Engn, Trabzon, Turkey. [Ayaz, Ahmet] Karadeniz Tech Univ, Digital Transformat Off, Trabzon, Turkey. C3 Karadeniz Technical University; Karadeniz Technical University RP Ozyurt, O (corresponding author), Karadeniz Tech Univ, OF Technol Fac, Dept Software Engn, Trabzon, Turkey. EM oozyurt@ktu.edu.tr; ahmetayaz@ktu.edu.tr RI Ayaz, Ahmet/JBJ-2146-2023; ÖZYURT, Özcan/AAG-4556-2019; Ayaz, Ahmet/ABF-5870-2021 OI ÖZYURT, Özcan/0000-0002-0047-6813; Ayaz, Ahmet/0000-0003-1405-0546 CR Aggarwal C.C., 2012, MINING TEXT DATA, P77, DOI 10.1007/978-1-4614-3223-4 AJZEN I, 1977, PSYCHOL BULL, V84, P888, DOI 10.1037/0033-2909.84.5.888 AJZEN I, 1991, ORGAN BEHAV HUM DEC, V50, P179, DOI 10.1016/0749-5978(91)90020-T Akar SGM, 2019, EDUC INF TECHNOL, V24, P3415, DOI 10.1007/s10639-019-09933-z Martínez MA, 2015, RES SOCIAL WORK PRAC, V25, P257, DOI 10.1177/1049731514522101 Aria M, 2017, J INFORMETR, V11, P959, DOI 10.1016/j.joi.2017.08.007 Bardakci S, 2022, EDUC INF TECHNOL, V27, P4321, DOI 10.1007/s10639-021-10785-9 Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993 Boisvert L, 2000, INFORM SYST MANAGE, V17, P35, DOI 10.1201/1078/43190.17.1.20000101/31212.5 Bond M, 2019, BRIT J EDUC TECHNOL, V50, P12, DOI 10.1111/bjet.12730 Chen XL, 2020, BRIT J EDUC TECHNOL, V51, P692, DOI 10.1111/bjet.12907 Chen XL, 2019, J COMPUT EDUC, V6, P563, DOI 10.1007/s40692-019-00149-1 Cobo MJ, 2015, KNOWL-BASED SYST, V80, P3, DOI 10.1016/j.knosys.2014.12.035 Cook DA, 2010, MED EDUC, V44, P765, DOI 10.1111/j.1365-2923.2010.03723.x DAVIS FD, 1989, MIS QUART, V13, P319, DOI 10.2307/249008 De Mauro A, 2018, INFORM PROCESS MANAG, V54, P807, DOI 10.1016/j.ipm.2017.05.004 Donthu N, 2021, J BUS RES, V133, P285, DOI 10.1016/j.jbusres.2021.04.070 Donthu N, 2020, J BUS RES, V109, P1, DOI 10.1016/j.jbusres.2019.10.039 Lívero FAD, 2021, EDUC INF TECHNOL, V26, P2125, DOI 10.1007/s10639-020-10350-w Du HS, 2017, ONLINE INFORM REV, V41, P454, DOI 10.1108/OIR-05-2017-0142 Ekici M, 2021, EDUC INF TECHNOL, V26, P3327, DOI 10.1007/s10639-020-10394-y Elmqaddem N, 2019, INT J EMERG TECHNOL, V14, P234, DOI 10.3991/ijet.v14i03.9289 Gaviria-Marin M, 2018, J KNOWL MANAG, V22, P1655, DOI 10.1108/JKM-10-2017-0497 Giray G, 2021, EDUC INF TECHNOL, V26, P6651, DOI 10.1007/s10639-021-10454-x Google Scholar, 2021, GOOGL SCHOL METR Granic A, 2019, BRIT J EDUC TECHNOL, V50, P2572, DOI 10.1111/bjet.12864 Gurcan F, 2023, INTERACT LEARN ENVIR, V31, P1007, DOI 10.1080/10494820.2020.1815795 Gurcan F, 2021, INT REV RES OPEN DIS, V22, P1 Gurcan F, 2021, INT J HUM-COMPUT INT, V37, P267, DOI 10.1080/10447318.2020.1819668 Gurer MD, 2021, EDUC INF TECHNOL, V26, P4709, DOI 10.1007/s10639-021-10493-4 Hamid A. A., 2001, Internet and Higher Education, V4, P311, DOI 10.1016/S1096-7516(01)00072-0 Hu YN, 2014, MACH LEARN, V95, P423, DOI 10.1007/s10994-013-5413-0 Ifenthaler D, 2016, J RES TECHNOL EDUC, V48, P306, DOI 10.1080/15391523.2016.1215172 Kalogiannakis M, 2021, EDUC SCI, V11, DOI 10.3390/educsci11010022 Kang J, 2019, J KOREAN ACAD NURS, V49, P736, DOI 10.4040/jkan.2019.49.6.736 Keshava, 2008, INFORM STUDIES, V14 Kumar S, 2022, INT J BANK MARK, V40, P341, DOI 10.1108/IJBM-07-2021-0351 Kushairi N, 2021, EDUC INF TECHNOL, V26, P4401, DOI 10.1007/s10639-021-10457-8 Liu D, 2017, MIS QUART, V41, P1011 Luo ZN, 2022, EDUC INF TECHNOL, V27, P891, DOI 10.1007/s10639-021-10642-9 Manzano-León A, 2021, SUSTAINABILITY-BASEL, V13, DOI 10.3390/su13042247 Merigó JM, 2019, SOFT COMPUT, V23, P1477, DOI 10.1007/s00500-018-3168-z Moore GC, 1991, INFORM SYST RES, V2, P192, DOI 10.1287/isre.2.3.192 Moore JL, 2011, INTERNET HIGH EDUC, V14, P129, DOI 10.1016/j.iheduc.2010.10.001 Ofosu-Ampong Kingsley, 2020, Journal of Educational Technology Systems, V49, P113, DOI 10.1177/0047239520917629 Ofosu-Ampong K, 2020, EDUC INF TECHNOL, V25, P1723, DOI 10.1007/s10639-019-10057-7 Reddy P, 2021, EDUC INF TECHNOL, V26, P1505, DOI 10.1007/s10639-020-10320-2 Revythi A, 2019, EDUC INF TECHNOL, V24, P2341, DOI 10.1007/s10639-019-09869-4 Saleem AN, 2022, TECHNOL KNOWL LEARN, V27, P139, DOI 10.1007/s10758-020-09487-x SCImago, 2021, Scimago journal & country rank Scuotto V, 2013, J KNOWL ECON, V4, P293, DOI 10.1007/s13132-013-0155-6 Singh S, 2020, TECHNOL FORECAST SOC, V154, DOI 10.1016/j.techfore.2020.119963 Siyam N, 2019, EDUC INF TECHNOL, V24, P2035, DOI 10.1007/s10639-018-09859-y Song Y, 2019, COMPUT EDUC, V137, P12, DOI 10.1016/j.compedu.2019.04.002 Sorat Z, 2022, EDUC INF TECHNOL, V27, P2483, DOI 10.1007/s10639-021-10722-w Tatnall A, 2022, EDUC INF TECHNOL, V27, P1359, DOI 10.1007/s10639-022-10917-9 Tekdal M, 2021, EDUC INF TECHNOL, V26, P6499, DOI 10.1007/s10639-021-10617-w Troussas C, 2021, EDUC INF TECHNOL, V26, P4285, DOI 10.1007/s10639-021-10483-6 Van Eck N. J., 2021, MANUAL VOSVIEWER 161 Venkatesh V, 2003, MIS QUART, V27, P425, DOI 10.2307/30036540 Wing JM, 2006, COMMUN ACM, V49, P33, DOI 10.1145/1118178.1118215 Zawacki-Richter O, 2018, COMPUT EDUC, V122, P136, DOI 10.1016/j.compedu.2018.04.001 NR 62 TC 22 Z9 22 U1 6 U2 60 PU SPRINGER PI NEW YORK PA ONE NEW YORK PLAZA, SUITE 4600, NEW YORK, NY, UNITED STATES SN 1360-2357 EI 1573-7608 J9 EDUC INF TECHNOL JI Educ. Inf. Technol. PD SEP PY 2022 VL 27 IS 8 BP 11025 EP 11054 DI 10.1007/s10639-022-11071-y EA APR 2022 PG 30 WC Education & Educational Research WE Social Science Citation Index (SSCI) SC Education & Educational Research GA 5N0UV UT WOS:000794835400002 PM 35502161 OA Bronze, Green Published DA 2024-09-05 ER PT J AU Qin, Y Irshad, A AF Qin, Ying Irshad, Azeem TI Research on the evaluation method of English textbook readability based on the TextCNN model and its application in teaching design SO PEERJ COMPUTER SCIENCE LA English DT Article DE English reading; Deep learning; TextCNN; Readability assessment ID DIFFICULTY AB English is a world language, and the ability to use English plays an important role in the improvement of college students' comprehensive quality and career development. However, quite a lot of Chinese college students feel that English learning is difficult; it is difficult to understand the learning materials, and they cannot effectively improve their English ability. This study uses a convolutional neural network to evaluate the readability of English reading materials. It provides students with English reading materials of suitable difficulty based on their English reading ability so as to improve the effect of English learning. Aiming at the high dispersion of students' English reading level, a text readability evaluation model for English reading textbooks based on deep learning is designed. First, the legibility dataset is constructed based on college English textbooks; second, the TextCNN text legibility evaluation model is constructed; finally, the model training is completed through parameter adjustment and optimization, and the evaluation accuracy rate on the self-built dataset reaches 90%. We use the text readability method based on TextCNN model to conduct experimental teaching, and divided the two groups into comparative experiments. The experimental results showed that the reading level and reading interest of students in the experimental group were significantly improved, which proved that the text readability evaluation method based on deep learning was scientific and effective. In addition, we will further expand the capacity of the English legibility dataset and invite more university classes and students to participate in comparative experiments to improve the generality of the model. C1 [Qin, Ying] Wuzhou Univ, Sch Foreign Languages, Wuzhou, Peoples R China. [Irshad, Azeem] Int Islamic Univ, Dept Comp Sci & Software Engn, Islamabad, Pakistan. C3 Wuzhou University; International Islamic University, Pakistan RP Qin, Y (corresponding author), Wuzhou Univ, Sch Foreign Languages, Wuzhou, Peoples R China. EM qinying@gxuwz.edu.cn FU Education and Teaching Reform Project of Guangxi Autonomous Region level A "The Research and Practice of Smart Education Leading the New Development of Universities' Smart Classroom Ecosystem of Business English in the Post-Epidemic Era" [2022JGA341]; Key project of the "14th Five-Year Plan" of Guangxi Education Science in 2022, "A Practical Study on the Intelligent Classroom Teaching Model of English Subject Core Literacy from Activity Theory" [2022ZJY1227]; Education and Teaching Reform Project of Wuzhou University "New Development of Universities ' Smart Education Ecosystem Based on Smart Classrooms in the Post-Epidemic Era" [Wyjg2021C001] FX This work was supported by the Education and Teaching Reform Project of Guangxi Autonomous Region level A "The Research and Practice of Smart Education Leading the New Development of Universities' Smart Classroom Ecosystem of Business English in the Post-Epidemic Era" (Project No. 2022JGA341) ; The key project of the "14th Five-Year Plan" of Guangxi Education Science in 2022, "A Practical Study on the Intelligent Classroom Teaching Model of English Subject Core Literacy from Activity Theory" (Project No. 2022ZJY1227) ; and the Education and Teaching Reform Project of Wuzhou University "New Development of Universities ' Smart Education Ecosystem Based on Smart Classrooms in the Post-Epidemic Era" (Project No. Wyjg2021C001) . The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. CR Chen X, 2023, Applied Mathematics and Nonlinear Sciences., V9, P427, DOI [10.2478/amns.2023.2.00427, DOI 10.2478/AMNS.2023.2.00427] Common Core State Standards Initiative, 2020, Council of chief state school officers, national governors association center for best practices common core state standards for English language arts & literacy in history/social studies, science, and technical subjects Dale E., 1949, ELEM ENGL, V26, P19, DOI DOI 10.1111/J.1467-9345.1968.TB00749.X Dale E, 1948, EDUC RES BULL, V27, P37 EMBRETSON SE, 1987, APPL PSYCH MEAS, V11, P175, DOI 10.1177/014662168701100207 Erler L, 2012, SYSTEM, V40, P437, DOI 10.1016/j.system.2012.06.004 Flesch R, 1948, J APPL PSYCHOL, V32, P221, DOI 10.1037/h0057532 Fujinuma Y, 2021, P 15 WORKSH GRAPH BA Gonzalez-Garduo AV, 2017, P 12 WORKSH INN US N Goodman K. S., 1967, Journal of the Reading Specialist, V6, P126, DOI DOI 10.1080/19388076709556976 Gorin JS, 2006, APPL PSYCH MEAS, V30, P394, DOI 10.1177/0146621606288554 Green A, 2010, LANG TEST, V27, P191, DOI 10.1177/0265532209349471 GREGG KR, 1986, TESOL QUART, V20, P116, DOI 10.2307/3586393 Gunning Robert, 1952, The Technique of Clear Writing Guthrie JT, 1987, Journal of Educational Psychology, V22, P279, DOI [10.1080/00461520.1987.9653053, DOI 10.1080/00461520.1987.9653053] Howard MW, 2007, Handbook of latent semantic analysis Jiang ZB, 2020, T ASSOC COMPUT LING, V8, P423, DOI 10.1162/tacl_a_00324 Martinc M, 2021, COMPUT LINGUIST, V47, P141, DOI [10.1162/COLI_a_00398, 10.1162/coli_a_00398] McNamara DS, 2014, AUTOMATED EVALUATION OF TEXT AND DISCOURSE WITH COH-METRIX, P1, DOI 10.1017/CBO9780511894664 Mohammed HM, 2019, COMPUT INTEL NEUROSC, V2019, DOI 10.1155/2019/8718571 Mytkowicz P, 2014, J POSTSECOND EDUC DI, V27, P51 Ozuru Y, 2008, BEHAV RES METHODS, V40, P1001, DOI 10.3758/BRM.40.4.1001 Perera K., 1984, Children's writing and reading: Analyzing classroom language Pili I, 2016, 26 INT C COMP LING Pili I, 2018, P WORKSH LING COMPL Rahimi M, 2009, READ WRIT, V22, P219, DOI 10.1007/s11145-008-9139-5 Sheorey R., 2001, SYSTEM, V29, P431, DOI [DOI 10.1016/S0346-251X(01)00039-2, 10.1016/S0346-251X, DOI 10.1016/S0346-251X] Smith E A, 1967, AMRL TR, P1 Stajner S, 2017, PROCEEDINGS OF THE TWENTY-SIXTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, P4096 Swanborn MSL, 2002, LANG LEARN, V52, P95, DOI 10.1111/1467-9922.00178 Tercanlioglu L, 2001, Reading Matrix An International Online Journal, V1 Tercanlioglu L, 2015, QUAL REP, V20, P286 Wang C., 2007, INVESTIGATING COGNIT Wilkins HK, 2007, Reading comprehension strategies: theories, intervention, and technologies Wyse D, 2005, Teaching English, language and literacy, P42 Xia M, 2016, P 11 WORKSH INN US N Yüksel I, 2012, PROCD SOC BEHV, V31, P894, DOI 10.1016/j.sbspro.2011.12.164 Zawodniak J, 2017, Neofilolog, V49, P177, DOI [10.14746/n.2017.49.1.07, DOI 10.14746/N.2017.49.1.07] NR 38 TC 0 Z9 0 U1 25 U2 25 PU PEERJ INC PI LONDON PA 341-345 OLD ST, THIRD FLR, LONDON, EC1V 9LL, ENGLAND EI 2376-5992 J9 PEERJ COMPUT SCI JI PeerJ Comput. Sci. PD FEB 29 PY 2024 VL 10 AR e1895 DI 10.7717/peerj-cs.1895 PG 21 WC Computer Science, Artificial Intelligence; Computer Science, Information Systems; Computer Science, Theory & Methods WE Science Citation Index Expanded (SCI-EXPANDED) SC Computer Science GA JR6W8 UT WOS:001174942400006 PM 38435600 OA gold, Green Published DA 2024-09-05 ER PT J AU Pluhacek, M Kazikova, A Viktorin, A Kadavy, T Senkerik, R AF Pluhacek, Michal Kazikova, Anezka Viktorin, Adam Kadavy, Tomas Senkerik, Roman TI Chaos in popular metaheuristic optimizers - a bibliographic analysis SO JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS LA English DT Article DE Evolutionary computing; chaos; metaheuristic; genetic algorithm; differential evolution; particle swarm optimization ID PARTICLE SWARM OPTIMIZATION; NON-WANDERING POINTS; CONTINUOUS-MAPS; GRAPH MAPS; DENDRITES; ALGORITHM; DEPTH; DYNAMICS; DRIVEN; SETS AB This paper presents an overview of the history and recent efforts in combining chaos theory and evolutionary computation techniques. Various algorithms from the evolutionary computation domain, also known as metaheuristic algorithms, have been successfully enhanced with chaotic components in the past. Numerous ways to incorporate chaos have been examined, and many impressive results have been reported. Implementations of discrete chaotic maps such as Lozi, Henon, and logistic map as generators of chaotic pseudo-random sequences for controlling evolution operators in metaheuristics have achieved significant popularity. In this survey, we focus on the research field itself and perform a bibliographical analysis to show how broad and active is nowadays the research field of chaos-enhanced metaheuristics and what are some of the most recent works published. C1 [Pluhacek, Michal; Kazikova, Anezka; Viktorin, Adam; Kadavy, Tomas; Senkerik, Roman] Tomas Bata Univ Zlin, Fac Appl Informat, Nam TG Masaryka 5555, Zlin 76001, Czech Republic. C3 Tomas Bata University Zlin RP Pluhacek, M (corresponding author), Tomas Bata Univ Zlin, Fac Appl Informat, Nam TG Masaryka 5555, Zlin 76001, Czech Republic. EM pluhacek@utb.cz RI Šenkeřík, Roman/H-6353-2012; Pluhacek, Michal/AAF-3155-2019; Kadavy, Tomas/A-6914-2018 OI Pluhacek, Michal/0000-0002-3692-2838; Kadavy, Tomas/0000-0002-3341-4336 FU Internal Grant Agency of Tomas Bata University [IGA/CebiaTech/2023/004] FX This work was supported by the Internal Grant Agency of Tomas Bata University under the Projects no. IGA/CebiaTech/2023/004, and further by the resources of A.I.Lab at the Faculty of Applied Informatics, Tomas Bata University in Zlin (ailab.fai.utb.cz). CR Arora S, 2017, J INTELL FUZZY SYST, V32, P1079, DOI 10.3233/JIFS-16798 Banerjee PS, 2022, INNOV SYST SOFTW ENG, DOI 10.1007/s11334-022-00439-5 Caponetto R, 2003, IEEE T EVOLUT COMPUT, V7, P289, DOI 10.1109/TEVC.2003.810069 Chadli M, 2014, COMPUT MATH APPL, V68, P2142, DOI 10.1016/j.camwa.2013.01.013 Chen C., 2022, Front. Energy Res., V10, P1331 Chu HY, 2022, APPL SCI-BASEL, V12, DOI 10.3390/app12188977 Coelho LD, 2009, CHAOS SOLITON FRACT, V39, P510, DOI 10.1016/j.chaos.2007.01.093 Davendra D, 2010, COMPUT MATH APPL, V60, P1088, DOI 10.1016/j.camwa.2010.03.066 Determan J., 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406), P2094, DOI 10.1109/CEC.1999.785533 Coelho LD, 2006, IEEE SYS MAN CYBERN, P3114, DOI 10.1109/ICSMC.2006.384594 Duan YX, 2022, IEEE ACCESS, V10, P29393, DOI 10.1109/ACCESS.2022.3158666 Gandomi AH, 2013, COMMUN NONLINEAR SCI, V18, P89, DOI 10.1016/j.cnsns.2012.06.009 Gandomi AH, 2014, J COMPUT SCI-NETH, V5, P224, DOI 10.1016/j.jocs.2013.10.002 Gao SC, 2021, IEEE T SYST MAN CY-S, V51, P3954, DOI 10.1109/TSMC.2019.2956121 Gharehchopogh FS, 2022, EVOL INTELL, V15, P1777, DOI 10.1007/s12065-021-00590-1 Kaur G, 2018, J COMPUT DES ENG, V5, P275, DOI 10.1016/j.jcde.2017.12.006 Li JJ, 2021, J MAR SCI ENG, V9, DOI 10.3390/jmse9101080 Liu B, 2005, CHAOS SOLITON FRACT, V25, P1261, DOI 10.1016/j.chaos.2004.11.095 LORENZ EN, 1963, J ATMOS SCI, V20, P130, DOI 10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2 Luo RJ, 2021, APPL SOFT COMPUT, V101, DOI 10.1016/j.asoc.2020.107058 Mohamed K, 2012, INT J AUTOM COMPUT, V9, P331, DOI 10.1007/s11633-012-0652-2 Molina D, 2020, COGN COMPUT, V12, P897, DOI 10.1007/s12559-020-09730-8 Özdemir MT, 2021, INT J HYDROGEN ENERG, V46, P16465, DOI 10.1016/j.ijhydene.2020.12.203 Pan PY, 2021, ENERGY REP, V7, P531, DOI 10.1016/j.egyr.2021.08.009 Pluhacek M, 2015, SWARM EVOL COMPUT, V25, P29, DOI 10.1016/j.swevo.2015.10.008 Pluhacek M, 2014, SOFT COMPUT, V18, P631, DOI 10.1007/s00500-014-1222-z Poojitha SN, 2022, STOCH ENV RES RISK A, V36, P3377, DOI 10.1007/s00477-022-02200-7 Sayed GI, 2019, APPL INTELL, V49, P188, DOI 10.1007/s10489-018-1261-8 Sörensen K, 2015, INT T OPER RES, V22, P3, DOI 10.1111/itor.12001 Sprott Julien Clinton, 2003, Chaos and time-series analysis, V69 Teymori S, 2021, INT J COMPUT APPL T, V67, P263, DOI 10.1504/IJCAT.2021.121537 Viktorin A, 2016, IEEE C EVOL COMPUTAT, P4797, DOI 10.1109/CEC.2016.7744404 Wolpert D. H., 1997, IEEE Transactions on Evolutionary Computation, V1, P67, DOI 10.1109/4235.585893 Yin LY, 2021, J AMB INTEL HUM COMP, DOI 10.1007/s12652-020-02611-w Zhang P, 2021, INT J CONTROL AUTOM, V19, P3511, DOI 10.1007/s12555-020-0553-z NR 35 TC 3 Z9 3 U1 7 U2 15 PU TAYLOR & FRANCIS LTD PI ABINGDON PA 2-4 PARK SQUARE, MILTON PARK, ABINGDON OR14 4RN, OXON, ENGLAND SN 1023-6198 EI 1563-5120 J9 J DIFFER EQU APPL JI J. Differ. Equ. Appl. PD DEC 2 PY 2023 VL 29 IS 9-12 SI SI DI 10.1080/10236198.2023.2203779 EA APR 2023 PG 16 WC Mathematics, Applied WE Science Citation Index Expanded (SCI-EXPANDED) SC Mathematics GA EY6P8 UT WOS:000974831300001 DA 2024-09-05 ER PT J AU Barbieri, N Bonchi, F Manco, G AF Barbieri, Nicola Bonchi, Francesco Manco, Giuseppe TI Topic-aware social influence propagation models SO KNOWLEDGE AND INFORMATION SYSTEMS LA English DT Article DE Social influence; Topic modeling; Topic-aware propagation model; Viral marketing AB The study of influence-driven propagations in social networks and its exploitation for viral marketing purposes has recently received a large deal of attention. However, regardless of the fact that users authoritativeness, expertise, trust and influence are evidently topic-dependent, the research on social influence has surprisingly largely overlooked this aspect. In this article, we study social influence from a topic modeling perspective. We introduce novel topic-aware influence-driven propagation models that, as we show in our experiments, are more accurate in describing real-world cascades than the standard (i.e., topic-blind) propagation models studied in the literature. In particular, we first propose simple topic-aware extensions of the well-known Independent Cascade and Linear Threshold models. However, these propagation models have a very large number of parameters which could lead to overfitting. Therefore, we propose a different approach explicitly modeling authoritativeness, influence and relevance under a topic-aware perspective. Instead of considering user-to-user influence, the proposed model focuses on user authoritativeness and interests in a topic, leading to a drastic reduction in the number of parameters of the model. We devise methods to learn the parameters of the models from a data set of past propagations. Our experimentation confirms the high accuracy of the proposed models and learning schemes. C1 [Barbieri, Nicola; Bonchi, Francesco] Yahoo Res, Web Min Res Grp, Barcelona, Spain. [Manco, Giuseppe] ICAR CNR, Cosenza, Italy. C3 Yahoo! Inc; Yahoo! Inc Spain; Consiglio Nazionale delle Ricerche (CNR); Istituto di Calcolo e Reti ad Alte Prestazioni (ICAR-CNR) RP Bonchi, F (corresponding author), Yahoo Res, Web Min Res Grp, Barcelona, Spain. EM barbieri@yahoo-inc.com; bonchi@yahoo-inc.com; manco@icar.cnr.it RI Manco, Giuseppe/O-2428-2015; Manco, Giuseppe/KDN-6515-2024 OI Manco, Giuseppe/0000-0001-9672-3833; Manco, Giuseppe/0000-0001-9672-3833 FU Torres Quevedo Program of the Spanish Ministry of Science and Innovation; European Union [270239] FX This research was partially supported by the Torres Quevedo Program of the Spanish Ministry of Science and Innovation and partially funded by the European Union 7th Framework Programme (FP7/2007-2013) under Grant No. 270239 (ARCOMEM). CR [Anonymous], 2010, P 16 ACM SIGKDD INT [Anonymous], VIEW EM ALGORITHM JU [Anonymous], 2010, MODELING RELATIONSHI [Anonymous], 2001, P 7 ACM SIGKDD INT C [Anonymous], 2007, P 16 INT C WORLD WID [Anonymous], KDD'03, DOI DOI 10.1145/956750.956769 [Anonymous], P 15 ACM SIGKDD INT [Anonymous], 2007, INT C KNOWLEDGE DISC Bakshy E, 2011, P 4 INT C WEB SEARCH Barbieri N, 2012, P IEEE INT C DAT MIN Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993 Blei DM, 2011, COMMUNICATIONS ACM Bonchi F., 2011, IEEE Intelligent Informatics Bulletin, V12, P8 Chen YC, 2012, KNOWL INF SYST, V33, P577, DOI 10.1007/s10115-012-0540-7 DEMPSTER AP, 1977, J ROY STAT SOC B MET, V39, P1, DOI 10.1111/j.2517-6161.1977.tb01600.x Goyal A, 2010, 3 ACM INT C WEB SEAR Goyal A, 2011, PROC VLDB ENDOW, V5, P73, DOI 10.14778/2047485.2047492 Hofmann T., 1999, P UNC ART INT UAI Ienco D, 2010, P SIASP WORKSH ICDM Kimura M, 2006, LECT NOTES ARTIF INT, V4213, P259 Lin X, 2011, P IEEE INT C DAT MIN Liu L, 2010, P 19 ACM C INF KNOWL Mathioudakis M, 2011, P 17 ACM SIGKDD INT McCallum A, 1999, IJCAI-99: PROCEEDINGS OF THE SIXTEENTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOLS 1 & 2, P662 NEMHAUSER GL, 1978, MATH PROGRAM, V14, P265, DOI 10.1007/BF01588971 Richardson Matthew, 2002, P 8 ACM SIGKDD INT C Saito K., 2008, P 12 INT C KNOWL BAS Saito K, 2012, KNOWL INF SYST, V30, P613, DOI 10.1007/s10115-011-0396-2 Steyvers M., 2006, LATENT SEMANTIC ANAL Weng J, 2010, P 3 INT C WEB SEARCH NR 30 TC 145 Z9 164 U1 1 U2 33 PU SPRINGER LONDON LTD PI LONDON PA 236 GRAYS INN RD, 6TH FLOOR, LONDON WC1X 8HL, ENGLAND SN 0219-1377 EI 0219-3116 J9 KNOWL INF SYST JI Knowl. Inf. Syst. PD DEC PY 2013 VL 37 IS 3 BP 555 EP 584 DI 10.1007/s10115-013-0646-6 PG 30 WC Computer Science, Artificial Intelligence; Computer Science, Information Systems WE Science Citation Index Expanded (SCI-EXPANDED) SC Computer Science GA 251NL UT WOS:000326936100003 DA 2024-09-05 ER PT J AU Lang, W AF Lang, Wang TI Research on College English Teaching Quality Assessment Method Based on K-Means Clustering Algorithm SO MATHEMATICAL PROBLEMS IN ENGINEERING LA English DT Article AB The evaluation of college teachers' teaching ability is very important. Currently, the indicators for evaluating the quality of college English teaching are unclear and insufficient. This paper evaluates the quality of university classroom teaching from two aspects: students' learning effect and teachers' teaching work. This paper employs the K-means algorithm to analyze the relationship between the indicators in the evaluation model and teachers' teaching ability, Snds out the speciSc factors that affect teaching activities, and guides the implementation of teachers' teaching work. At the same time, the K-means model is used to evaluate students' learning effect, identify the relationship between the indicators in the model and teachers' teaching ability, and Snd out the speciSc factors that affect teachers to guide the implementation of teachers' teaching work. Experiments show that the method proposed in this paper can solve the problem that the evaluation indicators of traditional evaluation methods are not clear and insufficient and can be better applied to teaching evaluation. C1 [Lang, Wang] Jingdezhen Ceram Univ, Sch Int Studies, Jingdezhen 333403, Jiangxi, Peoples R China. C3 Jingdezhen Ceramic Institute RP Lang, W (corresponding author), Jingdezhen Ceram Univ, Sch Int Studies, Jingdezhen 333403, Jiangxi, Peoples R China. EM 005301@jcu.edu.cn CR Chernova S., 2006, P WORKSHOP MODELING Hongyan Sang, 2021, ICASIT 2021: 2021 International Conference on Aviation Safety and Information Technology, P138, DOI 10.1145/3510858.3510909 Lee ISK, 2004, ENG APPL ARTIF INTEL, V17, P577, DOI 10.1016/j.engappai.2004.08.005 Li P., 2018, P INT C APPL TECHNIQ, P1210 LIN CS, 1995, IEEE T NEURAL NETWOR, V6, P642, DOI 10.1109/72.377969 Liufang Yi, 2021, 2021 IEEE 21st Annual Wireless and Microwave Technology Conference (WAMICON), P1015, DOI 10.1109/TOCS53301.2021.9688932 MIRCHANDANI G, 1989, IEEE T CIRCUITS SYST, V36, P661, DOI 10.1109/31.31313 Moore A., 1993, ADV NEURAL INFORM PR, V6 Qingling Meng, 2021, 2021 International Symposium on Advances in Informatics, Electronics and Education (ISAIEE), P299, DOI 10.1109/ISAIEE55071.2021.00079 Sangita O, 2011, COMM COM INF SC, V125, P108 Smith AJ, 2002, NEURAL NETWORKS, V15, P1107, DOI 10.1016/S0893-6080(02)00083-7 Tang J., 2021, P EAI INT C, P282 Vamvoudakis KG, 2014, INT J ROBUST NONLIN, V24, P2686, DOI 10.1002/rnc.3018 Xi SM, 2015, ADV SOC SCI EDUC HUM, V15, P175 Xu Y., 2021, P EAI INT C, P506 Zhen C, 2021, COMPLEXITY, V2021, DOI 10.1155/2021/5554444 NR 16 TC 2 Z9 2 U1 3 U2 19 PU HINDAWI LTD PI LONDON PA ADAM HOUSE, 3RD FLR, 1 FITZROY SQ, LONDON, W1T 5HF, ENGLAND SN 1024-123X EI 1563-5147 J9 MATH PROBL ENG JI Math. Probl. Eng. PD AUG 8 PY 2022 VL 2022 AR 4134827 DI 10.1155/2022/4134827 PG 8 WC Engineering, Multidisciplinary; Mathematics, Interdisciplinary Applications WE Science Citation Index Expanded (SCI-EXPANDED) SC Engineering; Mathematics GA 6A4EJ UT WOS:000880609500009 OA gold DA 2024-09-05 ER PT J AU Lawelai, H Iswanto, I Raharja, NM AF Lawelai, Herman Iswanto, Iswanto Raharja, Nia Maharani TI Use of Artificial Intelligence in Public Services: A Bibliometric Analysis and Visualization SO TEM JOURNAL-TECHNOLOGY EDUCATION MANAGEMENT INFORMATICS LA English DT Article DE artificial intelligence; public services; bibliometric; vosviewer; Scopus publications ID SMART; AI AB The aim of this research is to survey the current state of research related to the utilization of AI in public services as indexed by Scopus. VOSviewer is used in this research to assess keywords from 183 articles. Furthermore, the Scopus database search results analysis visualizes the characteristics and trends of journals, authors, and subjects connected to the application of artificial intelligence in public service research. Based on the results of this study, it is possible that AI could assist in making cities more intelligent by improving the quality of life for citizens and enhancing the efficiency of their access to public goods and services. It surpasses benchmark models in predicted accuracy because of its more transparent and modifiable model structure. By strategically designing and deploying AI-based technology, traditional public services may be turned into intelligent services. This study contributes to the formation of more relevant research by serving as a reference for future researchers in identifying the position of contribution to the creation of more relevant research. C1 [Lawelai, Herman] Univ Muhammadiyah Buton, Dept Govt Studies, Betoambari St, Baubau City 93724, Indonesia. [Iswanto, Iswanto] Univ Muhammadiyah Yogyakarta, Dept Engineer Profess Program, Brawijaya St, Yogyakarta City 55183, Indonesia. [Raharja, Nia Maharani] UIN Sunan Kalijaga Yogyakarta, Dept Informat Engn, Laksda Adisucipto St, Yogyakarta City 55281, Indonesia. [Lawelai, Herman] Univ Muhammadiyah Buton, Dept Govt Studies, Betoambari St, Baubau City 93724, Indonesia. C3 Universitas Muhammadiyah Buton; Universitas Muhammadiyah Yogyakarta; Sunan Kalijaga State Islamic University; Universitas Muhammadiyah Buton RP Lawelai, H (corresponding author), Univ Muhammadiyah Buton, Dept Govt Studies, Betoambari St, Baubau City 93724, Indonesia. EM herman.lawelai@umbuton.ac.id RI Lawelai, Herman/AAQ-8062-2021 OI Lawelai, Herman/0000-0002-7266-4557 CR Alahmari N, 2022, SUSTAINABILITY-BASEL, V14, DOI 10.3390/su14063313 Anastasiadou M, 2021, TRANSFORM GOV-PEOPLE, V15, P512, DOI 10.1108/TG-03-2020-0045 Arabeyyat OS, 2018, INT J ELECTRON SECUR, V10, P228, DOI 10.1504/IJESDF.2018.10013062 Argyroudis SA, 2022, CLIM RISK MANAG, V35, DOI 10.1016/j.crm.2021.100387 Assenmacher D, 2020, SOC MEDIA SOC, V6, DOI 10.1177/2056305120939264 Azzutti A, 2022, COMPUT LAW SECUR REV, V45, DOI 10.1016/j.clsr.2022.105690 Bin Zikria Y, 2018, SUSTAINABILITY-BASEL, V10, DOI 10.3390/su10103626 Cao GH, 2018, ELECTRON LIBR, V36, P811, DOI 10.1108/EL-11-2017-0248 Chen C, 2015, IEEE TRANS COMPUT SO, V2, P65, DOI 10.1109/TCSS.2016.2516039 Chen T, 2021, GOV INFORM Q, V38, DOI 10.1016/j.giq.2020.101520 de Sousa WG, 2019, GOV INFORM Q, V36, DOI 10.1016/j.giq.2019.07.004 Donthu N, 2021, J BUS RES, V133, P285, DOI 10.1016/j.jbusres.2021.04.070 Fan B, 2020, INFORM PROCESS MANAG, V57, DOI 10.1016/j.ipm.2019.102131 Galetsi P, 2022, SOC SCI MED, V301, DOI 10.1016/j.socscimed.2022.114973 Gesk TS, 2022, GOV INFORM Q, V39, DOI 10.1016/j.giq.2022.101704 Hoffman DA, 2020, J LAW BIOSCI, V7, DOI 10.1093/jlb/lsaa043 James A, 2022, CRIT SOC POLICY, V42, P22, DOI 10.1177/0261018320985463 Kankanhalli A, 2019, GOV INFORM Q, V36, P304, DOI 10.1016/j.giq.2019.02.003 Kuziemski M, 2020, TELECOMMUN POLICY, V44, DOI 10.1016/j.telpol.2020.101976 Lawelai H., 2022, STUDIES MEDIA COMMUN, V10, P105, DOI [10.11114/smc.v10i2.5603, DOI 10.11114/SMC.V10I2.5603] Martinez-Gil J, 2022, J INF KNOWL MANAG, V21, DOI 10.1142/S0219649222500435 McKelvey F, 2019, CAN J COMMUN, V44, P43, DOI 10.22230/cjc.2019v44n2a3509 Mercader-Moyano P, 2021, SUSTAIN CITIES SOC, V73, DOI 10.1016/j.scs.2021.103082 Nissim G, 2021, TECHNOL SOC, V67, DOI 10.1016/j.techsoc.2021.101732 Nurmandi A, 2021, COMM COM INF SC, V1499, P472, DOI 10.1007/978-3-030-90179-0_60 Patulny R, 2020, EMOTION SOC, V2, P79, DOI 10.1332/263168919X15750193136130 Popkova EG, 2022, SOCIO-ECON PLAN SCI, V80, DOI 10.1016/j.seps.2021.101039 Radu LD, 2020, SMART CITIES-BASEL, V3, P1022, DOI 10.3390/smartcities3030051 Sarvari PA, 2016, KYBERNETES, V45, P1129, DOI 10.1108/K-07-2015-0180 Singh S, 2020, SUSTAIN CITIES SOC, V63, DOI 10.1016/j.scs.2020.102364 Singh VK, 2021, SCIENTOMETRICS, V126, P5113, DOI 10.1007/s11192-021-03948-5 Strielkowski W., 2022, SUSTAINABILITY-BASEL, V14 Subandi Y., 2022, P 1 INT C DEM SOC TR van Noordt C, 2022, GOV INFORM Q, V39, DOI 10.1016/j.giq.2022.101714 van Noordt C, 2022, SOC SCI COMPUT REV, V40, P426, DOI 10.1177/0894439320980449 van Veenstra AF, 2021, TRANSFORM GOV-PEOPLE, V15, P396, DOI 10.1108/TG-09-2019-0095 Wamba SF, 2020, INT J INFORM MANAGE, V52, DOI 10.1016/j.ijinfomgt.2019.102064 Wilson C, 2022, GOV INFORM Q, V39, DOI 10.1016/j.giq.2021.101652 Wimmer M.A., 2020, eJournal of eDemocracy and Open Government, V12, P87, DOI DOI 10.29379/JEDEM.V12I1.594 Yang SY, 2022, SAFETY SCI, V147, DOI 10.1016/j.ssci.2021.105623 Zhang XJ, 2022, J TRANSP GEOGR, V100, DOI 10.1016/j.jtrangeo.2022.103310 NR 41 TC 1 Z9 1 U1 4 U2 14 PU UIKTEN - ASSOC INFORMATION COMMUNICATION TECHNOLOGY EDUCATION & SCIENCE PI NOVI PAZAR PA HILMA ROZAJCA 15, NOVI PAZAR, 36300, SERBIA SN 2217-8309 EI 2217-8333 J9 TEM J JI TEM J. PD MAY PY 2023 VL 12 IS 2 BP 798 EP 807 DI 10.18421/TEM122-24 PG 10 WC Computer Science, Information Systems WE Emerging Sources Citation Index (ESCI) SC Computer Science GA I6PD4 UT WOS:001003974800024 OA gold DA 2024-09-05 ER PT J AU Kajikawa, Y Abe, K Noda, S AF Kajikawa, Yuya Abe, Koji Noda, Suguru TI Filling the gap between researchers studying different materials and different methods: a proposal for structured keywords SO JOURNAL OF INFORMATION SCIENCE LA English DT Article DE structured keywords; bibliographic approach; natural language processing; ontology ID LITERATURE-BASED DISCOVERY; RESEARCH-AND-DEVELOPMENT; KNOWLEDGE MANAGEMENT; FISH OIL; ONTOLOGIES; INFORMATION; PRINCIPLES; ABSTRACTS; RAYNAUDS; SUPPORT AB Scientific publications written in natural language still play a central role as our knowledge source. However, due to the flood of publications, obtaining a comprehensive view even on a topic of limited scope, from a stack of publications is becoming an arduous task. Examples are presented from our recent experiences in the materials science field, where information is not shared among researchers studying different materials and different methods. To overcome the limitation, we propose a structured keywords method to reinforce the functionality of a future e-library. C1 Univ Tokyo, Sch Engn, Inst Engn Innovat, Bunkyo Ku, Tokyo 1138656, Japan. Univ Tokyo, Intelligent Modelling Lab, Tokyo, Japan. Univ Tokyo, Grad Sch Engn, Dept Chem Syst Engn, Tokyo, Japan. C3 University of Tokyo; University of Tokyo; University of Tokyo RP Kajikawa, Y (corresponding author), Univ Tokyo, Sch Engn, Inst Engn Innovat, Bunkyo Ku, 2-11-16 Yayoi, Tokyo 1138656, Japan. EM kaji@biz-model.t.u-tokyo.ac.jp RI Noda, Suguru/C-1365-2008; Kajikawa, Yuya/C-1996-2015 OI Noda, Suguru/0000-0002-7305-5307; Kajikawa, Yuya/0000-0003-3577-5167 CR [Anonymous], 1978, ROLE PERCEPT VISUAL Blair DC, 2002, J AM SOC INF SCI TEC, V53, P1019, DOI 10.1002/asi.10113 Burnett K, 1999, J AM SOC INFORM SCI, V50, P1209, DOI 10.1002/(SICI)1097-4571(1999)50:13<1209::AID-ASI6>3.0.CO;2-Y Chandrasekaran B, 1999, IEEE INTELL SYST APP, V14, P20, DOI 10.1109/5254.747902 Chen GT, 2003, RAIRO-OPER RES, V37, P179, DOI 10.1051/ro:2003020 Cheng H, 2003, J CRYST GROWTH, V254, P46, DOI 10.1016/S0022-0248(03)01176-X COLE S, 2000, WEB KNOWLEDGE FESTSC de Bruijn B, 2002, INT J MED INFORM, V67, P7, DOI 10.1016/S1386-5056(02)00050-3 Ding Y, 2002, J INFORM SCI, V28, P375, DOI 10.1177/016555150202800503 Ding Y, 2001, J INFORM SCI, V27, P377, DOI 10.1177/016555150102700603 Ding Y, 2002, J INFORM SCI, V28, P123, DOI 10.1177/0165551024234020 GARFIELD E, 1955, SCIENCE, V122, P108, DOI 10.1126/science.122.3159.108 Gordon MD, 1996, J AM SOC INFORM SCI, V47, P116, DOI 10.1002/(SICI)1097-4571(199602)47:2<116::AID-ASI3>3.0.CO;2-1 Gruber TR, 1995, INT J HUM-COMPUT ST, V43, P907, DOI 10.1006/ijhc.1995.1081 Guarino N, 1997, INT J HUM-COMPUT ST, V46, P293, DOI 10.1006/ijhc.1996.0091 HARTER SP, 1993, J AM SOC INFORM SCI, V44, P543, DOI 10.1002/(SICI)1097-4571(199310)44:9<543::AID-ASI4>3.0.CO;2-F Hartley J, 2004, J MED LIBR ASSOC, V92, P368 Hartley J, 2003, J INFORM SCI, V29, P433, DOI 10.1177/01655515030295008 Hartley J, 2000, B MED LIBR ASSOC, V88, P332 HARTMANN H, 1991, J MATER SCI, V26, P4917, DOI 10.1007/BF00549871 HIX CF, 1958, PYS LAWS EFFECTS HULL R, 1987, COMPUT SURV, V19, P201, DOI 10.1145/45072.45073 Kajikawa Y, 2004, CHEM VAPOR DEPOS, V10, P221, DOI 10.1002/cvde.200306285 Kajikawa Y, 2003, J VAC SCI TECHNOL A, V21, P1943, DOI 10.1116/1.1619414 KAMADA T, 1989, INFORM PROCESS LETT, V31, P7, DOI 10.1016/0020-0190(89)90102-6 Klahr D, 1999, PSYCHOL BULL, V125, P524, DOI 10.1037/0033-2909.125.5.524 Kostoff RN, 2002, J INF SCI, V28, P257 Kostoff RN, 2001, TECHNOL FORECAST SOC, V68, P223, DOI 10.1016/S0040-1625(01)00133-0 KOSTOFF RN, 2003, 417220 DTIC ADA Langley P, 2000, INT J HUM-COMPUT ST, V53, P393, DOI 10.1006/ijhc.2000.0396 Li TQ, 2002, J VAC SCI TECHNOL A, V20, P583, DOI 10.1116/1.1458944 Mabe MA, 2002, ASLIB PROC, V54, P149, DOI 10.1108/00012530210441692 MacRoberts MH, 1996, SCIENTOMETRICS, V36, P435, DOI 10.1007/BF02129604 MACROBERTS MH, 1989, J AM SOC INFORM SCI, V40, P342, DOI 10.1002/(SICI)1097-4571(198909)40:5<342::AID-ASI7>3.0.CO;2-U McInerney C, 2002, J AM SOC INF SCI TEC, V53, P1009, DOI 10.1002/asi.10109 Murray-Rust P, 1999, J CHEM INF COMP SCI, V39, P928, DOI 10.1021/ci990052b Murray-Rust P., 2002, DATA SCI J, V1, P128 Murray-Rust P., 2002, Data Science Journal, V1, P84, DOI [DOI 10.2481/DSJ.1.84, 10.2481/dsj.1.84] Olson GB, 2000, SCIENCE, V288, P993, DOI 10.1126/science.288.5468.993 Olson GB, 1997, SCIENCE, V277, P1237, DOI 10.1126/science.277.5330.1237 Ono T, 2001, BIOINFORMATICS, V17, P155, DOI 10.1093/bioinformatics/17.2.155 Ozawa M, 2003, PHYS REV A, V67, DOI 10.1103/PhysRevA.67.042105 Pin-Shan Chen P., 1976, ACM Transactions on Database Systems, V1, P9, DOI 10.1145/320434.320440 Price D. J. d. S., 1963, Little Science, Big Science PRICE DJD, 1965, SCIENCE, V149, P510 RAVI KV, 1992, J MATER RES, V7, P384, DOI 10.1557/JMR.1992.0384 Rzhetsky A, 2004, J BIOMED INFORM, V37, P43, DOI 10.1016/j.jbi.2003.10.001 Shamsfard M, 2004, INT J HUM-COMPUT ST, V60, P17, DOI 10.1016/j.ijhcs.2003.08.001 Smalheiser NR, 1998, COMPUT METH PROG BIO, V57, P149, DOI 10.1016/S0169-2607(98)00033-9 SWANSON DR, 1986, PERSPECT BIOL MED, V30, P7 SWANSON DR, 1987, J AM SOC INFORM SCI, V38, P228, DOI 10.1002/(SICI)1097-4571(198707)38:4<228::AID-ASI2>3.0.CO;2-G Toyoda T, 2004, BIOINFORMATICS, V20, P1759, DOI 10.1093/bioinformatics/bth165 Uschold M, 1998, KNOWL ENG REV, V13, P5, DOI 10.1017/S0269888998001040 Valdés-Pérez RE, 1999, ARTIF INTELL, V107, P335, DOI 10.1016/S0004-3702(98)00116-7 van der Vet P, 2000, LECT NOTES COMPUT SC, V1905, P205 van der Vet PE, 1998, IEEE T KNOWL DATA EN, V10, P513, DOI 10.1109/69.706054 Weeber M, 2001, J AM SOC INF SCI TEC, V52, P548, DOI 10.1002/asi.1104 White M.A., 1999, Properties of Materials Wiener N., 1945, PHILOS SCI, V12, P316, DOI DOI 10.1086/286874 Yamaguchi Y, 2001, J NANOPART RES, V3, P105, DOI 10.1023/A:1017934502911 Yandell MD, 2002, NAT REV GENET, V3, P601, DOI 10.1038/nrg861 Ziman J, 2001, SCI ENG ETHICS, V7, P165, DOI 10.1007/s11948-001-0038-2 2003, NASDA NR 63 TC 26 Z9 27 U1 0 U2 26 PU SAGE PUBLICATIONS LTD PI LONDON PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND SN 0165-5515 EI 1741-6485 J9 J INF SCI JI J. Inf. Sci. PY 2006 VL 32 IS 6 BP 511 EP 524 DI 10.1177/0165551506067125 PG 14 WC Computer Science, Information Systems; Information Science & Library Science WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Computer Science; Information Science & Library Science GA 126GE UT WOS:000243499800002 DA 2024-09-05 ER PT C AU Chi, DAW Huang, YY AF Chi, Dianwei Huang, Yinyin GP IEEE TI Research on Application of Online Teaching Performance Prediction Based on Data Mining Algorithm SO 2021 IEEE INTERNATIONAL CONFERENCE ON CONSUMER ELECTRONICS AND COMPUTER ENGINEERING (ICCECE) LA English DT Proceedings Paper CT IEEE International Conference on Consumer Electronics and Computer Engineering (ICCECE) CY JAN 15-17, 2021 CL Guangzhou, PEOPLES R CHINA DE performance warning; naive bayes; software programming; classification AB The application of data mining in teaching has entered the stage of development, During the epidemic, colleges and universities have accumulated a lane amount of online teaching statistical data. These data can he used to establish a classification model for predicting student performance. In this paper, the Naive Bayes algorithm is improved to wise the problem of underflosw when the data feature values are too large. The student performance prediction classification model is constructed, and the classification efficiency and accuracy are improved to a certain extent. The improved model is used to predict and warn the performance in the mid-term stage to prevent The phenomenon of a large proportion of missing subjects, thereby ensuring the quality of students' learning throughout the semester. C1 [Chi, Dianwei] Shandong Vocat Univ Foreign Affairs, Coll Informat & Control Engn, Weihai, Peoples R China. [Huang, Yinyin] WKW Automot Parts Co Ltd, South Taishan Rd, Beijing, Peoples R China. RP Chi, DAW (corresponding author), Shandong Vocat Univ Foreign Affairs, Coll Informat & Control Engn, Weihai, Peoples R China. EM dianwei.chi@163.com; miaomiao6983@163.com CR Ahn J, 2016, INT CONF BIG DATA, P239, DOI 10.1109/BIGCOMP.2016.7425919 Berend D, 2015, J MACH LEARN RES, V16, P1519 Chen Lingping, 2019, INFORM COMPUTER THEO, P66 Dong LJ, 2016, ROCK MECH ROCK ENG, V49, P183, DOI 10.1007/s00603-015-0733-y Dou J, 2018, MODERN INFORMATIONN, V2, P108 Du Ting, 2016, RES APPL NAIVE BAYES Hu Zhiqi, 2019, SOFTWARE, V040, P115 Knight JM, 2014, BMC BIOINFORMATICS, V15, DOI 10.1186/s12859-014-0401-3 Lulu Dong, 2014, RES IMPLEMENTATION C Ren Shichao, 2019, COMPUTER SYSTEM APPL, V28, P135 Su Xujun, 2019, COMPUTER APPL SOFTWA, V36 Wang Dedong, 2019, COMPUTER PROGRAMMING, P94 [王海鹃 WANG Hai-juan], 2010, [计算机工程与设计, Computer Engineering and Design], V31, P1149 Wei Huijian, 2014, RES NAIVE BAYES CLAS Wu Bei, 2019, RES APPL PERFORMANCE Zheng Lixiang, 2020, ELECT PRODUCT RELIAB, V38, P49 NR 16 TC 1 Z9 1 U1 1 U2 10 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA BN 978-1-7281-8319-0 PY 2021 BP 394 EP 397 DI 10.1109/ICCECE51280.2021.9342597 PG 4 WC Computer Science, Interdisciplinary Applications; Engineering, Electrical & Electronic; Telecommunications WE Conference Proceedings Citation Index - Science (CPCI-S) SC Computer Science; Engineering; Telecommunications GA BS0AM UT WOS:000680655600075 DA 2024-09-05 ER PT J AU Rodrigues, M Silva, R Borges, AP Franco, M Oliveira, C AF Rodrigues, Margarida Silva, Rui Borges, Ana Pinto Franco, Mario Oliveira, Cidalia TI Artificial intelligence: threat or asset to academic integrity? A bibliometric analysis SO KYBERNETES LA English DT Article; Early Access DE Artificial intelligence; Academic integrity; Plagiarism; Dishonesty; Students ID ENGINEERING STUDENTS; CONTEXTUAL INFLUENCES; COCITATION ANALYSIS; DISHONESTY; PLAGIARISM; PERCEPTIONS; ENVIRONMENTS; MISCONDUCT; EDUCATION; BEHAVIOR AB Purpose- This study aims to address a systematic literature review (SLR) using bibliometrics on the relationship between academic integrity and artificial intelligence (AI), to bridge the scattering of literature on this topic, given the challenge and opportunity for the educational and academic community. Design/methodology/approach- This review highlights the enormous social influence of COVID-19 by mapping the extensive yet distinct and fragmented literature in AI and academic integrity fields. Based on 163 publications from the Web of Science, this paper offers a framework summarising the balance between AI and academic integrity. Findings- With the rapid advancement of technology, AI tools have exponentially developed that threaten to destroy students' academic integrity in higher education. Despite this significant interest, there is a dearth of academic literature on how AI can help in academic integrity. Therefore, this paper distinguishes two significant thematical patterns: academic integrity and negative predictors of academic integrity. Practical implications-This study also presents several contributions by showing that tools associated with AI can act as detectors of students who plagiarise. That is, they can be useful in identifying students with fraudulent behaviour. Therefore, it will require a combined effort of public, private academic and educational institutions and the society with affordable policies. Originality/value- This study proposes a new, innovative framework summarising the balance between AI and academic integrity. C1 [Rodrigues, Margarida] Inst Europeu Estudos Super Fafe, CEFAGE UBI Res Ctr, Covilha, Portugal. [Silva, Rui] Univ Tras Os Montes & Alto Douro, CETRAD Res Ctr, Vila Real, Portugal. [Borges, Ana Pinto] ISAG, Res Ctr Business Sci & Tourism CICET, Porto, Portugal. [Franco, Mario] Univ Beira Interior, CEFAGE UBI Res Ctr, Dept Management & Econ, Covilha, Portugal. [Oliveira, Cidalia] Univ Portucalense, REMIT, Braga, Portugal. [Oliveira, Cidalia] Univ Minho, Braga, Portugal. C3 University of Tras-os-Montes & Alto Douro; Universidade da Beira Interior; Universidade Portucalense Infante D. Henrique; Universidade do Minho RP Franco, M (corresponding author), Univ Beira Interior, CEFAGE UBI Res Ctr, Dept Management & Econ, Covilha, Portugal. EM mfranco@ubi.pt RI Franco, Mário/ABG-1980-2021; Oliveira, Cidália/AAV-3204-2020; Pinto Borges, Ana/AAO-9585-2020 OI Franco, Mário/0000-0001-7818-0206; Oliveira, Cidália/0000-0002-3512-6151; Pinto Borges, Ana/0000-0002-4942-079X FU National Funds of the FCT - Portuguese Foundation for Science and Technology [UIDB/04007/2020, UIDB/05105/2020, UIDB/04630/2020, UI/BD/151029/2021, UIDB/04011/2020, UIDB/04630/2022, CEECINST/00127/2018/CP1501/CT0010] FX The authors are grateful to the journal's anonymous referees for their extremely useful suggestions to improve the quality of the paper. The authors gratefully acknowledge financial support from National Funds of the FCT - Portuguese Foundation for Science and Technology within the project UIDB/04007/2020, UIDB/05105/2020, UIDB/04630/2020, UI/BD/151029/2021, UIDB/04011/2020 (https://doi.org/10.54499/UIDB/04011/2020), UIDB/04630/2022 and by CEECINST/00127/2018/CP1501/CT0010. CR Abd-Elaal ES, 2022, EUR J ENG EDUC, V47, P725, DOI 10.1080/03043797.2022.2046709 Abdulrahman M, 2017, MED EDUC ONLINE, V22, DOI 10.1080/10872981.2017.1372669 Ahsan K, 2022, ASSESS EVAL HIGH EDU, V47, P523, DOI 10.1080/02602938.2021.1931660 AJZEN I, 1991, ORGAN BEHAV HUM DEC, V50, P179, DOI 10.1016/0749-5978(91)90020-T Akçapinar G, 2015, COMPUT EDUC, V87, P123, DOI 10.1016/j.compedu.2015.04.007 Albuquerque F., 2008, Revista Da CTOC, V104, P53 Alessio HM, 2021, FRONT EDUC, V6, DOI 10.3389/feduc.2021.629220 Alessio HM, 2017, ONLINE LEARN, V21, P146 Alin P, 2020, INT J EDUC INTEGR, V16, DOI 10.1007/s40979-020-00056-4 Amrane-Cooper L, 2021, OPEN PRAX, V13, P378, DOI 10.51944/openpraxis.13.4.461 Aplin-Snider C, 2021, NURS EDUC TODAY, V107, DOI 10.1016/j.nedt.2021.105099 Aria M, 2017, J INFORMETR, V11, P959, DOI 10.1016/j.joi.2017.08.007 Awasthi S, 2019, DESIDOC J LIB INF TE, V39, P94, DOI 10.14429/djlit.39.2.13622 Awosoga O, 2021, INT J EDUC INTEGR, V17, DOI 10.1007/s40979-021-00090-w Babu TA, 2011, MED TEACH, V33, P759, DOI 10.3109/0142159X.2011.576717 Bandara W., 2011, INFORM SYST J, V1, P1, DOI DOI 10.4018/JESMA.2010100105 Bastos M.I., 2021, Disaster Management and Human Health Risk VII : Reducing Risk, Improving Outcomes, V207, P135, DOI [10.2495/DMAN210111, DOI 10.2495/DMAN210111] Beck V, 2014, ACT LEARN HIGH EDUC, V15, P65, DOI 10.1177/1469787413514646 Becker S., 2012, UNDERSTANDING RES SO Birks M, 2018, NURS EDUC TODAY, V65, P96, DOI 10.1016/j.nedt.2018.02.040 Blau I, 2017, COMPUT HUM BEHAV, V73, P629, DOI 10.1016/j.chb.2017.03.074 Bloomfield JG, 2021, NURS EDUC TODAY, V100, DOI 10.1016/j.nedt.2021.104794 Bowers W.J., 1964, STUDENT DISHONESTY I Bretag T, 2019, STUD HIGH EDUC, V44, P1837, DOI 10.1080/03075079.2018.1462788 Bretag T, 2014, STUD HIGH EDUC, V39, P1150, DOI 10.1080/03075079.2013.777406 Brimble M, 2005, AUST EDUC RES, V32, P19, DOI 10.1007/BF03216825 Brown T, 2018, NURS EDUC TODAY, V70, P13, DOI 10.1016/j.nedt.2018.08.005 Burgason KA, 2019, INNOV HIGH EDUC, V44, P203, DOI 10.1007/s10755-019-9457-3 Carpenter DD, 2006, J ENG EDUC, V95, P181, DOI 10.1002/j.2168-9830.2006.tb00891.x Chala WD, 2021, INT J EDUC INTEGR, V17, DOI 10.1007/s40979-020-00069-z Chapman DW, 2016, STUD HIGH EDUC, V41, P247, DOI 10.1080/03075079.2014.927854 Chertok IRA, 2014, NURS EDUC TODAY, V34, P1324, DOI 10.1016/j.nedt.2013.06.002 Cowls J, 2021, NAT MACH INTELL, V3, P111, DOI 10.1038/s42256-021-00296-0 Currie W, 2017, INT J EDUC INTEGR, V13, DOI 10.1007/s40979-017-0017-2 Cutri J, 2021, INT J EDUC INTEGR, V17, DOI 10.1007/s40979-021-00074-w Daffin LW, 2018, ONLINE LEARN, V22, P131, DOI 10.24059/olj.v22i1.1079 Dannhoferová J, 2022, J EFFIC RESPONSIB ED, V15, P10, DOI 10.7160/eriesj.2022.150102 De Maio C, 2019, ISS EDUC RES, V29, P1131 Dervis H, 2019, J SCIENTOMETR RES, V8, P156, DOI 10.5530/jscires.8.3.32 Devine CA, 2018, NURS EDUC TODAY, V60, P133, DOI 10.1016/j.nedt.2017.10.005 Diekhoff GM, 1996, RES HIGH EDUC, V37, P487, DOI 10.1007/BF01730111 DiPaulo D, 2022, INT J EDUC INTEGR, V18, DOI 10.1007/s40979-021-00097-3 Dixon Z, 2021, ONLINE LEARN, V25, P249, DOI 10.24059/olj.v25i3.2422 Donthu N, 2021, J BUS RES, V133, P285, DOI 10.1016/j.jbusres.2021.04.070 Eaton SE, 2018, INT J EDUC INTEGR, V14, DOI 10.1007/s40979-018-0028-7 Echchakoui S, 2020, J MARK ANAL, V8, P165, DOI 10.1057/s41270-020-00081-9 Ekundayo TC, 2018, PLOS ONE, V13, DOI 10.1371/journal.pone.0207655 Elzubeir MA, 2003, MED EDUC, V37, P589, DOI 10.1046/j.1365-2923.2003.01552.x Eret E, 2014, ASSESS EVAL HIGH EDU, V39, P1002, DOI 10.1080/02602938.2014.880776 Erguvan ID, 2022, INT J EDUC INTEGR, V18, DOI 10.1007/s40979-022-00120-1 Evans JM, 2022, ACAD MANAG LEARN EDU, V21, P580, DOI 10.5465/amle.2020.0557 Fan D, 2022, INT J MANAG REV, V24, P171, DOI 10.1111/ijmr.12291 Farahat A, 2022, INT J EDUC INTEGR, V18, DOI 10.1007/s40979-021-00095-5 FELIPE Bruno., 2017, Revista do Curso de Direito da Universidade Estacio de Sa, V20, n, P150, DOI DOI 10.5935/2448-0517.20170007 Ferguson SL, 2022, INT J MANAG EDUC-OXF, V20, DOI 10.1016/j.ijme.2022.100677 Ferrer J, 2022, HIGH EDUC, V83, P317, DOI 10.1007/s10734-020-00657-5 Foltynek T, 2018, INT J EDUC INTEGR, V14, DOI 10.1007/s40979-018-0027-8 FRANKLYNSTOKES A, 1995, STUD HIGH EDUC, V20, P159, DOI 10.1080/03075079512331381673 Gallant TB, 2007, REV HIGH EDUC, V30, P391 Gamage SHPW, 2022, INT J STEM EDUC, V9, DOI 10.1186/s40594-021-00323-x Gao S., 2023, SearchRxiv, V2023, DOI [10.1079/searchrxiv.2023.00120, DOI 10.1079/SEARCHRXIV.2023.00120] Gar?eld E., 1979, pdf Geissdoerfer M, 2017, J CLEAN PROD, V143, P757, DOI 10.1016/j.jclepro.2016.12.048 Gmür M, 2003, SCIENTOMETRICS, V57, P27, DOI 10.1023/A:1023619503005 Golan Maureen S., 2020, Environment Systems & Decisions, V40, P222, DOI 10.1007/s10669-020-09777-w Gomez O.D.C., 2008, Acesso, V13 Gracio M.C. C., 2016, Encontros Bibli: Revista eletronica de Biblioteconomia e Ciencia da Informacao, V21, P82, DOI [DOI 10.5007/15182924.2016V21N47P82, 10.5007/1518-2924.2016v21n47p82, DOI 10.5007/1518-2924.2016V21N47P82] Guangul FM, 2020, EDUC ASSESS EVAL ACC, V32, P519, DOI 10.1007/s11092-020-09340-w Paredes SG, 2021, DISTANCE EDUC, V42, P200, DOI 10.1080/01587919.2021.1910495 Guerrero-Dib JG, 2020, INT J EDUC INTEGR, V16, DOI 10.1007/s40979-020-0051-3 Gullifer JM, 2014, STUD HIGH EDUC, V39, P1202, DOI 10.1080/03075079.2013.777412 Gusenbauer M, 2020, RES SYNTH METHODS, V11, P181, DOI 10.1002/jrsm.1378 Harding TS, 2004, SCI ENG ETHICS, V10, P311 Harper MG, 2006, NURS EDUC TODAY, V26, P672, DOI 10.1016/j.nedt.2006.07.012 Hilliger I, 2022, J COMPUT ASSIST LEAR, V38, P1507, DOI 10.1111/jcal.12755 Hirsch JE, 2005, P NATL ACAD SCI USA, V102, P16569, DOI 10.1073/pnas.0507655102 Holden OL, 2021, FRONT EDUC, V6, DOI 10.3389/feduc.2021.639814 Hudd SS, 2009, J HIGH EDUC-UK, V80, P146, DOI 10.1353/jhe.0.0039 Jargalsaikhan B E., 2019, Molecules, V9, P148 Jeong YK, 2014, J INFORMETR, V8, P197, DOI 10.1016/j.joi.2013.12.001 Jia JY, 2022, INTERACT TECHNOL SMA, V19, P112, DOI 10.1108/ITSE-12-2020-0246 Johnson C, 2022, INT J EDUC INTEGR, V18, DOI 10.1007/s40979-022-00104-1 Kampa RK, 2020, DESIDOC J LIB INF TE, V40, P369, DOI 10.14429/djlit.40.6.16036 Karim NSA, 2009, COMPUT EDUC, V53, P86, DOI 10.1016/j.compedu.2009.01.001 Kascáková E, 2022, J TEACH ENGL SPECIF, V10, P201, DOI 10.22190/JTESAP2202201K Kasneci E, 2023, LEARN INDIVID DIFFER, V103, DOI 10.1016/j.lindif.2023.102274 Keener TA, 2019, BMC MED EDUC, V19, DOI 10.1186/s12909-019-1645-4 Khalil M, 2022, J COMPUT ASSIST LEAR, V38, P1589, DOI 10.1111/jcal.12713 Khan ZR, 2022, INT J EDUC INTEGR, V18, DOI 10.1007/s40979-022-00118-9 Kraus S, 2021, SAGE OPEN, V11, DOI 10.1177/21582440211047576 Lancaster T, 2021, INT J EDUC INTEGR, V17, DOI 10.1007/s40979-021-00070-0 Lauritzen J, 2023, AGING MENT HEALTH, V27, P343, DOI 10.1080/13607863.2022.2046699 Levine J, 2018, ASSESS EVAL HIGH EDU, V43, P1094, DOI 10.1080/02602938.2018.1434127 Lim WM, 2022, SERV IND J, V42, P481, DOI 10.1080/02642069.2022.2047941 Luck JA, 2022, HIGH EDUC RES DEV, V41, P1152, DOI 10.1080/07294360.2021.1890697 Lucky A, 2019, J SCI EDUC TECHNOL, V28, P414, DOI 10.1007/s10956-019-9770-8 Macfarlane B, 2014, STUD HIGH EDUC, V39, P339, DOI 10.1080/03075079.2012.709495 Marengo A., 2023, The educational value of artificial intelligence in higher education: a ten-year systematic literature review Martins R.H., 2022, Internet Latent Corpus Journal, V12, P127 Maryon T, 2022, EDUC SCI, V12, DOI 10.3390/educsci12120901 McCabe DL, 1999, J HIGH EDUC, V70, P211, DOI 10.2307/2649128 MCCABE DL, 1993, J HIGH EDUC, V64, P522, DOI 10.2307/2959991 McCabe DL, 2002, RES HIGH EDUC, V43, P357, DOI 10.1023/A:1014893102151 McCabe DL, 2001, J HIGH EDUC-UK, V72, P29, DOI 10.2307/2649132 McCabe DL, 1997, RES HIGH EDUC, V38, P379, DOI 10.1023/A:1024954224675 McCabe DL, 2008, RES HIGH EDUC, V49, P451, DOI 10.1007/s11162-008-9092-9 McCabe DL, 2006, ACAD MANAG LEARN EDU, V5, P294, DOI 10.5465/AMLE.2006.22697018 Mentzer J.T., 1995, No Title, V16, P231 Miller AD, 2017, THEOR PRACT, V56, P121, DOI 10.1080/00405841.2017.1283574 Miller A, 2011, J EXP EDUC, V79, P169, DOI 10.1080/00220970903567830 Möller A, 2023, J FURTH HIGHER EDUC, V47, P338, DOI 10.1080/0309877X.2022.2130195 Mulisa F, 2021, COGENT EDUC, V8, DOI 10.1080/2331186X.2021.1935408 Newton P, 2016, ASSESS EVAL HIGH EDU, V41, P482, DOI 10.1080/02602938.2015.1024199 Nonis S., 2001, J EDUC BUS, V77, P69, DOI DOI 10.1080/08832320109599052 OCONNOR DO, 1981, LIBR TRENDS, V30, P9 Olofsson H, 2017, RES SYNTH METHODS, V8, P275, DOI 10.1002/jrsm.1237 Ottaway K, 2017, ADV PHYSIOL EDUC, V41, P368, DOI 10.1152/advan.00103.2016 Ouzzani M, 2016, SYST REV-LONDON, V5, DOI 10.1186/s13643-016-0384-4 Özcan M, 2019, BMC MED EDUC, V19, DOI 10.1186/s12909-019-1865-7 Paesano A, 2023, INT J ORGAN ANAL, V31, P1694, DOI 10.1108/IJOA-09-2020-2421 Palmatier RW, 2018, J ACAD MARKET SCI, V46, P1, DOI 10.1007/s11747-017-0563-4 Park C., 2003, Assessment and Evaluation in Higher Education, V28, P471, DOI [DOI 10.1080/02602930301677, https://doi.org/10.1080/02602930301677, 10.1080/02602930301677] Park EJ, 2013, NURS EDUC TODAY, V33, P346, DOI 10.1016/j.nedt.2012.12.015 Pedro E, 2018, J INTELLECT CAP, V19, P407, DOI 10.1108/JIC-11-2016-0118 Peters MDJ, 2022, JBI EVID SYNTH, V20, P953, DOI 10.11124/JBIES-21-00242 Piteira M., 2019, 14 IBERIAN C INFORM Popenici Stefan A D, 2017, Res Pract Technol Enhanc Learn, V12, P22, DOI 10.1186/s41039-017-0062-8 Powell WW, 1996, ADMIN SCI QUART, V41, P116, DOI 10.2307/2393988 Prasad S, 2005, INFORM MANAGE-AMSTER, V42, P1137, DOI 10.1016/j.im.2005.01.003 Qaderi A, 2016, INT J DIGIT SOC, V7, P1165, DOI 10.20533/ijds.2040.2570.2016.0142 Quinlan K.M., 2008, New Directions for Evaluation, P61, DOI [DOI 10.1002/EV.261, 10.1002/ev] Ramírez-Noriega A, 2018, COMPUT INFORM, V37, P509, DOI 10.4149/cai_2018_2_509 Ramos R, 2020, EDUC SCI, V10, DOI 10.3390/educsci10120351 Reedy A, 2021, INT J EDUC INTEGR, V17, DOI 10.1007/s40979-021-00075-9 Rodrigues M, 2023, INT J ORGAN ANAL, V31, P3413, DOI 10.1108/IJOA-05-2022-3293 Rodrigues M, 2022, J FAM BUS MANAG, V12, P780, DOI 10.1108/JFBM-12-2020-0116 Rowland S, 2018, ASSESS EVAL HIGH EDU, V43, P652, DOI 10.1080/02602938.2017.1391948 Rowley J., 2004, Management research news, V27, P31, DOI [10.1108/01409170410784185, DOI 10.1108/01409170410784185] Royal KD, 2018, J VET MED EDUC, V45, P43, DOI 10.3138/jvme.0816-126r2 Seaton KA, 2019, INT J MATH EDUC SCI, V50, P1063, DOI 10.1080/0020739X.2019.1640399 Seeland J, 2022, INT J MATH EDUC SCI, V53, P673, DOI 10.1080/0020739X.2021.1981472 Seuring S, 2008, J CLEAN PROD, V16, P1699, DOI 10.1016/j.jclepro.2008.04.020 Seuring S, 2012, SUPPLY CHAIN MANAG, V17, P544, DOI 10.1108/13598541211258609 Small H., 1973, pdf Snyder H, 2019, J BUS RES, V104, P333, DOI 10.1016/j.jbusres.2019.07.039 Sotiriadou P, 2020, STUD HIGH EDUC, V45, P2132, DOI 10.1080/03075079.2019.1582015 Spens K. M., 2006, International Journal of Physical Distribution & Logistics Management, V36, P374, DOI 10.1108/09600030610676259 Stanley D. S., 2019, INT J BUSINESS CONTI, V9, P350, DOI [https://doi.org/10.1504/ijbcrm.2019.102608, DOI 10.1504/IJBCRM.2019.102608] Stephens JM, 2017, THEOR PRACT, V56, P111, DOI 10.1080/00405841.2017.1283571 Stephens JM, 2016, INT J EDUC INTEGR, V12, DOI 10.1007/s40979-016-0010-1 Stoesz BM, 2022, EDUC POLICY, V36, P1529, DOI 10.1177/0895904820983032 Stoesz BM, 2018, INT J EDUC INTEGR, V14, DOI 10.1007/s40979-018-0030-0 Surahman E, 2022, J COMPUT ASSIST LEAR, V38, P1535, DOI 10.1111/jcal.12708 Tabsh SW, 2017, QUAL ASSUR EDUC, V25, P378, DOI 10.1108/QAE-03-2017-0005 Tabsh SW, 2015, INT J ENG EDUC, V31, P1334 Tambe P, 2019, CALIF MANAGE REV, V61, P15, DOI 10.1177/0008125619867910 Tatum H, 2017, THEOR PRACT, V56, P129, DOI 10.1080/00405841.2017.1308175 Teodorescu D, 2009, HIGH EDUC, V57, P267, DOI 10.1007/s10734-008-9143-3 Tiong JJL, 2018, BMC MED EDUC, V18, DOI 10.1186/s12909-018-1274-3 Tomasev N, 2020, NAT COMMUN, V11, DOI 10.1038/s41467-020-15871-z Tranfield D, 2003, BRIT J MANAGE, V14, P207, DOI 10.1111/1467-8551.00375 Treinta FT., 2013, Production, V24, P508, DOI [DOI 10.1590/S0103-65132013005000078>.ACESSOEM24DEJUNHODE2021, 10.1590/S0103-65132013005000078, DOI 10.1590/S0103-65132013005000078] Tsai NW, 2016, J EDUC BUS, V91, P387, DOI 10.1080/08832323.2016.1238808 U-World, 2021, Inteligencia artificial: qual sera o futuro da educacao Uzun AM, 2020, COMPUT EDUC, V144, DOI 10.1016/j.compedu.2019.103700 van Eck NJ, 2008, J INFORMETR, V2, P263, DOI 10.1016/j.joi.2008.09.004 van Eck NJ, 2010, SCIENTOMETRICS, V84, P523, DOI 10.1007/s11192-009-0146-3 Vieira TI, 2023, CLIN ORAL INVEST, V27, P943, DOI 10.1007/s00784-022-04856-5 Walsh LL, 2021, INT J EDUC INTEGR, V17, DOI 10.1007/s40979-021-00089-3 Waltman L, 2010, J INFORMETR, V4, P629, DOI 10.1016/j.joi.2010.07.002 Wasserman S., 1994, Social network analysis: Methods and applications, V1, P116, DOI DOI 10.1525/AE.1997.24.1.219 White H.D., 1981, Grif?th, B.C. White HD, 1998, J AM SOC INFORM SCI, V49, P327, DOI 10.1002/(SICI)1097-4571(19980401)49:4<327::AID-ASI4>3.0.CO;2-W Whitley BE, 1998, RES HIGH EDUC, V39, P235, DOI 10.1023/A:1018724900565 Yang SC, 2017, ASIA PAC EDUC REV, V18, P385, DOI 10.1007/s12564-017-9497-2 Zhang YX, 2018, ASSESS EVAL HIGH EDU, V43, P812, DOI 10.1080/02602938.2017.1411467 Zhao L, 2022, EDUC RES REV-NETH, V36, DOI 10.1016/j.edurev.2022.100455 Zinchenko V, 2021, REV ROMANEASCA PENTR, V13, P81, DOI 10.18662/rrem/13.1/361 Zyoud SH, 2017, SUBST ABUSE TREAT PR, V12, DOI 10.1186/s13011-017-0090-9 NR 179 TC 1 Z9 1 U1 35 U2 44 PU EMERALD GROUP PUBLISHING LTD PI Leeds PA Floor 5, Northspring 21-23 Wellington Street, Leeds, W YORKSHIRE, ENGLAND SN 0368-492X EI 1758-7883 J9 KYBERNETES JI Kybernetes PD 2024 JAN 29 PY 2024 DI 10.1108/K-09-2023-1666 EA JAN 2024 PG 32 WC Computer Science, Cybernetics WE Science Citation Index Expanded (SCI-EXPANDED) SC Computer Science GA GG3H1 UT WOS:001151468600001 DA 2024-09-05 ER PT C AU Qing, Z Edara, P AF Qing, Zhu Edara, Praveen GP IEEE Comp Soc TI Human Vision vs. Computer Vision: A Readability Study in a Virtual Reality Environment SO 2022 IEEE CONFERENCE ON VIRTUAL REALITY AND 3D USER INTERFACES ABSTRACTS AND WORKSHOPS (VRW 2022) LA English DT Proceedings Paper CT IEEE Conference on Virtual Reality and 3D User Interfaces (IEEE VR) CY MAR 12-16, 2022 CL ELECTR NETWORK DE Text readability; Evaluation methods; Computer vision; Transportation; Road sign readability; User study; Human factors; Human-centered computing; Visualization; Visualization design and evaluation methods; Applied computing; Operations research; Transportation AB Text plays an important role in conveying information to users in a virtual reality (VR) environment. Both VR software and hardware are evolving rapidly to improve text display quality. However, evaluation of text readability still relies on human participants. In this study, cloud computer vision was used to evaluate text readability in VR. Human subjects were recruited to test the same text scenarios. The cloud computer vision-based approach produced results that were consistent with human vision-based recognition. The use of computer vision to automate text readability evaluation could significantly reduce the overall effort and time in developing readable text in VR. C1 [Qing, Zhu; Edara, Praveen] Univ Missouri, Columbia, MO 65211 USA. C3 University of Missouri System; University of Missouri Columbia RP Qing, Z (corresponding author), Univ Missouri, Columbia, MO 65211 USA. EM zqing@missouri.edu; edarap@missouri.edu OI Qing, Zhu/0000-0002-3219-6971 CR [Anonymous], 2021, VISION AI DERIVE HNA [Anonymous], PRICING CLOUD VISION [Anonymous], 2021, VR VISIBILITY EXPT [Anonymous], BEST PRACTICES RIFT [Anonymous], 2009, Manual on uniform traffic control devices for streets and highways, P1 Blackman S., 2013, Beginning 3D Game Development with Unity 4: All-in-one, multi-platform game development (Technology in Action), V2nd Borges M, 2018, IEEE INT C INT ROBOT, P2610, DOI 10.1109/IROS.2018.8593707 Bowman DA, 2007, COMPUTER, V40, P36, DOI 10.1109/MC.2007.257 Chu Peter, 2014, VR design: Transitioning from a 2d to 3d design paradigm Dingler T, 2018, CHI 2018: EXTENDED ABSTRACTS OF THE 2018 CHI CONFERENCE ON HUMAN FACTORS IN COMPUTING SYSTEMS, DOI 10.1145/3170427.3188695 Dittrich Elisabeth, 2013, Virtual Augmented and Mixed Reality. Designing and Developing Augmented and Virtual Environments. 5th International Conference, VAMR 2013 Held as Part of HCI International 2013. Proceedings: LNCS 7936, P149, DOI 10.1007/978-3-642-39405-8_18 Freina L, 2015, ELEARN SOFTW EDUC, P133, DOI 10.12753/2066-026X-15-020 Grout Cameron., 2015, P 15 NZ C HUMAN COMP, P9, DOI DOI 10.1145/2808047.2808055 HAWK SR, 1991, IEEE T ENG MANAGE, V38, P316, DOI 10.1109/17.97438 International Sign Association, 2007, SIGNLINE, V51, P1 Jackson S., 2015, UNITY 3D UI ESSENTIA Janai J, 2020, FOUND TRENDS COMPUT, V12, P1, DOI 10.1561/0600000079 Jiang H, 2017, INT CONF ELECTRO INF, P350, DOI 10.1109/EIT.2017.8053384 Khor WS, 2016, ANN TRANSL MED, V4, DOI 10.21037/atm.2016.12.23 Kujala S, 2003, BEHAV INFORM TECHNOL, V22, P1, DOI [10.1080/01449290301782, 10.1080/0144929021000055530] Larson E, 2004, J NURS SCHOLARSHIP, V36, P260, DOI 10.1111/j.1547-5069.2004.04047.x Long SB, 2021, INT J COMPUT VISION, V129, DOI 10.1007/s11263-020-01369-0 McKenzie C, 2017, Designing screen interfaces for VR (Google I/O '17) Mehrfard A, 2021, COMP M BIO BIO E-IV, V9, P233, DOI 10.1080/21681163.2020.1835559 Motamedi A, 2017, ADV ENG INFORM, V32, P248, DOI 10.1016/j.aei.2017.03.005 Slater M, 2016, FRONT ROBOT AI, V3, DOI 10.3389/frobt.2016.00074 Solum H.H., 2019, Readability in Virtual reality, an investigation into displaying text in a virtual environment U. Technologies, UN MAN TEXT MESH VR Best Practice, VR BEST PRACT Ziefle M, 1998, HUM FACTORS, V40, P554, DOI 10.1518/001872098779649355 NR 30 TC 0 Z9 1 U1 1 U2 9 PU IEEE COMPUTER SOC PI LOS ALAMITOS PA 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1264 USA BN 978-1-6654-8402-2 PY 2022 BP 61 EP 64 DI 10.1109/VRW55335.2022.00023 PG 4 WC Computer Science, Artificial Intelligence; Computer Science, Cybernetics; Computer Science, Software Engineering WE Conference Proceedings Citation Index - Science (CPCI-S) SC Computer Science GA BT2FN UT WOS:000808111800016 DA 2024-09-05 ER PT J AU Mistrano, A AF Mistrano, Al TI Practitioner research regarding independent learning in sixth-form education within eight Bedfordshire schools SO TEACHER DEVELOPMENT LA English DT Article DE practitioner research; independent learning; deep learning; performance management; monitoring learning AB The aim of this study was to conduct research about independent learning in post-16 education in order to assist the author, a teacher and senior leader, with developing college-wide improvement strategies. The research consisted of observations and surveys of teachers and students at eight schools in Bedfordshire in order to investigate the extent to which students and teachers work towards the creation of deep learning, in the sense defined, discussed and developed by Adey, Entwistle, Dibdin and DeakinCrick. The results point to students juggling between deep and surface learning strategies in conjunction with mixed messages from teachers and institutional practices. Conclusions drawn include the recognition that teachers, with the support of senior managers, need to take greater control of the discourse of performance management in order that the rush for examination success does not prove detrimental to the progress of young people. C1 [Mistrano, Al] Samuel Whitbread Community Coll, Shefford, England. RP Mistrano, A (corresponding author), Samuel Whitbread Community Coll, Shefford, England. EM amistrano@swcc.beds.sch.uk CR Adey P., 1999, Learning styles strategies: a review of research Adey P., 1994, REALLY RAISING STAND [Anonymous], 1988, LEARNING STRATEGIES, DOI DOI 10.1007/978-1-4899-2118-5_2 [Anonymous], TIMES HIGHER ED SUPP Coleman M., 1999, PRACTITIONER RES ED, P83 Deakin-Crick R., 2006, LEARNING POWER PRACT Department for Education and Skills, 2007, PART 16 18 YEAR OLDS Department for Education and Skills, 2004, PED IN PRACT Dibdin John, 2004, SAIL PROJECT STRATEG Dweck C.S., 1999, SELF THEORIES Harlen W., 2002, Research Evidence in Education Library Joyce B., 2002, MODELS LEARNING TOOL, V2nd Leat David, 2004, THINKING GEOGRAPHY Office for Standards in Education, 2006, HDB INSP SCH Office for Standards in Education, 2007, COND INSP GUID INSP Wilson A., 2007, KNOWLEDGE POWER PART NR 16 TC 0 Z9 2 U1 0 U2 0 PU ROUTLEDGE JOURNALS, TAYLOR & FRANCIS LTD PI ABINGDON PA 2-4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND SN 1366-4530 EI 1747-5120 J9 TEACH DEV JI Teach. Dev. PY 2008 VL 12 IS 3 BP 165 EP 177 DI 10.1080/13664530802259198 PG 13 WC Education & Educational Research WE Emerging Sources Citation Index (ESCI) SC Education & Educational Research GA V94HK UT WOS:000213119900001 DA 2024-09-05 ER PT J AU Lamers, WS Boyack, K Larivière, V Sugimoto, CR van Eck, NJ Waltman, L Murray, D AF Lamers, Wout S. Boyack, Kevin Lariviere, Vincent Sugimoto, Cassidy R. van Eck, Nees Jan Waltman, Ludo Murray, Dakota TI Investigating disagreement in the scientific literature SO ELIFE LA English DT Article DE meta-research; disagreement; citation analysis; natural language processing; metascience; None ID CONSENSUS; CITATIONS; SCIENCE AB Disagreement is essential to scientific progress but the extent of disagreement in science, its evolution over time, and the fields in which it happens remain poorly understood. Here we report the development of an approach based on cue phrases that can identify instances of disagreement in scientific articles. These instances are sentences in an article that cite other articles. Applying this approach to a collection of more than four million English-language articles published between 2000 and 2015 period, we determine the level of disagreement in five broad fields within the scientific literature (biomedical and health sciences; life and earth sciences; mathematics and computer science; physical sciences and engineering; and social sciences and humanities) and 817 meso-level fields. Overall, the level of disagreement is highest in the social sciences and humanities, and lowest in mathematics and computer science. However, there is considerable heterogeneity across the meso-level fields, revealing the importance of local disciplinary cultures and the epistemic characteristics of disagreement. Analysis at the level of individual articles reveals notable episodes of disagreement in science, and illustrates how methodological artifacts can confound analyses of scientific texts. C1 [Lamers, Wout S.; van Eck, Nees Jan; Waltman, Ludo] Leiden Univ, Ctr Sci & Technol Studies, Leiden, Netherlands. [Boyack, Kevin] SciTech Strategies Inc, Albuquerque, NM USA. [Lariviere, Vincent] Univ Montreal, Ecole Bibliothecon & Sci Informat, Montreal, PQ, Canada. [Sugimoto, Cassidy R.] Georgia Inst Technol, Sch Publ Policy, Atlanta, GA 30332 USA. [Murray, Dakota] Indiana Univ, Sch Informat Comp & Engn, Bloomington, IN 47405 USA. C3 Leiden University - Excl LUMC; Leiden University; Universite de Montreal; University System of Georgia; Georgia Institute of Technology; Indiana University System; Indiana University Bloomington RP Lamers, WS (corresponding author), Leiden Univ, Ctr Sci & Technol Studies, Leiden, Netherlands.; Murray, D (corresponding author), Indiana Univ, Sch Informat Comp & Engn, Bloomington, IN 47405 USA. EM w.s.lamers@cwts.leidenuniv.nl; dakmurra@iu.edu RI Sugimoto, Cassidy R/AAV-2705-2021; Waltman, Ludo/B-5561-2008; van Eck, Nees Jan/B-6042-2008 OI Sugimoto, Cassidy R/0000-0001-8608-3203; Waltman, Ludo/0000-0001-8249-1752; van Eck, Nees Jan/0000-0001-8448-4521 FU Air Force Office of Scientific Research [FA9550-19-1-039]; Canada Research Chairs FX Air Force Office of Scientific Research FA9550-19-1-039 Dakota Murray; Canada Research Chairs Vincent Lariviere; The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication. CR [Anonymous], 2016, NAT METHODS, V13, P185 [Anonymous], **DATA OBJECT**, DOI DOI 10.5281/ZENODO.5148058 [Anonymous], 2017, GRAVITYS KISS DETECT [Anonymous], 1996, STRUCTURE SCI REVOLU, DOI [DOI 10.7208/CHICAGO/9780226458106.001.0001, 10.7208/chicago/9780226458106.001.0001] Balietti S, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0118747 Baron MG, 2017, NATURE, V543, P501, DOI 10.1038/nature21700 Bertin M, 2016, SCIENTOMETRICS, V109, P1417, DOI 10.1007/s11192-016-2134-8 BIGLAN A, 1973, J APPL PSYCHOL, V57, P195, DOI 10.1037/h0034701 Bornmann L, 2020, SCIENTOMETRICS, V122, P1051, DOI 10.1007/s11192-019-03326-2 Boyack KW, 2018, J INFORMETR, V12, P59, DOI 10.1016/j.joi.2017.11.005 Bruggeman J, 2012, AM SOCIOL REV, V77, P1050, DOI 10.1177/0003122412463574 Castelvecchi D, 2020, NATURE, V583, P500, DOI 10.1038/d41586-020-02126-6 Catalini C, 2015, P NATL ACAD SCI USA, V112, P13823, DOI 10.1073/pnas.1502280112 Chen CM, 2018, J INFORMETR, V12, P158, DOI 10.1016/j.joi.2017.12.004 COLE S, 1988, AM SOCIOL REV, V53, P152, DOI 10.2307/2095740 COLE S, 1983, AM J SOCIOL, V89, P111, DOI 10.1086/227835 Comte A, 1856, POSITIVE PHILOS A CO de Cetina TC, 1999, INT J GYNECOL OBSTET, V64, P71 Debat P, 2003, PRECAMBRIAN RES, V123, P47, DOI 10.1016/S0301-9268(03)00046-9 Dieckmann NF, 2019, PLOS ONE, V14, DOI 10.1371/journal.pone.0211269 Doody O, 2012, Nurse Educ Pract, V12, P232, DOI 10.1016/j.nepr.2012.03.002 Evans ED, 2016, SOCIOL SCI, V3, P757, DOI 10.15195/v3.a32 Fanelli D, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0066938 Fanelli D, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0010068 French BM, 2010, EARTH-SCI REV, V98, P123, DOI 10.1016/j.earscirev.2009.10.009 HARGENS LL, 1988, AM SOCIOL REV, V53, P139, DOI 10.2307/2095739 He J., 2018, Frontiers in Research Metrics and Analytics, V3, P27, DOI DOI 10.3389/FRMA.2018.00027 Hui Yang, 2012, 2012 IEEE 20th International Requirements Engineering Conference (RE 2012), P11, DOI 10.1109/RE.2012.6345795 Hyland K., 1998, HEDGING SCI RES ARTI Kalter H, 2003, NEUROTOXICOL TERATOL, V25, P131, DOI 10.1016/S0892-0362(03)00010-2 Kitcher P., 1995, The Advancement of Science: Science Without Legend, DOI [10.1093/0195096533.001.0001, DOI 10.1093/0195096533.001.0001] Lamont M., 2010, How professors think. Inside the curious world of academic judgement, DOI DOI 10.4159/9780674054158 Langer MC, 2017, NATURE, V551, pE1, DOI 10.1038/nature24011 Lariviere Vincent, 2013, Nature, V504, P211 Latour B., 1987, Science in Action Millan MJ, 2006, PHARMACOL THERAPEUT, V110, P135, DOI 10.1016/j.pharmthera.2005.11.006 Miranda R, 2018, J INFORMETR, V12, P1015, DOI 10.1016/j.joi.2018.08.006 MORAVCSIK MJ, 1975, SOC STUD SCI, V5, P86, DOI 10.1177/030631277500500106 Munro S, 2003, CELL, V115, P377, DOI 10.1016/S0092-8674(03)00882-1 Murphy K, 2009, NEUROIMAGE, V44, P893, DOI 10.1016/j.neuroimage.2008.09.036 Murray D, 2021, sci-text-disagreement swh:1:rev:b361157a9cfeb536ca255422280e154855b4e9a3 Software Heritage Nicholson JM, 2021, bioRxiv, DOI [10.1101/2021.03.15.435418, DOI 10.1101/2021.03.15.435418] Nicolaisen J, 2012, J INFORMETR, V6, P276, DOI 10.1016/j.joi.2011.08.001 Oreskes N., 2011, Merchants of Doubt: How a Handful of Scientists Obscured the Truth on Issues from Tobacco Smoke to Global Warming Popper K., 1963, Readings in the Philosophy of Science, P33, DOI [https://doi.org/10.1063/1.3050617, DOI 10.1063/1.3050617] Radicchi F, 2012, SCI REP-UK, V2, DOI 10.1038/srep00815 Rife SC, 2021, LEARN PUBL, V34, P454, DOI 10.1002/leap.1379 Sarewitz D, 2011, NATURE, V478, P7, DOI 10.1038/478007a Shapin S., 2011, Leviathan and the air-pump, DOI [10.1515/9781400838493, DOI 10.1515/9781400838493] Shwed U, 2012, AM SOCIOL REV, V77, P1064, DOI 10.1177/0003122412463018 Shwed U, 2010, AM SOCIOL REV, V75, P817, DOI 10.1177/0003122410388488 Small H, 2019, SCIENTOMETRICS, V118, P1079, DOI 10.1007/s11192-019-03016-z Small H, 2018, J INFORMETR, V12, P461, DOI 10.1016/j.joi.2018.03.007 Small H, 2017, J INFORMETR, V11, P46, DOI 10.1016/j.joi.2016.11.001 Smolin L., 2007, The trouble with physics: The Rise of String Theory, the Fall of a Science, and What Comes Next Szarvas G, 2012, COMPUT LINGUIST, V38, P335, DOI 10.1162/COLI_a_00098 Tannen D, 2002, J PRAGMATICS, V34, P1651, DOI 10.1016/S0378-2166(02)00079-6 Teufel S., 2006, P C EMP METH NAT LAN, DOI 10.3115/1610075.1610091 Traag VA, 2019, SCI REP-UK, V9, DOI 10.1038/s41598-019-41695-z Valenzuela M., 2015, WORKSHOPS 20 9 AAAI van Eck NJ, 2010, SCIENTOMETRICS, V84, P523, DOI 10.1007/s11192-009-0146-3 Whitley R., 2000, The Intellectual and Social Organization of the Sciences Wuchty S, 2007, SCIENCE, V316, P1036, DOI 10.1126/science.1136099 NR 63 TC 22 Z9 22 U1 3 U2 32 PU eLIFE SCIENCES PUBL LTD PI CAMBRIDGE PA SHERATON HOUSE, CASTLE PARK, CAMBRIDGE, CB3 0AX, ENGLAND SN 2050-084X J9 ELIFE JI eLife PD DEC 24 PY 2021 VL 10 AR e72737 DI 10.7554/eLife.72737; 10.7554/eLife.72737.sa1; 10.7554/eLife.72737.sa2 PG 20 WC Biology WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Life Sciences & Biomedicine - Other Topics GA XV0WA UT WOS:000734672100001 PM 34951588 OA Green Published, Green Submitted, gold DA 2024-09-05 ER PT J AU Schochet, PZ AF Schochet, Peter Z. TI Estimators for Clustered Education RCTs Using the Neyman Model for Causal Inference SO JOURNAL OF EDUCATIONAL AND BEHAVIORAL STATISTICS LA English DT Article DE Statistics; experimental design; program evaluation; research methodology AB This article examines the estimation of two-stage clustered designs for education randomized control trials (RCTs) using the nonparametric Neyman causal inference framework that underlies experiments. The key distinction between the considered causal models is whether potential treatment and control group outcomes are considered to be fixed for the study population (the finite-population model) or randomly selected from a vaguely defined universe (the super-population model). Both approaches allow for heterogeneity of treatment effects. Appropriate estimation methods and asymptotic moments are discussed for each model using simple differences-in-means estimators and those that include baseline covariates. An empirical application using a large-scale education RCT shows that the choice of the finite- or super-population approach can matter. Thus, the choice of framework and sensitivity analyses should be specified and justified in the analysis protocols. C1 Math Policy Res Inc, Princeton, NJ 08543 USA. C3 Mathematica RP Schochet, PZ (corresponding author), Math Policy Res Inc, POB 2393, Princeton, NJ 08543 USA. EM pschochet@mathematica-mpr.com CR Agodini R., 2009, ACHIEVEMENT EFFECTS [Anonymous], 1998, Design and Analysis of Group-Randomized Trials [Anonymous], 2003, Analysis of Panel Data, DOI DOI 10.1017/CBO9780511754203 BALTAGI BH, 1994, J ECONOMETRICS, V62, P67, DOI 10.1016/0304-4076(94)90017-5 Bryk A. S., 1992, HIERARCHICAL LINEAR De Leeuw Jan., 2008, HDB MULTILEVEL ANAL, DOI 10.1007/978-0-387-73186-5 Fieuws S, 2007, STAT METHODS MED RES, V16, P387, DOI 10.1177/0962280206075305 Freedman DA, 2008, ADV APPL MATH, V40, P180, DOI 10.1016/j.aam.2006.12.003 Gail MH, 1996, STAT MED, V15, P1069, DOI 10.1002/(SICI)1097-0258(19960615)15:11<1069::AID-SIM220>3.0.CO;2-Q Hajek J., 1960, Publication of the Mathematical Institute of the Hungarian Academy of Sciences, V3, P361 HARVILLE DA, 1977, J AM STAT ASSOC, V72, P320, DOI 10.2307/2286796 HOGLUND T, 1978, SCAND J STAT, V5, P69 HOLLAND PW, 1986, J AM STAT ASSOC, V81, P945, DOI 10.2307/2289064 Imai K, 2009, STAT SCI, V24, P29, DOI 10.1214/08-STS274 LAIRD NM, 1982, BIOMETRICS, V38, P963, DOI 10.2307/2529876 LIANG KY, 1986, BIOMETRIKA, V73, P13, DOI 10.1093/biomet/73.1.13 Neyman J.S., 1923, Statistical Science, V10, P1, DOI DOI 10.1214/SS/1177012031 Pfeffermann D, 1998, J ROY STAT SOC B, V60, P23, DOI 10.1111/1467-9868.00106 RAO CR, 1972, J AM STAT ASSOC, V67, P112, DOI 10.2307/2284708 Raudenbush S. W., 2002, HIERARCHICAL LINEAR ROSENBAUM PR, 1983, BIOMETRIKA, V70, P41, DOI 10.1093/biomet/70.1.41 Rubin D.B., 1977, J. Educ. Stat., V2, P1, DOI DOI 10.3102/10769986002001001 RUBIN DB, 1974, J EDUC PSYCHOL, V66, P688, DOI 10.1037/h0037350 RUBIN DB, 1980, J AM STAT ASSOC, V75, P591, DOI 10.2307/2287653 Schochet PZ, 2008, J EDUC BEHAV STAT, V33, P62, DOI 10.3102/1076998607302714 Schochet PZ, 2010, J STAT PLAN INFER, V140, P246, DOI 10.1016/j.jspi.2009.07.008 Small DS, 2008, J AM STAT ASSOC, V103, P271, DOI 10.1198/016214507000000897 SWAMY PAV, 1972, ECONOMETRICA, V40, P261, DOI 10.2307/1909405 Tate RL, 2007, J EXP EDUC, V75, P317, DOI 10.3200/JEXE.75.4.317-338 Thum YM, 1997, J EDUC BEHAV STAT, V22, P77, DOI 10.3102/10769986022001077 Wooldridge JM, 2010, ECONOMETRIC ANALYSIS OF CROSS SECTION AND PANEL DATA, 2ND EDITION, P3 Yang L, 2001, AM STAT, V55, P314, DOI 10.1198/000313001753272466 NR 32 TC 21 Z9 22 U1 0 U2 4 PU SAGE PUBLICATIONS INC PI THOUSAND OAKS PA 2455 TELLER RD, THOUSAND OAKS, CA 91320 USA SN 1076-9986 EI 1935-1054 J9 J EDUC BEHAV STAT JI J. Educ. Behav. Stat. PD JUN PY 2013 VL 38 IS 3 BP 219 EP 238 DI 10.3102/1076998611432176 PG 20 WC Education & Educational Research; Social Sciences, Mathematical Methods; Psychology, Mathematical WE Social Science Citation Index (SSCI) SC Education & Educational Research; Mathematical Methods In Social Sciences; Psychology GA 298CX UT WOS:000330302700001 DA 2024-09-05 ER PT C AU Hao, YH Li, WB AF Hao, Yunhong Li, Wenbo BE Chen, J Xu, QR Wu, XB TI Research on the comprehensive evaluation of firms' technology innovation ability based on neural network SO ISMOT'07: Proceedings of the Fifth International Symposium on Management of Technology, Vols 1 and 2: MANAGING TOTAL INNOVATION AND OPEN INNOVATION IN THE 21ST CENTURY LA English DT Proceedings Paper CT 5th International Symposium on Management of Technology CY JUN 01-03, 2007 CL Hangzhou, PEOPLES R CHINA DE neural networks; back propagation algorithm; technology innovation ability; comprehensive evaluation AB Nowadays, technology innovation is a fundamental determinant of value creation in enterprises and economic growth. Therefore, the comprehensive evaluation of technology innovation ability has become a significant concern both for enterprises and governments. The artificial neural network (ANN) is a technique that is studied heavily and used in applications for engineering and scientific fields for various purposes ranging from control systems to urban planning. Its generalization powers have not only received admiration from the engineering and scientific fields, but in recent years, many innovation researchers are taking an interest in the application of artificial neural networks. In this paper, we propose a comprehensive evaluation method based on the neural networks, applying the artificial neural network to the comprehensive evaluation of technology innovation ability is a breakthrough in concept and technology. The paper is organized as follows. The first section is introduction. The second section constructs the evaluation index system of firms' technology innovation ability. The third section is the basic model, and first, it introduces some basis elements and concepts to the readers that are central to understand the approach. The fourth section, using survey data on some firms, the neural networks are trained to provide some intelligent decisions, and the simulation results demonstrate that the method performs well in the evaluation of innovation. ability. Last, it contains some concluding comments. C1 Zhejiang Gongshang Univ, Sch Business Adm, Hangzhou 310018, Zhejiang, Peoples R China. C3 Zhejiang Gongshang University RP Hao, YH (corresponding author), Zhejiang Gongshang Univ, Sch Business Adm, Hangzhou 310018, Zhejiang, Peoples R China. RI li, wenbo/GZM-8930-2022; li, wenbo/JAC-7955-2023 CR [Anonymous], 1987, IEEE ASP MAGAZINE, DOI DOI 10.1109/MASSP.1987.1165576 DEJONG JPJ, 2001, DETERMINANTS INNOVAT Feng S, 1999, EXPERT SYST APPL, V16, P21, DOI 10.1016/S0957-4174(98)00028-1 Haykin S.S., 1995, Neural networks. A comprehensive foundation SOLOW RM, 1956, Q J ECON, V70, P65, DOI 10.2307/1884513 Tidd J., 2020, MANAGING INNOVATION NR 6 TC 0 Z9 0 U1 0 U2 0 PU ZHEJIANG UNIV PRESS PI HANGZHOU PA YUGU ROAD 20,, HANGZHOU, ZHEJIANG 310027, PEOPLES R CHINA BN 978-7-89490-375-4 PY 2007 BP 413 EP 416 PG 4 WC Management; Operations Research & Management Science WE Conference Proceedings Citation Index - Science (CPCI-S); Conference Proceedings Citation Index - Social Science & Humanities (CPCI-SSH) SC Business & Economics; Operations Research & Management Science GA BGL01 UT WOS:000248091800085 DA 2024-09-05 ER PT J AU Calderon, K Serrano, N Blanco, C Gutierrez, I AF Calderon, Kevin Serrano, Nicolas Blanco, Carmen Gutierrez, Inigo TI Automated and continuous assessment implementation in a programming course SO COMPUTER APPLICATIONS IN ENGINEERING EDUCATION LA English DT Article DE automated assessment tool; continuous assessment; deep learning; design-based research; programming subject ID DESIGN SCIENCE RESEARCH; EDUCATION; IMPACT; TOOL AB Continuous assessment is an assessment methodology whose objective is to assess students on an ongoing basis. However, designing, organizing, correcting, and evaluating continuous assessment increases the workload of teachers. Moreover, this methodology may not promote deep learning if it is not implemented properly. In this study, we implemented continuous assessment in an undergraduate programming subject using an automated assessment tool to reduce the workload of professors. We used design-based research (DBR) to implement a prototype of assessment methodology which includes an automated assessment tool developed by our research group. DBR provides us with a scientific background for this implementation through an iterative process in which we progressively come to assess all the activities that students perform in the course. In the different iterations of this process, we have collected students' final and project grades, and their opinions through surveys about the assessments we have implemented. These results allow us to demonstrate that the performance of at least two types of students improves after the implementation of continuous assessment, while at the same time, the depth of learning in the class is not affected. We have also found that students are more motivated and committed to the course when continuous assessment is used as they prefer automated assessment over the traditional exercises. In addition, the implementation of the continuous assessment has shown us some unexpected outcomes about flexibility in methodology design, collection of large amounts of data from the learning process, and students acquiring useful skills for programming. In reality, this can result in students gaining deeper knowledge if they are confronted with a greater number of situations during this time in which they test their knowledge. C1 [Calderon, Kevin; Serrano, Nicolas; Blanco, Carmen; Gutierrez, Inigo] Univ Navarra, TECNUN Sch Engn, Pamplona, Spain. [Calderon, Kevin] Paseo de Manuel Lardizabal,N 13, Donostia San Sebastian 20018, Spain. C3 University of Navarra RP Calderon, K (corresponding author), Paseo de Manuel Lardizabal,N 13, Donostia San Sebastian 20018, Spain. EM kcalderon@unav.es RI Blanco, Carmen/AAA-5446-2019; Serrano, Nicolas/V-7304-2017 OI Blanco, Carmen/0000-0001-6907-5367; Calderon Maceda, Kevin/0000-0001-8743-5063 CR Bloxham S., 2007, Developing Effective Assessment in Higher Education: a practical guide Calderon K., 2023, J UNIV TEACH LEARN P, V19 Carless D., 2006, How assessment supports learning: Learning-oriented assessment in action Carstensen AK, 2019, EUR J ENG EDUC, V44, P85, DOI 10.1080/03043797.2018.1498459 Cole JS, 2012, EUR J ENG EDUC, V37, P508, DOI 10.1080/03043797.2012.719002 Draper SW, 2009, BRIT J EDUC TECHNOL, V40, P285, DOI 10.1111/j.1467-8535.2008.00920.x Edstrom K., 2003, STUDENT INVOLVEMENT Ferreira Deller James, 2017, Journal of Educational Technology & Society, V20, P182 Gibbs G., 2005, LEARNING TEACHING HI, P3, DOI DOI 10.1007/978-3-8348-9837-1 Gikandi JW, 2011, COMPUT EDUC, V57, P2333, DOI 10.1016/j.compedu.2011.06.004 Hevner AR, 2004, MIS QUART, V28, P75, DOI 10.2307/25148625 Heywood J, 2005, ENGINEERING EDUCATION: RESEARCH AND DEVELOPMENT IN CURRICULUM AND INSTRUCTION, P1, DOI 10.1002/0471744697 Jordan S.E., 2009, Practitioner Research in Higher Education, V3, P11 Laakso MJ, 2018, EDUC INF TECHNOL, V23, P1655, DOI 10.1007/s10639-017-9659-1 Leung SF, 2008, NURS EDUC TODAY, V28, P711, DOI 10.1016/j.nedt.2007.11.004 March ST, 2008, MIS QUART, V32, P725 Martin-Carrasco F. J., 2014, 6th International Conference on Computer-Supported Education (CSEDU 2014). Proceedings, P103 Mazur E, 2009, SCIENCE, V323, P50, DOI 10.1126/science.1168927 Misut M, 2017, INT J EMERG TECHNOL, V12, P175, DOI 10.3991/ijet.v12i04.6608 Montolio D, 2015, MULTIDISCIP J EDUC S, V2, P128, DOI 10.4995/muse.2015.3447 Peffers K, 2007, J MANAGE INFORM SYST, V24, P45, DOI 10.2753/MIS0742-1222240302 Perez-Martinez J. E., 2009, P RES ENG ED S PALM Pietikainen R. S., 2016, CONTINUOUS ASSESSMEN Reina-Paz M. D., 2014, J INT ED RES, V10, P61, DOI DOI 10.19030/JIER.V10I1.5.8460 Restrepo-Calle F, 2019, COMPUT APPL ENG EDUC, V27, P80, DOI 10.1002/cae.22058 Sangwin C., 2013, Computer-aided assessment of mathematics Serrano N., 2021, P 17 INT CDIO C Serrano N, 2018, 4TH INTERNATIONAL CONFERENCE ON HIGHER EDUCATION ADVANCES (HEAD'18), P987, DOI 10.4995/HEAd18.2018.8132 TAN CM, 1992, HIGH EDUC, V23, P255, DOI 10.1007/BF00145016 Thambusamy R., 2021, Eur. J. Soc. Behav. Sci, V30, P63, DOI [10.15405/ejsbs.289, DOI 10.15405/EJSBS.289] Trotter E., 2006, ASSESS EVAL HIGH EDU, V31, P505, DOI [10.1080/02602930600679506, DOI 10.1080/02602930600679506] van Aken JE, 2005, BRIT J MANAGE, V16, P19, DOI 10.1111/j.1467-8551.2005.00437.x NR 32 TC 0 Z9 0 U1 4 U2 9 PU WILEY PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1061-3773 EI 1099-0542 J9 COMPUT APPL ENG EDUC JI Comput. Appl. Eng. Educ. PD JAN PY 2024 VL 32 IS 1 DI 10.1002/cae.22681 EA SEP 2023 PG 14 WC Computer Science, Interdisciplinary Applications; Education, Scientific Disciplines; Engineering, Multidisciplinary WE Science Citation Index Expanded (SCI-EXPANDED) SC Computer Science; Education & Educational Research; Engineering GA FA5I4 UT WOS:001074661100001 OA Green Published, hybrid DA 2024-09-05 ER PT J AU Castro, C Leiva, V Garrido, D Huerta, M Minatogawa, V AF Castro, Cecilia Leiva, Victor Garrido, Diego Huerta, Mauricio Minatogawa, Vinicius TI Blockchain in clinical trials: Bibliometric and network studies of applications, challenges, and future prospects based on data analytics SO COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE LA English DT Article DE Artificial intelligence; Bibliometry; Blockchain technology; Data management; Interdisciplinary research; Latent Dirichlet allocation; Network analysis; PRISMA methodology ID TOOL AB This study conducts a comprehensive analysis on the usage of the blockchain technology in clinical trials, based on a curated corpus of 107 scientific articles from the year 2016 through the first quarter of 2024. Utilizing a methodological framework that integrates bibliometric analysis, network analysis, thematic mapping, and latent Dirichlet allocation, the study explores the terrain and prospective developments within this usage based on data analytics. Through a meticulous examination of the analyzed articles, the present study identifies seven key thematic areas, highlighting the diverse applications and interdisciplinary nature of blockchain in clinical trials. Our findings reveal blockchain capability to enhance data management, participant consent processes, as well as overall trial transparency, efficiency, and security. Additionally, the investigation discloses the emerging synergy between blockchain and advanced technologies, such as artificial intelligence and federated learning, proposing innovative directions for improving clinical research methodologies. Our study underscores the collaborative efforts in dealing with the complexities of integrating blockchain into the areas of clinical trials and healthcare, delineating the transformative potential of blockchain technology in revolutionizing these areas by addressing challenges and promoting practices of efficient, secure, and transparent research. The delineated themes and networks of collaboration provide a blueprint for future inquiry, showing the importance of empirical research to narrow the gap between theoretical promise and practical implementation. C1 [Castro, Cecilia] Univ Minho, Ctr Math, Braga, Portugal. [Leiva, Victor; Garrido, Diego; Huerta, Mauricio] Pontificia Univ Catolica Valparaiso, Escuela Ingn Ind, Valparaiso, Chile. [Minatogawa, Vinicius] Pontificia Univ Catolica Valparaiso, Escuela Ingn Construcc & Transporte, Valparaiso, Chile. C3 Universidade do Minho; Pontificia Universidad Catolica de Valparaiso; Pontificia Universidad Catolica de Valparaiso RP Leiva, V (corresponding author), Pontificia Univ Catolica Valparaiso, Escuela Ingn Ind, Valparaiso, Chile. EM victorleivasanchez@gmail.com RI Leiva, Victor/AAM-7834-2021; Costa e Castro, Cecilia Maria Vasconcelos/ACU-7420-2022 OI Leiva, Victor/0000-0003-4755-3270; Costa e Castro, Cecilia Maria Vasconcelos/0000-0001-9897-8186 FU Chilean funds from the Vice-rectorate for Research; Creation, and Innovation (VINCI) of the Pontificia Universidad Catolica de Valparaiso [039.470/2024]; Portuguese funds through the CMAT-Research Centre of Mathematics of University of Minho, Portugal [UIDB/00013/2020, UIDP/00013/2020] FX This research was partially supported by Chilean funds from the Vice-rectorate for Research, Creation, and Innovation (VINCI) of the Pontificia Universidad Catolica de Valparaiso, within project grant number 039.470/2024 (Victor Leiva) ; and by Portuguese funds through the CMAT-Research Centre of Mathematics of University of Minho, Portugal, within projects UIDB/00013/2020 (https://doi.org/10.54499/UIDB/00013/2020) and UIDP/00013/2020 (https://doi.org/10.54499/UIDP/00013/2020) (Cecilia Castro) . The authors would also like to thank the Editors and reviewers for their constructive comments, which led to improvements in the presentation of the article. CR Abbas Asad, 2024, Personal and Ubiquitous Computing, V28, P59, DOI 10.1007/s00779-021-01583-8 Akbar MA, 2024, J SOFTW-EVOL PROC, V36, DOI 10.1002/smr.2629 Akbar MA, 2022, J SOFTW-EVOL PROC, V34, DOI 10.1002/smr.2500 Albanese G, 2020, J AMB INTEL HUM COMP, V11, P4909, DOI 10.1007/s12652-020-01761-1 Albiol-Perarnau M, 2024, ATEN PRIM, V56, DOI 10.1016/j.aprim.2023.102848 Ali Z., 2023, Ind. J. Med. Health Sci., V1, P74 Aljaloud A, 2023, TECHNOLOGIES, V11, DOI 10.3390/technologies11040084 Alkady W, 2022, CHEMOMETR INTELL LAB, V224, DOI 10.1016/j.chemolab.2022.104535 Aria M, 2017, J INFORMETR, V11, P959, DOI 10.1016/j.joi.2017.08.007 Aykroyd RG, 2019, TECHNOL FORECAST SOC, V144, P221, DOI 10.1016/j.techfore.2019.01.005 Azrour M., 2024, Blockchain and Machine Learning for IoT Security Bandara E., 2022, J. Bank. Financ. Technol., V6, P43 Baysal MV, 2023, J SUPERCOMPUT, V79, P3112, DOI 10.1007/s11227-022-04772-1 Behfar SK, 2024, DATA POLICY, V6, DOI 10.1017/dap.2024.4 Benchoufi M, 2017, TRIALS, V18, DOI 10.1186/s13063-017-2035-z Bendavid E, 2024, SCI ADV, V10, DOI 10.1126/sciadv.adn0671 Bennet D., 2024, ADI J. Recent Innov., V5, P192 Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993 Blondel VD, 2008, J STAT MECH-THEORY E, DOI 10.1088/1742-5468/2008/10/P10008 Bornmann L, 2015, J ASSOC INF SCI TECH, V66, P2215, DOI 10.1002/asi.23329 CALLON M, 1991, SCIENTOMETRICS, V22, P155, DOI 10.1007/BF02019280 Cao J, 2009, NEUROCOMPUTING, V72, P1775, DOI 10.1016/j.neucom.2008.06.011 Chaouch H., 2024, Mathematics, V12, P2112 Charles WM, 2024, JMIR RES PROTOC, V13, DOI 10.2196/50339 Cobo MJ, 2011, J INFORMETR, V5, P146, DOI 10.1016/j.joi.2010.10.002 David S., 2023, Unleashing the Potentials of Blockchain Technology for Healthcare Industries, P37 de Melo-Diogo M., 2023, Research Anthology on Convergence of Blockchain, Internet of Things, and Security, P607 de Oliveira HM, 2022, SENSORS-BASEL, V22, DOI 10.3390/s22103743 Dhandapani PB, 2022, ELECTRONICS-SWITZ, V11, DOI 10.3390/electronics11091478 Drosatos G, 2019, COMPUT STRUCT BIOTEC, V17, P229, DOI 10.1016/j.csbj.2019.01.010 Fatoum H, 2021, J MED INTERNET RES, V23, DOI 10.2196/19846 Ferretti S, 2024, SENSORS-BASEL, V24, DOI 10.3390/s24041270 Fortunato S, 2010, PHYS REP, V486, P75, DOI 10.1016/j.physrep.2009.11.002 FREEMAN LC, 1979, SOC NETWORKS, V1, P215, DOI 10.1016/0378-8733(78)90021-7 Gao YL, 2024, EXPERT SYST APPL, V245, DOI 10.1016/j.eswa.2023.122982 Ghadge A, 2023, INT J PROD RES, V61, P6633, DOI 10.1080/00207543.2022.2125595 Girvan M, 2002, P NATL ACAD SCI USA, V99, P7821, DOI 10.1073/pnas.122653799 Griffiths TL, 2004, P NATL ACAD SCI USA, V101, P5228, DOI 10.1073/pnas.0307752101 Grün B, 2011, J STAT SOFTW, V40, P1 Guduri M, 2024, IEEE T CONSUM ELECTR, V70, P2608, DOI 10.1109/TCE.2023.3315415 Hang L., 2022, Peer-to-Peer Netw. Appl., V16, P520 Hang L, 2022, IET COMMUN, V16, P2371, DOI 10.1049/cmu2.12488 Hannan S.A., 2023, International Journal of Innovative Research in Science, Engineering and Technology (IJIRSET), V12, P64 Hirano T, 2020, J MED INTERNET RES, V22, DOI 10.2196/18938 Huh K.Y., 2021, J. Med. Internet Res., V9 Huh KY, 2022, CTS-CLIN TRANSL SCI, V15, P1257, DOI 10.1111/cts.13246 Jamil F, 2022, COMPUT IND ENG, V170, DOI 10.1016/j.cie.2022.108327 Krittanawong C, 2022, CAN J CARDIOL, V38, P185, DOI 10.1016/j.cjca.2021.11.011 Lahjouji M., 2023, J. Theor. Appl. Inf. Technol., V101, P952 Leiva V, 2024, CHIL J STAT, V15, P81, DOI 10.32372/chjs.15-01-05 Li H, 2022, J HEALTHC ENG, V2022, DOI 10.1155/2022/6111543 Liberati A, 2009, BMJ-BRIT MED J, V339, DOI [10.1016/j.ijsu.2010.02.007, 10.1136/bmj.b2700, 10.1136/bmj.b2535, 10.1186/2046-4053-4-1, 10.1371/journal.pmed.1000097, 10.1136/bmj.i4086, 10.1016/j.ijsu.2010.07.299] Mahdi E, 2021, SENSORS-BASEL, V21, DOI 10.3390/s21186319 Manchini C, 2023, INFORM SCIENCES, V627, P280, DOI 10.1016/j.ins.2022.10.076 Maslove David M, 2018, JMIR Med Inform, V6, pe11949, DOI 10.2196/11949 Mazucheli J, 2022, COMPUT METH PROG BIO, V221, DOI 10.1016/j.cmpb.2022.106816 Mendonca M.O., 2024, Signal Processing and Machine Learning Theory, P869 Miller M.K., 2024, The Social Science of the COVID-19 Pandemic: A Call to Action for Researchers Mimno David, 2011, P C EMPIRICAL METHOD, P262 Murzintcev Nikita., 2016, ldatuning: Tuning of the Latent Dirichlet Allocation Models Parameters Nakamoto S., 2008, Technical Report, P1 NEWMAN M. E. J., 2010, Networks Nor AKM, 2021, SENSORS-BASEL, V21, DOI 10.3390/s21238020 Omar IA, 2021, ARAB J SCI ENG, V46, P3001, DOI 10.1007/s13369-020-04989-3 Omar IA, 2020, BMC MED RES METHODOL, V20, DOI 10.1186/s12874-020-01109-5 Padmanabhan R, 2021, COMPUT METH PROG BIO, V209, DOI 10.1016/j.cmpb.2021.106301 Palacios CA, 2021, ENTROPY-SWITZ, V23, DOI 10.3390/e23040485 Park JJH, 2021, LANCET GLOB HEALTH, V9, pE711, DOI 10.1016/S2214-109X(20)30542-8 Poly TN, 2023, COMPUT METH PROG BIO, V231, DOI 10.1016/j.cmpb.2023.107358 R Core Team, 2023, R LANG ENV STAT COMP Rahman MZ, 2023, COMPUT BIOL MED, V154, DOI 10.1016/j.compbiomed.2023.106583 Ur Rahman MZ, 2024, HELIYON, V10, DOI 10.1016/j.heliyon.2023.e22454 Raj A, 2024, HEALTH SERV OUTCOME, V24, P112, DOI 10.1007/s10742-023-00306-1 Ramachandran M., 2023, Blockchain Healthc. Today, V6, P286 Rodríguez-Belenguer P, 2024, COMPUT METH PROG BIO, V246, DOI 10.1016/j.cmpb.2024.108011 Rojas F, 2021, SENSORS-BASEL, V21, DOI 10.3390/s21155198 Sardar I, 2023, STOCH ENV RES RISK A, V37, P345, DOI 10.1007/s00477-022-02307-x Sarker Iqbal H, 2021, SN Comput Sci, V2, P160, DOI 10.1007/s42979-021-00592-x Selvarajan S, 2023, SCI REP-UK, V13, DOI 10.1038/s41598-023-34354-x Shukla N, 2020, COMPUT METH PROG BIO, V183, DOI 10.1016/j.cmpb.2019.105075 Tagde P, 2021, ENVIRON SCI POLLUT R, V28, P52810, DOI 10.1007/s11356-021-16223-0 Tang J, 2014, PR MACH LEARN RES, V32 Tanwar S, 2020, J INF SECUR APPL, V50, DOI 10.1016/j.jisa.2019.102407 Thacker P, 2021, BMJ-BRIT MED J, V375, DOI 10.1136/bmj.n2635 van Eck NJ, 2010, SCIENTOMETRICS, V84, P523, DOI 10.1007/s11192-009-0146-3 Wong DR, 2019, NAT COMMUN, V10, DOI 10.1038/s41467-019-08874-y Wu Z, 2024, COMPUT METH PROG BIO, V247, DOI 10.1016/j.cmpb.2024.108106 Yu DJ, 2024, EXPERT SYST APPL, V246, DOI 10.1016/j.eswa.2024.123188 Zhang P, 2018, ADV COMPUT, V111, P1, DOI 10.1016/bs.adcom.2018.03.006 Zheng JF, 2024, SCI REP-UK, V14, DOI 10.1038/s41598-024-52274-2 Zhou Tianshu, 2024, Stud Health Technol Inform, V310, P1335, DOI 10.3233/SHTI231182 Zhuang Y, 2022, J MED INTERNET RES, V24, DOI 10.2196/36774 NR 92 TC 0 Z9 0 U1 2 U2 2 PU ELSEVIER IRELAND LTD PI CLARE PA ELSEVIER HOUSE, BROOKVALE PLAZA, EAST PARK SHANNON, CO, CLARE, 00000, IRELAND SN 0169-2607 EI 1872-7565 J9 COMPUT METH PROG BIO JI Comput. Meth. Programs Biomed. PD OCT PY 2024 VL 255 AR 108321 DI 10.1016/j.cmpb.2024.108321 PG 20 WC Computer Science, Interdisciplinary Applications; Computer Science, Theory & Methods; Engineering, Biomedical; Medical Informatics WE Science Citation Index Expanded (SCI-EXPANDED) SC Computer Science; Engineering; Medical Informatics GA A2F6P UT WOS:001280744300001 PM 39053350 DA 2024-09-05 ER PT C AU Guo, FQ Xiao, H AF Guo, Fengqun Xiao, Hui BE Fei, M Peng, C Su, Z Song, Y Han, Q TI Research on Visual Environment Evaluation System of Subway Station Space SO COMPUTATIONAL INTELLIGENCE, NETWORKED SYSTEMS AND THEIR APPLICATIONS SE Communications in Computer and Information Science LA English DT Proceedings Paper CT International Conference of Life System Modeling and Simulation (LSMS) / International Conference on Intelligent Computing for Sustainable Energy and Environment (ICSEE) CY SEP 20-23, 2014 CL Shanghai, PEOPLES R CHINA DE LED lighting; visual environment; evaluation system; particle swarm optimization AB Based on the energy crisis, LED with its energy-saving and environmental friendly is gradually used to the subway station space lighting. But now, there are little materials about the visual environment evaluation for semiconductor lighting, so that the use of LED lighting lacks theoretical basis and data support. So, in order to promote the LED lighting in subway station space, it's very important to evaluate the visual environment. Therefore, the core of this paper was to build a theoretical model to evaluate the visual environment of subway station space using Particle Swarm Optimization. Firstly, chose 16 evaluation indexes which were fit for the subway station visual environment evaluation and got the initial judgment matrix through pair wise comparison, after that, established the non-linear consistency correction model. Finally, used Particle Swarm Optimization to calculate the judgment matrix with better consistency and the corresponding index weight, and constructed the theoretical model. C1 [Guo, Fengqun; Xiao, Hui] Tongji Univ, Coll Elect & Informat Engn, Shanghai 201804, Peoples R China. C3 Tongji University RP Guo, FQ (corresponding author), Tongji Univ, Coll Elect & Informat Engn, Shanghai 201804, Peoples R China. CR Ding B., 2010, SYSTEM ENG Du Y., 2011, MULTIATTRIBUTE PROBL Kennedy J, 1997, PROCEEDINGS OF 1997 IEEE INTERNATIONAL CONFERENCE ON EVOLUTIONARY COMPUTATION (ICEC '97), P303, DOI 10.1109/ICEC.1997.592326 Liu S., 2011, RES FUZZY COMPREHENS Lu WZ, 2003, NEUROCOMPUTING, V51, P387, DOI 10.1016/S0925-2312(02)00623-9 Yin D. W., 2011, RES AERO ENGINE MODE Zhang Y., 2005, RES LIGHTING ENV QUA NR 7 TC 1 Z9 1 U1 1 U2 5 PU SPRINGER-VERLAG BERLIN PI BERLIN PA HEIDELBERGER PLATZ 3, D-14197 BERLIN, GERMANY SN 1865-0929 BN 978-3-662-45260-8 J9 COMM COM INF SC PY 2014 VL 462 BP 169 EP 179 PG 11 WC Computer Science, Artificial Intelligence; Robotics WE Conference Proceedings Citation Index - Science (CPCI-S) SC Computer Science; Robotics GA BD3QP UT WOS:000360077500018 DA 2024-09-05 ER PT J AU Cohan, A Goharian, N AF Cohan, Arman Goharian, Nazli TI Scientific document summarization via citation contextualization and scientific discourse SO INTERNATIONAL JOURNAL ON DIGITAL LIBRARIES LA English DT Article DE Scientific document summarization; Text summarization; Citation analysis; Natural language processing ID MODELS AB The rapid growth of scientific literature has made it difficult for the researchers to quickly learn about the developments in their respective fields. Scientific summarization addresses this challenge by providing summaries of the important contributions of scientific papers. We present a framework for scientific summarization which takes advantage of the citations and the scientific discourse structure. Citation texts often lack the evidence and context to support the content of the cited paper and are even sometimes inaccurate. We first address the problem of inaccuracy of the citation texts by finding the relevant context from the cited paper. We propose three approaches for contextualizing citations which are based on query reformulation, word embeddings, and supervised learning. We then train a model to identify the discourse facets for each citation. We finally propose a method for summarizing scientific papers by leveraging the faceted citations and their corresponding contexts. We evaluate our proposed method on two scientific summarization datasets in the biomedical and computational linguistics domains. Extensive evaluation results show that our methods can improve over the state of the art by large margins. C1 [Cohan, Arman; Goharian, Nazli] Georgetown Univ, Informat Retrieval Lab, Dept Comp Sci, Washington, DC 20057 USA. C3 Georgetown University RP Cohan, A (corresponding author), Georgetown Univ, Informat Retrieval Lab, Dept Comp Sci, Washington, DC 20057 USA. EM arman@ir.cs.georgetown.edu; nazli@ir.cs.georgetown.edu OI Cohan, Arman/0000-0002-8954-2724 CR Abu-Jbara A., 2011, P 49 ANN M ASS COMP, P500 Abu-Jbara A., 2013, NAACL, P596 Abu-Jbara Amjad., 2012, NAACL-HLT, P80 [Anonymous], 2014, CoRR [Anonymous], 2008, P 31 ANN INT ACM SIG [Anonymous], 2002, Proceedings of the the Association for Computational Linguistics (ACL) Workshop on Automatic Summarization, DOI DOI 10.3115/1118162.1118163 [Anonymous], 2016, NAACL, DOI 10.18653/v1/N16-1018 Atanassova I, 2016, J DOC, V72, P636, DOI 10.1108/JDOC-09-2015-0111 Bengio Y, 2001, ADV NEUR IN, V13, P932 Bengio Y, 2013, IEEE T PATTERN ANAL, V35, P1798, DOI 10.1109/TPAMI.2013.50 Berg -Kirkpatrick T., 2011, Proc. of the 49th Annual Meeting of the Association for Computational Linguistics (ACL-HLT 2011), P481 Bertin M, 2016, J ASSOC INF SCI TECH, V67, P164, DOI 10.1002/asi.23367 Bodenreider O, 2004, NUCLEIC ACIDS RES, V32, pD267, DOI 10.1093/nar/gkh061 Bornmann L, 2015, J ASSOC INF SCI TECH, V66, P2215, DOI 10.1002/asi.23329 Cao Guihong, 2008, P SIGIR 2008, P243, DOI DOI 10.1145/1390334.1390377 Cao Z, 2016, P JOINT WORKSH BIBL, P132 Carbonell J., 1998, Proceedings of the 21st Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, P335, DOI 10.1145/290941.291025 Celikyilmaz A, 2010, ACL 2010: 48TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, P815 Chakraborty T., 2016, P 2016 C EMPIRICAL M, P1348, DOI DOI 10.18653/V1/D16-1142 Chakraborty T, 2016, LECT NOTES ARTIF INT, V9652, P528, DOI 10.1007/978-3-319-31750-2_42 Chali Y, 2012, NAT LANG ENG, V18, P109, DOI 10.1017/S1351324911000167 Chopra Sumit, 2016, P 2016 C N AM CHAPT P 2016 C N AM CHAPT P 2016 C N AM CHAPT P 2016 C N AM CHAPT P 2016 C N AM CHAPT P 2016 C N AM CHAPT, P93 Clarke J, 2008, J ARTIF INTELL RES, V31, P399, DOI 10.1613/jair.2433 Cohan A, 2015, NAACL, P1042, DOI [DOI 10.3115/V1/N15-1110, 10.3115/v1/N15-1110] Cohan A, 2017, SIGIR'17: PROCEEDINGS OF THE 40TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, P1133, DOI 10.1145/3077136.3080740 Cohan Arman, 2015, P 2015 C EMP METH NA, P390, DOI [DOI 10.18653/V1/D15-1045, 10.18653/v1/D15-1045] Conroy J. M., 2011, P 4 TEXT ANAL C Conroy JohnM., 2015, Proceedings of NAACL-HLT, P186 Durrett Greg, 2016, P ACL Elkiss A, 2008, J AM SOC INF SCI TEC, V59, P51, DOI 10.1002/asi.20707 Erkan G, 2004, J ARTIF INTELL RES, V22, P457, DOI 10.1613/jair.1523 Faruqui Manaal, 2015, P 2015 C N AM CHAPT, P1606, DOI [DOI 10.3115/V1/N15-1184, 10.3115/v1/N15-1184] Garzone M, 2000, LECT NOTES ARTIF INT, V1822, P337 Guo SB, 2010, SIGIR 2010: PROCEEDINGS OF THE 33RD ANNUAL INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH DEVELOPMENT IN INFORMATION RETRIEVAL, P833 Harris ZS, 1954, WORD, V10, P146, DOI 10.1080/00437956.1954.11659520 Hernández-Alvarez M, 2016, NAT LANG ENG, V22, P327, DOI 10.1017/S1351324915000388 Hersh W, 2009, INFORM RETRIEVAL, V12, P1, DOI 10.1007/s10791-008-9076-6 Hill F, 2015, COMPUT LINGUIST, V41, P665, DOI 10.1162/COLI_a_00237 Hulth A, 2003, PROCEEDINGS OF THE 2003 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING, P216 Huston S, 2010, SIGIR 2010: PROCEEDINGS OF THE 33RD ANNUAL INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH DEVELOPMENT IN INFORMATION RETRIEVAL, P291 Jaidka K., 2016, P JOINT WORKSH BIBL Jha Rahul., 2015, Ann Arbor, V1001, P48109 Jian FH, 2016, SIGIR'16: PROCEEDINGS OF THE 39TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, P733, DOI 10.1145/2911451.2914750 Jones K. S., 2000, Information Processing & Management, V36, P809, DOI 10.1016/S0306-4573(00)00016-9 Jurgens David., 2016, CoRR Kataria S., 2010, AAAI Klampfl Stefan., 2016, BIRNDL at JCDL, P122 Le Q., 2014, 31 INT C MACH LEARN, P1188, DOI DOI 10.1145/2740908.2742760 Li L, 2016, P JOINT WORKSH BIBL, P156 Lin C., 2004, TEXT SUMMARIZATION B, P74 Lin J., 2010, Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the Association for Computational Linguistics, HLT '10, P305 Lipscomb CE, 2000, B MED LIBR ASSOC, V88, P265 Maat H. P., 2012, P WORKSH DET STRUCT, P47 Mihalcea R., 2004, Proceedings of the ACL 2004 on Interactive poster and demonstration sessions, P20, DOI DOI 10.3115/1219044.1219064 Mikolov T., 2013, ARXIV MILLER GA, 1995, COMMUN ACM, V38, P39, DOI 10.1145/219717.219748 Mora LuisMiguel Garcia., 2016, The Politics of the Second Slavery, P113 Nakov P. I., 2004, P SIGIR 04 WORKSH SE, P81 Nomoto T., 2016, P JOINT WORKSH BIBL, P168 Page L., 1999, The PageRank citation ranking: bringing order to the web Paul MichaelJ., 2010, EMNLP, P66 Ponte J.M., 1998, Research and Development in Information Retrieval, P275, DOI DOI 10.1145/290941.291008 Qazvinian V, 2008, P 22 INT C COMP LING, V1, P689, DOI DOI 10.3115/1599081.1599168 Qazvinian V, 2013, J ARTIF INTELL RES, V46, P165, DOI 10.1613/jair.3732 Qazvinian V, 2010, ACL 2010: 48TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, P555 Robertson Stephen, 2009, Foundations and Trends in Information Retrieval, V3, P333, DOI 10.1561/1500000019 Rush AlexanderM., 2015, P C EMP METH NAT LAN Saggion Horacio., 2016, Proceedings of the Joint Workshop on Bibliometric-enhanced Information Retrieval and Natural Language Processing for Digital Libraries (BIRNDL); 2016 June 23; Newark, P175, DOI DOI 10.1007/978-94-017-2388-6_4 Snomed CT, 2011, SYSTEMATIZED NOMENCL Socher Richard, 2014, Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), P1532, DOI [10.3115/v1/D14-1162.https, DOI 10.3115/V1/D14-1162.HTTPS, 10.3115/v1/D14-1162] SPARCKJONES K, 1972, J DOC, V28, P11, DOI 10.1108/eb026526 Steinberger J., 2004, P ISIM, V04, P93 Teufel S, 2002, COMPUT LINGUIST, V28, P409, DOI 10.1162/089120102762671936 Teufel S., 2006, P C EMP METH NAT LAN, DOI 10.3115/1610075.1610091 Vanderwende L, 2007, INFORM PROCESS MANAG, V43, P1606, DOI 10.1016/j.ipm.2007.01.023 Wang S., 2012, Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics: Short Papers - Volume 2, ACL '12, P90 Yihong Gong, 2001, SIGIR Forum, P19 Zhai CX, 2004, ACM T INFORM SYST, V22, P179, DOI 10.1145/984321.984322 NR 78 TC 45 Z9 48 U1 0 U2 11 PU SPRINGER PI NEW YORK PA ONE NEW YORK PLAZA, SUITE 4600, NEW YORK, NY, UNITED STATES SN 1432-5012 EI 1432-1300 J9 INT J DIGIT LIBRARIE JI Int. J. Digit. Llibraries PD SEP PY 2018 VL 19 IS 2-3 SI SI BP 287 EP 303 DI 10.1007/s00799-017-0216-8 PG 17 WC Information Science & Library Science WE Emerging Sources Citation Index (ESCI) SC Information Science & Library Science GA GQ5QB UT WOS:000441741300014 DA 2024-09-05 ER PT J AU Yang, LQ Wang, P Wang, J AF Yang, Liqiang Wang, Pan Wang, Jie TI Research on evaluation model for vehicle interior sound quality based on an optimized BiLSTM using genetic algorithm SO MECHANICAL SYSTEMS AND SIGNAL PROCESSING LA English DT Article DE Sound quality; Vehicle interior noise; Evaluation model; Bidirectional long short-term memory; Genetic algorithm ID PREDICTION; NOISE; TRANSFORM AB Interior sound quality strongly affects passengers' physiological and psychological perceptions. Therefore, it is important to evaluate vehicle interior sound quality. Compared with assessing by humans, the artificial intelligent-based evaluation model can acquire an evaluation efficiently. However, this type of models determines initial learnable parameters at random before training, which is easy to cause final trained model to trap in local optima. This paper proposes an evaluation model based on an optimized bidirectional long short-term memory using genetic algorithm. Firstly, interior noise measurement and subjective evaluation are completed. Secondly, to obtain the time-frequency information in line with human auditory perception, log-mel spectrum is used to preprocess the noise. Thirdly, the evaluation model is constructed, which consists of two bidirectional long short-term memory layers, two fully connected layers and one Softmax output unit. Next, to avoid model trapping in local optima, initial learnable parameters are optimized using genetic algorithm. After optimization, average fitness and best fitness decreased by 6.5136% and 1.4415%, respectively. The training accuracy is 95.79%. The validation accuracy is 93.15%. The testing accuracy is 93.33%. Only two samples are misclassified in the confusion matrix of testing stage. These suggest that genetic algorithm can greatly enhance the model's performance by optimizing initial learnable parameters. The evaluation obtained by the optimized model is very close to human subjective evaluation. C1 [Yang, Liqiang; Wang, Pan] Chongqing Univ, Coll Mech & Vehicle Engn, Chongqing 400044, Peoples R China. [Wang, Jie] Zuoyebang Educ Technol Beijing Co Ltd, Beijing 100085, Peoples R China. C3 Chongqing University RP Wang, P (corresponding author), Chongqing Univ, Coll Mech & Vehicle Engn, Chongqing 400044, Peoples R China. EM yangliqiang@cqu.edu.cn; wangpan@cqu.edu.cn; wangj996@foxmail.com CR Chen PS, 2022, APPL ACOUST, V185, DOI 10.1016/j.apacoust.2021.108411 Chicco D, 2021, PEERJ COMPUT SCI, DOI 10.7717/peerj-cs.623 Edelmann D, 2021, STAT PROBABIL LETT, V169, DOI 10.1016/j.spl.2020.108960 Feng TP, 2019, APPL ACOUST, V154, P99, DOI 10.1016/j.apacoust.2019.04.028 Gao YH, 2016, J VIBROENG, V18, P595 Huang HB, 2019, MECH SYST SIGNAL PR, V124, P439, DOI 10.1016/j.ymssp.2019.01.053 Huang HB, 2019, MECH SYST SIGNAL PR, V120, P98, DOI 10.1016/j.ymssp.2018.09.035 Huang HB, 2016, APPL ACOUST, V113, P149, DOI 10.1016/j.apacoust.2016.06.021 Huang HB, 2021, MECH SYST SIGNAL PR, V148, DOI 10.1016/j.ymssp.2020.107170 [黄海波 Huang Haibo], 2017, [振动与冲击, Journal of Vibration and Shock], V36, P130 Huang XR, 2020, EXPERT SYST APPL, V160, DOI 10.1016/j.eswa.2020.113657 Kasuya E, 2019, ECOL RES, V34, P235, DOI 10.1111/1440-1703.1011 Katoch S, 2021, MULTIMED TOOLS APPL, V80, P8091, DOI 10.1007/s11042-020-10139-6 Liang DJ, 2018, IEEE ACCESS, V6, P58774, DOI 10.1109/ACCESS.2018.2872698 [刘哲 Liu Zhe], 2021, [汽车工程, Automotive Engineering], V43, P1858 Lu WJ, 2021, NEURAL COMPUT APPL, V33, P4741, DOI 10.1007/s00521-020-05532-z Lu Y, 2021, NEURAL COMPUT APPL, V33, P8201, DOI 10.1007/s00521-020-04934-3 [马志远 Ma Zhiyuan], 2019, [噪声与振动控制, Noise and Vibration Control], V39, P122 Pan J, 2020, FLUCT NOISE LETT, V19, DOI 10.1142/S0219477520500315 Pourseiedrezaei M, 2021, ARCH ACOUST, V46, P55, DOI 10.24425/aoa.2021.136560 Pourseiedrezaei M, 2019, ARCH ACOUST, V44, P561, DOI 10.24425/aoa.2019.129271 Purwins H., 2019, IEEE J-STSP, P1 Qian K, 2021, APPL ACOUST, V173, DOI 10.1016/j.apacoust.2020.107684 Qian K, 2020, APPL SCI-BASEL, V10, DOI 10.3390/app10165567 Rong G, 2022, P I MECH ENG D-J AUT, V236, P1246, DOI 10.1177/09544070211034313 Song XD, 2022, SCI PROGRAMMING-NETH, V2022, DOI 10.1155/2022/8686785 Wang XJ, 2023, SAE INT J VEH DYN ST, V7, P153, DOI 10.4271/10-07-02-0010 Wang YQ, 2022, APPL ACOUST, V195, DOI 10.1016/j.apacoust.2022.108857 Xu ZM, 2018, APPL ACOUST, V130, P43, DOI 10.1016/j.apacoust.2017.08.019 [杨易 Yang Yi], 2021, [机械工程学报, Journal of Mechanical Engineering], V57, P241 [曾发林 Zeng Falin], 2019, [振动与冲击, Journal of Vibration and Shock], V38, P74 Zha YF, 2023, SAE INT J VEH DYN ST, V7, P221, DOI 10.4271/10-07-02-0014 Zhang EL, 2016, MEAS SCI TECHNOL, V27, DOI 10.1088/0957-0233/27/1/015801 Zhang Junhong, 2019, Journal of Tianjin University (Science and Technology), V52, P150, DOI 10.11784/tdxbz201804013 Zhang JH, 2019, APPL ACOUST, V145, P27, DOI 10.1016/j.apacoust.2018.09.015 NR 35 TC 2 Z9 2 U1 7 U2 18 PU ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD PI LONDON PA 24-28 OVAL RD, LONDON NW1 7DX, ENGLAND SN 0888-3270 EI 1096-1216 J9 MECH SYST SIGNAL PR JI Mech. Syst. Signal Proc. PD DEC 1 PY 2023 VL 204 AR 110827 DI 10.1016/j.ymssp.2023.110827 EA OCT 2023 PG 15 WC Engineering, Mechanical WE Science Citation Index Expanded (SCI-EXPANDED) SC Engineering GA W4BO1 UT WOS:001091096900001 DA 2024-09-05 ER PT J AU Han, YJ Park, SY Park, SB AF Han, Yong-Jin Park, Se-Young Park, Seong-Bae TI A single-directional influence topic model using call and proximity logs simultaneously SO SOFT COMPUTING LA English DT Article; Proceedings Paper CT 12th International Conference on Advances in Mobile Computing and Multimedia (MoMM) CY DEC 08-10, 2014 CL Kaohsiung, TAIWAN DE Social interaction pattern; Call; Proximity; Topic model; Latent Dirichlet allocation AB Understanding social interactions is one of the key factors in the development of context-aware ubiquitous applications. Identifying interaction patterns sensed by a mobile device is one possible way for understanding social interactions. Most previous studies on this problem have employed call and proximity logs to represent social interactions. Because these interactions can be characterized by topics, the studies have applied topic models based on latent Dirichlet allocation (LDA) to identifying interaction patterns from social interactions. However, these previous studies regarded calls and proximities as independent interaction types. As a result, they lost the information obtainable when calls and proximities were analyzed simultaneously. This paper proposes a topic-based method that simultaneously considers calls and proximities, allowing interaction patterns to be identified from a mobile log. For this purpose, the proposed method regards calls and proximities as a homogeneous information type that are drawn from the same temporal space expressed by the same distribution, but with different parameters. From the observation that the number of proximities in a mobile log usually overwhelms that of calls and the proximities are observed regularly, the proposed method models a single-directional influence from proximities to calls, where both call and proximity are modeled by LDA. The experiments with three different data sets from the Massachusetts Institute of Technology's Reality Mining project show that the proposed method outperforms the method that considers calls and proximities independently; this proves the plausibility of the proposed method. C1 [Han, Yong-Jin; Park, Se-Young; Park, Seong-Bae] Kyungpook Natl Univ, Sch Comp Sci & Engn, Daegu, South Korea. C3 Kyungpook National University (KNU) RP Park, SB (corresponding author), Kyungpook Natl Univ, Sch Comp Sci & Engn, Daegu, South Korea. EM yjhan@sejong.knu.ac.kr; sbpark@sejong.knu.ac.kr; sypark@sejong.knu.ac.kr RI Park, Young/D-6811-2013 FU BK21 Plus project (SW Human Resource Development Program for Supporting Smart Life) - Ministry of Education, School of Computer Science and Engineering, Kyungpook National University, Korea [21A20131600005] FX This study was supported by the BK21 Plus project (SW Human Resource Development Program for Supporting Smart Life) funded by the Ministry of Education, School of Computer Science and Engineering, Kyungpook National University, Korea (21A20131600005). CR Aharony N, 2011, PERVASIVE MOB COMPUT, V7, P643, DOI 10.1016/j.pmcj.2011.09.004 Behmardi B, 2012, IEEE T SIGNAL PROCES, V60, P5146, DOI 10.1109/TSP.2012.2208634 Black M, 2003, SOFT COMPUT, V8, P102, DOI 10.1007/S00500-002-0250-2 Blei D, 2010, IEEE SIGNAL PROC MAG, V27, P55, DOI 10.1109/MSP.2010.938079 Blei David M, 2003, Proceedings of the 26th annual international ACM SIGIR conference on Research and development in informaion retrieval, P127 Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993 Dong W., 2011, P 10 INT C MOBILE UB, P134, DOI [DOI 10.1145/2107596.2107613, 10.1145/2107596.2107613] Eagle N, 2006, PERS UBIQUIT COMPUT, V10, P255, DOI 10.1007/s00779-005-0046-3 Eagle N, 2009, P NATL ACAD SCI USA, V106, P15274, DOI 10.1073/pnas.0900282106 Farrahi K, 2010, IEEE J-STSP, V4, P746, DOI 10.1109/JSTSP.2010.2049513 Gómez-Lopera JF, 2000, J MATH IMAGING VIS, V13, P35, DOI 10.1023/A:1008325607354 Griffiths TL, 2004, P NATL ACAD SCI USA, V101, P5228, DOI 10.1073/pnas.0307752101 Han YJ, 2014, 2014 PROCEEDINGS OF THE IEEE/ACM INTERNATIONAL CONFERENCE ON ADVANCES IN SOCIAL NETWORKS ANALYSIS AND MINING (ASONAM 2014), P399, DOI 10.1109/ASONAM.2014.6921617 Jung JJ, 2009, EXPERT SYST APPL, V36, P11950, DOI 10.1016/j.eswa.2009.03.067 Madan A, 2010, P AAAI SPRING S HUM, P43 Madan A, 2012, IEEE PERVAS COMPUT, V11, P36, DOI 10.1109/MPRV.2011.79 Mimno David M., 2009, Proceedings of the 2009 Conference on Empirical Methods in Natural Language Processing: Volume 2, P880 Minka T., 2000, Estimating a dirichlet distribution Mollenhorst G, 2008, SOC NETWORKS, V30, P60, DOI 10.1016/j.socnet.2007.07.003 Putthividhya D, 2010, PROC CVPR IEEE, P3408, DOI 10.1109/CVPR.2010.5540000 Singh V. K., 2013, Human, V2, P99 Huynh T, 2008, PROCEEDINGS OF THE 10TH INTERNATIONAL CONFERENCE ON UBIQUITOUS COMPUTING (UBICOMP 2008), P10 Do TMT, 2013, PERS UBIQUIT COMPUT, V17, P413, DOI 10.1007/s00779-011-0489-7 Xing Wei, 2006, Proceedings of the Twenty-Ninth Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, P178 Zheng JC, 2013, UBICOMP'13: PROCEEDINGS OF THE 2013 ACM INTERNATIONAL JOINT CONFERENCE ON PERVASIVE AND UBIQUITOUS COMPUTING, P721, DOI 10.1145/2493432.2493512 NR 25 TC 1 Z9 1 U1 0 U2 10 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1432-7643 EI 1433-7479 J9 SOFT COMPUT JI Soft Comput. PD AUG PY 2017 VL 21 IS 15 BP 4179 EP 4195 DI 10.1007/s00500-015-1898-8 PG 17 WC Computer Science, Artificial Intelligence; Computer Science, Interdisciplinary Applications WE Science Citation Index Expanded (SCI-EXPANDED); Conference Proceedings Citation Index - Science (CPCI-S) SC Computer Science GA FA5RL UT WOS:000405501100003 DA 2024-09-05 ER PT C AU Koksalmis, E Koksalmis, GH AF Koksalmis, Emrah Koksalmis, Gulsah Hancerliogullari GP IEEE TI Artificial Intelligence in Air and Space Technologies: A Scientometric Analysis SO 2023 10TH INTERNATIONAL CONFERENCE ON RECENT ADVANCES IN AIR AND SPACE TECHNOLOGIES, RAST LA English DT Proceedings Paper CT 10th International Conference on Recent Advances in Air and Space Technologies (RAST) CY JUN 07-09, 2023 CL Istanbul, TURKEY DE artificial intelligence; air and space technologies; aerospace; bibliometric analysis; scientometric analysis; publication trends AB The aim of this paper is to conduct a bibliometric analysis and evaluate publication trends of research papers related to artificial intelligence in air and space technologies for the last 50 years. The data was obtained from Scopus' database. The keyword for the search was "artificial intelligence" "aerospace". This paper seeks to identify top publishing authors, universities, countries, and reference articles to highlight collaboration between authors, institutions, and countries in the region, and to gain insight into research topics that scholars have been working on recently. Moreover, distribution of publications according to their languages, document types, and research areas are evaluated. Articles from 1975 to 2023 were considered, and a total of 1,111 artificial intelligence in air and space technologies-related publications were discovered. There were five main document types in artificial intelligence in air and space technologies related publications and conference paper and article were mostly used among all document types. The United States was found to be the most productive country and English was the most frequently used language among all publications. Furthermore, engineering is the main distribution channel, and it is followed by computer science and physics and astronomy as the top popular research areas. C1 [Koksalmis, Emrah] Natl Def Univ, Dept Ind Engn, Istanbul, Turkiye. [Koksalmis, Gulsah Hancerliogullari] Istanbul Tech Univ, Dept Ind Engn, Istanbul, Turkiye. C3 Istanbul Technical University RP Koksalmis, E (corresponding author), Natl Def Univ, Dept Ind Engn, Istanbul, Turkiye. EM ekoksalmis@hho.msu.edu.tr; ghancerliogullari@itu.edu.tr CR Blasch E., 2022, 2022 IEEE AEROSPACE, P1 de Dalmau J., 2010, CCIA, P5 Erickson J.D., 1985, Artificial Intelligence-NASA Hong-Ming Chen, 2020, 2020 International Conference on Pervasive Artificial Intelligence (ICPAI), P276, DOI 10.1109/ICPAI51961.2020.00059 Insaurralde C.C., 2020, 2020 AIAAIEEE 39 DIG, P1 Izzo D, 2019, ASTRODYNAMICS-CHINA, V3, P285, DOI 10.1007/s42064-019-0066-9 NR 6 TC 0 Z9 0 U1 2 U2 4 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA BN 979-8-3503-2302-3 PY 2023 DI 10.1109/RAST57548.2023.10197660 PG 4 WC Engineering, Aerospace; Remote Sensing WE Conference Proceedings Citation Index - Science (CPCI-S) SC Engineering; Remote Sensing GA BV6BY UT WOS:001055074600008 DA 2024-09-05 ER PT J AU Boukhers, Z Asundi, NB AF Boukhers, Zeyd Asundi, Nagaraj Bahubali TI Deep author name disambiguation using DBLP data SO INTERNATIONAL JOURNAL ON DIGITAL LIBRARIES LA English DT Article; Early Access DE Author name disambiguation; Entity linkage; Bibliographic data; Neural networks; Classification; DBLP AB In the academic world, the number of scientists grows every year and so does the number of authors sharing the same names. Consequently, it is challenging to assign newly published papers to their respective authors. Therefore, author name ambiguity is considered a critical open problem in digital libraries. This paper proposes an author name disambiguation approach that links author names to their real-world entities by leveraging their co-authors and domain of research. To this end, we use data collected from the DBLP repository that contains more than 5 million bibliographic records authored by around 2.6 million co-authors. Our approach first groups authors who share the same last names and same first name initials. The author within each group is identified by capturing the relation with his/her co-authors and area of research, represented by the titles of the validated publications of the corresponding author. To this end, we train a neural network model that learns from the representations of the co-authors and titles. We validated the effectiveness of our approach by conducting extensive experiments on a large dataset. C1 [Boukhers, Zeyd] Univ Koblenz Landau, Inst Web Sci & Technol WeST, Univ str 1, D-56070 Koblenz, Germany. [Boukhers, Zeyd; Asundi, Nagaraj Bahubali] Fraunhofer Inst Appl Informat Technol, Dept Data Sci & Artificial Intelligence FIT, Schloss Birlinghoven 1, D-53757 St Augustin, Germany. C3 University of Koblenz & Landau; Fraunhofer Gesellschaft RP Boukhers, Z (corresponding author), Univ Koblenz Landau, Inst Web Sci & Technol WeST, Univ str 1, D-56070 Koblenz, Germany.; Boukhers, Z (corresponding author), Fraunhofer Inst Appl Informat Technol, Dept Data Sci & Artificial Intelligence FIT, Schloss Birlinghoven 1, D-53757 St Augustin, Germany. EM zeyd.boukhers@fit.fraunhofer.de; nagaraj.bahubali.asundi@fit.fraunhofer.de RI Boukhers, Zeyd/HZL-0733-2023 OI Boukhers, Zeyd/0000-0001-9778-9164; Asundi, Nagaraj Bahubali/0000-0002-1044-7047 FU Projekt DEAL FX Open Access funding enabled and organized by Projekt DEAL. CR [Anonymous], 2010, P 10 ANN JOINT C DIG, DOI 10.1145/1816123.1816130 Arif T, 2014, INT CONF CONTEMP, P135, DOI 10.1109/IC3.2014.6897162 Baglioni M., 2021, RADIO SCI, V20, P66 Boukhers Z, 2022, LECT NOTES COMPUT SC, V13541, P201, DOI 10.1007/978-3-031-16802-4_16 Cao KS, 2016, Arxiv, DOI arXiv:1606.02601 Devlin J, 2019, Arxiv, DOI arXiv:1810.04805 Ebraheem M, 2018, PROC VLDB ENDOW, V11, P1454, DOI 10.14778/3236187.3236198 Fan X., 2011, J DATA INF QUAL, V2, P10, DOI [DOI 10.1145/1891879.1891883, 10.1145/1891879.1891883] Ferreira AA, 2012, SIGMOD REC, V41, P15, DOI 10.1145/2350036.2350040 Foxcroft J, 2019, LECT NOTES ARTIF INT, V11489, P505, DOI 10.1007/978-3-030-18305-9_52 Grover A, 2016, KDD'16: PROCEEDINGS OF THE 22ND ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, P855, DOI 10.1145/2939672.2939754 Han H, 2004, ACM-IEEE J CONF DIG, P296, DOI 10.1145/996350.996419 Han XP, 2011, PROCEEDINGS OF THE 34TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL (SIGIR'11), P765 Hermansson L, 2013, PROCEEDINGS OF THE 22ND ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT (CIKM'13), P1037, DOI 10.1145/2505515.2505565 Hoffart Johannes, 2011, EMNLP, P782, DOI DOI 10.3115/V1/D11-1072 Hourrane O, 2018, COMM COM INF SC, V872, P185, DOI 10.1007/978-3-319-96292-4_15 Tran HN, 2014, LECT NOTES COMPUT SC, V8397, P123, DOI 10.1007/978-3-319-05476-6_13 Hussain I, 2017, KNOWL ENG REV, V32, DOI 10.1017/S0269888917000182 Kai-Hsiang Yang, 2011, 2011 IEEE/WIC/ACM International Joint Conferences on Web Intelligence (WI) and Intelligent Agent Technologies, P335, DOI 10.1109/WI-IAT.2011.181 Khabsa Madian, 2014, 2014 IEEE International Conference on Big Data (Big Data), P41, DOI 10.1109/BigData.2014.7004487 Khabsa M, 2015, PROCEEDINGS OF THE 15TH ACM/IEEE-CS JOINT CONFERENCE ON DIGITAL LIBRARIES (JCDL'15), P37, DOI 10.1145/2756406.2756915 Kim K., 2020, P 1 WORKSHOP SCHOLAR, P72 Kim K, 2018, 2018 IEEE INTERNATIONAL CONFERENCE ON WEB SERVICES (IEEE ICWS 2018), P265, DOI 10.1109/ICWS.2018.00041 Kuang Da, 2012, SDM, P106, DOI DOI 10.1137/1.9781611972825.10 Li JY, 2013, PROCEEDINGS OF THE 2013 INTERNATIONAL CONFERENCE ON ENERGY, P1 Liu WL, 2014, J ASSOC INF SCI TECH, V65, P765, DOI 10.1002/asi.23063 Louppe G, 2016, COMM COM INF SC, V649, P272, DOI 10.1007/978-3-319-45880-9_21 Müller MC, 2017, LECT NOTES COMPUT SC, V10450, P300, DOI 10.1007/978-3-319-67008-9_24 Perozzi B, 2014, PROCEEDINGS OF THE 20TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING (KDD'14), P701, DOI 10.1145/2623330.2623732 Qian Y., 2011, Proceedings of the 20th ACM international conference on Information and knowledge management, P1241, DOI 10.1145/2063576.2063756 Qian YA, 2015, INFORM RETRIEVAL J, V18, P379, DOI 10.1007/s10791-015-9261-3 Tang J, 2015, KDD'15: PROCEEDINGS OF THE 21ST ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, P1165, DOI 10.1145/2783258.2783307 Tang J, 2015, PROCEEDINGS OF THE 24TH INTERNATIONAL CONFERENCE ON WORLD WIDE WEB (WWW 2015), P1067, DOI 10.1145/2736277.2741093 Wu H, 2014, SCIENTOMETRICS, V101, P1955, DOI 10.1007/s11192-014-1283-x Xiaoling Sun, 2011, Proceedings of the 2011 IEEE Third International Conference on Privacy, Security, Risk and Trust and IEEE Third International Conference on Social Computing (PASSAT/SocialCom 2011), P568, DOI 10.1109/PASSAT/SocialCom.2011.43 Xu J, 2018, CIKM'18: PROCEEDINGS OF THE 27TH ACM INTERNATIONAL CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, P1735, DOI 10.1145/3269206.3269272 Zhang BC, 2017, CIKM'17: PROCEEDINGS OF THE 2017 ACM CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, P1239, DOI 10.1145/3132847.3132873 Zhang BC, 2016, CIKM'16: PROCEEDINGS OF THE 2016 ACM CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, P1341, DOI 10.1145/2983323.2983714 Zhang YT, 2018, KDD'18: PROCEEDINGS OF THE 24TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING, P1002, DOI 10.1145/3219819.3219859 NR 39 TC 0 Z9 0 U1 1 U2 13 PU SPRINGER PI NEW YORK PA ONE NEW YORK PLAZA, SUITE 4600, NEW YORK, NY, UNITED STATES SN 1432-5012 EI 1432-1300 J9 INT J DIGIT LIBRARIE JI Int. J. Digit. Llibraries PD 2023 MAY 4 PY 2023 DI 10.1007/s00799-023-00361-6 EA MAY 2023 PG 11 WC Information Science & Library Science WE Emerging Sources Citation Index (ESCI) SC Information Science & Library Science GA F3JJ7 UT WOS:000981337900001 OA hybrid DA 2024-09-05 ER PT J AU Aliya Liu, S Zhang, DN Cao, YF Sun, JY Jiang, S Liu, Y AF Aliya, Shi Liu, Shi Zhang, Danni Cao, Yufa Sun, Jinyuan Jiang, Shui Liu, Yuan TI Research on the Evaluation of Baijiu Flavor Quality Based on Intelligent Sensory Technology Combined with Machine Learning SO CHEMOSENSORS LA English DT Article DE Baijiu; flavor evaluation; intelligent sensory; machine learning AB Baijiu, one of the world's six major distilled spirits, has an extremely rich flavor profile, which increases the complexity of its flavor quality evaluation. This study employed an electronic nose (E-nose) and electronic tongue (E-tongue) to detect 42 types of strong-aroma Baijiu. Linear discriminant analysis (LDA) was performed based on the different production origins, alcohol content, and grades. Twelve trained Baijiu evaluators participated in the quantitative descriptive analysis (QDA) of the Baijiu samples. By integrating characteristic values from the intelligent sensory detection data and combining them with the human sensory evaluation results, machine learning was used to establish a multi-submodel-based flavor quality prediction model and classification model for Baijiu. The results showed that different Baijiu samples could be well distinguished, with a prediction model R2 of 0.9994 and classification model accuracy of 100%. This study provides support for the establishment of a flavor quality evaluation system for Baijiu. C1 [Jiang, Shui; Liu, Yuan] Shanghai Jiao Tong Univ, Sch Agr & Biol, Dept Food Sci & Technol, Shanghai 200240, Peoples R China. [Aliya, Shi; Liu, Shi; Cao, Yufa] Suqian Prod Qual Supervis & Testing Inst, Suqian 223800, Peoples R China. [Zhang, Danni] Shanghai Jiao Tong Univ, Instrumental Anal Ctr, Shanghai 200240, Peoples R China. [Sun, Jinyuan] Beijing Technol & Business Univ, China Food Flavor & Nutr Hlth Innovat Ctr, Beijing 102401, Peoples R China. [Liu, Yuan] Ningxia Univ, Sch Food Sci & Engn, Yinchuan 750021, Peoples R China. C3 Shanghai Jiao Tong University; Shanghai Jiao Tong University; Beijing Technology & Business University; Ningxia University RP Liu, Y (corresponding author), Shanghai Jiao Tong Univ, Sch Agr & Biol, Dept Food Sci & Technol, Shanghai 200240, Peoples R China.; Liu, S (corresponding author), Suqian Prod Qual Supervis & Testing Inst, Suqian 223800, Peoples R China.; Sun, JY (corresponding author), Beijing Technol & Business Univ, China Food Flavor & Nutr Hlth Innovat Ctr, Beijing 102401, Peoples R China.; Liu, Y (corresponding author), Ningxia Univ, Sch Food Sci & Engn, Yinchuan 750021, Peoples R China. EM aly122150910101@sjtu.edu.cn; liushisqzj@163.com; dannizhang2019@sjtu.edu.cn; qcyf@163.com; sunjinyuan@btbu.edu.cn; jiangshui@sjtu.edu.cn; y_liu@sjtu.edu.cn RI ; Liu, Yuan/J-4453-2012 OI Sun, Jinyuan/0000-0001-6717-9787; Liu, Yuan/0000-0003-1420-0276 FU Suqian Sci Tech Program [L202205, L202305]; Open Project of the China Food Flavor and Nutrition Health Innovation Center [CFC2023B-007] FX This work was supported by the Suqian Sci & Tech Program (Grant No. L202205 and No. L202305) and the Open Project of the China Food Flavor and Nutrition Health Innovation Center (CFC2023B-007). CR Abi-Rizk H, 2023, ANAL METHODS-UK, V15, P5410, DOI 10.1039/d3ay01132a Al-Hooti HS, 2024, FOODS, V13, DOI 10.3390/foods13030428 Aunsa-Ard W, 2022, INT CONF KNOWL SMART, P147, DOI 10.1109/KST53302.2022.9729071 Carrillo JK, 2023, CHEMOSENSORS, V11, DOI 10.3390/chemosensors11070354 Celdran AC, 2022, AGRONOMY-BASEL, V12, DOI 10.3390/agronomy12112627 Geana EI, 2020, CHEMOSENSORS, V8, DOI 10.3390/chemosensors8030059 He X, 2021, FOOD CHEM, V337, DOI 10.1016/j.foodchem.2020.128002 He YX, 2021, FOOD RES INT, V147, DOI 10.1016/j.foodres.2021.110493 Hong JX, 2021, RSC ADV, V11, P34262, DOI 10.1039/d1ra90161c Hou QC, 2024, FOOD RES INT, V184, DOI 10.1016/j.foodres.2024.114257 Huang Y, 2022, INT J FOOD PROP, V25, P885, DOI 10.1080/10942912.2022.2066123 Ji HZ, 2023, TRENDS FOOD SCI TECH, V138, P738, DOI 10.1016/j.tifs.2023.07.012 Jung HH, 2023, ACS APPL MATER INTER, V15, P46041, DOI 10.1021/acsami.3c09684 Li HH, 2023, FOODS, V12, DOI 10.3390/foods12061238 Li Q, 2017, SENSORS-BASEL, V17, DOI 10.3390/s17020272 Li T, 2023, J FOOD COMPOS ANAL, V122, DOI 10.1016/j.jfca.2023.105479 Liang ER, 2024, J AM SOC BREW CHEM, V82, P271, DOI 10.1080/03610470.2023.2253704 Muoz-Castells R., 2024, J. Sci. Food Agric, V1, P2, DOI [10.1002/jsfa.13178, DOI 10.1002/JSFA.13178] Qin D, 2023, FOOD SCI HUM WELL, V12, P79, DOI 10.1016/j.fshw.2022.07.025 Robbiani S, 2023, CHEMOSENSORS, V11, DOI 10.3390/chemosensors11100514 Song XB, 2020, J AGR FOOD CHEM, V68, P7946, DOI 10.1021/acs.jafc.0c04170 Sun YL, 2021, FOODS, V10, DOI 10.3390/foods10112843 Tian XJ, 2019, J FOOD QUALITY, DOI 10.1155/2019/4342509 Wang AL, 2022, FOOD SCI TECH-BRAZIL, V42, DOI 10.1590/fst.54622 Wang A, 2022, FOOD PACKAGING SHELF, V31, DOI 10.1016/j.fpsl.2021.100773 Wang GN, 2022, J AGR FOOD CHEM, V70, P13987, DOI 10.1021/acs.jafc.2c04321 Wang J, 2021, FOOD CHEM, V347, DOI 10.1016/j.foodchem.2021.129028 Wang JS, 2022, J FOOD COMPOS ANAL, V109, DOI 10.1016/j.jfca.2022.104499 Wu F, 2024, FOODS, V13, DOI 10.3390/foods13050681 Wu JH, 2023, FRONT NUTR, V10, DOI 10.3389/fnut.2023.1132527 Wu YS, 2023, FOODS, V12, DOI 10.3390/foods12163087 Xu ML, 2017, SCI REP-UK, V7, DOI 10.1038/s41598-017-06958-7 Xu YQ, 2022, FOOD CHEM, V369, DOI 10.1016/j.foodchem.2021.130920 Zhang L, 2019, IEEE T CYBERNETICS, V49, P947, DOI 10.1109/TCYB.2018.2789889 Zhang SS, 2021, IEEE SENS J, V21, P16170, DOI 10.1109/JSEN.2021.3075703 Zheng WB, 2022, MEASUREMENT, V205, DOI 10.1016/j.measurement.2022.112150 NR 36 TC 0 Z9 0 U1 4 U2 4 PU MDPI PI BASEL PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND EI 2227-9040 J9 CHEMOSENSORS JI Chemosensors PD JUL PY 2024 VL 12 IS 7 AR 125 DI 10.3390/chemosensors12070125 PG 15 WC Chemistry, Analytical; Electrochemistry; Instruments & Instrumentation WE Science Citation Index Expanded (SCI-EXPANDED) SC Chemistry; Electrochemistry; Instruments & Instrumentation GA ZQ3D4 UT WOS:001276712500001 OA gold DA 2024-09-05 ER PT J AU Mustafa, G Usman, M Afzal, MT Shahid, A Koubaa, A AF Mustafa, Ghulam Usman, Muhammad Afzal, Muhammad Tanvir Shahid, Abdul Koubaa, Anis TI A Comprehensive Evaluation of Metadata-Based Features to Classify Research Paper's Topics SO IEEE ACCESS LA English DT Article DE Metadata; Computer science; Deep learning; Tools; Support vector machines; Licenses; Libraries; Research paper classification; Word2Vector (W2V); metadata; association of computing machinery (ACM); k-nearest neighbor's (KNN); decision tree (DT); random forest (RF); term frequency (TF); term frequency and inverse document frequency (TFIDF); bag of word (BOW) ID CLASSIFICATION; NOISE AB The existing plethora of document classification techniques exploits different data sources either from the content or metadata of research articles. Various journal publishers like Springer, Elsevier, IEEE, etc., do not provide open access to the content of research articles, whereas metadata is freely available there. Metadata like title, keyword, and abstract can serve as a better alternative to the content in various scenarios. In the current literature, researchers have assessed the role of some of the metadata individually. We believe that the collective contribution of metadata parameters can play a significant role in classifying research papers. This paper presents a comprehensive evaluation of the role of metadata, individually as well as in combinations to achieve the objective of research paper classification. Moreover, we have classified the research articles into ACM hierarchy root categories (e.g. general literature, hardware, software, etc.). In this comprehensive evaluation, we have assessed all the possible combinations of metadata features against different classifiers such as Random Forest, K Nearest Neighbor, and Decision Tree. The results of this research reveal that the title & keywords combination outperforms other combinations with an F-measure score of 0.88. C1 [Mustafa, Ghulam] Capital Univ Sci & Technol, Dept Comp Sci, Islamabad 46000, Pakistan. [Usman, Muhammad] Natl Univ Comp & Emerging Sci, Dept Comp Sci, Islamabad 44000, Pakistan. [Afzal, Muhammad Tanvir] Namal Inst Mianwali, Dept Comp Sci, Mianwali 42250, Pakistan. [Shahid, Abdul] Kohat Univ Sci & Technol, Inst Comp, Kohat 26000, Pakistan. [Koubaa, Anis] Prince Sultan Univ, Robot & Internet Things Lab, Riyadh 12435, Saudi Arabia. [Koubaa, Anis] Polytech Inst Porto, CISTER INESC TEC, P-4200 Porto, Portugal. C3 Capital University of Science & Technology; Kohat University of Science & Technology; Prince Sultan University; Instituto Politecnico do Porto; INESC TEC RP Shahid, A (corresponding author), Kohat Univ Sci & Technol, Inst Comp, Kohat 26000, Pakistan. EM ashahid@kust.edu.pk RI Afzal, Muhammad/D-3741-2019; Mustafa, Ghulam/JPY-1274-2023; Koubaa, Anis/T-7414-2018 OI Afzal, Muhammad/0000-0002-7851-2327; Mustafa, Ghulam/0000-0002-0354-8229; Koubaa, Anis/0000-0003-3787-7423; Usman, Muhammad/0000-0002-6154-6256; Afzal, Muhammad Tanvir/0000-0002-9765-8815 FU Prince Sultan University FX The authors would like to acknowledge the support of Prince Sultan University for paying the Article Processing Charges (APC) of this publication. CR Abreu J, 2019, LECT NOTES COMPUT SC, V11731, P396, DOI 10.1007/978-3-030-30493-5_39 [Anonymous], 2013, INT C LEARNING REPRE Asim M. N., 2019, P INT C DOC AN REC I, P1390 Asim MN, 2021, NEURAL COMPUT APPL, V33, P5437, DOI 10.1007/s00521-020-05321-8 Balys V, 2010, INFORMATICA-LITHUAN, V21, P471 Beel Joeran., 2013, P INT WORKSH REPR RE, P15, DOI 10.1145/2532508.2532512 Chekima K, 2012, 2012 IEEE INTERNATIONAL CONFERENCE ON CONTROL SYSTEM, COMPUTING AND ENGINEERING (ICCSCE 2012), P386, DOI 10.1109/ICCSCE.2012.6487176 Chernyak E, 2015, WSDM'15: PROCEEDINGS OF THE EIGHTH ACM INTERNATIONAL CONFERENCE ON WEB SEARCH AND DATA MINING, P429, DOI 10.1145/2684822.2697032 COVER TM, 1967, IEEE T INFORM THEORY, V13, P21, DOI 10.1109/TIT.1967.1053964 Cunningham S. J., 1995, Proceedings. 1995. Second New Zealand International Two-Stream Conference on Artificial Neural Networks and Expert Systems, P243, DOI 10.1109/ANNES.1995.499481 Devi SA, 2020, INT J ADV COMPUT SC, V11, P364 Dey A. Ujjal, ARXIV190510622 Flynn P. K, 2014, INT J SOFTCOMPUT, V2, P1 Flynn P. K., 2014, DOCUMENT CLASSIFICAT Godbole S, 2004, LECT NOTES ARTIF INT, V3056, P22 Hamer RM, 2009, AM J PSYCHIAT, V166, P639, DOI 10.1176/appi.ajp.2009.09040458 Jiang S., ARXIV210614269 Kadhim AI, 2019, ARTIF INTELL REV, V52, P273, DOI 10.1007/s10462-018-09677-1 Karman R. N., 2008, INT J SOFTCOMPUT, V3, P58 Khor KC, 2006, LECT NOTES ARTIF INT, V4293, P1027 KIM JO, 1977, SOCIOL METHOD RES, V6, P215, DOI 10.1177/004912417700600206 Luo XY, 2021, ALEX ENG J, V60, P3401, DOI 10.1016/j.aej.2021.02.009 MALHOTRA NK, 1987, J MARKETING RES, V24, P74, DOI 10.2307/3151755 Nanba H., 2011, ADV CLASSIFICATION R, V11, P117, DOI DOI 10.7152/acro.v11i1.12774 Nguyen H. N. L., 2015, P IEEE 27 INT C TOOL, P169 Pan Y. Z. C. Q., 2019, WIRELESS COMMUN MOBI, V19, P61 Qayyum F, 2019, SCIENTOMETRICS, V118, P21, DOI 10.1007/s11192-018-2961-x Quinlan J. R., 1986, Machine Learning, V1, P81, DOI 10.1023/A:1022643204877 Rahman S, 2021, P INT C MACH INT DAT, P507 Rodrigues F, 2009, P 14 PORT C ART INT, V5, P553 Sajid NA, 2021, J INF KNOWL MANAG, V20, DOI 10.1142/S0219649221500040 Sajid NA, 2016, J NATL SCI FOUND SRI, V44, P155, DOI 10.4038/jnsfsr.v44i2.7996 Sajid Naseer Ahmed, 2011, P INT C MAN EM DIG E, P220, DOI [10.1145/2077489.2077531, DOI 10.1145/2077489.2077531] Santos G. D., 2008, THESIS I POLITECNICO Taheriyan M., 2011, Proceedings of the 2011 workshop on Knowledge discovery, modeling and simulation, P39, DOI [DOI 10.1145/2023568.2023579, 10.1145/2023568.2023579] Tang B, 2016, IEEE T KNOWL DATA EN, V28, P1602, DOI 10.1109/TKDE.2016.2522427 Tin Kam Ho, 1995, Proceedings of the Third International Conference on Document Analysis and Recognition, P278, DOI 10.1109/ICDAR.1995.598994 Wang T, 2007, CAN CON EL COMP EN, P792 Wolff W, 2000, P ISI, P145 Wu XD, 2008, IEEE T SYST MAN CY A, V38, P917, DOI 10.1109/TSMCA.2008.923034 Xiao L., 2018, P 11 INT S COMP INT, V1, P81 Zhang B, 2004, P 13 ACM C INF KNOWL, P162 Zhou T., 2016, THESIS U WINDSOR WIN Zhu XQ, 2004, ARTIF INTELL REV, V22, P177, DOI 10.1007/s10462-004-0751-8 Zong W, 2015, INT J PROD ECON, V165, P215, DOI 10.1016/j.ijpe.2014.12.035 NR 45 TC 3 Z9 3 U1 1 U2 27 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 2169-3536 J9 IEEE ACCESS JI IEEE Access PY 2021 VL 9 BP 133500 EP 133509 DI 10.1109/ACCESS.2021.3115148 PG 10 WC Computer Science, Information Systems; Engineering, Electrical & Electronic; Telecommunications WE Science Citation Index Expanded (SCI-EXPANDED) SC Computer Science; Engineering; Telecommunications GA WC2MQ UT WOS:000704096400001 OA gold DA 2024-09-05 ER PT J AU Park, S Ceulemans, E Van Deun, K AF Park, S. Ceulemans, E. Van Deun, K. TI A critical assessment of sparse PCA (research): why (one should acknowledge that) weights are not loadings SO BEHAVIOR RESEARCH METHODS LA English DT Article DE Sparse principal component analysis; Principal component analysis; Exploratory data analysis; Dimension reduction; Sparse weights; Sparse loadings ID PRINCIPAL COMPONENT ANALYSIS; VARIABLE SELECTION; POWER METHOD; CONSISTENCY; MATRIX; MODEL; APPROXIMATION; EIGENVALUE; ROTATION AB Principal component analysis (PCA) is an important tool for analyzing large collections of variables. It functions both as a pre-processing tool to summarize many variables into components and as a method to reveal structure in data. Different coefficients play a central role in these two uses. One focuses on the weights when the goal is summarization, while one inspects the loadings if the goal is to reveal structure. It is well known that the solutions to the two approaches can be found by singular value decomposition; weights, loadings, and right singular vectors are mathematically equivalent. What is often overlooked, is that they are no longer equivalent in the setting of sparse PCA methods which induce zeros either in the weights or the loadings. The lack of awareness for this difference has led to questionable research practices in sparse PCA. First, in simulation studies data is generated mostly based only on structures with sparse singular vectors or sparse loadings, neglecting the structure with sparse weights. Second, reported results represent local optima as the iterative routines are often initiated with the right singular vectors. In this paper we critically re-assess sparse PCA methods by also including data generating schemes characterized by sparse weights and different initialization strategies. The results show that relying on commonly used data generating models can lead to over-optimistic conclusions. They also highlight the impact of choice between sparse weights versus sparse loadings methods and the initialization strategies. The practical consequences of this choice are illustrated with empirical datasets. C1 [Park, S.; Van Deun, K.] Tilburg Univ, Methods & Stat, Tilburg, Netherlands. [Ceulemans, E.] Katholieke Univ Leuven, Psychol & Educ Sci, Leuven, Belgium. C3 Tilburg University; KU Leuven RP Park, S (corresponding author), Tilburg Univ, Methods & Stat, Tilburg, Netherlands. EM s.park_1@tilburguniversity.edu RI Ceulemans, Eva/AAQ-6617-2020 OI Ceulemans, Eva/0000-0002-7611-4683 FU Netherlands Organisation for Scientific Research [NWO-VIDI 452.16.012] FX AcknowledgementsThis research was funded by a personal grant from the Netherlands Organisation for Scientific Research [NWO-VIDI 452.16.012] awarded to Katrijn Van Deun. The funder did not have any additional role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript. We thank the anonymous reviewers for providing their valuable comments and suggestions on improving the manuscript. CR Abdi H, 2010, WIRES COMPUT STAT, V2, P433, DOI 10.1002/wics.101 Adachi K, 2016, COMPUTATION STAT, V31, P1403, DOI 10.1007/s00180-015-0608-4 [Anonymous], 1993, Least squares optimization in multivariate analysis [Anonymous], 1947, Multiple factor analysis Aspremont L.E, 2005, ADV NEURAL INFORM PR, P41 Bro R, 2008, ANAL BIOANAL CHEM, V390, P1241, DOI 10.1007/s00216-007-1790-1 CADIMA J, 1995, J APPL STAT, V22, P203, DOI 10.1080/757584614 Camacho J, 2021, CHEMOMETR INTELL LAB, V208, DOI 10.1016/j.chemolab.2020.104212 Camacho J, 2020, CHEMOMETR INTELL LAB, V196, DOI 10.1016/j.chemolab.2019.103907 CARROLL JB, 1957, SCIENCE, V126, P1114, DOI 10.1126/science.126.3283.1114 Chamberlain G., 1982, ARBITRAGE FACTOR STR, DOI [10.3386/w0996, DOI 10.3386/W0996] Costa P. T., 1992, REVISED NEO PERSONAL Croux C, 2013, TECHNOMETRICS, V55, P202, DOI 10.1080/00401706.2012.727746 de Schipper NC, 2021, J CHEMOMETR, V35, DOI 10.1002/cem.3289 de Schipper NC, 2018, Z PSYCHOL, V226, P212, DOI 10.1027/2151-2604/a000341 Dolan CV, 2009, STRUCT EQU MODELING, V16, P295, DOI 10.1080/10705510902751416 Eckart C, 1936, PSYCHOMETRIKA, V1, P211, DOI 10.1007/BF02288367 Efron B, 2004, ANN STAT, V32, P407, DOI 10.1214/009053604000000067 Epskamp S, 2012, J STAT SOFTW, V48, P1, DOI 10.18637/jss.v048.i04 Erichson NB, 2020, SIAM J APPL MATH, V80, P977, DOI 10.1137/18M1211350 Fan JQ, 2013, J ROY STAT SOC B, V75, P603, DOI 10.1111/rssb.12016 Fokkema M, 2017, EUR J PSYCHOL ASSESS, V33, P399, DOI 10.1027/1015-5759/a000460 FORD JK, 1986, PERS PSYCHOL, V39, P291, DOI 10.1111/j.1744-6570.1986.tb00583.x GABRIEL KR, 1978, J R STAT SOC B, V40, P186 GABRIEL KR, 1971, BIOMETRIKA, V58, P453, DOI 10.1093/biomet/58.3.453 Goldberg L.R., 1999, PERSONALITY PSYCHOL, V7, P7, DOI DOI 10.1016/J.JRP.2014.05.003 Gu ZG, 2016, CHEMOMETR INTELL LAB, V158, P187, DOI 10.1016/j.chemolab.2016.07.013 GUAN Y., 2009, Artificial Intelligence and Statistics, P185 Guerra-Urzola R, 2021, PSYCHOMETRIKA, V86, P893, DOI [10.1007/s11336-021-09773-2, 10.31095/podium.2021.39.1] Guo JA, 2010, J COMPUT GRAPH STAT, V19, P930, DOI 10.1198/jcgs.2010.08127 Hastie T., 2009, The Elements of Statistical Learning Hauser RM, 1997, SOCIOL METHODOL, V27, P177, DOI 10.1111/1467-9531.271028 Hotelling H, 1933, J EDUC PSYCHOL, V24, P417, DOI 10.1037/h0071325 Hotelling H, 1936, PSYCHOMETRIKA, V1, P27, DOI 10.1007/BF02287921 Hu ZF, 2016, IEEE T NEUR NET LEAR, V27, P875, DOI 10.1109/TNNLS.2015.2427451 Hwang H, 2021, PSYCHOL METHODS, V26, P273, DOI 10.1037/met0000336 IBM Corp, 2018, IBM SPSS statistics for windows (version 26.0) computer software Iyer VR, 1999, SCIENCE, V283, P83, DOI 10.1126/science.283.5398.83 Jarvis CB, 2003, J CONSUM RES, V30, P199, DOI 10.1086/376806 Jia JZ, 2010, STAT SINICA, V20, P595 Johnson J.A, 2018, MEASURING 30 FACETS Johnson JA, 2014, J RES PERS, V51, P78, DOI 10.1016/j.jrp.2014.05.003 Johnstone IM, 2009, J AM STAT ASSOC, V104, P682, DOI 10.1198/jasa.2009.0121 Johnstone IM, 2001, ANN STAT, V29, P295, DOI 10.1214/aos/1009210544 Jolliffe IT, 2016, PHILOS T R SOC A, V374, DOI 10.1098/rsta.2015.0202 Jolliffe IT, 2003, J COMPUT GRAPH STAT, V12, P531, DOI 10.1198/1061860032148 Jolliffe IT, 2002, Principal Component Analysis, V2nd Journée M, 2010, J MACH LEARN RES, V11, P517 KAISER HF, 1958, PSYCHOMETRIKA, V23, P187, DOI 10.1007/BF02289233 Khan Z, 2015, IEEE T IMAGE PROCESS, V24, P4934, DOI 10.1109/TIP.2015.2472280 Kruskal W., 1978, International encyclopedia of statistics Lorenzo-Seva U., 2006, METHODOLOGY-EUR, V2, P57, DOI DOI 10.1027/1614-2241.2.2.57 Lu ZS, 2012, MATH PROGRAM, V135, P149, DOI 10.1007/s10107-011-0452-4 Ma ZM, 2013, ANN STAT, V41, P772, DOI 10.1214/13-AOS1097 McCrae R.R., 2008, EMPIRICAL THEORETICA Nishimura Y, 2007, HUM MOL GENET, V16, P1682, DOI 10.1093/hmg/ddm116 Rasmussen MA, 2012, CHEMOMETR INTELL LAB, V119, P21, DOI 10.1016/j.chemolab.2012.10.003 Romdhani H, 2015, GENET EPIDEMIOL, V39, P101, DOI 10.1002/gepi.21872 Shen D, 2016, J MACH LEARN RES, V17 Shen D, 2013, J MULTIVARIATE ANAL, V115, P317, DOI 10.1016/j.jmva.2012.10.007 Shen HP, 2008, J MULTIVARIATE ANAL, V99, P1015, DOI 10.1016/j.jmva.2007.06.007 TENBERGE JMF, 1986, MULTIVAR BEHAV RES, V21, P29, DOI 10.1207/s15327906mbr2101_2 Thomson S, 2018, NPJ SCI LEARN, V3, DOI 10.1038/s41539-018-0022-0 Thurstone L.L., 1933, The theory of multiple factors Tipping ME, 1999, J R STAT SOC B, V61, P611, DOI 10.1111/1467-9868.00196 Trendafilov NT, 2015, PSYCHOMETRIKA, V80, P776, DOI 10.1007/s11336-014-9416-y Trendafilov NT, 2014, COMPUTATION STAT, V29, P431, DOI 10.1007/s00180-013-0434-5 Van Deun K, 2019, CHEMOMETR INTELL LAB, V195, DOI 10.1016/j.chemolab.2019.103875 Van Deun K, 2011, BMC BIOINFORMATICS, V12, DOI 10.1186/1471-2105-12-448 Wang WC, 2017, ANN STAT, V45, P1342, DOI 10.1214/16-AOS1487 Whittle P, 1952, SKAND AKTUARIETIDSKR, V35, P223 Witten DM, 2009, BIOSTATISTICS, V10, P515, DOI 10.1093/biostatistics/kxp008 WOLD S, 1987, CHEMOMETR INTELL LAB, V2, P37, DOI 10.1016/0169-7439(87)80084-9 Xiaoshuang S., 2013, ADV ARTIFICIAL INTEL, P148 Yuan XT, 2013, J MACH LEARN RES, V14, P899 Zou H, 2005, J R STAT SOC B, V67, P301, DOI 10.1111/j.1467-9868.2005.00503.x Zou H, 2006, J COMPUT GRAPH STAT, V15, P265, DOI 10.1198/106186006X113430 Zou H, 2018, P IEEE, V106, P1311, DOI 10.1109/JPROC.2018.2846588 NR 78 TC 0 Z9 0 U1 0 U2 1 PU SPRINGER PI NEW YORK PA ONE NEW YORK PLAZA, SUITE 4600, NEW YORK, NY, UNITED STATES SN 1554-351X EI 1554-3528 J9 BEHAV RES METHODS JI Behav. Res. Methods PD MAR PY 2024 VL 56 IS 3 BP 1413 EP 1432 DI 10.3758/s13428-023-02099-0 EA AUG 2023 PG 20 WC Psychology, Mathematical; Psychology, Experimental WE Social Science Citation Index (SSCI) SC Psychology GA WN8I1 UT WOS:001042482800001 PM 37540466 OA Green Published, hybrid DA 2024-09-05 ER PT J AU Sienkiewicz, J Altmann, EG AF Sienkiewicz, Julian Altmann, Eduardo G. TI Impact of lexical and sentiment factors on the popularity of scientific papers SO ROYAL SOCIETY OPEN SCIENCE LA English DT Article DE citation analysis; sentiment analysis; quantile regression ID CITATION IMPACT AB We investigate how textual properties of scientific papers relate to the number of citations they receive. Our main finding is that correlations are nonlinear and affect differently the most cited and typical papers. For instance, we find that, in most journals, short titles correlate positively with citations only for the most cited papers, whereas for typical papers, the correlation is usually negative. Our analysis of six different factors, calculated both at the title and abstract level of 4.3 million papers in over 1500 journals, reveals the number of authors, and the length and complexity of the abstract, as having the strongest (positive) influence on the number of citations. C1 [Sienkiewicz, Julian; Altmann, Eduardo G.] Max Planck Inst Phys Komplexer Syst, D-01187 Dresden, Germany. C3 Max Planck Society RP Sienkiewicz, J (corresponding author), Max Planck Inst Phys Komplexer Syst, D-01187 Dresden, Germany. EM julas@if.pw.edu.pl RI Sienkiewicz, Julian/AAB-4900-2020; Altmann, Eduardo/A-3320-2009; Altmann, Eduardo G./ABD-2012-2020 OI Sienkiewicz, Julian/0000-0003-2097-1499; Altmann, Eduardo/0000-0002-1932-3710; Altmann, Eduardo G./0000-0002-1932-3710 CR Bollen J, 2009, PLOS ONE, V4, DOI [10.1371/journal.pone.0006022, 10.1371/journal.pone.0004803] Catalini C, 2015, P NATL ACAD SCI USA, V112, P13823, DOI 10.1073/pnas.1502280112 Chavalarias D, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0054847 Chawla, 2021, BRIEF PAPERS SHORTER, DOI [10.1126/science.aad1669, DOI 10.1126/SCIENCE.AAD1669] Chmiel A, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0022207 Choloniewski J, 2014, ACTA PHYS POL A, V127, P21 Davino C, 2014, WILEY SER PROBAB ST, P1, DOI 10.1002/9781118752685 Deng B., 2015, Nature, DOI [10.1038/nature.2015.18246, DOI 10.1038/NATURE.2015.18246] Didegah F, 2013, J INFORMETR, V7, P861, DOI 10.1016/j.joi.2013.08.006 Didegah F, 2013, J AM SOC INF SCI TEC, V64, P1055, DOI 10.1002/asi.22806 Dodds PS, 2015, P NATL ACAD SCI USA, V112, P2389, DOI 10.1073/pnas.1411678112 Garcia D, 2012, EPJ DATA SCI, V1, DOI 10.1140/epjds3 Gerlach M, 2014, NEW J PHYS, V16, DOI 10.1088/1367-2630/16/11/113010 Gunning Robert, 1952, The Technique of Clear Writing Herdan G., 1960, LANGUAGE CHOICE CHAN KOENKER R, 1978, ECONOMETRICA, V46, P33, DOI 10.2307/1913643 Koenker R., 2015, quantreg: Quantile Regression Kuhn T, 2014, PHYS REV X, V4, DOI 10.1103/PhysRevX.4.041036 Letchford A, 2015, ROY SOC OPEN SCI, V2, DOI 10.1098/rsos.150266 Milkman KL, 2014, P NATL ACAD SCI USA, V111, P13642, DOI 10.1073/pnas.1317511111 Miotto JM, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0111506 Onodera N, 2015, J ASSOC INF SCI TECH, V66, P739, DOI 10.1002/asi.23209 Paiva CE, 2012, CLINICS, V67, P509 Perc M, 2013, SCI REP-UK, V3, DOI 10.1038/srep01720 Pournelle G. H., 1953, Journal of Mammalogy, V34, P133, DOI 10.1890/0012-9658(2002)083[1421:SDEOLC]2.0.CO;2 Rostami F, 2014, SCIENTOMETRICS, V98, P2007, DOI 10.1007/s11192-013-1118-1 RUSSELL JA, 1980, J PERS SOC PSYCHOL, V39, P1161, DOI 10.1037/h0077714 Scharnhorst A, 2012, UNDERSTING COMPLE, DOI [10.1007/978-3-642-23068-4, DOI 10.1007/978-3-642-23068-4] Sienkiewicz J, 2013, ADV COMPLEX SYST, V16, DOI 10.1142/S0219525913500264 Sinatra R, 2015, NAT PHYS, V11, P791, DOI 10.1038/nphys3494 Stegehuis C, 2015, J INFORMETR, V9, P642, DOI 10.1016/j.joi.2015.06.005 van Wesel M, 2014, SCIENTOMETRICS, V98, P1601, DOI 10.1007/s11192-013-1154-x Warriner AB, 2013, BEHAV RES METHODS, V45, P1191, DOI 10.3758/s13428-012-0314-x Yik M, 2011, EMOTION, V11, P705, DOI 10.1037/a0023980 Yu B., 2013, ASIST 13 P 76 ASIS T NR 35 TC 17 Z9 18 U1 0 U2 50 PU ROYAL SOC PI LONDON PA 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND SN 2054-5703 J9 ROY SOC OPEN SCI JI R. Soc. Open Sci. PD JUN PY 2016 VL 3 IS 6 AR 160140 DI 10.1098/rsos.160140 PG 10 WC Multidisciplinary Sciences WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Science & Technology - Other Topics GA DR9RF UT WOS:000380233100013 PM 27429773 OA Green Published, Green Submitted, gold DA 2024-09-05 ER PT J AU Yu, Y Ren, JS Zhang, Q Yang, WM Jiao, ZW AF Yu, Yuan Ren, Jinsheng Zhang, Qi Yang, Weimin Jiao, Zhiwei TI Research on Tire Marking Point Completeness Evaluation Based on K-Means Clustering Image Segmentation SO SENSORS LA English DT Article DE machine vision; tire marking point; completeness; image segmentation ID VISION AB The tire marking points of dynamic balance and uniformity play a crucial guiding role in tire installation. Incomplete marking points block the recognition of tire marking points, and then affect the installation of tires. It is usually necessary to evaluate the marking point completeness during the quality inspection of finished tires. In order to meet the high-precision requirements of the evaluation of tire marking point completeness in the smart factories, the K-means clustering algorithm is introduced to segment the image of marking points in this paper. The pixels within the contour of the marking point are weighted to calculate the marking point completeness on the basis of the image segmentation. The completeness is rated and evaluated by completeness calculation. The experimental results show that the accuracy of the marking point completeness ratings is 95%, and the accuracy of the marking point evaluations is 99%. The proposed method has an important guiding significance of practice to evaluate the tire marking point completeness during the tire quality inspection based on machine vision. C1 [Yu, Yuan; Ren, Jinsheng; Zhang, Qi; Yang, Weimin; Jiao, Zhiwei] Beijing Univ Chem Technol, Coll Mech & Elect Engn, Beijing 100029, Peoples R China. C3 Beijing University of Chemical Technology RP Jiao, ZW (corresponding author), Beijing Univ Chem Technol, Coll Mech & Elect Engn, Beijing 100029, Peoples R China. EM yuyuanjd@263.net; renjs630@163.com; zhangq0618@163.com; yangwm@mail.buct.edu.cn; jiaozw@mail.buct.edu.cn RI Yang, Wei/GWV-4107-2022; Yang, Wei/JBJ-1928-2023; Yang, Wei/HIA-0360-2022 OI Yu, Yuan/0000-0001-7087-9223 FU Shandong Major Scientific and Technological Innovation Project (Intelligent manufacturing technology and equipment for electromagnetic induction heating and direct pressure vulcanization of tire with ultra-high performance) [12874] FX This research paper was funded by Shandong Major Scientific and Technological Innovation Project (Intelligent manufacturing technology and equipment for electromagnetic induction heating and direct pressure vulcanization of tire with ultra-high performance. No. 12874). CR Bezdek J. C., 1981, Pattern recognition with fuzzy objective function algorithms Bridgestone Corporation, 2000, Japan Patent, Patent No. 6144033 Chao H., 2018, THESIS [陈宁 Chen Ning], 2016, [西南交通大学学报, Journal of Southwest Jiaotong University], V51, P645 Chu Qi-chao, 2017, Instrument Technique and Sensor, P67 Dias AP, 2015, INT J QUAL RES, V9, P27 Dunn J. C., 1973, Journal of Cybernetics, V3, P32, DOI 10.1080/01969727308546046 [《中国公路学报》编辑部 Editorial Department of China Journal of], 2017, [中国公路学报, China Journal of Highway and Transport], V30, P1 Feng DM, 2015, SENSORS-BASEL, V15, P16557, DOI 10.3390/s150716557 Honghua L., 2007, J JINGGANGSHAN U NAT, V28, P51 Jing P., 2015, MACH DES MANUF, V12, P163 MacQueen James, 1967, 5 BERK S MATH STAT P, P281 Micro-Epsilon, INSP SYST TIR IND Qi Z., 2020, THESIS SICK Sensor Inteligence, POW IM PROC ADD QUAL Wang Yao-nan, 2015, Control Theory & Applications, V32, P273, DOI 10.7641/CTA.2015.40169 Yong W., 2014, J E CHINA U SCI TECH, V40, P520 Yuan Xiao-cui, 2016, Optics and Precision Engineering, V24, P1772, DOI 10.3788/OPE.20162407.1772 Zhou Ji, 2015, China Mechanical Engineering, V26, P2273, DOI 10.3969/j.issn.1004-132X.2015.17.001 NR 19 TC 4 Z9 4 U1 0 U2 16 PU MDPI PI BASEL PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND EI 1424-8220 J9 SENSORS-BASEL JI Sensors PD SEP PY 2020 VL 20 IS 17 AR 4687 DI 10.3390/s20174687 PG 16 WC Chemistry, Analytical; Engineering, Electrical & Electronic; Instruments & Instrumentation WE Science Citation Index Expanded (SCI-EXPANDED) SC Chemistry; Engineering; Instruments & Instrumentation GA NP1OZ UT WOS:000569951900001 PM 32825149 OA gold, Green Published DA 2024-09-05 ER PT C AU Chen, CY Lin, ML AF Chen, CY Lin, ML BE Qi, JM Cui, JP TI Research on the performance of SVM with Fourier-Kernel function and application on regression SO ICEMI 2005: CONFERENCE PROCEEDINGS OF THE SEVENTH INTERNATIONAL CONFERENCE ON ELECTRONIC MEASUREMENT & INSTRUMENTS, VOL 3 LA English DT Proceedings Paper CT 7th International Conference on Electronic Measurement and Instruments CY AUG 16-18, 2005 CL Beijing, PEOPLES R CHINA DE SVM; Fourier kernel; regression AB Contrast to traditional methods, Support Vector Machine (SVM) has better performance on generalization. It has widely applications on pattern recognition.. but less on regression now. And the common choice of kernel function is Radial Basis Function, so few Studies on other special kernels. In this paper, the performance of SVM based on Fourier kernel is studied which aims at the regression in signal processing problems, and the influence of parameter q on performance of SVM is analyzed. A conclusion is drawn that the integral of Fourier kernel in one period is a constant and the concept of equivalent kernel function width is proposed. At last, Simulation verifies that SVM based on Fourier kernel has better performance than the one,based on RBF kernel in the field of signal processing. C1 Harbin Inst Technol, Harbin 150001, Peoples R China. C3 Harbin Institute of Technology RP Harbin Inst Technol, Harbin 150001, Peoples R China. CR BOSER B, 1922, P 5 ANN ACM WORKSH C, P144 Cortes C., 1995, THESIS U ROCHESTER Gunn S.R, 1998, ISIS TECH REP, P5 Joachims T, 1999, ADVANCES IN KERNEL METHODS, P169 Platt JC, 1999, ADVANCES IN KERNEL METHODS, P185 Vapnik Vladimir N., 1995, The nature of statistical learning theory YAN H, 2001, RELATION BETWEEN SUP, V41, P77 NR 7 TC 0 Z9 0 U1 0 U2 0 PU INTERNATIONAL ACADEMIC PUBLISHERS LTD PI HONG KONG PA UNIT 1205, 12 FLOOR, SINO PLAZA, 255 GLOUCESTER ROAD, HONG KONG 00000, CAUSEWAY BAY, PEOPLES R CHINA BN 7-5062-7443-4 PY 2005 BP 671 EP 675 PG 5 WC Engineering, Electrical & Electronic; Instruments & Instrumentation WE Conference Proceedings Citation Index - Science (CPCI-S) SC Engineering; Instruments & Instrumentation GA BDR67 UT WOS:000235120400143 DA 2024-09-05 ER PT J AU Sengöz, A Orhun, BN Konyalilar, N AF Sengoz, Ayse Orhun, Beste Nisa Konyalilar, Nil TI A holistic approach to artificial intelligence-related research in the transportation system: bibliometric analysis SO WORLDWIDE HOSPITALITY AND TOURISM THEMES LA English DT Article DE Artificial intelligence; Transportation; Bibliometric analysis; VOSviewer; Tourism AB Purpose Developments regarding the use of artificial intelligence (AI) in transportation systems, one of the important stakeholders of tourism, are remarkable. However, no review thus far has provided a comprehensive overview of research on AI in transportation systems.Design/methodology/approach To fill this gap, this study uses the VOSviewer software to present a bibliometric review of the current scientific literature in the field of AI-related tourism research. The theme of AI in transportation systems was explored in the Web of Science database.Findings The original search yielded 642 documents, which were then filtered by parameters. For publications related to AI in transportation systems, the most cited documents, leading authors, productive countries, co-occurrence analysis of keywords and bibliographic matching of documents were examined. This report shows that there has been a recent increase in research on AI in transport systems. However, there is only one study on tourism. The country that contributed the most is China with 298 studies. The most used keyword in the documents was intelligent transportation system.Originality/value The bibliometric analysis of the existing work provided a valuable and seminal reference for researchers and practitioners in AI-related in transportation system. C1 [Sengoz, Ayse] Akdeniz Univ, Antalya, Turkiye. [Orhun, Beste Nisa] Van Yuzuncu Yil Univ, Van, Turkiye. [Konyalilar, Nil] Istanbul Topkapi Univ, Istanbul, Turkiye. C3 Akdeniz University; Yuzuncu Yil University; Istanbul Topkapi University RP Sengöz, A (corresponding author), Akdeniz Univ, Antalya, Turkiye. EM aysesengoz@akdeniz.edu.tr RI SENGOZ, Ayse/IAQ-7228-2023 OI SENGOZ, Ayse/0000-0002-0311-9141; ORHUN, Beste Nisa/0000-0001-5578-2546 CR Abduljabbar R, 2019, SUSTAINABILITY-BASEL, V11, DOI 10.3390/su11010189 Alqahtani H, 2024, ENG APPL ARTIF INTEL, V129, DOI 10.1016/j.engappai.2023.107667 Ardito L, 2019, CURR ISSUES TOUR, V22, P1805, DOI 10.1080/13683500.2019.1612860 Arslan K., 2020, Bat Anadolu Eitim Bilimleri Dergisi, V11, P71 Bar-Ilan J, 2008, J INFORMETR, V2, P1, DOI 10.1016/j.joi.2007.11.001 Bharadiya J, 2023, Am J Comput Eng, V6, P34, DOI DOI 10.47672/AJCE.1487 Bornmann L, 2014, ONLINE INFORM REV, V38, P43, DOI 10.1108/OIR-12-2012-0214 Dogan S., 2024, KARADENIZ TURIZM ARA, V2, P51 Ercan F., 2020, OPUS INT J SOC RESEA, V16, P5230, DOI 10.26466/opus.780017 Ezell S., 2010, Intelligent Transportation Systems Franklin RS, 2018, POPULATION LOSS: THE ROLE OF TRANSPORTATION AND OTHER ISSUES, VOL 2, P1, DOI 10.1016/bs.atpp.2018.09.008 Goodell JW, 2021, J BEHAV EXP FINANC, V32, DOI 10.1016/j.jbef.2021.100577 Han X, 2024, IEEE T INTELL VEHICL, V9, P39, DOI 10.1109/TIV.2023.3349324 Hanaa SM, 2024, J HOSP TOUR INSIGHTS, V7, P76, DOI 10.1108/JHTI-08-2022-0369 Huang MH, 2021, J ACAD MARKET SCI, V49, P30, DOI 10.1007/s11747-020-00749-9 Huertas A, 2021, SUSTAINABILITY-BASEL, V13, DOI 10.3390/su131910953 Ivanov S., 2017, Revista Turismo & Desenvolvimento, P1501 Kelly J., 2007, Journal of Travel Research, V45, P297, DOI 10.1177/0047287506292700 Kontogianni A, 2020, ARRAY-NY, V6, DOI 10.1016/j.array.2020.100020 Koroniotis N, 2020, IEEE ACCESS, V8, P209802, DOI 10.1109/ACCESS.2020.3036728 Kurcer D., 2023, TURIZM VE DESTINASYO, P179 Machin M, 2018, IEEE WIREL COMMUNN, P332, DOI 10.1109/WCNCW.2018.8369029 Narbay S., 2023, SAKARYA U HUKUK FAKU, V11, P49, DOI [10.56701/shd.1328031, DOI 10.56701/SHD.1328031] Orbașli A., 2004, Tourism and transport: issues and agenda for the new millennium, P93, DOI 10.1016/B978-0-08-044172-6.50012-1 Pazar S., 2020, J SCI TECHNOLENG RES, V1, P31 Pehlivan E., 2010, THESIS ISTANBUL TU I Ramos A. L., 2012, INT J MODELING OPTIM, P274, DOI DOI 10.7763/IJMO.2012.V2.126 Sterne J., 2017, Artificial Intelligence for Marketing Practical Applications Telang S., 2021, Secur. Priv. Appl. Smart City Dev., P171, DOI 10.1007/978-3-030-53149-29 Ugur Cilkara E., 2023, PAZARLAMAYA YENI BIR, P135 Ullah Z, 2023, SUSTAIN CITIES SOC, V97, DOI 10.1016/j.scs.2023.104697 van Eck NJ, 2010, SCIENTOMETRICS, V84, P523, DOI 10.1007/s11192-009-0146-3 NR 32 TC 0 Z9 0 U1 6 U2 6 PU EMERALD GROUP PUBLISHING LTD PI Leeds PA Floor 5, Northspring 21-23 Wellington Street, Leeds, W YORKSHIRE, ENGLAND SN 1755-4217 EI 1755-4225 J9 WORLDW HOSP TOUR THE JI Worldw. Hosp. Tour. Themes PD MAY 30 PY 2024 VL 16 IS 2 SI SI BP 138 EP 149 DI 10.1108/WHATT-03-2024-0059 EA APR 2024 PG 12 WC Hospitality, Leisure, Sport & Tourism WE Emerging Sources Citation Index (ESCI) SC Social Sciences - Other Topics GA SC3L8 UT WOS:001199471200001 DA 2024-09-05 ER PT J AU Djogbenou, R Adjiwanou, V Lardoux, S AF Djogbenou, Robert Adjiwanou, Visseho Lardoux, Solene TI Exploring Sixty-Two Years of Research on Immigrants' Integration Using Structural Topic Modeling-Based Bibliometric Analysis SO JOURNAL OF INTERNATIONAL MIGRATION AND INTEGRATION LA English DT Article; Early Access DE Immigration; Immigrants' integration; Ethnic diversity; Topic modeling; Bibliometric analysis ID ENGAGEMENT; EARNINGS; SCIENCE; HEALTH; YOUTH AB The research on immigrant integration is a dynamic interdisciplinary domain with rich and diverse literature. Considering the numerous studies in this domain, it is valuable to provide a comprehensive mapping to understand the research landscape resource and facilitate collaborations. This article combines Structural Topic modeling with bibliometric analysis to identify key research topics on immigrant integration. Applying these methods to 70890 abstracts published between 1960 and 2022, we identified 30 key research topics. We also tracked their prevalence over time, correlations and distributions within institutions and countries, funding effects, and countries' collaborations. The results indicate that the most discussed topics are integration theory, economic integration, education, residential segregation, integration policy, language, religious diversity, cultural participation, identity & belonging, racism & discrimination, political participation, health & welfare, research methods, demographic issues, gender & violence. Moreover, some of these topics were highly prominent in earlier periods and nearly non-existent in later years, while others emerged only recently. Specific topics maintained consistent significance over time. Analyses of correlations and trends reveal clusters of topics and diverse distributions across countries and research institutions. The implications of these results can benefit researchers, helping them better understand the current state of research and design future research projects. The finding could also help stakeholders in migration and integration governance and funding agencies to guide policies regarding the integration of immigrants. C1 [Djogbenou, Robert; Lardoux, Solene] Univ Montreal, Dept Demog, Montreal, PQ H3C 3J7, Canada. [Adjiwanou, Visseho] Univ Quebec & Montreal, Dept Sociol, Montreal, PQ H2L 2C4, Canada. C3 Universite de Montreal; University of Quebec; University of Quebec Montreal RP Djogbenou, R (corresponding author), Univ Montreal, Dept Demog, Montreal, PQ H3C 3J7, Canada. EM yao.robert.djogbenou@umontreal.ca CR Ager A, 2008, J REFUG STUD, V21, P166, DOI 10.1093/jrs/fen016 Agrawal SK, 2019, J INT MIGR INTEGR, V20, P941, DOI 10.1007/s12134-018-0640-7 Alba R, 2015, STRANGERS NO MORE: IMMIGRATION AND THE CHALLENGES OF INTEGRATION IN NORTH AMERICA AND WESTERN EUROPE, P1 Alburez-Gutierrez D, 2021, POPUL DEV REV, V47, P997, DOI 10.1111/padr.12436 Atceken K., 2023, Journal of Identity and Migration Studies, V17, P67 Bakewell O, 2008, J REFUG STUD, V21, P432, DOI 10.1093/jrs/fen042 Bekteshi V, 2020, ETHNIC HEALTH, V25, P897, DOI 10.1080/13557858.2018.1469733 Ben Morrison T, 2012, J IMMIGR MINOR HEALT, V14, P968, DOI 10.1007/s10903-012-9632-4 Bilodeau A, 2017, POLIT SCI, V69, P122, DOI 10.1080/00323187.2017.1332955 Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993 Brzozowski Jan, 2019, International Journal of Entrepreneurship and Innovation Management, V23, P584 Cedillo YE, 2021, J IMMIGR MINOR HEALT, V23, P35, DOI 10.1007/s10903-020-01012-7 Chen XL, 2021, SUSTAINABILITY-BASEL, V13, DOI 10.3390/su13094859 Chen XL, 2020, COGN COMPUT, V12, P1097, DOI 10.1007/s12559-020-09745-1 Chen XL, 2020, PLOS ONE, V15, DOI 10.1371/journal.pone.0231192 Chen Y, 2015, HABITAT INT, V49, P419, DOI 10.1016/j.habitatint.2015.06.014 Cruz E. P., 2016, Revista Eletronica de Negocios Internacionais (Internext), V11, P78 Daenekindt S, 2020, HIGH EDUC, V80, P571, DOI 10.1007/s10734-020-00500-x Demie F, 2018, J MULTILING MULTICUL, V39, P210, DOI 10.1080/01434632.2017.1348508 Drouhot LG, 2023, J ETHN MIGR STUD, V49, P389, DOI 10.1080/1369183X.2022.2100542 Erhard L, 2022, EUR SOCIOL REV, V38, P629, DOI 10.1093/esr/jcab063 Feliciano C, 2005, ETHNIC RACIAL STUD, V28, P1087, DOI 10.1080/01419870500224406 Frenette M, 2005, INT MIGR REV, V39, P228 Galandini S, 2019, J INT MIGR INTEGR, V20, P685, DOI 10.1007/s12134-018-0626-5 Gao HC, 2022, INT J ENV RES PUB HE, V19, DOI 10.3390/ijerph19159729 Garces-Mascarenas B., 2016, Integration Processes and Policies in Europe, P1 Goodman S, 2019, EUR J SOC PSYCHOL, V49, P1456, DOI 10.1002/ejsp.2595 Grimmer J, 2013, POLIT ANAL, V21, P267, DOI 10.1093/pan/mps028 Haberfeld Y, 2011, INT J COMP SOCIOL, V52, P6, DOI 10.1177/0020715210377157 Hajdinjak S., 2020, COMPUTATIONAL CONFLI, P83, DOI DOI 10.1007/978-3-030-29333-8_5 Kajikawa Y, 2007, SUSTAIN SCI, V2, P221, DOI 10.1007/s11625-007-0027-8 Kashyap R, 2023, RES HBK SOC, P48 Kaufmann L, 2021, INT J INTERCULT REL, V84, P52, DOI 10.1016/j.ijintrel.2021.06.010 Kelling C, 2023, J ETHN MIGR STUD, V49, P492, DOI 10.1080/1369183X.2022.2100551 Khattab N, 2016, J ETHN MIGR STUD, V42, P1774, DOI 10.1080/1369183X.2016.1166040 Laurentsyeva N., 2017, Intereconomics, V52, P285, DOI DOI 10.1007/S10272-017-0691-6 Lenard PT, 2015, J INT MIGR INTEGR, V16, P119, DOI 10.1007/s12134-014-0328-6 Li MY, 2019, J CROSS CULT PSYCHOL, V50, P763, DOI 10.1177/0022022119846558 Lindstedt NC, 2019, SOC CURR, V6, P307, DOI 10.1177/2329496519846505 Malaterre C, 2019, HOPOS, V9, P215, DOI 10.1086/704372 Martinovic B, 2016, INT J INTERCULT REL, V52, P1, DOI 10.1016/j.ijintrel.2016.02.005 McAvay H, 2018, DEMOGRAPHY, V55, P1507, DOI 10.1007/s13524-018-0689-0 Meissner F, 2015, ETHNIC RACIAL STUD, V38, P541, DOI 10.1080/01419870.2015.980295 Miranda-González A, 2020, EPJ DATA SCI, V9, DOI 10.1140/epjds/s13688-020-00252-9 Mostafa Mohamed M, 2022, Qual Quant, P1, DOI 10.1007/s11135-022-01548-w O'Mara-Eves A, 2015, SYST REV-LONDON, V4, DOI 10.1186/2046-4053-4-5 Penninx Rinus., 2016, IMISCOE RES SERIES, P11, DOI [DOI 10.1007/978-3-319-21674-4_2, https://doi.org/10.1007/978-3-319-21674-42] Peters MDJ, 2015, INT J EVID-BASED HEA, V13, P141, DOI 10.1097/XEB.0000000000000050 Phillimore J, 2008, J REFUG STUD, V21, P305, DOI 10.1093/jrs/fen025 Pisarevskaya A, 2020, MIGR STUD, V8, P455, DOI 10.1093/migration/mnz031 Roberts ME, 2014, AM J POLIT SCI, V58, P1064, DOI 10.1111/ajps.12103 Roberts ME, 2016, Computational Social Science: Discovery and Prediction, P51, DOI DOI 10.1017/CBO9781316257340.004 Rodriguez Maria Y., 2020, Journal of Technology in Human Services, V38, P54, DOI 10.1080/15228835.2019.1616350 Rodríguez-García D, 2015, ANN AM ACAD POLIT SS, V662, P8, DOI 10.1177/0002716215601397 Salazar MD, 2016, INT J MULTICULT EDUC, V18, P88, DOI 10.18251/ijme.v18i1.1082 Salehi R, 2010, J IMMIGR MINOR HEALT, V12, P788, DOI 10.1007/s10903-009-9247-6 Schwemmer C, 2020, SOCIOLOGY, V54, P3, DOI 10.1177/0038038519853146 Sharma A, 2021, INT J INFORM MANAGE, V58, DOI 10.1016/j.ijinfomgt.2021.102316 Shuangyun Y., 2020, Journal of Ethnic and Cultural Studies, V7, P17, DOI [10.29333/ejecs/370, DOI 10.29333/EJECS/370] Smith R, 2019, J INT MIGR INTEGR, V20, P851, DOI 10.1007/s12134-018-0634-5 Subbotin A, 2021, SCIENTOMETRICS, V126, P7875, DOI 10.1007/s11192-021-04091-x Sweileh WM, 2018, BMC PUBLIC HEALTH, V18, DOI 10.1186/s12889-018-5689-x Szlovak P, 2017, ETHNIC RACIAL STUD, V40, P851, DOI 10.1080/01419870.2016.1259489 Tates K., 2016, Integration processes and policies in Europe, P91, DOI DOI 10.1007/978-3-319-21674-4_6 Thornton MC, 2012, J BLACK STUD, V43, P749, DOI 10.1177/0021934712456549 Tran V., 2015, Obo in Sociology Vargas ED, 2016, SOCIOL RACE ETHNIC, V2, P498, DOI 10.1177/2332649215623789 Vertovec S, 2007, ETHNIC RACIAL STUD, V30, P1024, DOI 10.1080/01419870701599465 Wang SH, 2016, BMC PUBLIC HEALTH, V16, DOI 10.1186/s12889-016-2932-1 Zhao X., 2021, arXiv, DOI DOI 10.48550/ARXIV.2104.12380 NR 70 TC 0 Z9 0 U1 2 U2 2 PU SPRINGER HEIDELBERG PI HEIDELBERG PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY SN 1488-3473 EI 1874-6365 J9 J INT MIGR INTEGR JI J. Int. Migr. Integr. PD 2024 APR 3 PY 2024 DI 10.1007/s12134-024-01139-8 EA APR 2024 PG 28 WC Demography WE Emerging Sources Citation Index (ESCI) SC Demography GA MV2L6 UT WOS:001196345000002 DA 2024-09-05 ER PT C AU Luo, FH Zheng, H Erdt, M Raamkumar, AS Theng, YL AF Luo, Feiheng Zheng, Han Erdt, Mojisola Raamkumar, Aravind Sesagiri Theng, Yin-Leng BE Erdt, M Raamkumar, AS Rasmussen, E Theng, YL TI A Comparative Investigation on Citation Counts and Altmetrics Between Papers Authored by Top Universities and Companies in the Research Field of Artificial Intelligence SO ALTMETRICS FOR RESEARCH OUTPUTS MEASUREMENT AND SCHOLARLY INFORMATION MANAGEMENT SE Communications in Computer and Information Science LA English DT Proceedings Paper CT International Workshop on Altmetrics for Research Outputs Measurement and Scholarly Information Management (AROSIM) CY JAN 26, 2018 CL Nanyang Technol Univ Singapore, Wee Kim Wee Sch Commun & Informat, Singapore, SINGAPORE HO Nanyang Technol Univ Singapore, Wee Kim Wee Sch Commun & Informat DE Citation analysis; Altmetrics; Industrial research; Academic research ID NEURAL-NETWORKS AB Artificial Intelligence is currently a popular research field. With the development of deep learning techniques, researchers in this area have achieved impressive results in a variety of tasks. In this initial study, we explored scientific papers in Artificial Intelligence, making comparisons between papers authored by the top universities and companies from the dual perspectives of bibliometrics and altmetrics. We selected publication venues according to the venue rankings provided by Google Scholar and Scopus, and retrieved related papers along with their citation counts from Scopus. Altmetrics such as Altmetric Attention Scores and Mendeley reader counts were collected from Altmetric.com and PlumX. Top universities and companies were identified, and the retrieved papers were classified into three groups accordingly: university-authored papers, company-authored papers, and co-authored papers. Comparative results showed that university-authored papers received slightly higher citation counts than company-authored papers, while company-authored papers gained considerably more attention online. In addition, when we focused on the most impactful papers, i.e., the papers with the highest numbers of citation counts, and the papers with the largest amount of online attention, companies seemed to make a larger contribution by publishing more impactful papers than universities. C1 [Luo, Feiheng; Zheng, Han; Erdt, Mojisola; Raamkumar, Aravind Sesagiri; Theng, Yin-Leng] Nanyang Technol Univ, Wee Kim Wee Sch Commun & Informat, Singapore 637718, Singapore. C3 Nanyang Technological University RP Raamkumar, AS (corresponding author), Nanyang Technol Univ, Wee Kim Wee Sch Commun & Informat, Singapore 637718, Singapore. EM fhluo@ntu.edu.sg; zhenghan@ntu.edu.sg; mojisola.erdt@ntu.edu.sg; aravind0002@ntu.edu.sg; tyltheng@ntu.edu.sg RI Zheng, Han/AAD-6949-2020; Sesagiri Raamkumar, Aravind/G-9502-2017 OI Zheng, Han/0000-0003-4032-4299; Sesagiri Raamkumar, Aravind/0000-0001-7200-7787 FU National Research Foundation, Prime Minister's Office, Singapore under its Science of Research, Innovation and Enterprise programme (SRIE) [NRF2014-NRF-SRIE001-019] FX This research is supported by the National Research Foundation, Prime Minister's Office, Singapore under its Science of Research, Innovation and Enterprise programme (SRIE Award No. NRF2014-NRF-SRIE001-019). We also thank Altmetric.com for providing access to Fetch API. CR [Anonymous], 2016, European conference on computer vision, DOI [DOI 10.1007/978-3-319-46493-0_38, 10.1007/978-3-319-46493-0_38] [Anonymous], 2015, NIPS 2015 Cho K., 2014, P 2014 C EMPIRICAL M, V1406, P1078, DOI DOI 10.3115/V1/D14-1179 Erdt M, 2016, SCIENTOMETRICS, V109, P1117, DOI 10.1007/s11192-016-2077-0 Graves A, 2013, INT CONF ACOUST SPEE, P6645, DOI 10.1109/ICASSP.2013.6638947 LeCun Y, 2015, NATURE, V521, P436, DOI 10.1038/nature14539 Ren SQ, 2015, ADV NEUR IN, V28, DOI 10.1109/TPAMI.2016.2577031 Schmidhuber J, 2015, NEURAL NETWORKS, V61, P85, DOI 10.1016/j.neunet.2014.09.003 Silver D, 2016, NATURE, V529, P484, DOI 10.1038/nature16961 Vaswani A, 2017, ARXIV NR 10 TC 1 Z9 1 U1 0 U2 9 PU SPRINGER-VERLAG SINGAPORE PTE LTD PI SINGAPORE PA 152 BEACH ROAD, #21-01/04 GATEWAY EAST, SINGAPORE, 189721, SINGAPORE SN 1865-0929 EI 1865-0937 BN 978-981-13-1053-9; 978-981-13-1052-2 J9 COMM COM INF SC PY 2018 VL 856 BP 105 EP 114 DI 10.1007/978-981-13-1053-9_9 PG 10 WC Computer Science, Information Systems; Computer Science, Theory & Methods; Information Science & Library Science WE Conference Proceedings Citation Index - Science (CPCI-S); Conference Proceedings Citation Index - Social Science & Humanities (CPCI-SSH) SC Computer Science; Information Science & Library Science GA BP2HH UT WOS:000542570100009 OA Green Accepted DA 2024-09-05 ER PT J AU Yahia, Y Lopes, JC Lopes, RP AF Yahia, Youssef Lopes, Julio Castro Lopes, Rui Pedro TI Computer Vision Algorithms for 3D Object Recognition and Orientation: A Bibliometric Study SO ELECTRONICS LA English DT Article DE 3D object; object detection; object orientation; bibliometric analysis ID NETWORK AB This paper consists of a bibliometric study that covers the topic of 3D object detection from 2022 until the present day. It employs various analysis approaches that shed light on the leading authors, affiliations, and countries within this research domain alongside the main themes of interest related to it. The findings revealed that China is the leading country in this domain given the fact that it is responsible for most of the scientific literature as well as being a host for the most productive universities and authors in terms of the number of publications. China is also responsible for initiating a significant number of collaborations with various nations around the world. The most basic theme related to this field is deep learning, along with autonomous driving, point cloud, robotics, and LiDAR. The work also includes an in-depth review that underlines some of the latest frameworks that took on various challenges regarding this topic, the improvement of object detection from point clouds, and training end-to-end fusion methods using both camera and LiDAR sensors, to name a few. C1 [Yahia, Youssef; Lopes, Julio Castro; Lopes, Rui Pedro] Inst Politecn Braganca, Res Ctr Digitalizat & Intelligent Robot CeDRI, P-5300252 Braganca, Portugal. C3 Instituto Politecnico de Braganca RP Yahia, Y (corresponding author), Inst Politecn Braganca, Res Ctr Digitalizat & Intelligent Robot CeDRI, P-5300252 Braganca, Portugal. EM youssefyahia@ipb.pt; juliolopes@ipb.pt; rlopes@ipb.pt RI Al-obaidi, Abdullah Thair/P-8487-2017; Lopes, Rui Pedro/A-1947-2010 OI Al-obaidi, Abdullah Thair/0000-0002-9971-5895; Lopes, Rui Pedro/0000-0002-9170-5078; Castro Lopes, Julio/0000-0003-3354-8956; bel haj yahia, youssef/0009-0009-4880-6218 FU Foundation for Science and Technology (FCT, Portugal) [UIDB/05757/2020, UIDP/05757/2020, LA/P/0007/2021] FX This research was funded by the Foundation for Science and Technology (FCT, Portugal) for financial support through national funds FCT/MCTES (PIDDAC) to CeDRI (UIDB/05757/2020 and UIDP/05757/2020) and SusTEC (LA/P/0007/2021). CR Aghaei Chadegani A., 2013, Asian Social Science, V9, P18, DOI [10.5539/ass.v9n5p18, DOI 10.5539/ASS.V9N5P18] Beacco A, 2023, VISUAL COMPUT, V39, P5421, DOI 10.1007/s00371-022-02669-x CALLON M, 1991, SCIENTOMETRICS, V22, P155, DOI 10.1007/BF02019280 Chen G, 2016, J INFORMETR, V10, P212, DOI 10.1016/j.joi.2016.01.006 Chen H, 2020, IEEE ACCESS, V8, P155417, DOI 10.1109/ACCESS.2020.3019336 Chen WY, 2022, NEUROCOMPUTING, V494, P23, DOI 10.1016/j.neucom.2022.04.075 Donthu N, 2021, J BUS RES, V133, P285, DOI 10.1016/j.jbusres.2021.04.070 Ellegaard O, 2015, SCIENTOMETRICS, V105, P1809, DOI 10.1007/s11192-015-1645-z He KM, 2015, Arxiv, DOI arXiv:1512.03385 Hirsch JE, 2005, P NATL ACAD SCI USA, V102, P16569, DOI 10.1073/pnas.0507655102 Khan U, 2024, LIBR HI TECH, V42, P180, DOI 10.1108/LHT-10-2021-0351 Khare A, 2022, J BUS RES, V150, P567, DOI 10.1016/j.jbusres.2022.06.039 Li X, 2022, LECT NOTES COMPUT SC, V13698, P691, DOI 10.1007/978-3-031-19839-7_40 Lin TY, 2018, Arxiv, DOI arXiv:1708.02002 Liu WX, 2021, IEEE ACCESS, V9, P156799, DOI 10.1109/ACCESS.2021.3129782 Lohia A., 2021, Library Philosophy and Practice, V4910, P34 Mahmoud A, 2023, IEEE WINT CONF APPL, P663, DOI 10.1109/WACV56688.2023.00073 Mousavian A, 2017, Arxiv, DOI [arXiv:1612.00496, 10.48550/ARXIV.1612.00496, DOI 10.48550/ARXIV.1612.00496] Okoli C., 2010, A guide to conducting a systematic literature review of information systems research, DOI DOI 10.2139/SSRN.1954824 Ran XC, 2023, ARTIF INTELL REV, V56, P8219, DOI 10.1007/s10462-022-10366-3 Redmon J, 2016, Arxiv, DOI [arXiv:1506.02640, 10.48550/arXiv.1506.02640] Ren SQ, 2016, Arxiv, DOI [arXiv:1506.01497, 10.1109/TPAMI.2016.2577031] Ruan Hao, 2023, 2022 IEEE International Conference on Cyborg and Bionic Systems (CBS), P190, DOI 10.1109/CBS55922.2023.10115327 Sheikhahmadi A, 2015, PHYSICA A, V436, P833, DOI 10.1016/j.physa.2015.04.035 Shi YF, 2023, IEEE T PATTERN ANAL, V45, P4882, DOI 10.1109/TPAMI.2022.3186876 Vieira ES, 2009, SCIENTOMETRICS, V81, P587, DOI 10.1007/s11192-009-2178-0 Wen MY, 2023, MATHEMATICS-BASEL, V11, DOI 10.3390/math11020403 Yang L, 2023, IEEE T CIRC SYST VID, V33, P6832, DOI 10.1109/TCSVT.2023.3270728 [章毓晋 Zhang Yujin], 2023, [中国图象图形学报, Journal of Image and Graphics], V28, P879 NR 29 TC 1 Z9 1 U1 2 U2 4 PU MDPI PI BASEL PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND EI 2079-9292 J9 ELECTRONICS-SWITZ JI Electronics PD OCT PY 2023 VL 12 IS 20 AR 4218 DI 10.3390/electronics12204218 PG 16 WC Computer Science, Information Systems; Engineering, Electrical & Electronic; Physics, Applied WE Science Citation Index Expanded (SCI-EXPANDED) SC Computer Science; Engineering; Physics GA W2JL4 UT WOS:001089943900001 OA Green Published, gold DA 2024-09-05 ER PT J AU Corvi, JO McKitrick, A Fernández, JM Fuenteslópez, CV Gelpí, JL Ginebra, MP Capella-Gutierrez, S Hakimi, O AF Corvi, Javier O. McKitrick, Austin Fernandez, Jose M. Fuenteslopez, Carla V. Gelpi, Josep L. Ginebra, Maria-Pau Capella-Gutierrez, Salvador Hakimi, Osnat TI DEBBIE: The Open Access Database of Experimental Scaffolds and Biomaterials Built Using an Automated Text Mining Pipeline SO ADVANCED HEALTHCARE MATERIALS LA English DT Article DE biomaterials; databases; natural language processing; text mining; tissue scaffolds AB Biomaterials research output has experienced an exponential increase over the last three decades. The majority of research is published in the form of scientific articles and is therefore available as unstructured text, making it a challenging input for computational processing. Computational tools are becoming essential to overcome this information overload. Among them, text mining systems present an attractive option for the automated extraction of information from text documents into structured datasets. This work presents the first automated system for biomaterial related information extraction from the National Library of Medicine's premier bibliographic database (MEDLINE) research abstracts into a searchable database. The system is a text mining pipeline that periodically retrieves abstracts from PubMed and identifies research and clinical studies of biomaterials. Thereafter, the pipeline identifies sixteen concept types of interest in the abstract using the Biomaterials Annotator, a tool for biomaterials Named Entity Recognition (NER). These concepts of interest, along with the abstract and relevant metadata are then deposited in DEBBIE, the Database of Experimental Biomaterials and their Biological Effect. DEBBIE is accessible through a web application that provides keyword searches and displays results in an intuitive and meaningful manner, aiming to facilitate an efficient mapping and organization of biomaterials information. C1 [Corvi, Javier O.; McKitrick, Austin; Fernandez, Jose M.; Capella-Gutierrez, Salvador] Barcelona Supercomp Ctr BSC, Barcelona 08034, Spain. [Fuenteslopez, Carla V.] Univ Oxford, Inst Biomed Engn, Botnar Res Ctr, Oxford OX3 7LD, England. [Gelpi, Josep L.] Univ Barcelona, Dept Biochem & Mol Biol, Barcelona 08014, Spain. [Ginebra, Maria-Pau] Tech Univ Catalonia, Dept Mat Sci & Engn, Barcelona 08222, Spain. [Hakimi, Osnat] Univ Int Catalunya, Fac Med & Hlth Sci, Barcelona 08017, Spain. C3 Universitat Politecnica de Catalunya; Barcelona Supercomputer Center (BSC-CNS); University of Oxford; University of Barcelona; Universitat Politecnica de Catalunya; Universitat Internacional de Catalunya (UIC) RP Capella-Gutierrez, S (corresponding author), Barcelona Supercomp Ctr BSC, Barcelona 08034, Spain.; Hakimi, O (corresponding author), Univ Int Catalunya, Fac Med & Hlth Sci, Barcelona 08017, Spain. EM salvador.capella@bsc.es; Osnat@aMoon.fund RI Ginebra, Maria-Pau/J-8149-2017; Capella-Gutierrez, Salvador/H-5053-2015; Fernandez Gonzalez, Jose Maria/N-5920-2014 OI Ginebra, Maria-Pau/0000-0002-4700-5621; Corvi, Javier/0000-0003-3241-3400; Capella-Gutierrez, Salvador/0000-0002-0309-604X; Hakimi, Osnat/0000-0002-8839-4846; Fuenteslopez, Carla Veronica/0000-0003-1469-2629; Fernandez Gonzalez, Jose Maria/0000-0002-4806-5140 FU Innovative Medicines Initiative two Joint Undertaking [777365]; eTRANSAFE (Innovative Medicines Initiative) [777365]; eTRANSAFE (European Union's Horizon 2020 research and innovation programme); eTRANSAFE (EFPIA); European Union Horizon 2020 programme under the Marie Sklodowska-Curie [751277]; MSCA; Bosch-Aymerich fellowship; INB [PT17/0009/0001 - ISCIII-SGEFI / ERDF]; Generalitat de~Catalunya; Marie Curie Actions (MSCA) [751277] Funding Source: Marie Curie Actions (MSCA) FX J.C. was partly supported by eTRANSAFE (received funding from the Innovative Medicines Initiative two Joint Undertaking under grant agreement no 777365 and support from the European Union's Horizon 2020 research and innovation programme and EFPIA). This project had received funding from the European Union Horizon 2020 programme under the Marie Sklodowska-Curie grant agreement DEBBIE (project number: 751277). O.H. was funded through an MSCA and a Bosch-Aymerich fellowship. J-M.F, S.C-G, and J-L.P. were partly supported by INB Grant (PT17/0009/0001 - ISCIII-SGEFI / ERDF). M-P.G. acknowledges the ICREA Academia Award from Generalitat de & nbsp;Catalunya. CR Alsentzer E, 2019, P 2 CLIN NATURAL LAN, P72, DOI 10.18653/v1/W19-1909 [Anonymous], 2022, FDA MED DEV DAT [Anonymous], 2022, INT ASM MED MAT DAT Barupal DK, 2019, ENVIRON HEALTH PERSP, V127, DOI 10.1289/EHP4713 Benson DA, 2017, NUCLEIC ACIDS RES, V45, pD37, DOI [10.1093/nar/gks1195, 10.1093/nar/gkp1024, 10.1093/nar/gkl986, 10.1093/nar/gkx1094, 10.1093/nar/gkw1070, 10.1093/nar/gkn723, 10.1093/nar/gkg057, 10.1093/nar/gkr1202, 10.1093/nar/gkq1079] Bodenreider O, 2004, NUCLEIC ACIDS RES, V32, pD267, DOI 10.1093/nar/gkh061 Browaeys H, 2007, CLIN IMPLANT DENT R, V9, P166, DOI 10.1111/j.1708-8208.2007.00050.x Cho YJ, 2019, BMC BIOINFORMATICS, V20, DOI 10.1186/s12859-019-3321-4 Corvi Javier, 2021, P 2 WORKSH SCHOL DOC, P36 Cunningham H, 2013, PLOS COMPUT BIOL, V9, DOI 10.1371/journal.pcbi.1002854 Devlin J, 2019, 2019 CONFERENCE OF THE NORTH AMERICAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS: HUMAN LANGUAGE TECHNOLOGIES (NAACL HLT 2019), VOL. 1, P4171 Gaulton A, 2017, NUCLEIC ACIDS RES, V45, pD945, DOI 10.1093/nar/gkw1074 Golbeck Jennifer., 2003, J WEB SEMANT, V1, P75, DOI [DOI 10.1016/J.WEBSEM.2003.07.007, 10.1016/j.websem.2003.07.007] Hakimi O, 2020, NAT REV MATER, V5, P553, DOI 10.1038/s41578-020-0215-z Hakimi O, 2020, ADV FUNCT MATER, V30, DOI 10.1002/adfm.201909910 Hastings J, 2016, NUCLEIC ACIDS RES, V44, pD1214, DOI 10.1093/nar/gkv1031 Hebels DGAJ, 2017, BIOMATERIALS, V149, P88, DOI 10.1016/j.biomaterials.2017.10.008 Hirschman Lynette, 2012, Database (Oxford), V2012, pbas020, DOI 10.1093/database/bas020 Isayev O, 2019, NATURE, V571, P42, DOI 10.1038/d41586-019-01978-x Kaewphan S., 2018, DATABASE, V2018, P96 Kerner J, 2021, ACTA BIOMATER, V130, P54, DOI 10.1016/j.actbio.2021.05.053 Kiliç S, 2016, DATABASE-OXFORD, DOI 10.1093/database/baw055 Lee J, 2020, BIOINFORMATICS, V36, P1234, DOI 10.1093/bioinformatics/btz682 Lin YT, 2021, BMC BIOINFORMATICS, V22, DOI 10.1186/s12859-021-04285-3 Locke RC, 2023, ADV HEALTHC MATER, V12, DOI 10.1002/adhm.202202591 Manning CD, 2014, PROCEEDINGS OF 52ND ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS: SYSTEM DEMONSTRATIONS, P55, DOI 10.3115/v1/p14-5010 Michalopoulos G, 2021, 2021 CONFERENCE OF THE NORTH AMERICAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS: HUMAN LANGUAGE TECHNOLOGIES (NAACL-HLT 2021), P1744 Mungall CJ, 2012, GENOME BIOL, V13, DOI 10.1186/gb-2012-13-1-r5 Pei ZR, 2023, NAT COMMUN, V14, DOI 10.1038/s41467-022-35766-5 Rigden DJ, 2019, NUCLEIC ACIDS RES, V47, pD1, DOI 10.1093/nar/gky1267 Roychowdhury D., 2021, DATABASE-OXFORD, V2021, DOI DOI 10.1093/DATABASE/BAAB031 Sanh V., ARXIV 2019 Subia B., 2012, J TISSUE ENG REGEN M, V5, P59 Suwardi A, 2022, ADV MATER, V34, DOI 10.1002/adma.202102703 Tawfik NS, 2018, DATABASE-OXFORD, DOI 10.1093/database/bay020 Dang TH, 2018, BIOINFORMATICS, V34, P3539, DOI 10.1093/bioinformatics/bty356 Vasina EN, 2009, LAB CHIP, V9, P891, DOI 10.1039/b813475h Williams D.F., 1987, DEFINITIONS BIOMATER Yang X, 2018, BMC BIOINFORMATICS, V19, DOI 10.1186/s12859-018-2526-2 NR 39 TC 4 Z9 4 U1 0 U2 10 PU WILEY PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 2192-2640 EI 2192-2659 J9 ADV HEALTHC MATER JI Adv. Healthc. Mater. PD OCT 6 PY 2023 VL 12 IS 25 DI 10.1002/adhm.202300150 EA AUG 2023 PG 13 WC Engineering, Biomedical; Nanoscience & Nanotechnology; Materials Science, Biomaterials WE Science Citation Index Expanded (SCI-EXPANDED) SC Engineering; Science & Technology - Other Topics; Materials Science GA IT7I6 UT WOS:001045313100001 PM 37563883 DA 2024-09-05 ER PT J AU Abbas, NN Ahmed, T Shah, SHU Omar, M Park, HW AF Abbas, Naveed Naeem Ahmed, Tanveer Shah, Syed Habib Ullah Omar, Muhammad Park, Han Woo TI Investigating the applications of artificial intelligence in cyber security SO SCIENTOMETRICS LA English DT Article DE Artificial intelligence; Cyber security; Scientometric; Visualization; Emerging trend; Research hotspot AB Artificial Intelligence (AI) provides instant insights to pierce through the noise of thousands of daily security alerts. The recent literature focuses on AI's application to cyber security but lacks visual analysis of AI applications. Structural changes have been observed in cyber security since the emergence of AI. This study promotes the development of theory about AI in cyber security, helps researchers establish research directions, and provides a reference that enterprises and governments can use to plan AI applications in the cyber security industry. Many countries, institutions and authors are densely connected through collaboration and citation networks. Artificial neural networks, an AI technique, gave birth to today's research on cloud cyber security. Many research hotspots such as those on face recognition and deep neural networks for speech recognition may create future hotspots on emerging technology, such as on artificial intelligence systems for security. This study visualizes the structural changes, hotspots and emerging trends in AI studies. Five evaluation factors are used to judge the hotspots and trends of this domain and a heat map is used to identify the areas of the world that are generating research on AI applications in cyber security. This study is the first to provide an overall perspective of hotspots and trends in the research on AI in the cyber security domain. C1 [Abbas, Naveed Naeem; Shah, Syed Habib Ullah; Omar, Muhammad] Islamia Univ Bahawalpur, Dept Comp Sci & IT, Bahawalpur, Pakistan. [Abbas, Naveed Naeem] H 39-A Jamal E Sarwar Colony, Chowk Churratah, Dera Ghazi Khan, Pakistan. [Ahmed, Tanveer] COMSATS Univ, Dept Comp Sci, Islamabad, Pakistan. [Shah, Syed Habib Ullah] H 2147,Block 18, Coll Chowk, Dera Ghazi Khan, Pakistan. [Park, Han Woo] Yeungnam Univ, Interdisciplinary Program Digital Convergence Bus, Dept Media & Commun, 214-1 Dae Dong, Gyongsan 712749, Gyeongsangbuk D, South Korea. C3 Islamia University of Bahawalpur; COMSATS University Islamabad (CUI); Yeungnam University RP Omar, M (corresponding author), Islamia Univ Bahawalpur, Dept Comp Sci & IT, Bahawalpur, Pakistan.; Park, HW (corresponding author), Yeungnam Univ, Interdisciplinary Program Digital Convergence Bus, Dept Media & Commun, 214-1 Dae Dong, Gyongsan 712749, Gyeongsangbuk D, South Korea. EM naveednaeemabbas@gmail.com; tanveerahmed@comsats.edu.pk; syedhabib7779@gmail.com; m.omar.nazeer@gmail.com; hanpark@ynu.ac.kr RI Park, Han Woo/F-4051-2011; Abbas, Naveed/JAV-9478-2023 OI Park, Han Woo/0000-0002-1378-2473; Abbas, Naveed/0000-0003-1204-250X; omar, muhammad/0000-0002-7071-5760 CR Aghion P., 2018, The Economics of Artificial Intelligence: an Agenda, P237, DOI [DOI 10.7208/CHICAGO/9780226613475.003, DOI 10.3386/W23928] [Anonymous], 2012, International Journal of Information Security Science Byres E., 2004, P VDE K, V116, P213 Chen C., 2013, J AM SOC INFORM SCI Chen C., 2016, HOW TO USE CITESPACE Chen CM, 2014, EXPERT OPIN ORPHAN D, V2, P709, DOI 10.1517/21678707.2014.920251 Chen CM, 2006, J AM SOC INF SCI TEC, V57, P359, DOI 10.1002/asi.20317 Chen HC, 2012, MIS QUART, V36, P1165 Dilek S., 2015, International Journal of Artificial Intelligence Applications (IJAIA), V6, DOI DOI 10.5121/IJAIA.2015.6102 Fei-Yue Wang, 2017, IEEE/CAA Journal of Automatica Sinica, V4, P577, DOI 10.1109/JAS.2017.7510598 Gautam P., 2019, J CONT E ASIA, V18, P7, DOI DOI 10.17477/JCEA.2019.18.1.007 Hengstler M, 2016, TECHNOL FORECAST SOC, V105, P105, DOI 10.1016/j.techfore.2015.12.014 Holmberg K, 2018, SCIENTOMETRICS, V117, P603, DOI 10.1007/s11192-018-2874-8 Imran M, 2014, WWW'14 COMPANION: PROCEEDINGS OF THE 23RD INTERNATIONAL CONFERENCE ON WORLD WIDE WEB, P159, DOI 10.1145/2567948.2577034 Jha S, 2016, JAMA-J AM MED ASSOC, V316, P2353, DOI 10.1001/jama.2016.17438 Jin YR, 2019, MULTIMED TOOLS APPL, V78, P1289, DOI 10.1007/s11042-018-6172-5 Kim HJ, 2016, J INFORMETR, V10, P954, DOI 10.1016/j.joi.2016.07.007 Li J., 2018, J CONT E ASIA, V17, P237 Li S, 2013, Proc of Assoc for Info, V50, P1, DOI [10.1002/meet.14505001037, DOI 10.1002/MEET.14505001037] Litman T., 2015, AUTONOMOUS VEHICLE I, P36, DOI DOI 10.1613/JAIR.301 Liu SB, 2014, SCIENTOMETRICS, V101, P1293, DOI 10.1007/s11192-014-1233-7 Loebbecke C, 2015, J STRATEGIC INF SYST, V24, P149, DOI 10.1016/j.jsis.2015.08.002 Machine P., DATAMINING PRACTICAL Malav A., 2017, International Journal of Engineering and Technology, V9, DOI DOI 10.21817/IJET/2017/V9I4/170904101 Ofli F, 2016, BIG DATA-US, V4, P47, DOI 10.1089/big.2014.0064 Omar M, 2017, SCIENTOMETRICS, V113, P1269, DOI 10.1007/s11192-017-2534-4 Pannu A., 2015, ARTIF INTELL, V4, P79, DOI DOI 10.1155/2009/251652 Park HJ, 2018, QUAL QUANT, V52, P2815, DOI [10.1007/s11135-018-0711-z, DOI 10.1007/S11135-018-0711-Z, DOI 10.1007/s11135-018-0711-z] Park Hyo Chan., 2018, Quality Quantity, V53, P935, DOI DOI 10.1007/S11135-018-0797-3 Parkes DC, 2015, SCIENCE, V349, P267, DOI 10.1126/science.aaa8403 Ramchurn SD, 2016, J ARTIF INTELL RES, V57, P661, DOI 10.1613/jair.5098 Reed JR, 2009, BREAST CANCER RES, V11, DOI 10.1186/bcr2246 Saridakis G, 2016, TECHNOL FORECAST SOC, V102, P320, DOI 10.1016/j.techfore.2015.08.012 SMALL H, 1980, SCIENTOMETRICS, V2, P277, DOI 10.1007/BF02016349 Su HN, 2010, SCIENTOMETRICS, V85, P65, DOI 10.1007/s11192-010-0259-8 van Eck NJ, 2010, SCIENTOMETRICS, V84, P523, DOI 10.1007/s11192-009-0146-3 Wong PC, 2011, IEEE COMPUT GRAPH, V31, P18, DOI 10.1109/MCG.2011.72 Zhou ZH, 2003, IEEE T INF TECHNOL B, V7, P37, DOI 10.1109/TITB.2003.808498 NR 38 TC 19 Z9 21 U1 18 U2 175 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0138-9130 EI 1588-2861 J9 SCIENTOMETRICS JI Scientometrics PD NOV PY 2019 VL 121 IS 2 BP 1189 EP 1211 DI 10.1007/s11192-019-03222-9 PG 23 WC Computer Science, Interdisciplinary Applications; Information Science & Library Science WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Computer Science; Information Science & Library Science GA JF2FJ UT WOS:000491201000025 DA 2024-09-05 ER PT J AU Heradio, R Fernandez-Amoros, D Cerrada, C Cobo, MJ AF Heradio, Ruben Fernandez-Amoros, David Cerrada, Cristina Cobo, Manuel J. TI Group Decision-Making Based on Artificial Intelligence: A Bibliometric Analysis SO MATHEMATICS LA English DT Article DE group decision-making; consensus decision-making; artificial intelligence; bibliometrics; science mapping ID CO-WORD ANALYSIS; CONSENSUS MODEL; ALLOCATION; NETWORK; INFORMATION; SELECTION; MAKERS AB Decisions concerning crucial and complicated problems are seldom made by a single person. Instead, they require the cooperation of a group of experts in which each participant has their own individual opinions, motivations, background, and interests regarding the existing alternatives. In the last 30 years, much research has been undertaken to provide automated assistance to reach a consensual solution supported by most of the group members. Artificial intelligence techniques are commonly applied to tackle critical group decision-making difficulties. For instance, experts' preferences are often vague and imprecise; hence, their opinions are combined using fuzzy linguistic approaches. This paper reports a bibliometric analysis of the ample literature published in this regard. In particular, our analysis: (i) shows the impact and upswing publication trend on this topic; (ii) identifies the most productive authors, institutions, and countries; (iii) discusses authors' and journals' productivity patterns; and (iv) recognizes the most relevant research topics and how the interest on them has evolved over the years. C1 [Heradio, Ruben; Fernandez-Amoros, David; Cerrada, Cristina] Univ Nacl Educ Distancia UNED, Dept Comp Syst & Software Engn, Madrid 28040, Spain. [Cobo, Manuel J.] Univ Cadiz, Dept Comp Sci & Engn, Cadiz 11519, Spain. C3 Universidad Nacional de Educacion a Distancia (UNED); Universidad de Cadiz RP Heradio, R; Fernandez-Amoros, D; Cerrada, C (corresponding author), Univ Nacl Educ Distancia UNED, Dept Comp Syst & Software Engn, Madrid 28040, Spain.; Cobo, MJ (corresponding author), Univ Cadiz, Dept Comp Sci & Engn, Cadiz 11519, Spain. EM rheradio@issi.uned.es; david@issi.uned.es; ccerrada01@gmail.com; manueljesus.cobo@uca.es RI Fernandez-Amoros, David/ABG-7972-2020; Cobo Martí­n, Manuel Jesús/C-5581-2011; Heradio, Ruben/D-3675-2013 OI Fernandez-Amoros, David/0000-0003-3758-0195; Cobo Martí­n, Manuel Jesús/0000-0001-6575-803X; Heradio, Ruben/0000-0002-7131-0482 FU Spanish Ministry of Science, Innovation and Universities [DPI2016-77677-P, PID2019-105381GA-I00 (iScience)]; Community of Madrid, under the research network CAM [RoboCity2030 S2013/MIT-2748] FX This work has been supported by (i) the Spanish Ministry of Science, Innovation and Universities, under grants with reference DPI2016-77677-P and PID2019-105381GA-I00 (iScience), and (ii) the Community of Madrid, under the research network CAM RoboCity2030 S2013/MIT-2748. CR Aggarwal M, 2017, KNOWL-BASED SYST, V119, P1, DOI 10.1016/j.knosys.2016.09.031 Alonso S, 2013, APPL SOFT COMPUT, V13, P149, DOI 10.1016/j.asoc.2012.08.009 [Anonymous], 1977, CURR COMMENTS [Anonymous], 1990, Introduction to informetrics: Quantitative methods in library, Documentation and Information Science [Anonymous], 1934, Engineering, DOI [10.1177/016555158501000, DOI 10.1177/016555158501000] [Anonymous], 2009, MEASURING ACAD RES U BELLMAN RE, 1970, MANAGE SCI B-APPL, V17, pB141 BONACICH P, 1972, J MATH SOCIOL, V2, P113, DOI 10.1080/0022250X.1972.9989806 Börner K, 2003, ANNU REV INFORM SCI, V37, P179, DOI 10.1002/aris.1440370106 Cabrerizo FJ, 2018, EXPERT SYST APPL, V99, P83, DOI 10.1016/j.eswa.2018.01.030 Cahlik T, 2000, SCIENTOMETRICS, V49, P373, DOI 10.1023/A:1010581421990 CALLON M, 1991, SCIENTOMETRICS, V22, P155, DOI 10.1007/BF02019280 Chen CT, 2000, FUZZY SET SYST, V114, P1, DOI 10.1016/S0165-0114(97)00377-1 Cobo MJ, 2015, KNOWL-BASED SYST, V80, P3, DOI 10.1016/j.knosys.2014.12.035 Cobo MJ, 2011, J AM SOC INF SCI TEC, V62, P1382, DOI 10.1002/asi.21525 Cobo MJ, 2011, J INFORMETR, V5, P146, DOI 10.1016/j.joi.2010.10.002 Coulter N, 1998, J AM SOC INFORM SCI, V49, P1206, DOI 10.1002/(SICI)1097-4571(1998)49:13<1206::AID-ASI7>3.0.CO;2-F Deveci M, 2020, J ENVIRON MANAGE, V270, DOI 10.1016/j.jenvman.2020.110916 Dong YC, 2014, KNOWL-BASED SYST, V58, P45, DOI 10.1016/j.knosys.2013.09.021 Erdogmus S, 2006, RENEW SUST ENERG REV, V10, P269, DOI 10.1016/j.rser.2004.09.003 Ertugrul I, 2011, GROUP DECIS NEGOT, V20, P725, DOI 10.1007/s10726-010-9219-1 Fortunato S, 2018, SCIENCE, V359, DOI 10.1126/science.aao0185 Govindan K, 2016, ANN OPER RES, V238, P243, DOI 10.1007/s10479-015-2004-4 He TT, 2019, MATHEMATICS-BASEL, V7, DOI 10.3390/math7121149 Heradio R., 2020, HAW INT C SYST SCI H, P1747 Heradio R, 2016, COMPUT EDUC, V98, P14, DOI 10.1016/j.compedu.2016.03.010 Heradio R, 2016, INFORM SOFTWARE TECH, V72, P1, DOI 10.1016/j.infsof.2015.11.004 Heradio R, 2013, INT J INFORM MANAGE, V33, P642, DOI 10.1016/j.ijinfomgt.2013.04.001 Herrera F, 1996, FUZZY SET SYST, V78, P73, DOI 10.1016/0165-0114(95)00107-7 Hirsch JE, 2005, P NATL ACAD SCI USA, V102, P16569, DOI 10.1073/pnas.0507655102 HUBER GP, 1984, MIS QUART, V8, P195, DOI 10.2307/248666 Cabrerizo FJ, 2014, FUZZY SET SYST, V255, P115, DOI 10.1016/j.fss.2014.03.016 KACPRZYK J, 1992, FUZZY SET SYST, V49, P21, DOI 10.1016/0165-0114(92)90107-F Kandylas V, 2010, ACM T KNOWL DISCOV D, V4, DOI 10.1145/1754428.1754430 Kitchenham B.A., 2007, GUIDELINES PERFORMIN Koczy LT, 2019, COMPLEXITY, DOI 10.1155/2019/7606715 LAW J, 1988, SCIENTOMETRICS, V14, P251, DOI 10.1007/BF02020078 Liberati A, 2009, BMJ-BRIT MED J, V339, DOI [10.1016/j.ijsu.2010.02.007, 10.1136/bmj.b2700, 10.1136/bmj.b2535, 10.1186/2046-4053-4-1, 10.1371/journal.pmed.1000097, 10.1136/bmj.i4086, 10.1016/j.ijsu.2010.07.299] Liu BS, 2014, INFORM FUSION, V18, P119, DOI 10.1016/j.inffus.2013.06.004 López-Robles JR, 2019, INT J INFORM MANAGE, V48, P22, DOI 10.1016/j.ijinfomgt.2019.01.013 Lotka A.J., 1926, J Wash Acad Sci Wash D C, V16, P23 Lü JH, 2008, 2008 7TH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION, VOLS 1-23, P1060, DOI 10.1109/WCICA.2008.4593068 Martínez MA, 2014, SCIENTOMETRICS, V98, P1971, DOI 10.1007/s11192-013-1155-9 Moed HF, 2009, ARCH IMMUNOL THER EX, V57, P13, DOI 10.1007/s00005-009-0001-5 Moral-Munoz JA, 2019, INTEGR CANCER THER, V18, DOI 10.1177/1534735419846401 Morente-Molinera JA, 2019, INFORM SCIENCES, V476, P222, DOI 10.1016/j.ins.2018.10.022 Noyons ECM, 1999, SCIENTOMETRICS, V46, P591, DOI 10.1007/BF02459614 Pamucar D, 2020, ENG APPL ARTIF INTEL, V93, DOI 10.1016/j.engappai.2020.103703 Petersen K, 2015, INFORM SOFTWARE TECH, V64, P1, DOI 10.1016/j.infsof.2015.03.007 Posner RichardA., 2001, PUBLIC INTELLECTUALS Quesada F.J., 2015, USING COMPUTING WORD, P97, DOI DOI 10.1007/978-3-319-16829-6_5 Singh RK, 2013, ENG APPL ARTIF INTEL, V26, P122, DOI 10.1016/j.engappai.2012.03.013 Sugimoto C.R., 2018, Measuring research: What everyone needs to know, DOI DOI 10.1093/WENTK/9780190640118.001.0001 TURNER WA, 1991, SCIENTOMETRICS, V22, P139, DOI 10.1007/BF02019279 Vahdani B, 2013, ENG APPL ARTIF INTEL, V26, P779, DOI 10.1016/j.engappai.2012.11.005 van Eck NJ, 2009, J AM SOC INF SCI TEC, V60, P1635, DOI 10.1002/asi.21075 Wohlin C, 2013, J SYST SOFTWARE, V86, P2594, DOI 10.1016/j.jss.2013.04.076 Xu Y, 2017, APPL SOFT COMPUT, V58, P265, DOI 10.1016/j.asoc.2017.04.068 YAGER RR, 1988, IEEE T SYST MAN CYB, V18, P183, DOI 10.1109/21.87068 Zhu JJ, 2016, GROUP DECIS NEGOT, V25, P325, DOI 10.1007/s10726-015-9444-8 Zuheros C., 2019, P AL TUR C DEC SUPP NR 61 TC 7 Z9 7 U1 3 U2 42 PU MDPI PI BASEL PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND EI 2227-7390 J9 MATHEMATICS-BASEL JI Mathematics PD SEP PY 2020 VL 8 IS 9 AR 1566 DI 10.3390/math8091566 PG 20 WC Mathematics WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Mathematics GA OF7XA UT WOS:000581414200001 OA Green Submitted, gold DA 2024-09-05 ER PT J AU Meyers, SD Azevedo, L Luther, ME AF Meyers, Steven D. Azevedo, Laura Luther, Mark E. TI A Scopus-based bibliometric study of maritime research involving the Automatic Identification System SO TRANSPORTATION RESEARCH INTERDISCIPLINARY PERSPECTIVES LA English DT Article DE Automatic Identification System; Maritime data; Artificial intelligence; Maritime policy; Scientific collaboration; Research trends ID ARTIFICIAL-INTELLIGENCE; AIS DATA; TIME; COLLABORATION; TRAJECTORIES; PREDICTION; LOGISTICS; NETWORKS; PATTERNS; SCIENCE AB Vessel traffic records from the Automatic Identification System (AIS) are a useful source of information for maritime data analytics, and of training data for maritime artificial intelligence systems. Researchers utilizing these data are developing the foundations for operational maritime tools essential to economic expansion and security. The global growth and distribution of this research effort from 1997 to 2019 was examined through a bibliometric study of 817 Scopus-listed publications. Indications of both collaboration and accelerating competition were found by examining the number of publications and authors, national and institutional affiliations of the authors, and number of citations received. Prior to 2003 about 1-5 publications per year appeared in the literature. The annual number of publications has doubled roughly every 5 years since the mid-2000s, reaching 140 in 2019. About 82% of publications were by authors based in a single country. Overall, authors affiliated with China contributed to 27% of all publications, followed by the US (9%) and Italy (8%). Authors from EU countries, taken collectively, were most common (37%). From 2016 to 2019 the number of authors from China quadrupled, and the number of publications with at least one China-affiliated author quintupled, producing about 39% of all publications in that time period. Some policy questions arising from this study are presented, and the need for continuing international collaboration and cooperative development are discussed. C1 [Meyers, Steven D.; Azevedo, Laura; Luther, Mark E.] Univ S Florida, Coll Marine Sci, Ctr Maritime & Port Studies, St Petersburg, FL 33701 USA. C3 State University System of Florida; University of South Florida RP Meyers, SD (corresponding author), Univ S Florida, Coll Marine Sci, Ctr Maritime & Port Studies, St Petersburg, FL 33701 USA. EM smeyers@usf.edu RI Meyers, Steven/I-9170-2014 OI Meyers, Steven/0000-0003-1592-9050; C Azevedo, Laura/0000-0002-6732-8612 FU Southeast Coastal Ocean Observing Regional Association [IOOS.16 (028) USF.ML.OBS.1]; Gulf of Mexico Coastal Ocean Observing System [02-S160275]; Greater Tampa Bay Marine Advisory Council-PORTS, Inc. [2500-1066-00]; Tampa Bay Estuary Program [6911]; USF College of Marine Science Von Rosenstiel Fellowship FX This effort received partial support from the Southeast Coastal Ocean Observing Regional Association (Sub Award #IOOS.16 (028) USF.ML.OBS.1) , the Gulf of Mexico Coastal Ocean Observing System (Award #02-S160275) , the Greater Tampa Bay Marine Advisory Council-PORTS, Inc. (Award #2500-1066-00) and the Tampa Bay Estuary Program (PO#6911) . https://marinecadastre.gov/ais/Author L.A. was supported by the USF College of Marine Science Von Rosenstiel Fellowship. USF librarian Theresa Burress helped with the initial Scopus search. Undergraduate researchers Ayden Muellier and Ste-fanie Barbulescu assisted with the Scopus search, and undergraduate assistant Gerald Meyers created the network figures. CR Abbasi A, 2011, SCIENTOMETRICS, V89, P687, DOI 10.1007/s11192-011-0463-1 Agarwala N, 2021, Aust. Jo. Marit. Ocean Affairs, P1 Alonso JM, 2018, COMM COM INF SC, V853, P3, DOI 10.1007/978-3-319-91473-2_1 [Anonymous], 2018, Science engineering indicators 2018: Higher education in science and engineering Archibugi D, 2018, TECHNOL FORECAST SOC, V127, P97, DOI 10.1016/j.techfore.2017.05.022 Tran BX, 2019, J CLIN MED, V8, DOI 10.3390/jcm8030360 Batty E, 2018, LECT NOTES COMPUT SC, V10731, P22, DOI 10.1007/978-3-319-73521-4_2 Blanchard JMF, 2017, GEOPOLITICS, V22, P223, DOI 10.1080/14650045.2017.1291503 BLOCH E, 1987, INTERDISCIPL SCI REV, V12, P101 Chen LS, 2018, J ADV TRANSPORT, DOI 10.1155/2018/6471625 Chen P., 2018, Int. J. Performability Eng., V14 Creech JA, 2003, J NAVIGATION, V56, P31, DOI 10.1017/S0373463302002072 Davarzani H, 2016, TRANSPORT RES D-TR E, V48, P473, DOI 10.1016/j.trd.2015.07.007 Demsar U, 2010, INT J GEOGR INF SCI, V24, P1527, DOI 10.1080/13658816.2010.511223 Di Tommaso M.R., 2020, Innovation and Research Excellence: China in the International Scientific Scenario, The Globalization of China's Health Industry: Industrial Policies. International Networks and Company Choices, P141 Dobrkovic A, 2016, LECT NOTES LOGISTICS, P281, DOI 10.1007/978-3-319-22288-2_16 Fan LX, 2018, HANDBOOK OF INTERNATIONAL TRADE AND TRANSPORTATION, P518 Filipiak Dominik, 2018, Scientific Journal of Polish Naval Academy, V215, P5, DOI 10.2478/sjpna-2018-0024 Garrison W.L., 1965, A Prolegomenon to the Forecasting of Transportation Development, P137 Grault L.B.C., 2020, The Belt and Road Initiative, P255 Hasegawa K., 2001, 7th IEEE International Conference on Methods and Models in Automation and Robotics, P632 ITU, 2019, United Nations Activities on Artificial Intelligence (AI) Report of the International Telecommunications Union online ITU, 2010, M Series, P146 Jahn C, 2018, LECT NOTES LOGISTICS, P172, DOI 10.1007/978-3-319-74225-0_23 Jilani G, 2021, QUAL QUANT METHODS L, V10, P129 Killick R, 2012, J AM STAT ASSOC, V107, P1590, DOI 10.1080/01621459.2012.737745 Lau YY, 2017, MARIT POLICY MANAG, V44, P667, DOI 10.1080/03088839.2017.1311425 Lee HB, 2018, COMPUT OPER RES, V98, P330, DOI 10.1016/j.cor.2017.06.005 Lim GJ, 2018, ANN OPER RES, V271, P765, DOI 10.1007/s10479-018-2768-4 Liu B, 2015, Maritime Traffic Anomaly Detection from Ais Satellite Data in Near Port Regions, Computer Science, P91 LUUKKONEN T, 1993, SCIENTOMETRICS, V28, P15, DOI 10.1007/BF02016282 Martin, 2019, 2018 National Economic Impact of the U.S. Coastal Port System. Martín-Martín A, 2018, J INFORMETR, V12, P1160, DOI 10.1016/j.joi.2018.09.002 Miailhe N., 2018, POLIT ETRANGERE, V2018, P105, DOI DOI 10.3917/PE.183.0105 Munim ZH, 2020, MARIT POLICY MANAG, V47, P577, DOI 10.1080/03088839.2020.1788731 Murk D.W., 1999, P MAR SAF COUNC Nguyen CM, 2020, SCIENTOMETRICS, V124, P1279, DOI 10.1007/s11192-020-03507-4 Niu JQ, 2016, ISPRS INT J GEO-INF, V5, DOI 10.3390/ijgi5050066 Oh Jae-Yong, 2018, [Journal of Korean Navigation and Port Reserch, 한국항해항만학회지], V42, P277, DOI 10.5394/KINPR.2018.42.4.277 Pallotta G, 2013, ENTROPY-SWITZ, V15, P2218, DOI 10.3390/e15062218 Ristic B, 2008, 2008 11 INT C INF FU, P40 Robards MD, 2016, B MAR SCI, V92, P75, DOI 10.5343/bms.2015.1034 Rong H, 2019, OCEAN ENG, V182, P499, DOI 10.1016/j.oceaneng.2019.04.024 Shelmerdine RL, 2015, MAR POLICY, V54, P17, DOI 10.1016/j.marpol.2014.12.010 Shukla AK, 2019, ENG APPL ARTIF INTEL, V85, P517, DOI 10.1016/j.engappai.2019.06.010 Sidibé A, 2017, J NAVIGATION, V70, P847, DOI 10.1017/S0373463317000066 Silveira PAM, 2013, J NAVIGATION, V66, P879, DOI 10.1017/S0373463313000519 SUBRAMANYAM K, 1983, J INFORM SCI, V6, P33, DOI 10.1177/016555158300600105 Svanberg M, 2019, MAR POLICY, V106, DOI 10.1016/j.marpol.2019.103520 Tai Ming Cheung, 2018, Journal of Cyber Policy, V3, P313, DOI 10.1080/23738871.2018.1556720 Tobin S., 2019, Inf. Serv. Use, P1 van Raan AFJ., 1993, Res Eval, V3, P151, DOI [10.1093/rev/3.3.151, DOI 10.1093/REV/3.3.151] Vuletic T, 2017, J IND INF INTEGR, V8, P22, DOI 10.1016/j.jii.2017.05.002 Wamba SF, 2019, LECT NOTES COMPUT SC, V11701, P255, DOI 10.1007/978-3-030-29374-1_21 Wang Y, 2013, SAFETY SCI, V57, P187, DOI 10.1016/j.ssci.2013.02.006 Wu F, 2020, NAT MACH INTELL, V2, P312, DOI 10.1038/s42256-020-0183-4 Wu L, 2017, J NAVIGATION, V70, P67, DOI 10.1017/S0373463316000345 Xin XR, 2019, OCEAN ENG, V180, P279, DOI 10.1016/j.oceaneng.2019.03.052 Yang D, 2019, TRANSPORT REV, V39, P755, DOI 10.1080/01441647.2019.1649315 Zhang SK, 2018, OCEAN ENG, V155, P240, DOI 10.1016/j.oceaneng.2018.02.060 Zhou Y, 2019, TRANSPORT RES C-EMER, V105, P323, DOI 10.1016/j.trc.2019.06.004 Zhu JW, 2020, SCIENTOMETRICS, V123, P321, DOI 10.1007/s11192-020-03387-8 NR 62 TC 10 Z9 10 U1 3 U2 4 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS SN 2590-1982 J9 TRANSP RES INTERDISC JI Transp. Res. Interdiscip. Perspect. PD JUN PY 2021 VL 10 AR 100387 DI 10.1016/j.trip.2021.100387 PG 10 WC Transportation WE Emerging Sources Citation Index (ESCI) SC Transportation GA W1GY9 UT WOS:001089193200010 OA Green Published, gold DA 2024-09-05 ER PT J AU Arencibia-Jorge, R Vega-Almeida, RL Jiménez-Andrade, JL Carrillo-Calvet, H AF Arencibia-Jorge, Ricardo Lidia Vega-Almeida, Rosa Luis Jimenez-Andrade, Jose Carrillo-Calvet, Humberto TI Evolutionary stages and multidisciplinary nature of artificial intelligence research SO SCIENTOMETRICS LA English DT Article DE Artificial intelligence; Scientific production; Multidisciplinarity; Bibliometric indicators; Thematic dispersion index ID SCIENTIFIC DISCIPLINE; SCIENCE FIELDS; INTERDISCIPLINARITY; INDICATORS; DIVERSITY; DOMAIN; MAPS; TECHNOLOGY; KNOWLEDGE; INDEXES AB This paper analyzed the growth and multidisciplinary nature of Artificial Intelligence research during the last 60 years. Web of Science coverage since 1960 was considered, and a descriptive research was performed. A top-down approach using Web of Science subject categories as a proxy to measure multidisciplinarity was developed. Bibliometric indicators based on the core of subject categories involving articles and citing articles related to this area were applied. The data analysis within a historical and epistemological perspective allowed to identify three main evolutionary stages: an emergence period (1960-1979), based on foundational literature from 1950s; a re-emergence and consolidation period (1980-2009), involving a "paradigmatic" phase of development and first industrial approach; and a period of re-configuration of the discipline as a technoscience (2010-2019), where an explosion of solutions for productive systems, wide collaboration networks and multidisciplinary research projects were observed. The multidisciplinary dynamics of the field was analyzed using a Thematic Dispersion Index. This indicator clearly described the transition from the consolidation stage to the re-configuration of the field, finding application in a wide diversity of scientific and technological domains. The results demonstrated that epistemic changes and qualitative leaps in Artificial Intelligence research have been associated to variations in multidisciplinarity patterns. C1 [Arencibia-Jorge, Ricardo] Univ Nacl Autonoma Mexico, Complex Sci Ctr C3, Mexico City 04510, DF, Mexico. [Lidia Vega-Almeida, Rosa] BioCubaFarma, Empresa Tecnol Informac ETI, Havana, Cuba. [Luis Jimenez-Andrade, Jose] Univ Nacl Autonoma Mexico, Fac Sci, Mexico City 04510, DF, Mexico. [Carrillo-Calvet, Humberto] Univ Nacl Autonoma Mexico, Fac Sci, Complex Sci Ctr C3, Mexico City 04510, DF, Mexico. C3 Universidad Nacional Autonoma de Mexico; Universidad Nacional Autonoma de Mexico; Universidad Nacional Autonoma de Mexico RP Arencibia-Jorge, R (corresponding author), Univ Nacl Autonoma Mexico, Complex Sci Ctr C3, Mexico City 04510, DF, Mexico. EM ricardo.arencibia@c3.unam.mx; vegaalmeida.rosa@gmail.com; jlja@ciencias.unam.mx; humberto.carrillo@c3.unam.mx RI Vega-Almeida, Rosa Lidia/KDP-2481-2024; CARRILLO CALVET, HUMBERTO/ITW-2657-2023; Carrillo Calvet, Humberto/E-2265-2012; Jiménez-Andrade, José-Luis Luis Jiménez/T-1666-2018; Arencibia-Jorge, Ricardo/AAK-3567-2020 OI Vega-Almeida, Rosa Lidia/0000-0003-4203-6207; Carrillo Calvet, Humberto/0000-0003-3659-6769; Jiménez-Andrade, José-Luis Luis Jiménez/0000-0003-3453-7159; Arencibia-Jorge, Ricardo/0000-0001-8907-2454 FU program "Scientometrics, Complexity, and Science of Science", at the Complexity Science Center of the National Autonomous University of Mexico (UNAM) FX This research was supported by the program "Scientometrics, Complexity, and Science of Science", at the Complexity Science Center of the National Autonomous University of Mexico (UNAM). We would like to thank Dr. Javier Garcia-Garcia for reviewing an earlier version of this article. CR Abbas NN, 2019, SCIENTOMETRICS, V121, P1189, DOI 10.1007/s11192-019-03222-9 Alejo-Machado OJ, 2015, SCIENTOMETRICS, V102, P1669, DOI 10.1007/s11192-014-1467-4 Alvargonzález D, 2011, INT STUD PHILOS SCI, V25, P387, DOI 10.1080/02698595.2011.623366 [Anonymous], 2008, IEEE Intelligent Systems, DOI DOI 10.1109/MIS.2008.20 Arencibia-Jorge, 2020, IBEROAMERICAN J SCI, V1, DOI DOI 10.47909/IJSMC.13 Arencibia-Jorge R, 2021, PRO INT CONF SCI INF, P1439 Tran BX, 2019, J MED INTERNET RES, V21, DOI 10.2196/15511 Bache K, 2013, 19TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING (KDD'13), P23 Baier-Fuentes H, 2018, INT J INTERACT MULTI, V5, P9, DOI 10.9781/ijimai.2018.12.003 Baker T., 2019, ED REBOOTED EXPLORIN Bar-Ilan J, 2010, SCIENTOMETRICS, V83, P809, DOI 10.1007/s11192-009-0145-4 Baum SD., 2020, PHILOS TECHNOLOGY, DOI 10.1007/s13347-020-00416-5 Bhattacharya S, 2019, J SCIENTOMETR RES, V8, pS85, DOI 10.5530/jscires.8.2.26 Bobadilla J, 2019, REV ESP DOC CIENT, V42, DOI 10.3989/redc.2019.1.1583 Bordons M, 2004, HANDBOOK OF QUANTITATIVE SCIENCE AND TECHNOLOGY RESEARCH: THE USE OF PUBLICATION AND PATENT STATISTICS IN STUDIES OF S&T SYSTEMS, P437, DOI 10.1007/1-4020-2755-9_20 Bornmann L, 2015, J ASSOC INF SCI TECH, V66, P2215, DOI 10.1002/asi.23329 Bostrom N, 2014, CAMBRIDGE HANDBOOK OF ARTIFICIAL INTELLIGENCE, P316 Carley S, 2012, SCIENTOMETRICS, V90, P407, DOI 10.1007/s11192-011-0528-1 Carusi C, 2020, SCIENTOMETRICS, V122, P867, DOI 10.1007/s11192-019-03309-3 Channell DavidF., 2017, A History of Technoscience: Erasing the Boundaries Between Science and Technology Chen CM, 2017, J DATA INFO SCI, V2, P1, DOI 10.1515/jdis-2017-0006 Chen CM, 2004, P NATL ACAD SCI USA, V101, P5303, DOI 10.1073/pnas.0307513100 Chen XL, 2020, PLOS ONE, V15, DOI 10.1371/journal.pone.0231192 Chiarello F, 2019, CERNE, V25, P140, DOI 10.1590/01047760201925022626 Darko A, 2020, AUTOMAT CONSTR, V112, DOI 10.1016/j.autcon.2020.103081 Devyatkin DA, 2017, SCI TECH INF PROCESS, V44, P253, DOI 10.3103/S0147688217040086 Fiala D, 2017, PUBLICATIONS, V5, DOI 10.3390/publications5040023 Fiala D, 2015, ASLIB J INFORM MANAG, V67, P526, DOI 10.1108/AJIM-02-2015-0027 Gao J, 2019, SUSTAINABILITY-BASEL, V11, DOI 10.3390/su11236574 Garner J, 2018, J DATA INFO SCI, V3, P54, DOI 10.2478/jdis-2018-0004 Garner J, 2014, SCIENTOMETRICS, V100, P687, DOI 10.1007/s11192-014-1316-5 Glänzel W, 2003, SCIENTOMETRICS, V56, P357, DOI 10.1023/A:1022378804087 Gonsalves Tad., 2019, Advanced methodologies and technologies in artificial intelligence, computer simulation, and human-computer interaction, P168, DOI 10.4018/978-1-5225-7368-5.ch014 Gupta BM, 2018, DESIDOC J LIB INF TE, V38, P416, DOI 10.14429/djlit.38.6.12309 Hinojo-Lucena FJ, 2019, EDUC SCI, V9, DOI 10.3390/educsci9010051 Hjorland B, 2002, J AM SOC INF SCI TEC, V53, P257, DOI 10.1002/asi.10042 HJORLAND B, 1995, J AM SOC INFORM SCI, V46, P400, DOI 10.1002/(SICI)1097-4571(199507)46:6<400::AID-ASI2>3.0.CO;2-Y Ivancheva LE, 2001, J AM SOC INF SCI TEC, V52, P1100, DOI 10.1002/asi.1176 Kaplan A, 2019, BUS HORIZONS, V62, P15, DOI 10.1016/j.bushor.2018.08.004 Katz JS., 1995, P 5 BIENN C INT SOC, P105 Kaul V, 2020, GASTROINTEST ENDOSC, V92, P807, DOI 10.1016/j.gie.2020.06.040 Klavans R, 2011, J AM SOC INF SCI TEC, V62, P1, DOI 10.1002/asi.21444 KUHN T.S., 1971, ESTRUCTURA REVOLUCIO Kulakli A, 2020, INT J ONLINE BIOMED, V16, P31, DOI 10.3991/ijoe.v16i02.12617 Lei YF, 2019, J PHYS CONF SER, V1168, DOI 10.1088/1742-6596/1168/2/022027 Leinster T, 2012, ECOLOGY, V93, P477, DOI 10.1890/10-2402.1 Lewis J, 2020, DES ISSUES, V36, P30, DOI 10.1162/desi_a_00573 Leydesdorff L, 2007, J AM SOC INF SCI TEC, V58, P1303, DOI 10.1002/asi.20614 Leydesdorff L, 2016, J ASSOC INF SCI TECH, V67, P707, DOI 10.1002/asi.23408 Leydesdorff L, 2015, J ASSOC INF SCI TECH, V66, P1001, DOI 10.1002/asi.23243 Leydesdorff L, 2013, SCIENTOMETRICS, V94, P589, DOI 10.1007/s11192-012-0784-8 Leydesdorff L, 2009, J AM SOC INF SCI TEC, V60, P348, DOI 10.1002/asi.20967 Liu JY, 2018, IEEE ACCESS, V6, P34403, DOI 10.1109/ACCESS.2018.2819688 Meyers PJ., 2020, J COMPUTING SCI COLL, V36, P53, DOI [DOI 10.5555/3447065.3447072, 10.5555/3447065.3447072] MOED HF, 1995, SCIENTOMETRICS, V33, P381, DOI 10.1007/BF02017338 Morillo F, 2001, SCIENTOMETRICS, V51, P203, DOI 10.1023/A:1010529114941 Morin E., 2017, Reinventar la educacion: Abrir caminos a la metamorfosis de la humanidad Moschini U, 2020, SCIENTOMETRICS, V125, P1145, DOI 10.1007/s11192-020-03481-x Moya-Anegon F, 2004, SCIENTOMETRICS, V61, P129, DOI 10.1023/B:SCIE.0000037368.31217.34 Mugabushaka AM, 2016, SCIENTOMETRICS, V107, P593, DOI 10.1007/s11192-016-1865-x Munim ZH, 2020, MARIT POLICY MANAG, V47, P577, DOI 10.1080/03088839.2020.1788731 Niu JQ, 2016, ISPRS INT J GEO-INF, V5, DOI 10.3390/ijgi5050066 Pei Wang, 2019, Journal of Artificial General Intelligence, V10, P1, DOI 10.2478/jagi-2019-0002 Porter A.L., 2013, AM ED RES ASS ANN M Porter AL, 2007, SCIENTOMETRICS, V72, P117, DOI 10.1007/s11192-007-1700-5 Porter AL, 2009, SCIENTOMETRICS, V81, P719, DOI 10.1007/s11192-008-2197-2 Porter AL, 2008, RES EVALUAT, V17, P273, DOI 10.3152/095820208X364553 Price D. J. d. S., 1963, Little Science, Big Science Pudovkin AI, 2002, J AM SOC INF SCI TEC, V53, P1113, DOI 10.1002/asi.10153 Qian Y, 2020, J INFORMETR, V14, DOI 10.1016/j.joi.2020.101047 Rafols I, 2010, SCIENTOMETRICS, V82, P263, DOI 10.1007/s11192-009-0041-y RAO CR, 1982, THEOR POPUL BIOL, V21, P24, DOI 10.1016/0040-5809(82)90004-1 Rokach L, 2013, J AM SOC INF SCI TEC, V64, P1951, DOI 10.1002/asi.22887 Ruiz-Castillo J, 2015, J INFORMETR, V9, P102, DOI 10.1016/j.joi.2014.11.010 Savaget P, 2019, SCI PUBL POLICY, V46, P369, DOI 10.1093/scipol/scy064 SCHUBERT A, 1989, SCIENTOMETRICS, V16, P3, DOI 10.1007/BF02093234 Schwab K., 2017, 4 IND REVOLUTION Serenko A, 2010, J INFORMETR, V4, P447, DOI 10.1016/j.joi.2010.04.001 Serna A., 2017, DESARROLLO INNOVACIO Shi Y, 2019, HELIYON, V5, DOI 10.1016/j.heliyon.2019.e02997 Shneider AM, 2009, TRENDS BIOCHEM SCI, V34, P217, DOI 10.1016/j.tibs.2009.02.002 Shukla AK, 2019, ENG APPL ARTIF INTEL, V85, P517, DOI 10.1016/j.engappai.2019.06.010 Stirling A, 2007, J R SOC INTERFACE, V4, P707, DOI 10.1098/rsif.2007.0213 Tabah AN, 1999, ANNU REV INFORM SCI, V34, P249 Thomas J, 2016, COMPLEXITY, V21, P207, DOI 10.1002/cplx.21799 Tolcheev VO, 2019, AUTOMAT DOC MATH LIN, V53, P103, DOI 10.3103/S000510551903004X Tseng CY, 2013, INNOV-ORGAN MANAG, V15, P463, DOI 10.5172/impp.2013.15.4.463 van den Besselaar P, 1996, J AM SOC INFORM SCI, V47, P415, DOI 10.1002/(SICI)1097-4571(199606)47:6<415::AID-ASI3>3.0.CO;2-Y Vega-Almeida, 2010, CIENCIA INFORM PARAD Villalba Gómez Jairo Andrés, 2016, Divers.: Perspect. Psicol., V12, P137, DOI 10.15332/s1794-9998.2016.0001.10 Wagner CS, 2011, J INFORMETR, V5, P14, DOI 10.1016/j.joi.2010.06.004 Waltman L, 2012, J AM SOC INF SCI TEC, V63, P2378, DOI 10.1002/asi.22748 Waltman L, 2011, J INFORMETR, V5, P37, DOI 10.1016/j.joi.2010.08.001 West E, 2019, AM J ROENTGENOL, V213, P1204, DOI 10.2214/AJR.19.21346 Yu DJ, 2019, APPL INTELL, V49, P449, DOI 10.1007/s10489-018-1278-z Zhang X, 2019, SCIENTOMETRICS, V119, P1311, DOI 10.1007/s11192-019-03088-x Zhang Y, 2017, KNOWL-BASED SYST, V133, P255, DOI 10.1016/j.knosys.2017.07.011 Zhao L, 2020, PROCESS SAF ENVIRON, V133, P169, DOI 10.1016/j.psep.2019.11.014 NR 98 TC 3 Z9 3 U1 13 U2 50 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0138-9130 EI 1588-2861 J9 SCIENTOMETRICS JI Scientometrics PD SEP PY 2022 VL 127 IS 9 BP 5139 EP 5158 DI 10.1007/s11192-022-04477-5 EA AUG 2022 PG 20 WC Computer Science, Interdisciplinary Applications; Information Science & Library Science WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Computer Science; Information Science & Library Science GA 4L1UW UT WOS:000841043900001 DA 2024-09-05 ER PT J AU Chen, XL Tao, XH Wang, FL Xie, HR AF Chen, Xieling Tao, Xiaohui Wang, Fu Lee Xie, Haoran TI Global research on artificial intelligence-enhanced human electroencephalogram analysis SO NEURAL COMPUTING & APPLICATIONS LA English DT Article DE Artificial intelligence technologies; Human brain; Electroencephalogram; Bibliometrics; Research topics; Visualization ID EPILEPTIC SEIZURE DETECTION; EMPIRICAL MODE DECOMPOSITION; DISCRETE WAVELET TRANSFORM; EEG SIGNAL CLASSIFICATION; FEATURE-EXTRACTION; EMOTION RECOGNITION; NEURAL-NETWORKS; FEATURE-SELECTION; AUTOMATED IDENTIFICATION; FRONTOTEMPORAL DEMENTIA AB The application of artificial intelligence (AI) technologies in assisting human electroencephalogram (EEG) analysis has become an active scientific field. This study aims to present a comprehensive review of the research field of AI-enhanced human EEG analysis. Using bibliometrics and topic modeling, research articles concerning AI-enhanced human EEG analysis collected from the Web of Science database during the period 2009-2018 were analyzed. After examining 2053 research articles published around the world, it was found that the annual number of articles had significantly grown from 78 to 468, with the USA and China being the most influential and prolific. The results of the keyword analysis showed that "electroencephalogram," "brain-computer interface," "classification," "support vector machine," "electroencephalography," and "signal" were the most frequently used. The results of topic modeling and evolution analyses highlighted several important issues, including epileptic seizure detection, brain-machine interface, EEG classification, mental disorders, emotion, and alcoholism and anesthesia. The findings suggest that such visualization and analysis of the research articles could provide a comprehensive overview of the field for communities of practice and inquiry worldwide. C1 [Chen, Xieling] Educ Univ Hong Kong, Dept Math & Informat Technol, Tai Po, Hong Kong, Peoples R China. [Tao, Xiaohui] Univ Southern Queensland, Sch Sci, Toowoomba, Qld, Australia. [Wang, Fu Lee] Open Univ Hong Kong, Sch Sci & Technol, Ho Man Tin, Hong Kong, Peoples R China. [Xie, Haoran] Lingnan Univ, Dept Comp & Decis Sci, Tuen Mun, Hong Kong, Peoples R China. C3 Education University of Hong Kong (EdUHK); University of Southern Queensland; Hong Kong Metropolitan University; Lingnan University RP Wang, FL (corresponding author), Open Univ Hong Kong, Sch Sci & Technol, Ho Man Tin, Hong Kong, Peoples R China. EM xielingchen0708@gmail.com; Xiaohui.Tao@usq.edu.au; pwang@ouhk.edu.hk; hrxie2@gmail.com RI Wang, Fu Lee/AAD-9782-2021; Xie, Haoran/AFS-3515-2022; tao, xiaohui/KCK-2677-2024; Tao, Xiaohui/JKI-2330-2023 OI Wang, Fu Lee/0000-0002-3976-0053; Xie, Haoran/0000-0003-0965-3617; PV, THAYYIB/0000-0001-8929-0398 FU HKIBS Research Seed Fund 2019/20 [190-009]; Research Seed Fund [102367]; LEO Dr David P. Chan Institute of Data Science of Lingnan University, Hong Kong FX This work was supported by the HKIBS Research Seed Fund 2019/20 (190-009), the Research Seed Fund (102367), and LEO Dr David P. Chan Institute of Data Science of Lingnan University, Hong Kong. CR Acar E, 2011, CHEMOMETR INTELL LAB, V106, P41, DOI 10.1016/j.chemolab.2010.08.004 Acharya UR, 2018, COMPUT METH PROG BIO, V161, P103, DOI 10.1016/j.cmpb.2018.04.012 Acharya UR, 2013, INT J NEURAL SYST, V23, DOI 10.1142/S0129065713500093 Acharya UR, 2012, BIOMED SIGNAL PROCES, V7, P401, DOI 10.1016/j.bspc.2011.07.007 Acharya UR, 2011, INT J NEURAL SYST, V21, P199, DOI 10.1142/S0129065711002808 Acharya R, 2010, INT J NEURAL SYST, V20, P509, DOI 10.1142/S0129065710002589 Ahmad MA, 2015, BIOMED RES INT, V2015, DOI 10.1155/2015/638036 Ahmadlou M, 2010, CLIN EEG NEUROSCI, V41, P1, DOI 10.1177/155005941004100103 Alam SMS, 2013, IEEE J BIOMED HEALTH, V17, P312, DOI 10.1109/JBHI.2012.2237409 Alickovic E, 2018, IEEE T INSTRUM MEAS, V67, P1258, DOI 10.1109/TIM.2018.2799059 Alickovic E, 2018, BIOMED SIGNAL PROCES, V39, P94, DOI 10.1016/j.bspc.2017.07.022 Amorim P, 2017, EXPERT SYST APPL, V67, P140, DOI 10.1016/j.eswa.2016.09.037 Andersson CA, 2000, CHEMOMETR INTELL LAB, V52, P1, DOI 10.1016/S0169-7439(00)00071-X Andrzejak RG, 2012, PHYS REV E, V86, DOI 10.1103/PhysRevE.86.046206 Andrzejak RG, 2001, PHYS REV E, V64, DOI 10.1103/PhysRevE.64.061907 Ang KK, 2012, FRONT NEUROSCI-SWITZ, V6, DOI 10.3389/fnins.2012.00039 Ang KK, 2012, PATTERN RECOGN, V45, P2137, DOI 10.1016/j.patcog.2011.04.018 [Anonymous], 1984, Distributed representations Antelis JM, 2018, BIOMED SIGNAL PROCES, V44, P12, DOI 10.1016/j.bspc.2018.03.010 ARBIB MA, 1975, ANN BIOMED ENG, V3, P238, DOI 10.1007/BF02390972 Arunkumar N, 2017, PATTERN RECOGN LETT, V94, P112, DOI 10.1016/j.patrec.2017.05.007 Arvaneh M, 2011, IEEE T BIO-MED ENG, V58, P1865, DOI 10.1109/TBME.2011.2131142 Atkinson J, 2016, EXPERT SYST APPL, V47, P35, DOI 10.1016/j.eswa.2015.10.049 Awais M, 2017, SENSORS-BASEL, V17, DOI 10.3390/s17091991 Bader B.W., 2010, MATLAB tensor toolbox version 2.4 Bai XJ, 2019, PLOS ONE, V14, DOI 10.1371/journal.pone.0216392 Bajaj V, 2012, IEEE T INF TECHNOL B, V16, P1135, DOI 10.1109/TITB.2011.2181403 Bandarabadi M, 2015, CLIN NEUROPHYSIOL, V126, P237, DOI 10.1016/j.clinph.2014.05.022 Bascil MS, 2016, AUSTRALAS PHYS ENG S, V39, P665, DOI 10.1007/s13246-016-0462-x Becerra-Sánchez P, 2020, SENSORS-BASEL, V20, DOI 10.3390/s20205881 Benwell CSY, 2020, NEUROBIOL AGING, V85, P83, DOI 10.1016/j.neurobiolaging.2019.10.004 Bhattacharyya A, 2017, IEEE T BIO-MED ENG, V64, P2003, DOI 10.1109/TBME.2017.2650259 Bhattacharyya A, 2018, NEURAL COMPUT APPL, V29, P47, DOI 10.1007/s00521-016-2646-4 Bhattacharyya S, 2015, ROBOT AUTON SYST, V68, P104, DOI 10.1016/j.robot.2015.01.007 Blabe CH, 2015, J NEURAL ENG, V12, DOI 10.1088/1741-2560/12/4/043002 Blankertz B, 2004, IEEE T BIO-MED ENG, V51, P1044, DOI 10.1109/TBME.2004.826692 Blankertz B, 2006, IEEE T NEUR SYS REH, V14, P153, DOI 10.1109/TNSRE.2006.875642 Blankertz B, 2010, NEUROIMAGE, V51, P1303, DOI 10.1016/j.neuroimage.2010.03.022 Bocharov AV, 2017, NEUROPHYSIOL CLIN, V47, P225, DOI 10.1016/j.neucli.2017.01.009 Bosl William., 2011, BMC Medicine, V9 Brett M., 2002, NEUROIMAGE, V16, P2, DOI DOI 10.1016/S1053-8119(02)90010-8 Brunner C, 2007, PATTERN RECOGN LETT, V28, P957, DOI 10.1016/j.patrec.2007.01.002 Cai LH, 2020, FRONT NEUROSCI-SWITZ, V14, DOI 10.3389/fnins.2020.00051 Cecotti H, 2011, IEEE T PATTERN ANAL, V33, P433, DOI 10.1109/TPAMI.2010.125 Chai RF, 2017, IEEE J BIOMED HEALTH, V21, P715, DOI 10.1109/JBHI.2016.2532354 Chang CC, 2011, ACM T INTEL SYST TEC, V2, DOI 10.1145/1961189.1961199 Chang WW, 2020, EXPERT SYST APPL, V158, DOI 10.1016/j.eswa.2020.113448 Chen J, 2015, APPL SOFT COMPUT, V30, P663, DOI 10.1016/j.asoc.2015.01.007 Chen SJ, 2016, COMPUT METH PROG BIO, V137, P77, DOI 10.1016/j.cmpb.2016.08.024 Chen SF, 2018, NEURAL COMPUT APPL, V29, P857, DOI 10.1007/s00521-016-2594-z Chen X, 2019, INT WORKSH HUM BRAIN, P69 CHEN XD, 2020, APPL SCI BASEL, V10 Chen XL, 2020, COGN COMPUT, V12, P1097, DOI 10.1007/s12559-020-09745-1 Chen X, 2020, COMPUT EDUC, V151, DOI 10.1016/j.compedu.2020.103855 Chen XL, 2020, PLOS ONE, V15, DOI 10.1371/journal.pone.0231192 Chen XL, 2019, J COMPUT EDUC, V6, P563, DOI 10.1007/s40692-019-00149-1 Chen XL, 2019, BMC MED INFORM DECIS, V19, DOI 10.1186/s12911-019-0757-4 Chen XL, 2019, ONLINE INFORM REV, V43, P29, DOI 10.1108/OIR-03-2018-0068 Chen XL, 2018, BMC MED INFORM DECIS, V18, DOI 10.1186/s12911-018-0692-9 CHEN XL, 2018, BMC MED INFORM DE S1, V18 Chi MT, 2015, IEEE T VIS COMPUT GR, V21, P1415, DOI 10.1109/TVCG.2015.2440241 CHURCHLAND PS, 1988, SCIENCE, V242, P741, DOI 10.1126/science.3055294 Cicalese PA, 2020, J NEUROSCI METH, V336, DOI 10.1016/j.jneumeth.2020.108618 Conradi J., 2009, Int J Bioelectromagnetism Volume, V11, P65 Coskun M, 2015, J MED SYST, V39, DOI 10.1007/s10916-014-0173-3 Craig A, 2006, BIOL PSYCHOL, V72, P78, DOI 10.1016/j.biopsycho.2005.07.005 Craig A, 2012, PSYCHOPHYSIOLOGY, V49, P574, DOI 10.1111/j.1469-8986.2011.01329.x Dai GH, 2020, J NEURAL ENG, V17, DOI 10.1088/1741-2552/ab405f De Carvalho Ana Maria., 1998, World Wide Web, V1, P221 De Clercq W, 2006, IEEE T BIO-MED ENG, V53, P2583, DOI 10.1109/TBME.2006.879459 de Haan W, 2009, BMC NEUROSCI, V10, DOI 10.1186/1471-2202-10-101 Delorme A, 2004, J NEUROSCI METH, V134, P9, DOI 10.1016/j.jneumeth.2003.10.009 Dominguez EC, 2020, NEURAL COMPUT APPL, V32, P10143, DOI 10.1007/s00521-019-04544-8 Dornhege G, 2004, IEEE T BIO-MED ENG, V51, P993, DOI 10.1109/TBME.2004.827088 Dottori M, 2017, SCI REP-UK, V7, DOI 10.1038/s41598-017-04204-8 Duncan D, 2018, DISCRETE CONT DYN-B, V23, P161, DOI 10.3934/dcdsb.2018010 Dunlavy D. M., 2010, SAND20101422 SAND NA Fan Z, 2020, NEURAL COMPUT APPL, V32, P1927, DOI 10.1007/s00521-019-04495-0 Farahat A, 2019, J NEURAL ENG, V16, DOI 10.1088/1741-2552/ab3bb4 Farina FR, 2020, NEUROIMAGE, V215, DOI 10.1016/j.neuroimage.2020.116795 Faust O, 2014, J MECH MED BIOL, V14, DOI 10.1142/S0219519414500353 Frank MJ, 2015, J NEUROSCI, V35, P485, DOI 10.1523/JNEUROSCI.2036-14.2015 Fu K, 2014, BIOMED SIGNAL PROCES, V13, P15, DOI 10.1016/j.bspc.2014.03.007 Fürbass F, 2020, CLIN NEUROPHYSIOL, V131, P1174, DOI 10.1016/j.clinph.2020.02.032 Gandhi T, 2011, NEUROCOMPUTING, V74, P3051, DOI 10.1016/j.neucom.2011.04.029 Gao ZK, 2017, INT J NEURAL SYST, V27, DOI 10.1142/S0129065717500058 Gao ZK, 2016, SCI REP-UK, V6, DOI 10.1038/srep35622 Gao ZK, 2020, NEUROCOMPUTING, V380, P225, DOI 10.1016/j.neucom.2019.10.096 Garn H, 2017, J NEURAL TRANSM, V124, P569, DOI 10.1007/s00702-017-1699-6 Ghaderyan P, 2014, J NEUROSCI METH, V232, P134, DOI 10.1016/j.jneumeth.2014.05.019 Gimenez E, 2018, SUSTAINABILITY-BASEL, V10, DOI 10.3390/su10020391 Goh SK, 2018, IEEE T NEUR SYS REH, V26, P1858, DOI 10.1109/TNSRE.2018.2864119 Goldberger AL, 2000, CIRCULATION, V101, pE215, DOI 10.1161/01.CIR.101.23.e215 Graetz S, 2019, EXP BRAIN RES, V237, P573, DOI 10.1007/s00221-018-5439-4 Griebling J, 2010, J CHILD NEUROL, V25, P856, DOI 10.1177/0883073809351313 Guo L, 2011, EXPERT SYST APPL, V38, P10425, DOI 10.1016/j.eswa.2011.02.118 Guo L, 2010, J NEUROSCI METH, V193, P156, DOI 10.1016/j.jneumeth.2010.08.030 Guo L, 2010, J NEUROSCI METH, V191, P101, DOI 10.1016/j.jneumeth.2010.05.020 Guo YM, 2016, NEUROCOMPUTING, V187, P27, DOI 10.1016/j.neucom.2015.09.116 Hall M., 2009, ACM SIGKDD Explor. Newsl., V11, P10, DOI DOI 10.1145/1656274.1656278 Hao TY, 2018, SOFT COMPUT, V22, P7875, DOI 10.1007/s00500-018-3511-4 Hassabis D, 2017, NEURON, V95, P245, DOI 10.1016/j.neuron.2017.06.011 Hassan AR, 2016, COMPUT METH PROG BIO, V136, P65, DOI 10.1016/j.cmpb.2016.08.013 Hassan AR, 2016, BIOCYBERN BIOMED ENG, V36, P248, DOI 10.1016/j.bbe.2015.11.001 Hassan SU, 2014, SCIENTOMETRICS, V99, P549, DOI 10.1007/s11192-013-1193-3 Heimerl F, 2014, P ANN HICSS, P1833, DOI 10.1109/HICSS.2014.231 Hemanth D. Jude, 2020, Journal of Artificial Intelligence and Systems, V2, P1, DOI [10.33969/AIS.2020.21001, DOI 10.33969/AIS.2020.21001] Hernández-Rojas LG, 2020, IEEE ACCESS, V8, P119728, DOI 10.1109/ACCESS.2020.3005600 Hirsch JE, 2014, INT J CLIN HLTH PSYC, V14, P161, DOI 10.1016/S1697-2600(14)70050-X Hong J, 2017, J INTELL FUZZY SYST, V33, P3355, DOI 10.3233/JIFS-162104 Hooda N, 2020, IETE TECH REV, V37, P315, DOI 10.1080/02564602.2019.1620138 HOPFIELD JJ, 1982, P NATL ACAD SCI-BIOL, V79, P2554, DOI 10.1073/pnas.79.8.2554 Hou YM, 2020, J NEURAL ENG, V17, DOI 10.1088/1741-2552/ab4af6 Hsu WC, 2017, INT J FUZZY SYST, V19, P566, DOI 10.1007/s40815-016-0259-9 Hsu WY, 2014, CLIN EEG NEUROSCI, V45, P163, DOI 10.1177/1550059413491559 Hu R, 2020, WORLD WIDE WEB, V23, P1441, DOI 10.1007/s11280-019-00746-1 Hu SY, 2013, IET INTELL TRANSP SY, V7, P105, DOI 10.1049/iet-its.2012.0045 Huang JR, 2013, ENTROPY-SWITZ, V15, P3325, DOI 10.3390/e15093325 Hunyadi B, 2015, NEUROIMAGE, V113, P329, DOI 10.1016/j.neuroimage.2015.03.011 Ieracitano C, 2020, NEURAL NETWORKS, V123, P176, DOI 10.1016/j.neunet.2019.12.006 Jafarifarmand A, 2013, NEUROCOMPUTING, V103, P222, DOI 10.1016/j.neucom.2012.09.024 Jaiswal AK, 2017, BIOMED SIGNAL PROCES, V34, P81, DOI 10.1016/j.bspc.2017.01.005 Jana GC, 2020, PROCEDIA COMPUT SCI, V167, P403, DOI 10.1016/j.procs.2020.03.248 Jeong JH, 2020, IEEE ACCESS, V8, P66941, DOI 10.1109/ACCESS.2020.2983182 Jeong JH, 2020, IEEE T NEUR SYS REH, V28, P1226, DOI 10.1109/TNSRE.2020.2981659 Joshi V, 2014, BIOMED SIGNAL PROCES, V9, P1, DOI 10.1016/j.bspc.2013.08.006 Jumphoo T, 2019, COGN SYST RES, V58, P375, DOI 10.1016/j.cogsys.2019.09.002 Kara Y., 2017, Int. J. Secondary Metabolite, V4, P142, DOI [10.21448/ijsm.309538, DOI 10.21448/IJSM.309538] Kasabov N, 2018, ACM INT CONF PR SER, V1641, P1, DOI 10.1145/3274005.3274006 Kaur B, 2019, NEURAL COMPUT APPL, V31, P5887, DOI 10.1007/s00521-018-3397-1 Kaya Y, 2014, APPL MATH COMPUT, V243, P209, DOI 10.1016/j.amc.2014.05.128 KENDALL K, 1975, J PHYS D APPL PHYS, V8, P1449, DOI 10.1088/0022-3727/8/13/005 Khalaf A, 2020, HYBRID EEG FTCD BRAI, P295, DOI [10.1007/978-3-030-34784-0_15, DOI 10.1007/978-3-030-34784-0_15] Khan KA, 2020, EXPERT SYST APPL, V140, DOI 10.1016/j.eswa.2019.112895 Khushaba RN, 2013, FUZZY SET SYST, V221, P90, DOI 10.1016/j.fss.2012.12.003 Klatt J, 2012, EPILEPSIA, V53, P1669, DOI 10.1111/j.1528-1167.2012.03564.x Kocak M, 2019, SCIENTOMETRICS, V121, P1339, DOI 10.1007/s11192-019-03259-w Koelstra S, 2012, IEEE T AFFECT COMPUT, V3, P18, DOI 10.1109/T-AFFC.2011.15 Kose U, 2018, APPL SCI-BASEL, V8, DOI 10.3390/app8091613 Kovacs Peter., 2012, INT J ADV TELECOMMUN, V1, P67 Kumar SU, 2017, NEURAL COMPUT APPL, V28, P3239, DOI 10.1007/s00521-016-2236-5 Kumar S, 2017, COMPUT BIOL MED, V91, P231, DOI 10.1016/j.compbiomed.2017.10.025 Kumar Y, 2014, SIGNAL IMAGE VIDEO P, V8, P1323, DOI 10.1007/s11760-012-0362-9 Kumar Y, 2014, NEUROCOMPUTING, V133, P271, DOI 10.1016/j.neucom.2013.11.009 KWON J, 2020, PLOS ONE, V15 Langkvist M., 2012, ADV ARTIFICIAL NEURA, V2012, P5, DOI DOI 10.1155/2012/107046 Lawhern VJ, 2018, J NEURAL ENG, V15, DOI 10.1088/1741-2552/aace8c Lee EJ, 2017, J STROKE, V19, P277, DOI 10.5853/jos.2017.02054 Leeb R, 2008, BCI COMPETITION 4 Leeb R, 2007, IEEE T NEUR SYS REH, V15, P473, DOI 10.1109/TNSRE.2007.906956 Li G, 2015, SENSORS-BASEL, V15, P20873, DOI 10.3390/s150820873 Li T, 2014, J NEUROSCI METH, V224, P26, DOI 10.1016/j.jneumeth.2013.11.015 Li X, 2018, FRONT NEUROSCI-SWITZ, V12, DOI 10.3389/fnins.2018.00162 Liang ZH, 2018, PHYSIOL MEAS, V39, DOI 10.1088/1361-6579/aab4d0 Lin YP, 2010, IEEE T BIO-MED ENG, V57, P1798, DOI 10.1109/TBME.2010.2048568 Liu D, 2017, FRONT HUM NEUROSCI, V11, DOI 10.3389/fnhum.2017.00560 Liu YJ, 2018, IEEE T AFFECT COMPUT, V9, P550, DOI 10.1109/TAFFC.2017.2660485 Lucas C, 2015, POLIT ANAL, V23, P254, DOI 10.1093/pan/mpu019 Luo J, 2016, COMPUT BIOL MED, V75, P45, DOI 10.1016/j.compbiomed.2016.03.004 Luo W, 2020, FRONT BEHAV NEUROSCI, V14, DOI 10.3389/fnbeh.2020.00002 Mammone N, 2020, NEURAL NETWORKS, V124, P357, DOI 10.1016/j.neunet.2020.01.027 Mann HB, 1945, ECONOMETRICA, V13, P245, DOI 10.2307/1907187 Martínez-Miranda J, 2005, COMPUT HUM BEHAV, V21, P323, DOI 10.1016/j.chb.2004.02.010 Martis RJ, 2012, INT J NEURAL SYST, V22, DOI 10.1142/S012906571250027X Maziero D, 2018, BRAIN TOPOGR, V31, P322, DOI 10.1007/s10548-017-0598-3 MCCULLOCH WS, 1943, B MATH BIOPHYS, V5, P115, DOI DOI 10.1007/BF02478259 MENG JY, 2020, SENSORS BASEL, V20 Metin SZ, 2018, CLIN EEG NEUROSCI, V49, P171, DOI 10.1177/1550059417750914 Meyer D., 2015, Misc Functions of the Department of Statistics, Probability Theory Group Mikkelsen KB, 2017, BIOMED ENG ONLINE, V16, DOI 10.1186/s12938-017-0400-5 Mimno David, 2011, P C EMPIRICAL METHOD, P262 Misiti M., 2004, MATHWORK WEBSITE, V1, P1 Mora-Sanchez A, 2020, COGN NEURODYNAMICS, V14, P301, DOI 10.1007/s11571-020-09573-x Muhammad G, 2018, IEEE ACCESS, V6, P45372, DOI 10.1109/ACCESS.2018.2859267 Mumtaz W, 2016, KNOWL-BASED SYST, V105, P48, DOI 10.1016/j.knosys.2016.04.026 Nahmias DO, 2020, SCI REP-UK, V10, DOI 10.1038/s41598-020-70569-y Narang A, 2018, J INTELL FUZZY SYST, V34, P1669, DOI 10.3233/JIFS-169460 Naseer A, 2020, NEURAL COMPUT APPL, V32, P839, DOI 10.1007/s00521-019-04069-0 Ng EP, 2012, J MECH MED BIOL, V12, DOI 10.1142/S0219519412400283 Nunes TM, 2014, NEUROCOMPUTING, V136, P103, DOI 10.1016/j.neucom.2014.01.020 O'Sullivan Shane, 2019, Brain Inform, V6, P3, DOI 10.1186/s40708-019-0096-3 Orhan U, 2011, EXPERT SYST APPL, V38, P13475, DOI 10.1016/j.eswa.2011.04.149 Park SH, 2017, IEEE SENS J, V17, P2977, DOI 10.1109/JSEN.2017.2671842 Park Y, 2011, EPILEPSIA, V52, P1761, DOI 10.1111/j.1528-1167.2011.03138.x Patidar S, 2017, BIOMED SIGNAL PROCES, V34, P74, DOI 10.1016/j.bspc.2017.01.001 Pedreira C, 2014, NEUROIMAGE, V99, P461, DOI 10.1016/j.neuroimage.2014.05.009 Peker M, 2015, J MED SYST, V39, DOI 10.1007/s10916-015-0197-3 Peng BH, 2018, J CLEAN PROD, V197, P1177, DOI 10.1016/j.jclepro.2018.06.283 Peters BO, 1998, NEURAL NETWORKS, V11, P1429, DOI 10.1016/S0893-6080(98)00060-4 Petrantonakis PC, 2010, IEEE T INF TECHNOL B, V14, P186, DOI 10.1109/TITB.2009.2034649 Pourmotabbed H, 2020, HUM BRAIN MAPP, V41, P2964, DOI 10.1002/hbm.24990 Powell M., 1978, LECT NOTES MATH, V630, P144, DOI DOI 10.1007/BFB0067703 Powell M. J. D., 1979, Third International Symposium on Computing Methods in Applied Sciences and Engineering, P62 Raghu S, 2020, NEURAL NETWORKS, V124, P202, DOI 10.1016/j.neunet.2020.01.017 Rahman MA, 2020, EGYPT INFORM J, V21, P23, DOI 10.1016/j.eij.2019.10.002 Rahman MM, 2020, GEOTECH RES, V7, P1, DOI 10.1680/jgere.2020.7.1.1 Razavipour F, 2014, ARAB J SCI ENG, V39, P7049, DOI 10.1007/s13369-014-1242-0 Razzak I, 2019, IEEE J TRANSL ENG HE, V7, DOI 10.1109/JTEHM.2019.2942017 Razzak I, 2020, NEURAL NETWORKS, V121, P441, DOI 10.1016/j.neunet.2019.08.030 Ren H, 2017, BIOMED RES-INDIA, V28, P3151 Riaz F, 2016, IEEE T NEUR SYS REH, V24, P28, DOI 10.1109/TNSRE.2015.2441835 Rivet B, 2009, IEEE T BIO-MED ENG, V56, P2035, DOI 10.1109/TBME.2009.2012869 Roberts ME, 2014, AM J POLIT SCI, V58, P1064, DOI 10.1111/ajps.12103 Roberts Margaret E., 2014, Journal of Statistical Software, V10, P1, DOI [DOI 10.18637/JSS.V000.I00, 10.18637/jss.v091.i02] Rodrigues D, 2016, EXPERT SYST APPL, V62, P81, DOI 10.1016/j.eswa.2016.06.006 Sairamya NJ, 2018, AUSTRALAS PHYS ENG S, V41, P1029, DOI 10.1007/s13246-018-0697-9 Samiee K, 2015, IEEE T BIO-MED ENG, V62, P541, DOI 10.1109/TBME.2014.2360101 Schirrmeister RT, 2017, HUM BRAIN MAPP, V38, P5391, DOI 10.1002/hbm.23730 Schlögl A, 2008, COMPUTER, V41, P44, DOI 10.1109/MC.2008.407 SCHWARZ A, 2020, J NEURAL ENG, V17 Seifpour S, 2018, EXPERT SYST APPL, V104, P277, DOI 10.1016/j.eswa.2018.03.020 Sen B, 2014, J MED SYST, V38, DOI 10.1007/s10916-014-0018-0 Shahsavar Y, 2018, AUSTRALAS PHYS ENG S, V41, P973, DOI 10.1007/s13246-018-0696-x Shapshak P, 2018, BIOINFORMATION, V14, P38, DOI 10.6026/97320630014038 Sharma M, 2018, APPL INTELL, V48, P1368, DOI 10.1007/s10489-017-1042-9 Sharma M, 2017, J MECH MED BIOL, V17, DOI 10.1142/S0219519417400036 Sharma M, 2017, PATTERN RECOGN LETT, V94, P172, DOI 10.1016/j.patrec.2017.03.023 Sharma M, 2017, KNOWL-BASED SYST, V118, P217, DOI 10.1016/j.knosys.2016.11.024 Sharma R, 2015, ENTROPY-SWITZ, V17, P5218, DOI 10.3390/e17085218 Sharma R, 2015, ENTROPY-SWITZ, V17, P669, DOI 10.3390/e17020669 Sharma R, 2015, EXPERT SYST APPL, V42, P1106, DOI 10.1016/j.eswa.2014.08.030 Shin J, 2020, FRONT NEUROSCI-SWITZ, V14, DOI 10.3389/fnins.2020.00168 Shoeb A.H., 2009, Application of machine learning to epileptic seizure onset detection and treatment Silva V, 2007, INT J ONLINE ENG, V3 Siuly, 2014, COMPUT METH PROG BIO, V113, P767, DOI [10.1016/j.cmpb.2013.17.070, 10.1016/j.cmpb.2013.12.020] Soleymani M, 2012, IEEE T AFFECT COMPUT, V3, P211, DOI 10.1109/T-AFFC.2011.37 Song Y, 2019, COMPUT EDUC, V137, P12, DOI 10.1016/j.compedu.2019.04.002 Song YD, 2012, J NEUROSCI METH, V210, P132, DOI 10.1016/j.jneumeth.2012.07.003 Spüler M, 2018, J NEUROENG REHABIL, V15, DOI 10.1186/s12984-018-0438-z Sriraam N, 2018, AUSTRALAS PHYS ENG S, V41, P1047, DOI 10.1007/s13246-018-0694-z Stam CJ, 2009, BRAIN, V132, P213, DOI 10.1093/brain/awn262 Stuart J., 2020, Artificial intelligence: A modern approach, V4th Subasi A, 2010, EXPERT SYST APPL, V37, P8659, DOI 10.1016/j.eswa.2010.06.065 Suk HI, 2013, IEEE T PATTERN ANAL, V35, P286, DOI 10.1109/TPAMI.2012.69 Sun GH, 2021, J NEUROSCI METH, V347, DOI 10.1016/j.jneumeth.2020.108964 Tait LW, 2020, SCI REP-UK, V10, DOI 10.1038/s41598-020-58557-8 Tang ZC, 2017, OPTIK, V130, P11, DOI 10.1016/j.ijleo.2016.10.117 Tangermann M, 2012, FRONT NEUROSCI-SWITZ, V6, DOI 10.3389/fnins.2012.00055 Taran S, 2018, IET SCI MEAS TECHNOL, V12, P343, DOI 10.1049/iet-smt.2017.0232 Thammasan N, 2016, IEICE T INF SYST, VE99D, P1234, DOI 10.1587/transinf.2015EDP7251 Tiwari AK, 2017, IEEE J BIOMED HEALTH, V21, P888, DOI 10.1109/JBHI.2016.2589971 Tomioka R, 2010, NEUROIMAGE, V49, P415, DOI 10.1016/j.neuroimage.2009.07.045 Townsend G, 2010, CLIN NEUROPHYSIOL, V121, P1109, DOI 10.1016/j.clinph.2010.01.030 Tzallas AT, 2009, IEEE T INF TECHNOL B, V13, P703, DOI 10.1109/TITB.2009.2017939 ULLMAN S, 1986, ANNU REV NEUROSCI, V9, P1 van Gerven M., 2017, Frontiers in Computational Neuroscience, V11 Varatharajah Y, 2018, J NEURAL ENG, V15, DOI 10.1088/1741-2552/aac960 Verma N, 2010, IEEE J SOLID-ST CIRC, V45, P804, DOI 10.1109/JSSC.2010.2042245 Vidaurre C, 2011, IEEE T BIO-MED ENG, V58, P587, DOI 10.1109/TBME.2010.2093133 Wang BY, 2012, COMPUT ELECTR ENG, V38, P35, DOI 10.1016/j.compeleceng.2011.07.008 Wang K, 2020, J NEURAL ENG, V17, DOI 10.1088/1741-2552/ab598f Wang LB, 2012, NEUROIMAGE, V61, P931, DOI 10.1016/j.neuroimage.2012.03.080 Wang MS, 2016, INT J AUTO TECH-KOR, V17, P165, DOI 10.1007/s12239-016-0016-y Wang SH, 2016, PROG ELECTROMAGN RES, V156, P105 Wang XW, 2014, NEUROCOMPUTING, V129, P94, DOI 10.1016/j.neucom.2013.06.046 Wang YJ, 2009, LECT NOTES ARTIF INT, V5638, P437, DOI 10.1007/978-3-642-02812-0_52 Wang YD, 2020, COMPUT MATH METHOD M, V2020, DOI 10.1155/2020/7574531 Wang YF, 2020, WORLD WIDE WEB, V23, P421, DOI 10.1007/s11280-019-00745-2 Wang ZY, 2021, COGN COMPUT, V13, P34, DOI 10.1007/s12559-019-09708-1 Waytowich N, 2018, J NEURAL ENG, V15, DOI 10.1088/1741-2552/aae5d8 Webb CA, 2016, NEUROPSYCHOPHARMACOL, V41, P454, DOI 10.1038/npp.2015.165 Wen D, 2020, NEURAL NETWORKS, V124, P373, DOI 10.1016/j.neunet.2020.01.025 Wolff MJ, 2020, J NEUROSCI, V40, P671, DOI 10.1523/JNEUROSCI.1194-19.2019 Wu H, 2019, FRONT NEUROSCI-SWITZ, V13, DOI 10.3389/fnins.2019.01275 Xu R, 2014, IEEE T BIO-MED ENG, V61, P288, DOI 10.1109/TBME.2013.2294203 Xu ZL, 2020, FRONT NEUROSCI-SWITZ, V14, DOI 10.3389/fnins.2020.00014 Yanagisawa T, 2011, J NEUROSURG, V114, P1715, DOI 10.3171/2011.1.JNS101421 Yin Z, 2020, EXPERT SYST APPL, V162, DOI 10.1016/j.eswa.2020.113768 Yuvaraj R, 2018, NEURAL COMPUT APPL, V30, P1225, DOI 10.1007/s00521-016-2756-z Zeng H, 2018, COGN NEURODYNAMICS, V12, P597, DOI 10.1007/s11571-018-9496-y Zhang BT, 2018, COMPUT MATH METHOD M, V2018, DOI 10.1155/2018/6534041 Zhang Y, 2018, EXPERT SYST APPL, V96, P302, DOI 10.1016/j.eswa.2017.12.015 Zhang Y, 2017, INT J NEURAL SYST, V27, DOI 10.1142/S0129065716500325 Zhang Y, 2015, J NEUROSCI METH, V255, P85, DOI 10.1016/j.jneumeth.2015.08.004 Zhang ZQ, 2013, IEEE T ELECTRON DEV, V60, P221, DOI 10.1109/TED.2012.2228197 Zheng QQ, 2018, NEUROCOMPUTING, V275, P869, DOI 10.1016/j.neucom.2017.09.030 Zheng WL, 2015, IEEE T AUTON MENT DE, V7, P162, DOI 10.1109/TAMD.2015.2431497 Zheng X, 2020, BIOMED SIGNAL PROCES, V56, DOI 10.1016/j.bspc.2019.101730 Zhong SZ, 2016, J CLEAN PROD, V139, P122, DOI 10.1016/j.jclepro.2016.08.039 Zhou YQ, 2020, NAT HUM BEHAV, V4, P69, DOI 10.1038/s41562-019-0743-y Zhu GH, 2014, IEEE J BIOMED HEALTH, V18, P1813, DOI 10.1109/JBHI.2014.2303991 Zubarev I, 2019, NEUROIMAGE, V197, P425, DOI 10.1016/j.neuroimage.2019.04.068 NR 282 TC 26 Z9 31 U1 7 U2 86 PU SPRINGER LONDON LTD PI LONDON PA 236 GRAYS INN RD, 6TH FLOOR, LONDON WC1X 8HL, ENGLAND SN 0941-0643 EI 1433-3058 J9 NEURAL COMPUT APPL JI Neural Comput. Appl. PD JUL PY 2022 VL 34 IS 14 SI SI BP 11295 EP 11333 DI 10.1007/s00521-020-05588-x EA JAN 2021 PG 39 WC Computer Science, Artificial Intelligence WE Science Citation Index Expanded (SCI-EXPANDED) SC Computer Science GA 2Y7TS UT WOS:000605918300007 DA 2024-09-05 ER PT J AU Chen, XL Zou, D Xie, HR AF Chen, Xieling Zou, Di Xie, Haoran TI A decade of learning analytics: Structural topic modeling based bibliometric analysis SO EDUCATION AND INFORMATION TECHNOLOGIES LA English DT Article DE Learning analytics; Research topics; Topic evolution; Structural topic modeling; Social network analysis ID HIGHER-EDUCATION; PERFORMANCE; CLASSIFICATION; TECHNOLOGIES; SATISFACTION; CHALLENGES; PACKAGE; SYSTEMS AB Learning analytics (LA) has become an increasingly active field focusing on leveraging learning process data to understand and improve teaching and learning. With the explosive growth in the number of studies concerning LA, it is significant to investigate its research status and trends, particularly the thematic structure. Based on 3900 LA articles published during the past decade, this study explores answers to questions such as "what research topics were the LA community interested in?" and "how did such research topics evolve?" by adopting structural topic modeling and bibliometrics. Major publication sources, countries/regions, institutions, and scientific collaborations were examined and visualized. Based on the analyses, we present suggestions for future LA research and discussions about important topics in the field. It is worth highlighting LA combining various innovative technologies (e.g., visual dashboards, neural networks, multimodal technologies, and open learner models) to support classroom orchestration, personalized recommendation/feedback, self-regulated learning in flipped classrooms, interaction in game-based and social learning. This work is useful in providing an overview of LA research, revealing the trends in LA practices, and suggesting future research directions. C1 [Chen, Xieling] Educ Univ Hong Kong, Dept Math & Informat Technol, 10 Ping Rd, Hong Kong, Peoples R China. [Zou, Di] Educ Univ Hong Kong, Dept English Language Educ, 10 Ping Rd, Hong Kong, Peoples R China. [Xie, Haoran] Lingnan Univ, Dept Comp & Decis Sci, Hong Kong, Peoples R China. C3 Education University of Hong Kong (EdUHK); Education University of Hong Kong (EdUHK); Lingnan University RP Zou, D (corresponding author), Educ Univ Hong Kong, Dept English Language Educ, 10 Ping Rd, Hong Kong, Peoples R China. EM xielingchen0708@gmail.com; dizoudaisy@gmail.com; hrxie2@gmail.com RI Xie, Haoran/AFS-3515-2022; Xie, Haoran/AAW-8845-2020 OI Xie, Haoran/0000-0003-0965-3617; PV, THAYYIB/0000-0001-8929-0398; ZOU, Di/0000-0001-8435-9739 CR Agrawal D, 2014, J INDIAN BUS RES, V6, P332, DOI 10.1108/JIBR-09-2014-0062 Agudo-Peregrina AF, 2014, COMPUT HUM BEHAV, V31, P542, DOI 10.1016/j.chb.2013.05.031 Aldowah H, 2019, TELEMAT INFORM, V37, P13, DOI 10.1016/j.tele.2019.01.007 Aljohani Naif Radi, 2013, 2013 Seventh International Conference on Next-Generation Mobile Apps, Services and Technologies (NGMAST), P262, DOI 10.1109/NGMAST.2013.54 Alonso-Fernández C, 2020, J COMPUT ASSIST LEAR, V36, P350, DOI 10.1111/jcal.12405 Alonso-Fernández C, 2019, COMPUT EDUC, V141, DOI 10.1016/j.compedu.2019.103612 Alonso-Fernández C, 2019, LECT NOTES COMPUT SC, V11385, P287, DOI 10.1007/978-3-030-11548-7_27 Andres JMAL, 2019, PROCEEDINGS OF THE 9TH INTERNATIONAL CONFERENCE ON LEARNING ANALYTICS & KNOWLEDGE (LAK'19), P383, DOI 10.1145/3303772.3303807 [Anonymous], 2015, P 5 INT C LEARN AN K Arnold K. E., 2012, P 2 INT C LEARN AN K, P2, DOI [10.1145/2330601.2330666, DOI 10.1145/2330601.2330666] Avella JT, 2016, ONLINE LEARN, V20, P13 Azcona D, 2018, PROC FRONT EDUC CONF Berland M, 2015, INT J COMP-SUPP COLL, V10, P425, DOI 10.1007/s11412-015-9217-z Bosch N., 2016, IJCAI, P4125 Bull S, 2016, LAK '16 CONFERENCE PROCEEDINGS: THE SIXTH INTERNATIONAL LEARNING ANALYTICS & KNOWLEDGE CONFERENCE,, P30, DOI 10.1145/2883851.2883853 Bull S, 2016, RECALL, V28, P147, DOI 10.1017/S0958344015000282 Cagliero L, 2019, IEEE ACCESS, V7, P22729, DOI 10.1109/ACCESS.2019.2899655 Chen BD, 2017, INTERACT LEARN ENVIR, V25, P162, DOI 10.1080/10494820.2016.1276081 Chen GL, 2020, LAK20: THE TENTH INTERNATIONAL CONFERENCE ON LEARNING ANALYTICS & KNOWLEDGE, P544, DOI 10.1145/3375462.3375500 Chen XL, 2022, EDUC TECHNOL SOC, V25, P28 Chen XL, 2021, LANG LEARN TECHNOL, V25, P151 Chen X, 2020, COMPUT EDUC, V151, DOI 10.1016/j.compedu.2020.103855 Chiu M. M., 2014, J LEARNING ANAL, V1, P61, DOI DOI 10.18608/JLA.2014.13.5 Conijn Rianne, 2017, IEEE Transactions on Learning Technologies, V10, P17, DOI 10.1109/TLT.2016.2616312 Corrin L., 2015, P 5 INT C LEARN AN K, P430, DOI [DOI 10.1145/2723576.2723662, 10.1145/2723576.2723662] Daghan G, 2022, EDUC INF TECHNOL, V27, P5179, DOI 10.1007/s10639-021-10762-2 Daud A, 2017, WWW'17 COMPANION: PROCEEDINGS OF THE 26TH INTERNATIONAL CONFERENCE ON WORLD WIDE WEB, P415, DOI 10.1145/3041021.3054164 Dillenbourg P, 2013, COMPUT EDUC, V69, P485, DOI 10.1016/j.compedu.2013.04.013 Doleck T, 2020, EDUC INF TECHNOL, V25, P1951, DOI 10.1007/s10639-019-10068-4 Du X, 2021, BEHAV INFORM TECHNOL, V40, P49, DOI 10.1080/0144929X.2019.1669712 Ez-zaouia M, 2017, SEVENTH INTERNATIONAL LEARNING ANALYTICS & KNOWLEDGE CONFERENCE (LAK'17), P429, DOI 10.1145/3027385.3027434 Ferguson R., 2013, Proceedings of the Third International Conference on Learning Analytics and Knowledge, P85, DOI DOI 10.1145/2460296.2460313 Garrick R., 2018, 2018 ASEE ANN C EXP Gasevic D, 2016, INTERNET HIGH EDUC, V28, P68, DOI 10.1016/j.iheduc.2015.10.002 Gedrimiene E, 2020, SCAND J EDUC RES, V64, P1105, DOI 10.1080/00313831.2019.1649718 Guerra J, 2016, PROCEEDINGS OF THE 21ST INTERNATIONAL CONFERENCE ON INTELLIGENT USER INTERFACES (IUI'16), P152, DOI 10.1145/2856767.2856784 Hao TY, 2020, J EDUC COMPUT RES, V58, P1311, DOI 10.1177/0735633120940956 Hayashi Y, 2019, LECT NOTES ARTIF INT, V11626, P100, DOI 10.1007/978-3-030-23207-8_19 Hilliger I, 2020, BRIT J EDUC TECHNOL, V51, P915, DOI 10.1111/bjet.12933 Holmes M, 2018, IEEE T LEARN TECHNOL, V11, P5, DOI 10.1109/TLT.2017.2754497 Hooshyar D, 2020, COMPUT EDUC, V154, DOI 10.1016/j.compedu.2020.103878 Jiang WJ, 2019, PROCEEDINGS OF THE 9TH INTERNATIONAL CONFERENCE ON LEARNING ANALYTICS & KNOWLEDGE (LAK'19), P36, DOI 10.1145/3303772.3303814 Jivet I, 2018, PROCEEDINGS OF THE 8TH INTERNATIONAL CONFERENCE ON LEARNING ANALYTICS & KNOWLEDGE (LAK'18): TOWARDS USER-CENTRED LEARNING ANALYTICS, P31, DOI 10.1145/3170358.3170421 Juhanák L, 2019, COMPUT HUM BEHAV, V92, P496, DOI 10.1016/j.chb.2017.12.015 Kárpáti A, 2009, RECALL, V21, P139, DOI 10.1017/S0958344009000160 KENDALL K, 1975, J PHYS D APPL PHYS, V8, P1449, DOI 10.1088/0022-3727/8/13/005 Kim J, 2016, ASIA PAC EDUC REV, V17, P13, DOI 10.1007/s12564-015-9403-8 Kizilcec R. F., 2013, P 3 INT C LEARN AN K, P170, DOI [10.1145/2460296.2460330, DOI 10.1145/2460296.2460330] Larmuseau C, 2018, PROCEEDINGS OF THE 8TH INTERNATIONAL CONFERENCE ON LEARNING ANALYTICS & KNOWLEDGE (LAK'18): TOWARDS USER-CENTRED LEARNING ANALYTICS, P171, DOI 10.1145/3170358.3170363 Lin CJ, 2018, EDUC TECHNOL SOC, V21, P205 Liu CX, 2021, ASIA PAC EDUC REV, V22, P515, DOI 10.1007/s12564-021-09692-y Liu Z, 2019, INTERACT LEARN ENVIR, V27, P598, DOI 10.1080/10494820.2019.1610449 Lodge J.M., 2018, Learning analytics in the classroom, P45, DOI [https://doi.org/10.4324/9781351113038-4, DOI 10.4324/9781351113038-4] Long Phil, 2011, EDUCAUSE Review, V46, P31 Lonn S., 2012, Proceedings of the 2nd International Conference on Learning Analytics and Knowledge, P184, DOI [https://doi.org/10.1145/2330601.2330647, DOI 10.1145/2330601.2330647] Mann HB, 1945, ECONOMETRICA, V13, P245, DOI 10.2307/1907187 Martinez-Maldonado R, 2019, INT J COMP-SUPP COLL, V14, P383, DOI 10.1007/s11412-019-09308-z Martinez-Maldonado R, 2016, LAK '16 CONFERENCE PROCEEDINGS: THE SIXTH INTERNATIONAL LEARNING ANALYTICS & KNOWLEDGE CONFERENCE,, P124, DOI 10.1145/2883851.2883873 Montgomery AP, 2019, BRIT J EDUC TECHNOL, V50, P114, DOI 10.1111/bjet.12590 Mouri K., 2015, INT S EM TECHN ED, P480 Niemann K, 2015, IEEE T LEARN TECHNOL, V8, P274, DOI 10.1109/TLT.2014.2379261 Papousek J, 2016, LAK '16 CONFERENCE PROCEEDINGS: THE SIXTH INTERNATIONAL LEARNING ANALYTICS & KNOWLEDGE CONFERENCE,, P134, DOI 10.1145/2883851.2883884 Pardo A, 2019, BRIT J EDUC TECHNOL, V50, P128, DOI 10.1111/bjet.12592 Paredes W.C., 2012, Proceedings of the 2nd International Conference on Learning Analytics and Knowledge, P34, DOI DOI 10.1145/2330601.2330617 Peddycord-Liu ZX, 2018, LECT NOTES ARTIF INT, V10947, P436, DOI 10.1007/978-3-319-93843-1_32 Perez-Colado IJ, 2017, LECT NOTES COMPUT SC, V10473, P51, DOI 10.1007/978-3-319-66733-1_6 Perez-Colado VM, 2018, IEEE GLOB ENG EDUC C, P1192, DOI 10.1109/EDUCON.2018.8363365 Pesare E, 2015, J VISUAL LANG COMPUT, V31, P252, DOI 10.1016/j.jvlc.2015.10.021 Pursel BK, 2016, J COMPUT ASSIST LEAR, V32, P202, DOI 10.1111/jcal.12131 Rienties B, 2016, COMPUT HUM BEHAV, V60, P333, DOI 10.1016/j.chb.2016.02.074 Roberts ME, 2019, J STAT SOFTW, V91, P1, DOI 10.18637/jss.v091.i02 Roberts ME, 2016, J AM STAT ASSOC, V111, P988, DOI 10.1080/01621459.2016.1141684 Roberts ME, 2014, AM J POLIT SCI, V58, P1064, DOI 10.1111/ajps.12103 Rodríguez-Triana MJ, 2017, INT J TECHNOL ENHANC, V9, P126, DOI 10.1504/IJTEL.2017.10005147 Ruiz-Calleja A, 2019, J LEARN ANAL, V6, P120, DOI 10.18608/jla.2019.62.9 Schmiedel T, 2019, ORGAN RES METHODS, V22, P941, DOI 10.1177/1094428118773858 Schwarz BB, 2018, INT J COMP-SUPP COLL, V13, P189, DOI 10.1007/s11412-018-9276-z Silva JCS, 2018, INT J INF COMMUN TEC, V14, P91, DOI 10.4018/IJICTE.2018070108 Siadaty M., 2012, P 2 INT C LEARN AN K, P115, DOI 10.1145/2330601.2330632 Siemens G., 2012, LAK 12 P 2 INT C LEA, P252, DOI [https://doi.org/10.1145/2330601.2330661, 10.1145/2330601.2330661] Sonnenwald DH, 2007, ANNU REV INFORM SCI, V41, P643, DOI 10.1002/aris.2007.1440410121 Sun F, 2020, INT PSYCHOGERIATR, V32, P217, DOI 10.1017/S1041610219000528 Tabaa Y, 2013, INT J ADV COMPUT SC, V4, P113 Tamura Kaori, 2019, Cross-Cultural Design. Culture and Society. 11th International Conference, CCD 2019 Held as Part of the 21st HCI International Conference, HCII 2019. Proceedings: Lecture Notes in Computer Science (LNCS 11577), P469, DOI 10.1007/978-3-030-22580-3_35 Tempelaar DT, 2015, COMPUT HUM BEHAV, V47, P157, DOI 10.1016/j.chb.2014.05.038 Tibaná-Herrera G, 2018, SCIENTOMETRICS, V114, P675, DOI 10.1007/s11192-017-2592-7 Trinarningsih W, 2021, COGENT BUS MANAG, V8, DOI 10.1080/23311975.2021.1994104 Tsai YS, 2020, COMPUT EDUC, V155, DOI 10.1016/j.compedu.2020.103933 Van Alphen Erik., 2016, Conference on Human Factors in Computing Systems - Proceedings 07-12-May-, P2334, DOI DOI 10.1145/2851581.2892524 Viberg O, 2018, COMPUT HUM BEHAV, V89, P98, DOI 10.1016/j.chb.2018.07.027 Vidal JC, 2018, KNOWL-BASED SYST, V155, P22, DOI 10.1016/j.knosys.2018.04.035 Villano R, 2018, HIGH EDUC, V76, P903, DOI 10.1007/s10734-018-0249-y West D, 2020, AUSTRALAS J EDUC TEC, V36, P60, DOI 10.14742/ajet.4653 Wise A., 2014, Journal of Learning Analytics, V1, P48, DOI DOI 10.18608/JLA.2014.12.4 Wong BTM, 2018, INTERACT TECHNOL SMA, V15, P132, DOI 10.1108/ITSE-12-2017-0065 Xing WL, 2018, COMPUT EDUC, V126, P388, DOI 10.1016/j.compedu.2018.08.010 Xing WL, 2016, COMPUT HUM BEHAV, V58, P119, DOI 10.1016/j.chb.2015.12.007 Yan WF, 2019, PROCEEDINGS OF THE 9TH INTERNATIONAL CONFERENCE ON LEARNING ANALYTICS & KNOWLEDGE (LAK'19), P180, DOI 10.1145/3303772.3303836 Yang TY, 2017, IEEE J-STSP, V11, P716, DOI 10.1109/JSTSP.2017.2700227 You JW, 2016, INTERNET HIGH EDUC, V29, P23, DOI 10.1016/j.iheduc.2015.11.003 Zhang JZ, 2018, BEHAV INFORM TECHNOL, V37, P1142, DOI 10.1080/0144929X.2018.1529198 Zhao T, 2012, J MACH LEARN RES, V13, P1059 Zhu GX, 2019, USER MODEL USER-ADAP, V29, P789, DOI 10.1007/s11257-019-09241-8 NR 103 TC 13 Z9 13 U1 12 U2 88 PU SPRINGER PI NEW YORK PA ONE NEW YORK PLAZA, SUITE 4600, NEW YORK, NY, UNITED STATES SN 1360-2357 EI 1573-7608 J9 EDUC INF TECHNOL JI Educ. Inf. Technol. PD SEP PY 2022 VL 27 IS 8 BP 10517 EP 10561 DI 10.1007/s10639-022-11046-z EA APR 2022 PG 45 WC Education & Educational Research WE Social Science Citation Index (SSCI) SC Education & Educational Research GA 5N0UV UT WOS:000784393100001 DA 2024-09-05 ER PT J AU Ogrean, C AF Ogrean, Claudia TI Interplays Between Artificial Intelligence and Sustainability in Business/Management. A Bibliometric Analysis SO STUDIES IN BUSINESS AND ECONOMICS LA English DT Article DE artificial intelligence; bibliometric analysis; business/management; sustainability; twin transition. ID BIG DATA; DIGITAL TRANSFORMATION; CIRCULAR ECONOMY; SUPPLY CHAIN; SMART; MANAGEMENT; BLOCKCHAIN; BUSINESS; FUTURE; CHALLENGES AB The paper aims to identify the main research (threads and) trends and evaluate the relationships between (and the impact of) the publications/articles investigating the interplays between artificial intelligence (AI) and sustainability against a business or management related context. To reach this objective, 863 articles from Web of Science Core Collection were analyzed, using VOSviewer as a bibliometric tool. Performance analysis was employed to mainly explore the interest and popularity of the topic, assess the main interest areas and fields of both the sources and the publications, determine the most relevant SDGs for the topic, and identify the most popular journals hosting articles in the analyzed field. Science mapping was carried out to identify the most influential articles in the field, understand the antecedent topics/ideas (in the fields of AI and sustainability, respectively) contributing to the emergence of a new interest area at the intersection between AI and sustainability, appraise the current developments in the analyzed interest area, and discover new trends / areas for future research. C1 [Ogrean, Claudia] Lucian Blaga Univ Sibiu, Sibiu, Romania. C3 Lucian Blaga University of Sibiu RP Ogrean, C (corresponding author), Lucian Blaga Univ Sibiu, Sibiu, Romania. RI Zenn, Sebastian/KQU-0681-2024 FU Ministry of Research, Innovation and Digitization; [28PFE / 30.12.2021] FX This work is supported by the Ministry of Research, Innovation and Digitization through Program 1 -Development of the national research-development system, Subprogram 1.2 -Institutional performance-Projects for financing excellence in RDI, contract no. 28PFE / 30.12.2021. CR Ahad MA, 2020, SUSTAIN CITIES SOC, V61, DOI 10.1016/j.scs.2020.102301 Alcácer V, 2019, ENG SCI TECHNOL, V22, P899, DOI 10.1016/j.jestch.2019.01.006 Allam Z, 2019, CITIES, V89, P80, DOI 10.1016/j.cities.2019.01.032 Almansour M, 2022, TECHNOL SOC, V71, DOI 10.1016/j.techsoc.2022.102135 Alsamhi SH, 2019, IEEE ACCESS, V7, P128125, DOI 10.1109/ACCESS.2019.2934998 Alsamhi SH, 2022, IEEE T GREEN COMMUN, V6, P295, DOI 10.1109/TGCN.2021.3132561 Bag S, 2021, TECHNOL FORECAST SOC, V163, DOI 10.1016/j.techfore.2020.120420 BARNEY J, 1991, J MANAGE, V17, P99, DOI 10.1177/014920639101700108 Baryannis G, 2019, INT J PROD RES, V57, P2179, DOI 10.1080/00207543.2018.1530476 Bechtsis D, 2022, INT J PROD RES, V60, P4397, DOI 10.1080/00207543.2021.1957506 Behl A, 2022, J BUS RES, V148, P378, DOI 10.1016/j.jbusres.2022.05.009 Ben-Daya M, 2019, INT J PROD RES, V57, P4719, DOI 10.1080/00207543.2017.1402140 Cenamor J, 2017, INT J PROD ECON, V192, P54, DOI 10.1016/j.ijpe.2016.12.033 Chang KH, 2022, MATH PROBL ENG, V2022, DOI 10.1155/2022/9802892 Chatterjee S, 2022, J BUS RES, V153, P46, DOI 10.1016/j.jbusres.2022.08.019 Cugurullo F, 2020, FRONT SUSTAIN CITIES, V2, DOI 10.3389/frsc.2020.00038 D'Amato D, 2017, J CLEAN PROD, V168, P716, DOI 10.1016/j.jclepro.2017.09.053 D'Amico G, 2020, SENSORS-BASEL, V20, DOI 10.3390/s20164391 Denicolai S, 2021, TECHNOL FORECAST SOC, V166, DOI 10.1016/j.techfore.2021.120650 Di Vaio A, 2020, J BUS RES, V121, P283, DOI 10.1016/j.jbusres.2020.08.019 Dincer I, 2018, INT J HYDROGEN ENERG, V43, P8579, DOI 10.1016/j.ijhydene.2018.03.120 Donthu N, 2021, J BUS RES, V133, P285, DOI 10.1016/j.jbusres.2021.04.070 Duan YQ, 2019, INT J INFORM MANAGE, V48, P63, DOI 10.1016/j.ijinfomgt.2019.01.021 Dwivedi YK, 2022, INT J INFORM MANAGE, V63, DOI 10.1016/j.ijinfomgt.2021.102456 Dwivedi YK, 2021, INT J INFORM MANAGE, V57, DOI 10.1016/j.ijinfomgt.2019.08.002 Ellili NOD, 2024, ENVIRON DEV SUSTAIN, V26, P9923, DOI 10.1007/s10668-023-03067-6 European Commission, 2019, The European Green Deal European Commission, 2020, Shaping Europe's Digital Future European Commission. Joint Research Centre, 2022, Towards a green & digital future: Key requirements for successful twin transitions in the European Union, DOI [10.2760/977331, DOI 10.2760/977331] European Parliament, 2023, What is artificial intelligence and how is it used? Foresti R, 2020, ENGINEERING-PRC, V6, P835, DOI 10.1016/j.eng.2019.11.014 FORNELL C, 1981, J MARKETING RES, V18, P39, DOI 10.2307/3151312 Fouquet R, 2022, ENERGY RES SOC SCI, V91, DOI 10.1016/j.erss.2022.102736 Frank AG, 2019, INT J PROD ECON, V210, P15, DOI 10.1016/j.ijpe.2019.01.004 Gandia RM, 2019, TRANSPORT REV, V39, P9, DOI 10.1080/01441647.2018.1518937 Grabowska S, 2022, SCIENTOMETRICS, V127, P3117, DOI 10.1007/s11192-022-04370-1 Guo YM, 2019, SUSTAINABILITY-BASEL, V11, DOI 10.3390/su11133606 Hagberg J, 2016, INT J RETAIL DISTRIB, V44, P694, DOI 10.1108/IJRDM-09-2015-0140 Ingram J, 2022, LAND USE POLICY, V114, DOI 10.1016/j.landusepol.2021.105962 Ismagilova E, 2019, INT J INFORM MANAGE, V47, P88, DOI 10.1016/j.ijinfomgt.2019.01.004 Jarrahi MH, 2018, BUS HORIZONS, V61, P577, DOI 10.1016/j.bushor.2018.03.007 Jia Q, 2019, SUSTAINABILITY-BASEL, V11, DOI 10.3390/su11205596 Jiang YY, 2020, INT J CONTEMP HOSP M, V32, P2563, DOI 10.1108/IJCHM-03-2020-0237 Kasaraneni H., 2022, Ann. Data. Sci, DOI [10.1007/s40745-022-00438-0, DOI 10.1007/S40745-022-00438-0] KhosrowPour M, 2018, ENCYCLOPEDIA OF INFORMATION SCIENCE AND TECHNOLOGY, 4TH EDITION, P1, DOI 10.4018/978-1-5225-2255-3 Kirby A, 2023, PUBLICATIONS, V11, DOI 10.3390/publications11010010 Kristoffersen E, 2020, J BUS RES, V120, P241, DOI 10.1016/j.jbusres.2020.07.044 Kumar S, 2022, BENCHMARKING, V29, P1640, DOI 10.1108/BIJ-02-2021-0086 Lang V., 2021, DIGITAL FLUENCY, P1, DOI DOI 10.1007/978-1-4842-6774-5_1 Leal W, 2023, ENVIRON DEV SUSTAIN, V25, P4957, DOI 10.1007/s10668-022-02252-3 Liu Z, 2021, SUSTAINABILITY-BASEL, V13, DOI 10.3390/su13042090 Jabbour ABLD, 2018, ANN OPER RES, V270, P273, DOI 10.1007/s10479-018-2772-8 Nayal K, 2022, BUS STRATEG ENVIRON, V31, P1058, DOI 10.1002/bse.2935 Nishant R, 2020, INT J INFORM MANAGE, V53, DOI 10.1016/j.ijinfomgt.2020.102104 Odugbesan JA, 2023, J KNOWL MANAG, V27, P696, DOI 10.1108/JKM-08-2021-0601 Ogbeibu S, 2022, J INTELLECT CAP, V23, P27, DOI 10.1108/JIC-01-2021-0016 Ogrean C, 2021, STUD BUS ECON-ROM, V16, P282, DOI 10.2478/sbe-2021-0040 Palomares I, 2021, APPL INTELL, V51, P6497, DOI 10.1007/s10489-021-02264-y Pappas IO, 2018, INF SYST E-BUS MANAG, V16, P479, DOI 10.1007/s10257-018-0377-z Parida V, 2019, SUSTAINABILITY-BASEL, V11, DOI 10.3390/su11020391 Pizzi S, 2020, J CLEAN PROD, V276, DOI 10.1016/j.jclepro.2020.124033 Podsakoff PM, 2003, J APPL PSYCHOL, V88, P879, DOI 10.1037/0021-9010.88.5.879 Queiroz MM, 2019, INT J INFORM MANAGE, V46, P70, DOI 10.1016/j.ijinfomgt.2018.11.021 Rachinger M, 2019, J MANUF TECHNOL MANA, V30, P1143, DOI 10.1108/JMTM-01-2018-0020 Rahmati O, 2018, J HYDROL, V565, P248, DOI 10.1016/j.jhydrol.2018.08.027 Rajput S, 2019, INT J INFORM MANAGE, V49, P98, DOI 10.1016/j.ijinfomgt.2019.03.002 Ranerup A, 2019, GOV INFORM Q, V36, DOI 10.1016/j.giq.2019.05.004 Rejeb A, 2022, SUSTAINABILITY-BASEL, V14, DOI 10.3390/su14010083 Sanchez-Pinto LN, 2018, CHEST, V154, P1239, DOI 10.1016/j.chest.2018.04.037 Schmidpeter R., 2023, Responsible Artificial Intelligence: Challenges for Sustainable Management, DOI [10.1007/978-3-031-09245-9, DOI 10.1007/978-3-031-09245-9] Serrano W, 2018, SMART CITIES-BASEL, V1, P134, DOI 10.3390/smartcities1010008 Sharifi A, 2021, ECOL INDIC, V121, DOI 10.1016/j.ecolind.2020.107102 Singh S, 2020, SUSTAIN CITIES SOC, V63, DOI 10.1016/j.scs.2020.102364 Teece DJ, 1997, STRATEGIC MANAGE J, V18, P509, DOI 10.1002/(SICI)1097-0266(199708)18:7<509::AID-SMJ882>3.0.CO;2-Z Pham TT, 2019, SUSTAINABILITY-BASEL, V11, DOI 10.3390/su11236661 Tripathi V, 2022, SUSTAINABILITY-BASEL, V14, DOI 10.3390/su14127452 Tseng ML, 2021, J IND PROD ENG, V38, P581, DOI 10.1080/21681015.2021.1950227 Tsolakis N, 2023, ANN OPER RES, V327, P157, DOI 10.1007/s10479-022-04785-2 UNGA, 2015, TRANSF OUR WORLD 203 United Nations World Commission on Environment and Development, 1987, Our common future van Eck NJ, 2010, SCIENTOMETRICS, V84, P523, DOI 10.1007/s11192-009-0146-3 Van Eck NJ., 2023, VOSviewer Manual. Manual for VOSviewer version 1.6.20 van Wynsberghe A., 2021, AI and Ethics, V1, P3, DOI [10.1007/s43681-021-00043-6, DOI 10.1007/S43681-021-00043-6] Vinuesa R, 2020, NAT COMMUN, V11, DOI 10.1038/s41467-019-14108-y Wang JX, 2021, COMPUT IND ENG, V155, DOI 10.1016/j.cie.2021.107174 Wong LW, 2020, INT J INFORM MANAGE, V52, DOI 10.1016/j.ijinfomgt.2019.08.005 Xiang XJ, 2021, ENVIRON IMPACT ASSES, V86, DOI 10.1016/j.eiar.2020.106515 Yang YF, 2022, SUSTAINABILITY-BASEL, V14, DOI 10.3390/su142214971 Zhao JC, 2023, EUR BUS ORGAN LAW RE, V24, P1, DOI 10.1007/s40804-022-00262-2 Zhao L, 2019, SUSTAINABILITY-BASEL, V11, DOI 10.3390/su11236648 Zijia Wang, 2020, IOP Conference Series: Materials Science and Engineering, V806, DOI 10.1088/1757-899X/806/1/012039 NR 91 TC 2 Z9 2 U1 18 U2 28 PU SCIENDO PI WARSAW PA BOGUMILA ZUGA 32A, WARSAW, MAZOVIA, POLAND SN 1842-4120 EI 2344-5416 J9 STUD BUS ECON-ROM JI Stud. Bus. Econ. PD AUG 1 PY 2023 VL 18 IS 2 BP 336 EP 357 DI 10.2478/sbe-2023-0041 PG 22 WC Economics WE Emerging Sources Citation Index (ESCI) SC Business & Economics GA S2YD9 UT WOS:001069869700021 OA gold DA 2024-09-05 ER PT J AU Rojek, M Kufel, J Bielówka, M Mitrega, A Kaczynska, D Czogalik, L Kondol, D Palkij, K Mielcarska, S Bartnikowska, W AF Rojek, Marcin Kufel, Jakub Bielowka, Michal Mitrega, Adam Kaczynska, Dominika Czogalik, Lukasz Kondol, Dominika Palkij, Kacper Mielcarska, Sylwia Bartnikowska, Wiktoria TI Exploring the performance of ChatGPT3.5 in addressing dermatological queries: a research investigation into AI capabilities SO PRZEGLAD DERMATOLOGICZNY LA English DT Article DE medical education; artificial intelligence; dermatology; venereology; ChatGPT-3.5 ID ARTIFICIAL-INTELLIGENCE AB Introduction: In the 21 st century's era of rapid technological advancement, ChatGPT-3.5, an artificial intelligence (AI) language model, is scrutinized for its application in dermatology. Using 119 questions from the National Specialist Examination (PES), we assess ChatGPT-3.5's performance by comparing it to human skills and addressing ethical implications. Objective: Our primary aim is to evaluate ChatGPT-3.5's proficiency in responding to 119 dermatology questions from the PES. The study emphasizes ethical considerations and compares the model's knowledge and skills to those of human dermatologists. Material and methods: Utilizing the 2023 PES question database, questions were categorized by Bloom's taxonomy and thematic content. ChatGPT-3.5, version of 3 August 2023, answered 119 questions in five sessions, allowing for a probabilistic evaluation. Statistical analyses, conducted using R Studio, assessed correctness, confidence, and dif - ficulty. Results: ChatGPT-3.5 achieved a 49.58% correct response rate, below the 60% passing threshold. No significant differences in difficulty or correlations between difficulty and certainty were observed. Varied per - formance across question types highlighted strengths and weaknesses. Despite suboptimal results, ChatGPT-3.5's differential performance offers insights, suggesting future improvements. The study advocates for ongoing research into AI integration in dermatology, envisioning a promising role for AI in assisting dermatologists. Conclusions: Ethical considerations are crucial for effective AI intro - duction, minimizing errors, and enhancing dermatological healthcare quality, fostering optimism for AI's evolving role in dermatology. C1 [Rojek, Marcin; Bielowka, Michal; Mitrega, Adam; Kaczynska, Dominika; Czogalik, Lukasz] Med Univ Siles, Dept Radiol & Nucl Med, Students Sci Assoc Comp Anal & Artificial Intellig, Katowice, Poland. [Kufel, Jakub] Med Univ Silesia, Dept Radiodiagnost Intervent Radiol & Nucl Med, Katowice, Poland. [Kufel, Jakub] Med Univ Siles, Dept Radiol & Nucl Med, Katowice, Poland. [Kondol, Dominika; Palkij, Kacper] Multispecialty Dist Hosp SA Dr B Hager Pyskowicka, Tarnowskie Gory, Poland. [Mielcarska, Sylwia] Med Univ Siles, Fac Med Sci Zabrze, Dept Med & Mol Biol, Katowice, Poland. [Bartnikowska, Wiktoria] Med Univ Siles, Fac Med Sci Katowice, Katowice, Poland. C3 Medical University Silesia; Medical University Silesia; Medical University Silesia; Medical University Silesia; Medical University Silesia RP Bielówka, M (corresponding author), Med Univ Siles, Dept Radiol & Nucl Med, Students Sci Assoc Comp Anal & Artificial Intellig, Katowice, Poland. CR [Anonymous], Centrum Egzaminow Medycznych Internet [Anonymous], 2023, S4 wyniki jesiennego naboru na specjalizacje. Hitem m.in. radiologia, dermatologia i psychiatria [Anonymous], Introducing GPTs Internet [Anonymous], 2023, Centrum Egzaminow Medycznych [Anonymous], Introducing ChatGPT Internet Fishman EK, 2023, CAN ASSOC RADIOL J, V74, P622, DOI 10.1177/08465371231174817 Foreland M., 2010, Emerging Perspectives on Learning, Teaching, and Technology Internet Joly-Chevrier M, 2023, J CUTAN MED SURG, V27, P409, DOI 10.1177/12034754231188437 Kufel J, 2023, POL J RADIOL, V88, pE430, DOI 10.5114/pjr.2023.131215 Lewandowski M, 2023, CLIN EXP DERMATOL, V49, P686, DOI 10.1093/ced/llad255 Passby L, 2023, CLIN EXP DERMATOL, V49, P722, DOI 10.1093/ced/llad197 Patel S, 2021, CLIN DERMATOL, V39, P667, DOI 10.1016/j.clindermatol.2021.03.012 Porter E, 2023, J EUR ACAD DERMATOL, V37, pE943, DOI 10.1111/jdv.19174 Wilczek N, 2021, Med Og Nauk Zdr, V27, P213 Young AT, 2020, J INVEST DERMATOL, V140, P1504, DOI 10.1016/j.jid.2020.02.026 NR 15 TC 0 Z9 0 U1 1 U2 1 PU TERMEDIA PUBLISHING HOUSE LTD PI POZNAN PA KLEEBERGA 2, POZNAN, 61-615, POLAND SN 0033-2526 EI 2084-9893 J9 PRZ DERMATOL JI Prz. Dermatol. PY 2024 VL 111 IS 1 BP 26 EP 30 DI 10.5114/dr.2024.140796 PG 5 WC Dermatology WE Emerging Sources Citation Index (ESCI) SC Dermatology GA XT4O5 UT WOS:001263918000003 OA gold DA 2024-09-05 ER PT J AU Durmusoglu, A AF Durmusoglu, Alptekin TI A pre-assessment of past research on the topic of environmental-friendly electronics SO JOURNAL OF CLEANER PRODUCTION LA English DT Article DE Text mining; Environmental-friendly electronic; Technology forecasting; Bibliometrics; Singular value decomposition; K-means clustering ID TEXT; TECHNOLOGY; EVOLUTION; TRENDS AB Environmental-friendly products, processes, tools, methods and etc ... have been under the interest of both industry and academy. However, this interest has not been analyzed systematically for the academic studies. On the other hand, bibliometric analyses have been a widely used approach to measure and to analyze the interest of academic world on a certain topic. In this regard, this study intends to provide insight about the research on environmental-friendly electronic using the related literatures from the Thomson Reuters Web of Knowledge database during the period of 1980-2016. This study consists of two parts. In the first part, 7288 academic papers having the "environmental" and "electronic" phrases on "Title", "Abstract" or "Keywords" were retrieved and analyzed using bibliometric analysis methodology. These two adjectives has been selected on purpose since current studies on textual analysis indicate that phrase building most frequently starts after adjectives. In the second part of this work, Singular Value Decomposition (SVD) method, concept extraction and k-means clustering method was performed to gain more insight about the textual structure of the retrieved articles. Findings indicate that, approximately one third of publications were written by the authors addressing USA. It is also clarified that the topic was not in the agenda of researchers between 1980 and 1990. The number of publications on the area had significantly increased and had reached its peak in 2014. Text mining results showed that, the most important research focus was on "life-cycle" that was followed by "e-waste, sensor, recycling and solder" respectively. (C) 2016 Elsevier Ltd. All rights reserved. C1 [Durmusoglu, Alptekin] Gaziantep Univ, Dept Ind Engn, TR-27310 Gaziantep, Turkey. C3 Gaziantep University RP Durmusoglu, A (corresponding author), Gaziantep Univ, Dept Ind Engn, TR-27310 Gaziantep, Turkey. EM durmusoglu@gantep.edu.tr RI , alptekind/J-8067-2019 OI , alptekind/0000-0001-9800-5747 CR Altaweel M, 2012, COMPUT ENVIRON URBAN, V36, P599, DOI 10.1016/j.compenvurbsys.2012.03.004 Bergman J., 2014, PRACTICAL MULTIVARIA Boussalis C, 2016, GLOBAL ENVIRON CHANG, V36, P89, DOI 10.1016/j.gloenvcha.2015.12.001 Cerrito P, 2009, TEXT MINING TECHNIQU Daim T, 2012, WORLD PAT INF, V34, P37, DOI 10.1016/j.wpi.2011.11.001 Daim TU, 2006, TECHNOL FORECAST SOC, V73, P981, DOI 10.1016/j.techfore.2006.04.004 DEERWESTER S, 1990, J AM SOC INFORM SCI, V41, P391, DOI 10.1002/(SICI)1097-4571(199009)41:6<391::AID-ASI1>3.0.CO;2-9 Delen D, 2008, EXPERT SYST APPL, V34, P1707, DOI 10.1016/j.eswa.2007.01.035 Dhillon I, 2004, SURVEY OF TEXT MINING, P73 Dragos CM, 2013, SCI TOTAL ENVIRON, V449, P184, DOI 10.1016/j.scitotenv.2013.01.057 Du HB, 2015, J CLEAN PROD, V103, P104, DOI 10.1016/j.jclepro.2014.05.094 Du HB, 2013, ENERG EFFIC, V6, P177, DOI 10.1007/s12053-012-9171-9 Eisa H., 2012, INT J PHYS SCI, V7 Garechana G, 2012, WASTE MANAGE, V32, P1069, DOI 10.1016/j.wasman.2012.01.017 GARFIELD E, 1979, SCIENTOMETRICS, V1, P359, DOI 10.1007/BF02019306 Gungor A, 1999, COMPUT IND ENG, V36, P811, DOI 10.1016/S0360-8352(99)00167-9 Hatzivassiloglou V., 2000, EFFECTS ADJECTIVE OR, VI, P299 Hildén M, 2011, J CLEAN PROD, V19, P1798, DOI 10.1016/j.jclepro.2011.05.004 Jiang HC, 2016, ECOL INDIC, V60, P693, DOI 10.1016/j.ecolind.2015.08.007 Jin G, 2015, ADV ENG INFORM, V29, P126, DOI 10.1016/j.aei.2014.11.001 Johler W, 2002, ELECTRICAL CONTACTS-2002: PROCEEDINGS OF THE FORTY-EIGHTH IEEE HOLM CONFERENCE ON ELECTRICAL CONTACTS, P43, DOI 10.1109/HOLM.2002.1040821 Jourclan Z, 2008, INFORM SYST MANAGE, V25, P121, DOI 10.1080/10580530801941512 Kilbourne W, 2008, J BUS RES, V61, P885, DOI 10.1016/j.jbusres.2007.09.016 Kim GJ, 2015, J SCI IND RES INDIA, V74, P265 Klinov P., 2013, 4 C KESW 2013 ST PET Kostka G., 2014, 2487614 SSRN ID Li W, 2015, ENVIRON IMPACT ASSES, V50, P158, DOI 10.1016/j.eiar.2014.09.012 Liew WT, 2014, COMPUT IND, V65, P393, DOI 10.1016/j.compind.2014.01.004 Liu GF, 2013, SCIENTOMETRICS, V94, P1037, DOI 10.1007/s11192-012-0782-x Lundgren M. K., 2012, The Global Impact of E-waste: Addressing the Challenge MacQueen James, 1967, 5 BERK S MATH STAT P, P281 Miner G, 2012, PRACTICAL TEXT MINING AND STATISTICAL ANALYSIS FOR NON-STRUCTURED TEXT DATA APPLICATIONS, P1 Murray F, 2002, RES POLICY, V31, P1389, DOI 10.1016/S0048-7333(02)00070-7 Norton M., 2000, ASIST MONOGRAPH SERI Qiu H, 2009, SCIENTOMETRICS, V81, P601, DOI 10.1007/s11192-008-2207-4 Rosell M., 2004, ICON 2004 IND Song M, 2013, EXPERT SYST APPL, V40, P3722, DOI 10.1016/j.eswa.2012.12.078 Su MY, 2011, J NETW COMPUT APPL, V34, P722, DOI 10.1016/j.jnca.2010.10.009 Sumathy K L., 2013, International Journal of Computer Applications, V80, P29, DOI DOI 10.5120/13851-1685 Sunikka A, 2012, EXPERT SYST APPL, V39, P10049, DOI 10.1016/j.eswa.2012.02.042 Tobey JA, 1996, WORLD ECON, V19, P63, DOI 10.1111/j.1467-9701.1996.tb00664.x Tseng ML, 2013, J CLEAN PROD, V40, P71, DOI 10.1016/j.jclepro.2011.10.009 Tseng YH, 2007, INFORM PROCESS MANAG, V43, P1216, DOI 10.1016/j.ipm.2006.11.011 U.S. Environmental Protection Agency, GREENH GAS INV REP Uguz H, 2011, KNOWL-BASED SYST, V24, P1024, DOI 10.1016/j.knosys.2011.04.014 Valipour M, 2014, ARCH AGRON SOIL SCI, V60, P1625, DOI 10.1080/03650340.2014.905676 Van Raan AFJ, 2005, SCIENTOMETRICS, V62, P133, DOI 10.1007/s11192-005-0008-6 Wiebe JM, 2000, SEVENTEENTH NATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE (AAAI-2001) / TWELFTH INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE (IAAI-2000), P735 Yoon B., 2004, The Journal of High Technology Management Research, V15, P37, DOI DOI 10.1016/J.HITECH.2003.09.003 NR 49 TC 18 Z9 18 U1 1 U2 64 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0959-6526 EI 1879-1786 J9 J CLEAN PROD JI J. Clean Prod. PD AUG 15 PY 2016 VL 129 BP 305 EP 314 DI 10.1016/j.jclepro.2016.04.068 PG 10 WC Green & Sustainable Science & Technology; Engineering, Environmental; Environmental Sciences WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Science & Technology - Other Topics; Engineering; Environmental Sciences & Ecology GA DP0MM UT WOS:000378183900029 DA 2024-09-05 ER PT C AU Cheung, SKS AF Cheung, Simon K. S. BE Li, R Cheung, SKS Iwasaki, C Kwok, LF Kageto, M TI Implication on Perceived Usefulness of Open Educational Resources After a Rapid Switch to Online Learning Mode SO BLENDED LEARNING: RE-THINKING AND RE-DEFINING THE LEARNING PROCESS, ICBL 2021 SE Lecture Notes in Computer Science LA English DT Proceedings Paper CT 14th International Conference on Blended Learning (ICBL) CY AUG 10-13, 2021 CL Nihon Fukushi Univ, ELECTR NETWORK HO Nihon Fukushi Univ DE Open educational resources; Open courseware; Online courses; Open access e-books; Learning tools; Online learning; Learning effectiveness AB Evolved as open courseware, open online courses and tutorials, open access e-books and open source learning tools, open educational resources or OER are generally perceived as useful resources by university students. Over the last year, many higher education institutions have rapidly switched their usual classroom-based learning to online learning in order to accommodate the social distancing requirements arising from the outbreak of COVID-19. This paper investigates the implication on the students' perceived usefulness of OER after the switch to online learning. Based on two identical surveys conducted in a university in Hong Kong before and after the change, it is revealed that the students' perceived usefulness was generally increased, where the increase in perceived usefulness was more significant on open online complete courses, online tutorials, and open access e-books than other types of OER. It is also revealed that the students have become more aware of the shortcomings of OER, especially on accuracy and comprehensiveness. OER, especially open online courses, tutorials, and open access textbooks, are perceived to be useful for students to accommodate a rapid shift to online learning mode. C1 [Cheung, Simon K. S.] Open Univ Hong Kong, Homantin, Kowloon, Good Shepherd St, Hong Kong, Peoples R China. C3 Hong Kong Metropolitan University RP Cheung, SKS (corresponding author), Open Univ Hong Kong, Homantin, Kowloon, Good Shepherd St, Hong Kong, Peoples R China. EM kscheung@ouhk.edu.hk RI Cheung, Simon K.S./AAC-4241-2022 OI Cheung, Simon K.S./0000-0002-7323-0961 CR [Anonymous], 2007, Giving knowledge for free: The emergence of open educational resources [Anonymous], 2021, WEBS OPENCOURSEWARE [Anonymous], 2021, WEBS GOOGL ED [Anonymous], 2021, WEBS WIK Belikov O., 2020, INT J OPEN ED RESOUR, V3, P77, DOI [10.18278/ijoer.3.2.6, DOI 10.18278/IJOER.3.2.6] Blomgren C, 2018, INT REV RES OPEN DIS, V19, P55 Cheung K. S., 2013, KNOWLEDGE SHARING TE, P26 Cheung Simon K. S., 2015, International Journal of Services and Standards, V10, P225 Cheung S.K.S, 2019, Communications in Computer and Information Science, P146, DOI [10.1007/978-981-13-9895-7_13, DOI 10.1007/978-981-13-9895-7_13] Cheung SKS, 2020, LECT NOTES COMPUT SC, V12218, P114, DOI 10.1007/978-3-030-51968-1_10 Cheung SKS, 2018, LECT NOTES COMPUT SC, V10949, P357, DOI 10.1007/978-3-319-94505-7_29 Cheung SKS, 2017, LECT NOTES COMPUT SC, V10309, P389, DOI 10.1007/978-3-319-59360-9_34 Hewlett Foundation, 2021, RICH GLOB LANDSC OV Miao F., 2016, Open educational resources: policy, costs, transformation Murphy J., 2021, OPEN ED RESOURCES QU Ostashewski N., 2017, P E LEARN WORLD C E, P644 Tang HT, 2020, INT REV RES OPEN DIS, V21, P211 Tuomi I, 2013, EUR J EDUC, V48, P58, DOI 10.1111/ejed.12019 NR 18 TC 5 Z9 5 U1 1 U2 7 PU SPRINGER INTERNATIONAL PUBLISHING AG PI CHAM PA GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND SN 0302-9743 EI 1611-3349 BN 978-3-030-80504-3; 978-3-030-80503-6 J9 LECT NOTES COMPUT SC PY 2021 VL 12830 BP 298 EP 308 DI 10.1007/978-3-030-80504-3_25 PG 11 WC Computer Science, Software Engineering; Computer Science, Theory & Methods WE Conference Proceedings Citation Index - Science (CPCI-S) SC Computer Science GA BS8LB UT WOS:000773457100025 DA 2024-09-05 ER PT C AU Gogoglou, A Manolopoulos, Y AF Gogoglou, Antonia Manolopoulos, Yannis BE Nguyen, NT Papadopoulos, GA Jedrzejowicz, P Trawinski, B Vossen, G TI Predicting the Evolution of Scientific Output SO COMPUTATIONAL COLLECTIVE INTELLIGENCE, ICCCI 2017, PT I SE Lecture Notes in Artificial Intelligence LA English DT Proceedings Paper CT 9th International Conference on Computational Collective Intelligence (ICCCI) CY SEP 27-29, 2017 CL Nicosia, CYPRUS DE Scientometrics; Bibliographic data; Predictive modeling ID SLEEPING BEAUTIES; LINK PREDICTION; NETWORKS; IMPACT; INDEX AB Various efforts have been made to quantify scientific impact and identify the mechanisms that influence its future evolution. The first step is the identification of what constitutes scholarly impact and how it is measured. In this direction, various approaches focus on future citation count or h-index prediction at author or publication level, on fitting the distribution of citation accumulation or accurately identifying award winners, upcoming hot research topics or academic rising stars. A plethora of features have been contemplated as possible influential factors and assorted machine-learning methodologies have been adopted to ensure timely and accurate estimations. Here, we provide an overview of the field challenges, as well as a taxonomy of the existing approaches to identify the open issues that are yet to be addressed. C1 [Gogoglou, Antonia; Manolopoulos, Yannis] Aristotle Univ Thessaloniki, Dept Informat, Thessaloniki 54124, Greece. C3 Aristotle University of Thessaloniki RP Gogoglou, A (corresponding author), Aristotle Univ Thessaloniki, Dept Informat, Thessaloniki 54124, Greece. EM agogoglou@csd.auth.gr; manolopo@csd.auth.gr RI Manolopoulos, Yannis/AAI-7767-2020 CR Acuna DE, 2012, NATURE, V489, P201, DOI 10.1038/489201a [Anonymous], 2012, PLOS ONE, DOI [DOI 10.1371/JOURNAL.PONE.0049246, DOI 10.1371/journal.pone.0112520] [Anonymous], 2009, Proc. of the 9th SIAM International Conference on Data Mining Borner K, 2005, COMPLEXITY, V10, P57, DOI 10.1002/cplx.20078 Bornmann L, 2014, J INFORMETR, V8, P175, DOI 10.1016/j.joi.2013.11.005 Bornmann L, 2011, J INFORMETR, V5, P346, DOI 10.1016/j.joi.2011.01.006 Brizan DG, 2016, SCIENTOMETRICS, V108, P183, DOI 10.1007/s11192-016-1950-1 Cao XY, 2016, J INFORMETR, V10, P471, DOI 10.1016/j.joi.2016.02.006 Chakraborty T, 2015, COMMUN ACM, V58, P82, DOI 10.1145/2701412 Chakraborty T, 2014, ACM-IEEE J CONF DIG, P351, DOI 10.1109/JCDL.2014.6970190 Chaudhuri S, 2011, COMMUN ACM, V54, P88, DOI 10.1145/1978542.1978562 Davletov F., 2014, P 23 ACM INT C CONFE, P491, DOI [DOI 10.1145/2661829, 10.1145/2661829.2662066, 10.1145/2661829] Garner J, 2014, SCIENTOMETRICS, V100, P687, DOI 10.1007/s11192-014-1316-5 Hirsch JE, 2005, P NATL ACAD SCI USA, V102, P16569, DOI 10.1073/pnas.0507655102 Jing Z, 2016, CHIN CONTR CONF, P211, DOI 10.1109/ChiCC.2016.7553085 Jones BF, 2011, P NATL ACAD SCI USA, V108, P18910, DOI 10.1073/pnas.1102895108 Ke Q, 2015, P NATL ACAD SCI USA, V112, P7426, DOI 10.1073/pnas.1424329112 Klimek P, 2016, SCIENTOMETRICS, V107, P1265, DOI 10.1007/s11192-016-1926-1 Laurance WF, 2013, BIOSCIENCE, V63, P817, DOI 10.1525/bio.2013.63.10.9 Li J, 2014, J INFORMETR, V8, P493, DOI 10.1016/j.joi.2014.04.002 Lü LY, 2011, PHYSICA A, V390, P1150, DOI 10.1016/j.physa.2010.11.027 McNamara Daniel, 2013, Trends and Applications in Knowledge Discovery and Data Mining. PAKDD 2013 International Workshops: DMApps, DANTH, QIMIE, BDM, CDA, CloudSD. Revised Selected Papers: LNCS 7867, P14, DOI 10.1007/978-3-642-40319-4_2 MERTON RK, 1968, SCIENCE, V159, P56, DOI 10.1126/science.159.3810.56 Nezhadbiglari M, 2016, ACM-IEEE J CONF DIG, P181, DOI 10.1145/2910896.2910905 Penner O, 2013, PHYS TODAY, V66, P8, DOI 10.1063/PT.3.1928 Pobiedina N, 2016, APPL INTELL, V44, P252, DOI 10.1007/s10489-015-0657-y Pradhan D, 2016, PROCEEDINGS OF THE 2016 ACM WEB SCIENCE CONFERENCE (WEBSCI'16), P318, DOI 10.1145/2908131.2908185 PRICE DJD, 1965, SCIENCE, V149, P510 Revesz PZ, 2014, PROCEEDINGS OF THE 18TH INTERNATIONAL DATABASE ENGINEERING AND APPLICATIONS SYMPOSIUM (IDEAS14), P9, DOI 10.1145/2628194.2628210 Revesz PZ, 2015, P 19 INT DAT ENG APP, P1, DOI DOI 10.1145/2790755.2790763 Schreiber M, 2013, J INFORMETR, V7, P325, DOI 10.1016/j.joi.2013.01.001 Sidiropoulos A, 2005, SIGMOD REC, V34, P54, DOI 10.1145/1107499.1107506 Sidiropoulos A, 2016, J INFORMETR, V10, P789, DOI 10.1016/j.joi.2016.04.009 Sinatra R, 2016, SCIENCE, V354, DOI 10.1126/science.aaf5239 van Raan AFJ, 2004, SCIENTOMETRICS, V59, P467, DOI 10.1023/B:SCIE.0000018543.82441.f1 Vieira ES, 2014, J INFORMETR, V8, P390, DOI 10.1016/j.joi.2014.01.012 Wang S., 2016, IEEE PHOTONIC TECH L, V28, P1 Way S. F, 2016, ABS161208228 CORR Wildgaard L, 2014, SCIENTOMETRICS, V101, P125, DOI 10.1007/s11192-014-1423-3 Xiao Shuai, 2016, Ijcai, P2676, DOI [DOI 10.1109/SCEECS57921.2023.10061818, DOI 10.1145/3123266.3123277] Yuxiao Dong, 2016, IEEE Transactions on Big Data, V2, P18, DOI 10.1109/TBDATA.2016.2521657 NR 41 TC 2 Z9 2 U1 0 U2 6 PU SPRINGER INTERNATIONAL PUBLISHING AG PI CHAM PA GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND SN 0302-9743 EI 1611-3349 BN 978-3-319-67074-4; 978-3-319-67073-7 J9 LECT NOTES ARTIF INT PY 2017 VL 10448 BP 244 EP 254 DI 10.1007/978-3-319-67074-4_24 PG 11 WC Computer Science, Artificial Intelligence; Computer Science, Theory & Methods WE Conference Proceedings Citation Index - Science (CPCI-S) SC Computer Science GA BL9II UT WOS:000457470500024 DA 2024-09-05 ER PT J AU Liu, XH Glänzel, W De Moor, B AF Liu, Xinhai Glanzel, Wolfgang De Moor, Bart TI Optimal and hierarchical clustering of large-scale hybrid networks for scientific mapping SO SCIENTOMETRICS LA English DT Article; Proceedings Paper CT 13th International Conference on Scientometrics and Informetrics CY JUL 04-07, 2011 CL Univ Zululand, Durban, SOUTH AFRICA HO Univ Zululand DE Optimal and hierarchical clustering; Text mining; Bibliometric analysis; Modularity optimization; Network analysis ID COMMUNITY STRUCTURE; COMBINED COCITATION; WORD ANALYSIS; INFORMATION; SCIENCE AB Previous studies have shown that hybrid clustering methods based on textual and citation information outperforms clustering methods that use only one of these components. However, former methods focus on the vector space model. In this paper we apply a hybrid clustering method which is based on the graph model to map the Web of Science database in the mirror of the journals covered by the database. Compared with former hybrid clustering strategies, our method is very fast and even achieves better clustering accuracy. In addition, it detects the number of clusters automatically and provides a top-down hierarchical analysis, which fits in with the practical application. We quantitatively and qualitatively asses the added value of such an integrated analysis and we investigate whether the clustering outcome provides an appropriate representation of the field structure by comparing with a text-only or citation-only clustering and with another hybrid method based on linear combination of distance matrices. Our dataset consists of about 8,000 journals published in the period 2002-2006. The cognitive analysis, including the ranked journals, term annotation and the visualization of cluster structure demonstrates the efficiency of our strategy. C1 [Liu, Xinhai] Peoples Bank China, Credit Reference Ctr, Dept Postdoctoral Res, Beijing 100800, Peoples R China. [Liu, Xinhai] Peoples Bank China, Financial Res Inst, Dept Postdoctoral Res, Beijing 100800, Peoples R China. [Glanzel, Wolfgang] Katholieke Univ Leuven, Dept MSI, Ctr R&D Monitoring ECOOM, B-3000 Louvain, Belgium. [Glanzel, Wolfgang] Hungarian Acad Sci, IRPS, Budapest, Hungary. [De Moor, Bart] Katholieke Univ Leuven, ESAT SCD, B-3001 Louvain, Belgium. [De Moor, Bart] Katholieke Univ Leuven, KU Leuven IBBT Future Hlth Dept, B-3001 Louvain, Belgium. C3 People's Bank of China; People's Bank of China; KU Leuven; Hungarian Academy of Sciences; KU Leuven; KU Leuven RP Liu, XH (corresponding author), Peoples Bank China, Credit Reference Ctr, Dept Postdoctoral Res, Chengfangjie 32, Beijing 100800, Peoples R China. EM xinhai.liu@yahoo.com RI Glanzel, Wolfgang/AAE-4395-2021; Glanzel, Wolfgang/A-6280-2008 OI Glanzel, Wolfgang/0000-0001-7529-5198 CR [Anonymous], 2004, Lucene in Action [Anonymous], 2010, tech. report Baeza-Yates R., 1999, MODERN INFORM RETRIE Blondel VD, 2008, J STAT MECH-THEORY E, DOI 10.1088/1742-5468/2008/10/P10008 BRAAM RR, 1991, J AM SOC INFORM SCI, V42, P233, DOI 10.1002/(SICI)1097-4571(199105)42:4<233::AID-ASI1>3.0.CO;2-I BRAAM RR, 1991, J AM SOC INFORM SCI, V42, P252, DOI 10.1002/(SICI)1097-4571(199105)42:4<252::AID-ASI2>3.0.CO;2-G Calado P, 2006, J AM SOC INF SCI TEC, V57, P208, DOI 10.1002/asi.20266 Calado P, 2003, ACM T INFORM SYST, V21, P42, DOI 10.1145/635484.635486 Clauset A, 2004, PHYS REV E, V70, DOI 10.1103/PhysRevE.70.066111 Fortunato S, 2010, PHYS REP, V486, P75, DOI 10.1016/j.physrep.2009.11.002 Glenisson P, 2005, INFORM PROCESS MANAG, V41, P1548, DOI 10.1016/j.ipm.2005.03.021 He X, 2002, COMPUT STAT DATA AN, V41, P19, DOI 10.1016/S0167-9473(02)00070-1 HUBERT L, 1985, J CLASSIF, V2, P193, DOI 10.1007/BF01908075 Jaccard P., 1901, B SOC VAUD SCI NAT, V37, P547, DOI DOI 10.5169/SEALS-266450 Jain A.K., 1988, Algorithms for Clustering Data Jain AK, 2010, PATTERN RECOGN LETT, V31, P651, DOI 10.1016/j.patrec.2009.09.011 Janssens F., 2006, INT C MULTIDISCIPLIN, P615 Janssens F, 2008, SCIENTOMETRICS, V75, P607, DOI 10.1007/s11192-007-2002-7 Janssens F, 2006, INFORM PROCESS MANAG, V42, P1614, DOI 10.1016/j.ipm.2006.03.025 Janssens F, 2009, INFORM PROCESS MANAG, V45, P683, DOI 10.1016/j.ipm.2009.06.003 Joachims T., 2001, Proceedings of 18th International Conference on Machine Learning, P250 Krings G, 2009, J STAT MECH-THEORY E, DOI 10.1088/1742-5468/2009/07/L07003 Lambiotte R, 2009, J INFORMETR, V3, P180, DOI 10.1016/j.joi.2009.03.007 Leydesdorff L, 2009, J AM SOC INF SCI TEC, V60, P348, DOI 10.1002/asi.20967 Liu XH, 2011, PRO INT CONF SCI INF, P485 Luxburg U, 2007, STAT COMPUT, V17, P395, DOI DOI 10.1007/S11222-007-9033-Z Modha D. S., 2000, ACM 2000 Hypertext. Proceedings of the Eleventh ACM Conference on Hypertext and Hypermedia, P143, DOI 10.1145/336296.336351 Mullins N.C., 1988, Handbook of quantitative studies of science and technology, P81 Newman MEJ, 2006, PHYS REV E, V74, DOI 10.1103/PhysRevE.74.036104 Newman MEJ, 2006, P NATL ACAD SCI USA, V103, P8577, DOI 10.1073/pnas.0601602103 Newman MEJ, 2004, PHYS REV E, V69, DOI 10.1103/PhysRevE.69.026113 Porter M., 2009, NOT AM MATH SOC, V56, P1082, DOI DOI 10.1103/PHYSREVE.69.066133 Salton G., 1986, Introduction to Modern Information Retrieval SNIZEK WE, 1991, SCIENTOMETRICS, V20, P25, DOI 10.1007/BF02018141 Strehl A, 2002, EIGHTEENTH NATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE (AAAI-02)/FOURTEENTH INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE (IAAI-02), PROCEEDINGS, P93, DOI 10.1162/153244303321897735 Wang YG, 2002, PROCEEDINGS OF THE 4TH INTERNATIONAL CONFERENCE ON NONLINEAR MECHANICS, P499, DOI 10.1145/584792.584875 Zhang L, 2010, J INFORMETR, V4, P185, DOI 10.1016/j.joi.2009.11.005 NR 37 TC 16 Z9 16 U1 0 U2 53 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0138-9130 EI 1588-2861 J9 SCIENTOMETRICS JI Scientometrics PD MAY PY 2012 VL 91 IS 2 BP 473 EP 493 DI 10.1007/s11192-011-0600-x PG 21 WC Computer Science, Interdisciplinary Applications; Information Science & Library Science WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI); Conference Proceedings Citation Index - Social Science & Humanities (CPCI-SSH); Conference Proceedings Citation Index - Science (CPCI-S) SC Computer Science; Information Science & Library Science GA 921LD UT WOS:000302478200013 DA 2024-09-05 ER PT J AU Hren, D Pina, DG Norman, CR Marusic, A AF Hren, Darko Pina, David G. Norman, Christopher R. Marusic, Ana TI What makes or breaks competitive research proposals? A mixed-methods analysis of research grant evaluation reports SO JOURNAL OF INFORMETRICS LA English DT Article DE European Commission; Machine learning; Marie Curie Actions; Peer review outcome; Qualitive analysis; Research grants ID LINGUISTIC ANALYSIS; DECISION-MAKING; NEGATIVITY BIAS; PEER; REVIEWERS AB The evaluation of grant proposals is an essential aspect of competitive research funding. Funding bodies and agencies rely in many instances on external peer reviewers for grant assessment. Most of the research available is about quantitative aspects of this assessment, and there is little evidence from qualitative studies. We used a combination of machine learning and qualitative analysis methods to analyse the reviewers' comments in evaluation reports from 3667 grant applications to the Initial Training Networks (ITN) of the Marie Curie Actions under the Seventh Framework Programme (FP7). Our results show that the reviewers' comments for each evaluation criterion were aligned with the Action's prespecified criteria and that the evaluation outcome was more influenced by the proposals' weaknesses than by their strengths. C1 [Hren, Darko] Univ Split, Fac Humanities & Social Sci, Dept Psychol, Split, Croatia. [Pina, David G.] European Commiss, European Res Execut Agcy, Brussels, Belgium. [Norman, Christopher R.] Sciome LLC, Res Triangle Pk, NC USA. [Marusic, Ana] Univ Split, Sch Med, Dept Res Biomed & Hlth, Split, Croatia. [Marusic, Ana] Univ Split, Sch Med, Ctr Evidence Based Med, Split, Croatia. C3 University of Split; University of Split; University of Split RP Marusic, A (corresponding author), Univ Split, Sch Med, Dept Res Biomed & Hlth, Split, Croatia.; Marusic, A (corresponding author), Univ Split, Sch Med, Ctr Evidence Based Med, Split, Croatia. EM ana.marusic@mefst.hr RI Marusic, Ana/E-7683-2013; Hren, Darko/H-1819-2017 OI Marusic, Ana/0000-0001-6272-0917; Hren, Darko/0000-0001-6465-6568; Pina, David/0000-0002-4930-748X FU Croatian Science Foundation "Professionalism in Health -Decision making in practice and research" (ProDeM) [IP-2019-04-4882] FX This study was funded by the Croatian Science Foundation "Professionalism in Health -Decision making in practice and research" (ProDeM) under Grant agreement No. IP-2019-04-4882. The funder had no role in the design of this study, its execution, analyses, interpretation of the data, or decision to submit results. CR Altman D.G., 2000, STAT CONFIDENCE [Anonymous], 2001, Applied logistic regression analysis Ausloos M, 2016, SCIENTOMETRICS, V106, P347, DOI 10.1007/s11192-015-1704-5 Ayoubi C, 2019, RES POLICY, V48, P84, DOI 10.1016/j.respol.2018.07.021 Bayindir EE, 2019, J INFORMETR, V13, DOI 10.1016/j.joi.2019.100981 Bornmann L, 2012, SCIENTOMETRICS, V91, P843, DOI 10.1007/s11192-011-0569-5 Buljan I, 2020, ELIFE, V9, DOI 10.7554/eLife.53249 Cacioppo JT, 2014, BEHAV BRAIN SCI, V37, P309, DOI 10.1017/S0140525X13002537 Demicheli V, 2007, COCHRANE DB SYST REV, DOI 10.1002/14651858.MR000003.pub2 Dziezyc M, 2022, J INFORMETR, V16, DOI 10.1016/j.joi.2021101243 Feliciani T, 2019, SCIENTOMETRICS, V121, P555, DOI 10.1007/s11192-019-03205-w Gallo SA, 2021, SCI ENG ETHICS, V27, DOI 10.1007/s11948-021-00295-9 Ghosal T, 2019, 57TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2019), P1120 Glonti K, 2019, BMJ OPEN, V9, DOI 10.1136/bmjopen-2019-033421 Glonti K, 2019, BMC MED, V17, DOI 10.1186/s12916-019-1347-0 Grimaldo F, 2018, PLOS ONE, V13, DOI 10.1371/journal.pone.0193148 Gyorffy B, 2020, J INFORMETR, V14, DOI 10.1016/j.joi.2020.101050 Han J, 2012, MOR KAUF D, P1 Johnston R, 2018, QUAL QUANT, V52, P1957, DOI 10.1007/s11135-017-0584-6 Kaatz A, 2015, ACAD MED, V90, P69, DOI 10.1097/ACM.0000000000000442 Landauer TK, 1998, DISCOURSE PROCESS, V25, P259, DOI 10.1080/01638539809545028 Landauer TK, 1997, PSYCHOL REV, V104, P211, DOI 10.1037/0033-295X.104.2.211 Luo JW, 2022, QUANT SCI STUD, V2, P1271, DOI 10.1162/qss_a_00156 Ma L, 2022, SCI PUBL POLICY, V49, P289, DOI 10.1093/scipol/scab080 MacQueen James, 1967, 5 BERK S MATH STAT P, P281 Magua W, 2017, J WOMENS HEALTH, V26, P560, DOI 10.1089/jwh.2016.6021 Mahmic-Kaknjo M, 2021, ACCOUNT RES, V28, P297, DOI 10.1080/08989621.2020.1822170 Marsh HW, 2008, AM PSYCHOL, V63, P160, DOI 10.1037/0003-066X.63.3.160 Marsh HW, 2009, REV EDUC RES, V79, P1290, DOI 10.3102/0034654309334143 Morgan MG, 2014, P NATL ACAD SCI USA, V111, P7176, DOI 10.1073/pnas.1319946111 Pina DG, 2021, ELIFE, V10, DOI 10.7554/eLife.59338 Pina DG, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0130753 Qin C., 2021, P 18 INT C SCIENTOME Rashidi K, 2020, ONLINE INFORM REV, V44, P1327, DOI 10.1108/OIR-02-2020-0073 Research Executive Agency, 2012, GUID APPL MAR CUR AC Rozin P, 2001, PERS SOC PSYCHOL REV, V5, P296, DOI 10.1207/S15327957PSPR0504_2 SCHWARZ G, 1978, ANN STAT, V6, P461, DOI 10.1214/aos/1176344136 Seeber M, 2022, J ASSOC INF SCI TECH, V73, P1106, DOI 10.1002/asi.24617 Sewell M., 2007, Principal Component Analysis' Thelwall M, 2020, ONLINE INFORM REV, V44, P1057, DOI 10.1108/OIR-11-2019-0347 Tohalino JAV, 2022, J INFORMETR, V16, DOI 10.1016/j.joi.2022.101260 Tricco AC, 2017, PLOS ONE, V12, DOI 10.1371/journal.pone.0169718 van den Besselaar P, 2018, SCIENTOMETRICS, V117, P313, DOI 10.1007/s11192-018-2848-x Wang K, 2018, ACM/SIGIR PROCEEDINGS 2018, P175, DOI 10.1145/3209978.3210056 NR 44 TC 4 Z9 4 U1 9 U2 29 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS SN 1751-1577 EI 1875-5879 J9 J INFORMETR JI J. Informetr. PD MAY PY 2022 VL 16 IS 2 AR 101289 DI 10.1016/j.joi.2022.101289 EA APR 2022 PG 17 WC Computer Science, Interdisciplinary Applications; Information Science & Library Science WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Computer Science; Information Science & Library Science GA 2S3GW UT WOS:000821684900009 OA hybrid DA 2024-09-05 ER PT J AU Grecov, P Prasanna, AN Ackermann, K Campbell, S Scott, D Lubman, DI Bergmeir, C AF Grecov, Priscila Prasanna, Ankitha Nandipura Ackermann, Klaus Campbell, Sam Scott, Debbie Lubman, Dan I. Bergmeir, Christoph TI Probabilistic Causal Effect Estimation With Global Neural Network Forecasting Models SO IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS LA English DT Article DE Time series analysis; Predictive models; Forecasting; Biological system modeling; Probabilistic logic; Estimation; Market research; Causal effect; counterfactual analysis; global time series forecasting; neural networks (NNs); probabilistic forecasting ID SERIES; DIFFERENCE; INFERENCE AB We introduce a novel method to estimate the causal effects of an intervention over multiple treated units by combining the techniques of probabilistic forecasting with global forecasting methods using deep learning (DL) models. Considering the counterfactual and synthetic approach for policy evaluation, we recast the causal effect estimation problem as a counterfactual prediction outcome of the treated units in the absence of the treatment. Nevertheless, in contrast to estimating only the counterfactual time series outcome, our work differs from conventional methods by proposing to estimate the counterfactual time series probability distribution based on the past preintervention set of treated and untreated time series. We rely on time series properties and forecasting methods, with shared parameters, applied to stacked univariate time series for causal identification. This article presents DeepProbCP, a framework for producing accurate quantile probabilistic forecasts for the counterfactual outcome, based on training a global autoregressive recurrent neural network model with conditional quantile functions on a large set of related time series. The output of the proposed method is the counterfactual outcome as the spline-based representation of the counterfactual distribution. We demonstrate how this probabilistic methodology added to the global DL technique to forecast the counterfactual trend and distribution outcomes overcomes many challenges faced by the baseline approaches to the policy evaluation problem. Oftentimes, some target interventions affect only the tails or the variance of the treated units' distribution rather than the mean or median, which is usual for skewed or heavy-tailed distributions. Under this scenario, the classical causal effect models based on counterfactual predictions are not capable of accurately capturing or even seeing policy effects. By means of empirical evaluations of synthetic and real-world datasets, we show that our framework delivers more accurate forecasts than the state-of-the-art models, depicting, in which quantiles, the intervention most affected the treated units, unlike the conventional counterfactual inference methods based on nonprobabilistic approaches. C1 [Grecov, Priscila; Prasanna, Ankitha Nandipura; Bergmeir, Christoph] Monash Univ, Dept Data Sci & Artificial Intelligence, Melbourne, Vic 3800, Australia. [Ackermann, Klaus] Monash Univ, Dept Econometr & Business Stat, Melbourne, Vic 3800, Australia. [Campbell, Sam; Scott, Debbie; Lubman, Dan I.] Monash Univ, Eastern Hlth & Eastern Hlth Clin Sch, Turning Point, Melbourne, Vic 3800, Australia. C3 Monash University; Monash University; Monash University; Turning Point Alcohol & Drug Centre - Australia RP Grecov, P (corresponding author), Monash Univ, Dept Data Sci & Artificial Intelligence, Melbourne, Vic 3800, Australia. EM priscila.grecov@monash.edu RI Scott, Debbie/KHU-0258-2024; Bergmeir, Christoph/Q-9911-2019 OI Bergmeir, Christoph/0000-0002-3665-9021; Grecov, Priscila/0000-0001-6131-0238; Ackermann, Klaus/0000-0001-7693-8538 FU Australian Research Council [DE190100045]; Monash University Graduate Research Funding; MASSIVE High Performance Computing Facility, Australia; Australian Research Council [DE190100045] Funding Source: Australian Research Council FX This work was supported in part by the Australian Research Council under Grant DE190100045, in part by the Monash University Graduate Research Funding, and in part by the MASSIVE High Performance Computing Facility, Australia. CR Abadie A, 2010, J AM STAT ASSOC, V105, P493, DOI 10.1198/jasa.2009.ap08746 Alexandrov A., ARXIV190605264, V2019 [Anonymous], 2021, UNIVARIATESPLINE Athey S, 2006, ECONOMETRICA, V74, P431, DOI 10.1111/j.1468-0262.2006.00668.x Athey S, 2021, J AM STAT ASSOC, V116, P1716, DOI 10.1080/01621459.2021.1891924 Athey S, 2017, J ECON PERSPECT, V31, P3, DOI 10.1257/jep.31.2.3 Bandara K., 2020, 2020 IEEE INT C POW, P1, DOI DOI 10.1109/IJCNN48605.2020.9206787 Bandara K, 2021, IEEE T NEUR NET LEAR, V32, P1586, DOI 10.1109/TNNLS.2020.2985720 Bandara K, 2020, EXPERT SYST APPL, V140, DOI 10.1016/j.eswa.2019.112896 Box G. E. P., 1970, Time series analysis, forecasting and control Brodersen, 2014, CAUSALIMPACT R PACKA Brodersen KH, 2015, ANN APPL STAT, V9, P247, DOI 10.1214/14-AOAS788 Carvalho C, 2018, J ECONOMETRICS, V207, P352, DOI 10.1016/j.jeconom.2018.07.005 Chernozhukov V, 2021, J AM STAT ASSOC, V116, P1849, DOI 10.1080/01621459.2021.1920957 Conley TG, 2011, REV ECON STAT, V93, P113, DOI 10.1162/REST_a_00049 Di Narzo A. F., 2020, TSDYN NONLINEAR TIME Doudchenko N., 2016, Balancing, regression, difference-in-differences and synthetic control methods: A synthesis, DOI DOI 10.3386/W22791 Farrell, 2018, ARXIV Ferman B., 2016, 86495 REPEC ARCH Firat E. Hanifi, 2017, MATH STAT, V5, P33, DOI [10.13189/ms.2017.050105, DOI 10.13189/ms.2017.050105] Gasthaus J, 2019, PR MACH LEARN RES, V89 Gneiting T, 2014, ANNU REV STAT APPL, V1, P125, DOI 10.1146/annurev-statistics-062713-085831 Gneiting T, 2011, INT J FORECASTING, V27, P197, DOI 10.1016/j.ijforecast.2009.12.015 Gobillon L, 2016, REV ECON STAT, V98, P535, DOI 10.1162/REST_a_00537 Grecov P, 2021, LECT NOTES ARTIF INT, V12713, P282, DOI 10.1007/978-3-030-75765-6_23 Hartford J, 2017, PR MACH LEARN RES, V70 Hewamalage Hansika, 2021, International Journal of Forecasting, V37, P388, DOI 10.1016/j.ijforecast.2020.06.008 Hewamalage H, 2022, PATTERN RECOGN, V124, DOI 10.1016/j.patcog.2021.108441 HOLLAND PW, 1986, J AM STAT ASSOC, V81, P945, DOI 10.2307/2289064 Hyndman R., 2020, forecast: Forecasting functions for time series and linear models Hyndman RJ, 2008, SPRINGER SER STAT, P3 I. The MathWorks, 1994, SIM VAR MOD COND RES Januschowski T, 2020, INT J FORECASTING, V36, P167, DOI 10.1016/j.ijforecast.2019.05.008 Lim B, 2018, ADV NEUR IN, V31 Lubman, 2020, PLOS ONE, V15 Montero-Manso P, 2021, INT J FORECASTING, V37, P1632, DOI 10.1016/j.ijforecast.2021.03.004 Poulos, 2017, ARXIV RUBIN DB, 1974, J EDUC PSYCHOL, V66, P688, DOI 10.1037/h0037350 Runge C., 1901, Zeitschrift fur Mathematik und Physik, V46, P224 Salinas D, 2020, INT J FORECASTING, V36, P1181, DOI 10.1016/j.ijforecast.2019.07.001 Shalit U, 2017, PR MACH LEARN RES, V70 Shi C, 2019, ADV NEUR IN, V32 Smyl S, 2020, INT J FORECASTING, V36, P75, DOI 10.1016/j.ijforecast.2019.03.017 Steinkraus A, 2019, ECON BULL, V39, P2778 Stigler S. M., 1975, B INT STAT I, V46, P332 Wen Ruofeng, 2017, ARXIV Wen YX, 2020, IEEE T NEUR NET LEAR, V31, P1134, DOI 10.1109/TNNLS.2019.2918795 Zeng Y, 2023, IEEE T NEUR NET LEAR, V34, P2234, DOI 10.1109/TNNLS.2021.3106111 NR 48 TC 2 Z9 2 U1 4 U2 18 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 2162-237X EI 2162-2388 J9 IEEE T NEUR NET LEAR JI IEEE Trans. Neural Netw. Learn. Syst. PD APR PY 2024 VL 35 IS 4 BP 4999 EP 5013 DI 10.1109/TNNLS.2022.3190984 EA JUL 2022 PG 15 WC Computer Science, Artificial Intelligence; Computer Science, Hardware & Architecture; Computer Science, Theory & Methods; Engineering, Electrical & Electronic WE Science Citation Index Expanded (SCI-EXPANDED) SC Computer Science; Engineering GA NB2Q3 UT WOS:000829191700001 PM 35853064 DA 2024-09-05 ER PT J AU Ruiz-Real, JL Uribe-Toril, J Torres, JA De Pablo, J AF Luis Ruiz-Real, Jose Uribe-Toril, Juan Antonio Torres, Jose De Pablo, Jaime TI ARTIFICIAL INTELLIGENCE IN BUSINESS AND ECONOMICS RESEARCH: TRENDS AND FUTURE SO JOURNAL OF BUSINESS ECONOMICS AND MANAGEMENT LA English DT Article DE artificial intelligence; business; economics; bibliometrics; research trends; decision-making ID EXTREME LEARNING-MACHINE; NEURAL-NETWORKS; KNOWLEDGE; INNOVATION; RESPONSES; SCIENCE; INDEXES; SYSTEMS; DESIGN; EXPERT AB Artificial Intelligence is a disruptive technology developed during the 20th century, which has undergone an accelerated evolution, underpinning solutions to complex problems in the business world. Neural Networks, Machine Learning, or Deep Learning are concepts currently associated with terms such as digital marketing, decision making, industry 4.0 and business digital transformation. Interest in this technology will increase as the competitive advantages of the use of Artificial Intelligence by economic entities is realised. The aim of this research is to analyse the state-of-the-art research of Artificial Intelligence in business. To this end, a bibliometric analysis has been implement using the Web of Science and Scopus online databases. By using a fractional counting method, this paper identifies 11 clusters and the most frequent terms used in Artificial Intelligence research. The present study identifies the main trends in research on Artificial Intelligence in business and proposes future lines of inquiry. C1 [Luis Ruiz-Real, Jose; Uribe-Toril, Juan; De Pablo, Jaime] Univ Almeria, Fac Econ & Business, Almeria, Spain. [Antonio Torres, Jose] Univ Almeria, Dept Comp Sci, Almeria, Spain. C3 Universidad de Almeria; Universidad de Almeria RP Uribe-Toril, J (corresponding author), Univ Almeria, Fac Econ & Business, Almeria, Spain. EM juribe@ual.es RI de Pablo Valenciano, Jaime/T-1455-2019; Silva, Flavio/JTT-2763-2023; Uribe-Toril, Juan/W-8568-2018; DE+PABLO+VALENCIANO, JAIME/ABA-6206-2021 OI de Pablo Valenciano, Jaime/0000-0002-9451-8956; Uribe-Toril, Juan/0000-0002-0227-801X; CR Aghaei Chadegani A., 2013, Asian Social Science, V9, P18, DOI [10.5539/ass.v9n5p18, DOI 10.5539/ASS.V9N5P18] ALTMAN EI, 1994, J BANK FINANC, V18, P505, DOI 10.1016/0378-4266(94)90007-8 [Anonymous], CITATION ANAL RES EV [Anonymous], MIT SLOAN MANAGEMENT Bakkalbasi Nisa, 2006, Biomed Digit Libr, V3, P7, DOI 10.1186/1742-5581-3-7 Burkhalter B., 1963, OPER RES, V11, P39 Callan J. P., 1992, DEXA 92. Database and Expert Systems Applications. Proceedings of the International Conference, P78 Cavalcante RC, 2016, EXPERT SYST APPL, V55, P194, DOI 10.1016/j.eswa.2016.02.006 Chan FTS, 2000, INT J PROD ECON, V65, P73, DOI 10.1016/S0925-5273(99)00091-2 Cho V, 2003, TOURISM MANAGE, V24, P323, DOI 10.1016/S0261-5177(02)00068-7 Choi JJ, 2019, INT FINANC REV, V20, P3, DOI 10.1108/S1569-376720190000020003 Chopra K, 2019, INT J RETAIL DISTRIB, V47, P331, DOI 10.1108/IJRDM-11-2018-0251 Choy KL, 2005, KNOWL-BASED SYST, V18, P1, DOI 10.1016/j.knosys.2004.05.003 Daim TU, 2006, TECHNOL FORECAST SOC, V73, P981, DOI 10.1016/j.techfore.2006.04.004 Das SR, 2007, MANAGE SCI, V53, P1375, DOI 10.1287/mnsc.1070.0704 Demirkan H, 2013, DECIS SUPPORT SYST, V55, P412, DOI 10.1016/j.dss.2012.05.048 Fedra K., 1994, APPL GEOGRAPHIC INFO, P297 Furner J, 2014, BEYOND BIBLIOMETRICS: HARNESSING MULTIDIMENSIONAL INDICATORS OF SCHOLARLY IMPACT, P85 GARFIELD E, 1955, SCIENCE, V122, P108, DOI 10.1126/science.122.3159.108 Goodman D., 2005, The Charleston Advisor, V6, P5, DOI DOI 10.3846/1611-1699.2009.10.233-240 Guz AN, 2009, INT APPL MECH+, V45, P351, DOI 10.1007/s10778-009-0189-4 Hirsch JE, 2005, P NATL ACAD SCI USA, V102, P16569, DOI 10.1073/pnas.0507655102 Huang Z, 2004, DECIS SUPPORT SYST, V37, P543, DOI 10.1016/S0167-9236(03)00086-1 Ince H, 2009, J BUS ECON MANAG, V10, P233, DOI 10.3846/1611-1699.2009.10.233-240 Jan MN, 2019, J BUS ECON MANAG, V20, P168, DOI 10.3846/jbem.2019.8250 Karimova F., 2016, Eur. Sci. J., V12, P75, DOI 10.19044/esj.2016.v12n34p75 Kozma RB, 1997, J RES SCI TEACH, V34, P949, DOI 10.1002/(SICI)1098-2736(199711)34:9<949::AID-TEA7>3.0.CO;2-U Kumar BS, 2016, KNOWL-BASED SYST, V114, P128, DOI 10.1016/j.knosys.2016.10.003 KUSIAK A, 1988, EUR J OPER RES, V34, P113, DOI 10.1016/0377-2217(88)90346-3 Lebailly L., 1987, APPROX REASONING INT, P125, DOI 10.1016/B978-0-08-034335-8.50015-5 LeBaron B, 1999, J ECON DYN CONTROL, V23, P1487, DOI 10.1016/S0165-1889(98)00081-5 Lee LDW, 2020, EUR J MARKETING, V54, P615, DOI 10.1108/EJM-02-2019-0219 Lee YK, 2018, INT J GRID DISTRIB, V11, P11, DOI 10.14257/ijgdc.2018.11.7.02 Li BH, 2017, FRONT INFORM TECH EL, V18, P86, DOI 10.1631/FITEE.1601885 Lin WY, 2012, IEEE T SYST MAN CY C, V42, P421, DOI 10.1109/TSMCC.2011.2170420 Luo H, 2013, INT J PROD ECON, V146, P423, DOI 10.1016/j.ijpe.2013.01.028 Maknickiene N, 2013, J BUS ECON MANAG, V14, P403, DOI 10.3846/16111699.2012.729532 Marinchak CLM, 2018, ENCYCLOPEDIA OF INFORMATION SCIENCE AND TECHNOLOGY, 4TH EDITION, P5748, DOI 10.4018/978-1-5225-2255-3.ch499 McCarthy J., 1960, Programs with common sense, P300 MILES RE, 1986, CALIF MANAGE REV, V28, P62, DOI 10.2307/41165202 Morikawa M., 2016, EFFECTS ARTIFICIAL I Mutasa S, 2020, CLIN IMAG, V65, P96, DOI 10.1016/j.clinimag.2020.04.025 MYLOPOULOS J, 1990, ACM T INFORM SYST, V8, P325, DOI 10.1145/102675.102676 Nicholson JK, 1999, XENOBIOTICA, V29, P1181, DOI 10.1080/004982599238047 Patel VL, 2009, ARTIF INTELL MED, V46, P5, DOI 10.1016/j.artmed.2008.07.017 Plastino Eduardo, 2018, Strategy & Leadership, V46, P16, DOI 10.1108/SL-11-2017-0106 Ramakrishna S, 2020, SCI TECHNOL SOC, V25, P505, DOI 10.1177/0971721820912918 Rampersad G, 2020, J BUS RES, V116, P68, DOI 10.1016/j.jbusres.2020.05.019 Rozinat A, 2008, INFORM SYST, V33, P64, DOI 10.1016/j.is.2007.07.001 Sabherwal R, 2001, INFORM SYST RES, V12, P11, DOI 10.1287/isre.12.1.11.9714 Sheta Alaa F., 2015, International Journal of Advanced Research in Artificial Intelligence, V4, P55 Soltani-Fesaghandis G, 2018, INT FOOD AGRIBUS MAN, V21, P847, DOI 10.22434/IFAMR2017.0033 Stalidis G, 2015, PROCD SOC BEHV, V175, P106, DOI 10.1016/j.sbspro.2015.01.1180 Sun ZL, 2008, DECIS SUPPORT SYST, V46, P411, DOI 10.1016/j.dss.2008.07.009 Swaminathan JM, 1998, DECISION SCI, V29, P607, DOI 10.1111/j.1540-5915.1998.tb01356.x TAGUESUTCLIFFE J, 1992, INFORM PROCESS MANAG, V28, P1, DOI 10.1016/0306-4573(92)90087-G TAM KY, 1992, MANAGE SCI, V38, P926, DOI 10.1287/mnsc.38.7.926 Traag VA, 2011, PHYS REV E, V84, DOI 10.1103/PhysRevE.84.016114 Trafalis TB, 2000, IEEE IJCNN, P348, DOI 10.1109/IJCNN.2000.859420 van Assen M, 2020, EUR J RADIOL, V129, DOI 10.1016/j.ejrad.2020.109083 Van Eck N.J., 2015, VOSviewer Manual. Man van Eck NJ, 2017, SCIENTOMETRICS, V111, P1053, DOI 10.1007/s11192-017-2300-7 van Eck NJ, 2010, SCIENTOMETRICS, V84, P523, DOI 10.1007/s11192-009-0146-3 van Raan A., 2014, Bibliometrics Use and Abuse in the Review of Research Performance, V87, P17 Waaijer CJF, 2011, SCIENTOMETRICS, V86, P99, DOI 10.1007/s11192-010-0205-9 Wagner C, 2006, INF RESOUR MANAG J, V19, P70, DOI 10.4018/irmj.2006010104 Waltman L, 2012, J AM SOC INF SCI TEC, V63, P2378, DOI 10.1002/asi.22748 Weng B, 2018, APPL SOFT COMPUT, V71, P685, DOI 10.1016/j.asoc.2018.07.024 West J, 2016, COMPUT SECUR, V57, P47, DOI [10.1016/j.cose.2015.09.005, 10.1007/978-3-319-16507-3_4] WILSON RL, 1994, DECIS SUPPORT SYST, V11, P545, DOI 10.1016/0167-9236(94)90024-8 Wirth N, 2018, INT J MARKET RES, V60, P435, DOI 10.1177/1470785318776841 Wong KKL, 2020, FUTURE GENER COMP SY, V110, P802, DOI 10.1016/j.future.2019.09.047 Xing FZ, 2018, ARTIF INTELL REV, V50, P49, DOI 10.1007/s10462-017-9588-9 Yu Q, 2014, NEUROCOMPUTING, V128, P296, DOI 10.1016/j.neucom.2013.01.063 Zatorski R. J., 1970, Australian Computer Journal, V2, P173 NR 75 TC 38 Z9 40 U1 62 U2 376 PU VILNIUS GEDIMINAS TECH UNIV PI VILNIUS PA SAULETEKIO AL 11, VILNIUS, LT-10223, LITHUANIA SN 1611-1699 EI 2029-4433 J9 J BUS ECON MANAG JI J. Bus. Econ. Manag. PY 2021 VL 22 IS 1 BP 98 EP 117 DI 10.3846/jbem.2020.13641 PG 20 WC Business; Economics WE Social Science Citation Index (SSCI) SC Business & Economics GA QB2AQ UT WOS:000613944700006 OA gold DA 2024-09-05 ER PT C AU Khan, A Koh, RGL Hassan, S Liu, T Tucci, V Kumbhare, D Doyle, TE AF Khan, Asif Koh, Ryan G. L. Hassan, Samah Liu, Theodore Tucci, Victoria Kumbhare, Dinesh Doyle, Thomas E. GP IEEE TI STAR-ML: A Rapid Screening Tool for Assessing Reporting of Machine Learning in Research SO 2022 IEEE CANADIAN CONFERENCE ON ELECTRICAL AND COMPUTER ENGINEERING (CCECE) SE Canadian Conference on Electrical and Computer Engineering LA English DT Proceedings Paper CT Canadian Conference on Electrical and Computer Engineering (CCECE) CY SEP 18-20, 2022 CL Halifax, CANADA DE machine learning; screening tool; reporting assessment; quality scoring; checklist; research methodology; literature review AB Literature review provides researchers with an overview of the field and when presented as a systematic assessment, it summarizes state-of-the-art information and identifies knowledge gaps. While there are many tools for assessing quality and risk-of-bias within studies, there is currently no generalized tool for evaluating the transparency, reproducibility, and correctness of machine learning (ML) reporting in the literature. This study proposes a new tool (Screening Tool for Assessing Reporting of Machine Learning; STAR-ML) that can be used to screen articles for a systematic or scoping review focusing on the reporting of the ML algorithm. This paper describes the development of the tool to assess the quality of ML research reporting and how it can be applied to improve the literature review methodology. The tool was tested and updated using three independent raters on 15 studies. The inter-rater reliability and the time used to review an article were evaluated. The current version of STAR-ML has a very high inter-rater reliability of 0.923, and the average time to screen an article was 4.73 minutes. This new tool will allow for filtering ML-related papers that can be included in a systematic or scoping review by ensuring transparent, reproducible, and correct screening of research for inclusion in the review article. C1 [Khan, Asif; Doyle, Thomas E.] McMaster Univ, Dept Elect & Comp Engn, Hamilton, ON, Canada. [Koh, Ryan G. L.; Hassan, Samah; Kumbhare, Dinesh] Toronto Rehabil Inst UHN, KITE, Toronto, ON, Canada. [Liu, Theodore] McMaster Univ, Fac Engn, Hamilton, ON, Canada. [Tucci, Victoria] McMaster Univ, Fac Hlth Sci, Hamilton, ON, Canada. [Doyle, Thomas E.] McMaster Univ, Sch Biomed Engn, Hamilton, ON, Canada. [Doyle, Thomas E.] Vector Inst Artificial Intelligence, Toronto, ON, Canada. C3 McMaster University; University of Toronto; University Health Network Toronto; Toronto Rehabilitation Institute; McMaster University; McMaster University; McMaster University; Vector Institute for Artificial Intelligence RP Khan, A (corresponding author), McMaster Univ, Dept Elect & Comp Engn, Hamilton, ON, Canada. EM khanm382@mcmaster.ca; ryan.koh@uhn.ca; samah.hassam@uhn.ca; liu102@mcmaster.ca; tucciv1@mcmaster.ca; dinesh.kumbhare@uhn.ca; doylet@mcmaster.ca RI Hassan, Samah/ABA-6467-2021; Hassan, Samah/CAA-2067-2022; Izquierdo, Mikel/A-4894-2010 OI Izquierdo, Mikel/0000-0002-1506-4272; Doyle, Thomas/0000-0003-1059-110X; Liu, Theodore/0000-0001-7334-8129; Khan, Md Asif/0000-0001-8395-347X FU Canadian Department of National Defence IDEaS [CFPMN2-17]; Department of Electrical and Computer Engineering at McMaster University, Canada FX This work was funded and supported by the Canadian Department of National Defence IDEaS under award number CFPMN2-17 and the Department of Electrical and Computer Engineering at McMaster University, Canada. CR [Anonymous], 2019, STAT TUTORIALS SOFTW [Anonymous], 1991, Practical statistics for medical research, DOI 10.2307/2532320 Bayat S, 2021, ALZHEIMERS RES THER, V13, DOI 10.1186/s13195-021-00852-1 Behr M, 2019, J ULTRAS MED, V38, P2119, DOI 10.1002/jum.14909 Bossuyt P.M., 2003, ANN INTERN MED, V138, pW Bullock J, 2019, PROC SPIE, V10953, DOI 10.1117/12.2512451 Chowdhury GG, 2003, ANNU REV INFORM SCI, V37, P51, DOI 10.1002/aris.1440370103 COHEN J, 1960, EDUC PSYCHOL MEAS, V20, P37, DOI 10.1177/001316446002000104 Crowston K, 2012, INT J SOC RES METHOD, V15, P523, DOI 10.1080/13645579.2011.625764 Fleiss J. L., 2003, STAT METHODS RATES P, V9 FLEISS JL, 1971, PSYCHOL BULL, V76, P378, DOI 10.1037/h0031619 Fradi M, 2022, BIOMED SIGNAL PROCES, V71, DOI 10.1016/j.bspc.2021.103123 Geng QC, 2018, SCI CHINA INFORM SCI, V61, DOI 10.1007/s11432-017-9189-6 Geron A., 2019, Hands-on Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems Higgins JPT, 2011, BMJ-BRIT MED J, V343, DOI 10.1136/bmj.d5928 Janssens ACJW, 2011, PLOS MED, V8, DOI 10.1371/journal.pmed.1000420 Jayakumar S, 2022, NPJ DIGIT MED, V5, DOI 10.1038/s41746-021-00544-y Koh RGL, 2020, J NEURAL ENG, V17, DOI 10.1088/1741-2552/ab4ac4 Koh RGL, 2019, SCI REP-UK, V9, DOI 10.1038/s41598-019-47450-8 Kumar A, 2017, IEEE J BIOMED HEALTH, V21, P31, DOI 10.1109/JBHI.2016.2635663 Liberati A, 2009, PLOS MED, V6, DOI [10.1371/journal.pmed.1000100, 10.7326/0003-4819-151-4-200908180-00136] Likitlersuang J, 2019, J NEUROENG REHABIL, V16, DOI 10.1186/s12984-019-0557-1 Moller AM, 2016, BRIT J ANAESTH, V117, P428, DOI 10.1093/bja/aew264 Moons KGM, 2014, PLOS MED, V11, DOI 10.1371/journal.pmed.1001744 Page MJ, 2021, BMJ-BRIT MED J, V372, DOI [10.1136/bmj.n71, 10.1016/j.ijsu.2021.105906, 10.1136/bmj.n160] Raghavendra U, 2018, FUTURE GENER COMP SY, V85, P184, DOI 10.1016/j.future.2018.03.023 Rusk N, 2016, NAT METHODS, V13, P35, DOI 10.1038/nmeth.3707 Sauerbrei W, 2018, JNCI-J NATL CANCER I, V110, P803, DOI 10.1093/jnci/djy088 Schulz KF, 2010, BMJ-BRIT MED J, V340, DOI [10.1136/bmj.c332, 10.4103/0976-500X.72352, 10.1016/j.ijsu.2011.09.004, 10.1136/bmj.c869, 10.1186/1741-7015-8-18, 10.1016/j.jclinepi.2010.02.005] von Elm E, 2007, PLOS MED, V4, P1623, DOI [10.1016/S0140-6736(07)61602-X, 10.1371/journal.pmed.0040297] Whiting Penny, 2003, BMC Med Res Methodol, V3, P25, DOI 10.1186/1471-2288-3-25 Whiting PF, 2011, ANN INTERN MED, V155, P529, DOI 10.7326/0003-4819-155-8-201110180-00009 NR 32 TC 1 Z9 1 U1 0 U2 1 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA SN 0840-7789 BN 978-1-6654-8432-9 J9 CAN CON EL COMP EN PY 2022 BP 336 EP 341 DI 10.1109/CCECE49351.2022.9918312 PG 6 WC Computer Science, Theory & Methods; Engineering, Electrical & Electronic WE Conference Proceedings Citation Index - Science (CPCI-S) SC Computer Science; Engineering GA BU7ZN UT WOS:000945894600046 DA 2024-09-05 ER PT C AU Xiao, TT Han, P Hong, B Dong, Z AF Xiao, Tiantian Han, Pu Hong, Bo Dong, Ze GP IEEE TI Research on The Effect of Selection of Objective Function on Optimization Results SO 2014 11TH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION (WCICA) LA English DT Proceedings Paper CT 11th World Congress on Intelligent Control and Automation CY JUN 29-JUL 04, 2014 CL Shenyang, PEOPLES R CHINA DE Particle Swarm Optimization algorithm; Objective function; Parameter optimization AB In this paper, based on Particle Swarm Optimization (PSO) algorithm to observe the different optimization results by changing the objective function. By comparing indicators of various types of objective function, clearly showing its intuitive respective advantages and disadvantages. Herein we can derived from the comprehensive objective function is a relatively good target function, stability, accuracy and rapidity performance can better meet the requirements of people. C1 [Xiao, Tiantian; Han, Pu; Hong, Bo; Dong, Ze] North China Elect Power Univ, Hebei Engn Res Ctr Simulat & Optimized Control Po, Dept Automat, Baoding 071003, Peoples R China. C3 North China Electric Power University RP Xiao, TT (corresponding author), North China Elect Power Univ, Hebei Engn Res Ctr Simulat & Optimized Control Po, Dept Automat, Baoding 071003, Peoples R China. EM smilesweetsweet@163.com CR Han P., 2007, CONTROL SYSTEM DIGIT Han P., 1993, N CHINA U ELECT POWE, V20, P50 Han P., 2013, INTELLIGENT CONTROL Kennedy J, 1995, 1995 IEEE INTERNATIONAL CONFERENCE ON NEURAL NETWORKS PROCEEDINGS, VOLS 1-6, P1942, DOI 10.1109/icnn.1995.488968 Liu N., 2002, PARAMETER OPTIMIZATI Zhang J., 2001, COMPUTER SIMULATION, V27, P191 NR 6 TC 0 Z9 0 U1 0 U2 0 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA BN 978-1-4799-5825-2 PY 2014 BP 4988 EP 4990 PG 3 WC Automation & Control Systems WE Conference Proceedings Citation Index - Science (CPCI-S) SC Automation & Control Systems GA BG9CY UT WOS:000393066205003 DA 2024-09-05 ER PT J AU Matrix, S AF Matrix, Sidneyeve TI Teaching with Infographics: Practicing New Digital Competencies and Visual Literacies SO JOURNAL OF PEDAGOGIC DEVELOPMENT LA English DT Article DE online learning; communications; graphic design; Internet research; peerto-peer collaboration; teaching AB This position paper examines the use of infographics as a teaching assignment in the online college classroom. It argues for the benefits of adopting this type of creative assignment for teaching and learning, and considers the pedagogic and technical challenges that may arise in doing so. Data and insights are drawn from two case studies, both from the communications field, one online class and a blended one, taught at two different institutions. The paper demonstrates how incorporating a research-based graphic design assignment into coursework challenges and encourages students' visual digital literacies. The paper includes practical insights and identifies best practices emerging from the authors' classroom experience with the infographic assignment, and from student feedback. The paper suggests that this kind of creative assignment requires students to practice exactly those digital competencies required to participate in an increasingly visual digital culture. C1 [Matrix, Sidneyeve] Queens Univ, Kingston, ON, Canada. [Matrix, Sidneyeve] Jaigris Hodson Ryerson Univ, Toronto, ON, Canada. C3 Queens University - Canada RP Matrix, S (corresponding author), Queens Univ, Kingston, ON, Canada. EM sidney.eve@queensu.ca OI Hodson, Jaigris/0000-0002-2235-3718 CR [Anonymous], 2012, POWER INFOGRAPHICS U Chong Alan, 2012, PROF COMM C IPEC 201, P1, DOI DOI 10.1109/IPCC.2012.6408633 Conner M, 2013, REF SERV REV, V41, P91, DOI 10.1108/00907321311300901 Danis M. F., 1993, ED361724 VIS PED VER David A., 2010, Online Journal of Distance Learning Administration, V8 Felder R.M., 2000, LEARNING STYLES STRA Hattwig D, 2013, PORTAL-LIBR ACAD, V13, P61, DOI 10.1353/pla.2013.0008 Hawk TF, 2007, DECIS SCI-J INNOV ED, V5, P1, DOI 10.1111/j.1540-4609.2007.00125.x Hixon E., 2010, Online Journal of Distance Learning Administration, V13 Kay RH, 2012, COMPUT HUM BEHAV, V28, P820, DOI 10.1016/j.chb.2012.01.011 Kern E., 2013, 3 TRUTHS VISUAL WEB Krauss J., 2012, Infographics: More than words can say. Learning and leading with technology Lambert J., 2008, CONT ISSUES TECHNOLO, V8, P264 Lankow J., 2012, INFOGRAPHICS POWER V Lee SWY, 2011, INT J SCI EDUC, V33, P1893, DOI 10.1080/09500693.2010.536998 Metros SE, 2008, THEOR PRACT, V47, P102, DOI 10.1080/00405840801992264 Mitchell W.J.T., 2002, Journal of Visual Culture, V1, DOI DOI 10.1177/147041290200100202 Mocek E., 2012, Society for Information Technology Teacher Education International Conference, V2012, P2977 Olson, 2013, 12 INT C INT DES CHI, P380, DOI DOI 10.1145/2485760.2485803 Osterman M., 2013, 149 SFERC Pasternack S., 1990, Newspaper Research Journal, V11, P28, DOI DOI 10.1177/073953299001100204 Rainie Lee., 2012, Photos and Videos as Social Currency Online Rockenbach B, 2008, ART DOC, V27, P26, DOI 10.1086/adx.27.2.27949492 Stroupe C, 2000, COLL ENGL, V62, P607, DOI 10.2307/378964 Thomas E., 2008, College Teaching, V56, P23, DOI DOI 10.3200/CTCH.56.1.23-27 Verma S., 2013, RISE VISUAL WEB YOUR Walter E., 2013, RISE VISUAL SOCIAL M Wilkes Gilbert., 2013, Professional Communication Conference (IPCC), P1 NR 28 TC 30 Z9 44 U1 1 U2 9 PU UNIV BEDFORDSHIRE, CENTRE LEARNING EXCELLENCE PI BEDS PA UNIVERSITY SQ, LUTON, BEDS, LU1 3JU, ENGLAND SN 2047-3257 EI 2047-3265 J9 J PEDAGOG DEV JI J. Pedagog. Dev. PD JUL PY 2014 VL 4 IS 2 BP 17 EP 27 PG 11 WC Education & Educational Research WE Emerging Sources Citation Index (ESCI) SC Education & Educational Research GA V5B4R UT WOS:000219455600002 DA 2024-09-05 ER PT J AU Koopmann, T Stubbemann, M Kapa, M Paris, M Buenstorf, G Hanika, T Hotho, A Jäschke, R Stumme, G AF Koopmann, Tobias Stubbemann, Maximilian Kapa, Matthias Paris, Michael Buenstorf, Guido Hanika, Tom Hotho, Andreas Jaeschke, Robert Stumme, Gerd TI Proximity dimensions and the emergence of collaboration: a HypTrails study on German AI research SO SCIENTOMETRICS LA English DT Article DE Dimensions of proximity; Co-authorships; Co-inventorships; Embedding techniques; Collaboration ID KNOWLEDGE; INNOVATION; NETWORKS; SPILLOVERS; GEOGRAPHY; INDUSTRY AB Creation and exchange of knowledge depends on collaboration. Recent work has suggested that the emergence of collaboration frequently relies on geographic proximity. However, being co-located tends to be associated with other dimensions of proximity, such as social ties or a shared organizational environment. To account for such factors, multiple dimensions of proximity have been proposed, including cognitive, institutional, organizational, social and geographical proximity. Since they strongly interrelate, disentangling these dimensions and their respective impact on collaboration is challenging. To address this issue, we propose various methods for measuring different dimensions of proximity. We then present an approach to compare and rank them with respect to the extent to which they indicate co-publications and co-inventions. We adapt the HypTrails approach, which was originally developed to explain human navigation, to co-author and co-inventor graphs. We evaluate this approach on a subset of the German research community, specifically academic authors and inventors active in research on artificial intelligence (AI). We find that social proximity and cognitive proximity are more important for the emergence of collaboration than geographic proximity. C1 [Koopmann, Tobias; Hotho, Andreas] Univ Wurzburg, Data Sci Chair, Wurzburg, Germany. [Stubbemann, Maximilian; Jaeschke, Robert; Stumme, Gerd] L3S Res Ctr, Hannover, Germany. [Kapa, Matthias; Buenstorf, Guido] Univ Kassel, INCHER, Kassel, Germany. [Kapa, Matthias; Buenstorf, Guido] Univ Kassel, Inst Econ, Kassel, Germany. [Paris, Michael; Jaeschke, Robert] Humboldt Univ, Berlin, Germany. [Buenstorf, Guido] Univ Gothenburg, Innovat & Entrepreneurship Unit, Gothenburg, Sweden. [Hanika, Tom] Univ Kassel, Knowledge & Data Engn Grp, Kassel, Germany. C3 University of Wurzburg; Leibniz University Hannover; Universitat Kassel; Universitat Kassel; Humboldt University of Berlin; University of Gothenburg; Universitat Kassel RP Koopmann, T (corresponding author), Univ Wurzburg, Data Sci Chair, Wurzburg, Germany. EM koopmann@informatik.uni-wuerzburg.de; stubbemann@13s.de; kapa@incher.uni-kassel.de; michael.paris@hu-berlin.de; buenstorf@uni-kassel.de; hanika@cs.uni-kassel.de; hotho@informatik.uni-wuerzburg.de; robert.jaeschke@hu-berlin.de; stumme@13s.de RI Koopmann, Tobias/JKJ-5457-2023 OI Paris, Michael/0000-0003-2077-6984; Hanika, Tom/0000-0002-4918-6374; Koopmann, Tobias/0000-0002-7736-9864 FU German Federal Ministry of Education and Research(BMBF) [01PU17012A-D] FX Open Access funding enabled and organized by Projekt DEAL. This work is funded by the German Federal Ministry of Education and Research(BMBF) under grant numbers 01PU17012A-D. CR Aghion P, 2008, RAND J ECON, V39, P617, DOI 10.1111/j.1756-2171.2008.00031.x Ammar W., 2018, P 2018 C N AM CHAPT, V3, P84, DOI [DOI 10.18653/V1/N18-3011, 10.18653/v1/N18-3011] Audretsch DB, 1996, AM ECON REV, V86, P630 Balland PA, 2012, REG STUD, V46, P741, DOI 10.1080/00343404.2010.529121 Beltagy I, 2019, 2019 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING AND THE 9TH INTERNATIONAL JOINT CONFERENCE ON NATURAL LANGUAGE PROCESSING (EMNLP-IJCNLP 2019), P3615 Bode, 2019, J ECON GEOGR, pLBZ023 Boschma RA, 2005, REG STUD, V39, P61, DOI 10.1080/0034340052000320887 Breschi S, 2009, J ECON GEOGR, V9, P439, DOI 10.1093/jeg/lbp008 Broekel T, 2012, J ECON GEOGR, V12, P409, DOI 10.1093/jeg/lbr010 Buenstorf G, 2010, J URBAN ECON, V68, P103, DOI 10.1016/j.jue.2010.03.005 Burris V, 2004, AM SOCIOL REV, V69, P239, DOI 10.1177/000312240406900205 Catalini C, 2018, MANAGE SCI, V64, P4348, DOI 10.1287/mnsc.2017.2798 Crescenzi R, 2016, RES POLICY, V45, P177, DOI 10.1016/j.respol.2015.07.003 DEERWESTER S, 1990, J AM SOC INFORM SCI, V41, P391, DOI 10.1002/(SICI)1097-4571(199009)41:6<391::AID-ASI1>3.0.CO;2-9 Delgado M, 2010, J ECON GEOGR, V10, P495, DOI 10.1093/jeg/lbq010 Devlin J, 2019, 2019 CONFERENCE OF THE NORTH AMERICAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS: HUMAN LANGUAGE TECHNOLOGIES (NAACL HLT 2019), VOL. 1, P4171 Edquist C., 1996, Institutions and organizations in systems of innovation Espin-Noboa Lisette, 2017, Appl Netw Sci, V2, P16, DOI 10.1007/s41109-017-0036-1 Foltz PW, 1996, BEHAV RES METH INSTR, V28, P197, DOI 10.3758/BF03204765 Foltz PW, 1998, DISCOURSE PROCESS, V25, P285, DOI 10.1080/01638539809545029 Glänzel W, 2004, HANDBOOK OF QUANTITATIVE SCIENCE AND TECHNOLOGY RESEARCH: THE USE OF PUBLICATION AND PATENT STATISTICS IN STUDIES OF S&T SYSTEMS, P257 Gore SM., 1987, MRC NEWS, V35, P19 Grover A, 2016, KDD'16: PROCEEDINGS OF THE 22ND ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, P855, DOI 10.1145/2939672.2939754 Hardeman S, 2015, SCI PUBL POLICY, V42, P530, DOI 10.1093/scipol/scu070 Hautala J, 2011, J KNOWL MANAG, V15, P601, DOI 10.1108/13673271111151983 Heinisch D, 2016, ECON INNOV NEW TECH, V25, P553, DOI 10.1080/10438599.2015.1081333 Heinisch DP, 2018, SCIENTOMETRICS, V117, P351, DOI 10.1007/s11192-018-2840-5 Heinze T, 2009, RES POLICY, V38, P610, DOI 10.1016/j.respol.2009.01.014 Hirv T, 2018, J SCIENTOMETR RES, V7, P181, DOI 10.5530/jscires.7.3.29 Hoekman J, 2010, RES POLICY, V39, P662, DOI 10.1016/j.respol.2010.01.012 JAFFE AB, 1993, Q J ECON, V108, P577, DOI 10.2307/2118401 Katz JS, 1997, RES POLICY, V26, P1, DOI 10.1016/S0048-7333(96)00917-1 Katz Leo, 1953, PSYCHOMETRIKA, V18, P39 Kersting, 2019, CORR ABS190309516 Koopmann T, 2019, PROCEEDINGS OF THE 30TH ACM CONFERENCE ON HYPERTEXT AND SOCIAL MEDIA (HT '19), P143, DOI 10.1145/3342220.3343650 Le Q., 2014, 31 INT C MACH LEARN, P1188, DOI DOI 10.1145/2740908.2742760 Lee DD, 1999, NATURE, V401, P788, DOI 10.1038/44565 Lee DD, 2001, ADV NEUR IN, V13, P556 Lee JH, 2009, INFORM PROCESS MANAG, V45, P20, DOI 10.1016/j.ipm.2008.06.002 Lee S, 2005, SOC STUD SCI, V35, P673, DOI 10.1177/0306312705052359 Ley M, 2009, PROC VLDB ENDOW, V2, P1493, DOI 10.14778/1687553.1687577 Liu JY, 2018, SCIENTOMETRICS, V116, P161, DOI 10.1007/s11192-018-2762-2 Manning C.D., 2008, Introduction to information retrieval, DOI DOI 10.1017/CBO9780511809071 Marshall A, 1890, PRINCIPLES EC Mikolov T., 2013, ArXiv13013781 Cs, P1 Newman MEJ, 2004, P NATL ACAD SCI USA, V101, P5200, DOI 10.1073/pnas.0307545100 Newman MEJ, 2001, PHYS REV E, V64, DOI [10.1103/PhysRevE.64.016131, 10.1103/PhysRevE.64.016132] Niebler T, 2016, KUNSTL INTELL, V30, P163, DOI 10.1007/s13218-015-0417-5 Niebler T, 2016, CIKM'16: PROCEEDINGS OF THE 2016 ACM CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, P2311, DOI 10.1145/2983323.2983686 Nooteboom B., 2000, LEARNING INNOVATION, DOI [10.1093/acprof:oso/9780199241002.001.0001, DOI 10.1093/ACPROF:OSO/9780199241002.001.0001] Ou MD, 2016, KDD'16: PROCEEDINGS OF THE 22ND ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, P1105, DOI 10.1145/2939672.2939751 Paris, 2020, SUMMARY GAW Perkmann M, 2013, RES POLICY, V42, P423, DOI 10.1016/j.respol.2012.09.007 Perozzi B, 2014, PROCEEDINGS OF THE 20TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING (KDD'14), P701, DOI 10.1145/2623330.2623732 Polanyi, 1967, TACIT DIMENSION Pond R, 2007, PAP REG SCI, V86, P423, DOI 10.1111/j.1435-5957.2007.00126.x Singer P, 2015, PROCEEDINGS OF THE 24TH INTERNATIONAL CONFERENCE ON WORLD WIDE WEB (WWW 2015), P1003, DOI 10.1145/2736277.2741080 Sinoara RA, 2019, KNOWL-BASED SYST, V163, P955, DOI 10.1016/j.knosys.2018.10.026 Sparck-Jones K, 2004, J DOC, V60, P493, DOI [10.1108/00220410410560573, 10.1108/eb026526] Stern S, 2004, MANAGE SCI, V50, P835, DOI 10.1287/mnsc.1040.0241 Stubbemann, 2020, GERMAN INT NETWORK D Tarasconi, 2014, CRIOS PATSTAT DATABA Vaswani A, 2017, ADV NEUR IN, V30 Watts DJ., 2003, 6 DEGREES SCI CONNEC Werker C, 2019, J EVOL ECON, V29, P697, DOI 10.1007/s00191-019-00605-2 Wuchty S, 2007, SCIENCE, V316, P1036, DOI 10.1126/science.1136099 Xu, 2003, SIGIR 03, P267 Xu XJ, 2016, IEEE T INTELL TRANSP, V17, P2238, DOI 10.1109/TITS.2016.2519038 NR 68 TC 4 Z9 4 U1 3 U2 35 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0138-9130 EI 1588-2861 J9 SCIENTOMETRICS JI Scientometrics PD DEC PY 2021 VL 126 IS 12 BP 9847 EP 9868 DI 10.1007/s11192-021-03922-1 EA MAR 2021 PG 22 WC Computer Science, Interdisciplinary Applications; Information Science & Library Science WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Computer Science; Information Science & Library Science GA XF4WA UT WOS:000630848600008 OA hybrid, Green Published DA 2024-09-05 ER PT J AU Genkina, D AF Genkina, Dina TI Don't Start a Career as an AI Prompt Engineer AI will Take Your Job SO IEEE SPECTRUM LA English DT Article DE Engineering profession; Chatbots; Internet; Artificial intelligence; Employment; Career development; Market research; Mathematical models; Kirk field collapse effect AB Since ChatGPT dropped in the fall of 2022, everyone and their donkey has tried their hand at prompt engineering-finding a clever way to phrase their query to a large language model (LLM) or AI art or video generator to get the best results (or sidestep protections). The Internet is replete with prompt-engineering guides, cheat sheets, and advice threads to help you get the most out of an LLM. NR 0 TC 0 Z9 0 U1 7 U2 7 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9235 EI 1939-9340 J9 IEEE SPECTRUM JI IEEE Spectr. PD MAY PY 2024 VL 61 IS 5 BP 30 EP 34 DI 10.1109/MSPEC.2024.10523015 PG 5 WC Engineering, Electrical & Electronic WE Science Citation Index Expanded (SCI-EXPANDED) SC Engineering GA WE2L1 UT WOS:001253126000009 DA 2024-09-05 ER PT C AU Yu, LY AF Yu, Lingyun GP IEEE TI Application Research of SVM-based Mining Algorithm in Evaluation of College English Teaching SO 2016 INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION, BIG DATA & SMART CITY (ICITBS) LA English DT Proceedings Paper CT International Conference on Intelligent Transportation, Big Data & Smart City (ICITBS) CY DEC 17-18, 2016 CL Changsha, PEOPLES R CHINA DE evaluation; English teaching; SVM; data mining AB It is a problem of obtaining fair, accurate and fast evaluation of teacher in education and teaching, which is also an important premise of modern management in colleges. There exist some disadvantages as being subjective, poor accuracy and complex operation in traditional schemes. We proposed an improved method by combining data mining algorithm and the evaluation indicators of English teachers. SVM is used to classify the sample data. Then we attain the training model through training the sample data in the evaluation system and take the intelligent evaluation and analysis on the prediction data with the training model. Our method is testified to have advantage in comprehensive performance and application value by experiments. C1 [Yu, Lingyun] Sias Int Univ, Sch Foreign Languages, Xinzheng 451150, Peoples R China. RP Yu, LY (corresponding author), Sias Int Univ, Sch Foreign Languages, Xinzheng 451150, Peoples R China. EM 709740726@qq.com CR Jing Yang, 2011, Information Technology Journal, V10, P2140, DOI 10.3923/itj.2011.2140.2146 Sela Y, 2011, IEEE T BIO-MED ENG, V58, P2574, DOI 10.1109/TBME.2011.2159501 Wan Hongxin, 2012, SOURCE INT REV COMPU, V7, P3710 Yun Teng, 2013, Information Technology Journal, V12, P3764, DOI 10.3923/itj.2013.3764.3768 Zou Xiaowei, 2015, INT J HYBRID INFORM, V8, P509 NR 5 TC 1 Z9 1 U1 0 U2 1 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA BN 978-1-5090-6061-0 PY 2017 BP 73 EP 76 DI 10.1109/ICITBS.2016.124 PG 4 WC Computer Science, Information Systems; Computer Science, Interdisciplinary Applications; Telecommunications WE Conference Proceedings Citation Index - Science (CPCI-S) SC Computer Science; Telecommunications GA BJ7EQ UT WOS:000427175000018 DA 2024-09-05 ER PT C AU Magalhaes, GV Vieira, JPA Santos, RLD Barbosa, JLN Neto, PDD Moura, RS AF Magalhaes Junior, Gilvan Veras Albuquerque Vieira, Joao Paulo de Sales Santos, Roney Lira Nascimento Barbosa, Jardeson Leandro dos Santos Neto, Pedro de Alcantara Moura, Raimundo Santos GP IEEE TI A Study of the Influence of Textual Features in Learning Medical Prior Authorization SO 2019 IEEE 32ND INTERNATIONAL SYMPOSIUM ON COMPUTER-BASED MEDICAL SYSTEMS (CBMS) SE IEEE International Symposium on Computer-Based Medical Systems LA English DT Proceedings Paper CT 32nd IEEE International Symposium on Computer-Based Medical Systems (IEEE CBMS) CY JUN 05-07, 2019 CL Inst Maimonides Investigac Biomedica Cordoba, Cordoba, SPAIN HO Inst Maimonides Investigac Biomedica Cordoba DE Text Mining; Natural Language Processing; Machine Learning; Medical Prior Authorization; Health Insurance; Health Plan AB In Brazil, a current health problem is the low capacity of meeting an increasing demand for medical services. As a result, some people have resorted to supplementary health care, which involves the operation of private health plans and health insurance. However, many health maintenance organizations (HMO) face financial difficulties due to unnecessary procedures, fraud or abuses in the use of health services. In order to avoid unnecessary expenses, the HMO began to use a mechanism called prior authorization, where a prior analysis of each user's need is made to authorize or deny the required requests. This work aims to study the influence of the use of textual features in automatic prior authorization evaluation, by using Text Mining, Natural Language Processing and Machine Learning techniques. Experiments were performed using several machine learning algorithms combined with textual features, increasing the performance of the automatic prior authorization. Results indicate not only the textual features influence to the evaluation of the automatic prior authorization process but also improved the prediction of the classifiers. C1 [Magalhaes Junior, Gilvan Veras; Nascimento Barbosa, Jardeson Leandro; dos Santos Neto, Pedro de Alcantara] Infoway eHlth Co, Teresina, Brazil. [Magalhaes Junior, Gilvan Veras; Albuquerque Vieira, Joao Paulo; Nascimento Barbosa, Jardeson Leandro; dos Santos Neto, Pedro de Alcantara] Univ Fed Piaui, Teresina, Brazil. [de Sales Santos, Roney Lira] Univ Sao Paulo, Sao Carlos, SP, Brazil. [Moura, Raimundo Santos] Univ Fed Piaui, Dept Comp, Teresina, Brazil. C3 Universidade Federal do Piaui; Universidade de Sao Paulo; Universidade Federal do Piaui RP Magalhaes, GV (corresponding author), Infoway eHlth Co, Teresina, Brazil.; Magalhaes, GV (corresponding author), Univ Fed Piaui, Teresina, Brazil. EM gilvanvmj@gmail.com; joaopauloalbu@gmail.com; roneysantos@usp.br; jardeson@infoway-pi.com.br; pasn@ufpi.edu.br; rsm@ufpi.edu.br RI Neto, Pedro Santos/JXY-0805-2024; Veras, Gilvan/HLW-3131-2023 FU CNPq FX [5th] Researcher scholarship - DT Level 2, sponsored by CNPq CR Aljumah A. A., 2013, J KING SAUD U COMPUT, V25 Ambert KH, 2009, J AM MED INFORM ASSN, V16, P590, DOI 10.1197/jamia.M3095 [Anonymous], 2008, P 14 ACM SIGKDD INT Bertaglia T. F. C., 2016, P 2 WORKSH NOIS US G Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993 Cassimiro J. C., 2017, 2017 INT JOINT C NEU Chang J., 2009, P 22 INT C NEUR INF COE J., 2012, INT J APPL ENG RES, V7 Cohen AM, 2006, J AM MED INFORM ASSN, V13, P206, DOI 10.1197/jamia.M1929 de Araujo F. H. D., 2015, IEEE LATIN AM T, V13 de Araujo F. H. Duarte, 2014, DESCOBERTA CONHECIME Feldman R., 2006, TEXT MINING HDB Fuchs N. E., 2010, CONTR NAT LANG WORKS, V5972 GEMAN S, 1984, IEEE T PATTERN ANAL, V6, P721, DOI 10.1109/TPAMI.1984.4767596 Graham B, 2018, IEEE ACCESS, V6, P10458, DOI 10.1109/ACCESS.2018.2808843 Griffiths T. L., 2004, P NATL ACAD SCI S1, V101 Hastie T., 2009, Springer series in statistics Hong WS, 2018, PLOS ONE, V13, DOI 10.1371/journal.pone.0201016 Huang Y, 2005, J AM MED INFORM ASSN, V12, P275, DOI 10.1197/jamia.M1695 Karystianis G, 2014, J BIOMED SEMANT, V5, DOI 10.1186/2041-1480-5-22 Kose I, 2015, APPL SOFT COMPUT, V36, P283, DOI 10.1016/j.asoc.2015.07.018 Lu X., 2006, J AM MED INFORM ASS, V13 Lucini FR, 2017, INT J MED INFORM, V100, P1, DOI 10.1016/j.ijmedinf.2017.01.001 Masetic Z., 2016, COMPUTER METHODS PRO, V130 Mitchell Thomas M., 1997, Machine learning. McGraw Hill series in computer science, V1 Morid M. A., 2016, J BIOMEDICAL INFORM, V60 Peck J. S., 2012, ACAD EMERGENCY MED, V19 Perez J., 2018, COMPUTER METHODS PRO, V164 Rajaraman Anand, 2011, Data Mining Spasic I, 2014, INT J MED INFORM, V83, P605, DOI 10.1016/j.ijmedinf.2014.06.009 Sun Y., 2011, ACAD EMERGENCY MED, V18 Wellner B, 2007, J AM MED INFORM ASSN, V14, P564, DOI 10.1197/jamia.M2435 Yang H, 2009, J AM MED INFORM ASSN, V16, P596, DOI 10.1197/jamia.M3096 NR 33 TC 1 Z9 2 U1 1 U2 2 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA SN 2372-9198 BN 978-1-7281-2286-1 J9 COMP MED SY PY 2019 BP 56 EP 61 DI 10.1109/CBMS.2019.00021 PG 6 WC Computer Science, Information Systems; Computer Science, Interdisciplinary Applications; Engineering, Biomedical WE Conference Proceedings Citation Index - Science (CPCI-S) SC Computer Science; Engineering GA BO1SY UT WOS:000502356600012 DA 2024-09-05 ER PT J AU Nica, I Delcea, C Chirita, N AF Nica, Ionut Delcea, Camelia Chirita, Nora TI Mathematical Patterns in Fuzzy Logic and Artificial Intelligence for Financial Analysis: A Bibliometric Study SO MATHEMATICS LA English DT Article DE fuzzy logic; financial management; artificial intelligence; bibliometric analysis ID SYSTEMS; SETS AB In this study, we explored the dynamic field of fuzzy logic and artificial intelligence (AI) in financial analysis from 1990 to 2023. Utilizing the bibliometrix package in RStudio and data from the Web of Science, we focused on identifying mathematical models and the evolving role of fuzzy information granulation in this domain. The research addresses the urgent need to understand the development and impact of fuzzy logic and AI within the broader scope of evolving technological and analytical methodologies, particularly concentrating on their application in financial and banking contexts. The bibliometric analysis involved an extensive review of the literature published during this period. We examined key metrics such as the annual growth rate, international collaboration, and average citations per document, which highlighted the field's expansion and collaborative nature. The results revealed a significant annual growth rate of 19.54%, international collaboration of 21.16%, and an average citation per document of 25.52. Major journals such as IEEE Transactions on Fuzzy Systems, Fuzzy Sets and Systems, the Journal of Intelligent & Fuzzy Systems, and Information Sciences emerged as significant contributors, aligning with Bradford's Law's Zone 1. Notably, post-2020, IEEE Transactions on Fuzzy Systems showed a substantial increase in publications. A significant finding was the high citation rate of seminal research on fuzzy information granulation, emphasizing its mathematical importance and practical relevance in financial analysis. Keywords like "design", "model", "algorithm", "optimization", "stabilization", and terms such as "fuzzy logic controller", "adaptive fuzzy controller", and "fuzzy logic approach" were prevalent. The Countries' Collaboration World Map indicated a strong pattern of global interconnections, suggesting a robust framework of international collaboration. Our study highlights the escalating influence of fuzzy logic and AI in financial analysis, marked by a growth in research outputs and global collaborations. It underscores the crucial role of fuzzy information granulation as a mathematical model and sets the stage for further investigation into how fuzzy logic and AI-driven models are transforming financial and banking analysis practices worldwide. C1 [Nica, Ionut; Delcea, Camelia; Chirita, Nora] Bucharest Univ Econ Studies, Dept Econ Informat & Cybernet, Bucharest 0105552, Romania. C3 Bucharest University of Economic Studies RP Delcea, C (corresponding author), Bucharest Univ Econ Studies, Dept Econ Informat & Cybernet, Bucharest 0105552, Romania. EM ionut.nica@csie.ase.ro; camelia.delcea@csie.ase.ro; nora.chirita@csie.ase.ro RI Nica, Ionut/ABA-4243-2021; Delcea, Camelia/C-4343-2011 OI Nica, Ionut/0000-0003-2118-3654; Delcea, Camelia/0000-0003-3589-1969; Chirita, Nora/0009-0005-6633-9466 CR Abbas AF, 2022, COGENT BUS MANAG, V9, DOI 10.1080/23311975.2021.2016556 Ahmed IE, 2023, ARTIF INTELL REV, V56, P13873, DOI 10.1007/s10462-023-10473-9 Alonso S, 2009, J INFORMETR, V3, P273, DOI 10.1016/j.joi.2009.04.001 Aria M, 2017, J INFORMETR, V11, P959, DOI 10.1016/j.joi.2017.08.007 Bakir M, 2022, J AIR TRANSP MANAG, V104, DOI 10.1016/j.jairtraman.2022.102273 Bar-Ilan J., 2018, Front Res Metr Anal, V3, P6, DOI DOI 10.3389/FRMA.2018.00006 Blanco-Mesa F., 2016, P 2016 ANN C N AM FU, P1 Çaglayan N, 2024, DISCRETE DYN NAT SOC, V2024, DOI 10.1155/2024/7305880 Castelló-Sirvent F, 2022, MATHEMATICS-BASEL, V10, DOI 10.3390/math10081322 Cobo MJ, 2015, KNOWL-BASED SYST, V80, P3, DOI 10.1016/j.knosys.2014.12.035 Cobo MJ, 2011, J INFORMETR, V5, P146, DOI 10.1016/j.joi.2010.10.002 Costea A, 2014, PROC ECON FINANC, V10, P4, DOI 10.1016/S2212-5671(14)00271-8 Delcea C, 2023, KYBERNETES, DOI 10.1108/K-08-2023-1416 DESILVA CW, 1995, FUZZY SET SYST, V70, P223, DOI 10.1016/0165-0114(94)00219-W Díaz Córdova Jaime Fabián, 2017, Contad. Adm, V62, P1670, DOI 10.1016/j.cya.2017.09.001 Domenteanu A, 2023, APPL SCI-BASEL, V13, DOI 10.3390/app132312693 Dubois D, 2003, ARTIF INTELL-AMST, V148, P1, DOI 10.1016/S0004-3702(03)00118-8 European Central Bank, Digital Financial Inclusion GOGUEN JA, 1969, SYNTHESE, V19, P325, DOI 10.1007/BF00485654 Ionescu S, 2024, ALGORITHMS, V17, DOI 10.3390/a17010021 ISI Web of Science, KeyWords Plus Generation, Creation, and Changes Kablan Abdalla, 2010, 2010 International Conference on Financial Theory and Engineering (ICFTE), P57, DOI 10.1109/ICFTE.2010.5499424 Karnik NN, 1999, IEEE T FUZZY SYST, V7, P643, DOI 10.1109/91.811231 Keshavarz-Fathi M, 2023, J ACAD LIBR, V49, DOI 10.1016/j.acalib.2023.102714 Klir G.J., 2003, Encyclopedia of Information Systems, P511 Ko H, 2022, ELECTRONICS-SWITZ, V11, DOI 10.3390/electronics11010141 Lasfeto DB, 2023, J EDUC COMPUT RES, V60, P2081, DOI 10.1177/07356331221094249 Liang QL, 2000, IEEE T FUZZY SYST, V8, P535, DOI 10.1109/91.873577 Liu F, 2023, SCIENTOMETRICS, V128, P853, DOI 10.1007/s11192-022-04540-1 Liu WS, 2019, SCIENTOMETRICS, V121, P1815, DOI 10.1007/s11192-019-03238-1 Mendel JM, 2006, IEEE T FUZZY SYST, V14, P808, DOI 10.1109/TFUZZ.2006.879986 Mendel JM, 2002, IEEE T FUZZY SYST, V10, P117, DOI 10.1109/91.995115 Mhlanga D, 2020, INT J FINANC STUD, V8, DOI 10.3390/ijfs8030045 Modak NM, 2019, TRANSPORT RES A-POL, V120, P188, DOI 10.1016/j.tra.2018.11.015 Nguyen AT, 2019, IEEE COMPUT INTELL M, V14, P56, DOI 10.1109/MCI.2018.2881644 Ordoobadi SM, 2008, IND MANAGE DATA SYST, V108, P928, DOI 10.1108/02635570810898008 Palomero L, 2022, APPL SCI-BASEL, V12, DOI 10.3390/app12146894 Peng XD, 2020, TECHNOL ECON DEV ECO, V26, P695, DOI 10.3846/tede.2020.11920 Pradhan SK, 2009, APPL SOFT COMPUT, V9, P290, DOI 10.1016/j.asoc.2008.04.008 Pranckute R, 2021, PUBLICATIONS-BASEL, V9, DOI 10.3390/publications9010012 Rosario A.T., 2023, Businesses, V3, P402, DOI [10.3390/businesses3030025, DOI 10.3390/BUSINESSES3030025] Sandu A, 2023, INFORMATION, V14, DOI 10.3390/info14120659 Seoni S, 2023, COMPUT BIOL MED, V165, DOI 10.1016/j.compbiomed.2023.107441 Shukla AK, 2020, ENG APPL ARTIF INTEL, V92, DOI 10.1016/j.engappai.2020.103625 Srivastava RK, 2022, MATER TODAY-PROC, V51, P1878, DOI 10.1016/j.matpr.2021.10.097 Szmidt E, 2000, FUZZY SET SYST, V114, P505, DOI 10.1016/S0165-0114(98)00244-9 Takahashi A, 2021, ENG APPL ARTIF INTEL, V100, DOI 10.1016/j.engappai.2021.104154 TANAKA K, 1992, FUZZY SET SYST, V45, P135, DOI 10.1016/0165-0114(92)90113-I Tiwari R., 2020, Procedia Comput. Sci, V173, P149, DOI [DOI 10.1016/J.PROCS.2020.06.019, 10.1016/j.procs.2020.06.019] Tuan HD, 2001, IEEE T FUZZY SYST, V9, P324, DOI 10.1109/91.919253 Unvan YA, 2020, GAZI U J SCI, V33, P904, DOI 10.35378/gujs.730294 Visser M, 2021, QUANT SCI STUD, V2, P20, DOI [10.1162/qss_a_00112, 10.1162/qes_a_00112] Wang H., 2023, Math. Probl. Eng, V2023, P5926162, DOI [10.1155/2023/5926162, DOI 10.1155/2023/5926162] webofscience.clarivate, WoS Web of Science webofscience.help.clarivate, WoS Document Types Yager RR, 2017, IEEE T FUZZY SYST, V25, P1222, DOI 10.1109/TFUZZ.2016.2604005 Yang N, 2022, WIREL COMMUN MOB COM, V2022, DOI 10.1155/2022/7596094 Zadeh LA, 1997, FUZZY SET SYST, V90, P111, DOI 10.1016/S0165-0114(97)00077-8 Zadmirzaei M, 2024, SOFT COMPUT, V28, P565, DOI 10.1007/s00500-023-08300-y Zhang YP, 2023, INFORM FUSION, V92, P350, DOI 10.1016/j.inffus.2022.12.014 Zimmermann HJ, 2010, WIRES COMPUT STAT, V2, P317, DOI 10.1002/wics.82 Zimmermann HJ., 1996, Fuzzy set theory - and its applications, DOI DOI 10.1007/978-94-015-8702-0 Zupic I, 2015, ORGAN RES METHODS, V18, P429, DOI 10.1177/1094428114562629 NR 63 TC 1 Z9 1 U1 8 U2 8 PU MDPI PI BASEL PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND EI 2227-7390 J9 MATHEMATICS-BASEL JI Mathematics PD MAR PY 2024 VL 12 IS 5 AR 782 DI 10.3390/math12050782 PG 35 WC Mathematics WE Science Citation Index Expanded (SCI-EXPANDED) SC Mathematics GA KO0E1 UT WOS:001180780800001 OA gold DA 2024-09-05 ER PT J AU Dai, T Yan, WJ Zhang, KQ Qiu, C Zhao, XM Pan, SR AF Dai, Tao Yan, Wenjun Zhang, Kaiqi Qiu, Chen Zhao, Xiangmo Pan, Shirui TI Gated relational stacked denoising autoencoder with localized author embedding for global citation recommendation SO EXPERT SYSTEMS WITH APPLICATIONS LA English DT Article DE Global citation recommendation; Stacked denoising autoencoder; Topic model; Machine learning; Deep learning AB Citation recommendation is an effective and efficient way to facilitate authors finding desired references. This paper presents a novel neural network based model, called gated relational probabilistic stacked denoising autoencoder with localized author (GRSLA) embedding, for global citation recommendation task. Our model is comprised of two modules with different neural network architecture. For each citing and cited papers, we use a gated paper embedding module, which is extended from probabilistic stacked denoising autoencoder (PSDAE) by adding gated units, to obtain their paper vectors. The added gated units are able to utilize text information of cited paper to refine the vector representation of citing paper in multiple semantic levels. For an author in papers, we first apply topic model to obtain his/her semantic neighbors, and then use a localized author embedding (LAE) module to excavate author vector representation from semantic and explicit neighbors. Unlike most graph convolutional network (GCN) based methods, the LAE module is able to avoid computing global Laplacian in whole graph by taking limited neighbors. Moreover, the LAE module can also be stacked to absorb more neighbors, which makes our model have high extendibility. Based on the generation process of GRSLA, we also derive a learning algorithm of our model by maximum a posteriori (MAP) estimation. We conduct experiments on the AAN, DBLP and CORD-19 datasets, and the results show that GRSLA model works well than previous global citation recommendation methods. C1 [Dai, Tao; Yan, Wenjun; Zhang, Kaiqi] Changan Univ, Sch Econ & Management, Xian 710064, Shaanxi, Peoples R China. [Zhao, Xiangmo] Changan Univ, Sch Informat Engn, Xian 710064, Shaanxi, Peoples R China. [Qiu, Chen] Walmart Inc, Sams Club Innovat Ctr, Dallas, TX 75202 USA. [Pan, Shirui] Monash Univ, Fac Informat Technol, Melbourne, Vic, Australia. C3 Chang'an University; Chang'an University; Wal-Mart Stores Inc; Monash University RP Yan, WJ (corresponding author), Changan Univ, Sch Econ & Management, Xian 710064, Shaanxi, Peoples R China. EM daitao@chd.edu.cn; ywj@chd.edu.cn; kaiqizhang@chd.edu.cn; chen.qiu@ymail.com; xmzhao@chd.edu.cn; Shirui.Pan@monash.edu RI Qiu, Chen/P-9429-2017; Pan, Shirui/K-6763-2018; Zhang, Kai/HWQ-4396-2023 OI Pan, Shirui/0000-0003-0794-527X; FU Natural Science Foundation in Shaanxi Province of China [2019JQ-531, 2021JQ-289]; Social Science in Shaanxi Province of China [2020R007]; Major Theoretical and Practical Problems Research Project of Social Science in Shaanxi Province of China [2020Z357]; Fundamental Research Funds for the Central Universities, CHD [300102231302] FX This work was partially support by the Natural Science Foundation in Shaanxi Province of China (Project No. 2019JQ-531; No. 2021JQ-289) , Social Science in Shaanxi Province of China (Project No. 2020R007) , the Major Theoretical and Practical Problems Research Project of Social Science in Shaanxi Province of China (Project No. 2020Z357) and the Fundamental Research Funds for the Central Universities, CHD (Project No. 300102231302). CR Ali Z, 2020, EXPERT SYST APPL, V162, DOI 10.1016/j.eswa.2020.113790 [Anonymous], 2016, CBRECSYS RECSYS [Anonymous], 2008, Proceedings of the 17th international conference on World Wide Web [Anonymous], 2005, WWW '05 [Anonymous], 2010, Proceedings of the 10th Joint Conference on Digital Libraries, DOI DOI 10.1145/1816123.1816129 Bhagavatula C., 2018, Long Papers, V1, P238, DOI DOI 10.18653/V1/N18-1022 Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993 Bollacker K. D., 1998, Proceedings of the Second International Conference on Autonomous Agents, P116, DOI 10.1145/280765.280786 Cai XY, 2019, IEEE ACCESS, V7, P457, DOI 10.1109/ACCESS.2018.2885507 Cai XY, 2018, AAAI CONF ARTIF INTE, P5747 Cai XY, 2018, IEEE T NEUR NET LEAR, V29, P6026, DOI 10.1109/TNNLS.2018.2817245 Chen X, 2019, SCIENTOMETRICS, V121, P937, DOI 10.1007/s11192-019-03225-6 Cohn D, 2001, ADV NEUR IN, V13, P430 Dai T, 2020, IEEE-ACM T AUDIO SPE, V28, P553, DOI 10.1109/TASLP.2019.2949925 Devlin J., 2018, ARXIV Ebesu T, 2017, SIGIR'17: PROCEEDINGS OF THE 40TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, P1093, DOI 10.1145/3077136.3080730 Erosheva E, 2004, P NATL ACAD SCI USA, V101, P5220, DOI 10.1073/pnas.0307760101 Eto M, 2019, INFORM PROCESS MANAG, V56, DOI 10.1016/j.ipm.2019.05.007 Gori M, 2006, 2006 IEEE/WIC/ACM INTERNATIONAL CONFERENCE ON WEB INTELLIGENCE, (WI 2006 MAIN CONFERENCE PROCEEDINGS), P778, DOI 10.1109/WI.2006.149 Grover A, 2016, KDD'16: PROCEEDINGS OF THE 22ND ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, P855, DOI 10.1145/2939672.2939754 Habib R, 2019, SCIENTOMETRICS, V119, P643, DOI 10.1007/s11192-019-03053-8 Han JL, 2018, PROCEEDINGS OF THE 56TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL), VOL 1, P2384 Hassan Hebatallah A Mohamed, 2019, P ACM RECSYS 2019 LA, P6 Herbrich R, 2000, ADV NEUR IN, P115 Jardine James, 2014, P 14 C EUR CHAPT ASS, P501 Jeong C, 2020, SCIENTOMETRICS, V124, P1907, DOI 10.1007/s11192-020-03561-y Kanakia A, 2019, WEB CONFERENCE 2019: PROCEEDINGS OF THE WORLD WIDE WEB CONFERENCE (WWW 2019), P2893, DOI 10.1145/3308558.3313700 Khadka A, 2020, PROCEEDINGS OF THE 12TH INTERNATIONAL CONFERENCE ON LANGUAGE RESOURCES AND EVALUATION (LREC 2020), P2231 Kieu B.T., 2020, ARXIV PREPRINT ARXIV Kong XJ, 2021, IEEE T EMERG TOP COM, V9, P226, DOI 10.1109/TETC.2018.2830698 Le Q., 2014, 31 INT C MACH LEARN, P1188, DOI DOI 10.1145/2740908.2742760 Liu XM, 2005, INFORM PROCESS MANAG, V41, P1462, DOI 10.1016/j.ipm.2005.03.012 McNee SM, 2002, P 2002 ACM C COMP SU, P116, DOI DOI 10.1145/587078.587096 Meng FQ, 2013, PROCEEDINGS OF THE 22ND ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT (CIKM'13), P1509 Nallapati R. M., 2008, P 14 ACM SIGKDD INT, P542, DOI DOI 10.1145/1401890.1401957 Perozzi B, 2014, PROCEEDINGS OF THE 20TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING (KDD'14), P701, DOI 10.1145/2623330.2623732 Purushotham Sanjay, 2012, ICML, P759 Puschmann D, 2018, IEEE SYST J, V12, P1755, DOI 10.1109/JSYST.2017.2723818 Radev DR, 2013, LANG RESOUR EVAL, V47, P919, DOI 10.1007/s10579-012-9211-2 Ren X, 2014, PROCEEDINGS OF THE 20TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING (KDD'14), P821, DOI 10.1145/2623330.2623630 Robertson S. E., 1994, SIGIR '94. Proceedings of the Seventeenth Annual International ACM-SIGIR Conference on Research and Development in Information Retrieval, P232 Sharma R, 2017, LECT NOTES COMPUT SC, V10597, P687, DOI 10.1007/978-3-319-69900-4_87 Son J, 2018, DECIS SUPPORT SYST, V105, P24, DOI 10.1016/j.dss.2017.10.011 Strohman Trevor, 2007, 30th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, P705, DOI 10.1145/1277741.1277868 Sun JS, 2018, J INF SCI, V44, P696, DOI 10.1177/0165551517728449 Sunt YZ, 2011, PROC VLDB ENDOW, V4, P992 Tang J., 2008, KDD, P990, DOI DOI 10.1145/1401890.1402008 Vincent P., 2008, ICML, P1096, DOI [DOI 10.1145/1390156.1390294, 10.1145/1390156.1390294] Wang Chong, 2011, P ACM SIGKDD INT C K, P448, DOI DOI 10.1145/2020408.2020480 Wang H, 2017, AAAI CONF ARTIF INTE, P2688 Wang H, 2015, KDD'15: PROCEEDINGS OF THE 21ST ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, P1235, DOI 10.1145/2783258.2783273 Wang H, 2015, AAAI CONF ARTIF INTE, P3052 Wang H, 2015, IEEE T KNOWL DATA EN, V27, P1343, DOI 10.1109/TKDE.2014.2365789 Wang Lucy Lu, 2020, arXiv Yang CX, 2009, ACM-IEEE J CONF DIG, P203 Zhang Y, 2020, IEEE ACCESS, V8, P115865, DOI 10.1109/ACCESS.2020.3004599 NR 56 TC 9 Z9 9 U1 2 U2 26 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0957-4174 EI 1873-6793 J9 EXPERT SYST APPL JI Expert Syst. Appl. PD DEC 1 PY 2021 VL 184 AR 115359 DI 10.1016/j.eswa.2021.115359 EA JUN 2021 PG 18 WC Computer Science, Artificial Intelligence; Engineering, Electrical & Electronic; Operations Research & Management Science WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Computer Science; Engineering; Operations Research & Management Science GA WI0YM UT WOS:000708093400002 DA 2024-09-05 ER PT J AU Bhanage, DA Pawar, AV AF Bhanage, Deepali Arun Pawar, Ambika Vishal TI Bibliometric survey of IT Infrastructure Management to Avoid Failure Conditions SO INFORMATION DISCOVERY AND DELIVERY LA English DT Article DE Bibliometric analysis; Failure prediction; Deep learning; Machine learning; Log analysis; System log AB Purpose The purpose of this paper is to present the bibliometric study of articles IT Infrastructure Management to Avoid Failure Conditions. As in today's era of IT Industries, IT infrastructure management plays a crucial role. As a result, substantial research is going on to improve the reliability and availability of assets in IT infrastructure. Design/methodology/approach The paper analyzes and focuses the results acquired from articles accessed from Scopus for the past 15 years by examining in terms of frequently used keywords, the amount of work done in different countries and year-wise progression of the research, prolific authors, article citation frequencies, etc. Tools such as Gephi, Word Cloud, BiblioShiny, GPS visualizer, etc. are used for bibliometric analysis. Findings The study comes out with maximum publications of IT infrastructure management from conferences and journals. Anomaly detection, log analysis and learning system are the most frequently used keywords in the publications. Significant research has been done in the USA, followed by China under the area of Computer Science with an increase in publication since 2018. Originality/value This paper provides an accurate idea about the amount of work done in different countries and year-wise progression of the research. This bibliometric analysis will be useful for beginners to conduct a literature survey using appropriate literature available on the Scopus database. C1 [Bhanage, Deepali Arun; Pawar, Ambika Vishal] Symbiosis Int Deemed Univ, Symbiosis Inst Technol, Pune, Maharashtra, India. C3 Symbiosis International University; Symbiosis Institute of Technology (SIT) RP Pawar, AV (corresponding author), Symbiosis Int Deemed Univ, Symbiosis Inst Technol, Pune, Maharashtra, India. EM deepali.bhanage.phd2019@sitpune.edu.in; ambikap@sitpune.edu.in RI B, Deepali/AEU-3127-2022; Institute of Technology, Symbiosis Institute of Technology Symbiosis/AAC-5693-2019 OI B, Deepali/0000-0001-6022-4565; CR [Anonymous], 2018, P WORKSH BIG DAT AN Aussel N, 2018, I S MOD ANAL SIM COM, P237, DOI 10.1109/MASCOTS.2018.00031 Basak J, 2016, ACM T STORAGE, V12, DOI 10.1145/2846101 Chen CW, 2012, 2012 NINTH EUROPEAN DEPENDABLE COMPUTING CONFERENCE (EDCC 2012), P94, DOI 10.1109/EDCC.2012.14 Chuah E, 2019, J PARALLEL DISTR COM, V132, P95, DOI 10.1016/j.jpdc.2019.05.013 Chuah E, 2017, INT C HIGH PERFORM, P317, DOI 10.1109/HiPC.2017.00044 Fu XY, 2014, IEEE INT C CL COMP, P103, DOI 10.1109/CLUSTER.2014.6968768 Gainaru A, 2012, INT CONF HIGH PERFOR Huang L., 2010, CASCON 10 PROC C CTR, P313 Jain S, 2009, 16TH INTERNATIONAL CONFERENCE ON HIGH PERFORMANCE COMPUTING (HIPC), PROCEEDINGS, P254, DOI 10.1109/HIPC.2009.5433202 Otomo K, 2019, IEICE T INF SYST, VE102D, P1644, DOI 10.1587/transinf.2018OFP0007 Pecchia A, 2020, KNOWL-BASED SYST, V189, DOI 10.1016/j.knosys.2019.105054 Qiang W., 2014, IMPROVING LOG BASED, P446 Saadatfar H, 2012, NEW GENERAT COMPUT, V30, P73, DOI 10.1007/s00354-012-0105-z Trausan-Matu S., 2011, MANAGING LARGE SCALE, P1 Wang J, 2017, IBM J RES DEV, V61, DOI 10.1147/JRD.2017.2648298 Wang MY, 2018, 2018 4TH INTERNATIONAL CONFERENCE ON FRONTIERS OF SIGNAL PROCESSING (ICFSP 2018), P140, DOI 10.1109/ICFSP.2018.8552075 Zhang X, 2019, ESEC/FSE'2019: PROCEEDINGS OF THE 2019 27TH ACM JOINT MEETING ON EUROPEAN SOFTWARE ENGINEERING CONFERENCE AND SYMPOSIUM ON THE FOUNDATIONS OF SOFTWARE ENGINEERING, P807, DOI 10.1145/3338906.3338931 Ziming Zheng, 2010, 2010 International Conference on Dependable Systems and Networks Workshops (DSN-W), P15, DOI 10.1109/DSNW.2010.5542627 Zou DQ, 2016, J COMPUT SCI TECH-CH, V31, P1038, DOI 10.1007/s11390-016-1678-7 NR 20 TC 8 Z9 8 U1 0 U2 21 PU EMERALD GROUP PUBLISHING LTD PI BINGLEY PA HOWARD HOUSE, WAGON LANE, BINGLEY BD16 1WA, W YORKSHIRE, ENGLAND SN 2398-6247 J9 INF DISCOV DELIV JI Inf. Discov. Deliv. PY 2021 VL 49 IS 1 BP 45 EP 56 DI 10.1108/IDD-06-2020-0060] PG 12 WC Information Science & Library Science WE Emerging Sources Citation Index (ESCI) SC Information Science & Library Science GA RF9OI UT WOS:000635166800005 DA 2024-09-05 ER PT C AU Zelenkov, Y AF Zelenkov, Yuri BE Uden, L Ting, IH Corchado, JM TI The Topics Dynamics in Knowledge Management Research SO KNOWLEDGE MANAGEMENT IN ORGANIZATIONS, KMO 2019 SE Communications in Computer and Information Science LA English DT Proceedings Paper CT 14th International Conference on Knowledge Management in Organizations (KMO) - Synergistic Role of Knowledge Management in Organization CY JUL 15-18, 2019 CL Univ Salamanca, Zamora, SPAIN HO Univ Salamanca DE Knowledge management; Bibliometrics; Topic modeling; LDA ID TRENDS; PERFORMANCE; THEMES AB The intellectual structure of an academic discipline can be viewed as a set of interacting topics evolving over time. Dynamics of those topics i.e. changes in their popularity and impact is the subject of special attention because it reflects a shift in actual researchers' interest. This paper analyzes topics of knowledge management (KM) on the base of the topic modeling technique (namely Latent Dirichlet Allocation). Studying the flow of academic publications in 7 leading journals in 2010-2018, we identified 8 topics that concern different aspects of knowledge management science. Three topics, what focus on the social aspects of knowledge management (namely the context supporting knowledge transfer, the employees' incentives to share knowledge, and innovation), grow in terms of popularity and impact. Opposite, popularity and impact of topics, which focus on the practice of the knowledge management and organizational learning also as on the impact of intellectual capital on performance, decline. It is consistent with the opinion of other researchers that in the contemporary flow of scientific publication role of KM is identified more as a social process than a management engineering method. C1 [Zelenkov, Yuri] Natl Res Univ Higher Sch Econ, Moscow, Russia. C3 HSE University (National Research University Higher School of Economics) RP Zelenkov, Y (corresponding author), Natl Res Univ Higher Sch Econ, Moscow, Russia. EM yuri.zelenkov@gmail.com RI Zelenkov, Yuri/S-1331-2016 OI Zelenkov, Yuri/0000-0002-2248-1023 CR Akhavan P, 2016, SCIENTOMETRICS, V107, P1249, DOI 10.1007/s11192-016-1938-x [Anonymous], 2015, ARXIV151005154 Argote L, 2011, ORGAN SCI, V22, P1123, DOI 10.1287/orsc.1100.0621 Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993 Cauwelier P, 2016, LEARN ORGAN, V23, P458, DOI 10.1108/TLO-05-2016-0029 Chen CM, 2006, J AM SOC INF SCI TEC, V57, P359, DOI 10.1002/asi.20317 Dam HK, 2016, LECT NOTES ARTIF INT, V9862, P216, DOI 10.1007/978-3-319-44832-9_13 Dwivedi YK, 2011, INFORM SYST MANAGE, V28, P43, DOI 10.1080/10580530.2011.536112 Gaviria-Marin M, 2019, TECHNOL FORECAST SOC, V140, P194, DOI 10.1016/j.techfore.2018.07.006 Heisig P, 2016, J KNOWL MANAG, V20, P1169, DOI 10.1108/JKM-12-2015-0521 Inkinen H, 2015, J INTELLECT CAP, V16, P518, DOI 10.1108/JIC-01-2015-0002 Kamukama N, 2011, J INTELLECT CAP, V12, P152, DOI 10.1108/14691931111097953 Lambe P, 2011, J KNOWL MANAG, V15, P175, DOI 10.1108/13673271111119646 Lee MR, 2012, KNOWL-BASED SYST, V28, P47, DOI 10.1016/j.knosys.2011.11.016 Mann GS, 2006, OPENING INFORMATION HORIZONS, P65 Massaro M, 2015, J KNOWL MANAG, V19, P530, DOI 10.1108/JKM-11-2014-0466 McInnes L, 2020, Arxiv, DOI [arXiv:1802.03426, DOI 10.48550/ARXIV.1802.03426, 10.21105/joss.00861] Minonne C, 2012, KNOWL PROCESS MANAG, V19, P111, DOI 10.1002/kpm.1388 Nobre FS, 2011, INT J KNOWL MANAG, V7, P86, DOI 10.4018/jkm.2011040105 Rutten W, 2016, J KNOWL MANAG, V20, P199, DOI 10.1108/JKM-10-2015-0391 Serenko A, 2017, J KNOWL MANAG, V21, P675, DOI 10.1108/JKM-11-2016-0490 Sievert C., 2014, P WORKSH INT LANG LE, P63, DOI [10.3115/v1/W14-3110, DOI 10.3115/V1/W14-3110, 10.3115/v1/w14-3110] Steyvers Mark, 2007, Handbook of latent semantic analysis, V427, P424 Sun LJ, 2017, TRANSPORT RES C-EMER, V77, P49, DOI 10.1016/j.trc.2017.01.013 Syed S, 2017, PR INT CONF DATA SC, P165, DOI 10.1109/DSAA.2017.61 Tzortzaki AM, 2014, KNOWL PROCESS MANAG, V21, P29, DOI 10.1002/kpm.1429 van Eck NJ, 2010, SCIENTOMETRICS, V84, P523, DOI 10.1007/s11192-009-0146-3 Wang CF, 2011, J KNOWL MANAG, V15, P802, DOI 10.1108/13673271111174339 Wang P, 2018, SUSTAINABILITY-BASEL, V10, DOI 10.3390/su10030682 Zéghal D, 2010, J INTELLECT CAP, V11, P39, DOI 10.1108/14691931011013325 NR 30 TC 2 Z9 2 U1 2 U2 6 PU SPRINGER INTERNATIONAL PUBLISHING AG PI CHAM PA GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND SN 1865-0929 EI 1865-0937 BN 978-3-030-21451-7; 978-3-030-21450-0 J9 COMM COM INF SC PY 2019 VL 1027 BP 324 EP 335 DI 10.1007/978-3-030-21451-7_28 PG 12 WC Computer Science, Theory & Methods; Operations Research & Management Science WE Conference Proceedings Citation Index - Science (CPCI-S) SC Computer Science; Operations Research & Management Science GA BP5RT UT WOS:000558101000028 DA 2024-09-05 ER PT J AU Jung, S Yoon, WC AF Jung, Sukhwan Yoon, Wan Chul TI An alternative topic model based on Common Interest Authors for topic evolution analysis SO JOURNAL OF INFORMETRICS LA English DT Article DE Topic modeling; Bibliographic network; Topic evolution; Scientometric ID MULTILAYER GRAPHS; COMMUNITY DETECTION; SCIENCE; TRENDS AB y Topic modeling methods aim to extract semantic topics from unstructured documents, and topic evolution is one of its branches seeking to analyze how temporal topics in a set of documents evolve and has shown successful identification of content transitions within static topics over time; yet, the inherent limitations of topic modeling methods inhibit traditional topic evolution methods from highlighting topical correlations between different, dynamic topics. The authors propose an alternative topic modeling method conscious of the topical correlation in the academic domain by introducing the notion of the common interest authors (CIA(1)), defining a topic as a set of shared common research interests of a researcher group. Publication records related to the Human Computer Interaction field were extracted from the Microsoft Academic Graph dataset, with virtual reality as the target field of research. The result showed that the proposed alternative topic modeling is capable of successfully model coherent topics regardless of the topic size with only the meta-data of the document set, indicating that the alternative approach is not only capable of allowing topic correlation analysis during the topic evolution but also able to generate coherent topics at the same time. (C) 2020 Published by Elsevier Ltd. C1 [Jung, Sukhwan] Univ S Alabama, Dept Comp Sci, 307 N Univ Blvd, Mobile, AL 36688 USA. [Yoon, Wan Chul] Korea Adv Inst Sci & Technol, Dept Knowledge Serv Engn, 291 Daehak Ro, Daejeon 34141, South Korea. C3 University of South Alabama; Korea Advanced Institute of Science & Technology (KAIST) RP Yoon, WC (corresponding author), Korea Adv Inst Sci & Technol, Dept Knowledge Serv Engn, 291 Daehak Ro, Daejeon 34141, South Korea. EM shjung@southalabama.edu RI Jung, Suk hwan/HIK-1039-2022; Yoon, Wan Chul/C-1982-2011 CR Amancio DR, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0136076 [Anonymous], 2012, REV VALDOTAINE HIST [Anonymous], 2009, Proceeding of the 18th ACM Conference on Information and Knowledge Management, DOI DOI 10.1145/1645953.1646076 [Anonymous], 1998, P DARPA BROADC NEWS [Anonymous], 2011, Proceedings of the 17th ACM SIGKDD Interna- tional Conference on Knowledge Discovery and Data Mining Ausloos M., 2012, ARXIV12071614PHYSICS Batagelj V, 2013, SCIENTOMETRICS, V96, P845, DOI 10.1007/s11192-012-0940-1 Blei D, 2006, P 23 INT C MACH LEAR, P113 Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993 Bongers A, 2014, TECHNOL FORECAST SOC, V87, P125, DOI 10.1016/j.techfore.2013.12.007 Borner K, 2005, COMPLEXITY, V10, P57, DOI 10.1002/cplx.20078 CALLON M, 1983, SOC SCI INFORM, V22, P191, DOI 10.1177/053901883022002003 Cancho RFI, 2004, PHYS REV E, V69, DOI 10.1103/PhysRevE.69.051915 Castano S, 2017, FUTURE GENER COMP SY, V68, P391, DOI 10.1016/j.future.2016.07.005 Chen BT, 2017, J INFORMETR, V11, P1175, DOI 10.1016/j.joi.2017.10.003 Chen C., 2019, AAAI, V33, P3371 de Arruda HF, 2016, CHAOS, V26, DOI 10.1063/1.4954215 Ding Y, 2011, J INFORMETR, V5, P187, DOI 10.1016/j.joi.2010.10.008 Dong XW, 2014, IEEE T SIGNAL PROCES, V62, P905, DOI 10.1109/TSP.2013.2295553 Dong XW, 2012, IEEE T SIGNAL PROCES, V60, P5820, DOI 10.1109/TSP.2012.2212886 Fiscus JG, 2002, KLUW S INF, V12, P17 Gaul WG, 2017, ADV DATA ANAL CLASSI, V11, P159, DOI 10.1007/s11634-016-0241-2 Guo Z, 2014, IEEE T KNOWL DATA EN, V26, P780, DOI 10.1109/TKDE.2013.56 Hoffman Matthew, 2010, ADV NEURAL INFORM PR, P856 Hopcroft J, 2004, P NATL ACAD SCI USA, V101, P5249, DOI 10.1073/pnas.0307750100 Huan J, 2003, THIRD IEEE INTERNATIONAL CONFERENCE ON DATA MINING, PROCEEDINGS, P549 Hug SE, 2017, SCIENTOMETRICS, V111, P371, DOI 10.1007/s11192-017-2247-8 Jo Yookyung., 2011, P 20 INT C WORLD WID, P257, DOI DOI 10.1145/1963405.1963444 Kay L, 2014, J ASSOC INF SCI TECH, V65, P2432, DOI 10.1002/asi.23146 KESSLER MM, 1963, AM DOC, V14, P10, DOI 10.1002/asi.5090140103 Kim J, 2015, SIGMOD REC, V44, P37, DOI 10.1145/2854006.2854013 Kleinberg J, 2003, DATA MIN KNOWL DISC, V7, P373, DOI 10.1023/A:1024940629314 Levy O., NEURAL WORD EMBEDDIN, P9 Li MN, 2017, J INF SCI, V43, P725, DOI 10.1177/0165551516661914 Liu YB, 2008, J COMPUT SCI TECH-CH, V23, P112, DOI 10.1007/s11390-008-9115-1 Louppe G, 2016, COMM COM INF SC, V649, P272, DOI 10.1007/978-3-319-45880-9_21 Martin S, 2011, PROC SPIE, V7868, DOI 10.1117/12.871402 Mei Qiaozhu., 2005, KDD 05, P198, DOI DOI 10.1145/1081870.1081895 Menenberg M, 2016, 2016 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), P3509, DOI 10.1109/BigData.2016.7841014 Mikolov T., 2013, ARXIV Mikolov T., DISTRIBUTED REPRESEN, P9 Mimno David, 2011, P C EMPIRICAL METHOD, P262 Mucha PJ, 2010, SCIENCE, V328, P876, DOI 10.1126/science.1184819 Newman D., 2010, P HUM LANG TECHN ANN, P100 Newman NC, 2014, J ENG TECHNOL MANAGE, V32, P97, DOI 10.1016/j.jengtecman.2013.09.001 Paul S, 2016, ELECTRON J STAT, V10, P3807, DOI 10.1214/16-EJS1211 PORTER AL, 1995, TECHNOL FORECAST SOC, V49, P237, DOI 10.1016/0040-1625(95)00022-3 Resnik P, 1999, J ARTIF INTELL RES, V11, P95, DOI 10.1613/jair.514 Rocklin M, 2013, INTERNET MATH, V9, P82, DOI 10.1080/15427951.2012.678191 Rosen-Zvi Michal., 2004, UAI Schramm T., 2017, C LEARNING THEORY Segev Aviv, 2009, International Journal of Information Systems for Crisis Response and Management, V1, P16, DOI 10.4018/jiscrm.2009040102 Segev A, 2015, IEEE T SERV COMPUT, V8, P903, DOI 10.1109/TSC.2014.2338855 Shiga M, 2012, IEEE T KNOWL DATA EN, V24, P577, DOI 10.1109/TKDE.2010.272 Sidiropoulos ND, 2017, IEEE T SIGNAL PROCES, V65, P3551, DOI 10.1109/TSP.2017.2690524 Silva FN, 2016, J INFORMETR, V10, P487, DOI 10.1016/j.joi.2016.03.008 Steyvers Mark, 2007, Handbook of latent semantic analysis, V427, P424, DOI [DOI 10.4324/9780203936399.CH21, 10.4324/9780203936399.ch21, DOI 10.1371/JOURNAL.PONE.0073791] Strotmann A, 2012, J AM SOC INF SCI TEC, V63, P1820, DOI 10.1002/asi.22695 Tang W, 2009, IEEE DATA MINING, P1016, DOI 10.1109/ICDM.2009.125 Torvik VI, 2009, ACM T KNOWL DISCOV D, V3, DOI 10.1145/1552303.1552304 Wang W, 2017, COMM COM INF SC, V768, P18, DOI 10.1007/978-981-10-6893-5_2 Wang Xuerui., P 12 ACM SIGKDD INT, P424 White HD, 1998, J AM SOC INFORM SCI, V49, P327, DOI 10.1002/(SICI)1097-4571(19980401)49:4<327::AID-ASI4>3.0.CO;2-W Yan EJ, 2012, J AM SOC INF SCI TEC, V63, P1313, DOI 10.1002/asi.22680 Zhang ZY, 2013, KNOWL INF SYST, V34, P243, DOI 10.1007/s10115-011-0460-y Zhong S, 2005, NEURAL NETWORKS, V18, P790, DOI 10.1016/j.neunet.2005.06.008 NR 66 TC 27 Z9 31 U1 2 U2 98 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS SN 1751-1577 EI 1875-5879 J9 J INFORMETR JI J. Informetr. PD AUG PY 2020 VL 14 IS 3 AR 101040 DI 10.1016/j.joi.2020.101040 PG 19 WC Computer Science, Interdisciplinary Applications; Information Science & Library Science WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Computer Science; Information Science & Library Science GA NN5JF UT WOS:000568824100005 DA 2024-09-05 ER PT C AU Knop, S Merchel, R Poeppelbuss, J AF Knop, Sebastian Merchel, Robin Poeppelbuss, Jens BE Huang, GQ Qu, T Thurer, M Xu, S Khalgui, M TI Author Collaboration in Ten Years of IPS2: A Bibliometric Analysis SO 11TH CIRP CONFERENCE ON INDUSTRIAL PRODUCT-SERVICE SYSTEMS SE Procedia CIRP LA English DT Proceedings Paper CT 11th CIRP Conference on Industrial Product-Service Systems CY MAY 29-31, 2019 CL PEOPLES R CHINA DE Author Collaboration; Industrial Product-Service Systems; Bibliometric Analysis; Machine Learning; Random Forests ID WEIGHTED KAPPA; SERVITIZATION AB This paper investigates author collaboration at the Conference on Industrial Product-Service Systems (IPS2). Previous work showed that there is only a loose collaboration between authors from different countries in the field of Product-Service System research. This study aims to extend and refine these findings by also taking the authors' disciplines and affiliations into account. We analyze 694 articles written by a total of 1,131 authors using both bibliometric analysis and a machine learning technique. We identify collaboration patterns that illustrate how researcher communities collaborate within their country, either on countrywide or regional level. Furthermore, the authors' disciplines also influence their tendency to collaborate with authors from other disciplines. We conclude that a shared cultural background, language, and discipline promote the collaboration of authors from the IPS2 community. (C) 2019 The Authors. Published by Elsevier B.V. C1 [Knop, Sebastian; Merchel, Robin; Poeppelbuss, Jens] Ruhr Univ Bochum, Ind Sales & Serv Engn, Univ Str 150, D-44801 Bochum, Germany. C3 Ruhr University Bochum RP Knop, S (corresponding author), Ruhr Univ Bochum, Ind Sales & Serv Engn, Univ Str 150, D-44801 Bochum, Germany. EM sebastian.knop@isse.rub.de OI Poeppelbuss, Jens/0000-0003-4960-7818; Knop, Sebastian/0000-0002-9187-9254 CR [Anonymous], 2001, P 7 INT C CONCURRENT Galvao GDA, 2018, PROC CIRP, V73, P79, DOI 10.1016/j.procir.2018.04.011 Beuren FH, 2013, J CLEAN PROD, V47, P222, DOI 10.1016/j.jclepro.2012.12.028 Beverungen D, 2017, WIRTSCH 2017 P Bhattacharyya S, 2011, DECIS SUPPORT SYST, V50, P602, DOI 10.1016/j.dss.2010.08.008 Blondel VD, 2008, J STAT MECH-THEORY E, DOI 10.1088/1742-5468/2008/10/P10008 Boulesteix AL, 2012, WIRES DATA MIN KNOWL, V2, P493, DOI 10.1002/widm.1072 Breiman L., 2001, Machine Learning, V45, P5, DOI 10.1023/A:1010933404324 Cagliero L, 2018, SCIENTOMETRICS, V116, P1273, DOI 10.1007/s11192-018-2737-3 Chipidza W., 2016, INT C INF SYST ICIS COHEN J, 1968, PSYCHOL BULL, V70, P213, DOI 10.1037/h0026256 Doja A, 2014, BMC MED EDUC, V14, DOI 10.1186/s12909-014-0243-8 FLEISS JL, 1973, EDUC PSYCHOL MEAS, V33, P613, DOI 10.1177/001316447303300309 Franceschet M, 2010, J INFORMETR, V4, P540, DOI 10.1016/j.joi.2010.06.003 Goedkoop MJ, ECOLOGICAL EC BASICS Jagadishwari V., 2017, P 2017 IEEE 2 INT C, P1 Knop S, 2017, INT C INF SYST ICIS Kuhn M, 2008, J STAT SOFTW, V28, P1, DOI 10.18637/jss.v028.i05 Labatut V., 2011, Journal of Convergence Information Technology, DOI 10.4156/jcit.vol6.issue11.32 Liang LM, 2002, SCIENTOMETRICS, V54, P473, DOI 10.1023/A:1016042718548 Loh WY, 2011, WIRES DATA MIN KNOWL, V1, P14, DOI 10.1002/widm.8 Martín-Peña ML, 2017, J ENG TECHNOL MANAGE, V43, P83, DOI 10.1016/j.jengtecman.2017.01.005 Meier H, 2010, CIRP ANN-MANUF TECHN, V59, P607, DOI 10.1016/j.cirp.2010.05.004 Mendes GHS, 2015, PRODUCT SERVICE SYST, V7, P291 Nepusz T, 2006, InterJournal Comp. Syst., VComplex Systems, P1695 Newman MEJ, 2006, P NATL ACAD SCI USA, V103, P8577, DOI 10.1073/pnas.0601602103 Newman MEJ, 2004, PHYS REV E, V69, DOI 10.1103/PhysRevE.69.026113 Oliveira MG, 2015, PROC CIRP, V30, P114, DOI 10.1016/j.procir.2015.02.139 Pilkington A, 2017, IN C IND ENG ENG MAN, P1154, DOI 10.1109/IEEM.2017.8290073 Rabetino R, 2018, INT J OPER PROD MAN, V38, P350, DOI 10.1108/IJOPM-03-2017-0175 Speybroeck N, 2012, INT J PUBLIC HEALTH, V57, P243, DOI 10.1007/s00038-011-0315-z Tuli KR, 2007, J MARKETING, V71, P1, DOI 10.1509/jmkg.71.3.1 Vandermerwe S., 1988, EUROPEAN MANAGEMENT, V6, P314, DOI [10.1016/0263-2373(88)90033-3, DOI 10.1016/0263-2373(88)90033-3] NR 33 TC 0 Z9 0 U1 1 U2 4 PU ELSEVIER PI AMSTERDAM PA Radarweg 29, PO Box 211, AMSTERDAM, NETHERLANDS SN 2212-8271 J9 PROC CIRP PY 2019 VL 83 BP 22 EP 27 DI 10.1016/j.procir.2019.03.092 PG 6 WC Engineering, Industrial WE Conference Proceedings Citation Index - Science (CPCI-S) SC Engineering GA BP8WE UT WOS:000568146700004 OA gold DA 2024-09-05 ER PT J AU Li, JZ Liu, ZX Zhou, JH AF Li, Jizhen Liu, Zixu Zhou, Jianghua TI How to become the chosen one in the artificial intelligence market: the evidence from China SO INTERNATIONAL JOURNAL OF TECHNOLOGY MANAGEMENT LA English DT Article DE artificial intelligence market; small and medium-sized enterprises; SMEs; innovation performance; social investment; institutional intermediaries; public funding; Innofund; signalling effects; China ID RESEARCH-AND-DEVELOPMENT; DEVELOPMENT SUBSIDIES; ENTREPRENEURIAL FIRMS; PUBLIC SUPPORT; POLITICAL TIES; INNOVATION; PERFORMANCE; INVESTMENT; STRATEGIES; LEGITIMACY AB This study aims to explore how firms' innovation performance is related to their possibility of receiving public support, and the boundary conditions of this relationship. Specifically, we focus on the firms in the Chinese artificial intelligence (AI) market, and study a specific public support, namely, Innofund. The results suggest that a firm's innovation performance has an inverted U-shaped effect on its probability of receiving Innofund. The effect, moreover, is moderated by whether a firm has received social investment, that is, the relationship between innovation performance and the probability of receiving funding is flattened by the receipt of social investment. Besides, a firm's ties to institutional intermediaries further strengthen the moderating effect of social investment. The findings carry implications for future research and technology policy. C1 [Li, Jizhen; Liu, Zixu] Tsinghua Univ, Res Ctr Competit Dynam & Innovat Strategy, Sch Econ & Management, Beijing 100084, Peoples R China. [Zhou, Jianghua] Beijing Normal Univ, Business Sch, Beijing 100875, Peoples R China. C3 Tsinghua University; Beijing Normal University RP Zhou, JH (corresponding author), Beijing Normal Univ, Business Sch, Beijing 100875, Peoples R China. EM lijzh@sem.tsinghua.edu.cn; liuzx.18@sem.tsinghua.edu.cn; zhoujh@bnu.edu.cn RI zhou, jiang/KZQ-3297-2024; LI, Jizhen/A-7113-2018 OI LI, Jizhen/0000-0003-1940-5633 FU National Natural Science Foundation of China [71772103, 71772014]; MOE Project of Key Research Institute of Humanities and Social Sciences at Universities [16JJD630005] FX This paper is supported by National Natural Science Foundation of China (Project Nos. 71772103; 71772014) and MOE Project of Key Research Institute of Humanities and Social Sciences at Universities (16JJD630005). CR Acs ZJ, 2002, RES POLICY, V31, P1069, DOI 10.1016/S0048-7333(01)00184-6 Ahlstrom D, 2008, J WORLD BUS, V43, P385, DOI 10.1016/j.jwb.2008.03.001 Almus M, 2003, J BUS ECON STAT, V21, P226, DOI 10.1198/073500103288618918 Armanios DE, 2017, STRATEGIC MANAGE J, V38, P1373, DOI 10.1002/smj.2575 Arnoldi J, 2015, MANAGE ORGAN REV, V11, P217, DOI 10.1017/mor.2015.14 Becker B, 2015, J ECON SURV, V29, P917, DOI 10.1111/joes.12074 Bronzini R, 2016, RES POLICY, V45, P442, DOI 10.1016/j.respol.2015.10.008 Chapman G, 2018, TECHNOVATION, V69, P28, DOI 10.1016/j.technovation.2017.10.004 Chen J, 2018, RES POLICY, V47, P108, DOI 10.1016/j.respol.2017.10.004 Clausen Tommy H., 2009, Structural Change and Economic Dynamics, V20, P239, DOI 10.1016/j.strueco.2009.09.004 Daugherty PR, 2019, MIT SLOAN MANAGE REV, V60, P10 Dimos C, 2016, RES POLICY, V45, P797, DOI 10.1016/j.respol.2016.01.002 Djupdal K, 2015, INT SMALL BUS J, V33, P148, DOI 10.1177/0266242613486688 Dorigo M, 2006, IEEE COMPUT INTELL M, V1, P28, DOI 10.1109/MCI.2006.329691 Du XQ, 2016, MANAGE ORGAN REV, V12, P103, DOI 10.1017/mor.2015.40 Guo D, 2016, RES POLICY, V45, P1129, DOI 10.1016/j.respol.2016.03.002 Hallen BL, 2012, ACAD MANAGE J, V55, P35, DOI 10.5465/amj.2009.0620 Hottenrott H, 2017, RES POLICY, V46, P1118, DOI 10.1016/j.respol.2017.04.004 Hsu YG, 2003, R&D MANAGE, V33, P539, DOI 10.1111/1467-9310.00315 Huang CC, 2008, OMEGA-INT J MANAGE S, V36, P1038, DOI 10.1016/j.omega.2006.05.003 Karaboga D, 2014, ARTIF INTELL REV, V42, P21, DOI 10.1007/s10462-012-9328-0 Kleer R, 2010, RES POLICY, V39, P1361, DOI 10.1016/j.respol.2010.08.001 Marino M, 2016, RES POLICY, V45, P1715, DOI 10.1016/j.respol.2016.04.009 ORAL M, 1991, MANAGE SCI, V37, P871, DOI 10.1287/mnsc.37.7.871 Peng MW, 2003, ACAD MANAGE REV, V28, P275, DOI 10.5465/AMR.2003.9416341 Podolny JM, 2001, AM J SOCIOL, V107, P33, DOI 10.1086/323038 Radas S, 2015, TECHNOVATION, V38, P15, DOI 10.1016/j.technovation.2014.08.002 Rahwan I, 2009, ARGUMENTATION IN ARTIFICIAL INTELLIGENCE, P1, DOI 10.1007/978-0-387-98197-0 Rao RS, 2008, J MARKETING, V72, P58, DOI 10.1509/jmkg.72.4.58 Sheng SB, 2011, J MARKETING, V75, P1, DOI 10.1509/jmkg.75.1.1 Shrivastava P, 2016, INT J TECHNOL MANAGE, V70, P76, DOI 10.1504/IJTM.2016.074672 Soh PH, 2004, ACAD MANAGE J, V47, P907 Terry H.P., 2016, AI MACHINE LEARNING TOOTHMAKER LE, 1994, J OPER RES SOC, V45, P119 Wu AH, 2017, TECHNOL FORECAST SOC, V117, P339, DOI 10.1016/j.techfore.2016.08.033 Yan JZ, 2018, STRATEGIC MANAGE J, V39, P2152, DOI 10.1002/smj.2908 Zhou J., 2018, ASIA PACIFIC J MANAG NR 37 TC 3 Z9 3 U1 3 U2 42 PU INDERSCIENCE ENTERPRISES LTD PI GENEVA PA WORLD TRADE CENTER BLDG, 29 ROUTE DE PRE-BOIS, CASE POSTALE 856, CH-1215 GENEVA, SWITZERLAND SN 0267-5730 EI 1741-5276 J9 INT J TECHNOL MANAGE JI Int. J. Technol. Manage. PY 2020 VL 84 IS 1-2 SI SI BP 8 EP 24 PG 17 WC Engineering, Multidisciplinary; Management; Operations Research & Management Science WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Engineering; Business & Economics; Operations Research & Management Science GA PS3BF UT WOS:000607800400001 DA 2024-09-05 ER PT J AU Wong, LH Park, H Looi, CK AF Wong, Lung-Hsiang Park, Hyejin Looi, Chee-Kit TI From hype to insight: Exploring ChatGPT's early footprint in education via altmetrics and bibliometrics SO JOURNAL OF COMPUTER ASSISTED LEARNING LA English DT Article DE AI in education; altmetrics; bibliometrics; ChatGPT in education; probing publication deluge; research impact ID IMPACT AB Background: The emergence of ChatGPT in the education literature represents a transformative phase in educational technology research, marked by a surge in publications driven by initial research interest in new topics and media hype. While these publications highlight ChatGPT's potential in education, concerns arise regarding their quality, methodology, and uniqueness. Objective: Our study employs unconventional methods by combining altmetrics and bibliometrics to explore ChatGPT in education comprehensively. Methods: Two scholarly databases, Web of Science and Altmetric, were adopted to retrieve publications with citations and those mentioned on social media, respectively. We used a search query, "ChatGPT," and set the publication date between November 30th, 2022, and August 31st, 2023. Both datasets were within the education-related domains. Through a filtering process, we identified three publication categories: 49 papers with both altmetrics and citations, 60 with altmetrics only, and 66 with citations only. Descriptive statistical analysis was conducted on all three lists of papers, further dividing the entire collection into three distinct periods. All the selected papers underwent detailed coding regarding open access, paper types, subject domains, and learner levels. Furthermore, we analysed the keywords occurring and visualized clusters of the co-occurring keywords. Results and Conclusions: An intriguing finding is the significant correlation between media/social media mentions and academic citations in ChatGPT in education papers, underscoring the transformative potential of ChatGPT and the urgency of its incorporation into practice. Our keyword analysis also reveals distinctions between the themes of the papers that received both mentions and citations and those that received only citations but no mentions. Additionally, we noticed a limitation that authors' choice of keywords might be influenced by individual subjective judgements, potentially skewing results in thematic analysis based solely on author-assigned keywords such as keyword co-occurrence analysis. Henceforth, we advocate for developing a standardized keyword taxonomy in the educational technology field and integrating Large Language Models to enhance keyword analysis in altmetric and bibliometric tools. This study reveals that ChatGPT in education literature is evolving from rapid publication to rigorous research. C1 [Wong, Lung-Hsiang] Nanyang Technol Univ, Natl Inst Educ, Singapore, Singapore. [Park, Hyejin] Korea Inst Sci & Technol Informat, Daejeon, South Korea. [Looi, Chee-Kit] Educ Univ Hong Kong, Dept Curriculum & Instruct, Hong Kong, Peoples R China. [Park, Hyejin] Korea Inst Sci & Technol Informat, 245 Daehak Ro, Daejeon 34141, South Korea. C3 Nanyang Technological University; National Institute of Education (NIE) Singapore; Korea Institute of Science & Technology Information (KISTI); Education University of Hong Kong (EdUHK); Korea Institute of Science & Technology Information (KISTI) RP Park, H (corresponding author), Korea Inst Sci & Technol Informat, 245 Daehak Ro, Daejeon 34141, South Korea. EM hpark7@kisti.re.kr OI Park, Hyejin/0000-0001-9695-8456; Looi, Chee-Kit/0000-0001-9905-2713; Wong, Lung-Hsiang/0000-0002-0402-9199 CR Adiguzel T, 2023, CONTEMP EDUC TECHNOL, V15, DOI 10.30935/cedtech/13152 Altmetric, 2023, IS ALTM ATT SCOR CAL Altmetric, 2023, DON ALTM ATT SCOR [Anonymous], 2015, Journal of Eastern Europe Research in Business Economics, DOI DOI 10.5171/2015.169472 Arif TB, 2023, MED EDUC ONLINE, V28, DOI 10.1080/10872981.2023.2181052 Bahroun Z, 2023, SUSTAINABILITY-BASEL, V15, DOI 10.3390/su151712983 Bar-Ilan Judit, 2018, Proceedings of the Association for Information Science and Technology, V55, DOI 10.1002/pra2.2018.14505501073 Bommineni V. L., 2023, PERFORMANCE CHATGPT Bornmann L, 2014, J INFORMETR, V8, P895, DOI 10.1016/j.joi.2014.09.005 Cañas-Guerrero I, 2013, EUR J AGRON, V50, P19, DOI 10.1016/j.eja.2013.05.002 Castello-Sirvent F., 2023, P 15 INT C ED NEW LE Corder G.W., 2009, NONPARAMETRIC STAT N Costas R, 2015, J ASSOC INF SCI TECH, V66, P2003, DOI 10.1002/asi.23309 Cotton DRE, 2024, INNOV EDUC TEACH INT, V61, P228, DOI 10.1080/14703297.2023.2190148 COURTIAL JP, 1994, SCIENTOMETRICS, V31, P251, DOI 10.1007/BF02016875 Eysenbach Gunther, 2023, JMIR Med Educ, V9, pe46885, DOI 10.2196/46885 Eysenbach G, 2011, J MED INTERNET RES, V13, DOI 10.2196/jmir.2012 Fang ZC, 2022, SCIENTOMETRICS, V127, P4523, DOI 10.1007/s11192-022-04468-6 Farrokhnia M, 2024, INNOV EDUC TEACH INT, V61, P460, DOI 10.1080/14703297.2023.2195846 Garfield E, 1996, BRIT MED J, V313, P411, DOI 10.1136/bmj.313.7054.411 Garfield E., 1963, SCI CITATION INDEX S Garfield E, 1979, CITATION INDEXING IT Gaviria-Marin M, 2018, J KNOWL MANAG, V22, P1655, DOI 10.1108/JKM-10-2017-0497 Gilson Aidan, 2023, JMIR Med Educ, V9, pe45312, DOI 10.2196/45312 Girard C, 2013, J COMPUT ASSIST LEAR, V29, P207, DOI 10.1111/j.1365-2729.2012.00489.x Grassini S, 2023, EDUC SCI, V13, DOI 10.3390/educsci13070692 Heimans S, 2023, ASIA-PAC J TEACH EDU, V51, P105, DOI 10.1080/1359866X.2023.2189368 Hepp A., 2023, HUMAN MACHINE COMMUN, V6, P4 Holmberg K.J., 2015, Altmetrics for information professionals: Past, present and future Hood WW, 2001, SCIENTOMETRICS, V52, P291, DOI 10.1023/A:1017919924342 Huang Y., 2023, AI ED CHINA IMAGININ Huh S, 2023, J EDUC EVAL HEALTH P, V20, DOI 10.3352/jeehp.2023.20.1 Hwang G. J., 2022, Computers and Education: Artificial Intelligence, DOI [DOI 10.1016/J.CAEAI.2022.100082, 10.1016/j.caeai.2022.100082] Imran M, 2023, CONTEMP EDUC TECHNOL, V15, DOI 10.30935/cedtech/13605 Ipek Z. H., 2023, Educational Process International Journal, V12, DOI [10.22521/edupij.2023.123.2, DOI 10.22521/EDUPIJ.2023.123.2] Jabeen M., 2015, INT INF LIBR REV, V47, P71, DOI [10.1080/10572317.2015.1113602, DOI 10.1080/10572317.2015.1113602] Jahic I., 2023, P EDMEDIA INN LEARN Jeon J, 2023, INTERACT LEARN ENVIR, DOI 10.1080/10494820.2023.2204343 Karanatsiou D, 2017, PERFORM MEAS METR, V18, P16, DOI 10.1108/PMM-08-2016-0036 Kasneci E, 2023, LEARN INDIVID DIFFER, V103, DOI 10.1016/j.lindif.2023.102274 Khosravi H., 2023, CHATBOTS CHATGPT BIB Lim WM, 2023, INT J MANAG EDUC-OXF, V21, DOI 10.1016/j.ijme.2023.100790 Lin S. M., 2023, INT C INN TECHN LEAR Lo CK, 2023, EDUC SCI, V13, DOI 10.3390/educsci13040410 Megahed FM, 2024, QUAL ENG, V36, P287, DOI 10.1080/08982112.2023.2206479 Mingers J, 2015, EUR J OPER RES, V246, P1, DOI 10.1016/j.ejor.2015.04.002 Mogavi R. H., 2023, EXPLORING USER PERSP Montenegro-Rueda M, 2023, COMPUTERS, V12, DOI 10.3390/computers12080153 Nov O, 2023, JMIR MED EDUC, V9, DOI 10.2196/46939 O'Connor S, 2023, NURSE EDUC PRACT, V66, DOI 10.1016/j.nepr.2022.103537 Ortega JL, 2020, SCIENTOMETRICS, V122, P555, DOI 10.1007/s11192-019-03299-2 Park H, 2021, PROF INFORM, V30, DOI 10.3145/epi.2021.mar.14 Park H, 2021, J DATA INFO SCI, V6, P116, DOI 10.2478/jdis-2021-0001 Park Hyo Chan., 2018, Quality Quantity, V53, P935, DOI DOI 10.1007/S11135-018-0797-3 Payne N, 2008, J INF SCI, V34, P3, DOI 10.1177/0165551507079417 Perera P., 2023, INT J RES INNOVATION, V7, P306, DOI [10.47772/ijriss.2023.7623, DOI 10.47772/IJRISS.2023.7623] Perkins M, 2023, J UNIV TEACH LEARN P, V20, DOI 10.53761/1.20.02.07 Piwowar H, 2013, NATURE, V493, P159, DOI 10.1038/493159a Pradana M, 2023, COGENT EDUC, V10, DOI 10.1080/2331186X.2023.2243134 Rajaraman V, 2023, RESONANCE, V28, P889, DOI 10.1007/s12045-023-1620-6 Raman R., 2023, EARLY RES TRENDS CAH, DOI [10.21203/rs.3.rs-2768211/v1, DOI 10.21203/RS.3.RS-2768211/V1] Rogers, 2003, DIFFUSION INNOVATION Rudolph J., 2023, Journal of Applied Learning and Teaching, V6 Saeed-Ul Hassan, 2017, SCIENTOMETRICS, V113, P1037, DOI 10.1007/s11192-017-2512-x Schijven MP, 2023, SIMULAT GAMING, V54, P147, DOI 10.1177/10468781231152682 Shi YL, 2019, SUSTAINABILITY-BASEL, V11, DOI 10.3390/su11133716 Su HN, 2010, SCIENTOMETRICS, V85, P65, DOI 10.1007/s11192-010-0259-8 Syamili C, 2017, COLLNET J SCIENTOMET, V11, P103, DOI 10.1080/09737766.2016.1260815 Thelwall M, 2018, COMM COM INF SC, V856, P11, DOI 10.1007/978-981-13-1053-9_2 Thurzo A, 2023, EDUC SCI, V13, DOI 10.3390/educsci13020150 Tlili A, 2023, SMART LEARN ENVIRON, V10, DOI 10.1186/s40561-023-00237-x van Eck N J., 2023, VOSviewer manual Vargas-Murillo A. R., 2023, International Journal of Learning Teaching and Educational Research, V22, P122, DOI [DOI 10.26803/IJLTER.22.7.7, 10.26803/ijlter.22.7.72, DOI 10.26803/IJLTER.22.7.72] VOSViewer, 2023, VOSVIEWER MANUAL Zhang LW, 2018, SCIENTOMETRICS, V117, P495, DOI 10.1007/s11192-018-2876-6 NR 75 TC 0 Z9 0 U1 43 U2 43 PU WILEY PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0266-4909 EI 1365-2729 J9 J COMPUT ASSIST LEAR JI J. Comput. Assist. Learn. PD AUG PY 2024 VL 40 IS 4 BP 1428 EP 1446 DI 10.1111/jcal.12962 EA FEB 2024 PG 19 WC Education & Educational Research WE Social Science Citation Index (SSCI) SC Education & Educational Research GA ZD1B9 UT WOS:001174528300001 DA 2024-09-05 ER PT J AU Fu, CB Luo, HG Liang, XJ Yu, SQ AF Fu, Chenbo Luo, Haogeng Liang, Xuejiao Yu, Shanqing TI The profit and risk in the interdisciplinary behavior SO FRONTIERS IN PHYSICS LA English DT Article DE interdisciplinary behavior; scientific influence; large and small disciplines; interdisciplinary distance; causal inference ID PROPENSITY SCORE; SCIENCE; IMPACT; DIVERSITY AB Evaluating the influence of interdisciplinary research is important to the development of science. This work considers the large and small disciplines, calculates the interdisciplinary distance, and analyzes the influence of interdisciplinary behavior and interdisciplinary distance in the academic network. The results show that the risk of interdisciplinary behavior in the large discipline is more significant than the benefits. The peer in the small disciplines will tend to agree with the results of the small discipline across the large discipline. We further confirmed this conclusion by utilizing PSM-DID. The analysis between interdisciplinary distance and scientists' influence shows that certain risks will accompany any distance between disciplines. However, there still exists a "Sweet Spot " which could bring significant rewards. Overall, this work provides a feasible approach to studying and understanding interdisciplinary behaviors in science. C1 [Fu, Chenbo; Luo, Haogeng; Liang, Xuejiao; Yu, Shanqing] Zhejiang Univ Technol, Inst Cyberspace Secur, Hangzhou, Peoples R China. [Fu, Chenbo; Luo, Haogeng; Liang, Xuejiao; Yu, Shanqing] Zhejiang Univ Technol, Coll Informat Engn, Hangzhou, Peoples R China. C3 Zhejiang University of Technology; Zhejiang University of Technology RP Fu, CB; Yu, SQ (corresponding author), Zhejiang Univ Technol, Inst Cyberspace Secur, Hangzhou, Peoples R China.; Fu, CB; Yu, SQ (corresponding author), Zhejiang Univ Technol, Coll Informat Engn, Hangzhou, Peoples R China. EM cbfu@zjut.edu.cn; yushanqing@zjut.edu.cn FU National Natural Science Foundation of China [62103374]; Basic Public Welfare Research Project of Zhejiang Province [LGF20F020016] FX Funding This work was supported by the National Natural Science Foundation of China under Grant (62103374) and the Basic Public Welfare Research Project of Zhejiang Province under Grant (LGF20F020016). CR Abadie A, 2005, REV ECON STUD, V72, P1, DOI 10.1111/0034-6527.00321 Allen L, 2014, NATURE, V508, P312, DOI 10.1038/508312a Amjad T, 2020, SCIENTOMETRICS, V122, P915, DOI 10.1007/s11192-019-03334-2 Barge JK, 2008, J APPL COMMUN RES, V36, P251, DOI 10.1080/00909880802172277 Bromham L, 2016, NATURE, V534, P684, DOI 10.1038/nature18315 Butun Ertan, 2017, 2017 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM), P952, DOI 10.1145/3110025.3110160 Chang YW, 2012, J AM SOC INF SCI TEC, V63, P22, DOI 10.1002/asi.21649 Dai XY, 2015, TECHNOL FORECAST SOC, V90, P410, DOI 10.1016/j.techfore.2014.04.014 Darrat A., 1999, INT ECON J, V13, P19, DOI DOI 10.1080/10168739900000002 de Montjoye YA, 2014, SCI REP-UK, V4, DOI 10.1038/srep05277 Ding Y, 2016, Measuring scholarly impact Doyle WR, 2011, ECON EDUC REV, V30, P191, DOI 10.1016/j.econedurev.2010.08.004 Fiore SM, 2008, SMALL GR RES, V39, P251, DOI 10.1177/1046496408317797 Frodeman R., 2017, The Oxford handbook of interdisciplinarity Fronczak A, 2022, SCI REP-UK, V12, DOI 10.1038/s41598-022-09118-8 Fu CB, 2022, IEEE T COMPUT SOC SY, V9, P807, DOI 10.1109/TCSS.2021.3105381 Fu CB, 2020, IEEE T NETW SCI ENG, V7, P1607, DOI 10.1109/TNSE.2019.2942341 Fu CB, 2018, IEEE T KNOWL DATA EN, V30, P1507, DOI 10.1109/TKDE.2018.2801854 Funk RJ, 2017, MANAGE SCI, V63, P791, DOI 10.1287/mnsc.2015.2366 Gaff J.G., 1997, HDB UNDERGRADUATE CU Gibbons M., 1997, The New Production of Knowledge: The Dynamics of Science and Research in Contemporary Societies GRANGER CWJ, 1969, ECONOMETRICA, V37, P424, DOI 10.2307/1912791 Hammarfelt B, 2011, SCIENTOMETRICS, V86, P705, DOI 10.1007/s11192-010-0314-5 Hirano K., 2004, Applied Bayesian Modeling and Causal Inference from Incomplete-Data Perspectives, V226164, P73 HODGE SE, 1981, SCIENCE, V213, P950 Hsiao, 2022, ANAL PANEL DATA IMBENS GW, 1994, ECONOMETRICA, V62, P467, DOI 10.2307/2951620 Jia T, 2017, NAT HUM BEHAV, V1, DOI 10.1038/s41562-017-0078 Kennedy D, 2003, SCIENCE, V301, P733, DOI 10.1126/science.301.5634.733 Larivière V, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0122565 Larivière V, 2010, J AM SOC INF SCI TEC, V61, P126, DOI 10.1002/asi.21226 Leahey E, 2017, ADMIN SCI QUART, V62, P105, DOI 10.1177/0001839216665364 Levitt JM, 2008, J AM SOC INF SCI TEC, V59, P1973, DOI 10.1002/asi.20914 Li Y, 2021, DECIS SUPPORT SYST, V146, DOI 10.1016/j.dss.2021.113546 Liu XY, 2023, INFORM PROCESS MANAG, V60, DOI 10.1016/j.ipm.2022.103253 Lyall C, 2013, SCI PUBL POLICY, V40, P62, DOI 10.1093/scipol/scs121 Madumal P, 2020, AAAI CONF ARTIF INTE, V34, P2493 Matthews NE, 2019, SCI REP-UK, V9, DOI 10.1038/s41598-019-54331-7 McCaffrey DF, 2013, STAT MED, V32, P3388, DOI 10.1002/sim.5753 Mercorio F, 2021, IEEE T EMERG TOP COM, V9, P1987, DOI 10.1109/TETC.2019.2952765 Mo X, 2023, INFORM SCIENCES, V623, P311, DOI 10.1016/j.ins.2022.12.059 Molaei S, 2018, SCI REP-UK, V8, DOI 10.1038/s41598-018-27385-2 PORTER AL, 1985, SCIENTOMETRICS, V8, P161, DOI 10.1007/BF02016934 Porter AL, 2006, RES EVALUAT, V15, P187, DOI 10.3152/147154406781775841 Radicchi F, 2008, P NATL ACAD SCI USA, V105, P17268, DOI 10.1073/pnas.0806977105 Rafols I, 2010, SCIENTOMETRICS, V82, P263, DOI 10.1007/s11192-009-0041-y Read EK, 2016, ECOSPHERE, V7, DOI 10.1002/ecs2.1291 Repko A. F., 2020, INTERDISCIPLINARY RE Rinia EJ, 2002, SCIENTOMETRICS, V53, P241, DOI 10.1023/A:1014856625623 ROSENBAUM PR, 1983, BIOMETRIKA, V70, P41, DOI 10.1093/biomet/70.1.41 Schwab P, 2019, AAAI CONF ARTIF INTE, P4846 Shakibian H, 2017, SCI REP-UK, V7, DOI 10.1038/srep44981 Siudem G, 2020, P NATL ACAD SCI USA, V117, P13896, DOI 10.1073/pnas.2001064117 Stirling A, 2007, J R SOC INTERFACE, V4, P707, DOI 10.1098/rsif.2007.0213 Stokols D, 2008, AM J PREV MED, V35, pS96, DOI 10.1016/j.amepre.2008.05.003 Sun Y., 2021, Interdisciplinary researchers attain better performance in funding Sunahara AS, 2021, PHYS REV RES, V3, DOI 10.1103/PhysRevResearch.3.033158 Tang J., 2008, KDD, P990, DOI DOI 10.1145/1401890.1402008 THISTLETHWAITE DL, 1960, J EDUC PSYCHOL, V51, P309, DOI 10.1037/h0044319 Uzzi B, 2013, SCIENCE, V342, P468, DOI 10.1126/science.1240474 Wagner CS, 2011, J INFORMETR, V5, P14, DOI 10.1016/j.joi.2010.06.004 Wan LT, 2022, IEEE T COMPUT SOC SY, V9, P1715, DOI 10.1109/TCSS.2022.3161305 Wang J, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0127298 Wang KS, 2020, QUANT SCI STUD, V1, P396, DOI 10.1162/qss_a_00021 Wang RW, 2019, SCI REP-UK, V9, DOI 10.1038/s41598-019-55399-x Weiner B., 1976, REV RES ED, V4, P179, DOI DOI 10.2307/1167116 WEINGART P., 2000, PRACTISING INTERDISC Woelert P, 2013, HIGH EDUC, V66, P755, DOI 10.1007/s10734-013-9634-8 Yao LY, 2021, ACM T KNOWL DISCOV D, V15, DOI 10.1145/3444944 Yegros-Yegros A, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0135095 Zhang L, 2018, SCIENTOMETRICS, V117, P271, DOI 10.1007/s11192-018-2853-0 NR 71 TC 1 Z9 1 U1 10 U2 28 PU FRONTIERS MEDIA SA PI LAUSANNE PA AVENUE DU TRIBUNAL FEDERAL 34, LAUSANNE, CH-1015, SWITZERLAND SN 2296-424X J9 FRONT PHYS-LAUSANNE JI Front. Physics PD JAN 19 PY 2023 VL 11 AR 1107446 DI 10.3389/fphy.2023.1107446 PG 10 WC Physics, Multidisciplinary WE Science Citation Index Expanded (SCI-EXPANDED) SC Physics GA 8L8OA UT WOS:000924038100001 OA gold DA 2024-09-05 ER PT J AU Yazi, FS Vong, WT Raman, V Then, PHH Lunia, MJ AF Yazi, Fatin Syafiqah Vong, Wan-Tze Raman, Valliappan Then, Patrick Hang Hui Lunia, Mukulraj J. TI AN EXPERIMENTAL EVALUATION OF DEEP NEURAL NETWORK MODEL PERFORMANCE FOR THE RECOGNITION OF CONTRADICTORY MEDICAL RESEARCH CLAIMS USING SMALL AND MEDIUM-SIZED CORPORA SO MALAYSIAN JOURNAL OF COMPUTER SCIENCE LA English DT Article DE Evidence-based medicine; contradiction detection; medical literature; deep neural network; deep learning AB Corpora come in various shapes and sizes and play an essential role in facilitating Natural Language Processing (NLP) tasks. However, the availability of corpora specialized for Evidence-Based Medicine (EBM) related tasks is limited. The study is aimed to discover how the size of a corpus influence the performance of our Deep Neural Network (DNN) model developed for contradiction detection in medical literature. We explored the potential of the EBM Summarizer corpus by Molla and Santiago-Martinez, a medium-sized corpus to be used with our contradiction detection model. The dataset preparation involves the filtering of open-ended questions, duplicates of claims, and vague claims. As a result, two datasets were created with the claim input represented by sniptext in one dataset and longtext in the other. Experiments were conducted with varying numbers of hidden layers and units of the model using different datasets. The performance of the DNN model was recorded and compared with the result of using a small-sized corpus. It was found that the DNN model performance did not improve even after it was trained with a larger dataset derived from the medium-sized corpus. The factors may include the limitation of the DNN model itself and the quality of the datasets. C1 [Yazi, Fatin Syafiqah; Vong, Wan-Tze; Raman, Valliappan; Then, Patrick Hang Hui] Swinburne Univ Technol, Fac Engn Comp & Sci, Kuching 93350, Malaysia. [Lunia, Mukulraj J.] Sri Krishna Coll Informat Technol, Dept Informat Technol, Coimbatore, Tamil Nadu, India. C3 Swinburne University of Technology Sarawak; Swinburne University of Technology RP Yazi, FS (corresponding author), Swinburne Univ Technol, Fac Engn Comp & Sci, Kuching 93350, Malaysia. EM fyazi@swinburne.edu.my; wvong@swinburne.edu.my; vraman@swinburne.edu.my; pthen@swinburne.edu.my; mukul_lunia99@outlook.com RI mo, mo/JRW-0535-2023; raman, Valliappan/E-6393-2018 OI raman, Valliappan/0000-0002-9363-2319 CR Alamri A. D., 2016, The detection of contradictory claims in biomedical abstracts Alamri A, 2016, J BIOMED SEMANT, V7, DOI 10.1186/s13326-016-0083-z Bavani E. S., 2016, P COLING 2016 26 INT, P513 Cohn C., 2020, COLL COMPUT DIGIT ME Dai ZH, 2019, 57TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2019), P2978 Devlin J, 2019, 2019 CONFERENCE OF THE NORTH AMERICAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS: HUMAN LANGUAGE TECHNOLOGIES (NAACL HLT 2019), VOL. 1, P4171 Ezen-Can A., 2020, A comparison of lstm and bert for small corpus Gauch R., 2008, It's great! Oops, no it isn't: Why clinical research can't guarantee the right medical answers GUYAT GH, 1993, JAMA-J AM MED ASSOC, V270, P2096, DOI 10.1001/jama.270.17.2096 Kim JD, 2003, BIOINFORMATICS, V19, pi180, DOI 10.1093/bioinformatics/btg1023 Kim T, 2021, 59TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS AND THE 11TH INTERNATIONAL JOINT CONFERENCE ON NATURAL LANGUAGE PROCESSING, VOL 1 (ACL-IJCNLP 2021), P2528 Molla D., 2011, Proceedings of the Australasian Language Technology Association Workshop 2011, P86 Mollá D, 2016, LANG RESOUR EVAL, V50, P705, DOI 10.1007/s10579-015-9327-2 Nye B, 2018, PROCEEDINGS OF THE 56TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL), VOL 1, P197 Ohta T., 2002, P 2 INT C HUM LANG T, P82 Prasad V, 2013, MAYO CLIN PROC, V88, P790, DOI 10.1016/j.mayocp.2013.05.012 Richardson W S, 1995, ACP J Club, V123, pA12 Rosemblat G, 2019, J BIOMED INFORM, V98, DOI 10.1016/j.jbi.2019.103275 Sackett DL, 1996, BRIT MED J, V312, P71, DOI 10.1136/bmj.312.7023.71 Sarafraz F., 2012, Finding conflicting statements in the biomedical literature Sarker A., 2020, LIGHT WEIGHT TEXT SU, DOI [10.1101/2020.05.22.20110742v1, DOI 10.1101/2020.05.22.20110742V1] Song X., 2020, LINEAR TIME WORDPIEC Tawfik N. S., 2018, International Conference on Machine Learning and Data Mining in Pattern Recognition, P138 Tawfik NS, 2019, LECT NOTES COMPUT SC, V11608, P368, DOI 10.1007/978-3-030-23281-8_32 Usha S., 2020, J CRIT REV, V7, P1047 Vincze V, 2008, BMC BIOINFORMATICS, V9, DOI 10.1186/1471-2105-9-S11-S9 Yazi Fatin Syafiqah, 2021, 2021 Fifth International Conference on Information Retrieval and Knowledge Management (CAMP), P116, DOI 10.1109/CAMP51653.2021.9498061 NR 27 TC 1 Z9 1 U1 4 U2 8 PU UNIV MALAYA, FAC COMPUTER SCIENCE & INFORMATION TECH PI KUALA LUMPUR PA UNIV MALAYA, FAC COMPUTER SCIENCE & INFORMATION TECH, KUALA LUMPUR, 50603, MALAYSIA SN 0127-9084 J9 MALAYS J COMPUT SCI JI Malayas. J. Comput. Sci. PY 2021 SI SI BP 68 EP 77 DI 10.22452/mjcs.sp2021no2.5 PG 10 WC Computer Science, Artificial Intelligence; Computer Science, Theory & Methods WE Science Citation Index Expanded (SCI-EXPANDED) SC Computer Science GA YQ8SY UT WOS:000749575900005 OA Bronze DA 2024-09-05 ER PT J AU Cen, H Huang, DL Liu, Q Zong, ZL Tang, AP AF Cen, Hang Huang, Delong Liu, Qiang Zong, Zhongling Tang, Aiping TI Application Research on Risk Assessment of Municipal Pipeline Network Based on Random Forest Machine Learning Algorithm SO WATER LA English DT Article DE machine learning; random forest; municipal pipeline network; monitoring data; risk assessment ID SOLID PARTICLE EROSION; NEURAL-NETWORK; WATER; PREDICTION; FAILURE; CLASSIFICATION; PERFORMANCE; REGRESSION; LOCATION; SYSTEM AB Urban municipal water supply is an important part of underground pipelines, and their scale continues to expand. Due to the continuous improvement in the quality and quantity of data available for pipeline systems in recent years, traditional pipeline network risk assessment cannot cope with the improvement of various monitoring methods. Therefore, this paper proposes a machine learning-based risk assessment method for municipal pipe network operation and maintenance and builds a model example based on the data of a pipeline network base in a park in Suzhou. We optimized the random forest learning model, compared it with other centralized learning methods, and finally evaluated the model's learning effect. Finally, the risk probability associated with each pipe segment sample was obtained, the risk factors affecting the pipe segment's failure were determined, and their relevance and importance ranking was established. The results showed that the most influential factors are pipe material, soil properties, service life, and the number of past failures. The random forest algorithm demonstrated better prediction accuracy and robustness on the dataset. C1 [Cen, Hang; Huang, Delong; Zong, Zhongling] Jiangsu Ocean Univ, Sch Civil & Ocean Engn, Lianyungang 222005, Peoples R China. [Liu, Qiang; Tang, Aiping] Harbin Inst Technol, Sch Civil Engn, Harbin 150090, Peoples R China. C3 Jiangsu Ocean University; Harbin Institute of Technology RP Huang, DL (corresponding author), Jiangsu Ocean Univ, Sch Civil & Ocean Engn, Lianyungang 222005, Peoples R China. EM cen1364570502@gmail.com; huang06080601@163.com; qiangliu_hit@163.com; jouzongzhl@jou.edu.cn; tangap@hit.edu.cn FU National Natural Science Foundation of China [41672287, 51778197]; Hainan Province Key R&D Program (Social Development) Project of China [ZDYF2022SHFZ089]; Jiangsu Province Key R&D Program (Social Development) Project of China [BE2021681] FX This research was supported by the National Natural Science Foundation of China (No. 41672287, 51778197), the Hainan Province Key R&D Program (Social Development) Project of China (No. ZDYF2022SHFZ089). and the Jiangsu Province Key R&D Program (Social Development) Project of China (No. BE2021681). The supports are gratefully acknowledged. CR Bakker M, 2014, J HYDROINFORM, V16, P1194, DOI 10.2166/hydro.2014.120 Chawla NV, 2002, J ARTIF INTELL RES, V16, P321, DOI 10.1613/jair.953 Chen JF, 2021, NAT HAZARDS, V107, P2671, DOI 10.1007/s11069-021-04630-y Christodoulou S, 2009, COMPUT ENVIRON URBAN, V33, P138, DOI 10.1016/j.compenvurbsys.2008.12.001 Colombo AF, 2009, J HYDRO-ENVIRON RES, V2, P212, DOI 10.1016/j.jher.2009.02.003 Creaco E, 2019, WATER RES, V161, P517, DOI 10.1016/j.watres.2019.06.025 de Oliveira DP, 2011, ADV ENG INFORM, V25, P380, DOI 10.1016/j.aei.2010.09.001 Rodríguez JD, 2010, IEEE T PATTERN ANAL, V32, P569, DOI 10.1109/TPAMI.2009.187 Fares H, 2010, J PIPELINE SYST ENG, V1, P53, DOI 10.1061/(ASCE)PS.1949-1204.0000037 Hodge VJ, 2015, IEEE T INTELL TRANSP, V16, P1088, DOI 10.1109/TITS.2014.2366512 Hu X, 2021, J CLEAN PROD, V278, DOI 10.1016/j.jclepro.2020.123611 Jafar R, 2010, MATH COMPUT MODEL, V51, P1170, DOI 10.1016/j.mcm.2009.12.033 Kabir G, 2015, EUR J OPER RES, V240, P220, DOI 10.1016/j.ejor.2014.06.033 Kang J, 2018, IEEE T IND ELECTRON, V65, P4279, DOI 10.1109/TIE.2017.2764861 Kohavi R., 1995, IJCAI-95. Proceedings of the Fourteenth International Joint Conference on Artificial Intelligence, P1137 Li J., 2010, J CATASTROPHOLOGY, V25, P4 Li R, 2015, WATER SCI TECH-W SUP, V15, P429, DOI 10.2166/ws.2014.131 Liu J, 2019, APPL SOFT COMPUT, V75, P702, DOI 10.1016/j.asoc.2018.11.045 [骆正山 Luo Zhengshan], 2020, [表面技术, Surface Technology], V49, P269 Lyu ZQ, 2022, MATERIALS, V15, DOI 10.3390/ma15041477 Morgenthaler S, 2009, WIRES COMPUT STAT, V1, DOI 10.1002/wics.2 Mounce S. R., 2003, Information Fusion, V4, P217, DOI 10.1016/S1566-2535(03)00034-4 Mounce SR, 2010, J WATER RES PLAN MAN, V136, P309, DOI 10.1061/(ASCE)WR.1943-5452.0000030 Mounce SR, 2002, WATER SCI TECHNOL, V45, P237, DOI 10.2166/wst.2002.0595 Page PR, 2019, J WATER SUPPLY RES T, V68, P20, DOI 10.2166/aqua.2018.074 Pu YY, 2019, TUNN UNDERGR SP TECH, V90, P12, DOI 10.1016/j.tust.2019.04.019 PUDAR RS, 1992, J HYDRAUL ENG-ASCE, V118, P1031, DOI 10.1061/(ASCE)0733-9429(1992)118:7(1031) Ren Y., 2022, OPEN ACCESS LIB J, V9, P1, DOI [10.4236/oalib.1109503, DOI 10.4236/OALIB.1109503] Romano M, 2013, J HYDROINFORM, V15, P634, DOI 10.2166/hydro.2013.094 Sattar AMA, 2019, NEURAL COMPUT APPL, V31, P157, DOI 10.1007/s00521-017-2987-7 Sattar AMA, 2016, WATER RESOUR MANAG, V30, P1635, DOI 10.1007/s11269-016-1241-x Shi F, 2020, SUSTAIN CITIES SOC, V55, DOI 10.1016/j.scs.2019.102012 Shirzad A, 2014, KSCE J CIV ENG, V18, P941 Shojaie EF, 2023, WEAR, V522, DOI 10.1016/j.wear.2023.204688 Tang K, 2019, RELIAB ENG SYST SAFE, V186, P24, DOI 10.1016/j.ress.2019.02.001 Tao T., 2016, WATER TECHNOL, V10, P11 Vu HL, 2022, J ENVIRON MANAGE, V311, DOI 10.1016/j.jenvman.2022.114869 Wong TT, 2015, PATTERN RECOGN, V48, P2839, DOI 10.1016/j.patcog.2015.03.009 Wu S., 2017, URBAN GEOTECH INVEST, V06, P50 Wu YP, 2017, URBAN WATER J, V14, P972, DOI 10.1080/1573062X.2017.1279191 Yamijala S, 2009, RELIAB ENG SYST SAFE, V94, P282, DOI 10.1016/j.ress.2008.03.011 Yang H., 2012, WATER WASTEWATER ENG, V48, P471 Zahedi P, 2018, POWDER TECHNOL, V338, P983, DOI 10.1016/j.powtec.2018.07.055 Zheng W., 2017, URBAN CONSTR THEORY, V3, P236 Zhou B., 2019, ARCHIT ENG DES MANAG, V25, P1 Zhou X, 2019, WATER RES, V166, DOI 10.1016/j.watres.2019.115058 NR 46 TC 2 Z9 2 U1 21 U2 50 PU MDPI PI BASEL PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND EI 2073-4441 J9 WATER-SUI JI Water PD MAY 22 PY 2023 VL 15 IS 10 AR 1964 DI 10.3390/w15101964 PG 17 WC Environmental Sciences; Water Resources WE Science Citation Index Expanded (SCI-EXPANDED) SC Environmental Sciences & Ecology; Water Resources GA H6WY3 UT WOS:000997354000001 OA gold DA 2024-09-05 ER PT J AU Pandey, S Verma, MK Shukla, R AF Pandey, Shriram Verma, Manoj Kumar Shukla, Ravi TI A Scientometric Analysis of Scientific Productivity of Artificial Intelligence Research in India SO JOURNAL OF SCIENTOMETRIC RESEARCH LA English DT Article DE Scientometrics; Artificial Intelligence; Collaboration Coefficient; Collaborative Index; Relative Growth Rate ID OUTPUT AB The study presents a scientometric analsyis of publications related to 'Artificial Intelligence' research in India during 2009-2018. In today's ICT driven world, artificial intelligence has taken up some tasks of our daily life to make it easier. As a consequence, extensive research is going on "Artificial Intelligence" to find out it's potential in knowledge development. The paper analyses the bibliographic data retrived from Scopus database extracted with a suitable search query. The study was conducted taking the chronological growth of research publications, relative growth rate, doubling time, scientometric profile of authors, document type of publications, source profile, keyword analysis, institution wise distribution of publications, funding agency wise distribution. The analysis was conducted using the MS-Excel. The study reveals that a maximum number of publications are in the form of conference procedings and articles. Artificial Intelligence, Learning system, algorithms, data mining are the keywords with maximum number of occurences. The findings of the study implies India need become more competitive with the world leaders in artificial intelligence research. To get more return from AI applications, the stakeholders are required to play a catalytic role to build and strengthen research capacity in the nation by paving quality research environment, adequate funding, research incentives, and development of IT infrastructure. C1 [Pandey, Shriram] Banaras Hindu Univ, Dept Lib & Informat Sci, Varanasi, Uttar Pradesh, India. [Verma, Manoj Kumar; Shukla, Ravi] Mizoram Univ, Dept Lib & Informat Sci, Aizawl 796001, Mizoram, India. C3 Banaras Hindu University (BHU); Mizoram University RP Verma, MK (corresponding author), Mizoram Univ, Dept Lib & Informat Sci, Aizawl 796001, Mizoram, India. EM manojdlis@mzu.edu.in RI Verma, Manoj Kumar/ABE-4906-2020; Pandey, Shri Ram/HNS-6652-2023 OI Pandey, Shri Ram/0000-0002-1690-6603; Shukla, Dr. Ravi/0000-0002-8569-1722 CR Aayog Niti, 2018, National Strategy for Artificial Intelligence Bhattacharjee KK, 2019, IN C IND ENG ENG MAN, P916, DOI [10.1109/IEEM44572.2019.8978798, 10.1109/ieem44572.2019.8978798] Engqvist L, 2008, TRENDS ECOL EVOL, V23, P250, DOI 10.1016/j.tree.2008.01.009 Grant MJ, 2009, HEALTH INFO LIBR J, V26, P91, DOI 10.1111/j.1471-1842.2009.00848.x Gupta BM, 2018, DESIDOC J LIB INF TE, V38, P416, DOI 10.14429/djlit.38.6.12309 Kumar RS, 2015, SCIENTOMETRICS, V105, P921, DOI 10.1007/s11192-015-1710-7 Mahapatra M., 1985, Proceedings of the 15th IASLIC Conference, Bangalore, P61 Moller AM, 2016, BRIT J ANAESTH, V117, P428, DOI 10.1093/bja/aew264 Niu JQ, 2016, ISPRS INT J GEO-INF, V5, DOI 10.3390/ijgi5050066 Shrivastava Rishabh, 2016, Science & Technology Libraries, V35, P136, DOI 10.1080/0194262X.2016.1181023 Shukla R, 2019, COLLNET J SCIENTOMET, V13, P91, DOI 10.1080/09737766.2018.1550044 Wu HY, 2021, FRONT PHARMACOL, V12, DOI 10.3389/fphar.2021.646626 Zeinoun P, 2020, FRONT PSYCHIATRY, V11, DOI 10.3389/fpsyt.2020.00182 NR 13 TC 2 Z9 2 U1 2 U2 13 PU PHCOG NET PI KARNATAKA PA 17, 2ND FLR, BUDDHA VIHAR RD, NEAR SPORTS ZONE, COX TOWN, BENGALURU, KARNATAKA, 560005, INDIA SN 2321-6654 EI 2320-0057 J9 J SCIENTOMETR RES JI J. Scientometr. Res. PD MAY-AUG PY 2021 VL 10 IS 2 BP 245 EP 250 DI 10.5530/jscires.10.2.38 PG 6 WC Information Science & Library Science WE Emerging Sources Citation Index (ESCI) SC Information Science & Library Science GA WK3EL UT WOS:000709612000011 OA hybrid DA 2024-09-05 ER PT J AU Varsha, PS Akter, S Kumar, A Gochhait, S Patagundi, B AF Varsha, P. S. Akter, Shahriar Kumar, Amit Gochhait, Saikat Patagundi, Basanna TI The Impact of Artificial Intelligence on Branding: A Bibliometric Analysis (1982-2019) SO JOURNAL OF GLOBAL INFORMATION MANAGEMENT LA English DT Article DE Artificial Intelligence; Bibliometric Analysis; Branding; Chatbot; Neural Network; VOS Viewer ID SOCIAL-MEDIA; NEURAL-NETWORKS; BIG DATA; BUSINESS; CHAIN; INDUSTRY; USER; AI; ENVIRONMENTS; MOTIVATIONS AB Understanding the growth paths of artificial intelligence (AI) and its impact on branding is extremely pertinent of technology-driven marketing. This explorative research covers a complete bibliometric analysis of the impact of AI on branding. The sample for this research included all 117 articles from the period of 1982-2019 in the Scopus database. A bibliometric study was conducted using co-occurrence, citation analysis and co-citation analysis. The empirical analysis investigates the value propositions of AI on branding. The study revealed the nine clusters of co-occurrence: Social Media Analytics and Brand Equity; Neural Networks and Brand Choice; Chat Bots-Brand Intimacy; Twitter, Facebook, Instagram-Luxury Brands; Interactive Agent-Brand Love and User Choice; Algorithm Recommendations and E-Brand Experience; User-Generated Content-Brand Sustainability; Brand Intelligence Analytics; and Digital Innovations and Brand Excellence. The findings also identify four clusters of citation analysis-Social Media Analysis and Brand Photos, Network Analysis and E-Commerce, Hybrid Simulating Modelling, and Real-time Knowledge-Based Systems-and four clusters of co-citation analysis: B2B Technology Brands, AI Fostered E-Brands, Information Cascades and Online Brand Ratings, and Voice Assistants-Brand Eureka Moments. Overall, the study presents the patterns of convergence and divergence of themes, narrowing to the specific topic, and multidisciplinary engagement in research, thus offering the recent insights in the field of AI on branding. C1 [Varsha, P. S.; Patagundi, Basanna] Cambridge Inst Technol, Bangalore, Karnataka, India. [Akter, Shahriar] Univ Wollongong, Digital Mkt Analyt & Innovat, Sch Management & Mkt, Wollongong, NSW, Australia. [Kumar, Amit] Univ Newcastle, Newcastle Business Sch, Callaghan, NSW, Australia. [Gochhait, Saikat] Symbiosis Int Univ Deemed, Symbiosis Inst Digital & Telecom Management, Pune, Maharashtra, India. C3 University of Wollongong; University of Newcastle; Symbiosis International University; Symbiosis Institute of Digital & Telecom Management (SIDTM) RP Varsha, PS (corresponding author), Cambridge Inst Technol, Bangalore, Karnataka, India. RI Kumar, Amit/GQA-4556-2022; Akter, Shahriar/S-2888-2019; Gochhait, Saikat/G-2182-2014; Gochhait (Honoris Causa), Saikat/AAP-4107-2021 OI Kumar, Amit/0000-0001-5883-6693; Akter, Shahriar/0000-0002-2050-9985; Gochhait (Honoris Causa), Saikat/0000-0003-4583-9208; Kumar, Amit/0000-0002-8367-9981; PS, Varsha/0000-0002-2194-0363 CR Aaker D.A., 1991, N. Y., V28, P35, DOI DOI 10.1177/002224379703400304 Aaker JL, 1997, J MARKETING RES, V34, P347, DOI 10.2307/3151897 Abbate T, 2019, J BUS IND MARK, V34, P1434, DOI 10.1108/JBIM-09-2018-0276 Afrasiabi RadA., 2011, Journal of Information Systems Applied Research, V4, P63 Agrawal D, 1996, J RETAILING, V72, P383, DOI 10.1016/S0022-4359(96)90020-2 Ali I, 2019, INT J PHYS DISTR LOG, V49, P793, DOI 10.1108/IJPDLM-02-2019-0038 Amershi B, 2020, AI SOC, V35, P417, DOI 10.1007/s00146-019-00885-z [Anonymous], 2017, DIGITAL REVOLUTIONS [Anonymous], 2019, eMarketer Araibi Nedia, 2016, Vietnam Journal of Computer Science, V3, P47, DOI 10.1007/s40595-015-0054-9 Arnould EJ, 2005, J CONSUM RES, V31, P868, DOI 10.1086/426626 Balakrishnan A., 2004, Manufacturing & Service Operations Management, V6, P163, DOI 10.1287/msom.1030.0031 Batacharia B, 1999, SPRING INT SER ENG C, V511, P205 Batra Gaurav, 2018, Tech. Rep Boden C, 2006, LECT NOTES COMPUT SC, V4326, P370 Boyack K, 2017, SCIENTOMETRICS, V111, P1223, DOI 10.1007/s11192-017-2307-0 Brodie RJ, 2013, J BUS RES, V66, P105, DOI 10.1016/j.jbusres.2011.07.029 Campbell C, 2020, BUS HORIZONS, V63, P227, DOI 10.1016/j.bushor.2019.12.002 Caviggioli F, 2019, INT J PROD ECON, V208, P254, DOI 10.1016/j.ijpe.2018.11.022 Chandan A., 2019, IJRAR J., V6, P44 Chandra Y, 2018, PLOS ONE, V13, DOI 10.1371/journal.pone.0190228 Chaudhuri S., 2018, NEXT BIG THREAT CONS Chen HC, 2012, MIS QUART, V36, P1165 Chen Y, 2020, INF SYST E-BUS MANAG, V18, P837, DOI 10.1007/s10257-019-00401-2 Colby KM, 1999, SPRING INT SER ENG C, V511, P9 Colicev A, 2018, J MARKETING, V82, P37, DOI 10.1509/jm.16.0055 Colladon AF, 2020, INT J FORECASTING, V36, P414, DOI 10.1016/j.ijforecast.2019.05.013 Colladon AF, 2020, TOUR MANAG PERSPECT, V33, DOI 10.1016/j.tmp.2019.100588 Colladon AF, 2018, J BUS RES, V88, P150, DOI 10.1016/j.jbusres.2018.03.026 Columbus Louis., 2019, 10 Charts That Will Change Your Perspective Of AI Comendador Benilda Eleonor V., 2015, Journal of Automation and Control Engineering, V3, P137, DOI 10.12720/joace.3.2.137-140 Conick Hal, 2017, Mark News, V51, P26 Cornwell T., 2020, Sponsorship in marketing: Effective partnerships in sports, arts and events, V2nd, DOI [10.4324/9780429325106, DOI 10.4324/9780429325106] Cross R, 2019, MIT SLOAN MANAGE REV, V61, P20 Cuayáhuitl H, 2019, NEUROCOMPUTING, V366, P118, DOI 10.1016/j.neucom.2019.08.007 Culotta A, 2016, MARKET SCI, V35, P343, DOI 10.1287/mksc.2015.0968 Dabirian A, 2017, BUS HORIZONS, V60, P197, DOI 10.1016/j.bushor.2016.11.005 Dale R, 2016, NAT LANG ENG, V22, P811, DOI 10.1017/S1351324916000243 Daskou S., 2003, J RELATIONSHIP MARKE, V2, P85 Davenport T, 2020, J ACAD MARKET SCI, V48, P24, DOI 10.1007/s11747-019-00696-0 Davenport TH, 2018, HARVARD BUS REV, V96, P108 De Bruyn A, 2020, J INTERACT MARK, V51, P91, DOI 10.1016/j.intmar.2020.04.007 De Jesus A., 2018, AUGMENTED REALITY SH De Pessemier T, 2016, MULTIMED TOOLS APPL, V75, P3323, DOI 10.1007/s11042-014-2437-9 Decker R, 2010, INT J RES MARK, V27, P293, DOI 10.1016/j.ijresmar.2010.09.001 Dewan S, 2017, INFORM SYST RES, V28, P117, DOI 10.1287/isre.2016.0654 DOMINGOS Pedro, 2015, The master algorithm: how the quest for the ultimate learning machine will remake our world Dong Han, 2019, 2019 International Conference on Machine Learning, Big Data and Business Intelligence (MLBDBI), P118, DOI 10.1109/MLBDBI48998.2019.00029 Dumaine B., 2020, BEZONOMICS AMAZON IS Erdogmus IE, 2012, PROCD SOC BEHV, V58, P1353, DOI 10.1016/j.sbspro.2012.09.1119 Etlinger S., 2017, ALTIMETER GROUP RES, P1 Fahimnia B, 2015, INT J PROD ECON, V162, P101, DOI 10.1016/j.ijpe.2015.01.003 Fetscherin M, 2015, J BUS RES, V68, P380, DOI 10.1016/j.jbusres.2014.06.010 Fish KE, 2004, J BUS RES, V57, P79, DOI 10.1016/S0148-2963(02)00287-4 Galloway Scott., 2017, 4 HIDDEN DNA AMAZON Gentsch P., 2019, MARKETING SALES SERV, P3, DOI [10.1007/978-3-319-89957-2_1, DOI 10.1007/978-3-319-89957-2_1] Girasa R., 2020, Artificial intelligence as a Disruptive Technology: Economic Transformation and Government Regulation, P23, DOI [10.1007/978-3-030-35975-12, DOI 10.1007/978-3-030-35975-12] Goh KY, 2013, INFORM SYST RES, V24, P88, DOI 10.1287/isre.1120.0469 Goodfellow I, 2016, ADAPT COMPUT MACH LE, P1 Gu YF, 2019, J MODEL MANAG, V15, P459, DOI 10.1108/JM2-02-2019-0039 Guo ZX, 2011, TEXT RES J, V81, P1871, DOI 10.1177/0040517511411968 Hirschberg J, 2015, SCIENCE, V349, P261, DOI 10.1126/science.aaa8685 Hosanagar K., 2020, HUMANS GUIDE MACHINE Hutter K, 2013, J PROD BRAND MANAG, V22, P342, DOI 10.1108/JPBM-05-2013-0299 Kaiser C, 2020, J BUS RES, V117, P707, DOI 10.1016/j.jbusres.2019.09.017 Kapidzic S, 2013, CYBERPSYCH BEH SOC N, V16, P14, DOI 10.1089/cyber.2012.0143 Kar R., 2016, ARXIV161103799 Kaya T, 2010, INT J COMPUT INT SYS, V3, P674, DOI 10.1080/18756891.2010.9727732 KELLER K.L., 2016, AMS Review, V6, P1 Keller KL, 2006, MARKET SCI, V25, P740, DOI 10.1287/mksc.1050.0153 Keller KL, 2020, INT J ADVERT, V39, P448, DOI 10.1080/02650487.2019.1710973 KELLER KL, 1993, J MARKETING, V57, P1, DOI 10.2307/1252054 Khanra S, 2020, ENTERP INF SYST-UK, V14, P737, DOI 10.1080/17517575.2020.1734241 Kim J, 2020, J GLOB SCHOLARS MARK, V30, P319, DOI 10.1080/21639159.2020.1775491 Kiss C, 2008, DECIS SUPPORT SYST, V46, P233, DOI 10.1016/j.dss.2008.06.007 KOHLI AK, 1990, J MARKETING, V54, P1, DOI 10.2307/1251866 Kreutzer RT., 2020, UNDERSTANDING ARTIFI, P167 Krishnan A., 2019, STYLESNAP WILL CHANG Kuksov D, 2013, MARKET SCI, V32, P294, DOI 10.1287/mksc.1120.0753 Kumar A, 2016, J MARKETING, V80, P7, DOI 10.1509/jm.14.0249 Kumar V, 2016, J ACAD MARKET SCI, V44, P24, DOI 10.1007/s11747-015-0426-9 Kumar V., 2020, J BUSINESS RES Labrecque LI, 2014, J INTERACT MARK, V28, P134, DOI 10.1016/j.intmar.2013.12.003 Lee D, 2018, MANAGE SCI, V64, P5105, DOI 10.1287/mnsc.2017.2902 Lee YJ, 2015, MANAGE SCI, V61, P2241, DOI 10.1287/mnsc.2014.2082 Li L, 2018, TECHNOL FORECAST SOC, V135, P66, DOI 10.1016/j.techfore.2017.05.028 Li MN, 2018, TECHNOL FORECAST SOC, V129, P285, DOI 10.1016/j.techfore.2017.09.032 Li XT, 2018, MIS QUART, V42, P1331, DOI 10.25300/MISQ/2018/14108 Liang TP, 2011, INT J ELECTRON COMM, V16, P5, DOI 10.2753/JEC1086-4415160201 Limaheluw C., 2020, THESIS Lipsman A, 2012, J ADVERTISING RES, V52, P40, DOI 10.2501/JAR-52-1-040-052 Liu KX, 2018, SPR SER FASH BUS, P257, DOI 10.1007/978-981-13-0080-6_13 Lokman A. S., 2010, J COMPUTATIONAL SCI, V6, P1199 Luo GH, 2016, SCI REP-UK, V6, P1, DOI [10.1038/s41598-016-0027-y, 10.1038/srep35231, 10.1038/srep37473] Luo XM, 2013, J MANAGE INFORM SYST, V30, P213, DOI 10.2753/MIS0742-1222300208 Ma LY, 2020, INT J RES MARK, V37, P481, DOI 10.1016/j.ijresmar.2020.04.005 Marinchak Christina McDowell, 2018, International Journal of E-Entrepreneurship and Innovation, V8, P14, DOI 10.4018/IJEEI.2018070102 Mayrhofer M, 2020, INT J ADVERT, V39, P166, DOI 10.1080/02650487.2019.1596447 Merigó JM, 2015, J BUS RES, V68, P2645, DOI 10.1016/j.jbusres.2015.04.006 Muhuri PK, 2019, ENG APPL ARTIF INTEL, V78, P218, DOI 10.1016/j.engappai.2018.11.007 Muntinga DG, 2011, INT J ADVERT, V30, P13, DOI 10.2501/IJA-30-1-013-046 Nagel M., 2019, EXPLORING DIGITAL IN Netzer O, 2012, MARKET SCI, V31, P521, DOI 10.1287/mksc.1120.0713 OECD, 2020, The Digitalisation of Science, Technology and Innovation: Key Developments and Policies Olenski S., 2019, WAYS BRANDS SHOULD U Parasuraman A, 2000, J ACAD MARKET SCI, V28, P168, DOI 10.1177/0092070300281015 Paschen J, 2020, J PROD BRAND MANAG, V29, P223, DOI 10.1108/JPBM-12-2018-2179 Paschen J, 2019, J BUS IND MARK, V34, P1410, DOI 10.1108/JBIM-10-2018-0295 Poria S, 2014, KNOWL-BASED SYST, V69, P45, DOI 10.1016/j.knosys.2014.05.005 Pramanik S, 2017, SOC NETW ANAL MIN, V7, DOI 10.1007/s13278-017-0462-1 Qiao C., 2019, 2019 4 INT C SOC SCI Qiu LF, 2015, J MANAGE INFORM SYST, V32, P78, DOI 10.1080/07421222.2015.1138368 Rai A, 2019, MIS QUART, V43, pIII Rajagopal A, 2020, INNOVATION, TECHNOLOGY, AND MARKET ECOSYSTEMS: MANAGING INDUSTRIAL GROWTH IN EMERGING MARKETS, P307 Ratchford BT, 2019, REV MARKET RES, V16, P35, DOI 10.1108/S1548-643520190000016005 Rautrao M. R. R., 2020, STUDIES INDIAN PLACE, V40, P1658 Ren SY, 2018, SPR SER FASH BUS, P9, DOI 10.1007/978-981-13-0080-6_2 Sarkar A, 2016, ASIA PAC J MARKET LO, V28, P180, DOI 10.1108/APJML-06-2015-0095 Schmitt B, 2012, J CONSUM PSYCHOL, V22, P7, DOI 10.1016/j.jcps.2011.09.005 Schultz D.E., 2015, Journal of Marketing Communications, V21, P340, DOI DOI 10.1080/13527266.2013.821227 Shang R, 2020, ELECTRON COMMER R A, V39, DOI 10.1016/j.elerap.2019.100893 Shankar V, 2018, J RETAILING, V94, pVI, DOI 10.1016/S0022-4359(18)30076-9 Shawar B. A., 2007, Ldv forum Simms K., 2019, VOICE ASSISTANTS COU Simoski B, 2019, INT CONF PER COMP, P198, DOI 10.1145/3329189.3329205 Smith AN, 2012, J INTERACT MARK, V26, P102, DOI 10.1016/j.intmar.2012.01.002 Srinivasan S, 2016, J ACAD MARKET SCI, V44, P440, DOI 10.1007/s11747-015-0431-z Stephen AT, 2010, J MARKETING RES, V47, P215, DOI 10.1509/jmkr.47.2.215 Stone M, 2020, BOTTOM LINE, V33, P183, DOI 10.1108/BL-03-2020-0022 Sung Y, 2018, INT J ADVERT, V37, P14, DOI 10.1080/02650487.2017.1368859 Suri V.K., 2017, Global Sourcing, P81 Sze V, 2017, P IEEE, V105, P2295, DOI 10.1109/JPROC.2017.2761740 Tang CY, 2015, MARKET LETT, V26, P67, DOI 10.1007/s11002-013-9268-8 van Eck NJ, 2010, SCIENTOMETRICS, V84, P523, DOI 10.1007/s11192-009-0146-3 van Oorschot JAWH, 2018, TECHNOL FORECAST SOC, V134, P1, DOI 10.1016/j.techfore.2018.04.032 Waid B., 2018, AI ENABLED PERSONALI Wang Y., 2020, P 53 HAW INTERNATION Wen B, 2017, J ASSOC INF SCI TECH, V68, P724, DOI 10.1002/asi.23696 West A., 2018, The Business Management Review, V9, P321, DOI [https://doi.org/10.15341/jbe(2155-7950)/10.09.2018/005, DOI 10.15341/JBE(2155-7950)/10.09.2018/005] Xu AB, 2017, PROCEEDINGS OF THE 2017 ACM SIGCHI CONFERENCE ON HUMAN FACTORS IN COMPUTING SYSTEMS (CHI'17), P3506, DOI 10.1145/3025453.3025496 Xu XH, 2018, INT J PROD ECON, V204, P160, DOI 10.1016/j.ijpe.2018.08.003 Yadav MS, 2014, J MARKETING, V78, P20, DOI 10.1509/jm.12.0020 Yoganarasimhan H., 2014, SEARCH PERSONA UNPUB Zeng F., 2019, INT C APPL TECHN CYB, P1857 Zhang K, 2017, ELECTRON COMMER R A, V23, P45, DOI 10.1016/j.elerap.2017.04.001 Zhang KP, 2016, MIS QUART, V40, P849, DOI 10.25300/MISQ/2016/40.4.03 NR 146 TC 30 Z9 32 U1 41 U2 288 PU IGI GLOBAL PI HERSHEY PA 701 E CHOCOLATE AVE, STE 200, HERSHEY, PA 17033-1240 USA SN 1062-7375 EI 1533-7995 J9 J GLOB INF MANAG JI J. Glob. Inf. Manag. PD JUL-AUG PY 2021 VL 29 IS 4 BP 221 EP 246 DI 10.4018/JGIM.20210701.oa10 PG 26 WC Information Science & Library Science WE Social Science Citation Index (SSCI) SC Information Science & Library Science GA SA7KG UT WOS:000649479400010 OA gold DA 2024-09-05 ER PT C AU Makady, H Liu, FJ AF Makady, Heidi Liu, Fanjue BE Kurosu, M TI The Status of Human-Machine Communication Research: A Decade of Publication Trends Across Top-Ranking Journals SO HUMAN-COMPUTER INTERACTION: THEORETICAL APPROACHES AND DESIGN METHODS, PT I SE Lecture Notes in Computer Science LA English DT Proceedings Paper CT Human Computer Interaction Thematic Area Conference Held as Part of the 24th International Conference on Human-Computer Interaction (HCII) CY JUN 26-JUL 01, 2022 CL ELECTR NETWORK DE Systematic review; Human-machine communication; LDA topic modeling; Affiliation; Funding; Technology; Method; Theory; Research trends ID RESPONSES AB This study explores the trends in Human-Machine Communication (HMC) scholarship in the past decade. We examined 444 peer-reviewed empirical studies published between 2010 and 2021 across journals with highest impact factor according to Social Sciences Citation Index (SSCI). Through a systematic review, we looked at theoretical frameworks, methodological approaches, studied technologies, funding sources, and contributing countries in HMC studies. Using an LDA topic modeling on article abstracts, we further explore the top topic composition in the field and topic distribution across the journals in the past decade. Our analysis revealed diversity among contributing countries. The United States-led studies saw the highest share in HMC research, followed by Asia and Europe. Funding saw a dominant contribution from government and university. A diversity in thematic focus was observed with some topics' dominance among domain-specific journals. Significant differences among journals in terms of theory, method, investigated technology and contributing disciplinary affiliation were also found. C1 [Makady, Heidi; Liu, Fanjue] Univ Florida, Gainesville, FL 32611 USA. C3 State University System of Florida; University of Florida RP Makady, H (corresponding author), Univ Florida, Gainesville, FL 32611 USA. EM Makady.h@ufl.edu; fanjueliu@ufl.edu RI Liu, Fanjue/JBS-1440-2023 OI Liu, Fanjue/0000-0001-5007-900X; Makady, Heidi/0000-0003-3083-6522 CR Arun R, 2010, LECT NOTES ARTIF INT, V6118, P391 Auxier B., 2019, 10 tech-related trends that shaped the decade Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993 Borah P, 2017, NEW MEDIA SOC, V19, P616, DOI 10.1177/1461444815621512 Cao J, 2009, NEUROCOMPUTING, V72, P1775, DOI 10.1016/j.neucom.2008.06.011 Castro D., 2021, WHO IS WINNING AI RA, P106 Collum M, 2019, STATE UX RES 2019 Dautenhahn K, 2004, AGENT CULTURE, P45 Duke N.K., 2001, MULTIMETHODOLOGICAL, DOI [10.1080/10862960109548114, DOI 10.1080/10862960109548114] ec.europa.eu, MAD EUR Edwards A., 2018, Human-machine communication: Rethinking communication, technology, and ourselves, P29 elsevier.com, AI REPORT ARTIFICIAL Fabbri A, 2018, AM J PUBLIC HEALTH, V108, pE9, DOI 10.2105/AJPH.2018.304677 Fortunati L., 2021, MOVING AHEAD HUMAN M Griffiths TL, 2004, P NATL ACAD SCI USA, V101, P5228, DOI 10.1073/pnas.0307752101 Gunkel D.J., 2012, COMMUNICATION 1, V1, P1, DOI [DOI 10.7275/R5QJ7F7R, https://doi.org/10.7275/R5QJ7F7R] Guo F, 2019, INT J HUM-COMPUT INT, V35, P1947, DOI 10.1080/10447318.2019.1587938 Guzman A., 2020, HUMAN MACHINE COMMUN, V1, P37, DOI [DOI 10.30658/HMC.1.3, 10.30658/hmc.1.3] Guzman A.L., 2018, HUMAN MACHINE COMMUN Guzman AL, 2020, NEW MEDIA SOC, V22, P70, DOI 10.1177/1461444819858691 Johanssen J., 2021, Human Machine Communication Journal (Print), V2, P173, DOI DOI 10.30658/HMC.2.9 Johnson C, 2019, Most Americans are wary of industry-funded research journals.elsevier.com, COMPUT HUM BEHAV Lewis SC, 2019, DIGIT JOURNAL, V7, P409, DOI 10.1080/21670811.2019.1577147 Lombard M., 1997, Journal of Computer-Mediated Communication, V3, pJCMC321, DOI [10.1111/j.1083-6101.1997.tb00072.x, DOI 10.1111/J.1083-6101.1997.TB00072.X, https://doi.org/10.1111/j.1083-6101.1997.tb00072.x] Mimno David, 2011, P C EMPIRICAL METHOD, P262 Nass C, 2000, J SOC ISSUES, V56, P81, DOI 10.1111/0022-4537.00153 Nielsen J., 2017, 100 YEAR VIEW USER E Page MJ, 2021, INT J SURG, V88, DOI [10.1186/s13643-021-01626-4, 10.1016/j.jclinepi.2021.02.003, 10.1016/j.ijsu.2021.105906] Palandrani P., 2020, A Decade of Change: How Tech Evolved in the 2010s and What's in Store for the 2020s. Global X ETFs Panichella A, 2021, INFORM SOFTWARE TECH, V130, DOI 10.1016/j.infsof.2020.106411 Panichella A, 2013, PROCEEDINGS OF THE 35TH INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING (ICSE 2013), P522, DOI 10.1109/ICSE.2013.6606598 Pavitt C, 2009, COMMUN Q, V57, P433, DOI 10.1080/01463370903320856 Picard RW, 2003, INT J HUM-COMPUT ST, V59, P55, DOI 10.1016/S1071-5819(03)00052-1 Schwarz C, 2018, STATA J, V18, P101, DOI 10.1177/1536867X1801800107 sgp.fas.org, GLOB RES DEV EXP FAC Shibuya Y., 2022, MAPPING HCI RES METH Smith RG, 2017, AI MAG, V38, P6, DOI 10.1609/aimag.v38i1.2709 Song H, 2020, J COMMUN, V70, P310, DOI 10.1093/joc/jqaa009 stars.library.ucf.edu, 2020, HUMAN MACHINE COMMUN Sun LJ, 2017, TRANSPORT RES C-EMER, V77, P49, DOI 10.1016/j.trc.2017.01.013 Sundar S. S., 2008, DIGITAL MEDIA YOUTH, P73, DOI DOI 10.1162/DMAL.9780262562324.073 Sundar SS, 2000, COMMUN RES, V27, P683, DOI 10.1177/009365000027006001 Techleap.nl, NETHERLANDS EMERGING Tomasello TK, 2010, NEW MEDIA SOC, V12, P531, DOI 10.1177/1461444809342762 Tong Tony W., 2021, Harvard Business Review Wolk K, 2019, CYBERPSYCH BEH SOC N, V22, P151, DOI 10.1089/cyber.2018.0035 NR 47 TC 0 Z9 0 U1 3 U2 13 PU SPRINGER INTERNATIONAL PUBLISHING AG PI CHAM PA GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND SN 0302-9743 EI 1611-3349 BN 978-3-031-05311-5; 978-3-031-05310-8 J9 LECT NOTES COMPUT SC PY 2022 VL 13302 BP 83 EP 103 DI 10.1007/978-3-031-05311-5_6 PG 21 WC Computer Science, Cybernetics; Computer Science, Theory & Methods; Ergonomics WE Conference Proceedings Citation Index - Science (CPCI-S); Conference Proceedings Citation Index - Social Science & Humanities (CPCI-SSH) SC Computer Science; Engineering GA BU0OC UT WOS:000870723000006 DA 2024-09-05 ER PT J AU Fernández, JMM Moreno, JJG Vergara-González, EP Iglesias, GA AF Mesa Fernandez, Jose Manuel Gonzalez Moreno, Juan Jose Vergara-Gonzalez, Eliseo P. Alonso Iglesias, Guillermo TI Bibliometric Analysis of the Application of Artificial Intelligence Techniques to the Management of Innovation Projects SO APPLIED SCIENCES-BASEL LA English DT Article DE research; innovation; artificial intelligence; project management AB Due to their specific characteristics, innovation projects are developed in contexts with great volatility, uncertainty, complexity, and even ambiguity. Project management has needed to adopt changes to ensure success in this type of project. Artificial intelligence (AI) techniques are being used in these changing environments to increase productivity. This work collected and analyzed those areas of technological innovation project management, such as risk management, costs, and deadlines, in which the application of artificial-intelligence techniques is having the greatest impact. With this objective, a search was carried out in the Scopus database including the three areas involved, that is, artificial intelligence, project management, and research and innovation. The resulting document set was analyzed using the co-word bibliographic method. Then, the results obtained were analyzed first from a global point of view and then specifically for each of the domains that the Project Management Institute (PMI) defines in project management. Some of the findings obtained indicate that sectors such as construction, software and product development, and systems such as knowledge management or decision-support systems have studied and applied the possibilities of artificial intelligence more intensively. C1 [Mesa Fernandez, Jose Manuel; Gonzalez Moreno, Juan Jose; Vergara-Gonzalez, Eliseo P.; Alonso Iglesias, Guillermo] Univ Oviedo, Dept Min Exploitat & Prospecting, Project Engn Area, Independencia St 13, Oviedo 33004, Spain. C3 University of Oviedo RP Fernández, JMM (corresponding author), Univ Oviedo, Dept Min Exploitat & Prospecting, Project Engn Area, Independencia St 13, Oviedo 33004, Spain. EM jmmesa@uniovi.es RI Fernández, José Manuel Mesa/A-4994-2010 OI Fernández, José Manuel Mesa/0000-0002-0754-7426; Alonso Iglesias, Guillermo/0000-0003-4282-0376 FU Regional Ministry of Science and Innovation; University of the Principality of Asturias [AYUD/2021/50953] FX This study was funded by the Regional Ministry of Science and Innovation and the University of the Principality of Asturias (grant number AYUD/2021/50953). CR Afzal F, 2021, INT J MANAG PROJ BUS, V14, P300, DOI 10.1108/IJMPB-02-2019-0047 [Anonymous], Clarivate Web Of Science Baas J, 2020, QUANT SCI STUD, V1, P377, DOI 10.1162/qss_a_00019 Tran BX, 2019, J CLIN MED, V8, DOI 10.3390/jcm8030360 Bang S., 2022, Journal of Engineering, Project, and Production Management, V12, P224, DOI [10.32738/JEPPM-2022-0021, DOI 10.32738/JEPPM-2022-0021] Bhukya R, 2022, EUR MANAG J, V40, P10, DOI 10.1016/j.emj.2021.04.001 Bianchini S, 2022, RES POLICY, V51, DOI 10.1016/j.respol.2022.104604 Chen HY, 2022, Z GEBURTSH NEONATOL, V226, P197, DOI 10.1055/a-1756-5518 Chenya L, 2022, IEEE ACCESS, V10, P72936, DOI 10.1109/ACCESS.2022.3189157 Darko A, 2020, AUTOMAT CONSTR, V112, DOI 10.1016/j.autcon.2020.103081 Donthu N, 2021, J BUS RES, V133, P285, DOI 10.1016/j.jbusres.2021.04.070 Dwivedi YK, 2021, INT J INFORM MANAGE, V57, DOI 10.1016/j.ijinfomgt.2019.08.002 Eurostat, 2018, OSL MAN 2018 Ferreira Lorenzo G.L., 2014, REV CUBA CIENC INFOR, V8, P1 Chaparro XAF, 2019, REGE-REV GEST, V26, P212, DOI 10.1108/REGE-10-2018-0096 Fridgeirsson TV, 2021, SUSTAINABILITY-BASEL, V13, DOI 10.3390/su13042345 Galvez C, 2018, TRANSINFORMACAO, V30, P277, DOI 10.1590/2318-08892018000300001 Gao F, 2021, MICROSYST TECHNOL, V27, P1545, DOI 10.1007/s00542-019-04426-y Gao H, 2022, MULTIMED TOOLS APPL, V81, P12973, DOI 10.1007/s11042-022-12208-4 Gómez-Marín N, 2022, INT J MANAG EDUC-OXF, V20, DOI 10.1016/j.ijme.2022.100601 Guo YQ, 2020, J MED INTERNET RES, V22, DOI 10.2196/18228 Haefner N, 2021, TECHNOL FORECAST SOC, V162, DOI 10.1016/j.techfore.2020.120392 Hamid M, 2020, J INTELL FUZZY SYST, V38, P2635, DOI 10.3233/JIFS-179550 Han RY, 2021, IND MANAGE DATA SYST, V121, P2467, DOI 10.1108/IMDS-05-2021-0300 Havins Shannon R., 2020, IEEE Engineering Management Review, V48, P28, DOI 10.1109/EMR.2020.3007748 Herremans D, 2021, IEEE ACCESS, V9, P155826, DOI 10.1109/ACCESS.2021.3127548 Dam HK, 2019, 2019 IEEE/ACM 41ST INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING: NEW IDEAS AND EMERGING RESULTS (ICSE-NIER 2019), P41, DOI 10.1109/ICSE-NIER.2019.00019 Huang YY, 2019, SAGE OPEN, V9, DOI 10.1177/2158244019854644 Hussain T., 2017, P 2017 INT C COMP SC, P999 Ionescu VS, 2017, INT C INTELL COMP CO, P197, DOI 10.1109/ICCP.2017.8117004 Kaplan A, 2019, BUS HORIZONS, V62, P15, DOI 10.1016/j.bushor.2018.08.004 Keding C, 2021, TECHNOL FORECAST SOC, V171, DOI 10.1016/j.techfore.2021.120970 Khalife M.A., 2021, Periodica Polytechnica Social and Management Sciences, V29, P70, DOI [10.3311/PPSO.15717, DOI 10.3311/PPSO.15717] Lei YF, 2019, J PHYS CONF SER, V1168, DOI 10.1088/1742-6596/1168/2/022027 LingDa Zhao, 2011, 2011 2nd International Conference on Artificial Intelligence, Management Science and Electronic Commerce (AIMSEC 2011), P822, DOI 10.1109/AIMSEC.2011.6010449 García JAL, 2017, INT J COMPUT INT SYS, V10, P320 Markopoulos E, 2020, ADV INTELL SYST, V965, P421, DOI 10.1007/978-3-030-20454-9_43 Martínez-López FJ, 2018, EUR J MARKETING, V52, P439, DOI 10.1108/EJM-11-2017-0853 Mascarenhas C, 2018, SCI PUBL POLICY, V45, P708, DOI 10.1093/scipol/scy003 McMillan L, 2022, ENG APPL ARTIF INTEL, V116, DOI 10.1016/j.engappai.2022.105472 Methlagl M, 2022, ISS EDUC RES, V32, P225 Miller GJ, 2022, LECT NOTES BUS INF P, V442, P65, DOI 10.1007/978-3-030-98997-2_4 Najdawi Anas, 2021, 2021 International Conference on Innovative Practices in Technology and Management (ICIPTM), P205, DOI 10.1109/ICIPTM52218.2021.9388357 Nassif AB, 2016, NEURAL COMPUT APPL, V27, P2369, DOI 10.1007/s00521-015-2127-1 Niu JQ, 2016, ISPRS INT J GEO-INF, V5, DOI 10.3390/ijgi5050066 Park JY, 2018, DATA BRIEF, V17, P529, DOI 10.1016/j.dib.2018.01.033 PINO DIEZ Raul, 2001, Introduccion a la Inteligencia Artificial Pranckute R, 2021, PUBLICATIONS-BASEL, V9, DOI 10.3390/publications9010012 Project Management Institute Project Management Institute, 2021, GUID PROJ MAN BOD KN Rama SP, 2016, PROCEDIA COMPUT SCI, V85, P278, DOI 10.1016/j.procs.2016.05.234 Rao SS, 1999, J INTELL MANUF, V10, P231, DOI 10.1023/A:1008943723141 Relich M, 2021, IFAC PAPERSONLINE, V54, P1092, DOI 10.1016/j.ifacol.2021.08.128 Riahi Y, 2021, EXPERT SYST APPL, V173, DOI 10.1016/j.eswa.2021.114702 Saha V, 2020, BENCHMARKING, V27, P981, DOI 10.1108/BIJ-07-2019-0342 Salhab D., 2023, LECT NOTES CIV ENG, V247, P485, DOI [10.1007/978-981-19-0968-9_39, DOI 10.1007/978-981-19-0968-9_39] scopus, Elsevier Scopus Shao Z, 2022, EXPERT SYST APPL, V209, DOI 10.1016/j.eswa.2022.118221 Song J.E.H., INVESTIGATION EXISTE Sousa ALR, 2022, IET SOFTW, V16, P14, DOI 10.1049/sfw2.12043 Sreerag R. S., 2022, International Journal of Management and Enterprise Development, V21, P198, DOI 10.1504/IJMED.2022.122101 van Eck N.J., VOSviewer-Visualizing Scientific Landscapes van Eck NJ, 2010, SCIENTOMETRICS, V84, P523, DOI 10.1007/s11192-009-0146-3 van Eck NJ, 2009, J AM SOC INF SCI TEC, V60, P1635, DOI 10.1002/asi.21075 Waltman L, 2010, J INFORMETR, V4, P629, DOI 10.1016/j.joi.2010.07.002 Wang ZY, 2012, SCIENTOMETRICS, V90, P855, DOI 10.1007/s11192-011-0563-y Wauters M, 2017, EUR J OPER RES, V259, P1097, DOI 10.1016/j.ejor.2016.11.018 Yang CY, 2018, PROCEEDINGS OF 2018 THE 2ND INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND ARTIFICIAL INTELLIGENCE (CSAI 2018) / 2018 THE 10TH INTERNATIONAL CONFERENCE ON INFORMATION AND MULTIMEDIA TECHNOLOGY (ICIMT 2018), P185, DOI 10.1145/3297156.3297227 Yu DJ, 2018, CURR SCI INDIA, V114, P747, DOI 10.18520/cs/v114/i04/747-758 Zappi Daniela C., 2015, Rodriguésia, V66, P1085 Zhang J, 2016, J ASSOC INF SCI TECH, V67, P967, DOI 10.1002/asi.23437 Zhao L, 2020, PROCESS SAF ENVIRON, V133, P169, DOI 10.1016/j.psep.2019.11.014 NR 71 TC 3 Z9 3 U1 24 U2 81 PU MDPI PI BASEL PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND EI 2076-3417 J9 APPL SCI-BASEL JI Appl. Sci.-Basel PD NOV PY 2022 VL 12 IS 22 AR 11743 DI 10.3390/app122211743 PG 15 WC Chemistry, Multidisciplinary; Engineering, Multidisciplinary; Materials Science, Multidisciplinary; Physics, Applied WE Science Citation Index Expanded (SCI-EXPANDED) SC Chemistry; Engineering; Materials Science; Physics GA 6J8OV UT WOS:000887078700001 OA gold DA 2024-09-05 ER PT J AU Chen, XL Zou, D Xie, HR Su, F AF Chen, Xieling Zou, Di Xie, Haoran Su, Fan TI Twenty-five years of computer-assisted language learning: A topic modeling analysis SO LANGUAGE LEARNING & TECHNOLOGY LA English DT Article DE Computer Assisted Language Learning; Structural Topic Modeling; Bibliometrics; Mobile Assisted Language Learning ID MEDIATED COMMUNICATION; TECHNOLOGIES; SLA; METAANALYSIS; PERFORMANCE; CULTURE; IMPACT; SENSE; EFL; CMC AB The advance of educational technologies and digital devices have made computer-assisted language learning (CALL) an active interdisciplinary field with increasing research potential and topic diversity. Questions like "what topics and technologies attract the interest of the CALL community?," "how have these topics and technologies evolved?," and "what is the future of CALL?" are key to understanding where the CALL field has been and where it is going. To help answer these questions, the present review combined structural topic modeling, the Mann-Kendall trend test, and hierarchical clustering with bibliometrics to investigate the research status, trends, and prominent issues in CALL from 1,295 articles over the past 25 years ending in 2020. Major findings revealed that Social Sciences Citation Indexed journals such as Computer Assisted Language Learning, Language Learning & Technology, and ReCALL contributed most to the field. Topics that drew the most interest included mobile-assisted language learning, project-based learning, and blended learning. Topics drawing increasing research interest include mobile-assisted language learning, seamless learning, wiki-based learning, and virtual world and virtual reality. Additionally, the development of mobile devices, games, and virtual worlds continuously promote research attention. Finally, the review showed that scholars and educators are integrating different technologies, such as the mixed use of mobile technology and glosses/annotations for vocabulary learning, and their application into various contexts; one such context being the integration of digital multimodal composing into blended project-based learning. C1 [Chen, Xieling; Zou, Di; Su, Fan] Educ Univ Hong Kong, Hong Kong, Peoples R China. [Xie, Haoran] Lingnan Univ, Dept Comp & Decis Sci, Hong Kong, Peoples R China. C3 Education University of Hong Kong (EdUHK); Lingnan University RP Zou, D (corresponding author), Educ Univ Hong Kong, Hong Kong, Peoples R China. EM xielingchen0708@gmail.com; dizoudaisy@gmail.com; hrxie2@gmail.com; s1134959@s.eduhk.hk RI Xie, Haoran/AFS-3515-2022 OI Xie, Haoran/0000-0003-0965-3617; ZOU, Di/0000-0001-8435-9739 FU Lingnan University [102489]; Education University of Hong Kong [RG15/20-21R, KT16/20-21] FX We are grateful for the anonymous reviewers' helpful comments and suggestions on earlier drafts of this paper. This research was funded by the Teaching Development Grant (102489) from Lingnan University, and the Internal Research Grants (RG15/20-21R, KT16/20-21) from the Education University of Hong Kong. CR Acquah EO, 2020, COMPUT EDUC, V143, DOI 10.1016/j.compedu.2019.103667 Adolphs S, 2018, SYSTEM, V78, P173, DOI 10.1016/j.system.2018.07.014 Barrot JS, 2018, J COMPUT ASSIST LEAR, V34, P863, DOI 10.1111/jcal.12295 Bax S., 2003, System, V31, P13, DOI [DOI 10.1016/S0346-251X(02)00071-4, 10.1016/S0346-251X, DOI 10.1016/S0346-251X] Beatty K., 2013, Teaching researching: Computer-assisted language learning Bordeleau P., 2000, EUROCALL Bull S, 2016, RECALL, V28, P147, DOI 10.1017/S0958344015000282 Chee KN, 2017, EDUC TECHNOL SOC, V20, P113 Chen CM, 2016, INTERACT LEARN ENVIR, V24, P681, DOI 10.1080/10494820.2014.917107 Chen JC, 2016, AUSTRALAS J EDUC TEC, V32, P1 Chen MP, 2019, COMPUT EDUC, V140, DOI 10.1016/j.compedu.2019.103602 Chen X., 2020, Computers and Education: Artificial Intelligence, V1, P100002, DOI DOI 10.1016/J.CAEAI.2020.100002 Chen X, 2020, COMPUT EDUC, V151, DOI 10.1016/j.compedu.2020.103855 Chen XL, 2020, BRIT J EDUC TECHNOL, V51, P692, DOI 10.1111/bjet.12907 Cho MH, 2021, STUD HIGH EDUC, V46, P509, DOI 10.1080/03075079.2019.1643303 Chun DM, 2016, LANG LEARN TECHNOL, V20, P98 Cushion CJ, 2019, EDUC REV, V71, P631, DOI 10.1080/00131911.2018.1457010 Egbert J., 2005, CALL Essentials: Principles and Practice in CALL Classrooms Gamper J., 2002, Computer Assisted Language Learning, V15, P329, DOI 10.1076/call.15.4.329.8270 Gelan A, 2018, COMPUT ASSIST LANG L, V31, P294, DOI 10.1080/09588221.2017.1418382 Gillespie J, 2020, RECALL, V32, P127, DOI 10.1017/S0958344020000051 Gimeno-Sanz A, 2016, COMPUT ASSIST LANG L, V29, P1102, DOI 10.1080/09588221.2015.1103271 Godfroid A, 2017, LANG LEARN, V67, P819, DOI 10.1111/lang.12246 Godwin-Jones R, 2005, LANG LEARN TECHNOL, V9, P17 Golonka EM, 2014, COMPUT ASSIST LANG L, V27, P70, DOI 10.1080/09588221.2012.700315 Hafner CA, 2015, TESOL QUART, V49, P486, DOI 10.1002/tesq.238 Harrington M., 2001, System, V29, P15, DOI DOI 10.1016/S0346-251X(00)00043-9 Hubbard P., 2009, Computer Assisted Language Learning Hung HT, 2018, COMPUT EDUC, V126, P89, DOI 10.1016/j.compedu.2018.07.001 Hwang GJ, 2019, INTERACT LEARN ENVIR, V27, P567, DOI 10.1080/10494820.2018.1486861 Jiang LJ, 2021, LANG TEACH RES, V25, P613, DOI 10.1177/1362168819864975 Lee L, 2014, RECALL, V26, P281, DOI 10.1017/S0958344014000111 Lee L, 2010, CALICO J, V27, P260, DOI 10.11139/cj.27.2.260-276 Lee SM, 2020, COMPUT ASSIST LANG L, V33, P936, DOI 10.1080/09588221.2019.1602545 Levy M, 1997, Computer-assisted language learning: Context and conceptualization Levy M., 2005, COMPUT ASSIST LANG L, V18, P143, DOI DOI 10.1080/09588220500208884 Lin HF, 2014, LANG LEARN TECHNOL, V18, P120 Liu M, 2004, COMPUT HUM BEHAV, V20, P357, DOI 10.1016/S0747-5632(03)00052-9 Macaro E, 2012, LANG TEACHING, V45, P1, DOI 10.1017/S0261444811000395 Major L, 2018, EDUC INF TECHNOL, V23, P1995, DOI 10.1007/s10639-018-9701-y Makarenkov V, 2019, ENG APPL ARTIF INTEL, V84, P1, DOI 10.1016/j.engappai.2019.05.003 Mann HB, 1945, ECONOMETRICA, V13, P245, DOI 10.2307/1907187 Min Liu, 2002, Journal of Research on Technology in Education, V34, P250 Mohsen MA, 2016, BRIT J EDUC TECHNOL, V47, P1232, DOI 10.1111/bjet.12305 Mohsen MA, 2011, RECALL, V23, P135, DOI 10.1017/S095834401100005X Nagendrababu V, 2019, INT ENDOD J, V52, P181, DOI 10.1111/iej.12995 Nutta JW, 2002, FOREIGN LANG ANN, V35, P293, DOI 10.1111/j.1944-9720.2002.tb01855.x Ortega L, 2017, CALICO J, V34, P285, DOI 10.1558/cj.33855 Paily M.U., 2013, International Forum of Teaching and Studies, V9, P39 Parmaxi Antigoni, 2017, Interactive Learning Environments, V25, P704, DOI 10.1080/10494820.2016.1172243 Parmaxi A, 2016, UNIVERSAL ACCESS INF, V15, P169, DOI 10.1007/s10209-015-0405-4 Plass JL, 2003, COMPUT HUM BEHAV, V19, P221, DOI 10.1016/S0747-5632(02)00015-8 Plowman L, 1996, BRIT J EDUC TECHNOL, V27, P92, DOI 10.1111/j.1467-8535.1996.tb00716.x Reinhardt J, 2019, LANG TEACHING, V52, P1, DOI 10.1017/S0261444818000356 Roberts ME, 2019, J STAT SOFTW, V91, P1, DOI 10.18637/jss.v091.i02 Romero C, 2020, WIRES DATA MIN KNOWL, V10, DOI 10.1002/widm.1355 Saito H, 2004, FOREIGN LANG ANN, V37, P111, DOI 10.1111/j.1944-9720.2004.tb02178.x Segers E, 2002, COMPUT EDUC, V39, P207, DOI 10.1016/S0360-1315(02)00034-9 Sharifi M, 2018, COMPUT ASSIST LANG L, V31, P413, DOI 10.1080/09588221.2017.1412325 Smith B, 2003, COMPUT HUM BEHAV, V19, P703, DOI 10.1016/S0747-5632(03)00011-6 Sung YT, 2015, EDUC RES REV-NETH, V16, P68, DOI 10.1016/j.edurev.2015.09.001 Svensson G, 2010, EUR J MARKETING, V44, P23, DOI 10.1108/03090561011008583 Swaffar J, 1997, MOD LANG J, V81, P175, DOI 10.2307/328785 Xie H, 2019, COMPUT EDUC, V140, DOI 10.1016/j.compedu.2019.103599 Yang J., 2013, English Language Teaching, V6, P19, DOI DOI 10.5539/ELT.V6N7P19 Yang JC, 2018, EDUC TECHNOL SOC, V21, P174 Yang J, 2019, COMPUT ASSIST LANG L, V32, P366, DOI 10.1080/09588221.2018.1517125 Yang S. J. H., 2021, Computers and Education: Artificial Intelligence, V2, DOI [DOI 10.1016/J.CAEAI.2021.100008, 10.1016/j.caeai.2021.100008] Yuan CH, 2020, COMPUT SIST, V24, P17, DOI [10.13053/CyS-24-1-3350, 10.13053/cys-24-1-3350] Yuping Wang, 2001, CALICO Journal, V18, P539 Zhang RF, 2022, COMPUT ASSIST LANG L, V35, P2790, DOI 10.1080/09588221.2021.1896555 Zhang RF, 2022, COMPUT ASSIST LANG L, V35, P696, DOI 10.1080/09588221.2020.1744666 Zurita G, 2005, EDUC TECHNOL SOC, V8, P149 NR 73 TC 36 Z9 38 U1 13 U2 88 PU UNIV HAWAII, NATL FOREIGN LANGUAGE RESOURCE CENTER PI HONOLULU PA 1859 EAST WEST RD, 106, HONOLULU, HI 96822 USA SN 1094-3501 J9 LANG LEARN TECHNOL JI Lang. Learn. Technol. PD OCT PY 2021 VL 25 IS 3 BP 151 EP 185 PG 35 WC Education & Educational Research; Linguistics WE Social Science Citation Index (SSCI) SC Education & Educational Research; Linguistics GA WG0MM UT WOS:000706693200012 DA 2024-09-05 ER PT J AU Aryadoust, V AF Aryadoust, Vahid TI The vexing problem of validity and the future of second language assessment SO LANGUAGE TESTING LA English DT Article DE Artificial intelligence (AI); authenticity; interdisciplinary research; language assessment; neuroscience; validity; validity arguments AB Construct validity and building validity arguments are some of the main challenges facing the language assessment community. The notion of construct validity and validity arguments arose from research in psychological assessment and developed into the gold standard of validation/validity research in language assessment. At a theoretical level, construct validity and validity arguments conflate the scientific reasoning in assessment and policy matters of ethics. Thus, a test validator is expected to simultaneously serve the role of conducting scientific research and examining the consequential basis of assessments. I contend that validity investigations should be decoupled from the ethical and social aspects of assessment. In addition, the near-exclusive focus of empirical construct validity research on cognitive processing has not resulted in sufficient accuracy and replicability in predicting test takers' performance in real language use domains. Accordingly, I underscore the significance of prediction in validation, in contrast to explanation, and propose that the question to ask might not so much be about what a test measures as what type of methods and tools can better generate language use profiles. Finally, I suggest that interdisciplinary alliances with cognitive and computational neuroscience and artificial intelligence (AI) fields should be forged to meet the demands of language assessment in the 21st century. C1 [Aryadoust, Vahid] Nanyang Technol Univ, Natl Inst Educ, Singapore, Singapore. [Aryadoust, Vahid] Nanyang Technol Univ, Natl Inst Educ, Singapore 637616, Singapore. C3 Nanyang Technological University; National Institute of Education (NIE) Singapore; Nanyang Technological University; National Institute of Education (NIE) Singapore RP Aryadoust, V (corresponding author), Nanyang Technol Univ, Natl Inst Educ, Singapore 637616, Singapore. EM Vahid.aryadoust@nie.edu.sg RI Aryadoust, Vahid/AAJ-1764-2020 OI Aryadoust, Vahid/0000-0001-6960-2489 CR Aryadoust V, 2020, FRONT PSYCHOL, V11, DOI 10.3389/fpsyg.2020.01941 Bachman L., 1996, LANGUAGE TESTING PRA Borsboom D, 2016, ASSESS EDUC, V23, P281, DOI 10.1080/0969594X.2016.1141750 Buck G., 2001, Assessing Listening CAMPBELL DT, 1959, PSYCHOL BULL, V56, P81, DOI 10.1037/h0046016 Chalhoub-Deville M., 2020, BRIT COUNCIL MONOGRA Chapelle CA, 2021, CAM APPL L, P1, DOI 10.1017/9781108669849 CRONBACH LJ, 1955, PSYCHOL BULL, V52, P281, DOI 10.1037/h0040957 Davies A, 2005, HANDBOOK OF RESEARCH IN SECOND LANGUAGE TEACHING AND LEARNING, P795 Davies A, 2012, LANG TEST, V29, P37, DOI 10.1177/0265532211417213 Gruba P., 2019, SOCIAL PERSPECTIVES, P229 Hasrol B. S., 2022, RES METHODS APPL LIN, V1 Ioannidis JPA, 2005, PLOS MED, V2, P696, DOI 10.1371/journal.pmed.0020124 Kane M, 2004, APPL MEAS EDUC, V17, P221, DOI 10.1207/s15324818ame1703_1 KANE MT, 1992, PSYCHOL BULL, V112, P527, DOI 10.1037/0033-2909.112.3.527 LOEVINGER J, 1957, PSYCHOL REP, V3, P635, DOI 10.2466/PR0.3.7.635-694 MESSICK S, 1975, AM PSYCHOL, V30, P955, DOI 10.1037/0003-066X.30.10.955 Messick S., 1989, Educational Measurement, P13, DOI DOI 10.7203/RELIEVE.22.1.8248 Newton PE., 2014, Validity in educational psychological assessment Toulmin S.E., 2003, USES ARGUMENT, DOI DOI 10.1017/CBO9780511840005 Verheij, 2006, ARGUMENTATION, P347 WHITELY SE, 1983, PSYCHOL BULL, V93, P179, DOI 10.1037/0033-2909.93.1.179 Yarkoni T, 2017, PERSPECT PSYCHOL SCI, V12, P1100, DOI 10.1177/1745691617693393 Zeleznikow J, 2006, ARGUMENTATION LIB, V10, P289, DOI 10.1007/978-1-4020-4938-5_19 NR 24 TC 7 Z9 7 U1 10 U2 25 PU SAGE PUBLICATIONS LTD PI LONDON PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND SN 0265-5322 EI 1477-0946 J9 LANG TEST JI Lang. Test. PD JAN PY 2023 VL 40 IS 1 BP 8 EP 14 DI 10.1177/02655322221125204 EA JAN 2023 PG 7 WC Linguistics; Language & Linguistics WE Social Science Citation Index (SSCI); Arts & Humanities Citation Index (A&HCI) SC Linguistics GA 7W5MS UT WOS:000911148000001 DA 2024-09-05 ER PT J AU Wang, PL Su, J AF Wang, Peiling Su, Jing TI Post-publication expert recommendations in faculty opinions (F1000Prime): Recommended articles and citations SO JOURNAL OF INFORMETRICS LA English DT Article DE Post-publication expert recommendations; Cognitive authorities; Citation analysis; Sentiment analysis; F1000Prime; Faculty Opinions AB A B S T R A C T This exploratory study of the post-publication expert recommendations (PPER) of biomedical articles in Faculty Opinions observed whether the recommended articles were cited differently from other articles in the same journal. The collected data include 830 research articles published in Cell, Nature Genetics, Nature Medicine , and PLoS Biology in 2010 and their 205,976 citations in Web of Science (WoS) from 2010 to 2019. Of the 830 articles, 417 were recommended in Faculty Opinions. A recommendation made by a Faculty Member (FM) includes a star rating and optional classification and commentary. For Nature Genetics, Nature Medicine , and PLoS Biology , the recommended articles (dataset.FM) were cited significantly more than other articles (dataset.other). Certain correlations were found between recommendation level and citedness, but a scaled mapping showed no linear relationship between the two measurements. The majority of the articles reached a citation peak two years after publication. The most assigned classification tags are New Finding, Interesting Hypothesis, Technical Advance, and Novel Drug Target. Sentiment analysis of the 118 recommendations of the 30 top articles found that FM ratings were correlated with sentiment intensity level. The repeated measures ANOVA did not show the Matthew effect of citations. Suggestions include refining Faculty Opinions' rating schema. C1 [Wang, Peiling] Univ Tennessee, Sch Informat Sci, 1345 Circle Pk Dr, Knoxville, TN 37932 USA. [Su, Jing] Vanderbilt Univ, Ctr Knowledge Management, Med Ctr, 3401 West End Ave, Nashville, TN 37203 USA. C3 University of Tennessee System; University of Tennessee Knoxville; Vanderbilt University RP Wang, PL (corresponding author), Univ Tennessee, Sch Informat Sci, 1345 Circle Pk Dr, Knoxville, TN 37932 USA. EM peilingw@utk.edu; jing.su@vumc.org OI Wang, Peiling/0000-0003-4202-7570; Su, Jing/0000-0001-6699-6806 CR Allen L, 2009, PLOS ONE, V4, DOI 10.1371/journal.pone.0005910 [Anonymous], 1998, Hedging in scientific research articles, DOI DOI 10.1075/PBNS.54 Bornmann L, 2018, PLOS ONE, V13, DOI 10.1371/journal.pone.0197133 Bornmann L, 2017, J ASSOC INF SCI TECH, V68, P1064, DOI 10.1002/asi.23729 Bornmann L, 2015, J ASSOC INF SCI TECH, V66, P2415, DOI 10.1002/asi.23334 Bornmann L, 2015, J INFORMETR, V9, P419, DOI 10.1016/j.joi.2015.03.001 Bornmann L, 2015, J INFORMETR, V9, P477, DOI 10.1016/j.joi.2015.04.001 Drivas K, 2020, RES POLICY, V49, DOI 10.1016/j.respol.2020.103951 Garfield E., 1989, CURR COMMENTS Hyland K, 2008, ANNU REV INFORM SCI, V42, P297 Ke Q, 2015, P NATL ACAD SCI USA, V112, P7426, DOI 10.1073/pnas.1424329112 Leydesdorff L, 1998, SCIENTOMETRICS, V43, P5, DOI 10.1007/BF02458391 Mohammadi E, 2013, SCIENTOMETRICS, V97, P383, DOI 10.1007/s11192-013-0993-9 National Science Foundation, 2019, NSB20206 Small H, 2019, PRO INT CONF SCI INF, P554 Thelwall M, 2020, ONLINE INFORM REV, V44, P1057, DOI 10.1108/OIR-11-2019-0347 Thor A, 2018, SCIENTOMETRICS, V116, P591, DOI 10.1007/s11192-018-2733-7 van Raan AFJ, 2019, PLOS ONE, V14, DOI 10.1371/journal.pone.0223373 Waltman L, 2014, J ASSOC INF SCI TECH, V65, P433, DOI 10.1002/asi.23040 Wang P., 2005, P 2005 ASIST ANN M C, DOI [10.1002/meet.14504201202, DOI 10.1002/MEET.14504201202] Wang PL, 2020, SCIENTOMETRICS, V122, P933, DOI 10.1007/s11192-019-03302-w Wang PL, 1999, J AM SOC INFORM SCI, V50, P98 Wardle DA, 2010, IDEAS ECOL EVOL, V3, P11, DOI 10.4033/iee.2010.3.3.c White HD, 2001, SCIENTOMETRICS, V51, P607, DOI 10.1023/A:1019607522125 Wolfram D, 2021, RES EVALUAT, V30, P314, DOI 10.1093/reseval/rvab005 NR 25 TC 2 Z9 2 U1 10 U2 38 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS SN 1751-1577 EI 1875-5879 J9 J INFORMETR JI J. Informetr. PD AUG PY 2021 VL 15 IS 3 AR 101174 DI 10.1016/j.joi.2021.101174 EA JUN 2021 PG 20 WC Computer Science, Interdisciplinary Applications; Information Science & Library Science WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Computer Science; Information Science & Library Science GA WB5JH UT WOS:000703607500017 DA 2024-09-05 ER PT J AU Sripathi, KN Moscarella, RA Steele, M Yoho, R You, HYS Prevost, LB Urban-Lurain, M Merrill, J Haudek, KC AF Sripathi, Kamali N. N. Moscarella, Rosa A. A. Steele, Matthew Yoho, Rachel You, Hyesun Prevost, Luanna B. B. Urban-Lurain, Mark Merrill, John Haudek, Kevin C. C. TI Machine Learning Mixed Methods Text Analysis: An Illustration From Automated Scoring Models of Student Writing in Biology Education SO JOURNAL OF MIXED METHODS RESEARCH LA English DT Article DE machine learning; predictive models; constructed response assessments; biology assessment; biology education research ID EXPLANATIONS AB Assessing student knowledge based on their writing using traditional qualitative methods is time-consuming. To improve speed and consistency of text analysis, we present our mixed methods development of a machine learning predictive model to analyze student writing. Our approach involves two stages: first an exploratory sequential design, and second an iterative complex design. We first trained our predictive model using qualitative coding of categories (ideas) in student writing. We next revised our model based on feedback from instructor-users. The model itself highlighted categories in need of revision. The contribution to mixed methods research lies in our innovative use of the machine learning tool as a rapid, consistent additional coder, and a resource that can predict codes for new student writing. C1 [Sripathi, Kamali N. N.] Univ Calif Davis, UC Davis Genome Ctr, Davis, CA USA. [Moscarella, Rosa A. A.] Univ Massachusetts Amherst, Biol Dept, Amherst, MA USA. [Steele, Matthew; Urban-Lurain, Mark] Michigan State Univ, CREATE STEM Inst, E Lansing, MI USA. [Yoho, Rachel] George Mason Univ, Stearns Ctr Teaching & Learning, Fairfax, VA USA. [You, Hyesun] Univ Iowa, Coll Educ, Iowa, LA USA. [Prevost, Luanna B. B.] Univ S Florida, Dept Integrat Biol, Tampa, FL USA. [Merrill, John] Michigan State Univ, Dept Microbiol & Mol Genet, E Lansing, MI USA. [Haudek, Kevin C. C.] Michigan State Univ, Dept Biochem & Mol Biol, E Lansing, MI USA. [Sripathi, Kamali N. N.] Univ Calif Davis, UC Davis Genome Ctr, Davis, CA 95616 USA. C3 University of California System; University of California Davis; University of Massachusetts System; University of Massachusetts Amherst; Michigan State University; George Mason University; State University System of Florida; University of South Florida; Michigan State University; Michigan State University; University of California System; University of California Davis RP Sripathi, KN (corresponding author), Univ Calif Davis, UC Davis Genome Ctr, Davis, CA 95616 USA. EM ksripathi@ucdavis.edu RI Haudek, Kevin/AAU-9879-2021 OI Haudek, Kevin/0000-0003-1422-6038; Urban-Lurain, Mark/0000-0002-2243-8252 FU National Science Foundation [DUE 1323162, 1347740]; Direct For Education and Human Resources; Division Of Undergraduate Education [1347740] Funding Source: National Science Foundation FX The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: We gratefully acknowledge members of the Automated Analysis of Constructed Response research group for helpful conversations. This material is based upon work supported by the National Science Foundation (DUE 1323162 and 1347740). CR American Association for the Advancement of Science, 2011, Final Report [Anonymous], 2001, KNOWING WHAT STUDENT, V19, P48, DOI DOI 10.17226/10019 [Anonymous], 2008, International handbook of research on conceptual change Bazeley P., 2018, INTEGRATING ANAL MIX, P253 Bazeley P., 2018, INTEGRATING ANAL MIX, P158 Bennett R. E., 1990, RR907 ED TEST SERV BENNETT RE, 1993, CONSTRUCTION VERSUS CHOICE IN COGNITIVE MEASUREMENT : ISSUES IN CONSTRUCTED RESPONSE, PERFORMANCE TESTING, AND PORTFOLIO ASSESSMENT, P1 Bierema A, 2021, INT J RES METHOD EDU, V44, P395, DOI 10.1080/1743727X.2020.1804541 BIRENBAUM M, 1987, APPL PSYCH MEAS, V11, P385, DOI 10.1177/014662168701100404 Brew C., 2013, Handbook of automated essay evaluation: Current applications and new directions, P136 Burstein J., 2013, Handbook of automated essay evaluation: Current applications and new directions, P55 Caruana R., 2004, P 21 INT C MACH LEAR, P18 Chang T, 2021, J MIX METHOD RES, V15, P398, DOI 10.1177/15586898211021196 Chi M., 2011, INT J ARTIFICIAL INT, V21, P83, DOI [DOI 10.3233/JAI-2011-014, 10.3233/JAI-2011-014] Chicco D, 2020, BMC GENOMICS, V21, DOI 10.1186/s12864-019-6413-7 Cresswell J.W., 2015, A Concise Introduction to Mixed Methods Research Creswell J. W., 2018, Designing and conducting mixed methods research, V3rd Crowston K, 2012, INT J SOC RES METHOD, V15, P523, DOI 10.1080/13645579.2011.625764 Derry SJ, 1996, EDUC PSYCHOL, V31, P163, DOI 10.1207/s15326985ep3103&4_2 Dewey J., 1948, Education and the Philosophic Mind Donnelly DF, 2015, J SCI EDUC TECHNOL, V24, P861, DOI 10.1007/s10956-015-9569-1 Ferri C, 2009, PATTERN RECOGN LETT, V30, P27, DOI 10.1016/j.patrec.2008.08.010 Fetters MD, 2017, J MIX METHOD RES, V11, P291, DOI 10.1177/1558689817714066 Gerard L, 2019, INT J COMP-SUPP COLL, V14, P291, DOI 10.1007/s11412-019-09298-y Given L., 2008, The SAGE Encyclopedia of Qualitative Research Methods, DOI [DOI 10.4135/9781412963909, 10.4135/9781412963909] Guetterman TC, 2018, J MED INTERNET RES, V20, DOI 10.2196/jmir.9702 Ha MS, 2011, CBE-LIFE SCI EDUC, V10, P379, DOI 10.1187/cbe.11-08-0081 Hartley LM, 2012, BIOSCIENCE, V62, P488, DOI 10.1525/bio.2012.62.5.10 Haudek K. C., 2015, NAT ASS RES SCI TEAC Hogan TP, 2007, APPL MEAS EDUC, V20, P427, DOI 10.1080/08957340701580736 James W., 1907, Pragmatism: A New Name for Some Old Ways of Thinking., DOI 10.1037/10851-000 Jescovitch LN, 2021, J SCI EDUC TECHNOL, V30, P150, DOI 10.1007/s10956-020-09858-0 Jurka TP, 2013, R J, V5, P6 Kliegr T., 2018, REV POSSIBLE EFFECTS Kotsiantis SB, 2007, INFORM-J COMPUT INFO, V31, P249 LANDIS JR, 1977, BIOMETRICS, V33, P159, DOI 10.2307/2529310 Large J, 2019, DATA MIN KNOWL DISC, V33, P1674, DOI 10.1007/s10618-019-00638-y Lintean M., 2012, International Journal of Artificial Intelligence in Education, V21, P169, DOI [10.3233/JAI-2012-022, DOI 10.3233/JAI-2012-022] Litman D, 2016, AAAI CONF ARTIF INTE, P4170 Liu OL, 2014, EDUC MEAS-ISSUES PRA, V33, P19, DOI 10.1111/emip.12028 Martinez ME, 1999, EDUC PSYCHOL-US, V34, P207, DOI 10.1207/s15326985ep3404_2 McHugh ML, 2012, BIOCHEM MEDICA, V22, P276, DOI 10.11613/bm.2012.031 Moharreri K., 2014, EVOL EDUC OUTREACH, V7, P15, DOI DOI 10.1186/s12052-014-0015-2 Nehm RH, 2012, J SCI EDUC TECHNOL, V21, P183, DOI 10.1007/s10956-011-9300-9 Nehm RH, 2012, J SCI EDUC TECHNOL, V21, P56, DOI 10.1007/s10956-011-9282-7 Noyes K, 2020, J CHEM EDUC, V97, P3923, DOI 10.1021/acs.jchemed.0c00445 O'Halloran KL, 2018, J MIX METHOD RES, V12, P11, DOI 10.1177/1558689816651015 Powers DE, 2015, APPL MEAS EDUC, V28, P130, DOI 10.1080/08957347.2014.1002920 Renz SM, 2018, QUAL HEALTH RES, V28, P824, DOI 10.1177/1049732317753586 Rosenberg JM, 2021, J SCI EDUC TECHNOL, V30, P255, DOI 10.1007/s10956-020-09862-4 Shermis M. D., 1998, ANN M AM ED RES ASS Shermis MarkD., 2013, HDB AUTOMATED ESSAY Sieke SA, 2019, CBE-LIFE SCI EDUC, V18, DOI 10.1187/cbe.18-09-0173 Simkin MG, 2005, DECIS SCI-J INNOV ED, V3, P73, DOI 10.1111/j.1540-4609.2005.00053.x Sripathi KN, 2019, CBE-LIFE SCI EDUC, V18, DOI 10.1187/cbe.18-11-0227 Stanger-Hall KF, 2012, CBE-LIFE SCI EDUC, V11, P294, DOI 10.1187/cbe.11-11-0100 The Carnegie Classification of Institutions of Higher Education, CARN CLASS Uhl JD, 2021, CBE-LIFE SCI EDUC, V20, DOI 10.1187/cbe.20-06-0122 Urban-Lurain M., 2015, COMPUT ED J, V6, P65 Wallach H. M., 2006, P 23 INT C MACH LEAR, V23, P977, DOI [10.1145/1143844.1143967, DOI 10.1145/1143844.1143967] Wilson Christopher D, 2006, CBE Life Sci Educ, V5, P323, DOI 10.1187/cbe.06-02-0142 Wulff P, 2022, J SCI EDUC TECHNOL, V31, P490, DOI 10.1007/s10956-022-09969-w Zeng XD, 2014, SCI WORLD J, DOI 10.1155/2014/961747 Zhai XM, 2021, J SCI EDUC TECHNOL, V30, P361, DOI 10.1007/s10956-020-09875-z Zhai XM, 2020, J RES SCI TEACH, V57, P1430, DOI 10.1002/tea.21658 Zhai XM, 2020, STUD SCI EDUC, V56, P111, DOI 10.1080/03057267.2020.1735757 NR 66 TC 5 Z9 5 U1 6 U2 17 PU SAGE PUBLICATIONS INC PI THOUSAND OAKS PA 2455 TELLER RD, THOUSAND OAKS, CA 91320 USA SN 1558-6898 EI 1558-6901 J9 J MIX METHOD RES JI J. Mix Methods Res. PD JAN PY 2024 VL 18 IS 1 BP 48 EP 70 DI 10.1177/15586898231153946 EA FEB 2023 PG 23 WC Social Sciences, Interdisciplinary WE Social Science Citation Index (SSCI) SC Social Sciences - Other Topics GA AO0N2 UT WOS:000926059800001 DA 2024-09-05 ER PT J AU Hinojo-Lucena, FJ Aznar-Díaz, I Cáceres-Reche, MP Romero-Rodríguez, JM AF Hinojo-Lucena, Francisco-Javier Aznar-Diaz, Inmaculada Caceres-Reche, Maria-Pilar Romero-Rodriguez, Jose-Maria TI Artificial Intelligence in Higher Education: A Bibliometric Study on its Impact in the Scientific Literature SO EDUCATION SCIENCES LA English DT Article DE artificial intelligence; emerging technologies; higher education; bibliometric study ID PHYSICAL-EDUCATION; INDICATORS; QUALITY; WEB; JCR AB Artificial intelligence has experienced major developments in recent years and represents an emerging technology that will revolutionize the ways in which human beings live. This technology is already being introduced in the field of higher education, although many teachers are unaware of its scope and, above all, of what it consists of. Therefore, the purpose of this paper was to analyse the scientific production on artificial intelligence in higher education indexed in Web of Science and Scopus databases during 2007-2017. A bespoke methodology of bibliometric studies was used in the most relevant databases in social science. The sample was composed of 132 papers in total. From the results obtained, it was observed that there is a worldwide interest in the topic and that the literature on this subject is just at an incipient stage. We conclude that, although artificial intelligence is a reality, the scientific production about its application in higher education has not been consolidated. C1 [Hinojo-Lucena, Francisco-Javier; Aznar-Diaz, Inmaculada; Caceres-Reche, Maria-Pilar; Romero-Rodriguez, Jose-Maria] Univ Granada, Dept Didact & Sch Org, E-18071 Granada, Spain. C3 University of Granada RP Romero-Rodríguez, JM (corresponding author), Univ Granada, Dept Didact & Sch Org, E-18071 Granada, Spain. EM fhinojo@ugr.es; iaznar@ugr.es; caceres@ugr.es; romejo@ugr.es RI HINOJO-LUCENA, FRANCISCO JAVIER/K-2517-2014; Romero-Rodríguez, José-María/O-2233-2019; BUCCINI, FRANCESCA/HTM-4917-2023; RECHE, MARÍA PILAR CÁCERES/AAE-4164-2020; AZNAR DIAZ, INMACULADA/K-2486-2014 OI Romero-Rodríguez, José-María/0000-0002-9284-8919; RECHE, MARÍA PILAR CÁCERES/0000-0002-6323-8054; AZNAR DIAZ, INMACULADA/0000-0002-0018-1150 CR Díaz IA, 2018, EDUC KNOWL SOC, V19, P53, DOI 10.14201/eks20181935368 Becker S.A., 2017, NMC HORIZON REPORT 2 Benke K, 2018, INT J ENV RES PUB HE, V15, DOI 10.3390/ijerph15122796 Christie M, 2017, EUR J ENG EDUC, V42, P5, DOI 10.1080/03043797.2016.1254160 de Solla Price DerekJ., 1986, Little science, big science- and beyond Duart JM, 2017, REV ESP PEDAGOG, V75, P29, DOI 10.22550/REP75-1-2017-02 Ganzfried S, 2018, EDUC SCI, V8, DOI 10.3390/educsci8010036 García P, 2008, J COMPUT ASSIST LEAR, V24, P305, DOI 10.1111/j.1365-2729.2007.00262.x Garrido A, 2012, EDUC SCI, V2, P22, DOI 10.3390/educ2010022 Gomes I, 2018, MOVIMENTO-PORTO ALEG, V24, P427, DOI 10.22456/1982-8918.73701 Gonzalez de Dios., 1997, Anales Espanoles de Pediatria: Publicacion Oficial de la Asociacion Espanola de Pediatria, V47, P235 Gutierrez-Braojos C., 2015, REV EDUC, V370, P121 Hernández-González V, 2013, EUR J HUM MOV, V30, P1 Ifenthaler D, 2014, TECHNOL KNOWL LEARN, V19, P241, DOI 10.1007/s10758-014-9224-6 Jara N.P., 2018, REV CUB INFORM CIENC, V29, P1 Leer R., 2013, International Journal of Organizational Innovation, V5, P14 Lemaignan S, 2017, ARTIF INTELL, V247, P45, DOI 10.1016/j.artint.2016.07.002 Leon R, 2017, INNOVA Research Journal, V2, P412, DOI [10.33890/innova.v2.n8.1.2017.399, DOI 10.33890/INNOVA.V2.N8.1.2017.399] López-Meneses E, 2015, COMUNICAR, V22, P73, DOI 10.3916/C44-2015-08 McLaren BM, 2011, COMPUT EDUC, V56, P574, DOI 10.1016/j.compedu.2010.09.019 Moridis CN, 2009, COMPUT EDUC, V53, P644, DOI 10.1016/j.compedu.2009.04.002 Reverter Masià Joaquim, 2013, Perspect. ciênc. inf., V18, P3, DOI 10.1590/S1413-99362013000300002 Rivers K, 2017, INT J ARTIF INTELL E, V27, P37, DOI 10.1007/s40593-015-0070-z Rose R., 2016, INTELLIGENCE UNLEASH Rousseau B., 2000, Cybermetrics, V4 Sanchez Vila E.M., 2007, InteligenciaArtificial. Revista Iberoamericana de InteligenciaArtificial, V11, P7 Santos W. dos, 2018, Movimento, V24, P9, DOI [10.22456/1982-8918.63067, DOI 10.22456/1982-8918.63067] Soledad C., 2004, RELIEVE, V10, P3 Trujillo J. M., 2009, REV IBEROAMERICANA E, V11, P63 Urrútia G, 2010, MED CLIN-BARCELONA, V135, P507, DOI 10.1016/j.medcli.2010.01.015 NR 30 TC 96 Z9 97 U1 24 U2 127 PU MDPI PI BASEL PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND EI 2227-7102 J9 EDUC SCI JI Educ. Sci. PD MAR 8 PY 2019 VL 9 IS 1 AR 51 DI 10.3390/educsci9010051 PG 9 WC Education & Educational Research WE Emerging Sources Citation Index (ESCI) SC Education & Educational Research GA HS9DZ UT WOS:000464169300002 OA Green Submitted, Green Published, gold DA 2024-09-05 ER PT J AU Su, K Peng, ZS Zhu, D Liu, RQ Wang, Q Cao, R He, J AF Su, Kai Peng, Zhongshan Zhu, Dan Liu, Ruiqian Wang, Qin Cao, Rong He, Jun TI Water quality evaluation based on water quality index and multiple linear regression: A research on Hanyuan Lake in southern Sichuan Province, China SO WATER ENVIRONMENT RESEARCH LA English DT Article DE Hanyuan Lake; multiple linear regression; water quality evaluation; water quality index (WQI) AB This study aims to understand the changes in the water quality of Hanyuan Lake and to show these changes over time. In this study, monthly sampling was conducted at three sampling sites in Hanyuan Lake, and water samples were measured for water quality indicators in the laboratory according to the methods specified in the Environmental Quality Standards for Surface Water (GB3838-2002). Based on the monitoring data from January to December 2019, the WQI comprehensive evaluation method was used to conduct multiple linear stepwise regression analysis, extract key indicators, and establish the WQI(min) model. The results show that according to the WQI comprehensive evaluation method, the WQI values of Hanyuan Lake are all above 90, and the grade is excellent. The overall water quality of Hanyuan Lake is excellent, and most of the water quality indexes reach the Class I standard in the Environmental Quality Standards for Surface Water (GB3838-2002). WQI(min1) (R-2 = 0.86, p < 0.001, PE = 4.28) as the best WQI(min) model. In this study, a model with fewer parameters was established by multiple linear regression method, which is conducive to better monitoring of water quality at monitoring stations while saving costs. Practitioner Points According to the WQI comprehensive evaluation method, the WQI values of Hanyuan Lake are all above 90, the rating is excellent. From January 2019 to September 2020, the monthly change trend of each section is roughly the same, showing a trend of first decreasing, then rising, then decreasing, and finally rising and flattening. The WQI(min) model was developed to completely describe the change in the water body. C1 [Su, Kai; Peng, Zhongshan; Zhu, Dan; Liu, Ruiqian; Wang, Qin; Cao, Rong] Southwest Jiaotong Univ, Sch Environm Sci & Engn, Chengdu 611756, Peoples R China. [He, Jun] Hanyuan Ecol Environm Monitoring Stn Yaan, Yaan, Peoples R China. C3 Southwest Jiaotong University RP Su, K (corresponding author), Southwest Jiaotong Univ, Sch Environm Sci & Engn, Chengdu 611756, Peoples R China. EM ksu@swjtu.edu.cn RI He, jun/LCW-1246-2024 OI Su, Kai/0000-0002-6291-3628 FU Sichuan Science and Technology Program; [2021YFS0284] FX This work was supported by Sichuan Science and Technology Program (2021YFS0284). CR Babayan G, 2023, ENVIRON PROCESS, V10, DOI 10.1007/s40710-023-00668-1 Cichon M, 2017, ENVIRON SOCIO-ECON S, V5, P87, DOI 10.1515/environ-2017-0024 Das CR, 2023, WATER AIR SOIL POLL, V234, DOI 10.1007/s11270-023-06342-4 [花瑞祥 Hua Ruixiang], 2016, [南水北调与水利科技, South-to-North Water Transfers and Water Science & Technology], V14, P183 Hwang JH, 2020, WATER-SUI, V12, DOI 10.3390/w12092346 Jun H., 2022, Environmental Protection and Technology, V06, P28 Keith DJ, 2023, ENVIRON MONIT ASSESS, V195, DOI 10.1007/s10661-023-11830-5 Koçer MAT, 2014, ECOL INDIC, V36, P672, DOI 10.1016/j.ecolind.2013.09.034 Li Jie., 2022, Influence of Hanyuan Lake reservoir onLand use/cover and climate change in reservoir area Li RR, 2016, J ENVIRON SCI-CHINA, V50, P87, DOI 10.1016/j.jes.2016.03.030 Li Y, 2024, NAT COMMUN, V15, DOI 10.1038/s41467-024-45061-0 [刘琦 Liu Qi], 2019, [生态学报, Acta Ecologica Sinica], V39, P7538 Liu Zhi-qi, 2022, Huanjing Kexue, V43, P5073, DOI 10.13227/j.hjkx.202111079 Luo Guilin, 2021, Huanjing Huaxue-Environmental Chemistry, V40, P2073, DOI 10.7524/j.issn.0254-6108.2020100301 Nong XZ, 2020, WATER RES, V178, DOI 10.1016/j.watres.2020.115781 Pengkun S., 2022, Water Resources and Power, V09, P86, DOI [10.20040/j.cnki.1000-7709.2022.20220422, DOI 10.20040/J.CNKI.1000-7709.2022.20220422] Pesce SF, 2000, WATER RES, V34, P2915, DOI 10.1016/S0043-1354(00)00036-1 Poul N., 2023, International Journal of Environment and Climate Change, V11, P202 Sener S, 2017, SCI TOTAL ENVIRON, V584, P131, DOI 10.1016/j.scitotenv.2017.01.102 Tao Zhang, 2021, E3S Web of Conferences, V237, DOI 10.1051/e3sconf/202123701027 Wang S., 2016, Environmental Protection, V44, P15, DOI [10.14026/j.cnki.0253-9705.2016.18.003, DOI 10.14026/J.CNKI.0253-9705.2016.18.003, DOI 10.14026/J.CNKI.0253-97052016.18.003] Wu T, 2021, ECOL INDIC, V126, DOI 10.1016/j.ecolind.2021.107714 Wu ZS, 2018, SCI TOTAL ENVIRON, V612, P914, DOI 10.1016/j.scitotenv.2017.08.293 [辛志远 Xin Zhiyuan], 2020, [水土保持学报, Journal of Soil and Water Conservation], V34, P181 Yi Q, 2012, PROCEDIA ENVIRON SCI, V13, P43, DOI 10.1016/j.proenv.2012.01.004 Yu T., 2023, Sichuan Environment, V03, P123, DOI [10.14034/j.cnki.schj.2023.03.018, DOI 10.14034/J.CNKI.SCHJ.2023.03.018] Zhao L., 2021, The Administration and Technique of Environmental Monitoring, V04, P30, DOI [10.19501/j.cnki.1006-2009.2021.04.007, DOI 10.19501/J.CNKI.1006-2009.2021.04.007] NR 27 TC 0 Z9 0 U1 12 U2 12 PU WILEY PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1061-4303 EI 1554-7531 J9 WATER ENVIRON RES JI Water Environ. Res. PD JUN PY 2024 VL 96 IS 6 AR e11055 DI 10.1002/wer.11055 PG 12 WC Engineering, Environmental; Environmental Sciences; Limnology; Water Resources WE Science Citation Index Expanded (SCI-EXPANDED) SC Engineering; Environmental Sciences & Ecology; Marine & Freshwater Biology; Water Resources GA SC9Q2 UT WOS:001232380400001 PM 38804065 DA 2024-09-05 ER PT C AU Zhang, L Bai, XZ Chen, YJ Wang, T Hu, FH Li, MZ Peng, J AF Zhang Lin Bai Xingzhong Chen Yajun Wang Ting Hu Fei-hu Li Mingzhu Peng Jian GP IEEE TI Research on Power Market User Credit Evaluation Based on K-Means Clustering and Contour Coefficient SO 2020 3RD INTERNATIONAL CONFERENCE ON ROBOTICS, CONTROL AND AUTOMATION ENGINEERING (RCAE 2020) LA English DT Proceedings Paper CT 3rd International Conference on Robotics, Control and Automation Engineering (RCAE) CY NOV 05-08, 2020 CL Chongqing, PEOPLES R CHINA DE component; power market; power user credit evaluation; k-means; silhouette coefficient; power market AB Power market trading centers establish and improve the market member's credit system can regulate the market order, reduce transaction costs and prevent economic risk. As the credit evaluation system of most of the domestic power market trading center is still being improved, the design of the evaluation system at this stage must consider the practicability. Based on the actual business data of S Province Power market trading Center, this paper designs the credit evaluation index system of power users which including 11 indexes from the aspects of basic information, market behavior, payment ability and credit record, collects the relevant index data of power users. Evaluate the credit of power users based on K-means Clustering and Silhouette Coefficient method. The credit rating of power users is divided into three grades and four types. The credit evaluation method proposed in this paper is simple and easy to use, easy to understand, and the division results are consistent with the actual situation of most users. It shows that the proposed evaluation index system, clustering algorithm and clustering effect evaluation method are practical. C1 [Zhang Lin; Bai Xingzhong; Chen Yajun] State Grid Shaanxi Elect Power Co Econ Res Inst, Xian, Peoples R China. [Wang Ting] State Grid Beijing Elect Power Co, Maintenance Branch, Beijing, Peoples R China. [Hu Fei-hu; Li Mingzhu] Xi An Jiao Tong Univ, Sch Elect Engn, Xian, Peoples R China. [Peng Jian] State Grid Xintong Yili Technol Co Ltd, Xian, Peoples R China. C3 State Grid Corporation of China; Xi'an Jiaotong University RP Hu, FH (corresponding author), Xi An Jiao Tong Univ, Sch Elect Engn, Xian, Peoples R China. EM zhanglin1116@139.com; baixingzhong@sn.sgcc.com.cn; junya_chen@163.com; xjtuwangting@163.com; hufeihu@mail.xjtu.edu.cn; limingzhu@stu.xjtu.edu.cn; 13799375384@139.com RI WANG, TING/ACE-5023-2022 OI WANG, TING/0000-0003-2481-2890 FU National Natural Science Foundation of China [61174154]; Fundamental Research Fund for the Central Universities [xjj2016004] FX This work is supported by the National Natural Science Foundation of China (No. 61174154) and Fundamental Research Fund for the Central Universities (No. xjj2016004). CR Chen Xiaodong, 2016, AUTOMATION POWER SYS, V42, P98 Credit system construction of the national energy administration, EN IND IMPL OP 2016 DENTON M, 2018, IEEE TRANSACTION POW, P494 Liu Jun, 2018, PRICE THEORY PRACTIC, P71 Ren Baorui., 2011, MODERN ELECT POWER, V28, P90 ROUSSEEUW PJ, 1987, J COMPUT APPL MATH, V20, P53, DOI 10.1016/0377-0427(87)90125-7 Saroj Kavita, 2016, INT J COMPUTER SCI E, V6, P279 Tian Lin, 2019, CHINA SO POWER GRID, V13, P50 Wang Yuping, 2018, POWER DEMAND SIDE MA, V20, P52 [徐宏 Xu Hong], 2020, [电网技术, Power System Technology], V44, P2582 Zhang Yunlei, 2018, CHINA ELECT POWER, V51, P128 Zou Yunfeng, 2019, POWER DEMAND SIDE MA, V21, P37 NR 12 TC 0 Z9 0 U1 2 U2 6 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA BN 978-1-7281-8638-2 PY 2020 BP 64 EP 68 DI 10.1109/rcae51546.2020.9294725 PG 5 WC Automation & Control Systems; Engineering, Mechanical; Robotics WE Conference Proceedings Citation Index - Science (CPCI-S) SC Automation & Control Systems; Engineering; Robotics GA BT8HO UT WOS:000853363700012 DA 2024-09-05 ER PT C AU Müller, MC Bannister, A Reitz, F AF Mueller, Mark-Christoph Bannister, Adam Reitz, Florian BE Doucet, A Isaac, A Golub, K Aalberg, T Jatowt, A TI Off-the-shelf Semantic Author Name Disambiguation for Bibliographic Data Bases SO DIGITAL LIBRARIES FOR OPEN KNOWLEDGE, TPDL 2019 SE Lecture Notes in Computer Science LA English DT Proceedings Paper CT 23rd International Conference on Theory and Practice of Digital Libraries (TPDL) CY SEP 09-12, 2019 CL Oslo Metropolitan Univ, Oslo, NORWAY HO Oslo Metropolitan Univ DE Author name disambiguation; Semantic similarity; Word embeddings; API; Open source software AB The demo presents a minimalist, off-the-shelf AND tool which provides a fundamental AND operation, the comparison of two publications with ambiguous authors, as an easily accessible HTTP interface. The tool implements this operation using standard AND functionality, but puts particular emphasis on advanced methods from natural language processing (NLP) for comparing publication title semantics. C1 [Mueller, Mark-Christoph] Heidelberg Inst Theoret Studies gGmbH, Heidelberg, Germany. [Bannister, Adam] FIZ Karlsruhe, Math Dept, Berlin, Germany. [Reitz, Florian] Schloss Dagstuhl LZI, Wadern, Germany. C3 Heidelberg Institute for Theoretical Studies; FIZ Karlsruhe - Leibniz Institut fur Informationsinfrastruktur RP Müller, MC (corresponding author), Heidelberg Inst Theoret Studies gGmbH, Heidelberg, Germany. EM mark-christoph.mueller@h-its.org; adam.bannister@fiz-karlsruhe.de; florian.reitz@dagstuhl.de RI Reitz, Florian/N-8934-2019 OI Reitz, Florian/0000-0001-6114-3388; Muller, Mark-Christoph/0000-0001-5639-7682; Bannister, Adam/0000-0002-8849-1152 FU Leibniz Association [SAW-2015-LZI-2]; Klaus Tschira Foundation FX The work described in this paper was conducted in the project SCAD -Scalable Author Disambiguation, funded in part by the Leibniz Association (grant SAW-2015-LZI-2), and in part by the Klaus Tschira Foundation. CR Ferreira AA, 2012, SIGMOD REC, V41, P15, DOI 10.1145/2350036.2350040 Hussain Ijaz, 2017, KNOWL ENG REV, V32, P1 Kang IS, 2011, INFORM PROCESS MANAG, V47, P452, DOI 10.1016/j.ipm.2010.10.001 Khabsa Madian, 2014, 2014 IEEE International Conference on Big Data (Big Data), P41, DOI 10.1109/BigData.2014.7004487 Kim K, 2018, 2018 IEEE INTERNATIONAL CONFERENCE ON WEB SERVICES (IEEE ICWS 2018), P265, DOI 10.1109/ICWS.2018.00041 Müller MC, 2018, ACM-IEEE J CONF DIG, P367, DOI 10.1145/3197026.3203912 Müller MC, 2017, LECT NOTES COMPUT SC, V10450, P300, DOI 10.1007/978-3-319-67008-9_24 Müller MC, 2017, SCIENTOMETRICS, V111, P1467, DOI 10.1007/s11192-017-2363-5 Muller M.-C., 2019, RELATIONS, P34 Strube M., 2018, COLING SYSTEM DEMONS, P53 NR 10 TC 0 Z9 0 U1 0 U2 2 PU SPRINGER INTERNATIONAL PUBLISHING AG PI CHAM PA GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND SN 0302-9743 EI 1611-3349 BN 978-3-030-30760-8; 978-3-030-30759-2 J9 LECT NOTES COMPUT SC PY 2019 VL 11799 BP 397 EP 400 DI 10.1007/978-3-030-30760-8_42 PG 4 WC Information Science & Library Science WE Conference Proceedings Citation Index - Social Science & Humanities (CPCI-SSH) SC Information Science & Library Science GA BP4BL UT WOS:000550576600042 DA 2024-09-05 ER PT J AU Saeed-Ul Hassan Aljohani, NR Idrees, N Sarwar, R Nawaz, R Martínez-Cámara, E Ventura, S Herrera, F AF Saeed-Ul Hassan Aljohani, Naif R. Idrees, Nimra Sarwar, Raheem Nawaz, Raheel Martinez-Camara, Eugenio Ventura, Sebastian Herrera, Francisco TI Predicting literature's early impact with sentiment analysis in Twitter SO KNOWLEDGE-BASED SYSTEMS LA English DT Article DE Altmetrics; Twitter; Sentiment analysis; User category; Predicting citations ID RESEARCH EXCELLENCE; TWEETS LINKING; ALTMETRICS; AGREEMENT AB Traditional bibliometric techniques gauge the impact of research through quantitative indices based on the citations data. However, due to the lag time involved in the citation-based indices, it may take years to comprehend the full impact of an article. This paper seeks to measure the early impact of research articles through the sentiments expressed in tweets about them. We claim that cited articles in either positive or neutral tweets have a more significant impact than those not cited at all or cited in negative tweets. We used the SentiStrength tool and improved it by incorporating new opinion-bearing words into its sentiment lexicon pertaining to scientific domains. Then, we classified the sentiment of 6,482,260 tweets linked to 1,083,535 publications covered by Altmetric.com. Using positive and negative tweets as an independent variable, and the citation count as the dependent variable, linear regression analysis showed a weak positive prediction of high citation counts across 16 broad disciplines in Scopus. Introducing an additional indicator to the regression model, i.e. 'number of unique Twitter users', improved the adjusted R-squared value of regression analysis in several disciplines. Overall, an encouraging positive correlation between tweet sentiments and citation counts showed that Twitter-based opinion may be exploited as a complementary predictor of literatures early impact. (C) 2019 Elsevier B.V. All rights reserved. C1 [Saeed-Ul Hassan; Idrees, Nimra; Sarwar, Raheem] Informat Technol Univ, 346-B,Ferozepur Rd, Lahore, Pakistan. [Aljohani, Naif R.; Ventura, Sebastian; Herrera, Francisco] King Abdulaziz Univ, Fac Comp & Informat Technol, Jeddah, Saudi Arabia. [Nawaz, Raheel] Manchester Metropolitan Univ, Dept Operat Technol Events & Hospitality Manageme, Manchester, Lancs, England. [Martinez-Camara, Eugenio; Herrera, Francisco] Univ Granada, Andalusian Res Inst Data Sci & Computat Intellige, E-18071 Granada, Spain. [Ventura, Sebastian] Univ Granada, Andalusian Res Inst Data Sci & Computat Intellige, Cordoba 14071, Spain. C3 King Abdulaziz University; Manchester Metropolitan University; University of Granada; University of Granada RP Martínez-Cámara, E (corresponding author), Univ Granada, Andalusian Res Inst Data Sci & Computat Intellige, E-18071 Granada, Spain. EM saeed-ul-hassan@itu.edu.pk; nraljohani@kau.edu.sa; nimraidrees@yahoo.com; raheem.bwl@gmail.com; r.nawaz@mmu.ac.uk; emcamara@decsai.ugr.es; sventura@uco.es; herrera@decsai.ugr.es RI Martínez Cámara, Eugenio/C-5539-2014; Aljohani, Naif R/S-1109-2017; Ventura, Sebastian/A-7753-2008; Nawaz, Raheel/AAX-5293-2021; Hassan, Saeed-Ul/G-1889-2016 OI Martínez Cámara, Eugenio/0000-0002-5279-8355; Ventura, Sebastian/0000-0003-4216-6378; Nawaz, Raheel/0000-0001-9588-0052; /0000-0002-0640-807X; Hassan, Saeed-Ul/0000-0002-6509-9190 FU Spanish Ministry of Science and Technology [TIN2017-89517-P, T1N2017-83445-P]; Fondo Europeo de Desarrollo Regional (FEDER); NRPU from Higher Education Commission of Pakistan [6857]; Juan de la Cierva Formacion Programme of the Spanish government [FJCI-2016-28353] FX We should like to thank Altmetric.com for granting us access to their dataset for research purposes. This work was partially supported by the Spanish Ministry of Science and Technology under the projects TIN2017-89517-P and T1N2017-83445-P and a grant from the Fondo Europeo de Desarrollo Regional (FEDER). Saeed Ul Hassan was supported by NRPU Grant #6857, received from Higher Education Commission of Pakistan. Eugenio Martinez Camara was supported by the Juan de la Cierva Formacion Programme (FJCI-2016-28353) of the Spanish government. CR Ananiadou Sophia, 2013, Computational Linguistics and Intelligent Text Processing. 14th International Conference, CICLing 2013. Proceedings, P318, DOI 10.1007/978-3-642-37256-8_27 [Anonymous], METRICS 2011 [Anonymous], [No title captured] Batista-Navarro Riza Theresa, 2013, Computational Linguistics and Intelligent Text Processing. 14th International Conference, CICLing 2013. Proceedings, P559, DOI 10.1007/978-3-642-37247-6_45 Bonaccorsi A, 2017, J INFORMETR, V11, P435, DOI 10.1016/j.joi.2017.02.003 Bonaccorsi A, 2017, SCIENTOMETRICS, V110, P217, DOI 10.1007/s11192-016-2180-2 Bornmann L, 2019, J INFORMETR, V13, P325, DOI 10.1016/j.joi.2019.01.008 COHEN J, 1960, EDUC PSYCHOL MEAS, V20, P37, DOI 10.1177/001316446002000104 Costas R, 2015, J ASSOC INF SCI TECH, V66, P2003, DOI 10.1002/asi.23309 Didegah F, 2018, J ASSOC INF SCI TECH, V69, P832, DOI 10.1002/asi.23934 Dragoni M, 2019, COGN COMPUT, V11, P469, DOI 10.1007/s12559-019-9625-x Federici M., 2016, Series Title: Communications in Computer and Information Science, P141 Fenner M, 2013, PLOS BIOL, V11, DOI 10.1371/journal.pbio.1001687 Friedrich N, 2015, PRO INT CONF SCI INF, P107 Haddawy P, 2017, J INFORMETR, V11, P389, DOI 10.1016/j.joi.2017.02.004 Hassan SU, 2016, SCI PUBL POLICY, V43, P690, DOI 10.1093/scipol/scv072 Hassan SU, 2015, SCIENTOMETRICS, V103, P33, DOI 10.1007/s11192-015-1528-3 Hassan SU, 2012, SCIENTOMETRICS, V91, P1035, DOI 10.1007/s11192-012-0665-1 Hassan S, 2017, 2017 IEEE INTERNATIONAL CONFERENCE ON SOFTWARE ARCHITECTURE (ICSA 2017), P1, DOI 10.1109/ICSA.2017.32 Haustein S, 2016, J ASSOC INF SCI TECH, V67, P232, DOI 10.1002/asi.23456 Haustein S, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0120495 Holmberg Kim, 2014, Scientometrics, V101, P1027, DOI 10.1007/s11192-014-1229-3 Jahangir M, 2017, PROCEEDINGS OF THE 2017 INTELLIGENT SYSTEMS CONFERENCE (INTELLISYS), P722, DOI 10.1109/IntelliSys.2017.8324209 Kim HJ, 2018, INFORM SCIENCES, V432, P185, DOI 10.1016/j.ins.2017.12.004 Konkiel S, 2016, PALGR COMMUN, V2, DOI 10.1057/palcomms.2016.57 LANDIS JR, 1977, BIOMETRICS, V33, P159, DOI 10.2307/2529310 Liu B, 2011, DATA CENTRIC SYST AP, P459, DOI 10.1007/978-3-642-19460-3_11 Liu XZ, 2017, SCIENTOMETRICS, V111, P349, DOI 10.1007/s11192-017-2279-0 Nuzzolese AG, 2019, SCIENTOMETRICS, V118, P539, DOI 10.1007/s11192-018-2988-z Qiu JT, 2019, INFORM SCIENCES, V489, P274, DOI 10.1016/j.ins.2019.03.041 Ravenscroft J, 2017, PLOS ONE, V12, DOI 10.1371/journal.pone.0173152 Shardlow M, 2018, BMC MED INFORM DECIS, V18, DOI 10.1186/s12911-018-0639-1 Thelwall M., 2013, Cybermetrics, V17 Thelwall M, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0064841 Thelwall M, 2012, J AM SOC INF SCI TEC, V63, P163, DOI 10.1002/asi.21662 Thompson P, 2017, LANG RESOUR EVAL, V51, P409, DOI 10.1007/s10579-016-9344-9 Waheed H, 2018, BEHAV INFORM TECHNOL, V37, P941, DOI 10.1080/0144929X.2018.1467967 Yu HQ, 2017, SCIENTOMETRICS, V111, P267, DOI 10.1007/s11192-017-2251-z Zhu DH, 2013, SCIENTOMETRICS, V97, P435, DOI 10.1007/s11192-013-1019-3 Zhu J, 2014, SCIENTOMETRICS, V101, P429, DOI 10.1007/s11192-014-1389-1 NR 40 TC 41 Z9 40 U1 3 U2 47 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29a, 1043 NX AMSTERDAM, NETHERLANDS SN 0950-7051 EI 1872-7409 J9 KNOWL-BASED SYST JI Knowledge-Based Syst. PD MAR 15 PY 2020 VL 192 AR 105383 DI 10.1016/j.knosys.2019.105383 PG 10 WC Computer Science, Artificial Intelligence WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Computer Science GA KT9MF UT WOS:000519335400040 OA Green Accepted DA 2024-09-05 ER PT J AU Gao, DK Haverly, A Mittal, S Wu, JM Chen, JD AF Gao, Di Kevin Haverly, Andrew Mittal, Sudip Wu, Jiming Chen, Jingdao TI AI Ethics: A Bibliometric Analysis, Critical Issues, and Key Gaps SO INTERNATIONAL JOURNAL OF BUSINESS ANALYTICS LA English DT Article DE AI Ethics; AI Identification; Artificial Intelligence Ethics; Bibliometric Analysis; Human-Like Machine; Large Ethics Model (LEM); Literature Review; Machine-Like Human AB Artificial intelligence (AI) ethics has emerged as a burgeoning yet pivotal area of scholarly research. This study conducts a comprehensive bibliometric analysis of the AI ethics literature over the past two decades. The analysis reveals a discernible tripartite progression, characterized by an incubation phase, followed by a subsequent phase focused on imbuing AI with human-like attributes, culminating in a third phase emphasizing the development of human-centric AI systems. After that, they present seven key AI ethics issues, encompassing the Collingridge dilemma, the AI status debate, challenges associated with AI transparency and explainability, privacy protection complications, considerations of justice and fairness, concerns about algocracy and human enfeeblement, and the issue of superintelligence. Finally, they identify two notable research gaps in AI ethics regarding the large ethics model (LEM) and AI identification and extend an invitation for further scholarly research. C1 [Gao, Di Kevin; Wu, Jiming] Calif State Univ East Bay, Hayward, CA 94542 USA. [Haverly, Andrew; Mittal, Sudip; Chen, Jingdao] Mississippi State Univ, Mississippi State, MS USA. C3 California State University System; California State University East Bay; Mississippi State University RP Gao, DK (corresponding author), Calif State Univ East Bay, Hayward, CA 94542 USA. OI Gao, Di Kevin/0009-0008-7391-5208 FU National Science Foundation (NSF) [2246920] FX The work reported herein was supported by the National Science Foundation (NSF) (Award #2246920) . Any opinions, findings, conclusions, or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the NSF. CR Ackerman E., 2017, IEEE SpectrumAugust 4 Akter T, 2022, ACM T ACCESS COMPUT, V15, DOI 10.1145/3506857 Allen C, 2006, IEEE INTELL SYST, V21, P12, DOI 10.1109/MIS.2006.83 Altman S., 2023, Governance of superintelligence Anderson M., 2005, ASS ADV ART INT FALL Aneesh A., 2002, 7 INT SUMM AC TECHN Ashok M, 2022, INT J INFORM MANAGE, V62, DOI 10.1016/j.ijinfomgt.2021.102433 Bertino E, 2019, ACM J DATA INF QUAL, V11, DOI 10.1145/3312750 Boesl DBO, 2019, IEEE INT CONF INTELL, P143, DOI 10.1109/INES46365.2019.9109458 Bostroms R., 2014, Superintelligence: Paths, dangers, strategies Bryson JJ, 2010, Close Engagements with Artificial Companions: Key social, psychological, ethical and design issues, P63, DOI [10.1075/nlp.8.11bry, DOI 10.1075/NLP.8.11BRY] Bryson JJ, 2018, ETHICS INF TECHNOL, V20, P15, DOI 10.1007/s10676-018-9448-6 Buolamwini Joy., 2018, Proceedings of the 1st Conference on Fairness, Accountability and Transparency, V81, P77 Chalmers DJ, 2010, J CONSCIOUSNESS STUD, V17, P7 Cho A., 2016, Science, DOI [10.1126/science.aae0281, DOI 10.1126/SCIENCE.AAE0281] Cornell, 2021, Legislation | wex | us law | lii / legal information institute Danaher J., 2016, Philosophy and Technology, V29, P245, DOI [10.1007/s13347-015-0211-1, DOI 10.1007/S13347-015-0211-1] Danaher J, 2020, SCI ENG ETHICS, V26, P2023, DOI 10.1007/s11948-019-00119-x Daniels Jessie, 2019, Advancing racial literacy in tech Dartmouth, 1956, DARTM WORKSH Dotan T., 2023, The Wall Street JournalApril 13 Fingas J., 2019, EngadgetDecember 5 Fitch A., 2023, The Wall Street JournalJune 13 Flint J., 2023, The Wall Street JournalJuly 14 Floridi L., 2006, Ethics and Information Technology, V8, P109, DOI 10.1007/s10676-006-9121-3 Floridi L., 2005, Ethics and Information Technology, V7, P185, DOI 10.1007/s10676-006-0001-7 Floridi L., 2019, Philosophy Technology, V32, P185, DOI DOI 10.1007/S13347-019-00354-X Floridi L., 2006, Computers & Society, V36, P21, DOI [https://doi.org/10.1145/1195716.1195719, DOI 10.1145/1195716.1195719, 10.1145/1195716.1195719] Floridi L, 2018, MIND MACH, V28, P689, DOI 10.1007/s11023-018-9482-5 Gershgorn D., 2018, QuartzJune 18 Good I. J., 1966, Speculations concerning the first ultraintelligent machine, DOI [10.1016/S0065-2458(08)60418-0, DOI 10.1016/S0065-2458(08)60418-0] Guo W, 2021, AIES '21: PROCEEDINGS OF THE 2021 AAAI/ACM CONFERENCE ON AI, ETHICS, AND SOCIETY, P122, DOI 10.1145/3461702.3462536 Gurman M., 2023, BloombergJuly 19 Hale M., 2011, The New York TimesFebruary 8 Hao K., 2023, The Wall Street JournalJune 17 Hu K., 2023, Reuters May 23 Illia L, 2023, BUS ETHICS ENV RESP, V32, P201, DOI 10.1111/beer.12479 Jensen T., 2023, NBC Bay AreaSeptember 4 Kiela D, 2021, 2021 CONFERENCE OF THE NORTH AMERICAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS: HUMAN LANGUAGE TECHNOLOGIES (NAACL-HLT 2021), P4110 Kim TW, 2022, BUS ETHICS Q, V32, P75, DOI 10.1017/beq.2021.3 Konrad A., 2023, Forbes Krizhevsky A, 2017, COMMUN ACM, V60, P84, DOI 10.1145/3065386 Kruppa M., 2022, The Wall Street JournalJuly 22 LaBrie R. C., 2019, AM C INF SYST 2019 Langer M, 2023, HUM RESOUR MANAGE R, V33, DOI 10.1016/j.hrmr.2021.100881 Lardieri A., 2018, U.S. News World Report Li YQ, 2021, PROCEEDINGS OF THE WORLD WIDE WEB CONFERENCE 2021 (WWW 2021), P624, DOI 10.1145/3442381.3449866 Lighthill James., 1973, Lighthill report: Artificial intelligence: A paper symposium Lobo JL, 2023, 2023 IEEE CONFERENCE ON ARTIFICIAL INTELLIGENCE, CAI, P179, DOI 10.1109/CAI54212.2023.00085 Lock S., 2022, The GuardianDecember 5 Mac R., 2021, The New York Times Markoff J., 2005, Behind artificial intelligence, a squadron of bright real people Matthias A., 2004, Ethics and Information Technology, V6, P175, DOI 10.1007/s10676-004-3422-1 Mayne A. J., 1982, The Journal of the Operational Research Society, V33, P171, DOI [10.1057/jors.1982.168, DOI 10.1057/JORS.1982.168] McCarthy J, 2007, WHAT IS ARTIFICIAL INTELLIGENCE? McKinsey & Company, 2022, What are industry 4.0, the fourth industrial revolution, and 4IR? Moor JH, 2006, IEEE INTELL SYST, V21, P18, DOI 10.1109/MIS.2006.80 Moran M, 2008, J ENDOUROL, V22, P1557, DOI 10.1089/end.2007.0106 Morley J, 2023, AI SOC, V38, P411, DOI 10.1007/s00146-021-01308-8 Mosakas K, 2021, AI SOC, V36, P429, DOI 10.1007/s00146-020-01002-1 Nolan B., 2023, Business InsiderMarch 28 Pagallo U, 2018, INFORMATION, V9, DOI 10.3390/info9090230 Pandey A, 2021, AIES '21: PROCEEDINGS OF THE 2021 AAAI/ACM CONFERENCE ON AI, ETHICS, AND SOCIETY, P822, DOI 10.1145/3461702.3462561 Patwardhan A, 2023, J PRIM CARE COMMUNIT, V14, DOI 10.1177/21501319231179559 Rességuier A, 2020, BIG DATA SOC, V7, DOI 10.1177/2053951720942541 Robbins S, 2019, MIND MACH, V29, P495, DOI 10.1007/s11023-019-09509-3 Ryan M, 2021, J INF COMMUN ETHICS, V19, P61, DOI 10.1108/JICES-12-2019-0138 Schuster T., 2022, IFIP Advances in Information and Communication Technology, V662, DOI [10.1007/978-3-031-14844, DOI 10.1007/978-3-031-14844] Schwitzgebel E, 2015, MIDWEST STUD PHILOS, V39, P98, DOI 10.1111/misp.12032 Smolan S., 2016, VimeoFebruary 24 Sparrow R., 2007, J APPL PHILOS, V24, P62, DOI [10.1111/j.1468-5930.2007.00346.x, DOI 10.1111/J.1468-5930.2007.00346.X] Stahl BC, 2018, IEEE SECUR PRIV, V16, P26, DOI 10.1109/MSP.2018.2701164 Sweeney L, 2013, COMMUN ACM, V56, P44, DOI 10.1145/2447976.2447990 Vallor S., 2015, Philosophy & Technology, V23, P107, DOI DOI 10.1007/S13347-014-0156-9 Veale M, 2017, BIG DATA SOC, V4, DOI 10.1177/2053951717743530 Ville V., 2019, P 3 SEM TECHN ETH, P2505 Wachter S., 2018, SSRN Electronic Journal, V31, DOI [DOI 10.2139/SSRN.3063289, 10.2139/ssrn.3063289] Wallach W, 2010, TOP COGN SCI, V2, P454, DOI 10.1111/j.1756-8765.2010.01095.x Winfield AFT, 2018, PHILOS T R SOC A, V376, DOI 10.1098/rsta.2018.0085 Wittenstein, 2023, TIMEFebruary 9 Yampolskiy RV., 2015, ARTIFICIAL SUPERINTE, DOI [10.1201/b18612, DOI 10.1201/B18612] NR 81 TC 0 Z9 0 U1 33 U2 33 PU IGI GLOBAL PI HERSHEY PA 701 E CHOCOLATE AVE, STE 200, HERSHEY, PA 17033-1240 USA SN 2334-4547 EI 2334-4555 J9 INT J BUS ANAL JI Int. J. Bus. Anal. PY 2024 VL 11 IS 1 AR 338367 DI 10.4018/IJBAN.338367 PG 19 WC Business WE Emerging Sources Citation Index (ESCI) SC Business & Economics GA IR6A2 UT WOS:001168083600001 OA gold DA 2024-09-05 ER PT J AU Heibi, I Peroni, S AF Heibi, Ivan Peroni, Silvio TI A qualitative and quantitative analysis of open citations to retracted articles: the Wakefield 1998 et al.'s case SO SCIENTOMETRICS LA English DT Article DE Citation analysis; Retraction; Topic modeling; Science of Science AB In this article, we show the results of a quantitative and qualitative analysis of open citations on a popular and highly cited retracted paper: "Ileal-lymphoid-nodular hyperplasia, non-specific colitis and pervasive developmental disorder in children" by Wakefield et al., published in 1998. The main purpose of our study is to understand the behavior of the publications citing one retracted article and the characteristics of the citations the retracted article accumulated over time. Our analysis is based on a methodology which illustrates how we gathered the data, extracted the topics of the citing articles and visualized the results. The data and services used are all open and free to foster the reproducibility of the analysis. The outcomes concerned the analysis of the entities citing Wakefield et al.'s article and their related in-text citations. We observed a constant increasing number of citations in the last 20 years, accompanied with a constant increment in the percentage of those acknowledging its retraction. Citing articles have started either discussing or dealing with the retraction of Wakefield et al.'s article even before its full retraction happened in 2010. Articles in the social sciences domain citing the Wakefield et al.'s one were among those that have mostly discussed its retraction. In addition, when observing the in-text citations, we noticed that a large number of the citations received by Wakefield et al.'s article has focused on general discussions without recalling strictly medical details, especially after the full retraction. Medical studies did not hesitate in acknowledging the retraction of the Wakefield et al.'s article and often provided strong negative statements on it. C1 [Heibi, Ivan; Peroni, Silvio] Univ Bologna, Res Ctr Open Scholarly Metadata, Dept Class Philol & Italian Studies, Bologna, Italy. [Heibi, Ivan; Peroni, Silvio] Univ Bologna, Digital Humanities Adv Res Ctr DHArc, Dept Class Philol & Italian Studies, Bologna, Italy. C3 University of Bologna; University of Bologna RP Heibi, I (corresponding author), Univ Bologna, Res Ctr Open Scholarly Metadata, Dept Class Philol & Italian Studies, Bologna, Italy.; Heibi, I (corresponding author), Univ Bologna, Digital Humanities Adv Res Ctr DHArc, Dept Class Philol & Italian Studies, Bologna, Italy. EM ivan.heibi2@unibo.it; silvio.peroni@unibo.it RI Heibi, Ivan/AAZ-9145-2021; Heibi, Ivan/GQZ-8619-2022 OI Heibi, Ivan/0000-0001-5366-5194; Peroni, Silvio/0000-0003-0530-4305 FU Alma Mater Studiorum -Universita di Bologna within the CRUI-CARE Agreement FX Open access funding provided by Alma Mater Studiorum -Universita di Bologna within the CRUI-CARE Agreement. CR Azoulay P, 2017, RES POLICY, V46, P1552, DOI 10.1016/j.respol.2017.07.003 Bar-Ilan J, 2018, SCIENTOMETRICS, V116, P1771, DOI 10.1007/s11192-018-2802-y Bar-Ilan J, 2017, SCIENTOMETRICS, V113, P547, DOI 10.1007/s11192-017-2242-0 Barbour V., 2009, Guidelines for retracting articles, DOI DOI 10.24318/COPE.2019.1.4 Berners-Lee T, 2001, SCI AM, V284, P34, DOI 10.1038/scientificamerican0501-34 Bizer C, 2009, INT J SEMANT WEB INF, V5, P1, DOI 10.4018/jswis.2009081901 Bolland MJ, 2022, ACCOUNT RES, V29, P18, DOI 10.1080/08989621.2021.1886933 Bordignon F, 2020, SCIENTOMETRICS, V124, P1225, DOI 10.1007/s11192-020-03536-z Bornemann-Cimenti H, 2016, SCI ENG ETHICS, V22, P1063, DOI 10.1007/s11948-015-9680-y Bornmann L, 2008, J DOC, V64, P45, DOI 10.1108/00220410810844150 Bornmann L, 2020, SCIENTOMETRICS, V122, P1051, DOI 10.1007/s11192-019-03326-2 Chen CM, 2014, WILEY SER PROBAB ST, P217 Chen CM, 2014, J ASSOC INF SCI TECH, V65, P334, DOI 10.1002/asi.22968 Chen CM, 2013, J AM SOC INF SCI TEC, V64, P234, DOI 10.1002/asi.22755 Chuang J, 2012, PROCEEDINGS OF THE INTERNATIONAL WORKING CONFERENCE ON ADVANCED VISUAL INTERFACES, P74, DOI 10.1145/2254556.2254572 Collier R, 2011, CAN MED ASSOC J, V183, pE385, DOI 10.1503/cmaj.109-3827 Crothers C, 2020, QUANT SCI STUD, V1, P675, DOI 10.1162/qss_a_00029 Daquino Marilena, 2020, The Semantic Web - ISWC 2020. 19th International Semantic Web Conference. Lecture Notes in Computer Science (LNCS 12507), P447, DOI 10.1007/978-3-030-62466-8_28 Feng LZ, 2020, SCIENTOMETRICS, V125, P1445, DOI 10.1007/s11192-020-03702-3 Ferri P., 2020, PUNTOORG INT J, V5, P135, DOI DOI 10.19245/25.05.PIJ.5.2.3 Han XY, 2020, SCIENTOMETRICS, V125, P2561, DOI 10.1007/s11192-020-03721-0 Heibi I., 2020, METHODOLOGY GATHERIN, DOI DOI 10.17504/PROTOCOLS.IO.BDC4I2YW Heibi I., 2019, P 17 INT C SCI INF I Heibi I, 2019, SCIENTOMETRICS, V121, P1213, DOI 10.1007/s11192-019-03217-6 Hendricks G, 2020, QUANT SCI STUD, V1, P414, DOI 10.1162/qss_a_00022 Jan R., 2018, CONTEXT ANAL TOP SEV, P1 Jelodar H, 2019, MULTIMED TOOLS APPL, V78, P15169, DOI 10.1007/s11042-018-6894-4 Lu SF, 2013, SCI REP-UK, V3, DOI 10.1038/srep03146 Luwel M., 2019, SCHON CASE ANAL IN T, DOI [10.31235/osf.io/c6mvs, DOI 10.31235/OSF.IO/C6MVS] Lyu XZ, 2020, SCIENTOMETRICS, V123, P909, DOI 10.1007/s11192-020-03415-7 May C., 2019, ANAL LEMMATIZATION T Meyer CA, 2011, LEARN PUBL, V24, P87, DOI 10.1087/20110202 Mongeon P, 2016, J ASSOC INF SCI TECH, V67, P535, DOI 10.1002/asi.23421 Mott A, 2019, J HEALTH SERV RES PO, V24, P44, DOI 10.1177/1355819618797965 Moylan EC, 2016, BMJ OPEN, V6, DOI 10.1136/bmjopen-2016-012047 Ojeda, 2018, APPL TEXT ANAL PYTHO OpenCitations, 2020, COCI CSV DATASET ALL, DOI [DOI 10.6084/M9.FIGSHARE.6741422.V6, 10.6084/M9.FIGSHARE.6741422.V6, DOI 10.6084/M9.FIGSHARE.6741422.V3] Peroni S., 2018, Open Citation: Definition, DOI [DOI 10.6084/M9.FIGSHARE.6683855.V1, 10.6084/m9.figshare.6683855.v1] Peroni S, 2020, QUANT SCI STUD, V1, P428, DOI 10.1162/qss_a_00023 Peroni S, 2018, LECT NOTES COMPUT SC, V11137, P119, DOI 10.1007/978-3-030-00668-6_8 Peroni S, 2012, J WEB SEMANT, V17, P33, DOI 10.1016/j.websem.2012.08.001 Ritchie A., 2008, P 17 ACM C INF KNOWL, P213, DOI DOI 10.1145/1458082.1458113 Schmiedel T, 2019, ORGAN RES METHODS, V22, P941, DOI 10.1177/1094428118773858 Schneider J, 2020, SCIENTOMETRICS, V125, P2877, DOI 10.1007/s11192-020-03631-1 Shuai X, 2017, J ASSOC INF SCI TECH, V68, P2225, DOI 10.1002/asi.23826 Sievert C., 2014, P WORKSH INT LANG LE, P63, DOI [10.3115/v1/W14-3110, DOI 10.3115/V1/W14-3110, 10.3115/v1/w14-3110] Suelzer EM, 2019, JAMA NETW OPEN, V2, DOI 10.1001/jamanetworkopen.2019.15552 Suppe F, 1998, PHILOS SCI, V65, P381, DOI 10.1086/392651 Teixeira da Silva JA, 2017, SCIENTOMETRICS, V110, P1653, DOI 10.1007/s11192-016-2227-4 Truica CO, 2016, INT SYMP SYMB NUMERI, P307, DOI [10.1109/SYNASC.2016.055, 10.1109/SYNASC.2016.49] van der Vet Paul E, 2016, Res Integr Peer Rev, V1, P3, DOI 10.1186/s41073-016-0008-5 Wakefield AJ, 1998, LANCET, V351, P637, DOI 10.1016/S0140-6736(97)11096-0 Zhang Y, 2021, SCIENTOMETRICS, V126, P4225, DOI 10.1007/s11192-021-03946-7 NR 53 TC 14 Z9 14 U1 7 U2 48 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0138-9130 EI 1588-2861 J9 SCIENTOMETRICS JI Scientometrics PD OCT PY 2021 VL 126 IS 10 BP 8433 EP 8470 DI 10.1007/s11192-021-04097-5 EA AUG 2021 PG 38 WC Computer Science, Interdisciplinary Applications; Information Science & Library Science WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Computer Science; Information Science & Library Science GA UW2MR UT WOS:000681571100002 PM 34376878 OA Green Published, hybrid DA 2024-09-05 ER PT J AU Yu, LH Yu, ZG AF Yu, Liheng Yu, Zhonggen TI Qualitative and quantitative analyses of artificial intelligence ethics in education using VOSviewer and CitNetExplorer SO FRONTIERS IN PSYCHOLOGY LA English DT Article DE artificial intelligence; ethics; bibliometric analysis; VOSviewer; CitNetExplorer AB The new decade has been witnessing the wide acceptance of artificial intelligence (AI) in education, followed by serious concerns about its ethics. This study examined the essence and principles of AI ethics used in education, as well as the bibliometric analysis of AI ethics for educational purposes. The clustering techniques of VOSviewer (n = 880) led the author to reveal the top 10 authors, sources, organizations, and countries in the research of AI ethics in education. The analysis of clustering solution through CitNetExplorer (n = 841) concluded that the essence of AI ethics for educational purposes included deontology, utilitarianism, and virtue, while the principles of AI ethics in education included transparency, justice, fairness, equity, non-maleficence, responsibility, and privacy. Future research could consider the influence of AI interpretability on AI ethics in education because the ability to interpret the AI decisions could help judge whether the decision is consistent with ethical criteria. C1 [Yu, Liheng] Univ Birmingham, Sch Engn, Birmingham, England. [Yu, Zhonggen] Beijing Language & Culture Univ, Fac Foreign Studies, Beijing, Peoples R China. C3 University of Birmingham; Beijing Language & Culture University RP Yu, ZG (corresponding author), Beijing Language & Culture Univ, Fac Foreign Studies, Beijing, Peoples R China. EM 401373742@qq.com RI liu, xinyu/IWD-6630-2023; Liu, Yuan/JFB-4766-2023; yan, yan/JVN-1800-2024; zhang, xiang/JJD-7003-2023; liu, bing/JJD-5566-2023; li, wl/JJC-0768-2023; Zhou, Yue/JHS-8791-2023; li, wei/IUQ-2973-2023; Zhang, Han/JMR-0670-2023; Yang, Fei/JLM-3367-2023; sun, chen/JCP-0396-2023; yang, rui/JHI-3328-2023; li, jiaxin/JNT-5073-2023; Liu, Yixuan/JFJ-2820-2023; Zhu, Li/JTT-9093-2023; liu, xy/JEP-3175-2023; wang, zhiwen/JDV-9990-2023; Yu, Zhonggen/AAE-5514-2020; li, yansong/JXL-5023-2024; li, qing/JEF-9044-2023; li, jing/JEF-8436-2023; Yang, Jie/JDM-6213-2023; WANG, YANG/JFA-8821-2023; zhang, yan/JGL-8022-2023; Zhao, Yi/JFA-7988-2023; yang, li/JGM-1009-2023; Yu, Zhonggen/AAJ-3063-2020; wang, KiKi/JFZ-3334-2023; Yuan, Yu/KBQ-0606-2024; ZHOU, YUE/IZE-6277-2023; Wang, Yanlin/JGC-6782-2023; zhang, xiao/JCN-8822-2023; Chen, Yu/JLL-0171-2023; li, zhang/JHV-1750-2023; Chen, Xin/JDN-2017-2023; Wang, Guang/JFS-8374-2023; WANG, HUI/JFA-9683-2023; liu, lin/JFK-3401-2023; liu, jianyang/JXL-6273-2024; Zhang, Yun/JCN-7026-2023; yang, yun/IZE-1092-2023; .., What/IXW-6776-2023; liu, lingling/IUQ-7478-2023; 李, 嘉馨/IWM-4023-2023; zhang, ly/JMB-7214-2023; Yan, Miaochen/JLL-5061-2023 OI Yu, Zhonggen/0000-0002-3873-980X; Yang, Jie/0000-0002-3941-0053; Yu, Zhonggen/0000-0002-3873-980X; FU 2019 MOOC of Beijing Language and Culture University (Important) "Introduction to Linguistics" [MOOC201902]; "Introduction to Linguistics" of online and offline mixed courses in Beijing Language and Culture University in 2020; Special fund of Beijing Co-construction Project-Research and reform of the "Undergraduate Teaching Reform and Innovation Project" of Beijing higher education in 2020-innovative "multilingual +" excellent talent training system [202010032003]; research project of Graduate Students of Beijing Language and Culture University "Xi Jinping: The Governance of China" [SJTS202108] FX This work was supported by 2019 MOOC of Beijing Language and Culture University (MOOC201902) (Important) "Introduction to Linguistics"; "Introduction to Linguistics" of online and offline mixed courses in Beijing Language and Culture University in 2020; Special fund of Beijing Co-construction Project-Research and reform of the "Undergraduate Teaching Reform and Innovation Project" of Beijing higher education in 2020-innovative "multilingual +" excellent talent training system (202010032003); The research project of Graduate Students of Beijing Language and Culture University "Xi Jinping: The Governance of China" (SJTS202108). CR Agbese M., 2023, E INFORM SOFTW ENG J, V17, P230101, DOI [10.37190/e-inf230101, DOI 10.37190/E-INF230101] [Anonymous], 2013, NW J TECHNOL INTELLE Anscombe G. E. M., 2005, ANDREWES STUDIES PHI Aristotle, 1999, Nichomachean Ethics, V2nd Asimov Isaac, 1950, I ROBOT Berry J.W., 1997, Handbook of Cross-cultural Psychology, P291, DOI DOI 10.1016/j.ijintrel.2005.07.013 Berry J. W., ACCULTURATION ADV TH, P17, DOI DOI 10.1037/10472-004 Bozkurt A, 2021, SUSTAINABILITY-BASEL, V13, DOI 10.3390/su13020800 Burton E, 2017, AI MAG, V38, P22, DOI 10.1609/aimag.v38i2.2731 Copp David., 2006, OXFORD HDB ETHICAL T Dignum V, 2021, LOND REV EDUC, V19, DOI 10.14324/LRE.19.1.01 Dodigovic M., 2007, Language Awareness, V16, P99, DOI [10.2167/la416.0, DOI 10.2167/LA416.0] Floridi L, 2018, MIND MACH, V28, P689, DOI 10.1007/s11023-018-9482-5 Folstad A, 2021, COMPUTING, V103, P2915, DOI 10.1007/s00607-021-01016-7 Frankena William., 1963, ETHICS Goksel N., 2019, Handbook of research on learning in the age of transhumanism, P224, DOI [10.4018/978-1-5225-8431-5.ch014, DOI 10.4018/978-1-5225-8431-5.CH014] Hagendorff T, 2020, MIND MACH, V30, P99, DOI 10.1007/s11023-020-09517-8 Handelsman MM, 2005, PROF PSYCHOL-RES PR, V36, P59, DOI 10.1037/0735-7028.36.1.59 Holmes W., 2019, ARTIF INTELL, P1 Holmes W, 2022, INT J ARTIF INTELL E, V32, P504, DOI 10.1007/s40593-021-00239-1 Javed RT, 2022, J ARTIF INTELL RES, V73, P933 Jia HP, 2020, NATL SCI REV, V7, P1954, DOI 10.1093/nsr/nwaa255 Jobin A, 2019, NAT MACH INTELL, V1, P389, DOI 10.1038/s42256-019-0088-2 John-Mathews JM, 2022, TECHNOL FORECAST SOC, V174, DOI 10.1016/j.techfore.2021.121209 Kaur D, 2023, ACM COMPUT SURV, V55, DOI 10.1145/3491209 Keathley-Herring H, 2016, SCIENTOMETRICS, V109, P927, DOI 10.1007/s11192-016-2096-x Li XQ, 2007, DECIS SCI-J INNOV ED, V5, P311, DOI 10.1111/j.1540-4609.2007.00143.x Liberati A, 2009, BMJ-BRIT MED J, V339, DOI [10.1016/j.ijsu.2010.02.007, 10.1136/bmj.b2700, 10.1136/bmj.b2535, 10.1186/2046-4053-4-1, 10.1371/journal.pmed.1000097, 10.1136/bmj.i4086, 10.1016/j.ijsu.2010.07.299] Lin CH, 2021, EDUC TECHNOL SOC, V24, P224 MacIntyre A. C., 1984, After virtue: a study in moral theory McGowan John., 1991, POSTMODERNISM ITS CR Mittelstadt BD, 2016, BIG DATA SOC, V3, P1, DOI 10.1177/2053951716679679 Ntoutsi E, 2020, WIRES DATA MIN KNOWL, V10, DOI 10.1002/widm.1356 Nye BD, 2016, INT J ARTIF INTELL E, V26, P756, DOI 10.1007/s40593-016-0098-8 Pedro F., 2019, ARTIFICIAL INTELLIGE Pelczynski ZbigniewA., 1984, STATE CIVIL SOC STUD Riyal ALM, 2019, J POLIT LAW, V12, P79, DOI 10.5539/jpl.v12n2p79 Schermer BW, 2011, COMPUT LAW SECUR REV, V27, P45, DOI 10.1016/j.clsr.2010.11.009 Siljander P., 2017, Schools in Transition: Linking Past, Present, and Future in Educational Practice Tan C, 2020, CONNECT SCI, V32, P280, DOI 10.1080/09540091.2019.1709045 Turilli M, 2009, ETHICS INF TECHNOL, V11, P105, DOI 10.1007/s10676-009-9187-9 Tutt Andrew., 2016, SSRN Scholarly Paper Van Eck N.J., 2014, Measuring Scholarly Impact: Methods and Practice, P285, DOI 10.1007/978-3-319-10377-8_13(InEng.) van Eck NJ, 2017, SCIENTOMETRICS, V111, P1053, DOI 10.1007/s11192-017-2300-7 van Eck NJ, 2014, J INFORMETR, V8, P802, DOI 10.1016/j.joi.2014.07.006 van Eck NJ, 2010, SCIENTOMETRICS, V84, P523, DOI 10.1007/s11192-009-0146-3 van Wel L., 2004, Ethics and Information Technology, V6, P129, DOI 10.1023/B:ETIN.0000047476.05912.3d Wamba SF, 2021, TECHNOL FORECAST SOC, V164, DOI 10.1016/j.techfore.2020.120482 Wang Y, 2019, Wall Street J Ye R., 2021, LECT NOTES ARTIF INT Yu ZG, 2022, SUSTAINABILITY-BASEL, V14, DOI 10.3390/su14084388 Yu ZG, 2022, SUSTAINABILITY-BASEL, V14, DOI 10.3390/su14063598 Zawacki-Richter O, 2019, INT J EDUC TECHNOL H, V16, DOI 10.1186/s41239-019-0171-0 Zhai XS, 2021, COMPLEXITY, V2021, DOI 10.1155/2021/8812542 NR 54 TC 9 Z9 11 U1 55 U2 195 PU FRONTIERS MEDIA SA PI LAUSANNE PA AVENUE DU TRIBUNAL FEDERAL 34, LAUSANNE, CH-1015, SWITZERLAND SN 1664-1078 J9 FRONT PSYCHOL JI Front. Psychol. PD MAR 9 PY 2023 VL 14 AR 1061778 DI 10.3389/fpsyg.2023.1061778 PG 14 WC Psychology, Multidisciplinary WE Social Science Citation Index (SSCI) SC Psychology GA A4WU4 UT WOS:000955152700001 PM 36968737 OA Green Published, gold DA 2024-09-05 ER PT C AU Wamba, SF Bawack, RE Carillo, KDA AF Wamba, Samuel Fosso Bawack, Ransome Epie Carillo, Kevin Daniel Andre BE Pappas, IO Mikalef, P Dwivedi, YK Jaccheri, L Krogstie, J Mantymaki, M TI The State of Artificial Intelligence Research in the Context of National Security: Bibliometric Analysis and Research Agenda SO DIGITAL TRANSFORMATION FOR A SUSTAINABLE SOCIETY IN THE 21ST CENTURY SE Lecture Notes in Computer Science LA English DT Proceedings Paper CT 18th International-Federation-of-Information-Processing (IFIP) WG 6.11 International Conference on E-Business, E-Services, and E-Society (I3E) CY SEP 18-20, 2019 CL Norwegian Univ Sci & Technol, Fac Informat Technol & Elect Engn, Dept Comp, Trondheim, NORWAY HO Norwegian Univ Sci & Technol, Fac Informat Technol & Elect Engn, Dept Comp DE Artificial intelligence; National security; Military; Defense; Bibliometrics ID SYSTEMS; SUPPORT; SCIENCE AB Artificial intelligence (AI) is a growing research topic in national security due to the growing need for peaceful and inclusive societies, as well as for the maintenance of strong institutions of justice. As e-societies continue to evolve due to the advancements made in information and communication technologies (ICT), AI has proven crucial to guarantee the development of security measures, especially against growing cyberthreats and cyberattacks. This relevance has been translated into an explosive growth of AI applications for the improvement of decision support systems, expert systems, robotics, surveillance, and military operations that aim at ensuring national security. However, there is no bibliometric research on AI in national security, especially one that highlights current debates on the topic. This paper presents an overview of research on AI and national security, with emphasis on the research focus areas and debates central to research on the topic. We analyzed 94 references collected from the Web of Science (WoS) Core Collection and used VOS viewer software to analyze them. Based on these analyses, we identified 7 focus areas and 8 debates on AI in national security. We also identified the state and evolution of research on the topic in terms of main journals, authors, institutions, and countries. Our findings help researchers and practitioners better understand the state of the art of AI research on national security, and guides future research and development projects on the topic. C1 [Wamba, Samuel Fosso; Bawack, Ransome Epie; Carillo, Kevin Daniel Andre] Toulouse Business Sch, 20 Blvd Lascrosses, F-31068 Toulouse, France. [Bawack, Ransome Epie] Toulouse 1 Univ Capitole, 2 Rue Doyen Gabriel Marty, F-31042 Toulouse, France. C3 Universite Federale Toulouse Midi-Pyrenees (ComUE); Universite de Toulouse; TBS Education RP Bawack, RE (corresponding author), Toulouse Business Sch, 20 Blvd Lascrosses, F-31068 Toulouse, France.; Bawack, RE (corresponding author), Toulouse 1 Univ Capitole, 2 Rue Doyen Gabriel Marty, F-31042 Toulouse, France. EM ransome.bawack@tsm-education.fr RI Bawack, Ransome/H-6050-2018; Fosso Wamba, Samuel/AAB-4953-2019; Bawack, Ransome/GLT-8064-2022 OI Fosso Wamba, Samuel/0000-0002-1073-058X; Bawack, Ransome/0000-0002-5441-604X CR Akgul A., 2015, ANKARA U SBF DERG, V45, P255 Alexandre R, 2016, J STRATEGIC INF SYST, V25, P75, DOI 10.1016/j.jsis.2016.01.002 [Anonymous], 2017, Artificial Intelligence and National Security' Tran BX, 2019, J CLIN MED, V8, DOI 10.3390/jcm8030360 Cath C, 2018, SCI ENG ETHICS, V24, P505, DOI 10.1007/s11948-017-9901-7 Clopton ZD, 2016, U CHICAGO LAW REV, V83, P45 Corrall S, 2013, LIBR TRENDS, V61, P636, DOI 10.1353/lib.2013.0005 Cuellar MJ, 2016, J ASSOC INF SYST, V17, P1 DARGAM FCC, 1991, EUR J OPER RES, V55, P403, DOI 10.1016/0377-2217(91)90209-E Garcia D, 2018, INT STUD REV, V20, P334, DOI 10.1093/isr/viy029 Garrigos-Simon Fernando J., 2018, Sustainability, V10, DOI 10.3390/su10061976 Hicks Diana, 2015, Nature, V520, P429, DOI 10.1038/520429a Hoadley D.S., 2018, Artificial intelligence and national security Johnson J, 2019, DEF SECUR ANAL, V35, P147, DOI 10.1080/14751798.2019.1600800 Keesstra SD, 2016, SOIL-GERMANY, V2, P111, DOI 10.5194/soil-2-111-2016 KING J, 1987, J INFORM SCI, V13, P261, DOI 10.1177/016555158701300501 Larsson S, 2019, Sustainable AI: An Inventory of the State of Knowledge of Ethical, Social, and Legal Challenges Related to Artificial Intelligence Mongeon P, 2016, SCIENTOMETRICS, V106, P213, DOI 10.1007/s11192-015-1765-5 Niu JQ, 2016, ISPRS INT J GEO-INF, V5, DOI 10.3390/ijgi5050066 Segun O., 2014, UN CHRONICLE MAGAZIN Stewart A., 2018, AIS T REPLICATION RE, V4, P12 Teo Y.-L., 2018, REGULATING ARTIFICIA Van Eck N.J., 2017, VOSVIEWER VISUALIZIN, V12 WOOLSEY G, 1991, INTERFACES, V21, P2, DOI 10.1287/inte.21.4.2 NR 24 TC 1 Z9 1 U1 8 U2 27 PU SPRINGER INTERNATIONAL PUBLISHING AG PI CHAM PA GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND SN 0302-9743 EI 1611-3349 BN 978-3-030-29374-1; 978-3-030-29373-4 J9 LECT NOTES COMPUT SC PY 2019 VL 11701 BP 255 EP 266 DI 10.1007/978-3-030-29374-1_21 PG 12 WC Computer Science, Information Systems; Computer Science, Interdisciplinary Applications WE Conference Proceedings Citation Index - Science (CPCI-S) SC Computer Science GA BQ6GP UT WOS:000611600800021 DA 2024-09-05 ER PT J AU Su, YY Wang, SX Li, Y AF Su, Yingying Wang, Shengxu Li, Yi TI Research on the improvement effect of machine learning and neural network algorithms on the prediction of learning achievement SO NEURAL COMPUTING & APPLICATIONS LA English DT Article DE Machine learning; Neural network; Student performance; Prediction ID PARAMETER-IDENTIFICATION; SEARCH; PATTERN; MODEL AB In order to improve the effect of college student performance prediction, based on machine learning and neural network algorithms, this paper improves the traditional data processing algorithms and proposes a similarity calculation method for courses. Moreover, this paper uses cosine similarity to calculate the similarity of courses. Simultaneously, this paper proposes an improved hybrid multi-weight improvement algorithm to improve the cold start problem that cannot be solved by traditional algorithms. In addition, this paper combines the neural network structure to construct a model framework structure, sets the functional modules according to actual needs, and analyzes and predicts students' personal performance through student portraits. Finally, this paper designs experiments to analyze the effectiveness of the model proposed in this paper. From the experimental data, it can be seen that the model proposed in this paper basically meets the expected requirements. C1 [Su, Yingying; Wang, Shengxu; Li, Yi] Shenyang Univ, Sch Mech Engn, Shenyang 110044, Liaoning, Peoples R China. C3 Shenyang University RP Su, YY (corresponding author), Shenyang Univ, Sch Mech Engn, Shenyang 110044, Liaoning, Peoples R China. EM suyingying@syu.edu.cn CR Beigi AM, 2018, SOL ENERGY, V171, P435, DOI 10.1016/j.solener.2018.06.092 Benson NF, 2016, J SCHOOL PSYCHOL, V58, P1, DOI 10.1016/j.jsp.2016.06.001 Brehm M, 2017, LABOUR ECON, V44, P133, DOI 10.1016/j.labeco.2016.12.008 Brown GTL, 2018, INTELLIGENCE, V69, P94, DOI 10.1016/j.intell.2018.05.006 Chen ZL, 2019, NAT COMMUN, V10, DOI 10.1038/s41467-019-11337-z Chen ZH, 2014, ENERG CONVERS MANAGE, V78, P306, DOI 10.1016/j.enconman.2013.10.060 Dzeng RJ, 2016, SAFETY SCI, V82, P56, DOI 10.1016/j.ssci.2015.08.008 Gotmare A, 2015, EXPERT SYST APPL, V42, P2538, DOI 10.1016/j.eswa.2014.10.040 Ayala HVH, 2015, ENERGY, V93, P1515, DOI 10.1016/j.energy.2015.08.019 Kelly BS, 2016, RADIOLOGY, V280, P252, DOI 10.1148/radiol.2016150409 Kertesz-Farkas A, 2015, J PROTEOME RES, V14, P3027, DOI 10.1021/pr501173s Klusmann U., 2016, Journal of Educational Psychology, DOI DOI 10.1037/EDU0000125 Koulayev S, 2014, RAND J ECON, V45, P553, DOI 10.1111/1756-2171.12062 Marsh HW, 2015, AM EDUC RES J, V52, P168, DOI 10.3102/0002831214549453 Mcgill RJ, 2016, PSYCHOL SCHOOLS, V53, P677, DOI 10.1002/pits.21940 Mohoric T, 2016, PSIHOLOGIJA, V49, P357, DOI 10.2298/PSI1604357M Patwardhan AP, 2014, DIGIT SIGNAL PROCESS, V32, P156, DOI 10.1016/j.dsp.2014.05.008 Pinxten M, 2019, EUR J PSYCHOL EDUC, V34, P45, DOI 10.1007/s10212-017-0361-x Rabiner DL, 2016, SCHOOL PSYCHOL REV, V45, P250, DOI 10.17105/SPR45-2.250-267 Varley JB, 2017, CHEM MATER, V29, P2568, DOI 10.1021/acs.chemmater.6b04663 Zhu XT, 2018, IEEE T IMAGE PROCESS, V27, P2286, DOI 10.1109/TIP.2017.2740564 Zimmerman BJ, 2014, CONTEMP EDUC PSYCHOL, V39, P145, DOI 10.1016/j.cedpsych.2014.03.004 NR 22 TC 6 Z9 6 U1 2 U2 37 PU SPRINGER LONDON LTD PI LONDON PA 236 GRAYS INN RD, 6TH FLOOR, LONDON WC1X 8HL, ENGLAND SN 0941-0643 EI 1433-3058 J9 NEURAL COMPUT APPL JI Neural Comput. Appl. PD JUN PY 2022 VL 34 IS 12 SI SI BP 9369 EP 9383 DI 10.1007/s00521-021-06333-8 EA JUL 2021 PG 15 WC Computer Science, Artificial Intelligence WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Computer Science GA 1H6NM UT WOS:000675747400006 DA 2024-09-05 ER PT C AU Bose, A Behzadan, V Aguirre, C Hsu, WH AF Bose, Avishek Behzadan, Vahid Aguirre, Carlos Hsu, William H. BE Spezzano, F Chen, W Xiao, X TI A Novel Approach for Detection and Ranking of Trendy and Emerging Cyber Threat Events in Twitter Streams SO PROCEEDINGS OF THE 2019 IEEE/ACM INTERNATIONAL CONFERENCE ON ADVANCES IN SOCIAL NETWORKS ANALYSIS AND MINING (ASONAM 2019) LA English DT Proceedings Paper CT IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM) CY AUG 27-30, 2019 CL Vancouver, CANADA DE novelty detection; emerging topics; event detection; named entity recognition; threat intelligence; user influence; tweet analysis AB We present a new machine learning and text information extraction approach to detection of cyber threat events in Twitter that are novel (previously non-extant) and developing (marked by significance with respect to similarity with a previously detected event). While some existing approaches to event detection measure novelty and trendiness, typically as independent criteria and occasionally as a holistic measure, this work focuses on detecting both novel and developing events using an unsupervised machine learning approach. Furthermore, our proposed approach enables the ranking of cyber threat events based on an importance score by extracting the tweet terms that are characterized as named entities, keywords, or both. We also impute influence to users in order to assign a weighted score to noun phrases in proportion to user influence and the corresponding event scores for named entities and keywords. To evaluate the performance of our proposed approach, we measure the efficiency and detection error rate for events over a specified time interval, relative to human annotator ground truth. C1 [Bose, Avishek; Behzadan, Vahid; Aguirre, Carlos; Hsu, William H.] Kansas State Univ, Dept Comp Sci, Manhattan, KS 66506 USA. C3 Kansas State University RP Bose, A (corresponding author), Kansas State Univ, Dept Comp Sci, Manhattan, KS 66506 USA. EM abose@ksu.edu; behzadan@ksu.edu; caguirre97@ksu.edu; bhsu@ksu.edu RI Bose, Avishek/KEH-4123-2024; Behzadan, Vahid/AAZ-5344-2020; Aguirre, Carlos/B-7560-2014 OI Bose, Avishek/0000-0001-5936-3170; Behzadan, Vahid/0000-0002-6229-9365; CR Behzadan V, 2018, IEEE INT CONF BIG DA, P5002, DOI 10.1109/BigData.2018.8622506 Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993 Dabiri S, 2019, EXPERT SYST APPL, V118, P425, DOI 10.1016/j.eswa.2018.10.017 Edouard A., 2017, EVENT DETECTION ANAL Ester Martin, 1996, P 2 INT C KNOWL DISC, P226 Ho Chung Wu, 2008, ACM Transactions on Information Systems, V26 Ifrim G., 2014, CEUR Workshop Proceedings, V1150, P33 JANG H, 2017, SOFT COMPUT, V21 Khandpur RP, 2017, CIKM'17: PROCEEDINGS OF THE 2017 ACM CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, P1049, DOI 10.1145/3132847.3132866 Le Sceller Q, 2017, PROCEEDINGS OF THE 12TH INTERNATIONAL CONFERENCE ON AVAILABILITY, RELIABILITY AND SECURITY (ARES 2017), DOI 10.1145/3098954.3098992 Li QZ, 2017, PROC INT CONF DATA, P1129, DOI 10.1109/ICDE.2017.157 Marcus A, 2011, 29TH ANNUAL CHI CONFERENCE ON HUMAN FACTORS IN COMPUTING SYSTEMS, P227 Mihalcea Rada, 2004, Textrank: bringing order into text, DOI DOI 10.3115/1219044.1219064 Mikolov T., 2013, Efficient estimation of word representations in vector space Mittal S, 2016, PROCEEDINGS OF THE 2016 IEEE/ACM INTERNATIONAL CONFERENCE ON ADVANCES IN SOCIAL NETWORKS ANALYSIS AND MINING ASONAM 2016, P860, DOI 10.1109/ASONAM.2016.7752338 Page L., 1999, The PageRank citation ranking: bringing order to the web Pedregosa F, 2011, J MACH LEARN RES, V12, P2825 Piper Andy., 2015, Potential adjustments to Streaming API sample volumes Le Q, 2014, PR MACH LEARN RES, V32, P1188 Rehurek R., 2010, Proceedings of the LREC 2010 Workshop on New Challenges for NLP Frameworks Ritter A, 2015, PROCEEDINGS OF THE 24TH INTERNATIONAL CONFERENCE ON WORLD WIDE WEB (WWW 2015), P896, DOI 10.1145/2736277.2741083 Sapienza A, 2018, COMPANION PROCEEDINGS OF THE WORLD WIDE WEB CONFERENCE 2018 (WWW 2018), P983, DOI 10.1145/3184558.3191528 NR 22 TC 10 Z9 14 U1 0 U2 1 PU ASSOC COMPUTING MACHINERY PI NEW YORK PA 1601 Broadway, 10th Floor, NEW YORK, NY, UNITED STATES BN 978-1-4503-6868-1 PY 2019 BP 871 EP 878 DI 10.1145/3341161.3344379 PG 8 WC Computer Science, Artificial Intelligence; Computer Science, Information Systems; Telecommunications WE Conference Proceedings Citation Index - Science (CPCI-S) SC Computer Science; Telecommunications GA BP5IK UT WOS:000555683800149 OA Green Submitted DA 2024-09-05 ER PT J AU Moore, CL Wang, NN Johnson, J Manyibe, EO Washington, AL Muhammad, A AF Moore, Corey L. Wang, Ningning Johnson, Jean Manyibe, Edward O. Washington, Andre L. Muhammad, Atashia TI Return-to-Work Outcome Rates of African American Versus White Veterans Served by State Vocational Rehabilitation Agencies: A Randomized Split-Half Cross-Model Validation Research Design SO REHABILITATION COUNSELING BULLETIN LA English DT Article DE African American veterans; state vocational rehabilitation agencies; RSA-911 data assessment and cross-validation research methods; minority access and outcome rates ID MULTIPLE-REGRESSION; DISABILITIES; PREDICTION; SERVICES AB The purpose of this study was to identify disparities in successful return-to-work outcome rates based on race, gender, and level of educational attainment at closure among veterans with a signed Individualized Plan for Employment (IPE). A randomized split-half cross-model validation research design was used to develop and test a series of logistic regression models for goodness of fit across two samples (i.e., screening and calibration) of case records (N = 11,337) obtained from the national Fiscal Year (FY) 2013 Rehabilitation Services Administration (RSA)-911 database. The final predictive multinomial logistic regression model indicated that (a) the odds of White veterans successfully returning to work were nearly 11/2 times the odds of African American veterans returning to work and (b) African American female veterans had the lowest probability for successfully returning to work. Moreover, findings indicated that African American veterans' successful return-to-work rates in 5 of the 10 RSA regions were below the national benchmark. Recommendations for policy development and future research directions are presented. C1 [Moore, Corey L.; Wang, Ningning; Johnson, Jean; Manyibe, Edward O.; Washington, Andre L.; Muhammad, Atashia] Langston Univ, LU RRTC Res & Capac Bldg,4205 N Lincoln Blvd, Oklahoma City, OK 73105 USA. C3 Langston University RP Moore, CL (corresponding author), Langston Univ, LU RRTC Res & Capac Bldg,4205 N Lincoln Blvd, Oklahoma City, OK 73105 USA.; Moore, CL (corresponding author), Delta Sigma Theta Sorority Inc, Oklahoma City, OK 73105 USA. EM clmoore@langston.edu RI Manyibe, Edward/KDN-0723-2024 OI Manyibe, Edward/0000-0002-4616-9798 FU Department of Education, NIDRR [H133B130023] FX The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This research was supported under a grant from the Department of Education, NIDRR Grant H133B130023. CR Allison P. D., 2012, Logistic regression using SAS Alston R, 2014, MED CARE, V52, pS17, DOI 10.1097/MLR.0000000000000105 [Anonymous], HARPERS MAGAZINE JUL [Anonymous], 2011, SAS STAT 9 3 US GUID [Anonymous], 2008, INVISIBLE WOUNDS WAR Atkins B.J., 2011, Improving vocational rehabilitation access and return to work and career outcomes among African American Wounded Warriors, Gulf War and Vietnam War era veterans with disabilities, P45 ATKINS BJ, 1980, J REHABIL, V46, P40 Bell GL, 2013, REHABIL RES POL EDUC, V27, P246, DOI 10.1891/2168-6653.27.4.246 BELLINI J, 1995, REHABIL COUNS BULL, V39, P151 Boutin D., 2011, J APPL REHABIL COUS, V42, P24 Burke HS, 2009, J REHABIL, V75, P5 Burnett SE, 2009, J POSTSECOND EDUC DI, V22, P53 Church TE, 2009, J POSTSECOND EDUC DI, V22, P43 Dohrenwend BP, 2007, J TRAUMA STRESS, V20, P449, DOI 10.1002/jts.20296 Faberman J., 2013, Economics Perspectives, V37, P1, DOI DOI 10.4119/IJCV-2791 Feist-Price S., 2011, Improving vocational rehabilitation access and return to work and career outcomes among African American Wounded Warriors, Gulf War and Vietnam War era veterans with disabilities, P26 FEISTPRICE S, 1995, REHABIL COUNS BULL, V39, P119 Fleming AR, 2013, REHABIL COUNS BULL, V56, P146, DOI 10.1177/0034355212459661 Frain MP, 2010, J REHABIL, V76, P13 Glover-Graf N.M., 2010, REHABILITATION ED, V24, P43 Graf N.M., 2011, Journal of Applied Rehabilitation Counseling, V42, P13 Grossman PD, 2009, J POSTSECOND EDUC DI, V22, P4 Hastie T., 2009, ELEMENTS STAT LEARNI, V2nd Hillesheim C., 2013, Vocational Evaluation and Work Adjustment Association Journal, V40, P23 Hosmer W., 2000, Applied Logistic Regression, VSecond Hsu C-W, 2003, PRACTICAL GUIDE SUPP Huck S. W., 1996, RES STAT RES Kromrey JD, 1996, J EXP EDUC, V64, P240, DOI 10.1080/00220973.1996.9943806 Leddy M, 2014, J REHABIL RES DEV, V51, P161, DOI 10.1682/JRRD.2013.01.0011 Lewis AN, 2007, J VOCAT REHABIL, V26, P89 Lindstrom LE, 2009, REHABIL COUNS BULL, V52, P189, DOI 10.1177/0034355208323946 London AS, 2011, J POVERTY, V15, P330, DOI 10.1080/10875549.2011.589259 Madaus JW, 2009, J POSTSECOND EDUC DI, V22, P10 Moore C.L., 2011, Barriers to VR service access and return to work outcomes among African American veterans: The need for evidence-based research and service strategies Moore C.L., 2003, J APPL REHABIL COUS, V34, P25 Moore C.L., 2001, J APPL REHABIL COUS, V32, P15 Moore C.L., 2002, Journal of Applied Rehabilitation Counseling, V33, P13 Moore C.L., 2001, Journal of Applied Rehabilitation Counseling, V32, P31 Moore CL, 2002, REHABIL COUNS BULL, V45, P233, DOI 10.1177/00343552020450040601 Moore CL, 2001, REHABIL COUNS BULL, V44, P144, DOI 10.1177/003435520104400304 Moore CL., 2009, Journal of Applied Rehabilitation Counseling, V40, P3, DOI [10.1891/0047-2220.40.3.3, DOI 10.1891/0047-2220.40.3.3] Moran S, 2013, J REHABIL, V79, P34 National Institute on Disability and Rehabilitation Research, 2009, FED REGISTER, V74, P2564 National Research Council, 2008, GULF WAR HLTH, V7 O'Connor MK, 2011, J REHABIL RES DEV, V48, P597, DOI 10.1682/JRRD.2010.06.0117 Pedhazur E.J., 1997, MULTIPLE REGRESSION Pohlmann JT, 2003, OHIO J SCI, V103, P118 Schwartz A. C., 2005, PSYCHIAT SERVICES, V56 Shackelford AL, 2009, J POSTSECOND EDUC DI, V22, P36 Sheehan C.M., 2012, Duty, honor, country, disparity: Race/ethnicity difference in self-reported health and disability among veterans Singh C.K., 2013, Journal of Military and Government Counseling, V1, P152 Steyerberg EW, 2001, J CLIN EPIDEMIOL, V54, P774, DOI 10.1016/S0895-4356(01)00341-9 Taylor JMG, 2008, CLIN CANCER RES, V14, P5977, DOI 10.1158/1078-0432.CCR-07-4534 Wilson KB, 2000, REHABIL COUNS BULL, V43, P97, DOI 10.1177/003435520004300205 NR 54 TC 4 Z9 12 U1 0 U2 14 PU SAGE PUBLICATIONS INC PI THOUSAND OAKS PA 2455 TELLER RD, THOUSAND OAKS, CA 91320 USA SN 0034-3552 EI 1538-4853 J9 REHABIL COUNS BULL JI Rehabil. Couns. Bull. PD APR PY 2016 VL 59 IS 3 BP 158 EP 171 DI 10.1177/0034355215579917 PG 14 WC Rehabilitation WE Social Science Citation Index (SSCI) SC Rehabilitation GA DG7FG UT WOS:000372249600004 DA 2024-09-05 ER PT C AU Tenório, K Olari, V Chikobava, M Romeike, R AF Tenorio, Kamilla Olari, Viktoriya Chikobava, Margarita Romeike, Ralf GP ACM TI Artificial Intelligence Literacy Research Field: A Bibliometric Analysis from 1989 to 2021 SO PROCEEDINGS OF THE 54TH ACM TECHNICAL SYMPOSIUM ON COMPUTER SCIENCE EDUCATION, VOL 1, SIGCSE 2023 LA English DT Proceedings Paper CT 54th Annual ACM SIGCSE Technical Symposium on Computer Science Education (SIGCSE TS) CY MAR 15-18, 2023 CL Toronto, CANADA DE AI literacy; AI education; bibliometric analysis; secondary study ID BIG DATA; CHALLENGES AB Artificial Intelligence (AI) literacy is a rapidly evolving research field. Due to the broad scope of AI literacy-related publications, a comprehensive analysis of the field is needed in order to examine the main characteristics of the current scientific output. Based on it, we conducted a bibliometric analysis of the field where we investigated the publications' evolution over time, research constituents (authors, countries, institutions, publication venues), collaboration patterns, and emerging trends. The findings point out that the United States of America (USA), China, Spain, and Germany are the most contributing countries in the AI literacy field. Moreover, the organizations that most contribute to the AI literacy field are the Massachusetts Institute of Technology, the University of Eastern Finland, and the Georgia Institute of Technology. Furthermore, KI - Kunstliche Intelligenz, ACM Transactions on Computing Education and IEEE Access are the most disseminating journals, and FIE, AAAI, SIGCSE and CHI are the most disseminating conferences of AI literacy research. According to keywords co-occurrence analysis, machine learning, data, big data, deep learning, and ethics are the most addressed AI topics. Finally, based on the achieved results, this bibliometric analysis draws some conclusions regarding the AI literacy field and points out potential directions for future works. C1 [Tenorio, Kamilla; Olari, Viktoriya; Romeike, Ralf] Free Univ Berlin, Berlin, Germany. [Chikobava, Margarita] German Res Ctr Artificial Intelligence, Berlin, Germany. C3 Free University of Berlin RP Tenório, K (corresponding author), Free Univ Berlin, Berlin, Germany. EM kamilla.tenorio@fu-berlin.de; viktoriya.olari@fu-berlin.de; margarita.chikobava@dfki.de; ralf.romeike@fu-berlin.de RI Chikobava, Margarita/JAD-2254-2023 OI Chikobava, Margarita/0000-0001-7692-6289; Olari, Viktoriya/0000-0002-5113-6624; Romeike, Ralf/0000-0002-2941-4288; Tenorio, Kamilla/0000-0002-8088-7507 FU German Federal Ministry of Education and Research (BMBF) [16DHBKI025] FX The authors would like to thank the German Federal Ministry of Education and Research (BMBF) for financial support as part of the project "ENKIS -Establishment of sustainable AI-related courses for responsible artificial intelligence at Freie Universitat Berlin" (funding code: 16DHBKI025) and the reviewers for the suggestions for improvement. CR Alekseeva L, 2021, LABOUR ECON, V71, DOI 10.1016/j.labeco.2021.102002 [Anonymous], 2010, Commun ACM, DOI [10.1145/1839676.1839701, DOI 10.1145/1839676.1839701] Boden MA., 2016, AI: Its nature and future Borenstein Jason, 2021, AI Ethics, V1, P61, DOI 10.1007/s43681-020-00002-7 Claes A., 2020, The Journal of Media Literacy Education, V12, P17, DOI [DOI 10.23860/JMLE-2020-12-3-3, 10.23860/jmle-2020-12-3-3] Djeki E, 2022, J COMPUT EDUC, V9, P727, DOI 10.1007/s40692-021-00218-4 Donthu N, 2021, J BUS RES, V133, P285, DOI 10.1016/j.jbusres.2021.04.070 Druga S, 2022, PROCEEDINGS OF THE 27TH ACM CONFERENCE ON INNOVATION AND TECHNOLOGY IN COMPUTER SCIENCE EDUCATION, ITICSE 2022, VOL 1, P96, DOI 10.1145/3502718.3524782 Duan YQ, 2019, INT J INFORM MANAGE, V48, P63, DOI 10.1016/j.ijinfomgt.2019.01.021 Francesconi E, 2022, ARTIF INTELL LAW, V30, P147, DOI 10.1007/s10506-022-09309-8 Garrett N, 2020, PROCEEDINGS OF THE 3RD AAAI/ACM CONFERENCE ON AI, ETHICS, AND SOCIETY AIES 2020, P272, DOI 10.1145/3375627.3375868 Haenlein M, 2019, CALIF MANAGE REV, V61, P5, DOI 10.1177/0008125619864925 Ho YS, 2020, COLLNET J SCIENTOMET, V14, P369, DOI 10.1080/09737766.2021.1918032 IBM, 2019, Technical Report Jobin A, 2019, NAT MACH INTELL, V1, P389, DOI 10.1038/s42256-019-0088-2 Kim J, 2019, J ASSOC INF SCI TECH, V70, P71, DOI 10.1002/asi.24079 Klinger Joel, 2020, A Narrowing of AI Research?, DOI [10.2139/ssrn.3698698, DOI 10.2139/SSRN.3698698] Long DR, 2020, PROCEEDINGS OF THE 2020 CHI CONFERENCE ON HUMAN FACTORS IN COMPUTING SYSTEMS (CHI'20), DOI 10.1145/3313831.3376727 Marques LS, 2020, INFORM EDUC, V19, P283, DOI 10.15388/infedu.2020.14 McCarthy J., 1955, A proposal for the Dartmouth Summer Research Project on Artificial Intelligence Meyer B, 2009, COMMUN ACM, V52, P31, DOI 10.1145/1498765.1498780 Mora L, 2017, J URBAN TECHNOL, V24, P3, DOI 10.1080/10630732.2017.1285123 Muthukrishnan N, 2020, NEUROIMAG CLIN N AM, V30, P393, DOI 10.1016/j.nic.2020.07.004 Naudé W, 2021, ECON INNOV NEW TECH, V30, P1, DOI 10.1080/10438599.2020.1839173 Ng D. T. K., 2021, Computers and Education: Artificial Intelligence, V2, P100041, DOI DOI 10.1016/J.CAEAI.2021.100041 Olari V, 2021, PROCEEDINGS OF THE 16TH WORKSHOP IN PRIMARY AND SECONDARY COMPUTING EDUCATION, WIPSCE 2021, DOI 10.1145/3481312.3481351 Ruhela Sonakshi, 2019, INT CONF COMPUT, DOI [10.1109/ICCCNT45670.2019.8944650, DOI 10.1109/icccnt45670.2019.8944650] Russell S., 2009, Artificial Intelligence: A Modern Approach, V3rd Savage N, 2020, NATURE, V588, pS102, DOI 10.1038/d41586-020-03409-8 Shen Y, 2021, COMPUT APPL ENG EDUC, V29, P329, DOI 10.1002/cae.22221 Skene L, 2007, PLOS MED, V4, P243, DOI 10.1371/journal.pmed.0040010 Tedre M, 2021, PROCEEDINGS OF 21ST KOLI CALLING CONFERENCE ON COMPUTING EDUCATION RESEARCH, KOLI CALLING 2021,, DOI 10.1145/3488042.3488053 Topol EJ, 2019, NAT MED, V25, P44, DOI 10.1038/s41591-018-0300-7 van Eck NJ, 2010, SCIENTOMETRICS, V84, P523, DOI 10.1007/s11192-009-0146-3 von Wangenheim CG, 2021, EDUC INF TECHNOL, V26, P5733, DOI 10.1007/s10639-021-10570-8 Zhang D., 2022, AI INDEX 2022 ANN RE Zhou XF, 2020, Arxiv, DOI [arXiv:2009.10228, 10.48550/arXiv.2009.10228, DOI 10.48550/ARXIV.2009.10228] Zhuang YT, 2017, FRONT INFORM TECH EL, V18, P3, DOI 10.1631/FITEE.1601883 NR 38 TC 9 Z9 9 U1 64 U2 76 PU ASSOC COMPUTING MACHINERY PI NEW YORK PA 1601 Broadway, 10th Floor, NEW YORK, NY, UNITED STATES BN 978-1-4503-9431-4 PY 2023 BP 1083 EP 1089 DI 10.1145/3545945.3569874 PG 7 WC Computer Science, Theory & Methods; Education, Scientific Disciplines WE Conference Proceedings Citation Index - Science (CPCI-S) SC Computer Science; Education & Educational Research GA BW2KI UT WOS:001117817800156 DA 2024-09-05 ER PT J AU Vasishta, P Dhingra, N Vasishta, S AF Vasishta, Prihana Dhingra, Navjyoti Vasishta, Seema TI Application of artificial intelligence in libraries: a bibliometric analysis and visualisation of research activities SO LIBRARY HI TECH LA English DT Article; Early Access DE Artificial intelligence; Bibliometrics; Libraries; Scopus; Network analysis; Cluster analysis ID SMART; SYSTEM AB PurposeThis research aims to analyse the current state of research on the application of Artificial Intelligence (AI) in libraries by examining document type, publication year, keywords, country and research methods. The overarching aim is to enrich the existing knowledge of AI-powered libraries by identifying the prevailing research gaps, providing direction for future research and deepening the understanding needed for effective policy development.Design/methodology/approachThis study used advanced tools such as bibliometric and network analysis, taking the existing literature from the SCOPUS database extending to the year 2022. This study analysed the application of AI in libraries by identifying and selecting relevant keywords, extracting the data from the database, processing the data using advanced bibliometric visualisation tools and presenting and discussing the results. For this comprehensive research, the search strategy was approved by a panel of computer scientists and librarians.FindingsThe majority of research concerning the application of AI in libraries has been conducted in the last three years, likely driven by the fourth industrial revolution. Results show that highly cited articles were published by Emerald Group Holdings Ltd. However, the application of AI in libraries is a developing field, and the study highlights the need for more research in areas such as Digital Humanities, Machine Learning, Robotics, Data Mining and Big Data in Academic Libraries.Research limitations/implicationsThis study has excluded papers written in languages other than English that address domains beyond libraries, such as medicine, health, education, science and technology.Practical implicationsThis article offers insight for managers and policymakers looking to implement AI in libraries. By identifying clusters and themes, the article would empower managers to plan ahead, mitigate potential drawbacks and seize opportunities for sustainable growth.Originality/valuePrevious studies on the application of AI in libraries have taken a broad approach, but this study narrows its focus to research published explicitly in Library and Information Science (LIS) journals. This makes it unique compared to previous research in the field. C1 [Vasishta, Prihana] Punjab Engn Coll, Ctr Management & Humanities, Chandigarh, India. [Dhingra, Navjyoti] Panjab Univ, Chandigarh, India. [Vasishta, Seema] Punjab Engn Coll, Cent Lib, Chandigarh, India. C3 Punjab Engineering College (Deemed University); Panjab University; Punjab Engineering College (Deemed University) RP Vasishta, P (corresponding author), Punjab Engn Coll, Ctr Management & Humanities, Chandigarh, India. EM prihana.ubs@gmail.com OI Vasishta, Prihana/0000-0002-3833-4992; Vasishta, Seema/0000-0003-2764-1724 CR Allison D, 2012, LIBR HI TECH, V30, P95, DOI 10.1108/07378831211213238 Asemi A., 2018, Library Philosophy and Practice, V2, P22, DOI [10.22259/2637-5915.0201004, DOI 10.22259/2637-5915.0201004] Asemi A, 2021, LIBR HI TECH, V39, P412, DOI 10.1108/LHT-02-2020-0038 Bakkalbasi N, 2015, LIBR MANAGE, V36, P208, DOI 10.1108/LM-09-2014-0109 Bischl B, 2016, ARTIF INTELL, V237, P41, DOI 10.1016/j.artint.2016.04.003 Borgohain DJ, 2024, LIBR HI TECH, V42, P149, DOI 10.1108/LHT-07-2022-0331 Cao GH, 2018, ELECTRON LIBR, V36, P811, DOI 10.1108/EL-11-2017-0248 Carneiro A., 2001, Journal of Knowledge Management, V5, P358, DOI 10.1108/EUM0000000006533 Chu HC, 2008, ELECTRON LIBR, V26, P303, DOI 10.1108/02640470810879464 CLN O.T.E., 2023, Library Philosophy and Practice, P1 Corke P., 2011, Robotics, vision and control: fundamental algorithms in MATLAB Cox AM, 2019, J DOC, V75, P1432, DOI 10.1108/JD-12-2018-0211 Cox AM, 2019, LIBR HI TECH, V37, P418, DOI 10.1108/LHT-08-2018-0105 Di Vaio A, 2022, TECHNOL FORECAST SOC, V174, DOI 10.1016/j.techfore.2021.121201 Dwivedi YK, 2013, INT J INFORM MANAGE, V33, P367, DOI 10.1016/j.ijinfomgt.2012.10.008 Fiorucci M, 2020, PATTERN RECOGN LETT, V133, P102, DOI 10.1016/j.patrec.2020.02.017 Gul S, 2019, ELECTRON LIBR, V37, P764, DOI 10.1108/EL-02-2019-0052 Harisanty D, 2024, LIBR HI TECH, V42, P809, DOI 10.1108/LHT-10-2021-0356 Herron Jennifer, 2017, Journal of Electronic Resources in Medical Libraries, V14, P139, DOI 10.1080/15424065.2017.1367633 Huang YH, 2024, LIBR HI TECH, V42, P885, DOI 10.1108/LHT-03-2022-0159 Kamada H., 2010, College and Research Libraries News, V71, P484, DOI [10.5860/crln.71.9.8441, DOI 10.5860/CRLN.71.9.8441] Lakshmikant M., 2008, Automation and networking of libraries (electronic source): amanual of library management software and applications of computer technology in libraries Lancaster F.W., 1997, Libraries for the New Millennium: Implications for Managers, P19 Mijwil M.M., 2022, Asian Journal of Applied Sciences, V10, DOI [10.24203/ajas.v10i1.6930, DOI 10.24203/AJAS.V10I1.6930] Mogali S.S., 2014, BIL INT C INF TECHN Okunlaya RO, 2022, LIBR HI TECH, V40, P1869, DOI 10.1108/LHT-07-2021-0242 Omame I. M., 2020, Managing and adapting library information services for future users, P120 Owolabi KA, 2022, LIBR MANAGE, V43, P296, DOI 10.1108/LM-11-2021-0104 Oyelude Adetoun A., 2021, Library Hi Tech News, V38, P1, DOI 10.1108/LHTN-10-2021-0079 Phillips D., 2017, Doctoral dissertation Riahi Y, 2021, EXPERT SYST APPL, V173, DOI 10.1016/j.eswa.2021.114702 Rubin VL, 2010, LIBR HI TECH, V28, P496, DOI 10.1108/07378831011096196 Salman F.M., 2019, International Journal of Engineering and Information Systems (IJEAIS), V3, P1 Singh D.K., 1996, DESIDOC Journal of Library and Information Technology, V16, P9, DOI [10.14429/dbit.16.4.3272, DOI 10.14429/DBIT.16.4.3272] Straub J, 2021, METHODSX, V8, DOI 10.1016/j.mex.2021.101477 Tella Adeyinka, 2022, Library Hi Tech News, P15, DOI 10.1108/LHTN-05-2022-0072 VICKERY A, 1987, INFORM PROCESS MANAG, V23, P99, DOI 10.1016/0306-4573(87)90052-5 Vijayakumar A., 2011, International Journal of Digital Library Services, V1, P144 Vijayakumar S., 2019, International Journal of Computer Sciences and Engineering, V7, P2347 Villani C., 2018, For a Meaningful Artificial Intelligence - Towards a French and European Strategy' Vincze Joseph, 2017, Library Hi Tech News, V34, P5, DOI 10.1108/LHTN-03-2017-0016 Xu YJ, 2021, INNOVATION-AMSTERDAM, V2, DOI 10.1016/j.xinn.2021.100179 Yao F, 2015, LIBR HI TECH, V33, P245, DOI 10.1108/LHT-02-2015-0010 NR 43 TC 1 Z9 1 U1 82 U2 104 PU EMERALD GROUP PUBLISHING LTD PI Leeds PA Floor 5, Northspring 21-23 Wellington Street, Leeds, W YORKSHIRE, ENGLAND SN 0737-8831 J9 LIBR HI TECH JI Libr. Hi Tech PD 2024 JAN 19 PY 2024 DI 10.1108/LHT-12-2023-0589 EA JAN 2024 PG 18 WC Information Science & Library Science WE Social Science Citation Index (SSCI) SC Information Science & Library Science GA FA1F8 UT WOS:001142924300001 DA 2024-09-05 ER PT J AU Onan, A AF Onan, Aytug TI Two-Stage Topic Extraction Model for Bibliometric Data Analysis Based on Word Embeddings and Clustering SO IEEE ACCESS LA English DT Article DE Topic extraction; machine learning; cluster analysis; text mining ID SCIENCE; ENSEMBLE AB Topic extraction is an essential task in bibliometric data analysis, data mining and knowledge discovery, which seeks to identify significant topics from text collections. The conventional topic extraction schemes require human intervention and involve also comprehensive pre-processing tasks to represent text collections in an appropriate way. In this paper, we present a two-stage framework for topic extraction from scientific literature. The presented scheme employs a two-staged procedure, where word embedding schemes have been utilized in conjunction with cluster analysis. To extract significant topics from text collections, we propose an improved word embedding scheme, which incorporates word vectors obtained by word2vec, POS2vec, word-position2vec and LDA2vec schemes. In the clustering phase, an improved clustering ensemble framework, which incorporates conventional clustering methods (i.e., k-means, k-modes, k-means CC, self-organizing maps and DIANA algorithm) by means of the iterative voting consensus, has been presented. In the empirical analysis, we analyze a corpus containing 160,424 abstracts of articles from various disciplines, including agricultural engineering, economics, engineering and computer science. In the experimental analysis, performance of the proposed scheme has been compared to conventional baseline clustering methods (such as, k-means, k-modes, and k-means CC), LDA-based topic modelling and conventional word embedding schemes. The empirical analysis reveals that ensemble word embedding scheme yields better predictive performance compared to the baseline word vectors for topic extraction. Ensemble clustering framework outperforms the baseline clustering methods. The results obtained by the proposed framework show an improvement in Jaccard coefficient, Folkes & Mallows measure and F1 score. C1 [Onan, Aytug] Izmir Katip Celebi Univ, Comp Engn Dept, TR-35620 Izmir, Turkey. C3 Izmir Katip Celebi University RP Onan, A (corresponding author), Izmir Katip Celebi Univ, Comp Engn Dept, TR-35620 Izmir, Turkey. EM aytug.onan@ikc.edu.tr RI ONAN, Aytuğ/L-4613-2018 OI ONAN, Aytuğ/0000-0002-9434-5880 CR [Anonymous], 2007, SOC IND APPL MATH [Anonymous], 2010, PYTHON TEXT PROCESSI Bagheri A, 2014, J INF SCI, V40, P621, DOI 10.1177/0165551514538744 Bashir S, 2015, QUAL QUANT, V49, P2061, DOI 10.1007/s11135-014-0090-z Boongoen T, 2018, COMPUT SCI REV, V28, P1, DOI 10.1016/j.cosrev.2018.01.003 Bougouin A., 2013, P 6 INT JOINT C NAT, P543 Boyack KW, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0018029 Butnaru AM, 2017, PROCEDIA COMPUT SCI, V112, P1783, DOI 10.1016/j.procs.2017.08.211 Caliskan A, 2017, SCIENCE, V356, DOI 10.1126/science.aal4230 Chipman H, 2006, BIOSTATISTICS, V7, P286, DOI 10.1093/biostatistics/kxj007 Curiskis SA, 2020, INFORM PROCESS MANAG, V57, DOI 10.1016/j.ipm.2019.04.002 De Boom C, 2016, PATTERN RECOGN LETT, V80, P150, DOI 10.1016/j.patrec.2016.06.012 Deng L., 2014, Deep learning: Methods and applications (No. MSR-TR-2014-21), V7, P197, DOI [10.1561/, DOI 10.1561/2000000039, 10.1561/2000000039] Ding WY, 2014, J ASSOC INF SCI TECH, V65, P2084, DOI 10.1002/asi.23134 Ekbal A., 2011, ACM Trans. Asian Lang. Inf. Process., V10, DOI [10.1145/1967293.1967296, DOI 10.1145/1967293.1967296] Ferrara A, 2012, SCIENTOMETRICS, V93, P765, DOI 10.1007/s11192-012-0810-x Gehring J., 2017, ICML, P6 Ghosh J, 2011, WIRES DATA MIN KNOWL, V1, P305, DOI 10.1002/widm.32 Glaab E., 2011, THESIS Han J., 2006, DATA MINING CONCEPTS, P600 Hofmann Katja., 2009, CIKM, P1725 Hong Y., AUTOMATIC HILGHTER L Huang Z., 1997, DMKD, V3, P34, DOI DOI 10.11108/1.8127REP=REP1TYPE=PDF Ionescu RT, 2019, 2019 CONFERENCE OF THE NORTH AMERICAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS: HUMAN LANGUAGE TECHNOLOGIES (NAACL HLT 2019), VOL. 1, P363 Jain AK, 2010, PATTERN RECOGN LETT, V31, P651, DOI 10.1016/j.patrec.2009.09.011 Kamkarhaghighi M, 2017, EXPERT SYST APPL, V90, P241, DOI 10.1016/j.eswa.2017.08.021 Kittler J, 1998, IEEE T PATTERN ANAL, V20, P226, DOI 10.1109/34.667881 Kohonen T., 2001, SELF ORG MAPS, DOI [DOI 10.1007/978-3-642-56927-2, 10.1007/978-3-642-56927-2] Lauren P, 2018, NEUROCOMPUTING, V277, P129, DOI 10.1016/j.neucom.2017.01.117 Lilleberg J, 2015, PROCEEDINGS OF 2015 IEEE 14TH INTERNATIONAL CONFERENCE ON COGNITIVE INFORMATICS & COGNITIVE COMPUTING (ICCI*CC), P136, DOI 10.1109/ICCI-CC.2015.7259377 Lu Qiang., 2011, Proc. of CIKM'11, P383 Maas A, 2011, P 49 ANN M ASS COMP Mikolov T., 2013, ARXIV Moody C. E., MIXING DIRICHLET TOP Nguyen N, 2007, IEEE DATA MINING, P607, DOI 10.1109/ICDM.2007.73 Onan A, 2019, SCI PROGRAMMING-NETH, V2019, DOI 10.1155/2019/5901087 Onan A, 2017, INFORM PROCESS MANAG, V53, P814, DOI 10.1016/j.ipm.2017.02.008 Onan A, 2016, EXPERT SYST APPL, V57, P232, DOI 10.1016/j.eswa.2016.03.045 PETERS HPF, 1993, RES POLICY, V22, P23, DOI 10.1016/0048-7333(93)90031-C Poria S., 2016, COLING, P1601 Le Q, 2014, PR MACH LEARN RES, V32, P1188 Ren HP, 2019, LECT NOTES COMPUT SC, V11446, P419, DOI 10.1007/978-3-030-18576-3_25 Rezaeinia SM, 2019, EXPERT SYST APPL, V117, P139, DOI 10.1016/j.eswa.2018.08.044 Rip A., 1988, HDB QUANTITATIVE STU, P253 Schmidt CW., 2019, ARXIV190209875 Socher Richard, 2013, Advances in neural information processing systems, P926 Suominen A, 2016, J ASSOC INF SCI TECH, V67, P2464, DOI 10.1002/asi.23596 Tang DY, 2014, PROCEEDINGS OF THE 52ND ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, VOL 1, P1555 Ünlü R, 2019, EXPERT SYST APPL, V125, P33, DOI 10.1016/j.eswa.2019.01.074 van der Maaten L, 2008, J MACH LEARN RES, V9, P2579 Velden T, 2017, SCIENTOMETRICS, V111, P1169, DOI 10.1007/s11192-017-2306-1 Vesanto J, 2000, IEEE T NEURAL NETWOR, V11, P586, DOI 10.1109/72.846731 Wei C, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0146672 Yang J., 2016, International Journal of Database Theory and Application, V9, P1, DOI DOI 10.1186/s13071-016-1880-z Yang ZJ, 2016, ADV SOC SCI EDUC HUM, V64, P1480 Zhang Y., 2016, ARXIV151003820 Zhang Y, 2018, J INFORMETR, V12, P1099, DOI 10.1016/j.joi.2018.09.004 Zhang Y, 2016, TECHNOL FORECAST SOC, V105, P179, DOI 10.1016/j.techfore.2016.01.015 Zhang Y, 2014, TECHNOL FORECAST SOC, V85, P26, DOI 10.1016/j.techfore.2013.12.019 NR 59 TC 193 Z9 193 U1 17 U2 86 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 2169-3536 J9 IEEE ACCESS JI IEEE Access PY 2019 VL 7 BP 145614 EP 145633 DI 10.1109/ACCESS.2019.2945911 PG 20 WC Computer Science, Information Systems; Engineering, Electrical & Electronic; Telecommunications WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Computer Science; Engineering; Telecommunications GA JQ2YJ UT WOS:000498816000002 OA gold HC Y HP N DA 2024-09-05 ER PT J AU Wang, KL Dong, K Wu, JC Wu, J AF Wang, Kaili Dong, Ke Wu, Jiachun Wu, Jiang TI Patterns of artificial intelligence policies in China: a nationwide perspective SO LIBRARY HI TECH LA English DT Article; Early Access DE Artificial intelligence; Policy analysis; Bibliometrics; Policy instruments; Policy diffusion; Policy patterns ID DIFFUSION AB PurposeThe purpose of this paper is to identify the historical trends and status of the national development of artificial intelligence (AI) from a nationwide perspective and to enable governments at different administrative levels to promote AI development through policymaking.Design/methodology/approachThis paper analyzed 248 Chinese AI policies (36 issued by the state agencies and 212 by the regional agencies). Policy bibliometrics, policy instruments and network analysis were used to reveal the AI policy patterns. Three aspects were analyzed: the spatiotemporal distribution of issued policies, the policy foci and instruments of policy contents and the cooperation and citation among policy-issuing agencies.FindingsResults indicate that Chinese AI development is still in the initial phase. During the policymaking processes, the state and regional policy foci have strong consistency; however, the coordination among state and regional agencies is supposed to be strengthened. According to the issuing time of AI policies, Chinese AI development is in accordance with the global situation and has witnessed unprecedented growth in the last five years. And the coastal provinces have issued more targeted policies than the middle and western provinces. Governments at the state and regional levels have emphasized familiar policy foci and played the role of policymakers, along with regional governments that also functioned as policy executors as well. According to the three-dimension instruments coding, the authors found an uneven structure of policy instruments at both levels. Furthermore, weak cooperation appears at the state level, while little cooperation is found among regional agencies. Regional governments cite state policies, thus leading to the formation of top-down diffusion, lacking bottom-up diffusion.Originality/valueThe paper contributes to the literature by characterizing policy patterns from both external attributes and semantic contents, thus revealing features of policy distribution, contents and agencies. What is more, this research analyzes Chinese AI policies from a nationwide perspective, which contributes to clarifying the overall status and multi-level relationships of policies. The findings also benefit the coordinated development of governments during further policymaking processes. C1 [Wang, Kaili; Dong, Ke; Wu, Jiachun; Wu, Jiang] Wuhan Univ, Sch Informat Management, Wuhan, Peoples R China. C3 Wuhan University RP Wu, J (corresponding author), Wuhan Univ, Sch Informat Management, Wuhan, Peoples R China. EM jiangw@whu.edu.cn OI Wu, Jiang/0000-0002-3342-9757 FU This research was supported by the Key Projects of Philosophy and Social Sciences Research, Ministry of Education (No. 20JZD024). [20JZD024]; Key Projects of Philosophy and Social Sciences Research, Ministry of Education FX This research was supported by the Key Projects of Philosophy and Social Sciences Research, Ministry of Education (No. 20JZD024). CR Allision G.T., 1971, Essence of Decision Ayan J., 2018, Plos One, V13, pe0205555 Bareis J, 2022, SCI TECHNOL HUM VAL, V47, P855, DOI 10.1177/01622439211030007 Borgohain DJ, 2024, LIBR HI TECH, V42, P149, DOI 10.1108/LHT-07-2022-0331 Brewer GarryD., 1983, FDN POLICY ANAL CALLON M, 1983, SOC SCI INFORM, V22, P191, DOI 10.1177/053901883022002003 Carley S, 2011, ENERG ECON, V33, P1004, DOI 10.1016/j.eneco.2011.05.002 Chen MY, 2020, LIBR HI TECH, V38, P273, DOI 10.1108/LHT-06-2020-279 Chudnovsky M, 2019, LAT AM POLICY, V10, P120, DOI 10.1111/lamp.12158 Feng X, 2024, LIBR HI TECH, V42, P782, DOI 10.1108/LHT-06-2021-0189 Feng X, 2021, LIBR HI TECH, V39, P722, DOI 10.1108/LHT-06-2020-0141 GRAY V, 1973, AM POLIT SCI REV, V67, P1174, DOI 10.2307/1956539 Hood C., 1983, The Tools of Government Howlett M., 2003, STUDYING PUBLIC POLI, DOI DOI 10.2307/2952394 Huang C., 2016, Quantitative research on policy literature Huang C, 2020, HIGH EDUC POLICY, V33, P323, DOI 10.1057/s41307-018-0096-6 Huang C, 2018, SCIENTOMETRICS, V117, P1081, DOI 10.1007/s11192-018-2899-z Huang C, 2015, SCIENTOMETRICS, V102, P1521, DOI 10.1007/s11192-014-1406-4 Hughes O., 2001, Public Management and Administration: An Introduction Lai CF, 2021, LIBR HI TECH, V39, P380, DOI 10.1108/LHT-09-2019-0195 Lasswell H.D., 1950, POWER SOC FRAMEWORK Lester J.P., 2004, Public Policy: An Evolutionary Approach Li J., 2015, Journal of Public Management, V12, P138, DOI [10.16149/j.cnki.23-1523.2015.02.013, DOI 10.16149/J.CNKI.23-1523.2015.02.013_159] Liu C, 2021, LIBR HI TECH, V39, P396, DOI 10.1108/LHT-12-2019-0252 Madhavan R, 2020, IEEE INTELL SYST, V35, P103, DOI 10.1109/MIS.2020.3019679 Marda V, 2018, PHILOS T R SOC A, V376, DOI 10.1098/rsta.2018.0087 McKelvey F, 2019, CAN J COMMUN, V44, P43, DOI 10.22230/cjc.2019v44n2a3509 Motta MJ, 2018, REV POLICY RES, V35, P398, DOI 10.1111/ropr.12281 NEWMAN M. E. J., 2010, Networks Ren T., 2017, Chinese Public Administration, P96 Roberts H, 2021, AI SOC, V36, P59, DOI 10.1007/s00146-020-00992-2 Rothwell Roy., 1985, REINDUSTRIALIZATION SCOTT J, 1988, SOCIOLOGY, V22, P109, DOI 10.1177/0038038588022001007 Shirk S., 1993, POLITICAL LOGIC EC R Sicilia MA, 2019, LIBR HI TECH, V37, P30, DOI 10.1108/LHT-12-2017-0276 Simmons BA, 2006, INT ORGAN, V60, P781, DOI 10.1017/S0020818306060267 Song W., 2019, Research on Science and Technology Management, V39, P192 State Council of China, 1998, Guangzhou Political News, V5, P7 Stix C, 2021, SCI ENG ETHICS, V27, DOI 10.1007/s11948-020-00277-3 Tang Z., 2019, Information Magazine, V38, P73 Tang Z., 2019, Information Magazine, V38, P49 Trencher G, 2020, ENERG POLICY, V142, DOI 10.1016/j.enpol.2020.111533 van Eck NJ, 2010, SCIENTOMETRICS, V84, P523, DOI 10.1007/s11192-009-0146-3 WALKER JL, 1969, AM POLIT SCI REV, V63, P880, DOI 10.2307/1954434 Wang YN, 2021, BUILD RES INF, V49, P216, DOI 10.1080/09613218.2020.1789444 Wolfers A, 1952, POLIT SCI QUART, V67, P481, DOI 10.2307/2145138 Wu J, 2021, INFORM PROCESS MANAG, V58, DOI 10.1016/j.ipm.2021.102562 Xiang JQ, 2021, INT REV ADM SCI, V87, P888, DOI 10.1177/0020852319877940 Xiao L., 2020, Electronic Commerce Research, P1 Yang C, 2022, TECHNOL FORECAST SOC, V174, DOI 10.1016/j.techfore.2021.121188 Yang C, 2020, TECHNOL FORECAST SOC, V157, DOI 10.1016/j.techfore.2020.120116 Yang C, 2017, J CHIN GOV, V2, P478, DOI 10.1080/23812346.2017.1384094 Yue X, 2020, INT J ENV RES PUB HE, V17, DOI 10.3390/ijerph17072327 Zhang J, 2022, TECHNOL ANAL STRATEG, V34, P71, DOI 10.1080/09537325.2021.1885641 Zhang X., 2019, Information Work, V40, P44 Zhang XQ, 2019, SCIENTOMETRICS, V120, P129, DOI 10.1007/s11192-019-03105-z Zhang YL, 2018, SUSTAINABILITY-BASEL, V10, DOI 10.3390/su10010187 Zhou N, 2020, SUSTAINABILITY-BASEL, V12, DOI 10.3390/su12093629 Zhu XF, 2018, SOC SCI CHINA, V39, P78, DOI 10.1080/02529203.2018.1414390 NR 59 TC 2 Z9 2 U1 30 U2 65 PU EMERALD GROUP PUBLISHING LTD PI Leeds PA floor 5, Northspring 21-23 Wellington Street, Leeds, W YORKSHIRE, ENGLAND SN 0737-8831 J9 LIBR HI TECH JI Libr. Hi Tech PD 2023 SEP 15 PY 2023 DI 10.1108/LHT-04-2022-0168 EA SEP 2023 PG 31 WC Information Science & Library Science WE Social Science Citation Index (SSCI) SC Information Science & Library Science GA T2MO7 UT WOS:001076377200001 DA 2024-09-05 ER PT J AU Wang, X Bendle, NT Mai, F Cotte, J AF Wang, Xin (Shane) Bendle, Neil T. Mai, Feng Cotte, June TI The Journal of Consumer Research at 40: A Historical Analysis SO JOURNAL OF CONSUMER RESEARCH LA English DT Article DE topic modeling; Journal of Consumer Research; historical analysis; citation analysis AB This article reviews 40 years of the Journal of Consumer Research (JCR). Using text mining, we uncover the key phrases associated with consumer research. We use a topic modeling procedure to uncover 16 topics that have been featured in the journal since its inception and to show the trends in topics over time. For example, we highlight the decline in family decision-making research and the flourishing of social identity and influence research since the journal's inception. A citation analysis shows which JCR articles have had the most impact and compares the topics in top-cited articles with all JCR journal articles. We show that methodological and consumer culture articles tend to be heavily cited. We conclude by investigating the scholars who have been the top contributors to the journal across the four decades of its existence. And to better understand which schools have contributed most to the knowledge of consumer research over this history, we provide an analysis of where these top-performing scholars were trained. Our approach shows that the JCR archives can be an excellent source of data for scholars trying to understand the complicated, challenging, and dynamic field of consumer research. C1 [Wang, Xin (Shane); Bendle, Neil T.; Cotte, June] Univ Western Ontario, Ivey Business Sch, Mkt, London, ON N6G 0N1, Canada. [Mai, Feng] Univ Cincinnati, Lindner Coll Business, Cincinnati, OH 45221 USA. C3 Western University (University of Western Ontario); University System of Ohio; University of Cincinnati RP Wang, X (corresponding author), Univ Western Ontario, Ivey Business Sch, Mkt, 1255 Western Rd, London, ON N6G 0N1, Canada. EM xwang@ivey.ca; nbendle@ivey.ca; maifg@mail.uc.edu; jcot-te@ivey.ca RI Bendle, Neil/AAZ-6717-2021; , June Cotte/HKW-4643-2023 OI Bendle, Neil/0000-0002-8557-5983; Cotte, June/0000-0003-0770-8338; Mai, Feng/0000-0001-6897-8935 CR [Anonymous], 2014, J CONSUMER RES Blei DM, 2012, COMMUN ACM, V55, P77, DOI 10.1145/2133806.2133826 Dahl D, 2014, J CONSUM RES, V41, pIII, DOI 10.1086/676452 Deighton J, 2007, J CONSUM RES, V34, P279, DOI 10.1086/522653 Dingus Rebecca, 2013, 2013 WHO WENT SURVEY Fox Alexa, 2014, WHO WENT 2014 SURVEY Frank RE, 1995, ADV CONSUM RES, V22, P486 Griffiths TL, 2004, P NATL ACAD SCI USA, V101, P5228, DOI 10.1073/pnas.0307752101 Huber J, 2014, J MARKETING RES, V51, P84, DOI 10.1509/jmr.51.1.02 KATONA G, 1974, J CONSUM RES, V1, P1, DOI 10.1086/208575 Mela CF, 2013, MARKET SCI, V32, P8, DOI 10.1287/mksc.1120.0764 NR 11 TC 69 Z9 75 U1 17 U2 179 PU OXFORD UNIV PRESS INC PI CARY PA JOURNALS DEPT, 2001 EVANS RD, CARY, NC 27513 USA SN 0093-5301 EI 1537-5277 J9 J CONSUM RES JI J. Consum. Res. PD JUN PY 2015 VL 42 IS 1 BP 5 EP 18 DI 10.1093/jcr/ucv009 PG 14 WC Business WE Social Science Citation Index (SSCI) SC Business & Economics GA CK9ZA UT WOS:000356596900002 DA 2024-09-05 ER PT J AU Sarikoç, GÖ AF Sarikoc, Gulhan Ozdogan TI Artificial intelligence applications in the field of streamflow: a bibliometric analysis of recent trends SO HYDROLOGICAL SCIENCES JOURNAL LA English DT Article DE artificial intelligence; streamflow; bibliometric; research trends; Scopus; RStudio Bibliometrix ID NEURAL-NETWORK; WATER-LEVEL; MODELS; PREDICTION; WAVELET; ALGORITHM; MACHINE; FLOW; TOOL AB In this study, a bibliometric analysis technique is used for performance analysis and science mapping of artificial intelligence (AI) applications in streamflow research. This paper examines the current trends in the literature using the Scopus database over the last 37 years. RStudio Bibliometrix software was used to analyse the titles, keywords, abstracts, and full texts of 3000 publications to identify trends in AI models, publication types, journals, citations, authors, countries, and regions. The highest frequency AI-related keyword is "artificial neural networks," which was used in a total of 25587 times. The most common publication type, at 82.1%, is journal articles, and the highest rate of country production is 25% for China. In recent years, streamflow research studies have significantly increased their use of AI applications. [GRAPHICS] . C1 [Sarikoc, Gulhan Ozdogan] Amasya Univ, Suluova Vocat Sch, Dept Vegetable & Anim Prod, Amasya, Turkiye. C3 Ministry of National Education - Turkey; Amasya University RP Sarikoç, GÖ (corresponding author), Amasya Univ, Suluova Vocat Sch, Dept Vegetable & Anim Prod, Amasya, Turkiye. EM ozdogan.gulhan@gmail.com CR Adarnowski JF, 2008, J HYDROL, V353, P247, DOI 10.1016/j.jhydrol.2008.02.013 Adisa OM, 2020, SUSTAINABILITY-BASEL, V12, DOI 10.3390/su12166516 Adnan RM., 2017, AM SCI RES J ENG TEC, V29, P286, DOI DOI 10.1016/S0169-4332(03)00957-7 Afan HA, 2016, J HYDROL, V541, P902, DOI 10.1016/j.jhydrol.2016.07.048 Al-Adhaileh MH, 2021, SUSTAINABILITY-BASEL, V13, DOI 10.3390/su13084259 Anctil F, 2004, J ENVIRON ENG SCI, V3, pS121, DOI [10.1139/s03-071, 10.1139/S03-071] [Anonymous], 2009, Science of science (Sci2) tool Apaydin H, 2021, J HYDROL, V600, DOI 10.1016/j.jhydrol.2021.126506 Arabameri A, 2020, REMOTE SENS-BASEL, V12, DOI 10.3390/rs12030475 Aria M, 2017, J INFORMETR, V11, P959, DOI 10.1016/j.joi.2017.08.007 Baffaut C., 1989, 6 C COMP CIV ENG, P124 Baker HK, 2020, J BUS RES, V108, P232, DOI 10.1016/j.jbusres.2019.11.025 Bibliometrix, 2023, BIBLIOSHINY ONLINE Buyukyildiz M, 2014, WATER RESOUR MANAG, V28, P4747, DOI 10.1007/s11269-014-0773-1 Chau KW, 2006, J HYDROL, V329, P363, DOI 10.1016/j.jhydrol.2006.02.025 Chen CM, 2006, J AM SOC INF SCI TEC, V57, P359, DOI 10.1002/asi.20317 Chen KH, 2011, J INFORMETR, V5, P233, DOI 10.1016/j.joi.2010.10.007 Chen W, 2020, APPL SCI-BASEL, V10, DOI 10.3390/app10020425 Cobo MJ, 2012, J AM SOC INF SCI TEC, V63, P1609, DOI 10.1002/asi.22688 Daniel T.M., 1991, P INT HYDR WAT RES Dawson CW, 2006, NEURAL NETWORKS, V19, P236, DOI 10.1016/j.neunet.2006.01.009 Dawson CW, 1998, HYDROLOG SCI J, V43, P47, DOI 10.1080/02626669809492102 Dawson CW, 2001, PROG PHYS GEOG, V25, P80, DOI 10.1177/030913330102500104 Delleur J.W., 1988, CRITICAL WATER ISSUE, P187 Donthu N, 2021, J BUS RES, V133, P285, DOI 10.1016/j.jbusres.2021.04.070 Donthu N, 2021, INT J INFORM MANAGE, V57, DOI 10.1016/j.ijinfomgt.2020.102307 Engman E.T., 1988, PLANNING NOW IRRIGAT, P242 Engman E.T., 1986, WATER FORUM 86 WORLD, P174 FRAME J D, 1977, Interciencia, V2, P143 Gorzen-Mitka I, 2023, ENERGIES, V16, DOI 10.3390/en16042024 Govindaraju RS, 2000, J HYDROL ENG, V5, P124 Guo QQ, 2022, FRONT PUBLIC HEALTH, V10, DOI 10.3389/fpubh.2022.933665 He ZB, 2014, J HYDROL, V509, P379, DOI 10.1016/j.jhydrol.2013.11.054 Herrera-Franco G, 2021, WATER-SUI, V13, DOI 10.3390/w13091283 Hochreiter S, 1997, NEURAL COMPUT, V9, P1735, DOI [10.1162/neco.1997.9.1.1, 10.1007/978-3-642-24797-2] HSU KL, 1995, WATER RESOUR RES, V31, P2517, DOI 10.1029/95WR01955 Hu XJ, 2009, SCIENTOMETRICS, V81, P475, DOI 10.1007/s11192-008-2202-9 Ibrahim KSMH, 2022, ALEX ENG J, V61, P279, DOI 10.1016/j.aej.2021.04.100 Jain A, 2007, APPL SOFT COMPUT, V7, P585, DOI 10.1016/j.asoc.2006.03.002 Jothiprakash V, 2012, J HYDROL, V450, P293, DOI 10.1016/j.jhydrol.2012.04.045 Katy B., 2005, ANN REV ENV SCI TECH Kia MB, 2012, ENVIRON EARTH SCI, V67, P251, DOI 10.1007/s12665-011-1504-z Kim T, 2021, J HYDROL, V598, DOI 10.1016/j.jhydrol.2021.126423 Kisi Ö, 2007, J HYDROL ENG, V12, P532, DOI 10.1061/(ASCE)1084-0699(2007)12:5(532) Kratzert F, 2018, HYDROL EARTH SYST SC, V22, P6005, DOI 10.5194/hess-22-6005-2018 Kumar A., 2015, 10 INT CABLIBER 2015 Lin JY, 2006, HYDROLOG SCI J, V51, P599, DOI 10.1623/hysj.51.4.599 Luk KC, 2000, J HYDROL, V227, P56, DOI 10.1016/S0022-1694(99)00165-1 Maier HR, 2013, ENVIRON MODELL SOFTW, V43, P3, DOI 10.1016/j.envsoft.2013.02.004 Maksimovic C., 1989, HYDROCOMP 89 Maroufpoor S, 2020, J HYDROL, V588, DOI 10.1016/j.jhydrol.2020.125060 MCLEOD AI, 1977, BIOMETRIKA, V64, P531, DOI 10.2307/2345329 Mehdizadeh S, 2018, J HYDROL, V559, P794, DOI 10.1016/j.jhydrol.2018.02.060 Meshram SG, 2022, IJST-T CIV ENG, V46, P2393, DOI 10.1007/s40996-021-00696-7 Minns AW, 1996, HYDROLOG SCI J, V41, P399, DOI 10.1080/02626669609491511 Mohammadi B, 2021, ENVIRON SCI POLLUT R, V28, P65752, DOI 10.1007/s11356-021-15563-1 Morris SA, 2008, ANNU REV INFORM SCI, V42, P213 Niu JQ, 2016, ISPRS INT J GEO-INF, V5, DOI 10.3390/ijgi5050066 Nourani V, 2014, J HYDROL, V514, P358, DOI 10.1016/j.jhydrol.2014.03.057 Nourani V, 2009, WATER RESOUR MANAG, V23, P2877, DOI 10.1007/s11269-009-9414-5 Özdogan-Sarikoç G, 2023, J HYDROL, V616, DOI 10.1016/j.jhydrol.2022.128766 Patel A, 2023, ENG APPL ARTIF INTEL, V123, DOI 10.1016/j.engappai.2023.106335 Persson O., 2009, CELEBRATING SCHOLARL, V5, P9 Phong TV, 2021, GROUNDWATER, V59, P745, DOI 10.1111/gwat.13094 Rahman SA, 2020, J HYDROL, V588, DOI 10.1016/j.jhydrol.2020.125056 Ramírez MCV, 2005, J HYDROL, V301, P146, DOI 10.1016/j.jhydrol.2004.06.028 Rotmans J, 1996, CLIMATIC CHANGE, V34, P327, DOI 10.1007/BF00139296 Rusk N, 2016, NAT METHODS, V13, P35, DOI 10.1038/nmeth.3707 Sang YF, 2013, WATER RESOUR MANAG, V27, P2807, DOI 10.1007/s11269-013-0316-1 SCHUBERT A, 1986, SCIENTOMETRICS, V9, P281, DOI 10.1007/BF02017249 Seo Y, 2015, J HYDROL, V520, P224, DOI 10.1016/j.jhydrol.2014.11.050 Shamim MA, 2016, KSCE J CIV ENG, V20, P971, DOI 10.1007/s12205-015-0298-z Shamseldin AY, 1997, J HYDROL, V199, P272, DOI 10.1016/S0022-1694(96)03330-6 Shukla AK, 2019, ENG APPL ARTIF INTEL, V85, P517, DOI 10.1016/j.engappai.2019.06.010 Solomatine DP, 2003, HYDROLOG SCI J, V48, P399, DOI 10.1623/hysj.48.3.399.45291 Sudheer KP, 2002, HYDROL PROCESS, V16, P1325, DOI 10.1002/hyp.554 TAGUESUTCLIFFE J, 1992, INFORM PROCESS MANAG, V28, P1, DOI 10.1016/0306-4573(92)90087-G Tao H, 2024, ENG APPL ARTIF INTEL, V129, DOI 10.1016/j.engappai.2023.107559 Taylor JG, 1996, NEURAL NETWORKS AND THEIR APPLICATIONS, P277 Tiyasha, 2020, J HYDROL, V585, DOI 10.1016/j.jhydrol.2020.124670 Todini E., 1992, FLOODS FLOOD MANAGEM Tokar AS, 1999, J HYDROL ENG, V4, P232, DOI 10.1061/(ASCE)1084-0699(1999)4:3(232) Toth E, 2000, J HYDROL, V239, P132, DOI 10.1016/S0022-1694(00)00344-9 van Eck NJ, 2014, J INFORMETR, V8, P802, DOI 10.1016/j.joi.2014.07.006 van Eck NJ, 2010, SCIENTOMETRICS, V84, P523, DOI 10.1007/s11192-009-0146-3 Vantagepoint, US Vinio F., 1989, P INT C HYDR NIAG FA, P1770 Wang MH, 2011, DESALIN WATER TREAT, V28, P353, DOI 10.5004/dwt.2011.2412 Wang WC, 2009, J HYDROL, V374, P294, DOI 10.1016/j.jhydrol.2009.06.019 William J., 1986, WATER FORUM 86 WORLD, P158 Wu CL, 2011, J HYDROL, V399, P394, DOI 10.1016/j.jhydrol.2011.01.017 Wu CL, 2009, WATER RESOUR RES, V45, DOI 10.1029/2007WR006737 Yaseen ZM, 2015, J HYDROL, V530, P829, DOI 10.1016/j.jhydrol.2015.10.038 Yifru BA, 2024, SUSTAINABILITY-BASEL, V16, DOI 10.3390/su16041376 Zare F, 2017, J HYDROL, V552, P765, DOI 10.1016/j.jhydrol.2017.07.031 Zealand CM, 1999, J HYDROL, V214, P32, DOI 10.1016/S0022-1694(98)00242-X Zhang D, 2018, J HYDROL, V565, P720, DOI 10.1016/j.jhydrol.2018.08.050 NR 97 TC 0 Z9 0 U1 2 U2 2 PU TAYLOR & FRANCIS LTD PI ABINGDON PA 2-4 PARK SQUARE, MILTON PARK, ABINGDON OR14 4RN, OXON, ENGLAND SN 0262-6667 EI 2150-3435 J9 HYDROLOG SCI J JI Hydrol. Sci. J. PD JUL 3 PY 2024 VL 69 IS 9 BP 1141 EP 1157 DI 10.1080/02626667.2024.2356006 EA JUN 2024 PG 17 WC Water Resources WE Science Citation Index Expanded (SCI-EXPANDED) SC Water Resources GA ZJ7M4 UT WOS:001253039200001 DA 2024-09-05 ER PT J AU Bircan, T Salah, AAA AF Bircan, Tuba Salah, Almila Alkim Akdag TI A Bibliometric Analysis of the Use of Artificial Intelligence Technologies for Social Sciences SO MATHEMATICS LA English DT Article DE big data; artificial intelligence; computational social science; social sciences; bibliometrics ID BIG DATA RESEARCH; WEB; COLLABORATION; COVERAGE; NETWORK AB The use of Artificial Intelligence (AI) and Big Data analysis algorithms is complementary to theory-driven analysis approaches and becoming more popular also in social sciences. This paper describes the use of Big Data and computational approaches in social sciences by bibliometric analyses of articles indexed between 2015 and 2020 in Social Sciences Citation Index (SSCI) of the Web of Science repository. We have analysed especially the recent research direction called Computational Social Sciences (CSS) that bridges computer analytical approaches with social science challenges, generating new methodologies of Big Data and AI analytics for social sciences. The results indicate that AI and Big Data practices are not confined to CSS only and are diffused in a wide variety of disciplines under Social Sciences and are made use of in many main research lines as well. Thus, the anticipated overlap between the Social Sciences & AI specialization and CSS has yet to be crystallised. Moreover, the impact of computational social science studies is not permeated to social science citation networks yet. Lastly, we demonstrate that the AI and Big Data publications that appear under the SSCI index are more oriented towards computational studies than addressing social science concepts, concerns, and challenges. C1 [Bircan, Tuba] Vrije Univ Brussel, Dept Sociol, Interface Demog, Pl Laan 5, B-1050 Brussels, Belgium. [Salah, Almila Alkim Akdag] Univ Utrecht, Dept Informat & Comp Sci, Human Ctr Comp Grp, Buys Ballotgebouw BBG 422,Princetonpl 5, NL-3584 CM Utrecht, Netherlands. C3 Vrije Universiteit Brussel; Utrecht University RP Bircan, T (corresponding author), Vrije Univ Brussel, Dept Sociol, Interface Demog, Pl Laan 5, B-1050 Brussels, Belgium. EM tuba.bircan@vub.be OI Bircan, Tuba/0000-0003-1956-0545 FU European Commission; [870661] FX This research is funded by the European Commission through the Horizon2020 European project: "HumMingBird-Enhanced migration measures from a multidimensional perspective" (GA: 870661). CR Abdulhayoglu MA, 2018, SCIENTOMETRICS, V116, P1229, DOI 10.1007/s11192-017-2569-6 Alonso JM, 2020, INT J COMPUT INT SYS, V13, P974, DOI 10.2991/ijcis.d.200715.003 Alvesson M., 2017, Return to Meaning: A Social Science with Something to Say Anastasopoulos LJ, 2019, J PUBL ADM RES THEOR, V29, P491, DOI 10.1093/jopart/muy060 Bircan T, 2021, HUM SOC SCI COMMUN, V8, DOI 10.1057/s41599-021-00910-x Boyack KW, 2010, J AM SOC INF SCI TEC, V61, P2389, DOI 10.1002/asi.21419 Brown B., 2011, Big data: The next frontier for innovation, competition, and productivity, P156, DOI DOI 10.1080/01443610903114527 Cath C, 2018, PHILOS T R SOC A, V376, DOI 10.1098/rsta.2018.0080 Chang RM, 2014, DECIS SUPPORT SYST, V63, P67, DOI 10.1016/j.dss.2013.08.008 Cioffi-Revilla C, 2017, TEXTS COMPUT SCI, P35, DOI 10.1007/978-3-319-50131-4_2 de Neufville R, 2021, TECHNOL SOC, V66, DOI 10.1016/j.techsoc.2021.101649 Edelmann A, 2020, ANNU REV SOCIOL, V46, P61, DOI 10.1146/annurev-soc-121919-054621 *EUR COMM, 2016, EU DAT PROT REF BIG Gefen A., 2021, Reflections on Artificial Intelligence for Humanity, P191 Glanzel W, 1996, SCIENTOMETRICS, V37, P195, DOI 10.1007/BF02093621 Glanzel W, 1999, INFORM PROCESS MANAG, V35, P31, DOI 10.1016/S0306-4573(98)00028-4 González-Bailón S, 2013, POLICY INTERNET, V5, P147, DOI 10.1002/1944-2866.POI328 Gunning D, 2019, SCI ROBOT, V4, DOI 10.1126/scirobotics.aay7120 Harford Tim, 2014, Significance, DOI [DOI 10.1111/J.1740-9713.2014.00778.X, 10.1111/j.1740-9713.2014.00778.x] Heradio R, 2020, MATHEMATICS-BASEL, V8, DOI 10.3390/math8091566 Hinojo-Lucena FJ, 2019, EDUC SCI, V9, DOI 10.3390/educsci9010051 Hu HT, 2019, PRO INT CONF SCI INF, P2501 Hu JM, 2017, SCIENTOMETRICS, V112, P91, DOI 10.1007/s11192-017-2383-1 Iliadis A, 2016, BIG DATA SOC, V3, P1, DOI 10.1177/2053951716674238 Jacomy M., 2009, 3 INT AAAI C WEBL SO Kalantari Ali, 2017, Journal of Big Data, V4, DOI 10.1186/s40537-017-0088-1 Kessler M.M., 1962, EXPT STUDY BIBLIO CO Kitchin R, 2014, BIG DATA SOC, V1, DOI 10.1177/2053951714528481 Kitchin R, 2016, BIG DATA SOC, V3, P1, DOI 10.1177/2053951716631130 Kong JD, 2022, AI and Society, P179 Kwon S, 2019, RES POLICY, V48, DOI 10.1016/j.respol.2019.103834 Lafuente-Lechuga M, 2021, MATHEMATICS-BASEL, V9, DOI 10.3390/math9202557 Laney D, 2001, 3D DATA MANAGEMENT C Lazer D, 2009, SCIENCE, V323, P721, DOI 10.1126/science.1167742 Li YP, 2023, APPL MATH NONLIN SCI, V8, P319, DOI 10.2478/amns.2022.2.00013 Liang TP, 2018, EXPERT SYST APPL, V111, P2, DOI 10.1016/j.eswa.2018.05.018 Liao HC, 2018, SUSTAINABILITY-BASEL, V10, DOI 10.3390/su10010166 Ligo AK, 2021, FRONT COMP SCI-SWITZ, V3, DOI 10.3389/fcomp.2021.653235 Marín-Marín JA, 2019, SOC SCI-BASEL, V8, DOI 10.3390/socsci8080223 MAYER-SCHONBERGER Viktor, 2013, Big Data: A Revolution That Will Transform How We Live, Work, and Think Miller T, 2019, ARTIF INTELL, V267, P1, DOI 10.1016/j.artint.2018.07.007 Mishra D, 2018, ANN OPER RES, V270, P313, DOI 10.1007/s10479-016-2236-y Mongeon P, 2016, SCIENTOMETRICS, V106, P213, DOI 10.1007/s11192-015-1765-5 Niu JQ, 2016, ISPRS INT J GEO-INF, V5, DOI 10.3390/ijgi5050066 Nobre GC, 2017, SCIENTOMETRICS, V111, P463, DOI 10.1007/s11192-017-2281-6 Norris M, 2007, J INFORMETR, V1, P161, DOI 10.1016/j.joi.2006.12.001 Peng YF, 2017, INFORM SYST FRONT, V19, P1329, DOI 10.1007/s10796-017-9771-1 Petticrew M, 2006, SYSTEMATIC REVIEWS IN THE SOCIAL SCIENCES: A PRACTICAL GUIDE, P1, DOI 10.1002/9780470754887 Raban DR, 2020, SCIENTOMETRICS, V122, P1563, DOI 10.1007/s11192-020-03371-2 Raban DR, 2011, INFORM COMMUN SOC, V14, P375, DOI 10.1080/1369118X.2010.542824 Rafols I, 2010, J AM SOC INF SCI TEC, V61, P1871, DOI 10.1002/asi.21368 Schroeder Ralph, 2020, Information, Communication & Society, V23, P1593, DOI 10.1080/1369118X.2019.1594334 Schroeder R, 2015, INFORM COMMUN SOC, V18, P1039, DOI 10.1080/1369118X.2015.1008538 Shukla AK, 2019, ENG APPL ARTIF INTEL, V85, P517, DOI 10.1016/j.engappai.2019.06.010 Stahlschmidt S., 2020, Comparison of Web of Science, Scopus and Dimensions databases KB Forschungspoolprojekt 2020, P37 Thelwall M, 2021, J ASSOC INF SCI TECH, V72, P269, DOI 10.1002/asi.24401 UN Global Pulse, 2012, BIG DAT DEV OPP CHAL Unver HA, 2022, SOC SCI-BASEL, V11, DOI 10.3390/socsci11090395 van Eck NJ, 2010, SCIENTOMETRICS, V84, P523, DOI 10.1007/s11192-009-0146-3 Veltri GA, 2017, BIG DATA SOC, V4, DOI 10.1177/2053951717703997 Xiao XY, 2021, APPL MATH NONLIN SCI, V6, P535, DOI 10.2478/amns.2021.2.00103 Yang XF, 2022, APPL MATH NONLIN SCI, DOI 10.2478/amns.2022.2.0096 Yu D., 2019, J. Data. Infor. Manag, V1, P3, DOI [10.3390/su10010166, 10.1007/s42488-019-00001-2, DOI 10.1007/S42488-019-00001-2] Yu DJ, 2017, INFORM SCIENCES, V418, P619, DOI 10.1016/j.ins.2017.08.031 NR 64 TC 3 Z9 3 U1 19 U2 53 PU MDPI PI BASEL PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND EI 2227-7390 J9 MATHEMATICS-BASEL JI Mathematics PD DEC PY 2022 VL 10 IS 23 AR 4398 DI 10.3390/math10234398 PG 17 WC Mathematics WE Science Citation Index Expanded (SCI-EXPANDED) SC Mathematics GA 6Z7CO UT WOS:000897930400001 OA Green Published, gold DA 2024-09-05 ER PT C AU Anderson, DM Lantz, PA AF Anderson, D. Michael Lantz, Penelope A. BE Looi, CK Jonassen, D Ikeda, M TI From Research and Development to Field Application: Collaboration Between Laboratory and Service Organization For Online Professional Education SO TOWARDS SUSTAINABLE AND SCALABLE EDUCATIONAL INNOVATIONS INFORMED BY LEARNING SCIENCES SE Frontiers in Artificial Intelligence and Applications LA English DT Proceedings Paper CT 13th International Conference on Computers in Education (ICCCE 2005) CY DEC 08-30, 2005 CL Singapore, SINGAPORE DE Online learning; nurse training; dementia care; development and dissemination ID DISEASE AB Health Media Lab, an R & D firm, and The Alzheimer's Association, a large voluntary organization, are collaborating to create an online course to train supervisory nurses in dementia care staff supervision. This paper discusses this collaboration as an example of how researchers and service organizations can work toward mutually beneficial goals: the creation and evaluation of innovative educational materials, as well as their dissemination from laboratory to field use. C1 [Anderson, D. Michael; Lantz, Penelope A.] Hlth Media Lab, Washington, DC USA. EM dmichaela@healthmedialab.com CR *ALZH ASS, 2004, LONG TERM CAR WORKF [Anonymous], SUCCESSFUL COMMUNICA [Anonymous], 2000, HLTH PEOPL 2010, V2nd Brookmeyer R, 1998, AM J PUBLIC HEALTH, V88, P1337, DOI 10.2105/AJPH.88.9.1337 Hebert LE, 2003, ARCH NEUROL-CHICAGO, V60, P1119, DOI 10.1001/archneur.60.8.1119 Innes A., 2000, TRAINING DEV DEMENTI NR 6 TC 0 Z9 0 U1 0 U2 3 PU I O S PRESS PI AMSTERDAM PA NIEUWE HEMWEG 6B, 1013 BG AMSTERDAM, NETHERLANDS SN 0922-6389 BN 978-1-58603-573-0 J9 FR ART INT PY 2005 VL 133 BP 605 EP 608 PG 4 WC Computer Science, Artificial Intelligence; Computer Science, Interdisciplinary Applications; Education & Educational Research WE Conference Proceedings Citation Index - Science (CPCI-S); Conference Proceedings Citation Index - Social Science & Humanities (CPCI-SSH) SC Computer Science; Education & Educational Research GA BPN21 UT WOS:000279364400077 DA 2024-09-05 ER PT J AU Haber, NA Wieten, SE Rohrer, JM Arah, OA Tennant, PWG Stuart, EA Murray, EJ Pilleron, S Lam, ST Riederer, E Howcutt, SJ Simmons, AE Leyrat, C Schoenegger, P Booman, A Dufour, MSK O'Donoghue, AL Baglini, R Do, S Takashima, MD Evans, TR Rodriguez-Molina, D Alsalti, TM Dunleavy, DJ Meyerowitz-Katz, G Antonietti, A Calvache, JA Kelson, MJ Salvia, MG Parra, CO Khalatbari-Soltani, S McLinden, T Chatton, A Seiler, J Steriu, A Alshihayb, TS Twardowski, SE Dabravolskaj, J Au, E Hoopsick, RA Suresh, S Judd, N Peña, S Axfors, C Khan, P Aguirre, AER Odo, NU Schmid, I Fox, MP AF Haber, Noah A. Wieten, Sarah E. Rohrer, Julia M. Arah, Onyebuchi A. Tennant, Peter W. G. Stuart, Elizabeth A. Murray, Eleanor J. Pilleron, Sophie Lam, Sze Tung Riederer, Emily Howcutt, Sarah Jane Simmons, Alison E. Leyrat, Clemence Schoenegger, Philipp Booman, Anna Dufour, Mi-Suk Kang O'Donoghue, Ashley L. Baglini, Rebekah Do, Stefanie Takashima, Mari De la Rosa Evans, Thomas Rhys Rodriguez-Molina, Daloha Alsalti, Taym M. Dunleavy, Daniel J. Meyerowitz-Katz, Gideon Antonietti, Alberto Calvache, Jose A. Kelson, Mark J. Salvia, Meg G. Parra, Camila Olarte Khalatbari-Soltani, Saman McLinden, Taylor Chatton, Arthur Seiler, Jessie Steriu, Andreea Alshihayb, Talal S. Twardowski, Sarah E. Dabravolskaj, Julia Au, Eric Hoopsick, Rachel A. Suresh, Shashank Judd, Nicholas Pena, Sebastian Axfors, Cathrine Khan, Palwasha Aguirre, Ariadne E. Rivera Odo, Nnaemeka U. Schmid, Ian Fox, Matthew P. TI Causal and Associational Language in Observational Health Research: A Systematic Evaluation SO AMERICAN JOURNAL OF EPIDEMIOLOGY LA English DT Article DE association; causal inference; causal language; observational study AB We estimated the degree to which language used in the high-profile medical/public health/epidemiology literature implied causality using language linking exposures to outcomes and action recommendations; examined disconnects between language and recommendations; identified the most common linking phrases; and estimated how strongly linking phrases imply causality. We searched for and screened 1,170 articles from 18 high-profile journals (65 per journal) published from 2010-2019. Based on written framing and systematic guidance, 3 reviewers rated the degree of causality implied in abstracts and full text for exposure/outcome linking language and action recommendations. Reviewers rated the causal implication of exposure/outcome linking language as none (no causal implication) in 13.8%, weak in 34.2%, moderate in 33.2%, and strong in 18.7% of abstracts. The implied causality of action recommendations was higher than the implied causality of linking sentences for 44.5% or commensurate for 40.3% of articles. The most common linking word in abstracts was "associate" (45.7%). Reviewers' ratings of linking word roots were highly heterogeneous; over half of reviewers rated "association" as having at least some causal implication. This research undercuts the assumption that avoiding "causal" words leads to clarity of interpretation in medical research. C1 [Haber, Noah A.; Wieten, Sarah E.; Axfors, Cathrine] Stanford Univ, Meta Res Innovat Ctr Stanford METRICS, Stanford, CA 94305 USA. [Rohrer, Julia M.] Univ Leipzig, Dept Psychol, Leipzig, Germany. [Arah, Onyebuchi A.] Univ Calif Los Angeles, Fielding Sch Publ Hlth, Dept Epidemiol, Los Angeles, CA USA. [Tennant, Peter W. G.] Univ Leeds, Leeds Inst Data Analyt, Leeds, W Yorkshire, England. [Stuart, Elizabeth A.; Schmid, Ian] Johns Hopkins Bloomberg Sch Publ Hlth, Dept Mental Hlth, Baltimore, MD USA. [Murray, Eleanor J.; Fox, Matthew P.] Boston Univ, Sch Publ Hlth, Dept Epidemiol, Boston, MA USA. [Pilleron, Sophie] Univ Oxford, Big Data Inst, Nuffield Dept Populat Hlth, Oxford, England. [Lam, Sze Tung] Natl Univ Singapore, Yong Loo Lin Sch Med, Singapore, Singapore. [Riederer, Emily] Capital One, Chicago, IL USA. [Howcutt, Sarah Jane] Oxford Brookes Univ, Fac Hlth & Life Sci, Psychol Hlth & Profess Dev, Oxford, England. [Simmons, Alison E.] Univ Toronto, Dalla Lana Sch Publ Hlth, Div Epidemiol, Toronto, ON, Canada. [Leyrat, Clemence] London Sch Hyg & Trop Med, Dept Med Stat, London, England. [Schoenegger, Philipp] Univ St Andrews, Sch Econ & Finance, St Andrews, Fife, Scotland. [Schoenegger, Philipp] Univ St Andrews, Sch Philosoph Anthropol & Film Studies, St Andrews, Fife, Scotland. [Booman, Anna] Oregon Hlth & Sci Univ Portland State Univ Sch Pu, Epidemiol Dept, Portland, OR USA. [Dufour, Mi-Suk Kang] Univ Calif Berkeley, Berkeley Publ Hlth, Berkeley, CA 94720 USA. [O'Donoghue, Ashley L.] Beth Israel Deaconess Med Ctr, Ctr Healthcare Delivery Sci, Boston, MA 02215 USA. [Baglini, Rebekah] Aarhus Univ, Interacting Minds Ctr Linguist Cognit Sci & Semio, Aarhus, Denmark. [Do, Stefanie] Leibniz Inst Prevent Res & Epidemiol BIPS, Dept Epidemiol Methods & Etiol Res, Bremen, Germany. [Takashima, Mari De la Rosa] Griffith Univ, Sch Med, Nathan, Qld, Australia. [Evans, Thomas Rhys] Univ Greenwich, Sch Human Sci, London, England. [Rodriguez-Molina, Daloha] Ludwig Maximilian Univ Munich, Inst & Clin Occupat Social & Environm Med Univ Ho, Occupat & Environm Epidemiol & NetTeaching Unit, Munich, Germany. [Alsalti, Taym M.] Free Univ Berlin, Dept Educ & Psychol, Berlin, Germany. [Dunleavy, Daniel J.] Florida State Univ, Ctr Translat Behav Sci, Tallahassee, FL 32306 USA. [Meyerowitz-Katz, Gideon] Univ Wollongong, Sch Hlth & Soc, Wollongong, NSW, Australia. [Antonietti, Alberto] Politecn Milan, Dept Elect Informat & Bioengn, Milan, Italy. [Calvache, Jose A.] Univ Cauca, Dept Anesthesiol, Cauca, Colombia. [Kelson, Mark J.] Univ Exeter, Dept Math, Exeter, Devon, England. [Salvia, Meg G.] Harvard Univ, Harvard TH Chan Sch Publ Hlth, Boston, MA 02115 USA. [Parra, Camila Olarte] Univ Bath, Dept Math Sci, Bath, Avon, England. [Khalatbari-Soltani, Saman; Au, Eric] Univ Sydney, Fac Med & Hlth, Sch Publ Hlth, Sydney, NSW, Australia. [McLinden, Taylor] British Columbia Ctr Excellence HIV AIDS, Epidemiol & Populat Hlth Program, Vancouver, BC, Canada. [Chatton, Arthur] Univ Nantes, UMR Inst Natl Sante & Rech Med 1246 SPHERE, Nantes, France. [Chatton, Arthur] Univ Tours, Nantes, France. [Seiler, Jessie] Washington Sch Publ Hlth, Seattle, WA USA. [Steriu, Andreea] Carol Davila Univ Med & Pharm, Fac Med, Bucharest, Romania. [Alshihayb, Talal S.] King Saud bin Abdulaziz Univ Hlth Sci, Coll Dent, Riyadh, Saudi Arabia. [Twardowski, Sarah E.] McGill Univ, Epidemiol Biostat & Occupat Hlth, Montreal, PQ, Canada. [Dabravolskaj, Julia] Univ Alberta, Sch Publ Hlth, Edmonton, AB, Canada. [Hoopsick, Rachel A.] Univ Illinois, Dept Kinesiol & Community Hlth, Champaign, IL USA. [Suresh, Shashank] Univ Pittsburgh, Med Ctr, Community Med, Pittsburgh, PA USA. [Judd, Nicholas] Karolinska Inst, Dept Neurosci, Stockholm, Sweden. [Pena, Sebastian] Finnish Inst Hlth & Welf, Helsinki, Finland. [Khan, Palwasha] London Sch Hyg & Trop Med, Clin Res Dept, London, England. [Aguirre, Ariadne E. Rivera] NYU, Grossman Sch Med, Dept Populat Hlth, Div Epidemiol, New York, NY USA. [Odo, Nnaemeka U.] Exponent Inc, Ctr Hlth Sci, Oakland, CA USA. [Fox, Matthew P.] Sch Publ Hlth, Dept Epidemiol, Boston, MA USA. C3 Stanford University; Leipzig University; University of California System; University of California Los Angeles; University of Leeds; Johns Hopkins University; Johns Hopkins Bloomberg School of Public Health; Boston University; University of Oxford; National University of Singapore; Oxford Brookes University; University of Toronto; University of London; London School of Hygiene & Tropical Medicine; University of St Andrews; University of St Andrews; Oregon Health & Science University; Portland State University; University of California System; University of California Berkeley; Harvard University; Beth Israel Deaconess Medical Center; Aarhus University; Leibniz Institute for Prevention Research & Epidemiology (BIPS); Griffith University; University of Greenwich; University of Munich; Free University of Berlin; State University System of Florida; Florida State University; University of Wollongong; Polytechnic University of Milan; Universidad del Cauca; University of Exeter; Harvard University; Harvard T.H. Chan School of Public Health; University of Bath; University of Sydney; B.C. Centre for Excellence in HIV/AIDS; Nantes Universite; Universite de Tours; Carol Davila University of Medicine & Pharmacy; King Saud Bin Abdulaziz University for Health Sciences; McGill University; University of Alberta; University of Illinois System; University of Illinois Urbana-Champaign; Pennsylvania Commonwealth System of Higher Education (PCSHE); University of Pittsburgh; Karolinska Institutet; University of London; London School of Hygiene & Tropical Medicine; New York University; Exponent RP Haber, NA (corresponding author), 1265 Welch Rd, Palo Alto, CA 94305 USA. EM noahhaber@gmail.com RI Antonietti, Alberto/M-8981-2014; khan, Palwasha/GRS-4835-2022; Steriu, Andreea/AAQ-5127-2021; Leyrat, Clémence/I-9413-2019; Evans, Thomas Rhys/H-5874-2019; Chatton, Arthur/AAY-4349-2021; Baglini, Rebekah/JQI-8521-2023; Hoopsick, Rachel/ABH-7046-2020; Pilleron, Sophie/O-8136-2018; Arah, Onyebuchi/KZT-8718-2024; Booman, Anna/IZD-6025-2023; Rohrer, Julia Marie/AEU-2491-2022; Khalatbari-Soltani, Saman/M-7161-2014 OI Antonietti, Alberto/0000-0003-0388-6321; Steriu, Andreea/0000-0002-2998-8644; Leyrat, Clémence/0000-0002-4097-4577; Evans, Thomas Rhys/0000-0002-6670-0718; Chatton, Arthur/0000-0002-0018-5899; Baglini, Rebekah/0000-0002-2836-5867; Hoopsick, Rachel/0000-0001-5992-9007; Pilleron, Sophie/0000-0001-7146-4740; Arah, Onyebuchi/0000-0002-9067-1697; Rohrer, Julia Marie/0000-0001-8564-4523; Khan, Palwasha Yousafzai/0000-0002-0873-8355; Haber, Noah/0000-0002-5672-1769; Alshihayb, Talal/0000-0001-5750-4144; Khalatbari-Soltani, Saman/0000-0001-8437-1906; Booman, Anna/0000-0002-8112-6929; Dunleavy, Daniel/0000-0002-3597-7714; Simmons, Alison E./0000-0001-8780-9467; Axfors, Cathrine/0000-0002-2706-1730; Schoenegger, Philipp/0000-0001-9930-487X; Tennant, Peter/0000-0003-1555-069X; Takashima, Mari/0000-0002-1167-9106; Lam, Sze Tung Walter/0000-0001-6033-262X; Au, Eric/0000-0002-6089-5913 FU Arnold Ventures LLC (Houston, Texas); European Union's Horizon 2020 research and innovation program under the Marie Sklodowska-Curie grant [842817]; Australian Research Council Centre of Excellence in Population Aging Research [CE170100005]; National Institute of Mental Health [T32MH122357, R01MH115487]; Bloomberg American Health Initiative; National Institute of Biomedical Imaging and Bioengineering [R01EB027650]; National Center for Advancing Translational Sciences UCLA Clinical Translational Science Institute [UL1TR001881]; Marie Curie Actions (MSCA) [842817] Funding Source: Marie Curie Actions (MSCA); MRC [MR/T032448/1] Funding Source: UKRI FX No funding was granted specifically for the support of this study. The Meta-Research Innovation Center at Stanford University is supported by Arnold Ventures LLC (Houston, Texas), formerly the Laura and John Arnold Foundation. S.P. was funded by the European Union's Horizon 2020 research and innovation program under the Marie Sklodowska-Curie grant (agreement no. 842817). S.K.-S. is supported by the Australian Research Council Centre of Excellence in Population Aging Research (project number CE170100005). I.S. is supported by the National Institute of Mental Health (grant T32MH122357). E.A.S.'s time was supported by the National Institute of Mental Health (grant R01MH115487) and the Bloomberg American Health Initiative. A.L.O. is funded by a philanthropic gift from Google.org outside of the submitted work. O.A.A. is supported by the National Institute of Biomedical Imaging and Bioengineering (grant R01EB027650), National Center for Advancing Translational Sciences UCLA Clinical Translational Science Institute (grant UL1TR001881), and a philanthropic gift from the Karen Toffler Charity Trust. Data, data analysis code, and materials are available on the Open Science Framework project https://osf.io/jtdaz/.; This work was supported by many people who made contributions to this work. Turki Althunian contributed to the screening process. Jess Rohmann contributed to the piloting process. This work was additionally supported by comments and contributions from Alyssa Bilinksi, Pascal Goldsetzer, Caroline Blaine, Otto Kalliokoski, Eero Raittio, Tanya Colyer, Tim Watkins, Alexander Breskin, Arindam Basu, Jessica L. Rohmann, Luke A McGuinness, Todd Johnson, Mario Mali.cki, Sebastian Skejo, Scott Graham, Michael Chaiton-Murray, John Edlund, Katelyn Smalley, Danielle Newby, Anita Williams, Cord Phelps, Colleen Derkatch, Alexander Wolthon, Pallavi Rohella, Damien Croteau-Chonka, Steven Goodman, and John Ioannidis. Presented at the Annual Meeting of the Society for Epidemiologic Research, June 14-17, 2022, Chicago, Illinois. A preprint of this article has been published online. (Haber, NA, Wieten SE, Rohrer JM, et al. Causal and Associational Language in Observational Health Research: A Systematic Evaluation. medRxiv. 2021. https://doi.org/10.1101/2021.08.25.21262631).All errors are the sole responsibility of the authors, and no funders had any role in the collection, analysis, and interpretation of data; in the writing of the report; and in the decision to submit the article for publication. The researchers were independent from funders, and all authors, external and internal, had full access to all of the data (including statistical reports and tables) in the study and can take responsibility for the integrity of the data and the accuracy of the data analysis. Conflict of interest: none declared. CR Adams D., 1980, HITCHHIKERS GUIDE GA Adams RC, 2019, BMC MED, V17, DOI 10.1186/s12916-019-1324-7 Adams RC, 2017, J EXP PSYCHOL-APPL, V23, P1, DOI 10.1037/xap0000100 Alvarez-Vargas D., 2020, PSYARXIV, DOI [10.31234/osf.io/nkf96, DOI 10.31234/OSF.IO/NKF96] AMA Manual of Style Committee, 2020, AMA MANUAL STYLE GUI, DOI DOI 10.1093/JAMA/9780190246556.001.0001/MED-9780190246556 [Anonymous], Journal Citation Reports Buhse S, 2018, PLOS ONE, V13, DOI 10.1371/journal.pone.0196833 Chipperfield L, 2010, CURR MED RES OPIN, V26, P1968, DOI 10.1185/03007995.2010.499344 Cofield SS, 2010, OBESITY FACTS, V3, P353, DOI 10.1159/000322940 de Carvalho A, 2016, FRONT PSYCHOL, V7, DOI 10.3389/fpsyg.2016.01500 Fantini D., EASYPUBMED SEARCH RE Fox MP, 2020, AM J EPIDEMIOL, V189, P261, DOI 10.1093/aje/kwz233 Grosz MP, 2020, PERSPECT PSYCHOL SCI, V15, P1243, DOI 10.1177/1745691620921521 Haber N., DATA REPOSITORY PRER Haber N., REV TOOL Haber N, 2018, PLOS ONE, V13, DOI 10.1371/journal.pone.0196346 Hall MG, 2019, AM J PUBLIC HEALTH, V109, P1429, DOI 10.2105/AJPH.2019.305222 Han MA, 2020, BMJ OPEN, V10, DOI 10.1136/bmjopen-2020-038571 Haneef R, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0140889 Hernán MA, 2018, AM J PUBLIC HEALTH, V108, P616, DOI 10.2105/AJPH.2018.304337 JAMA, INSTR AUTH Kezios KL, 2021, EPIDEMIOL REV, V43, P4, DOI 10.1093/epirev/mxab008 Lundberg I, 2021, AM SOCIOL REV, V86, P532, DOI 10.1177/00031224211004187 National Library of Medicine, DOWNL MESH DAT Parra CO, 2021, BMJ OPEN, V11, DOI 10.1136/bmjopen-2020-043339 Prasad V, 2013, J CLIN EPIDEMIOL, V66, P361, DOI 10.1016/j.jclinepi.2012.11.005 Ramspek CL, 2021, EUR J EPIDEMIOL, V36, P889, DOI 10.1007/s10654-021-00794-w Savicky P, PSPEARMAN SPEARMANS Schwitzer G, 2013, BMC MED INFORM DECIS, V13, DOI 10.1186/1472-6947-13-S3-S3 SciMago, J COUNTR RANK Sumner P, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0168217 Sumner P, 2014, BMJ-BRIT MED J, V349, DOI 10.1136/bmj.g7015 Tennant P.W.G., 2019, USE DIRECTED ACYCLIC, DOI [10.1101/2019.12.20.19015511, DOI 10.1101/2019.12.20.19015511] Tennant PWG, 2021, EPIDEMIOLOGY, V32, pE2, DOI 10.1097/EDE.0000000000001258 Thapa DK, 2020, J ADV NURS, V76, P1285, DOI 10.1111/jan.14311 Varady NH, 2021, J BONE JOINT SURG AM, V103, DOI 10.2106/JBJS.20.01921 Venables WN, 2002, Modern Applied Statistics with S, V4th Watkins T.R., 2019, Understanding uncertainty and bias to improve causal inference in health intervention research NR 38 TC 19 Z9 19 U1 1 U2 7 PU OXFORD UNIV PRESS INC PI CARY PA JOURNALS DEPT, 2001 EVANS RD, CARY, NC 27513 USA SN 0002-9262 EI 1476-6256 J9 AM J EPIDEMIOL JI Am. J. Epidemiol. PD NOV 19 PY 2022 VL 191 IS 12 BP 2084 EP 2097 DI 10.1093/aje/kwac137 EA AUG 2022 PG 14 WC Public, Environmental & Occupational Health WE Science Citation Index Expanded (SCI-EXPANDED) SC Public, Environmental & Occupational Health GA 8B3EP UT WOS:000864758500001 PM 35925053 OA Green Submitted, Green Accepted, Green Published DA 2024-09-05 ER PT C AU Jangid, N Saha, S Gupta, S Rao, JM AF Jangid, Neelam Saha, Snehanshu Gupta, Siddhant Rao, Mukunda J. BE Lee, G TI Ranking of Journals in Science and Technology Domain: a Novel and Computationally Lightweight Approach SO INTERNATIONAL CONFERENCE ON FUTURE INFORMATION ENGINEERING (FIE 2014) SE IERI Procedia LA English DT Proceedings Paper CT International Conference on Future Information Engineering (FIE) CY JUL 07-08, 2014 CL Beijing, PEOPLES R CHINA DE Multiple linear regression; scientific journal; Journal influence score; SCImago journal score; Quartile matching AB In this paper, a regression analysis based method is proposed to calculate the Journal Influence Score. This Influence Score is used to measure the scientific influence of scholarly journals. Journal Influence Score is calculated by using various factors in a weighted manner. The Score is then compared with the SCImago Journal Score. The results show that the error is small between the existing and proposed methods, proving that the model is a feasible and effective way of calculating scientific impact of journals. (C) 2014 Published by Elsevier B.V. C1 [Jangid, Neelam] Dept CSE, PESIT Bangalore South Campus, Bangalore 560100, Karnataka, India. CBIMMC, Bangalore 560100, Karnataka, India. Lib Informat Sci, Bangalore, Karnataka, India. C3 PES University RP Jangid, N (corresponding author), Dept CSE, PESIT Bangalore South Campus, Bangalore 560100, Karnataka, India. EM neelu.jangid88@gmail.com; snehanshusaha@pes.edu; sidpro.pesit@gmail.com; pesselibrarian@pes.edu CR Abrizah A, 2013, SCIENTOMETRICS, V94, P721, DOI 10.1007/s11192-012-0813-7 [Anonymous], 2006, Google's PageRank and Beyond: The Science of Search Engine Rankings Buela-Casal G, 2006, SCIENTOMETRICS, V67, P45, DOI 10.1556/Scient.67.2006.1.4 GARFIELD E, 1972, SCIENCE, V178, P471, DOI 10.1126/science.178.4060.471 Haddow G, 2010, SCIENTOMETRICS, V85, P471, DOI 10.1007/s11192-010-0198-4 Jain Raj, 2009, ART COMPUTER SYSTEM Kao C, 2009, SCIENTOMETRICS, V81, P123, DOI 10.1007/s11192-009-2093-4 Svensson G, 2008, MARK INTELL PLAN, V26, P340, DOI 10.1108/02634500810879250 NR 8 TC 9 Z9 9 U1 0 U2 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA SARA BURGERHARTSTRAAT 25, PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 2212-6678 J9 IERI PROC PY 2014 VL 10 BP 57 EP 62 DI 10.1016/j.ieri.2014.09.091 PG 6 WC Computer Science, Information Systems; Computer Science, Interdisciplinary Applications WE Conference Proceedings Citation Index - Science (CPCI-S) SC Computer Science GA BH1GM UT WOS:000398020800009 OA hybrid DA 2024-09-05 ER PT J AU Ludl, H Schope, K Mangelsdorf, I AF Ludl, H Schope, K Mangelsdorf, I TI Searching for information on toxicological data of chemical substances in selected bibliographic databases - Selection of essential databases for toxicological researches SO CHEMOSPHERE LA English DT Article DE bibliographic databases; literature research; toxicology; recall rates; duplicates; quantitative analysis AB By using information from printed and online database guides, 18 online bibliographic databases (ED), which cover literature on toxicology were selected from 5 hosts. A search for literature containing information on three selected chemicals was carried out with each of the databases, and the number of documents relevant to toxicology found in them was compared by computer-assisted analysis. Some databases yielded very little information pertinent to toxicology, while others provided a considerable amount, In addition, the databases contained numerous duplicates (references common to more than one database). Most of the relevant documents could be obtained using only 8 of the 18 BDs selected. These databases are: Biosis Previews (BIOSIS), Chemical Abstracts (CA), Chemical Safety Newsbase (CSNB), Excerpta Medica (EMBASE), National Institute for Occupational Safety and Health (NIOSH), Scisearch, Toxicology Information Online (TOXLINE) and the former Toxicology Literature (TOXLIT). C1 FRAUNHOFER INST TOXICOL & AEROSOL RES,D-30625 HANNOVER,GERMANY. C3 Fraunhofer Gesellschaft RP Ludl, H (corresponding author), GSF FORSCHUNGSZENTRUM UNWELT & GESUNDHEIT GMBH,INST TOXIKOL,INGOLSTADTER LANDSTR 1,D-85758 OBERSCHLEISSHEIM,GERMANY. CR GREIM H, 1993, CHEMOSPHERE, V26, P1653, DOI 10.1016/0045-6535(93)90110-Q LUDL H, 1995, CHEMOSPHERE, V31, P2611, DOI 10.1016/0045-6535(95)00134-T SCHON N, 1992, Z UMWELTCHEM OKOTOX, V4, P343 SCHON N, 1991, UMWELTCHEM OKOTOX, V3, P183 SCHULTEHILLEN J, 1991, DATENBANKFUHRER NATU 1991, DATA SHEETS 1989, BENUTZERHANDBUCH TOX 1987, DIRECTORY ONLINE DAT, V6 1993, DIALOG DATABASE CATA 1991, GRUNDDATENSATZ DINOS 1991, SEARCHING DIALOG COM 1991, BIOM INF SEM 1991, GRIPS KOMMANDOSPRACH 1990, MEMOKARTEM DTSCH I M 1991, GUIDE COMMANDS 1991, GRUNDDATENSATZ DIMET 1986, BENUTZERHANDBUCH CHE 1991, GRUNDDATENSATZ KAMPF NR 18 TC 15 Z9 15 U1 0 U2 2 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD, ENGLAND OX5 1GB SN 0045-6535 J9 CHEMOSPHERE JI Chemosphere PD MAR PY 1996 VL 32 IS 5 BP 867 EP 880 DI 10.1016/0045-6535(96)00012-4 PG 14 WC Environmental Sciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Environmental Sciences & Ecology GA UA156 UT WOS:A1996UA15600007 PM 8867141 DA 2024-09-05 ER PT C AU Cicco, G AF Cicco, Gina BE Chova, LG Martinez, AL Torres, IC TI ONLINE LEARNING EXPERIENCES OF COUNSELORS-IN-TRAINING: IMPLICATIONS FOR ONLINE COURSE DESIGN, ASSESSMENT, AND RESEARCH SO 7TH INTERNATIONAL TECHNOLOGY, EDUCATION AND DEVELOPMENT CONFERENCE (INTED2013) SE INTED Proceedings LA English DT Proceedings Paper CT 7th International Technology, Education and Development Conference (INTED) CY MAR 04-06, 2013 CL Valencia, SPAIN DE Counselor education; counselor preparation; learning styles; online counseling skills instruction; online courses; online learning experiences; online skills assessment; virtual classroom AB The global expansion of online programs and course offerings in graduate education points to the need for researchers to examine the effectiveness of diverse pedagogical methods in the virtual learning environment as well as the corresponding assessment practices employed to confirm students' mastery of learning objectives (Glassmeyer, Dibbs, & Jensen, 2011; Meyers, 2008). Various studies have been conducted to measure the levels of student engagement and relationship-building within the virtual classroom and to identify the student learning styles that are most frequently accommodated in this setting (Cicco, 2009; Trepal, Haberstroh, Duffey, & Evans, 2007). This paper summarizes the findings based on a recent research investigation of the online learning experiences and perceptions of graduate students enrolled in a counselor preparation program in New York. The study design and methodology will be described, with an emphasis on the specific recommendations provided by the 53 student participants for improvement of online counseling courses. The instruction and assessment of counseling skills and techniques within the context of online courses continue to raise questions and concerns for counselor educators as they recognize the inherent differences between the in-class and online instructional environments. The emphasis on the practice, development, and evaluation of basic and complex interpersonal skills within counselor education programs has traditionally been experienced through live interaction among faculty, students, site supervisors, and clinical associates. Converting this rigorous communication experience to the virtual classroom may pose special challenges for counselor educators, particularly in appropriately planning experiences that allow students to participate in live practice exercises and to receive immediate feedback and opportunities for self-and peer-evaluation. Examples of such activities include role-playing, mock counseling sessions, and reflective journal writing (Ivey, Ivey, & Zalaquett, 2010). Instructional designers have provided several recommendations for the enhancement of online instruction, such as integration of synchronous methods and media, yet the ethical concerns of accurately assessing the preparedness of counseling professionals who will serve at times the most vulnerable client populations remain an issue of concern and controversy (Cicco, 2011; Scheuermann, 2010). This paper will elaborate on specific student reflections of their online learning experiences and the corresponding indications for online course design, planning, and instruction that allow students to receive rich and diverse counselor preparation exercises. Recommendations for the provision of formative and summative assessment throughout online courses will be discussed (Reiner & Arnold, 2010). In conclusion, the implications of this exploratory study for future empirical investigation on this important area of research will be addressed. C1 [Cicco, Gina] St Johns Univ, Jamaica, NY 11439 USA. C3 Saint John's University EM ciccog@stjohns.edu CR Andrade H, 2007, EDUC LEADERSHIP, V65, P60 Ash K., 2011, Education Digest, V76, P32 Bernstein D., 2005, Academe, V91, P37, DOI DOI 10.2307/40253429 Cicco G., 2012, I MANAGERS J SCH ED, V8 Cicco G., 2011, I MANAGERS J ED TECH, V8, P9 Cicco G., 2009, International Journal on ELearning, V8, P161 Cobia D. C, 2007, DEV EFFECTIVE ACCOUN Dahir CA, 2009, J COUNS DEV, V87, P3, DOI 10.1002/j.1556-6678.2009.tb00542.x Dunn R., 2003, SYNTHESIS DUNN DUNN Fearing Arleen, 2005, Medsurg Nurs, V14, P383 Fraenkel JR., 2006, DESIGN EVALUATE RES Glassmeyer D.M., 2011, Quarterly Review of Distance Education, V12, P23 Granberg C, 2010, EUR J TEACH EDUC, V33, P309, DOI 10.1080/02619761003767882 Ivey A E., 2010, International interviewing and counseling: facilitating client development in a multicultural society, V7th Meyers S.A., 2008, College Teaching, V56, P219, DOI DOI 10.3200/CTCH.56.4.219-224 Reiner C.M., 2010, ASSESSMENT UPDATE, V22, P8 Scheuermann M., 2010, ONLINE CLASSROOM JAN, P1 Trepal H, 2007, COUNS EDUC SUPERV, V46, P266, DOI 10.1002/j.1556-6978.2007.tb00031.x NR 18 TC 0 Z9 0 U1 0 U2 7 PU IATED-INT ASSOC TECHNOLOGY EDUCATION & DEVELOPMENT PI VALENICA PA LAURI VOLPI 6, VALENICA, BURJASSOT 46100, SPAIN SN 2340-1079 BN 978-84-616-2661-8 J9 INTED PROC PY 2013 BP 293 EP 300 PG 8 WC Education & Educational Research WE Conference Proceedings Citation Index - Social Science & Humanities (CPCI-SSH) SC Education & Educational Research GA BB8IX UT WOS:000346699800043 DA 2024-09-05 ER PT J AU Trabelsi, Z Parambil, MMA AF Trabelsi, Zouheir Parambil, Medha Mohan Ambali TI A bibliometric study on recent trends in artificial intelligence-based suspicious activity recognition SO SECURITY JOURNAL LA English DT Article DE Artificial intelligence; Suspicious activity; Behavioral research; Security systems; Bibliometric analysis AB Recent years have seen a dramatic increase in the use of artificial intelligence (AI) in suspicious activity recognition (SAR). To better understand the research work and recent trends in AI-based SAR, the paper carries out a bibliometric study to analyze the publications based on the recent developments and contributions of authors, publication source, country, and institutions, identifying the most productive items, and the partnership among each. The search on the Scopus database retrieved 1713 documents related to AI-based SAR. In this study, all document types from Scopus were included in the analysis. VOSviewer was used to perform coupling, cluster, and co-citation network analysis to identify research hotspots, while bibliometrix was used to generate keyword analysis, including word clouds, word dynamics, theme trends, and Sankey diagrams, to understand the evolution and future direction of the research field. This paper contributes valuable insights for researchers and audiences worldwide regarding emerging research areas. C1 [Trabelsi, Zouheir; Parambil, Medha Mohan Ambali] United Arab Emirates Univ UAEU, Dept Informat Syst & Secur, Coll IT, Al Ain, U Arab Emirates. RP Trabelsi, Z (corresponding author), United Arab Emirates Univ UAEU, Dept Informat Syst & Secur, Coll IT, Al Ain, U Arab Emirates. EM trabelsi@uaeu.ac.ae; medhamohanap@uaeu.ac.ae OI , Medha Mohan Ambali Parambil/0000-0002-9336-2902 FU UAE University UPAR Research Grant Program [31T122, 12T002] FX The work was supported by UAE University UPAR Research Grant Program under Grants 31T122 and 12T002. CR [Anonymous], HOMELAND SECURITY [Anonymous], 2002, Netdraw Network Visualization Aria M, 2017, J INFORMETR, V11, P959, DOI 10.1016/j.joi.2017.08.007 Cancino CA, 2017, COMPUT IND ENG, V113, P614, DOI 10.1016/j.cie.2017.08.033 Chen CM, 2006, J AM SOC INF SCI TEC, V57, P359, DOI 10.1002/asi.20317 Elsevier, INF AN CO EMP KNOWL Guz AN, 2009, INT APPL MECH+, V45, P351, DOI 10.1007/s10778-009-0189-4 Kakadiya Rutvik, 2019, 2019 3rd International Conference on Electronics, Communication and Aerospace Technology (ICECA). Proceedings, P201, DOI 10.1109/ICECA.2019.8822186 Kim JS, 2021, EURASIP J IMAGE VIDE, V2021, DOI 10.1186/s13640-021-00576-0 Kumar Rajesh, 2017, ARTIF INTELL REV, V50, P283 Nguyen MT, 2021, METHODSX, V8, DOI 10.1016/j.mex.2021.101472 Nicholls J, 2021, IEEE ACCESS, V9, P163965, DOI 10.1109/ACCESS.2021.3134076 Persson O., 2009, CELEBRATING SCHOLARL, V5, P9 Salamone F, 2018, ENRGY PROCED, V148, P798, DOI 10.1016/j.egypro.2018.08.130 sciencedirect, SCIENCEDIRECT COM SC Sharma Ochin, 2019, 2019 International Conference on Machine Learning, Big Data, Cloud and Parallel Computing (COMITCon), P72, DOI 10.1109/COMITCon.2019.8862453 van Eck NJ, 2010, SCIENTOMETRICS, V84, P523, DOI 10.1007/s11192-009-0146-3 Verma KK, 2021, INT J INTERACT MULTI, V7, P44, DOI 10.9781/ijimai.2021.08.008 webofscience, DOC SEARCH WEB SCI C Wikipedia, PHISH Wikipedia, COOCC NETW Yu DJ, 2019, APPL INTELL, V49, P449, DOI 10.1007/s10489-018-1278-z NR 22 TC 0 Z9 0 U1 2 U2 9 PU PALGRAVE MACMILLAN LTD PI BASINGSTOKE PA BRUNEL RD BLDG, HOUNDMILLS, BASINGSTOKE RG21 6XS, HANTS, ENGLAND SN 0955-1662 EI 1743-4645 J9 SECUR J JI Secur. J. PD JUN PY 2024 VL 37 IS 2 BP 399 EP 424 DI 10.1057/s41284-023-00382-5 EA MAY 2023 PG 26 WC Criminology & Penology WE Social Science Citation Index (SSCI) SC Criminology & Penology GA UT7N8 UT WOS:000995746200001 DA 2024-09-05 ER PT J AU Yuan, XM Pan, PP AF Yuan, Xiuming Pan, Peipei TI Research on the Evaluation Model of Dance Movement Recognition and Automatic Generation Based on Long Short-Term Memory SO MATHEMATICAL PROBLEMS IN ENGINEERING LA English DT Article ID HUMAN MOTION CAPTURE AB With the development of random image processing technology and in-depth learning, it is possible to recognize human movements, but it is difficult to recognize and evaluate dance movements automatically in artistic expression and emotional classification. Aiming at the problems of low efficiency, low accuracy, and unsatisfactory evaluation in dance motion recognition, this paper proposes a long short-term memory (LSTM) model based on deep learning to recognize dance motion and automatically generate corresponding features. This paper first introduces the related deep learning model recognition methods and describes the related research background. Secondly, the method of identifying dance movements is identified concretely, and the process of identifying concretely is given. Finally, through the comparison of different dance movements through experiments, it shows that there are obvious advantages in the accuracy of action recognition, error rate, similarity, and model evaluation method. C1 [Yuan, Xiuming] St Paul Univ Manila, Coll Mus, Manila 1004, Philippines. [Pan, Peipei] Liaocheng Univ, Acad Mus & Dance, Liaocheng 252000, Peoples R China. C3 Liaocheng University RP Pan, PP (corresponding author), Liaocheng Univ, Acad Mus & Dance, Liaocheng 252000, Peoples R China. EM 13047458974@163.com; panpeipei@lcu.edu.cn CR Asahina W., P SIGGRAPH AS ACM NO, P928, DOI [10.1145/2820926.2820935, DOI 10.1145/2820926.2820935] Baek S., 2013, P 2013 INT C SPORT S Cao Z, 2017, PROC CVPR IEEE, P1302, DOI 10.1109/CVPR.2017.143 Chan C, 2019, IEEE I CONF COMP VIS, P5932, DOI 10.1109/ICCV.2019.00603 Chen GB, 2021, ENTERP INF SYST-UK, V15, P935, DOI 10.1080/17517575.2020.1720828 Chen LL, 2019, PROC CVPR IEEE, P7824, DOI 10.1109/CVPR.2019.00802 Duarte A, 2019, INT CONF ACOUST SPEE, P8633, DOI 10.1109/icassp.2019.8682970 Goodfellow IJ, 2014, ADV NEUR IN, V27, P2672, DOI 10.1145/3422622 Graves A, 2005, NEURAL NETWORKS, V18, P602, DOI 10.1016/j.neunet.2005.06.042 Guo H, 2014, COMM COM INF SC, V483, P426 Huang G., 2017, COMPUTER APPL RES, V34, P392 Ju-Hwan Seo, 2013, 2013 IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN), P204, DOI 10.1109/ROMAN.2013.6628446 Li B, 2021, DANCENET3D MUSIC BAS, V12, P1873 Li X., 2017, COMPUTER APPL RES, V34, P7 Lv P, 2008, ELECT TECHNOLOGY, V37, P18 Moeslund TB, 2006, COMPUT VIS IMAGE UND, V104, P90, DOI 10.1016/j.cviu.2006.08.002 Ning X, 2018, IEEE T IMAGE PROCESS, V27, P2575, DOI 10.1109/TIP.2018.2806229 Ofli F, 2012, IEEE T MULTIMEDIA, V14, P747, DOI 10.1109/TMM.2011.2181492 Ren X., 2019, MUSIC ORIENTED DANCE Shlizerman E, 2018, PROC CVPR IEEE, P7574, DOI 10.1109/CVPR.2018.00790 Sun GX, 2021, MATH PROBL ENG, V2021, DOI 10.1155/2021/5535843 Vondrick C, 2016, 30 C NEURAL INFORM P, V29 Wang Y., 2005, P 2005 INT C MACHINE, DOI [10.1109/icmlc.2005.1527515, DOI 10.1109/ICMLC.2005.1527515] Zhang XY, 2019, J PHYS CONF SER, V1229, DOI 10.1088/1742-6596/1229/1/012031 Zhuang W., 2020, MUSIC2DANCE MUSIC DR NR 25 TC 0 Z9 0 U1 2 U2 14 PU HINDAWI LTD PI LONDON PA ADAM HOUSE, 3RD FLR, 1 FITZROY SQ, LONDON, W1T 5HF, ENGLAND SN 1024-123X EI 1563-5147 J9 MATH PROBL ENG JI Math. Probl. Eng. PD APR 28 PY 2022 VL 2022 AR 6405903 DI 10.1155/2022/6405903 PG 10 WC Engineering, Multidisciplinary; Mathematics, Interdisciplinary Applications WE Science Citation Index Expanded (SCI-EXPANDED) SC Engineering; Mathematics GA 1G2PZ UT WOS:000795696400023 OA gold DA 2024-09-05 ER PT J AU Ivanova, M Grosseck, G Holotescu, C AF Ivanova, Malinka Grosseck, Gabriela Holotescu, Carmen TI Unveiling Insights: A Bibliometric Analysis of Artificial Intelligence in Teaching SO INFORMATICS-BASEL LA English DT Article DE artificial intelligence; teaching; intelligent environment; learning analytics; large language models; ChatGPT ID EDUCATION AB The penetration of intelligent applications in education is rapidly increasing, posing a number of questions of a different nature to the educational community. This paper is coming to analyze and outline the influence of artificial intelligence (AI) on teaching practice which is an essential problem considering its growing utilization and pervasion on a global scale. A bibliometric approach is applied to outdraw the "big picture" considering gathered bibliographic data from scientific databases Scopus and Web of Science. Data on relevant publications matching the query "artificial intelligence and teaching" over the past 5 years have been researched and processed through Biblioshiny in R environment in order to establish a descriptive structure of the scientific production, to determine the impact of scientific publications, to trace collaboration patterns and to identify key research areas and emerging trends. The results point out the growth in scientific production lately that is an indicator of increased interest in the investigated topic by researchers who mainly work in collaborative teams as some of them are from different countries and institutions. The identified key research areas include techniques used in educational applications, such as artificial intelligence, machine learning, and deep learning. Additionally, there is a focus on applicable technologies like ChatGPT, learning analytics, and virtual reality. The research also explores the context of application for these techniques and technologies in various educational settings, including teaching, higher education, active learning, e-learning, and online learning. Based on our findings, the trending research topics can be encapsulated by terms such as ChatGPT, chatbots, AI, generative AI, machine learning, emotion recognition, large language models, convolutional neural networks, and decision theory. These findings offer valuable insights into the current landscape of research interests in the field. C1 [Ivanova, Malinka] Tech Univ Sofia, Fac Appl Math & Informat, Dept Informat, Blvd Kl Ohridski 8, Sofia 1797, Bulgaria. [Grosseck, Gabriela] West Univ Timisoara, Fac Sociol & Psychol, Dept Psychol, 4 Bd Vasile Parvan, Timisoara 300223, Romania. [Holotescu, Carmen] Ioan Slavici Univ Timisoara, Fac Engn, Dept Informat Technol, 144 Str Paunescu Podeanu, Timisoara 300569, Romania. C3 Technical University Sofia; West University of Timisoara; Ioan Slavici University RP Ivanova, M (corresponding author), Tech Univ Sofia, Fac Appl Math & Informat, Dept Informat, Blvd Kl Ohridski 8, Sofia 1797, Bulgaria. EM m_ivanova@tu-sofia.bg; gabriela.grosseck@e-uvt.ro; carmen.holotescu@islavici.ro RI Ivanova, Malinka/AAE-1774-2019 OI Ivanova, Malinka/0000-0002-8474-6226 FU Bulgarian FNI fund FX No Statement Available CR AlRyalat SAS, 2019, JOVE-J VIS EXP, DOI 10.3791/58494 [Anonymous], 2023, Artificial intelligence and future of teaching and learning; Insights and recommendations Aria M, 2017, J INFORMETR, V11, P959, DOI 10.1016/j.joi.2017.08.007 Baas J, 2020, QUANT SCI STUD, V1, P377, DOI 10.1162/qss_a_00019 Barrington NM, 2023, MED SCI-BASEL, V11, DOI 10.3390/medsci11030061 Barros A, 2023, MANAGE LEARN, V54, P597, DOI 10.1177/13505076231201445 Bittencourt II, 2023, INT J ARTIF INTELL E, DOI 10.1007/s40593-023-00357-y Brock JKU, 2019, CALIF MANAGE REV, V61, P110, DOI 10.1177/1536504219865226 Chassignol M, 2018, PROCEDIA COMPUT SCI, V136, P16, DOI 10.1016/j.procs.2018.08.233 Chen LJ, 2020, IEEE ACCESS, V8, P75264, DOI 10.1109/ACCESS.2020.2988510 Chiu T. K. F., 2023, Computers and Education: Artificial Intelligence, V4, P100118, DOI DOI 10.1016/J.CAEAI.2022.100118 Crompton H, 2024, J RES TECHNOL EDUC, V56, P248, DOI 10.1080/15391523.2022.2121344 Dai Yun, 2023, Procedia CIRP, P84, DOI 10.1016/j.procir.2023.05.002 Dempere J, 2023, FRONT EDUC, V8, DOI 10.3389/feduc.2023.1206936 Dijkhuis TB, 2018, SENSORS-BASEL, V18, DOI 10.3390/s18020623 Dogan ME, 2023, APPL SCI-BASEL, V13, DOI 10.3390/app13053056 Dutta S., 2024, Communication Technology and Gender Violence, P109 Dwivedi YK, 2023, INT J INFORM MANAGE, V71, DOI 10.1016/j.ijinfomgt.2023.102642 Escalante J, 2023, INT J EDUC TECHNOL H, V20, DOI 10.1186/s41239-023-00425-2 Farhat F, 2024, FRONT ARTIF INTELL, V6, DOI 10.3389/frai.2023.1270749 Farrelly T, 2023, EDUC SCI, V13, DOI 10.3390/educsci13111109 Fraumann G., arXiv Ghotbi N, 2023, ASIAN BIOETHICS REV, V15, P417, DOI 10.1007/s41649-022-00237-y Grosseck G, 2019, SUSTAINABILITY-BASEL, V11, DOI 10.3390/su11216136 Habib S., 2024, Journal of Creativity, V34, DOI [10.1016/j.yjoc.2023.100072, DOI 10.1016/J.YJOC.2023.100072] Hashimoto DA, 2018, ANN SURG, V268, P70, DOI 10.1097/SLA.0000000000002693 Hwang G.-J., 2020, Computers and Education: Artificial Intelligence, V1, P100001, DOI [DOI 10.1016/J.CAEAI.2020.100001, 10.1016/j.caeai.2020.100001] Kaiss W., 2023, Int. J. Emerg. Technol. Learn, V18, P250, DOI [10.3991/ijet.v18i13.39329, DOI 10.3991/IJET.V18I13.39329] Karakose T., 2023, Educational Process International Journal, V12, DOI [10.22521/edupij.2023.124.1, DOI 10.22521/EDUPIJ.2023.124.1] Kasneci E, 2023, LEARN INDIVID DIFFER, V103, DOI 10.1016/j.lindif.2023.102274 Kong ZY, 2023, DIGIT CHEM ENG, V9, DOI 10.1016/j.dche.2023.100126 Li KC, 2023, INTERACT TECHNOL SMA, DOI 10.1108/ITSE-01-2023-0007 Liang JC, 2023, INTERACT LEARN ENVIR, V31, P4270, DOI 10.1080/10494820.2021.1958348 Liang YC, 2023, SMART LEARN ENVIRON, V10, DOI 10.1186/s40561-023-00273-7 Luo JH, 2024, ASSESS EVAL HIGH EDU, V49, P651, DOI 10.1080/02602938.2024.2309963 Maphosa V, 2023, APPL ARTIF INTELL, V37, DOI 10.1080/08839514.2023.2261730 Markauskaite L., 2022, Computers and Education: Artificial Intelligence, V3, P100056, DOI [DOI 10.1016/J.CAEAI.2022.100056, 10.1016/j.caeai] Mersni A., 2023, P ACM WOMENCOURAGE 2 Nassar R., 2023, The Power of Empathy in AI: Balancing Artificial Intelligence with Emotional Intelligence Nguyen T. T. K., 2023, International Journal of Evaluation and Research in Education, V12, P2387, DOI [10.11591/ijere.v12i4.26623, DOI 10.11591/IJERE.V12I4.26623] Nja CO, 2023, SMART LEARN ENVIRON, V10, DOI 10.1186/s40561-023-00261-x Page MJ, 2021, BMJ-BRIT MED J, V372, DOI [10.1136/bmj.n71, 10.1016/j.ijsu.2021.105906, 10.1136/bmj.n160] Perry A, 2023, NAT HUM BEHAV, V7, P1808, DOI 10.1038/s41562-023-01675-w Polat H, 2024, INT J TECHNOL EDUC, V7, P59, DOI 10.46328/ijte.606 Popenici S., 2023, Educatia, V21, P92, DOI [10.24193/ed21.2023.26.11, DOI 10.24193/ED21.2023.26.11] Pranckute R, 2021, PUBLICATIONS-BASEL, V9, DOI 10.3390/publications9010012 PRISMA, TRANSPARENT REPORTIN Sajja R, 2023, INT J EDUC TECHNOL H, V20, DOI 10.1186/s41239-023-00412-7 Schuengel C, 2023, J CHILD PSYCHOL PSYC, V64, P1261, DOI 10.1111/jcpp.13860 Shams R.A., 2023, AI ETHICS, DOI DOI 10.1007/S43681-023-00362-W Sit C, 2020, INSIGHTS IMAGING, V11, DOI 10.1186/s13244-019-0830-7 Smutny P, 2020, COMPUT EDUC, V151, DOI 10.1016/j.compedu.2020.103862 Talan T., 2021, International Journal of Research in Education and Science, V7, P822, DOI [DOI 10.46328/IJRES.2409, 10.46328/ijres.2409] Toyokawa Y, 2023, SMART LEARN ENVIRON, V10, DOI 10.1186/s40561-023-00286-2 Xie H, 2019, COMPUT EDUC, V140, DOI 10.1016/j.compedu.2019.103599 Zawacki-Richter O, 2019, INT J EDUC TECHNOL H, V16, DOI 10.1186/s41239-019-0171-0 NR 56 TC 2 Z9 2 U1 35 U2 35 PU MDPI PI BASEL PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND EI 2227-9709 J9 INFORMATICS-BASEL JI Informatics-Basel PD MAR PY 2024 VL 11 IS 1 AR 10 DI 10.3390/informatics11010010 PG 21 WC Computer Science, Interdisciplinary Applications WE Emerging Sources Citation Index (ESCI) SC Computer Science GA MG5J0 UT WOS:001192482500001 OA gold DA 2024-09-05 ER PT J AU Eckmann, M Rocha, A Wainer, J AF Eckmann, Michael Rocha, Anderson Wainer, Jacques TI Relationship between high-quality journals and conferences in computer vision SO SCIENTOMETRICS LA English DT Article DE Computer science; Computer vision; Publishing; Journal papers; Conference proceedings; Author survey; Bibliometrics AB In computer science, as opposed to many other disciplines, papers published in conference and workshop proceedings count as formal publications when evaluating the scholarship of an academic. We consider the relationship between high quality journals and conferences in the computer vision (CV) subfield of computer science. We determined that 30% of papers in the top-3 CV journals base their work on top-3 conference papers by the same authors (which we call priors (See "Methods" section for the definition of a prior)). Journal papers with priors are significantly more cited than journal papers without priors. Also the priors themselves are cited more than other papers from the conferences. For a period of 3-5 years after the journal paper publication, the priors receive more citations than the follow-up journal paper. After that period, the journal paper starts receiving most of the citations. Furthermore, we found that having the prior conference paper did not make it any easier (faster) to publish in a journal. We also surveyed journal authors and based on their answers and the priors analysis, we discovered that authors seem to be divided into different groups depending on their preferred method of publication. C1 [Eckmann, Michael] Skidmore Coll, Saratoga Springs, NY 12866 USA. [Rocha, Anderson; Wainer, Jacques] Univ Estadual Campinas, Campinas, SP, Brazil. C3 Skidmore College; Universidade Estadual de Campinas RP Eckmann, M (corresponding author), Skidmore Coll, 815 N Broadway, Saratoga Springs, NY 12866 USA. EM meckmann@skidmore.edu; rocha@ic.unicamp.br; wainer@ic.unicamp.br RI Wainer, Jacques/B-4241-2012; Wainer, Jacques/AAQ-6029-2021; Rocha-Buelvas, Anderson Iván/KHU-9621-2024 OI Wainer, Jacques/0000-0001-5201-1244; Wainer, Jacques/0000-0001-5201-1244; CR [Anonymous], 2010, Commun ACM, DOI [10.1145/1839676.1839701, DOI 10.1145/1839676.1839701] Franceschet M, 2010, Commun. ACM, V53, P129, DOI [10.1145/1859204.1859234, DOI 10.1145/1859204.1859234] Franceschet M, 2011, J INFORMETR, V5, P275, DOI 10.1016/j.joi.2010.12.002 Franceschet M, 2011, INFORM PROCESS MANAG, V47, P117, DOI 10.1016/j.ipm.2010.03.003 Goodrum AA, 2001, INFORM PROCESS MANAG, V37, P661, DOI 10.1016/S0306-4573(00)00047-9 Kling R, 1999, J AM SOC INFORM SCI, V50, P890, DOI 10.1002/(SICI)1097-4571(1999)50:10<890::AID-ASI6>3.0.CO;2-8 Martins WS, 2010, SCIENTOMETRICS, V83, P133, DOI 10.1007/s11192-009-0078-y Montesi M, 2008, J AM SOC INF SCI TEC, V59, P816, DOI 10.1002/asi.20805 Shamir Lior., 2010, Sch. Res. Commun, V1, DOI [10.22230/src.2010v1n2a25, DOI 10.22230/SRC.2010V1N2A25] Stringer MJ, 2008, PLOS ONE, V3, DOI 10.1371/journal.pone.0001683 Wainer J, 2011, INFORM PROCESS MANAG, V47, P135, DOI 10.1016/j.ipm.2010.07.002 NR 11 TC 29 Z9 31 U1 2 U2 53 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0138-9130 EI 1588-2861 J9 SCIENTOMETRICS JI Scientometrics PD FEB PY 2012 VL 90 IS 2 BP 617 EP 630 DI 10.1007/s11192-011-0527-2 PG 14 WC Computer Science, Interdisciplinary Applications; Information Science & Library Science WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Computer Science; Information Science & Library Science GA 876DZ UT WOS:000299088900017 DA 2024-09-05 ER PT J AU Davidovitch, N Eckhaus, E AF Davidovitch, Nitza Eckhaus, Eyal TI EFFECT OF FACULTY ON RESEARCH COOPERATION AND PUBLICATION: EMPLOYING NATURAL LANGUAGE PROCESSING SO ECONOMICS & SOCIOLOGY LA English DT Article DE academic conference; gender; faculty; academia AB This study continues a series of studies on the effectiveness of scientific conferences. This topic has not been sufficiently investigated although it receives large funds, assuming that these conferences have added value for staff members' academic-professional development. Predicated on questionnaires filled by 96 academic staff members from 17 different departments, we found that when choosing conferences to attend, the type of faculty affect the search for cooperation. Moreover, staff members from the Faculty of Natural Sciences attribute more significance to conferences that result in publications than staff members from the Faculty of Health. The Faculty of Engineering creates negative mediation in the correlation between gender and cooperation. Namely, the Faculty of Engineering does not urge cooperation and even has a negative effect, but its effect is evident mainly among men. This finding complements prior research findings showing that women are more inclined to cooperation (Eckhaus & Davidovitch, 2018a). The current findings show that the inclination to cooperation is not related only to gender issues rather the faculty has an effect as well. The current findings might have a contribution to the significance of the faculty as an influential factor of conferences on cooperation - and in fact on the professional development of staff members. C1 [Davidovitch, Nitza; Eckhaus, Eyal] Ariel Univ, Ariel, Israel. C3 Ariel University RP Davidovitch, N (corresponding author), Ariel Univ, Ariel, Israel. EM d.nitza@ariel.ac.il; eyde@ariel.ac.il RI Eckhaus, Eyal/AAX-2557-2020 OI Eckhaus, Eyal/0000-0002-1815-0045; Davidovitch, Nitza/0000-0001-7273-903X CR Brainerd CJ, 2013, TOP COGN SCI, V5, P773, DOI 10.1111/tops.12039 Cambria E, 2014, IEEE COMPUT INTELL M, V9, P48, DOI 10.1109/MCI.2014.2307227 Davidovitch N., 2018, Higher Education Studies, V8, P92, DOI [https://doi.org/10.5539/hes.v8n2p92, DOI 10.5539/HES.V8N2P92] Davidovitch N, 2014, AM INT J CONT RES, V4, P131 Davidovitch N, 2011, J FURTH HIGH EDUC, V35, P355, DOI 10.1080/0309877X.2011.569012 Eckhaus E, 2018, EUROPEAN J ED RES, V7 Eckhaus E., 2016, Journal of Leadership, Accountability and Ethics, V13, P90 Eckhaus E, 2018, RISK MANAGEMENT, DOI [10.1057/s41283-41018-40037-41280, DOI 10.1057/S41283-41018-40037-41280] Eckhaus E., 2017, Academy of Strategic Management Journal, V16, P19 Eckhaus E., 2018, INT J ED METHODOLOGY, V4, P45, DOI DOI 10.12973/IJEM.4.1.45 Eckhaus E, 2019, J GENDER STUD, V28, P97, DOI 10.1080/09589236.2017.1411789 Harzing AW, 2016, SCIENTOMETRICS, V106, P787, DOI 10.1007/s11192-015-1798-9 Majid N, 2012, PROCD SOC BEHV, V59, P394, DOI 10.1016/j.sbspro.2012.09.292 Ryu E, 2014, FRONT PSYCHOL, V5, DOI 10.3389/fpsyg.2014.00081 Suzuki M, 2008, PHYS SIMPLE PENDULUM, P1 Veloutsou C., 2015, Tourismos, V10, P101 Wilson CS, 2008, J AM SOC INF SCI TEC, V59, P1393, DOI 10.1002/asi.20812 NR 17 TC 2 Z9 3 U1 1 U2 2 PU CENTER SOCIOLOGICAL RESEARCH PI SZCZECIN PA MICKIEWICZA STR, 64, SZCZECIN, 71-101, POLAND SN 2071-789X EI 2306-3459 J9 ECON SOCIOL JI Econ. Sociol. PY 2018 VL 11 IS 4 BP 173 EP 180 DI 10.14254/2071-789X.2018/11-4/11 PG 8 WC Economics WE Emerging Sources Citation Index (ESCI) SC Business & Economics GA HJ2WF UT WOS:000457030400011 OA gold DA 2024-09-05 ER PT J AU Cobelli, N Blasi, S AF Cobelli, Nicola Blasi, Silvia TI Combining topic modeling and bibliometric analysis to understand the evolution of technological innovation adoption in the healthcare industry SO EUROPEAN JOURNAL OF INNOVATION MANAGEMENT LA English DT Article DE Digital transformation; Healthcare management; Bibliometric analysis; Topic modeling; UTAUT; UTAUT2 ID DEVELOPING-COUNTRY; INFORMATION-TECHNOLOGY; CONSUMER ACCEPTANCE; MOBILE BANKING; SUPPLY CHAIN; SERVICES; EXTENSION; UTAUT; INTENTION; COHERENCE AB PurposeThis paper explores the Adoption of Technological Innovation (ATI) in the healthcare industry. It investigates how the literature has evolved, and what are the emerging innovation dimensions in the healthcare industry adoption studies.Design/methodology/approachWe followed a mixed-method approach combining bibliometric methods and topic modeling, with 57 papers being deeply analyzed.FindingsOur results identify three latent topics. The first one is related to the digitalization in healthcare with a specific focus on the COVID-19 pandemic. The second one groups up the word combinations dealing with the research models and their constructs. The third one refers to the healthcare systems/professionals and their resistance to ATI.Research limitations/implicationsThe study's sample selection focused on scientific journals included in the Academic Journal Guide and in the FT Research Rank. However, the paper identifies trends that offer managerial insights for stakeholders in the healthcare industry.Practical implicationsATI has the potential to revolutionize the health service delivery system and to decentralize services traditionally provided in hospitals or medical centers. All this would contribute to a reduction in waiting lists and the provision of proximity services.Originality/valueThe originality of the paper lies in the combination of two methods: bibliometric analysis and topic modeling. This approach allowed us to understand the ATI evolutions in the healthcare industry. C1 [Cobelli, Nicola] Univ Verona, Dept Management, Verona, Italy. C3 University of Verona RP Cobelli, N (corresponding author), Univ Verona, Dept Management, Verona, Italy. EM nicola.cobelli@univr.it RI Cobelli, Nicola/AAI-7592-2021 OI Cobelli, Nicola/0000-0001-6710-6510 CR Agarwal R, 1998, INFORM SYST RES, V9, P204, DOI 10.1287/isre.9.2.204 Aggelidis VP, 2009, INT J MED INFORM, V78, P115, DOI 10.1016/j.ijmedinf.2008.06.006 Agyei DD., 2020, J Inf Technol Manage, V12, P27 AJZEN I, 1991, ORGAN BEHAV HUM DEC, V50, P179, DOI 10.1016/0749-5978(91)90020-T Alalwan AA, 2017, INT J INFORM MANAGE, V37, P99, DOI 10.1016/j.ijinfomgt.2017.01.002 Alalwan N, 2019, IEEE ACCESS, V7, P98725, DOI 10.1109/ACCESS.2019.2928142 Alam MZ, 2022, J MARK COMMUN, V28, P152, DOI 10.1080/13527266.2020.1848900 Alam MZ, 2020, INT J INFORM MANAGE, V50, P128, DOI 10.1016/j.ijinfomgt.2019.04.016 Alismaili S.N.R., 2021, A modified UTAUT model for hospital information systems geared towards motivating patient loyalty, P207, DOI [10.1007/978-3-030-70713-2_21, DOI 10.1007/978-3-030-70713-2_21] AlQudah AA, 2022, IEEE T ENG MANAGE, DOI 10.1109/TEM.2022.3223520 Alshammari SH., 2020, Innovative Teaching and Learning Journal (ITLJ), V4, P12 Aria M, 2017, J INFORMETR, V11, P959, DOI 10.1016/j.joi.2017.08.007 Aria R, 2018, COMPUT HUM BEHAV, V84, P162, DOI 10.1016/j.chb.2018.01.041 Badran MF, 2019, TELECOMMUN POLICY, V43, P576, DOI 10.1016/j.telpol.2019.01.003 Baudier P, 2023, TECHNOVATION, V120, DOI 10.1016/j.technovation.2022.102547 Baudier P, 2021, TECHNOL FORECAST SOC, V163, DOI 10.1016/j.techfore.2020.120510 Baudier P, 2020, FUTURES, V122, DOI 10.1016/j.futures.2020.102595 Baudier P, 2020, TECHNOL FORECAST SOC, V153, DOI 10.1016/j.techfore.2018.06.043 Beh PK, 2021, BEHAV INFORM TECHNOL, V40, P282, DOI 10.1080/0144929X.2019.1685597 Ben Arfi W, 2021, TECHNOL FORECAST SOC, V167, DOI 10.1016/j.techfore.2021.120688 Ben Arfi W, 2021, TECHNOL FORECAST SOC, V163, DOI 10.1016/j.techfore.2020.120437 Bhandari G, 2012, BEHAV INFORM TECHNOL, V31, P275, DOI 10.1080/0144929X.2011.563798 Bianchi C, 2023, INFORM TECHNOL PEOPL, V36, P916, DOI 10.1108/ITP-01-2021-0049 Brem A, 2021, TECHNOL FORECAST SOC, V163, DOI 10.1016/j.techfore.2020.120451 Calisto FM, 2022, INT J HUM-COMPUT ST, V168, DOI 10.1016/j.ijhcs.2022.102922 Cannavale C, 2022, EUR J INNOV MANAG, V25, P758, DOI 10.1108/EJIM-08-2021-0378 Chong AYL, 2022, INFORM MANAGE-AMSTER, V59, DOI 10.1016/j.im.2022.103604 Chong AYL, 2015, INT J PROD ECON, V159, P66, DOI 10.1016/j.ijpe.2014.09.034 Choudhury A, 2022, APPL ERGON, V101, DOI 10.1016/j.apergo.2022.103708 Ciasullo MV, 2021, EUR J INNOV MANAG, V25, P365, DOI 10.1108/EJIM-02-2021-0109 Compeau D, 1999, MIS QUART, V23, P145, DOI 10.2307/249749 Damberg S, 2022, INT J SPORT MARK SPO, V23, P369, DOI 10.1108/IJSMS-01-2021-0013 DAVIS FD, 1992, J APPL SOC PSYCHOL, V22, P1111, DOI 10.1111/j.1559-1816.1992.tb00945.x Dhiman N, 2020, J INDIAN BUS RES, V12, P363, DOI 10.1108/JIBR-05-2018-0158 DODDS WB, 1991, J MARKETING RES, V28, P307, DOI 10.2307/3172866 Donthu N, 2021, J BUS RES, V133, P285, DOI 10.1016/j.jbusres.2021.04.070 Duarte P, 2019, J BUS RES, V102, P140, DOI 10.1016/j.jbusres.2019.05.022 Dwivedi YK, 2016, GOV INFORM Q, V33, P174, DOI 10.1016/j.giq.2015.06.003 Engin M, 2019, INT J INNOV TECHNOL, V16, DOI 10.1142/S0219877019500433 Featherman MS, 2003, INT J HUM-COMPUT ST, V59, P451, DOI 10.1016/S1071-5819(03)00111-3 Federkeil G., 2012, An evaluation and critique of current rankings, P39, DOI [10.1007/978-94-007-3005-2_4, DOI 10.1007/978-94-007-3005-2_4] Fishbein M., 1979, NEBRASKA S MOTIVATIO, V27, P65 Gefen D, 2003, MIS QUART, V27, P51, DOI 10.2307/30036519 Ghasemzadeh K, 2022, EUR J INNOV MANAG, V25, P656, DOI 10.1108/EJIM-04-2021-0181 Godfrey CM, 2023, JBI EVID SYNTH, V21, P6, DOI 10.11124/JBIES-21-00436 Grinin L, 2022, TECHNOL FORECAST SOC, V175, DOI 10.1016/j.techfore.2021.121348 Gupta B, 2008, J STRATEGIC INF SYST, V17, P140, DOI 10.1016/j.jsis.2007.12.004 Gurcan F, 2021, INT REV RES OPEN DIS, V22, P1 Hair JF, 2011, J MARKET THEORY PRAC, V19, P135, DOI 10.1080/10696679.2011.11046435 Hair JF, 2013, LONG RANGE PLANN, V46, P1, DOI 10.1016/j.lrp.2013.01.001 Hoque R, 2017, INT J MED INFORM, V101, P75, DOI 10.1016/j.ijmedinf.2017.02.002 Hsu CL, 2013, J MED SYST, V37, DOI 10.1007/s10916-013-9966-z Hussain A, 2019, INT J INFORM MANAGE, V44, P76, DOI 10.1016/j.ijinfomgt.2018.09.016 Jang SH, 2016, TECHNOL FORECAST SOC, V113, P396, DOI 10.1016/j.techfore.2016.07.030 Jayaraman PP, 2020, WIRES DATA MIN KNOWL, V10, DOI 10.1002/widm.1350 Jelodar H, 2019, MULTIMED TOOLS APPL, V78, P15169, DOI 10.1007/s11042-018-6894-4 Kaur A., 2022, Business Perspectives and Research, V11, P63, DOI [10.1177/22785337221091017, DOI 10.1177/22785337221091017] Khan IU, 2018, J GLOB INF MANAG, V26, P121, DOI 10.4018/JGIM.2018070109 Khan T, 2022, J PUBLIC AFF, V22, DOI 10.1002/pa.2685 Kherwa P., 2021, INT C INN COMP COMM, P289, DOI [10.1007/978-981-15-5148-2_26, DOI 10.1007/978-981-15-5148-2_26] Kijsanayotin B, 2009, INT J MED INFORM, V78, P404, DOI 10.1016/j.ijmedinf.2008.12.005 Kim ED, 2023, BEHAV INFORM TECHNOL, V42, P2308, DOI 10.1080/0144929X.2022.2117081 Kim HW, 2007, DECIS SUPPORT SYST, V43, P111, DOI 10.1016/j.dss.2005.05.009 Kim SS, 2005, MANAGE SCI, V51, P741, DOI 10.1287/mnsc.1040.0326 Kohnke Anne, 2014, Journal of Technology Management & Innovation, V9, P29 Kunnapapdeelert Siwaporn, 2020, International Journal of Business Performance and Supply Chain Modelling, V11, P54 Lo A, 2019, J COMPUT INFORM SYST, V59, P319, DOI 10.1080/08874417.2017.1365666 Lu MP, 2024, J FINANC SERV MARK, V29, P33, DOI 10.1057/s41264-022-00182-9 de Azevedo FXM, 2023, ERGONOMICS, V66, P821, DOI 10.1080/00140139.2022.2127920 Maleka NH, 2024, J SCI TECHNOL POLICY, V15, P707, DOI 10.1108/JSTPM-08-2021-0126 Misra H, 2011, INFORM PROCESS MANAG, V47, P528, DOI 10.1016/j.ipm.2010.11.008 Moores TT, 2012, DECIS SUPPORT SYST, V53, P507, DOI 10.1016/j.dss.2012.04.014 Mukerjee HS, 2023, GLOB BUS REV, V24, P721, DOI 10.1177/0972150920908690 Mukhopadhyay S, 2019, INF COMPUT SECUR, V28, P97, DOI 10.1108/ICS-07-2019-0076 Mukred Adnan, 2017, International Journal of Business Information Systems, V24, P261 Nisha N, 2019, J GLOB INF MANAG, V27, P19, DOI 10.4018/JGIM.2019010102 O'Callaghan D, 2015, EXPERT SYST APPL, V42, P5645, DOI 10.1016/j.eswa.2015.02.055 Okumus B, 2018, INT J HOSP MANAG, V72, P67, DOI 10.1016/j.ijhm.2018.01.001 Pandey N., 2021, South Asian Journal of Business and Management Cases, V10, P35, DOI [10.1177/2277977921991915, DOI 10.1177/2277977921991915] Pavlou PA, 2003, INT J ELECTRON COMM, V7, P101, DOI 10.1080/10864415.2003.11044275 Phichitchaisopa N, 2013, EXCLI J, V12, P413 Pietronudo MC, 2022, EUR J INNOV MANAG, V25, P867, DOI 10.1108/EJIM-07-2021-0327 Rahi S, 2021, ENTERP INF SYST-UK, V15, P769, DOI 10.1080/17517575.2020.1850872 Rogers Everett M., 1995, DIFFUSION INNOVATION, DOI DOI 10.1007/978-3-642-79868-9_2 Sabbir Md Mahiuddin, 2021, Health Mark Q, V38, P168, DOI 10.1080/07359683.2021.1986988 Sabbir MM, 2021, J SCI TECHNOL POLICY, V12, P666, DOI 10.1108/JSTPM-07-2020-0108 Schmitz A, 2022, COMPUT HUM BEHAV, V130, DOI 10.1016/j.chb.2022.107183 Sergueeva K, 2020, CAN J ADM SCI, V37, P45, DOI 10.1002/cjas.1547 Singh S, 2023, J GLOB MARK, V36, P93, DOI 10.1080/08911762.2022.2141167 Spooren W, 2010, CORPUS LINGUIST LING, V6, P241, DOI 10.1515/CLLT.2010.009 Sun YQ, 2013, J ELECTRON COMMER RE, V14, P183 Talukder MS, 2020, TECHNOL FORECAST SOC, V150, DOI 10.1016/j.techfore.2019.119793 Talukder MS, 2019, IND MANAGE DATA SYST, V119, P170, DOI 10.1108/IMDS-01-2018-0009 Tani M, 2022, EUR J INNOV MANAG, V25, P716, DOI 10.1108/EJIM-11-2021-0579 Taylor Shirley., 1995, INT J RES MARK, V12, P137, DOI DOI 10.1016/0167-8116(94)00019-K Trkman M, 2023, GOV INFORM Q, V40, DOI 10.1016/j.giq.2022.101787 Tsao YC, 2024, INT J LOGIST-RES APP, V27, P129, DOI 10.1080/13675567.2022.2026903 Vargheese R, 2014, 2014 INTERNATIONAL CONFERENCE ON COLLABORATIVE COMPUTING: NETWORKING, APPLICATIONS AND WORKSHARING (COLLABORATECOM), P475, DOI 10.4108/icst.collaboratecom.2014.257621 Vayansky I, 2020, INFORM SYST, V94, DOI 10.1016/j.is.2020.101582 Venkatesh V, 2000, MANAGE SCI, V46, P186, DOI 10.1287/mnsc.46.2.186.11926 Venkatesh V, 2003, MIS QUART, V27, P425, DOI 10.2307/30036540 Venkatesh V, 2012, MIS QUART, V36, P157 Wang HL, 2020, INT J MED INFORM, V139, DOI 10.1016/j.ijmedinf.2020.104156 Weeger A, 2015, HEALTH SYST, V4, P64, DOI 10.1057/hs.2014.11 Wei XY, 2024, IEEE T ENG MANAGE, V71, P888, DOI 10.1109/TEM.2022.3140952 Williams MD, 2009, J INF TECHNOL, V24, P1, DOI 10.1057/jit.2008.30 Wu WQ, 2021, COMPUT HUM BEHAV, V122, DOI 10.1016/j.chb.2021.106840 Yousaf A, 2021, J RETAIL CONSUM SERV, V62, DOI 10.1016/j.jretconser.2021.102655 Zhao Y, 2018, INT J INFORM MANAGE, V43, P342, DOI 10.1016/j.ijinfomgt.2017.08.006 Zhou T, 2010, COMPUT HUM BEHAV, V26, P760, DOI 10.1016/j.chb.2010.01.013 NR 110 TC 2 Z9 2 U1 10 U2 10 PU EMERALD GROUP PUBLISHING LTD PI Leeds PA Floor 5, Northspring 21-23 Wellington Street, Leeds, W YORKSHIRE, ENGLAND SN 1460-1060 EI 1758-7115 J9 EUR J INNOV MANAG JI Eur. J. Innov. Manag. PD FEB 13 PY 2024 VL 27 IS 9 BP 127 EP 149 DI 10.1108/EJIM-06-2023-0497 PG 23 WC Business; Management WE Social Science Citation Index (SSCI) SC Business & Economics GA KG9O1 UT WOS:001178924800001 OA hybrid DA 2024-09-05 ER PT J AU Färber, M Tampakis, L AF Faerber, Michael Tampakis, Lazaros TI Analyzing the impact of companies on AI research based on publications SO SCIENTOMETRICS LA English DT Article DE Artificial intelligence; Impact quantification; Company influence; Industry-academia collaboration ID CITATION ANALYSIS; ALTMETRICS; KNOWLEDGE AB Artificial Intelligence (AI) is one of the most momentous technologies of our time. Thus, it is of major importance to know which stakeholders influence AI research. Besides researchers at universities and colleges, researchers in companies have hardly been considered in this context. In this article, we consider how the influence of companies on AI research can be made measurable on the basis of scientific publishing activities. We compare academic- and company-authored AI publications published in the last decade and use scientometric data from multiple scholarly databases to look for differences across these groups and to disclose the top contributing organizations. While the vast majority of publications is still produced by academia, we find that the citation count an individual publication receives is significantly higher when it is (co-)authored by a company. Furthermore, using a variety of altmetric indicators, we notice that publications with company participation receive considerably more attention online. Finally, we place our analysis results in a broader context and present targeted recommendations to safeguard a harmonious balance between academia and industry in the realm of AI research. C1 [Faerber, Michael; Tampakis, Lazaros] Karlsruhe Inst Technol KIT, Inst AIFB, Karlsruhe, Germany. C3 Helmholtz Association; Karlsruhe Institute of Technology RP Färber, M (corresponding author), Karlsruhe Inst Technol KIT, Inst AIFB, Karlsruhe, Germany. EM michael.faerber@kit.edu; lazaros.tampakis@student.kit.edu RI Färber, Michael/AAA-4789-2021 OI Färber, Michael/0000-0001-5458-8645 FU Karlsruher Institut fr Technologie (KIT) (4220) FX No Statement Available CR Abdalla M, 2021, AIES '21: PROCEEDINGS OF THE 2021 AAAI/ACM CONFERENCE ON AI, ETHICS, AND SOCIETY, P287, DOI 10.1145/3461702.3462563 Ahmed N., 2020, ARXIV Aksnes DW, 2019, SAGE OPEN, V9, DOI 10.1177/2158244019829575 Alom M.Z., 2018, arXiv Bornmann L, 2014, J INFORMETR, V8, P895, DOI 10.1016/j.joi.2014.09.005 Bornmann L, 2013, J INFORMETR, V7, P158, DOI 10.1016/j.joi.2012.10.001 Buchanan B., 2021, Truth, Lies, and Automation: How Language Models Could Change Disinformation, DOI DOI 10.51593/2021CA003 Cockburn IM., 2018, IMPACT ARTIFICIAL IN, DOI [10.3386/w24449, DOI 10.3386/W24449] Dernis H., 2019, World Corporate Top R&D Investors: Shaping the Future of Technologies and of AI-A Joint JRC and OECD Report ' European Commission, 2019, COM2019168 FINAL Färber M, 2019, LECT NOTES COMPUT SC, V11779, P113, DOI 10.1007/978-3-030-30796-7_8 Färber M, 2022, QUANT SCI STUD, V3, P51, DOI 10.1162/qss_a_00183 Fitzenberger B, 2014, GER ECON REV, V15, P287, DOI 10.1111/geer.12010 GIL Y., 2019, ARXIV Hagendorff T, 2023, AI SOC, V38, P35, DOI 10.1007/s00146-021-01284-z Hartmann P, 2020, ACAD MANAG DISCOV, V6, P359, DOI 10.5465/amd.2019.0043 Harzing AW, 2017, SCIENTOMETRICS, V110, P371, DOI 10.1007/s11192-016-2185-x Hayter CS, 2019, RES POLICY, V48, P556, DOI 10.1016/j.respol.2018.09.009 Hooker S, 2021, COMMUN ACM, V64, P58, DOI 10.1145/3467017 Hug SE, 2017, SCIENTOMETRICS, V111, P371, DOI 10.1007/s11192-017-2247-8 Irani L, 2019, CONFERENCE COMPANION PUBLICATION OF THE 2019 COMPUTER SUPPORTED COOPERATIVE WORK AND SOCIAL COMPUTING (CSCW'19 COMPANION), P111, DOI 10.1145/3311957.3358610 Jobin A, 2019, NAT MACH INTELL, V1, P389, DOI 10.1038/s42256-019-0088-2 Jumper J, 2021, NATURE, V596, P583, DOI 10.1038/s41586-021-03819-2 Jurowetzki R., 2021, ARXIV Klinger J., 2020, ARXIV Krieger B, 2021, SCIENTOMETRICS, V126, P9677, DOI 10.1007/s11192-021-04147-y KRUSKAL WH, 1952, J AM STAT ASSOC, V47, P583, DOI 10.1080/01621459.1952.10483441 Kuhlman C, 2020, KDD '20: PROCEEDINGS OF THE 26TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING, P3593, DOI 10.1145/3394486.3411074 Larivière V, 2018, PLOS ONE, V13, DOI 10.1371/journal.pone.0202120 Leydesdorff L, 2011, J AM SOC INF SCI TEC, V62, P1370, DOI 10.1002/asi.21534 Littman L.M., 2021, GATHERING STRENGTH G Makridakis S, 2017, FUTURES, V90, P46, DOI 10.1016/j.futures.2017.03.006 MANN HB, 1947, ANN MATH STAT, V18, P50, DOI 10.1214/aoms/1177730491 Robinson-García N, 2014, PROF INFORM, V23, P359, DOI 10.3145/epi.2014.jul.03 Salajegheh M, 2019, INT J INFORM SCI MAN, V17, P59 Sinha A, 2015, WWW'15 COMPANION: PROCEEDINGS OF THE 24TH INTERNATIONAL CONFERENCE ON WORLD WIDE WEB, P243, DOI 10.1145/2740908.2742839 Smuha N. A., 2019, Comput. Law Rev. Internat., V20, P97, DOI DOI 10.9785/CRI-2019-200402 Spicer AJ, 2022, NAT BIOTECHNOL, V40, P1693, DOI 10.1038/s41587-022-01543-4 Tijssen RJW, 2004, RES POLICY, V33, P709, DOI 10.1016/j.respol.2003.11.002 Vinuesa R, 2020, NAT COMMUN, V11, DOI 10.1038/s41467-019-14108-y Visser M, 2021, QUANT SCI STUD, V2, P20, DOI [10.1162/qss_a_00112, 10.1162/qes_a_00112] Wang KS, 2020, QUANT SCI STUD, V1, P396, DOI 10.1162/qss_a_00021 Wilkinson Mark D, 2016, Sci Data, V3, P160018, DOI 10.1038/sdata.2016.18 Williams K, 2022, SCI PUBL POLICY, V49, P518, DOI 10.1093/scipol/scac004 Yan R, 2011, P 20 ACM INT C INF K, P1247, DOI DOI 10.1145/2063576.2063757 Yang J., 2019, P INT C ART INT INF, V2019, P1, DOI [DOI 10.1145/3371425.3371427, 10.1145/3371425.3371427] Yu T, 2014, SCIENTOMETRICS, V101, P1233, DOI 10.1007/s11192-014-1279-6 Zhang D, 2021, ARXIV Zhang X, 2019, SCIENTOMETRICS, V119, P1311, DOI 10.1007/s11192-019-03088-x NR 49 TC 2 Z9 2 U1 8 U2 15 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0138-9130 EI 1588-2861 J9 SCIENTOMETRICS JI Scientometrics PD JAN PY 2024 VL 129 IS 1 BP 31 EP 63 DI 10.1007/s11192-023-04867-3 EA NOV 2023 PG 33 WC Computer Science, Interdisciplinary Applications; Information Science & Library Science WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Computer Science; Information Science & Library Science GA ES5M9 UT WOS:001122585100001 OA hybrid, Green Submitted DA 2024-09-05 ER PT C AU Shinde, SV Gawali, SZ Thakore, DM AF Shinde, Sachin V. Gawali, Sangram Z. Thakore, Devendrasingh M. GP IEEE TI MAS a scalable framework for research effort evaluation by unsupervised machine learning-Hybrid plagiarism model SO 2015 INTERNATIONAL CONFERENCE ON PERVASIVE COMPUTING (ICPC) LA English DT Proceedings Paper CT International Conference on Pervasive Computing (ICPC) CY JAN 08-10, 2015 CL Pune, INDIA DE Document in Question; MAS; Inverted Index; Unsupervised Learning; Sentence vector; Term Vector; Cosine similarity; Mapper; fork; join; EMA; PMA; SMA; WEMA; WPMA; WSMA AB In the era of web new information is upcoming day by day. Researches add their work for their research domains. Detecting of originality of research work is in hype. In Academic sector students researchers bring in innovative ideas, algorithms stating that their work outperforms prior research. They may implement NULL Hypothesis or alternative Hypothesis, detecting their effort is a challenge. By means of plagiarism detectors such academic efforts can be evaluated or graded. This reflects the essence of research in the field of Plagiarized content detection and grading. Some of our research issue highlights to technical scenario to design an algorithm which is adaptable to changing nature of dataset. The dataset grows, as new research work is added in due course of time. Data extraction from unstructured information is challenging, as no standard pattern is yet defined. Such patterns vary from research to research and are domain specific. A document in question i.e plagiarized or not? Is a join of one or more sentences that originate by the authors research or referenced from previous publications. Authors to prove originality use paraphrasing which may have semantic similarity, also some of the contents act as metaphor for upcoming research work. It is complex task point out such an activity. Methodology states that a document in question is a join of sentences, whereas each sentence is a join of terms. Thus we conclude by fork and join operations; plagiarism detection is possible in effective way. Document in question is split to produce a sentence vector. A term vector is generated by forking sentence to terms for each sentence in sentence vector. Mapper is implemented that maps term to sentence and sentence to source document. To enhance the accuracy of the model a Multi Agent Based System MAS frame is recommended to adapt varying similarity functions. Achieve parallelism in system and adaptability of new similarity measures as well remove one which are not suitable any more to the task. C1 [Shinde, Sachin V.] BVDUs Coll Engineeering, Informat Technol, Pune, Maharashtra, India. [Gawali, Sangram Z.] BVDUs Coll Engineeering, Dept Informat Technol, Pune, Maharashtra, India. [Thakore, Devendrasingh M.] BVDUs Coll Engineeering, Dept Comp Engn, Pune, Maharashtra, India. C3 Bharati Vidyapeeth Deemed University; Bharati Vidyapeeth Deemed University; Bharati Vidyapeeth Deemed University RP Shinde, SV (corresponding author), BVDUs Coll Engineeering, Informat Technol, Pune, Maharashtra, India. EM shinde_s_v@rediffmail.com; szgawali@bvucoep.edu.in; dmthakore@bvucoep.edu.in RI Shinde, Sachin Vidhyasagar/KFA-7996-2024; Thakore, Devendrasingh M/K-7496-2017 OI Gawali, Sangram/0000-0002-8875-942X; Shinde, Sachin/0009-0007-9442-0186 CR Alzahrani Salha M., 2011, UNDERSTANDING PLAGIA [Anonymous], 2001, ADAP COMP MACH LEARN [Anonymous], 2003, INFORM THEORY INFERE [Anonymous], 2013, INT J COMPUTER APPL Bakhtiyari Kaveh, 2014, INT ED STUDIES, V7 Bellifemine Fabio, 2007, JADE SOFTWARE FRAMEW Bhattacharjee Debotosh, 2013, PLAGIARISM DETECTION Bin-Habtoor A., 2012, INT J COMPUTER THEOR, V4, P185, DOI DOI 10.7763/IJCTE.2012.V4.447 Brixtel R, 2010, IEEE INT WORK C SO, P77, DOI 10.1109/SCAM.2010.19 Budanitsky A., 2006, EVALUATING WORDNET B Coward David F., 2000, MAKING DICT GUID LEX Debole Franca, 2003, SAC2003 Eshaghi Marjan, 2013, INT J RECENT TECHNOL, V2 Juziuk J., 2012, DESIGN PATTERNS MULT Luo Yuan, 2002, MULTIAGENT DECISION PDFlib GmbH, 2002, TEXT EXTR TOOLK TET Piramuthu S, 2004, EUR J OPER RES, V156, P483, DOI [10.1016/S0377-2217(02)00911-6, 10.1016/s0377-2217(02)00911-6] Potthast M, 2011, LANG RESOUR EVAL, V45, P45, DOI 10.1007/s10579-009-9114-z Qin Biao, 2009, DTU DECISION TREE UN Santos Jr Eugene, 2010, LARGE SCALE DISTRIBU Tian Z., 2013, DKISB DYNAMIC KEY IN NR 21 TC 0 Z9 0 U1 0 U2 1 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA BN 978-1-4799-6272-3 PY 2015 PG 5 WC Engineering, Electrical & Electronic WE Conference Proceedings Citation Index - Science (CPCI-S) SC Engineering GA BF1LK UT WOS:000380407300069 DA 2024-09-05 ER PT J AU Shackelford, GE Kemp, L Rhodes, C Sundaram, L OhÉigeartaigh, SS Beard, S Belfield, H Weitzdörfer, J Avin, S Sorebo, D Jones, EM Hume, JB Price, D Pyle, D Hurt, D Stone, T Watkins, H Collas, L Cade, BC Johnson, TF Freitas-Groff, Z Denkenberger, D Levot, M Sutherland, WJ AF Shackelford, Gorm E. Kemp, Luke Rhodes, Catherine Sundaram, Lalitha OhEigeartaigh, Sean S. Beard, Simon Belfield, Haydn Weitzdorfer, Julius Avin, Shahar Sorebo, Dag Jones, Elliot M. Hume, John B. Price, David Pyle, David Hurt, Daniel Stone, Theodore Watkins, Harry Collas, Lydia Cade, Bryony C. Johnson, Thomas Frederick Freitas-Groff, Zachary Denkenberger, David Levot, Michael Sutherland, William J. TI Accumulating evidence using crowdsourcing and machine learning: A living bibliography about existential risk and global catastrophic risk SO FUTURES LA English DT Article DE Bibliographic databases; Crowdsourcing; Machine learning; Subject-wide evidence synthesis; Systematic maps; Systematic reviews AB The study of existential risk - the risk of human extinction or the collapse of human civilization - has only recently emerged as an integrated field of research, and yet an overwhelming volume of relevant research has already been published. To provide an evidence base for policy and risk analysis, this research should be systematically reviewed. In a systematic review, one of many time-consuming tasks is to read the titles and abstracts of research publications, to see if they meet the inclusion criteria. We show how this task can be shared between multiple people (using crowdsourcing) and partially automated (using machine learning), as methods of handling an overwhelming volume of research. We used these methods to create The Existential Risk Research Assessment (TERRA), which is a living bibliography of relevant publications that gets updated each month (www.x-risk.net ). We present the results from the first ten months of TERRA, in which 10,001 abstracts were screened by 51 participants. Several challenges need to be met before these methods can be used in systematic reviews. However, we suggest that collaborative and cumulative methods such as these will need to be used in systematic reviews as the volume of research increases. C1 [Shackelford, Gorm E.; Kemp, Luke; Rhodes, Catherine; Sundaram, Lalitha; OhEigeartaigh, Sean S.; Beard, Simon; Belfield, Haydn; Weitzdorfer, Julius; Avin, Shahar; Sutherland, William J.] Univ Cambridge, CSER, Cambridge, England. [Shackelford, Gorm E.; Kemp, Luke; Rhodes, Catherine; Sundaram, Lalitha; OhEigeartaigh, Sean S.; Sutherland, William J.] Univ Cambridge, Biosecur Res Initiat St Catharines BioRISC, St Catharines Coll, Cambridge, England. [Shackelford, Gorm E.; Collas, Lydia; Sutherland, William J.] Univ Cambridge, Dept Zool, David Attenborough Bldg, Cambridge, England. [Weitzdorfer, Julius] Harvard Univ, Belfer Ctr Sci & Int Affairs, Cambridge, MA 02138 USA. [Sorebo, Dag] Grindstone Secur, Oslo, Norway. [Jones, Elliot M.] Demos, London, England. [Hume, John B.] Michigan State Univ, E Lansing, MI 48824 USA. [Price, David] DebateGraph, London, England. [Pyle, David] Univ Oxford, Dept Earth Sci, Oxford, England. [Hurt, Daniel] Univ Cambridge, Cambridge, England. [Stone, Theodore] Univ Amsterdam, Amsterdam, Netherlands. [Watkins, Harry] Univ Sheffield, Dept Landscape, Sheffield, S Yorkshire, England. [Watkins, Harry] St Andrews Bot Garden, St Andrews, Fife, Scotland. [Johnson, Thomas Frederick] Univ Reading, Reading, Berks, England. [Freitas-Groff, Zachary] Stanford Univ, Stanford, CA 94305 USA. [Denkenberger, David] Univ Alaska, Fairbanks, AK 99701 USA. [Denkenberger, David] GCRI, Fairbanks, AK USA. [Denkenberger, David] Alliance Feed Earth Disasters ALLFED, Fairbanks, AK USA. [Levot, Michael] NYU, New York, NY 10003 USA. C3 University of Cambridge; University of Cambridge; University of Cambridge; Harvard University; Michigan State University; University of Oxford; University of Cambridge; University of Amsterdam; University of Sheffield; University of Reading; Stanford University; University of Alaska System; University of Alaska Fairbanks; New York University RP Shackelford, GE (corresponding author), Univ Cambridge, CSER, Cambridge, England.; Shackelford, GE (corresponding author), Univ Cambridge, Biosecur Res Initiat St Catharines BioRISC, St Catharines Coll, Cambridge, England.; Shackelford, GE (corresponding author), Univ Cambridge, Dept Zool, David Attenborough Bldg, Cambridge, England. EM gorm.shackelford@gmail.com RI Avin, Shahar/H-9639-2019; Sutherland, William/B-1291-2013 OI Avin, Shahar/0000-0001-7859-1507; Sundaram, Lalitha/0000-0002-9595-9753; Stone, Theodore/0000-0001-6385-161X; Groff, Zachary/0000-0003-4791-4494; Watkins, Harry/0000-0002-4038-7145 FU Templeton World Charity Foundation; David and Claudia Harding Foundation FX This project was made possible through the support of a grant from Templeton World Charity Foundation. The opinions expressed in this publication are those of the authors and do not necessarily reflect the views of Templeton World Charity Foundation. Several of the authors were also supported by the David and Claudia Harding Foundation. We thank our funders, and we also thank Stuart Armstrong, Seth Baum, Sebastian Farquhar, Nancy Ockendon, Martin Rees, Jens Steffensen, Phil Torres, and all of the participants in TERRA. CR [Anonymous], LA602 LOS AL LAB Avin S, 2018, FUTURES, V102, P20, DOI 10.1016/j.futures.2018.02.001 Bostrom N., 2011, Global Catastrophic Risks Bostrom N, 2002, J EVOLUTION TECH, V9 Bostrom N, 2013, GLOB POLICY, V4, P15, DOI 10.1111/1758-5899.12002 Brown AW, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0100647 Brundage M., 2018, The Malicious Use of Artificial Intelligence: Forecasting, Prevention, and Mitigation Crawley M.J., 2013, R BOOK Denkenberger DC, 2018, INT J DISAST RISK RE, V27, P278, DOI 10.1016/j.ijdrr.2017.10.014 Donnelly CA, 2018, NATURE, V558, P361, DOI 10.1038/d41586-018-05414-4 Farquhar S., 2017, Global Priorities Project 2017 Geron A., 2019, Hands On Machine Learning With Scikit-Learn And Tensorflow Haddaway NR, 2015, CONSERV BIOL, V29, P1596, DOI 10.1111/cobi.12541 McKinnon MC, 2015, NATURE, V528, P185, DOI 10.1038/528185a Mortensen ML, 2017, RES SYNTH METHODS, V8, P366, DOI 10.1002/jrsm.1252 O'Mara-Eves A, 2015, SYST REV-LONDON, V4, DOI 10.1186/2046-4053-4-5 Pamlin D., 2015, Global Challenges: 12 Risks that threaten human civilization Rees Martin., 2003, Our Final Century Shackelford GE, 2019, FRONT SUSTAIN FOOD S, V3, DOI 10.3389/fsufs.2019.00083 Sutherland WJ, 2018, NATURE, V558, P364, DOI 10.1038/d41586-018-05472-8 Sutherland WJ, 2004, TRENDS ECOL EVOL, V19, P305, DOI 10.1016/j.tree.2004.03.018 Wallace BC, 2013, J COMP EFFECT RES, V2, P273, DOI [10.2217/cer.13.17, 10.2217/CER.13.17] Westgate MJ, 2018, NAT ECOL EVOL, V2, P588, DOI 10.1038/s41559-018-0502-x Wilson GrantS., 2013, VA. ENV'T L. J., V31, P307 [No title captured] [No title captured] [No title captured] NR 27 TC 7 Z9 7 U1 1 U2 8 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0016-3287 EI 1873-6378 J9 FUTURES JI Futures PD FEB PY 2020 VL 116 AR 102508 DI 10.1016/j.futures.2019.102508 PG 10 WC Economics; Regional & Urban Planning WE Social Science Citation Index (SSCI) SC Business & Economics; Public Administration GA KM3AV UT WOS:000513994800003 OA Green Submitted, hybrid DA 2024-09-05 ER PT J AU Shukla, AK Janmaijaya, M Abraham, A Muhuri, PK AF Shukla, Amit K. Janmaijaya, Manvendra Abraham, Ajith Muhuri, Pranab K. TI Engineering applications of artificial intelligence: A bibliometric analysis of 30 years (1988-2018) SO ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE LA English DT Article DE Bibliometric study; Engineering applications of artificial intelligence; Scientometric mapping; Web of science; VOSviewer ID PARTICLE SWARM OPTIMIZATION; HYBRID NEURAL-NETWORK; OF-THE-ART; GENETIC ALGORITHM; MULTIOBJECTIVE OPTIMIZATION; MODEL; DESIGN; SYSTEMS; RECOGNITION; SIMULATION AB The Engineering Applications of Artificial Intelligence (EAAI) is a journal of very high repute in the domain of Engineering and Computer Science. This paper gives a broad view of the publications in EAAI from 1988-2018, which are indexed in Web of Science (WoS) and Scopus. The main purpose of this research is to bring forward the prime impelling factors that bring about the EAAI publications and its citation structure. The publication and citation structure of EAAI is analyzed, which includes the distribution of publication over the years, citations per year and a bird's eye view of the citation structure. Then the co-citation analysis and over the year's trend of top keywords is given. The co-authorship networks and a geographic analysis of the sources is also provided. Further, a country-wise temporal and quantitative analysis of the publications is given along with the highly cited documents among the EAAI publications. C1 [Shukla, Amit K.; Janmaijaya, Manvendra; Muhuri, Pranab K.] South Asian Univ, Dept Comp Sci, New Delhi 110021, India. [Abraham, Ajith] Univ Pretoria, Dept Comp Sci, ZA-0002 Pretoria, South Africa. [Abraham, Ajith] Machine Intelligence Res Labs MIR Labs, 3rd St,POB 2259, Auburn, WA 98071 USA. C3 South Asian University (SAU); University of Pretoria RP Muhuri, PK (corresponding author), South Asian Univ, Dept Comp Sci, New Delhi 110021, India. EM pranabmuhuri@cs.sau.ac.in RI Shukla, Amit k./AAX-5624-2021; MUHURI, PRANAB K./F-4301-2015; Abraham, Ajith/A-1416-2008; Manvendra, Janmaijaya/JOK-0347-2023 OI MUHURI, PRANAB K./0000-0001-7122-7622; Abraham, Ajith/0000-0002-0169-6738; FU Department of Science and Technology, Government of India; South Asian University, New Delhi, India FX Authors are thankful to the anonymous reviewers for their valuable comments which have helped them a lot in improving the paper significantly. First author thankfully acknowledges the INSPIRE fellowship received from the Department of Science and Technology, Government of India. Second author is grateful to the South Asian University, New Delhi, India for the financial support in the form of a Ph.D. fellowship. CR Abraham A., 2008, GEN EV COMP C GECCO, P1445 Abraham A., 2018, SCIENTOMETRIC STUDY Alvarez-Betancourt Y, 2014, SCIENTOMETRICS, V101, P2003, DOI 10.1007/s11192-014-1336-1 Ballé P, 2000, ENG APPL ARTIF INTEL, V13, P695, DOI 10.1016/S0952-1976(00)00049-X Bashyal S, 2008, ENG APPL ARTIF INTEL, V21, P1056, DOI 10.1016/j.engappai.2007.11.010 Bateni SM, 2007, ENG APPL ARTIF INTEL, V20, P401, DOI 10.1016/j.engappai.2006.06.012 Bauer B, 2005, ENG APPL ARTIF INTEL, V18, P141, DOI 10.1016/j.engappai.2004.11.016 Benardos PG, 2007, ENG APPL ARTIF INTEL, V20, P365, DOI 10.1016/j.engappai.2006.06.005 Bhatta SR, 1996, ENG APPL ARTIF INTEL, V9, P601, DOI 10.1016/S0952-1976(96)00055-3 Camacho D, 2006, ENG APPL ARTIF INTEL, V19, P179, DOI 10.1016/j.engappai.2005.07.002 Chau KW, 2004, ENG APPL ARTIF INTEL, V17, P11, DOI 10.1016/j.engappai.2003.11.007 Chen CM, 2008, DATA KNOWL ENG, V67, P234, DOI 10.1016/j.datak.2008.05.004 Chen HQ, 2015, RENEW SUST ENERG REV, V49, P12, DOI 10.1016/j.rser.2015.04.060 Chen XY, 2015, ENG APPL ARTIF INTEL, V46, P258, DOI 10.1016/j.engappai.2015.09.010 Cheng S, 2003, ENG APPL ARTIF INTEL, V16, P543, DOI 10.1016/S0952-1976(03)00069-1 Cobo MJ, 2015, KNOWL-BASED SYST, V80, P3, DOI 10.1016/j.knosys.2014.12.035 Cook DF, 2000, ENG APPL ARTIF INTEL, V13, P391, DOI 10.1016/S0952-1976(00)00021-X Das S, 2012, ENG APPL ARTIF INTEL, V25, P430, DOI 10.1016/j.engappai.2011.10.004 De Silva LC, 2012, ENG APPL ARTIF INTEL, V25, P1313, DOI 10.1016/j.engappai.2012.05.002 Dharia A, 2003, ENG APPL ARTIF INTEL, V16, P607, DOI 10.1016/j.engappai.2003.09.011 Du HP, 2003, ENG APPL ARTIF INTEL, V16, P667, DOI 10.1016/j.engappai.2003.09.008 Du YX, 2012, CHINA ECON REV, V23, P743, DOI 10.1016/j.chieco.2012.04.009 Faruk DÖ, 2010, ENG APPL ARTIF INTEL, V23, P586, DOI 10.1016/j.engappai.2009.09.015 Fu TC, 2011, ENG APPL ARTIF INTEL, V24, P164, DOI 10.1016/j.engappai.2010.09.007 Gokceoglu C, 2004, ENG APPL ARTIF INTEL, V17, P61, DOI 10.1016/j.engappai.2003.11.006 He Q, 2007, ENG APPL ARTIF INTEL, V20, P89, DOI 10.1016/j.engappai.2006.03.003 HECK JL, 1986, ACCOUNT REV, V61, P735 Ho W, 2008, ENG APPL ARTIF INTEL, V21, P548, DOI 10.1016/j.engappai.2007.06.001 Kim HS, 2000, ENG APPL ARTIF INTEL, V13, P635, DOI 10.1016/S0952-1976(00)00045-2 Kuila P, 2014, ENG APPL ARTIF INTEL, V33, P127, DOI 10.1016/j.engappai.2014.04.009 Laengle S, 2017, EUR J OPER RES, V262, P803, DOI 10.1016/j.ejor.2017.04.027 Leitao P, 2009, ENG APPL ARTIF INTEL, V22, P979, DOI 10.1016/j.engappai.2008.09.005 Li XC, 2008, ENG APPL ARTIF INTEL, V21, P785, DOI 10.1016/j.engappai.2007.07.001 Ma HP, 2011, ENG APPL ARTIF INTEL, V24, P517, DOI 10.1016/j.engappai.2010.08.005 Manjarres D, 2013, ENG APPL ARTIF INTEL, V26, P1818, DOI 10.1016/j.engappai.2013.05.008 Margaliot M, 2001, ENG APPL ARTIF INTEL, V14, P183, DOI 10.1016/S0952-1976(00)00066-X McFarlane D, 2003, ENG APPL ARTIF INTEL, V16, P365, DOI 10.1016/S0952-1976(03)00077-0 Menhaj MB, 2000, ENG APPL ARTIF INTEL, V13, P459, DOI 10.1016/S0952-1976(00)00026-9 Merigó JM, 2015, J BUS RES, V68, P2645, DOI 10.1016/j.jbusres.2015.04.006 Muhuri PK, 2019, ENG APPL ARTIF INTEL, V78, P218, DOI 10.1016/j.engappai.2018.11.007 Muhuri PK, 2018, APPL SOFT COMPUT, V69, P381, DOI 10.1016/j.asoc.2018.03.041 Muttil N, 2007, ENG APPL ARTIF INTEL, V20, P735, DOI 10.1016/j.engappai.2006.11.016 Naqvi S. H., 2005, International Information, Communication and Education, V24, P53 Negenborn RR, 2008, ENG APPL ARTIF INTEL, V21, P353, DOI 10.1016/j.engappai.2007.08.005 Niknam T, 2011, ENG APPL ARTIF INTEL, V24, P306, DOI 10.1016/j.engappai.2010.10.001 Niska H, 2004, ENG APPL ARTIF INTEL, V17, P159, DOI 10.1016/j.engappai.2004.02.002 Nourani V, 2009, ENG APPL ARTIF INTEL, V22, P466, DOI 10.1016/j.engappai.2008.09.003 Rao RV, 2013, ENG APPL ARTIF INTEL, V26, P524, DOI 10.1016/j.engappai.2012.06.007 Rao RV, 2013, ENG APPL ARTIF INTEL, V26, P430, DOI 10.1016/j.engappai.2012.02.016 Rashedi E, 2011, ENG APPL ARTIF INTEL, V24, P117, DOI 10.1016/j.engappai.2010.05.007 RENGASWAMY R, 1995, ENG APPL ARTIF INTEL, V8, P35, DOI 10.1016/0952-1976(94)00058-U Samanta B, 2003, ENG APPL ARTIF INTEL, V16, P657, DOI 10.1016/j.engappai.2003.09.006 Sardiñas RQ, 2006, ENG APPL ARTIF INTEL, V19, P127, DOI 10.1016/j.engappai.2005.06.007 Shukla Amit K., 2018, International Journal of Embedded and Real-Time Communication Systems, V9, P66, DOI 10.4018/IJERTCS.2018010104 Stergiopoulou E, 2009, ENG APPL ARTIF INTEL, V22, P1141, DOI 10.1016/j.engappai.2009.03.008 Suryadevara NK, 2013, ENG APPL ARTIF INTEL, V26, P2641, DOI 10.1016/j.engappai.2013.08.004 Taormina R, 2012, ENG APPL ARTIF INTEL, V25, P1670, DOI 10.1016/j.engappai.2012.02.009 Ündey C, 2003, ENG APPL ARTIF INTEL, V16, P555, DOI 10.1016/j.engappai.2003.09.003 Uraikul V, 2007, ENG APPL ARTIF INTEL, V20, P115, DOI 10.1016/j.engappai.2006.07.002 van Eck NJ, 2010, SCIENTOMETRICS, V84, P523, DOI 10.1007/s11192-009-0146-3 Van Fleet DD, 2006, J MANAGE, V32, P477, DOI 10.1177/0149206306286715 Weber P, 2012, ENG APPL ARTIF INTEL, V25, P671, DOI 10.1016/j.engappai.2010.06.002 Wu DR, 2006, ENG APPL ARTIF INTEL, V19, P829, DOI 10.1016/j.engappai.2005.12.011 Xiang W, 2008, ENG APPL ARTIF INTEL, V21, P73, DOI 10.1016/j.engappai.2007.03.008 Yataganbaba A, 2016, RENEW SUST ENERG REV, V59, P206, DOI 10.1016/j.rser.2015.12.357 Yeung LHW, 2004, ENG APPL ARTIF INTEL, V17, P169, DOI 10.1016/j.engappai.2004.02.003 Yildiz AR, 2013, ENG APPL ARTIF INTEL, V26, P327, DOI 10.1016/j.engappai.2012.05.014 Yu D., 2017, INFORM SCI Yu DJ, 2018, IEEE T FUZZY SYST, V26, P430, DOI 10.1109/TFUZZ.2017.2672732 Zavadskas EK, 2014, ARCH CIV MECH ENG, V14, P519, DOI 10.1016/j.acme.2014.05.008 Zouggari A, 2012, ENG APPL ARTIF INTEL, V25, P507, DOI 10.1016/j.engappai.2011.10.012 NR 71 TC 86 Z9 88 U1 14 U2 110 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0952-1976 EI 1873-6769 J9 ENG APPL ARTIF INTEL JI Eng. Appl. Artif. Intell. PD OCT PY 2019 VL 85 BP 517 EP 532 DI 10.1016/j.engappai.2019.06.010 PG 16 WC Automation & Control Systems; Computer Science, Artificial Intelligence; Engineering, Multidisciplinary; Engineering, Electrical & Electronic WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Automation & Control Systems; Computer Science; Engineering GA JC0UC UT WOS:000488994300042 OA Green Submitted DA 2024-09-05 ER PT J AU Gordon, SM Edwards, JL AF Gordon, Sue Marquis Edwards, Jennifer Lynne TI Enhancing student research through a virtual participatory action research project: Student benefits and administrative challenges SO ACTION RESEARCH LA English DT Article DE doctoral studies; mentoring; online learning; participatory action research; project administration; virtual collaboration ID TEACHERS AB Can graduate students in a distance learning environment gain meaningful research experience through a virtual participatory action research project? The answer is an emphatic 'yes.' The purpose of this article is twofold: to demonstrate how and to what extent graduate students can gain research experience through participation with alumni and faculty in an action research project, and to examine administrative issues arising from adhering to the democratic participatory action research process under virtual constraints. Project success is determined through documents produced by participants in the Faculty-Student Mentoring Project and from two focus group evaluations held via conference calls. The data demonstrated that the students and alumni increased their research skills, used their skills and knowledge in other courses and their dissertations, presented, and published. The university gained valuable information. The democratic participatory aspect of action research and the virtual environment created administrative challenges such as scheduling and workload issues. Recommendations include: screening volunteers to determine their levels of expertise and commitment; providing time for participants to get to know each other and the technology at the outset of the project; setting expectations for participation; sharing the project management; and anticipating more time for virtual than face-to-face research. C1 [Gordon, Sue Marquis; Edwards, Jennifer Lynne] Fielding Grad Univ, Sch Educ Leadership, Santa Barbara, CA USA. [Gordon, Sue Marquis; Edwards, Jennifer Lynne] Fielding Grad Univ, Change Doctoral Program, Santa Barbara, CA USA. RP Edwards, JL (corresponding author), 3774 Mountainside Trail, Evergreen, CO 80439 USA. EM jedwards@fielding.edu RI Edwards, Jennifer/IAN-1163-2023 CR Aune B., 2002, Journal of Technology and Teacher Education, V10, P461 Burke L.A., 2002, College Teaching, V50, P129 Chen F., 2004, THESIS Davis B. H., 2002, Journal of Technology and Teacher Education, V10, P101 Edwards J.L., 2006, ANN M AM ED RES ASS Elmes-Cranhall J., 1992, ANN M SPEECH COMM AS Fazio X, 2009, SCHOOL SCI MATH, V109, P95, DOI 10.1111/j.1949-8594.2009.tb17942.x Glanz J., 1998, Action research: An educational leader's guide to school improvement Gordon S. M., 2005, CREATING SUCCESSFUL, P9 Guteng SI, 2000, AM ANN DEAF, V145, P411, DOI 10.1353/aad.2012.0163 Hager M. J., 2003, ANN M AM ED RES ASS Holly M., 2005, ACTION RES TEACHERS, V2nd Hutchinson K. L., 1992, ANN M SPEECH COMM AS Knowles MalcolmS., 1978, The Adult Learner: A Neglected Species, VSecond Leech NL, 2007, SCHOOL PSYCHOL QUART, V22, P557, DOI 10.1037/1045-3830.22.4.557 Levin M., 2001, Handbook of action research: Participative inquiry and practice, P103 Lewin K, 1946, J SOC ISSUES, V2, P34, DOI 10.1111/j.1540-4560.1946.tb02295.x Ludema, 2001, HDB ACTION RES, P189 Ludwig GS, 1999, J GEOGR, V98, P149, DOI 10.1080/00221349908978873 Matzat U, 2010, AM BEHAV SCI, V53, P1170, DOI 10.1177/0002764209356249 Maxwell L., 1995, ANN C INT COMM ASS I McAllister D. A., 2006, CULMINATING EXPERI 1, V8 McCracken H., 2004, Online Journal of Distance Learning Administration, V7 McEwen L., 2002, THESIS Palloff RenaM., 2010, HDB ONLINE LEARNING, P370 Pauleen DJ, 2003, J MANAGE INFORM SYST, V20, P227, DOI 10.1080/07421222.2003.11045771 Reason P., 2001, HDB ACTION RES PARTI Reeves R. C., 2002, CURRENT PERSPECTIVES, P135 Saurino D. R., 2003, ANN M AM ED RES ASS Scott D., 1997, 3 AUSTR WORLDWIDEWEB Servan MJ, 2009, EDUC ACTION RES, V17, P373, DOI 10.1080/09650790903093466 Shapiro J.J., 2010, Handbook of Online Learning, P57 Smallwood S., 2004, CHRONICLE HIGHE 0101 Staniforth D., 2003, Educational Action Research, V11, P79 Stringer E., 1999, ACTION RES-LONDON, V2nd Vygotsky LS, 1978, Mind in Society: Development of Higher Psychological Processes, DOI [DOI 10.2307/J.CTVJF9VZ4, 10.2307/j.ctvjf9vz4] Walsh L., 2010, Collaborative working in higher education, P144 Yukawa J., 2005, THESIS NR 38 TC 4 Z9 8 U1 1 U2 23 PU SAGE PUBLICATIONS LTD PI LONDON PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND SN 1476-7503 EI 1741-2617 J9 ACTION RES-LONDON JI Action Res. PD JUN PY 2012 VL 10 IS 2 BP 205 EP 220 DI 10.1177/1476750312439900 PG 16 WC Management; Social Sciences, Interdisciplinary WE Social Science Citation Index (SSCI) SC Business & Economics; Social Sciences - Other Topics GA 951CJ UT WOS:000304698000007 DA 2024-09-05 ER PT J AU Hancock, GRA Troscianko, J AF Hancock, George R. A. Troscianko, Jolyon TI CamoEvo: An open access toolbox for artificial camouflage evolution experiments SO EVOLUTION LA English DT Article DE CamoEvo; camouflage; evolution; genetic algorithms; optimization; selection ID GENETIC ALGORITHMS; SELECTION; ECOLOGY AB Camouflage research has long shaped our understanding of evolution by natural selection, and elucidating the mechanisms by which camouflage operates remains a key question in visual ecology. However, the vast diversity of color patterns found in animals and their backgrounds, combined with the scope for complex interactions with receiver vision, presents a fundamental challenge for investigating optimal camouflage strategies. Genetic algorithms (GAs) have provided a potential method for accounting for these interactions, but with limited accessibility. Here, we present CamoEvo, an open-access toolbox for investigating camouflage pattern optimization by using tailored GAs, animal and egg maculation theory, and artificial predation experiments. This system allows for camouflage evolution within the span of just 10-30 generations (similar to 1-2 min per generation), producing patterns that are both significantly harder to detect and that are optimized to their background. CamoEvo was built in ImageJ to allow for integration with an array of existing open access camouflage analysis tools. We provide guides for editing and adjusting the predation experiment and GA as well as an example experiment. The speed and flexibility of this toolbox makes it adaptable for a wide range of computer-based phenotype optimization experiments. C1 [Hancock, George R. A.; Troscianko, Jolyon] Univ Exeter, Ctr Ecol & Conservat, Penryn TR10 9FE, England. C3 University of Exeter RP Hancock, GRA (corresponding author), Univ Exeter, Ctr Ecol & Conservat, Penryn TR10 9FE, England. EM ghancockzoology@gmail.com RI Hancock, George/HJH-0619-2022 OI Troscianko, Jolyon/0000-0001-9071-2594; Hancock, George/0000-0002-8771-545X FU NERC GW4+ studentship [NE/S007504/1]; NERC Independent Research Fellowship [NE/P018084/1]; NERC [NE/P018084/1] Funding Source: UKRI FX We are thankful to our two anonymous reviewers for their thorough feedback and recommendations on the manuscript. GRAH was funded by an NERC GW4+ studentship NE/S007504/1. JT was funded by an NERC Independent Research Fellowship NE/P018084/1. CR Allen WL, 2011, P ROY SOC B-BIOL SCI, V278, P1373, DOI 10.1098/rspb.2010.1734 ARNOLD SJ, 1984, EVOLUTION, V38, P709, DOI 10.1111/j.1558-5646.1984.tb00344.x Barnett JB, 2017, P ROY SOC B-BIOL SCI, V284, DOI 10.1098/rspb.2017.0128 Bond AB, 2002, NATURE, V415, P609, DOI 10.1038/415609a Bonney R, 2014, SCIENCE, V343, P1436, DOI 10.1126/science.1251554 Canniff L, 2018, JOVE-J VIS EXP, DOI 10.3791/57512 Caro Tim, 2005, pXIII Caves EM, 2018, METHODS ECOL EVOL, V9, P793, DOI 10.1111/2041-210X.12911 Cavill R, 2005, GECCO 2005: GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, VOLS 1 AND 2, P1753 Chipperfield A.J., 1995, MATLAB GENETIC ALGOR Cook LM, 2013, HEREDITY, V110, P207, DOI 10.1038/hdy.2012.92 Cuthill IC, 2019, J ZOOL, V308, P75, DOI 10.1111/jzo.12682 Cuthill IC, 2005, NATURE, V434, P72, DOI 10.1038/nature03312 Derigs U., 1999, META HEURISTICS ADV, P231 Egan J, 2016, SCI REP-UK, V6, DOI 10.1038/srep38274 ENDLER JA, 1981, BIOL J LINN SOC, V16, P25, DOI 10.1111/j.1095-8312.1981.tb01840.x Fennell JG, 2021, EVOLUTION, V75, P614, DOI 10.1111/evo.14162 Fortin FA, 2012, J MACH LEARN RES, V13, P2171 Hamblin S, 2013, METHODS ECOL EVOL, V4, P184, DOI 10.1111/2041-210X.12000 Hanley D, 2015, BIOL LETTERS, V11, DOI 10.1098/rsbl.2015.0087 Holland J., ADAPTATION NATURAL A HOLLAND JH, 1992, SCI AM, V267, P66, DOI 10.1038/scientificamerican0792-66 Jebari K., 2013, Int. J. Emerg. Sci., V3, P333, DOI DOI 10.14355/ijes.2013.0305.05 Junger M., 1995, Handb. Oper. Res. Manag. Sci., V7, P225, DOI [10.1016/S0927-0507(05)80121-5, DOI 10.1016/S0927-0507(05)80121-5] Katoch S, 2021, MULTIMED TOOLS APPL, V80, P8091, DOI 10.1007/s11042-020-10139-6 Kim J, 2019, GENET PROGRAM EVOL M, V20, P139, DOI 10.1007/s10710-018-9341-4 Kjernsmo K, 2020, CURR BIOL, V30, P551, DOI 10.1016/j.cub.2019.12.013 Kondo S, 2002, GENES CELLS, V7, P535, DOI 10.1046/j.1365-2443.2002.00543.x Kumar R, 2012, ADV INTEL SOFT COMPU, V132, P39 LANDE R, 1983, EVOLUTION, V37, P1210, DOI 10.1111/j.1558-5646.1983.tb00236.x Larghi O.P., 1988, P407 LAWRENCE ES, 1983, OIKOS, V40, P313, DOI 10.2307/3544597 Libelli S. M., 2000, Soft Computing, V4, P76, DOI 10.1007/s005000000042 MCCAMY CS, 1992, COLOR RES APPL, V17, P142, DOI 10.1002/col.5080170211 Merilaita S, 2003, EVOLUTION, V57, P1248 Michalis C, 2017, P ROY SOC B-BIOL SCI, V284, DOI 10.1098/rspb.2017.0709 Mitchell M., 1998, An Introduction to Genetic Algorithms Niu Y, 2021, CURR BIOL, V31, P446, DOI 10.1016/j.cub.2020.10.078 Orteu A, 2020, NAT REV GENET, V21, P461, DOI 10.1038/s41576-020-0234-z PEARSON JE, 1993, SCIENCE, V261, P189, DOI 10.1126/science.261.5118.189 Pike TW, 2015, AVIAN BIOL RES, V8, P237, DOI 10.3184/175815515X14455297177037 Pournelle G. H., 1953, Journal of Mammalogy, V34, P133, DOI 10.1890/0012-9658(2002)083[1421:SDEOLC]2.0.CO;2 Ramírez-Delgado VH, 2020, ECOL EVOL, V10, P1401, DOI 10.1002/ece3.5995 REEVES CR, 1993, PROCEEDINGS OF THE FIFTH INTERNATIONAL CONFERENCE ON GENETIC ALGORITHMS, P92 Renoult JP, 2017, BIOL REV, V92, P292, DOI 10.1111/brv.12230 Reynolds C, 2011, ARTIF LIFE, V17, P123, DOI 10.1162/artl_a_00023 Rowland HM, 2008, P ROY SOC B-BIOL SCI, V275, P2539, DOI 10.1098/rspb.2008.0812 San-Jose LM, 2017, PHILOS T R SOC B, V372, DOI 10.1098/rstb.2016.0337 Schneider CA, 2012, NAT METHODS, V9, P671, DOI 10.1038/nmeth.2089 Sharman RJ, 2019, I-PERCEPTION, V10, DOI 10.1177/2041669519877435 Sherratt TN, 2007, OIKOS, V116, P449, DOI 10.1111/j.0030-1299.2007.15521.x Soni Nitasha., 2014, INT J COMPUTER SCI I, V5, P4519 Stevens M, 2009, PHILOS T R SOC B, V364, P423, DOI 10.1098/rstb.2008.0217 Talas L, 2020, METHODS ECOL EVOL, V11, P240, DOI 10.1111/2041-210X.13334 Thayer AH, 1918, SCI MON, V7, P481 Troscianko J, 2021, COMMUN BIOL, V4, DOI 10.1038/s42003-021-01817-8 Troscianko J, 2018, P ROY SOC B-BIOL SCI, V285, DOI 10.1098/rspb.2018.1386 Troscianko J, 2017, BEHAV ECOL, V28, P556, DOI 10.1093/beheco/arw185 Troscianko J, 2017, BMC EVOL BIOL, V17, DOI 10.1186/s12862-016-0854-2 Troscianko J, 2016, SCI REP-UK, V6, DOI 10.1038/srep19966 Troscianko J, 2015, METHODS ECOL EVOL, V6, P1320, DOI 10.1111/2041-210X.12439 Tsai MW, 2015, MATH PROBL ENG, V2015, DOI 10.1155/2015/906305 van den Berg C, 2020, METHODS ECOL EVOL, V11, P316, DOI 10.1111/2041-210X.13328 WHITLEY D, 1994, STAT COMPUT, V4, P65, DOI 10.1007/BF00175354 Wisocki PA, 2020, NAT ECOL EVOL, V4, P148, DOI 10.1038/s41559-019-1003-2 Yang XS, 2014, NATURE-INSPIRED OPTIMIZATION ALGORITHMS, P197, DOI 10.1016/B978-0-12-416743-8.00014-2 Zhai W, 1996, MATH COMPUT MODEL, V23, P131, DOI 10.1016/0895-7177(96)00068-4 NR 67 TC 3 Z9 3 U1 0 U2 14 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0014-3820 EI 1558-5646 J9 EVOLUTION JI Evolution PD MAY PY 2022 VL 76 IS 5 BP 870 EP 882 DI 10.1111/evo.14476 EA MAR 2022 PG 13 WC Ecology; Evolutionary Biology; Genetics & Heredity WE Science Citation Index Expanded (SCI-EXPANDED) SC Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity GA 1I8GU UT WOS:000775653100001 PM 35313008 OA Green Published DA 2024-09-05 ER PT J AU da Silva, MAD Pereira, AC Walmsley, AD AF Dias da Silva, Marco Antonio Pereira, Andresa Costa Walmsley, Anthony Damien TI The availability of open-access videos offered by dental schools SO EUROPEAN JOURNAL OF DENTAL EDUCATION LA English DT Article DE complimentary content; online learning; teaching ID STUDENTS PERCEPTIONS; TECHNOLOGY; INFORMATION; ONLINE; CLIPS AB Background The Internet has become an established learning tool in dental education where students can access online videos on a range of dental subjects. However, finding reliable peer-reviewed content is not straightforward. Aim To evaluate the video content offered by UK and Republic of Ireland (RoI) Dental Schools on their YouTube channels and public websites. Methods Free videos offered on UK and RoI Dental schools websites and YouTube channels were watched and set according to its purpose, as educational or non-educational. The number of views, length, category and date of publication were analysed. Results A total of 627 videos offered by dental courses were evaluated. Videos were available on 83% of the websites, but only 9% was educational content. Dental courses YouTube channels received more than 2.3 million views, but less than 5% of the material offered is educational. Instructional videos found on the websites (3.2 min) were shorter than those found on YouTube (8.5 min) (P = .03). The majority of the videos, provided by Universities, were not educational and focused on promoting the dental courses. Most websites have demonstrated a password-protected area where quality content may be offered. Conclusion Students wishing to watch instructional videos will find limited educational content provided by UK and RoI dental courses. Therefore, they are likely to access course-related material elsewhere on the Internet that may not be necessarily peer-reviewed. C1 [Dias da Silva, Marco Antonio; Pereira, Andresa Costa; Walmsley, Anthony Damien] Univ Birmingham, Birmingham, W Midlands, England. [Dias da Silva, Marco Antonio; Pereira, Andresa Costa] Univ Fed Campina Grande, Patos de Minas, Brazil. C3 University of Birmingham; Universidade Federal de Campina Grande RP da Silva, MAD (corresponding author), Univ Birmingham, Birmingham, W Midlands, England. EM M.a.DiasdaSilva@bham.ac.uk RI da Silva, Marco Antonio Dias/K-4730-2012 OI da Silva, Marco Antonio Dias/0000-0002-2774-4769; Walmsley, Anthony Damien/0000-0003-4970-0764; Pereira, Andresa Costa/0000-0002-3654-6123 FU H2020 Marie Sklodowska-Curie Actions [748609]; Marie Curie Actions (MSCA) [748609] Funding Source: Marie Curie Actions (MSCA) FX H2020 Marie Sklodowska-Curie Actions, Grant/Award Number: 748609 CR Ahmad M, 2016, J DENT EDUC, V80, P128 Asiry MA, 2017, SAUDI DENT J, V29, P167, DOI 10.1016/j.sdentj.2017.03.005 Biddix JP, 2011, INTERNET HIGH EDUC, V14, P175, DOI 10.1016/j.iheduc.2011.01.003 Cox S, 2016, EUR J DENT EDUC, V20, P135, DOI 10.1111/eje.12151 Currie L, 2010, NEW LIB WORLD, V111, P113, DOI 10.1108/03074801011027628 da Silva MAD, 2019, BRIT DENT J, V226, P437, DOI 10.1038/s41415-019-0046-8 Davies BR, 2017, EUR J DENT EDUC, V21, P33, DOI 10.1111/eje.12175 Dhulipalla R, 2015, J INT SOC PREV COMMU, V5, P499, DOI 10.4103/2231-0762.170526 Eachempati P., 2016, Indian Journal of Pharmacology, V48, P25 Egge V, 2018, LIB GUIDES EVALUATIN Hamdan AA, 2019, EUR J DENT EDUC, V23, P175, DOI 10.1111/eje.12417 Hegarty E, 2017, J ORTHOD, V44, P90, DOI 10.1080/14653125.2017.1319010 Johnston ANB, 2018, NURSE EDUC PRACT, V31, P151, DOI 10.1016/j.nepr.2018.06.002 K Anbarasi, 2016, Korean J Med Educ, V28, P333 Kenny KP, 2018, EUR J DENT EDUC, V22, pE57, DOI 10.1111/eje.12257 Li Tse Yan, 2015, JMIR Med Educ, V1, pe1 Miller CJ, 2015, J DENT EDUC, V79, P1452 Mohammadzadeh Akhlaghi Nahid, 2017, Iran Endod J, V12, P201, DOI 10.22037/iej.2017.39 Naseri Mandana, 2016, Iran Endod J, V11, P329 Nason K, 2016, INT ENDOD J, V49, P1194, DOI 10.1111/iej.12575 Parsons A, 2017, RES POST-COMPULS EDU, V22, P271, DOI 10.1080/13596748.2017.1314684 Schönwetter DJ, 2016, J DENT EDUC, V80, P141 Shah R, 2009, EUR J DENT EDUC, V13, P223, DOI 10.1111/j.1600-0579.2009.00579.x Shigli K, 2017, J CLIN DIAGN RES, V11, pZC1, DOI 10.7860/JCDR/2017/27710.10301 Smith W, 2012, EUR J DENT EDUC, V16, P91, DOI 10.1111/j.1600-0579.2011.00724.x Zandona AF, 2016, J DENT EDUC, V80, P1468 NR 26 TC 6 Z9 6 U1 1 U2 5 PU WILEY PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1396-5883 EI 1600-0579 J9 EUR J DENT EDUC JI Eur. J. Dent. Educ. PD NOV PY 2019 VL 23 IS 4 BP 522 EP 526 DI 10.1111/eje.12461 EA SEP 2019 PG 5 WC Dentistry, Oral Surgery & Medicine; Education, Scientific Disciplines WE Science Citation Index Expanded (SCI-EXPANDED) SC Dentistry, Oral Surgery & Medicine; Education & Educational Research GA JH4DN UT WOS:000484611100001 PM 31429507 OA Green Accepted DA 2024-09-05 ER PT J AU Yang, C Huang, C AF Yang, Chao Huang, Cui TI Quantitative mapping of the evolution of AI policy distribution, targets and focuses over three decades in China SO TECHNOLOGICAL FORECASTING AND SOCIAL CHANGE LA English DT Article DE Artificial intelligence (AI); China's policy; Bibliometrics; Policy evolution; Policy documents ID ARTIFICIAL-INTELLIGENCE; SCIENCE; CHALLENGES; FRAMEWORK AB Artificial intelligence (AI) technology policy plays a critical role to steer its applications to broadly relevant endpoints, and contributes to critical governance of innovations by governments, industry and society at large. In this paper, we adopt a bibliometrics-based research framework to characterize the development and evolution of China's AI policy. The framework integrates bibliometric methods, semantic analysis, and network analysis for identifying core policy elements and their evolution in the AI policy process. Specifically, we first collect China's central-level AI-related policies and identify four stages of its evolution based on policy-issuing frequency, policy trends, and core policy issuing time nodes. We then identify the core policies, core institutions, and core policy targets in each stage. Then we explore the policy issuing trends, policy distribution changes, and evolution of policy targets. Finally, patterns and characteristics of the policy process are identified, and trends are predicted. We used the PKULaw database to collect the policy-relevant data on AI in China, and the time frame is from 1990 to 2019. Our findings and the reported quantitative map might usefully inform AI policy in China and elsewhere around the world. It could also help broader stakeholder engagement in policy discussions on AI technology, industry and society. C1 [Yang, Chao; Huang, Cui] Zhejiang Univ, Sch Publ Affairs, Dept Informat Resource Management, Hangzhou 310058, Peoples R China. C3 Zhejiang University RP Huang, C (corresponding author), Zhejiang Univ, Sch Publ Affairs, Dept Informat Resource Management, Hangzhou 310058, Peoples R China. EM huangcui@zju.edu.cn OI Yang, Chao/0000-0002-0607-9552 FU Innovative Research Group Project of the National Natural Science Foundation of China [71721002]; Excellent Youth Project of the National Natural Science Foundation of China [71722002]; key Project of Humanties and Social Sciences in Ministry of Education of China [18JZD056]; Youth Foundation Project of Humanities and Social Sciences in Ministry of Education of China [18YJC870022]; General Program of National Natural Science Foundation of China [71673164] FX We acknowledge support from the Innovative Research Group Project of the National Natural Science Foundation of China (Grant No. 71721002) , Excellent Youth Project of the National Natural Science Foundation of China (Grant No. 71722002) , The key Project of Humanties and Social Sciences in Ministry of Education of China (Grant No. 18JZD056) , Youth Foundation Project of Humanities and Social Sciences in Ministry of Education of China (Grant No. 18YJC870022) , and the General Program of National Natural Science Foundation of China (Grant No. 71673164) . The findings and observations contained in this paper are those of the authors and do not necessarily reflect the views of the supporters. CR Al-Sayed R, 2019, PROCEEDINGS OF THE EUROPEAN CONFERENCE ON THE IMPACT OF ARTIFICIAL INTELLIGENCE AND ROBOTICS (ECIAIR 2019), P12, DOI 10.34190/ECIAIR.19.079 [Anonymous], 2017, IND STRATEGY BUILDIN [Anonymous], 2016, CIV LAW RUL ROB [Anonymous], 2005, Models and methods in social network analysis Arenal A, 2020, TELECOMMUN POLICY, V44, DOI 10.1016/j.telpol.2020.101960 Bhatia A, 2006, DISCOURSE SOC, V17, P173, DOI 10.1177/0957926506058057 Biegel Bryan, 2016, NATL ARTIFICIAL INTE Blondel VD, 2008, J STAT MECH-THEORY E, DOI 10.1088/1742-5468/2008/10/P10008 Bornmann L, 2016, SCIENTOMETRICS, V109, P1477, DOI 10.1007/s11192-016-2115-y Cath C, 2018, SCI ENG ETHICS, V24, P505, DOI 10.1007/s11948-017-9901-7 Duan YQ, 2019, INT J INFORM MANAGE, V48, P63, DOI 10.1016/j.ijinfomgt.2019.01.021 Gao J, 2019, SUSTAINABILITY-BASEL, V11, DOI 10.3390/su11236574 Hall W., 2017, Independent Report Holdren J., 2016, NSTC Report House of Commons Science and Technology Committee, 2016, ROBOTICS ARTIFICIAL Huang C, 2015, SCIENTOMETRICS, V102, P1521, DOI 10.1007/s11192-014-1406-4 Huang C, 2014, SCIENTOMETRICS, V99, P689, DOI 10.1007/s11192-013-1199-x Japan, 2019, AI STRAT 2019 Jordana J, 2005, INFORM SOC, V21, P341, DOI 10.1080/01972240500253509 Knox J, 2020, LEARN MEDIA TECHNOL, V45, P298, DOI 10.1080/17439884.2020.1754236 Lane D., 2014, RAS 2020 ROBOTICS AU Laver M, 2003, AM POLIT SCI REV, V97, P311 McWilliam W, 2015, LAND USE POLICY, V47, P459, DOI 10.1016/j.landusepol.2015.05.006 O'Leary R., 2009, COLLABORATIVE PUBLIC Provan KG, 2008, J PUBL ADM RES THEOR, V18, P229, DOI 10.1093/jopart/mum015 Ritter A, 2013, INT J DRUG POLICY, V24, P30, DOI 10.1016/j.drugpo.2012.02.005 Roberts I, 2006, INJURY PREV, V12, P320, DOI 10.1136/ip.2006.012849 SABATIER PA, 1988, POLICY SCI, V21, P129, DOI 10.1007/BF00136406 Sabatier Paul A., 2007, THEORIES POLICY PROC, P189, DOI DOI 10.4324/9780367274689-7 Saidi T, 2017, HEALTH RES POLICY SY, V15, DOI 10.1186/s12961-017-0203-y Sarewitz D, 2015, NATURE, V522, P412, DOI 10.1038/522413a Sarewitz D, 2011, NATURE, V478, P7, DOI 10.1038/478007a Sclove R., 2020, J DGOV, P5 Sclove RichardE., 1995, DEMOCRACY TECHNOLOGY SPARC, 2016, ROB 2020 MULT ROADM Sun TQ, 2019, GOV INFORM Q, V36, P368, DOI 10.1016/j.giq.2018.09.008 Syam N, 2018, IND MARKET MANAG, V69, P135, DOI 10.1016/j.indmarman.2017.12.019 The State Council of the People's Republic of China, 2017, DEV PLAN NEW GEN ART van Dijk T.A, 1997, DISCOURSE SOCIAL INT, V2 Wu F, 2020, NAT MACH INTELL, V2, P312, DOI 10.1038/s42256-020-0183-4 Yang C, 2020, TECHNOL FORECAST SOC, V157, DOI 10.1016/j.techfore.2020.120116 NR 41 TC 33 Z9 35 U1 48 U2 287 PU ELSEVIER SCIENCE INC PI NEW YORK PA STE 800, 230 PARK AVE, NEW YORK, NY 10169 USA SN 0040-1625 EI 1873-5509 J9 TECHNOL FORECAST SOC JI Technol. Forecast. Soc. Chang. PD JAN PY 2022 VL 174 AR 121188 DI 10.1016/j.techfore.2021.121188 EA SEP 2021 PG 17 WC Business; Regional & Urban Planning WE Social Science Citation Index (SSCI) SC Business & Economics; Public Administration GA UY7AO UT WOS:000701672300009 OA hybrid DA 2024-09-05 ER PT C AU Teodorescu, HN AF Teodorescu, Horia-Nicolai BE Burileanu, C Teodorescu, HN TI How Central European countries fare in speech and language technology research? SO 2019 10TH INTERNATIONAL CONFERENCE ON SPEECH TECHNOLOGY AND HUMAN-COMPUTER DIALOGUE (SPED) LA English DT Proceedings Paper CT 10th International Conference on Speech Technology and Human-Computer Dialogue (SpeD) CY OCT 10-12, 2019 CL Timisoara, ROMANIA DE NLP; speech technology; speech analysis; text analysis; artificial intelligence; country performance; education; research; scientometry ID FUZZY-LOGIC; SCIENCE AB Speech and language technologies are parts of AI family of tools and methods that already have an economic impact; they are assumed to extend that impact in the near future. We analyze the contributions of several average and small central European countries to these fields in terms of papers published. We compare these contributions with those of France and Germany and establish relationships between the efficiency measured by scientific publications between subfields of speech and language technologies. We find that Czech Republic is more efficient in terms of papers per inhabitant even than Germany. Czech Republic excels too when the number of papers is divided by the population of tertiary education. Also, we find interesting strong and low correlations between subdomains. C1 [Teodorescu, Horia-Nicolai] Romanian Acad, Iasi Branch, Inst Comp Sci, Bd Carol I 8, Iasi, Romania. [Teodorescu, Horia-Nicolai] Gheorghe Asachi Tech Univ Iasi, 67 Bd D Mangeron, Iasi 70050, Romania. C3 Romanian Academy of Sciences; GH Asachi Technical University RP Teodorescu, HN (corresponding author), Romanian Acad, Iasi Branch, Inst Comp Sci, Bd Carol I 8, Iasi, Romania.; Teodorescu, HN (corresponding author), Gheorghe Asachi Tech Univ Iasi, 67 Bd D Mangeron, Iasi 70050, Romania. RI Teodorescu, Horia-Nicolai L/C-3287-2008 CR [Anonymous], Population, Total Gaskó N, 2016, SCIENTOMETRICS, V108, P613, DOI 10.1007/s11192-016-1968-4 Ives B, 2015, HIGH EDUC RES DEV, V34, P926, DOI 10.1080/07294360.2015.1011094 Korytkowski P, 2019, SCIENTOMETRICS, V119, P1519, DOI 10.1007/s11192-019-03092-1 Miroiu A, 2015, QUAL HIGH EDUC, V21, P189, DOI 10.1080/13538322.2015.1051794 Teodorescu H.N., 2019, ROMANIAN INFORM Teodorescu H.N., 2018, ROMANIAN INFORM Teodorescu H.N.L., 2018, P C 10 INT C EL COMP Teodorescu H.N.L., CONTRIBUTIONS UNPUB Teodorescu HNL, 2015, INT J COMPUT COMMUN, V10, P865 TEODORESCU HN, 1989, P IEEE EMBS, V11, P1618, DOI 10.1109/IEMBS.1989.96371 Teodorescu HN, 1998, IEEE ENG MED BIOL, V17, P34 TEODORESCU HN, 1993, FUZZY SET SYST, V59, P320 Teodorescu HN, 2018, ROM J INF SCI TECH, V21, P324 Vladutz G.E., 1989, STATUS CIVIL SCI E E NR 15 TC 0 Z9 0 U1 1 U2 3 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA BN 978-1-7281-0984-8 PY 2019 DI 10.1109/sped.2019.8906637 PG 6 WC Computer Science, Artificial Intelligence; Computer Science, Cybernetics; Telecommunications WE Conference Proceedings Citation Index - Science (CPCI-S) SC Computer Science; Telecommunications GA BQ0ED UT WOS:000571718700034 DA 2024-09-05 ER PT C AU Huang, R Liu, XF Zheng, X AF Huang, Rui Liu, Xiaofang Zheng, Xiang BE LuevanosRojas, A Ilewicz, G Jakobczak, DJ Weller, K TI Research on Performance Quality Prediction Method of Missile Based on Grey Theory and SVM SO PROCEEDINGS OF THE 2018 3RD INTERNATIONAL CONFERENCE ON MODELLING, SIMULATION AND APPLIED MATHEMATICS (MSAM 2018) SE Advances in Intelligent Systems Research LA English DT Proceedings Paper CT 3rd International Conference on Modelling, Simulation and Applied Mathematics (MSAM) CY JUL 22-23, 2018 CL Shanghai, PEOPLES R CHINA DE grey theory; linear weighted; SVM; quality prediction AB Accurately grasping the performance quality status of the missile is a prerequisite for ensuring the completion of the operational task. At present, in a real missile launch exercise, in order to ensure the success of the launch, the method of fist passing the test and then launching is usually adopted. This method can hardly meet the large-scale, high-volume and high-efficiency operational requirements in the future battlefield. In order to meet the future operational requirements, based on the past test data of the performance parameters of the missile and the information of daily management and stored, combined the information of actual missile launch results, this paper uses grey theory, linear weighted comprehensive evaluation and SVM to accurately predict the performance quality status of the missile, and provide technical support for operational decision-making. C1 [Huang, Rui; Liu, Xiaofang; Zheng, Xiang] High Tech Inst Xian, Dept Management, Xian 710025, Shaanxi, Peoples R China. C3 Rocket Force University of Engineering RP Huang, R (corresponding author), High Tech Inst Xian, Dept Management, Xian 710025, Shaanxi, Peoples R China. RI huang, rui/JYP-3898-2024 CR [Anonymous], 2012, APPL SCI TECHNOL [Anonymous], GREY SYSTEMS THEORY Deng Ju-long, 2002, FDN GREYTHEORY Guo Chao, 2014, CHINA SAFETY SCI J, V24 [刘道文 Liu Daowen], 2012, [计算机应用与软件, Computer Applications and Software], V29, P185 Wang W., 2014, SUPPORT VECTOR MACHI NR 6 TC 1 Z9 1 U1 0 U2 4 PU ATLANTIS PRESS PI PARIS PA 29 AVENUE LAVMIERE, PARIS, 75019, FRANCE SN 1951-6851 BN 978-94-6252-566-5 J9 ADV INTEL SYS RES PY 2018 VL 160 BP 140 EP 145 PG 6 WC Mathematics, Applied WE Conference Proceedings Citation Index - Science (CPCI-S) SC Mathematics GA BL7JB UT WOS:000455077200031 DA 2024-09-05 ER PT J AU Piryani, R Madhavi, D Singh, VK AF Piryani, R. Madhavi, D. Singh, V. K. TI Analytical mapping of opinion mining and sentiment analysis research during 2000-2015 SO INFORMATION PROCESSING & MANAGEMENT LA English DT Article DE Affective computing; Opinion mining; Scientometrics; Sentiment analysis ID ONLINE PRODUCT REVIEWS; SOCIAL MEDIA; SEMANTIC ORIENTATION; FEATURE-EXTRACTION; POLARITY CLASSIFICATION; EMOTION RECOGNITION; CHINESE REVIEWS; EXPRESSION RECOGNITION; CUSTOMER SATISFACTION; UNSUPERVISED APPROACH AB The new transformed read-write Web has resulted in a rapid growth of user generated content on the Web resulting into a huge volume of unstructured data. A substantial part of this data is unstructured text such as reviews and blogs. Opinion mining and sentiment analysis (OMSA) as a research discipline has emerged during last 15 years and provides a methodology to computationally process the unstructured data mainly to extract opinions and identify their sentiments. The relatively new but fast growing research discipline has changed a lot during these years. This paper presents a scientometric analysis of research work done on OMSA during 2000-2016. For the scientometric mapping, research publications indexed in Web of Science (WoS) database are used as input data. The publication data is analyzed computationally to identify year-wise publication pattern, rate of growth of publications, types of authorship of papers on OMSA, collaboration patterns in publications on OMSA, most productive countries, institutions, journals and authors, citation patterns and an year-wise citation reference network, and theme density plots and keyword bursts in OMSA publications during the period. A somewhat detailed manual analysis of the data is also performed to identify popular approaches (machine learning and lexicon-based) used in these publications, levels (document, sentence or aspect-level) of sentiment analysis work done and major application areas of OMSA. The paper presents a detailed analytical mapping of OMSA research work and charts the progress of discipline on various useful parameters. (C) 2016 Elsevier Ltd. All rights reserved. C1 [Piryani, R.] South Asian Univ, Dept Comp Sci, New Delhi, India. [Madhavi, D.] APJAKTU, Dept Comp Sci & Engn, Lucknow, Uttar Pradesh, India. [Singh, V. K.] Banaras Hindu Univ, Dept Comp Sci, Varanasi, Uttar Pradesh, India. C3 South Asian University (SAU); Dr. A.P.J. Abdul Kalam Technical University (AKTU); Banaras Hindu University (BHU) RP Singh, VK (corresponding author), Banaras Hindu Univ, Dept Comp Sci, Varanasi, Uttar Pradesh, India. EM rajesh.piryani@gmail.com; madhavidevaraj@gmail.com; vivekks12@gmail.com RI Piryani, Rajesh/AAF-8148-2020; Singh, Vivek Kumar/O-5699-2019; Freienberg, Selina/AAV-8829-2021 OI Piryani, Rajesh/0000-0003-3374-0657; Singh, Vivek Kumar/0000-0002-7348-6545; FU Department of Science and Technology, Government of India [INT/MEXICO/P-13/2012]; University Grants Commission India [41 -624/ 2012(SR)] FX This work was supported by research grants from Department of Science and Technology, Government of India (Grant: INT/MEXICO/P-13/2012) and University Grants Commission India (Grant: F. No. 41 -624/ 2012(SR)). CR Abadi MK, 2015, IEEE T AFFECT COMPUT, V6, P209, DOI 10.1109/TAFFC.2015.2392932 Abbasi Ahmed, 2008, ACM Transactions on Information Systems, V26, DOI 10.1145/1361684.1361685 Abbasi A, 2008, IEEE T KNOWL DATA EN, V20, P1168, DOI 10.1109/TKDE.2008.51 Abbasi A, 2011, IEEE T KNOWL DATA EN, V23, P447, DOI 10.1109/TKDE.2010.110 Abdul-Mageed M, 2014, COMPUT SPEECH LANG, V28, P20, DOI 10.1016/j.csl.2013.03.001 Abrahams AS, 2012, DECIS SUPPORT SYST, V54, P87, DOI 10.1016/j.dss.2012.04.005 Agarwal B, 2015, COGN COMPUT, V7, P487, DOI 10.1007/s12559-014-9316-6 Agarwal B, 2015, COMPUT INTEL NEUROSC, V2015, DOI 10.1155/2015/715730 Agarwal B, 2014, IETE J RES, V60, P414, DOI 10.1080/03772063.2014.963172 Agrafioti F, 2012, IEEE T AFFECT COMPUT, V3, P102, DOI 10.1109/T-AFFC.2011.28 Aguwa CC, 2012, EXPERT SYST APPL, V39, P10112, DOI 10.1016/j.eswa.2012.02.071 Al-Rowaily K, 2015, DIGIT INVEST, V14, P53, DOI 10.1016/j.diin.2015.07.006 Al-Subaihin AS, 2014, SCI WORLD J, DOI 10.1155/2014/631394 Alemi F, 2014, QUAL MANAG HEALTH CA, V23, P10, DOI 10.1097/QMH.0000000000000014 Ali F, 2015, APPL INTELL, V42, P481, DOI 10.1007/s10489-014-0609-y Alonso-Martín F, 2013, SENSORS-BASEL, V13, P15549, DOI 10.3390/s131115549 [Anonymous], J INFORM SCI [Anonymous], J INFORM SCI [Anonymous], 2015, SOCIAL NETWORK ANAL, DOI [DOI 10.1109/wcsp.2015.7340981, DOI 10.1117/1.JPE.5.057612] [Anonymous], 2013, J ARTIFICIAL INTELLI Archak N, 2011, MANAGE SCI, V57, P1485, DOI 10.1287/mnsc.1110.1370 Arias M, 2013, ACM T INTEL SYST TEC, V5, DOI 10.1145/2542182.2542190 Arndt S, 2014, IEEE J-STSP, V8, P366, DOI 10.1109/JSTSP.2014.2313026 Bae Y, 2012, J AM SOC INF SCI TEC, V63, P2521, DOI 10.1002/asi.22768 Bagheri A, 2014, J INF SCI, V40, P621, DOI 10.1177/0165551514538744 Bagheri A, 2013, KNOWL-BASED SYST, V52, P201, DOI 10.1016/j.knosys.2013.08.011 Bai X, 2011, DECIS SUPPORT SYST, V50, P732, DOI 10.1016/j.dss.2010.08.024 Bailenson JN, 2008, INT J HUM-COMPUT ST, V66, P303, DOI 10.1016/j.ijhcs.2007.10.011 Bakhtiyari K, 2015, NEURAL COMPUT APPL, V26, P1277, DOI 10.1007/s00521-014-1790-y Bakhtiyari K, 2014, NEURAL COMPUT APPL, V25, P1467, DOI 10.1007/s00521-014-1637-6 Balahur A, 2015, INFORM PROCESS MANAG, V51, P547, DOI 10.1016/j.ipm.2014.10.004 Balahur A, 2015, INFORM PROCESS MANAG, V51, P428, DOI 10.1016/j.ipm.2015.05.005 Balahur A, 2014, COMPUT SPEECH LANG, V28, P56, DOI 10.1016/j.csl.2013.03.004 Balahur A, 2012, DECIS SUPPORT SYST, V53, P742, DOI 10.1016/j.dss.2012.05.024 Balahur A, 2012, J INTELL INF SYST, V39, P375, DOI 10.1007/s10844-011-0194-z Gómez AB, 2015, INT J INTERACT MULTI, V3, P25, DOI 10.9781/ijimai.2015.333 Basiri ME, 2014, J INF SCI, V40, P313, DOI 10.1177/0165551514522734 Baveye Y, 2015, IEEE T AFFECT COMPUT, V6, P43, DOI 10.1109/TAFFC.2015.2396531 Becker-Asano C, 2010, AUTON AGENT MULTI-AG, V20, P32, DOI 10.1007/s10458-009-9094-9 Ben Moussa M, 2013, COMPUT ANIMAT VIRT W, V24, P327, DOI 10.1002/cav.1515 Biyani P, 2014, KNOWL-BASED SYST, V69, P170, DOI 10.1016/j.knosys.2014.04.048 Boehner K, 2007, INT J HUM-COMPUT ST, V65, P275, DOI 10.1016/j.ijhcs.2006.11.016 Bohlouli M, 2015, J INF SCI, V41, P779, DOI 10.1177/0165551515602846 Boiy E, 2009, INFORM RETRIEVAL, V12, P526, DOI 10.1007/s10791-008-9070-z Boldrini E, 2012, DATA MIN KNOWL DISC, V25, P603, DOI 10.1007/s10618-012-0259-9 Bollegala D, 2013, IEEE T KNOWL DATA EN, V25, P1719, DOI 10.1109/TKDE.2012.103 Bosco C, 2013, IEEE INTELL SYST, V28, P55, DOI 10.1109/MIS.2013.28 Bravo-Marquez F, 2014, KNOWL-BASED SYST, V69, P86, DOI 10.1016/j.knosys.2014.05.016 Breazeal C, 2002, AUTON ROBOT, V12, P83, DOI 10.1023/A:1013215010749 Broekens J, 2010, J AMB INTEL SMART EN, V2, P121, DOI 10.3233/AIS-2010-0065 Callejas Z, 2008, SPEECH COMMUN, V50, P416, DOI 10.1016/j.specom.2008.01.001 Calvo RA, 2013, COMPUT INTELL-US, V29, P527, DOI 10.1111/j.1467-8640.2012.00456.x Cambria E, 2015, COGN COMPUT, V7, P183, DOI 10.1007/s12559-015-9325-0 Cambria E, 2014, IEEE INTELL SYST, V29, P44, DOI 10.1109/MIS.2012.118 Cambria E, 2013, BIOL INSPIR COGN ARC, V4, P41, DOI 10.1016/j.bica.2013.02.003 Cambria E, 2013, IEEE INTELL SYST, V28, P15, DOI 10.1109/MIS.2013.30 Cambria E, 2012, COGN COMPUT, V4, P477, DOI 10.1007/s12559-012-9145-4 Cambria E, 2012, EXPERT SYST APPL, V39, P10533, DOI 10.1016/j.eswa.2012.02.120 Cambria E, 2012, MULTIMED TOOLS APPL, V59, P557, DOI 10.1007/s11042-011-0815-0 Cañamero L, 2005, NEURAL NETWORKS, V18, P445, DOI 10.1016/j.neunet.2005.03.003 Canhoto AI, 2015, J MARKET MANAG-UK, V31, P1141, DOI 10.1080/0267257X.2015.1047466 Cao J., 2014, SCI WORLD J, V2014 Cao JP, 2014, IEEE T INTELL TRANSP, V15, P844, DOI 10.1109/TITS.2013.2291241 Cao Y., 2015, INT J ADV COMPUTER S, V6, DOI 10.14569/ijacsa.2015.060215 Cardie C., 2014, SENTIMENT ANAL OPINI Carrillo-de-Albornoz J, 2013, J AM SOC INF SCI TEC, V64, P1618, DOI 10.1002/asi.22859 Casaburi L, 2015, J VISUAL LANG COMPUT, V27, P19, DOI 10.1016/j.jvlc.2015.01.001 Casoto P, 2008, J INTERNET TECHNOL, V9, P365 Ceron A, 2015, SOC SCI COMPUT REV, V33, P3, DOI 10.1177/0894439314521983 Ceron A, 2014, NEW MEDIA SOC, V16, P340, DOI 10.1177/1461444813480466 Chamlertwat W, 2012, J UNIVERS COMPUT SCI, V18, P973 Che WX, 2015, IEEE-ACM T AUDIO SPE, V23, P2111, DOI 10.1109/TASLP.2015.2443982 Chelaru S, 2013, ACM T WEB, V8, DOI 10.1145/2535525 Chen CC, 2012, IEEE T KNOWL DATA EN, V24, P1963, DOI 10.1109/TKDE.2011.177 Chen CL, 2013, J INF SCI ENG, V29, P743 Chen J, 2015, J AMB INTEL HUM COMP, V6, P541, DOI 10.1007/s12652-014-0237-8 Chen L, 2014, KNOWL-BASED SYST, V64, P44, DOI 10.1016/j.knosys.2014.03.020 Chen L, 2008, INTERACT COMPUT, V20, P17, DOI 10.1016/j.intcom.2007.06.003 Chen LS, 2011, J INFORMETR, V5, P313, DOI 10.1016/j.joi.2011.01.003 Chen ZY, 2015, J ASSOC INF SCI TECH, V66, P1913, DOI 10.1002/asi.23301 Cheng VC, 2014, IEEE T KNOWL DATA EN, V26, P2002, DOI 10.1109/TKDE.2013.175 Chenlo JM, 2014, INFORM SCIENCES, V280, P275, DOI 10.1016/j.ins.2014.05.009 Cheong M, 2011, INFORM SYST FRONT, V13, P45, DOI 10.1007/s10796-010-9273-x Chew SW, 2012, IEEE T SYST MAN CY B, V42, P1006, DOI 10.1109/TSMCB.2012.2194485 Chiu C, 2015, CURR ISSUES TOUR, V18, P477, DOI 10.1080/13683500.2013.841656 Chmiel A, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0022207 Chmiel A, 2011, PHYSICA A, V390, P2936, DOI 10.1016/j.physa.2011.03.040 Cho H, 2014, KNOWL-BASED SYST, V71, P61, DOI 10.1016/j.knosys.2014.06.001 Choi D, 2014, COMPUT SCI INF SYST, V11, P157, DOI 10.2298/CSIS130205001C Chung WY, 2012, EXPERT SYST APPL, V39, P11870, DOI 10.1016/j.eswa.2012.02.059 Clavel C, 2015, REV COGN LINGUIST, V13, P461, DOI 10.1075/rcl.13.2.08cla Clavel C, 2013, LANG RESOUR EVAL, V47, P1089, DOI 10.1007/s10579-013-9224-5 Cruz FL, 2014, EXPERT SYST APPL, V41, P5984, DOI 10.1016/j.eswa.2014.04.005 Cruz FL, 2012, AI COMMUN, V25, P369, DOI 10.3233/AIC-2012-0519 Cruz FL, 2012, INFORM PROCESS MANAG, V48, P271, DOI 10.1016/j.ipm.2011.08.003 da Silva NFF, 2014, DECIS SUPPORT SYST, V66, P170, DOI 10.1016/j.dss.2014.07.003 Dai WH, 2015, INFORM MANAGE-AMSTER, V52, P777, DOI 10.1016/j.im.2015.02.003 Dang Y, 2010, IEEE INTELL SYST, V25, P46, DOI 10.1109/MIS.2009.105 Dayem AA, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0121610 Salas-Zárate MD, 2014, J INF SCI, V40, P749, DOI 10.1177/0165551514547842 Denecke K, 2015, ARTIF INTELL MED, V64, P17, DOI 10.1016/j.artmed.2015.03.006 Deng HB, 2014, STAT ANAL DATA MIN, V7, P308, DOI 10.1002/sam.11223 Deng JJ, 2015, ACM T INTERACT INTEL, V5, DOI 10.1145/2723575 Deng ZH, 2014, EXPERT SYST APPL, V41, P3506, DOI 10.1016/j.eswa.2013.10.056 Devitt A, 2013, LANG RESOUR EVAL, V47, P475, DOI 10.1007/s10579-013-9223-6 Dey L, 2009, INT J DOC ANAL RECOG, V12, P205, DOI 10.1007/s10032-009-0090-z Di Caro L, 2013, COMPUT STAND INTER, V35, P442, DOI 10.1016/j.csi.2012.10.005 Dragoni M, 2015, COGN COMPUT, V7, P186, DOI 10.1007/s12559-014-9308-6 Driscoll B, 2015, CONTINUUM-J MEDIA CU, V29, P861, DOI 10.1080/10304312.2015.1040729 Du WF, 2010, EXPERT SYST APPL, V37, P5094, DOI 10.1016/j.eswa.2009.12.088 Dueñas-Fernández R, 2014, INFORM FUSION, V20, P129, DOI 10.1016/j.inffus.2014.01.006 Duric A, 2012, DECIS SUPPORT SYST, V53, P704, DOI 10.1016/j.dss.2012.05.023 Duwairi RM, 2015, J INTELL FUZZY SYST, V29, P107, DOI 10.3233/IFS-151574 Duwairi R, 2014, J INF SCI, V40, P501, DOI 10.1177/0165551514534143 Earnshaw RA, 2012, PHYSICA A, V391, P2401, DOI 10.1016/j.physa.2011.11.060 Efron M, 2006, KNOWL INF SYST, V9, P492, DOI 10.1007/s10115-005-0214-9 Eirinaki M, 2012, J COMPUT SYST SCI, V78, P1175, DOI 10.1016/j.jcss.2011.10.007 el Kaliouby R, 2006, ANN NY ACAD SCI, V1093, P228, DOI 10.1196/annals.1382.016 Fan TK, 2010, KNOWL INF SYST, V23, P321, DOI 10.1007/s10115-009-0222-2 Fang F, 2014, INFORMS J COMPUT, V26, P586, DOI 10.1287/ijoc.2013.0585 Fang L, 2015, J COMPUT SCI TECH-CH, V30, P903, DOI 10.1007/s11390-015-1569-3 Fang Q, 2015, IEEE T MULTIMEDIA, V17, P2281, DOI 10.1109/TMM.2015.2491019 Fattah MA, 2015, NEUROCOMPUTING, V167, P434, DOI 10.1016/j.neucom.2015.04.051 Feidakis M, 2013, J UNIVERS COMPUT SCI, V19, P1638 Feng S, 2011, COMPUT MATH APPL, V62, P2770, DOI 10.1016/j.camwa.2011.07.043 Feng S, 2011, KNOWL INF SYST, V27, P281, DOI 10.1007/s10115-010-0325-9 Fersini E, 2014, DECIS SUPPORT SYST, V68, P26, DOI 10.1016/j.dss.2014.10.004 Fink CR, 2011, J HOPKINS APL TECH D, V30, P22 Frank MR, 2013, SCI REP-UK, V3, DOI 10.1038/srep02625 Fu TJ, 2012, ACM T INFORM SYST, V30, DOI 10.1145/2382438.2382443 Fu XH, 2013, KNOWL-BASED SYST, V37, P186, DOI 10.1016/j.knosys.2012.08.003 Gangemi A, 2014, IEEE COMPUT INTELL M, V9, P20, DOI 10.1109/MCI.2013.2291688 García-Cumbreras MA, 2013, EXPERT SYST APPL, V40, P6758, DOI 10.1016/j.eswa.2013.06.049 García-Moya L, 2013, INFORM SYST FRONT, V15, P331, DOI 10.1007/s10796-012-9400-y Ghazi D, 2014, COMPUT SPEECH LANG, V28, P76, DOI 10.1016/j.csl.2013.04.009 Ghiassi M, 2013, EXPERT SYST APPL, V40, P6266, DOI 10.1016/j.eswa.2013.05.057 Ghose A, 2011, IEEE T KNOWL DATA EN, V23, P1498, DOI 10.1109/TKDE.2010.188 Gîfu D, 2014, INT J COMPUT COMMUN, V9, P694, DOI 10.15837/ijccc.2014.6.1474 Godnov U., 2014, ROM J POLIT SCI, V14, P4 Gong SP, 2015, COMPUT INTEL NEUROSC, V2015, DOI 10.1155/2015/506905 González-Bailón S, 2015, ANN AM ACAD POLIT SS, V659, P95, DOI 10.1177/0002716215569192 Grassi M, 2011, COGN COMPUT, V3, P480, DOI 10.1007/s12559-011-9101-8 Greaves F, 2013, J MED INTERNET RES, V15, DOI 10.2196/jmir.2721 Groshek J, 2013, SOC SCI COMPUT REV, V31, P563, DOI 10.1177/0894439313490401 Grosse K, 2015, AI COMMUN, V28, P387, DOI 10.3233/AIC-140627 Gunter B, 2014, INT J MARKET RES, V56, P231, DOI 10.2501/IJMR-2014-014 Guo JL, 2013, CYBERNET SYST, V44, P379, DOI 10.1080/01969722.2013.789649 Habernal I, 2014, INFORM PROCESS MANAG, V50, P693, DOI 10.1016/j.ipm.2014.05.001 Hajek P, 2014, TECHNOL ECON DEV ECO, V20, P721, DOI 10.3846/20294913.2014.979456 Hajmohammadi MS, 2015, INFORM SCIENCES, V317, P67, DOI 10.1016/j.ins.2015.04.003 Hajmohammadi MS, 2014, ENG APPL ARTIF INTEL, V36, P195, DOI 10.1016/j.engappai.2014.07.020 Hajmohammadi MS, 2014, INFORM PROCESS MANAG, V50, P718, DOI 10.1016/j.ipm.2014.03.005 Hao MC, 2013, INFORM VISUAL, V12, P273, DOI 10.1177/1473871613481691 He YL, 2013, ACM T INTEL SYST TEC, V5, DOI 10.1145/2542182.2542188 He YL, 2011, INFORM PROCESS MANAG, V47, P606, DOI 10.1016/j.ipm.2010.11.003 Hidalgo-Muñoz AR, 2013, BIOMED SIGNAL PROCES, V8, P945, DOI 10.1016/j.bspc.2013.09.006 Hirsch JE, 2005, P NATL ACAD SCI USA, V102, P16569, DOI 10.1073/pnas.0507655102 Hogenboom A, 2015, COMMUN ACM, V58, P69, DOI 10.1145/2699418 Hogenboom A, 2014, DECIS SUPPORT SYST, V62, P43, DOI 10.1016/j.dss.2014.03.004 Homburg C, 2015, J MARKETING RES, V52, P629, DOI 10.1509/jmr.11.0448 Hopper AM, 2015, J HEALTH ORGAN MANAG, V29, P221, DOI 10.1108/JHOM-12-2011-0129 Hosseini SA, 2010, J BIOL SYST, V18, P101, DOI 10.1142/S0218339010003640 Htay SS, 2013, SCI WORLD J, DOI 10.1155/2013/394758 Hu Y, 2005, LECT NOTES ARTIF INT, V3651, P1, DOI 10.1007/11562214_1 Hu Y, 2011, COMPUT SPEECH LANG, V25, P386, DOI 10.1016/j.csl.2010.07.004 Huang S., 2015, COMPUTATIONAL INTELL, V2015 Huang S, 2014, KNOWL-BASED SYST, V56, P191, DOI 10.1016/j.knosys.2013.11.009 Huang WT, 2008, APPL MATH COMPUT, V205, P668, DOI 10.1016/j.amc.2008.01.038 Hudlicka E, 2003, INT J HUM-COMPUT ST, V59, P1, DOI 10.1016/S1071-5819(03)00047-8 Hudlicka E, 2002, USER MODEL USER-ADAP, V12, P1, DOI 10.1023/A:1013337427135 Hung CL, 2013, IEEE INTELL SYST, V28, P47, DOI 10.1109/MIS.2013.1 Iftene A, 2012, INT J COMPUT COMMUN, V7, P857 Ishizuka M, 2006, NEW GENERAT COMPUT, V24, P97, DOI 10.1007/BF03037295 Jang HJ, 2013, EXPERT SYST APPL, V40, P7492, DOI 10.1016/j.eswa.2013.06.069 Jeong H, 2011, ETRI J, V33, P720, DOI 10.4218/etrij.11.0110.0627 Ji X, 2015, SOC NETW ANAL MIN, V5, DOI 10.1007/s13278-015-0253-5 Jiang F, 2015, J COMPUT SCI TECH-CH, V30, P1120, DOI 10.1007/s11390-015-1587-1 Jiang PL, 2012, CHINA COMMUN, V9, P28 Jing RZ, 2015, J ORG COMP ELECT COM, V25, P316, DOI 10.1080/10919392.2015.1058125 Johansson R, 2013, COMPUT LINGUIST, V39, DOI 10.1162/COLI_a_00141 Jurado F, 2015, J SYST SOFTWARE, V104, P82, DOI 10.1016/j.jss.2015.02.055 Justo R, 2014, KNOWL-BASED SYST, V69, P124, DOI 10.1016/j.knosys.2014.05.021 Kaiser C, 2011, KNOWL-BASED SYST, V24, P824, DOI 10.1016/j.knosys.2011.03.004 Kalaivani P, 2015, SCI PROGRAMMING-NETH, V2015, DOI 10.1155/2015/961454 Kalampokis E, 2013, INTERNET RES, V23, P544, DOI 10.1108/IntR-06-2012-0114 Kanayama H, 2012, NAT LANG ENG, V18, P83, DOI 10.1017/S1351324911000131 Kang D, 2014, EXPERT SYST APPL, V41, P1041, DOI 10.1016/j.eswa.2013.07.101 Kang H, 2012, EXPERT SYST APPL, V39, P6000, DOI 10.1016/j.eswa.2011.11.107 Kapur A, 2005, LECT NOTES COMPUT SC, V3784, P1 Katsimerou C, 2015, IEEE T AFFECT COMPUT, V6, P179, DOI 10.1109/TAFFC.2015.2397454 Katz G, 2015, KNOWL-BASED SYST, V84, P162, DOI 10.1016/j.knosys.2015.04.009 Kennedy A, 2006, COMPUT INTELL-US, V22, P110, DOI 10.1111/j.1467-8640.2006.00277.x Kergosien E, 2014, INT J GEOGR INF SCI, V28, P739, DOI 10.1080/13658816.2013.872823 Khairnar J, 2015, INT J COMPUT SCI NET, V15, P90 Khan FH, 2014, DECIS SUPPORT SYST, V57, P245, DOI 10.1016/j.dss.2013.09.004 Khan FA, 2016, J NANOMATER, V2016, P1, DOI 10.1155/2016/8026843 Khoo CSG, 2012, ONLINE INFORM REV, V36, P858, DOI 10.1108/14684521211287936 Kim J, 2015, J KOREA TRADE, V19, P63 Kim K, 2014, PATTERN RECOGN, V47, P758, DOI 10.1016/j.patcog.2013.07.022 Kim Y., 2015, KSII T INTERNET INFO, V9 Kiritchenko S, 2014, J ARTIF INTELL RES, V50, P723, DOI 10.1613/jair.4272 Kleinberg J, 2003, DATA MIN KNOWL DISC, V7, P373, DOI 10.1023/A:1024940629314 Kobayashi N, 2006, LECT NOTES ARTIF INT, V4012, P470 Koelstra S, 2012, IEEE T AFFECT COMPUT, V3, P18, DOI 10.1109/T-AFFC.2011.15 Kolodyazhniy V, 2011, PSYCHOPHYSIOLOGY, V48, P908, DOI 10.1111/j.1469-8986.2010.01170.x Kontopoulos E, 2013, EXPERT SYST APPL, V40, P4065, DOI 10.1016/j.eswa.2013.01.001 Koppel M, 2006, COMPUT INTELL-US, V22, P100, DOI 10.1111/j.1467-8640.2006.00276.x Korenek P, 2014, WORLD WIDE WEB, V17, P847, DOI 10.1007/s11280-013-0247-z Kranjc J, 2015, INFORM PROCESS MANAG, V51, P187, DOI 10.1016/j.ipm.2014.04.001 Krcadinac U, 2013, IEEE T AFFECT COMPUT, V4, P312, DOI 10.1109/T-AFFC.2013.18 Ku LW, 2007, J AM SOC INF SCI TEC, V58, P1838, DOI 10.1002/asi.20630 Landowska A, 2014, METROL MEAS SYST, V21, P381, DOI 10.2478/mms-2014-0049 Lau RYK, 2014, DECIS SUPPORT SYST, V65, P80, DOI 10.1016/j.dss.2014.05.005 Lau RYK, 2012, MIS QUART, V36, P1239 Lee AJT, 2014, DECIS SUPPORT SYST, V59, P250, DOI 10.1016/j.dss.2013.12.004 Lee CC, 2014, COMPUT SPEECH LANG, V28, P518, DOI 10.1016/j.csl.2012.06.006 Lee KJ, 2013, ETRI J, V35, P838, DOI 10.4218/etrij.13.0113.0093 Lek HH, 2014, INT J ARTIF INTELL T, V23, DOI 10.1142/S0218213014600197 Leong CK, 2012, EXPERT SYST APPL, V39, P2584, DOI 10.1016/j.eswa.2011.08.113 Leony D, 2013, J UNIVERS COMPUT SCI, V19, P2075 Leung CWK, 2011, WORLD WIDE WEB, V14, P187, DOI 10.1007/s11280-011-0117-5 Li D, 2010, INTELL DATA ANAL, V14, P31, DOI 10.3233/IDA-2010-0407 Li G, 2014, APPL INTELL, V40, P441, DOI 10.1007/s10489-013-0463-3 Li G, 2012, J INF SCI, V38, P127, DOI 10.1177/0165551511432670 Li N, 2010, DECIS SUPPORT SYST, V48, P354, DOI 10.1016/j.dss.2009.09.003 Li N, 2009, HUM ECOL RISK ASSESS, V15, P227, DOI 10.1080/10807030902761056 Li Q, 2014, INFORM SCIENCES, V278, P826, DOI 10.1016/j.ins.2014.03.096 Li Q, 2014, DECIS SUPPORT SYST, V61, P93, DOI 10.1016/j.dss.2014.01.013 Li ST, 2013, KNOWL-BASED SYST, V39, P23, DOI 10.1016/j.knosys.2012.10.005 Li SS, 2011, J COMPUT SCI TECH-CH, V26, P25, DOI 10.1007/s11390-011-9412-y Li SK, 2012, J COMPUT SCI TECH-CH, V27, P635, DOI 10.1007/s11390-012-1250-z Li WY, 2014, EXPERT SYST APPL, V41, P1742, DOI 10.1016/j.eswa.2013.08.073 Li XD, 2014, KNOWL-BASED SYST, V69, P14, DOI 10.1016/j.knosys.2014.04.022 Li XM, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0124672 Li Y, 2013, IEICE T INF SYST, VE96D, P2805, DOI 10.1587/transinf.E96.D.2805 Li YJ, 2011, INT J INF TECH DECIS, V10, P1097, DOI 10.1142/S0219622011004725 Li YM, 2014, INT J ELECTRON COMM, V19, P99, DOI 10.2753/JEC1086-4415190103 Liao WH, 2006, INT J HUM-COMPUT ST, V64, P847, DOI 10.1016/j.ijhcs.2006.04.001 Liau BY, 2014, IND MANAGE DATA SYST, V114, P1344, DOI 10.1108/IMDS-07-2014-0225 Lin CH, 2012, IEEE T KNOWL DATA EN, V24, P1134, DOI 10.1109/TKDE.2011.48 Lin HCK, 2014, BEHAV INFORM TECHNOL, V33, P104, DOI 10.1080/0144929X.2012.702356 Lin KC, 2013, LIBR HI TECH, V31, P294, DOI 10.1108/07378831311329068 Lindgren S, 2012, EUR J COMMUN, V27, P152, DOI 10.1177/0267323112443461 Lisetti C, 2003, INT J HUM-COMPUT ST, V59, P245, DOI 10.1016/S1071-5819(03)00051-X Liu HY, 2013, ELECTRON COMMER R A, V12, P14, DOI 10.1016/j.elerap.2012.05.002 Liu J, 2005, LECT NOTES COMPUT SC, V3646, P216 Liu LZ, 2014, CHINA COMMUN, V11, P154, DOI 10.1109/CC.2014.6825268 Liu S., 2015, COMPUTATIONAL LINGUI Liu SH, 2015, IEEE T KNOWL DATA EN, V27, P1696, DOI 10.1109/TKDE.2014.2382600 Liu SM, 2015, EXPERT SYST APPL, V42, P1083, DOI 10.1016/j.eswa.2014.08.036 Liu Y, 2013, WORLD WIDE WEB, V16, P477, DOI 10.1007/s11280-012-0179-z Livingstone SR, 2007, DIGIT CREAT, V18, P43, DOI 10.1080/14626260701253606 Loia V, 2014, KNOWL-BASED SYST, V58, P75, DOI 10.1016/j.knosys.2013.09.024 Barbosa RRL, 2015, ASLIB J INFORM MANAG, V67, P392, DOI 10.1108/AJIM-01-2015-0004 Lu L, 2006, IEEE T AUDIO SPEECH, V14, P5, DOI 10.1109/TSA.2005.860344 Mahapatra M., 1985, Proceedings of the 15th IASLIC Conference, Bangalore, P61 Maks I, 2012, DECIS SUPPORT SYST, V53, P680, DOI 10.1016/j.dss.2012.05.025 Malandrakis N, 2013, IEEE T AUDIO SPEECH, V21, P2379, DOI 10.1109/TASL.2013.2277931 Malouf R, 2008, INTERNET RES, V18, P177, DOI 10.1108/10662240810862239 Man Y, 2014, J INTELL FUZZY SYST, V27, P2055, DOI 10.3233/IFS-141171 Mantovani F, 2006, CYBERPSYCHOL BEHAV, V9, P698 Mao X, 2012, IEICE T INF SYST, VE95D, P2741, DOI 10.1587/transinf.E95.D.2741 Mao X, 2010, IEICE T INF SYST, VE93D, P1282, DOI 10.1587/transinf.E93.D.1282 Marrese-Taylor E, 2014, EXPERT SYST APPL, V41, P7764, DOI 10.1016/j.eswa.2014.05.045 Martín-Valdivia MT, 2012, J UNIVERS COMPUT SCI, V18, P2319 Martínez-Cámara E, 2014, J INF SCI, V40, P538, DOI 10.1177/0165551514535710 Martínez-Cámara E, 2014, NAT LANG ENG, V20, P1, DOI 10.1017/S1351324912000332 Matsumoto S, 2005, LECT NOTES ARTIF INT, V3518, P301 Menendez C, 2014, INT J UNCERTAIN FUZZ, V22, P677, DOI 10.1142/S0218488514500342 Miao QL, 2010, J AM SOC INF SCI TEC, V61, P2288, DOI 10.1002/asi.21400 Mihalcea R, 2006, COMPUT INTELL-US, V22, P126, DOI 10.1111/j.1467-8640.2006.00278.x Mishra MV, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0068563 Mohammad SM, 2015, COMPUT INTELL-US, V31, P301, DOI 10.1111/coin.12024 Mohammad SM, 2013, COMPUT INTELL-US, V29, P436, DOI 10.1111/j.1467-8640.2012.00460.x Mohammad SM, 2012, DECIS SUPPORT SYST, V53, P730, DOI 10.1016/j.dss.2012.05.030 Montejo-Ráez A, 2014, KNOWL-BASED SYST, V69, P134, DOI 10.1016/j.knosys.2014.05.007 Montejo-Ráez A, 2014, COMPUT SPEECH LANG, V28, P93, DOI 10.1016/j.csl.2013.04.001 Montoyo A, 2012, DECIS SUPPORT SYST, V53, P675, DOI 10.1016/j.dss.2012.05.022 Moraes R, 2013, EXPERT SYST APPL, V40, P621, DOI 10.1016/j.eswa.2012.07.059 Moreo A, 2012, EXPERT SYST APPL, V39, P9166, DOI 10.1016/j.eswa.2012.02.057 Morris ME, 2012, PROF PSYCHOL-RES PR, V43, P622, DOI 10.1037/a0029041 Morris RR, 2014, J POSIT PSYCHOL, V9, P509, DOI 10.1080/17439760.2014.913671 Mostafa MM, 2013, EXPERT SYST APPL, V40, P4241, DOI 10.1016/j.eswa.2013.01.019 Na J. C., 2009, J INFORM SCI Na JC, 2005, LIBR COLLECT ACQUIS, V29, P180, DOI 10.1016/j.lcats.2005.04.007 Nahin AFMNH, 2014, BEHAV INFORM TECHNOL, V33, P987, DOI 10.1080/0144929X.2014.907343 Neviarouskaya A, 2015, COMPUT INTELL-US, V31, P256, DOI 10.1111/coin.12020 Neviarouskaya A, 2011, IEEE T AFFECT COMPUT, V2, P22, DOI 10.1109/T-AFFC.2011.1 Neviarouskaya A, 2011, NAT LANG ENG, V17, P95, DOI 10.1017/S1351324910000239 Noferesti S, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0124993 Novielli N, 2013, IEEE T AFFECT COMPUT, V4, P439, DOI 10.1109/T-AFFC.2013.20 Ogawa T, 2011, IEICE T INF SYST, VE94D, P578, DOI 10.1587/transinf.E94.D.578 Ojokoh BA, 2012, J WEB ENG, V11, P51 Oksanen A, 2015, J MED INTERNET RES, V17, DOI 10.2196/jmir.5007 Ortigosa A, 2014, COMPUT HUM BEHAV, V31, P527, DOI 10.1016/j.chb.2013.05.024 Ortigosa-Hernández J, 2012, NEUROCOMPUTING, V92, P98, DOI 10.1016/j.neucom.2012.01.030 Paltoglou G, 2012, ACM T INTEL SYST TEC, V3, DOI 10.1145/2337542.2337551 Paltoglou G, 2013, IEEE T AFFECT COMPUT, V4, P116, DOI 10.1109/T-AFFC.2012.36 Paltoglou G, 2013, IEEE T AFFECT COMPUT, V4, P106, DOI 10.1109/T-AFFC.2012.26 Pandarachalil R, 2015, COGN COMPUT, V7, P254, DOI 10.1007/s12559-014-9310-z Pang B., 2006, Foundations and Trends in Information Retrieval, V1, P91, DOI DOI 10.1561/1500000011 Pantic M, 2003, P IEEE, V91, P1370, DOI 10.1109/JPROC.2003.817122 Park SJ, 2011, SOC SCI COMPUT REV, V29, P288, DOI 10.1177/0894439310382509 Pazienza M. T., 2011, ECECSR J, V3, P224 Peleja F, 2013, MULTIMEDIA SYST, V19, P543, DOI 10.1007/s00530-013-0310-8 Peñalver-Martinez I, 2014, EXPERT SYST APPL, V41, P5995, DOI 10.1016/j.eswa.2014.03.022 Perea-Ortega JM, 2013, J AM SOC INF SCI TEC, V64, P1864, DOI 10.1002/asi.22884 Petz G, 2014, INFORM PROCESS MANAG, V50, P899, DOI 10.1016/j.ipm.2014.07.005 Picard RW, 2009, PHILOS T R SOC B, V364, P3575, DOI 10.1098/rstb.2009.0143 Picard RW, 2001, IEEE T PATTERN ANAL, V23, P1175, DOI 10.1109/34.954607 Poria S, 2014, KNOWL-BASED SYST, V69, P108, DOI 10.1016/j.knosys.2014.06.011 Poria S, 2014, KNOWL-BASED SYST, V69, P45, DOI 10.1016/j.knosys.2014.05.005 Poria S, 2013, IEEE INTELL SYST, V28, P31, DOI 10.1109/MIS.2013.4 Prabhadevi S, 2015, J SCI IND RES INDIA, V74, P670 Prabowo R, 2009, J INFORMETR, V3, P143, DOI 10.1016/j.joi.2009.01.003 Ptaszynski M, 2014, COMPUT SPEECH LANG, V28, P38, DOI 10.1016/j.csl.2013.04.010 Ptaszynski M, 2013, EXPERT SYST APPL, V40, P168, DOI 10.1016/j.eswa.2012.07.025 Qazi A, 2014, SCI WORLD J, DOI 10.1155/2014/872929 Qi JY, 2015, INFORM MANAGE-AMSTER, V52, P859, DOI 10.1016/j.im.2015.06.002 Qiu GA, 2011, COMPUT LINGUIST, V37, P9, DOI 10.1162/coli_a_00034 Qiu GA, 2010, EXPERT SYST APPL, V37, P6182, DOI 10.1016/j.eswa.2010.02.109 Qiu LR, 2015, INT J GRID DISTRIB, V8, P165, DOI 10.14257/ijgdc.2015.8.5.16 Quan CQ, 2014, INFORM SCIENCES, V272, P16, DOI 10.1016/j.ins.2014.02.063 Rani P, 2007, ADV ENG INFORM, V21, P323, DOI 10.1016/j.aei.2006.11.009 Rao YH, 2014, NEURAL NETWORKS, V58, P29, DOI 10.1016/j.neunet.2014.05.007 Rao YH, 2014, WORLD WIDE WEB, V17, P723, DOI 10.1007/s11280-013-0221-9 Rao YH, 2014, INFORM SCIENCES, V266, P90, DOI 10.1016/j.ins.2013.12.059 Razavi AH, 2014, J INTELL INF SYST, V42, P393, DOI 10.1007/s10844-013-0273-4 Recupero DR, 2015, COGN COMPUT, V7, P211, DOI 10.1007/s12559-014-9302-z Reisenzein R, 2013, IEEE T AFFECT COMPUT, V4, P246, DOI 10.1109/T-AFFC.2013.14 Ren FJ, 2012, INFORM TECHNOL MANAG, V13, P321, DOI 10.1007/s10799-012-0138-5 Ren Y, 2014, IEICE T INF SYST, VE97D, P790, DOI 10.1587/transinf.E97.D.790 Rill S, 2014, KNOWL-BASED SYST, V69, P24, DOI 10.1016/j.knosys.2014.05.008 Ring L, 2015, J MULTIMODAL USER IN, V9, P79, DOI 10.1007/s12193-014-0157-0 Robaldo L, 2013, COMPUT STAND INTER, V35, P454, DOI 10.1016/j.csi.2012.10.004 Rocha L, 2015, J WEB SEMANT, V34, P27, DOI 10.1016/j.websem.2015.05.006 Rodellar-Biarge V, 2015, EXPERT SYST, V32, P710, DOI 10.1111/exsy.12109 Rohrdantz C, 2012, ACM T INTEL SYST TEC, V3, DOI 10.1145/2089094.2089102 Rong WG, 2015, FRONT COMPUT SCI-CHI, V9, P171, DOI 10.1007/s11704-014-4085-7 Rong WG, 2014, J VISUAL LANG COMPUT, V25, P840, DOI 10.1016/j.jvlc.2014.09.005 Rosas VP, 2013, IEEE INTELL SYST, V28, P38, DOI 10.1109/MIS.2013.9 Saleh MR, 2011, EXPERT SYST APPL, V38, P14799, DOI 10.1016/j.eswa.2011.05.070 Rushdi-Saleh M, 2011, J AM SOC INF SCI TEC, V62, P2045, DOI 10.1002/asi.21598 Salter-Townshend M, 2014, ADV DATA ANAL CLASSI, V8, P85, DOI 10.1007/s11634-013-0150-6 Sarrafzadeh A, 2008, COMPUT HUM BEHAV, V24, P1342, DOI 10.1016/j.chb.2007.07.008 Sarvabhotla K, 2011, INFORM RETRIEVAL, V14, P337, DOI 10.1007/s10791-010-9161-5 Scheirer J, 2002, INTERACT COMPUT, V14, P93, DOI 10.1016/S0953-5438(01)00059-5 Schuller B, 2015, WIRES DATA MIN KNOWL, V5, P255, DOI 10.1002/widm.1159 Schuller B, 2011, IEEE T AFFECT COMPUT, V2, P192, DOI 10.1109/T-AFFC.2011.17 Schumaker RP, 2012, DECIS SUPPORT SYST, V53, P458, DOI 10.1016/j.dss.2012.03.001 Sengers P, 2008, PERS UBIQUIT COMPUT, V12, P347, DOI 10.1007/s00779-007-0161-4 Serrano-Guerrero J, 2015, INFORM SCIENCES, V311, P18, DOI 10.1016/j.ins.2015.03.040 Shah DV, 2015, ANN AM ACAD POLIT SS, V659, P225, DOI 10.1177/0002716215569220 Shen LP, 2008, INFORM SYST FRONT, V10, P461, DOI 10.1007/s10796-008-9104-5 Shi H. X., 2012, INFORM AN INT INTERD, V15 Shi HX, 2015, INTELL AUTOM SOFT CO, V21, P589, DOI 10.1080/10798587.2015.1012830 Shi W, 2015, J EXP THEOR ARTIF IN, V27, P423, DOI 10.1080/0952813X.2014.971443 Shi W, 2013, CONNECT SCI, V25, P161, DOI 10.1080/09540091.2013.851172 Si JF, 2014, WORLD WIDE WEB, V17, P1321, DOI 10.1007/s11280-013-0239-z Smailovic J, 2014, INFORM SCIENCES, V285, P181, DOI 10.1016/j.ins.2014.04.034 Smeureanu I, 2011, AMFITEATRU ECON, V13, P28 Sobkowicz P, 2012, GOV INFORM Q, V29, P470, DOI 10.1016/j.giq.2012.06.005 Soleymani M, 2012, IEEE T AFFECT COMPUT, V3, P211, DOI 10.1109/T-AFFC.2011.37 Soleymani M, 2012, IEEE T AFFECT COMPUT, V3, P42, DOI 10.1109/T-AFFC.2011.25 Somprasertsri G, 2010, J UNIVERS COMPUT SCI, V16, P938 Stavrianou A, 2015, COMPUT INTELL-US, V31, P165, DOI 10.1111/coin.12021 Steinberger J, 2012, DECIS SUPPORT SYST, V53, P689, DOI 10.1016/j.dss.2012.05.029 Subrahmanian VS, 2008, IEEE INTELL SYST, V23, P43, DOI 10.1109/MIS.2008.57 Sun X, 2014, J INTELL FUZZY SYST, V27, P753, DOI 10.3233/IFS-131033 Sundberg J, 2011, IEEE T AFFECT COMPUT, V2, P162, DOI 10.1109/T-AFFC.2011.14 Syed AZ, 2014, ARTIF INTELL REV, V41, P535, DOI 10.1007/s10462-012-9322-6 Taboada M, 2011, COMPUT LINGUIST, V37, P267, DOI 10.1162/COLI_a_00049 Tan LKW, 2012, J COMPUT SCI TECH-CH, V27, P650, DOI 10.1007/s11390-012-1251-y Tan SL, 2014, IEEE T KNOWL DATA EN, V26, P1158, DOI 10.1109/TKDE.2013.116 Tan SB, 2008, EXPERT SYST APPL, V34, P2622, DOI 10.1016/j.eswa.2007.05.028 Tan SB, 2011, EXPERT SYST APPL, V38, P12094, DOI 10.1016/j.eswa.2011.02.105 Tan SB, 2011, EXPERT SYST APPL, V38, P10524, DOI 10.1016/j.eswa.2011.02.106 Tang DY, 2015, IEEE-ACM T AUDIO SPE, V23, P1750, DOI 10.1109/TASLP.2015.2449071 Tang JY, 2013, TSINGHUA SCI TECHNOL, V18, P182, DOI 10.1109/TST.2013.6509101 Tawari A, 2013, IEEE T MULTIMEDIA, V15, P1543, DOI 10.1109/TMM.2013.2266635 Tawari A, 2010, IEEE T MULTIMEDIA, V12, P502, DOI 10.1109/TMM.2010.2058095 Thelwall M, 2013, J AM SOC INF SCI TEC, V64, P1608, DOI 10.1002/asi.22872 Thelwall M, 2012, J AM SOC INF SCI TEC, V63, P163, DOI 10.1002/asi.21662 Nguyen TH, 2015, EXPERT SYST APPL, V42, P9603, DOI 10.1016/j.eswa.2015.07.052 Nguyen T, 2014, IEEE T AFFECT COMPUT, V5, P217, DOI 10.1109/TAFFC.2014.2315623 Trilla A, 2013, IEEE T AUDIO SPEECH, V21, P223, DOI 10.1109/TASL.2012.2217129 Tsai IH, 2010, J INTERNET TECHNOL, V11, P691 Tsytsarau M, 2012, DATA MIN KNOWL DISC, V24, P478, DOI 10.1007/s10618-011-0238-6 Tuch AN, 2011, IEEE T AFFECT COMPUT, V2, P230, DOI 10.1109/T-AFFC.2011.18 Tufis D, 2012, DECIS SUPPORT SYST, V53, P695, DOI 10.1016/j.dss.2012.05.026 Tumasjan A, 2011, SOC SCI COMPUT REV, V29, P402, DOI 10.1177/0894439310386557 Nguyen TT, 2014, ASLIB J INFORM MANAG, V66, P553, DOI 10.1108/AJIM-12-2013-0141 Valenza G, 2012, IEEE T AFFECT COMPUT, V3, P237, DOI 10.1109/T-AFFC.2011.30 Veltri G. A., 2012, PUBLIC UNDERSTANDING Vilares D, 2015, J INF SCI, V41, P799, DOI 10.1177/0165551515598926 Vilares D, 2015, NAT LANG ENG, V21, P139, DOI 10.1017/S1351324913000181 Vinodhini G, 2014, MEASUREMENT, V55, P101, DOI 10.1016/j.measurement.2014.04.033 Vural AG, 2014, ACM T WEB, V8, DOI 10.1145/2644821 Wan XJ, 2011, COMPUT LINGUIST, V37, P587, DOI 10.1162/COLI_a_00061 Wang CB, 2013, IEEE T HUM-MACH SYST, V43, P620, DOI 10.1109/THMS.2013.2285047 Wang DD, 2013, EXPERT SYST APPL, V40, P27, DOI 10.1016/j.eswa.2012.05.070 Wang G, 2015, INFORM PROCESS MANAG, V51, P458, DOI 10.1016/j.ipm.2014.09.004 Wang G, 2014, DECIS SUPPORT SYST, V57, P77, DOI 10.1016/j.dss.2013.08.002 Wang GW, 2008, IEICE T INF SYST, VE91D, P1032, DOI 10.1093/ietisy/e91-d.4.1032 Wang HW, 2014, IND MANAGE DATA SYST, V114, P1301, DOI 10.1108/IMDS-05-2014-0159 Wang HW, 2014, J EXP THEOR ARTIF IN, V26, P13, DOI 10.1080/0952813X.2013.782352 Wang HW, 2013, J EXP THEOR ARTIF IN, V25, P425, DOI 10.1080/0952813X.2012.721139 Wang KX, 2015, IEEE T AFFECT COMPUT, V6, P69, DOI 10.1109/TAFFC.2015.2392101 Wang SG, 2013, KNOWL-BASED SYST, V37, P451, DOI 10.1016/j.knosys.2012.09.003 Wang SG, 2011, EXPERT SYST APPL, V38, P8696, DOI 10.1016/j.eswa.2011.01.077 Wang W., 2013, INT J DISTRIBUTED SE, V2013 Wang W, 2015, NEW REV HYPERMEDIA M, V21, P278, DOI 10.1080/13614568.2015.1074726 Wang W, 2015, J ENG TECHNOL SCI, V47, P104, DOI 10.5614/j.eng.technol.sci.2015.47.1.8 Wang X.D., 2014, J APPL MATH, V2014, P9, DOI DOI 10.1002/TEE.22017 Ward R, 2004, INTERACT COMPUT, V16, P879, DOI 10.1016/j.intcom.2004.08.002 Weichselbraun A, 2014, KNOWL-BASED SYST, V69, P78, DOI 10.1016/j.knosys.2014.04.039 Wen WH, 2010, SCI CHINA INFORM SCI, V53, P1774, DOI 10.1007/s11432-010-4001-1 Wiegand M, 2013, LANG RESOUR EVAL, V47, P1049, DOI 10.1007/s10579-013-9218-3 Wiley MT, 2014, J BIOMED INFORM, V49, P245, DOI 10.1016/j.jbi.2014.03.006 Wilhelm FH, 2007, PSYCHOPHYSIOLOGY, V44, pS110 Williams L, 2015, EXPERT SYST APPL, V42, P7375, DOI 10.1016/j.eswa.2015.05.039 Wilson T, 2009, COMPUT LINGUIST, V35, P399, DOI 10.1162/coli.08-012-R1-06-90 Wöllmer M, 2013, IEEE INTELL SYST, V28, P46, DOI 10.1109/MIS.2013.34 Wu CE, 2014, KNOWL-BASED SYST, V69, P100, DOI 10.1016/j.knosys.2014.04.043 Wu DD, 2014, IEEE T SYST MAN CY-S, V44, P1077, DOI 10.1109/TSMC.2013.2295353 Wu DR, 2010, IEEE T AFFECT COMPUT, V1, P109, DOI 10.1109/T-AFFC.2010.12 Wu HH, 2013, J INF SCI ENG, V29, P647 Wu JL, 2014, APPL SOFT COMPUT, V23, P39, DOI 10.1016/j.asoc.2014.06.010 Wu Q, 2011, EXPERT SYST APPL, V38, P14269, DOI 10.1016/j.eswa.2011.04.240 Wu W, 2013, IEEE T AUDIO SPEECH, V21, P260, DOI 10.1109/TASL.2012.2219525 Wu Y. F, 2009, INFORM AN INT INTERD, V12 Wu YC, 2014, IEEE T VIS COMPUT GR, V20, P1763, DOI 10.1109/TVCG.2014.2346920 Wu YC, 2010, IEEE T VIS COMPUT GR, V16, P1109, DOI 10.1109/TVCG.2010.183 Wu Y, 2013, CHINA COMMUN, V10, P125, DOI 10.1109/CC.2013.6633751 Wu ZY, 2014, NEURAL NETWORKS, V58, P14, DOI 10.1016/j.neunet.2014.05.019 Xia R, 2015, IEEE T KNOWL DATA EN, V27, P2120, DOI 10.1109/TKDE.2015.2407371 Xia R, 2013, IEEE INTELL SYST, V28, P10, DOI 10.1109/MIS.2013.27 Xia R, 2011, INFORM SCIENCES, V181, P1138, DOI 10.1016/j.ins.2010.11.023 Xiang N, 2011, COMPUT ANIMAT VIRT W, V22, P141, DOI 10.1002/cav.411 Xie SX, 2014, J CENT SOUTH UNIV, V21, P1376, DOI 10.1007/s11771-014-2075-4 Xu T, 2012, KNOWL-BASED SYST, V35, P279, DOI 10.1016/j.knosys.2012.04.011 Xu XK, 2013, CHINA COMMUN, V10, P25, DOI 10.1109/CC.2013.6488828 Yan GJ, 2014, COMPUT NETW, V75, P491, DOI 10.1016/j.comnet.2014.08.021 Yan JJ, 2013, ARCH ACOUST, V38, P465, DOI 10.2478/aoa-2013-0055 Yang CS, 2015, INF SYST E-BUS MANAG, V13, P403, DOI 10.1007/s10257-014-0266-z Yang CC, 2011, IEEE T SYST MAN CY A, V41, P1144, DOI 10.1109/TSMCA.2011.2113334 Yang DQ, 2014, ACM T INTERNET TECHN, V14, DOI 10.1145/2677209 Yang DH, 2013, J INF SCI, V39, P429, DOI 10.1177/0165551513480308 Yang GL, 2006, LECT NOTES COMPUT SC, V4221, P251 Yang HL, 2015, INFORM SYST FRONT, V17, P1335, DOI 10.1007/s10796-014-9498-1 Yang JY, 2010, J INF SCI ENG, V26, P1973 Yang M, 2011, J HOMEL SECUR EMERG, V8, DOI 10.2202/1547-7355.1801 Yang ZK, 2014, NEUROCOMPUTING, V144, P138, DOI 10.1016/j.neucom.2014.05.055 Ye Q, 2009, EXPERT SYST APPL, V36, P6527, DOI 10.1016/j.eswa.2008.07.035 Yilmaz YS, 2013, INT J AD HOC UBIQ CO, V14, P16, DOI 10.1504/IJAHUC.2013.056271 Yong C, 2005, LECT NOTES COMPUT SC, V3784, P606 Yu L, 2009, INT J INNOV COMPUT I, V5, P4637 Yu LC, 2013, KNOWL-BASED SYST, V41, P89, DOI 10.1016/j.knosys.2013.01.001 Yu N, 2014, J ASSOC INF SCI TECH, V65, P2098, DOI 10.1002/asi.23111 Yu XH, 2012, IEEE T KNOWL DATA EN, V24, P720, DOI 10.1109/TKDE.2010.269 Zarri GP, 2014, NEURAL NETWORKS, V58, P82, DOI 10.1016/j.neunet.2014.05.010 Zavattaro SM, 2015, GOV INFORM Q, V32, P333, DOI 10.1016/j.giq.2015.03.003 Zeng ZH, 2008, IEEE T MULTIMEDIA, V10, P570, DOI 10.1109/TMM.2008.921737 Zeng ZH, 2007, IEEE T MULTIMEDIA, V9, P424, DOI 10.1109/TMM.2006.886310 Zha ZJ, 2014, IEEE T KNOWL DATA EN, V26, P1211, DOI 10.1109/TKDE.2013.136 Zhai ZW, 2011, EXPERT SYST APPL, V38, P9139, DOI 10.1016/j.eswa.2011.01.047 Zhan JM, 2009, EXPERT SYST APPL, V36, P2107, DOI 10.1016/j.eswa.2007.12.039 Zhang CL, 2009, J AM SOC INF SCI TEC, V60, P2474, DOI 10.1002/asi.21206 Zhang DW, 2015, EXPERT SYST APPL, V42, P1857, DOI 10.1016/j.eswa.2014.09.011 Zhang KP, 2014, NEURAL NETWORKS, V58, P60, DOI 10.1016/j.neunet.2014.04.005 Zhang L, 2010, IBM J RES DEV, V54, DOI 10.1147/JRD.2010.2069710 Zhang P, 2013, J INF SCI, V39, P815, DOI 10.1177/0165551513480330 Zhang WS, 2013, ACM T INTEL SYST TEC, V4, DOI 10.1145/2414425.2414434 Zhang WH, 2012, EXPERT SYST APPL, V39, P10283, DOI 10.1016/j.eswa.2012.02.166 Zhang Y, 2014, IEICE T INF SYST, VE97D, P2000, DOI 10.1587/transinf.E97.D.2000 Zhang Y, 2015, J COMPUT SCI TECH-CH, V30, P1109, DOI 10.1007/s11390-015-1586-2 Zhang YH, 2015, PATTERN RECOGN LETT, V65, P44, DOI 10.1016/j.patrec.2015.07.006 Zhang ZQ, 2011, EXPERT SYST APPL, V38, P7674, DOI 10.1016/j.eswa.2010.12.147 Zhao N, 2011, APPL MATH INFORM SCI, V5, P45 Zhao YY, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0125084 Zheludev I, 2014, SCI REP-UK, V4, DOI 10.1038/srep04213 Zheng XL, 2014, KNOWL-BASED SYST, V61, P29, DOI 10.1016/j.knosys.2014.02.003 Zhou F, 2015, J MECH DESIGN, V137, DOI 10.1115/1.4030159 Zhou SS, 2014, NEUROCOMPUTING, V131, P312, DOI 10.1016/j.neucom.2013.10.011 Zhou SS, 2013, NEUROCOMPUTING, V120, P536, DOI 10.1016/j.neucom.2013.04.017 Zhou XJ, 2015, IEEE-ACM T AUDIO SPE, V23, P619, DOI 10.1109/TASLP.2015.2392381 Zhou XY, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0111380 Zhu JB, 2011, IEEE T AFFECT COMPUT, V2, P37, DOI 10.1109/T-AFFC.2011.2 NR 488 TC 104 Z9 106 U1 3 U2 270 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0306-4573 EI 1873-5371 J9 INFORM PROCESS MANAG JI Inf. Process. Manage. PD JAN PY 2017 VL 53 IS 1 BP 122 EP 150 DI 10.1016/j.ipm.2016.07.001 PG 29 WC Computer Science, Information Systems; Information Science & Library Science WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Computer Science; Information Science & Library Science GA EF7IW UT WOS:000390504300008 DA 2024-09-05 ER PT J AU Bradley, C Romane, L AF Bradley, Cara Romane, Leeanne TI Changing the Tire Instead of Reinventing the Wheel: Customizing an Existing Online Information Literacy Tutorial SO COLLEGE & UNDERGRADUATE LIBRARIES LA English DT Article DE Academic libraries; information literacy; online tutorial; active learning; institutional collaboration; research skills; undergraduate student AB Information literacy instruction has become a core responsibility of many academic librarian positions in recent years. Online information literacy tutorials have gained increasing popularity among librarians struggling to keep up with the growing demand for this type of instruction. The availability of high-quality, open source tutorials has prompted some librarians to customize existing tutorials rather than build their own resource from scratch. This article provides an overview and checklist for librarians who are considering customization of an existing online tutorial as a means of meeting student information literacy needs. C1 [Bradley, Cara] Univ Regina, Dr John Archer Lib, Regina, SK S4S 0A2, Canada. [Romane, Leeanne] Saskatchewan Inst Appl Sci & Technol, Regina, SK S4P 3A3, Canada. C3 University of Regina RP Bradley, C (corresponding author), Univ Regina, Dr John Archer Lib, Regina, SK S4S 0A2, Canada. EM bradleca@uregina.ca; lromane@library.uwaterloo.ca OI Bradley, Cara/0000-0003-0934-9842 CR [Anonymous], 2000, INF LIT COMP STAND H [Anonymous], 1989, PRES COMM INF LIT [Anonymous], 2000, Don't make me think!: a common sense approach to Web usability Bury S, 2005, REF SERV REV, V33, P54, DOI 10.1108/00907320510581388 Flatley R., 2006, LIB PHILOS PRACTICE, V8 Oakleaf M., 2004, SIMPLE STRATEGIES EF University of Texas System Digital Library, 2004, AD YOUR TILT NR 7 TC 5 Z9 5 U1 0 U2 2 PU ROUTLEDGE JOURNALS, TAYLOR & FRANCIS LTD PI ABINGDON PA 2-4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND SN 1069-1316 EI 1545-2530 J9 COLL UNDERGRAD LIBR JI Coll. Undergrad. Libr. PY 2007 VL 14 IS 4 BP 73 EP 86 DI 10.1080/10691310802128344 PG 14 WC Information Science & Library Science WE Emerging Sources Citation Index (ESCI) SC Information Science & Library Science GA VC3EC UT WOS:000433667100007 DA 2024-09-05 ER PT J AU Rundle, AG Bader, MDM Branas, CC Lovasi, GS Mooney, SJ Morrison, CN Neckerman, KM AF Rundle, Andrew G. Bader, Michael D. M. Branas, Charles C. Lovasi, Gina S. Mooney, Stephen J. Morrison, Christopher N. Neckerman, Kathryn M. TI Causal Inference with Case-Only Studies in Injury Epidemiology Research SO CURRENT EPIDEMIOLOGY REPORTS LA English DT Article DE Study design; Case-only design; Injury research; Pedestrian injury; Etiologic heterogeneity; Effect modification ID GENE-ENVIRONMENT INTERACTION; PEDESTRIAN FATALITIES; ALCOHOL-CONSUMPTION; UNITED-STATES; CASE-SERIES; ASSOCIATION; STRUCK; RISK AB Purpose of Review We review the application and limitations of two implementations of the "case-only design" in injury epidemiology with example analyses of Fatality Analysis Reporting System data. Recent Findings The term "case-only design" covers a variety of epidemiologic designs; here, two implementations of the design are reviewed: (1) studies to uncover etiological heterogeneity and (2) studies to measure exposure effect modification. These two designs produce results that require different interpretations and rely upon different assumptions. The key assumption of case-only designs for exposure effect modification, the more commonly used of the two designs, does not commonly hold for injuries and so results from studies using this design cannot be interpreted. Case-only designs to identify etiological heterogeneity in injury risk are interpretable but only when the case-series is conceptualized as arising from an underlying cohort. The results of studies using case-only designs are commonly misinterpreted in the injury literature. C1 [Rundle, Andrew G.; Branas, Charles C.; Morrison, Christopher N.; Neckerman, Kathryn M.] Columbia Univ, Mailman Sch Publ Hlth, Dept Epidemiol, 722 West 168th St,Room 727, New York, NY 10032 USA. [Bader, Michael D. M.] Johns Hopkins Univ, Dept Sociol, Baltimore, MD 21218 USA. [Lovasi, Gina S.] Drexel Univ, Dept Epidemiol & Biostat, Philadelphia, PA 19104 USA. [Mooney, Stephen J.] Univ Washington, Dept Epidemiol, Seattle, WA 98195 USA. C3 Columbia University; Johns Hopkins University; Drexel University; University of Washington; University of Washington Seattle RP Rundle, AG (corresponding author), Columbia Univ, Mailman Sch Publ Hlth, Dept Epidemiol, 722 West 168th St,Room 727, New York, NY 10032 USA. EM Agr3@cumc.columbia.edu RI Bader, Michael D. M./F-3422-2010; Lovasi, Gina/C-2781-2009; Rundle, Andrew/A-5282-2009 OI Lovasi, Gina/0000-0003-2613-9599; Morrison, Christopher/0000-0001-6522-6420; Rundle, Andrew/0000-0003-0211-7707 FU National Institute on Alcohol Abuse and Alcoholism [K01AA026327]; National Library of Medicine [R00LM012868] FX Drs. Rundle, Lovasi, Neckerman, Mooney, Branas, and Bader were supported by a grant from the National Institute on Alcohol Abuse and Alcoholism (R01AA028552); Dr. Morrison was supported by a grant from the National Institute on Alcohol Abuse and Alcoholism (K01AA026327); Dr. Mooney was also supported by a grant from the National Library of Medicine (R00LM012868). CR Azagba S, 2020, PREV MED, V132, DOI 10.1016/j.ypmed.2019.105975 Batouli G, 2020, ACCIDENT ANAL PREV, V148, DOI 10.1016/j.aap.2020.105782 BEGG CB, 1994, CANCER EPIDEM BIOMAR, V3, P173 Boone EM, 2018, TRAFFIC INJ PREV, V19, P270, DOI 10.1080/15389588.2017.1383604 Branas CC, 2011, SUBST USE MISUSE, V46, P1592, DOI 10.3109/10826084.2011.604371 Breslow NE, 1996, J AM STAT ASSOC, V91, P14, DOI 10.2307/2291379 Caetano R, 2020, ALCOHOL CLIN EXP RES, V44, P492, DOI 10.1111/acer.14251 Chen HQ, 2016, TRAFFIC INJ PREV, V17, P796, DOI 10.1080/15389588.2016.1168924 Cummings P, 1998, Inj Prev, V4, P54 De Silva DA, 2022, ARCH SUICIDE RES, V26, P1958, DOI 10.1080/13811118.2021.1965929 Dultz LA, 2011, J TRAUMA, V71, P1252, DOI 10.1097/TA.0b013e3182327c94 Eichelberger AH, 2018, J SAFETY RES, V65, P1, DOI 10.1016/j.jsr.2018.02.004 Gatto NM, 2004, INT J EPIDEMIOL, V33, P1014, DOI 10.1093/ije/dyh306 Gold KJ, 2013, GEN HOSP PSYCHIAT, V35, P45, DOI 10.1016/j.genhosppsych.2012.08.005 Graham LM, 2022, AM J PREV MED, V62, P529, DOI [10.1016/j.amepre.2021.09.018, 10.1016/j.amepre.2021.39.018] Keyes KM, 2022, ALCOHOL RES-CURR REV, V42, DOI 10.35946/arcr.v42.1.02 Khoury MJ, 1996, AM J EPIDEMIOL, V144, P207 Knight MT, 2021, AM SURGEON, V87, P354, DOI 10.1177/0003134820947365 Kolves K, 2020, EPIDEMIOL PSYCH SCI, V29, DOI 10.1017/S2045796020000062 Krurnkamp R, 2008, INT J HYG ENVIR HEAL, V211, P163, DOI 10.1016/j.ijheh.2007.02.006 Lasota D, 2020, INT J ENV RES PUB HE, V17, DOI 10.3390/ijerph17238995 Li GH, 2019, INJURY EPIDEMIOL, V6, DOI 10.1186/s40621-019-0187-x Lira MC, 2020, AM J PREV MED, V58, P622, DOI 10.1016/j.amepre.2019.12.015 Marcus PM, 2000, CANCER EPIDEM BIOMAR, V9, P461 Morrison CN, 2021, J STUD ALCOHOL DRUGS, V82, P720 National Center for Statistics and Analysis, 812827 DOT HS NAT HI Oram S, 2013, PSYCHIAT SERV, V64, P1006, DOI 10.1176/appi.ps.201200484 Ortiz N, 2017, J TRANSP HEALTH, V5, pS93, DOI 10.1016/j.jth.2017.05.250 Öström M, 2001, ACCIDENT ANAL PREV, V33, P173, DOI 10.1016/S0001-4575(00)00028-2 Patten M, 2022, J SURG RES, V270, P522, DOI 10.1016/j.jss.2021.08.029 Pawlowski W, 2019, INT J ENV RES PUB HE, V16, DOI 10.3390/ijerph16081471 Plurad D, 2006, J AM COLL SURGEONS, V202, P919, DOI 10.1016/j.jamcollsurg.2006.02.024 Rudisill TM, 2019, PLOS ONE, V14, DOI 10.1371/journal.pone.0227388 Smith GD, 2003, INT J EPIDEMIOL, V32, P1, DOI 10.1093/ije/dyg070 WACHOLDER S, 1992, AM J EPIDEMIOL, V135, P1019, DOI 10.1093/oxfordjournals.aje.a116396 Wacholder S, 1995, Stat Methods Med Res, V4, P293, DOI 10.1177/096228029500400403 Zhang ZF, 1995, ANN NY ACAD SCI, V768, P269, DOI 10.1111/j.1749-6632.1995.tb12138.x NR 37 TC 0 Z9 0 U1 0 U2 2 PU SPRINGER HEIDELBERG PI HEIDELBERG PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY EI 2196-2995 J9 CURR EPIDEMIOL REP JI Curr. Epidemiol. Rep. PD DEC PY 2022 VL 9 IS 4 BP 223 EP 232 DI 10.1007/s40471-022-00306-8 EA SEP 2022 PG 10 WC Public, Environmental & Occupational Health WE Science Citation Index Expanded (SCI-EXPANDED) SC Public, Environmental & Occupational Health GA 6S5BQ UT WOS:000863122000001 PM 37152190 OA Green Accepted, hybrid DA 2024-09-05 ER PT J AU Khan, ZA Zubair, S Imran, K Ahmad, R Butt, SA Chaudhary, NI AF Khan, Zeshan Aslam Zubair, Syed Imran, Kashif Ahmad, Rehan Butt, Sharjeel Abid Chaudhary, Naveed Ishtiaq TI A New Users Rating-Trend Based Collaborative Denoising Auto-Encoder for Top-N Recommender Systems SO IEEE ACCESS LA English DT Article DE Noise reduction; Collaboration; Recommender systems; Encoding; Market research; Deep learning; Auto-encoders; collaborative filtering; denoising; e-commerce; recommender systems; top-N recommendations ID MATRIX FACTORIZATION; AUTOENCODER AB To promote online businesses and sales, e-commerceindustry focuses to fulfill users demands by giving them top set ofrecommendations which are ranked through different ranking measures.Deep learning based auto-encoder models have further improved theperformance of recommender systems. Astate-of-the-art collaborative denoisingauto-encoder (CDAE) models user-item interactions as a corruptedversion of users rating inputs. However, this architecture stilllacks users ratings-trend information which is an important parameterto recommend top-N items to users. In this paper, buildingupon CDAE characteristics, we propose a novel users rating-trendbased collaborative denoising auto-encoder (UT-CDAE) whichdetermines user-item correlations by evaluating rating-trend(High or Low) of a user towards a set of items. This inclusion of ausers rating-trend provides additional regularization flexibilitywhich helps to predict improved top-N recommendations. Thecorrectness of the suggested method is verified through different rankingevaluation metrics i.e., (mean reciprocal rank, meanaverage precision and normalized discounted gain), for various inputcorruption values, learning rates and regularization parameters.Experiments on standard ML-100K and ML-1M datasets showthat suggested model has improved performance overstate-of-the-art denoising auto-encodermodels. C1 [Khan, Zeshan Aslam; Zubair, Syed; Ahmad, Rehan; Butt, Sharjeel Abid; Chaudhary, Naveed Ishtiaq] Int Islamic Univ, Elect Engn Dept, Islamabad 44000, Pakistan. [Imran, Kashif] NUST, Dept Elect Power Engn, US Pakistan Ctr Adv Studies Energy, Islamabad 44000, Pakistan. C3 International Islamic University, Pakistan; National University of Sciences & Technology - Pakistan RP Khan, ZA (corresponding author), Int Islamic Univ, Elect Engn Dept, Islamabad 44000, Pakistan. EM zeeshan.aslam@iiu.edu.pk RI Chaudhary, Naveed/I-7754-2019; Butt, Sharjeel Abid/C-7011-2017 OI Chaudhary, Naveed Ishtiaq/0000-0002-9568-3216; Ahmad, Rehan/0000-0002-0194-6653; Butt, Sharjeel Abid/0000-0002-3396-8224 CR Aggarwal Charu C., 2016, Em Recommender Systems: The Textbook, DOI [DOI 10.1007/978-3-319-29659-3_1, DOI 10.1007/978-3-319-29659-31] [Anonymous], 2012, ARXIV12064683 [Anonymous], 2019, P 33TH AAAI C ARTIFI Batmaz Z, 2019, ARTIF INTELL REV, V52, P1, DOI 10.1007/s10462-018-9654-y Chae DK, 2019, IEEE ACCESS, V7, P37650, DOI 10.1109/ACCESS.2019.2905876 Chen MM, 2014, PR MACH LEARN RES, V32, P1476 Chin WS, 2015, ACM T INTEL SYST TEC, V6, DOI 10.1145/2668133 Dong X, 2017, AAAI CONF ARTIF INTE, P1309 Harper FM, 2016, ACM T INTERACT INTEL, V5, DOI 10.1145/2827872 He M, 2019, IEEE ACCESS, V7, P5707, DOI 10.1109/ACCESS.2018.2890293 Hinton GE, 2006, SCIENCE, V313, P504, DOI 10.1126/science.1127647 Kabbur S, 2013, 19TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING (KDD'13), P659 Kingma D. P., 2014, INT C LEARNING REPRE LeCun Y, 2015, NATURE, V521, P436, DOI 10.1038/nature14539 Li HM, 2018, IEEE ACCESS, V6, P25248, DOI 10.1109/ACCESS.2018.2828401 Li S, 2015, P 24 ACM INT C INF K, P811, DOI DOI 10.1145/2806416.2806527 Li XP, 2017, KDD'17: PROCEEDINGS OF THE 23RD ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, P305, DOI 10.1145/3097983.3098077 Lin CY, 2018, IEEE ACCESS, V6, P21369, DOI 10.1109/ACCESS.2018.2819428 Luo X, 2013, KNOWL-BASED SYST, V37, P154, DOI 10.1016/j.knosys.2012.07.016 Luo X, 2012, KNOWL-BASED SYST, V27, P271, DOI 10.1016/j.knosys.2011.09.006 Mu RH, 2018, IEEE ACCESS, V6, DOI 10.1109/ACCESS.2018.2880197 Ouyang Y, 2014, AUTOENCODER BASED CO, P284 Pan YT, 2019, NEUROCOMPUTING, V332, P137, DOI 10.1016/j.neucom.2018.12.025 Rendle Steffen, 2012, P UNC ART INT Sachdeva N., 2019, P 2018 WORLD WID WEB, V18, P689 Sedhain S, 2015, WWW'15 COMPANION: PROCEEDINGS OF THE 24TH INTERNATIONAL CONFERENCE ON WORLD WIDE WEB, P111, DOI 10.1145/2740908.2742726 Strub F., 2015, NIPS WORKSH MACH LEA, P1 Strub F., 2016, Proceedings of the 1st workshop on deep learning for recommender systems, P11, DOI DOI 10.1145/2988450.2988456 Takács G, 2009, J MACH LEARN RES, V10, P623 Tang JX, 2018, WSDM'18: PROCEEDINGS OF THE ELEVENTH ACM INTERNATIONAL CONFERENCE ON WEB SEARCH AND DATA MINING, P565, DOI 10.1145/3159652.3159656 Vincent P, 2010, J MACH LEARN RES, V11, P3371 Vincent Pascal, 2008, P 25 INT C MACHINE L, P1096, DOI [DOI 10.1145/1390156.1390294, 10.1145/1390156.1390294] Wang H, 2015, KDD'15: PROCEEDINGS OF THE 21ST ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, P1235, DOI 10.1145/2783258.2783273 Wang H, 2015, AAAI CONF ARTIF INTE, P3052 Wu Y, 2016, PROCEEDINGS OF THE NINTH ACM INTERNATIONAL CONFERENCE ON WEB SEARCH AND DATA MINING (WSDM'16), P153, DOI 10.1145/2835776.2835837 Yang SH, 2011, PROCEEDINGS OF THE 34TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL (SIGIR'11), P295 Ying H., 2016, COLLABORATIVE DEEP R, P555 Zhang LB, 2018, IEEE ACCESS, V6, P9454, DOI 10.1109/ACCESS.2018.2789866 Zhang SA, 2019, ACM COMPUT SURV, V52, DOI 10.1145/3285029 NR 39 TC 9 Z9 11 U1 1 U2 4 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 2169-3536 J9 IEEE ACCESS JI IEEE Access PY 2019 VL 7 BP 141287 EP 141310 DI 10.1109/ACCESS.2019.2940603 PG 24 WC Computer Science, Information Systems; Engineering, Electrical & Electronic; Telecommunications WE Science Citation Index Expanded (SCI-EXPANDED) SC Computer Science; Engineering; Telecommunications GA JN8QJ UT WOS:000497156000093 OA gold DA 2024-09-05 ER PT J AU Koh, RGL Khan, MA Rashidiani, S Hassan, S Tucci, V Liu, T Nesovic, K Kumbhare, D Doyle, TE AF Koh, Ryan G. L. Khan, Md Asif Rashidiani, Sajjad Hassan, Samah Tucci, Victoria Liu, Theodore Nesovic, Karlo Kumbhare, Dinesh Doyle, Thomas E. TI Check It Before You Wreck It: A Guide to STAR-ML for Screening Machine Learning Reporting in Research SO IEEE ACCESS LA English DT Article DE Checklist; literature review; machine learning; quality scoring; reporting assessment; research methodology; screening tool ID CONVOLUTIONAL NEURAL-NETWORKS; CLASSIFICATION; TRENDS AB Machine learning (ML) is a technique that learns to detect patterns and trends in data. However, the quality of reporting ML in research is often suboptimal, leading to inaccurate conclusions and hindering progress in the field, especially if disseminated in literature reviews that provide researchers with an overview of a field, current knowledge gaps, and future directions. While various tools are available to assess the quality and risk-of-bias of studies, there is currently no generalized tool for assessing the reporting quality of ML in the literature. To address this, this study presents a new screening tool called STAR-ML (Screening Tool for Assessing Reporting of Machine Learning), accompanied by a guide to using it. A pilot scoping review looking at ML in chronic pain was used to investigate the tool. The time it took to screen papers and how the selection of the threshold affected the papers included were explored. The tool provides researchers with a reliable and systematic way to evaluate the quality of reporting of ML studies and to make informed decisions about the inclusion of studies in scoping or systematic reviews. In addition, this study provides recommendations for authors on how to choose the threshold for inclusion and use the tool proficiently. Lastly, the STAR-ML tool can serve as a checklist for researchers seeking to develop or implement ML techniques effectively. C1 [Koh, Ryan G. L.; Nesovic, Karlo; Kumbhare, Dinesh] Univ Hlth Network UHN, KITE Res Inst, Toronto Rehabil Inst, Toronto, ON M5G 2A2, Canada. [Khan, Md Asif; Rashidiani, Sajjad; Liu, Theodore; Doyle, Thomas E.] McMaster Univ, Dept Elect & Comp Engn, Hamilton, ON L8S 4L8, Canada. [Hassan, Samah] UHN, Inst Educ Res TIER, Toronto, ON M5T 1V4, Canada. [Tucci, Victoria] McMaster Univ, Fac Hlth Sci, Hamilton, ON L8S 4L8, Canada. [Doyle, Thomas E.] McMaster Univ, Sch Biomed Engn, Hamilton, ON L8S 4L8, Canada. [Doyle, Thomas E.] Vector Inst Artificial Intelligence, Toronto, ON M5G 1M1, Canada. C3 University of Toronto; University Health Network Toronto; Toronto Rehabilitation Institute; McMaster University; University of Toronto; University Health Network Toronto; McMaster University; McMaster University; Vector Institute for Artificial Intelligence RP Koh, RGL (corresponding author), Univ Hlth Network UHN, KITE Res Inst, Toronto Rehabil Inst, Toronto, ON M5G 2A2, Canada. EM ryan.koh@mail.utoronto.ca RI Izquierdo, Mikel/A-4894-2010 OI Izquierdo, Mikel/0000-0002-1506-4272; Koh, Ryan/0000-0001-8662-1008; Khan, Md Asif/0000-0001-8395-347X; Tucci, Victoria/0000-0002-2344-2560; Hassan, Samah/0000-0003-2526-4515; Liu, Theodore/0000-0001-7334-8129; Kumbhare, Dinesh/0000-0003-3889-7557; Doyle, Thomas/0000-0003-1059-110X; Nesovic, Karlo/0000-0002-1520-954X FU Canadian Department of National Defence IDEaS [CFPMN2-17]; Department of Electrical and Computer Engineering, McMaster University, Hamilton, ON, Canada FX This work was supported in part by the Canadian Department of National Defence IDEaS under Award CFPMN2-17; and in part by the Department of Electrical and Computer Engineering, McMaster University, Hamilton, ON, Canada. CR Akter S, 2022, J BUS RES, V144, P201, DOI 10.1016/j.jbusres.2022.01.083 Alzubaidi L, 2021, J BIG DATA-GER, V8, DOI 10.1186/s40537-021-00444-8 [Anonymous], 2004, SIGKDD Explor. Newsl, DOI [10.1145/1007730.1007735, DOI 10.1145/1007730.1007735] Arlot S, 2010, STAT SURV, V4, P40, DOI 10.1214/09-SS054 Bayat S, 2021, ALZHEIMERS RES THER, V13, DOI 10.1186/s13195-021-00852-1 Bossuyt P M., Ann. Internal Med., V138, pW1 Bracke P., 2019, Bank of England Working Paper No. 816, DOI DOI 10.2139/SSRN.3435104 Chang CC, 2011, ACM T INTEL SYST TEC, V2, DOI 10.1145/1961189.1961199 Cho JH, 2016, Arxiv, DOI [arXiv:1511.06348, DOI 10.48550/ARXIV.1511.06348, 10.48550/arXiv.1511.06348] Cofone IN, 2019, HASTINGS LAW J, V70, P1389 Collins GS, 2021, BMJ OPEN, V11, DOI 10.1136/bmjopen-2020-048008 Collins GS, 2015, J CLIN EPIDEMIOL, V68, P112, DOI [10.1016/j.eururo.2014.11.025, 10.1038/bjc.2014.639, 10.1016/j.jclinepi.2014.11.010, 10.7326/M14-0697, 10.1002/bjs.9736, 10.7326/M14-0698, 10.1136/bmj.g7594, 10.1186/s12916-014-0241-z] Dinga R., 2019, bioRxiv Diptu N. A., 2018, P INT C INT SYST IS, P743 Dixon M. F., 2020, MACHINE LEARNING FIN, V1170 Dousty M., 2023, IEEE J. Biomed. Health 738 Informat., DOI [10.1109/JBHI.2023.3269692.739, DOI 10.1109/JBHI.2023.3269692.739] Doyle T. E., 2022, arXiv Engel J, 2013, TRAC-TREND ANAL CHEM, V50, P96, DOI 10.1016/j.trac.2013.04.015 Esteva A, 2017, NATURE, V542, P115, DOI 10.1038/nature21056 Flach P, 2019, AAAI CONF ARTIF INTE, P9808 Franklin R., 2020, How Data Quality Impacts Machine 902 Learning-Precisely Gan LR, 2020, TECHNOL FORECAST SOC, V153, DOI 10.1016/j.techfore.2020.119928 Geron A., 2019, Hands-on Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems Gibert K, 2016, AI COMMUN, V29, P627, DOI 10.3233/AIC-160710 Goodell JW, 2021, J BEHAV EXP FINANC, V32, DOI 10.1016/j.jbef.2021.100577 Grant MJ, 2009, HEALTH INFO LIBR J, V26, P91, DOI 10.1111/j.1471-1842.2009.00848.x Gudivada V., 2017, Int. J. Adv. Softw., V10, P901 Hawkins DM, 2003, J CHEM INF COMP SCI, V43, P579, DOI 10.1021/ci025626i Hellstr”m T, 2020, Arxiv, DOI arXiv:2004.00686 Higgins JPT, 2011, BMJ-BRIT MED J, V343, DOI 10.1136/bmj.d5928 Hodorog A, 2022, SUSTAIN CITIES SOC, V85, DOI 10.1016/j.scs.2022.104026 Hutter F, 2019, SPRING SER CHALLENGE, P1, DOI 10.1007/978-3-030-05318-5 Jain A, 2020, KDD '20: PROCEEDINGS OF THE 26TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING, P3561, DOI 10.1145/3394486.3406477 Janssens ACJW, 2011, PLOS MED, V8, DOI 10.1371/journal.pmed.1000420 Jayakumar S, 2022, NPJ DIGIT MED, V5, DOI 10.1038/s41746-021-00544-y Ji YT, 2023, ACM T INFORM SYST, V41, DOI 10.1145/3569930 Jiang T, 2020, BEHAV THER, V51, P675, DOI 10.1016/j.beth.2020.05.002 Jiménez-Grande D, 2022, GAIT POSTURE, V96, P81, DOI 10.1016/j.gaitpost.2022.05.015 Jordan MI, 2015, SCIENCE, V349, P255, DOI 10.1126/science.aaa8415 Kapoor S., 2022, arXiv Kaufman S, 2012, ACM T KNOWL DISCOV D, V6, DOI 10.1145/2382577.2382579 Khailany B., 2020, P 751 ACM IEEE 2 WOR, P752 Khan M. A., 2022, P IEEE CAN C EL COMP, P856 Koh RGL, 2020, J NEURAL ENG, V17, DOI 10.1088/1741-2552/ab4ac4 Kotsiantis SB, 2007, INFORM-J COMPUT INFO, V31, P249 Lai V., 2019, P C FAIRN ACC TRANSP, P706 Lambin P, 2017, NAT REV CLIN ONCOL, V14, P749, DOI 10.1038/nrclinonc.2017.141 Leary H, 2018, TECHTRENDS, V62, P525, DOI 10.1007/s11528-018-0312-7 Li ZW, 2022, IEEE T NEUR NET LEAR, V33, P6999, DOI 10.1109/TNNLS.2021.3084827 Liberati A., BMJ, V339, pb2700, DOI DOI 10.1136/BMJ.B2700 Liu XX, 2020, LANCET DIGIT HEALTH, V2, pE537, DOI [10.1016/S2589-7500(20)30218-1, 10.1016/S2589-7500(20)30219-3, 10.1136/bmj.m3164] Lones MA, 2024, Arxiv, DOI [arXiv:2108.02497, DOI 10.48550/ARXIV.2108.02497.E-PRINTS, DOI 10.48550/ARXIV.2108.02497] Maleki F, 2020, NEUROIMAG CLIN N AM, V30, P433, DOI 10.1016/j.nic.2020.08.004 Mitchell T. M., 2007, Machine Learning, V1, P716 Moher D., 2011, Int. J. Surg., V10, P1 Moons KGM, 2014, PLOS MED, V11, DOI 10.1371/journal.pmed.1001744 Navarro CLA, 2021, BMJ-BRIT MED J, V375, DOI 10.1136/bmj.n2281 Nesovic K, 2021, IEEE ENG MED BIO, P4002, DOI 10.1109/EMBC46164.2021.9630261 Noble WS, 2006, NAT BIOTECHNOL, V24, P1565, DOI 10.1038/nbt1206-1565 Page MJ, 2021, INT J SURG, V88, DOI [10.1186/s13643-021-01626-4, 10.1016/j.jclinepi.2021.02.003, 10.1016/j.ijsu.2021.105906] Panesar A, 2019, MACHINE LEARNING AI Park S. J., 2017, IEEE 757 Trans. Very Large Scale Integr. (VLSI) Syst., V25, P759 Rahman QA, 2018, J MED INTERNET RES, V20, DOI 10.2196/12001 Raschka S, 2020, Arxiv, DOI [arXiv:1811.12808, DOI 10.48550/ARXIV.1811.12808] Rauschenberger Maria, 2020, i-com: Journal of Interactive Media, V19, P215, DOI 10.1515/icom-2020-0018 Reich Y, 1999, ARTIF INTELL ENG, V13, P257, DOI 10.1016/S0954-1810(98)00021-1 Reich Y., 1997, Comput.-Aided Civil Infrastruct. Eng., V12, P767 Rivera S. C., 2020, Lancet Digit. Health, V2, P878 Sauerbrei W, 2018, JNCI-J NATL CANCER I, V110, P803, DOI 10.1093/jnci/djy088 Saxena A, 2017, NEUROCOMPUTING, V267, P664, DOI 10.1016/j.neucom.2017.06.053 Shen JY, 2019, JMIR MED INF, V7, DOI 10.2196/10010 Shi BH, 2022, IEEE T BIO-MED ENG, V69, P2256, DOI 10.1109/TBME.2022.3140258 Shmilovici A, 2010, DATA MINING AND KNOWLEDGE DISCOVERY HANDBOOK, SECOND EDITION, P231, DOI 10.1007/978-0-387-09823-4_12 Siau K., 2018, CUTTER BUSINESS TECH, V31, P47 Singh D, 2022, PATTERN RECOGN, V122, DOI 10.1016/j.patcog.2021.108307 Singh D, 2020, APPL SOFT COMPUT, V97, DOI 10.1016/j.asoc.2019.105524 Sounderajah V, 2021, BMJ OPEN, V11, DOI 10.1136/bmjopen-2020-047709 Sun YN, 2020, IEEE T CYBERNETICS, V50, P3840, DOI 10.1109/TCYB.2020.2983860 Sutton A, 2019, HEALTH INFO LIBR J, V36, P202, DOI 10.1111/hir.12276 Sutton RS, 2018, ADAPT COMPUT MACH LE, P1 Vabalas A, 2019, PLOS ONE, V14, DOI 10.1371/journal.pone.0224365 van Wyk F, 2017, 2017 IEEE-NIH HEALTHCARE INNOVATIONS AND POINT OF CARE TECHNOLOGIES (HI-POCT), P109, DOI 10.1109/HIC.2017.8227596 Vasey B, 2022, NAT MED, V28, P924, DOI 10.1038/s41591-022-01772-9 Vokinger KN, 2021, COMMUN MED-LONDON, V1, DOI 10.1038/s43856-021-00028-w von Elm E, 2007, LANCET, V370, P1453, DOI 10.1016/S0140-6736(07)61602-X Wadi M, 2021, J ELECTR ENG-SLOVAK, V72, P315, DOI 10.2478/jee-2021-0044 Whalen S, 2022, NAT REV GENET, V23, P169, DOI 10.1038/s41576-021-00434-9 Whiting Penny, 2003, BMC Med Res Methodol, V3, P25, DOI 10.1186/1471-2288-3-25 Whiting PF, 2011, ANN INTERN MED, V155, P529, DOI 10.7326/0003-4819-155-8-201110180-00009 Wu J, 2017, NATL KEY LAB NOVEL S, V5, P495, DOI [10.13140/RG.2.2.11572.17282, DOI 10.1007/978-3-642-28661-2-5] Xu Rui, 2010, IEEE Rev Biomed Eng, V3, P120, DOI 10.1109/RBME.2010.2083647 Yagis E, 2021, SCI REP-UK, V11, DOI 10.1038/s41598-021-01681-w Yang Z., 2020, IEEE Trans. Knowl. Data Eng., V109, P373 Yu KH, 2018, NAT BIOMED ENG, V2, P719, DOI 10.1038/s41551-018-0305-z Zhang D., 2003, Softw. Quality J., V11, P764 NR 95 TC 1 Z9 1 U1 0 U2 2 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 2169-3536 J9 IEEE ACCESS JI IEEE Access PY 2023 VL 11 BP 101567 EP 101579 DI 10.1109/ACCESS.2023.3316019 PG 13 WC Computer Science, Information Systems; Engineering, Electrical & Electronic; Telecommunications WE Science Citation Index Expanded (SCI-EXPANDED) SC Computer Science; Engineering; Telecommunications GA S5RA7 UT WOS:001071724700001 OA gold DA 2024-09-05 ER PT J AU Hood, A AF Hood, Alison TI Whose responsibility is it? Encouraging student engagement in the learning process SO MUSIC EDUCATION RESEARCH LA English DT Article DE action research; self-assessment; group work; student learning; student confidence; deep learning AB This article presents the results of an action research project that focused on giving students more sense of control and responsibility over their own learning by engaging them more fully in assessment and helping them to understand the principles underpinning assessment criteria. The course is a second-year music module with approximately 85 students. I formed the class into groups to grade model answers and compiled a list of what they believed the assessment criteria should be based on this experience. I then used this list to compile a self-assessment criteria sheet, which the students filled out themselves and attached with each subsequent assessment. When I completed my analysis of data from the first cycle of action research, I implemented the learning from that cycle into a second and third cycle of action. This involved re-evaluating my initial plans in light of my findings; building on what was successful and changing what was not, and refocusing my research. The findings were significant, as their assessment results improved dramatically. Involving students throughout the assessment process, from initially setting the criteria right through to self-assessing their work, improved their grades, reduced student passivity and increased their self-confidence. C1 Natl Univ Ireland Maynooth, Dept Mus, Maynooth, Kildare, Ireland. C3 Maynooth University RP Hood, A (corresponding author), Natl Univ Ireland Maynooth, Dept Mus, Maynooth, Kildare, Ireland. EM Alison.Hood@nuim.ie OI Hood, Alison/0000-0001-5272-8325 CR [Anonymous], ASSESSMENT MATTERS H Assessment Standards Knowledge exchange (ASKe). Centre of Excellence in Teaching and Learning (CETL) Resources, 1 2 3 LEAFL AD SOC C Ballantyne R., 2002, Assessment Evaluation in Higher Education, V27, P427, DOI [https://doi.org/10.1080/0260293022000009302, DOI 10.1080/0260293022000009302] Bawden R., 2000, Cybernetics Human Knowing, V7, P5 Bawden R.J., ATLAS CONCEPTUAL MAP Bergee MJ, 2002, J RES MUSIC EDUC, V50, P256, DOI 10.2307/3345802 Blom D., 2004, BRIT J MUSIC EDUC, V21, P111 Brown G.T.L., 1997, Assessing Student Learning in Higher Education Daniel R., 2004, BRIT J MUSIC EDUC, V21, P89, DOI DOI 10.1017/S0265051703005515 Elliott J., 1991, ACTION RES ED CHANGE Farrell A., 2007, CASE STUDIES GOOD PR, P99 Hernandez R., 2007, CASE STUDIES GOOD PR, P85 Hunter D., 1999, BRIT J MUSIC EDUC, V16, P51, DOI [DOI 10.1017/S0265051799000145, 10.1017/S0265051799000145] Lebler D, 2007, INT J MUSIC EDUC, V25, P205, DOI 10.1177/0255761407083575 McNiff Jean., 2004, YOU YOUR ACTION RES, V2d Newstead Stephen., 2002, Psychology Learning Teaching, V2, P70, DOI DOI 10.2304/PLAT.2002.2.2.70 Price M., 2008, Brookes eJournal of Teaching and Learning, V2 Robinson C., 2006, J COLL CHARACTER, V7, P1 Rust C., 2005, Assessment and Evaluation in Higher Education, V30, P233 Searby M., 1997, Assessment and Evaluation in Higher Education, V22, P371, DOI DOI 10.1080/0260293970220402 NR 20 TC 3 Z9 5 U1 0 U2 13 PU ROUTLEDGE JOURNALS, TAYLOR & FRANCIS LTD PI ABINGDON PA 2-4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND SN 1461-3808 EI 1469-9893 J9 MUSIC EDUC RES JI Music Educ. Res. PY 2012 VL 14 IS 4 BP 457 EP 478 DI 10.1080/14613808.2012.703174 PG 22 WC Education & Educational Research; Music WE Social Science Citation Index (SSCI); Arts & Humanities Citation Index (A&HCI) SC Education & Educational Research; Music GA 041AL UT WOS:000311368500005 OA Green Accepted DA 2024-09-05 ER PT J AU Sharma, D Kumar, R Jung, KH AF Sharma, Deepak Kumar, Rajeev Jung, Ki-Hyun TI A Bibliometric Analysis of Convergence of Artificial Intelligence and Blockchain for Edge of Things SO JOURNAL OF GRID COMPUTING LA English DT Article DE Bibliometric analysis; Artificial intelligence; Convergence; Blockchain; Edge of things; EOT ID SOCIAL NETWORK ANALYSIS; BIG DATA; INTERNET; TOURISM; CHALLENGES; IOT; JOURNALS; SCIENCE AB The convergence of Artificial Intelligence (AI) and Blockchain technologies has emerged as a powerful paradigm to address the challenges of data management, security, and privacy in the Edge of Things (EoTs) environment. This bibliometric analysis aims to explore the research landscape and trends surrounding the topic of convergence of AI and Blockchain for EoTs to gain insights into its development and potential implications. For this, research published during the past six years (2018-2023) in the Web of Science indexed sources has been considered as it has been a new field. VoSViewer-based full counting methodology has been used to analyze citation, co-citation, and co-authorship based collaborations among authors, organizations, countries, sources, and documents. The full counting method in VoSViewer involves considering all authors or sources with equal weight when calculating various bibliometric indicators. Co-occurrence, timeline, and burst detection analysis of keywords and published articles were also carried out to unravel significant research trends on the convergence of AI and Blockchain for EoTs. Our findings reveal a steady growth in research output, indicating the increasing importance and interest in AI-enabled Blockchain solutions for EoTs. Further, the analysis uncovered key influential researchers and institutions driving advancements in this domain, shedding light on potential collaborative networks and knowledge hubs. Additionally, the study examines the evolution of research themes over time, offering insights into emerging areas and future research directions. This bibliometric analysis contributes to the understanding of the state-of-the-art in convergence of AI and Blockchain for EoTs, highlighting the most influential works and identifying knowledge gaps. Researchers, industry practitioners, and policymakers can leverage these findings to inform their research strategies and decision-making processes, fostering innovation and advancements in this cutting-edge interdisciplinary field. C1 [Sharma, Deepak] Christian Albrechts Univ Kiel, Dept Comp Sci, D-24118 Kiel, Schleswig Holst, Germany. [Kumar, Rajeev] Delhi Technol Univ, Dept Comp Sci & Engn, Blockchain Technol Res Lab, New Delhi 110042, Delhi, India. [Jung, Ki-Hyun] Andong Natl Univ, Dept Software Convergence, Andong 36729, Gyeongbuk, South Korea. C3 University of Kiel; Delhi Technological University; Andong National University RP Kumar, R (corresponding author), Delhi Technol Univ, Dept Comp Sci & Engn, Blockchain Technol Res Lab, New Delhi 110042, Delhi, India. EM rajeevkumar@dtu.ac.in FU National Research Foundation of Korea FX No Statement Available CR Al-Fuqaha A, 2015, IEEE COMMUN SURV TUT, V17, P2347, DOI 10.1109/COMST.2015.2444095 Ali MS, 2019, IEEE COMMUN SURV TUT, V21, P1676, DOI 10.1109/COMST.2018.2886932 Allam Z, 2019, CITIES, V89, P80, DOI 10.1016/j.cities.2019.01.032 Andoni M, 2019, RENEW SUST ENERG REV, V100, P143, DOI 10.1016/j.rser.2018.10.014 Atzori L, 2010, COMPUT NETW, V54, P2787, DOI 10.1016/j.comnet.2010.05.010 Baggio R, 2008, P EUTO, P1 Benckendorff P, 2013, ANN TOURISM RES, V43, P121, DOI 10.1016/j.annals.2013.04.005 Benckendorff P, 2009, J HOSP TOUR MANAG, V16, P1, DOI 10.1375/jhtm.16.1.1 Borgman CL, 2002, ANNU REV INFORM SCI, V36, P3 Castro M, 1999, USENIX ASSOCIATION PROCEEDINGS OF THE THIRD SYMPOSIUM ON OPERATING SYSTEMS DESIGN AND IMPLEMENTATION (OSDI '99), P173, DOI 10.1145/571637.571640 Cheng CK, 2011, TOURISM MANAGE, V32, P53, DOI 10.1016/j.tourman.2009.11.004 Christidis K, 2016, IEEE ACCESS, V4, P2292, DOI 10.1109/ACCESS.2016.2566339 Cobo MJ, 2011, J AM SOC INF SCI TEC, V62, P1382, DOI 10.1002/asi.21525 Dai HN, 2019, IEEE INTERNET THINGS, V6, P8076, DOI 10.1109/JIOT.2019.2920987 Fernández-Caramés TM, 2018, IEEE ACCESS, V6, P32979, DOI 10.1109/ACCESS.2018.2842685 Fuller A, 2020, IEEE ACCESS, V8, P108952, DOI 10.1109/ACCESS.2020.2998358 Gubbi J, 2013, FUTURE GENER COMP SY, V29, P1645, DOI 10.1016/j.future.2013.01.010 Hu C, 2008, INT J HOSP MANAG, V27, P302, DOI 10.1016/j.ijhm.2007.01.002 Jamal T, 2008, TOURISM MANAGE, V29, P66, DOI 10.1016/j.tourman.2007.04.001 Jiang YW, 2019, CURR ISSUES TOUR, V22, P1925, DOI 10.1080/13683500.2017.1408574 Jin C., 2023, IEEE Access Kang JW, 2019, IEEE INTERNET THINGS, V6, P10700, DOI 10.1109/JIOT.2019.2940820 Khan MA, 2018, FUTURE GENER COMP SY, V82, P395, DOI 10.1016/j.future.2017.11.022 Khan WZ, 2020, COMPUT ELECTR ENG, V81, DOI 10.1016/j.compeleceng.2019.106522 Klerkx L, 2019, NJAS-WAGEN J LIFE SC, V90-91, DOI 10.1016/j.njas.2019.100315 Lezoche M, 2020, COMPUT IND, V117, DOI 10.1016/j.compind.2020.103187 Li W., 2023, IEEE INTERNET THINGS Lin J, 2017, IEEE INTERNET THINGS, V4, P1125, DOI 10.1109/JIOT.2017.2683200 Liu Y, 2021, IEEE T IND INFORM, V17, P4322, DOI 10.1109/TII.2020.3003910 Lu YL, 2020, IEEE T IND INFORM, V16, P4177, DOI 10.1109/TII.2019.2942190 Maddikunta PKR, 2022, J IND INF INTEGR, V26, DOI 10.1016/j.jii.2021.100257 McKercher B, 2008, TOURISM MANAGE, V29, P1226, DOI 10.1016/j.tourman.2008.03.003 McKercher B, 2006, TOURISM MANAGE, V27, P1235, DOI 10.1016/j.tourman.2005.06.008 Mohammadi M, 2018, IEEE COMMUN SURV TUT, V20, P2923, DOI 10.1109/COMST.2018.2844341 Qadri YA, 2020, IEEE COMMUN SURV TUT, V22, P1121, DOI 10.1109/COMST.2020.2973314 Reyna A, 2018, FUTURE GENER COMP SY, V88, P173, DOI 10.1016/j.future.2018.05.046 Salah K, 2019, IEEE ACCESS, V7, P10127, DOI 10.1109/ACCESS.2018.2890507 Sekhar R, 2021, APPL SYST INNOV, V4, DOI 10.3390/asi4040086 Sharma D, 2021, Metaheuristic algorithms in industry 4.0, P1 Shi WS, 2016, IEEE INTERNET THINGS, V3, P637, DOI 10.1109/JIOT.2016.2579198 Singh S, 2020, SUSTAIN CITIES SOC, V63, DOI 10.1016/j.scs.2020.102364 Singh SK, 2020, FUTURE GENER COMP SY, V110, P721, DOI 10.1016/j.future.2019.09.002 van Raan AFJ, 2005, MEAS-INTERDISCIP RES, V3, P50, DOI 10.1207/s15366359mea0301_7 Wang F., 2023, Blockchain-based lightweight message authentication for edge-assisted cross-domain industrial internet of things, DOI [10.1109/TDSC.2023.3285800, DOI 10.1109/TDSC.2023.3285800] White HD, 1998, J AM SOC INFORM SCI, V49, P327, DOI 10.1002/(SICI)1097-4571(19980401)49:4<327::AID-ASI4>3.0.CO;2-W Wolfert S, 2017, AGR SYST, V153, P69, DOI 10.1016/j.agsy.2017.01.023 Yang Q, 2019, ACM T INTEL SYST TEC, V10, DOI 10.1145/3298981 Yang RZ, 2019, IEEE COMMUN SURV TUT, V21, P1508, DOI 10.1109/COMST.2019.2894727 Ye Q, 2012, TOUR MANAG PERSPECT, V2-3, P55, DOI 10.1016/j.tmp.2012.03.002 Zhao Y, 2021, IEEE INTERNET THINGS, V8, P1817, DOI 10.1109/JIOT.2020.3017377 Zheng ZB, 2017, IEEE INT CONGR BIG, P557, DOI 10.1109/BigDataCongress.2017.85 Zupic I, 2015, ORGAN RES METHODS, V18, P429, DOI 10.1177/1094428114562629 NR 52 TC 2 Z9 2 U1 6 U2 12 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 1570-7873 EI 1572-9184 J9 J GRID COMPUT JI J. Comput. PD DEC PY 2023 VL 21 IS 4 AR 79 DI 10.1007/s10723-023-09716-4 PG 35 WC Computer Science, Information Systems; Computer Science, Theory & Methods WE Science Citation Index Expanded (SCI-EXPANDED) SC Computer Science GA AW8M3 UT WOS:001121578200003 DA 2024-09-05 ER PT J AU Hu, HT Wang, DB Deng, SH AF Hu, Haotian Wang, Dongbo Deng, Sanhong TI Global Collaboration in Artificial Intelligence: Bibliometrics and Network Analysis from 1985 to 2019 SO JOURNAL OF DATA AND INFORMATION SCIENCE LA English DT Article DE Artificial intelligence; International collaboration; Collaboration pattern; Bibliometric analysis; Social network analysis ID INFORMATION-SCIENCE; TRENDS AB Purpose: This study aims to explore the trend and status of international collaboration in the field of artificial intelligence (AI) and to understand the hot topics, core groups, and major collaboration patterns in global AI research. Design/methodology/approach: We selected 38,224 papers in the field of AI from 1985 to 2019 in the core collection database of Web of Science (WoS) and studied international collaboration from the perspectives of authors, institutions, and countries through bibliometric analysis and social network analysis. Findings: The bibliometric results show that in the field of AI, the number of published papers is increasing every year, and 84.8% of them are cooperative papers. Collaboration with more than three authors, collaboration between two countries and collaboration within institutions are the three main levels of collaboration patterns. Through social network analysis, this study found that the US, the UK, France, and Spain led global collaboration research in the field of AI at the country level, while Vietnam, Saudi Arabia, and United Arab Emirates had a high degree of international participation. Collaboration at the institution level reflects obvious regional and economic characteristics. There are the Developing Countries Institution Collaboration Group led by Iran, China, and Vietnam, as well as the Developed Countries Institution Collaboration Group led by the US, Canada, the UK. Also, the Chinese Academy of Sciences (China) plays an important, pivotal role in connecting the these institutional collaboration groups. Research limitations: First, participant contributions in international collaboration may have varied, but in our research they are viewed equally when building collaboration networks. Second, although the edge weight in the collaboration network is considered, it is only used to help reduce the network and does not reflect the strength of collaboration. Originality/value: This work is the longest to date regarding international collaboration in the field of AI. This research explores the evolution, future trends, and major collaboration patterns of international collaboration in the field of AI over the past 35 years. It also reveals the leading countries, core groups, and characteristics of collaboration in the field of AI. C1 [Hu, Haotian; Deng, Sanhong] Nanjing Univ, Sch Informat Management, Nanjing 210023, Peoples R China. [Wang, Dongbo] Nanjing Agr Univ, Coll Informat & Technol, Nanjing 210095, Peoples R China. [Hu, Haotian; Deng, Sanhong] Jiangsu Key Lab Data Engn & Knowledge Serv, Nanjing 210023, Peoples R China. C3 Nanjing University; Nanjing Agricultural University RP Wang, DB (corresponding author), Nanjing Agr Univ, Coll Informat & Technol, Nanjing 210095, Peoples R China. EM hhtdlam@126.com; db.wang@njau.edu.cn; sanhong@inu.edu.cn FU National Natural Science Foundation of China [71673143]; National Social Science Foundation of China [19BTQ062] FX We acknowledge the National Natural Science Foundation of China (Grant No. 71673143) and the National Social Science Foundation of China (Grant No. 19BTQ062) for thier financial support. CR Cai YZ, 2019, SUSTAINABILITY-BASEL, V11, DOI 10.3390/su11174633 Chen XL, 2018, BMC MED INFORM DECIS, V18, DOI [10.1186/s12911-018-0594-x, 10.1186/s12870-018-1555-3] Dinic BM, 2021, CURR PSYCHOL, V40, P3206, DOI 10.1007/s12144-019-00250-9 Dogan G, 2020, J RELIG HEALTH, V59, P96, DOI 10.1007/s10943-019-00886-8 Frey CD, 2017, WORLD NEUROSURG, V108, P901, DOI 10.1016/j.wneu.2017.09.011 Gao F, 2021, MICROSYST TECHNOL, V27, P1545, DOI 10.1007/s00542-019-04426-y Godoy D, 2015, SCIENTOMETRICS, V102, P1795, DOI 10.1007/s11192-014-1450-0 Hu HT, 2019, PRO INT CONF SCI INF, P2501 Koehler W, 2001, SCIENTOMETRICS, V51, P117, DOI 10.1023/A:1010516712215 Aleixandre-Tudó JL, 2019, RENEW ENERG, V139, P268, DOI 10.1016/j.renene.2019.02.079 Miller T, 2019, ARTIF INTELL, V267, P1, DOI 10.1016/j.artint.2018.07.007 Niu JQ, 2016, ISPRS INT J GEO-INF, V5, DOI 10.3390/ijgi5050066 Pan WW, 2019, SCIENTOMETRICS, V121, P1407, DOI 10.1007/s11192-019-03256-z Pee LG, 2019, J ASSOC INF SCI TECH, V70, P351, DOI 10.1002/asi.24145 Peng XD, 2020, ARTIF INTELL REV, V53, P199, DOI 10.1007/s10462-018-9652-0 Shukla AK, 2019, ENG APPL ARTIF INTEL, V85, P517, DOI 10.1016/j.engappai.2019.06.010 Sohn E, 2018, 2018 IEEE/ACM INTERNATIONAL CONFERENCE ON ADVANCES IN SOCIAL NETWORKS ANALYSIS AND MINING (ASONAM), P727, DOI 10.1109/ASONAM.2018.8508350 Tang K.Y., 2019, ASIA-PAC EDUC RES, P1 Tarazona-Alvarez B, 2019, HEAD FACE MED, V15, DOI 10.1186/s13005-019-0207-7 Tsay MY, 2011, SCIENTOMETRICS, V89, P591, DOI 10.1007/s11192-011-0460-4 Wu Y, 2015, INT J MENT HEALTH SY, V9, DOI 10.1186/1752-4458-9-2 NR 21 TC 10 Z9 11 U1 3 U2 47 PU SCIENDO PI WARSAW PA BOGUMILA ZUGA 32A, WARSAW, MAZOVIA, POLAND SN 2096-157X EI 2543-683X J9 J DATA INFO SCI JI J. Data Info. Sci. PD NOV PY 2020 VL 5 IS 4 BP 86 EP 115 DI 10.2478/jdis-2020-0027 PG 30 WC Information Science & Library Science WE Emerging Sources Citation Index (ESCI) SC Information Science & Library Science GA OZ6NJ UT WOS:000595040100008 OA gold DA 2024-09-05 ER PT C AU Yan, Z Guo, WS Zhong, YL Sun, MS AF Yan, Zhong Guo Wensi Zhong Yanling Sun Maosheng GP IEEE TI Research on Big Data Intelligent Application Effect Evaluation Overall Technology SO 2020 INTERNATIONAL CONFERENCE ON BIG DATA & ARTIFICIAL INTELLIGENCE & SOFTWARE ENGINEERING (ICBASE 2020) LA English DT Proceedings Paper CT International Conference on Big Data and Artificial Intelligence and Software Engineering (ICBASE) CY OCT 23-25, 2020 CL Chengdu, PEOPLES R CHINA DE component; big data; artificial intelligence; digital simulation; process customization AB The big data intelligent application effect evaluation is aimed at panoramic, realistic, dynamic and quantitative displaying and analyzing the whole process and effect of big data intelligent application, and the main scene is the application of important points such as simulation deduction, simulation evaluation and situation analysis. By using the mature experience in the field of digital simulation evaluation, integrating the latest research achievements in the field of big data analysis and artificial intelligence, the overall technology route is creatively proposed with data integration scale, application modeling intelligent, process deduction customization, effect evaluation refined, situation display comprehensive. Research results will guide the prototype system construction. C1 [Yan, Zhong; Guo Wensi; Zhong Yanling; Sun Maosheng] AMA, PLA, Inst Chem Def, Beijing, Peoples R China. RP Guo, WS (corresponding author), AMA, PLA, Inst Chem Def, Beijing, Peoples R China. EM yggong@pku.edu.cn CR [陈静 Chen Jing], 2012, [模式识别与人工智能, Pattern Recognition and Artificial Intelligence], V25, P29 Jiang JH, 2020, L N INST COMP SCI SO, V300, P63, DOI 10.1007/978-3-030-38819-5_5 [吕红亮 Lyu Hongliang], 2020, [火力与指挥控制, Fire Control & Command Control], V45, P135 Mao L, 2020, JAMA NEUROL, V77, P683, DOI 10.1001/jamaneurol.2020.1127 WANG Jianmin, 2018, BIG DATA RES WHO, 2012, GLOBAL TUBERCULOSIS REPORT 2012, P1 Zhao Xin-yi, 2019, Control Theory & Applications, V36, P1, DOI 10.7641/CTA.2018.80418 [郑娟 ZHENG Juan], 2007, [计算机仿真, Computer simulation], V24, P9 NR 8 TC 0 Z9 0 U1 1 U2 6 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA BN 978-1-7281-9619-0 PY 2020 BP 78 EP 81 DI 10.1109/ICBASE51474.2020.00024 PG 4 WC Computer Science, Artificial Intelligence; Computer Science, Software Engineering; Computer Science, Theory & Methods WE Conference Proceedings Citation Index - Science (CPCI-S) SC Computer Science GA BR8GI UT WOS:000671885700018 DA 2024-09-05 ER PT J AU Khanfar, AA Mavi, RK Iranmanesh, M Gengatharen, D AF Khanfar, Ahmad A. Mavi, Reza Kiani Iranmanesh, Mohammad Gengatharen, Denise TI Determinants of artificial intelligence adoption: research themes and future directions SO INFORMATION TECHNOLOGY & MANAGEMENT LA English DT Article; Early Access DE Artificial intelligence; Technology adoption; Adoption models; Keyword analysis; Thematic analysis; Bibliometric analysis ID ACCEPTANCE; CHALLENGES; EVOLUTION; NETWORK; SYSTEMS; TOOL AB The adoption of artificial intelligence (AI) systems is on the rise owing to their many benefits. This study conducted a bibliometric analysis to identify (1) how the literature on AI adoption has evolved over the past few years, (2) key themes associated with AI adoption in the literature, and (3) the gaps in the literature. To achieve these objectives, we utilised the Biblioshiny of R-package bibliometric analysis tool to analyse the AI adoption literature. A total of 91 articles were reviewed and analysed in this study. Four major themes were identified: AI, machine learning, the unified theory of acceptance and use of technology (UTAUT) model and the technology acceptance model (TAM). Using a content analysis of the identified themes, the study gained additional insight into the studies on AI adoption. Previous studies have been limited to specific industries and systems, and adoption theories like the UTAUT and TAM have also been utilised to a limited extent. Directions for future studies were provided. C1 [Khanfar, Ahmad A.; Mavi, Reza Kiani; Gengatharen, Denise] Edith Cowan Univ, Sch Business & Law, Joondalup, WA 6027, Australia. [Iranmanesh, Mohammad] La Trobe Univ, La Trobe Business Sch, Melbourne, Vic 3086, Australia. C3 Edith Cowan University; La Trobe University RP Khanfar, AA (corresponding author), Edith Cowan Univ, Sch Business & Law, Joondalup, WA 6027, Australia. EM a.khanfar@ecu.edu.au FU CAUL and its Member Institutions FX Open Access funding enabled and organized by CAUL and its Member Institutions. This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors. CR Abdelwahed A.S., 2023, Int J Audit Account Stud, V5, P49 Abioye SO, 2021, J BUILD ENG, V44, DOI 10.1016/j.jobe.2021.103299 Agarwal A, 2023, FORESIGHT, V25, P67, DOI 10.1108/FS-10-2021-0199 Al Badi FK, 2022, VISION-INDIA, V26, P193, DOI 10.1177/0972262920988398 Alghamdi MI., 2020, Period Eng Nat Sci, V8, P2516 Alshare K.A., 2019, Journal of Systems and Information Technology, V21, P166, DOI [DOI 10.1108/JSIT-08-2018-0108, 10.1108/jsit-08-2018-0108] Ameen N, 2021, COMPUT HUM BEHAV, V114, DOI 10.1016/j.chb.2020.106548 [Anonymous], 1990, The process of technology innovation Aria M, 2017, J INFORMETR, V11, P959, DOI 10.1016/j.joi.2017.08.007 Bademosi F, 2021, J CONSTR ENG M, V147, DOI 10.1061/(ASCE)CO.1943-7862.0002103 Bailón-Moreno R, 2006, J AM SOC INF SCI TEC, V57, P949, DOI 10.1002/asi.20362 Baumgartner M, 2022, ELECTRONICS-SWITZ, V11, DOI 10.3390/electronics11010145 Bedué P, 2022, J ENTERP INF MANAG, V35, P530, DOI 10.1108/JEIM-06-2020-0233 Beydoun G, 2019, INFORM SYST FRONT, V21, P485, DOI 10.1007/s10796-019-09925-x Bitkina OV, 2020, HUM FACTOR ERGON MAN, V30, P282, DOI 10.1002/hfm.20839 Bröhl C, 2019, INT J SOC ROBOT, V11, P709, DOI 10.1007/s12369-019-00593-0 Brooks C, 2020, CAMB J REG ECON SOC, V13, P135, DOI 10.1093/cjres/rsz026 CALLON M, 1991, SCIENTOMETRICS, V22, P155, DOI 10.1007/BF02019280 Cao GM, 2021, TECHNOVATION, V106, DOI 10.1016/j.technovation.2021.102312 Chatterjee S, 2020, BOTTOM LINE, V33, P359, DOI 10.1108/BL-08-2020-0057 Chen H, 2021, J MANAG ANAL, V8, P36, DOI 10.1080/23270012.2020.1852895 Chen X., 2020, Computers and Education: Artificial Intelligence, V1, P100002, DOI DOI 10.1016/J.CAEAI.2020.100002 Chocarro R, 2023, EDUC STUD-UK, V49, P295, DOI 10.1080/03055698.2020.1850426 Choudhury A, 2022, APPL ERGON, V101, DOI 10.1016/j.apergo.2022.103708 Cobo MJ, 2011, J INFORMETR, V5, P146, DOI 10.1016/j.joi.2010.10.002 Cornelissen L, 2022, JMIR FORM RES, V6, DOI 10.2196/33368 Loureiro SMC, 2021, J BUS RES, V129, P911, DOI 10.1016/j.jbusres.2020.11.001 Dabbous A, 2022, J ASIA BUS STUD, V16, P245, DOI 10.1108/JABS-09-2020-0372 Delgado JMD, 2019, J BUILD ENG, V26, DOI 10.1016/j.jobe.2019.100868 Donthu N, 2021, J BUS RES, V133, P285, DOI 10.1016/j.jbusres.2021.04.070 Dora M, 2022, INT J PROD RES, V60, P4621, DOI 10.1080/00207543.2021.1959665 Du YF, 2022, EDUC INF TECHNOL, V27, P9357, DOI 10.1007/s10639-022-11001-y Duan YQ, 2019, INT J INFORM MANAGE, V48, P63, DOI 10.1016/j.ijinfomgt.2019.01.021 Foncubierta-Rodríguez A, 2014, MULTIMED TOOLS APPL, V69, P539, DOI 10.1007/s11042-012-1327-2 Fountain T, 2019, HARVARD BUS REV, V97, P62 Fukumura YE, 2021, INT J ENV RES PUB HE, V18, DOI 10.3390/ijerph18041690 Ghandour A, 2021, TEM J, V10, P1581, DOI 10.18421/TEM104-12 Golightly D, 2022, SUSTAINABILITY-BASEL, V14, DOI 10.3390/su14042123 Grover P, 2022, ANN OPER RES, V308, P177, DOI 10.1007/s10479-020-03683-9 Gupta KP, 2020, J INF TECHNOL EDUC-R, V19, P693, DOI 10.28945/4640 Han J, 2020, ROBOTICS, V9, DOI 10.3390/robotics9020034 Harker Richard., 2016, An Introduction to the Work of Pierre Bourdieu: The Practice of Theory Hradecky D, 2022, INT J INFORM MANAGE, V65, DOI 10.1016/j.ijinfomgt.2022.102497 Huang Z, 2022, ENG CONSTR ARCHIT MA, V29, P3664, DOI 10.1108/ECAM-03-2021-0267 Jöhnk J, 2021, BUS INFORM SYST ENG+, V63, P5, DOI 10.1007/s12599-020-00676-7 Kalyanaraman A, 2022, COMPUT ELECTRON AGR, V197, DOI 10.1016/j.compag.2022.106944 Kar S, 2021, INTELL SYST ACCOUNT, V28, P217, DOI 10.1002/isaf.1503 Kehayov M, 2022, PROCEDIA COMPUT SCI, V200, P1209, DOI 10.1016/j.procs.2022.01.321 Khanfar AAA, 2021, SUSTAINABILITY-BASEL, V13, DOI 10.3390/su13147870 Kinkel S, 2022, TECHNOVATION, V110, DOI 10.1016/j.technovation.2021.102375 Königstorfer F, 2020, J BEHAV EXP FINANC, V27, DOI 10.1016/j.jbef.2020.100352 Kotb A, 2018, INT J AUDIT, V22, P464, DOI 10.1111/ijau.12132 Kumar S, 2021, TECHNOL SOC, V67, DOI 10.1016/j.techsoc.2021.101737 Latikka R, 2019, COMPUT HUM BEHAV, V93, P157, DOI 10.1016/j.chb.2018.12.017 Leigh NG, 2022, IND INNOV, V29, P1025, DOI 10.1080/13662716.2021.2007757 Liker JK, 1997, J ENG TECHNOL MANAGE, V14, P147, DOI 10.1016/S0923-4748(97)00008-8 Maflahi N, 2016, J ASSOC INF SCI TECH, V67, P191, DOI 10.1002/asi.23369 Makarius EE, 2020, J BUS RES, V120, P262, DOI 10.1016/j.jbusres.2020.07.045 Marangunic N, 2015, UNIVERSAL ACCESS INF, V14, P81, DOI 10.1007/s10209-014-0348-1 Marlina L, 2021, Libr Philos Pract, V4999 Mogaji E, 2022, INT J BANK MARK, V40, P1272, DOI 10.1108/IJBM-09-2021-0440 Neumann O, 2024, PUBLIC MANAG REV, V26, P114, DOI 10.1080/14719037.2022.2048685 Pan JX, 2019, INT J PROD RES, V57, P5801, DOI 10.1080/00207543.2018.1550272 Pan M, 2020, J CONSTR ENG M, V146, DOI 10.1061/(ASCE)CO.1943-7862.0001821 Pan M, 2019, J MANAGE ENG, V35, DOI 10.1061/(ASCE)ME.1943-5479.0000706 Pan Y, 2022, INT J HUM RESOUR MAN, V33, P1125, DOI 10.1080/09585192.2021.1879206 Park E, 2016, PROGRAM-ELECTRON LIB, V50, P354, DOI 10.1108/PROG-02-2016-0017 Pillai R, 2020, BENCHMARKING, V27, P2599, DOI 10.1108/BIJ-04-2020-0186 Pizam A, 2022, INT J HOSP MANAG, V102, DOI 10.1016/j.ijhm.2022.103139 Pradhananga P, 2021, J CONSTR ENG M, V147, DOI 10.1061/(ASCE)CO.1943-7862.0002007 Pramod D, 2022, BENCHMARKING, V29, P1562, DOI 10.1108/BIJ-01-2021-0033 Priya SS, 2023, FORESIGHT, V25, P20, DOI 10.1108/FS-09-2021-0181 Ransbotham S, 2017, MIT Sloan Manag Rev Cambridge, V59 Ransbotham S, 2021, MIT Sloan Manag Rev Regona M., 2022, Journal of open innovation: Technology, Market, and Complexity, V8, P45, DOI [10.3390/joitmc8010045, DOI 10.3390/JOITMC8010045] Sibbald M, 2024, J EVAL CLIN PRACT, V30, P3, DOI 10.1111/jep.13730 Siderska J, 2021, SUSTAINABILITY-BASEL, V13, DOI 10.3390/su13148020 Simoes AC, 2020, J ENG TECHNOL MANAGE, V57, DOI 10.1016/j.jengtecman.2020.101574 Singh RP, 2020, TRANSL VIS SCI TECHN, V9, DOI 10.1167/tvst.9.2.45 Turja T, 2019, INT J SOC ROBOT, V11, P679, DOI 10.1007/s12369-019-00526-x Tyson MM, 2021, J EDUC ADMIN, V59, P271, DOI 10.1108/JEA-10-2020-0221 Van Phuoc N, 2022, ECONOMIES, V10, DOI 10.3390/economies10060129 Venkatesh V, 2012, MIS QUART, V36, P157 Vichitkraivin P, 2021, HEALTH TECHNOL-GER, V11, P139, DOI 10.1007/s12553-020-00489-4 Wang K, 2021, SUSTAINABILITY-BASEL, V13, DOI 10.3390/su131910983 Wang YY, 2021, INT J TECHNOL MANAGE, V87, P229, DOI 10.1504/IJTM.2021.120932 Wang YK, 2022, SOC SCI COMPUT REV, V40, P534, DOI 10.1177/0894439320980132 Wang YM, 2021, EDUC TECHNOL SOC, V24, P116 Westenberger Jens, 2022, Procedia Computer Science, P69, DOI 10.1016/j.procs.2021.11.074 Xu N, 2022, INT J SOC ROBOT, V14, P1043, DOI 10.1007/s12369-021-00850-1 Xu N, 2021, J MANAGE ORGAN, V27, P867, DOI 10.1017/jmo.2018.81 Yu XY, 2023, INFORM TECHNOL PEOPL, V36, P454, DOI 10.1108/ITP-04-2021-0254 NR 92 TC 0 Z9 0 U1 1 U2 1 PU SPRINGER PI NEW YORK PA ONE NEW YORK PLAZA, SUITE 4600, NEW YORK, NY, UNITED STATES SN 1385-951X EI 1573-7667 J9 INFORM TECHNOL MANAG JI Inf. Technol. Manag. PD 2024 AUG 23 PY 2024 DI 10.1007/s10799-024-00435-0 EA AUG 2024 PG 21 WC Information Science & Library Science; Management WE Social Science Citation Index (SSCI) SC Information Science & Library Science; Business & Economics GA D5L9N UT WOS:001296606600002 OA hybrid DA 2024-09-05 ER PT J AU Bonner, C McKinn, S Lau, A Jansen, J Doust, J Trevena, L McCaffery, K AF Bonner, Carissa McKinn, Shannon Lau, Annie Jansen, Jesse Doust, Jenny Trevena, Lyndal McCaffery, Kirsten TI Heuristics and biases in cardiovascular disease prevention: How can we improve communication about risk, benefits and harms? SO PATIENT EDUCATION AND COUNSELING LA English DT Article DE Cardiovascular disease; Risk communication; Risk assessment; Risk formats; Heuristics; Qualitative research ID TOOL; INFORMATION AB Objective: Cardiovascular disease (CVD) prevention guidelines recommend medication based on the probability of a heart attack/stroke in the next 5-10 years. However, heuristics and biases make risk communication challenging for doctors. This study explored how patients interpret personalised CVD risk results presented in varying formats and timeframes. Methods: GPs recruited 25 patients with CVD risk factors and varying medication history. Participants were asked to 'think aloud' while using two CVD risk calculators that present probabilistic risk in different ways, within a semi-structured interview. Transcribed audio-recordings were coded using Framework Analysis. Results: Key themes were: 1) numbers lack meaning without a reference point; 2) risk results need to be both credible and novel; 3) selective attention to intervention effects. Risk categories (low/moderate/high) provided meaningful context, but short-term risk results were not credible if they didn't match expectations. Colour-coded icon arrays showing the effect of age and interventions were seen as novel and motivating. Those on medication focused on benefits, while others focused on harms. Conclusion: CVD risk formats need to be tailored to patient expectations and experiences in order to counteract heuristics and biases. Practice implications: Doctors need access to multiple CVD risk formats to communicate effectively about CVD prevention. (C) 2017 Elsevier B.V. All rights reserved. C1 [Bonner, Carissa; McKinn, Shannon; Jansen, Jesse; Trevena, Lyndal; McCaffery, Kirsten] Univ Sydney, Sydney Sch Publ Hlth, Sydney, NSW, Australia. [Lau, Annie] Macquarie Univ, Australian Inst Hlth Innovat, Ctr Hlth Informat, Sydney, NSW, Australia. [Doust, Jenny] Bond Univ, Fac Hlth Sci & Med, Robina, Australia. C3 University of Sydney; Macquarie University; Bond University RP Bonner, C (corresponding author), Univ Sydney, Edward Ford Bldg A27, Sydney, NSW 2006, Australia. EM carissa.bonner@sydney.edu.au; shannon.mckinn@sydney.edu.au; annie.lau@mq.edu.au; jesse.jansen@sydney.edu.au; jdoust@bond.edu.au; lyndal.trevena@sydney.edu.au; kirsten.mccaffery@sydney.edu.au RI McCaffery, Kirsten/K-7945-2019; Doust, Jenny/AGI-8773-2022; McKinn, Shannon/AAW-7934-2020; Bonner, Carissa/AFL-3726-2022 OI McCaffery, Kirsten/0000-0003-2696-5006; Doust, Jenny/0000-0002-4024-9308; McKinn, Shannon/0000-0001-6384-1745; Bonner, Carissa/0000-0002-4797-6460; Lau, Annie Y.S./0000-0002-3028-4222 FU National Health and Medical Research Council (NHMRC) through the Screening and Test Evaluation Program [633003] FX The study was supported by the National Health and Medical Research Council (NHMRC) through the Screening and Test Evaluation Program (No. 633003). The funders had no role in the design or conduct of the study; in the collection, analysis, and interpretation of the data; or in the preparation or approval of the manuscript. CR ANDERSON KM, 1991, AM HEART J, V121, P293, DOI 10.1016/0002-8703(91)90861-B [Anonymous], 2011, THINKING [Anonymous], NICE CLINICAL GUIDEL Barbour RS, 2001, BMJ-BRIT MED J, V322, P1115, DOI 10.1136/bmj.322.7294.1115 Bonner C, 2015, MED DECIS MAKING, V35, P967, DOI 10.1177/0272989X15597224 Bonner C, 2015, HEALTH PSYCHOL, V34, P253, DOI 10.1037/hea0000122 Bonner C, 2014, BMC FAM PRACT, V15, DOI 10.1186/1471-2296-15-106 Bonner C, 2014, J MED INTERNET RES, V16, P118, DOI 10.2196/jmir.3190 Bonner C, 2013, MED J AUSTRALIA, V199, P485, DOI 10.5694/mja13.10133 Bowen GA, 2008, QUAL RES, V8, P137, DOI 10.1177/1468794107085301 D'Agostino RB, 2008, CIRCULATION, V117, P743, DOI 10.1161/CIRCULATIONAHA.107.699579 Dillard AJ, 2011, ANN BEHAV MED, V42, P262, DOI 10.1007/s12160-011-9287-8 Doust J, 2012, AUST FAM PHYSICIAN, V41, P805 Fagerlin A, 2007, PATIENT EDUC COUNS, V69, P140, DOI 10.1016/j.pec.2007.08.008 Ferket BS, 2010, ARCH INTERN MED, V170, P27, DOI 10.1001/archinternmed.2009.434 Goff DC, 2014, J AM COLL CARDIOL, V63, P2935, DOI 10.1016/j.jacc.2013.11.005 Jackson R, 2005, LANCET, V365, P434, DOI 10.1016/S0140-6736(05)17833-7 Kuusela H, 2000, AM J PSYCHOL, V113, P387, DOI 10.2307/1423365 Lopez-Gonzalez AA, 2015, EUR J PREV CARDIOL, V22, P389, DOI 10.1177/2047487313518479 Marshall MN, 1996, FAM PRACT, V13, P522, DOI 10.1093/fampra/13.6.522 McCaffery KJ, 2010, MED DECIS MAKING, V30, P35, DOI 10.1177/0272989X09342279 Neuner-Jehle S, 2011, BMC FAM PRACT, V12, DOI 10.1186/1471-2296-12-15 New Zealand Guidelines Group, 2013, NEW ZEALAND PRIMARY NNational Vascular Disease Prevention Alliance (NVDPA), 2009, GUIDELINES FOR THE A NNational Vascular Disease Prevention Alliance (NVDPA), 2012, GUIDELINES FOR THE M Oertelt-Prigione S, 2015, BMC MED, V13, DOI 10.1186/s12916-015-0304-9 Piepoli MF, 2016, EUR HEART J, V37, P2315, DOI 10.1093/eurheartj/ehw106 Polak L, 2015, BRIT J GEN PRACT, V65, pE264, DOI 10.3399/bjgp15X684433 Ritchie J., 2003, A Guide for Social Science Students Researchers, P219 Scott IA, 2017, MED J AUSTRALIA, V206, DOI 10.5694/mja16.00999 Shah AK, 2008, PSYCHOL BULL, V134, P207, DOI 10.1037/0033-2909.134.2.207 Sinayev A, 2015, MED DECIS MAKING, V35, P937, DOI 10.1177/0272989X15584922 Soureti A, 2010, EUR J CARDIOV PREV R, V17, P519, DOI 10.1097/HJR.0b013e328337ccd3 Trevena B. J., 2013, BMC MED INFORM DECIS, V13, pS7, DOI [10.1186/1472-6947-13-S2-S7, DOI 10.1186/1472-6947-13-S2-S7] Ubel PA, 2010, PATIENT EDUC COUNS, V80, P158, DOI 10.1016/j.pec.2009.10.021 Waldron CA, 2011, PATIENT EDUC COUNS, V82, P169, DOI 10.1016/j.pec.2010.04.014 Zikmund-Fisher BJ, 2013, MED CARE RES REV, V70, p37S, DOI 10.1177/1077558712458541 NR 37 TC 16 Z9 19 U1 0 U2 12 PU ELSEVIER IRELAND LTD PI CLARE PA ELSEVIER HOUSE, BROOKVALE PLAZA, EAST PARK SHANNON, CO, CLARE, 00000, IRELAND SN 0738-3991 J9 PATIENT EDUC COUNS JI Patient Educ. Couns. PD MAY PY 2018 VL 101 IS 5 BP 843 EP 853 DI 10.1016/j.pec.2017.12.003 PG 11 WC Public, Environmental & Occupational Health; Social Sciences, Interdisciplinary WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Public, Environmental & Occupational Health; Social Sciences - Other Topics GA GD3ZH UT WOS:000430441800010 PM 29269097 OA Green Submitted DA 2024-09-05 ER PT J AU LUDL, H SCHOPE, K MANGELSDORF, I AF LUDL, H SCHOPE, K MANGELSDORF, I TI SEARCHING FOR INFORMATION ON CHEMICAL-SUBSTANCES IN SELECTED BIOMEDICAL BIBLIOGRAPHIC DATABASES SO CHEMOSPHERE LA English DT Article DE BIBLIOGRAPHIC DATABASES; ONLINE RETRIEVAL; EVALUATION OF CHEMICALS; CHEMICAL SUBSTANCES; CAS NUMBER; SUBSTANCE NAMES; RECALL; PRECISION AB A method was developed which allows effective searching for information on chemical substances in databases. Several searches for chemicals in bibliographic databases were carried out to analyse the method of indexing chemical names. The recall rates of documents were compared to evaluate information resources as well as searching strategies. Recall rates of documents searched with the CAS Nos. were compared to those searched with substance name. It turned out that searching for substances is most specific and fastest with CAS Nos. They should always be used whenever possible. However, this is not sufficient in many BDs, making an additional search using chemical names necessary. Specific search options that have to be considered for each database are reported. RP LUDL, H (corresponding author), GSF FORSCHUNGSZENTRUM UNWELT & GESUNDHEIT,INST TOXIKOL,INGOLSTADTER LANDSTR 1,D-85758 OBERSCHLEISSHEIM,GERMANY. CR DOSZKOCS TE, 1976, J CHEM INF COMP SCI, V16, P131, DOI 10.1021/ci60007a003 GREIM H, 1993, CHEMOSPHERE, V26, P1653, DOI 10.1016/0045-6535(93)90110-Q HARTER SP, 1986, E COMMUNICATION HOECHST, 1991, GRUNDDATENSATZ DINOS HOECHST, 1991, GRUNDDATENSATZ DIMET HOECHST, 1991, GRUNDDATENSATZ KAMPF HOECHST, 1991, GRUNDDATENSATZ CROTO SCHON N, 1991, Z UMWELTCHEM OKOTOX, V3, P183 SCHON N, 1992, Z UMWELTCHEM OKOTOX, V4, P343 SCHULTEHILLEN J, 1991, DATENBANKFUHRER NATU SCHULTHEISZ RJ, 1981, J AM SOC INFORM SCI, V11, P421 1991, DATA SHEETS 1991, BENUTZERHANDBUCH EMB 1991, BIOMEDICAL INFORMATI 1994, ECETOC30 TECHN REP 1991, BENUTZERHANDBUCH SCI 1991, DIMDI GRIPS0191 DTSC 1991, BIOSIS SEARCH GUIDE 1993, EMBASE USER MANUAL 1991, GRIPS KOMMANDOSPRACH 1991, GUIDE COMMANDS 1991, BENUTZERHANDBUCH MED 1986, BENUTZERHANDBUCH CHE 1990, MEMOKARTEN NR 24 TC 4 Z9 4 U1 0 U2 0 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD, ENGLAND OX5 1GB SN 0045-6535 J9 CHEMOSPHERE JI Chemosphere PD JUL PY 1995 VL 31 IS 2 BP 2611 EP 2628 DI 10.1016/0045-6535(95)00134-T PG 18 WC Environmental Sciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Environmental Sciences & Ecology GA RL927 UT WOS:A1995RL92700004 PM 7663948 DA 2024-09-05 ER PT C AU Bioglio, L Rho, V Pensa, RG AF Bioglio, Livio Rho, Valentina Pensa, Ruggero G. BE Yamamoto, A Kida, T Uno, T Kuboyama, T TI Measuring the Inspiration Rate of Topics in Bibliographic Networks SO DISCOVERY SCIENCE, DS 2017 SE Lecture Notes in Artificial Intelligence LA English DT Proceedings Paper CT 20th International Conference on Discovery Science (DS) CY OCT 15-17, 2017 CL Kyoto, JAPAN DE Information diffusion; Topic modeling; Citation networks AB Information diffusion is a widely-studied topic thanks to its applications to social media/network analysis, viral marketing campaigns, influence maximization and prediction. In bibliographic networks, for instance, an information diffusion process takes place when some authors, that publish papers in a given topic, influence some of their neighbors (coauthors, citing authors, collaborators) to publish papers in the same topic, and the latter influence their neighbors in their turn. This well-accepted definition, however, does not consider that influence in bibliographic networks is a complex phenomenon involving several scientific and cultural aspects. In fact, in scientific citation networks, influential topics are usually considered those ones that spread most rapidly in the network. Although this is generally a fact, this semantics does not consider that topics in bibliographic networks evolve continuously. In fact, knowledge, information and ideas are dynamic entities that acquire different meanings when passing from one person to another. Thus, in this paper, we propose a new definition of influence that captures the diffusion of inspiration within the network. We propose a measure of the inspiration rate called inspiration rank. Finally, we show the effectiveness of our measure in detecting the most inspiring topics in a citation network built upon a large bibliographic dataset. C1 [Bioglio, Livio; Rho, Valentina; Pensa, Ruggero G.] Univ Turin, Dept Comp Sci, Turin, Italy. C3 University of Turin RP Pensa, RG (corresponding author), Univ Turin, Dept Comp Sci, Turin, Italy. EM livio.bioglio@unito.it; valentina.rho@unito.it; ruggero.pensa@unito.it RI Pensa, Ruggero G./B-5994-2011 OI Pensa, Ruggero G./0000-0001-5145-3438 FU project MIMOSA (MultIModal Ontology-driven query system for the heterogeneous data of a SmArtcity, "Progetto di Ateneo Torino_call") [2014_L2_157] FX This work is partially funded by project MIMOSA (MultIModal Ontology-driven query system for the heterogeneous data of a SmArtcity, "Progetto di Ateneo Torino_call2014_L2_157", 2015-17). CR [Anonymous], 2009, P 2009 SIAM INT C DA [Anonymous], 2010, P ADV NEUR INF PROC P ADV NEUR INF PROC P ADV NEUR INF PROC P ADV NEUR INF PROC P ADV NEUR INF PROC P ADV NEUR INF PROC P ADV NEUR INF PROC P ADV NEUR INF PROC [Anonymous], 2004, INFORM DIFFUSION BLO, DOI DOI 10.1145/988672.988739 [Anonymous], 2009, Proceeding of the 18th ACM Conference on Information and Knowledge Management, DOI DOI 10.1145/1645953.1646076 [Anonymous], PHYS REV E 2 [Anonymous], P ICWSM 2010 [Anonymous], 2004, P 13 INT C WORLD WID, DOI DOI 10.1145/1046456.1046462 [Anonymous], 2003, P 9 ACM SIGKDD INT C [Anonymous], P ICWSM 2009 Bakshy Eytan, 2012, P 21 INT C WORLD WID, P519 Barbieri N, 2013, KNOWL INF SYST, V37, P555, DOI 10.1007/s10115-013-0646-6 Boguslawski B, 2015, IEEE INT CONF VLSI, P116, DOI 10.1109/VLSI-SoC.2015.7314402 Chen W, 2009, KDD-09: 15TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, P199, DOI 10.1145/1557019.1557047 Coates Adam, 2013, P 30 INT C MACH LEAR, P1337 Cui P, 2011, PROCEEDINGS OF THE 34TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL (SIGIR'11), P185 DALEY DJ, 1964, NATURE, V204, P1118, DOI 10.1038/2041118a0 Goldenberg J, 2001, MARKET LETT, V12, P211, DOI 10.1023/A:1011122126881 Gui H., 2014, P 23 ACM INT C C INF, P649, DOI DOI 10.1145/2661829.2662000 Hethcote HW, 2000, SIAM REV, V42, P599, DOI 10.1137/S0036144500371907 Leskovec J., 2007, ACM Transactions on Knowledge Discovery from Data (TKDD), V1, P5 Rehurek R., 2010, LREC Seo JS, 2015, IEEE INT CONF VLSI, P49, DOI 10.1109/VLSI-SoC.2015.7314390 Spearman C, 1904, AM J PSYCHOL, V15, P72, DOI 10.2307/1412159 Tang J., 2008, KDD, P990, DOI DOI 10.1145/1401890.1402008 NR 24 TC 3 Z9 3 U1 0 U2 2 PU SPRINGER INTERNATIONAL PUBLISHING AG PI CHAM PA GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND SN 2945-9133 EI 1611-3349 BN 978-3-319-67786-6; 978-3-319-67785-9 J9 LECT NOTES ARTIF INT PY 2017 VL 10558 BP 309 EP 323 DI 10.1007/978-3-319-67786-6_22 PG 15 WC Computer Science, Artificial Intelligence; Computer Science, Theory & Methods WE Conference Proceedings Citation Index - Science (CPCI-S) SC Computer Science GA BK5YA UT WOS:000439773400022 DA 2024-09-05 ER PT J AU Gálvez, RH AF Galvez, Ramiro H. TI Assessing author self-citation as a mechanism of relevant knowledge diffusion SO SCIENTOMETRICS LA English DT Article DE Author self-citation; Latent Dirichlet allocation; Semantic dissimilarity; Knowledge diffusion ID INDEX; MACRO AB Author self-citation is a practice that has been historically surrounded by controversy. Although the prevalence of self-citations in different scientific fields has been thoroughly analysed, there is a lack of large scale quantitative research focusing on its usefulness at guiding readers in finding new relevant scientific knowledge. In this work we empirically address this issue. Using as our main corpus the entire set of PLOS journals research articles, we train a topic discovery model able to capture semantic dissimilarity between pairs of articles. By dividing pairs of articles involved in intra-PLOS citations into self-citations (articles linked by a cite which share at least one author) and non-self-citations (articles linked by a cite which share no author), we observe the distribution of semantic dissimilarity between citing and cited papers in both groups. We find that the typical semantic distance between articles involved in self-citations is significantly smaller than the observed one for articles involved in non-self-citations. Additionally, we find that our results are not driven by the fact that authors tend to specialize in particular areas of research, make use of specific research methodologies or simply have particular styles of writing. Overall, assuming shared content as an indicator of relevance and pertinence of citations, our results indicate that self-citations are, in general, useful as a mechanism of knowledge diffusion. C1 [Galvez, Ramiro H.] Univ Buenos Aires, Dept Comp, FCEyN, Buenos Aires, DF, Argentina. C3 University of Buenos Aires RP Gálvez, RH (corresponding author), Univ Buenos Aires, Dept Comp, FCEyN, Buenos Aires, DF, Argentina. EM rgalvez@dc.uba.ar CR Aksnes DW, 2003, SCIENTOMETRICS, V56, P235, DOI 10.1023/A:1021919228368 Anauati V, 2016, ECON INQ, V54, P1339, DOI 10.1111/ecin.12292 [Anonymous], 2003, Diffusion of Innovations [Anonymous], D LIB MAGAZINE [Anonymous], PLOS SUBJ AR THES Ball P, 2005, NATURE, V436, P900, DOI 10.1038/436900a Bartneck C, 2011, SCIENTOMETRICS, V87, P85, DOI 10.1007/s11192-010-0306-5 Bird Steven, 2004, NLTK: The Natural Language Toolkit, P31 Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993 Bornmann L, 2008, J DOC, V64, P45, DOI 10.1108/00220410810844150 Briet J, 2009, PHYS REV A, V79, DOI 10.1103/PhysRevA.79.052311 Cetina Karin Knorr, 1981, MANUFACTURE KNOWLEDG Chamberlain S, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0122559 Eichstaedt JC, 2015, PSYCHOL SCI, V26, P159, DOI 10.1177/0956797614557867 Engqvist L, 2008, TRENDS ECOL EVOL, V23, P250, DOI 10.1016/j.tree.2008.01.009 Estabrooks CA, 2008, IMPLEMENT SCI, V3, DOI 10.1186/1748-5908-3-49 Fagerberg J, 2010, HBK ECON, V2, P833, DOI 10.1016/S0169-7218(10)02004-6 Glänzel W, 2004, SCIENTOMETRICS, V59, P281, DOI 10.1023/B:SCIE.0000018535.99885.e9 Hall David, 2008, P 2008 C EMP METH NA, P363, DOI DOI 10.3115/1613715.1613763 Hirsch JE, 2005, P NATL ACAD SCI USA, V102, P16569, DOI 10.1073/pnas.0507655102 HU D.J., 2009, LATENT DIRICHLET ALL Hudson J, 2007, SCIENTOMETRICS, V71, P231, DOI 10.1007/s11192-007-1671-6 Hyland K, 2003, J AM SOC INF SCI TEC, V54, P251, DOI 10.1002/asi.10204 Kulkarni AV, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0020885 LAWANI SM, 1982, J AM SOC INFORM SCI, V33, P281 Loria S., 2013, TextBlob: Simplified Text Processing - TextBlob 0.16.0 documentation MACROBERTS MH, 1989, J AM SOC INFORM SCI, V40, P342, DOI 10.1002/(SICI)1097-4571(198909)40:5<342::AID-ASI7>3.0.CO;2-U Maliniak D, 2013, INT ORGAN, V67, P889, DOI 10.1017/S0020818313000209 Merton R. K., 1974, SOCIOLOGY SCI THEORE Motamed M, 2002, CLIN OTOLARYNGOL, V27, P318, DOI 10.1046/j.1365-2273.2002.00574.x Park HW, 2005, SCIENTOMETRICS, V65, P3, DOI 10.1007/s11192-005-0257-4 Rehurek R., 2010, LREC Schreiber M, 2007, EPL-EUROPHYS LETT, V78, DOI 10.1209/0295-5075/78/30002 SEGLEN PO, 1992, J AM SOC INFORM SCI, V43, P628, DOI 10.1002/(SICI)1097-4571(199210)43:9<628::AID-ASI5>3.0.CO;2-0 Snyder H, 1998, J INF SCI, V24, P431, DOI 10.1177/016555159802400606 TAGLIACOZZO R, 1977, J DOC, V33, P251, DOI 10.1108/eb026644 Yu G, 2010, SCIENTOMETRICS, V84, P81, DOI 10.1007/s11192-009-0090-2 NR 37 TC 14 Z9 14 U1 5 U2 64 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0138-9130 EI 1588-2861 J9 SCIENTOMETRICS JI Scientometrics PD JUN PY 2017 VL 111 IS 3 BP 1801 EP 1812 DI 10.1007/s11192-017-2330-1 PG 12 WC Computer Science, Interdisciplinary Applications; Information Science & Library Science WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Computer Science; Information Science & Library Science GA EV4RE UT WOS:000401747900028 DA 2024-09-05 ER PT J AU Chavez, MD Ceballos, HG Cantu-Ortiz, FJ AF Chavez, Mario D. Ceballos, Hector G. Cantu-Ortiz, Francisco J. TI A data analytics approach to contrast the performance of teaching (only) vs. research professors SO INTERNATIONAL JOURNAL OF INTERACTIVE DESIGN AND MANUFACTURING - IJIDEM LA English DT Article DE Student Evaluation of Teaching (SET); Teaching Professor; Research Professor; Data Science; ANOVA and Logistic Regression; Innovation in Higher Education ID STUDENT EVALUATION SCORES; HIGHER-EDUCATION; RATINGS AB This research article presents a study to compare the teaching performance of teaching-only versus teaching-and-research professors at higher education institutions. It is a common belief that, generally, teaching professors outperform research professors in teaching-and-research universities according to student perceptions reflected in student surveys. This case study presents experimental evidence that shows this is not always the case and that, under certain circumstances, it can be the contrary. The case study is from Tecnologico de Monterrey (Tec), a teaching-and-research, private university in Mexico that has developed a research profile during the last two decades using a mix of teaching-only and teaching-and-research faculty members; during this time period, the university has had a growing ascendancy in world university rankings. Data from an institutional student survey called the ECOA was used. The data set contains more than 118,000 graduate and undergraduate courses for 5 semesters (January 2017 to May 2019). The results presented were derived from statistical to data mining methods, including Analysis of Variance and Logistic Regression, that were applied to this data set of more than nine thousand professors who taught those courses. The results show that teaching-and-research professors perform better or at least the same as teaching-only professors. The differences found in teaching with respect to attributes like professors' gender, age, and research level are also presented. C1 [Chavez, Mario D.; Ceballos, Hector G.; Cantu-Ortiz, Francisco J.] Tecnol Monterrey, Sch Sci & Engn, Ave Eugenio Garza Sada 2501, Monterrey 64989, NL, Mexico. C3 Tecnologico de Monterrey RP Cantu-Ortiz, FJ (corresponding author), Tecnol Monterrey, Sch Sci & Engn, Ave Eugenio Garza Sada 2501, Monterrey 64989, NL, Mexico. EM A00826797@itesm.mx; ceballos@tec.mx; fcantu@tec.mx RI Ceballos, Hector G./AAC-3747-2022; Cantu-Ortiz, Francisco J./B-8457-2009 OI Ceballos, Hector G./0000-0002-2460-3442; Cantu-Ortiz, Francisco J./0000-0002-2015-0562 CR Akella D, 2010, J MANAGE ORGAN, V16, P100, DOI 10.5172/jmo.16.1.100 [Anonymous], 2000, J DATA WAREHOUSING [Anonymous], 2011, 50 IDEA [Anonymous], 2010, STUD EDUC EVAL, DOI DOI 10.1016/J.STUEDUC.2011.02.001 [Anonymous], 2013, The framework for teaching evaluation instrument Association for the Advancement of Artificial Intelligence, 2016, ART INT LIF 2030 100 Basow S.A., 2005, J PERS EVAL EDUC, V18, P91, DOI 10.1007/s11092-006-9001-8 Bragg D, 2019, ASSETS'19: THE 21ST INTERNATIONAL ACM SIGACCESS CONFERENCE ON COMPUTERS AND ACCESSIBILITY, P16, DOI 10.1145/3308561.3353774 Breslow L., 2013, RES PRACTICE ASSESSM, V8 Bridgstock R., 2019, HIGHER ED FUTURE GRA, P296, DOI [10.4337/9781788972611, DOI 10.4337/9781788972611] Bucco Guilherme Brandelli, 2017, Gest. Prod., V24, P40, DOI 10.1590/0104-530x2133-15 Cantú FJ, 2009, J KNOWL MANAG, V13, P154, DOI 10.1108/13673270910931233 Cantu-Ortiz F, 2018, RES ANAL Chaerani D., 2014, INT C ADV ED TECHN Chapman P., 2000, SPSS, inc Coffrin C., 2014, P 4 INT C LEARN AN K, P83 CRISP-DM, 2019, CROSS IND STAND PROC Djurdjevic D., 2007, Swiss Journal of Economics and Statistics (SJES), V143, P365 Fowler G. A., 2013, WALL STREET J Garcia N, 2017, 4 C INT INN ED MONT Gruber T, 2010, J MARK HIGH EDUC, V20, P175, DOI 10.1080/08841241.2010.526356 Harper G, 2006, DRUG DISCOV TODAY, V11, P694, DOI 10.1016/j.drudis.2006.06.006 Hew KF, 2016, BRIT J EDUC TECHNOL, V47, P320, DOI 10.1111/bjet.12235 Jordan Katy, 2017, MOOC COMPLETION RATE Kaplan AM, 2016, BUS HORIZONS, V59, P441, DOI 10.1016/j.bushor.2016.03.008 Lange Arthur M, 2017, INFORM TECHNOLOGY OR Marshal Kim, 2013, RETHINKING TEACHER S McPherson MA, 2009, EAST ECON J, V35, P37, DOI 10.1057/palgrave.eej.9050042 McPherson MA, 2007, SOC SCI QUART, V88, P868, DOI 10.1111/j.1540-6237.2007.00487.x Provost F, 2015, DATA SCI BUSINESS WH Salazar MC, 2019, LANGUAGE CULTURE TEA Shirky C., 2013, CHRONICLE HIGHER ED Smith SW, 2007, WOMEN STUD COMMUN, V30, P64, DOI 10.1080/07491409.2007.10162505 Spooren P, 2013, REV EDUC RES, V83, P598, DOI 10.3102/0034654313496870 Stack S, 2003, RES HIGH EDUC, V44, P539, DOI 10.1023/A:1025439224590 Tecnologico de Monterrey, 2019, ED MOD TECN MONT Ting KF, 2000, RES HIGH EDUC, V41, P637, DOI 10.1023/A:1007075516271 Tsinidou M, 2010, QUAL ASSUR EDUC, V18, P227, DOI 10.1108/09684881011058669 Yousef Ahmed Mohamed Fahmy, 2014, 6th International Conference on Computer-Supported Education (CSEDU 2014). Proceedings, P9 NR 39 TC 1 Z9 1 U1 0 U2 11 PU SPRINGER HEIDELBERG PI HEIDELBERG PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY SN 1955-2513 EI 1955-2505 J9 INT J INTERACT DES M JI Int. J. Interact. Des. Manuf.-IJIDeM PD DEC PY 2020 VL 14 IS 4 BP 1577 EP 1592 DI 10.1007/s12008-020-00713-5 EA SEP 2020 PG 16 WC Engineering, Manufacturing WE Emerging Sources Citation Index (ESCI) SC Engineering GA OQ9JH UT WOS:000573412000001 DA 2024-09-05 ER PT J AU Ravindran, AC Kokjohn, SL AF Ravindran, Arun C. Kokjohn, Sage L. TI Evaluation of the sample size requirements of machine learning models used in engine design and research SO INTERNATIONAL JOURNAL OF ENGINE RESEARCH LA English DT Article DE Engine research; machine learning; Gaussian process regression; sample size requirements; CDC; RCCI; DISI ID GAUSSIAN PROCESS REGRESSION; OPTIMIZATION AB Machine Learning (ML) techniques have been effectively used to learn the intricate relationships between variables that play a significant role in the field of engine design. However, there are two challenges to this approach - (1) Identifying ML regression models that could capture the trends of a response variable, given a non-parametric training set of relatively small size, with an acceptable accuracy and response time, and (2) identifying the size of the dataset, with respect to the input parameters, to be used for training and validation of the ML models. There is not enough information in the literature to reach a consensus on the sampling size to be used for an engine design problem that would yield an acceptable measure of goodness-of-fit. This is evident from the varied size of the training/validation data size used within the engine research community, as will be elaborated on in the following sections. The objective of this paper is to provide an insight into the sampling size required by the different ML models to achieve an acceptable fit between the model and the data, to be used in three types of engine design/optimization problems - (1) conventional diesel combustion (CDC) engine performance over a wide range of speed and load, (2) cold-start operation of a direct-injected spark-ignition (DISI) engine, and (3) high-load performance of a dual-fuel reactivity-controlled compression ignition (RCCI) engine. C1 [Ravindran, Arun C.; Kokjohn, Sage L.] Univ Wisconsin, Dept Mech Engn, 1513 Univ Ave, Madison, WI 53706 USA. C3 University of Wisconsin System; University of Wisconsin Madison RP Ravindran, AC (corresponding author), Univ Wisconsin, Dept Mech Engn, 1513 Univ Ave, Madison, WI 53706 USA. EM aravindran3@wisc.edu OI C RAVINDRAN, ARUN/0000-0002-8841-9150 CR Alonso JM, 2007, IEEE T EVOLUT COMPUT, V11, P46, DOI 10.1109/TEVC.2006.876364 Amsden A.A., 1999, KIVA-3V, Release 2, Improvements to KIVA-3V Anguita D., 2012, ESANN, P441 Badra J., 2019, INTERNAL COMBUSTION Bertram AM., SAE INT Blewitt ME, 2008, NAT GENET, V40, P663, DOI 10.1038/ng.142 Clifton L, 2012, IEEE ENG MED BIO, P6161, DOI 10.1109/EMBC.2012.6347400 Costa M, 2014, ENRGY PROCED, V45, P711, DOI 10.1016/j.egypro.2014.01.076 Dürichen R, 2014, 2014 IEEE-EMBS INTERNATIONAL CONFERENCE ON BIOMEDICAL AND HEALTH INFORMATICS (BHI), P492, DOI 10.1109/BHI.2014.6864410 He Y., 2002, SAE TRANSACTIONS, P1532 Hultquist C, 2014, REMOTE SENS LETT, V5, P723, DOI 10.1080/2150704X.2014.963733 Kavuri C, 2020, INT J ENGINE RES, V21, P1251, DOI 10.1177/1468087418808949 Kodavasal J, 2018, J ENERG RESOUR-ASME, V140, DOI 10.1115/1.4040062 MATLAB, 2018, MATLAB 9 5 0 94444 R Moiz AA, 2018, SAE INT J COMMER VEH, V11, P291, DOI 10.4271/2018-01-0190 Owoyele O, 2022, INT J ENGINE RES, V23, P1586, DOI 10.1177/14680874211023466 Owoyele O, 2021, APPL ENERG, V285, DOI 10.1016/j.apenergy.2021.116455 Pasolli L, 2010, IEEE GEOSCI REMOTE S, V7, P464, DOI 10.1109/LGRS.2009.2039191 Platt JC, 2002, ADV NEUR IN, V14, P1425 Rasmussen CE, 2004, LECT NOTES ARTIF INT, V3176, P63, DOI 10.1007/978-3-540-28650-9_4 Ravindran AC, 2021, ENERGY AI, V5, DOI 10.1016/j.egyai.2021.100072 Rezaei J, 2015, APPL ENERG, V138, P460, DOI 10.1016/j.apenergy.2014.10.088 Richards K.J., 2015, CONVERGE VERSION 23 Rychetsky M., 1999, IJCNN'99. International Joint Conference on Neural Networks. Proceedings (Cat. No.99CH36339), P969, DOI 10.1109/IJCNN.1999.831085 Wong KI, 2013, ENERGY, V55, P519, DOI 10.1016/j.energy.2013.03.057 Yu H, 2012, HDB NATURAL COMPUTIN, P479, DOI [DOI 10.1007/978-3-540-92910-9_15, 10.1007/978-3-540-92910-9_15, 10.1007/978-3-540-92910-9 15] NR 26 TC 0 Z9 0 U1 1 U2 1 PU SAGE PUBLICATIONS LTD PI LONDON PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND SN 1468-0874 EI 2041-3149 J9 INT J ENGINE RES JI Int. J. Engine Res. PD JUL PY 2023 VL 24 IS 7 BP 2973 EP 2990 DI 10.1177/14680874221137185 EA NOV 2022 PG 18 WC Thermodynamics; Engineering, Mechanical; Transportation Science & Technology WE Science Citation Index Expanded (SCI-EXPANDED) SC Thermodynamics; Engineering; Transportation GA O6BN2 UT WOS:000890518800001 DA 2024-09-05 ER PT C AU Minglana, J Tobias, RR Roxas, RE AF Minglana, Johanna Tobias, Rogelio Ruzcko Roxas, Rachel Edita GP IEEE TI Artificial Intelligence Applications in Quality Management System: A Bibliometric Study SO 2021 IEEE REGION 10 CONFERENCE (TENCON 2021) LA English DT Proceedings Paper CT IEEE Region 10 Conference (TENCON) CY DEC 07-10, 2021 CL Auckland, NEW ZEALAND DE artificial intelligence; bibliometrics; ISO 9001:2015; Industry 4.0; Quality 4.0; quality management system AB This paper presents a systematic literature review and bibliometric analyses of publications in the field of Quality Management System (QMS) by authors who applied artificial intelligence (AI) in ISO 9001:2015 audits. Scopus-indexed papers that were published from 1998 to 2021 were evaluated based on the research publication metrics made available by Scopus. From the 142 extracted Scopus-indexed publications in September 2021, 109 or 76 percent of the publications remained after Preferred Reporting Items for Systematic Reviews and Meta-analysis (PRISMA) procedure. Analyses and visualizations using VOSviewer reveal research productivity, affiliation and collaboration networks in various countries, and the corresponding relationship between research networks in the field of AI-enabled QMS. Findings reveal that QMS is leaning towards sustainability, big data, and applied technological innovations. C1 [Minglana, Johanna; Tobias, Rogelio Ruzcko] Qual Management Off, Manila, Philippines. [Minglana, Johanna] Natl Univ, Coll Educ Arts & Sci, Manila, Philippines. [Tobias, Rogelio Ruzcko] Natl Univ, Coll Engn, Manila, Philippines. [Roxas, Rachel Edita] Natl Univ, Coll Comp & Informat Technol, Manila, Philippines. C3 National University Philippines; National University Philippines; National University Philippines RP Minglana, J (corresponding author), Qual Management Off, Manila, Philippines.; Minglana, J (corresponding author), Natl Univ, Coll Educ Arts & Sci, Manila, Philippines. EM jgminglana@national-u.edu.ph; ruzcko@gmail.com; reoroxas@national-u.edu.ph CR Alejandrino Jonnel, 2020, 2020 IEEE Region 10 Conference (TENCON), P1340, DOI 10.1109/TENCON50793.2020.9293829 Ali MH, 2018, TRENDS FOOD SCI TECH, V71, P216, DOI 10.1016/j.tifs.2017.11.016 [Anonymous], 2019, International Journal of Recent Technology and Engineering, V8, P420, DOI DOI 10.35940/IJRTE.B1014.078219 Asif M, 2020, J CLEAN PROD, V258, DOI 10.1016/j.jclepro.2020.120820 Atanassova Iana, 2019, Front Res Metr Anal, V4, P2, DOI 10.3389/frma.2019.00002 Barakhnin VB, 2018, J PHYS CONF SER, V1117, DOI 10.1088/1742-6596/1117/1/012001 Cabanac G, 2020, SCIENTOMETRICS, V125, P2835, DOI 10.1007/s11192-020-03763-4 Cabanac G, 2018, SCIENTOMETRICS, V116, P1225, DOI 10.1007/s11192-018-2861-0 Chen G, 2016, J INFORMETR, V10, P212, DOI 10.1016/j.joi.2016.01.006 Danilova KB, 2019, BUS PROCESS MANAG J, V25, P1377, DOI 10.1108/BPMJ-05-2017-0123 Forero D. V., 2020, QUALITY 4 0 HOW HAND, P1 Galata DL, 2021, EUR J PHARM SCI, V159, DOI 10.1016/j.ejps.2021.105717 Gorro K, 2017, INT CONF ASIAN LANG, P293, DOI 10.1109/IALP.2017.8300601 Hallinger P, 2019, REV EDUC RES, V89, P335, DOI 10.3102/0034654319830380 Jonczyk J. A., 2018, STUD LOGIC GRAMM RHE, V56, P143, DOI DOI 10.2478/SLGR-2018 Karthi S, 2012, TOTAL QUAL MANAG BUS, V23, P237, DOI 10.1080/14783363.2011.637803 Lam AJ, 2017, TENCON IEEE REGION, P2409, DOI 10.1109/TENCON.2017.8228265 Lauguico S. C., 2020, International Journal of Environmental Science and Development, V11, P442, DOI 10.18178/ijesd.2020.11.9.1288 Lauguico S, 2019, I C HUMANOID NANOTEC, DOI 10.1109/hnicem48295.2019.9072734 Liberati A, 2009, BMJ-BRIT MED J, V339, DOI [10.1016/j.ijsu.2010.02.007, 10.1136/bmj.b2700, 10.1136/bmj.b2535, 10.1186/2046-4053-4-1, 10.1371/journal.pmed.1000097, 10.1136/bmj.i4086, 10.1016/j.ijsu.2010.07.299] Ligutom C, 2016, INT CONF ASIAN LANG, P362, DOI 10.1109/IALP.2016.7876006 Linnenluecke MK, 2020, AUST J MANAGE, V45, P175, DOI 10.1177/0312896219877678 Mao M., 2018, LNCS, V0943 Martín-Martín A, 2018, SCIENTOMETRICS, V114, P1251, DOI 10.1007/s11192-017-2587-4 Moral-Muñoz JA, 2020, PROF INFORM, V29, DOI 10.3145/epi.2020.ene.03 Oke S. A., 2007, International Journal of Productivity and Quality Management, V2, P81, DOI 10.1504/IJPQM.2007.011469 Orjuela A. Gongora, 2010, ORINOQUIA, V14, P121, DOI [10.22579/20112629.85, DOI 10.22579/20112629.85] Ancheta JR, 2017, TENCON IEEE REGION, P723, DOI 10.1109/TENCON.2017.8227955 Ruzcko Tobias Rogelio, 2020, 2020 IEEE 2nd Global Conference on Life Sciences and Technologies (LifeTech), P235, DOI 10.1109/LifeTech48969.2020.1570619208 Singh H., 2014, International Letters of Social and Humanistic Sciences, V12, P188, DOI DOI 10.18052/WWW.SCIPRESS.COM/ILSHS.32.188 Somasundaram M., 2020, PROCEDIA COMPUTER SC, V172, P438, DOI [https://doi.org/10.1016/j.procs.2020.05.096, DOI 10.1016/J.PROCS.2020.05.096] Tobias R. R., 2020, 2020 IEEE REG 10 C Tobias RR, 2020, IEEE RIVF INT CONF, P192, DOI 10.1109/rivf48685.2020.9140733 van Eck NJ, 2017, SCIENTOMETRICS, V111, P1053, DOI 10.1007/s11192-017-2300-7 van Eck NJ, 2010, SCIENTOMETRICS, V84, P523, DOI 10.1007/s11192-009-0146-3 NR 35 TC 3 Z9 3 U1 6 U2 28 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA BN 978-1-6654-9532-5 PY 2021 BP 947 EP 952 DI 10.1109/TENCON54134.2021.9707340 PG 6 WC Computer Science, Artificial Intelligence; Computer Science, Software Engineering; Engineering, Multidisciplinary; Telecommunications WE Conference Proceedings Citation Index - Science (CPCI-S) SC Computer Science; Engineering; Telecommunications GA BT1OC UT WOS:000799485900167 DA 2024-09-05 ER PT J AU Maroteau, G An, JS Murgier, J Hulet, C Ollivier, M Ferreira, A AF Maroteau, Gaelle An, Jae-Sung Murgier, Jerome Hulet, Christophe Ollivier, Matthieu Ferreira, Alexandre TI Evaluation of the impact of large language learning models on articles submitted to Orthopaedics & Traumatology: Surgery & Research (OTSR): A significant increase in the use of artificial intelligence in 2023 SO ORTHOPAEDICS & TRAUMATOLOGY-SURGERY & RESEARCH LA English DT Article DE Artificial intelligence; ChatGPT; Large language learning models; Chatbot; Scientific article AB Introduction: There has been an unprecedented rise is the use of artificial intelligence (AI) amongst med-ical fields. Recently, a dialogue agent called ChatGPT (Generative Pre-trained Transformer) has grown in popularity through its use of large language models (LLM) to clearly and precisely generate text on demand. However, the impact of AI on the creation of scientific articles is remains unknown. A retrospec-tive study was carried out with the aim of answering the following questions: identify the presence of text generated by LLM before and after the increased usage of ChatGPT in articles submitted in OTSR; deter-mine if the type of article, the year of submission, and the country of origin, influenced the proportion of text generated, at least in part by AI.Material and methods: A total of 390 English articles were submitted to OTSR in January, February and March 2022 (n = 204) and over the same months of 2023 (n = 186) were analyzed. All articles were ana-lyzed using the ZeroGPT tool, which provides an assumed rate of AI use expressed as a percentage. A comparison of the average rate of AI use was carried out between the articles submitted in 2022 and 2023. This comparison was repeated keeping only the articles with the highest percentage of suspected AI use (greater than 10 and 20%). A secondary analysis was carried out to identify risk factors for AI use.Results: The average percentage of suspected LLM use in the entire cohort was 11% +/- 6, with 160 articles (41.0%) having a suspected AI rate greater than 10% and 61 (15.6%) with an assumed AI rate greater than 20%. A comparison between articles submitted in 2022 and 2023 revealed a significant increase in the use of these tools after the launch of ChatGPT 3.5 (9.4% in 2022 and 12.6% in 2023 [p = 0.004]). The number of articles with suspected AI rates of greater than 10 and 20% were significantly higher in 2023: >10%: 71 articles (34.8%) versus 89 articles (47.8%) (p = 0.008) and >20%: 21 articles (10.3%) versus 40 articles (21.5%) (p = 0.002). A risk factor analysis for LLLM use, demonstrated that authors of Asian geographic origin, and the submission year 2023 were associated with a higher rate of suspected AI use. An AI rate >20% was associated to Asian geographical origin with an odds ratio of 1.79 (95% CI: 1.03-3.11) (p = 0.029), while the year of submission being 2023 had an odds ratio of 1.7 (95% CI: 1.1-2.5) (p = 0.02).Conclusion: This study highlights a significant increase in the use of LLM in the writing of articles sub-mitted to the OTSR journal after the launch of ChatGPT 3.5. The increasing use of these models raises questions about originality and plagiarism in scientific research. AI offers creative opportunities but also raises ethical and methodological challenges. Level of evidence: III; case control study.(c) 2023 Elsevier Masson SAS. All rights reserved. C1 [Maroteau, Gaelle; Hulet, Christophe; Ferreira, Alexandre] Caen Univ Hosp, Dept Orthopaed & Traumatol, Unite Inserm Comete 1075, Ave Cote De Nacre, F-14000 Caen, France. [An, Jae-Sung] Tokyo Med & Dent Univ, 1 Chome 5-45 Yushima, Bunkyo, Tokyo 1138510, Japan. [Murgier, Jerome] Clin Aguilera, Serv Chirurg Orthoped, 21 Rue Estagnas, F-64200 Biarritz, France. [Ollivier, Matthieu] St Marguer Hosp, Inst Movement & Locomot, Dept Orthopaed & Traumatol, BP 29,270 Blvd St Marguer, F-13274 Marseille, France. [Ollivier, Matthieu] St Marguerite Hosp, AP HM, Dept Orthopaed & Traumatol, Aix Marseille Unit,Inst Locomot, Marseille, Brazil. C3 CHU de Caen NORMANDIE; Universite de Caen Normandie; Tokyo Medical & Dental University (TMDU); Aix-Marseille Universite; Assistance Publique-Hopitaux de Marseille RP Ferreira, A (corresponding author), Caen Univ Hosp, Dept Orthopaed & Traumatol, Unite Inserm Comete 1075, Ave Cote De Nacre, F-14000 Caen, France. EM alexandreferreira0891@gmail.com OI Maroteau, Gaelle/0000-0002-0923-7042; HULET, Christophe/0000-0002-1011-6141; An, Jae-Sung/0009-0006-4975-2600; Alexandre, FERREIRA/0000-0002-4624-3898 CR [Anonymous], 2022, ChatGPT: optimizing language models for dialogue Bender Emily M., 2020, P 58 ANN M ASS COMP, P5185 Benhenneda R, 2023, Orthop Traumatol Surg Res, V109 Benhenneda R, 2023, Orthop Traumatol Surg Res, V109 Brown T., 2020, NEURIPS Cahan P, 2023, STEM CELL REP, V18, P1, DOI 10.1016/j.stemcr.2022.12.009 Charles YP, 2023, ORTHOP TRAUMATOL-SUR, V109, DOI 10.1016/j.otsr.2022.103456 Coeffe T, 2023, GPT-3 et GPT-4: tout savoir sur les modeles d'OpenAI Curtis GJ, 2016, HIGH EDUC RES DEV, V35, P1167, DOI 10.1080/07294360.2016.1161602 Gilat R, 2023, ARTHROSCOPY, V39, P1119, DOI 10.1016/j.arthro.2023.01.014 Graëff C, 2023, ORTHOP TRAUMATOL-SUR, V109, DOI 10.1016/j.otsr.2023.103564 Guy S, 2021, ORTHOP TRAUMATOL-SUR, V107, DOI 10.1016/j.otsr.2021.102837 Hovy D, 2015, PROCEEDINGS OF THE 53RD ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL) AND THE 7TH INTERNATIONAL JOINT CONFERENCE ON NATURAL LANGUAGE PROCESSING (IJCNLP), VOL 2, P483 Macdonald C, 2023, J GLOB HEALTH, V13, DOI 10.7189/jogh.13.01003 Ollivier M, 2023, KNEE SURG SPORT TR A, V31, P1190, DOI 10.1007/s00167-023-07372-5 Patel S, 2023, LANCET DIGIT HEALTH, V5, pE102, DOI 10.1016/S2589-7500(23)00023-7 Paulus P.B., 2003, Group Creativity: Innovation through Collaboration, P110, DOI [10.1093/acprof:oso/9780195147308.001.0001, DOI 10.1093/ACPROF:OSO/9780195147308.003.0006] Posner RA, 2002, Am Acad Arts Sci Radford A., 2019, LANGUAGE MODELS ARE Runco MA, 2004, ANNU REV PSYCHOL, V55, P657, DOI 10.1146/annurev.psych.55.090902.141502 Salvagno M, 2023, CRIT CARE, V27, DOI 10.1186/s13054-023-04380-2 Simonton D, 2005, Choice Rev, V42, P42 Weaver CGW, 2021, CAN J CARDIOL, V37, P1156, DOI 10.1016/j.cjca.2021.03.003 NR 23 TC 4 Z9 4 U1 12 U2 14 PU ELSEVIER MASSON, CORP OFF PI PARIS PA 65 CAMILLE DESMOULINS CS50083 ISSY-LES-MOULINEAUX, 92442 PARIS, FRANCE SN 1877-0568 J9 ORTHOP TRAUMATOL-SUR JI Orthop. Traumatol.-Surg. Res. PD DEC PY 2023 VL 109 IS 8 AR 103720 DI 10.1016/j.otsr.2023.103720 EA NOV 2023 PG 6 WC Orthopedics; Surgery WE Science Citation Index Expanded (SCI-EXPANDED) SC Orthopedics; Surgery GA CV3W6 UT WOS:001127982300001 PM 37866509 DA 2024-09-05 ER PT J AU Song, XZR Zhang, Y Pan, R Wang, HS AF Song, Xizhuoran Zhang, Yan Pan, Rui Wang, Hansheng TI Link Prediction for Statistical Collaboration Networks Incorporating Institutes and Research Interests SO IEEE ACCESS LA English DT Article DE Collaboration; Measurement; Machine learning; Finance; Predictive models; Stochastic processes; Collaboration network; link prediction; nodal attribute; similarity-based approach ID SOCIAL NETWORK; RANDOM-WALK; EVOLUTION; COAUTHORSHIP; PATTERNS AB An interesting application of the link prediction technique is detecting the potential new links in collaboration networks. In this study, we construct collaboration networks based on the co-authorship information of the papers published in 43 statistical journals from 2001 to 2018. We construct training and testing networks according to the timestamps of the papers and construct a classification dataset for link prediction. We calculate 20 similarity indices based on the training network to perform link prediction. Additionally, we consider nodal attributes (institutes and research interests) to develop two novel predictors called the same institute (SIN) and keywords match count (KMC). Several machine-learning classifiers including support vector machine, XGBoost and random forest are implemented to combine all predictors. After incorporating SIN and KMC, we observe that the area under the receiver operating characteristic curve values of all classifiers improved, indicating that SIN and KMC can significantly improve classification accuracy. Finally, we provide collaborative recommendations for researchers based on the proposed model. C1 [Song, Xizhuoran; Pan, Rui] Cent Univ Finance & Econ, Sch Stat & Math, Beijing 102206, Peoples R China. [Zhang, Yan] Xiamen Univ, Sch Econ, Xiamen 361005, Peoples R China. [Wang, Hansheng] Peking Univ, Guanghua Sch Management, Beijing 100871, Peoples R China. C3 Central University of Finance & Economics; Xiamen University; Peking University RP Pan, R (corresponding author), Cent Univ Finance & Econ, Sch Stat & Math, Beijing 102206, Peoples R China.; Zhang, Y (corresponding author), Xiamen Univ, Sch Econ, Xiamen 361005, Peoples R China. EM zhangyan_elyssa@163.com; panrui_cufe@126.com OI Zhang, Yan/0000-0002-4081-5189 FU National Natural Science Foundation of China (NSFC) [11971504]; Disciplinary Funding of Central University of Finance and Economics; Emerging Interdisciplinary Project of the Central University of Finance and Economics; National Natural Science Foundation of China [11831008]; Open Research Fund of Key Laboratory of Advanced Theory and Application in Statistics and Data Science [KLATASDS-MOE-ECNU-KLATASDS2101] FX The work of Rui Pan was supported in part by the National Natural Science Foundation of China (NSFC) under Grant 11971504, and in part by the Disciplinary Funding of Central University of Finance and Economics, and in part by the Emerging Interdisciplinary Project of the Central University of Finance and Economics. The work of Hansheng Wang was supported in part by the National Natural Science Foundation of China under Grant 11831008, and in part by the Open Research Fund of Key Laboratory of Advanced Theory and Application in Statistics and Data Science under Grant KLATASDS-MOE-ECNU-KLATASDS2101. CR Adamic LA, 2003, SOC NETWORKS, V25, P211, DOI 10.1016/S0378-8733(03)00009-1 Aggarwal C, 2014, ACM COMPUT SURV, V47, DOI 10.1145/2601412 AlHasan M., 2006, P SDM 06 WORKSH LINK Barabási AL, 2002, PHYSICA A, V311, P590, DOI 10.1016/S0378-4371(02)00736-7 Barbieri N, 2014, PROCEEDINGS OF THE 20TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING (KDD'14), P1266, DOI 10.1145/2623330.2623733 Bhattacharyya P, 2011, SOC NETW ANAL MIN, V1, P143, DOI 10.1007/s13278-010-0006-4 Breiman L, 2001, MACH LEARN, V45, P5, DOI 10.1023/A:1010933404324 Bütün E, 2018, INFORM SCIENCES, V463, P152, DOI 10.1016/j.ins.2018.06.051 Chebotarev PY, 1997, AUTOMAT REM CONTR+, V58, P1505 Chen BL, 2018, IEEE ACCESS, V6, P28122, DOI 10.1109/ACCESS.2018.2838259 Chen TQ, 2016, KDD'16: PROCEEDINGS OF THE 22ND ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, P785, DOI 10.1145/2939672.2939785 Coccia M, 2016, P NATL ACAD SCI USA, V113, P2057, DOI 10.1073/pnas.1510820113 da Silva AJN, 2022, PLOS ONE, V17, DOI 10.1371/journal.pone.0271937 DILLON M, 1983, INFORM PROCESS MANAG, V19, P402, DOI 10.1016/0306-4573(83)90062-6 Fouss F, 2007, IEEE T KNOWL DATA EN, V19, P355, DOI 10.1109/TKDE.2007.46 Girvan M, 2002, P NATL ACAD SCI USA, V99, P7821, DOI 10.1073/pnas.122653799 Guns R, 2014, SCIENTOMETRICS, V101, P1461, DOI 10.1007/s11192-013-1228-9 Hâncean MG, 2021, SCIENTOMETRICS, V126, P201, DOI 10.1007/s11192-020-03746-5 Huang DY, 2020, J ORG COMP ELECT COM, V30, P169, DOI 10.1080/10919392.2020.1736466 Jaccard P., 1901, Distribution de la Flore Alpine: dans le Bassin des dranses et dans quelques regions voisines, V37, P547 James G, 2013, SPRINGER TEXTS STAT, V103, P1, DOI 10.1007/978-1-4614-7138-7_1 Ji PS, 2022, J BUS ECON STAT, V40, P469, DOI 10.1080/07350015.2021.1978469 Ji PS, 2016, ANN APPL STAT, V10, P1779, DOI 10.1214/15-AOAS896 Karwa V, 2016, ANN APPL STAT, V10, P1827, DOI 10.1214/16-AOAS978 Katz Leo, 1953, PSYCHOMETRIKA, V18, P39 Kim J, 2019, SCIENTOMETRICS, V119, P687, DOI 10.1007/s11192-019-03055-6 Kumar A, 2020, PHYSICA A, V553, DOI 10.1016/j.physa.2020.124289 Lande D, 2020, WORLD WIDE WEB, V23, P2239, DOI 10.1007/s11280-019-00768-9 Leicht EA, 2006, PHYS REV E, V73, DOI 10.1103/PhysRevE.73.026120 Liben-Nowell D, 2007, J AM SOC INF SCI TEC, V58, P1019, DOI 10.1002/asi.20591 Liu WP, 2010, EPL-EUROPHYS LETT, V89, DOI 10.1209/0295-5075/89/58007 Lü LY, 2011, PHYSICA A, V390, P1150, DOI 10.1016/j.physa.2010.11.027 Lü LY, 2009, PHYS REV E, V80, DOI 10.1103/PhysRevE.80.046122 Newman MEJ, 2001, PHYS REV E, V64, DOI 10.1103/PhysRevE.64.025102 Newman MEJ, 2004, P NATL ACAD SCI USA, V101, P5200, DOI 10.1073/pnas.0307545100 Newman MEJ, 2001, P NATL ACAD SCI USA, V98, P404, DOI 10.1073/pnas.021544898 Chuan PM, 2018, APPL INTELL, V48, P2470, DOI 10.1007/s10489-017-1086-x Ravasz E, 2002, SCIENCE, V297, P1551, DOI 10.1126/science.1073374 Singh CK, 2019, SCIENTOMETRICS, V118, P385, DOI 10.1007/s11192-018-02999-5 Sorensen T. A., 1948, A Method of Establishing Groups of Equal Amplitude in Plant Sociology Based on Similarity of Species Content and its Application to Analyses of the Vegetation on Danish Commons, V5, P1 Tomassini M, 2007, PHYSICA A, V385, P750, DOI 10.1016/j.physa.2007.07.028 Tong HH, 2006, IEEE DATA MINING, P613 Tuninetti M, 2021, EPJ DATA SCI, V10, DOI 10.1140/epjds/s13688-021-00282-x Vital A, 2022, SCIENTOMETRICS, V127, P6011, DOI 10.1007/s11192-022-04484-6 Wang C, 2007, IEEE DATA MINING, P322, DOI 10.1109/ICDM.2007.108 Wang P, 2015, SCI CHINA INFORM SCI, V58, DOI 10.1007/s11432-014-5237-y Yan EJ, 2014, J INFORMETR, V8, P295, DOI 10.1016/j.joi.2014.01.008 Yuliansyah H, 2020, IEEE ACCESS, V8, P183470, DOI 10.1109/ACCESS.2020.3029122 Zhou T, 2009, EUR PHYS J B, V71, P623, DOI 10.1140/epjb/e2009-00335-8 Zhu YX, 2012, PHYSICA A, V391, P5769, DOI 10.1016/j.physa.2012.06.003 NR 50 TC 1 Z9 1 U1 5 U2 20 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 2169-3536 J9 IEEE ACCESS JI IEEE Access PY 2022 VL 10 BP 104954 EP 104965 DI 10.1109/ACCESS.2022.3210129 PG 12 WC Computer Science, Information Systems; Engineering, Electrical & Electronic; Telecommunications WE Science Citation Index Expanded (SCI-EXPANDED) SC Computer Science; Engineering; Telecommunications GA 5F6QU UT WOS:000866438900001 OA gold DA 2024-09-05 ER PT J AU Catalini, C Lacetera, N Oettl, A AF Catalini, Christian Lacetera, Nicola Oettl, Alexander TI The incidence and role of negative citations in science SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE social studies of science; citation analysis; bibliometric techniques; natural-language processing; negative citations ID KNOWLEDGE AB Citations to previous literature are extensively used to measure the quality and diffusion of knowledge. However, we know little about the different ways in which a study can be cited; in particular, are papers cited to point out their merits or their flaws? We elaborated a methodology to characterize "negative" citations using bibliometric data and natural language processing. We found that negative citations concerned higher-quality papers, were focused on a study's findings rather than theories or methods, and originated from scholars who were closer to the authors of the focal paper in terms of discipline and social distance, but not geographically. Receiving a negative citation was also associated with a slightly faster decline in citations to the paper in the long run. C1 [Catalini, Christian] MIT, MIT Sloan Sch Management, Cambridge, MA 02142 USA. [Lacetera, Nicola] Univ Toronto, Inst Management & Innovat, Mississauga, ON L5L 1C6, Canada. [Oettl, Alexander] Georgia Inst Technol, Scheller Coll Business, Atlanta, GA 30308 USA. C3 Massachusetts Institute of Technology (MIT); University of Toronto; University Toronto Mississauga; University System of Georgia; Georgia Institute of Technology RP Oettl, A (corresponding author), Georgia Inst Technol, Scheller Coll Business, Atlanta, GA 30308 USA. EM Alexander.Oettl@scheller.gatech.edu RI Oettl, Alex/AFN-9082-2022 OI Oettl, Alex/0000-0001-8908-4674; Lacetera, Nicola/0000-0002-3191-8792 CR Agrawal A, 2008, AM ECON REV, V98, P1578, DOI 10.1257/aer.98.4.1578 [Anonymous], 2014, GUARDIAN [Anonymous], 1962, The Structure of Scientific Revolutions ARROW KJ, 1969, AM ECON REV, V59, P29 Azoulay P., 2012, 18499 NBER Breschi S, 2004, HANDBOOK OF QUANTITATIVE SCIENCE AND TECHNOLOGY RESEARCH: THE USE OF PUBLICATION AND PATENT STATISTICS IN STUDIES OF S&T SYSTEMS, P613 Cambria E, 2014, IEEE COMPUT INTELL M, V9, P48, DOI 10.1109/MCI.2014.2307227 Campanario JM, 2000, NATURE, V408, P288, DOI 10.1038/35042753 Cowan R, 2004, J ECON DYN CONTROL, V28, P1557, DOI 10.1016/j.jedc.2003.04.002 DASGUPTA P, 1994, RES POLICY, V23, P487 Fleming L, 2007, ORGAN SCI, V18, P938, DOI 10.1287/orsc.1070.0289 Furman JL, 2012, RES POLICY, V41, P276, DOI 10.1016/j.respol.2011.11.001 Gittelman M, 2003, MANAGE SCI, V49, P366, DOI 10.1287/mnsc.49.4.366.14420 Hall BH, 2005, RAND J ECON, V36, P16 Harhoff D, 1999, REV ECON STAT, V81, P511, DOI 10.1162/003465399558265 Iacus SM, 2012, POLIT ANAL, V20, P1, DOI 10.1093/pan/mpr013 Lu SF, 2013, SCI REP-UK, V3, DOI 10.1038/srep03146 MERTON RK, 1957, AM SOCIOL REV, V22, P635, DOI 10.2307/2089193 MERTON RK, 1968, SCIENCE, V159, P56, DOI 10.1126/science.159.3810.56 Narin F, 1997, RES POLICY, V26, P317, DOI 10.1016/S0048-7333(97)00013-9 Newman MEJ, 2004, P NATL ACAD SCI USA, V101, P5200, DOI 10.1073/pnas.0307545100 PHELPS ES, 1966, REV ECON STUD, V33, P133, DOI 10.2307/2974437 Popper K., 2005, LOGIC SCI DISCOVERY ROMER PM, 1990, J POLIT ECON, V98, pS71, DOI 10.1086/261725 Sherwood S, 2011, PHYS TODAY, V64, P39, DOI 10.1063/PT.3.1295 Singh J, 2005, MANAGE SCI, V51, P756, DOI 10.1287/mnsc.1040.0349 Stephan PE, 2010, HDB EC INNOVATION, P217 TRAJTENBERG M, 1990, RAND J ECON, V21, P172, DOI 10.2307/2555502 NR 28 TC 108 Z9 118 U1 1 U2 47 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD NOV 10 PY 2015 VL 112 IS 45 BP 13823 EP 13826 DI 10.1073/pnas.1502280112 PG 4 WC Multidisciplinary Sciences WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Science & Technology - Other Topics GA CV7QY UT WOS:000364470300045 PM 26504239 OA Green Published, Bronze DA 2024-09-05 ER PT J AU Acosta-Angulo, B Diaz-Angulo, J Lara-Ramos, J Torres-Palma, R Martínez-Pachón, D Moncayo-Lasso, A Machuca-Martínez, F AF Acosta-Angulo, Bryan Diaz-Angulo, Jennyfer Lara-Ramos, Jose Torres-Palma, Ricardo Martinez-Pachon, Diana Moncayo-Lasso, Alejandro Machuca-Martinez, Fiderman TI Analysis of the Applications of Particle Swarm Optimization and Genetic Algorithms on Reaction Kinetics: A Prospective Study for Advanced Oxidation Processes SO CHEMELECTROCHEM LA English DT Article DE Bibliometrics; Electrochemistry; Forecasting; Kinetics; Photocatalysis ID ELECTROCHEMICAL ADVANCED OXIDATION; MONTE-CARLO-SIMULATION; ELECTRO-FENTON PROCESS; WASTE-WATER; ORGANIC POLLUTANTS; PHOTOCATALYTIC DEGRADATION; NUMERICAL-SIMULATION; PARAMETER-ESTIMATION; REACTION-MECHANISM; UV/H2O2 OXIDATION AB A bibliometric analysis of the Scopus database was implemented to assess the spread of two types of evolutionary algorithms (EAs), genetic algorithms (GA) and particle swarm optimization (PSO), on the study of reaction kinetics. Particular attention was given to applications for advanced oxidation processes (AOPs). The collaborations between countries and authors, as well as the keywords co-occurrences, were investigated. Finally, the Gompertz and Logistic Substitution models (LSM) were employed to forecast future scenarios. It was observed that GA methods were the preferred algorithms for reaction kinetic studies, and the USA was the most influential country in terms of collaboration, followed by China. On the other hand, there was still poor collaboration for most countries; this was also observed for authors' collaboration. In addition, literature concerning AOPs was still scarce. The forecasting suggested growth for implementing evolutionary algorithms, especially for the PSO, increasing its popularity regarding GA methods. C1 [Acosta-Angulo, Bryan; Lara-Ramos, Jose; Machuca-Martinez, Fiderman] Univ Valle, Grp Invest Proc Avanzados Tratamientos Quim & Bio, Escuela Ingn Quim, Valle Del Cauca, Colombia. [Diaz-Angulo, Jennyfer] GITAM, Res & Technol Dev Water Treatment Proc Modelling, Cauca, Colombia. [Torres-Palma, Ricardo] Univ Antioquia, Grp Invest Remediac Ambiental & Biocatalisis GIRA, Inst Chem, Fac Exact & Nat Sci, Antioquia, Colombia. [Martinez-Pachon, Diana; Moncayo-Lasso, Alejandro] Univ Antonio Narino, Grp Invest Ciencias Biol & Quim, Fac Sci, Bogota, Colombia. C3 Universidad del Valle; Universidad de Antioquia; Universidad Antonio Narino RP Acosta-Angulo, B; Machuca-Martínez, F (corresponding author), Univ Valle, Grp Invest Proc Avanzados Tratamientos Quim & Bio, Escuela Ingn Quim, Valle Del Cauca, Colombia. EM bryan.acosta@correounivalle.edu.co; fiderman.machuca@correounivalle.edu.co RI Martínez-Pachón, Diana/ADC-9239-2022; Machuca-Martinez, Fiderman/G-2373-2017 OI Martínez-Pachón, Diana/0000-0001-5496-273X; Machuca-Martinez, Fiderman/0000-0002-4553-3957; Acosta Angulo, Bryan Enrique/0000-0002-3048-6684; Lara Ramos, Jose Antonio/0000-0001-6324-5150 FU MINCIENCIAS COLOMBIA (COLCIENCIAS) [80740-173-2021, 111585269594] FX The authors gratefully acknowledge MINCIENCIAS COLOMBIA (before known as COLCIENCIAS) for funding through the program PRO-CEC-AGUA contract 80740-173-2021 with code 111585269594. CR Ab Wahab MN, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0122827 Acosta-Angulo B, 2021, WATER-SUI, V13, DOI 10.3390/w13121670 Acosta-Herazo R, 2020, CHEM ENG J, V395, DOI 10.1016/j.cej.2020.125065 Akach J, 2018, CHEM ENG RES DES, V129, P248, DOI 10.1016/j.cherd.2017.11.021 Alves Da Silva A.P., 2007, MODERN HEURISTIC OPT, P25 Ameta R, 2018, ADVANCED OXIDATION PROCESSES FOR WASTEWATER TREATMENT: EMERGING GREEN CHEMICAL TECHNOLOGY, P49, DOI 10.1016/B978-0-12-810499-6.00003-6 Anglada A, 2011, WATER RES, V45, P828, DOI 10.1016/j.watres.2010.09.017 Anglada A, 2010, J HAZARD MATER, V181, P729, DOI 10.1016/j.jhazmat.2010.05.073 [Anonymous], 2013, Evolutionary Optimization Algorithms: Biologically-Inspired and Population-Based Approaches in Computer Intelligence [Anonymous], SELECTIVE PHOTOCATAL, DOI [10.2202/1542-6580.1500/html, DOI 10.2202/1542-6580.1500/HTML] [Anonymous], 2005, Genetic algorithms. Search methodologies: Introductory tutorials in optimization and decision support techniques, DOI DOI 10.1007/0-387-28356-04 Assareh E, 2012, ENERG SOURCE PART B, V7, P411, DOI 10.1080/15567240903394265 Babuponnusami A, 2014, J ENVIRON CHEM ENG, V2, P557, DOI 10.1016/j.jece.2013.10.011 Badar A.Q.H., 2021, EVOLUTIONARY OPTIMIZ, V1st, P273, DOI [10.1201/9781003206477, DOI 10.1201/9781003206477] Bahnemann D, 2004, SOL ENERGY, V77, P445, DOI 10.1016/j.solener.2004.03.031 Basavarajappa PS, 2020, INT J HYDROGEN ENERG, V45, P7764, DOI 10.1016/j.ijhydene.2019.07.241 Beltran F.J., 2003, OZONE REACTION KINET, DOI DOI 10.1201/9780203509173 Brender J., 2006, em Handbook of Evaluation Methods for Health Informatics, P73, DOI [10.1016/B978-012370464-1.50007-1, DOI 10.1016/B978-012370464-1.50007-1] Brillas E, 2022, SEP PURIF TECHNOL, V284, DOI 10.1016/j.seppur.2021.120290 Brillas E, 2009, CHEM REV, V109, P6570, DOI 10.1021/cr900136g Brucato A, 2006, AICHE J, V52, P3882, DOI 10.1002/aic.10984 Buhler R.E., 2002, J PHYS CHEM-US, V88, P2560 Reina AC, 2015, APPL CATAL B-ENVIRON, V166, P295, DOI 10.1016/j.apcatb.2014.11.023 Cabrera-Reina A, 2021, SCI TOTAL ENVIRON, V800, DOI 10.1016/j.scitotenv.2021.149653 Cañizares P, 2004, IND ENG CHEM RES, V43, P1915, DOI 10.1021/ie0341294 Casado C, 2021, CHEM ENG J, V403, DOI 10.1016/j.cej.2020.126335 Chang YC, 2018, COMBUST FLAME, V194, P15, DOI 10.1016/j.combustflame.2018.04.012 Changrani R, 1999, AICHE J, V45, P1085, DOI 10.1002/aic.690450516 Chen WH, 2021, ENERG CONVERS MANAGE, V238, DOI 10.1016/j.enconman.2021.114116 Chen WL, 2020, J ENVIRON CHEM ENG, V8, DOI 10.1016/j.jece.2020.104470 Cheng S, 2018, COMPLEX INTELL SYST, V4, P227, DOI 10.1007/s40747-018-0071-2 Colina-Márquez J, 2009, ENVIRON SCI TECHNOL, V43, P8953, DOI 10.1021/es902004b da Silva SW, 2019, J ELECTROANAL CHEM, V832, P112, DOI 10.1016/j.jelechem.2018.10.049 da Silva SW, 2021, CURR POLLUT REP, V7, P146, DOI 10.1007/s40726-021-00176-6 da Silva SW, 2019, J ELECTROANAL CHEM, V844, P27, DOI 10.1016/j.jelechem.2019.05.011 De Lasa H. I., 2005, PHOTOCATAL REACT ENG, DOI DOI 10.1007/0-387-27591-6_8 De los M., 2019, TOP CURR CHEM, V377, P1 Diaz-Angulo J., 2021, NANOSTRUCTURED PHOTO, P331, DOI DOI 10.1016/B978-0-12-823007-7.00002-X Diaz-Angulo J, 2019, PHOTOCH PHOTOBIO SCI, V18, P897, DOI 10.1039/c8pp00270c Dillert R, 2013, PHYS CHEM CHEM PHYS, V15, P20876, DOI 10.1039/c3cp54469a Ding YM, 2019, ENERGY, V176, P582, DOI 10.1016/j.energy.2019.04.030 Dominguez S, 2016, J IND ENG CHEM, V37, P237, DOI 10.1016/j.jiec.2016.03.031 Dorantes-Landa DN, 2020, J CHEM TECHNOL BIOT, V95, P1936, DOI 10.1002/jctb.6394 Du QX, 2022, SURF INTERFACES, V28, DOI 10.1016/j.surfin.2021.101647 Duan YH, 2021, WATER RES X, V13, DOI 10.1016/j.wroa.2021.100127 Echardt J, 2009, WATER SCI TECHNOL, V60, P2227, DOI 10.2166/wst.2009.676 Elliott L, 2003, COMBUST SCI TECHNOL, V175, P619, DOI 10.1080/00102200302389 Elliott L, 2003, IND ENG CHEM RES, V42, P1215, DOI 10.1021/ie020501o Elliott L, 2004, PROG ENERG COMBUST, V30, P297, DOI 10.1016/j.pecs.2004.02.002 Enikeev MR, 2020, CHEM ENG J, V383, DOI 10.1016/j.cej.2019.123131 Estahbanati MRK, 2020, CHEM ENG J, V382, DOI 10.1016/j.cej.2019.122732 Estahbanati MRK, 2019, AICHE J, V65, DOI 10.1002/aic.16724 Fateh T, 2014, FIRE SAFETY J, V64, P36, DOI 10.1016/j.firesaf.2014.01.007 Fateh T, 2013, FIRE SAFETY J, V58, P25, DOI 10.1016/j.firesaf.2013.01.019 Fateh T, 2016, J ANAL APPL PYROL, V120, P423, DOI 10.1016/j.jaap.2016.06.014 Feng WJ, 2019, SCI TOTAL ENVIRON, V646, P1440, DOI 10.1016/j.scitotenv.2018.07.307 Fenton H. J. H., 1894, Journalof the Chemical Society, Transactions, V65, P899, DOI [10.1039/ct8946500899, DOI 10.1039/CT8946500899] Ferre-Aracil J, 2013, OZONE-SCI ENG, V35, P423, DOI 10.1080/01919512.2013.815104 Ferreira M, 2021, NEW J CHEM, V45, P12622, DOI 10.1039/d1nj01117k Figueredo M, 2021, WATER RES, V206, DOI 10.1016/j.watres.2021.117727 Galvan B, 2003, PARALLEL COMPUTATIONAL FLUID DYNAMICS: NEW FRONTIERS AND MULTI-DISCIPLINARY APPLICATIONS, PROCEEDINGS, P573, DOI 10.1016/B978-044450680-1/50072-3 Gan JQ, 2016, REV SCI INSTRUM, V87, DOI 10.1063/1.4941941 Ganiyu SO, 2018, CHEMOSPHERE, V211, P998, DOI 10.1016/j.chemosphere.2018.08.044 Ghaheri Ali, 2015, Oman Med J, V30, P406, DOI 10.5001/omj.2015.82 Gharbani P, 2008, INT J ENVIRON SCI TE, V5, P495, DOI 10.1007/BF03326046 Gome A, 2023, INT J ENVIRON SCI TE, V20, P2087, DOI 10.1007/s13762-022-03915-4 Gompertz B., 1825, Philos. Trans. Royal Soc. London, V115, P513, DOI DOI 10.1098/RSTL.1825.0026 Gong YS, 2022, ENVIRON POLLUT, V299, DOI 10.1016/j.envpol.2022.118871 Gosselin L, 2009, INT J HEAT MASS TRAN, V52, P2169, DOI 10.1016/j.ijheatmasstransfer.2008.11.015 Gray N.F., 2014, Microbiology of Waterborne Diseases: Microbiological Aspects and Risks, VSecond, P599, DOI [10.1016/B978-0-12-415846-7.00033-0, DOI 10.1016/B978-0-12-415846-7.00033-0] Hansen DL, 2011, ANALYZING SOCIAL MEDIA NETWORKS WITH NODEXL: INSIGHTS FROM A CONNECTED WORLD, P69, DOI 10.1016/B978-0-12-382229-1.00005-9 Harris SD, 2000, COMPUT METHOD APPL M, V190, P1065, DOI 10.1016/S0045-7825(99)00466-1 Hasan DB, 2014, SCI WORLD J, DOI 10.1155/2014/252491 Hautaniemi M., 2008, [No title captured], V20, DOI [10.1080/01919519808547265, DOI 10.1080/01919519808547265] He Y, 2021, SCI TOTAL ENVIRON, V785, DOI 10.1016/j.scitotenv.2021.147328 Heracleous E, 2006, J CATAL, V237, P175, DOI 10.1016/j.jcat.2005.11.003 Ho SY, 2004, IEEE T EVOLUT COMPUT, V8, P522, DOI 10.1109/TEVC.2004.835176 Hong SW, 2015, INT J CHEM KINET, V47, P489, DOI 10.1002/kin.20926 Houssein EH, 2021, SWARM EVOL COMPUT, V63, DOI 10.1016/j.swevo.2021.100868 Huang YF, 2018, ENVIRON SCI-WAT RES, V4, P1662, DOI [10.1039/c8ew00407b, 10.1039/C8EW00407B] Irshad M, 2022, RSC ADV, V12, P7009, DOI 10.1039/d1ra08185c Ismail AM, 2017, BIOSYSTEMS, V162, P81, DOI 10.1016/j.biosystems.2017.09.013 Izadifar M, 2006, J SUPERCRIT FLUID, V38, P37, DOI 10.1016/j.supflu.2005.11.012 Jayathilake M, 2021, FUEL, V305, DOI 10.1016/j.fuel.2021.121498 Jiang ST, 2022, SURF INTERFACES, V30, DOI 10.1016/j.surfin.2022.101843 Jin F, 2021, CHEM ENG SCI, V229, DOI 10.1016/j.ces.2020.116144 Kadi MA, 2019, HELIYON, V5, DOI 10.1016/j.heliyon.2019.e02146 Kanakaraju D, 2018, J ENVIRON MANAGE, V219, P189, DOI 10.1016/j.jenvman.2018.04.103 Kang N, 2002, CHEMOSPHERE, V47, P915, DOI 10.1016/S0045-6535(02)00067-X Katoch S, 2021, MULTIMED TOOLS APPL, V80, P8091, DOI 10.1007/s11042-020-10139-6 Kaur R, 2021, BIOINTERFACE RES APP, V11, P9071, DOI 10.33263/BRIAC112.90719084 Kavitha V, 2005, WATER RES, V39, P3062, DOI 10.1016/j.watres.2005.05.011 Kennedy J., PR ICNN95 INT C NEUR, V4, P1942 Khaksar SAN, 2021, REACT KINET MECH CAT, V132, P1075, DOI 10.1007/s11144-021-01955-4 Kittrell J., 1970, ADVANCES CHEMICAL EN, V8, P97, DOI [10.1016/S0065-2377(08)60184-2, DOI 10.1016/S0065-2377(08)60184-2] Kubo D, 2018, J CLEAN PROD, V203, P685, DOI 10.1016/j.jclepro.2018.08.231 Kucharavy D., 2011, Procedia Eng, V9, P402, DOI [DOI 10.1016/J.PROENG.2011.03.129, 10.1016/j.proeng.2011.03.129] Kwon BG, 1999, WATER RES, V33, P2110, DOI 10.1016/S0043-1354(98)00428-X LAIRD AK, 1964, BRIT J CANCER, V18, P490, DOI 10.1038/bjc.1964.55 Lara-Ramos JA, 2020, TOP CATAL, V63, P1361, DOI 10.1007/s11244-020-01316-w Lara-Ramos JA, 2019, PHOTOCH PHOTOBIO SCI, V18, P920, DOI 10.1039/c8pp00308d Leardi R, 2007, J CHROMATOGR A, V1158, P226, DOI 10.1016/j.chroma.2007.04.025 LEE JC, 1987, TECHNOL FORECAST SOC, V31, P61, DOI 10.1016/0040-1625(87)90023-0 LEGRINI O, 1993, CHEM REV, V93, P671, DOI 10.1021/cr00018a003 Li XY, 2022, J ENVIRON MANAGE, V308, DOI 10.1016/j.jenvman.2022.114664 Li YS, 2015, CHIN AUTOM CONGR, P988, DOI 10.1109/CAC.2015.7382642 Liang DH, 2021, SCI TOTAL ENVIRON, V753, DOI 10.1016/j.scitotenv.2020.141809 Lin YY, 2021, BIORESOURCE TECHNOL, V319, DOI 10.1016/j.biortech.2020.124145 Liu DQ, 2017, J CLEAN PROD, V164, P1093, DOI 10.1016/j.jclepro.2017.07.040 Liu DQ, 2016, J CLEAN PROD, V133, P994, DOI 10.1016/j.jclepro.2016.06.023 Lopes ES, 2020, CELLULOSE, V27, P5641, DOI 10.1007/s10570-020-03183-w Lovato M, 2019, ENVIRON SCI POLLUT R, V26, P4474, DOI 10.1007/s11356-018-1710-2 Lu H, 2022, SUSTAINABILITY-BASEL, V14, DOI 10.3390/su14031556 Lu XY, 2021, COMBUST FLAME, V230, DOI 10.1016/j.combustflame.2021.111417 Luo MH, 2021, WATER SCI TECHNOL, V83, P1217, DOI 10.2166/wst.2021.063 Machuca-Martínez F, 2016, RSC ENERGY ENVIRON S, P388 Mahmood A, 2021, J ENVIRON CHEM ENG, V9, DOI 10.1016/j.jece.2021.105069 Majumder A, 2021, J ENVIRON CHEM ENG, V9, DOI 10.1016/j.jece.2020.104812 Makeham W.M., 1873, J Inst Actuar, V17, P305, DOI DOI 10.1017/S2046167400044268 Mao GZ, 2021, ENVIRON POLLUT, V275, DOI 10.1016/j.envpol.2020.115785 Mao L, 2020, JAMA NEUROL, V77, P683, DOI 10.1001/jamaneurol.2020.1127 Mao YB, 2021, COMBUST FLAME, V229, DOI 10.1016/j.combustflame.2021.111401 Mathon B, 2021, CHEMOSPHERE, V262, DOI 10.1016/j.chemosphere.2020.127969 Matyszczak G, 2021, WATER SCI TECHNOL, V84, P3227, DOI 10.2166/wst.2021.407 Meijide J, 2017, CHEMOSPHERE, V185, P726, DOI 10.1016/j.chemosphere.2017.07.067 Méndez-Arriaga F, 2009, WATER RES, V43, P3984, DOI 10.1016/j.watres.2009.06.059 Meng ZY, 2016, IEEE C EVOL COMPUTAT, P4082, DOI 10.1109/CEC.2016.7744308 Zacarías SM, 2010, J PHOTOCH PHOTOBIO A, V214, P171, DOI 10.1016/j.jphotochem.2010.06.021 Meyer PS, 1999, TECHNOL FORECAST SOC, V61, P247, DOI 10.1016/S0040-1625(99)00021-9 Miklos DB, 2018, WATER RES, V139, P118, DOI 10.1016/j.watres.2018.03.042 Misal SN, 2020, J HAZARD MATER, V384, DOI 10.1016/j.jhazmat.2019.121420 Moctezuma E, 2012, J HAZARD MATER, V243, P130, DOI 10.1016/j.jhazmat.2012.10.010 Moreira Jesus, 2013, International Journal of Chemical Reactor Engineering, V11, P641, DOI 10.1515/ijcre-2012-0003 Nikzad M., 2012, International Journal of Computer Applications in Technology, V56, DOI DOI 10.5120/8859-2818 Nkwachukwu OV, 2021, FRONT CHEM, V9, DOI 10.3389/fchem.2021.634630 Nosaka Y, 2017, CHEM REV, V117, P11302, DOI 10.1021/acs.chemrev.7b00161 Ortiz-Marin AD, 2022, REACT KINET MECH CAT, V135, P639, DOI 10.1007/s11144-021-02152-z Otálvaro-Marín HL, 2014, INT J PHOTOENERGY, V2014, DOI 10.1155/2014/930439 Otte E., 2016, [No title captured], V28, DOI [10.1177/016555150202800601, DOI 10.1177/016555150202800601] Pocostales JP, 2012, CHEM ENG J, V183, P395, DOI 10.1016/j.cej.2011.12.020 Palmatier RW, 2018, J ACAD MARKET SCI, V46, P1, DOI 10.1007/s11747-017-0563-4 Palos R, 2022, FUEL, V316, DOI 10.1016/j.fuel.2022.123341 Pandis PK, 2022, CHEMENGINEERING, V6, DOI 10.3390/chemengineering6010008 Pelletier GJ, 2006, ENVIRON MODELL SOFTW, V21, P419, DOI 10.1016/j.envsoft.2005.07.002 Pérez-Morales J, 2021, FUEL, V287, DOI 10.1016/j.fuel.2020.119510 Polcaro AM, 1997, IND ENG CHEM RES, V36, P1791, DOI 10.1021/ie960557g Poto S, 2022, CHEM ENG J, V435, DOI 10.1016/j.cej.2022.134946 Qin XF, 2021, CHINESE J CHEM ENG, V33, P139, DOI 10.1016/j.cjche.2020.06.011 Rabahi A, 2019, ENVIRON SCI POLLUT R, V26, P19035, DOI 10.1007/s11356-018-2954-6 Radha KV, 2018, ADVANCED OXIDATION PROCESSES FOR WASTEWATER TREATMENT: EMERGING GREEN CHEMICAL TECHNOLOGY, P359, DOI 10.1016/B978-0-12-810499-6.00011-5 Rahmani AR, 2019, ECOTOX ENVIRON SAFE, V168, P120, DOI 10.1016/j.ecoenv.2018.10.069 Raoof M, 2021, REACT KINET MECH CAT, V134, P331, DOI 10.1007/s11144-021-02069-7 Rein G, 2006, COMBUST FLAME, V146, P95, DOI 10.1016/j.combustflame.2006.04.013 Rey A, 2011, CHEM ENG J, V174, P134, DOI 10.1016/j.cej.2011.08.061 Rivas J, 2009, CHEMOSPHERE, V76, P651, DOI 10.1016/j.chemosphere.2009.04.028 Rivera FF, 2021, CHEM ENG SCI, V239, DOI 10.1016/j.ces.2021.116622 Rollin JA, 2015, P NATL ACAD SCI USA, V112, P4964, DOI 10.1073/pnas.1417719112 Ruiz-Rosero J, 2019, SCIENTOMETRICS, V121, P1165, DOI 10.1007/s11192-019-03213-w Russo D, 2021, APPL SCI-BASEL, V11, DOI 10.3390/app11031042 Russo D, 2019, CHEM ENG J, V376, DOI 10.1016/j.cej.2018.11.078 Sadia M, 2021, J KING SAUD UNIV SCI, V33, DOI 10.1016/j.jksus.2020.101312 Safari H, 2014, TRANSPORT POROUS MED, V101, P477, DOI 10.1007/s11242-013-0255-6 Safiullina L.F., 2021, COMPUT RES MODEL, V13, P1045 Schneider J., 2016, Photocatalysis Scott F.H., 2005, Elements of Chemical Reaction Engineering Sirés I, 2014, ENVIRON SCI POLLUT R, V21, P8336, DOI 10.1007/s11356-014-2783-1 Slowik A, 2020, NEURAL COMPUT APPL, V32, P12363, DOI 10.1007/s00521-020-04832-8 Sonu K, 2021, ENVIRON SCI POLLUT R, V28, P48742, DOI 10.1007/s11356-021-13863-0 Sparks D.L., 2003, Environmental Soil Chemistry, V2nd, P207, DOI [DOI 10.1016/8978-012656446-4/50007-4, 10.1016/b978-012656446-4/50007-4, DOI 10.1016/B978-012656446-4/50007-4] Spasiano D, 2016, J HAZARD MATER, V318, P515, DOI 10.1016/j.jhazmat.2016.07.034 Spiess Andrej-Nikolai, 2010, BMC Pharmacology, V10, P6, DOI 10.1186/1471-2210-10-6 Staehelin J., 2002, J PHYS CHEM-US, V88, P5999 Steven LS., 2013, New and future developments in catalysis: activation of carbon dioxide, capitulo 5 Sudar M, 2018, J BIOTECHNOL, V268, P71, DOI 10.1016/j.jbiotec.2018.01.013 Tahir M.B., 2020, Nanomaterials for Photocatalysis, P65, DOI [DOI 10.1016/B978-0-12-821192-2.00005-X, 10.1016/B978-0-12-821192-2.00005-X] Tjorve KMC, 2017, PLOS ONE, V12, DOI 10.1371/journal.pone.0178691 TOMIYASU H, 1985, INORG CHEM, V24, P2962, DOI 10.1021/ic00213a018 Trigueros DEG, 2010, PROCESS BIOCHEM, V45, P1355, DOI 10.1016/j.procbio.2010.05.007 Tsuchiya M, 2001, J PHYS CHEM A, V105, P4052, DOI 10.1021/jp004439p Uskov SI, 2020, ENERGIES, V13, DOI 10.3390/en13133393 Valades-Pelayo PJ, 2014, CHEM ENG SCI, V107, P123, DOI 10.1016/j.ces.2013.12.013 van Riel NAW, 2006, BRIEF BIOINFORM, V7, P364, DOI 10.1093/bib/bbl040 Verma S, 2021, CERAM INT, V47, P34751, DOI 10.1016/j.ceramint.2021.09.014 Vidal E, 2015, PHOTOCH PHOTOBIO SCI, V14, P366, DOI 10.1039/c4pp00248b Vijayasekaran B, 2004, CHEM BIOCHEM ENG Q, V18, P337 Waltman L, 2011, J EVOL ECON, V21, P737, DOI 10.1007/s00191-010-0177-1 Wang H, 2020, J CLEAN PROD, V265, DOI 10.1016/j.jclepro.2020.121722 Wang J., 2017, J ADV OXID TECHNOL, P20, DOI [10.1515/JAOTS-2016-0191/MACHINEREADABLECITATION/RIS, DOI 10.1515/JAOTS-2016-0191/MACHINEREADABLECITATION/RIS] Wang Jian-long, 2020, Chemical Engineering Journal, V401, DOI 10.1016/j.cej.2020.126158 Wang LX, 2001, KOREAN J CHEM ENG, V18, P652, DOI 10.1007/BF02706382 Wang Y, 2022, CHEMOSPHERE, V293, DOI 10.1016/j.chemosphere.2022.133614 Wu GL, 2020, CHEM ENG SCI, V214, DOI 10.1016/j.ces.2019.115446 Xu R, 2018, COMBUST FLAME, V193, P520, DOI 10.1016/j.combustflame.2018.03.021 Yan ZF, 2022, CHINESE J CHEM ENG, V41, P49, DOI 10.1016/j.cjche.2021.08.023 Yang XG, 2018, ACS APPL ENERG MATER, V1, P6657, DOI 10.1021/acsaem.8b01345 Yang XT, 2021, CHEMOSPHERE, V283, DOI 10.1016/j.chemosphere.2021.131217 Yen SW, 2021, SUSTAINABILITY-BASEL, V13, DOI 10.3390/su13084246 Youssef Z, 2018, DYES PIGMENTS, V159, P49, DOI 10.1016/j.dyepig.2018.06.002 Yu GF, 2020, ENVIRON SCI TECHNOL, V54, P5931, DOI 10.1021/acs.est.0c00575 Zahedi S., 2021, TOP CATAL, V1, P1 Zalazar CS, 2007, WATER SCI TECHNOL, V55, P31, DOI 10.2166/wst.2007.377 Zelinski DW, 2018, WATER AIR SOIL POLL, V229, DOI 10.1007/s11270-018-3856-4 Zhang JL, 2022, RSC ADV, V12, P1904, DOI 10.1039/d1ra07814c Zhao Q., 2022, LECT NOTES ELECT ENG, V791, P1645 Zhou SQ, 2018, J HAZARD MATER, V346, P73, DOI 10.1016/j.jhazmat.2017.12.023 NR 205 TC 3 Z9 3 U1 3 U2 19 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA POSTFACH 101161, 69451 WEINHEIM, GERMANY SN 2196-0216 J9 CHEMELECTROCHEM JI ChemElectroChem PD JUL 14 PY 2022 VL 9 IS 13 AR e202200229 DI 10.1002/celc.202200229 EA JUN 2022 PG 15 WC Electrochemistry WE Science Citation Index Expanded (SCI-EXPANDED) SC Electrochemistry GA 2P8OJ UT WOS:000808198800001 DA 2024-09-05 ER PT J AU De Paoli, S AF De Paoli, Stefano TI Performing an Inductive Thematic Analysis of Semi-Structured Interviews With a Large Language Model: An Exploration and Provocation on the Limits of the Approach SO SOCIAL SCIENCE COMPUTER REVIEW LA English DT Article DE large language models; thematic analysis; qualitative research; human- AI collaboration AB Large Language Models (LLMs) have emerged as powerful generative Artificial Intelligence solutions. This paper presents results and reflections of an experiment done with the LLM GPT 3.5-Turbo to perform an inductive Thematic Analysis (TA). Previous research has worked on conducting deductive analysis. Thematic Analysis is a qualitative method for analysis commonly used in social sciences and it is based on interpretations by the human analyst(s) and the identification of explicit and latent meanings in qualitative data. The paper presents the motivations for attempting this analysis; it reflects on how the six phases to a TA proposed by Braun and Clarke can partially be reproduced with the LLM and it reflects on what are the model's outputs. The paper uses two datasets of open access semi-structured interviews, previously analysed by other researchers. The first dataset contains interviews with videogame players, and the second is a dataset of interviews with lecturers teaching data science in a University. This paper used the analyses previously conducted on these datasets to compare with the results produced by the LLM. The results show that the model can infer most of the main themes from previous research. This shows that using LLMs to perform an inductive TA is viable and offers a good degree of validity. The discussion offers some recommendations for working with LLMs in qualitative analysis. C1 [De Paoli, Stefano] Abertay Univ, Digital Soc, Dundee, Scotland. [De Paoli, Stefano] Abertay Univ, Sociol Div, Bell St, Dundee DD1 1HG, Scotland. C3 University of Abertay Dundee; University of Abertay Dundee RP De Paoli, S (corresponding author), Abertay Univ, Sociol Div, Bell St, Dundee DD1 1HG, Scotland. EM s.depaoli@abertay.ac.uk OI De Paoli, Stefano/0000-0003-1120-4773 CR Baden C, 2022, COMMUN METHODS MEAS, V16, P1, DOI 10.1080/19312458.2021.2015574 Bockting CL, 2023, NATURE, V614, P224, DOI 10.1038/d41586-023-00288-7 Braun V., 2006, QUAL RES PSYCHOL, V3, P77, DOI [10.1191/1478088706qp063oa, DOI 10.1191/1478088706QP063OA] Curty R., 2022, TEACHING UNDERGRADUA, DOI [10.25349/D9402J, DOI 10.25349/D9402J] Curty R., 2021, TEACHING UNDERGRADUA Dowling M, 2023, FINANC RES LETT, V53, DOI 10.1016/j.frl.2023.103662 Flick U., 2018, SAGE HDB QUALITATIVE, DOI [DOI 10.4135/9781526416070, 10.4135/9781526416070.n4, DOI 10.4135/9781526416070.N4] Floridi L., 2023, Philosophy & Technology, V36, DOI [10.1007/s13347-023-00621-y, DOI 10.1007/S13347-023-00621-Y] Gao J., 2023, COLLABCODER GPT POWE, DOI DOI 10.48550/ARXIV.2304.07366 Gauthier Robert P., 2022, Proceedings of the ACM on Human-Computer Interaction, V6, DOI 10.1145/3492844 George A Shaji, 2023, Partners Universal International Innovation Journal, V1, P9, DOI DOI 10.5281/ZENODO.7644359 Hao S., 2023, REASONING LANGUAGE M, DOI DOI 10.48550/ARXIV.2305.14992 Hassani H, 2023, BIG DATA COGN COMPUT, V7, DOI 10.3390/bdcc7020062 Jiang Jialun Aaron, 2021, Proceedings of the ACM on Human-Computer Interaction, V5, DOI 10.1145/3449168 Kurniadi D., 2023, JURNAL NASIONAL PEND, V12, DOI [10.23887/janapati.v12i1.59746, DOI 10.23887/JANAPATI.V12I1.59746] Lo CK, 2023, EDUC SCI, V13, DOI 10.3390/educsci13040410 Lund BD, 2023, J ASSOC INF SCI TECH, V74, P570, DOI 10.1002/asi.24750 Nelson LK, 2020, SOCIOL METHOD RES, V49, P3, DOI 10.1177/0049124117729703 Nowell LS, 2017, INT J QUAL METH, V16, DOI 10.1177/1609406917733847 Peres R, 2023, INT J RES MARK, V40, P269, DOI 10.1016/j.ijresmar.2023.03.001 Persico D., 2017, D2 3 REPORT INTERVIE Persico D., 2017, D21 SYSTEMATIC REV M Rahman MM, 2023, APPL SCI-BASEL, V13, DOI 10.3390/app13095783 Rai A, 2020, J ACAD MARKET SCI, V48, P137, DOI 10.1007/s11747-019-00710-5 Renz SM, 2018, QUAL HEALTH RES, V28, P824, DOI 10.1177/1049732317753586 Richards KAR, 2018, J TEACH PHYS EDUC, V37, P225, DOI 10.1123/jtpe.2017-0084 SALLAM M, 2023, HEALTHCARE-BASEL, V11, DOI DOI 10.3390/HEALTHCARE11060887 Sanmarchi F., 2023, MEDRXIV, DOI [10.1101/2023.02.06.23285514, DOI 10.1101/2023.02.06.23285514] Schiavone W., 2023, CAN CHATGPT REPLACE Wei Jason, 2022, Emergent abilities of large language models Xiao Ziang, 2023, COMP P 28 INT C INT, P75, DOI [DOI 10.1145/3581754.3584136, 10.1145/3581754.3584136] Zhou Y, 2022, Large language models are human-level prompt engineers NR 32 TC 4 Z9 4 U1 33 U2 37 PU SAGE PUBLICATIONS INC PI THOUSAND OAKS PA 2455 TELLER RD, THOUSAND OAKS, CA 91320 USA SN 0894-4393 EI 1552-8286 J9 SOC SCI COMPUT REV JI Soc. Sci. Comput. Rev. PD AUG PY 2024 VL 42 IS 4 BP 997 EP 1019 DI 10.1177/08944393231220483 EA DEC 2023 PG 23 WC Computer Science, Interdisciplinary Applications; Information Science & Library Science; Social Sciences, Interdisciplinary WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Computer Science; Information Science & Library Science; Social Sciences - Other Topics GA A2P3C UT WOS:001116391300001 OA Green Published, hybrid DA 2024-09-05 ER PT J AU Mahalakshmi, GS Siva, R Sendhilkumar, S AF MAHALAKSHMI, G. S. SIVA, R. SENDHILKUMAR, S. TI On the Expressive Power of Scientific Manuscripts SO IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING LA English DT Article DE Machine learning; Bibliometrics; Semantics; Text mining; Measurement; Indexes; Analytical models; Citation analysis; semantic analysis; citation quality; machine learning; text mining; availability index; article metrics; deep learning; expressive power AB Every research manuscript is appreciated in the form of citations. Citations are expected to carry the essence of the underlying base paper by some rhetorical means. However, this is not true in reality. Citation manipulations are equally possible which shall be identified using research semantics. This paper discusses machine learning based approaches for analyzing research citations with the aim of finding quality research citations. On analyzing the semantics of the research manuscript and the respective citations, this paper proposes various metrics for citation quality analysis including deep cite, raw expressive power, expressive power and normalized expressive power. C1 [MAHALAKSHMI, G. S.; SENDHILKUMAR, S.] Anna Univ, Dept Comp Sci & Engn, Coll Engn Guindy Campus, Chennai 600025, TN, India. [SIVA, R.] KCG Coll Technol, Dept Comp Sci & Engn, Chennai 600097, TN, India. C3 Anna University; Anna University Chennai; College of Engineering Guindy RP Mahalakshmi, GS (corresponding author), Anna Univ, Dept Comp Sci & Engn, Coll Engn Guindy Campus, Chennai 600025, TN, India. EM gsmaha@annauniv.edu; sivavb6@gmail.com; thamaraikumar@annauniv.edu RI Selvaradjou, Sendhilkumar/AIF-2078-2022; R, SIVA/ABE-6532-2021 OI Selvaradjou, Sendhilkumar/0000-0001-6006-1866; R, SIVA/0000-0002-2006-8753; Antony, Betina/0000-0002-0491-6214 FU Ministry of Electronics & Information Technology, Government of India [VISPHD-MEITY-2959] FX This Publication is an outcome of the R&D work undertaken in the project under the Visvesvaraya Ph.D. Scheme (awarded to Dr. S. Sendhilkumar, Unique Awardee Number: VISPHD-MEITY-2959) of Ministry of Electronics & Information Technology, Government of India, being implemented by Digital India Corporation (formerly Media Lab Asia). CR Alberts B, 2013, SCIENCE, V340, P787, DOI 10.1126/science.1240319 Balaji A., 2017, J COMPUT THEORETICAL, V14, P2905 Blei D.M., 2006, P 23 INT C MACHINE L, P113, DOI [DOI 10.1145/1143844.1143859, 10.1145/1143844.1143859, 10.1145/1143844.114385] Blei DM, 2012, COMMUN ACM, V55, P77, DOI 10.1145/2133806.2133826 Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993 Card D, 2017, ARXIV PREPRINT ARXIV, V1 Chien JT, 2018, IEEE T PATTERN ANAL, V40, P318, DOI 10.1109/TPAMI.2017.2677439 De Sordi JO, 2017, J INFORMETR, V11, P483, DOI 10.1016/j.joi.2017.02.012 Hirsch JE, 2005, P NATL ACAD SCI USA, V102, P16569, DOI 10.1073/pnas.0507655102 Hu XJ, 2016, J INFORMETR, V10, P1079, DOI 10.1016/j.joi.2016.10.002 Islam Sk Minhazul, 2012, IEEE Trans Syst Man Cybern B Cybern, V42, P482, DOI 10.1109/TSMCB.2011.2167966 Kataria Saurabh., 2011, Intl. Joint Conf. on Artificial Intelligence (IJCAI), P2274, DOI DOI 10.5591/978-1-57735-516-8/IJCAI11-379 Kim HJ, 2016, J INFORMETR, V10, P954, DOI 10.1016/j.joi.2016.07.007 Klahold A, 2014, IEEE INTELL SYST, V29, P40, DOI 10.1109/MIS.2013.120 Lu C, 2017, SCIENTOMETRICS, V112, P927, DOI 10.1007/s11192-017-2398-7 Mahalakshmi GS, 2019, IEEE T SUST COMPUT, V4, P4, DOI 10.1109/TSUSC.2018.2829196 Mahalakshmi G. S., 2017, P INT C SMART INN CO, P411 Mahalakshmi G. S., 2017, COMPUTATIONAL VISION Mahalakshmi G. S., 2009, HDB RES TEXT WEB MIN, P483 Min C, 2016, J INFORMETR, V10, P1153, DOI 10.1016/j.joi.2016.10.001 Onodera N, 2016, J INFORMETR, V10, P981, DOI 10.1016/j.joi.2016.07.001 Pride D., 2017, P 16 INT SOC SCIENT Rosen-Zvi M, 2010, ACM T INFORM SYST, V28, DOI 10.1145/1658377.1658381 Rousseau R, 2017, J INFORMETR, V11, P583, DOI 10.1016/j.joi.2017.03.001 Saha S, 2003, J MED LIBR ASSOC, V91, P42 Seglen PO, 1997, BRIT MED J, V314, P498 Siva R., 2017, INT J CONTROL THEORY, V10, P585 Siva S. S R, 2016, ASIAN J INF TECHNOL, V15, P1964 Taskin Z, 2018, SCIENTOMETRICS, V114, P335, DOI 10.1007/s11192-017-2560-2 Teufel S., 2006, P C EMP METH NAT LAN, DOI 10.3115/1610075.1610091 Uddin S, 2016, J INFORMETR, V10, P1166, DOI 10.1016/j.joi.2016.10.004 Wang J, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0127298 Wong M, 2018, J CHOICE MODEL, V29, P152, DOI 10.1016/j.jocm.2017.11.003 Wouters P., 2015, METRIC TIDE REPORT I Yin JH, 2014, PROCEEDINGS OF THE 20TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING (KDD'14), P233, DOI 10.1145/2623330.2623715 NR 35 TC 4 Z9 4 U1 0 U2 9 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 2168-6750 J9 IEEE T EMERG TOP COM JI IEEE Trans. Emerg. Top. Comput. PD JAN 1 PY 2021 VL 9 IS 1 BP 269 EP 279 DI 10.1109/TETC.2018.2870179 PG 11 WC Computer Science, Information Systems; Telecommunications WE Science Citation Index Expanded (SCI-EXPANDED) SC Computer Science; Telecommunications GA QW8QH UT WOS:000628912400025 OA Bronze DA 2024-09-05 ER PT J AU Lee, CH Liu, CL Trappey, AJC Mo, JPT Desouza, KC AF Lee, Ching-Hung Liu, Chien-Liang Trappey, Amy J. C. Mo, John P. T. Desouza, Kevin C. TI Understanding digital transformation in advanced manufacturing and engineering: A bibliometric analysis, topic modeling and research trend discovery SO ADVANCED ENGINEERING INFORMATICS LA English DT Article DE Digital transformation; Advanced manufacturing and engineering; Bibliometric analysis; Topic modeling; Systematic review ID INDUSTRY 4.0; BIG DATA; SUPPLY CHAIN; INNOVATION; SERVICE; CONSTRUCTION; TECHNOLOGIES; ARCHITECTURE; LOGISTICS; KNOWLEDGE AB Digital transformation (DT) is the process of combining digital technologies with sound business models to generate great value for enterprises. DT intertwines with customer requirements, domain knowledge, and theoretical and empirical insights for value propagations. Studies of DT are growing rapidly and heterogeneously, covering the aspects of product design, engineering, production, and life-cycle management due to the fast and market-driven industrial development under Industry 4.0. Our work addresses the challenge of understanding DT trends by presenting a machine learning (ML) approach for topic modeling to review and analyze advanced DT technology research and development. A systematic review process is developed based on the comprehensive DT in manufacturing systems and engineering literature (i.e., 99 articles). Six dominant topics are identified, namely smart factory, sustainability and product-service systems, construction digital transformation, public infrastructure-centric digital transformation, techno-centric digital transformation, and business modelcentric digital transformation. The study also contributes to adopting and demonstrating the ML-based topic modeling for intelligent and systematic bibliometric analysis, particularly for unveiling advanced engineering research trends through domain literature. C1 [Lee, Ching-Hung] Xi An Jiao Tong Univ, Sch Publ Policy & Adm, Xian 710049, Peoples R China. [Liu, Chien-Liang] Natl Yang Ming Chiao Tung Univ, Dept Ind Engn & Management, Hsinchu 300093, Taiwan. [Trappey, Amy J. C.] Natl Tsing Hua Univ, Dept Ind Engn & Engn Management, Hsinchu 300044, Taiwan. [Mo, John P. T.] RMIT Univ, Sch Engn, Melbourne, Vic 3000, Australia. [Desouza, Kevin C.] Queensland Univ Technol, QUT Business Sch, Brisbane, Qld 4001, Australia. C3 Xi'an Jiaotong University; National Yang Ming Chiao Tung University; National Tsing Hua University; Royal Melbourne Institute of Technology (RMIT); Queensland University of Technology (QUT) RP Liu, CL (corresponding author), Natl Yang Ming Chiao Tung Univ, Dept Ind Engn & Management, Hsinchu 300093, Taiwan. EM leechinghung@xjtu.edu.cn; clliu@nycu.edu.tw; trappey@ie.nthu.edu.tw; john.mo@rmit.edu.au; kevin.desouza@qut.edu.au RI Silva, Flavio/JTT-2763-2023; Trappey, Amy/KWV-0368-2024; Lee, Ching-Hung/IQV-9761-2023 OI Trappey, Amy/0000-0001-7651-7012; Lee, Ching-Hung/0000-0002-4093-556X; Desouza, Kevin/0000-0002-4734-3081; Liu, Chien-Liang/0000-0002-2724-7199 CR Abou-foul M, 2021, PROD PLAN CONTROL, V32, P975, DOI 10.1080/09537287.2020.1780508 Aghimien DO, 2020, ENG CONSTR ARCHIT MA, V27, P3171, DOI 10.1108/ECAM-11-2019-0602 Aheleroff S, 2021, ADV ENG INFORM, V47, DOI 10.1016/j.aei.2020.101225 Al-Sai ZA, 2020, IEEE ACCESS, V8, P118940, DOI 10.1109/ACCESS.2020.3005461 Alos-Simo L, 2017, IND MANAGE DATA SYST, V117, P382, DOI 10.1108/IMDS-01-2016-0038 [Anonymous], 2010, P ADV NEUR INF PROC P ADV NEUR INF PROC P ADV NEUR INF PROC P ADV NEUR INF PROC P ADV NEUR INF PROC P ADV NEUR INF PROC P ADV NEUR INF PROC P ADV NEUR INF PROC Avila-Gutiérrez MJ, 2019, SUSTAINABILITY-BASEL, V11, DOI 10.3390/su11226490 Beier G, 2020, J CLEAN PROD, V259, DOI 10.1016/j.jclepro.2020.120856 Belingheri P, 2019, INT J TECHNOL MANAGE, V80, P1, DOI 10.1504/IJTM.2019.099773 Bharadwaj A, 2013, MIS QUART, V37, P471, DOI 10.25300/MISQ/2013/37:2.3 Bhargava R, 2016, ANNU REV BIOMED ENG, V18, P387, DOI 10.1146/annurev-bioeng-112415-114722 Björkdahl J, 2020, CALIF MANAGE REV, V62, P17, DOI 10.1177/0008125620920349 Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993 Bonanomi M.M., 2019, ENG CONSTR ARCHITECT Borangiu T, 2019, COMPUT IND, V108, P150, DOI 10.1016/j.compind.2019.01.006 Bordeleau FE, 2020, PROD PLAN CONTROL, V31, P173, DOI 10.1080/09537287.2019.1631458 Borgman CL, 2002, ANNU REV INFORM SCI, V36, P3 Boton C, 2021, ARCH COMPUT METHOD E, V28, P2331, DOI 10.1007/s11831-020-09457-7 Castelo-Branco I, 2019, COMPUT IND, V107, P22, DOI 10.1016/j.compind.2019.01.007 Chen Y.-Y.K., 2016, Internet Research Chong S, 2018, SUSTAINABILITY-BASEL, V10, DOI 10.3390/su10113960 Chu YZ, 2019, SUSTAINABILITY-BASEL, V11, DOI 10.3390/su11215946 Colli M, 2019, ANNU REV CONTROL, V48, P165, DOI 10.1016/j.arcontrol.2019.06.001 Craveiro F, 2019, AUTOMAT CONSTR, V103, P251, DOI 10.1016/j.autcon.2019.03.011 Cresnar R, 2020, SENSORS-BASEL, V20, DOI 10.3390/s20123469 Culot G, 2020, TECHNOL FORECAST SOC, V157, DOI 10.1016/j.techfore.2020.120092 Darko A, 2020, AUTOMAT CONSTR, V112, DOI 10.1016/j.autcon.2020.103081 Demeter K, 2021, J MANUF TECHNOL MANA, V32, P820, DOI 10.1108/JMTM-06-2019-0226 Dengler K, 2018, TECHNOL FORECAST SOC, V137, P304, DOI 10.1016/j.techfore.2018.09.024 Denner MS, 2018, BUS INFORM SYST ENG+, V60, P331, DOI 10.1007/s12599-017-0509-x Enes J, 2018, J GRID COMPUT, V16, P587, DOI 10.1007/s10723-018-9460-4 Fanea-Ivanovici M, 2020, IEEE ACCESS, V8, P37988, DOI 10.1109/ACCESS.2020.2975542 Frank AG, 2019, TECHNOL FORECAST SOC, V141, P341, DOI 10.1016/j.techfore.2019.01.014 Frank AG, 2019, INT J PROD ECON, V210, P15, DOI 10.1016/j.ijpe.2019.01.004 Furr N, 2019, HARVARD BUS REV, V97, P94 Garfield E, 2006, INT J EPIDEMIOL, V35, P1123, DOI 10.1093/ije/dyl189 Ghobakhloo M., 2019, J MANUFACTURING TECH Ghobakhloo M, 2020, J CLEAN PROD, V252, DOI 10.1016/j.jclepro.2019.119869 Gimpel H., 2018, Journal of Information Technology Theory and Application, V19, P31 Gölzer P, 2017, PROD PLAN CONTROL, V28, P1332, DOI 10.1080/09537287.2017.1375148 Greif T, 2020, COMPUT IND, V121, DOI 10.1016/j.compind.2020.103264 Hackius N, 2020, IEEE ACCESS, V8, P34993, DOI 10.1109/ACCESS.2020.2974622 Hartley JL, 2019, BUS HORIZONS, V62, P707, DOI 10.1016/j.bushor.2019.07.006 Herceg IV, 2020, SUSTAINABILITY-BASEL, V12, DOI 10.3390/su12104208 Hess T, 2016, MIS Q EXEC, V15, P123 Hetemi E, 2020, SUSTAINABILITY-BASEL, V12, DOI 10.3390/su12093893 Horváth D, 2019, TECHNOL FORECAST SOC, V146, P119, DOI 10.1016/j.techfore.2019.05.021 Huang MH, 2021, J SERV RES-US, V24, P30, DOI 10.1177/1094670520902266 Jacobi C, 2016, DIGIT JOURNAL, V4, P89, DOI 10.1080/21670811.2015.1093271 Avila-Gutiérrez MJ, 2020, SUSTAINABILITY-BASEL, V12, DOI 10.3390/su12051889 Kar AK, 2019, INFORM SYST FRONT, V21, P495, DOI 10.1007/s10796-019-09930-0 Ku CC, 2020, COMPUT IND ENG, V142, DOI 10.1016/j.cie.2020.106297 Lasi H, 2014, BUS INFORM SYST ENG+, V6, P239, DOI 10.1007/s12599-014-0334-4 Lee CH, 2019, COMPUT IND ENG, V135, P275, DOI 10.1016/j.cie.2019.06.001 Lee CH, 2019, ADV ENG INFORM, V40, P154, DOI 10.1016/j.aei.2019.04.006 Lee HT, 2019, INT J PR ENG MAN-GT, V6, P809, DOI 10.1007/s40684-019-00113-5 Li AAS, 2019, IEEE SYS MAN CYBERN, P1360, DOI 10.1109/SMC.2019.8914555 Li J, 2019, AUTOMAT CONSTR, V102, P288, DOI 10.1016/j.autcon.2019.02.005 Li X, 2020, SUSTAINABILITY-BASEL, V12, DOI 10.3390/su12030936 Lo CK, 2021, ADV ENG INFORM, V48, DOI 10.1016/j.aei.2021.101297 Louridas P, 2013, IEEE SOFTWARE, V30, P33, DOI 10.1109/MS.2013.125 Lowry P., 2004, J ASSOC INF SYST, V5, P29, DOI DOI 10.17705/1JAIS.00045 Maghawry A, 2020, INT J COMPUT INT SYS, V13, P223, DOI 10.2991/ijcis.d.200214.001 Majchrzak A., 2016, MIS Q, V40, P267, DOI [DOI 10.25300/MISQ/2016/40:2.03, 10.25300/MISQ/2016/40:2.03] Margherita EG, 2023, INFORM SYST FRONT, V25, P995, DOI 10.1007/s10796-020-10047-y Martín CA, 2018, COMPLEXITY, DOI 10.1155/2018/7408431 Raya AM, 2020, SUSTAINABILITY-BASEL, V12, DOI 10.3390/su12135322 Martyn-St James Marrissa, 2021, Systematic approaches to a successful literature review Mian SH, 2020, SUSTAINABILITY-BASEL, V12, DOI 10.3390/su12156100 Miklosik A, 2020, IEEE ACCESS, V8, P101284, DOI 10.1109/ACCESS.2020.2998754 Mourtzis D, 2020, INT J ADV MANUF TECH, V106, P4945, DOI 10.1007/s00170-019-04746-3 Müller JM, 2018, TECHNOL FORECAST SOC, V132, P2, DOI 10.1016/j.techfore.2017.12.019 Mustak M, 2021, J BUS RES, V124, P389, DOI 10.1016/j.jbusres.2020.10.044 Na W, 2018, IEEE INTERNET THINGS, V5, P3661, DOI 10.1109/JIOT.2018.2865756 Nikolenko SI, 2017, J INF SCI, V43, P88, DOI 10.1177/0165551515617393 Ning G., 2008, Patent No. [201001091-Y, 201001091] Ordieres-Meré J, 2020, SUSTAINABILITY-BASEL, V12, DOI 10.3390/su12041460 Osterrieder P, 2020, INT J PROD ECON, V221, DOI 10.1016/j.ijpe.2019.08.011 Papadonikolaki E, 2018, J MANAGE ENG, V34, DOI 10.1061/(ASCE)ME.1943-5479.0000644 Park ST, 2020, J AMB INTEL HUM COMP, V11, P1405, DOI 10.1007/s12652-018-0998-6 Perez-Castillo R, 2019, ENTERP INF SYST-UK, V13, P675, DOI 10.1080/17517575.2019.1590859 Pfouga A, 2018, J COMPUT DES ENG, V5, P54, DOI 10.1016/j.jcde.2017.11.002 Phang TCH, 2020, J CONSTR ENG M, V146, DOI 10.1061/(ASCE)CO.1943-7862.0001773 Piccione PM, 2019, CHEM ENG RES DES, V147, P668, DOI 10.1016/j.cherd.2019.05.046 Power B, 2018, IEEE CLOUD COMPUT, V5, P27, DOI 10.1109/MCC.2018.032591613 Rodríguez M, 2019, IEEE SOFTWARE, V36, P13, DOI 10.1109/MS.2018.2883354 Romero M, 2020, COMPUT IND, V120, DOI 10.1016/j.compind.2020.103224 Ruh William, 2018, IEEE Internet of Things Magazine, V1, P20, DOI 10.1109/IOTM.2018.1700031 Santos RC, 2020, J MANUF TECHNOL MANA, V31, P1023, DOI 10.1108/JMTM-09-2018-0284 Saul CJ, 2018, SUSTAINABILITY-BASEL, V10, DOI 10.3390/su10030752 Savastano M, 2019, SUSTAINABILITY-BASEL, V11, DOI 10.3390/su11030891 Schallmo D, 2017, INT J INNOV MANAG, V21, DOI 10.1142/S136391961740014X Schön EM, 2020, IEEE ACCESS, V8, P129763, DOI 10.1109/ACCESS.2020.3009101 Steinwandter V, 2019, DRUG DISCOV TODAY, V24, P1795, DOI 10.1016/j.drudis.2019.06.005 Stentoft J, 2021, PROD PLAN CONTROL, V32, P811, DOI 10.1080/09537287.2020.1768318 Szalavetz A, 2019, TECHNOL FORECAST SOC, V145, P384, DOI 10.1016/j.techfore.2018.06.027 Tiefenbeck V, 2017, NAT ENERGY, V2, DOI 10.1038/nenergy.2017.85 Tortorella GL, 2020, INT J PROD ECON, V219, P284, DOI 10.1016/j.ijpe.2019.06.023 Trantopoulos K, 2017, MIS QUART, V41, P287, DOI 10.25300/MISQ/2017/41.1.15 Trappey CV, 2016, INT J TECHNOL MANAGE, V70, P25, DOI 10.1504/IJTM.2016.074647 Trovao J.P., 2020, IEEE VEH TECHNOL MAG, V15 Trstenjak M, 2020, SUSTAINABILITY-BASEL, V12, DOI 10.3390/su12155878 Ukko J, 2019, J CLEAN PROD, V236, DOI 10.1016/j.jclepro.2019.117626 Vial G, 2019, J STRATEGIC INF SYST, V28, P118, DOI 10.1016/j.jsis.2019.01.003 Villalonga A, 2020, IEEE T IND INFORM, V16, P5975, DOI 10.1109/TII.2020.2971057 Villela K, 2019, IEEE SOFTWARE, V36, P8, DOI 10.1109/MS.2018.2883876 Wan JF, 2019, IEEE T IND INFORM, V15, P507, DOI 10.1109/TII.2018.2843811 Wang YH, 2017, ADV ENG INFORM, V33, P300, DOI 10.1016/j.aei.2016.11.006 Westerman G, 2019, MIT SLOAN MANAGE REV, V60, P59 Woodhead R, 2018, AUTOMAT CONSTR, V93, P35, DOI 10.1016/j.autcon.2018.05.004 Xu LD, 2018, INT J PROD RES, V56, P2941, DOI 10.1080/00207543.2018.1444806 Xu ZH, 2020, SUSTAINABILITY-BASEL, V12, DOI 10.3390/su12052041 Yang S., 2019, Model -driven enterprise digital platform, has management layer provided with system configuration module, system maintenance module and access control management module to perform enterprise characteristics customization operation, Patent No. [110427184-A, 110427184] Yao H., 2008, Patent No. [101249396-A, 101249396] Yao H., 2008, Patent No. [100577272-C, 100577272] Yassine A, 2017, IEEE ACCESS, V5, P13131, DOI 10.1109/ACCESS.2017.2719921 Yigitcanlar T, 2018, CITIES, V81, P145, DOI 10.1016/j.cities.2018.04.003 Zangiacomi A, 2020, PROD PLAN CONTROL, V31, P143, DOI 10.1080/09537287.2019.1631468 Zeltser R, 2019, SCI INNOV, V15, P34, DOI 10.15407/scine15.05.034 Zeng J., 2018, Patent No. [110059873-A, 110059873] Zhao L, 2019, SUSTAINABILITY-BASEL, V11, DOI 10.3390/su11236648 Zheng P, 2019, ADV ENG INFORM, V42, DOI 10.1016/j.aei.2019.100973 NR 122 TC 54 Z9 57 U1 32 U2 285 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 1474-0346 EI 1873-5320 J9 ADV ENG INFORM JI Adv. Eng. Inform. PD OCT PY 2021 VL 50 AR 101428 DI 10.1016/j.aei.2021.101428 EA OCT 2021 PG 17 WC Computer Science, Artificial Intelligence; Engineering, Multidisciplinary WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Computer Science; Engineering GA WN2YT UT WOS:000711640000003 DA 2024-09-05 ER PT J AU Ngaile, G Wang, J Gau, JT AF Ngaile, Gracious Wang, Jyhwen Gau, Jenn-Terng TI Challenges in teaching modern manufacturing technologies SO EUROPEAN JOURNAL OF ENGINEERING EDUCATION LA English DT Article DE manufacturing education; collaboration; active learning; technical skills; advanced manufacturing; engineering education research ID FUSED DEPOSITION; DESIGN AB Teaching of manufacturing courses for undergraduate engineering students has become a challenge due to industrial globalisation coupled with influx of new innovations, technologies, customer-driven products. This paper discusses development of a modern manufacturing course taught concurrently in three institutions where students collaborate in executing various projects. Lectures are developed to contain materials featuring advanced manufacturing technologies, R&D trends in manufacturing. Pre- and post-surveys were conducted by an external evaluator to assess the impact of the course on increase in student's knowledge of manufacturing; increase students' preparedness and confidence in effective communication and; increase students' interest in pursuing additional academic studies and/or a career path in manufacturing and high technology. The surveyed data indicate that the students perceived significant gains in manufacturing knowledge and preparedness in effective communication. The study also shows that implementation of a collaborative course within multiple institutions requires a robust and collective communication platform. C1 [Ngaile, Gracious] N Carolina State Univ, Dept Mech & Aerosp Engn, Raleigh, NC 27695 USA. [Wang, Jyhwen] Texas A&M Univ, Dept Engn Technol & Ind Distribut, College Stn, TX USA. [Gau, Jenn-Terng] No Illinois Univ, Dept Mech Engn, De Kalb, IL 60115 USA. C3 North Carolina State University; Texas A&M University System; Texas A&M University College Station; Northern Illinois University RP Gau, JT (corresponding author), No Illinois Univ, Dept Mech Engn, De Kalb, IL 60115 USA. EM jgau@niu.edu OI Wang, Jyhwen/0000-0001-9016-0566 FU National Science Foundation [0941042, 0941045, 0941079]; Direct For Education and Human Resources; Division Of Undergraduate Education [0941079, 0941042] Funding Source: National Science Foundation; Direct For Education and Human Resources; Division Of Undergraduate Education [0941045] Funding Source: National Science Foundation FX The authors would like to acknowledge the National Science Foundation through which this work was funded [award number 0941042, 0941045, and 0941079]. CR Agarwala MK, 1996, RAPID PROTOTYPING J, V2, P4, DOI 10.1108/13552549610732034 Altan T., 2003, P INT C NEW DEV BULK AMP, 2012, AMP STEER COMM BAS D [Anonymous], 2005, CIRP ANN-MANUF TECHN, DOI DOI 10.1016/S0007-8506(07)60021-3 [Anonymous], MAN AM COMPR STRAT A Axinte DA, 2008, J MATER PROCESS TECH, V204, P357, DOI 10.1016/j.jmatprotec.2007.11.057 Brooks S. H., 2012, BUSINESS XPANSION J Bruce R., 2003, MODERN MAT MANUFACTU Cheng K., 2005, E MANUFACTURING FUND Deisenroth M., 1996, 1996 ASEE ANN C P SE Engel U, 2002, J MATER PROCESS TECH, V125, P35, DOI 10.1016/S0924-0136(02)00415-6 Groover MP, 2006, FUNDAMENTALS MODERN Gunasekaran A, 2001, INT J COMP INTEG M, V14, P212, DOI 10.1080/09511920150216332 Hung WNP, 2005, J MANUF SYST, V24, P153, DOI 10.1016/S0278-6125(06)80003-8 Hurt P., 2012, EATON POWER BUSINESS Kalpakjian S., 2009, MANUFACTURING ENG TE, V6 Kohne L., 2012, COLLABORATIVE RES MO Kurita T, 2006, INT J MACH TOOL MANU, V46, P1311, DOI 10.1016/j.ijmachtools.2005.10.013 Lean Sigma Institute, 2012, LEAN PROD SYST Leitao P, 2009, ENG APPL ARTIF INTEL, V22, P979, DOI 10.1016/j.engappai.2008.09.005 Morrison T., 2011, SKILL GAP US MANUFAC Nagalingam SV, 2008, ROBOT CIM-INT MANUF, V24, P332, DOI 10.1016/j.rcim.2007.01.002 Rajurkar KP, 2006, CIRP ANN-MANUF TECHN, V55, P643, DOI 10.1016/j.cirp.2006.10.002 Rodríguez JF, 2001, RAPID PROTOTYPING J, V7, P148, DOI 10.1108/13552540110395547 Samant AN, 2009, J EUR CERAM SOC, V29, P969, DOI 10.1016/j.jeurceramsoc.2008.11.010 Shivanand H. K., 2008, P WORLD C ENG LOND, V2, P2 Smith S, 2007, CIRP ANN-MANUF TECHN, V56, P281, DOI 10.1016/j.cirp.2007.05.065 So HJ, 2008, COMPUT EDUC, V51, P318, DOI 10.1016/j.compedu.2007.05.009 Stacey E., 1999, J DISTANCE ED, V14, P14 Sun S, 2010, INT J MACH TOOL MANU, V50, P663, DOI 10.1016/j.ijmachtools.2010.04.008 Sutherland J, 1993, 1993 ASEE ANN C P SE, P120 Yao YL, 2005, INT J ENG EDUC, V21, P546 Zarrugh M. Y., 2002, P 2002 AM SOC ENG ED Zhang SH, 2004, J MATER PROCESS TECH, V151, P237, DOI [10.1016/j.jmatprotec.2004.04.054, 10.1016/j.matprotec.2004.04.054] Zhang XR, 2006, INT J ENG EDUC, V22, P343 Ziemian CW, 2008, INT J ENG EDUC, V24, P199 NR 36 TC 3 Z9 4 U1 0 U2 9 PU TAYLOR & FRANCIS LTD PI ABINGDON PA 2-4 PARK SQUARE, MILTON PARK, ABINGDON OR14 4RN, OXON, ENGLAND SN 0304-3797 EI 1469-5898 J9 EUR J ENG EDUC JI Eur. J. Eng. Educ. PD JUL 4 PY 2015 VL 40 IS 4 BP 432 EP 449 DI 10.1080/03043797.2014.1001814 PG 18 WC Education & Educational Research WE Emerging Sources Citation Index (ESCI) SC Education & Educational Research GA CK6OU UT WOS:000356348200006 DA 2024-09-05 ER PT J AU Fanton, M Mota, HR Araújo, CDB da Silva, MS Canuto, R AF Fanton, Marcos Mota, Hugo Ribeiro Araujo, Carolina de Melo Bomfim da Silva, Mitieli Seixas Canuto, Raquel TI Philosophical research in Brazil: A structural topic modeling approach with a focus on temporal and gender trends SO METAPHILOSOPHY LA English DT Article DE gender gap; Latin American philosophy; metaphilosophy; scientometrics; structural topic modeling AB This paper employs structural topic modeling (STM) to describe the academic philosophy landscape in Brazil. Based on a public national database, a corpus consisting of 12,515 abstracts of monographs defended in philosophy graduate programs between 1991 and 2021 was compiled. The final STM model identified 74 meaningful research topics, clustered into 7 thematic categories. This study discusses the prevalence of the most significant topics and categories, their trends across three decades, and their (positive or negative) association with the supervisor's gender. Results show the first empirical evidence that Brazilian philosophical research exhibits a greater focus on philosophers than on specific themes or problems. Moreover, by visualizing the variations in topic prevalence over time, it was possible to track the rise or decline of the major interest categories and topics. Finally, results also show which topics are more influenced or less influenced by gender. C1 [Fanton, Marcos; da Silva, Mitieli Seixas] Fed Univ St Maria, Dept Philosophy, 1000 Roraima Ave, BR-97105900 Santa Maria, Rio Grande do S, Brazil. [Mota, Hugo Ribeiro] Univ Oslo, Dept Philosophy Class Hist Art & Ideas, Oslo, Norway. [Araujo, Carolina de Melo Bomfim] Univ Fed Rio de Janeiro, Dept Philosophy, Rio De Janeiro, Brazil. [Canuto, Raquel] Univ Fed Rio Grande do Norte, Dept Nutr, Natal, Brazil. C3 University of Oslo; Universidade Federal do Rio de Janeiro; Universidade Federal do Rio Grande do Norte RP Fanton, M (corresponding author), Fed Univ St Maria, Dept Philosophy, 1000 Roraima Ave, BR-97105900 Santa Maria, Rio Grande do S, Brazil. EM marcos.fanton@ufsm.br OI Ribeiro Mota, Hugo/0000-0001-9010-1064 FU Fundacao Carlos Chagas de Apoio a Pesquisa do Estado do Rio de Janeiro (FAPERJ) [E-26-201.027/2021] FX Many thanks to Camila Palhares Barbosa for her thoughtful comments, as well as to Michael Baumtrog for proofreading our manuscript. We are also grateful to Otto Bohlmann for his meticulous editorial feedback and textual review. This research received funds from Fundacao Carlos Chagas de Apoio a Pesquisa do Estado do Rio de Janeiro (FAPERJ), process E-26-201.027/2021. CR AcevedoZapata Daniela., 2023, WOMEN PHILOS EC TECH, P295, DOI DOI 10.1515/9783111051802-027 Alcoff Linda Martin, 2013, Proceedings and Addresses of the American Philosophical Association, V87, P16 Arajo Carolina., 2019, CADERNOS FILOSOFIA A, V24, P13 Arantes Paulo., 2021, DEPARTAMENTO FRANCS Arantes Paulo., 1994, FOLHA SO PAULO Beebee, 2021, PHILOS MAGAZINE Bystranowski P, 2022, BIOETHICS, V36, P902, DOI 10.1111/bioe.13087 Cabrera Jlio., 2013, DIRIO FILSOFO NO BRA Camargo Slvio., 2012, DEBATE, V7, P126 Canadian Philosophical Association, 2018, REPORT CANADIAN PHIL Candido Marcia Rangel, 2021, Bras. political sci. rev., V15, pe0002, DOI 10.1590/1981-3821202100030002 Canhada Jlio., 2020, DISCURSO HISTRIA FIL CAPES, 2022, COORDENAO APERFEIOAM Carvalho Thales., 2024, BRAZ POLIT SCI REV, V18, no. 1, pe0003143 Churchill R, 2022, ACM COMPUT SURV, V54, DOI 10.1145/3507900 Correa Roberta Pires, 2022, Int J Educ Res Open, V3, P100185, DOI 10.1016/j.ijedro.2022.100185 Domingues Ivan., 2017, FILOSOFIA NO BRASIL Fleck Amaro., 2019, EDUCAO FILOSOFIA, V33, P1 Goddard E, 2021, WOMEN STUD INT FORUM, V86, DOI 10.1016/j.wsif.2021.102479 Grajzl P, 2019, J COMP ECON, V47, P111, DOI 10.1016/j.jce.2018.10.004 Grimmer Justin., 2022, TEXT DATA NEW FRAMEW Haslanger Sally., 2008, Hypatia: A Journal of Feminist Philosophy, V23, P210, DOI DOI 10.1111/J.1527-2001.2008.TB01195.X Hassoun N, 2022, ETHICS, V132, P680, DOI 10.1086/718075 Hu N, 2019, TOURISM MANAGE, V72, P417, DOI 10.1016/j.tourman.2019.01.002 Jennings CD, 2022, METAPHILOSOPHY, V53, P100, DOI 10.1111/meta.12527 Kntges Thomas., 2020, DIGITAL CLASSICS ONL, V6, P1 Lindstedt NC, 2019, SOC CURR, V6, P307, DOI 10.1177/2329496519846505 Malaterre C, 2019, BIOL PHILOS, V35, DOI 10.1007/s10539-019-9729-4 Malaterre C, 2019, HOPOS, V9, P215, DOI 10.1086/704372 Margutti Paulo., 2013, HISTRIA FILOSOFIA BR Margutti Paulo., 2020, HISTRIA FILOSOFIA BR Marques Lcio A., 2023, FORMAS FILOSOFIA BRA Marton Scarlett, 2016, Cad. Nietzsche, V37, P11, DOI 10.1590/2316-82422016v3703sm McInnes L, 2020, Arxiv, DOI [arXiv:1802.03426, DOI 10.48550/ARXIV.1802.03426, 10.21105/joss.00861] Meireles Fernando., 2021, GENDERBR PREDICT GEN Moreira Fernando S., 2023, EDUCAO FILOSOFIA, V37, P429 Moreira Fernando S., 2018, ESTUDOS NIETZSCHE, V9, P120 Mostafa Mohamed M, 2022, Qual Quant, P1, DOI 10.1007/s11135-022-01548-w Nuccetelli Susana., 2020, INTRO LATIN AM PHILO Nuccetelli Susana., 2013, A Companion to Latin American Philosophy, V1st Pereira Oswaldo P., 1999, DISSENSOREVISTA DE E, Vno. 2, P131 Peruzzo Lo., 2023, REV FILOS AURORA, V35, P1 Pugliese Nastassja., 2019, QUE NOS FAZ PENSAR, V28, P402 Pugliese Nastassja., 2020, REV PHILIA, V2, P418 Repa Luiz., 2011, CAD CRH, V24, P245 Ribeiro Daniella B., 2023, ARGUMENTUM, V15, P72 Roberts ME, 2019, J STAT SOFTW, V91, P1, DOI 10.18637/jss.v091.i02 Roberts ME, 2014, AM J POLIT SCI, V58, P1064, DOI 10.1111/ajps.12103 Sampaio Evaldo., 2023, AURORA, V35, P1 Schofield A., 2016, Transactions of the Association for Computational Linguistics, V4, P287, DOI [DOI 10.1162/TACLA00099, 10.1162/tacla00099] Schwitzgebel E., 2017, Public Affairs Quarterly, V31, P83, DOI DOI 10.2307/44732784 Schwitzgebel Eric., 2021, PHILOS MAGAZINE Seabra MR, 2023, METAPHILOSOPHY, V54, P106, DOI 10.1111/meta.12608 Silvio Romero, 1878, PHILOSOPHIA NO BRASI Taecharungroj V, 2023, BIG DATA COGN COMPUT, V7, DOI 10.3390/bdcc7010035 Weatherson Brian., 2022, HIST PHILOS J VOLUME Weston SJ, 2023, ADV METH PRACT PSYCH, V6, DOI 10.1177/25152459231160105 Wilhelm I, 2018, PHILOS STUD, V175, P1441, DOI 10.1007/s11098-017-0919-0 Wuensch Ana Mrian A., 2015, PROBLEMATA, V6, P113 NR 59 TC 0 Z9 0 U1 0 U2 0 PU WILEY PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0026-1068 EI 1467-9973 J9 METAPHILOSOPHY JI Metaphilosophy PD JUL PY 2024 VL 55 IS 3 BP 457 EP 501 DI 10.1111/meta.12700 EA JUL 2024 PG 45 WC Philosophy WE Arts & Humanities Citation Index (A&HCI) SC Philosophy GA A1F9Q UT WOS:001274087100001 OA Green Submitted DA 2024-09-05 ER PT J AU Wilson, J Pollard, B Aiken, JM Caballero, MD Lewandowski, HJ AF Wilson, Joseph Pollard, Benjamin Aiken, John M. Caballero, Marcos D. Lewandowski, H. J. TI Classification of open-ended responses to a research-based assessment using natural language processing SO PHYSICAL REVIEW PHYSICS EDUCATION RESEARCH LA English DT Article AB Surveys have long been used in physics education research to understand student reasoning and inform course improvements. However, to make analysis of large sets of responses practical, most surveys use a closed-response format with a small set of potential responses. Open-ended formats, such as written free response, can provide deeper insights into student thinking, but take much longer to analyze, especially with a large number of responses. Here, we explore natural language processing as a computational solution to this problem. We create a machine learning model that can take student responses from the Physics Measurement Questionnaire as input, and output a categorization of student reasoning based on different reasoning paradigms. Our model yields classifications with the same level of agreement as that between two humans categorizing the data, but can be done by a computer, and thus can be scaled for large datasets. In this work, we describe the algorithms and methodologies used to create, train, and test our natural language processing system. We also present the results of the analysis and discuss the utility of these approaches for analyzing open-response data in education research. C1 [Wilson, Joseph; Pollard, Benjamin; Lewandowski, H. J.] Univ Colorado Boulder, Dept Phys, Boulder, CO 80309 USA. [Wilson, Joseph; Lewandowski, H. J.] NIST, JILA, Boulder, CO 80309 USA. [Pollard, Benjamin] Worcester Polytech Inst, Dept Phys, Worcester, MA 01609 USA. [Aiken, John M.] Univ Oslo, Njord Ctr, Dept Geosci, N-0316 Oslo, Norway. [Aiken, John M.] Univ Oslo, Njord Ctr, Dept Phys, N-0316 Oslo, Norway. [Aiken, John M.; Caballero, Marcos D.] Univ Oslo, Ctr Comp Sci Educ, N-0316 Oslo, Norway. [Aiken, John M.; Caballero, Marcos D.] Univ Oslo, Dept Phys, N-0316 Oslo, Norway. [Caballero, Marcos D.] Michigan State Univ, Dept Phys & Astron, Dept Computat Math Sci & Engn, E Lansing, MI 48824 USA. [Caballero, Marcos D.] Michigan State Univ, CREATE, STEM Inst, E Lansing, MI 48824 USA. C3 University of Colorado System; University of Colorado Boulder; National Institute of Standards & Technology (NIST) - USA; Worcester Polytechnic Institute; University of Oslo; University of Oslo; University of Oslo; University of Oslo; Michigan State University; Michigan State University RP Lewandowski, HJ (corresponding author), Univ Colorado Boulder, Dept Phys, Boulder, CO 80309 USA.; Lewandowski, HJ (corresponding author), NIST, JILA, Boulder, CO 80309 USA. EM lewandoh@colorado.edu OI Caballero, Marcos/0000-0003-0717-4583; Pollard, Benjamin/0000-0002-5109-6415 FU National Science Foundation [PHY-1734006]; Michigan State's LappanPhilips Foundation; INTPART project of the Research Council of Norway [288125]; Olav Thon Foundation; Norwegian Agency for International Cooperation and Quality Enhancement in Higher Education (DIKU) FX We acknowledge Rajarshi Basak for valuable input and mentorship regarding NLP and machine learning. We acknowledge Robert Hobbs for producing the human-coded dataset that was central to this work. This work was supported by the National Science Foundation (Grant No. PHY-1734006) and by Michigan State's LappanPhilips Foundation. This project has received support from the INTPART project of the Research Council of Norway (Grant No. 288125), the Olav Thon Foundation, and the Norwegian Agency for International Cooperation and Quality Enhancement in Higher Education (DIKU), which supports the Center for Computing in Science Education. The initial idea for this project was suggested by B. P.; further discussions around the idea occurred with H. J. L. and with J. M. A., J. W. wrote all of the code and performed all of the analysis, with the joint mentorship of B. P., J. M. A., M. D. C., and H. J. L., B. P. acted as the "second human" coder for interrater reliability comparison. J. W. wrote the initial drafts of this manuscript, which was finished by B. P. and H. J. L. All authors contributed to editing of the manuscript. CR Aiken JM, 2021, PHYS REV PHYS EDUC R, V17, DOI 10.1103/PhysRevPhysEducRes.17.020104 Aiken JM, 2020, PLOS ONE, V15, DOI 10.1371/journal.pone.0242334 Allie S, 1998, INT J SCI EDUC, V20, P447, DOI 10.1080/0950069980200405 Amigud A, 2020, STUD HIGH EDUC, V45, P692, DOI 10.1080/03075079.2018.1564258 [Anonymous], 1999, Foundations of statistical natural language processing Bajaj Richa, 2018, Procedia Computer Science, V132, P834, DOI 10.1016/j.procs.2018.05.095 Bird S., 2009, Natural language processing with Python: analyzing text with the natural lan-guage toolkit Buffler A, 2001, INT J SCI EDUC, V23, P1137, DOI 10.1080/09500690110039567 Buffler A., 2003, P 4 C EUROPEAN SCI E, V09, P19 Campbell B., 2005, AJRMSTE, V1 Cohen J., 1977, STAT POWER ANAL BEHA Ding L, 2019, PHYS REV PHYS EDUC R, V15, DOI 10.1103/PhysRevPhysEducRes.15.020101 Fawcett T., 2004, Machine Learning, V31, P1 Feinerer I., 2020, tm: Text mining package Goel E., 2017, International Journal of Advanced Research in Computer Science and Software Engineering, V7, P251, DOI DOI 10.23956/IJARCSSE/V7I1/01113 Hastie T., 2009, Springer series in statistics Kagklis V., 2015, European Journal of Open, Distance and E-Learning, V18, DOI [10.1515/eurodl-2015-0014, DOI 10.1515/EURODL-2015-0014] Kataria A., 2013, International Journal of Emerging Technology and Advanced Engineering, V3, P354 Lewandowski HJ, 2017, PHYS EDUC RES CONF, P244, DOI 10.1119/perc.2017.pr.056 Lewandowski H. J., 2020, P 2020 PHYS ED RES C Lewandowski H. J., 2018, P 2018 PHYS ED RES C Lubben F, 2001, SCI EDUC, V85, P311, DOI 10.1002/sce.1012 Madsen A, 2019, AM J PHYS, V87, P350, DOI 10.1119/1.5094139 Madsen A, 2017, PHYS TEACH, V55, P530, DOI 10.1119/1.5011826 Madsen A, 2017, AM J PHYS, V85, P245, DOI 10.1119/1.4977416 Mooney R. J., arXiv Nehm RH, 2008, J RES SCI TEACH, V45, P1131, DOI 10.1002/tea.20251 Nehm RH, 2012, J SCI EDUC TECHNOL, V21, P56, DOI 10.1007/s10956-011-9282-7 Nehm RH, 2010, J RES SCI TEACH, V47, P358, DOI 10.1002/tea.20330 Nicholson S., 2020, Roster of physics departments with enrollment and degree data Odden TOB, 2021, SCI EDUC, V105, P653, DOI 10.1002/sce.21623 Odden TOB, 2020, PHYS REV PHYS EDUC R, V16, DOI 10.1103/PhysRevPhysEducRes.16.010142 Pollard B., 2019, P 2019 PHYS ED RES C Pollard B, 2021, PHYS REV PHYS EDUC R, V17, DOI 10.1103/PhysRevPhysEducRes.17.010133 Pollard B, 2020, PHYS REV PHYS EDUC R, V16, DOI 10.1103/PhysRevPhysEducRes.16.020160 Pollard B, 2017, PHYS EDUC RES CONF, P312, DOI 10.1119/perc.2017.pr.073 Ramos Juan., 2003, USING TF IDF DETERMI, V242, P29, DOI DOI 10.15804/TNER.2015.42.4.03 Rifkin R, 2004, J MACH LEARN RES, V5, P101 Salehi F, 2019, Arxiv, DOI [arXiv:1906.03761, DOI 10.48550/ARXIV.1906.03761] Ullmann TD, 2019, INT J ARTIF INTELL E, V29, P217, DOI 10.1007/s40593-019-00174-2 Volkwyn TS, 2008, PHYS REV SPEC TOP-PH, V4, DOI 10.1103/PhysRevSTPER.4.010108 White S.Tesfaye., 2014, HIGH SCH PHYS COURSE WILBUR WJ, 1992, J INF SCI, V18, P45, DOI 10.1177/016555159201800106 Wilson J. R., 2020, NLP PMQ Classification Notebooks Wulff P, 2021, J SCI EDUC TECHNOL, V30, P1, DOI 10.1007/s10956-020-09865-1 Young NT, 2019, PHYS REV PHYS EDUC R, V15, DOI 10.1103/PhysRevPhysEducRes.15.010114 Zawacki-Richter O, 2019, INT J EDUC TECHNOL H, V16, DOI 10.1186/s41239-019-0171-0 NR 47 TC 13 Z9 13 U1 7 U2 8 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9896 J9 PHYS REV PHYS EDUC R JI Phys. Rev. Phys. Educ. Res. PD JUN 2 PY 2022 VL 18 IS 1 AR 010141 DI 10.1103/PhysRevPhysEducRes.18.010141 PG 16 WC Education & Educational Research; Education, Scientific Disciplines WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Education & Educational Research GA VN2GZ UT WOS:001135789700002 OA Green Published, gold DA 2024-09-05 ER PT J AU Shen, XH Wang, GS Wang, Y AF Shen, Xiaohong Wang, Gaoshan Wang, Yue TI The Influence of Research Reports on Stock Returns: The Mediating Effect of Machine-Learning-Based Investor Sentiment SO DISCRETE DYNAMICS IN NATURE AND SOCIETY LA English DT Article ID PATTERN-RECOGNITION; MARKET-REACTIONS; SOCIAL MEDIA; NEWS; PREDICTABILITY AB This paper investigates whether and how the research reports issued by securities companies affect stock returns from the perspective of investor sentiment in China. By collecting research reports and investor comments from a popular Chinese investor community, i.e., East Money, we derive two indices that represent the information contained in research reports: one is the attention of research reports and the other is the average stock rating given by research reports; then we develop an investor sentiment indicator using the machine learning method. Based on behavioral finance theory, we hypothesize that research reports have a significant effect on stock returns and investor sentiment plays a mediating role in it. The empirical analysis results confirm the above hypotheses. Specifically, the average stock rating given by research reports can better predict future stock returns, and investor sentiment plays a partial mediating role in the relationship between stock rating and stock returns. C1 [Shen, Xiaohong] Shandong Univ Finance & Econ, Sch Comp Sci & Technol, 7366 Erhuan Dong Rd, Jinan 250014, Peoples R China. [Wang, Gaoshan; Wang, Yue] Shandong Univ Finance & Econ, Sch Management Sci & Engn, 7366 Erhuan Dong Rd, Jinan 250014, Peoples R China. [Wang, Gaoshan] Shandong Univ Finance & Econ, Inst Digital Econ, 7366 Erhuan Dong Rd, Jinan 250014, Peoples R China. C3 Shandong University of Finance & Economics; Shandong University of Finance & Economics; Shandong University of Finance & Economics RP Wang, GS (corresponding author), Shandong Univ Finance & Econ, Sch Management Sci & Engn, 7366 Erhuan Dong Rd, Jinan 250014, Peoples R China.; Wang, GS (corresponding author), Shandong Univ Finance & Econ, Inst Digital Econ, 7366 Erhuan Dong Rd, Jinan 250014, Peoples R China. EM gaoshanwang@126.com RI Cai, Lin/C-3286-2016 OI Cai, Lin/0000-0002-1093-4865; Wang, Gaoshan/0000-0002-5140-8378 CR Al-Nasseri A, 2021, INT REV FINANC ANAL, V78, DOI 10.1016/j.irfa.2021.101910 Allen DE, 2019, APPL ECON, V51, P3212, DOI 10.1080/00036846.2018.1564115 Alomari M, 2021, Q REV ECON FINANC, V82, P280, DOI 10.1016/j.qref.2021.09.013 Anand A, 2021, INT REV ECON FINANC, V75, P161, DOI 10.1016/j.iref.2021.04.005 Arévalo R, 2017, EXPERT SYST APPL, V81, P177, DOI 10.1016/j.eswa.2017.03.028 Audrino F, 2020, INT J FORECASTING, V36, P334, DOI 10.1016/j.ijforecast.2019.05.010 Azar PD, 2016, J PORTFOLIO MANAGE, V42, P123, DOI 10.3905/jpm.2016.42.5.123 Baker M, 2006, J FINANC, V61, P1645, DOI 10.1111/j.1540-6261.2006.00885.x Barniv R, 2023, J BEHAV FINANC, V24, P147, DOI 10.1080/15427560.2021.1949715 Behrendt S, 2018, J BANK FINANC, V96, P355, DOI 10.1016/j.jbankfin.2018.09.016 Bhardwaj A, 2019, INT REV FINANC ANAL, V63, P40, DOI 10.1016/j.irfa.2019.02.001 Birz G, 2022, FINANC MANAGE, V51, P169, DOI 10.1111/fima.12355 Birz G, 2017, J ECON PSYCHOL, V61, P87, DOI 10.1016/j.joep.2017.03.002 Blau BM, 2019, J BEHAV FINANC, V20, P19, DOI 10.1080/15427560.2018.1431887 Bollen J, 2011, J COMPUT SCI-NETH, V2, P1, DOI 10.1016/j.jocs.2010.12.007 Boukes M, 2020, COMMUN METHODS MEAS, V14, P83, DOI 10.1080/19312458.2019.1671966 Bouteska A, 2022, J MANAG GOV, V26, P1213, DOI 10.1007/s10997-021-09594-6 Bu Q, 2023, J BEHAV FINANC, V24, P161, DOI 10.1080/15427560.2021.1949718 Cervelló-Royo R, 2015, EXPERT SYST APPL, V42, P5963, DOI 10.1016/j.eswa.2015.03.017 Chan CY, 2014, N AM J ECON FINANC, V28, P273, DOI 10.1016/j.najef.2014.03.004 Chen SH, 2022, EMERG MARK FINANC TR, V58, P625, DOI 10.1080/1540496X.2020.1825936 Chen W. Y., 2021, ACCOUNT FINANC Chen Y, 2021, J GLOB INF MANAG, V29, DOI 10.4018/JGIM.20211101.oa43 Chun J, 2021, J BEHAV FINANC, V22, P480, DOI 10.1080/15427560.2020.1821686 Cookson JA, 2020, J FINANC, V75, P173, DOI 10.1111/jofi.12852 Dahmene M, 2021, INT REV ECON FINANC, V71, P676, DOI 10.1016/j.iref.2020.10.002 Dong YS, 2021, J ACCOUNT ECON, V71, DOI 10.1016/j.jacceco.2021.101400 Duan YJ, 2021, RES INT BUS FINANC, V58, DOI 10.1016/j.ribaf.2021.101432 El Ouadghiri I, 2021, ECOL ECON, V180, DOI 10.1016/j.ecolecon.2020.106836 Engle RF, 2021, J FINANC ECONOMET, V19, P1, DOI 10.1093/jjfinec/nbaa038 FAMA EF, 1970, J FINANC, V25, P383, DOI 10.2307/2325486 Fang XM, 2014, EMERG MARK FINANC TR, V50, P158, DOI 10.2753/REE1540-496X5003S309 Gan BQ, 2020, INT REV FINANC ANAL, V67, DOI 10.1016/j.irfa.2019.101390 Gao B, 2020, INT REV ECON FINANC, V69, P48, DOI 10.1016/j.iref.2020.03.010 Gao X, 2021, EUR FINANC MANAG, V27, P899, DOI 10.1111/eufm.12292 Glasserman P, 2019, J FINANC QUANT ANAL, V54, P1937, DOI 10.1017/S0022109019000127 Gu C, 2021, J FUTURES MARKETS, V41, P1412, DOI 10.1002/fut.22219 Gu C, 2020, J BANK FINANC, V121, DOI 10.1016/j.jbankfin.2020.105969 Guo L, 2020, J FINANC ECON, V137, P204, DOI 10.1016/j.jfineco.2020.01.002 Hao J, 2021, INT REV FINANC ANAL, V74, DOI 10.1016/j.irfa.2021.101675 Heston SL, 2017, FINANC ANAL J, V73, P67, DOI 10.2469/faj.v73.n3.3 Hsieh WLG, 2021, PAC-BASIN FINANC J, V65, DOI 10.1016/j.pacfin.2020.101492 Huang CX, 2022, EMERG MARK FINANC TR, V58, P681, DOI 10.1080/1540496X.2020.1835637 Huang T, 2022, ACCOUNT FINANC, V62, P1107, DOI 10.1111/acfi.12819 Ishigami S, 2018, J INT FINANC MARK I, V52, P134, DOI 10.1016/j.intfin.2017.09.014 Jiang H, 2021, J FINANC ECON, V141, P573, DOI 10.1016/j.jfineco.2021.04.003 Jiao PR, 2020, J ECON BEHAV ORGAN, V176, P63, DOI 10.1016/j.jebo.2020.03.002 Khedr Ayman E., 2017, International Journal of Intelligent Systems and Applications, V9, P22, DOI 10.5815/ijisa.2017.07.03 Kim B, 2021, N AM J ECON FINANC, V55, DOI 10.1016/j.najef.2020.101287 Kim K, 2021, INT REV FINANC ANAL, V77, DOI 10.1016/j.irfa.2021.101835 Kim K, 2021, RES INT BUS FINANC, V56, DOI 10.1016/j.ribaf.2020.101376 Kim K, 2019, INVEST ANAL J, V48, P89, DOI 10.1080/10293523.2019.1614758 Kim SH, 2014, J ECON BEHAV ORGAN, V107, P708, DOI 10.1016/j.jebo.2014.04.015 Kong DM, 2021, J EMPIR FINANC, V62, P234, DOI 10.1016/j.jempfin.2021.04.001 Leone AJ, 2019, ACCOUNT REV, V94, P337, DOI 10.2308/accr-52396 Li CC, 2020, PAC-BASIN FINANC J, V60, DOI 10.1016/j.pacfin.2020.101293 Li JF, 2021, INT J FINANC ECON, V26, P1695, DOI 10.1002/ijfe.1872 Li XD, 2020, INFORM PROCESS MANAG, V57, DOI 10.1016/j.ipm.2020.102212 Li YL, 2020, INT J FORECASTING, V36, P1541, DOI 10.1016/j.ijforecast.2020.05.001 Li YZ, 2021, ENERG ECON, V95, DOI 10.1016/j.eneco.2021.105140 Lien D, 2020, ASIA-PAC J FINANC ST, V49, P772, DOI 10.1111/ajfs.12313 Löffler G, 2021, J BANK FINANC, V133, DOI 10.1016/j.jbankfin.2021.106256 Lutz B, 2020, EXPERT SYST APPL, V148, DOI 10.1016/j.eswa.2020.113223 Lv Y. Z., APPL ECON LETT, V2021 Marty T, 2020, ACCOUNT FINANC, V60, P1385, DOI 10.1111/acfi.12466 Narayan PK, 2019, ENERG ECON, V83, P430, DOI 10.1016/j.eneco.2019.07.022 Narayan PK, 2017, PAC-BASIN FINANC J, V42, P24, DOI 10.1016/j.pacfin.2015.12.009 Peress J, 2020, J FINANC, V75, P1083, DOI 10.1111/jofi.12863 Qadan M, 2016, J EMPIR FINANC, V38, P62, DOI 10.1016/j.jempfin.2016.05.007 Qiao HS, 2020, EMERG MARK FINANC TR, V56, P613, DOI 10.1080/1540496X.2019.1686974 Rapp A., 2019, Journal of Capital Markets Studies, V3, P6 Renault T, 2017, J BANK FINANC, V84, P25, DOI 10.1016/j.jbankfin.2017.07.002 Schnaubelt M, 2020, J ECON DYN CONTROL, V114, DOI 10.1016/j.jedc.2020.103895 Schumaker RP, 2012, DECIS SUPPORT SYST, V53, P458, DOI 10.1016/j.dss.2012.03.001 Selin DT, 2021, J BEHAV FINANC, V22, P221, DOI 10.1080/15427560.2020.1772261 Shi J, 2022, INT J FINANC ECON, V27, P1309, DOI 10.1002/ijfe.2216 Shu HC, 2015, J BEHAV FINANC, V16, P206, DOI 10.1080/15427560.2015.1064930 Song HL, 2020, SCI PROGRAMMING-NETH, V2020, DOI 10.1155/2020/8894757 Strauss N, 2019, JOURNALISM, V20, P274, DOI 10.1177/1464884917753556 Strauss N, 2018, COMMUN RES, V45, P1054, DOI 10.1177/0093650217705528 Su Z, 2019, EMERG MARK FINANC TR, V55, P2949, DOI 10.1080/1540496X.2018.1562898 Sul HK, 2017, DECISION SCI, V48, P454, DOI 10.1111/deci.12229 Sun LC, 2016, J BANK FINANC, V73, P147, DOI 10.1016/j.jbankfin.2016.09.010 Sun Y, 2020, INFORM MANAGE-AMSTER, V57, DOI 10.1016/j.im.2019.103181 Sun Yunchuan, 2021, Pers Ubiquitous Comput, V25, P587, DOI 10.1007/s00779-021-01542-3 Tetlock PC, 2007, J FINANC, V62, P1139, DOI 10.1111/j.1540-6261.2007.01232.x Tetlock PC, 2014, ANNU REV FINANC ECON, V6, P365, DOI 10.1146/annurev-financial-110613-034449 Tsukioka Y, 2018, INT REV ECON FINANC, V56, P205, DOI 10.1016/j.iref.2017.10.025 van Atteveldt W, 2021, COMMUN METHODS MEAS, V15, P121, DOI 10.1080/19312458.2020.1869198 van der Meer TGLA, 2018, COMMUNICATIONS-GER, V43, P5, DOI 10.1515/commun-2017-0027 Vukovic DB, 2021, INT J FINANC ECON, V26, P3134, DOI 10.1002/ijfe.1954 Wan XC, 2021, SCI REP-UK, V11, DOI 10.1038/s41598-021-82338-6 Wu GGR, 2019, ASIA PAC MANAG REV, V24, P54, DOI 10.1016/j.apmrv.2018.01.003 Xu YY, 2022, INT J FINANC ECON, V27, P2073, DOI 10.1002/ijfe.2260 Xu YA, 2023, INT J FINANC ECON, V28, P1063, DOI 10.1002/ijfe.2463 Yang W, 2017, FINANC RES LETT, V22, P1, DOI 10.1016/j.frl.2017.05.001 Yin YG, 2018, J BEHAV FINANC, V19, P16, DOI 10.1080/15427560.2017.1366493 Zhang ST, 2021, FRONT PSYCHOL, V12, DOI 10.3389/fpsyg.2021.758967 Zhang WG, 2021, J FORECASTING, V40, P1479, DOI 10.1002/for.2777 NR 99 TC 1 Z9 1 U1 4 U2 58 PU HINDAWI LTD PI LONDON PA ADAM HOUSE, 3RD FLR, 1 FITZROY SQ, LONDON, W1T 5HF, ENGLAND SN 1026-0226 EI 1607-887X J9 DISCRETE DYN NAT SOC JI Discrete Dyn. Nat. Soc. PD DEC 31 PY 2021 VL 2021 AR 5049179 DI 10.1155/2021/5049179 PG 14 WC Mathematics, Interdisciplinary Applications; Multidisciplinary Sciences WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Mathematics; Science & Technology - Other Topics GA 0I1SN UT WOS:000779206100004 OA gold DA 2024-09-05 ER PT C AU Kobayashi, Y Shimbo, M Matsumoto, Y AF Kobayashi, Yuta Shimbo, Masashi Matsumoto, Yuji GP Assoc Comp Machinery TI Citation Recommendation Using Distributed Representation of Discourse Facets in Scientific Articles SO JCDL'18: PROCEEDINGS OF THE 18TH ACM/IEEE JOINT CONFERENCE ON DIGITAL LIBRARIES SE ACM-IEEE Joint Conference on Digital Libraries JCDL LA English DT Proceedings Paper CT 18th ACM/IEEE-CS Joint Conference on Digital Libraries (JCDL) CY JUN 03-07, 2018 CL Univ N Texas Coll Informat, Fort Worth, TX HO Univ N Texas Coll Informat DE Scientific article; representation learning; natural language processing; discourse facet; co-citation analysis ID INFORMATIVE ABSTRACTS AB Scientific articles usually follow a common pattern of discourse, and their contents can be divided into several facets, such as objective, method, and result. We examine the efficacy of using these discourse facets for citation recommendation. A method for learning multi-vector representations of scientific articles is proposed, in which each vector encodes a discourse facet present in an article. With each facet represented as a separate vector, the similarity of articles can be measured not in their entirety, but facet by facet. The proposed representation method is tested on a new citation recommendation task called context-based co-citation recommendation. This task calls for the evaluation of article similarity in terms of citation contexts, wherein facets help to abstract and generalize the diversity of contexts. The experimental results show that the facet-based representation outperforms the standard monolithic representation of articles. C1 [Kobayashi, Yuta; Shimbo, Masashi; Matsumoto, Yuji] Nara Inst Sci & Technol, Nara, Japan. C3 Nara Institute of Science & Technology RP Kobayashi, Y (corresponding author), Nara Inst Sci & Technol, Nara, Japan. EM kobayashi.yuta.kp1@is.naist.jp; shimbo@is.naist.jp; matsu@is.naist.jp FU JST CREST, Japan [JPMJCR1513] FX This work was partly supported by JST CREST Grant Number JPMJCR1513, Japan. CR [Anonymous], 2014, TEXT AN C 2014 BIOM [Anonymous], 2016, T ASSOC COMPUT LING, DOI DOI 10.1162/TACL_A_00051 [Anonymous], 2015, WORKSHOPS 20 9 AAAI [Anonymous], 2014, P INT C INT C MACH L [Anonymous], 2012, P COLING 2012 [Anonymous], 2014, P C EMP METH NAT LAN [Anonymous], 2014, PROC 20 ACM SIGKDD PROC 20 ACM SIGKDD PROC 20 ACM SIGKDD PROC 20 ACM SIGKDD PROC 20 ACM SIGKDD PROC 20 ACM SIGKDD PROC 20 ACM SIGKDD PROC 20 ACM SIGKDD PROC 20 ACM SIGKDD PROC 20 ACM SIGKDD PROC 20 ACM SIGKDD PROC 20 ACM SIGKDD PROC 20 ACM SIGKDD PROC 20 ACM SIGKDD PROC 20 ACM SIGKDD PROC 20 ACM SIGKDD, DOI [DOI 10.1145/2623330.2623732, 10.1145/2623330.2623732] [Anonymous], 2017, P ACL Athar A., 2011, P ACL 2011 STUD SESS, P81 Bahdanau D., 2014, P 3 INT C LEARNING R P 3 INT C LEARNING R P 3 INT C LEARNING R P 3 INT C LEARNING R P 3 INT C LEARNING R P 3 INT C LEARNING R P 3 INT C LEARNING R P 3 INT C LEARNING R P 3 INT C LEARNING R P 3 INT C LEARNING R P 3 INT C LEARNING R P 3 INT C LEARNING R P 3 INT C LEARNING R P 3 INT C LEARNING R P 3 INT C LEARNING R P 3 INT C LEARNING R Bengio Y, 2003, J MACH LEARN RES, V3, P1137, DOI 10.1162/153244303322533223 Case Donald O., 2000, J ASSOC INF SCI TECH, V51, P7 Duma D, 2014, PROCEEDINGS OF THE 52ND ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, VOL 2, P358 Elkan C., 2008, SIGKDD, P213, DOI 10.1145/1401890.1401920 Eto M., 2012, P 5 ACM WORKSH RES A, P7, DOI DOI 10.1145/2390116.2390121 Gipp B, 2009, PRO INT CONF SCI INF, V2, P571 Grover A, 2016, KDD'16: PROCEEDINGS OF THE 22ND ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, P855, DOI 10.1145/2939672.2939754 Guo Yufan., 2010, Proceedings of the 2010 Workshop on Biomedical Natural Language Processing, P99, DOI DOI 10.5555/1869961.1869974 HAYNES RB, 1990, ANN INTERN MED, V113, P69, DOI 10.7326/0003-4819-113-1-69 Jaidka K., 2017, BIRNDL SIGIR, P1 Jaidka K, 2018, INT J DIGIT LIBRARIE, V19, P163, DOI 10.1007/s00799-017-0221-y Järvelin K, 2002, ACM T INFORM SYST, V20, P422, DOI 10.1145/582415.582418 Jurgens David., 2016, CoRR Kafkas S, 2015, J BIOMED SEMANT, V6, DOI 10.1186/2041-1480-6-1 Mikolov T., 2013, Advances in Neural Information Processing Systems, P3111 MULROW CD, 1988, ANN INTERN MED, V108, P613, DOI 10.7326/0003-4819-108-4-613 Munkhdalai Tsendsuren., 2016, P 7 INT WORKSHOP HLT, P69, DOI [DOI 10.18653/V1/W16-6109, 10.18653/v1/W16-6109] Nanba H, 1999, IJCAI-99: PROCEEDINGS OF THE SIXTEENTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOLS 1 & 2, P926 Rush A. M., 2015, arXiv preprint arXiv: 1509. 00685,, DOI DOI 10.18653/V1/D15-1044 SMALL H, 1973, J AM SOC INFORM SCI, V24, P265, DOI 10.1002/asi.4630240406 Sugiyama K, 2015, INT J DIGIT LIBRARIE, V16, P91, DOI 10.1007/s00799-014-0122-2 Tang J, 2015, PROCEEDINGS OF THE 24TH INTERNATIONAL CONFERENCE ON WORLD WIDE WEB (WWW 2015), P1067, DOI 10.1145/2736277.2741093 Teufel S, 2002, COMPUT LINGUIST, V28, P409, DOI 10.1162/089120102762671936 Teufel S., 2006, P C EMP METH NAT LAN, DOI 10.3115/1610075.1610091 U. S. National Library of Medicine, 2015, STRUCT ABSTR MEDLINE NR 35 TC 27 Z9 29 U1 0 U2 7 PU ASSOC COMPUTING MACHINERY PI NEW YORK PA 1515 BROADWAY, NEW YORK, NY 10036-9998 USA SN 2575-7865 EI 2575-8152 BN 978-1-4503-5178-2 J9 ACM-IEEE J CONF DIG PY 2018 BP 243 EP 251 DI 10.1145/3197026.3197059 PG 9 WC Computer Science, Information Systems; Computer Science, Interdisciplinary Applications; Information Science & Library Science WE Conference Proceedings Citation Index - Science (CPCI-S); Conference Proceedings Citation Index - Social Science & Humanities (CPCI-SSH) SC Computer Science; Information Science & Library Science GA BL9RX UT WOS:000458178700035 DA 2024-09-05 ER PT J AU Chi, ZY Zhang, S Wang, Y Yang, L Yang, YM Li, XW AF Chi, Zhenyu Zhang, Song Wang, Yang Yang, Lin Yang, Yimin Li, Xuwen TI Research of gestational diabetes mellitus risk evaluation method SO TECHNOLOGY AND HEALTH CARE LA English DT Article; Proceedings Paper CT 4th International Conference on Biomedical Engineering and Biotechnology (iCBEB) CY AUG 18-21, 2015 CL Shanghai, PEOPLES R CHINA DE Gestational diabetes mellitus; logistic regression; risk factors AB BACKGROUND: Gestational diabetes mellitus (GDM) is not easily detected. The difficulty in detecting GDM is largely due to the late onset of clinical symptoms as well as the various complications that result from GDM [1]. OBJECTIVE: GDM greatly influences both mother and child. Therefore, the purpose of this study was to reduce the morbidity of GDM. METHODS: In this study, risk factors that influence GDM were selected through statistical analysis. Multivariable logistic regression analysis was used to obtain the regression equation and Odds Ratio (OR) value. The risk score of each factor was obtained according to the OR value. RESULTS: The score of every pregnant woman could be very intuitively used to show the risk of getting GDM. CONCLUSION: Through the above methods, a comprehensive risk evaluation method of detecting GDM was developed. C1 [Chi, Zhenyu; Zhang, Song; Yang, Lin; Yang, Yimin; Li, Xuwen] Beijing Univ Technol, Coll Life Sci & Bioengn, Beijing, Peoples R China. [Wang, Yang] Shenzhen Huada Gene Res Inst, Shenzhen, Peoples R China. C3 Beijing University of Technology RP Yang, L (corresponding author), 100 Pingleyuan, Beijing, Peoples R China. EM yanglin@bjut.edu.cn RI Li, Zilong/JEZ-8642-2023 CR Albert Reece E., 2009, LANCET Anne Vambergue, 2013, GESTATIONAL DIABETES Bennett W.L., 2012, J WOMENS HLTH Colagiuri S., 2011, DIABETES CARE Hedderson M.M., 2009, DIABETES Hedderson MM., 2008, Diabetes Care Hod M., 1996, ACTA OBSTET GYNECOLO Ilknur Inegol Gumus, 2010, TURKISH J MED SCI Kerenyi Z., 1996, DIABETOLOGIA Leanne Bellamy, 2009, LANCET Metzger B.E., 2007, DIABETES CARE Phaloprakarn C., 2009, EUROPEAN J OBSTET GY Qiu C.F., 2011, AM J EPIDEMIOLOGY Qiu C.F., 2004, AM J OBSTET GYNETETR Rc K., 1995, AM J OBSTET GYNETETR Solomon C.G., 1996, DIABETES CARE Solomon C.G., 1997, JAMA J AM MED ASS Tarim E., 2004, INT J OBSTET GYNETET Teh W.T., 2011, AUSTR NZ J OBSTET GY NR 19 TC 2 Z9 2 U1 0 U2 9 PU IOS PRESS PI AMSTERDAM PA NIEUWE HEMWEG 6B, 1013 BG AMSTERDAM, NETHERLANDS SN 0928-7329 EI 1878-7401 J9 TECHNOL HEALTH CARE JI Technol. Health Care PY 2016 VL 24 SU 2 BP S499 EP S503 DI 10.3233/THC-161174 PG 5 WC Health Care Sciences & Services; Engineering, Biomedical WE Science Citation Index Expanded (SCI-EXPANDED); Conference Proceedings Citation Index - Science (CPCI-S) SC Health Care Sciences & Services; Engineering GA DQ6ZD UT WOS:000379355100010 PM 27163310 OA Bronze DA 2024-09-05 ER PT J AU Ma, HL Ismail, L Han, WJ AF Ma, Huiling Ismail, Lilliati Han, Weijing TI A bibliometric analysis of artificial intelligence in language teaching and learning (1990-2023): evolution, trends and future directions SO EDUCATION AND INFORMATION TECHNOLOGIES LA English DT Article; Early Access DE Artificial intelligence; Language learning; Language teaching; Bibliometric analysis ID CHATBOT; TECHNOLOGY; IMPACT; BOTS AB The advancement and application of Artificial Intelligence (AI) has introduced innovative changes in language learning and teaching. In particular, the widespread utilization of various chatbots as foreign language learning partners showcases their remarkable potential contribution to the field. Nevertheless, there are currently few studies that encompass extensive and holistic reviews and analyses of the relevant literature during this period. The study employs bibliometric analysis and a systematic review of representative research to present trends, the current status and future directions of AI research in language teaching and learning, providing language educators, policymakers, and research scholars with visually accessible and comprehensive insights. Results indicate that the field is in its early stages of development, growing rapidly with significant research potential. The study identified the most productive and influential sources, institutions, authors and countries and provided a summary for the most representative papers in the research field. Through keyword analysis, the study delineates the evolutionary progression of AI in the domain of language teaching and learning across different time periods, identifies prevailing research trends and proposes future research directions. Results indicate that influential research in this realm predominantly focuses on refining technological solutions and conducting empirical studies on AI applications in language teaching and learning. This highlights significant interest in the effectiveness of AI in language education and its implementation methods. However, research on the application of AI in language education is still in its infancy. Therefore, the study advocates for increased empirical research on AI's specific applications in language listening, speaking, reading, and writing, as well as the development of more effective pedagogical approaches. Furthermore, the findings reveal a lack of attention given to various concerns and challenges associated with AI utilization in language teaching and learning, such as concerns regarding academic integrity, content authenticity, potential bias, privacy and security issues, and environmental concerns. At present, there is a lack of suitable solutions or regulatory frameworks proposed to address these concerns adequately. C1 [Ma, Huiling] Coll Arts & Sci Kunming, Kunming 650000, Yunnan, Peoples R China. [Ma, Huiling; Ismail, Lilliati; Han, Weijing] UPM Univ Putra Malaysia, Fak Pengajian Pendidikan, Seri Kembangan 43400, Selangor, Malaysia. [Han, Weijing] Yunnan Technol & Business Univ, Kunming 650000, Yunnan, Peoples R China. RP Ma, HL (corresponding author), Coll Arts & Sci Kunming, Kunming 650000, Yunnan, Peoples R China.; Ma, HL (corresponding author), UPM Univ Putra Malaysia, Fak Pengajian Pendidikan, Seri Kembangan 43400, Selangor, Malaysia. EM mahuiling00@gmail.com; lilliati@upm.edu.my; 303679843@qq.com CR Agarwal A, 2016, ASIAN J ANDROL, V18, P296, DOI 10.4103/1008-682X.171582 Belda-Medina J, 2022, APPL SCI-BASEL, V12, DOI 10.3390/app12178427 Chen CH, 2022, EDUC TECHNOL SOC, V25, P1 Chen HL, 2020, J EDUC COMPUT RES, V58, P1161, DOI 10.1177/0735633120929622 Chen XL, 2021, IEEE INT CONF ADV LE, P241, DOI 10.1109/ICALT52272.2021.00079 Chodorow M, 2010, LANG TEST, V27, P419, DOI 10.1177/0265532210364391 Chowdhary K., 2020, Fundamentals of artificial intelligence, P603, DOI 10.1007/978-81-322-3972-7_19 COUGHLIN JM, 1990, FR REV, V63, P560 Delaherche E, 2012, IEEE T AFFECT COMPUT, V3, P349, DOI 10.1109/T-AFFC.2012.12 Dergaa I, 2023, BIOL SPORT, V40, P615, DOI 10.5114/biolsport.2023.125623 Dizon G, 2020, LANG LEARN TECHNOL, V24, P16 Fatih Karatas, 2024, Education and Information Technologies, DOI [10.1007/s10639-024-12574-6, DOI 10.1007/S10639-024-12574-6] Fryer L, 2006, LANG LEARN TECHNOL, V10, P8 Fryer LK, 2020, LANG LEARN TECHNOL, V24, P8 Fryer LK, 2019, COMPUT HUM BEHAV, V93, P279, DOI 10.1016/j.chb.2018.12.023 Fryer LK, 2017, COMPUT HUM BEHAV, V75, P461, DOI 10.1016/j.chb.2017.05.045 Gibney E, 2022, NATURE, V607, P648, DOI 10.1038/d41586-022-01983-7 Huang WJ, 2022, J COMPUT ASSIST LEAR, V38, P237, DOI 10.1111/jcal.12610 Huang XY, 2023, EDUC TECHNOL SOC, V26, P112, DOI 10.30191/ETS.202301_26(1).0009 Hwang G.-J., 2020, Computers and Education: Artificial Intelligence, V1, P100001, DOI [DOI 10.1016/J.CAEAI.2020.100001, 10.1016/j.caeai.2020.100001] Jaakkola H., 2020, 2020 43rd International Convention on Information, Communication and Electronic Technology (MIPRO), P548, DOI 10.23919/MIPRO48935.2020.9245329 Ji H, 2023, J RES TECHNOL EDUC, V55, P48, DOI 10.1080/15391523.2022.2142873 Jia JY, 2009, KNOWL-BASED SYST, V22, P249, DOI 10.1016/j.knosys.2008.09.001 Johnson W., 2010, INT J ARTIFICIAL INT, V20, P175, DOI [DOI 10.3233/JAI-2010-0006, 10.3233/JAI-2010-0006] Johnson WL, 2005, FRONT ARTIF INTEL AP, V125, P306 Jordan MI, 2015, SCIENCE, V349, P255, DOI 10.1126/science.aaa8415 Kerly A, 2008, KNOWL-BASED SYST, V21, P238, DOI 10.1016/j.knosys.2007.11.015 Kessler G, 2018, FOREIGN LANG ANN, V51, P205, DOI 10.1111/flan.12318 Kim J, 2022, EDUC INF TECHNOL, V27, P6069, DOI 10.1007/s10639-021-10831-6 Kirkpatrick Keith., 2023, Commun. ACM, V66, P17, DOI [10.1145/3603746, DOI 10.1145/3603746] Kohnke L, 2023, RELC J, V54, P537, DOI 10.1177/00336882231162868 Liang JC, 2023, INTERACT LEARN ENVIR, V31, P4270, DOI 10.1080/10494820.2021.1958348 Lu XX, 2019, BIG DATA-US, V7, P121, DOI 10.1089/big.2018.0151 Moral-Muñoz JA, 2020, PROF INFORM, V29, DOI 10.3145/epi.2020.ene.03 Perkins M, 2023, J UNIV TEACH LEARN P, V20, DOI 10.53761/1.20.02.07 Pokrivcakova S, 2019, J LANG CULT EDUC, V7, P135, DOI 10.2478/jolace-2019-0025 Ruan S, 2019, CHI 2019: PROCEEDINGS OF THE 2019 CHI CONFERENCE ON HUMAN FACTORS IN COMPUTING SYSTEMS, DOI 10.1145/3290605.3300587 Salmon PM, 2023, HUM FACTOR ERGON MAN, V33, P366, DOI 10.1002/hfm.20996 Settles B, 2016, PROCEEDINGS OF THE 54TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, VOL 1, P1848 Sharadgah TA, 2022, J INF TECHNOL EDUC-R, V21, P337, DOI 10.28945/4999 Sindermann C, 2021, KUNSTL INTELL, V35, P109, DOI 10.1007/s13218-020-00689-0 Smutny P, 2020, COMPUT EDUC, V151, DOI 10.1016/j.compedu.2020.103862 Sun ZM, 2021, COMPUT INTELL-US, V37, P1166, DOI 10.1111/coin.12351 Tai TY, 2023, INTERACT LEARN ENVIR, V31, P1485, DOI 10.1080/10494820.2020.1841801 Troussas C, 2013, SPRINGERPLUS, V2, DOI 10.1186/2193-1801-2-387 WEIZENBAUM J, 1966, COMMUN ACM, V9, P36, DOI 10.1145/357980.357991 Yan D, 2023, EDUC INF TECHNOL, V28, P13943, DOI 10.1007/s10639-023-11742-4 Yang HZ, 2024, EDUC INF TECHNOL, V29, P3837, DOI 10.1007/s10639-023-11991-3 Yang HZ, 2022, AUSTRALAS J EDUC TEC, V38, P180, DOI 10.14742/ajet.7492 Yang H, 2022, RECALL, V34, P327, DOI 10.1017/S0958344022000039 Yang S. J. H., 2021, Computers and Education: Artificial Intelligence, V2, DOI [DOI 10.1016/J.CAEAI.2021.100008, 10.1016/j.caeai.2021.100008] NR 51 TC 0 Z9 0 U1 34 U2 34 PU SPRINGER PI NEW YORK PA ONE NEW YORK PLAZA, SUITE 4600, NEW YORK, NY, UNITED STATES SN 1360-2357 EI 1573-7608 J9 EDUC INF TECHNOL JI Educ. Inf. Technol. PD 2024 JUN 22 PY 2024 DI 10.1007/s10639-024-12848-z EA JUN 2024 PG 25 WC Education & Educational Research WE Social Science Citation Index (SSCI) SC Education & Educational Research GA UZ4U1 UT WOS:001251881400002 DA 2024-09-05 ER PT J AU Zhang, GJ Liang, YK Wei, FF AF Zhang, Guijie Liang, Yikai Wei, Fangfang TI Combining Bibliometric and Social Network Analysis to Understand the Scholarly Publications on Artificial Intelligence SO JOURNAL OF SCHOLARLY PUBLISHING LA English DT Article DE scholarly publications; artificial intelligence; bibliometric analysis; social network analysis; correlation analysis ID CO-AUTHORSHIP NETWORKS AB This article aims to conduct a comprehensive study employing bibliometric and social network analysis to explore scholarly publications in artificial intelligence (AI). A co-authorship network analysis of countries/regions and institutions, a thematic analysis based on the co-occurrence of keywords, and a Spearman rank correlation test of social network analysis are conducted using VOSviewer and SPSS, respectively. According to the research power analysis, the United States and China are the most significant contributors to the relevant publications and hold dominant positions in the co-authorship network. Universities play a crucial role in promoting and carrying out relevant research. AI has been increasingly applied to address new problems and challenges in various fields in recent years. The Spearman rank correlation analysis indicates that research performance in AI is significantly and positively correlated with social network indicators. This article reveals a systematic picture of the research landscape of AI, which can provide a potential guide for future research. C1 [Zhang, Guijie; Liang, Yikai] Shandong Univ Finance & Econ, Sch Management Sci & Engn, Jinan, Peoples R China. [Wei, Fangfang] Univ Jinan, Business Sch, Jinan, Peoples R China. C3 Shandong University of Finance & Economics; University of Jinan RP Wei, FF (corresponding author), Univ Jinan, Business Sch, Jinan, Peoples R China. EM zgjzxmtx@163.com; yikailiang@qq.com; weifftju@163.com OI Zhang, Guijie/0000-0002-7847-5431; Liang, Yikai/0000-0002-8696-4446 FU National Social Science Foundation of China [22BGL271]; Humanities and Social Science Foundation of the Ministry of Education of China [22YJC630198]; Natural Science Foundation of Shandong Province [ZR2022MG086, ZR2023MG025] FX This study was supported by the National Social Science Foundation of China (No. 22BGL271), the Humanities and Social Science Foundation of the Ministry of Education of China (No. 22YJC630198), and Natural Science Foundation of Shandong Province (No. ZR2022MG086 and ZR2023MG025). CR Baehr M, 2020, J SCHOLARLY PUBL, V51, P234, DOI 10.3138/jsp.51.4.03 Baker HK, 2020, J BUS RES, V108, P232, DOI 10.1016/j.jbusres.2019.11.025 BONACICH P, 1972, J MATH SOCIOL, V2, P113, DOI 10.1080/0022250X.1972.9989806 Bordons M, 2015, J INFORMETR, V9, P135, DOI 10.1016/j.joi.2014.12.001 Borgohain DJ, 2024, LIBR HI TECH, V42, P149, DOI 10.1108/LHT-07-2022-0331 Chen WH, 2021, IEEE ACCESS, V9, P77811, DOI 10.1109/ACCESS.2021.3082908 Donthu N, 2021, J BUS RES, V133, P285, DOI 10.1016/j.jbusres.2021.04.070 Dwivedi YK, 2021, INT J INFORM MANAGE, V57, DOI 10.1016/j.ijinfomgt.2019.08.002 FREEMAN LC, 1979, SOC NETWORKS, V1, P215, DOI 10.1016/0378-8733(78)90021-7 Gamble A, 2020, ASLIB J INFORM MANAG, V72, P509, DOI 10.1108/AJIM-11-2019-0316 Garechana G, 2015, J ASSOC INF SCI TECH, V66, P1431, DOI 10.1002/asi.23264 Harrison TM, 2022, SOC SCI COMPUT REV, V40, P494, DOI 10.1177/0894439320980122 Hengstler M, 2016, TECHNOL FORECAST SOC, V105, P105, DOI 10.1016/j.techfore.2015.12.014 Johnson KW, 2018, J AM COLL CARDIOL, V71, P2668, DOI 10.1016/j.jacc.2018.03.521 Khullar D, 2021, J AM MED INFORM ASSN, V28, P1574, DOI 10.1093/jamia/ocab055 Lee PC, 2010, INNOV-MANAG POLICY P, V12, P26, DOI 10.5172/impp.12.1.26 Li EY, 2013, RES POLICY, V42, P1515, DOI 10.1016/j.respol.2013.06.012 Lin MT, 2020, CHINA COMMUN, V17, P58, DOI 10.23919/JCC.2020.03.006 Merigó JM, 2015, J BUS RES, V68, P2645, DOI 10.1016/j.jbusres.2015.04.006 Modak NM, 2019, TRANSPORT RES A-POL, V120, P188, DOI 10.1016/j.tra.2018.11.015 Ngwenya S, 2022, SCIENTOMETRICS, V127, P3911, DOI 10.1007/s11192-022-04435-1 Perianes-Rodriguez A, 2016, J INFORMETR, V10, P1178, DOI 10.1016/j.joi.2016.10.006 Popping R, 2003, SOC SCI INFORM, V42, P91, DOI 10.1177/0539018403042001798 Ramzy M, 2024, LIBR HI TECH, V42, P227, DOI 10.1108/LHT-02-2022-0100 Taber E, 2020, J SCHOLARLY PUBL, V51, P263, DOI 10.3138/jsp.51.4.06 van Eck NJ, 2017, SCIENTOMETRICS, V111, P1053, DOI 10.1007/s11192-017-2300-7 Wang XF, 2015, IEEE ACCESS, V3, P1379, DOI 10.1109/ACCESS.2015.2467174 Wang YM, 2020, J SCHOLARLY PUBL, V51, P273, DOI 10.3138/jsp.51.4.08 Wei FF, 2020, ELECTRON LIBR, V38, P493, DOI 10.1108/EL-12-2019-0279 Zhang GJ, 2022, ELECTRON LIBR, V40, P160, DOI 10.1108/EL-11-2021-0204 Zhang GJ, 2022, LEARN PUBL, V35, P92, DOI 10.1002/leap.1423 Zhang GJ, 2019, SCIENTOMETRICS, V118, P721, DOI 10.1007/s11192-019-03005-2 NR 32 TC 1 Z9 1 U1 10 U2 39 PU UNIV TORONTO PRESS INC PI TORONTO PA JOURNALS DIVISION, 5201 DUFFERIN ST, DOWNSVIEW, TORONTO, ON M3H 5T8, CANADA SN 1198-9742 EI 1710-1166 J9 J SCHOLARLY PUBL JI J. Sch. Publ. PD OCT 1 PY 2023 VL 54 IS 4 BP 552 EP 568 DI 10.3138/jsp-2022-0070 EA JUL 2023 PG 17 WC Humanities, Multidisciplinary; Information Science & Library Science WE Social Science Citation Index (SSCI); Arts & Humanities Citation Index (A&HCI) SC Arts & Humanities - Other Topics; Information Science & Library Science GA W6BV3 UT WOS:001036212700001 DA 2024-09-05 ER PT C AU Bharathwaj, SK Na, JC Sangeetha, B Sarathkumar, E AF Bharathwaj, Sampathkumar Kuppan Na, Jin-Cheon Sangeetha, Babu Sarathkumar, Eswaran BE Jatowt, A Maeda, A Syn, SY TI Sentiment Analysis of Tweets Mentioning Research Articles in Medicine and Psychiatry Disciplines SO DIGITAL LIBRARIES AT THE CROSSROADS OF DIGITAL INFORMATION FOR THE FUTURE, ICADL 2019 SE Lecture Notes in Computer Science LA English DT Proceedings Paper CT 21st International Conference on Asia-Pacific Digital Libraries (ICADL) CY NOV 04-07, 2019 CL Kuala Lumpur, MALAYSIA DE Altmetrics; Twitter; Medicine; Psychiatry; Sentiment analysis; Text classification AB Recently altmetrics (short for alternative metrics) are gaining popularity among researchers to identify the impact of scholarly publications among the general public. Although altmetrics have been widely used nowadays, there has been a limited number of studies analyzing users' sentiments towards these scholarly publications on social media platforms. In this paper, we analyzed and compared user sentiments (positive, negative and neutral) towards scholarly publications in Medicine and Psychiatry domains by analyzing user-generated content (tweets) on Twitter. We explored various machine learning algorithms, and constructed the best model with Support Vector Machine (SVM) which gave an accuracy of 91.6%. C1 [Bharathwaj, Sampathkumar Kuppan; Na, Jin-Cheon; Sangeetha, Babu; Sarathkumar, Eswaran] Nanyang Technol Univ, Wee Kim Wee Sch Commun & Informat, 31 Nanyang Link, Singapore 637718, Singapore. C3 Nanyang Technological University RP Na, JC (corresponding author), Nanyang Technol Univ, Wee Kim Wee Sch Commun & Informat, 31 Nanyang Link, Singapore 637718, Singapore. EM bharathw001@e.ntu.edu.sg; tjcna@ntu.edu.sg; sangeeth006@e.ntu.edu.sg; sarathku002@e.ntu.edu.sg OI Na, Jin-Cheon/0000-0002-2211-9382 CR [Anonymous], ALT METR IN PHAS 1 W Arredondo L., 2018, STUDY ALTMETRICS USI Na JC, 2015, LECT NOTES COMPUT SC, V9469, P197, DOI 10.1007/978-3-319-27974-9_20 Raamkumar AS, 2018, LECT NOTES COMPUT SC, V11279, P71, DOI 10.1007/978-3-030-04257-8_7 NR 4 TC 1 Z9 1 U1 0 U2 2 PU SPRINGER INTERNATIONAL PUBLISHING AG PI CHAM PA GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND SN 0302-9743 EI 1611-3349 BN 978-3-030-34058-2; 978-3-030-34057-5 J9 LECT NOTES COMPUT SC PY 2019 VL 11853 BP 303 EP 307 DI 10.1007/978-3-030-34058-2_29 PG 5 WC Computer Science, Artificial Intelligence; Computer Science, Information Systems; Computer Science, Theory & Methods; Information Science & Library Science; Imaging Science & Photographic Technology WE Conference Proceedings Citation Index - Science (CPCI-S); Conference Proceedings Citation Index - Social Science & Humanities (CPCI-SSH) SC Computer Science; Information Science & Library Science; Imaging Science & Photographic Technology GA BQ3BB UT WOS:000583740100029 DA 2024-09-05 ER PT C AU Gonzalez-Aragon, T Castro-Godinez, J AF Gonzalez-Aragon, Tomas Castro-Godinez, Jorge GP IEEE TI Improving Performance of Error-Tolerant Applications: A Case Study of Approximations on an Off-the-Shelf Neural Accelerator SO V JORNADAS COSTARRICENSES DE INVESTIGACION EN COMPUTACION E INFORMATICA (JOCICI 2021) LA English DT Proceedings Paper CT 5th Costa Rican Conference on Research in Computing and Informatics (JoCICI) CY OCT 25-29, 2021 CL San Jose, COSTA RICA DE Approximate computing; deep learning; neural accelerator; edge computing AB Trending workloads and applications are leading many of the new advances in computer architecture and design paradigms. For instance, deep learning applications are transforming the way we do computing. On one hand, specific architectures are currently commercialized as neural processing units, specialized hardware accelerators for these types of applications, achieving significant performance improvements. On the other hand, design paradigms, such as approximate computing, exploit existing inherent tolerance to imprecise computations in these applications to reduce their computation complexity and produce energy-efficient implementations. Relevant available approximations are limited to the software layer to improve the performance of deep learning applications when using an off-the-shelf specialized accelerator alongside edge computing platforms. In this work, we present a case study of performance improvement by introducing approximate computing techniques to three deep learning classification applications. Our test platform is a Raspberry Pi 4, as edge computing device, and a Movidius Myriad X, as neural accelerator. Our experimental results show that using a mixture of approximate techniques can achieve a performance improvement from 20x to 48x with no accuracy degradation for a compute-intensive classification application. C1 [Gonzalez-Aragon, Tomas] Intel Costa Rica, Heredia, Costa Rica. [Castro-Godinez, Jorge] Inst Tecnol Costa Rica TEC, Cartago, Costa Rica. C3 Instituto Tecnologico de Costa Rica RP Gonzalez-Aragon, T (corresponding author), Intel Costa Rica, Heredia, Costa Rica. EM tomas.gonzalez.aragon@intel.com; jocastro@tec.ac.cr FU Instituto Tecnologico de Costa Rica FX This work was supported by the Instituto Tecnologico de Costa Rica. CR [Anonymous], OpenVINO toolkit [Anonymous], Intel Neural Compute Stick 2 [Anonymous], MYRIAD 10 PRODUCT BR Castro-Godinez J., 2020, 2020 INT C COMPILERS Castro-Godínez J, 2020, ICCAD-IEEE ACM INT, DOI 10.1145/3400302.3415732 Castro-Godínez J, 2018, DES AUT TEST EUROPE, P1027, DOI 10.23919/DATE.2018.8342163 Chowdhury P., 2021, P 2021 GREAT LAK S V, P359, DOI DOI 10.1145/3453688.3461498 Han S, 2015, ADV NEUR IN, V28 Intel, INT IM CLASS DAT Jackson Z., Free spoken digit dataset Oltean M., FRUIT IMAGES DATASET Shafique M., 2016, 53ND DESIGN AUTOMATI Singh R, PRUNING DEEP NEURAL Theis TN, 2017, COMPUT SCI ENG, V19, P41, DOI 10.1109/MCSE.2017.29 Wang C.-F., A Basic Introduction to Separable Convolutions NR 15 TC 0 Z9 0 U1 0 U2 0 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA BN 978-1-6654-9832-6 PY 2021 DI 10.1109/JoCICI54528.2021.9794353 PG 6 WC Computer Science, Interdisciplinary Applications; Computer Science, Theory & Methods WE Conference Proceedings Citation Index - Science (CPCI-S) SC Computer Science GA BT9IY UT WOS:000861163300011 DA 2024-09-05 ER PT C AU Batanovic, V AF Batanovic, Vuk GP IEEE TI Semantic Similarity and Sentiment Analysis of Short Texts in Serbian SO 2021 29TH TELECOMMUNICATIONS FORUM (TELFOR) LA English DT Proceedings Paper CT 29th Telecommunications Forum (TELFOR) CY NOV 23-24, 2021 CL ELECTR NETWORK DE open access datasets; semantic textual similarity; sentiment classification; Serbian language AB This paper presents an overview of the open access datasets in Serbian that have been manually annotated for the tasks of semantic textual similarity and short-text sentiment classification. In addition, it describes several kinds of statistical models that have been trained and evaluated on these datasets and discusses their results. C1 [Batanovic, Vuk] Univ Belgrade, Sch Elect Engn, Innovat Ctr, Bul Kralja Aleksandra 73, Belgrade 11120, Serbia. C3 University of Belgrade RP Batanovic, V (corresponding author), Univ Belgrade, Sch Elect Engn, Innovat Ctr, Bul Kralja Aleksandra 73, Belgrade 11120, Serbia. EM vuk.batanovic@ic.etf.bg.ac.rs RI Batanović, Vuk/AAD-8365-2021 OI Batanović, Vuk/0000-0003-2639-9091 FU Science Fund of the Republic of Serbia [6526093, AI - AVANTES] FX This work was partially supported by the Science Fund of the Republic of Serbia, grant no. 6526093, AI - AVANTES. CR Agirre E., 2013, SEMEVAL Agirre Eneko, 2015, P 9 INT WORKSHOP SEM, P252 [Anonymous], 2013, 1 INT C LEARN REPR I [Anonymous], 2016, SEMEVAL 2016 10 INT [Anonymous], 2005, P WORKSHOP EMPIRICAL, DOI [10.3115/1631862.1631865, DOI 10.3115/1631862.1631865] [Anonymous], 2012, SEM 2012 1 JOINT C L Batanovic V., 2011, 2011 19th Telecommunications Forum Telfor (TELFOR), P1249, DOI 10.1109/TELFOR.2011.6143778 Batanovic V., 2020, THESIS U BELGRADE Batanovic V., 2020, P 2020 APPL FREE SOF, DOI [10.5281/zenodo.4113229, DOI 10.5281/ZENODO.4113229] Batanovic V, 2018, PROCEEDINGS OF THE ELEVENTH INTERNATIONAL CONFERENCE ON LANGUAGE RESOURCES AND EVALUATION (LREC 2018), P1370 Batanovic V, 2020, PLOS ONE, V15, DOI 10.1371/journal.pone.0242050 Batanovic V, 2016, LREC 2016 - TENTH INTERNATIONAL CONFERENCE ON LANGUAGE RESOURCES AND EVALUATION, P2688 Batanovic V, 2015, COMPUT SCI INF SYST, V12, P1, DOI 10.2298/CSIS131127082B Bo Pang, 2008, Foundations and Trends in Information Retrieval, V2, P1, DOI 10.1561/1500000001 Bommasani Rishi, 2021, On the opportunities and risks of foundation models Cer D., 2017, SEMEVAL ACL, P1, DOI DOI 10.18653/V1/S17-2001 Clark K, 2020, INFORM SYST RES, DOI 10.48550/arXiv.2003.10555 Devlin J., 2018, ARXIV Fan RE, 2008, J MACH LEARN RES, V9, P1871 Furlan B, 2013, DECIS SUPPORT SYST, V55, P710, DOI 10.1016/j.dss.2013.02.002 Islam A., 2008, ACM Transactions on Knowledge Discovery from Data (TKDD), V2, p10:1 Krippendorff K., 2018, CONTENT ANAL INTRO I Liu B, 2011, DATA CENTRIC SYST AP, P459, DOI 10.1007/978-3-642-19460-3_11 Liu XD, 2019, 57TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2019), P4487 Ljajic A, 2019, COMPUT SCI INF SYST, V16, P289, DOI 10.2298/CSIS180122013L Ljubesic N, 2007, The Future of Information Sciences (INFuture 2007): Digital information and heritage, P313 Ljubesic N., 2021, P 8 BSNLP WORKSH BAL, P37 Ljubesic Nikola, 2014, P 9 WEB CORP WORKSH, P29, DOI DOI 10.3115/V1/W14-0405 Mikolov T., 2013, Advances in Neural Information Processing Systems, P3111 Mozetic I, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0155036 Pedregosa F, 2011, J MACH LEARN RES, V12, P2825 Rehurek R., 2010, Proceedings of the LREC 2010 Workshop on New Challenges for NLP Frameworks Rennie Jason D.M., 2003, Proceedings, Twentieth International Conference on Machine Learning, V2 Vaswani A, 2017, ADV NEUR IN, V30 Wang S., 2012, Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics: Short Papers - Volume 2, ACL '12, P90 Wiebe J, 2014, P 8 INT WORKSH SEM E, P81, DOI [10.3115/v1/S14-2010, DOI 10.3115/V1/S14-2010] Wolf T, 2020, Arxiv, DOI arXiv:1910.03771 NR 37 TC 2 Z9 2 U1 0 U2 0 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA BN 978-1-6654-2585-8 PY 2021 DI 10.1109/TELFOR52709.2021.9653390 PG 7 WC Computer Science, Information Systems; Engineering, Electrical & Electronic; Telecommunications WE Conference Proceedings Citation Index - Science (CPCI-S) SC Computer Science; Engineering; Telecommunications GA BT5TR UT WOS:000838086600149 DA 2024-09-05 ER PT J AU Yang, QL Zhang, WD Zhao, CH AF Yang, Qingliang Zhang, Wendong Zhao, Chaohui TI Research on Torque Performance of Marine Hybrid Excitation Synchronous Motors Based on PSO Optimization of Magnetic Permeability Structure SO JOURNAL OF MARINE SCIENCE AND ENGINEERING LA English DT Article DE hybrid excitation machine; particle swarm optimization; multi-objective optimization ID DESIGN; OPERATION; DRIVE AB The rotor magnetic shunt structure hybrid excitation synchronous motor (RMS-HESM) has been widely used in marine propulsion due to its advantages of low loss and high efficiency. The objective of this paper is to improve the output torque capability of the hybrid excitation motor with a rotor magnetic shunt structure by conducting a multi-objective optimization design for the magnetic permeability structure. The first step involved establishing a mathematical analytical model of average torque and torque ripple based on the fundamental principle of motor magnetization. Next, the parameters of the magnetic permeability structure were designed and analyzed using the finite element simulation method. The impact of the variations in the parameters of the magnetic permeability structure on motor torque and no-load back electromotive force was examined. Additionally, a sensitivity analysis was performed on the design variables of the magnetic permeability structure, leading to the determination of optimization parameters based on the obtained results. The adaptive inertia weight-based particle swarm algorithm (PSO) was employed to conduct a multi-objective optimization design analysis. A comparative analysis on the average torque, torque ripple, and no-load back electromotive force of the motor before and after optimization was performed using the Maxwell and Workbench and Optislong joint simulation tools. This enhancement significantly improves the torque performance of the marine motor while simultaneously optimizing the no-load back electromotive force. C1 [Yang, Qingliang] Shanghai Dianji Univ, Coll Mech Engn, Shanghai 201306, Peoples R China. [Yang, Qingliang] Shanghai Maritime Univ, Logist Engn Coll, Shanghai 201306, Peoples R China. [Zhang, Wendong; Zhao, Chaohui] Shanghai Dianji Univ, Coll Elect Engn, Shanghai 201306, Peoples R China. C3 Shanghai Dianji University; Shanghai Maritime University; Shanghai Dianji University RP Zhao, CH (corresponding author), Shanghai Dianji Univ, Coll Elect Engn, Shanghai 201306, Peoples R China. EM yangql@sdju.edu.cn; zhaoch@sdju.edu.cn CR Afinowi IAA, 2015, IEEE T MAGN, V51, DOI 10.1109/TMAG.2015.2446951 Ahumada C, 2022, IEEE ENER CONV, DOI 10.1109/ECCE50734.2022.9947717 Bernardeschi C, 2020, LECT NOTES COMPUT SC, V12226, P3, DOI 10.1007/978-3-030-57506-9_1 Cha J, 2023, IEEE T APPL SUPERCON, V33, DOI 10.1109/TASC.2023.3245057 Chen Yunyun, 2023, 2023 IEEE International Magnetic Conference - Short Papers (INTERMAG Short Papers), P1, DOI 10.1109/INTERMAGShortPapers58606.2023.10228217 Contò C, 2022, MACHINES, V10, DOI 10.3390/machines10100869 Dini P, 2021, ELECTRONICS-SWITZ, V10, DOI 10.3390/electronics10232954 Fan DY, 2021, IEEE T IND ELECTRON, V68, P10534, DOI 10.1109/TIE.2020.3039207 Gaussens B, 2014, IEEE T IND ELECTRON, V61, P2976, DOI 10.1109/TIE.2013.2281152 Hijikata H, 2018, IEEE T POWER ELECTR, V33, P6887, DOI 10.1109/TPEL.2017.2751581 Husain I, 2021, P IEEE, V109, P1039, DOI 10.1109/JPROC.2020.3046112 Jiang JW, 2016, IET ELECTR SYST TRAN, V6, P126, DOI 10.1049/iet-est.2015.0021 Kanapara A.J., 2020, P 2020 21 NAT POW SY, P1 Lee SG, 2020, IEEE T ENERGY CONVER, V35, P2076, DOI 10.1109/TEC.2020.2999127 Lee W, 2018, IEEE T TRANSP ELECTR, V4, P684, DOI 10.1109/TTE.2018.2853994 Li J, 2019, IEEE T MAGN, V55, DOI 10.1109/TMAG.2019.2893637 Liu JZ, 2022, IEEE T VEH TECHNOL, V71, P3648, DOI 10.1109/TVT.2022.3141732 Mörée G, 2022, ENERGIES, V15, DOI 10.3390/en15197254 Ou HY, 2019, J MAR SCI ENG, V7, DOI 10.3390/jmse7070236 Pierpaolo D., 2020, Applications in Electronics Pervading Industry, VVolume 627 Seo SW, 2020, IEEE T APPL SUPERCON, V30, DOI 10.1109/TASC.2020.2990827 Sun YS, 2023, ENERGIES, V16, DOI 10.3390/en16124588 Wang C., 2021, China Sci. Pap, V16, P906 Wang C., 2021, Chin. J. Electr. Eng, V41, P7476 Wu Shengnan, 2022, CES Transactions on Electrical Machines and Systems, V6, P188, DOI 10.30941/CESTEMS.2022.00025 Yang QL, 2022, ENERGY REP, V8, P476, DOI 10.1016/j.egyr.2022.05.227 Zhang Z.R., 2020, Chin. J. Electr. Eng, V40, P7834 Zhang ZR, 2008, IEEE T MAGN, V44, P2174, DOI 10.1109/TMAG.2008.2000513 Zheng SY, 2022, IEEE T IND ELECTRON, V69, P3428, DOI 10.1109/TIE.2021.3073311 Zhu Z. Q., 2019, CES Transactions on Electrical Machines and Systems, V3, P233, DOI 10.30941/CESTEMS.2019.00032 Zou D., 2021, Small Spec. Electr. Mach, V49, P11 NR 31 TC 0 Z9 0 U1 2 U2 2 PU MDPI PI BASEL PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND EI 2077-1312 J9 J MAR SCI ENG JI J. Mar. Sci. Eng. PD JUL PY 2024 VL 12 IS 7 AR 1064 DI 10.3390/jmse12071064 PG 18 WC Engineering, Marine; Engineering, Ocean; Oceanography WE Science Citation Index Expanded (SCI-EXPANDED) SC Engineering; Oceanography GA ZS4V1 UT WOS:001277277100001 OA gold DA 2024-09-05 ER PT J AU Kaur, M Saini, M AF Kaur, Manpreet Saini, Munish TI Role of Artificial Intelligence in the crime prediction and pattern analysis studies published over the last decade: a scientometric analysis SO ARTIFICIAL INTELLIGENCE REVIEW LA English DT Article DE Artificial Intelligence; Scientometrics; Crime prediction; Crime pattern analysis; Bibliometrics ID PREVENTION AB Crime is the intentional commission of an act usually suspected as socially detrimental and specifically defined, forbidden, and punishable under criminal law. Developing a society that is less susceptible to criminal acts makes crime prediction and pattern analysis (CPPA) a paramount topic for academic research interest. With the innovation in technology and rapid expansion of Artificial Intelligence (AI), the research in the field of CPPA has evolved radically to predict crime efficiently. While the number of publications is expanding substantially, we believe there is a dearth of thorough scientometric analysis for this topic. This work intends to analyze research conducted in the last decade using Scopus data and a scientometric technique, emphasizing citation trends and intriguing journals, nations, institutions, their collaborations, authors, and co-authorship networks in CPPA research. Furthermore, three field plots have been staged to visualize numerous associations between country, journal, keyword, and author. Besides, a comprehensive keyword analysis is carried out to visualize the CPPA research carried out with AI amalgamation. A total of five clusters have been identified depicting several AI methods used by the researchers in CPPA and the evolution of research trends over time from various perspectives. C1 [Kaur, Manpreet; Saini, Munish] Guru Nanak Dev Univ, Dept Comp Engn & Technol, Amritsar, Punjab, India. C3 Guru Nanak Dev University RP Kaur, M (corresponding author), Guru Nanak Dev Univ, Dept Comp Engn & Technol, Amritsar, Punjab, India. EM manpreet.csersh@gndu.ac.in; munish.cet@gndu.ac.in RI Kaur, Manpreet/CAH-3123-2022; Saini, Munish/J-4196-2016 OI Kaur, Manpreet/0000-0002-7680-3075; Saini, Munish/0000-0003-4129-2591 CR Aboujaoude E, 2015, J ADOLESCENT HEALTH, V57, P10, DOI 10.1016/j.jadohealth.2015.04.011 Adeyemi IR, 2013, INT J DIGIT CRIME FO, V5, P1, DOI 10.4018/jdcf.2013010101 Adeyemi RA, 2021, SPAT STAT-NETH, V41, DOI 10.1016/j.spasta.2020.100485 Aria M, 2017, J INFORMETR, V11, P959, DOI 10.1016/j.joi.2017.08.007 Basilio MP, 2022, J MODEL MANAG, V17, P1372, DOI 10.1108/JM2-10-2020-0268 Basilio MP, 2021, J MODEL MANAG, V16, P1185, DOI 10.1108/JM2-05-2020-0122 Basilio MP, 2020, J MODEL MANAG, V15, P849, DOI 10.1108/JM2-10-2018-0166 Basson I, 2021, SCIENTOMETRICS, V126, P459, DOI 10.1007/s11192-020-03734-9 Birks D, 2012, CRIMINOLOGY, V50, P221, DOI 10.1111/j.1745-9125.2011.00258.x Blondel VD, 2008, J STAT MECH-THEORY E, DOI 10.1088/1742-5468/2008/10/P10008 Campedelli GM, 2021, J COMPUT SOC SCI, V4, P503, DOI 10.1007/s42001-020-00082-9 Ceccato V, 2023, EUR J CRIMINOL, V20, P486, DOI 10.1177/14773708211013299 Chiodi SI, 2016, J PLACE MANAG DEV, V9, P137, DOI 10.1108/JPMD-09-2015-0037 Chun SA, 2019, PROCEEDINGS OF THE 20TH ANNUAL INTERNATIONAL CONFERENCE ON DIGITAL GOVERNMENT RESEARCH (DGO2019): GOVERNANCE IN THE AGE OF ARTIFICIAL INTELLIGENCE, P512, DOI 10.1145/3325112.3328221 Dakalbab F., 2022, Social Sciences Humanities Open, V6, DOI [10.1016/j.ssaho.2022.100342, DOI 10.1016/J.SSAHO.2022.100342] Diaz-Garcia JA, 2023, ARTIF INTELL REV, V56, P1175, DOI 10.1007/s10462-022-10196-3 Gandapur MQ, 2022, IMAGE VISION COMPUT, V123, DOI 10.1016/j.imavis.2022.104467 Gerber MS, 2014, DECIS SUPPORT SYST, V61, P115, DOI 10.1016/j.dss.2014.02.003 Ghosh D, 2016, P 17 INT DIG GOV RES, DOI [10.1145/2912160.2912205, DOI 10.1145/2912160.2912205] Guiyun Zhou, 2012, 2012 International Conference on Computational Problem-Solving (ICCP), P147, DOI 10.1109/ICCPS.2012.6384228 Hart T, 2014, POLICING, V37, P305, DOI 10.1108/PIJPSM-04-2013-0039 Humayun M, 2020, ARAB J SCI ENG, V45, P3171, DOI 10.1007/s13369-019-04319-2 Jenga Karabo, 2023, Journal of Ambient Intelligence and Humanized Computing, P2887, DOI 10.1007/s12652-023-04530-y Kaur A, 2020, EARTH SCI INFORM, V13, P1, DOI 10.1007/s12145-019-00408-w Kaur M, 2023, 2023 14 INT C COMP C, P1, DOI [10.1109/ICCCNT56998.2023.10308090, DOI 10.1109/ICCCNT56998.2023.10308090] Kaur M, 2023, EDUC INF TECHNOL, V28, P581, DOI 10.1007/s10639-022-11168-4 [李海林 Li Hailin], 2022, [科研管理, Science Research Management], V43, P176 Li ST, 2010, EXPERT SYST APPL, V37, P7108, DOI 10.1016/j.eswa.2010.03.004 Lin YL, 2018, ISPRS INT J GEO-INF, V7, DOI 10.3390/ijgi7080298 Malleson N, 2010, COMPUT ENVIRON URBAN, V34, P236, DOI 10.1016/j.compenvurbsys.2009.10.005 Mandalapu V, 2023, IEEE ACCESS, V11, P60153, DOI 10.1109/ACCESS.2023.3286344 Manu E., 2021, Secondary research methods in the built environment, DOI [10.1201/9781003000532, DOI 10.1201/9781003000532] Martín-Martín A, 2021, SCIENTOMETRICS, V126, P871, DOI 10.1007/s11192-020-03690-4 McAfee, 2020, ABOUT US Ministry of Home Affairs, 2022, Crime in India 2022 Mondal S, 2022, GEOJOURNAL, V87, P5287, DOI 10.1007/s10708-022-10573-z Moral-Muñoz JA, 2020, PROF INFORM, V29, DOI 10.3145/epi.2020.ene.03 Mustak M, 2021, J BUS RES, V124, P389, DOI 10.1016/j.jbusres.2020.10.044 Pareek P, 2021, ARTIF INTELL REV, V54, P2259, DOI 10.1007/s10462-020-09904-8 Piza EL, 2019, CRIMINOL PUBLIC POL, V18, P135, DOI 10.1111/1745-9133.12419 Reyns BW, 2024, JUSTICE Q, V41, P218, DOI 10.1080/07418825.2023.2188066 Roser M, 2019, Homicides Roy S, 2023, PROF GEOGR, V75, P882, DOI 10.1080/00330124.2023.2223250 Sanders CB, 2017, CRIME LAW SOCIAL CH, V68, P1, DOI 10.1007/s10611-016-9678-7 Shah N, 2021, VIS COMPUT IND BIOME, V4, DOI 10.1186/s42492-021-00075-z Solomon A, 2022, EXPERT SYST APPL, V199, DOI 10.1016/j.eswa.2022.117042 Sood SK, 2022, ACM T INTERNET TECHN, V22, DOI 10.1145/3564783 Sood SK, 2022, COMPUT ELECTR ENG, V101, DOI 10.1016/j.compeleceng.2022.107948 Sood SK, 2024, IEEE T ENG MANAGE, V71, P671, DOI 10.1109/TEM.2021.3134128 Sood SK, 2021, ARTIF INTELL REV, V54, P6309, DOI 10.1007/s10462-021-09980-4 Sood SK, 2021, NAT HAZARDS, V106, P2863, DOI 10.1007/s11069-021-04512-3 Thakkar A, 2022, ARTIF INTELL REV, V55, P453, DOI 10.1007/s10462-021-10037-9 van der Wagen W, 2015, BRIT J CRIMINOL, V55, P578, DOI 10.1093/bjc/azv009 van Dijk J, 2022, J QUANT CRIMINOL, V38, P793, DOI 10.1007/s10940-021-09501-0 van Eck NJ, 2010, SCIENTOMETRICS, V84, P523, DOI 10.1007/s11192-009-0146-3 Walczak S, 2021, FRONT PSYCHOL, V12, DOI 10.3389/fpsyg.2021.587943 Wang ZH, 2022, J SAF SCI RESIL, V3, P115, DOI 10.1016/j.jnlssr.2021.08.007 Ward T, 2019, PSYCHOL CRIME LAW, V25, P709, DOI 10.1080/1068316X.2019.1572754 Wheeler AP, 2021, J QUANT CRIMINOL, V37, P445, DOI 10.1007/s10940-020-09457-7 Wikström POH, 2022, ANNU REV CRIMINOL, V5, P179, DOI 10.1146/annurev-criminol-030920-091320 Williams ML, 2017, BRIT J CRIMINOL, V57, P320, DOI 10.1093/bjc/azw031 Zantalis F, 2019, FUTURE INTERNET, V11, DOI 10.3390/fi11040094 Zhu Q, 2022, INFORM MANAGE-AMSTER, V59, DOI 10.1016/j.im.2019.103247 NR 63 TC 0 Z9 0 U1 2 U2 2 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0269-2821 EI 1573-7462 J9 ARTIF INTELL REV JI Artif. Intell. Rev. PD JUL 11 PY 2024 VL 57 IS 8 AR 202 DI 10.1007/s10462-024-10823-1 PG 35 WC Computer Science, Artificial Intelligence WE Science Citation Index Expanded (SCI-EXPANDED) SC Computer Science GA YN6G5 UT WOS:001269200500003 OA hybrid DA 2024-09-05 ER PT J AU Foran, DJ Chen, WJ Kurc, T Gupta, R Kaczmarzyk, JR Torre-Healy, LA Bremer, E Ajjarapu, S Do, N Harris, G Stroup, A Durbin, E Saltz, JH AF Foran, David J. Chen, Wenjin Kurc, Tahsin Gupta, Rajarshi Kaczmarzyk, Jakub Roman Torre-Healy, Luke Austin Bremer, Erich Ajjarapu, Samuel Do, Nhan Harris, Gerald Stroup, Antoinette Durbin, Eric Saltz, Joel H. TI An Intelligent Search & Retrieval System (IRIS) and Clinical and Research Repository for Decision Support Based on Machine Learning and Joint Kernel-based Supervised Hashing SO CANCER INFORMATICS LA English DT Article DE Multi-modal clinical research data warehouse; content based retrieval; decision support; machine learning; adaptable extraction; transform and load interface; large-scale multi-site collaboration AB Large-scale, multi-site collaboration is becoming indispensable for a wide range of research and clinical activities in oncology. To facilitate the next generation of advances in cancer biology, precision oncology and the population sciences it will be necessary to develop and implement data management and analytic tools that empower investigators to reliably and objectively detect, characterize and chronicle the phenotypic and genomic changes that occur during the transformation from the benign to cancerous state and throughout the course of disease progression. To facilitate these efforts it is incumbent upon the informatics community to establish the workflows and architectures that automate the aggregation and organization of a growing range and number of clinical data types and modalities ranging from new molecular and laboratory tests to sophisticated diagnostic imaging studies. In an attempt to meet those challenges, leading health care centers across the country are making steep investments to establish enterprise-wide, data warehouses. A significant limitation of many data warehouses, however, is that they are designed to support only alphanumeric information. In contrast to those traditional designs, the system that we have developed supports automated collection and mining of multimodal data including genomics, digital pathology and radiology images. In this paper, our team describes the design, development and implementation of a multi-modal, Clinical & Research Data Warehouse (CRDW) that is tightly integrated with a suite of computational and machine-learning tools to provide actionable insight into the underlying characteristics of the tumor environment that would not be revealed using standard methods and tools. The System features a flexible Extract, Transform and Load (ETL) interface that enables it to adapt to aggregate data originating from different clinical and research sources depending on the specific EHR and other data sources utilized at a given deployment site. C1 [Foran, David J.; Chen, Wenjin] Rutgers Canc Inst New Jersey, Ctr Biomed Informat, New Brunswick, NJ USA. [Kurc, Tahsin; Gupta, Rajarshi; Bremer, Erich; Saltz, Joel H.] SUNY Stony Brook, Dept Biomed Informat, Stony Brook, NY USA. [Kaczmarzyk, Jakub Roman; Torre-Healy, Luke Austin] SUNY Stony Brook, Renaissance Sch Med, Stony Brook, NY USA. [Ajjarapu, Samuel; Do, Nhan] VA Healthcare Syst, Jama Plain Campus, Boston, MA USA. [Harris, Gerald; Stroup, Antoinette] Rutgers Canc Inst New Jersey, New Jersey State Canc Registry, New Brunswick, NJ USA. [Durbin, Eric] Markey Canc Ctr, Kentucky Canc Registry, Lexington, KY USA. [Foran, David J.] Rutgers Canc Inst New Jersey, Biomed Informat, 195 Little Albany St, New Brunswick, NJ 08903 USA. C3 Rutgers University System; Rutgers University New Brunswick; Rutgers University Biomedical & Health Sciences; Rutgers Cancer Institute of New Jersey; State University of New York (SUNY) System; State University of New York (SUNY) Stony Brook; State University of New York (SUNY) System; State University of New York (SUNY) Stony Brook; Stony Brook University Hospital; Rutgers University System; Rutgers University New Brunswick; Rutgers University Biomedical & Health Sciences; Rutgers Cancer Institute of New Jersey; Rutgers University System; Rutgers University New Brunswick; Rutgers University Biomedical & Health Sciences; Rutgers Cancer Institute of New Jersey RP Foran, DJ (corresponding author), Rutgers Canc Inst New Jersey, Biomed Informat, 195 Little Albany St, New Brunswick, NJ 08903 USA. EM foran@cinj.rutgers.edu OI Torre-Healy, Luke/0000-0002-9513-4620; ajjarapu, samuel/0000-0002-0066-6086 CR Coudray N, 2018, NAT MED, V24, P1559, DOI 10.1038/s41591-018-0177-5 Foran David J, 2022, J Pathol Inform, V13, P5, DOI 10.4103/jpi.jpi_31_21 Foran DJ., 2017, Cancer Inform, V16, P1 Hirshfield KM, 2016, ONCOLOGIST, V21, P1315, DOI 10.1634/theoncologist.2016-0049 Le H, 2020, AM J PATHOL, V190, P1491, DOI 10.1016/j.ajpath.2020.03.012 Payne PRO., 2021, Biomedical Informatics: Computer Applications in Health Care and Biomedicine, P913 Platt JE, 2020, J MED INTERNET RES, V22, DOI 10.2196/17026 Ren J, 2018, J MED IMAGING, V5, DOI 10.1117/1.JMI.5.4.047501 Vanguri RS, 2022, NAT CANCER, V3, P1151, DOI 10.1038/s43018-022-00416-8 Yoshida H, 2021, WORLD J GASTROENTERO, V27, P2818, DOI 10.3748/wjg.v27.i21.2818 Zaldana F., 2018, Presented at the Newport, Rhode Island NR 11 TC 0 Z9 0 U1 1 U2 1 PU SAGE PUBLICATIONS LTD PI LONDON PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND EI 1176-9351 J9 CANCER INFORM JI Cancer Inform. PY 2024 VL 23 AR 11769351231223806 DI 10.1177/11769351231223806 PG 6 WC Oncology; Mathematical & Computational Biology WE Emerging Sources Citation Index (ESCI) SC Oncology; Mathematical & Computational Biology GA GZ4U9 UT WOS:001156498400001 PM 38322427 OA gold, Green Published DA 2024-09-05 ER PT J AU Greenwood, CR Thiemann-Bourque, K Walker, D Buzhardt, J Gilkerson, J AF Greenwood, Charles R. Thiemann-Bourque, Kathy Walker, Dale Buzhardt, Jay Gilkerson, Jill TI Assessing Children's Home Language Environments Using Automatic Speech Recognition Technology SO COMMUNICATION DISORDERS QUARTERLY LA English DT Article DE language acquisition/development; language assessment; research methodology; applied research; technology AB The purpose of this research was to replicate and extend some of the findings of Hart and Risley using automatic speech processing instead of human transcription of language samples. The long-term goal of this work is to make the current approach to speech processing possible by researchers and clinicians working on a daily basis with families and young children. Twelve hour-long, digital audio recordings were obtained repeatedly in the homes of middle to upper SES families for a sample of typically developing infants and toddlers (N = 30). These recordings were processed automatically using a measurement framework based on the work of Hart and Risley. Like Hart and Risley, the current findings indicated vast differences in individual children's home language environments (i.e., adult word count), children's vocalizations, and conversational turns. Automated processing compared favorably to the original Hart and Risley estimates that were based on transcription. Adding to Hart and Risley's findings were new descriptions of patterns of daily talk and relationships to widely used outcome measures, among others. Implications for research and practice are discussed. C1 [Greenwood, Charles R.] Univ Kansas, Kansas City, KS USA. [Thiemann-Bourque, Kathy; Walker, Dale; Buzhardt, Jay] Univ Kansas, Life Span Inst, Kansas City, KS USA. [Gilkerson, Jill] LENA Fdn, Boulder, CO USA. C3 University of Kansas; University of Kansas RP Greenwood, CR (corresponding author), Juniper Gardens Childrens Project, 650 Minnesota Ave,2nd Floor, Kansas City, KS 66101 USA. EM greenwood@ku.edu RI Buzhardt, Jay/ACD-4708-2022 OI Bourque, Kathy/0000-0002-0672-5761; Greenwood, Charles/0000-0002-6274-3075; Walker, Dale/0000-0001-9692-1151 CR [Anonymous], 2009, LTR052 LENA FDN Bayley N, 2006, Bayley scales of infant and toddler development technical manual, V3rd Christakis DA, 2009, ARCH PEDIAT ADOL MED, V163, P554, DOI 10.1001/archpediatrics.2009.61 Gilkerson J., 2009, LENA NATURAL LANGUAG Gilkerson J., 2008, Technical Report LTR-06-2 Greenwood C. R., 2008, DIV EARL CHILDH C MI Hansen J. L., 2008, LANGUAGE ASSESSMENT HART B, 1978, EDUC URBAN SOC, V10, P407, DOI 10.1177/001312457801000402 HART B, 1992, DEV PSYCHOL, V28, P1096, DOI 10.1037/0012-1649.28.6.1096 Hart B., 1999, SOCIAL WORLD CHILDRE Hart B., 1989, Education and Treatment of Children, V12, P347 Hart B, 1995, Meaningful Differences in the Everyday Experience of Young American Children Hart Betty, 2003, American Education, P4 Infoture Inc., 2008, CHILD LANG DEV S DEP Lena Foundation, 2009, LENA PROS Miller P., 2009, LENA FDN CASE STUDY Montgomery J., 2008, LANGUAGE ASSESSMENT Oetting JB., 2009, ASHA LEADER, V14, P20, DOI DOI 10.1044/LEADER.FTR3.14062009.20 Oller D. K., 2008, LANGUAGE ASSESSMENT STAR Reading, 2007, UND REL VAL Warren S., 2009, Journal of Autism Developmental Disorders, P1 Warren S.F., 2005, HDB RES METHODS DEV, P249, DOI DOI 10.1002/9780470756676.CH13 Xu D, 2008, LTR042 LENA FDN Zimmerman I.L., 2002, PRESCHOOL LANGUAGE S, VFourth NR 24 TC 106 Z9 129 U1 0 U2 18 PU SAGE PUBLICATIONS INC PI THOUSAND OAKS PA 2455 TELLER RD, THOUSAND OAKS, CA 91320 USA SN 1525-7401 J9 COMM DISORD Q JI Comm. Disord. Q. PD FEB PY 2011 VL 32 IS 2 BP 83 EP 92 DI 10.1177/1525740110367826 PG 10 WC Linguistics; Rehabilitation WE Social Science Citation Index (SSCI) SC Linguistics; Rehabilitation GA V28NU UT WOS:000208688300004 DA 2024-09-05 ER PT J AU Huang, XY Zou, D Cheng, G Chen, XL Xie, HR AF Huang, Xinyi Zou, Di Cheng, Gary Chen, Xieling Xie, Haoran TI Trends, Research Issues and Applications of Artificial Intelligence in Language Education SO EDUCATIONAL TECHNOLOGY & SOCIETY LA English DT Article DE Artificial Intelligence; Language Education; Bibliometric Analysis; Automated Writing Evaluation; Intelligent Tutoring System ID FOREIGN-LANGUAGE; LEARNING-SYSTEM; ENGLISH; FUTURE; AI AB Artificial Intelligence (AI) plays an increasingly important role in language education; however, the trends, research issues, and applications of AI in language learning remain largely under-investigated. Accordingly, the present paper, using bibliometric analysis, investigates these issues via a review of 516 papers published between 2000 and 2019, focusing on how AI was integrated into language education. Findings revealed that the frequency of studies on AI-enhanced language education increased over the period. The USA and Arizona State University were the most active country and institution, respectively. The 10 most popular topics were: (1) automated writing evaluation; (2) intelligent tutoring systems (ITS) for reading and writing; (3) automated error detection; (4) computer-mediated communication; (5) personalized systems for language learning; (6) natural language and vocabulary learning; (7) web resources and web-based systems for language learning; (8) ITS for writing in English for specific purposes; (9) intelligent tutoring and assessment systems for pronunciation and speech training; and (10) affective states and emotions. The results also indicated that AI was frequently used to assist students in learning writing, reading, vocabulary, grammar, speaking, and listening. Natural language processing, automated speech recognition, and learner profiling were commonly applied to develop automated writing evaluation, personalized learning, and intelligent tutoring systems. C1 [Huang, Xinyi; Cheng, Gary; Chen, Xieling] Educ Univ Hong Kong, Dept Math & Informat Technol, Hong Kong, Peoples R China. [Zou, Di] Educ Univ Hong Kong, Dept English Language Educ, Hong Kong, Peoples R China. [Xie, Haoran] Lingnan Univ, Dept Comp & Decis Sci, Hong Kong, Peoples R China. C3 Education University of Hong Kong (EdUHK); Education University of Hong Kong (EdUHK); Lingnan University RP Zou, D (corresponding author), Educ Univ Hong Kong, Dept English Language Educ, Hong Kong, Peoples R China. EM hxinyi@eduhk.hk; dizoudaisy@gmail.com; chengks@eduhk.hk; xielingchen0708@gmail.com; hrxie2@gmail.com RI Xie, Haoran/AFS-3515-2022; Huang, Xinyi/AFI-7092-2022; Xie, Haoran/AAW-8845-2020 OI Xie, Haoran/0000-0003-0965-3617; Huang, Xinyi/0000-0001-9777-7905; ZOU, Di/0000-0001-8435-9739 FU Education University of Hong Kong and the Dean's Research Fund of The Education University of Hong Kong [RG 78/2019-2020R, IDS-22020]; Lingnan University, Hong Kong [DB21A9, LWI20011] FX An abstract entitled ?Artificial Intelligence in Language Education? based on this paper was presented at the International Conference on Education and Artificial Intelligence 2020, The Education University of Hong Kong, 9-11 November 2020, Hong Kong. Gary Cheng?s work in this research is supported by the Research Cluster Fund (RG 78/2019-2020R) of The Education University of Hong Kong and the Dean's Research Fund 2019/20 (IDS-22020) of The Education University of Hong Kong. Haoran Xie?s work in this research is supported by the Faculty Research Fund (DB21A9) and the Lam Woo Research Fund (LWI20011) of Lingnan University, Hong Kong. CR Alexopoulou T, 2017, LANG LEARN, V67, P180, DOI 10.1111/lang.12232 Ali Zuraina, 2020, IOP Conference Series: Materials Science and Engineering, V769, DOI 10.1088/1757-899X/769/1/012043 [Anonymous], 2010, Journal of Technology, Language, and Assessment Ayedoun E, 2019, INT J ARTIF INTELL E, V29, P29, DOI 10.1007/s40593-018-0171-6 Tran BX, 2019, INT J ENV RES PUB HE, V16, DOI 10.3390/ijerph16152699 Calvo RA, 2011, IEEE T LEARN TECHNOL, V4, P88, DOI 10.1109/TLT.2010.43 Chao C. J., 2012, WORKSHOP P 20 INT C, P58 Chen CM, 2006, IEEE SYS MAN CYBERN, P4898, DOI 10.1109/ICSMC.2006.385081 Chen CM, 2010, INTERACT LEARN ENVIR, V18, P341, DOI 10.1080/10494820802602329 Chen MP, 2019, COMPUT EDUC, V140, DOI 10.1016/j.compedu.2019.103602 Chen X., 2020, Computers and Education: Artificial Intelligence, V1, P100002, DOI DOI 10.1016/J.CAEAI.2020.100002 Chen X., 2018, EMERGING TECHNOLOGIE, P169 Chen X., 2020, Comput Educ Artif Intell, V1, DOI DOI 10.1016/J.CAEAI.2020.100005 Chen XL, 2022, EDUC TECHNOL SOC, V25, P28 Chen XL, 2021, LANG LEARN TECHNOL, V25, P151 Chen XL, 2021, EDUC TECHNOL SOC, V24, P205 Chen XL, 2021, INT J EDUC TECHNOL H, V18, DOI 10.1186/s41239-020-00239-6 Chen X, 2020, COMPUT EDUC, V151, DOI 10.1016/j.compedu.2020.103855 Chen XL, 2020, BRIT J EDUC TECHNOL, V51, P692, DOI 10.1111/bjet.12907 Dey A, 2018, FRONT ROBOT AI, V5, DOI 10.3389/frobt.2018.00037 Fu QK, 2024, COMPUT ASSIST LANG L, V37, P179, DOI 10.1080/09588221.2022.2033787 Gamper J., 2002, Computer Assisted Language Learning, V15, P329, DOI 10.1076/call.15.4.329.8270 Gierl MJ, 2014, MED EDUC, V48, P950, DOI 10.1111/medu.12517 Gong Y, 2018, ASIA-PAC EDUC RES, V27, P277, DOI 10.1007/s40299-018-0385-2 Grajzl P, 2019, J COMP ECON, V47, P111, DOI 10.1016/j.jce.2018.10.004 Heil CR., 2016, The EuroCALL Review, V24, P32, DOI [10.4995/eurocall.2016.6402, DOI 10.4995/EUROCALL.2016.6402, https://doi.org/10.4995/eurocall.2016.6402] Hinojo-Lucena FJ, 2019, EDUC SCI, V9, DOI 10.3390/educsci9010051 Hirsch JE, 2014, INT J CLIN HLTH PSYC, V14, P161, DOI 10.1016/S1697-2600(14)70050-X Huang AYQ, 2020, INTERACT LEARN ENVIR, V28, P206, DOI 10.1080/10494820.2019.1636086 Hwang G.-J., 2020, Computers and Education: Artificial Intelligence, V1, P100001, DOI [DOI 10.1016/J.CAEAI.2020.100001, 10.1016/j.caeai.2020.100001] Johnson AM, 2017, LECT NOTES ARTIF INT, V10331, P125, DOI 10.1007/978-3-319-61425-0_11 Johnson WL, 2007, FRONT ARTIF INTEL AP, V158, P67 Johnson WL, 2005, FRONT ARTIF INTEL AP, V125, P306 Khatun Na., 2016, J ED LEARNING, V5, P122, DOI 10.5539/jel.v5n3p122 Kyle K, 2018, MOD LANG J, V102, P333, DOI 10.1111/modl.12468 Lee K., 2015, CRITICAL CALL P 2015, P362, DOI [10.14705/rpnet.2015.000359, DOI 10.14705/RPNET.2015.000359] Lin CC, 2017, EDUC TECHNOL SOC, V20, P148 Luan H, 2020, FRONT PSYCHOL, V11, DOI 10.3389/fpsyg.2020.580820 McNamara DS, 2015, ASSESS WRIT, V23, P35, DOI 10.1016/j.asw.2014.09.002 McNamara DS, 2013, BEHAV RES METHODS, V45, P499, DOI 10.3758/s13428-012-0258-1 Mirzaei M.S., 2018, Future-proof CALL: Lang. Learn. as Exploration and Encounters-short papers from EUROCALL, P207 Organisation for Economic Co-operation and Developmen (OECD), 2019, ARTIF INTELL, DOI [10.1787/eedfee77-en, DOI 10.1787/EEDFEE77-EN] Pandarova I, 2019, INT J ARTIF INTELL E, V29, P342, DOI 10.1007/s40593-019-00180-4 Pokrivcakova S, 2019, J LANG CULT EDUC, V7, P135, DOI 10.2478/jolace-2019-0025 Roberts ME, 2014, AM J POLIT SCI, V58, P1064, DOI 10.1111/ajps.12103 Roscoe RD, 2013, J EDUC PSYCHOL, V105, P1010, DOI 10.1037/a0032340 Shadiev R, 2020, SUSTAINABILITY-BASEL, V12, DOI 10.3390/su12020524 Song P, 2020, ASIA PAC EDUC REV, V21, P473, DOI 10.1007/s12564-020-09640-2 Stockwell Glenn, 2007, Computer Assisted Language Learning, V20, P365, DOI 10.1080/09588220701745817 Su F, 2022, COMPUT ASSIST LANG L, V35, P1754, DOI 10.1080/09588221.2020.1831545 Svensson G, 2010, EUR J MARKETING, V44, P23, DOI 10.1108/03090561011008583 Vajjala S, 2018, INT J ARTIF INTELL E, V28, P79, DOI 10.1007/s40593-017-0142-3 van den Berghe R, 2019, REV EDUC RES, V89, P259, DOI 10.3102/0034654318821286 Wang CP, 2020, COMPUT ASSIST LANG L, V33, P891, DOI 10.1080/09588221.2019.1598444 Wang Fei, 2019, Yearb Med Inform, V28, P16, DOI 10.1055/s-0039-1677908 Wijekumar K, 2017, J EDUC PSYCHOL, V109, P741, DOI 10.1037/edu0000168 Yang S. J. H., 2021, Computers and Education: Artificial Intelligence, V2, DOI [DOI 10.1016/J.CAEAI.2021.100008, 10.1016/j.caeai.2021.100008] Yang SJH, 2021, EDUC TECHNOL SOC, V24, P105 Zawacki-Richter O, 2019, INT J EDUC TECHNOL H, V16, DOI 10.1186/s41239-019-0171-0 Zhang K., 2021, P COMPUTERS ED ARTIF, V2, DOI [10.1016/j.caeai.2021.100025, DOI 10.1016/J.CAEAI.2021.100025] Zhang RF, 2022, COMPUT ASSIST LANG L, V35, P696, DOI 10.1080/09588221.2020.1744666 Zou D, 2022, COMPUT ASSIST LANG L, V35, P1811, DOI 10.1080/09588221.2020.1839502 Zou D, 2021, COMPUT ASSIST LANG L, V34, P751, DOI 10.1080/09588221.2019.1640745 Zou D, 2018, KNOWL MANAG E-LEARN, V10, P426 NR 64 TC 50 Z9 51 U1 241 U2 602 PU INT FORUM EDUCATIONAL TECHNOLOGY & SOC, NATL TAIWAN NORMAL UNIV PI Taipei City PA No.162, Sec. 1, Heping E. Rd., Da-an Dist, Taipei City, TAIWAN SN 1176-3647 EI 1436-4522 J9 EDUC TECHNOL SOC JI Educ. Technol. Soc. PD JAN PY 2023 VL 26 IS 1 BP 112 EP 131 DI 10.30191/ETS.202301_26(1).0009 PG 20 WC Education & Educational Research WE Social Science Citation Index (SSCI) SC Education & Educational Research GA 7Q6QP UT WOS:000909514000009 HC Y HP N DA 2024-09-05 ER PT S AU Earnshaw, R AF Earnshaw, Rae BA Earnshaw, R Dill, J Kasik, D BF Earnshaw, R Dill, J Kasik, D TI Data Science Institutes and Data Centers SO DATA SCIENCE AND VISUAL COMPUTING SE Advanced Information and Knowledge Processing LA English DT Article; Book Chapter DE Infrastructure for data science; Interdisciplinary research collaboration; Artificial intelligence; Machine learning; Data mining; Statistical inference; Data management; Data visualization; Cultural change; Reward models AB Optimum ways of addressing large data volumes across a variety of disciplines have led to the formation of national and institutional Data Science Institutes and Centers. The objectives and functions of such institutes and centers are summarized. In reflecting the driver of national priority, they are able to attract academic support within their institutions to bring together interdisciplinary expertise to address a wide variety of datasets from disciplines such as astronomy, bioinformatics, engineering, science, medicine, social science, and the humanities. All are generating increasing volumes of data, often in real time, and require efficient and effective solutions. The opportunities and challenges of data science are presented. The processes of knowledge discovery in data science often require new methods and software, new organizational arrangements, and new skills in order to be effective. Data science centers and institutes provide a focus for the development and implementation of such new structures and arrangements for the development of appropriate facilities, with academic leadership and professional support. These are summarized and reviewed. C1 [Earnshaw, Rae] Univ Bradford, Ctr Visual Comp, Fac Engn & Informat, Bradford, W Yorkshire, England. [Earnshaw, Rae] Univ Durham, St Johns Coll, Durham, England. [Earnshaw, Rae] Wrexham Glyndwr Univ, Fac Arts Sci & Technol, Wrexham, Wales. C3 University of Bradford; Durham University RP Earnshaw, R (corresponding author), Univ Bradford, Ctr Visual Comp, Fac Engn & Informat, Bradford, W Yorkshire, England.; Earnshaw, R (corresponding author), Univ Durham, St Johns Coll, Durham, England.; Earnshaw, R (corresponding author), Wrexham Glyndwr Univ, Fac Arts Sci & Technol, Wrexham, Wales. RI Earnshaw, Rae A/G-8917-2013 CR Berman F., 2017, REALIZING POTENTIAL Diamond I, 2015, MAKING MOST DATA DAT Earnshaw R, 2017, SPRINGERBRIEF COMPUT, P21, DOI 10.1007/978-3-319-61409-0_3 Harvey C., 2017, BIG DATA CHALLENGES Kitzes J., 2018, The Practice of Reproducible Research: Case Studies and Lessons from the DataIntensive Sciences Nesta, 2015, TAL DAT REV The Moore-Sloan Data Science Environments: New York University and the U. of W. UC Berkeley, 2018, CREAT I CHANG DAT SC NR 7 TC 0 Z9 0 U1 1 U2 4 PU SPRINGER-VERLAG LONDON LTD PI GODALMING PA SWEETAPPLE HOUSE CATTESHALL RD FARNCOMBE, GODALMING GU7 1NH, SURREY, ENGLAND SN 1610-3947 BN 978-3-030-24367-8; 978-3-030-24366-1 J9 ADV INFORM KNOWL PRO PY 2019 BP 93 EP 108 DI 10.1007/978-3-030-24367-8_7 D2 10.1007/978-3-030-24367-8 PG 16 WC Computer Science, Information Systems; Computer Science, Interdisciplinary Applications WE Book Citation Index – Science (BKCI-S) SC Computer Science GA BN8MA UT WOS:000488075500009 DA 2024-09-05 ER PT J AU Segura-Robles, A Parra-González, ME Gallardo-Vigil, MA AF Segura-Robles, Adrian Elena Parra-Gonzalez, Maria Angel Gallardo-Vigil, Miguel TI Bibliometric and Collaborative Network Analysis on Active Methodologies in Education SO JOURNAL OF NEW APPROACHES IN EDUCATIONAL RESEARCH LA English DT Article DE CITATION ANALYSIS; ACTIVE LEARNING; BIBLIOMETRICS; EDUCATION; ACTIVE METHODOLOGIES ID IMPACT; PUBLICATION; INFORMATION AB Teachers have gradually been making more use of active methodologies at all educational levels, and some even carry out research in this area. The objective of this research was to develop a bibliometric study in order to gain an in-depth view of the scientific literature on active methodologies in education. An analysis of the classic descriptions of bibliometrics, co-authorship indexes and collaboration networks was carried out, using documents indexed by the Web of Science on active methodologies in education between 2009 and 2019. The final data corpus is composed of 513 documents. The results show that publications on this type of research are booming, demonstrating a growing interest in these kinds of studies in the short and medium term. English is the predominant language in these studies, as occurs in the general scientific literature. The results indicate a limited range of topics being studied currently and likely growth in coming years. Therefore, this category of research can be considered as a relevant field of study for the scientific community in the short and medium term. C1 [Segura-Robles, Adrian; Elena Parra-Gonzalez, Maria; Angel Gallardo-Vigil, Miguel] Univ Granada, Dept Metodos Invest & Diagnost Educ, Granada, Spain. C3 University of Granada RP Segura-Robles, A (corresponding author), Fac Educ Econ & Tecnol Ceuta, C Cortadura Valle S-N, Ceuta 51001, Ceuta, Spain. EM adrianseg@ugr.es RI Gallardo-Vigil, MA/K-5954-2012; Segura, Adrián/B-4963-2019 OI Gallardo-Vigil, MA/0000-0002-5462-077X; Segura, Adrián/0000-0003-0753-7129; Parra Gonzalez/0000-0002-6918-9126 CR Abramo G, 2019, J INFORMETR, V13, P32, DOI 10.1016/j.joi.2018.11.003 [Anonymous], 2020, SUSTAINABILITY BASEL, DOI DOI 10.3390/SU12020602 Arenas Loera Eva Paola, 2017, Alteridad, V12, P224 Arguimbau-Vivó L, 2013, REV ESP DOC CIENT, V36, DOI 10.3989/redc.2013.2.907 Arthur J, 2016, J INT COMP EDUC, V5, P59, DOI 10.14425/jice.2016.5.2.59 Azer SA, 2017, J DENT EDUC, V81, P458, DOI 10.21815/JDE.016.011 Bai SR, 2020, EDUC RES REV-NETH, V30, DOI 10.1016/j.edurev.2020.100322 Bakkum BW, 2017, J CHIPROPR EDUC, V31, P20, DOI 10.7899/JCE-14-21 Baneyx A, 2008, ARCH IMMUNOL THER EX, V56, P363, DOI 10.1007/s00005-008-0043-0 Beaudry C, 2016, RES POLICY, V45, P1790, DOI 10.1016/j.respol.2016.05.009 Bernal Gonzalez M.D.C., 2018, REV PANAM PEDAGOG, V25, P271 Biggs J., 2015, Calidad del aprendizaje universitario, V5A BRADFORD SC, 1985, J INFORM SCI, V10, P176 Brewer Robin., 2013, Proceedings of the 12th International Conference on Interaction Design and Children, P388 Burganova R.I., 2018, SER SOC HUM SCI, V6, P102, DOI [10.32014/2018.2224-5294.40, DOI 10.32014/2018.2224-5294.40] Soto MNC, 2020, ALTERIDAD, V15, P47 Cechetti NP, 2019, TELEMAT INFORM, V41, P126, DOI 10.1016/j.tele.2019.04.007 Coll C., 1997, Aprendizaje escolar y construccion del conocimiento ContrerasGastelum Y. I., 2012, REV ESTILOS APRENDIZ, V5, P114 Davies I, 2016, ASIAN EDUC DEV STUD, V5, P20, DOI 10.1108/AEDS-05-2015-0015 Dios J. G. D., 2013, ACTA PEDIAT ESPANOLA, V69, P131 Parra-González ME, 2020, INT J EDUC RES INNOV, P166 Hamel RE, 2007, AILA REV, V20, P53, DOI 10.1075/aila.20.06ham Flores C., 2018, ANALISIS BIBLIOMETRI, V25, DOI [10.20986/resed.2018.3627/2017, DOI 10.20986/RESED.2018.3627/2017] Gomez-Lopez R., 2002, Publicaciones, V32, P261 González-Alvarez J, 2017, J INFORMETR, V11, P232, DOI 10.1016/j.joi.2016.12.007 Romero JFG, 2020, REV UNIV SOC, V12, P343 Avila-Toscano JH, 2018, REV ESP DOC CIENT, V41, DOI 10.3989/redc.2018.4.1547 Hidalgo Nina, 2018, Educación, V42, P438, DOI 10.15517/revedu.v42i2.27567 Noblejas CJ, 2014, INVESTIG BIBLIOTECOL, V28, P15 LARENAS SAN MARTÍN MARÍA EDITH, 2016, Cienc. enferm., V22, P7 Liberati A, 2009, BMJ-BRIT MED J, V339, DOI [10.1016/j.ijsu.2010.02.007, 10.1136/bmj.b2700, 10.1136/bmj.b2535, 10.1186/2046-4053-4-1, 10.1371/journal.pmed.1000097, 10.1136/bmj.i4086, 10.1016/j.ijsu.2010.07.299] Lotka A.J., 1926, J Wash Acad Sci Wash D C, V16, P23 March A.F., 2006, Educatio siglo, V24, P35 Marchesi A., 2018, DESARROLLO PSICOLOGI MaseroMoreno I., 2016, ANALES ASEPUMA, V24, P1 MendezGarcia R. M., 2010, REV EDUC, V353, P299 Miguel S, 2007, INVESTIG BIBLIOTECOL, V21, P139 MOHER D, 2009, PLOS MED, V6 Morales Salas R E., 2017, Campus virtuales, V6, P67 Nielsen A., 2020, Retos, V37, P498, DOI DOI 10.47197/RETOS.V37I37.71026 Panos Castro J, 2017, Revista Electronica Interuniversitaria de Formacion Del Profesorado, V20, P33 Parra-Gonzalez M.A.E., 2019, Revista de Educacion, V5, P113, DOI DOI 10.4438/1988-592X-RE-2019-386-429 Parra-Gonzalez M.E., 2019, Revista Espacios, V40, P15 Pérez-López Isaac, 2017, Signo pensam., V36, P112, DOI 10.11144/Javeriana.syp36-70.fdfp Price D. J. d. S., 1963, Little Science, Big Science Reis A.C. B., 2017, Production, V27, DOI [10.1590/0103-6513.225816, DOI 10.1590/0103-6513.225816] Reyes-Gonzalez L, 2016, SCIENTOMETRICS, V108, P1171, DOI 10.1007/s11192-016-2029-8 Rousseau R., 2018, Becoming metric-wise A bibliometric guide for researchers, DOI DOI 10.1016/B978-0-08-102474-4.00009-1 Silva Quiroz Juan, 2017, Innov. educ. (Méx. DF), V17, P117 Sinkovics N, 2016, INT MARKET REV, V33, P327, DOI 10.1108/IMR-10-2014-0341 Todeschini R., 2016, Handbook of bibliometric indicators: quantitative tools for studying and evaluating research Xi NN, 2020, J BUS RES, V109, P449, DOI 10.1016/j.jbusres.2019.11.058 Yang L, 2017, INT J EMERG TECHNOL, V12, P178, DOI 10.3991/ijet.v12i06.7095 NR 54 TC 18 Z9 19 U1 3 U2 31 PU UNIV ALICANTE, GRUPO INVESTIGACION EDUTIC-ADEI PI ALICANTE PA CARRETERA SAN VICENTE RASPEIG, SAN VICENTE DEL RASPEIG, ALICANTE, 03690, SPAIN SN 2254-7339 J9 J NEW APPROACHES EDU JI J. New Approaches Educ. Res. PD JUL PY 2020 VL 9 IS 2 BP 259 EP 274 DI 10.7821/naer.2020.7.575 PG 16 WC Education & Educational Research WE Emerging Sources Citation Index (ESCI) SC Education & Educational Research GA MO4AQ UT WOS:000551471200008 OA gold DA 2024-09-05 ER PT J AU Huang, XY Zou, D Cheng, GR Chen, XL Xie, HR AF Huang, Xinyi Zou, Di Cheng, Gary Chen, Xieling Xie, Haoran TI Trends, Research Issues and Applications of Artificial Intelligence in Language Education SO EDUCATIONAL TECHNOLOGY & SOCIETY LA English DT Article DE Artificial Intelligence; Language education; Bibliometric analysis; Automated writing evaluation; Intelligent Tutoring Systems ID FOREIGN-LANGUAGE; LEARNING-SYSTEM; ENGLISH AB Artificial Intelligence (AI) is playing an increasingly important role in language education; however, the trends, research issues and applications of AI in language learning remain largely underinvestigated. Accordingly, the present paper, using bibliometric analysis, investigates these issues via a review of 516 papers that were published between 2000 and 2019 focusing on how AI was integrated into language education. Findings revealed that the frequency of studies on AI-enhanced language education is increasing. We found the most active country and institution were the USA and Arizona State University respectively. The 10 most popular topics were: (1) automated writing evaluation; (2) intelligent tutoring systems (ITS) for reading and writing; (3) automated error detection; (4) computer-mediated communication; (5) personalized systems for language learning; (6) natural language and vocabulary learning; (7) web resources and web-based systems for language learning; (8) ITS for writing in English for specific purposes; (9) intelligent tutoring and assessment system for pronunciation and speech training; and (10) affective states and emotions. The results also indicated that AI has been frequently used to assist students in learning writing, reading, vocabulary and grammar learning, and speaking and listening. Natural language processing, automated speech recognition, and learner profiling were commonly applied to develop automated writing evaluation, personalized learning and intelligent tutoring systems. C1 [Huang, Xinyi; Cheng, Gary; Chen, Xieling] Educ Univ Hong Kong, Dept Math & Informat Technol, Hong Kong, Peoples R China. [Zou, Di] Educ Univ Hong Kong, Dept English Language Educ, Hong Kong, Peoples R China. [Xie, Haoran] Lingnan Univ, Dept Comp & Decis Sci, Hong Kong, Peoples R China. C3 Education University of Hong Kong (EdUHK); Education University of Hong Kong (EdUHK); Lingnan University RP Zou, D (corresponding author), Educ Univ Hong Kong, Dept English Language Educ, Hong Kong, Peoples R China. EM hxinyi@eduhk.hk; dizoudaisy@gmail.com; chengks@eduhk.hk; xielingchen0708@gmail.com; hrxie2@gmail.com RI Huang, Xinyi/AFI-7092-2022; Xie, Haoran/AFS-3515-2022 OI Huang, Xinyi/0000-0001-9777-7905; Xie, Haoran/0000-0003-0965-3617 FU Research Cluster Fund of The Education University of Hong Kong [RG 78/2019-2020R]; Education University of Hong Kong [IDS-2 2020]; Lingnan University, Hong Kong [DB21A9, LWI20011] FX An abstract entitled "Artificial Intelligence in Language Education" based on this paper was presented at International Conference on Education and Artificial Intelligence 2020, The Education University of Hong Kong, 9-11 November 2020, Hong Kong. Gary Cheng's work in this research is supported by the Research Cluster Fund (RG 78/2019-2020R) of The Education University of Hong Kong and the Dean's Research Fund 2019/20 (IDS-2 2020) of The Education University of Hong Kong. Haoran Xie's work in this research is supported by the Faculty Research Fund (DB21A9) and the Lam Woo Research Fund (LWI20011) of Lingnan University, Hong Kong. CR Alexopoulou T, 2017, LANG LEARN, V67, P180, DOI 10.1111/lang.12232 Ayedoun E, 2019, INT J ARTIF INTELL E, V29, P29, DOI 10.1007/s40593-018-0171-6 Tran BX, 2019, INT J ENV RES PUB HE, V16, DOI 10.3390/ijerph16152699 Baker T., 2019, Educ-AI-tion Rebooted? Exploring the future of artificial intelligence in schools and colleges Calvo RA, 2011, IEEE T LEARN TECHNOL, V4, P88, DOI 10.1109/TLT.2010.43 Chao C. J., 2012, WORKSHOP P 20 INT C, P58 Chen CM, 2006, IEEE SYS MAN CYBERN, P4898, DOI 10.1109/ICSMC.2006.385081 Chen CM, 2010, INTERACT LEARN ENVIR, V18, P341, DOI 10.1080/10494820802602329 Chen X., EDUC TECHNOL SOC, V24, P205 Chen X., 2020, Computers and Education: Artificial Intelligence, V1, P100002, DOI DOI 10.1016/J.CAEAI.2020.100002 Chen X., 2020, Comput Educ Artif Intell, V1, DOI DOI 10.1016/J.CAEAI.2020.100005 Chen XL, 2021, INT J EDUC TECHNOL H, V18, DOI 10.1186/s41239-020-00239-6 Chen X, 2020, COMPUT EDUC, V151, DOI 10.1016/j.compedu.2020.103855 Chen XL, 2020, BRIT J EDUC TECHNOL, V51, P692, DOI 10.1111/bjet.12907 Gamper J., 2002, Computer Assisted Language Learning, V15, P329, DOI 10.1076/call.15.4.329.8270 Ghazi-Saidi L, 2017, FRONT HUM NEUROSCI, V11, DOI 10.3389/fnhum.2017.00463 Gierl MJ, 2014, MED EDUC, V48, P950, DOI 10.1111/medu.12517 Gong Y, 2018, ASIA-PAC EDUC RES, V27, P277, DOI 10.1007/s40299-018-0385-2 Grajzl P, 2019, J COMP ECON, V47, P111, DOI 10.1016/j.jce.2018.10.004 Grimes D., 2010, J TECHNOLOGY LEARNIN, V8, P1 Hinojo-Lucena FJ, 2019, EDUC SCI, V9, DOI 10.3390/educsci9010051 Hirsch JE, 2014, INT J CLIN HLTH PSYC, V14, P161, DOI 10.1016/S1697-2600(14)70050-X Hwang G.-J., 2020, Computers and Education: Artificial Intelligence, V1, P100001, DOI [DOI 10.1016/J.CAEAI.2020.100001, 10.1016/j.caeai.2020.100001] Hwang GJ, 2019, INTERACT LEARN ENVIR, V27, P567, DOI 10.1080/10494820.2018.1486861 Johnson AM, 2017, LECT NOTES ARTIF INT, V10331, P125, DOI 10.1007/978-3-319-61425-0_11 Johnson WL, 2007, FRONT ARTIF INTEL AP, V158, P67 Johnson WL, 2005, FRONT ARTIF INTEL AP, V125, P306 Khatun Na., 2016, J ED LEARNING, V5, P122, DOI 10.5539/jel.v5n3p122 Kyle K, 2018, MOD LANG J, V102, P333, DOI 10.1111/modl.12468 Lee K., 2015, CRITICAL CALL P 2015, P362, DOI [10.14705/rpnet.2015.000359, DOI 10.14705/RPNET.2015.000359] Lin CC, 2017, EDUC TECHNOL SOC, V20, P148 McNamara DS, 2015, ASSESS WRIT, V23, P35, DOI 10.1016/j.asw.2014.09.002 McNamara DS, 2013, BEHAV RES METHODS, V45, P499, DOI 10.3758/s13428-012-0258-1 Mirzaei M.S., 2018, Future-proof CALL: Lang. Learn. as Exploration and Encounters-short papers from EUROCALL, P207 Nerbonne J., 2002, Handbook of Computational Linguistics, P670 OECD, 2019, ARTIF INTELL, DOI [10.1787/eedfee77-en, DOI 10.1787/EEDFEE77-EN] Pandarova I, 2019, INT J ARTIF INTELL E, V29, P342, DOI 10.1007/s40593-019-00180-4 Pokrivcakova S, 2019, J LANG CULT EDUC, V7, P135, DOI 10.2478/jolace-2019-0025 Roberts ME, 2014, AM J POLIT SCI, V58, P1064, DOI 10.1111/ajps.12103 Roscoe RD, 2013, J EDUC PSYCHOL, V105, P1010, DOI 10.1037/a0032340 Song P, 2020, ASIA PAC EDUC REV, V21, P473, DOI 10.1007/s12564-020-09640-2 Stockwell Glenn, 2007, Computer Assisted Language Learning, V20, P365, DOI 10.1080/09588220701745817 Su F, 2022, COMPUT ASSIST LANG L, V35, P1754, DOI 10.1080/09588221.2020.1831545 Tang KY, 2023, INTERACT LEARN ENVIR, V31, P2134, DOI 10.1080/10494820.2021.1875001 Vajjala S, 2018, INT J ARTIF INTELL E, V28, P79, DOI 10.1007/s40593-017-0142-3 van den Berghe R, 2019, REV EDUC RES, V89, P259, DOI 10.3102/0034654318821286 Wang CP, 2020, COMPUT ASSIST LANG L, V33, P891, DOI 10.1080/09588221.2019.1598444 Wijekumar K, 2017, J EDUC PSYCHOL, V109, P741, DOI 10.1037/edu0000168 Woolf BP, 2013, AI MAG, V34, P66, DOI 10.1609/aimag.v34i4.2490 Xieling Chen, 2018, Emerging Technologies for Education. Third International Symposium, SETE 2018 Held in Conjunction with ICWL 2018. Revised Selected Papers: Lecture Notes in Computer Science (LNCS 11284), P169, DOI 10.1007/978-3-030-03580-8_18 Zawacki-Richter O, 2019, INT J EDUC TECHNOL H, V16, DOI 10.1186/s41239-019-0171-0 Zhang RF, 2022, COMPUT ASSIST LANG L, V35, P696, DOI 10.1080/09588221.2020.1744666 Zou D, 2022, COMPUT ASSIST LANG L, V35, P1811, DOI 10.1080/09588221.2020.1839502 Zou D, 2021, COMPUT ASSIST LANG L, V34, P751, DOI 10.1080/09588221.2019.1640745 NR 54 TC 4 Z9 4 U1 40 U2 277 PU INT FORUM EDUCATIONAL TECHNOLOGY & SOC-IFETS PI DOULIU CITY PA NATL YUNLIN UNIV SCIENCE & TECHNOLOGY, NO 123, SECTION 3, DAXUE RD, DOULIU CITY, YUNLIN COUNTY, TAIWAN SN 1176-3647 EI 1436-4522 J9 EDUC TECHNOL SOC JI Educ. Technol. Soc. PD JUL PY 2021 VL 24 IS 3 BP 238 EP 255 PG 18 WC Education & Educational Research WE Social Science Citation Index (SSCI) SC Education & Educational Research GA TD7SR UT WOS:000669522300017 DA 2024-09-05 ER PT J AU Kirkwood, S Cree, V Winterstein, D Nuttgens, A Sneddon, J AF Kirkwood, Steve Cree, Viviene Winterstein, Daniel Nuttgens, Alex Sneddon, Jenni TI Encountering #Feminism on Twitter: Reflections on a Research Collaboration between Social Scientists and Computer Scientists SO SOCIOLOGICAL RESEARCH ONLINE LA English DT Article DE 'big data'; collaboration; feminism; machine learning; qualitative analysis; social media; Twitter ID WOMENS MOVEMENT; MEDIA AB The growth of social media presents an unparalleled opportunity for the study of social change. However, the speed and scale of this growth presents challenges for social scientists, particularly those whose methodologies tend to rely on the qualitative analysis of data that are gathered firsthand. Alongside the growth of social media, companies have emerged which have developed tools for interrogating 'big data', although often unconnected from social scientists. It is self-evident that collaboration between social scientists and social media analysis companies offers the potential for developing methods for analysing social change on large scales, bringing together their respective expertise in technological innovations and knowledge of social science. What is less well known is how such a partnership might work in practice. This article presents an example of such a collaboration, highlighting the opportunities and challenges that arose in the context of an exploration of feminism on Twitter. As will be shown, machine-learning technologies allow the analysis of data on a scale that would be impossible for human analysts, yet such approaches also heighten challenges regarding the study of social change and communication. C1 [Kirkwood, Steve] Univ Edinburgh, Social Work, Chrystal Macmillan Bldg,15a George Sq, Edinburgh EH8 9LD, Midlothian, Scotland. [Cree, Viviene] Univ Edinburgh, Social Work Studies, Edinburgh, Midlothian, Scotland. [Winterstein, Daniel; Nuttgens, Alex; Sneddon, Jenni] SoDash, Edinburgh, Midlothian, Scotland. C3 University of Edinburgh; University of Edinburgh RP Kirkwood, S (corresponding author), Univ Edinburgh, Social Work, Chrystal Macmillan Bldg,15a George Sq, Edinburgh EH8 9LD, Midlothian, Scotland. EM s.kirkwood@ed.ac.uk RI Kirkwood, Steve/I-1966-2019 OI Kirkwood, Steve/0000-0003-1508-0835; Cree, Viviene/0000-0002-9995-1820 FU University of Edinburgh School of Social and Political Science FX We would like to thank the University of Edinburgh School of Social and Political Science for the research grant that supported this project. We would also like to thank the anonymous reviewers for their helpful comments on an earlier version of this article. CR [Anonymous], NY TIMES Bagguley Paul., 2002, SOC MOVEMENT STUD, V1, P169, DOI DOI 10.1080/1474283022000010664 Banyard K., 2010, EQUALITY ILLUSION TR Barbera P., How Social Media Reduces Mass Political Polarization Barberá P, 2015, PSYCHOL SCI, V26, P1531, DOI 10.1177/0956797615594620 Barry A, 2008, ECON SOC, V37, P20, DOI 10.1080/03085140701760841 Bartlett J., 2014, Misogyny on twitter Burnap P, 2015, POLICY INTERNET, V7, P223, DOI 10.1002/poi3.85 Chu Z, 2010, 26TH ANNUAL COMPUTER SECURITY APPLICATIONS CONFERENCE (ACSAC 2010), P21 Cook J, 2014, CURR SOCIOL, V62, P975, DOI 10.1177/0011392114550008 Edwards A, 2013, INT J SOC RES METHOD, V16, P245, DOI 10.1080/13645579.2013.774185 Eynon R, 2011, SAGE HDB ONLINE RES, P19 Fan WG, 2014, COMMUN ACM, V57, P74, DOI 10.1145/2602574 Felt M, 2016, BIG DATA SOC, V3, DOI 10.1177/2053951716645828 Harrington S., 2013, J AUDIENCE RECEPTION, V10, P405, DOI DOI 10.1080/1369118X.2012.756053 Knappe H, 2014, EUR J WOMENS STUD, V21, P361, DOI 10.1177/1350506814541643 Leupold J, 4 WAVE FEMINISM Mackay F., 2008, Women's Movements: Flourishing or in Abeyance?, P17 Moreno MA, 2013, CYBERPSYCH BEH SOC N, V16, P708, DOI 10.1089/cyber.2012.0334 Murthy D, 2012, SOCIOLOGY, V46, P1059, DOI 10.1177/0038038511422553 Nagler J, 2015, PS-POLIT SCI POLIT, V48, P84, DOI 10.1017/S1049096514001796 Nash K, 2002, EUR J WOMENS STUD, V9, P311, DOI 10.1177/1350506802009003377 Phillips R, 2014, SOC WORK EDUC, V33, P930, DOI 10.1080/02615479.2014.885007 Potter J., 2005, QUAL RES PSYCHOL, V2, P281, DOI DOI 10.1191/1478088705QP045OA Procter R, 2013, INT J SOC RES METHOD, V16, P197, DOI 10.1080/13645579.2013.774172 Pruchniewska UM, 2016, FEM MEDIA STUD, V16, P737, DOI 10.1080/14680777.2016.1190045 Sloan L, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0115545 Sloan L, 2013, SOCIOL RES ONLINE, V18, DOI 10.5153/sro.3001 Tinati R, 2014, SOCIOLOGY, V48, P663, DOI 10.1177/0038038513511561 Urry J., 2000, SOCIOLOGY SOC Vis F., 2015, The iconic image on social media: A rapid research response to the death of Aylan Kurdi Winterstein D, 2011, MARK RECAPTURE ESTIM Zelenkauskaite Asta, 2016, First Monday, V21, DOI 10.5210/fm.v21i5.6358 NR 33 TC 2 Z9 3 U1 1 U2 22 PU SAGE PUBLICATIONS LTD PI LONDON PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND SN 1360-7804 J9 SOCIOL RES ONLINE JI Sociol. Res. Online PD DEC PY 2018 VL 23 IS 4 BP 763 EP 779 DI 10.1177/1360780418781615 PG 17 WC Sociology WE Social Science Citation Index (SSCI) SC Sociology GA HE2FJ UT WOS:000453091200004 OA Green Accepted DA 2024-09-05 ER PT J AU Wulff, P Buschhüter, D Westphal, A Mientus, L Nowak, A Borowski, A AF Wulff, Peter Buschhueter, David Westphal, Andrea Mientus, Lukas Nowak, Anna Borowski, Andreas TI Bridging the Gap Between Qualitative and Quantitative Assessment in Science Education Research with Machine Learning - A Case for Pretrained Language Models-Based Clustering SO JOURNAL OF SCIENCE EDUCATION AND TECHNOLOGY LA English DT Article DE Attention to classroom events; Noticing; NLP; ML ID AUTOMATED-ANALYSIS; UNREASONABLE EFFECTIVENESS; VIDEO; MATHEMATICS; KNOWLEDGE AB Science education researchers typically face a trade-off between more quantitatively oriented confirmatory testing of hypotheses, or more qualitatively oriented exploration of novel hypotheses. More recently, open-ended, constructed response items were used to combine both approaches and advance assessment of complex science-related skills and competencies. For example, research in assessing science teachers' noticing and attention to classroom events benefitted from more open-ended response formats because teachers can present their own accounts. Then, open-ended responses are typically analyzed with some form of content analysis. However, language is noisy, ambiguous, and unsegmented and thus open-ended, constructed responses are complex to analyze. Uncovering patterns in these responses would benefit from more principled and systematic analysis tools. Consequently, computer-based methods with the help of machine learning and natural language processing were argued to be promising means to enhance assessment of noticing skills with constructed response formats. In particular, pretrained language models recently advanced the study of linguistic phenomena and thus could well advance assessment of complex constructs through constructed response items. This study examines potentials and challenges of a pretrained language model-based clustering approach to assess preservice physics teachers' attention to classroom events as elicited through open-ended written descriptions. It was examined to what extent the clustering approach could identify meaningful patterns in the constructed responses, and in what ways textual organization of the responses could be analyzed with the clusters. Preservice physics teachers (N = 75) were instructed to describe a standardized, video-recorded teaching situation in physics. The clustering approach was used to group related sentences. Results indicate that the pretrained language model-based clustering approach yields well-interpretable, specific, and robust clusters, which could be mapped to physics-specific and more general contents. Furthermore, the clusters facilitate advanced analysis of the textual organization of the constructed responses. Hence, we argue that machine learning and natural language processing provide science education researchers means to combine exploratory capabilities of qualitative research methods with the systematicity of quantitative methods. C1 [Wulff, Peter] Heidelberg Univ Educ, Phys Educ Res Grp, Heidelberg, Germany. [Buschhueter, David; Mientus, Lukas; Nowak, Anna; Borowski, Andreas] Univ Potsdam, Phys Educ Res Grp, Potsdam, Germany. [Westphal, Andrea] Univ Greifswald, Dept Educ Res, Greifswald, Germany. C3 Ruprecht Karls University Heidelberg; University of Potsdam; Universitat Greifswald RP Wulff, P (corresponding author), Heidelberg Univ Educ, Phys Educ Res Grp, Heidelberg, Germany. EM peter.wulff@ph-heidelberg.de RI Wulff, Peter/GSI-9069-2022 OI Wulff, Peter/0000-0002-5471-7977; Mientus, Lukas/0000-0001-5344-4770 FU Projekt DEAL; Federal Ministry of Education and Research FX Open Access funding enabled and organized by Projekt DEAL. This project is part of the "Qualitatsoffensive Lehrerbildung", a joint initiative of the Federal Government and the Lander which aims to improve the quality of teacher training. The program is funded by the Federal Ministry of Education and Research. The authors are responsible for the content of this publication. CR Angelov D., 2020, ARXIV [Anonymous], 2017, Neural Network Methods for Natural Language Processing, DOI DOI 10.2200/S00762ED1V01Y201703HLT037 Arpaia P, 2021, NUCL INSTRUM METH A, V985, DOI 10.1016/j.nima.2020.164652 Baig MI, 2020, INT J EDUC TECHNOL H, V17, DOI 10.1186/s41239-020-00223-0 Barth-Cohen LA, 2018, J SCI TEACH EDUC, V29, P83, DOI 10.1080/1046560X.2018.1423837 Bhardwaj R., 2020, ARXIV Breiman L, 2001, STAT SCI, V16, P199, DOI 10.1214/ss/1009213726 Brookes DT, 2009, PHYS REV SPEC TOP-PH, V5, DOI 10.1103/PhysRevSTPER.5.010110 Bruner J., 1983, CHILDS TALK LEARNING Caliskan A, 2017, SCIENCE, V356, DOI 10.1126/science.aal4230 Campello R. J. G. B., 2013, PAKDD 2013, V7819, P160, DOI DOI 10.1007/978-3-642-37456-2_14 Carlson J., 2019, Repositioning Pedagogical Content Knowledge in Teachers' Knowledge for Teaching Science Carpenter D, 2020, LECT NOTES ARTIF INT, V12163, P67, DOI 10.1007/978-3-030-52237-7_6 Chan KKH, 2021, STUD SCI EDUC, V57, P1, DOI 10.1080/03057267.2020.1755803 Clifton RA., 1993, AUTHORITY CLASSROOMS Conway MA, 2009, NEUROPSYCHOLOGIA, V47, P2305, DOI 10.1016/j.neuropsychologia.2009.02.003 Crespo S., 2000, J MATH TEACH EDUC, V3, P155 Darling-Hammond L., 2000, Education Policy Analysis Archives, V8, P1, DOI DOI 10.14507/EPAA.V8N1.2000 Devlin J., 2018, ARXIV FENSTERMACHER GD, 1994, REV RES EDUC, V20, P3, DOI 10.3102/0091732X020001003 Furtak EM, 2012, J RES SCI TEACH, V49, P1181, DOI 10.1002/tea.21054 Galvez SMN, 2020, AM EDUC RES J, V57, P612, DOI 10.3102/0002831219860511 Goodfellow I, 2016, ADAPT COMPUT MACH LE, P1 Halevy A, 2009, IEEE INTELL SYST, V24, P8, DOI 10.1109/MIS.2009.36 Hammer D., 2006, SEEING SCI CHILDRENS Hao K., 2019, MIT Technology Review Hume A, 2009, HIGH EDUC RES DEV, V28, P247, DOI 10.1080/07294360902839859 Jordan MI, 2015, SCIENCE, V349, P255, DOI 10.1126/science.aaa8415 Jurafsky D, 2003, PROBABILISTIC LINGUISTICS, P39 Jurafsky D., 2014, SPEECH LANGUAGE PROC Kahana Michael J., 2008, Psychology, V3 Kleinknecht M, 2016, TEACH TEACH EDUC, V59, P45, DOI 10.1016/j.tate.2016.05.020 Korthagen F.A. J., 1999, EUR J TEACH EDUC, V22, P191, DOI [10.1080/0261976899020191, DOI 10.1080/0261976899020191] Krger, 2014, METHODEN NATURWISSEN Kriegel HP, 2011, WIRES DATA MIN KNOWL, V1, P231, DOI 10.1002/widm.30 Krippendorff K, 2004, HUM COMMUN RES, V30, P411, DOI 10.1093/hcr/30.3.411 Krstovski K., 2018, CORR Lamb R, 2021, J SCI EDUC TECHNOL, V30, P283, DOI 10.1007/s10956-020-09871-3 Levin DA, 2009, J TEACH EDUC, V60, P142, DOI 10.1177/0022487108330245 Luna MJ, 2018, J SCI TEACH EDUC, V29, P148, DOI 10.1080/1046560X.2018.1427418 Marsland S, 2009, CH CRC MACH LEARN PA, P1 Mena-Marcos J, 2013, EUR J TEACH EDUC, V36, P147, DOI 10.1080/02619768.2012.713933 Mikolov T., 2013, ADV NEURAL INFORM PR, P3111, DOI DOI 10.48550/ARXIV.1310.4546 Mikolov Tomas, 2013, P WORKSHOP ICLR Mitchell M., 2019, ARTIF INTELL Nehm RH, 2012, J SCI EDUC TECHNOL, V21, P183, DOI 10.1007/s10956-011-9300-9 Odden TOB, 2021, SCI EDUC, V105, P653, DOI 10.1002/sce.21623 Odden TOB, 2020, PHYS REV PHYS EDUC R, V16, DOI 10.1103/PhysRevPhysEducRes.16.010142 Putnam R.T., 2000, Educational Researcher, V29, P4, DOI DOI 10.3102/0013189X029001004 Rauf IA., 2021, PHYS DATA SCI MACHIN, DOI [10.1201/9781003206743, DOI 10.1201/9781003206743] Rosenberg JM, 2021, J SCI EDUC TECHNOL, V30, P255, DOI 10.1007/s10956-020-09862-4 Roth KJ, 2011, J RES SCI TEACH, V48, P117, DOI 10.1002/tea.20408 Ruder Sebastian, 2019, Neural transfer learning for natural language processing RUMELHART DE, 1986, NATURE, V323, P533, DOI 10.1038/323533a0 Seidel T, 2014, AM EDUC RES J, V51, P739, DOI 10.3102/0002831214531321 Sherin B, 2013, J LEARN SCI, V22, P600, DOI 10.1080/10508406.2013.836654 Sherin MG, 2004, TEACH TEACH EDUC, V20, P163, DOI 10.1016/j.tate.2003.08.001 Sherin MG, 2009, J TEACH EDUC, V60, P20, DOI 10.1177/0022487108328155 Shulman LS, 2019, PROFESORADO, V23, P269, DOI 10.30827/profesorado.v23i3.11230 Singer JD, 2019, J RES EDUC EFF, V12, P570, DOI 10.1080/19345747.2019.1658835 Star JR, 2008, J MATH TEACH EDUC, V11, P107, DOI 10.1007/s10857-007-9063-7 Taher Pilehvar M., 2020, EMBEDDINGS NATURAL L Talanquer V, 2015, J RES SCI TEACH, V52, P585, DOI 10.1002/tea.21209 Ullmann TD, 2019, INT J ARTIF INTELL E, V29, P217, DOI 10.1007/s40593-019-00174-2 Vanes E. A., 2002, Journal of Technology and Teacher Education, V10, P571 von Aufschnaiter C., 2019, HERAUSFORDERUNG LEHR, V2, DOI [10.4119/UNIBI/HLZ-144, DOI 10.4119/UNIBI/HLZ-144] Wang C., 2020, Language models are open knowledge graphs WIGNER EP, 1960, COMMUN PUR APPL MATH, V13, P1, DOI 10.1002/cpa.3160130102 Wilson C., 2019, Repositioning Pedagogical Content Knowledge in teachers Knowledge for Teaching Science, P289 Wulff P, 2023, INT J ARTIF INTELL E, V33, P439, DOI 10.1007/s40593-022-00290-6 Wulff P, 2021, J SCI EDUC TECHNOL, V30, P1, DOI 10.1007/s10956-020-09865-1 Xing WL, 2020, ETR&D-EDUC TECH RES, V68, P2185, DOI 10.1007/s11423-020-09761-w Zehner F, 2016, EDUC PSYCHOL MEAS, V76, P280, DOI 10.1177/0013164415590022 Zhai XM, 2021, J SCI EDUC TECHNOL, V30, P139, DOI 10.1007/s10956-021-09901-8 Zhai XM, 2020, J RES SCI TEACH, V57, P1430, DOI 10.1002/tea.21658 Zhai XM, 2020, STUD SCI EDUC, V56, P111, DOI 10.1080/03057267.2020.1735757 Zhang X, 2021, AUTOPHAGY, V17, P1519, DOI 10.1080/15548627.2020.1840796 NR 77 TC 17 Z9 17 U1 7 U2 37 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 1059-0145 EI 1573-1839 J9 J SCI EDUC TECHNOL JI J. Sci. Educ. Technol. PD AUG PY 2022 VL 31 IS 4 BP 490 EP 513 DI 10.1007/s10956-022-09969-w EA JUN 2022 PG 24 WC Education & Educational Research; Education, Scientific Disciplines WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Education & Educational Research GA 2O1JP UT WOS:000804522900001 OA hybrid DA 2024-09-05 ER PT J AU Sadeghian, A Sundaram, L Wang, DZ Hamilton, WF Branting, K Pfeifer, C AF Sadeghian, Ali Sundaram, Laksshman Wang, Daisy Zhe Hamilton, William F. Branting, Karl Pfeifer, Craig TI Automatic semantic edge labeling over legal citation graphs SO ARTIFICIAL INTELLIGENCE AND LAW LA English DT Article DE Legal citation graph; Semantics; Automatic citation analysis; Conditional random fields; Word embeddings; Clustering ID AGREEMENT AB A large number of cross-references to various bodies of text are used in legal texts, each serving a different purpose. It is often necessary for authorities and companies to look into certain types of these citations. Yet, there is a lack of automatic tools to aid in this process. Recently, citation graphs have been used to improve the intelligibility of complex rule frameworks. We propose an algorithm that builds the citation graph from a document and automatically labels each edge according to its purpose. Our method uses the citing text only and thus works only on citations who's purpose can be uniquely identified by their surrounding text. This framework is then applied to the US code. This paper includes defining and evaluating a standard gold set of labels that cover a vast majority of citation types which appear in the "US Code'' but are still short enough for practical use. We also proposed a novel linear-chain conditional random field model that extracts the features required for labeling the citations from the surrounding text. We then analyzed the effectiveness of different clustering methods such as K-means and support vector machine to automatically label each citation with the corresponding label. Besides this, we talk about the practical difficulties of this task and give a comparison of human accuracy compared to our end-to-end algorithm. C1 [Sadeghian, Ali; Sundaram, Laksshman; Wang, Daisy Zhe; Hamilton, William F.] Univ Florida, Gainesville, FL 32611 USA. [Sundaram, Laksshman] Stanford Univ, Stanford, CA 94305 USA. [Branting, Karl; Pfeifer, Craig] Mitre Corp, Mclean, VA USA. C3 State University System of Florida; University of Florida; Stanford University; MITRE Corporation RP Sadeghian, A (corresponding author), Univ Florida, Gainesville, FL 32611 USA. EM asadeghian@ufl.edu; lakss@stanford.edu; daisyw@ufl.edu; hamiltonw@law.ufl.edu; lbranting@mitre.org; cpfeifer@mitre.org RI Sadeghian, Ali/AAV-6773-2020 CR Adedjouma M, 2014, INT REQUIR ENG CONF, P63, DOI 10.1109/RE.2014.6912248 Alonso O, 2012, INFORM PROCESS MANAG, V48, P1053, DOI 10.1016/j.ipm.2012.01.004 [Anonymous], 2017, ARXIV170704960 Ashley K., 2014, PROC WORKSHOP FRONTI, P1 Association HLR, 1996, BLUEB UN SYST CIT Bird S., 2009, Natural language processing with Python: analyzing text with the natural lan-guage toolkit Branting LK, 2017, ARTIF INTELL LAW, V25, P5, DOI 10.1007/s10506-017-9193-x Breaux T.D., 2007, RHAS 6 Cao Z, 2017, ARXIV170501217 COHEN J, 1960, EDUC PSYCHOL MEAS, V20, P37, DOI 10.1177/001316446002000104 de Maat E., 2009, FORMAL LINGUISTICS L, P225 de Maat E, 2006, FRONT ARTIF INTEL AP, V152, P41 Galgani F, 2010, LECT NOTES ARTIF INT, V6464, P445, DOI 10.1007/978-3-642-17432-2_45 Glaser B., 1967, DISCOV GROUNDED THEO, DOI [10.4324/9780203793206, DOI 10.4324/9780203793206] Goldberg S, 2016, P NAACL HLT, P1208 Hamdaqa M, 2011, FUTURE GENER COMP SY, V27, P395, DOI 10.1016/j.future.2010.09.007 Hamdaqa M, 2009, PROCEEDINGS OF THE 2009 SIXTH INTERNATIONAL CONFERENCE ON INFORMATION TECHNOLOGY: NEW GENERATIONS, VOLS 1-3, P278, DOI 10.1109/ITNG.2009.161 HARRINGTON WG, 1984, LAW LIBR J, V77, P543 Jain A., 2017, arXiv:1705.09101 Lafferty John, 2001, em Proceedings of the Eighteenth International Conference on Machine Learning LANDIS JR, 1977, BIOMETRICS, V33, P159, DOI 10.2307/2529310 Maxwell JC, 2012, REQUIR ENG, V17, P99, DOI 10.1007/s00766-012-0152-5 Mikolov T., 2013, ARXIV Mikolov T., 2013, ADV NEURAL INFORM PR, P3111, DOI DOI 10.48550/ARXIV.1310.4546 Mollalo A, 2015, ZOONOSES PUBLIC HLTH, V62, P18, DOI 10.1111/zph.12109 Neale T., 2013, J. Open Access L, V1, P1 Tran OT, 2014, ARTIF INTELL LAW, V22, P29, DOI 10.1007/s10506-013-9149-8 Pollman T., 2000, ALWD CITATION MANUAL Prakken H., 1993, Fourth International Conference on Artificial Intelligence and Law. Proceedings of the Conference, P1, DOI 10.1145/158976.158977 RISSLAND EL, 1988, AI MAG, V9, P45 Roitblat HL, 2010, J AM SOC INF SCI TEC, V61, P70, DOI 10.1002/asi.21233 Sadeghian A, 2016, LTDCA Sadeghian A, 2015, INT CONF ACOUST SPEE, P2604, DOI 10.1109/ICASSP.2015.7178442 Sadeghian A, 2017, IEEE I CONF COMP VIS, P300, DOI 10.1109/ICCV.2017.41 Sutton Charles, 2006, Introduction to Statistical Relational Learning, V2 Winkels R, 2014, FRONT ARTIF INTEL AP, V271, P169, DOI 10.3233/978-1-61499-468-8-169 Zhang P., 2007, Proceedings of the 11th international conference on Artificial intelligence and law, P123, DOI DOI 10.1145/1276318.1276342 NR 37 TC 10 Z9 13 U1 0 U2 6 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0924-8463 EI 1572-8382 J9 ARTIF INTELL LAW JI Artif. Intell. Law PD JUN PY 2018 VL 26 IS 2 SI SI BP 127 EP 144 DI 10.1007/s10506-018-9217-1 PG 18 WC Computer Science, Artificial Intelligence; Computer Science, Interdisciplinary Applications; Law WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Computer Science; Government & Law GA GR5LE UT WOS:000442672600003 DA 2024-09-05 ER PT J AU Liu, N Shapira, P Yue, XX AF Liu, Na Shapira, Philip Yue, Xiaoxu TI Tracking developments in artificial intelligence research: constructing and applying a new search strategy SO SCIENTOMETRICS LA English DT Article DE Emerging technology; Artificial intelligence; Bibliometric analysis; Search strategy; Research trends ID SCIENTIFIC-RESEARCH; TECHNOLOGY; SCIENCE; EMERGENCE; AI AB Artificial intelligence, as an emerging and multidisciplinary domain of research and innovation, has attracted growing attention in recent years. Delineating the domain composition of artificial intelligence is central to profiling and tracking its development and trajectories. This paper puts forward a bibliometric definition for artificial intelligence which can be readily applied, including by researchers, managers, and policy analysts. Our approach starts with benchmark records of artificial intelligence captured by using a core keyword and specialized journal search. We then extract candidate terms from high frequency keywords of benchmark records, refine keywords and complement with the subject category "artificial intelligence". We assess our search approach by comparing it with other three recent search strategies of artificial intelligence, using a common source of articles from the Web of Science. Using this source, we then profile patterns of growth and international diffusion of scientific research in artificial intelligence in recent years, identify top research sponsors in funding artificial intelligence and demonstrate how diverse disciplines contribute to the multidisciplinary development of artificial intelligence. We conclude with implications for search strategy development and suggestions of lines for further research. C1 [Liu, Na] Shandong Technol & Business Univ, Sch Management, Yantai 264005, Peoples R China. [Shapira, Philip] Univ Manchester, Alliance Manchester Business Sch, Manchester Inst Innovat Res, Manchester M13 9PL, Lancs, England. [Shapira, Philip] Georgia Inst Technol, Sch Publ Policy, Atlanta, GA 30332 USA. [Yue, Xiaoxu] Tsinghua Univ, Sch Publ Policy & Management, Beijing 100084, Peoples R China. C3 Shandong Technology & Business University; University of Manchester; Alliance Manchester Business School; University System of Georgia; Georgia Institute of Technology; Tsinghua University RP Shapira, P (corresponding author), Univ Manchester, Alliance Manchester Business Sch, Manchester Inst Innovat Res, Manchester M13 9PL, Lancs, England.; Shapira, P (corresponding author), Georgia Inst Technol, Sch Publ Policy, Atlanta, GA 30332 USA. EM pshapira@manchester.ac.uk RI Shapira, Philip/E-4638-2011 OI Shapira, Philip/0000-0003-2488-5985 FU National Natural Science Foundation of China [71702090]; Taishan Scholars Program of Shandong Province [Tsqn201909149]; Biotechnology and Biological Sciences Research Council [BB/M017702/1)]; Project on Anticipating Transformative Innovations and their Implications: AI innovation strategies in Canada and the UK (Partnership for the Organization of Innovation and New Technologies, Social Sciences and Humanities Research Council of Canada) [895-2018-1006]; BBSRC [BB/M017702/1] Funding Source: UKRI FX Na Liu acknowledges support for this research from the National Natural Science Foundation of China (Grant No. 71702090) and the Taishan Scholars Program of Shandong Province (Grant No. Tsqn201909149). Philip Shapira acknowledges support for this research from the Biotechnology and Biological Sciences Research Council (Grant No. BB/M017702/1) (Manchester Synthetic Biology Research Centre for Fine and Speciality Chemicals) and the Project on Anticipating Transformative Innovations and their Implications: AI innovation strategies in Canada and the UK (Partnership for the Organization of Innovation and New Technologies, Social Sciences and Humanities Research Council of Canada, Grant No. 895-2018-1006). The authors appreciate comments on an earlier draft received from Alan L. Porter. CR Adams J, 2005, SCIENTOMETRICS, V63, P567, DOI 10.1007/s11192-005-0228-9 AF, 2020, ACRONYM FINDER AI HLEG, 2019, ETH GUID TRUSTW AI H [Anonymous], 1998, Artificial intelligence: a new synthesis [Anonymous], 2007, WHAT IS ARTIFICIAL I [Anonymous], 2020, The SCImago Journal Country Rank [Anonymous], 2019, Artificial Intelligence in Society Appelbaum R. P., 2018, Innovation in China: Challenging the global science and technology system Arora SK, 2013, SCIENTOMETRICS, V95, P351, DOI 10.1007/s11192-012-0903-6 Bohannon J, 2015, SCIENCE, V349, P252, DOI 10.1126/science.349.6245.252 Bornmann L, 2013, J INFORMETR, V7, P722, DOI 10.1016/j.joi.2013.05.002 Bornmann L, 2012, J INFORMETR, V6, P333, DOI 10.1016/j.joi.2011.11.006 Bozeman B., 2017, The strength in numbers: The new science of team science, DOI [10.2307/j.ctvc77bn7, DOI 10.2307/J.CTVC77BN7] British Academy, 2020, IMP ART INT WORK EV Buiten MC, 2019, EUR J RISK REGUL, V10, P41, DOI 10.1017/err.2019.8 Cath C, 2018, SCI ENG ETHICS, V24, P505, DOI 10.1007/s11948-017-9901-7 CBInsights, 2019, AI TRENDS WATCH 2019 CCF, 2019, CAT INT AC C PER Chartrand G, 2017, RADIOGRAPHICS, V37, P2113, DOI 10.1148/rg.2017170077 Chen KH, 2019, RES POLICY, V48, P149, DOI 10.1016/j.respol.2018.08.005 Dang T.K, 2019, FORBES Davenport TH, 2018, HARVARD BUS REV, V96, P108 EPIC, 2020, STAT ART INT POL Feldstein S., 2019, The global expansion of Al surveillance Gao J, 2019, SUSTAINABILITY-BASEL, V11, DOI 10.3390/su11236574 Glänzel W, 2004, HANDBOOK OF QUANTITATIVE SCIENCE AND TECHNOLOGY RESEARCH: THE USE OF PUBLICATION AND PATENT STATISTICS IN STUDIES OF S&T SYSTEMS, P257 Glanzel W., 2019, Springer Handbook of Science and Technology Indicators Guan JC, 2014, J NANOPART RES, V16, DOI 10.1007/s11051-014-2356-8 Hirsch JE, 2005, P NATL ACAD SCI USA, V102, P16569, DOI 10.1073/pnas.0507655102 Huang C, 2011, J TECHNOL TRANSFER, V36, P145, DOI 10.1007/s10961-009-9149-8 Huang Y, 2015, SCIENTOMETRICS, V105, P2005, DOI 10.1007/s11192-015-1638-y Jackson P. C., 2019, INTRO ARTIFICIAL INT Jakhar D, 2020, CLIN EXP DERMATOL, V45, P131, DOI 10.1111/ced.14029 Liu N, 2016, ENERG POLICY, V91, P220, DOI 10.1016/j.enpol.2016.01.020 Loucks J., 2019, Future in the balance? How countries are pursuing an AI advantage McCarthy J., 1955, A proposal for the Dartmouth Summer Research Project on Artificial Intelligence Mitomo H., 2020, TELECOMMUNICATIONS P, P181, DOI [10.1007/978-981-15-1033-5_10, DOI 10.1007/978-981-15-1033-5_10] Mogoutov A, 2007, RES POLICY, V36, P893, DOI 10.1016/j.respol.2007.02.005 Molinari JF, 2008, SCIENTOMETRICS, V75, P163, DOI 10.1007/s11192-007-1853-2 Mongeon P, 2016, SCIENTOMETRICS, V106, P213, DOI 10.1007/s11192-015-1765-5 Morabit Yasmina EL, 2019, Journal of Information and Communication Convergence Engineering, V17, P21 Morgan Forrest E., 2020, Military applications of artificial intelligence: Ethical concerns in an uncertain world Report, DOI [10.7249/RR3139-1, DOI 10.7249/RR3139-1] Muñoz-Écija T, 2019, J INFORMETR, V13, DOI 10.1016/j.joi.2019.100976 OECD, 2018, OECD Going Digital Policy Note Pei Wang, 2019, Journal of Artificial General Intelligence, V10, P1, DOI 10.2478/jagi-2019-0002 Phelan TJ, 1999, SCIENTOMETRICS, V45, P117, DOI 10.1007/BF02458472 Roberts H, 2021, AI SOC, V36, P59, DOI 10.1007/s00146-020-00992-2 Rotolo D, 2015, RES POLICY, V44, P1827, DOI 10.1016/j.respol.2015.06.006 Shapira P, 2017, SCIENTOMETRICS, V112, P1439, DOI 10.1007/s11192-017-2452-5 Sombattheera C., 2012, MULTIDISCIPLINARY TR, DOI [10.1007/978-3-319-69456-6, DOI 10.1007/978-3-319-69456-6] Tran BX, 2019, INT J ENV RES PUB HE, V16, DOI 10.3390/ijerph16122150 Uria-Recio P, 2019, DATA SCI van Raan A, 2019, SPRINGER HBK, P237, DOI 10.1007/978-3-030-02511-3_10 Walch K., 2020, FORBES Wang J, 2011, SCIENTOMETRICS, V87, P563, DOI 10.1007/s11192-011-0362-5 Wang ZN, 2019, J NANOPART RES, V21, DOI 10.1007/s11051-019-4627-x Webb Amy., 2019, The big nine: How the tech titans their thinking machines could warp humanity West D.M., 2018, How artificial intelligence is changing the world WIPO, 2019, WIPO Technology Trends 2019: Artificial Intelligence Zhang XY, 2019, INT J ADV MANUF TECH, V101, P2367, DOI 10.1007/s00170-018-3106-3 Zhou X, 2019, SCIENTOMETRICS, V121, P699, DOI 10.1007/s11192-019-03218-5 Zitt M, 2006, INFORM PROCESS MANAG, V42, P1513, DOI 10.1016/j.ipm.2006.03.016 NR 62 TC 25 Z9 28 U1 33 U2 229 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0138-9130 EI 1588-2861 J9 SCIENTOMETRICS JI Scientometrics PD APR PY 2021 VL 126 IS 4 BP 3153 EP 3192 DI 10.1007/s11192-021-03868-4 EA FEB 2021 PG 40 WC Computer Science, Interdisciplinary Applications; Information Science & Library Science WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Computer Science; Information Science & Library Science GA RK9JQ UT WOS:000621730600002 PM 34720254 OA Green Published, hybrid DA 2024-09-05 ER PT J AU Jia, FL Sun, DE Looi, CK AF Jia, Fenglin Sun, Daner Looi, Chee-kit TI Artificial Intelligence in Science Education (2013-2023): Research Trends in Ten Years SO JOURNAL OF SCIENCE EDUCATION AND TECHNOLOGY LA English DT Article DE Bibliometric literature review; Artificial Intelligence; Science Education; Primary and Secondary Schools ID SCHOOL STUDENTS; COMPUTATIONAL THINKING; DESIGN; SYSTEM; GAMIFICATION; TECHNOLOGIES; GENERATION; FEEDBACK AB The use of artificial intelligence has played an important role in science teaching and learning. The purpose of this study was to fill a gap in the current review of research on AI in science education (AISE) in the early stage of education by systematically reviewing existing research in this area. This systematic review examined the trends and research foci of AI in the science of early stages of education. This review study employed a bibliometric analysis and content analysis to examine the characteristics of 76 studies on Artificial Intelligence in Science Education (AISE) indexed in Web of Science and Scopus from 2013 to 2023. The analytical tool CiteSpace was utilized for the analysis. The study aimed to provide an overview of the development level of AISE and identify major research trends, keywords, research themes, high-impact journals, institutions, countries/regions, and the impact of AISE studies. The results, based on econometric analyses, indicate that AISE has experienced increasing influence over the past decade. Cluster and timeline analyses of the retrieved keywords revealed that AI in primary and secondary science education can be categorized into 11 main themes, and the chronology of their emergence was identified. Among the most prolific journals in this field are the International Journal of Social Robotics, Educational Technology Research and Development, and others. Furthermore, the analysis identified that institutions and countries/regions located primarily in the United States have made the most significant contributions to AISE research. To explore the learning outcomes and overall impact of AI technologies on learners in primary and secondary schools, content analysis was conducted, identifying five main categories of technology applications. This study provides valuable insights into the advancements and implications of AI in science education at the primary and secondary levels. C1 [Jia, Fenglin; Looi, Chee-kit] Educ Univ Hong Kong, Dept Curriculum & Instruct, Hong Kong, Peoples R China. [Sun, Daner] Educ Univ Hong Kong, Dept Math & Informat Technol, Hong Kong, Peoples R China. C3 Education University of Hong Kong (EdUHK); Education University of Hong Kong (EdUHK) RP Sun, DE (corresponding author), Educ Univ Hong Kong, Dept Math & Informat Technol, Hong Kong, Peoples R China. EM dsun@eduhk.hk RI SUN, Daner/AAL-2567-2020; jia, fenglin/HNP-9112-2023; Looi, Chee-Kit/ABG-9043-2021; Jia, fenglin/HZI-8900-2023 OI SUN, Daner/0000-0002-9813-6306; Jia, fenglin/0000-0002-6233-9873; Looi, Chee-Kit/0000-0001-9905-2713 CR Akgun Selin, 2022, AI Ethics, V2, P431, DOI 10.1007/s43681-021-00096-7 Aktoprak A, 2022, THINK SKILLS CREAT, V44, DOI 10.1016/j.tsc.2022.101029 Alam A., 2022, 2022 INT C SUST COMP, P69, DOI 10.1109/icscds53736.2022.9760932 Aldabe I, 2014, IEEE T LEARN TECHNOL, V7, P375, DOI 10.1109/TLT.2014.2355831 Ali SS, 2021, IEEE T EMERG TOP COM, V9, P612, DOI 10.1109/TETC.2019.2915288 Almeda M., 2020, J. Educ. Data Mining, V12, P33, DOI DOI 10.5281/ZENODO.4008054 Amo D, 2021, SENSORS-BASEL, V21, DOI 10.3390/s21010153 Avsec S, 2014, J SCI EDUC TECHNOL, V23, P692, DOI 10.1007/s10956-014-9496-6 Baidoo-Anu D., 2023, 4337484 SSRN Bernstein D, 2022, ETR&D-EDUC TECH RES, V70, P119, DOI 10.1007/s11423-021-10061-0 Bertalanffy L.V., 1968, AKTEN 14 INTERNATION, V2, P335, DOI DOI 10.5840/WCP1419682120 Bertram C., 2021, Computers and Education: Artificial Intelligence, DOI [10.1016/j.caeai.2021.100038, DOI 10.1016/J.CAEAI.2021.100038] Biehler R, 2021, TEACH STAT, V43, pS133, DOI 10.1111/test.12279 Casey JE, 2018, EDUC INF TECHNOL, V23, P1531, DOI 10.1007/s10639-017-9677-z Çetinkaya A, 2020, ENG SCI TECHNOL, V23, P1301, DOI 10.1016/j.jestch.2020.07.005 Chen CM, 2017, J DATA INFO SCI, V2, P1, DOI 10.1515/jdis-2017-0006 Chen CM, 2012, EXPERT OPIN BIOL TH, V12, P593, DOI 10.1517/14712598.2012.674507 Chen CM, 2004, P NATL ACAD SCI USA, V101, P5303, DOI 10.1073/pnas.0307513100 Chen D., 1993, Journal of Science Education and Technology, V2, P447, DOI [DOI 10.1007/BF00694427, 10.1007/BF00694427] Chen GH, 2017, COMPUT EDUC, V109, P162, DOI 10.1016/j.compedu.2017.03.001 Chen JY, 2020, J MED INTERNET RES, V22, DOI 10.2196/21476 Chen X., 2019, COMMUNICATIONS COMPU, V1072, DOI 10 Chen Y., 2015, Scientific Research, V33, P242, DOI [10.16192/j.cnki.1003-2053.2015.02.009, DOI 10.16192/J.CNKI.1003-2053.2015.02.009] Cohen L., 2018, RES METHODS ED, V8th, DOI DOI 10.4324/9781315456539 Crawford M., 1974, ROMAN REPUBLICAN COI Cutumisu M, 2017, INT J ARTIF INTELL E, V27, P419, DOI 10.1007/s40593-016-0137-5 Dede C, 2017, EDUC TECHNOL SOC, V20, P166 Dettweiler U, 2017, FRONT PSYCHOL, V8, DOI 10.3389/fpsyg.2017.02235 Di Eugenio B., 2021, INTELLIGENT SUPPORT Dobrev D., 2012, PREPRINT Dolenc K, 2015, J BALT SCI EDUC, V14, P162 Dolenc K, 2015, COMPUT EDUC, V82, P354, DOI 10.1016/j.compedu.2014.12.010 Drack M, 2015, INT J GEN SYST, V44, P523, DOI 10.1080/03081079.2014.1000642 Drigas A. S., 2013, Revised Selected Papers, V4, P385 Eaton E., 2018, AI Matters, V3, P23 Gadanidis G, 2017, INT J INF LEARN TECH, V34, P133, DOI 10.1108/IJILT-09-2016-0048 Galvan JL., 2017, WRITING LIT REV GUID, V7th Gkiolnta E, 2023, INT J DEV DISABIL, V69, P424, DOI 10.1080/20473869.2023.2194568 Körpeoglu SG, 2023, EDUC INF TECHNOL, V28, P2791, DOI 10.1007/s10639-022-11216-z Gomoll A, 2018, INT J SOC ROBOT, V10, P309, DOI 10.1007/s12369-017-0454-3 Hagger MS, 2018, LEARN INDIVID DIFFER, V67, P232, DOI 10.1016/j.lindif.2018.09.002 Heintz F, 2021, KUNSTL INTELL, V35, P233, DOI 10.1007/s13218-021-00730-w Holmes W, 2024, INT J ARTIF INTELL E, V34, P144, DOI 10.1007/s40593-023-00364-z Hoorn JF, 2021, ROBOTICS, V10, DOI 10.3390/robotics10010016 Hwang G.-J., 2020, Computers and Education: Artificial Intelligence, V1, P100001, DOI [DOI 10.1016/J.CAEAI.2020.100001, 10.1016/j.caeai.2020.100001] Jang J, 2022, SUSTAINABILITY-BASEL, V14, DOI 10.3390/su142215178 Jarvela S, 2023, COMPUT HUM BEHAV, V144, DOI 10.1016/j.chb.2023.107737 Jia K, 2022, FRONT PSYCHOL, V13, DOI 10.3389/fpsyg.2022.795039 Jiang SY, 2023, RES SCI EDUC, V53, P425, DOI 10.1007/s11165-022-10061-x Julià C, 2016, INT J TECHNOL DES ED, V26, P185, DOI 10.1007/s10798-015-9307-2 Kandlhofer M, 2021, KUNSTL INTELL, V35, P221, DOI 10.1007/s13218-021-00716-8 Kim J, 2020, INT J HUM-COMPUT INT, V36, P1902, DOI 10.1080/10447318.2020.1801227 Kitto H. D. F., 2014, FORM MEANING DRAMA S Kok JN., 2009, ARTIF INTELL, V1, P1 Kong FW, 2020, INT J EMERG TECHNOL, V15, P238, DOI 10.3991/ijet.v15i13.15351 Kong S-C., 2021, Computers in Education: Artificial Intelligence, V2, DOI DOI 10.1016/J.CAEAI.2021.100026 Lee HS, 2021, J SCI EDUC TECHNOL, V30, P168, DOI 10.1007/s10956-020-09889-7 Lehman J., 2018, EURASIA J MATH SCI T, V14, P1, DOI DOI 10.29333/EJMSTE/94227 Li E, 2022, LECT NOTES ARTIF INT, V13336, P69, DOI 10.1007/978-3-031-05643-7_5 Liang JC, 2023, INTERACT LEARN ENVIR, V31, P4270, DOI 10.1080/10494820.2021.1958348 Liberati A, 2009, BMJ-BRIT MED J, V339, DOI [10.1016/j.ijsu.2010.02.007, 10.1136/bmj.b2700, 10.1136/bmj.b2535, 10.1186/2046-4053-4-1, 10.1371/journal.pmed.1000097, 10.1136/bmj.i4086, 10.1016/j.ijsu.2010.07.299] Liu TC, 2022, EDUC INF TECHNOL, V27, P6295, DOI 10.1007/s10639-021-10851-2 Lu WY, 2023, J LEARN ANAL, V10, P168, DOI 10.18608/jla.2023.7681 Luo FY, 2020, COMPUT EDUC, V146, DOI 10.1016/j.compedu.2019.103759 Magana AJ, 2019, J SCI EDUC TECHNOL, V28, P382, DOI 10.1007/s10956-019-09775-x Malakul S, 2023, SMART LEARN ENVIRON, V10, DOI 10.1186/s40561-023-00224-2 Martí-Parreño J, 2016, J COMPUT ASSIST LEAR, V32, P663, DOI 10.1111/jcal.12161 Martins RM, 2024, INT J ARTIF INTELL E, V34, P185, DOI 10.1007/s40593-022-00325-y Mazov NA, 2020, SCI TECH INF PROCESS, V47, P221, DOI 10.3103/S0147688220040036 Min W, 2020, IEEE T LEARN TECHNOL, V13, P312, DOI 10.1109/TLT.2019.2922356 Nemiro J, 2017, J CREATIVE BEHAV, V51, P70, DOI 10.1002/jocb.87 Nguyen A, 2023, BRIT J EDUC TECHNOL, V54, P293, DOI 10.1111/bjet.13280 Niazi MA, 2016, COMPLEX ADAPT SYST M, V4, DOI 10.1186/s40294-016-0036-5 Noh J, 2020, ETR&D-EDUC TECH RES, V68, P463, DOI 10.1007/s11423-019-09708-w Ouyang F, 2022, EDUC INF TECHNOL, V27, P7893, DOI 10.1007/s10639-022-10925-9 Park H, 2020, ONLINE LEARN, V24, P225, DOI 10.24059/olj.v24i2.2001 Pedro F., 2019, ARTIFICIAL INTELLIGE Pei B., 2021, INTERACT LEARN ENVIR, P1 Pei Wang, 2019, Journal of Artificial General Intelligence, V10, P1, DOI 10.2478/jagi-2019-0002 Perrakis A, 2021, EMBO REP, V22, DOI 10.15252/embr.202154046 Petersen GB., 2021, Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems, P1, DOI DOI 10.1145/3411764.3445760 Pokrivcakova S, 2019, J LANG CULT EDUC, V7, P135, DOI 10.2478/jolace-2019-0025 Polyak ST, 2017, FRONT PSYCHOL, V8, DOI 10.3389/fpsyg.2017.02029 Pou AV, 2022, SENSORS-BASEL, V22, DOI 10.3390/s22103746 Pritchard Alan., 1969, STAT BIBLIO INTERIM Rapoport A., 1986, GEN SYSTEM THEORY ES Rawat KS, 2021, COMPUT APPL ENG EDUC, V29, P1324, DOI 10.1002/cae.22388 Rosi A, 2016, PUBLIC HEALTH, V140, P50, DOI 10.1016/j.puhe.2016.08.021 Rosvall M, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0008694 Sabharwal A., 2011, ARTIF INTELL Saha SK, 2022, INTERACT LEARN ENVIR, V30, P215, DOI 10.1080/10494820.2019.1651743 Salas-Pilco SZ, 2020, BRIT J EDUC TECHNOL, V51, P1808, DOI 10.1111/bjet.12984 Segedy JR, 2013, ETR&D-EDUC TECH RES, V61, P71, DOI 10.1007/s11423-012-9275-0 Shiomi M, 2015, INT J SOC ROBOT, V7, P641, DOI 10.1007/s12369-015-0303-1 SIMMONS AB, 1988, IEEE J OCEANIC ENG, V13, P14, DOI 10.1109/48.551 Sisman B, 2021, INT J SOC ROBOT, V13, P379, DOI 10.1007/s12369-020-00646-9 Sisman B, 2019, INTERACT LEARN ENVIR, V27, P377, DOI 10.1080/10494820.2018.1474234 Small H, 1999, J AM SOC INFORM SCI, V50, P799, DOI 10.1002/(SICI)1097-4571(1999)50:9<799::AID-ASI9>3.0.CO;2-G Song P, 2020, ASIA PAC EDUC REV, V21, P473, DOI 10.1007/s12564-020-09640-2 Su J., 2022, Computers and Education: Artificial Intelligence, V3, DOI DOI 10.1016/J.CAEAI.2022.100072 Su J., 2023, Comput. Educ, V4, DOI DOI 10.1016/J.CAEAI.2023.100124 Tan D Y., 2021, Computers and Education. Artificial Intelligence, V2, DOI DOI 10.1016/J.CAEAI.2021.100032 Tang L, 2023, DIGIT HEALTH, V9, DOI 10.1177/20552076231186064 Tedre M, 2021, IEEE ACCESS, V9, P110558, DOI 10.1109/ACCESS.2021.3097962 Topal AD, 2021, EDUC INF TECHNOL, V26, P6241, DOI 10.1007/s10639-021-10627-8 Touretzky D, 2019, AAAI CONF ARTIF INTE, P9795 Trinidad M, 2021, IEEE ACCESS, V9, P46505, DOI 10.1109/ACCESS.2021.3063986 Ücgül M, 2022, INT J TECHNOL DES ED, V32, P1679, DOI 10.1007/s10798-021-09673-7 von Bertalanffy, 1950, British Journal for the Philosophy of Science, V1, P134, DOI [DOI 10.1093/BJPS/I.2.134, 10.1093/bjps/L2.134] Ward W, 2013, J EDUC PSYCHOL, V105, P1115, DOI 10.1037/a0031589 Witherspoon EB, 2018, J COMPUT ASSIST LEAR, V34, P115, DOI 10.1111/jcal.12219 Witherspoon EB, 2017, ACM T COMPUT EDUC, V18, DOI 10.1145/3104982 Xie H, 2019, COMPUT EDUC, V140, DOI 10.1016/j.compedu.2019.103599 Xu WQ, 2022, INT J STEM EDUC, V9, DOI 10.1186/s40594-022-00377-5 Xu YK, 2022, FRONT PSYCHOL, V13, DOI 10.3389/fpsyg.2022.926301 Yin PY, 2016, UNIVERSAL ACCESS INF, V15, P315, DOI 10.1007/s10209-014-0390-z Yueh HP, 2020, BRIT J EDUC TECHNOL, V51, P1884, DOI 10.1111/bjet.13016 Zawacki-Richter O, 2019, INT J EDUC TECHNOL H, V16, DOI 10.1186/s41239-019-0171-0 Zhai XM, 2022, J RES SCI TEACH, V59, P1765, DOI 10.1002/tea.21773 Zou D, 2022, EDUC INF TECHNOL, V27, P10585, DOI 10.1007/s10639-022-10991-z Zulic H., 2019, INSAM J CONT MUSIC A, V1, P100, DOI DOI 10.51191/ISSN.2637-1898.2019.2.2.100 Zupic I, 2015, ORGAN RES METHODS, V18, P429, DOI 10.1177/1094428114562629 NR 122 TC 8 Z9 8 U1 148 U2 268 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 1059-0145 EI 1573-1839 J9 J SCI EDUC TECHNOL JI J. Sci. Educ. Technol. PD FEB PY 2024 VL 33 IS 1 BP 94 EP 117 DI 10.1007/s10956-023-10077-6 EA OCT 2023 PG 24 WC Education & Educational Research; Education, Scientific Disciplines WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Education & Educational Research GA FV0J7 UT WOS:001079844000001 DA 2024-09-05 ER PT J AU Mutz, R Daniel, HD AF Mutz, Ruediger Daniel, Hans-Dieter TI The generalized propensity score methodology for estimating unbiased journal impact factors SO SCIENTOMETRICS LA English DT Article DE Journal impact factor; Causal inference; Generalized propensity score; Rubin Causal Model ID CAUSAL INFERENCE; SUBCLASSIFICATION; BIAS; PUBLICATION; SCIENCE; DESIGN AB The journal impact factor (JIF) proposed by Garfield in the year 1955 is one of the most commonly used and prominent citation-based indicators of the performance and significance of a scientific journal. The JIF is simple, reasonable, clearly defined, and comparable over time and, what is more, can be easily calculated from data provided by Thomson Reuters, but at the expense of serious technical and methodological flaws. The paper discusses one of the core problems: The JIF is affected by bias factors (e.g., document type) that have nothing to do with the prestige or quality of a journal. For solving this problem, we suggest using the generalized propensity score methodology based on the Rubin Causal Model. Citation data for papers of all journals in the ISI subject category "Microscopy" (Journal Citation Report) are used to illustrate the proposal. C1 [Mutz, Ruediger; Daniel, Hans-Dieter] Swiss Fed Inst Technol, CH-8001 Zurich, Switzerland. [Daniel, Hans-Dieter] Univ Zurich, Evaluat Off, CH-8001 Zurich, Switzerland. C3 Swiss Federal Institutes of Technology Domain; ETH Zurich; University of Zurich RP Mutz, R (corresponding author), Swiss Fed Inst Technol, Muehlegasse 21, CH-8001 Zurich, Switzerland. EM mutz@gess.ethz.ch RI Mutz, Ruediger/A-2226-2009; Mutz, Rüdiger/AAA-9629-2021; Daniel, Hans-Dieter/A-2419-2013 OI Mutz, Rüdiger/0000-0003-3345-6090; CR Allison P. D., 2012, Logistic regression using SAS [Anonymous], J ROYAL STAT SOC A [Anonymous], J INFOMETRI IN PRESS [Anonymous], 2009, Users Guide Version 9.2 Bornmann L., 2008, ETHICS SCI ENV POLIT, V8, P93, DOI [10.3354/esep00084, DOI 10.3354/ESEP00084] BRAUN T, 1989, SCIENTOMETRICS, V15, P325, DOI 10.1007/BF02017057 COCHRAN WG, 1968, BIOMETRICS, V24, P295, DOI 10.2307/2528036 Fan X., 2001, SAS MONTE CARLO STUD Feng P, 2012, STAT MED, V31, P681, DOI 10.1002/sim.4168 Garfield E, 1999, CAN MED ASSOC J, V161, P979 GARFIELD E, 1955, SCIENCE, V122, P108, DOI 10.1126/science.122.3159.108 Garfield E, 2006, JAMA-J AM MED ASSOC, V295, P90, DOI 10.1001/jama.295.1.90 Glanzel W, 2002, SCIENTOMETRICS, V53, P171, DOI 10.1023/A:1014848323806 Guo S., 2010, Propensity Score Analysis. Statistical Methods and Applications Hirano K., 2004, Applied Bayesian Modeling and Causal Inference from Incomplete-Data Perspectives, V226164, P73 HOLLAND PW, 1986, J AM STAT ASSOC, V81, P945, DOI 10.2307/2289064 Imai K, 2004, J AM STAT ASSOC, V99, P854, DOI 10.1198/016214504000001187 Imbens GW, 2000, BIOMETRIKA, V87, P706, DOI 10.1093/biomet/87.3.706 Leydesdorff L, 2011, J AM SOC INF SCI TEC, V62, P217, DOI 10.1002/asi.21450 Lu B, 2011, AM STAT, V65, P21, DOI 10.1198/tast.2011.08294 MOED HF, 1995, J AM SOC INFORM SCI, V46, P461, DOI 10.1002/(SICI)1097-4571(199507)46:6<461::AID-ASI5>3.0.CO;2-G Moed HF, 1999, SCIENTOMETRICS, V46, P575, DOI 10.1007/BF02459613 Neuhaus C, 2009, J AM SOC INF SCI TEC, V60, P176, DOI 10.1002/asi.20960 Rosenbaum PR, 2010, SPRINGER SER STAT, P1, DOI 10.1007/978-1-4419-1213-8 ROSENBAUM PR, 1984, J AM STAT ASSOC, V79, P516, DOI 10.2307/2288398 Rubin D., 1977, J EDUC STAT, V2, P1, DOI DOI 10.3102/10769986002001001 Rubin DB, 2005, J AM STAT ASSOC, V100, P322, DOI 10.1198/016214504000001880 Rubin DB, 1996, BIOMETRICS, V52, P249, DOI 10.2307/2533160 Rubin DB, 2004, J EDUC BEHAV STAT, V29, P343, DOI 10.3102/10769986029003343 Rubin DB, 2006, MATCHED SAMPLING FOR CAUSAL EFFECTS, P1, DOI 10.2277/ 0521674360 RUBIN DB, 1974, J EDUC PSYCHOL, V66, P688, DOI 10.1037/h0037350 Rubin DB, 2007, STAT MED, V26, P20, DOI 10.1002/sim.2739 Spreeuwenberg MD, 2010, MED CARE, V48, P166, DOI 10.1097/MLR.0b013e3181c1328f TODOROV R, 1988, J INFORM SCI, V14, P47, DOI 10.1177/016555158801400106 Vanclay JK, 2012, SCIENTOMETRICS, V92, P211, DOI 10.1007/s11192-011-0561-0 Wang JX, 2001, PHARMACOEPIDEM DR S, V10, P105, DOI 10.1002/pds.572 Zanutto E, 2005, J EDUC BEHAV STAT, V30, P59, DOI 10.3102/10769986030001059 NR 37 TC 13 Z9 14 U1 1 U2 30 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0138-9130 EI 1588-2861 J9 SCIENTOMETRICS JI Scientometrics PD AUG PY 2012 VL 92 IS 2 SI SI BP 377 EP 390 DI 10.1007/s11192-012-0670-4 PG 14 WC Computer Science, Interdisciplinary Applications; Information Science & Library Science WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Computer Science; Information Science & Library Science GA 975YF UT WOS:000306547000015 OA Green Published DA 2024-09-05 ER PT J AU Hoseini, FF Mansouri, A AF Hoseini, Fatemeh Fadavi Mansouri, Ali TI The Role of Articles in Science-Technology Relationship: A Topic Analysis of Non-patent Literature (NPL) References SO SERIALS REVIEW LA English DT Article DE Citation analysis; nanotechnology; non-patent literature; patents; topic modeling ID PATENT CITATION ANALYSIS; INDUSTRY; INNOVATION; PUBLICATIONS; NANOTECHNOLOGY; DOCUMENTS; LINKAGES; SEARCH; REAL AB Patents with non-patent literature (NPL) references indicate how the link between science and technology interact. Using topic modeling, this paper investigated the thematic relationship between patents and their cited articles in the field of Nanotechnology. For this purpose, patents in the field of nanotechnology (IPC Class: B82) were obtained from the United States Patent and Trademark Office from 1985 to 2019. Then, NPL references listed in "Other References" section of the patents was extracted and abstract of the NPL references was retrieved from Scopus database. R software, topic modeling, and Latent Dirichlet Allocation algorithm were used to analyze the data. Results showed that most of the subclasses in Nanotechnology use few NPL references and are more dependent on patents. In total, NPL references account for only 36% of patent citations. The topics of the NPL references in this field (nanotechnology) belonged to six categories: Physics, Electricity, Chemistry, Cellular and Molecular Biology, Medicine, and Nanotechnology. Consequently, it seems that nanotechnology patents are more technology-driven, and a medium to low relationship exists between science and nanotechnology. The topic modeling of NPL references uncovered that nanotechnology patents have been more influenced by non-nano scientific. C1 [Hoseini, Fatemeh Fadavi; Mansouri, Ali] Univ Isfahan, Dept Knowledge & Informat Sci, Esfahan, Iran. C3 University of Isfahan RP Mansouri, A (corresponding author), Univ Isfahan, Dept Knowledge & Informat Sci, Esfahan, Iran. EM a.mansouri@edu.ui.ac.ir RI Mansouri, Ali/HKN-4172-2023; Mansouri, Ali/ABH-9666-2020 OI Mansouri, Ali/0000-0003-4047-2697; Mansouri, Ali/0000-0003-4047-2697; Fadavi Hoseini, Fateme/0000-0001-8371-8939 CR Akhtar N, 2019, ADV INTELL SYST, V839, P21, DOI 10.1007/978-981-13-1274-8_2 Alcácer J, 2009, RES POLICY, V38, P415, DOI 10.1016/j.respol.2008.12.001 [Anonymous], 1995, Measurement of Scientific and Technological Activities: Manual on the Measurement of Human Resources Devoted to ST - Canberra Manual, DOI DOI 10.1787/9789264065581-EN Bayda S, 2020, MOLECULES, V25, DOI 10.3390/molecules25010112 Bittermann A, 2018, Z PSYCHOL, V226, P3, DOI 10.1027/2151-2604/a000318 Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993 Braun T, 1997, SCIENTOMETRICS, V38, P321, DOI 10.1007/BF02457417 Breschi S, 2007, ECON INNOV NEW TECH, V16, P101, DOI 10.1080/10438590600982830 BROOKS H, 1994, RES POLICY, V23, P477, DOI 10.1016/0048-7333(94)01001-3 Callaert J, 2006, SCIENTOMETRICS, V69, P3, DOI 10.1007/s11192-006-0135-8 Carayannis Elias G., 2010, International Journal of Social Ecology and Sustainable Development, V1, P41, DOI 10.4018/jsesd.2010010105 Cassiman B, 2008, IND CORP CHANGE, V17, P611, DOI 10.1093/icc/dtn023 Chang YW, 2017, ELECTRON LIBR, V35, P152, DOI 10.1108/EL-10-2015-0195 Chen DZ, 2007, SCIENTOMETRICS, V71, P101, DOI 10.1007/s11192-007-1655-6 Cho TS, 2011, SCIENTOMETRICS, V89, P795, DOI 10.1007/s11192-011-0457-z Du J, 2019, J INFORMETR, V13, P132, DOI 10.1016/j.joi.2018.12.004 Durack K. T., 2004, World Patent Information, V26, P131, DOI 10.1016/j.wpi.2003.11.001 Etzkowitz H, 2000, RES POLICY, V29, P109, DOI 10.1016/S0048-7333(99)00055-4 Etzkowitz H, 2003, SOC SCI INFORM, V42, P293, DOI 10.1177/05390184030423002 Guerrero-Bote VP, 2019, PROF INFORM, V28, DOI 10.3145/epi.2019.jul.01 Hall BH, 2005, RAND J ECON, V36, P16 Han F, 2018, SCIENTOMETRICS, V116, P767, DOI 10.1007/s11192-018-2774-y Harhoff D, 2003, RES POLICY, V32, P1343, DOI 10.1016/S0048-7333(02)00124-5 Hullmann A, 2003, SCIENTOMETRICS, V58, P507, DOI 10.1023/B:SCIE.0000006877.45467.a7 Jaffe AB, 2000, AM ECON REV, V90, P215, DOI 10.1257/aer.90.2.215 Jefferson OA, 2018, NAT BIOTECHNOL, V36, P31, DOI 10.1038/nbt.4049 Karki M.M.S., 1997, WORLD PAT INF, V19, P269, DOI DOI 10.1016/S0172-2190(97)00033-1 Ke Q, 2018, J INFORMETR, V12, P706, DOI 10.1016/j.joi.2018.06.010 Kim J, 2016, SUSTAINABILITY-BASEL, V8, DOI 10.3390/su8050474 Kosinski M, 2016, PSYCHOL METHODS, V21, P493, DOI 10.1037/met0000105 Kumari R, 2021, J INF SCI, V47, P658, DOI 10.1177/0165551519887878 Lee C, 2015, TECHNOL FORECAST SOC, V90, P355, DOI 10.1016/j.techfore.2014.05.010 Lee S, 2012, COMPUT IND ENG, V63, P564, DOI 10.1016/j.cie.2011.12.002 Leydesdorff L, 2004, J AM SOC INF SCI TEC, V55, P991, DOI 10.1002/asi.20045 Leydesdorff L, 2012, J KNOWL ECON, V3, P25, DOI 10.1007/s13132-011-0049-4 Li R, 2014, J ASSOC INF SCI TECH, V65, P1007, DOI 10.1002/asi.23054 Lin JY, 2020, SCIENTOMETRICS, V124, P1, DOI 10.1007/s11192-020-03436-2 Lu YH, 2020, SCIENTOMETRICS, V123, P813, DOI 10.1007/s11192-020-03385-w Maier D, 2018, COMMUN METHODS MEAS, V12, P93, DOI 10.1080/19312458.2018.1430754 Meyer M, 2000, SCIENTOMETRICS, V48, P151, DOI 10.1023/A:1005692621105 Michel J, 2001, SCIENTOMETRICS, V51, P185, DOI 10.1023/A:1010577030871 Nakagawa K, 2017, TECHNOL INNOV MANAG, V7, P38 Narin F., 2000, TECH LINE BACKGROUND OECD, 2002, Frascati Manual 2002: Proposed Standard Practice for Surveys on Research and Experimental Development, DOI DOI 10.1787/9789955682684-LT OECD Eurostat, 2005, The Measurement of Scientific and Technological Activities, Proposed Guidelines for Collecting and Interpreting Technological Innovation Data, V3rd, DOI [10.1787/9789264013100-en, DOI 10.1787/9789264013100-EN] Ponweiser M., 2012, LATENT DIRICHLET ALL, P2 PRICE DJD, 1965, TECHNOL CULT, V6, P553 Qu Z, 2020, SCIENTOMETRICS, V124, P867, DOI 10.1007/s11192-020-03518-1 Rip A., 1992, TECHNOLOGICAL DEV SC, P231 SdA P, 2017, RAI REV ADM INOVACAO, V14, P301, DOI [10.1016/j.rai.2017.07.006, DOI 10.1016/J.RAI.2017.07.006] Smith D, 2014, TECHNOL INNOV MANAG, P4 Smojver V, 2021, J KNOWL MANAG, V25, P433, DOI 10.1108/JKM-01-2020-0079 Sun XL, 2018, SCIENTOMETRICS, V116, P1735, DOI 10.1007/s11192-018-2836-1 Suominen A, 2017, TECHNOL FORECAST SOC, V115, P131, DOI 10.1016/j.techfore.2016.09.028 Tijssen RJW, 2001, RES POLICY, V30, P35, DOI 10.1016/S0048-7333(99)00080-3 Uzun A, 2006, SCIENTOMETRICS, V66, P551, DOI 10.1007/s11192-006-0040-1 Verbeek A, 2002, SCIENTOMETRICS, V54, P399, DOI 10.1023/A:1016034516731 Watanabe C, 2001, TECHNOVATION, V21, P783, DOI 10.1016/S0166-4972(01)00025-6 Xu HY, 2017, SCIENTOMETRICS, V111, P773, DOI 10.1007/s11192-017-2290-5 Xu HY, 2020, J INFORMETR, V14, DOI 10.1016/j.joi.2020.101014 Xu S, 2019, J ASSOC INF SCI TECH, V70, P1026, DOI 10.1002/asi.24175 Yau CK, 2014, SCIENTOMETRICS, V100, P767, DOI 10.1007/s11192-014-1321-8 NR 62 TC 3 Z9 3 U1 9 U2 36 PU ROUTLEDGE JOURNALS, TAYLOR & FRANCIS LTD PI ABINGDON PA 2-4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND SN 0098-7913 EI 1879-095X J9 SERIALS REV JI Ser. Rev. PY 2022 VL 48 IS 1-2 SI SI BP 137 EP 150 DI 10.1080/00987913.2022.2127403 EA SEP 2022 PG 14 WC Information Science & Library Science WE Social Science Citation Index (SSCI) SC Information Science & Library Science GA 8M2CW UT WOS:000863366700001 DA 2024-09-05 ER PT C AU Ahmad, A Bukhari, F Malik, K AF Ahmad, Asma Bukhari, Faisal Malik, Kamran GP IEEE TI Predicting Article Sentiment Analysis Impact in Twitter: A Case Study in the Field of Information Sciences SO 4TH INTERNATIONAL CONFERENCE ON INNOVATIVE COMPUTING (IC)2 LA English DT Proceedings Paper CT 4th International Conference on Innovative Computing (ICIC) CY NOV 09-10, 2021 CL Univ Management & Technol, Lahore, PAKISTAN HO Univ Management & Technol DE Altmetrics; Twitter; Sentiment Analysis; Predicting Citations ID RESEARCH EXCELLENCE; SOCIAL MEDIA; ALTMETRICS AB T For a long time, the scholarly impact of a researcher has been evaluated by its citation count. But this method usually takes years to improve its impact rate. Twitter is one of the famous and rapidly growing microblogging platforms used in the context of "Altmetrics" as a solid alternative scale to identify quality research work. This research test whether Twitter sentiment is helpful to identify quality research work and there is a correlation between citation count and Altmetrics. We classified a small dataset of 6613 tweets into neutral, positive, and negative in information sciences. Our findings show that most of the sentiments of the tweets are neutral because of irrelevant discussion about the articles. Twitter comments do not provide important information about quality research papers except in exceptional cases. We cannot use tweets as a solid indicator to identify quality research work in the field of Information Sciences. C1 [Ahmad, Asma; Bukhari, Faisal; Malik, Kamran] Univ Punjab, Fac Comp & Informat Technol, Dept Comp Sci, Lahore, Pakistan. C3 University of Punjab RP Ahmad, A (corresponding author), Univ Punjab, Fac Comp & Informat Technol, Dept Comp Sci, Lahore, Pakistan. EM mscsf17m518@pucit.edu.pk; faisal.bukhari@pucit.edu.pk; kamran.amlik@pucit.edu.pk CR Alhoori H, 2014, ACM-IEEE J CONF DIG, P375, DOI 10.1109/JCDL.2014.6970193 [Anonymous], FETCH DET ART LEV ME [Anonymous], 2011, ALTMETRICS MANIFESTO Bonaccorsi A, 2017, J INFORMETR, V11, P435, DOI 10.1016/j.joi.2017.02.003 Bonaccorsi A, 2017, SCIENTOMETRICS, V110, P217, DOI 10.1007/s11192-016-2180-2 Bornmann L, 2019, J INFORMETR, V13, P325, DOI 10.1016/j.joi.2019.01.008 Didegah F, 2018, J ASSOC INF SCI TECH, V69, P832, DOI 10.1002/asi.23934 Emadi M, 2020, J INF SCI, V46, P226, DOI 10.1177/0165551519828627 Erdt M, 2016, SCIENTOMETRICS, V109, P1117, DOI 10.1007/s11192-016-2077-0 Erdt Mojisola, 2019, SCIENTOMETRICS, V109, P1 Eysenbach G, 2011, J MED INTERNET RES, V13, DOI 10.2196/jmir.2012 Fenner M, 2013, PLOS BIOL, V11, DOI 10.1371/journal.pbio.1001687 Friedrich N., 2015, DO TWEETS SCI ARTICL Friedrich N, 2015, PRO INT CONF SCI INF, P107 Haddawy P, 2017, J INFORMETR, V11, P389, DOI 10.1016/j.joi.2017.02.004 Hallgren Kevin A, 2012, Tutor Quant Methods Psychol, V8, P23 Hassan SU, 2012, SCIENTOMETRICS, V91, P1035, DOI 10.1007/s11192-012-0665-1 Haustein S, 2019, SPRINGER HBK, P729, DOI 10.1007/978-3-030-02511-3_28 Haustein S, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0120495 Imran M, 2018, P 23 INT C SCI TECHN Nuzzolese AG, 2019, SCIENTOMETRICS, V118, P539, DOI 10.1007/s11192-018-2988-z Priem J, 2011, METRICS S INFORMETRI Priem J., 2011, METRICS 2011 S INFOR Robinson-Garcia N, 2017, PLOS ONE, V12, DOI 10.1371/journal.pone.0183551 Saeed-Ul Hassan, 2018, SCIENTOMETRICS, V116, P973, DOI 10.1007/s11192-018-2767-x Saeed-Ul-Hassan Uzair Ahmed, 2016, ARXIV PREPRINT ARXIV Safder I, 2019, SCIENTOMETRICS, V119, P257, DOI 10.1007/s11192-019-03025-y Sugimoto CR, 2017, J ASSOC INF SCI TECH, V68, P2037, DOI 10.1002/asi.23833 Thelwall M., 2013, Cybermetrics, V17 Thelwall M., 2013, Tweeting links to academic articles Thelwall M, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0064841 Thelwall M, 2012, J AM SOC INF SCI TEC, V63, P163, DOI 10.1002/asi.21662 Waheed H, 2018, BEHAV INFORM TECHNOL, V37, P941, DOI 10.1080/0144929X.2018.1467967 Wakeling S, 2020, J INF SCI, V46, P82, DOI 10.1177/0165551518819965 Wouters P, 2019, SPRINGER HBK, P687, DOI 10.1007/978-3-030-02511-3_26 Zhu J, 2014, SCIENTOMETRICS, V101, P429, DOI 10.1007/s11192-014-1389-1 NR 36 TC 0 Z9 0 U1 2 U2 3 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA BN 978-1-6654-0091-6 PY 2021 BP 488 EP 493 DI 10.1109/ICIC53490.2021.9692959 PG 6 WC Computer Science, Artificial Intelligence; Computer Science, Software Engineering; Computer Science, Theory & Methods WE Conference Proceedings Citation Index - Science (CPCI-S) SC Computer Science GA BT3XY UT WOS:000824668100067 DA 2024-09-05 ER PT J AU Zhou, ZG Shi, C Hu, MX Liu, YH AF Zhou, Zhiguang Shi, Chen Hu, Miaoxin Liu, Yuhua TI Visual ranking of academic influence via paper citation SO JOURNAL OF VISUAL LANGUAGES AND COMPUTING LA English DT Article DE Visual analysis; Citation network; Word2vec model; PageRank model ID SCHOLARLY DATA; VISUALIZATION; EXPLORATION; PAGERANK AB With rapid growth of digital publishing, a great deal of document datum has been published online for a widely spread of knowledge innovations, which is an important resource for human survival and social development. However, it is a time-consuming and difficult task to conduct a high-efficiency access of valuable papers from an extremely large document database. A set of ranking techniques have been proposed to evaluate the influence of articles by counting the number and quality of citations, such as PageRank. In fact, the influence of an article does not merely depend on the account of citations, which is also highly related to the citation network. In this paper, we propose a visual analytics system for visual ranking of academic influence of articles, based on an insightful analysis of citation network. Firstly, a characterization of articles is established through word2vec model, based on an analogy between the articles in citation network and natural language processing (NPL) terms. Then, the difference between articles in the vectorized space is employed to optimize the PageRank model and achieve desired influence ranking results. A set of meaningful visual encodings are also designed to present the relationships among articles, such as the visualization of high-dimensional vectors and time-varying citation networks. At last, a visualization framework is implemented for visual ranking of academic influence of articles, with the ranking models and visual designs integrated. Case studies based on real-world datasets and interviews with domain experts have demonstrated the effectiveness of our system in the evaluation of academic influence of articles. C1 [Zhou, Zhiguang; Shi, Chen; Hu, Miaoxin; Liu, Yuhua] Zhejiang Univ Finance & Econ, Sch Informat, Hangzhou, Zhejiang, Peoples R China. C3 Zhejiang University of Finance & Economics RP Liu, YH (corresponding author), Zhejiang Univ Finance & Econ, Sch Informat, Hangzhou, Zhejiang, Peoples R China. EM zhgzhou1983@163.com; ChenShi4066@163.com; humiaoxin@zufe.edu.cn; liuyuhua@zufe.edu.cn OI Shi, Chen/0000-0002-4615-4123 FU National Natural Science Foundation of China [61872314, 61802339]; Humanities and Social Sciences Foundation of Ministry of Education in China [18YJC910017]; Natural Science Foundation of Zhejiang Province [LY18F020024]; Open Project Program of the State Key Lab of CADAMP;CG of Zhejiang University [A1806]; First Class Discipline of Zhejiang -A (Zhejiang University of Finance and Economics Statistics) FX The authors would like to thank the anonymous reviewers for their valuable comments. This work was supported by the National Natural Science Foundation of China (61872314, 61802339), the Humanities and Social Sciences Foundation of Ministry of Education in China (18YJC910017), the Natural Science Foundation of Zhejiang Province (LY18F020024), the Open Project Program of the State Key Lab of CAD&CG of Zhejiang University (A1806), and the First Class Discipline of Zhejiang -A (Zhejiang University of Finance and Economics Statistics). CR Abdelaal M., 2017, 2017 INT S BIG DAT V [Anonymous], 2013, P AAAI C ART INT [Anonymous], 2009, Proc. of the 9th SIAM International Conference on Data Mining Berger M, 2017, IEEE T VIS COMPUT GR, V23, P691, DOI 10.1109/TVCG.2016.2598667 Blanco R, 2015, WSDM'15: PROCEEDINGS OF THE EIGHTH ACM INTERNATIONAL CONFERENCE ON WEB SEARCH AND DATA MINING, P179, DOI 10.1145/2684822.2685317 Chen HD, 2015, IEEE T VIS COMPUT GR, V21, P1072, DOI 10.1109/TVCG.2015.2410278 Chen HD, 2014, IEEE T VIS COMPUT GR, V20, P1683, DOI 10.1109/TVCG.2014.2346594 Chen W, 2017, J VISUAL LANG COMPUT, V42, P76, DOI 10.1016/j.jvlc.2017.08.007 Chen ZT, 2017, VIS INFORM, V1, P132, DOI 10.1016/j.visinf.2017.11.002 Egghe L, 2006, SCIENTOMETRICS, V69, P131, DOI 10.1007/s11192-006-0144-7 Evans JA, 2009, SCIENCE, V323, P1025, DOI 10.1126/science.1154562 Garfield E, 2006, JAMA-J AM MED ASSOC, V295, P90, DOI 10.1001/jama.295.1.90 Gratzl S, 2013, IEEE T VIS COMPUT GR, V19, P2277, DOI 10.1109/TVCG.2013.173 Grover A, 2016, KDD'16: PROCEEDINGS OF THE 22ND ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, P855, DOI 10.1145/2939672.2939754 Hirsch JE, 2010, SCIENTOMETRICS, V85, P741, DOI 10.1007/s11192-010-0193-9 Isenberg P, 2017, IEEE T VIS COMPUT GR, V23, P2199, DOI 10.1109/TVCG.2016.2615308 Isenberg P, 2017, IEEE T VIS COMPUT GR, V23, P771, DOI 10.1109/TVCG.2016.2598827 Kidwell P, 2008, IEEE T VIS COMPUT GR, V14, P1356, DOI 10.1109/TVCG.2008.181 Lehmann S, 2006, NATURE, V444, P1003, DOI 10.1038/4441003a Li DQ, 2018, VIS INFORM, V2, P136, DOI 10.1016/j.visinf.2018.04.011 Liu DY, 2017, IEEE T VIS COMPUT GR, V23, P1, DOI 10.1109/TVCG.2016.2598432 Liu JY, 2018, IEEE ACCESS, V6, P19205, DOI 10.1109/ACCESS.2018.2815030 Liu K, 2017, ISPRS INT J GEO-INF, V6, DOI 10.3390/ijgi6110321 Liu ZR, 2014, PROC INT C TOOLS ART, P493, DOI 10.1109/ICTAI.2014.80 Ma N, 2008, INFORM PROCESS MANAG, V44, P800, DOI 10.1016/j.ipm.2007.06.006 Ma Y., 2016, INF SCI, V390, P54 Maslov S, 2008, J NEUROSCI, V28, P11103, DOI 10.1523/JNEUROSCI.0002-08.2008 Mikolov T., 2013, ARXIV Mikolov T., 2013, Efficient estimation of word representations in vector space Page L., 1999, The PageRank citation ranking: bringing order to the web Seo J., 2005, Information Visualization, V4, P96, DOI 10.1057/palgrave.ivs.9500091 Shi CL, 2012, IEEE T VIS COMPUT GR, V18, P2669, DOI 10.1109/TVCG.2012.253 Shi Y, 2018, IEEE T VIS COMPUT GR, V24, P1918, DOI 10.1109/TVCG.2018.2816203 Su Z., 2014, 2014 INT C MULTISENS, P1 Turian J, 2010, ACL 2010: 48TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, P384 van der Maaten L, 2008, J MACH LEARN RES, V9, P2579 Vuillemot R, 2015, CHI 2015: PROCEEDINGS OF THE 33RD ANNUAL CHI CONFERENCE ON HUMAN FACTORS IN COMPUTING SYSTEMS, P2703, DOI 10.1145/2702123.2702237 Walker D., 2007, J STAT MECH-THEORY E, V6, P1 Wang XM, 2016, J COMPUT SCI TECH-CH, V31, P787, DOI 10.1007/s11390-016-1663-1 Weng D., 2018, CHI C, P1 Weng D., 2018, IEEE T VISUALIZATION Wu YC, 2018, IEEE T VIS COMPUT GR, V24, P2758, DOI 10.1109/TVCG.2017.2764459 Wu YC, 2016, IEEE T MULTIMEDIA, V18, P2135, DOI 10.1109/TMM.2016.2614220 Xia F, 2017, IEEE T BIG DATA, V3, P18, DOI 10.1109/TBDATA.2016.2641460 Xia JZ, 2018, IEEE T VIS COMPUT GR, V24, P236, DOI 10.1109/TVCG.2017.2744098 Xia JZ, 2017, J VISUAL LANG COMPUT, V41, P79, DOI 10.1016/j.jvlc.2017.05.003 Xia J, 2017, IEEE COMPUT GRAPH, V37, P42, DOI 10.1109/MCG.2017.21 Xie C., 2014, IEEE T VISUALIZATION, V20, P1749 Yan E, 2011, J AM SOC INF SCI TEC, V62, P467, DOI 10.1002/asi.21461 Zhang CT, 2013, SCI REP-UK, V3, DOI 10.1038/srep01023 Zhou FF, 2015, IEEE COMPUT GRAPH, V35, P42, DOI 10.1109/MCG.2015.97 NR 51 TC 14 Z9 16 U1 0 U2 41 PU ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD PI LONDON PA 24-28 OVAL RD, LONDON NW1 7DX, ENGLAND SN 1045-926X EI 1095-8533 J9 J VISUAL LANG COMPUT JI J. Vis. Lang. Comput. PD OCT PY 2018 VL 48 BP 134 EP 143 DI 10.1016/j.jvlc.2018.08.007 PG 10 WC Computer Science, Software Engineering WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Computer Science GA GY5NQ UT WOS:000448625700016 DA 2024-09-05 ER PT J AU Romano, R Davino, C AF Romano, Rosaria Davino, Cristina TI Assessing scientific research activity evaluation models using multivariate analysis SO STATISTICS AND ITS INTERFACE LA English DT Article DE Composite indicators; Stability; Analysis of variance; Principal component analysis; Scientific research activity ID INDICATORS AB The authors of this paper propose a method, based both on confirmatory and exploratory data analysis, aiming to assess the variability arising from the Composite Indicators (CIs) construction process. This research refers to an evaluation exercise very important for universities: the assessment of scientific research. The aim of every evaluation system is to synthesize all the information collected at universities into a unique CI, which will allow comparison of performances or ranks of the objects under evaluation. Since the methodology adopted to construct the CI is just one possible solution among several acceptable alternatives, it is reasonable to wonder about the results from the other options. The proposed approach investigates the impact of the different sources of variability occurring in CIs construction, also taking into account the external information available for each statistical unit. The term CI variability is used in the meaning of CI stability and it refers to differences emerging among CIs obtained using different subjective choices to construct the CI. Furthermore, the stability of the results is assessed through a combination of graphical tools and resampling methods. An empirical analysis is provided to discuss the methodological proposal. The research refers to the 'University Planning and Evaluation 2007-2009' system, implemented by the Italian government to finance public universities. C1 [Romano, Rosaria] Univ Calabria, Dept Econ Stat & Finance, I-87030 Commenda Di Rende, Italy. [Davino, Cristina] Univ Macerata, Dept Polit Sci Commun & Int Relat, Macerata, Italy. C3 University of Calabria; University of Macerata RP Davino, C (corresponding author), Univ Macerata, Dept Polit Sci Commun & Int Relat, Macerata, Italy. EM rosaria.romano@unical.it; cristina.davino@unimc.it OI Romano, Rosaria/0000-0002-9708-1753 CR ADELMAN I, 1972, J DEV STUD, V8, P111, DOI 10.1080/00220387208421416 [Anonymous], 2008, 012008 RAE [Anonymous], 2009, ELEMENTS STAT LEARNI, DOI DOI 10.1007/978-0-387-84858-7 Booysen F, 2002, SOC INDIC RES, V59, P115, DOI 10.1023/A:1016275505152 Davino C., 2013, SURVEY DATA COLLECTI, P45 Davino C., 2011, 32 U MAC Davino C, 2011, STUD CLASS DATA ANAL, P29, DOI 10.1007/978-3-642-11363-5_4 Davino C, 2014, SOC INDIC RES, V119, P627, DOI 10.1007/s11205-013-0532-3 DREWNOWSKI J, 1972, J DEV STUD, V8, P77, DOI 10.1080/00220387208421413 Jacobs R, 2005, MED CARE, V43, P1177, DOI 10.1097/01.mlr.0000185692.72905.4a Lebart L., 1997, Statistique Exploratoire Multidimensionnelle Mardia K. V., 1978, MULTIVARIATE ANAL Morineau A., 1984, B TECHNIQUE CTR STAT, V2, P1 Næs T, 2010, FOOD QUAL PREFER, V21, P368, DOI 10.1016/j.foodqual.2009.09.004 Roberts G., 2003, 200322 LOND HIGH ED Saltelli A., 2008, Global sensitivity analysis. The primer Saporta G., 1990, Probabilites: Analyse des Donnees et Statistique NR 17 TC 1 Z9 1 U1 0 U2 9 PU INT PRESS BOSTON, INC PI SOMERVILLE PA PO BOX 43502, SOMERVILLE, MA 02143 USA SN 1938-7989 EI 1938-7997 J9 STAT INTERFACE JI Stat. Interface PY 2016 VL 9 IS 3 BP 303 EP 313 DI 10.4310/SII.2016.v9.n3.a5 PG 11 WC Mathematical & Computational Biology; Mathematics, Interdisciplinary Applications WE Science Citation Index Expanded (SCI-EXPANDED) SC Mathematical & Computational Biology; Mathematics GA DF4AV UT WOS:000371290600005 DA 2024-09-05 ER PT J AU Nolasco, D Oliveira, J AF Nolasco, Diogo Oliveira, Jonice TI Mining social influence in science and vice-versa: A topic correlation approach SO INTERNATIONAL JOURNAL OF INFORMATION MANAGEMENT LA English DT Article DE Topic modeling; Social networks; Science networks; Topic labeling; Influence mining; Topic similarity ID NETWORKS; MENDELEY; ADOPTION; TWITTER; TWEETS; IMPACT AB There is no doubt that scientific discoveries have always brought changes to society. New technologies help solve social problems such as transportation and education, while research brings benefits such as curing diseases and improving food production. Despite the impacts caused by science and society on each other, this relationship is rarely studied and they are often seen as different universes. Previous literature focuses only on a single domain, detecting social demands or research fronts for example, without ever crossing the results for new insights. In this work, we create a system that is able to assess the relationship between social and scholar data using the topics discussed in social networks and research topics. We use the articles as science sensors and humans as social sensors via social networks. Topic modeling algorithms are used to extract and label social subjects and research themes and then topic correlation metrics are used to create links between them if they have a significant relationship. The proposed system is based on topic modeling, labeling and correlation from heterogeneous sources, so it can be used in a variety of scenarios. We make an evaluation of the approach using a large-scale Twitter corpus combined with a PubMed article corpus. In both of them, we work with data of the Zika epidemic in the world, as this scenario provides topics and discussions on both domains. Our work was capable of discovering links between various topics of different domains, which suggests that some of the relationships can be automatically inferred by the sensors. Results can open new opportunities for forecasting social behavior, assess community interest in a scientific subject or directing research to the population welfare. C1 [Nolasco, Diogo] Univ Fed Rio de Janeiro, Programa Posgrad Informat, Av Athos,Silveira Ramos,274 Bl CCMN NCE, Rio De Janeiro, RJ, Brazil. [Oliveira, Jonice] Univ Fed Rio de Janeiro, Dept Ciencia Comp, Av Athos,Silveira Ramos,274 Bl Room 1038 NCE, Rio De Janeiro, RJ, Brazil. C3 Universidade Federal do Rio de Janeiro; Universidade Federal do Rio de Janeiro RP Nolasco, D (corresponding author), Univ Fed Rio de Janeiro, Programa Posgrad Informat, Av Athos,Silveira Ramos,274 Bl CCMN NCE, Rio De Janeiro, RJ, Brazil. EM diogo.sousa@ppgi.ufrj.br; jonice@dcc.ufrj.br RI Oliveira, Jonice/AAR-8798-2021 OI Oliveira, Jonice/0000-0002-2495-1463; Nolasco, Diogo/0000-0001-6125-0140 FU CAPES; CNPq; FAPERJ FX The authors would like to thank CAPES, CNPq, and FAPERJ for supporting this work. CR [Anonymous], LANG TECHNOL [Anonymous], 2010, TEXT MINING APPL THE, DOI DOI 10.1002/9780470689646.CH1 [Anonymous], 2016, MAPP SOC SCI RES ZIK [Anonymous], COUNTING HOUSE MEASU [Anonymous], P BIDU VLDB SHORT PA [Anonymous], ZIKA VIRUS PODE SER [Anonymous], 2018, NETWORKS [Anonymous], P BIDU VLDB FULL PAP [Anonymous], J CHEM INFORM MODELI [Anonymous], 2009, Proceeding of the 18th ACM Conference on Information and Knowledge Management, DOI DOI 10.1145/1645953.1646076 [Anonymous], P BIDU VLDB SHORT PA [Anonymous], P 10 ACM SIGKDD INT [Anonymous], P 13 INT S INF PROC [Anonymous], MEANING ALTMETRICS [Anonymous], 2016, WHO DIRECTOR GEN SUM [Anonymous], EXPERT SYSTEMS APPL [Anonymous], 2009, WSDM [Anonymous], SOC NETW [Anonymous], 2016, BBC [Anonymous], CONTEXTUALIZACAO INF [Anonymous], WHO ZIK VIR RES AG [Anonymous], P IEEE WIC ACM INT C [Anonymous], P BIDU VLDB FULL PAP [Anonymous], SITUACAO EPIDEMIOLOG [Anonymous], MIDIA MEIO EMERGENCI [Anonymous], PUBLISH POSTIDENTIFI [Anonymous], 2007, ADV FUZZY CLUSTERING, DOI DOI 10.1002/9780470061190 [Anonymous], 2014, MACHINE LEARNING KNO Antonacci G, 2017, J KNOWL MANAG, V21, P1218, DOI 10.1108/JKM-11-2016-0504 Badilescu-Buga E, 2013, INFORM PROCESS MANAG, V49, P902, DOI 10.1016/j.ipm.2013.02.001 Blei D, 2010, IEEE SIGNAL PROC MAG, V27, P55, DOI 10.1109/MSP.2010.938079 Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993 Boutellier R., 2008, MANAGING GLOBAL INNO, DOI [10.1007/978-3-540-68952-2, DOI 10.1007/978-3-540-68952-2] Campos R, 2018, 2018 IEEE INTERNATIONAL CONFERENCE ON INFORMATION REUSE AND INTEGRATION (IRI), P193, DOI 10.1109/IRI.2018.00036 Chaney A., 2021, P INT AAAI C WEB SOC, V6, P419 Cinelli M, 2017, J COMPLEX NETW, V5, P694, DOI 10.1093/comnet/cnx002 Colladon AF, 2019, INT J INFORM MANAGE, V48, P254, DOI 10.1016/j.ijinfomgt.2018.09.009 Colladon AF, 2018, J BUS RES, V88, P150, DOI 10.1016/j.jbusres.2018.03.026 Colladon AF, 2017, INFORM PROCESS MANAG, V53, P1287, DOI 10.1016/j.ipm.2017.07.001 Costas R, 2015, J ASSOC INF SCI TECH, V66, P2003, DOI 10.1002/asi.23309 Gloor P, 2017, J BUS RES, V75, P67, DOI 10.1016/j.jbusres.2017.02.010 Gloor PA, 2017, COMPUT HUM BEHAV, V71, P343, DOI 10.1016/j.chb.2017.02.017 Haustein S, 2014, IT-INF TECHNOL, V56, P207, DOI 10.1515/itit-2014-1048 Hric D, 2016, PHYS REV X, V6, DOI 10.1103/PhysRevX.6.031038 Hughes AL, 2009, INT J EMERG MANAG, V6, P248, DOI 10.1504/IJEM.2009.031564 Jiang JC, 2017, INFORM PROCESS MANAG, V53, P1, DOI 10.1016/j.ipm.2016.06.003 Kim D, 2011, LECT NOTES COMPUT SC, V6609, P163, DOI 10.1007/978-3-642-19437-5_13 KULLBACK S, 1951, ANN MATH STAT, V22, P79, DOI 10.1214/aoms/1177729694 Lafferty J.D, 2009, Topic Models, P71, DOI [10.1145/1143844.1143859, DOI 10.1145/1143844.1143859] Li W., 2006, ICML, P577, DOI [10.1145/1143844.1143917, 10.1145/] Loach T.V., 2015, 15th International Society of Scientometrics and Informetrics Conference, V1, P6, DOI DOI 10.6084/M9.FIGSHARE.1461693 Maflahi N, 2016, J ASSOC INF SCI TECH, V67, P191, DOI 10.1002/asi.23369 Mann GS, 2006, OPENING INFORMATION HORIZONS, P65 Masuda N., 2016, A guide to temporal networks, DOI [10.1142/q0033, DOI 10.1142/Q0033] Mohammadi E, 2015, J ASSOC INF SCI TECH, V66, P1832, DOI 10.1002/asi.23286 Maia LFMP, 2019, CAD SAUDE PUBLICA, V35, DOI [10.1590/0102-311X00220217, 10.1590/0102-311x00220217] Nolasco D, 2019, FUTURE GENER COMP SY, V93, P290, DOI 10.1016/j.future.2018.09.008 Nolasco D, 2017, 2017 IEEE 15TH INTL CONF ON DEPENDABLE, AUTONOMIC AND SECURE COMPUTING, 15TH INTL CONF ON PERVASIVE INTELLIGENCE AND COMPUTING, 3RD INTL CONF ON BIG DATA INTELLIGENCE AND COMPUTING AND CYBER SCIENCE AND TECHNOLOGY CONGRESS(DASC/PICOM/DATACOM/CYBERSCI, P820, DOI 10.1109/DASC-PICom-DataCom-CyberSciTec.2017.139 Nolasco D, 2016, P ANN HICSS, P358, DOI 10.1109/HICSS.2016.51 Oliveira J, 2014, JMIR MHEALTH UHEALTH, V2, DOI 10.2196/mhealth.2543 Peel L, 2018, P NATL ACAD SCI USA, V115, P4057, DOI 10.1073/pnas.1713019115 Perianes-Rodríguez A, 2010, SCIENTOMETRICS, V82, P307, DOI 10.1007/s11192-009-0040-z Ramage Daniel., 2009, EMNLP Sakaki T., 2009, WWW2010 Shibata N, 2008, TECHNOVATION, V28, P758, DOI 10.1016/j.technovation.2008.03.009 Shibata N, 2009, J AM SOC INF SCI TEC, V60, P571, DOI 10.1002/asi.20994 Sonnert G., 2002, IVORY BRIDGES CONNEC Steyvers Mark, 2007, Handbook of latent semantic analysis, V427, P424 Ströele V, 2011, J UNIVERS COMPUT SCI, V17, P1951 Takahashi B, 2015, COMPUT HUM BEHAV, V50, P392, DOI 10.1016/j.chb.2015.04.020 Verbeek A, 2002, SCIENTOMETRICS, V54, P399, DOI 10.1023/A:1016034516731 Wang D, 2014, PROCEEDINGS OF THE 13TH INTERNATIONAL SYMPOSIUM ON INFORMATION PROCESSING IN SENSOR NETWORKS (IPSN' 14), P35, DOI 10.1109/IPSN.2014.6846739 Zhao S., 2011, Human as real-time sensors of social and physical events: A case study of twitter and sports games. Technical report NR 73 TC 9 Z9 9 U1 1 U2 33 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0268-4012 EI 1873-4707 J9 INT J INFORM MANAGE JI Int. J. Inf. Manage. PD APR PY 2020 VL 51 AR 102017 DI 10.1016/j.ijinfomgt.2019.10.002 PG 14 WC Information Science & Library Science WE Social Science Citation Index (SSCI) SC Information Science & Library Science GA KQ3OC UT WOS:000516835200016 DA 2024-09-05 ER PT J AU Saheb, T Saheb, T Carpenter, DO AF Saheb, Tahereh Saheb, Tayebeh Carpenter, David O. TI Mapping research strands of ethics of artificial intelligence in healthcare: A bibliometric and content analysis SO COMPUTERS IN BIOLOGY AND MEDICINE LA English DT Article DE Artificial intelligence; Healthcare; Robotics; Bibliometric analysis; Content analysis; Network visualization; Ethics ID CLINICAL IMAGING DATA; FINANCIAL BURDEN; CHALLENGES; DISEASE; TECHNOLOGY; MANAGEMENT; ISSUES; FIELD; HOPE; BIAS AB The growth of artificial intelligence in promoting healthcare is rapidly progressing. Notwithstanding its promising nature, however, AI in healthcare embodies certain ethical challenges as well. This research aims to delineate the most influential elements of scientific research on AI ethics in healthcare by conducting bibliometric, social network analysis, and cluster-based content analysis of scientific articles. Not only did the bibliometric analysis identify the most influential authors, countries, institutions, sources, and documents, but it also recognized four ethical concerns associated with 12 medical issues. These ethical categories are composed of normative, meta-ethics, epistemological and medical practice. The content analysis complemented this list of ethical categories and distinguished seven more ethical categories: ethics of relationships, medico-legal concerns, ethics of robots, ethics of ambient intelligence, patients' rights, physicians' rights, and ethics of predictive analytics. This analysis likewise identified 40 general research gaps in the literature and plausible future research strands. This analysis furthers conversations on the ethics of AI and associated emerging technologies such as nanotech and biotech in healthcare, hence, advances convergence research on the ethics of AI in healthcare. Practically, this research will provide a map for policymakers and AI engineers and scientists on what dimensions of AI-based medical interventions require stricter policies and guidelines and robust ethical design and development. C1 [Saheb, Tahereh] Tarbiat Modares Univ, Management Studies Ctr, Tehran, Iran. [Saheb, Tayebeh] Tarbiat Modares Univ, Fac Law, Tehran, Iran. [Carpenter, David O.] SUNY Albany, Sch Publ Hlth, Inst Hlth & Environm, Albany, NY 12222 USA. C3 Tarbiat Modares University; Tarbiat Modares University; State University of New York (SUNY) System; State University of New York (SUNY) Albany RP Saheb, T (corresponding author), Tarbiat Modares Univ, Management Studies Ctr, Tehran, Iran. EM t.saheb@modares.ac.ir; t-saheb@modares.ac.ir; dcarpenter@albany.edu RI Saheb, Tayebeh/ABY-9272-2022 OI Saheb, Tayebeh/0000-0002-2672-1776; Saheb, Tahereh/0000-0002-6426-609X; Carpenter, David/0000-0003-4841-394X CR Adams SJ, 2020, J AM COLL RADIOL, V17, P1034, DOI 10.1016/j.jacr.2020.01.007 Alexiou A, 2011, IFIP ADV INF COMM TE, V364, P297 Anderson Michael, 2019, AMA J Ethics, V21, pE125, DOI 10.1001/amajethics.2019.125 [Anonymous], 2020, ARTIFICIAL INTELLIGE, DOI [10.21203/RS.3.RS-29373/V2, DOI 10.21203/RS.3.RS-29373/V2] Arga KY, 2020, OMICS, V24, P512, DOI 10.1089/omi.2020.0093 Arnold MH, 2021, J BIOETHIC INQ, V18, P121, DOI 10.1007/s11673-020-10080-1 Atreides Kyrtin, 2020, Biologically Inspired Cognitive Architectures 2019. Proceedings of the Tenth Annual Meeting of the BICA Society. Advances in Intelligent Systems and Computing (AISC 948), P28, DOI 10.1007/978-3-030-25719-4_5 Aulenkamp J, 2021, GMS J MED EDU, V38, DOI 10.3205/zma001476 Barrett M, 2019, EPMA J, V10, P445, DOI 10.1007/s13167-019-00188-9 Biller-Andorno N, 2022, J MED ETHICS, V48, P175, DOI 10.1136/medethics-2020-106786 Boyack KW, 2010, J AM SOC INF SCI TEC, V61, P2389, DOI 10.1002/asi.21419 Canales C, 2020, ANESTH ANALG, V130, P1234, DOI 10.1213/ANE.0000000000004728 Cancila D., 2018, P R SHARPENING SCYTH, V2 Candello H, 2020, CHI'20: EXTENDED ABSTRACTS OF THE 2020 CHI CONFERENCE ON HUMAN FACTORS IN COMPUTING SYSTEMS, DOI 10.1145/3334480.3375152 Cantarini P., 2020, REV JURIDICA, P261 Cao JS, 2021, WORLD J GASTROENTERO, V27, P1664, DOI 10.3748/wjg.v27.i16.1664 Carter SM, 2020, BREAST, V49, P25, DOI 10.1016/j.breast.2019.10.001 Cave S, 2019, AIES '19: PROCEEDINGS OF THE 2019 AAAI/ACM CONFERENCE ON AI, ETHICS, AND SOCIETY, P331, DOI 10.1145/3306618.3314232 Cervantes S, 2020, COGN SYST RES, V64, P117, DOI 10.1016/j.cogsys.2020.08.010 Chan LL, 2020, CURR OPIN NEPHROL HY, V29, P319, DOI 10.1097/MNH.0000000000000604 Chapalain X, 2019, ANAESTH CRIT CARE PA, V38, P337, DOI 10.1016/j.accpm.2019.05.003 Chen IY, 2020, NAT MED, V26, P16, DOI 10.1038/s41591-019-0649-2 Chen Irene Y, 2019, AMA J Ethics, V21, pE167, DOI 10.1001/amajethics.2019.167 Clausen J, 2017, SCIENCE, V356, P1338, DOI 10.1126/science.aam7731 Costa Luciano da Fontoura, 2004, Genet Mol Res, V3, P564 Cui M, 2021, LAB INVEST, V101, P412, DOI 10.1038/s41374-020-00514-0 D'Antonoli TA, 2020, DIAGN INTERV RADIOL, V26, P504, DOI 10.5152/dir.2020.19279 Damiano L, 2020, HUMANA MENTE, V13, P181 Dan B, 2020, ANN PHYS REHABIL MED, V63, P389, DOI 10.1016/j.rehab.2019.03.002 DeCamp M, 2020, J AM MED INFORM ASSN, V27, P2020, DOI 10.1093/jamia/ocaa094 Delgosha M. Soltani, 2020, CONFIGURATIONAL IMPA Delgosha MS, 2021, INFORM SYST FRONT, V23, P1317, DOI 10.1007/s10796-020-10029-0 Dhundass S, 2020, J NEURORADIOLOGY, V47, P278, DOI 10.1016/j.neurad.2019.02.011 Dignum V, 2021, LOND REV EDUC, V19, DOI 10.14324/LRE.19.1.01 Douglas DR, 2020, ANAEST INTENS CARE M, V21, P1 Doyle PR, 2021, 26TH INTERNATIONAL CONFERENCE ON INTELLIGENT USER INTERFACES (IUI '21 COMPANION), P12, DOI 10.1145/3397482.3450706 Ebert DD, 2019, ADV EXP MED BIOL, V1192, P583, DOI 10.1007/978-981-32-9721-0_29 Fiske A, 2019, J MED INTERNET RES, V21, DOI 10.2196/13216 Floridi L, 2018, MIND MACH, V28, P689, DOI 10.1007/s11023-018-9482-5 Fogliano Fernando, 2019, Lecture Notes in Computer Science, P325, DOI [10.1007/978-3-030-22219-2_25, DOI 10.1007/978-3-030-22219-2_25] Folstad A., 2017, Interactions, V24, P38, DOI [DOI 10.1145/3085558, 10.1145/3085558] Fonseca V, 2021, INT J HEALTH PLAN M, V36, P18, DOI 10.1002/hpm.3072 Garcia SA, 1996, J LEGAL MED, V17, P469, DOI 10.1080/01947649609511019 Gerke S, 2020, JAMA-J AM MED ASSOC, V323, P601, DOI 10.1001/jama.2019.21699 Gibbons ED, 2021, IEEE TECHNOL SOC MAG, V40, P25, DOI 10.1109/MTS.2021.3056295 Görges M, 2020, CURR OPIN ANESTHESIO, V33, P404, DOI 10.1097/ACO.0000000000000845 Grote T, 2020, J MED ETHICS, V46, P205, DOI 10.1136/medethics-2019-105586 Grzybowski A, 2020, EYE, V34, P451, DOI 10.1038/s41433-019-0566-0 Haque A, 2020, NATURE, V585, P193, DOI 10.1038/s41586-020-2669-y Heinrichs B, 2020, HUM BRAIN MAPP, V41, P1435, DOI 10.1002/hbm.24886 Hernandez JPT, 2019, J MED INVESTIG, V66, P24, DOI 10.2152/jmi.66.24 Herzog C, 2021, SCI ENG ETHICS, V27, DOI 10.1007/s11948-021-00283-z Hickman SE, 2021, BRIT J CANCER, V125, P15, DOI 10.1038/s41416-021-01333-w Ho CWL, 2019, CLIN RADIOL, V74, P329, DOI 10.1016/j.crad.2019.02.005 Horvitz E, 2015, SCIENCE, V349, P253, DOI 10.1126/science.aac4520 Hosny A, 2019, SCIENCE, V366, P955, DOI 10.1126/science.aay5189 Ienca Marcello, 2020, AJOB Neurosci, V11, P77, DOI 10.1080/21507740.2020.1740352 Ienca M, 2019, ETHICS INF TECHNOL, V21, P267, DOI 10.1007/s10676-018-9453-9 Jagsi R, 2014, J CLIN ONCOL, V32, P1269, DOI 10.1200/JCO.2013.53.0956 Jongsma KR, 2020, BMC MED ETHICS, V21, DOI 10.1186/s12910-020-00524-z Kotter E, 2021, EUR RADIOL, V31, P5, DOI 10.1007/s00330-020-07148-2 Kou YB, 2019, CHI 2019: PROCEEDINGS OF THE 2019 CHI CONFERENCE ON HUMAN FACTORS IN COMPUTING SYSTEMS, DOI 10.1145/3290605.3300711 Krausova A., 2017, ROBOTS BIOL BRAINS A Krupinski EA, 2020, RADIOLOGY, V295, P683, DOI 10.1148/radiol.2020200416 Laacke S, 2021, AM J BIOETHICS, V21, P4, DOI 10.1080/15265161.2020.1863515 Lamola MJ, 2022, AI SOC, V37, P131, DOI 10.1007/s00146-021-01191-3 Lara F, 2020, NEUROETHICS-NETH, V13, P275, DOI 10.1007/s12152-019-09401-y Larson DB, 2020, RADIOLOGY, V295, P675, DOI 10.1148/radiol.2020192536 Lillywhite Aspen, 2021, Assist Technol, V33, P129, DOI 10.1080/10400435.2019.1593259 Lorenc T, 2015, J CONSCIOUSNESS STUD, V22, P194 Malakoff D, 2003, SCIENCE, V301, P27 Matuchansky C, 2019, M S-MED SCI, V35, P797, DOI 10.1051/medsci/2019158 McCradden MD, 2020, BMJ OPEN, V10, DOI 10.1136/bmjopen-2020-039798 McKinney SM, 2020, NATURE, V577, P89, DOI 10.1038/s41586-019-1799-6 Mello MM, 2020, SCIENCE, V368, P951, DOI 10.1126/science.abb9045 Morley J, 2020, SOC SCI MED, V260, DOI 10.1016/j.socscimed.2020.113172 Morley J, 2020, SCI ENG ETHICS, V26, P2141, DOI 10.1007/s11948-019-00165-5 Mouchabac S, 2021, FRONT PSYCHIATRY, V11, DOI 10.3389/fpsyt.2020.622506 Neri E, 2020, RADIOL MED, V125, P517, DOI 10.1007/s11547-020-01135-9 Nordling L, 2019, NATURE, V573, pS103, DOI 10.1038/d41586-019-02872-2 O'Reilly-Shah VN, 2020, BRIT J ANAESTH, V125, P843, DOI 10.1016/j.bja.2020.07.040 O'Sullivan S, 2019, INT J MED ROBOT COMP, V15, DOI 10.1002/rcs.1968 Patel V, 2010, JAMA-J AM MED ASSOC, V303, P1976, DOI 10.1001/jama.2010.616 Pisu M, 2014, SUPPORT CARE CANCER, V22, P3045, DOI 10.1007/s00520-014-2298-9 Poldrack RA, 2008, CURR OPIN NEUROBIOL, V18, P223, DOI 10.1016/j.conb.2008.07.006 Politi MC, 2021, ONCOLOGIST, V26, pE142, DOI 10.1002/onco.13544 Pouloudi A., 2000, Journal of Intelligent Systems, V10, P451, DOI 10.1515/JISYS.2000.10.5-6.451 Qingquan J., 2020, 8 INT S PROJ MAN Quinn TP, 2021, J AM MED INFORM ASSN, V28, P890, DOI 10.1093/jamia/ocaa268 Rajkomar A, 2018, ANN INTERN MED, V169, P866, DOI 10.7326/M18-1990 Reinbold P., 2021, SSRN ELECT J, DOI [10.2139/ssrn.3766259, DOI 10.2139/SSRN.3766259] Saetra H.S., 2019, SSRN ELECT J, DOI [10.2139/ssrn.3494304, DOI 10.2139/SSRN.3494304] Saheb T., ASIA PACI J INFOR SY, V31, P121 Saheb T., 2018, INT J HIGH PERFORM S, V8, P34, DOI [10.1504/IJHPSA.2018.094143, DOI 10.1504/IJHPSA.2018.094143] Saheb T, 2020, J BIG DATA-GER, V7, DOI 10.1186/s40537-020-00287-9 Saheb T, 2020, HEALTH TECHNOL-GER, V10, P1063, DOI 10.1007/s12553-020-00422-9 Saheb T, 2019, TELEMAT INFORM, V41, P70, DOI 10.1016/j.tele.2019.03.005 Saheb T, 2019, HEALTHC INFORM RES, V25, P61 Sartor G., 2020, Maastricht Journal of European and Comparative Law, V27, P705, DOI [10.1177/1023263X20981566, DOI 10.1177/1023263X20981566] Satava RM, 2002, SURG ENDOSC, V16, P1403, DOI 10.1007/s00464-002-8587-2 Sechopoulos I, 2020, BREAST, V49, P254, DOI 10.1016/j.breast.2019.12.014 Sethi P., 2009, PERSPECT HLTH INF MA, V6 Shahbaz R, 2021, EUR J OPHTHALMOL, V31, P13, DOI 10.1177/1120672120934405 Shank DB, 2020, INT J HUM-COMPUT INT, V36, P1636, DOI 10.1080/10447318.2020.1768674 Shaw JA, 2021, INTENS CARE MED, V47, P157, DOI 10.1007/s00134-020-06277-y Shen FX, 2020, NEURON, V105, P771, DOI 10.1016/j.neuron.2020.01.041 Shen JY, 2019, JMIR MED INF, V7, DOI 10.2196/10010 Shuaib A, 2020, INT J GEN MED, V13, P891, DOI 10.2147/IJGM.S268093 Singh A, 2020, J IMAGING, V6, DOI 10.3390/jimaging6060052 Singh JA, 2019, EMERG TOP LIFE SCI, V3, P741, DOI 10.1042/ETLS20190106 Sollini M, 2020, EUR J HYBRID IMAG, V4, DOI 10.1186/s41824-020-00094-8 Stahl BC, 2021, J BUS RES, V124, P374, DOI 10.1016/j.jbusres.2020.11.030 Stanfill Mary H, 2019, Yearb Med Inform, V28, P56, DOI 10.1055/s-0039-1677913 Starke G, 2021, PSYCHOL MED, V51, P2515, DOI 10.1017/S0033291720001683 Sullins J., 2014, ISB 2014 50 ANN CONV Ting DSW, 2019, BRIT J OPHTHALMOL, V103, P167, DOI 10.1136/bjophthalmol-2018-313173 Uusitalo S, 2021, J EVAL CLIN PRACT, V27, P478, DOI 10.1111/jep.13485 van de Poel I, 2020, MIND MACH, V30, P385, DOI 10.1007/s11023-020-09537-4 van Eck NJ, 2010, SCIENTOMETRICS, V84, P523, DOI 10.1007/s11192-009-0146-3 Vasilakos AV, 2008, J COMPUT THEOR NANOS, V5, P2365, DOI 10.1166/jctn.2008.1204 Vollmer S, 2020, BMJ-BRIT MED J, V368, DOI 10.1136/bmj.l6927 Wahl B, 2018, BMJ GLOB HEALTH, V3, DOI 10.1136/bmjgh-2018-000798 Wang YX, 2020, IEEE SYST MAN CYBERN, V6, P6, DOI 10.1109/MSMC.2018.2889502 Wang ZC, 2020, PR MACH LEARN RES, V133, P191, DOI 10.1109/CDS49703.2020.00045 Wangmo T, 2019, BMC MED ETHICS, V20, DOI 10.1186/s12910-019-0437-z Weckert J, 2002, METAPHILOSOPHY, V33, P366, DOI 10.1111/1467-9973.00232 WEINBERG BH, 1974, INFORM STORAGE RET, V10, P189, DOI 10.1016/0020-0271(74)90058-8 Wheeler SB, 2018, J CLIN ONCOL, V36, P1695, DOI 10.1200/JCO.2017.77.6310 Wiltfang J, 2021, PSYCHIAT PRAX, V48, pS31, DOI 10.1055/a-1369-3133 Yalcin ÖN, 2018, BIOL INSPIR COGN ARC, V26, P20, DOI 10.1016/j.bica.2018.07.010 Yara O, 2021, EUR J SUSTAIN DEV, V10, P281, DOI 10.14207/ejsd.2021.v10n1p281 Yuste R, 2017, NATURE, V551, P159, DOI 10.1038/551159a Ziesche S, 2020, 2020 IEEE INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND VIRTUAL REALITY (AIVR 2020), P138, DOI 10.1109/AIVR50618.2020.00032 NR 133 TC 39 Z9 39 U1 21 U2 164 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0010-4825 EI 1879-0534 J9 COMPUT BIOL MED JI Comput. Biol. Med. PD AUG PY 2021 VL 135 AR 104660 DI 10.1016/j.compbiomed.2021.104660 EA AUG 2021 PG 19 WC Biology; Computer Science, Interdisciplinary Applications; Engineering, Biomedical; Mathematical & Computational Biology WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Life Sciences & Biomedicine - Other Topics; Computer Science; Engineering; Mathematical & Computational Biology GA UE4NL UT WOS:000687867000001 PM 34346319 DA 2024-09-05 ER PT J AU Mardle, S Pascoe, S AF Mardle, S Pascoe, S TI Use of evolutionary methods for bioeconomic optimization models: an application to fisheries SO AGRICULTURAL SYSTEMS LA English DT Article DE genetic algorithms; optimization; bioeconomic modeling; fisheries; open access AB Bioeconomic optimization models are regularly used in fisheries policy analysis. However, the use of these models has been restricted in fisheries,as in other similar fields, where there are a large number of non-linear interactions. In this paper, the basic features, advantages and disadvantages of the use of the evolutionary methods, specifically genetic algorithms, are discussed. A large non-linear model of the UK component of the English Channel fisheries is developed using genetic algorithms. The results are compared with those from a linearized version of the model solved using traditional optimization techniques. The results suggest that genetic algorithms may provide better solutions for large non-linear bioeconomic models thar cannot be solved using traditional techniques without the use of simplifying assumptions. (C) 2000 Elsevier Science Ltd. All rights reserved. C1 Univ Portsmouth, Ctr Econ & Management Aquat Resources, Portsmouth PO4 8JF, Hants, England. C3 University of Portsmouth RP Mardle, S (corresponding author), Univ Portsmouth, Ctr Econ & Management Aquat Resources, Locksway Rd, Portsmouth PO4 8JF, Hants, England. RI Pascoe, Sean/D-9710-2011 OI Pascoe, Sean/0000-0001-6581-2649 CR [Anonymous], 1954, Trans. IRE Prof. Group Circuit Theory [Anonymous], 2003, Genetic programming IV: routine human-competitive machine intelligence BAECK T, 1991, P 4 INT C GEN ALG TH, P92 Baeck T., 1992, A user's guide to genesys 1.0 Brooke A., 1992, GAMS: A Users Guide BROWN BE, 1978, FISH B, V76, P851 CHENG AF, 1993, REMOTE SENSING REV, V8, P101 Clark C.W., 1990, Mathematical Bioeconomics: The Optimal Management of Renewable Resources, V2nd CLARK CW, 1979, J FISH RES BOARD CAN, V36, P1304, DOI 10.1139/f79-188 Coglan L., 1999, Agricultural and Resource Economics Review, V28, P219 Coppola G., 1998, Marine Resource Economics, V13, P37, DOI [10.1086/mre.13.1.42629217, DOI 10.1086/MRE.13.1.42629217] Dann T., 1994, 9413 ABARE DIABY S, 1996, MARINE RESOURCE EC, V11, P31 FROST H, 1993, BIOECONOMIC MODEL N GEEN G, 1991, BUREAU RURAL RESOURC, V10, P129 Goldberg DE, 1989, Genetic Algorithms in Search, Optimization and Machine Learning, V1st Gordon HS, 1954, J POLIT ECON, V62, P124, DOI 10.1086/257497 Hannesson R., 1993, BIOECONOMIC ANAL FIS HAYNES J, 1988, 103 ABARE AGPS HOLLAND J, 1975, ADAPTATION NATURAL A Homans FR, 1997, J ENVIRON ECON MANAG, V32, P1, DOI 10.1006/jeem.1996.0947 Mardle S, 2000, ANN OPER RES, V94, P321, DOI 10.1023/A:1018977318860 MARDLE S, 1998, P 9 INT C INT I FISH, P180 Mardle S., 1999, COMPUTERS HIGHER ED, V13, P16 Mardle S. J., 2000, International Transactions in Operational Research, V7, P33, DOI 10.1111/j.1475-3995.2000.tb00183.x MICHALEWICZ Z, 1996, GENETIC ALGORITHMS P MURAWSKI SA, 1986, CAN J FISH AQUAT SCI, V43, P90, DOI 10.1139/f86-010 PASCOE S, 1992, 921 ABARE AGPS PASCOE S, 1996, ECON J, V106, P264 PASCOE S, 1997, 44 CEMARE U PORTSM PASCOE S, 1997, P112 CEMARE U PORTSM PLACENTI V, 1992, MARINE RESOURCE EC, V7, P275 REID C, 1993, 9315 ABARE SIEGEL RA, 1979, FISH B-NOAA, V77, P425 SINCLAIR SF, 1985, INCLUSION FISHERIES, P92 Tetard A, 1995, CATALOGUE INT ACTIVI Vestergaard S, 1993, MARINE RESOURCE EC, V8, P345, DOI 10.1086/mre.8.4.42731366 Whitmarsh DJ, 1998, LAND ECON, V74, P422, DOI 10.2307/3147122 Williams H. P., 1994, MODEL BUILDING MATH NR 39 TC 7 Z9 7 U1 0 U2 6 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0308-521X J9 AGR SYST JI Agric. Syst. PD OCT PY 2000 VL 66 IS 1 BP 33 EP 49 DI 10.1016/S0308-521X(00)00035-4 PG 17 WC Agriculture, Multidisciplinary WE Science Citation Index Expanded (SCI-EXPANDED) SC Agriculture GA 371BR UT WOS:000165158300003 DA 2024-09-05 ER PT J AU Heckman, JJ Flyer, F Loughlin, C AF Heckman, James J. Flyer, Fredrick Loughlin, Colleen TI An assessment of causal inference in smoking initiation research and a framework for future research SO ECONOMIC INQUIRY LA English DT Article; Proceedings Paper CT 81st Annual Meeting of the Western-Economic-Association-International CY JUN 29-JUL 02, 2006 CL San Diego, CA ID CIGARETTE; SCHOOLCHILDREN; ONSET AB Reliably identifying the causal factors underlying youth smoking initiation is an important part of developing effective smoking prevention programs and shaping other types of smoking-related policies. The establishment of reliable scientific evidence in support of a causal link between cigarette advertising and youth smoking initiation depends on both rich longitudinal data as well as careful empirical applications. We examine basic principles of empirical scientific investigation of potential causal relationships, discuss findings of recent research on causal factors of youth smoking, and evaluate evidence from the public health literature regarding the effects of cigarette advertising on youth smoking. C1 [Heckman, James J.] Univ Chicago, Chicago, IL 60637 USA. C3 University of Chicago RP Heckman, JJ (corresponding author), Univ Chicago, 1126 E 59th St, Chicago, IL 60637 USA. EM jjh@uchicago.edu; fflyer@lexecon.com; cloughlin@lexecon.com CR ALEXANDER HM, 1983, INT J EPIDEMIOL, V12, P59, DOI 10.1093/ije/12.1.59 [Anonymous], 6541 NAT BUR EC RES ARMSTRONG BK, 1990, MED J AUSTRALIA, V152, P117, DOI 10.5694/j.1326-5377.1990.tb125117.x BECKER GS, 1994, AM ECON REV, V84, P396 BIENER L, 2000, AM J PUBLIC HEALTH, P90 Biglan A., 2004, Helping adolescents at risk: Prevention of multiple problems of youth Bowles S, 2001, J ECON LIT, V39, P1137, DOI 10.1257/jel.39.4.1137 CHALOUPKA F, 1991, J POLIT ECON, V99, P722, DOI 10.1086/261776 CHALOUPKA FJ, 1999, 7047 NAT BUR EC RES CHARLTON A, 1989, SOC SCI MED, V29, P813, DOI 10.1016/0277-9536(89)90080-4 Cunha F., 2006, Handbook of the economics of education, P697, DOI DOI 10.1016/S1574-0692(06)01012-9 DAVIDSON C, 1993, J LABOR ECON, V11, P575, DOI 10.1086/298308 Diaz E, 1998, MED CLIN-BARCELONA, V110, P334 Douglas S, 1998, ECON INQ, V36, P49, DOI 10.1111/j.1465-7295.1998.tb01695.x Duffy M., 1996, INTJADVERT, V15, P1, DOI 10.1080/02650487.1996.11104630 Duffy Martyn., 1996, International Journal of Advertising, V15, P262 Freedman D, 1999, STAT SCI, V14, P243, DOI 10.1214/ss/1009212409 Freedman DA, 2004, EVALUATION REV, V28, P267, DOI 10.1177/0193841X04266432 Heckman JJ, 2006, J LABOR ECON, V24, P411, DOI 10.1086/504455 Heckman JJ, 2005, SOCIOL METHODOL, V35, P1, DOI 10.1111/j.0081-1750.2006.00164.x Heckman JJ, 1998, AM ECON REV, V88, P381 Heckman JJ, 2001, AM ECON REV, V91, P145, DOI 10.1257/aer.91.2.145 Henneken CH., 1987, Epidemiology in Medicine Knudsen EI, 2004, J COGNITIVE NEUROSCI, V16, P1412, DOI 10.1162/0898929042304796 LEWIT EM, 1981, J LAW ECON, V24, P545, DOI 10.1086/466999 Lewitt E M, 1982, J Health Econ, V1, P121 Lovato Chris., 2003, Cochrane Database of Systematic Reviews, DOI [DOI 10.1002/14651858.CD003439, 10.1002/14651858.CD003439] Martin J.P., 2001, Swedish Economic Policy Review, V8, P9, DOI DOI 10.2139/ssrn.348621 MORRAL M, 2002, REASSESSING MARIJUAN PACULA RL, 1998, W6348 NBER Pierce JP, 1998, JAMA-J AM MED ASSOC, V279, P511, DOI 10.1001/jama.279.7.511 Pucci LG, 1999, PREV MED, V29, P313, DOI 10.1006/pmed.1999.0554 SAFFER, 2000, J HLTH EC, P1117 Sargent JD, 2000, PREV MED, V30, P320, DOI 10.1006/pmed.1999.0629 SUSSER M, 1991, AM J EPIDEMIOL, V133, P635, DOI 10.1093/oxfordjournals.aje.a115939 Turkheimer E, 2003, PSYCHOL SCI, V14, P623, DOI 10.1046/j.0956-7976.2003.psci_1475.x While D, 1996, BRIT MED J, V313, P398 NR 37 TC 16 Z9 17 U1 1 U2 12 PU WILEY PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0095-2583 EI 1465-7295 J9 ECON INQ JI Econ. Inq. PD JAN PY 2008 VL 46 IS 1 BP 37 EP 44 DI 10.1111/j.1465-7295.2007.00078.x PG 8 WC Economics WE Social Science Citation Index (SSCI); Conference Proceedings Citation Index - Social Science & Humanities (CPCI-SSH) SC Business & Economics GA 279AJ UT WOS:000254327100007 DA 2024-09-05 ER PT J AU Ionescu, S Delcea, C Chirita, N Nica, I AF Ionescu, Stefan Delcea, Camelia Chirita, Nora Nica, Ionut TI Exploring the Use of Artificial Intelligence in Agent-Based Modeling Applications: A Bibliometric Study SO ALGORITHMS LA English DT Article DE bibliometric analysis; agent-based modelling; artificial intelligence; complex systems; RStudio; VOSviewer; Bibliometrix ID COMPLEX AB This research provides a comprehensive analysis of the dynamic interplay between agent-based modeling (ABM) and artificial intelligence (AI) through a meticulous bibliometric study. This study reveals a substantial increase in scholarly interest, particularly post-2006, peaking in 2021 and 2022, indicating a contemporary surge in research on the synergy between AI and ABM. Temporal trends and fluctuations prompt questions about influencing factors, potentially linked to technological advancements or shifts in research focus. The sustained increase in citations per document per year underscores the field's impact, with the 2021 peak suggesting cumulative influence. Reference Publication Year Spectroscopy (RPYS) reveals historical patterns, and the recent decline prompts exploration into shifts in research focus. Lotka's law is reflected in the author's contributions, supported by Pareto analysis. Journal diversity signals extensive exploration of AI applications in ABM. Identifying impactful journals and clustering them per Bradford's Law provides insights for researchers. Global scientific production dominance and regional collaboration maps emphasize the worldwide landscape. Despite acknowledging limitations, such as citation lag and interdisciplinary challenges, our study offers a global perspective with implications for future research and as a resource in the evolving AI and ABM landscape. C1 [Ionescu, Stefan; Delcea, Camelia; Chirita, Nora; Nica, Ionut] Bucharest Univ Econ Studies, Dept Econ Informat & Cybernet, Bucharest 0105552, Romania. C3 Bucharest University of Economic Studies RP Delcea, C (corresponding author), Bucharest Univ Econ Studies, Dept Econ Informat & Cybernet, Bucharest 0105552, Romania. EM stefion09@gmail.com; camelia.delcea@csie.ase.ro; nora.chirita@csie.ase.ro; ionut.nica@csie.ase.ro RI Nica, Ionut/ABA-4243-2021; Delcea, Camelia/C-4343-2011 OI Nica, Ionut/0000-0003-2118-3654; Delcea, Camelia/0000-0003-3589-1969; Ionescu, Stefan-Andrei/0000-0002-0469-3022; Chirita, Nora/0009-0005-6633-9466 FU Bucharest University of Economic Studies FX This paper was co-financed by the Bucharest University of Economic Studies during the Ph.D. program. CR Abdelwahab SI., 2023, Medicine in Novel Technology and Devices, V17, P100217, DOI [10.1016/J.MEDNTD.2023.100217, DOI 10.1016/J.MEDNTD.2023.100217, 10.1016/j.medntd.2023.100217] An L, 2023, ENVIRON MODELL SOFTW, V166, DOI 10.1016/j.envsoft.2023.105713 Aria M, 2017, J INFORMETR, V11, P959, DOI 10.1016/j.joi.2017.08.007 Badham J, 2018, HEALTH PLACE, V54, P170, DOI 10.1016/j.healthplace.2018.08.022 Bae JW, 2016, IEEE T SYST MAN CY-S, V46, P793, DOI 10.1109/TSMC.2015.2461178 Bagstad KJ, 2013, ECOSYST SERV, V4, P117, DOI 10.1016/j.ecoser.2012.07.012 Bankes SC, 2002, P NATL ACAD SCI USA, V99, P7263, DOI 10.1073/pnas.092081399 Bennett DA, 2006, INT J GEOGR INF SCI, V20, P1039, DOI 10.1080/13658810600830806 Bonabeau E, 2002, P NATL ACAD SCI USA, V99, P7280, DOI 10.1073/pnas.082080899 Bornmann L, 2013, J INFORMETR, V7, P84, DOI 10.1016/j.joi.2012.09.003 Brandon N, 2020, J EXPO SCI ENV EPID, V30, P184, DOI 10.1038/s41370-018-0052-y Brock WA, 1998, J ECON DYN CONTROL, V22, P1235, DOI 10.1016/S0165-1889(98)00011-6 Bryson JJ, 2007, PHILOS T R SOC B, V362, P1685, DOI 10.1098/rstb.2007.2061 Chen SH, 2021, FRONT MICROBIOL, V12, DOI 10.3389/fmicb.2021.726409 Chen XL, 2023, EDUC TECHNOL SOC, V26, P171, DOI 10.30191/ETS.202301_26(1).0013 Chen Y, 2008, COMPUT OPER RES, V35, P776, DOI 10.1016/j.cor.2006.03.024 Cobo MJ, 2015, KNOWL-BASED SYST, V80, P3, DOI 10.1016/j.knosys.2014.12.035 Dehghanpour K, 2018, IEEE T SMART GRID, V9, P3465, DOI 10.1109/TSG.2016.2631453 Dehkordi MAE, 2023, JASSS-J ARTIF SOC S, V26, DOI 10.18564/jasss.5016 Delcea C., 2023, Series on Grey System Delcea C, 2023, APPL SCI-BASEL, V13, DOI 10.3390/app13179815 Delcea C, 2023, KYBERNETES, DOI 10.1108/K-08-2023-1416 Delcea C, 2020, SAFETY SCI, V121, P414, DOI 10.1016/j.ssci.2019.09.026 Donner P, 2017, SCIENTOMETRICS, V113, P219, DOI 10.1007/s11192-017-2483-y Donthu N, 2021, J BUS RES, V133, P285, DOI 10.1016/j.jbusres.2021.04.070 Effendi Denti Nanda, 2021, Journal of Physics: Conference Series, V1796, DOI 10.1088/1742-6596/1796/1/012096 El Oubani A, 2022, BORSA ISTANB REV, V22, P699, DOI 10.1016/j.bir.2021.10.005 European Commission Joint Research Centre, 2020, AI Watch, Historical Evolution of Artificial Intelligence: Analysis of the Three Main Paradigm Shifts in AI Fagiolo G., 2003, Structural Change and Economic Dynamics, V14, P237, DOI 10.1016/S0954-349X(03)00022-5 Fithian W, 2017, J MULTIVARIATE ANAL, V157, P87, DOI 10.1016/j.jmva.2017.02.009 Goralski MA, 2020, INT J MANAG EDUC-OXF, V18, DOI 10.1016/j.ijme.2019.100330 Guleria D, 2021, LIBR HI TECH, V39, P1001, DOI 10.1108/LHT-09-2020-0218 Hare M, 2004, MATH COMPUT SIMULAT, V64, P25, DOI 10.1016/S0378-4754(03)00118-6 Helbing D., 2012, SOCIAL SELF ORG, DOI [DOI 10.1007/978-3-642-24004-12, 10.1007/978-3-642-24004-1_2, DOI 10.1007/978-3-642-24004-1] Hu Y, 2017, ADV WATER RESOUR, V109, P29, DOI 10.1016/j.advwatres.2017.08.009 Hunter E, 2022, ALGORITHMS, V15, DOI 10.3390/a15080270 Ionescu S, 2023, SUSTAINABILITY-BASEL, V15, DOI 10.3390/su151512037 Ionescu S, 2021, SUSTAINABILITY-BASEL, V13, DOI 10.3390/su131810277 Kawamura M, 2000, J Oral Sci, V42, P75 Kemec A, 2023, SUSTAINABILITY-BASEL, V15, DOI 10.3390/su15043618 Kheybari S, 2019, OPSEARCH, V56, P539, DOI 10.1007/s12597-019-00365-4 Kirby A, 2023, PUBLICATIONS, V11, DOI 10.3390/publications11010010 Lamperti F, 2018, J ECON DYN CONTROL, V90, P366, DOI 10.1016/j.jedc.2018.03.011 Lättilä L, 2010, EXPERT SYST APPL, V37, P7969, DOI 10.1016/j.eswa.2010.04.039 Liu F, 2023, SCIENTOMETRICS, V128, P853, DOI 10.1007/s11192-022-04540-1 Liu WS, 2019, SCIENTOMETRICS, V121, P1815, DOI 10.1007/s11192-019-03238-1 Lu Y, 2019, J MANAG ANAL, V6, P1, DOI 10.1080/23270012.2019.1570365 Marshall DA, 2015, VALUE HEALTH, V18, P147, DOI 10.1016/j.jval.2015.01.006 Martins J, 2022, UNIVERSAL ACCESS INF, DOI 10.1007/s10209-022-00953-0 Marx W, 2014, J ASSOC INF SCI TECH, V65, P751, DOI 10.1002/asi.23089 Meng LC, 2020, SUSTAINABILITY-BASEL, V12, DOI 10.3390/su12062384 Modak NM, 2019, TRANSPORT RES A-POL, V120, P188, DOI 10.1016/j.tra.2018.11.015 Moret-Bonillo V, 2015, PROG ARTIF INTELL, V3, P89, DOI 10.1007/s13748-014-0059-0 Mulet-Forteza C, 2018, J TRAVEL TOUR MARK, V35, P1201, DOI 10.1080/10548408.2018.1487368 Murugesan U., 2023, Decision Analytics Journal, V7, DOI DOI 10.1016/J.DAJOUR.2023.100249 Nica Ionu., 2021, Holistic Approach of Complex Adaptive Systems. Theory O'Sullivan D, 2000, ENVIRON PLANN A, V32, P1409, DOI 10.1068/a32140 Paudel R, 2023, ALGORITHMS, V16, DOI 10.3390/a16070338 Platas-López A, 2023, ELECTRONICS-SWITZ, V12, DOI 10.3390/electronics12030495 Rogers G, 2020, SCIENTOMETRICS, V125, P777, DOI 10.1007/s11192-020-03647-7 Romero E, 2023, PROG ARTIF INTELL, V12, P213, DOI 10.1007/s13748-023-00303-y Sahu A, 2022, COLLECT CURATION, V41, P62, DOI 10.1108/CC-04-2021-0012 Sánchez JM, 2022, HELIYON, V8, DOI 10.1016/j.heliyon.2022.e12005 Silva M.d.S.T., 2022, Context. Rev. Contemp. Econ. Gesto, V20, P54, DOI [10.19094/contextus.2022.72151, DOI 10.19094/CONTEXTUS.2022.72151] Sivakumar N., 2022, FRONT SYST BIOL, V2, DOI [DOI 10.3389/FSYSB.2022.959665, 10.3389/fsysb.2022.959665] Taghikhah F, 2022, J COMPUT SCI-NETH, V64, DOI 10.1016/j.jocs.2022.101854 Tay A., Using VOSviewer as a Bibliometric Mapping or Analysis Tool in Business, Management & Accounting Tay A., Bibliometric Reviews in Business, Management & Accounting and the Tools Used Teodorovic D, 2008, TRANSPORT RES C-EMER, V16, P651, DOI 10.1016/j.trc.2008.03.002 Turgut Y, 2023, SIMUL MODEL PRACT TH, V123, DOI 10.1016/j.simpat.2022.102707 Vosviewer, VOSviewer-Visualizing Scientific Landscapes Waltman L, 2010, J INFORMETR, V4, P629, DOI 10.1016/j.joi.2010.07.002 webofscience, WoS Document Types WoS Web of Science, ABOUT US Xu YJ, 2021, INNOVATION-AMSTERDAM, V2, DOI 10.1016/j.xinn.2021.100179 Yu YT, 2020, ANN TRANSL MED, V8, DOI 10.21037/atm-20-4235 Zeigler B., 2009, Encyclopedia of complexity and system science, P344 Zhang W, 2023, IEEE T NEUR NET LEAR, V34, P2170, DOI 10.1109/TNNLS.2021.3106777 Zupic I, 2015, ORGAN RES METHODS, V18, P429, DOI 10.1177/1094428114562629 NR 79 TC 5 Z9 5 U1 5 U2 8 PU MDPI PI BASEL PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND EI 1999-4893 J9 ALGORITHMS JI Algorithms PD JAN PY 2024 VL 17 IS 1 AR 21 DI 10.3390/a17010021 PG 38 WC Computer Science, Artificial Intelligence; Computer Science, Theory & Methods WE Emerging Sources Citation Index (ESCI) SC Computer Science GA FW8K1 UT WOS:001148979300001 OA gold DA 2024-09-05 ER PT J AU Harder, VS Stuart, EA Anthony, JC AF Harder, Valerie S. Stuart, Elizabeth A. Anthony, James C. TI Propensity Score Techniques and the Assessment of Measured Covariate Balance to Test Causal Associations in Psychological Research SO PSYCHOLOGICAL METHODS LA English DT Article DE observational studies; causal inference; standardized bias; cannabis ID INFERENCE; BIAS; SUBCLASSIFICATION; SENSITIVITY; ADJUSTMENT; REGRESSION; MODELS AB There is considerable interest in using propensity score (PS) statistical techniques to address questions of causal inference in psychological research. Many PS techniques exist, yet few guidelines are available to aid applied researchers in their understanding, use, and evaluation. In this study, the authors give an overview of available techniques for PS estimation and PS application. They also provide a way to help compare PS techniques, using the resulting measured covariate balance as the criterion for selecting between techniques. The empirical example for this study involves the potential causal relationship linking early-onset cannabis problems and subsequent negative mental health outcomes and uses data from a prospective cohort study. PS techniques are described and evaluated on the basis of their ability to balance the distributions of measured potentially confounding covariates for individuals with and without early-onset cannabis problems. This article identifies the PS techniques that yield good statistical balance of the chosen measured covariates within the context of this particular research question and cohort. C1 [Harder, Valerie S.] Univ Vermont, Coll Med, Dept Psychiat, Burlington, VT 05401 USA. [Stuart, Elizabeth A.] Johns Hopkins Bloomberg Sch Publ Hlth, Dept Mental Hlth, Baltimore, MD USA. [Stuart, Elizabeth A.] Johns Hopkins Bloomberg Sch Publ Hlth, Dept Biostat, Baltimore, MD USA. [Anthony, James C.] Michigan State Univ, Coll Human Med, Dept Epidemiol, E Lansing, MI 48824 USA. C3 University of Vermont; Johns Hopkins University; Johns Hopkins Bloomberg School of Public Health; Johns Hopkins University; Johns Hopkins Bloomberg School of Public Health; Michigan State University; Michigan State University College of Human Medicine RP Harder, VS (corresponding author), Univ Vermont, Coll Med, Dept Psychiat, 1 S Prospect St, Burlington, VT 05401 USA. EM vharder@uvm.edu RI Anthony, Jim C/H-3637-2011 OI Anthony, Jim C/0000-0001-7176-0929; Stuart, Elizabeth/0000-0002-9042-8611 CR American Psychiatric Association, 2013, Diagnostic and Statistical Manual of Mental Disorders: DSM-5, V5th, DOI [DOI 10.1176/APPI.BOOKS.9780890425596, 10.1176/APPI.BOOKS.9780890425596] [Anonymous], 2005, STAT STAT SOFTW REL [Anonymous], 2001, SAGE U PAPERS SERIES [Anonymous], HLTH SERVICES OUTCOM [Anonymous], 1990, Composite International Diagnostic Interview (CIDI) Blewitt ME, 2008, NAT GENET, V40, P663, DOI 10.1038/ng.142 Casella G., 2002, Statistical Inference. COCHRAN WG, 1968, BIOMETRICS, V24, P295, DOI 10.2307/2528036 COCHRAN WG, 1973, SANKHYA SER A, V35, P417 D'Agostino R.B., 2001, Health Services Outcomes Research Methodology, V2, P291, DOI [DOI 10.1023/A:1020375413191, 10.1023/a:1020375413191] D'Agostino RB, 2000, J AM STAT ASSOC, V95, P749, DOI 10.2307/2669455 Dehejia R., 1998, 6829 NBER Dehejia RH, 1999, J AM STAT ASSOC, V94, P1053, DOI 10.2307/2669919 DIAMOND A, 2006, WP200635 I GOV STUD Friedman JH, 2001, ANN STAT, V29, P1189, DOI 10.1214/aos/1013203451 Graham JW, 2009, ANNU REV PSYCHOL, V60, P549, DOI 10.1146/annurev.psych.58.110405.085530 Gu XS, 1993, Journal of Computational and Graphical Statistics, V2, P405, DOI DOI 10.1080/10618600.1993.10474623 Hansen B, 2009, OPTMATCH FUNCTIONS O Hansen BB, 2004, J AM STAT ASSOC, V99, P609, DOI 10.1198/016214504000000647 HANSEN BB, 2008, INT C HLTH POL STAT, DOI DOI 10.1214/08-STS254 Hansen BB, 2008, STAT SCI, V23, P219, DOI 10.1214/08-STS254 Harder VS, 2008, AM J EPIDEMIOL, V168, P592, DOI 10.1093/aje/kwn184 Harrell FE, 2001, Regression modeling strategies: with applications to linear models, logistic regression, and survival analysis Haviland A, 2007, PSYCHOL METHODS, V12, P247, DOI 10.1037/1082-989X.12.3.247 Heckman JJ, 1998, REV ECON STUD, V65, P261, DOI 10.1111/1467-937X.00044 Hirano K, 2003, ECONOMETRICA, V71, P1161, DOI 10.1111/1468-0262.00442 Ho D.E., 2007, Matchlt: Nonparametric preprocessing for parametric causal inference Ho DE, 2007, POLIT ANAL, V15, P199, DOI 10.1093/pan/mpl013 Ialongo NS, 2004, SUICIDE LIFE-THREAT, V34, P395, DOI 10.1521/suli.34.4.395.53743 Imai K, 2004, J AM STAT ASSOC, V99, P854, DOI 10.1198/016214504000001187 Imai K, 2008, J R STAT SOC A STAT, V171, P481, DOI 10.1111/j.1467-985X.2007.00527.x Imbens GW, 2004, REV ECON STAT, V86, P4, DOI 10.1162/003465304323023651 Kellam S.G., 1992, PREVENTING ANTISOCIA, P162 Kellam SG, 1998, AM J PUBLIC HEALTH, V88, P1490, DOI 10.2105/AJPH.88.10.1490 KELLAM SG, 1991, AM J COMMUN PSYCHOL, V19, P563, DOI 10.1007/BF00937992 Kurth T, 2006, AM J EPIDEMIOL, V163, P262, DOI 10.1093/aje/kwj047 Lipsey MW, 2000, ANNU REV PSYCHOL, V51, P345, DOI 10.1146/annurev.psych.51.1.345 Lunceford JK, 2004, STAT MED, V23, P2937, DOI 10.1002/SIM.1903 Madigan D, 2004, ANN STAT, V32, P465 McCaffrey DF, 2004, PSYCHOL METHODS, V9, P403, DOI 10.1037/1082-989X.9.4.403 Morgan SL, 2007, ANAL METHOD SOC RES, P1, DOI 10.1017/CBO9780511804564 Potter F.A., 1990, P SURV RES METH SECT, P225 Potter F.J., 1993, ASA P SECTION SURVEY, P758 Pournelle G. H., 1953, Journal of Mammalogy, V34, P133, DOI 10.1890/0012-9658(2002)083[1421:SDEOLC]2.0.CO;2 Qu YM, 2009, STAT MED, V28, P1402, DOI 10.1002/sim.3549 Reed PL, 2007, ARCH GEN PSYCHIAT, V64, P1435, DOI 10.1001/archpsyc.64.12.1435 Reed PL, 2006, AM J EPIDEMIOL, V163, P404, DOI 10.1093/aje/kwj064 RIDGEWAY G, 2007, GBM 1 6 3 PACKAGE MA Ridgeway G., 1999, Comput. Sci. Stat., V31, P172 Ridgeway G., 2006, TWANG TOOLKIT WEIGHT Robins J M., 1998, 1997 Proceedings of the Section on Bayesian Statistical Science, P1 Robins JM, 2000, EPIDEMIOLOGY, V11, P550, DOI 10.1097/00001648-200009000-00011 Robins JM, 2001, STAT SINICA, V11, P920 Robinson J. P., 2000, Mitteilungen der Bundesforschungsanstalt fur Forst- und Holzwirtschaft, Hamburg, P95 Rosenbaum, 2002, OBSERVATIONAL STUDIE, DOI DOI 10.1007/978-1-4757-3692-2_3 Rosenbaum PR, 2010, SPRINGER SER STAT, P1, DOI 10.1007/978-1-4419-1213-8 ROSENBAUM PR, 1983, BIOMETRIKA, V70, P41, DOI 10.1093/biomet/70.1.41 ROSENBAUM PR, 1991, BIOMETRICS, V47, P87, DOI 10.2307/2532498 ROSENBAUM PR, 1984, J AM STAT ASSOC, V79, P516, DOI 10.2307/2288398 ROSENBAUM PR, 1985, AM STAT, V39, P33, DOI 10.2307/2683903 ROSENBAUM PR, 1983, J ROY STAT SOC B MET, V45, P212 Rubin D. B., 2001, Health Services and Outcomes Research Methodology, V2, P169, DOI [10.1023/A:1020363010465, DOI 10.1023/A:1020363010465, https://doi.org/10.1023/A:1020363010465] Rubin DB, 1996, BIOMETRICS, V52, P249, DOI 10.2307/2533160 Rubin DB, 2004, PHARMACOEPIDEM DR S, V13, P855, DOI 10.1002/pds.968 Rubin DB, 2000, J AM STAT ASSOC, V95, P573, DOI 10.2307/2669400 Rubin DB, 2008, ANN APPL STAT, V2, P808, DOI 10.1214/08-AOAS187 *SAS I, 2004, SAS REL 9 COMP SOFTW Schafer JL, 2008, PSYCHOL METHODS, V13, P279, DOI 10.1037/a0014268 Shadish WR, 2008, J AM STAT ASSOC, V103, P1334, DOI 10.1198/016214508000000733 Smith HL, 1997, SOCIOL METHODOL, V27, P325, DOI 10.1111/1467-9531.271030 SNEDECOR G W, 1980 STUART EA, STAT SCI IN PRESS Stuart EA, 2008, DEV PSYCHOL, V44, P395, DOI 10.1037/0012-1649.44.2.395 Stuart ElizabethA., 2008, Best Practices in Quantitative Methods, P155, DOI [DOI 10.4135/9781412995627.D14, DOI 10.4135/9781412995627] NR 74 TC 562 Z9 664 U1 1 U2 53 PU AMER PSYCHOLOGICAL ASSOC PI WASHINGTON PA 750 FIRST ST NE, WASHINGTON, DC 20002-4242 USA SN 1082-989X EI 1939-1463 J9 PSYCHOL METHODS JI Psychol. Methods PD SEP PY 2010 VL 15 IS 3 BP 234 EP 249 DI 10.1037/a0019623 PG 16 WC Psychology, Multidisciplinary WE Social Science Citation Index (SSCI) SC Psychology GA 645LP UT WOS:000281459600002 PM 20822250 OA Green Accepted DA 2024-09-05 ER PT J AU Okada, A Sheehy, K AF Okada, Alexandra Sheehy, Kieron TI Factors and Recommendations to Support Students' Enjoyment of Online Learning With Fun: A Mixed Method Study During COVID-19 SO FRONTIERS IN EDUCATION LA English DT Article DE COVID-19; online learning; fun; higher education; academic performance; epistemic views; responsible research and innovation; recommendations ID EPISTEMOLOGICAL BELIEFS; EPISTEMIC COGNITION; INDONESIAN TEACHERS; CURRICULUM; CREATIVITY; EDUCATION; SCHOOL; GAMES AB Understanding components that influence students' enjoyment of distance higher education is increasingly important to enhance academic performance and retention. Although there is a growing body of research about students' engagement with online learning, a research gap exists concerning whether fun affect students' enjoyment. A contributing factor to this situation is that the meaning of fun in learning is unclear, and its possible role is controversial. This research is original in examining students' views about fun and online learning, and influential components and connections. This study investigated the beliefs and attitudes of a sample of 551 distance education students including pre-services and in-service teachers, consultants and education professionals using a mixed-method approach. Quantitative and Qualitative data were generated through a self-reflective instrument during the COVID-19 pandemic. The findings revealed that 88.77% of participants valued fun in online learning; linked to well-being, motivation and performance. However, 16.66% mentioned that fun within online learning could take the focus off their studies and result in distraction or loss of time. Principal component analysis revealed three groups of students who found (1) fun relevant in socio-constructivist learning (2) no fun in traditional transmissive learning and (3) disturbing fun in constructivist learning. This study also provides key recommendations extracted from participants' views supported by consensual review for course teams, teaching staff and students to enhance online learning experiences with enjoyment and fun. C1 [Okada, Alexandra; Sheehy, Kieron] Open Univ, Fac Wellbeing Educ & Language Studies, Rumpus Res Grp, Milton Keynes, Bucks, England. C3 Open University - UK RP Okada, A (corresponding author), Open Univ, Fac Wellbeing Educ & Language Studies, Rumpus Res Grp, Milton Keynes, Bucks, England. EM ale.okada@open.ac.uk OI Okada, Alexandra/0000-0003-1572-5605; Sheehy, Kieron/0000-0001-7623-8400 FU Open University UK FX This study was funded by the Open University UK and is part of the international project OLAF -Online Learning and Fun. http://www.open.ac.uk/blogs/rumpus/index.php/projects/olaf/. CR [Anonymous], 2003, Pedagogia da Autonomia: Saberes Necessarios a Pratica Educativa (26 edicao) [Anonymous], 2000, PEDAGOGY FREEDOM ETH [Anonymous], 2015, SYSTEMS MODEL CREATI, DOI DOI 10.1007/978-94-017-9085-7 [Anonymous], 2020, COVID-19 educational disruption and response [Anonymous], 2005, A theory of fun for game design Arnone MP, 2011, ETR&D-EDUC TECH RES, V59, P181, DOI 10.1007/s11423-011-9190-9 Beckman John., 2014, American Fun: Four Centuries of Joyous Revolt Bisson C., 1996, J EXPT ED, V19, P108, DOI [https://doi.org/10.1177/105382599601900208, DOI 10.1177/105382599601900208, 10.1177/105382599601900208] Blythe M., 2018, Funology 2: From Usability to Enjoyment, V2, P375, DOI DOI 10.1007/978-3-319-68213-6_24 Budiyanto, 2018, INT J INCLUSIVE EDUC, V22, P543, DOI 10.1080/13603116.2017.1390000 Budiyanto Sheehy K., 2019, MANUAL SIGN ACQUISIT Chan KW, 2004, TEACH TEACH EDUC, V20, P817, DOI 10.1016/j.tate.2004.09.002 Chu SL, 2017, ENTERTAIN COMPUT, V18, P31, DOI 10.1016/j.entcom.2016.08.007 Cohen L., 2018, Research Methods in Education, DOI 10.4324/9781315456539-14 Cooperman L., 2014, OPEN ED RESOURCES SO Crosnoe R, 2004, SOCIOL EDUC, V77, P60, DOI 10.1177/003804070407700103 Csikszentmihalyi M., 2020, FINDING FLOW PSYCHOL de Freitas S, 2006, COMPUT EDUC, V46, P249, DOI 10.1016/j.compedu.2005.11.007 Dismore H, 2011, RES PAP EDUC, V26, P499, DOI 10.1080/02671522.2010.484866 Elton-Chalcraft S, 2015, EDUC 3-13, V43, P482, DOI 10.1080/03004279.2013.822904 Esteban-Millat I, 2014, COMPUT EDUC, V71, P111, DOI 10.1016/j.compedu.2013.09.012 Etymonline, DICION RIO ETIMOL GI European Commision, 2013, OPT STRENGTH RESP RE European Commission, 2020, Responsible Research and Innovation Feldberg H.R., 2011, THESIS U WATERLOO WA Feucht FC, 2017, EDUC PSYCHOL-US, V52, P234, DOI 10.1080/00461520.2017.1350180 Fine GA, 2017, SOCIOL THEOR, V35, P64, DOI 10.1177/0735275117692836 Fox E., 2013, OXFORD HDB HAPPINESS Francis N., 2008, Leisure/Loisir, V32, P65, DOI 10.1080/14927713.2008.9651400 Freire P, 1967, PAPEL EDUCA O HUMANI Freire P, 1984, A O CULTURAL LIBERDA, V7 Edn Freire P, 2009, PEDAGOGIA ESPERAN A, V16 FREIRE Paulo., 1985, Pedagogia do oprimido, V2 Fu FL, 2009, COMPUT EDUC, V52, P101, DOI 10.1016/j.compedu.2008.07.004 Garn AC, 2006, J TEACH PHYS EDUC, V25, P281, DOI 10.1123/jtpe.25.3.281 Glaveanu VP, 2011, THINK SKILLS CREAT, V6, P122, DOI 10.1016/j.tsc.2011.03.002 Gortan A., 2007, ORGANIZACIJA, V40 Hardman M., 2000, EDUC PSYCHOL PRACT, V16, P349, DOI [DOI 10.1080/713666082, 10.1080/02667360020006417, DOI 10.1080/02667360020006417] Harmston G.T., 2005, Sources of enjoyment in physical activity among children and adolescents Higher Education Academy (HEA), 2015, FRAM STUD ACC RETENT Hill CE, 1997, COUNS PSYCHOL, V25, P517, DOI 10.1177/0011000097254001 Iten N, 2016, BRIT J EDUC TECHNOL, V47, P151, DOI 10.1111/bjet.12226 Kimiecik JC, 1996, J SPORT EXERCISE PSY, V18, P247, DOI 10.1123/jsep.18.3.247 Knight S, 2017, COMPUT HUM BEHAV, V73, P507, DOI 10.1016/j.chb.2017.04.014 Lazzaro N, 2009, HUM FACTORS ERGON, P155 LEE J, 2013, AUSTR J TEACHER, V38, P119 Lesser L.M., 2013, J STAT EDUC, V21, P1 McManus I.C., 2010, Psychology, V1, P159, DOI [DOI 10.4236/PSYCH.2010.13021, 10.4236/psych.2010.13021] Meneses J., 2020, DROPOUT ONLINE HIGHE Okada A., 2020, Revista e-Curriculum, V18, P319 Okada A., 2020, DISTANCE ED STUDENTS Okada A, 2018, J INTERACT MEDIA EDU, DOI 10.5334/jime.482 Organisation for Economic Co-operation and Development, 2013, TEACHING LEARNING IN Organisation for Economic Co-operation and Development (OECD), 2010, TAL TECHN REP Papert S., 2002, BANGOR DAILY NE 0710 Piaget J., 2008, PSYCHOL CHILD Prouty D., 2002, Zip Lines: The Voicefor Adventure Education, V44, P6 Richardson JTE, 2013, EDUC RES REV-NETH, V9, P191, DOI 10.1016/j.edurev.2012.10.001 Rodriguez L, 2007, STUD HIGH EDUC, V32, P647, DOI 10.1080/03075070701573807 RRI-Tools, 2016, SELF REFLECTION TOOL Sánchez-Franco MJ, 2014, COMPUT EDUC, V74, P81, DOI 10.1016/j.compedu.2014.02.001 Schmidhuber J, 2010, IEEE T AUTON MENT DE, V2, P230, DOI 10.1109/TAMD.2010.2056368 Schn D. A., 1987, Educating the reflexive practitioner SCHOMMER M, 1990, J EDUC PSYCHOL, V82, P498, DOI 10.1037/0022-0663.82.3.498 Sheehy K, 2021, INT J DISABIL DEV ED, V68, P600, DOI 10.1080/1034912X.2019.1699647 Sheehy K, 2019, J INTELLECT DISABILI, V23, P39, DOI 10.1177/1744629517717613 Sheehy K, 2015, INT J DISABIL DEV ED, V62, P469, DOI 10.1080/1034912X.2015.1061109 Tavakol M, 2011, INT J MED EDUC, V2, P53, DOI 10.5116/ijme.4dfb.8dfd Tews M.J., 2015, College Teaching, V63, P16, DOI DOI 10.1080/87567555.2014.972318 Tews MJ, 2017, J VOCAT BEHAV, V98, P46, DOI 10.1016/j.jvb.2016.09.006 Turner C., 2018, MAKING LESSONS FUN D Ungar M., 2007, TOO SAFE THEIR OWN G Virvou M, 2005, EDUC TECHNOL SOC, V8, P54 von Schomberg R., 2013, Responsible Innovation, P51, DOI [10.1002/9781118551424.ch3, DOI 10.1002/9781118551424.CH3] Vygotsky LS, 1978, Mind in Society: Development of Higher Psychological Processes, DOI [DOI 10.2307/J.CTVJF9VZ4, 10.2307/j.ctvjf9vz4] Whitton N, 2019, TEACH HIGH EDUC, V24, P1000, DOI 10.1080/13562517.2018.1541885 World Bank, 2020, How Does the COVID-19 Crisis Differ from Other Shocks to the Economy? NR 77 TC 14 Z9 18 U1 1 U2 14 PU FRONTIERS MEDIA SA PI LAUSANNE PA AVENUE DU TRIBUNAL FEDERAL 34, LAUSANNE, CH-1015, SWITZERLAND EI 2504-284X J9 FRONT EDUC JI Front. Educ. PD DEC 11 PY 2020 VL 5 AR 584351 DI 10.3389/feduc.2020.584351 PG 18 WC Education & Educational Research WE Emerging Sources Citation Index (ESCI) SC Education & Educational Research GA TW9FT UT WOS:000682696900001 OA Green Accepted, gold DA 2024-09-05 ER PT J AU Song, P Wang, X AF Song, Pu Wang, Xiang TI A bibliometric analysis of worldwide educational artificial intelligence research development in recent twenty years SO ASIA PACIFIC EDUCATION REVIEW LA English DT Article DE Bibliometric analysis; Educational artificial intelligence; Research development; Relationship between humans and machines ID COGNITIVE TUTOR; STUDENT; MANAGEMENT; TRENDS AB Educational artificial intelligence (EAI) refers to the use of artificial intelligence (AI) to support personalized and automated feedback and guidance in the educational field. Inevitably, it serves as a more important part of the educational system in the coming years. However, novel development in this field has been inadequately reviewed and conceptualized in a visualized, objective and comprehensive way. In this view, a bibliometric analysis was conducted to obtain an overview of its trends from publication outputs, countries' cooperation, cluster analysis, and research evolution. Around 8660 Scopus-published articles from 2000 to 2019 were gathered for analysis using CiteSpace and Alluvial generator. In the study, a growing interest in EAI research and deepening cooperation among countries was first identified, entailing favorable conditions for promoting globalization in this aspect. Afterward, five core clusters were established for the intellectual structure of EAI, including intelligent tutoring system, learning system, student, labeled training data, and pedagogy. The development of EAI research was further conceptualized as follows: (a) technological foundation; (b) technological breakthrough; (c) intelligent application; and (d) symbiotic integration. Finally, three prospective directions for future EAI research were suggested. C1 [Song, Pu; Wang, Xiang] Guizhou Educ Univ, Sch Educ Sci, Guiyang 550018, Guizhou, Peoples R China. [Song, Pu; Wang, Xiang] Univ Putra Malaysia, Fac Educ Studies, Seri Kembangan, Malaysia. [Wang, Xiang] Mahidol Univ, Ctr China & Globalizing Asia Studies, Salaya, Nakhon Pathom, Thailand. C3 Guizhou Education University; Universiti Putra Malaysia; Mahidol University RP Wang, X (corresponding author), Guizhou Educ Univ, Sch Educ Sci, Guiyang 550018, Guizhou, Peoples R China.; Wang, X (corresponding author), Univ Putra Malaysia, Fac Educ Studies, Seri Kembangan, Malaysia.; Wang, X (corresponding author), Mahidol Univ, Ctr China & Globalizing Asia Studies, Salaya, Nakhon Pathom, Thailand. EM 348634925@qq.com RI Zhang, Yuqing/KSM-6924-2024 CR Aleven V., 2009, International Journal of Artificial Intelligence and Education, V19, P105 Aleven V, 2016, INT J ARTIF INTELL E, V26, P224, DOI 10.1007/s40593-015-0088-2 [Anonymous], J CLEANER PRODUCTION Anthony G., 1996, Educ. Stud. Math, V31, P349, DOI DOI 10.1007/BF00369153 Baker R. S., 2009, Journal of educational Data Mining, V1, P3, DOI DOI 10.5281/ZENODO.3554657 Barrow L, 2009, AM ECON J-ECON POLIC, V1, P52, DOI 10.1257/pol.1.1.52 Bean C, 2011, ENGAGING IDEAS PROFE Boulay du B., 2010, International Journal of Artificial Intelligence in Education, V20, P197, DOI [10.3233/JAI-2010-0007, DOI 10.3233/JAI-2010-0007, 10.5555/1971783.1971784, DOI 10.5555/1971783.1971784] Boveja R, 2008, J INTERACTIVE LEA S1, V19, P185 Brodley CE, 1999, J ARTIF INTELL RES, V11, P131, DOI 10.1613/jair.606 Brophy S, 2008, J ENG EDUC, V97, P369, DOI 10.1002/j.2168-9830.2008.tb00985.x Chaplin E, 2018, ADV AUTISM, V4, P1, DOI 10.1108/AIA-12-2017-0025 Chen CM, 2007, LECT NOTES COMPUT SC, V4564, P265 Chen CM, 2007, EXPERT SYST APPL, V33, P6, DOI 10.1016/j.eswa.2006.04.025 Chen CM, 2006, J AM SOC INF SCI TEC, V57, P359, DOI 10.1002/asi.20317 Chen YX, 2004, J MACH LEARN RES, V5, P913 Conati C, 2009, USER MODEL USER-ADAP, V19, P267, DOI 10.1007/s11257-009-9062-8 Dalpé R, 2002, SCIENTOMETRICS, V55, P189, DOI 10.1023/A:1019663607103 Diattara A, 2016, LECT NOTES COMPUT SC, V9891, P575, DOI 10.1007/978-3-319-45153-4_66 Drigas AS, 2013, COMMUNICATIONS COMPU Dutton T., 2018, MEDIUM Felder RM, 2005, J ENG EDUC, V94, P57, DOI 10.1002/j.2168-9830.2005.tb00829.x Freeman S, 2014, P NATL ACAD SCI USA, V111, P8410, DOI 10.1073/pnas.1319030111 García-Lillo F, 2016, INT J HOSP MANAG, V52, P121, DOI 10.1016/j.ijhm.2015.10.007 Guilherme A, 2019, AI SOC, V34, P47, DOI 10.1007/s00146-017-0693-8 Hall M., 2009, ACM SIGKDD Explor. Newsl., V11, P10, DOI DOI 10.1145/1656274.1656278 Han JH, 2019, PROC INT CONF EDU IN, P153, DOI 10.1109/EITT.2019.00037 Herreid C. F., 2013, Journal of College Science Teaching, V42, P62, DOI DOI 10.4108/EL.1.3.E1 Hinton GE, 2006, NEURAL COMPUT, V18, P1527, DOI 10.1162/neco.2006.18.7.1527 Huang GB, 2006, NEUROCOMPUTING, V70, P489, DOI 10.1016/j.neucom.2005.12.126 Jia YQ, 2014, PROCEEDINGS OF THE 2014 ACM CONFERENCE ON MULTIMEDIA (MM'14), P675, DOI 10.1145/2647868.2654889 Johns J., 2006, NAT C AI Kai L, 2018, OPEN ED RES, V24, P11 Kamimura R, 2003, CONNECT SCI, V15, P117, DOI 10.1080/09540090310001611136 Kandlhofer M, 2016, PROC FRONT EDUC CONF Krizhevsky A, 2017, COMMUN ACM, V60, P84, DOI 10.1145/3065386 Kurzweil Ray., 1999, AGE SPIRITUAL MACHIN Laurent P, 2018, PLANS AI DO WE STAND LeCun Y, 2015, NATURE, V521, P436, DOI 10.1038/nature14539 Mason GS, 2013, IEEE T EDUC, V56, P430, DOI 10.1109/TE.2013.2249066 Mayer RE, 2009, CONTEMP EDUC PSYCHOL, V34, P51, DOI 10.1016/j.cedpsych.2008.04.002 Miyazoe T, 2010, SYSTEM, V38, P185, DOI 10.1016/j.system.2010.03.006 Pane JF, 2014, EDUC EVAL POLICY AN, V36, P127, DOI 10.3102/0162373713507480 Pedregosa F, 2011, J MACH LEARN RES, V12, P2825 Richardson M, 2006, MACH LEARN, V62, P107, DOI 10.1007/s10994-006-5833-1 Ritter S, 2007, PSYCHON B REV, V14, P249, DOI 10.3758/BF03194060 Roll I, 2011, LEARN INSTR, V21, P280 Roll I, 2016, INT J ARTIF INTELL E, V26, P582, DOI 10.1007/s40593-016-0110-3 Romero C, 2007, EXPERT SYST APPL, V33, P135, DOI 10.1016/j.eswa.2006.04.005 Rosvall M, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0008694 Sales A, 2019, ETHICAL ECON, V57, P3, DOI 10.1007/978-3-030-15407-3_1 Shiffrin RM, 2004, P NATL ACAD SCI USA, V101, P5183, DOI 10.1073/pnas.0307852100 Sonnenwald DH, 2007, ANNU REV INFORM SCI, V41, P643, DOI 10.1002/aris.2007.1440410121 Strayer J. F., 2012, LEARNING ENVIRON RES, V15, P171, DOI [10.1007/s10984-012-9108-4, DOI 10.1007/S10984-012-9108-4] VanLehn K, 2011, EDUC PSYCHOL-US, V46, P197, DOI 10.1080/00461520.2011.611369 Varner LK, 2013, J WRIT RES, V5, P35, DOI 10.17239/jowr-2013.05.01.2 Walker E, 2014, INT J ARTIF INTELL E, V24, P33, DOI 10.1007/s40593-013-0001-9 Wang XB., 2017, J TROP BIOL, V8, P1, DOI DOI 10.15886/J.CNKI.RDSWXB.2017.01.001 Wu XD, 2008, KNOWL INF SYST, V14, P1, DOI 10.1007/s10115-007-0114-2 Zhu WW, 2018, SUSTAINABILITY-BASEL, V10, DOI 10.3390/su10051510 NR 60 TC 49 Z9 50 U1 18 U2 186 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 1598-1037 EI 1876-407X J9 ASIA PAC EDUC REV JI Asia Pac. Educ. Rev. PD SEP PY 2020 VL 21 IS 3 BP 473 EP 486 DI 10.1007/s12564-020-09640-2 EA AUG 2020 PG 14 WC Education & Educational Research WE Social Science Citation Index (SSCI) SC Education & Educational Research GA ND3YO UT WOS:000557313400001 OA Bronze DA 2024-09-05 ER PT J AU Shi, C Wang, HX Chen, BJ Liu, YH Zhou, ZG AF Shi, Chen Wang, Haoxuan Chen, Binjie Liu, Yuhua Zhou, Zhiguang TI Visual Analysis of Citation Context-Based Article Influence Ranking SO IEEE ACCESS LA English DT Article DE Influence ranking; visualization; visual analysis; citation network; word2vec ID HETEROGENEOUS ACADEMIC NETWORKS; SCHOLARLY DATA; VISUALIZATION; EXPLORATION; ANALYTICS; PAPER AB Article influence ranking is an effective way to reduce information redundancy and improve the efficiency of article retrieval. A large number of ranking models for network items have been employed for the ranking of article influence, such as PageRank and Spamming-resistant Expertise Analysis and Ranking. However, the effectiveness of article influence ranking based on the models of PageRank and SPEAR declines with the rapid growth of academic datasets, because of the increasing complexity of citation network. In order to take a rich set of contextual structures of citation context into consideration, we propose a visualization system VAIR for the citation context-based article influence ranking. Firstly, the word2vec model, a renowned technique in the field of natural language processing, is applied to transform articles into vectorized representations according to citation context. Then, a novel citation context-based article influence ranking model is designed according to the complex relationships quantified in a semantic vectorised space. Several visual designs are implemented, allowing users to perceive and compare the ranking results visually and intuitively. A set of user-friendly interactions are provided in the visualization framework, enabling users to explore the desirable article influence and obtain deep insights into the ranking model. Moreover, a series of case studies and comparison experiments are carried out based on real-world datasets, which further demonstrate the effectiveness of our algorithm for article influence ranking. C1 [Shi, Chen; Wang, Haoxuan; Chen, Binjie; Liu, Yuhua; Zhou, Zhiguang] Zhejiang Univ Finance & Econ, Informat Sch, Hangzhou 310018, Zhejiang, Peoples R China. [Zhou, Zhiguang] Zhejiang Univ, State Key Lab CAD&CG, Hangzhou 310058, Zhejiang, Peoples R China. C3 Zhejiang University of Finance & Economics; Zhejiang University RP Zhou, ZG (corresponding author), Zhejiang Univ Finance & Econ, Informat Sch, Hangzhou 310018, Zhejiang, Peoples R China.; Zhou, ZG (corresponding author), Zhejiang Univ, State Key Lab CAD&CG, Hangzhou 310058, Zhejiang, Peoples R China. EM zhgzhou1983@163.com FU National Natural Science Foundation of China [61872314, 61802339]; Humanities and Social Sciences Foundation of Ministry of Education in China [18YJC910017]; Natural Science Foundation of Zhejiang Province [LY18F020024]; Major Humanities and Social Sciences Research Projects in Colleges of Zhejiang Province [2018QN021]; Open Project Program of the State Key Laboratory of CADAMP;CG of Zhejiang University [A1806]; First Class Discipline of Zhejiang-A (Zhejiang University of Finance and Economics-Statistics) FX This work was supported in part by the National Natural Science Foundation of China under Grant 61872314 and Grant 61802339, in part by the Humanities and Social Sciences Foundation of Ministry of Education in China under Grant 18YJC910017, in part by the Natural Science Foundation of Zhejiang Province under Grant LY18F020024, in part by the Major Humanities and Social Sciences Research Projects in Colleges of Zhejiang Province under Grant 2018QN021, in part by the Open Project Program of the State Key Laboratory of CAD& CG of Zhejiang University under Grant A1806, and in part by the First Class Discipline of Zhejiang-A (Zhejiang University of Finance and Economics-Statistics). CR Abdelrahem M, 2017, 2017 IEEE INTERNATIONAL SYMPOSIUM ON PREDICTIVE CONTROL OF ELECTRICAL DRIVES AND POWER ELECTRONICS (PRECEDE), P1, DOI [10.1109/ULTSYM.2017.8092427, 10.1063/1.4975416, 10.1109/PRECEDE.2017.8071099] [Anonymous], 2012, CIKM Berger M, 2017, IEEE T VIS COMPUT GR, V23, P691, DOI 10.1109/TVCG.2016.2598667 Biglu MH, 2008, SCIENTOMETRICS, V74, P453, DOI 10.1007/s11192-007-1815-8 Blanco R, 2015, WSDM'15: PROCEEDINGS OF THE EIGHTH ACM INTERNATIONAL CONFERENCE ON WEB SEARCH AND DATA MINING, P179, DOI 10.1145/2684822.2685317 Chen HD, 2014, IEEE T VIS COMPUT GR, V20, P1683, DOI 10.1109/TVCG.2014.2346594 Chen W, 2019, IEEE T VIS COMPUT GR, V25, P555, DOI 10.1109/TVCG.2018.2865139 Chen ZT, 2017, VIS INFORM, V1, P132, DOI 10.1016/j.visinf.2017.11.002 Di T., 2018, IEEE T VIS COMPUT GR, V25, P459 Egghe L, 2006, SCIENTOMETRICS, V69, P121, DOI 10.1007/s11192-006-0143-8 Evans JA, 2009, SCIENCE, V323, P1025, DOI 10.1126/science.1154562 Garfield E, 2006, JAMA-J AM MED ASSOC, V295, P90, DOI 10.1001/jama.295.1.90 Gratzl S, 2013, IEEE T VIS COMPUT GR, V19, P2277, DOI 10.1109/TVCG.2013.173 Grover A, 2016, KDD'16: PROCEEDINGS OF THE 22ND ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, P855, DOI 10.1145/2939672.2939754 Hassan S., 2009, P SIAM INT C DAT MIN, P533 Hirsch JE, 2010, SCIENTOMETRICS, V85, P741, DOI 10.1007/s11192-010-0193-9 Isenberg P, 2017, IEEE T VIS COMPUT GR, V23, P2199, DOI 10.1109/TVCG.2016.2615308 Kidwell P, 2008, IEEE T VIS COMPUT GR, V14, P1356, DOI 10.1109/TVCG.2008.181 Lehmann S, 2006, NATURE, V444, P1003, DOI 10.1038/4441003a Liu DY, 2017, IEEE T VIS COMPUT GR, V23, P1, DOI 10.1109/TVCG.2016.2598432 Liu JY, 2018, IEEE ACCESS, V6, P19205, DOI 10.1109/ACCESS.2018.2815030 Liu K, 2017, ISPRS INT J GEO-INF, V6, DOI 10.3390/ijgi6110321 Liu ZR, 2014, PROC INT C TOOLS ART, P493, DOI 10.1109/ICTAI.2014.80 Ma JB, 2009, ISBIM: 2008 INTERNATIONAL SEMINAR ON BUSINESS AND INFORMATION MANAGEMENT, VOL 2, P285, DOI 10.1109/ISBIM.2008.156 Ma N, 2008, INFORM PROCESS MANAG, V44, P800, DOI 10.1016/j.ipm.2007.06.006 Mikolov T., 2013, ADV NEURAL INFORM PR, P3111, DOI DOI 10.48550/ARXIV.1310.4546 Noll MG, 2009, PROCEEDINGS 32ND ANNUAL INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, P612, DOI 10.1145/1571941.1572046 Page L., 1994, STANFORD DIGIT LIB W, V9, P1 Seo J., 2005, Information Visualization, V4, P96, DOI 10.1057/palgrave.ivs.9500091 Shi CL, 2012, IEEE T VIS COMPUT GR, V18, P2669, DOI 10.1109/TVCG.2012.253 Su Zhan., 2014, OFC 2014, P1 Tomas T., 2013, COMPUT SCI Turian J, 2010, ACL 2010: 48TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, P384 Vuillemot R, 2015, CHI 2015: PROCEEDINGS OF THE 33RD ANNUAL CHI CONFERENCE ON HUMAN FACTORS IN COMPUTING SYSTEMS, P2703, DOI 10.1145/2702123.2702237 Walker D., 2007, J STAT MECH-THEORY E, V6, P1 Wan XJ, 2014, J ASSOC INF SCI TECH, V65, P1929, DOI 10.1002/asi.23083 Wang Y., 2013, P AAAI C ART INT, P1 Xia F, 2017, IEEE T BIG DATA, V3, P18, DOI 10.1109/TBDATA.2016.2641460 Xia J, 2017, IEEE COMPUT GRAPH, V37, P42, DOI 10.1109/MCG.2017.21 Xie C, 2014, IEEE T VIS COMPUT GR, V20, P1743, DOI 10.1109/TVCG.2014.2346913 Yan E, 2011, J AM SOC INF SCI TEC, V62, P467, DOI 10.1002/asi.21461 Zhang CM, 2013, SCI REP-UK, V3, DOI 10.1038/srep01503 Zhang F, 2018, ACM-IEEE J CONF DIG, P127, DOI 10.1145/3197026.3197070 Zhou ZG, 2018, J VISUAL LANG COMPUT, V48, P134, DOI 10.1016/j.jvlc.2018.08.007 Zhou ZG, 2019, IEEE T VIS COMPUT GR, V25, P43, DOI 10.1109/TVCG.2018.2864503 Zhou ZG, 2017, IEEE COMPUT GRAPH, V37, P98, DOI 10.1109/MCG.2017.3621228 Zhu XD, 2015, J ASSOC INF SCI TECH, V66, P408, DOI 10.1002/asi.23179 NR 47 TC 3 Z9 4 U1 1 U2 15 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 2169-3536 J9 IEEE ACCESS JI IEEE Access PY 2019 VL 7 BP 113853 EP 113866 DI 10.1109/ACCESS.2019.2932051 PG 14 WC Computer Science, Information Systems; Engineering, Electrical & Electronic; Telecommunications WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Computer Science; Engineering; Telecommunications GA IT6YK UT WOS:000483022100039 OA gold DA 2024-09-05 ER PT J AU Kyebambe, MN Cheng, G Huang, YQ He, CH Zhang, ZY AF Kyebambe, Moses Ntanda Cheng, Ge Huang, Yunqing He, Chunhui Zhang, Zhenyu TI Forecasting emerging technologies: A supervised learning approach through patent analysis SO TECHNOLOGICAL FORECASTING AND SOCIAL CHANGE LA English DT Article DE Technology forecasting; Industrial technology roadmap; R & D planning; Patent analysis; Citation analysis ID SCIENCE-AND-TECHNOLOGY; CITATION; KNOWLEDGE; NETWORKS; CLUSTERS; TOOL AB Both private and public enterprises have great interest in prior knowledge of emerging technologies to enable them make strategic investments. Technology forecasting offers a relevant opportunity in this direction and is currently a hot upcoming area of research. However, accurate forecasting of emerging technologies is still problematic mainly due to absence labeled historical data to use in training of learners. Previous studies have approached the technological forecasting problem through unsupervised learning methods and, as such, are missing out on potential benefits of supervised learning approaches such as full automation. In this study, we propose a novel algorithm to automatically label data and then use the labeled data to train learners to forecast emerging technologies. As a case study, we used patent citation data provided by the United States Patent and Trademark Office to test and evaluate the proposed algorithm. The algorithm uses advanced patent citation techniques to derive useful predictors from patent citation data with a result of forecasting new technologies at least a year before they emerge. Our evaluation reveals that our proposed algorithm can retrieve as high as 70% of emerging technologies in a given year with high precision. C1 [Kyebambe, Moses Ntanda; Huang, Yunqing; He, Chunhui; Zhang, Zhenyu] Xiangtan Univ, Dept Math & Computat Sci, Xiangtan, Hunan, Peoples R China. [Cheng, Ge] Xiangtan Univ, Coll Informat Engn, Xiangtan, Hunan, Peoples R China. C3 Xiangtan University; Xiangtan University RP Cheng, G (corresponding author), Xiangtan Univ, Coll Informat Engn, Xiangtan, Hunan, Peoples R China. EM mntanda@cis.mak.ac.ug; chengge@xtu.edu.cn; huangyq@xtu.edu.cn; zhenyuzhang@smail.xtu.edu.cn RI zhang, zhenyu/HOA-8440-2023; zhang, jinlu/KEE-9374-2024; Huang, YQ/JOK-7580-2023; He, chunhui/GWR-3689-2022 OI He, chunhui/0000-0003-1505-1620 CR ALBERT MB, 1991, RES POLICY, V20, P251, DOI 10.1016/0048-7333(91)90055-U Alcácer J, 2006, REV ECON STAT, V88, P774, DOI 10.1162/rest.88.4.774 Blondel VD, 2008, J STAT MECH-THEORY E, DOI 10.1088/1742-5468/2008/10/P10008 Boyack KW, 2010, J AM SOC INF SCI TEC, V61, P2389, DOI 10.1002/asi.21419 Breitzman A, 2015, RES POLICY, V44, P195, DOI 10.1016/j.respol.2014.06.006 Chen CM, 2010, J AM SOC INF SCI TEC, V61, P1386, DOI 10.1002/asi.21309 Érdi P, 2013, SCIENTOMETRICS, V95, P225, DOI 10.1007/s11192-012-0796-4 Ester Martin, 1996, P 2 INT C KNOWL DISC, P226 Fleming L, 2004, STRATEGIC MANAGE J, V25, P909, DOI 10.1002/smj.384 Fleming L, 2001, MANAGE SCI, V47, P117, DOI 10.1287/mnsc.47.1.117.10671 Fleming L., 2006, SSRN ELECT J Furukawa T, 2015, TECHNOL FORECAST SOC, V91, P280, DOI 10.1016/j.techfore.2014.03.013 Garfield E., 1979, HUMANITIES Ittipanuvat V, 2014, J ENG TECHNOL MANAGE, V32, P160, DOI 10.1016/j.jengtecman.2013.05.006 Karvonen M, 2013, TECHNOL FORECAST SOC, V80, P1094, DOI 10.1016/j.techfore.2012.05.006 Kayal AA, 1999, IEEE T ENG MANAGE, V46, P127, DOI 10.1109/17.759138 KESSLER MM, 1963, AM DOC, V14, P10, DOI 10.1002/asi.5090140103 Klavans R, 2017, J ASSOC INF SCI TECH, V68, P984, DOI 10.1002/asi.23734 Lai KK, 2005, INFORM PROCESS MANAG, V41, P313, DOI 10.1016/j.ipm.2003.11.004 Lampe R, 2012, REV ECON STAT, V94, P320, DOI 10.1162/REST_a_00159 Michel J, 2001, SCIENTOMETRICS, V51, P185, DOI 10.1023/A:1010577030871 Moed H.F, 2005, CIT ANAL RES EVAL, P323 Moore K.A, 2004, WORTHLESS PATENTS Newman M. E. J., 2018, Network: An introduction, V2nd, DOI 10.1093/acprof:oso/9780199206650.001.0001 Park G, 2006, J SCI IND RES INDIA, V65, P121 Park H, 2013, EXPERT SYST APPL, V40, P736, DOI 10.1016/j.eswa.2012.08.008 PRICE DJD, 1965, SCIENCE, V149, P510 Rotolo D., 2015, SPRU WORK PAP SER, P1, DOI DOI 10.1016/J.RESP0L.2015.06.006 Seung-wook C., 2014, FORECASTING PROMISIN Shibata N, 2008, TECHNOVATION, V28, P758, DOI 10.1016/j.technovation.2008.03.009 Shibata N, 2010, TECHNOL FORECAST SOC, V77, P1147, DOI 10.1016/j.techfore.2010.03.008 Shibata N, 2009, J AM SOC INF SCI TEC, V60, P571, DOI 10.1002/asi.20994 Smalheiser NR, 2001, TECHNOVATION, V21, P689, DOI 10.1016/S0166-4972(01)00048-7 Small H., 1973, J AM SOC INF SCI Sorenson O, 2006, RES POLICY, V35, P994, DOI 10.1016/j.respol.2006.05.002 SWANSON DR, 1987, J AM SOC INFORM SCI, V38, P228, DOI 10.1002/(SICI)1097-4571(198707)38:4<228::AID-ASI2>3.0.CO;2-G Tang Jie., 2012, P 18 ACM SIGKDD INT, P1366, DOI DOI 10.1145/2339530.2339741 Tseng YH, 2007, INFORM PROCESS MANAG, V43, P1216, DOI 10.1016/j.ipm.2006.11.011 Valverde S., 2014, COMPLEXITY ENG COMPE, V2014, P1 Wong CY, 2015, J INFORMETR, V9, P90, DOI 10.1016/j.joi.2014.11.006 Yoon J, 2011, SCIENTOMETRICS, V88, P213, DOI 10.1007/s11192-011-0383-0 NR 41 TC 84 Z9 92 U1 7 U2 187 PU ELSEVIER SCIENCE INC PI NEW YORK PA STE 800, 230 PARK AVE, NEW YORK, NY 10169 USA SN 0040-1625 EI 1873-5509 J9 TECHNOL FORECAST SOC JI Technol. Forecast. Soc. Chang. PD DEC PY 2017 VL 125 BP 236 EP 244 DI 10.1016/j.techfore.2017.08.002 PG 9 WC Business; Regional & Urban Planning WE Social Science Citation Index (SSCI) SC Business & Economics; Public Administration GA FL3FY UT WOS:000414109500020 DA 2024-09-05 ER PT J AU Jia, QF Wang, XF Zhou, RY Ma, BX Fei, FQ Han, H AF Jia, Qianfang Wang, Xiaofang Zhou, Rongyi Ma, Bingxiang Fei, Fangqin Han, Hui TI Systematic bibliometric and visualized analysis of research hotspots and trends in artificial intelligence in autism spectrum disorder SO FRONTIERS IN NEUROINFORMATICS LA English DT Article DE artificial intelligence; autism spectrum disorder; data visualization; bibliometric; CiteSpace; VOSviewer AB BackgroundArtificial intelligence (AI) has been the subject of studies in autism spectrum disorder (ASD) and may affect its identification, diagnosis, intervention, and other medical practices in the future. Although previous studies have used bibliometric techniques to analyze and investigate AI, there has been little research on the adoption of AI in ASD. This study aimed to explore the broad applications and research frontiers of AI used in ASD.MethodsCitation data were retrieved from the Web of Science Core Collection (WoSCC) database to assess the extent to which AI is used in ASD. CiteSpace.5.8. R3 and VOSviewer, two online tools for literature metrology analysis, were used to analyze the data.ResultsA total of 776 publications from 291 countries and regions were analyzed; of these, 256 publications were from the United States and 173 publications were from China, and England had the largest centrality of 0.33; Stanford University had the highest H-index of 17; and the largest cluster label of co-cited references was machine learning. In addition, keywords with a high number of occurrences in this field were autism spectrum disorder (295), children (255), classification (156) and diagnosis (77). The burst keywords from 2021 to 2023 were infants and feature selection, and from 2022 to 2023, the burst keyword was corpus callosum.ConclusionThis research provides a systematic analysis of the literature concerning AI used in ASD, presenting an overall demonstration in this field. In this area, the United States and China have the largest number of publications, England has the greatest influence, and Stanford University is the most influential. In addition, the research on AI used in ASD mostly focuses on classification and diagnosis, and "infants, feature selection, and corpus callosum are at the forefront, providing directions for future research. However, the use of AI technologies to identify ASD will require further research. C1 [Jia, Qianfang; Wang, Xiaofang] Hebei Univ Chinese Med, Shijiazhuang, Peoples R China. [Zhou, Rongyi; Ma, Bingxiang] Henan Univ Chinese Med, Affiliated Hosp 1, Childrens Brain Dis Diag Treatment & Rehabil Ctr, Zhengzhou, Peoples R China. [Zhou, Rongyi; Ma, Bingxiang] Henan Univ Chinese Med, Sch Pediat Med, Zhengzhou, Peoples R China. [Fei, Fangqin; Han, Hui] Huzhou Univ, Peoples Hosp Huzhou 1, Dept Nursing, Huzhou, Peoples R China. C3 Hebei University of Chinese Medicine; Henan University of Traditional Chinese Medicine; Henan University of Traditional Chinese Medicine; Huzhou University RP Ma, BX (corresponding author), Henan Univ Chinese Med, Affiliated Hosp 1, Childrens Brain Dis Diag Treatment & Rehabil Ctr, Zhengzhou, Peoples R China.; Ma, BX (corresponding author), Henan Univ Chinese Med, Sch Pediat Med, Zhengzhou, Peoples R China.; Fei, FQ; Han, H (corresponding author), Huzhou Univ, Peoples Hosp Huzhou 1, Dept Nursing, Huzhou, Peoples R China. EM mbx1963@126.com; feifangqin@139.com; hanhui30@126.com RI wang, xiaofang/HRD-7918-2023 OI wang, xiaofang/0000-0002-2457-3474 FU The 2023 Special Project for Scientific Research on the Creation of "Double-First-Class"Chinese Medicine in Henan Province [HSRP-DFCTCM-2023-3-06]; Construction Project of Chinese Medicine Discipline of Specialized Backbone Disciplines in Henan Province [STG-ZYX03-202129]; Construction Project of Chinese Medicine Discipline of Characteristic Disciplines in Henan Province [STG-ZYXKY-2020023] FX This study was supported by the 2023 Special Project for Scientific Research on the Creation of "Double-First-Class"Chinese Medicine in Henan Province (HSRP-DFCTCM-2023-3-06), Construction Project of Chinese Medicine Discipline of Specialized Backbone Disciplines in Henan Province (STG-ZYX03-202129) and Construction Project of Chinese Medicine Discipline of Characteristic Disciplines in Henan Province (STG-ZYXKY-2020023). CR Ahammed MS, 2021, FRONT NEUROINFORM, V15, DOI 10.3389/fninf.2021.635657 Ahmadlou M, 2012, J NEUROSCI METH, V211, P203, DOI 10.1016/j.jneumeth.2012.08.020 Ahmed IA, 2022, ELECTRONICS-SWITZ, V11, DOI 10.3390/electronics11040530 Alabdulkareem A, 2022, SENSORS-BASEL, V22, DOI 10.3390/s22030944 Alvari G, 2021, J CLIN MED, V10, DOI 10.3390/jcm10081776 Barua PD, 2022, INT J ENV RES PUB HE, V19, DOI 10.3390/ijerph19031192 Bi XA, 2022, COMPUT J, V65, P251, DOI 10.1093/comjnl/bxaa023 Bilgen I, 2020, J NEUROSCI METH, V343, DOI 10.1016/j.jneumeth.2020.108799 Bosl W, 2011, BMC MED, V9, DOI 10.1186/1741-7015-9-18 Dekhil O, 2018, PLOS ONE, V13, DOI 10.1371/journal.pone.0206351 Duan YM, 2022, FRONT HUM NEUROSCI, V15, DOI 10.3389/fnhum.2021.765517 Emerson RW, 2017, SCI TRANSL MED, V9, DOI 10.1126/scitranslmed.aag2882 Martínez-González AE, 2023, REV J AUTISM DEV DIS, V10, P630, DOI 10.1007/s40489-022-00313-x Graham SF, 2020, METABOLOMICS, V16, DOI 10.1007/s11306-020-01685-z Hamet P, 2017, METABOLISM, V69, pS36, DOI 10.1016/j.metabol.2017.01.011 Haputhanthri D, 2020, INT J AUTOM COMPUT, V17, P837, DOI 10.1007/s11633-020-1231-6 Haque MM, 2021, JMIR MED INF, V9, DOI 10.2196/29242 Hazlett HC, 2017, NATURE, V542, P348, DOI 10.1038/nature21369 Heinsfeld AS, 2018, NEUROIMAGE-CLIN, V17, P16, DOI 10.1016/j.nicl.2017.08.017 Jiang MM, 2023, FRONT PSYCHIATRY, V14, DOI 10.3389/fpsyt.2023.1096769 Kanhirakadavath MR, 2022, DIAGNOSTICS, V12, DOI 10.3390/diagnostics12020518 Kaul V, 2020, GASTROINTEST ENDOSC, V92, P807, DOI 10.1016/j.gie.2020.06.040 Kimura R, 2019, SCI REP-UK, V9, DOI 10.1038/s41598-019-50250-9 Krishnan A, 2016, NAT NEUROSCI, V19, P1454, DOI 10.1038/nn.4353 Kulkarni S, 2020, ACAD RADIOL, V27, P62, DOI 10.1016/j.acra.2019.10.001 Li YA, 2022, FRONT PEDIATR, V10, DOI 10.3389/fped.2022.972809 Lin Y, 2020, FRONT GENET, V11, DOI 10.3389/fgene.2020.500064 Lu A, 2021, BRAIN SCI, V11, DOI 10.3390/brainsci11111446 Lu Y, 2022, DIS MARKERS, V2022, DOI 10.1155/2022/3372217 Mertz L, 2021, IEEE PULSE, V12, P6, DOI 10.1109/MPULS.2021.3113092 Moradi E, 2017, NEUROIMAGE, V144, P128, DOI 10.1016/j.neuroimage.2016.09.049 PAN Y, 2021, CHINESE J ELECTRON, V30, P793, DOI 10.1049/cje.2021.06.002 Pietrucci D, 2022, BIOMEDICINES, V10, DOI 10.3390/biomedicines10082028 Plitt M, 2015, NEUROIMAGE-CLIN, V7, P359, DOI 10.1016/j.nicl.2014.12.013 Reddy S, 2022, LANCET DIGIT HEALTH, V4, DOI 10.1016/S2589-7500(22)00029-2 Shahamiri SR, 2022, TECHNOL HEALTH CARE, V30, P605, DOI 10.3233/THC-213032 Shahamiri SR, 2020, COGN COMPUT, V12, P766, DOI 10.1007/s12559-020-09743-3 Sharif H, 2022, APPL ARTIF INTELL, V36, DOI 10.1080/08839514.2021.2004655 Spera G, 2019, FRONT PSYCHIATRY, V10, DOI 10.3389/fpsyt.2019.00620 Tang HT, 2023, FRONT NEUROL, V14, DOI 10.3389/fneur.2023.1203375 Vabalas A, 2019, PLOS ONE, V14, DOI 10.1371/journal.pone.0224365 van den Berk-smeekens I, 2022, EUR CHILD ADOLES PSY, V31, P1871, DOI 10.1007/s00787-021-01804-8 Volkmar FR, 2013, MOL AUTISM, V4, DOI 10.1186/2040-2392-4-13 Wall DP, 2012, TRANSL PSYCHIAT, V2, DOI 10.1038/tp.2012.10 Yahata N, 2016, NAT COMMUN, V7, DOI 10.1038/ncomms11254 Yamagata B, 2019, BRAIN IMAGING BEHAV, V13, P1689, DOI 10.1007/s11682-018-9973-2 Zhang HJ, 2023, J PROTEOMICS, V278, DOI 10.1016/j.jprot.2023.104872 Zhou J, 2019, NAT GENET, V51, P973, DOI 10.1038/s41588-019-0420-0 NR 48 TC 0 Z9 0 U1 13 U2 24 PU FRONTIERS MEDIA SA PI LAUSANNE PA AVENUE DU TRIBUNAL FEDERAL 34, LAUSANNE, CH-1015, SWITZERLAND EI 1662-5196 J9 FRONT NEUROINFORM JI Front. Neuroinformatics PD DEC 6 PY 2023 VL 17 AR 1310400 DI 10.3389/fninf.2023.1310400 PG 11 WC Mathematical & Computational Biology; Neurosciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Mathematical & Computational Biology; Neurosciences & Neurology GA CY4G9 UT WOS:001128774000001 PM 38125308 OA Green Published, gold DA 2024-09-05 ER PT J AU Wang, N Li, SQ Wang, CH Zhao, L AF Wang, Nan Li, Suqi Wang, Chenhui Zhao, Li TI Current Status and Emerging Trends of Generative Artificial Intelligence Technology: A Bibliometric Analysis SO JOURNAL OF INTERNET TECHNOLOGY LA English DT Article DE Generative artificial intelligence; ChatGPT; Generative adversarial network; Biblioshiny; Web of Science AB With the widespread application of ChatGPT (Chat Generative Pre -trained Transformer), its superordinate concept, generative artificial intelligence (Gen AI), has received increasing attention from researchers. The current study attempted to explore the current status and emerging trends of Gen AI technology research by visualizing the relevant published articles using the Biblioshiny tool. A total of 1,902 academic articles in the Web of Science (WOS) database published between 2014-2022 were analyzed. Annual publications, most productive journals and countries, co-authors, co-occurring keywords, document co -citations, and emerging trends of Gen AI research were analyzed. The following are the main findings of the study: the current status of Gen AI research is reflected in the following aspects: (1) the volume of documents produced is increasing year on year; (2) the publication of practical applications such as ChatGPT has brought a high level of interest to related research exploring the application of Gen AI in various research fields, such as education, medicine, drug discovery, and so on; and (3) two influential co -citation clusters have been formed. The emerging trends of the application of Gen AI research are also summarized as follows: (1) Gen AI has powerful technical advantages; (2) the application of Gen AI has great potential in the field of medicine, education and so on for the future; and (3) the updating and development of relevant technologies will always be the focus of Gen AI research. C1 [Wang, Nan; Li, Suqi; Wang, Chenhui; Zhao, Li] Nanjing Normal Univ, Sch Educ Sci, Nanjing, Peoples R China. C3 Nanjing Normal University RP Zhao, L (corresponding author), Nanjing Normal Univ, Sch Educ Sci, Nanjing, Peoples R China. EM 220612032@njnu.edu.cn; 210602145@njnu.edu.cn; 210602154@njnu.edu.cn; li.zhao@njnu.edu.cn FU National Social Science Fund of China "From Representation to Generation: A Study of the Symbolic Logic of Online Educational Resources" [BCA200093] FX This research was supported by National Social Science Fund of China "From Representation to Generation: A Study of the Symbolic Logic of Online Educational Resources" (No. BCA200093) . CR Alattab AA, 2022, J NANOELECTRON OPTOE, V17, P1577, DOI 10.1166/jno.2022.3355 [Anonymous], 2023, NATURE, V613, P612, DOI 10.1038/d41586-023-00191-1 Berger J, 2020, J MARKETING, V84, P1, DOI 10.1177/0022242919873106 Burlina P, 2021, TRANSL VIS SCI TECHN, V10, DOI 10.1167/tvst.10.2.13 Chatterjee J, 2023, PATTERNS, V4, DOI 10.1016/j.patter.2022.100676 Cooper G, 2023, J SCI EDUC TECHNOL, V32, P444, DOI 10.1007/s10956-023-10039-y Dencik L, 2022, INTERNET POLICY REV, V11, DOI 10.14763/2022.1.1615 Donthu N, 2021, J BUS RES, V133, P285, DOI 10.1016/j.jbusres.2021.04.070 Goodfellow IJ, 2014, ADV NEUR IN, V27, P2672, DOI 10.1145/3422622 Gupta R, 2021, MOL DIVERS, V25, P1315, DOI 10.1007/s11030-021-10217-3 He W, 2022, INT REV RES OPEN DIS, V23, P25 Hu WJ, 2021, J INTERNET TECHNOL, V22, P765, DOI 10.53106/160792642021072204005 Huang HB, 2019, INT J COMPUT VISION, V127, P763, DOI 10.1007/s11263-019-01154-8 Kushwaha AK, 2024, INFORM SYST FRONT, V26, P857, DOI 10.1007/s10796-021-10184-y Lim WM, 2023, INT J MANAG EDUC-OXF, V21, DOI 10.1016/j.ijme.2023.100790 Lim WM, 2022, PSYCHOL MARKET, V39, P1129, DOI 10.1002/mar.21654 Lundervold AS, 2019, Z MED PHYS, V29, P102, DOI 10.1016/j.zemedi.2018.11.002 McCarthy J, 2007, ARTIF INTELL, V171, P1174, DOI 10.1016/j.artint.2007.10.009 O'Connor S, 2023, NURSE EDUC PRACT, V66, DOI 10.1016/j.nepr.2022.103537 OpenAI, 2023, About us Pavlik V. J., 2023, Journalism Mass Communication Educator, V78, P84, DOI DOI 10.1177/10776958221149577 Peres R, 2023, INT J RES MARK, V40, P269, DOI 10.1016/j.ijresmar.2023.03.001 Shang HP, 2022, COMPUT ELECTR ENG, V100, DOI 10.1016/j.compeleceng.2022.107811 Vaswani A, 2017, ADV NEUR IN, V30 Victor BG, 2023, RES SOCIAL WORK PRAC, V33, P511, DOI 10.1177/10497315231166125 Wang JR, 2020, P I MECH ENG D-J AUT, V234, P2719, DOI 10.1177/0954407020923258 Xue ZX, 2020, IET IMAGE PROCESS, V14, P709, DOI 10.1049/iet-ipr.2019.0869 Zeng B, 2020, J INTERNET TECHNOL, V21, P1517, DOI 10.3966/160792642020092105024 Zhu YH, 2019, J COMPUT PHYS, V394, P56, DOI 10.1016/j.jcp.2019.05.024 NR 29 TC 0 Z9 0 U1 19 U2 19 PU LIBRARY & INFORMATION CENTER, NAT DONG HWA UNIV PI HUALIEN PA LIBRARY & INFORMATION CENTER, NAT DONG HWA UNIV, HUALIEN, 00000, TAIWAN SN 1607-9264 EI 2079-4029 J9 J INTERNET TECHNOL JI J. Internet Technol. PD MAY PY 2024 VL 25 IS 3 BP 477 EP 485 DI 10.53106/160792642024052503013 PG 9 WC Computer Science, Information Systems; Telecommunications WE Science Citation Index Expanded (SCI-EXPANDED) SC Computer Science; Telecommunications GA SY2U3 UT WOS:001237953600013 DA 2024-09-05 ER PT C AU James, M Palakkat, V Jones, GJF AF James, Mathew Palakkat, Vikas Jones, Gareth J. F. GP IEEE TI Identifying Influential Citations in Scientific Papers SO 2023 31ST IRISH CONFERENCE ON ARTIFICIAL INTELLIGENCE AND COGNITIVE SCIENCE, AICS LA English DT Proceedings Paper CT 31st Irish Conference on Artificial Intelligence and Cognitive Science (AICS) CY DEC 07-08, 2023 CL Letterkenny, IRELAND DE citation influence; citation classification; sentiment analysis; citation analysis AB The research described in academic papers builds on related existing work. This previous work can be considered as influential if it is used or extended in the current study or non-influential if it is only cited as background material. This study aims to identify influential citations, in particular examining the impact of sentiment associated with citations on citation influence. Our work leverages a set of statistical, contextual and metadata-based features to provide an assessment of the influence of cited works on the current work. Our findings show that sentiment analysis significantly enhances citation classification. C1 [James, Mathew; Palakkat, Vikas; Jones, Gareth J. F.] Dublin City Univ, Sch Comp, Dublin, Ireland. [Jones, Gareth J. F.] Dublin City Univ, ADAPT Ctr, Dublin, Ireland. C3 Dublin City University; Dublin City University RP James, M (corresponding author), Dublin City Univ, Sch Comp, Dublin, Ireland. EM mathew.james2@mail.dcu.ie; vikas.palakkat2@mail.dcu.ie; gareth.jones@dcu.ie CR Athar A., 2011, P ACL 2011 STUD SESS, P81 Beltagy I, 2019, 2019 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING AND THE 9TH INTERNATIONAL JOINT CONFERENCE ON NATURAL LANGUAGE PROCESSING (EMNLP-IJCNLP 2019), P3615 Benesty J, 2009, SPRINGER TOP SIGN PR, V2, P1, DOI 10.1007/978-3-642-00296-0 Breiman L., 2001, Machine Learning, V45, P5, DOI 10.1023/A:1010933404324 Chen TQ, 2016, KDD'16: PROCEEDINGS OF THE 22ND ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, P785, DOI 10.1145/2939672.2939785 Cohan A, 2019, Arxiv, DOI arXiv:1904.01608 CORTES C, 1995, MACH LEARN, V20, P273, DOI 10.1023/A:1022627411411 Davis J., 2006, P 23 INT C MACH LEAR, P233, DOI 10.1145/1143844.1143874 Devlin J, 2019, Arxiv, DOI arXiv:1810.04805 Hassan S.U., 2017, 2017 ACMIEEE JOINT C, P1 Huang H., 2021, Scientometrics, P1 Kim IC, 2015, 2015 IEEE CONFERENCE ON COMPUTATIONAL INTELLIGENCE IN BIOINFORMATICS AND COMPUTATIONAL BIOLOGY (CIBCB), P488 Kim TK, 2015, KOREAN J ANESTHESIOL, V68, P540, DOI 10.4097/kjae.2015.68.6.540 Leung KM, 2007, NAIVE BAYESIAN CLASS, P123 Lewis M, 2019, Arxiv, DOI arXiv:1910.13461 Sidorov G, 2014, COMPUT SIST, V18, P491 Thor A, 2016, J INFORMETR, V10, P503, DOI 10.1016/j.joi.2016.02.005 Valenzuela M., 2015, WORKSHOPS 20 9 AAAI Yang ZL, 2019, ADV NEUR IN, V32 NR 19 TC 0 Z9 0 U1 1 U2 1 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA BN 979-8-3503-6021-9 PY 2023 DI 10.1109/AICS60730.2023.10470500 PG 4 WC Behavioral Sciences; Computer Science, Artificial Intelligence WE Conference Proceedings Citation Index - Science (CPCI-S) SC Behavioral Sciences; Computer Science GA BW7SN UT WOS:001195949100005 DA 2024-09-05 ER PT J AU Chen, YJ Zheng, N AF Chen, Yanjie Zheng, Na TI AI based research on exploration and innovation of development direction of piano performance teaching in university SO JOURNAL OF INTELLIGENT & FUZZY SYSTEMS LA English DT Article DE AI; Piano teaching; new media AB This paper investigates the cognition status of information piano education for teachers and students in a university, which mainly includes a summary of the piano teaching status in a university and make an analysis and summary of the investigation results. In addition, this paper puts forward the direction of the network information reform and construction for piano majors in Colleges and universities, mainly including three aspects, that is, taking piano "micro class" teaching to arm traditional classroom teaching, using the new media to build a networked piano learning environment, and building the piano teaching "MOOC" platform. C1 [Chen, Yanjie] West Anhui Univ, Sch Art, Luan, Anhui, Peoples R China. [Zheng, Na] Shanghai Donghai Vocat & Tech Coll, Sch Educ, Shanghai, Peoples R China. C3 West Anhui University RP Chen, YJ (corresponding author), West Anhui Univ, Sch Art, Luan, Anhui, Peoples R China. EM chen.yanjie@aol.com CR Ahilan A, 2019, IEEE ACCESS, V7, P89570, DOI 10.1109/ACCESS.2019.2891632 Allen R, 2013, PSYCHOL MUSIC, V41, P75, DOI 10.1177/0305735611415750 Anbarasan M, 2020, COMPUT COMMUN, V150, P150, DOI 10.1016/j.comcom.2019.11.022 Bautista A, 2012, ESTUD PSICOL-MADRID, V33, P79, DOI 10.1174/021093912799803872 Brenner B, 2013, J RES MUSIC EDUC, V61, P80, DOI 10.1177/0022429412474826 Brown RM, 2013, FRONT HUM NEUROSCI, V7, DOI 10.3389/fnhum.2013.00320 Elhoseny M, 2017, J INTELL FUZZY SYST, V33, P2305, DOI 10.3233/JIFS-17348 Furuya Shinichi, 2013, BMC Neurosci, V14, P133, DOI 10.1186/1471-2202-14-133 Furuya S, 2013, FRONT HUM NEUROSCI, V7, DOI 10.3389/fnhum.2013.00173 Goebl W, 2014, J ACOUST SOC AM, V136, P2839, DOI 10.1121/1.4896461 Goebl W, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0050901 HERROJO RM, 2014, FRONT PSYCHOL, V5, P1030 Karthik, INT J PARALLEL PROG Kawase S, 2014, ATTEN PERCEPT PSYCHO, V76, P527, DOI 10.3758/s13414-013-0568-0 Son L, 2020, IEEE INTELL SYST, V35, P6, DOI 10.1109/MIS.2019.2938441 Prathik A., 2018, J COMPUTATIONAL THEO, V15, P2769, DOI [10.1166/jctn.2018.7537, DOI 10.1166/JCTN.2018.7537] NR 16 TC 7 Z9 7 U1 5 U2 19 PU IOS PRESS PI AMSTERDAM PA NIEUWE HEMWEG 6B, 1013 BG AMSTERDAM, NETHERLANDS SN 1064-1246 EI 1875-8967 J9 J INTELL FUZZY SYST JI J. Intell. Fuzzy Syst. PY 2021 VL 40 IS 2 BP 3681 EP 3687 DI 10.3233/JIFS-189402 PG 7 WC Computer Science, Artificial Intelligence WE Science Citation Index Expanded (SCI-EXPANDED) SC Computer Science GA QH1ZP UT WOS:000618076700172 DA 2024-09-05 ER PT J AU GEAR, AE GILLESPI.JS ALLEN, JM AF GEAR, AE GILLESPI.JS ALLEN, JM TI APPLICATIONS OF DECISION TREES TO EVALUATION OF APPLIED RESEARCH PROJECTS SO JOURNAL OF MANAGEMENT STUDIES LA English DT Article C1 MANCHESTER BUSINESS SCH,MANCHESTER M15 6PB,ENGLAND. C3 University of Manchester CR [Anonymous], DECISION ANALYSIS BEATTIE CJ, 1968, P NATO C BELL DC, RDHRZ UK CEGB RD DEP GEAR AE, 1970, P I MANAGEMENT SCIEN GREEN PE, APPLIED STATISTICS, V15, P173 HESPOS RF, 1965, MANAGE SCI, V11, P244, DOI DOI 10.1287/MNSC.11.10.B244 HESS SW, 1962, IRE T ENGINEERING MA, VEM 9, P170 LOCKETT AG, 1970, J MANAGEMENT STUDIES, V7 MAGEE JF, 1964, HARVARD BUSINESS REV, V42, P157 NR 9 TC 2 Z9 2 U1 0 U2 2 PU BLACKWELL PUBL LTD PI OXFORD PA 108 COWLEY RD, OXFORD OX4 1JF, OXON, ENGLAND SN 0022-2380 J9 J MANAGE STUD JI J. Manage. Stud. PY 1972 VL 9 IS 2 BP 172 EP 181 DI 10.1111/j.1467-6486.1972.tb00548.x PG 10 WC Business; Management WE Social Science Citation Index (SSCI) SC Business & Economics GA M9990 UT WOS:A1972M999000004 DA 2024-09-05 ER PT C AU Liu, DW Liu, HM Tao, XC Lu, C AF Liu Da-wei Liu Hong-mei Tao Xiao-chuang Lu Chen BE Lee, G TI Research on Performance Degradation Assessment for Hydraulic Servo System Based on Fault Observer and SOM Network SO 2012 INTERNATIONAL CONFERENCE ON FUTURE INFORMATION TECHNOLOGY AND MANAGEMENT SCIENCE & ENGINEERING (FITMSE 2012) SE Lecture Notes in Information Technology LA English DT Proceedings Paper CT International Conference on Future Information Technology and Management Science and Engineering (FITMSE 2012) CY APR 12-13, 2012 CL HONG KONG DE fault observer; feature extraction; SOM; performance degradation assessment AB Many researches on condition monitoring and fault diagnosis for hydraulic servo system have been carried on, but there are few researches on performance degradation assessment. As well as, there is no suitable method for performance degradation assessment of hydraulic servo system. So a novel method based on fault observer and SOM (Self-organizing Map) network is presented to assess the performance degradation of hydraulic servo system. The fault observer is adopted to generate residual error which can be used to assess the health state of hydraulic servo system. The feature of residual error is extracted in time domain, and then the feature vector is input into the SOM network to realize the performance degradation assessment. Finally, a simulation case is used to validate the effectiveness of the proposed method in accessing the performance degradation of hydraulic servo system. C1 [Liu Da-wei; Liu Hong-mei; Tao Xiao-chuang; Lu Chen] Beihang Univ, Sch Reliabil & Syst Engn, Beijing 100191, Peoples R China. C3 Beihang University RP Liu, DW (corresponding author), Beihang Univ, Sch Reliabil & Syst Engn, Beijing 100191, Peoples R China. EM zy1014114@dse.buaa.edu.cn; liuhongmei@buaa.edu.cn; taoxiaochuang1988@163.com; luchen@buaa.edu.cn RI Lu, Chen/B-6310-2016; Liu, Dawei/AAD-3130-2019 FU National Nature Science Foundation of China [61074083, 50705005, 51105019]; Technology Foundation Program of National Defense [Z132010B004] FX This research is supported by the National Nature Science Foundation of China (Grant No.61074083, No.50705005 and No.51105019), as well as the Technology Foundation Program of National Defense (Grant No.Z132010B004). CR Guo Hong, 2007, Acta Aeronautica et Astronautica Sinica, V28, P620 Jinqiu Hu, 2011, 2011 Seventh International Conference on Natural Computation (ICNC 2011), P561, DOI 10.1109/ICNC.2011.6021914 Liao L, 2010, EXPERT SYST APPL, V37, P240, DOI 10.1016/j.eswa.2009.05.004 Liu Hong-mei, 2006, Chinese Journal of Aeronautics, V19, P346, DOI 10.1016/S1000-9361(11)60339-7 Ming Tingtao, 2008, China Mechanical Engineering, V19, P1527 Park TG, 2000, IEE P-CONTR THEOR AP, V147, P501, DOI 10.1049/ip-cta:20000639 NR 6 TC 0 Z9 0 U1 0 U2 0 PU INFORMATION ENGINEERING RESEARCH INST, USA PI NEWARK PA 100 CONTINENTAL DR, NEWARK, DE 19713 USA SN 2070-1918 BN 978-1-61275-012-5 J9 LECT NOTE INFORMTECH PY 2012 VL 14 BP 89 EP 94 PG 6 WC Computer Science, Information Systems WE Conference Proceedings Citation Index - Science (CPCI-S) SC Computer Science GA BG9MP UT WOS:000393447400015 DA 2024-09-05 ER PT J AU Aytac, E Fombona-Pascual, A Lado, JJ Quismondo, EG Palma, J Khayet, M AF Aytac, Ersin Fombona-Pascual, Alba Lado, Julio J. Quismondo, Enrique Garcia Palma, Jesus Khayet, Mohamed TI Faradaic deionization technology: Insights from bibliometric, data mining and machine learning approaches SO DESALINATION LA English DT Article DE Biblioshiny; BIRCH clustering algorithm; Faradaic deionization; ISOMAP dimensionality reduction; SBERT; Text mining ID MEMBRANE CAPACITIVE DEIONIZATION; ACTIVATED CARBON ELECTRODES; METAL-OXIDE COATINGS; LONG-TERM STABILITY; WASTE-WATER; DESALINATION PERFORMANCE; NICKEL HEXACYANOFERRATE; BRACKISH-WATER; ENERGY-CONSUMPTION; SELECTIVE REMOVAL AB Faradaic deionization (FDI) is an emerging water treatment technology based on electrodes able to remove ionic species from water by charge transfer reactions. It is a young and promising technology that has attracted much attention due to its large capacity to store ions and the high selectivity of the faradaic electrode materials. This study reviews published papers on FDI from different angles: data mining, bibliometric and machine learning. Metrics such as annual growth rate, most important journals, relevant authors, collaborations maps, sentiment and subjectivity analysis, similarity and clustering analysis were performed. The results indicated that the strong interest in FDI really started in 2016, China is the most active country in FDI, and Desalination is the most important journal publishing FDI articles. The word cloud method showed that the most preferred adopted words are deionization, capacitive, electrode, material. Sentiment analysis results indicated that most of the researchers are optimistic about FDI technology. The title similarity method revealed that FDI researchers were successful in proposing unique and appropriate titles. The clustering approach stressed that FDI literature is concentrated on electrode material production, desalination application, lithium recovery and comparison with CDI. C1 [Aytac, Ersin] Zonguldak Bulent Ecevit Univ, Dept Environm Engn, TR-67100 Zonguldak, Turkiye. [Aytac, Ersin; Khayet, Mohamed] Univ Complutense Madrid, Fac Phys, Dept Struct Matter Thermal Phys & Elect, Avda Complutense s-n, Madrid 28040, Spain. [Aytac, Ersin; Fombona-Pascual, Alba; Lado, Julio J.; Quismondo, Enrique Garcia; Palma, Jesus] IMDEA Energy Inst, Electrochem Proc Unit, Ave Ramon De La Sagra 3, Mostoles 28935, Madrid, Spain. [Khayet, Mohamed] IMDEA Water Inst, Madrid Inst Adv Studies Water, Calle Punto Net N 4, Madrid 28805, Spain. C3 Zonguldak Bulent Ecevit University; Complutense University of Madrid; IMDEA Energy; IMDEA Water Institute RP Khayet, M (corresponding author), Univ Complutense Madrid, Fac Phys, Dept Struct Matter Thermal Phys & Elect, Avda Complutense s-n, Madrid 28040, Spain. EM khayetm@fis.ucm.es RI Khayet, Mohamed/L-3814-2014; Palma, Jesus/G-6914-2015 OI Palma, Jesus/0000-0003-1022-0165; Aytac, Ersin/0000-0002-7124-4438 FU Scientific and Technological Research Council of Turkey (TUBITAK) at the University Complutense of Madrid (UCM) [2020-T1/AMB-19799]; Talento's program of the Community of Madrid; [1059B191900618] FX The basis of the graphical abstract was created with OpenAI's text-to-image-generation architecture, DALL-E 2. Upon generating the draft image, the Authors edited the image, and they took the ultimate responsibility for the content. The Authors would like to acknowledge OpenAI for their contribution to this article. Dr. Ersin Aytac would like to express his acknowledgment for the postdoctoral grant received from the Scientific and Technological Research Council of Turkey (TUBITAK) at the University Complutense of Madrid (UCM) with grant number 1059B191900618. Alba Fombona-Pascual and Julio J. Lado would like to thank the Talento's program of the Community of Madrid, which involves the project SELECTVALUE (2020-T1/AMB-19799). CR Abu Khalla S, 2022, ENVIRON SCI TECHNOL, V56, P1413, DOI 10.1021/acs.est.1c07288 Ahn D, 2023, J IND ENG CHEM, V118, P147, DOI 10.1016/j.jiec.2022.10.053 Ahn J, 2020, DESALINATION, V476, DOI 10.1016/j.desal.2019.114216 Ahuja V, 2017, PROCEDIA COMPUT SCI, V122, P17, DOI 10.1016/j.procs.2017.11.336 Al Hamoud A, 2022, J KING SAUD UNIV-COM, V34, P7974, DOI 10.1016/j.jksuci.2022.07.014 Alkhadra M.A., CHEM REV Anderson MA, 2010, ELECTROCHIM ACTA, V55, P3845, DOI 10.1016/j.electacta.2010.02.012 [Anonymous], 2015, NORMALIZED INT COLLA Anowar F, 2021, COMPUT SCI REV, V40, DOI 10.1016/j.cosrev.2021.100378 Aria M, 2017, J INFORMETR, V11, P959, DOI 10.1016/j.joi.2017.08.007 Arnold S, 2021, J MATER CHEM A, V9, P585, DOI 10.1039/d0ta09806j Atlas I, 2020, J ELECTROCHEM SOC, V167, DOI 10.1149/1945-7111/abb709 Avraham E, 2008, J PHYS CHEM C, V112, P7385, DOI 10.1021/jp711706z Ayta E., 2022, EUR J SUSTAIN DEV RE, V6, P2542, DOI [10.21601/ejosdr/12167, DOI 10.21601/EJOSDR/12167] Aytac E., 2021, Fen Ve Muhendislik Bilimleri Dergisi, V21, P958, DOI [10.35414/akufemubid.870649, DOI 10.35414/AKUFEMUBID.870649] Aytac E, 2023, DESALINATION, V553, DOI 10.1016/j.desal.2023.116482 Aytaç E, 2022, ENVIRON ENG MANAG J, V21, P671 Aytaç E, 2021, ADCAIJ-ADV DISTRIB C, V10, P33, DOI 10.14201/ADCAIJ20211013347 Aytaç E, 2020, INT SOIL WATER CONSE, V8, P321, DOI 10.1016/j.iswcr.2020.05.002 Bales C, 2023, DESALINATION, V557, DOI 10.1016/j.desal.2023.116595 Bales C, 2021, DESALINATION, V502, DOI 10.1016/j.desal.2020.114913 Bales C, 2019, DESALINATION, V453, P37, DOI 10.1016/j.desal.2018.12.001 Bamakan SMH, 2021, BLOCKCHAIN-RES APPL, V2, DOI 10.1016/j.bcra.2021.100019 Bao Y., SMALL Barcelos KM, 2021, ELECTROCHIM ACTA, V388, DOI 10.1016/j.electacta.2021.138631 Battistel A, 2020, ADV MATER, V32, DOI 10.1002/adma.201905440 Baudino L, 2022, ADV SCI, V9, DOI 10.1002/advs.202201380 Besli MM, 2021, DESALINATION, V517, DOI 10.1016/j.desal.2021.115218 Bibal A., 2021, ARRAY, V11 Biesheuvel PM, 2011, J COLLOID INTERF SCI, V360, P239, DOI 10.1016/j.jcis.2011.04.049 Biesheuvel PM, 2010, PHYS REV E, V81, DOI 10.1103/PhysRevE.81.031502 Biesheuvel PM, 2010, J MEMBRANE SCI, V346, P256, DOI 10.1016/j.memsci.2009.09.043 Biesheuvel PM, 2009, J PHYS CHEM C, V113, P5636, DOI 10.1021/jp809644s Blair J.W., 1960, SALINE WATER CONVERS, V27, P206, DOI DOI 10.1021/BA-1960-0027.CH020 Bo Z, 2022, ENERGY STORAGE MATER, V50, P395, DOI 10.1016/j.ensm.2022.05.042 Borg A, 2020, EXPERT SYST APPL, V162, DOI 10.1016/j.eswa.2020.113746 Bretas VPG, 2021, J BUS RES, V133, P51, DOI 10.1016/j.jbusres.2021.04.067 Cai YM, 2021, DESALINATION, V520, DOI 10.1016/j.desal.2021.115325 Cai YM, 2016, J ELECTROANAL CHEM, V768, P72, DOI 10.1016/j.jelechem.2016.02.041 Calvo EJ, 2019, CURR OPIN ELECTROCHE, V15, P102, DOI 10.1016/j.coelec.2019.04.010 Cao YY, 2023, DESALINATION, V551, DOI 10.1016/j.desal.2023.116409 Castro A.P., 2022, APPL SOFT COMPUT, V124 Cerón MR, 2020, ACS APPL MATER INTER, V12, P42644, DOI 10.1021/acsami.0c07903 Çetinkaya AY, 2020, ENVIRON MONIT ASSESS, V192, DOI 10.1007/s10661-020-08501-0 Cetinkaya AY, 2019, WATER AIR SOIL POLL, V230, DOI 10.1007/s11270-019-4203-0 Chen FM, 2020, CHEM ENG J, V401, DOI 10.1016/j.cej.2020.126111 Chen FM, 2017, ENERG ENVIRON SCI, V10, P2081, DOI 10.1039/c7ee00855d Chen F, 2017, NANOSCALE, V9, P10101, DOI 10.1039/c7nr01861d Chen L, 2018, DESALINATION, V439, P93, DOI 10.1016/j.desal.2018.04.012 Chen R, 2020, ENVIRON SCI-WAT RES, V6, P258, DOI [10.1039/C9EW00945K, 10.1039/c9ew00945k] Chen TH, 2022, RESOUR CONSERV RECY, V177, DOI 10.1016/j.resconrec.2021.106012 Chen WT, 2023, CHEM ENG J, V451, DOI 10.1016/j.cej.2022.139071 Chen YW, 2019, APPL ENERG, V252, DOI 10.1016/j.apenergy.2019.113417 Chen ZQ, 2023, SEP PURIF TECHNOL, V315, DOI 10.1016/j.seppur.2023.123628 Chen ZQ, 2023, CHEM ENG J, V452, DOI 10.1016/j.cej.2022.139451 Chen ZQ, 2022, DESALINATION, V528, DOI 10.1016/j.desal.2022.115616 Cheng YT, 2019, RSC ADV, V9, P24401, DOI 10.1039/c9ra04426d Choi J, 2019, DESALINATION, V449, P118, DOI 10.1016/j.desal.2018.10.013 Chu ML, 2022, CHEMOSPHERE, V307, DOI 10.1016/j.chemosphere.2022.136024 Chung ST, 2022, ACS SUSTAIN CHEM ENG, V10, P15777, DOI 10.1021/acssuschemeng.2c04546 Cohen I, 2015, ELECTROCHIM ACTA, V153, P106, DOI 10.1016/j.electacta.2014.12.007 Cohen I, 2013, ELECTROCHIM ACTA, V106, P91, DOI 10.1016/j.electacta.2013.05.029 Dai JH, 2020, CHEMSUSCHEM, V13, P2792, DOI 10.1002/cssc.202000188 Ding ZB, 2022, CHEM ENG J, V430, DOI 10.1016/j.cej.2021.133161 Ding ZB, 2019, DESALINATION, V468, DOI 10.1016/j.desal.2019.114078 Dlugolecki P, 2013, ENVIRON SCI TECHNOL, V47, P4904, DOI 10.1021/es3053202 Dorji P, 2022, CHEMOSPHERE, V287, DOI 10.1016/j.chemosphere.2021.132169 Du JX, 2023, ENVIRON CHEM LETT, V21, P885, DOI 10.1007/s10311-023-01561-x Du JX, 2023, J HAZARD MATER, V442, DOI 10.1016/j.jhazmat.2022.130023 Duan F, 2015, DESALINATION, V376, P17, DOI 10.1016/j.desal.2015.08.009 EGGHE L, 1993, MATH COMPUT MODEL, V18, P63, DOI 10.1016/0895-7177(93)90143-M Elimelech M., 2021, ENERG ENVIRON SCI, V14, P2494 Elisadiki J, 2020, J ELECTROANAL CHEM, V878, DOI 10.1016/j.jelechem.2020.114588 Elshenawy LM, 2021, PROG NUCL ENERG, V142, DOI 10.1016/j.pnucene.2021.103990 Faheem M, 2023, DESALINATION, V551, DOI 10.1016/j.desal.2023.116435 Farmer J.C., 1995, Capacitive, deionization with carbon aerogel electrodes: Carbonate, sulfate, and phosphate Ferreira R, 2016, COMPUT SPEECH LANG, V39, P1, DOI 10.1016/j.csl.2016.01.003 Fombona-Pascual A, 2023, CHEM ENG J, V461, DOI 10.1016/j.cej.2023.142001 Freire JMA, 2021, SEP PURIF TECHNOL, V273, DOI 10.1016/j.seppur.2021.118977 Gamaethiralalage JG, 2021, ENERG ENVIRON SCI, V14, P1095, DOI [10.1039/d0ee03145c, 10.1039/D0EE03145C] Gao F, 2022, ACS APPL MATER INTER, DOI 10.1021/acsami.2c06248 Gao X, 2017, ELECTROCHIM ACTA, V233, P249, DOI 10.1016/j.electacta.2017.03.021 Gao X, 2016, DESALINATION, V399, P16, DOI 10.1016/j.desal.2016.08.006 Gao X, 2016, WATER RES, V92, P275, DOI 10.1016/j.watres.2016.01.048 García-Quismondo E, 2016, ENVIRON SCI TECHNOL, V50, P6053, DOI 10.1021/acs.est.5b05379 García-Quismondo E, 2013, PHYS CHEM CHEM PHYS, V15, P7648, DOI [10.1039/c3cp50514f, 10.1039/C3CP50919B] Geng C, 2022, J ELECTROANAL CHEM, V914, DOI 10.1016/j.jelechem.2022.116298 Ghimire U, 2021, DESALINATION, V503, DOI 10.1016/j.desal.2020.114929 Gong A, 2021, DESALINATION, V505, DOI 10.1016/j.desal.2021.114997 Guha A., 2022, TRANSPORT RES C-EMER, V142 Guo JQ, 2022, DESALINATION, V528, DOI 10.1016/j.desal.2022.115622 Guo L, 2017, NANOSCALE, V9, P13305, DOI 10.1039/c7nr03579a Guyes EN, 2021, NPJ CLEAN WATER, V4, DOI 10.1038/s41545-021-00109-2 Han LC, 2013, ELECTROCHIM ACTA, V90, P573, DOI 10.1016/j.electacta.2012.11.069 Hand S, 2019, ENVIRON SCI TECHNOL, V53, P13353, DOI 10.1021/acs.est.9b04347 Hassanvand A, 2018, WATER RES, V131, P100, DOI 10.1016/j.watres.2017.12.015 Hawks SA, 2019, ENVIRON SCI TECHNOL, V53, P10863, DOI 10.1021/acs.est.9b01374 He T, 2022, NEUROPHARMACOLOGY, V218, DOI 10.1016/j.neuropharm.2022.109207 Hou CH, 2013, DESALINATION, V314, P124, DOI 10.1016/j.desal.2012.12.029 Hou SJ, 2018, CHEM ENG J, V337, P398, DOI 10.1016/j.cej.2017.12.120 Hsu CC, 2020, DESALINATION, V481, DOI 10.1016/j.desal.2020.114362 Huang HY, 2023, CHEM ENG J, V457, DOI 10.1016/j.cej.2023.141373 Huang X, 2017, ENVIRON SCI-WAT RES, V3, P875, DOI [10.1039/c7ew00138j, 10.1039/C7EW00138J] Huang XK, 2019, ENVIRON SCI-NANO, V6, P3225, DOI [10.1039/c9en00730j, 10.1039/C9EN00730J] Huang YX, 2019, DESALINATION, V451, P241, DOI 10.1016/j.desal.2018.02.006 Huang Z, 2016, J HAZARD MATER, V302, P323, DOI 10.1016/j.jhazmat.2015.09.064 Huang ZH, 2017, J MATER CHEM A, V5, P470, DOI 10.1039/c6ta06733f Huber JC, 1998, INFORM PROCESS MANAG, V34, P471, DOI 10.1016/S0306-4573(98)00013-2 Jeon SI, 2013, ENERG ENVIRON SCI, V6, P1471, DOI 10.1039/c3ee24443a Ji WW, 2022, CHEM ENG J, V427, DOI 10.1016/j.cej.2021.130807 Jones E, 2019, SCI TOTAL ENVIRON, V657, P1343, DOI 10.1016/j.scitotenv.2018.12.076 Juchen PT, 2022, CHEM ENG J, V429, DOI 10.1016/j.cej.2021.132209 Kalfa A, 2020, CHEMOSPHERE, V241, DOI 10.1016/j.chemosphere.2019.125003 Kang JS, 2022, ENVIRON SCI TECHNOL, V56, P12602, DOI 10.1021/acs.est.2c03913 Kashina M, 2020, PROCEDIA COMPUT SCI, V178, P284, DOI 10.1016/j.procs.2020.11.030 Kassavin MH, 2022, CURR PROBL DIAGN RAD, V51, P478, DOI 10.1067/j.cpradiol.2021.08.002 Khalla SA, 2019, DESALINATION, V467, P257, DOI 10.1016/j.desal.2019.04.031 Khayet M, 2022, DESALINATION, V543, DOI 10.1016/j.desal.2022.116095 Kim B, 2020, J POWER SOURCES, V448, DOI 10.1016/j.jpowsour.2019.227384 Kim H, 2023, DESALINATION, V549, DOI 10.1016/j.desal.2022.116350 Kim K, 2021, ISCIENCE, V24, DOI 10.1016/j.isci.2021.102374 Kim N, 2021, DESALINATION, V503, DOI 10.1016/j.desal.2021.114950 Kim N, 2020, APPL SCI-BASEL, V10, DOI 10.3390/app10020683 Kim N, 2020, DESALINATION, V479, DOI 10.1016/j.desal.2020.114315 Kim N, 2019, ACS SUSTAIN CHEM ENG, V7, P16182, DOI 10.1021/acssuschemeng.9b03121 Kim S, 2016, ELECTROCHIM ACTA, V203, P265, DOI 10.1016/j.electacta.2016.04.056 Kim S, 2019, ENVIRON SCI-PROC IMP, V21, P667, DOI 10.1039/c8em00498f Kim S, 2018, ENVIRON SCI-WAT RES, V4, P175, DOI 10.1039/c7ew00454k Kim T, 2017, ENVIRON SCI TECH LET, V4, P444, DOI 10.1021/acs.estlett.7b00392 Kim Y, 2023, DESALINATION, V550, DOI 10.1016/j.desal.2023.116406 Kong H, 2019, ENERGY TECHNOL-GER, V7, DOI 10.1002/ente.201900835 Kong WQ, 2023, DESALINATION, V553, DOI 10.1016/j.desal.2023.116452 Koseoglu MA, 2022, J HOSP TOUR MANAG, V52, P316, DOI 10.1016/j.jhtm.2022.07.002 Kumar S, 2021, J BUS RES, V134, P275, DOI 10.1016/j.jbusres.2021.05.041 Kyaw HH, 2020, J HAZARD MATER, V385, DOI 10.1016/j.jhazmat.2019.121565 Lado JJ, 2021, DESALINATION, V501, DOI 10.1016/j.desal.2020.114912 Lado JJ, 2019, ACS SUSTAIN CHEM ENG, V7, P18992, DOI 10.1021/acssuschemeng.9b04504 Lado JJ, 2017, J ANAL APPL PYROL, V126, P143, DOI 10.1016/j.jaap.2017.06.014 Lado JJ, 2017, SEP PURIF TECHNOL, V183, P145, DOI 10.1016/j.seppur.2017.03.071 Lado JJ, 2016, J ANAL APPL PYROL, V120, P389, DOI 10.1016/j.jaap.2016.06.009 Lado JJ, 2015, J ENVIRON CHEM ENG, V3, P2358, DOI 10.1016/j.jece.2015.08.025 Landon J, 2019, CURR OPIN CHEM ENG, V25, P1, DOI 10.1016/j.coche.2019.06.006 Lang A., 2022, INFORM SYST, V108 Laxman K, 2015, DESALINATION, V362, P126, DOI 10.1016/j.desal.2015.02.010 Lee JB, 2006, DESALINATION, V196, P125, DOI 10.1016/j.desal.2006.01.011 Lee J, 2018, ACS SUSTAIN CHEM ENG, V6, P10815, DOI 10.1021/acssuschemeng.8b02123 Lee J, 2017, ACS OMEGA, V2, P1653, DOI 10.1021/acsomega.6b00526 Lee J, 2014, ENERG ENVIRON SCI, V7, P3683, DOI 10.1039/c4ee02378a Lee J, 2013, PHYS CHEM CHEM PHYS, V15, P7690, DOI 10.1039/c3cp50919b Lee J, 2021, DESALINATION, V515, DOI 10.1016/j.desal.2021.115188 Lee J, 2019, J MATER CHEM A, V7, P4175, DOI 10.1039/c8ta10087j Lee J, 2018, CHEMSUSCHEM, V11, P3460, DOI 10.1002/cssc.201801538 Lee J, 2017, CHEMSUSCHEM, V10, P3611, DOI 10.1002/cssc.201701215 Leelawat N, 2022, HELIYON, V8, DOI 10.1016/j.heliyon.2022.e10894 Leong ZY, 2019, ACS APPL MATER INTER, V11, P13176, DOI 10.1021/acsami.8b20880 Li B, 2022, DESALINATION, V539, DOI 10.1016/j.desal.2022.115955 Li BF, 2022, J MATER CHEM A, V10, P24905, DOI 10.1039/d2ta07929a Li DP, 2020, DESALINATION, V482, DOI 10.1016/j.desal.2020.114374 Li Q, 2020, ADV SCI, V7, DOI 10.1002/advs.202002213 Li YJ, 2022, ENVIRON RES, V212, DOI 10.1016/j.envres.2022.113331 Li YQ, 2020, DESALINATION, V481, DOI 10.1016/j.desal.2020.114379 Liang MJ, 2022, RENEW SUST ENERG REV, V155, DOI 10.1016/j.rser.2021.111864 Liang P, 2013, WATER RES, V47, P2523, DOI 10.1016/j.watres.2013.02.037 Lipson AL, 2016, J POWER SOURCES, V325, P646, DOI 10.1016/j.jpowsour.2016.06.019 Liu LY, 2021, DESALINATION, V498, DOI 10.1016/j.desal.2020.114794 Liu PY, 2017, J MATER CHEM A, V5, P13907, DOI 10.1039/c7ta02653f Liu QC, 2018, PHYSICA A, V506, P532, DOI 10.1016/j.physa.2018.04.031 Liu WA, 2023, MECH SYST SIGNAL PR, V184, DOI 10.1016/j.ymssp.2022.109724 Liu XT, 2021, ACS ES&T ENG, V1, P261, DOI 10.1021/acsestengg.0c00094 Liu XT, 2020, ENVIRON SCI TECHNOL, V54, P15516, DOI 10.1021/acs.est.0c06549 Liu YH, 2020, MICROPOR MESOPOR MAT, V303, DOI 10.1016/j.micromeso.2020.110303 Liu Y, 2021, ACS NANO, V15, P13924, DOI 10.1021/acsnano.1c03417 Liu Y, 2015, RSC ADV, V5, P15205, DOI 10.1039/c4ra14447c Liu ZZ, 2021, GLOB CHALL, V5, DOI 10.1002/gch2.202000054 Liu ZZ, 2020, ENVIRON SCI-WAT RES, V6, P283, DOI 10.1039/c9ew00939f Lorbeer B, 2018, BIG DATA RES, V11, P44, DOI 10.1016/j.bdr.2017.09.002 Loria S., 2018, Textblob documentation Lu D, 2017, DESALINATION, V424, P53, DOI 10.1016/j.desal.2017.09.026 Ma JX, 2016, ENVIRON SCI TECHNOL, V50, P13495, DOI 10.1021/acs.est.6b03424 Marengo D, 2022, PSYCHIAT RES, V316, DOI 10.1016/j.psychres.2022.114753 Massimo A., 2017, BIBLIOSHINY BIBLIOME Massimo A., 2022, BRIEF INTRO BIBLIOME McClelland S, 2019, REP PRACT ONCOL RADI, V24, P294, DOI 10.1016/j.rpor.2019.03.005 Metzger M, 2020, ENERG ENVIRON SCI, V13, P1544, DOI [10.1039/D0EE00725K, 10.1039/d0ee00725k] Mohandass G, 2021, ACS EST ENG, V1, P1678, DOI 10.1021/acsestengg.1c00266 Monshizadeh M, 2022, J NETW COMPUT APPL, V207, DOI 10.1016/j.jnca.2022.103513 Mousset E, 2022, CURR OPIN ELECTROCHE, V35, DOI 10.1016/j.coelec.2022.101105 Mukherjee D, 2022, J BUS RES, V148, P101, DOI 10.1016/j.jbusres.2022.04.042 Muller M., 2022, PROCEDIA CIRP, V107, P179 Tran NAT, 2022, APPL SURF SCI, V579, DOI 10.1016/j.apsusc.2021.152154 Nie CY, 2012, J ELECTROANAL CHEM, V666, P85, DOI 10.1016/j.jelechem.2011.12.006 OECD, 2009, OECD SCI TECHNOLOGY Oliveira KSGC, 2023, CHEM ENG J, V457, DOI 10.1016/j.cej.2022.141059 Omosebi A, 2020, ENVIRON SCI-WAT RES, V6, P321, DOI [10.1039/c9ew00797k, 10.1039/C9EW00797K] Orange_Data_Mining_Tool, 1996, DIST WIDG Oren Y, 2008, DESALINATION, V228, P10, DOI 10.1016/j.desal.2007.08.005 Oyarzun DI, 2018, WATER RES X, V1, DOI 10.1016/j.wroa.2018.100008 Pan J, 2021, PATTERN RECOGN LETT, V151, P88, DOI 10.1016/j.patrec.2021.08.004 Pang TT, 2022, DESALINATION, V527, DOI 10.1016/j.desal.2022.115562 Pasta M, 2012, NANO LETT, V12, P839, DOI 10.1021/nl203889e Pastushok O, 2019, CHEM ENG J, V375, DOI 10.1016/j.cej.2019.121943 Pattle S., 2021, OR SURG OR MED OR PA, V132, P33 Peng Z, 2013, APPL SURF SCI, V282, P965, DOI 10.1016/j.apsusc.2013.06.107 Perez-Antolin D, 2022, DESALINATION, V533, DOI 10.1016/j.desal.2022.115764 Petukhova A, 2022, SOFTWAREX, V19, DOI 10.1016/j.softx.2022.101122 Poirier J., 2015, BENEFITS INT COAUTHO Porada S, 2014, J MATER CHEM A, V2, P9313, DOI 10.1039/c4ta01783h Porada S, 2013, PROG MATER SCI, V58, P1388, DOI 10.1016/j.pmatsci.2013.03.005 Porada S, 2017, ELECTROCHIM ACTA, V255, P369, DOI 10.1016/j.electacta.2017.09.137 Porada S, 2015, CHEMSUSCHEM, V8, P1867, DOI [10.1002/cssc.201500696, 10.1002/cssc.201500166] Pothanamkandathil V, 2022, ENVIRON SCI-WAT RES, V8, P1489, DOI [10.1039/d2ew00188h, 10.1039/D2EW00188H] Pothanamkandathil V, 2020, ENVIRON SCI TECHNOL, V54, P3653, DOI 10.1021/acs.est.9b07311 Prakash R., 2022, INT J INFORM MANAGE, V2 Ramalingam K, 2021, ACS SUSTAIN CHEM ENG, V9, P12779, DOI 10.1021/acssuschemeng.1c03263 Reimers N., 2019, arXiv Said IA, 2022, CHEM ENG PROCESS, V178, DOI 10.1016/j.cep.2022.109030 Santos C, 2022, CURR OPIN ELECTROCHE, V35, DOI 10.1016/j.coelec.2022.101089 Santos C, 2021, CARBON, V176, P390, DOI 10.1016/j.carbon.2021.01.148 Santos C, 2020, ELECTROCHIM ACTA, V330, DOI 10.1016/j.electacta.2019.135216 Santos C, 2018, J MATER CHEM A, V6, P10898, DOI 10.1039/c8ta01128a Sayed DM, 2021, SEP PURIF TECHNOL, V266, DOI 10.1016/j.seppur.2021.118597 Sayed ET, 2021, CHEMOSPHERE, V275, DOI 10.1016/j.chemosphere.2021.130001 Sebti E., 2021, ENERG ENVIRON SCI, DOI [10.1039/D0EE03321A,EnergyEnviron.Sci.14(, DOI 10.1039/D0EE03321A,ENERGYENVIRON.SCI.14] Semeraro F., 2023, ROBOT CIM-INT MANUF, V79 Seo SJ, 2010, WATER RES, V44, P2267, DOI 10.1016/j.watres.2009.10.020 Shi L, 2022, ENVIRON SCI TECHNOL, V56, P8932, DOI 10.1021/acs.est.2c01586 Shi L, 2022, CHEM ENG J, V435, DOI 10.1016/j.cej.2022.135001 Shi L, 2021, ENVIRON SCI TECHNOL, V55, P5412, DOI 10.1021/acs.est.0c08629 Shi WH, 2021, ACS APPL MATER INTER, V13, P21149, DOI 10.1021/acsami.1c00089 Shiu HY, 2019, DESALINATION, V468, DOI 10.1016/j.desal.2019.114087 Shocron AN, 2022, ENVIRON SCI TECH LET, V9, P889, DOI 10.1021/acs.estlett.2c00551 Shrivastava A, 2022, ACS APPL MATER INTER, V14, P30672, DOI 10.1021/acsami.2c03261 Silambarasan K, 2019, ENERGY TECHNOL-GER, V7, DOI 10.1002/ente.201800601 Silva AP, 2021, SEP PURIF TECHNOL, V271, DOI 10.1016/j.seppur.2021.118872 Singh K, 2020, DESALINATION, V496, DOI 10.1016/j.desal.2020.114647 Singh K, 2019, DESALINATION, V455, P115, DOI 10.1016/j.desal.2018.12.015 Singh K, 2020, DESALINATION, V481, DOI 10.1016/j.desal.2020.114346 Singh KN., 2022, INT J INF MANAG DATA, V2, P100061, DOI DOI 10.1016/J.JJIMEI.2022.100061 Smith KC, 2016, J ELECTROCHEM SOC, V163, pA530, DOI 10.1149/2.0761603jes Srimuk P, 2020, NAT REV MATER, V5, P517, DOI 10.1038/s41578-020-0193-1 Srimuk P, 2017, J MATER CHEM A, V5, P15640, DOI 10.1039/c7ta03120c Srimuk P, 2016, J MATER CHEM A, V4, P18265, DOI 10.1039/c6ta07833h Sriramulu D, 2019, RSC ADV, V9, P14884, DOI 10.1039/c9ra01872g Sriramulu D, 2019, NANOSCALE, V11, P5896, DOI 10.1039/c8nr09119f Sufiani O, 2019, J ELECTROANAL CHEM, V848, DOI 10.1016/j.jelechem.2019.113328 Sun JQ, 2023, ENVIRON RES, V218, DOI 10.1016/j.envres.2022.114987 Sun Y, 2022, CHEM ENG J, V443, DOI 10.1016/j.cej.2022.136542 Sun Y, 2021, SEP PURIF TECHNOL, V256, DOI 10.1016/j.seppur.2020.117807 Suss ME, 2015, ENERG ENVIRON SCI, V8, P2296, DOI [10.1039/C5EE00519A, 10.1039/c5ee00519a] Suss ME, 2018, JOULE, V2, P10, DOI 10.1016/j.joule.2017.12.010 Sussz ME, 2017, J ELECTROCHEM SOC, V164, pE270, DOI 10.1149/2.1201709jes Taha MM, 2023, DESALINATION, V546, DOI 10.1016/j.desal.2022.116219 Taha MM, 2021, DESALINATION, V511, DOI 10.1016/j.desal.2021.115099 Tan C, 2018, WATER RES, V147, P276, DOI 10.1016/j.watres.2018.09.056 Tang J, 2022, J POLYM SCI, V60, P3035, DOI 10.1002/pol.20220169 Tang KX, 2019, J MATER CHEM A, V7, P26693, DOI 10.1039/c9ta08663c Tang WW, 2017, WATER RES, V121, P302, DOI 10.1016/j.watres.2017.05.046 Tang WW, 2017, WATER RES, V120, P229, DOI 10.1016/j.watres.2017.05.009 Tang WW, 2016, WATER RES, V99, P112, DOI 10.1016/j.watres.2016.04.047 Tang WW, 2015, WATER RES, V84, P342, DOI 10.1016/j.watres.2015.08.012 Thakur D., 2011, P ATLANTA C SCI INNO, P1 Torkamanzadeh M, 2020, ACS APPL MATER INTER, V12, P26013, DOI 10.1021/acsami.0c05975 Tullu MS, 2019, SAUDI J ANAESTH, V13, P12, DOI 10.4103/sja.SJA_685_18 Uwayid R, 2022, WATER RES, V210, DOI 10.1016/j.watres.2021.117959 Uwayid R, 2021, CARBON, V173, P1105, DOI 10.1016/j.carbon.2020.11.045 Vafakhah S, 2020, DESALINATION, V493, DOI 10.1016/j.desal.2020.114662 Wang HY, 2019, CARBON, V153, P12, DOI 10.1016/j.carbon.2019.06.066 Wang JP, 2020, INFORMATION, V11, DOI 10.3390/info11090421 Wang J, 2022, CITIES, V129, DOI 10.1016/j.cities.2022.103925 Wang K, 2022, CHEM ENG J, V433, DOI 10.1016/j.cej.2021.133578 Wang K, 2022, DESALINATION, V522, DOI 10.1016/j.desal.2021.115420 Wang K, 2022, J COLLOID INTERF SCI, V608, P2752, DOI 10.1016/j.jcis.2021.11.006 Wang L, 2021, CURR OPIN ELECTROCHE, V29, DOI 10.1016/j.coelec.2021.100758 Wang RY, 2015, ADV ENERGY MATER, V5, DOI 10.1002/aenm.201401869 Wang RH, 2022, J MATER CHEM A, V10, P6414, DOI 10.1039/d1ta10783f Wang RZ, 2022, HELIYON, V8, DOI 10.1016/j.heliyon.2022.e09319 Wang SY, 2021, DESALINATION, V520, DOI 10.1016/j.desal.2021.115341 Wang SY, 2020, ACS APPL MATER INTER, V12, P44049, DOI 10.1021/acsami.0c12421 Wang SY, 2019, ENVIRON SCI-NANO, V6, P2379, DOI 10.1039/c9en00545e Wang SY, 2019, ENVIRON SCI TECHNOL, V53, P6292, DOI 10.1021/acs.est.9b00662 Wang SF, 2020, MATER TODAY COMMUN, V23, DOI 10.1016/j.mtcomm.2020.100904 Wang XN, 2022, J AFFECT DISORDERS, V317, P107, DOI 10.1016/j.jad.2022.08.054 Wang XR, 2022, ACS APPL MATER INTER, V14, P53150, DOI 10.1021/acsami.2c14999 Wang Y, 2023, INFORM SYST, V111, DOI 10.1016/j.is.2022.102124 Wang Y, 2020, CHEM ENG J, V392, DOI 10.1016/j.cej.2019.123698 Wang YN, 2023, ENVIRON TECHNOL INNO, V29, DOI 10.1016/j.eti.2022.102972 Welgemoed TJ, 2005, DESALINATION, V183, P327, DOI 10.1016/j.desal.2005.02.054 Wouters JJ, 2018, J ELECTROCHEM SOC, V165, pE148, DOI 10.1149/2.0271805jes Wouters JJ, 2016, J ELECTROCHEM SOC, V163, pA2733, DOI 10.1149/2.0911613jes Wouters JJ, 2013, ELECTROCHIM ACTA, V112, P763, DOI 10.1016/j.electacta.2013.08.170 Wu L, 2022, WATER RES, V221, DOI 10.1016/j.watres.2022.118822 Wu TT, 2018, ENVIRON SCI TECH LET, V5, P98, DOI 10.1021/acs.estlett.7b00540 Xie P., 2013, ARXIV Xie RX, 2023, ENERGY MATER ADV, V4, DOI 10.34133/energymatadv.0009 Xing WL, 2020, DESALINATION, V482, DOI 10.1016/j.desal.2020.114390 Xu DC, 2020, ACS APPL MATER INTER, V12, P57671, DOI 10.1021/acsami.0c15413 Xu LM, 2023, J COLLOID INTERF SCI, V630, P372, DOI 10.1016/j.jcis.2022.10.140 Xu P, 2008, WATER RES, V42, P2605, DOI 10.1016/j.watres.2008.01.011 Yang F, 2021, WATER RES, V200, DOI 10.1016/j.watres.2021.117222 Yoon H, 2019, SEP PURIF TECHNOL, V215, P190, DOI 10.1016/j.seppur.2018.12.071 Yoon H, 2017, DESALINATION, V422, P42, DOI 10.1016/j.desal.2017.08.010 Younes H, 2022, ENVIRON TECHNOL INNO, V28, DOI 10.1016/j.eti.2022.102858 Yu F, 2019, J MATER CHEM A, V7, P15999, DOI 10.1039/c9ta01264h Yu TH, 2016, DESALINATION, V399, P53, DOI 10.1016/j.desal.2016.08.007 Yue ZS, 2019, DESALINATION, V449, P69, DOI 10.1016/j.desal.2018.10.018 Zafra MC, 2014, ELECTROCHIM ACTA, V135, P208, DOI 10.1016/j.electacta.2014.04.182 Zavahir S, 2021, DESALINATION, V500, DOI 10.1016/j.desal.2020.114883 Zhang BJ, 2022, CHEM ENG J, V435, DOI 10.1016/j.cej.2022.134959 Zhang CY, 2021, ENVIRON SCI TECHNOL, V55, P4243, DOI 10.1021/acs.est.0c06552 Zhang CY, 2018, WATER RES, V128, P314, DOI 10.1016/j.watres.2017.10.024 Zhang J, 2020, SEP PURIF TECHNOL, V237, DOI 10.1016/j.seppur.2019.116322 Zhang P, 2021, J MATER CHEM A, V9, P22913, DOI 10.1039/d1ta06094e Zhang QY, 2020, J MATER CHEM A, V8, P15417, DOI 10.1039/d0ta03727c Zhang XD, 2020, ENVIRON SCI-WAT RES, V6, P243, DOI [10.1039/c9ew00835g, 10.1039/C9EW00835G] Zhao JX, 2022, ADV SCI, V9, DOI 10.1002/advs.202201678 Zhao R, 2013, WATER RES, V47, P1941, DOI 10.1016/j.watres.2013.01.025 Zhao R, 2012, J COLLOID INTERF SCI, V384, P38, DOI 10.1016/j.jcis.2012.06.022 Zhao YJ, 2013, DESALINATION, V324, P127, DOI 10.1016/j.desal.2013.06.009 Zhao YB, 2021, ACS SUSTAIN CHEM ENG, V9, P2496, DOI 10.1021/acssuschemeng.0c07823 Zhao YB, 2019, ENVIRON SCI-NANO, V6, P3091, DOI 10.1039/c9en00759h Zhou F, 2018, SEP PURIF TECHNOL, V191, P322, DOI 10.1016/j.seppur.2017.09.058 Zhou RJ, 2020, DESALINATION, V478, DOI 10.1016/j.desal.2019.114301 Zhou RX, 2022, PATTERN RECOGN, V124, DOI 10.1016/j.patcog.2021.108450 Zhu EH, 2019, SEP PURIF TECHNOL, V215, P454, DOI 10.1016/j.seppur.2019.01.004 Zornitta RL, 2022, SEP PURIF TECHNOL, V290, DOI 10.1016/j.seppur.2022.120807 Zornitta RL, 2017, CARBON, V123, P318, DOI 10.1016/j.carbon.2017.07.071 Zornitta RL, 2018, CHEMSUSCHEM, V11, P2101, DOI 10.1002/cssc.201800689 Zuo YQ, 2023, CHEM ENG J, V463, DOI 10.1016/j.cej.2023.142332 NR 328 TC 9 Z9 9 U1 22 U2 61 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS SN 0011-9164 EI 1873-4464 J9 DESALINATION JI Desalination PD OCT 1 PY 2023 VL 563 AR 116715 DI 10.1016/j.desal.2023.116715 EA JUN 2023 PG 24 WC Engineering, Chemical; Water Resources WE Science Citation Index Expanded (SCI-EXPANDED) SC Engineering; Water Resources GA K2ZW5 UT WOS:001015182800001 OA hybrid DA 2024-09-05 ER PT J AU Vieira, C Ortega-Alvarez, JD Magana, AJ Boutin, M AF Vieira, Camilo Ortega-Alvarez, Juan D. Magana, Alejandra J. Boutin, Mireille TI Beyond analytics: Using computer-aided methods in educational research to extend qualitative data analysis SO COMPUTER APPLICATIONS IN ENGINEERING EDUCATION LA English DT Article; Early Access DE assessment triangle; clustering algorithms; computer-aided methods; data analysis; education research; machine learning; qualitative methods; visualization ID COMPUTATIONAL THINKING; ASSESSMENT TRIANGLE; SCIENCE; CONCEPTIONS; DEVELOP AB This study proposes and demonstrates how computer-aided methods can be used to extend qualitative data analysis by quantifying qualitative data, and then through exploration, categorization, grouping, and validation. Computer-aided approaches to inquiry have gained important ground in educational research, mostly through data analytics and large data set processing. We argue that qualitative data analysis methods can also be supported and extended by computer-aided methods. In particular, we posit that computing capacities rationally applied can expand the innate human ability to recognize patterns and group qualitative information based on similarities. We propose a principled approach to using machine learning in qualitative education research based on the three interrelated elements of the assessment triangle: cognition, observation, and interpretation. Through the lens of the assessment triangle, the study presents three examples of qualitative studies in engineering education that have used computer-aided methods for visualization and grouping. The first study focuses on characterizing students' written explanations of programming code, using tile plots and hierarchical clustering with binary distances to identify the different approaches that students used to self-explain. The second study looks into students' modeling and simulation process and elicits the types of knowledge that they used in each step through a think-aloud protocol. For this purpose, we used a bubble plot and a k-means clustering algorithm. The third and final study explores engineering faculty's conceptions of teaching, using data from semi-structured interviews. We grouped these conceptions based on coding similarities, using Jaccard's similarity coefficient, and visualized them using a treemap. We conclude this manuscript by discussing some implications for engineering education qualitative research. C1 [Vieira, Camilo] Univ Norte, Dept Educ, Barranquilla 080020, Colombia. [Ortega-Alvarez, Juan D.] Virginia Tech, Dept Engn Educ, Blacksburg, VA USA. [Ortega-Alvarez, Juan D.] Univ EAFIT, Escuela Ciencias Aplicadas & Ingn, Medellin, Colombia. [Magana, Alejandra J.] Purdue Univ, Dept Comp & Informat Technol, W Lafayette, IN USA. [Magana, Alejandra J.] Purdue Univ, Sch Engn Educ, W Lafayette, IN USA. [Boutin, Mireille] Eindhoven Univ Technol, Dept Math & Comp Sci, Eindhoven, Netherlands. [Boutin, Mireille] Purdue Univ, Dept Math, W Lafayette, IN USA. C3 Universidad del Norte Colombia; Virginia Polytechnic Institute & State University; Universidad EAFIT; Purdue University System; Purdue University; Purdue University System; Purdue University; Eindhoven University of Technology; Purdue University System; Purdue University RP Vieira, C (corresponding author), Univ Norte, Dept Educ, Barranquilla 080020, Colombia. EM cvieira@uninorte.edu.co RI Ortega-Alvarez, Juan David/AAN-1404-2020 OI Ortega-Alvarez, Juan David/0000-0001-6110-0791; Magana, Alejandra/0000-0001-6117-7502; Boutin, Mireille/0000-0002-0837-6577 FU National Science Foundation [DGE-2219271, EEC-1826099]; U.S. National Science Foundation FX This research was supported in part by the U.S. National Science Foundation under awards No. DGE-2219271 and EEC-1826099. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation. CR [Anonymous], 2002, Scientific research in education: Committee on scientific principles for education research Arboleda M., 2023, 2023 IEEE Front. Education Conference FIE, P1, DOI [10.1109/FIE58773.2023.10343043, DOI 10.1109/FIE58773.2023.10343043] Atkinson RK, 2000, REV EDUC RES, V70, P181, DOI 10.3102/00346543070002181 Bakharia A, 2016, PROCEEDINGS OF THE THIRD (2016) ACM CONFERENCE ON LEARNING @ SCALE (L@S 2016), P253, DOI 10.1145/2876034.2893427 Berdanier C., 2020, PROC FRONT EDUC CONF, P1, DOI DOI 10.1109/fie44824.2020.9274115 Bessler L., 2023, Visual Data insights using SAS ODS graphics: a guide to communicationeffective data visualization, P263, DOI [10.1007/978-1-4842-8609-87, DOI 10.1007/978-1-4842-8609-87] Chiuand J. L., 2014, Applying science of learning in education: Infusing psychological science into the curriculum, P91 Clarke V, 2013, PSYCHOLOGIST, V26, P120 Evergreen Stephanie D.H., 2019, Effective data visualization: The right chart for the right data Everitt BS., 2011, CLUSTER ANAL, V5, DOI DOI 10.1002/9780470977811 Gillies M., 2022, ArXiv, V2210 Glaser R.J., 2001, Knowing what students know: the science and design of educational assessment Ikotun AM, 2023, INFORM SCIENCES, V622, P178, DOI 10.1016/j.ins.2022.11.139 Klasnja-Milicevic A, 2017, COMPUT APPL ENG EDUC, V25, P1066, DOI 10.1002/cae.21844 Kleinheksel AJ, 2020, AM J PHARM EDUC, V84, P127, DOI 10.5688/ajpe7113 Kochmar E, 2020, LECT NOTES ARTIF INT, V12164, P140, DOI 10.1007/978-3-030-52240-7_26 Kong N, 2010, IEEE T VIS COMPUT GR, V16, P990, DOI 10.1109/TVCG.2010.186 Lyon EG, 2011, J SCI TEACH EDUC, V22, P417, DOI 10.1007/s10972-011-9241-4 Magana A. J., 2018, 2018 IEEE Front. Educ. Conf. (FIE), P1 Magana AJ, 2019, J ENG EDUC, V108, P276, DOI 10.1002/jee.20264 Marion S.F., 2006, Educational Measurement: Issues Practice, V25, P47 National Academies of Sciences Engineering Medicine, 2016, Promising practices for strengthening the regional STEM workforce development ecosystem Niwattanakul Suphakit, 2013, IMECS 2013 Proceedings of International Multiconference of Engineers and Computer Scientists, P380 Ortega-Alvarez J.D., 2019, Conceptions of teaching among Colombian engineering faculty: An exploratory study [PhD Thesis]. Purdue University Graduate School Pellegrino JW, 2020, EDUC MEAS-ISSUES PRA, V39, P81, DOI 10.1111/emip.12372 Picciano AG., 2012, Journal of Asynchronous Learning Networks, V16, P9, DOI DOI 10.24059/OLJ.V16I3.267 PRATT DD, 1992, ADULT EDUC QUART, V42, P203, DOI 10.1177/074171369204200401 SAMUELOWICZ K, 1992, HIGH EDUC, V24, P93, DOI 10.1007/BF00138620 Shavelson R., 2003, Evaluating new approaches to assessing learning Shiflet AB., 2014, Introduction to Computational Science: Modeling and Simulation for the Sciences Streveler RA, 2011, INT J ENG EDUC, V27, P968 Tamasauskas D, 2012, 2012 12TH INTERNATIONAL CONFERENCE ON HYBRID INTELLIGENT SYSTEMS (HIS), P421, DOI 10.1109/HIS.2012.6421371 Taub R, 2015, COMPUT EDUC, V87, P10, DOI 10.1016/j.compedu.2015.03.013 van den Haak M, 2003, BEHAV INFORM TECHNOL, V22, P339, DOI 10.1080/0044929031000 Vieira C., 2017, 2017 IEEE Front. Educ. Conf. FIE, P1, DOI [10.1109/FIE.2017.8190592, DOI 10.1109/FIE.2017.8190592] Vieira C, 2023, EDUC TECHNOL SOC, V26, P155, DOI 10.30191/ETS.202307_26(3).0012 Vieira C, 2019, PROC FRONT EDUC CONF, DOI 10.1109/fie43999.2019.9028599 Vieira C, 2019, COGNITION INSTRUCT, V37, P201, DOI 10.1080/07370008.2018.1539738 Vieira C, 2018, COMPUT APPL ENG EDUC, V26, P1903, DOI 10.1002/cae.22025 Vieira C, 2018, COMPUT APPL ENG EDUC, V26, P1020, DOI 10.1002/cae.21953 Vieira C, 2018, COMPUT EDUC, V122, P119, DOI 10.1016/j.compedu.2018.03.018 Vieira C, 2017, ACM T COMPUT EDUC, V17, DOI 10.1145/3058751 Wing JM, 2016, COMMUN ACM, V59, P10, DOI 10.1145/2933410 Zhai XM, 2020, STUD SCI EDUC, V56, P111, DOI 10.1080/03057267.2020.1735757 NR 44 TC 0 Z9 0 U1 3 U2 3 PU WILEY PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1061-3773 EI 1099-0542 J9 COMPUT APPL ENG EDUC JI Comput. Appl. Eng. Educ. PD 2024 MAY 23 PY 2024 DI 10.1002/cae.22749 EA MAY 2024 PG 15 WC Computer Science, Interdisciplinary Applications; Education, Scientific Disciplines; Engineering, Multidisciplinary WE Science Citation Index Expanded (SCI-EXPANDED) SC Computer Science; Education & Educational Research; Engineering GA RR4W7 UT WOS:001229386200001 DA 2024-09-05 ER PT C AU Fan, G Peng, W Sun, S Li, PW AF Fan, Ge Peng, Wei Sun, Shan Li, Peiwen BE Yingying, S Guiran, C Zhen, L TI A Research on National Sustainability Evaluation Model SO PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON LOGISTICS, ENGINEERING, MANAGEMENT AND COMPUTER SCIENCE (LEMCS 2015) SE Advances in Intelligent Systems Research LA English DT Proceedings Paper CT International Conference on Logistics Engineering, Management and Computer Science (LEMCS) CY JUL 29-31, 2015 CL Shenyang, PEOPLES R CHINA DE mechine learning; k-means; logistic regression; neural network; sustainability AB By applying an objective method to evaluate its sustainability, a certain country could make proper plans and policies for further development. However, subjective and complicated problems have been found in the current methods and index systems. Therefore, researchers set up a composite model that it can evaluate the sustainability for a certain country in a more objective way, in comparison with other methods. Researchers propose a method for evaluating sustainability for a certain country, which solves problems concerning strong subjectivity and complicity in current models. Researchers choose 17 representative core indicators based on the index system of UNCSD and divide them into two catalogues -- Nature Indicators and Operate Indicators. First, Means Clustering Algorithm of k-means (an unsupervised learning method) divides the data into three categories. Then, researchers obtain those indicators, using regression analysis, and build an objective evaluation model. When researchers make policies for a country to allocate resources reasonably, researchers maximize the improvement of the ability of sustainable development based on "along the gradient direction ascend the fastest". In this paper, researchers conduct simulations experiment, using data of 96 countries in the World Bank. After analyzing the deviations and sensitivity of the model, the theoretical results are verified experimentally. C1 [Fan, Ge; Peng, Wei] Sichuan Agr Univ, Dept Business, Chengdu, Peoples R China. [Sun, Shan] Hunan Univ Commerce, Dept Econ & Trade, Changsha, Peoples R China. [Li, Peiwen] Donghua Univ, Dept Mech Engn, Shanghai, Peoples R China. C3 Sichuan Agricultural University; Hunan University of Technology & Business; Donghua University RP Peng, W (corresponding author), Sichuan Agr Univ, Dept Business, Chengdu, Peoples R China. EM fange1122@gmail.com; pw7@163.com; sunshan920813@gmail.com; lipeiwen@me.com RI Fan, Ge/GXM-8675-2022 OI Fan, Ge/0000-0001-5653-1626 CR [Anonymous], 2012, Living Planet Report 2012 - On the Road to Rio+20 [Anonymous], IND SUST DEV FRAM ME BURTON I, 1987, ENVIRONMENT, V29, P25, DOI 10.1080/00139157.1987.9928891 Costanza R., 1998, VALUE WORLDS ECOSYST, VV. O'Neill, and J. Paruelo Fernando R, 2012, CORP GOV-INT J BUS S, V12, P579, DOI 10.1108/14720701211267883 Hails Chris., 2006, LIVING PLANET REPORT Hard P., 1997, MEASURING SUSTAINABL, P1 Hardi P., 1997, Assessing sustainable development- principles in practice Leape Jim P., 2008, LIVING PLANET REPORT Loh J., 2000, Living Planet Report 2000, WWF International Loh J., 2002, LIVING PLANET REPORT Mieg HA, 2012, SUSTAINABILITY-BASEL, V4, P17, DOI 10.3390/su4010017 Serageldin I., 1998, Evaluation and Development: the institutional dimension, V1, P203 Serageldin I, 2013, TECHNOVATION, V33, P105, DOI 10.1016/j.technovation.2013.03.005 Singh RK, 2012, ECOL INDIC, V15, P281, DOI 10.1016/j.ecolind.2011.01.007 Warhurst A., 2002, Mining, Minerals and Sustainable Development [MMSD] project report *WWF, 2004, LIV PLAN REP 2004 NR 17 TC 0 Z9 0 U1 0 U2 11 PU ATLANTIS PRESS PI PARIS PA 29 AVENUE LAVMIERE, PARIS, 75019, FRANCE SN 1951-6851 BN 978-94-6252-102-5 J9 ADV INTEL SYS RES PY 2015 VL 117 BP 524 EP 529 PG 6 WC Computer Science, Artificial Intelligence; Management; Operations Research & Management Science WE Conference Proceedings Citation Index - Science (CPCI-S); Conference Proceedings Citation Index - Social Science & Humanities (CPCI-SSH) SC Computer Science; Business & Economics; Operations Research & Management Science GA BE5OK UT WOS:000373107000100 DA 2024-09-05 ER PT C AU Yang, W Lyu, S Hou, M Huang, C AF Yang, W. Lyu, S. Hou, M. Huang, C. BE Weng, CH He, Y TI Research on the Transmission Performance of Multi-layer Simulated Mural Surface by Imaging Spectrum SO INTERNATIONAL CONFERENCE ON ENVIRONMENTAL REMOTE SENSING AND BIG DATA (ERSBD 2021) SE Proceedings of SPIE LA English DT Proceedings Paper CT International Conference on Environmental Remote Sensing and Big Data (ERSBD) CY OCT 29-31, 2021 CL Wuhan, PEOPLES R CHINA DE Hyperspectral Imaging; Information Enhancement; Normalized Difference Index; Principal Component Analysis AB Some ancient murals were found to be repainted on the surface of the original murals to form multi-layer murals. The patterns on the original layer are of great significance for studying the social and cultural behavior in that time. The hyperspectral imaging covers the visible and near-infrared bands, which has advantages for the information extraction of multi-layer murals. Therefore, a method to study the transmission performance of hyperspectral imaging on multi-layer simulated mural samples is proposed. By making mural samples, the mineral pigment painted on the surface is covered with 0-11 different layers of lime water. Then the samples were collected with hyperspectral images, and the method of principal component analysis and band calculation were used to analyze the enhancement effect of the mural patterns covered by different layers of lime water. The results show that hyperspectral imaging has certain transmittance to the interior of the mural and can enhance internal pigment information. The research results can support the information extraction of multi-layer murals to some extent. C1 [Yang, W.; Lyu, S.; Hou, M.] Beijing Univ Civil Engn & Architecture, Sch Geomat & Urban Spatial Informat, 15 Yongyuan Rd, Beijing 102616, Peoples R China. [Huang, C.] Tsinghua Unigrp, 7 Zhichun Rd, Beijing, Peoples R China. C3 Beijing University of Civil Engineering & Architecture RP Hou, M (corresponding author), Beijing Univ Civil Engn & Architecture, Sch Geomat & Urban Spatial Informat, 15 Yongyuan Rd, Beijing 102616, Peoples R China. EM 2108570020095@stu.bucea.edu.cn; lvshuqiang@bucea.edu.cn; houmiaole@bucea.edu.cn; 18510083275@163.com CR [Anonymous], 2011, HYPERSPECTRAL REMOTE Burger J, 2005, J CHEMOMETR, V19, P355, DOI 10.1002/cem.938 Cucci C, 2020, MICROCHEM J, V158, DOI 10.1016/j.microc.2020.105082 Hou ML, 2019, APPL SCI-BASEL, V9, DOI 10.3390/app9173591 [侯妙乐 Hou Miaole], 2014, [测绘科学, Science of Surveying and Mapping], V39, P89 Huang M, 2016, SENSORS-BASEL, V16, DOI 10.3390/s16040441 Li DP, 2018, SPECTROSC SPECT ANAL, V38, P2612, DOI 10.3964/j.issn.1000-0593(2018)08-2612-05 Lin S. S., 2021, FOREST RESOURCES MAN, P96 Liu C, 2017, SPECTROSC SPECT ANAL, V37, P3103, DOI 10.3964/j.issn.1000-0593(2017)10-3103-05 Wu TX, 2017, APPL SPECTROSC, V71, P977, DOI 10.1177/0003702816660724 Xu WZ, 2017, SPECTROSC SPECT ANAL, V37, P3235, DOI 10.3964/j.issn.1000-0593(2017)10-3235-07 ZHANG Chenfeng, 2017, GEOGRAPHIC INFORM WO, V24, P119 NR 12 TC 0 Z9 0 U1 5 U2 12 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X EI 1996-756X BN 978-1-5106-5135-7; 978-1-5106-5134-0 J9 PROC SPIE PY 2021 VL 12129 AR 1212906 DI 10.1117/12.2625588 PG 6 WC Engineering, Electrical & Electronic; Optics WE Conference Proceedings Citation Index - Science (CPCI-S) SC Engineering; Optics GA BT1FE UT WOS:000797324200005 DA 2024-09-05 ER PT J AU Roessger, KM Greenleaf, A Hoggan, C AF Roessger, Kevin M. Greenleaf, Arie Hoggan, Chad TI Using data collection apps and single-case designs to research transformative learning in adults SO JOURNAL OF ADULT AND CONTINUING EDUCATION LA English DT Article DE Transformative learning research; data collection apps; single-case design; causal inference; outcome research ID INTERPERSONAL SENSITIVITY; INVENTORY; SCALE; SELF AB To overcome situational hurdles when researching transformative learning in adults, we outline a research approach using single-case research designs and smartphone data collection apps. This approach allows researchers to better understand learners' current lived experiences and determine the effects of transformative learning interventions on demonstrable outcomes. We first discuss data collection apps and their features. We then describe how they can be integrated into single-case research designs to make causal inferences about a learning intervention's effects when limited by researcher access and learner retrospective reporting. Design controls for internal validity threats and visual and statistical data analysis are then discussed. Throughout, we highlight applications to transformative learning and conclude by discussing the approach's potential limitations. C1 [Roessger, Kevin M.] Univ Arkansas, Fayetteville, AR 72701 USA. [Greenleaf, Arie] Seattle Univ, Seattle, WA 98122 USA. [Hoggan, Chad] North Carolina State Univ, Raleigh, NC USA. C3 University of Arkansas System; University of Arkansas Fayetteville; Seattle University; North Carolina State University RP Roessger, KM (corresponding author), Univ Arkansas, Coll Educ & Hlth Profess, Grad 102, Fayetteville, AR 72701 USA. EM kmroessg@uark.edu RI Greenleaf, Arie/HKE-8316-2023; Hoggan, Chad/AAL-7109-2021 OI Hoggan, Chad/0000-0001-7759-591X; Roessger, Kevin/0000-0001-6600-4731 CR [Anonymous], 2014, Flow and the Foundations of Positive Psychology: The Collected Works of Mihaly Csikszentmihalyi, DOI [DOI 10.1007/978-94-017-9088-8, 10.1007/978-94-017-9088-8_3, 10.1007/978-94-017-9088-8] [Anonymous], 2011, ANAL COVARIANCE ALTE [Anonymous], 2005, SCI WELL BEING [Anonymous], GUARDIAN [Anonymous], 2010, SINGLE CASE RES DESI Auerbach C., 2014, SSD for R: An R package for analyzing single-subject data Briere J, 2002, ASSESSMENT, V9, P230, DOI 10.1177/1073191102009003002 Butcher J.N., 1989, MINNESOTA MULTIPHASI Campbell J.M., 2010, Single subject research methodology in behavioral sciences, P417 Carney DR, 2003, EMOTION, V3, P194, DOI 10.1037/1528-3542.3.2.194 Collect, 2015, US COLL SURV MON TRA Comings J.P., 2003, ESTABLISHING EVIDENC Coryn C.L. S., 2011, Really new directions in evaluation: Young evaluator's perspectives, P31, DOI DOI 10.1002/EV.375 Cranton P., 2000, LEARNING TRANSFORMAT, P181 Flury JM, 2007, SELF IDENTITY, V6, P281, DOI 10.1080/15298860601033208 Foster L.H., 2010, COUNSELING OUTCOME R, V1, P30, DOI DOI 10.1177/2150137810387130 Gast D.L., 2014, Single case research method: Applications in special education and behavior sciences, P251, DOI DOI 10.4324/9780203521892 GIS Cloud, 2016, GIS CLOUD IS NEXT GE Greenleaf AT, 2017, J HUMANIST COUNS, V56, P86, DOI 10.1002/johc.12046 Gunnlaugson O, 2011, J TRANSFORM EDUC, V9, P3, DOI 10.1177/1541344610397034 Harb GC, 2002, BEHAV RES THER, V40, P961, DOI 10.1016/S0005-7967(01)00125-5 Hektner Joel M., 2011, Experience Sampling Method Hoggan Chad., 2009, CREATIVE EXPRESSION Hoggan CD, 2016, ADULT EDUC QUART, V66, P57, DOI 10.1177/0741713615611216 Illeris K., 2009, Contemporary theories of learning: learning theorists -- in their own words iSurvey, 2016, ISURVEY OFFL SURV DA JACKSON LA, 1989, J PERS ASSESS, V53, P353, DOI 10.1207/s15327752jpa5302_12 Kahneman Daniel., 2011, Thinking, fast and slow Kaleba K, 2017, TRUMP FISCAL YEAR 20 Kazdin AE, 2008, AM PSYCHOL, V63, P146, DOI 10.1037/0003-066X.63.3.146 Kirk R, 2004, SAGE ENCY SOCIAL SCI, P619 Konrath S., 2014, PLOS ONE, V9, P8, DOI DOI 10.1371/J0URNAL.P0NE.0103469 Kratochwill T. R., 2010, Single-case designs technical documentation Lovasz N, 2013, NEW IDEAS PSYCHOL, V31, P22, DOI 10.1016/j.newideapsych.2011.02.005 McDavid J.C., 2013, PROGRAM EVALUATION P MetricWire, 2015, RES WHER YOU AR Morgan D.L., 2009, Single case research methods for the behavioral and health sciences Pew Research Center, 2015, MOB FACT SHEET QuickTapSurvey, 2016, CAPT DAT AN EV OFFL Redelmeier DA, 1996, PAIN, V66, P3, DOI 10.1016/0304-3959(96)02994-6 Richards S., 2014, Single Subject Research: Applications in Educational and Clinical Settings Robbins S, 2016, INT TRANSF LEARN C T Salthouse TA, 2009, NEUROBIOL AGING, V30, P507, DOI 10.1016/j.neurobiolaging.2008.09.023 Schreiber CA, 2000, J EXP PSYCHOL GEN, V129, P27, DOI 10.1037//0096-3445.129.1.27 Scott S.M., 1997, New Directions for Adult Learning and Continuing Education, V74, P41, DOI DOI 10.1002/ACE.7405 SCRUGGS TE, 1987, REM SPEC EDUC, V8, P24, DOI 10.1177/074193258700800206 Shadish Cook Campbell, 2002, Experimental and quasi-experimental designs for generalized causal inference Sharpe JP, 1998, PERS INDIV DIFFER, V24, P457, DOI 10.1016/S0191-8869(97)00193-1 Sienko R.M, 2011, THESIS Stangor Charles, 2015, RES METHODS BEHAV SC, Vffth Tawney J.W., 1984, Single subject research in special education Torneke N., 2010, LEARNING RFT INTRO R Wright R.J., 2014, Research methods for counseling: An introduction NR 53 TC 5 Z9 8 U1 0 U2 0 PU SAGE PUBLICATIONS LTD PI LONDON PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND SN 1477-9714 EI 1479-7194 J9 J ADULT CONTIN EDUC JI J. Adult Contin. Educ. PD NOV PY 2017 VL 23 IS 2 BP 206 EP 225 DI 10.1177/1477971417732070 PG 20 WC Education & Educational Research WE Emerging Sources Citation Index (ESCI) SC Education & Educational Research GA GW9SK UT WOS:000447339700006 DA 2024-09-05 ER PT J AU Finlay, JM Davila, H Whipple, MO McCreedy, EM Jutkowitz, E Jensen, A Kane, RA AF Finlay, Jessica M. Davila, Heather Whipple, Mary O. McCreedy, Ellen M. Jutkowitz, Eric Jensen, Anne Kane, Rosalie A. TI What we learned through asking about evidence: A model for interdisciplinary student engagement SO GERONTOLOGY & GERIATRICS EDUCATION LA English DT Article DE Graduate training; interdisciplinary collaboration; active learning; gerontology students; professional development; research in aging ID PERFORMANCE; PROGRAM; CARE AB Traditional university learning modalities of lectures and examinations do not prepare students fully for the evolving and complex world of gerontology and geriatrics. Students involved in more active, self-directed learning can develop a wider breadth of knowledge and perform better on practical examinations. This article describes the Evidence in Aging (EIA) study as a model of active learning with the aim of preparing students to be effective interdisciplinary researchers, educators, and leaders in aging. We focus particularly on the experiences and reflections of graduate students who collaborated with faculty mentors on study design, data collection, and analysis. Students acquired new methodological skills, gained exposure to diverse disciplines, built interdisciplinary understanding, and cultivated professional development. The EIA study is a model for innovative student engagement and collaboration, interactive learning, and critical scholarly development. Lessons learned can be applied to a range of collaborative research projects in gerontology and geriatrics education. C1 [Finlay, Jessica M.] Univ Minnesota, Dept Geog Environm & Soc, 414 Social Sci,267 19th Ave S, Minneapolis, MN 55455 USA. [Davila, Heather] Univ Minnesota, Coll Educ & Human Dev, Evaluat Studies, Minneapolis, MN USA. [Whipple, Mary O.] Univ Minnesota, Sch Nursing, Minneapolis, MN 55455 USA. [McCreedy, Ellen M.] Brown Univ, Sch Publ Hlth, Ctr Gerontol & Healthcare Res, Providence, RI 02912 USA. [Jutkowitz, Eric] Brown Univ, Sch Publ Hlth, Dept Hlth Serv Policy & Practice, Providence, RI 02912 USA. [Jensen, Anne] Univ Minnesota, Carlson Sch Management, Sch Publ Hlth, Minneapolis, MN 55455 USA. [Jensen, Anne] Univ Minnesota, Carlson Sch Management, Minneapolis, MN 55455 USA. [Kane, Rosalie A.] Univ Minnesota, Sch Publ Hlth, Hlth Policy & Management, Minneapolis, MN USA. C3 University of Minnesota System; University of Minnesota Twin Cities; University of Minnesota System; University of Minnesota Twin Cities; University of Minnesota System; University of Minnesota Twin Cities; Brown University; Brown University; University of Minnesota System; University of Minnesota Twin Cities; University of Minnesota System; University of Minnesota Twin Cities; University of Minnesota System; University of Minnesota Twin Cities RP Finlay, JM (corresponding author), Univ Minnesota, Dept Geog Environm & Soc, 414 Social Sci,267 19th Ave S, Minneapolis, MN 55455 USA. EM finla039@umn.edu RI Whipple, Mary/AAK-3954-2020 OI Whipple, Mary/0000-0001-7073-3224; Finlay, Jessica/0000-0003-3427-8003; Davila, Heather/0000-0003-1832-7901 FU University of Minnesota Graduate School FX The authors are indebted to Robert L. Kane, MD, who was a tireless advocate for critical learning and staunch supporter of emerging gerontologists. We are also grateful to the University of Minnesota Graduate School for providing startup funds to create the Aging Studies Interdisciplinary Graduate Group. CR [Anonymous], 2013, National Journal of Physiology, Pharmacy and Pharmacology [Anonymous], 2000, How People Learn: Brain, Mind, Experience and School: Expanded Edition Barczi S, 2016, J AM GERIATR SOC, V64, pS178 Bass SA, 2013, GERONTOLOGIST, V53, P534, DOI 10.1093/geront/gnt031 Borrego M, 2010, REV HIGH EDUC, V34, P61 Braun V., 2006, QUAL RES PSYCHOL, V3, P77, DOI [10.1191/1478088706qp063oa, DOI 10.1191/1478088706QP063OA] Busby-Whitehead J, 2016, GENERATIONS, V40, P122 Davies M., 2007, INTERDISCIPLINARY HI Detlor B, 2012, EDUC INFORM, V29, P147, DOI 10.3233/EFI-2012-0924 Ferraro KF, 2007, J GERONTOL B-PSYCHOL, V62, pS2, DOI 10.1093/geronb/62.1.S2 Finlay J, 2016, GERONTOLOGIST, V56, P485 Freeman S, 2014, P NATL ACAD SCI USA, V111, P8410, DOI 10.1073/pnas.1319030111 Fulmer T, 2005, J AGING HEALTH, V17, P443, DOI 10.1177/0898264305277962 Fulmer Terry, 2003, Gerontol Geriatr Educ, V24, P3 Gardner SK, 2013, SUSTAIN SCI, V8, P241, DOI 10.1007/s11625-012-0182-4 Hanappi D, 2015, LONGITUD LIFE COURSE, V6, P59, DOI 10.14301/llcs.v6i1.302 Ivanitskaya L., 2002, INNOV HIGH EDUC, V27, P95, DOI [10.1023/A:1021105309984, DOI 10.1023/A:1021105309984] KAHANA E, 1990, EDUC GERONTOL, V16, P497, DOI 10.1080/0380127900160506 Kane R, 2016, GERONTOLOGIST, V56, P485 Keen MF, 1996, TEACH SOCIOL, V24, P166, DOI 10.2307/1318807 Kember D, 2005, STUD HIGH EDUC, V30, P155, DOI 10.1080/03075070500043127 Kurpinski K, 2014, SCI TRANSL MED, V6, DOI 10.1126/scitranslmed.3006858 Larson EL, 2011, CTS-CLIN TRANSL SCI, V4, P38, DOI 10.1111/j.1752-8062.2010.00258.x Longmore MA, 1996, TEACH SOCIOL, V24, P84, DOI 10.2307/1318901 Marshall C., 2014, DESIGNING QUALITATIV McKenzie G, 2017, GERONTOL GERIATR EDU, V38, P232, DOI 10.1080/02701960.2015.1127809 Michael J, 2006, ADV PHYSIOL EDUC, V30, P159, DOI 10.1152/advan.00053.2006 Morreale M, 2012, ACAD PSYCHIATR, V36, P223, DOI 10.1176/appi.ap.10070097 Palincsar AS, 1998, ANNU REV PSYCHOL, V49, P345, DOI 10.1146/annurev.psych.49.1.345 Prince M, 2004, J ENG EDUC, V93, P223, DOI 10.1002/j.2168-9830.2004.tb00809.x Repko A.F., 2008, INTERDISCIPLINARY RE Reuben DB, 2004, J AM GERIATR SOC, V52, P1000, DOI 10.1111/j.1532-5415.2004.52272.x Roehl A., 2013, Journal of family Consumer Sciences, V105, P44, DOI [10.14307/JFCS105.2.12, DOI 10.14307/JFCS105.2.12] Rotgans JI, 2011, LEARN INSTR, V21, P58, DOI 10.1016/j.learninstruc.2009.11.001 Schultz D, 2011, ACAD MED, V86, P1318, DOI 10.1097/ACM.0b013e31822c4c18 Solberg LB, 2015, J AM GERIATR SOC, V63, P997, DOI 10.1111/jgs.13394 Spelt EJH, 2009, EDUC PSYCHOL REV, V21, P365, DOI 10.1007/s10648-009-9113-z Trojanowski JQ, 2012, ALZHEIMERS DEMENT, V8, P564, DOI 10.1016/j.jalz.2011.08.005 WINN S, 1995, STUD HIGH EDUC, V20, P203, DOI 10.1080/03075079512331381703 Yoder JD, 2005, TEACH PSYCHOL, V32, P91, DOI 10.1207/s15328023top3202_2 NR 40 TC 4 Z9 6 U1 2 U2 17 PU ROUTLEDGE JOURNALS, TAYLOR & FRANCIS LTD PI ABINGDON PA 2-4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND SN 0270-1960 EI 1545-3847 J9 GERONTOL GERIATR EDU JI Gerontol. Geriatr. Educ. PY 2019 VL 40 IS 1 SI SI BP 90 EP 104 DI 10.1080/02701960.2018.1428578 PG 15 WC Education & Educational Research WE Emerging Sources Citation Index (ESCI) SC Education & Educational Research GA IA8WW UT WOS:000469840300008 PM 29364792 OA Green Accepted DA 2024-09-05 ER PT C AU Viet, NT Kravets, AG AF Viet, Nguyen Thanh Kravets, Alla G. BE Dwivedi, RK Saxena, AK Parygin, D Ather, D Yadav, V TI Analyzing Recent Research Trends of Computer Science from Academic Open-access Digital Library SO PROCEEDINGS OF THE 2019 8TH INTERNATIONAL CONFERENCE ON SYSTEM MODELING & ADVANCEMENT IN RESEARCH TRENDS (SMART-2019) LA English DT Proceedings Paper CT 8th International Conference on System Modeling and Advancement in Research Trends (SMART) CY NOV 22-23, 2019 CL Moradabad, INDIA DE Digital Library; Data Mining; Data Crawling; Trend Prediction; Topic Modeling AB The wider utilization of information and web technologies, database technologies, development of internet infrastructure has led to the evolution of digital libraries. In particular, digital libraries serve enormous number of various users and play an essential role as repositories and source of investigation and intelligence. With the emergence of IoT (Internet of Things) and different academic open-access digital libraries, the automatic extraction of advantageous knowledge from text data has been more and more a significant subject of research in data mining. In this paper, we perform web scraping system, statistical analyses from the arXiv repository and discuss the results of analyzing recent research trends in this academic open-access digital library. C1 [Viet, Nguyen Thanh; Kravets, Alla G.] Volgograd State Tech Univ, Volgograd, Russia. C3 Volgograd State Technical University RP Viet, NT (corresponding author), Volgograd State Tech Univ, Volgograd, Russia. EM vietqn1987@gmail.com; agk@gde.ru RI Nguyễn, Thành Việt/HOH-4310-2023; Kravets, Alla/HGE-9499-2022; Kravets, Alla/JAC-9586-2023 OI Kravets, Alla/0000-0003-1675-8652; Nguyen, Thanh Viet/0000-0003-3805-5958 FU Russian Fund of Basic Research [19-07-01200] FX This work was supported by Russian Fund of Basic Research (grant No. 19-07-01200). CR Chauhan N, 2018, PROCEEDINGS OF THE 2018 INTERNATIONAL CONFERENCE ON SYSTEM MODELING & ADVANCEMENT IN RESEARCH TRENDS (SMART), P44, DOI 10.1109/SYSMART.2018.8746945 Clement Colin B., 2019, CORR Kravets A.G., 2013, WORLD APPL SCI J, V24, P98 Kravets A.G., 2018, 2018 9 INT C INF INT Kravets A, 2017, COMM COM INF SC, V754, P37, DOI 10.1007/978-3-319-65551-2_3 Manocha P, 2018, PROCEEDINGS OF THE 2018 INTERNATIONAL CONFERENCE ON SYSTEM MODELING & ADVANCEMENT IN RESEARCH TRENDS (SMART), P280, DOI 10.1109/SYSMART.2018.8746928 Zhang Mei, 2011, J COMPUTERS, V6 NR 7 TC 1 Z9 1 U1 1 U2 4 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA BN 978-1-7281-3245-7 PY 2019 BP 31 EP 36 DI 10.1109/smart46866.2019.9117215 PG 6 WC Computer Science, Information Systems; Engineering, Electrical & Electronic WE Conference Proceedings Citation Index - Science (CPCI-S) SC Computer Science; Engineering GA BQ6EE UT WOS:000610825300008 DA 2024-09-05 ER PT J AU Lu, YY Chen, ZZ Chen, R Shi, YW Zheng, QY AF Lu, Yuanyuan Chen, Zengzhao Chen, Rong Shi, Yawen Zheng, Qiuyu TI Research on the Application Framework of Intelligent Technologies to Promote Teachers' Classroom Teaching Behavior Evaluation SO FRONTIERS OF EDUCATION IN CHINA LA English DT Article DE artificial intelligence (AI); teachers' classroom teaching behavior evaluation; teaching behavior recognition; speech emotion recognition AB With the advantages of real-time analysis and visual evaluation results, intelligent technology-enabled teaching behavior evaluation has gradually become a powerful means to help teachers adjust teaching behaviors and improve teaching quality. However, at present, the evaluation of intelligent teachers' behaviors is still in the preliminary exploration stage, and the application research is not deep enough. This paper analyzes the application of intelligent technology in the evaluation of teachers' classroom teaching behaviors from the perspectives of evaluation data, methods, and results. Voice print recognition technology is used to recognize the teachers' identities and track the speech in the classroom videos, and the videos are segmented. Then, the evaluation framework of teachers' classroom teaching behaviors is constructed using three dimensions of emotion, posture, and position preference. Finally, evaluation results are presented to teachers in a more intuitive and easy - to-understand visual way, to help teachers reflect on teaching. This paper aims to promote the transformation of teachers' classroom teaching behavior evaluation toward an intelligent, efficient, and sustainable direction through current research. C1 [Lu, Yuanyuan; Chen, Zengzhao; Chen, Rong; Shi, Yawen; Zheng, Qiuyu] Cent China Normal Univ, Fac Artificial Intelligence Educ, Wuhan 430079, Peoples R China. [Lu, Yuanyuan] Wuhan Coll, Sch Informat Engn, Wuhan 430212, Peoples R China. C3 Central China Normal University; Wuhan College RP Lu, YY (corresponding author), Cent China Normal Univ, Fac Artificial Intelligence Educ, Wuhan 430079, Peoples R China.; Lu, YY (corresponding author), Wuhan Coll, Sch Informat Engn, Wuhan 430212, Peoples R China. CR Ashwin TS, 2020, EDUC INF TECHNOL, V25, P1387, DOI 10.1007/s10639-019-10004-6 Blikstein P., 2016, J. Learn. Anal., V3, P220, DOI DOI 10.18608/JLA.2016.32.11 Chen S., 2020, Unpublished doctoral dissertation Luo Z., 2018, Modern Educational Technology, P38 Luo Z., 2021, Modern Educational Technology, P76 Ministry of Education. (MoE), 2021, The circular of the Ministry of Education to implement the second pilot work of AI-driven teacher building action Reynolds DA, 2000, DIGIT SIGNAL PROCESS, V10, P19, DOI 10.1006/dspr.1999.0361 Safsouf Y., 2021, P 8 ACM C LEARN, P347 Sun Z., 2020, China Educational Technology, P15 Wu L., 2021, China Electro-Chem. Educ., P94 Yang J., 2019, China Educational Technology, P74 Yang J., 2020, China Educational Technology, P22 Zhang D. J., 2015, Educational psychology, V3rd Zhang L., 2021, Modern Distance Education Research, P13 NR 14 TC 0 Z9 0 U1 8 U2 13 PU HIGHER EDUCATION PRESS PI BEIJING PA CHAOYANG DIST, 4, HUIXINDONGJIE, FUSHENG BLDG, BEIJING 100029, PEOPLES R CHINA SN 1673-341X EI 1673-3533 J9 FRONT EDUC CHINA JI Front. Educ. China PD JUN PY 2023 VL 18 IS 2 BP 171 EP 186 DI 10.3868/s110-008-023-0012-8 PG 16 WC Education & Educational Research WE Emerging Sources Citation Index (ESCI) SC Education & Educational Research GA DO8V1 UT WOS:001133096100006 DA 2024-09-05 ER PT J AU Su, M Peng, H Li, SF AF Su, Miao Peng, Hui Li, Shaofan TI A visualized bibliometric analysis of mapping research trends of machine learning in engineering (MLE) SO EXPERT SYSTEMS WITH APPLICATIONS LA English DT Article DE Artificial intelligence; Engineering; Bibliometric analysis; VOSviewer; Research hotspots ID SUPPORT VECTOR MACHINES; NEURAL-NETWORK; FEATURE-SELECTION; REGRESSION; ALGORITHM; MODEL; INTELLIGENCE; PREDICTION; FAILURE; ENSEMBLE AB In this work, we conducted a visualized bibliometric analysis to map the research trends of machine learning in engineering (MLE) based on articles indexed in the Web of Science Core Collection published between 2000 and 2019. The research distributions, knowledge bases, research hotspots, and research frontiers for MLE studies are revealed by using VOSviewer software and visualization technology. The growth of the literature related to MLE averaged 24.3% in the past two decades. A total of 3057 peer-reviewed papers from 96 countries published in 1299 different journals were identified. The USA was the most productive country, with 23.73% of the overall articles and 32.25% of the overall citations. The most active research organization was MIT, with 41 publications and 1079 citations, and the Journal of Machine Learning Research had the largest number of citations in the field of MLE. In particular, our findings indicate that the research issues of "random forests", "support vector machine", "extreme learning machine", "deep learning", "statistical learning theory", and "Python machine learning" formed the knowledge bases of MLE from 2000 to 2019, while the research hotspots focused on applications of machine learning benchmark algorithms. Burst detection analysis results showed that more burst keywords emerged and had a higher frequency of change after 2010. This study provides an insight view of the overall research trends of MLE and may help researchers better understand this research field and predict its dynamic directions. C1 [Su, Miao; Peng, Hui] Changsha Univ Sci & Technol, Sch Civil Engn, Changsha 410114, Hunan, Peoples R China. [Su, Miao; Li, Shaofan] Univ Calif Berkeley, Dept Civil & Environm Engn, Berkeley, CA 94720 USA. C3 Changsha University of Science & Technology; University of California System; University of California Berkeley RP Li, SF (corresponding author), Univ Calif Berkeley, 783 Davis Hall, Berkeley, CA 94720 USA. EM sumiao@csust.edu.cn; shaofan@berkeley.edu RI Li, Shaofan/G-8082-2011 OI Li, Shaofan/0000-0002-6950-1474 FU National Natural Science Foundation of China [51808056]; Research Project of Hunan Provincial Department of Education [19B012]; Hunan Provincial Natural Science Foundation of China [2020JJ5583]; China Scholarship Council [201808430232] FX This work was conducted in the University of California, Berkeley. Dr. Su is supported by the National Natural Science Foundation of China (Grant No.51808056) , the Research Project of Hunan Provincial Department of Education (Grant NO. 19B012) , the Hunan Provincial Natural Science Foundation of China (Grant No. 2020JJ5583) , and the China Scholarship Council (Grant No.201808430232) . CR Abdeljaber O, 2017, J SOUND VIB, V388, P154, DOI 10.1016/j.jsv.2016.10.043 Adeli H, 2009, NEURAL NETWORKS, V22, P1018, DOI 10.1016/j.neunet.2009.05.003 Alejo-Machado OJ, 2015, SCIENTOMETRICS, V102, P1669, DOI 10.1007/s11192-014-1467-4 Alpaydin E, 2014, ADAPT COMPUT MACH LE, P1 Anifowose FA, 2015, J NAT GAS SCI ENG, V26, P1561, DOI 10.1016/j.jngse.2015.02.012 [Anonymous], MACHINE LEARNING [Anonymous], 2016, Pattern Recognition and Machine Learning, Softcover Reprint of the Original 1st ed., Information Science and Statistics Badnjevic A, 2019, BIOMED SIGNAL PROCES, V54, DOI 10.1016/j.bspc.2019.101629 Baghban A, 2016, APPL THERM ENG, V93, P1043, DOI 10.1016/j.applthermaleng.2015.10.056 Bassa Z, 2016, J APPL REMOTE SENS, V10, DOI 10.1117/1.JRS.10.015017 Benkedjouh T, 2015, J INTELL MANUF, V26, P213, DOI 10.1007/s10845-013-0774-6 Boudry C, 2018, OCUL SURF, V16, P173, DOI 10.1016/j.jtos.2017.10.002 Brunton SL, 2016, P NATL ACAD SCI USA, V113, P3932, DOI 10.1073/pnas.1517384113 Cao FX, 2018, J APPL REMOTE SENS, V12, DOI 10.1117/1.JRS.12.035003 Cao JW, 2019, MULTIMED TOOLS APPL, V78, P29021, DOI 10.1007/s11042-018-6295-8 Padierna LC, 2017, STUD COMPUT INTELL, V667, P787, DOI 10.1007/978-3-319-47054-2_53 Chang C. C., 2011, ACM T INTEL SYST TEC, V2, P1, DOI DOI 10.1145/1961189.1961199 Chen GR, 2019, COMPUT MECH, V64, P435, DOI 10.1007/s00466-019-01706-2 Chou JS, 2015, COMPUT-AIDED CIV INF, V30, P715, DOI 10.1111/mice.12121 CORTES C, 1995, MACH LEARN, V20, P273, DOI 10.1023/A:1022627411411 Cox T, 2020, ADV THEOR SIMUL, V3, DOI 10.1002/adts.201900190 de Wilde P, 2014, AUTOMAT CONSTR, V41, P40, DOI 10.1016/j.autcon.2014.02.009 Deo RC, 2016, STOCH ENV RES RISK A, V30, P1769, DOI 10.1007/s00477-015-1153-y Deo RC, 2015, ATMOS RES, V161, P65, DOI 10.1016/j.atmosres.2015.03.018 Dietterich TG, 1997, AI MAG, V18, P97 Vu DT, 2016, STRUCT INFRASTRUCT E, V12, P1153, DOI 10.1080/15732479.2015.1086386 Egghe L, 2002, SCIENTOMETRICS, V55, P349, DOI 10.1023/A:1020458612014 Ghesu FC, 2019, IEEE T PATTERN ANAL, V41, P176, DOI 10.1109/TPAMI.2017.2782687 Ghiassi M, 2013, EXPERT SYST APPL, V40, P6266, DOI 10.1016/j.eswa.2013.05.057 Goh ATC, 2007, COMPUT GEOTECH, V34, P410, DOI 10.1016/j.compgeo.2007.06.001 Golilarz NA, 2019, IEEE ACCESS, V7, P149398, DOI 10.1109/ACCESS.2019.2945596 Guo ZW, 2009, CHINESE J AERONAUT, V22, P160, DOI 10.1016/S1000-9361(08)60082-5 Han T, 2018, T I MEAS CONTROL, V40, P2681, DOI 10.1177/0142331217708242 Hinton GE, 2006, NEURAL COMPUT, V18, P1527, DOI 10.1162/neco.2006.18.7.1527 Huang GB, 2006, NEUROCOMPUTING, V70, P489, DOI 10.1016/j.neucom.2005.12.126 Janmaijaya M, 2018, PUBLICATIONS-BASEL, V6, DOI 10.3390/publications6030032 Janssens O, 2016, J SOUND VIB, V377, P331, DOI 10.1016/j.jsv.2016.05.027 Kang F, 2017, STRUCT CONTROL HLTH, V24, DOI 10.1002/stc.1997 Krizhevsky A, 2017, COMMUN ACM, V60, P84, DOI 10.1145/3065386 Lary DJ, 2016, GEOSCI FRONT, V7, P3, DOI 10.1016/j.gsf.2015.07.003 Li MN, 2017, TECHNOL ANAL STRATEG, V29, P655, DOI 10.1080/09537325.2016.1220518 Liang TP, 2018, EXPERT SYST APPL, V111, P2, DOI 10.1016/j.eswa.2018.05.018 Lin L, 2017, EXPERT SYST APPL, V83, P164, DOI 10.1016/j.eswa.2017.04.013 Liu ZB, 2014, NAT HAZARDS, V73, P787, DOI 10.1007/s11069-014-1106-7 Liu ZJ, 2017, BMC MED INFORM DECIS, V17, DOI 10.1186/s12911-017-0468-7 Lozano S, 2019, SCIENTOMETRICS, V120, P609, DOI 10.1007/s11192-019-03132-w Lu C, 2017, SIGNAL PROCESS, V130, P377, DOI 10.1016/j.sigpro.2016.07.028 Lu HP, 2011, PATTERN RECOGN, V44, P1540, DOI 10.1016/j.patcog.2011.01.004 Luo XG, 2019, SCI REP-UK, V9, DOI 10.1038/s41598-019-51941-z Lyu C, 2017, BMC BIOINFORMATICS, V18, DOI 10.1186/s12859-017-1868-5 Moazenzadeh R, 2018, ENG APPL COMP FLUID, V12, P584, DOI 10.1080/19942060.2018.1482476 Moura MD, 2011, RELIAB ENG SYST SAFE, V96, P1527, DOI 10.1016/j.ress.2011.06.006 Naji S, 2016, ENERGY, V97, P506, DOI 10.1016/j.energy.2015.11.037 Ordóñez FJ, 2016, SENSORS-BASEL, V16, DOI 10.3390/s16010115 Pan H, 2019, J AEROSPACE ENG, V32, DOI 10.1061/(ASCE)AS.1943-5525.0000978 Pedregosa F, 2011, J MACH LEARN RES, V12, P2825 Ping Q, 2017, J ASSOC INF SCI TECH, V68, P1234, DOI 10.1002/asi.23770 Qin FW, 2014, J ZHEJIANG U-SCI C, V15, P91, DOI 10.1631/jzus.C1300185 Ren SF, 2018, CMES-COMP MODEL ENG, V117, P287, DOI 10.31614/cmes.2018.04697 Rusk N, 2016, NAT METHODS, V13, P35, DOI 10.1038/nmeth.3707 Rzhetsky A, 2004, J BIOMED INFORM, V37, P43, DOI 10.1016/j.jbi.2003.10.001 Schwartz MP, 2015, P NATL ACAD SCI USA, V112, P12516, DOI 10.1073/pnas.1516645112 Shkurin A, 2017, BIOMED ENG ONLINE, V16, DOI 10.1186/s12938-017-0357-4 Son H, 2012, J COMPUT CIVIL ENG, V26, P421, DOI 10.1061/(ASCE)CP.1943-5487.0000141 Su M, 2021, ENG FRACT MECH, V247, DOI 10.1016/j.engfracmech.2021.107643 Su M, 2021, CONSTR BUILD MATER, V270, DOI 10.1016/j.conbuildmat.2020.121456 Tamilselvan P, 2013, RELIAB ENG SYST SAFE, V115, P124, DOI 10.1016/j.ress.2013.02.022 Theobald Oliver., 2018, Machine Learning for Absolute Beginners: A Plain English Introduction Tibshirani R., 2001, The Elements of Statistical Learning Tran BX, 2019, INT J ENV RES PUB HE, V16, DOI 10.3390/ijerph16122150 Unanue IJ, 2017, J BIOMED INFORM, V76, P102, DOI 10.1016/j.jbi.2017.11.007 Van Eck N.J., 2019, VOSviewer manual van Eck NJ, 2017, SCIENTOMETRICS, V111, P1053, DOI 10.1007/s11192-017-2300-7 van Eck NJ, 2010, SCIENTOMETRICS, V84, P523, DOI 10.1007/s11192-009-0146-3 Vapnik V., 2013, Theory, DOI DOI 10.1007/978-1-4757-2440-0 Vapnik Vladimir, 1998, STAT LEARNING THEORY, V3 Waltman L, 2010, J INFORMETR, V4, P629, DOI 10.1016/j.joi.2010.07.002 Wang J, 2020, J MED INTERNET RES, V22, DOI 10.2196/16816 Wang MY, 2019, SCIENTOMETRICS, V119, P1575, DOI 10.1007/s11192-019-03052-9 Wang SP, 2015, PATTERN RECOGN, V48, P10, DOI 10.1016/j.patcog.2014.08.004 Wang WJ, 2003, ENG COMPUTATION, V20, P192, DOI 10.1108/02644400310465317 Wang YX, 2019, ENERGIES, V12, DOI 10.3390/en12244674 Wernick MN, 2010, IEEE SIGNAL PROC MAG, V27, P25, DOI 10.1109/MSP.2010.936730 Wu CH, 2004, IEEE T INTELL TRANSP, V5, P276, DOI 10.1109/TITS.2004.837813 Xu ZS, 2019, INT J MACH LEARN CYB, V10, P2375, DOI 10.1007/s13042-018-0875-9 Yaseen ZM, 2019, J HYDROL, V569, P387, DOI 10.1016/j.jhydrol.2018.11.069 Yeung AWK, 2017, FRONT NEUROSCI-SWITZ, V11, DOI 10.3389/fnins.2017.00120 Zhang J, 2016, J ASSOC INF SCI TECH, V67, P967, DOI 10.1002/asi.23437 Zhao FK, 2019, PEERJ, V7, DOI 10.7717/peerj.7603 Zou X, 2018, ACCIDENT ANAL PREV, V118, P131, DOI 10.1016/j.aap.2018.06.010 NR 90 TC 30 Z9 32 U1 5 U2 70 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0957-4174 EI 1873-6793 J9 EXPERT SYST APPL JI Expert Syst. Appl. PD DEC 30 PY 2021 VL 186 AR 115728 DI 10.1016/j.eswa.2021.115728 EA AUG 2021 PG 11 WC Computer Science, Artificial Intelligence; Engineering, Electrical & Electronic; Operations Research & Management Science WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Computer Science; Engineering; Operations Research & Management Science GA WC6EQ UT WOS:000704349700008 DA 2024-09-05 ER PT J AU Ihsan, I Qadir, MA AF Ihsan, Imran Qadir, Muhammad Abdul TI CCRO: Citation's Context & Reasons Ontology SO IEEE ACCESS LA English DT Article DE Citation ontology; citation graphs; citation analysis; ontology development; natural language processing; computational linguistics ID CLASSIFICATION; SCIENCES AB Research papers can be visualized as a networked information space that contains a collection of information entities, inter-connected by directed links, commonly known as citation graph. There is a possibility to enrich the citation graph with meaningful relations using semantic tags. We have discovered and evaluated more than 150 citations' reasons from the existing published literature to be represented as citation tags. Many of these reasons have overlapped and diffused meanings. Annotating such a large volume of citation graphs with citation's reasons manually is nearly impossible, giving rise to a need to discover the citation's reasons automatically with high accuracy. The first step towards this is developing a minimal set of citation's context and reasons that are disjoint in nature. It would be a great help to the reasoning system if these reasons are represented in a formal way in the form of an ontology. By adopting a well-defined scientific methodology to formulate an ontology of citation reasons, we have reduced 150 reasons into only eight disjoint reasons, using an iterative process of sentiment analysis, collaborative meanings, and experts' opinions. Based on our findings and experiments, we have proposed a citation's context and reasons ontology (CCRO) that provides abstract conceptualization required to organize citations' relations. CCRO has been verified, validated, and assessed by using the well-defined procedures and tools proposed in the literature for ontology evaluation. The results show that the proposed ontology is concise, complete, and consistent. For the instantiation and mapping of ontology classes on real data, we have developed a mapping graph among the verbs with predicative complements in the English Language, the verbs extracted from the selected corpus using the NLP and CCRO classes. Using this mapping graph, the mapping of ontology classes in each citation's sentiment is explained with a complete mapping on the selected dataset. C1 [Ihsan, Imran; Qadir, Muhammad Abdul] Capital Univ Sci & Technol, Ctr Res Data Sci Semant & Scientometr, Dept Comp Sci, Islamabad 45750, Pakistan. C3 Capital University of Science & Technology RP Ihsan, I (corresponding author), Capital Univ Sci & Technol, Ctr Res Data Sci Semant & Scientometr, Dept Comp Sci, Islamabad 45750, Pakistan. EM iimranihsan@gmail.com RI ihsan, imran/AAZ-6236-2021; ihsan, imran/ABA-7494-2021 OI ihsan, imran/0000-0002-3447-4576; Qadir, Muhammad Abdul/0000-0003-4634-9016 CR Angrosh M., 2010, Proceedings of the 10th annual joint conference on Digital libraries, P293, DOI [DOI 10.1145/1816123.1816168, DOI 10.1145/1816123.1816168.1816168] [Anonymous], 2005, P 43 ANN M ASS COMP, DOI DOI 10.3115/1219840.1219885 [Anonymous], 2014, SIZE GOOGLE SCHOLAR [Anonymous], 2012, 2012 Conference of the North American Chapter of the Association for Computational Linguistics Athar A., 2014, UCAMCLTR856, P114 Athar A., 2011, P ACL 2011 STUD SESS, P81 Berners-Lee T, 2001, SCI AM, V284, P34, DOI 10.1038/scientificamerican0501-34 Butt B. H., 2015, P CEUR WORKSH JAN, V1384, P1 CHUBIN DE, 1975, SOC STUD SCI, V5, P423, DOI 10.1177/030631277500500403 Ciancarini Paolo, 2014, The Semantic Web: Trends and Challenges. 11th International Conference (ESWC 2014). Proceedings: LNCS 8465, P580, DOI 10.1007/978-3-319-07443-6_39 Ciccarese P, 2008, J BIOMED INFORM, V41, P739, DOI 10.1016/j.jbi.2008.04.010 Constantin A, 2016, SEMANT WEB, V7, P167, DOI 10.3233/SW-150177 COZZENS SE, 1985, SOC STUD SCI, V15, P127, DOI 10.1177/030631285015001005 Di Iorio A., 2014, CEUR WORKSHOP P, V1155, P41 Dong C., 2011, P 5 INT JOINT C NAT, P623 Fahad M, 2008, ICEIS 2008: PROCEEDINGS OF THE TENTH INTERNATIONAL CONFERENCE ON ENTERPRISE INFORMATION SYSTEMS, VOL ISAS-2, P253 Fernandez-Lopez M., 2010, ONTOLOGICAL ENG EXAM FROST CO, 1979, LIBR QUART, V49, P399 Garfield E, 1996, LIBR QUART, V66, P449, DOI 10.1086/602912 Glimm B, 2014, J AUTOM REASONING, V53, P245, DOI 10.1007/s10817-014-9305-1 Hernandez M., 2014, P 1 WORKSH ARG MIN B, P102 Ihsan I., 2019, CORPORUM J CORPUS LI, V1, P1 Jha R, 2017, NAT LANG ENG, V23, P93, DOI 10.1017/S1351324915000443 Jochim C., 2012, P COLING 2012, P1343 Jorg B., 2008, Formal ontology in information systems, P31 Kazi P. A. H., 2015, P IEEE INT C COMP CO, P1 Kim IC, 2015, 2015 IEEE CONFERENCE ON COMPUTATIONAL INTELLIGENCE IN BIOINFORMATICS AND COMPUTATIONAL BIOLOGY (CIBCB), P488 Levin B., 1993, English verb classes and alternations: A preliminary investigation Li X., 2013, Proceedings of Recent Advances in Natural Language Processing, P402 LIPETZ BA, 1965, AM DOC, V16, P81, DOI 10.1002/asi.5090160207 Manning CD, 2014, PROCEEDINGS OF 52ND ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS: SYSTEM DEMONSTRATIONS, P55, DOI 10.3115/v1/p14-5010 MCCAIN KW, 1989, SCIENTOMETRICS, V17, P127, DOI 10.1007/BF02017729 MORAVCSIK MJ, 1975, SOC STUD SCI, V5, P86, DOI 10.1177/030631277500500106 Motik B., 2012, 20121211 W3C OPPENHEIM C, 1980, J AM SOC INFORM SCI, V31, P219, DOI 10.1002/asi.4630310316 PERITZ BC, 1983, SCIENTOMETRICS, V5, P303, DOI 10.1007/BF02147226 Peroni S, 2012, J WEB SEMANT, V17, P33, DOI 10.1016/j.websem.2012.08.001 Radev DR, 2013, LANG RESOUR EVAL, V47, P919, DOI 10.1007/s10579-012-9211-2 Shekarpour S., 2017, CEVO COMPREHENSIVE E Shum S. B., 2010, SEMANT WEB, P1 SPIEGELROSING I, 1977, SOC STUD SCI, V7, P97, DOI 10.1177/030631277700700111 Tandon N., 2012, P 35 GERMAN C ARTIFI, P98 Taskin Z, 2018, SCIENTOMETRICS, V114, P335, DOI 10.1007/s11192-017-2560-2 Teufel S., 2006, P 7 SIGDIAL WORKSHOP, P80, DOI [10.3115/1654595.1654612, DOI 10.3115/1654595.1654612] Teufel S., 2006, P C EMP METH NAT LAN, DOI 10.3115/1610075.1610091 Tillett Barbara, 2005, The Australian Library Journal, V54, P24, DOI 10.1080/00049670.2005.10721710 Valenzuela Marco, 2015, P AAAI WORKSH SCHOL, P6 Xiaojun Wan, 2014, Journal of the Association for Information Science and Technology, V65, P1929, DOI 10.1002/asi.23083 Xu HB, 2013, BMC COMPLEM ALTERN M, V13, DOI 10.1186/1472-6882-13-239 Xu Jun, 2015, AMIA Annu Symp Proc, V2015, P1334 Young NS, 2008, PLOS MED, V5, P1418, DOI 10.1371/journal.pmed.0050201 Yu Bei., 2013, P 76 ASIST ANN M CLO, P1, DOI [10.1002/meet.14505001084, DOI 10.1002/MEET.14505001084] Zhang G, 2013, J AM SOC INF SCI TEC, V64, P1490, DOI 10.1002/asi.22850 NR 53 TC 8 Z9 8 U1 1 U2 27 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 2169-3536 J9 IEEE ACCESS JI IEEE Access PY 2019 VL 7 BP 30423 EP 30436 DI 10.1109/ACCESS.2019.2903450 PG 14 WC Computer Science, Information Systems; Engineering, Electrical & Electronic; Telecommunications WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Computer Science; Engineering; Telecommunications GA HR7EJ UT WOS:000463314800001 OA gold DA 2024-09-05 ER PT J AU Brizan, DG Gallagher, K Jahangir, A Brown, T AF Brizan, David Guy Gallagher, Kevin Jahangir, Arnab Brown, Theodore TI Predicting citation patterns: defining and determining influence SO SCIENTOMETRICS LA English DT Article DE Citation analysis; Bibliometrics; Big data; Machine learning ID ARTICLE; INDEX AB Definitions for influence in bibliometrics are surveyed and expanded upon in this work. On data composed of the union of DBLP and CiteSeer (x) , approximately 6 million publications, a relatively small number of features are developed to describe the set, including loyalty and community longevity, two novel features. These features are successfully used to predict the influential set of papers in a series of machine learning experiments. The most predictive features are highlighted and discussed. C1 [Brizan, David Guy; Brown, Theodore] CUNY, Dept Comp Sci, 365 Fifth Ave, New York, NY 10016 USA. [Brizan, David Guy; Brown, Theodore] CUNY, Grad Ctr, 365 Fifth Ave, New York, NY 10016 USA. [Gallagher, Kevin] NYU, Tandon Sch Engn, Dept Comp Sci, 6 MetroTech Ctr, Brooklyn, NY 11201 USA. [Jahangir, Arnab] CUNY Hunter Coll, Dept Comp Sci, 695 Pk Ave, New York, NY 10065 USA. C3 City University of New York (CUNY) System; City University of New York (CUNY) System; New York University; New York University Tandon School of Engineering; City University of New York (CUNY) System; Hunter College (CUNY) RP Brizan, DG (corresponding author), CUNY, Dept Comp Sci, 365 Fifth Ave, New York, NY 10016 USA.; Brizan, DG (corresponding author), CUNY, Grad Ctr, 365 Fifth Ave, New York, NY 10016 USA. EM dbrizan@gradcenter.cuny.edu RI Gallagher, Kevin/GLS-0906-2022 OI Gallagher, Kevin/0000-0002-2714-7841 FU National Science Foundation [CNS-0958379, CNS-0855217, ACI-1126113]; City University of New York High Performance Computing Center at the College of Staten Island FX This research was supported, in part, under National Science Foundation Grants CNS-0958379, CNS-0855217, ACI-1126113 and the City University of New York High Performance Computing Center at the College of Staten Island. The authors also acknowledge the Office of Information Technology at The Graduate Center, CUNY for providing database and server resources that have contributed to the research results reported within this paper. URL: http://it.gc.cuny.edu/. CR [Anonymous], 2000, KDD WORKSH TEXT MIN Bollacker K. D., 1998, Proceedings of the Second International Conference on Autonomous Agents, P116, DOI 10.1145/280765.280786 Catalini C, 2015, P NATL ACAD SCI USA, V112, P13823, DOI 10.1073/pnas.1502280112 Egghe L, 2006, SCIENTOMETRICS, V69, P131, DOI 10.1007/s11192-006-0144-7 Fu LD, 2010, SCIENTOMETRICS, V85, P257, DOI 10.1007/s11192-010-0237-1 Giles C. L., 1998, Digital 98 Libraries. Third ACM Conference on Digital Libraries, P89, DOI 10.1145/276675.276685 Hall M., 2009, ACM SIGKDD Explor. Newsl., V11, P10, DOI DOI 10.1145/1656274.1656278 Haslam N, 2008, SCIENTOMETRICS, V76, P169, DOI 10.1007/s11192-007-1892-8 Hirsch JE, 2007, P NATL ACAD SCI USA, V104, P19193, DOI 10.1073/pnas.0707962104 Hirsch JE, 2005, P NATL ACAD SCI USA, V102, P16569, DOI 10.1073/pnas.0507655102 Judge TA, 2007, ACAD MANAGE J, V50, P491 Ley M., 2002, String Processing and Information Retrieval. 9th International Symposium, SPIRE 2002. Proceedings (Lecture Notes in Computer Science Vol.2476), P1 Lotka A.J., 1926, J Wash Acad Sci Wash D C, V16, P23 MERTON RK, 1968, SCIENCE, V159, P56, DOI 10.1126/science.159.3810.56 Newman MEJ, 2014, EPL-EUROPHYS LETT, V105, DOI 10.1209/0295-5075/105/28002 Newman MEJ, 2009, EPL-EUROPHYS LETT, V86, DOI 10.1209/0295-5075/86/68001 Prathap G, 2006, CURR SCI INDIA, V91, P1439 PRICE DJD, 1965, SCIENCE, V149, P510 ROSSITER MW, 1993, SOC STUD SCI, V23, P325, DOI 10.1177/030631293023002004 Schubert A, 2009, SCIENTOMETRICS, V78, P375, DOI 10.1007/s11192-008-2218-1 Sher IH, 1965, P C SPONS OFF NAV RE, P135 Shi X., 2009, ARXIV09052636 Tscharntke T, 2007, PLOS BIOL, V5, P13, DOI 10.1371/journal.pbio.0050018 van Dalen HP, 2001, SCIENTOMETRICS, V50, P455, DOI 10.1023/A:1010510831718 van Raan AFJ, 2004, SCIENTOMETRICS, V59, P467, DOI 10.1023/B:SCIE.0000018543.82441.f1 NR 25 TC 13 Z9 13 U1 1 U2 38 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0138-9130 EI 1588-2861 J9 SCIENTOMETRICS JI Scientometrics PD JUL PY 2016 VL 108 IS 1 BP 183 EP 200 DI 10.1007/s11192-016-1950-1 PG 18 WC Computer Science, Interdisciplinary Applications; Information Science & Library Science WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Computer Science; Information Science & Library Science GA DP8WB UT WOS:000378777500009 DA 2024-09-05 ER PT J AU Kaur, M Kumar, A Mittal, AK AF Kaur, Manpreet Kumar, Amit Mittal, Anil Kumar TI Mapping the knowledge structure of artificial neural network research in the stock market: a bibliometric analysis and future research pathways SO BENCHMARKING-AN INTERNATIONAL JOURNAL LA English DT Article; Early Access DE Neural networks; Bibliometric; Stock market; Forecasting ID DATA MINING TECHNIQUES; EARLY WARNING SYSTEM; FINANCIAL DISTRESS; BANKRUPTCY PREDICTION; PRICE INDEX; VOLATILITY; DEEP; INTEGRATION; COMPANIES; MODELS AB Purpose - In past decades, artificial neural network (ANN) models have revolutionised various stock market operations due to their superior ability to deal with nonlinear data and garnered considerable attention from researchers worldwide. The present study aims to synthesize the research field concerning ANN applications in the stock market to a) systematically map the research trends, key contributors, scientific collaborations, and knowledge structure, and b) uncover the challenges and future research areas in the field. Design/methodology/approach - To provide a comprehensive appraisal of the extant literature, the study adopted the mixed approach of quantitative (bibliometric analysis) and qualitative (intensive review of influential articles) assessment to analyse 1,483 articles published in the Scopus and Web of Science indexed journals during 1992-2022. The bibliographic data was processed and analysed using VOSviewer and R software. Findings - The results revealed the proliferation of articles since 2018, with China as the dominant country, Wang J as the most prolific author, "Expert Systems with Applications" as the leading journal, "computer science" as the dominant subject area, and "stock price forecasting" as the predominantly explored research theme in the field. Furthermore, "portfolio optimization", "sentiment analysis", "algorithmic trading", and "crisis prediction" are found as recently emerged research areas. Originality/value - To the best of the authors' knowledge, the current study is a novel attempt that holistically assesses the existing literature on ANN applications throughout the entire domain of stock market. The main contribution of the current study lies in discussing the challenges along with the viable methodological solutions and providing application area-wise knowledge gaps for future studies. C1 [Kaur, Manpreet; Kumar, Amit; Mittal, Anil Kumar] Kurukshetra Univ, Univ Sch Management, Kurukshetra, Haryana, India. C3 Kurukshetra University RP Kaur, M (corresponding author), Kurukshetra Univ, Univ Sch Management, Kurukshetra, Haryana, India. EM manpreetkaur27oct@gmail.com RI Kaur, Manpreet/HJZ-4398-2023 OI Kumar Mittal, Anil/0009-0007-3096-6008; Kumar, Amit/0000-0002-3055-1810; Kaur, Manpreet/0000-0001-8299-9986 CR Agbo FJ, 2021, SMART LEARN ENVIRON, V8, DOI 10.1186/s40561-020-00145-4 Alizadeh M, 2011, INT J INTELL SYST, V26, P99, DOI 10.1002/int.20456 Anjaria M, 2014, SOC NETW ANAL MIN, V4, DOI 10.1007/s13278-014-0181-9 Aparicio G, 2023, MANAG REV Q, V73, P317, DOI 10.1007/s11301-021-00241-w Bhattarai JK, 2021, GLOB BUS REV, DOI 10.1177/09721509211016818 Bisoi Ranjeeta, 2015, International Journal of Information and Decision Sciences, V7, P166, DOI 10.1504/IJIDS.2015.068757 Bollen J, 2011, J COMPUT SCI-NETH, V2, P1, DOI 10.1016/j.jocs.2010.12.007 Boyacioglu MA, 2010, EXPERT SYST APPL, V37, P7908, DOI 10.1016/j.eswa.2010.04.045 Bucci A, 2020, J FINANC ECONOMET, V18, P502, DOI 10.1093/jjfinec/nbaa008 Cebral-Loureda M, 2023, PHILOS ETHICS HUM ME, V18, DOI 10.1186/s13010-023-00147-3 Center for Data Innovation, 2017, How governments are preparing for artificial intelligence Chang PC, 2009, IEEE T SYST MAN CY C, V39, P80, DOI 10.1109/TSMCC.2008.2007255 Chatzis SP, 2018, EXPERT SYST APPL, V112, P353, DOI 10.1016/j.eswa.2018.06.032 Chen WS, 2009, EXPERT SYST APPL, V36, P4075, DOI 10.1016/j.eswa.2008.03.020 Chhajer P., 2021, Decision An alytics Journal, V2, DOI [DOI 10.1016/J.DAJOUR.2021.100015, 10.1016/j.dajour.2021.100015] Chiappini H, 2023, SUSTAIN ACCOUNT MANA, V14, P232, DOI 10.1108/SAMPJ-09-2022-0471 Donthu N, 2021, J BUS RES, V133, P285, DOI 10.1016/j.jbusres.2021.04.070 Echchakoui S, 2020, J MARK ANAL, V8, P165, DOI 10.1057/s41270-020-00081-9 European Commission, 2020, WHIT PAP ART INT EUR Fernández-Rodríguez F, 2000, ECON LETT, V69, P89, DOI 10.1016/S0165-1765(00)00270-6 Fuchs F, 2022, APPL SCI-BASEL, V12, DOI 10.3390/app12041952 Geng RB, 2015, EUR J OPER RES, V241, P236, DOI 10.1016/j.ejor.2014.08.016 Gnanendra M., 2022, Vision: The Journal of Business Perspective, DOI [10.1177/09722629221106251, DOI 10.1177/09722629221106251] Goykhman M, 2018, PHYSICA A, V492, P1729, DOI 10.1016/j.physa.2017.11.093 Gunawardana Kennedy Degaulle, 2021, International Journal of Sociotechnology and Knowledge Development, V13, P48, DOI 10.4018/IJSKD.2021040104 Guresen E, 2011, EXPERT SYST APPL, V38, P10389, DOI 10.1016/j.eswa.2011.02.068 Hadavandi E, 2010, KNOWL-BASED SYST, V23, P800, DOI 10.1016/j.knosys.2010.05.004 Henrique BM, 2019, EXPERT SYST APPL, V124, P226, DOI 10.1016/j.eswa.2019.01.012 Hosaka T, 2019, EXPERT SYST APPL, V117, P287, DOI 10.1016/j.eswa.2018.09.039 Jiang WW, 2021, EXPERT SYST APPL, V184, DOI 10.1016/j.eswa.2021.115537 Jin ZG, 2020, NEURAL COMPUT APPL, V32, P9713, DOI 10.1007/s00521-019-04504-2 Jing N, 2021, EXPERT SYST APPL, V178, DOI 10.1016/j.eswa.2021.115019 Kara Y, 2011, EXPERT SYST APPL, V38, P5311, DOI 10.1016/j.eswa.2010.10.027 Karanasos M, 2001, J TIME SER ANAL, V22, P555, DOI 10.1111/1467-9892.00241 Kim DH, 2009, EXPERT SYST, V26, P260, DOI 10.1111/j.1468-0394.2009.00485.x Kim HY, 2018, EXPERT SYST APPL, V103, P25, DOI 10.1016/j.eswa.2018.03.002 Ko PC, 2008, EXPERT SYST APPL, V35, P330, DOI 10.1016/j.eswa.2007.07.031 Kristjanpoller W, 2014, EXPERT SYST APPL, V41, P2437, DOI 10.1016/j.eswa.2013.09.043 Kumar D, 2022, MATER TODAY-PROC, V49, P3187, DOI 10.1016/j.matpr.2020.11.399 Kumbure MM, 2022, EXPERT SYST APPL, V197, DOI 10.1016/j.eswa.2022.116659 Kuo RJ, 2001, FUZZY SET SYST, V118, P21, DOI 10.1016/S0165-0114(98)00399-6 Kwak Y, 2021, EXPERT SYST APPL, V183, DOI 10.1016/j.eswa.2021.115298 Li GF, 2022, COMPUT INTEL NEUROSC, V2022, DOI 10.1155/2022/4874516 Ma YL, 2021, EXPERT SYST APPL, V165, DOI 10.1016/j.eswa.2020.113973 Ma YL, 2020, IEEE ACCESS, V8, P115393, DOI 10.1109/ACCESS.2020.3003819 Maknickiene N, 2018, EQUILIBRIUM, V13, P7, DOI 10.24136/eq.2018.001 Naik N, 2021, IEEE ACCESS, V9, P86230, DOI 10.1109/ACCESS.2021.3088999 Nasir M.L., 2000, Journal of Applied Accounting Research, V5, P30, DOI [10.1108/96754260080001017, DOI 10.1108/96754260080001017] Nenortaite J, 2004, LECT NOTES COMPUT SC, V3039, P843 OECD, 2019, ARTIF INTELL, DOI [10.1787/eedfee77-en, DOI 10.1787/EEDFEE77-EN] Panda MM., 2021, Mater. Today: Proc. Patel J, 2015, EXPERT SYST APPL, V42, P2162, DOI 10.1016/j.eswa.2014.10.031 Patel J, 2015, EXPERT SYST APPL, V42, P259, DOI 10.1016/j.eswa.2014.07.040 Ramos-Rodríguez AR, 2004, STRATEGIC MANAGE J, V25, P981, DOI 10.1002/smj.397 Roh TH, 2007, EXPERT SYST APPL, V33, P916, DOI 10.1016/j.eswa.2006.08.001 Salehi M, 2016, INT J LAW MANAG, V58, P545, DOI 10.1108/IJLMA-05-2015-0023 Salehi M, 2016, INT J LAW MANAG, V58, P216, DOI 10.1108/IJLMA-06-2015-0028 Samitas A, 2020, INT REV FINANC ANAL, V71, DOI 10.1016/j.irfa.2020.101507 Sang C., 2019, The Journal of Finance and Data Science, V5, P1, DOI DOI 10.1016/J.JFDS.2018.10.003 Seo M, 2019, FLUCT NOISE LETT, V18, DOI 10.1142/S0219477519500068 Sezer OB, 2018, APPL SOFT COMPUT, V70, P525, DOI 10.1016/j.asoc.2018.04.024 Sohangir S, 2018, J BIG DATA-GER, V5, DOI 10.1186/s40537-017-0111-6 Stoean C, 2019, PLOS ONE, V14, DOI 10.1371/journal.pone.0223593 Su JB, 2021, ENTROPY-SWITZ, V23, DOI 10.3390/e23091151 Sun J., 2013, Recent Patents on Computer Science, V6, P47, DOI 10.2174/2213275911306010007 Thakkar A, 2021, EXPERT SYST APPL, V177, DOI 10.1016/j.eswa.2021.114800 Troiano L, 2018, IEEE T IND INFORM, V14, P3226, DOI 10.1109/TII.2018.2811377 Vella V, 2014, NEUROCOMPUTING, V141, P170, DOI 10.1016/j.neucom.2014.03.026 Wang F, 2021, COMPLEXITY, V2021, DOI 10.1155/2021/6641298 Wang WY, 2020, EXPERT SYST APPL, V143, DOI 10.1016/j.eswa.2019.113042 Wang YL, 2021, INFORM SCIENCES, V547, P1066, DOI 10.1016/j.ins.2020.09.031 Wu DS, 2022, DECIS SUPPORT SYST, V159, DOI 10.1016/j.dss.2022.113814 Wu ST, 2022, CONNECT SCI, V34, P44, DOI 10.1080/09540091.2021.1940101 Yaman I, 2021, EXPERT SYST APPL, V169, DOI 10.1016/j.eswa.2020.114517 Yan DW, 2020, MATHEMATICS-BASEL, V8, DOI 10.3390/math8081275 Yoon WJ, 2014, DIGIT SIGNAL PROCESS, V29, P35, DOI 10.1016/j.dsp.2013.09.011 Zhang JZ, 2021, EXPERT SYST APPL, V184, DOI 10.1016/j.eswa.2021.115561 Zhang YD, 2009, EXPERT SYST APPL, V36, P8849, DOI 10.1016/j.eswa.2008.11.028 NR 78 TC 0 Z9 0 U1 1 U2 1 PU EMERALD GROUP PUBLISHING LTD PI Leeds PA Floor 5, Northspring 21-23 Wellington Street, Leeds, W YORKSHIRE, ENGLAND SN 1463-5771 EI 1758-4094 J9 BENCHMARKING JI Benchmarking PD 2024 MAR 7 PY 2024 DI 10.1108/BIJ-06-2023-0373 EA MAR 2024 PG 30 WC Management WE Emerging Sources Citation Index (ESCI) SC Business & Economics GA KH9I1 UT WOS:001179182800001 DA 2024-09-05 ER PT J AU Cheng, SY Zhang, JC Wang, GX Zhou, Z Du, J Wang, LJ Li, N Wang, JY AF Cheng, Shiyuan Zhang, Jianchen Wang, Guangxia Zhou, Zheng Du, Jin Wang, Lijun Li, Ning Wang, Jiayao TI Cartography and Neural Networks: A Scientometric Analysis Based on CiteSpace SO ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION LA English DT Article DE cartography; neural network; CiteSpace; visual analysis; knowledge mapping ID FUZZY COGNITIVE MAPS; LANDSLIDE SUSCEPTIBILITY ASSESSMENT; SUPPORT VECTOR MACHINE; SOIL ORGANIC-CARBON; FREQUENCY RATIO; LOGISTIC-REGRESSION; EMERGING TRENDS; DECISION TREE; MODELS; CLASSIFICATION AB Propelled by emerging technologies such as artificial intelligence and deep learning, the essence and scope of cartography have significantly expanded. The rapid progress in neuroscience has raised high expectations for related disciplines, furnishing theoretical support for revealing and deepening the essence of maps. In this study, CiteSpace was used to examine the confluence of cartography and neural networks over the past decade (2013-2023), thus revealing the prevailing research trends and cutting-edge investigations in the field of machine learning and its application in mapping. In addition, this analysis included the systematic categorization of knowledge clusters arising from the fusion of cartography and neural networks, which was followed by the discernment of pivotal clusters in the field of knowledge mapping. Crucially, this study diligently identified the critical studies (milestones) that have made significant contributions to the development of these elucidated clusters. Timeline analysis was used to track these studies' origins, evolution, and current status. Finally, we constructed collaborative networks among the contributing authors, journals, institutions, and countries. This mapping aids in identifying and visualizing the primary contributing factors of the evolution of knowledge mapping encompassing cartography and neural networks, thus facilitating interdisciplinary and multidisciplinary research and investigations. C1 [Cheng, Shiyuan; Zhang, Jianchen; Wang, Guangxia; Zhou, Zheng; Wang, Lijun; Li, Ning; Wang, Jiayao] Henan Univ, Coll Geog & Environm Sci, Kaifeng 475004, Peoples R China. [Cheng, Shiyuan; Zhang, Jianchen; Wang, Guangxia; Zhou, Zheng; Wang, Lijun; Li, Ning; Wang, Jiayao] Henan Univ, Henan Ind Technol Acad Spatial Temporal Big Data, Zhengzhou 450046, Peoples R China. [Cheng, Shiyuan; Zhang, Jianchen; Wang, Guangxia; Zhou, Zheng; Wang, Lijun; Li, Ning; Wang, Jiayao] Henan Univ, Key Lab Geospatial Technol Middle & Lower Yellow R, Minist Educ, Kaifeng 475004, Peoples R China. [Cheng, Shiyuan; Zhang, Jianchen; Wang, Guangxia; Zhou, Zheng; Wang, Lijun; Li, Ning; Wang, Jiayao] Henan Univ, Henan Technol Innovat Ctr Spatio Temporal Big Data, Zhengzhou 450046, Peoples R China. [Du, Jin] Henan Univ, Key Res Inst Yellow River Civilizat & Sustainable, Kaifeng 475001, Peoples R China. [Du, Jin] Henan Urban Planning Inst & Corp, Zhengzhou 450053, Peoples R China. C3 Henan University; Henan University; Henan University; Henan University; Henan University RP Wang, JY (corresponding author), Henan Univ, Coll Geog & Environm Sci, Kaifeng 475004, Peoples R China.; Wang, JY (corresponding author), Henan Univ, Henan Ind Technol Acad Spatial Temporal Big Data, Zhengzhou 450046, Peoples R China.; Wang, JY (corresponding author), Henan Univ, Key Lab Geospatial Technol Middle & Lower Yellow R, Minist Educ, Kaifeng 475004, Peoples R China.; Wang, JY (corresponding author), Henan Univ, Henan Technol Innovat Ctr Spatio Temporal Big Data, Zhengzhou 450046, Peoples R China. EM shiyuan.cheng@henu.edu.cn; jczhang@vip.henu.edu.cn; wgx@henu.edu.cn; zzeduphd@henu.edu.cn; dujin@henu.edu.cn; henuwlj@henu.edu.cn; lining@henu.edu.cn; wjy@henu.edu.cn OI Zhang, Jianchen/0000-0002-0093-0940 FU National Natural Science Foundation of China [U21A2014]; Natural Science Foundation of Henan Province [232300420436, 232300420432]; Open Fund of Key Laboratory of Urban Land Resources Monitoring and Simulation, Ministry of Natural Resources [KF-2022-07-020]; Key Laboratory of Geospatial Technology for Middle and Lower Yellow River Regions (Henan University) and the Ministry of Education open project [GTYR202203]; Henan Collaborative Innovation Center of Geo-Information Technology for Smart Central Plains [2023C001]; Science and Technology Development Project of Henan Province [242102210175] FX This work was supported by the National Natural Science Foundation of China under grant [number U21A2014]; the Natural Science Foundation of Henan Province under grant [number 232300420436, 232300420432]; the Open Fund of Key Laboratory of Urban Land Resources Monitoring and Simulation, Ministry of Natural Resources under grant [number KF-2022-07-020]; the Key Laboratory of Geospatial Technology for Middle and Lower Yellow River Regions (Henan University) and the Ministry of Education open project under grant [number GTYR202203]; Henan Collaborative Innovation Center of Geo-Information Technology for Smart Central Plains under grant [number 2023C001]; and the Science and Technology Development Project of Henan Province under grant [number 242102210175]. CR Abdollahi A, 2020, REMOTE SENS-BASEL, V12, DOI 10.3390/rs12091444 Aditian A, 2018, GEOMORPHOLOGY, V318, P101, DOI 10.1016/j.geomorph.2018.06.006 [艾廷华 Al Tinghua], 2021, [测绘学报, Acta Geodetica et Cartographica Sinica], V50, P1170 Badrinarayanan V, 2017, IEEE T PATTERN ANAL, V39, P2481, DOI 10.1109/TPAMI.2016.2644615 Bakhtavar E, 2021, J CLEAN PROD, V283, DOI 10.1016/j.jclepro.2020.124562 Behrens T, 2005, J PLANT NUTR SOIL SC, V168, P21, DOI 10.1002/jpln.200421414 Bermudez-Contreras E, 2020, FRONT COMPUT NEUROSC, V14, DOI 10.3389/fncom.2020.00063 Bertin J., 1983, Ann. Assoc. Am. Geogr, V10, P10438353 Bottini R, 2020, TRENDS COGN SCI, V24, P606, DOI 10.1016/j.tics.2020.05.008 Brungard CW, 2015, GEODERMA, V239, P68, DOI 10.1016/j.geoderma.2014.09.019 Chen CM, 2017, J DATA INFO SCI, V2, P1, DOI 10.1515/jdis-2017-0006 Chen CM, 2014, EXPERT OPIN BIOL TH, V14, P1295, DOI 10.1517/14712598.2014.920813 Chen CM, 2010, J AM SOC INF SCI TEC, V61, P1386, DOI 10.1002/asi.21309 Chen CM, 2006, J AM SOC INF SCI TEC, V57, P359, DOI 10.1002/asi.20317 Chen LCE, 2018, LECT NOTES COMPUT SC, V11211, P833, DOI 10.1007/978-3-030-01234-2_49 Chen W, 2019, CATENA, V172, P212, DOI 10.1016/j.catena.2018.08.025 Cheng BY, 2013, GISCI REMOTE SENS, V50, P527, DOI 10.1080/15481603.2013.823748 Chi YX, 2016, IEEE T FUZZY SYST, V24, P71, DOI 10.1109/TFUZZ.2015.2426314 Clarke KC, 2019, CARTOGR GEOGR INF SC, V46, P196, DOI 10.1080/15230406.2019.1571441 Cobo MJ, 2011, J AM SOC INF SCI TEC, V62, P1382, DOI 10.1002/asi.21525 Courtial A, 2023, INT J GEOGR INF SCI, V37, P499, DOI 10.1080/13658816.2022.2123488 Crawford-Welch S., 1992, International Journal of Hospitality Management, V11, P155, DOI 10.1016/0278-4319(92)90008-J Cui X.P.M., 2017, How is CiteSpace Used and Cited in the Literature? An Analysis of the Articles Published in English and Chinese Core Journals Dai A, 2017, PROC CVPR IEEE, P6545, DOI 10.1109/CVPR.2017.693 Das Papiya, 2020, 2020 8th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions) (ICRITO), P339, DOI 10.1109/ICRITO48877.2020.9197899 Devkota KC, 2013, NAT HAZARDS, V65, P135, DOI 10.1007/s11069-012-0347-6 Bui DT, 2012, MATH PROBL ENG, V2012, DOI 10.1155/2012/974638 Dodge S, 2017, PROCEEDINGS OF THE FIFTEENTH IAPR INTERNATIONAL CONFERENCE ON MACHINE VISION APPLICATIONS - MVA2017, P358, DOI 10.23919/MVA.2017.7986875 Dong WH, 2018, ISPRS INT J GEO-INF, V7, DOI 10.3390/ijgi7090337 Du JW, 2022, CARTOGR GEOGR INF SC, V49, P313, DOI 10.1080/15230406.2021.2013944 Du JW, 2022, GEOCARTO INT, V37, P4158, DOI 10.1080/10106049.2021.1878288 Duan W., 2018, P AUTOCARTO MAD WI U en A., 2012, P 9 INT S SURF MOD G, P23 Felix G, 2019, ARTIF INTELL REV, V52, P1707, DOI 10.1007/s10462-017-9575-1 Feng Y, 2019, ISPRS INT J GEO-INF, V8, DOI 10.3390/ijgi8060258 Froelich W, 2017, NEUROCOMPUTING, V232, P83, DOI 10.1016/j.neucom.2016.11.059 Gao RB, 2020, ENG APPL ARTIF INTEL, V96, DOI 10.1016/j.engappai.2020.103978 Balboa JLG, 2008, GEOINFORMATICA, V12, P289, DOI 10.1007/s10707-007-0026-z Griffin A.L., 2017, International Journal of Cartography, V3, P1, DOI [10.1080/23729333.2017.1316466, DOI 10.1080/23729333.2017.1316466] Grossberg S, 2020, FRONT NEUROINFORM, V14, DOI 10.3389/fninf.2020.00004 Grubesic TH, 2008, INT REGIONAL SCI REV, V31, P88, DOI 10.1177/0160017607308679 Guangying W., 2021, Sci. Surv. Mapp, V46, P10 [郭仁忠 Guo Renzhong], 2021, [测绘地理信息, Journal of Geomatics], V46, P9 Haeri SAS, 2019, J CLEAN PROD, V221, P768, DOI 10.1016/j.jclepro.2019.02.193 Hart C., 2018, DOING LIT REV RELEAS [何海威 He Haiwei], 2016, [测绘科学技术学报, Journal of Geomatics Science and Technology], V33, P623 He KM, 2016, PROC CVPR IEEE, P770, DOI 10.1109/CVPR.2016.90 He SW, 2012, GEOMORPHOLOGY, V171, P30, DOI 10.1016/j.geomorph.2012.04.024 Helbich M, 2013, CARTOGR GEOGR INF SC, V40, P326, DOI 10.1080/15230406.2013.779780 Hong HY, 2016, GEOMORPHOLOGY, V259, P105, DOI 10.1016/j.geomorph.2016.02.012 Hu J, 2018, PROC CVPR IEEE, P7132, DOI [10.1109/CVPR.2018.00745, 10.1109/TPAMI.2019.2913372] Huang FM, 2020, CATENA, V191, DOI 10.1016/j.catena.2020.104580 Huang FM, 2020, LANDSLIDES, V17, P217, DOI 10.1007/s10346-019-01274-9 Huang FM, 2018, GEOMAT NAT HAZ RISK, V9, P919, DOI 10.1080/19475705.2018.1482963 Huang X, 2020, INT GEOSCI REMOTE SE, P6758, DOI 10.1109/IGARSS39084.2020.9323669 Huang Y, 2018, CATENA, V165, P520, DOI 10.1016/j.catena.2018.03.003 Jaderberg M, 2015, ADV NEUR IN, V28 Jafari A, 2013, GEOMORPHOLOGY, V201, P86, DOI 10.1016/j.geomorph.2013.06.010 Janowicz K, 2020, INT J GEOGR INF SCI, V34, P625, DOI 10.1080/13658816.2019.1684500 Javan FD, 2021, ISPRS J PHOTOGRAMM, V171, P101, DOI 10.1016/j.isprsjprs.2020.11.001 Jenny B, 2021, IEEE T VIS COMPUT GR, V27, P1225, DOI 10.1109/TVCG.2020.3030456 Jiang B., 2004, Transactions in GIS, V8, P335, DOI DOI 10.1111/J.1467-9671.2004.00186.X Kang YH, 2019, INT J CARTOGRAPHY, V5, P115, DOI 10.1080/23729333.2019.1615729 Kavzoglu T, 2014, LANDSLIDES, V11, P425, DOI 10.1007/s10346-013-0391-7 Konen M., 2010, Joint Board of Geospatial Information Societies (JB GIS) KOSKO B, 1986, INT J MAN MACH STUD, V24, P65, DOI 10.1016/S0020-7373(86)80040-2 Krizhevsky A, 2017, COMMUN ACM, V60, P84, DOI 10.1145/3065386 Kuras A, 2021, REMOTE SENS-BASEL, V13, DOI 10.3390/rs13173393 LeCun Y, 2015, NATURE, V521, P436, DOI 10.1038/nature14539 Leng S., 2016, The Geographical Sciences during 1986-2015: From the Classics to the Frontiers Li CM, 2020, T GIS, V24, P1756, DOI 10.1111/tgis.12681 Li HF, 2019, 2019 IEEE FIFTH INTERNATIONAL CONFERENCE ON BIG DATA COMPUTING SERVICE AND APPLICATIONS (IEEE BIGDATASERVICE 2019), P322, DOI 10.1109/BigDataService.2019.00057 Li WW, 2020, INT J GEOGR INF SCI, V34, P637, DOI 10.1080/13658816.2018.1542697 Li XJ, 2017, INT J HOSP MANAG, V60, P77, DOI 10.1016/j.ijhm.2016.10.006 Lin GF, 2017, ENG GEOL, V224, P62, DOI 10.1016/j.enggeo.2017.05.009 Lin T.-Y., 2017, ICCV, DOI [DOI 10.1109/CVPR.2017.106, 10.1109/CVPR.2017.106] Liu C, 2017, IEEE I CONF COMP VIS, P2214, DOI 10.1109/ICCV.2017.241 Liu K., 2017, Research on Intelligent Selection of Road Network Automatic Generalization Based on Kernel-Based Machine Learning Liu PH, 2020, KNOWL-BASED SYST, V203, DOI 10.1016/j.knosys.2020.106081 Long J, 2015, PROC CVPR IEEE, P3431, DOI 10.1109/CVPR.2015.7298965 Lu Xin, 2012, Proc ACM Int Conf Multimed, V2012, P229, DOI 10.1145/2393347.2393384 Ma J, 2009, ANATOLIA, V20, P62, DOI 10.1080/13032917.2009.10518895 Ma L, 2019, ISPRS J PHOTOGRAMM, V152, P166, DOI 10.1016/j.isprsjprs.2019.04.015 Matin SS, 2022, GEOCARTO INT, V37, P6186, DOI 10.1080/10106049.2021.1933213 [孟立秋 Meng Liqiu], 2017, [测绘学报, Acta Geodetica et Cartographica Sinica], V46, P1637 Moonjun R, 2010, PROGR SOIL SCI, V2, P151, DOI 10.1007/978-90-481-8863-5_13 Musa A, 2022, SCHIZOPHR, V8, DOI 10.1038/s41537-022-00247-7 Nápoles G, 2018, NEURAL NETWORKS, V97, P19, DOI 10.1016/j.neunet.2017.08.007 Nápoles G, 2017, INT J APPROX REASON, V85, P79, DOI 10.1016/j.ijar.2017.03.011 Nápoles G, 2016, INFORM SCIENCES, V349, P154, DOI 10.1016/j.ins.2016.02.040 Papageorgiou EI, 2016, IEEE INT FUZZY SYST, P1523, DOI 10.1109/FUZZ-IEEE.2016.7737871 Park I, 2014, INT J REMOTE SENS, V35, P6089, DOI 10.1080/01431161.2014.943326 Pashaei M, 2020, REMOTE SENS-BASEL, V12, DOI 10.3390/rs12060959 Poczeta K, 2015, ACSIS-ANN COMPUT SCI, V5, P547, DOI 10.15439/2015F296 Pourghasemi HR, 2012, CATENA, V97, P71, DOI 10.1016/j.catena.2012.05.005 Pradhan B, 2013, COMPUT GEOSCI-UK, V51, P350, DOI 10.1016/j.cageo.2012.08.023 Pradhan B, 2010, ENVIRON MODELL SOFTW, V25, P747, DOI 10.1016/j.envsoft.2009.10.016 Pradhan B, 2009, INT J PHYS SCI, V4, P1 Qin FL, 2021, WATER-SUI, V13, DOI 10.3390/w13020174 Reichstein M, 2019, NATURE, V566, P195, DOI 10.1038/s41586-019-0912-1 Rousi E, 2014, J MAPS, V10, P232, DOI 10.1080/17445647.2013.862747 Samarasinghe S, 2013, ENVIRON MODELL SOFTW, V39, P188, DOI 10.1016/j.envsoft.2012.06.008 Schnürer R, 2021, CARTOGR J, V58, P50, DOI 10.1080/00087041.2020.1738112 Sen A, 2014, CARTOGR GEOGR INF SC, V41, P151, DOI 10.1080/15230406.2013.877231 Sester M., 2008, Self-Organising Maps: Applications in Geographic Information Science, P107 Sester Monika., 2018, ISPRS-Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. XLII-4, VXLII-4, P565, DOI [DOI 10.5194/ISPRS-ARCHIVES-XLII-4-565-2018, https://doi.org/10.5194/isprs-archives-XLII-4-565-2018] Shi H., 2022, Prog. Geogr, V41, P13 Song HJ, 2010, NEURAL NETWORKS, V23, P1264, DOI 10.1016/j.neunet.2010.08.003 Song HJ, 2010, IEEE T FUZZY SYST, V18, P233, DOI 10.1109/TFUZZ.2009.2038371 Song YQ, 2012, COMPUT GEOSCI-UK, V42, P189, DOI 10.1016/j.cageo.2011.09.011 Speel P.H., 1999, KNOWLEDGE MAPPING IN Summerfield C, 2020, PROG NEUROBIOL, V184, DOI 10.1016/j.pneurobio.2019.101717 Sun YG, 2016, T GIS, V20, P585, DOI 10.1111/tgis.12165 Taghizadeh-Mehrjardi R, 2016, GEODERMA, V266, P98, DOI 10.1016/j.geoderma.2015.12.003 Talukdar S, 2020, REMOTE SENS-BASEL, V12, DOI 10.3390/rs12071135 Tang HJ, 2018, IEEE T COGN DEV SYST, V10, P751, DOI 10.1109/TCDS.2017.2776965 Taravat A, 2017, J MAPS, V13, P24, DOI 10.1080/17445647.2017.1305300 Touya G, 2019, INT J CARTOGRAPHY, V5, P142, DOI 10.1080/23729333.2019.1613071 Vakhshoori V, 2016, GEOMAT NAT HAZ RISK, V7, P1731, DOI 10.1080/19475705.2016.1144655 Wang CW, 2023, IEEE T GEOSCI REMOTE, V61, DOI 10.1109/TGRS.2023.3284478 Wang J., 2014, Principles and Methods of Cartography-2 Wang J., 2006, Principles and Methods of Cartography [王家耀 Wang Jiayao], 2022, [测绘学报, Acta Geodetica et Cartographica Sinica], V51, P829 [王家耀 Wang Jiayao], 2017, [测绘学报, Acta Geodetica et Cartographica Sinica], V46, P1226 [王荣 Wang Rong], 2021, [测绘科学, Science of Surveying and Mapping], V46, P167 Wang YX, 2015, LECT NOTES GEOINF CA, P189, DOI 10.1007/978-3-319-17738-0_14 Wang YQ, 2020, ACM COMPUT SURV, V53, DOI 10.1145/3386252 Wang YH, 2017, COGN NEURODYNAMICS, V11, P99, DOI 10.1007/s11571-016-9412-2 [王征 Wang Zheng], 2017, [南京师大学报. 自然科学版, Journal of Nanjing Normal University. Natural Science], V40, P74 Webster J, 2002, MIS QUART, V26, pXIII Wei FW, 2015, PROF GEOGR, V67, P374, DOI 10.1080/00330124.2014.983588 Were K, 2015, ECOL INDIC, V52, P394, DOI 10.1016/j.ecolind.2014.12.028 Woo SH, 2018, LECT NOTES COMPUT SC, V11211, P3, DOI 10.1007/978-3-030-01234-2_1 Xi DP, 2023, CARTOGR GEOGR INF SC, V50, P465, DOI 10.1080/15230406.2023.2172081 Xiao TY, 2024, CARTOGR GEOGR INF SC, V51, P20, DOI 10.1080/15230406.2023.2187886 Xie YQ, 2020, INT J GEOGR INF SCI, V34, P777, DOI 10.1080/13658816.2019.1624761 Xu YX, 2022, FRONT EARTH SCI-PRC, V16, P352, DOI 10.1007/s11707-021-0884-y Yan CD, 2022, CARTOGR J, V59, P187, DOI 10.1080/00087041.2021.2006390 Yan W., 2018, Geospat. Inf, V16, P5 Yan XF, 2024, CARTOGR GEOGR INF SC, V51, P79, DOI 10.1080/15230406.2023.2218106 Yan XF, 2021, INT J GEOGR INF SCI, V35, P490, DOI 10.1080/13658816.2020.1768260 Yan XF, 2019, ISPRS J PHOTOGRAMM, V150, P259, DOI 10.1016/j.isprsjprs.2019.02.010 Yang M, 2022, INT J APPL EARTH OBS, V108, DOI 10.1016/j.jag.2022.102753 Yu WH, 2022, T GIS, V26, P2302, DOI 10.1111/tgis.12965 Yuan KX, 2020, KNOWL-BASED SYST, V206, DOI 10.1016/j.knosys.2020.106359 Zhao R, 2020, CARTOGR GEOGR INF SC, V47, P400, DOI 10.1080/15230406.2020.1757512 Zhao SC, 2014, PROCEEDINGS OF THE 2014 ACM CONFERENCE ON MULTIMEDIA (MM'14), P47, DOI 10.1145/2647868.2654930 [钟耳顺 Zhong Ershun], 2022, [武汉大学学报. 信息科学版, Geomatics and Information Science of Wuhan University], V47, P1988 Zhou Q, 2014, CARTOGR J, V51, P38, DOI 10.1179/1743277413Y.0000000042 Ziran Z, 2018, LECT NOTES ARTIF INT, V11081, P383, DOI 10.1007/978-3-319-99978-4_30 NR 150 TC 0 Z9 0 U1 9 U2 9 PU MDPI PI BASEL PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND EI 2220-9964 J9 ISPRS INT J GEO-INF JI ISPRS Int. J. Geo-Inf. PD JUN PY 2024 VL 13 IS 6 AR 178 DI 10.3390/ijgi13060178 PG 31 WC Computer Science, Information Systems; Geography, Physical; Remote Sensing WE Science Citation Index Expanded (SCI-EXPANDED) SC Computer Science; Physical Geography; Remote Sensing GA WO4M6 UT WOS:001255805000001 OA gold DA 2024-09-05 ER PT J AU Fu, LD Aphinyanaphongs, Y Aliferis, CF AF Fu, Lawrence D. Aphinyanaphongs, Yindalon Aliferis, Constantin F. TI Computer models for identifying instrumental citations in the biomedical literature SO SCIENTOMETRICS LA English DT Article DE Bibliometrics; Citation analysis; Machine learning; Information retrieval ID TEXT CATEGORIZATION; AGREEMENT; COUNTS AB The most popular method for evaluating the quality of a scientific publication is citation count. This metric assumes that a citation is a positive indicator of the quality of the cited work. This assumption is not always true since citations serve many purposes. As a result, citation count is an indirect and imprecise measure of impact. If instrumental citations could be reliably distinguished from non-instrumental ones, this would readily improve the performance of existing citation-based metrics by excluding the non-instrumental citations. A citation was operationally defined as instrumental if either of the following was true: the hypothesis of the citing work was motivated by the cited work, or the citing work could not have been executed without the cited work. This work investigated the feasibility of developing computer models for automatically classifying citations as instrumental or non-instrumental. Instrumental citations were manually labeled, and machine learning models were trained on a combination of content and bibliometric features. The experimental results indicate that models based on content and bibliometric features are able to automatically classify instrumental citations with high predictivity (AUC = 0.86). Additional experiments using independent hold out data and prospective validation show that the models are generalizeable and can handle unseen cases. This work demonstrates that it is feasible to train computer models to automatically identify instrumental citations. C1 [Fu, Lawrence D.; Aphinyanaphongs, Yindalon] NYU Med Ctr, Ctr Hlth Informat & Bioinformat, Dept Med, New York, NY 10016 USA. [Aliferis, Constantin F.] NYU Med Ctr, Ctr Hlth Informat & Bioinformat, Dept Pathol, New York, NY 10016 USA. C3 New York University; New York University RP Fu, LD (corresponding author), NYU Med Ctr, Ctr Hlth Informat & Bioinformat, Dept Med, 227 E 30th St,7th Floor, New York, NY 10016 USA. EM lawrence.fu@nyumc.org OI Aphinyanaphongs, Yin/0000-0001-8605-5392 FU [R56 LM007948-04A1]; [1UL1RR029893] FX The authors gratefully acknowledge support from R56 LM007948-04A1 and 1UL1RR029893. CR Aliferis CF, 2006, CANCER INFORM, V2, P133 Aliferis CF, 2010, J MACH LEARN RES, V11, P171 Aphinyanaphongs Y, 2005, J AM MED INFORM ASSN, V12, P207, DOI 10.1197/jamia.M1641 Bornmann L, 2008, J DOC, V64, P45, DOI 10.1108/00220410810844150 Brin S, 1998, COMPUT NETWORKS ISDN, V30, P107, DOI 10.1016/S0169-7552(98)00110-X COHEN J, 1960, EDUC PSYCHOL MEAS, V20, P37, DOI 10.1177/001316446002000104 Cronin B, 1998, SCIENTOMETRICS, V43, P45, DOI 10.1007/BF02458393 EGASHIRA K, 1993, NEW ENGL J MED, V328, P1659, DOI 10.1056/NEJM199306103282302 Fu LD, 2010, SCIENTOMETRICS, V85, P257, DOI 10.1007/s11192-010-0237-1 Garfield E., 1977, ESSAYS INFORM SCI, V1, P84 HECHT SS, 1993, NEW ENGL J MED, V329, P1543, DOI 10.1056/NEJM199311183292105 LANDIS JR, 1977, BIOMETRICS, V33, P159, DOI 10.2307/2529310 Leopold E, 2002, MACH LEARN, V46, P423, DOI 10.1023/A:1012491419635 MacRoberts MH, 1996, SCIENTOMETRICS, V36, P435, DOI 10.1007/BF02129604 Mercer R. E., 2004, 2004 JOINT C HUM LAN Nicolaisen J, 2003, P ASIST ANNU, V40, P12 Phelan TJ, 1999, SCIENTOMETRICS, V45, P117, DOI 10.1007/BF02458472 PORTER MF, 1980, PROGRAM-AUTOM LIBR, V14, P130, DOI 10.1108/eb046814 Seglen PO, 1998, ACTA ORTHOP SCAND, V69, P224, DOI 10.3109/17453679809000920 Teufel S., 2006, P EMNLP NR 20 TC 4 Z9 4 U1 0 U2 25 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0138-9130 EI 1588-2861 J9 SCIENTOMETRICS JI Scientometrics PD DEC PY 2013 VL 97 IS 3 BP 871 EP 882 DI 10.1007/s11192-013-0983-y PG 12 WC Computer Science, Interdisciplinary Applications; Information Science & Library Science WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Computer Science; Information Science & Library Science GA 255DP UT WOS:000327219900020 DA 2024-09-05 ER PT J AU Chan, M Hu, PF Mak, MKF AF Chan, Michael Hu, Panfeng K. F. Mak, Macau TI Mediation Analysis and Warranted Inferences in Media and Communication Research: Examining Research Design in Communication Journals From 1996 to 2017 SO JOURNALISM & MASS COMMUNICATION QUARTERLY LA English DT Article DE mediation analysis; indirect effect; research design; causal inference; content analysis ID SOCIAL IDENTITY; NEWS; SELF; EXPOSURE; INFORMATION; ATTITUDES; BELIEFS; INGROUP; HEALTH; ROLES AB The number of studies employing mediation analysis has increased exponentially in the past two decades. Focusing on research design, this study examines 387 articles in theJournal of Communication,Human Communication Research,Communication Research,Journalism & Mass Communication Quarterly, andMedia Psychologybetween 1996 and 2017. Findings show that while most studies report statistically significant indirect effects, they are inadequate to make causal inferences. Authors also often infer that they uncovered the "true" mediator(s) while alternative models and mediators are rarely acknowledged. Future studies should pay more attention to the role of research design and its implications for making causal inferences. C1 [Chan, Michael; Hu, Panfeng] Chinese Univ Hong Kong, Shatin, Hong Kong, Peoples R China. [K. F. Mak, Macau] Univ Wisconsin, Sch Journalism & Mass Commun, Madison, WI 53706 USA. C3 Chinese University of Hong Kong; University of Wisconsin System; University of Wisconsin Madison RP Chan, M (corresponding author), Chinese Univ Hong Kong, Sch Journalism & Commun, New Asia Coll, Shatin, Humanities Bldg, Hong Kong, Peoples R China. EM mcmchan@cuhk.edu.hk RI Mak, Macau K. F./ABC-3688-2022; Chan, Michael/A-9477-2013 OI Mak, Macau K. F./0000-0003-0819-1107; Hu, Panfeng/0000-0002-7820-2214; Chan, Michael/0000-0001-9911-593X CR [Anonymous], 2016, COMMUN RES, DOI DOI 10.1177/0093650214555180 Appel M, 2019, POETICS, V77, DOI 10.1016/j.poetic.2019.101385 Arroyo A, 2014, HUM COMMUN RES, V40, P463, DOI 10.1111/hcre.12036 Balmas M, 2014, COMMUN RES, V41, P430, DOI 10.1177/0093650212453600 Bartsch A, 2014, J COMMUN, V64, P369, DOI 10.1111/jcom.12095 Bélanger JJ, 2019, J PERS, V87, P1234, DOI 10.1111/jopy.12470 Bolin JH, 2014, J EDUC MEAS, V51, P335, DOI 10.1111/jedm.12050 Boukes M, 2015, J COMMUN, V65, P721, DOI 10.1111/jcom.12173 Bullock HE, 1994, STRUCT EQU MODELING, V1, P253, DOI 10.1080/10705519409539977 Bullock J.G., 2011, Cambridge handbook of experimental political science, P508, DOI [DOI 10.1017/CB09780511921452.035, 10.1017/cbo9780511921452.035, DOI 10.1017/CBO9780511921452.035] Bullock JG, 2010, J PERS SOC PSYCHOL, V98, P550, DOI 10.1037/a0018933 Chan M, 2018, MASS COMMUN SOC, V21, P1, DOI 10.1080/15205436.2017.1358819 Chan M, 2017, NEW MEDIA SOC, V19, P2003, DOI 10.1177/1461444816653190 Chia SC, 2010, COMMUN RES, V37, P400, DOI 10.1177/0093650210362463 de Graaf A, 2014, HUM COMMUN RES, V40, P73, DOI 10.1111/hcre.12015 Dienlin T, 2021, J COMMUN, V71, P1, DOI 10.1093/joc/jqz052 Fiedler K, 2018, J EXP SOC PSYCHOL, V75, P95, DOI 10.1016/j.jesp.2017.11.008 Fiedler K, 2011, J EXP SOC PSYCHOL, V47, P1231, DOI 10.1016/j.jesp.2011.05.007 Gabbiadini A, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0152121 Gunther AC, 1998, COMMUN RES, V25, P486, DOI 10.1177/009365098025005002 Harwood J, 2016, J COMMUN, V66, P937, DOI 10.1111/jcom.12261 Hayes AF, 2007, COMMUN METHODS MEAS, V1, P77, DOI 10.1080/19312450709336664 Holbert RL, 2020, COMMUN THEOR, V30, P227, DOI 10.1093/ct/qtz006 Holbert RL, 2004, J MASS COMMUN Q, V81, P343, DOI 10.1177/107769900408100208 Holbert RL, 2003, J BROADCAST ELECTRON, V47, P556, DOI 10.1207/s15506878jobem4704_5 Hutchens MJ, 2016, J MASS COMMUN Q, V93, P1073, DOI 10.1177/1077699016654439 Imai K, 2010, STAT SCI, V25, P51, DOI 10.1214/10-STS321 Johnson BK, 2016, J COMMUN, V66, P386, DOI 10.1111/jcom.12228 Kam JA, 2011, J COMMUN, V61, DOI 10.1111/j.1460-2466.2011.01552.x Kline RB, 2015, BASIC APPL SOC PSYCH, V37, P202, DOI 10.1080/01973533.2015.1049349 Knobloch-Westerwick S, 2017, J COMMUN, V67, P54, DOI 10.1111/jcom.12271 Lecheler S, 2015, J MASS COMMUN Q, V92, P812, DOI 10.1177/1077699015596338 Martinot D, 2002, PERS SOC PSYCHOL B, V28, P1586, DOI 10.1177/014616702237585 Mathieu JE, 2008, ORGAN RES METHODS, V11, P203, DOI 10.1177/1094428107310089 McGregor I, 2008, J EXP SOC PSYCHOL, V44, P1395, DOI 10.1016/j.jesp.2008.06.001 Mellado C, 2020, J MASS COMMUN Q, V97, P333, DOI 10.1177/1077699020917204 Men LR, 2017, J MASS COMMUN Q, V94, P81, DOI 10.1177/1077699016674187 Morgan M, 2017, J COMMUN, V67, P424, DOI 10.1111/jcom.12297 Neuman WR, 2011, COMMUN THEOR, V21, P169, DOI 10.1111/j.1468-2885.2011.01381.x Paek HJ, 2007, COMMUN RES, V34, P407, DOI 10.1177/0093650207302785 Palomares NA, 2013, HUM COMMUN RES, V39, P74, DOI 10.1111/j.1468-2958.2012.01439.x Pirlott AG, 2016, J EXP SOC PSYCHOL, V66, P29, DOI 10.1016/j.jesp.2015.09.012 Pogge G, 2020, J EXP SOC PSYCHOL, V87, DOI 10.1016/j.jesp.2019.103914 Powell TE, 2015, J COMMUN, V65, P997, DOI 10.1111/jcom.12184 Preacher KJ, 2008, BEHAV RES METHODS, V40, P879, DOI 10.3758/BRM.40.3.879 Preacher KJ, 2007, MULTIVAR BEHAV RES, V42, P185, DOI 10.1080/00273170701341316 Saleem M, 2017, COMMUN RES, V44, P841, DOI 10.1177/0093650215619214 Saylors R, 2021, ORGAN RES METHODS, V24, P616, DOI 10.1177/1094428119893452 Schmuck D, 2017, J COMMUN, V67, P610, DOI 10.1111/jcom.12313 Shah DV, 2007, J COMMUN, V57, P676, DOI 10.1111/j.1460-2466.2007.00363.x Shehata A, 2019, COMMUN RES, V46, P1055, DOI 10.1177/0093650217714360 Slater MD, 2007, COMMUN RES, V34, P355, DOI 10.1177/0093650207302783 Slater MD, 2012, COMMUN METHODS MEAS, V6, P215, DOI 10.1080/19312458.2012.732626 Smith ER, 2012, J PERS SOC PSYCHOL, V102, P1, DOI 10.1037/a0026676 Sotirovic M, 2001, POLIT COMMUN, V18, P273, DOI 10.1080/10584600152400347 Spencer SJ, 2005, J PERS SOC PSYCHOL, V89, P845, DOI 10.1037/0022-3514.89.6.845 Stone-Romero EF, 2008, ORGAN RES METHODS, V11, P326, DOI 10.1177/1094428107300342 Theiss JA, 2014, COMMUN RES, V41, P27, DOI 10.1177/0093650211429285 Valkenburg PM, 2016, ANNU REV PSYCHOL, V67, P315, DOI 10.1146/annurev-psych-122414-033608 van Oosten JMF, 2015, COMMUN RES, V42, P986, DOI 10.1177/0093650214565893 Walter N, 2018, J COMMUN, V68, P424, DOI 10.1093/joc/jqx015 Wojcieszak M, 2018, HUM COMMUN RES, V44, P247, DOI 10.1093/hcr/hqx010 Yanovitzky Itzhak., 2009, The SAGE Handbook of Media Processes and Effects, P35 NR 63 TC 32 Z9 36 U1 6 U2 35 PU SAGE PUBLICATIONS INC PI THOUSAND OAKS PA 2455 TELLER RD, THOUSAND OAKS, CA 91320 USA SN 1077-6990 EI 2161-430X J9 J MASS COMMUN Q JI Journal. Mass Commun. Q. PD JUN PY 2022 VL 99 IS 2 BP 463 EP 486 AR 1077699020961519 DI 10.1177/1077699020961519 EA OCT 2020 PG 24 WC Communication WE Social Science Citation Index (SSCI) SC Communication GA 1X6BS UT WOS:000575512500001 DA 2024-09-05 ER PT J AU Thakral, S Kamra, V AF Thakral, Shruti Kamra, Vishal TI Self-service technologies: A bibliometric analysis SO INTERNATIONAL JOURNAL OF FINANCIAL ENGINEERING LA English DT Article; Early Access DE Self-service technology; SSTs; bibliometric analyses; bibliographic coupling; topic modeling ID CUSTOMER SATISFACTION; QUALITY; ANTHROPOMORPHISM; ENTREPRENEURSHIP; LOYALTY; TRUST AB In this paper, we applied bibliometric methods to analyze the field of self-service technology (SST). Our goal was to identify the most impactful publications and journals, comprehend the key topics studied as well as the emerging trends and forecast future research trends in this domain. The Scopus database was used to extract 490 documents related to SST between 2000 and 2023. Our analyses include the most cited papers, sources of publications, bibliographic coupling, and topic modeling. As the body of literature continues to expand, we identified the most influential source "Journal of Service Marketing" which holds a prominent position in this area. The citation analysis revealed the highly influential papers that have made significant contributions to their respective fields. Notably, Meuter [Meuter, ML, AL Ostrom, RI Roundtree and MJ Bitner (2000). Self-Service Technologies: Understanding Customer Satisfaction with Technology-Based Service Encounters] in the realm of SST emerged as the most frequently cited paper, exerting substantial influence in academic literature. We applied bibliometric coupling in this field, which resulted in the discovery of seven clusters in SST. These clusters shed light on various aspects associated with these topics, offering valuable insights. The findings of this research offer valuable insights to study researchers by bringing clarity to this research field. Finally, the study presents the implications and recommendations for researchers. The findings of this paper offer valuable insights to study researchers by bringing clarity to the fields of the study. C1 [Thakral, Shruti] Amity Univ, Amity Coll Commerce & Finance, Noida, Uttar Pradesh, India. [Kamra, Vishal] Amity Univ, Amity Sch Business, Noida, Uttar Pradesh, India. C3 Amity University Noida; Amity University Noida RP Thakral, S (corresponding author), Amity Univ, Amity Coll Commerce & Finance, Noida, Uttar Pradesh, India. EM thakralshruti98@gmail.com; vishalkamra@ymail.com OI shruti, thakral/0009-0004-1598-2788 CR Alhouti S, 2021, J BUS RES, V124, P240, DOI 10.1016/j.jbusres.2020.11.047 Ammari Bahri N, 2021, Consumer Responses to the Failure of Self-Service Banking Technology: Moderating Role of Failure Stability Annamdevula S, 2016, J MODEL MANAG, V11, P488, DOI 10.1108/JM2-01-2014-0010 [Anonymous], 1996, International Journal of Research in Marketing, DOI [DOI 10.1016/0167-8116%2895%2900027-5, DOI 10.1016/0167-8116(95)00027-5] BATESON JEG, 1985, J RETAILING, V61, P49 Bitner MJ, 2010, SERV SCI RES INNOV S, P197, DOI 10.1007/978-1-4419-1628-0_10 Bitner MJ, 2002, ACAD MANAGE EXEC, V16, P96, DOI 10.5465/AME.2002.8951333 Blei DM, 2012, COMMUN ACM, V55, P77, DOI 10.1145/2133806.2133826 Burnham Judy F, 2006, Biomed Digit Libr, V3, P1 Cardella GM, 2020, FRONT PSYCHOL, V11, DOI 10.3389/fpsyg.2020.01557 Castro D, 2010, International Journal of Electronic Finance, V9, P170, DOI [10.1504/IJEF.2019.099003, DOI 10.1504/IJEF.2019.099003] Castro D., 2010, SSRN Electronic Journal, DOI [DOI 10.2139/SSRN.1590982, https://doi.org/10.2139/ssrn.1590982] Curran JM, 2007, J MARKET THEORY PRAC, V15, P283, DOI 10.2753/MTP1069-6679150401 Curran JamesM., 2005, J SERV MARK, V19, P103, DOI [10.1108/08876040510591411, DOI 10.1108/08876040510591411] De Leon MV, 2020, COGENT BUS MANAG, V7, DOI 10.1080/23311975.2020.1794241 Demoulin NTM, 2016, INT J RETAIL DISTRIB, V44, P540, DOI 10.1108/IJRDM-08-2015-0122 Di Mascio R, 2016, AMS Review, V6, P79, DOI [10.1007/S13162-016-0076-1, DOI 10.1007/S13162-016-0076-1] Dimitriadis S, 2011, INT J BANK MARK, V29, P5, DOI 10.1108/02652321111101356 Ding X, 2022, ELECTRON COMMER RES, V22, P787, DOI 10.1007/s10660-020-09410-7 Ellegaard O, 2015, SCIENTOMETRICS, V105, P1809, DOI 10.1007/s11192-015-1645-z Evanschitzky H, 2015, J PROD INNOVAT MANAG, V32, P459, DOI 10.1111/jpim.12241 Fan AL, 2020, J HOSP MARKET MANAG, V29, P269, DOI 10.1080/19368623.2019.1639095 Fan A, 2016, J SERV MARK, V30, P713, DOI 10.1108/JSM-07-2015-0225 Fleming DE, 2012, Services Marketing Quarterly, V33, P330, DOI [10.1080/15332969.2012.715050, DOI 10.1080/15332969.2012.715050] Forrester Research, 2017, Top Trends for Customer Service in 2017: Operations Become Smarter and More Strategic Galdolage BS, 2024, INT J EMERG MARK, V19, P2366, DOI 10.1108/IJOEM-01-2022-0078 Galdolage BS, 2021, FIIB BUS REV, V10, P276, DOI 10.1177/23197145211022016 Ivan Z, 2015, Bibliometric Methods in Management and Organization Kaushik AK, 2015, TOUR MANAG PERSPECT, V16, P278, DOI 10.1016/j.tmp.2015.09.002 Lee B, 2018, J HOSP MARKET MANAG, V27, P61, DOI 10.1080/19368623.2017.1337539 Lee HJ, 2013, J RETAIL CONSUM SERV, V20, P51, DOI 10.1016/j.jretconser.2012.10.005 Lee HJ, 2009, MANAG SERV QUAL, V19, P687, DOI 10.1108/09604520911005071 Lin JSC, 2011, MANAG SERV QUAL, V21, P424, DOI 10.1108/09604521111146289 Ma H, 2024, CURR ISSUES TOUR, V27, P142, DOI 10.1080/13683500.2023.2173056 MARTYN J, 1964, J DOC, V20, P236, DOI 10.1108/eb026352 Meuter ML, 2000, J MARKETING, V64, P50, DOI 10.1509/jmkg.64.3.50.18024 Nilsson Elin, 2021, Services Marketing Quarterly, V42, P57, DOI 10.1080/15332969.2021.1947085 Orel FD, 2014, J RETAIL CONSUM SERV, V21, P118, DOI 10.1016/j.jretconser.2013.07.002 Ostrom AL, 2019, Customer Acceptance of AI in Service Encounters: Understanding Antecedents and Consequences, P77, DOI [10.1007/978-3-319-98512-1_5, DOI 10.1007/978-3-319-98512-1_5] Park JS, 2021, J FASH MARK MANAG, V25, P371, DOI 10.1108/JFMM-09-2019-0221 Podsakoff PM, 2005, STRATEGIC MANAGE J, V26, P473, DOI 10.1002/smj.454 Servantie V, 2016, J INT ENTREP, V14, P168, DOI 10.1007/s10843-015-0162-8 Sheehan B, 2020, J BUS RES, V115, P14, DOI 10.1016/j.jbusres.2020.04.030 Shin H, 2022, J STRATEG MARK, V30, P723, DOI 10.1080/0965254X.2020.1841269 Svensson G, 2006, INT J SERV IND MANAG, V17, P245, DOI 10.1108/09564230610667096 Vallaster C, 2019, J BUS RES, V99, P226, DOI 10.1016/j.jbusres.2019.02.050 van Eck NJ, 2010, SCIENTOMETRICS, V84, P523, DOI 10.1007/s11192-009-0146-3 NR 47 TC 0 Z9 0 U1 0 U2 0 PU WORLD SCIENTIFIC PUBL CO PTE LTD PI SINGAPORE PA 5 TOH TUCK LINK, SINGAPORE 596224, SINGAPORE SN 2424-7863 EI 2424-7944 J9 INT J FINANC ENG JI Int. J. Financ. Eng. PD 2024 JUL 24 PY 2024 DI 10.1142/S2424786324420076 EA JUL 2024 PG 20 WC Business, Finance WE Emerging Sources Citation Index (ESCI) SC Business & Economics GA ZK9B2 UT WOS:001275299500001 DA 2024-09-05 ER PT J AU Sadowski, A Sadowski, M Engelseth, P Galar, Z Skowron-Grabowska, B AF Sadowski, Adam Sadowski, Michal Engelseth, Per Galar, Zbigniew Skowron-Grabowska, Beata TI Using neural networks to examine trending keywords in Inventory Control SO PRODUCTION ENGINEERING ARCHIVES LA English DT Article DE Inventory control; Neural network; GAT; Bibliometric analysis; Keywords ID OF-THE-ART; ROUTING PROBLEM; MANAGEMENT; STATE; COORDINATION; INTEGRATION AB Inventory control is one of the key areas of research in logistics. Using the SCOPUS database, we have processed 9,829 articles on inventory control using triangulation of statistical methods and machine learning. We have proven the usefulness of the proposed statistical method and Graph Attention Network (GAT) architecture for determining trend-setting keywords in inventory control research. We have demonstrated the changes in the research conducted between 1950 and 2021 by presenting the evolution of keywords in articles. A novelty of our research is the applied approach to bibliometric analysis using unsupervised deep learning. It allows to identify the keywords that determined the high citation rate of the article. The theoretical framework for the intellectual structure of research proposed in the studies on inventory control is general and can be applied to any area of knowledge. C1 [Sadowski, Adam] Univ Lodz, Fac Management, Ul Matejki 22-26, PL-90237 Lodz, Poland. [Sadowski, Michal] Jagiellonian Univ, Fac Math & Comp Sci, 6 Prof Stanislawa Lojasiewicza, PL-30348 Krakow, Poland. [Engelseth, Per] UiT Arctic Univ Norway, Tromso Univ, Tromso Sch Business & Econ, Narvik Campus,Lodve Langes Gate 2, N-8514 Narvik, Norway. [Galar, Zbigniew] Bayer, Al Jerozolimskie 158, PL-02326 Warsaw, Poland. [Skowron-Grabowska, Beata] Czestochowa Tech Univ, Fac Management, Ul Armii Krajowej 19b, PL-42200 Czestochowa, Poland. C3 University of Lodz; Jagiellonian University; UiT The Arctic University of Tromso; Bayer AG; Technical University Czestochowa RP Sadowski, A (corresponding author), Univ Lodz, Fac Management, Ul Matejki 22-26, PL-90237 Lodz, Poland. EM adam.sadowski@uni.lodz.pl; sadowskimichal95@gmail.com; per.engelseth@uit.no; zbigniew.galar@gmail.com; b.skowron-grabowska@pcz.pl OI Sadowski, Adam/0000-0002-8608-5118; Sadowski, Michal/0000-0003-3482-9733; Galar, Zbigniew/0000-0003-2629-0512 CR Aas K, 2021, ARTIF INTELL, V298, DOI 10.1016/j.artint.2021.103502 An S., 2006, Frontiers of Forestry in China, V1, P394, DOI [10.1007/s11461-006-0043-3, DOI 10.1007/S11461-006-0043-3] Battini D, 2014, INT J PROD ECON, V149, P145, DOI 10.1016/j.ijpe.2013.06.026 Ben-Daya M, 2019, INT J PROD RES, V57, P4719, DOI 10.1080/00207543.2017.1402140 Benjaafar S, 2013, IEEE T AUTOM SCI ENG, V10, P99, DOI 10.1109/TASE.2012.2203304 Botalb A, 2018, 2018 INTERNATIONAL CONFERENCE ON INTELLIGENT AND ADVANCED SYSTEM (ICIAS 2018) / WORLD ENGINEERING, SCIENCE & TECHNOLOGY CONGRESS (ESTCON) Cachon GP, 2000, MANAGE SCI, V46, P1032, DOI 10.1287/mnsc.46.8.1032.12029 Cachon GP, 2005, MANAGE SCI, V51, P30, DOI 10.1287/mnsc.1040.0215 Chen LJ, 2017, INT J PROD ECON, V194, P73, DOI 10.1016/j.ijpe.2017.04.005 Coelho LC, 2014, TRANSPORT SCI, V48, P1, DOI 10.1287/trsc.2013.0472 Costantino F, 2014, COMPUT IND ENG, V76, P292, DOI 10.1016/j.cie.2014.08.006 Donthu N, 2021, J BUS RES, V133, P285, DOI 10.1016/j.jbusres.2021.04.070 Durach CF, 2017, J SUPPLY CHAIN MANAG, V53, P67, DOI 10.1111/jscm.12145 Durach CF, 2015, INT J PHYS DISTR LOG, V45, P118, DOI 10.1108/IJPDLM-05-2013-0133 Elmaghraby W, 2003, MANAGE SCI, V49, P1287, DOI 10.1287/mnsc.49.10.1287.17315 Eroglu C, 2011, J OPER MANAG, V29, P356, DOI 10.1016/j.jom.2010.05.002 Frohlich MT, 2001, J OPER MANAG, V19, P185, DOI 10.1016/S0272-6963(00)00055-3 GALLEGO G, 1994, MANAGE SCI, V40, P999, DOI 10.1287/mnsc.40.8.999 Gallino S, 2017, MANAGE SCI, V63, P2813, DOI 10.1287/mnsc.2016.2479 GARDNER ES, 1985, J FORECASTING, V4, P1, DOI 10.1002/for.3980040103 Gardner ES, 2006, INT J FORECASTING, V22, P637, DOI 10.1016/j.ijforecast.2006.03.005 Gordon V, 2002, EUR J OPER RES, V139, P1, DOI 10.1016/S0377-2217(01)00181-3 Grodzinski N, 2021, PLOS ONE, V16, DOI 10.1371/journal.pone.0256997 Guide VDR, 1997, EUR J OPER RES, V102, P1, DOI 10.1016/S0377-2217(97)00155-0 Hiassat A, 2017, J MANUF SYST, V42, P93, DOI 10.1016/j.jmsy.2016.10.004 Hire S., 2020, Library Philosophy and Practice, P1 Hou Y., 2019, INT C LEARN REPR Hua GW, 2011, INT J PROD ECON, V132, P178, DOI 10.1016/j.ijpe.2011.03.024 Kapuscinski R., 1996, Introduction, V1, P1 Kotsiantis SB, 2013, ARTIF INTELL REV, V39, P261, DOI 10.1007/s10462-011-9272-4 Krishna Bhargavi Y., 2019, International Journal of Recent Technology and Engineering, V8, P3933, DOI [10.35940/ijrte.C5141.098319, DOI 10.35940/IJRTE.C5141.098319] Liu L, 2020, J PARALLEL DISTR COM, V145, P1, DOI 10.1016/j.jpdc.2020.05.014 Lockett A, 2005, RES POLICY, V34, P1043, DOI 10.1016/j.respol.2005.05.006 Lu W, 2021, INFORM PROCESS MANAG, V58, DOI 10.1016/j.ipm.2021.102594 Lundberg SM, 2017, ADV NEUR IN, V30 Mazur M., 2018, Prod. Eng. Arch, V21, P36, DOI [10.30657/pea.2018.21.08, DOI 10.30657/PEA.2018.21.08] Mee A, 2021, KNOWL-BASED SYST, V228, DOI 10.1016/j.knosys.2021.107238 Metters R., 1997, Journal of Operations Management, V15, P89, DOI 10.1016/S0272-6963(96)00098-8 Patil A., 2022, Word Significance Analysis in Documents for Information Retrieval by LSA and TF-IDF using Kubeflow BT-Expert Clouds and Applications Popovic D, 2012, EXPERT SYST APPL, V39, P13390, DOI 10.1016/j.eswa.2012.05.064 Rani R, 2021, EXPERT SYST APPL, V186, DOI 10.1016/j.eswa.2021.115867 Raviv T, 2013, IIE TRANS, V45, P1077, DOI 10.1080/0740817X.2013.770186 Richey RG, 2020, J BUS LOGIST, V41, P90, DOI 10.1111/jbl.12251 Soman CA, 2004, INT J PROD ECON, V90, P223, DOI 10.1016/S0925-5273(02)00376-6 Taleizadeh AA, 2015, INT J PROD ECON, V159, P285, DOI 10.1016/j.ijpe.2014.09.009 Vaswani A, 2017, ADV NEUR IN, V30 Voltolini R, 2018, ADV TRANSDISCIPL ENG, V7, P381, DOI 10.3233/978-1-61499-898-3-381 Woo YB, 2021, COMPUT IND ENG, V160, DOI 10.1016/j.cie.2021.107558 Wu JW, 2021, INT SYM PERFORM ANAL, P118, DOI 10.1109/ISPASS51385.2021.00029 Xu XH, 2018, INT J PROD ECON, V204, P160, DOI 10.1016/j.ijpe.2018.08.003 Zhao QH, 2022, J INFORMETR, V16, DOI 10.1016/j.joi.2021.101235 NR 51 TC 0 Z9 0 U1 1 U2 4 PU WALTER DE GRUYTER GMBH PI BERLIN PA GENTHINER STRASSE 13, D-10785 BERLIN, GERMANY SN 2353-5156 EI 2353-7779 J9 PROD ENG ARCH JI Prod. Eng. Arch. PD DEC 1 PY 2023 VL 29 IS 4 BP 474 EP 489 DI 10.30657/pea.2023.29.52 PG 16 WC Engineering, Industrial; Materials Science, Multidisciplinary WE Emerging Sources Citation Index (ESCI) SC Engineering; Materials Science GA W9KB2 UT WOS:001094733600013 OA gold DA 2024-09-05 ER PT J AU Arora, N Gupta, M Dharwal, M Agarwal, N AF Arora, Nidhi Gupta, Manisha Dharwal, Mridul Agarwal, Nimmi TI Luxury adapts to artificial intelligence & digital transformation - A case study of Burberry SO JOURNAL OF INFORMATION & OPTIMIZATION SCIENCES LA English DT Article DE Artificial intelligence; Bibliometric analysis; Case study; Digital transformation; e-commerce; Luxury market; Technology AB In the realm of luxury brands, the era of digital world and digital integration has seen a fundamental transformation. High-end clothing firms are demonstrating a strong interest in understanding digitalization in order to provide customers with an omni-channel buying experience. In this study, the main goal is to investigate the usage of Artificial Intelligence and its applications by luxury labels, as well as the impact that this technology has on the brand's performance in the market. Based on a case study, this article examines how luxury major retailers such as Burberry have successfully implemented an online strategy by repositioning themselves in fear of missing high-end customers and thus attempting to solve the existing trade between uniqueness and magnitude of economic system. Findings within the paper have been derived from a systematic bibliometric analysis which has taken into consideration a significant number of relevant publications such as conference proceedings and scholarly articles, as well as case studies of major global luxury fashion firms, among many other things. As the first study of its sort, this article will be useful to industry professionals in building their digital solutions; for scholars and academicians, the study will provide an ability to look at the issue in the context of consumer and technological innovation. C1 [Arora, Nidhi; Gupta, Manisha] Sharda Univ, Sharda Sch Business Studies, Greater Noida, Uttar Pradesh, India. [Dharwal, Mridul] Sharda Univ, Dept Econ & Int Business, Greater Noida, Uttar Pradesh, India. [Agarwal, Nimmi] Sharda Univ, Sharda Sch Business Studies, Greater Noida, Uttar Pradesh, India. C3 Sharda University; Sharda University; Sharda University RP Arora, N (corresponding author), Sharda Univ, Sharda Sch Business Studies, Greater Noida, Uttar Pradesh, India. EM nidhiarora30@outlook.com; manisha.gupta1@sharda.ac.in; mriduldharwal22@gmail.com; Nimmi.agarwal@sharda.ac.in RI Gupta, Dr Manisha/AFP-7155-2022 OI Gupta, Dr Manisha/0000-0001-9326-0183 CR Alcouffe J, 2020, RESPONSIBLE MAR 0530 [Anonymous], 2017, Forbes Chaffey D., 2013, SMART INSIGHT B 0216 Chen YL, 2020, IEEE TETCI, V4, P369, DOI 10.1109/TETCI.2019.2916051 Cheng Y, 2020, J CONTING CRISIS MAN, V28, P339, DOI 10.1111/1468-5973.12319 Davenport T, 2020, J ACAD MARKET SCI, V48, P24, DOI 10.1007/s11747-019-00696-0 Godey B, 2016, J BUS RES, V69, P5833, DOI 10.1016/j.jbusres.2016.04.181 Kietzmann J, 2020, BUS HORIZONS, V63, P131, DOI 10.1016/j.bushor.2019.11.005 Marinchak Christina McDowell, 2018, International Journal of E-Entrepreneurship and Innovation, V8, P14, DOI 10.4018/IJEEI.2018070102 Marr B, 2017, Forbes ODDONE S., 2019, TECHEDGE 0216 Qiao C., 2019, 2019 4 INT C SOCIAL Roig-Tierno N, 2017, J INNOV KNOWL, V2, P15, DOI 10.1016/j.jik.2016.12.002 Sangar K., 2012, GUCCI SOCIAL MEDIA M NR 14 TC 0 Z9 0 U1 6 U2 19 PU TARU PUBLICATIONS PI NEW DELHI PA G-159, PUSHKAR ENCLAVE, PASHCHIM VIHAR, NEW DELHI, 110 063, INDIA SN 0252-2667 EI 2169-0103 J9 J INFORM OPTIM SCI JI J. Inform. Optim. Science PY 2023 VL 44 IS 1 SI SI BP 41 EP 52 DI 10.47974/JIOS-1294 PG 12 WC Information Science & Library Science WE Emerging Sources Citation Index (ESCI) SC Information Science & Library Science GA M8ON3 UT WOS:001032755000005 DA 2024-09-05 ER PT J AU Choi, J Dekkers, OM le Cessie, S AF Choi, Jungyeon Dekkers, Olaf M. le Cessie, Saskia TI Tying research question and analytical strategy when variables are affected by medication use SO PHARMACOEPIDEMIOLOGY AND DRUG SAFETY LA English DT Article DE causal inference; estimand; medication effect; research question; well-defined question ID IMMORTAL TIME BIAS; LONGITUDINAL DATA; CAUSAL INFERENCE; TARGET TRIAL; THERAPY; OBESITY; MODELS AB Ill-defined research questions could be particularly problematic in an epidemiological setting where measurements fluctuate over time due to intercurrent events, such as medication use. When a research question fails to specify how medication use should be handled methodologically, arbitrary decisions may be made during the analysis phase, which likely leads to a mismatch between the intended question and the performed analysis. The mismatch can result in vastly different or meaningless interpretations of estimated effects. Thus, a research question such as "what is the effect of X on Y? " requires further elaboration, and it should consider whether and how medication use has affected the measurements of interest. In our study, we will discuss how well-defined questions can be formulated when medication use is involved in observational studies. We will distinguish between a situation where an exposure is affected by medication use and where the outcome of interest is affected by medication use. For each setting, we will give examples of different research questions that could be asked depending on how medication use is considered in the estimand and discuss methodological considerations under each question. C1 [Choi, Jungyeon] Leiden Univ, Med Ctr, Dept Clin Epidemiol, Leiden, Netherlands. [Dekkers, Olaf M.] Leiden Univ, Med Ctr, Dept Clin Epidemiol, Dept Endocrinol & Metab, Leiden, Netherlands. [le Cessie, Saskia] Leiden Univ, Med Ctr, Dept Clin Epidemiol, Dept Biomed Data Sci, Leiden, Netherlands. [Choi, Jungyeon] Leiden Univ, Med Ctr, Dept Clin Epidemiol, Albinusdreef 2, C7-P, NL-2333 Leiden, Netherlands. C3 Leiden University - Excl LUMC; Leiden University; Leiden University Medical Center (LUMC); Leiden University - Excl LUMC; Leiden University; Leiden University Medical Center (LUMC); Leiden University; Leiden University Medical Center (LUMC); Leiden University - Excl LUMC; Leiden University; Leiden University Medical Center (LUMC); Leiden University - Excl LUMC RP Choi, J (corresponding author), Leiden Univ, Med Ctr, Dept Clin Epidemiol, Albinusdreef 2, C7-P, NL-2333 Leiden, Netherlands. EM j.choi@lumc.nl RI le+Cessie, Saskia/HGC-8966-2022 OI le Cessie, Saskia/0000-0003-2154-4923; Dekkers, Olaf/0000-0002-1333-7580; Choi, Jungyeon/0000-0002-1914-3488 CR Bragge P, 2010, INJURY, V41, P3, DOI 10.1016/j.injury.2010.04.016 Cain LE, 2009, STAT MED, V28, P1725, DOI 10.1002/sim.3585 Choi J., MEDRXIV, DOI [10.1101/2022.04.23.22273899, DOI 10.1101/2022.04.23.22273899] Choi J, 2022, PHARMACOEPIDEM DR S, V31, P739, DOI 10.1002/pds.5437 Cole SR, 2009, EPIDEMIOLOGY, V20, P3, DOI 10.1097/EDE.0b013e31818ef366 García-Albéniz X, 2017, EUR J EPIDEMIOL, V32, P495, DOI 10.1007/s10654-017-0287-2 Glymour C, 2014, EPIDEMIOLOGY, V25, P488, DOI 10.1097/EDE.0000000000000122 Goetghebeur E, 2020, STAT MED, V39, P4922, DOI 10.1002/sim.8741 Hernán MA, 2008, INT J OBESITY, V32, pS8, DOI 10.1038/ijo.2008.82 Hernán MA, 2004, EPIDEMIOLOGY, V15, P615, DOI 10.1097/01.ede.0000135174.63482.43 Hernan MA, 2020, Causal Inference: What if Hernán MA, 2017, AM J EPIDEMIOL, V185, P1048, DOI 10.1093/aje/kwx077 Hernán MA, 2016, J CLIN EPIDEMIOL, V79, P70, DOI 10.1016/j.jclinepi.2016.04.014 ICH E9, 1998, STAT PRINC CLIN TRIA ICH E9 (R1), 2020, ADD EST SENS AN CLIN Kurland BF, 2005, BIOSTATISTICS, V6, P241, DOI 10.1093/biostatistics/kxi006 Kurland BF, 2009, STAT SCI, V24, P211, DOI 10.1214/09-STS293 Labrecque JA, 2017, EUR J EPIDEMIOL, V32, P473, DOI 10.1007/s10654-017-0293-4 Lévesque LE, 2010, BRIT MED J, V340, DOI 10.1136/bmj.b5087 Maldonado G, 2002, INT J EPIDEMIOL, V31, P422, DOI 10.1093/ije/31.2.422 Mansournia MA, 2017, BMJ-BRIT MED J, V359, DOI 10.1136/bmj.j4587 Robins JM, 2000, EPIDEMIOLOGY, V11, P550, DOI 10.1097/00001648-200009000-00011 Spieker AJ, 2018, STAT METHODS MED RES, V27, P2279, DOI 10.1177/0962280216680240 Spieker AJ, 2015, PHARMACOEPIDEM DR S, V24, P1286, DOI 10.1002/pds.3876 Suissa S, 2008, AM J EPIDEMIOL, V167, P492, DOI 10.1093/aje/kwm324 Tanamas SK, 2017, J DIABETES COMPLICAT, V31, P693, DOI [10.1016/jjdiacomp.2016.12.013, 10.1016/j.jdiacomp.2016.12.013] Thabane L, 2009, CAN J ANAESTH, V56, P71, DOI 10.1007/s12630-008-9007-4 Tobin MD, 2005, STAT MED, V24, P2911, DOI 10.1002/sim.2165 van Geloven N, 2020, EUR J EPIDEMIOL, V35, P619, DOI 10.1007/s10654-020-00636-1 Vandenbroucke JP, 2007, ANN INTERN MED, V147, pW163, DOI 10.7326/0003-4819-147-8-200710160-00010-w1 Vandenbroucke JP, 2016, INT J EPIDEMIOL, V45, P1776, DOI 10.1093/ije/dyv341 VanderWeele TJ, 2018, EPIDEMIOLOGY, V29, pE24, DOI 10.1097/EDE.0000000000000823 White IR, 2003, STAT MED, V22, P1083, DOI 10.1002/sim.1408 Yang WY, 2010, DIABETES RES CLIN PR, V88, pS3, DOI 10.1016/S0168-8227(10)70002-4 Young JG, 2020, STAT MED, V39, P1199, DOI 10.1002/sim.8471 NR 35 TC 1 Z9 1 U1 0 U2 0 PU WILEY PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1053-8569 EI 1099-1557 J9 PHARMACOEPIDEM DR S JI Pharmacoepidemiol. Drug Saf. PD JUN PY 2023 VL 32 IS 6 BP 661 EP 670 DI 10.1002/pds.5599 EA FEB 2023 PG 10 WC Public, Environmental & Occupational Health; Pharmacology & Pharmacy WE Science Citation Index Expanded (SCI-EXPANDED) SC Public, Environmental & Occupational Health; Pharmacology & Pharmacy GA E5EE9 UT WOS:000933182000001 PM 36738180 OA hybrid DA 2024-09-05 ER PT J AU Zheng, LL Cao, SY Ding, TQ Tian, J Sun, JH AF Zheng, Lili Cao, Shiyu Ding, Tongqiang Tian, Jian Sun, Jinghang TI Research on Active Safety Situation of Road Passenger Transportation Enterprises: Evaluation, Prediction, and Analysis SO ENTROPY LA English DT Article DE transportation enterprises; active safety situation; factor analysis; time series; model selection; statistical computing; feature selection; statistical inference ID TRAFFIC ACCIDENTS; TIME-SERIES; RISK; SLEEPINESS; IMPACT AB The road passenger transportation enterprise is a complex system, requiring a clear understanding of their active safety situation (ASS), trends, and influencing factors. This facilitates transportation authorities to promptly receive signals and take effective measures. Through exploratory factor analysis and confirmatory factor analysis, we delved into potential factors for evaluating ASS and extracted an ASS index. To predict obtaining a higher ASS information rate, we compared multiple time series models, including GRU (gated recurrent unit), LSTM (long short-term memory), ARIMA, Prophet, Conv_LSTM, and TCN (temporal convolutional network). This paper proposed the WDA-DBN (water drop algorithm-Deep Belief Network) model and employed DEEPSHAP to identify factors with higher ASS information content. TCN and GRU performed well in the prediction. Compared to the other models, WDA-DBN exhibited the best performance in terms of MSE and MAE. Overall, deep learning models outperform econometric models in terms of information processing. The total time spent processing alarms positively influences ASS, while variables such as fatigue driving occurrences, abnormal driving occurrences, and nighttime driving alarm occurrences have a negative impact on ASS. C1 [Zheng, Lili; Cao, Shiyu; Ding, Tongqiang; Sun, Jinghang] Jilin Univ, Transportat Coll, Changchun 130022, Peoples R China. [Tian, Jian] China Acad Transportat Sci, Beijing 100029, Peoples R China. C3 Jilin University; China Academy of Transportation Sciences RP Ding, TQ (corresponding author), Jilin Univ, Transportat Coll, Changchun 130022, Peoples R China. EM lilizheng@jlu.edu.cn; caosy22@mails.jlu.edu.cn; dingtq@jlu.edu.cn; tianjian@motcats.ac.cn; jhsun22@mails.jlu.edu.cn OI Tong qiang, Ding/0000-0002-2212-961X FU National Key R&D Program of China [2021YFC3001500]; Graduate InnovationFund of Jilin University [2024CX214] FX This research was funded by the National Key R&D Program of China grant number 2021YFC3001500 and the Graduate InnovationFund of Jilin University grant number 2024CX214. CR Agency X.N, Special Major Road Traffic Accident Investigation Report, P9 [Anonymous], 1970, Time Series Analysis: Forecasting and Control, DOI 10.1080/01621459.1970.10481180 Antoniou C, 2013, ACCIDENT ANAL PREV, V60, P268, DOI 10.1016/j.aap.2013.02.039 Ayuso M, 2010, ACCIDENT ANAL PREV, V42, P709, DOI 10.1016/j.aap.2009.10.020 Bai SJ, 2018, Arxiv, DOI arXiv:1803.01271 Bao J, 2019, ACCIDENT ANAL PREV, V122, P239, DOI 10.1016/j.aap.2018.10.015 Barba L, 2014, SCI WORLD J, DOI 10.1155/2014/152375 Borghetti F., 2021, Int. J. Transp. Dev. Integr, V5, P278, DOI [10.2495/TDI-V5-N3-278-290, DOI 10.2495/TDI-V5-N3-278-290] Bucsuhazy K., 2020, Transportation Research Procedia, V45, P555, DOI [DOI 10.1016/J.TRPRO.2020.03.057, 10.1016/j.trpro.2020.03.057] Calabrese CG, 2023, J SAFETY RES, V87, P481, DOI 10.1016/j.jsr.2023.09.001 Cendales B, 2023, SAFETY SCI, V158, DOI 10.1016/j.ssci.2022.105996 Chen H, 2022, NAT COMMUN, V13, DOI 10.1038/s41467-022-31384-3 Chen ZJ, 2021, SENSORS-BASEL, V21, DOI 10.3390/s21175767 Cho K., 2014, P 2014 C EMP METH NA, P1724 Choudhary P, 2022, TRANSPORT RES F-TRAF, V86, P296, DOI 10.1016/j.trf.2022.03.001 Commandeur JJF, 2013, ACCIDENT ANAL PREV, V60, P424, DOI 10.1016/j.aap.2012.11.006 Crizzle AM, 2017, J TRANSP HEALTH, V7, P90, DOI 10.1016/j.jth.2017.05.359 de Gelder E, 2021, IEEE ACCESS, V9, P168953, DOI 10.1109/ACCESS.2021.3136585 de Zarzà I, 2023, SENSORS-BASEL, V23, DOI 10.3390/s23229225 Ding TQ, 2023, SUSTAINABILITY-BASEL, V15, DOI 10.3390/su15043520 Doecke SD, 2018, TRAFFIC INJ PREV, V19, P404, DOI 10.1080/15389588.2017.1422601 Dong Q, 2013, APPL MECH MATER, V409-410, P1330, DOI 10.4028/www.scientific.net/AMM.409-410.1330 ecfr, U.S. Government Printing Office Title 49-Transportation EsoNews, Major Accidents Involving Buses Worldwide, 2020-2021 Farmer CM, 2010, TRAFFIC INJ PREV, V11, P466, DOI 10.1080/15389588.2010.494191 Fernando ZT, 2019, PROCEEDINGS OF THE 42ND INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL (SIGIR '19), P1005, DOI 10.1145/3331184.3331312 Gajamannage K, 2023, EXPERT SYST APPL, V223, DOI 10.1016/j.eswa.2023.119879 Getahun KA, 2021, J BIG DATA-GER, V8, DOI 10.1186/s40537-021-00493-z Gnardellis C, 2008, TRANSPORT RES F-TRAF, V11, P270, DOI 10.1016/j.trf.2008.01.002 Gomes H, 2023, J SAFETY RES, V86, P30, DOI 10.1016/j.jsr.2023.06.005 Hangoma P, 2021, BMJ GLOB HEALTH, V6, DOI 10.1136/bmjgh-2021-005481 Hinton GE, 2006, NEURAL COMPUT, V18, P1527, DOI 10.1162/neco.2006.18.7.1527 Hochreiter S, 1997, NEURAL COMPUT, V9, P1735, DOI [10.1162/neco.1997.9.1.1, 10.1007/978-3-642-24797-2] Katrakazas C, 2021, J SAFETY RES, V78, P189, DOI 10.1016/j.jsr.2021.04.007 Lee ML, 2016, P NATL ACAD SCI USA, V113, P176, DOI 10.1073/pnas.1510383112 Leoni L, 2024, SAFETY SCI, V170, DOI 10.1016/j.ssci.2023.106363 Li J, 2021, SAFETY SCI, V134, DOI 10.1016/j.ssci.2020.105093 Lu JY, 2013, J SAFETY RES, V45, P65, DOI 10.1016/j.jsr.2013.01.009 Makridakis S, 2018, PLOS ONE, V13, DOI 10.1371/journal.pone.0194889 Malin F, 2019, ACCIDENT ANAL PREV, V122, P181, DOI 10.1016/j.aap.2018.10.014 Meister S, 2021, COMPOS PART B-ENG, V224, DOI 10.1016/j.compositesb.2021.109160 Minderhoud MM, 2001, ACCIDENT ANAL PREV, V33, P89, DOI 10.1016/S0001-4575(00)00019-1 Moradi A, 2019, TRANSPORT RES F-TRAF, V65, P620, DOI 10.1016/j.trf.2018.09.013 Mwale M, 2023, ACCIDENT ANAL PREV, V186, DOI 10.1016/j.aap.2023.107048 Nassiri H, 2023, HELIYON, V9, DOI 10.1016/j.heliyon.2023.e14481 Parsa AB, 2020, ACCIDENT ANAL PREV, V136, DOI 10.1016/j.aap.2019.105405 Rabbani MBA, 2021, ARAB J SCI ENG, V46, P11113, DOI 10.1007/s13369-021-05650-3 Rahman MA, 2023, J SAFETY RES, V84, P167, DOI 10.1016/j.jsr.2022.10.017 Ratnasingam S, 2023, ENTROPY-SWITZ, V25, DOI 10.3390/e25091250 Ren QQ, 2023, EXPERT SYST APPL, V227, DOI 10.1016/j.eswa.2023.120203 Sayed T, 2016, ACCIDENT ANAL PREV, V95, P172, DOI 10.1016/j.aap.2016.07.012 Shen JJ, 2020, SUSTAINABILITY-BASEL, V12, DOI 10.3390/su12239888 Sheng YK, 2022, ENTROPY-SWITZ, V24, DOI 10.3390/e24101462 Shi XJ, 2015, ADV NEUR IN, V28 Shrestha N., 2021, Am. J. Appl. Math. Stat., V9, P4, DOI [DOI 10.12691/AJAMS-9-1-2, 10.12691/ajams-9-1-2] Sohaee N, 2024, SAFETY, V10, DOI 10.3390/safety10010011 Taylor SJ, 2018, AM STAT, V72, P37, DOI 10.1080/00031305.2017.1380080 Treiblmaier H, 2010, INFORM MANAGE-AMSTER, V47, P197, DOI 10.1016/j.im.2010.02.002 Uguz S, 2022, TEH VJESN, V29, P2083, DOI 10.17559/TV-20220225141756 Useche SA, 2021, TRANSPORT RES F-TRAF, V82, P190, DOI 10.1016/j.trf.2021.08.013 Wu J, 2014, COMPUT INTEL NEUROSC, V2014, DOI 10.1155/2014/571058 Xia HZ, 2024, ENTROPY-SWITZ, V26, DOI 10.3390/e26010091 Yaman TT, 2022, J INTELL FUZZY SYST, V42, P575, DOI 10.3233/JIFS-219213 Yousefzadeh-Chabok S, 2016, ARCH TRAUMA RES, V5, DOI 10.5812/atr.36570 Zeller R, 2020, TRANSPORT RES F-TRAF, V74, P15, DOI 10.1016/j.trf.2020.08.001 Zhang CG, 2024, ENTROPY-SWITZ, V26, DOI 10.3390/e26010007 Zhang GN, 2016, ACCIDENT ANAL PREV, V87, P34, DOI 10.1016/j.aap.2015.10.033 Zhang GN, 2013, ACCIDENT ANAL PREV, V59, P18, DOI 10.1016/j.aap.2013.05.004 Zheng LL, 2022, MATHEMATICS-BASEL, V10, DOI 10.3390/math10224354 NR 69 TC 0 Z9 0 U1 6 U2 6 PU MDPI PI BASEL PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND EI 1099-4300 J9 ENTROPY-SWITZ JI Entropy PD JUN PY 2024 VL 26 IS 6 AR 434 DI 10.3390/e26060434 PG 27 WC Physics, Multidisciplinary WE Science Citation Index Expanded (SCI-EXPANDED) SC Physics GA WR7W7 UT WOS:001256676300001 PM 38920443 OA gold, Green Published DA 2024-09-05 ER PT C AU Gong, R Yang, P Li, SJ AF Gong, Rui Yang, Ping Li, Shijin GP IEEE TI Research on teaching quality evaluation model of online courses in Colleges and Universities SO 2022 IEEE 6TH ADVANCED INFORMATION TECHNOLOGY, ELECTRONIC AND AUTOMATION CONTROL CONFERENCE (IAEAC) SE IEEE Advanced Information Technology Electronic and Automation Control Conference-IAEAC LA English DT Proceedings Paper CT 6th IEEE Advanced Information Technology, Electronic and Automation Control Conference (IEEE IAEAC) CY OCT 03-05, 2022 CL Beijing, PEOPLES R CHINA DE Keywords Evaluation Model; D D Evaluating Indicator; Deep learning Model; Text classification and recognition AB Through the research on the classification of knowledge points of online courses, the current online teaching quality evaluation has some problems, such as unscientific evaluation index weight, imperfect evaluation system and so on, The deep learning model is applied to the research of text and image classification and recognition of online course evaluation indicators. By collecting the latest research results of big data analysis model for teaching quality evaluation of relevant online courses, By mapping big data models to research objectives, Using the analytic hierarchy process to preliminarily determine the weight index. At last, The big data analysis model is proposed to be applied to the online course evaluation system structure and the online course evaluation index system. C1 [Gong, Rui] Informat & Traff Dept Yunnan Business Informat En, Kunming, Yunnan, Peoples R China. [Yang, Ping] Power China Kunming Engn Corp Ltd, Kunming, Yunnan, Peoples R China. [Li, Shijin] Yunnan Univ Finance & Econ, Off Acad Affairs, Kunming, Yunnan, Peoples R China. [Li, Shijin] Kunming Univ Sci & Technol, Fac Management & Econ, Kunming, Yunnan, Peoples R China. C3 Yunnan University of Finance & Economics; Kunming University of Science & Technology RP Li, SJ (corresponding author), Yunnan Univ Finance & Econ, Off Acad Affairs, Kunming, Yunnan, Peoples R China.; Li, SJ (corresponding author), Kunming Univ Sci & Technol, Fac Management & Econ, Kunming, Yunnan, Peoples R China. EM grkm1988@l63.com; ypgr19870920@l63.com; shijin_lee@ynufe.edu.cn RI li, shijin/HZL-6982-2023; Gong, Rui/JYO-4823-2024 FU Scientific research fund project of Yunnan Provincial Department of Education [2021J0593] FX This work was supported by Scientific research fund project of Yunnan Provincial Department of Education (2021J0593)-Research on teaching quality evaluation system of online courses in University. CR Chen Chunlian, 2020, CHINESE SCI PAPERS, V15, P137 Chen JF, 2015, APPL SOFT COMPUT, V28, P100, DOI 10.1016/j.asoc.2014.11.050 Feng Yingying, 2013, Computer Engineering and Applications, V49, P235, DOI 10.3778/j.issn.1002-8331.1210-0311 Gong Y., 2019, Educational Modernization, V6, P64 Guo XuePing, 2018, J HUBEI CORRES U, V31, P129 Li Cuifeng, 2020, J ZHEJIANG VOCATIONA, V19, P34 Shijin Li, 2021, 2021 International Conference on Computer Information Science and Artificial Intelligence (CISAI), P1130, DOI 10.1109/CISAI54367.2021.00224 Wang Huijun, 2020, E ED RES, V41, P89 Zhao XF, 2014, J INTELL FUZZY SYST, V26, P3049, DOI 10.3233/IFS-130970 Zhao XinRui, 2019, RES HIGHER ENG ED, P190 NR 10 TC 0 Z9 0 U1 0 U2 15 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA SN 2689-663X EI 2689-6621 BN 978-1-6654-5864-1 J9 ADV INF TECHNOL ELEC PY 2022 BP 1217 EP 1221 DI 10.1109/IAEAC54830.2022.9929986 PG 5 WC Automation & Control Systems; Computer Science, Information Systems WE Conference Proceedings Citation Index - Science (CPCI-S) SC Automation & Control Systems; Computer Science GA BU2JX UT WOS:000885103500227 DA 2024-09-05 ER PT J AU Song, S Li, SG Zhang, TJ Ma, L Zhang, L Pan, SB AF Song, Shuang Li, Shugang Zhang, Tianjun Ma, Li Zhang, Lei Pan, Shaobo TI Research on time series characteristics of the gas drainage evaluation index based on lasso regression SO SCIENTIFIC REPORTS LA English DT Article AB The evaluation of the coal mine gas drainage effect is affected by many factors, such as flow rate, wind speed, drainage negative pressure, concentration, and temperature. This paper starts from actual coal mine production monitoring data and based on the lasso regression algorithm, features selection of multiple parameters of the preprocessed gas concentration time series to construct gas concentration feature selection based on the algorithm. The three-time smoothing index method is used to fill in the missing values. Aiming at the problem of different dimensions in the gas concentration time series, the MinMaxScaler method is used to normalize the data. The lasso regression algorithm is used to perform feature selection on the multivariable gas concentration time series, and the gas concentration time series selected by the lasso feature and the gas concentration time series without feature selection are input. The performance of the ANN algorithm for gas concentration prediction is compared and analyzed. The optimal a value and L1 norm are selected based on the grid search method to determine the strong explanatory gas concentration time series feature set of the working face, and an experimental comparison of the gas concentration prediction results before and after the lasso feature selection is performed. We verify the effectiveness of the algorithm. C1 [Song, Shuang; Zhang, Lei] Xian Univ Sci & Technol, Coll Energy, 58 Yanta Middle Rd, Xian 710054, Shaanxi, Peoples R China. [Li, Shugang; Zhang, Tianjun] Xian Univ Sci & Technol, Coll Safety Sci & Engn, 58 Yanta Middle Rd, Xian 710054, Shaanxi, Peoples R China. [Ma, Li; Pan, Shaobo] Xian Univ Sci & Technol, Coll Commun & Informat Engn, Xian 710054, Peoples R China. C3 Xi'an University of Science & Technology; Xi'an University of Science & Technology; Xi'an University of Science & Technology RP Song, S (corresponding author), Xian Univ Sci & Technol, Coll Energy, 58 Yanta Middle Rd, Xian 710054, Shaanxi, Peoples R China.; Zhang, TJ (corresponding author), Xian Univ Sci & Technol, Coll Safety Sci & Engn, 58 Yanta Middle Rd, Xian 710054, Shaanxi, Peoples R China. EM songshuang@xust.edu.cn; tianjun_zhang@126.com FU National Natural Science Foundation of China [52104215, 51734007, 51804248] FX This research was funded by "National Natural Science Foundation of China" Grant Nos. 52104215, 51734007, and 51804248. CR Boukhalfa G, 2019, J CENT SOUTH UNIV, V26, P1886, DOI 10.1007/s11771-019-4142-3 Fayed HA, 2019, APPL SOFT COMPUT, V80, P202, DOI 10.1016/j.asoc.2019.03.037 Han T. T., 2014, INDUS MIN AUTO, V3, P28 Ma XL, 2016, J ROBOT, V2016, DOI 10.1155/2016/6858970 Shi H, 2019, GENOMICS, V111, P1839, DOI 10.1016/j.ygeno.2018.12.007 Sun JL, 2019, SCI REP-UK, V9, DOI 10.1038/s41598-019-54519-x Wang J. R., 2015, MOD MING, V31, P21 [王鹏 Wang Peng], 2019, [煤炭科学技术, Coal Science and Technology], V47, P141 [吴海波 Wu Haibo], 2017, [中国安全生产科学技术, Journal of Safety Science and Technology], V13, P84 Wu X, 2014, MATH PROBL ENG, V2014, DOI 10.1155/2014/858260 Wu Y., 2018, COAL TECHNOL, V5, P173 Yang Guanci, 2018, Journal of Huazhong University of Science and Technology (Natural Science Edition), V46, P122, DOI 10.13245/j.hust.180723 [杨丽 Yang Li], 2016, [中国矿业大学学报. 自然科学版, Journal of China University of Mining & Technology], V45, P455 Yang ZC, 2015, INT J MIN SCI TECHNO, V25, P1045, DOI 10.1016/j.ijmst.2015.09.025 Zhang TJ, 2019, ENERGIES, V12, DOI 10.3390/en12010161 Zhao L., 2017, COAL MINE MACH, V38, P178 Zhao Xiaoqiang, 2019, Journal of Frontiers of Computer Science and Technology, V13, P858, DOI 10.3778/j.issn.1673-9418.1809020 Zhao Y. Q., 2020, COMPUT STAT DATA AN, V12, P142 Zhao Z. X., 2017, AUTO INSTRUM, V4, P144 NR 19 TC 2 Z9 2 U1 5 U2 44 PU NATURE PORTFOLIO PI BERLIN PA HEIDELBERGER PLATZ 3, BERLIN, 14197, GERMANY SN 2045-2322 J9 SCI REP-UK JI Sci Rep PD OCT 18 PY 2021 VL 11 IS 1 AR 20593 DI 10.1038/s41598-021-00210-z PG 11 WC Multidisciplinary Sciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Science & Technology - Other Topics GA YE8IG UT WOS:000741362500004 PM 34663859 OA gold, Green Published DA 2024-09-05 ER PT J AU Chen, JC Cheng, SR Liu, YT Wang, HS AF Chen, Juei-Chao Cheng, Shuenn-Ren Liu, Ya-Tzu Wang, Hsu-Sheng TI RESEARCH ON THE FORECAST OF INTERNATIONAL EQUITY FUND PERFORMANCE SO INTERNATIONAL JOURNAL OF INNOVATIVE COMPUTING INFORMATION AND CONTROL LA English DT Article DE Classification; Data mining; Intelligent data analysis; Logistic regression ID MUTUAL FUNDS; INVESTMENT PERFORMANCE; SELECTION; RETURNS; MARKET AB The purpose of this study is to establish a fund performance classification model that can forecast the probability of positive or negative return of the funds. The positive/negative return of fund performance considered by this study is the return of the ith fund subtracted by the risk free interest rate. A positive value represents a favorable fund performance while a negative value represents the otherwise. In. statistical analysis, correlation analysis was firstly used to search for the possible important factors of mutual fund performance. These factors provide a CHAID of Intelligence Data Analysis to ensure which important factors could possibly influence the fund's return on equity. With the interactions among important factors as independent variables, logistic regression was used to establish the classification model. Also, using the same regression method, another classification model was established with the important factors as the independent variables. The results discovered that the total correct classification rates of CHAID-logistic regression model are greater than the total correct classification rates of logistic regression model. The forecasted results can provide investors with more information about investments selection. C1 [Chen, Juei-Chao; Liu, Ya-Tzu] Fu Jen Catholic Univ, Inst Appl Stat, Taipei, Taiwan. [Cheng, Shuenn-Ren] Cheng Shin Univ, Dept Business Adm, Kaohsiung, Taiwan. [Wang, Hsu-Sheng] Chung Hua Univ, Inst Technol Management, Hsinchu, Taiwan. C3 Fu Jen Catholic University; Chung Hua University RP Chen, JC (corresponding author), Fu Jen Catholic Univ, Inst Appl Stat, Taipei, Taiwan. EM 006884@mail.fju.edu.tw; tommy@csu.edu.tw; ya_122@hotmail.com; r92620@ms36.hinet.net CR Ahmed P, 2001, J BANK FINANC, V25, P1187, DOI 10.1016/S0378-4266(00)00129-1 Alexakis C., 2005, International Review of Financial Analysis, V14, P559 [Anonymous], 1996, APPL MULTIVARIATE TE Avramov D, 2006, J FINANC ECON, V81, P339, DOI 10.1016/j.jfineco.2005.05.010 Barber BM, 2005, J BUS, V78, P2095, DOI 10.1086/497042 Black F., 1972, CAPITAL ASSET PRICIN Carhart MM, 1997, J FINANC, V52, P57, DOI 10.2307/2329556 Cesari R, 2002, J BANK FINANC, V26, P99, DOI 10.1016/S0378-4266(00)00174-6 CICCOTELLO C.S., 1996, Financial Services Review, V5, P1, DOI DOI 10.1016/ DALENIUS T, 1959, J AM STAT ASSOC, V54, P88, DOI 10.2307/2282141 Droms W.G., 2001, Global Finance Journal, V12, P237, DOI 10.1016/S1044-0283(01)00030-8 Droms WG, 1996, Q REV ECON FINANC, V36, P347, DOI 10.1016/S1062-9769(96)90020-4 Faff R., 2006, PACIFIC BASIN FINANC, V14, P231 FAMA EF, 1993, J FINANC ECON, V33, P3, DOI 10.1016/0304-405X(93)90023-5 GALLAGHER D., 2004, Journal of Multinational Financial Management, V14, P81 GRINBLATT M, 1994, J FINANC QUANT ANAL, V29, P419, DOI 10.2307/2331338 HENRIKSSON RD, 1981, J BUS, V54, P513, DOI 10.1086/296144 Huang DY, 2006, J STAT PLAN INFER, V136, P2020, DOI 10.1016/j.jspi.2005.08.038 Indro Daniel., 1999, FINANC ANAL J, V55, P74, DOI [10.2469/faj.v55.n3.2274, DOI 10.2469/FAJ.V55.N3.2274] JENSEN MC, 1968, J FINANC, V23, P389, DOI 10.2307/2325404 Kanagawa S, 2008, INT J INNOV COMPUT I, V4, P2523 Kass GV, 1980, APPL STAT, V29, P119, DOI DOI 10.2307/2986296 Markowitz H, 1952, J FINANC, V7, P77, DOI 10.1111/j.1540-6261.1952.tb01525.x Mohanan S, 2006, GLOBAL BUSINESS EC R, V8, P280, DOI DOI 10.1504/GBER.2006.010138 Pástor L, 2002, J FINANC ECON, V63, P351, DOI 10.1016/S0304-405X(02)00065-X SHARPE WF, 1966, J BUS, V39, P119, DOI 10.1086/294846 Shinkai K, 2008, INT J INNOV COMPUT I, V4, P2581 Shu P.G., 2002, PAC-BASIN FINANC J, V10, P583 TREYNOR JL, 1966, HARVARD BUS REV, V44, P131 TREYNOR JL, 1965, HARVARD BUS REV, V43, P63 Volkman D., 1995, Journal of Financial Research, V18, P415 Zhu HB, 2008, INT J INNOV COMPUT I, V4, P2483 Zou KQ, 2008, INT J INNOV COMPUT I, V4, P1627 NR 33 TC 1 Z9 1 U1 0 U2 2 PU ICIC INTERNATIONAL PI KUMAMOTO PA TOKAI UNIV, 9-1-1, TOROKU, KUMAMOTO, 862-8652, JAPAN SN 1349-4198 EI 1349-418X J9 INT J INNOV COMPUT I JI Int. J. Innov. Comp. Inf. Control PD JUN PY 2009 VL 5 IS 6 BP 1515 EP 1525 PG 11 WC Computer Science, Artificial Intelligence WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Computer Science GA 492UL UT WOS:000269685400006 DA 2024-09-05 ER PT J AU Oyewola, DO Dada, EG AF Oyewola, David Opeoluwa Dada, Emmanuel Gbenga TI Exploring machine learning: a scientometrics approach using bibliometrix and VOSviewer SO SN APPLIED SCIENCES LA English DT Article DE Bibliometrix; VOSviewer; Coupling; Machine learning; Scientometrics ID SEGMENTATION AB Machine Learning has found application in solving complex problems in different fields of human endeavors such as intelligent gaming, automated transportation, cyborg technology, environmental protection, enhanced health care, innovation in banking and home security, and smart homes. This research is motivated by the need to explore the global structure of machine learning to ascertain the level of bibliographic coupling, collaboration among research institutions, co-authorship network of countries, and sources coupling in publications on machine learning techniques. The Hierarchical Density-Based Spatial Clustering of Applications with Noise (HDBSCAN) was applied to clustering prediction of authors dominance ranking in this paper. Publications related to machine learning were retrieved and extracted from the Dimensions database with no language restrictions. Bibliometrix was employed in computation and visualization to extract bibliographic information and perform a descriptive analysis. VOSviewer (version 1.6.16) tool was used to construct and visualize structure map of source coupling networks of researchers and co-authorship. About 10,814 research papers on machine learning published from 2010 to 2020 were retrieved for the research. Experimental results showed that the highest degree of betweenness centrality was obtained from cluster 3 with 153.86 from the University of California and Harvard University with 24.70. In cluster 1, the national university of Singapore has the highest degree betweenness of 91.72. Also, in cluster 5, the University of Cambridge (52.24) and imperial college London (4.52) having the highest betweenness centrality manifesting that he could control the collaborative relationship and that they possessed and controlled a large number of research resources. Findings revealed that this work has the potential to provide valuable guidance for new perspectives and future research work in the rapidly developing field of machine learning. C1 [Oyewola, David Opeoluwa] Fed Univ Kashere, Fac Sci, Dept Math & Comp Sci, PMB 0182, Gombe, Nigeria. [Dada, Emmanuel Gbenga] Univ Maiduguri, Fac Sci, Dept Math Sci, Maiduguri, Nigeria. RP Oyewola, DO (corresponding author), Fed Univ Kashere, Fac Sci, Dept Math & Comp Sci, PMB 0182, Gombe, Nigeria. EM davidakaprof01@yahoo.com; gbengadada@unimaid.edu.ng RI Dada, Dr. Emmanuel Gbenga/CAA-0153-2022; DADA, EMMANUEL GBENGA/AAV-2728-2021 OI DADA, EMMANUEL GBENGA/0000-0002-1132-5447; oyewola, david/0000-0001-9638-8764 CR Abd-Alrazaq A, 2021, J MED INTERNET RES, V23, DOI 10.2196/23703 Abualigah L, 2021, PROCESSES, V9, DOI 10.3390/pr9071155 Abualigah L, 2021, COMPUT METHOD APPL M, V376, DOI 10.1016/j.cma.2020.113609 [Anonymous], 2013, Machine Learning: An Artificial Intelligence Approach Aria M, 2017, J INFORMETR, V11, P959, DOI 10.1016/j.joi.2017.08.007 Aristovnik A, 2020, BIBLIOMETRIC ANAL CO, DOI [10.20944/preprints202006.0299.v1, DOI 10.20944/PREPRINTS202006.0299.V1] Babenko B, 2011, IEEE T PATTERN ANAL, V33, P1619, DOI 10.1109/TPAMI.2010.226 Barnich O, 2011, IEEE T IMAGE PROCESS, V20, P1709, DOI 10.1109/TIP.2010.2101613 Cai D, 2011, IEEE T PATTERN ANAL, V33, P1548, DOI 10.1109/TPAMI.2010.231 Cao M, 2011, J OPER MANAG, V29, P163, DOI 10.1016/j.jom.2010.12.008 Colavizza G, 2021, PLOS ONE, V16, DOI 10.1371/journal.pone.0244839 Crisci C, 2012, ECOL MODEL, V240, P113, DOI 10.1016/j.ecolmodel.2012.03.001 Dada EG, 2019, HELIYON, V5, DOI 10.1016/j.heliyon.2019.e01802 López ID, 2017, LECT NOTES COMPUT SC, V10405, P45, DOI 10.1007/978-3-319-62395-5_4 Decencière E, 2013, IRBM, V34, P196, DOI 10.1016/j.irbm.2013.01.010 Dervis H, 2019, J SCIENTOMETR RES, V8, P156, DOI 10.5530/jscires.8.3.32 Digital Science, 2018, Dimensions [Software] Doanvo A, 2020, MACHINE LEARNING MAP, DOI [10.1101/2020.06.11.145425, DOI 10.1101/2020.06.11.145425] Dong M., 2020, UNDERSTAND RES HOTSP, V2020, DOI [10.1101/2020.03.26.20044164, DOI 10.1101/2020.03.26.20044164, 10.1101/2020.03.26.20044164.] Plazas JE, 2017, LECT NOTES COMPUT SC, V10405, P60, DOI 10.1007/978-3-319-62395-5_5 García-Sánchez P, 2019, PROCEDIA COMPUT SCI, V162, P737, DOI 10.1016/j.procs.2019.12.045 Goferman S, 2012, IEEE T PATTERN ANAL, V34, P1915, DOI 10.1109/TPAMI.2011.272 Graveley BR, 2011, NATURE, V471, P473, DOI 10.1038/nature09715 Guerrero-Bote Vicente P, 2020, Front Res Metr Anal, V5, P593494, DOI 10.3389/frma.2020.593494 Haghani M, 2020, SAFETY SCI, V129, DOI 10.1016/j.ssci.2020.104806 Herzog C, 2020, QUANT SCI STUD, V1, P387, DOI 10.1162/qss_a_00020 Ibanez A, 2015, MACHINE LEARNING SCI Klein JJ, 2021, ACS OMEGA, V6, P3186, DOI 10.1021/acsomega.0c05591 Le BP, 2020, VISUALISING COVID 19 Liu CY, 2020, FRONT PUBLIC HEALTH, V8, DOI 10.3389/fpubh.2020.00091 Malzer C, 2021, SENSORS-BASEL, V21, DOI 10.3390/s21103410 Mao XJ, 2020, MEDICINE, V99, DOI 10.1097/MD.0000000000020137 Martín-Martín A, 2021, SCIENTOMETRICS, V126, P871, DOI 10.1007/s11192-020-03690-4 Oostenveld R, 2011, COMPUT INTEL NEUROSC, V2011, DOI 10.1155/2011/156869 Oyewola D.O., 2021, J ROBOT CONTROL, V2, P103 Reich D, 2010, NATURE, V468, P1053, DOI 10.1038/nature09710 Rincon-Patino J, 2018, F1000Research, V7, P1240 Roy S, 2010, SCIENCE, V330, P1787, DOI 10.1126/science.1198374 Saha S, 2019, J SCIENTOMETRIC RES, V8 Sebastiani F, 2002, ACM COMPUT SURV, V34, P1, DOI 10.1145/505282.505283 Shulaev V, 2011, NAT GENET, V43, P109, DOI 10.1038/ng.740 Sinclair C., 1999, Proceedings 15th Annual Computer Security Applications Conference (ACSAC'99), P371, DOI 10.1109/CSAC.1999.816048 Smeureanu I, 2013, J BUS ECON MANAG, V14, P923, DOI 10.3846/16111699.2012.749807 Sra S, 2012, OPTIMIZATION FOR MACHINE LEARNING, P1 Srinivasa G, 2019, J SCIENTOMETR RES, V8, pS39, DOI 10.5530/jscires.8.2.23 Suharso P, 2021, J PHYS C SER, V176 van Eck NJ, 2010, SCIENTOMETRICS, V84, P523, DOI 10.1007/s11192-009-0146-3 Waltman L, 2013, EUR PHYS J B, V86, DOI 10.1140/epjb/e2013-40829-0 NR 48 TC 37 Z9 39 U1 17 U2 108 PU SPRINGER INT PUBL AG PI CHAM PA GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND SN 2523-3963 EI 2523-3971 J9 SN APPL SCI JI SN Appl. Sci. PD MAY PY 2022 VL 4 IS 5 AR 143 DI 10.1007/s42452-022-05027-7 PG 18 WC Multidisciplinary Sciences WE Emerging Sources Citation Index (ESCI) SC Science & Technology - Other Topics GA 0K9PC UT WOS:000781118000003 PM 35434524 OA gold, Green Published DA 2024-09-05 ER PT C AU Hu, ZW Lu, LF Liu, GJ Jin, Y Zhao, L AF Hu Ziwei Lu Lifeng Liu Guojun Jin Yi Zhao Liang BE Cao, J Wang, J Liu, W Xie, K TI Research on Adaptability Evaluation Method of New Communication Technology Applied to Energy Internet Communication Network SO 2017 FIRST IEEE INTERNATIONAL CONFERENCE ON ENERGY INTERNET (ICEI 2017) LA English DT Proceedings Paper CT 1st IEEE International Conference on Energy Internet (ICEI) CY APR 17-21, 2017 CL Beijing, PEOPLES R CHINA DE principal component analysis; analytic hierarchy process; Energy Internet; evaluation method AB Electricity is the major energy form of energy internet and the smart grid is the carrier. Compared with the traditional power grid, it puts forward higher requirements for communication. Introduction of new communication technology will effectively improve the performance of energy internet communication network, but how to evaluate the adaptability of new communication technologies is a key problem to be solved in the process of the development of energy internet communication network. The adaptability to the energy internet communication network should consider the development level of the regional power grid, the economy and other factors, and not only based on the single index, so we proposed an index system considered from four aspects: safety, economy, maturity and effectiveness. In addition, the evaluation method of the adaptability should be objective and reflect the intention and strategy of the evaluation subject. Based on these, an evaluation method of adaptability based on principal component analysis and analytic hierarchy process is proposed which focuses on the process of assessment and implementation plan. An example shows the proposed evaluation method by comparing the adaptability of PTN, POTN and enhanced MSTP. And the result demonstrates that POTN is more suitable for the communication network of energy internet. C1 [Hu Ziwei; Lu Lifeng; Liu Guojun] Global Energy Interconnect Res Inst, Beijing 102209, Peoples R China. [Jin Yi] State Grid Jiangsu Elect Power Co, Nanjing 210024, Jiangsu, Peoples R China. [Zhao Liang] Beijing Univ Posts & Telecommun, Beijing 100876, Peoples R China. C3 State Grid Corporation of China; Beijing University of Posts & Telecommunications RP Hu, ZW (corresponding author), Global Energy Interconnect Res Inst, Beijing 102209, Peoples R China. EM huziwei@geiri.sgcc.com.cn RI Zhao, Liang/GLS-6320-2022 OI Zhao, Liang/0000-0003-1503-4708 FU State Grid RD project [SGRIXTKJ [2015]241] FX This work was supported in part by State Grid R&D project (grant No. SGRIXTKJ [2015]241). CR [Anonymous], 2008, ICS Glossary, P6 Chen T Y, 2016, STUDY OPTICAL COMMUN GENG Liang, 2015, APPL ELECT TECHNIQUE, V41, P152 Hu R, 2015, RES SMART GRID CYBER Ilic D, 2014, 3 INT C SMART GRIDS, P3 Jian S, 2014, 2014 INTERNATIONAL CONFERENCE ON POWER SYSTEM TECHNOLOGY (POWERCON), P1743, DOI 10.1109/POWERCON.2014.6993564 Jolliffe IT, 2002, Principal Component Analysis, V2nd Kazzaz MM, 2015, IEEE INT CONF MO, P423, DOI [10.1109/MobServ.2015.64, 10.1109/MS.2015.64] Liu CN, 2015, INT CONF INSTR MEAS, P1, DOI 10.1109/IMCCC.2015.7 Liu Z., 2010, SMART GRID KNOWLEDGE LUO Pengcheng, 2000, MINI-MICRO SYST, V21, P1073 Miao X, 2012, RES RELIABILITY ASSE, V8562, P1 SU Yuke, 2014, INFORM COMMUNICATION, P197 Sun Qiang, 2011, Proceedings of the CSU-EPSA, V23, P105 Vermesan O, 2011, INTERNET ENERGY CONN, P33 Wang Bin, 2011, Automation of Electric Power Systems, V35, P1 Weichenberg GE, 2003, FOURTH INTERNATIONAL WORKSHOP ON DESIGN OF RELIABLE COMMUNICATION NETWORKS - (DRCN 2003), PROCEEDINGS, P263, DOI 10.1109/DRCN.2003.1275365 XING Ningzhe, 2007, TELECOMMUNICATIONS E, V26, P26 [严太山 Yan Taishan], 2016, [电网技术, Power System Technology], V40, P105 YAN Yang, 2012, ELECT AGE, P38 YE Fei, 2014, ADAPTABILITY RES SDN YE Yicheng, 2006, SYSTEM COMPREHENSIVE, P36 [易于 Yi Yu], 2012, [中国电力, Electric Power], V45, P23 Yuan Jin-sha, 2009, High Voltage Engineering, V35, P960 Zeng Y, 2011, TELECOMMUNICATIONS E Zeng Ying, 2014, J COMPUTER APPL, P21 ZHANG Hongmin, 2016, SHANDONG IND TECHNOL, P155 Zhao ZY, 2010, INT J COMPUT MATH, V87, P3209, DOI 10.1080/00207160902974404 ZHOU Jing, 2015, TELECOMMUNICATIONS S, V31, P148 NR 29 TC 1 Z9 1 U1 0 U2 2 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA BN 978-1-5090-5759-7 PY 2017 BP 250 EP 255 DI 10.1109/ICEI.2017.51 PG 6 WC Computer Science, Information Systems; Computer Science, Interdisciplinary Applications; Energy & Fuels; Engineering, Electrical & Electronic; Telecommunications WE Conference Proceedings Citation Index - Science (CPCI-S) SC Computer Science; Energy & Fuels; Engineering; Telecommunications GA BI2CZ UT WOS:000408549200044 DA 2024-09-05 ER PT J AU Kumar, S Lim, WM Sivarajah, U Kaur, J AF Kumar, Satish Lim, Weng Marc Sivarajah, Uthayasankar Kaur, Jaspreet TI Artificial Intelligence and Blockchain Integration in Business: Trends from a Bibliometric-Content Analysis SO INFORMATION SYSTEMS FRONTIERS LA English DT Article DE Artificial intelligence; Blockchain; Business; Fourth industrial revolution; IR 4.0; Integration; Trends ID INDUSTRIAL IOT; AI; ADOPTION; SYSTEMS; ARCHITECTURE; MANAGEMENT; FRAMEWORK AB Artificial intelligence (AI) and blockchain are the two disruptive technologies emerging from the Fourth Industrial Revolution (IR4.0) that have introduced radical shifts in the industry. The amalgamation of AI and blockchain holds tremendous potential to create new business models enabled through digitalization. Although research on the application and convergence of AI and blockchain exists, our understanding of the utility of its integration for business remains fragmented. To address this gap, this study aims to characterize the applications and benefits of integrated AI and blockchain platforms across different verticals of business. Using bibliometric analysis, this study reveals the most influential articles on the subject based on their publications, citations, and importance in the intellectual network. Using content analysis, this study sheds light on the subject's intellectual structure, which is underpinned by four major thematic clusters focusing on supply chains, healthcare, secure transactions, and finance and accounting. The study concludes with 10 application areas in business that can benefit from these technologies. C1 [Kumar, Satish; Kaur, Jaspreet] Malaviya Natl Inst Technol, Dept Management Studies, Jaipur 302017, Rajasthan, India. [Kumar, Satish; Lim, Weng Marc] Swinburne Univ Technol, Fac Business Design & Arts, Jalan Simpang Tiga, Sarawak 93350, Malaysia. [Lim, Weng Marc] Swinburne Univ Technol, Sch Business Law & Entrepreneurship, John St, Hawthorn, Vic 3122, Australia. [Sivarajah, Uthayasankar] Univ Bradford, Fac Management Law & Social Sci, Sch Management, Richmond Rd, Bradford BD7 1DP, W Yorkshire, England. C3 National Institute of Technology (NIT System); Malaviya National Institute of Technology Jaipur; Swinburne University of Technology; Swinburne University of Technology Sarawak; Swinburne University of Technology; University of Bradford RP Kumar, S (corresponding author), Malaviya Natl Inst Technol, Dept Management Studies, Jaipur 302017, Rajasthan, India.; Kumar, S (corresponding author), Swinburne Univ Technol, Fac Business Design & Arts, Jalan Simpang Tiga, Sarawak 93350, Malaysia. EM skumar.dms@mnit.ac.in; lim@wengmarc.com; u.sivarajah@bradford.ac.uk; 2019RBM9076@mnit.ac.in RI Sivarajah, Uthayasankar/AAU-7065-2020; Lim, Weng Marc/I-1723-2019; Kaur, Jaspreet/HSG-1500-2023; Kumar, Satish/E-2103-2018; Kaur, Jaspreet/HSG-1545-2023; Kumar, Satish/M-8694-2017 OI Sivarajah, Uthayasankar/0000-0002-6401-540X; Lim, Weng Marc/0000-0001-7196-1923; Kumar, Satish/0000-0001-6788-0952; Kaur, Jaspreet/0000-0003-0118-5900; Kumar, Satish/0000-0001-5200-1476; Kaur, Jaspreet/0000-0001-6369-2428 FU CAUL FX Open Access funding enabled and organized by CAUL and its Member Institutions CR Abdullah S, 2020, ACAD RADIOL, V27, P47, DOI 10.1016/j.acra.2019.06.025 Agarwal Y., 2020, GLOBAL BUSINESS ORG, V39, P20, DOI DOI 10.1002/JOE.21981 Alagu Vignesh A, 2019, INT J ENG ADV TECHNO, V9, P2249 Alahakoon D, 2023, INFORM SYST FRONT, V25, P221, DOI 10.1007/s10796-020-10056-x Alnafrah I., 2019, International Journal of Intellectual Property Management, V9, P120, DOI [10.1504/IJIPM.2019.100207, DOI 10.1504/IJIPM.2019.100207] Alonso RS, 2020, AD HOC NETW, V98, DOI 10.1016/j.adhoc.2019.102047 Angelis J, 2019, BUS HORIZONS, V62, P307, DOI 10.1016/j.bushor.2018.12.001 Arachchige PCM, 2020, IEEE T IND INFORM, V16, P6092, DOI 10.1109/TII.2020.2974555 Badre Adrien, 2020, IISE Transactions on Healthcare Systems Engineering, V10, P99, DOI 10.1080/24725579.2019.1680582 Barbano, 2017, HEIF INT IBM WORK CO Barnett J, 2018, COMPUT J, V61, P399, DOI 10.1093/comjnl/bxx103 Bartol T, 2014, SCIENTOMETRICS, V98, P1491, DOI 10.1007/s11192-013-1148-8 BROADUS RN, 1987, SCIENTOMETRICS, V12, P373, DOI 10.1007/BF02016680 Bruner CM, 2020, CAMB LAW J, V79, P431, DOI 10.1017/S0008197320000756 Chen Y, 2022, INFORM SYST FRONT, DOI 10.1007/s10796-022-10248-7 Christodoulou P, 2020, 2020 SECOND INTERNATIONAL CONFERENCE ON BLOCKCHAIN COMPUTING AND APPLICATIONS (BCCA), P135, DOI 10.1109/BCCA50787.2020.9274460 Comerio N, 2019, TOURISM ECON, V25, P109, DOI 10.1177/1354816618793762 Daley, 2019, TASTIER COFFEE HURRI Ballell TRDLH, 2017, UNIF LAW REV, V22, P693, DOI 10.1093/ulr/unx049 Dhieb N, 2020, IEEE ACCESS, V8, P58546, DOI 10.1109/ACCESS.2020.2983300 Ding Y, 2011, INFORM PROCESS MANAG, V47, P80, DOI 10.1016/j.ipm.2010.01.002 Dinh TN, 2018, COMPUTER, V51, P48, DOI 10.1109/MC.2018.3620971 Donthu N, 2021, J BUS RES, V135, P758, DOI 10.1016/j.jbusres.2021.07.015 Donthu N, 2021, J BUS RES, V133, P285, DOI 10.1016/j.jbusres.2021.04.070 Donthu N, 2021, PSYCHOL MARKET, V38, P834, DOI 10.1002/mar.21472 Ehrenberg AJ, 2020, INFORM SYST FRONT, V22, P29, DOI 10.1007/s10796-019-09946-6 Fusco A, 2020, INT J ENV RES PUB HE, V17, DOI 10.3390/ijerph17197167 Ghaleb TA, 2022, INFORM SYST FRONT, V24, P1601, DOI 10.1007/s10796-021-10157-1 Goodell JW, 2021, J BEHAV EXP FINANC, V32, DOI 10.1016/j.jbef.2021.100577 Gupta R, 2020, IEEE ACCESS, V8, P24746, DOI 10.1109/ACCESS.2020.2970576 Han L, 2021, INFORM SYST FRONT, DOI 10.1007/s10796-021-10173-1 Hsu PF, 2022, INFORM SYST FRONT, V24, P177, DOI 10.1007/s10796-020-10049-w Irwin ASM, 2018, J MONEY LAUND CONTRO, V21, P297, DOI 10.1108/JMLC-07-2017-0031 Jain V, 2019, J DISCRET MATH SCI C, V22, P191, DOI 10.1080/09720529.2019.1582867 Karafiloski E, 2017, 17TH IEEE INTERNATIONAL CONFERENCE ON SMART TECHNOLOGIES - IEEE EUROCON 2017 CONFERENCE PROCEEDINGS, P763, DOI 10.1109/EUROCON.2017.8011213 KESSLER MM, 1963, AM DOC, V14, P10, DOI 10.1002/asi.5090140103 Kim SK, 2020, ELECTRONICS-SWITZ, V9, DOI 10.3390/electronics9050763 Klinker K, 2020, INFORM SYST FRONT, V22, P1419, DOI 10.1007/s10796-019-09937-7 Kumar, 2019, INTEGRATION BLOCKCHA Kumar S, 2021, J BUS RES, V134, P275, DOI 10.1016/j.jbusres.2021.05.041 Kumar S, 2021, BUS STRATEG ENVIRON, V30, P3454, DOI 10.1002/bse.2813 Kumar S, 2021, ELECTRON COMMER RES, V21, P1, DOI 10.1007/s10660-021-09464-1 La Paz A, 2020, INFORM SYST J, V30, P431, DOI 10.1111/isj.12260 Lee J, 2019, MANUF LETT, V20, P34, DOI 10.1016/j.mfglet.2019.05.003 Li XF, 2020, INFORM SYST FRONT, V22, P17, DOI 10.1007/s10796-019-09966-2 Li Z, 2020, INT J PROD RES, V58, P7399, DOI 10.1080/00207543.2020.1740342 Li Z, 2019, IEEE T IND INFORM, V15, P3642, DOI 10.1109/TII.2019.2900987 Lim W.M., 2019, Modern Applied Science, V13, P105, DOI DOI 10.5539/MAS.V13N9P105 Lim WM, 2022, SERV IND J, V42, P481, DOI 10.1080/02642069.2022.2047941 Lim WM, 2022, PSYCHOL MARKET, V39, P1129, DOI 10.1002/mar.21654 Lim WM, 2022, J BUS RES, V140, P439, DOI 10.1016/j.jbusres.2021.11.014 Liu CH, 2019, IEEE T IND INFORM, V15, P3516, DOI 10.1109/TII.2018.2890203 Liu MT, 2019, IEEE T IND INFORM, V15, P3559, DOI 10.1109/TII.2019.2897805 Liu YM, 2020, IEEE COMMUN SURV TUT, V22, P1392, DOI 10.1109/COMST.2020.2975911 Lu Y, 2017, J IND INTEGR MANAG, V2, DOI 10.1142/S2424862217500142 Makarius EE, 2020, J BUS RES, V120, P262, DOI 10.1016/j.jbusres.2020.07.045 Mamoshina Polina, 2018, Oncotarget, V9, P5665, DOI 10.18632/oncotarget.22345 Mao DH, 2018, INT J ENV RES PUB HE, V15, DOI 10.3390/ijerph15081627 Mayer C., 2019, J AIRPORT MANAGEMENT, V13, P335 Mcmahon P, 2020, IEEE ACCESS, V8, P15543, DOI 10.1109/ACCESS.2020.2967436 Moll J, 2019, BRIT ACCOUNT REV, V51, DOI 10.1016/j.bar.2019.04.002 Mukherjee D, 2021, MANAGE INT REV, V61, P599, DOI 10.1007/s11575-021-00454-x Nakamoto S., 2008, Bitcoin: A peer-to-peer electronic cash system, DOI DOI 10.1007/S10838-008-9062-0 Narayanan S., 2021, AMCIS 2021 P Omohundro S., 2014, Al Matters, V1, P19, DOI DOI 10.1145/2685328.2685334 Pandl KD, 2020, IEEE ACCESS, V8, P57075, DOI 10.1109/ACCESS.2020.2981447 Paul J, 2021, INT J CONSUM STUD, DOI 10.1111/ijcs.12695 PRITCHARD A, 1969, J DOC, V25, P348 Qian JP, 2020, TRENDS FOOD SCI TECH, V99, P402, DOI 10.1016/j.tifs.2020.03.025 Ragot S, 2020, WORLD PAT INF, V62, DOI 10.1016/j.wpi.2020.101966 Rodríguez-Espíndola O, 2020, INT J PROD RES, V58, P4610, DOI 10.1080/00207543.2020.1761565 Roszkowska P, 2021, J ACCOUNT ORGAN CHAN, V17, P164, DOI 10.1108/JAOC-09-2019-0098 Rubin E, 2022, ORGAN DYN, V51, DOI 10.1016/j.orgdyn.2021.100857 Salah K, 2019, IEEE ACCESS, V7, P10127, DOI 10.1109/ACCESS.2018.2890507 Sandner P, 2020, FRONT BLOCKCHAIN, V3, DOI 10.3389/fbloc.2020.522600 Siala H, 2022, SOC SCI MED, V296, DOI 10.1016/j.socscimed.2022.114782 Singh SK, 2020, FUTURE GENER COMP SY, V110, P721, DOI 10.1016/j.future.2019.09.002 Soleymani F, 2020, EXPERT SYST APPL, V156, DOI 10.1016/j.eswa.2020.113456 Subic, 2020, BLOCKCHAIN IND, V4, P1 Tanwar S, 2020, IEEE ACCESS, V8, P474, DOI 10.1109/ACCESS.2019.2961372 Tian ZG, 2021, INT J PROD RES, V59, P2229, DOI 10.1080/00207543.2020.1809733 Uddin MA, 2020, HEALTH INFORM J, V26, P3009, DOI 10.1177/1460458220957486 van Eck NJ, 2010, SCIENTOMETRICS, V84, P523, DOI 10.1007/s11192-009-0146-3 Wamba SF, 2023, INFORM SYST FRONT, V25, P2123, DOI 10.1007/s10796-021-10142-8 Wang Z, 2020, J DYN SYST-T ASME, V142, DOI 10.1115/1.4045360 WEINBERG BH, 1974, INFORM STORAGE RET, V10, P189, DOI 10.1016/0020-0271(74)90058-8 Yi HB, 2019, SAFETY SCI, V120, P6, DOI 10.1016/j.ssci.2019.06.025 Yin HHS, 2019, J MANAGE INFORM SYST, V36, P37, DOI 10.1080/07421222.2018.1550550 Yong BB, 2020, INT J INFORM MANAGE, V52, DOI 10.1016/j.ijinfomgt.2019.10.009 Zhang CY, 2021, INT J COMPUT INTEG M, V34, P709, DOI 10.1080/0951192X.2019.1699256 Zhao YQ, 2019, INFORM SCIENCES, V478, P449, DOI 10.1016/j.ins.2018.11.028 Zheng XL, 2019, FRONT INFORM TECH EL, V20, P914, DOI 10.1631/FITEE.1700822 Zheng ZB, 2017, IEEE INT CONGR BIG, P557, DOI 10.1109/BigDataCongress.2017.85 Zhu XY, 2021, IEEE ICC, DOI 10.1109/ICC42927.2021.9500421 Zupic I, 2015, ORGAN RES METHODS, V18, P429, DOI 10.1177/1094428114562629 NR 95 TC 61 Z9 62 U1 23 U2 64 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 1387-3326 EI 1572-9419 J9 INFORM SYST FRONT JI Inf. Syst. Front. PD APR PY 2023 VL 25 IS 2 SI SI BP 871 EP 896 DI 10.1007/s10796-022-10279-0 EA APR 2022 PG 26 WC Computer Science, Information Systems; Computer Science, Theory & Methods WE Science Citation Index Expanded (SCI-EXPANDED) SC Computer Science GA F6LR2 UT WOS:000781734200001 PM 35431617 OA Green Published, hybrid DA 2024-09-05 ER PT J AU Duan, SY Zhao, Y AF Duan, Siyu Zhao, Yang TI Knowledge graph analysis of artificial intelligence application research in nursing field based on visualization technology SO ALEXANDRIA ENGINEERING JOURNAL LA English DT Article DE Nursing; Artificial intelligence; Bibliometrics; Visual analysis; CiteSpace; Map of knowledge ID BIBLIOMETRIC ANALYSIS; EMERGING TRENDS AB In order to assess the research status, hot issues of artificial intelligence in nursing to pro-vide reference for scholars. This work conduct a quantitative analysis on related literature in WOS from 2011 to 2022 by mathematical and statistical methods, including publication trend, journals, author, institution, national and regional, keyword, literature co-citation. The hotspots and trends were revealed. The results showed that: (1) scholars' attention to it showed a steady increasing. (2) There were 20 journals published more than 6 papers, published 205 papers, that's 30.83 % of the total, Journal of Healthcare Engineering published the most papers, that's 8.78 %. (2) Kendrick Cato, Lisiane Pruinelli published the most papers, that's 2.95 %, which have strong cooperation. (3) Harvard Medical School, Columbia University and University of Minnesota published 114 papers, that's 8.21 % of the total, were the core unit, Harvard Med Sch, Columbia Univ and Univ Penn had strong cooperation. (4) The United States, China, Japan, Australia and United Kingdom are the top five countries for publishing papers, that's 80.3 % of the total. The cooperation degree of the each are 0.51, 0.36, 0.07, 0.04, and 0.06. (6) "electronic health record", "risk prediction" and "supervised machine learning" are current research hotspots. & COPY; 2023 THE AUTHORS. Published by Elsevier BV on behalf of Faculty of Engineering, Alexandria University. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/ 4.0/). C1 [Duan, Siyu; Zhao, Yang] Panzhihua Univ, Sch Hlth & Wellness, Panzhihua 617000, Peoples R China. C3 Panzhihua University RP Zhao, Y (corresponding author), Panzhihua Univ, Sch Hlth & Wellness, Panzhihua 617000, Peoples R China. EM zhaoyang@pzhu.edu.cn CR [Anonymous], 2017, INF RES INT ELECT J Boyack KW, 2010, J AM SOC INF SCI TEC, V61, P2389, DOI 10.1002/asi.21419 Chen CM, 2010, J AM SOC INF SCI TEC, V61, P1386, DOI 10.1002/asi.21309 Chen CM, 2006, J AM SOC INF SCI TEC, V57, P359, DOI 10.1002/asi.20317 Chen Z, 2022, BUILDINGS-BASEL, V12, DOI 10.3390/buildings12122132 De Silva K, 2021, COMPUT BIOL MED, V132, DOI 10.1016/j.compbiomed.2021.104305 Dong JY, 2020, J ADV NURS, V76, P2955, DOI 10.1111/jan.14489 Feng W., 2022, TOURISM FORUM, V15, P31 Guo LZ, 2020, GASTROENTEROL NURS, V43, P232, DOI 10.1097/SGA.0000000000000457 Ho KF, 2021, COMPUT METH PROG BIO, V207, DOI 10.1016/j.cmpb.2021.106128 Hu C., 2019, J GUANGZHOU U TRADIT, V36, P752 Jiang JX, 2023, FRONT AGING NEUROSCI, V15, DOI 10.3389/fnagi.2023.999594 Karakose T., 2023, FRONT PSYCHOL, V14 Kim Teng Lua, 1992, Journal of Information Processing, V15, P10 Kwon JY, 2019, CIN-COMPUT INFORM NU, V37, P203, DOI 10.1097/CIN.0000000000000508 Li C., 2019, CHIN NURS RES, V33, P1309 Li Q, 2021, J HEALTHC ENG, V2021, DOI 10.1155/2021/3998830 Li QY, 2022, J HEALTHC ENG, V2022, DOI 10.1155/2022/1796485 Li Y., 2021, J NURS SCI, V36, P98 Liang WZ, 2020, GEOFLUIDS, V2020, DOI 10.1155/2020/8763283 Liu YL, 2018, MATH PROBL ENG, V2018, DOI 10.1155/2018/3757580 Liu YJ, 2023, SCAND J CARING SCI, V37, P384, DOI 10.1111/scs.13118 Çinar IÖ, 2020, INT J NURS PRACT, V26, DOI 10.1111/ijn.12845 Rajendran SS, 2021, BIOSCI BIOTECH RES C, V14, P435, DOI 10.21786/bbrc/14.1/62 Ronquillo CE, 2021, J ADV NURS, V77, P3707, DOI 10.1111/jan.14855 ROUSSEEUW PJ, 1987, J COMPUT APPL MATH, V20, P53, DOI 10.1016/0377-0427(87)90125-7 Tao SY, 2022, FRONT CARDIOVASC MED, V9, DOI 10.3389/fcvm.2022.891428 Teng Y., 2022, WIREL COMMUN MOB COM, V2022 Van Raan A F, 2014, Advances in Bibliometric Analysis: Research Performance Assessment and Science Mapping, V87, P17 Wang JX, 2022, FRONT NEUROL, V13, DOI 10.3389/fneur.2022.816031 Wang YY, 2022, NEUROPSYCH DIS TREAT, V18, P2107, DOI 10.2147/NDT.S378372 Wang Z., 2018, CHIN NURS RES, V32, P2066 Waqas A, 2020, PLOS ONE, V15, DOI 10.1371/journal.pone.0235385 Wu N, 2022, J MULTIDISCIP HEALTH, V15, P2363, DOI 10.2147/JMDH.S363741 Yang WM, 2022, FRONT CARDIOVASC MED, V9, DOI 10.3389/fcvm.2022.935073 Zhang Q, 2022, FRONT PUBLIC HEALTH, V10, DOI 10.3389/fpubh.2022.890773 Zheng JZ, 2021, QUANT IMAG MED SURG, V11, P1854, DOI 10.21037/qims-20-729 Zinina A, 2023, COGN SYST RES, V77, P110, DOI 10.1016/j.cogsys.2022.10.007 NR 38 TC 2 Z9 2 U1 13 U2 36 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS SN 1110-0168 EI 2090-2670 J9 ALEX ENG J JI Alex. Eng. J. PD AUG 1 PY 2023 VL 76 BP 651 EP 667 DI 10.1016/j.aej.2023.06.072 EA JUN 2023 PG 17 WC Engineering, Multidisciplinary WE Science Citation Index Expanded (SCI-EXPANDED) SC Engineering GA M4KT2 UT WOS:001029917100001 OA gold DA 2024-09-05 ER PT J AU Radanliev, P De Roure, D Maple, C Santos, O AF Radanliev, Petar De Roure, David Maple, Carsten Santos, Omar TI Forecasts on Future Evolution of Artificial Intelligence and Intelligent Systems SO IEEE ACCESS LA English DT Article DE Artificial intelligence; COVID-19; Medical services; Internet of Things; Bibliometrics; Ethics; Codes; Artificial intelligence; intelligent systems; future evolution; Covid-19 AB The field of artificial intelligence has gained a significant attention in the media. Some counties claim to be the leaders in the field, other countries claim to be winning in the race for leadership in artificial intelligence. This article conducts a statistical (i.e., bibliometric) analysis of research data records on artificial intelligence by year, country, language, and organisation. The results are clearly in favour of the USA on a national level, and English is clearly the dominant language for disseminating results. But in terms of leading organisation in the field of artificial intelligence creates more confusing result - e.g., between the Chinese Academy of Sciences and the University of California - in the leadership race. The forecasts from this study on future evolution of artificial intelligence is that it is unlikely that (in the next 60 years) AI 'superintelligence' would trigger a catastrophic event for humanity. C1 [Radanliev, Petar; De Roure, David] Univ Oxford, Oxford E Res Ctr, Dept Engn Sci, Oxford OX1 2JD, England. [Maple, Carsten] Univ Warwick, WMG Cyber Secur Ctr, Coventry CV4 7AL, W Midlands, England. [Santos, Omar] Cisco Res Ctr, Res Triangle Pk, NC 27709 USA. C3 University of Oxford; University of Warwick; Cisco Systems Inc RP Radanliev, P (corresponding author), Univ Oxford, Oxford E Res Ctr, Dept Engn Sci, Oxford OX1 2JD, England. EM petar.radanliev@oerc.ox.ac.uk RI Radanliev, Petar/L-7509-2015 OI Radanliev, Petar/0000-0001-5629-6857; Maple, Carsten/0000-0002-4715-212X FU Engineering and Physical Sciences Research Council (EPSRC) [EP/S035362/1]; Cisco Research Centre [CG1525381]; EPSRC [EP/V056883/1, EP/S021779/1, EP/R007195/1] Funding Source: UKRI; SPF [EP/S035362/1] Funding Source: UKRI FX This work was supported in part by the Engineering and Physical Sciences Research Council (EPSRC) under Grant EP/S035362/1, and in part by the Cisco Research Centre under Grant CG1525381. CR Adrien B., 2021, ARTIF INTELL REV, V54, P3849 Ahmad R, 2021, INTERNET THINGS-NETH, V14, DOI 10.1016/j.iot.2021.100365 Ayvaz S, 2021, EXPERT SYST APPL, V173, DOI 10.1016/j.eswa.2021.114598 Blackwell AF, 2021, INTERDISCIPL SCI REV, V46, P198, DOI 10.1080/03080188.2020.1840226 Chandrasekar V., 2021, ADV INTELLIGENT SYST, V1184, P540 Cui ZH, 2021, IEEE INTERNET THINGS, V8, P12540, DOI 10.1109/JIOT.2021.3056578 Dhamija P, 2020, TQM J, V32, P869, DOI 10.1108/TQM-10-2019-0243 Guo YQ, 2020, J MED INTERNET RES, V22, DOI 10.2196/18228 Haefner N, 2021, TECHNOL FORECAST SOC, V162, DOI 10.1016/j.techfore.2020.120392 Hansen EB, 2021, J MANUF SYST, V58, P362, DOI 10.1016/j.jmsy.2020.08.009 Huang SG, 2021, INT J BIOL SCI, V17, P1581, DOI 10.7150/ijbs.58855 Hwang GJ, 2021, MATHEMATICS-BASEL, V9, DOI 10.3390/math9060584 Javaid Mohd, 2021, J Oral Biol Craniofac Res, V11, P209, DOI 10.1016/j.jobcr.2021.01.015 Kumar D. P., 2021, Agricultural Informatics, P67, DOI DOI 10.1002/9781119769231.CH4 Niu WJ, 2021, SUSTAIN CITIES SOC, V66, DOI 10.1016/j.scs.2020.102686 Pan Y, 2021, AUTOMAT CONSTR, V122, DOI 10.1016/j.autcon.2020.103517 Qinxia H, 2021, COMPLEXITY, V2021, DOI 10.1155/2021/6616279 Raisch S, 2021, ACAD MANAGE REV, V46, P192, DOI 10.5465/amr.2018.0072 Roberts H, 2021, AI SOC, V36, P59, DOI 10.1007/s00146-020-00992-2 Rohit R., 2021, INVESTIGATING CORREL, P71 Shastri BJ, 2021, NAT PHOTONICS, V15, P102, DOI 10.1038/s41566-020-00754-y Wiafe I, 2020, IEEE ACCESS, V8, P146598, DOI 10.1109/ACCESS.2020.3013145 NR 22 TC 16 Z9 16 U1 9 U2 70 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 2169-3536 J9 IEEE ACCESS JI IEEE Access PY 2022 VL 10 BP 45280 EP 45288 DI 10.1109/ACCESS.2022.3169580 PG 9 WC Computer Science, Information Systems; Engineering, Electrical & Electronic; Telecommunications WE Science Citation Index Expanded (SCI-EXPANDED) SC Computer Science; Engineering; Telecommunications GA 0Z0NQ UT WOS:000790778100001 OA Green Submitted, gold DA 2024-09-05 ER PT J AU Fijacko, N Creber, RM Abella, BS Kocbek, P Metlicar, S Greif, R Stiglic, G AF Fijacko, Nino Creber, Ruth Masterson Abella, Benjamin S. Kocbek, Primoz Metlicar, Spela Greif, Robert Stiglic, Gregor TI Using generative artificial intelligence in bibliometric analysis: 10 years of research trends from the European Resuscitation Congresses SO RESUSCITATION PLUS LA English DT Article DE Emergency medicine; European Resuscitation Council; Congress; Bibliometrics analysis; Generative artificial intelligence ID COUNCIL GUIDELINES; CARDIAC-ARREST; EMERGENCY AB Aims: The aim of this study is to use generative artificial intelligence to perform bibliometric analysis on abstracts published at European Resuscitation Council (ERC) annual scientific congress and define trends in ERC guidelines topics over the last decade. Methods: In this bibliometric analysis, the WebHarvy software (SysNucleus, India) was used to download data from the Resuscitation journal's website through the technique of web scraping. Next, the Chat Generative Pre-trained Transformer 4 (ChatGPT-4) application programming interface (Open AI, USA) was used to implement the multinomial classification of abstract titles following the ERC 2021 guidelines topics. Results: From 2012 to 2022 a total of 2491 abstracts have been published at ERC congresses. Published abstracts ranged from 88 (in 2020) to 368 (in 2015). On average, the most common ERC guidelines topics were Adult basic life support (50.1%), followed by Adult advanced life support (41.5%), while Newborn resuscitation and support of transition of infants at birth (2.1%) was the least common topic. The findings also highlight that the Basic Life Support and Adult Advanced Life Support ERC guidelines topics have the strongest co-occurrence to all ERC guidelines topics, where the Newborn resuscitation and support of transition of infants at birth (2.1%; 52/2491) ERC guidelines topic has the weakest co-occurrence. Conclusion: This study demonstrates the capabilities of generative artificial intelligence in the bibliometric analysis of abstract titles using the example of resuscitation medicine research over the last decade at ERC conferences using large language models. C1 [Fijacko, Nino; Kocbek, Primoz; Metlicar, Spela; Stiglic, Gregor] Univ Maribor, Fac Hlth Sci, Maribor 3000, Slovenia. [Fijacko, Nino; Greif, Robert] ERC Res Net, Niels, Belgium. [Fijacko, Nino] Univ Maribor, Med Ctr, Maribor, Slovenia. [Creber, Ruth Masterson] Columbia Univ, Sch Nursing, New York, NY USA. [Abella, Benjamin S.] Univ Penn, Ctr Resuscitat Sci, Philadelphia, PA USA. [Abella, Benjamin S.] Univ Penn, Dept Emergency Med, Philadelphia, PA USA. [Kocbek, Primoz] Univ Ljubljana, Fac Med, Ljubljana, Slovenia. [Metlicar, Spela] Univ Clin Ctr Ljubljana, Med Dispatch Ctr Maribor, Ljubljana, Slovenia. [Greif, Robert] Univ Bern, Bern, Switzerland. [Greif, Robert] Sigmund Freud Univ Vienna, Sch Med, Vienna, Austria. [Greif, Robert] Univ Maribor, Fac Elect Engn & Comp Sci, Maribor, Slovenia. [Stiglic, Gregor] Univ Edinburgh, Usher Inst, Edinburgh, Scotland. C3 University of Maribor; University of Maribor; Columbia University; University of Pennsylvania; University of Pennsylvania; University of Ljubljana; University Medical Centre Ljubljana; University of Bern; University of Maribor; University of Edinburgh RP Fijacko, N (corresponding author), Univ Maribor, Fac Hlth Sci, Maribor 3000, Slovenia. EM nino.fijacko@um.si OI Metlicar, Spela/0009-0007-4051-1736 FU Slovenian Research Agency [ARRS P2-0057, ARRS N3-0307, ARRS BI-US/22-24-138, C3330-22-953012]; National Institutes of Health [R01HL161458, R01NS123639, R01HL152021]; Department of Defense; Becton Dickinson; Zoll; Stryker; Patient-Centered Outcomes Research Insti tute (PCORI) FX Nino Fija & ccaron;ko, Primo & zcaron; Kocbek, and Gregor Stiglic are supported by Slovenian Research Agency grants ARRS P2-0057, ARRS N3-0307, ARRS BI-US/22-24-138, NextGenerationEU and MVZI (C3330-22-953012) . Benjamin S. Abella has received research funding from the National Institutes of Health, the Department of Defense, and Becton Dickinson. He has served as a paid consultant to Becton Dickinson, Zoll and Stryker. He holds equity in MDAlly and VOCHealth. Ruth Masterson Creber receives research funding from the National Institutes of Health (R01HL161458, R01NS123639, R01HL152021) and the Patient-Centered Outcomes Research Insti tute (PCORI) . CR [Anonymous], Generative Pre-trained Transformer 4 (GPT-4) application programming interface Arif TB, 2023, MED EDUC ONLINE, V28, DOI 10.1080/10872981.2023.2181052 Barbic D, 2016, ACAD EMERG MED, V23, P251, DOI 10.1111/acem.12898 Choudhri AF, 2015, RADIOGRAPHICS, V35, P736, DOI 10.1148/rg.2015140036 Farhat F, 2023, COGENT ENG, V10, DOI 10.1080/23311916.2023.2222988 Gräsner JT, 2021, RESUSCITATION, V161, P61, DOI 10.1016/j.resuscitation.2021.02.007 Greif R, 2021, RESUSCITATION, V161, P388, DOI 10.1016/j.resuscitation.2021.02.016 HOLMBERG S, 1992, RESUSCITATION, V24, P103, DOI 10.1016/0300-9572(92)90015-5 Jia TY, 2020, MED SCI MONITOR, V26, DOI 10.12659/MSM.926815 Kirtania DK, 2023, ChatGPT as a tool for bibliometrics analysis: interview with ChatGPT, DOI [10.2139/ssrn.4391794, DOI 10.2139/SSRN.4391794] Kleesiek J, 2023, J NUCL MED, V64, P701, DOI 10.2967/jnumed.123.265687 Lott C, 2021, RESUSCITATION, V161, P152, DOI 10.1016/j.resuscitation.2021.02.011 Madar J, 2021, RESUSCITATION, V161, P291, DOI 10.1016/j.resuscitation.2021.02.014 Mentzelopoulos SD, 2021, RESUSCITATION, V161, P408, DOI 10.1016/j.resuscitation.2021.02.017 Nakaya Y, 2023, EUR HEART J-DIGIT HL, V4, P141, DOI 10.1093/ehjdh/ztad026 Nolan JP, 2021, RESUSCITATION, V161, P220, DOI 10.1016/j.resuscitation.2021.02.012 Nolan JP, 2010, RESUSCITATION, V81, P1219, DOI 10.1016/j.resuscitation.2010.08.021 Olasveengen TM, 2021, RESUSCITATION, V161, P98, DOI 10.1016/j.resuscitation.2021.02.009 Perkins GD, 2021, RESUSCITATION, V161, P1, DOI 10.1016/j.resuscitation.2021.02.003 PRITCHARD A, 1969, J DOC, V25, P348 R Foundation for Statistical Computing, US Rodrigues SP, 2014, BMJ OPEN, V4, DOI 10.1136/bmjopen-2013-004468 Semeraro F, 2021, RESUSCITATION, V161, P80, DOI 10.1016/j.resuscitation.2021.02.008 Soar J, 2021, RESUSCITATION, V161, P115, DOI 10.1016/j.resuscitation.2021.02.010 Van de Voorde P, 2021, RESUSCITATION, V161, P327, DOI 10.1016/j.resuscitation.2021.02.015 webhome, about Us Xu L, 2021, AM J TRANSL RES, V13, P1109 Zideman DA, 2021, RESUSCITATION, V161, P270, DOI 10.1016/j.resuscitation.2021.02.013 NR 28 TC 1 Z9 1 U1 4 U2 4 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS SN 2666-5204 J9 RESUSC PLUS JI Resusc. Plus PD JUN PY 2024 VL 18 AR 100584 DI 10.1016/j.resplu.2024.100584 EA FEB 2024 PG 5 WC Critical Care Medicine; Emergency Medicine WE Emerging Sources Citation Index (ESCI) SC General & Internal Medicine; Emergency Medicine GA MG0W0 UT WOS:001192365400001 PM 38420596 OA hybrid DA 2024-09-05 ER PT J AU Bioglio, L Rho, V Pensa, RG AF Bioglio, Livio Rho, Valentina Pensa, Ruggero G. TI Ranking by inspiration: a network science approach SO MACHINE LEARNING LA English DT Article DE Information diffusion; Bibliographic indexes; Citation networks; Topic modeling ID INDEX AB Contagion processes have been widely studied in epidemiology and life science in general, but their implications are largely tangible in other research areas, such as in network science and computational social science. Contagion models, in particular, have proven helpful in the study of information diffusion, a very topical issue thanks to its applications to social media/network analysis, viral marketing campaigns, influence maximization and prediction. In bibliographic networks, for instance, an information diffusion process takes place when some authors, that publish papers in a given topic, influence some of their neighbors (coauthors, citing authors, collaborators) to publish papers in the same topic, and the latter influence their neighbors in their turn. This well-accepted definition, however, does not consider that influence in bibliographic networks is a complex phenomenon involving several scientific and cultural aspects. In fact, in scientific citation networks, influential topics are usually considered those ones that spread most rapidly in the network. Although this is generally a fact, this semantics does not consider that topics in bibliographic networks evolve continuously. In fact, knowledge, information and ideas are dynamic entities that acquire different meanings when passing from one person to another. Thus, in this paper, we propose a new definition of influence that captures the diffusion of inspiration within the network. We call it inspiration score, and show its effectiveness in detecting the most inspiring topics, authors, papers and venues in a citation network built upon two large bibliographic datasets. We show that the inspiration score can be used as an alternative or complementary bibliographic index in academic ranking applications. C1 [Bioglio, Livio; Rho, Valentina; Pensa, Ruggero G.] Univ Turin, Dept Comp Sci, Turin, Italy. C3 University of Turin RP Bioglio, L (corresponding author), Univ Turin, Dept Comp Sci, Turin, Italy. EM livio.bioglio@unito.it; valentina.rho@unito.it; ruggero.pensa@unito.it RI Pensa, Ruggero G./B-5994-2011 OI Pensa, Ruggero G./0000-0001-5145-3438 CR [Anonymous], 1973, Mathematical Models and Applications, with Emphasis on Social, Life, and Management Sciences [Anonymous], 2009, Proceeding of the 18th ACM Conference on Information and Knowledge Management, DOI DOI 10.1145/1645953.1646076 [Anonymous], 2004, P 13 INT C WORLD WID, DOI DOI 10.1145/1046456.1046462 [Anonymous], P ICWSM 2009 Aral S, 2018, NAT HUM BEHAV, V2, P375, DOI 10.1038/s41562-018-0346-z Bakshy E., 2012, P 21 INT C WORLD WID, P519, DOI DOI 10.1145/2187836.2187907 Barbieri N, 2013, KNOWL INF SYST, V37, P555, DOI 10.1007/s10115-013-0646-6 Bioglio L, 2017, LECT NOTES ARTIF INT, V10558, P309, DOI 10.1007/978-3-319-67786-6_22 Boguslawski B, 2015, IEEE INT CONF VLSI, P116, DOI 10.1109/VLSI-SoC.2015.7314402 Bornmann L, 2008, J AM SOC INF SCI TEC, V59, P830, DOI 10.1002/asi.20806 Britton T, 2010, MATH BIOSCI, V225, P24, DOI 10.1016/j.mbs.2010.01.006 Chen W, 2009, KDD-09: 15TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, P199, DOI 10.1145/1557019.1557047 Cialdini R.B., 1998, Social Influence, Social Norms, Conformity and Compliance, VVolume 2, P151 Coates Adam, 2013, P 30 INT C MACH LEAR, P1337 Cui P, 2011, PROCEEDINGS OF THE 34TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL (SIGIR'11), P185 DALEY DJ, 1964, NATURE, V204, P1118, DOI 10.1038/2041118a0 Dorogovtsev SN, 2015, NAT PHYS, V11, P882, DOI 10.1038/nphys3533 Egghe L, 2006, SCIENTOMETRICS, V69, P131, DOI 10.1007/s11192-006-0144-7 Gohr Andrll., 2009, SDM, P859, DOI DOI 10.1137/1.9781611972795.74 Goldenberg J, 2001, MARKET LETT, V12, P211, DOI 10.1023/A:1011122126881 Gui H., 2014, P 23 ACM INT C C INF, P649, DOI DOI 10.1145/2661829.2662000 Hethcote HW, 2000, SIAM REV, V42, P599, DOI 10.1137/S0036144500371907 Hirsch JE, 2007, P NATL ACAD SCI USA, V104, P19193, DOI 10.1073/pnas.0707962104 Hirsch JE, 2005, P NATL ACAD SCI USA, V102, P16569, DOI 10.1073/pnas.0507655102 Hoffman Matthew D., 2010, Adv. Neural Inf. Process. Syst. (NIPS), DOI DOI 10.5555/2997189.2997285 Ke XY, 2018, INT CONF MANAGE DATA, P1097, DOI 10.1145/3183713.3199670 Keeling M., 2008, MODELING INFECT DIS, DOI DOI 10.1086/591197 Kempe David, 2003, Theory Comput., P137, DOI DOI 10.1145/956750.956769 Kim M, 2018, J ASSOC INF SCI TECH, V69, P329, DOI 10.1002/asi.23960 Leskovec J., 2007, ACM Transactions on Knowledge Discovery from Data (TKDD), V1, P5 Moreno Y, 2004, PHYS REV E, V69, DOI 10.1103/PhysRevE.69.066130 Nekovee M., 2008, ABS08071458 CORR Radicchi F, 2009, PHYS REV E, V80, DOI 10.1103/PhysRevE.80.056103 Rehurek R., 2010, Proceedings of the LREC 2010 Workshop on New Challenges for NLP Frameworks Rogers, 2003, DIFFUSION INNOVATION Senanayake U, 2014, PROCEDIA COMPUT SCI, V29, P465, DOI 10.1016/j.procs.2014.05.042 Seo JS, 2015, IEEE INT CONF VLSI, P49, DOI 10.1109/VLSI-SoC.2015.7314390 SMIRNOV N, 1948, ANN MATH STAT, V19, P279, DOI 10.1214/aoms/1177730256 SUDBURY A, 1985, J APPL PROBAB, V22, P443, DOI 10.2307/3213787 Tang J., 2008, KDD, P990, DOI DOI 10.1145/1401890.1402008 Teixeira da Silva JA, 2017, SCIENTOMETRICS, V111, P553, DOI 10.1007/s11192-017-2250-0 Wang YH, 2017, PROC VLDB ENDOW, V10, P805, DOI 10.14778/3067421.3067429 Yang J, 2010, RESEARCH PROGRESS IN PAPER INDUSTRY AND BIOREFINERY (4TH ISETPP), VOLS 1-3, P1012 Yang Shuang-Hong, 2013, ICML Zanette DH, 2002, PHYS REV E, V65, DOI 10.1103/PhysRevE.65.041908 Zhou J, 2007, PHYS LETT A, V368, P458, DOI 10.1016/j.physleta.2007.01.094 NR 46 TC 4 Z9 4 U1 0 U2 6 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0885-6125 EI 1573-0565 J9 MACH LEARN JI Mach. Learn. PD JUN PY 2020 VL 109 IS 6 BP 1205 EP 1229 DI 10.1007/s10994-019-05828-9 PG 25 WC Computer Science, Artificial Intelligence WE Science Citation Index Expanded (SCI-EXPANDED) SC Computer Science GA MB1CR UT WOS:000542345400004 OA Green Submitted, Bronze DA 2024-09-05 ER PT J AU Nicolas, G Bai, XCZ Fiske, ST AF Nicolas, Gandalf Bai, Xuechunzi Fiske, Susan T. TI Exploring Research-Methods Blogs in Psychology: Who Posts What About Whom, and With What Effect? SO PERSPECTIVES ON PSYCHOLOGICAL SCIENCE LA English DT Article DE research methods; blogs; social media; natural language processing; replicability ID GENDER-DIFFERENCES AB During the methods crisis in psychology and other sciences, much discussion developed online in forums such as blogs and other social media. Hence, this increasingly popular channel of scientific discussion itself needs to be explored to inform current controversies, record the historical moment, improve methods communication, and address equity issues. Who posts what about whom, and with what effect? Does a particular generation or gender contribute more than another? Do blogs focus narrowly on methods, or do they cover a range of issues? How do they discuss individual researchers, and how do readers respond? What are some impacts? Web-scraping and text-analysis techniques provide a snapshot characterizing 41 current research-methods blogs in psychology. Bloggers mostly represented psychology's traditional leaderships' demographic categories: primarily male, mid- to late career, associated with American institutions, White, and with established citation counts. As methods blogs, their posts mainly concern statistics, replication (particularly statistical power), and research findings. The few posts that mentioned individual researchers substantially focused on replication issues; they received more views, social-media impact, comments, and citations. Male individual researchers were mentioned much more often than female researchers. Further data can inform perspectives about these new channels of scientific communication, with the shared aim of improving scientific practices. C1 [Nicolas, Gandalf; Bai, Xuechunzi; Fiske, Susan T.] Princeton Univ, Dept Psychol, 330 Peretsman Scully Hall, Princeton, NJ 08540 USA. C3 Princeton University RP Nicolas, G (corresponding author), Princeton Univ, Dept Psychol, 330 Peretsman Scully Hall, Princeton, NJ 08540 USA. EM gnf@princeton.edu OI Nicolas, Gandalf/0000-0001-8215-1758 CR [Anonymous], 2017, R LANG ENV STAT COMP [Anonymous], 2014, RES EXC FRAM Barr DJ, 2013, J MEM LANG, V68, P255, DOI 10.1016/j.jml.2012.11.001 Bem DJ, 2011, J PERS SOC PSYCHOL, V100, P407, DOI 10.1037/a0021524 Bhattacharjee Y., 2013, The New York Times Magazine Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993 Burrelli J, 2008, PUBLICATION NSF Cikara M, 2012, J SOC ISSUES, V68, P263, DOI 10.1111/j.1540-4560.2012.01748.x DEUTSCH M, 1976, PERS SOC PSYCHOL B, V2, P134, DOI 10.1177/014616727600200214 Diener E., 2014, ARCHIVES SCI. PSYCHOL, V2, P20, DOI DOI 10.1037/ARC0000006 EAGLY AH, 1991, J PERS SOC PSYCHOL, V60, P685, DOI 10.1037/0022-3514.60.5.685 Eagly AH, 2016, PERSPECT PSYCHOL SCI, V11, P899, DOI 10.1177/1745691616663918 Elsesser K., 2018, FORBES 0403 Enders CK, 2007, PSYCHOL METHODS, V12, P121, DOI 10.1037/1082-989X.12.2.121 Engber D., 2017, SLATE FEINGOLD A, 1994, PSYCHOL BULL, V116, P429, DOI 10.1037/0033-2909.116.3.429 FISKE DW, 1990, AM PSYCHOL, V45, P591, DOI 10.1037/0003-066X.45.5.591 Fiske S.T., 2016, APS OBSERVER, V29, P5 GREENWALD AG, 1976, J PERS SOC PSYCHOL, V33, P54, DOI 10.1037/h0078641 Griffiths TL, 2007, PSYCHOL REV, V114, P211, DOI 10.1037/0033-295X.114.2.211 Klaiman S., 2017, PROMOTING OPEN CRITI Lakens D., 2017, 5 REASONS BLOG POSTS Ledgerwood A, 2017, Observer, V30, P18 Munafò MR, 2017, NAT HUM BEHAV, V1, DOI 10.1038/s41562-016-0021 National Science Foundation, 2015, TABL 9 24 SCI ENG HL Nelson LD, 2018, ANNU REV PSYCHOL, V69, P511, DOI 10.1146/annurev-psych-122216-011836 PsychBrief, 2017, IMPROVING PSYCHOL ME PsychBrief, PSYCHOL METHODS BLOG ROSENTHAL R, 1979, PSYCHOL BULL, V86, P638, DOI 10.1037/0033-2909.86.3.638 Sabeti P., 2018, BOSTON GLOBE Shrout PE, 2018, ANNU REV PSYCHOL, V69, P487, DOI 10.1146/annurev-psych-122216-011845 SMITH RJ, 1978, PERS SOC PSYCHOL B, V4, P173, DOI 10.1177/014616727800400137 Weinstein Y, 2017, PERSPECT PSYCHOL SCI, V12, P1171, DOI 10.1177/1745691617712266 West T., 2017, SPSP CLIMATE SURVEY NR 34 TC 8 Z9 10 U1 0 U2 12 PU SAGE PUBLICATIONS LTD PI LONDON PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND SN 1745-6916 EI 1745-6924 J9 PERSPECT PSYCHOL SCI JI Perspect. Psychol. Sci. PD JUL PY 2019 VL 14 IS 4 BP 691 EP 704 DI 10.1177/1745691619835216 PG 14 WC Psychology, Multidisciplinary WE Social Science Citation Index (SSCI) SC Psychology GA IH1HT UT WOS:000474242600012 PM 31199886 DA 2024-09-05 ER PT J AU Abdulkadiroglu, A Angrist, JD Narita, Y Pathak, PA AF Abdulkadiroglu, Atila Angrist, Joshua D. Narita, Yusuke Pathak, Parag A. TI Research Design Meets Market Design: Using Centralized Assignment for Impact Evaluation SO ECONOMETRICA LA English DT Article DE Causal inference; propensity score; instrumental variables; unified enrollment; charter schools ID SCHOOL-CHOICE; PROPENSITY SCORE; SERIAL DICTATORSHIP; COLLEGE ADMISSIONS; BOSTON; ACHIEVEMENT; LOTTERIES; QUALITY; IDENTIFICATION; DISCONTINUITY AB A growing number of school districts use centralized assignment mechanisms to allocate school seats in a manner that reflects student preferences and school priorities. Many of these assignment schemes use lotteries to ration seats when schools are oversubscribed. The resulting random assignment opens the door to credible quasi-experimental research designs for the evaluation of school effectiveness. Yet the question of how best to separate the lottery-generated randomization integral to such designs from non-random preferences and priorities remains open. This paper develops easily-implemented empirical strategies that fully exploit the random assignment embedded in a wide class of mechanisms, while also revealing why seats are randomized at one school but not another. We use these methods to evaluate charter schools in Denver, one of a growing number of districts that combine charter and traditional public schools in a unified assignment system. The resulting estimates show large achievement gains from charter school attendance. Our approach generates efficiency gains over ad hoc methods, such as those that focus on schools ranked first, while also identifying a more representative average causal effect. We also show how to use centralized assignment mechanisms to identify causal effects in models with multiple school sectors. C1 [Abdulkadiroglu, Atila] Duke Univ, Dept Econ, Durham, NC 27706 USA. [Abdulkadiroglu, Atila; Angrist, Joshua D.; Pathak, Parag A.] NBER, Cambridge, MA 02138 USA. [Angrist, Joshua D.; Pathak, Parag A.] MIT, Dept Econ, Cambridge, MA 02139 USA. [Narita, Yusuke] Yale Univ, Dept Econ, New Haven, CT 06520 USA. [Narita, Yusuke] Yale Univ, Cowles Fdn, New Haven, CT 06520 USA. C3 Duke University; National Bureau of Economic Research; Massachusetts Institute of Technology (MIT); Yale University; Yale University RP Abdulkadiroglu, A (corresponding author), Duke Univ, Dept Econ, Durham, NC 27706 USA.; Abdulkadiroglu, A (corresponding author), NBER, Cambridge, MA 02138 USA. EM atila.abdulkadiroglu@duke.edu; angrist@mit.edu; yusuke.narita@yale.edu; ppathak@mit.edu RI Angrist, Josh/ADL-8782-2022 FU Laura and John Arnold Foundation; National Science Foundation [SES-1056325, SES-1426541]; Direct For Social, Behav & Economic Scie; Divn Of Social and Economic Sciences [1056325] Funding Source: National Science Foundation FX We thank Alisha Chiarelli, Brian Eschbacher, Van Schoales, and the staff at Denver Public Schools for answering our questions and facilitating access to data. Nikhil Agarwal, Isaiah Andrews, Eduardo Azevedo, Gary Chamberlain, Victor Chernozhukov, Dean Eckles, Jerry Hausman, Peter Hull, Hide Ichimura, Guido Imbens, Rafael Lalive, Edward Lazear, Jacob Leshno, Anna Mikuscheva, Paul Rosenbaum, Chris Walters, and seminar participants at Harvard, SOLE, Stanford University, MIT, Duke University, the Fall 2015 NBER market design meeting, Kyoto, Osaka, and Tokyo provided helpful feedback. We are especially indebted to Mayara Felix, Ye Ji Kee, and Ignacio Rodriguez for expert research assistance and to MIT SEII program managers Annice Correia and Eryn Heying for invaluable administrative support. We gratefully acknowledge funding from the Laura and John Arnold Foundation and the National Science Foundation (under awards SES-1056325 and SES-1426541). Data from Denver Public Schools were made available to us through the Institute for Innovation in Public School Choice. Abdulkadiroglu and Pathak are Scientific Advisory Board members of the Institute for Innovation in Public School Choice. Angrist's daughter teaches at a Boston charter school. CR Abadie A, 2003, J ECONOMETRICS, V113, P231, DOI 10.1016/S0304-4076(02)00201-4 Abadie A, 2002, J AM STAT ASSOC, V97, P284, DOI 10.1198/016214502753479419 Abadie A, 2016, ECONOMETRICA, V84, P781, DOI 10.3982/ECTA11293 Abadie Alberto, 2014, 20325 NBER Abdulkadiroglu A, 2003, AM ECON REV, V93, P729, DOI 10.1257/000282803322157061 Abdulkadiroglu A, 1998, ECONOMETRICA, V66, P689, DOI 10.2307/2998580 Abdulkadiroglu A, 2017, AM ECON REV, V107, P240, DOI 10.1257/aer.p20171111 Abdulkadiroglu A, 2016, AM ECON REV, V106, P1878, DOI 10.1257/aer.20150479 Abdulkadiroglu A, 2015, AM ECON J-MICROECON, V7, P1, DOI 10.1257/mic.20120027 Abdulkadiroglu A, 2014, ECONOMETRICA, V82, P137, DOI 10.3982/ECTA10266 Abdulkadiroglu A, 2011, Q J ECON, V126, P699, DOI 10.1093/qje/qjr017 Abdulkadirolu A., 2017, ECONOMETRICA S, V85 Abdulkadirolu A., 2015, TECHNICAL REPORT Abdulkadirolu A., 2013, 19576 NBER Abdulkadirolu A., 2006, 11965 NBER Agarwal N., 2015, WORKING PAPER Angrist J, 2004, REV ECON STAT, V86, P58, DOI 10.1162/003465304323023679 Angrist JD, 1996, J AM STAT ASSOC, V91, P444, DOI 10.2307/2291629 Angrist JD, 2009, MOSTLY HARMLESS ECONOMETRICS: AN EMPIRICISTS COMPANION, P1 Angrist JD, 2017, Q J ECON, V132, P871, DOI 10.1093/qje/qjx001 Angrist JD, 2016, J LABOR ECON, V34, P275, DOI 10.1086/683665 Angrist JD, 2013, AM ECON J-APPL ECON, V5, P1, DOI 10.1257/app.5.4.1 Angrist JD, 2012, J POLICY ANAL MANAG, V31, P837, DOI 10.1002/pam.21647 [Anonymous], 2014, EC J [Anonymous], 2022, Testing Statistical Hypotheses, DOI DOI 10.1007/978-3-030-70578-7 [Anonymous], 2002, OBSERVATIONAL STUDIE Ashlagi I, 2017, J POLIT ECON, V125, P69, DOI 10.1086/689869 Azevedo EM, 2016, J POLIT ECON, V124, P1235, DOI 10.1086/687476 Balinski M, 1999, J ECON THEORY, V84, P73, DOI 10.1006/jeth.1998.2469 Behaghel Luc, 2013, 7447 IZA Blackwell M, 2017, J AM STAT ASSOC, V112, P590, DOI 10.1080/01621459.2016.1246363 Bloom HS, 2014, J POLICY ANAL MANAG, V33, P290, DOI 10.1002/pam.21748 Budish E, 2011, J POLIT ECON, V119, P1061, DOI 10.1086/664613 Calsamiglia Caterina, 2014, WORKING PAPER Che YK, 2010, ECONOMETRICA, V78, P1625, DOI 10.3982/ECTA8354 Chen Y, 2017, J POLIT ECON, V125, P99, DOI 10.1086/689773 Cohodes S., 2016, 6 SEII Connors S., 2013, INNOVATION SCH DPS Y Cullen JB, 2006, ECONOMETRICA, V74, P1191, DOI 10.1111/j.1468-0262.2006.00702.x Dehejia RH, 1999, J AM STAT ASSOC, V94, P1053, DOI 10.2307/2669919 Deming DJ, 2014, AM ECON REV, V104, P991, DOI 10.1257/aer.104.3.991 Deming DJ, 2011, Q J ECON, V126, P2063, DOI 10.1093/qje/qjr036 desHaan M., 2015, WORKING PAPER Dobbie W, 2014, AM ECON J-APPL ECON, V6, P58, DOI 10.1257/app.6.3.58 Dobbie W, 2011, AM ECON J-APPL ECON, V3, P158, DOI 10.1257/app.3.3.158 Dur U., 2014, 18981 NBER Ergin H, 2006, J PUBLIC ECON, V90, P215, DOI 10.1016/j.jpubeco.2005.02.002 Froelich M, 2007, J ECONOMETRICS, V139, P35, DOI 10.1016/j.jeconom.2006.06.004 GALE D, 1962, AM MATH MON, V69, P9, DOI 10.2307/2312726 Gleason PM, 2014, EDUC FINANC POLICY, V9, P36, DOI 10.1162/EDFP_a_00119 Hahn JY, 1998, ECONOMETRICA, V66, P315, DOI 10.2307/2998560 Hastings Justine S, 2009, WORKING PAPER Hirano K, 2003, ECONOMETRICA, V71, P1161, DOI 10.1111/1468-0262.00442 Hong H, 2010, QUANT ECON, V1, P279, DOI 10.3982/QE43 Hoxby C., 2009, WORKING PAPER Hull P. D., 2016, WORKING PAPER Imbens GW, 2000, BIOMETRIKA, V87, P706, DOI 10.1093/biomet/87.3.706 Imbens GW, 2015, CAUSAL INFERENCE FOR STATISTICS, SOCIAL, AND BIOMEDICAL SCIENCES: AN INTRODUCTION, P1, DOI 10.1017/CBO9781139025751 IMBENS GW, 1994, ECONOMETRICA, V62, P467, DOI 10.2307/2951620 Jackson CK, 2010, ECON J, V120, P1399, DOI 10.1111/j.1468-0297.2010.02371.x Kesten O, 2015, THEOR ECON, V10, P543, DOI 10.3982/TE1558 Kojima F, 2009, AM ECON REV, V99, P608, DOI 10.1257/aer.99.3.608 Lee Sang Yoon, 2014, WORKING PAPER Lucas AM, 2014, AM ECON J-APPL ECON, V6, P234, DOI 10.1257/app.6.3.234 Moulin HJ, 2003, FAIR DIVISION AND COLLECTIVE WELFARE, P1 NEWEY WK, 1990, ECONOMETRICA, V58, P809, DOI 10.2307/2938351 Okui R, 2012, STAT SINICA, V22, P173, DOI 10.5705/ss.2009.265 Pathak P. A., 2016, WORKING PAPER Pathak PA, 2008, AM ECON REV, V98, P1636, DOI 10.1257/aer.98.4.1636 Pathak PA, 2013, AM ECON REV, V103, P80, DOI 10.1257/aer.103.1.80 Pathak PA, 2011, THEOR ECON, V6, P1, DOI 10.3982/TE816 Pop-Eleches C, 2013, AM ECON REV, V103, P1289, DOI 10.1257/aer.103.4.1289 Robins J., 2000, P AM STAT ASS SECT B ROSENBAUM PR, 1987, J AM STAT ASSOC, V82, P387, DOI 10.2307/2289440 ROSENBAUM PR, 1983, BIOMETRIKA, V70, P41, DOI 10.1093/biomet/70.1.41 Roth AE, 1990, ECONOMETRIC SOC MONO, DOI [10.1017/CCOL052139015X, DOI 10.1017/CCOL052139015X] Shao J., 1995, SPRINGER SERIES STAT, DOI [10.1007/978-1-4612-0795-5, DOI 10.1007/978-1-4612-0795-5] Shapley L, 1974, J. Math. Econom, V1, P23 Shapley L.S., 2016, CONTRIBUTIONS THEORY, P307, DOI 10.1515/9781400881970-018 Sonmez, 2016, 22109 NBER Svensson LG, 1999, SOC CHOICE WELFARE, V16, P557, DOI 10.1007/s003550050160 Teh B.R., 2010, Student achievement in New York City middle schools affiliated with Achievement First and Uncommon Schools van der Vaart Aad W., 1998, Asymptotic statistics. Cambridge series in statistical and probabilistic mathematics, DOI 10.1017/CBO9780511802256 Yang S, 2016, BIOMETRICS, V72, P1055, DOI 10.1111/biom.12505 NR 84 TC 52 Z9 80 U1 4 U2 51 PU WILEY PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0012-9682 EI 1468-0262 J9 ECONOMETRICA JI Econometrica PD SEP PY 2017 VL 85 IS 5 BP 1373 EP 1432 DI 10.3982/ECTA13925 PG 60 WC Economics; Mathematics, Interdisciplinary Applications; Social Sciences, Mathematical Methods; Statistics & Probability WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Business & Economics; Mathematics; Mathematical Methods In Social Sciences GA FI6NA UT WOS:000412112000002 OA Green Submitted, Green Published, Bronze DA 2024-09-05 ER PT J AU Rose, RA Cosgrove, JA Lee, BR AF Rose, Roderick A. Cosgrove, John A. Lee, Bethany R. TI Directed Acyclic Graphs in Social Work Research and Evaluation: A Primer SO JOURNAL OF THE SOCIETY FOR SOCIAL WORK AND RESEARCH LA English DT Article DE directed acyclic graph; causal inference; confounding; quasi-experiment; observational data ID CAUSAL INFERENCE; TOOL AB Social work aspires to change social outcomes through policy and practice. Thus, researchers often use quantitative analysis to understand how social phenomena or policy and practice interventions change outcomes, but these causal questions cannot be answered using statistical association only. Directed acyclic graphs (DAGs), also called causal graphs, are a framework for representing assumptions about the causal relations between variables, imbuing statistical associations with causal meaning. This visual language may be more accessible than a math-based approach. We provide social work researchers with clear guidelines for using DAGs. First, we synthesize the current DAG literature and show how many statistical phenomena are represented in DAGs. Second, we describe an ordered process for building a DAG around a causal question about the impact of a treatment on an outcome. Third, we introduce a structured process called "clock and grid" for specifying the confounders that must be accounted for to estimate the unbiased causal effect. Throughout, we use working examples of social work evaluation scenarios to facilitate understanding of these concepts. We argue that DAGs represent an end-to-end conceptual framework for curating subject area knowledge that can advance social work research by informing design and analysis. C1 [Rose, Roderick A.; Lee, Bethany R.] Univ Maryland, Sch Social Work, College Pk, MD USA. [Cosgrove, John A.] Westat Corp, Rockville, MD USA. [Rose, Roderick A.] 525 West Redwood St, Baltimore, MD 21201 USA. C3 University System of Maryland; University of Maryland College Park; Westat RP Rose, RA (corresponding author), 525 West Redwood St, Baltimore, MD 21201 USA. EM rrose@ssw.umaryland.edu CR Ahn H, 2018, RES SOCIAL WORK PRAC, V28, P952, DOI 10.1177/1049731516666328 ANDERSEN RM, 1995, J HEALTH SOC BEHAV, V36, P1, DOI 10.2307/2137284 Austin AE, 2019, CHILD ABUSE NEGLECT, V91, P78, DOI 10.1016/j.chiabu.2019.02.011 Bareinboim E, 2014, AAAI CONF ARTIF INTE, P2410 Cosgrove JA, 2024, J SOC SOC WORK RES, V15, P5, DOI 10.1086/719038 Elwert F, 2014, ANNU REV SOCIOL, V40, P31, DOI 10.1146/annurev-soc-071913-043455 Foster EM, 2010, DEV PSYCHOL, V46, P1454, DOI 10.1037/a0020204 Greenland S, 1999, EPIDEMIOLOGY, V10, P37, DOI 10.1097/00001648-199901000-00008 Lanier P, 2022, CHILD ADOLESC SOC WO, V39, P303, DOI 10.1007/s10560-021-00758-9 Lewis M. A., 2015, J APPL QUANTITATIVE, V10, P60 Morgan SL, 2007, ANAL METHOD SOC RES, P1, DOI 10.1017/CBO9780511804564 Pearl Judea, 2009, Causality: Models, reasoning, and inference, V2 Robst J, 2012, COMMUNITY MENT HLT J, V48, P284, DOI 10.1007/s10597-011-9438-1 Rose R. A., 2024, DAGS PRIMER RESOURCE Shrier I, 2008, BMC MED RES METHODOL, V8, DOI 10.1186/1471-2288-8-70 Stone S, 2014, RES SOCIAL WORK PRAC, V24, P552, DOI 10.1177/1049731514541214 Textor J, 2011, EPIDEMIOLOGY, V22, P745, DOI 10.1097/EDE.0b013e318225c2be NR 17 TC 0 Z9 0 U1 0 U2 0 PU UNIV CHICAGO PRESS PI CHICAGO PA 1427 E 60TH ST, CHICAGO, IL 60637-2954 USA SN 2334-2315 EI 1948-822X J9 J SOC SOC WORK RES JI J. Soc. Soc. Work Res. PD JUN 1 PY 2024 VL 15 IS 2 BP 391 EP 415 DI 10.1086/723606 EA JUN 2024 PG 25 WC Social Work WE Social Science Citation Index (SSCI) SC Social Work GA XZ6L9 UT WOS:001243418600001 DA 2024-09-05 ER PT J AU Ezugwu, AE Shukla, AK Nath, R Akinyelu, AA Agushaka, JO Chiroma, H Muhuri, PK AF Ezugwu, Absalom E. Shukla, Amit K. Nath, Rahul Akinyelu, Andronicus A. Agushaka, Jeffery O. Chiroma, Haruna Muhuri, Pranab K. TI Metaheuristics: a comprehensive overview and classification along with bibliometric analysis SO ARTIFICIAL INTELLIGENCE REVIEW LA English DT Article DE Metaheuristics; Bibliometric; Inspirational source; Classification; Taxonomy; Application areas ID HEURISTIC OPTIMIZATION ALGORITHM; NUMERICAL FUNCTION OPTIMIZATION; SYMBIOTIC ORGANISMS SEARCH; NATURE-INSPIRED ALGORITHM; GLOBAL OPTIMIZATION; SWARM-INTELLIGENCE; EVOLUTIONARY ALGORITHM; EFFICIENT ALGORITHM; DESIGN; COLONY AB Research in metaheuristics for global optimization problems are currently experiencing an overload of wide range of available metaheuristic-based solution approaches. Since the commencement of the first set of classical metaheuristic algorithms namely genetic, particle swarm optimization, ant colony optimization, simulated annealing and tabu search in the early 70s to late 90s, several new advancements have been recorded with an exponential growth in the novel proposals of new generation metaheuristic algorithms. Because these algorithms are neither entirely judged based on their performance values nor according to the useful insight they may provide, but rather the attention is given to the novelty of the processes they purportedly models, these area of study will continue to periodically see the arrival of several new similar techniques in the future. However, there is an obvious reason to keep track of the progressions of these algorithms by collating their general algorithmic profiles in terms of design inspirational source, classification based on swarm or evolutionary search concept, existing variation from the original design, and application areas. In this paper, we present a relatively new taxonomic classification list of both classical and new generation sets of metaheuristic algorithms available in the literature, with the aim of providing an easily accessible collection of popular optimization tools for the global optimization research community who are at the forefront in utilizing these tools for solving complex and difficult real-world problems. Furthermore, we also examined the bibliometric analysis of this field of metaheuristic for the last 30 years. C1 [Ezugwu, Absalom E.; Agushaka, Jeffery O.] Univ KwaZulu Natal, Sch Math Stat & Comp Sci, King Edward Rd, ZA-3201 Pietermaritzburg, South Africa. [Shukla, Amit K.; Nath, Rahul; Muhuri, Pranab K.] South Asian Univ, Dept Comp Sci, New Delhi 110021, India. [Akinyelu, Andronicus A.] Univ Free State, Dept Comp Sci & Informat, ZA-9301 Bloemfontein, South Africa. [Chiroma, Haruna] Natl Yunlin Univ Sci & Technol, Dept Comp Sci & Informat Engn, Yuanlin, Taiwan. [Shukla, Amit K.] Univ Jyvaskyla, Fac Informat Technol, Box 35 Agora, Jyvaskyla 40014, Finland. C3 University of Kwazulu Natal; South Asian University (SAU); University of the Free State; National Yunlin University Science & Technology; University of Jyvaskyla RP Shukla, AK (corresponding author), South Asian Univ, Dept Comp Sci, New Delhi 110021, India.; Shukla, AK (corresponding author), Univ Jyvaskyla, Fac Informat Technol, Box 35 Agora, Jyvaskyla 40014, Finland. EM amitkshukla@live.com RI Shukla, Amit k./AAX-5624-2021; Ezugwu, Absalom El-Shamir/HTN-9866-2023; Agushaka, Ovre Jeffrey/AEI-6796-2022; MUHURI, PRANAB K./F-4301-2015; Haruna, Ph.D Chiroma/O-2934-2013; Ezugwu, Absalom El-Shamir/AIE-3466-2022 OI Ezugwu, Absalom El-Shamir/0000-0002-3721-3400; Agushaka, Ovre Jeffrey/0000-0001-8742-7522; MUHURI, PRANAB K./0000-0001-7122-7622; Ezugwu, Absalom El-Shamir/0000-0002-3721-3400 CR Abbass HA, 2001, IEEE C EVOL COMPUTAT, P207, DOI 10.1109/CEC.2001.934391 Abdechiri M, 2013, APPL SOFT COMPUT, V13, P2932, DOI 10.1016/j.asoc.2012.03.068 Abedinia O, 2016, COMPLEXITY, V21, P97, DOI 10.1002/cplx.21634 Abedinpourshotorban H, 2016, SWARM EVOL COMPUT, V26, P8, DOI 10.1016/j.swevo.2015.07.002 Adham MT, 2014, 2014 IEEE INTERNATIONAL CONFERENCE ON EVOLVABLE SYSTEMS (ICES), P149, DOI 10.1109/ICES.2014.7008734 Ahmadi-Javid A, 2011, IEEE C EVOL COMPUTAT, P2586 Ahrari A, 2010, APPL SOFT COMPUT, V10, P1132, DOI 10.1016/j.asoc.2009.11.032 Al-Obaidi ATS, 2017, INT J PERCEPT COGN C, V3 Alatas B, 2011, EXPERT SYST APPL, V38, P13170, DOI 10.1016/j.eswa.2011.04.126 Alauddin M, 2016, 2016 INTERNATIONAL CONFERENCE ON ELECTRICAL, ELECTRONICS, AND OPTIMIZATION TECHNIQUES (ICEEOT), P79, DOI 10.1109/ICEEOT.2016.7754783 Almonacid B, 2019, NAT COMPUT, V18, P351, DOI 10.1007/s11047-018-9675-0 Alonso S, 2009, J INFORMETR, V3, P273, DOI 10.1016/j.joi.2009.04.001 Alsattar HA, 2020, ARTIF INTELL REV, V53, P2237, DOI 10.1007/s10462-019-09732-5 Amirbagheri K, 2019, CLEAN TECHNOL ENVIR, V21, P3, DOI 10.1007/s10098-018-1624-1 ANANDARAMAN C, 2012, JURNAL TEKNIK IND, V14, P1, DOI DOI 10.9744/JTI.14.1.1-12 Anita, 2019, SWARM EVOL COMPUT, V48, P93, DOI 10.1016/j.swevo.2019.03.013 [Anonymous], 2000, P GECCO00 LAS VEG NV [Anonymous], 2017, TREE PHYSL OPTIMIZAT Mora-Gutiérrez RA, 2014, ARTIF INTELL REV, V41, P301, DOI 10.1007/s10462-011-9309-8 Ardjmand E, 2012, LECT NOTES COMPUT SC, V7331, P233, DOI 10.1007/978-3-642-30976-2_28 Arnaout, 2014, WORM OPTIMIZATION NO, P2499 Arnold DV, 2002, IEEE T EVOLUT COMPUT, V6, P30, DOI [10.1109/4235.985690, 10.1023/A:1015059928466] Arora S, 2019, SOFT COMPUT, V23, P715, DOI 10.1007/s00500-018-3102-4 Askari, 2012, INTELLIGENT GRAVITAT, P98 Askari Q, 2020, KNOWL-BASED SYST, V195, DOI 10.1016/j.knosys.2020.105709 Askarzadeh A, 2016, COMPUT STRUCT, V169, P1, DOI 10.1016/j.compstruc.2016.03.001 Askarzadeh A, 2014, COMMUN NONLINEAR SCI, V19, P1213, DOI 10.1016/j.cnsns.2013.08.027 Atashpaz-Gargari E, 2007, IEEE C EVOL COMPUTAT, P4661, DOI 10.1109/cec.2007.4425083 Bader J, 2011, EVOL COMPUT, V19, P45, DOI 10.1162/EVCO_a_00009 Bansal JC, 2014, MEMET COMPUT, V6, P31, DOI 10.1007/s12293-013-0128-0 BastosFilho, 2008, NOVEL SEARCH ALGORIT, P2646 Bayraktar Z, 2010, 2010 IEEE INT S ANTE Beiranvand H, 2015, INT J COMPUT INTELL, V14, DOI 10.1142/S1469026815500170 Birbil SI, 2003, J GLOBAL OPTIM, V25, P263, DOI 10.1023/A:1022452626305 BISHOP JM, 1989, IEE CONF PUBL, P329 Biyanto TR, 2017, PROCEDIA COMPUT SCI, V124, P151, DOI 10.1016/j.procs.2017.12.141 Biyanto TR, 2016, LECT NOTES COMPUT SC, V9712, P39, DOI 10.1007/978-3-319-41000-5_4 Biyanto TR, 2017, RAIN WATER OPTIMIZAT Bodaghi Mohammad., 2019, IRAN J COMPUTER SCI, V2, P23, DOI [DOI 10.1007/S42044-018-0025-2, 10.1007/s42044-018-0025-2] Borji A, 2007, LECT NOTES ARTIF INT, V4827, P61 Bozorg-Haddad O, 2006, WATER RESOUR MANAG, V20, P661, DOI 10.1007/s11269-005-9001-3 Brabazon A, 2016, SOFT COMPUT, V20, P525, DOI 10.1007/s00500-014-1520-5 BROADUS RN, 1987, SCIENTOMETRICS, V12, P373, DOI 10.1007/BF02016680 Brownlee J., 2011, Clever algorithms: nature-inspired programming recipes Cai W, 2008, International Conference on Intelligent Computation Technology and Automation, Vol 1, Proceedings, P1194, DOI 10.1109/ICICTA.2008.416 Cai XJ, 2012, SENSOR LETT, V10, P1653, DOI 10.1166/sl.2012.2608 Canayaz M, 2016, APPL INTELL, V44, P362, DOI 10.1007/s10489-015-0706-6 Cao JL, 2012, LECT NOTES COMPUT SC, V7331, P29, DOI 10.1007/978-3-642-30976-2_4 Ceschia S, 2011, J SCHEDULING, V14, P601, DOI 10.1007/s10951-010-0213-x Chen, 2010, DISCRETE DYN NAT SOC Chen CC, 2015, IEEE SYS MAN CYBERN, P1595, DOI 10.1109/SMC.2015.282 Chen S, 2009, IEEE C EVOL COMPUTAT, P1745, DOI 10.1109/CEC.2009.4983152 Chen TG, 2009, INTERNATIONAL JOINT CONFERENCE ON COMPUTATIONAL SCIENCES AND OPTIMIZATION, VOL 2, PROCEEDINGS, P864, DOI 10.1109/CSO.2009.183 Cheng L, 2018, APPL SCI-BASEL, V8, DOI 10.3390/app8030329 Cheng MY, 2014, COMPUT STRUCT, V139, P98, DOI 10.1016/j.compstruc.2014.03.007 Cheraghalipour A, 2018, ENG APPL ARTIF INTEL, V72, P393, DOI 10.1016/j.engappai.2018.04.021 Chu SC, 2006, LECT NOTES ARTIF INT, V4099, P854 Chuang CL, 2007, IEEE C EVOL COMPUTAT, P3157, DOI 10.1109/CEC.2007.4424875 Civicioglu P, 2013, APPL MATH COMPUT, V219, P8121, DOI 10.1016/j.amc.2013.02.017 Civicioglu P, 2013, INFORM SCIENCES, V229, P58, DOI 10.1016/j.ins.2012.11.013 Civicioglu P, 2012, COMPUT GEOSCI-UK, V46, P229, DOI 10.1016/j.cageo.2011.12.011 Cobo MJ, 2015, KNOWL-BASED SYST, V80, P3, DOI 10.1016/j.knosys.2014.12.035 COLORNI A, 1992, FROM ANIM ANIMAT, P134 Comellas F, 2009, WORLD SUMMIT ON GENETIC AND EVOLUTIONARY COMPUTATION (GEC 09), P811 Cortés P, 2008, COMPUT OPER RES, V35, P2840, DOI 10.1016/j.cor.2006.12.018 Covic N, 2020, IEEE ACCESS, V8, P53883, DOI 10.1109/ACCESS.2020.2981196 Cuevas E, 2015, INT J BIO-INSPIR COM, V7, P402, DOI 10.1504/IJBIC.2015.073178 Cuevas E, 2012, DISCRETE DYN NAT SOC, V2012, DOI 10.1155/2012/638275 Cuevas E, 2013, EXPERT SYST APPL, V40, P6374, DOI 10.1016/j.eswa.2013.05.041 Cuevas E, 2012, INFORM SCIENCES, V182, P40, DOI 10.1016/j.ins.2010.12.024 Cui XH, 2006, J SYST ARCHITECT, V52, P505, DOI 10.1016/j.sysarc.2006.02.003 Cui ZH, 2013, ELSEV INSIGHT, P351, DOI 10.1016/B978-0-12-405163-8.00016-8 Dai CH, 2006, 2006 INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND SECURITY, PTS 1 AND 2, PROCEEDINGS, P225, DOI 10.1109/ICCIAS.2006.294126 Dasgupta D, 2003, IEEE C EVOL COMPUTAT, P123, DOI 10.1109/CEC.2003.1299565 Daskin A, 2011, MOL PHYS, V109, P761, DOI 10.1080/00268976.2011.552444 de Melo VV, 2014, GECCO'14: PROCEEDINGS OF THE 2014 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, P895, DOI 10.1145/2576768.2598264 Deb K, 2002, IEEE T EVOLUT COMPUT, V6, P182, DOI 10.1109/4235.996017 Deb S, 2015, 2015 TENTH INTERNATIONAL CONFERENCE ON DIGITAL INFORMATION MANAGEMENT (ICDIM), P249, DOI 10.1109/ICDIM.2015.7381893 Del Ser J., 2019, Foreword: New theoretical insights and practical applications of bio-inspired computation approaches Dhiman G, 2018, KNOWL-BASED SYST, V159, P20, DOI 10.1016/j.knosys.2018.06.001 Dhiman G, 2017, ADV ENG SOFTW, V114, P48, DOI 10.1016/j.advengsoft.2017.05.014 Dogan B, 2015, INFORM SCIENCES, V293, P125, DOI 10.1016/j.ins.2014.08.053 Dokeroglu T, 2019, COMPUT IND ENG, V137, DOI 10.1016/j.cie.2019.106040 Dorigo M, 2006, IEEE COMPUT INTELL M, V1, P28, DOI 10.1109/MCI.2006.329691 Du HF, 2006, LECT NOTES COMPUT SC, V4222, P264 Duan H., 2014, International journal of intelligent computing and cybernetics DUAN QY, 1993, J OPTIMIZ THEORY APP, V76, P501, DOI 10.1007/BF00939380 DUECK G, 1993, J COMPUT PHYS, V104, P86, DOI 10.1006/jcph.1993.1010 Duman E, 2012, INFORM SCIENCES, V217, P65, DOI 10.1016/j.ins.2012.06.032 Eberhart R, 1995, P 6 INT S MICR HUM S, P39, DOI DOI 10.1109/MHS.1995.494215 Ebrahimi A, 2016, J NAT GAS SCI ENG, V29, P211, DOI 10.1016/j.jngse.2016.01.001 Eesa AS, 2015, EXPERT SYST APPL, V42, P2670, DOI 10.1016/j.eswa.2014.11.009 Eita MA, 2010, RESEARCH AND DEVELOPMENT IN INTELLIGENT SYSTEMS XXVI, P195, DOI 10.1007/978-1-84882-983-1_14 El-Dosuky, 2012, ARXIV PREPRINT ARXIV Erol OK, 2006, ADV ENG SOFTW, V37, P106, DOI 10.1016/j.advengsoft.2005.04.005 Eskandar H, 2012, COMPUT STRUCT, V110, P151, DOI 10.1016/j.compstruc.2012.07.010 Eusuff MM, 2003, J WATER RES PLAN MAN, V129, P210, DOI 10.1061/(ASCE)0733-9496(2003)129:3(210) Ezugwu AE, 2020, NEURAL COMPUT APPL, V32, P6207, DOI 10.1007/s00521-019-04132-w Ezugwu AE, 2019, EXPERT SYST APPL, V119, P184, DOI 10.1016/j.eswa.2018.10.045 Farasat A, 2010, APPL SOFT COMPUT, V10, P1284, DOI 10.1016/j.asoc.2010.05.011 Fard AF, 2016, IEEE INT C IND ENG, P33 Felipe D, 2014, 2014 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), P873, DOI 10.1109/CEC.2014.6900556 Feng X, 2016, COMPUT INTELL-US, V32, P284, DOI 10.1111/coin.12053 Ferreira C., 2001, Complex Systems, V13, P87 Findik O, 2015, TURK J ELECTR ENG CO, V23, P2225, DOI 10.3906/elk-1307-123 Fister, 2013, ARXIV PREPRINT ARXIV Formato RA, 2007, PROG ELECTROMAGN RES, V77, P425, DOI 10.2528/PIER07082403 Franceschini F, 2010, EUR J OPER RES, V203, P494, DOI 10.1016/j.ejor.2009.08.001 Gandomi AH, 2014, ISA T, V53, P1168, DOI 10.1016/j.isatra.2014.03.018 Gandomi AH, 2012, COMMUN NONLINEAR SCI, V17, P4831, DOI 10.1016/j.cnsns.2012.05.010 Gao, 2018, NOVEL METAHEURISTIC Geem ZW, 2001, SIMULATION, V76, P60, DOI 10.1177/003754970107600201 Ghaemi M, 2014, EXPERT SYST APPL, V41, P6676, DOI 10.1016/j.eswa.2014.05.009 Gheraibia Y., 2013, RECENT TRENDS APPL A, P222, DOI DOI 10.1007/978-3-642-38577-3_23 Ghorbani N, 2014, APPL SOFT COMPUT, V19, P177, DOI 10.1016/j.asoc.2014.02.006 GLOVER F, 1986, COMPUT OPER RES, V13, P533, DOI 10.1016/0305-0548(86)90048-1 Glover F., 1977, DECIS SCI, V8, P156, DOI [DOI 10.1111/J.1540-5915.1977.TB01074.X, 10.1111/j.1540-5915.1977.tb01074.x] Greensmith J, 2005, LECT NOTES COMPUT SC, V3627, P153 Hajiaghaei-Keshteli M, 2014, APPL SOFT COMPUT, V25, P184, DOI 10.1016/j.asoc.2014.09.034 Hansen N, 2003, EVOL COMPUT, V11, P1, DOI 10.1162/106365603321828970 Harifi S, 2019, EVOL INTELL, V12, P211, DOI 10.1007/s12065-019-00212-x Hatamlou A, 2014, PROG ARTIF INTELL, V2, P167, DOI 10.1007/s13748-014-0046-5 Hatamlou A, 2013, INFORM SCIENCES, V222, P175, DOI 10.1016/j.ins.2012.08.023 Havens T C., 2008, Roach Infestation Optimization, P1 He S, 2006, IEEE C EVOL COMPUTAT, P1257 He XX, 2015, 2015 1ST INTERNATIONAL CONFERENCE ON INDUSTRIAL NETWORKS AND INTELLIGENT SYSTEMS (INISCOM), P157, DOI 10.4108/icst.iniscom.2015.258990 Hedayatzadeh Ramin, 2010, 2010 18th Iranian Conference on Electrical Engineering (ICEE), P553, DOI 10.1109/IRANIANCEE.2010.5507009 Heidari AA, 2019, FUTURE GENER COMP SY, V97, P849, DOI 10.1016/j.future.2019.02.028 Hernández H, 2012, SWARM INTELL-US, V6, P117, DOI 10.1007/s11721-012-0067-2 Hirsch JE, 2005, P NATL ACAD SCI USA, V102, P16569, DOI 10.1073/pnas.0507655102 Nguyen HT, 2012, INT C PATT RECOG, P987 Holland J.H., 1962, Journal of the ACM, V9, P297 Holland J.H., 1978, SIGART Bull, P313, DOI [DOI 10.1016/B978-0-12-737550-2.50020-8, DOI 10.1145/1045343.1045373] Hosseini, 2017, J APPL COMPUT MATH, V6, P2 Hsiao YT, 2005, IEEE SYS MAN CYBERN, P2323 Huan TT, 2017, NEURAL COMPUT APPL, V28, pS845, DOI 10.1007/s00521-016-2379-4 Huang GQ, 2016, SWARM EVOL COMPUT, V27, P31, DOI 10.1016/j.swevo.2015.09.007 IBRAHIM MK, 2016, IRAQI J ELECT ELECT, V12, P167, DOI DOI 10.37917/IJEEE.12.2.7 IORDACHE S, 2010, P 12 ANN C GEN EV CO, P225, DOI DOI 10.1145/1830483.1830526 Irizarry R, 2004, EVOL COMPUT, V12, P435, DOI 10.1162/1063656043138897 Ishibuchi H, 2015, GECCO'15: PROCEEDINGS OF THE 2015 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, P695, DOI 10.1145/2739480.2754792 Jahani E, 2018, APPL SOFT COMPUT, V62, P987, DOI 10.1016/j.asoc.2017.09.035 Jain M, 2019, SWARM EVOL COMPUT, V44, P148, DOI 10.1016/j.swevo.2018.02.013 Janmaijaya M, 2018, PUBLICATIONS-BASEL, V6, DOI 10.3390/publications6030032 Javidy B, 2015, APPL SOFT COMPUT, V32, P72, DOI 10.1016/j.asoc.2015.03.035 Jin, 2010, NATURE INSPIRED EVOL, P1643 Jung SH, 2003, ELECTRON LETT, V39, P575, DOI 10.1049/el:20030383 Kaboli SHA, 2017, J COMPUT SCI-NETH, V19, P31, DOI 10.1016/j.jocs.2016.12.010 Kadioglu S, 2009, LECT NOTES COMPUT SC, V5732, P486, DOI 10.1007/978-3-642-04244-7_39 Kallioras NA, 2018, ADV ENG SOFTW, V121, P147, DOI 10.1016/j.advengsoft.2018.04.007 Karaboga D., 2005, An Idea Based On Honey Bee Swarm for Numerical Optimization, P1, DOI DOI 10.4236/JSS.2015.36009 Karaboga D, 2007, J GLOBAL OPTIM, V39, P459, DOI 10.1007/s10898-007-9149-x Karci A, 2006, LECT NOTES COMPUT SC, V4224, P386 Kashan AH, 2009, 2009 INTERNATIONAL CONFERENCE OF SOFT COMPUTING AND PATTERN RECOGNITION, P43, DOI 10.1109/SoCPaR.2009.21 Kashan AH, 2015, COMPUT OPER RES, V55, P99, DOI 10.1016/j.cor.2014.10.011 Kashan AH, 2014, APPL SOFT COMPUT, V16, P171, DOI 10.1016/j.asoc.2013.12.005 Kaveh A, 2020, STRUCTURES, V25, P520, DOI 10.1016/j.istruc.2020.03.033 Kaveh A, 2017, ADV ENG SOFTW, V110, P69, DOI 10.1016/j.advengsoft.2017.03.014 Kaveh A, 2017, SCI IRAN, V24, P551, DOI 10.24200/sci.2017.2417 Kaveh A, 2016, COMPUT STRUCT, V167, P69, DOI 10.1016/j.compstruc.2016.01.008 Kaveh A, 2014, COMPUT STRUCT, V139, P18, DOI 10.1016/j.compstruc.2014.04.005 Kaveh A, 2013, ADV ENG SOFTW, V59, P53, DOI 10.1016/j.advengsoft.2013.03.004 Kaveh A, 2012, COMPUT STRUCT, V112, P283, DOI 10.1016/j.compstruc.2012.09.003 Kaveh A, 2010, ACTA MECH, V213, P267, DOI 10.1007/s00707-009-0270-4 Kaveh A., 2016, Int. J. Optim. Civ. Eng, V6, P469 Kaveh A, 2020, ENG COMPUTATION, V37, P2357, DOI 10.1108/EC-10-2019-0481 Kazikova, 2017, PROPOSAL NEW SWARM O, P146 Kennedy J, 1995, 1995 IEEE INTERNATIONAL CONFERENCE ON NEURAL NETWORKS PROCEEDINGS, VOLS 1-6, P1942, DOI 10.1109/icnn.1995.488968 Kiran MS, 2015, EXPERT SYST APPL, V42, P6686, DOI 10.1016/j.eswa.2015.04.055 KIRKPATRICK S, 1983, SCIENCE, V220, P671, DOI 10.1126/science.220.4598.671 Klein, 2018, CHEETAH BASED OPTIMI Klein CE, 2018, MEERKATS INSPIRED AL Koohi SZ, 2019, IEEE ACCESS, V7, P5383, DOI 10.1109/ACCESS.2018.2882568 Krishnanand K. N., 2009, Swarm Intelligence, V3, P87, DOI 10.1007/s11721-008-0021-5 Kumar A, 2017, IEEE C EVOL COMPUTAT, P1835, DOI 10.1109/CEC.2017.7969524 Labbi Y, 2016, INT J ELEC POWER, V79, P298, DOI 10.1016/j.ijepes.2016.01.028 Laengle S, 2017, EUR J OPER RES, V262, P803, DOI 10.1016/j.ejor.2017.04.027 Lam AYS, 2010, IEEE T EVOLUT COMPUT, V14, P381, DOI 10.1109/TEVC.2009.2033580 Li MD, 2016, ADV ENG SOFTW, V92, P65, DOI 10.1016/j.advengsoft.2015.11.004 Li MD, 2016, APPL SOFT COMPUT, V39, P199, DOI 10.1016/j.asoc.2015.11.015 Li XT, 2014, NEURAL COMPUT APPL, V24, P1867, DOI 10.1007/s00521-013-1433-8 [李晓磊 Li Xiaolei], 2002, [系统工程理论与实践, Systems Engineering-Theory & Practice], V22, P32 Liang YC, 2016, ENG OPTIMIZ, V48, P73, DOI 10.1080/0305215X.2014.994868 Liu CG, 2011, CHINESE J ELECTRON, V20, P212 Luo FJ, 2016, IEEE C EVOL COMPUTAT, P94, DOI 10.1109/CEC.2016.7743783 Mahmoodabadi M. J., 2018, Future Computing and Informatics Journal, V3, P191, DOI 10.1016/j.fcij.2018.03.002 Mandal S, 2018, SADHANA-ACAD P ENG S, V43, DOI 10.1007/s12046-017-0780-z Mehrabian AR, 2006, ECOL INFORM, V1, P355, DOI 10.1016/j.ecoinf.2006.07.003 Melvix JSML, 2014, IEEE INT ADV COMPUT, P1157, DOI 10.1109/IAdCC.2014.6779490 Meng XB, 2016, J EXP THEOR ARTIF IN, V28, P673, DOI 10.1080/0952813X.2015.1042530 Meng XB, 2014, LECT NOTES COMPUT SC, V8794, P86, DOI 10.1007/978-3-319-11857-4_10 Merigó JM, 2015, J BUS RES, V68, P2645, DOI 10.1016/j.jbusres.2015.04.006 Merigó JM, 2017, INT J INTELL SYST, V32, P526, DOI 10.1002/int.21859 Merrikh-Bayat, 2014, ARXIV PREPRINT ARXIV Merrikh-Bayat F, 2015, APPL SOFT COMPUT, V33, P292, DOI 10.1016/j.asoc.2015.04.048 Meyers R.A., 2009, Encyclopedia of Complexity and Systems Science Milani A, 2012, AI COMMUN, V25, P157, DOI 10.3233/AIC-2012-0526 Min H, 2011, DESIGN ANAL GROUP ES Minhas FUA, 2011, APPL SOFT COMPUT, V11, P4614, DOI 10.1016/j.asoc.2011.07.020 Mirjalili S, 2017, ADV ENG SOFTW, V114, P163, DOI 10.1016/j.advengsoft.2017.07.002 Mirjalili S, 2016, ADV ENG SOFTW, V95, P51, DOI 10.1016/j.advengsoft.2016.01.008 Mirjalili S, 2016, KNOWL-BASED SYST, V96, P120, DOI 10.1016/j.knosys.2015.12.022 Mirjalili S, 2015, KNOWL-BASED SYST, V89, P228, DOI 10.1016/j.knosys.2015.07.006 Mirjalili S, 2016, NEURAL COMPUT APPL, V27, P495, DOI 10.1007/s00521-015-1870-7 Mirjalili S, 2015, ADV ENG SOFTW, V83, P80, DOI 10.1016/j.advengsoft.2015.01.010 Mirjalili S, 2014, ADV ENG SOFTW, V69, P46, DOI 10.1016/j.advengsoft.2013.12.007 Mitchell M., 1998, An Introduction to Genetic Algorithms Mladenovic N, 1997, COMPUT OPER RES, V24, P1097, DOI 10.1016/S0305-0548(97)00031-2 Mo HW, 2013, 2013 IEEE SYMPOSIUM ON SWARM INTELLIGENCE (SIS), P240, DOI 10.1109/SIS.2013.6615185 Moein S, 2014, INFORM SCIENCES, V275, P127, DOI 10.1016/j.ins.2014.02.026 Moghdani R, 2018, APPL SOFT COMPUT, V64, P161, DOI 10.1016/j.asoc.2017.11.043 Monismith DR, 2008, 2008 IEEE SWARM INTELLIGENCE SYMPOSIUM, P130 Montiel O, 2007, INFORM SCIENCES, V177, P2075, DOI 10.1016/j.ins.2006.09.012 Moosavi SHS, 2017, ENG APPL ARTIF INTEL, V60, P1, DOI 10.1016/j.engappai.2017.01.006 Mozaffari A, 2012, INT J BIO-INSPIR COM, V4, P286, DOI 10.1504/IJBIC.2012.049889 Mucherino A, 2007, AIP CONF PROC, V953, P162, DOI 10.1063/1.2817338 Muhuri PK, 2019, ENG APPL ARTIF INTEL, V78, P218, DOI 10.1016/j.engappai.2018.11.007 Muhuri PK, 2018, APPL SOFT COMPUT, V69, P381, DOI 10.1016/j.asoc.2018.03.041 Müller SD, 2002, IEEE T EVOLUT COMPUT, V6, P16, DOI 10.1109/4235.985689 Murase H, 1999, CONTROL APPLICATIONS & ERGONOMICS IN AGRICULTURE, P19 Murata T, 1995, 1995 IEEE INTERNATIONAL CONFERENCE ON EVOLUTIONARY COMPUTATION, VOLS 1 AND 2, P289, DOI 10.1109/ICEC.1995.489161 Nara K., 1999, IEEE SMC'99 Conference Proceedings. 1999 IEEE International Conference on Systems, Man, and Cybernetics (Cat. No.99CH37028), P503, DOI 10.1109/ICSMC.1999.816603 Neshat M, 2013, NEURAL COMPUT APPL, V23, P429, DOI 10.1007/s00521-012-0939-9 Niu B, 2012, DISCRETE DYN NAT SOC, V2012, DOI 10.1155/2012/698057 Numaoka, 1996, BACTERIAL EVOLUTION, P139 Nyberg K., 2012, Flow analysis of Apache wingsuit Odili JB, 2015, PROCEDIA COMPUT SCI, V76, P443, DOI 10.1016/j.procs.2015.12.291 Oftadeh, 2009, 2009 5 INT C SOFT CO, P1, DOI DOI 10.1109/ICSCCW.2009.5379451 Omidvar R, 2015, 2015 FOURTEENTH MEXICAN INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE (MICAI), P101, DOI 10.1109/MICAI.2015.22 Osaba E, 2014, APPL INTELL, V41, P145, DOI 10.1007/s10489-013-0512-y Pan WT, 2012, KNOWL-BASED SYST, V26, P69, DOI 10.1016/j.knosys.2011.07.001 Parpinelli R. S., 2011, 2011 Third World Congress on Nature and Biologically Inspired Computing (NaBIC 2011), P466, DOI 10.1109/NaBIC.2011.6089631 Passino KM, 2002, IEEE CONTR SYST MAG, V22, P52, DOI 10.1109/MCS.2002.1004010 Patel VK, 2015, INFORM SCIENCES, V324, P217, DOI 10.1016/j.ins.2015.06.044 Pattnaik SS, 2013, APPL SOFT COMPUT, V13, P628, DOI 10.1016/j.asoc.2012.07.010 Pedroso JP, 2007, LECT NOTES COMPUT SC, V4638, P217 Pham D. T., 2005, BEES ALGORITHM, P1 Pinto P, 2005, SPRING COMP SCI, P264, DOI 10.1007/3-211-27389-1_63 Premaratne U, 2009, 2009 INTERNATIONAL CONFERENCE ON INDUSTRIAL AND INFORMATION SYSTEMS, P279, DOI 10.1109/ICIINFS.2009.5429852 PRITCHARD A, 1969, J DOC, V25, P348 Punnathanam V, 2016, ENG APPL ARTIF INTEL, V54, P62, DOI 10.1016/j.engappai.2016.04.004 Puris A, 2012, SOFT COMPUT, V16, P511, DOI 10.1007/s00500-011-0753-9 Purnomo HD, 2013, META-HEURISTICS OPTIMIZATION ALGORITHMS IN ENGINEERING, BUSINESS, ECONOMICS, AND FINANCE, P386, DOI 10.4018/978-1-4666-2086-5.ch013 Quijano Nicanor, 2007, 2007 American Control Conference, P3383, DOI 10.1109/ACC.2007.4282167 Rabanal P, 2007, LECT NOTES COMPUT SC, V4618, P163 Radcliffe N. J., 1994, Evolutionary Computing. AISB Workshop. Selected Papers, P1 Rahmani R, 2014, APPL MATH COMPUT, V248, P287, DOI 10.1016/j.amc.2014.09.102 Rajabioun R, 2011, APPL SOFT COMPUT, V11, P5508, DOI 10.1016/j.asoc.2011.05.008 Rajakumar BR, 2012, PROC TECH, V1, P126, DOI 10.1016/j.protcy.2012.10.016 Rajpurohit Jitendra, 2017, International Journal of Computer Information Systems and Industrial Management Applications, V9, P181 Rao RV, 2011, COMPUT AIDED DESIGN, V43, P303, DOI 10.1016/j.cad.2010.12.015 Raouf Osama Abdel, 2017, International Journal of Operational Research, V28, P143 Rashedi E, 2009, INFORM SCIENCES, V179, P2232, DOI 10.1016/j.ins.2009.03.004 Ray T, 2003, IEEE T EVOLUT COMPUT, V7, P386, DOI 10.1109/TEVC.2003.814902 Razmjooy N, 2016, J CONTROL AUTOM ELEC, V27, P419, DOI 10.1007/s40313-016-0242-6 Reynolds R. G., 1994, Third Annual Conference on Evolutionary Programming, P131 Rosenberg L, 2016, AAAI CONF ARTIF INTE, P4381 Rui Tang, 2012, 2012 Seventh International Conference on Digital Information Management (ICDIM 2012), P165, DOI 10.1109/ICDIM.2012.6360147 Saadi Y, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0144371 Sacco WF, 2005, NEW STOCHASTIC OPTIM Sadollah A, 2012, COMPUT STRUCT, V102, P49, DOI 10.1016/j.compstruc.2012.03.013 Salcedo-Sanz S, 2014, ScientificWorldJournal, V2014, P739768, DOI 10.1155/2014/739768 Salgotra R, 2019, NEURAL COMPUT APPL, V31, P8837, DOI 10.1007/s00521-019-04464-7 Salhi, 2011, NATURE INSPIRED OPTI Salih SQ, 2020, NEURAL COMPUT APPL, V32, P10359, DOI 10.1007/s00521-019-04575-1 Salimi H, 2015, KNOWL-BASED SYST, V75, P1, DOI 10.1016/j.knosys.2014.07.025 Saremi S, 2017, ADV ENG SOFTW, V105, P30, DOI 10.1016/j.advengsoft.2017.01.004 Savsani P, 2016, APPL MATH MODEL, V40, P3951, DOI 10.1016/j.apm.2015.10.040 Shah-Hosseini H, 2011, INT J COMPUT SCI ENG, V6, P132, DOI 10.1504/IJCSE.2011.041221 Shah-Hosseini H, 2009, INT J BIO-INSPIR COM, V1, P71, DOI 10.1504/IJBIC.2009.022775 Shah-Hosseini H, 2007, IEEE C EVOL COMPUTAT, P3226 Shareef H, 2015, APPL SOFT COMPUT, V36, P315, DOI 10.1016/j.asoc.2015.07.028 Sharma A., 2010, Proceedings 2010 11th International Symposium on Computational Intelligence and Informatics (CINTI 2010), P281, DOI 10.1109/CINTI.2010.5672231 Shehadeh HA, 2018, PROCEEDINGS OF 2018 6TH INTERNATIONAL CONFERENCE ON COMMUNICATIONS AND BROADBAND NETWORKING (ICCBN 2018), P53, DOI 10.1145/3193092.3193100 Shehadeh HA, 2018, ENERGIES, V11, DOI 10.3390/en11010097 Shen JH, 2009, INTERNATIONAL JOINT CONFERENCE ON COMPUTATIONAL SCIENCES AND OPTIMIZATION, VOL 2, PROCEEDINGS, P918, DOI 10.1109/CSO.2009.485 Shi YH, 2015, ADV COMPU INTELL ROB, P1, DOI 10.4018/978-1-4666-6328-2.ch001 Shi YH, 2011, LECT NOTES COMPUT SC, V6728, P303, DOI 10.1007/978-3-642-21515-5_36 Shukla Amit K., 2018, International Journal of Embedded and Real-Time Communication Systems, V9, P66, DOI 10.4018/IJERTCS.2018010104 Shukla AK, 2020, IEEE COMPUT INTELL M, V15, P89, DOI 10.1109/MCI.2019.2954669 Shukla AK, 2019, ENG APPL ARTIF INTEL, V85, P517, DOI 10.1016/j.engappai.2019.06.010 Simon D, 2008, IEEE T EVOLUT COMPUT, V12, P702, DOI 10.1109/TEVC.2008.919004 Singh PR, 2019, APPL SOFT COMPUT, V84, DOI 10.1016/j.asoc.2019.105723 Sörensen K, 2015, INT T OPER RES, V22, P3, DOI 10.1111/itor.12001 Storn R, 1997, J GLOBAL OPTIM, V11, P341, DOI 10.1023/A:1008202821328 Su MC, 2009, PATTERN RECOGN, V42, P2764, DOI 10.1016/j.patcog.2009.03.020 Su SB, 2007, I C WIREL COMM NETW, P6421 Subashini P, 2017, ADV INTELL SYST, V517, P285, DOI 10.1007/978-981-10-3174-8_25 SUBRAMANIAN C, 2013, INT J SOFT COMPUT, V8, P163 Sun YA, 2019, IEEE T EVOLUT COMPUT, V23, P173, DOI 10.1109/TEVC.2018.2791283 SUR C, 2013, 9 INT C COMP INF TEC, P227, DOI [DOI 10.1007/978-3-642-37371-826, DOI 10.1007/978-3-642-37371-8_26] Taherdangkoo Mohammad, 2011, Bio-Inspired Computing and Applications. 7th International Conference on Intelligent Computing, ICIC 2011.Revised Selected Papers, P394, DOI 10.1007/978-3-642-24553-4_52 Taherdangkoo M, 2013, SWARM EVOL COMPUT, V10, P1, DOI 10.1016/j.swevo.2013.01.001 Taillard ÉD, 2002, OPERAT RES COMP SCI, V15, P613 Tamura K, 2011, J ADV COMPUT INTELL, V15, P1116, DOI 10.20965/jaciii.2011.p1116 Tan Y, 2010, LECT NOTES COMPUT SC, V6145, P355 Tang DY, 2015, APPL SOFT COMPUT, V36, P670, DOI 10.1016/j.asoc.2015.07.045 Tang WJ, 2007, IEEE C EVOL COMPUTAT, P1207, DOI 10.1109/CEC.2007.4424607 Tanggong Chen, 2012, Journal of Software, V7, P651, DOI 10.4304/jsw.7.3.651-656 Tayarani MHN, 2008, IEEE C EVOL COMPUTAT, P2659, DOI 10.1109/CEC.2008.4631155 Tilahun SL, 2015, INT J INF TECH DECIS, V14, P1331, DOI 10.1142/S021962201450031X Torres-Jimenez J, 2014, APPL METAHEURISTICS Trianni A, 2018, ENERG EFFIC, V11, P1917, DOI 10.1007/s12053-018-9762-1 Tzanetos A, 2017, COMM COM INF SC, V744, P417, DOI 10.1007/978-3-319-65172-9_35 Uymaz SA, 2015, APPL SOFT COMPUT, V31, P153, DOI 10.1016/j.asoc.2015.03.003 Wang, 2013, SCI WORLD J Wang GG, 2019, NEURAL COMPUT APPL, V31, P1995, DOI 10.1007/s00521-015-1923-y Wang GG, 2018, INT J BIO-INSPIR COM, V12, P1, DOI 10.1504/IJBIC.2015.10004283 Wang G, 2016, AEROSP CONF PROC, DOI 10.1109/ICSSSM.2016.7538573 Wedyan A, 2017, J OPTIM, V2017, DOI 10.1155/2017/3828420 Weise T, 2009, GLOBAL OPTIMIZATION Wolpert D. H., 1997, IEEE Transactions on Evolutionary Computation, V1, P67, DOI 10.1109/4235.585893 Xavier AE, 2016, J HEURISTICS, V22, P649, DOI 10.1007/s10732-014-9268-8 Xiaoming Zhang, 2010, Proceedings 2010 IEEE Youth Conference on Information, Computing and Telecommunications (YC-ICT 2010), P271, DOI 10.1109/YCICT.2010.5713097 Xie LP, 2009, WOR CONG NAT BIOL, P1320 Xie XF, 2002, 2002 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS, VOLS 1-4, PROCEEDINGS, P779, DOI 10.1109/ICMLC.2002.1174487 Xin-She Yang, 2012, Unconventional Computation and Natural Computation. Proceedings of the 11th International Conference, UCNC 2012, P240, DOI 10.1007/978-3-642-32894-7_27 Xing B., 2014, Innovative Computational Intelligence: A Rough Guide to 134 Clever Algorithms, V62, DOI DOI 10.1007/978-3-319-03404-1 Xu YC, 2010, LECT NOTES COMPUT SC, V6466, P583, DOI 10.1007/978-3-642-17563-3_68 Yampolskiy RV, 2011, INT J BIO-INSPIR COM, V3, P358, DOI 10.1504/IJBIC.2011.043624 Yan GW, 2013, INT J COMPUT INTELL, V12, DOI 10.1142/S1469026813500028 Yang, 2018, ARXIV PREPRINT ARXIV Yang FC, 2007, J IND PROD ENG, V24, P475, DOI 10.1080/10170660709509062 Yang SQ, 2009, PROCEEDINGS OF THE 2009 WRI GLOBAL CONGRESS ON INTELLIGENT SYSTEMS, VOL I, P124, DOI 10.1109/GCIS.2009.464 Yang X.-S., 2010, Nature-inspired Metaheuristic Algorithms Yang XS, 2018, STUD COMPUT INTELL, V744, P1, DOI 10.1007/978-3-319-67669-2_1 Yang XS, 2009, WOR CONG NAT BIOL, P210, DOI 10.1109/nabic.2009.5393690 Yang XS, 2010, STUD COMPUT INTELL, V284, P101 Yang XS, 2010, STUD COMPUT INTELL, V284, P65, DOI 10.1007/978-3-642-12538-6_6 Yang XS, 2009, LECT NOTES COMPUT SC, V5792, P169, DOI 10.1007/978-3-642-04944-6_14 Yazdani M, 2016, J COMPUT DES ENG, V3, P24, DOI 10.1016/j.jcde.2015.06.003 Yu DJ, 2018, IEEE T FUZZY SYST, V26, P430, DOI 10.1109/TFUZZ.2017.2672732 Yu DJ, 2017, INFORM SCIENCES, V418, P619, DOI 10.1016/j.ins.2017.08.031 Yu DJ, 2015, APPL SOFT COMPUT, V32, P189, DOI 10.1016/j.asoc.2015.03.027 Yuan Y, 2014, GECCO'14: PROCEEDINGS OF THE 2014 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, P661, DOI 10.1145/2576768.2598342 Zavadskas EK, 2014, ARCH CIV MECH ENG, V14, P519, DOI 10.1016/j.acme.2014.05.008 Zelinka I, 2004, STUD FUZZ SOFT COMP, V141, P167 Zhang JH, 2018, APPL MATH MODEL, V63, P464, DOI 10.1016/j.apm.2018.06.036 Zhang LMY, 2009, 2009 IEEE INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTING AND INTELLIGENT SYSTEMS, PROCEEDINGS, VOL 1, P318, DOI 10.1109/ICICISYS.2009.5357838 Zhang QF, 2007, IEEE T EVOLUT COMPUT, V11, P712, DOI 10.1109/TEVC.2007.892759 Zhang QY, 2017, NEUROCOMPUTING, V221, P123, DOI 10.1016/j.neucom.2016.09.068 Zhang XX, 2008, 2008 THIRD INTERNATIONAL CONFERENCE ON ELECTRIC UTILITY DEREGULATION AND RESTRUCTURING AND POWER TECHNOLOGIES, VOLS 1-6, P2856 Zhao HC, 2010, NOTICE RETRACTION CO, V6, pV6 Zhao J, 2020, NEURAL COMPUT APPL, V32, P9777, DOI 10.1007/s00521-019-04510-4 Zheng YJ, 2015, COMPUT OPER RES, V55, P1, DOI 10.1016/j.cor.2014.10.008 Zheng YJ, 2014, COMPUT OPER RES, V50, P115, DOI 10.1016/j.cor.2014.04.013 Zhu GY, 2017, APPL SOFT COMPUT, V51, P294, DOI 10.1016/j.asoc.2016.11.047 Zitzler E., 2001, object Object, DOI [10.3929/ethz-a-004284029, DOI 10.3929/ETHZ-A-004284029] Zongyuan, 2003, J S CHINA U TECHNOLO, V3 Zungeru AM, 2012, J NETW COMPUT APPL, V35, P1901, DOI 10.1016/j.jnca.2012.07.014 NR 350 TC 118 Z9 122 U1 11 U2 62 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0269-2821 EI 1573-7462 J9 ARTIF INTELL REV JI Artif. Intell. Rev. PD AUG PY 2021 VL 54 IS 6 BP 4237 EP 4316 DI 10.1007/s10462-020-09952-0 EA MAR 2021 PG 80 WC Computer Science, Artificial Intelligence WE Science Citation Index Expanded (SCI-EXPANDED) SC Computer Science GA TS9CN UT WOS:000629094800001 DA 2024-09-05 ER PT J AU Vartiainen, H Vuojärvi, H Saramäki, K Eriksson, M Ratinen, I Torssonen, P Vanninen, P Pöllänen, S AF Vartiainen, Henriikka Vuojarvi, Hanna Saramaki, Kaija Eriksson, Miikka Ratinen, Ilkka Torssonen, Piritta Vanninen, Petteri Pollanen, Sinikka TI Cross-boundary collaboration and knowledge creation in an online higher education course SO BRITISH JOURNAL OF EDUCATIONAL TECHNOLOGY LA English DT Article DE cross-boundary collaboration; design-based research; higher education; knowledge creation; online learning; pedagogical development AB This study investigated an international, inter-university and multidisciplinary online course with the aim of helping higher education students develop competencies for solving complex problems in collaboration with their peers and stakeholders. The course design was informed by the knowledge creation framework and ideas about cross-boundary collaboration. We attempted to enrich perspectives on knowledge creation by investigating how higher education students (N = 42) from different fields of study and from 17 different nationalities perceived, built and regulated cross-boundary collaboration in the pursuit of real-life problems presented by companies or non-governmental organisations. Drawing on data from 11 in-depth group interviews and team reports of students who had completed this course, we showed the kinds of activities the students considered relevant for cross-boundary collaboration and knowledge creation online. Given this extended context for knowledge creation, the study contributes to the pedagogical development of online learning in higher education. C1 [Vartiainen, Henriikka; Eriksson, Miikka; Pollanen, Sinikka] Univ Eastern Finland UEF, Sch Appl Educ Sci & Teacher Educ, POB 111, FI-80101 Joensuu, Finland. [Vuojarvi, Hanna; Ratinen, Ilkka] Univ Lapland, Fac Educ, Rovaniemi, Finland. [Saramaki, Kaija] Karelia Univ Appl Sci, Energy & Environm Technol, Joensuu, Finland. [Torssonen, Piritta] Univ Eastern Finland, Sch Forest Sci, Joensuu, Finland. [Vanninen, Petteri] Nat Resources Inst Finland Savonlinna, Savonlinna, Finland. C3 University of Eastern Finland; University of Lapland; Karelia University of Applied Sciences; University of Eastern Finland; Natural Resources Institute Finland (Luke) RP Vartiainen, H (corresponding author), Univ Eastern Finland UEF, Sch Appl Educ Sci & Teacher Educ, POB 111, FI-80101 Joensuu, Finland. EM henriikka.vartiainen@uef.fi OI Ratinen, Ilkka/0000-0001-7977-062X; Pollanen, Sinikka/0000-0002-0570-6032 FU Ministry of Education and Culture in Finland [2018--20]; [OKM/262/523/2017] FX The study presented here is a part of the research activities of the DigiCampus project (2018--20), which is funded by the Ministry of Education and Culture in Finland (Grant no. OKM/262/523/2017) CR Anderson T, 2012, EDUC RESEARCHER, V41, P16, DOI 10.3102/0013189X11428813 [Anonymous], 2003, Educational Researcher, DOI DOI 10.3102/0013189X032001005 [Anonymous], 2007, Educause Learning Initiative: Advancing Learning Through IT Innovation BARRIBALL KL, 1994, J ADV NURS, V19, P328 Bereiter C., 2002, ED MIND KNOWLEDGE AG Bielaczyc K, 2013, J LEARN SCI, V22, P258, DOI 10.1080/10508406.2012.691925 Binkley M., 2010, Assessment and Teaching of 21st Century Skills Project Draft White Papers Damsa C, 2019, BRIT J EDUC TECHNOL, V50, P2075, DOI 10.1111/bjet.12855 Damsa CI, 2010, J LEARN SCI, V19, P143, DOI 10.1080/10508401003708381 Denning P. J., 2019, Computational thinking Edmondson AC, 2018, HUM RESOUR MANAGE R, V28, P347, DOI 10.1016/j.hrmr.2017.03.002 Häkkinen P, 2012, INTERNET HIGH EDUC, V15, P231, DOI 10.1016/j.iheduc.2011.09.001 Hammer D, 2014, J LEARN SCI, V23, P37, DOI 10.1080/10508406.2013.802652 Hennessy S, 2011, J COMPUT ASSIST LEAR, V27, P463, DOI 10.1111/j.1365-2729.2011.00416.x Hennessy S., 1999, International Journal of Technology and Design Education, V9, P1, DOI DOI 10.1023/A:1008855526312 Jackson N.J., 2011, Learning for a complex world: A lifewide concept of learning, education and personal development Järvelä S, 2013, EDUC PSYCHOL-US, V48, P25, DOI 10.1080/00461520.2012.748006 Krajcik JS, 2006, CAMB HANDB PSYCHOL, P317 Lehtinen E, 2014, SPRINGER INT HBK ED, P199, DOI 10.1007/978-94-017-8902-8_8 Markauskaite L, 2017, PROF PRACT-BASED LEA, V14, P1, DOI 10.1007/978-94-007-4369-4 Markauskaite L, 2020, RES PAP EDUC, V35, P105, DOI 10.1080/02671522.2019.1677762 Muukkonen H., 2010, RES PRACT TECH ENHAN, V5, P73, DOI [10.1142/S1793206810000827, DOI 10.1142/S1793206810000827] Paavola S., 2005, Science Education, V14, P535, DOI [DOI 10.1007/S11191-004-5157-0, 10.1007/s11191-004-5157-0] Seitamaa-Hakkarainen Pirita, 2012, Design and Technology Education (An International Journal), V17, P54 Shenton K., 2004, Education for Information, V22, P63, DOI DOI 10.3233/EFI-2004-22201 Stahl G., 2006, Group cognition: Computer support for building collaborative knowledge Sun SYH, 2020, AUSTRALAS J EDUC TEC, V36, P13, DOI 10.14742/ajet.5102 Vartiainen H, 2018, AERA OPEN, V4, DOI 10.1177/2332858418799694 Veltman ME, 2019, J EDUC WORK, V32, P135, DOI 10.1080/13639080.2019.1610165 Vuojarvi H., 2019, INT J LEARNING TEACH, V18, P30, DOI [10.26803/ijlter.18.13.3, DOI 10.26803/IJLTER.18.13.3] NR 30 TC 8 Z9 8 U1 6 U2 41 PU WILEY PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0007-1013 EI 1467-8535 J9 BRIT J EDUC TECHNOL JI Br. J. Educ. Technol. PD SEP PY 2022 VL 53 IS 5 BP 1304 EP 1320 DI 10.1111/bjet.13186 EA FEB 2022 PG 17 WC Education & Educational Research WE Social Science Citation Index (SSCI) SC Education & Educational Research GA 4N4RT UT WOS:000751823000001 OA hybrid DA 2024-09-05 ER PT J AU Sonk, M Tunger, D AF Sonk, Matthias Tunger, Dirk TI Trend mining with Orange - using topic modeling in futures research with the example of urban mobility SO EUROPEAN JOURNAL OF FUTURES RESEARCH LA English DT Article DE Text mining; Topic modeling; Bibliometric analysis; Trend mining; Mixed methods; Urban mobility; Flexible mobility AB Today, assumptions about probable future developments (at least as far as they make use of quantifiable scientific methods and are not pure speculation) are generally based on data from the past. An interesting way to analyze the future through this type of data is text mining or individual methods out of the spectrum of text mining, such as topic modeling. Topic Modeling itself is a combination of quantitative and qualitative methodology and is based on the full spectrum of social science methodology. Therefore, the method is an interesting way for futures research to analyze futures. This publication addresses the question of how a combination of different methods can contribute to trend monitoring or trend mining. For this purpose, a set of scientific publications was first generated with the help of a search query in the Web of Science (WoS), which is the basis for all evaluations and statements and topics. In essence, the method considered here should be more fully integrated into the scientific practice of futures research because it can make a valuable contribution to estimating future development based on past development. C1 [Sonk, Matthias] Free Univ Berlin, Berlin, Germany. [Tunger, Dirk] Forschungszentrum Julich, Inst Informat Management, Fac Informat Sci & Commun Studies, Ctr Excellence Anal Studies Strategy,TH Koln & Pro, Julich, Germany. C3 Free University of Berlin; Helmholtz Association; Research Center Julich RP Sonk, M (corresponding author), Free Univ Berlin, Berlin, Germany. EM m.sonk@fu-berlin.de FU Freie Universitt Berlin (1008) FX Not applicable. CR Ball R, 2006, SCIENTOMETRICS, V66, P561, DOI 10.1007/s11192-006-0041-0 Blei DM, 2012, COMMUN ACM, V55, P77, DOI 10.1145/2133806.2133826 Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993 Demsar J, 2013, J MACH LEARN RES, V14, P2349 Dwivedi YK, 2011, INFORM SYST MANAGE, V28, P43, DOI 10.1080/10580530.2011.536112 Erzurumlu SS, 2020, TECHNOL FORECAST SOC, V156, DOI 10.1016/j.techfore.2020.120041 GARFIELD E, 1964, SCIENCE, V144, P649, DOI 10.1126/science.144.3619.649 GARFIELD E, 1972, SCIENCE, V178, P471, DOI 10.1126/science.178.4060.471 Gokhberg L, 2020, FUTURES, V115, DOI 10.1016/j.futures.2019.102476 Holopainen M, 2012, FUTURES, V44, P198, DOI 10.1016/j.futures.2011.10.002 Kayser V, 2017, TECHNOL FORECAST SOC, V116, P208, DOI 10.1016/j.techfore.2016.10.017 Lee M, 2022, TECHNOL FORECAST SOC, V180, DOI 10.1016/j.techfore.2022.121718 Leutzbach W, 2000, Das Problem mit der Zukunft: wie sicher sind Voraussagen? Lim C, 2021, TECHNOL FORECAST SOC, V170, DOI 10.1016/j.techfore.2021.120893 Ma TT, 2021, TECHNOL FORECAST SOC, V173, DOI 10.1016/j.techfore.2021.121159 Madsen DO, 2023, 15 years of research on Google Trends. A bibliometric review and future research directions Moro A, 2020, FUTURES, V117, DOI 10.1016/j.futures.2020.102511 Murphy J., 2006, Technische Analyse Der Finanzmarkte: Grundlagen, Strategien, Methoden, Anwendungen Rosa AB, 2021, FUTURES, V129, DOI 10.1016/j.futures.2021.102733 Vayansky I, 2020, INFORM SYST, V94, DOI 10.1016/j.is.2020.101582 NR 20 TC 0 Z9 0 U1 5 U2 5 PU SPRINGER PI NEW YORK PA ONE NEW YORK PLAZA, SUITE 4600, NEW YORK, NY, UNITED STATES SN 2195-4194 EI 2195-2248 J9 EUR J FUTURES RES JI Eur. J. Futures Res. PD MAR 11 PY 2024 VL 12 IS 1 AR 6 DI 10.1186/s40309-024-00229-1 PG 7 WC Social Sciences, Interdisciplinary WE Social Science Citation Index (SSCI) SC Social Sciences - Other Topics GA KL9R4 UT WOS:001180244400001 OA gold DA 2024-09-05 ER PT J AU Zengul, FD Oner, N Byrd, JD Savage, A AF Zengul, Ferhat D. Oner, Nurettin Byrd, James D. Savage, Arline TI Revealing Research Themes and Trends in 30 Top-ranking Accounting Journals: A Text-mining Approach SO ABACUS-A JOURNAL OF ACCOUNTING FINANCE AND BUSINESS STUDIES LA English DT Article DE Text mining; Natural language processing; Accounting research; Research themes; Research trends ID EXECUTIVE-COMPENSATION; PERFORMANCE; DISCLOSURE; ANALYSTS; AUDITOR; DETERMINANTS; REFLECTIONS; INVESTMENT; UNIVERSAL; PRIVATE AB This study reveals themes and trends in accounting research over the past 20 years by utilizing natural language processing and text-mining techniques. We generated a corpus consisting of over 40,000 articles through multiple searches in EBSCOhost Business Source Premier, Scopus, and ScienceDirect to gather data from 30 highly ranked (A* and A) journals that were listed and categorized by the Australian Business Deans Council (ABDC) as the top accounting journals. Based upon predetermined inclusion and exclusion criteria, we eliminated 24,474 non-empirical articles and those with no abstracts, resulting in 16,449 abstracts. The text-mining analyses reveal 15 distinct clusters, with five clusters showing downward trends, six trending upward, and four maintaining stability. The downward trending clusters are: (1) capital markets; (2) financial reporting; (3) accounting education, careers, and diversity; (4) earnings/markets; and (5) accounting history and capitalism. Trending upward are: (1) critical accounting; (2) auditing; (3) corporate governance; (4) corporate social responsibility; (5) debt financing; and (6) financial markets and forecasting. Stable clusters are: (1) managerial accounting; (2) international accounting standards; (3) taxation; and (4) governmental accounting. This study introduces an innovative method for discerning themes and trends in accounting research and offers a guide to neophyte accounting faculty for determining publishing outlets for research. In utilizing our findings to drill down and provide more detailed knowledge, it also serves as a reference point for future text-mining studies. C1 [Zengul, Ferhat D.; Oner, Nurettin; Byrd, James D.; Savage, Arline] Univ Alabama Birmingham, Birmingham, AL 35294 USA. C3 University of Alabama System; University of Alabama Birmingham RP Zengul, FD (corresponding author), Univ Alabama Birmingham, Birmingham, AL 35294 USA. EM ferhat@uab.edu RI Zengul, Ferhat Devrim/AFK-8074-2022; oner, nurettin/IQU-7736-2023 OI Zengul, Ferhat Devrim/0000-0002-8454-1335; Byrd, James/0000-0003-4916-3372; oner, nurettin/0000-0002-4761-7863 CR Abdallah AAN, 2012, INT J ACCOUNT, V47, P168, DOI 10.1016/j.intacc.2012.03.002 *ABDC, 2018, AUSTR BUS DEANS COUN, V2016, P2016 Abdi H., 2003, Encyclopedia for Research Methods for the Social Sciences, V6, P792 *ACCOUNTINGCOACH, 2018, ACC COACH TERM LIST, DOI DOI 10.1111/J.1467-629X.2009.00316.X Alles MG, 2015, ACCOUNT HORIZ, V29, P439, DOI 10.2308/acch-51067 [Anonymous], 1999, J BUS FINAN ACCOUNT [Anonymous], 2016, CRIT PERSPECT ACCOUN, DOI DOI 10.1016/j.cpa.2016.01.001 [Anonymous], 1999, J BUS FINAN ACCOUNT, DOI DOI 10.2308/ACCH-51023 Armstrong P, 2015, CRIT PERSPECT ACCOUN, V27, P29, DOI 10.1016/j.cpa.2013.10.009 Bach C, 2016, REV ACCOUNT STUD, V21, P1149, DOI 10.1007/s11142-016-9358-y Baker R.C., 2005, ACCOUNT AUDIT ACCOUN, V18, P690 Ballester M., 2003, EUR ACCOUNT REV, V12, P605, DOI [DOI 10.1080/09638180310001628437, 10.1080/09638180310001628437] Barone GJ, 2009, J ACCOUNT AUDIT FINA, V24, P385, DOI 10.1177/0148558X0902400304 BATHKE AW, 2004, J ACCOUNT AUDIT FINA, V19, P463, DOI DOI 10.2308/JFIR-51329 Begley J, 2002, CONTEMP ACCOUNT RES, V19, P1 Ben-Amar W, 2006, J BUS FINAN ACCOUNT, V33, P517, DOI 10.1111/j.1468-5957.2006.00613.x Benson K, 2015, AUST J MANAGE, V40, P36, DOI 10.1177/0312896214565121 Bharath ST, 2008, ACCOUNT REV, V83, P1, DOI 10.2308/accr.2008.83.1.1 Black EL, 2017, J INT ACCOUNT RES, V16, P1, DOI 10.2308/jiar-10571 Bonner S.E., 2000, J MANAGEMENT ACCOUNT, V12, P19, DOI [10.2308/jmar.2000.12.1.19, DOI 10.2308/JMAR.2000.12.1.19] Bonner SE, 2007, J ACCOUNT RES, V45, P481, DOI 10.1111/j.1475-679X.2007.00245.x Bronson SN, 2017, CONTEMP ACCOUNT RES, V34, P83, DOI 10.1111/1911-3846.12238 Brown-Liburd H, 2015, ACCOUNT HORIZ, V29, P451, DOI 10.2308/acch-51023 Bryer R., 2012, CRIT PERSPECT ACCOUN, V23, P511 Bryer RA, 2000, ACCOUNT ORG SOC, V25, P327, DOI 10.1016/S0361-3682(99)00033-1 Bryer R, 2013, CRIT PERSPECT ACCOUN, V24, P273, DOI 10.1016/j.cpa.2012.09.002 Bryer R, 2013, CRIT PERSPECT ACCOUN, V24, P572, DOI 10.1016/j.cpa.2012.09.004 Burney LL, 2009, ACCOUNT ORG SOC, V34, P305, DOI 10.1016/j.aos.2008.11.002 Bushman RM, 2017, J ACCOUNT RES, V55, P115, DOI 10.1111/1475-679X.12131 Bushman RM, 2010, J ACCOUNT RES, V48, P921, DOI 10.1111/j.1475-679X.2010.00384.x Callahan C.M., 1998, Contemporary Accounting Research, V15, P419, DOI DOI 10.2308/ACCH-50498 Carnegie GD, 2017, ACCOUNT AUDIT ACCOUN, V30, P1642, DOI 10.1108/AAAJ-12-2016-2804 Chakraborty V, 2014, INT J ACCOUNT INF SY, V15, P122, DOI 10.1016/j.accinf.2014.01.001 Chang WC, 2016, ABACUS, V52, P286, DOI 10.1111/abac.12077 Cho CH, 2007, ACCOUNT ORG SOC, V32, P639, DOI 10.1016/j.aos.2006.09.009 Cho CH, 2012, ACCOUNT AUDIT ACCOUN, V25, P486, DOI 10.1108/09513571211209617 Chung J., 2001, The British Accounting Review, V33, P307, DOI 10.1006/bare.2001.0163 Colson RH, 2009, J ACCOUNT PUBLIC POL, V28, P51, DOI 10.1016/j.jaccpubpol.2008.11.003 Currie G, 2015, ACCOUNT AUDIT ACCOUN, V28, P1291, DOI 10.1108/AAAJ-12-2014-1889 Dalton DW, 2016, ISS ACCOUNT EDUC, V31, P235, DOI 10.2308/iace-50979 De Waegenaere A, 2008, CONTEMP ACCOUNT RES, V25, P1045, DOI 10.1506/car.25.4.4 DEERWESTER S, 1990, J AM SOC INFORM SCI, V41, P391, DOI 10.1002/(SICI)1097-4571(199009)41:6<391::AID-ASI1>3.0.CO;2-9 Delen D, 2008, EXPERT SYST APPL, V34, P1707, DOI 10.1016/j.eswa.2007.01.035 Delen D, 2012, PRACTICAL TEXT MINING AND STATISTICAL ANALYSIS FOR NON-STRUCTURED TEXT DATA APPLICATIONS, P375, DOI 10.1016/B978-0-12-386979-1.00016-5 Dikolli SS, 2009, J MANAG ACOUNT RES, V21, P125, DOI 10.2308/jmar.2009.21.1.125 Dyreng SD, 2009, J ACCOUNT RES, V47, P1283, DOI 10.1111/j.1475-679X.2009.00346.x Elshandidy T, 2018, J ACCOUNT LIT, V40, P54, DOI 10.1016/j.acclit.2017.12.001 Evangelopoulos N, 2012, EUR J INFORM SYST, V21, P70, DOI 10.1057/ejis.2010.61 *FASB, 2018, FASB ACC STAND COD M Ferguson C, 2011, ACCOUNT FINANC, V51, P235, DOI 10.1111/j.1467-629X.2010.00393.x Finnerty J.D., 2002, Accounting Horizons, V16, P95 Fisher IE, 2016, INTELL SYST ACCOUNT, V23, P157, DOI 10.1002/isaf.1386 Fisher JG, 2006, ACCOUNT ORG SOC, V31, P511, DOI 10.1016/j.aos.2005.12.008 Frantz P, 2013, J BUS FINAN ACCOUNT, V40, P1184, DOI 10.1111/jbfa.12041 Gallhofer S, 2015, ACCOUNT AUDIT ACCOUN, V28, P846, DOI 10.1108/AAAJ-08-2013-1451 Gallhofer S, 2011, ACCOUNT AUDIT ACCOUN, V24, P440, DOI 10.1108/09513571111133054 Gammie E, 2013, BRIT ACCOUNT REV, V45, P83, DOI 10.1016/j.bar.2013.03.005 Gao L, 2017, J ACCOUNT LIT, V38, P1, DOI 10.1016/j.acclit.2017.05.001 Geiger MA, 2003, AUDITING-J PRACT TH, V22, P53, DOI 10.2308/aud.2003.22.2.53 Gillette A.B., 1999, CONTEMP ACCOUNT RES, V16, P437 Grafton J, 2011, MANAGE ACCOUNT RES, V22, P242, DOI 10.1016/j.mar.2011.06.001 Griffin PA, 2015, ACCOUNT HORIZ, V29, P377, DOI 10.2308/acch-51066 Guan J, 2018, J INF SYST, V32, P67, DOI 10.2308/isys-51625 Guffey DM, 2017, J MANAG ACOUNT RES, V29, P93, DOI 10.2308/jmar-51592 Guthrie J, 2017, ACCOUNT AUDIT ACCOUN, V30, P2, DOI 10.1108/AAAJ-11-2016-2781 Harzing A-W, 2022, Journal Quality List Haw IM, 2014, CONTEMP ACCOUNT RES, V31, P1220, DOI 10.1111/1911-3846.12064 Heimerl F, 2014, P ANN HICSS, P1833, DOI 10.1109/HICSS.2014.231 Hodder LD, 2014, ACCOUNT ORG SOC, V39, P117, DOI 10.1016/j.aos.2013.10.002 Hodge G, 2018, FINANC ACCOUNT MANAG, V34, P3, DOI 10.1111/faam.12132 Hofmann T, 2001, MACH LEARN, V42, P177, DOI 10.1023/A:1007617005950 Hutchison PD, 2018, INT J ACCOUNT INF SY, V31, P83, DOI 10.1016/j.accinf.2018.09.003 HYLTON DP, 1962, ACCOUNT REV, V37, P22 Jaafar A, 2015, INT J ACCOUNT, V50, P435, DOI 10.1016/j.intacc.2015.10.005 Jacob J, 2008, J ACCOUNT AUDIT FINA, V23, P23, DOI 10.1177/0148558X0802300104 Jennings R, 2013, ACCOUNT HORIZ, V27, P51, DOI 10.2308/acch-50278 KAO A, 2007, NATURAL LANGUAGE PRO, DOI DOI 10.1111/1911-3846.12238 Keskek S, 2017, J BUS FINAN ACCOUNT, V44, P780, DOI 10.1111/jbfa.12234 Kilfoyle E, 2015, ACCOUNT AUDIT ACCOUN, V28, P551, DOI 10.1108/AAAJ-04-2014-1687 Kim YM, 2018, HEALTH INFORM J, V24, P432, DOI 10.1177/1460458216678443 Krahel JP, 2015, ACCOUNT HORIZ, V29, P409, DOI 10.2308/acch-51065 Kurunmäki L, 2011, MANAGE ACCOUNT RES, V22, P220, DOI 10.1016/j.mar.2010.08.004 Landauer TK, 1998, DISCOURSE PROCESS, V25, P259, DOI 10.1080/01638539809545028 Landauer TK, 1997, PSYCHOL REV, V104, P211, DOI 10.1037/0033-295X.104.2.211 Larson MP, 2017, ISS ACCOUNT EDUC, V32, P41, DOI 10.2308/iace-51750 LAUER TK, 2004, P NATL ACAD SCI USA, V101, P5214, DOI DOI 10.1073/pnas.0400341101 Liesen A, 2015, ACCOUNT AUDIT ACCOUN, V28, P1047, DOI 10.1108/AAAJ-12-2013-1547 Lindberg DL, 2003, AUDITING-J PRACT TH, V22, P127, DOI 10.2308/aud.2003.22.1.127 Linnenluecke MK, 2017, ABACUS, V53, P159, DOI 10.1111/abac.12107 Liu Q, 2016, J EMERG TECHNOL ACCO, V13, P89, DOI 10.2308/jeta-10512 Loughran T, 2016, J ACCOUNT RES, V54, P1187, DOI 10.1111/1475-679X.12123 Malsch B, 2011, ACCOUNT AUDIT ACCOUN, V24, P194, DOI 10.1108/09513571111100681 Mangena M., 2005, ACCOUNT BUS RES, V35, P327, DOI DOI 10.1080/00014788.2005.9729998 MARONEY J, 2008, BR ACCOUNT REV, V40, P103, DOI DOI 10.1016/J.BAR.2008.01.001 Martin X, 2015, J ACCOUNT ECON, V59, P80, DOI 10.1016/j.jacceco.2014.09.006 Massaro M, 2016, ACCOUNT AUDIT ACCOUN, V29, P767, DOI 10.1108/AAAJ-01-2015-1939 MINER G, 2012, PRACTICAL TEXT MININ, DOI DOI 10.1016/B978-0-12-386979-1.00016-5 Modell S, 2017, CRIT PERSPECT ACCOUN, V42, P20, DOI 10.1016/j.cpa.2016.03.001 MohammadRezaei F, 2016, INT J AUDIT, V20, P87, DOI 10.1111/ijau.12059 Morey L, 1948, ACCOUNT REV, V23, P227 Mynatt P.G., 1997, CRIT PERSPECT ACCOUN, V8, P657, DOI DOI 10.1006/CPAC.1997.0161 Ndubizu G.A., 2003, INT J ACCOUNT, V38, P397, DOI DOI 10.1016/J.INTACC.2003.09.010 Nelson I.T., 2002, Issues in Accounting Education, V17, P269, DOI [DOI 10.2308/IACE.2002.17.3.269, 10.2308/iace.2002.17.3.269] O'Dwyer B., 2005, Eur Account Rev, V14, P759, DOI DOI 10.1080/09638180500104766 O'Dwyer B., 2005, Accounting, Auditing and Accountability Journal, V18, P14, DOI DOI 10.1108/09513570510584647 Obermann J, 2018, J ACCOUNT LIT, V40, P116, DOI 10.1016/j.acclit.2018.02.001 Oler DK, 2016, ISS ACCOUNT EDUC, V31, P219, DOI 10.2308/iace-50748 Ozaydin Bunyamin, 2017, Mhealth, V3, P53, DOI 10.21037/mhealth.2017.12.02 Paterson JS, 2011, CONTEMP ACCOUNT RES, V28, P1510, DOI 10.1111/j.1911-3846.2010.01060.x Pinello AS, 2008, CONTEMP ACCOUNT RES, V25, P891, DOI 10.1506/car.25.3.9 Qi D. D., 2000, Journal of Accounting Auditing Finance, V15, P141 QINGLIANG T, 1999, INT J ACCOUNT, V34, P173, DOI DOI 10.1016/J.BAR.2013.03.005 Rego SO, 2003, CONTEMP ACCOUNT RES, V20, P805, DOI 10.1506/VANN-B7UB-GMFA-9E6W Richardson AW, 2012, EUR ACCOUNT REV, V21, P373, DOI 10.1080/09638180.2011.558298 Rizzotti D, 2013, INT J ACCOUNT, V48, P84, DOI 10.1016/j.intacc.2013.01.007 Russell S, 2017, ACCOUNT AUDIT ACCOUN, V30, P1426, DOI 10.1108/AAAJ-07-2017-3010 *SAS, 2019, NATURAL LANGUAGE PRO, DOI DOI 10.2308/ACCH-51066 Sinha P., 1997, CONTEMP ACCOUNT RES, V14, P1, DOI DOI 10.1111/CARE.1997.14.ISSUE-1 Tanyi PN, 2015, AUDITING-J PRACT TH, V34, P59, DOI 10.2308/ajpt-50929 Tse S.Y., 1999, ContemporaiyAccounting Research, V16, P347 Vasarhelyi MA, 2015, ACCOUNT HORIZ, V29, P381, DOI 10.2308/acch-51071 Warren JD, 2015, ACCOUNT HORIZ, V29, P397, DOI 10.2308/acch-51069 Webb KA, 2008, INT J ACCOUNT, V43, P219, DOI 10.1016/j.intacc.2008.06.001 Yoon K, 2015, ACCOUNT HORIZ, V29, P431, DOI 10.2308/acch-51076 Zengul F.D., 2019, AM J NEPHROL, P1 ZHAI C, 2016, TEXT DATA MANAGEMENT, DOI DOI 10.1016/J.ACCINF.2018.09.003 Zhang J, 2015, ACCOUNT HORIZ, V29, P469, DOI 10.2308/acch-51070 NR 127 TC 10 Z9 10 U1 2 U2 59 PU WILEY PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0001-3072 EI 1467-6281 J9 ABACUS JI Abacus PD SEP PY 2021 VL 57 IS 3 BP 468 EP 501 DI 10.1111/abac.12214 EA MAR 2021 PG 34 WC Business, Finance WE Social Science Citation Index (SSCI) SC Business & Economics GA US4AX UT WOS:000623661800001 DA 2024-09-05 ER PT C AU Lin, SJ Chen, JL Tsai, YC Chang, PC Yang, CS AF Lin, Shou-Jen Chen, Jui-Le Tsai, Yu-Chen Chang, Ping-Chun Yang, Chu-Sing BE Wang, JF Lau, R TI Gesture Identification Research and Applications in Evaluation Systems SO ADVANCES IN WEB-BASED LEARNING - ICWL 2013 SE Lecture Notes in Computer Science LA English DT Proceedings Paper CT 12th International Conference on Advances in Web-Based Learning (ICWL) CY OCT 06-09, 2013 CL TAIWAN DE Gesture identification; human-computer interaction; computer vision ID SUBTRACTION AB By introducing computer-assisted identification technique into the evaluation system design for elementary and junior high schools, the users gestures, acquired through cameras, are transformed into effective interactive information, which is further applied to the digital evaluation system. Such a new-styled interactive method is expected to enhance the communication model between the learners and the information system. Without touching any interactive devices, the users can communicate with the system through gestures, from which the messages are determined and compared through image processing to further control the system interaction. The integration with an evaluation system could promote the education popularity. C1 [Lin, Shou-Jen; Chen, Jui-Le; Tsai, Yu-Chen; Chang, Ping-Chun; Yang, Chu-Sing] Natl Cheng Kung Univ, Inst Comp & Commun Engn, Tainan 70101, Taiwan. C3 National Cheng Kung University RP Lin, SJ (corresponding author), Natl Cheng Kung Univ, Inst Comp & Commun Engn, Tainan 70101, Taiwan. EM lsr@tn.edu.tw; reler.chen@gmail.com; celia@tn.edu.tw; moneyhomeya@gmail.com; csyang@ee.ncku.edu.tw CR [Anonymous], 2001, PROC CVPR IEEE [Anonymous], EROSION DILATION REL Bradski G., 2008, Learning OpenCV: Computer Vision in C++ with the OpenCVLibrary Chang P.-l., 2008, AUTOMATIC EXTENDING Elgammal A., 2000, P EUR C COMP VIS, P751, DOI DOI 10.1007/3-540-45053-X_48 Gonzalez R., 2005, WOODS DIGITAL IMAGE, P420 HORPRASERT T, 1999, STAT APPROACH REAL T Huang C.-J., 2008, DESIGN REALIZATION I Hummel R.A., 1975, COMPUT VISION GRAPH, V4, P209 Jain AK., 1989, FUNDAMENTALS DIGITAL Johnstone J.K., 2007, J COMPUTING SCI COLL, V23, P103 Juang CF, 2009, IEEE T SYST MAN CY A, V39, P119, DOI 10.1109/TSMCA.2009.2008397 Kim K, 2004, IEEE IMAGE PROC, P3061 Kovac J., 2003, HUMAN SKIN COLOR CLU, P1441 Lienhart R, 2002, IEEE IMAGE PROC, P900 Lin S.-R., 2009, TANET 2009 GLOB IPV6 Lindeberg T, 1996, PROC CVPR IEEE, P465, DOI 10.1109/CVPR.1996.517113 Lipton A.J., 1998, MOVING TARGET CLASSI, P3 P Papageorgiou C., 1998, A general framework for object detection Piccardi M, 2004, IEEE SYS MAN CYBERN, P3099, DOI 10.1109/ICSMC.2004.1400815 Rosenfeld A, 2000, COMPUT VIS IMAGE UND, V78, P222, DOI 10.1006/cviu.2000.0835 TESAURO G, 1992, MACH LEARN, V8, P257, DOI 10.1007/BF00992697 TESAURO G, 1995, COMMUN ACM, V38, P58, DOI 10.1145/203330.203343 Umbaugh SE., 2005, COMPUTER IMAGING DIG Yoon K, 2008, PROCEEDINGS OF NINTH ACIS INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING, ARTIFICIAL INTELLIGENCE, NETWORKING AND PARALLEL/DISTRIBUTED COMPUTING, P535, DOI 10.1109/SNPD.2008.162 NR 25 TC 0 Z9 0 U1 0 U2 0 PU SPRINGER-VERLAG BERLIN PI BERLIN PA HEIDELBERGER PLATZ 3, D-14197 BERLIN, GERMANY SN 0302-9743 EI 1611-3349 BN 978-3-642-41174-8; 978-3-642-41175-5 J9 LECT NOTES COMPUT SC PY 2013 VL 8167 BP 21 EP 30 PG 10 WC Computer Science, Information Systems; Computer Science, Software Engineering; Computer Science, Theory & Methods WE Conference Proceedings Citation Index - Science (CPCI-S) SC Computer Science GA BB0OX UT WOS:000340556100003 DA 2024-09-05 ER PT J AU Ghosh, D AF Ghosh, Debashis TI Relaxed covariate overlap and margin-based causal effect estimation SO STATISTICS IN MEDICINE LA English DT Article DE average causal effect; comparative effectiveness research; convex optimization; counterfactual; covariate balance; support vector machines ID PROPENSITY SCORE; MATCHING METHODS; INFERENCE; SELECTION; BALANCE AB In most nonrandomized observational studies, differences between treatment groups may arise not only due to the treatment but also because of the effect of confounders. Therefore, causal inference regarding the treatment effect is not as straightforward as in a randomized trial. To adjust for confounding due to measured covariates, a variety of methods based on the potential outcomes framework are used to estimate average treatment effects. One of the key assumptions is treatment positivity, which states that the probability of treatment is bounded away from zero and one for any possible combination of the confounders. Methods for performing causal inference when this assumption is violated are relatively limited. In this article, we discuss a new balance-related condition involving the convex hulls of treatment groups, which I term relaxed covariate overlap. An advantage of this concept is that it can be linked to a concept from machine learning, termed the margin. Introduction of relaxed covariate overlap leads to an approach in which one can perform causal inference in a three-step manner. The methodology is illustrated with two examples. C1 [Ghosh, Debashis] Univ Colorado, Dept Biostat & Informat, Sch Publ Hlth, Aurora, CO 80045 USA. C3 Colorado School of Public Health; University of Colorado System; University of Colorado Anschutz Medical Campus RP Ghosh, D (corresponding author), Univ Colorado, Dept Biostat & Informat, Sch Publ Hlth, Aurora, CO 80045 USA. EM debashis.ghosh@ucdenver.edu RI Ghosh, Debashis/KZT-8916-2024 OI Ghosh, Debashis/0000-0001-6618-1316 FU Data Science to Patient Value (D2V) Initiative from University of Colorado FX Data Science to Patient Value (D2V) Initiative from University of Colorado CR [Anonymous], STAT SCI [Anonymous], 1993, Encyclopedia of Mathematics and its Applications [Anonymous], P AM STAT ASS SECT B Bi JB, 2003, NEUROCOMPUTING, V55, P79, DOI 10.1016/S0925-2312(03)00380-1 Chan KCG, 2016, J R STAT SOC B, V78, P673, DOI 10.1111/rssb.12129 CHAZELLE B, 1993, DISCRETE COMPUT GEOM, V10, P377, DOI 10.1007/BF02573985 Cristianini N., 2000, Support Vector Machines and other kernel-based learning methods Crump RK, 2009, BIOMETRIKA, V96, P187, DOI 10.1093/biomet/asn055 D'Amour A., 2017, Overlap in observational studies with high-dimensional covariates Diamond A, 2013, REV ECON STAT, V95, P932, DOI 10.1162/REST_a_00318 Fisher JO, 2002, AM J CLIN NUTR, V76, P226, DOI 10.1093/ajcn/76.1.226 Ghosh D, 2015, STAT MED, V34, P1645, DOI 10.1002/sim.6433 Grnbaum B., 2003, Graduate Texts in Mathematics, V221 Gruber S, 2010, INT J BIOSTAT, V6, DOI 10.2202/1557-4679.1182 Hansen BB, 2004, J AM STAT ASSOC, V99, P609, DOI 10.1198/016214504000000647 Ho DE, 2007, POLIT ANAL, V15, P199, DOI 10.1093/pan/mpl013 Iacus SM, 2011, J AM STAT ASSOC, V106, P345, DOI 10.1198/jasa.2011.tm09599 Imai K, 2004, J AM STAT ASSOC, V99, P854, DOI 10.1198/016214504000001187 Imai K, 2014, J R STAT SOC B, V76, P243, DOI 10.1111/rssb.12027 Imbens GW, 2000, BIOMETRIKA, V87, P706, DOI 10.1093/biomet/87.3.706 Imbens GW, 2015, CAUSAL INFERENCE FOR STATISTICS, SOCIAL, AND BIOMEDICAL SCIENCES: AN INTRODUCTION, P1, DOI 10.1017/CBO9781139025751 Lee JD, 2016, ANN STAT, V44, P907, DOI 10.1214/15-AOS1371 Lunceford JK, 2004, STAT MED, V23, P2937, DOI 10.1002/SIM.1903 Luo W, 2017, BIOMETRIKA, V104, P51, DOI 10.1093/biomet/asw068 Mangasarian OL, 1994, Nonlinear Programming Petersen ML, 2012, STAT METHODS MED RES, V21, P31, DOI 10.1177/0962280210386207 Platt RW, 2012, EUR J EPIDEMIOL, V27, P77, DOI 10.1007/s10654-011-9637-7 Ratkovic M., 2014, Balancing within the margin: Causal effect estimation with support vector machines Ridgeway G., 1999, Comput. Sci. Stat., V31, P172 Robins JM, 1997, STAT MED, V16, P285, DOI 10.1002/(SICI)1097-0258(19970215)16:3<285::AID-SIM535>3.0.CO;2-# Rose S, 2011, SPRINGER SER STAT, P3, DOI 10.1007/978-1-4419-9782-1 Rosenbaum PR, 2010, SPRINGER SER STAT, P1, DOI 10.1007/978-1-4419-1213-8 ROSENBAUM PR, 1983, BIOMETRIKA, V70, P41, DOI 10.1093/biomet/70.1.41 RUBIN DB, 1991, BIOMETRICS, V47, P1213, DOI 10.2307/2532381 RUBIN DB, 1974, J EDUC PSYCHOL, V66, P688, DOI 10.1037/h0037350 Rubin DB, 2007, STAT MED, V26, P20, DOI 10.1002/sim.2739 Shinohara ET, 2008, INT J RADIAT ONCOL, V72, P1495, DOI 10.1016/j.ijrobp.2008.03.018 Stuart EA, 2010, STAT SCI, V25, P1, DOI 10.1214/09-STS313 Traskin M, 2011, STAT BIOSCI, V3, P94, DOI 10.1007/s12561-011-9036-3 Vapnik Vladimir N., 1995, The nature of statistical learning theory Wahba G., 1990, SPLINE MODELS OBSERV Zhu YY, 2016, J ROY STAT SOC C, V65, P115, DOI 10.1111/rssc.12109 Zhu YY, 2015, J CAUSAL INFERENCE, V3, P25, DOI 10.1515/jci-2014-0022 Zubizarreta JR, 2015, J AM STAT ASSOC, V110, P910, DOI 10.1080/01621459.2015.1023805 NR 44 TC 4 Z9 6 U1 0 U2 7 PU WILEY PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0277-6715 EI 1097-0258 J9 STAT MED JI Stat. Med. PD DEC 10 PY 2018 VL 37 IS 28 BP 4252 EP 4265 DI 10.1002/sim.7919 PG 14 WC Mathematical & Computational Biology; Public, Environmental & Occupational Health; Medical Informatics; Medicine, Research & Experimental; Statistics & Probability WE Science Citation Index Expanded (SCI-EXPANDED) SC Mathematical & Computational Biology; Public, Environmental & Occupational Health; Medical Informatics; Research & Experimental Medicine; Mathematics GA HA2KR UT WOS:000450067800011 PM 30168168 OA Green Submitted DA 2024-09-05 ER PT J AU Givi, ME Saberi, MK Talafidaryani, M Abdolhamid, M Nikandish, R Fattahi, A AF Esmaeili Givi, Mohammadreza Saberi, Mohammad Karim Talafidaryani, Mojtaba Abdolhamid, Mahdi Nikandish, Rahim Fattahi, Abbas TI Assessment of the history and trends of "The Journal of Intellectual Capital": a bibliometrics, altmetrics and text mining analysis SO JOURNAL OF INTELLECTUAL CAPITAL LA English DT Article DE Intellectual capital; Intellectual structure; Bibliometric analysis; Altmetric analysis; LDA; Topic modeling; JIC ID KNOWLEDGE MANAGEMENT; INTANGIBLE ASSETS; BIG DATA; BUSINESS PERFORMANCE; EMPIRICAL-EVIDENCE; SOCIAL NETWORKS; MODERATING ROLE; IMPACT; INNOVATION; FIRMS AB Purpose The Journal of Intellectual Capital (JIC) celebrated its 20th anniversary in 2020. Therefore, the present study aims to provide a general overview of the history and key trends in this journal during 2000-2019. Design/methodology/approach Two types of citation and textual data during a 20-year journal period were retrieved from the Scopus database. The citation structures and contents were explored based on a combination of bibliometric analysis, altmetric analysis and text mining. The journal themes and trends of their changes were analyzed through citation bursts, mapping and topic modeling. To make a better comparison, the text mining process for the topic modeling of the IC field was performed in addition to the topic modeling of JIC. Findings Bibliometric analysis indicated that JIC has experienced a remarkable growth in terms of the number of publications and citations over the last 20 years. The results indicated that JIC plays a significant role among IC researchers. Additionally, a large number of researchers, institutes and countries have made contributions to this journal and cited its research papers. Altmetric analysis showed that JIC has been shared in different social media such as Twitter, Facebook, Wikipedia, Mendeley, Citeulike, news and blogs. Text mining abstract of JIC articles indicated that "measurement," "financial performance" and "IC reporting" have the relative prevalence with increasing trends over the past 20 years. In addition, "research trends" and "national and international studies" had a stable trend with low thematic share. Research limitations/implications The findings have important implications for the JIC editorial team in order to make informed decisions about the further development of JIC as well as for IC researchers and practitioners to make more valuable contributions to the journal. Originality/value Using bibliometric analysis, altmetric analysis and text mining, this study provided a systematic and comprehensive analysis of JIC. The simultaneous use of these methods provides an interesting, unique and suitable capacity to analyze the journals by considering their various aspects. C1 [Esmaeili Givi, Mohammadreza] Univ Tehran, Dept Publ Adm, Fac Management, Tehran, Iran. [Saberi, Mohammad Karim] Hamadan Univ Med Sci, Dept Med Lib & Informat Sci, Sch Paramed, Hamadan, Hamadan, Iran. [Talafidaryani, Mojtaba] Univ Tehran, Fac Management, Tehran, Iran. [Abdolhamid, Mahdi] Iran Univ Sci & Technol, Sch Management Econ & Progress Engn, Dept Management & Philosophy Sci & Technol, Tehran, Iran. [Nikandish, Rahim] Univ Tehran, Fac Management, Tehran, Iran. [Fattahi, Abbas] Hamadan Univ Med Sci, Student Res Comm, Hamadan, Hamadan, Iran. C3 University of Tehran; Hamadan University of Medical Sciences; University of Tehran; Iran University Science & Technology; University of Tehran; Hamadan University of Medical Sciences RP Saberi, MK (corresponding author), Hamadan Univ Med Sci, Dept Med Lib & Informat Sci, Sch Paramed, Hamadan, Hamadan, Iran. EM s.givi@ut.ac.ir; mohamadsaberi@gmail.com; mojtabatalafi@ut.ac.ir; Mahdi_Abdolhamid@iust.ac.ir; nikandishrahim@ut.ac.ir; abbasumsha@gmail.com RI fattahi, abbas/ADG-0979-2022; Saberi, Mohammad Karim/W-3331-2017; Abdolhamid, Mahdi/C-7444-2018 OI fattahi, abbas/0000-0002-8017-2069; Esmaeili Givi, Mohammadreza/0000-0002-9452-3616; Saberi, Mohammad Karim/0000-0002-2471-0408; Abdolhamid, Mahdi/0000-0003-4118-4937 FU Vice-chancellor for Research and Technology, Hamadan University of Medical Sciences [9903061309] FX The study was funded by Vice-chancellor for Research and Technology, Hamadan University of Medical Sciences (No. 9903061309). CR Abhayawansa S, 2018, ACCOUNT AUDIT ACCOUN, V31, P950, DOI 10.1108/AAAJ-03-2017-2873 Abhayawansa S, 2016, J ACCOUNT ORGAN CHAN, V12, P434, DOI 10.1108/JAOC-05-2014-0027 Ahmed SS, 2019, J INTELLECT CAP, V21, P23, DOI 10.1108/JIC-11-2018-0199 Aitouche S, 2018, 2018 3RD INTERNATIONAL CONFERENCE ON PATTERN ANALYSIS AND INTELLIGENT SYSTEMS (PAIS), P67 Aitouchi S., 2018, P INT C IND ENG OP M, P3166 Alfonzo P.M., 2014, Online Journal Of Nursing Informatics, V18, P3 Alhassan AL, 2016, MANAGE DECIS, V54, P589, DOI 10.1108/MD-01-2015-0025 Alotaibi KO, 2016, INT J DISCL GOV, V13, P364, DOI 10.1057/jdg.2016.2 Altmetric, 2021, ALTMETRIC DISCOVER A Leal GPA, 2014, J BUS RES, V67, P882, DOI 10.1016/j.jbusres.2013.07.007 Andrade-Valbuena NA, 2019, WORLD J ENTREP MANAG, V15, P45, DOI 10.1108/WJEMSD-08-2017-0048 [Anonymous], 2003, Journal of Intellectual Capital, DOI [DOI 10.1108/14691930310487806, 10.1108/14691930310487806] Antons D, 2016, J PROD INNOVAT MANAG, V33, P726, DOI 10.1111/jpim.12300 Appio FP, 2016, SCIENTOMETRICS, V108, P355, DOI 10.1007/s11192-016-1955-9 Appio FP, 2014, SCIENTOMETRICS, V101, P623, DOI 10.1007/s11192-014-1329-0 Ardito L, 2019, MANAGE DECIS, V57, P1993, DOI 10.1108/MD-07-2018-0754 Aubert JE, 2008, J INTELLECT CAP, V9, P178, DOI 10.1108/14691930810870292 Babbar H., 2019, J. Comput. Theor. Nanosci., V16, P4236 Bamel U, 2022, J INTELLECT CAP, V23, P375, DOI 10.1108/JIC-05-2020-0142 Barrena-Martínez J, 2020, J BUS RES, V112, P261, DOI 10.1016/j.jbusres.2019.10.029 Bellucci M, 2021, J INTELLECT CAP, V22, P744, DOI 10.1108/JIC-10-2019-0239 Berraies S, 2019, J INTELLECT CAP, V20, P426, DOI 10.1108/JIC-02-2019-0030 Bisogno M, 2018, J INTELLECT CAP, V19, P10, DOI 10.1108/JIC-10-2017-0133 Blanco-Alcántara D, 2019, MANAGE DECIS, V57, P2653, DOI 10.1108/MD-12-2017-1238 Blei DM, 2012, COMMUN ACM, V55, P77, DOI 10.1145/2133806.2133826 Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993 Boekestein B, 2006, J INTELLECT CAP, V7, P241, DOI 10.1108/14691930610661881 Bonits, 2012, AMCIS P Bontis N., 2002, J INTELLECT CAP, V3, P223, DOI DOI 10.1108/14691930210435589 Bontis N., 2000, J INTELLECT CAP, V1, P85, DOI [10.1108/14691930010324188, DOI 10.1108/14691930010324188] Bornmann L, 2014, J INFORMETR, V8, P895, DOI 10.1016/j.joi.2014.09.005 Bronzetti G, 2013, J INTELLECT CAP, V14, P246, DOI 10.1108/14691931311323878 Buznik VM, 2004, J STRUCT CHEM+, V45, P1096, DOI 10.1007/s10947-005-0100-z Cabrilo S, 2020, EUR MANAG REV, V17, P835, DOI 10.1111/emre.12396 Caldana A, 2019, BRAZ TECHN S, P451 Chen CM, 2006, J AM SOC INF SCI TEC, V57, P359, DOI 10.1002/asi.20317 Chen H., 2001, KNOWLEDGE MANAGEMENT Chen MC, 2005, J INTELLECT CAP, V6, P159, DOI 10.1108/14691930510592771 Chu PY, 2006, TECHNOL FORECAST SOC, V73, P886, DOI 10.1016/j.techfore.2005.11.001 Cinquini L, 2012, J INTELLECT CAP, V13, P531, DOI 10.1108/14691931211276124 Cunha L, 2015, PROC EUR CONF INTELL, P53 Darroch J., 2002, J INTELLECT CAP, V3, P210, DOI DOI 10.1108/14691930210435570 de Antonio Jiménez Angélica, 2007, Comp. y Sist., V10, P333 De Bellis N, 2009, Bibliometrics and Citation Analysis: From the Science Citation Index to Cybermetrics de Frutos-Belizón J, 2019, J INTELLECT CAP, V20, P306, DOI 10.1108/JIC-09-2018-0152 De Santis F, 2018, MEDITARI ACCOUNT RES, V26, P361, DOI 10.1108/MEDAR-10-2017-0222 Del Giudice M, 2014, J KNOWL MANAG, V18, P841, DOI 10.1108/JKM-06-2014-0264 Delgado-Verde M, 2015, INT J TECHNOL MANAGE, V69, P117, DOI 10.1504/IJTM.2015.071551 Jordao RVD, 2017, J INTELLECT CAP, V18, P667, DOI 10.1108/JIC-11-2016-0120 Donthu N, 2020, J BUS RES, V109, P1, DOI 10.1016/j.jbusres.2019.10.039 Dost M, 2016, J INTELLECT CAP, V17, P675, DOI 10.1108/JIC-04-2016-0047 Duarte J, 2007, REV FINANC STUD, V20, P769, DOI 10.1093/rfs/hhl026 Dumay J, 2017, J INTELLECT CAP, V18, P29, DOI 10.1108/JIC-10-2016-0102 Dumay J, 2016, J INTELLECT CAP, V17, P168, DOI 10.1108/JIC-08-2015-0072 Dumay J, 2014, J INTELLECT CAP, V15, P2, DOI 10.1108/JIC-09-2013-0098 Dumay J, 2013, J INTELLECT CAP, V14, P5, DOI 10.1108/14691931311288986 Dumay J, 2013, J INTELLECT CAP, V14, P10, DOI 10.1108/14691931311288995 Dzenopoljac V, 2017, J INTELLECT CAP, V18, P884, DOI 10.1108/JIC-01-2017-0014 Edvinsson L, 2013, J INTELLECT CAP, V14, P163, DOI 10.1108/14691931311289075 Elsevier, 2021, About Scopus Fagerberg J, 2012, RES POLICY, V41, P1132, DOI 10.1016/j.respol.2012.03.008 Foss, 2013, HDB EC ORG Foss Nicolai J., 2010, International Journal of Strategic Change Management, V2, P93, DOI 10.1504/IJSCM.2010.034409 García-Meca E, 2010, EUR ACCOUNT REV, V19, P603, DOI 10.1080/09638180.2010.496979 Garfield E, 2004, J INF SCI, V30, P119, DOI 10.1177/0165551504042802 Gaviria-Marin M, 2018, J KNOWL MANAG, V22, P1655, DOI 10.1108/JKM-10-2017-0497 Giuliani M, 2016, J INTELLECT CAP, V17, P590, DOI 10.1108/JIC-08-2015-0071 Glnzel W., 2003, Bibliometrics as a research field: A course on theory and application of bibliometric indicators Greco F, 2020, INT J INFORM MANAGE, V51, DOI 10.1016/j.ijinfomgt.2019.04.007 Griffiths TL, 2004, P NATL ACAD SCI USA, V101, P5228, DOI 10.1073/pnas.0307752101 Grimaldi M, 2018, J INTELLECT CAP, V19, P272, DOI 10.1108/JIC-01-2017-0019 Guan J, 2019, INT J PROD RES, V57, P4654, DOI 10.1080/00207543.2017.1296979 Guthrie J., 2004, Journal of Intellectual Capital, V5, P282, DOI [10.1108/14691930410533704, DOI 10.1108/14691930410533704] Guthrie J, 2012, BRIT ACCOUNT REV, V44, P68, DOI 10.1016/j.bar.2012.03.004 Hajiheydari N, 2019, FORESIGHT, V21, P654, DOI 10.1108/FS-01-2019-0002 Haris M, 2018, PAC BUS REV INT, V11, P66 Haunschild R, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0160393 Haustein S, 2014, SCIENTOMETRICS, V101, P1145, DOI 10.1007/s11192-013-1221-3 Haustein S, 2014, J ASSOC INF SCI TECH, V65, P656, DOI 10.1002/asi.23101 Heinelt H., 2018, HDB PARTICIPATORY GO Hurley CO, 2018, ENTREP REGION DEV, V30, P1027, DOI 10.1080/08985626.2018.1515822 Hussinki H, 2017, J INTELLECT CAP, V18, P904, DOI 10.1108/JIC-11-2016-0116 Hvidsten AKN, 2016, DALHOUS J INTERDISCI, V12, DOI 10.5931/djim.v12.i1.6442 Irtaimeh, 2018, INT J MANAG STUD, V24, P1 Janmaijaya M, 2018, PUBLICATIONS-BASEL, V6, DOI 10.3390/publications6030032 Jardon CM, 2015, KNOWL MAN RES PRACT, V13, P486, DOI 10.1057/kmrp.2014.4 JCR, 2020, J CITATION REPORTS Jelodar H, 2019, MULTIMED TOOLS APPL, V78, P15169, DOI 10.1007/s11042-018-6894-4 Jiang HC, 2016, RENEW SUST ENERG REV, V57, P226, DOI 10.1016/j.rser.2015.12.194 JIC, 2021, J INTELLECT CAP JIC, 2019, J INTELLECT CAP Boj JJ, 2014, DECIS SUPPORT SYST, V68, P98, DOI 10.1016/j.dss.2014.10.002 Kim SH, 2014, J INTELLECT CAP, V15, P65, DOI 10.1108/JIC-04-2013-0048 Kokkinakis Dimitrios, 2012, P 3 WORKSH BUILD EV, P40 Kokol P, 2021, HEALTH INFO LIBR J, V38, P125, DOI 10.1111/hir.12295 Koruna SM, 2004, INT J TECHNOL MANAGE, V27, P241, DOI 10.1504/IJTM.2004.003954 Krausert A, 2018, HUM RESOUR MANAGE-US, V57, P97, DOI 10.1002/hrm.21841 KWON Y, 2017, 28 EUR REG ITS X PAS, P1, DOI DOI 10.1109/ISGT.2017.8085965 Leal C, 2019, PROC EUR CONF INTELL, P163 Leal C, 2017, PROC EUR CONF INTELL, P171 Lee H, 2018, J TECHNOL TRANSFER, V43, P1291, DOI 10.1007/s10961-017-9561-4 Lee IC, 2017, J INTELLECT CAP, V18, P807, DOI 10.1108/JIC-11-2016-0117 Leung XY, 2017, INT J HOSP MANAG, V66, P35, DOI 10.1016/j.ijhm.2017.06.012 Lin C.Y.Y., 2013, MANAGE REV, V32, P1 Lin CYY, 2021, J INTELLECT CAP, V22, P439, DOI 10.1108/JIC-03-2020-0082 Lin CYY, 2018, J INTELLECT CAP, V19, P498, DOI 10.1108/JIC-12-2016-0146 Lin SC, 2005, J INTELLECT CAP, V6, P191, DOI 10.1108/14691930510592799 Lin YM, 2015, INT REV ECON FINANC, V37, P208, DOI 10.1016/j.iref.2014.11.024 Lönnqvist A, 2009, KNOWL MAN RES PRACT, V7, P308, DOI 10.1057/kmrp.2009.22 Lotka A.J., 1926, J Wash Acad Sci Wash D C, V16, P23 Low M, 2015, J INTELLECT CAP, V16, P779, DOI 10.1108/JIC-03-2015-0022 Lundberg J, 2006, SCIENTOMETRICS, V66, P183, DOI 10.1007/s11192-006-0013-4 Maerz SF., 2020, COMPUTATIONAL CONFLI, P43, DOI [DOI 10.1007/978-3-030-29333-8_3, 10.1007/978-3-030-29333-8_3] Makarov PY, 2016, Upravlenets, P50 Manning P, 2010, J KNOWL MANAG, V14, P83, DOI 10.1108/13673271011015589 Martínez-López FJ, 2018, EUR J MARKETING, V52, P439, DOI 10.1108/EJM-11-2017-0853 Marzo G, 2016, J INTELLECT CAP, V17, P27, DOI 10.1108/JIC-09-2015-0075 Matos F, 2019, PROC EUR CONF INTELL, P186 Valenzuela L, 2017, J BUS IND MARK, V32, P1, DOI 10.1108/JBIM-04-2016-0079 McCracken M, 2018, ACCOUNT FORUM, V42, P130, DOI 10.1016/j.accfor.2017.11.001 Mokhtari H., 2019, WEBOLOGY, V16, P166 Molodchik MA, 2019, J INTELLECT CAP, V20, P335, DOI 10.1108/JIC-10-2018-0190 Molodchik MA, 2014, J INTELLECT CAP, V15, P206, DOI 10.1108/JIC-08-2013-0091 Morkunas VJ, 2019, J PUBLIC AFF, V19, DOI 10.1002/pa.1833 Nadeem M, 2017, PAC ACCOUNT REV, V29, P590, DOI 10.1108/PAR-08-2016-0080 Nassirtoussi AK, 2014, EXPERT SYST APPL, V41, P7653, DOI 10.1016/j.eswa.2014.06.009 Nejjari Z, 2020, BUS MANAGE ED, V18, P106, DOI 10.3846/bme.2020.12237 Nimtrakoon S, 2015, J INTELLECT CAP, V16, P587, DOI 10.1108/JIC-09-2014-0104 Osinski M, 2017, J INTELLECT CAP, V18, P470, DOI 10.1108/JIC-12-2016-0138 Özköse H, 2017, GAZI U J SCI, V30, P356 Parshakov P, 2018, J INTELLECT CAP, V19, P96, DOI 10.1108/JIC-01-2017-0011 Pedro E, 2019, J INTELLECT CAP, V20, P355, DOI 10.1108/JIC-07-2018-0117 Pedro E, 2018, MANAGE DECIS, V56, P2502, DOI 10.1108/MD-08-2017-0807 Pedro E, 2018, J INTELLECT CAP, V19, P407, DOI 10.1108/JIC-11-2016-0118 Petty R., 2000, J INTELLECT CAP, V1, P155, DOI [DOI 10.1108/14691930010348731, 10.1108/14691930010348731] Picot-Coupey K, 2018, INT J RETAIL DISTRIB, V46, P915, DOI 10.1108/IJRDM-08-2016-0139 Polo Francisca Castilla, 2007, International Journal of Accounting, Auditing and Performance Evaluation, V4, P360, DOI 10.1504/IJAAPE.2007.017084 PRITCHARD A, 1969, J DOC, V25, P348 Prylypko SM, 2019, FINANC CREDIT ACT, V4, P536 Qurashi LA, 2020, INT J LEARN INTELL C, V17, P61, DOI 10.1504/IJLIC.2020.105324 Rahman Md. Musfiqur, 2016, [The Journal of Industrial Distribution & Business, 산경연구논집], V7, P5 Ratia M, 2018, MEDITARI ACCOUNT RES, V26, P531, DOI 10.1108/MEDAR-08-2017-0200 Restrepo G, 2017, J MATH CHEM, V55, P1589, DOI 10.1007/s10910-017-0747-7 Rodríguez-Muñiz M, 2015, AM J CULT SOCIOL, V3, P89, DOI 10.1057/ajcs.2014.16 Rodríguez-Ruiz O, 2009, MANAG RES, V7, P203, DOI 10.2753/JMR1536-5433070303 Romanelli JP, 2018, ECOL ENG, V120, P311, DOI 10.1016/j.ecoleng.2018.06.015 Romanelli M, 2018, MEDITARI ACCOUNT RES, V26, P483, DOI 10.1108/MEDAR-10-2017-0225 Rooney J, 2016, BRIT ACCOUNT REV, V48, P1, DOI 10.1016/j.bar.2015.07.002 Rzhetsky A, 2008, CELL, V134, P9, DOI 10.1016/j.cell.2008.06.029 Saenz J, 2017, EUR J INT MANAG, V11, P129, DOI 10.1504/EJIM.2017.10003246 Santos BP., 2018, Revista Producao E Desenvolvimento, V4, P111, DOI DOI 10.32358/RPD.2018.V4.316 Sardo F, 2018, J INTELLECT CAP, V19, P747, DOI 10.1108/JIC-07-2017-0099 Scarlett L, 2016, FRONT ECOL ENVIRON, V14, P116, DOI 10.1002/fee.1247 Secundo G, 2018, J INTELLECT CAP, V19, P157, DOI 10.1108/JIC-11-2016-0113 Secundo G, 2017, TECHNOL FORECAST SOC, V123, P229, DOI 10.1016/j.techfore.2016.12.013 Secundo G, 2017, J INTELLECT CAP, V18, P242, DOI 10.1108/JIC-10-2016-0097 Seetharaman A., 2004, Journal of Intellectual Capital, V5, P131, DOI DOI 10.1108/14691930410512969 Seleim AAS, 2011, J INTELLECT CAP, V12, P586, DOI 10.1108/14691931111181742 Serenko Alexander, 2009, International Journal of Business Governance and Ethics, V4, P390, DOI 10.1504/IJBGE.2009.023790 Serenko A, 2017, J KNOWL MANAG, V21, P675, DOI 10.1108/JKM-11-2016-0490 Serenko A, 2013, J INTELLECT CAP, V14, P476, DOI 10.1108/JIC-11-2012-0099 Serenko A, 2009, J INTELLECT CAP, V10, P8, DOI 10.1108/14691930910922860 Serenko A, 2010, J KNOWL MANAG, V14, P3, DOI 10.1108/13673271011015534 Shamim S, 2019, INT J HUM RESOUR MAN, V30, P2387, DOI 10.1080/09585192.2017.1323772 Sharabati AAA, 2016, INT J BUS PERFORM MA, V17, P428, DOI 10.1504/IJBPM.2016.079278 SJR, 2020, SCI J RANKINGS Soo C, 2017, HUM RESOUR MANAGE-US, V56, P431, DOI 10.1002/hrm.21783 Su HY, 2013, SUPPLY CHAIN MANAG, V18, P178, DOI 10.1108/13598541311318818 Subbanarasimha, 2001, J INTELLECT CAP, V2, P9 Sullivan Jr P. H., 2000, J ACCOUNTING LIT, V1, P328, DOI DOI 10.1108/14691930010359234 Sun LJ, 2017, TRANSPORT RES C-EMER, V77, P49, DOI 10.1016/j.trc.2017.01.013 Sveiby K.E., 2001, J INTELLECT CAP, V2, P344, DOI DOI 10.1108/14691930110409651 Talafidaryani M., 2021, Business Information Review, V38, P79 Talafidaryani M, 2021, MANAG RES REV, V44, P236, DOI 10.1108/MRR-03-2020-0139 Tan HP, 2008, J INTELLECT CAP, V9, P585, DOI 10.1108/14691930810913177 Tang M, 2018, SUSTAINABILITY-BASEL, V10, DOI 10.3390/su10051655 Tarus DK, 2015, J AFR BUS, V16, P48, DOI 10.1080/15228916.2015.1061284 Thanuskodi S., 2010, LIB PHILOS PRACTICE, V18, P12 Tlili M, 2019, J INTELLECT CAP, V20, P642, DOI 10.1108/JIC-02-2019-0034 Turner N, 2015, INT J PROJ MANAG, V33, P177, DOI 10.1016/j.ijproman.2014.05.002 Tymoshenko A, 2017, FINANC CREDIT ACT, V1, P345, DOI 10.18371/fcaptp.v1i22.110071 Vale J, 2017, J KNOWL MANAG, V21, P1183, DOI 10.1108/JKM-01-2017-0043 van Eck NJ, 2009, J AM SOC INF SCI TEC, V60, P1635, DOI 10.1002/asi.21075 VANDEVIJVER F, 1995, J CROSS CULT PSYCHOL, V26, P591, DOI 10.1177/002202219502600604 Vishnu S, 2014, J INTELLECT CAP, V15, P83, DOI 10.1108/JIC-04-2013-0049 Wang MC, 2015, J BUS ETHICS, V130, P223, DOI 10.1007/s10551-014-2339-9 Weiss A.D., 2001, TOPOGRAPHIC POSITION WERNERFELT B, 1984, STRATEGIC MANAGE J, V5, P171, DOI 10.1002/smj.4250050207 Willett P, 2007, J MOL GRAPH MODEL, V26, P602, DOI 10.1016/j.jmgm.2007.03.008 Xu J, 2019, J INTELLECT CAP, V20, P488, DOI 10.1108/JIC-04-2018-0074 Yu DJ, 2017, INFORM SCIENCES, V418, P619, DOI 10.1016/j.ins.2017.08.031 Zhang P, 2015, RENEW SUST ENERG REV, V48, P88, DOI 10.1016/j.rser.2015.03.093 NR 192 TC 3 Z9 3 U1 6 U2 71 PU EMERALD GROUP PUBLISHING LTD PI BINGLEY PA HOWARD HOUSE, WAGON LANE, BINGLEY BD16 1WA, W YORKSHIRE, ENGLAND SN 1469-1930 EI 1758-7468 J9 J INTELLECT CAP JI J. Intellect. Cap. PD MAY 26 PY 2022 VL 23 IS 4 BP 864 EP 912 DI 10.1108/JIC-02-2020-0057 EA APR 2021 PG 49 WC Business; Management WE Social Science Citation Index (SSCI) SC Business & Economics GA 1M1TC UT WOS:000644797200001 DA 2024-09-05 ER PT J AU Spyroglou, O Yildirim, C Koumpis, A AF Spyroglou, Odysseas Yildirim, Cagri Koumpis, Adamantios TI Use of AI to Help Researchers Improve their Research Funding Capacities, Relevance, and Performance SO INTERNATIONAL JOURNAL OF SEMANTIC COMPUTING LA English DT Article; Proceedings Paper CT 3rd IEEE International Conference on Transdisciplinary Artificial Intelligence (TransAI) / 4th IEEE International Conference on Artificial Intelligence for Industries (IEEEAI4I) CY 2021 CL ELECTR NETWORK DE Research management; Horizon Europe; research fundraising; transdisciplinary AI; ethics AB Researchers and scientists face globally, and parallel to their core research activities, increased pressure to successfully lead or participate in fundraising activities. The field has been experiencing fierce competition with success rates of proposals falling dramatically down, while the complexity of the funding instruments and the need for acquiring a wide understanding of issues related to impacts, research priorities in connection to wider national and transnational (e.g. EU-wide) policy aspects, increase discomfort levels for the individual researchers and scientists. In this paper, we suggest the use of transdisciplinary AI tools to support (semi-)- automation of several steps of the application and proposal preparation processes. C1 [Spyroglou, Odysseas] Int Dev Ireland, Dublin, Ireland. [Yildirim, Cagri] TUBITAK Turkish Sci & Technol Res Council, Ankara, Turkey. [Koumpis, Adamantios] Rhein Westfal TH Aachen, Lehrstuhl Informat 5, Aachen, Germany. C3 RWTH Aachen University RP Spyroglou, O (corresponding author), Int Dev Ireland, Dublin, Ireland. EM o.spyroglou@idi.ie; cagri.yildirim@tubitak.gov.tr; koumpis@dbis.rwth-aachen.de RI Koumpis, Adamantios/HNP-1175-2023 OI Koumpis, Adamantios/0000-0003-2661-7749; Spyroglou, Odysseas/0000-0002-1885-4392 CR [Anonymous], 2021, NATURE, V595, P150, DOI 10.1038/d41586-021-01823-0 [Anonymous], 2016, 2016 ICML WORKSH HUM Christian B., 2016, Algorithms to live by: The computer science of human decisions Contexity, 2021, SCI FUND EXPL RES FU European Commission, 2015, HOR 2020 1 RES European Commission, 2021, HOR EUR INV SHAP FUT European Commission, 2018, COM2018237 EUR COMM Kearns Michael, 2019, The Ethical Algorithm: The Science of Socially Aware Algorithm Design Koh PW, 2017, PR MACH LEARN RES, V70 Labuschagne L, 2021, J RES MANAG ADM, V1, P1 Lakkaraju H, 2016, KDD'16: PROCEEDINGS OF THE 22ND ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, P1675, DOI 10.1145/2939672.2939874 Reardon S, 2021, NATURE, V595, P321, DOI 10.1038/d41586-021-01829-8 Ribeiro MT, 2018, AAAI CONF ARTIF INTE, P1527 Ribeiro MT, 2016, KDD'16: PROCEEDINGS OF THE 22ND ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, P1135, DOI 10.1145/2939672.2939778 Woolston Chris, 2021, Nature, DOI 10.1038/d41586-021-01548-0 Woolston C, 2020, NATURE, V588, P181, DOI 10.1038/d41586-020-03381-3 Woolston C, 2020, NATURE, V587, P689, DOI 10.1038/d41586-020-03235-y Zhang XZ, 2019, KDD'19: PROCEEDINGS OF THE 25TH ACM SIGKDD INTERNATIONAL CONFERENCCE ON KNOWLEDGE DISCOVERY AND DATA MINING, P226, DOI 10.1145/3292500.3330898 Zweig K. A., 2019, ALGORITHMUS HAT KEIN NR 19 TC 0 Z9 0 U1 3 U2 10 PU WORLD SCIENTIFIC PUBL CO PTE LTD PI SINGAPORE PA 5 TOH TUCK LINK, SINGAPORE 596224, SINGAPORE SN 1793-351X EI 1793-7108 J9 INT J SEMANT COMPUT JI Int. J. Semant. Comput. PD MAR PY 2022 VL 16 IS 01 BP 93 EP 106 DI 10.1142/S1793351X22400050 PG 14 WC Computer Science, Artificial Intelligence WE Emerging Sources Citation Index (ESCI) SC Computer Science GA 0U0DX UT WOS:000787331400006 DA 2024-09-05 ER PT J AU Hadhiatma, A Azhari, A Suyanto, Y AF Hadhiatma, Agung Azhari, Azhari Suyanto, Yohanes TI A Scientific Paper Recommendation Framework Based on Multi-Topic Communities and Modified PageRank SO IEEE ACCESS LA English DT Article DE Feature extraction; Filtering; Semantics; Recommender systems; Neural networks; Data mining; Collaborative filtering; Citation analysis; Ranking (statistics); Citation recommendation; academic citation network; serendipitous perspectives; multi-topic community; personalized PageRank ID MEASURING ACADEMIC INFLUENCE; SERENDIPITY; SYSTEMS AB Personalized PageRank is a variant of PageRank, widely developed for citation recommendation. However, the personalized PageRank that works with a vast amount and rich scholarly data still results in information overload. Sometimes, junior scholars still need help to arrange queries quickly because of limited domain knowledge. Senior researchers need reference papers regarding a similar topic they intend to search for and related topics as a new insight. In this research, scientific citation recommendation aims to find the most influential papers with similar and related topics. Related topic papers in serendipitous perspectives are reference papers that are novel, diversified and unexpected to a user. The unexpectedness of recommended papers can be papers with different topics to queries but still relevant. To accomplish these challenges, we propose a framework of scientific citation recommendation with serendipitous perspectives. The framework includes feature extraction of an academic citation network, selection of multi-topic communities, and ranking papers in the selected multi-topic communities by modified PageRank. Papers in the chosen communities tend to link to similar and related papers. Modified PageRank is an extension of personalized PageRank, which works on multi-topic communities and manuscript queries. The experiments reveal that the proposed models outperform some models of personalized PageRank and some models of Content-Based Filtering. The multi-topic communities-based models work more effectively than the baselines if they run in a large dataset since the topic communities become more cohesive. C1 [Hadhiatma, Agung] Sanata Dharma Univ, Fac Sci & Technol, Dept Informat, Yogyakarta 55282, Indonesia. [Hadhiatma, Agung; Azhari, Azhari; Suyanto, Yohanes] Univ Gadjah Mada, Fac Math & Nat Sci, Dept Comp Sci & Elect, Yogyakarta 55281, Indonesia. C3 Gadjah Mada University RP Azhari, A (corresponding author), Univ Gadjah Mada, Fac Math & Nat Sci, Dept Comp Sci & Elect, Yogyakarta 55281, Indonesia. EM arisn@ugm.ac.id RI Suyanto, Yohanes/AFU-0693-2022 OI Suyanto, Yohanes/0000-0003-1670-8620; Hadhiatma, Agung/0009-0002-8952-3045 CR Ali Z, 2020, ARTIF INTELL REV, V53, P5217, DOI 10.1007/s10462-020-09819-4 Amami M, 2016, LECT NOTES COMPUT SC, V9612, P200, DOI 10.1007/978-3-319-41754-7_17 [Anonymous], 2013, P AAAI C ART INT Beck B., 2018, SOCARXIV, DOI [10.31235/osf.io/me8zd.[50]X, DOI 10.31235/OSF.IO/ME8ZD.[50]X] Bhagavatula C., 2018, Long Papers, V1, P238, DOI DOI 10.18653/V1/N18-1022 Blondel VD, 2008, J STAT MECH-THEORY E, DOI 10.1088/1742-5468/2008/10/P10008 Cai XY, 2019, IEEE ACCESS, V7, P457, DOI 10.1109/ACCESS.2018.2885507 Cai XY, 2018, IEEE T NEUR NET LEAR, V29, P6026, DOI 10.1109/TNNLS.2018.2817245 Chandrasekaran K, 2008, LECT NOTES COMPUT SC, V5149, P83, DOI 10.1007/978-3-540-70987-9_11 Dai T, 2019, IEEE ACCESS, V7, P1706, DOI 10.1109/ACCESS.2018.2884981 Devlin J, 2019, 2019 CONFERENCE OF THE NORTH AMERICAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS: HUMAN LANGUAGE TECHNOLOGIES (NAACL HLT 2019), VOL. 1, P4171 Ding Y, 2011, J AM SOC INF SCI TEC, V62, P449, DOI 10.1002/asi.21467 Dunaiski M, 2019, J INFORMETR, V13, P270, DOI 10.1016/j.joi.2019.01.003 Feng Xia, 2016, IEEE Transactions on Big Data, V2, P101, DOI 10.1109/TBDATA.2016.2555318 Girvan M, 2002, P NATL ACAD SCI USA, V99, P7821, DOI 10.1073/pnas.122653799 Hatakenaka S, 2012, IEEE INT S WEB SYST, P97, DOI 10.1109/WSE.2012.6320539 Hernando A, 2016, KNOWL-BASED SYST, V97, P188, DOI 10.1016/j.knosys.2015.12.018 Jardine James, 2014, P 14 C EUR CHAPT ASS, P501 Jeong C, 2019, Arxiv, DOI arXiv:1903.06464 Kang Z, 2016, AAAI CONF ARTIF INTE, P179 Kazemi B., 2017, PREDICTIVE MODEL BAS, P1 Kotkov D, 2020, COMPUTING, V102, P393, DOI 10.1007/s00607-018-0687-5 Kotkov D, 2016, KNOWL-BASED SYST, V111, P180, DOI 10.1016/j.knosys.2016.08.014 Lamurias A, 2019, BMC BIOINFORMATICS, V20, DOI 10.1186/s12859-019-3157-y Li X, 2013, DECIS SUPPORT SYST, V54, P880, DOI 10.1016/j.dss.2012.09.019 Lops P, 2011, RECOMMENDER SYSTEMS HANDBOOK, P73, DOI 10.1007/978-0-387-85820-3_3 Luo X, 2015, IEEE T IND INFORM, V11, P946, DOI 10.1109/TII.2015.2443723 McNee SM, 2002, P 2002 ACM C COMP SU, P116, DOI DOI 10.1145/587078.587096 Mu DJ, 2018, IEEE ACCESS, V6, P3107, DOI 10.1109/ACCESS.2017.2787179 Page L., 1999, The PageRank citation ranking: bringing order to the web Park H, 2017, IEEE INT CONF BIG DA, P756, DOI 10.1109/BigData.2017.8257991 Park S, 2019, IEEE ACCESS, V7, P163049, DOI 10.1109/ACCESS.2019.2952653 Le Q, 2014, PR MACH LEARN RES, V32, P1188 Ren ZM, 2019, PHYSICA A, V513, P325, DOI 10.1016/j.physa.2018.09.001 Roul RK, 2021, INT J DATA SCI ANAL, V11, P37, DOI 10.1007/s41060-020-00232-2 Schein A. I., 2002, Proceedings of SIGIR 2002. Twenty-Fifth Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, P253, DOI 10.1145/564376.564421 Shaojie Qiao, 2010, Proceedings 2010 IEEE International Conference on Intelligent Systems and Knowledge Engineering (ISKE 2010), P390, DOI 10.1109/ISKE.2010.5680842 Shi C, 2017, IEEE T KNOWL DATA EN, V29, P17, DOI 10.1109/TKDE.2016.2598561 Sugiyama Kazunari., 2015, SIGWEB Newsl. Winter, p4:1, DOI [10.1145/2719943.2719947, DOI 10.1145/2719943.2719947] Tang J., 2008, KDD, P990, DOI DOI 10.1145/1401890.1402008 Tang J, 2008, IEEE DATA MINING, P1055, DOI 10.1109/ICDM.2008.71 Tang TY, 2009, IEEE INTERNET COMPUT, V13, P34, DOI 10.1109/MIC.2009.73 Tao M., 2020, P ART INT SEC 6 INT, VVolume 6, P571 Wei YC, 2021, COMPLEXITY, V2021, DOI 10.1155/2021/8825947 Xia F, 2020, IEEE TETCI, V4, P95, DOI 10.1109/TETCI.2019.2952908 Xia F, 2017, IEEE T BIG DATA, V3, P18, DOI 10.1109/TBDATA.2016.2641460 Xia F, 2014, IEEE T EMERG TOP COM, V2, P364, DOI 10.1109/TETC.2014.2356505 Xie WL, 2015, KDD'15: PROCEEDINGS OF THE 21ST ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, P1325, DOI 10.1145/2783258.2783278 Yang J., 2009, ADV DATA WEB MANAGEM, V5446 Yang LB, 2018, IEEE ACCESS, V6, P59618, DOI 10.1109/ACCESS.2018.2872730 Zhang YJ, 2018, SCIENTOMETRICS, V114, P1345, DOI 10.1007/s11192-017-2626-1 Zhang Y, 2019, J INFORMETR, V13, P616, DOI 10.1016/j.joi.2019.03.013 Zhao F, 2019, SCIENTOMETRICS, V118, P1119, DOI 10.1007/s11192-019-03010-5 Zhou XK, 2021, IEEE T EMERG TOP COM, V9, P246, DOI 10.1109/TETC.2018.2860051 Zhu XD, 2015, J ASSOC INF SCI TECH, V66, P408, DOI 10.1002/asi.23179 NR 55 TC 1 Z9 3 U1 7 U2 19 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 2169-3536 J9 IEEE ACCESS JI IEEE Access PY 2023 VL 11 BP 25303 EP 25317 DI 10.1109/ACCESS.2023.3251189 PG 15 WC Computer Science, Information Systems; Engineering, Electrical & Electronic; Telecommunications WE Science Citation Index Expanded (SCI-EXPANDED) SC Computer Science; Engineering; Telecommunications GA A3CL9 UT WOS:000953944100001 OA gold DA 2024-09-05 ER PT J AU Wei, CL Li, J Shi, DB AF Wei, Chunli Li, Jiang Shi, Dongbo TI Quantifying revolutionary discoveries: Evidence from Nobel prize-winning papers SO INFORMATION PROCESSING & MANAGEMENT LA English DT Article DE Revolutionary research; CD index; Citation count; Nobel prize-winning papers; Multivariate linear regression ID CITATION ANALYSIS; H-INDEX; SCIENCE; IMPACT; JOURNALS; IDENTIFICATION; INSTITUTIONS; RESEARCHERS; PERFORMANCE; CREATIVITY AB Numerous metrics have been developed to identify revolutionary science which is crucial for advancing science. However, these metrics have rarely successfully identified revolutionary dis-coveries. We propose a two-dimension metric to quantify revolutionary discoveries by combining the consolidation-or-destabilization (CD) index with the citation count. To verify the validity of the metric, we utilize multivariate linear regression to investigate the differences in the CD indices and citations between 164 Nobel prize-winning papers from 1976 to 2016 (i.e., revolu-tionary science) and 9,034 counterparts that are similar to the Nobel prize-winning papers in terms of bibliographic information. We find that our proposed metric successfully shows a sig-nificant and distinct difference between the Nobel prize-winning papers and their counterparts in that the former receive around 880 more citations and 0.07 higher CD indices than the latter. The reliability of our proposed measure is robust. C1 [Wei, Chunli; Li, Jiang] Nanjing Univ, Sch Informat Management, Nanjing 210023, Peoples R China. [Shi, Dongbo] Shanghai Jiao Tong Univ, Sch Int & Publ Affairs, Shanghai 200230, Peoples R China. C3 Nanjing University; Shanghai Jiao Tong University RP Li, J (corresponding author), Nanjing Univ, Sch Informat Management, Nanjing 210023, Peoples R China.; Shi, DB (corresponding author), Shanghai Jiao Tong Univ, Sch Int & Publ Affairs, Shanghai 200230, Peoples R China. EM lijiang@nju.edu.cn; shidongbo@sjtu.edu.cn RI Shi, Dongbo/ISU-4223-2023; Li, Jiang/JHV-1585-2023; Li, Jiang/Z-1709-2019 OI Li, Jiang/0000-0001-5769-8647 CR Abramo G, 2016, SCIENTOMETRICS, V109, P1711, DOI 10.1007/s11192-016-2143-7 Abramo G, 2011, SCIENTOMETRICS, V87, P499, DOI 10.1007/s11192-011-0352-7 Aksnes DW, 2019, SAGE OPEN, V9, DOI 10.1177/2158244019829575 AMABILE TM, 1982, J PERS SOC PSYCHOL, V43, P997, DOI 10.1037/0022-3514.43.5.997 Antonakis J, 2008, J AM SOC INF SCI TEC, V59, P956, DOI 10.1002/asi.20802 Aziz NA, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0059814 Azoulay P, 2019, NATURE, V566, P330, DOI 10.1038/d41586-019-00350-3 Bar-Ilan J, 2006, INFORM PROCESS MANAG, V42, P1553, DOI 10.1016/j.ipm.2006.03.019 Baregheh A, 2009, MANAGE DECIS, V47, P1323, DOI 10.1108/00251740910984578 Bornmann L, 2021, J INFORMETR, V15, DOI 10.1016/j.joi.2021.101159 Bornmann L, 2020, SCIENTOMETRICS, V123, P1149, DOI 10.1007/s11192-020-03406-8 Bornmann L, 2019, PROF INFORM, V28, DOI 10.3145/epi.2019.mar.07 Bornmann L, 2014, RES EVALUAT, V23, P166, DOI 10.1093/reseval/rvu002 Bornmann L, 2011, J INFORMETR, V5, P228, DOI 10.1016/j.joi.2010.10.009 Bower J.L., 1996, Journal of Product Innovation Management, V1, P75 Cao LK, 2022, SOCIOL COMPASS, V16, DOI 10.1111/soc4.13043 Casadevall A, 2016, MBIO, V7, DOI 10.1128/mBio.01902-16 Casadevall A, 2016, MBIO, V7, DOI 10.1128/mBio.00158-16 Chan HF, 2016, CESIFO ECON STUD, V62, P170, DOI 10.1093/cesifo/ifv010 Chan HF, 2012, ECON BULL, V32, P3365 Chan HF, 2014, RES EVALUAT, V23, P210, DOI 10.1093/reseval/rvu011 Chan HF, 2013, NATURE, V500, P29, DOI 10.1038/500029c Chan KC, 2009, ACCOUNT FINANC, V49, P59, DOI 10.1111/j.1467-629X.2007.00254.x Charlton BG, 2007, MED HYPOTHESES, V68, P931, DOI 10.1016/j.mehy.2006.12.006 Chen JY, 2021, RES POLICY, V50, DOI 10.1016/j.respol.2020.104115 Christensen CM, 2015, HARVARD BUS REV, V93, P44 Cohen IB., 1985, Revolution in science COLE S, 1970, AM J SOCIOL, V76, P286, DOI 10.1086/224934 Cooper JR., 1998, MANAGE DECIS, V36, P493, DOI [10.1108/00251749810232565, DOI 10.1108/00251749810232565] Costas R, 2010, SCIENTOMETRICS, V82, P517, DOI 10.1007/s11192-010-0187-7 Dan Y, 2008, PORTL INT CONF MANAG, P402, DOI 10.1109/PICMET.2008.4599648 Durieux V, 2010, RADIOLOGY, V255, P342, DOI 10.1148/radiol.09090626 Fagerberg J., 2004, OXFORD HDB INNOVATIO, P1, DOI [10.1093/oxfordhb/9780199286805.001.0001, DOI 10.1093/OXFORDHB/9780199286805.001.0001] Fleming L, 2001, MANAGE SCI, V47, P117, DOI 10.1287/mnsc.47.1.117.10671 Forgeard MJC, 2013, PSYCHOL AESTHET CREA, V7, P245, DOI 10.1037/a0031223 Fortunato S., 2018, SCIENCE, P359 Frandsen TF, 2013, J AM SOC INF SCI TEC, V64, P437, DOI 10.1002/asi.22785 Funk RJ, 2017, MANAGE SCI, V63, P791, DOI 10.1287/mnsc.2015.2366 Gao X, 2012, SCIENTOMETRICS, V90, P749, DOI 10.1007/s11192-011-0554-z GARFIELD E, 1955, SCIENCE, V122, P108, DOI 10.1126/science.122.3159.108 Govindarajan V, 2006, J PROD INNOVAT MANAG, V23, P12, DOI 10.1111/j.1540-5885.2005.00176.x Harzing AW, 2013, SCIENTOMETRICS, V94, P1057, DOI 10.1007/s11192-012-0777-7 Hirsch JE, 2005, P NATL ACAD SCI USA, V102, P16569, DOI 10.1073/pnas.0507655102 Jiang S, 2019, SCIENTOMETRICS, V121, P1599, DOI 10.1007/s11192-019-03242-5 Kauffman S., 1996, Investigations: The Nature of Autonomous Agents and the Worlds They Mutually Create Kline S., 1986, OVERVIEW INNOVATION, DOI DOI 10.1108/14601069810368485 Koestler Arthur., 1964, The Act of Creation Kuhn T, 1970, The Structure of Scientific Revolutions, V2nd, DOI [10.7208/chicago/9780226458106.001.0001, DOI 10.7208/CHICAGO/9780226458106.001.0001] Latour B., 1987, Science in Action Laudel G, 2014, RES POLICY, V43, P1204, DOI 10.1016/j.respol.2014.02.006 Lee YN, 2015, RES POLICY, V44, P684, DOI 10.1016/j.respol.2014.10.007 Leydesdorff L, 2021, J INFORMETR, V15, DOI 10.1016/j.joi.2021.101219 Leydesdorff L, 2021, PROF INFORM, V30, DOI 10.3145/epi.2021.ene.21 Li JC, 2019, SCI DATA, V6, DOI 10.1038/s41597-019-0033-6 Lievers WB, 2012, INFORM PROCESS MANAG, V48, P1116, DOI 10.1016/j.ipm.2012.01.009 Lin YL, 2022, J INFORMETR, V16, DOI 10.1016/j.joi.2021.101234 Lyu DQ, 2021, SCIENTOMETRICS, V126, P287, DOI 10.1007/s11192-020-03757-2 Ma N, 2008, INFORM PROCESS MANAG, V44, P800, DOI 10.1016/j.ipm.2007.06.006 Min C, 2021, INFORM PROCESS MANAG, V58, DOI 10.1016/j.ipm.2020.102428 Mingers J, 2012, INFORM PROCESS MANAG, V48, P234, DOI 10.1016/j.ipm.2011.03.009 NSB (National Science Board), 2007, ENH SUPP TRANSF RES Onodera N, 2015, J ASSOC INF SCI TECH, V66, P739, DOI 10.1002/asi.23209 Patel VM, 2013, MED PRIN PRACT, V22, P178, DOI 10.1159/000341756 Ponomarev IV, 2014, SCIENTOMETRICS, V100, P755, DOI 10.1007/s11192-014-1320-9 Ponomarev IV, 2014, TECHNOL FORECAST SOC, V81, P49, DOI 10.1016/j.techfore.2012.09.017 Rodríguez-Navarro A, 2011, J DOC, V67, P582, DOI 10.1108/00220411111145007 Rosenbloom JL, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0138176 Rosenkopf L, 2011, ORGAN SCI, V22, P1297, DOI 10.1287/orsc.1100.0637 Ruan XM, 2021, TECHNOL FORECAST SOC, V172, DOI 10.1016/j.techfore.2021.121071 Savov P, 2020, INFORM PROCESS MANAG, V57, DOI 10.1016/j.ipm.2019.102168 Schilling MA, 2011, RES POLICY, V40, P1321, DOI 10.1016/j.respol.2011.06.009 Schreiber M, 2013, SCIENTOMETRICS, V97, P821, DOI 10.1007/s11192-013-0984-x Schumpeter, 1942, Capitalism, Socialism and Democracy Shimogawa S, 2012, PHYS REV E, V85, DOI 10.1103/PhysRevE.85.056121 Shinohara K, 2010, COMPUT ECON, V35, P51, DOI 10.1007/s10614-009-9191-5 Sinatra R, 2016, SCIENCE, V354, DOI 10.1126/science.aaf5239 Staudt J, 2018, PLOS ONE, V13, DOI 10.1371/journal.pone.0200597 Sugimoto CR, 2021, NATURE, V593, P30, DOI 10.1038/d41586-021-01169-7 Tahamtan I, 2016, SCIENTOMETRICS, V107, P1195, DOI 10.1007/s11192-016-1889-2 THOMPSON VA, 1965, ADMIN SCI QUART, V10, P1, DOI 10.2307/2391646 Tijssen RJW, 2002, SCIENTOMETRICS, V54, P381, DOI 10.1023/A:1016082432660 TOULMIN S, 1970, DOES DISTINCTION NOR Usher AbbotP., 1954, A History of Mechanical Invention Uzzi B, 2013, SCIENCE, V342, P468, DOI 10.1126/science.1240474 van Raan AFJ, 2004, SCIENTOMETRICS, V59, P467, DOI 10.1023/B:SCIE.0000018543.82441.f1 Vinkler P, 2010, CHANDOS INF PROF SER, P1 Wagner CS, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0134164 Walters GD, 2006, SCIENTOMETRICS, V69, P499, DOI 10.1007/s11192-006-0166-1 Waltman L, 2016, J INFORMETR, V10, P365, DOI 10.1016/j.joi.2016.02.007 Waltman L, 2013, SCIENTOMETRICS, V96, P699, DOI 10.1007/s11192-012-0913-4 Wang J, 2017, RES POLICY, V46, P1416, DOI 10.1016/j.respol.2017.06.006 Wang MY, 2012, SCIENTOMETRICS, V93, P635, DOI 10.1007/s11192-012-0766-x Weitzman ML, 1998, Q J ECON, V113, P331, DOI 10.1162/003355398555595 Winnink JJ, 2015, SCIENTOMETRICS, V102, P113, DOI 10.1007/s11192-014-1451-z Wu LF, 2022, J INFORMETR, V16, DOI 10.1016/j.joi.2022.101290 Wu LF, 2019, NATURE, V566, P378, DOI 10.1038/s41586-019-0941-9 Xu HY, 2022, INFORM PROCESS MANAG, V59, DOI 10.1016/j.ipm.2021.102862 Zairi M., 1994, Total Quality Management, V5, P27 Zhou LX, 2022, INFORM SCIENCES, V596, P460, DOI 10.1016/j.ins.2022.03.038 Zhou LX, 2022, J AMB INTEL HUM COMP, DOI 10.1007/s12652-021-03664-1 NR 100 TC 6 Z9 7 U1 30 U2 135 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0306-4573 EI 1873-5371 J9 INFORM PROCESS MANAG JI Inf. Process. Manage. PD MAY PY 2023 VL 60 IS 3 AR 103252 DI 10.1016/j.ipm.2022.103252 EA JAN 2023 PG 16 WC Computer Science, Information Systems; Information Science & Library Science WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Computer Science; Information Science & Library Science GA 8A0AE UT WOS:000915910600001 DA 2024-09-05 ER PT J AU Ling, NH Chen, CJ Teh, CS John, DS Ch'ng, LC Lay, YF AF Ling, Nie Hui Chen, Chwen Jen Teh, Chee Siong John, Dexter Sigan Ch'ng, Looi Chin Lay, Yoon Fah TI Global Trends of Educational Data Mining in Online Learning SO INTERNATIONAL JOURNAL OF TECHNOLOGY IN EDUCATION LA English DT Article DE Educational data mining; Online learning; Bibliometric analysis; Global trends ID PREDICTING STUDENT PERFORMANCE; ACADEMIC-PERFORMANCE; ANALYTICS; SYSTEM AB Educational data mining (EDM) in online learning involves data mining techniques to analyze data from online environments to gain insights into student behavior, performance, and engagement. This study explored EDM in online learning publication trends and focuses. It involved a bibliometric analysis of 615 scholarly works related to EDM in online learning as recorded in Scopus, the largest peer-reviewed citation database, on February 1, 2023. The study examined EDM in online learning publications regarding its evolution and distribution, key focus areas, impact and performance, and prominent authors and collaborations in the last decade, in which the timespan is the period from 2012 to 2022. This bibliometric analysis shows that EDM in online learning is a dynamic area of scientific research as related publications grow steadily throughout the years and involve worldwide collaborations. The study reveals current research trends, offering valuable insights for future researchers to guide their investigations in this field. C1 [Ling, Nie Hui; Chen, Chwen Jen; Teh, Chee Siong; John, Dexter Sigan] Univ Malaysia Sarawak, Sarawak 94300, Malaysia. [Ch'ng, Looi Chin] Univ Teknol MARA Sarawak, Jalan Meranek, Sarawak 94300, Malaysia. [Lay, Yoon Fah] Univ Malaysia Sabah, Jalan UMS, Kota Kinabalu 88400, Sabah, Malaysia. C3 University of Malaysia Sarawak; Universiti Malaysia Sabah RP Chen, CJ (corresponding author), Univ Malaysia Sarawak, Sarawak 94300, Malaysia. EM cjchen@unimas.my OI John, Dexter/0000-0003-4096-101X; Lay, Yoon Fah/0000-0002-5219-6696 FU Universiti Malaysia Sarawak through the Malaysia Comprehensive University Network Grant Scheme [GL/F04/MCUN/20/2020] FX The author acknowledges the support provided by Universiti Malaysia Sarawak through the Malaysia Comprehensive University Network Grant Scheme [GL/F04/MCUN/20/2020]. CR Abana EC, 2019, INT J ADV COMPUT SC, V10, P285 Abdous M, 2012, EDUC TECHNOL SOC, V15, P77 Abhirami K, 2022, COMPUT SYST SCI ENG, V40, P1127, DOI 10.32604/csse.2022.020013 Abu Amrieh E, 2015, 2015 IEEE JORDAN CONFERENCE ON APPLIED ELECTRICAL ENGINEERING AND COMPUTING TECHNOLOGIES (AEECT) Adejo OW, 2018, J APPL RES HIGH EDUC, V10, P61, DOI 10.1108/JARHE-09-2017-0113 Adeniji B., 2019, Doctoral thesis Aher SB, 2013, KNOWL-BASED SYST, V51, P1, DOI 10.1016/j.knosys.2013.04.015 Ahmi A., 2021, Bibliometric Analysis for Beginners - A starter guide to begin with a bibliometric study Bakhshinategh B, 2018, EDUC INF TECHNOL, V23, P537, DOI 10.1007/s10639-017-9616-z Bharara S, 2018, EDUC INF TECHNOL, V23, P957, DOI 10.1007/s10639-017-9645-7 Bienkowski M., 2012, Enhancing teaching and learning through educational data mining and learning analytics: An issue brief Burgos C, 2018, COMPUT ELECTR ENG, V66, P541, DOI 10.1016/j.compeleceng.2017.03.005 Cerezo R, 2016, COMPUT EDUC, V96, P42, DOI 10.1016/j.compedu.2016.02.006 Chang YC, 2022, APPL SCI-BASEL, V12, DOI 10.3390/app12073562 del Blanco A, 2013, IEEE GLOB ENG EDUC C, P1255, DOI 10.1109/EduCon.2013.6530268 Dondorf T, 2019, ICERI PROC, P6957 Dormezil S., 2019, EDM WORKSHOPS, P17 Dutti A, 2017, IEEE ACCESS, V5, P15991, DOI 10.1109/ACCESS.2017.2654247 Elbadrawy A, 2016, COMPUTER, V49, P61, DOI 10.1109/MC.2016.119 Estacio R.R., 2017, Asian Assoc. Open Univ. J, V12, P52, DOI [10.1108/AAOUJ-01-2017-0016, DOI 10.1108/AAOUJ-01-2017-0016] Fernández A, 2012, ADV INTELL SYST, V173, P35 Hasan R, 2020, APPL SCI-BASEL, V10, DOI 10.3390/app10113894 Helal S, 2018, KNOWL-BASED SYST, V161, P134, DOI 10.1016/j.knosys.2018.07.042 Hu YH, 2014, COMPUT HUM BEHAV, V36, P469, DOI 10.1016/j.chb.2014.04.002 Huebner RA., 2013, Research, V19, P1 Ichou RP, 2018, AUSTRALAS MARK J, V26, P116, DOI 10.1016/j.ausmj.2018.05.007 Juhanák L, 2019, COMPUT HUM BEHAV, V92, P496, DOI 10.1016/j.chb.2017.12.015 Kabakchieva D, 2013, CYBERN INF TECHNOL, V13, P61, DOI 10.2478/cait-2013-0006 Krouska A., 2016, EFFECT PREPROCESSING, DOI [10.1109/IISA.2016.7785373, DOI 10.1109/IISA.2016.7785373] Lara JA, 2014, COMPUT EDUC, V72, P23, DOI 10.1016/j.compedu.2013.10.009 Lee JE, 2021, COMPUT EDUC, V162, DOI 10.1016/j.compedu.2020.104084 Ortigosa A, 2014, COMPUT HUM BEHAV, V31, P527, DOI 10.1016/j.chb.2013.05.024 Papamitsiou Z, 2014, EDUC TECHNOL SOC, V17, P49 Park Y, 2016, INTERNET HIGH EDUC, V29, P1, DOI 10.1016/j.iheduc.2015.11.001 Raj NS, 2022, J COMPUT EDUC, V9, P113, DOI 10.1007/s40692-021-00199-4 Real EM, 2020, PROC FRONT EDUC CONF Realinho V, 2022, DATA, V7, DOI 10.3390/data7110146 Romero C, 2007, EXPERT SYST APPL, V33, P135, DOI 10.1016/j.eswa.2006.04.005 Romero C, 2020, WIRES DATA MIN KNOWL, V10, DOI 10.1002/widm.1355 Romero C, 2013, COMPUT APPL ENG EDUC, V21, P135, DOI 10.1002/cae.20456 Salloum Said A., 2020, Proceedings of the International Conference on Artificial Intelligence and Computer Vision (AICV2020). Advances in Intelligent Systems and Computing (AISC 1153), P92, DOI 10.1007/978-3-030-44289-7_9 Schwendimann BA, 2017, IEEE T LEARN TECHNOL, V10, P30, DOI 10.1109/TLT.2016.2599522 Slater J.J., 2010, Collaboration in education Tawfeeq N., 2022, Indonesian Journal of Electrical Engineering and Computer Science, V28, P1037 Usov Segey, 2020, ICEMT 2020: 2020 4th International Conference on Education and Multimedia Technology, P31, DOI 10.1145/3416797.3416835 Wahid R, 2020, INT REV RES OPEN DIS, V21, P292 Yu YT, 2020, ANN TRANSL MED, V8, DOI 10.21037/atm-20-4235 Zhang YQ, 2020, INT J EMERG TECHNOL, V15, P102, DOI 10.3991/ijet.v15i20.15915 NR 48 TC 0 Z9 0 U1 3 U2 5 PU INT SOC TECHNOLOGY EDUCATION & SCIENCE-ISTES PI MONUMENT PA 19723 LINDENMERE DR, MONUMENT, COLORADO, UNITED STATES EI 2689-2758 J9 INT J TECHNOL EDUC JI Int. J. Technol. Educ. PY 2023 VL 6 IS 4 BP 656 EP 680 DI 10.46328/ijte.558 PG 25 WC Education & Educational Research WE Emerging Sources Citation Index (ESCI) SC Education & Educational Research GA W4GY6 UT WOS:001091237800007 OA gold DA 2024-09-05 ER PT J AU Dutta, D Aruchamy, S Mandal, S Sen, S AF Dutta, Debeshi Aruchamy, Srinivasan Mandal, Soumen Sen, Soumen TI Poststroke Grasp Ability Assessment Using an Intelligent Data Glove Based on Action Research Arm Test: Development, Algorithms, and Experiments SO IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING LA English DT Article DE Stroke (medical condition); Instruments; Force sensors; Medical services; Data gloves; Accelerometers; Thumb; ARAT; data glove; poststroke rehabilitation; ROC; SVC ID REHABILITATION OUTCOMES; BLOCK TEST; STROKE; IMPAIRMENT; CLASSIFICATION; PERFORMANCE; DISABILITY; NETWORKS; MOVEMENT; BOX AB Growing impact of poststroke upper extremity (UE) functional limitations entails newer dimensions in assessment methodologies. This has compelled researchers to think way beyond traditional stroke assessment scales during the out-patient rehabilitation phase. In concurrence with this, sensor-driven quantitative evaluation of poststroke UE functional limitations has become a fertile field of research. Here, we have emphasized an instrumented wearable for systematic monitoring of stroke patients with right-hemiparesis for evaluating their grasp abilities deploying intelligent algorithms. An instrumented glove housing 6 flex sensors, 3 force sensors, and a motion processing unit was developed to administer 19 activities of Action Research Arm Test (ARAT) while experimenting on 20 voluntarily participating subjects. After necessary signal conditioning, meaningful features were extracted, and subsequently the most appropriate ones were selected using the ReliefF algorithm. An optimally tuned support vector classifier was employed to classify patients with different degrees of disability and an accuracy of 92% was achieved supported by a high area under the receiver operating characteristic score. Furthermore, selected features could provide additional information that revealed the causes of grasp limitations. This would assist physicians in planning more effective poststroke rehabilitation strategies. Results of the one-way ANOVA test conducted on actual and predicted ARAT scores of the subjects indicated remarkable prospects of the proposed glove-based method in poststroke grasp ability assessment and rehabilitation. C1 [Dutta, Debeshi] Acad Sci & Innovat Res AcSIR, Chennai, Tamil Nadu, India. [Aruchamy, Srinivasan; Mandal, Soumen] CSIR Cent Mech Engn Res Inst, Durgapur, India. [Sen, Soumen] CSIR Cent Mech Engn Res Inst, Robot & Automat Grp, Durgapur 713209, W Bengal, India. C3 Academy of Scientific & Innovative Research (AcSIR); Council of Scientific & Industrial Research (CSIR) - India; CSIR - Central Mechanical Engineering Research Institute (CMERI); Council of Scientific & Industrial Research (CSIR) - India; CSIR - Central Mechanical Engineering Research Institute (CMERI) RP Sen, S (corresponding author), CSIR Cent Mech Engn Res Inst, Robot & Automat Grp, Durgapur 713209, W Bengal, India. EM soumen_sen@cmeri.res.in RI MANDAL, SOUMEN/AAS-9672-2020 OI MANDAL, SOUMEN/0000-0002-7353-0067; Aruchamy, Srinivasan/0000-0001-7942-2377; Sen, Soumen/0000-0003-4906-7727 FU CSIR-Central Mechanical Engineering Research Institute; Department of Science and Technology, Govt. of India FX This work was supported in part by CSIR-Central Mechanical Engineering Research Institute and Department of Science and Technology, Govt. of India, under Project `Indo-Korean joint network center on robotics'-Node 3, under Grant INT/KOREA/JNC/Robotics dated April 12, 2018. CR Ahlgren P, 2003, J AM SOC INF SCI TEC, V54, P550, DOI 10.1002/asi.10242 Airaksinen M, 2020, SCI REP-UK, V10, DOI 10.1038/s41598-019-56862-5 AlMahamdy M, 2014, PROCEDIA COMPUT SCI, V37, P325, DOI 10.1016/j.procs.2014.08.048 [Anonymous], BJU INT Aqueveque P., 2017, Physical Disabilities-Therapeutic Implications, P95 Banerjee TK, 2016, ANN INDIAN ACAD NEUR, V19, P1, DOI 10.4103/0972-2327.168631 BROMBA MUA, 1981, ANAL CHEM, V53, P1583, DOI 10.1021/ac00234a011 Del Din S, 2011, IEEE ENG MED BIO, P5839, DOI 10.1109/IEMBS.2011.6091444 Dutta D., 2020, P INT C COMP EL COMM, P1 Dutta D, 2017, BIOCYBERN BIOMED ENG, V37, P44, DOI 10.1016/j.bbe.2016.09.005 El-Gohary M, 2012, IEEE T BIO-MED ENG, V59, P2635, DOI 10.1109/TBME.2012.2208750 Feigin VL, 2009, LANCET NEUROL, V8, P355, DOI 10.1016/S1474-4422(09)70025-0 Franck JA, 2019, PLOS ONE, V14, DOI 10.1371/journal.pone.0214651 Fridolfsson J, 2019, SENSORS-BASEL, V19, DOI 10.3390/s19092186 FUGLMEYER AR, 1975, SCAND J REHABIL MED, V7, P13 GOWLAND C, 1993, STROKE, V24, P58, DOI 10.1161/01.STR.24.1.58 Gyllensten IC, 2011, IEEE T BIO-MED ENG, V58, P2656, DOI 10.1109/TBME.2011.2160723 Harrison JK, 2013, CLIN INTERV AGING, V8, P201, DOI 10.2147/CIA.S32405 Hester T., 2006, BSN 2006. International Workshop on Wearable and Implantable Body Sensor Networks Hogan N, 2009, J MOTOR BEHAV, V41, P529, DOI 10.3200/35-09-004-RC Kenry, 2016, MICROSYST NANOENG, V2, DOI 10.1038/micronano.2016.43 King RC, 2017, MED ENG PHYS, V42, P1, DOI 10.1016/j.medengphy.2016.12.011 Kononenko I, 1997, APPL INTELL, V7, P39, DOI 10.1023/A:1008280620621 Kotsiantis SB, 2006, ARTIF INTELL REV, V26, P159, DOI 10.1007/S10462-007-9052-3 Krishnamurthi RV, 2013, LANCET GLOB HEALTH, V1, pE259, DOI 10.1016/S2214-109X(13)70089-5 Kristensen HK, 2016, DISABIL REHABIL, V38, P2564, DOI 10.3109/09638288.2016.1138550 Kwakkel G, 2004, STROKE, V35, P2529, DOI 10.1161/01.STR.0000143153.76460.7d Lang CE, 2013, J HAND THER, V26, P104, DOI 10.1016/j.jht.2012.06.005 Langhorne P, 2013, COCHRANE DB SYST REV, DOI 10.1002/14651858.CD000197.pub3 Lee H, 2015, J KOREAN MED SCI, V30, pS139, DOI 10.3346/jkms.2015.30.S2.S139 Lee S, 2018, IEEE T NEUR SYS REH, V26, P125, DOI 10.1109/TNSRE.2017.2755667 Lee SI, 2021, IEEE T BIO-MED ENG, V68, P1871, DOI 10.1109/TBME.2020.3027853 Lemmens RJM, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0096414 Lin BS, 2017, IEEE T NEUR SYS REH, V25, P2204, DOI 10.1109/TNSRE.2017.2720727 Lin SB, 2015, IEEE T NEUR NET LEAR, V26, P21, DOI 10.1109/TNNLS.2014.2336665 LYLE RC, 1981, INT J REHABIL RES, V4, P483, DOI 10.1097/00004356-198112000-00001 Maceira-Elvira P, 2019, J NEUROENG REHABIL, V16, DOI 10.1186/s12984-019-0612-y MATHIOWETZ V, 1985, AM J OCCUP THER, V39, P386, DOI 10.5014/ajot.39.6.386 Matthews JohnA., 2014, ENCY ENV CHANGE Morrison M., 1985, U.S. Patent, Patent No. [4711125A, 4711125] Narai E, 2016, J GERIATR PHYS THER, V39, P171, DOI 10.1519/JPT.0000000000000067 Noorkoiv M, 2014, J NEUROENG REHABIL, V11, DOI 10.1186/1743-0003-11-144 Oubre B, 2020, IEEE T NEUR SYS REH, V28, P601, DOI 10.1109/TNSRE.2020.2966950 Pandian JD, 2013, J STROKE, V15, P128 Panwar M, 2019, IEEE T BIO-MED ENG, V66, P3026, DOI 10.1109/TBME.2019.2899927 Patel S, 2012, J NEUROENG REHABIL, V9, DOI 10.1186/1743-0003-9-21 Patel S, 2010, IEEE ENG MED BIO, P6858, DOI 10.1109/IEMBS.2010.5626446 Patel S, 2010, P IEEE, V98, P450, DOI 10.1109/JPROC.2009.2038727 Noi PT, 2018, SENSORS-BASEL, V18, DOI 10.3390/s18010018 PINCUS SM, 1992, COMMUN STAT THEORY, V21, P3061, DOI 10.1080/03610929208830963 Platz T, 2005, CLIN REHABIL, V19, P404, DOI 10.1191/0269215505cr832oa Prange-Lasonder GB, 2017, INT C REHAB ROBOT, P1401, DOI 10.1109/ICORR.2017.8009444 Preatoni E, 2020, FRONT BIOENG BIOTECH, V8, DOI 10.3389/fbioe.2020.00664 Press W. H., 1990, COMPUT PHYS, V4, P669, DOI DOI 10.1063/1.4822961 Qiu H, 2018, SCI REP-UK, V8, DOI 10.1038/s41598-018-34671-6 Rauch A, 2008, EUR J PHYS REHAB MED, V44, P329 Salazar AJ, 2014, TOP STROKE REHABIL, V21, P12, DOI 10.1310/tsr2101-12 Smale S, 2007, C MO AP C M, P157 Statnikov A, 2008, BMC BIOINFORMATICS, V9, DOI 10.1186/1471-2105-9-319 Urbanowicz RJ, 2018, J BIOMED INFORM, V85, P189, DOI 10.1016/j.jbi.2018.07.014 Uusitalo L, 2007, ECOL MODEL, V203, P312, DOI 10.1016/j.ecolmodel.2006.11.033 van Ommeren AL, 2019, IEEE T NEUR SYS REH, V27, P2128, DOI 10.1109/TNSRE.2019.2939202 Wittmann F, 2016, J NEUROENG REHABIL, V13, DOI 10.1186/s12984-016-0182-1 Yamashita R, 2018, INSIGHTS IMAGING, V9, P611, DOI 10.1007/s13244-018-0639-9 Young RP, 1997, HUM MOVEMENT SCI, V16, P677, DOI 10.1016/S0167-9457(97)00010-9 Yozbatiran N, 2008, NEUROREHAB NEURAL RE, V22, P78, DOI 10.1177/1545968307305353 Yu L, 2016, COMPUT METH PROG BIO, V128, P100, DOI 10.1016/j.cmpb.2016.02.012 Yu L, 2016, SENSORS-BASEL, V16, DOI 10.3390/s16020202 [Yue Shihong 岳士弘], 2003, Applied Mathematics. Series B, A Journal of Chinese Universities, V18, P332, DOI 10.1007/s11766-003-0059-5 Zhang Z, 2016, IEEE T BIO-MED ENG, V63, P859, DOI 10.1109/TBME.2015.2477095 Zhu PZ, 2018, ENTROPY-SWITZ, V20, DOI 10.3390/e20050377 NR 71 TC 13 Z9 14 U1 9 U2 36 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9294 EI 1558-2531 J9 IEEE T BIO-MED ENG JI IEEE Trans. Biomed. Eng. PD FEB PY 2022 VL 69 IS 2 BP 945 EP 954 DI 10.1109/TBME.2021.3110432 PG 10 WC Engineering, Biomedical WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Engineering GA YK9HO UT WOS:000745515000045 PM 34495824 DA 2024-09-05 ER PT S AU Rafik, M AF Rafik, Meriem BE Roumate, F TI Artificial Intelligence and the Changing Roles in the Field of Higher Education and Scientific Research SO ARTIFICIAL INTELLIGENCE IN HIGHER EDUCATION AND SCIENTIFIC RESEARCH: Future Development SE Bridging Human and Machine- Future Education with Intelligence LA English DT Article; Book Chapter DE Higher education; Scientific research; Bibliometric analysis; Academic world; Artificial intelligence; Pedagogy AB The university as we know it today is going to die. Indeed, we are now seeing the chaos that precedes any change. The influence of new players, such as artificial intelligence, is incompatible with a university that is an essential element of the contemporary industrial, financial, and ideological apparatus (Deneault in La mediocratie. Lux Editeur, Canada, 2015). The revolution of the academic world is imperative, given that the relations between academia and knowledge reflect the evolution of societies. As a result, we will have to guide innovation, which in itself holds no particular moral value. Innovation is as good as what we decide to do with it. However, the absence of a social project prevents us from creating a transversal policy in the economic, social, and cultural fields. This is why the new university that we are going to invent will allow us to take up the immense challenge of serving us in a world soon to be saturated with artificial intelligence. The objective of this research is to analyze the addition of digital technology to the world of conservative universities and to propose an optimal way of orienting scientific research and higher education represented by professor-researchers, to adapt to a digital future that is certainly approaching. This article is organized into three main sections. The first section will expose the changes in the profession of academic professors in both their informational and financial capacities; the second section will focus on the changes in the profession of researchers, also in their informational and financial capacities; and the last section will offer some suggestions to optimize the profession of researchers and professors in the context of their interaction with artificial intelligence. C1 [Rafik, Meriem] Univ Hassan 2, Casablanca, Morocco. C3 Hassan II University of Casablanca RP Rafik, M (corresponding author), Univ Hassan 2, Casablanca, Morocco. EM miryame108@gmail.com OI Rafik, Meriem/0009-0007-3985-6083 CR Alexandre L., 2017, La Guerre des Intelligences: comment l'intelligence artificielle va revolutionner l'education Angell M., 1986, The New England Journal of Medicine, V104 Champagne P., 2004, Pierre Bourdieu. Mouvements d'une pensee Chandler A. D., 1977, The Visible Hand-The Managerial Revolution in American Business Coursin R., 2020, Possibles, Automne, P8 Cuillandre H., 2020, Apres l'intelligence artificielle et la robotisation. Remettre l'humain au coeur du monde Deneault A., 2015, La mediocratie Dieuaide P., 2003, Le capitalisme cognitif. Un nouveau systeme historique d'accumulation, P02 Dufort P., 2020, Decentrer notre pratique universitaire de la recherche, P69 Dufort P., 2020, The Innovation Journal: The Public Sector Innovation Journal, V25 Engwall L., 2007, Politiques Et Gestion De L'enseignement Superieur, P97 Ford M., 2020, Possibles, Automne, P79 Hedges Chris., 2009, Empire of Illusion: The End of Literacy and the Triumph of Spectacle hooks b., 1994, Teaching to Transgress: Education as the Practice of Freedom, V1st, P224 Kalestsky A., 2010, Courrier International, P23 Ketele J.-M. D., 2020, Revue internationale d'education, P205 Mills C.Wright., 1951, WHITE COLLAR AM MIDD Neptune N., 2015, ANALYSE BIBLIOMETRIQUE: UNE AIDE POUR L'EVALUATION DES UNITES DE RECHERCHE Roc J.-C., 2020, POSSIBLES AUTOMNE, P48 Said E., 1996, De l'intellectuel et du pouvoir, Vessais Schimanski L. A., 2018, The Evaluation of Scholarship in Academic Promotion and Tenure Processes: Past, Present, and Future Schumpeter J.A., 1939, Business cycles Very P., 2019, Intelligence artificielle et recherche en gestion, P131 NR 23 TC 1 Z9 1 U1 1 U2 1 PU SPRINGER-VERLAG SINGAPORE PTE LTD PI SINGAPORE PA 152 BEACH ROAD, #21-01/04 GATEWAY EAST, SINGAPORE, 189721, SINGAPORE SN 2662-5342 BN 978-981-19-8643-7; 978-981-19-8641-3; 978-981-19-8640-6 J9 Bridging Human and M PY 2023 BP 35 EP 46 DI 10.1007/978-981-19-8641-3_3 D2 10.1007/978-981-19-8641-3 PG 12 WC Computer Science, Artificial Intelligence; Education & Educational Research WE Book Citation Index – Social Sciences & Humanities (BKCI-SSH); Book Citation Index – Science (BKCI-S) SC Computer Science; Education & Educational Research GA BW5CA UT WOS:001158874300004 DA 2024-09-05 ER PT C AU Hu, JL Nian, ZY Wang, XL AF Hu, Jili Nian, Zhiyuan Wang, Xinle BE Kocaoglu, DF Anderson, TR Kozanoglu, DC Niwa, K Steenhuis, HJ TI Research on Financial Performance Evaluation on Artificial Intelligence Listed Companies in China Based on DEA Method SO 2019 PORTLAND INTERNATIONAL CONFERENCE ON MANAGEMENT OF ENGINEERING AND TECHNOLOGY (PICMET) SE Portland International Conference on Management of Engineering and Technology LA English DT Proceedings Paper CT Portland International Conference on Management of Engineering and Technology (PICMET) CY AUG 25-29, 2019 CL Portland, OR ID EFFICIENCY AB China's Artificial Intelligence (Al) industry has developed rapidly in recent years, with the State Council of China releasing a roadmap in July 2017 with a goal of creating a domestic industry worth 1 trillion Yuan and becoming a global Al powerhouse by 2030. This study evaluates the listed companies in China's Al industry from the perspective of financial performance and analyzes the development status of China's Al industry from a macro perspective. This study selects the more objective and appropriate DEA analysis as the evaluation method according to the characteristics of the Al industry. On the basis of summarizing the development status of the Al industry and Al listed companies, an empirical analysis is carried out. In the data sample, 34 Al listed companies in China's Shanghai and Shenzhen stock markets were selected, and the DEA model with output-orientation model was used to analyze the standard data. The result shows that in the different stock board the efficiency presents different development trends and distribution status. C1 [Hu, Jili; Nian, Zhiyuan; Wang, Xinle] Jilin Univ, Sch Econ, JLU, Changchun, Peoples R China. C3 Jilin University RP Hu, JL (corresponding author), Jilin Univ, Sch Econ, JLU, Changchun, Peoples R China. FU Jilin University project 'China High-tech Industry Innovation Efficiency Research' [2017ZZ046] FX This research was supported by Dr. Tim Anderson from Department of Engineering and Technology Management (ETM) at Portland State University, who provided insight and expertise that greatly assisted the research, and with the help of his book Data Envelopment Analysis Using R'. This research was funded by the Jilin University project 'China High-tech Industry Innovation Efficiency Research' (project code: 2017ZZ046). CR [Anonymous], 2018, XINHUA NET 0424 Becsky Nagy P., 2014, ANN U ORADEA EC SCI, P820 Bowlin W.F., 1998, J COST ANAL, V15, P3 Camanho AS, 2005, EUR J OPER RES, V161, P432, DOI 10.1016/j.ejor.2003.07.018 CHARNES A, 1978, EUR J OPER RES, V2, P429, DOI 10.1016/0377-2217(78)90138-8 Chen XG, 2005, CHINA ECON REV, V16, P229, DOI 10.1016/j.chieco.2005.02.001 Edirisinghe NCP, 2007, J BANK FINANC, V31, P3311, DOI 10.1016/j.jbankfin.2007.04.008 Gershgorn Dave, 2018, AI NEW SPACE RACE HE Johnes J, 2006, EUR J OPER RES, V174, P443, DOI 10.1016/j.ejor.2005.02.044 Lim D.J., 2014, ANDERSON IMPROVING F Metz Cade, 2018, CHINA MARCHES FORWAR Shafer SM, 2000, OMEGA-INT J MANAGE S, V28, P125, DOI 10.1016/S0305-0483(99)00039-0 Wall LD, 2018, J ECON BUS, V100, P55, DOI 10.1016/j.jeconbus.2018.05.003 Wright SA, 2018, BUS HORIZONS, V61, P823, DOI 10.1016/j.bushor.2018.07.001 NR 14 TC 1 Z9 1 U1 0 U2 3 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA SN 2159-5100 BN 978-1-890843-40-3 J9 PORTL INT CONF MANAG PY 2019 DI 10.23919/picmet.2019.8893931 PG 6 WC Engineering, Electrical & Electronic WE Conference Proceedings Citation Index - Science (CPCI-S) SC Engineering GA BO5RJ UT WOS:000518681200155 DA 2024-09-05 ER PT J AU Li, HX Di, HX Li, J Tian, SC AF Li Hongxia Di Hongxi Li Jian Tian Shuicheng TI Research on the application of the improved genetic algorithm in the electroencephalogram-based mental workload evaluation for miners SO JOURNAL OF ALGORITHMS & COMPUTATIONAL TECHNOLOGY LA English DT Article DE Genetic algorithm; particle swarm optimization; improved genetic algorithm; mental workload; electroencephalogram AB Electroencephalogram is the electrical phenomena in the cerebral cortex or the scalp surface due to the electrophysiological activity of brain cells. Electroencephalogram has great theoretical and practical significance in measuring mental workload of people. More precise electroencephalographic is a precondition to study mental workload of miners. In this article, based on the actual situation of the electroencephalographic measurement of miners, the particle swarm optimization is introduced to improve the standard genetic algorithm, and put forward a combined method integrating the genetic algorithm with particle swarm optimization for achieving electroencephalogram-based measures of miners' mental workload. Moreover, the MATLAB simulation platform is used for simulation testing. Testing results prove the effectiveness of the combined method. C1 [Li Hongxia; Di Hongxi] Xian Univ Sci & Technol, Sch Management, Xian, Shaanxi, Peoples R China. [Li Hongxia; Di Hongxi; Tian Shuicheng] Xian Univ Sci & Technol, Sch Energy Engn, Xian, Shaanxi, Peoples R China. [Li Hongxia; Di Hongxi; Tian Shuicheng] Xian Univ Sci & Technol, Key Lab Western Mine Exploitat & Hazard Prevent, Xian, Shaanxi, Peoples R China. [Li Jian] Shanxi Prov AuditOff, Xian, Shaanxi, Peoples R China. C3 Xi'an University of Science & Technology; Xi'an University of Science & Technology; Xi'an University of Science & Technology RP Li, HX (corresponding author), Xian Univ Sci & Technol, Sch Management, Xian, Shaanxi, Peoples R China. EM hongxidi@sohu.com FU National Natural Science Foundation of China [71271169, 71273208]; Doctoral Program Foundation [20126121110004, 20116121110002] FX The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: National Natural Science Foundation of China (71271169, 71273208) and The Doctoral Program Foundation (20126121110004, 20116121110002). CR Cinaz B, 2013, PERS UBIQUIT COMPUT, V17, P229, DOI 10.1007/s00779-011-0466-1 Cui SQ, 2014, PR ELECTROMAGN RES S, P1364 Dong YJ, 2013, SCI TECHNOLOGY ENG, V13, P3305 Ebrahimi T, 2003, IEEE SIGNAL PROC MAG, V20, P14, DOI 10.1109/MSP.2003.1166626 Evstigneev AL, 2008, INT J PSYCHOPHYSIOL, V69, P299, DOI 10.1016/j.ijpsycho.2008.05.292 Feng ZM, 2014, COMPUT TECHNOL DEV, V24, P35 Giraudet L, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0118556 He L, 2013, NEUROCOMPUTING, V121, P423, DOI 10.1016/j.neucom.2013.05.005 Herff C, 2014, FRONT HUM NEUROSCI, V7, DOI 10.3389/fnhum.2013.00935 Jianqiao Liao, 1995, J SYSTEM ENG, V10, P119 Käthner I, 2014, BIOL PSYCHOL, V102, P118, DOI 10.1016/j.biopsycho.2014.07.014 Kai H, 2013, MATH PROBL ENG, V2013, P289 Karakis R., 2013, RECENT PAT BIOMED EN, V6, P188 Krzeszowski T, 2013, LECT NOTES COMPUT SC, P147 Magee R, 2015, ANN IEEE SYST CONF, P230, DOI 10.1109/SYSCON.2015.7116757 Merabti H., 2014, 2014 IEEE 27 CAN C E, P1 Noel JB, 2005, COMPUT OPER RES, V32, P2713, DOI 10.1016/j.cor.2004.03.022 Rejer I., 2013, J THEORETICAL APPL C, V7, P72 Su YW, 2014, LECT NOTES ELECTR EN, V293, P1031, DOI 10.1007/978-3-319-04573-3_126 [王斐 Wang Fei], 2014, [仪器仪表学报, Chinese Journal of Scientific Instrument], V35, P398 [王福旺 Wang Fuwang], 2013, [仪器仪表学报, Chinese Journal of Scientific Instrument], V34, P1146 Wang X., 2002, Genetic Algorithm: Theory, Application, and Software Implementation, V1st Young MS, 2015, ERGONOMICS, V58, P1, DOI 10.1080/00140139.2014.956151 [赵丽 Zhao Li], 2014, [电子测量与仪器学报, Journal of Electronic Measurement and Instrument], V28, P625 Zhou Xiaojun, 2014, [自动化学报, Acta Automatica Sinica], V40, P1339 NR 25 TC 2 Z9 2 U1 0 U2 4 PU SAGE PUBLICATIONS LTD PI LONDON PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND SN 1748-3018 EI 1748-3026 J9 J ALGORITHMS COMPUT JI J. Algorithms Comput. Technol. PD SEP PY 2016 VL 10 IS 3 SI SI BP 198 EP 207 DI 10.1177/1748301816649071 PG 10 WC Computer Science, Interdisciplinary Applications WE Emerging Sources Citation Index (ESCI) SC Computer Science GA FJ4HF UT WOS:000412696900008 OA gold DA 2024-09-05 ER PT J AU Shrivastava, R Mahajan, P AF Shrivastava, Rishabh Mahajan, Preeti TI Influence of social networking sites on scholarly communication: A study using literature in Artificial Intelligence SO JOURNAL OF LIBRARIANSHIP AND INFORMATION SCIENCE LA English DT Article DE Altmetrics; artificial intelligence; online reference managers; scholarly communication; social networking sites ID CITATION COUNTS; MENDELEY; INFORMATION; INDICATORS; ALTMETRICS; SERVICES AB With the advent of Web 2.0 tools and especially social media, researchers are increasingly active on the Web. This has resulted in a transformation in the scholarly communication process through which researchers share and bookmark research works in online platforms. In the present study, the influence of social networking sites on the field of Artificial Intelligence research was studied. The study analysed the influence of social networking sites on both conference papers and journal articles, as in a field like Artificial Intelligence both channels of research dissemination play important roles. The top 100 cited journal articles and conference papers in Artificial Intelligence published in 2009 and 2013 were analysed for their presence on social networking sites and online reference managers. It was found that amongst social networking sites, Mendeley had the greatest influence on research in Artificial Intelligence. Mendeley played the most remarkable role in transforming scholarly communication with the highest coverage of both journal articles and conference papers for both the years 2009 and 2013. It was found that the influence of social networking sites was greater for journal articles than conference papers, the latter still having a lower average Mendeley readership. The highest correlation between citation counts and Mendeley readership was found for journal articles published in 2009, followed by journal articles published in 2013, conference papers published in 2009 and conference papers published in 2013. The average Mendeley readership was also higher for journal articles than for conference papers. Mendeley readership was also found to be higher for journal articles and conference papers published earlier in time, indicating that research works published earlier in time were more popular in social networking sites and online reference managers. C1 [Shrivastava, Rishabh; Mahajan, Preeti] Panjab Univ, Dept Lib & Informat Sci, Chandigarh 160014, India. C3 Panjab University RP Shrivastava, R (corresponding author), Panjab Univ, Dept Lib & Informat Sci, Chandigarh 160014, India. EM rishabh3@outlook.com RI Mahajan, Preeti/N-2176-2016 OI Shrivastava, Rishabh/0000-0003-3466-2590 CR Allen HG, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0068914 Andersen P., 2007, WHAT IS WEB 20 IDEAS [Anonymous], 2007, COMMUNICATIONS STRAT Bar-Ilan J., 2012, P 17 INT C SCI TECHN, P98 Barjak F, 2006, J AM SOC INF SCI TEC, V57, P1350, DOI 10.1002/asi.20454 Boyd DM, 2007, J COMPUT-MEDIAT COMM, V13, P210, DOI 10.1111/j.1083-6101.2007.00393.x Collins E., 2010, PUBL NETW WORLD TRAN, P271 Collins J., 2010, LIB MEDIA CONNECTION, V29, P24 Davidson LA, 2005, INT J TOXICOL, V24, P25, DOI 10.1080/10915810590921351 Galligan F, 2013, SERIALS REV, V39, P56, DOI 10.1016/j.serrev.2013.01.003 Haustein S, 2015, ASLIB J INFORM MANAG, V67, P246, DOI 10.1108/AJIM-03-2015-0047 Haustein S, 2014, BEYOND BIBLIOMETRICS: HARNESSING MULTIDIMENSIONAL INDICATORS OF SCHOLARLY IMPACT, P327 Hicks A, 2011, COLLAB LIBRARIANSH, V3, P10 Houghton J., 2009, Economics implications of alternative scholarly publishing models: Exploring the costs and benefit: A report to the Joint Information Systems Committee Kalogirou SA, 2003, PROG ENERG COMBUST, V29, P515, DOI 10.1016/S0360-1285(03)00058-3 Li XM, 2012, SCIENTOMETRICS, V91, P461, DOI 10.1007/s11192-011-0580-x Ortega JL, 2015, J INFORMETR, V9, P39, DOI 10.1016/j.joi.2014.11.004 MacMillan D, 2012, LIBR MANAGE, V33, P561, DOI 10.1108/01435121211279902 Maflahi N, 2016, J ASSOC INF SCI TECH, V67, P191, DOI 10.1002/asi.23369 Mohammadi E, 2016, J ASSOC INF SCI TECH, V67, P1198, DOI 10.1002/asi.23477 Mohammadi E, 2015, J ASSOC INF SCI TECH, V66, P1832, DOI 10.1002/asi.23286 Mohammadi E, 2014, J ASSOC INF SCI TECH, V65, P1627, DOI 10.1002/asi.23071 Nentwich M., 2014, Opening Science, P107, DOI [DOI 10.1007/978-3-319-00026-8_7, 10.1007/978-3-319-00026-8_7] Priem J., 2010, ALTMETRICS MANIFESTO Priem J, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0048753 Reher S, 2010, ONLINE, V34, P34 Rodgers E.P., 2013, A look at altmetrics and its growing significance to research libraries Russell S, 1995, ARTIFICIAL INTELLIGE Sauer IM, 2005, ARTIF ORGANS, V29, P82, DOI 10.1111/j.1525-1594.2004.29005.x Schlögl C, 2014, SCIENTOMETRICS, V101, P1113, DOI 10.1007/s11192-014-1365-9 Shehata A, 2015, LIBR REV, V64, P428, DOI 10.1108/LR-09-2014-0102 Shrivastava Rishabh, 2016, Science & Technology Libraries, V35, P136, DOI 10.1080/0194262X.2016.1181023 Shrivastava R, 2016, NEW LIB WORLD, V117, P229, DOI 10.1108/NLW-09-2015-0064 Stewart J, 2013, NEW MEDIA SOC, V15, P413, DOI 10.1177/1461444812465141 Thelwall M, 2017, J LIBR INF SCI, V49, P144, DOI 10.1177/0961000615594867 Thelwall M, 2016, ASLIB J INFORM MANAG, V68, P2, DOI 10.1108/AJIM-09-2015-0146 Thelwall M, 2016, J ASSOC INF SCI TECH, V67, P1962, DOI 10.1002/asi.23501 Thelwall M, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0064841 NR 38 TC 3 Z9 3 U1 4 U2 33 PU SAGE PUBLICATIONS LTD PI LONDON PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND SN 0961-0006 EI 1741-6477 J9 J LIBR INF SCI JI J. Libr. Inf. Sci. PD SEP PY 2021 VL 53 IS 3 BP 522 EP 529 DI 10.1177/0961000616678309 PG 8 WC Information Science & Library Science WE Social Science Citation Index (SSCI) SC Information Science & Library Science GA UK0SM UT WOS:000691685200013 DA 2024-09-05 ER PT J AU Wang, DS AF Wang, Dongsheng TI Research on raw water quality assessment oriented to drinking water treatment based on the SVM model SO WATER SCIENCE AND TECHNOLOGY-WATER SUPPLY LA English DT Article DE chemical dosing process; drinking water treatment; raw water quality assessment; SVM ID PARTICLE SWARM OPTIMIZATION; OXIDATION; SHALLOW; FATE; LAKE AB Raw water quality variation has a great effect on drinking water treatment. To improve the adaptivity of drinking water treatment and stabilize the quality of treated water, a raw water quality assessment method, which is based upon the support vector machine (SVM), is developed in this study. Compared to existing raw water quality assessment methods, the assessment method studied herein is oriented to drinking water treatment and can directly be used for the control of the chemical (alum and ozone) dosing process. To this end, based upon the productive experiences and the analysis of the operating data of water supply, a raw water quality assessment standard oriented to drinking water treatment is proposed. A raw water quality model is set up to assess the raw water quality based upon the SVM technique. Based upon the raw water quality assessment results, a feedforward-feedback control scheme has been designed for the chemical dosing process control of drinking water treatment. Thus, the chemical dosage can be adjusted in time to cope with raw water quality variations and hence, the quality of the treated water is stabilized. Experimental results demonstrate the improved effectiveness of the proposed method of raw water quality assessment and the feedforward-feedback control scheme. C1 [Wang, Dongsheng] Nanjing Univ Posts & Telecommun, Sch Automat, Nanjing 210003, Jiangsu, Peoples R China. C3 Nanjing University of Posts & Telecommunications RP Wang, DS (corresponding author), Nanjing Univ Posts & Telecommun, Sch Automat, Nanjing 210003, Jiangsu, Peoples R China. EM wangdongsheng@njupt.edu.cn FU Natural Science Foundation of Jiangsu Province [BK20150841]; NUPTSF [NY214019, NY214078] FX This work was supported by Natural Science Foundation of Jiangsu Province (Grant No. BK20150841), NUPTSF (Grant No. NY214019) and NUPTSF (Grant No. NY214078). CR Benson Y., 2006, THESIS [闭乐鹏 BI Lepeng], 2006, [北京理工大学学报, Journal of beijing institute of technology], V26, P143 Bray M, 2004, J HYDROINFORM, V6, P265, DOI 10.2166/hydro.2004.0020 Chu HB, 2013, J AGR SCI TECH-IRAN, V15, P343 CROMPHOUT J, 2005, TRIBUNE EAU, V58, P15 Delpla I, 2011, WATER SCI TECHNOL, V63, P227, DOI 10.2166/wst.2011.038 Ding S., 2010, INTEL INF MANAGE, V2, P354 Dormido-Canto S., 2004, REV SCI INSTRUMENTS, V75, P4254 Gadgil A, 1998, ANNU REV ENERG ENV, V23, P253, DOI 10.1146/annurev.energy.23.1.253 Ghumman AR, 2011, ENVIRON MONIT ASSESS, V180, P115, DOI 10.1007/s10661-010-1776-x Hamzah N., 2007, THESIS Jurado A, 2012, SCI TOTAL ENVIRON, V440, P82, DOI 10.1016/j.scitotenv.2012.08.029 Kalyani S, 2011, IEEE T SYST MAN CY C, V41, P753, DOI 10.1109/TSMCC.2010.2091630 Kannan S, 2004, ELECTR POW SYST RES, V70, P203, DOI 10.1016/j.epsr.2003.12.009 Khajeh A, 2011, IND ENG CHEM RES, V50, P11337, DOI 10.1021/ie2004708 Lian Z., 2012, OPTICAL TECHNIQUE, V552, P459 Lin SW, 2008, EXPERT SYST APPL, V35, P1817, DOI 10.1016/j.eswa.2007.08.088 Liu GH, 2010, EXPERT SYST APPL, V37, P2708, DOI 10.1016/j.eswa.2009.08.008 Liu ZQ, 2014, J ENVIRON ENG, V140, DOI 10.1061/(ASCE)EE.1943-7870.0000735 Mehta S. S., 2007, IET-UK International Conference on Information and Communication Technology in Electrical Sciences (ICTES 2007), P527, DOI 10.1049/ic:20070668 Pal M, 2010, IEEE T GEOSCI REMOTE, V48, P2297, DOI 10.1109/TGRS.2009.2039484 Parashar C, 2008, ENVIRON MONIT ASSESS, V140, P119, DOI 10.1007/s10661-007-9853-5 Ren Y, 2010, J COMPUT, V5, P1160, DOI 10.4304/jcp.5.8.1160-1168 Ribeiro AR, 2015, ENVIRON INT, V75, P33, DOI 10.1016/j.envint.2014.10.027 Ross S.L., 1977, Water Pollution Control Federation, V76, P113 Sallanko J, 2013, OZONE-SCI ENG, V35, P86, DOI 10.1080/01919512.2013.758567 Scholkopf B., 1995, KDD-95 Proceedings. First International Conference on Knowledge Discovery and Data Mining, P252 Schulz C.R., 1992, Surface Water Treatment for Communities in Developing Countries Singh KP, 2005, ANAL CHIM ACTA, V538, P355, DOI 10.1016/j.aca.2005.02.006 Sobsey MD, 2008, ENVIRON SCI TECHNOL, V42, P4261, DOI 10.1021/es702746n Stepien DK, 2014, WATER RES, V48, P406, DOI 10.1016/j.watres.2013.09.057 Tan J, 2012, J COMPUT, V7, P19, DOI 10.4304/jcp.7.1.19-29 Vapnik Vladimir N., 1995, The nature of statistical learning theory Vega M, 1998, WATER RES, V32, P3581, DOI 10.1016/S0043-1354(98)00138-9 WANG LIPO., 2005, ADV INFO KNOW PROC Wenk J, 2013, ENVIRON SCI TECHNOL, V47, P11147, DOI 10.1021/es402516b Zhou F, 2007, ENVIRON MONIT ASSESS, V132, P1, DOI 10.1007/s10661-006-9497-x Zhu GW, 2007, HYDROBIOLOGIA, V581, P53, DOI 10.1007/s10750-006-0519-z Zhu GW, 2005, CHINESE SCI BULL, V50, P577, DOI 10.1360/04wd0083 NR 39 TC 7 Z9 7 U1 7 U2 41 PU IWA PUBLISHING PI LONDON PA ALLIANCE HOUSE, 12 CAXTON ST, LONDON SW1H0QS, ENGLAND SN 1606-9749 J9 WATER SCI TECH-W SUP JI Water Sci. Technol.-Water Supply PD JUN PY 2016 VL 16 IS 3 BP 746 EP 755 DI 10.2166/ws.2015.186 PG 10 WC Engineering, Environmental; Environmental Sciences; Water Resources WE Science Citation Index Expanded (SCI-EXPANDED) SC Engineering; Environmental Sciences & Ecology; Water Resources GA DO5GR UT WOS:000377812100018 DA 2024-09-05 ER PT J AU Zhang, X Umeanowai, KO AF Zhang, Xia Umeanowai, Kingsley Obiajulu TI Exploring the transformative influence of artificial intelligence in EFL context: A comprehensive bibliometric analysis SO EDUCATION AND INFORMATION TECHNOLOGIES LA English DT Article; Early Access DE Bibliometric analysis; Artificial intelligence; English as a foreign language; EFL learners' writing skills; VOSviewer visualization ID EDUCATION AB This comprehensive bibliometric analysis examines the dynamic impact and influence of artificial intelligence (AI) within the domain of English as a Foreign Language (EFL) from 2013 to 2023. By analysing 3,300 documents from the Web of Science database, the study reveals a positive trend in AI integration, with notable growth attributed to various transformative factors such as the COVID-19 pandemic and increased academic funding. The result analysis identifies leading contributors, top authors, sources, and publishers, revealing China, the United States, and the United Kingdom as influential contributors. The co-occurrence analysis of keywords unveils five clusters representing trends in AI-enhanced language learning, spanning educational technology, EFL teaching factors, learner motivation, and assessment strategies. The study also highlights AI's impact on improving EFL writing skills through tools such as Chatgpt, Grammarly, and Quilbot. However, the study acknowledges limitations in database selection and language constraints. The findings offer valuable insights for researchers, educators, and policymakers, guiding interdisciplinary collaboration and innovative pedagogical approaches. C1 [Zhang, Xia] Xinyang Agr & Forestry Univ, Dept Foreign language, Xinyang, Peoples R China. [Umeanowai, Kingsley Obiajulu] Zhengzhou Univ, Foreign Language Dept, Zhengzhou, Peoples R China. C3 Xinyang Agriculture & Forestry University; Zhengzhou University RP Umeanowai, KO (corresponding author), Zhengzhou Univ, Foreign Language Dept, Zhengzhou, Peoples R China. EM xiahui1107@163.com; macleyscp@gmail.com FU the Higher Education and Teaching Reform Research and Practice Project of Henan Province; Xinyang Agriculture and Forestry University FX We would like to express our sincere gratitude to Xinyang Agriculture and Forestry University for its financial support, which made this research possible. We also extend our appreciation to the researchers and educators whose work laid the foundation for this study.DAS:The data supporting the findings of this article are available upon request from the corresponding author for researchers who meet the access criteria. CR Agarwal C, 2019, EDUC INF TECHNOL, V24, P3731, DOI 10.1007/s10639-019-09955-7 Alenizi MAK, 2023, INNOEDUCA, V9, P5, DOI 10.24310/innoeduca.2023.v9i2.16774 Alyasin A, 2023, TEM J, V12, P1593, DOI 10.18421/TEM123-41 Amutuhaire T, 2022, PUBLISH RES Q, V38, P281, DOI 10.1007/s12109-022-09879-0 Banihashem SK, 2023, INT J MANAG EDUC-OXF, V21, DOI 10.1016/j.ijme.2023.100803 Baskara F. X. R., 2023, INT C LANG LANG LANG, P105 Deeva G, 2021, COMPUT EDUC, V162, DOI 10.1016/j.compedu.2020.104094 Gasevic D., 2023, Comput. Educ. Artif. Intell., V4, DOI [10.1016/j.caeai.2023.100130, DOI 10.1016/J.CAEAI.2023.100130] Ikramunnisa E., 2022, Celt: A Journal of Culture English Language Teaching Literature, V22, P259, DOI [10.24167/celt.v22i2.4718, DOI 10.24167/CELT.V22I2.4718] Jaleniauskien E., 2023, Sustainable Multilingualism, V23, P159, DOI [10.2478/sm-2023-0017, DOI 10.2478/SM-2023-0017] Jiang RH, 2022, FRONT PSYCHOL, V13, DOI 10.3389/fpsyg.2022.1049401 Karsenti T., 2020, Education and Self Development, V15, P76, DOI [10.26907/esd15.3.07, DOI 10.26907/ESD15.3.07] Kawinkoonlasate P., 2020, English Language Teaching, V13, P15, DOI DOI 10.5539/ELT.V13N12P15 Kim Hea-Suk, 2021, [Korean Journal of English Language and Linguistics, 영어학], V21, P712 Lameras P, 2022, INFORMATION, V13, DOI 10.3390/info13010014 Li Q., 2020, Computers & Education, V156 Liu XH, 2020, SYMMETRY-BASEL, V12, DOI 10.3390/sym12050701 Luckin R., 2022, Computers and Education: Artificial Intelligence, V3, P100076, DOI DOI 10.1016/J.CAEAI.2022.100076 Maphosa V, 2023, APPL ARTIF INTELL, V37, DOI 10.1080/08839514.2023.2261730 Maxliyo M., 2023, Innovations in Technology and Science Education, V2, P1519 Michel-Villarreal R, 2023, EDUC SCI, V13, DOI 10.3390/educsci13090856 Naikade K., 2020, PalArchs Journal of Archaeology of Egypt/Egyptology, V17, P4205 Ng DTK, 2023, ETR&D-EDUC TECH RES, V71, P137, DOI 10.1007/s11423-023-10203-6 Ouyang F., 2021, Computers Education: Artificial Intelligence, V2, P100020, DOI [10.1016/j.caeai.2021.100020, DOI 10.1016/J.CAEAI.2021.100020] Pedro F., 2019, ARTIFICIAL INTELLIGE Prahani BK, 2022, INT J EMERG TECHNOL, V17, P169, DOI 10.3991/ijet.v17i08.29833 Qazi AG, 2023, EDUC SCI, V13, DOI 10.3390/educsci13040385 Tahir A., 2023, Linguistic Forum-A Journal of Linguistics, V5, P50 Voss E, 2023, LANG ASSESS Q, V20, P520, DOI 10.1080/15434303.2023.2288256 Wang XH, 2024, COMPUT ASSIST LANG L, V37, P814, DOI 10.1080/09588221.2022.2056203 Xu B., 2022, P INT SCI C, V1, P572 Zhang D., 2019, IEEE Access, V7, P13310 NR 32 TC 0 Z9 0 U1 1 U2 1 PU SPRINGER PI NEW YORK PA ONE NEW YORK PLAZA, SUITE 4600, NEW YORK, NY, UNITED STATES SN 1360-2357 EI 1573-7608 J9 EDUC INF TECHNOL JI Educ. Inf. Technol. PD 2024 AUG 13 PY 2024 DI 10.1007/s10639-024-12937-z EA AUG 2024 PG 16 WC Education & Educational Research WE Social Science Citation Index (SSCI) SC Education & Educational Research GA D0T4R UT WOS:001293394800004 OA hybrid DA 2024-09-05 ER PT J AU Acar, S AF Acar, Selcuk TI Creativity Assessment, Research, and Practice in the Age of Artificial Intelligence SO CREATIVITY RESEARCH JOURNAL LA English DT Article; Early Access ID DIVERGENT THINKING; ORIGINALITY AB Measurement tools and approaches have played a vital role in advancing creativity research, similar to their role in other scientific disciplines. Precise measurement is crucial for accurate hypothesis testing and comparing different theories. Recently, the field of creativity has reached a significant milestone with advancements in artificial intelligence (AI). AI has the potential to revolutionize creativity assessment methods, offering cost reduction, automation capabilities, and improved reliability compared to human raters. This advancement in measurement precision facilitated by AI can accelerate progress in creativity research. In this paper, I summarize the historical progression of advances in automated creativity assessment methods, present key findings from my recent and current collaborative research efforts and discuss the potential next steps of AI-related developments. Finally, I explore how these developments can support educational practices such as differentiation, enrichment, and identification of gifted and talented students. C1 [Acar, Selcuk] Univ North Texas, Denton, TX 76203 USA. [Acar, Selcuk] Univ North Texas, Dept Educ Psychol, Matthews Hall 304E,1300 W Highland St, Denton, TX 76203 USA. C3 University of North Texas System; University of North Texas Denton; University of North Texas System; University of North Texas Denton RP Acar, S (corresponding author), Univ North Texas, Dept Educ Psychol, Matthews Hall 304E,1300 W Highland St, Denton, TX 76203 USA. EM selcuk.acar@unt.edu FU Institute of Education Sciences [R305A200519] FX The work was supported by the Institute of Education Sciences [R305A200519]. CR Acar S., 2023, A comparison of supervised and unsupervised learning methods in automated scoring of figural tests of creativity Acar S., 2023, Measuring original thinking in elementary school development and validation of a computational psychometric approach Acar S, 2023, J CREATIVE BEHAV, V57, P138, DOI 10.1002/jocb.568 Acar S, 2021, GIFTED CHILD QUART, DOI 10.1177/00169862211061874 Acar S, 2021, GIFTED CHILD QUART, V65, P354, DOI 10.1177/00169862211012964 Acar S, 2014, CREATIVITY RES J, V26, P229, DOI 10.1080/10400419.2014.901095 Acara S, 2019, THINK SKILLS CREAT, V33, DOI 10.1016/j.tsc.2019.100574 AMABILE TM, 1982, J PERS SOC PSYCHOL, V43, P997, DOI 10.1037/0022-3514.43.5.997 Barbot B, 2019, PSYCHOL AESTHET CREA, V13, P233, DOI 10.1037/aca0000233 Beaty RE, 2022, CREATIVITY RES J, V34, P245, DOI 10.1080/10400419.2022.2025720 Boden Margaret, 2004, The creative mind: myths and mechanisms, DOI DOI 10.4324/9780203508527 Bower J., 2023, Journal of Advanced Academics Buczak P, 2023, J CREATIVE BEHAV, V57, P17, DOI 10.1002/jocb.559 Corazza GE, 2016, CREATIVITY RES J, V28, P258, DOI 10.1080/10400419.2016.1195627 Covington MA, 2009, PROCEEDINGS OF THE IEEE SOUTHEASTCON 2009, TECHNICAL PROCEEDINGS, P201 Crammond B., 1999, Investigating creativity in youth, P307 Cropley DH, 2022, PSYCHOL AESTHET CREA, DOI 10.1037/aca0000510 de Chantal PL, 2023, PSYCHOL AESTHET CREA, DOI 10.1037/aca0000592 Dumas D, 2023, J CREATIVE BEHAV, V57, P419, DOI 10.1002/jocb.588 Dumas D, 2021, PSYCHOL AESTHET CREA, V15, P645, DOI 10.1037/aca0000319 Dumas D, 2014, THINK SKILLS CREAT, V14, P56, DOI 10.1016/j.tsc.2014.09.003 Forster EA., 2009, P 31 ANN C COGN SCI, P602 Gla veanu., 2019, CAMBRIDGE HDB CREATI, P9, DOI DOI 10.1017/9781316979839 Guilford JP, 1950, AM PSYCHOL, V5, P444, DOI 10.1037/h0063487 Gutkowsli G., 2018, CreateSpace, DOI [10.1002/jocb.240, DOI 10.1002/JOCB.240] Khanafer M, 2020, IEEE INSTRU MEAS MAG, V23, P10, DOI 10.1109/mim.2020.9200875 Learned-Miller E.G., 2014, Introduction to Supervised Learning Organisciak P, 2023, THINK SKILLS CREAT, V49, DOI 10.1016/j.tsc.2023.101356 Organisciak P, 2023, INFORM LEARN SCI, V124, P25, DOI 10.1108/ILS-06-2022-0082 Patterson J. D., 2022, AuDrA: An automated drawing assessment platform for evaluating creativity Paulus D.H., 1970, Computer simulation of human ratings of creativity. Final report Popper K., 2005, LOGIC SCI DISCOVERY Runco M.A., 2017, J GENIUS EMINENCE, V2, P26, DOI [10.18536/jge.2017.04.02.01.03, DOI 10.18536/JGE.2017.04.02.01.03] RUNCO MA, 1993, GIFTED CHILD QUART, V37, P16, DOI 10.1177/001698629303700103 Runco MA, 2023, CREATIVITY RES J, DOI 10.1080/10400419.2023.2257977 Runco MA, 2012, CREATIVITY RES J, V24, P66, DOI 10.1080/10400419.2012.652929 Runco Mark A., 2023, Journal of Creativity, V33, DOI [DOI 10.1016/J.YJOC.2023.100063, https://doi.org/10.1016/j.yjoc.2023.100063] Sadler-Smith E, 2022, J CREATIVE BEHAV, V56, P296, DOI 10.1002/jocb.530 Simonton D.K., 1984, Genius, creativity, and leadership Socher Richard, 2014, Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), P1532, DOI [10.3115/v1/D14-1162.https, DOI 10.3115/V1/D14-1162.HTTPS, 10.3115/v1/D14-1162] Stein MI, 1953, J PSYCHOL, V36, P311, DOI 10.1080/00223980.1953.9712897 Tomlinson CA, 2003, J EDUC GIFTED, V27, P119, DOI 10.1177/016235320302700203 Torrance Ellis Paul, 1966, Torrance tests of creative thinking: Normstechnical manual NR 43 TC 2 Z9 2 U1 39 U2 71 PU ROUTLEDGE JOURNALS, TAYLOR & FRANCIS LTD PI ABINGDON PA 2-4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND SN 1040-0419 EI 1532-6934 J9 CREATIVITY RES J JI Creativ. Res. J. PD 2023 OCT 27 PY 2023 DI 10.1080/10400419.2023.2271749 EA OCT 2023 PG 7 WC Psychology, Educational; Psychology, Multidisciplinary WE Social Science Citation Index (SSCI) SC Psychology GA W3DM5 UT WOS:001090467100001 DA 2024-09-05 ER PT C AU Kim, IC Thoma, GR AF Kim, In Cheol Thoma, George R. GP IEEE TI Automated Classification of Author's Sentiments in Citation Using Machine Learning Techniques: A Preliminary Study SO 2015 IEEE CONFERENCE ON COMPUTATIONAL INTELLIGENCE IN BIOINFORMATICS AND COMPUTATIONAL BIOLOGY (CIBCB) LA English DT Proceedings Paper CT IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology CIBCB CY AUG 12-15, 2015 CL Honolulu, HI DE Citation analysis; author's sentiments; "Comment-on"; support vector machine; n-grams word statistics; MEDLINE AB Scientific papers generally include citations to external sources such as journal articles, books, or Web links to refer to works that are related in an important way to the research. The reason for the citation appears within the sentences surrounding the citation tag in the body text, and represents the relationship between the citation and cited works as supportive, contrastive, corrective, etc. This could be an important clue for researchers seeking relevant previous work or approaches for a certain research purpose. We propose to develop an automated method to identify the citing author's sentiments toward the cited external sources expressed in citation sentences using machine-learning techniques and linguistic cues. As a preliminary study, this paper presents a support vector machine (SVM)-based text categorization technique to classify the author's sentiments specifically toward Comment-on (CON) articles. CON, a MEDLINE citation field, indicates previously published articles commented on by authors of a given article expressing possibly complimentary or contradictory opinions. An SVM with a radial basis kernel function (RBF) is implemented, and Input feature vectors for the SVM are created based on n-grams word statistics representing the distribution of words in CON sentences. Experiments conducted on a set of CON sentences collected from 414 different online biomedical journal titles show that the SVM with a RBF yields the best result for an input feature vector combining uni-gram and bi-gram word statistics. C1 [Kim, In Cheol; Thoma, George R.] Natl Lib Med, Lister Hill Natl Ctr Biomed Commun, 8600 Rockville Pike, Bethesda, MD 20894 USA. C3 National Institutes of Health (NIH) - USA; NIH National Library of Medicine (NLM) RP Kim, IC (corresponding author), Natl Lib Med, Lister Hill Natl Ctr Biomed Commun, 8600 Rockville Pike, Bethesda, MD 20894 USA. CR Abu-Jbara A., 2011, P 49 ANN M ASS COMP, P500 Abu-Jbara A., 2013, NAACL, P596 [Anonymous], 2012, 2012 Conference of the North American Chapter of the Association for Computational Linguistics Chang CC, 2011, ACM T INTEL SYST TEC, V2, DOI 10.1145/1961189.1961199 Cherkassky V, 1997, IEEE Trans Neural Netw, V8, P1564, DOI 10.1109/TNN.1997.641482 Galavotti L, 2000, LECT NOTES COMPUT SC, V1923, P59 Giles C. L., 1998, Digital 98 Libraries. Third ACM Conference on Digital Libraries, P89, DOI 10.1145/276675.276685 Godbole N., 2007, P 9 INT C WEBL SOC M Kim I., 2012, P INT C ART INT LAS, P431 Kim I., 2014, P 2014 IEEE INT C SY, P2006 Kim IC, 2011, PROC SPIE, V7874, DOI 10.1117/12.873023 Mercer R.E., 2004, BioLink workshop in conjunction with NAACL/HLT, P77 MORAVCSIK MJ, 1975, SOC STUD SCI, V5, P86, DOI 10.1177/030631277500500106 Pang B, 2002, PROCEEDINGS OF THE 2002 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING, P79, DOI 10.3115/1118693.1118704 Schäfer U, 2010, IEEE INT C SEMANT CO, P317, DOI 10.1109/ICSC.2010.40 Sebastiani F, 2002, ACM COMPUT SURV, V34, P1, DOI 10.1145/505282.505283 Shum B, 1998, INTERFACES BRIT HCI, V39, P16 Teufel S., 2006, P C EMP METH NAT LAN, DOI 10.3115/1610075.1610091 Thoma G. R., 2008, AUTOMATION ACCELERAT Yu Bei., 2013, P 76 ASIST ANN M CLO, P1, DOI [10.1002/meet.14505001084, DOI 10.1002/MEET.14505001084] NR 20 TC 4 Z9 4 U1 0 U2 4 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA BN 978-1-4799-6926-5 PY 2015 BP 488 EP 494 PG 7 WC Computer Science, Information Systems; Mathematical & Computational Biology WE Conference Proceedings Citation Index - Science (CPCI-S) SC Computer Science; Mathematical & Computational Biology GA BF1SY UT WOS:000380434200049 DA 2024-09-05 ER PT J AU TUHRIM, S HOROWITZ, DR SACHER, M GODBOLD, JH AF TUHRIM, S HOROWITZ, DR SACHER, M GODBOLD, JH TI VALIDATION AND COMPARISON OF MODELS PREDICTING SURVIVAL FOLLOWING INTRACEREBRAL HEMORRHAGE SO CRITICAL CARE MEDICINE LA English DT Article DE HEMORRHAGE, INTRACEREBRAL; LOGISTIC REGRESSION; PROGNOSIS; STROKE; OUTCOMES RESEARCH; PATIENT OUTCOME ASSESSMENT; NEUROLOGIC EMERGENCIES; CRITICAL ILLNESS ID SUBARACHNOID HEMORRHAGE; INTRACRANIAL-PRESSURE; CEREBRAL-HEMORRHAGE; STROKE; OUTCOMES; RATES AB Objective: To compare the performance of two previously reported logistic regression models using data independent from those data used to derive the models. Design: Prospective. Setting Acute stroke unit of a tertiary care hospital. Patients: One hundred twenty-nine patients with supratentorial intracerebral hemorrhage. Measurements and Main Results: Model 1 contains the initial Glasgow Coma Scale score, hemorrhage size, and pulse pressure. The more complex model 2 includes, in addition to those three variables, the presence or absence of intraventricular hemorrhage and a term representing the interaction of intraventricular hemorrhage and Glasgow Coma Scale score. The areas under the receiver operating characteristic curves generated for each model were statistically indistinguishable. Conclusions: Model 1 predicts 30-day patient status as well as the more complex model 2. Model 1 provides a valid, easy-to-use means of categorizing supratentorial intracerebral hemorrhage patients in terms of their probability of survival. C1 MT SINAI SCH MED,DEPT NEUROL,NEW YORK,NY. MT SINAI SCH MED,DEPT RADIOL,NEW YORK,NY. MT SINAI SCH MED,DEPT COMMUNITY MED,NEW YORK,NY. C3 Icahn School of Medicine at Mount Sinai; Icahn School of Medicine at Mount Sinai; Icahn School of Medicine at Mount Sinai FU NINDS NIH HHS [NS 27924, NS 29762] Funding Source: Medline CR ALBERTS MJ, 1992, STROKE, V23, P352, DOI 10.1161/01.STR.23.3.352 BAMFORD J, 1990, J NEUROL NEUROSUR PS, V53, P16, DOI 10.1136/jnnp.53.1.16 BRODERICK JP, 1992, NEW ENGL J MED, V326, P733, DOI 10.1056/NEJM199203123261103 BRODERICK JP, 1993, STROKE, V24, P1761 BRODERICK JP, 1993, J NEUROSURG, V78, P188, DOI 10.3171/jns.1993.78.2.0188 BRODERICK JP, 1989, STROKE, V20, P577, DOI 10.1161/01.STR.20.5.577 BRODERICK JP, 1993, STROKE, V24, P987, DOI 10.1161/01.STR.24.7.987 Cushing H, 1902, AM J MED SCI, V124, P375, DOI 10.1097/00000441-190209000-00001 DAVERAT P, 1991, STROKE, V22, P1, DOI 10.1161/01.STR.22.1.1 DIXON AA, 1985, CAN J NEUROL SCI, V12, P267, DOI 10.1017/S0317167100047144 FIDLAY JM, 1993, NEUROSURGERY, V32, P941 FITCH W, 1977, J NEUROL NEUROSUR PS, V40, P833, DOI 10.1136/jnnp.40.9.833 FOGELHOLM R, 1992, J NEUROL NEUROSUR PS, V55, P546, DOI 10.1136/jnnp.55.7.546 FOULKES MA, 1988, STROKE, V19, P547, DOI 10.1161/01.STR.19.5.547 GIROUD M, 1991, J NEUROL NEUROSUR PS, V54, P595, DOI 10.1136/jnnp.54.7.595 HANLEY JA, 1983, RADIOLOGY, V148, P839, DOI 10.1148/radiology.148.3.6878708 HANLEY JA, 1982, RADIOLOGY, V143, P29, DOI 10.1148/radiology.143.1.7063747 LISK DR, 1994, NEUROLOGY, V44, P133, DOI 10.1212/WNL.44.1.133 LONGSTRETH WT, 1991, STROKE, V22, P955, DOI 10.1161/str.22.7.1853418 LONGSTRETH WT, 1989, ANN NEUROL, V26, P105, DOI 10.1002/ana.410260119 LONGSTRETH WT, 1993, STROKE, V24, P1761, DOI 10.1161/str.24.11.8236355 LUSTED LB, 1971, NEW ENGL J MED, V284, P416, DOI 10.1056/NEJM197102252840805 PORTENOY RK, 1987, J NEUROL NEUROSUR PS, V50, P976, DOI 10.1136/jnnp.50.8.976 ROPPER AH, 1984, ARCH NEUROL-CHICAGO, V41, P725, DOI 10.1001/archneur.1984.04050180047016 SENANT J, 1988, REV NEUROL-FRANCE, V144, P279 TODO T, 1991, J NEUROSURG, V74, P81, DOI 10.3171/jns.1991.74.1.0081 TUHRIM S, 1988, ANN NEUROL, V24, P258, DOI 10.1002/ana.410240213 TUHRIM S, 1991, ANN NEUROL, V29, P658, DOI 10.1002/ana.410290614 TUHRIM S, 1994, INTRCEREBRAL HEMORRH, P233 YOUNG WB, 1990, NEUROLOGY, V40, P616, DOI 10.1212/WNL.40.4.616 NR 30 TC 113 Z9 122 U1 0 U2 1 PU WILLIAMS & WILKINS PI BALTIMORE PA 351 WEST CAMDEN ST, BALTIMORE, MD 21201-2436 SN 0090-3493 J9 CRIT CARE MED JI Crit. Care Med. PD MAY PY 1995 VL 23 IS 5 BP 950 EP 954 DI 10.1097/00003246-199505000-00026 PG 5 WC Critical Care Medicine WE Science Citation Index Expanded (SCI-EXPANDED) SC General & Internal Medicine GA QX807 UT WOS:A1995QX80700026 PM 7736756 DA 2024-09-05 ER PT J AU Donner, P AF Donner, Paul TI Enhanced self-citation detection by fuzzy author name matching and complementary error estimates SO JOURNAL OF THE ASSOCIATION FOR INFORMATION SCIENCE AND TECHNOLOGY LA English DT Article DE bibliometrics; author productivity; heuristics ID MACRO AB In this article I investigate the shortcomings of exact string match-based author self-citation detection methods. The contributions of this study are twofold. First, I apply a fuzzy string matching algorithm for self-citation detection and benchmark this approach and other common methods of exclusively author name-based self-citation detection against a manually curated ground truth sample. Near full recall can be achieved with the proposed method while incurring only negligible precision loss. Second, I report some important observations from the results about the extent of latent self-citations and their characteristics and give an example of the effect of improved self-citation detection on the document level self-citation rate of real data. C1 [Donner, Paul] Inst Res Informat & Qual Assurance iFQ, Schutzenstr 6a, D-10117 Berlin, Germany. RP Donner, P (corresponding author), Inst Res Informat & Qual Assurance iFQ, Schutzenstr 6a, D-10117 Berlin, Germany. EM donner@forschungsinfo.de RI Donner, Paul/AAT-7081-2020 OI Donner, Paul/0000-0001-5737-8483 FU Bundesministerium fur Forschung und Bildung (BMBF) [01PQ08004A] FX Bundesministerium fur Forschung und Bildung (BMBF), Project 01PQ08004A, "Kompetenzzentrum Bibliometrie fur die deutsche Wissenschaft". CR Aksnes DW, 2003, SCIENTOMETRICS, V56, P235, DOI 10.1023/A:1021919228368 Aragon A. M, 2013, SCI REPORTS, V3, P1 Bartneck C, 2011, SCIENTOMETRICS, V87, P85, DOI 10.1007/s11192-010-0306-5 DiCiccio TJ, 1996, STAT SCI, V11, P189 Feitelson DG, 2004, INFORM RES, V9 Glänzel W, 2004, SCIENTOMETRICS, V61, P395, DOI 10.1023/B:SCIE.0000045117.13348.b1 Glänzel W, 2004, SCIENTOMETRICS, V59, P281, DOI 10.1023/B:SCIE.0000018535.99885.e9 Glänzel W, 2004, SCIENTOMETRICS, V59, P63, DOI 10.1023/B:SCIE.0000013299.38210.74 Levenshtein V. I., 1966, Soviet Physics Doklady, V10, P707 MOED HF, 1989, J INFORM SCI, V15, P95, DOI 10.1177/016555158901500205 Schreiber M, 2007, EPL-EUROPHYS LETT, V78, DOI 10.1209/0295-5075/78/30002 Snyder H, 1998, J INF SCI, V24, P431, DOI 10.1177/016555159802400606 Strotmann A., 2008, J AM SOC INFORM SCI, V63, P1820 Winkler W. E, 1990, P SECTION SURVEY RES, DOI DOI 10.1007/978-1-4612-2856-1_101 NR 14 TC 4 Z9 4 U1 0 U2 28 PU WILEY PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 2330-1635 EI 2330-1643 J9 J ASSOC INF SCI TECH PD MAR PY 2016 VL 67 IS 3 BP 662 EP 670 DI 10.1002/asi.23399 PG 9 WC Computer Science, Information Systems; Information Science & Library Science WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Computer Science; Information Science & Library Science GA DD9OQ UT WOS:000370255700013 DA 2024-09-05 ER PT J AU Xu, ZY Liu, HJ AF Xu, Zeyu Liu, Haijiang TI Research on the DCT vehicle starting process evaluation based on LSTM neural network with attention mechanism SO JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY LA English DT Article; Early Access DE Attention mechanism; DCT vehicle; Dual-clutch transmission; Drivability; Evaluation; LSTM; Starting process AB Currently, with the advancement of dual-clutch transmission (DCT) control systems and vehicle performance, it is necessary to develop better objective evaluation methods for DCT vehicles. The starting process is a critical element affecting the driving and riding experience of DCT vehicles. Therefore, it is crucial to establish and improve a starting process evaluation model for the objective evaluation to DCT vehicles and optimization to DCT control strategies. This paper proposes a new method to evaluate the DCT vehicle starting process objectively. The method analyzes and models the time-series signals of the driving data using the LSTM neural network and uses the attention mechanism to improve the evaluation performance and enhance the interpretability of the evaluation results. Taking the dynamic performance evaluation as an example, the evaluation results indicate that the proposed model is better than the conventional methods, showing notable efficacy and preponderance. C1 [Xu, Zeyu; Liu, Haijiang] Tongji Univ, Sch Mech Engn, Shanghai 201804, Peoples R China. C3 Tongji University RP Xu, ZY (corresponding author), Tongji Univ, Sch Mech Engn, Shanghai 201804, Peoples R China. EM xuzeyu@tongji.edu.cn FU National Natural Science Foundation of China [U1764259] FX This work was supported by the National Natural Science Foundation of China (No. U1764259). CR Asadzadehkaljahi M., 2023, Artificial Intelligence and Applications Awujoola O. J., 2022, Artificial Intelligence and Applications, V2, DOI [10.47852/bonviewAIA2202412, DOI 10.47852/BONVIEWAIA2202412] Böke TA, 2023, P I MECH ENG D-J AUT, V237, P706, DOI 10.1177/09544070221080362 Cao H, 2023, Artificial Intelligence and Applications, V1, P106 Chen K, 2021, P I MECH ENG D-J AUT, V235, P3530, DOI 10.1177/09544070211012563 Fatima N, 2020, ADCAIJ-ADV DISTRIB C, V9, P79, DOI 10.14201/ADCAIJ2020927990 Hochreiter S, 1997, NEURAL COMPUT, V9, P1735, DOI [10.1162/neco.1997.9.1.1, 10.1007/978-3-642-24797-2] Huang W., 2019, SAE Technical Paper Huang W, 2019, J VIB CONTROL, V25, P2274, DOI 10.1177/1077546319852487 Huang W, 2019, J VIB CONTROL, V25, P739, DOI 10.1177/1077546318795527 Hüsken M, 2003, NEUROCOMPUTING, V50, P223, DOI 10.1016/S0925-2312(01)00706-8 Jiang MW, 2023, ADV ENG INFORM, V58, DOI 10.1016/j.aei.2023.102158 Khan J, 2023, CAAI T INTELL TECHNO, V8, P1124, DOI 10.1049/cit2.12148 Kingma D. P., 2014, INT C LEARNING REPRE Kun X, 2021, PROCEEDINGS OF 2021 7TH INTERNATIONAL CONFERENCE ON CONDITION MONITORING OF MACHINERY IN NON-STATIONARY OPERATIONS (CMMNO), P278, DOI 10.1109/CMMNO53328.2021.9467533 LeCun Y, 2015, NATURE, V521, P436, DOI 10.1038/nature14539 Lei Y., 2018, SAE Technical Paper Li L, 2016, P I MECH ENG D-J AUT, V230, P1417, DOI 10.1177/0954407015611294 Limeros SC, 2024, CAAI T INTELL TECHNO, V9, P557, DOI 10.1049/cit2.12244 Liu YG, 2019, IEEE VEHICLE POWER, DOI 10.1109/vppc46532.2019.8952563 [秦大同 Qin Datong], 2010, [机械工程学报, Chinese Journal of Mechanical Engineering], V46, P121 Schoeggl P., 2000, SAE 2000 WORLD C Sun W, 2012, ADV MATER RES-SWITZ, V490-495, P86, DOI 10.4028/www.scientific.net/AMR.490-495.86 Tang S, 2023, CAAI T INTELL TECHNO, DOI 10.1049/cit2.12228 Wang M., 2024, P I MECH ENG D-J AUT, V238 Wang YP, 2021, SHOCK VIB, V2021, DOI 10.1155/2021/6615920 Xu ZY, 2023, P I MECH ENG D-J AUT, V237, P2928, DOI 10.1177/09544070221115292 Zhang JS, 2000, CHINESE PHYS LETT, V17, P88, DOI 10.1088/0256-307X/17/2/004 Zhao Y, 2019, IEEE INT C BIOINFORM, P610, DOI [10.1109/bibm47256.2019.8983068, 10.1109/BIBM47256.2019.8983068] Zhou CL, 2023, CAAI T INTELL TECHNO, V8, P1237, DOI 10.1049/cit2.12226 Zhou W, 2023, P I MECH ENG D-J AUT, V237, P607, DOI 10.1177/09544070221084759 Zhou W, 2020, MATH PROBL ENG, V2020, DOI 10.1155/2020/2061083 NR 32 TC 0 Z9 0 U1 1 U2 1 PU KOREAN SOC MECHANICAL ENGINEERS PI SEOUL PA KSTC NEW BLD. 7TH FLOOR, 635-4 YEOKSAM-DONG KANGNAM-KU, SEOUL 135-703, SOUTH KOREA SN 1738-494X EI 1976-3824 J9 J MECH SCI TECHNOL JI J. Mech. Sci. Technol. PD 2024 AUG 21 PY 2024 DI 10.1007/s12206-024-0811-8 EA AUG 2024 PG 14 WC Engineering, Mechanical WE Science Citation Index Expanded (SCI-EXPANDED) SC Engineering GA D4C6H UT WOS:001295682800002 DA 2024-09-05 ER PT J AU Qayyum, F Jamil, H Jamil, F Kim, D AF Qayyum, Faiza Jamil, Harun Jamil, Faisal Kim, Do-Hyeun TI Towards Potential Content-Based Features Evaluation to Tackle Meaningful Citations SO SYMMETRY-BASEL LA English DT Article DE citation analysis; citation classification; binary classification; random forest; kernel logistic regression ID H-INDEX; QUALITY; REASONS AB The scientific community has presented various citation classification models to refute the concept of pure quantitative citation analysis systems wherein all citations are treated equally. However, a small number of benchmark datasets exist, which makes the asymmetric citation data-driven modeling quite complex. These models classify citations for varying reasons, mostly harnessing metadata and content-based features derived from research papers. Presently, researchers are more inclined toward binary citation classification with the belief that exploiting the datasets of incomplete nature in the best possible way is adequate to address the issue. We argue that contemporary ML citation classification models overlook essential aspects while selecting the appropriate features that hinder elutriating the asymmetric citation data. This study presents a novel binary citation classification model exploiting a list of potential natural language processing (NLP) based features. Machine learning classifiers, including SVM, KLR, and RF, are harnessed to classify citations into important and non-important classes. The evaluation is performed using two benchmark data sets containing a corpus of around 953 paper-citation pairs annotated by the citing authors and domain experts. The study outcomes exhibit that the proposed model outperformed the contemporary approaches by attaining a precision of 0.88.

C1 [Qayyum, Faiza; Jamil, Faisal; Kim, Do-Hyeun] Jeju Natl Univ, Dept Comp Engn, Jeju Si 63243, South Korea. [Jamil, Harun] Jeju Natl Univ, Dept Elect Engn, Jeju Si 63243, South Korea. [Kim, Do-Hyeun] Jeju Natl Univ, Res Ctr Adv Technol, Jeju Si 63243, South Korea. C3 Jeju National University; Jeju National University; Jeju National University RP Kim, D (corresponding author), Jeju Natl Univ, Dept Comp Engn, Jeju Si 63243, South Korea.; Kim, D (corresponding author), Jeju Natl Univ, Res Ctr Adv Technol, Jeju Si 63243, South Korea. EM harunjamil@hotmail.com RI Jamil, Faisal/GSO-1371-2022; Jamil, Faisal/JHU-4465-2023 OI Jamil, Faisal/0000-0003-1994-6907; Qayyum, Faiza/0000-0001-9597-2387 FU National Research Foundation of Korea (NRF) - Ministry of Science, ICT [2019M3F2A1073387]; Institute for Information & communications Technology Planning & Evaluation (IITP) - Korea government (MSIT) [2018-0-01456] FX This research was supported by Energy Cloud R & D Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT (2019M3F2A1073387),and this research was supported by Institute for Information & communications Technology Plan-ning & Evaluation (IITP) grant funded by the Korea government (MSIT) (No.2018-0-01456, AutoMaTa:Autonomous Management framework based on artificial intelligent Technology for adaptive and disposable IoT). Any correspondence related to this paper should be addressed to Dohyeun Kim. CR Abu-Jbara A., 2011, P 49 ANN M ASS COMP, P500 Ahmed I, 2020, IEEE ACCESS, V8, P129359, DOI 10.1109/ACCESS.2020.3009021 Ali A, 2021, SENSORS-BASEL, V21, DOI 10.3390/s21134527 [Anonymous], 1968, Public Knowledge: An Essay Concerning the Social Dimension of Science Ayaz S, 2016, SCIENTOMETRICS, V109, P1511, DOI 10.1007/s11192-016-2122-z BROOKS TA, 1985, J AM SOC INFORM SCI, V36, P223, DOI 10.1002/asi.4630360402 Case DO, 2000, J AM SOC INFORM SCI, V51, P635, DOI 10.1002/(SICI)1097-4571(2000)51:7<635::AID-ASI6>3.0.CO;2-H Finney B., 1979, The reference characteristics of scientific texts GARFIELD E, 1965, STAT ASSOC METHOD M, V1964, P189 Garzone M, 2000, LECT NOTES ARTIF INT, V1822, P337 Ghani R, 2019, SCIENTOMETRICS, V118, P809, DOI 10.1007/s11192-019-03007-0 Hashmi AM, 2020, IPSI BDG TRANS INTER, V16, P60 Hassan SU, 2018, SCIENTOMETRICS, V117, P1645, DOI 10.1007/s11192-018-2944-y Hirsch JE, 2005, P NATL ACAD SCI USA, V102, P16569, DOI 10.1073/pnas.0507655102 Imran, 2021, SUSTAINABILITY-BASEL, V13, DOI 10.3390/su131810057 INHABER H, 1976, SOC STUD SCI, V6, P33, DOI 10.1177/030631277600600102 Jamil F, 2021, CMC-COMPUT MATER CON, V69, P2513, DOI 10.32604/cmc.2021.018809 Jamil F, 2021, SENSORS-BASEL, V21, DOI 10.3390/s21051640 Jochim C., 2012, P COLING 2012, P1343 Mazloumian A, 2013, SCI REP-UK, V3, DOI 10.1038/srep01167 MORAVCSIK MJ, 1975, SOC STUD SCI, V5, P86, DOI 10.1177/030631277500500106 Nanba H, 1999, IJCAI-99: PROCEEDINGS OF THE SIXTEENTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOLS 1 & 2, P926 Nazir S, 2020, PLOS ONE, V15, DOI 10.1371/journal.pone.0228885 OPPENHEIM C, 1978, J AM SOC INFORM SCI, V29, P225, DOI 10.1002/asi.4630290504 PORTER MF, 1980, PROGRAM-AUTOM LIBR, V14, P130, DOI 10.1108/eb046814 Pride D, 2017, LECT NOTES COMPUT SC, V10450, P572, DOI 10.1007/978-3-319-67008-9_48 Qayyum F, 2019, SCIENTOMETRICS, V118, P21, DOI 10.1007/s11192-018-2961-x Smith A.T., 2002, The correlation between RAE ratings and citation counts in psychology SPIEGELROSING I, 1977, SOC STUD SCI, V7, P97, DOI 10.1177/030631277700700111 Tandon N., 2012, P 35 GERMAN C ARTIFI, P98 Teufel S., 2006, P C EMP METH NAT LAN, DOI 10.3115/1610075.1610091 Valenzuela M., 2015, WORKSHOPS 20 9 AAAI Zhu XD, 2015, J ASSOC INF SCI TECH, V66, P408, DOI 10.1002/asi.23179 NR 33 TC 4 Z9 4 U1 2 U2 12 PU MDPI PI BASEL PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND EI 2073-8994 J9 SYMMETRY-BASEL JI Symmetry-Basel PD OCT PY 2021 VL 13 IS 10 AR 1973 DI 10.3390/sym13101973 PG 19 WC Multidisciplinary Sciences WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Science & Technology - Other Topics GA WR9DK UT WOS:000714793200001 OA gold DA 2024-09-05 ER PT J AU Bayer, P Kennedy, R Yang, J Urpelainen, J AF Bayer, Patrick Kennedy, Ryan Yang, Joonseok Urpelainen, Johannes TI The need for impact evaluation in electricity access research SO ENERGY POLICY LA English DT Article DE Impact evaluation; Electricity access; Observational and experimental methods; Causal inference; Sustainable development ID RURAL ELECTRIFICATION; WELFARE IMPACTS; PANEL-DATA; EMPLOYMENT; FERTILITY; BENEFITS; QUALITY; ENERGY AB Universal household electrification is a key component of the United Nations Sustainable Development Goals, but the evidence base for social and economic impacts of electricity access remains unclear. Here we report results from a systematic review of impact evaluations of household electrification based on five key outcome measures. We only find 31 studies that conduct statistical hypothesis tests to assess impacts. Among these, seven draw on a randomized experiment designed for causal inference. The randomized experimental studies generate fewer positive results than observational or quasi-experimental studies, such as correlational, instrumental variable, and difference-in-differences designs. These results call for a reassessment of what we know about the impacts of household electrification. They also call for major investment in impact evaluation of electricity access using randomized controlled trials, with a particular focus on when and how energy access interventions can furnish large benefits to their intended beneficiaries. Large-scale impact evaluations using experimental methods will require close collaboration between policymakers and researchers. C1 [Bayer, Patrick] Univ Strathclyde, Sch Govt & Publ Policy, McCance Bldg,16 Richmond St, Glasgow G1 1QX, Lanark, Scotland. [Kennedy, Ryan] Univ Houston, Dept Polit Sci, Philip Guthrie Hoffman Hall,3551 Cullen Blvd, Houston, TX 77204 USA. [Yang, Joonseok] Univ Calif Irvine, Dept Polit Sci, 4124 Social Sci Plaza A, Irvine, CA 92617 USA. [Urpelainen, Johannes] Johns Hopkins Univ, Sch Adv Int Studies, 1619 Massachusetts Ave NW, Washington, DC 20036 USA. C3 University of Strathclyde; University of Houston System; University of Houston; University of California System; University of California Irvine; Johns Hopkins University RP Bayer, P (corresponding author), Univ Strathclyde, Sch Govt & Publ Policy, McCance Bldg,16 Richmond St, Glasgow G1 1QX, Lanark, Scotland. EM patrick.bayer@strath.ac.uk; rkennedy@uh.edu; joonsey1@uci.edu; johannes.u@jhu.edu OI Bayer, Patrick/0000-0003-1731-1270 CR Aevarsdottir Anna Margret, 2017, E89302TZA1 IGC Agoramoorthy G, 2009, HUM ECOL, V37, P513, DOI 10.1007/s10745-009-9224-7 Aklin M, 2017, SCI ADV, V3, DOI 10.1126/sciadv.1602153 Aklin Michael., 2018, Escaping the Energy Poverty Trap: When and How Governments Power the Lives of the Poor Akpan U, 2013, ENERGY SUSTAIN DEV, V17, P504, DOI 10.1016/j.esd.2013.06.004 Alkon M, 2016, ENERGY SUSTAIN DEV, V35, P25, DOI 10.1016/j.esd.2016.08.003 Angrist JD, 2010, J ECON PERSPECT, V24, P3, DOI 10.1257/jep.24.2.3 [Anonymous], 2008, Cochrane handbook for systematic reviews of interventions Bastakoti B.P., 2006, Energy for Sustainable Development, V10, P26, DOI [DOI 10.1016/S0973-0826(08)60541-4, 10.1016/S0973-0826, DOI 10.1016/S0973-0826] Bensch G, 2012, ENERG POLICY, V40, P186, DOI 10.1016/j.enpol.2011.09.034 Bernard T, 2012, WORLD BANK RES OBSER, V27, P33, DOI 10.1093/wbro/lkq008 Bos K, 2018, ENERGY SUSTAIN DEV, V44, P64, DOI 10.1016/j.esd.2018.02.007 Burlig Fiona, 2016, Energy Institute at Haas Working Paper 268 Chakravorty U, 2014, J ECON BEHAV ORGAN, V107, P228, DOI 10.1016/j.jebo.2014.04.011 Cook CynthiaC., 2005, Assessing the impact of transport and energy infrastructure on poverty reduction Deaton A, 2018, SOC SCI MED, V210, P2, DOI 10.1016/j.socscimed.2017.12.005 Dinkelman T, 2011, AM ECON REV, V101, P3078, DOI 10.1257/aer.101.7.3078 Gertler PJ, 2011, IMPACT EVALUATION IN PRACTICE, P1, DOI 10.1596/978-0-8213-8541-8 Grimm M, 2015, DEMOGRAPHY, V52, P1773, DOI 10.1007/s13524-015-0420-3 Grogan L, 2016, J HUM CAPITAL, V10, P109, DOI 10.1086/684580 Hamburger D, 2019, ENERGY RES SOC SCI, V58, DOI 10.1016/j.erss.2019.101236 IEA, 2017, Energy Access Outlook2017 From Poverty to Prosperity: World Energy Ootlook Special Report Kanagawa M, 2008, ENERG POLICY, V36, P2016, DOI 10.1016/j.enpol.2008.01.041 Khandker S., 2009, Handbook on impact evaluation, DOI DOI 10.1596/978-0-8213-8028-4 Khandker SR, 2013, ECON DEV CULT CHANGE, V61, P659, DOI 10.1086/669262 Khandker SR, 2012, ENERG J, V33, P187, DOI 10.5547/ISSN0195-6574-EJ-Vol33-No1-7 Khandker ShahidurR., 2014, Surge in Solar-Powered Homes, DOI [10.1596/978-1-4648-0374-1, DOI 10.1596/978-1-4648-0374-1] Kudo Yuya, 2017, WORLD BANK EC REV Lambert JG, 2014, ENERG POLICY, V64, P153, DOI 10.1016/j.enpol.2013.07.001 Lee K., 2018, WORKING PAPER Lenz L, 2017, WORLD DEV, V89, P88, DOI 10.1016/j.worlddev.2016.08.003 Lipscomb M, 2013, AM ECON J-APPL ECON, V5, P200, DOI 10.1257/app.5.2.200 Malakar Y, 2018, ENERG POLICY, V114, P492, DOI 10.1016/j.enpol.2017.12.047 Niu SW, 2013, INT J ELEC POWER, V53, P338, DOI 10.1016/j.ijepes.2013.05.024 Ostrom E, 1999, SCIENCE, V284, P278, DOI 10.1126/science.284.5412.278 Peters J, 2019, ENERG POLICY, V132, P27, DOI 10.1016/j.enpol.2019.05.016 Peters J, 2018, WORLD BANK RES OBSER, V33, P34, DOI 10.1093/wbro/lkx005 Peters J, 2016, J DEV EFFECT, V8, P327, DOI 10.1080/19439342.2016.1178320 Peters J, 2011, WORLD DEV, V39, P773, DOI 10.1016/j.worlddev.2010.09.015 Pritchett L, 2015, AM ECON REV, V105, P471, DOI 10.1257/aer.p20151016 Rao ND, 2013, ENERG POLICY, V57, P532, DOI 10.1016/j.enpol.2013.02.025 Ravallion M, 2001, WORLD BANK ECON REV, V15, P115, DOI 10.1093/wber/15.1.115 Ravallion M, 2018, 492 CTR GLOB DEV Rud JP, 2012, J DEV ECON, V97, P352, DOI 10.1016/j.jdeveco.2011.06.010 SE4ALL, 2017, WHY WAIT SEIZ EN ACC Tasciotti L, 2017, ENERG POLICY, V101, P310, DOI 10.1016/j.enpol.2016.10.028 UNDP UN Environment, 2018, PREP SUPP SGG7 REV U van de Walle D, 2017, WORLD BANK ECON REV, V31, P385, DOI 10.1093/wber/lhv057 NR 48 TC 22 Z9 24 U1 3 U2 25 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0301-4215 EI 1873-6777 J9 ENERG POLICY JI Energy Policy PD FEB PY 2020 VL 137 AR 111099 DI 10.1016/j.enpol.2019.111099 PG 9 WC Economics; Energy & Fuels; Environmental Sciences; Environmental Studies WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Business & Economics; Energy & Fuels; Environmental Sciences & Ecology GA KO3HQ UT WOS:000515439900044 OA Green Accepted DA 2024-09-05 ER PT J AU Ginde, G Saha, S Mathur, A Venkatagiri, S Vadakkepat, S Narasimhamurthy, A Sagar, BSD AF Ginde, Gouri Saha, Snehanshu Mathur, Archana Venkatagiri, Sukrit Vadakkepat, Sujith Narasimhamurthy, Anand Sagar, B. S. Daya TI ScientoBASE: a framework and model for computing scholastic indicators of non-local influence of journals via native data acquisition algorithms SO SCIENTOMETRICS LA English DT Article DE Journal Influence Score; Journal Internationality Modeling Index (JIMI); Web scraping; Feature extraction; Cobb-Douglas production function; Convex optimization; Supervised learning; Non-Local Influence Quotient (NLIQ); Source-Normalized Impact per Paper (SNIP); Other Citation Quotient (OCQ) ID IMPACT AB Defining and measuring internationality as a function of influence diffusion of scientific journals is an open problem. There exists no metric to rank journals based on the extent or scale of internationality. Measuring internationality is qualitative, vague, open to interpretation and is limited by vested interests. With the tremendous increase in the number of journals in various fields and the unflinching desire of academics across the globe to publish in "international'' journals, it has become an absolute necessity to evaluate, rank and categorize journals based on internationality. Authors, in the current work have defined internationality as a measure of influence that transcends across geographic boundaries. There are concerns raised by the authors about unethical practices reflected in the process of journal publication whereby scholarly influence of a select few are artificially boosted, primarily by resorting to editorial maneuvers. To counter the impact of such tactics, authors have come up with a new method that defines and measures internationality by eliminating such local effects when computing the influence of journals. A new metric, Non-Local Influence Quotient is proposed as one such parameter for internationality computation along with another novel metric, Other-Citation Quotient as the complement of the ratio of self-citation and total citation. In addition, SNIP and international collaboration ratio are used as two other parameters. As these journal parameters are not readily available in one place, algorithms to scrape these metrics are written and documented as a part of the current manuscript. Cobb-Douglas production function is utilized as a model to compute Journal Internationality Modeling Index. Current work elucidates the metric acquisition algorithms while delivering arguments in favor of the suitability of the proposed model. Acquired data is corroborated by different supervised learning techniques. As part of future work, the authors present a bigger picture, Reputation and Global Influence Score, that will be computed to facilitate the formation of clusters of journals of high, moderate and low internationality. C1 [Ginde, Gouri; Saha, Snehanshu; Mathur, Archana; Venkatagiri, Sukrit; Vadakkepat, Sujith] PESIT South Campus, Dept Comp Sci & Engn, Bangalore, Karnataka, India. [Narasimhamurthy, Anand] BITS Pilani, Dept Comp Sci, Hyderabad Campus, Hyderabad, Andhra Pradesh, India. [Sagar, B. S. Daya] Indian Stat Inst, Syst Sci & Informat Unit, Bangalore, Karnataka, India. C3 PES University; Birla Institute of Technology & Science Pilani (BITS Pilani); Indian Statistical Institute; Indian Statistical Institute Bangalore RP Venkatagiri, S (corresponding author), PESIT South Campus, Dept Comp Sci & Engn, Bangalore, Karnataka, India. EM gouri.ginde@gmail.com; snehanshusaha@pes.edu; 95sukrit@gmail.com RI Sagar, BS Daya/A-2654-2012; Saha, Snehanshu/R-1028-2018 OI Sagar, BS Daya/0000-0002-6140-8742; Mathur, Archana/0000-0003-4522-6890; Saha, Snehanshu/0000-0002-8458-604X CR Abrizah A, 2013, SCIENTOMETRICS, V94, P721, DOI 10.1007/s11192-012-0813-7 [Anonymous], 2014, CITES INSIGHTS Battese GE, 1997, J PROD ANAL, V8, P395, DOI 10.1023/A:1007736025686 Beall J, 2012, NATURE, V489, P179, DOI 10.1038/489179a Bhattacharjee Y, 2011, SCIENCE, V334, P1344, DOI 10.1126/science.334.6061.1344 Buchandiran G, 2011, EXPLORATORY STUDY IN Buela-Casal G, 2006, SCIENTOMETRICS, V67, P45, DOI 10.1556/Scient.67.2006.1.4 Changa Chia-Lin, 2013, MATH COMPUT SIMULAT, V93 Das AK, 2014, J SCIENTOMETR RES, V3, P82, DOI 10.4103/2320-0057.145622 Douglas P. H., 1928, AM EC REV S, V18 Ginde G., 2015, P 4 NAT C I SCIENT S Gingras Y., 2014, ABUSES RES EVALUATIO Haddow G, 2010, SCIENTOMETRICS, V85, P471, DOI 10.1007/s11192-010-0198-4 Harzing A.W., 2007, Publish or perish Heilig L, 2014, IEEE TRANS CLOUD COM, V2, P266, DOI 10.1109/TCC.2014.2321168 Jangid N., 2015, COMPUTING P IN PRESS Jangid N, 2014, IERI PROC, V10, P57, DOI 10.1016/j.ieri.2014.09.091 Kao C, 2009, SCIENTOMETRICS, V81, P123, DOI 10.1007/s11192-009-2093-4 Liping Y., 2009, J INFORMETR, V3, P304 Moed H. F., 2010, J INFORMETRICS, V4 Nejati A., 2014, J SCIENTOMETRIC RES, V3 Saha S., 2015, P 4 NAT C I SCIENT S Saha S., 2016, ARXIV160403215 Saha S, 2016, J CLOUD COMPUT-ADV S, V5, DOI 10.1186/s13677-015-0050-8 TAN B., 2008, Cobb Douglas Production Function Tang J., 2008, KDD, P990, DOI DOI 10.1145/1401890.1402008 Waltman L., 2013, J INFORMETR, V7 Zupanc GKH, 2014, J COMP PHYSIOL A, V200, P113, DOI 10.1007/s00359-013-0863-1 NR 28 TC 17 Z9 17 U1 0 U2 20 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0138-9130 EI 1588-2861 J9 SCIENTOMETRICS JI Scientometrics PD SEP PY 2016 VL 108 IS 3 BP 1479 EP 1529 DI 10.1007/s11192-016-2006-2 PG 51 WC Computer Science, Interdisciplinary Applications; Information Science & Library Science WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Computer Science; Information Science & Library Science GA DV4SA UT WOS:000382914200027 DA 2024-09-05 ER PT C AU Zhai, MJ Cong, H Feng, FZ Wu, SJ AF Zhai, MeiJie Cong, Hua Feng, FuZhou Wu, ShouJun BE Liu, D Wang, S Liao, H Zhang, B Miao, Q Peng, Y TI Research on Screening Method of Performance Index of PHM System for Armored Vehicles SO 2017 PROGNOSTICS AND SYSTEM HEALTH MANAGEMENT CONFERENCE (PHM-HARBIN) SE Prognostics and System Health Management Conference LA English DT Proceedings Paper CT 2017 Prognostics and System Health Management Conference (PHM-Harbin) CY JUL 09-12, 2017 CL Harbin, PEOPLES R CHINA DE Armored vehicles; PHM system; Performance metrics; Principal Component Analysis (PCA); index screening AB The comprehensive index system is a prerequisite and basis for ensuring the scientific performance of the product performance evaluation, so, the screening of the index is the necessary link in the construction of the index system. The paper regards the armored vehicle PHM system as a special product, aiming at the problem that the redundancy of the primary index set of the armored vehicle PHM system performance index system is high and the targeting is not strong. This paper uses Principal Component Analysis (PCA) to select the index, and then analysis of correlation between indicators and obtain the final optimal results. Finally, factor analysis is used to verify the feasibility and scientificity of the method, which lays a foundation for further evaluating the performance of PHM system. C1 [Zhai, MeiJie; Cong, Hua; Feng, FuZhou; Wu, ShouJun] Acad Armored Force Engn, Dept Mech Engn, Beijing, Peoples R China. C3 Academy of Armored Forces Engineering - China RP Zhai, MJ (corresponding author), Acad Armored Force Engn, Dept Mech Engn, Beijing, Peoples R China. EM 18222785009@163.com; fengfuzhou@tsinghua.org.cn CR DU J. H., 2012, J N U CHINA, P81 Li G. Z., 2014, PRINCIPAL COMPONENTS, P230 Lu X. T., 2009, COOPERATIVE EC TECHN, P54 SHI Y., 2011, CHINA BUSINESS, P103 Yang Y., 2006, STAT DECISION, P17 ZHANG H., 2013, J SHANDONG I FINANCE, P52 Zhang Y. W., 2012, RES CONSTRUCTION PRO NR 7 TC 4 Z9 4 U1 1 U2 2 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA SN 2166-5656 BN 978-1-5386-0370-3 J9 PROGNOST SYST HEALT PY 2017 BP 1133 EP 1140 PG 8 WC Engineering, Multidisciplinary WE Conference Proceedings Citation Index - Science (CPCI-S) SC Engineering GA BJ6MY UT WOS:000426864600182 DA 2024-09-05 ER PT C AU Jung, S Datta, R Segev, A AF Jung, Sukhwan Datta, Rituparna Segev, Aviv BE Wu, XT Jermaine, C Xiong, L Hu, XH Kotevska, O Lu, SY Xu, WJ Aluru, S Zhai, CX Al-Masri, E Chen, ZY Saltz, J TI An Automatic Classification of the Primary and the Corresponding Authors in Research Articles SO 2020 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA) SE IEEE International Conference on Big Data LA English DT Proceedings Paper CT 8th IEEE International Conference on Big Data (Big Data) CY DEC 10-13, 2020 CL ELECTR NETWORK DE Byline Analysis; Machine Learning; Author Credit Measure; Citation Analysis; Scientometrics ID K-NEAREST NEIGHBOR; CONSEQUENCES; PUBLICATIONS AB Researchers often rely on the byline order in a publication to estimate relative contributions made by its authors, an assumption on which existing author contribution measures are based. This byline-based approach is, however, incompatible with the alphabetical author ordering, a practice still employed by many research fields. Manually requesting authors to state their contributions can overcome the limitation of the existing methods. Such approaches, however, require resource-intensive data acquisition and preprocessing, rendering them ungeneralizable to existing bodies of bibliographic records. The present paper proposed a possibility of order-independent automatic author contribution measure by focusing on distinguishing the main contributors from the rest of the authors using machine learning algorithms, bypassing the limitation of both the byline-based numerical author contribution methods and ungeneralizable manual approaches. The experiment validated the proposed approach by successfully classifying both the primary and the corresponding authors shown as the first and the last author without utilizing byline orders. The Random Forest classifier showed the best performances, successfully classifying the first author, the last author, and both with the accuracy of 0.90, 0.89, and 0.76 respectively. C1 [Jung, Sukhwan; Datta, Rituparna; Segev, Aviv] Univ S Alabama, Dept Comp Sci, Mobile, AL 36688 USA. C3 University of South Alabama RP Jung, S (corresponding author), Univ S Alabama, Dept Comp Sci, Mobile, AL 36688 USA. EM shjung@southalabama.edu; rdatta@southalabama.edu; segev@southalabama.edu RI Segev, Aviv/C-2060-2011; Jung, Suk hwan/HIK-1039-2022 CR [Anonymous], 2016, HDB BIBLIOMETRIC IND, DOI DOI 10.1002/ANIE.201608447 [Anonymous], MACHINE LEARNING [Anonymous], VET WORLD Assimakis N, 2010, SCIENTOMETRICS, V85, P415, DOI 10.1007/s11192-010-0255-z Boyer Stephane, 2017, Res Integr Peer Rev, V2, P18, DOI 10.1186/s41073-017-0042-y BUCKLAND ST, 1993, J APPL ECOL, V30, P478, DOI 10.2307/2404188 BURRELL Q, 1995, J AM SOC INFORM SCI, V46, P97, DOI 10.1002/(SICI)1097-4571(199503)46:2<97::AID-ASI3>3.0.CO;2-L Cramer J.S., 2002, The Origins of Logistic Regression, DOI 10.2139/ssrn.360300 Egghe L, 2000, J AM SOC INFORM SCI, V51, P145, DOI 10.1002/(SICI)1097-4571(2000)51:2<145::AID-ASI6>3.0.CO;2-9 Gadomer L, 2019, SOFT COMPUT, V23, P3741, DOI 10.1007/s00500-018-3036-x Griffis JC, 2016, J NEUROSCI METH, V257, P97, DOI 10.1016/j.jneumeth.2015.09.019 Herrmannova D., ANAL MICROSOFT ACAD HODGE SE, 1981, SCIENCE, V213, P950 Hug SE, 2017, SCIENTOMETRICS, V111, P371, DOI 10.1007/s11192-017-2247-8 Jabbar MA, 2013, PROC TECH, V10, P85, DOI 10.1016/j.protcy.2013.12.340 Joyce J., 2003, Bayes theorem Jung S., 2019, 2019 IEEE INT C BIG Klecka W., 2003, DISCRIMINANT ANAL LINDSEY D, 1980, SOC STUD SCI, V10, P145, DOI 10.1177/030631278001000202 Lou WC, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0086703 Mitra S, 2002, IEEE T SYST MAN CY C, V32, P328, DOI 10.1109/TSMCC.2002.806060 Selvi ST, 2017, INT CONF ADV COMPU, P7, DOI 10.1109/ICoAC.2017.7951736 Song Yan-Yan, 2015, Shanghai Arch Psychiatry, V27, P130, DOI 10.11919/j.issn.1002-0829.215044 Sylvester EVA, 2018, EVOL APPL, V11, P153, DOI 10.1111/eva.12524 Tan SB, 2005, EXPERT SYST APPL, V28, P667, DOI 10.1016/j.eswa.2004.12.023 VANDENBOSCH R, 1977, ANNU REV NUCL PART S, V27, P1, DOI 10.1146/annurev.ns.27.120177.000245 VanHooydonk G, 1997, J AM SOC INFORM SCI, V48, P944, DOI 10.1002/(SICI)1097-4571(199710)48:10<944::AID-ASI8>3.0.CO;2-1 Waltman L, 2012, J INFORMETR, V6, P700, DOI 10.1016/j.joi.2012.07.008 Wetcher-Hendricks D., 2011, ANAL QUANTITATIVE DA Zhang CT, 2009, EMBO REP, V10, P416, DOI 10.1038/embor.2009.74 Zhang JQ, 2004, 18TH INTERNATIONAL CONFERENCE ON ADVANCED INFORMATION NETWORKING AND APPLICATIONS, VOL 1 (LONG PAPERS), PROCEEDINGS, P562 ZUCKERMAN HA, 1968, AM J SOCIOL, V74, P276, DOI 10.1086/224641 Zulfikar W. B., 2017, 2017 5 INT C CYB IT, DOI [10.1109/CITSM.2017.8089231, DOI 10.1109/CITSM.2017.8089231] NR 33 TC 0 Z9 0 U1 1 U2 5 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA SN 2639-1589 BN 978-1-7281-6251-5 J9 IEEE INT CONF BIG DA PY 2020 BP 4604 EP 4612 DI 10.1109/BigData50022.2020.9378455 PG 9 WC Computer Science, Artificial Intelligence; Computer Science, Information Systems; Computer Science, Theory & Methods WE Conference Proceedings Citation Index - Science (CPCI-S) SC Computer Science GA BR6NZ UT WOS:000662554704084 DA 2024-09-05 ER PT J AU Slater, A AF Slater, Avery TI Phantoms of Citation: AI and the Death of the Author-Function SO POETICS TODAY LA English DT Article DE author- function; large language models (LLMs); citation; hallucination; artificial intelligence ID CHATGPT C1 [Slater, Avery] Univ Toronto, Toronto, ON, Canada. C3 University of Toronto RP Slater, A (corresponding author), Univ Toronto, Toronto, ON, Canada. CR Alkaissi H, 2023, CUREUS J MED SCIENCE, V15, DOI 10.7759/cureus.35179 [Anonymous], 2023, NATURE, V613, P612, DOI 10.1038/d41586-023-00191-1 Baker Simon., 1999, Technical Report TR- 99-32 Barthes Roland., 1989, RUSTLE LANGUAGEI, P49 Brender TD, 2023, JAMA INTERN MED, V183, P1177, DOI 10.1001/jamainternmed.2023.3875 Crawford J, 2023, J UNIV TEACH LEARN P, V20, DOI 10.53761/1.20.3.02 Day T, 2023, PROF GEOGR, V75, P1024, DOI 10.1080/00330124.2023.2190373 DERRIDA J, 1995, DIACRITICS, V25, P9, DOI 10.2307/465144 Doshi RH, 2023, AM J BIOETHICS, V23, P6, DOI 10.1080/15265161.2023.2180110 Floridi L, 2020, MIND MACH, V30, P681, DOI 10.1007/s11023-020-09548-1 Foucault Michel., 1998, The Essential Works of Foucault, 1954-1984, Vol. 2: Aesthetics, Method, V2, P205 Goddard J, 2023, AM J MED, V136, P1059, DOI 10.1016/j.amjmed.2023.06.012 Hatem R, 2023, JAMA INTERN MED, V183, P1177, DOI 10.1001/jamainternmed.2023.4231 Ji ZW, 2023, ACM COMPUT SURV, V55, DOI 10.1145/3571730 Kendrick Curtis L., 2023, Scholarly KitchenJanuary 26 Kung Tiffany H, 2023, PLOS Digit Health, V2, pe0000198, DOI 10.1371/journal.pdig.0000198 Leffer Lauren, 2023, Gizmodo Lund BD, 2023, J ASSOC INF SCI TECH, V74, P570, DOI 10.1002/asi.24750 McMichael Jonathan, 2023, SMU Libraries Milmo D., 2023, GUARDIAN 0202 Mollick Ethan, 2022, Harvard Business Review Mollman Steve, 2022, Yahoo! Rozear Hannah, 2023, Duke University Library NewsMarch 9 Stokel-Walker C, 2023, NATURE, V613, P620, DOI 10.1038/d41586-023-00107-z Teubner T, 2023, BUS INFORM SYST ENG+, V65, P95, DOI 10.1007/s12599-023-00795-x Thorp HH, 2023, SCIENCE, V379, P313, DOI 10.1126/science.adg7879 NR 26 TC 0 Z9 0 U1 0 U2 0 PU DUKE UNIV PRESS PI DURHAM PA 905 W MAIN ST, STE 18-B, DURHAM, NC 27701 USA SN 0333-5372 J9 POETICS TODAY JI Poetics Today PD JUN 1 PY 2024 VL 45 IS 2 DI 10.1215/03335372-11092818 PG 9 WC Literature WE Arts & Humanities Citation Index (A&HCI) SC Literature GA UO7O2 UT WOS:001249066600005 DA 2024-09-05 ER PT J AU Mohebbi, A Douzandegan, Y AF Mohebbi, Alireza Douzandegan, Yousef TI Linear Regression Analysis of Title Word Count and Article Time Cited using R SO JOURNAL OF SCIENTOMETRIC RESEARCH LA English DT Article DE Scientometric; Article Time Cited; Title Word Count; Linear Regression; R statistic ID NUMBER AB There is a common idea, that title variables like article title length would influence article citations. The aim of the present study was to investigating possible relationship between size of article title and number of article citations by minimizing scientometric variable biases. A dataset containing similar to 100,000 virological literatures was obtained from Web of Science InCiteTM database from 1997 to 2016. Variables, Title size (TWC), Year (YoP), Source (JS), and Publisher were selected. In addition number of times article is cited ` Time Cited' (TC) was retrieved from Web of Science InCiteTM. Linear regression analysis was performed between variables and TC using R for a possible prediction model for TC. Result has shown a robust standard error corrected linear regression with only 30.6% power of predictability. Furthermore, it was found that TC, YoP, and JS have meaningful potential in the linear model. Moreover, TC is negatively correlated with YoP, JS, and positively with TWC. As a result, size of article title, years passed since publication and the journal in which article accepted are good but not sufficient predictor of article citations. In addition, article is a multi-characteristic subject and other predictors can be supposed. However, we think that finding an efficient statistical linear predication model for TC, by increase of articles citation, is overwhelming. C1 [Mohebbi, Alireza; Douzandegan, Yousef] Golestan Univ Med Sci, Sch Med, Student Res Comm, Gorgan, Iran. C3 Golestan University of Medical Sciences RP Mohebbi, A (corresponding author), Golestan Univ Med Sci, Sch Med, Student Res Comm, Gorgan, Iran. EM Mohebbi-a@goums.ac.ir RI Mohebbi, Alireza/M-5769-2016 OI Mohebbi, Alireza/0000-0003-2489-585X CR Aleixandre-Benavent R, 2014, SCIENTOMETRICS, V101, P781, DOI 10.1007/s11192-014-1296-5 Austin PC, 2015, J CLIN EPIDEMIOL, V68, P627, DOI 10.1016/j.jclinepi.2014.12.014 Fox J., 2016, 'car' Fumani MRFQ, 2015, ANN LIBR INF STUD, V62, P126 Ginestet C, 2011, J ROY STAT SOC A, V174, P245, DOI 10.1111/j.1467-985X.2010.00676_9.x Habibzadeh F, 2010, CROAT MED J, V51, P165, DOI 10.3325/cmj.2010.51.165 Harrell F.E., 2013, Hmisc: Harrell Miscellaneous. R package version 3.10-1.1. Available from Harrell F.E.J., 2013, R Package version 3.6-3 Hothorn T, PACKAGE LMTEST TESTI, V6 Jacques Thomas S, 2010, JRSM Short Rep, V1, P2, DOI 10.1258/shorts.2009.100020 Jamali HR, 2011, SCIENTOMETRICS, V88, P653, DOI 10.1007/s11192-011-0412-z Letchford A, 2015, ROY SOC OPEN SCI, V2, DOI 10.1098/rsos.150266 Paiva CE, 2012, CLINICS, V67, P509 NR 13 TC 1 Z9 1 U1 0 U2 7 PU PHCOG NET PI KARNATAKA PA 17, 2ND FLR, BUDDHA VIHAR RD, NEAR SPORTS ZONE, COX TOWN, BENGALURU, KARNATAKA, 560005, INDIA SN 2321-6654 EI 2320-0057 J9 J SCIENTOMETR RES JI J. Scientometr. Res. PD JAN-APR PY 2017 VL 6 IS 1 BP 15 EP 22 DI 10.5530/jscires.6.1.3 PG 8 WC Information Science & Library Science WE Emerging Sources Citation Index (ESCI) SC Information Science & Library Science GA FI2WM UT WOS:000411810300003 OA Green Submitted, hybrid DA 2024-09-05 ER PT J AU MOREAU, DR DOMINICK, WD AF MOREAU, DR DOMINICK, WD TI OBJECT-ORIENTED GRAPHICAL INFORMATION-SYSTEMS - RESEARCH PLAN AND EVALUATION METRICS SO JOURNAL OF SYSTEMS AND SOFTWARE LA English DT Article C1 UNIV SW LOUISIANA,CTR ADV COMP STUDIES,LAFAYETTE,LA 70504. C3 University of Louisiana Lafayette CR BOBROW D, 1986, SEP C OBJ OR PROGR S, P17 Card S.K., 1983, The Psychology of Human-Computer Interaction", P23 Cox B.J., 1986, OBJECT ORIENTED PROG DOMINICK WD, 1986, ANNOTATED INDEX USL FLOYD RW, 1978, COMMUN ACM, V22, P455 Goldberg A., 1984, INTERACTIVE PROGRAMM, P141 HENDLER JA, 1986, 19TH HAW INT C SYST, P117 HOARE CAR, 1985, COMMUNICATING SEQUEN, P23 ISHIKAWA Y, 1986, SEP P OOPSLA 86 PORT, P232 KAHN K, 1986, SEP ACM C OBJ OR PRO, P242 MAIER D, 1985, DATA BASE ENG, V8, P58 NIERSTRASZ OM, 1985, DATA BASE ENG, V8, P49 RAEDER G, 1985, IEEE COMPUT, V18, P11 REISS SP, 1986, UNPUB OBJECT ORIENTE SCHAFFERT C, 1986, SEP P ACM C OBJ OR P, P9 SMITH RG, 1986, OBJECT ORIENTED SUBS SNYDER A, 1986, SEP P ACM C OBJ OR P, P38 SNYDER A, 1985, COMMONG LISP OBJECTS STROM R, 1983, JUN ACM SIG PLAN S L, P77 Stroustrup B., 1986, C PROGRAMMING LANGUA, P1 TEITELMAN W, 1984, INTERACTIVE PROGRAMM, P83 TOURETZKY DS, 1986, MATH INHERITANCE SYS, P139 WINOGRAD T, 1984, INTERACTIVE PROGRAMM, P3 NR 23 TC 17 Z9 17 U1 0 U2 0 PU ELSEVIER SCIENCE INC PI NEW YORK PA 655 AVENUE OF THE AMERICAS, NEW YORK, NY 10010 SN 0164-1212 J9 J SYST SOFTWARE JI J. Syst. Softw. PD JUL PY 1989 VL 10 IS 1 BP 23 EP 28 DI 10.1016/0164-1212(89)90059-9 PG 6 WC Computer Science, Software Engineering; Computer Science, Theory & Methods WE Science Citation Index Expanded (SCI-EXPANDED) SC Computer Science GA AK083 UT WOS:A1989AK08300004 DA 2024-09-05 ER PT C AU Bilal Zoric, A Miloloza, I Pejic Bach, M AF Bilal Zoric, Alisa Miloloza, Ivan Pejic Bach, Mirjana BE Erceg, A Pozega, Z TI NEURAL NETWORKS FOR STUDENT PERFORMANCE IN HIGHER EDUCATION: PRELIMINARY BIBLIOMETRIC ANALYSIS SO INTERDISCIPLINARY MANAGEMENT RESEARCH XVIII (IMR 2022) SE Interdisciplinary Management Research-Interdisziplinare Managementforschung LA English DT Proceedings Paper CT 18th Conference on Interdisciplinary Management Research (IMR) CY MAY 05-07, 2022 CL Opatija, CROATIA DE neural network; higher education; educational data mining; student performance ID FUZZY INFERENCE SYSTEM; COST AB Neural networks or artificial neural networks are a branch of machine learning, a technology based on brain and nervous system studies. Thanks to the fast-technological changes, growing computing power, advanced algorithms, and widely available digital data, the application of neural networks has spread tremendously in many fields of study, from health and medicine, accounting, finance, engineering, manufacturing, and marketing to natural language processing and robotics, wherever the analysis of big sets of data is needed. This paper focuses on using neural networks in higher educational institutions for student performance analysis and prediction, intending to investigate these researches' bibliometric and topical characteristics published in scientific papers. We have searched the indexing service Scopus to track the papers that present the applications of neural networks in higher education in the last five years. The research has been investigated based on the bibliometric characteristics (authors, publications, institutions, funding) as well as the topics of the research. The presented analysis is preliminary and can be relevant for future in-depth research on the applications of neural networks for the analysis of student performance in higher education. C1 [Bilal Zoric, Alisa] Univ Appl Sci Baltazar Zapresic, Zapresic, Croatia. [Miloloza, Ivan] Josip Juraj Strossmayer Univ Osijek, Fac Dent Med & Hlth Osijek, Osijek, Croatia. [Pejic Bach, Mirjana] Univ Zagreb, Fac Econ & Business Zagreb, Zagreb, Croatia. C3 University of JJ Strossmayer Osijek; University of Zagreb RP Bilal Zoric, A (corresponding author), Univ Appl Sci Baltazar Zapresic, Zapresic, Croatia. EM abilal@bak.hr; ivan.miloloza@fdmz.hr; mpejic@net.efzg.hr CR Abiodun OI, 2018, HELIYON, V4, DOI 10.1016/j.heliyon.2018.e00938 Abraham A., 2005, FUZZY SYSTEMS ENG TH, P53, DOI DOI 10.1007/11339366_3 Ahuja R, 2019, ADV INTELL SYST, V741, P897, DOI 10.1007/978-981-13-0761-4_85 Ali M. M., 2013, INT J COMPUTER SCI M, V2 [Anonymous], 2013, P 2013 C EMPIRICAL M Avella JT, 2016, ONLINE LEARN, V20, P13 Chen J. F., 2014, INT J INFORM MANAGEM, V25, P371 Chen JF, 2014, J INTELL FUZZY SYST, V27, P2551, DOI 10.3233/IFS-141229 Deuja R, 2018, PROCEEDINGS ON 2018 IEEE 3RD INTERNATIONAL CONFERENCE ON COMPUTING, COMMUNICATION AND SECURITY (ICCCS), P77, DOI 10.1109/CCCS.2018.8586809 Devasia T, 2016, PROCEEDINGS OF 2016 INTERNATIONAL CONFERENCE ON DATA MINING AND ADVANCED COMPUTING (SAPIENCE), P91, DOI 10.1109/SAPIENCE.2016.7684167 Donthu N, 2021, J BUS RES, V133, P285, DOI 10.1016/j.jbusres.2021.04.070 Dutti A, 2017, IEEE ACCESS, V5, P15991, DOI 10.1109/ACCESS.2017.2654247 Galati F, 2019, COMPUT IND, V109, P100, DOI 10.1016/j.compind.2019.04.018 Hamoud AK, 2018, INT J INTERACT MULTI, V5, P26, DOI 10.9781/ijimai.2018.02.004 Hashim Ali Salah, 2020, IOP Conference Series: Materials Science and Engineering, V928, DOI 10.1088/1757-899X/928/3/032019 Hassan H, 2019, COMM COM INF SC, V1000, P221, DOI 10.1007/978-3-030-20257-6_19 Hooshyar D, 2020, ENTROPY-SWITZ, V22, DOI 10.3390/e22010012 Karazi S.M., 2019, STAT NUMERICAL APPRO Klose M., 2020, STAT NUMERICAL APPRO Kurniadi Dede, 2021, ICIC Express Letters, Part B: Applications, V12, P883, DOI 10.24507/icicelb.12.10.883 Son LH, 2019, APPL INTELL, V49, P172, DOI 10.1007/s10489-018-1262-7 Li S., 2021, COMPLEXITY Li SP, 2021, COMPLEXITY, V2021, DOI 10.1155/2021/9958203 Lotfi E, 2016, ENG ECON, V61, P144, DOI 10.1080/0013791X.2015.1104568 Maitra Sandhya, 2018, 2018 International Conference on Advances in Computing, Communication Control and Networking (ICACCCN). Proceedings, P1158, DOI 10.1109/ICACCCN.2018.8748869 McGaw B., 2010, International encyclopedia of education, V3rd Bezerra LNM, 2019, J INF TECHNOL RES, V12, P154, DOI 10.4018/JITR.2019070109 Mengash HA, 2020, IEEE ACCESS, V8, P55462, DOI 10.1109/ACCESS.2020.2981905 Moro S, 2019, J BUS RES, V103, P275, DOI 10.1016/j.jbusres.2019.01.053 Network E. N., 2018, ITS 2018 WORKSHOP P, P55 Obla S, 2020, IEEE ACCESS, V8, P153098, DOI 10.1109/ACCESS.2020.3017436 Okewu E, 2021, APPL ARTIF INTELL, V35, P983, DOI 10.1080/08839514.2021.1922847 Panapakidis IP, 2017, ENERGY, V118, P231, DOI 10.1016/j.energy.2016.12.033 Pardo A, 2014, BRIT J EDUC TECHNOL, V45, P438, DOI 10.1111/bjet.12152 Prasad K, 2016, ATMOS ENVIRON, V128, P246, DOI 10.1016/j.atmosenv.2016.01.007 Pu HT, 2021, NEURAL COMPUT APPL, V33, P637, DOI 10.1007/s00521-020-05045-9 Quang Hung Do, 2013, WSEAS Transactions on Information Science and Applications, V10, P396 Raza SH, 2021, FRONT APPL MATH STAT, V7, DOI 10.3389/fams.2021.620080 Rezakazemi M, 2019, J MOL LIQ, V274, P470, DOI 10.1016/j.molliq.2018.11.017 Rohana T, 2021, BUANA INFORM TECHNOL, V2, P31 Romero C, 2020, WIRES DATA MIN KNOWL, V10, DOI 10.1002/widm.1355 Rostampour Nima, 2018, J Med Signals Sens, V8, P25 Santos R, 2023, TOUR PLAN DEV, V20, P636, DOI 10.1080/21568316.2021.1953121 Sengupta Subhabrata, 2021, Proceedings of International Conference on Computational Intelligence, Data Science and Cloud Computing. IEM-ICDC 2020. Lecture Notes on Data Engineering and Communications Technologies (LNDECT 62), P231, DOI 10.1007/978-981-33-4968-1_19 Silva C, 2017, ADV INTELL SYST, V520, P87, DOI 10.1007/978-3-319-46568-5_9 Socher Richard, 2011, ICML Srisaeng P, 2015, AVIATION, V19, P150, DOI 10.3846/16487788.2015.1104806 Sutskever I, 2014, ADV NEUR IN, V27 Tsiakmaki M, 2020, APPL SCI-BASEL, V10, DOI 10.3390/app10062145 Cazarez RLU, 2018, IEEE LAT AM T, V16, P2053 Ulloa-Cazarez RL, 2021, IEEE LAT AM T, V19, P98, DOI 10.1109/TLA.2021.9423852 Walia N., 2015, Int J Comput Appl, V123, P13, DOI [DOI 10.5120/IJCA2015905635, 10.5120/ijca2015905635] Willamette, 2014, COMP BRAIN BRAIN INF Wu YC, 2018, WIRELESS PERS COMMUN, V102, P1645, DOI 10.1007/s11277-017-5224-x XiaoWang Xunqiang, 2021, IEEE T BIG DATA Yang F, 2018, COMPUT EDUC, V123, P97, DOI 10.1016/j.compedu.2018.04.006 Yusof M. H. M., 2021, 2021 INT C TECHNOLOG, P1 Zhang Z, 2020, MECH ADV MATER STRUC, V27, P3, DOI 10.1080/15376494.2018.1444216 Zoric A. B., 2019, P EC SOCIAL DEV BOOK, P1 NR 59 TC 0 Z9 0 U1 0 U2 1 PU JOSIP JURAJ STROSSMAYER UNIV OSIJEK PI OSIJEK PA UNIV APPLIED SCIENCES, FAC ECONOMIC OSIJEK, HOCHSCHULE PFORZHEIM, TRG SV, TROJSTVA 3, OSIJEK, 31000, CROATIA SN 1847-0408 J9 INTERDISC MANAG RES PY 2022 BP 762 EP 781 PG 20 WC Business, Finance; Management WE Conference Proceedings Citation Index - Social Science & Humanities (CPCI-SSH) SC Business & Economics GA BT5VO UT WOS:000838680600041 DA 2024-09-05 ER PT J AU Das, RM Jv, M AF Das, Runu Mani J.v., Madhusudan TI Analysing the Community of Inquiry Model in the Context of Online Learning: A Bibliometric Study SO TECHTRENDS LA English DT Article DE Community of inquiry; Online learning; Bibliometric analysis AB This paper presents a bibliometric analysis of the community of inquiry model in online learning. The study focuses on identifying the most trending topics, most impact authors, most relevant sources, most relevant countries and most cited articles in the community of inquiry online learning model. Another aim is to understand the literature's factorial analysis, co-occurrence mapping and productivity mapping and the importance of the community of inquiry model in online teaching and learning. A total of 405 studies published between 2015 and 2022 extracted from the Web of Science Core Collection for the study. The results show the extent of growth of research studies in the community of inquiry model. The analysis revealed trends of productive authors and journals, and also identified the top country in terms of publishing articles. It includes a deeper understanding of the intellectual structure and conceptual evolution of the CoI model. Future research should explore advanced bibliometric mapping for CoI dynamics and the factors influencing learner engagement within the community of inquiry model, the role of teaching, cognitive and social presences, and strategies to strengthen the three presences in online learning. The study will help educators and researchers to identify the trends in relation to the community of inquiry framework. C1 [Das, Runu Mani; J.v., Madhusudan] Univ Hyderabad, Dept Educ & Educ Technol, Hyderabad, India. C3 University of Hyderabad RP Das, RM (corresponding author), Univ Hyderabad, Dept Educ & Educ Technol, Hyderabad, India. EM runumanidas123@gmail.com OI Jv, Madhusudan/0000-0002-6582-0152 CR Anderson T., 2001, JALN, V5 Arbaugh JB, 2008, INTERNET HIGH EDUC, V11, P133, DOI 10.1016/j.iheduc.2008.06.003 Aria M, 2017, J INFORMETR, V11, P959, DOI 10.1016/j.joi.2017.08.007 Velasco CAB, 2011, CUAD ECON DIR EMPRES, V14, P78, DOI 10.1016/j.cede.2011.02.004 Danvila-del-valle I., 2019, HUMAN RESOURCES TRAI Durán-Sánchez A, 2018, RELIGIONS, V9, DOI 10.3390/rel9090249 Garrison D. R., 1999, Internet and Higher Education, V2, P87, DOI 10.1016/S1096-7516(00)00016-6 Garrison DR, 2010, INTERNET HIGH EDUC, V13, P31, DOI 10.1016/j.iheduc.2009.10.002 Garrison D.R., 2007, The Internet and Higher Education, V10, P157, DOI [DOI 10.1016/J.IHEDUC.2007.04.001, 10.1016/j.iheduc.2007.04.001] Garrison DR, 2005, AM J DISTANCE EDUC, V19, P133, DOI 10.1207/s15389286ajde1903_2 Gasevic D, 2014, INT REV RES OPEN DIS, V15, P134 Heradio R, 2016, COMPUT EDUC, V98, P14, DOI 10.1016/j.compedu.2016.03.010 Hodges C. B., 2020, DIFFERENCE EMERGENCY Ke FF, 2010, COMPUT EDUC, V55, P808, DOI 10.1016/j.compedu.2010.03.013 Lee SJ, 2011, INTERNET HIGH EDUC, V14, P158, DOI 10.1016/j.iheduc.2011.04.001 Oliver R, 2003, INTERACT LEARN ENVIR, V11, P111, DOI 10.1076/ilee.11.2.111.14136 Ozdemir MA, 2021, TOUR MANAG STUD, V17, P21, DOI 10.18089/tms.2021.170302 Rojas-Sánchez MA, 2023, EDUC INF TECHNOL, V28, P155, DOI 10.1007/s10639-022-11167-5 Shea P, 2010, COMPUT EDUC, V55, P1721, DOI 10.1016/j.compedu.2010.07.017 Vaughan ND, 2013, ISS ONLINE EDUC, P1 Xie HL, 2020, LAND-BASEL, V9, DOI 10.3390/land9010028 Yu ZG, 2022, EDUC INF TECHNOL, V27, P11669, DOI 10.1007/s10639-022-11081-w NR 22 TC 0 Z9 0 U1 7 U2 7 PU SPRINGER INT PUBL AG PI CHAM PA GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND SN 8756-3894 EI 1559-7075 J9 TECHTRENDS JI TechTrends PD MAY PY 2024 VL 68 IS 3 SI SI BP 435 EP 447 DI 10.1007/s11528-024-00943-4 EA MAR 2024 PG 13 WC Education & Educational Research WE Emerging Sources Citation Index (ESCI) SC Education & Educational Research GA SD4A5 UT WOS:001186105500001 DA 2024-09-05 ER PT J AU Victor, BG Perron, BE Sokol, RL Fedina, L Ryan, JP AF Victor, Bryan G. Perron, Brian E. Sokol, Rebeccah L. Fedina, Lisa Ryan, Joseph P. TI Automated Identification of Domestic Violence in Written Child Welfare Records: Leveraging Text Mining and Machine Learning to Enhance Social Work Research and Evaluation SO JOURNAL OF THE SOCIETY FOR SOCIAL WORK AND RESEARCH LA English DT Article DE text mining; machine learning; data science; domestic violence; child welfare ID TEST-RETEST RELIABILITY; ABUSE; MALTREATMENT; FAMILIES; SERVICES; NEGLECT AB Objective: Child welfare agencies often lack information about the front-end service needs of the families they serve. Thus, the current study tests the feasibility of text mining and machine learning procedures for identifying problems related to domestic violence documented in child welfare investigation summaries. Method: We labeled child welfare investigation summaries (N = 1,402) for the presence or absence of an active domestic violence service need. Labeled documents were then used to develop text mining and machine learning models and test their accuracy and reliability. Results: Machine learning models achieved greater than 90% accuracy when compared with human coders. Fleiss kappa estimates of coding reliability between the top-performing model and human reviewers exceeded .80, indicating that our model could support human reviewers to complete this coding task. Conclusion: Results provide strong evidence that text mining and machine learning procedures can be a cost-effective solution for extracting meaningful insights from text data. Although unsuitable for case-level predictive analytics, insights derived from these procedures can be particularly useful for investigating the prevalence, temporal trends, and geographic distribution of domestic violence-related needs in the child welfare system. These methods could substantially enhance the use of text data in social work research and evaluation. C1 [Victor, Bryan G.; Sokol, Rebeccah L.] Wayne State Univ, Sch Social Work, 5447 Woodward Ave, Detroit, MI 48202 USA. [Perron, Brian E.; Fedina, Lisa; Ryan, Joseph P.] Univ Michigan, Sch Social Work, Ann Arbor, MI 48109 USA. [Perron, Brian E.; Ryan, Joseph P.] Univ Michigan, Child & Adolescent DataLab, Ann Arbor, MI 48109 USA. C3 Wayne State University; University of Michigan System; University of Michigan; University of Michigan System; University of Michigan RP Victor, BG (corresponding author), Wayne State Univ, Sch Social Work, 5447 Woodward Ave, Detroit, MI 48202 USA. EM bvictor@wayne.edu RI Victor, Bryan/T-8349-2019; Perron, Brian E./AFW-1605-2022 OI Victor, Bryan/0000-0002-2092-912X; Sokol, Rebeccah/0000-0003-3892-2337 FU Casey Family Programs; Michigan Department of Health and Human Services FX We would like to thank Cristina Garbacea from the Department of Computer Science and Engineering at the University of Michigan-Ann Arbor for her methodological guidance on data science methods. This study was supported by a grant from Casey Family Programs and the Michigan Department of Health and Human Services. CR Aggarwal C.C., 2012, MINING TEXT DATA, P77, DOI 10.1007/978-1-4614-3223-4 Alpaydin E, 2009, Introduction to machine learning Amrit C, 2017, EXPERT SYST APPL, V88, P402, DOI 10.1016/j.eswa.2017.06.035 Barth RP, 2009, FUTURE CHILD, V19, P95, DOI 10.1353/foc.0.0031 Carnochan S, 2019, J PUBLIC CHILD WELF, V13, P419, DOI 10.1080/15548732.2018.1509040 Casanueva C, 2014, CHILD ABUSE NEGLECT, V38, P1683, DOI 10.1016/j.chiabu.2014.05.013 Castillo Alfred, 2014, Advancing the Impact of Design Science: Moving from Theory to Practice. 9th International Conference, DESRIST 2014. Proceedings: LNCS 8463, P312, DOI 10.1007/978-3-319-06701-8_21 de Haan, 2015, GRAND CHALLENGES SOC Ekstrom J.A., 2008, 9th Annual International Conference on Digital Government Research (dg.o 2008), P53 Fattori M., 2003, World Patent Information, V25, P335, DOI [DOI 10.1016/S0172-2190(03)00113-3, 10.1016/S0172-2190(03)00113-3] Fedina L., 2017, Journal of Human Trafficking, V3, P21, DOI [10.1080/23322705.2017.1280316, DOI 10.1080/23322705.2017.1280316] Fedina L, 2019, J INTERPERS VIOLENCE, V34, P2653, DOI 10.1177/0886260516662306 Gibbs DA, 2018, CHILD YOUTH SERV REV, V88, P1, DOI 10.1016/j.childyouth.2018.02.045 Han J, 2012, MOR KAUF D, P1 Henry C, 2018, CHILD ABUSE NEGLECT, V86, P79, DOI 10.1016/j.chiabu.2018.08.018 Henry C, 2014, CHILD WELFARE, V93, P7 Holden GW, 2003, CLIN CHILD FAM PSYCH, V6, P151, DOI 10.1023/A:1024906315255 James G, 2013, SPRINGER TEXTS STAT, V103, P1, DOI 10.1007/978-1-4614-7138-7_1 Kohl PL, 2005, CHILD YOUTH SERV REV, V27, P1203, DOI 10.1016/j.childyouth.2005.04.005 Krallinger M, 2005, DRUG DISCOV TODAY, V10, P439, DOI 10.1016/S1359-6446(05)03376-3 Kulkarni S. J., 2016, GRAND CHALLENGES SOC LANDIS JR, 1977, BIOMETRICS, V33, P159, DOI 10.2307/2529310 Lawson J, 2019, CHILD YOUTH SERV REV, V98, P32, DOI 10.1016/j.childyouth.2018.12.017 Lee SJ, 2013, CHILD YOUTH SERV REV, V35, P634, DOI 10.1016/j.childyouth.2013.01.004 Liu B, 2011, DATA CENTRIC SYST AP, P459, DOI 10.1007/978-3-642-19460-3_11 Marsh JC, 2006, CHILD YOUTH SERV REV, V28, P1074, DOI 10.1016/j.childyouth.2005.10.012 Michigan Department of Health and Human Services, 2016, CHILD PROTECTIVE SER Mumtaz F, 2018, BIOMED PHARMACOTHER, V105, P1205, DOI 10.1016/j.biopha.2018.05.086 Murphy KP, 2012, MACHINE LEARNING: A PROBABILISTIC PERSPECTIVE, P27 Naughton CM, 2020, J INTERPERS VIOLENCE, V35, P3102, DOI 10.1177/0886260517706763 Ogbonnaya I.N., 2013, Journal of the Society for Social Work and Research, V4, P198, DOI DOI 10.5243/JSSWR.2013.14 Okech D, 2018, J EVID-INFORM SOC WO, V15, P102, DOI 10.1080/23761407.2017.1415177 Perron BE, 2022, J SOC WORK EDUC, V58, P193, DOI 10.1080/10437797.2020.1764891 Perron BE, 2019, CHILD ABUSE NEGLECT, V98, DOI 10.1016/j.chiabu.2019.104180 Pournelle G. H., 1953, Journal of Mammalogy, V34, P133, DOI 10.1890/0012-9658(2002)083[1421:SDEOLC]2.0.CO;2 Provalis Research, 2014, WORDST US GUID Provalis Research, 2018, WORDST CONT AN TEXT Regier DA, 2013, AM J PSYCHIAT, V170, P59, DOI 10.1176/appi.ajp.2012.12070999 Shearer C., 2000, J DATA WAREHOUSING, V5, P13 SIMON HA, 1956, PSYCHOL REV, V63, P129, DOI 10.1037/h0042769 Straus MA, 1996, J FAM ISSUES, V17, P283, DOI 10.1177/019251396017003001 Studer R, 1998, DATA KNOWL ENG, V25, P161, DOI 10.1016/S0169-023X(97)00056-6 Taylor S, 2019, J PUBLIC CHILD WELF, V13, P325, DOI 10.1080/15548732.2018.1500967 Vega EM, 2007, J FAM VIOLENCE, V22, P703, DOI 10.1007/s10896-007-9118-7 Victor BG, 2019, CHILD MALTREATMENT, V24, P299, DOI 10.1177/1077559519843605 Victor BG, 2016, CHILD YOUTH SERV REV, V70, P112, DOI 10.1016/j.childyouth.2016.09.015 Weiss S.M., 2010, Text Mining: Predictive Methods for Analyzing Unstructured Information, DOI 10.1007/978-0-387-34555-0 Witten IH, 2011, MOR KAUF D, P1 Zhou Y, 2016, J SOFTW-EVOL PROC, V28, P150, DOI 10.1002/smr.1770 NR 49 TC 11 Z9 11 U1 4 U2 20 PU UNIV CHICAGO PRESS PI CHICAGO PA 1427 E 60TH ST, CHICAGO, IL 60637-2954 USA SN 2334-2315 EI 1948-822X J9 J SOC SOC WORK RES JI J. Soc. Soc. Work Res. PD DEC 1 PY 2021 VL 12 IS 4 BP 631 EP 655 DI 10.1086/712734 EA DEC 2021 PG 25 WC Social Work WE Social Science Citation Index (SSCI) SC Social Work GA XT0MX UT WOS:000712780300001 DA 2024-09-05 ER PT J AU Ozyurt, H Ozyurt, O Mishra, D AF Ozyurt, Hacer Ozyurt, Ozcan Mishra, Deepti TI Exploring the Evolution of Educational Serious Games Research: A Topic Modeling Perspective SO IEEE ACCESS LA English DT Article DE Games; Education; Analytical models; Reviews; Systematics; Bibliometrics; Training; Data science; Serious games; Data science applications in education; research trend; serious games; topic modeling ID VIRTUAL-REALITY; DESIGN AB This study aims to reveal the dominant research interests and models in serious games research using topic modeling analysis. The dataset of this study covers a comprehensive collection of 2676 articles from the past to the end of 2022, indexed in the Scopus database. The study begins by presenting descriptive attributes of the articles, including their publication years, subject areas, and the journals in which they are published. Subsequently, employing topic modeling analysis, a form of unsupervised machine learning, the study identifies concealed themes, research interests, and tendencies within the literature. The findings indicate a notable surge in publications in this domain, particularly post-2009 and 2019. Furthermore, the study identifies eleven primary topics dominating the literature, with notable emphasis on "Training of STEM-related fields," "Programming learning," and "Medical education". To gauge the dynamics within these topics, the study calculates accelerations both within individual topics and in comparison to others over time. Remarkably, "Child and adolescent health" emerges as the topic with the highest self-acceleration, while "Medical education" stands out for its acceleration in comparison to other topics. In sum, the outcomes of this study, which provides a comprehensive overview of the serious games field, are anticipated to yield valuable insights for understanding the current landscape, guiding future research endeavors, and shaping the trajectory of this field. C1 [Ozyurt, Hacer; Ozyurt, Ozcan] Karadeniz Tech Univ, Fac Technol, Dept Software Engn, TR-61830 Trabzon, Turkiye. [Mishra, Deepti] Norwegian Univ Sci & Technol, Dept Comp Sci IDI, Educ Technol Lab, N-2815 Gjovik, Norway. C3 Karadeniz Technical University; Norwegian University of Science & Technology (NTNU) RP Mishra, D (corresponding author), Norwegian Univ Sci & Technol, Dept Comp Sci IDI, Educ Technol Lab, N-2815 Gjovik, Norway. EM deepti.mishra@ntnu.no OI OZYURT, OZCAN/0000-0002-0047-6813 FU Norwegian University of Science and Technology, Gjvik, Norway FX No Statement Available CR Abd-Alrazaq A, 2022, JMIR SERIOUS GAMES, V10, DOI 10.2196/32331 Abraham O, 2020, JMIR SERIOUS GAMES, V8, DOI 10.2196/16096 Aggarwal C., 2013, Mining text data Almeida F., 2019, Contemp. Educ. Technol, V10, P120, DOI DOI 10.30935/CET.554469 Alonso-Fernández C, 2020, J COMPUT ASSIST LEAR, V36, P350, DOI 10.1111/jcal.12405 Andrew L, 2023, EDUC INF TECHNOL, V28, P5519, DOI 10.1007/s10639-022-11414-9 Asmussen CB, 2019, J BIG DATA-GER, V6, DOI 10.1186/s40537-019-0255-7 Ayaz A, 2023, IEEE ACCESS, V11, P119676, DOI 10.1109/ACCESS.2023.3326444 Bano S, 2023, J KING SAUD UNIV-COM, V35, DOI 10.1016/j.jksuci.2023.101739 Barros C, 2020, EDUC INF TECHNOL, V25, P1497, DOI 10.1007/s10639-019-09990-4 Bernecker K, 2021, COMPUT HUM BEHAV, V114, DOI 10.1016/j.chb.2020.106542 Blei D, 2010, IEEE SIGNAL PROC MAG, V27, P55, DOI 10.1109/MSP.2010.938079 Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993 Boyle EA, 2012, COMPUT HUM BEHAV, V28, P771, DOI 10.1016/j.chb.2011.11.020 Buyukozturk E., 2017, Bilimselarastirma yontemleri Calabor M S., 2019, Journal of Accounting Education, V46, P43, DOI DOI 10.1016/J.JACCEDU.2018.12.004 Charrouf Y, 2019, EDUC INF TECHNOL, V24, P3841, DOI 10.1007/s10639-019-09958-4 Chen X, 2020, COMPUT EDUC, V151, DOI 10.1016/j.compedu.2020.103855 Cheng MT, 2017, BRIT J EDUC TECHNOL, V48, P246, DOI 10.1111/bjet.12386 Cheng MT, 2015, J COMPUT EDUC, V2, P353, DOI 10.1007/s40692-015-0039-9 Ciftci S., 2018, Journal of Education and Training Studies, V6, P18, DOI [10.11114/jets.v6i2.2840, DOI 10.11114/JETS.V6I2.2840] Clark D. B., 2009, P NAT AC SCI LEARN S Coghlan A, 2020, J HOSP TOUR MANAG, V42, P258, DOI 10.1016/j.jhtm.2020.01.010 Connolly TM, 2012, COMPUT EDUC, V59, P661, DOI 10.1016/j.compedu.2012.03.004 Cowley B, 2014, EDUC TECHNOL SOC, V17, P3 Cowley B, 2013, COMPUT EDUC, V60, P299, DOI 10.1016/j.compedu.2012.07.014 Crookall D, 2010, SIMULAT GAMING, V41, P898, DOI 10.1177/1046878110390784 Darwesh A., 2016, International Journal Of Engineering And Computer Science, V4, P15229 De Gloria A, 2014, INT J SERIOUS GAMES, V1, DOI 10.17083/ijsg.v1i1.11 De Mauro A, 2018, INFORM PROCESS MANAG, V54, P807, DOI 10.1016/j.ipm.2017.05.004 Din ZU, 2019, SAFETY SCI, V115, P176, DOI 10.1016/j.ssci.2019.02.005 Eftimova A. M., 2021, J. Emerg. Comput. Technol., V1, P21 Ekin CC, 2023, COMPUT EDUC, V194, DOI 10.1016/j.compedu.2022.104700 Feng ZA, 2020, ADV ENG INFORM, V46, DOI 10.1016/j.aei.2020.101134 Feng ZN, 2021, J COMPUT ASSIST LEAR, V37, P542, DOI 10.1111/jcal.12507 Ferro LS, 2021, IEEE T LEARN TECHNOL, V14, P723, DOI 10.1109/TLT.2022.3143519 Francillette Y, 2021, ENTERTAIN COMPUT, V37, DOI 10.1016/j.entcom.2020.100396 García-Redondo P, 2019, INT J ENV RES PUB HE, V16, DOI 10.3390/ijerph16142480 Gentry SV, 2019, J MED INTERNET RES, V21, DOI 10.2196/12994 Graafland M, 2012, BRIT J SURG, V99, P1322, DOI 10.1002/bjs.8819 Hallinger P, 2020, J CLEAN PROD, V256, DOI 10.1016/j.jclepro.2020.120358 Harta S, 2020, COMPUT SECUR, V95, DOI 10.1016/j.cose.2020.101827 Haruna H, 2019, INFORM LEARN SCI, V120, P723, DOI 10.1108/ILS-07-2019-0066 Holtz BE, 2018, GAMES HEALTH J, V7, P291, DOI 10.1089/g4h.2018.0024 Kang J, 2019, J KOREAN ACAD NURS, V49, P736, DOI 10.4040/jkan.2019.49.6.736 Khalid S, 2021, IEEE ACCESS, V9, P120210, DOI 10.1109/ACCESS.2021.3107939 Kroustalli C, 2021, EDUC INF TECHNOL, V26, P6069, DOI 10.1007/s10639-021-10596-y Lagro J, 2014, J AM MED DIR ASSOC, V15, DOI 10.1016/j.jamda.2014.04.011 Laine TH, 2020, IEEE T LEARN TECHNOL, V13, P804, DOI 10.1109/TLT.2020.3018503 Liang ZP, 2019, IEEE ACCESS, V7, P118639, DOI 10.1109/ACCESS.2019.2934990 Liarokapis P., 2017, Multimodalserious games technologies for cultural heritage,'' inMixed RealityGamification for Cultural Heritage, P371 Liu GW, 2019, CONSTR INNOV-ENGL, V19, P343, DOI 10.1108/CI-03-2018-0013 Lovreglio R, 2018, ADV ENG INFORM, V38, P670, DOI 10.1016/j.aei.2018.08.018 Mabey B., 2018, PyLDAvis Documentation Miljanovic MA, 2018, LECT NOTES COMPUT SC, V11243, P204, DOI 10.1007/978-3-030-02762-9_21 Min A, 2022, NURS EDUC TODAY, V108, DOI 10.1016/j.nedt.2021.105178 Naul E, 2020, J EDUC COMPUT RES, V58, P687, DOI 10.1177/0735633119859904 Nazry NNM, 2017, COMPUT HUM BEHAV, V73, P596, DOI 10.1016/j.chb.2017.03.040 Özköse H, 2023, J COMPUT INFORM SYST, V63, P1166, DOI 10.1080/08874417.2022.2132429 Ozyurt O, 2022, EDUC INF TECHNOL, V27, P11025, DOI 10.1007/s10639-022-11071-y Prabhakaran S., ''Topic modeling with gensim (Python) Rahouti A, 2021, FIRE TECHNOL, V57, P3041, DOI 10.1007/s10694-021-01098-x Ritterfeld M. Cody, 2009, Serious Games: Mechanisms andEffects Rodríguez LR, 2023, EDUC INF TECHNOL, V28, P2909, DOI 10.1007/s10639-022-11279-y Rosenthal S, 2022, COMPUT EDUC, V182, DOI 10.1016/j.compedu.2022.104480 Scopus, 2022, Content Coverage Sharifzadeh N, 2020, JMIR SERIOUS GAMES, V8, DOI 10.2196/13459 Shi YR, 2015, INT J COMPUT GAMES T, V2015, DOI 10.1155/2015/549684 Sievert C., 2014, P WORKSH INT LANG LE, P63, DOI [10.3115/v1/W14-3110, DOI 10.3115/V1/W14-3110, 10.3115/v1/w14-3110] Tanner C, 2022, COMPUT EDUC, V178, DOI 10.1016/j.compedu.2021.104381 Urgo M, 2022, CIRP J MANUF SCI TEC, V36, P172, DOI 10.1016/j.cirpj.2021.11.006 Vieira C, 2021, JMIR SERIOUS GAMES, V9, DOI 10.2196/20066 Wang R, 2016, SIMUL HEALTHC, V11, P41, DOI 10.1097/SIH.0000000000000118 Wang Y, 2022, FRONT PUBLIC HEALTH, V10, DOI 10.3389/fpubh.2022.896974 Xinogalos S, 2021, INT J SERIOUS GAMES, V8, P67, DOI 10.17083/ijsg.v8i2.425 Yasin A, 2019, IET SOFTW, V13, P159, DOI 10.1049/iet-sen.2018.5095 Yin B, 2022, EDUC INF TECHNOL, V27, P12689, DOI 10.1007/s10639-022-11118-0 Yu ZG, 2019, INT J COMPUT GAMES T, V2019, DOI 10.1155/2019/4797032 Yu ZG, 2018, COMPUT EDUC, V127, P214, DOI 10.1016/j.compedu.2018.07.014 Yung R, 2019, CURR ISSUES TOUR, V22, P2056, DOI 10.1080/13683500.2017.1417359 Zyda M, 2005, COMPUTER, V38, P25, DOI 10.1109/MC.2005.297 NR 81 TC 0 Z9 0 U1 4 U2 4 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 2169-3536 J9 IEEE ACCESS JI IEEE Access PY 2024 VL 12 BP 81827 EP 81841 DI 10.1109/ACCESS.2024.3411094 PG 15 WC Computer Science, Information Systems; Engineering, Electrical & Electronic; Telecommunications WE Science Citation Index Expanded (SCI-EXPANDED) SC Computer Science; Engineering; Telecommunications GA UL3E9 UT WOS:001248167600001 OA gold DA 2024-09-05 ER PT J AU Yeh, DY Cheng, CH Yio, HW AF Yeh, Duen-Yian Cheng, Ching-Hsue Yio, Hwei-Wun TI Empirical research of the principal component analysis and ordered weighted averaging integrated evaluation model on software projects SO CYBERNETICS AND SYSTEMS LA English DT Article ID AGGREGATION OPERATORS AB With the restrictions of time and cost, the complexity of software project development implies that the software industry cannot develop high quality products to satisfy the customers' needs. The evaluation of software development cannot only assist the deciders with the prediction of feasibility and the impact of benefits in advance, but also offer excellent help for the improvement and developing strategy of management after software project is developed. This research proposed a principal component analysis (PCA) and ordered weighted averaging (OWA) integrated evaluation model to overcome the complexity adhered in appropriately evaluating the development of software projects. The distinguishing characteristic of this model lies in integrating the respective advantages of PCA and OWA operators to appropriately evaluate the development of software projects. In this model, a well-designed questionnaire was used to express the experts' opinions on the development of software projects with respect to each criterion. The amount of evaluation results was reduced by means of PCA with the aim at cutting down the number of criteria but the accumulated variance of the original ones was preserved. OWA was used to flexibly obtain the weights of resultant criteria under the consideration of information requirement. In empirical validation, three software projects belonging to one famous hospital in Taiwan were selected as the targets to examine the appropriateness of this model. A comparison was taken to reveal the superiority of this model. As expected, the model was more effective with the increased complexity the evaluation of software project development. C1 Transworld Inst Technol, Dept Informat Management, Yunlin 640, Taiwan. Natl Yunlin Univ Sci & Technol, Dept Informat Management, Yunlin, Taiwan. C3 National Yunlin University Science & Technology RP Yeh, DY (corresponding author), Transworld Inst Technol, Dept Informat Management, 1221,Zheng Nan Rd, Yunlin 640, Taiwan. EM yeh@tit.edu.tw RI Cheng, Ching-Hsue/D-1785-2012 OI Cheng, Ching-Hsue/0000-0002-5509-6965 CR [Anonymous], P 22 ANN IEEE ASI C Boehm B.W., 1988, IEEE COMPUTER, V21, P61 CHENG CH, 2005, IN PRESS SOFT COMPUT Fullér R, 2001, FUZZY SET SYST, V124, P53, DOI 10.1016/S0165-0114(01)00007-0 Hotelling H, 1933, J EDUC PSYCHOL, V24, P498, DOI 10.1037/h0070888 Humphrey W.S., 1989, MANAGING SOFTWARE PR Jiang JJ, 2004, INFORM MANAGE-AMSTER, V41, P279, DOI 10.1016/S0378-7206(03)00052-1 Krishnan MS, 2000, MANAGE SCI, V46, P745, DOI 10.1287/mnsc.46.6.745.11941 Lee M, 1999, EUR J OPER RES, V118, P375, DOI 10.1016/S0377-2217(98)00320-8 Li EY, 2002, TOTAL QUAL MANAGE, V13, P701, DOI 10.1080/0954412022000002081 Pearson K, 1901, PHILOS MAG, V2, P559, DOI 10.1080/14786440109462720 Rainer A, 2003, J SYST SOFTWARE, V66, P7, DOI 10.1016/S0164-1212(02)00059-6 Smolíková R, 2002, FUZZY SET SYST, V131, P23, DOI 10.1016/S0165-0114(01)00252-4 Wilson DN, 2001, J SYST SOFTWARE, V59, P135, DOI 10.1016/S0164-1212(01)00057-7 YAGER RR, 1988, IEEE T SYST MAN CYB, V18, P183, DOI 10.1109/21.87068 YAGER RR, 1993, FUZZY SET SYST, V59, P125, DOI 10.1016/0165-0114(93)90194-M NR 16 TC 5 Z9 6 U1 1 U2 3 PU TAYLOR & FRANCIS INC PI PHILADELPHIA PA 325 CHESTNUT ST, SUITE 800, PHILADELPHIA, PA 19106 USA SN 0196-9722 J9 CYBERNET SYST JI Cybern. Syst. PY 2007 VL 38 IS 3 BP 289 EP 303 DI 10.1080/01969720601187347 PG 15 WC Computer Science, Cybernetics WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Computer Science GA 145CJ UT WOS:000244842600004 DA 2024-09-05 ER PT C AU Hamou-Lhadj, W Nayrolles, M AF Hamou-Lhadj, Wahab Nayrolles, Mathieu GP IEEE TI A Project on Software Defect Prevention at Commit-Time: A Success Story of University-Industry Research Collaboration SO PROCEEDINGS 2018 IEEE/ACM 5TH INTERNATIONAL WORKSHOP ON SOFTWARE ENGINEERING RESEARCH AND INDUSTRIAL PRACTICE (SER&IP) LA English DT Proceedings Paper CT 5th ACM/IEEE International Workshop on Software Engineering Research and Industrial Practice CY MAY 29, 2018 CL Gothenburg, SWEDEN DE University-Industry Research Project; Bug Prevention at CommitTime; Machine Learning; Software Maintenance and Evolution AB In this talk, we describe a research collaboration project between Concordia University and Ubisoft. The project consists of investigating techniques for defect prevention at commit-time for increased software quality. The outcome of this project is a tool called CLEVER (Combining Levels of Bug Prevention and Resolution techniques) that uses machine learning to automatically detect coding defects as programmers write code. The main novelty of CLEVER is that it relies on code matching techniques to detect coding mistakes based on a database of historical code defects found in multiple related projects. The tool also proposes fixes based on known patterns. C1 [Hamou-Lhadj, Wahab] Concordia Univ, ECE, Montreal, PQ, Canada. [Nayrolles, Mathieu] Ubisoft, La Forge Res Lab, Montreal, PQ, Canada. C3 Concordia University - Canada; Ubisoft Entertainment RP Hamou-Lhadj, W (corresponding author), Concordia Univ, ECE, Montreal, PQ, Canada. EM wahab.hamou-lhadj@concordia.ca; mathieu.nayrolles@ubisoft.com RI Nayrolles, Mathieu/AAM-5981-2020 FU Natural Science and Engineering Research Council of Canada (NSERC) FX We thank the teams at Ubisoft for their participation in this project, and acknowledge the role of the Natural Science and Engineering Research Council of Canada (NSERC) for funding partly this project. CR Cordy JR, 2011, CONF PROC INT SYMP C, P219, DOI 10.1109/ICPC.2011.26 Kamei Y, 2013, IEEE T SOFTWARE ENG, V39, P757, DOI 10.1109/TSE.2012.70 Newman M., 2002, SOFTWARE ERRORS COST Rosen C, 2015, 2015 10TH JOINT MEETING OF THE EUROPEAN SOFTWARE ENGINEERING CONFERENCE AND THE ACM SIGSOFT SYMPOSIUM ON THE FOUNDATIONS OF SOFTWARE ENGINEERING (ESEC/FSE 2015) PROCEEDINGS, P966, DOI 10.1145/2786805.2803183 NR 4 TC 0 Z9 0 U1 0 U2 2 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA BN 978-1-4503-5744-9 PY 2018 BP 24 EP 25 DI 10.1145/3195546.3206423 PG 2 WC Computer Science, Software Engineering WE Conference Proceedings Citation Index - Science (CPCI-S) SC Computer Science GA BL7CY UT WOS:000454852900006 DA 2024-09-05 ER PT J AU Choi, S Seo, J AF Choi, Soyoung Seo, JooYoung TI An Exploratory Study of the Research on Caregiver Depression: Using Bibliometrics and LDA Topic Modeling SO ISSUES IN MENTAL HEALTH NURSING LA English DT Article ID SCIENCE; ANXIETY; BURDEN; TRENDS; WELL; TOOL; WEB AB Purpose: The purpose of this paper is to provide readers with a comprehensive overview of scholarly work on the depression of caregivers using bibliometrics and text mining.Methods: A total of 426 articles published between 2000 and 2018 were retrieved from the Clarivate Analytics Web of Science, and then, computer-aided bibliometric analysis as well as Latent Dirichlet Allocation (LDA) topic modeling were conducted on the collection of the data.Results: Descriptive statistics on the increasing number of publications, network analysis of scientific collaboration between countries, word co-occurrence analysis, conceptual structure, and six latent topics (k = 6) identified are discussed.Conclusions: Preventing or managing depression among caregivers is a growing field with the highest priority for the aging population. In the future, collaborating between countries and reflecting cultural backgrounds in caregiver depression research are needed. This study is expected to contribute to the field of psychological distress of caregivers in looking a big picture of the current position through data-driven analysis and moving forward towards a better direction. C1 [Choi, Soyoung] Penn State Univ, Coll Nursing, University Pk, PA 16802 USA. [Seo, JooYoung] Penn State Univ, Learning Design & Technol, University Pk, PA 16802 USA. C3 Pennsylvania Commonwealth System of Higher Education (PCSHE); Pennsylvania State University; Pennsylvania State University - University Park; Pennsylvania Commonwealth System of Higher Education (PCSHE); Pennsylvania State University; Pennsylvania State University - University Park RP Choi, S (corresponding author), 307A Nursing Sci Bldg, University Pk, PA 16802 USA. EM sxc940@psu.edu CR Adelman RD, 2014, JAMA-J AM MED ASSOC, V311, P1052, DOI 10.1001/jama.2014.304 [Anonymous], 2002, WHO DEF PALL CAR Aria M, 2017, J INFORMETR, V11, P959, DOI 10.1016/j.joi.2017.08.007 Bartol T, 2015, J NAT FIBERS, V12, P531, DOI 10.1080/15440478.2014.972000 Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993 Chai YC, 2018, INT J SOC PSYCHIATR, V64, P578, DOI 10.1177/0020764018792585 Chen CM, 2006, J AM SOC INF SCI TEC, V57, P359, DOI 10.1002/asi.20317 Cheng ST, 2017, CURR PSYCHIAT REP, V19, DOI 10.1007/s11920-017-0818-2 Cho G, 2019, PSYCHIAT INVEST, V16, P262, DOI 10.30773/pi.2018.12.21.2 Choi EK, 2016, PSYCHO-ONCOLOGY, V25, P544, DOI 10.1002/pon.3962 Cobo MJ, 2012, J AM SOC INF SCI TEC, V63, P1609, DOI 10.1002/asi.22688 Cobo MJ, 2011, J AM SOC INF SCI TEC, V62, P1382, DOI 10.1002/asi.21525 Ennis N, 2013, NEUROPSYCHOL REHABIL, V23, P1, DOI 10.1080/09602011.2012.712871 Feinerer I., 2018, tm: Text Mining Package: A framework for text mining applications within R Fiala D, 2017, PUBLICATIONS, V5, DOI 10.3390/publications5040023 Fu F, 2017, FRONT PSYCHOL, V8, DOI 10.3389/fpsyg.2017.00834 Grover S, 2015, ASIAN J PSYCHIATR, V13, P1, DOI 10.1016/j.ajp.2015.02.003 Guntuku SC, 2017, CURR OPIN BEHAV SCI, V18, P43, DOI 10.1016/j.cobeha.2017.07.005 Haddad Mark, 2017, Nurs Stand, V31, P55, DOI 10.7748/ns.2017.e10830 Haines KJ, 2015, CRIT CARE MED, V43, P1112, DOI 10.1097/CCM.0000000000000865 Hammond T, 2014, QUAL LIFE RES, V23, P1535, DOI 10.1007/s11136-013-0577-4 Huang ZX, 2015, J BIOMED INFORM, V58, P28, DOI 10.1016/j.jbi.2015.09.005 Hung JL, 2012, BRIT J EDUC TECHNOL, V43, P5, DOI 10.1111/j.1467-8535.2010.01144.x Jui-Long Hung, 2012, Journal of Computing in Higher Education, V24, P1, DOI 10.1007/s12528-011-9044-9 Kho ME, 2012, J CLIN EPIDEMIOL, V65, P1010, DOI 10.1016/j.jclinepi.2012.03.009 Kua ZJ, 2018, J GERIATR PSYCH NEUR, V31, P227, DOI 10.1177/0891988718788641 Kuriakose RK, 2017, INT OPHTHALMOL, V37, P767, DOI 10.1007/s10792-016-0296-2 Larivière V, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0127502 Lim S, 2017, J BIOMED INFORM, V66, P82, DOI 10.1016/j.jbi.2016.12.007 Park S, 2015, J KOREAN ACAD NURS, V45, P627, DOI 10.4040/jkan.2015.45.5.627 Persson O., 2009, CELEBRATING SCHOLARL, V5, P9 Poole S, 2016, J BIOMED INFORM, V59, P276, DOI 10.1016/j.jbi.2015.12.010 Rapaport MH, 2005, AM J PSYCHIAT, V162, P1171, DOI 10.1176/appi.ajp.162.6.1171 Rinker T. R, 2018, QDAP BRIDGING GAP QU Robinson D., 2018, TIDYTEXT TEXT MINING TEAM S., 2009, Science of Science (Sci2) Tool Tuithof M, 2015, BMC PSYCHIATRY, V15, DOI 10.1186/s12888-015-0406-0 van Eck NJ, 2014, J INFORMETR, V8, P802, DOI 10.1016/j.joi.2014.07.006 van Eck NJ, 2010, SCIENTOMETRICS, V84, P523, DOI 10.1007/s11192-009-0146-3 Yu CH, 2011, QUAL REP, V16, P730 Zhang J, 2016, J ASSOC INF SCI TECH, V67, P967, DOI 10.1002/asi.23437 Zhao WZ, 2015, BMC BIOINFORMATICS, V16, DOI 10.1186/1471-2105-16-S13-S8 Zupic I, 2015, ORGAN RES METHODS, V18, P429, DOI 10.1177/1094428114562629 NR 43 TC 9 Z9 9 U1 7 U2 48 PU TAYLOR & FRANCIS INC PI PHILADELPHIA PA 530 WALNUT STREET, STE 850, PHILADELPHIA, PA 19106 USA SN 0161-2840 EI 1096-4673 J9 ISSUES MENT HEALTH N JI Issues Ment. Health Nurs. PD JUL 2 PY 2020 VL 41 IS 7 SI SI BP 592 EP 601 DI 10.1080/01612840.2019.1705944 PG 10 WC Nursing; Psychiatry WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Nursing; Psychiatry GA ME7BE UT WOS:000544807700006 PM 32286089 DA 2024-09-05 ER PT C AU Teufel, S AF Teufel, S BE Shanahan, JG Qu, Y Wiebe, J TI Argumentative zoning for improved citation indexing SO COMPUTING ATTITUDE AND AFFECT IN TEXT: THEORY AND APPLICATIONS SE Information Retrieval Series LA English DT Proceedings Paper CT Symposium on Computing Attitude and Affect in Text CY MAR, 2004 CL Stanford Univ, Stanford, CA HO Stanford Univ DE citation analysis; sentiment; machine learning; automatic summarisation AB We address the problem of automatically classifying academic citations in scientific articles according to author affect. There are many ways how a citation might fit into the overall argumentation of the article: as part of the solution, as rival approach or as flawed approach that justifies the current research. Our motivation for this work is to improve citation indexing. The method we use for this task is machine learning from indicators of affect (such as "we follow X in assuming that... ", or "in contrast to Y, our system solves this problem") and of presentation of ownership of ideas (such as "We present a new methodfor... ", or "They claim that... "). Some of these features are borrowed from Argumentative Zoning (Teufel and Moens, 2002), a technique for determining the rhetorical status of each sentence in a scientific article. These features include the type of subject of the sentence, the citation type, the semantic class of main verb, and a list of indicator phrases. Evaluation will be both intrinsic and extrinsic, involving the measurement of human agreement on the task and a comparison of human and automatic evaluation, as well as a comparison of task-performance with our system versus task performance with a standard citation indexer (CiteSeer, Lawrence et al., 1999). C1 Univ Cambridge, Comp Lab, Cambridge CB1 3PY, England. C3 University of Cambridge RP Teufel, S (corresponding author), Univ Cambridge, Comp Lab, JJ Thomson Ave, Cambridge CB1 3PY, England. EM Simone.Teufel@cam.ac.uk CR [Anonymous], P 3 ACM C DIG LIB [Anonymous], 2002, P 2002 C EMP METH NA [Anonymous], 1988, Non parametric Statistics for the Behavioral Sciences Ge N, 1998, 6 WORKSH VER LARG CO KUPIEC J, 1995, P 18 ANN INT C RES D LAWRENCE S, 1999, IEEE COMPUTER, V32 LEWIS D, 1991, SPEECH NATURAL LANGU MYERS G, 1992, J PRAGMATICS, V17 NANBA, 1999, P IJCAI 99 SHUM S, 1998, INTERFACE BRIT HCI G, V39 SWALES J, 1990, GENRE ANAL ENGLISH A, pCH7 Teufel S., 2002, COMPUTATIONAL LINGUI, V28 TEUFEL S, 1999, P 9 M EUR CHAPT ASS TEUFEL S, 2001, P NAACL 01 WORKSH AU Weinstock Melvin., 1971, ENCY LIB INFORM SCI, V5 Wiebe Janyce M., 1994, COMPUTATIONAL LINGUI, V20 NR 16 TC 6 Z9 7 U1 2 U2 11 PU SPRINGER PI DORDRECHT PA PO BOX 17, 3300 AA DORDRECHT, NETHERLANDS SN 1387-5264 BN 1-4020-4026-1 J9 INFORM RETRIEVAL SER PY 2006 VL 20 BP 159 EP 169 PG 11 WC Computer Science, Artificial Intelligence; Computer Science, Information Systems WE Conference Proceedings Citation Index - Science (CPCI-S) SC Computer Science GA BDW67 UT WOS:000235869100013 DA 2024-09-05 ER PT C AU Lamiya, K Mohan, A AF Lamiya, K. Mohan, Anuraj BE Sa, PK Bakshi, S Hatzilygeroudis, IK Sahoo, MN TI A Document Similarity Computation Method Based on Word Embedding and Citation Analysis SO RECENT FINDINGS IN INTELLIGENT COMPUTING TECHNIQUES, VOL 3 SE Advances in Intelligent Systems and Computing LA English DT Proceedings Paper CT 5th International Conference on Advanced Computing, Networking, and Informatics (ICACNI) CY JUN 01-03, 2017 CL Natl Inst Technol Goa, Dept Comp Sci & Engn, Goa, INDIA HO Natl Inst Technol Goa, Dept Comp Sci & Engn DE Citation network; Word embedding; Word mover's distance; Word2vec AB Document similarity is one among the most significant problems in knowledge discovery and information retrieval. Most of the works in document similarity only focus on textual content of the documents. However, these similarity measures do not provide an accurate measure. An alternative is to incorporate citation information into similarity measure. The content of a document can be improved by considering the content of cited documents, which is the key behind this alternative. In this work, citation network analysis is used to expand the content of citing document by including the information given in cited documents. The next issue is the representation of documents. A commonly used document representation is bag-of-words model. But it does not capture the meaning or semantics of the text as well as the ordering of the words. Hence, this proposed work uses word embedding representation. Word embedding represents a word as a dense vector with low dimensionality. Word2vec model is used to generate word embedding which can capture contextual similarity between words. The similarity between documents is measured using word mover's distance, which is based on the word embedding representation of words. The proposed work takes advantage of both textual similarity and contextual similarity. Experiments showed that the proposed method provides better results compared to other state-of-the-art methods. C1 [Lamiya, K.; Mohan, Anuraj] NSS Coll Engn, Dept Comp Sci & Engn, Palakkad, Kerala, India. C3 NSS College of Engineering Palakkad RP Lamiya, K (corresponding author), NSS Coll Engn, Dept Comp Sci & Engn, Palakkad, Kerala, India. EM lamiyalami04@gmail.com RI Mohan, Anuraj/HLV-9215-2023; Mohan, Anuraj/ABB-6154-2021; Mohan, Anuraj/JCE-1702-2023 OI Mohan, Anuraj/0000-0002-1044-9368; Mohan, Anuraj/0000-0002-1044-9368 CR [Anonymous], 2002, P 8 ACM SIGKDD INT C, DOI DOI 10.1145/775047.775126 Barrn-Cedeno A., 2009, P ICON 2009, P29 Bengio Y, 2003, J MACH LEARN RES, V3, P1137, DOI 10.1162/153244303322533223 Chikhi NF, 2008, PROC INT C TOOLS ART, P211, DOI 10.1109/ICTAI.2008.136 Collobert R., 2008, P 25 INT C MACH LEAR, V25, P160, DOI DOI 10.1145/1390156.1390177 Hamedani M.R., 2013, Proceedings of the 2013 Research in Adaptive and Convergent Systems, RACS'13, P111 Kusner MJ, 2015, PR MACH LEARN RES, V37, P957 Mikolov T., 2013, Advances in Neural Information Processing Systems, P3111 Pele O, 2009, IEEE I CONF COMP VIS, P460, DOI 10.1109/ICCV.2009.5459199 Rong X, 2014, Comput. Sci. Yoon S.-H., 2011, Proceedings of the 20th International Conference Companion on World Wide Web, P169 Zhao Peixiang, 2009, P 18 ACM C INF KNOWL NR 12 TC 0 Z9 0 U1 1 U2 4 PU SPRINGER-VERLAG SINGAPORE PTE LTD PI SINGAPORE PA 152 BEACH ROAD, #21-01/04 GATEWAY EAST, SINGAPORE, 189721, SINGAPORE SN 2194-5357 EI 2194-5365 BN 978-981-10-8633-5; 978-981-10-8632-8 J9 ADV INTELL SYST COMP PY 2018 VL 709 BP 161 EP 168 DI 10.1007/978-981-10-8633-5_17 PG 8 WC Computer Science, Artificial Intelligence; Computer Science, Hardware & Architecture; Computer Science, Information Systems; Computer Science, Software Engineering; Computer Science, Theory & Methods; Engineering, Electrical & Electronic WE Conference Proceedings Citation Index - Science (CPCI-S) SC Computer Science; Engineering GA BQ4EY UT WOS:000589275800017 DA 2024-09-05 ER PT C AU Yang, X AF Yang, X. GP Destech Publicat Inc TI Research on Project Risk Evaluation Method Based on Bayesian Networks SO INTERNATIONAL CONFERENCE ON ADVANCED EDUCATIONAL TECHNOLOGY AND INFORMATION ENGINEERING (AETIE 2015) LA English DT Proceedings Paper CT International Conference on Advanced Educational Technology and Information Engineering (AETIE) CY MAY 17-18, 2015 CL Beijing, PEOPLES R CHINA DE IT project; risk management; Bayesian network AB This paper identifies the risk factors and constructs risk management model based on the Bayesian network for IT project, and makes relevant evaluation on risk factors of IT project based on this model. Through the application on an IT project, the evaluation method could evaluate effectively the IT project risks and could provide us a new way to manage the risk of IT project. C1 TUT, Zhonghuan Informat Technol Coll, Econ & Management Dept, Tianjin, Peoples R China. RP Yang, X (corresponding author), TUT, Zhonghuan Informat Technol Coll, Econ & Management Dept, Tianjin, Peoples R China. CR Bannerman P.L., 2010, J SYST SOFTWARE, P2118 Chaos, 2005, PROJECT FAILURE SUCC Cooper G., 1992, MACH LEARN, V122, P309 Fan Min, 2009, Computer Engineering and Applications, V45, P226, DOI 10.3778/j.issn.1002-8331.2009.21.065 Fei Xiaoyan, 2010, CHINA MANAGEMENT INF, V24, P69 HECKERMAN D, 1995, MACH LEARN, V20, P197, DOI 10.1007/BF00994016 Lin Wang, 2009, OCEAN U CHINA, P40 Lu Xinyuan, 2005, J MANAGE, V2, P527 Min Fan, 2009, COMPUTER ENG APPL, V45, P241 Wang Yanjun, 2010, CHINAS MANUFACTURING, V39, P63 Yan Chao, 2009, PROJECT MANAGEMENT T, P507 Yang Lin, 2009, BUSINESS EC, P97 NR 12 TC 0 Z9 0 U1 0 U2 1 PU DESTECH PUBLICATIONS, INC PI LANCASTER PA 439 DUKE STREET, LANCASTER, PA 17602-4967 USA BN 978-1-60595-245-1 PY 2015 BP 1017 EP 1023 PG 7 WC Computer Science, Information Systems; Operations Research & Management Science WE Conference Proceedings Citation Index - Science (CPCI-S) SC Computer Science; Operations Research & Management Science GA BD5UU UT WOS:000361831300139 DA 2024-09-05 ER PT J AU Huang, SQ Yang, B Yan, SL Rousseau, R AF Huang, Shuiqing Yang, Bo Yan, Sulan Rousseau, Ronald TI Institution name disambiguation for research assessment SO SCIENTOMETRICS LA English DT Article DE Institution name disambiguation (IND); Rule-based system; Artificial intelligence; Informetrics AB Research evaluation is a necessity for management of academic units (scientists, research groups, departments, institutes, universities) and for government decision making in science and technology. Yet, wrong conclusions may be drawn due to errors in assignments of authors to institutions. To improve existing techniques of institution name disambiguation (IND) based on word similarity or editing distance, a rule-based algorithm is proposed in this study. One-to-many relationships between an institution and many variant names under which it is referred to in bylines of publications are recognized with the aid of statistical methods and specific rules. The performance of the rule based IND algorithm is evaluated on large datasets in four fields. These experimental results demonstrate that the precision of the algorithm is high. Yet, recall should be improved. C1 [Huang, Shuiqing; Yang, Bo; Yan, Sulan] Nanjing Agr Univ, Coll Informat Sci & Technol, Nanjing 210095, Jiangsu, Peoples R China. [Rousseau, Ronald] UA, Inst Educ & Informat Sci, IBW, B-2000 Antwerp, Belgium. [Rousseau, Ronald] Katholieke Univ Leuven, B-3000 Louvain, Belgium. C3 Nanjing Agricultural University; University of Antwerp; KU Leuven RP Yang, B (corresponding author), Nanjing Agr Univ, Coll Informat Sci & Technol, Nanjing 210095, Jiangsu, Peoples R China. EM mail.boyang@gmail.com FU National Social Science Fund of China [13CTQ031] FX We would like to thank Qiuru Peng, Hui Lin, Xueqin Jiang, and Zengli She from the college of information science and technology for their work on data verification. The authors are supported by Grant No. 13CTQ031 of the National Social Science Fund of China. CR Abramo G, 2011, J INFORMETR, V5, P618, DOI 10.1016/j.joi.2011.06.001 [Anonymous], 1990, Introduction to informetrics: Quantitative methods in library, Documentation and Information Science [Anonymous], 1901, B SOCIETE VAUDOISEDE [Anonymous], SCI PUBLIC POLICY Bollegala D, 2012, COMPUT INTELL-US, V28, P398, DOI 10.1111/j.1467-8640.2012.00449.x Cota RG, 2010, J AM SOC INF SCI TEC, V61, P1853, DOI 10.1002/asi.21363 Csajbók E, 2007, SCIENTOMETRICS, V73, P91, DOI 10.1007/s11192-007-1859-9 D'Angelo CA, 2011, J AM SOC INF SCI TEC, V62, P257, DOI 10.1002/asi.21460 De Bruin R., 1990, Informetrics 89/90. Selection of papers submitted for the 2nd International Conference on Bibliometrics, Scientometrics. 5-7 July 1989 icinde ss, P65 French JC, 2000, J AM SOC INFORM SCI, V51, P774, DOI 10.1002/(SICI)1097-4571(2000)51:8<774::AID-ASI90>3.0.CO;2-P Galvez C, 2007, SCIENTOMETRICS, V70, P3, DOI 10.1007/s11192-007-0101-0 Galvez C, 2006, SCIENTOMETRICS, V69, P323, DOI 10.1007/s11192-006-0156-3 Jiang Y, 2011, J AM SOC INF SCI TEC, V62, P1029, DOI 10.1002/asi.21538 Kim S, 2013, J AM SOC INF SCI TEC, V64, P86, DOI 10.1002/asi.22781 Levenshtein V. I., 1966, Soviet Physics Doklady, V10, P707 Levin M, 2012, J AM SOC INF SCI TEC, V63, P1030, DOI 10.1002/asi.22621 Morillo F, 2013, SCIENTOMETRICS, V94, P207, DOI 10.1007/s11192-012-0733-6 Onodera N, 2011, J AM SOC INF SCI TEC, V62, P677, DOI 10.1002/asi.21491 Pereira DA, 2011, J AM SOC INF SCI TEC, V62, P919, DOI 10.1002/asi.21518 Praal F., 2013, P 18 INT C SCI TECHN, P284 Richardson G, 2010, LECT NOTES COMPUT SC, V6273, P498, DOI 10.1007/978-3-642-15464-5_66 Smalheiser NR, 2009, ANNU REV INFORM SCI, V43, P287 Strotmann A, 2012, J AM SOC INF SCI TEC, V63, P1820, DOI 10.1002/asi.22695 Tang J, 2012, IEEE T KNOWL DATA EN, V24, P975, DOI 10.1109/TKDE.2011.13 Taskin Z, 2013, PROCD SOC BEHV, V73, P544, DOI 10.1016/j.sbspro.2013.02.089 Torvik VI, 2005, J AM SOC INF SCI TEC, V56, P140, DOI 10.1002/asi.20105 Van Raan AFJ, 2005, SCIENTOMETRICS, V62, P133, DOI 10.1007/s11192-005-0008-6 Yang KH, 2008, LECT NOTES COMPUT SC, V5173, P185 NR 28 TC 25 Z9 29 U1 3 U2 96 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0138-9130 EI 1588-2861 J9 SCIENTOMETRICS JI Scientometrics PD JUN PY 2014 VL 99 IS 3 BP 823 EP 838 DI 10.1007/s11192-013-1214-2 PG 16 WC Computer Science, Interdisciplinary Applications; Information Science & Library Science WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Computer Science; Information Science & Library Science GA AH1TW UT WOS:000335905000011 DA 2024-09-05 ER PT J AU Greenland, S AF Greenland, Sander TI For and Against Methodologies: Some Perspectives on Recent Causal and Statistical Inference Debates SO EUROPEAN JOURNAL OF EPIDEMIOLOGY LA English DT Article DE Bias; Causal inference; Causation; Counterfactuals; Potential outcomes; Effect estimation; Hypothesis testing; Intervention analysis; Modeling; Significance testing; Research synthesis; Statistical inference ID P-VALUES; LUNG-CANCER; CONFIDENCE-INTERVALS; SIGNIFICANCE TESTS; EPIDEMIOLOGY; REGRESSION; RACE; BIAS; COUNTERFACTUALS; IDENTIFIABILITY AB I present an overview of two methods controversies that are central to analysis and inference: That surrounding causal modeling as reflected in the "causal inference" movement, and that surrounding null bias in statistical methods as applied to causal questions. Human factors have expanded what might otherwise have been narrow technical discussions into broad philosophical debates. There seem to be misconceptions about the requirements and capabilities of formal methods, especially in notions that certain assumptions or models (such as potential-outcome models) are necessary or sufficient for valid inference. I argue that, once these misconceptions are removed, most elements of the opposing views can be reconciled. The chief problem of causal inference then becomes one of how to teach sound use of formal methods (such as causal modeling, statistical inference, and sensitivity analysis), and how to apply them without generating the overconfidence and misinterpretations that have ruined so many statistical practices. C1 [Greenland, Sander] Univ Calif Los Angeles, Dept Epidemiol, Los Angeles, CA 90095 USA. [Greenland, Sander] Univ Calif Los Angeles, Dept Stat, Los Angeles, CA 90095 USA. C3 University of California System; University of California Los Angeles; University of California System; University of California Los Angeles RP Greenland, S (corresponding author), Univ Calif Los Angeles, Dept Epidemiol, Los Angeles, CA 90095 USA.; Greenland, S (corresponding author), Univ Calif Los Angeles, Dept Stat, Los Angeles, CA 90095 USA. EM lesdomes@ucla.edu CR Aalen OO, 2016, STAT METHODS MED RES, V25, P2294, DOI 10.1177/0962280213520436 [Anonymous], 1908, BIOMETRIKA, V6, P1 [Anonymous], 2008, Modern Epidemiology [Anonymous], 1996, Time's Arrow and Archimedes' Point: New Directions for the Physics of Time [Anonymous], EMERG THEMES EPIDEMI [Anonymous], 1995, Killing time [Anonymous], 2009, Wall Street Journal [Anonymous], 1978, Specification searches: Ad hoc inference with nonexperimental data [Anonymous], 2000, Statistics with confidence [Anonymous], INT J EPIDE IN PRESS [Anonymous], INT J EPIDE IN PRESS [Anonymous], 2011, CAUSALITY PSYCHOPATH [Anonymous], CAUSAL INFE IN PRESS [Anonymous], INT J EPIDE IN PRESS [Anonymous], J SOCIOECON Baggerly K, 2015, CANC LETT, V41, P1 BANCROFT TA, 1977, INT STAT REV, V45, P117 Belluz J., 2016, The 7 biggest problems facing science, according to the 270 scientist BOX GEP, 1980, J ROY STAT SOC A STA, V143, P383, DOI 10.2307/2982063 Box GEP, 1990, STAT SCI, V5, P448, DOI DOI 10.1214/SS/1177012024 Breslow NE, 2003, BIOMETRICS, V59, P1, DOI 10.1111/1541-0420.00001 Broadbent A, 2016, INT J EPIDE IN PRESS BROSS IDJ, 1967, J CHRON DIS, V20, P487, DOI 10.1016/0021-9681(67)90080-X Chiolero A., 2016, INT J EPIDE IN PRESS CORNFIELD J, 1959, JNCI-J NATL CANCER I, V22, P173 COX DR, 1958, ANN MATH STAT, V29, P357, DOI 10.1214/aoms/1177706618 Dawid A. Philip, 2008, J MACHINE LEARNING R, V6, P59 Dawid AP, 2000, J AM STAT ASSOC, V95, P407, DOI 10.2307/2669377 DAWID AP, 1982, J AM STAT ASSOC, V77, P605, DOI 10.2307/2287720 Discacciati A, 2015, STATA J, V15, P712, DOI 10.1177/1536867X1501500306 Dunning T, 2008, POLIT RES QUART, V61, P282, DOI 10.1177/1065912907306470 Ellis G, 2014, NATURE, V516, P321, DOI 10.1038/516321a Farsides T, 2016, PSYCHOLOGIST, V29, P368 Feyerabend P., 1975, Against the Method Flanders WD, 2011, ANN EPIDEMIOL, V21, P698, DOI 10.1016/j.annepidem.2011.05.002 FLEISS JL, 1986, AM J PUBLIC HEALTH, V76, P1033, DOI 10.2105/AJPH.76.8.1033-a FLEISS JL, 1986, AM J PUBLIC HEALTH, V76, P559, DOI 10.2105/AJPH.76.5.559 Freedman D.A., 1988, MODEL UNCERTAINTY IT, P1, DOI DOI 10.1007/978-3-642-61564-1_1 FREEDMAN DA, 1987, J EDUC STAT, V12, P101, DOI 10.3102/10769986012002101 Galea S, 2013, AM J EPIDEMIOL, V178, P1185, DOI 10.1093/aje/kwt172 Gelman A., 2011, AM J SOCIOL, V117, P955, DOI [10.1086/662659, DOI 10.1086/662659] Gelman A., 2014, Chance, V27, P51, DOI DOI 10.1080/09332480.2014.890872 Gelman A, 2006, AM STAT, V60, P328, DOI 10.1198/000313006X152649 Gelman A, 2014, AM SCI, V102, P460, DOI 10.1511/2014.111.460 Gelman Andrew, 2013, Br J Math Stat Psychol, V66, P8, DOI 10.1111/j.2044-8317.2011.02037.x Gelman A, 2013, EPIDEMIOLOGY, V24, P69, DOI 10.1097/EDE.0b013e31827886f7 George Stephen L, 2015, Clin Investig (Lond), V5, P161, DOI 10.4155/cli.14.116 Gigerenzer G, 1998, BEHAV BRAIN SCI, V21, P199, DOI 10.1017/S0140525X98281167 Gigerenzer G, 2015, J MANAGE, V41, P421, DOI 10.1177/0149206314547522 Gill RD, 2014, STAT SCI, V29, P512, DOI 10.1214/14-STS490 Gilovich T, 2002, HEURISTICS BIASES PS Glass TA, 2013, ANNU REV PUBL HEALTH, V34, P61, DOI 10.1146/annurev-publhealth-031811-124606 GLYMOUR C, 1986, J AM STAT ASSOC, V81, P964, DOI 10.2307/2289067 Glymour C, 2014, EPIDEMIOLOGY, V25, P488, DOI 10.1097/EDE.0000000000000122 Glymour M., 2008, Modern Epidemiology, Vthird, P183 Goodman SN, 2005, CLIN TRIALS, V2, P282, DOI 10.1191/1740774505cn098oa GOODMAN SN, 1988, AM J PUBLIC HEALTH, V78, P1568, DOI 10.2105/AJPH.78.12.1568 GOODMAN SN, 1993, AM J EPIDEMIOL, V137, P485, DOI 10.1093/oxfordjournals.aje.a116700 GREENHOUSE SW, 1980, AM J EPIDEMIOL, V112, P269, DOI 10.1093/oxfordjournals.aje.a112993 GREENLAND S, 1980, INT J EPIDEMIOL, V9, P361, DOI 10.1093/ije/9.4.361 Greenland S, 1999, EPIDEMIOLOGY, V10, P37, DOI 10.1097/00001648-199901000-00008 Greenland S, 2002, INT J EPIDEMIOL, V31, P1030, DOI 10.1093/ije/31.5.1030 GREENLAND S, 1991, EPIDEMIOLOGY, V2, P387, DOI 10.1097/00001648-199109000-00015 Greenland S, 1990, Epidemiology, V1, P421, DOI 10.1097/00001648-199011000-00003 GREENLAND S, 1986, INT J EPIDEMIOL, V15, P413, DOI 10.1093/ije/15.3.413 GREENLAND S, 1988, AM J EPIDEMIOL, V128, P1182 Greenland S., 2017, EUR J EPIDE IN PRESS, V32 Greenland S., 2010, STAT SCI, V25, P158, DOI DOI 10.1214/10-STS308A Greenland S., 2012, CAUSAL INFERENCE STA, P43 Greenland S., 2016, AM STAT S10, V70 Greenland S., 2010, HEURISTICS PROBABILI, P365, DOI DOI 10.1007/S10654-018-0396-6 Greenland S., 2017, AM J EPIDEM IN PRESS Greenland S., 2008, MODERN EPIDEMIOLOGY, P328 Greenland S, 2016, EUR J EPIDEMIOL, V31, P337, DOI 10.1007/s10654-016-0149-3 Greenland S, 2015, EUR J EPIDEMIOL, V30, P1101, DOI 10.1007/s10654-015-9995-7 Greenland S, 2015, STAT MED, V34, P3133, DOI 10.1002/sim.6537 Greenland S, 2013, EPIDEMIOLOGY, V24, P73, DOI 10.1097/EDE.0b013e3182785a49 Greenland S, 2012, J EPIDEMIOL COMMUN H, V66, P967, DOI 10.1136/jech-2011-200459 Greenland S, 2012, ANN EPIDEMIOL, V22, P364, DOI 10.1016/j.annepidem.2012.02.007 Greenland S, 2011, PREV MED, V53, P225, DOI 10.1016/j.ypmed.2011.08.010 Greenland S, 2009, STAT SCI, V24, P195, DOI 10.1214/09-STS291 Greenland S, 2009, CLIN TRIALS, V6, P42, DOI 10.1177/1740774509103251 Greenland Sander., 1998, 1997 Proceedings of the Biometrics Section American Statistica Association, P19 Greenwood, 1924, LANCET, V2, P153 Gustafson P, 2006, BIOMETRICS, V62, P760, DOI 10.1111/j.1541-0420.2005.00510.x Gustafson P, 2014, EPIDEMIOLOGY, V25, P910, DOI 10.1097/EDE.0000000000000179 Gustafson P, 2009, STAT SCI, V24, P328, DOI 10.1214/09-STS305 Gustafson P, 2010, INT J BIOSTAT, V6, DOI 10.2202/1557-4679.1206 Hall JB, 1924, LANCET, V2, P151 Hernán MA, 2008, INT J OBESITY, V32, pS8, DOI 10.1038/ijo.2008.82 Hernán MA, 2005, AM J EPIDEMIOL, V162, P618, DOI 10.1093/aje/kwi255 Hernán MA, 2016, ANN EPIDEMIOL, V26, P674, DOI 10.1016/j.annepidem.2016.08.016 Hernán MA, 2011, INT J EPIDEMIOL, V40, P780, DOI 10.1093/ije/dyr041 HILL AB, 1965, P ROY SOC MED, V58, P295, DOI 10.1177/003591576505800503 Höfler M, 2005, EMERG THEMES EPIDEMI, V2, DOI 10.1186/1742-7622-2-11 HOLLAND PW, 1986, J AM STAT ASSOC, V81, P945, DOI 10.2307/2289064 Hume David., 1999, An Enquiry Concerning Human Understanding Ioannidis JPA, 2008, EPIDEMIOLOGY, V19, P640, DOI 10.1097/EDE.0b013e31818131e7 Kaufman JS, 2016, ANN EPIDEMIOL, V26, P683, DOI 10.1016/j.annepidem.2016.08.018 Kaufman JS, 2014, EPIDEMIOLOGY, V25, P485, DOI 10.1097/EDE.0000000000000117 Keyes K, 2015, ANN EPIDEMIOL, V25, P305, DOI 10.1016/j.annepidem.2015.01.016 King G, 2007, INT STUD QUART, V51, P183, DOI 10.1111/j.1468-2478.2007.00445.x Krieger N, 2016, INT J EPIDE IN PRESS LACHENBRUCH PA, 1987, AM J PUBLIC HEALTH, V77, P237, DOI 10.2105/AJPH.77.2.237-a Lash T.L., 2009, Applying Quantitative Bias Analysis to Epidemiologic Data Lash TL, 2007, EPIDEMIOLOGY, V18, P67, DOI 10.1097/01.ede.0000249522.75868.16 LEAMER EE, 1985, AM ECON REV, V75, P308 Lewis D, 1973, The Journal of Philosophy, V70, P556, DOI [10.2307/2025310, DOI 10.2307/2025310] Little RJ, 2006, AM STAT, V60, P213, DOI 10.1198/000313006X117837 Maclure M, 2001, EPIDEMIOLOGY, V12, P114, DOI 10.1097/00001648-200101000-00019 MacMahon B, 1967, PREVENTIVE MED Maldonado G, 2002, INT J EPIDEMIOL, V31, P435, DOI 10.1093/ije/31.2.435 Maldonado G, 2016, ANN EPIDEMIOL, V26, P681, DOI 10.1016/j.annepidem.2016.08.017 Maldonado G, 2013, ANN EPIDEMIOL, V23, P743, DOI 10.1016/j.annepidem.2013.09.001 Mansournia MA, 2017, EPIDEMIOLOGY, V28, P54, DOI 10.1097/EDE.0000000000000564 Mill JS, 1843, SYSTEM LOGIC, P1956 Morabia A, 2015, ANNU REV PUBL HEALTH, V36, P69, DOI 10.1146/annurev-publhealth-031914-122403 Naimi A., 2016, CURR EPIDEMIOL REP, V3, P92 Naimi AI, 2014, INT J EPIDEMIOL, V43, P1656, DOI 10.1093/ije/dyu107 NEWMAN TB, 1988, AM J EPIDEMIOL, V128, P1181 NEYMAN J, 1977, SYNTHESE, V36, P97, DOI 10.1007/BF00485695 Neyman J., 1923, ANN AGR SCI-CAIRO, V51 Pearce N, 2017, INT J EPIDE IN PRESS, V46 Pearl J, 1995, BIOMETRIKA, V82, P669, DOI 10.2307/2337329 Pearl J, 2015, SOCIOL METHOD RES, V44, P149, DOI 10.1177/0049124114562614 Pearl J, 2010, EPIDEMIOLOGY, V21, P872, DOI 10.1097/EDE.0b013e3181f5d3fd Pearl Judea, 2009, Causality: Models, reasoning, and inference, V2 Phillips CV, 2006, EMERG THEMES EPIDEMI, V3, DOI 10.1186/1742-7622-3-5 Phillips Carl V, 2004, Epidemiol Perspect Innov, V1, P3, DOI 10.1186/1742-5573-1-3 Phillips CV, 2003, EPIDEMIOLOGY, V14, P459, DOI 10.1097/01.ede.0000072106.65262.ae Poole C, 1997, AM STAT, V51, P112, DOI 10.2307/2685398 Poole C, 2001, EPIDEMIOLOGY, V12, P291, DOI 10.1097/00001648-200105000-00005 POOLE C, 1987, AM J PUBLIC HEALTH, V77, P195, DOI 10.2105/AJPH.77.2.195 Porta M, 2016, EUR J EPIDEMIOL, V31, P535, DOI 10.1007/s10654-016-0181-3 Porta M, 2015, EUR J EPIDEMIOL, V30, P1079, DOI 10.1007/s10654-015-0068-8 Rhodes E., 2016, PSYCHOLOGIST RICHARDSON T., 2013, Working Paper ROBINS J, 1987, J CHRON DIS, V40, pS139, DOI 10.1016/S0021-9681(87)80018-8 Robins JM, 2015, SCAND J STAT, V42, P329, DOI 10.1111/sjos.12089 ROBINS JM, 1992, EPIDEMIOLOGY, V3, P143, DOI 10.1097/00001648-199203000-00013 Robins JM, 2003, BIOMETRIKA, V90, P491, DOI 10.1093/biomet/90.3.491 Robins JM, 1999, COMPUTATION, CAUSATION, AND DISCOVERY, P305 Robins JM, 2000, J AM STAT ASSOC, V95, P431, DOI 10.2307/2669381 Romer P, 2016, AM ECONOMIS IN PRESS ROSENBAUM PR, 1983, BIOMETRIKA, V70, P41, DOI 10.1093/biomet/70.1.41 ROTHMAN KJ, 1976, AM J EPIDEMIOL, V104, P587, DOI 10.1093/oxfordjournals.aje.a112335 ROTHMAN KJ, 1978, NEW ENGL J MED, V299, P1362 ROTHMAN KJ, 1986, ANN INTERN MED, V105, P445, DOI 10.7326/0003-4819-105-3-445 Rouen TA, 1987, AJPH, V77, P237 Rubin D. B., 1990, Statistical Science, V5, P472, DOI DOI 10.1214/SS/1177012031 RUBIN DB, 1991, BIOMETRICS, V47, P1213, DOI 10.2307/2532381 RUBIN DB, 1974, J EDUC PSYCHOL, V66, P688, DOI 10.1037/h0037350 Schooling C, 2016, INT J EPIDE IN PRESS Schwartz S, 2017, ANN EPIDEMI IN PRESS, V27 Schwartz S, 2016, ANN EPIDEMIOL, V26, P669, DOI 10.1016/j.annepidem.2016.03.013 Seliger C, 2016, EUR J EPIDEMIOL, V31, P947, DOI 10.1007/s10654-016-0145-7 Sellke T, 2001, AM STAT, V55, P62, DOI 10.1198/000313001300339950 Senn S, 2001, J Epidemiol Biostat, V6, P193, DOI 10.1080/135952201753172953 Senn S, 2002, STAT MED, V21, P2437, DOI 10.1002/sim.1072 Shafer G, 2002, INT J EPIDEMIOL, V31, P434, DOI 10.1093/ije/31.2.434 SIMON HA, 1966, PHILOS SCI, V33, P323, DOI 10.1086/288105 Spirtes P., 2001, CAUSATION PREDICTION STALLONES RA, 1980, ANNU REV PUBL HEALTH, V1, P69, DOI 10.1146/annurev.pu.01.050180.000441 Stalnaker Robert C, 1968, Studies in Logical Theory, P41, DOI DOI 10.1007/978-94-009-9117-0_2 STOLLEY PD, 1991, AM J EPIDEMIOL, V133, P416, DOI 10.1093/oxfordjournals.aje.a115904 Sullivan SG, 2014, INT J EPIDEMIOL, V43, P1667, DOI 10.1093/ije/dyu189 SUSSER M, 1977, AM J EPIDEMIOL, V105, P1 SUSSER M, 1991, AM J EPIDEMIOL, V133, P635, DOI 10.1093/oxfordjournals.aje.a115939 Taleb NN, 2007, The Black Swan: The Impact of the Highly Improbable TUKEY JW, 1962, ANN MATH STAT, V33, P1, DOI 10.1214/aoms/1177704711 Tukey JW., 1954, STATISTICS MATH BIOL Vandenbroucke JP, 2009, INT J EPIDEMIOL, V38, P1193, DOI 10.1093/ije/dyp292 Vandenbroucke JP, 2016, INT J EPIDE IN PRESS VanderWeele T.J., 2012, Causality: Statistical Perspectives and Applications, P101 VanderWeele TJ., 2016, J R STAT SOC B, V78, P995 VanderWeele TJ, 2016, INT J EPIDEMIOL, V45, P1904, DOI 10.1093/ije/dyw277 VanderWeele TJ, 2014, EPIDEMIOLOGY, V25, P473, DOI 10.1097/EDE.0000000000000105 VanderWeele TJ, 2012, STAT SINICA, V22, P379, DOI 10.5705/ss.2008.186 Wagenmakers EJ, 2007, PSYCHON B REV, V14, P779, DOI 10.3758/BF03194105 WALKER AM, 1986, AM J PUBLIC HEALTH, V76, P1033, DOI 10.2105/AJPH.76.8.1033 WALKER AM, 1986, AM J PUBLIC HEALTH, V76, P556, DOI 10.2105/AJPH.76.5.556 Wasserstein RL, 2016, AM STAT, V70, P129 Welch BL, 1937, BIOMETRIKA, V29, P21, DOI 10.1093/biomet/29.1-2.21 WILK MB, 1955, BIOMETRIKA, V42, P70, DOI 10.1093/biomet/42.1-2.70 Wright S, 1920, J AGRIC RES, V20, P0557 YATES F, 1951, J AM STAT ASSOC, V46, P19, DOI 10.2307/2280090 NR 186 TC 49 Z9 51 U1 0 U2 39 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0393-2990 EI 1573-7284 J9 EUR J EPIDEMIOL JI Eur. J. Epidemiol. PD JAN PY 2017 VL 32 IS 1 BP 3 EP 20 DI 10.1007/s10654-017-0230-6 PG 18 WC Public, Environmental & Occupational Health WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Public, Environmental & Occupational Health GA EM1ZI UT WOS:000395115600002 PM 28220361 DA 2024-09-05 ER PT J AU Pei, ZG AF Pei, Zhonggui TI Framework design based on data-driven for evaluating the efficiency of group collaboration in scientific research teams SO JOURNAL OF SUPERCOMPUTING LA English DT Article DE Data driven; Group collaboration; Indicator construction; Machine learning; Adaptive enhancement algorithm; Tenfold cross; Hyperparameter AB This paper presents a data-driven framework for evaluating collaboration efficiency within scientific research teams. The framework introduces a team efficiency evaluation system consisting of 40 specific indicators, which are analyzed and modeled using statistical methods. The adaptive enhancement algorithm model achieves the highest accuracy, recall, and F1 values, with scores of 0.852, 0.530, and 0.620, respectively. These findings demonstrate the feasibility of the proposed data-driven research team collaboration model, offering theoretical support for enhancing the effectiveness of group collaboration. Moreover, the study is significant for further research on group collaboration in diverse fields. C1 [Pei, Zhonggui] Changzhou Vocat Inst Engn, Off Ind & Educ Integrat, Changzhou 213000, Peoples R China. C3 Changzhou Vocational Institute of Engineering RP Pei, ZG (corresponding author), Changzhou Vocat Inst Engn, Off Ind & Educ Integrat, Changzhou 213000, Peoples R China. EM zgpei2023@126.com CR Ab Wahab NJ., 2023, J TECHNO SOC, V15, P34, DOI [10.30880/jts.2023.15.01.003, DOI 10.30880/JTS.2023.15.01.003] Anvari AT, 2023, ENG STRUCT, V276, DOI 10.1016/j.engstruct.2022.115292 Ashok R., 2022, MATH STAT ENG APPL, V71, P8918, DOI [10.17762/msea.v71i4.1607, DOI 10.17762/MSEA.V71I4.1607] Assavakamhaenghan N, 2022, AUTOMAT SOFTW ENG, V29, DOI 10.1007/s10515-022-00357-7 Beraldi P, 2020, DECIS ECON FINANC, V43, P519, DOI 10.1007/s10203-020-00295-7 Cicekdagi HI, 2023, NAT HAZARDS, V119, P1315, DOI 10.1007/s11069-023-06164-x del Barrio-Tellado MJ, 2020, NONPROFIT MANAG LEAD, V31, P129, DOI 10.1002/nml.21411 Ghaith M, 2020, J HYDROL ENG, V25, DOI 10.1061/(ASCE)HE.1943-5584.0001866 Guo Y., 2022, Journal of Pest Science, V96, P1, DOI [10.47852/bonviewJCCE2202192, DOI 10.47852/BONVIEWJCCE2202192] Hassanpour H, 2022, IND ENG CHEM RES, V61, P3075, DOI 10.1021/acs.iecr.1c04339 Hu B, 2020, INT J CONTIN ENG EDU, V30, P445, DOI 10.1504/IJCEELL.2020.110921 Jablonsky J, 2022, CENT EUR J OPER RES, V30, P479, DOI 10.1007/s10100-021-00775-0 Jiang TT, 2021, ENVIRON SCI POLLUT R, V28, P47588, DOI 10.1007/s11356-021-13997-1 Krleza D, 2021, MACH LEARN, V110, P139, DOI 10.1007/s10994-020-05905-4 Kumaran Sunitha, 2022, International Journal of Project Organisation and Management, P204, DOI 10.1504/IJPOM.2022.124131 Liang YZ, 2020, INT J LOW-CARBON TEC, V15, P356, DOI 10.1093/ijlct/ctz084 Lin QZ, 2020, STRUCT MULTIDISCIP O, V62, P2131, DOI 10.1007/s00158-020-02602-7 Ma SQ, 2021, PROD OPER MANAG, V30, P1427, DOI 10.1111/poms.13329 Mach M, 2022, APPL PSYCHOL-INT REV, V71, P662, DOI 10.1111/apps.12342 Minniakhmetov I, 2022, MATH GEOSCI, V54, P23, DOI 10.1007/s11004-021-09943-z Mondal S, 2023, TQM J, V35, P183, DOI 10.1108/TQM-12-2020-0303 Nepomuceno Thyago Celso Cavalcante, 2023, International Journal of Operational Research, P505, DOI 10.1504/IJOR.2023.129960 Salamatova VY, 2020, RUSS J NUMER ANAL M, V35, P163, DOI 10.1515/rnam-2020-0013 Shui ZY, 2023, IEEE T IND ELECTRON, V70, P1521, DOI 10.1109/TIE.2022.3157980 Sima J., 2023, AUC KINANTH, V59, P29, DOI [10.14712/23366052.2023.3, DOI 10.14712/23366052.2023.3] Wu PY, 2022, ANN OPER RES, V309, P325, DOI 10.1007/s10479-021-04194-x Wu YQ, 2020, WATER SUPPLY, V20, P2284, DOI 10.2166/ws.2020.134 Yekta HA, 2023, NAV RES LOG, V70, P72, DOI 10.1002/nav.22084 Yu L., 2022, HIGHLIGHT ENG TECHNO, V35, P127 Zang YB, 2022, OPT EXPRESS, V30, P46626, DOI 10.1364/OE.472981 NR 30 TC 0 Z9 0 U1 4 U2 9 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0920-8542 EI 1573-0484 J9 J SUPERCOMPUT JI J. Supercomput. PD MAY PY 2024 VL 80 IS 7 BP 10148 EP 10171 DI 10.1007/s11227-023-05815-x EA DEC 2023 PG 24 WC Computer Science, Hardware & Architecture; Computer Science, Theory & Methods; Engineering, Electrical & Electronic WE Science Citation Index Expanded (SCI-EXPANDED) SC Computer Science; Engineering GA PX0X9 UT WOS:001127073000001 DA 2024-09-05 ER PT J AU Coccia, M AF Coccia, Mario TI A Taxonomy of Public Research Bodies: A Systemic Approach1 SO PROMETHEUS LA English DT Article DE public research sector; public research laboratory; research evaluation; cluster analysis; principal component analysis; type of research institutes; research policy ID RESEARCH-AND-DEVELOPMENT; DEVELOPMENT PERFORMANCE; INNOVATION; MODELS AB Nowadays the governments of industrialised countries, in the presence of reduced public resources, have to assign clear objectives to public research laboratories to increase the competitiveness of firms. The purpose of this article is to analyse the public research bodies of the National Research Council of Italy in order to pinpoint the main typologies operating in the national system of innovation (NSI). This research shows four main types of research institutes as drivers of NSI. The results can supply useful information to policy makers on the behaviour of these structures and on their strengths and weaknesses. C1 [Coccia, Mario] Natl Res Council Italy, Ceris, Turin, Italy. C3 Consiglio Nazionale delle Ricerche (CNR) RP Coccia, M (corresponding author), Politecn Torino, Econ, Turin, Italy. RI Coccia, Mario/F-9793-2015 OI Coccia, Mario/0000-0003-1957-6731 CR [Anonymous], 1990, PERFORMANCE INDICATO [Anonymous], 1939, CLUSTER ANAL [Anonymous], 1985, REP STEER COMM EFF S Arrow K.J., 1962, Economic Welfare and the Allocation of Resources for Invention Back R. K., 1998, DATA ANAL BRIEFBOOK BALL R, 1994, HIGH EDUC, V27, P417, DOI 10.1007/BF01384902 Balthasar A, 2000, TECHNOVATION, V20, P523, DOI 10.1016/S0166-4972(99)00180-7 Beer S., 1973, AZIENDA COME SISTEMA Coccia M, 2004, R&D MANAGE, V34, P267, DOI 10.1111/j.1467-9310.2004.00338.x Coccia M, 2002, TECHNOVATION, V22, P291, DOI 10.1016/S0166-4972(01)00018-9 Coccia M, 2001, R&D MANAGE, V31, P453, DOI 10.1111/1467-9310.00231 Coccia M., 2001, International Journal of Human Resources Development and Management, V1, P268, DOI [10.1504/ IJHRDM.2001.001010, DOI 10.1504/IJHRDM.2001.001010, 10.1504/IJHRDM.2001.001010] Cyert R. M., 1963, A behavioral theory of the firm Etzkowitz H, 2000, RES POLICY, V29, P109, DOI 10.1016/S0048-7333(99)00055-4 Gardin O., 2002, INT ASS OFF STAT C O Grigorovici DM, 2004, GLOBAL ECONOMY AND DIGITAL SOCIETY, P169 HARE P, 1992, OXFORD REV ECON POL, V8, P48, DOI 10.1093/oxrep/8.2.48 Hargreaves A., 1992, NATL SYSTEMS INNOVAT, P1, DOI DOI 10.7135/UPO9781843318903 HARRIS G, 1994, HIGH EDUC, V27, P191, DOI 10.1007/BF01384088 Hart O., 1985, ADV EC THEORY KAISER HF, 1958, PSYCHOMETRIKA, V23, P187, DOI 10.1007/BF02289233 KUIPERS A, 2002, INT ASS OFF STAT C O LEVINTHAL D, 1988, J ECON BEHAV ORGAN, V9, P153, DOI 10.1016/0167-2681(88)90071-6 Lundvall B. A., 1993, I FRAMEWORKS MARK EC Luwel M, 1999, R&D MANAGE, V29, P133, DOI 10.1111/1467-9310.00124 Menou M., 1995, INFORM PROCESSING MA, V31 METCALFE JS, 1999, CONOSCENZA TECNOLOGI OCONNELL MJ, 1974, COMPUT PHYS COMMUN, V8, P49, DOI 10.1016/0010-4655(74)90084-8 Polanyi Michael., 1996, TACIT DIMENSION Radner R., 1987, INFORM INCENTIVES EC Senker J., 2001, C CONT EUR SOC RES B Varian H., 1990, MICROECONOMICS ANAL WARD JH, 1963, J AM STAT ASSOC, V58, P236, DOI 10.2307/2282967 NR 33 TC 29 Z9 30 U1 0 U2 0 PU ROUTLEDGE JOURNALS, TAYLOR & FRANCIS LTD PI ABINGDON PA 2-4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND SN 0810-9028 EI 1470-1030 J9 PROMETHEUS JI Prometheus PY 2005 VL 23 IS 1 BP 63 EP 82 DI 10.1080/0810902042000331322 PG 20 WC Social Sciences, Interdisciplinary WE Emerging Sources Citation Index (ESCI) SC Social Sciences - Other Topics GA V60GW UT WOS:000210820100004 DA 2024-09-05 ER PT J AU Murillo, AP Yoon, A AF Murillo, Angela P. Yoon, Ayoung TI A study of emerging trends in digital preservation literature: An analysis of journal articles presented in course syllabi SO JOURNAL OF LIBRARIANSHIP AND INFORMATION SCIENCE LA English DT Article DE Digital preservation; digital preservation education; syllabi analysis; citation analysis; topic modeling ID INSTITUTIONAL REPOSITORIES; LIBRARY; EDUCATION; SCIENCE; SCHOOLS AB The field of digital preservation education is evolving due to the rapid developments in the digital preservation field, and as educators and researchers respond to these developments. One way to understand trends in education is through the examination of course syllabi and through the assigned course readings, as instructors often utilize and integrate core and seminal literature in these courses. This study aims to understand the emerging topics and trends in digital preservation education through the examination of these course readings. This study examines these topics and trends through an analysis of the literature assigned digital preservation courses at North American ALA (American Library Association)-accredited Master's in Library and Information Science programs through bibliometric analysis, topic modeling, and visual analysis of the citation data. C1 [Murillo, Angela P.; Yoon, Ayoung] Indiana Univ Purdue Univ, Indianapolis, IN 46202 USA. C3 Purdue University System; Purdue University RP Murillo, AP (corresponding author), Indiana Univ Purdue Univ, Indianapolis, IN 46202 USA. EM apmurill@iu.edu RI Murillo, Angela/V-2705-2018 OI Murillo, Angela/0000-0002-7213-7335 CR AKERS K, 2013, INT J DIGITAL CURATI, V0008 American Library Association, 2008, DEF DIG PRES [Anonymous], 2014, MEASURING SCHOLARLY Bers T.H., 2000, ASSESSMENT UPDATE, V12, P4 Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993 Börner K, 2003, ANNU REV INFORM SCI, V37, P179, DOI 10.1002/aris.1440370106 Brown C., 2014, ARCH RECORDKEEPING T Brown G, 2008, INT J DIGITAL CURATI, V3, P74 Caplan P, 2005, LIBR TRENDS, V54, P111, DOI 10.1353/lib.2006.0002 Centre for Science and Technology Studies Leiden University The Netherlands, 2018, VOSVIEWER VIS SCI LA CHAN LM, 1987, CATALOGING CLASSIFIC, V7, P131 Conway, 2014, PRESERVATION DIGITAL, V43, P2 Conway P, 2011, ARCH SCI-NETHERLANDS, V11, P293, DOI 10.1007/s10502-011-9155-0 Costello K, 2010, P ICONFERENCE 2010 I Cragin MH, 2010, PHILOS T R SOC A, V368, P4023, DOI 10.1098/rsta.2010.0165 Croft KF, 2011, LIBR RESOUR TECH SER, V50, P274 de Moya-Anegón F, 2007, J AM SOC INF SCI TEC, V58, P2167, DOI 10.1002/asi.20683 DigCurV, 2013, DIGCURV SKILLS DIG C Digital Curation Centre, 2020, DCC Digital Preservation Coalition, 2008, DIGITAL PRESERVATION Drees B, 2018, OPT QUANT ELECTRON, V50, DOI 10.1007/s11082-018-1327-1 Garnar M, 2016, J INTELLECTUAL FREED, V1, P6 Gelernter J., 2011, The International Journal of Digital Curation, V6, P70 Gladney, 2007, D LIB MAGAZINE, V13 Goodwin A, 2018, ASSESS EVAL HIGH EDU, V43, P855, DOI 10.1080/02602938.2017.1412397 Gracy KF, 2012, LIBR RESOUR TECH SER, V56, P25, DOI 10.5860/lrts.56n1.25 Hall David, 2008, P 2008 C EMP METH NA, P363, DOI DOI 10.3115/1613715.1613763 Harris-Pierce RL, 2012, NEW LIB WORLD, V113, P598, DOI 10.1108/03074801211282957 Hrycaj PL, 2006, COLL RES LIBR, V67, P525, DOI 10.5860/crl.67.6.525 Hudgins A, 2011, PROVENANCE J SOC GEO, V29, P31 Irwin R., 2002, Journal of Education for Library and Information Science, V43, P175, DOI 10.2307/40323978 Jacobsen T, 2013, ARCH SCI-NETHERLANDS, V13, P217, DOI 10.1007/s10502-013-9199-4 Li C, 2010, J ZHEJIANG U-SCI C, V11, P872, DOI 10.1631/jzus.C1001006 Library of Congress, 2002, PLAN NAT DIG INF INF LOWE MA, 1989, EDUC INFORM, V7, P365 Lynch CA, 2003, PORTAL-LIBR ACAD, V3, P327, DOI 10.1353/pla.2003.0039 Maybee C, 2015, J ACAD LIBR, V41, P369, DOI 10.1016/j.acalib.2015.05.009 McNally P., J EDUC LIBR INF SCI Natale F, 2012, SCIENTOMETRICS, V90, P983, DOI 10.1007/s11192-011-0562-z Nicholson S, 2005, J MED LIBR ASSOC, V93, P61 POMERANTZ J, 2006, D LIB MAGAZINE, V12 Ross, 2004, D LIB MAGAZINE, V10 Society of American Archivists, 2020, AUTHENTICITY Stanny C, 2015, ASSESS EVAL HIGH EDU, V40, P898, DOI 10.1080/02602938.2014.956684 The Stanford Natural Language Processing Group, STANFORD TOPIC MODEL Tibbo HelenR., 2015, International Journal of Digital Curation, P144, DOI DOI 10.2218/IJDC.V10I1.352 Timakum T, 2020, J LIBR INF SCI, V52, P345, DOI 10.1177/0961000618793977 Trace CiaranB., 2012, The Reference Librarian, V53, P76 Van Eck N.J., 2014, Measuring Scholarly Impact: Methods and Practice, P285, DOI 10.1007/978-3-319-10377-8_13(InEng.) Westell M, 2006, LIBR HI TECH, V24, P211, DOI 10.1108/07378830610669583 White GW, 2005, J BUS FINANC LIBR, V10, P3, DOI 10.1300/J109v10n02_02 Wilson J., 2010, ARIADNE WEB PRINT MA, V30, P6 Worthington B, 2017, J EDUC LIBR INF SCI, V58, P202 Yang S, 2015, P ASS INFORM SCI TEC, V52, P1 Yoon, 2020, DATA STUDY EMERGING Zhu X, 2015, P 12 INT C DIG PRES NR 56 TC 2 Z9 2 U1 3 U2 34 PU SAGE PUBLICATIONS LTD PI LONDON PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND SN 0961-0006 EI 1741-6477 J9 J LIBR INF SCI JI J. Libr. Inf. Sci. PD DEC PY 2021 VL 53 IS 4 BP 615 EP 629 AR 0961000620967714 DI 10.1177/0961000620967714 EA SEP 2021 PG 15 WC Information Science & Library Science WE Social Science Citation Index (SSCI) SC Information Science & Library Science GA WL1LC UT WOS:000691986500001 OA Green Submitted DA 2024-09-05 ER PT J AU Ren, ZD Yang, K Dong, W AF Ren, Zhongda Yang, Kun Dong, Wen TI Spatial Analysis and Risk Assessment Model Research of Arthritis Based on Risk Factors: China, 2011, 2013 and 2015 SO IEEE ACCESS LA English DT Article DE Arthritis; Correlation; Analytical models; Diseases; Logistics; Risk management; Graphical models; Middle-aged and older adults; arthritis; spatial analysis; risk factors; logistic regression modeling; random forest modelling; risk assessment ID RHEUMATOID-ARTHRITIS; FUNCTIONAL-DISABILITY; UNITED-STATES; DEPRESSION; PREVALENCE; ASSOCIATIONS; RESOLUTION; DISEASE; OBESITY; HEALTH AB Arthritis is a public health issue that is of global concern. Arthritis is one of the chronic diseases with a high incidence of middle-aged and older adults. The patients have paid a heavy price for this and caused a substantial economic burden on society. In this study, we used spatial autocorrelation, spatial cluster analysis, multiple logistic regression, and random forest models to analyze the spatial distribution and possible risk factors for arthritis in elderly Chinese and assess arthritis risk. Global spatial autocorrelation analysis and significance test results show that Moran's I of arthritis spatial autocorrelation in 2011, 2013, and 2015 are statistically significant, so there is significant spatial autocorrelation three years. The results of local spatial autocorrelation and spatial clustering analysis show that the aggregation areas of arthritis patients are mainly in the southwest, northwest, and central China. Multivariate logistic regression analysis showed that gender, age, education level, Body Mass Index (BMI), Center for Epidemiologic Studies Depression Scale score (CES-D), altitude, region, weather temperature, hypertension, lung, liver, heart, stroke, digestive, and kidney disease were all arthritis affects factors (P < 0.05). Compared with the multi-factor Logistic regression model, the random forest model better assesses performance and higher fit. The fitting accuracy is 82.2% in the random forest model, which is better than the multi-factor Logistic regression model (66.6%). According to the assessment risk map generated by the random forest model, Northeast, Southwest, Northwest, South, and Central are high-risk areas for arthritis. These results provide benchmark data for the control and prevention of arthritis diseases. C1 [Ren, Zhongda] Yunnan Normal Univ, Sch Comp Sci & Technol, Kunming 650500, Yunnan, Peoples R China. [Ren, Zhongda; Yang, Kun; Dong, Wen] Yunnan Normal Univ, Minist Educ, Engn Res Ctr GIS Technol Western China, Kunming 650500, Yunnan, Peoples R China. [Yang, Kun; Dong, Wen] Yunnan Normal Univ, Fac Geog, Kunming 650500, Yunnan, Peoples R China. C3 Yunnan Normal University; Yunnan Normal University; Yunnan Normal University RP Yang, K; Dong, W (corresponding author), Yunnan Normal Univ, Minist Educ, Engn Res Ctr GIS Technol Western China, Kunming 650500, Yunnan, Peoples R China.; Yang, K; Dong, W (corresponding author), Yunnan Normal Univ, Fac Geog, Kunming 650500, Yunnan, Peoples R China. EM kmdcynu@163.com; dong_wen121@163.com RI Yang, Kun/ISA-1094-2023 OI Yang, Kun/0000-0003-1335-3449; Ren, ZhongDa/0000-0002-1046-2220 FU National Natural Science Foundation of China [41661087] FX This work was supported by the National Natural Science Foundation of China under Grant 41661087. CR Ahmed H, 2020, FUTURE GENER COMP SY, V111, P714, DOI 10.1016/j.future.2019.09.056 Anselin L, 2006, GEOGR ANAL, V38, P5, DOI 10.1111/j.0016-7363.2005.00671.x ANSELIN L, 1995, GEOGR ANAL, V27, P93, DOI 10.1111/j.1538-4632.1995.tb00338.x Ascough JC, 2008, ECOL MODEL, V219, P383, DOI 10.1016/j.ecolmodel.2008.07.015 Barbour KE, 2017, MMWR-MORBID MORTAL W, V66, P246, DOI 10.15585/mmwr.mm6609e1 Barbour KE, 2016, MMWR-MORBID MORTAL W, V65, P489, DOI 10.15585/mmwr.mm6519a2 Breiman L, 1996, MACH LEARN, V24, P123, DOI 10.1023/A:1018054314350 Cai QX, 2020, DIABETES CARE, V43, P1392, DOI 10.2337/dc20-0576 Cai YA, 2019, J MED VIROL, V91, P337, DOI 10.1002/jmv.25293 Casanova R, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0163942 Fu LY, 2018, MOD RHEUMATOL, V28, P249, DOI 10.1080/14397595.2017.1307711 Gong GL, 2016, NURS RES, V65, P55, DOI 10.1097/NNR.0000000000000137 Goossens J, 2019, CLIN EXP RHEUMATOL, V37, P49 Guo GK, 2016, HEALTH QUAL LIFE OUT, V14, DOI 10.1186/s12955-016-0550-3 He MF, 2019, J AFFECT DISORDERS, V242, P135, DOI 10.1016/j.jad.2018.08.060 Hitchon CA, 2020, ARTHRIT CARE RES, V72, P1130, DOI 10.1002/acr.24011 Jiang LY, 2016, INT J RHEUM DIS, V19, P1244, DOI 10.1111/1756-185X.12895 Jiang X, 2015, ARTHRITIS RES THER, V17, DOI 10.1186/s13075-015-0836-6 Kamruzzaman AKM, 2020, CLIN RHEUMATOL, V39, P1315, DOI 10.1007/s10067-019-04859-w Koch J, 2019, HYDROL EARTH SYST SC, V23, P4603, DOI 10.5194/hess-23-4603-2019 Kuang-Nana F., 2011, STATS INF FORUM Lahouar A, 2017, RENEW ENERG, V109, P529, DOI 10.1016/j.renene.2017.03.064 Lawrence RC, 2008, ARTHRITIS RHEUM, V58, P26, DOI 10.1002/art.23176 Li CW, 2015, RHEUMATOLOGY, V54, P697, DOI 10.1093/rheumatology/keu391 Li XX, 2014, BMC PUBLIC HEALTH, V14, DOI 10.1186/1471-2458-14-257 Li YR, 2019, PSYCHOL HEALTH MED, V24, P1277, DOI 10.1080/13548506.2019.1622748 Li YR, 2018, PSYCHOL HEALTH MED, V23, P952, DOI 10.1080/13548506.2018.1434314 Lu MC, 2016, SCI REP-UK, V6, DOI 10.1038/srep20647 Luo HQ, 2020, BMC PUBLIC HEALTH, V20, DOI 10.1186/s12889-020-08899-9 Martins-Melo FR, 2015, EMERG INFECT DIS, V21, P1820, DOI 10.3201/eid2110.141438 McWilliams DF, 2016, RHEUMATOLOGY, V55, P1477, DOI 10.1093/rheumatology/kew197 MOORE ID, 1991, HYDROL PROCESS, V5, P3, DOI 10.1002/hyp.3360050103 Nakamura T, 2010, CLIN RHEUMATOL, V29, P1395, DOI 10.1007/s10067-010-1469-4 Olaru L, 2017, CLIN RHEUMATOL, V36, P2835, DOI 10.1007/s10067-017-3856-6 Prasad R, 2018, GEODERMA, V330, P136, DOI 10.1016/j.geoderma.2018.05.035 Rao HX, 2016, INFECT DIS POVERTY, V5, DOI 10.1186/s40249-016-0139-4 Rao YS, 2018, INT J ENV RES PUB HE, V15, DOI 10.3390/ijerph15040768 Shinan-Altman S, 2020, QUAL LIFE RES, V29, P403, DOI 10.1007/s11136-019-02315-5 Sun XS, 2019, INT J ENV RES PUB HE, V16, DOI 10.3390/ijerph16234701 Tie X-J., 2018, CHIN J TISSUE ENG RE, V22, P650 Wang L, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0110861 Wu XR, 2017, BMC INFECT DIS, V17, DOI 10.1186/s12879-017-2742-9 Xiang B, 2020, ATMOSPHERE-BASEL, V11, DOI 10.3390/atmos11050508 Yao H, 2020, ATMOS RES, V244, DOI 10.1016/j.atmosres.2020.105093 Yelin E., 2007, Morbidity and Mortality Weekly Report, V56, P4 Zhao SP, 2015, CLIN RHEUMATOL, V34, P845, DOI 10.1007/s10067-015-2896-z Zhou B, 2020, COMPLEMENT THER CLIN, V39, DOI 10.1016/j.ctcp.2020.101088 Zhu B, 2018, INT J ENV RES PUB HE, V15, DOI 10.3390/ijerph15040661 Zou K, 2017, PLOS ONE, V12, DOI 10.1371/journal.pone.0180376 NR 49 TC 2 Z9 2 U1 6 U2 32 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 2169-3536 J9 IEEE ACCESS JI IEEE Access PY 2020 VL 8 BP 206406 EP 206417 DI 10.1109/ACCESS.2020.3037912 PG 12 WC Computer Science, Information Systems; Engineering, Electrical & Electronic; Telecommunications WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Computer Science; Engineering; Telecommunications GA OZ6JF UT WOS:000595029300001 OA gold DA 2024-09-05 ER PT J AU Ng, DTK Ching, ACH Law, SW AF Ng, Davy Tsz Kit Ching, Anthony Chun Hin Law, Sau Wai TI Online learning in management education amid the pandemic: A bibliometric and content analysis SO INTERNATIONAL JOURNAL OF MANAGEMENT EDUCATION LA English DT Article DE Management education; Online learning; COVID; Information systems; Bibliometric analysis ID TEACHER INPUT; BUSINESS; COVID-19; PERSPECTIVE; CHALLENGES; COMMUNITY; FUTURE AB The COVID-19 pandemic (2020-2022) had triggered a global crisis which led to the suspension of colleges and universities. Management educators had digitally transformed their teaching to new modalities with digital technologies and adapted to technological solutions. The management students had experienced different online modes of learning and adjusted their methods to the new reality of content delivery. This study aims to discuss opportunities and challenges for management education and facilitate further investigation into the emerging trends on online learning by analyzing the characteristics of management education research and examining the most frequent research themes from 2020 to 2022. A bibliometric analysis is used to review 920 papers retrieved from the Scopus database for exploring key research themes of management education and online learning. The findings revealed that the publications are concentrated in developed countries while European countries had accounted for the largest proportion of the listed publications. Five sub themes are identified for receiving the most scholarly attention, such as pedagogy, technology, assessment methods, learning outcomes or skills, and challenges. After all, the bibliometric and thematic findings identified pivotal theoretical contributions, including fields of online or blended learning and management education converge, to extend the existing online learning theories. C1 [Ching, Anthony Chun Hin] Univ Hong Kong, Fac Educ, Hong Kong, Peoples R China. [Law, Sau Wai] Bangor Univ, Business Sch, Bangor, England. [Ng, Davy Tsz Kit] Hong Kong Shue Yan Univ, Law & Business Dept, Hong Kong, Peoples R China. [Ng, Davy Tsz Kit] Univ Hong Kong, Fac Educ, Hong Kong Special Adm Reg China, Hong Kong, Peoples R China. C3 University of Hong Kong; Bangor University; Hong Kong Shue Yan University; University of Hong Kong RP Ng, DTK (corresponding author), Univ Hong Kong, Fac Educ, Hong Kong Special Adm Reg China, Hong Kong, Peoples R China. EM davyngtk@connect.hku.hk; anthonychingchunhin@gmail.com RI Ng, Tsz Kit Davy/ADD-3433-2022 OI Ng, Tsz Kit Davy/0000-0002-2380-7814; Law, Sau Wai/0000-0002-5231-2845 CR Afzal F., 2022, PROJECT LEADERSHIP S, V3 Aggarwal D., 2022, Management and Labour Studies Aguinis H, 2020, MANAG RES, V18, P421, DOI 10.1108/MRJIAM-06-2020-1053 Akyol Z, 2011, BRIT J EDUC TECHNOL, V42, P233, DOI 10.1111/j.1467-8535.2009.01029.x Allen D. E., 2011, New Directions for Teaching & Learning, V128, P21, DOI [DOI 10.1002/TL.465, 10.1002/tl.465] Allen SJ, 2022, J MANAG EDUC, V46, P252, DOI 10.1177/10525629211008645 Allen SJ, 2020, J MANAG EDUC, V44, P362, DOI 10.1177/1052562920903077 Alm K, 2021, INT J SUST HIGHER ED, V22, P1450, DOI 10.1108/IJSHE-10-2020-0417 Almeida J, 2021, INT J MANAG EDUC-OXF, V19, DOI 10.1016/j.ijme.2019.100318 [Anonymous], 1995, Bull World Health Organ, V73, P135 Arbaugh JB, 2009, INTERNET HIGH EDUC, V12, P71, DOI 10.1016/j.iheduc.2009.06.006 Archambault LM, 2010, COMPUT EDUC, V55, P1656, DOI 10.1016/j.compedu.2010.07.009 Arici F, 2019, COMPUT EDUC, V142, DOI 10.1016/j.compedu.2019.103647 Bacon DR, 2022, J MARKET EDUC, V44, P6, DOI 10.1177/02734753211003934 Bhuwandeep, 2023, J EDUC BUS, V98, P68, DOI 10.1080/08832323.2022.2045556 Billiot T, 2021, J INT EDUC BUS, V14, P130, DOI 10.1108/JIEB-04-2020-0033 Bonk CJ, 2015, EDUC TECHNOL SOC, V18, P349 Boudry C, 2015, EUR J OPHTHALMOL, V25, P357, DOI 10.5301/ejo.5000556 Brammer S, 2020, ACAD MANAGE PERSPECT, V34, P493, DOI 10.5465/amp.2019.0053 Caza A, 2015, INT J MANAG EDUC-OXF, V13, P75, DOI 10.1016/j.ijme.2015.01.006 Chai CS, 2011, COMPUT EDUC, V57, P1184, DOI 10.1016/j.compedu.2011.01.007 Chan L., 2022, Applied Artificial Intelligence in Business: Concepts and Cases, P265 Chang CY, 2023, INTERACT LEARN ENVIR, V31, P6678, DOI 10.1080/10494820.2022.2043385 Chen MRA, 2023, INTERACT LEARN ENVIR, V31, P2411, DOI 10.1080/10494820.2021.1888755 Chia-Chi Yang, 2006, Internet and Higher Education, V9, P277, DOI 10.1016/j.iheduc.2006.08.002 Chick RC, 2020, J SURG EDUC, V77, P729, DOI 10.1016/j.jsurg.2020.03.018 Chiu MC, 2024, INTERACT LEARN ENVIR, V32, P1834, DOI 10.1080/10494820.2022.2129392 Chiu TKF, 2021, ASIA-PAC EDUC RES, V30, P187, DOI 10.1007/s40299-021-00566-w Chiu TKF, 2022, J RES TECHNOL EDUC, V54, pS14, DOI 10.1080/15391523.2021.1891998 Chu SKW, 2013, J LIBR INF SCI, V45, P64, DOI 10.1177/0961000611434361 Coraiola D. M., 2022, Research Handbook on Strategic Entrepreneurship, P125 Costigan RD, 2020, J MANAG EDUC, V44, P129, DOI 10.1177/1052562919890895 Cullen JG, 2017, J BUS ETHICS, V145, P429, DOI 10.1007/s10551-015-2838-3 Darley WK, 2021, INT J MANAG EDUC-OXF, V19, DOI 10.1016/j.ijme.2021.100504 Datta Pratim, 2021, Journal of Information Technology Teaching Cases, P81, DOI 10.1177/2043886921994821 Demuyakor J, 2020, ONLINE J COMMUN MEDI, V10, DOI 10.29333/ojcmt/8286 Dhawan Shivangi, 2020, Journal of Educational Technology Systems, V49, P5, DOI 10.1177/0047239520934018 Donthu N, 2021, J BUS RES, V133, P285, DOI 10.1016/j.jbusres.2021.04.070 Donthu N, 2020, J BUS RES, V117, P284, DOI 10.1016/j.jbusres.2020.06.008 Donthu N, 2020, J BUS RES, V109, P1, DOI 10.1016/j.jbusres.2019.10.039 Drennan J, 2005, J EDUC RES, V98, P331, DOI 10.3200/JOER.98.6.331-338 Durrani UK, 2022, INT J MANAG EDUC-OXF, V20, DOI 10.1016/j.ijme.2021.100595 Dust Scott B, 2020, New Dir Stud Leadersh, V2020, P73, DOI 10.1002/yd.20370 Dwivedi YK, 2020, INT J INFORM MANAGE, V55, DOI 10.1016/j.ijinfomgt.2020.102211 Dyck B., 2021, Patent No. 13505076211045498 Ellegaard O, 2015, SCIENTOMETRICS, V105, P1809, DOI 10.1007/s11192-015-1645-z English MC, 2013, INTERDIS J PROBL-BAS, V7, P128, DOI 10.7771/1541-5015.1339 Ersoy-Babula AI, 2018, INT J MANAG EDUC-OXF, V16, P321, DOI 10.1016/j.ijme.2018.04.007 Fang JW, 2022, INTERACT LEARN ENVIR, V30, P1351, DOI 10.1080/10494820.2019.1703011 Fellenz M. R., 2022, FUTURE MANAGEMENT ED, P3, DOI [10.4324/9781003095903-2/may-live-interesting-times-considering-futuremanagement-education-martin-fellenz-mairead-brady-sabine-hoidn, DOI 10.4324/9781003095903-2/MAY-LIVE-INTERESTING-TIMES-CONSIDERING-FUTUREMANAGEMENT-EDUCATION-MARTIN-FELLENZ-MAIREAD-BRADY-SABINE-HOIDN] Fernando M, 2020, J INT EDUC BUS, V13, P275, DOI 10.1108/JIEB-04-2020-0027 Garaus C, 2016, ACAD MANAG LEARN EDU, V15, P45, DOI 10.5465/amle.2012.0284 Garrison DR, 2010, INTERNET HIGH EDUC, V13, P5, DOI 10.1016/j.iheduc.2009.10.003 Gegenfurtner A, 2019, EDUC RES REV-NETH, V28, DOI 10.1016/j.edurev.2019.100293 Graham CR, 2011, COMPUT EDUC, V57, P1953, DOI 10.1016/j.compedu.2011.04.010 Greenberg D, 2020, ACAD MANAG LEARN EDU, V19, P123, DOI 10.5465/amle.2020.0247 Hao XN, 2022, NURS EDUC TODAY, V108, DOI 10.1016/j.nedt.2021.105183 Hashim MAM, 2022, EDUC INF TECHNOL, V27, P3171, DOI 10.1007/s10639-021-10739-1 Haski-Leventhal D, 2022, J BUS ETHICS, V176, P17, DOI 10.1007/s10551-020-04593-3 Haverila M, 2021, INT J MANAG EDUC-OXF, V19, DOI 10.1016/j.ijme.2021.100558 Hofer SI, 2021, COMPUT HUM BEHAV, V121, DOI 10.1016/j.chb.2021.106789 Hope C, 2021, TECH COLOPROCTOL, V25, P505, DOI 10.1007/s10151-020-02404-5 Huang C, 2020, EDUC REV, V72, P281, DOI 10.1080/00131911.2019.1566212 Hwang GJ, 2019, INTERACT LEARN ENVIR, V27, P567, DOI 10.1080/10494820.2018.1486861 Hwang M, 2017, INT J MANAG EDUC-OXF, V15, P60, DOI 10.1016/j.ijme.2017.01.004 Ibrahim SE, 2021, AFR J MANAGE, V7, P13, DOI 10.1080/23322373.2021.1878807 Igwe PA, 2021, INT J MANAG EDUC-OXF, V19, DOI 10.1016/j.ijme.2019.05.001 Iivari N, 2020, INT J INFORM MANAGE, V55, DOI 10.1016/j.ijinfomgt.2020.102183 Jääskä E, 2021, SUSTAINABILITY-BASEL, V13, DOI 10.3390/su13158204 Javadizadeh B, 2022, INT J MANAG EDUC-OXF, V20, DOI 10.1016/j.ijme.2021.100594 Jindal-Snape D., 2016, Multi-dimensional transitions of international students to higher education Kakouris A., 2021, Entrepreneurship Education and Pedagogy, V4, P396, DOI DOI 10.1177/2515127420916740 Kang D, 2022, INT J MANAG EDUC-OXF, V20, DOI 10.1016/j.ijme.2022.100678 Kaushik Meenakshi, 2020, European Journal of Business and Management, V12, P1, DOI DOI 10.7176/EJBM/12-15-02 Khanna M, 2024, J MARK HIGH EDUC, V34, P116, DOI 10.1080/08841241.2021.1966158 Kirkpatrick N, 2020, INT J MANAG EDUC-OXF, V18, DOI 10.1016/j.ijme.2020.100384 Klarin A, 2021, INT BUS REV, V30, DOI 10.1016/j.ibusrev.2021.101833 Klein VB, 2021, KNOWL PROCESS MANAG, V28, P117, DOI 10.1002/kpm.1660 Krishnamurthy S, 2020, J BUS RES, V117, P1, DOI 10.1016/j.jbusres.2020.05.034 Laasch O, 2020, J BUS ETHICS, V161, P253, DOI 10.1007/s10551-019-04214-8 Li X., 2022, ASIA PAC J EDUC, V42, P211, DOI DOI 10.1080/02188791.2020.1766417 Martínez-Jiménez R, 2020, INT J MANAG EDUC-OXF, V18, DOI 10.1016/j.ijme.2020.100422 McCormick A.C., 2013, HIGHER ED HDB THEORY, V28, P47, DOI [DOI 10.1007/978-94-007-5836-02, 10.1007/978-94-007-5836-0_2, DOI 10.1007/978-94-007-5836-0_2] McCray J, 2021, INT J TRAIN DEV, V25, P200, DOI 10.1111/ijtd.12215 Menon D, 2022, J HOSP LEIS SPORT TO, V30, DOI 10.1016/j.jhlste.2021.100360 Mitchell C., 2021, Marketing Education Review, V31, P294, DOI [DOI 10.1080/10528008.2021.1936561, https://doi.org/10.1080/10528008.2021.1936561] Molthan-Hill P, 2020, INT J MANAG EDUC-OXF, V18, DOI 10.1016/j.ijme.2019.100328 Moorhouse BL, 2021, RELC J, V52, P359, DOI 10.1177/00336882211053052 Moser C, 2022, ACAD MANAG LEARN EDU, V21, P139, DOI 10.5465/amle.2020.0287 Mousa M, 2021, J MANAG DEV, V40, P105, DOI 10.1108/JMD-10-2020-0316 Ng D. T. K., 2023, ACM T INTERNET TECHN, P1 Ng D. T. K., 2021, Computers and Education: Artificial Intelligence, V2, P100041, DOI DOI 10.1016/J.CAEAI.2021.100041 Ng DTK, 2023, EDUC INF TECHNOL, V28, P8445, DOI 10.1007/s10639-022-11491-w Ng T. K., 2020, J INF TECHNOL EDUC-R Ngoasong MZ, 2022, J MANAG EDUC, V46, P622, DOI 10.1177/10525629211047168 Panadero E, 2017, FRONT PSYCHOL, V8, DOI 10.3389/fpsyg.2017.00422 Panigrahi S. S., 2022, INCLUSIVE BUSINESSES, P311 Park M, 2021, J HOSP TOUR EDUC, V33, P176, DOI 10.1080/10963758.2021.1907198 Perusso A, 2022, INT J MANAG EDUC-OXF, V20, DOI 10.1016/j.ijme.2021.100596 Petkova AP, 2021, INT J MANAG EDUC-OXF, V19, DOI 10.1016/j.ijme.2021.100538 Polonsky MJ, 2012, J MARKET THEORY PRAC, V20, P243, DOI 10.2753/MTP1069-6679200301 Post LS, 2019, COMPUT EDUC, V140, DOI 10.1016/j.compedu.2019.103596 Pucciarelli F, 2022, J GLOB RESPONSIB, V13, P7, DOI 10.1108/JGR-12-2020-0111 Rajaram K., 2021, EVIDENCE BASED TEACH, P249 Rogaten J, 2019, ASSESS EVAL HIGH EDU, V44, P321, DOI 10.1080/02602938.2018.1504277 Roldan M, 2022, J MANAG EDUC, V46, P685, DOI 10.1177/10525629211056077 Romero-Frías E, 2023, INTERACT LEARN ENVIR, V31, P480, DOI 10.1080/10494820.2020.1799020 Rovai AP, 2009, INTERNET HIGH EDUC, V12, P7, DOI 10.1016/j.iheduc.2008.10.002 Rummel N, 2005, J LEARN SCI, V14, P201, DOI 10.1207/s15327809jls1402_2 Scaringella L, 2022, INFORM MANAGE-AMSTER, V59, DOI 10.1016/j.im.2021.103573 Schulz D, 2020, INT J MANAG EDUC-OXF, V18, DOI 10.1016/j.ijme.2019.100335 Senko C, 2011, EDUC PSYCHOL-US, V46, P26, DOI 10.1080/00461520.2011.538646 Shahrill M, 2021, INT J EDUC MANAG, V35, P700, DOI 10.1108/IJEM-07-2020-0347 Sharipov F. F., 2021, DIGITAL POTENTIAL EC Shea P, 2012, COMPUT EDUC, V59, P316, DOI 10.1016/j.compedu.2012.01.011 Sheng J, 2021, BRIT J MANAGE, V32, P1164, DOI 10.1111/1467-8551.12441 Sholihin M, 2020, INT J MANAG EDUC-OXF, V18, DOI 10.1016/j.ijme.2020-100428 Singh S, 2021, J MARK HIGH EDUC, V31, P280, DOI 10.1080/08841241.2020.1825029 Sollosy M, 2022, INT J MANAG EDUC-OXF, V20, DOI 10.1016/j.ijme.2022.100720 Sriharan A., 2021, ACAD MANAGEMENT P, V2021, P13492, DOI [10.5465/AMBPP.2021.13492abstract, DOI 10.5465/AMBPP.2021.13492ABSTRACT] Su JH, 2022, EDUC SCI, V12, DOI 10.3390/educsci12050331 Tandon Anushree, 2021, International Journal of Business and Globalisation, V28, P388, DOI 10.1504/IJBG.2021.117353 Tang KY, 2023, INTERACT LEARN ENVIR, V31, P2134, DOI 10.1080/10494820.2021.1875001 Teras Marko., 2020, Postdigital Science and Education, V2, P863, DOI [10.1007/s42438-020-00164-x, DOI 10.1007/S42438-020-00164-X] Thompson K., 2021, INT J HIGHER ED, V10, P42 Trotta D, 2018, 2018 7TH INTERNATIONAL CONFERENCE ON INDUSTRIAL TECHNOLOGY AND MANAGEMENT (ICITM 2018), P113, DOI 10.1109/ICITM.2018.8333930 Tuzlukaya S, 2022, INT J MANAG EDUC-OXF, V20, DOI 10.1016/j.ijme.2022.100616 Vaismoradi M, 2016, Theme development in qualitative content analysis and thematic analysis, DOI [DOI 10.5430/JNEP.V6N5P100, 10.5430/ jnep.v6n5p100] Vieregger C, 2020, J EDUC BUS, V95, P335, DOI 10.1080/08832323.2019.1646700 Vig S, 2021, STRATEG CHANG, V30, P145, DOI 10.1002/jsc.2398 Votto A.M., 2021, International Journal of Information Management Data Insights, V1, P100, DOI DOI 10.1016/J.JJIMEI.2021.100047 Wei ML, 2021, J MANAG EDUC, V45, P65, DOI 10.1177/1052562920959391 Whitaker J, 2016, ACAD MANAG LEARN EDU, V15, P345, DOI 10.5465/amle.2013.0021 Williams RL, 2004, EDUC RES-UK, V46, P229, DOI 10.1080/0013188042000277304 Xu JJ, 2021, INT J MANAG EDUC-OXF, V19, DOI 10.1016/j.ijme.2021.100550 Zhang X, 2021, STUD HIGH EDUC, V46, P1603, DOI 10.1080/03075079.2019.1698531 Zhang Y, 2016, J RES SCI TEACH, V53, P7, DOI 10.1002/tea.21295 Zulfiqar S, 2021, SUSTAINABILITY-BASEL, V13, DOI 10.3390/su13041838 NR 138 TC 11 Z9 11 U1 15 U2 35 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 1472-8117 EI 2352-3565 J9 INT J MANAG EDUC-OXF JI Int. J. Manag. Educ. PD JUL PY 2023 VL 21 IS 2 AR 100796 DI 10.1016/j.ijme.2023.100796 EA MAR 2023 PG 18 WC Business; Education & Educational Research; Management WE Social Science Citation Index (SSCI) SC Business & Economics; Education & Educational Research GA C5DQ2 UT WOS:000962121800001 OA Bronze DA 2024-09-05 ER PT C AU Wong, W Tomov, S Dongarra, J AF Wong, Kwai Tomov, Stanimire Dongarra, Jack BE Weiland, M Juckeland, G Alam, S Jagode, H TI Hands-On Research and Training in High Performance Data Sciences, Data Analytics, and Machine Learning for Emerging Environments SO HIGH PERFORMANCE COMPUTING: ISC HIGH PERFORMANCE 2019 INTERNATIONAL WORKSHOPS SE Lecture Notes in Computer Science LA English DT Proceedings Paper CT 34th International Conference on High Performance Computing (ISC High Performance) CY JUN 16-20, 2019 CL Frankfurt, GERMANY DE Computational science; Educational outreach; Research Experiences for Undergraduates; Data analytics; Machine learning (ML); Hands-on experiences and education; HPC AB This paper describes a hands-on Research Experiences for Computational Science, Engineering, and Mathematics (RECSEM) program in high-performance data sciences, data analytics, and machine learning on emerging computer architectures. RECSEM is a Research Experiences for Undergraduates (REU) site program supported by the USA National Science Foundation. This site program at the University of Tennessee (UTK) directs a group of ten undergraduate students to explore, as well as contribute to the emergent interdisciplinary computational science models and state-of-the-art HPC techniques via a number of cohesive compute and data intensive applications in which numerical linear algebra is the fundamental building block. C1 [Wong, Kwai; Tomov, Stanimire; Dongarra, Jack] Univ Tennessee, Knoxville, TN 37996 USA. [Dongarra, Jack] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. C3 University of Tennessee System; University of Tennessee Knoxville; United States Department of Energy (DOE); Oak Ridge National Laboratory RP Tomov, S (corresponding author), Univ Tennessee, Knoxville, TN 37996 USA. EM kwong@utk.edu; tomov@icl.utk.edu; dongarra@icl.utk.edu RI Dongarra, Jack/G-4199-2019 OI Dongarra, Jack/0000-0003-3247-1782; Tomov, Stanimire/0000-0002-5937-7959 FU National Science Foundation (NSF), through NSF REU Award [1262937, 1659502]; University of Tennessee, Knoxville (UTK); National Institute for Computational Sciences (NICS); National Science Foundation [ACI-1548562]; XSEDE education allocation award [TG-ASC170031]; Office of Advanced Cyberinfrastructure (OAC); Direct For Computer & Info Scie & Enginr [1659502] Funding Source: National Science Foundation; Office of Advanced Cyberinfrastructure (OAC); Direct For Computer & Info Scie & Enginr [1262937] Funding Source: National Science Foundation FX This work was conducted at the Joint Institute for Computational Sciences (JICS), sponsored by the National Science Foundation (NSF), through NSF REU Award #1262937 and #1659502, with additional Support from the University of Tennessee, Knoxville (UTK), and the National Institute for Computational Sciences (NICS). This work used the Extreme Science and Engineering Discovery Environment (XSEDE), which is supported by National Science Foundation grant number ACI-1548562. Computational Resources are available through a XSEDE education allocation award TG-ASC170031. CR Betancourt F., 2019, PRACTICE EXPERIENCE Cheng L, 2018, OXID MED CELL LONGEV, V2018, DOI 10.1155/2018/9482018 Cheng X., 2018, ACCELERATING 2D FFT Ng L, 2019, MAGMADNN 2018 SUMMER Ng Lucien, 2017, MAGMA DNN 2017 SUMME Nichols D., 2019, PRACTICE EXPERIENCE Nichols D., 2019, ISC HIGH PERFORMANCE Sorna A, 2018, 2018 IEEE 25TH INTERNATIONAL CONFERENCE ON HIGH PERFORMANCE COMPUTING WORKSHOPS (HIPCW), P3, DOI [10.1109/HiPCW.2018.00009, 10.1109/HiPCW.2018.8634417] Tomov S, 2010, PARALLEL COMPUT, V36, P232, DOI 10.1016/j.parco.2009.12.005 Towns J, 2014, COMPUT SCI ENG, V16, P62, DOI 10.1109/MCSE.2014.80 NR 10 TC 0 Z9 0 U1 0 U2 1 PU SPRINGER INTERNATIONAL PUBLISHING AG PI CHAM PA GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND SN 0302-9743 EI 1611-3349 BN 978-3-030-34356-9; 978-3-030-34355-2 J9 LECT NOTES COMPUT SC PY 2020 VL 11887 BP 643 EP 655 DI 10.1007/978-3-030-34356-9_49 PG 13 WC Computer Science, Theory & Methods WE Conference Proceedings Citation Index - Science (CPCI-S) SC Computer Science GA BQ6PM UT WOS:000612971700049 DA 2024-09-05 ER PT J AU Liu, L Tang, J Han, JW Yang, SQ AF Liu, Lu Tang, Jie Han, Jiawei Yang, Shiqiang TI Learning influence from heterogeneous social networks SO DATA MINING AND KNOWLEDGE DISCOVERY LA English DT Article DE Social influence analysis; Social network analysis; Influence propagation; Topic modeling ID CENTRALITY AB Influence is a complex and subtle force that governs social dynamics and user behaviors. Understanding how users influence each other can benefit various applications, e.g., viral marketing, recommendation, information retrieval and etc. While prior work has mainly focused on qualitative aspect, in this article, we present our research in quantitatively learning influence between users in heterogeneous networks. We propose a generative graphical model which leverages both heterogeneous link information and textual content associated with each user in the network to mine topic-level influence strength. Based on the learned direct influence, we further study the influence propagation and aggregation mechanisms: conservative and non-conservative propagations to derive the indirect influence. We apply the discovered influence to user behavior prediction in four different genres of social networks: Twitter, Digg, Renren, and Citation. Qualitatively, our approach can discover some interesting influence patterns from these heterogeneous networks. Quantitatively, the learned influence strength greatly improves the accuracy of user behavior prediction. C1 [Liu, Lu] Capital Med Univ, Beijing, Peoples R China. [Tang, Jie; Yang, Shiqiang] Tsinghua Univ, Beijing 100084, Peoples R China. [Han, Jiawei] Univ Illinois, Urbana, IL 61801 USA. C3 Capital Medical University; Tsinghua University; University of Illinois System; University of Illinois Urbana-Champaign RP Liu, L (corresponding author), Capital Med Univ, Beijing, Peoples R China. EM lu-liu@mails.tsinghua.edu.cn RI yang, shiqiang/AAH-5484-2019; Edgar, William D/J-8792-2013; tang, jie/KIE-8633-2024 OI Edgar, William D/0000-0002-7996-9273; FU National Natural Science Foundation of China [61103065, 61073073, 61035004, 61003097, 60933013]; U.S. National Science Foundation [IIS-09-05215]; U.S. Army Research Laboratory [W911NF-09-2-0053] FX The work was supported in part by the National Natural Science Foundation of China under grants 61103065, 61073073, 61035004, 61003097 and 60933013, and by the U.S. National Science Foundation under grant IIS-09-05215 and the U.S. Army Research Laboratory under Cooperative Agreement Number W911NF-09-2-0053 (NS-CTA). CR Anagnostopoulos A., 2008, P 14 ACM SIGKDD INT, P7, DOI [10.1145/1401890.1401897, DOI 10.1145/1401890.1401897] [Anonymous], 1999, SIDLWP19990120 STANF [Anonymous], 2012, WSDM 12 [Anonymous], WORKSH MULT DAT MIN [Anonymous], 2007, 16 INT C WORLD WID W [Anonymous], 2010, WSDM 10 [Anonymous], SIGIR 11 [Anonymous], NATURE [Anonymous], CIKM 11 [Anonymous], 2004, INFORM DIFFUSION BLO, DOI DOI 10.1145/988672.988739 [Anonymous], 2008, P 14 ACM SIGKDD INT [Anonymous], 1992, NETWORKS ORG [Anonymous], KDD 10 [Anonymous], 2003, P 9 ACM SIGKDD INT C [Anonymous], 2002, Proceedings of the 11th international conference on World Wide Web, DOI [DOI 10.1145/511446.511513, 10.1145/511446.511513] [Anonymous], EDBT 09 [Anonymous], KDD 10 [Anonymous], 2000, C UNCERTAINTY ARTIFI [Anonymous], 2010, ICML [Anonymous], 2008, P 14 ACM SIGKDD INT, DOI [10.1145, DOI 10.1145/1401890.1402012] BONACICH P, 1972, J MATH SOCIOL, V2, P113, DOI 10.1080/0022250X.1972.9989806 BONACICH P, 1987, AM J SOCIOL, V92, P1170, DOI 10.1086/228631 Bonacich P, 2001, SOC NETWORKS, V23, P191, DOI 10.1016/S0378-8733(01)00038-7 Chang J, 2009, KDD-09: 15TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, P169 Crandall DavidJ., 2008, KDD, P160 Dietz L., 2007, ICML, P233, DOI DOI 10.1145/1273496.1273526 Domingos P., 2001, KDD-2001. Proceedings of the Seventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, P57, DOI 10.1145/502512.502525 Fowler JH, 2008, BMJ-BRIT MED J, V337, DOI 10.1136/bmj.a2338 GRANOVETTER MS, 1973, AM J SOCIOL, V78, P1360, DOI 10.1086/225469 Guha R., 2004, P 13 INT C WORLD WID, P403, DOI DOI 10.1145/988672.988727 Jeh G., 2002, Proceedings of the 11th International Conference on World Wide Web, P271 Katz Leo, 1953, PSYCHOMETRIKA, V18, P39 Kelman H. C., 1958, Journal of Conflict Resolution, P51, DOI [10.1177/002200275800200106, DOI 10.1177/002200275800200106] KING J, 1987, J INFORM SCI, V13, P261, DOI 10.1177/016555158701300501 Kiss C, 2008, DECIS SUPPORT SYST, V46, P233, DOI 10.1016/j.dss.2008.06.007 La Fond Timothy., 2010, Proceedings of the 19th International Conference on World Wide Web, WWW '10, P601 Liben-Nowell D, 2008, P NATL ACAD SCI USA, V105, P4633, DOI 10.1073/pnas.0708471105 Liu Lu., 2010, CIKM Iribarren JL, 2009, PHYS REV LETT, V103, DOI 10.1103/PhysRevLett.103.038702 Nallapati R. M., 2008, P 14 ACM SIGKDD INT, P542, DOI DOI 10.1145/1401890.1401957 Richardson M., 2002, KDD 2002, P61, DOI DOI 10.1145/775047.775057 Scripps J, 2009, KDD-09: 15TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, P747 Singla P., 2008, Proceedings of the 17th international conference on World Wide Web, WWW '08, P655, DOI DOI 10.1145/1367497.1367586 Sun YZ, 2009, KDD-09: 15TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, P797 Tan Chenhao., 2010, SIGKDD, P1049 Tang J, 2009, KDD-09: 15TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, P807 Tang L., 2009, KDD, P817 Xiang R., 2010, Proceedings of the 19th international conference on World wide web, P981, DOI [10.1145/1772690.1772790, DOI 10.1145/1772690.1772790] Yang TB, 2009, KDD-09: 15TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, P927 Zheleva E, 2009, KDD-09: 15TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, P1007 NR 50 TC 67 Z9 86 U1 2 U2 84 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 1384-5810 EI 1573-756X J9 DATA MIN KNOWL DISC JI Data Min. Knowl. Discov. PD NOV PY 2012 VL 25 IS 3 SI SI BP 511 EP 544 DI 10.1007/s10618-012-0252-3 PG 34 WC Computer Science, Artificial Intelligence; Computer Science, Information Systems WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Computer Science GA 992GL UT WOS:000307763500005 DA 2024-09-05 ER PT J AU Huang, L Ladikas, M Schippl, J He, GX Hahn, J AF Huang, Lei Ladikas, Miltos Schippl, Jens He, Guangxi Hahn, Julia TI Knowledge mapping of an artificial intelligence application scenario: A bibliometric analysis of the basic research of data-driven autonomous vehicles SO TECHNOLOGY IN SOCIETY LA English DT Article DE Artificial intelligence; Autonomous vehicles; Application scenarios; Bibliometrics; Basic research; Knowledge mapping ID INNOVATION; DYNAMICS; SCIENCE; TRENDS; IMPACT; TRUST AB With the rapid development and maturation of basic research in related fields such as deep learning and convolutional neural networks, artificial intelligence (AI) has become a policy hotspot of high interest in all major economies. Furthermore, the governance of application scenarios has become one of the important topics of AI governance policy research. The practice of AI governance policy depends on a change in the paradigm of relevant governance policy research theories, and there is an urgent need to empirically analyze the structural characteristics of the knowledge evolution of AI application scenarios. This study conducts a bibliometric analysis of the basic research trends in autonomous vehicles, which is one of the most important application scenarios of AI. The study empirically analyzes the relevant literature data from the Science Citation Index Expanded (SCI-Expanded) and Social Sciences Citation Index (SSCI) databases of Web of Science, based on both technical and social dimensions through the knowledge mapping analysis tools in Bibliometrix (in R environment). Based on the empirical analysis, the results show that the basic research on autonomous vehicles is characterized by strong data-driven innovation under the influence of AI. The fusion of AI and basic research on autonomous vehicles has become a major driver of knowledge innovation in this domain while there is a lack of the integration of social science research. C1 [Huang, Lei; He, Guangxi] Chinese Acad Sci & Technol Dev, Beijing 100038, Peoples R China. [Huang, Lei; Schippl, Jens] Karlsruhe Inst Technol, Inst Technol Assessment & Syst Anal, D-76021 Karlsruhe, Germany. [Ladikas, Miltos; Hahn, Julia] Karlsruhe Inst Technol, Inst Technol Assessment & Syst Anal, D-10437 Berlin, Germany. [Huang, Lei] Yuyuantan South Rd 8th, Beijing 100038, Peoples R China. C3 Helmholtz Association; Karlsruhe Institute of Technology; Helmholtz Association; Karlsruhe Institute of Technology RP Huang, L (corresponding author), Yuyuantan South Rd 8th, Beijing 100038, Peoples R China. EM lei.huang7601@foxmail.com; miltos.ladikas@kit.edu; jens.schippl@kit.edu; hegx@casted.org.cn; julia.hahn@kit.edu RI Wang, Yuhan/KGL-5855-2024; wang, wang/KGW-2828-2024; wang, yue/KDO-9209-2024; Liu, Chang/KGL-6678-2024; Wang, YuHan/KGY-2933-2024; Sun, Yue/KHU-8159-2024; Li, Hongbo/KHV-4191-2024 OI Li, Hongbo/0000-0003-4495-0756; Huang, Lei/0000-0003-0989-5392 FU Helmholtz [2020025]; OCPC [2020025] FX Supported by the International Postdoctoral Exchange Fellowship Program between Helmholtz and OCPC (Grant No. 2020025) . CR Gontijo MCA, 2021, REV GEN INF DOC, V31, P719, DOI 10.5209/rgid.79465 Aria M, 2017, J INFORMETR, V11, P959, DOI 10.1016/j.joi.2017.08.007 Arulkumaran K, 2017, IEEE SIGNAL PROC MAG, V34, P26, DOI 10.1109/MSP.2017.2743240 Baker N., 2018, Brochure on Basic Research Needs for Scientific Machine Learning: Core Technologies for Artificial Intelligence Barfield W, 2018, RESEARCH HANDBOOK ON THE LAW OF ARTIFICIAL INTELLIGENCE, P1, DOI 10.4337/9781786439055 Birudavolu S, 2018, Business Innovation and ICT Strategies Carroll J.M., 2019, Making Use-Scenario-Based Design of Human-Computer Interactions Chen CM, 2010, J AM SOC INF SCI TEC, V61, P1386, DOI 10.1002/asi.21309 Chen XL, 2023, INFORM PROCESS MANAG, V60, DOI 10.1016/j.ipm.2022.103113 Cobo MJ, 2011, J INFORMETR, V5, P146, DOI 10.1016/j.joi.2010.10.002 Collingridge David, 1980, The Social Control of Technology Confalonieri R, 2021, WIRES DATA MIN KNOWL, V11, DOI 10.1002/widm.1391 Cui YS, 2020, ROBOT CIM-INT MANUF, V62, DOI 10.1016/j.rcim.2019.101861 Dubber M. D., The Oxford handbook of ethics of AI, DOI DOI 10.1093/OXFORDHB/9780190067397.001.0001 Dwivedi YK, 2021, INT J INFORM MANAGE, V57, DOI 10.1016/j.ijinfomgt.2019.08.002 Firlej M, 2021, REGUL GOV, V15, P1071, DOI 10.1111/rego.12344 Fleischer T, 2022, IEEE INT VEH SYM, P1268, DOI 10.1109/IV51971.2022.9827210 Floridi L, 2018, MIND MACH, V28, P689, DOI 10.1007/s11023-018-9482-5 Fraedrich E, 2015, EUR J FUTURES RES, V3, DOI 10.1007/s40309-015-0067-8 Fuenfschilling L, 2014, RES POLICY, V43, P772, DOI 10.1016/j.respol.2013.10.010 Fujii H, 2018, ECON ANAL POLICY, V58, P60, DOI 10.1016/j.eap.2017.12.006 Gandia RM, 2019, TRANSPORT REV, V39, P9, DOI 10.1080/01441647.2018.1518937 Geels FW, 2004, RES POLICY, V33, P897, DOI 10.1016/j.respol.2004.01.015 Goodfellow IJ, 2014, ADV NEUR IN, V27, P2672, DOI 10.1145/3422622 Gorwa R, 2020, BIG DATA SOC, V7, DOI 10.1177/2053951719897945 Grigorescu S, 2020, J FIELD ROBOT, V37, P362, DOI 10.1002/rob.21918 Guilera G, 2013, SCIENTOMETRICS, V94, P943, DOI 10.1007/s11192-012-0761-2 Hengstler M, 2016, TECHNOL FORECAST SOC, V105, P105, DOI 10.1016/j.techfore.2015.12.014 Hu HT, 2020, J DATA INFO SCI, V5, P86, DOI 10.2478/jdis-2020-0027 Huang L., 2021, Compet. Regul. Netw. Ind., V22, P189 Jordan MI, 2015, SCIENCE, V349, P255, DOI 10.1126/science.aaa8415 Khogali HO, 2023, TECHNOL SOC, V73, DOI 10.1016/j.techsoc.2023.102232 Kraus S, 2022, REV MANAG SCI, V16, P2577, DOI 10.1007/s11846-022-00588-8 Legêne MF, 2020, J SIMUL, V14, P295, DOI 10.1080/17477778.2020.1806747 Leitner G, 2021, J INTELL INF SYST, V57, P419, DOI 10.1007/s10844-021-00691-4 Li J, 2018, AUTOMOTIVE INNOV, V1, P2, DOI 10.1007/s42154-018-0009-9 Loan FA, 2021, COLLNET J SCIENTOMET, V15, P27, DOI 10.1080/09737766.2021.1938742 Ma YF, 2020, IEEE-CAA J AUTOMATIC, V7, P315, DOI 10.1109/JAS.2020.1003021 Marquis P, 2020, A Guided Tour of Artificial Intelligence Research: Volume II: AI Algorithms, VII Marquis P., 2020, A Guided Tour of Artificial Intelligence Research: Volume III: Interfaces and Applications of Artificial Intelligence, VIII Meho LI, 2007, J AM SOC INF SCI TEC, V58, P2105, DOI 10.1002/asi.20677 Miller T, 2019, ARTIF INTELL, V267, P1, DOI 10.1016/j.artint.2018.07.007 Nordhoff S, 2018, J ADV TRANSPORT, DOI 10.1155/2018/5382192 OECD, 2019, ARTIF INTELL, DOI [10.1787/eedfee77-en, DOI 10.1787/EEDFEE77-EN] Paschen U, 2020, BUS HORIZONS, V63, P147, DOI 10.1016/j.bushor.2019.10.004 Petzold N, 2019, CREAT INNOV MANAG, V28, P157, DOI 10.1111/caim.12313 Pisoni G, 2023, INFORM PROCESS MANAG, V60, DOI 10.1016/j.ipm.2023.103273 Reddy S, 2020, J AM MED INFORM ASSN, V27, P491, DOI 10.1093/jamia/ocz192 Schippl J, VORTRAG GEHALTEN EUR Schippl J, 2022, TRANSP RES INTERDISC, V14, DOI 10.1016/j.trip.2022.100587 Schwarting W, 2019, P NATL ACAD SCI USA, V116, P24972, DOI 10.1073/pnas.1820676116 Sgurev V, 2021, Advances in Intelligent Systems Research and Innovation Shadrin SS, 2017, J ADV TRANSPORT, DOI 10.1155/2017/2492765 Smith B.W., 2015, Automated and Autonomous Driving: Regulation Under Uncertainty Stahl BC, 2022, INT J INFORM MANAGE, V62, DOI 10.1016/j.ijinfomgt.2021.102441 Stilgoe J, 2018, SOC STUD SCI, V48, P25, DOI 10.1177/0306312717741687 Taeihagh A, 2021, REGUL GOV, V15, P1009, DOI 10.1111/rego.12392 Tan SY, 2021, GOV INFORM Q, V38, DOI 10.1016/j.giq.2020.101546 Tekic Z, 2023, TECHNOL SOC, V73, DOI 10.1016/j.techsoc.2023.102254 Wamba SF, 2021, TECHNOL FORECAST SOC, V164, DOI 10.1016/j.techfore.2020.120482 Yang C, 2022, TECHNOL FORECAST SOC, V174, DOI 10.1016/j.techfore.2021.121188 Yi ZG, 2021, TRANSPORT RES D-TR E, V95, DOI 10.1016/j.trd.2021.102822 Zekos G.I, 2021, Artificial Intelligence Governance, Economics and Law of Artificial Intelligence: Finance, Economic Impacts, Risk Management and Governance, P117 Zeng FG, 2023, TECHNOL SOC, V73, DOI 10.1016/j.techsoc.2023.102234 Zhang TR, 2020, TRANSPORT RES C-EMER, V112, P220, DOI 10.1016/j.trc.2020.01.027 Zhang Y, 2021, KNOWL-BASED SYST, V222, DOI 10.1016/j.knosys.2021.106994 Zupic I, 2015, ORGAN RES METHODS, V18, P429, DOI 10.1177/1094428114562629 NR 67 TC 4 Z9 4 U1 17 U2 19 PU ELSEVIER SCI LTD PI London PA 125 London Wall, London, ENGLAND SN 0160-791X EI 1879-3274 J9 TECHNOL SOC JI Technol. Soc. PD NOV PY 2023 VL 75 AR 102360 DI 10.1016/j.techsoc.2023.102360 EA OCT 2023 PG 12 WC Social Issues; Social Sciences, Interdisciplinary WE Social Science Citation Index (SSCI) SC Social Issues; Social Sciences - Other Topics GA FS9T1 UT WOS:001147968900001 DA 2024-09-05 ER PT J AU Ke, ZT Ji, PS Jin, JS Li, WS AF Ke, Zheng Tracy Ji, Pengsheng Jin, Jiashun Li, Wanshan TI Recent Advances in Text Analysis SO ANNUAL REVIEW OF STATISTICS AND ITS APPLICATION LA English DT Article DE BERT; journal ranking; knowledge graph; neural network; SCORE; Stigler's model; Topic-SCORE; topic weight ID MODELS; STATISTICS AB Text analysis is an interesting research area in data science and has various applications, such as in artificial intelligence, biomedical research, and engineering. We review popular methods for text analysis, ranging from topic modeling to the recent neural language models. In particular, we review Topic-SCORE, a statistical approach to topic modeling, and discuss how to use it to analyze the Multi-Attribute Data Set on Statisticians (MADStat), a data set on statistical publications that we collected and cleaned. The application of Topic-SCORE and other methods to MADStat leads to interesting findings. For example, we identified 11 representative topics in statistics. For each journal, the evolution of topic weights over time can be visualized, and these results are used to analyze the trends in statistical research. In particular, we propose a new statistical model for ranking the citation impacts of 11 topics, and we also build a cross-topic citation graph to illustrate how research results on different topics spread to one another. The results on MADStat provide a data-driven picture of the statistical research from 1975 to 2015, from a text analysis perspective. C1 [Ke, Zheng Tracy] Harvard Univ, Dept Stat, Cambridge, MA 02138 USA. [Ji, Pengsheng] Univ Georgia, Dept Stat, Athens, GA USA. [Jin, Jiashun; Li, Wanshan] Carnegie Mellon Univ, Dept Stat & Data Sci, Pittsburgh, PA USA. C3 Harvard University; University System of Georgia; University of Georgia; Carnegie Mellon University RP Ke, ZT (corresponding author), Harvard Univ, Dept Stat, Cambridge, MA 02138 USA. EM zke@fas.harvard.edu RI Ji, Pengsheng/E-2634-2013 OI Ji, Pengsheng/0000-0003-1439-5819 FU National Science Foundation (NSF) CAREER grant [DMS-1943902]; NSF [DMS-2015469] FX Z.T.K. was partially supported by National Science Foundation (NSF) CAREER grant DMS-1943902. J.J. was partially supported by NSF grant DMS-2015469. Z.T.K. thanks Russell Kunes and Xiao-Li Meng for helpful discussions. CR [Anonymous], 2014, P COLING 2014 25 INT Arora S, 2012, ANN IEEE SYMP FOUND, P1, DOI 10.1109/FOCS.2012.49 Arora Sanjeev, 2013, International Conference on Machine Learning AZZALINI A, 1985, SCAND J STAT, V12, P171 Bahdanau D, 2016, Arxiv, DOI arXiv:1409.0473 BENJAMINI Y, 1995, J R STAT SOC B, V57, P289, DOI 10.1111/j.2517-6161.1995.tb02031.x Bing X, 2020, BERNOULLI, V26, P1765, DOI 10.3150/19-BEJ1166 Blei D., 2007, Advances in Neural Information Processing Systems, V20, DOI DOI 10.5555/2981562.2981578 Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993 Cai TT, 2023, J. R. Stat. Soc. Ser. B DEERWESTER S, 1990, J AM SOC INFORM SCI, V41, P391, DOI 10.1002/(SICI)1097-4571(199009)41:6<391::AID-ASI1>3.0.CO;2-9 DEMPSTER AP, 1977, J ROY STAT SOC B MET, V39, P1, DOI 10.1111/j.2517-6161.1977.tb01600.x Devlin J, 2019, Arxiv, DOI arXiv:1810.04805 Donoho D, 2004, ADV NEUR IN, V16, P1141 Donoho D, 2017, J COMPUT GRAPH STAT, V26, P745, DOI 10.1080/10618600.2017.1384734 Donoho D, 2015, STAT SCI, V30, P1, DOI 10.1214/14-STS506 DONOHO DL, 1994, BIOMETRIKA, V81, P425, DOI 10.1093/biomet/81.3.425 Efron B, 2004, ANN STAT, V32, P407, DOI 10.1214/009053604000000067 Fagan J. L., 1988, Experiments in automatic phrase indexing for document retrieval: A comparison of syntactic and nonsyntactic methods GELFAND AE, 1990, J AM STAT ASSOC, V85, P398, DOI 10.2307/2289776 Gillis N, 2014, IEEE T PATTERN ANAL, V36, P698, DOI 10.1109/TPAMI.2013.226 Harman DK., 1993, 1 TEXT RETR C TREC 1 Hochreiter S, 1997, NEURAL COMPUT, V9, P1735, DOI [10.1162/neco.1997.9.1.1, 10.1007/978-3-642-24797-2] Hofmann T, 1999, SIGIR'99: PROCEEDINGS OF 22ND INTERNATIONAL CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, P50, DOI 10.1145/312624.312649 Horn R. A., 1991, Matrix analysis HUBERT L, 1985, J CLASSIF, V2, P193, DOI 10.1007/BF01908075 Ji PS, 2022, J BUS ECON STAT, V40, P469, DOI 10.1080/07350015.2021.1978469 Jin J, 2023, J. Econom Jin J., 2018, Proc. Mach. Learn. Res., P2333 Jin JS, 2021, ANN STAT, V49, P3408, DOI 10.1214/21-AOS2089 Jin JS, 2015, ANN STAT, V43, P57, DOI 10.1214/14-AOS1265 Kalchbrenner N, 2014, Arxiv, DOI [arXiv:1404.2188, 10.48550/arXiv.1404.2188] Ke Q, 2015, P NATL ACAD SCI USA, V112, P7426, DOI 10.1073/pnas.1424329112 Ke ZT, 2023, STAT-US, V12, DOI 10.1002/sta4.545 Ke ZT, 2024, J AM STAT ASSOC, V119, P434, DOI 10.1080/01621459.2022.2123813 Ke ZT, 2019, NBERWork. Pap. 26186 Kolar M, 2016, ANN APPL STAT, V10, P1835, DOI 10.1214/16-AOAS896D Lee DD, 1999, NATURE, V401, P788, DOI 10.1038/44565 Lee J, 2020, BIOINFORMATICS, V36, P1234, DOI 10.1093/bioinformatics/btz682 LIANG KY, 1986, BIOMETRIKA, V73, P13, DOI 10.1093/biomet/73.1.13 Mei Q, 2001, CIKM 20 P 29 ACM INT Mikolov T, 2013, Arxiv, DOI [arXiv:1301.3781, 10.48550/arXiv.1301.3781, DOI 10.48550/ARXIV.1301.3781] Otter DW, 2021, IEEE T NEUR NET LEAR, V32, P604, DOI 10.1109/TNNLS.2020.2979670 Radford A., 2018, OPENAI Rahali A, 2023, AI-BASEL, V4, P54, DOI 10.3390/ai4010004 Shi F, 2015, SOC NETWORKS, V43, P73, DOI 10.1016/j.socnet.2015.02.006 STIGLER SM, 1994, STAT SCI, V9, P94, DOI 10.1214/ss/1177010655 Taddy M., 2012, Artificial intelligence and statistics, P1184 Tibshirani R, 2011, J R STAT SOC B, V73, P273, DOI 10.1111/j.1467-9868.2011.00771.x Varin C, 2016, J ROY STAT SOC A, V179, P1, DOI 10.1111/rssa.12124 Vaswani A, 2017, ADV NEUR IN, V30 Wallach H.M., 2006, Proc. 23rd Int. Conf. Mach. Learn, P977984, DOI DOI 10.1145/1143844.1143967 Wu RJ, 2023, J AM STAT ASSOC, V118, P1849, DOI 10.1080/01621459.2021.2018329 Zhu YK, 2015, IEEE I CONF COMP VIS, P19, DOI 10.1109/ICCV.2015.11 NR 54 TC 1 Z9 1 U1 1 U2 1 PU ANNUAL REVIEWS PI PALO ALTO PA 4139 EL CAMINO WAY, PO BOX 10139, PALO ALTO, CA 94303-0139 USA SN 2326-8298 EI 2326-831X J9 ANNU REV STAT APPL JI Annu. Rev. Stat. Application PY 2024 VL 11 BP 347 EP 372 DI 10.1146/annurev-statistics-040522-022138 PG 26 WC Mathematics, Interdisciplinary Applications; Statistics & Probability WE Science Citation Index Expanded (SCI-EXPANDED) SC Mathematics GA TC5R4 UT WOS:001239078200015 OA Green Submitted DA 2024-09-05 ER PT J AU Zhu, CQ Huang, DL Zuo, B AF Zhu, Chengquan Huang, Donglin Zuo, Bin TI The influence of AI robot threats on right-wing authoritarianism and the mitigating role of human uniqueness SO CURRENT PSYCHOLOGY LA English DT Article; Early Access DE Artificial intelligence; Perceived threats; Right-wing authoritarianism; Sense of control ID COMPENSATORY CONTROL; SOCIAL IDENTITY; ANTHROPOMORPHISM; PERCEPTION; GOVERNMENT; ATTITUDES; SUPPORT; BELIEF; RISK; VIEW AB The social implications of powerful Artificially Intelligent (AI) robots, specifically regarding the potential loss of sense of control they bring about, remain incompletely understood. This study investigated the relationship between people's perceptions of AI robots and their right-wing authoritarianism (RWA) through two studies (N = 2056, Mage=35.37, SDage=10.85). Study 1 revealed that when participants were exposed to advanced (mindful) AI robots they reported heightened levels of threat perception. This perceived threat engendered a sentiment of control erosion. Consequently, individuals exhibited heightened support for RWA as a means to regain the sense of control. Although RWA is considered to have adaptive significance, it may also bring many negative social impacts. Study 2 found that accentuating human uniqueness can mitigate perceptions of threat and reinstate a sense of control. This strategy appeared efficacious in curbing RWA inclinations. The inexorable integration of AI robots into society underscores the urgency of comprehending their potential societal implications. C1 [Zhu, Chengquan; Zuo, Bin] Sun Yat Sen Univ, Dept Psychol, Guangzhou, Guangdong, Peoples R China. [Huang, Donglin] Xinxiang Inst Engn, Dept Student Affairs Off, Xinxiang, Henan, Peoples R China. C3 Sun Yat Sen University RP Zuo, B (corresponding author), Sun Yat Sen Univ, Dept Psychol, Guangzhou, Guangdong, Peoples R China. EM zuobin@mail.sysu.edu.cn FX DAS:Due to the protection of participants' privacy, the data that support the findings of this study are available from the corresponding author only upon reasonable request. CR Adler NE, 2000, HEALTH PSYCHOL, V19, P586, DOI 10.1037/0278-6133.19.6.586 Athanasiou A, 2017, BIOMED RES INT, V2017, DOI 10.1155/2017/5708937 Bigman YE, 2023, J EXP PSYCHOL GEN, V152, P4, DOI 10.1037/xge0001250 Bizumic B, 2018, J SOC POLIT PSYCHOL, V6, P129, DOI 10.5964/jspp.v6i1.835 Blut M, 2021, J ACAD MARKET SCI, V49, P632, DOI 10.1007/s11747-020-00762-y Bonnefon JF, 2024, ANNU REV PSYCHOL, V75, P653, DOI 10.1146/annurev-psych-030123-113559 Bonnefon JF, 2016, SCIENCE, V352, P1573, DOI 10.1126/science.aaf2654 Brandt MJ, 2015, SOC PSYCHOL PERS SCI, V6, P219, DOI 10.1177/1948550614552728 Broadbent E, 2009, INT J SOC ROBOT, V1, P319, DOI 10.1007/s12369-009-0030-6 Brubaker R, 2017, ETHNIC RACIAL STUD, V40, P1191, DOI 10.1080/01419870.2017.1294700 Clarke R, 2019, COMPUT LAW SECUR REV, V35, P423, DOI 10.1016/j.clsr.2019.04.006 Cohen J., 1977, STAT POWER ANAL BEHA Dang JN, 2022, COMPUT HUM BEHAV, V134, DOI 10.1016/j.chb.2022.107300 Dang JN, 2021, COMPUT HUM BEHAV, V115, DOI 10.1016/j.chb.2020.106612 de Graaf MMA, 2013, ROBOT AUTON SYST, V61, P1476, DOI 10.1016/j.robot.2013.07.007 Douglas BD, 2023, PLOS ONE, V18, DOI 10.1371/journal.pone.0279720 Dweck CS, 2019, PERSPECT PSYCHOL SCI, V14, P481, DOI 10.1177/1745691618804166 Edwards C, 2019, COMPUT HUM BEHAV, V90, P357, DOI 10.1016/j.chb.2018.08.027 Epley N, 2007, PSYCHOL REV, V114, P864, DOI 10.1037/0033-295X.114.4.864 Eyal P, 2022, BEHAV RES METHODS, V54, P1643, DOI 10.3758/s13428-021-01694-3 Friesen JP, 2014, J PERS SOC PSYCHOL, V106, P590, DOI 10.1037/a0035620 Fromm Erich., 1994, ESCAPE FREEDOM Geraci RM, 2006, THEOL SCI, V4, P229, DOI 10.1080/14746700600952993 Goode C., 2014, J SOC POLIT PSYCHOL, V2, P313, DOI DOI 10.5964/JSPP.V2I1.372 Gray HM, 2007, SCIENCE, V315, P619, DOI 10.1126/science.1134475 Gray K, 2012, COGNITION, V125, P125, DOI 10.1016/j.cognition.2012.06.007 Greenaway KH, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0071327 Infurna FJ, 2014, HEALTH PSYCHOL, V33, P85, DOI 10.1037/a0030208 Jackson JC, 2020, AM PSYCHOL, V75, P969, DOI 10.1037/amp0000582 Jedinger A, 2020, FRONT PSYCHOL, V10, DOI 10.3389/fpsyg.2019.02895 Kaplan Frederic, 2004, International Journal of Humanoid Robotics, V1, P465, DOI [DOI 10.1142/S0219843604000289, 10.1142/S0219843604000289] Kay AC, 2008, J PERS SOC PSYCHOL, V95, P18, DOI 10.1037/0022-3514.95.1.18 Kay AC, 2013, J SOC ISSUES, V69, P564, DOI 10.1111/josi.12029 Kay AC, 2010, J PERS SOC PSYCHOL, V99, P725, DOI 10.1037/a0021140 Kossowska M, 2011, BRIT J PSYCHOL, V102, P245, DOI 10.1348/000712610X517262 Kuo I. H., 2009, RO-MAN 2009 - The 18th IEEE International Symposium on Robot and Human Interactive Communication, P214, DOI 10.1109/ROMAN.2009.5326292 Lachman ME, 1998, J PERS SOC PSYCHOL, V74, P763, DOI 10.1037/0022-3514.74.3.763 Landau MJ, 2015, PSYCHOL BULL, V141, P694, DOI 10.1037/a0038703 MacDorman KF, 2009, AI SOC, V23, P485, DOI 10.1007/s00146-008-0181-2 Millet K, 2023, COMPUT HUM BEHAV, V143, DOI 10.1016/j.chb.2023.107707 Oliveira R, 2021, COMPUT HUM BEHAV, V114, DOI 10.1016/j.chb.2020.106547 Rai A, 2020, J ACAD MARKET SCI, V48, P137, DOI 10.1007/s11747-019-00710-5 Richardson JTE, 2011, EDUC RES REV-NETH, V6, P135, DOI 10.1016/j.edurev.2010.12.001 Roesler Eileen, 2020, Proceedings of the Human Factors and Ergonomics Society Annual Meeting, V64, P107, DOI 10.1177/1071181320641028 Savela N, 2021, COMPUT HUM BEHAV, V115, DOI 10.1016/j.chb.2020.106585 Schmitt B, 2020, MARKET LETT, V31, P3, DOI 10.1007/s11002-019-09499-3 Schönbrodt FD, 2013, J RES PERS, V47, P609, DOI 10.1016/j.jrp.2013.05.009 Shepherd S, 2011, J EXP SOC PSYCHOL, V47, P949, DOI 10.1016/j.jesp.2011.03.026 Stea JN, 2012, SOC SCI J, V49, P528, DOI 10.1016/j.soscij.2012.05.001 Stein JP, 2019, COMPUT HUM BEHAV, V95, P73, DOI 10.1016/j.chb.2019.01.021 Stephan W.G., 2002, From prejudice to intergroup emotions, P191, DOI [10.1002/9781444303117.ch5, DOI 10.1002/9781444303117.CH5] STEPHAN WG, 1985, J SOC ISSUES, V41, P157, DOI 10.1111/j.1540-4560.1985.tb01134.x Taddeo M, 2018, SCIENCE, V361, P751, DOI 10.1126/science.aat5991 TAJFEL H, 1974, SOC SCI INFORM, V13, P65, DOI 10.1177/053901847401300204 Tajfel H., 1978, DIFFERENTATION GROUP, P61 Turiano NA, 2014, HEALTH PSYCHOL, V33, P883, DOI 10.1037/hea0000022 Uscinski JE., 2014, American Conspiracy Theories, DOI [10.1093/acprof:oso/9780199351800.001.0001, DOI 10.1093/ACPROF:OSO/9780199351800.001.0001] Van Prooijen JW, 2015, APPL COGNITIVE PSYCH, V29, P753, DOI 10.1002/acp.3161 Markovic MV, 2021, FRONT PSYCHOL, V12, DOI 10.3389/fpsyg.2021.622571 Waytz A, 2014, J EXP SOC PSYCHOL, V52, P113, DOI 10.1016/j.jesp.2014.01.005 Whitson JA, 2008, SCIENCE, V322, P115, DOI 10.1126/science.1159845 Williams KD, 2007, ANNU REV PSYCHOL, V58, P425, DOI 10.1146/annurev.psych.58.110405.085641 Womick J, 2019, J PERS, V87, P1056, DOI 10.1111/jopy.12457 Yam KC, 2021, COMPUT HUM BEHAV, V125, DOI 10.1016/j.chb.2021.106945 Yin M, 2024, COMPUT HUM BEHAV, V150, DOI 10.1016/j.chb.2023.107987 Yogeeswaran K, 2016, J HUM-ROBOT INTERACT, V5, P29, DOI 10.5898/JHRI.5.2.Yogeeswaran Zlotowski J, 2017, INT J HUM-COMPUT ST, V100, P48, DOI 10.1016/j.ijhcs.2016.12.008 NR 67 TC 0 Z9 0 U1 1 U2 1 PU SPRINGER PI NEW YORK PA ONE NEW YORK PLAZA, SUITE 4600, NEW YORK, NY, UNITED STATES SN 1046-1310 EI 1936-4733 J9 CURR PSYCHOL JI Curr. Psychol. PD 2024 AUG 9 PY 2024 DI 10.1007/s12144-024-06347-0 EA AUG 2024 PG 12 WC Psychology, Multidisciplinary WE Social Science Citation Index (SSCI) SC Psychology GA C2B6H UT WOS:001287465400001 DA 2024-09-05 ER PT C AU Chantaranimi, K Sugunsil, P Natwichai, J AF Chantaranimi, Kittayaporn Sugunsil, Prompong Natwichai, Juggapong BE Barolli, L Chen, HC Miwa, H TI An Approach to Enhance Academic Ranking Prediction with Augmented Social Perception Data SO ADVANCES IN INTELLIGENT NETWORKING AND COLLABORATIVE SYSTEMS (INCOS-2021) SE Lecture Notes in Networks and Systems LA English DT Proceedings Paper CT 13th International Conference on Intelligent Networking and Collaborative Systems (INCoS) CY SEP 01-03, 2021 CL Asia Univ, Taichung, TAIWAN HO Asia Univ DE Social perception data; Machine learning; Citation prediction; Altmetrics; Correlation; SciVal AB Academic ranking prediction are indicators that have significant influences on the decision-making process of stakeholders of universities. In addition, we are in digital age with a pandemic situation, social media and technology have revolutionized the way scholars reach and disseminate academic outputs. Thus, the ranking consideration should be adjusted by augmented social perception data, e.g. Altmetrics. In this study, dataset of 1,752,494 research outputs from Altmetric.com and Scival.com which published between 2015-2020 are analyzed. This study assesses whether there are relationships between various scholarly output's social perception data and citations. Moreover, various machine learning models are constructed to predict the citations. Results show weak to moderate positive correlation between social perception data and citation. We have found that the outperforming prediction model is Random Forest regression. The finding in our study suggested that social perception data should be considered to enhance academic ranking prediction in conjunction with related features. C1 [Chantaranimi, Kittayaporn] Chiang Mai Univ, Fac Engn, Data Sci Consortium, Chiang Mai, Thailand. [Sugunsil, Prompong] Chiang Mai Univ, Coll Art Media & Technol, Chiang Mai, Thailand. [Natwichai, Juggapong] Chiang Mai Univ, Fac Engn, Dept Comp Engn, Chiang Mai, Thailand. C3 Chiang Mai University; Chiang Mai University; Chiang Mai University RP Chantaranimi, K (corresponding author), Chiang Mai Univ, Fac Engn, Data Sci Consortium, Chiang Mai, Thailand. EM kittayaporn_c@cmu.ac.th; prompong.sugunsil@cmu.ac.th; juggapong@eng.cmu.ac.th RI Natwichai, Juggapong/HTO-0073-2023 OI Natwichai, Juggapong/0000-0001-6220-2589 CR Akella AP, 2021, J INFORMETR, V15, DOI 10.1016/j.joi.2020.101128 Aksnes DW, 2019, SAGE OPEN, V9, DOI 10.1177/2158244019829575 Bai XM, 2019, J INFORMETR, V13, P407, DOI 10.1016/j.joi.2019.01.010 Banshal SK, 2021, ONLINE INFORM REV, V45, P517, DOI 10.1108/OIR-11-2019-0364 Barbic D, 2016, ACAD EMERG MED, V23, P251, DOI 10.1111/acem.12898 Huang WY, 2018, PLOS ONE, V13, DOI 10.1371/journal.pone.0194962 Lehane DJ, 2021, J INTENSIVE CARE SOC, V22, P60, DOI 10.1177/1751143720903240 Meschede C, 2020, SUSTAINABILITY-BASEL, V12, DOI 10.3390/su12114461 Priem J., 2010, Altmetrics: A manifesto QS Quacquarelli Symonds Limited, QS WORLD U RANK SUBJ Thelwall M, 2018, J INFORMETR, V12, P237, DOI 10.1016/j.joi.2018.01.008 United Nations, Take action for sustainable development goals Wang DS, 2013, SCIENCE, V342, P127, DOI 10.1126/science.1237825 NR 13 TC 1 Z9 1 U1 3 U2 9 PU SPRINGER INTERNATIONAL PUBLISHING AG PI CHAM PA GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND SN 2367-3370 EI 2367-3389 BN 978-3-030-84910-8; 978-3-030-84909-2 J9 LECT NOTE NETW SYST PY 2022 VL 312 BP 84 EP 95 DI 10.1007/978-3-030-84910-8_9 PG 12 WC Computer Science, Artificial Intelligence; Computer Science, Information Systems; Computer Science, Interdisciplinary Applications; Computer Science, Theory & Methods; Telecommunications WE Conference Proceedings Citation Index - Science (CPCI-S) SC Computer Science; Telecommunications GA BS2NO UT WOS:000704003000009 DA 2024-09-05 ER PT J AU Solorio, T AF Solorio, Thamar TI Survey on Emerging Research on the Use of Natural Language Processing in Clinical Language Assessment of Children SO LANGUAGE AND LINGUISTICS COMPASS LA English DT Article ID NONWORD REPETITION; IMPAIRMENT; MEMORY; SLI AB In the last decade, we have seen emerging research exploring the use of natural language processing (NLP) techniques for assisting in the identification of clinical conditions that affect language. One of these clinical conditions is language impairment, a disorder identified by delayed or disordered language patterns in an individual with normal intelligence with no neurological or other physiological conditions. In this article, we present a survey of this emerging line of research, which for the most part has focused on the task of discriminating the clinical from the non-clinical group by posing the task as an automated classification problem. The focus of this survey is on the types of features recent research has explored. We also discuss the many interesting open questions that this research has yet to explore. C1 [Solorio, Thamar] Univ Alabama Birmingham, Dept Comp & Informat Sci, 1300 Univ Blvd, Birmingham, AL 35294 USA. C3 University of Alabama System; University of Alabama Birmingham RP Solorio, T (corresponding author), Univ Alabama Birmingham, Dept Comp & Informat Sci, 1300 Univ Blvd, Birmingham, AL 35294 USA. EM solorio@cis.uab.edu OI Solorio, Thamar/0000-0002-3541-9405 FU NSF [1018124]; Direct For Computer & Info Scie & Enginr; Div Of Information & Intelligent Systems [1018124] Funding Source: National Science Foundation FX The author would like to thank the reviewers for the very constructive feedback received. Many thanks to Aquiles Iglesias, Yang Liu and Manuel Montes y Gomez for meaningful discussions and comments on previous versions of the paper. The author's research is currently supported by NSF grant No. 1018124. CR [Anonymous], 2018, Speech and Language Processing 3rd edition draft Bishop DVM, 1996, J CHILD PSYCHOL PSYC, V37, P391, DOI 10.1111/j.1469-7610.1996.tb01420.x Boston MF, 2008, J EYE MOVEMENT RES, V2 Botting N., 2002, CHILD LANG TEACH THE, V18, P1, DOI [https://doi.org/10.1191/0265659002ct224oa, DOI 10.1191/0265659002CT224OA] Campbell T, 1997, J SPEECH LANG HEAR R, V40, P519, DOI 10.1044/jslhr.4003.519 Clegg J, 2005, J CHILD PSYCHOL PSYC, V46, P128, DOI 10.1111/j.1469-7610.2004.00342.x COLEMAN M, 1975, J APPL PSYCHOL, V60, P283, DOI 10.1037/h0076540 Dollaghan C, 1998, J SPEECH LANG HEAR R, V41, P1136, DOI 10.1044/jslhr.4105.1136 Dollaghan C., 2008, DIAGNOSIS SPECIFIC L Drolet BC, 2011, TRANSL RES, V157, P1, DOI 10.1016/j.trsl.2010.10.002 Dunn L. M., 1997, PEABODY PICTURE VOCA Frazier Lyn., 1985, Syntactic complexity., Natural language parsing: Psychological, computational Gabani K., 2009, North American Chapter of the Association for Computational Linguistics, P46 Gabani K, 2011, ARTIF INTELL MED, V53, P161, DOI 10.1016/j.artmed.2011.08.001 GATHERCOLE SE, 1990, J MEM LANG, V29, P336, DOI 10.1016/0749-596X(90)90004-J GAULIN CA, 1994, PERCEPT MOTOR SKILL, V79, P55, DOI 10.2466/pms.1994.79.1.55 Gunning Robert, 1952, The Technique of Clear Writing Hassanali K., 2013, BEHAV RES METHODS, V45 Hassanali K., 2012, 13 ANN C INT SPEECH, DOI DOI 10.21437/INTERSPEECH.2012-321 Hassanali K.-n., 2011, Proceedings of the Sixth Workshop on Innovative Use of NLP for Building Educational Applications, P87 Kincaid J.P., 1975, Derivation of new readability formulas (automated readability index, fog count and flesch reading ease formula) for navy enlisted personnel Kjelgaard MM, 2001, LANG COGNITIVE PROC, V16, P287, DOI 10.1080/01690960042000058 Le X, 2011, LIT LINGUIST COMPUT, V26, P435, DOI 10.1093/llc/fqr013 Levy R, 2008, COGNITION, V106, P1126, DOI 10.1016/j.cognition.2007.05.006 MacWhinney B., 2000, The CHILDES Project: Tools for analysing talk, V3rd Edition Marchman VA, 1999, J SPEECH LANG HEAR R, V42, P206, DOI 10.1044/jslhr.4201.206 Marcus M.P., 1993, Computational Linguistics, V19, P313 Mayer M., 1969, FROG ARE YOU Mayer M., 1967, BOY DOG FROG MCLAUGHLIN GH, 1969, J READING, V12, P639 MILLER JF, 1983, SYSTEMATIC ANAL LANG Pakhomov S, 2011, BEHAV RES METHODS, V43, P136, DOI 10.3758/s13428-010-0037-9 Pakhomov SVS, 2010, COGN BEHAV NEUROL, V23, P165, DOI 10.1097/WNN.0b013e3181c5dde3 Pakhomov SVS, 2010, J NEUROLINGUIST, V23, P127, DOI 10.1016/j.jneuroling.2009.12.001 Petersen SE, 2009, COMPUT SPEECH LANG, V23, P89, DOI 10.1016/j.csl.2008.04.003 Plante E., 1994, LANG SPEECH HEAR SER, V25, P15, DOI DOI 10.1044/0161-1461.2501.15 Prud'hommeaux E.T., 2011, Proceedings of the 2nd Workshop on Cognitive Modeling and Computational Linguistics, P88 Redmond SM, 2004, CLIN LINGUIST PHONET, V18, P107, DOI 10.1080/02699200310001611612 Roark B, 2001, COMPUT LINGUIST, V27, P249, DOI 10.1162/089120101750300526 Roark B., 2007, P 2 INT C TECHN AG I Roark B, 2011, IEEE T AUDIO SPEECH, V19, P2081, DOI 10.1109/TASL.2011.2112351 Roark Brian, 2007, Biological, translational, and clinical language processing, P1, DOI 10.3115/1572392.1572394 Roark Brian, 2009, P 2009 C EMPIRICAL M, P324 ROSENBERG S, 1987, APPL PSYCHOLINGUIST, V8, P19, DOI 10.1017/S0142716400000047 Sahakian S., 2012, Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics: Short Papers - Volume 2, V2, P95 Semel E., 2003, Clinical Evaluation of Language Fundamentals Simkin Z, 2001, INT J LANG COMM DIS, V36, P395 Solorio T, 2011, NAT LANG ENG, V17, P367, DOI 10.1017/S1351324910000252 Solorio T., 2008, Proceedings of the Workshop on Current Trends in Biomedical Natural Language Processing, P116 Thomas C, 2005, 2005 IEEE INTERNATIONAL CONFERENCE ON MECHATRONICS AND AUTOMATIONS, VOLS 1-4, CONFERENCE PROCEEDINGS, P1569 Tomblin JB, 1997, J SPEECH LANG HEAR R, V40, P1245, DOI 10.1044/jslhr.4006.1245 U.S. Census Bureau, 2010, LANG US US 2007 Wechsler D., 1991, WECHSLER INTELLIGENC Williams K. T., 2007, Expressive Vocabulary Test-2 (EVT-2) YNGVE VICTOR H., 1960, PROC AMER PHIL SOC, V104, P444 NR 55 TC 1 Z9 2 U1 0 U2 0 PU WILEY PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1749-818X J9 LANG LINGUIST COMPAS JI Lang. Linguist. Compass PD DEC PY 2013 VL 7 IS 12 BP 633 EP 646 DI 10.1111/lnc3.12054 PG 14 WC Language & Linguistics WE Emerging Sources Citation Index (ESCI) SC Linguistics GA V11CB UT WOS:000214255200002 DA 2024-09-05 ER PT J AU Lalande, L Bourguignon, L Carlier, C Ducher, M AF Lalande, Laure Bourguignon, Laurent Carlier, Chloe Ducher, Michel TI Bayesian networks: a new method for the modeling of bibliographic knowledge SO MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING LA English DT Article DE Bayesian network; Fall risk; Geriatrics ID RISK-ASSESSMENT TOOL; FALL-RISK; OLDER-ADULTS; ELDERLY-PATIENTS; INJURIOUS FALLS; SCREENING TOOL; MEDICATION USE; PREDICTION; COMMUNITY; PEOPLE AB Falls in geriatry are associated with important morbidity, mortality and high healthcare costs. Because of the large number of variables related to the risk of falling, determining patients at risk is a difficult challenge. The aim of this work was to validate a tool to detect patients with high risk of fall using only bibliographic knowledge. Thirty articles corresponding to 160 studies were used to modelize fall risk. A retrospective case-control cohort including 288 patients (88 +/- A 7 years) and a prospective cohort including 106 patients (89 +/- A 6 years) from two geriatric hospitals were used to validate the performances of our model. We identified 26 variables associated with an increased risk of fall. These variables were split into illnesses, medications, and environment. The combination of the three associated scores gives a global fall score. The sensitivity and the specificity were 31.4, 81.6, 38.5, and 90 %, respectively, for the retrospective and the prospective cohort. The performances of the model are similar to results observed with already existing prediction tools using model adjustment to data from numerous cohort studies. This work demonstrates that knowledge from the literature can be synthesized with Bayesian networks. C1 [Lalande, Laure; Bourguignon, Laurent; Carlier, Chloe; Ducher, Michel] Hosp Civils Lyon, Grp Hosp Geriatrie, F-69340 Francheville, France. C3 CHU Lyon RP Ducher, M (corresponding author), Hosp Civils Lyon, Grp Hosp Geriatrie, Serv Pharm 40 Ave La Table de Pierre, F-69340 Francheville, France. EM michel.ducher@chu-lyon.fr CR Allan LM, 2009, PLOS ONE, V4, DOI 10.1371/journal.pone.0005521 [Anonymous], 2007, Encyclopedia of Statistics in Quality Reliability Baranzini F, 2009, BMC HEALTH SERV RES, V9, DOI 10.1186/1472-6963-9-228 Bongue B, 2011, J CLIN EPIDEMIOL, V64, P1152, DOI 10.1016/j.jclinepi.2010.12.014 Burnside ES, 2009, RADIOLOGY, V251, P663, DOI 10.1148/radiol.2513081346 Cuaya G, 2012, MED BIOL ENG COMPUT Cumming RG, 1998, DRUG AGING, V12, P43, DOI 10.2165/00002512-199812010-00005 Daal JO, 2005, NETH J MED, V63, P91 Darowski A, 2009, DRUG AGING, V26, P381, DOI 10.2165/00002512-200926050-00002 Demura S, 2011, ARCH GERONTOL GERIAT Do Minh N, 2003, IEEE SIGNAL PROCESS, P115 Edmonson D, 2011, J PSYCHOSOC NURS MEN, V49, P29, DOI 10.3928/02793695-20101202-03 Ensrud KE, 2002, J AM GERIATR SOC, V50, P1629, DOI 10.1046/j.1532-5415.2002.50453.x Fonad E, 2008, J CLIN NURS, V17, P126, DOI 10.1111/j.1365-2702.2007.02005.x Formiga F, 2008, BONE, V43, P941, DOI 10.1016/j.bone.2008.06.014 Forsberg JA, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0019956 French DD, 2006, CLIN THER, V28, P619, DOI 10.1016/j.clinthera.2006.04.011 Ganz DA, 2007, JAMA-J AM MED ASSOC, V297, P77, DOI 10.1001/jama.297.1.77 Gevaert O, 2006, HUM REPROD, V21, P1824, DOI 10.1093/humrep/del083 Kelly KD, 2003, AGE AGEING, V32, P503, DOI 10.1093/ageing/afg081 Koski K, 1996, AGE AGEING, V25, P29, DOI 10.1093/ageing/25.1.29 Marschollek M, 2011, BMC MED INFORM DECIS, V11, DOI 10.1186/1472-6947-11-48 Mets MAJ, 2010, SLEEP MED REV, V14, P259, DOI 10.1016/j.smrv.2009.10.008 Milisen K, 2007, J AM GERIATR SOC, V55, P725, DOI 10.1111/j.1532-5415.2007.01151.x Muir SW, 2010, J GERIATR PHYS THER, V33, P165, DOI 10.1097/JPT.0b013e3181ff23cc Naim P, 2007, ALGORITHMES Oliver D, 2004, AGE AGEING, V33, P122, DOI 10.1093/ageing/afh017 Oliver D, 2008, AGE AGEING, V37, P621, DOI 10.1093/ageing/afn203 Pariente A, 2008, DRUG AGING, V25, P61, DOI 10.2165/00002512-200825010-00007 Sakai S, 2007, METHOD INFORM MED, V46, P723, DOI 10.3414/ME9066 Sanders David L, 2006, AMIA Annu Symp Proc, P1085 Schwartz AV, 2008, DIABETES CARE, V31, P391, DOI 10.2337/dc07-1152 Schwendimann R, 2006, AGE AGEING, V35, P311, DOI 10.1093/ageing/afj066 Scott V, 2007, AGE AGEING, V36, P130, DOI 10.1093/ageing/afl165 Sebastiani P, 2007, BLOOD, V110, P2727, DOI 10.1182/blood-2007-04-084921 Siegelmann HT, 2010, CHAOS, V20, DOI 10.1063/1.3491237 Societe francaise de geriatrie et gerontologie/HAS, 2009, REC BONN PRAT PROF E Tanaka M, 2008, YAKUGAKU ZASSHI, V128, P1355, DOI 10.1248/yakushi.128.1355 Uusitalo L, 2007, ECOL MODEL, V203, P312, DOI 10.1016/j.ecolmodel.2006.11.033 Vitry AI, 2010, ARCH GERONTOL GERIAT, V50, pE1, DOI 10.1016/j.archger.2009.04.004 Walker PC, 2005, AM J HEALTH-SYST PH, V62, P2495, DOI 10.2146/ajhp050116 Waterhouse M, 2011, J HOSP INFECT, V78, P92, DOI 10.1016/j.jhin.2011.01.016 Webster J, 2008, AGE AGEING, V37, P702, DOI 10.1093/ageing/afn153 Woolcott JC, 2009, ARCH INTERN MED, V169, P1952, DOI 10.1001/archinternmed.2009.357 Zhao D, 2011, J BIOMED INFORM, V44, P859, DOI 10.1016/j.jbi.2011.05.004 NR 45 TC 10 Z9 10 U1 0 U2 18 PU SPRINGER HEIDELBERG PI HEIDELBERG PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY SN 0140-0118 EI 1741-0444 J9 MED BIOL ENG COMPUT JI Med. Biol. Eng. Comput. PD JUN PY 2013 VL 51 IS 6 BP 657 EP 664 DI 10.1007/s11517-013-1035-8 PG 8 WC Computer Science, Interdisciplinary Applications; Engineering, Biomedical; Mathematical & Computational Biology; Medical Informatics WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Computer Science; Engineering; Mathematical & Computational Biology; Medical Informatics GA 142MB UT WOS:000318800400005 PM 23334773 DA 2024-09-05 ER PT C AU Cavalcanti, DC Prudêncio, RBC Pradhan, SS Shah, JY Pietrobon, RS AF Cavalcanti, Diana C. Prudencio, Ricardo B. C. Pradhan, Shreyasee S. Shah, Jatin Y. Pietrobon, Ricardo S. GP IEEE TI GOOD TO BE BAD? DISTINGUISHING BETWEEN POSITIVE AND NEGATIVE CITATIONS IN SCIENTIFIC IMPACT SO 2011 23RD IEEE INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE (ICTAI 2011) SE Proceedings-International Conference on Tools With Artificial Intelligence LA English DT Proceedings Paper CT 23rd IEEE International Conference on Tools with Artificial Intelligence (ICTAI) CY NOV 07-09, 2011 CL Boca Raton, FL DE Impact Factor; Sentiment Analysis; SentiWordNet; Spearman Ranking Correlation AB The impact of a publication is often measured by the number of citations it received, this number being taken as a proxy for the relevance of published work. However, a higher citation index does not necessarily mean that a publication necessarily had a positive feedback from citing authors, as a citation can represent a negative criticism. In order to overcome this limitation, we used sentiment analysis to rate citations as positive, neutral or negative. Adjectives are initially extracted from the citations, with the SentiWordNet lexicon being used to rate the degree of positivity and negativity for each adjective. Relevance scores were then computed to rank citations according to the sentiment expressed in the text corresponding to each citation. As expected for accurate information retrieval systems, higher precision rates were observed in the initial points of the curve. The SRC (0.6728) computed using number of raw citations is lower than the SRC (0.7397) observed by the ranking generated using sentiment scores (Table 3). Conclusion: This result indicates that child articles with higher values of relevance score were in general the ones expressing positive opinion about their parents. Therefore, the ranking generated by sentiment scores had an improved accuracy. C1 [Cavalcanti, Diana C.; Prudencio, Ricardo B. C.] Univ Fed Pernambuco, Ctr Informat, UFPE, Recife, PE, Brazil. [Pradhan, Shreyasee S.; Shah, Jatin Y.; Pietrobon, Ricardo S.] Duke Univ, Dept Surg, Res Grp, Durham, NC USA. C3 Universidade Federal de Pernambuco; Duke University RP Cavalcanti, DC (corresponding author), Univ Fed Pernambuco, Ctr Informat, UFPE, Recife, PE, Brazil. EM dcc2@cin.ufpe.br; rbcp@cin.ufpe.br; sp133@duke.edu; jys4@duke.edu; rpietro@duke.edu RI Prudêncio, Ricardo BC/B-4632-2019; Shah, Jatin/B-6039-2011 OI Prudencio, Ricardo/0000-0001-7084-1233 CR [Anonymous], 2004, Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics - ACL'04, DOI DOI 10.3115/1218955.1218990 [Anonymous], 2004, Mining and Summarizing Customer Reviews Baeza-Yates Ricardo, 1999, MODERN INFORM RETRIE Beineke P., 2004, P 12 ANN M ASS COMPU, P263, DOI DOI 10.3115/1218955.1218989 Boiy E, 2009, INFORM RETRIEVAL, V12, P526, DOI 10.1007/s10791-008-9070-z Esuli Andrea., 2006, P 5 C LANG RES EV LR, P417 GARFIELD E, 1979, SCIENTOMETRICS, V1, P359, DOI 10.1007/BF02019306 Grefenstette G., 2004, COUPLING NICHE BROWS Harzing A.-W., 2008, Comparing the Google Scholar h-index with the ISI journal impact factor Harzing A.W., 2008, GOOGLE SCHOLAR NEW D, V8, P61 Hatzivassiloglou V., 1997, Predicting the Semantic Orientation of Adjectives Jenab Mazda, 2010, BMJ, V340, pb5500, DOI 10.1136/bmj.b5500 Jindal N., 2007, P INT C WORLD WID WE Kim S., 2004, P 20 INT C COMP LING, V4, P1367, DOI DOI 10.3115/1220355.1220555 Liu B, 2010, CH CRC MACH LEARN PA, P627 Opthof T, 1997, CARDIOVASC RES, V33, P1, DOI 10.1016/S0008-6363(96)00215-5 Pang B., 2006, Foundations and Trends in Information Retrieval, V1, P91, DOI DOI 10.1561/1500000011 Rocker G, 2009, THORAX, V64, P910, DOI 10.1136/thx.2009.116699 Turney PD, 2002, 40TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, PROCEEDINGS OF THE CONFERENCE, P417 veloso A., 2007, BRAZ S DAT, P332 Wanner F., 2009, P IUI 09 WORKSH VIS Weale Andy R, 2004, BMC Med Res Methodol, V4, P14, DOI 10.1186/1471-2288-4-14 Wilson T., 2009, RECOGNIZING CONTEXTU NR 23 TC 24 Z9 24 U1 0 U2 12 PU IEEE COMPUTER SOC PI LOS ALAMITOS PA 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1264 USA SN 1082-3409 BN 978-0-7695-4596-7 J9 PROC INT C TOOLS ART PY 2011 BP 156 EP 162 DI 10.1109/ICTAI.2011.32 PG 7 WC Computer Science, Artificial Intelligence; Engineering, Electrical & Electronic WE Conference Proceedings Citation Index - Science (CPCI-S) SC Computer Science; Engineering GA BYJ28 UT WOS:000299009900023 DA 2024-09-05 ER PT J AU Kim, EHJ Jeong, YK Kim, Y Song, M AF Kim, Erin H. J. Jeong, Yoo Kyung Kim, YongHwan Song, Min TI Exploring scientific trajectories of a large-scale dataset using topic-integrated path extraction SO JOURNAL OF INFORMETRICS LA English DT Article DE Citation analysis; Healthcare informatics; Longest path; Main path analysis; Topic modeling ID CITATION NETWORK ANALYSIS; KNOWLEDGE DIFFUSION PATH; HEALTH-CARE; MAIN PATHS; SYSTEMS; INFORMATICS; PREFERENCES; FRAMEWORK; INTERNET; SUPPORT AB Main path analysis (MPA) is the most widely accepted approach to tracing knowledge transfer in a research field. In this study, we extracted multiple longest paths from the multidisciplinary aca-demic field's citation network and integrating topic modeling to the extracted paths. We consider three main aspects of trajectory analysis when analyzing the represented documents through the extracted paths: emergence, authority, and topic dynamics. For path extraction, we adopt the longest path algorithm that consists of the following three steps: 1) topological sort, 2) edge re-laxation, and 3) multiple path extraction. For topic integration into multiple paths, we employ latent Dirichlet allocation (LDA) by utilizing the topic-document matrix that LDA derives to select an article's topic from the citation network, where each article is labeled with the topic that is assigned with the highest topical probability for that article. We conduct a series of experiments to examine the results on a dataset from the field of healthcare informatics that PubMed provides. C1 [Kim, Erin H. J.] Kongju Natl Univ, Dept Lib & Informat Sci Educ, Coll Educ, Gongju 32588, South Korea. [Jeong, Yoo Kyung] Hannam Univ, Dept Lib & Informat Sci, Daejeon 34430, South Korea. [Kim, YongHwan] Cheongju Univ, Dept Lib & Informat Sci, Cheongju 28503, South Korea. [Song, Min] Yonsei Univ, Dept Lib & Informat Sci, Seoul 03722, South Korea. C3 Kongju National University; Hannam University; Cheongju University; Yonsei University RP Song, M (corresponding author), Yonsei Univ, Dept Lib & Informat Sci, Seoul 03722, South Korea. EM erin.hj.kim@kongju.ac.kr; yk.jeong@hnu.kr; kimyonghwan@cju.ac.kr; min.song@yonsei.ac.kr RI Kim, Erin/GXN-3556-2022; song, min/KPA-7030-2024 OI Jeong, Yoo Kyung/0000-0002-6571-6478 FU Ministry of Education of the Republic of Korea; National Research Foundation of Korea [NRF-2019S1A5A8033713]; Institute of Information and Communications Technology Planning and Evaluation (IITP) - Korean government (MSIT) (Artificial Intelligence Graduate School Program (Yonsei University)) [2020-0-01361] FX This work was supported by the Ministry of Education of the Republic of Korea and the National Research Foundation of Korea (NRF-2019S1A5A8033713) . This work was partly supported by the Institute of Information and Communications Technology Planning and Evaluation (IITP) grant funded by the Korean government (MSIT) (No. 2020-0-01361, Artificial Intelligence Graduate School Program (Yonsei University) ) . CR Bakken S, 2000, J AM MED INFORM ASSN, V7, P81, DOI 10.1136/jamia.2000.0070081 Batagelj V., 2003, ARXIV PREPRINT CS030 BERKI SE, 1977, MED CARE, V15, P95, DOI 10.1097/00005650-197702000-00001 Blair SJ, 2020, APPL INTELL, V50, P138, DOI 10.1007/s10489-019-01438-z Blei DM, 2012, COMMUN ACM, V55, P77, DOI 10.1145/2133806.2133826 Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993 Booske BC, 1999, HEALTH SERV RES, V34, P839 Brennan PF, 1998, J AM MED INFORM ASSN, V5, P257, DOI 10.1136/jamia.1998.0050257 Brughmans T, 2013, LIT LINGUIST COMPUT, V28, P538, DOI 10.1093/llc/fqt048 Calero-Medina C, 2008, J INFORMETR, V2, P272, DOI 10.1016/j.joi.2008.09.005 Cesnik B, 2010, STUD HEALTH TECHNOL, V151, P3, DOI 10.3233/978-1-60750-476-4-3 Chen L., 2014, EVOLVING INTELLECTUA, DOI 10.2139/ssrn.2498225 Chen LT, 2019, J ASSOC INF SYST, V20, P1023, DOI 10.17705/1jais.00561 Chen LC, 2020, J INTERNET TECHNOL, V21, P85, DOI 10.3966/160792642020012101009 Chuang TC, 2014, TOURISM MANAGE, V45, P49, DOI 10.1016/j.tourman.2014.03.016 Chute CG, 1998, J AM MED INFORM ASSN, V5, P503, DOI 10.1136/jamia.1998.0050503 Cimino JJ, 1998, METHOD INFORM MED, V37, P394 Dietz L., 2007, ICML, P233, DOI DOI 10.1145/1273496.1273526 DiMaggio P, 2013, POETICS, V41, P570, DOI 10.1016/j.poetic.2013.08.004 Effken JA, 2002, J AM MED INFORM ASSN, V9, pS120, DOI 10.1197/jamia.M1242 Elmacioglu E, 2005, SIGMOD REC, V34, P33, DOI 10.1145/1083784.1083791 Epicoco M, 2014, TECHNOL FORECAST SOC, V81, P388, DOI 10.1016/j.techfore.2013.03.006 GARFIELD E, 1979, SCIENTOMETRICS, V1, P359, DOI 10.1007/BF02019306 Garfield E, 2003, J AM SOC INF SCI TEC, V54, P400, DOI 10.1002/asi.10226 Harris MR, 2000, J AM MED INFORM ASSN, V7, P539, DOI 10.1136/jamia.2000.0070539 Henrique BM, 2019, EXPERT SYST APPL, V124, P226, DOI 10.1016/j.eswa.2019.01.012 HUMMON NP, 1989, SOC NETWORKS, V11, P39, DOI 10.1016/0378-8733(89)90017-8 Hung SC, 2014, SCIENTOMETRICS, V100, P97, DOI 10.1007/s11192-014-1276-9 Kim M, 2018, J ASSOC INF SCI TECH, V69, P329, DOI 10.1002/asi.23960 Kleinberg JM, 1999, J ACM, V46, P604, DOI 10.1145/324133.324140 Kuan CH, 2020, SCIENTOMETRICS, V124, P775, DOI 10.1007/s11192-020-03468-8 Lathabai HH, 2018, SCIENTOMETRICS, V117, P1871, DOI 10.1007/s11192-018-2917-1 Liu JS, 2019, SCIENTOMETRICS, V119, P379, DOI 10.1007/s11192-019-03034-x Liu JS, 2016, J ASSOC INF SCI TECH, V67, P465, DOI 10.1002/asi.23384 Liu JS, 2012, J AM SOC INF SCI TEC, V63, P528, DOI 10.1002/asi.21692 Lu LYY, 2013, SCIENTOMETRICS, V94, P225, DOI 10.1007/s11192-012-0744-3 Lucio-Arias D, 2008, J AM SOC INF SCI TEC, V59, P1948, DOI 10.1002/asi.20903 Martinelli A, 2014, J EVOL ECON, V24, P623, DOI 10.1007/s00191-014-0349-5 Martinelli A, 2012, RES POLICY, V41, P414, DOI 10.1016/j.respol.2011.10.012 MCGUIRE TG, 1981, MED CARE, V19, P172, DOI 10.1097/00005650-198102000-00005 Mettler T, 2012, HEALTH INFORM J, V18, P147, DOI 10.1177/1460458212452496 Miller RA, 2005, J AM MED INFORM ASSN, V12, P403, DOI 10.1197/jamia.M1830 MILLS R, 1976, MED CARE, V14, P603, DOI 10.1097/00005650-197607000-00005 Mimno David, 2011, P C EMPIRICAL METHOD, P262 Mina A, 2007, RES POLICY, V36, P789, DOI 10.1016/j.respol.2006.12.007 Nadri H, 2017, J MED SYST, V41, DOI 10.1007/s10916-017-0794-4 Park H, 2017, PLOS ONE, V12, DOI 10.1371/journal.pone.0170895 Pauker S G, 1981, Med Decis Making, V1, P103, DOI 10.1177/0272989X8100100202 PENCHANSKY R, 1970, MED CARE, V8, P368, DOI 10.1097/00005650-197009000-00004 Raghupathi W, 2008, METHOD INFORM MED, V47, P435, DOI 10.3414/ME0516 Raghupathi W, 2010, INT J HEALTHC INF SY, V5, P20, DOI 10.4018/jhisi.2010100102 Sedgewick R., 2011, Algorithms, V4th Sweeney J., 2017, ONLINE J NURSING INF, V21 Tu YN, 2016, J ASSOC INF SCI TECH, V67, P2016, DOI 10.1002/asi.23522 Vasiliauskaite V., 2020, SCI REP-UK, V10, P1 Verspagen B, 2007, ADV COMPLEX SYST, V10, P93, DOI 10.1142/S0219525907000945 Westberg EE, 1999, J AM MED INFORM ASSN, V6, P6, DOI 10.1136/jamia.1999.0060006 WOODWARD CA, 1985, MED CARE, V23, P1019, DOI 10.1097/00005650-198508000-00009 Xiao Y, 2014, J INFORMETR, V8, P594, DOI 10.1016/j.joi.2014.05.001 Yeo W, 2014, SCIENTOMETRICS, V98, P633, DOI 10.1007/s11192-013-1140-3 Yu DJ, 2020, SCIENTOMETRICS, V125, P471, DOI 10.1007/s11192-020-03650-y NR 61 TC 9 Z9 10 U1 6 U2 39 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS SN 1751-1577 EI 1875-5879 J9 J INFORMETR JI J. Informetr. PD FEB PY 2022 VL 16 IS 1 AR 101242 DI 10.1016/j.joi.2021.101242 PG 18 WC Computer Science, Interdisciplinary Applications; Information Science & Library Science WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Computer Science; Information Science & Library Science GA 1H0CB UT WOS:000796212300006 DA 2024-09-05 ER PT C AU Azcona, D Hsiao, IH Smeaton, AF AF Azcona, David Hsiao, I-Han Smeaton, Alan F. BE Rose, CP Martinez-Maldonado, R Hoppe, HU Luckin, R Mavrikis, M Porayska-Pomsta, K McLaren, B DuBoulay, B TI Modelling Math Learning on an Open Access Intelligent Tutor SO ARTIFICIAL INTELLIGENCE IN EDUCATION, PT II SE Lecture Notes in Artificial Intelligence LA English DT Proceedings Paper CT 19th International Conference on Artificial Intelligence in Education (AIED) CY JUN 27-30, 2018 CL London, ENGLAND DE Machine learning; Intelligent Tutoring Systems; Social network analysis; MOOC AB This paper presents a methodology to analyze large amount of students' learning states on two math courses offered by Global Freshman Academy program at Arizona State University. These two courses utilised ALEKS (Assessment and Learning in Knowledge Spaces) Artificial Intelligence technology to facilitate massive open online learning. We explore social network analysis and unsupervised learning approaches (such as probabilistic graphical models) on these type of Intelligent Tutoring Systems to examine the potential of the embedding representations on students learning. C1 [Azcona, David; Smeaton, Alan F.] Dublin City Univ, Insight Ctr Data Analyt, Dublin, Ireland. [Hsiao, I-Han] Arizona State Univ, Sch Comp Informat & Decis Syst Engn, Tempe, AZ USA. C3 Dublin City University; Arizona State University; Arizona State University-Tempe RP Azcona, D (corresponding author), Dublin City Univ, Insight Ctr Data Analyt, Dublin, Ireland. EM david.azcona@insight-centre.org RI Smeaton, Alan/F-8974-2011 OI Smeaton, Alan/0000-0003-1028-8389 FU Irish Research Council; National Forum for the Enhancement of Teaching and Learning in Ireland [GOIPG/2015/3497]; Science Foundation Ireland [SFI/12/RC/2289]; Fulbright Ireland; Irish Research Council (IRC) [GOIPG/2015/3497] Funding Source: Irish Research Council (IRC) FX This research was supported by the Irish Research Council in association with the National Forum for the Enhancement of Teaching and Learning in Ireland under project number GOIPG/2015/3497, by Science Foundation Ireland under grant SFI/12/RC/2289, and by Fulbright Ireland. The authors are indebted to the Action Lab at EdPlus in Arizona State University for their help. CR Chen W., 2018, IEEE T LEARN TECHNOL, P1 Craig SD, 2013, COMPUT EDUC, V68, P495, DOI 10.1016/j.compedu.2013.06.010 Craig SD, 2011, LECT NOTES ARTIF INT, V6738, P435, DOI 10.1007/978-3-642-21869-9_61 Doignon J.P., 2013, KNOWLEDGE SPACES, P131, DOI [10. 1007/978- 3-642- 35329-1 8, DOI 10.1007/978-3-642-35329-18] DOIGNON JP, 1985, INT J MAN MACH STUD, V23, P175, DOI 10.1016/S0020-7373(85)80031-6 Hsiao IH, 2017, SEVENTH INTERNATIONAL LEARNING ANALYTICS & KNOWLEDGE CONFERENCE (LAK'17), P319, DOI 10.1145/3027385.3027415 Piech C, 2015, Arxiv, DOI arXiv:1505.05969 Piech Chris, 2012, SIGCSE 12, P153, DOI DOI 10.1145/2157136.2157182 NR 8 TC 2 Z9 2 U1 1 U2 2 PU SPRINGER INTERNATIONAL PUBLISHING AG PI CHAM PA GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND SN 0302-9743 EI 1611-3349 BN 978-3-319-93846-2; 978-3-319-93845-5 J9 LECT NOTES ARTIF INT PY 2018 VL 10948 BP 36 EP 40 DI 10.1007/978-3-319-93846-2_7 PG 5 WC Computer Science, Artificial Intelligence; Computer Science, Interdisciplinary Applications; Education & Educational Research WE Conference Proceedings Citation Index - Science (CPCI-S); Conference Proceedings Citation Index - Social Science & Humanities (CPCI-SSH) SC Computer Science; Education & Educational Research GA BU1FH UT WOS:000877310400007 DA 2024-09-05 ER PT J AU Ha, T AF Ha, Taehyun TI An explainable artificial-intelligence-based approach to investigating factors that influence the citation of papers SO TECHNOLOGICAL FORECASTING AND SOCIAL CHANGE LA English DT Article DE Bibliometrics; Citations; Machine learning; Big data; SHAP ID CITED PAPERS; DETERMINANTS; DRIVERS; NUMBER AB The number of citations is often used to estimate the impact of a study. Previous studies have investigated what factors of publications affect citations and how they affect citations. However, the findings of the studies were unable to reach a consensus because of the limited sample size, domain, and measurement. This study reviewed previous studies that addressed factors influencing citations and then identified 14 measurable factors. Approximately 33 million publications from the Scopus database were used to train and validate a CatBoost model. A SHAP framework was used to interpret the trained model by focusing on how salient factors affect the number of citations. The results showed that the year is a significant factor affecting the citation but not the priority factor. A publication source was presented as the most important factor contributing to the citation. Several implications and strategic approaches to maximizing the impact of a study were discussed. C1 [Ha, Taehyun] Korea Inst Sci & Technol Informat, Future Technol Anal Ctr, 66 Hoegiro,Dongdaemun Gu, Seoul 02456, South Korea. C3 Korea Institute of Science & Technology Information (KISTI) RP Ha, T (corresponding author), Korea Inst Sci & Technol Informat, Future Technol Anal Ctr, 66 Hoegiro,Dongdaemun Gu, Seoul 02456, South Korea. EM taehyunha@kisti.re.kr RI Ha, Taehyun/KXQ-6446-2024 OI Ha, Taehyun/0000-0003-3143-666X CR Bornmann L, 2016, J ASSOC INF SCI TECH, V67, P2274, DOI 10.1002/asi.23546 Bornmann L, 2012, J INFORMETR, V6, P11, DOI 10.1016/j.joi.2011.08.004 Chen SJ, 2015, J INFORMETR, V9, P1034, DOI 10.1016/j.joi.2015.09.003 Chen TQ, 2016, KDD'16: PROCEEDINGS OF THE 22ND ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, P785, DOI 10.1145/2939672.2939785 Filion Kristian B, 2008, Epidemiol Perspect Innov, V5, P3, DOI 10.1186/1742-5573-5-3 Gingras Y, 2018, SCIENTOMETRICS, V114, P517, DOI 10.1007/s11192-017-2593-6 Giri R, 2019, ASLIB J INFORM MANAG, V71, P90, DOI 10.1108/AJIM-07-2017-0170 Guo F, 2018, SCIENTOMETRICS, V116, P1531, DOI 10.1007/s11192-018-2805-8 Hasan S, 2021, SCIENTOMETRICS, V126, P7583, DOI 10.1007/s11192-021-04083-x HEDGES LV, 1983, AM EDUC RES J, V20, P63, DOI 10.3102/00028312020001063 Ke GL, 2017, ADV NEUR IN, V30 Lee DH, 2019, SCIENTOMETRICS, V118, P281, DOI 10.1007/s11192-018-2943-z Liskiewicz T, 2021, SCIENTOMETRICS, V126, P3321, DOI 10.1007/s11192-021-03870-w Lundberg SM, 2017, ADV NEUR IN, V30 Lundberg SM, 2019, Arxiv, DOI [arXiv:1905.04610, DOI 10.48550/ARXIV.1905.04610, 10.48550/arXiv.1905.04610] Mammola S, 2021, SCIENTOMETRICS, V126, P785, DOI 10.1007/s11192-020-03759-0 Meho LI, 2007, PHYS WORLD, V20, P32 Mingers J, 2010, EUR J OPER RES, V205, P422, DOI 10.1016/j.ejor.2009.12.008 Onodera N, 2015, J ASSOC INF SCI TECH, V66, P739, DOI 10.1002/asi.23209 Oravec CS, 2019, WORLD NEUROSURG, V130, pE82, DOI 10.1016/j.wneu.2019.05.226 Padial AA, 2010, SCIENTOMETRICS, V85, P1, DOI 10.1007/s11192-010-0231-7 Paduraru O., 2022, HEALTHCARE PETERS HPF, 1994, J AM SOC INFORM SCI, V45, P39, DOI 10.1002/(SICI)1097-4571(199401)45:1<39::AID-ASI5>3.0.CO;2-Q Pislyakov V, 2014, J ASSOC INF SCI TECH, V65, P2321, DOI 10.1002/asi.23093 Shen HQ, 2021, SCIENTOMETRICS, V126, P3443, DOI 10.1007/s11192-021-03888-0 Shwartz-Ziv R, 2022, INFORM FUSION, V81, P84, DOI 10.1016/j.inffus.2021.11.011 Stremersch S, 2007, J MARKETING, V71, P171, DOI 10.1509/jmkg.71.3.171 Tahamtan I, 2016, SCIENTOMETRICS, V107, P1195, DOI 10.1007/s11192-016-1889-2 Urlings MJE, 2021, J CLIN EPIDEMIOL, V132, P71, DOI 10.1016/j.jclinepi.2020.11.019 Vanclay JK, 2013, J INFORMETR, V7, P265, DOI 10.1016/j.joi.2012.11.009 Dorogush AV, 2018, Arxiv, DOI arXiv:1810.11363 Ward IR, 2021, COMPUT METH PROG BIO, V212, DOI 10.1016/j.cmpb.2021.106415 Webster GD, 2009, EVOL PSYCHOL-US, V7, P348 Xie J, 2019, SCIENTOMETRICS, V119, P1429, DOI 10.1007/s11192-019-03094-z Yaminfirooz Mousa, 2018, Acta Inform Med, V26, P10, DOI 10.5455/aim.2018.26.10-14 NR 35 TC 5 Z9 5 U1 10 U2 47 PU ELSEVIER SCIENCE INC PI NEW YORK PA STE 800, 230 PARK AVE, NEW YORK, NY 10169 USA SN 0040-1625 EI 1873-5509 J9 TECHNOL FORECAST SOC JI Technol. Forecast. Soc. Chang. PD NOV PY 2022 VL 184 AR 121974 DI 10.1016/j.techfore.2022.121974 EA AUG 2022 PG 9 WC Business; Regional & Urban Planning WE Social Science Citation Index (SSCI) SC Business & Economics; Public Administration GA 4Y2TL UT WOS:000861382600002 DA 2024-09-05 ER PT C AU Quille, K Nolan, K AF Quille, Keith Nolan, Keith GP ACM TI Predicting Success in CS1-An Open Access Data Project SO PROCEEDINGS OF THE 53RD ACM TECHNICAL SYMPOSIUM ON COMPUTER SCIENCE EDUCATION (SIGCSE 2022), VOL 2 LA English DT Proceedings Paper CT 53rd Annual ACM SIGCSE Technical Symposium on Computer Science Education (SIGCSE) CY MAR 02-05, 2022 CL Providence, RI DE EDM; Educational Data Mining; Metrics; Re-validation; Machine Learning AB PreSS# is an online Machine Learning prediction model that aims to identify students at risk of failing or dropping out in an introductory programming course (typically called CS1). PreSS# has been developed over the past 16 years, where the model is capable of predicting at-risk students with an accuracy of approximate to 71%. There is, however, a need to re-validate the model using a larger international multi-jurisdictional multi-university data set, as up until now the data sets have been predominantly from a single jurisdiction. The goal of this study is to not only re-validate the model using a multijurisdictional data set, but, inline with a 2015 ITiCSE working group report's Grand Challenges, to openly publish the data set itself. This work timely to the CSEd community as other researchers can use this data to further their research, re-validate PreSS# and will be able to then contribute, by submitting their local PreSS# data sets to this global online repository. C1 [Quille, Keith; Nolan, Keith] TU Dublin, Dublin, Ireland. RP Quille, K (corresponding author), TU Dublin, Dublin, Ireland. EM keith.quille@tudublin.ie; keith.nolan@tudublin.ie OI Quille, Keith/0000-0002-1414-5142 CR Bergin S., 2005, SIGCSE Bulletin, V37, P411, DOI 10.1145/1047124.1047480 Ihantola P, 2016, PROCEEDINGS OF THE 2015 ITICSE CONFERENCE ON WORKING GROUP REPORTS (ITICSE-WGP'15), P41, DOI 10.1145/2858796.2858798 Quille K., 2015, INT C ENGUAGING PEDA, V10 Quille K, 2018, ITICSE'18: PROCEEDINGS OF THE 23RD ANNUAL ACM CONFERENCE ON INNOVATION AND TECHNOLOGY IN COMPUTER SCIENCE EDUCATION, P15, DOI 10.1145/3197091.3197101 Quille K, 2019, COMPUT SCI EDUC, V29, P254, DOI 10.1080/08993408.2019.1612679 NR 5 TC 2 Z9 2 U1 0 U2 2 PU ASSOC COMPUTING MACHINERY PI NEW YORK PA 1601 Broadway, 10th Floor, NEW YORK, NY, UNITED STATES BN 978-1-4503-9070-5 PY 2022 BP 1126 EP 1126 DI 10.1145/3478432.3499092 PG 1 WC Computer Science, Theory & Methods; Education, Scientific Disciplines WE Conference Proceedings Citation Index - Science (CPCI-S) SC Computer Science; Education & Educational Research GA BU8GR UT WOS:000947124200080 DA 2024-09-05 ER PT J AU Amjad, T Daud, A AF Amjad, Tehmina Daud, Ali TI Indexing of authors according to their domain of expertise SO MALAYSIAN JOURNAL OF LIBRARY & INFORMATION SCIENCE LA English DT Article DE Indexing; Domain specific modeling; Topic modeling; Topic based ranking; Citation analysis ID H-INDEX; IMPACT; MODEL AB Measuring the impact and productivity of an author is an important, yet a challenging task. Most of the existing methods for ranking or indexing of authors are based on simple parameters such as publication counts, citation counts and their combinations. These methods are topic independent, hence ignoring the intra-field differences. This study introduces a specific method for indexing of researchers to measure their productivity in a given field of interest, believing that an author can be interested in more than one fields and can have different level of expertise in all these fields. This paper proposes Domain Specific Index (DSI), a novel method for indexing of authors with respect to their fields of interest. Latent Dirichlet Allocation (LDA) is applied to capture the latent topics within text corpora. DSI calculates the standing of an author in all topics of his or her interest by considering topic based citations instead of using overall citations like traditional methods. The citations received by a multi-authored paper are divided among all its co-authors on the basis of their topic probability in that particular field. Results show that instead of giving credit of received citations equally to all co-authors of a paper, if a weight is given with respect to their level of interest in that field, more specific authors in that field will be ranked as top authors. C1 [Amjad, Tehmina; Daud, Ali] Int Islamic Univ, Dept Comp Sci & Software Engn, Islamabad 44000, Pakistan. [Daud, Ali] King Abdulaziz Univ, Fac Comp & Informat Technol, Jeddah, Saudi Arabia. C3 International Islamic University, Pakistan; King Abdulaziz University RP Amjad, T (corresponding author), Int Islamic Univ, Dept Comp Sci & Software Engn, Islamabad 44000, Pakistan. EM tehminaamjad@iiu.edu.pk; ali.daud@iiu.edu.pk RI Amjad, Tehmina/GLS-0209-2022; Daud, Ali/ABD-4485-2020; Daud, Adil/T-3079-2019; Daud, Ali/G-6568-2017 OI Daud, Adil/0000-0002-6617-8421; Daud, Ali/0000-0002-8284-6354; Amjad, Tehmina/0000-0003-1201-498X FU Indigenous Ph.D. Fellowship Program of Higher Education Commission (HEC) Pakistan FX The work is supported by the Indigenous Ph.D. Fellowship Program of Higher Education Commission (HEC) Pakistan. CR Amjad T, 2016, INFORM PROCESS MANAG, V52, P374, DOI 10.1016/j.ipm.2015.12.001 Amjad T, 2015, SCIENTOMETRICS, V104, P313, DOI 10.1007/s11192-015-1601-y Amjad TEHMINA., 2015, Mehran University Research Journal of Engineering Technology, V34, P103 Banerjee S, 2003, LECT NOTES COMPUT SC, V2588, P370 Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993 Bornmann L, 2008, J AM SOC INF SCI TEC, V59, P830, DOI 10.1002/asi.20806 Burrell QL, 2007, J INFORMETR, V1, P170, DOI 10.1016/j.joi.2007.01.003 Burrell QL, 2007, J INFORMETR, V1, P16, DOI 10.1016/j.joi.2006.07.001 Cabrerizo FJ, 2010, J INFORMETR, V4, P23, DOI 10.1016/j.joi.2009.06.005 Claro J, 2011, SCIENTOMETRICS, V86, P113, DOI 10.1007/s11192-010-0241-5 Daud A, 2013, 2013 16TH INTERNATIONAL MULTI TOPIC CONFERENCE (INMIC), P61, DOI 10.1109/INMIC.2013.6731325 Egghe L, 2008, INFORM PROCESS MANAG, V44, P770, DOI 10.1016/j.ipm.2007.05.003 Hirsch JE, 2005, P NATL ACAD SCI USA, V102, P16569, DOI 10.1073/pnas.0507655102 Jin BH, 2007, CHINESE SCI BULL, V52, P855, DOI 10.1007/s11434-007-0145-9 Katsaros D, 2009, J AM SOC INF SCI TEC, V60, P1051, DOI 10.1002/asi.21040 Ko YM, 2013, J INFORMETR, V7, P404, DOI 10.1016/j.joi.2013.01.002 Kosmulski M., 2006, ISSI NEWSLETTER, V2, P4, DOI [10.1177/01655515211014478, DOI 10.1177/01655515211014478] Rousseau R, 2008, COLLNET J SCIENTOMET, V2, P1, DOI [10.1080/09737766.2008.10700835, 10.1080/09737766.2007.10700824] SALTON G, 1975, COMMUN ACM, V18, P613, DOI 10.1145/361219.361220 Sekercioglu CH, 2008, SCIENCE, V322, P371, DOI 10.1126/science.322.5900.371a Wan J, 2008, P WIS 2008 4 INT C W Wildgaard L, 2014, SCIENTOMETRICS, V101, P125, DOI 10.1007/s11192-014-1423-3 NR 22 TC 17 Z9 18 U1 1 U2 21 PU UNIV MALAYA, FAC COMPUTER SCIENCE & INFORMATION TECH PI KUALA LUMPUR PA UNIV MALAYA, FAC COMPUTER SCIENCE & INFORMATION TECH, KUALA LUMPUR, 50603, MALAYSIA SN 1394-6234 J9 MALAYS J LIBR INF SC JI Malays. J. Libr. Sci. PY 2017 VL 22 IS 1 BP 69 EP 82 DI 10.22452/mjlis.vol22no1.6 PG 14 WC Information Science & Library Science WE Social Science Citation Index (SSCI) SC Information Science & Library Science GA EM5ZG UT WOS:000395392000006 OA Bronze DA 2024-09-05 ER PT J AU Lundberg, L Boldt, M Borg, A Grahn, H AF Lundberg, Lars Boldt, Martin Borg, Anton Grahn, Hakan TI Bibliometric Mining of Research Trends in Machine Learning SO AI LA English DT Article DE bibliometrics; geographic regions; machine learning; research directions; research trends; Scopus database ID REVIEWS; SYSTEM AB We present a method, including tool support, for bibliometric mining of trends in large and dynamic research areas. The method is applied to the machine learning research area for the years 2013 to 2022. A total number of 398,782 documents from Scopus were analyzed. A taxonomy containing 26 research directions within machine learning was defined by four experts with the help of a Python program and existing taxonomies. The trends in terms of productivity, growth rate, and citations were analyzed for the research directions in the taxonomy. Our results show that the two directions, Applications and Algorithms, are the largest, and that the direction Convolutional Neural Networks is the one that grows the fastest and has the highest average number of citations per document. It also turns out that there is a clear correlation between the growth rate and the average number of citations per document, i.e., documents in fast-growing research directions have more citations. The trends for machine learning research in four geographic regions (North America, Europe, the BRICS countries, and The Rest of the World) were also analyzed. The number of documents during the time period considered is approximately the same for all regions. BRICS has the highest growth rate, and, on average, North America has the highest number of citations per document. Using our tool and method, we expect that one could perform a similar study in some other large and dynamic research area in a relatively short time. C1 [Lundberg, Lars; Boldt, Martin; Borg, Anton; Grahn, Hakan] Blekinge Inst Technol, Dept Comp Sci, S-37179 Karlskrona, Sweden. C3 Blekinge Institute Technology RP Lundberg, L (corresponding author), Blekinge Inst Technol, Dept Comp Sci, S-37179 Karlskrona, Sweden. EM lars.lundberg@bth.se; martin.boldt@bth.se; anton.borg@bth.se; hakan.grahn@bth.se OI Boldt, Martin/0000-0002-9316-4842; Borg, Anton/0000-0002-8929-7220 FU Knowledge Foundation in Sweden through the project "Green Clouds-Load prediction and optimization in private cloud systems" FX No Statement Available CR Ahmed S, 2022, RES INT BUS FINANC, V61, DOI 10.1016/j.ribaf.2022.101646 Ajibade S.M., 2023, Int. J. Energy Econ. Policy, V13, P303, DOI 10.32479/ijeep.14832 Ajibade SSM, 2023, CLEAN TECHNOL-BASEL, V5, P497, DOI 10.3390/cleantechnol5020026 Amjad T, 2022, SCIENTOMETRICS, V127, P2773, DOI 10.1007/s11192-022-04344-3 Angarita-Zapata JS, 2021, SENSORS-BASEL, V21, DOI 10.3390/s21248401 [Anonymous], 2022, Clarivate Analytics Research Fronts 2021 Bai Y, 2022, INT J REMOTE SENS, V43, P5534, DOI 10.1080/01431161.2021.1949069 Baminiwatta A, 2022, ASIAN J PSYCHIATR, V69, DOI 10.1016/j.ajp.2021.102986 Bidwe RV, 2022, BIG DATA COGN COMPUT, V6, DOI 10.3390/bdcc6020044 Biju A.K.V.N., 2023, Qual. Quant, P1 Boyack KW, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0018029 Chen K, 2023, NEUROSURG REV, V46, DOI 10.1007/s10143-023-01987-5 Delbrouck JB, 2022, PROCEEDINGS OF THE 60TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2022): PROCEEDINGS OF SYSTEM DEMONSTRATIONS, P23 Diéguez-Santana K, 2023, COMPUT BIOL MED, V155, DOI 10.1016/j.compbiomed.2023.106638 Dindorf C, 2023, INT J ENV RES PUB HE, V20, DOI 10.3390/ijerph20010173 Dong YH, 2018, LECT NOTES COMPUT SC, V10931, P147, DOI 10.1007/978-3-319-96418-8_18 El-Alfy EM, 2020, TECHNOL ANAL STRATEG, V32, P984, DOI 10.1080/09537325.2020.1732912 Ezugwu AE, 2023, ARCH COMPUT METHOD E, V30, P4177, DOI 10.1007/s11831-023-09930-z Feng CY, 2022, FRONT PUBLIC HEALTH, V10, DOI 10.3389/fpubh.2022.949366 Flach P, 2012, Machine learning: the art and science of algorithms that make sense of data, DOI [10.1017/CBO9780511973000, DOI 10.1017/CBO9780511973000] Foreman DI., 2009, Nonparametric Statistics: A Step-by-Step Approach, V1, DOI 10.1002/9781118165881 García-Pineda V, 2023, INFORMATICS-BASEL, V10, DOI 10.3390/informatics10030073 Goodell JW, 2021, J BEHAV EXP FINANC, V32, DOI 10.1016/j.jbef.2021.100577 Gupta B. M., 2020, International Journal of Knowledge Content Development & Technology, V10, P29, DOI 10.5865/IJKCT.2020.10.4.029 Gutiérrez-Salcedo M, 2018, APPL INTELL, V48, P1275, DOI 10.1007/s10489-017-1105-y Herrera-Viedma E, 2016, LECT NOTES ARTIF INT, V9799, P193, DOI 10.1007/978-3-319-42007-3_17 Jain S, 2022, ELECTRONICS-SWITZ, V11, DOI 10.3390/electronics11213621 van Eck NJ, 2011, Arxiv, DOI arXiv:1109.2058 Jappe A, 2020, PLOS ONE, V15, DOI 10.1371/journal.pone.0231735 Kenger ON, 2023, NEURAL COMPUT APPL, V35, P5081, DOI 10.1007/s00521-023-08267-9 Keramatfar A, 2022, MACH LEARN APPL, V10, DOI 10.1016/j.mlwa.2022.100401 Khairi SSM, 2022, HEALTHCARE-BASEL, V10, DOI 10.3390/healthcare10010010 Kitchenham B, 2009, INFORM SOFTWARE TECH, V51, P7, DOI 10.1016/j.infsof.2008.09.009 Li Y, 2020, INT J MACH LEARN CYB, V11, P2807, DOI 10.1007/s13042-020-01152-0 Lou TF, 2023, SYMMETRY-BASEL, V15, DOI 10.3390/sym15020325 Lundberg L, 2023, J BIG DATA-GER, V10, DOI 10.1186/s40537-023-00793-6 Ma L., 2023, P 37 C NEUR INF PROC Markscheffel B, 2021, COLLNET J SCIENTOMET, V15, P365, DOI 10.1080/09737766.2021.1960220 Mazov NA, 2020, SCI TECH INF PROCESS, V47, P221, DOI 10.3103/S0147688220040036 MITCHELL T, 1989, ANNU REV COMPUT SCI, V4, P417 Norvig P.R., 2015, Intelligence SA. A Modern Approach Pande Mandaar, 2020, Science & Technology Libraries, V39, P369, DOI 10.1080/0194262X.2020.1776193 Pedregosa F, 2011, J MACH LEARN RES, V12, P2825 Rani M, 2015, KNOWL-BASED SYST, V90, P33, DOI 10.1016/j.knosys.2015.10.002 Robertson S, 2004, J DOC, V60, P503, DOI 10.1108/00220410410560582 Rose ME, 2019, SOFTWAREX, V10, DOI 10.1016/j.softx.2019.100263 ROSENBLATT F, 1960, P IRE, V48, P301, DOI 10.1109/JRPROC.1960.287598 Rosenblatt F., 1958, P S MECH THOUGHT PRO, VVolume I SAMMET JE, 1982, COMMUN ACM, V25, P13, DOI 10.1145/358315.358322 Sanchez M.V.G., 2017, Investig. Bibl, V31, P293 Sharma B, 2013, SURGERY, V153, P493, DOI 10.1016/j.surg.2012.09.006 Shyam R., 2021, Journal of Advancements in Robotics, V8, P18 Speretta M., 2010, P 3 INT C HUM SYST I, DOI [10.1109/HSI.2010.5514510, DOI 10.1109/HSI.2010.5514510] Su M, 2021, EXPERT SYST APPL, V186, DOI 10.1016/j.eswa.2021.115728 Van Eck N.J., 2014, Measuring Scholarly Impact: Methods and Practice, P285, DOI 10.1007/978-3-319-10377-8_13(InEng.) von Rueden L, 2023, IEEE T KNOWL DATA EN, V35, P614, DOI 10.1109/TKDE.2021.3079836 Wong D., 2018, Technical Services Quarterly, V35, P219, DOI [https://doi.org/10.1080/07317131.2018.1425352, DOI 10.1080/07317131.2018.1425352, 10.1080/07317131.2018.1425352] Xu ZS, 2019, INT J MACH LEARN CYB, V10, P2375, DOI 10.1007/s13042-018-0875-9 Yu DJ, 2020, INT J MACH LEARN CYB, V11, P715, DOI 10.1007/s13042-019-01028-y Zhang BJ, 2022, FRONT GENET, V13, DOI 10.3389/fgene.2022.951939 Zhang JM, 2023, FRONT ONCOL, V13, DOI 10.3389/fonc.2023.1082423 Zhang JZ, 2021, EXPERT SYST APPL, V184, DOI 10.1016/j.eswa.2021.115561 Zhang KC, 2023, J MULTIDISCIP HEALTH, V16, P2155, DOI 10.2147/JMDH.S420709 Zhang Y, 2017, J ASSOC INF SCI TECH, V68, P1925, DOI 10.1002/asi.23814 NR 64 TC 0 Z9 0 U1 5 U2 5 PU MDPI PI BASEL PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND EI 2673-2688 J9 AI-BASEL JI AI PD MAR PY 2024 VL 5 IS 1 BP 208 EP 236 DI 10.3390/ai5010012 PG 29 WC Computer Science, Artificial Intelligence; Computer Science, Interdisciplinary Applications WE Emerging Sources Citation Index (ESCI) SC Computer Science GA MC8C2 UT WOS:001191509100001 OA gold DA 2024-09-05 ER PT J AU Figuerola, CG Marco, FJG Pinto, M AF Figuerola, Carlos G. Garcia Marco, Francisco Javier Pinto, Maria TI Mapping the evolution of library and information science (1978-2014) using topic modeling on LISA SO SCIENTOMETRICS LA English DT Article DE Library and Information Science; LISA; LDA; Evolution; Bibliometric studies ID NORTH-AMERICAN LIBRARY; SEEKING BEHAVIOR; ABSTRACTS; INTERDISCIPLINARITY; RETRIEVAL; FRAMEWORK; TRACKING; ARTICLES; HISTORY; TRENDS AB This paper offers an overview of the bibliometric study of the domain of library and information science (LIS), with the aim of giving a multidisciplinary perspective of the topical boundaries and the main areas and research tendencies. Based on a retrospective and selective search, we have obtained the bibliographical references (title and abstract) of academic production on LIS in the database LISA in the period 1978-2014, which runs to 92,705 documents. In the context of the statistical technique of topic modeling, we apply latent Dirichlet allocation, in order to identify the main topics and categories in the corpus of documents analyzed. The quantitative results reveal the existence of 19 important topics, which can be grouped together into four main areas: processes, information technology, library and specific areas of information application. C1 [Figuerola, Carlos G.] Univ Salamanca, C Espejo S-N, Salamanca 37007, Spain. [Garcia Marco, Francisco Javier] Univ Zaragoza, C Pedro Zerbuna 12, E-50009 Zaragoza, Spain. [Pinto, Maria] Univ Granada, Campus Cartuja S-N, E-18071 Granada, Spain. C3 University of Salamanca; University of Zaragoza; University of Granada RP Figuerola, CG (corresponding author), Univ Salamanca, C Espejo S-N, Salamanca 37007, Spain. EM figue@usal.es RI Marco, Francisco Javier García/K-2316-2013; Figuerola, Carlos G./N-1459-2018 OI Marco, Francisco Javier García/0000-0002-6241-4060; Figuerola, Carlos G./0000-0001-6799-2874 CR Arun R, 2010, ADV KNOWLEDGE DISCOV Aström F, 2002, COLIS4: EMERGING FRAMEWORKS AND METHODS, P185 Åström F, 2007, J AM SOC INF SCI TEC, V58, P947, DOI 10.1002/asi.20567 ATKINS SE, 1988, LIBR TRENDS, V36, P633 Bates MJ, 1999, J AM SOC INFORM SCI, V50, P1043, DOI 10.1002/(SICI)1097-4571(1999)50:12<1043::AID-ASI1>3.0.CO;2-X Bates MJ., 2010, INFORMATION, V3, P2048 Bauer J, 2016, J ASSOC INF SCI TECH, V67, P3095, DOI 10.1002/asi.23568 Blei DM, 2012, COMMUN ACM, V55, P77, DOI 10.1145/2133806.2133826 Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993 Blessinger K, 2007, COLL RES LIBR, V68, P155, DOI 10.5860/crl.68.2.155 Blessinger K, 2010, LIBR INFORM SCI RES, V32, P156, DOI 10.1016/j.lisr.2009.12.007 Buckland M, 2012, J AM SOC INF SCI TEC, V63, P1, DOI 10.1002/asi.21656 Buckland MichaelK., 1998, HIST STUDIES INFORM, P272 Burke C, 2007, ANNU REV INFORM SCI, V41, P3, DOI 10.1002/aris.2007.1440410108 Chang J., 2009, AISTATS Chang YL, 2009, INT CONF ACOUST SPEE, P1689, DOI 10.1109/ICASSP.2009.4959927 Chang YW, 2012, J AM SOC INF SCI TEC, V63, P22, DOI 10.1002/asi.21649 Choo ChunWei., 2002, Information Management for the Intelligent Organization: the Art of Scanning the Environment Chua AYK, 2008, J AM SOC INF SCI TEC, V59, P2156, DOI 10.1002/asi.20929 CRONIN B, 1995, LIBRI, V45, P45, DOI 10.1515/libr.1995.45.1.45 Cronin B, 2008, J INF SCI, V34, P465, DOI 10.1177/0165551508088944 DERVIN B, 1986, ANNU REV INFORM SCI, V21, P3 Dillon A., 2005, Journal of Education for Library and Information Science, V46, P280, DOI 10.2307/40323908 Dillon A., 2007, INFORM RES, V12, P1 Ding Y, 2001, INFORM PROCESS MANAG, V37, P817, DOI 10.1016/S0306-4573(00)00051-0 Furner J, 2015, LIBR TRENDS, V63, P362, DOI 10.1353/lib.2015.0009 GILCHRIST A, 1971, ASLIB PROC, V23, P251, DOI 10.1108/eb050289 GILCHRIST A, 1969, ASLIB PROC, V21, P325, DOI 10.1108/eb050205 Griffiths TL, 2004, P NATL ACAD SCI USA, V101, P5228, DOI 10.1073/pnas.0307752101 HARTER SP, 1992, J AM SOC INFORM SCI, V43, P583, DOI 10.1002/(SICI)1097-4571(199210)43:9<583::AID-ASI1>3.0.CO;2-O Hawkins DT, 2003, J AM SOC INF SCI TEC, V54, P771, DOI 10.1002/asi.10275 Hawkins DT, 2001, J AM SOC INF SCI TEC, V52, P44, DOI 10.1002/1532-2890(2000)52:1<44::AID-ASI1057>3.0.CO;2-6 Hidayat E.Y., 2015, International Journal of Advances in Intelligent Informatics, V1, P132, DOI 10.26555/ijain.v1i3.43 Hjorland B, 2005, J DOC, V61, P130, DOI 10.1108/00220410510578050 HJORLAND B, 1995, J AM SOC INFORM SCI, V46, P400, DOI 10.1002/(SICI)1097-4571(199507)46:6<400::AID-ASI2>3.0.CO;2-Y Hobbs R., 2009, J MEDIA LITERACY ED, V1, P1, DOI [DOI 10.23860/JMLE-1-1-1, https://doi.org/10.23860/jmle-1-1-1, 10.23860/jmle-1-1-1] Hofmann T, 1999, SIGIR'99: PROCEEDINGS OF 22ND INTERNATIONAL CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, P50, DOI 10.1145/312624.312649 INGWERSEN P, 1992, LIBRI, V42, P99, DOI 10.1515/libr.1992.42.2.99 Janssens F, 2006, INFORM PROCESS MANAG, V42, P1614, DOI 10.1016/j.ipm.2006.03.025 Jiang Y., 2012, ACM Conference on Recommender Systems (RecSys), P241, DOI [10.1145/2365952.2366004, DOI 10.1145/2365952.2366004] Julien H, 2011, LIBR INFORM SCI RES, V33, P19, DOI 10.1016/j.lisr.2010.07.014 Kellner D., 2005, Discourse: Studies in the Cultural Politics of Education, V26, P369, DOI 10.1080/01596300500200169 Kim SJ, 2006, LIBR INFORM SCI RES, V28, P548, DOI 10.1016/j.lisr.2006.03.018 Klavans R, 2011, J AM SOC INF SCI TEC, V62, P1, DOI 10.1002/asi.21444 Koufogiannakis D, 2004, J INFORM SCI, V30, P227, DOI 10.1177/0165551504044668 Landauer TK, 1998, DISCOURSE PROCESS, V25, P259, DOI 10.1080/01638539809545028 Lau J., 2007, Information literacy: An international state-of-the-art report Lee YS, 2015, IEEE ICCE, P136, DOI 10.1109/ICCE-TW.2015.7216819 Levitt JM, 2009, SCIENTOMETRICS, V78, P45, DOI 10.1007/s11192-007-1927-1 Li F, 2015, J MED INTERNET RES, V17, DOI 10.2196/jmir.3326 Li W., 2006, ICML, P577, DOI [10.1145/1143844.1143917, 10.1145/] Lipetz BA, 1999, J AM SOC INFORM SCI, V50, P994, DOI 10.1002/(SICI)1097-4571(1999)50:11<994::AID-ASI5>3.0.CO;2-U Liu J., 2003, MISSISSIPPI LIB, V67, P110 Maskeri Girish, 2008, 1st India Software Engineering Conference. ISEC 2008, P113 McCallum A, 2007, J ARTIF INTELL RES, V30, P249, DOI 10.1613/jair.2229 McCallum Andrew Kachites, 2002, MALLET: A machine learning for language toolkit MIKSA FL, 1985, J LIBR HIST PHILOS, V20, P157 Milojevic S, 2011, J AM SOC INF SCI TEC, V62, P1933, DOI 10.1002/asi.21602 Mukherjee B, 2009, SCIENTOMETRICS, V80, P167, DOI 10.1007/s11192-008-2055-2 Nallapati R., 2008, ICWSM Newman D, 2006, LECT NOTES COMPUT SC, V3975, P93 Newman DJ, 2006, J AM SOC INF SCI TEC, V57, P753, DOI 10.1002/asi.20342 Nolin J, 2010, J DOC, V66, P7, DOI 10.1108/00220411011016344 Park T.K., 2010, D LIB MAGAZINE, V16 ProQuest, 2016, LIB INF SCI ABSTR LI Rowley J, 1998, INT J INFORM MANAGE, V18, P359, DOI 10.1016/S0268-4012(98)00025-5 Saracevic T, 1999, J AM SOC INFORM SCI, V50, P1051, DOI 10.1002/(SICI)1097-4571(1999)50:12<1051::AID-ASI2>3.0.CO;2-Z SARACEVIC T., 1995, Ciencia da Informacao, Brasilia, DF, V24, P36 Searing S. E., 2012, LIB COLLECTION DEV P, P88 Shawn G., 2012, J DIGITAL HUMANITIES, V2 Shera J., 1970, SOCIOLOGICAL FDN LIB Sin S.C.J., 2011, J LIB INFORM STUDIES, V9, P27, DOI DOI 10.1002/ASI.21572 Smeaton A. F., 2002, SIGIR Forum, V36, P39, DOI 10.1145/792550.792556 Sugimoto CR, 2011, J AM SOC INF SCI TEC, V62, P185, DOI 10.1002/asi.21435 Sugimoto CR, 2010, J INF SCI, V36, P481, DOI 10.1177/0165551510369992 Swain D. K., 2012, WEBOLOGY, V9, P51 UNESCO, 2013, GLOB MED INF LIT ASS Vakkari P., 1994, ADV LIBRARIANSHIP, V18, P1, DOI DOI 10.1108/S0065-2830(1994)0000018003 Van Den Besselaar P, 2006, SCIENTOMETRICS, V68, P377, DOI 10.1007/s11192-006-0118-9 Wallach HM, 2009, ADV NEURAL INFORM PR, V22, P1973, DOI DOI 10.1007/S10708-008-9161-9 Webber S, 2003, J INFORM SCI, V29, P311, DOI 10.1177/01655515030294007 Weng J., 2010, P 3 ACM INT C WEB SE, P261, DOI [10.1145/1718487.1718520, DOI 10.1145/1718487.1718520] WILSON TD, 1984, SOC SCI INFORM STUD, V4, P197, DOI 10.1016/0143-6236(84)90076-0 Zhang P, 2007, J AM SOC INF SCI TEC, V58, P1934, DOI 10.1002/asi.20660 Zhang P, 2013, J AM SOC INF SCI TEC, V64, P2468, DOI 10.1002/asi.22941 Zhao WZ, 2015, BMC BIOINFORMATICS, V16, DOI 10.1186/1471-2105-16-S13-S8 Zins C, 2007, J AM SOC INF SCI TEC, V58, P335, DOI 10.1002/asi.20507 NR 87 TC 68 Z9 78 U1 6 U2 196 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0138-9130 EI 1588-2861 J9 SCIENTOMETRICS JI Scientometrics PD SEP PY 2017 VL 112 IS 3 BP 1507 EP 1535 DI 10.1007/s11192-017-2432-9 PG 29 WC Computer Science, Interdisciplinary Applications; Information Science & Library Science WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Computer Science; Information Science & Library Science GA FB9ZF UT WOS:000406497200018 DA 2024-09-05 ER PT J AU Tüselmann, H Sinkovics, RR Pishchulov, G AF Tueselmann, Heinz Sinkovics, Rudolf R. Pishchulov, Grigory TI Towards a consolidation of worldwide journal rankings - A classification using random forests and aggregate rating via data envelopment analysis SO OMEGA-INTERNATIONAL JOURNAL OF MANAGEMENT SCIENCE LA English DT Article DE Citation indices; Journal rankings; Journal lists; Research assessment; Data envelopment analysis ID MISSING VALUES; IMPACT FACTOR; DEA; QUALITY; MANAGEMENT; IMPUTATION; EFFICIENCY; DISCRETE; BUSINESS; MODELS AB The question of how to assess research outputs published in journals is now a global concern for academics. Numerous journal ratings and rankings exist, some featuring perceptual and peer-review-based journal ranks, some focusing on objective information related to citations, some using a combination of the two. This research consolidates existing journal rankings into an up-to-date and comprehensive list Existing approaches to determining journal rankings are significantly advanced with the application of a new classification approach, 'random forests', and data envelopment analysis. As a result, a fresh look at a publication's place in the global research community is offered. While our approach is applicable to all management and business journals, we specifically exemplify the relative position of 'operations research, management science, production and operations management' journals within the broader management field, as well as within their own subject domain. (C) 2014 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/3.0/). C1 [Tueselmann, Heinz] Manchester Metropolitan Univ, Sch Business, CIBI, Manchester M15 6BH, Lancs, England. [Sinkovics, Rudolf R.] Univ Manchester, Manchester Business Sch, Ctr Comparat & Int Business Res CIBER, Manchester M15 6PB, Lancs, England. [Sinkovics, Rudolf R.] Lappeenranta Univ Technol, Lappeenranta 53851, Finland. [Pishchulov, Grigory] TU Dortmund Univ, Fac Business Econ & Social Sci, D-44227 Dortmund, Germany. C3 Manchester Metropolitan University; University of Manchester; Lappeenranta-Lahti University of Technology LUT; Dortmund University of Technology RP Sinkovics, RR (corresponding author), Univ Manchester, Manchester Business Sch, Ctr Comparat & Int Business Res CIBER, Booth St West, Manchester M15 6PB, Lancs, England. EM h.tuselman@mmu.ac.uk; Rudolf.Sinkovics@manchester.ac.uk; grigory.pishchulov@tu-dortmund.de RI Sinkovics, Rudolf R./F-4092-2010; Pishchulov, Grigory/M-9405-2016 OI Sinkovics, Rudolf R./0000-0002-4471-5054; Pishchulov, Grigory/0000-0001-8787-1869; Tuselmann, Heinz/0000-0001-6628-1675 FU Economic and Social Research Council (ESRC), UK [RES-075-25-0028]; Leverhulme Trust FX We are grateful for comments received from participants of the session "Learning: Methods and Algorithms II" at the 26th EURO-INFORMS Conference on Operational Research in July 2013. We are also grateful to Editor-in-Chief Professor Ben Lev and three anonymous reviewers for constructive and highly insightful comments on the paper throughout the review process. Financial support from the Economic and Social Research Council (ESRC), UK, who funded part of Rudolf Sinkovics' time [Grant number RES-075-25-0028], is gratefully acknowledged. We also appreciate financial support from the Leverhulme Trust who funded the work of Grigory Pishchulov on this paper during his Leverhulme Overseas Fellowship at Manchester Metropolitan University. CR Adler NJ, 2009, ACAD MANAG LEARN EDU, V8, P72, DOI 10.5465/AMLE.2009.37012181 Albers S, 2009, GER ECON REV, V10, P352, DOI 10.1111/j.1468-0475.2009.00483.x [Anonymous], WORKING PAPER [Anonymous], J CITATION REPORTS [Anonymous], RANKINGS RESHAPING H [Anonymous], ASIAN J BUSINESS RES [Anonymous], ARXIV09124141V1 [Anonymous], MACHINE LEARNING [Anonymous], CITATION COUNTS ARE [Anonymous], PERSPEKTIVEN WIRTSCH [Anonymous], 2008, BETRIEBSWIRTSCHAFT Bancroft DRE, 1999, J BUS VENTURING, V14, P311, DOI 10.1016/S0883-9026(97)00084-0 Bauerly RJ, 2005, J ACAD MARKET SCI, V33, P313, DOI 10.1177/0092070304272052 Baum JAC, 2011, ORGANIZATION, V18, P449, DOI 10.1177/1350508411403531 Benati S, 2011, J CLASSIF, V28, P7, DOI 10.1007/s00357-011-9072-1 Bergstrom CT, 2008, J NEUROSCI, V28, P11433, DOI 10.1523/JNEUROSCI.0003-08.2008 Biau G, 2008, J MACH LEARN RES, V9, P2015 Bollen J, 2009, PLOS ONE, V4, DOI 10.1371/journal.pone.0006022 Bordons M, 2002, SCIENTOMETRICS, V53, P195, DOI 10.1023/A:1014800407876 Boström H, 2008, SEVENTH INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS, PROCEEDINGS, P121, DOI 10.1109/ICMLA.2008.107 Breiman L, 2001, STAT SCI, V16, P199, DOI 10.1214/ss/1009213726 Bruton GD, 2008, J MANAGE STUD, V45, P636, DOI 10.1111/j.1467-6486.2007.00758.x CHARNES A, 1978, EUR J OPER RES, V2, P429, DOI 10.1016/0377-2217(78)90138-8 Clark T, 2007, J MANAGE STUD, V44, P612, DOI 10.1111/j.1467-6486.2007.00701.x Cook WD, 2010, ACCOUNT PERSPECT, V9, P217, DOI 10.1111/j.1911-3838.2010.00011.x Cook WD, 2014, OMEGA-INT J MANAGE S, V44, P1, DOI 10.1016/j.omega.2013.09.004 Cook WD, 1997, EUR J OPER RES, V98, P602, DOI 10.1016/S0377-2217(96)00069-0 Cooper WW, 2007, Data envelopment analysis. A comprehensive text with models, applications, references and DEA-solver software, VSecond, DOI DOI 10.1007/978-0-387-45283-8 Crookes PA, 2010, NURS EDUC TODAY, V30, P420, DOI 10.1016/j.nedt.2009.09.016 DEMPSTER AP, 1977, J ROY STAT SOC B MET, V39, P1, DOI 10.1111/j.2517-6161.1977.tb01600.x Diskin A, 2007, PUBLIC CHOICE, V133, P25, DOI 10.1007/s11127-007-9212-7 DuBois FL, 2000, J INT BUS STUD, V31, P689, DOI 10.1057/palgrave.jibs.8490929 Durrant GB, 2009, INT J SOC RES METHOD, V12, P293, DOI 10.1080/13645570802394003 Farhangfar A, 2008, PATTERN RECOGN, V41, P3692, DOI 10.1016/j.patcog.2008.05.019 Farhangfar A, 2007, IEEE T SYST MAN CY A, V37, P692, DOI 10.1109/TSMCA.2007.902631 Foroughi AA, 2005, OMEGA-INT J MANAGE S, V33, P491, DOI 10.1016/j.omega.2004.07.013 Frey BS, 2010, J APPL ECON, V13, P1, DOI 10.1016/S1514-0326(10)60002-5 Gheyas IA, 2010, NEUROCOMPUTING, V73, P3039, DOI 10.1016/j.neucom.2010.06.021 Glanzel W, 2002, SCIENTOMETRICS, V53, P171, DOI 10.1023/A:1014848323806 Green RH, 1996, EUR J OPER RES, V90, P461, DOI 10.1016/0377-2217(95)00039-9 Halkos GE, 2011, SCIENTOMETRICS, V88, P979, DOI 10.1007/s11192-011-0421-y Hapfelmeier A, 2012, COMPUT STAT DATA AN, V56, P1552, DOI 10.1016/j.csda.2011.09.024 Harzing A-W, 2022, Journal Quality List Hashimoto A, 1997, EUR J OPER RES, V97, P600, DOI 10.1016/S0377-2217(96)00281-0 Hastie T., 2009, The Elements of Statistical Learning Hult G.T., 2009, GlobalEDGE Business Review, V3, P1 Jones MJ, 1996, OMEGA-INT J MANAGE S, V24, P607, DOI 10.1016/0305-0483(96)00038-2 Kao C, 2008, SCIENTOMETRICS, V76, P95, DOI 10.1007/s11192-007-1895-5 Leydesdorff L, 2008, J AM SOC INF SCI TEC, V59, P278, DOI 10.1002/asi.20743 Lim TS, 2000, MACH LEARN, V40, P203, DOI 10.1023/A:1007608224229 Liu JS, 2013, OMEGA-INT J MANAGE S, V41, P893, DOI 10.1016/j.omega.2012.11.004 Liu JS, 2013, OMEGA-INT J MANAGE S, V41, P3, DOI 10.1016/j.omega.2010.12.006 Liu WB, 2011, OMEGA-INT J MANAGE S, V39, P472, DOI 10.1016/j.omega.2010.10.005 Llamazares B, 2009, EUR J OPER RES, V197, P714, DOI 10.1016/j.ejor.2008.06.031 Lovell CAK, 1999, EUR J OPER RES, V118, P46, DOI 10.1016/S0377-2217(98)00338-5 Meredith JR, 2011, OMEGA-INT J MANAGE S, V39, P435, DOI 10.1016/j.omega.2010.10.003 Mingers J, 2007, EUR J INFORM SYST, V16, P303, DOI 10.1057/palgrave.ejis.3000696 Moed HF, 2010, J INFORMETR, V4, P265, DOI 10.1016/j.joi.2010.01.002 Morris H, 2009, MANAGE DECIS, V47, P1441, DOI 10.1108/00251740910995648 Niculescu-Mizil A., 2005, P 22 INT C MACH LEAR, P625 Nielsen SF, 2003, INT STAT REV, V71, P593 Noguchi H, 2002, J COMPUT APPL MATH, V146, P155, DOI 10.1016/S0377-0427(02)00425-9 Osborne Martin J., 1990, Bargaining and Markets Park KS, 2011, J OPER RES SOC, V62, P1771, DOI 10.1057/jors.2010.155 Paul C, 2008, STAT METHOD APPL-GER, V17, P351, DOI 10.1007/s10260-007-0090-4 Rainer RK, 2005, COMMUN ACM, V48, P91, DOI 10.1145/1042091.1042096 Rowlinson M, 2011, ORGANIZATION, V18, P443, DOI 10.1177/1350508411403534 Schafer JL, 2002, PSYCHOL METHODS, V7, P147, DOI 10.1037//1082-989X.7.2.147 Steward MD, 2010, J MARKET EDUC, V32, P75, DOI 10.1177/0273475309344804 Strobl C, 2009, PSYCHOL METHODS, V14, P323, DOI 10.1037/a0016973 Theussl S, 2014, J BUS RES, V67, P998, DOI 10.1016/j.jbusres.2013.08.006 Tse ACB, 2001, J OPER RES SOC, V52, P1144, DOI 10.1057/palgrave.jors.2601203 Twala BETH, 2008, PATTERN RECOGN LETT, V29, P950, DOI 10.1016/j.patrec.2008.01.010 van Buuren S, 2007, STAT METHODS MED RES, V16, P219, DOI 10.1177/0962280206074463 Wang YM, 2010, INT J PROD ECON, V128, P332, DOI 10.1016/j.ijpe.2010.07.032 Whitley R, 2011, MINERVA, V49, P359, DOI 10.1007/s11024-011-9182-2 Willmott H, 2011, ORGANIZATION, V18, P429, DOI 10.1177/1350508411403532 Zhou DN, 2001, IEEE T ENG MANAGE, V48, P479, DOI 10.1109/17.969425 NR 78 TC 37 Z9 37 U1 0 U2 69 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0305-0483 EI 1873-5274 J9 OMEGA-INT J MANAGE S JI Omega-Int. J. Manage. Sci. PD MAR PY 2015 VL 51 BP 11 EP 23 DI 10.1016/j.omega.2014.08.002 PG 13 WC Management; Operations Research & Management Science WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Business & Economics; Operations Research & Management Science GA AW8ZX UT WOS:000346548700002 OA Green Published, hybrid, Green Accepted DA 2024-09-05 ER PT J AU Donlon, JJ AF Donlon, James J. TI The National Artificial Intelligence Research Institutes program and its significance to a prosperous future SO AI MAGAZINE LA English DT Article AB The U.S. National Artificial Intelligence (AI) Research Institutes program is introduced, and its significance is discussed relative to the guiding national AI research and development strategy. The future of the program is also discussed, including, the strategic priorities guiding the potential for new AI Institutes of the future, initiatives for building a broader ecosystem to connect Institutes into a strongly interconnected network, and the building of new AI capacity and fostering partnerships in minority-serving institutions. C1 [Donlon, James J.] Natl Sci Fdn, Alexandria, VA 22314 USA. C3 National Science Foundation (NSF) RP Donlon, JJ (corresponding author), Natl Sci Fdn, Alexandria, VA 22314 USA. EM jdonlon@nsf.gov FU National Science Foundation (NSF); NSF currently funds 20 Institutes; U.S. government; NSF; U.S. Department of Education (ED) Institute of Education Sciences (IES), U.S. Department of Homeland Security (DHS) Science & Technology Directorate (ST); National Institute of Standards and Technology (NIST), Department of Defense (DOD) Office of the Under Secretary of Defense for Research and Engineering (OUSD); Accenture, Amazon; IBM Corporation; Intel Corporation; U.S. Department of Agriculture (USDA) National Institute of Food and Agriculture (NIFA); AI Institutes program: Capital One Financial Corporation; Simons Foundation FX The National Artificial Intelligence Research Institutes Program is a joint government effort and multisector initiative in the U.S. led by the National Science Foundation (NSF). NSF currently funds 20 Institutes, some of them with the support of other U.S. government agencies and U.S. industrial partners, as will be seen throughout this issue. NSF gratefully acknowledges the financial and intellectual contributions of its funding partners in these Institutes: U.S. Department of Education (ED) Institute of Education Sciences (IES), U.S. Department of Homeland Security (DHS) Science & Technology Directorate (S&T), National Institute of Standards and Technology (NIST), Department of Defense (DOD) Office of the Under Secretary of Defense for Research and Engineering (OUSD (R&E)), Accenture, Amazon, Google, IBM Corporation, and Intel Corporation. In addition, under this program, the U.S. Department of Agriculture (USDA) National Institute of Food and Agriculture (NIFA) fully funds an additional five AI Institutes. NSF also thanks the following new partners for joining in the current solicitation in the AI Institutes program: Capital One Financial Corporation and the Simons Foundation. The author thanks Dr. Michael Littman, Division Director of the NSF Division of Information and Intelligent Systems, for his leadership of NSF AI strategy and for his thoughts on the alignment of current Institute activities to the National AI R&D Strategic Plan. CR AI Institutes Virtual Organization, ABOUT US Donlon J, 2023, AI MAG, V44, P345, DOI 10.1002/aaai.12107 National Artificial Intelligence (AI) Research Institutes Accelerating Research, ABOUT US nitrd, NAT ART INT RES DEV nsf, 2022, EXP AI INN CAP BUILD nsf, 2023, ABOUT US nsf, NSF ANN 7 NEW NAT AR NR 7 TC 0 Z9 0 U1 2 U2 2 PU AMER ASSOC ARTIFICIAL INTELL PI MENLO PK PA 445 BURGESS DRIVE, MENLO PK, CA 94025-3496 USA SN 0738-4602 EI 2371-9621 J9 AI MAG JI AI Mag. PD MAR PY 2024 VL 45 IS 1 SI SI BP 6 EP 14 DI 10.1002/aaai.12153 EA FEB 2024 PG 9 WC Computer Science, Artificial Intelligence WE Science Citation Index Expanded (SCI-EXPANDED) SC Computer Science GA LM0L4 UT WOS:001160649700001 OA hybrid DA 2024-09-05 ER PT J AU Pinto, S Albanese, F Dorso, CO Balenzuela, P AF Pinto, Sebastian Albanese, Federico Dorso, Claudio O. Balenzuela, Pablo TI Quantifying time-dependent Media Agenda and public opinion by topic modeling SO PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS LA English DT Article DE Mass media influence; Opinion formation; Topic detection; Agenda-setting ID NEWS; DYNAMICS AB The mass media plays a fundamental role in the formation of public opinion, either by defining the topics of discussion or by making an emphasis on certain issues. Directly or indirectly, people get informed by consuming news from the media. Naturally, two questions appear: What are the dynamics of the agenda and how the people become interested in their different topics? These questions cannot be answered without proper quantitative measures of agenda dynamics and public attention. In this work we study the agenda of newspapers in comparison with public interests by performing topic detection over the news. We define Media Agenda as the distribution of topic's coverage by the newspapers and Public Agenda as the distribution of public interest in the same topic space. We measure agenda diversity as a function of time using the Shannon entropy and differences between agendas using the Jensen-Shannon distance. We found that the Public Agenda is less diverse than the Media Agenda, especially when there is a very attractive topic and the audience naturally focuses only on this one. Using the same methodology we detect coverage bias in newspapers. Finally, it was possible to identify a complex agenda-setting dynamics within a given topic where the least sold newspaper triggered a public debate via a positive feedback mechanism with social networks discussions which install the issue in the Media Agenda. (C) 2019 Elsevier B.V. All rights reserved. C1 [Pinto, Sebastian; Dorso, Claudio O.; Balenzuela, Pablo] Univ Buenos Aires, Fac Ciencias Exactas & Nat, Dept Fis, Av Cantilo S-N,Pabellon 1,Ciudad Univ, RA-1428 Buenos Aires, DF, Argentina. [Dorso, Claudio O.; Balenzuela, Pablo] Consejo Nacl Invest Cient & Tecn, Inst Fis Buenos Aires IFIBA, Av Cantilo S-N,Pabellon 1,Ciudad Univ, RA-1428 Buenos Aires, DF, Argentina. [Albanese, Federico] Consejo Nacl Invest Cient & Tecn, Inst Invest Ciencias Comp ICC, Av Cantilo S-N,Pabellon 1,Ciudad Univ, RA-1428 Buenos Aires, DF, Argentina. C3 University of Buenos Aires; Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET); University of Buenos Aires; Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET); University of Buenos Aires RP Pinto, S (corresponding author), Univ Buenos Aires, Fac Ciencias Exactas & Nat, Dept Fis, Av Cantilo S-N,Pabellon 1,Ciudad Univ, RA-1428 Buenos Aires, DF, Argentina. EM spinto@df.uba.ar OI Balenzuela, Pablo/0000-0002-8581-4892; Pinto, Sebastian/0000-0002-0441-9285 FU UBACyT [20020130100582BA, PICT-201-0215] FX We thank Dr. A. Chernomoretz, Dr. M. Otero, Dra. V. Semeshenko, and Dr. M. Trevisan for bringing us a critical revision of the article. We thanks funding from UBACyT 20020130100582BA and PICT-201-0215. CR Ali A. E., ARXIV180105802 Althaus SL, 2002, COMMUN RES, V29, P180, DOI 10.1177/0093650202029002004 [Anonymous], P 10 INT WORKSHOP MU, DOI DOI 10.1145/1814245.1814249 Baumgartner FR, 2015, POLIT COMMUN, V32, P268, DOI 10.1080/10584609.2014.919974 Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993 Boydstun AE, 2014, POLICY STUD J, V42, P173, DOI 10.1111/psj.12055 Brians CL, 1996, AM J POLIT SCI, V40, P172, DOI 10.2307/2111699 Brun A, 2000, SPIRE 2000: SEVENTH INTERNATIONAL SYMPOSIUM ON STRING PROCESSING AND INFORMATION RETRIEVAL - PROCEEDINGS, P55, DOI 10.1109/SPIRE.2000.878180 González-Avella JC, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0051035 Coleman R, 2007, J MASS COMMUN Q, V84, P495, DOI 10.1177/107769900708400306 Crokidakis N, 2012, PHYSICA A, V391, P1729, DOI 10.1016/j.physa.2011.11.038 Dallmann A., 2015, Proceedings of the ACM Conference on Hypertext Social Media, P133, DOI DOI 10.1145/2700171.2791057 Elejalde E, 2018, PLOS ONE, V13, DOI 10.1371/journal.pone.0193765 Fuglede B, 2004, 2004 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, PROCEEDINGS, P31 Gerber AS, 2009, AM ECON J-APPL ECON, V1, P35, DOI 10.1257/app.1.2.35 Günther E, 2016, DIGIT JOURNAL, V4, P75, DOI 10.1080/21670811.2015.1093270 Guggenheim L, 2015, ANN AM ACAD POLIT SS, V659, P207, DOI 10.1177/0002716215570549 Guo L, 2016, J MASS COMMUN Q, V93, P332, DOI 10.1177/1077699016639231 Hu X, 2016, PR IEEE I C PROGR IN, P248, DOI 10.1109/PIC.2016.7949504 Hua Y, 2003, PARALLEL AND DISTRIBUTED COMPUTING, APPLICATIONS AND TECHNOLOGIES, PDCAT'2003, PROCEEDINGS, P268, DOI 10.1109/PDCAT.2003.1236303 Jacobi C, 2016, DIGIT JOURNAL, V4, P89, DOI 10.1080/21670811.2015.1093271 Kim EHJ, 2016, J INF SCI, V42, P763, DOI 10.1177/0165551515608733 Koziner N., 2013, GLOB MEDIA J, V10 Lazaridou K., B IEEE TCDL, V12 Lee DD, 1999, NATURE, V401, P788, DOI 10.1038/44565 Li WX, 2017, IEEE T MULTIMEDIA, V19, P367, DOI 10.1109/TMM.2016.2616279 Maaten LJP., 2008, J MACH LEARN RES, V9, P2579 Malik MM, 2016, DIGIT JOURNAL, V4, P955, DOI 10.1080/21670811.2015.1133249 McCombs M., 2005, Journalism Studies, V6, P543, DOI [DOI 10.1080/14616700500250438, 10.1080/14616700500250438] MCCOMBS ME, 1972, PUBLIC OPIN QUART, V36, P176, DOI 10.1086/267990 Mitchelstein E, 2016, PALABRA CLAVE, V19, P1027, DOI 10.5294/pacla.2016.19.4.4 Mohr JW, 2013, POETICS, V41, P545, DOI 10.1016/j.poetic.2013.10.001 Moussaïd M, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0084592 Natrella M., 2010, NIST SEMATECH E HDB Neuman WR, 2014, J COMMUN, V64, P193, DOI 10.1111/jcom.12088 Newman D, 2006, LECT NOTES COMPUT SC, V3975, P93 Paul MJ, 2014, PLOS ONE, V9, DOI [10.1371/journal.pone.0103408, 10.1371/currents.outbreaks.90b9ed0f59bae4ccaa683a39865d9117] Pedregosa F, 2011, J MACH LEARN RES, V12, P2825 Pinto S, 2016, PHYSICA A, V458, P378, DOI 10.1016/j.physa.2016.04.024 Po L., 2016, SEMANITIC KEYWORD BA, P62 Rodríguez AH, 2010, PHYS REV E, V82, DOI 10.1103/PhysRevE.82.016111 Sagarzazu I., 2017, REV CIENC POLITICA, V37 Soroka S., 2017, COMMUN RES Törnberg A, 2016, DISCOURSE CONTEXT ME, V13, P132, DOI 10.1016/j.dcm.2016.04.003 Tukey J. W, 1977, Exploratory Data Analysis, V2 Wanta W, 2004, J MASS COMMUN Q, V81, P364, DOI 10.1177/107769900408100209 Xiang-Ying Dai, 2010, 2010 International Conference on Machine Learning and Cybernetics (ICMLC 2010), P3341, DOI 10.1109/ICMLC.2010.5580677 Zunino E., 2010, GLOB MEDIA J, V7 Zunino E, 2016, COMMUN SOC-SPAIN, V29, P235, DOI 10.15581/003.29.4.235-253 NR 49 TC 21 Z9 24 U1 3 U2 43 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS SN 0378-4371 EI 1873-2119 J9 PHYSICA A JI Physica A PD JUN 15 PY 2019 VL 524 BP 614 EP 624 DI 10.1016/j.physa.2019.04.108 PG 11 WC Physics, Multidisciplinary WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Physics GA IL0DK UT WOS:000476966100049 OA Green Submitted DA 2024-09-05 ER PT J AU Ramya, GR Sivakumar, PB AF Ramya, G. R. Bagavathi Sivakumar, P. TI An incremental learning temporal influence model for identifying topical influencers on Twitter dataset SO SOCIAL NETWORK ANALYSIS AND MINING LA English DT Article DE Sentiment analysis; Influential user; Weighted partition around medoids; Artificial cooperative search; Fuzzy deep neural network; Incremental learning logistic regression AB Sentiment analysis explores the views, perceptions and feelings of people concerning entities like subjects, goods, organizations, resources and individuals. The opinion of some people in social network influences the opinion behavior and thoughts of other people. They are known as influential user. In this article, both the sentiment analysis and identification of influential user are proposed. Initially, Twitter data are preprocessed by proposing weighted partition around medoids (WPAM) with artificial cooperative search (WPAM-ACS) which extracts topics from Twitter data through dynamic clustering (DC). For sentiment classification, NLP has been used in many works. The main issue of using NLP for sentiment classification is that many languages do not have the adequate resources to develop NLP models. So, a fuzzy deep neural network (FDNN) is proposed in this paper for sentiment classification, because FDNN effectively handles the uncertainties and noises in tweet data than other state of the arts. Emotional conformity is a metric that refers to how people from an emotional point of view agree with another person. It is given as additional input to FDNN along with the tweets for sentiment classification. Finally, influential users are detected by temporal influential model (TIM) formulated as likelihood function using incremental logistic regression (ILLR) in which user's opinion sequence is considered for identification of influential user. In the experimental results, sentiment analysis is evaluated in terms of precision, recall and F-measure and proved that the proposed DC-FDNN sentiment classification is better than fixed clustering and NLP (FC-NLP)-based sentiment classification. Influential user detection using TIM-ILLR on opinion sequences which are identified by DC-FDNN is evaluated in terms of accuracy and proved that TIM-ILLR is better than other methods such as maximum likelihood estimation (MLE), support vector regression (SVR) and logistic regression (LR). C1 [Ramya, G. R.; Bagavathi Sivakumar, P.] Amrita Sch Engn, Dept Comp Sci & Engn, Coimbatore, Tamil Nadu, India. C3 Amrita Vishwa Vidyapeetham; Amrita Vishwa Vidyapeetham Coimbatore RP Ramya, GR (corresponding author), Amrita Sch Engn, Dept Comp Sci & Engn, Coimbatore, Tamil Nadu, India. EM gr_ramya@cb.amrita.edu; pbsk@cb.amrita.edu OI Saravanakumar GR, Ramya/0000-0001-8184-048X; P, Bagavathi Sivakumar/0000-0002-3763-9583 CR Alharbi ASM, 2019, COGN SYST RES, V54, P50, DOI 10.1016/j.cogsys.2018.10.001 Araque O, 2017, EXPERT SYST APPL, V77, P236, DOI 10.1016/j.eswa.2017.02.002 Chaudhuri A, 2016, ADV INTELL SYST, V464, P249, DOI 10.1007/978-3-319-33625-1_23 Chen CY, 2017, IEEE INTELL SYST, V32, P28, DOI 10.1109/MIS.2017.43 Chong WY, 2014, PROCEEDINGS 2014 4TH INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE WITH APPLICATIONS IN ENGINEERING AND TECHNOLOGY ICAIET 2014, P212, DOI 10.1109/ICAIET.2014.43 Civicioglu P, 2013, INFORM SCIENCES, V229, P58, DOI 10.1016/j.ins.2012.11.013 de Amorim RC., 2012, HEID INT S INT DAT A, P35 Deng Y, 2017, IEEE T FUZZY SYST, V25, P1006, DOI 10.1109/TFUZZ.2016.2574915 Dhanya NM, 2018, L N COMPUT VIS BIOME, V28, P227, DOI 10.1007/978-3-319-71767-8_19 Do HH, 2019, EXPERT SYST APPL, V118, P272, DOI 10.1016/j.eswa.2018.10.003 Eliacik AB, 2018, EXPERT SYST APPL, V92, P403, DOI 10.1016/j.eswa.2017.10.006 Gang Li, 2010, Proceedings 2010 IEEE International Conference on Intelligent Systems and Knowledge Engineering (ISKE 2010), P331, DOI 10.1109/ISKE.2010.5680859 Hasan A, 2018, MATH COMPUT APPL, V23, DOI 10.3390/mca23010011 Heikal M, 2018, PROCEDIA COMPUT SCI, V142, P114, DOI 10.1016/j.procs.2018.10.466 Kao LJ, 2016, IEEE INTCONF FUZZY T, P1 Kauer AU, 2016, EXPERT SYST APPL, V61, P282, DOI 10.1016/j.eswa.2016.05.038 Mohammadi A, 2018, SWARM EVOL COMPUT, V40, P158, DOI 10.1016/j.swevo.2018.02.003 Musto C, 2014, P 8 INT WORKSH INF F Na Jin-Cheon, 2015, Journal of Information Management, V3, P6 Pandey AC, 2017, INFORM PROCESS MANAG, V53, P764, DOI 10.1016/j.ipm.2017.02.004 Shalini L., 2018, INT RES J ENG TECH, V5, P2074 Sun QD, 2016, INT J PATTERN RECOGN, V30, DOI 10.1142/S0218001416590151 Suzuki Y., 2015, Gastroenterology, V3, P37 Tang X, 2015, KNOWL-BASED SYST, V89, P681, DOI 10.1016/j.knosys.2015.09.008 Wagh Rasika, 2018, 2018 Second International Conference on Electronics, Communication and Aerospace Technology (ICECA), P208, DOI 10.1109/ICECA.2018.8474783 Zhao JQ, 2018, IEEE ACCESS, V6, P23253, DOI 10.1109/ACCESS.2017.2776930 Zhao JQ, 2017, IEEE ACCESS, V5, P3008, DOI 10.1109/ACCESS.2017.2672680 NR 27 TC 5 Z9 5 U1 0 U2 12 PU SPRINGER WIEN PI WIEN PA SACHSENPLATZ 4-6, PO BOX 89, A-1201 WIEN, AUSTRIA SN 1869-5450 EI 1869-5469 J9 SOC NETW ANAL MIN JI Soc. Netw. Anal. Min. PD MAR 9 PY 2021 VL 11 IS 1 AR 27 DI 10.1007/s13278-021-00732-4 PG 16 WC Computer Science, Information Systems WE Emerging Sources Citation Index (ESCI) SC Computer Science GA QU7JU UT WOS:000627456300001 DA 2024-09-05 ER PT C AU Li, YX Chen, R Wu, J AF Li, Yuxin Chen, Rui Wu, Juan GP Assoc Computing Machinery TI Research Status, Hotspots and Trends of International AI-assisted Second Language Learning SO PROCEEDINGS OF 2023 6TH INTERNATIONAL CONFERENCE ON EDUCATIONAL TECHNOLOGY MANAGEMENT, ICETM 2023 LA English DT Proceedings Paper CT 6th International Conference on Educational Technology Management (ICETM) CY NOV 03-05, 2023 CL S China Normal Univ, Guangzhou, PEOPLES R CHINA HO S China Normal Univ DE Artificial intelligence; Second language learning; Artificial intelligence-assisted language learning; Bibliometric analysis; Visual analysis ID ENGLISH; TECHNOLOGIES; ELEMENTARY; COMPLEXITY; EDUCATION; TOOL AB The widespread application of artificial intelligence has triggered important changes in second language learning. The study was conducted on 293 research articles cited in the Web of Science database from 2013 to 2022 using the Bibliometrix R-package and CiteSpace software. A comprehensive investigation and analysis in the field of international artificial intelligence-assisted second language learning in the past ten years was made in this study, specifically including the development trend, high-cited authors, high-yield regions, high-impact journals, core article topics and research hot topics. The study found that (1) the overall research in this field shows a booming trend; (2) the field has formed highly influential authors and countries and has formed a relatively concentrated core journal group; and (3) the core article topics focus on combination of corpus linguistics and computational linguistics. The research hotspots include the creation of second language learning situations, the development of multilingual skills, the accurate assessment and diagnosis of second language learning, and the automatic feedback system for second language learning. Based on the analysis of the research results, this paper sorts out the future research trends in this field, and provides reference and inspiration for the research and practice of second language learning. C1 [Li, Yuxin; Chen, Rui] Beijing Normal Univ, Fac Educ, Sch Educ Technol, 19 XinJieKouWai St, Beijing, Peoples R China. [Wu, Juan] Beijing Normal Univ, Adv Innovat Ctr Future Educ, Beishahe West 3rd Rd, Beijing, Peoples R China. C3 Beijing Normal University; Beijing Normal University RP Wu, J (corresponding author), Beijing Normal Univ, Adv Innovat Ctr Future Educ, Beishahe West 3rd Rd, Beijing, Peoples R China. EM 202221010184@mail.bnu.edu.cn; 202121010188@mail.bnu.edu.cn; wuj@bnu.edu.cn OI Wu, Juan/0000-0001-5525-9026 FU Applied Study of Artificial Intelligence in Primary and Secondary School Teaching and Learning [CGEA23009]; BeiJing Office for Education Sciences Planning Project FX This work was supported by the Applied Study of Artificial Intelligence in Primary and Secondary School Teaching and Learning (grant number CGEA23009), supported by BeiJing Office for Education Sciences Planning Project. CR Alexopoulou T, 2017, LANG LEARN, V67, P180, DOI 10.1111/lang.12232 [Anonymous], 2019, PERSP RETHINK REFORM, DOI DOI 10.1007/978-981-15-1104-2 Caruso M, 2019, INT J COMPUT-ASSIST, V9, P58, DOI 10.4018/IJCALLT.2019010104 Chassignol M, 2018, PROCEDIA COMPUT SCI, V136, P16, DOI 10.1016/j.procs.2018.08.233 Cheng X, 2021, MAR GEORESOUR GEOTEC, V39, P1015, DOI 10.1080/1064119X.2020.1795014 Chien YC, 2022, FRONT PSYCHOL, V13, DOI 10.3389/fpsyg.2022.785752 Crossley SA, 2018, ASSESS WRIT, V38, P46, DOI 10.1016/j.asw.2018.06.004 Crossley SA, 2013, SYSTEM, V41, P965, DOI 10.1016/j.system.2013.08.002 Cui YX, 2021, INT J EMERG TECHNOL, V16, P94, DOI 10.3991/ijet.v16i12.23313 Divekar RR, 2022, COMPUT ASSIST LANG L, V35, P2332, DOI 10.1080/09588221.2021.1879162 Dizon G, 2020, LANG LEARN TECHNOL, V24, P16 Gao ML, 2022, INT J EMERG TECHNOL, V17, P140, DOI 10.3991/ijet.v17i08.30561 Golonka EM, 2014, COMPUT ASSIST LANG L, V27, P70, DOI 10.1080/09588221.2012.700315 He M. X., 2022, Technology Enhanced Foreign Language Education, P59 Hsu HL, 2023, INTERACT LEARN ENVIR, V31, P5732, DOI 10.1080/10494820.2021.2016864 Hsu MH, 2023, INTERACT LEARN ENVIR, V31, P4297, DOI 10.1080/10494820.2021.1960864 Hu J. H., 2023, Technology Enhanced Foreign Language Education, P3 Jeon J, 2023, COMPUT ASSIST LANG L, V36, P1338, DOI 10.1080/09588221.2021.1987272 Kourtali NE, 2023, COMPUT ASSIST LANG L, DOI 10.1080/09588221.2023.2171066 Kurdi MZ, 2019, LECT NOTES ARTIF INT, V11626, P148, DOI 10.1007/978-3-030-23207-8_28 Kyle K, 2018, MOD LANG J, V102, P333, DOI 10.1111/modl.12468 Lee H, 2020, LECT NOTES ARTIF INT, V12164, P157, DOI 10.1007/978-3-030-52240-7_29 Liang JC, 2023, INTERACT LEARN ENVIR, V31, P4270, DOI 10.1080/10494820.2021.1958348 Lin CC, 2017, EDUC TECHNOL SOC, V20, P148 Miaomiao Zhang, 2020, International Journal of Information and Education Technology, V10, P394, DOI 10.18178/ijiet.2020.10.5.1396 Murthy S, 2018, IEEE CONF TECHNOL ED, P1, DOI 10.1109/T4E.2018.00009 Nazari N, 2021, HELIYON, V7, DOI 10.1016/j.heliyon.2021.e07014 Pufahl I, 2011, FOREIGN LANG ANN, V44, P258, DOI 10.1111/j.1944-9720.2011.01130.x Qiu J, 2021, INT J CONTIN ENG EDU, V31, P170, DOI 10.1504/IJCEELL.2021.114359 Rachels JR, 2018, COMPUT ASSIST LANG L, V31, P72, DOI 10.1080/09588221.2017.1382536 Rzepka N, 2022, CSEDU: PROCEEDINGS OF THE 14TH INTERNATIONAL CONFERENCE ON COMPUTER SUPPORTED EDUCATION - VOL 2, P131, DOI 10.5220/0010969000003182 Strobl C, 2019, COMPUT EDUC, V131, P33, DOI 10.1016/j.compedu.2018.12.005 Tono Y, 2014, RECALL, V26, P147, DOI 10.1017/S095834401400007X Watkins CP, 2019, LECT NOTES ARTIF INT, V11626, P226, DOI 10.1007/978-3-030-23207-8_42 Xu L.H., 2022, Technology Enhanced Foreign Language Education, P88 Xu XQ, 2023, AM J DISTANCE EDUC, V37, P185, DOI 10.1080/08923647.2022.2044663 NR 36 TC 0 Z9 0 U1 18 U2 18 PU ASSOC COMPUTING MACHINERY PI NEW YORK PA 1601 Broadway, 10th Floor, NEW YORK, NY, UNITED STATES BN 979-8-4007-1667-6 PY 2023 BP 227 EP 234 DI 10.1145/3637907.3637978 PG 8 WC Computer Science, Interdisciplinary Applications; Education & Educational Research; Education, Scientific Disciplines WE Conference Proceedings Citation Index - Science (CPCI-S); Conference Proceedings Citation Index - Social Science & Humanities (CPCI-SSH) SC Computer Science; Education & Educational Research GA BW5FK UT WOS:001159769900033 DA 2024-09-05 ER PT J AU Rodrigues, D Kreif, N Lawrence-Jones, A Barahona, M Mayer, E AF Rodrigues, Daniela Kreif, Noemi Lawrence-Jones, Anna Barahona, Mauricio Mayer, Erik TI Reflection on modern methods: constructing directed acyclic graphs (DAGs) with domain experts for health services research SO INTERNATIONAL JOURNAL OF EPIDEMIOLOGY LA English DT Article DE Causal inference; potential outcomes; directed acyclic graphs; policy evaluation; health services research ID OBSERVATIONAL RESEARCH; SENSITIVITY-ANALYSIS; CAUSAL INFERENCE; KNOWLEDGE AB Directed acyclic graphs (DAGs) are a useful tool to represent, in a graphical format, researchers' assumptions about the causal structure among variables while providing a rationale for the choice of confounding variables to adjust for. With origins in the field of probabilistic graphical modelling, DAGs are yet to be widely adopted in applied health research, where causal assumptions are frequently made for the purpose of evaluating health services initiatives. In this context, there is still limited practical guidance on how to construct and use DAGs. Some progress has recently been made in terms of building DAGs based on studies from the literature, but an area that has received less attention is how to create DAGs from information provided by domain experts, an approach of particular importance when there is limited published information about the intervention under study. This approach offers the opportunity for findings to be more robust and relevant to patients, carers and the public, and more likely to inform policy and clinical practice. This article draws lessons from a stakeholder workshop involving patients, health care professionals, researchers, commissioners and representatives from industry, whose objective was to draw DAGs for a complex intervention-online consultation, i.e. written exchange between the patient and health care professional using an online system-in the context of the English National Health Service. We provide some initial, practical guidance to those interested in engaging with domain experts to develop DAGs. C1 [Rodrigues, Daniela; Lawrence-Jones, Anna; Mayer, Erik] Imperial Coll London, NIHR Imperial Patient Safety Translat Res Ctr, Inst Global Hlth Innovat Dept Surg & Canc, 10th Floor,Queen Elizabeth Queen Mother Wing QEQM, London W2 1NY, England. [Kreif, Noemi] Univ York, Ctr Hlth Econ, York, N Yorkshire, England. [Barahona, Mauricio] Imperial Coll London, Ctr Math Precis Healthcare, Dept Math, London, England. C3 Imperial College London; University of York - UK; Imperial College London RP Rodrigues, D (corresponding author), Imperial Coll London, NIHR Imperial Patient Safety Translat Res Ctr, Inst Global Hlth Innovat Dept Surg & Canc, 10th Floor,Queen Elizabeth Queen Mother Wing QEQM, London W2 1NY, England. EM d.rodrigues@imperial.ac.uk RI Barahona, Mauricio/C-3638-2008; Mayer, Erik/A-6207-2013 OI Barahona, Mauricio/0000-0002-1089-5675; Lawrence-Jones, Anna/0000-0002-7975-1346; Mayer, Erik/0000-0002-5509-4580; Kreif, Noemi/0000-0001-9008-5690; Rodrigues, Daniela/0000-0002-5791-5573 FU National Institute for Health Research (NIHR) Imperial Patient Safety Translational Research Centre [PSTRC-2016-004]; NIHR Imperial Biomedical Research Centre [IS-BRC-1215-20013]; Engineering and Physical Sciences Research Council (EPSRC) Centre for Mathematics of Precision Healthcare [EP/N014529/1]; EPSRC [EP/N014529/1] Funding Source: UKRI FX The research was funded by the National Institute for Health Research (NIHR) Imperial Patient Safety Translational Research Centre (PSTRC-2016-004) and supported by the NIHR Imperial Biomedical Research Centre (IS-BRC-1215-20013) and the Engineering and Physical Sciences Research Council (EPSRC) Centre for Mathematics of Precision Healthcare (EP/N014529/1). The views expressed are those of the authors and not necessarily those of the NHS, the NIHR or the Department of Health and Social Care. CR [Anonymous], 2004, Inference to the Best Explanation Bakhai M, 2021, BMJ-BRIT MED J, V372, DOI 10.1136/bmj.n264 Breskin A, 2019, AM J EPIDEMIOL, V188, P1355, DOI 10.1093/aje/kwz060 Daniel RM, 2016, INT J EPIDEMIOL, V45, P1817, DOI 10.1093/ije/dyw227 Ding P, 2016, EPIDEMIOLOGY, V27, P368, DOI 10.1097/EDE.0000000000000457 Ferguson KD, 2020, INT J EPIDEMIOL, V49, P322, DOI 10.1093/ije/dyz150 Greenland S, 1999, EPIDEMIOLOGY, V10, P37, DOI 10.1097/00001648-199901000-00008 Greenland S, 2002, INT J EPIDEMIOL, V31, P1030, DOI 10.1093/ije/31.5.1030 Hernán MA, 2002, AM J EPIDEMIOL, V155, P176, DOI 10.1093/aje/155.2.176 Hernán MA, 2004, EPIDEMIOLOGY, V15, P615, DOI 10.1097/01.ede.0000135174.63482.43 Hernan MA., 2020, CAUSAL INFERENCE WHA, P75 Hernán MA, 2009, AM J EPIDEMIOL, V170, P959, DOI 10.1093/aje/kwp293 Hernn Miguel A., 2020, Causal inference: What if HILL AB, 1965, P ROY SOC MED, V58, P295, DOI 10.1177/003591576505800503 HOLLAND PW, 1986, J AM STAT ASSOC, V81, P945, DOI 10.2307/2289064 IMBENS G, 2015, CAUSAL INFERENCE STA Krieger N, 2016, INT J EPIDEMIOL, V45, P1852, DOI 10.1093/ije/dyw330 Lawlor DA, 2016, INT J EPIDEMIOL, V45, P1866, DOI 10.1093/ije/dyw314 Neuberg LG, 2003, ECONOMET THEOR, V19, P675, DOI 10.1017/S026646603004109 Neyman J.S., 1923, Statistical Science, V10, P1, DOI DOI 10.1214/SS/1177012031 Pearl J, 2016, J CAUSAL INFERENCE, V4, DOI 10.1515/jci-2016-0021 Robins JM, 2000, EPIDEMIOLOGY, V11, P550, DOI 10.1097/00001648-200009000-00011 Robins JM, 2001, EPIDEMIOLOGY, V12, P313, DOI 10.1097/00001648-200105000-00011 ROTHMAN KJ, 1976, AM J EPIDEMIOL, V104, P587, DOI 10.1093/oxfordjournals.aje.a112335 RUBIN DB, 1974, J EDUC PSYCHOL, V66, P688, DOI 10.1037/h0037350 Sekhon J., 2008, OXFORD HDB POLITICAL Tennant PWG, 2017, J EPIDEMIOL COMMUN H, V71, pA43, DOI 10.1136/jech-2017-SSMAbstracts.86 Tennant PWG, 2021, INT J EPIDEMIOL, V50, P620, DOI 10.1093/ije/dyaa213 Vandenbroucke JP, 2016, INT J EPIDEMIOL, V45, P1776, DOI 10.1093/ije/dyv341 VanderWeele TJ, 2017, ANN INTERN MED, V167, P268, DOI 10.7326/M16-2607 NR 30 TC 10 Z9 11 U1 2 U2 8 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0300-5771 EI 1464-3685 J9 INT J EPIDEMIOL JI Int. J. Epidemiol. PD AUG 10 PY 2022 VL 51 IS 4 BP 1339 EP 1348 DI 10.1093/ije/dyac135 EA JUN 2022 PG 10 WC Public, Environmental & Occupational Health WE Science Citation Index Expanded (SCI-EXPANDED) SC Public, Environmental & Occupational Health GA 3R3HX UT WOS:000812338600001 PM 35713577 OA Green Published, hybrid DA 2024-09-05 ER PT J AU Faupel-Badger, JM Vogel, AL Hussain, SF Austin, CP Hall, MD Ness, E Sanderson, P Terse, PS Xu, X Balakrishnan, K Patnaik, S Marugan, JJ Rudloff, U Ferrer, M AF Faupel-Badger, Jessica M. Vogel, Amanda L. Hussain, Shadab F. Austin, Christopher P. Hall, Matthew D. Ness, Elizabeth Sanderson, Philip Terse, Pramod S. Xu, Xin Balakrishnan, Krishna Patnaik, Samarjit Marugan, Juan J. Rudloff, Udo Ferrer, Marc TI Teaching principles of translational science to a broad scientific audience using a case study approach: A pilot course from the National Center for Advancing Translational Sciences SO JOURNAL OF CLINICAL AND TRANSLATIONAL SCIENCE LA English DT Article DE Education; research training; workforce; online learning; evaluation AB There are numerous examples of translational science innovations addressing challenges in the translational process, accelerating progress along the translational spectrum, and generating solutions relevant to a wide range of human health needs. Examining these successes through an education lens can identify core principles and effective practices that lead to successful translational outcomes. The National Center for Advancing Translational Sciences (NCATS) is identifying and teaching these core principles and practices to a broad audience via online courses in translational science which teach from case studies of NCATS-led or supported research initiatives. In this paper, we share our approach to the design of these courses and offer a detailed description of our initial course, which focused on a preclinical drug discovery and development project spanning academic and government settings. Course participants were from a variety of career stages and institutions. Participants rated the course high in overall value to them and in providing a unique window into the translational science process. We share our model for course development as well as initial findings from the course evaluation with the goal of continuing to stimulate development of novel education activities teaching foundational principles in translational science to a broad audience. C1 [Faupel-Badger, Jessica M.; Vogel, Amanda L.; Hussain, Shadab F.; Hall, Matthew D.; Sanderson, Philip; Terse, Pramod S.; Xu, Xin; Balakrishnan, Krishna; Patnaik, Samarjit; Marugan, Juan J.; Ferrer, Marc] NIH, Natl Ctr Adv Translat Sci, Bldg 10, Bethesda, MD 20892 USA. [Austin, Christopher P.] Flagship Pioneering, Cambridge, MA USA. [Ness, Elizabeth; Rudloff, Udo] NCI, NIH, Bethesda, MD 20892 USA. C3 National Institutes of Health (NIH) - USA; NIH National Center for Advancing Translational Sciences (NCATS); National Institutes of Health (NIH) - USA; NIH National Cancer Institute (NCI) RP Faupel-Badger, JM (corresponding author), Natl Ctr Adv Translat Sci, 6701 Democracy Blvd, Bethesda, MD 20892 USA. EM badgerje@mail.nih.gov RI Hall, Matthew D/B-2132-2010 OI Hussain, Shadab/0000-0003-3837-6225; Faupel-Badger, Jessica/0000-0001-9729-3660 FU National Center for Advancing Translational Sciences (NCATS) Education Branch at the National Institutes of Health; National Cancer Institute [ZIABC011267] Funding Source: NIH RePORTER FX Course development as supported by the National Center for Advancing Translational Sciences (NCATS) Education Branch at the National Institutes of Health. CR Adamo JE, 2015, CTS-CLIN TRANSL SCI, V8, P615, DOI 10.1111/cts.12298 [Anonymous], FDN ADV ED SCI [Anonymous], 2011, ADULT LEARNER Austin CP, 2021, J CLIN TRANSL SCI, V5, DOI 10.1017/cts.2021.400 Austin CP, 2021, CTS-CLIN TRANSL SCI, V14, P1629, DOI 10.1111/cts.13055 Barnes L.B., 1994, TEACHING CASE METHOD Begg MD, 2014, J INVEST MED, V62, P14, DOI 10.2310/JIM.0000000000000021 Boulware LE, 2022, NEW ENGL J MED, V386, P201, DOI 10.1056/NEJMp2112233 Brimacombe Kyle R, 2020, bioRxiv, DOI 10.1101/2020.06.04.135046 Brooks PJ, 2020, HUM GENE THER, V31, P1034, DOI 10.1089/hum.2020.259 Coussens NP, 2019, J PHARMACOL EXP THER, V371, P396, DOI 10.1124/jpet.119.259408 Dodson SE, 2021, J CLIN TRANSL SCI, V5, DOI 10.1017/cts.2020.514 Frankowski KJ, 2018, SCI TRANSL MED, V10, DOI 10.1126/scitranslmed.aap8307 Greenberg-Worisek AJ, 2019, ACAD MED, V94, P213, DOI 10.1097/ACM.0000000000002470 Haendel MA, 2021, J AM MED INFORM ASSN, V28, P427, DOI 10.1093/jamia/ocaa196 Low LA, 2021, NAT REV DRUG DISCOV, V20, P345, DOI 10.1038/s41573-020-0079-3 Meyers FJ, 2012, CTS-CLIN TRANSL SCI, V5, P132, DOI 10.1111/j.1752-8062.2011.00392.x Naar S, 2018, HEALTH PSYCHOL, V37, P1081, DOI 10.1037/hea0000657 National Center for Advancing Translational Sciences, TRANSL SCI PRINC National Institutes of Health, REQ INF RFI ENH CLIN Sakamuru S, 2021, J CHEM INF MODEL, V61, P2675, DOI 10.1021/acs.jcim.1c00439 Sancheznieto F, 2021, J CLIN TRANSL SCI, V6, DOI 10.1017/cts.2021.884 Smyth SS, 2021, J CLIN TRANSL SCI, V6, DOI 10.1017/cts.2021.886 Sorkness CA, 2020, J CLIN TRANSL SCI, V4, P43, DOI 10.1017/cts.2019.424 The National Center for Advancing Translational Sciences, TRANSL SCI TRAIN ED The National Center for Advancing Translational Sciences, CTS-CLIN TRANSL SCI Vogel AL, 2022, EVALUATION ONLINE CA NR 27 TC 3 Z9 3 U1 0 U2 0 PU CAMBRIDGE UNIV PRESS PI CAMBRIDGE PA EDINBURGH BLDG, SHAFTESBURY RD, CB2 8RU CAMBRIDGE, ENGLAND EI 2059-8661 J9 J CLIN TRANSL SCI JI J. Clin. Transl. Sci. PD MAR 21 PY 2022 VL 6 IS 1 AR e66 DI 10.1017/cts.2022.374 PG 8 WC Medicine, Research & Experimental WE Emerging Sources Citation Index (ESCI) SC Research & Experimental Medicine GA 1X3ZZ UT WOS:000807397300001 PM 35754433 OA Green Published, gold DA 2024-09-05 ER PT J AU Zhang, Z Zhang, RX Sun, JD AF Zhang, Zhao Zhang, Ruixin Sun, Jiandong TI Research on the Comprehensive Evaluation Method of Driving Behavior of Mining Truck Drivers in an Open-Pit Mine SO APPLIED SCIENCES-BASEL LA English DT Article DE open-pit mine; mining truck; driving behavior evaluation; principal component analysis AB Trucking is an important production link in most open-pit mines, and its transportation cost accounts for more than 50% of the total production cost of open-pit mines. The quality of the driver's driving behavior plays a crucial role in the fine control of the production cost of transportation. Different from the previous evaluation studies of drivers' driving behavior in open-pit mines, which mainly took safety driving behavior index as a factor variable, this paper puts forward a comprehensive evaluation method of driving behavior of mining truck drivers, which takes both safety driving and transportation cost as factor variables. Taking the mining truck as the research object, firstly, a scientific and reasonable data collection scheme is established, and the data information characterizing the transport state of the mining truck is obtained through data collection and analysis. Secondly, the RKNN algorithm of time series prediction and the wavelet analysis method are used to achieve noise reduction and missing processing of the original data so as to obtain accurate sample data. Then, taking the principal component analysis method as the entry point, through constructing the principal component analysis theory model, the key index system representing safe driving behavior and transportation cost is established to realize the comprehensive evaluation of the driving behavior of mining truck drivers, and the evaluation system of "standard driving", "prudent driving" and "aggressive driving" of mining truck drivers is formulated. The results show that after noise reduction, the accuracy of mining car operation data can be improved by 7 similar to 12%, and the transportation cost can be reduced by about 5% after the driver's operation behavior is standardized. C1 [Zhang, Zhao; Zhang, Ruixin] China Univ Min & Technol Beijing, Sch Energy & Min Engn, Beijing 100083, Peoples R China. [Zhang, Ruixin; Sun, Jiandong] North China Inst Sci & Technol, Mine Safety Inst, Langfang 065201, Peoples R China. [Sun, Jiandong] China Univ Min & Technol, State Key Lab Coal Resources & Safe Min, Beijing 100083, Peoples R China. C3 China University of Mining & Technology; North China Institute Science & Technology; China University of Mining & Technology RP Zhang, Z (corresponding author), China Univ Min & Technol Beijing, Sch Energy & Min Engn, Beijing 100083, Peoples R China. EM zhangzhao821@126.com; zhangrx139@163.com; sjd_xx@126.com RI Zhang, Ruixin/LBI-2317-2024 OI Jiandong, Sun/0000-0002-2909-7956 FU basic scientific research service fee of central universities [3142019007] FX The work was supported by the basic scientific research service fee of central universities(funding number: 3142019007). CR Costa MA, 2023, VEHICLE SYST DYN, V61, P150, DOI 10.1080/00423114.2022.2039724 Denoeux T, 2008, STUD FUZZ SOFT COMP, V219, P737 Du M., 2015, Zhejiang For. Sci. Technol, V35, P47 He C., 2014, Open-Pit Min. Technol, V4, P1, DOI [10.13235/j.cnki.ltcm.2014.04.001, DOI 10.13235/J.CNKI.LTCM.2014.04.001] Hurel J, 2013, VEHICLE SYST DYN, V51, P1422, DOI 10.1080/00423114.2013.804937 Kropiwnicki J, 2019, ENERGY, V182, P1045, DOI 10.1016/j.energy.2019.06.114 Li HL, 2021, MOL PAIN, V17, DOI 10.1177/1744806921990944 Li S., 1992, J. China Univ. Min. Technol, V21, P97 Li W., 2019, Automot. Pract. Technol, V45, P69 Li X., 2022, J. Coal Econ. Res, V42, P48 Liu L., 2019, Comput. Tech. Geophys. Geochem. Explor, V41, P674 Martyushev NV, 2023, MATHEMATICS-BASEL, V11, DOI 10.3390/math11030536 Mei B., 2020, J. New Technol. New Prod. China, V3, P124 Mohammad S., 2022, Cogent Bus. Manag, V9, P2034233 Pang Z., 2022, Research on Prediction of Coal and Gas Outburst with Missing Data Song J., 2022, Mod. Ind. Econ. Inf. Technol, V12, P178 Wang G., 2008, Open Pit Min. Technol, V5, P2728 Wang G., 2022, Eng. Proc, V24, P2 Wang H., 2017, China Coal Ind, V8, P58 Wang LZ, 2023, INT J ENV RES PUB HE, V20, DOI 10.3390/ijerph20010496 Wang Y., 2017, Transp. Constr. Manag, V6, P76 Wu L.N., 2020, Master's Thesis Xian Y., 2016, J. Mod. Food Sci. Technol, V32, P210 Xiong Zhongmin, 2021, Computer Engineering and Applications, V57, P27, DOI 10.3778/j.issn.1002-8331.2101-0187 Ye S., 2017, Electron. Test, V18, P60 Yun He, 2016, IAENG International Journal of Computer Science, V43, P356 Zarkadoula M, 2007, TRANSPORT RES D-TR E, V12, P449, DOI 10.1016/j.trd.2007.05.002 Zhang J., 2019, Research on Prediction of Tooth Degradation State Based on Principal Component Analysis Zhang SC, 2012, J SYST SOFTWARE, V85, P2541, DOI 10.1016/j.jss.2012.05.073 Zhao H., 2016, China Min, V25, P12 Zhao Y., 2016, China Water Transp, V16, P228 Zhu J., 2019, J. Shandong Jiaotong Univ, V28, P8 Zhuang L., 2014, Silicon Val, V7, P170 NR 33 TC 1 Z9 1 U1 4 U2 13 PU MDPI PI BASEL PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND EI 2076-3417 J9 APPL SCI-BASEL JI Appl. Sci.-Basel PD OCT PY 2023 VL 13 IS 20 AR 11597 DI 10.3390/app132011597 PG 17 WC Chemistry, Multidisciplinary; Engineering, Multidisciplinary; Materials Science, Multidisciplinary; Physics, Applied WE Science Citation Index Expanded (SCI-EXPANDED) SC Chemistry; Engineering; Materials Science; Physics GA X6OH0 UT WOS:001099617500001 OA gold DA 2024-09-05 ER PT C AU Hijazi, H Couceiro, R Castelhano, J Cruz, J Castelo-Branco, M de Carvalho, P Madeira, H AF Hijazi, Haytham Couceiro, Ricardo Castelhano, Joao Cruz, Jose Castelo-Branco, Miguel de Carvalho, Paulo Madeira, Henrique GP IEEE TI Intelligent Biofeedback Comprehension Assessment: Theory, Research, and Tools SO 2022 IEEE 21ST MEDITERRANEAN ELECTROTECHNICAL CONFERENCE (IEEE MELECON 2022) SE IEEE Mediterranean Electrotechnical Conference-MELECON LA English DT Proceedings Paper CT 21st IEEE Mediterranean Electrotechnical Conference (IEEE MELECON) CY JUN 14-16, 2022 CL Palermo, ITALY DE Artificial Intelligence; Biofeedback; Cognitive Load; Code Review; Content Comprehension AB The present paper describes the use of nonintrusive biofeedback sensors (e.g., ECG) and eye-tracker to study the cognitive load (CL) associated with two mental tasks: a) content reading and comprehension b) code review. The paper addresses the theoretical underpinnings of the comprehension assessment included in content reading (for understanding) and code review evaluation using biofeedback sensors and Artificial Intelligence (AI) techniques. Moreover, it demonstrates the current research directions that the authors developed in evaluating these two tasks. Finally, the paper presents the design of one of the tools being developed to use biofeedback sensors and AI to evaluate the code review quality by assessing the code reviewer's comprehension and engagement level. C1 [Hijazi, Haytham; Couceiro, Ricardo; Cruz, Jose; de Carvalho, Paulo; Madeira, Henrique] Univ Coimbra, CISUC, Coimbra, Portugal. [Castelhano, Joao] Univ Coimbra, ICNAS, Coimbra, Portugal. [Castelo-Branco, Miguel] Univ Coimbra, ICNAS CIBIT, Coimbra, Portugal. C3 Universidade de Coimbra; Universidade de Coimbra; Universidade de Coimbra RP Hijazi, H (corresponding author), Univ Coimbra, CISUC, Coimbra, Portugal. EM haytham@dei.uc.pt; rcouceir@dei.uc.pt; joaocastelhano@uc.pt; jpcruz@student.dei.uc.pt; mcbranco@fmed.uc.pt; carvalho@dei.uc.pt; henrique@dei.uc.pt RI Castelhano, Joao/I-5090-2019; Hijazi, Haytham/AAZ-9425-2021; Castelo-Branco, Miguel/F-3866-2019; Madeira, Henrique/M-9392-2013 OI Castelhano, Joao/0000-0002-8996-1515; Hijazi, Haytham/0000-0002-4981-3649; Castelo-Branco, Miguel/0000-0003-4364-6373; Madeira, Henrique/0000-0001-8146-4664 FU VALU3S ("Verification and Validation of Automated Systems' Safety and Security") - ECSEL Joint Undertaking (JU) [876852]; FCT (Fundacao para a Ciencia e Tecnologia), Portugal; BASE project [POCI - 01-0145 - FEDER-031581]; Centro de Informatica e Sistemas da Universidade de Coimbra (CISUC) FX The authors would like to thank all volunteers who took part in the controlled experiments. This study was partially supported by the VALU3S ("Verification and Validation of Automated Systems' Safety and Security"), funded by the ECSEL Joint Undertaking (JU) under grant agreement No 876852, and by national funds from partners, including FCT (Fundacao para a Ciencia e Tecnologia), Portugal. The work was also supported by the BASE project, POCI - 01-0145 - FEDER-031581, and also partially supported by the Centro de Informatica e Sistemas da Universidade de Coimbra (CISUC). CR [Anonymous], 2017, THEORY APPL COGNITIV Bacchelli A, 2013, PROCEEDINGS OF THE 35TH INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING (ICSE 2013), P712, DOI 10.1109/ICSE.2013.6606617 Couceiro R, 2019, PROC INT SYMP SOFTW, P93, DOI 10.1109/ISSRE.2019.00019 Couceiro R, 2019, 2019 IEEE/ACM 41ST INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING: NEW IDEAS AND EMERGING RESULTS (ICSE-NIER 2019), P37, DOI 10.1109/ICSE-NIER.2019.00018 Couceiro R, 2019, I C DEPEND SYS NETWO, P638, DOI 10.1109/DSN.2019.00069 Ferstl EC, 2007, NEUROSCI LETT, V427, P159, DOI 10.1016/j.neulet.2007.09.046 Fritz T, 2016, 2016 IEEE 23RD INTERNATIONAL CONFERENCE ON SOFTWARE ANALYSIS, EVOLUTION, AND REENGINEERING (SANER), VOL 5, P66, DOI 10.1109/SANER.2016.107 Fucci D, 2019, INT C PROGRAM COMPRE, P311, DOI 10.1109/ICPC.2019.00050 Gonçales LJ, 2021, INFORM SOFTWARE TECH, V136, DOI 10.1016/j.infsof.2021.106563 Hijazi H, 2021, PROC INT SYMP SOFTW, P476, DOI 10.1109/ISSRE52982.2021.00056 Hijazi H, 2021, IEEE ACCESS, V9, P28393, DOI 10.1109/ACCESS.2021.3058664 Huang AFQ, 2012, PROCEEDINGS 18TH ISSAT INTERNATIONAL CONFERENCE ON RELIABILITY & QUALITY IN DESIGN, P44 Hyrskykari A., 2006, Eyes in attentive interfaces: Experiences from creating iDict, a gaze-aware reading aid Ishida T, 2019, 2019 IEEE/ACM 6TH INTERNATIONAL WORKSHOP ON EYE MOVEMENTS IN PROGRAMMING (EMIP 2019), P26, DOI 10.1109/EMIP.2019.00012 Molléri JS, 2019, PROCEEDINGS OF EASE 2019 - EVALUATION AND ASSESSMENT IN SOFTWARE ENGINEERING, P313, DOI 10.1145/3319008.3319357 Müller SC, 2016, PROC INT CONF SOFTW, P452, DOI 10.1145/2884781.2884803 Müller SC, 2015, 2015 IEEE/ACM 37TH IEEE INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING, VOL 2, P887, DOI 10.1109/ICSE.2015.284 Peitek N, 2021, PROC INT CONF SOFTW, P524, DOI 10.1109/ICSE43902.2021.00056 Peitek N, 2018, EYE MOVEMENTS IN PROGRAMMING (EMIP 2018), DOI 10.1145/3216723.3216725 Reason J., 1991, HUMAN ERROR Rigby Peter, 2012, IEEE Software Sweller J, 2011, PSYCHOL LEARN MOTIV, V55, P37 Vertegaal R, 2003, COMMUN ACM, V46, P30, DOI 10.1145/636772.636794 Winter M, 2020, SENSORS-BASEL, V20, DOI 10.3390/s20164561 Yuan Y., 2014, Fourth International Conference on Learning Analytics and Knowledge, P54 NR 25 TC 0 Z9 0 U1 0 U2 1 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA SN 2158-8481 BN 978-1-6654-4280-0 J9 IEEE MEDITERR ELECT PY 2022 BP 414 EP 419 DI 10.1109/MELECON53508.2022.9843030 PG 6 WC Engineering, Electrical & Electronic WE Conference Proceedings Citation Index - Science (CPCI-S) SC Engineering GA BT8NR UT WOS:000854091100072 DA 2024-09-05 ER PT J AU Jones, S Alam, N AF Jones, Stewart Alam, Nurul TI A machine learning analysis of citation impact among selected Pacific Basin journals SO ACCOUNTING AND FINANCE LA English DT Article DE Machine learning; Citation impact; Pacific Basin accounting journals; Fields of research; Research methodology ID CORPORATE SOCIAL-RESPONSIBILITY; FINANCIAL-REPORTING STANDARDS; ACCOUNTING RESEARCH; REAL-ESTATE; POLITICAL CONNECTIONS; DISCLOSURE COMPLIANCE; EARNINGS DISCLOSURES; CAPITAL STRUCTURE; BOARD DIVERSITY; AUDITOR CHOICE AB This study uses a machine learning approach to identify and predict factors which influence citation impacts across five Pacific Basin journals: Abacus, Accounting & Finance, Australian Journal of Management, Australian Accounting Review and the Pacific Accounting Review from 2008 to 2018. The machine learning results indicate that citation impact is mostly influenced by: length of a journal article; the field of research (particularly environmental accounting), sample size; whether the sample is local or international; choice of research method (e.g., archival vs survey/interview); academic rank of the first author; institutional status of the first author; and number of authors of the article. The results may be useful for predicting future trends in citation impact as well as providing strategies for authors and editors to improve citation impact. C1 [Jones, Stewart; Alam, Nurul] Univ Sydney, Discipline Accounting, Sch Business, Sydney, NSW, Australia. C3 University of Sydney RP Jones, S (corresponding author), Univ Sydney, Discipline Accounting, Sch Business, Sydney, NSW, Australia. EM stewart.jones@sydney.edu.au OI Jones, Stewart/0000-0003-1600-3030; Alam, Nurul/0000-0002-9956-2753 CR Abou-El-Sood H, 2017, PAC ACCOUNT REV, V29, P55, DOI 10.1108/PAR-04-2016-0050 Al-Maskati N, 2015, ACCOUNT FINANC, V55, P627, DOI 10.1111/acfi.12069 Alcock J, 2017, ABACUS, V53, P371, DOI 10.1111/abac.12113 Alcock J, 2017, ABACUS, V53, P273, DOI 10.1111/abac.12102 Appuhami R, 2017, AUST ACCOUNT REV, V27, P400, DOI 10.1111/auar.12170 Arthur N, 2017, AUST ACCOUNT REV, V27, P368, DOI 10.1111/auar.12150 Barker R, 2015, ABACUS, V51, P169, DOI 10.1111/abac.12049 Barth M, 2015, ABACUS, V51, P499, DOI 10.1111/abac.12057 Baum A, 2017, ABACUS, V53, P395, DOI 10.1111/abac.12114 Beck C, 2018, AUST J MANAGE, V43, P517, DOI 10.1177/0312896218771438 Beekes W, 2015, ACCOUNT FINANC, V55, P931, DOI 10.1111/acfi.12088 Benito B, 2015, AUST ACCOUNT REV, V25, P45, DOI 10.1111/auar.12071 Benson K, 2015, AUST J MANAGE, V40, P36, DOI 10.1177/0312896214565121 Bertomeu J, 2016, ABACUS, V52, P221, DOI 10.1111/abac.12076 Bhuiyan MBU, 2018, PAC ACCOUNT REV, V30, P199, DOI 10.1108/PAR-11-2016-0098 Black DE, 2016, ACCOUNT FINANC, V56, P9, DOI 10.1111/acfi.12186 Bond D, 2016, ACCOUNT FINANC, V56, P259, DOI 10.1111/acfi.12194 Bonner SE, 2006, ACCOUNT ORG SOC, V31, P663, DOI 10.1016/j.aos.2005.06.003 Boolaky PK, 2015, AUST ACCOUNT REV, V25, P292, DOI 10.1111/auar.12058 Bornholt G, 2017, ABACUS, V53, P513, DOI 10.1111/abac.12093 Bradbury M, 2015, PAC ACCOUNT REV, V27, P394, DOI 10.1108/PAR-02-2014-0007 Brown LD, 1996, ACCOUNT ORG SOC, V21, P723, DOI 10.1016/0361-3682(96)00012-8 BROWN LD, 1987, ACCOUNT ORG SOC, V12, P193, DOI 10.1016/0361-3682(87)90006-7 BROWN LD, 1985, J ACCOUNTING RES, V23, P84, DOI 10.2307/2490908 Bugeja M, 2017, AUST J MANAGE, V42, P183, DOI 10.1177/0312896215614630 Bugeja M, 2016, ACCOUNT FINANC, V56, P627, DOI 10.1111/acfi.12093 Caglio A, 2017, ABACUS, V53, P1, DOI 10.1111/abac.12098 Cai CX, 2018, ABACUS, V54, P79, DOI 10.1111/abac.12101 Cai SW, 2017, ABACUS, V53, P431, DOI 10.1111/abac.12118 Callen JL, 2016, ABACUS, V52, P5, DOI 10.1111/abac.12070 Capalbo F, 2018, ABACUS, V54, P210, DOI 10.1111/abac.12116 Capezio A, 2016, AUST J MANAGE, V41, P719, DOI 10.1177/0312896215579463 Carey PJ, 2015, PAC ACCOUNT REV, V27, P166, DOI 10.1108/PAR-04-2013-0020 Carson E, 2016, AUST ACCOUNT REV, V26, P226, DOI 10.1111/auar.12124 Carvalho C, 2016, AUST ACCOUNT REV, V26, P376, DOI 10.1111/auar.12129 Carvalho C, 2016, AUST ACCOUNT REV, V26, P4, DOI 10.1111/auar.12073 Chakraborty V, 2014, INT J ACCOUNT INF SY, V15, P122, DOI 10.1016/j.accinf.2014.01.001 Chan KC, 2009, ACCOUNT ORG SOC, V34, P875, DOI 10.1016/j.aos.2008.12.002 Chand P, 2015, AUST ACCOUNT REV, V25, P139, DOI 10.1111/auar.12067 Chapple L, 2015, ACCOUNT FINANC, V55, P965, DOI 10.1111/acfi.12071 Chen DQ, 2016, ABACUS, V52, P374, DOI 10.1111/abac.12080 Chen E, 2016, ACCOUNT FINANC, V56, P217, DOI 10.1111/acfi.12187 Chen JD, 2016, ABACUS, V52, P473, DOI 10.1111/abac.12081 Cheng CL, 2015, PAC ACCOUNT REV, V27, P441, DOI 10.1108/PAR-10-2013-0096 Cheung A, 2018, ACCOUNT FINANC, V58, P787, DOI 10.1111/acfi.12238 Cheung E, 2016, AUST ACCOUNT REV, V26, P162, DOI 10.1111/auar.12087 Chiu V, 2019, INT J ACCOUNT INF SY, V32, P24, DOI 10.1016/Laccinf.2018.11.003 Choi H, 2017, ACCOUNT FINANC, V57, P147, DOI 10.1111/acfi.12143 Choi YS, 2015, ACCOUNT FINANC, V55, P75, DOI 10.1111/acfi.12040 Chong VK, 2015, ACCOUNT FINANC, V55, P105, DOI 10.1111/acfi.12049 Christensen J, 2015, ACCOUNT FINANC, V55, P133, DOI 10.1111/acfi.12055 Christodoulou D, 2018, ABACUS, V54, P154, DOI 10.1111/abac.12121 Christodoulou D, 2016, ABACUS, V52, P176, DOI 10.1111/abac.12073 Chung D, 2015, ABACUS, V51, P437, DOI 10.1111/abac.12052 Clinch G, 2015, AUST J MANAGE, V40, P201, DOI 10.1177/0312896214529441 Clout VJ, 2016, ACCOUNT FINANC, V56, P1017, DOI 10.1111/acfi.12117 Cockcroft S, 2018, AUST ACCOUNT REV, V28, P323, DOI 10.1111/auar.12218 Cortese C, 2018, ABACUS, V54, P247, DOI 10.1111/abac.12137 Danielson MG, 2010, ADV ACCOUNT, V26, P195, DOI 10.1016/j.adiac.2010.05.001 de Villiers C, 2018, ACCOUNT FINANC, V58, P993, DOI 10.1111/acfi.12424 de Villiers C, 2017, ACCOUNT FINANC, V57, P937, DOI 10.1111/acfi.12246 Demski J.S., 2007, ACCOUNT HORIZ, V21, P153, DOI DOI 10.2308/ACCH.2007.21.2.153 Derfuss K, 2015, ABACUS, V51, P238, DOI 10.1111/abac.12046 Devi SS, 2015, AUST ACCOUNT REV, V25, P124, DOI 10.1111/auar.12048 Dollery B, 2017, AUST ACCOUNT REV, V27, P263, DOI 10.1111/auar.12163 Drew J, 2016, AUST ACCOUNT REV, V26, P122, DOI 10.1111/auar.12098 Drew J, 2015, AUST ACCOUNT REV, V25, P28, DOI 10.1111/auar.12072 Dyckman TR, 2016, ABACUS, V52, P319, DOI 10.1111/abac.12078 Dyckman TR, 2015, ABACUS, V51, P511, DOI 10.1111/abac.12058 Easton PD, 2016, ABACUS, V52, P35, DOI 10.1111/abac.12064 Efendi J, 2016, ABACUS, V52, P259, DOI 10.1111/abac.12079 Egan M, 2018, AUST ACCOUNT REV, V28, P356, DOI 10.1111/auar.12191 Evans L, 2015, ABACUS, V51, P1, DOI 10.1111/abac.12040 Fernandez-Feijoo B, 2015, AUST ACCOUNT REV, V25, P346, DOI 10.1111/auar.12104 Flesher DL, 2017, ABACUS, V53, P133, DOI 10.1111/abac.12099 Friedman JH, 2001, ANN STAT, V29, P1189, DOI 10.1214/aos/1013203451 García-Sánchez IM, 2018, AUST ACCOUNT REV, V28, P428, DOI 10.1111/auar.12199 García-Sánchez IM, 2018, AUST ACCOUNT REV, V28, P199, DOI 10.1111/auar.12172 Giedt JZ, 2018, ABACUS, V54, P181, DOI 10.1111/abac.12119 Gippel J, 2015, ABACUS, V51, P143, DOI 10.1111/abac.12048 Gray S, 2017, ACCOUNT FINANC, V57, P429, DOI 10.1111/acfi.12146 Grosse M, 2017, ACCOUNT FINANC, V57, P701, DOI 10.1111/acfi.12176 Guest R, 2017, ABACUS, V53, P304, DOI 10.1111/abac.12110 Habib A, 2017, ACCOUNT FINANC, V57, P465, DOI 10.1111/acfi.12141 Han JL, 2018, ACCOUNT FINANC, V58, P149, DOI 10.1111/acfi.12215 Harvey CR, 2017, J FINANC, V72, P1399, DOI 10.1111/jofi.12530 Hastie T., 2009, Springer series in statistics HECK JL, 1986, ACCOUNT REV, V61, P735 Hellman N, 2016, ACCOUNT FINANC, V56, P113, DOI 10.1111/acfi.12189 Higgins S, 2016, ACCOUNT FINANC, V56, P165, DOI 10.1111/acfi.12190 Hossain S, 2018, ACCOUNT FINANC, V58, P1027, DOI 10.1111/acfi.12242 Islam MA, 2017, AUST ACCOUNT REV, V27, P34, DOI 10.1111/auar.12108 Jackson AB, 2018, ABACUS, V54, P136, DOI 10.1111/abac.12117 Jiang HY, 2015, ABACUS, V51, P279, DOI 10.1111/abac.12047 Jiang Y, 2018, ACCOUNT FINANC, V58, P1063, DOI 10.1111/acfi.12432 Jones S, 2017, ABACUS, V53, P299, DOI 10.1111/abac.12115 Jones S, 2017, REV ACCOUNT STUD, V22, P1366, DOI 10.1007/s11142-017-9407-1 Jones S, 2017, J BUS FINAN ACCOUNT, V44, P3, DOI 10.1111/jbfa.12218 Jones S, 2015, J BANK FINANC, V56, P72, DOI 10.1016/j.jbankfin.2015.02.006 Kabir R, 2017, PAC ACCOUNT REV, V29, P227, DOI 10.1108/PAR-10-2016-0091 Kajüter P, 2017, ABACUS, V53, P28, DOI 10.1111/abac.12105 Kaplan R. S., 2018, 19052 HARV BUS SCH A Kerr J, 2015, PAC ACCOUNT REV, V27, P189, DOI 10.1108/PAR-08-2012-0034 Khlif H, 2017, AUST J MANAGE, V42, P376, DOI 10.1177/0312896216641475 Kim JH, 2018, ABACUS, V54, P524, DOI 10.1111/abac.12141 Kim MH, 2015, AUST J MANAGE, V40, P135, DOI 10.1177/0312896213514237 Krause J, 2017, ABACUS, V53, P240, DOI 10.1111/abac.12100 Lee JE, 2018, ACCOUNT FINANC, V58, P1201, DOI 10.1111/acfi.12241 Linnenluecke MK, 2017, ABACUS, V53, P159, DOI 10.1111/abac.12107 Linnenluecke MK, 2015, ACCOUNT FINANC, V55, P607, DOI 10.1111/acfi.12120 Liu Y, 2017, ACCOUNT FINANC, V57, P1071, DOI 10.1111/acfi.12207 Lobo GJ, 2017, ABACUS, V53, P59, DOI 10.1111/abac.12096 Lodhia S, 2017, AUST ACCOUNT REV, V27, P17, DOI 10.1111/auar.12143 Lowe A, 2005, ACCOUNT ORG SOC, V30, P81, DOI 10.1016/j.aos.2004.05.002 Lu YJ, 2015, PAC ACCOUNT REV, V27, P95, DOI 10.1108/PAR-10-2012-0053 Malone L, 2016, ACCOUNT FINANC, V56, P59, DOI 10.1111/acfi.12204 Mao J, 2016, ABACUS, V52, P441, DOI 10.1111/abac.12087 Marriott L, 2017, PAC ACCOUNT REV, V29, P573, DOI 10.1108/PAR-10-2016-0094 Martínez-Ferrero J, 2015, AUST ACCOUNT REV, V25, P359, DOI 10.1111/auar.12075 McMillan G. S., 2018, INT J BIBLIOMETRICS, V1, P147, DOI [10.1504/IJBBM.2018.092782, DOI 10.1504/IJBBM.2018.092782] McNichols MF, 2018, ABACUS, V54, P227, DOI 10.1111/abac.12128 Merigó JM, 2017, AUST ACCOUNT REV, V27, P71, DOI 10.1111/auar.12109 Neck C, 2015, AUST J MANAGE, V40, P488, DOI 10.1177/0312896215578014 Nguyen TTM, 2017, PAC ACCOUNT REV, V29, P204, DOI 10.1108/PAR-07-2016-0070 Nobes CW, 2016, AUST ACCOUNT REV, V26, P284, DOI 10.1111/auar.12131 Ohlson, 2019, RES DATA ANAL CHOICE Ohlson JA, 2015, ABACUS, V51, P525, DOI 10.1111/abac.12059 Palea V, 2017, AUST ACCOUNT REV, V27, P129, DOI 10.1111/auar.12115 Penman S, 2016, ABACUS, V52, P106, DOI 10.1111/abac.12067 Persson ME, 2018, ABACUS, V54, P36, DOI 10.1111/abac.12123 Pham HNA, 2017, PAC ACCOUNT REV, V29, P152, DOI 10.1108/PAR-08-2016-0077 Pickerd J, 2011, ISS ACCOUNT EDUC, V26, P471, DOI 10.2308/iace-50002 Qu X, 2018, ACCOUNT FINANC, V58, P503, DOI 10.1111/acfi.12223 Rainsbury L, 2015, PAC ACCOUNT REV, V27, P329, DOI 10.1108/PAR-12-2013-0108 Ram R, 2017, ABACUS, V53, P485, DOI 10.1111/abac.12122 Richards G, 2015, PAC ACCOUNT REV, V27, P282, DOI 10.1108/PAR-08-2013-0086 Russell M, 2017, ACCOUNT FINANC, V57, P211, DOI 10.1111/acfi.12154 Safari M, 2016, AUST ACCOUNT REV, V26, P66, DOI 10.1111/auar.12083 Schaltegger S, 2015, AUST ACCOUNT REV, V25, P328, DOI 10.1111/auar.12102 Sinclair R, 2016, PAC ACCOUNT REV, V28, P135, DOI 10.1108/PAR-01-2016-0005 Smith G., 1984, IMPACT SOURCES AUTHO Stent W, 2017, ACCOUNT FINANC, V57, P255, DOI 10.1111/acfi.12145 Strydom M, 2017, AUST J MANAGE, V42, P404, DOI 10.1177/0312896216657579 Su S, 2015, PAC ACCOUNT REV, V27, P28, DOI 10.1108/PAR-06-2012-0022 Sultana N, 2015, ACCOUNT FINANC, V55, P279, DOI 10.1111/acfi.12042 Tan A, 2016, AUST ACCOUNT REV, V26, P45, DOI 10.1111/auar.12081 Tan BS, 2017, AUST ACCOUNT REV, V27, P220, DOI 10.1111/auar.12167 Tan DT, 2017, ACCOUNT FINANC, V57, P597, DOI 10.1111/acfi.12156 Tan KJK, 2017, ABACUS, V53, P319, DOI 10.1111/abac.12111 Tanima FA, 2015, PAC ACCOUNT REV, V27, P466, DOI 10.1108/PAR-05-2013-0049 Tran NH, 2017, PAC ACCOUNT REV, V29, P183, DOI 10.1108/PAR-07-2016-0066 Hoang TC, 2017, AUST ACCOUNT REV, V27, P146, DOI 10.1111/auar.12128 Tsunogaya N, 2015, PAC ACCOUNT REV, V27, P3, DOI 10.1108/PAR-11-2012-0056 Unda LA, 2015, ACCOUNT FINANC, V55, P353, DOI 10.1111/acfi.12114 Uyar A, 2016, AUST ACCOUNT REV, V26, P91, DOI 10.1111/auar.12090 Vafaei A, 2015, AUST ACCOUNT REV, V25, P413, DOI 10.1111/auar.12068 van der Spek M, 2017, ABACUS, V53, P349, DOI 10.1111/abac.12112 Vieira EFS, 2016, AUST ACCOUNT REV, V26, P190, DOI 10.1111/auar.12096 Wei Y, 2017, PAC ACCOUNT REV, V29, P356, DOI 10.1108/PAR-04-2016-0044 Whiting RH, 2015, ACCOUNT FINANC, V55, P575, DOI 10.1111/acfi.12066 Whittington G, 2015, ABACUS, V51, P549, DOI 10.1111/abac.12061 Xie YY, 2015, AUST ACCOUNT REV, V25, P204, DOI 10.1111/auar.12061 Xu S, 2015, AUST J MANAGE, V40, P245, DOI 10.1177/0312896213517894 Xu SC, 2017, ACCOUNT FINANC, V57, P907, DOI 10.1111/acfi.12171 Yuan QB, 2016, ACCOUNT FINANC, V56, P879, DOI 10.1111/acfi.12090 Zeff SA, 2019, ACCOUNT HIST J, V46, P33, DOI 10.2308/aahj-52537 Zhong YX, 2017, AUST ACCOUNT REV, V27, P195, DOI 10.1111/auar.12107 Zhou S, 2017, ABACUS, V53, P94, DOI 10.1111/abac.12104 NR 168 TC 7 Z9 8 U1 2 U2 30 PU WILEY PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0810-5391 EI 1467-629X J9 ACCOUNT FINANC JI Account . Financ. PD DEC PY 2019 VL 59 IS 4 BP 2509 EP 2552 DI 10.1111/acfi.12584 EA NOV 2019 PG 44 WC Business, Finance WE Social Science Citation Index (SSCI) SC Business & Economics GA OI5XB UT WOS:000499394100001 DA 2024-09-05 ER PT C AU Pektas, ST AF Pektas, Sule Tasli BE ACM TI A Systematic Analysis of Machine Learning Studies in Education SO PROCEEDINGS OF THE 15TH INTERNATIONAL CONFERENCE ON EDUCATION TECHNOLOGY AND COMPUTERS, ICETC 2023 LA English DT Proceedings Paper CT 15th International Conference on Education Technology and Computers (ICETC) CY SEP 26-28, 2023 CL Univ Barcelona, Barcelona, SPAIN HO Univ Barcelona DE Machine Learning; Education; Bibliometric Analysis; Keyword Cooccurrence; Network ID ANALYTICS AB Machine learning has been transforming education and changing learning, teaching, and administration processes. However, studies analyzing the existing body of work and emerging research foci are lacking. To fill in the re-search gap, this paper presents a bibliometric analysis of articles on machine learning in education that were indexed byWeb of Science Core Citation In-dices from 1979 to 2023. The study investigates publication patterns (articles per year and journals) and key research areas. A keyword co-occurrence analysis was conducted to identify the clusters of keywords which often co-exist in articles. The analysis revealed six clusters which correspond to the main research themes: profiling and prediction, assessment, intelligent tutoring systems, MOOCs, natural language processing, and prediction in distance learning. It is discussed that the newly emerging and rapidly developing research area focuses merely on applications of the technology, while ethical, pedagogical, socio-cultural, and administrative is-sues regarding machine learning in education need further attention. C1 [Pektas, Sule Tasli] OSTIM Tech Univ, Ankara, Turkiye. C3 Ostim Technical University RP Pektas, ST (corresponding author), OSTIM Tech Univ, Ankara, Turkiye. EM sule.taslipektas@ostimteknik.edu.tr RI Pektas, Sule Tasli/B-9453-2008 OI Pektas, Sule Tasli/0000-0003-0596-6405 CR Andris C, 2013, T GIS, V17, P41, DOI 10.1111/j.1467-9671.2012.01354.x Babic ID, 2017, CROAT OPER RES REV, V8, P443, DOI 10.17535/crorr.2017.0028 Blikstein P, 2014, J LEARN SCI, V23, P561, DOI 10.1080/10508406.2014.954750 Cabada RZ, 2020, INTERACT LEARN ENVIR, V28, P1048, DOI 10.1080/10494820.2018.1558256 Cain W., 2023, P SOC INF TECHN TEAC, P1293 Cetintas S, 2010, IEEE T LEARN TECHNOL, V3, P228, DOI 10.1109/TLT.2009.44 Chen CH, 2021, AUSTRALAS J EDUC TEC, V37, P130, DOI 10.14742/ajet.6116 Çinar A, 2020, EDUC INF TECHNOL, V25, P3821, DOI 10.1007/s10639-020-10128-0 Demeter E, 2022, HIGH EDUC, V84, P589, DOI 10.1007/s10734-021-00790-9 Diodato VirgilP., 2013, Dictionary of Bibliometrics Gutiérrez G, 2018, INT J COMB OPTIM PRO, V9, P26 Hart SA, 2016, MIND BRAIN EDUC, V10, P209, DOI 10.1111/mbe.12109 Hodeghatta Umesh R., 2023, Practical Business Analytics Using R and Python, P541 Hu YH, 2023, INTERACT LEARN ENVIR, DOI [10.1109/ICASSP49357.2023.10096615, 10.1080/10494820.2022.2160467] Jo T., 2021, Machine Learning Foundations, DOI DOI 10.1007/978-3-030-65900-4 Kumar AP, 2024, INT J ARTIF INTELL E, V34, P332, DOI 10.1007/s40593-023-00333-6 Li S, 2021, COMPUT EDUC, V163, DOI 10.1016/j.compedu.2020.104114 Liu JY, 2018, IEEE ACCESS, V6, P19205, DOI 10.1109/ACCESS.2018.2815030 Liu LT, 2023, P NATL ACAD SCI USA, V120, DOI 10.1073/pnas.2204781120 Luan H, 2021, EDUC TECHNOL SOC, V24, P250 Malik Praveen, 2023, P 2023 INT C ART INT, P357, DOI [10.1109/aisc56616.2023.10085154, DOI 10.1109/AISC56616.2023.10085154] Murphy KP, 2012, MACHINE LEARNING: A PROBABILISTIC PERSPECTIVE, P1 Musso MF, 2020, HIGH EDUC, V80, P875, DOI 10.1007/s10734-020-00520-7 Nalimov V. V., 1989, SCIENTOMETRICS, V15, P33 Onan A, 2020, COMPUT APPL ENG EDUC, V28, P117, DOI 10.1002/cae.22179 Pan XL, 2023, INTERACT LEARN ENVIR, V31, P6869, DOI 10.1080/10494820.2022.2052110 Piramuthu S, 2005, IEEE T EDUC, V48, P750, DOI 10.1109/TE.2005.854574 Popenici Stefan A D, 2017, Res Pract Technol Enhanc Learn, V12, P22, DOI 10.1186/s41039-017-0062-8 Rajaraman V, 2014, RESONANCE, V19, P198, DOI 10.1007/s12045-014-0027-9 Ramalingam VV, 2018, J PHYS CONF SER, V1000, DOI 10.1088/1742-6596/1000/1/012030 Shetty B, 2019, Towards data science Spikol D, 2018, J COMPUT ASSIST LEAR, V34, P366, DOI 10.1111/jcal.12263 van Eck NJ, 2010, SCIENTOMETRICS, V84, P523, DOI 10.1007/s11192-009-0146-3 NR 33 TC 0 Z9 0 U1 4 U2 4 PU ASSOC COMPUTING MACHINERY PI NEW YORK PA 1601 Broadway, 10th Floor, NEW YORK, NY, UNITED STATES BN 979-8-4007-0911-1 PY 2023 BP 451 EP 455 DI 10.1145/3629296.3629368 PG 5 WC Computer Science, Interdisciplinary Applications; Education & Educational Research; Education, Scientific Disciplines WE Conference Proceedings Citation Index - Science (CPCI-S); Conference Proceedings Citation Index - Social Science & Humanities (CPCI-SSH) SC Computer Science; Education & Educational Research GA BW5RO UT WOS:001166851900069 DA 2024-09-05 ER PT C AU McCain, K AF McCain, K BE Ingwersen, P Larsen, B TI Explorations in bibliometric historiography: The (re)emergence of neural networks, 1980-1991 SO ISSI 2005: Proceedings of the 10th International Conference of the International Society for Scientometrics and Informetrics, Vols 1 and 2 LA English DT Proceedings Paper CT 10th International Conference of the International-Society-for-Scientometrics-and-Informetrics CY JUL 24-28, 2005 CL Stockholm, SWEDEN ID COLLAGEN RESEARCH C1 Drexel Univ, Coll Informat Sci & Technol, Philadelphia, PA 19104 USA. C3 Drexel University CR Garfield E, 2003, J AM SOC INF SCI TEC, V54, P400, DOI 10.1002/asi.10226 Jain AK, 1996, COMPUTER, V29, P31, DOI 10.1109/2.485891 MCCAIN KW, 1994, KNOWLEDGE, V15, P285, DOI 10.1177/107554709401500303 SMALL H, 1986, SCIENTOMETRICS, V10, P95, DOI 10.1007/BF02016863 SMALL HG, 1977, SOC STUD SCI, V7, P139, DOI 10.1177/030631277700700202 NR 5 TC 0 Z9 0 U1 0 U2 4 PU KAROLINSKA UNIV PRESS AB PI STOCKHOLM PA BOX 200, STOCKHOLM, SE-171 77, SWEDEN BN 91-7140-339-6 PY 2005 BP 668 EP 668 PG 1 WC Computer Science, Information Systems; Information Science & Library Science WE Conference Proceedings Citation Index - Science (CPCI-S); Conference Proceedings Citation Index - Social Science & Humanities (CPCI-SSH) SC Computer Science; Information Science & Library Science GA BDC93 UT WOS:000232759800090 DA 2024-09-05 ER PT J AU Kadiresan, N Singson, M Thiyagarajan, S AF Kadiresan, N. Singson, Mangkhollen Thiyagarajan, S. TI Examining the relationship between academic book citations and Goodreads reader opinion and rating SO ANNALS OF LIBRARY AND INFORMATION STUDIES LA English DT Article DE Sentiment analysis; Web scraping; Citation analysis; Goodreads; Scopus; Google Scholar ID SOCIAL-SCIENCE; IMPACT; REVIEWS; RESEARCHERS; HUMANITIES AB Although the traditional bibliometric citation database is an established academic impact assessment source, in this paper, we examine the role of social media impact on academic books. We identified the highly cited books in Scopus and compared the citations with ratings and reviews on the Goodreads website. R stat was used to extract the data from Goodreads website. We found that there is an uneven distribution of Goodreads rating and reviews. Social science books received the highest number of user's ratings, reviews and citations. The study finds that there is no relationship between citation counts and Goodreads ratings and reviews count in social science books. Although social science books generated the highest number of studies and engagement by the readers, there seems to be no evidence to suggest that this engagement results in an academic citation. Whereas, a correlation was observed between health science books citations and Goodreads overall rating, as with physical science book reviews and Google Scholar citation counts. C1 [Kadiresan, N.; Singson, Mangkhollen] Pondicherry Univ, Dept Lib & Informat Sci, Pondicherry, India. [Thiyagarajan, S.] Pondicherry Univ, Dept Int Business, Pondicherry, India. C3 Pondicherry University; Pondicherry University RP Thiyagarajan, S (corresponding author), Pondicherry Univ, Dept Int Business, Pondicherry, India. EM nkadiresan1992@gmail.com; manglien@gmail.com; sthiyags@yahoo.com OI Singson, Mangkhollen/0000-0001-7671-9335 CR Amudhavalli A, 2008, 4 INT C WEB INF SCI Danell R, 2013, SCIENTOMETRICS, V94, P999, DOI 10.1007/s11192-012-0840-4 FOSTER CL, 1951, ED RES B, P64 Gander JP, 1999, RES HIGH EDUC, V40, P171, DOI 10.1023/A:1018782513285 Garfield, 1996, G7 CONS C THEOR PRAC Gonzalez-Fernandez-Villavicencio N, 2019, Z KATALAN, V32, P143 Gorraiz J, 2014, SCIENTOMETRICS, V98, P841, DOI 10.1007/s11192-013-1176-4 Hancock KJ, 2013, INT STUD PERSPECT, V14, P507, DOI 10.1111/insp.12002 Hartley J, 2006, J AM SOC INF SCI TEC, V57, P1194, DOI 10.1002/asi.20399 Hicks D, 1999, SCIENTOMETRICS, V44, P193, DOI 10.1007/BF02457380 Huang MH, 2008, J AM SOC INF SCI TEC, V59, P1819, DOI 10.1002/asi.20885 Kong XJ, 2019, J INFORMETR, V13, P887, DOI 10.1016/j.joi.2019.07.005 Kousha K, 2007, LIBR INFORM SCI RES, V29, P495, DOI 10.1016/j.lisr.2007.05.003 Kousha K, 2017, J ASSOC INF SCI TECH, V68, P2004, DOI 10.1002/asi.23805 Kousha K, 2011, J AM SOC INF SCI TEC, V62, P2147, DOI 10.1002/asi.21608 Kousha K, 2010, J INFORMETR, V4, P124, DOI 10.1016/j.joi.2009.10.003 Kousha K, 2009, J AM SOC INF SCI TEC, V60, P1537, DOI 10.1002/asi.21085 Kovács B, 2014, ADMIN SCI QUART, V59, P1, DOI 10.1177/0001839214523602 Lindholm-Romantschuk Y, 1991, SCHOLARLY BOOK REVIE Maity SK, 2018, IEEE SYMP COMP COMMU, P1101 NEDERHOF AJ, 1993, RES POLICY, V22, P353, DOI 10.1016/0048-7333(93)90005-3 Peñas CS, 2006, J INF SCI, V32, P480, DOI 10.1177/0165551506066058 Ruths, 2015, 9 INT AAAI C WEB SOC Singson M, 2017, 11 INT CAL 2017, P219 SMALL HG, 1979, SCIENTOMETRICS, V1, P445, DOI 10.1007/BF02016661 SMITH LC, 1981, LIBR TRENDS, V30, P83 Sudhier Pillai K. G., 2007, ANN LIB INFORM STUDI, V54, P90 Tang R, 2008, COLL RES LIBR, V69, P356, DOI 10.5860/crl.69.4.356 Van den Brink M., 2006, Employee Relations, V28, P523, DOI DOI 10.1108/01425450610704470 Vaughan L, 2005, J AM SOC INF SCI TEC, V56, P1075, DOI 10.1002/asi.20199 Wang K, 2019, J INFORMETR, V13, P874, DOI 10.1016/j.joi.2019.07.003 Zhou QQ, 2016, SCIENTOMETRICS, V107, P1435, DOI 10.1007/s11192-016-1930-5 Zhu, 2013, MULTIDOCUMENT SUMMAR Zuccala AA, 2015, ASLIB J INFORM MANAG, V67, P320, DOI 10.1108/AJIM-11-2014-0152 NR 34 TC 1 Z9 1 U1 2 U2 7 PU NATL INST SCIENCE COMMUNICATION-NISCAIR PI NEW DELHI PA DR K S KRISHNAN MARG, PUSA CAMPUS, NEW DELHI 110 012, INDIA SN 0972-5423 EI 0975-2404 J9 ANN LIBR INF STUD JI Ann. Libr. Inf. Stud. PD DEC PY 2020 VL 67 IS 4 BP 215 EP 221 DI 10.56042/alis.v67i4.32597 PG 7 WC Information Science & Library Science WE Emerging Sources Citation Index (ESCI) SC Information Science & Library Science GA PR0VD UT WOS:000606955800002 OA gold DA 2024-09-05 ER PT C AU Lynch, G AF Lynch, Grace BE Balcaen, P TI Increasing Student Participation and Success in Online Education SO PROCEEDINGS OF THE 6TH INTERNATIONAL CONFERENCE ON E-LEARNING LA English DT Proceedings Paper CT 6th International Conference on e-Learning CY JUN 27-28, 2011 CL Univ British Columbia Okanagan, Kelowna, CANADA HO Univ British Columbia Okanagan DE eLearning; online learning excellence; open access; student retention; success AB This short presentation will outline the work in progress for the establishment of a Centre of Online Learning Excellence (COLE) for the Open Universities Australia consortium and outcomes from initiatives to improve student participation and success through high quality learning environments. Open Universities Australia (OUA) provides access to 100 courses and 1000 units via twenty different Australian education providers and is Australia's fastest growing online education service with over 130,000 students having studied since its inception in 1993. By allowing potential candidates to make application to study without the provision of an entry score or previous study history, OUA endeavours to remove many of the barriers to university education such as distance, time and entry requirements. COLE is in a position to recommend, manage and evaluate for wider implementation trials across Providers in areas such as new assessment technologies, new ways of engaging with students and their mobile devices for learning and early alert systems for students at risk. OUA's history of harnessing expertise within its own community and in the general community provides a particularly advantageous position for providing forward-thinking, innovative and meaningful research and development. OUA has developed a strong understanding and solid expertise base in aspects relating to distance online: learning; teaching (pedagogical); delivery (educational technology); and instructional design issues. The five main areas of work that COLE undertakes are: ELearning research; educational and technological advice and consultancy; Professional Development; project management and educational design and educational design, development and production of units and resources. C1 [Lynch, Grace] Open Univ Australia, Melbourne, Vic, Australia. C3 Open Universities Australia EM grace.lynch@open.edu.au CR [Anonymous], 2009, ECONOMIST 1230 De Fazio T., 2007, THESIS MONASH U MELB Herrington J., 2009, New technologies, new pedagogies: Mobile learning in higher education, P138, DOI DOI 10.11645/4.1.1478 Lea M.R., 2000, STUDENT WRITING HIGH, P32 LYNCH G, 2010, P WORLD C ED MULT HY, P2040 Lynch G., 2010, CURRICULUM TECHNOLOG Shank P., 2010, LEARNING SOLUTI 0210 Templer A., 2010, AUSTRALIAN NR 8 TC 0 Z9 3 U1 0 U2 13 PU ACAD CONFERENCES LTD PI NR READING PA CURTIS FARM, KIDMORE END, NR READING, RG4 9AY, ENGLAND BN 978-1-908272-04-1 PY 2011 BP 500 EP 504 PG 5 WC Education & Educational Research WE Conference Proceedings Citation Index - Social Science & Humanities (CPCI-SSH) SC Education & Educational Research GA BBT89 UT WOS:000308137800059 DA 2024-09-05 ER PT C AU Ramneet Gupta, D Madhukar, M AF Ramneet Gupta, Deepali Madhukar, Mani GP IEEE TI Bibliometric Analysis of MOOC using Bibliometrix Package of R SO PROCEEDINGS OF 2020 6TH IEEE INTERNATIONAL WOMEN IN ENGINEERING (WIE) CONFERENCE ON ELECTRICAL AND COMPUTER ENGINEERING (WIECON-ECE 2020) LA English DT Proceedings Paper CT 6th IEEE International Women in Engineering (WIE) Conference on Electrical and Computer Engineering (WIECON-ECE) CY DEC 26-27, 2020 CL Bhubaneswar, INDIA DE MOOC; MOOCS; E-learning; Artificial Intelligence; Machine Learning AB As a growing academic approach, MOOCs have gained widespread attention through academic courses. There are many MOOC platforms available like Udemy, Udacity, Coursera, Swayam, Khan Academy and EdX. All these platforms provide free as well as paid courses. These types of certifications help in boosting the career of the learners. A strong recommendation system is the need of the day for these types of platforms that will guide learners in selecting the appropriate course according to their levels. In this paper, 1511 journal articles have been selected through the Scopus database from 2012 to 2020. This study uses a bibliometric analysis method to visualize the knowledge network analysis with the help of the Biblioshiny tool of R software. C1 [Ramneet; Gupta, Deepali] Chitkara Univ, Chitkara Univ Inst Engn & Technol, Chandigarh, Punjab, India. [Madhukar, Mani] Univ Relat, IBM India Private Ltd, Greater Noida, India. C3 Chitkara University, Punjab RP Ramneet (corresponding author), Chitkara Univ, Chitkara Univ Inst Engn & Technol, Chandigarh, Punjab, India. EM ramneet@chitkara.edu.in; deepali.gupta@chitkara.edu.in; manimad9@in.ibm.com RI Gupta, Deepali/HJY-4480-2023 OI Gupta, Deepali/0000-0002-3207-5248; , Dr. Ramneet/0000-0002-4066-5416 CR Ayodele TO., 2010, NEW ADV MACHINE LEAR, V3, P19, DOI DOI 10.5772/9385 Conache Maria, 2016, Informatica Economica, V20, P1, DOI 10.12948/issn14531305/20.2.2016.01 Ding MC, 2019, PROCEEDINGS OF THE 9TH INTERNATIONAL CONFERENCE ON LEARNING ANALYTICS & KNOWLEDGE (LAK'19), P145, DOI 10.1145/3303772.3303794 Funieru LM, 2016, INFORM EC, V20 Gamage D, 2020, INT J EMERG TECHNOL, V15, P161, DOI 10.3991/ijet.v15i08.12493 Korableva O, 2019, 2019 INTERNATIONAL CONFERENCE ON BIG DATA AND EDUCATION (ICBDE 2019), P26, DOI 10.1145/3322134.3322139 Lebron D, 2015, PROCEEDINGS OF THE 2015 INTERNATIONAL CONFERENCE ON COLLABORATION TECHNOLOGIES AND SYSTEMS, P167, DOI 10.1109/CTS.2015.7210417 Michael J, 2006, ADV PHYSIOL EDUC, V30, P159, DOI 10.1152/advan.00053.2006 Nawrot I, 2014, WWW'14 COMPANION: PROCEEDINGS OF THE 23RD INTERNATIONAL CONFERENCE ON WORLD WIDE WEB, P1077, DOI 10.1145/2567948.2580054 Nieto Y, 2019, SOFT COMPUT, V23, P4145, DOI 10.1007/s00500-018-3064-6 Oztekin A, 2013, DECIS SUPPORT SYST, V56, P63, DOI 10.1016/j.dss.2013.05.003 Pelet J.-E., 2019, ADVANCED WEB APPL PR, P20, DOI DOI 10.4018/978-1-5225-7435-4.CH002 Ruipérez-Valiente JA, 2020, LAK20: THE TENTH INTERNATIONAL CONFERENCE ON LEARNING ANALYTICS & KNOWLEDGE, P518, DOI 10.1145/3375462.3375482 Saier MH, 2007, WATER AIR SOIL POLL, V181, P1, DOI 10.1007/s11270-007-9372-6 Sideris D, 2015, EDULEARN PROC, P5543 Sinha E., 2019, INT J ED DEV USING I, V15, P5 Uskov VL, 2019, IEEE GLOB ENG EDUC C, P1370, DOI [10.1109/educon.2019.8725237, 10.1109/EDUCON.2019.8725237] Zhu J, 2017, EFFECTIVE FRAMEWORKS NR 18 TC 0 Z9 0 U1 2 U2 31 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA BN 978-1-6654-1917-8 PY 2020 BP 169 EP 173 DI 10.1109/WIECON-ECE52138.2020.9397952 PG 5 WC Computer Science, Theory & Methods; Engineering, Electrical & Electronic WE Conference Proceedings Citation Index - Science (CPCI-S) SC Computer Science; Engineering GA BR8DZ UT WOS:000671104100039 DA 2024-09-05 ER PT C AU Zhou, W Wang, SK Lao, DX AF Zhou, Wei Wang, Shuke Lao, Danxue GP IEEE TI The field intersection of machine learning and intelligent decision SO 2023 35TH CHINESE CONTROL AND DECISION CONFERENCE, CCDC SE Chinese Control and Decision Conference LA English DT Proceedings Paper CT 35th Chinese Control and Decision Conference (CCDC) CY MAY 20-22, 2023 CL Yichang, PEOPLES R CHINA DE machine learning; intelligent decision; bibliometric analysis; development track AB Machine learning is an important tool for intelligent decision, the effective combination of the two is the current research hotspot, but fewer scholars have analyzed their development context. This paper provides a comprehensive analysis of the whole context from a scientometric perspective, aiming to help researchers understand the development of the two fields as they collide, and thus create new research results. We retrieved 2,218 documents from the Web of Science (WoS) database from 1990 to 2021 and reveals the research hotspot and research frontiers of the subject in the main path longitudinal comparison of the main path of the four sub-periods, which teases the research direction and its evolution route in the two fields. It is found that the field shows a trend of machine learning algorithms moving from single to multiple directions, and the application areas of intelligent decision are gradually widening. C1 [Zhou, Wei; Wang, Shuke; Lao, Danxue] Yunnan Univ Finance & Econ, Sch Finance, Kunming, Yunnan, Peoples R China. C3 Yunnan University of Finance & Economics RP Zhou, W (corresponding author), Yunnan Univ Finance & Econ, Sch Finance, Kunming, Yunnan, Peoples R China. EM zw453@163.com; lynnwang_9@163.com; 15123668128@163.com RI Wang, Shuke/AAH-4843-2021 FU Natural Science Foundation of China [72071176]; Philosophy and Social Science Innovation Team Project of Yunnan Province [2022CX01] FX This work was supported by the Natural Science Foundation of China (No. 72071176) and the Philosophy and Social Science Innovation Team Project of Yunnan Province (No. 2022CX01) CR AGhamdi M. A., ARABIAN J SCI ENG Al-Omari M., J NETWORK SYSTEMS MA AlHares EF. T., SYMMETRY Ali M., AGR FOREST METEOROLO Anandkumar A., ANN STAT Ansari S., 2013, INT C INF SCI APPL I, P1, DOI DOI 10.1109/ICISA.2013.6579446 Borzemski L., CYBERNETICS SYSTEMS Chen J. N. Chen. S. Y., IEEE INTERNET THINGS Cheng M. Y., INT J INFORM TECHNOL Cheng M. Y., AUTOMATION CONSTRUCT Cui F., AUSTR ENV MONITORING Cui L. Z., INT J MACHINE LEARNI Famili A., J INTELLIGENT ROBOTI Freedman R., P 20 ANN C COGN SCI Gaham M, 2009, 2009 XXII INTERNATIONAL SYMPOSIUM ON INFORMATION, COMMUNICATION AND AUTOMATION TECHNOLOGIES, P90 Goudarzi S., APPL SOFT COMPUTING Hasan M. B., WIRELESS PERSONAL CO Jamali M. R., NEURAL COMPUTING APP Jiang C. X., IEEE WIRELESS COMMUN Kaushik A. K., ACS APPL BIOMATERIAL Khashman A., J INFORM SCI ENG Khashman A., IEEE T NEURAL NETWOR Khashman A., J MULTIPLE VALUED LO Kim J. H., P 22 ANN C COGN SCI Kouadio L., COMPUTERS ELECT AGR Lei L., IEEE COMMUNICATIONS Liang L., IEEE INTERNET THINGS Liu M. Q., IEEE T IND INFORM Mamseni T., GEODERMA Marchesane M.G., ADV PRODUCTION MANAG Mjolsness E., SCIENCE Nakasuka S., T JAPAN SOC AERONAUT Nogami J., CONTROL ENG PRACTICE Pawlak Z., INFORM SCI Priore P., COMPUTERS IND ENG Qi Q, IEEE T VEHICULAR TEC Sarker I. H., MOBILE NETWORKS APPL Sarker I.H., J BIG DATA Sarker IH, INTERNET OF THINGS Sarker IH., SYMMETRY Shan T., J DENT RES Sharma A., IEEE ACCESS Shaw M. J, DECISION SUPPORT SYS Shaw M. J., IIE T Shiue Y. R., IEEE ACCESS Shiue Y. R., ROBOTICS COMPUTER IN Sizilio G. R. M. A., BIOMEDICAL ENG ONLIN Thomas G., INVESTIGATIVE OPHTHA Wang G. Y., P SPIE Wang G. Y., DATA MINING KNOWLEDG Weckman G. R., J INTELLIGENT MANUFA Yaseen Z. M., 2004, CHIN CONT DECIS CONF Yu H., P SOC PHOT INSTR ENG Zatwarnicki K., LECT NOTES COMPUTER Zhang H. X., CYBERNETICS SYSTEMS Zhang H. X., J INTELLIGENT FUZZY Zhou X. K., IEEE ACM T COMPUTATI NR 57 TC 0 Z9 0 U1 3 U2 3 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA SN 1948-9439 BN 979-8-3503-3472-2 J9 CHIN CONT DECIS CONF PY 2023 BP 3952 EP 3957 DI 10.1109/CCDC58219.2023.10327500 PG 6 WC Automation & Control Systems; Operations Research & Management Science WE Conference Proceedings Citation Index - Science (CPCI-S) SC Automation & Control Systems; Operations Research & Management Science GA BW2HE UT WOS:001116704304030 DA 2024-09-05 ER PT J AU Siemens, G Matheos, K AF Siemens, George Matheos, Kathleen TI Systemic Changes in Higher Education SO IN EDUCATION LA English DT Article DE higher education; freedom of learners; open access; online learning AB A power shift is occurring in higher education, driven by two trends: (a) the increased freedom of learners to access, create, and re-create content; and (b) the opportunity for learners to interact with each other outside of a mediating agent. Information access and dialogue, previously under control of the educator, can now be readily fulfilled by learners. When the essential mandate of universities is buffeted by global, social/political, technological, and educational change pressures, questions about the future of universities become prominent. The integrated university faces numerous challenges, including a decoupling of research and teaching functions. Do we still need physical classrooms? Are courses effective when information is fluid across disciplines and subject to continual changes? What value does a university provide society when educational resources and processes are open and transparent? C1 [Siemens, George] Athabasca Univ, Athabasca, AB, Canada. [Matheos, Kathleen] Univ Manitoba, Winnipeg, MB, Canada. C3 Athabasca University; University of Manitoba RP Siemens, G (corresponding author), Athabasca Univ, Athabasca, AB, Canada. RI Siemens, George/E-9682-2019 OI Siemens, George/0000-0002-9567-9794 CR Alderman C., 2009, The Bologna process for U.S. eyes: Re-learning higher education in the age of convergence Allen E.I., 2008, Staying the course: Online education in the United States, 2008 [Anonymous], 2005, CAMBRIDGE HDB LEARNI [Anonymous], 1962, The Structure of Scientific Revolutions [Anonymous], 2008, DAILY Archer W., 1999, CAN J UNIV CONTIN ED, V25, P13 Argyle A.W., 1974, The Classical Journal, V69, P348 Atkins D.E., 2007, A review of the open educational resources (OER) movement: Achievements, challenges, and new opportunities Bates A.W., 2000, MANAGING TECHNOLOGIC Bowman I., 1971, DESIGN SCHOLARSHIP Boyer E. L., 1990, SCHOLARSHIP RECONSID Boyer EL, 1996, QUEST, V48, P129, DOI 10.1080/00336297.1996.10484184 Canadian Council on Learning, 2008, STAT LEARN CAN LEARN Carey K., 2009, WHAT COLL SHOULD LEA Centre for Educational Research and Innovation, 2008, HIGH ED 2030, V1 Centre for Educational Research and Innovation, 2006, 4 FUT SCEN HIGH ED Centre for Educational Research and Innovation, 2008, TRENDS SHAP ED Christensen C.M., 2000, INNOVATORS DILEMMA N Connectivity Scorecard, CAN CONN SCOR POP DE Daniel J., 2006, TECTONIC SHIFT GLOBA Daniel J., 2009, Breaking Higher Education's Iron Triangle: Access, Cost, and Quality DAVID PA, 1990, AM ECON REV, V80, P355 Davis A., 2004, INT C OP DIST ED HON Douglass J.A., 2008, COLL VS UNEMPLOYMENT Downes S., 2009, FUTURE LEARNING 10 Y ERSKINE A, 1995, GREECE ROME, V42, P38, DOI 10.1017/S0017383500025213 Eskelsen G., 2009, The digital economy fact book, V10th Everett R., 2009, BUILDING BETTER FUTU Frank D.J., 2006, RECONSTRUCTING U WOR Freedman G., 2008, Unlocking the global education imperative: Core challenges and critical issues GARFIELD E, 1972, SCIENCE, V178, P471, DOI 10.1126/science.178.4060.471 Gibbons M., 2002, GLOBALISATION WHAT I Goldman L., 1996, DONS WORKERS OXFORD Gourley B., 2008, SCHOLARSHIP DIGITAL Halsall P., 1998, MODERN HIST SOURCEBO Heller-Roazen D, 2002, OCTOBER, P133 Housewright R., 2008, Ithaka's 2006 studies of key stakeholders in the digital transformation in higher education Keeling R., 2006, European Journal of Education, V41, P203, DOI [10.1111/j.1465-3435.2006.00256.x, DOI 10.1111/J.1465-3435.2006.00256.X] Levine A., 2002, BARRIERS DISTANCE ED Maes P., 2009, TED TALKS UNVEILING MAKDISI G, 1989, J AM ORIENTAL SOC, V109, P175, DOI 10.2307/604423 Makdisi George., 1981, The Rise of Colleges: Institutions of Learning in Islam and the West Martin Prosperity Institute, 2009, ONT CREAT AG Mason M., 2008, Educational Philosophy and Theory, V40, P5, DOI DOI 10.1111/J.1469-5812.2007.00412.X Matheos K., 2002, RETHINKING RESIDENCY McFadden Allen B. M., 2007, REALIZING GLOBAL U 5, P3 McNeely I.F., 2008, Reinventing knowledge Ogilvie BW, 2003, J HIST IDEAS, V64, P29, DOI 10.1353/jhi.2003.0015 Organisation for Economic Co-operation and Development, 2007, PART WEB US CREAT CO Organization for Economic Co-operation and Development, 2008, FUT INT EC STAT PROF Organization for Economic Co-operation and Development, AUSTR WORLD CLASS U Panel on the Impact of Information Technology on the Future of the Research University National Research Council, 2002, PREP REV INF TECHN F Poole D., 2005, Issues in higher education, P195 Rosenberg D, 2003, J HIST IDEAS, V64, P1, DOI 10.1353/jhi.2003.0017 Rothe J. P., 1986, DISTANCE ED CANADA, P4 Schumpeter, 1942, Capitalism, Socialism and Democracy Schuster J., 2006, AM FACULTY RESTRUCTU, DOI 10.1353/book.3484 Seaborne K., 1986, DISTANCE ED CANADA, P37 Siemens G., 2008, CONNECTIVISM CONNECT Siemens G., 2009, HDB EMERGING TECHNOL Ten Brook A., 1875, American State Universities: Their Origin and Progress Urvoy Dominique., 1991, IBN RUSHD AVERROES van der Wende M.C., 2003, Journal of Studies in International Education, V7, P193, DOI [https://doi.org/10.1177/1028315303007002006, DOI 10.1177/1028315303007002006] Wagner N, 2008, EDUC TECHNOL SOC, V11, P26 Weller M, 2009, HORIZON, V17, P181, DOI 10.1108/10748120910993204 Willis R., 1997, Higher education in transition, V4th NR 66 TC 10 Z9 19 U1 0 U2 0 PU UNIV REGINA, FAC EDUCATION PI REGINA PA 3737 WASCANA PKWY, REGINA, SK S4S 0A2, CANADA SN 1927-6117 J9 EDUCATION-CANADA JI Education-Canada PD SPR PY 2010 VL 16 IS 1 SI SI BP 3 EP 18 PN 2 PG 16 WC Education & Educational Research WE Emerging Sources Citation Index (ESCI) SC Education & Educational Research GA V4P1I UT WOS:000219134900002 DA 2024-09-05 ER PT J AU COHEN, PR HOWE, AE AF COHEN, PR HOWE, AE TI HOW EVALUATION GUIDES AI RESEARCH SO AI MAGAZINE LA English DT Article RP COHEN, PR (corresponding author), UNIV MASSACHUSETTS,DEPT COMP & INFORMAT SCI,EXPTL KNOWLEDGE SYST LAB,AMHERST,MA 01003, USA. CR AGRE PE, 1985, MIT297 TECHN REP WOR [Anonymous], 1986, AI Magazine Buchanan B.G., 1984, The MYCIN experiments of the Stanford heuristics programming project BUCHANAN BG, 1987, KSL8703 STANF U DEP CHAPMAN D, 1987, 1986 P WORKSH LOS AL, P411 COHEN PR, 1983, 8TH P INT JOINT C AR, P212 COHEN PR, 1988, IN PRESS IEEE T SYST DECKER KS, 1988, TR8999 U MASS DEP CO DEKLEER J, 1986, ARTIF INTELL, V28, P127, DOI 10.1016/0004-3702(86)90080-9 ERMAN LD, 1980, COMPUT SURV, V12, P213, DOI 10.1145/356810.356816 FORBUS K, 1988, 7TH P NAT C ART INT, P193 GASCHNIG J, 1983, BUILDING EXPERT SYST, P241 Geissman J.R., 1988, AI EXPERT, V1, P26 HOWE A, 1986, 8601 U MASS TECHN RE HOWE A, 1986, J ARTIFICIAL INTELLI, V1, P23 LANGLEY P, 1987, RES PAPERS MACHINE L, V2, P195 LENAT DB, 1983, 3RD P NAT C ART INT, P236 LENAT DB, STANCS76570 STANF U LENAT DB, 1987, 10TH P INT JOINT C A, P1173 LENAT DB, 1976, THESIS STANFORD U LESSER VR, 1988, AI MAG, V9, P49 MITCHELL TM, 5TH P INT JOINT C AR, P305 NEWELL A, 1976, COMMUN ACM, V19, P113, DOI 10.1145/360018.360022 NEWELL A, 1975, 1974 IEEE S, P354 ORELUP MF, 1987, THESIS U MASSACHUSET ROTHENBERG J, 1987, R3542DARPA RAND CORP Shortliffe E., 2012, Computer-based medical consultations: MYCIN, VVolume 2 NR 27 TC 48 Z9 50 U1 0 U2 5 PU AMER ASSOC ARTIFICIAL INTELL PI MENLO PK PA 445 BURGESS DRIVE, MENLO PK, CA 94025-3496 SN 0738-4602 J9 AI MAG JI AI Mag. PD WIN PY 1988 VL 9 IS 4 BP 35 EP 43 PG 9 WC Computer Science, Artificial Intelligence WE Science Citation Index Expanded (SCI-EXPANDED) SC Computer Science GA R7330 UT WOS:A1988R733000003 DA 2024-09-05 ER PT J AU Prasad, KDV Vaidya, R Srinivas, K Kumar, VA AF Prasad, K. D. V. Vaidya, Rajesh Srinivas, K. Kumar, V. Anil TI Evaluation of the Factors Influencing the Performance Appraisal System with Reference to Agriculture Research Sector, Hyderabad - A Multinomial Logistic Regression Approach SO PACIFIC BUSINESS REVIEW INTERNATIONAL LA English DT Article DE Performance Appraisal; Agriculture; Regression ID PERSPECTIVE AB In this research study we reported the results on the factors influencing the performance appraisal system using multinomial logistic regression analysis with reference to Agriculture Reearch Sector employees in Hyderabad Metro, India. The data collected from one of the critical factor of HR practices under Performance Management System -the performance appraisal forms of 400 employees working in the agriculture sector consisting of from 300 men and 100 women employees. The seven independent factors Job knowledge, Skill level, Job execution, Initiative, Client orientation, Team work, Compliance to policies and practices one dependent factor outcome of the Performance Appraisal System (PAS) the Rating were measured. The descriptive analysis and multinomial logistic regression analysis carried out to arrive at the conclusions. To measure the reliability of the scale used for this study, and internal consistencies of the instrument performance appraisal form, the reliability statistics Cronbach's alpha (C-Alpha) and Split-half reliability estimated. The overall C-Alpha value is 0.89, and the C-Alpha values for all the factors ranged 0.83 to 0.88, whereas overall Spearman Brown Split-half measured at 0.84. The multinomial logistic regression analysis was performed to estimate the likelyhood odds ratios (ORs) to explain the factors associated outcome of the performance appraisal system Rating, a dependent variable. It can be observed from the relative log odds ratios significant negative influence of independent variables, Job Knowledge (OR, 0.404, 95% 0.168-0.972) Job skill (OR 0.126, 95% CI 0.053-0.296), Job execution (OR 0.105. 95% CI 0.039-0.280), Initiative (OR 0.307, 95% CI 0.134-0.705), Team Work (OR 0.284, 95% CI 0.129-0.624), and Compliance to Policies and Practices (OR 0.260, 95% CI 0.117) for dependent variable Rating Excellent and Job knowledge (OR 0.320, 95% CI 0.113-0.907), Job skill (OR 0.066, 95% CI 0.024-0.178), Job Execution (OR 0.036, 95% CI 0.012-0.111), Initiative (OR 0.170, 95% CI 0.064, -0.453), Team work (OR 0.142, 95% CI 0.057-0.356), Compliance to policies (OR 0.083, 95% CI 0.032-0.215) for Rating Good verses Outstanding as reference variable. C1 [Prasad, K. D. V.] Rashtrasant Tukdoji Maharaj Nagpur Univ, Fac Commerce, Nagpur, Maharashtra, India. [Vaidya, Rajesh] Shree Ramdeobaba Coll Engn & Management, Dept Management & Technol, Nagpur, Maharashtra, India. [Srinivas, K.] ICRISAT Asia Program, Patancheru, Andhra Prades, India. [Kumar, V. Anil] Int Crops Res Inst Semi Arid Trop, Biometr, Patancheru, Andhra Prades, India. C3 Rashtrasant Tukadoji Maharaj Nagpur University; Shri Ramdeobaba College of Engineering & Management; Rashtrasant Tukadoji Maharaj Nagpur University; CGIAR; International Crops Research Institute for the Semi-Arid-Tropics (ICRISAT) RP Prasad, KDV (corresponding author), Rashtrasant Tukdoji Maharaj Nagpur Univ, Fac Commerce, Nagpur, Maharashtra, India. RI PRASAD, KDV/AAF-7097-2019; Kumar, Anil/AAF-4031-2020; Vaidya, Rajesh W/AAC-6790-2021 OI PRASAD, KDV/0000-0001-9921-476X; Vaidya, Rajesh W/0000-0002-7541-2187 CR Agresti A., 1996, An introduction to categorical data analysis [Anonymous], ANAL BINARY DATA [Anonymous], 2005, COMPENSATION BENEFIT [Anonymous], 2016, IBM SPSS Statistics for Windows version 24.0 Armstrong Michael., 1977, A Handbook of Personnel Management Practice BERTONE S, 1998, DEV EFFECTIVE CONSUL Bohlander G., 2004, MANAGING HUMAN RESOU Boswell W.R., 2000, HUM RESOUR DEV Q, V11, P283, DOI [10.1002/1532-1096(200023)11:3andlt;283::AID-HRDQ6andgt;3.0.CO;2-3, DOI 10.1002/1532-1096(200023)11:3ANDLT;283::AID-HRDQ6ANDGT;3.0.CO;2-3] Cleveland J.N., 1992, Research in personnel and human resources management, V10, P121, DOI DOI 10.1177/0018726706064171 Coens A T., 2000, Abolishing performance appraisals Cronbach LJ, 1951, PSYCHOMETRIKA, V16, P297 Dargham N. A. S., 2009, MAITR C FGM Das SC, 2016, PAC BUS REV INT, V8, P1 DeNisi A., 2006, MANAGEMENT ORG REV Desler G., 2008, HUMAN RESOURCE MANAG Garavan T., 1997, Journal of Management Development, V16, P134, DOI DOI 10.1108/02621719710164300 Garvin D. A., 1998, MIT SLOAN MANAGEMENT Gay L.R., 2009, Educational Research: Competencies for Analysis and Applications, V9th Greenberg J., 1993, JUSTICE WORKPLACE AP, P79103 Haberman S.J., 1978, ANAL QUALITATIVE DAT, V1-2 Hensher D.A., 1981, APPL DISCRETE CHOICE Hong E.N. C., 2012, International Journal of Business Research and Management, V3, P60 Hosmer W., 2000, Applied Logistic Regression, VSecond Kaiser H. F., 1974, EDUC PSYCHOL MEAS, V35, P1 Longenecker C.O., 1992, Advanced Management Journal, V57, P18 Longenecker C.O., 1997, Career Development International, V2, P212 MasoudLotfizadeh, 2014, MALAYSIAN J PUBLIC H, V14, P79 McDowall A, 2004, PERS REV, V33, P8, DOI 10.1108/00483480410510606 Medlin B., 2013, J BUSINESS CASES APP, V7, P291 Menard S, 2000, AM STAT, V54, P17, DOI 10.2307/2685605 Mernard S., 1995, SAGE U PAPER SERIES, V07-106 NAGELKERKE NJD, 1991, BIOMETRIKA, V78, P691, DOI 10.1093/biomet/78.3.691 NOVICK MR, 1967, PSYCHOMETRIKA, V32, P1, DOI 10.1007/BF02289400 Ochoti G.N., 2012, International Journal of Business and Social Science, V3, P37 Pardo B., 2002, Computer Music Journal, V26, P27, DOI 10.1162/014892602760137167 Peng CYJ, 2002, J EDUC RES, V96, P3, DOI 10.1080/00220670209598786 Peng CYJ, 2001, AM J HEALTH BEHAV, V25, P278, DOI 10.5993/AJHB.25.3.15 Poornima V., 2015, International Journal of Science and Research, V4, P1169 Sateesh Kumar K, 2012, INT J ADV ENG TECHNO, V2, P410 SCHLESSELMAN JJ, 1981, CASE CONTROL STUDIES Shrivastava A, 2011, INT J HUM RESOUR MAN, V22, P632, DOI 10.1080/09585192.2011.543639 Stephen E. B., 2014, INT J SCI RES MANAGE, V2, P1417 Suryawanshi A., 2015, INT J SCI RES PUBLIC, V5, P1 Tabachnick B.G., 2007, USING MULTIVARIATE S, VVolume 5, P481 Townley B, 1999, J MANAGE STUD, V36, P287, DOI 10.1111/1467-6486.00137 Vallance S, 1999, AUST J PUBL ADMIN, V58, P78, DOI 10.1111/1467-8500.00129 Yee C. C., 2009, WORLD ACAD SCI ENG T, V3, P2009 Zakaria N., 2012, J GLOBAL MANAGEMENT, V3, P74 NR 48 TC 0 Z9 0 U1 1 U2 2 PU PACIFIC INST MANAGEMENT PI RAJASTHAN PA PACIFIC HILLS, PRATAP NAGAR EXTENSION, AIR PORT RD, UDAIPUR, RAJASTHAN, 313 001, INDIA SN 0974-438X J9 PAC BUS REV INT JI Pac. Bus. Rev. Int. PD MAR PY 2017 VL 9 IS 9 BP 7 EP 18 PG 12 WC Business WE Emerging Sources Citation Index (ESCI) SC Business & Economics GA FY4DU UT WOS:000426772600002 DA 2024-09-05 ER PT C AU Thijs, B Zhang, L Glänzel, W AF Thijs, Bart Zhang, Lin Glanzel, Wolfgang BE Gorraiz, J Schiebel, E Gumpenberger, C Horlesberger, M Moed, H TI BIBLIOGRAPHIC COUPLING AND HIERARCHICAL CLUSTERING FOR THE VALIDATION AND IMPROVEMENT OF SUBJECT-CLASSIFICATION SCHEMES SO 14TH INTERNATIONAL SOCIETY OF SCIENTOMETRICS AND INFORMETRICS CONFERENCE (ISSI) SE Proceedings of the International Conference on Scientometrics and Informetrics LA English DT Proceedings Paper CT 14th International-Society-of-Scientometrics-and-Informetrics Conference (ISSI) CY JUL 15-20, 2013 CL Vienna, AUSTRIA AB An attempt is made to apply bibliographic coupling to journal clustering of the complete Web of Science database. Since the sparseness of the underlying similarity matrix proved inappropriate for this exercise, second-order similarities have been used. Only 0.12% out of 8282 journals had to be removed from the classification as being singletons. The quality at three hierarchical levels with 6, 14 and 24 clusters substantiated the applicability of this method. Cluster labelling was made on the basis of the about 70 subfields of the Leuven-Budapest subject-classification scheme that also allowed the comparison with the existing two-level journal classification system developed in Leuven. The further comparison with the 22 field classification system of the Essential Science Indicators does, however, reveal larger deviations. C1 [Thijs, Bart; Glanzel, Wolfgang] Katholieke Univ Leuven, ECOOM, Leuven, Belgium. [Thijs, Bart; Glanzel, Wolfgang] Katholieke Univ Leuven, Dept MSI, Leuven, Belgium. [Zhang, Lin] North China Univ Water Conservancy & Elect Power, Dept Management & Econ, Zhengzhou, Peoples R China. [Glanzel, Wolfgang] Lib Hungarian Acad Sci, Dept Sci Policy & Scientometr, Budapest, Hungary. C3 KU Leuven; KU Leuven; North China University of Water Resources & Electric Power; Hungarian Academy of Sciences RP Thijs, B (corresponding author), Katholieke Univ Leuven, ECOOM, Leuven, Belgium. EM bart.thijs@kuleuven.be; zhanglin_1117@126.com; wolfgang.glanzel@kuleuven.be RI Glanzel, Wolfgang/AAE-4395-2021; Zhang, Lin/M-3007-2017; Glanzel, Wolfgang/A-6280-2008; Thijs, Bart CM/C-2995-2008 OI Zhang, Lin/0000-0003-0526-9677; Glanzel, Wolfgang/0000-0001-7529-5198; CR Ahlgren P, 2009, J INFORMETR, V3, P49, DOI 10.1016/j.joi.2008.11.003 [Anonymous], 1976, EVALUATIVE BIBLIOMET Bassecoulard E, 1999, SCIENTOMETRICS, V44, P323, DOI 10.1007/BF02458483 GARFIELD E, 1998, 150 ANN M AAAS PHIL Glänzel W, 2011, SCIENTOMETRICS, V88, P297, DOI 10.1007/s11192-011-0347-4 Glänzel W, 2003, SCIENTOMETRICS, V56, P357, DOI 10.1023/A:1022378804087 Glanzel W, 1996, SCIENTOMETRICS, V37, P195, DOI 10.1007/BF02093621 Jacomy M., 2009, 3 INT AAAI C WEBL SO Janssens F., 2007, THESIS KU LEUVEN BEL Janssens F, 2008, SCIENTOMETRICS, V75, P607, DOI 10.1007/s11192-007-2002-7 Janssens F, 2009, INFORM PROCESS MANAG, V45, P683, DOI 10.1016/j.ipm.2009.06.003 Jarneving B, 2005, THESIS U COLL BORAS Leydesdorff L, 2004, J DOC, V60, P371, DOI 10.1108/00220410410548144 NARIN F, 1972, J AM SOC INFORM SCI, V23, P323, DOI 10.1002/asi.4630230508 ROUSSEEUW PJ, 1987, J COMPUT APPL MATH, V20, P53, DOI 10.1016/0377-0427(87)90125-7 Sen S.K., 1983, Annals of library science and documentation, V30, P78 Thijs B, 2013, SCIENTOMETRICS, V96, P667, DOI 10.1007/s11192-012-0896-1 Zhang L, 2010, SCIENTOMETRICS, V82, P687, DOI 10.1007/s11192-010-0180-1 NR 18 TC 3 Z9 3 U1 0 U2 7 PU INT SOC SCIENTOMETRICS & INFORMETRICS-ISSI PI LEUVEN PA KATHOLIEKE UNIV LEUVEN, FACULTEIT E T E W, DEKENSTRAAT 2, LEUVEN, B-3000, BELGIUM SN 2175-1935 BN 978-3-200-03135-7 J9 PRO INT CONF SCI INF PY 2013 BP 237 EP 250 PG 14 WC Information Science & Library Science WE Conference Proceedings Citation Index - Social Science & Humanities (CPCI-SSH) SC Information Science & Library Science GA BC6IG UT WOS:000353961700019 DA 2024-09-05 ER PT J AU Mitsunaga, TM Garcia, BLN Pereira, LBR Costa, YCB da Silva, RF Delbem, ACB dos Santos, MV AF Mitsunaga, Thatiane Mendes Garcia, Breno Luis Nery Pereira, Ligia Beatriz Rizzanti Costa, Yuri Campos Braga da Silva, Roberto Fray Delbem, Alexandre Claudio Botazzo dos Santos, Marcos Veiga TI Current Trends in Artificial Intelligence and Bovine Mastitis Research: A Bibliometric Review Approach SO ANIMALS LA English DT Article DE mastitis; dairy cows; machine learning; detection; big data; milk production ID SUBCLINICAL MASTITIS; CLINICAL MASTITIS; NEURAL-NETWORK; DAIRY-CATTLE; MILK; COWS; ASSOCIATIONS; FARMS; TOOL AB Simple Summary Artificial intelligence has become essential for aiding in different knowledge domains by improving knowledge extraction from raw data and process automation. In dairy production, artificial intelligence offers promising applications in detecting and managing bovine mastitis, the most critical disease affecting the mammary gland in dairy cows, impacting milk production and profitability in dairy farms. This research evaluated the evolution of artificial intelligence applications in bovine mastitis between 2011 and 2021 using the Scopus database and the frequency of terms cited in titles, abstracts, and keywords. We selected the 62 papers that were the most relevant according to their citation index. Our results pointed out that the terms "machine learning" and "mastitis" were the most cited, with a significant increase between 2018 and 2021. There was an increase in artificial intelligence applications for bovine mastitis per country, showing applications primarily aimed at improving the current mastitis detection systems. The most cited model was artificial neural networks. We concluded that using artificial intelligence in bovine mastitis was related to mastitis detection as a vital tool to prevent this disease, considering its major impacts on dairy production and economic return.Abstract Mastitis, an important disease in dairy cows, causes significant losses in herd profitability. Accurate diagnosis is crucial for adequate control. Studies using artificial intelligence (AI) models to classify, identify, predict, and diagnose mastitis show promise in improving mastitis control. This bibliometric review aimed to evaluate AI and bovine mastitis terms in the most relevant Scopus-indexed papers from 2011 to 2021. Sixty-two documents were analyzed, revealing key terms, prominent researchers, relevant publications, main themes, and keyword clusters. "Mastitis" and "machine learning" were the most cited terms, with an increasing trend from 2018 to 2021. Other terms, such as "sensors" and "mastitis detection", also emerged. The United States was the most cited country and presented the largest collaboration network. Publications on mastitis and AI models notably increased from 2016 to 2021, indicating growing interest. However, few studies utilized AI for bovine mastitis detection, primarily employing artificial neural network models. This suggests a clear potential for further research in this area. C1 [Mitsunaga, Thatiane Mendes] Univ Sao Paulo, Luiz Queiroz Coll Agr ESALQ, Av Padua Dias 11, BR-13418900 Piracicaba, SP, Brazil. [Garcia, Breno Luis Nery; Pereira, Ligia Beatriz Rizzanti; dos Santos, Marcos Veiga] Univ Sao Paulo, Sch Vet Med & Anim Sci, BR-13635900 Pirassununga, SP, Brazil. [Costa, Yuri Campos Braga] Sao Paulo State Technol Coll, BR-13469111 Americana, SP, Brazil. [da Silva, Roberto Fray] Univ Sao Paulo, Luiz Queiroz Coll Agr ESALQ, Biosyst Engn Dept, Av Padua Dias 11, BR-13418900 Piracicaba, SP, Brazil. [da Silva, Roberto Fray; Delbem, Alexandre Claudio Botazzo] Univ Sao Paulo, Ctr Artificial Intelligence C4AI, Av Prof Lucio Martins Rodrigues,370 Butanta, BR-05508020 Sao Paulo, SP, Brazil. [Delbem, Alexandre Claudio Botazzo] Univ Sao Paulo, Inst Math & Comp Sci, BR-13560970 Sao Carlos, SP, Brazil. C3 Universidade de Sao Paulo; Universidade de Sao Paulo; Universidade de Sao Paulo; Universidade de Sao Paulo; Universidade de Sao Paulo RP dos Santos, MV (corresponding author), Univ Sao Paulo, Sch Vet Med & Anim Sci, BR-13635900 Pirassununga, SP, Brazil. EM thatiane.mitsunaga@usp.br; brenoluis.garcia@ucalgary.ca; ligiarizzanti@usp.br; yuri.costa4@fatec.sp.gov.br; roberto.fray.silva@gmail.com; acbd@icmc.usp.br; mveiga@usp.br RI Santos, Marcos Veiga/D-6936-2012; Fray da Silva, Roberto/G-8929-2016 OI Santos, Marcos Veiga/0000-0002-4273-3494; Fray da Silva, Roberto/0000-0002-9792-0553 FU Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior-Brasil (CAPES) [001]; Sao Paulo Research Foundation (FAPESP) [2021/05400-3, 2023/00286-3]; Vinnova [2023-00286] Funding Source: Vinnova; Forte [2023-00286] Funding Source: Forte FX This study was financed in part by the Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior-Brasil (CAPES)-finance code 001, and by Sao Paulo Research Foundation (FAPESP), grants 2021/05400-3 and 2023/00286-3. CR Aghamohammadi M, 2018, FRONT VET SCI, V5, DOI 10.3389/fvets.2018.00100 Alvarez LG, 2011, EPIDEMIOL INFECT, V139, P1863, DOI 10.1017/S0950268811000070 Ankinakatte S, 2013, COMPUT ELECTRON AGR, V99, P1, DOI 10.1016/j.compag.2013.08.024 Aria M, 2017, J INFORMETR, V11, P959, DOI 10.1016/j.joi.2017.08.007 AULDIST MJ, 1995, AUST J EXP AGR, V35, P427, DOI 10.1071/EA9950427 Bao J, 2022, J CLEAN PROD, V331, DOI 10.1016/j.jclepro.2021.129956 Arrieta AB, 2020, INFORM FUSION, V58, P82, DOI 10.1016/j.inffus.2019.12.012 Silva GGBS, 2022, ANIMALS-BASEL, V12, DOI 10.3390/ani12192492 Bobbo T, 2023, J DAIRY SCI, V106, P1942, DOI 10.3168/jds.2022-22292 Britt JH, 2018, J DAIRY SCI, V101, P3722, DOI 10.3168/jds.2017-14025 Dhoble AS, 2019, COMPUT ELECTRON AGR, V162, P505, DOI 10.1016/j.compag.2019.04.029 Ebrahimi M, 2019, COMPUT BIOL MED, V114, DOI 10.1016/j.compbiomed.2019.103456 Ebrahimie E, 2018, J DAIRY RES, V85, P193, DOI [10.1017/S0022029918000249, 10.1017/s0022029918000249] Ebrahimie E, 2018, COMPUT ELECTRON AGR, V147, P6, DOI 10.1016/j.compag.2018.02.003 Fadul-Pacheco L, 2021, INT DAIRY J, V119, DOI 10.1016/j.idairyj.2021.105051 FAO, 2022, Dairy Market ReviewEmerging Trends and Outlook 2022 Forsbäck L, 2010, ANIMAL, V4, P617, DOI 10.1017/S1751731109991467 Gonçalves JL, 2020, VET J, V262, DOI 10.1016/j.tvjl.2020.105473 Gonçalves JL, 2018, LIVEST SCI, V210, P25, DOI 10.1016/j.livsci.2018.01.016 Haykin S., 2004, Neural Networks - A Comprehensive Foundation, V2, P41, DOI DOI 10.1017/S0269888998214044 Heald CW, 2000, J DAIRY SCI, V83, P711, DOI 10.3168/jds.S0022-0302(00)74933-2 Hogeveen H, 2021, J DAIRY SCI, V104, P11317, DOI 10.3168/jds.2020-19097 Hyde RM, 2020, SCI REP-UK, V10, DOI 10.1038/s41598-020-61126-8 Koltes JE, 2019, FRONT GENET, V10, DOI 10.3389/fgene.2019.01197 Le Roux Y, 2003, VET RES, V34, P629, DOI 10.1051/vetres:2003021 LeCun Y, 2015, NATURE, V521, P436, DOI 10.1038/nature14539 Melzer N, 2013, J DAIRY SCI, V96, P1521, DOI 10.3168/jds.2012-5743 Michie C, 2020, J DAIRY RES, V87, P20, DOI 10.1017/S0022029920000680 NIELEN M, 1995, PREV VET MED, V22, P15, DOI 10.1016/0167-5877(94)00405-8 Pol M, 2007, J DAIRY SCI, V90, P249, DOI 10.3168/jds.S0022-0302(07)72626-7 Post C, 2020, SENSORS-BASEL, V20, DOI 10.3390/s20143863 Raboisson D, 2020, FRONT VET SCI, V7, DOI 10.3389/fvets.2020.00149 Razavi S, 2021, ENVIRON MODELL SOFTW, V144, DOI 10.1016/j.envsoft.2021.105159 Reksen O, 2006, J DAIRY SCI, V89, P2928, DOI 10.3168/jds.S0022-0302(06)72565-6 Ruegg PL, 2017, J DAIRY SCI, V100, P10381, DOI 10.3168/jds.2017-13023 Ruiz-Real JL, 2020, AGRONOMY-BASEL, V10, DOI 10.3390/agronomy10111839 Ruiz-Rosero J, 2019, SCIENTOMETRICS, V121, P1165, DOI 10.1007/s11192-019-03213-w Schabauer L, 2014, BMC VET RES, V10, DOI 10.1186/1746-6148-10-156 Shahinfar S, 2014, J DAIRY SCI, V97, P731, DOI 10.3168/jds.2013-6693 Sharifi S, 2018, PLOS ONE, V13, DOI 10.1371/journal.pone.0191227 Slob N, 2021, PREV VET MED, V187, DOI 10.1016/j.prevetmed.2020.105237 Tang KL, 2017, LANCET PLANET HEALTH, V1, pE316, DOI 10.1016/S2542-5196(17)30141-9 van den Borne BHP, 2019, J DAIRY SCI, V102, P4441, DOI 10.3168/jds.2019-16254 van der Voort M, 2021, J DAIRY SCI, V104, P10449, DOI 10.3168/jds.2021-20311 van Eck NJ, 2010, SCIENTOMETRICS, V84, P523, DOI 10.1007/s11192-009-0146-3 Wolfert S, 2017, AGR SYST, V153, P69, DOI 10.1016/j.agsy.2017.01.023 Zins C, 2007, J AM SOC INF SCI TEC, V58, P479, DOI 10.1002/asi.20508 NR 47 TC 0 Z9 0 U1 5 U2 5 PU MDPI PI BASEL PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND SN 2076-2615 J9 ANIMALS-BASEL JI Animals PD JUL PY 2024 VL 14 IS 14 AR 2023 DI 10.3390/ani14142023 PG 19 WC Agriculture, Dairy & Animal Science; Veterinary Sciences; Zoology WE Science Citation Index Expanded (SCI-EXPANDED) SC Agriculture; Veterinary Sciences; Zoology GA ZP4Z6 UT WOS:001276500200001 PM 39061485 OA gold DA 2024-09-05 ER PT C AU Charnine, M Klokov, A Kochiev, L Tishchenko, A AF Charnine, Michael Klokov, Alexey Kochiev, Leon Tishchenko, Alexey BE Sourin, A Rosenberger, C Sourina, O TI Research Trending Topic Prediction as Cognitive Enhancement SO 2021 INTERNATIONAL CONFERENCE ON CYBERWORLDS (CW 2021) LA English DT Proceedings Paper CT 20th International Conference on Cyberworlds (CW) CY SEP 28-30, 2021 CL Caen, FRANCE DE long-term prediction; research trending topics; decision tree; CatBoost; scientific papers; dynamics of topic trends; Big Data; cognitive enhancement AB The Internet has been identified in human enhancement scholarship as a powerful cognitive enhancement technology. Using the Internet as an external memory system has overall benefits if we have the skills to efficiently navigate, evaluate, and compare online information. Long-term prediction of research trending topics is a form of cognitive enhancement because it helps to efficiently navigate, evaluate scientific articles, identify promising directions, and focus efforts in these directions. This paper presents the results of a method designed to realize long-term prediction of research trending topics. Meaningful topics were identified among the words included in the titles of scientific articles. The title is the most important element of a scientific article and the main indication of the article's subject and topic. We treated the title words, which occur several times in cited articles of the analyzed collection, as the research trending topics. The longevity of the citation trend growth was the target for the machine learning algorithms. The CatBoost machine learning method, which is one of the best implementations of decision trees, was used. We conducted experiments on a scientific dataset including 5 million publications of top conferences in artificial intelligence and data mining areas to demonstrate the effectiveness of the proposed model. The accuracy rate of three-year forecasts for a number of experiments from 1997 to 2014 was about 60%. C1 [Charnine, Michael; Klokov, Alexey; Kochiev, Leon] Russian Acad Sci, FRC CSC, Inst Informat Problems, Moscow, Russia. [Tishchenko, Alexey] Presidential Acad, RANEPA, Inst Appl Econ Res, Moscow, Russia. C3 Federal Research Center "Computer Science & Control" of RAS; Institute of Informatics Problems of Russian Academy of Sciences; Russian Academy of Sciences; Russian Presidential Academy of National Economy & Public Administration RP Charnine, M (corresponding author), Russian Acad Sci, FRC CSC, Inst Informat Problems, Moscow, Russia. EM mc@keywen.com; alexeyseti82@yandex.ru OI Klokov, Alexey/0000-0003-3311-2933 FU Russian Foundation for Basic Research FX This work is supported by Russian Foundation for Basic Research, grant 19-07-00857. We are grateful to the Russian Foundation for Basic Research for financial support of our projects. CR [Anonymous], 2016, AAAI WORKSH SCHOL BI Chen Chengyao, P AAAI C ART INT, V32 Cognition, 2016, MIND MACH, V26, P407, DOI [10.1007/s11023-016-9404-3, DOI 10.1007/S11023-016-9404-3] Heersmink R, 2016, MIND MACH, V26, P389, DOI 10.1007/s11023-016-9404-3 Hou J, 2019, COMPUT SCI REV, V34, DOI 10.1016/j.cosrev.2019.100197 Jamali HR, 2011, SCIENTOMETRICS, V88, P653, DOI 10.1007/s11192-011-0412-z Karakurt O., 2013, SCI RES J Mei Qiaozhu., 2005, KDD 05, P198, DOI DOI 10.1145/1081870.1081895 Prabhakaran V, 2016, PROCEEDINGS OF THE 54TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, VOL 1, P1170 Prokhorenkova L., ARXIV PREPRINT ARXIV Voinea C., SCI ENG ETHICS, V26 NR 11 TC 1 Z9 1 U1 1 U2 3 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA BN 978-1-6654-4065-3 PY 2021 BP 217 EP 220 DI 10.1109/CW52790.2021.00044 PG 4 WC Computer Science, Cybernetics; Computer Science, Interdisciplinary Applications; Computer Science, Theory & Methods WE Conference Proceedings Citation Index - Science (CPCI-S) SC Computer Science GA BS9SD UT WOS:000783807600036 DA 2024-09-05 ER PT J AU Reiljan, J Paltser, I AF Reiljan, Janno Paltser, Ingra TI The influence of research and development policy: the case of Estonia in the EU SO EUROPEAN JOURNAL OF INNOVATION MANAGEMENT LA English DT Article DE Estonia; Innovation performance; Principal component analysis; Multiple regression modelling; R&D activities; R&D policy ID DEVELOPMENT SUBSIDIES; PUBLIC SUBSIDIES; FEDERAL-SUPPORT; INNOVATION; GROWTH; ADDITIONALITY; PRODUCTIVITY; COMPLEMENT; INVESTMENT; STIMULATE AB Purpose - The purpose of this paper is to evaluate the international position of Estonia among the member states of the EU and countries closely associated with the EU, from the perspective of the effect of research and development (R&D) policy on innovation activities in the business sector. Design/methodology/approach - Based on existing scientific research literature on the relationships between R&D policy and business sector R&D activities and innovation performance, a set of indicators describing R&D policymeasures was created for the business sector. Using principal component analysis (PCA) method, independent robust dimensions of R&D policy were brought out. After eliminating the problem ofmulticollinearity in R&D policy indicators, robustmultiple regressionmodels were conducted to present a comprehensive empirical description of the shaping of business sector R&D and innovation activities in the sample of investigated countries. Findings - Based on the literature, the influences of R&D policy measures on business sector R&D activities and innovation performance were systemised; public R&D policy dimensions were empirically defined; the intensity of R&D policy influence on business sector R&D activities was estimated; the differences between real and prognostic values of business sector performance indicators in Estonia were calculated in order to characterise the efficiency of Estonian R&D policy and the influence of the socioeconomic environment. Research limitations/implications - The lack of comparable data describing R&D policy and R&D activities and innovation performance in the business sector limits the comprehensiveness of the analysis (i.e. the number of analysed indicators). Practical implications - The assessment and comparative analysis of the influence of R&D policy components on business sector R&D activities and innovation performance in different countries makes it possible to identify directions for increasing the efficiency of R&D policy under the specific influence of the socioeconomic environment, especially in new member states of the EU. Originality/value - Using the PCA method significantly increased the robustness of the macroquantitative description of R&D policy dimensions. By combining the set of new synthetic R&D policy indicators created by the PCA with the multiple regression analysis method, a significant increase in the robustness of model coefficients (i.e. the assessments of influence intensity) was achieved. These robust models create the basis for reliable empirical assessment of the influence of R&D policy and a comparative analysis of the results. C1 [Reiljan, Janno; Paltser, Ingra] Univ Tartu, Fac Econ & Business Adm, Tartu, Estonia. C3 University of Tartu RP Paltser, I (corresponding author), Univ Tartu, Fac Econ & Business Adm, Tartu, Estonia. EM ingra.paltser@ut.ee FU Ministry of Education and Research Foundation [SF0180037s08] FX This paper is written with the support of the Ministry of Education and Research Foundation Project No. SF0180037s08 "The path dependent model of the innovation system: development and implementation in the case of a small country". CR Aerts K, 2008, RES POLICY, V37, P806, DOI 10.1016/j.respol.2008.01.011 Albors-Garrigos J, 2011, INT J INNOV MANAG, V15, P1297, DOI 10.1142/S136391961100374X Almus M, 2003, J BUS ECON STAT, V21, P226, DOI 10.1198/073500103288618918 Alvarez-Pelaez MJ, 2005, EUR ECON REV, V49, P437, DOI 10.1016/S0014-2921(03)00045-X Amoros J.E., 2014, Global entrepreneurship monitor, 2013 global report [Anonymous], 2004, 456 ZEW [Anonymous], 2007, INN GROWTH RAT INN S [Anonymous], 2003, Economics of Innovation and New Technology, DOI [DOI 10.1080/10438590290004555, 10.1080/10438590290004555] Archibald R. B., 2003, Public Finance Review, V31, P429, DOI [https://doi.org/10.1177/10911421030310040, DOI 10.1177/10911421030310040] Arvanitis S, 2002, SMALL BUS ECON, V19, P321, DOI 10.1023/A:1019606131837 Bank of Estonia, 2013, INT INV POS Bor YJ, 2010, ECON MODEL, V27, P171, DOI 10.1016/j.econmod.2009.08.007 Carboni OA, 2011, INT REV APPL ECON, V25, P419, DOI 10.1080/02692171.2010.529427 CARMICHAEL J, 1981, J FINANC, V36, P617, DOI 10.2307/2327522 Cerulli G, 2010, ECON REC, V86, P421, DOI 10.1111/j.1475-4932.2009.00615.x Czarnitzki D, 2006, ECON TRANSIT, V14, P101, DOI 10.1111/j.1468-0351.2006.00236.x Czarnitzki D., 2010, 10073 ZEW Czarnitzki D, 2007, J APPL ECONOM, V22, P1347, DOI 10.1002/jae.992 David PA, 2000, RES POLICY, V29, P497, DOI 10.1016/S0048-7333(99)00087-6 Edler J, 2007, RES POLICY, V36, P949, DOI 10.1016/j.respol.2007.03.003 Falk M., 2004, WORKING PAPERS, V236 Freel MS, 2005, TECHNOVATION, V25, P123, DOI 10.1016/S0166-4972(03)00082-8 García-Quevedo J, 2004, KYKLOS, V57, P87, DOI 10.1111/j.0023-5962.2004.00244.x González X, 2008, RES POLICY, V37, P371, DOI 10.1016/j.respol.2007.10.009 González X, 2005, RAND J ECON, V36, P930 Görg H, 2007, ECONOMICA, V74, P215, DOI 10.1111/j.1468-0335.2006.00547.x Hall B, 2000, RES POLICY, V29, P449, DOI 10.1016/S0048-7333(99)00085-2 Hewitt-Dundas N., 2010, EUROPEAN PLANNING ST, V18, P108 HIGGINS RS, 1981, IEEE T ENG MANAGE, V28, P86, DOI 10.1109/TEM.1981.6447450 Hussinger K, 2008, J APPL ECONOMET, V23, P729, DOI 10.1002/jae.1016 Jones CI, 2000, J ECON GROWTH, V5, P65, DOI 10.1023/A:1009826304308 Jones CI, 1998, Q J ECON, V113, P1119, DOI 10.1162/003355398555856 Jones CI, 2005, HANDB ECON, V22, P1063 Kittel B, 2006, INT SOCIOL, V21, P647, DOI 10.1177/0268580906067835 Klette TJ, 2000, RES POLICY, V29, P471, DOI 10.1016/S0048-7333(99)00086-4 Lach S, 2002, J IND ECON, V50, P369, DOI 10.1111/1467-6451.00182 Lee CY, 2011, TECHNOVATION, V31, P256, DOI 10.1016/j.technovation.2011.01.006 LEVY DM, 1983, BELL J ECON, V14, P551, DOI 10.2307/3003656 LEYDEN DP, 1991, APPL ECON, V23, P1673, DOI 10.1080/00036849100000132 Luukkonen T, 2000, RES POLICY, V29, P711, DOI 10.1016/S0048-7333(99)00041-4 Mamatzakis EC, 2010, INT REV APPL ECON, V24, P483, DOI 10.1080/02692171.2010.483795 Mamuneas TP, 1996, J PUBLIC ECON, V63, P57, DOI 10.1016/S0047-2727(96)01588-5 MANSFIELD E, 1984, MANAGE SCI, V30, P562, DOI 10.1287/mnsc.30.5.562 OECD, 2001, SCI TECHN IND DRIV G Porter M. E., 2002, WORLD COMPETITIVENES, P52 Reiljan J., 2014, MAJANDUSOTSUSTE ANAL ROMER PM, 1990, J POLIT ECON, V98, pS71, DOI 10.1086/261725 Steger TM, 2005, SCAND J ECON, V107, P737, DOI 10.1111/j.1467-9442.2005.00426.x Verbic M, 2011, PANOECONOMICUS, V58, P67, DOI 10.2298/PAN1101067V Veugelers R, 1999, RES POLICY, V28, P63, DOI 10.1016/S0048-7333(98)00106-1 Wolff GB, 2008, RES POLICY, V37, P1403, DOI 10.1016/j.respol.2008.04.023 Wu YH, 2005, J POLICY ANAL MANAG, V24, P785, DOI 10.1002/pam.20138 NR 52 TC 0 Z9 0 U1 0 U2 13 PU EMERALD GROUP PUBLISHING LTD PI BINGLEY PA HOWARD HOUSE, WAGON LANE, BINGLEY BD16 1WA, W YORKSHIRE, ENGLAND SN 1460-1060 EI 1758-7115 J9 EUR J INNOV MANAG JI Eur. J. Innov. Manag. PY 2015 VL 18 IS 3 BP 307 EP 329 DI 10.1108/EJIM-10-2013-0115 PG 23 WC Business; Management WE Social Science Citation Index (SSCI) SC Business & Economics GA V79IN UT WOS:000212108800002 DA 2024-09-05 ER PT J AU Yin, C Xue, T Huang, XG Cheng, YH Dadras, S Dadras, O AF Yin, Chun Xue, Ting Huang, Xuegang Cheng, Yu-Hua Dadras, Sara Dadras, Odden TI Research on Damages Evaluation Method With Multi-Objective Feature Extraction Optimization Scheme for M/OD Impact Risk Assessment SO IEEE ACCESS LA English DT Article DE M/OD hypervelocity impact; impact risk assessment; damage evaluation; multi-objective optimization; evolution analysis ID HYPERVELOCITY IMPACT; SPACE; THERMOGRAPHY; ALGORITHM AB As the number of space debris (also called meteoroid/orbital debris-M/OD) increases in recent years, the hypervelocity-impact (HVI) events of M/OD on spacecrafts have become one of the most main risks threatening human activity in space. For the automatical M/OD risk assessment, some effective nondestructive testing (NDT) methods are critical to realizing the evaluation of the HVI damages. In this paper, a novel HVI damage evaluation method based on the active infrared thermal wave image detection technology with multi-objective feature extraction optimization (MO-FEO) is proposed to achieve the quantitative evaluation of M/OD HVI damages. For the precise selection of representative temperature point in thermal infrared image data, the proposed MO-FEO method has the advantage not only of considering the difference among temperature points in different thermal temperature categories but also considering the correlation among temperature points of each thermal temperature category. The multi-objective feature extraction problem decomposed by Tchebycheff aggregation is used to seek the representative temperature points through an evolution process brought the selection pressure and fitness value. In addition to the MO-FEO frame, the variable step search and classification of temperature points are also implemented in the HVI damage evaluation strategy to improve efficiency. Some experimental results of infrared detection for the real M/OD HVI test articles are proposed to illustrate the effectiveness of the proposed method. C1 [Yin, Chun; Xue, Ting; Cheng, Yu-Hua] Univ Elect Sci & Technol China, Sch Automat Engn, Chengdu 611731, Sichuan, Peoples R China. [Huang, Xuegang] China Aerodynam Res & Dev Ctr, Hyperveloc Aerodynam Inst, Mianyang 621000, Sichuan, Peoples R China. [Dadras, Sara; Dadras, Odden] Utah State Univ, Elect & Comp Engn Dept, Logan, UT 84321 USA. C3 University of Electronic Science & Technology of China; Utah System of Higher Education; Utah State University RP Huang, XG (corresponding author), China Aerodynam Res & Dev Ctr, Hyperveloc Aerodynam Inst, Mianyang 621000, Sichuan, Peoples R China. EM emei-126@126.com RI Chen, YangQuan/A-2301-2008; Huang, Xuegang/O-2942-2019 OI Chen, YangQuan/0000-0002-7422-5988; Huang, Xuegang/0000-0002-9168-3040 FU National Basic Research Program of China [61873305, 61671109, U1830207]; Sichuan Science and Technology Plan Project [2018JY0410, 2019YJ0199] FX This work was supported in part by the National Basic Research Program of China under Grant 61873305, Grant 61671109, and Grant U1830207, and in part by the Sichuan Science and Technology Plan Project under Grant 2018JY0410 and Grant 2019YJ0199. CR Ahmad J, 2019, IEEE SENS J, V19, P735, DOI 10.1109/JSEN.2018.2877726 [Anonymous], 2012, NONLINEAR MULTIOBJEC Balandin DV, 2017, AUTOMATICA, V84, P56, DOI 10.1016/j.automatica.2017.06.041 Cheng L, 2014, IEEE SENS J, V14, P1655, DOI 10.1109/JSEN.2014.2301168 Cheng YH, 2016, INT J APPL ELECTROM, V52, P443, DOI 10.3233/JAE-162045 Christiansen E, 2009, NASATM2009214785 NAS Christiansen E. L., 2003, TP2003210788 NASA LB Falsone A, 2017, IEEE T INTELL TRANSP, V18, P2657, DOI 10.1109/TITS.2017.2654511 Foudazi A, 2019, IEEE T INSTRUM MEAS, V68, P576, DOI 10.1109/TIM.2018.2843601 Gao B, 2016, IEEE T IND INFORM, V12, P371, DOI 10.1109/TII.2015.2492925 Helmy AK, 2016, APPL SOFT COMPUT, V40, P405, DOI 10.1016/j.asoc.2015.11.042 Huang J, 2018, 2018 IEEE 3RD INTERNATIONAL CONFERENCE ON IMAGE, VISION AND COMPUTING (ICIVC), P394, DOI 10.1109/ICIVC.2018.8492845 Huang X., J AMB INTEL HUM COMP, DOI [10.1007/s12652-017-0671-5, DOI 10.1007/S12652-017-0671-5] Huang XG, 2016, MATER DESIGN, V97, P473, DOI 10.1016/j.matdes.2016.02.126 Ishikawa M, 2013, INFRARED PHYS TECHN, V57, P42, DOI 10.1016/j.infrared.2012.11.009 Liou JC, 2006, SCIENCE, V311, P340, DOI 10.1126/science.1121337 Liu R., 2019, IEEE ACCESS, V16, P735 Ma XL, 2018, IEEE T EVOLUT COMPUT, V22, P226, DOI 10.1109/TEVC.2017.2704118 Maldague X, 2004, NDT&E INT, V37, P559, DOI 10.1016/j.ndteint.2004.03.003 Arellano-Quintana VM, 2018, IEEE ACCESS, V6, P69064, DOI 10.1109/ACCESS.2018.2878314 Maury T, 2019, SCI TOTAL ENVIRON, V667, P780, DOI 10.1016/j.scitotenv.2019.02.438 Rajic N, 2002, COMPOS STRUCT, V58, P521, DOI 10.1016/S0263-8223(02)00161-7 Shen YP, 2017, IEEE T IND ELECTRON, V64, P115, DOI 10.1109/TIE.2016.2598674 Silnikov MV, 2018, ACTA ASTRONAUT, V150, P56, DOI 10.1016/j.actaastro.2017.08.030 Vollmer M., 2017, INFRARED THERMAL IMA, DOI DOI 10.1002/9783527693306 Wei BS, 2019, IEEE ACCESS, V7, P36991, DOI 10.1109/ACCESS.2019.2904545 Zhang QF, 2007, IEEE T EVOLUT COMPUT, V11, P712, DOI 10.1109/TEVC.2007.892759 Zhang YL, 2016, IEEE T INTELL TRANSP, V17, P1189, DOI 10.1109/TITS.2015.2494686 Zhou XJ, 2018, IEEE ACCESS, V6, P36683, DOI 10.1109/ACCESS.2018.2847641 Zhu D, 2019, IEEE ACCESS, V7, P16787, DOI 10.1109/ACCESS.2018.2884813 Zhu PP, 2018, MECH SYST SIGNAL PR, V113, P5, DOI 10.1016/j.ymssp.2017.02.045 NR 31 TC 26 Z9 28 U1 1 U2 23 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 2169-3536 J9 IEEE ACCESS JI IEEE Access PY 2019 VL 7 BP 98530 EP 98545 DI 10.1109/ACCESS.2019.2930114 PG 16 WC Computer Science, Information Systems; Engineering, Electrical & Electronic; Telecommunications WE Science Citation Index Expanded (SCI-EXPANDED) SC Computer Science; Engineering; Telecommunications GA IP8WF UT WOS:000480326700029 OA gold DA 2024-09-05 ER PT J AU Yu, ZG Li, M AF Yu, Zhonggen Li, Ming TI A bibliometric analysis of Community of Inquiry in online learning contexts over twenty-five years SO EDUCATION AND INFORMATION TECHNOLOGIES LA English DT Article DE Bibliometric analysis; Community of Inquiry; VOSviewer; CitNetExplorer; Online learning ID SELF-EFFICACY; COGNITIVE PRESENCE; TEACHING PRESENCE; FRAMEWORK; CITNETEXPLORER; METACOGNITION; INSIGHTS; OUTCOMES AB Since the outbreak of COVID-19, online learning has gained popularity among educators and learners, where Community of Inquiry (CoI) has caught researchers' attention. To bibliometrically analyze the framework of CoI over twenty-five years, we adopted both qualitative and quantitative research methods to examine the framework of CoI in online learning contexts. We concluded that teaching presence, social presence, cognitive presence, metacognition, and self-efficacy played important roles in the framework of CoI. This study also explored the top ten authors, sources, organizations, and countries using VOSviewer and established citation networks through the clustering techniques in CitNetExplorer. Future research could focus on how to motivate the educational institutes and educators to change their traditional educational methods and whether to include both metacognition and self-efficacy in the CoI framework. C1 [Yu, Zhonggen; Li, Ming] Beijing Language & Culture Univ, Fac Foreign Studies, 15 Xueyuan Rd, Beijing 100083, Peoples R China. C3 Beijing Language & Culture University RP Yu, ZG; Li, M (corresponding author), Beijing Language & Culture Univ, Fac Foreign Studies, 15 Xueyuan Rd, Beijing 100083, Peoples R China. EM 401373742@qq.com; 23743995@qq.com RI Yu, Zhonggen/AAJ-3063-2020; Yu, Zhonggen/AAE-5514-2020 OI Yu, Zhonggen/0000-0002-3873-980X; Yu, Zhonggen/0000-0002-3873-980X FU 2019 MOOC of Beijing Language and Culture University (Important) "Introduction to Linguistics" [MOOC201902]; "Introduction to Linguistics" of online and offline mixed courses in Beijing Language and Culture University in 2020; Special fund of Beijing Coconstruction Project-Research and reform of the "Undergraduate Teaching Reform and Innovation Project" of Beijing higher education in 2020-innovative "multilingual +" excellent talent training system [202010032003]; research project of Graduate Students of Beijing Language and Culture University "Xi Jinping: The Governance of China" [SJTS202108] FX This work is supported by 2019 MOOC of Beijing Language and Culture University (MOOC201902) (Important) "Introduction to Linguistics"; "Introduction to Linguistics" of online and offline mixed courses in Beijing Language and Culture University in 2020; Special fund of Beijing Coconstruction Project-Research and reform of the "Undergraduate Teaching Reform and Innovation Project" of Beijing higher education in 2020-innovative "multilingual +" excellent talent training system (202010032003); The research project of Graduate Students of Beijing Language and Culture University "Xi Jinping: The Governance of China" (SJTS202108). CR Aguilera-Hermida AP, 2021, EDUC INF TECHNOL, V26, P6823, DOI 10.1007/s10639-021-10473-8 Ahmad MI, 2022, SYST PRACT ACT RES, V35, P591, DOI 10.1007/s11213-021-09585-6 Akyol Z, 2011, INTERNET HIGH EDUC, V14, P183, DOI 10.1016/j.iheduc.2011.01.005 Arbaugh JB, 2008, INTERNET HIGH EDUC, V11, P133, DOI 10.1016/j.iheduc.2008.06.003 Artino Anthony R., 2009, Journal of Computing in Higher Education, V21, P146, DOI 10.1007/s12528-009-9020-9 Artino AR, 2012, INTERNET HIGH EDUC, V15, P170, DOI 10.1016/j.iheduc.2012.01.006 Bamoallem B, 2022, EDUC INF TECHNOL, V27, P157, DOI 10.1007/s10639-021-10660-7 BANDURA A, 1982, AM PSYCHOL, V37, P122, DOI 10.1037/0003-066X.37.2.122 BANDURA A, 1989, DEV PSYCHOL, V25, P729, DOI 10.1037/0012-1649.25.5.729 Bandura A, 1999, Self-efficacy: The exercise of control, V13, P158 Baroudi S, 2022, EDUC INF TECHNOL, V27, P8093, DOI 10.1007/s10639-022-10946-4 Brennan C, 2022, INTERNET HIGH EDUC, V52, DOI 10.1016/j.iheduc.2021.100830 Britner SL, 2006, J RES SCI TEACH, V43, P485, DOI 10.1002/tea.20131 Calaguas NP, 2022, EDUC INF TECHNOL, V27, P6233, DOI 10.1007/s10639-021-10871-y Candy P.C., 1991, Self-direction for Lifelong Learning Chan SL, 2021, NURS EDUC TODAY, V104, DOI 10.1016/j.nedt.2021.104985 Chen RH, 2022, SUSTAINABILITY-BASEL, V14, DOI 10.3390/su14031785 Cho MH, 2017, INTERNET HIGH EDUC, V34, P10, DOI 10.1016/j.iheduc.2017.04.001 Delgado-García M, 2022, INNOV EDUC TEACH INT, V59, P564, DOI 10.1080/14703297.2021.1932557 Dempsey PR, 2019, ONLINE LEARN, V23, P62, DOI 10.24059/olj.v23i1.1419 Dewey J., 1933, How we think: A restatement of the relation of reflective thinking to the educative process Doo MY, 2020, J COMPUT ASSIST LEAR, V36, P997, DOI 10.1111/jcal.12455 Ehrenberg RG, 2001, PSYCHOL SCI, P1, DOI 10.1111/1529-1006.003 Garrison DR, 2013, INTERNET HIGH EDUC, V17, P84, DOI 10.1016/j.iheduc.2012.11.005 Garrison D. R., 1999, Internet and Higher Education, V2, P87, DOI 10.1016/S1096-7516(00)00016-6 Garrison DR, 2010, INTERNET HIGH EDUC, V13, P31, DOI 10.1016/j.iheduc.2009.10.002 Garrison D.R., 2007, J ASYNCHRONOUS LEARN, V11, P61, DOI DOI 10.24059/OLJ.V11I1.1737 Garrison D.R., 2007, The Internet and Higher Education, V10, P157, DOI [DOI 10.1016/J.IHEDUC.2007.04.001, 10.1016/j.iheduc.2007.04.001] Garrison D.R., 2001, AM J DISTANCE EDUC, V15, P7, DOI [DOI 10.1080/08923640109527071, https://doi.org/10.1080/08923640109527071] Geng L, 2022, INT J EMERG TECHNOL, V17, P118, DOI 10.3991/ijet.v17i01.28719 Gutiérrez-Santiuste E, 2015, AUSTRALAS J EDUC TEC, V31, P349 Hayes S, 2021, J HOSP LEIS SPORT TO, V29, DOI 10.1016/j.jhlste.2021.100339 Heymann P, 2022, EDUC TRAIN, V64, P380, DOI 10.1108/ET-05-2021-0161 Hu WP, 2016, ROEPER REV, V38, P70, DOI 10.1080/02783193.2016.1150374 Ibert O, 2022, GLOBAL NETW, V22, P564, DOI 10.1111/glob.12355 Jimenez F, 2014, IEEE SYS MAN CYBERN, P2983, DOI 10.1109/SMC.2014.6974384 Kozan K, 2014, INTERNET HIGH EDUC, V23, P39, DOI 10.1016/j.iheduc.2014.06.002 Kozan K, 2014, INTERNET HIGH EDUC, V21, P68, DOI 10.1016/j.iheduc.2013.10.007 Lau YY, 2021, FRONT PSYCHOL, V12, DOI 10.3389/fpsyg.2021.679197 Law KMY, 2019, COMPUT EDUC, V136, P1, DOI 10.1016/j.compedu.2019.02.021 Lee J, 2022, ONLINE LEARN, V26, P58, DOI 10.24059/olj.v26i1.3060 Lipman M., 2003, Thinking in Education, VSecond, DOI DOI 10.1017/CBO9780511840272 Norman E, 2019, REV GEN PSYCHOL, V23, P403, DOI 10.1177/1089268019883821 Pardales M., 2006, Educational Philosophy and Theory, V38, P299, DOI DOI 10.1111/J.1469-5812.2006.00196.X Robbins SB, 2004, PSYCHOL BULL, V130, P261, DOI 10.1037/0033-2909.130.2.261 Sen-Akbulut M, 2022, TURK ONLINE J DISTAN, V23 Shea P, 2012, INTERNET HIGH EDUC, V15, P89, DOI 10.1016/j.iheduc.2011.08.002 Shea P, 2010, INT REV RES OPEN DIS, V11, P127, DOI 10.19173/irrodl.v11i3.915 Shea P, 2010, COMPUT EDUC, V55, P1721, DOI 10.1016/j.compedu.2010.07.017 Shea P, 2010, INTERNET HIGH EDUC, V13, P10, DOI 10.1016/j.iheduc.2009.11.002 Shea P, 2009, COMPUT EDUC, V52, P543, DOI 10.1016/j.compedu.2008.10.007 Stenbom S, 2018, INTERNET HIGH EDUC, V39, P22, DOI 10.1016/j.iheduc.2018.06.001 Stewart P.W., 2007, RESEARCHER, V21, P32 Szeto E, 2015, COMPUT EDUC, V81, P191, DOI 10.1016/j.compedu.2014.10.015 Tobias S., 2009, Handbook of metacognition in education Topcu A, 2008, EDUC TECHNOL SOC, V11, P1 Um NH, 2021, SOC BEHAV PERSONAL, V49, DOI 10.2224/sbp.10397 Van Eck N.J., 2014, Measuring Scholarly Impact: Methods and Practice, P285, DOI 10.1007/978-3-319-10377-8_13(InEng.) van Eck NJ, 2017, SCIENTOMETRICS, V111, P1053, DOI 10.1007/s11192-017-2300-7 van Eck NJ, 2014, J INFORMETR, V8, P802, DOI 10.1016/j.joi.2014.07.006 van Eck NJ, 2010, SCIENTOMETRICS, V84, P523, DOI 10.1007/s11192-009-0146-3 Waltman L, 2012, J AM SOC INF SCI TEC, V63, P2378, DOI 10.1002/asi.22748 Wang XH, 2024, COMPUT ASSIST LANG L, V37, P814, DOI 10.1080/09588221.2022.2056203 Wei HC, 2020, DISTANCE EDUC, V41, P48, DOI 10.1080/01587919.2020.1724768 Williams KM, 2021, EDUC INF TECHNOL, V26, P5055, DOI 10.1007/s10639-021-10516-0 Wu XM, 2022, INT J ENV RES PUB HE, V19, DOI 10.3390/ijerph19042245 Yang XT, 2021, J SCI EDUC TECHNOL, V30, P380, DOI 10.1007/s10956-020-09877-x Young A., 2008, J SCHOLARSHIP TEACHI, V8, P1, DOI DOI 10.4236/PSYCH.2017.812125 Yu ZG, 2022, SUSTAINABILITY-BASEL, V14, DOI 10.3390/su14063598 Yu ZG, 2021, INT J MOB BLENDED LE, V13, P63, DOI 10.4018/IJMBL.2021100104 Yu ZG, 2022, EDUC INF TECHNOL, V27, P2457, DOI 10.1007/s10639-021-10720-y Yu ZG, 2021, INT J EDUC TECHNOL H, V18, DOI 10.1186/s41239-021-00252-3 Zhai XM, 2021, ETR&D-EDUC TECH RES, V69, P255, DOI 10.1007/s11423-020-09917-8 Zimmerman BJ, 2001, SELF-REGULATED LEARNING AND ACADEMIC ACHIEVEMENT, SECOND ED., P1 Zuo MZ, 2022, EDUC INF TECHNOL, V27, P4599, DOI 10.1007/s10639-021-10791-x NR 75 TC 21 Z9 22 U1 15 U2 120 PU SPRINGER PI NEW YORK PA ONE NEW YORK PLAZA, SUITE 4600, NEW YORK, NY, UNITED STATES SN 1360-2357 EI 1573-7608 J9 EDUC INF TECHNOL JI Educ. Inf. Technol. PD SEP PY 2022 VL 27 IS 8 BP 11669 EP 11688 DI 10.1007/s10639-022-11081-w EA MAY 2022 PG 20 WC Education & Educational Research WE Social Science Citation Index (SSCI) SC Education & Educational Research GA 5N0UV UT WOS:000797755100004 PM 35610978 OA Green Published, Bronze DA 2024-09-05 ER PT J AU Cuxac, P Lamirel, JC Bonvallot, V AF Cuxac, Pascal Lamirel, Jean-Charles Bonvallot, Valerie TI Efficient supervised and semi-supervised approaches for affiliations disambiguation SO SCIENTOMETRICS LA English DT Article DE Affiliation; Disambiguation; Data cleaning; Classification; Clustering; Semi-supervised; Bibliographic databases; K-means; Naive bayes ID UNIVERSITIES; INFORMATION; ADDRESSES; RANKING AB The disambiguation of named entities is a challenge in many fields such as scientometrics, social networks, record linkage, citation analysis, semantic web...etc. The names ambiguities can arise from misspelling, typographical or OCR mistakes, abbreviations, omissions... Therefore, the search of names of persons or of organizations is difficult as soon as a single name might appear in many different forms. This paper proposes two approaches to disambiguate on the affiliations of authors of scientific papers in bibliographic databases: the first way considers that a training dataset is available, and uses a Naive Bayes model. The second way assumes that there is no learning resource, and uses a semi-supervised approach, mixing soft-clustering and Bayesian learning. The results are encouraging and the approach is already partially applied in a scientific survey department. However, our experiments also highlight that our approach has some limitations: it cannot process efficiently highly unbalanced data. Alternatives solutions are possible for future developments, particularly with the use of a recent clustering algorithm relying on feature maximization. C1 [Cuxac, Pascal; Bonvallot, Valerie] INIST CNRS, Vandoeuvre Les Nancy, France. [Lamirel, Jean-Charles] LORIA Synalp, Vandoeuvre Les Nancy, France. C3 Centre National de la Recherche Scientifique (CNRS); Universite de Lorraine RP Cuxac, P (corresponding author), INIST CNRS, Vandoeuvre Les Nancy, France. EM pascal.cuxac@inist.fr; jean-charles.lamirel@loria.fr; valerie.bonvallot@inist.fr RI cuxac, pascal/AAE-3002-2019 OI Cuxac, Pascal/0000-0002-6809-5654 CR Aswani N, 2006, LECT NOTES COMPUT SC, V4273, P329 Bilenko M, 2003, IEEE INTELL SYST, V18, P16, DOI 10.1109/MIS.2003.1234765 Bourke P, 1996, SCIENTOMETRICS, V35, P199, DOI 10.1007/BF02018478 Carayol Nicolas., 2009, Who's Who in Patents. A Bayesian approach Churches Tim, 2002, BMC Med Inform Decis Mak, V2, P9, DOI 10.1186/1472-6947-2-9 Cleuziou G, 2008, INT C PATT RECOG, P563 De Bruin R. E., 1990, UNIFICATION ADDRESSE, V6578 DEBRUIN RE, 1993, SCIENTOMETRICS, V26, P65, DOI 10.1007/BF02016793 Domingos P., 1996, Machine Learning. Proceedings of the Thirteenth International Conference (ICML '96), P105 FELLEGI IP, 1969, J AM STAT ASSOC, V64, P1183, DOI 10.2307/2286061 French JC, 2000, J AM SOC INFORM SCI, V51, P774, DOI 10.1002/(SICI)1097-4571(2000)51:8<774::AID-ASI90>3.0.CO;2-P Galvez C, 2006, SCIENTOMETRICS, V69, P323, DOI 10.1007/s11192-006-0156-3 Hand DJ, 2001, INT STAT REV, V69, P385, DOI 10.2307/1403452 Hood WW, 2003, SCIENTOMETRICS, V58, P587, DOI 10.1023/B:SCIE.0000006882.47115.c6 Huang J, 2006, LECT NOTES ARTIF INT, V4213, P536 Jiang Y, 2011, J AM SOC INF SCI TEC, V62, P1029, DOI 10.1002/asi.21538 Lamirel JC, 2011, 2011 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), P956, DOI 10.1109/IJCNN.2011.6033326 Lelu A., 1993, MODELES NEURONAUX AN, P6 Liu NC, 2005, SCIENTOMETRICS, V64, P101, DOI 10.1007/s11192-005-0241-z MacQueen James, 1967, 5 BERK S MATH STAT P, P281 Moed HF, 2005, INFORM SCI KNOWL MAN, V9, P1, DOI 10.1007/1-4020-3714-7 Niu LF, 2012, PROCEDIA COMPUT SCI, V9, P1249, DOI 10.1016/j.procs.2012.04.136 Osareh F, 2000, SCIENTOMETRICS, V48, P427, DOI 10.1023/A:1005648723433 Rahm E., 2000, IEEE Data Eng. Bull, V23, P3 Sadinle M., 2012, ARXIV12053217 Sadinle M., 2010, APPROACHES MULTIPLE Van Raan AFJ, 2005, SCIENTOMETRICS, V62, P133, DOI 10.1007/s11192-005-0008-6 Ventura S. L., 2012, SSRN ELIBRARY Wang J, 2012, SCIENTOMETRICS, V93, P391, DOI 10.1007/s11192-012-0681-1 Zhou YL, 2010, PROCEEDINGS OF THE 5TH INTERNATIONAL CONFERENCE ON COOPERATION AND PROMOTION OF INFORMATION RESOURCES IN SCIENCE AND TECHNOLOGY(COINFO 10), P358, DOI 10.1109/ICOIP.2010.21 ZITT M., 2008, Ethics Sci. Environ. Politics, V8, P49, DOI [DOI 10.3354/ESEP00092, 10.3354/esep00092] NR 31 TC 18 Z9 22 U1 1 U2 63 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0138-9130 EI 1588-2861 J9 SCIENTOMETRICS JI Scientometrics PD OCT PY 2013 VL 97 IS 1 BP 47 EP 58 DI 10.1007/s11192-013-1025-5 PG 12 WC Computer Science, Interdisciplinary Applications; Information Science & Library Science WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Computer Science; Information Science & Library Science GA 216IL UT WOS:000324275600005 DA 2024-09-05 ER PT J AU Ching, FTS Cheah, TC AF Ching, Felicia Tay Sue Cheah, Tan Chye TI SENTIMENT ANALYSIS OF 10-K REPORTS USING TERM FREQUENCY COMPARATIVE APPROACH: A PRELIMINARY STUDY SO INTERNATIONAL JOURNAL OF EARLY CHILDHOOD SPECIAL EDUCATION LA English DT Article DE Textual content Evaluation; Phrase Rate of recurrence; 10K; Emotion Evaluation; Economic Statement Research ID INFORMATION AB Monetary 10K reviews consist of helpful info with regard to visitors to aid choice within expense. Because of the wealthy content material associated with 10K information, this is a really tiresome job to undergo the 10K are accountable to discover required details with regard to evaluation plus investment decision. The objective of this particular research would be to create a way regarding examining the particular emotions inside 10-K reviews, via assessment associated with phrase rate of recurrence (TF). Within Phase one execution, the primary function includes carrying out the test utilizing the current strategy associated with evaluating a listing of emotion conditions contrary to the conditions included inside the 10-K statement, also called typically the "Bag associated with Words" technique. The 2nd phase regarding execution is to create phrase eq from the group of 2 10-K reviews, to ensure that TF evaluation can be carried out upon both of these studies. Period one implies that there can be misunderstandings in case belief ratings were to become examined in encounter worth. It is because the particular ratings failed to reveal a definite partnership around the overall performance from the companies analysed. Level two pointed out that this comparison strategy allows typically the decrit from the are accountable to realize 12 months about 12 months modifications much better, since the TF variations in many cases are a sign involving modifications inside business instructions or even functional choices in the past year. This particular research plays a role in present books in the supporting technique associated with examining the particular 10-K record, that make utilization of relative expression eq and offers a good setup arrange for experts in addition to traders via procedure for drill down into the particular 10-K textual content. C1 [Ching, Felicia Tay Sue; Cheah, Tan Chye] Asia Pacific Univ Technol & Innovat, Kuala Lumpur, Malaysia. C3 Asia Pacific University of Technology & Innovation RP Ching, FTS (corresponding author), Asia Pacific Univ Technol & Innovat, Kuala Lumpur, Malaysia. EM tanchyecheah@yandex.com; feliciataysueching@yandex.com FU APU Teachers Study Give plan [APURDG/01/20 19] FX This particular function has been backed from the APU Teachers Study Give plan, task quantity: APURDG/01/20 19. CR Dyer T, 2017, J ACCOUNT ECON, V64, P221, DOI 10.1016/j.jacceco.2017.07.002 Guo L., 2016, J. Finance Data Sci, V2, P153, DOI [DOI 10.1016/I.JFDS.2017.02.001, 10.1016/j.jfds.2017.02.001] Hájek P, 2018, NEURAL COMPUT APPL, V29, P343, DOI 10.1007/s00521-017-3194-2 Huang K., 2011, SSRN ELECT J Kang T, 2018, TELEMAT INFORM, V35, P370, DOI 10.1016/j.tele.2017.12.014 Lee B., 2018, J OPEN INNOV-TECHNOL, P4 Lev B, 2018, ACCOUNT BUS RES, V48, P465, DOI 10.1080/00014788.2018.1470138 Li F, 2010, J ACCOUNT RES, V48, P1049, DOI 10.1111/j.1475-679X.2010.00382.x Liu Y, 2016, J EMERG TECHNOL ACCO, V13, P85, DOI 10.2308/jeta-51438 Lo K, 2017, J ACCOUNT ECON, V63, P1, DOI 10.1016/j.jacceco.2016.09.002 Loughran T., 2016, SSRN ELECT J Loughran T, 2011, J FINANC, V66, P35, DOI 10.1111/j.1540-6261.2010.01625.x Mayew WJ, 2015, ACCOUNT REV, V90, P1621, DOI 10.2308/accr-50983 Shayaa S, 2018, IEEE ACCESS, V6, P37807, DOI 10.1109/ACCESS.2018.2851311 Zeller T., 2012, Accounting Financial Studies Journal, V16, P1 NR 15 TC 0 Z9 0 U1 1 U2 1 PU ANADOLU UNIV PI ESKISEHIR PA INST FINE ARTS, ESKISEHIR, 26470, TURKEY SN 1308-5581 J9 INT J EARLY CHILD SP JI Int. J. Early Child. Spec. Educ. PY 2022 VL 14 IS 3 BP 6425 EP 6434 DI 10.9756/INT-JECSE/V14I3.808 PG 10 WC Education, Special WE Emerging Sources Citation Index (ESCI) SC Education & Educational Research GA 1U5KB UT WOS:000805450400032 DA 2024-09-05 ER PT J AU Gu, TT Qian, XM Lou, PH AF Gu, Tingting Qian, Xiaoming Lou, Peihuang TI Research on Roundness Error Evaluation of Connecting Rod Journal in Crankshaft Journal Synchronous Measurement SO APPLIED SCIENCES-BASEL LA English DT Article DE synchronous measurement; connecting rod journal; non-equal interval sampling; particle swarm optimization; roundness error evaluation AB Featured Application To solve the problem that the measurement data of connecting rod journal is not consistent with the measurement angle in the synchronous measurement of the crankshaft journal, improve the measurement accuracy. The crankshaft is the core part of an automobile engine, and the accuracy requirements of various shape and position errors are very high. On the basis of a synchronous measurement system, the connecting rod journal is deeply studied, including data processing and roundness evaluation. Firstly, according to the measuring processes of connecting rod journals, the real sampling angle distribution function was established, and the corresponding Gaussian weight function of each sampling angle was calculated. The weight function and the collected data corresponding to the angle were subjected to discrete cyclic convolution operation in the spatial domain to obtain the filtered effective circular contour data. Secondly, the particle swarm optimization algorithm was improved, and its inertia weight was set to decrease nonlinearly to speed up the convergence. A calculation process suitable for the evaluation of journal errors was designed. Then, the improved particle swarm optimization algorithm was used to evaluate the roundness of the corrected rod journal contour data. At last, through multiple measurement experiments, the feasibility and effectiveness of the synchronous measurement scheme and data processing method proposed in this paper are verified. C1 [Gu, Tingting; Qian, Xiaoming; Lou, Peihuang] Nanjing Univ Aeronaut & Astronaut, Coll Mech & Elect Engn, 29 Yudao St, Nanjing 210016, Peoples R China. [Gu, Tingting] Nanjing Univ Aeronut & Astronaut, Jincheng Coll, 88 Hangjin Ave, Nanjing 211156, Peoples R China. C3 Nanjing University of Aeronautics & Astronautics RP Qian, XM; Lou, PH (corresponding author), Nanjing Univ Aeronaut & Astronaut, Coll Mech & Elect Engn, 29 Yudao St, Nanjing 210016, Peoples R China. EM gutingting@nuaa.edu.cn; k.bamdad@westernsydney.edu.au; meephlou@nuaa.edu.cn OI Gu, Tingting/0000-0003-1484-4178 FU Key R&D Project of Jiangsu Province [BE20160034] FX FundingThis research was funded by the Key R&D Project of Jiangsu Province, grant number BE20160034. CR Bamberger H, 2012, INT J ADV MANUF TECH, V60, P1039, DOI 10.1007/s00170-011-3660-4 CHETWYND DG, 1985, P I MECH ENG B-J ENG, V199, P93 Chiabert P, 2017, INT J ADV MANUF TECH, V92, P447, DOI 10.1007/s00170-017-0144-1 Cui W., 2020, RES KEY TECHNOLOGIES Cui X., 2015, MACH DES MANUF, P90, DOI [10.19356/j.cnki.1001-3997.2015.04.024, DOI 10.19356/J.CNKI.1001-3997.2015.04.024] Deng Y., 2017, THESIS SHANGHAI U SH Du CL, 2014, MEASUREMENT, V52, P12, DOI 10.1016/j.measurement.2014.02.028 Fang Jianchao, 2016, Journal of Computer Applications, V36, P492, DOI 10.11772/j.issn.1001-9081.2016.02.0492 Kennedy J., 1995, 1995 IEEE International Conference on Neural Networks Proceedings (Cat. No.95CH35828), P1942, DOI 10.1109/ICNN.1995.488968 Kumar M., 2018, Int. J. Data Network Sci., V2, P63, DOI [10.5267/j.ijdns.2018.8.003, DOI 10.5267/J.IJDNS.2018.8.003] Li Jing, 2019, Journal of Mechanical Engineering, V55, P222, DOI 10.3901/JME.2019.17.222 Liang W., 2013, THESIS SHANGHAI JIAO Liu Q., 2019, MACH TOOL HYDRAUL, V47, P151, DOI [10.3969/j.issn.1001-3881.2019.10.035, DOI 10.3969/J.ISSN.1001-3881.2019.10.035] Liu YP, 2019, INTELL AUTOM SOFT CO, V25, P767, DOI 10.31209/2019.100000080 [罗钧 Luo Jun], 2016, [机械工程学报, Journal of Mechanical Engineering], V52, P27 Pathak VK, 2017, J ADV MANUF SYST, V16, P205, DOI 10.1142/S0219686717500135 [钱晓明 Qian Xiaoming], 2020, [仪器仪表学报, Chinese Journal of Scientific Instrument], V41, P113 Srinivasu DS, 2017, INT J ADV MANUF TECH, V92, P2743, DOI 10.1007/s00170-017-0325-y Tian Y., 2007, CHIN J SCI INSTRUM, P118 [杨泽青 Yang Zeqing], 2021, [计算机集成制造系统, Computer Integrated Manufacturing Systems], V27, P1629 Yu Hongxiang, 2014, Journal of Mechanical Engineering, V50, P199, DOI 10.3901/JME.2014.03.199 [俞红祥 Yu Hongxiang], 2012, [仪器仪表学报, Chinese Journal of Scientific Instrument], V33, P2249 Yu ZW, 2005, ENG FAIL ANAL, V12, P487, DOI 10.1016/j.engfailanal.2004.10.001 Zhang G., 2021, THESIS QINGDAO U SCI Zhang H., 2015, Research on the use value of virtual game products Zhao D., 2012, RES AUTOMATIC PRECIS Zheng P, 2019, MEASUREMENT, V135, P886, DOI 10.1016/j.measurement.2018.12.046 NR 27 TC 2 Z9 2 U1 6 U2 29 PU MDPI PI BASEL PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND EI 2076-3417 J9 APPL SCI-BASEL JI Appl. Sci.-Basel PD FEB PY 2022 VL 12 IS 4 AR 2214 DI 10.3390/app12042214 PG 15 WC Chemistry, Multidisciplinary; Engineering, Multidisciplinary; Materials Science, Multidisciplinary; Physics, Applied WE Science Citation Index Expanded (SCI-EXPANDED) SC Chemistry; Engineering; Materials Science; Physics GA ZR4LU UT WOS:000767757400001 OA gold DA 2024-09-05 ER PT J AU Avanesova, AA Shamliyan, TA AF Avanesova, Anna A. Shamliyan, Tatyana A. TI Comparative trends in research performance of the Russian universities SO SCIENTOMETRICS LA English DT Article DE Academic institutions; Productivity; Internationalization; Russian Federation; Artificial intelligence ID PUBLICATION ACTIVITY; SCIENCE; INSTITUTIONS; INNOVATION; CAPACITY; STATE; CHINA AB We analyzed comparative trends in research performance of the Russian institutions based on the quantitative and qualitative data available in the international SciVal, Scopus, web of science and the national Russian databases from 2012 to December 2017. Russian Federation represented 2.0% of the world population and 2% of the researchers while accounting to 2.2% of the world publications (14th place in the world scholarly output) with overall field-weighted citation impact of 0.75. Scholarly output of the Russian authors increased by 79%, field-weighted citation impact by 12% and outputs in top citation percentiles by 21% but without a statistically significant positive association between higher investment in research and development and the increase the national GDP. Scholarly output for the Russian publications in mathematics, physics and astronomy are among 5 top countries. However, field-weighted mass media impact, the number of citations per publication, citations per author and per publication, metrics of international collaboration and the academic-corporation collaboration and economic impact of the Russian research remain low. Routine analysis of the research performance and economic impact of R&D expenditure should be reflected in transparent distribution of state research funding. Legal aspects of the international research must be developed to ensure a complete integration of the Russian science into international research activities. C1 [Avanesova, Anna A.] North Caucasian Fed Univ, Pushkina St 1, Stavropol 355009, Russia. [Shamliyan, Tatyana A.] Elsevier, Evidence Based Med Ctr, Qual Assurance, 1600 JFK Blvd, Philadelphia, PA 19103 USA. C3 North Caucasus Federal University; Reed Elsevier; Elsevier RP Shamliyan, TA (corresponding author), Elsevier, Evidence Based Med Ctr, Qual Assurance, 1600 JFK Blvd, Philadelphia, PA 19103 USA. EM annavanesova@yandex.ru; t.shamliyan@elsevier.com RI Shamliyan, Tatyana/AAU-8323-2020 OI Avanesova, Anna/0000-0003-2472-9616 CR Abankina I, 2016, TECHNOL FORECAST SOC, V103, P228, DOI 10.1016/j.techfore.2015.10.007 Aldieri L, 2018, SOCIO-ECON PLAN SCI, V62, P13, DOI 10.1016/j.seps.2017.05.003 [Anonymous], BENCHMARKING SCIVAL [Anonymous], EKON SOTS PEREMENY F Asheim B., 2016, ADV THEORY PRACTICE Bolotov V. A., 2014, VOPROSY OBRAZOVANIYA, V1, P241 Chen KH, 2020, TECHNOVATION, V94-95, DOI 10.1016/j.technovation.2017.10.005 Chmykhalo A, 2015, PROCD SOC BEHV, V166, P480, DOI 10.1016/j.sbspro.2014.12.559 Colledge L., 2014, SCIVAL METRICS GUIDE Decree of the Government of the Russian Federation, 2013, MEAS STAT SUPP LEAD Decree of the President of the Russian Federation, 2012, MEAS IMPL STAT POL F Frenken K, 2017, J INFORMETR, V11, P859, DOI 10.1016/j.joi.2017.06.006 Galeev I. H., 2012, ED TECHNOLOGIES SOC, V15, P594 Gorin S.V., 2016, European Science Editing, V42, P60 Ivanov VV, 2014, HER RUSS ACAD SCI+, V84, P28, DOI 10.1134/S101933161401002X Kirillova O. V., 2012, ED STUDIES, P148 Kulmala M, 2015, ATMOS CHEM PHYS, V15, P13085, DOI 10.5194/acp-15-13085-2015 Lane J, 2011, SCIENCE, V331, P678, DOI 10.1126/science.1201865 Li F. -. F, 2017, OPENING GOOGLE AI CH Li J, 2017, INFORM PROCESS MANAG, V53, P1156, DOI 10.1016/j.ipm.2017.05.002 Li XB, 2011, WORLD DEV, V39, P1240, DOI 10.1016/j.worlddev.2010.05.011 Lyagushkina E., 2017, INTER NET J, V9 Macilwain C, 2010, NATURE, V465, P682, DOI 10.1038/465682a Markusova VA, 2013, COLLNET J SCIENTOMET, V7, P217, DOI 10.1080/09737766.2013.832904 Meyer D., 2017, FORTUNE Mongeon P, 2016, SCIENTOMETRICS, V106, P213, DOI 10.1007/s11192-015-1765-5 Nikolaev V., 2013, B SARATOV STATE LAW, V5, P6 O'Meara S, 2015, NATURE, V528, pS179, DOI 10.1038/528S179a Pislyakov V, 2014, J ASSOC INF SCI TECH, V65, P2321, DOI 10.1002/asi.23093 Poldin O., 2017, ED STUDIES, V2, P10 Russian Academy of Science, 2013, M PRES RUSS AC SCI Salter B, 2016, SCI TECHNOL HUM VAL, V41, P793, DOI 10.1177/0162243916631022 Schiermeier Q., 2010, RUSSIA BOOST U SCI Sokolov D. V., 2014, J SCI INNOVATION ED, V15, P131 Tereshchenko D., 2017, EC ED, V3, P123 The Directive of the Government of the Russian Federation, 2012, PLAN MEAS DEV IMPR C The Directive of the Government of the Russian Federation, 2013, COUNC INCR COMP LEAD The Ministry of Education and Science of the Russian Federation, RUSS AC EXC PROJ The UK's Department for Business E. I. S. B., 2017, INT COMP PERF UK RES Turko T, 2016, SCIENTOMETRICS, V109, P769, DOI 10.1007/s11192-016-2060-9 Zemlin A. I., 2017, RUSSIAN MILITARY J, V1, P149 NR 41 TC 17 Z9 19 U1 3 U2 50 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0138-9130 EI 1588-2861 J9 SCIENTOMETRICS JI Scientometrics PD SEP PY 2018 VL 116 IS 3 BP 2019 EP 2052 DI 10.1007/s11192-018-2807-6 PG 34 WC Computer Science, Interdisciplinary Applications; Information Science & Library Science WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Computer Science; Information Science & Library Science GA GQ8LT UT WOS:000442007200028 DA 2024-09-05 ER PT J AU Weinberger, M Zhitomirsky-Geffet, M AF Weinberger, Maor Zhitomirsky-Geffet, Maayan TI Modeling a successful citation trajectory structure for scholar's impact evaluation in Israeli academia SO HELIYON LA English DT Article DE Scholarly impact; Universal impact measures; Citation trajectory structure; Logistic regression classifier; Web of Science; Google Scholar ID RESEARCH PRODUCTIVITY; GENDER-DIFFERENCES; CAREER; FACULTY; SCIENCE; INDEX; UNIVERSALITY; PATTERNS; CHOICE AB One of the main concerns of researchers and institutions is how to assess the future performance of scholars and identify their potential to become successful scientists. In this study, we model scholarly success in terms of the probability of a scholar belonging to a group of highly impactful scholars as determined by their citation trajectory structures. To this end, we developed a new set of impact measures based on a scholar's citation trajectory structure (rather than on absolute citation or h-index rates), that show a stable trend and scale for highly impactful scholars, independent of their field of study, seniority and citation index. These measures were then incorporated as influence factors into the logistic regression models and used as features for probabilistic classifiers based on these models to identify the successful scholars in the heterogeneous corpus of 400 of most and least cited professors from two Israeli universities. From the practical point of view, the study may yield useful insights and serve as an aid in making promotion decisions by institutions, as well as a self-assessment tool for researchers who strive to increase their academic influence and become leaders in their field. C1 [Weinberger, Maor; Zhitomirsky-Geffet, Maayan] Bar Ilan Univ, Ramat Gan, Israel. C3 Bar Ilan University RP Weinberger, M (corresponding author), Bar Ilan Univ, Ramat Gan, Israel. EM maor89@gmail.com RI Weinberger, Maor/JGL-8627-2023 OI Weinberger, Maor/0000-0002-4943-1763 CR Abramo G, 2016, SCI PUBL POLICY, V43, P301, DOI 10.1093/scipol/scv037 Abramo G, 2009, SCIENTOMETRICS, V79, P517, DOI 10.1007/s11192-007-2046-8 Acuna DE, 2012, NATURE, V489, P201, DOI 10.1038/489201a Adams J, 2005, SCIENTOMETRICS, V63, P567, DOI 10.1007/s11192-005-0228-9 Bjork S, 2014, SCIENTOMETRICS, V98, P185, DOI 10.1007/s11192-013-0989-5 BLACKBURN RT, 1978, SOCIOL EDUC, V51, P132, DOI 10.2307/2112245 Brizan DG, 2016, SCIENTOMETRICS, V108, P183, DOI 10.1007/s11192-016-1950-1 Campbell PG, 2011, J NEUROSURG, V115, P380, DOI 10.3171/2011.3.JNS101176 Clauset A, 2017, SCIENCE, V355, P477, DOI 10.1126/science.aal4217 Cooper T, 2019, INFORM RES, V24 Ding CG, 2017, J INFORMETR, V11, P244, DOI 10.1016/j.joi.2016.12.004 Egghe L, 2006, SCIENTOMETRICS, V69, P131, DOI 10.1007/s11192-006-0144-7 Eloy JA, 2013, OTOLARYNG HEAD NECK, V148, P215, DOI 10.1177/0194599812466055 Feichtinger G, 2019, J ECON DYN CONTROL, V108, DOI 10.1016/j.jedc.2019.103752 Fenner T, 2018, PLOS ONE, V13, DOI 10.1371/journal.pone.0200098 Fortunato S, 2018, SCIENCE, V359, DOI 10.1126/science.aao0185 Franceschini F, 2012, SCIENTOMETRICS, V92, P621, DOI 10.1007/s11192-011-0570-z FULTON O, 1974, SOCIOL EDUC, V47, P29, DOI 10.2307/2112166 GARFIELD E, 1972, SCIENCE, V178, P471, DOI 10.1126/science.178.4060.471 Garfield E, 2009, J INFORMETR, V3, P173, DOI 10.1016/j.joi.2009.03.009 Gogoglou A, 2020, IEEE T BIG DATA, V6, P727, DOI 10.1109/TBDATA.2018.2884505 Harrell FE, 1996, STAT MED, V15, P361, DOI 10.1002/(SICI)1097-0258(19960229)15:4<361::AID-SIM168>3.0.CO;2-4 Hicks D, 2015, NATURE, V520, P429, DOI 10.1038/520429a Hirsch JE, 2007, P NATL ACAD SCI USA, V104, P19193, DOI 10.1073/pnas.0707962104 Hirsch JE, 2005, P NATL ACAD SCI USA, V102, P16569, DOI 10.1073/pnas.0507655102 Hou J, 2019, COMPUT SCI REV, V34, DOI 10.1016/j.cosrev.2019.100197 Kaur J, 2013, J INFORMETR, V7, P924, DOI 10.1016/j.joi.2013.09.002 Ke WM, 2013, SCIENTOMETRICS, V94, P981, DOI 10.1007/s11192-012-0787-5 Kelchtermans S., 2005, TOP RES PRODUCTIVITY, V576, P1, DOI [10.1089/dst.2013.0013, DOI 10.1089/DST.2013.0013] Kyvik S, 1996, SCI TECHNOL HUM VAL, V21, P54, DOI 10.1177/016224399602100103 KYVIK S, 1990, HIGH EDUC, V19, P37, DOI 10.1007/BF00142022 Larivière V, 2011, SCIENTOMETRICS, V87, P483, DOI 10.1007/s11192-011-0369-y Levene M, 2019, SCIENTOMETRICS, V120, P885, DOI 10.1007/s11192-019-03151-7 Li JC, 2020, J R SOC INTERFACE, V17, DOI 10.1098/rsif.2020.0135 Pan RK, 2014, SCI REP-UK, V4, DOI 10.1038/srep04880 Petersen AM, 2012, P NATL ACAD SCI USA, V109, P5213, DOI 10.1073/pnas.1121429109 Petersen AM, 2014, P NATL ACAD SCI USA, V111, P15316, DOI 10.1073/pnas.1323111111 Powers TL, 1998, J BUS RES, V42, P75, DOI 10.1016/S0148-2963(97)00099-4 Prathap G, 2006, CURR SCI INDIA, V91, P1439 Radicchi F, 2008, P NATL ACAD SCI USA, V105, P17268, DOI 10.1073/pnas.0806977105 Raj A, 2016, ACAD MED, V91, P1074, DOI 10.1097/ACM.0000000000001251 Reed DA, 2011, ACAD MED, V86, P43, DOI 10.1097/ACM.0b013e3181ff9ff2 Sabharwal M, 2013, J COMP POLICY ANAL, V15, P141, DOI 10.1080/13876988.2013.785149 Sarigöl E, 2014, EPJ DATA SCI, V3, DOI 10.1140/epjds/s13688-014-0009-x Silva FN, 2020, QUANT SCI STUD, V1, P1298, DOI 10.1162/qss_a_00070 Simonton DK, 1997, PSYCHOL REV, V104, P66, DOI 10.1037/0033-295X.104.1.66 Sinatra R, 2016, SCIENCE, V354, DOI 10.1126/science.aaf5239 Smith GCS, 2014, AM J EPIDEMIOL, V180, P318, DOI 10.1093/aje/kwu140 Stack S, 2004, RES HIGH EDUC, V45, P891, DOI 10.1007/s11162-004-5953-z Stephan PE., 1992, Striking the mother lode in science: The importance of age, place, and time Waltman L, 2016, J INFORMETR, V10, P365, DOI 10.1016/j.joi.2016.02.007 Waltman L, 2012, J AM SOC INF SCI TEC, V63, P406, DOI 10.1002/asi.21678 WANNER RA, 1981, SOCIOL EDUC, V54, P238, DOI 10.2307/2112566 Way SF, 2017, P NATL ACAD SCI USA, V114, pE9216, DOI 10.1073/pnas.1702121114 Weihs L, 2017, ACM-IEEE J CONF DIG, P49 Weinberger M., 2020, ASS INFORM SCI TECHN Weinberger M, 2021, SCIENTOMETRICS, V126, P2931, DOI 10.1007/s11192-020-03823-9 White CS, 2012, INT J PRODUCT PERFOR, V61, P584, DOI 10.1108/17410401211249175 Wildgaard L, 2014, SCIENTOMETRICS, V101, P125, DOI 10.1007/s11192-014-1423-3 Yair G, 2017, SCIENTOMETRICS, V113, P299, DOI 10.1007/s11192-017-2465-0 Yang G, 2012, J UROLOGY, V188, P1286, DOI 10.1016/j.juro.2012.06.022 NR 61 TC 1 Z9 1 U1 3 U2 6 PU CELL PRESS PI CAMBRIDGE PA 50 HAMPSHIRE ST, FLOOR 5, CAMBRIDGE, MA 02139 USA EI 2405-8440 J9 HELIYON JI Heliyon PD MAY PY 2023 VL 9 IS 5 AR e15673 DI 10.1016/j.heliyon.2023.e15673 EA APR 2023 PG 16 WC Multidisciplinary Sciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Science & Technology - Other Topics GA O2NV4 UT WOS:001042247800001 PM 37159699 OA Green Published, gold DA 2024-09-05 ER PT J AU Guo, LF Cui, YW Wu, YM Ma, JQ AF Guo Lifang Cui Yuwen Wu Yamin Ma Jiaqi TI Research on the influence of relation embeddedness on innovation performance of manufacturing supply chain alliances using expert fuzzy rule -intermediary role of shared mental model SO JOURNAL OF INTELLIGENT & FUZZY SYSTEMS LA English DT Article DE Artificial Intelligence (AI); relation embeddedness; shared mental model; innovation performance; structure equations; fuzzy rule AB The innovation and development of manufacturing supply chain alliance is an important way for enterprises to meet the increasing market demand and maintain the competitive advantage. From the perspective of embeddedness, the research model of relation embeddedness on innovation performance of manufacturing supply chain was constructed based on AMOS. Shared mental model was selected as intermediary variable to study the influence of relation embeddedness, shared mental model and innovation performance of manufacturing supply chain alliances. Expert fuzzy rule based system is utilized for measuring the performance of manufacturing supply chain alliances. The conclusion shows that relation embeddedness is significantly positive shared mental model and innovation performance. Shared mental model is positively affects alliance innovation performance and plays a part of intermediary role between relational embedding and alliance innovation performance. Practice implicates that enhance the level of relation embeddedness can promote the formation of shared mental model and improve the innovation performance of manufacturing supply chain alliance. C1 [Guo Lifang; Cui Yuwen; Wu Yamin; Ma Jiaqi] Taiyuan Univ Technol, Coll Econ & Management, Jinzhong 030600, Shanxi, Peoples R China. C3 Taiyuan University of Technology RP Guo, LF (corresponding author), Taiyuan Univ Technol, Coll Econ & Management, Jinzhong 030600, Shanxi, Peoples R China. EM glfpapers@163.com RI yang, yue/KCK-7870-2024 CR BalaAnand M, 2019, WIRELESS PERS COMMUN, V109, P777, DOI 10.1007/s11277-019-06590-w Cannon-Bowers JA, 2001, J ORGAN BEHAV, V22, P195, DOI 10.1002/job.82 Cao Y., IEEE T IND INFORM Diyun M., 2016, SCI SCI TECHNOLOGY M, V37, P152 Fantacci R, 2020, CAAI T INTELL TECHNO, V5, P15, DOI 10.1049/trit.2019.0049 Fawcett SE, 2012, BUS HORIZONS, V55, P163, DOI 10.1016/j.bushor.2011.11.004 Gulati R, 2000, STRATEGIC MANAGE J, V21, P203, DOI 10.1002/(SICI)1097-0266(200003)21:3<203::AID-SMJ102>3.0.CO;2-K Guo S., ENTERP INF SYST-UK, P1 Guohong C., 2013, RES DEV MANAGEMENT, V25, P126 Hui L., 2010, IND ENG MANAGEMENT, V15, P7 Jean RJ, 2014, J PROD INNOVAT MANAG, V31, P98, DOI 10.1111/jpim.12082 Ke X., 2015, NANKAI MANAGEMENT RE, V18, P108 Khalaf OI, 2020, INT J E-COLLAB, V16, P16, DOI 10.4018/IJeC.2020010102 Khan M, 2016, INT J PROD ECON, V181, P208, DOI 10.1016/j.ijpe.2016.04.010 KLIMOSKI R, 1994, J MANAGE, V20, P403, DOI 10.1177/014920639402000206 Laursen K, 2006, STRATEGIC MANAGE J, V27, P131, DOI 10.1002/smj.507 Mengdan Y., 2015, NANKAI MANAGEMENT RE, V18, P39 Peterson E., 2000, GROUP PROCESSES INTE, V3, P296, DOI DOI 10.1177/1368430200033005 Schepers P, 2007, J BUS PSYCHOL, V21, P407, DOI 10.1007/s10869-006-9035-4 Uzzi B, 1997, ADMIN SCI QUART, V42, P35, DOI 10.2307/2393808 Youn S, 2012, INT J PROD ECON, V139, P237, DOI 10.1016/j.ijpe.2012.04.013 Yu F., 2018, SCI TECHNOLOGY MANAG, P98 NR 22 TC 0 Z9 0 U1 4 U2 27 PU IOS PRESS PI AMSTERDAM PA NIEUWE HEMWEG 6B, 1013 BG AMSTERDAM, NETHERLANDS SN 1064-1246 EI 1875-8967 J9 J INTELL FUZZY SYST JI J. Intell. Fuzzy Syst. PY 2021 VL 40 IS 4 BP 8287 EP 8294 DI 10.3233/JIFS-189651 PG 8 WC Computer Science, Artificial Intelligence WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Computer Science GA RN7PP UT WOS:000640545600050 DA 2024-09-05 ER PT J AU Stelson, EA Bolenbaugh, M Woods-Jaeger, B Branch, C Ramirez, M AF Stelson, Elisabeth A. Bolenbaugh, Mallory Woods-Jaeger, Briana Branch, Cassidy Ramirez, Marizen TI Identifying research Participation effects through qualitative methods: Feedback from Research Engagement Consultants involved in a pediatric mental health comparative effectiveness trial SO SSM-QUALITATIVE RESEARCH IN HEALTH LA English DT Article DE Research participation effects; Causal inference; Qualitative; Hawthorne effect; Clinical trials; Community engagement AB Research participation effects (RPEs)-effects due to study design rather than study intervention-have long been acknowledged as a research phenomenon. Identifying RPEs is crucial to understanding the true effects of an intervention and outcomes may change during dissemination. Few researchers systematically identify the potential role of RPEs on their research findings, despite recent calls to capture these effects. This study demonstrates the utility of using qualitative methodologies to detect RPEs in a clinical trial. Research Engagement Consultants (RECs) were parents and children (N1/419) who participated in a post-injury mental health trial in three Midwestern states. RECs were hired as part of the research team upon completion of their study participation. RECs participated in two semi-structured interviews detailing their experience in the study and their recovery process. Inter-coder reliability calculations were used iteratively to ensure coding consistency. Thematic analysis indicates that in addition to benefiting from the interventions being tested, RECs additionally reported benefitting from the study design in two primary ways: 1) contact with the research team provided social support; and 2) completion of specific data collection activities facilitated parent-child communication. Analysis of these interviews illustrates how embedding a qualitative evaluation process into clinical trials can help identify unintended RPEs and understand the potential effects of participating in the research process. Additionally, analysis of the qualitative data provides a quality improvement feedback loop to contextualize the results of the study; how the clinical trial environment may influence dissemination effectiveness; and how future research processes could potentially be strengthened. Trial registration number: NCT02323204.Trial registry: clinicaltrials.gov (US National Institutes of Health) C1 [Stelson, Elisabeth A.] Harvard Univ, TH Chan Sch Publ Hlth, Dept Social & Behav Sci, 677 Huntington Ave, Boston, MA 02115 USA. [Bolenbaugh, Mallory] Univ Iowa, Coll Educ, Dept Psychol & Quantitat Fdn, Iowa City, IA USA. [Woods-Jaeger, Briana] Emory Univ, Rollins Sch Publ Hlth, Dept Behav Social & Hlth Educ Sci, Atlanta, GA USA. [Stelson, Elisabeth A.; Bolenbaugh, Mallory; Branch, Cassidy; Ramirez, Marizen] Univ Iowa, Coll Publ Hlth, Dept Occupat & Environm Hlth, Iowa City, IA USA. [Branch, Cassidy] Univ Iowa, Publ Policy Ctr, Iowa City, IA USA. [Ramirez, Marizen] Univ Minnesota, Sch Publ Hlth, Div Environm Hlth Sci, Minneapolis, MN USA. C3 Harvard University; Harvard T.H. Chan School of Public Health; University of Iowa; Emory University; Rollins School Public Health; University of Iowa; University of Iowa; University of Minnesota System; University of Minnesota Twin Cities RP Stelson, EA (corresponding author), Harvard Univ, TH Chan Sch Publ Hlth, Dept Social & Behav Sci, 677 Huntington Ave, Boston, MA 02115 USA. EM estelson@g.harvard.edu OI Stelson, Elisabeth/0000-0001-5176-2652 FU Patient-Centered Outcomes Research Institute (PCORI) Award [CER-1306-02918]; National Cancer Institute of the National Institutes of Health [R25CA057711, 2T32CA057711-26]; Harvard Univer-sity FX This study was funded through a Patient-Centered Outcomes Research Institute (PCORI) Award (CER-1306-02918) to Principal Investigator Marizen Ramirez. The primary author was partially funded by the National Cancer Institute of the National Institutes of Health (R25CA057711 and 2T32CA057711-26) , awarded to Harvard University. The funding organizations had no role in the design and conduct of the study; collection, management, analysis, and interpretation of the data; preparation, review, or approval of the manuscript; or decision to submit the manuscript for publication. NR 0 TC 0 Z9 0 U1 0 U2 0 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS SN 2667-3215 J9 SSM-QUAL RES HEALTH JI SSM-Qual. Res. Health PD DEC PY 2021 VL 1 AR 100023 DI 10.1016/j.ssmqr.2021.100023 PG 8 WC Public, Environmental & Occupational Health; Social Sciences, Biomedical WE Emerging Sources Citation Index (ESCI) SC Public, Environmental & Occupational Health; Biomedical Social Sciences GA ES8T3 UT WOS:001141014500026 OA gold DA 2024-09-05 ER PT J AU Zhang, RS AF Zhang, Ruoshi TI Research and evaluation on students' emotional attachment to campus landscape renewal coupling emotional attachment scale and public sentiment analysis: a case study of the "Heart of Forest" in Beijing Forestry University SO FRONTIERS IN PSYCHOLOGY LA English DT Article DE emotional attachment; campus landscape renewal; emotional attachment scale; public sentiment analysis; Heart of Forest ID BENEFITS; GREENSPACE; DESIGN AB In the era of stock renewal, the construction of university campuses in China's first-tier cities has shifted from demolition and construction to renewal and upgrading, in which public landscape space is the main environment for students' daily life, learning and entertainment. Especially during the outbreak of the recent COVID-19 epidemic, it has become an important way for students to interact with nature and obtain emotional healing. In the existing studies, there is a lack of discussion on the correlation between the spatial characteristics of the updated campus landscape and students' emotional attachment, and there are few quantitative studies. Based on this, this paper takes the "Heart of Forest" landscape space as an example, and integrates multi-dimensional quantitative methods including emotional attachment scale and public semantic analysis to study and evaluate the characteristics of landscape space that affect students' emotional attachment. The results show that: (1) Overall, the landscape space renewal of the Heart of Forest provides students with positive emotional experiences and effectively enhances students' emotional attachment as well as sense of belonging to the campus. (2) Among them, the material characteristics of the site including nature-related elements, materials, structures play a positive role in promoting the vast majority of students in the process of establishing emotional attachment, which is particularly obvious for students majoring in landscape, architecture and urban planning. (3) Whether the public social space can effectively provide students with a good emotional experience is closely related to the frequency and purpose of students' use of the space. (4) The interactive characteristics such as changeability and playability fail to promote emotional attachment because of lacking of management and maintenance. The renewal and transformation of the "Heart of Forest" landscape space is generally successful in promoting students' emotional attachment, and provides a reference for the future campus landscape renewal design from different angles. In addition, the quantitative study of emotional attachment constructed in this paper coupled with multi-dimensional data provides a method for the evaluation of students' emotional experience of campus landscape. C1 [Zhang, Ruoshi] Beijing Forestry Univ, Sch Landscape Architecture, Beijing, Peoples R China. C3 Beijing Forestry University RP Zhang, RS (corresponding author), Beijing Forestry Univ, Sch Landscape Architecture, Beijing, Peoples R China. EM zhang_rs@bjfu.edu.cn OI Zhang, Ruoshi/0000-0001-8610-9151 FU This work was supported by the National Natural Science Foundation of China under Grant No. 52208005 and Beijing Social Science Foundation under Grant No. 22GLC063. [52208005]; National Natural Science Foundation of China [22GLC063]; Beijing Social Science Foundation FX Thanks for Shujie Zhao's help with the scale measurement. Thanks for Yang Song, Weiyue Duan, Zhikai Zheng, Yuling Liu for their help of distributing and collecting scales. Thanks for Weiyue Duan and Zhikai Zhao for their photography of the Heart of Forest.r This work was supported by the National Natural Science Foundation of China under Grant No. 52208005 and Beijing Social Science Foundation under Grant No. 22GLC063. CR Adams PC, 2015, GEOGR REV, V105, P129, DOI 10.1111/j.1931-0846.2014.12061.x Altman I., 1992, Place Attachment, DOI DOI 10.1007/978-1-4684-8753-4 Andre EK, 2017, J OUTDOOR RECREAT ED, V9, P15, DOI 10.18666/JOREL-2017-V9-I1-7491 [Anonymous], 2022, Qiangua's 2022 Xiaohongshu Active User Portrait Trend Report Arnberger A, 2022, URBAN FOR URBAN GREE, V70, DOI 10.1016/j.ufug.2022.127531 Barbier G, 2011, SOCIAL NETWORK DATA ANALYTICS, P327 Birnbaum L, 2021, J RURAL STUD, V87, P189, DOI 10.1016/j.jrurstud.2021.09.015 Biswas R., 2020, Int. J. Creat. Res. Thoughts, V8 Brandisauskiene A, 2021, SUSTAINABILITY-BASEL, V13, DOI 10.3390/su132111714 Brindley P, 2019, URBAN FOR URBAN GREE, V39, P45, DOI 10.1016/j.ufug.2019.01.015 Carmona M, 2019, J URBAN DES, V24, P1, DOI 10.1080/13574809.2018.1472523 Chakraborty K, 2020, IEEE T COMPUT SOC SY, V7, P450, DOI 10.1109/TCSS.2019.2956957 Ekkekakis P., 2013, The measurement of affect, mood, and emotion: A guide for health-behavioral research [冯悦 Feng Yue], 2021, [中国园林, Chinese Landscape Architecture], V37, P31 Guo WH, 2022, BUILDINGS-BASEL, V12, DOI 10.3390/buildings12101508 Guo X, 2022, BUILD ENVIRON, V223, DOI 10.1016/j.buildenv.2022.109449 Honold J, 2016, ENVIRON BEHAV, V48, P796, DOI 10.1177/0013916514568556 Jiang B, 2021, ENVIRON BEHAV, V53, P296, DOI 10.1177/0013916520947111 Jindal K., 2021, Mater Today: Proc Kaplan R., 1989, The Experience of Nature: A Psychological Perspective Kaplan R., 1998, PEOPLE MIND DESIGN M KAPLAN S, 1995, J ENVIRON PSYCHOL, V15, P169, DOI 10.1016/0272-4944(95)90001-2 Kara B, 2013, PROCD SOC BEHV, V82, P288, DOI 10.1016/j.sbspro.2013.06.262 Kellert S.R., 1995, The Biophilia Hypothesis Koga K, 2013, J PHYSIOL ANTHROPOL, V32, DOI 10.1186/1880-6805-32-7 Kong LQ, 2022, LANDSCAPE URBAN PLAN, V226, DOI 10.1016/j.landurbplan.2022.104482 Lai KY, 2020, CURR OPIN ENV SUST, V46, P27, DOI 10.1016/j.cosust.2020.08.008 Lau S, 2009, LANDSCAPE RES, V34, P55, DOI 10.1080/01426390801981720 Lee J, 2009, SCAND J FOREST RES, V24, P227, DOI 10.1080/02827580902903341 Lewicka M, 2011, J ENVIRON PSYCHOL, V31, P207, DOI 10.1016/j.jenvp.2010.10.001 Lin G., 2019, Chin. Landsc. Archit, V35, P63, DOI [10.19775/j.cla.2019.10.0063, DOI 10.19775/J.CLA.2019.10.0063] Liu QY, 2020, LANDSCAPE URBAN PLAN, V197, DOI 10.1016/j.landurbplan.2020.103763 Liu SB, 2022, FRONT PUBLIC HEALTH, V10, DOI 10.3389/fpubh.2022.888295 MCPHERSON EG, 1992, LANDSCAPE URBAN PLAN, V22, P41 Ratcliffe E, 2021, FRONT PSYCHOL, V12, DOI 10.3389/fpsyg.2021.570563 Rickard SC, 2021, LANDSCAPE RES, V46, P975, DOI 10.1080/01426397.2021.1928034 Rousseau S, 2020, ENVIRON RESOUR ECON, V76, P1149, DOI 10.1007/s10640-020-00445-w Scannell L, 2013, ENVIRON BEHAV, V45, P60, DOI 10.1177/0013916511421196 Scannell L, 2017, J ENVIRON PSYCHOL, V51, P256, DOI 10.1016/j.jenvp.2017.04.001 Scannell L, 2010, J ENVIRON PSYCHOL, V30, P1, DOI 10.1016/j.jenvp.2009.09.006 Sim J, 2020, SUSTAINABILITY-BASEL, V12, DOI 10.3390/su12218895 Sina Weibo, 2020, Annual Sina Weibo User Report 2020 Tuan Y.-F., 1979, PHILOS GEOGRAPHY THE, P387, DOI DOI 10.1007/978-94-009-9394-5_19 Van den Berg A., 2008, P 9 INT C PHYS ANTHR van Leeuwen E, 2010, INT J AGR SUSTAIN, V8, P20, DOI 10.3763/ijas.2009.0466 Vella-Brodrick DA, 2022, EDUC PSYCHOL REV, V34, P1217, DOI 10.1007/s10648-022-09658-5 Wilkins E.J., 2020, Applied Environmental Education Communication, V19, P4, DOI DOI 10.1080/1533015X.2018.1486247 Williams D.R., 1989, Abstracts of the 1989 Leisure Research Symposium, P32 Xie J, 2020, SUSTAINABILITY-BASEL, V12, DOI 10.3390/su12176751 Yan TK, 2023, BUILD ENVIRON, V233, DOI 10.1016/j.buildenv.2023.110130 Ye L, 2021, PUBLIC ADMIN DEVELOP, V41, P23, DOI 10.1002/pad.1903 Yi ZY, 2017, SUSTAINABILITY-BASEL, V9, DOI 10.3390/su9081460 You SX, 2022, J CLEAN PROD, V341, DOI 10.1016/j.jclepro.2022.130715 Yuanshuo X., 2023, J. Landsc. Res, V15 Zeng XT, 2022, FORESTS, V13, DOI 10.3390/f13060892 Zhang R., 2021, New Archit, V02, P62 Zhang RS, 2024, J ASIAN ARCHIT BUILD, V23, P57, DOI 10.1080/13467581.2023.2217884 Zhang RS, 2023, FRONT ARCHIT RES, V12, P175, DOI 10.1016/j.foar.2022.06.007 Zhu X, 2021, URBAN FOR URBAN GREE, V62, DOI 10.1016/j.ufug.2021.127133 NR 59 TC 2 Z9 2 U1 24 U2 40 PU FRONTIERS MEDIA SA PI LAUSANNE PA AVENUE DU TRIBUNAL FEDERAL 34, LAUSANNE, CH-1015, SWITZERLAND SN 1664-1078 J9 FRONT PSYCHOL JI Front. Psychol. PD SEP 25 PY 2023 VL 14 AR 1250441 DI 10.3389/fpsyg.2023.1250441 PG 20 WC Psychology, Multidisciplinary WE Social Science Citation Index (SSCI) SC Psychology GA T4ZZ7 UT WOS:001078098800001 PM 37823071 OA gold, Green Published DA 2024-09-05 ER PT J AU Men, KP Cui, L AF Men, Kepei Cui, Lei TI Research on Evaluation Models and Empirical Analysis of Earthquake Disaster Losses in China SO ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES LA English DT Article DE Earthquake Disaster; Economic Loss Rating; Grey Relation-Cluster Analysis; Principal Component Analysis; Evaluation Models ID GREAT EARTHQUAKES; NETWORK STRUCTURE; PREDICTION AB Earthquake disasters occurred very frequently in China. As a result, to evaluate the losses has important social value and economic effect. This paper focuses on the assessment of economic losses of earthquake disasters which is divided into two parts: direct economic loss and indirect economic loss. First, the Kolmogorov-Smirnov (KS) test is used to determine the distribution of the earthquake losses per year in China, fitting the frequency of earthquake that happened per month in China. Second, the grey clustering method and principal component analysis (PCA) are applied, respectively, for direct economic loss rating and indirect economic loss rating. Finally, the economic loss generated by the earthquakes which happened from 2006 to 2009 in China is evaluated, and eight earthquakes are rated based on the comprehensive economic loss. C1 [Men, Kepei; Cui, Lei] Nanjing Univ Informat Sci & Technol, Coll Math & Stat, Nanjing 210044, Jiangsu, Peoples R China. C3 Nanjing University of Information Science & Technology RP Men, KP (corresponding author), Nanjing Univ Informat Sci & Technol, Coll Math & Stat, Nanjing 210044, Jiangsu, Peoples R China. EM menkepei@gmail.com CR [Anonymous], CHINA ENG SCI [Anonymous], 1984, An Introduction to Multivariate Statistical Analysis [Anonymous], J NATURAL DISASTERS [Anonymous], RES GRAY MODEL EARTH [Anonymous], 2012, Wiley Series in Probability and Statistics [Anonymous], SYSTEMS ENG THEORY M [Anonymous], RECENT DEV WORLD SEI [Anonymous], 2007, CHIN STAT YB [Anonymous], RES ALBUM PREDICTI 4 [Anonymous], J CATASTROPHOLOGY [Anonymous], STAT DECISION MAKING [Anonymous], PLACE VUNERABILITY T [Anonymous], STAT DECISION MAKING [Anonymous], WORLD EARTHQUAKE ENG [Anonymous], CHINESE GEOPHYS 2010 [Anonymous], TECHNOL EARTHQUAKE P Conover WJ., 1999, Practical Nonparametric Statistical, V350 [董奋义 Dong Fenyi], 2010, [农业系统科学与综合研究, System Sciences and Comprehensive Studies in Agriculture], V26, P478 Liu S. F., 2004, GREY SYSTEMS THEORY [毛国敏 Mao Guomin], 2007, [地震学报, Acta Seismologica Sinica], V29, P426 Men KP, 2012, Z NATURFORSCH A, V67, P308, DOI 10.5560/ZNA.2012-0013 Men K, 2011, Z NATURFORSCH A, V66, P681, DOI 10.5560/ZNA.2011-0028 Men KP, 2011, Z NATURFORSCH A, V66, P363, DOI 10.1515/zna-2011-0513 [徐道一 XU Daoyi], 2011, [地质力学学报, Journal of Geomechanics], V17, P64 Zhao AX., 1993, J NAT DISASTERS, V2, P1, DOI DOI 10.13577/j.jnd.1993.0301 [郑通彦 Zheng Tongyan], 2010, [灾害学, Journal of Catastrophology], V25, P96 [郑通彦 Zheng Tongyan], 2010, [灾害学, Journal of Catastrophology], V25, P112 NR 27 TC 1 Z9 1 U1 0 U2 21 PU WALTER DE GRUYTER GMBH PI BERLIN PA GENTHINER STRASSE 13, D-10785 BERLIN, GERMANY SN 0932-0784 EI 1865-7109 J9 Z NATURFORSCH A JI Z. Naturfors. Sect. A-J. Phys. Sci. PD OCT-NOV PY 2012 VL 67 IS 10-11 BP 534 EP 544 DI 10.5560/ZNA.2012-0059 PG 11 WC Chemistry, Physical; Physics, Multidisciplinary WE Science Citation Index Expanded (SCI-EXPANDED) SC Chemistry; Physics GA 063BQ UT WOS:000312971200002 OA hybrid DA 2024-09-05 ER PT B AU Thomas, J AF Thomas, Julia BA Thomas, J BF Thomas, J TI Searchability SO NINETEENTH-CENTURY ILLUSTRATION AND THE DIGITAL: STUDIES IN WORD AND IMAGE SE Digital Nineteenth Century LA English DT Article; Book Chapter DE Nineteenth century; Illustration; Digital; Computer vision; Keywording; Bibliographic metadata AB This chapter focuses on methods for making the content of illustrations searchable online, including computer vision, which offers the possibility of automated image retrieval, the use of textual metadata (bibliographic information, captions, and the words that accompany the illustration), and keywording. Thomas contends that these methods are not detached from the material that they promise to make searchable, but are deeply implicated in the relation between word and image that characterises illustration. The chapter analyses the ways in which the search mechanisms in digital illustration resources engage with this problematic relation between the textal and the visual, from issues surrounding the instability of the vocabulary used to describe the presence of illustrations in books, to questions of whether an illustration 'reflects' the text it accompanies. C1 [Thomas, Julia] Cardiff Univ, Cardiff, S Glam, Wales. C3 Cardiff University RP Thomas, J (corresponding author), Cardiff Univ, Cardiff, S Glam, Wales. NR 0 TC 0 Z9 0 U1 0 U2 0 PU PALGRAVE PI BASINGSTOKE PA HOUNDMILLS, BASINGSTOKE RG21 6XS, ENGLAND BN 978-3-319-58148-4; 978-3-319-58147-7 J9 DIG NINETEENTH CENT PY 2017 BP 33 EP 64 DI 10.1007/978-3-319-58148-4_3 D2 10.1007/978-3-319-58148-4 PG 32 WC Humanities, Multidisciplinary; Information Science & Library Science WE Book Citation Index – Social Sciences & Humanities (BKCI-SSH) SC Arts & Humanities - Other Topics; Information Science & Library Science GA BK0FR UT WOS:000430506600003 DA 2024-09-05 ER PT J AU Panigrahi, RR Shrivastava, AK Qureshi, KM Mewada, BG Alghamdi, SY Almakayeel, N Almuflih, AS Qureshi, MRN AF Panigrahi, Rashmi Ranjan Shrivastava, Avinash K. Qureshi, Karishma M. Mewada, Bhavesh G. Alghamdi, Saleh Yahya Almakayeel, Naif Almuflih, Ali Saeed Qureshi, Mohamed Rafik N. TI AI Chatbot Adoption in SMEs for Sustainable Manufacturing Supply Chain Performance: A Mediational Research in an Emerging Country SO SUSTAINABILITY LA English DT Article DE artificial intelligence chatbot; emerging country; innovative capability; small and medium enterprises; supply chain visibility; sustainable supply chain performances; manufacturing sustainability ID PLS-SEM; INDUSTRY 4.0; CAPABILITIES AB AI chatbots (AICs) have the potential to increase the sustainability of a manufacturing supply chain (SC) through sales engagement and customer engagement to accomplish various activities related to logistics and SC in real time. Industry 4.0 (I4.0) has opened up several opportunities with internet-based technologies, along with challenges for small and medium enterprises (SMEs). SMEs are beginning to adopt such technologies for their competitive advantages and the required sustainability in the manufacturing supply chain. AICs may help in accomplishing supply chain visibility (SCV) to enhance sustainable supply chain performance (SSCP). Innovation capability (IC) is also due to disruptive technologies being adopted by SMEs. The present research investigates the role of AICs in SCV and IC, which lead to SSCP, by employing structural equation modeling (SEM). An empirical study based on dynamic capability (DC) theory was carried out using 246 responses, and later Smart PLS-4.0 was used for SEM. The analysis revealed that AICs positively influence SCV and IC to support SSCP. SCV and IC also partially mediate the relationship between the adoption of AICs and SSCP. C1 [Panigrahi, Rashmi Ranjan] GITAM Deemed Univ, GITAM Sch Business, Visakhapatnam 530045, India. [Shrivastava, Avinash K.] Int Management Inst Kolkata, Kolkata 700027, India. [Qureshi, Karishma M.; Mewada, Bhavesh G.] Parul Univ, Parul Inst Technol, Dept Mech Engn, Waghodia 391760, India. [Alghamdi, Saleh Yahya; Almakayeel, Naif; Almuflih, Ali Saeed; Qureshi, Mohamed Rafik N.] King Khalid Univ, Coll Engn, Dept Ind Engn, Abha, Saudi Arabia. C3 Gandhi Institute of Technology & Management (GITAM); International Management Institute (IMI) Kolkata; Parul University; King Khalid University RP Shrivastava, AK (corresponding author), Int Management Inst Kolkata, Kolkata 700027, India. EM rashmipanigrahi090@gmail.com; kavinash1987@gmail.com; kariq18@gmail.com; bmewada@paruluniversity.ac.in; syalghamdi@kku.edu.sa; halmakaeel@kku.edu.sa; asalmuflih@kku.edu.sa; mrnoor@kku.edu.sa RI Panigrahi, Dr. Rashmi Ranjan/AAM-5236-2020; Almuflih, Ali/KLC-8563-2024; Mewada, Bhavesh/LCE-7475-2024; Almakayeel, Naif/ABA-4321-2022; Qureshi, Prof.(Dr.) M. N./L-4688-2016 OI Panigrahi, Dr. Rashmi Ranjan/0000-0002-2199-293X; Almuflih, Ali/0000-0001-5359-1519; Almakayeel, Naif/0000-0001-9461-5935; Qureshi, Prof.(Dr.) M. N./0000-0002-9508-8724; QURESHI, KARISHMA M/0000-0002-5843-2514; Almakayeel, Naif/0009-0008-8848-907X; Shrivastava, Avinash K/0000-0001-7794-7129; Mewada, Bhaveshkumar/0000-0003-0109-1795 FU We would like to express our gratitude to the Deanship of Scientific Research, King Khalid University, Kingdom of Saudi Arabia for funding this work, as well as to family, friends, and colleagues for their constant inspiration and encouragement. The infras; Deanship of Scientific Research, King Khalid University, Kingdom of Saudi Arabia; Parul University; GITAM School of Business and International Management Institute Kolkata FX We would like to express our gratitude to the Deanship of Scientific Research, King Khalid University, Kingdom of Saudi Arabia for funding this work, as well as to family, friends, and colleagues for their constant inspiration and encouragement. The infrastructure support provided by Parul University, Vadodara, and GITAM School of Business and International Management Institute Kolkata is greatly appreciated. CR Adamopoulou E, 2020, MACH LEARN APPL, V2, DOI 10.1016/j.mlwa.2020.100006 Jahanshahi AA, 2020, SUSTAIN DEV, V28, P781, DOI 10.1002/sd.2028 Al-Khatib AW, 2023, BUS PROCESS MANAG J, DOI 10.1108/BPMJ-03-2023-0198 Al-Shboul MA, 2023, SUPPLY CHAIN MANAG, V28, P909, DOI 10.1108/SCM-09-2022-0382 Alghamdi SY, 2023, PLOS ONE, V18, DOI 10.1371/journal.pone.0290247 [Anonymous], 1986, Stat. Sci., DOI DOI 10.1214/SS/1177013815 Ashcroft S., 2023, How Might ChatGPT Help Supply Chains Burian J., 2023, Does ChatGPT Offer Real Value to the Supply Chain? Chen JS, 2021, INT J RETAIL DISTRIB, V49, P1512, DOI 10.1108/IJRDM-08-2020-0312 Chowdhury NA, 2020, BUS PROCESS MANAG J, V26, P1761, DOI 10.1108/BPMJ-08-2019-0323 Ciechanowski L, 2019, FUTURE GENER COMP SY, V92, P539, DOI 10.1016/j.future.2018.01.055 de Kervenoael R, 2020, TOURISM MANAGE, V78, DOI 10.1016/j.tourman.2019.104042 Del Giudice M, 2021, INT J LOGIST MANAG, V32, P337, DOI 10.1108/IJLM-03-2020-0119 Deloitte Chatbots, 2023, Riding the Next-Gen Technology Wave to Operational Success Deng QN, 2023, SUSTAINABILITY-BASEL, V15, DOI 10.3390/su15021019 Faul F, 2009, BEHAV RES METHODS, V41, P1149, DOI 10.3758/BRM.41.4.1149 Fernando Y, 2018, BENCHMARKING, V25, P4009, DOI 10.1108/BIJ-07-2017-0194 FORNELL C, 1981, J MARKETING RES, V18, P39, DOI 10.2307/3151312 Franke G, 2019, INTERNET RES, V29, P430, DOI 10.1108/IntR-12-2017-0515 Hair JF, 2020, J BUS RES, V109, P101, DOI 10.1016/j.jbusres.2019.11.069 Hair JF, 2019, EUR J MARKETING, V53, P566, DOI 10.1108/EJM-10-2018-0665 Hair JF, 2019, EUR BUS REV, V31, P2, DOI 10.1108/EBR-11-2018-0203 Hrouga M, 2024, INT J QUAL RELIAB MA, V41, P628, DOI 10.1108/IJQRM-07-2022-0221 Huq FA, 2016, J OPER MANAG, V46, P19, DOI 10.1016/j.jom.2016.07.005 Irfan M, 2021, VINE J INF KNOWL MAN, V51, P461, DOI 10.1108/VJIKMS-06-2019-0082 Jum'a L, 2023, MANAG RES REV, V46, P1315, DOI 10.1108/MRR-04-2022-0298 Karaarslan E., 2023, Acad Platform J Eng Smart Syst, V11, P118, DOI [DOI 10.21541/APJESS.1293702, DOI 10.2139/SSRN.4341500] Khan SAR, 2023, BUS STRATEG ENVIRON, V32, P2022, DOI 10.1002/bse.3234 Lian JW, 2014, INT J INFORM MANAGE, V34, P28, DOI 10.1016/j.ijinfomgt.2013.09.004 Mikalef P, 2017, J BUS RES, V70, P1, DOI 10.1016/j.jbusres.2016.09.004 Morgan TR, 2018, INT J LOGIST MANAG, V29, P959, DOI 10.1108/IJLM-01-2017-0018 Mubarik MS, 2021, J CLEAN PROD, V292, DOI 10.1016/j.jclepro.2021.126058 Nunez V., 2023, CHAT GPT THINKS IT C O'Marah K., 2023, ChatGPT and Supply Chain: the Good, the Bad, and the Ugly Panigrahi RR, 2023, MEAS BUS EXCELL, V27, P1, DOI 10.1108/MBE-06-2021-0073 Pillai R, 2022, PROD PLAN CONTROL, V33, P1517, DOI 10.1080/09537287.2021.1882689 Piprani AZ, 2023, ENVIRON SCI POLLUT R, DOI 10.1007/s11356-023-28507-8 Potter R., 2023, How Can Logistics Companies Benefit with the Usage of ChatGPT? Pukkila M., 2023, Exploring the Power of ChatGPT: an Opportunity for Supply Chain Transformation Qalati SA, 2021, TECHNOL SOC, V64, DOI 10.1016/j.techsoc.2020.101513 Qureshi KM, 2022, SUSTAINABILITY-BASEL, V14, DOI 10.3390/su14159732 Qureshi KM, 2023, SUSTAINABILITY-BASEL, V15, DOI 10.3390/su15065528 Qureshi KM, 2023, SUSTAINABILITY-BASEL, V15, DOI 10.3390/su15053950 Qureshi MRNM, 2022, SUSTAINABILITY-BASEL, V14, DOI 10.3390/su141811296 Reddy S., 2023, How startups can leverage ChatGPT to optimize supply chain management Richter N.F., 2023, PARTIAL LEAST SQUARE Seuring S, 2008, J CLEAN PROD, V16, P1699, DOI 10.1016/j.jclepro.2008.04.020 Sharma S, 2024, IEEE T ENG MANAGE, V71, P1773, DOI 10.1109/TEM.2022.3203469 Sheehan B, 2020, J BUS RES, V115, P14, DOI 10.1016/j.jbusres.2020.04.030 Shmueli G, 2019, EUR J MARKETING, V53, P2322, DOI 10.1108/EJM-02-2019-0189 Sun YP, 2022, J INNOV KNOWL, V7, DOI 10.1016/j.jik.2022.100247 Tambuskar DP, 2024, KYBERNETES, V53, P1710, DOI 10.1108/K-07-2022-1057 Tariq MU, 2021, FRONT PSYCHOL, V12, DOI 10.3389/fpsyg.2021.686624 Teece DJ, 1997, STRATEGIC MANAGE J, V18, P509, DOI 10.1002/(SICI)1097-0266(199708)18:7<509::AID-SMJ882>3.0.CO;2-Z Trappey AJC, 2022, J IND INF INTEGR, V26, DOI 10.1016/j.jii.2022.100331 Trivedi S., 2023, ChatGPT and its Role in Logistics Supply Chain Management, DOI 10.5281/ZENODO.7683000 Tseng ML, 2018, RESOUR CONSERV RECY, V131, P146, DOI 10.1016/j.resconrec.2017.12.028 Venkatesh VG, 2020, ROBOT CIM-INT MANUF, V63, DOI 10.1016/j.rcim.2019.101896 Wamba-Taguimdje SL, 2020, BUS PROCESS MANAG J, V26, P1893, DOI 10.1108/BPMJ-10-2019-0411 Wang CF, 2020, TECHNOVATION, V94-95, DOI 10.1016/j.technovation.2017.12.002 Yuen KF, 2021, TECHNOL ANAL STRATEG, V33, P505, DOI 10.1080/09537325.2020.1826423 Zhang LF, 2023, FRONT ENV SCI-SWITZ, V11, DOI 10.3389/fenvs.2023.1096349 NR 62 TC 12 Z9 12 U1 35 U2 38 PU MDPI PI BASEL PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND EI 2071-1050 J9 SUSTAINABILITY-BASEL JI Sustainability PD SEP PY 2023 VL 15 IS 18 AR 13743 DI 10.3390/su151813743 PG 18 WC Green & Sustainable Science & Technology; Environmental Sciences; Environmental Studies WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Science & Technology - Other Topics; Environmental Sciences & Ecology GA FJ3E2 UT WOS:001145345400001 OA gold DA 2024-09-05 ER PT J AU Tontodimamma, A Nissi, E Sarra, A Fontanella, L AF Tontodimamma, Alice Nissi, Eugenia Sarra, Annalina Fontanella, Lara TI Thirty years of research into hate speech: topics of interest and their evolution SO SCIENTOMETRICS LA English DT Article DE Online hate speech; Bibliometrics analysis; Topic models; Latent Dirichlet allocation ID SCIENCE AB The exponential growth of social media has brought with it an increasing propagation of hate speech and hate based propaganda. Hate speech is commonly defined as any communication that disparages a person or a group on the basis of some characteristics such as race, colour, ethnicity, gender, sexual orientation, nationality, religion. Online hate diffusion has now developed into a serious problem and this has led to a number of international initiatives being proposed, aimed at qualifying the problem and developing effective counter-measures. The aim of this paper is to analyse the knowledge structure of hate speech literature and the evolution of related topics. We apply co-word analysis methods to identify different topics treated in the field. The analysed database was downloaded from Scopus, focusing on a number of publications during the last thirty years. Topic and network analyses of literature showed that the main research topics can be divided into three areas: "general debate hate speech versus freedom of expression","hate-speech automatic detection and classification by machine-learning strategies", and "gendered hate speech and cyberbullying". The understanding of how research fronts interact led to stress the relevance of machine learning approaches to correctly assess hatred forms of online speech. C1 [Tontodimamma, Alice] Univ G dAnnunzio, Dept Neurosci Imaging & Clin Sci, Chieti, Italy. [Nissi, Eugenia] Univ G dAnnunzio, Dept Econ, Pescara, Italy. [Sarra, Annalina; Fontanella, Lara] Univ G dAnnunzio, Dept Legal & Social Sci, Pescara, Italy. C3 G d'Annunzio University of Chieti-Pescara; G d'Annunzio University of Chieti-Pescara; G d'Annunzio University of Chieti-Pescara RP Sarra, A (corresponding author), Univ G dAnnunzio, Dept Legal & Social Sci, Pescara, Italy. EM alice.tontodimamma@unich.it; eugenia.nissi@unich.it; asarra@unich.it; lara.fontanella@unich.it RI Fontanella, Lara/AAF-1334-2020; nissi, eugenia/IQS-0004-2023 OI Fontanella, Lara/0000-0002-5441-0035; nissi, eugenia/0000-0003-1943-0476; Sarra, Annalina/0000-0002-0974-0799 FU Universita degli Studi G. D'Annunzio Chieti Pescara within the CRUI-CARE Agreement FX Open access funding provided by Universita degli Studi G. D'Annunzio Chieti Pescara within the CRUI-CARE Agreement. We are grateful to the reviewers for their useful comments and suggestions which have significantly improved the quality of the paper. CR Alghamdi R, 2015, INT J ADV COMPUT SC, V6, P147 Arango A, 2019, PROCEEDINGS OF THE 42ND INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL (SIGIR '19), P45, DOI 10.1145/3331184.3331262 Aria M, 2017, J INFORMETR, V11, P959, DOI 10.1016/j.joi.2017.08.007 Barua A, 2014, EMPIR SOFTW ENG, V19, P619, DOI 10.1007/s10664-012-9231-y Beausoleil LE, 2019, BC!: Rev, V60, P2101 Blei DM, 2012, COMMUN ACM, V55, P77, DOI 10.1145/2133806.2133826 Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993 Brandes U, 2001, J MATH SOCIOL, V25, P163, DOI 10.1080/0022250X.2001.9990249 Brettschneider C, 2013, NORTHWEST U LAW REV, V107, P603 Cohen-Almagor, 2019, 1 AMENDMENT STUDIES, V53, P41, DOI [10.1080/21689725.2019.1601579, DOI 10.1080/21689725.2019.1601579] Cohen-Almagor R, 2016, PHILOS PUBLIC ISSUES, V6, P77 DEERWESTER S, 1990, J AM SOC INFORM SCI, V41, P391, DOI 10.1002/(SICI)1097-4571(199009)41:6<391::AID-ASI1>3.0.CO;2-9 Ebadi A, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0133061 Fortuna P, 2018, ACM COMPUT SURV, V51, DOI 10.1145/3232676 Gagliardone I., 2015, Countering online hate speech Greenacre M, 2006, STAT SOC BEHAV SCI, P41 Greene AR, 2017, MOD LAW REV, V80, P746, DOI 10.1111/1468-2230.12283 Hofmann T, 1999, SIGIR'99: PROCEEDINGS OF 22ND INTERNATIONAL CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, P50, DOI 10.1145/312624.312649 MacAvaney S, 2019, PLOS ONE, V14, DOI 10.1371/journal.pone.0221152 Matlab M., 2018, MATLAB McPhee C, 2017, TECHNOL INNOV MANAG, V7, P5 Nepusz T, 2006, InterJournal Comp. Syst., VComplex Systems, P1695 Price D. J. d. S., 1963, Little Science, Big Science Salminen J, 2019, PROCEEDINGS OF THE 2019 CONFERENCE ON HUMAN INFORMATION INTERACTION AND RETRIEVAL (CHIIR'19), P213, DOI 10.1145/3295750.3298954 Salminen J, 2018, 2018 FIFTH INTERNATIONAL CONFERENCE ON SOCIAL NETWORKS ANALYSIS, MANAGEMENT AND SECURITY (SNAMS), P88, DOI 10.1109/SNAMS.2018.8554954 Schmidt A., 2017, P 5 INT WORKSH NAT L, P1, DOI DOI 10.18653/V1/W17-1101 Sellars A. F., 2016, Defining hate speech, P16, DOI [DOI 10.2139/SSRN.2882244, 10.2139/ssrn.2882244.] Siegel AA, 2020, SSRC ANXIET DEMOCR, P56 Steyvers M, 2006, LATENT SEMANTIC ANAL Strossen N., 2016, JL Pol'y, V25, P185 Strossen Nadine, 2018, Hate: Why We Should Resist It with Free Speech, Not Censorship Suominen A, 2016, J ASSOC INF SCI TECH, V67, P2464, DOI 10.1002/asi.23596 Waqas A, 2019, PLOS ONE, V14, DOI 10.1371/journal.pone.0222194 YAU C, 2014, SCIENTOMETRICS Zhang JL, 2017, ADV INTEL SYS RES, V132, P300 NR 35 TC 46 Z9 50 U1 6 U2 69 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0138-9130 EI 1588-2861 J9 SCIENTOMETRICS JI Scientometrics PD JAN PY 2021 VL 126 IS 1 BP 157 EP 179 DI 10.1007/s11192-020-03737-6 EA OCT 2020 PG 23 WC Computer Science, Interdisciplinary Applications; Information Science & Library Science WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Computer Science; Information Science & Library Science GA PU7XL UT WOS:000585801800001 OA hybrid DA 2024-09-05 ER PT J AU Yelenov, A Pak, AA Ziyaden, AA Akhmetov, I Gelbukh, A Gelbukh, I AF Yelenov, Amir Pak, Alexandr A. Ziyaden, Atabay A. Akhmetov, Iskander Gelbukh, Alexander Gelbukh, Irina TI Comprehensive Survey: Approaches to Emerging Technologies Detection within Scientific Publications SO COMPUTACION Y SISTEMAS LA English DT Article DE Citation prediction; emergent technology; neural networks; scientometrics ID MATHEMATICAL APPROACH; SCIENCE; INDICATORS; TOPICS; GROWTH; TOOL AB The identification of breakthrough topics and emerging technologies has been of interest to the governments of many countries and the scientific community since the last century. This study presents the status and trend of the research field through a comprehensive review of relevant publications, a new look at the problem of defining the term "emergent technologies, " defining boundaries between similar terms; and a modern baseline method on the citation prediction subtask for the discovery of emergent technologies. The outcomes of this technique have demonstrated the significance of features that characterize the preceding 1-year, 2-year, and 3-year citation counts, as well as their impact on the quality of neural network and random forest models. Our hypothesis, however, that author-specific measures may enhance prediction results was not supported. We ascribe this difficulty to the dimensionality curse. The authors examined methodological elements of research and technological development; consequently, it is important to note that, from a technical viewpoint, theoretical research is far from complete due to the vast variety of projects, outstanding challenges, research questions, and market assumptions. Finding more input characteristics to improve the quality of predictions and switching from classification to regression may also improve the precision of the suggested baseline model. C1 [Yelenov, Amir; Pak, Alexandr A.; Ziyaden, Atabay A.; Akhmetov, Iskander] Inst Informat & Computat Technol, Alma Ata, Kazakhstan. [Yelenov, Amir; Pak, Alexandr A.; Ziyaden, Atabay A.; Akhmetov, Iskander] Kazakh British Tech Univ, Alma Ata, Kazakhstan. [Gelbukh, Alexander] Inst Politecn Nacl, Mexico City, Mexico. C3 Institute of Information & Computational Technologies; Kazakh British Technical University; Instituto Politecnico Nacional - Mexico RP Yelenov, A (corresponding author), Inst Informat & Computat Technol, Alma Ata, Kazakhstan.; Yelenov, A (corresponding author), Kazakh British Tech Univ, Alma Ata, Kazakhstan. EM greamdesu@gmail.com; aa.pak83@gmail.com; iamdenay@gmail.com; iskander.akhmetov@gamil.com; gelbukh@gmail.com; ir.gelbukh@gmail.com RI Pak, Alexandr/W-4002-2018; Yelenov, Amir/AAW-9817-2020; Yelenov, Amir/JEZ-9542-2023 OI Pak, Alexandr/0000-0002-8685-9355; Yelenov, Amir/0000-0003-0674-5460; Yelenov, Amir/0000-0003-0674-5460; Ziyaden, Atabay/0000-0002-4878-8971 FU Aerospace Committee of the Ministry of Digital Development, Innovations and Aerospace Industry of the Republic of Kazakhstan; [BR11265420] FX This research was funded by Aerospace Committee of the Ministry of Digital Development, Innovations and Aerospace Industry of the Republic of Kazakhstan grant number BR11265420. CR Almeida JAS, 2009, J INFORMETR, V3, P134, DOI 10.1016/j.joi.2009.01.001 Altuntas S, 2015, TECHNOL FORECAST SOC, V96, P202, DOI 10.1016/j.techfore.2015.03.011 [Anonymous], 2003, ACM SIGIR FOR 2003, DOI DOI 10.1145/945546.945547 Atkinson R. D., 2021, WHY US NEEDS NATL AD, V4 Bettencourt LMA, 2008, SCIENTOMETRICS, V75, P495, DOI 10.1007/s11192-007-1888-4 Braun T, 1997, SCIENTOMETRICS, V38, P321, DOI 10.1007/BF02457417 Breitzman A, 2015, RES POLICY, V44, P195, DOI 10.1016/j.respol.2014.06.006 Cohan A, 2020, 58TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2020), P2270 Correia A, 2020, IEEE INT CONF BIG DA, P2876, DOI 10.1109/BigData50022.2020.9378096 Couper MP, 2005, SOC SCI COMPUT REV, V23, P486, DOI 10.1177/0894439305278972 Cozzens S, 2010, TECHNOL ANAL STRATEG, V22, P361, DOI 10.1080/09537321003647396 Cullen PJ, 2000, TRENDS FOOD SCI TECH, V11, P451, DOI 10.1016/S0924-2244(01)00034-6 Dummitt B, 2006, ASSAY DRUG DEV TECHN, V4, P343, DOI 10.1089/adt.2006.4.343 Froyland G, 2001, NONLINEAR DYNAMICS AND STATISTICS, P281 Glänzel W, 2012, SCIENTOMETRICS, V91, P399, DOI 10.1007/s11192-011-0591-7 GOFFMAN W, 1964, NATURE, V204, P225, DOI 10.1038/204225a0 GOFFMAN W, 1971, J ACM, V18, P173, DOI 10.1145/321637.321640 GOFFMAN W, 1966, NATURE, V212, P449, DOI 10.1038/212449a0 GOFFMAN W, 1971, NATURE, V229, P103, DOI 10.1038/229103a0 Goldstein J., 1999, Emergence, V1, P49, DOI DOI 10.1207/S15327000EM01014 Guz AN, 2009, INT APPL MECH+, V45, P351, DOI 10.1007/s10778-009-0189-4 HARRIS RH, 1985, ANNU REV PUBL HEALTH, V6, P269 HICKS D, 1987, SOC STUD SCI, V17, P295, DOI 10.1177/030631287017002004 Janssens F, 2008, SCIENTOMETRICS, V75, P607, DOI 10.1007/s11192-007-2002-7 Jo Y, 2007, KDD-2007 PROCEEDINGS OF THE THIRTEENTH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, P370 Jones BF, 2011, P NATL ACAD SCI USA, V108, P18910, DOI 10.1073/pnas.1102895108 Kajikawa Y, 2008, TECHNOL FORECAST SOC, V75, P771, DOI 10.1016/j.techfore.2007.05.005 KING J, 1987, J INFORM SCI, V13, P261, DOI 10.1177/016555158701300501 Kingma DP, 2014, ADV NEUR IN, V27 Kleinberg J, 2003, DATA MIN KNOWL DISC, V7, P373, DOI 10.1023/A:1024940629314 Lamirel Jean-Charles, 2008, Proceedings of the IASTED International Conference on Artificial Intelligence and Applications, P169 Lee J, 2005, IEEE T PATTERN ANAL, V27, P461, DOI 10.1109/TPAMI.2005.47 Lee WH, 2008, SCIENTOMETRICS, V76, P503, DOI 10.1007/s11192-007-1898-2 Leydesdorff L, 2008, J AM SOC INF SCI TEC, V59, P1810, DOI 10.1002/asi.20891 Mane KK, 2004, P NATL ACAD SCI USA, V101, P5287, DOI 10.1073/pnas.0307626100 MARTIN BR, 1995, TECHNOL ANAL STRATEG, V7, P139, DOI 10.1080/09537329508524202 Mikolov T, 2018, PROCEEDINGS OF THE ELEVENTH INTERNATIONAL CONFERENCE ON LANGUAGE RESOURCES AND EVALUATION (LREC 2018), P52 Osborne Francesco, 2014, The Semantic Web: Trends and Challenges. 11th International Conference (ESWC 2014). Proceedings: LNCS 8465, P114, DOI 10.1007/978-3-319-07443-6_9 Ramachary DB, 2012, EUR J ORG CHEM, V2012, P865, DOI 10.1002/ejoc.201101157 Rotolo D, 2015, RES POLICY, V44, P1827, DOI 10.1016/j.respol.2015.06.006 Scharnhorst A., 2010, DYNAMICS SOCIO EC SY, V2, DOI [10.48550/ARXIV.1010.3525.43, DOI 10.48550/ARXIV.1010.3525.43] Serenko A, 2010, J KNOWL MANAG, V14, P3, DOI 10.1108/13673271011015534 Sharma E, 2019, 57TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2019), P2204 Shibata N, 2008, TECHNOVATION, V28, P758, DOI 10.1016/j.technovation.2008.03.009 Small H, 2014, RES POLICY, V43, P1450, DOI 10.1016/j.respol.2014.02.005 Takeda Y, 2009, SCIENTOMETRICS, V78, P543, DOI 10.1007/s11192-007-2012-5 Takeda Y, 2009, SCIENTOMETRICS, V80, P23, DOI 10.1007/s11192-007-1897-3 Thijs B, 2018, SCIENTOMETRICS, V115, P21, DOI 10.1007/s11192-018-2659-0 Thorleuchter D, 2010, TECHNOL FORECAST SOC, V77, P1037, DOI 10.1016/j.techfore.2010.03.002 van Raan AFJ, 2000, SCIENTOMETRICS, V47, P347, DOI 10.1023/A:1005647328460 Vityaev EE, 2004, MIND MACH, V14, P551, DOI 10.1023/B:MIND.0000045991.67908.13 Waksman R, 2000, J INVASIVE CARDIOL, V12, p18A Watts RJ, 2003, TECHNOL FORECAST SOC, V70, P735, DOI 10.1016/S0040-1625(02)00355-4 Wayne C. L., 1998, TOPIC DETECTION TRAC, P56 Wu LF, 2019, NATURE, V566, P378, DOI 10.1038/s41586-019-0941-9 Zhang LX, 2011, SENSOR ACTUAT B-CHEM, V160, P364, DOI 10.1016/j.snb.2011.07.062 ZITT M., 2008, Ethics Sci. Environ. Politics, V8, P49, DOI [DOI 10.3354/ESEP00092, 10.3354/esep00092] NR 57 TC 1 Z9 1 U1 3 U2 10 PU Inst Politecnico Nacional IPN, Centro Investigation Computacion PI MEXICO CITY PA AV JUAN DIOS BATIZ, S N ESQ M OTHON MENDIZABAL, UP ADOLFO LOPEZ MATEOS ZACATENCO, MEXICO CITY, 07738, MEXICO SN 1405-5546 EI 2007-9737 J9 COMPUT SIST JI Comput. Sist. PY 2022 VL 26 IS 4 BP 1587 EP 1601 DI 10.13053/CyS-26-4-4424 PG 15 WC Computer Science, Information Systems WE Emerging Sources Citation Index (ESCI) SC Computer Science GA 7L0UM UT WOS:000905691500013 DA 2024-09-05 ER PT J AU Jiang, CZ Xu, H Huang, CF Chen, YY Zou, RQ Wang, YX AF Jiang, Chengzhi Xu, Hao Huang, Chuanfeng Chen, Yiyang Zou, Ruoqi Wang, Yixiu TI Research on knowledge dissemination in smart cities environment based on intelligent analysis algorithms: a case study on online platform SO MATHEMATICAL BIOSCIENCES AND ENGINEERING LA English DT Article DE speech; relationship network; sentiment analysis; textual analysis; smart cities AB In developing smart cities, the implementation of social connections, collaboration, innovation, exchange of views by observing, exploiting and integrating various types of knowledge is required. The smart cities concept that employs knowledge sharing mechanism can be defined as the concept of a city that utilizes information technology to increase citizens' awareness, intelligence as well as community's participation. The knowledge dissemination via online sharing platforms has been becoming more popular in recent years, especially during the epidemic of infectious diseases. Thus, the social network and emotional analysis method based on intelligent data analysis algorithms is proposed to study the speaker relationship and comment sentiment tendency of a Chinese popular speech (knowledge dissemination) platform: YiXi. In our research, 690 speakers' information and 23,685 comments' information are collected from YiXi website as the data source. The speaker relationship network construction algorithm and emotional analysis algorithm are designed in details respectively. Experiments show that speakers who have the same profession can deliver different types of speeches, indicating that selection of YiXi platform in the invitation of speakers is diversified. In addition, overall sentiment tendency of comments on speeches seem to be slightly positive and most of them are the personal feelings according to their experience after watching speech videos instead of the direct evaluations of speech quality. The research aims to gain an insight into the popular knowledge sharing phenomenon and is expected to provide reference for knowledge dissemination platforms in order to improve the knowledge sharing environment in smart cities. C1 [Jiang, Chengzhi; Xu, Hao] Nanjing Univ, Sch Informat Management, Nanjing 210023, Peoples R China. [Jiang, Chengzhi; Xu, Hao; Huang, Chuanfeng] Sch Econ & Management, Nanjing Inst Technol, Nanjing 211167, Peoples R China. [Chen, Yiyang] Univ St Andrews, Sch Comp Sci, St Andrews KY16 9AJ, Fife, Scotland. [Zou, Ruoqi; Wang, Yixiu] Ping An Int Smart City Technol Co Ltd, Shenzhen 518002, Peoples R China. C3 Nanjing University; Nanjing Institute of Technology; University of St Andrews RP Xu, H (corresponding author), Nanjing Univ, Sch Informat Management, Nanjing 210023, Peoples R China.; Xu, H (corresponding author), Sch Econ & Management, Nanjing Inst Technol, Nanjing 211167, Peoples R China. EM xhnju2014@163.com RI Jiang, Cheng/JHU-0179-2023; Zhang, Ge/KGL-7634-2024 FU Nanjing Institute of Technology [YKJ201989]; Open Research Fund of NJIT Institute of Industrial Economy and Innovation Management [JGKB202001, JGKC 202003]; Innovation Fund General Project I of Nanjing institute of technology [CKJB202003]; University Philosophy and Social Science Research Project of Jiangsu province [2019SJA2274]; Major Project of Philosophy and Social Science Research in Universities of Jiangsu Province Education Department [2020SJZDA069]; ZHINIAO-ASKBOB Project of Vocational Education Department of Ping An International Smart City Technology Co., Ltd FX The research is supported by the high level introduction of talent research startup fund of Nanjing Institute of Technology (Grant NO.: YKJ201989) ; Open Research Fund of NJIT Institute of Industrial Economy and Innovation Management (Grant NO.: JGKB202001, JGKC 202003) ; Innovation Fund General Project I of Nanjing institute of technology (Grant NO.: CKJB202003) ; University Philosophy and Social Science Research Project of Jiangsu province (Grant NO.: 2019SJA2274) ; Major Project of Philosophy and Social Science Research in Universities of Jiangsu Province Education Department (Grant NO.: 2020SJZDA069) . ZHINIAO-ASKBOB Project of Vocational Education Department of Ping An International Smart City Technology Co., Ltd CR [Anonymous], 2009, [No title captured] [Anonymous], 2020, [No title captured] [Anonymous], 2018, [No title captured] [Anonymous], [No title captured] [Anonymous], 2012, [No title captured] [Anonymous], 2020, ANN ONCOL, DOI DOI 10.1093/annonc/mdy517 [Anonymous], 2018, HLT NAACL Blondel VD, 2008, J STAT MECH-THEORY E, DOI 10.1088/1742-5468/2008/10/P10008 Borgatti SP, 2009, SCIENCE, V323, P892, DOI 10.1126/science.1165821 Brandes U, 2001, J MATH SOCIOL, V25, P163, DOI 10.1080/0022250X.2001.9990249 Cai Y., 2019, Communications in Computer and Information Science, P352 Colizza V, 2006, NAT PHYS, V2, P110, DOI 10.1038/nphys209 Elabora A., 2020, 2020 5 INT C SMART S Erhan L, 2019, IEEE ACCESS, V7, P19890, DOI 10.1109/ACCESS.2019.2897217 Founoun A., 2019, 2019 IEEE INT SMART FRUCHTERMAN TMJ, 1991, SOFTWARE PRACT EXPER, V21, P1129, DOI 10.1002/spe.4380211102 Fu L, 2020, P IAEA 64 GEN C VIEN Ghose A., 2007, INT C EL COMM Girvan M, 2002, P NATL ACAD SCI USA, V99, P7821, DOI 10.1073/pnas.122653799 [官琴 Guan Qin], 2017, [数据分析与知识发现, Data Analysis and Knowledge Discovery?], V1, P72 Kilicay-Ergin N., 2020, 2020 IEEE INT SYST C Latapy M, 2008, THEOR COMPUT SCI, V407, P458, DOI 10.1016/j.tcs.2008.07.017 Mudambi SM, 2010, MIS QUART, V34, P185 Negre E, 2015, P ANN HICSS, P2317, DOI 10.1109/HICSS.2015.279 Newman MEJ, 2004, PHYS REV E, V69, DOI 10.1103/PhysRevE.69.026113 Oza KS, 2016, PROCEDIA COMPUT SCI, V92, P468, DOI 10.1016/j.procs.2016.07.369 Rani S. A., 2020, 2020 6 INT C INF MAN Sun T., 2019, EXPT STUDY INTERFERO Tarjan R., 1972, SIAM Journal on Computing, V1, P146, DOI 10.1137/0201010 Waltman L, 2013, EUR PHYS J B, V86, DOI 10.1140/epjb/e2013-40829-0 Wu X., 2019, Landsc Architect, V26, P52 Xu C., IEEE T IND INF, V17, P4197 Xu Linhong, 2008, Journal of the China Society for Scientific and Technical Information, V27, P180 Ye QL, 2019, IEEE T NEUR NET LEAR, V30, P3818, DOI 10.1109/TNNLS.2019.2944869 Yin Guopeng., 2012, Library and Information Service, V56, P140 Yu HS, 1993, MELATONIN BIOSYNTHES NR 36 TC 1 Z9 1 U1 0 U2 17 PU AMER INST MATHEMATICAL SCIENCES-AIMS PI SPRINGFIELD PA PO BOX 2604, SPRINGFIELD, MO 65801-2604 USA SN 1547-1063 EI 1551-0018 J9 MATH BIOSCI ENG JI Math. Biosci. Eng. PY 2021 VL 18 IS 3 BP 2632 EP 2653 DI 10.3934/mbe.2021134 PG 22 WC Mathematical & Computational Biology WE Science Citation Index Expanded (SCI-EXPANDED) SC Mathematical & Computational Biology GA TD7LO UT WOS:000669503800012 PM 33892564 OA gold DA 2024-09-05 ER PT J AU Bentley, JP Ramachandran, S Salgado, TM AF Bentley, John P. Ramachandran, Sujith Salgado, Teresa M. TI Considerations when conducting moderation analysis with a binary outcome: Applications to clinical and social pharmacy research SO RESEARCH IN SOCIAL & ADMINISTRATIVE PHARMACY LA English DT Article DE Binary outcome; Moderation; Interaction; Additive interaction; Multiplicative interaction; Logistic regression ID REGRESSION APPROACH; RISK; MEDIATION AB Clinical and social pharmacy researchers often have questions regarding contingencies of effects (i.e., moderation) that are tested by including interactions in statistical models. Much of the available literature for estimating and testing effects that emanate from moderation models is based on extensions of the linear model with continuous outcomes. Binary (or dichotomous) outcome variables, such as prescription-medication misuse versus no misuse, are commonly encountered by clinical and social pharmacy researchers. In moderation analysis, binary outcomes have led to an increased focus on the fact that measures of interaction are scale-dependent; thus, researchers may need to consider both additive interaction and multiplicative interaction. Further complicating interpretation is that the statistical model chosen for an interaction can provide different answers to questions of moderation. This manuscript will: 1) identify research questions in clinical and social pharmacy that necessitate the use of these statistical methods, 2) review statistical models that can be used to estimate effects when the outcome of interest is binary, 3) review basic concepts of moderation, 4) describe the challenges inherent in conducting moderation analysis when modeling binary outcomes, and 5) demonstrate how to conduct such analyses and interpret relevant statistical output (including interpretations of interactions on additive and multiplicative scales with a focus on identifying which statistical models for binary outcomes lead to which measure of interaction). Although much of the basis for this paper comes from research in epidemiology, recognition of these issues has occurred in other disciplines. C1 [Bentley, John P.; Ramachandran, Sujith] Univ Mississippi, Dept Pharm Adm, Sch Pharm, Faser Hall, University, MS 38677 USA. [Salgado, Teresa M.] Virginia Commonwealth Univ, Dept Pharmacotherapy & Outcomes Sci, Sch Pharm, 410 N 12th St,POB 980533, Richmond, VA 23298 USA. C3 University of Mississippi; Virginia Commonwealth University RP Bentley, JP (corresponding author), Ctr Pharmaceut Mkt & Management, Faser Hall 225, University, MS 38677 USA.; Bentley, JP (corresponding author), Pharm Adm, Faser Hall 225, University, MS 38677 USA. EM phjpb@olemiss.edu RI Salgado, Teresa M/M-7550-2017 CR Agresti A., 2007, INTRO CATEGORICAL DA Almeida AC, 2020, J CLIN PSYCHOL MED S, V27, P247, DOI 10.1007/s10880-019-09662-y [Anonymous], 1975, JAMA-J AM MED ASSOC, V231, P718 [Anonymous], 2012, EPIDEMIOLOGY INTRO [Anonymous], 2014, Epidemiologic Methods, DOI DOI 10.1515/EM-2013-0005 Assmann SF, 2000, LANCET, V355, P1064, DOI 10.1016/S0140-6736(00)02039-0 Assmann SF, 1996, EPIDEMIOLOGY, V7, P286, DOI 10.1097/00001648-199605000-00012 Brankovic M, 2019, EUR J CLIN INVEST, V49, DOI 10.1111/eci.13145 Cheung YB, 2007, AM J EPIDEMIOL, V166, P1337, DOI 10.1093/aje/kwm223 Corraini P, 2017, CLIN EPIDEMIOL, V9, P331, DOI 10.2147/CLEP.S129728 Greenland S., 2008, Modern epidemiology, V3rd, P283 Greenland S., 2008, Modern Epidemiology, V3rd, DOI 10.1016/j.annemergmed.2008.06.461 Greenland S., 2008, Modern Epidemiology, V3rd, P51 Hayes A. F., 2019, Introduction to mediation, moderation, and conditional process analysis: A regression-based approach Hayes AF, 2017, BEHAV RES THER, V98, P39, DOI 10.1016/j.brat.2016.11.001 Hosmer DW, 2013, WILEY SER PROBAB ST, P1, DOI 10.1002/9781118548387 HOSMER DW, 1992, EPIDEMIOLOGY, V3, P452, DOI 10.1097/00001648-199209000-00012 Katz MH, 2003, ANN INTERN MED, V138, P644, DOI 10.7326/0003-4819-138-8-200304150-00012 Knol MJ, 2007, INT J EPIDEMIOL, V36, P1111, DOI 10.1093/ije/dym157 Knol MJ, 2012, INT J EPIDEMIOL, V41, P514, DOI 10.1093/ije/dyr218 Knol MJ, 2011, EUR J EPIDEMIOL, V26, P433, DOI 10.1007/s10654-011-9554-9 Knol MJ, 2009, EPIDEMIOLOGY, V20, P161, DOI 10.1097/EDE.0b013e31818f6651 Liddelow C, 2021, PSYCHOL HEALTH, V36, P529, DOI 10.1080/08870446.2020.1788715 McNutt LA, 2003, AM J EPIDEMIOL, V157, P940, DOI 10.1093/aje/kwg074 Naimi AI, 2020, AM J EPIDEMIOL, V189, P508, DOI 10.1093/aje/kwaa044 Paulus DJ, 2019, DRUG ALCOHOL DEPEN, V204, DOI 10.1016/j.drugalcdep.2019.02.036 PETITTI DB, 1991, AM J EPIDEMIOL, V133, P101, DOI 10.1093/oxfordjournals.aje.a115848 Rockwood NJ, 2020, CAMB HANDB PSYCHOL, P396 Rosenberg E.S., 2014, APPL REGRESSION ANAL, V5th ed. Skrondal A, 2003, AM J EPIDEMIOL, V158, P251, DOI 10.1093/aje/kwg113 Spiegelman D, 2005, AM J EPIDEMIOL, V162, P199, DOI 10.1093/aje/kwi188 Szklo M., 2019, EPIDEMIOLOGY BASICS TOOTHMAKER LE, 1994, J OPER RES SOC, V45, P119 VanderWeele TJ, 2013, EUR J EPIDEMIOL, V28, P779, DOI 10.1007/s10654-013-9843-6 VanderWeele TJ, 2009, EPIDEMIOLOGY, V20, P863, DOI 10.1097/EDE.0b013e3181ba333c Wang R, 2007, NEW ENGL J MED, V357, P2189, DOI 10.1056/NEJMsr077003 Zou GY, 2004, AM J EPIDEMIOL, V159, P702, DOI 10.1093/aje/kwh090 NR 37 TC 1 Z9 1 U1 1 U2 3 PU ELSEVIER SCIENCE INC PI NEW YORK PA STE 800, 230 PARK AVE, NEW YORK, NY 10169 USA SN 1551-7411 EI 1934-8150 J9 RES SOC ADMIN PHARM JI Res. Soc. Adm. Pharm. PD FEB PY 2022 VL 18 IS 2 BP 2276 EP 2282 DI 10.1016/j.sapharm.2021.04.020 EA DEC 2021 PG 7 WC Public, Environmental & Occupational Health; Pharmacology & Pharmacy WE Social Science Citation Index (SSCI) SC Public, Environmental & Occupational Health; Pharmacology & Pharmacy GA YU0XB UT WOS:000751773000003 PM 34119445 DA 2024-09-05 ER PT J AU Teng, L Dong, FY Zhang, H Ding, HX AF Teng, Ling Dong, Fangyun Zhang, Hui Ding, Huixia TI Research on high-precision synchronous output technology of multi-reference source weighted synthesis in power system SO IET CYBER-PHYSICAL SYSTEMS: THEORY & APPLICATIONS LA English DT Article DE genetic algorithms; global positioning system; power electronics; synchronisation AB The massive perception data based on efficient analysis and intelligent decision have put forward higher requirements for high-precision time synchronisation with the construction and development of smart power grid. However, multi-reference source time-frequency synchronisation of power system only selects the best method after comparison, which cannot make the most efficient use of the existing resources. It also cannot meet the need for high-precision time synchronisation of future power system. The existing multi-reference source synthesis algorithms cannot take into account both long-term stability and high-precision synchronous output. This article presents a multi-reference source weighted improved noise model and the high-precision output method. The multi-reference source error after classification is eliminated by leading into classification vector and classification coefficient. The synthesised frequency offset or the time precision of output can be optimised as the objective function by weighted classification algorithm and genetic algorithm. A simulation example based on the synthesis of two satellite system clock sources and three local caesium reference sources shows that the peak value of long-term output accuracy is controlled within 10 ns after classification weighted synthesis and optimisation, which is better than that of any single reference source. C1 [Teng, Ling; Dong, Fangyun; Zhang, Hui; Ding, Huixia] China Elect Power Res Inst, Beijing, Peoples R China. RP Teng, L (corresponding author), China Elect Power Res Inst, Beijing, Peoples R China. EM tengling@epri.sgcc.com.cn FU China Electric Power Research Institute; National Key R&D Program of China [2020YFB0905900]; Science and Technology Project of SGCC; Key Technologies for Electric Internet of Things [SGTJDK00DWJS2100223] FX China Electric Power Research Institute; the National Key R&D Program of China, Grant/Award Number: 2020YFB0905900; the Science and Technology Project of SGCC, Grant/Award Number: State Grid Corporation of China; Key Technologies for Electric Internet of Things, Grant/Award Number: SGTJDK00DWJS2100223 CR Chen W., 2017, RES HIGH PRECISION T Chen Zhigang, 2021, Electric Power Automation Equipment, P213, DOI 10.16081/j.epae.202011020 Dai X., 2017, INF COMMUN TECHNOL L, P196 Diao X., 2010, STUDY PROJECT SCHEDU Huangfu S., 2021, CHINA SATELLITE NAVI, P3, DOI [10.1007/978-981-16-3146-7_11, DOI 10.1007/978-981-16-3146-7_11] ITU-T Recommendation G.810, 1996, G810 ITUT ITU-T Recommendation G.8262.1-2019, G826212019 ITUT ITU-T Recommendation G.8262-2018, G82622018 ITUT Jun Lu, 2021, China Satellite Navigation Conference (CSNC 2021). Proceedings. Lecture Notes in Electrical Engineering (LNEE 774), P3, DOI 10.1007/978-981-16-3146-7_1 [李铎 Li Duo], 2018, [电子学报, Acta Electronica Sinica], V46, P1194 Li S., 2020, STUDY OPT COMMUN, V10, P54 [李依泽 Li Yize], 2019, [电网技术, Power System Technology], V43, P777 Liu G., 2014, TELECOM NETW TECH, P28 Liu P., 2016, COMPUT MEAS CONTROL, V24, P158 Liu Ya., 2019, NAVIG POSITION TIM, V6, P57 Sun X, 2021, LIGHTING RES TECHNOL, V53, P777, DOI 10.1177/1477153521991590 [滕玲 Teng Ling], 2015, [电网技术, Power System Technology], V39, P294 Wu Y, 2020, SKIN RES TECHNOL, V26, P584, DOI 10.1111/srt.12838 Yi-Fei SONG., 2017, TELECOM NETW TECH, V30, P60 Yue Y.U., 2019, DESIGN PLL FREQUENCY Zhang M., 2017, TELECOM NETW TECHN, V11, P61 NR 21 TC 0 Z9 0 U1 1 U2 1 PU WILEY PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA EI 2398-3396 J9 IET CYBER PHYS SYST JI IET Cyber Phys. Syst. Theory Appl. PD DEC PY 2023 VL 8 IS 4 SI SI BP 247 EP 256 DI 10.1049/cps2.12051 EA MAY 2023 PG 10 WC Computer Science, Information Systems; Computer Science, Interdisciplinary Applications; Engineering, Electrical & Electronic WE Emerging Sources Citation Index (ESCI) SC Computer Science; Engineering GA CE9J8 UT WOS:000988363200001 OA gold DA 2024-09-05 ER PT J AU Casagrande, E Woldeamlak, S Woon, WL Zeineldin, HH Svetinovic, D AF Casagrande, Erik Woldeamlak, Selamawit Woon, Wei Lee Zeineldin, H. H. Svetinovic, Davor TI NLP-KAOS for Systems Goal Elicitation: Smart Metering System Case Study SO IEEE TRANSACTIONS ON SOFTWARE ENGINEERING LA English DT Article DE Requirements engineering; goal elicitation; NLP; data mining; bibliometrics ID REQUIREMENTS; ONTOLOGY AB This paper presents a computational method that employs Natural Language Processing (NLP) and text mining techniques to support requirements engineers in extracting and modeling goals from textual documents. We developed a NLP-based goal elicitation approach within the context of KAOS goal-oriented requirements engineering method. The hierarchical relationships among goals are inferred by automatically building taxonomies from extracted goals. We use smart metering system as a case study to investigate the proposed approach. Smart metering system is an important subsystem of the next generation of power systems (smart grids). Goals are extracted by semantically parsing the grammar of goal-related phrases in abstracts of research publications. The results of this case study show that the developed approach is an effective way to model goals for complex systems, and in particular, for the research-intensive complex systems. C1 [Casagrande, Erik; Woldeamlak, Selamawit; Woon, Wei Lee; Zeineldin, H. H.; Svetinovic, Davor] Masdar Inst Sci & Technol, Dept Elect Engn & Comp Sci, Abu Dhabi, U Arab Emirates. C3 Khalifa University of Science & Technology RP Casagrande, E (corresponding author), Masdar Inst Sci & Technol, Dept Elect Engn & Comp Sci, Abu Dhabi, U Arab Emirates. EM dsvetinovic@masdar.ac.ae RI Svetinovic, Davor/AAQ-9433-2020; Svetinovic, Davor/IUQ-2141-2023 OI Svetinovic, Davor/0000-0002-3020-9556; Svetinovic, Davor/0000-0002-3020-9556; Woon, Wei Lee/0000-0002-6155-1741; Gifalli, Andre/0000-0001-8958-6746 CR [Anonymous], 1992, COLING 1992, DOI DOI 10.3115/992133.992154 [Anonymous], 2004, AIS [Anonymous], 2005, Ontology learning from text: Methods, evaluation and applications [Anonymous], COMPETITIVE INTELLIG Anton AI, 1998, PROC INT CONF SOFTW, P157, DOI 10.1109/ICSE.1998.671112 Breitman KK, 2003, 11TH IEEE INTERNATIONAL REQUIREMENTS ENGINEERING CONFERENCE, PROCEEDINGS, P309 Creswell J. W., 2013, RES DESIGN QUALITATI Cunningham SW, 2006, TECHNOL FORECAST SOC, V73, P915, DOI 10.1016/j.techfore.2006.06.004 Daim TU, 2006, TECHNOL FORECAST SOC, V73, P981, DOI 10.1016/j.techfore.2006.04.004 DARDENNE A, 1993, SCI COMPUT PROGRAM, V20, P3, DOI 10.1016/0167-6423(93)90021-G Fürst F, 2006, LECT NOTES COMPUT SC, V4277, P38 Gacitua R, 2011, REQUIR ENG, V16, P251, DOI 10.1007/s00766-011-0122-3 Goldin L., 1997, Automated Software Engineering, V4, P375, DOI 10.1023/A:1008617922496 GRUBER TR, 1993, KNOWL ACQUIS, V5, P199, DOI 10.1006/knac.1993.1008 Happel H.J., 2006, P WORKSH SEM WORKSH, P5 Harris Z. S., 1968, MATH STRUCTURES LANG Henschel Andreas, 2009, 2009 International Conference on Innovations in Information Technology (IIT), P160, DOI 10.1109/IIT.2009.5413365 Henschel A, 2012, BUSINESS INTELLIGENCE APPLICATIONS AND THE WEB: MODELS, SYSTEMS AND TECHNOLOGIES, P178, DOI 10.4018/978-1-61350-038-5.ch008 Heydt GT, 2010, IEEE T SMART GRID, V1, P225, DOI 10.1109/TSG.2010.2080328 Heymann P., 2006, ILPRINTS775 STANDF U Jureta IJ, 2008, INT REQUIR ENG CONF, P71, DOI 10.1109/RE.2008.13 Kaiya H, 2006, RE'06: 14TH IEEE INTERNATIONAL REQUIREMENTS ENGINEERING CONFERENCE, PROCEEDINGS, P189 Klein D, 2003, 41ST ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, PROCEEDINGS OF THE CONFERENCE, P423, DOI 10.3115/1075096.1075150 Klein D., 2003, Proceedings of Advances in Neural Information Processing Systems, V15, P3 Kof Leonid, 2004, P 19 INT C AUT SOFTW, P91 Kostoff RN, 2006, TECHNOL FORECAST SOC, V73, P923, DOI 10.1016/j.techfore.2005.09.004 Lamsweerde A, 2009, REQUIREMENTS ENG FRO LETIER E, 2001, THESIS U CATHOLIQUE Maedche A, 2001, IEEE INTELL SYST APP, V16, P72, DOI 10.1109/5254.920602 Martino JP, 2003, TECHNOL FORECAST SOC, V70, P719, DOI 10.1016/S0040-1625(02)00375-X MILLER GA, 1995, COMMUN ACM, V38, P39, DOI 10.1145/219717.219748 Navigli R, 2003, IEEE INTELL SYST, V18, P22, DOI 10.1109/MIS.2003.1179190 Polacek G., 2009, P 7 ANN C SYST ENG R, P1 Porter A.L., 2005, Tech mining: exploiting new technologies for competitive advantage Porter A, 2007, RES TECHNOL MANAGE, V50, P15, DOI 10.1080/08956308.2007.11657425 Rusu D., 2007, Proceedings of the 10th International Multiconference Information Society-IS, P8 Rusu D, 2009, INFORM-J COMPUT INFO, V33, P357 RYAN K, 1993, P IEEE INT S REQ ENG, P240 Sanderson M, 1999, SIGIR'99: PROCEEDINGS OF 22ND INTERNATIONAL CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, P206, DOI 10.1145/312624.312679 Sawyer P, 2005, IEEE T SOFTWARE ENG, V31, P969, DOI 10.1109/TSE.2005.129 Shih MJ, 2010, EXPERT SYST APPL, V37, P2882, DOI 10.1016/j.eswa.2009.09.001 Suleiman H, 2013, REQUIR ENG, V18, P251, DOI 10.1007/s00766-012-0153-4 Suleiman H, 2012, IEEE T SMART GRID, V3, P692, DOI 10.1109/TSG.2011.2176151 Svetinovic D, 2013, SYSTEMS ENG, V16, P165, DOI 10.1002/sys.21231 Tseng YH, 2007, INFORM PROCESS MANAG, V43, P1216, DOI 10.1016/j.ipm.2006.11.011 van Lamsweerde A, 2003, LECT NOTES COMPUT SC, V2804, P25 van Lamsweerde A, 2001, FIFTH IEEE INTERNATIONAL SYMPOSIUM ON REQUIREMENTS ENGINEERING, PROCEEDINGS, P249 van Lamsweerde A, 1998, IEEE T SOFTWARE ENG, V24, P1089, DOI 10.1109/32.738341 van Lamsweerde A, 2000, IEEE T SOFTWARE ENG, V26, P978, DOI 10.1109/32.879820 van Lamsweerde A, 1998, IEEE T SOFTWARE ENG, V24, P908, DOI 10.1109/32.730542 Woldeamlak S., 2013, THESIS MASDAR I SCI Wong W, 2012, ACM COMPUT SURV, V44, DOI 10.1145/2333112.2333115 Zafar N, 2014, SYSTEMS ENG, V17, P77, DOI 10.1002/sys.21252 Zhao YJ, 2009, IEEE T SERV COMPUT, V2, P303, DOI 10.1109/TSC.2009.20 Zickert F., 2010, AMCIS, P1 ?zsu, 2009, ENCY DATABASE SYSTEM, DOI [10.1007/978-0-387-39940-9_1314, DOI 10.1007/978-0-387-39940-9_1314] NR 56 TC 26 Z9 29 U1 5 U2 24 PU IEEE COMPUTER SOC PI LOS ALAMITOS PA 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1314 USA SN 0098-5589 EI 1939-3520 J9 IEEE T SOFTWARE ENG JI IEEE Trans. Softw. Eng. PD OCT PY 2014 VL 40 IS 10 BP 941 EP 956 DI 10.1109/TSE.2014.2339811 PG 16 WC Computer Science, Software Engineering; Engineering, Electrical & Electronic WE Science Citation Index Expanded (SCI-EXPANDED) SC Computer Science; Engineering GA AR9ML UT WOS:000343899100001 DA 2024-09-05 ER PT J AU Jensen, MJ Chen, TC AF Jensen, Michael J. Chen, Titus C. TI Illiberal Media in a Liberal Democracy: Examining Identity in Australia's Mandarin Language News SO ISSUES & STUDIES LA English DT Article DE China; WeChat; topic modeling; foreign influence; identity narratives AB The regime of censorship in the People's Republic of China (PRC) extends beyond its borders through the extraterritorial application of its media regulations to popular social media platforms like WeChat. This research investigates the effects of the PRC's extraterritorial control of online content on the identity narratives and norms communicated by comparing Australia's Special Broadcast Service (SBS) Mandarin language news and the news targeting Australian audiences published on popular WeChat Official Accounts (OAs). We find significant differences in the news content between these two platforms: SBS provides more political content and a focus on political and cultural integration, while WeChat pages tend to avoid political topics that are not otherwise press releases from the PRC and they encourage strong cultural ties with Mainland China. Finally, SBS tends to both inform and cultivate democratic political identities and identification with the Australian political system, whereas WeChat tends to differentiate the Chinese diaspora from the wider Australian community. We situate these findings within a wider understanding of PRC's national security strategies and doctrine. Whether by requirement or practice, not only the WeChat OAs in Australia implement PRC's communication controls, but the content on these pages also challenges the liberal democratic practices and norms and supports foreign influence and espionage in Australia. C1 [Jensen, Michael J.] Univ Canberra, Inst Governance & Policy Anal, Canberra, ACT, Australia. [Chen, Titus C.] Natl Sun Yat Sen Univ, Inst Polit, Taipei, Taiwan. C3 University of Canberra; National Sun Yat Sen University RP Jensen, MJ (corresponding author), Univ Canberra, Inst Governance & Policy Anal, Canberra, ACT, Australia. EM Michael.Jensen@canberra.edu.au; tituschen@mail.nsysu.edu.tw CR [Anonymous], Between Facts and Norms; Contributions to a Discourse Theory of Law and Democracy [Anonymous], 1992, WRITING SECURITY US [Anonymous], 1990, MODE INFORM POSTSTRU [Anonymous], 2019, BBC 0227 [Anonymous], 2019, Radio Free Asia Anthony Downs., 1957, An economic theory of democracy Australian Bureau of Statistics, 2017, CENS REV FAST CHANG Bandurski David, 2017, GREAT HIVE PROPAGAND Barnidge M, 2020, INT J PUBLIC OPIN R, V32, P732, DOI 10.1093/ijpor/edz043 BERELSON Bernard, 1986, Voting. A study of Opinion Formation in a Presidential Campaign Bolsover G., 2018, COMPUTATIONAL PROPAG, P212 Brady Anne-Marie., 2017, Magic weapons: China's political influence activities under Xi Jinping Burke Kenneth., 1989, SYMBOLS SOC Burke Kenneth., 1969, A Grammar of Motives China Internet Watch, 2017, CHIN INT INS China Tech Insights, 2017, 2017 WECHAT DAT REP Connolly William, 2002, IDENTITYDIFFERENCE D Dalton RJ, 1998, AM POLIT SCI REV, V92, P111, DOI 10.2307/2585932 Department of Home Affairs, 2018, CHIN BORN COMM INF S Druckman JN, 2005, J POLIT, V67, P1030, DOI 10.1111/j.1468-2508.2005.00349.x Easton D., 1965, SYSTEMS ANAL POLITIC, P507 Easton D., 1990, ANAL POLITICAL STRUC Ellul Jacques., 1966, PROPAGANDA Fish S., 1994, There's No Such Thing as Free Speech: And It's a Good Thing, Too Freedman L., 2006, The Adelphi Papers, V45, P11, DOI DOI 10.1080/05679320600661640 GIDDENS Anthony, 1991, The Consequences of Modernity Gill Bates., 2017, China Matters: Getting It Right for Australia Guo L, 2017, INT J COMMUN-US, V11, P408 Hackett R.A., 1984, Critical Studies in Mass Communication, V1, P329 Hawkins G., 2007, ACH J HIST CULTURE A, V26, P1 Hawkins G., 1996, CULTURE POLICY, V7, P45 Kallinikos J., 2006, CONSEQUENCES INFORM Kennan George., 1948, The Inauguration of Organized Political Warfare King G, 2017, AM POLIT SCI REV, V111, P484, DOI 10.1017/S0003055417000144 King G, 2013, AM POLIT SCI REV, V107, P326, DOI 10.1017/S0003055413000014 Knockel J., SECTION FREE EXPRESS Lagerkvist J, 2008, J CONTEMP CHINA, V17, P121, DOI 10.1080/10670560701693120 Lee J.-A., 2018, 3174626 SSRN SCHOL Lewis D, 2019, ADDRESS ASIO DIRECTO Li J., 2018, **DATA OBJECT** Li M., 2019, ABC NEWS Lindsay J.R., 2015, China and Cybersecurity: Espionage, Strategy, and Politics in the Digital Domain Lipset Seymour Martin., 1967, PARTY SYSTEMS VOTER Mattis Peter., 2019, CHINESE COMMUNIST ES McCarthy KJ, 2014, REV SOC ECON, V72, P42, DOI 10.1080/00346764.2013.806110 McCauley Kevin., 2016, Russian Influence Campaigns Against the West: From the Cold War to Putin Medew Julia., 2013, The Sydney Morning Herald Miskimmon A., 2013, STRATEGIC NARRATIVES Morgan E., 2018, INFORM WARFARE EMERG Ng J. Q, 2015, TRACKING CENSORSHIP Olson J.M., 2019, To Catch a Spy: The Art of Counterintelligence Pettyjohn Stacie L., 2019, Competing in the Gray Zone: Russian Tactics and Western Responses Pitkin H. F., 1985, The Concept of Representation Poindexter D.F., 2018, CHINESE INFORM WAR E, V2 Rawls John., 1996, POLITICAL LIBERALISM Richardson D, 2017, D RICHARDSON AO AUST Rid T., 2020, Active Measures: The Secret History of Disinformation and Political Warfare Roberts M. E., 2018, Censored: Distraction and Diversion Inside China's Great Firewall Roberts ME, 2014, AM J POLIT SCI, V58, P1064, DOI 10.1111/ajps.12103 Sun W, 2018, CONVERSATION 1122 Sun W, 2017, READ THIS CHINESE LA Sun W., 2016, Media Asia, V43, P165 Tang M., 2012, Digital Media and Political Engagement Worldwide: A Comparative Study, P221 Tsai WH, 2016, J CONTEMP CHINA, V25, P731, DOI 10.1080/10670564.2016.1160506 Wade Samuel, 2018, CHINA DIGITAL TIMES Wang SL, 2015, J MED INTERNET RES, V17, DOI 10.2196/jmir.3875 Weinswig D, 2017, DEEP DIVE WECHAT FRO Yin H, 2015, NEW MEDIA SOC, V17, P556, DOI 10.1177/1461444813505363 Young I. M., 2002, Inclusion and democracy Yu HQ, 2019, MEDIA INT AUST, V173, P17, DOI 10.1177/1329878X19875854 Zhang C., 2020, J. Med. Virol. NR 71 TC 0 Z9 0 U1 1 U2 6 PU WORLD SCIENTIFIC PUBL CO PTE LTD PI SINGAPORE PA 5 TOH TUCK LINK, SINGAPORE 596224, SINGAPORE SN 1013-2511 EI 2529-802X J9 ISSUES STUD JI Issues Stud. PD JUN PY 2021 VL 57 IS 2 AR 2150005 DI 10.1142/S1013251121500053 PG 35 WC Area Studies; International Relations; Political Science WE Emerging Sources Citation Index (ESCI) SC Area Studies; International Relations; Government & Law GA TZ3ME UT WOS:000684379000004 DA 2024-09-05 ER PT J AU Pradhan, T Sahoo, S Singh, U Pal, S AF Pradhan, Tribikram Sahoo, Suchit Singh, Utkarsh Pal, Sukomal TI A proactive decision support system for reviewer recommendation in academia SO EXPERT SYSTEMS WITH APPLICATIONS LA English DT Article DE Reviewer recommendation; Topic modeling; Clustering; Citation analysis; Random walk with restart (RWR) ID INFORMATION; INDEX AB Peer review is an essential part of scientific communications to ensure the quality of publications and a healthy scientific evaluation process. Assigning appropriate reviewers poses a great challenge for program chairs and journal editors for many reasons, including relevance, fair judgment, no conflict of interest, and qualified reviewers in terms of scientific impact. With a steady increase in the number of research domains, scholarly venues, researchers, and papers in academia, manually selecting and accessing adequate reviewers is becoming a tedious and time-consuming task. Traditional approaches for reviewer selection mainly focus on the matching of research relevance by keywords or disciplines. However, in real-world systems, various factors are often needed to be considered. Therefore, we propose a multilayered approach integrating Topic Network, Citation Network, and Reviewer Network into a reviewer Recommender System (TCRRec). We explore various aspects, including relevance between reviewer candidates and submission, authority, expertise, diversity, and conflict of interest and integrate them into the proposed framework TCRRec. The paper also addresses cold start issues for researchers having unique areas of interest or for isolated researchers. Experiments based on the NIPS and AMiner dataset demonstrate that the proposed TCRRec outperforms state-of-the-art recommendation techniques in terms of standard metrics of precision@k, MRR, nDCG@k, authority, expertise, diversity, and coverage. C1 [Pradhan, Tribikram; Pal, Sukomal] Indian Inst Technol BHU, Dept Comp Sci & Engn, Varanasi, Uttar Pradesh, India. [Pradhan, Tribikram] MAHE, Manipal Inst Technol, Dept Informat & Commun Technol, Manipal, Karnataka, India. [Sahoo, Suchit; Singh, Utkarsh] Indian Inst Technol BHU, Dept Elect Engn, Varanasi, Uttar Pradesh, India. C3 Indian Institute of Technology System (IIT System); Indian Institute of Technology BHU Varanasi (IIT BHU Varanasi); Manipal Academy of Higher Education (MAHE); Indian Institute of Technology System (IIT System); Indian Institute of Technology BHU Varanasi (IIT BHU Varanasi) RP Pradhan, T (corresponding author), Indian Inst Technol BHU, Dept Comp Sci & Engn, Varanasi, Uttar Pradesh, India.; Pradhan, T (corresponding author), MAHE, Manipal Inst Technol, Dept Informat & Commun Technol, Manipal, Karnataka, India. EM tpradhan.rs.cse16@itbhu.ac.in; suchit.sahoo.eee15@itbhu.ac.in; utkarsh.singh.eee15@itbhu.ac.in; spal.cse@iitbhu.ac.in RI PRADHAN, TRIBIKRAM/AAY-1283-2021 OI PRADHAN, TRIBIKRAM/0000-0001-5458-2286 CR Adomavicius G, 2005, IEEE T KNOWL DATA EN, V17, P734, DOI 10.1109/TKDE.2005.99 Anjum O, 2019, 2019 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING AND THE 9TH INTERNATIONAL JOINT CONFERENCE ON NATURAL LANGUAGE PROCESSING (EMNLP-IJCNLP 2019), P518 [Anonymous], 2008, CIKM 08, DOI [10.1145/1458082.1458127, DOI 10.1145/1458082.1458127] Basheer IA, 2000, J MICROBIOL METH, V43, P3, DOI 10.1016/S0167-7012(00)00201-3 Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993 Blondel VD, 2008, J STAT MECH-THEORY E, DOI 10.1088/1742-5468/2008/10/P10008 Bobadilla J, 2013, KNOWL-BASED SYST, V46, P109, DOI 10.1016/j.knosys.2013.03.012 Bradley Keith, 2001, P 12 IR C ART INT CO, P85 Buckley C., 2004, Proceedings of Sheffield SIGIR 2004. The Twenty-Seventh Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, P25, DOI 10.1145/1008992.1009000 Chaiwanarom P, 2015, KNOWL-BASED SYST, V75, P161, DOI 10.1016/j.knosys.2014.11.029 Charlin L., 2013, The toronto paper matching system: an automated paper-reviewer assignment system, P28 Conry D., 2009, RECSYS 09, P357, DOI [DOI 10.1145/1639714.1639787, 10.1145/1639714.1639787] Di Mauro N, 2005, LECT NOTES ARTIF INT, V3533, P789 DUMAIS ST, 1992, SIGIR 92 : PROCEEDINGS OF THE FIFTEENTH ANNUAL INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, P233 Flach Peter A., 2010, ACM SIGKDD Explor. Newsl., V11, P63 Grover A, 2016, KDD'16: PROCEEDINGS OF THE 22ND ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, P855, DOI 10.1145/2939672.2939754 Hettich S., 2006, KDD 06, P862, DOI [10.1145/1150402.1150521, DOI 10.1145/1150402.1150521] Huang WY, 2015, AAAI CONF ARTIF INTE, P2404 Jin J., 2018, J INF SCI Jin J, 2017, WWW'17 COMPANION: PROCEEDINGS OF THE 26TH INTERNATIONAL CONFERENCE ON WORLD WIDE WEB, P1233, DOI 10.1145/3041021.3053053 Jin JL, 2018, ANN MED, V50, P576, DOI 10.1080/07853890.2018.1523549 Kong XJ, 2017, SCIENTOMETRICS, V113, P369, DOI 10.1007/s11192-017-2485-9 Kou NM, 2015, PROC VLDB ENDOW, V8, P1852 Kunaver M, 2017, KNOWL-BASED SYST, V123, P154, DOI 10.1016/j.knosys.2017.02.009 Li BC, 2016, IEEE NETWORK, V30, P18, DOI 10.1109/MNET.2016.7579022 Liu O, 2016, COMPUT IND, V76, P1, DOI 10.1016/j.compind.2015.11.001 Liu X., 2016, IC 2016 P ISCHOOLS Liu X, 2014, PROCEEDINGS OF THE 8TH ACM CONFERENCE ON RECOMMENDER SYSTEMS (RECSYS'14), P25, DOI 10.1145/2645710.2645749 Lu J, 2015, DECIS SUPPORT SYST, V74, P12, DOI 10.1016/j.dss.2015.03.008 Mimno D, 2007, KDD-2007 PROCEEDINGS OF THE THIRTEENTH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, P500 Moawad M., 2019, 22 INT C EXT DAT TEC Newman MEJ, 2004, PHYS REV E, V69, DOI 10.1103/PhysRevE.69.026113 Nguyen J, 2018, PATTERN RECOGN LETT, V105, P114, DOI 10.1016/j.patrec.2017.09.020 Peng HW, 2017, LECT NOTES COMPUT SC, V10179, P145, DOI 10.1007/978-3-319-55705-2_11 Pradhan T., 2019, FUTURE GENER COMP SY Pradhan T, 2020, KNOWL-BASED SYST, V204, DOI 10.1016/j.knosys.2020.106181 Pradhan T, 2020, KNOWL-BASED SYST, V197, DOI 10.1016/j.knosys.2020.105784 Pradhan T, 2020, KNOWL-BASED SYST, V189, DOI 10.1016/j.knosys.2019.105092 Real R, 1996, SYST BIOL, V45, P380, DOI 10.2307/2413572 Son J, 2018, DECIS SUPPORT SYST, V105, P24, DOI 10.1016/j.dss.2017.10.011 Stuckenschmidt H, 2002, LECT NOTES ARTIF INT, V2479, P114 Sun Y. H., 2007, 2007 40 ANN HAW INT, P47 Sun YZ, 2013, ACM T KNOWL DISCOV D, V7, DOI 10.1145/2500492 Sun YZ, 2011, 2011 INTERNATIONAL CONFERENCE ON ADVANCES IN SOCIAL NETWORKS ANALYSIS AND MINING (ASONAM 2011), P121, DOI 10.1109/ASONAM.2011.112 Tayal DK, 2014, APPL INTELL, V40, P54, DOI 10.1007/s10489-013-0445-5 Tong HH, 2006, IEEE DATA MINING, P613 Wang G, 2018, KNOWL-BASED SYST, V148, P85, DOI 10.1016/j.knosys.2018.02.024 Xia F, 2017, IEEE T BIG DATA, V3, P18, DOI 10.1109/TBDATA.2016.2641460 Xu YH, 2012, INT C MANAGE SCI ENG, P213, DOI 10.1109/ICMSE.2012.6414185 Zhao S, 2018, SCIENTOMETRICS, V115, P1293, DOI 10.1007/s11192-018-2726-6 NR 50 TC 12 Z9 13 U1 1 U2 18 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0957-4174 EI 1873-6793 J9 EXPERT SYST APPL JI Expert Syst. Appl. PD MAY 1 PY 2021 VL 169 AR 114331 DI 10.1016/j.eswa.2020.114331 EA FEB 2021 PG 20 WC Computer Science, Artificial Intelligence; Engineering, Electrical & Electronic; Operations Research & Management Science WE Science Citation Index Expanded (SCI-EXPANDED) SC Computer Science; Engineering; Operations Research & Management Science GA SV3FJ UT WOS:000663708000016 DA 2024-09-05 ER PT J AU Li, ZM AF Li, ZhengMin TI Research on Brand Image Evaluation Method Based on Consumer Sentiment Analysis SO COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE LA English DT Article ID SYSTEM; ONTOLOGY; MODEL AB Brand image assessment is a key step to reasonably quantify the value of a brand and has far-reaching significance for improving the competitiveness of an enterprise. With the rapid development of Internet technology, traditional questionnaires can no longer meet the current needs of brand image assessment. In this environment, the huge amount of fragmented consumer topic data provides a rich data resource and new research ideas for brand image assessment. Therefore, a brand image assessment method based on consumer sentiment analysis is proposed. First, a topic-based brand image cognitive label extraction method is proposed by setting language rules, aggregation rules, and ranking rules according to the characteristics of online topic data. Then, the fusion of cognitive labels and deep features is performed by fusing the deep features extracted from word vectors. Finally, a supervised learning support vector machine is selected as the sentiment classification model. The experimental results show that based on the obtained important cognitive labels, enterprises are able to better understand the unique attributes that consumers have for the brand; the feature fusion approach is better evaluated and can accurately reflect consumers' views on brand image and quantified as brand score. C1 [Li, ZhengMin] Wuhan Univ, Sch Journalism & Commun, Wuhan 430072, Hubei, Peoples R China. C3 Wuhan University RP Li, ZM (corresponding author), Wuhan Univ, Sch Journalism & Commun, Wuhan 430072, Hubei, Peoples R China. EM 2015101030022@whu.edu.cn CR Chen J, 2015, APPL SOFT COMPUT, V30, P663, DOI 10.1016/j.asoc.2015.01.007 Feng WT, 2021, TOURISM MANAGE, V86, DOI 10.1016/j.tourman.2021.104344 Ferreiro-Rosende E, 2023, MUS MANAGE CURATOR, V38, P157, DOI 10.1080/09647775.2021.1914143 Gilal AR, 2017, INT J ADV COMPUT SC, V8, P153 Guo JQ, 2021, SENSORS-BASEL, V21, DOI 10.3390/s21010241 Hou Q, 2021, J INTELL FUZZY SYST, V40, P2721, DOI 10.3233/JIFS-189314 Hou YZ, 2021, J INTELL FUZZY SYST, V40, P3801, DOI 10.3233/JIFS-189413 Hu JJ, 2021, INT J EMERG TECHNOL, V16, P87, DOI 10.3991/ijet.v16i05.20299 Kakad S, 2021, EXPERT SYST APPL, V178, DOI 10.1016/j.eswa.2021.115046 Kang Q, 2018, IEEE T NEUR NET LEAR, V29, P4152, DOI 10.1109/TNNLS.2017.2755595 Keller KO, 2020, J MARKETING RES, V57, P677, DOI 10.1177/0022243720922853 Khan A, 2021, J INTELL FUZZY SYST, V40, P1681, DOI 10.3233/JIFS-201069 Lanjewar RB, 2015, PROCEDIA COMPUT SCI, V49, P50, DOI 10.1016/j.procs.2015.04.226 Liu B, 2020, J AMB INTEL HUM COMP, V11, P451, DOI 10.1007/s12652-018-1095-6 Liu Z., 2015, J INFORM COMPUTATION, V12, P1011, DOI [10.12733/jics20105433, DOI 10.12733/JICS20105433] Portal S, 2018, BUS HORIZONS, V61, P367, DOI 10.1016/j.bushor.2018.01.003 Singh D, 2021, J CREAT COMMUN, V16, P266, DOI 10.1177/09732586211002104 Suhasini M., 2018, Int. J. Comput. Appl., V179, P12, DOI [10.5120/ijca2018917350, DOI 10.5120/IJCA2018917350] Thenmozhi M., 2019, INT J COMPUTER SCI E, V7, P591, DOI [10.26438/ijcse/v7i6.591594, DOI 10.26438/IJCSE/V7I6.591594] Uzunkaya T, 2020, PRESSACADEMIA, V7, P80, DOI [10.17261/Pressacademia.2020.1201, DOI 10.17261/PRESSACADEMIA.2020.1201] Xiong ZY, 2019, CMC-COMPUT MATER CON, V60, P259, DOI 10.32604/cmc.2019.05155 Zhang XY, 2021, COMPLEXITY, V2021, DOI 10.1155/2021/5596518 NR 22 TC 0 Z9 1 U1 4 U2 14 PU HINDAWI LTD PI LONDON PA ADAM HOUSE, 3RD FLR, 1 FITZROY SQ, LONDON, W1T 5HF, ENGLAND SN 1687-5265 EI 1687-5273 J9 COMPUT INTEL NEUROSC JI Comput. Intell. Neurosci. PD MAY 27 PY 2022 VL 2022 AR 2647515 DI 10.1155/2022/2647515 PG 8 WC Mathematical & Computational Biology; Neurosciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Mathematical & Computational Biology; Neurosciences & Neurology GA 1Y0AU UT WOS:000807810000001 PM 35669638 OA gold, Green Published DA 2024-09-05 ER PT J AU Bhattacharya, S AF Bhattacharya, Sujit TI Some Salient Aspects of Machine Learning Research: A Bibliometric Analysis SO JOURNAL OF SCIENTOMETRIC RESEARCH LA English DT Article DE Machine Learning; Social Network Analysis; Bibliometrics; Co-word analysis; Intellectual Structure AB Machine learning has emerged as an important and distinct area of research closely related to and often overlaps with various domains within computer science, computational statistics, artificial intelligence, cognitive science. One can observe connections with these fields at the cognitive level (in terms of theoretical framework), and on methodological levels (drawing from tools and techniques of these fields). The evolution of the field has taken a very directed and operational approach with basic tenet of machine learning being 'teaching computers how to learn from data to make decisions or predictions'. As we move into systems that increasingly need to exploit data, we find the research in this area getting more application oriented, expansive in scope with loci of research and innovation dispersed across academia, research institutions and industry. It is thus becoming a challenging as well as useful exercise to know the structure and dynamics of this field. The paper is centered on this issue; it tries to capture the intellectual structure of this field and research trends from quantitative and statistical analysis of research publications. Conceptual connections are constructed from linkages among keywords using tools and techniques of Social network Analysis. It also acts as a conceptual framework for the study. Some indications from patent statistics are also drawn to provide some insights of the technological trends. C1 [Bhattacharya, Sujit] CSIR Natl Inst Sci Technol & Dev Studies, NISTADS Campus,KS Krishnan Marg,Pusa Campus, New Delhi 110012, India. [Bhattacharya, Sujit] AcSIR, NISTADS Campus,KS Krishnan Marg,Pusa Campus, New Delhi 110012, India. C3 Council of Scientific & Industrial Research (CSIR) - India; CSIR - National Institute of Science Communication & Policy Research (NIScPR); Academy of Scientific & Innovative Research (AcSIR) RP Bhattacharya, S (corresponding author), CSIR Natl Inst Sci Technol & Dev Studies, NISTADS Campus,KS Krishnan Marg,Pusa Campus, New Delhi 110012, India.; Bhattacharya, S (corresponding author), AcSIR, NISTADS Campus,KS Krishnan Marg,Pusa Campus, New Delhi 110012, India. EM sujit_academic@yahoo.com RI Bhattacharya, Sujit/AAH-2660-2020 OI Bhattacharya, Sujit/0000-0002-6769-8293 CR [Anonymous], 2009, Social Network Analysis. Methods and Applications [Anonymous], STRUCTURAL ANAL SOCI Bhattacharya S, 1998, SCIENTOMETRICS, V43, P359, DOI 10.1007/BF02457404 Brynjolfsson E., 2014, 2 MACHINE AGE WORK P, P306 CALLON M, 1983, SOC SCI INFORM, V22, P191, DOI 10.1177/053901883022002003 Cobo MJ, 2011, J AM SOC INF SCI TEC, V62, P1382, DOI 10.1002/asi.21525 Fu LD, 2010, SCIENTOMETRICS, V85, P257, DOI 10.1007/s11192-010-0237-1 Meixin Mao, 2018, Data Mining and Big Data. Third International Conference, DMBD 2018. Proceedings: LNCS 10943, P585, DOI 10.1007/978-3-319-93803-5_55 Mingers J, 2015, EUR J OPER RES, V246, P1, DOI 10.1016/j.ejor.2015.04.002 Rincon-Patino J, 2018, F1000Research, V7, P1240 Van Eck NJ, 2007, INT J UNCERTAIN FUZZ, V15, P625, DOI 10.1142/S0218488507004911 van Eck NJ, 2010, SCIENTOMETRICS, V84, P523, DOI 10.1007/s11192-009-0146-3 Yu DJ, 2020, INT J MACH LEARN CYB, V11, P715, DOI 10.1007/s13042-019-01028-y NR 13 TC 11 Z9 11 U1 2 U2 9 PU PHCOG NET PI KARNATAKA PA 17, 2ND FLR, BUDDHA VIHAR RD, NEAR SPORTS ZONE, COX TOWN, BENGALURU, KARNATAKA, 560005, INDIA SN 2321-6654 EI 2320-0057 J9 J SCIENTOMETR RES JI J. Scientometr. Res. PD MAY-AUG PY 2019 VL 8 IS 2 SI SI BP S85 EP S92 DI 10.5530/jscires.8.2.26 PG 8 WC Information Science & Library Science WE Emerging Sources Citation Index (ESCI) SC Information Science & Library Science GA KA8FQ UT WOS:000506037200007 OA hybrid DA 2024-09-05 ER PT C AU Jing, M Fang, FY AF Jing, Ma Fang, Fu Yan GP IEEE TI Research on the Dynamic Assessment of Battlefield Forces Based on Bayesian Networks SO 2012 INTERNATIONAL CONFERENCE ON INDUSTRIAL CONTROL AND ELECTRONICS ENGINEERING (ICICEE) LA English DT Proceedings Paper CT International Conference on Industrial Control and Electronics Engineering (ICICEE) CY AUG 23-25, 2012 CL Xian, PEOPLES R CHINA DE situation battlefield forces; Bayesian network; dynamic assessment AB Two sides of the battlefield forces contrast is an important influence factor of battlefield situation. Accurately judge it is a preconditions of situation assessment. This paper researches on the battlefield forces assessment and the results of the dynamic changes. In order to achieve it, we build two Bayesian networks, one analyses situation battlefield forces, the other analyses dynamic changes with the nodes. The nodes of first Bayesian network contains enemy air-to-ground attack force, our air-to-ground attack force, enemy air-to-air attack force, our air-to-air attack force, enemy ground-to-air attack force, our ground-to-air attack force, enemy ground-to-ground attack force, our ground-to-ground attack force, enemy ground defenses, our ground defenses, etc. The second Bayesian network reflects the changes of nodes of first Bayesian network. Through the Bayesian network, we can get the current situation of battlefield forces, and find the change between original result and now. Finally, the process of how to use the Bayesian networks for situation assessment was showed by an example. C1 [Jing, Ma; Fang, Fu Yan] Xian Technol Univ, Xian 710032, Shaanxi, Peoples R China. C3 Xi'an Technological University RP Jing, M (corresponding author), Xian Technol Univ, Xian 710032, Shaanxi, Peoples R China. CR BARNARD GF, 1993, CANCER RES, V53, P4048 BJOERN T, 2006, CANCER, P792 Determan J, 1999, P 1999 C EV COMP PIS, P2101 LEI De-ming, 2006, CHINESE J ELECTRON, V34, P1142 Wang M.-L, 2010, J WUYI U NATURAL SCI, V24, P44 NR 5 TC 1 Z9 1 U1 0 U2 6 PU IEEE COMPUTER SOC PI LOS ALAMITOS PA 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1264 USA BN 978-0-7695-4792-3 PY 2012 BP 321 EP 323 DI 10.1109/ICICEE.2012.92 PG 3 WC Engineering, Electrical & Electronic WE Conference Proceedings Citation Index - Science (CPCI-S) SC Engineering GA BCJ89 UT WOS:000310339200085 DA 2024-09-05 ER PT J AU Manakhova, AM Lagutina, NS AF Manakhova, A. M. Lagutina, N. S. TI Analysis of the Influence of Mixed-Level Stylometric Characteristics on the Verification of Authors of Literary Works SO AUTOMATIC CONTROL AND COMPUTER SCIENCES LA English DT Article DE stylometry; stylometric characteristics; authorship verification; natural language processing AB This article analyses the influence of various combinations of mixed-level stylometric characteristics on the quality of verification of the authorship of Russian, English and French prose texts. The study is carried out both for low-level stylometric characteristics based on words and characters, and for higher-level structure ones. All stylometric characteristics are calculated automatically using the ProseRhythmDetector program. This approach provides the analyses of works of a large volume and many writers at the same time. In the course of the work, character-level, word-level, and structure-level stylometric vectors are associated with each text. During the experiments, the sets of parameters of these three levels were combined with each other in all possible ways. The resulting vectors of stylometric characteristics were submitted to the input of various classifiers to perform verification and identify the most suitable classifier for solving the problem. The best results were obtained using the AdaBoost classifier. The average F-measure for all languages was over 92%. Detailed verification quality assessments are given for each author and analyzed. The use of high-level stylometric characteristics, in particular, the frequency of using N-grams of POS tags, opens the prospect of a more detailed analysis of author's styles. The results of the experiments show that when combining the characteristics of the structure level with the characteristics of the word level and/or character level, the most accurate results of authorship verification for literary texts in Russian, English, and French are obtained. Additionally, the authors concluded that stylometric characteristics have different degrees of influence on the quality of authorship verification for different languages. C1 [Manakhova, A. M.; Lagutina, N. S.] Yaroslavl State Univ, Yaroslavl 150003, Russia. C3 Yaroslavl State University RP Manakhova, AM (corresponding author), Yaroslavl State Univ, Yaroslavl 150003, Russia. EM al.mnkhv@yandex.ru; lagutinans@rambler.ru OI Lagutina, Nadezhda/0000-0002-6137-8643 CR Adamovic S, 2019, J ASSOC INF SCI TECH, V70, P858, DOI 10.1002/asi.24163 Ahmed H, 2018, PROCEDIA COMPUT SCI, V142, P214, DOI 10.1016/j.procs.2018.10.478 Al-Khatib MA, 2021, INFORM COMMUN SOC, V24, P1603, DOI 10.1080/1369118X.2020.1716039 Altamimi A, 2019, THIRD CENTRAL EUROPEAN CYBERSECURITY CONFERENCE (CECC 2019), DOI 10.1145/3360664.3360677 Benzebouchi NE, 2018, 2018 2ND INTERNATIONAL CONFERENCE ON NATURAL LANGUAGE AND SPEECH PROCESSING (ICNLSP), P142 Boenninghoff B, 2019, IEEE INT CONF BIG DA, P36, DOI 10.1109/BigData47090.2019.9005650 Castillo E, 2019, J INTELL FUZZY SYST, V36, P6075, DOI 10.3233/JIFS-181934 Corbara Silvia, 2019, New Trends in Image Analysis and Processing - ICIAP 2019. ICIAP International Workshops BioFor, PatReCH, e-BADLE, DeepRetail, and Industrial Session. Revised Selected Papers: Lecture Notes in Computer Science (LNCS 11808), P148, DOI 10.1007/978-3-030-30754-7_15 Drozdov V.A., 2020, ORIENTALISTIKA, V3, P1360, DOI [10.31696/2618-7043-2020-3-5-1360-1378, DOI 10.31696/2618-7043-2020-3-5-1360-1378] Halvani Oren, 2020, ARES 2020: Proceedings of the 15th International Conference on Availability, Reliability and Security, DOI 10.1145/3407023.3409194 Kestemont M., 2019, J EUR PERIODICAL STU, V4, P115, DOI [10.21825/jeps.v4i1.10188, DOI 10.21825/JEPS.V4I1.10188] Kestemont M., 2020, CEUR WORKSHOP PROC, V2696, P264 Kim SB, 2006, IEEE T KNOWL DATA EN, V18, P1457, DOI 10.1109/TKDE.2006.180 Lagutina K, 2020, PROC CONF OPEN INNOV, P247, DOI [10.23919/fruct48808.2020.9087430, 10.23919/FRUCT48808.2020.9087430] Lagutina K, 2019, PROC CONF OPEN INNOV, P184, DOI [10.23919/FRUCT48121.2019.8981504, 10.23919/fruct48121.2019.8981504] Li JS, 2017, CONCURR COMP-PRACT E, V29, DOI 10.1002/cpe.3918 Polin Y., 2020, SOVREM NAUKOEMKIE TE, P59, DOI [10.17513/snt.38215, DOI 10.17513/SNT.38215] Potha N, 2018, 10TH HELLENIC CONFERENCE ON ARTIFICIAL INTELLIGENCE (SETN 2018), DOI 10.1145/3200947.3201013 Reddy PB, 2020, ADV INTELL SYST COMP, V1079, P441, DOI 10.1007/978-981-15-1097-7_37 Tuccinardi E, 2017, DIGIT SCHOLARSH HUM, V32, P435, DOI 10.1093/llc/fqw001 Tuchkova N. P., 2020, INFORM MATH TECHNOL, V2, P5, DOI [10.38028/ESI.2020.18.2.00, DOI 10.38028/ESI.2020.18.2.00] Xu BX, 2012, J COMPUT, V7, P2913, DOI 10.4304/jcp.7.12.2913-2920 NR 22 TC 0 Z9 0 U1 1 U2 2 PU PLEIADES PUBLISHING INC PI NEW YORK PA PLEIADES HOUSE, 7 W 54 ST, NEW YORK, NY, UNITED STATES SN 0146-4116 EI 1558-108X J9 AUTOM CONTROL COMPUT JI Autom. Control Comp. Sci. PD DEC PY 2022 VL 56 IS 7 BP 744 EP 761 DI 10.3103/S0146411622070148 PG 18 WC Automation & Control Systems WE Emerging Sources Citation Index (ESCI) SC Automation & Control Systems GA 9D9NI UT WOS:000936422500013 DA 2024-09-05 ER PT J AU Habib, E Deshotel, M Lai, GL Miller, R AF Habib, Emad Deshotel, Matthew Lai, Guolin Miller, Robert TI Student Perceptions of an Active Learning Module to Enhance Data and Modeling Skills in Undergraduate Water Resources Engineering Education SO INTERNATIONAL JOURNAL OF ENGINEERING EDUCATION LA English DT Article DE water resources engineering education; active-learning; numerical modeling; data analysis; project-based; improvement-focused evaluation; design-based research; open-source tools ID CURRICULUM AB This article describes the design, development, and evaluation of an undergraduate learning module that builds student's skills on how data analysis and numerical modeling can be used to analyze and design water resources engineering projects. The module follows a project-based approach by using a hydrologic restoration project in a coastal basin in south Louisiana, USA. The module has two main phases, a feasibility analysis phase and a hydraulic design phase, and follows an active learning approach where students perform a set of quantitative learning activities that involve extensive data and modeling analyses. The module is designed using open resources, including online datasets, hydraulic simulation models and geographical information system software that are typically used by the engineering industry and research communities. Upon completing the module, students develop skills that involve model formulation, parameter calibration, sensitivity analysis, and the use of data and models to assess and design a hydrologic a proposed hydrologic engineering project. Guided by design-based research framework, the implementation and evaluation of the module focused primarily on assessing students' perceptions of the module usability and its design attributes, their perceived contribution of the module to their learning, and their overall receptiveness of the module and how it impacts their interest in the subject and future careers. Following an improvement-focused evaluation approach, design attributes that were found most critical to students included the use of user-support resources and self-checking mechanisms. These aspects were identified as key features that facilitate students' self-learning and independent completion of tasks, while still enriching their learning experiences when using data and modeling-rich applications. Evaluation data showed that the following attributes contributed the most to students' learning and potential value for future careers: application of modern engineering data analysis; use of real-world hydrologic datasets; and appreciation of uncertainties and challenges imposed by data scarcity. The evaluation results were used to formulate a set of guiding principles on how to design effective and conducive undergraduate learning experiences that adopt technology-enhanced and data and modeling-based strategies, on how to enhance users' experiences with free and open-source engineering analysis tools, and on how to strike a pedagogical balance between module complexity, student engagement, and flexibility to fit within existing curricula limitations. C1 [Habib, Emad; Deshotel, Matthew; Miller, Robert] Univ Louisiana Lafayette, Dept Civil Engn, POB 70503, Lafayette, LA 70504 USA. [Habib, Emad; Miller, Robert] Univ Louisiana Lafayette, Louisiana Watershed Flood Ctr, POB 70503, Lafayette, LA 70504 USA. [Lai, Guolin] Univ Louisiana Lafayette, Dept Management, POB 43930, Lafayette, LA 70504 USA. C3 University of Louisiana Lafayette; University of Louisiana Lafayette; University of Louisiana Lafayette RP Habib, E (corresponding author), Univ Louisiana Lafayette, Dept Civil Engn, POB 70503, Lafayette, LA 70504 USA.; Habib, E (corresponding author), Univ Louisiana Lafayette, Louisiana Watershed Flood Ctr, POB 70503, Lafayette, LA 70504 USA. EM habib@louisiana.edu; mdeshot@gmail.com; glai@louisiana.edu; robert.miller@louisiana.edu FU National Science Foundation [1122898, 1726965]; Louisiana Sea Grant College Program (LSG) under NOAA [R/EMD-03, NA14OAR4170099]; Division Of Undergraduate Education; Direct For Education and Human Resources [1726965, 1122898] Funding Source: National Science Foundation FX This material is based upon work supported by the National Science Foundation Collaborative Award No. 1122898 and Award No. 1726965, and by Program Project ID: R/EMD-03 through the Louisiana Sea Grant College Program (LSG) under NOAA Award #NA14OAR4170099. CR [Anonymous], 2003, Diffusion of Innovations [Anonymous], ASEE SE SECT C MAC G [Anonymous], ED RES [Anonymous], CHRONICLE HIGHER ED [Anonymous], HYDROLOGY EARTH SYST [Anonymous], 2010, Water in a Dynamic Planet: A Five-year Strategic Plan for Water Science, DOI [10.4211/sciplan.200711, DOI 10.4211/SCIPLAN.200711] [Anonymous], PROGRAM EVALUATION M Armellini A, 2013, OPEN LEARN, V28, P7, DOI 10.1080/02680513.2013.796286 Atkins D.E., 2007, A review of the open educational resources (OER) movement: Achievements, challenges, and new opportunities Beven K.J., 2001, Rainfall-runoff Modelling, The Primer, P360 Borrego M, 2010, J ENG EDUC, V99, P185, DOI 10.1002/j.2168-9830.2010.tb01056.x Chi MTH, 2009, TOP COGN SCI, V1, P73, DOI 10.1111/j.1756-8765.2008.01005.x Keeney-Kennicutt W., 2008, Journal for the Scholarship of Teaching and Learning, V2, P1 Menekse M, 2013, J ENG EDUC, V102, P346, DOI 10.1002/jee.20021 Miles M. B., 2014, QUALITATIVE DATA ANA Prince M, 2004, J ENG EDUC, V93, P223, DOI 10.1002/j.2168-9830.2004.tb00809.x Prince MJ, 2006, J ENG EDUC, V95, P123, DOI 10.1002/j.2168-9830.2006.tb00884.x Ruddell BL, 2015, J HYDROL ENG, V20, DOI 10.1061/(ASCE)HE.1943-5584.0000956 Seidel SB, 2013, CBE-LIFE SCI EDUC, V12, P586, DOI 10.1187/cbe-13-09-0190 Thompson SE, 2012, HYDROL EARTH SYST SC, V16, P3263, DOI 10.5194/hess-16-3263-2012 Wagener T, 2012, HYDROL EARTH SYST SC, V16, P3405, DOI 10.5194/hess-16-3405-2012 Wagener T, 2010, WATER RESOUR RES, V46, DOI 10.1029/2009WR008906 Wang F, 2005, ETR&D-EDUC TECH RES, V53, P5, DOI 10.1007/BF02504682 NR 23 TC 12 Z9 12 U1 1 U2 11 PU TEMPUS PUBLICATIONS PI DURRUS, BANTRY PA IJEE , ROSSMORE,, DURRUS, BANTRY, COUNTY CORK 00000, IRELAND SN 0949-149X J9 INT J ENG EDUC JI Int. J. Eng. Educ PY 2019 VL 35 IS 5 BP 1353 EP 1365 PG 13 WC Education, Scientific Disciplines; Engineering, Multidisciplinary WE Science Citation Index Expanded (SCI-EXPANDED) SC Education & Educational Research; Engineering GA IV6FK UT WOS:000484364100010 DA 2024-09-05 ER PT J AU Khayet, M Aytaç, E Matsuura, T AF Khayet, Mohamed Aytac, Ersin Matsuura, Takeshi TI Bibliometric and sentiment analysis with machine learning on the scientific contribution of Professor Srinivasa Sourirajan SO DESALINATION LA English DT Article DE Biblioshiny; Exploratory Tool; Text mining; VADER; Word cloud ID SEPARATION; PRESSURE; FLOW AB Prof. Srinivasa Sourirajan is remembered by the desalination and membrane community as the "Father of Reverse Osmosis ". He passed away at the age of 98 peacefully in his beloved city Ottawa (Canada). His legacy will be remembered by the scientific community "membrane science, membrane processes, desalination and engineering ". His research studies were not only novel, but also very creative and even visionary. He offered a priceless gift to humanity by bringing clean water to all those in need through the presentation of reverse osmosis technology together with its appropriate membranes for water treatment, including desalination. This technology has now gained worldwide interest as it is able to produce clean water at a lower cost compared to other separation processes. His scientific contribution also pioneered other research areas. He developed novel research methodologies in geophysics while in catalysis he produced unleaded gasoline to help with the smog issue. He was nominated for the Nobel Prize three times. Prof. Sourirajan had also an exceptional humanitarian attribute. He played a significant role in bringing the Indian community to Ottawa. In the present paper we apply machine learning for his extraordinary and original scientific contribution. The results reveal how influential scientist he was. C1 [Khayet, Mohamed; Aytac, Ersin] Univ Complutense Madrid, Fac Phys, Dept Struct Matter Thermal Phys & Elect, Avda Complutense S-N, Madrid 28040, Spain. [Khayet, Mohamed] Madrid Inst Adv Studies Water, IMDEA Water Inst, Calle Punto Net 4, Madrid 28805, Spain. [Aytac, Ersin] Zonguldak Bulent Ecevit Univ, Dept Environm Engn, TR-67100 Zonguldak, Turkey. [Matsuura, Takeshi] Univ Ottawa, Dept Chem & Biol Engn, Ottawa, ON K1N 6N5, Canada. C3 Complutense University of Madrid; IMDEA Water Institute; Zonguldak Bulent Ecevit University; University of Ottawa RP Khayet, M (corresponding author), Univ Complutense Madrid, Fac Phys, Dept Struct Matter Thermal Phys & Elect, Avda Complutense S-N, Madrid 28040, Spain. EM khayetm@fis.ucm.es RI ; Khayet, Mohamed/L-3814-2014 OI Aytac, Ersin/0000-0002-7124-4438; Khayet, Mohamed/0000-0002-5117-2975 FU Scientific and Technological Research Council of Turkey (TUBITAK) at the University Complutense of Madrid (UCM) [1059B191900618] FX Acknowledgements Dr. Ersin Ayta? would like to express his acknowledgement for the postdoctoral grant received from The Scientific and Technological Research Council of Turkey (TUBITAK) at the University Complutense of Madrid (UCM) with the grant number of 1059B191900618. CR Abu Sayed M, 2021, ACCIDENT ANAL PREV, V159, DOI 10.1016/j.aap.2021.106211 [Anonymous], 2022, GOOGLE PATENTS PATEN [Anonymous], 2022, TRIBUTE S SOURIRAJAN ARIA M., 2017, BRIEF INTRO BIBLIOME Aria M., 2017, Biblioshiny-Bibliometrix for non-coders Aria M, 2017, J INFORMETR, V11, P959, DOI 10.1016/j.joi.2017.08.007 Atenstaedt RL, 2021, PUBLIC HEALTH, V197, P39, DOI 10.1016/j.puhe.2021.06.010 Aytac E., 2021, Fen Ve Muhendislik Bilimleri Dergisi, V21, P958, DOI [10.35414/akufemubid.870649, DOI 10.35414/AKUFEMUBID.870649] Aytac E., 2022, EUR J SUSTAIN DEV RE, V6 Aytaç E, 2022, ENVIRON ENG MANAG J, V21, P671 Aytaç E, 2021, ADCAIJ-ADV DISTRIB C, V10, P33, DOI 10.14201/ADCAIJ20211013347 Aytaç E, 2020, INT SOIL WATER CONSE, V8, P321, DOI 10.1016/j.iswcr.2020.05.002 Baker R.W., 2004, Membrane technology and applications, V2nd, P89, DOI DOI 10.1002/0470020393.CH3 Bibi M, 2022, PATTERN RECOGN LETT, V158, P80, DOI 10.1016/j.patrec.2022.04.004 Denn M.M, 2011, CHEM ENG INTRO, V1st Desai N, 2018, J SURG RES, V229, P90, DOI 10.1016/j.jss.2018.03.062 Ding YX, 2022, AUTOMAT CONSTR, V136, DOI 10.1016/j.autcon.2022.104169 Dissanayake M, 2022, THIN WALL STRUCT, V175, DOI 10.1016/j.tws.2022.109152 Edwards V.H, 2018, CAREERS CHEM BIOMOLE, V1st Fomina Y, 2022, J RURAL STUD, V92, P294, DOI 10.1016/j.jrurstud.2022.04.007 Garner B, 2022, J BUS RES, V139, P1366, DOI 10.1016/j.jbusres.2021.08.025 Goodwin B, 2022, CHILD YOUTH SERV REV, V133, DOI 10.1016/j.childyouth.2021.106344 Husain A., 2010, PHYS CHEM BIOLOGICAL, P160 Kilicoglu O, 2021, RADIAT PHYS CHEM, V189, DOI 10.1016/j.radphyschem.2021.109721 KIMURA S, 1967, AICHE J, V13, P497, DOI 10.1002/aic.690130319 Kucera Jane:., 2015, Reverse Osmosis: Industrial Processes and Applications, V2nd Liao J, 2022, INFORM PROCESS MANAG, V59, DOI 10.1016/j.ipm.2022.102934 Liu GY, 2021, PROCESS SAF ENVIRON, V152, P37, DOI 10.1016/j.psep.2021.05.036 Mörschbächer AP, 2022, BIOCHEM ENG J, V180, DOI 10.1016/j.bej.2022.108343 Occhipinti A, 2022, EXPERT SYST APPL, V201, DOI 10.1016/j.eswa.2022.117193 Okoroafor ER, 2022, GEOTHERMICS, V102, DOI 10.1016/j.geothermics.2022.102401 Orooji Y, 2022, NPJ CLEAN WATER, V5, DOI 10.1038/s41545-022-00167-0 Pang TT, 2022, DESALINATION, V527, DOI 10.1016/j.desal.2022.115562 Polat ZA, 2022, LAND USE POLICY, V112, DOI 10.1016/j.landusepol.2021.105847 Saffarimiandoab F, 2021, DESALINATION, V515, DOI 10.1016/j.desal.2021.115197 Shafizadeh A, 2022, CHEM ENG J, V445, DOI 10.1016/j.cej.2022.136579 SOURIRAJAN S, 1963, NATURE, V199, P590, DOI 10.1038/199590a0 SOURIRAJAN S, 1964, NATURE, V203, P1348, DOI 10.1038/2031348a0 SOURIRAJAN S, 1962, AM J SCI, V260, P115, DOI 10.2475/ajs.260.2.115 Sourirajan S., 1970, REVERSE OSMOSIS Sourirajan S, 2022, THE OTTAWA CITIZEN Suardi S, 2022, INT REV ECON FINANC, V79, P289, DOI 10.1016/j.iref.2022.02.017 Tamala J.K., 2022, CLEAN ENG TECH, V7 Tseng H.-H., 2022, 60 YEARS LOEB SOURIR, pxxvii Zhan Q, 2022, PHOTODIAGN PHOTODYN, V38, DOI 10.1016/j.pdpdt.2022.102860 Zhang T, 2019, COMPUT CHEM ENG, V129, DOI 10.1016/j.compchemeng.2019.106511 Zheng ZY, 2022, NANO TODAY, V44, DOI 10.1016/j.nantod.2022.101453 NR 47 TC 7 Z9 7 U1 2 U2 24 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS SN 0011-9164 EI 1873-4464 J9 DESALINATION JI Desalination PD DEC 1 PY 2022 VL 543 AR 116095 DI 10.1016/j.desal.2022.116095 EA SEP 2022 PG 12 WC Engineering, Chemical; Water Resources WE Science Citation Index Expanded (SCI-EXPANDED) SC Engineering; Water Resources GA 4V1OU UT WOS:000859254300003 DA 2024-09-05 ER PT C AU Rong, CH Hu, GL AF Rong Cuihong Hu Guoliang BE Duysters, G DeHoyos, A Kaminishi, K TI Innovation Mechanism of Academic Journals SO PROCEEDINGS OF THE 9TH INTERNATIONAL CONFERENCE ON INNOVATION AND MANAGEMENT LA English DT Proceedings Paper CT 9th International Conference on Innovation and Management CY NOV 14-16, 2012 CL Eindhoven Univ Technol, Eindhoven, NETHERLANDS HO Eindhoven Univ Technol DE Academic journals; Management; Multiple linear regression model; Impact factor; Circulation AB The present article deals with the issue of the quality of academic journals. After we have analyzed the current situation of the problems, we propose some solutions. Academic journals should try to attract the best articles by making an arrangement in advance with the writer or by contributions solicitation. At the same time, the amount of subscription should be enlarged and the academic quality of the editorial team should be improved. It is also important for striving for more financial support. We conclude that the coordination of the different aspects involved is the key to the improvement of the quality of academic journals. C1 [Rong Cuihong] Wuhan Univ Technol, Wuhan 430070, Peoples R China. [Hu Guoliang] Cent China Normal Univ, Dept Sports, Wuhan 430079, Peoples R China. C3 Wuhan University of Technology; Central China Normal University RP Rong, CH (corresponding author), Wuhan Univ Technol, Wuhan 430070, Peoples R China. EM rongyan5878@vip.sina.com; 510522042@qq.com CR Kelman H.C. Compliance, 1968, J CONFLICT RESOLUT, P51 Powers Willian, 2002, NATL J, V12 Xiao Tanghua, 2007, CHINESE J SCI TECHNI Zhang Yaoming, 2006, J TSINGHUA U PHILOS NR 4 TC 0 Z9 0 U1 0 U2 3 PU WUHAN UNIV TECHNOLOGY PRESS PI WUHAN PA 122 LUOSHI RD, WUHAN 430070, PEOPLES R CHINA BN 978-7-5629-3854-5 PY 2012 BP 1107 EP + PG 2 WC Economics; Management; Regional & Urban Planning WE Conference Proceedings Citation Index - Social Science & Humanities (CPCI-SSH) SC Business & Economics; Public Administration GA BDF49 UT WOS:000313020500176 DA 2024-09-05 ER PT C AU Indrianti, Y Sasmoko Manalu, SR Waromi, QLK AF Indrianti, Yasinta Sasmoko Manalu, Sonya Rapinta Waromi, Queensy Lovenia Kerrin GP ACM TI Literature Review Profiles of Specialization in Education and Profession as the basis for the development of Artificial Intelligence Website SO AICCC 2021: 2021 4TH ARTIFICIAL INTELLIGENCE AND CLOUD COMPUTING CONFERENCE LA English DT Proceedings Paper CT 4th Artificial Intelligence and Cloud Computing Conference (AICCC) CY DEC 17-19, 2021 CL ELECTR NETWORK DE Literature Review; Specialization in Education; Specialization in Profession; Artificial Intelligence Website; Bibliometric ID FRAMEWORK; KNOWLEDGE; SKILLS; WILL AB Profiles of specialization in education and profession are currently heavily influenced by the development of industry 4.0. The era of disruption is marked by massive changes due to innovations that change business systems and arrangements to newer levels. In various studies, there will be many professions that are extinct but there will also be many new professions that will be born. This study aims to conduct a literature review of profiles of specialization in education and profession that are relevant to industry 4.0 trends which will then be developed in a measurement through an artificial intelligence-based website. The research method used is a bibliometric approach through scientific studies of various library sources using VOSViewer with cartographic overlay techniques and density visualization maps, to represent sequences and their relationships. While the method used to develop website profiles of specialization in education and profession based on artificial intelligence is to use the waterfall method. The results of the literature review found 10 words with a high level of bibliometric correlation as the basis for developing artificial intelligence-based websites. C1 [Indrianti, Yasinta] Univ Agung Podomoro, Entrepreneurship Dept, West Jakarta, Indonesia. [Sasmoko] Bina Nusantara Univ, Primary Teacher Educ Dept, Fac Humanities, Jakarta, Indonesia. [Manalu, Sonya Rapinta] Bina Nusantara Univ, Dept Comp Sci, Jakarta, Indonesia. [Waromi, Queensy Lovenia Kerrin] Bina Nusantara Univ, Dept Management, Binus Business Sch, Undergrad Program, Jakarta, Indonesia. C3 Universitas Bina Nusantara; Universitas Bina Nusantara; Universitas Bina Nusantara RP Indrianti, Y (corresponding author), Univ Agung Podomoro, Entrepreneurship Dept, West Jakarta, Indonesia. EM yasinta.indrianti@podomorouniversity.ac.id; sasmoko@binus.edu; smanalu@binus.edu; queensy.waromi@binus.ac.id FU Research and Technology Transfer Office, Bina Nusantara University as a part of the Multi-Year Grant Ministry of Research and Technology/BRIN 2020 entitled Student Interest Preferences in Education and Profession Era 4.0: Artificial Intelligence FX This work is supported by the Research and Technology Transfer Office, Bina Nusantara University as a part of the Multi-Year Grant Ministry of Research and Technology/BRIN 2020 entitled Student Interest Preferences in Education and Profession Era 4.0: Artificial Intelligence. We also want to say thanks to the Podomoro University for the participation in this research. CR Abdul-Razaq B., 2013, The Social Science, V8, P19, DOI DOI 10.3923/SSCIENCE.2013.19.24 Almeida F., 2019, Contemp. Educ. Technol, V10, P120, DOI DOI 10.30935/CET.554469 Ancarani A., 2018, Digitalisierung im Einkauf, P11 Anshari M., 2020, Journal of Physics: Conference Series, V1477, P1, DOI [10.1088/1742-6596/1477/7/072023, DOI 10.1088/1742-6596/1477/7/072023] Arnold D., 2016, DIGITIZATION WORKPLA Brougham D, 2018, J MANAGE ORGAN, V24, P239, DOI 10.1017/jmo.2016.55 Bughin J., 2018, SKILL SHIFT AUTOMATI Carnevale AP, 2013, HUM RESOUR DEV INT, V16, P491, DOI 10.1080/13678868.2013.821267 Cascio WF, 2016, ANNU REV ORGAN PSYCH, V3, P349, DOI 10.1146/annurev-orgpsych-041015-062352 Chae B., 2020, Journal of Open Innovation: Technology, Market, and Complexity, V6, P56 Dutta DK, 2011, INT ENTREP MANAG J, V7, P163, DOI 10.1007/s11365-010-0151-2 Fernández-Sanz L, 2017, COMPUT STAND INTER, V51, P30, DOI 10.1016/j.csi.2016.11.004 Gu DX, 2017, INT J MED INFORM, V98, P22, DOI 10.1016/j.ijmedinf.2016.11.006 Janssen J, 2013, COMPUT EDUC, V68, P473, DOI 10.1016/j.compedu.2013.06.008 Japan Business Federation (Keidanren), 2016, Toward realization of the new economy and society. Reform of the economy and society by the deepening of "Society 5.0 Kurt Resul, 2019, Procedia Computer Science, V158, P590, DOI 10.1016/j.procs.2019.09.093 Maricar M. I., 2016, P 9 IEEE WORKSH SENS, P1 Motyl B, 2017, PROCEDIA MANUF, V11, P1501, DOI 10.1016/j.promfg.2017.07.282 Oberländer M, 2020, COMPUT EDUC, V146, DOI 10.1016/j.compedu.2019.103752 Pinto M, 2014, SCIENTOMETRICS, V98, P2311, DOI 10.1007/s11192-013-1166-6 Rampersad G, 2020, J BUS RES, V116, P68, DOI 10.1016/j.jbusres.2020.05.019 Redish EF, 2008, J ENG EDUC, V97, P295, DOI 10.1002/j.2168-9830.2008.tb00980.x Sousa MJ, 2019, J BUS RES, V94, P257, DOI 10.1016/j.jbusres.2017.12.051 Szalavetz A, 2019, TECHNOL FORECAST SOC, V145, P384, DOI 10.1016/j.techfore.2018.06.027 Withing K., 2020, WORLD EC FORUM, P1 NR 25 TC 0 Z9 0 U1 6 U2 16 PU ASSOC COMPUTING MACHINERY PI NEW YORK PA 1601 Broadway, 10th Floor, NEW YORK, NY, UNITED STATES BN 978-1-4503-8416-2 PY 2021 BP 216 EP 220 DI 10.1145/3508259.3508296 PG 5 WC Computer Science, Artificial Intelligence; Computer Science, Theory & Methods WE Conference Proceedings Citation Index - Science (CPCI-S) SC Computer Science GA BU6VJ UT WOS:000929714300030 DA 2024-09-05 ER PT J AU Zhao, QY Liang, ZQ AF Zhao, Qianyi Liang, Zhiqiang TI Research on multimodal based learning evaluation method in smart classroom SO LEARNING AND MOTIVATION LA English DT Article DE Artificial intelligence; Smart classrooms; Multi -modal information fusion ID INFORMATION FUSION; RECOGNITION; EDUCATION; EMOTION AB In traditional learning contexts, teachers primarily assess students' behavior, emotional changes, and assignment completion to ensure teaching quality. Currently, there are challenges in evalu-ating students, such as assessments being insufficiently comprehensive and timely, a singular evaluation perspective that hinders the holistic consideration of factors affecting learning as-sessments, and a weak correlation among evaluation criteria, resulting in suboptimal evaluation outcomes. In recent years, with the rapid development and widespread application of artificial intelligence and information technology, the era of smart classrooms has arrived. New technol-ogies like image processing and artificial intelligence offer opportunities for personalized support services and enhancing teaching quality. Therefore, to provide a more comprehensive and objective reflection of teaching quality, this paper proposes a multi-modal information fusion learning assessment model. This model is achieved by determining the weight values of three dimensions, cognitive attention, emotional attitude, and course acceptance along with their corresponding attributes. Subsequently, through a fusion strategy, it calculates the learning assessment score by integrating information from these three dimensions. A series of experi-mental data confirms the effectiveness of this approach. C1 [Zhao, Qianyi] Jinan Univ, Sch Journalism & Commun, Guangzhou 510000, Peoples R China. [Liang, Zhiqiang] Guangzhou Univ, Sch Civil Engn, Guangzhou 510000, Peoples R China. C3 Jinan University; Guangzhou University RP Zhao, QY (corresponding author), Jinan Univ, Sch Journalism & Commun, Guangzhou 510000, Peoples R China. EM zhao_qianyi89@outlook.com CR Alelaiwi A, 2015, COMPUT HUM BEHAV, V51, P852, DOI 10.1016/j.chb.2014.11.061 Arriaga O., 2015, Its Technical Review, V32, P347 Chollet F, 2017, PROC CVPR IEEE, P1800, DOI 10.1109/CVPR.2017.195 Duan Y., 2020, INT C MACHINE LEARNI, P621, DOI DOI 10.1007/978-3-030-62743-0_89 Ehatisham-Ul-Haq M, 2019, IEEE ACCESS, V7, P60736, DOI 10.1109/ACCESS.2019.2913393 Fang Haiguang, 2023, ICDEL '23: Proceedings of the 2023 8th International Conference on Distance Education and Learning, P205, DOI 10.1145/3606094.3606112 Frenzel AC, 2007, EUR J PSYCHOL EDUC, V22, P497, DOI 10.1007/BF03173468 Gao J, 2020, NEURAL COMPUT, V32, P829, DOI 10.1162/neco_a_01273 Ghareeb S., 2022, Discover Internet of Things, V2, DOI DOI 10.1007/S43926-022-00023-0 Greenfield P.M., 1994, Journal of Applied Developmental Psychology, V15, P105, DOI DOI 10.1016/0193-3973(94)90008-6 Guangyou Xu., 2002, Advances in web based learning Han K, 2014, INTERSPEECH, P223 Huang GB, 2004, IEEE IJCNN, P985 Jeon J., 2016, P 10 INT C UB INF MA, P1, DOI DOI 10.1145/2857546.2857642 Jiang J., 2023, P 4 INT C ARTIFICIAL, P345 Jiang RM, 2010, IEEE T SYST MAN CY C, V40, P676, DOI 10.1109/TSMCC.2010.2050476 Jo J, 2014, WIRELESS PERS COMMUN, V79, P2453, DOI 10.1007/s11277-014-1765-4 Kaili Z., 2019, Thinking and practice on the reform of engineering drawing classroom teaching under the intelligent teaching environment Karambakhsh A, 2019, INT J INFORM MANAGE, V45, P328, DOI 10.1016/j.ijinfomgt.2018.03.004 Lahat D, 2015, P IEEE, V103, P1449, DOI 10.1109/JPROC.2015.2460697 Lavie N, 2010, CURR DIR PSYCHOL SCI, V19, P143, DOI 10.1177/0963721410370295 Li B., 2021, Computational Intelligence and Neuroscience Li Cuimei, 2017, 2017 13th IEEE International Conference on Electronic Measurement & Instruments (ICEMI), P483, DOI 10.1109/ICEMI.2017.8265863 Liu W, 2019, PROC CVPR IEEE, P5182, DOI 10.1109/CVPR.2019.00533 Llinas J., 1998, P IEEE INT S CIRCUIT, P23 Ma SQ, 2023, LEARN MOTIV, V84, DOI 10.1016/j.lmot.2023.101916 Meng ZB, 2019, IEEE T CYBERNETICS, V49, P3293, DOI 10.1109/TCYB.2018.2840090 Meyer DK, 2002, EDUC PSYCHOL-US, V37, P107, DOI 10.1207/S15326985EP3702_5 Qing-Yun Z., 2019, Modern Computer Sabourin JL, 2014, IEEE T AFFECT COMPUT, V5, P45, DOI 10.1109/T-AFFC.2013.27 Snoek C. G. M., 2005, 13th Annual ACM International Conference on Multimedia, P399, DOI 10.1145/1101149.1101236 Suzanne Hidi., 1990, Review of Educational Research Winter, V60, P549 Wang Q, 2020, INT SYM QUAL ELECT, P1, DOI [10.1109/isqed48828.2020.9137057, 10.1109/ISQED48828.2020.9137057, 10.1109/CVPR42600.2020.01155] Wang XY, 2023, LEARN MOTIV, V83, DOI 10.1016/j.lmot.2023.101895 Yang CL, 2019, INFORM FUSION, V50, P126, DOI 10.1016/j.inffus.2018.10.007 Yantis S, 2000, CONTROL OF COGNITIVE PROCESSES: ATTENTION AND PERFORMANCE XVIII, P73 Yue ST, 2023, LEARN MOTIV, V84, DOI 10.1016/j.lmot.2023.101929 Zhang C, 2020, IEEE J-STSP, V14, P478, DOI 10.1109/JSTSP.2020.2987728 Zhang K, 2017, IEEE T IMAGE PROCESS, V26, P3142, DOI 10.1109/TIP.2017.2662206 Zhang Y, 2016, IEEE T IMAGE PROCESS, V25, DOI 10.1109/TIP.2016.2549360 Ziwei Liu, 2016, Large-scale CelebFaces attributes CelebA dataset NR 41 TC 1 Z9 1 U1 11 U2 20 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0023-9690 EI 1095-9122 J9 LEARN MOTIV JI Learn. Motiv. PD NOV PY 2023 VL 84 AR 101943 DI 10.1016/j.lmot.2023.101943 EA NOV 2023 PG 19 WC Psychology, Biological; Psychology, Experimental WE Social Science Citation Index (SSCI) SC Psychology GA CF0G5 UT WOS:001123712600001 DA 2024-09-05 ER PT J AU Ren, YS Ma, CQ Kong, XL Baltas, K Zureigat, Q AF Ren, Yi-Shuai Ma, Chao-Qun Kong, Xiao-Lin Baltas, Konstantinos Zureigat, Qasim TI Past, present, and future of the application of machine learning in cryptocurrency research SO RESEARCH IN INTERNATIONAL BUSINESS AND FINANCE LA English DT Article DE Cryptocurrency; Machine learning; Blockchain; Bibliometric analysis ID NEURAL-NETWORKS; PRICE PREDICTION; SAFE HAVEN; BITCOIN; VOLATILITY; BLOCKCHAIN; CURRENCIES; HEDGE; ALGORITHMS; SCIENCE AB Cryptocurrency has captured the interest of financial scholars and become a major research topic in blockchain. In cryptocurrency research, the use of machine learning algorithms is enabled by the presence of many types of data and abundant resources. However, there is currently no comprehensive review on cryptocurrencies using machine learning. Therefore, we collect papers on cryptocurrency-related using machine learning in the web of science database, and summarize these papers according to the algorithm, and draw the following conclusions: (1) The application of machine learning for cryptocurrencies research is increasing year over year; (2) Predicting cryptocurrency price trends and income fluctuations is the most relevant research topic; (3) The machine learning algorithm utilized in cryptocurrency research is not unique, and the practise of combining multiple machine learning approaches has emerged; (4) Concerns such as overfitting and interpretability still persist with machine learning methods. Finally, we suggest future research directions. C1 [Ren, Yi-Shuai] Hunan Univ, Sch Publ Adm, Hunan, Peoples R China. [Ma, Chao-Qun; Kong, Xiao-Lin] Hunan Univ, Sch Business, Hunan, Peoples R China. [Ren, Yi-Shuai; Ma, Chao-Qun; Kong, Xiao-Lin] Hunan Univ, Res Inst Digital Soc & BlockChain, Hunan, Peoples R China. [Ren, Yi-Shuai; Ma, Chao-Qun] Hunan Univ, Ctr Resource & Environm Management, Hunan, Peoples R China. [Ren, Yi-Shuai] Univ Auckland, Energy Ctr, 12 Grafton Rd, Auckland 1010, New Zealand. [Baltas, Konstantinos] Univ Essex, Essex Business Sch, Colchester, Essex, England. [Zureigat, Qasim] Sulaiman Al Rajhi Univ, Dept Accounting & Informat Syst, Al Bukayriyah, Saudi Arabia. C3 Hunan University; Hunan University; Hunan University; Hunan University; University of Auckland; University of Essex; Sulaiman AlRajhi University RP Kong, XL (corresponding author), Hunan Univ, Sch Business, Hunan, Peoples R China. EM renyishuai1989@126.com; cqma1998@126.com; kongxiaolin@hnu.edu.cn; k.baltas@essex.ac.uk; q.zureigat@sr.edu.sa RI Ren, Yishuai/AAB-9519-2019 FU National Natural Science Foundation of China [71850012, 72104075, 72274056, 72192800]; National Social Science Fund of China [19AZD014, 21ZD125]; Major Special Projects of the Department of Science and Technology of Hunan province [2018GK1020]; Natural Science Foundation of Hunan Province [2022JJ40106]; Hunan Social Science Achievement Review Committee [XSP21YBC087]; Hunan University Youth Talent Program FX This research is supported by the National Natural Science Foundation of China (No. 71850012, 72104075, 72274056, 72192800), the National Social Science Fund of China (No. 19AZD014, 21&ZD125), the Major Special Projects of the Department of Science and Technology of Hunan province (No. 2018GK1020), the Natural Science Foundation of Hunan Province (No. 2022JJ40106), the Hunan Social Science Achievement Review Committee (No. XSP21YBC087), and Hunan University Youth Talent Program. CR Abu Al-Haija Q, 2021, ELECTRONICS-SWITZ, V10, DOI 10.3390/electronics10172113 Aggarwal D, 2020, J BEHAV EXP FINANC, V27, DOI 10.1016/j.jbef.2020.100335 Ahmed S, 2022, RES INT BUS FINANC, V61, DOI 10.1016/j.ribaf.2022.101646 Akba F, 2021, IEEE ACCESS, V9, P108819, DOI 10.1109/ACCESS.2021.3101528 Akhtaruzzaman M, 2022, FINANC RES LETT, V47, DOI 10.1016/j.frl.2022.102787 Akyildirim E, 2023, ANN OPER RES, V330, P553, DOI 10.1007/s10479-021-04205-x Akyildirim E, 2021, ANN OPER RES, V297, DOI 10.1007/s10479-020-03575-y Al-Hashedi KG, 2021, COMPUT SCI REV, V40, DOI 10.1016/j.cosrev.2021.100402 Alessandretti L, 2018, COMPLEXITY, DOI 10.1155/2018/8983590 Alhenawi Y, 2022, RES INT BUS FINANC, V59, DOI 10.1016/j.ribaf.2021.101550 Alkhodhairi RK, 2021, CMC-COMPUT MATER CON, V68, P3215, DOI 10.32604/cmc.2021.016881 Alonso-Monsalve S, 2020, EXPERT SYST APPL, V149, DOI 10.1016/j.eswa.2020.113250 Anghel DG, 2021, FINANC RES LETT, V39, DOI 10.1016/j.frl.2020.101655 [Anonymous], 1979, Expert syst microelectron age [Anonymous], 2017, Classification and regression trees Atsalakis GS, 2019, EUR J OPER RES, V276, P770, DOI 10.1016/j.ejor.2019.01.040 Aysan AF, 2019, RES INT BUS FINANC, V47, P511, DOI 10.1016/j.ribaf.2018.09.011 Balcilar M, 2017, ECON MODEL, V64, P74, DOI 10.1016/j.econmod.2017.03.019 Bayhan S, 2019, IEEE T COGN COMMUN, V5, P648, DOI 10.1109/TCCN.2019.2936190 Benitez JM, 1997, IEEE T NEURAL NETWOR, V8, P1156, DOI 10.1109/72.623216 Borges TA, 2020, APPL SOFT COMPUT, V90, DOI 10.1016/j.asoc.2020.106187 Bouri E, 2021, FINANC RES LETT, V38, DOI 10.1016/j.frl.2019.101398 Bouri E, 2017, FINANC RES LETT, V23, P87, DOI 10.1016/j.frl.2017.02.009 Bouri E, 2017, FINANC RES LETT, V20, P192, DOI 10.1016/j.fri.2016.09.025 Chang TH, 2020, IEEE T SYST MAN CY-S, V50, P9, DOI 10.1109/TSMC.2018.2867497 Chen CM, 2009, J INFORMETR, V3, P191, DOI 10.1016/j.joi.2009.03.004 Chen HL, 2021, IEEE ACCESS, V9, P36008, DOI 10.1109/ACCESS.2021.3062410 Chen S, 2022, COMPLEXITY, V2022, DOI 10.1155/2022/2611063 Chen TH, 2021, COMPUT ECON, V57, P267, DOI 10.1007/s10614-020-10057-7 Chen ZS, 2020, J COMPUT APPL MATH, V365, DOI 10.1016/j.cam.2019.112395 Chowdhury R, 2020, PHYSICA A, V551, DOI 10.1016/j.physa.2020.124569 Ciaian P, 2016, APPL ECON, V48, P1799, DOI 10.1080/00036846.2015.1109038 Cocco L, 2021, PEERJ COMPUT SCI, DOI 10.7717/peerj-cs.413 Cohen G, 2020, ENTROPY-SWITZ, V22, DOI 10.3390/e22080838 Corbet S, 2019, INT REV FINANC ANAL, V62, P182, DOI 10.1016/j.irfa.2018.09.003 CORTES C, 1995, MACH LEARN, V20, P273, DOI 10.1023/A:1022627411411 Crowcroft J, 2021, IEEE T NETW SCI ENG, V8, P1338, DOI 10.1109/TNSE.2020.3008600 Cybenko G., 1989, Mathematics of Control, Signals, and Systems, V2, P303, DOI 10.1007/BF02551274 Dastgir S, 2019, FINANC RES LETT, V28, P160, DOI 10.1016/j.frl.2018.04.019 Delfabbro P, 2021, J BEHAV ADDICT, V10, P201, DOI 10.1556/2006.2021.00037 Derbentsev V, 2021, INT J ENG-IRAN, V34, P140, DOI 10.5829/ije.2021.34.01a.16 Dyhrberg AH, 2016, FINANC RES LETT, V16, P85, DOI 10.1016/j.frl.2015.10.008 El Naqa I., 2015, Machine Learning in Radiation Oncology: Theory and Applications, P3, DOI [DOI 10.1007/978-3-319-18305-3_1, 10.1007/978-3-319-18305-3, DOI 10.1007/978-3-319-18305-3] Falagas ME, 2008, FASEB J, V22, P338, DOI 10.1096/fj.07-9492LSF Fang F, 2024, EUR J FINANC, V30, P78, DOI 10.1080/1351847X.2021.1908390 Ferdiansyah, 2019, 2019 3RD INTERNATIONAL CONFERENCE ON ELECTRICAL ENGINEERING AND COMPUTER SCIENCE (ICECOS 2019), P206, DOI [10.1109/icecos47637.2019.8984499, 10.1109/ICECOS47637.2019.8984499] Ferdous MS, 2021, J NETW COMPUT APPL, V182, DOI 10.1016/j.jnca.2021.103035 Foley S, 2019, REV FINANC STUD, V32, P1798, DOI 10.1093/rfs/hhz015 Gagarina M, 2019, BEHAV SCI-BASEL, V9, DOI 10.3390/bs9120118 Gerlach JC, 2019, ROY SOC OPEN SCI, V6, DOI 10.1098/rsos.180643 Gidea M, 2020, PHYSICA A, V548, DOI 10.1016/j.physa.2019.123843 Giron AA, 2021, SENSORS-BASEL, V21, DOI 10.3390/s21124078 Goodell JW, 2021, J BEHAV EXP FINANC, V32, DOI 10.1016/j.jbef.2021.100577 Goodell JW, 2021, INT REV FINANC ANAL, V76, DOI 10.1016/j.irfa.2021.101781 Goodell JW, 2021, FINANC RES LETT, V38, DOI 10.1016/j.frl.2020.101625 Guerra ML, 2020, AXIOMS, V9, DOI 10.3390/axioms9040139 Guesmi K, 2019, INT REV FINANC ANAL, V63, P431, DOI 10.1016/j.irfa.2018.03.004 Guru R, 2020, ENERG SOURCE PART A, DOI 10.1080/15567036.2020.1852341 Hasan MB, 2022, FINANC RES LETT, V46, DOI 10.1016/j.frl.2021.102272 HORNIK K, 1989, NEURAL NETWORKS, V2, P359, DOI 10.1016/0893-6080(89)90020-8 Hwang SJ, 2022, IEEE ACCESS, V10, P32595, DOI 10.1109/ACCESS.2022.3162065 Jalal RNUD, 2021, TECHNOL ANAL STRATEG, DOI 10.1080/09537325.2021.1939001 Jana RK, 2022, TECHNOL FORECAST SOC, V178, DOI 10.1016/j.techfore.2022.121584 Jang H, 2018, IEEE ACCESS, V6, P5427, DOI 10.1109/ACCESS.2017.2779181 García-Corral FJ, 2022, FINANC INNOV, V8, DOI 10.1186/s40854-021-00306-5 Jay P, 2020, IEEE ACCESS, V8, P82804, DOI 10.1109/ACCESS.2020.2990659 Ji SW, 2019, MATHEMATICS-BASEL, V7, DOI 10.3390/math7100898 Jia BX, 2022, FINANC RES LETT, V45, DOI 10.1016/j.frl.2021.102139 Jordan MI, 2015, SCIENCE, V349, P255, DOI 10.1126/science.aaa8415 Kamal J. B., 2022, J EC ASYMMETRIES, V25, DOI [10.1016/j.jeca.2022.e00240, DOI 10.1016/J.JECA.2022.E00240, DOI 10.1016/JJECA2022-00240] Kamisalic A, 2021, APPL SCI-BASEL, V11, DOI 10.3390/app11177987 Katsiampa P, 2017, ECON LETT, V158, P3, DOI 10.1016/j.econlet.2017.06.023 Khedr AM, 2021, INTELL SYST ACCOUNT, V28, P3, DOI 10.1002/isaf.1488 Kim HM, 2021, EXPERT SYST APPL, V184, DOI 10.1016/j.eswa.2021.115480 Kleinberg J, 2003, DATA MIN KNOWL DISC, V7, P373, DOI 10.1023/A:1024940629314 Kondor D, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0086197 Kourou K, 2015, COMPUT STRUCT BIOTEC, V13, P8, DOI 10.1016/j.csbj.2014.11.005 Kumari A, 2022, IEEE INTERNET THINGS, V9, P2180, DOI 10.1109/JIOT.2021.3090305 Kumari A, 2022, MULTIMED TOOLS APPL, V81, P36645, DOI 10.1007/s11042-021-11491-x Kurbucz MT, 2019, ECON LETT, V184, DOI 10.1016/j.econlet.2019.108655 Lahmiri S, 2020, ENTROPY-SWITZ, V22, DOI 10.3390/e22080833 Lahmiri S, 2020, CHAOS SOLITON FRACT, V133, DOI 10.1016/j.chaos.2020.109641 Lahmiri S, 2019, CHAOS SOLITON FRACT, V118, P35, DOI 10.1016/j.chaos.2018.11.014 Lamothe-Fernández P, 2020, MATHEMATICS-BASEL, V8, DOI 10.3390/math8081245 Lee RST, 2020, IEEE T FUZZY SYST, V28, P731, DOI 10.1109/TFUZZ.2019.2914642 Levulyte L, 2021, Q REV ECON FINANC, V82, P44, DOI 10.1016/j.qref.2021.07.003 Li YZ, 2021, FINANC INNOV, V7, DOI 10.1186/s40854-021-00281-x Li ZH, 2021, INT REV ECON FINANC, V73, P1, DOI 10.1016/j.iref.2020.12.020 Libbrecht MW, 2015, NAT REV GENET, V16, P321, DOI 10.1038/nrg3920 Lim M, 2021, J KING SAUD UNIV-COM, V33, P1202, DOI 10.1016/j.jksuci.2019.07.010 Livieris IE, 2021, ELECTRONICS-SWITZ, V10, DOI 10.3390/electronics10030287 Livieris IE, 2022, EVOL SYST-GER, V13, P85, DOI 10.1007/s12530-020-09361-2 Lorenzo L, 2022, FINANC INNOV, V8, DOI 10.1186/s40854-021-00310-9 Lucarelli G, 2020, NEURAL COMPUT APPL, DOI 10.1007/s00521-020-05359-8 Lucey BM, 2022, FINANC RES LETT, V45, DOI 10.1016/j.frl.2021.102147 Lundberg SM, 2018, NAT BIOMED ENG, V2, P749, DOI 10.1038/s41551-018-0304-0 Ma FC, 2021, INFORM PROCESS MANAG, V58, DOI 10.1016/j.ipm.2021.102565 Madan I., 2015, Automated bitcoin trading via machine learning algorithms Mahesh B., 2019, Machine Learning Algorithms -A Review Mallqui DCA, 2019, APPL SOFT COMPUT, V75, P596, DOI 10.1016/j.asoc.2018.11.038 Manavi SA, 2020, PHYSICA A, V556, DOI 10.1016/j.physa.2020.124759 Mao DH, 2019, IEEE ACCESS, V7, P73131, DOI 10.1109/ACCESS.2019.2920776 McNally S, 2018, EUROMICRO WORKSHOP P, P339, DOI 10.1109/PDP2018.2018.00060 Meiklejohn S, 2016, COMMUN ACM, V59, P86, DOI 10.1145/2896384 Michalski R, 2020, IEEE ACCESS, V8, P109639, DOI 10.1109/ACCESS.2020.3001676 Mills DJ, 2019, ADDICT BEHAV, V92, P136, DOI 10.1016/j.addbeh.2019.01.005 Mohamed MA, 2022, CMC-COMPUT MATER CON, V70, P3473, DOI 10.32604/cmc.2022.020782 Mongeon P, 2016, SCIENTOMETRICS, V106, P213, DOI 10.1007/s11192-015-1765-5 Mudassir M, 2020, NEURAL COMPUT APPL, DOI 10.1007/s00521-020-05129-6 NAKAMOTO S., 2008, DECENT BUS REV, P1 Nakano M, 2018, PHYSICA A, V510, P587, DOI 10.1016/j.physa.2018.07.017 Alonso SLN, 2021, ENERGIES, V14, DOI 10.3390/en14144254 Nerurkar P, 2021, APPL INTELL, V51, P3824, DOI 10.1007/s10489-020-02048-w Nghiem H, 2021, EXPERT SYST APPL, V182, DOI 10.1016/j.eswa.2021.115284 Nikic V, 2018, TRANSFORM BUS ECON, V17, P469 Nosratabadi S, 2020, MATHEMATICS-BASEL, V8, DOI 10.3390/math8101799 Papadamou S, 2021, J BEHAV EXP FINANC, V30, DOI 10.1016/j.jbef.2021.100469 Patel MM, 2020, J INF SECUR APPL, V55, DOI 10.1016/j.jisa.2020.102583 Peng YH, 2018, EXPERT SYST APPL, V97, P177, DOI 10.1016/j.eswa.2017.12.004 Poongodi M, 2020, COMPUT ELECTR ENG, V81, DOI 10.1016/j.compeleceng.2019.106527 Qin M, 2021, ECON MODEL, V94, P896, DOI 10.1016/j.econmod.2020.02.031 Qiu T, 2021, IEEE T IND INFORM, V17, P2160, DOI 10.1109/TII.2020.2995766 Quinlan J. R., 1986, Machine Learning, V1, P81, DOI 10.1023/A:1022643204877 Quinlan J. R., 1993, C4 5 PROGRAMS MACHIN Rakkini MJJ, 2021, J AMB INTEL HUM COMP, DOI 10.1007/s12652-021-03527-9 Rudin C, 2019, NAT MACH INTELL, V1, P206, DOI 10.1038/s42256-019-0048-x Saad M, 2020, IEEE SYST J, V14, P321, DOI 10.1109/JSYST.2019.2927707 Sattarov O, 2020, APPL SCI-BASEL, V10, DOI 10.3390/app10041506 Schnaubelt M, 2022, EUR J OPER RES, V296, P993, DOI 10.1016/j.ejor.2021.04.050 Sebastiao H, 2021, FINANC INNOV, V7, DOI 10.1186/s40854-020-00217-x Seo M, 2020, APPL SCI-BASEL, V10, DOI 10.3390/app10144768 Serrano W, 2022, NEURAL COMPUT APPL, V34, P855, DOI 10.1007/s00521-021-05903-0 Shahbazi Z, 2022, SENSORS-BASEL, V22, DOI 10.3390/s22051740 Shayegan MJ, 2022, SYMMETRY-BASEL, V14, DOI 10.3390/sym14020328 SMALL H, 1973, J AM SOC INFORM SCI, V24, P265, DOI 10.1002/asi.4630240406 Song JY, 2019, PHYSICA A, V527, DOI 10.1016/j.physa.2019.121339 Srivastava N, 2014, J MACH LEARN RES, V15, P1929 Steinert L, 2018, PLOS ONE, V13, DOI 10.1371/journal.pone.0208119 Su CW, 2020, TECHNOL FORECAST SOC, V158, DOI 10.1016/j.techfore.2020.120178 Sun XL, 2020, FINANC RES LETT, V32, DOI 10.1016/j.frl.2018.12.032 Sun XW, 2022, APPL INTELL, V52, P780, DOI 10.1007/s10489-021-02453-9 Suzuki Y, 2020, SCI REP-UK, V10, DOI 10.1038/s41598-020-77474-4 Tanwar S, 2021, IEEE ACCESS, V9, P138633, DOI 10.1109/ACCESS.2021.3117848 Tian ZZ, 2022, INT J INTELL SYST, V37, P450, DOI 10.1002/int.22633 Tsimpourlas F, 2022, IET SOFTW, V16, P301, DOI 10.1049/sfw2.12038 Uras N, 2020, PEERJ COMPUT SCI, DOI 10.7717/peerj-cs.279 Urquhart A, 2019, INT REV FINANC ANAL, V63, P49, DOI 10.1016/j.irfa.2019.02.009 Urquhart A, 2017, ECON LETT, V159, P145, DOI 10.1016/j.econlet.2017.07.035 Valencia F, 2019, ENTROPY-SWITZ, V21, DOI 10.3390/e21060589 Vieira ES, 2009, SCIENTOMETRICS, V81, P587, DOI 10.1007/s11192-009-2178-0 Wang Q, 2018, IEEE ACCESS, V6, P12336, DOI 10.1109/ACCESS.2017.2787563 Wang TT, 2021, INT J INTELL SYST, V36, P2183, DOI 10.1002/int.22375 Wei WQ, 2021, IEEE T EMERG TOP COM, V9, P1359, DOI 10.1109/TETC.2020.3010464 Weng LG, 2020, NEUROCOMPUTING, V402, P171, DOI 10.1016/j.neucom.2020.04.004 Wu JJ, 2022, IEEE T SYST MAN CY-S, V52, P1156, DOI 10.1109/TSMC.2020.3016821 Xu M, 2019, FINANC INNOV, V5, DOI 10.1186/s40854-019-0147-z Yasir M, 2023, J ENTERP INF MANAG, V36, P718, DOI 10.1108/JEIM-02-2020-0077 Yue Y, 2021, INT REV FINANC ANAL, V77, DOI 10.1016/j.irfa.2021.101869 Zbikowski K, 2016, STUD BIG DATA, V19, P161, DOI 10.1007/978-3-319-30315-4_14 Zhang ZR, 2021, EXPERT SYST APPL, V183, DOI 10.1016/j.eswa.2021.115378 Zheng BK, 2020, SCI CHINA INFORM SCI, V63, DOI 10.1007/s11432-019-9900-9 Zhou GQ, 2020, MOBILE NETW APPL, V25, P259, DOI 10.1007/s11036-019-01440-2 NR 162 TC 17 Z9 18 U1 7 U2 28 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS SN 0275-5319 EI 1878-3384 J9 RES INT BUS FINANC JI Res. Int. Bus. Financ. PD DEC PY 2022 VL 63 AR 101799 DI 10.1016/j.ribaf.2022.101799 PG 21 WC Business, Finance WE Social Science Citation Index (SSCI) SC Business & Economics GA H1NY5 UT WOS:000993711000001 OA Green Accepted DA 2024-09-05 ER PT J AU Xue, XL Yang, XW Deng, ZY Tu, H Kong, DZ Li, N Xu, F AF Xue, Xiali Yang, Xinwei Deng, Zhongyi Tu, Huan Kong, Dezhi Li, Ning Xu, Fan TI Global Trends and Hotspots in Research on Rehabilitation Robots: A Bibliometric Analysis From 2010 to 2020 SO FRONTIERS IN PUBLIC HEALTH LA English DT Article DE machine learning; bibliometric analysis; CiteSpace; trend; artificial intelligence; rehabilitation robot ID EXOSKELETON; THERAPY; STROKE AB Background: In recent years, with the development of medical science and artificial intelligence, research on rehabilitation robots has gained more and more attention, for nearly 10 years in the Web of Science database by journal of rehabilitation robot-related research literature analysis, to parse and track rehabilitation robot research hotspot and front, and provide some guidance for future research.Methods: This study employed computer retrieval of rehabilitation robot-related research published in the core data collection of the Web of Science database from 2010 to 2020, using CiteSpace 5.7 visualization software. The hotspots and frontiers of rehabilitation robot research are analyzed from the aspects of high-influence countries or regions, institutions, authors, high-frequency keywords, and emergent words.Results: A total of 3,194 articles were included. In recent years, the research on rehabilitation robots has been continuously hot, and the annual publication of relevant literature has shown a trend of steady growth. The United States ranked first with 819 papers, and China ranked second with 603 papers. Northwestern University ranked first with 161 publications. R. Riener, a professor at the University of Zurich, Switzerland, ranked as the first author with 48 articles. The Journal of Neural Engineering and Rehabilitation has the most published research, with 211 publications. In the past 10 years, research has focused on intelligent control, task analysis, and the learning, performance, and reliability of rehabilitation robots to realize the natural and precise interaction between humans and machines. Research on neural rehabilitation robots, brain-computer interface, virtual reality, flexible wearables, task analysis, and exoskeletons has attracted more and more attention.Conclusions: At present, the brain-computer interface, virtual reality, flexible wearables, task analysis, and exoskeleton rehabilitation robots are the research trends and hotspots. Future research should focus on the application of machine learning (ML), dimensionality reduction, and feature engineering technologies in the research and development of rehabilitation robots to improve the speed and accuracy of algorithms. To achieve wide application and commercialization, future rehabilitation robots should also develop toward mass production and low cost. We should pay attention to the functional needs of patients, strengthen multidisciplinary communication and cooperation, and promote rehabilitation robots to better serve the rehabilitation medical field. C1 [Xue, Xiali; Deng, Zhongyi; Tu, Huan; Kong, Dezhi; Li, Ning] Chengdu Sport Univ, Inst Sports Med & Hlth, Chengdu, Peoples R China. [Yang, Xinwei] Chengdu Sport Univ, Sch Sports Med & Hlth, Chengdu, Peoples R China. [Xu, Fan] Chengdu Med Coll, Sch Publ Hlth, Chengdu, Peoples R China. C3 Chengdu Sport University; Chengdu Sport University; Chengdu Medical College RP Li, N (corresponding author), Chengdu Sport Univ, Inst Sports Med & Hlth, Chengdu, Peoples R China.; Xu, F (corresponding author), Chengdu Med Coll, Sch Publ Hlth, Chengdu, Peoples R China. EM lining@cdsu.edu.cn; xufan@cmc.edu.cn RI XU, FAN/HLW-1600-2023; xue, xiali/KUF-2917-2024; LI, Ning/AGU-3177-2022 OI XU, FAN/0000-0001-9984-2854; xue, xiali/0000-0003-0727-6459; LI, Ning/0000-0002-0394-933X FU Key Laboratory of Sports Medicine of Sichuan Province, Institute of Sports Medicine and Health, Chengdu Sport University [2021-A030]; National Key Research and Development Program of China [2018YFF0300904] FX & nbsp;This work was supported by the Key Laboratory of Sports Medicine of Sichuan Province, Institute of Sports Medicine and Health, Chengdu Sport University (No. 2021-A030) and the National Key Research and Development Program of China (No. 2018YFF0300904). CR Abbruzzese G, 2016, PARKINSONISM RELAT D, V22, pS60, DOI 10.1016/j.parkreldis.2015.09.005 Ahmad P, 2020, PERIODONTOL 2000, V82, P286, DOI 10.1111/prd.12328 Akbari A, 2021, FRONT ROBOT AI, V8, DOI 10.3389/frobt.2021.612331 Becht E, 2019, NAT BIOTECHNOL, V37, P38, DOI 10.1038/nbt.4314 Bernhardt J, 2019, LANCET, V394, P6, DOI 10.1016/S0140-6736(19)31156-0 Blaya JA, 2004, IEEE T NEUR SYS REH, V12, P24, DOI 10.1109/TNSRE.2003.823266 Butchart J, 2021, DISABIL REHABIL, V43, P163, DOI 10.1080/09638288.2019.1617357 Chen CM, 2012, EXPERT OPIN BIOL TH, V12, P593, DOI 10.1517/14712598.2012.674507 Chen Chaomei, 2005, AMIA Annu Symp Proc, P121 Chien WT, 2020, BRAIN BEHAV, V10, DOI 10.1002/brb3.1742 Esquenazi A, 2012, AM J PHYS MED REHAB, V91, P911, DOI 10.1097/PHM.0b013e318269d9a3 Fang J, 2021, TECHNOL HEALTH CARE, V29, P595, DOI 10.3233/THC-202392 Fiske A, 2019, J MED INTERNET RES, V21, DOI 10.2196/13216 He JW, 2021, J ARTHROPLASTY, V36, P1810, DOI 10.1016/j.arth.2020.11.038 Heo P, 2012, INT J PRECIS ENG MAN, V13, P807, DOI 10.1007/s12541-012-0107-2 Hussain S, 2021, EXPERT REV NEUROTHER, V21, P111, DOI [10.1080/14737175.2021.1847646, 10.1007/s41825-020-00029-8] Kaelin VC, 2021, J MED INTERNET RES, V23, DOI 10.2196/25745 Keeling AB, 2021, J NEUROENG REHABIL, V18, DOI 10.1186/s12984-021-00804-8 Khor KX, 2017, IEEE T NEUR SYS REH, V25, P1864, DOI 10.1109/TNSRE.2017.2692520 Kiguchi K, 2012, IEEE T SYST MAN CY B, V42, P1064, DOI 10.1109/TSMCB.2012.2185843 Kim WS, 2020, J CLIN MED, V9, DOI 10.3390/jcm9103369 Klamroth-Marganska V, 2018, ADV EXP MED BIOL, V1065, P579, DOI 10.1007/978-3-319-77932-4_35 Klamroth-Marganska V, 2014, LANCET NEUROL, V13, P159, DOI 10.1016/S1474-4422(13)70305-3 Krakauer JW, 2012, NEUROREHAB NEURAL RE, V26, P923, DOI 10.1177/1545968312440745 Krebs H I, 2013, Handb Clin Neurol, V110, P283, DOI 10.1016/B978-0-444-52901-5.00023-X Langhorne P, 2011, LANCET, V377, P1693, DOI 10.1016/S0140-6736(11)60325-5 Lefmann S, 2017, J NEUROENG REHABIL, V14, DOI 10.1186/s12984-016-0214-x Li G., 2015, P CHIN ACAD SCI US, V30, P793, DOI [10.16418/j.issn.1000-3045.2015.06.013, DOI 10.16418/J.ISSN.1000-3045.2015.06.013] [李宏伟 Li Hongwei], 2017, [中国康复理论与实践, Chinese Journal of Rehabilitation Theory and Practice], V23, P788 Liang CC, 2018, SAGE OPEN MED, V6, DOI 10.1177/2050312118800199 Liu Y, 2020, IEEE T NEUR NET LEAR, V31, P3269, DOI 10.1109/TNNLS.2019.2940088 Lo AC, 2010, NEW ENGL J MED, V362, P1772, DOI 10.1056/NEJMoa0911341 Lu CC, 2019, FRONT PUBLIC HEALTH, V7, DOI 10.3389/fpubh.2019.00384 Lu L, 2020, JMIR MHEALTH UHEALTH, V8, DOI 10.2196/18907 Maciejasz P, 2014, J NEUROENG REHABIL, V11, DOI 10.1186/1743-0003-11-3 Mehrholz J, 2012, COCHRANE DB SYST REV, DOI [10.1002/14651858.CD006876.pub3, 10.1002/14651858.CD006876.pub4] Mehrholz J, 2020, J NEUROENG REHABIL, V17, DOI 10.1186/s12984-020-00715-0 Musk E, 2019, J MED INTERNET RES, V21, DOI 10.2196/16194 Nam CY, 2022, SOFT ROBOT, V9, P14, DOI 10.1089/soro.2020.0090 Nam KY, 2017, J NEUROENG REHABIL, V14, DOI 10.1186/s12984-017-0232-3 Page RJ., 2020, MIT TECHNOLOGY REV Park J, 2014, ACS NANO, V8, P12020, DOI 10.1021/nn505953t Park YL, 2014, BIOINSPIR BIOMIM, V9, DOI 10.1088/1748-3182/9/1/016007 Pérez-San Lázaro R, 2021, ISA T, V109, P218, DOI 10.1016/j.isatra.2020.10.008 Polygerinos P, 2015, ROBOT AUTON SYST, V73, P135, DOI 10.1016/j.robot.2014.08.014 Price DDS., 1963, PAPERBACK Prior SD., 2002, IEEE C HIGH TECH HEL Ranzani R, 2020, J NEUROENG REHABIL, V17, DOI 10.1186/s12984-020-00746-7 Reddy GT, 2020, IEEE ACCESS, V8, P54776, DOI 10.1109/ACCESS.2020.2980942 Rodgers H, 2019, LANCET, V394, P51, DOI 10.1016/S0140-6736(19)31055-4 Sarhan MH, 2020, IEEE J BIOMED HEALTH, V24, P3338, DOI 10.1109/JBHI.2020.3012134 Schicketmueller A, 2020, SENSORS-BASEL, V20, DOI 10.3390/s20123399 Scrutinio D, 2020, SCI REP-UK, V10, DOI 10.1038/s41598-020-77243-3 Seo K, 2021, DIAGNOSTICS, V11, DOI 10.3390/diagnostics11061096 Singh HR., 1999, TENC 99 IEEE REG 10 Sun WJ, 2020, MEDICINE, V99, DOI 10.1097/MD.0000000000023208 Sun XX, 2020, NAT COMMUN, V11, DOI 10.1038/s41467-020-19465-7 Synnestvedt Marie B, 2005, AMIA Annu Symp Proc, P724 Treviño LR, 2021, FRONT NEUROROBOTICS, V15, DOI 10.3389/fnbot.2021.682156 van Hedel HJA, 2018, J NEUROENG REHABIL, V15, DOI 10.1186/s12984-018-0366-y Wang Q., 2018, PACKAGING ENG, V39, P83, DOI [10.19554/j.cnki.1001-3563.2018.18.018, DOI 10.19554/J.CNKI.1001-3563.2018.18.018] Xia DM, 2021, FRONT PUBLIC HEALTH, V9, DOI 10.3389/fpubh.2021.713487 Xie P, 2015, SCIENTOMETRICS, V105, P611, DOI 10.1007/s11192-015-1689-0 Xue XL, 2021, MEDICINE, V100, DOI 10.1097/MD.0000000000026254 Zhang XT, 2019, NAT COMMUN, V10, DOI 10.1038/s41467-019-12759-5 喻洪流, 2020, [中国康复医学杂志, Chinese Journal of Rehabilitation Medicine], V35, P900 励建安, 2020, [中国康复医学杂志, Chinese Journal of Rehabilitation Medicine], V35, P897 NR 67 TC 9 Z9 11 U1 6 U2 89 PU FRONTIERS MEDIA SA PI LAUSANNE PA AVENUE DU TRIBUNAL FEDERAL 34, LAUSANNE, CH-1015, SWITZERLAND EI 2296-2565 J9 FRONT PUBLIC HEALTH JI Front. Public Health PD JAN 11 PY 2022 VL 9 AR 806723 DI 10.3389/fpubh.2021.806723 PG 17 WC Public, Environmental & Occupational Health WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Public, Environmental & Occupational Health GA ZE3AP UT WOS:000758759800001 PM 35087788 OA gold, Green Published DA 2024-09-05 ER PT J AU Walstad, WB AF Walstad, WB TI Improving assessment in university economics SO JOURNAL OF ECONOMIC EDUCATION LA English DT Article DE active learning; assessment; economics courses; research; testing ID STUDENT; COURSES AB The author discusses the following seven issues affecting assessment of undergraduates in universities: decisionmaking and the selection of tests, the use of written and oral assignments to measure learning, the characteristics of grades and portfolios for evaluating students, opportunities for self-assessment and feedback to instructors, retention of learning and the testing for higher-ordered thinking, the psychology of students in the economics classroom, and the development of new tests as public goods. The author suggests ways that economics faculty can add new dimensions to their assessment practices, improve their understanding of assessment choices, use assessment to enhance the quality of student thinking, and conduct research studies on assessment questions. C1 Univ Nebraska, Natl Ctr Res Econ Educ, Lincoln, NE 68588 USA. C3 University of Nebraska System; University of Nebraska Lincoln RP Walstad, WB (corresponding author), Univ Nebraska, Natl Ctr Res Econ Educ, Lincoln, NE 68588 USA. CR ALLGOOD S, IN PRESS GRADE TARGE Angelo T.A., 1993, Classroom assessment techniques: A handbook for college teachers, VSecond [Anonymous], TEACHING EC UNDERGRA [Anonymous], TEACHING UNDERGRADUA [Anonymous], 1998, ALTERNATIVES CHALK T Arter J.A., 1992, ED MEASUREMENT, V11, P36 Bartlett R., 1998, TEACHING EC UNDERGRA, P11 BECKER WE, 1982, AM ECON REV, V72, P229 Becker WE, 1997, J ECON LIT, V35, P1347 Bloom Benjamin S, 1956, HDB 1 COGNITIVE DOMA, V1, P20 BRENNAN RL, 1995, ED MEASUREMENT ISSUE, V14, P5 Cameron B., 1998, Teaching Undergraduate Economics, P245 Chizmar JF, 1998, J ECON EDUC, V29, P3, DOI 10.2307/1182961 CROOKS TJ, 1988, REV EDUC RES, V58, P438, DOI 10.3102/00346543058004438 FALCHIKOV N, 1989, REV EDUC RES, V59, P395, DOI 10.3102/00346543059004395 HANSEN WL, 1986, AM ECON REV, V76, P149 HANSEN WL, 2000, J ECON EDUC, V32, P231 Holt C. A., 1998, TEACHING UNDERGRADUA MAXWELL NL, 1994, AM ECON REV, V84, P201 Miller E, 1998, J ECON EDUC, V29, P195 Miller M., 1993, Educational Measurement: Issues and Practice, V12, P9 Petr J.L., 1998, Teaching Undergraduate Economics: A Handbook for Instructors, P227 Rabin M, 1998, J ECON LIT, V36, P11 SAUNDERS P, 1980, J ECON EDUC, V12, P1, DOI 10.2307/1182816 Saunders P., 1991, Test of Understanding in College Economics, Examiners Manual, V3rd Edition Siegfried J.J., 1996, ECON INQ, V34, P1182 Siegfried J.J., 1998, TEACHING UNDERGRADUA, P59 STIGLER GJ, 1963, AM ECON REV, V53, P653 Terwilliger J.S., 1997, Educational Researcher, V26, P24 Walstad W, 1999, AM ECON REV, V89, P350, DOI 10.1257/aer.89.2.350 WALSTAD W, 1998, TEACHING UNDERGRADUA, P337 NR 31 TC 51 Z9 59 U1 0 U2 9 PU HELDREF PUBLICATIONS PI WASHINGTON PA 1319 EIGHTEENTH ST NW, WASHINGTON, DC 20036-1802 USA SN 0022-0485 J9 J ECON EDUC JI J. Econ. Educ. PD SUM PY 2001 VL 32 IS 3 BP 281 EP 294 DI 10.2307/1183385 PG 14 WC Economics; Education & Educational Research WE Social Science Citation Index (SSCI) SC Business & Economics; Education & Educational Research GA 447RL UT WOS:000169586200008 DA 2024-09-05 ER PT C AU Yao, QP Guo, L AF Yao, Qipeng Guo, Li BE Zhang, C Huang, W Shi, Y Yu, PS Zhu, Y Tian, Y Zhang, P He, J TI Minimizing the Social Influence from a Topic Modeling Perspective SO DATA SCIENCE SE Lecture Notes in Computer Science LA English DT Proceedings Paper CT 2nd International Conference on Data Science (ICDS) CY AUG 08-09, 2015 CL Univ Technol Sydney, Sydney, AUSTRALIA HO Univ Technol Sydney DE Influence minimization; Blocking nodes; Social networks ID DIFFUSION; NODES AB In this paper, we address the problem of minimizing the negative influence of undesirable things in a network by blocking a limited number of nodes from a topic modeling perspective. When undesirable thing such as a rumor or an infection emerges in a social network and part of users have already been infected, our goal is to minimize the size of ultimately infected users by blocking k nodes outside the infected set. We first employ the HDP-LDA and KL divergence to analysis the influence and relevance from a topic modeling perspective. Then two topic-aware heuristics based on betweenness and out-degree for finding approximate solutions to this problem are proposed. Using two real networks, we demonstrate experimentally the high performance of the proposed models and learning schemes. C1 [Yao, Qipeng; Guo, Li] Chinese Acad Sci, Inst Informat Engn, Beijing 100093, Peoples R China. [Yao, Qipeng] Beijing Univ Posts & Telecommun, Sch Comp Sci, Beijing 100876, Peoples R China. C3 Chinese Academy of Sciences; Institute of Information Engineering, CAS; Beijing University of Posts & Telecommunications RP Yao, QP (corresponding author), Chinese Acad Sci, Inst Informat Engn, Beijing 100093, Peoples R China. EM yaoqipeng0706@gmail.com; guoli@iie.ac.cn CR Albert R, 2000, NATURE, V406, P378, DOI 10.1038/35019019 [Anonymous], 2008, Proceedings of the 23th AAAI Conference on Artificial Intelligence [Anonymous], ARXIV12051682 [Anonymous], 2010, P 16 ACM SIGKDD INT, DOI DOI 10.1145/1835804.1835934 [Anonymous], 2003, P 9 ACM SIGKDD INT C [Anonymous], KDD 2007 [Anonymous], ICDM 2010 ANTONIAK CE, 1974, ANN STAT, V2, P1152, DOI 10.1214/aos/1176342871 Barbieri N, 2012, IEEE DATA MINING, P81, DOI 10.1109/ICDM.2012.122 Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993 Budak C., 2011, P 20 INT C WORLD WID, DOI [DOI 10.1145/1963405.1963499, 10.1145/1963405.1963499] CASELLA G, 1992, AM STAT, V46, P167, DOI 10.2307/2685208 Chen W, 2009, KDD-09: 15TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, P199, DOI 10.1145/1557019.1557047 Domingos P., 2001, KDD-2001. Proceedings of the Seventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, P57, DOI 10.1145/502512.502525 Dumais ST, 2004, ANNU REV INFORM SCI, V38, P189 Goyal A., 2011, Proceedings of the 2011 IEEE 11th International Conference on Data Mining (ICDM 2011), P211, DOI 10.1109/ICDM.2011.132 Goyal A., 2011, WWW 2011 Goyal A, 2011, PROC VLDB ENDOW, V5, P73, DOI 10.14778/2047485.2047492 Guo J, 2013, INT CONF DAT MIN WOR, P780, DOI 10.1109/ICDMW.2013.144 Habiba, 2010, LECT NOTES COMPUT SC, V5498, P55 Kimura M, 2006, LECT NOTES ARTIF INT, V4213, P259 Narayanam R, 2011, IEEE T AUTOM SCI ENG, V8, P130, DOI 10.1109/TASE.2010.2052042 Newman MEJ, 2002, PHYS REV E, V66, DOI 10.1103/PhysRevE.66.016128 Shi Y, 2014, PROCEDIA COMPUT SCI, V30, P81, DOI 10.1016/j.procs.2014.05.384 Wang S., 2013, AAAI Yao Q., 2015, 24 INT WORLD WID WEB Yao Q., 2014, 2014 INT STAND C TRU Zang WY, 2015, WWW'15 COMPANION: PROCEEDINGS OF THE 24TH INTERNATIONAL CONFERENCE ON WORLD WIDE WEB, P141, DOI 10.1145/2740908.2742745 Zang WY, 2014, PROCEDIA COMPUT SCI, V29, P443, DOI 10.1016/j.procs.2014.05.040 Zhang P, 2015, IEEE T KNOWL DATA EN, V27, P461, DOI 10.1109/TKDE.2014.2298018 Zhou C., 2014, ICCS 2014 Zhou C, 2015, IEEE T KNOWL DATA EN, V27, P2770, DOI 10.1109/TKDE.2015.2419659 Zhou C, 2014, WWW'14 COMPANION: PROCEEDINGS OF THE 23RD INTERNATIONAL CONFERENCE ON WORLD WIDE WEB, P421, DOI 10.1145/2567948.2577336 Zhou C, 2014, WWW'14 COMPANION: PROCEEDINGS OF THE 23RD INTERNATIONAL CONFERENCE ON WORLD WIDE WEB, P423, DOI 10.1145/2567948.2577376 Zhou C, 2013, IEEE DATA MINING, P907, DOI 10.1109/ICDM.2013.55 NR 35 TC 3 Z9 3 U1 0 U2 7 PU SPRINGER INTERNATIONAL PUBLISHING AG PI CHAM PA GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND SN 0302-9743 EI 1611-3349 BN 978-3-319-24474-7; 978-3-319-24473-0 J9 LECT NOTES COMPUT SC PY 2015 VL 9208 BP 6 EP 15 DI 10.1007/978-3-319-24474-7_2 PG 10 WC Computer Science, Artificial Intelligence; Computer Science, Information Systems; Computer Science, Software Engineering; Computer Science, Theory & Methods WE Conference Proceedings Citation Index - Science (CPCI-S) SC Computer Science GA BE0HB UT WOS:000366018100002 DA 2024-09-05 ER PT J AU Akrami, NE Hanine, M Flores, ES Aray, DG Ashraf, I AF Akrami, Nouhaila El Hanine, Mohamed Flores, Emmanuel Soriano Aray, Daniel Gavilanes Ashraf, Imran TI Unleashing the Potential of Blockchain and Machine Learning: Insights and Emerging Trends From Bibliometric Analysis SO IEEE ACCESS LA English DT Article DE Blockchain; machine learning; bibliometric analysis; network visualization ID ARTIFICIAL-INTELLIGENCE; SMART; AI; CRYPTOCURRENCIES; INTERNET; SYSTEM; HEALTH; IOT AB Blockchain and machine learning (ML) has garnered growing interest as cutting-edge technologies that have witnessed tremendous strides in their respective domains. Blockchain technology provides a decentralized and immutable ledger, enabling secure and transparent transactions without intermediaries. Alternatively, ML is a sub-field of artificial intelligence (AI) that empowers systems to enhance their performance by learning from data. The integration of these data-driven paradigms holds the potential to reinforce data privacy and security, improve data analysis accuracy, and automate complex processes. The confluence of blockchain and ML has sparked increasing interest among scholars and researchers. Therefore, a bibliometric analysis is carried out to investigate the key focus areas, hotspots, potential prospects, and dynamical aspects of the field. This paper evaluates 700 manuscripts drawn from the Web of Science (WoS) core collection database, spanning from 2017 to 2022. The analysis is conducted using advanced bibliometric tools (e.g., Bibliometrix R, VOSviewer, and CiteSpace) to assess various aspects of the research area regarding publication productivity, influential articles, prolific authors, the productivity of academic countries and institutions, as well as the intellectual structure in terms of hot topics and emerging trends. The findings suggest that upcoming research should focus on blockchain technology, AI-powered 5G networks, industrial cyber-physical systems, IoT environments, and autonomous vehicles. This paper provides a valuable foundation for both academic scholars and practitioners as they contemplate future projects on the integration of blockchain and ML. C1 [Akrami, Nouhaila El; Hanine, Mohamed] Chouaib Doukkali Univ, Natl Sch Appl Sci, Lab Informat Technol, El Jadida 24002, Morocco. [Flores, Emmanuel Soriano; Aray, Daniel Gavilanes] Univ Europea Atlantico, Santander 39011, Spain. [Flores, Emmanuel Soriano] Univ Int Iberoamer, Dept Informat & Commun Engn, Campeche 24560, Mexico. [Flores, Emmanuel Soriano] Univ Int Iberoamer, Arecibo, PR 00613 USA. [Aray, Daniel Gavilanes] Univ Int Cuanza, Kuito, Bie, Angola. [Aray, Daniel Gavilanes] Fdn Univ Int Colombia, Bogota 111311, Colombia. [Ashraf, Imran] Yeungnam Univ, Dept Informat & Commun Engn, Gyongsan 38541, South Korea. C3 Chouaib Doukkali University of El Jadida; Yeungnam University RP Hanine, M (corresponding author), Chouaib Doukkali Univ, Natl Sch Appl Sci, Lab Informat Technol, El Jadida 24002, Morocco.; Ashraf, I (corresponding author), Yeungnam Univ, Dept Informat & Commun Engn, Gyongsan 38541, South Korea. EM hanine.m@ucd.ac.ma; ashrafimran@live.com RI Hanine, Mohamed/AAC-1879-2021 OI Hanine, Mohamed/0000-0001-5981-2511; Ashraf, Imran/0000-0002-8271-6496 FU European University of Atlantics FX This work was supported by the European University of Atlantics. CR Ahamed SA, 2022, INT J ENG SYST MODEL, V13, P164, DOI 10.1504/IJESMS.2022.123341 Alonso RS, 2020, AD HOC NETW, V98, DOI 10.1016/j.adhoc.2019.102047 [Anonymous], 2009, PLOS MED, V6, pe1000097, DOI DOI 10.1371/JOURNAL.PMED.1000097 Antoniadis I., 2020, STRATEGIC INNOVATIVE, P375, DOI DOI 10.1007/978-3-030-36126-6_41 Aria M, 2017, J INFORMETR, V11, P959, DOI 10.1016/j.joi.2017.08.007 Baker HK, 2020, J BUS RES, V108, P232, DOI 10.1016/j.jbusres.2019.11.025 Boukhlif M, 2023, ELECTRONICS-SWITZ, V12, DOI 10.3390/electronics12092109 Boutkhoum O, 2021, MATHEMATICS-BASEL, V9, DOI 10.3390/math9141601 Buterin V., 2014, NEXT GENERATION SMAR Chamola V, 2020, IEEE ACCESS, V8, P90225, DOI 10.1109/ACCESS.2020.2992341 Chen Chaomei., 2015, How to Use CiteSpace Chen XH, 2018, IEEE INT CONF BIG DA, P1178, DOI 10.1109/BigData.2018.8622598 Dai YY, 2019, IEEE NETWORK, V33, P10, DOI 10.1109/MNET.2019.1800376 Dinh TN, 2018, COMPUTER, V51, P48, DOI 10.1109/MC.2018.3620971 Donthu N, 2021, J BUS RES, V133, P285, DOI 10.1016/j.jbusres.2021.04.070 Durieux V, 2010, RADIOLOGY, V255, P342, DOI 10.1148/radiol.09090626 El Azzaoui A, 2020, IEEE ACCESS, V8, P145918, DOI 10.1109/ACCESS.2020.3014356 Fallucchi F., 2021, P SCHOL YEARL S TECH, V3092, pp13 Fernández-Caramés TM, 2018, IEEE ACCESS, V6, P32979, DOI 10.1109/ACCESS.2018.2842685 Ferrag MA, 2020, IEEE T ENG MANAGE, V67, P1285, DOI 10.1109/TEM.2019.2922936 Firouzi F, 2021, IEEE INTERNET THINGS, V8, P12826, DOI 10.1109/JIOT.2021.3073904 George Joey F, 2020, P 41 INT C INF SYST Gill S. S., Internet of Things Gusc J, 2022, ENERGIES, V15, DOI 10.3390/en15031089 Haddad A, 2022, IEEE ACCESS, V10, P94583, DOI 10.1109/ACCESS.2022.3201878 Heister S., 2022, BLOCKCHAIN POTENTIAL Hu YH, 2014, COMPUT HUM BEHAV, V36, P469, DOI 10.1016/j.chb.2014.04.002 Ji B, 2021, CHEMOSPHERE, V262, DOI 10.1016/j.chemosphere.2020.128366 Jindal D. T., 2022, SECURITY PRIVACY ISS Jogunola O, 2021, IEEE INTERNET THINGS, V8, P4211, DOI 10.1109/JIOT.2020.3032162 Kim H, 2020, IEEE COMMUN LETT, V24, P1279, DOI 10.1109/LCOMM.2019.2921755 Kumar R, 2021, IEEE SENS J, V21, P16301, DOI 10.1109/JSEN.2021.3076767 Kumar S, 2023, INFORM SYST FRONT, V25, P871, DOI 10.1007/s10796-022-10279-0 Kuo TT, 2017, J AM MED INFORM ASSN, V24, P1211, DOI 10.1093/jamia/ocx068 Li K, 2018, SCIENTOMETRICS, V115, P1, DOI 10.1007/s11192-017-2622-5 Li Y., 2021, J. Healthcare Eng., P1 Liang C, 2020, ELECTRONICS-SWITZ, V9, DOI 10.3390/electronics9071120 Lin X, 2019, IEEE T IND INFORM, V15, P6367, DOI 10.1109/TII.2019.2917307 Liu WS, 2016, SCIENTOMETRICS, V106, P1273, DOI 10.1007/s11192-015-1821-1 Lu YL, 2020, IEEE T IND INFORM, V16, P4177, DOI 10.1109/TII.2019.2942190 Magazzeni D, 2017, COMPUTER, V50, P50, DOI 10.1109/MC.2017.3571045 Mao DH, 2018, INT J ENV RES PUB HE, V15, DOI 10.3390/ijerph15081627 Martin K, 2022, SECUR PRIVACY, V5, DOI 10.1002/spy2.192 Miglani A, 2021, COMPUT COMMUN, V178, P37, DOI 10.1016/j.comcom.2021.07.009 Mishra D, 2018, ANN OPER RES, V270, P313, DOI 10.1007/s10479-016-2236-y Mohanta BK, 2020, INTERNET THINGS-NETH, V11, DOI 10.1016/j.iot.2020.100227 Moral-Muñoz JA, 2020, PROF INFORM, V29, DOI 10.3145/epi.2020.ene.03 Nakamoto S., 2008, Technical Report, P1 Page MJ, 2021, BMJ-BRIT MED J, V372, DOI [10.1136/bmj.n71, 10.1016/j.ijsu.2021.105906, 10.1136/bmj.n160] Panarello A, 2018, SENSORS-BASEL, V18, DOI 10.3390/s18082575 Pokhrel SR, 2020, IEEE T COMMUN, V68, P4734, DOI 10.1109/TCOMM.2020.2990686 Qin Y, 2022, RENEW SUST ENERG REV, V153, DOI 10.1016/j.rser.2021.111780 Qu YY, 2020, IEEE INTERNET THINGS, V7, P5171, DOI 10.1109/JIOT.2020.2977383 Rai J., 2021, INT J MECH ENG, V6, P1026 Rey-Martí A, 2016, J BUS RES, V69, P1651, DOI 10.1016/j.jbusres.2015.10.033 Salah K, 2019, IEEE ACCESS, V7, P10127, DOI 10.1109/ACCESS.2018.2890507 Shukla S, 2021, INTERNET THINGS-NETH, V15, DOI 10.1016/j.iot.2021.100422 Singh S, 2020, SUSTAIN CITIES SOC, V63, DOI 10.1016/j.scs.2020.102364 Singh SK, 2020, FUTURE GENER COMP SY, V110, P721, DOI 10.1016/j.future.2019.09.002 Szomszor Martin, 2020, Front Res Metr Anal, V5, P628703, DOI 10.3389/frma.2020.628703 Taherdoost H, 2022, APPL SCI-BASEL, V12, DOI 10.3390/app122412948 Tanwar S, 2020, IEEE ACCESS, V8, P474, DOI 10.1109/ACCESS.2019.2961372 Tian YL, 2022, IEEE T IND INFORM, V18, P1918, DOI 10.1109/TII.2021.3097131 Turing A. M., 2009, Computing machinery and intelligence van Eck NJ, 2010, SCIENTOMETRICS, V84, P523, DOI 10.1007/s11192-009-0146-3 Vijayakumar PB, 2019, ADV GLOB LEADERSHIP, V11, P31, DOI 10.1108/S1535-120320180000011002 Wang QL, 2020, IEEE ACCESS, V8, P60598, DOI 10.1109/ACCESS.2020.2980298 Wang RN, 2021, SECUR COMMUN NETW, V2021, DOI 10.1155/2021/6126247 Warnat-Herresthal S, 2021, NATURE, V594, P265, DOI 10.1038/s41586-021-03583-3 Weng JS, 2021, IEEE T DEPEND SECURE, V18, P2438, DOI 10.1109/TDSC.2019.2952332 Yang YF, 2022, SUSTAINABILITY-BASEL, V14, DOI 10.3390/su142214971 Yin HHS, 2019, J MANAGE INFORM SYST, V36, P37, DOI 10.1080/07421222.2018.1550550 Yong BB, 2020, INT J INFORM MANAGE, V52, DOI 10.1016/j.ijinfomgt.2019.10.009 Yuan Y, 2018, IEEE T SYST MAN CY-S, V48, P1421, DOI 10.1109/TSMC.2018.2854904 Zang XM, 2022, APPL SCI-BASEL, V12, DOI 10.3390/app12094607 Zhong P, 2019, IEEE INT CONF MOB DA, P457, DOI 10.1109/MDM.2019.000-2 Zhou L, 2021, INF SYST E-BUS MANAG, V19, P757, DOI 10.1007/s10257-020-00461-9 Zhu W, 2020, CANCERS, V12, DOI 10.3390/cancers12030603 NR 78 TC 10 Z9 10 U1 5 U2 20 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 2169-3536 J9 IEEE ACCESS JI IEEE Access PY 2023 VL 11 BP 78879 EP 78903 DI 10.1109/ACCESS.2023.3298371 PG 25 WC Computer Science, Information Systems; Engineering, Electrical & Electronic; Telecommunications WE Science Citation Index Expanded (SCI-EXPANDED) SC Computer Science; Engineering; Telecommunications GA O2CS4 UT WOS:001041956300001 OA gold DA 2024-09-05 ER PT C AU Makawana, PR Jhaveri, RH AF Makawana, Pooja R. Jhaveri, Rutvij H. BE Hu, YC Tiwari, S Mishra, KK Trivedi, MC TI A Bibliometric Analysis of Recent Research on Machine Learning for Cyber Security SO INTELLIGENT COMMUNICATION AND COMPUTATIONAL TECHNOLOGIES SE Lecture Notes in Networks and Systems LA English DT Proceedings Paper CT International Conference on Internet of Things for Technological Development (IoT4TD) CY APR 01-02, 2017 CL Gandhinagar, INDIA DE Machine learning; Cybersecurity; Trend analysis; Graphical interpretation AB In today's world a huge amount of information is shared around the globe using internet. While connected to cyber word, cybersecurity is an increasing problem. Nowadays, various machine learning techniques are used to deal with cybersecurity threats. To enlighten the researchers about recent trends in this research area, we have analyzed 149 research papers from January 2015 to December 2016 and present a graphical and organized view of the referred research works. We observe that machine learning for cybersecurity has a great potential in carrying out further research. We have carried out bibliometric analysis by categorizing the referred papers using the method of implementation, article type, publishers and article efficiency. This analysis will provide insights for researchers, students, publishers and experts to study current research trends in the area of machine learning for cybersecurity. C1 [Makawana, Pooja R.; Jhaveri, Rutvij H.] Shri Sad Vidya Mandal Inst Technol, Dept Informat Technol, Bharuch, India. RP Makawana, PR (corresponding author), Shri Sad Vidya Mandal Inst Technol, Dept Informat Technol, Bharuch, India. EM poojakatariya1408@gmail.com; rhj_svmit@yahoo.com RI Jhaveri, Rutvij H./A-5354-2018 OI Jhaveri, Rutvij H./0000-0002-3285-7346; makawana, pooja/0000-0001-6705-0393 CR Ahmed U., 2015, J Reliab Intell Environ, V1, P123 Analysis I. B., 2015, WIRELESS ANOMALY DET, V6013 Dhammi A., 2015, CONT COMP IC3 2015 8 Gao R., 2015, CIRP ANN MANUF TECHN Hydara I, 2015, INFORM SOFTWARE TECH, V58, P170, DOI 10.1016/j.infsof.2014.07.010 Iannacone M., 2015, 10 ANN CYB INF SEC R, P4 Uddin S., 2011, TREND EFFICIENCY ANA, P687 Uddin S, 2012, SCIENTOMETRICS, V90, P687, DOI 10.1007/s11192-011-0511-x NR 8 TC 9 Z9 11 U1 0 U2 19 PU SPRINGER-VERLAG SINGAPORE PTE LTD PI SINGAPORE PA 152 BEACH ROAD, #21-01/04 GATEWAY EAST, SINGAPORE, 189721, SINGAPORE SN 2367-3370 EI 2367-3389 BN 978-981-10-5523-2; 978-981-10-5522-5 J9 LECT NOTE NETW SYST PY 2018 VL 19 BP 213 EP 226 DI 10.1007/978-981-10-5523-2_20 PG 14 WC Computer Science, Artificial Intelligence; Telecommunications WE Conference Proceedings Citation Index - Science (CPCI-S) SC Computer Science; Telecommunications GA BL1UF UT WOS:000448431100020 DA 2024-09-05 ER PT J AU Pereira, RA Puga, MED Atallah, AN Macedo, EC Macedo, CR AF Pereira, Rogerio Aparecido dos Santos Puga, Maria Eduarda Atallah, Alvaro Nagib Macedo, Elizeu Coutinho Macedo, Cristiane Rufino TI lilacs search strategy for systematic reviews of diagnostic test accuracy studies SO HEALTH INFORMATION AND LIBRARIES JOURNAL LA English DT Article DE bibliographic databases; precision; recall; search strategies ID DA-SAUDE LILACS; TRIALS AB Background There are few publications on search strategies to identify diagnostic test accuracy (DTA) studies in lilacs. Objective To translate and customise medline search strategies for use in lilacs and assess their retrieval of studies in Cochrane DTA systematic reviews. Method We developed a six-step process to translate and customise medline search strategies for use in lilacs (iAHx interface). We identified medline search strategies of published Cochrane DTA reviews, translated/customised them for use in lilacs, ran searches in lilacs and compared the retrieval results of our translated search strategy versus the one used in the published reviews. Results Our lilacs search strategies translated/customised from the medline strategies retrieved studies in 70 Cochrane DTA reviews. Only 29 of these reviews stated that they had searched the lilacs database and 21 published their lilacs search strategies. Few had used the lilacs database search tools, none exploded the subject headings, and 86% used only English terms. Conclusion Translating and tailoring a medline search strategy for the lilacs database resulted in the retrieval of DTA studies that would have been missed otherwise. C1 [Pereira, Rogerio Aparecido] Univ Fed Sao Paulo, Inst Fed Sao Paulo, Evidence Based Dept, Sao Paulo, Brazil. [Pereira, Rogerio Aparecido] Univ Fed Sao Paulo, Leforte Hosp, Sao Paulo, Brazil. [dos Santos Puga, Maria Eduarda] Univ Fed Sao Paulo, Unifesp, Brazilian Cochrane Ctr, Sao Paulo, Brazil. [Atallah, Alvaro Nagib; Macedo, Cristiane Rufino] Univ Fed Sao Paulo, Unifesp, EPM, Brazilian Cochrane Ctr, Sao Paulo, Brazil. [Macedo, Elizeu Coutinho] Univ Prebiteriana Mackenzie, Ctr Hlth & Biol Sci, Social & Cognit Neurosci Lab, Sao Paulo, Brazil. [Macedo, Elizeu Coutinho] Univ Prebiteriana Mackenzie, Ctr Hlth & Biol Sci, Dev Disorders Program, Sao Paulo, Brazil. C3 Universidade Federal de Sao Paulo (UNIFESP); Instituto Federal de Sao Paulo (IFSP); Universidade Federal de Sao Paulo (UNIFESP); Universidade Federal de Sao Paulo (UNIFESP); Universidade Federal de Sao Paulo (UNIFESP); Universidade Presbiteriana Mackenzie; Universidade Presbiteriana Mackenzie RP Puga, MED (corresponding author), Rua Borges Lagoa 564,Cj 63, BR-04003800 Sao Paulo, SP, Brazil. EM mespuga@yahoo.com.br RI macedo, cristiane R/A-8987-2013; Macedo, Elizeu C/N-4387-2015; Macedo, Elizeu Coutinho/AAF-1775-2020 OI Macedo, Elizeu Coutinho/0000-0003-1412-3450 FU CNPQ [311479/2015-4] Funding Source: Medline CR Abba K, 2014, COCHRANE DB SYST REV, DOI 10.1002/14651858.CD011431 Abba K, 2011, COCHRANE DB SYST REV, DOI 10.1002/14651858.CD008122.pub2 Alldred SK, 2012, COCHRANE DB SYST REV, DOI 10.1002/14651858.CD009925 Alldred SK, 2017, COCHRANE DB SYST REV, DOI 10.1002/14651858.CD012599 Alldred SK, 2015, COCHRANE DB SYST REV, DOI 10.1002/14651858.CD011984 Allen VB, 2013, COCHRANE DB SYST REV, DOI 10.1002/14651858.CD009323.pub2 [Anonymous], 2011, COCHRANE HDB SYSTEMA [Anonymous], 2015, COCHRANE DB SYST REV, DOI DOI 10.1002/14651858.CD010653.PUB2 [Anonymous], 2016, COCHRANE DATABASE SY Arbyn M, 2013, COCHRANE DB SYST REV, DOI 10.1002/14651858.CD008054.pub2 Archer HA, 2015, COCHRANE DB SYST REV, DOI 10.1002/14651858.CD010896.pub2 Arevalo-Rodriguez I, 2015, COCHRANE DB SYST REV, DOI 10.1002/14651858.CD010783.pub2 Avenell A, 2001, AM J CLIN NUTR, V73, P505 Betran AP, 2005, BMC MED RES METHODOL, V5, P6, DOI DOI 10.1186/1471-2288-5-6 Bleeker G, 2015, COCHRANE DB SYST REV, DOI 10.1002/14651858.CD009263.pub2 Boelaert M, 2014, COCHRANE DB SYST REV, DOI 10.1002/14651858.CD009135.pub2 Brazzelli M, 2009, COCHRANE DB SYST REV, DOI 10.1002/14651858.CD007424.pub2 Castro A A, 1999, Sao Paulo Med J, V117, P138 Castro A A, 1997, Sao Paulo Med J, V115, P1423 Clark OAC, 2002, INT J EPIDEMIOL, V31, P112, DOI 10.1093/ije/31.1.112 Cohen JF, 2016, COCHRANE DB SYST REV, DOI 10.1002/14651858.CD010502.pub2 Colli A, 2014, COCHRANE DB SYST REV, DOI 10.1002/14651858.CD008760.pub2 Crawford F, 2016, COCHRANE DB SYST REV, DOI 10.1002/14651858.CD010680.pub2 Crawford F, 2016, COCHRANE DB SYST REV, DOI 10.1002/14651858.CD010864.pub2 Creavin ST, 2016, COCHRANE DB SYST REV, DOI 10.1002/14651858.CD011145.pub2 Cruciani M, 2015, COCHRANE DB SYST REV, DOI 10.1002/14651858.CD009551.pub3 Davis DHJ, 2015, COCHRANE DB SYST REV, DOI 10.1002/14651858.CD010775.pub2 Deville Walter L, 2002, BMC Med Res Methodol, V2, P9, DOI 10.1186/1471-2288-2-9 Egger E, 1997, LANCET, V350, P326, DOI 10.1016/S0140-6736(97)02419-7 Egger M, 1998, BMJ-BRIT MED J, V316, P61, DOI 10.1136/bmj.316.7124.61 Eisinga A., 2008, COCHRANE HDB SYSTEMA Fage BA, 2015, COCHRANE DB SYST REV, DOI 10.1002/14651858.CD010860.pub2 Giljaca V, 2015, COCHRANE DB SYST REV, DOI 10.1002/14651858.CD011549 Gupta D, 2016, COCHRANE DB SYST REV, DOI 10.1002/14651858.CD012165 Gurusamy KS, 2015, COCHRANE DB SYST REV, DOI 10.1002/14651858.CD011548 Gurusamy KS, 2015, COCHRANE DB SYST REV, DOI 10.1002/14651858.CD010339.pub2 Hanchard NCA, 2013, COCHRANE DB SYST REV, DOI 10.1002/14651858.CD007427.pub2 Harrison JK, 2015, COCHRANE DB SYST REV, DOI 10.1002/14651858.CD010772.pub2 Harrison JK, 2014, COCHRANE DB SYST REV, DOI 10.1002/14651858.CD010771.pub2 Henschke N, 2013, COCHRANE DB SYST REV, DOI 10.1002/14651858.CD008686.pub2 Hooper L, 2015, COCHRANE DB SYST REV, DOI 10.1002/14651858.CD009647.pub2 Hunt H, 2015, COCHRANE DB SYST REV, DOI 10.1002/14651858.CD010438.pub2 Josephson CB, 2014, COCHRANE DB SYST REV, DOI 10.1002/14651858.CD009372.pub2 Khan KS, 2003, J ROY SOC MED, V96, P118, DOI 10.1258/jrsm.96.3.118 Khan KS, 2001, EUR J OBSTET GYN R B, V95, P6, DOI 10.1016/S0301-2115(00)00463-2 Lawrie TA, 2014, COCHRANE DB SYST REV, DOI 10.1002/14651858.CD010409.pub2 Leeflang MM, 2008, COCHRANE DB SYST REV, DOI 10.1002/14651858.CD007394 Leeflang MMG, 2008, ANN INTERN MED, V149, P889, DOI 10.7326/0003-4819-149-12-200812160-00008 Lenza M, 2013, COCHRANE DB SYST REV, DOI 10.1002/14651858.CD009020.pub2 LILACS, 2017, BAS DAD LILACS DISTR LILACS, 2017, TUT PESQ LILACS LILACS, 2017, MAN GEST FI LILACS Liu E, 2015, COCHRANE DB SYST REV, DOI 10.1002/14651858.CD012019 Macey R, 2015, COCHRANE DB SYST REV, DOI 10.1002/14651858.CD010276.pub2 Mallee WH, 2015, COCHRANE DB SYST REV, DOI 10.1002/14651858.CD010023.pub2 Manríquez JJ, 2008, J CLIN EPIDEMIOL, V61, P407, DOI 10.1016/j.jclinepi.2007.06.009 Manriquez JJ, 2009, ARCH DERMATOL, V145, P947, DOI 10.1001/archdermatol.2009.153 McCleery J, 2015, COCHRANE DB SYST REV, DOI 10.1002/14651858.CD010633.pub2 Michelessi M, 2015, COCHRANE DB SYST REV, DOI 10.1002/14651858.CD008803.pub2 Mocellin S, 2015, COCHRANE DB SYST REV, DOI 10.1002/14651858.CD009944.pub2 Moher D, 1996, LANCET, V347, P363, DOI 10.1016/S0140-6736(96)90538-3 Moher D, 2003, Health Technol Assess, V7, P1 Moher D, 2008, BMC MED, V6, DOI 10.1186/1741-7015-6-13 Nicholson BD, 2015, COCHRANE DB SYST REV, DOI 10.1002/14651858.CD011134.pub2 Nisenblat V, 2016, COCHRANE DB SYST REV, DOI 10.1002/14651858.CD012281 Nisenblat V, 2016, COCHRANE DB SYST REV, DOI 10.1002/14651858.CD012179 Nisenblat V, 2016, COCHRANE DB SYST REV, DOI 10.1002/14651858.CD009591.pub2 Ochodo EA, 2015, COCHRANE DB SYST REV, DOI 10.1002/14651858.CD009579.pub2 Palaniyappan L, 2015, COCHRANE DB SYST REV, DOI 10.1002/14651858.CD011021.pub2 Pavlov CS, 2016, COCHRANE DB SYST REV, DOI 10.1002/14651858.CD011602.pub2 Pavlov CS, 2015, COCHRANE DB SYST REV, DOI 10.1002/14651858.CD010542.pub2 Quinn TJ, 2014, COCHRANE DB SYST REV, DOI 10.1002/14651858.CD010079.pub2 Ratnavelu NDG, 2016, COCHRANE DB SYST REV, DOI 10.1002/14651858.CD010360.pub2 Ritchie C, 2014, COCHRANE DB SYST REV, DOI 10.1002/14651858.CD008782.pub4 Rutten MJ, 2014, COCHRANE DB SYST REV, DOI 10.1002/14651858.CD009786.pub2 Sampson M., 2008, PRESS PEER REV ELECT Sampson M, 2008, J CLIN EPIDEMIOL, V61, P748, DOI 10.1016/j.jclinepi.2007.10.009 Sampson M, 2006, J CLIN EPIDEMIOL, V59, P1057, DOI 10.1016/j.jclinepi.2006.01.007 Sampson M, 2009, J CLIN EPIDEMIOL, V62, P944, DOI 10.1016/j.jclinepi.2008.10.012 Schmidt-Hansen M, 2014, COCHRANE DB SYST REV, DOI 10.1002/14651858.CD009519.pub2 Shah M, 2016, COCHRANE DB SYST REV, DOI 10.1002/14651858.CD011420.pub2 Shaikh N, 2016, COCHRANE DB SYST REV, DOI 10.1002/14651858.CD010657.pub2 Shaikh N, 2015, COCHRANE DB SYST REV, DOI 10.1002/14651858.CD009185.pub2 Smailagic N, 2015, COCHRANE DB SYST REV, DOI 10.1002/14651858.CD010632.pub2 Steingart KR, 2014, COCHRANE DB SYST REV, DOI [10.1002/14651858.CD009593.pub3, 10.1002/14651858.CD009593.pub2] Taylor T, 2014, COCHRANE DB SYST REV, DOI 10.1002/14651858.CD009694.pub2 Theron G, 2014, COCHRANE DB SYST REV, DOI 10.1002/14651858.CD010705.pub2 van der Windt DAWM, 2010, COCHRANE DB SYST REV, DOI 10.1002/14651858.CD007431.pub2 Virgili G, 2011, COCHRANE DB SYST REV, DOI 10.1002/14651858.CD008081.pub2 Walsh T, 2013, COCHRANE DB SYST REV, DOI 10.1002/14651858.CD010173.pub2 Wang K, 2012, COCHRANE DB SYST REV, DOI 10.1002/14651858.CD009175.pub2 Wang LW, 2011, COCHRANE DB SYST REV, DOI 10.1002/14651858.CD008691.pub2 Whiting P, 2008, J CLIN EPIDEMIOL, V61, P357, DOI 10.1016/j.jclinepi.2007.05.013 Williams CM, 2013, COCHRANE DB SYST REV, DOI 10.1002/14651858.CD008643.pub2 Yoshii A, 2009, J MED LIBR ASSOC, V97, P21, DOI 10.3163/1536-5050.97.1.004 Zhang S, 2014, COCHRANE DB SYST REV, DOI 10.1002/14651858.CD010386.pub2 NR 96 TC 1 Z9 1 U1 0 U2 11 PU WILEY PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1471-1834 EI 1471-1842 J9 HEALTH INFO LIBR J JI Heatlth Info. Libr. J. PD SEP PY 2019 VL 36 IS 3 BP 223 EP 243 DI 10.1111/hir.12263 PG 21 WC Information Science & Library Science WE Social Science Citation Index (SSCI) SC Information Science & Library Science GA IZ1ZQ UT WOS:000486886900003 PM 31271504 OA Bronze DA 2024-09-05 ER PT J AU Montejo-Ráez, A Ureña-López, LA Steinberger, R AF Montejo-Raez, Arturo Alfonso Urena-Lopez, L. Steinberger, Ralf TI Text Categorization using bibliographic records: beyond document content SO PROCESAMIENTO DEL LENGUAJE NATURAL LA English DT Article DE text categorization; machine learning; digital libraries AB This paper studies the use of direrent sources of information for performing a text classiffcation task. The growing number of digital libraries imposes a review of the available data from those databases. Some experiments applying diffrerent base classiffers for a multi-label classffer in the domain of High Energy Physics on several of these possible sources have been carried out. Results show that the use of metadata is almost as good as the full-text version of papers. C1 [Montejo-Raez, Arturo; Alfonso Urena-Lopez, L.] Univ Jaen, Dept Comp Sci, Jaen, Spain. [Steinberger, Ralf] European Commiss, IPSC, Joint Res Ctr, Ispra, Italy. C3 Universidad de Jaen; European Commission Joint Research Centre; EC JRC ISPRA Site RP Montejo-Ráez, A (corresponding author), Univ Jaen, Dept Comp Sci, Jaen, Spain. EM amontejo@ujaen.es; laurena@ujaen.es; ralf.steinberger@jrc.it FU Spanish Minister of Science and Technology [TIC2003-07158-004-04] FX This work is partially ffnanced by the Spanish Minister of Science and Technology, by means of project TIC2003-07158-004-04. CR [Anonymous], 1994, P 17 ANN INT ACM SIG Berners-Lee T, 2001, SCI AM, V284, P34, DOI 10.1038/scientificamerican0501-34 Dallman David, 1999, TECHNICAL REPORT Joachims Thorsten, 1998, ECML, P137, DOI DOI 10.1007/BFB0026683 Kohavi R., 1995, Ijcai, V14, P1137 Lewis D., 1991, HLT WORKSHOP SPEECH, P312, DOI DOI 10.3115/112405.112471 Lewis D. D., 1996, SIGIR Forum, P298 Li Y., 2002, P INT C MACH LEARN I Mitchell T.M., 1997, Machine Learning. Section 3.4.1, P55 Monteiro Antonio, 2004, P1 Montejo-Rffez Arturo, 2001, HIGH ENERGY PHYS LIB Porter M. F., 1997, An Algorithm for Suffix Stripping, page, P313 Pouliquen Bruno, 2003, P WORKSH ONT INF EXT Robertson S., 2001, TEXT RETR C TREC 10 SALTON G, 1988, INFORM PROCESS MANAG, V24, P513, DOI 10.1016/0306-4573(88)90021-0 Sebastiani F, 2002, ACM COMPUT SURV, V34, P1, DOI 10.1145/505282.505283 Steinberger Ralf, 2002, 3 INT C INT TEXT PRO Steinberger Ralf, 2000, USING THESAURI AUTOM, P130 van Rijsbergen C. J., 1975, INFORM RETRIEVAL Yirning Yang, 2001, SIGIR Forum, P137 NR 20 TC 3 Z9 3 U1 0 U2 0 PU SOC ESPANOLA PROCESAMIENTO LENGUAJE NATURAL-SEPLN PI ALICANTE PA DEPT LENGUAJES & SISTEMAS INFORMATICOS, UNIV ALICANTE, APDO 99, ALICANTE, 03080, SPAIN SN 1135-5948 EI 1989-7553 J9 PROCES LENG NAT JI Proces. Leng. Nat. PY 2005 IS 35 BP 119 EP 126 PG 8 WC Computer Science, Artificial Intelligence; Linguistics WE Emerging Sources Citation Index (ESCI) SC Computer Science; Linguistics GA V29FZ UT WOS:000215482200015 DA 2024-09-05 ER PT J AU Ebert-May, D Batzli, J Lim, H AF Ebert-May, D Batzli, J Lim, H TI Disciplinary research strategies for assessment of learning SO BIOSCIENCE LA English DT Article DE assessment; introductory biology; carbon cycle; active learning; misconceptions ID RESPIRATION AB Science faculty who want to improve instructional strategies need to design appropriate methods for assessing and analyzing classroom data to determine the effectiveness of their approaches to learning. We used systematic strategies derived from methods of discipline-based science research to design problems to assess students' understanding of the carbon cycle in two introductory biology courses for science majors. Among typical misconceptions are the ideas that gaseous carbon dioxide is not respired during decomposition by organisms in the soil and that plants acquire carbon from the soil rather than from the air through leaves during photosynthesis. Diagnostic problems provided data on students' understanding and misconceptions. In-class instruction, problems, and laboratories were designed to focus on student misconceptions and provided formative assessment. After two semesters, results indicated that the majority of students responded accurately; however, 20 to 40 percent of the students maintained misconceptions even after instruction. Assessment strategies enabled us to collect, analyze, and report data that will influence future instruction. C1 Michigan State Univ, Dept Plant Biol, E Lansing, MI 48824 USA. Michigan State Univ, Div Sci & Math Educ, E Lansing, MI 48824 USA. Univ Wisconsin, Biol Core Curriculum, Madison, WI 53706 USA. C3 Michigan State University; Michigan State University; University of Wisconsin System; University of Wisconsin Madison RP Michigan State Univ, Dept Plant Biol, E Lansing, MI 48824 USA. EM ebertmay@msu.edu CR ANDERSON CW, 1990, J RES SCI TEACH, V27, P761, DOI 10.1002/tea.3660270806 *ANN FDN CORP PUBL, 1997, MINDS OUR OWN PROGRA [Anonymous], LIB ART SCI [Anonymous], 2001, Knowing what students know: The science and design of educational assessment [Anonymous], 1999, How people learn [Anonymous], 2003, BIO 2010 TRANSF UND Ausubel D.P., 2000, ACQUISITION RETENTIO Cech TR, 1999, DAEDALUS, V128, P195 Cech TR, 2003, SCIENCE, V299, P165, DOI 10.1126/science.299.5604.165 Fosnot C., 1996, Constructivism: Theory, Perspectives, and Practice Hestenes D., 1992, The physics teacher, V30, P141, DOI [DOI 10.1119/1.2343498, 10.1119/1.2343497, DOI 10.1119/1.2343497] Mintzes J.J., 2000, ASSESSING SCI UNDERS, P1 Novak J.D., 1998, LEARNING CREATING US *NRC, 1997, SCI TEACH REC *NTC, 1999, TRANSF UND ED SCI MA Posner G. J., 1982, Science Education, V66, P4, DOI 10.1002/sce.3730660207 SONGER CJ, 1994, J RES SCI TEACH, V31, P621, DOI 10.1002/tea.3660310605 Stokstad E, 2001, SCIENCE, V293, P1608, DOI 10.1126/science.293.5535.1608 SVINICKI M, 1999, TEACHING LEARNING ED, P5 UNO G, 2002, HDB TEACHING UNDERGR Wandersee J.H., 1994, HDB RES SCI TEACHING, P177 NR 21 TC 52 Z9 66 U1 1 U2 16 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0006-3568 EI 1525-3244 J9 BIOSCIENCE JI Bioscience PD DEC PY 2003 VL 53 IS 12 BP 1221 EP 1228 DI 10.1641/0006-3568(2003)053[1221:DRSFAO]2.0.CO;2 PG 8 WC Biology WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Life Sciences & Biomedicine - Other Topics GA 754NA UT WOS:000187322200011 OA Bronze DA 2024-09-05 ER PT J AU Halverson, LR Graham, CR Spring, KJ Drysdale, JS AF Halverson, Lisa R. Graham, Charles R. Spring, Kristian J. Drysdale, Jeffery S. TI An analysis of high impact scholarship and publication trends in blended learning SO DISTANCE EDUCATION LA English DT Article DE blended learning; hybrid learning; publication impact and trends; online learning; scholarship ID FACE-TO-FACE; INSTRUCTIONAL-MODEL; ONLINE; STUDENTS; EDUCATION; OUTCOMES; COURSES; ENVIRONMENTS; SATISFACTION; PERCEPTIONS AB Blended learning is a diverse and expanding area of design and inquiry that combines face-to-face and online modalities. As blended learning research matures, numerous voices enter the conversation. This study begins the search for the center of this emerging area of study by finding the most cited scholarship on blended learning. Using Harzing's Publish or Perish software (http://www.harzing.com/pop.htm), we determined the most frequently cited books, book chapters, and articles on the subject of blended learning, as well as the journals in which these highly cited articles appeared. Through these findings we offer some conclusions about where the conversations about blended learning are happening, which scholars are at the forefront of these conversations, and other emerging trends in blended learning scholarship. C1 [Halverson, Lisa R.; Spring, Kristian J.; Drysdale, Jeffery S.] Brigham Young Univ, Instruct Psychol & Technol Program, Provo, UT 84602 USA. C3 Brigham Young University RP Halverson, LR (corresponding author), Brigham Young Univ, Instruct Psychol & Technol Program, Provo, UT 84602 USA. EM lisa.halverson@byu.edu OI Halverson, Lisa/0000-0001-8867-6598; Graham, Charles R./0000-0001-8598-2602 CR Akyol Z, 2011, BRIT J EDUC TECHNOL, V42, P233, DOI 10.1111/j.1467-8535.2009.01029.x Allan B., 2007, Blended learning: Tools for teaching and training Allen I.E., 2003, Sizing the opportunity: The quality and extent of online education in the United States, 2002 and 2003 Alonso F, 2005, BRIT J EDUC TECHNOL, V36, P217, DOI 10.1111/j.1467-8535.2005.00454.x ALVAREZ S, 2005, ENCY ED TECHNOLOGY [Anonymous], 2006, Journal of the Medical Library Association [Anonymous], 2007, BLENDED LEARNING RES [Anonymous], 2002, An international comparative survey on the current and future use of ICT in higher education [Anonymous], 2006, INNOVATIVE ASSESSMEN Arbaugh JB, 2009, INTERNET HIGH EDUC, V12, P71, DOI 10.1016/j.iheduc.2009.06.006 Aspden L., 2004, Educational Media International, V41, P245, DOI 10.1080/09523980410001680851 Ausburn L. J., 2004, Educational Media International, V41, P327, DOI 10.1080/0952398042000314820 Aycock A., 2002, TEACHING TECHNOLOGY, V8, P9 Bernard RM, 2009, REV EDUC RES, V79, P1243, DOI 10.3102/0034654309333844 Bersin J., 2004, The blended learning book Bielawski L., 2003, Blended eLearning, Integrating Knowledge, Performance Support, and Online Learning Bliuc AM, 2010, BRIT J EDUC TECHNOL, V41, P512, DOI 10.1111/j.1467-8535.2009.00966.x Bonk C.J., 2006, HDB BLENDED LEARNING Bonk C.J., 2006, The handbook of blended learning, P550 Bonk C.J., 2002, J DISTANCE ED, V17, P97 Bourne J, 2005, J ENG EDUC, V94, P131, DOI 10.1002/j.2168-9830.2005.tb00834.x Boyle T., 2003, Journal of Educational Media, V28, P165, DOI [10.1080/1358165032000153160, DOI 10.1080/1358165032000153160] Brown BW, 2002, AM ECON REV, V92, P444, DOI 10.1257/000282802320191778 Burkhardt H., 2003, EDUC RESEARCHER, V32, P3, DOI [10.3102/0013189X032009003, DOI 10.3102/0013189X032009003] Carman J.M., 2002, BLENDED LEARNING DES Cavanaugh CS, 2009, INT REV RES OPEN DIS, V10 Chen PSD, 2010, COMPUT EDUC, V54, P1222, DOI 10.1016/j.compedu.2009.11.008 Chen XT, 2010, SERIALS REV, V36, P221, DOI 10.1016/j.serrev.2010.08.002 Chew E., 2010, Handbook of research on hybrid learning models: Advanced tools, technologies, and applications, P1 Clayton K, 2010, BRIT J EDUC TECHNOL, V41, P349, DOI 10.1111/j.1467-8535.2009.00993.x Concannon F, 2005, BRIT J EDUC TECHNOL, V36, P501, DOI 10.1111/j.1467-8535.2005.00482.x Condie R, 2007, BRIT J EDUC TECHNOL, V38, P337, DOI 10.1111/j.1467-8535.2006.00630.x Cooner TS, 2010, BRIT J EDUC TECHNOL, V41, P271, DOI 10.1111/j.1467-8535.2009.00933.x Cox G, 2004, J COMPUT ASSIST LEAR, V20, P183, DOI 10.1111/j.1365-2729.2004.00084.x Derntl M., 2005, Internet and Higher Education, V8, P111, DOI 10.1016/j.iheduc.2005.03.002 DeRouin RE, 2005, J MANAGE, V31, P920, DOI 10.1177/0149206305279815 Douglis F., 2002, ENCY ED TECHNOLOGY Driscoll M., 2002, E LEARN, V1, P1 Drysdale J. S., 2012, 9 ANN SLOAN CONS BLE Dziuban C., 2005, Elements of quality online education: Engaging communities, P85 Dziuban Charles., 2006, HDB BLENDED LEARNING, P195 Edirisingha P., 2007, Research on competence development in online distance education and e-learning, P127 El Mansour B., 2007, College Student Journal, V4, P242 Ellis RA, 2006, J COMPUT ASSIST LEAR, V22, P244, DOI 10.1111/j.1365-2729.2006.00173.x Finn A., 2002, Learning Circuits, V3 Garnham C., 2002, TEACHING TECHNOLOGY, V8 Garrison D. R., 2004, Internet and Higher Education, V7, P95, DOI 10.1016/j.iheduc.2004.02.001 Garrison D.R., 2007, BLENDED LEARNING HIG Garrison DR, 2010, INTERNET HIGH EDUC, V13, P5, DOI 10.1016/j.iheduc.2009.10.003 Garrison R., 2007, HDB DISTANCE ED, V2nd, P77 Ginns P., 2007, Internet and Higher Education, V10, P53, DOI 10.1016/j.iheduc.2006.10.003 Glogoff S., 2005, INNOVATE, V1 Gonzalez C., 2004, BENCHMARKS ONLINE Graham C., 2006, Beltwide Cotton Conferences Graham C.R., 2005, ENCY INFORM SCI TECH, P253 Graham C.R., 2007, Blended learning: Research perspectives, P83 Graham CR, 2013, INTERNET HIGH EDUC, V18, P4, DOI 10.1016/j.iheduc.2012.09.003 Graham CR, HDB DISTANCE ED, P333 Hall H, 2007, LIBR INFORM SCI RES, V29, P163, DOI 10.1016/j.lisr.2007.04.007 Hanson K.S., 2006, HDB BLENDED LEARNING, P136 Harzing A.W., 2007, Publish or perish Hofmann Jennifer., 2006, HDB BLENDED LEARNING, P27 Hoic-Bozic N, 2009, IEEE T EDUC, V52, P19, DOI 10.1109/TE.2007.914945 Howard J., 2012, CHRONICLE HIGHE 0228 Huang R., 2006, HDB BLENDED LEARNING, P296 INOUE Yukiko., 2010, Cases on Online and Blended Learning Technologies in Higher Education: Concepts and Practices, DOI DOI 10.4018/978-1-60566-880-2 Jones N., 2006, The handbook of blended learning, P182 Jung I., 2006, HDB BLENDED LEARNING, P267 Kerres M., 2003, Journal of Educational Media, V28, P101, DOI DOI 10.1080/1358165032000165653 King K. P., 2002, Internet and Higher Education, V5, P231, DOI 10.1016/S1096-7516(02)00104-5 Kirkley S E., 2004, TECHTRENDS, V49, P89, DOI 10.1007/BF02763646 Kirkley SE, 2005, TECHTRENDS, V49, P42, DOI 10.1007/BF02763646 Klein HJ, 2006, PERS PSYCHOL, V59, P665, DOI 10.1111/j.1744-6570.2006.00050.x Klein J.D., 2004, INSTRUCTOR COMPETENC Kyong-Jee K., 2006, EDUCAUSE Q, V29, P22, DOI DOI 10.4018/978-1-7998-0062-0.CH003 Latchem C, 2010, OPEN FLEX LEARN SER, P1 Laurillard D, 2007, HIGH EDUC, V54, P21, DOI 10.1007/s10734-006-9044-2 Leh A. S. C., 2002, Educational Media International, V39, P31, DOI 10.1080/09523980210131204 Lewis N.J., 2006, The handbook of blended learning: Global perspectives, local designs, P61 Littlejohn A, 2007, CONNECT E LEARN, P1 Lynch R., 2004, INT REV RES OPEN DIS, V5, P189 MacDonald J., 2008, Blended learning and online tutoring: planning learner support and activity design, V2nd Mantyla K., 2001, BLENDING E LEARNING Marsh G.E., 2003, ONLINE J DISTANCE LE, V6 Martyn M., 2003, EDUCAUSE Quarterly, V26, P18 Masie E., 2002, The ASTD e-learning handbook: Best practices, strategies, and case studies for an emerging field, P58 Masie E., 2006, HDB BLENDED LEARNING, P22 Means B., 2009, Evaluation of Evidence-Based Practices in Online Learning: A Meta-Analysis and Review of Online Learning Studies, DOI DOI 10.30935/CEDTECH/8708 Milne A., 2006, LEARNING SPACES, P27 Moore M.G., 2007, Handbook of distance education, V2nd, P89 Moore M.G., HDB DISTANC IN PRESS Moore M.G., 2004, American Journal of Distance Education, V18, P127, DOI [10.1207/s5389286ajde1803_1, DOI 10.1207/S15389286AJDE1803_1] Mortera-Gutierrez F., 2006, International Journal on ELearning, V5, P313 Motteram G, 2006, BRIT J EDUC TECHNOL, V37, P17, DOI 10.1111/j.1467-8535.2005.00511.x Ocak MA, 2011, COMPUT EDUC, V56, P689, DOI 10.1016/j.compedu.2010.10.011 Olapiriyakul K., 2006, Internet and Higher Education, V9, P287, DOI 10.1016/j.iheduc.2006.08.001 Oliver M., 2005, ELearning, V2, P17 Oliver Ron., 2006, HDB BLENDED LEARNING, P502 Oravec J., 2003, J ED MEDIA, V28, P225 Osguthorpe R.T., 2003, Q REV DISTANCE ED, V4, P227, DOI DOI 10.4018/978-1-59140-555-9.CH024 Owston R.D., 2006, HDB BLENDED LEARNING, P338 Ozkan S, 2009, COMPUT EDUC, V53, P1285, DOI 10.1016/j.compedu.2009.06.011 Picciano A., 2009, K 12 ONLINE LEARNING Picciano A.G., 2007, K 12 ONLINE LEARNING Picciano AC, 2012, INTERNET HIGH EDUC, V15, P127, DOI 10.1016/j.iheduc.2011.07.004 Priem J., 2011, ALTMETRICS MANIFESTO Reay J., 2001, Knowledge Management Review, V4, P6 Research in context: Article-level metrics, 2009, RES CONT ART LEV MET Riffell S, 2005, COMPUT EDUC, V44, P217, DOI 10.1016/j.compedu.2004.01.005 Rivera J., 2002, ONLINE J DISTANCE LE, V5 Rooney J.E., 2003, Association Management, V55, P26 Rossett A., 2003, LEARNING CIRCUITS Rovai A.P., 2004, The International Review of Research in Open and Distance Learning, V5, DOI [10.19173/irrodl.v5i2.192, DOI 10.19173/IRRODL.V5I2.192] Ruiz JG, 2006, ACAD MED, V81, P207, DOI 10.1097/00001888-200603000-00002 Sharma P., 2007, Blended learning: Using technology in a beyond the language classroom Sharpe R., 2006, UNDERGRADUATE EXPERI, P1 Singh H.Reed., 2001, A white paper: Achieving success with blended learning Singh H, 2021, ADV EDUC TECHNOL INS, P15, DOI 10.4018/978-1-7998-7607-6.ch002 Smart KL, 2006, J INF TECHNOL EDUC-R, V5, P201 Smith J.M., 2001, BLENDED LEARNING OLD So HJ, 2008, COMPUT EDUC, V51, P318, DOI 10.1016/j.compedu.2007.05.009 Stacey E., 2009, EFFECTIVE BLENDED LE, P19, DOI [10.4018/978-1-60566-296-1, DOI 10.4018/978-1-60566-296-1] Staker H., 2012, CLASSIFYING K 12 BLE Staker H., 2011, The rise of K-12 blended learning: profiles of emerging models Swenson P., 2003, ELECT LEARNING COMMU, P27 Taradi SK, 2005, ADV PHYSIOL EDUC, V29, P35, DOI 10.1152/advan.00026.2004 Thorne K., 2003, Blended learning: How to integrate online traditional learning Tuckman BW, 2002, COMPUT EDUC, V39, P261, DOI 10.1016/S0360-1315(02)00045-3 Unwin T, 2005, OPEN LEARN, V20, P113, DOI 10.1080/02680510500094124 Utts J., 2003, J STAT EDUC, V11 Valiathan P., 2002, Learning circuits Vaughan N., 2005, Internet and Higher Education, V8, P1, DOI 10.1016/j.iheduc.2004.11.001 VOOS R, 2003, SLOAN C VIEW, V2, P3 Wagner E.D., 2006, HDB BLENDED LEARNING, P41 Wang MJ, 2009, BRIT J EDUC TECHNOL, V40, P673, DOI 10.1111/j.1467-8535.2008.00846.x Watson J., 2008, Promising practices in online learning: Blended learning: The convergence of online and face-to-face education Wenger M., 2006, The handbook of blended learning, P76 West RE, 2012, INNOV HIGH EDUC, V37, P359, DOI 10.1007/s10755-012-9214-3 Woods R., 2004, Internet and Higher Education, V7, P281, DOI 10.1016/j.iheduc.2004.09.002 Wu JH, 2010, COMPUT EDUC, V55, P155, DOI 10.1016/j.compedu.2009.12.012 Yasmeen S, 2010, ED WORLD, V92, P70 NR 141 TC 64 Z9 138 U1 1 U2 37 PU ROUTLEDGE JOURNALS, TAYLOR & FRANCIS LTD PI ABINGDON PA 2-4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND SN 0158-7919 EI 1475-0198 J9 DISTANCE EDUC JI Distance Educ. PY 2012 VL 33 IS 3 BP 381 EP 413 DI 10.1080/01587919.2012.723166 PG 33 WC Education & Educational Research WE Social Science Citation Index (SSCI) SC Education & Educational Research GA 034SW UT WOS:000310894200007 DA 2024-09-05 ER PT J AU Vangumalli, DR Nikolopoulos, K Litsiou, K AF Vangumalli, Dinesh Reddy Nikolopoulos, Konstantinos Litsiou, Konstantia TI Aggregate Selection, Individual Selection, and Cluster Selection: An Empirical Evaluation and Implications for Systems Research SO CYBERNETICS AND SYSTEMS LA English DT Article DE Business analytics; clustering; forecasting; method selection; nearest neighbors; random forests ID TIME; CLASSIFICATION; INFORMATION; REGRESSION; TRENDS AB Data analysts when forecasting large number of time series, they regularly employ one of the following methodological approaches: either select a single forecasting method for the entire dataset (aggregate selection), or use the best forecasting method for each time series (individual selection). There is evidence in the predictive analytics literature that the former is more robust than the latter, as in individual selection you tend to overfit models to the data. A third approach is to first identify homogeneous clusters within the dataset, and then select a single forecasting method for each cluster (cluster selection). To that end, we examine three machine learning clustering methods: k-medoids, k-NN and random forests. The evaluation is performed in the 645 yearly series of the M3 competition. The empirical evidence suggests: (a) random forests provide the best clusters for the sequential forecasting task, and (b) cluster selection has the potential to outperform aggregate selection. C1 [Vangumalli, Dinesh Reddy] Resolut Life, Washington, DC USA. [Nikolopoulos, Konstantinos] Univ Durham, Business Sch, Durham, England. [Litsiou, Konstantia] Manchester Metropolitan Univ, Dept Mkt Retail & Tourism, Business Sch, Manchester, Lancs, England. C3 Durham University; Manchester Metropolitan University RP Nikolopoulos, K (corresponding author), Univ Durham, Business Sch, Durham, England. EM kostas.nikolopoulos@durham.ac.uk OI Litsiou, Konstantia/0009-0009-6157-7683 CR Agrawal R., 1993, Proceedings of the International Conference on Foundations of Data Organization and Algorithms, Chicago, IL, P69 Anderberg MR., 1973, Cluster analysis for researchers [Anonymous], 2009, Finding groups in data: an introduction to cluster analysis ARMSTRONG JS, 1992, INT J FORECASTING, V8, P69, DOI 10.1016/0169-2070(92)90008-W Blewitt ME, 2008, NAT GENET, V40, P663, DOI 10.1038/ng.142 Breiman L, 2001, MACH LEARN, V45, P5, DOI 10.1023/A:1010933404324 Breiman L., 2001, Machine Learning, V45, P5, DOI 10.1023/A:1010933404324 Breiman L., 2002, IMS WALD LECT, V2, P59 Bubeck S, 2009, J MACH LEARN RES, V10, P657 Charrad M, 2014, J STAT SOFTW, V61, P1 Clark L.A., 1992, STAT MODELS S, P373 CORMACK RM, 1971, J R STAT SOC SER A-G, V134, P321, DOI 10.2307/2344237 Duda R. O., 2001, Pattern Classification, V2nd EVERITT B, 1980, QUAL QUANT, V14, P75, DOI 10.1007/BF00154794 Fildes R, 2015, J BUS RES, V68, P1692, DOI 10.1016/j.jbusres.2015.03.028 GARDNER ES, 1985, MANAGE SCI, V31, P1237, DOI 10.1287/mnsc.31.10.1237 Goldstein BA, 2011, STAT APPL GENET MOL, V10, DOI 10.2202/1544-6115.1691 Green KC, 2015, J BUS RES, V68, P1678, DOI 10.1016/j.jbusres.2015.03.026 Holt CC, 2004, INT J FORECASTING, V20, P5, DOI [10.1016/j.ijforecast.2003.09.015, 10.1016/j.ijforecast.2004.09.015] Hyndman RJ, 2006, INT J FORECASTING, V22, P679, DOI 10.1016/j.ijforecast.2006.03.001 Iglesias F, 2013, ENERGIES, V6, P579, DOI 10.3390/en6020579 Iverson LR, 1998, ECOL MONOGR, V68, P465, DOI 10.1890/0012-9615(1998)068[0465:PAOTSF]2.0.CO;2 James W., 1977, WRITINGS W JAMES, P264 Keogh E., 2002, Proceedings of the Twenty-eighth International Conference on Very Large Data Bases, P406 Lorr Maurice., 1983, CLUSTER ANAL SOCIAL Makridakis S, 2000, INT J FORECASTING, V16, P451, DOI 10.1016/S0169-2070(00)00057-1 MAKRIDAKIS S, 1993, INT J FORECASTING, V9, P5, DOI 10.1016/0169-2070(93)90044-N MAKRIDAKIS S, 1982, J FORECASTING, V1, P111, DOI 10.1002/for.3980010202 Makridakis SG, 1998, Forecasting: Methods and Applications Makridakis S, 2020, INT J FORECASTING, V36, P54, DOI 10.1016/j.ijforecast.2019.04.014 MOORE DM, 1991, ENVIRON MANAGE, V15, P59, DOI 10.1007/BF02393838 Nikolopoulos K, 2007, EUR J OPER RES, V180, P354, DOI 10.1016/j.ejor.2006.03.047 Nikolopoulos K. I., 2019, Forecasting with the theta method: theory and applications Nikolopoulos K, 2015, J BUS RES, V68, P1785, DOI 10.1016/j.jbusres.2015.03.037 P Box GM Jenkins G.E., 1976, TIME SERIES ANAL FOR Petropoulos F, 2014, EUR J OPER RES, V237, P152, DOI 10.1016/j.ejor.2014.02.036 Prasad AM, 2006, ECOSYSTEMS, V9, P181, DOI 10.1007/s10021-005-0054-1 Rafiei D., 1997, SIGMOD Record, V26, P13, DOI 10.1145/253262.253264 Reilly D, 2000, INT J FORECASTING, V16, P531, DOI 10.1016/S0169-2070(00)00085-6 Ripley B. D., 1996, Pattern Recognition and Neural Networks Shi T, 2005, MODERN PATHOL, V18, P547, DOI 10.1038/modpathol.3800322 Teraoka R., 2014, THESIS U MANCHESTER Xiaoyan Wu, 2008, 2008 2nd International Conference on Bioinformatics and Biomedical Engineering (ICBBE '08), P763 NR 43 TC 0 Z9 0 U1 0 U2 4 PU TAYLOR & FRANCIS INC PI PHILADELPHIA PA 530 WALNUT STREET, STE 850, PHILADELPHIA, PA 19106 USA SN 0196-9722 EI 1087-6553 J9 CYBERNET SYST JI Cybern. Syst. PD JUL 16 PY 2021 VL 52 IS 7 BP 553 EP 578 DI 10.1080/01969722.2021.1902049 EA APR 2021 PG 26 WC Computer Science, Cybernetics WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Computer Science GA TJ3PG UT WOS:000661315100001 OA Green Accepted DA 2024-09-05 ER PT J AU Sarbay, I Berikol, GB Özturan, IU AF Sarbay, Ibrahim Berikol, Goeksu Bozdereli Ozturan, Ibrahim Ulas TI Performance of emergency triage prediction of an open access natural language processing based chatbot application (ChatGPT): A preliminary, scenario-based cross-sectional study SO TURKISH JOURNAL OF EMERGENCY MEDICINE LA English DT Article DE Chatbot; ChatGPT; emergency severity index; triage ID CHIEF COMPLAINT AB OBJECTIVES: Artificial intelligence companies have been increasing their initiatives recently to improve the results of chatbots, which are software programs that can converse with a human in natural language. The role of chatbots in health care is deemed worthy of research. OpenAI's ChatGPT is a supervised and empowered machine learning-based chatbot. The aim of this study was to determine the performance of ChatGPT in emergency medicine (EM) triage prediction. METHODS: This was a preliminary, cross-sectional study conducted with case scenarios generated by the researchers based on the emergency severity index (ESI) handbook v4 cases. Two independent EM specialists who were experts in the ESI triage scale determined the triage categories for each case. A third independent EM specialist was consulted as arbiter, if necessary. Consensus results for each case scenario were assumed as the reference triage category. Subsequently, each case scenario was queried with ChatGPT and the answer was recorded as the index triage category. Inconsistent classifications between the ChatGPT and reference category were defined as over-triage (false positive) or under-triage (false negative). RESULTS: Fifty case scenarios were assessed in the study. Reliability analysis showed a fair agreement between EM specialists and ChatGPT (Cohen's Kappa: 0.341). Eleven cases (22%) were over triaged and 9 (18%) cases were under triaged by ChatGPT. In 9 cases (18%), ChatGPT reported two consecutive triage categories, one of which matched the expert consensus. It had an overall sensitivity of 57.1% (95% confidence interval [CI]: 34-78.2), specificity of 34.5% (95% CI: 17.9-54.3), positive predictive value (PPV) of 38.7% (95% CI: 21.8-57.8), negative predictive value (NPV) of 52.6 (95% CI: 28.9-75.6), and an F1 score of 0.461. In high acuity cases (ESI-1 and ESI-2), ChatGPT showed a sensitivity of 76.2% (95% CI: 52.8-91.8), specificity of 93.1% (95% CI: 77.2-99.2), PPV of 88.9% (95% CI: 65.3-98.6), NPV of 84.4 (95% CI: 67.2-94.7), and an F1 score of 0.821. The receiver operating characteristic curve showed an area under the curve of 0.846 (95% CI: 0.724-0.969, P < 0.001) for high acuity cases. CONCLUSION: The performance of ChatGPT was best when predicting high acuity cases (ESI-1 and ESI-2). It may be useful when determining the cases requiring critical care. When trained with more medical knowledge, ChatGPT may be more accurate for other triage category predictions. C1 [Sarbay, Ibrahim] Kesan State Hosp, Dept Emergency Med, Asagi Zaferiye Mahallesi Evrese Caddesi, Edirne, Turkiye. [Berikol, Goeksu Bozdereli] Bakirkoy Dr Sadi Konuk Training & Res Hosp, Dept Emergency Med, Istanbul, Turkiye. [Ozturan, Ibrahim Ulas] Kocaeli Univ, Fac Med, Dept Emergency Med, Kocaeli, Turkiye. [Ozturan, Ibrahim Ulas] Acibadem Univ, Inst Hlth Sci, Dept Med Educ, Istanbul, Turkiye. C3 Bakirkoy Dr. Sadi Konuk Research & Training Hospital; Kocaeli University; Acibadem University RP Sarbay, I (corresponding author), Kesan State Hosp, Dept Emergency Med, Asagi Zaferiye Mahallesi Evrese Caddesi, Edirne, Turkiye. EM ibrahimsar@gmail.com RI Sarbay, İbrahim/JDD-3003-2023; Berikol, Goksu/ABM-3605-2022 OI Sarbay, İbrahim/0000-0001-8804-2501; Berikol, Goksu/0000-0002-4529-3578 CR Baumann MR, 2005, ACAD EMERG MED, V12, P219, DOI 10.1197/j.aem.2004.09.023 Beitel AJ, 2004, PEDIATR EMERG CARE, V20, P355, DOI 10.1097/01.pec.0000133608.96957.b9 Benoit JRA, 2023, medRxiv, DOI [10.1101/2023.02.04.23285478, 10.1101/2023.02.04.23285478v1, DOI 10.1101/2023.02.04.23285478V1, 10.1101/2023.02.04.23285478, DOI 10.1101/2023.02.04.23285478] Bullard MJ, 2017, CAN J EMERG MED, V19, pS18, DOI 10.1017/cem.2017.365 Caldarini G, 2022, INFORMATION, V13, DOI 10.3390/info13010041 Ceney A, 2021, PLOS ONE, V16, DOI 10.1371/journal.pone.0254088 ChatGPT, Optimizing Language Models for Dialogue 2022 Ghosh S, 2018, STUD HEALTH TECHNOL, V252, P51, DOI 10.3233/978-1-61499-890-7-51 Gilboy N, 2005, J EMERG NURS, V31, P357, DOI 10.1016/j.jen.2005.05.011 Goonesekera Y, 2022, JMIR FORM RES, V6, DOI 10.2196/37877 He YH, 2022, J MED INTERNET RES, V24, DOI 10.2196/40719 Hirosawa Takanobu, 2023, Int J Environ Res Public Health, V20, DOI 10.3390/ijerph20043378 Ivanov O, 2021, J EMERG NURS, V47, DOI 10.1016/j.jen.2020.11.001265 Kim Y, 2023, INT J MED INFORM, V170, DOI 10.1016/j.ijmedinf.2022.104956 King MR, 2023, ANN BIOMED ENG, V51, P291, DOI 10.1007/s10439-022-03121-w Kittipimpanon K, 2023, JMIR FORM RES, V7, DOI 10.2196/43639 Kolter JZ, 2022, SCIENCE, V378, P1056, DOI 10.1126/science.add8258 Kuriyama A, 2017, EMERG MED J, V34, P703, DOI 10.1136/emermed-2016-206295 Lee S, 2019, WEST J EMERG MED, V20, P219, DOI 10.5811/westjem.2019.1.41244 Lee SH, 2019, J BIOMED INFORM, V93, DOI 10.1016/j.jbi.2019.103158 Li YJ, 2022, SCIENCE, V378, P1092, DOI 10.1126/science.abq1158 Semigran HL, 2015, BMJ-BRIT MED J, V351, DOI 10.1136/bmj.h3480 Sterling NW, 2020, JACEP OPEN, V1, P1676, DOI 10.1002/emp2.12253 Sterling NW, 2019, INT J MED INFORM, V129, P184, DOI 10.1016/j.ijmedinf.2019.06.008 Thompson DA, 2006, ACAD EMERG MED, V13, P774, DOI 10.1197/j.aem.2006.02.013 Tootooni MS, 2019, COMPUT BIOL MED, V113, DOI 10.1016/j.compbiomed.2019.103398 Travers DA, 2004, ACAD EMERG MED, V11, P1170, DOI 10.1197/j.aem.2004.08.012 Tzelios C, 2022, PUBLIC HEALTH ACTION, V12, P180, DOI 10.5588/pha.22.0046 Unger B, 2010, CAN J EMERG MED, V12, P311 Wuerz R, 1998, ANN EMERG MED, V32, P431, DOI 10.1016/S0196-0644(98)70171-4 NR 30 TC 15 Z9 15 U1 3 U2 9 PU WOLTERS KLUWER MEDKNOW PUBLICATIONS PI MUMBAI PA WOLTERS KLUWER INDIA PVT LTD , A-202, 2ND FLR, QUBE, C T S NO 1498A-2 VILLAGE MAROL, ANDHERI EAST, MUMBAI, Maharashtra, INDIA SN 2452-2473 J9 TURK J EMERG MED JI Turk. J. Emerg. Med. PD JUL-SEP PY 2023 VL 23 IS 3 BP 156 EP + DI 10.4103/tjem.tjem_79_23 PG 9 WC Emergency Medicine WE Emerging Sources Citation Index (ESCI) SC Emergency Medicine GA L9QI8 UT WOS:001026537900004 PM 37529789 OA gold, Green Published DA 2024-09-05 ER PT J AU Hohmann, E Wetzler, MJ D'Agostino, RB AF Hohmann, Erik Wetzler, Merrick J. D'Agostino, Ralph B. TI Research Pearls: The Significance of Statistics and Perils of Pooling. Part 2: Predictive Modeling SO ARTHROSCOPY-THE JOURNAL OF ARTHROSCOPIC AND RELATED SURGERY LA English DT Article ID SURVIVAL ANALYSIS; CLINICAL-TRIALS; DESCRIPTIVE STATISTICS; REGRESSION; PROGNOSIS; IMPACT; PRIMER; FIT AB The focus of predictive modeling or predictive analytics is to use statistical techniques to predict outcomes and/or the results of an intervention or observation for patients that are conditional on a specific set of measurements taken on the patients prior to the outcomes occurring. Statistical methods to estimate these models include using such techniques as Bayesian methods; data mining methods, such as machine learning; and classical statistical models of regression such as logistic (for binary outcomes), linear (for continuous outcomes), and survival (Cox proportional hazards) for time-to-event outcomes. A Bayesian approach incorporates a prior estimate that the outcome of interest is true, which is made prior to data collection, and then this prior probability is updated to reflect the information provided by the data. In principle, data mining uses specific algorithms to identify patterns in data sets and allows a researcher to make predictions about outcomes. Regression models describe the relations between 2 or more variables where the primary difference among methods concerns the form of the outcome variable, whether it is measured as a binary variable (i.e., success/failure), continuous measure (i.e., pain score at 6 months postop), or time to event (i.e., time to surgical revision). The outcome variable is the variable of interest, and the predictor variable(s) are used to predict outcomes. The predictor variable is also referred to as the independent variable and is assumed to be something the researcher can modify in order to see its impact on the outcome (i.e., using one of several possible surgical approaches). Survival analysis investigates the time until an event occurs. This can be an event such as failure of a medical device or death. It allows the inclusion of censored data, meaning that not all patients need to have the event (i.e., die) prior to the study's completion. C1 [Hohmann, Erik] Univ Queensland, Med Sch, Brisbane, Qld, Australia. [Hohmann, Erik] Univ Pretoria, Med Sch, Pretoria, South Africa. [Wetzler, Merrick J.] South Jersey Orthoped, Voorhees, NJ USA. [D'Agostino, Ralph B.] Wake Forest Sch Med, Winston Salem, NC USA. C3 University of Queensland; University of Pretoria; Wake Forest University RP Hohmann, E (corresponding author), Valiant Healthcare Houston Methodist Grp, POB 414296, Dubai, U Arab Emirates. EM ehohmann@hotmail.com RI Hohmann, Erik/B-1922-2012; Dagostino Jr, Ralph/C-4060-2017 OI Dagostino Jr, Ralph/0000-0002-3550-8395 FU Arthroscopy: The Journal of Arthroscopic and Related Surgery and Storz FX The authors report the following potential conflicts of interest or sources of funding: M.J.W. received support from Arthroscopy: The Journal of Arthroscopic and Related Surgery and Storz. CR Abd ElHafeez S, 2012, AGING CLIN EXP RES, V24, P203, DOI 10.1007/BF03325249 Abdi Herve, 2013, Methods Mol Biol, V930, P549, DOI 10.1007/978-1-62703-059-5_23 Abdi Herve., 2007, ENCY MEASUREMENT STA, P1 Altman DG, 1998, BRIT MED J, V317, P468 Altman DG, 2009, BMJ-BRIT MED J, V338, DOI 10.1136/bmj.b605 Cerrito PB, 2008, P 2008 MIDW SAS US G, pS03 Cruz JA, 2006, CANCER INFORM, V2, P59 Fennema P, 2010, J BONE JOINT SURG BR, V92B, P701, DOI 10.1302/0301-620X.92B5.23470 Fleming TR, 2000, BIOMETRICS, V56, P971, DOI 10.1111/j.0006-341X.2000.0971.x Hosmer DW, 1997, STAT MED, V16, P965 HOSMER DW, 1991, AM J PUBLIC HEALTH, V81, P1630, DOI 10.2105/AJPH.81.12.1630 LAGAKOS SW, 1979, BIOMETRICS, V35, P139, DOI 10.2307/2529941 Larson MG, 2006, CIRCULATION, V114, P76, DOI 10.1161/CIRCULATIONAHA.105.584474 LEWIS RJ, 1993, ANN EMERG MED, V22, P1328, DOI 10.1016/S0196-0644(05)80119-2 Marill KA, 2004, ACAD EMERG MED, V11, P87, DOI 10.1197/S1069-6563(03)00600-6 Nick Todd G., 2007, V404, P33, DOI 10.1007/978-1-59745-530-5_3 Patel A, 2015, BONE JOINT J, V97B, P1076, DOI 10.1302/0301-620X.97B8.35170 Petrie A, 2006, J BONE JOINT SURG BR, V88B, P1121, DOI 10.1302/0301-620X.88B9.17896 Prinja Shankar, 2010, Indian J Community Med, V35, P217, DOI 10.4103/0970-0218.66859 Rich JT, 2010, OTOLARYNG HEAD NECK, V143, P331, DOI 10.1016/j.otohns.2010.05.007 Shmueli G, 2010, STAT SCI, V25, P289, DOI 10.1214/10-STS330 Toll DB, 2008, J CLIN EPIDEMIOL, V61, P1085, DOI 10.1016/j.jclinepi.2008.04.008 Waljee AK, 2014, CLIN TRANSL GASTROEN, V5, DOI 10.1038/ctg.2013.19 Waljee AK, 2010, AM J GASTROENTEROL, V105, P1224, DOI 10.1038/ajg.2010.173 Zhang JM, 2005, CLIN TRIALS, V2, P488, DOI 10.1191/1740774505cn128oa NR 25 TC 15 Z9 16 U1 1 U2 6 PU W B SAUNDERS CO-ELSEVIER INC PI PHILADELPHIA PA 1600 JOHN F KENNEDY BOULEVARD, STE 1800, PHILADELPHIA, PA 19103-2899 USA SN 0749-8063 EI 1526-3231 J9 ARTHROSCOPY JI Arthroscopy PD JUL PY 2017 VL 33 IS 7 BP 1423 EP 1432 DI 10.1016/j.arthro.2017.01.054 PG 10 WC Orthopedics; Sport Sciences; Surgery WE Science Citation Index Expanded (SCI-EXPANDED) SC Orthopedics; Sport Sciences; Surgery GA FB2OH UT WOS:000405982600028 PM 28457678 OA Green Submitted, Green Accepted DA 2024-09-05 ER PT J AU Dorta-González, P AF Dorta-Gonzalez, Pablo TI A Multiple Linear Regression Analysis to Measure the Journal Contribution to the Social Attention of Research SO AXIOMS LA English DT Article DE altmetrics; social mentions; multiple linear regression; public attention to research; socially influential journal ID RESEARCH COLLABORATION; CITATION COUNTS; IMPACT; ALTMETRICS; METRICS; MEDIA; WEB AB This paper proposes a three-year average of social attention as a more reliable measure of the social impact of journals since the social attention of research can vary widely among scientific articles, even within the same journal. The proposed measure is used to evaluate a journal's contribution to social attention in comparison to other bibliometric indicators. This study uses Dimensions as a data source and examines research articles from 76 disciplinary libraries and information science journals through multiple linear regression analysis. This study identifies socially influential journals whose contribution to social attention is twice that of scholarly impact, as measured by citations. In addition, this study finds that the number of authors and open access have a moderate effect on social attention, while the journal impact factor has a negative effect and funding has a small effect. C1 [Dorta-Gonzalez, Pablo] Univ Las Palmas Gran Canaria, Inst Tourism & Sustainable Econ Dev TIDES, Campus Tafira, Las Palmas Gran Canaria 35017, Spain. C3 Universidad de Las Palmas de Gran Canaria RP Dorta-González, P (corresponding author), Univ Las Palmas Gran Canaria, Inst Tourism & Sustainable Econ Dev TIDES, Campus Tafira, Las Palmas Gran Canaria 35017, Spain. EM pablo.dorta@ulpgc.es RI Dorta-González, Pablo/C-6425-2009 OI Dorta-González, Pablo/0000-0003-0494-2903 CR [Anonymous], IS ALTM ATT SCOR CAL Bornmann L, 2015, SCIENTOMETRICS, V103, P1123, DOI 10.1007/s11192-015-1565-y Costas R, 2015, J ASSOC INF SCI TECH, V66, P2003, DOI 10.1002/asi.23309 Costas R, 2012, J AM SOC INF SCI TEC, V63, P1647, DOI 10.1002/asi.22692 Dorta-González P, 2022, MATHEMATICS-BASEL, V10, DOI 10.3390/math10122082 Dorta-González P, 2022, J DATA INFO SCI, V7, P57, DOI 10.2478/jdis-2022-0007 Dorta-González P, 2022, SCIENTOMETRICS, V127, P2901, DOI 10.1007/s11192-022-04359-w Dorta-González P, 2018, RES EVALUAT, V27, P1, DOI 10.1093/reseval/rvx035 Dorta-González P, 2017, SCIENTOMETRICS, V112, P877, DOI 10.1007/s11192-017-2422-y Ezema IJ, 2019, INF DISCOV DELIV, V47, P143, DOI 10.1108/IDD-08-2018-0029 Fanelli D, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0149504 Fang ZC, 2020, SCIENTOMETRICS, V123, P1077, DOI 10.1007/s11192-020-03405-9 Glänzel W, 2004, HANDBOOK OF QUANTITATIVE SCIENCE AND TECHNOLOGY RESEARCH: THE USE OF PUBLICATION AND PATENT STATISTICS IN STUDIES OF S&T SYSTEMS, P257 Bote VPG, 2013, J AM SOC INF SCI TEC, V64, P392, DOI 10.1002/asi.22754 Heinze T, 2008, RES POLICY, V37, P888, DOI 10.1016/j.respol.2008.01.009 Lee S, 2005, SOC STUD SCI, V35, P673, DOI 10.1177/0306312705052359 Parish AJ, 2018, PLOS ONE, V13, DOI 10.1371/journal.pone.0189742 Priem J., 2010, Altmetrics: A manifesto Rong LQ, 2020, BRIT J ANAESTH, V125, pE223, DOI [10.1016/j.bja.2020.05.033, 10.1016/j.bja.2020.04.086] Smith R, 2001, BRIT MED J, V323, P528, DOI 10.1136/bmj.323.7312.528 Sud P, 2014, SCIENTOMETRICS, V98, P1131, DOI 10.1007/s11192-013-1117-2 Sugimoto CR, 2017, J ASSOC INF SCI TECH, V68, P2037, DOI 10.1002/asi.23833 Thelwall M, 2021, J ECON SURV, V35, P1302, DOI 10.1111/joes.12381 Thelwall M, 2016, SCIENTOMETRICS, V108, P337, DOI 10.1007/s11192-016-1973-7 Wouters P, 2019, SPRINGER HBK, P687, DOI 10.1007/978-3-030-02511-3_26 Zahedi Z, 2018, J INFORMETR, V12, P191, DOI 10.1016/j.joi.2017.12.005 Zhao SX, 2018, SCIENTOMETRICS, V115, P153, DOI 10.1007/s11192-018-2662-5 NR 27 TC 0 Z9 0 U1 4 U2 15 PU MDPI PI BASEL PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND EI 2075-1680 J9 AXIOMS JI Axioms PD APR PY 2023 VL 12 IS 4 AR 337 DI 10.3390/axioms12040337 PG 13 WC Mathematics, Applied WE Science Citation Index Expanded (SCI-EXPANDED) SC Mathematics GA E7KE2 UT WOS:000977281900001 OA Green Published, Green Submitted, gold DA 2024-09-05 ER PT J AU Xu, LH Ding, K Lin, Y AF Xu, Linhong Ding, Kun Lin, Yuan TI Do negative citations reduce the impact of cited papers? SO SCIENTOMETRICS LA English DT Article DE Negative citation; Citation analysis; Citation polarity; SVM ID REFERENCES; BEHAVIOR; QUALITY AB Citation is an important process of scientific activities, reflecting the inheritance and development of knowledge. However, citations representing different sentiment polarities function differently in knowledge construction, especially negative citations holding critical views, which deserve more in-depth study. This paper selected papers on SVM from 1995 to 2020, and used the stratified random sampling method to obtain 3,337 citation sentences from 46,157 citations, coding several attributes such as citation polarity, to analyze the relationship between negative citation and the impact of cited paper and the role of negative citation in the development of SVM technology. The results of the study found that negative citations do not reduce the literature impact; papers with a certain negative citation ratio would have a higher impact; and the impact of those partially dismissed papers would be even higher. In addition, negative citation presents different characteristics in different periods of the development of SVM, which has a certain promotion effect on the improvement of this technology. C1 [Xu, Linhong; Ding, Kun; Lin, Yuan] Dalian Univ Technol, Inst Sci Sci & Technol Management, WISE Lab, Dalian 116024, Peoples R China. [Xu, Linhong] Dalian Univ Foreign Languages, Software Inst, Dalian 116044, Peoples R China. C3 Dalian University of Technology; Dalian University of Foreign Languages RP Ding, K; Lin, Y (corresponding author), Dalian Univ Technol, Inst Sci Sci & Technol Management, WISE Lab, Dalian 116024, Peoples R China. EM qingniao1203@163.com; dingk@dlut.edu.cn; zhlin@dlut.edu.cn RI DING, KUN/HNJ-1709-2023 FU Natural Science Foundation of China [61976036]; Ministry of Education Humanities and Social Science Project [18YJCZH208] FX This work is partially supported by Grant from the Natural Science Foundation of China (Nos. 61772103, 61806038), Ministry of Education Humanities and Social Science Project (Nos. 18YJCZH208), Natural Science Foundation of China (Nos. 61976036). We also thank the anonymous reviewers for their constructive comments and suggestions. CR Abu-Jbara A., 2013, NAACL, P596 [Anonymous], 2012, 2012 Conference of the North American Chapter of the Association for Computational Linguistics Athar A., 2011, P ACL 2011 STUD SESS, P81 Bordignon F, 2020, SCIENTOMETRICS, V124, P1225, DOI 10.1007/s11192-020-03536-z BROOKS TA, 1986, J AM SOC INFORM SCI, V37, P34 CANO V, 1989, J AM SOC INFORM SCI, V40, P284, DOI 10.1002/(SICI)1097-4571(198907)40:4<284::AID-ASI10>3.0.CO;2-Z Case DO, 2000, J AM SOC INFORM SCI, V51, P635, DOI 10.1002/(SICI)1097-4571(2000)51:7<635::AID-ASI6>3.0.CO;2-H Catalini C, 2015, P NATL ACAD SCI USA, V112, P13823, DOI 10.1073/pnas.1502280112 CHUBIN DE, 1975, SOC STUD SCI, V5, P423, DOI 10.1177/030631277500500403 COHEN J, 1960, EDUC PSYCHOL MEAS, V20, P37, DOI 10.1177/001316446002000104 CORTES C, 1995, MACH LEARN, V20, P273, DOI 10.1023/A:1022627411411 Cronin B, 2006, J AM SOC INF SCI TEC, V57, P1275, DOI 10.1002/asi.20354 Danell JAB, 2012, SCI COMMUN, V34, P299, DOI 10.1177/1075547011413140 GARFIELD E, 1965, STAT ASSOC METHOD M, V1964, P189 Geras A, 2020, J ASSOC INF SCI TECH, V71, P221, DOI 10.1002/asi.24231 Ikram MT, 2019, SCIENTOMETRICS, V119, P73, DOI 10.1007/s11192-019-03028-9 Jochim C, 2014, PROCEEDINGS OF THE 52ND ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, VOL 2, P42 Khamsi R, 2020, NATURE, V580, P578, DOI 10.1038/d41586-020-01063-8 Kim I., 2015, 2015 IEEE International Magnetics Conference (INTERMAG), DOI 10.1109/INTMAG.2015.7157583 Kumar S, 2016, PROCEEDINGS OF THE 25TH INTERNATIONAL CONFERENCE ON WORLD WIDE WEB (WWW'16 COMPANION), P63, DOI 10.1145/2872518.2889391 Ma Z, 2016, P 5 WORKSH COMP LING, P122, DOI [10.18653/v1/w16-0420, DOI 10.18653/V1/W16-0420] MACROBERTS MH, 1984, SOC STUD SCI, V14, P91, DOI 10.1177/030631284014001006 MORAVCSIK MJ, 1975, SOC STUD SCI, V5, P86, DOI 10.1177/030631277500500106 Munkhdalai Tsendsuren., 2016, P 7 INT WORKSHOP HLT, P69, DOI [DOI 10.18653/V1/W16-6109, 10.18653/v1/W16-6109] Nicholson JM, 2021, QUANT SCI STUD, V2, P882, DOI 10.1162/qss_a_00146 Rousseau R., 2018, Becoming metric-wise A bibliometric guide for researchers, DOI DOI 10.1016/B978-0-08-102474-4.00009-1 SHADISH WR, 1995, SOC STUD SCI, V25, P477, DOI 10.1177/030631295025003003 Suelzer EM, 2019, JAMA NETW OPEN, V2, DOI 10.1001/jamanetworkopen.2019.15552 Tang R, 2008, J DOC, V64, P246, DOI 10.1108/00220410810858047 Teufel S., 2006, P C EMP METH NAT LAN, DOI 10.3115/1610075.1610091 VINKLER P, 1987, SCIENTOMETRICS, V12, P47, DOI 10.1007/BF02016689 Vyas V., 2020, ARTICLE CITATION STU Xu Jun, 2015, AMIA Annu Symp Proc, V2015, P1334 Yan EJ, 2020, J ASSOC INF SCI TECH, V71, P314, DOI 10.1002/asi.24237 Zhou LN, 2020, INFORM SYST FRONT, V22, P77, DOI 10.1007/s10796-018-9889-9 NR 35 TC 6 Z9 6 U1 7 U2 48 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0138-9130 EI 1588-2861 J9 SCIENTOMETRICS JI Scientometrics PD FEB PY 2022 VL 127 IS 2 BP 1161 EP 1186 DI 10.1007/s11192-021-04214-4 EA JAN 2022 PG 26 WC Computer Science, Interdisciplinary Applications; Information Science & Library Science WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Computer Science; Information Science & Library Science GA YY7GU UT WOS:000749747600005 DA 2024-09-05 ER PT J AU Zhu, YB Chen, XY Wang, G Zhong, ZC Zhuang, M AF Zhu, Yuanbing Chen, Xueying Wang, Gang Zhong, Zuchang Zhuang, Meier TI Research on the impact of home country patent level on outward foreign direct investment: Empirical analysis via equal part linear regression model and Grey Computing (Publication with Expression of Concern) SO INTERNATIONAL JOURNAL OF ELECTRICAL ENGINEERING EDUCATION LA English DT Article; Early Access; Publication with Expression of Concern DE Patent level; outward foreign direct investment; equal part linear regression; Grey Computing ID DETERMINANTS AB From the practice of developed countries, countries with higher patent applications and PCT patent applications (such as the United States, China, Japan, the United Kingdom, Germany, etc.) have relatively higher outward foreign direct investment, and the actual data of provinces in China also show that with the improvement of the patent level in various provinces and cities, the intensity of outward foreign direct investment in each province and city has also increased. At present, there are relatively few research data and the research method is relatively single. Therefore, collecting panel data on China's 31 provinces from 2003 to 2016, this paper conducts an empirical analysis on the influence of patent level on outward foreign direct investment via analytical method of equal part linear regression and Grey Computing. By comparing analysis results with the model and the results with conventional linear regression model, the difference of different regression models is observed. Furthermore, the impact of China's patent level on China's inter-provincial outward foreign direct investment is further analyzed. C1 [Zhu, Yuanbing] Jinan Univ, Sch Int Studies, Guangzhou, Peoples R China. [Chen, Xueying; Wang, Gang; Zhong, Zuchang; Zhuang, Meier] Guangdong Univ Foreign Studies, Sch Business, Guangzhou, Peoples R China. C3 Jinan University; Guangdong University of Foreign Studies RP Wang, G (corresponding author), Guangdong Univ Foreign Studies, Sch Business, Guangzhou, Peoples R China. EM 13570105916@163.com RI Li, Huizhen/JPX-2563-2023; Guo, yongqing/KDS-5864-2024 FU Humanities and Social Sciences Planning Project of the Ministry of Education [15YJA630067]; Soft Science Project of the Science and Technology Program of Guangdong Province [2015A070704055]; 12th Five-year Plan Program of Philosophy and Social Science in Guangdong Province [GD14CGL11]; National Natural Science Foundation of China [71673064, 71974039]; National Natural Science Foundation of Guangdong [2019A1515011475]; Innovation team project (HUMANITIES AND SOCIAL SCIENCES) of universities in Guangdong [2017WCXTD003]; Guangdong University of Foreign Studies [6] FX The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: The research is supported by the Humanities and Social Sciences Planning Project of the Ministry of Education (Grant: 15YJA630067), Soft Science Project of the Science and Technology Program of Guangdong Province (Grant: 2015A070704055), and the 12th Five-year Plan Program of Philosophy and Social Science in Guangdong Province (Grant: GD14CGL11), the National Natural Science Foundation of China (Grant: 71673064;71974039), the National Natural Science Foundation of Guangdong (Grant: 2019A1515011475), Innovation team project (HUMANITIES AND SOCIAL SCIENCES) of universities in Guangdong (Grant: 2017WCXTD003), Regional and national projects of Guangdong University of Foreign Studies in 2018 (Grant: 6). CR Chang SC, 2014, GLOBAL ECON REV, V43, P244, DOI 10.1080/1226508X.2014.930670 Cheung YW, 2012, REV INT ECON, V20, P201, DOI 10.1111/j.1467-9396.2012.01017.x Gong J., 2014, IND EC REV, V5, P150 Juan L, 2019, 2019 INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION, BIG DATA & SMART CITY (ICITBS), P1, DOI 10.1109/ICITBS.2019.00009 Kolstad I, 2012, J WORLD BUS, V47, P26, DOI 10.1016/j.jwb.2010.10.017 Li J, 2016, INT BUS REV, V25, P1010, DOI 10.1016/j.ibusrev.2016.01.008 Luo XY, 2009, J WORLD BUS, V45, P68 Pan WT, 2017, EURASIA J MATH SCI T, V13, P5765, DOI 10.12973/eurasia.2017.01026a Tao T, 2009, REFORM STRATEGY, V25, P152 Yanan H., 2017, SHANGHAI FIN, P14 Yue C., 2018, MODERN BUS TRADE IND, V39, P50 Zhang XX, 2011, EMERG MARK REV, V12, P389, DOI 10.1016/j.ememar.2011.06.001 NR 12 TC 2 Z9 2 U1 1 U2 16 PU SAGE PUBLICATIONS LTD PI LONDON PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND SN 0020-7209 EI 2050-4578 J9 INT J ELEC ENG EDUC JI Int. J. Elec. Eng. Educ. PD 2020 MAY 31 PY 2020 AR 0020720920922517 DI 10.1177/0020720920922517 EA MAY 2020 PG 15 WC Education, Scientific Disciplines; Engineering, Electrical & Electronic WE Science Citation Index Expanded (SCI-EXPANDED) SC Education & Educational Research; Engineering GA LT6NC UT WOS:000537184500001 DA 2024-09-05 ER PT J AU Liu, LJ Wu, H Wang, JW Yang, TY AF Liu, Lanjun Wu, Han Wang, Junwu Yang, Tingyou TI Research on the evaluation of the resilience of subway station projects to waterlogging disasters based on the projection pursuit model SO MATHEMATICAL BIOSCIENCES AND ENGINEERING LA English DT Article DE subway station project; waterlogging disasters; resilience capability; projection pursuit model; quantum particle swarm optimization ID PARTICLE SWARM OPTIMIZATION; RISK-ASSESSMENT; ALGORITHM; POWER AB To improve sustainable development, increasingly more attention has been paid to the evaluation of the resilience to waterlogging disasters. This paper proposed a projection pursuit model (PPM) improved by quantum particle swarm optimization (QPSO) for the evaluation of the resilience of subway station projects to waterlogging disasters. In view of the lack of research results related to the evaluation of the resilience of subway station projects to waterlogging disasters, 16 secondary indicators that affected the ability of subway station projects to recover from waterlogging disasters were identified from defense, recovery, and adaptability, for the first time. A PPM improved by QPSO was then proposed to effectively deal with the high-dimensional data about the resilience of subway station projects to waterlogging disasters. The QPSO was used to solve the best projection vector of the PPM, and interpolation algorithm was used to construct the mathematical model of evaluation. Finally, four station projects of Chengdu Metro Line 11 in China were selected for a case study analysis. The case study revealed that, among the secondary indicators, the emergency plan of construction order, the exercise frequency of emergency plans, and relief supplies had the greatest weights. The recovery was found to be the most important in the primary indicators. The values of the resilience of Lushan Avenue Station, Miaoeryan Station, Shenyang Road Station, and Tianfu CBD North Station to waterlogging disasters were found to be 2, 1.6571, 2.8318, and 3 respectively. This resilience ranking was consistent with the actual disaster situation in the flood season of 2019. In addition, the case study results showed that QPSO had the advantages of fewer parameter settings and a faster convergence speed as compared with PSO and the genetic algorithm. C1 [Liu, Lanjun] Wuhan Inst Technol, Sch Civil Engn & Architecture, Wuhan 430070, Peoples R China. [Wu, Han; Wang, Junwu] Wuhan Univ Technol, Sch Civil Engn & Architecture, Wuhan 430070, Peoples R China. [Yang, Tingyou] CCTEB Infrastruct Construct Investment Co Ltd, Wuhan 430070, Peoples R China. C3 Wuhan Institute of Technology; Wuhan University of Technology RP Wu, H (corresponding author), Wuhan Univ Technol, Sch Civil Engn & Architecture, Wuhan 430070, Peoples R China. EM wu.han@whut.edu.cn RI Wu, Han/JXN-2469-2024 OI wu, han/0000-0001-5827-0159 FU Science and Technology Project of Wuhan Urban and Rural Construction Bureau, China [201943] FX This paper is supported by the Science and Technology Project of Wuhan Urban and Rural Construction Bureau, China (201943). CR Adger WN, 2005, SCIENCE, V309, P1036, DOI 10.1126/science.1112122 Alajmi MS, 2020, MATERIALS, V13, DOI 10.3390/ma13132986 Ardabili SF, 2018, ENG APPL COMP FLUID, V12, P438, DOI 10.1080/19942060.2018.1452296 Ayesha S, 2020, INFORM FUSION, V59, P44, DOI 10.1016/j.inffus.2020.01.005 Banan A, 2020, AQUACULT ENG, V89, DOI 10.1016/j.aquaeng.2020.102053 Berro A, 2010, ANN MATH ARTIF INTEL, V60, P153, DOI 10.1007/s10472-010-9211-0 Bozza A, 2017, SUSTAINABILITY-BASEL, V9, DOI 10.3390/su9010103 Carrasco J, 2020, SWARM EVOL COMPUT, V54, DOI 10.1016/j.swevo.2020.100665 Chalermchaiarbha S, 2012, ELECTR POW COMPO SYS, V40, P1562, DOI 10.1080/15325008.2012.707288 Chang MS, 2007, TRANSPORT RES E-LOG, V43, P737, DOI 10.1016/j.tre.2006.10.013 Cheng CT, 2015, WATER-SUI, V7, P4232, DOI 10.3390/w7084232 Chin VJ, 2019, SOL ENERGY, V194, P656, DOI 10.1016/j.solener.2019.10.093 Cui P, 2019, SOC SCI QUART, V100, P2059, DOI 10.1111/ssqu.12699 Cutter SL, 2016, ANN AM ASSOC GEOGR, V106, P1236, DOI 10.1080/24694452.2016.1194740 Czarn A, 2004, IEEE T EVOLUT COMPUT, V8, P405, DOI 10.1109/TEVC.2004.831262 Derrac J, 2014, INFORM SCIENCES, V289, P41, DOI 10.1016/j.ins.2014.06.009 Elloumi W, 2014, J INTELL FUZZY SYST, V27, P515, DOI 10.3233/IFS-131020 Fang W, 2010, IETE TECH REV, V27, P336, DOI 10.4103/0256-4602.64601 Fu YG, 2012, IEEE T SYST MAN CY A, V42, P511, DOI 10.1109/TSMCA.2011.2159586 Gong JW, 2020, CONSTR BUILD MATER, V238, DOI 10.1016/j.conbuildmat.2019.117666 Hassan BA, 2020, DATA BRIEF, V28, DOI 10.1016/j.dib.2019.105046 Hunt S, 2018, AUST J PUBL ADMIN, V77, P482, DOI 10.1111/1467-8500.12320 Igel C, 2007, EVOL COMPUT, V15, P1, DOI 10.1162/evco.2007.15.1.1 Ji B, 2014, INT J PATTERN RECOGN, V28, DOI 10.1142/S0218001414530024 Khodadadi H, 2018, DISASTER MED PUBLIC, V12, P493, DOI 10.1017/dmp.2017.113 Lai WL, 2017, J MT SCI-ENGL, V14, P898, DOI 10.1007/s11629-016-4035-y Lan ZG, 2018, NAT HAZARDS, V91, P1165, DOI 10.1007/s11069-018-3172-8 Leichenko R, 2011, CURR OPIN ENV SUST, V3, P164, DOI 10.1016/j.cosust.2010.12.014 Li GF, 2013, STOCH ENV RES RISK A, V27, P1683, DOI 10.1007/s00477-013-0706-1 Lin T, 2018, HABITAT INT, V71, P88, DOI 10.1016/j.habitatint.2017.11.013 Liu D, 2019, J CLEAN PROD, V241, DOI 10.1016/j.jclepro.2019.118406 Liu YM, 2020, REMOTE SENS-BASEL, V12, DOI 10.3390/rs12081301 Lo AY, 2016, GEOGR RES-AUST, V54, P406, DOI 10.1111/1745-5871.12179 Lu YH, 2015, AER ADV ENG RES, V39, P94 Lyu HM, 2018, SUSTAINABILITY-BASEL, V10, DOI 10.3390/su10051682 Meng K, 2010, IEEE T POWER SYST, V25, P215, DOI 10.1109/TPWRS.2009.2030359 Passos MHP, 2017, J PEDIAT-BRAZIL, V93, P200, DOI 10.1016/j.jped.2016.06.006 Renjith VR, 2010, J HAZARD MATER, V183, P103, DOI 10.1016/j.jhazmat.2010.06.116 Sun J, 2004, IEEE C EVOL COMPUTAT, P325 Sun J, 2012, INFORM SCIENCES, V193, P81, DOI 10.1016/j.ins.2012.01.005 Suwal N, 2020, RENEW ENERG, V158, P453, DOI 10.1016/j.renene.2020.05.161 Talbi H, 2017, APPL SOFT COMPUT, V61, P765, DOI 10.1016/j.asoc.2017.07.046 Taormina R, 2015, ENG APPL ARTIF INTEL, V45, P429, DOI 10.1016/j.engappai.2015.07.019 Turner BL, 2003, P NATL ACAD SCI USA, V100, P8074, DOI 10.1073/pnas.1231335100 Wang GG, 2016, NEURAL COMPUT APPL, V27, P989, DOI 10.1007/s00521-015-1914-z Wang SJ, 2006, INT J ENVIRON POLLUT, V28, P253, DOI 10.1504/IJEP.2006.011210 Wu C, 2004, PROG SAFETY SCI TECH, V4, P3 Wu CL, 2013, ENG APPL ARTIF INTEL, V26, P997, DOI 10.1016/j.engappai.2012.05.023 Wu H., 2020, ADV CIV ENG, V2020 Yang K, 2018, ADV SPACE RES, V62, P2998, DOI 10.1016/j.asr.2018.08.006 Yi W, 2007, EUR J OPER RES, V179, P1177, DOI 10.1016/j.ejor.2005.03.077 Yin ZE, 2011, J GEOGR SCI, V21, P274, DOI 10.1007/s11442-011-0844-7 Yoshida H, 2000, IEEE T POWER SYST, V15, P1232, DOI 10.1109/59.898095 Yu HY, 2019, ADV CIV ENG, V2019, DOI 10.1155/2019/5393171 Yumin D, 2014, MATH PROBL ENG, V2014, DOI 10.1155/2014/592682 Zeng JJ, 2018, HYDROL RES, V49, P1143, DOI 10.2166/nh.2017.265 Zhang QQ, 2019, IEEE ACCESS, V7, P157353, DOI 10.1109/ACCESS.2019.2948197 Zhi GZ, 2020, J ENVIRON MANAGE, V268, DOI 10.1016/j.jenvman.2020.110521 NR 58 TC 21 Z9 23 U1 13 U2 107 PU AMER INST MATHEMATICAL SCIENCES-AIMS PI SPRINGFIELD PA PO BOX 2604, SPRINGFIELD, MO 65801-2604 USA SN 1547-1063 EI 1551-0018 J9 MATH BIOSCI ENG JI Math. Biosci. Eng. PY 2020 VL 17 IS 6 BP 7302 EP 7331 DI 10.3934/mbe.2020374 PG 30 WC Mathematical & Computational Biology WE Science Citation Index Expanded (SCI-EXPANDED) SC Mathematical & Computational Biology GA QL6KW UT WOS:000621193600009 PM 33378898 OA gold DA 2024-09-05 ER PT J AU Boffa, E Maffei, A AF Boffa, Eleonora Maffei, Antonio TI How does Manufacturing Strategy Impact the Goals of a Firm? A Relational Framework Characterizing the Related Business Models' Components SO MANAGEMENT AND PRODUCTION ENGINEERING REVIEW LA English DT Article DE Business models; Manufacturing model; Scientometric analysis; Topic modelling; Latent Dirichlet Allocation ID INDUSTRY 4.0; INNOVATION; PATTERNS AB The fourth industrial revolution has resulted in technology advancements in the manufacturing industry. However, the innovation potential embedded in these technologies should be unlocked by a viable application, i.e., the business model (BM). The BM as a holistic concept featuring different interacting elements is thus emerging as a promising vehicle for innovation. Current BM research describes the entire domain but lacks depth in the characterization of its individual components. This paper investigates the available manufacturing literature through the lens of the BM concept performing a scientometric analysis. The results are presented in a relational framework that provides an in-depth characterization of the manufacturing element of the BM and highlights identified connections that link the BM components. This is the basis for tools that will support firms in developing manufacturing portfolios aligned with their strategic goals. C1 [Boffa, Eleonora; Maffei, Antonio] KTH Royal Inst Technol, Prod Engn, Stockholm, Sweden. [Boffa, Eleonora] KTH royal Inst technol, Stockholm, Sweden. C3 Royal Institute of Technology; Royal Institute of Technology RP Boffa, E (corresponding author), KTH royal Inst technol, Stockholm, Sweden. EM boffa@kth.se OI Boffa, Eleonora/0000-0003-4847-3723; /0000-0002-0723-1712 CR Afuah Allan., 2001, Internet business models and strategies Asmussen CB, 2019, J BIG DATA-GER, V6, DOI 10.1186/s40537-019-0255-7 Björkdahl J, 2020, CALIF MANAGE REV, V62, P17, DOI 10.1177/0008125620920349 Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993 Casadesus-Masanell R, 2010, LONG RANGE PLANN, V43, P195, DOI 10.1016/j.lrp.2010.01.004 Chang J, 2009, Adv. Neural Inf. Process. Syst., P288 CHASE RB, 1987, J MANAGE, V13, P351, DOI 10.1177/014920638701300210 Chesbrough, 2007, STRATEGY LEADERSHIP, V35, P12, DOI [10.1108/10878570710833714, DOI 10.1108/10878570710833714] Chesbrough H, 2002, IND CORP CHANGE, V11, P529, DOI 10.1093/icc/11.3.529 Chesbrough H.W., 2007, MITSloan Management Review [Online]. Available Chuang J, 2012, PROCEEDINGS OF THE INTERNATIONAL WORKING CONFERENCE ON ADVANCED VISUAL INTERFACES, P74, DOI 10.1145/2254556.2254572 D'Amato D, 2017, J CLEAN PROD, V168, P716, DOI 10.1016/j.jclepro.2017.09.053 DaSilva CM, 2014, LONG RANGE PLANN, V47, P379, DOI 10.1016/j.lrp.2013.08.004 Davies R, 2015, DIGITALISATION PRODU Demil B, 2010, LONG RANGE PLANN, V43, P227, DOI 10.1016/j.lrp.2010.02.004 Fettermann DC, 2018, J IND PROD ENG, V35, P255, DOI 10.1080/21681015.2018.1462863 Foss NJ, 2017, J MANAGE, V43, P200, DOI 10.1177/0149206316675927 Frank AG, 2019, INT J PROD ECON, V210, P15, DOI 10.1016/j.ijpe.2019.01.004 George G, 2011, ENTREP THEORY PRACT, V35, P83, DOI 10.1111/j.1540-6520.2010.00424.x Hamel G., 2001, Strategy Leadersh, V29, P4, DOI DOI 10.1108/10878570110367141 Ibarra D, 2018, PROCEDIA MANUF, V22, P4, DOI 10.1016/j.promfg.2018.03.002 Johnson MW, 2008, HARVARD BUS REV, V86, P50 Knutas A., 2015, P 16 INT C COMPUTER, V1008, P184, DOI [10.1145/2812428, 10.1145/2812428.2812442, DOI 10.1145/2812428.2812442] Magretta J, 2002, HARVARD BUS REV, V80, P86 Maier D, 2018, COMMUN METHODS MEAS, V12, P93, DOI 10.1080/19312458.2018.1430754 McKinsey Digital, 2015, Industrie 4.0. How to navigate the digitization of the manufacturing sector Morris M, 2005, J BUS RES, V58, P726, DOI 10.1016/j.jbusres.2003.11.001 Mugge P, 2020, RES TECHNOL MANAGE, V63, P27, DOI 10.1080/08956308.2020.1707003 Osterwalder A., 2010, BUSINESS MODEL GENER Osterwalder A., 2004, THESIS U LAUSANNE Petrovic O., 2001, Developing Business Models for Ebusiness Pirola F, 2020, COMPUT IND, V123, DOI 10.1016/j.compind.2020.103301 Pooya A, 2017, J IND PROD ENG, V34, P300, DOI 10.1080/21681015.2017.1305996 Ritter T, 2018, LONG RANGE PLANN, V51, P1, DOI 10.1016/j.lrp.2017.07.005 Schaffer N., 2019, MCIS 2019 P Sievert C., 2014, P WORKSH INT LANG LE, P63, DOI [10.3115/v1/W14-3110, DOI 10.3115/V1/W14-3110, 10.3115/v1/w14-3110] Teece DJ, 2018, LONG RANGE PLANN, V51, P40, DOI 10.1016/j.lrp.2017.06.007 Teece DJ, 2010, LONG RANGE PLANN, V43, P172, DOI 10.1016/j.lrp.2009.07.003 Weking J, 2020, INT J PROD ECON, V225, DOI 10.1016/j.ijpe.2019.107588 Wirtz BW, 2016, LONG RANGE PLANN, V49, P36, DOI 10.1016/j.lrp.2015.04.001 Yip G.S., 2004, BUS STRAT REV, V15, P17, DOI DOI 10.1111/J.0955-6419.2004.00308.X Zhao WZ, 2015, BMC BIOINFORMATICS, V16, DOI 10.1186/1471-2105-16-S13-S8 Zott C, 2011, J MANAGE, V37, P1019, DOI 10.1177/0149206311406265 NR 43 TC 0 Z9 0 U1 0 U2 0 PU POLSKA AKAD NAUK, POLISH ACAD SCIENCES PI WARSZAWA PA PL DEFILAD 1, WARSZAWA, 00-901, POLAND SN 2080-8208 EI 2082-1344 J9 MANAG PROD ENG REV JI Manag. Prod. Eng. Rev. PD JUN PY 2023 VL 14 IS 2 BP 18 EP 36 DI 10.24425/mper.2023.146020 PG 19 WC Engineering, Industrial WE Emerging Sources Citation Index (ESCI) SC Engineering GA O6OA6 UT WOS:001044966600002 OA gold DA 2024-09-05 ER PT J AU Sharma, A Koohang, A Rana, NP Abed, SS Dwivedi, YK AF Sharma, Anuj Koohang, Alex Rana, Nripendra P. Abed, Salma S. Dwivedi, Yogesh K. TI Journal of Computer Information Systems: Intellectual and Conceptual Structure SO JOURNAL OF COMPUTER INFORMATION SYSTEMS LA English DT Article DE Scientometric analysis; topic modeling; structural topic models; co-citation analysis; keyword co-occurrence analysis ID TECHNOLOGY ACCEPTANCE MODEL; USER ACCEPTANCE; CONSUMER-BEHAVIOR; PERCEIVED EASE; E-COMMERCE; COCITATION; KNOWLEDGE; CITATION; TRUST; USAGE AB This study examines the intellectual and conceptual structure of the Journal of Computer Information Systems (JCIS) from 1995 to 2021. The evolution of the key topics and the performance of different actors like the key publications, authors, institutions, countries, etc., are reported using a hybrid methodology based upon scientometrics and topic modeling. The latent topics are discovered using structural topic models, and the temporal deviation in the topic prevalences from 1995 to 2021 is visualized. Further, this study reports the most prominent articles, themes, and collaboration patterns using co-citation network analysis, assessment of keywords co-occurrences, and exploration of coauthorship patterns. Finally, the disciplinary influences and knowledge exchange across disciplines are reported. The most significant findings from the study reveal that themes such as "Information Security and Privacy," "Social Commerce and Social Networking Sites," "Social Media, Web Search and User Satisfaction," "Big Data Analytics and Cloud Computing, and "ICT for Economic Development and Empowerment" may become the hotspot for future research. The social exchange of knowledge reveals intra-disciplinarity, where JCIS gets most of the knowledge from the information systems domain itself. However, closest associations with the general business domain, computer science, marketing, organization science, and psychology for knowledge inflows make JCIS a net knowledge receiver. C1 [Sharma, Anuj] Chandragupt Inst Management Patna, Patna, Bihar, India. [Koohang, Alex] Middle Georgia State Univ, Macon, GA USA. [Rana, Nripendra P.] Qatar Univ, Coll Business & Econ, Doha, Qatar. [Abed, Salma S.] King Abdulaziz Univ, Rabigh, Saudi Arabia. [Dwivedi, Yogesh K.] Swansea Univ, Swansea, W Glam, Wales. [Dwivedi, Yogesh K.] Pune & Symbiosis Int Deemed Univ, Symbiosis Inst Business Management, Pune, Maharashtra, India. C3 Qatar University; King Abdulaziz University; Swansea University; Symbiosis International University; Symbiosis Institute of Business Management (SIBM) Pune RP Dwivedi, YK (corresponding author), Swansea Univ, Sch Management, Emerging Markets Res Ctr Emarc, Bay Campus, Swansea SA1 8EN, W Glam, Wales. EM y.k.dwivedi@swansea.ac.uk RI Dwivedi, Yogesh Kumar/A-5362-2008; Rana, Nripendra P./ABA-4719-2020; Abed, Salma S./AAU-7092-2021; Sharma, Anuj/AAE-5767-2020; Sharma, Anuj/JTS-4887-2023 OI Dwivedi, Yogesh Kumar/0000-0002-5547-9990; Rana, Nripendra P./0000-0003-1105-8729; Sharma, Anuj/0000-0001-6602-9285; Sharma, Anuj/0000-0002-6281-6115; Koohang, Alex/0000-0002-4565-0408; Shodmonov, Ruslan/0000-0002-8723-2378 CR Agarwal R, 2016, INFORM SYST RES, V27, P471, DOI 10.1287/isre.2016.0670 AJZEN I, 1991, ORGAN BEHAV HUM DEC, V50, P179, DOI 10.1016/0749-5978(91)90020-T Alsudairi M, 2010, J ENTERP INF MANAG, V23, P215, DOI 10.1108/17410391011019787 Aria M, 2017, J INFORMETR, V11, P959, DOI 10.1016/j.joi.2017.08.007 Bai XW, 2021, TRANSPORT POLICY, V102, P11, DOI 10.1016/j.tranpol.2020.12.013 Baker HK, 2021, INT REV FINANC ANAL, V78, DOI 10.1016/j.irfa.2021.101946 Bhattacherjee A, 2001, MIS QUART, V25, P351, DOI 10.2307/3250921 Blei D., 2006, Advances in Neural Information Processing Systems, V18, P147 Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993 CALLON M, 1983, SOC SCI INFORM, V22, P191, DOI 10.1177/053901883022002003 CALLON M, 1991, SCIENTOMETRICS, V22, P155, DOI 10.1007/BF02019280 Chen XL, 2020, BRIT J EDUC TECHNOL, V51, P692, DOI 10.1111/bjet.12907 Chin WW, 1998, QUANT METH SER, P295 Cobo MJ, 2015, KNOWL-BASED SYST, V80, P3, DOI 10.1016/j.knosys.2014.12.035 COMPEAU DR, 1995, MIS QUART, V19, P189, DOI 10.2307/249688 DAVIS FD, 1989, MANAGE SCI, V35, P982, DOI 10.1287/mnsc.35.8.982 DAVIS FD, 1989, MIS QUART, V13, P319, DOI 10.2307/249008 DeLone WH, 1992, INFORM SYST RES, V3, P60, DOI 10.1287/isre.3.1.60 Dwivedi YK, 2010, J ENTERP INF MANAG, V23, P8, DOI 10.1108/17410391011008888 Dwivedi YK, 2010, J ENTERP INF MANAG, V23, P673, DOI 10.1108/17410391011088583 Dwivedi YK, 2009, INFORM SYST FRONT, V11, P87, DOI 10.1007/s10796-008-9147-7 Dwivedi YK, 2008, EUR J INFORM SYST, V17, P678, DOI 10.1057/ejis.2008.57 FORNELL C, 1981, J MARKETING RES, V18, P39, DOI 10.2307/3151312 Gefen D, 2003, MIS QUART, V27, P51, DOI 10.2307/30036519 Gefen D, 2000, OMEGA-INT J MANAGE S, V28, P725, DOI 10.1016/S0305-0483(00)00021-9 Hughes DL, 2016, PROD PLAN CONTROL, V27, P1313, DOI 10.1080/09537287.2016.1217571 Jeyaraj A, 2020, INT J INFORM MANAGE, V55, DOI 10.1016/j.ijinfomgt.2020.102226 Martin KD, 2021, J PUBLIC POLICY MARK, V40, P301, DOI 10.1177/07439156211018689 Mathieson K, 1991, INFORM SYST RES, V2, P173, DOI 10.1287/isre.2.3.173 MAYER RC, 1995, ACAD MANAGE REV, V20, P709, DOI 10.2307/258792 Mcknight DH, 1998, ACAD MANAGE REV, V23, P473, DOI 10.5465/AMR.1998.926622 McKnight DH, 2002, INFORM SYST RES, V13, P334, DOI 10.1287/isre.13.3.334.81 Mustak M, 2021, J BUS RES, V124, P389, DOI 10.1016/j.jbusres.2020.10.044 Nelson MR, 2017, J ADVERTISING, V46, P309, DOI 10.1080/00913367.2016.1277379 Nunkoo R, 2023, J SUSTAIN TOUR, V31, P735, DOI 10.1080/09669582.2021.2004416 Park E, 2018, INT J CONTEMP HOSP M, V30, P3386, DOI 10.1108/IJCHM-11-2017-0714 Podsakoff PM, 2003, J APPL PSYCHOL, V88, P879, DOI 10.1037/0021-9010.88.5.879 Radhakrishnan S, 2017, PLOS ONE, V12, DOI 10.1371/journal.pone.0172778 Roberts ME, 2019, J STAT SOFTW, V91, P1, DOI 10.18637/jss.v091.i02 Roberts ME, 2016, J AM STAT ASSOC, V111, P988, DOI 10.1080/01621459.2016.1141684 Roberts ME, 2014, AM J POLIT SCI, V58, P1064, DOI 10.1111/ajps.12103 Sarin S, 2020, TECHNOL FORECAST SOC, V160, DOI 10.1016/j.techfore.2020.120210 Sharma A, 2021, ANN TOURISM RES, V91, DOI 10.1016/j.annals.2021.103142 Sharma A, 2021, INT J INFORM MANAGE, V58, DOI 10.1016/j.ijinfomgt.2021.102316 Shiau WL, 2017, INT J INFORM MANAGE, V37, P390, DOI 10.1016/j.ijinfomgt.2017.04.007 Shiau WL, 2013, SCIENTOMETRICS, V94, P1317, DOI 10.1007/s11192-012-0807-5 Singh S, 2020, TECHNOL FORECAST SOC, V154, DOI 10.1016/j.techfore.2020.119963 SMALL H, 1973, J AM SOC INFORM SCI, V24, P265, DOI 10.1002/asi.4630240406 SMALL HG, 1977, SOC STUD SCI, V7, P139, DOI 10.1177/030631277700700202 TAYLOR S, 1995, INFORM SYST RES, V6, P144, DOI 10.1287/isre.6.2.144 THOMPSON RL, 1991, MIS QUART, V15, P125, DOI 10.2307/249443 Van Eck N.J., 2014, Measuring Scholarly Impact: Methods and Practice, P285, DOI 10.1007/978-3-319-10377-8_13(InEng.) Vanhala M, 2020, J BUS RES, V106, P46, DOI 10.1016/j.jbusres.2019.09.009 Venkatesh V, 2000, MANAGE SCI, V46, P186, DOI 10.1287/mnsc.46.2.186.11926 Venkatesh V, 2003, MIS QUART, V27, P425, DOI 10.2307/30036540 Venkatesh V, 2000, INFORM SYST RES, V11, P342, DOI 10.1287/isre.11.4.342.11872 Verma S, 2021, J INTERACT MARK, V53, P111, DOI 10.1016/j.intmar.2020.07.001 Wang X, 2015, J CONSUM RES, V42, P5, DOI 10.1093/jcr/ucv009 Zhang Y, 2017, KNOWL-BASED SYST, V133, P255, DOI 10.1016/j.knosys.2017.07.011 Zinkhan GM, 1999, J ADVERTISING, V28, P51, DOI 10.1080/00913367.1999.10673583 ZINKHAN GM, 1992, J CONSUM RES, V19, P282, DOI 10.1086/209302 NR 61 TC 14 Z9 14 U1 1 U2 28 PU TAYLOR & FRANCIS INC PI PHILADELPHIA PA 530 WALNUT STREET, STE 850, PHILADELPHIA, PA 19106 USA SN 0887-4417 EI 2380-2057 J9 J COMPUT INFORM SYST JI J. Comput. Inf. Syst. PD JAN 2 PY 2023 VL 63 IS 1 BP 37 EP 67 DI 10.1080/08874417.2021.2021114 EA JAN 2022 PG 31 WC Computer Science, Information Systems WE Science Citation Index Expanded (SCI-EXPANDED) SC Computer Science GA 8I3KY UT WOS:000744778600001 OA Green Submitted DA 2024-09-05 ER PT C AU Amerika, M Kim, LH Gallagher, B AF Amerika, Mark Kim, Laura Hyunjhee Gallagher, Brad GP Assoc Comp Machinery TI Fatal Error: Artificial Creative Intelligence (ACI) SO CHI'20: EXTENDED ABSTRACTS OF THE 2020 CHI CONFERENCE ON HUMAN FACTORS IN COMPUTING SYSTEMS LA English DT Proceedings Paper CT ACM CHI Conference on Human Factors in Computing Systems (CHI) CY APR 25-30, 2020 CL Honolulu, HI DE Artificial intelligence; Arts; Poetry; Persona; Performance; Practice-based Research AB Computer-generated algorithmic art has undergone significant developments since its emergence in the 1960s. With further integration of art and technology in the 21st century, artists continue to respond, take risks and challenge the ways computers can be thought of as a creative medium. This project specifically addresses speculative forms of artificial intelligence particularly the possibilities for creative collaboration between human and machine-generated embodiments of poetic expression. The Artificial Creative Intelligence (ACI) is a fictional AI Poet whose spoken word poetry signals the horizon of a new type of authorship that questions the philosophical implications of artificial intelligence for creative practitioners. C1 [Amerika, Mark] Univ Colorado, Art & Art Hist, Boulder, CO 80309 USA. [Kim, Laura Hyunjhee; Gallagher, Brad] Univ Colorado, Intermedia Art Writing & Performance, Boulder, CO 80309 USA. C3 University of Colorado System; University of Colorado Boulder; University of Colorado System; University of Colorado Boulder RP Amerika, M (corresponding author), Univ Colorado, Art & Art Hist, Boulder, CO 80309 USA. EM mark.amerika@colorado.edu; laura.h.kim@colorado.edu; jonathan.gallagher@colorado.edu FU University of Colorado's College of Media, Communication and Information; College of Arts and Sciences; Professor of Distinction Fund FX The University of Colorado's College of Media, Communication and Information, the College of Arts and Sciences and the Professor of Distinction Fund have all provided support for this project. CR Amerika Mark., 2011, REMIXTHEBOOK Amerika Mark, 2018, REMIXTHECONTEXT Amerika Mark., 2007, Meta Data, A Digital Poetics Burdick A, 2019, J FUTURES STUD, V23, P75, DOI 10.6531/JFS.201903_23(3).0006 Coulton Paul, 2019, J CONTRIBUTION 0411, DOI [10.6084/m9.figshare.4746964.v1, DOI 10.6084/M9.FIGSHARE.4746964.V1] Craig C., 2020, OSGOODE LEGAL STUDIE, V52, P31, DOI [10.2139/ssrn.3374951, DOI 10.2139/SSRN.3374951] Devendorf Laura, P MICI 2017 CHI WORK Dunne Anthony, 2013, SPECULATIVE EVERYTHI, P125 Haraway Donna J, 2000, Posthumanism, P69, DOI DOI 10.1007/978-1-4020-3803-7_4 Kang L.L., 2018, INTERACTIONS, V25, P78, DOI [10.11453177816////, DOI 10.1145/3177816] Leahu Lucian, P 7 ACM C DES INT SY, P203 Marenko Betti, 2018, HYBRID ECOLOGIES DIA Weigel Moira, 2019, LOGIC MAGAZINE NR 13 TC 2 Z9 3 U1 2 U2 19 PU ASSOC COMPUTING MACHINERY PI NEW YORK PA 1601 Broadway, 10th Floor, NEW YORK, NY, UNITED STATES BN 978-1-4503-6819-3 PY 2020 AR ALT10 DI 10.1145/3334480.3381815 PG 9 WC Computer Science, Cybernetics WE Conference Proceedings Citation Index - Science (CPCI-S) SC Computer Science GA BQ9OG UT WOS:000626317801035 DA 2024-09-05 ER PT J AU Zuccala, A van Someren, M van Bellen, M AF Zuccala, Alesia van Someren, Maarten van Bellen, Maurits TI A Machine-Learning Approach to Coding Book Reviews as Quality Indicators: Toward a Theory of Megacitation SO JOURNAL OF THE ASSOCIATION FOR INFORMATION SCIENCE AND TECHNOLOGY LA English DT Article DE bibliometrics; book reviews; machine learning ID CITATION CHARACTERISTICS; HUMANITIES; SCIENCE; SCHOLARLINESS; PUBLISHERS; MONOGRAPHS; BEHAVIOR; COUNTS; IMPACT AB A theory of megacitation is introduced and used in an experiment to demonstrate how a qualitative scholarly book review can be converted into a weighted bibliometric indicator. We employ a manual human-coding approach to classify book reviews in the field of history based on reviewers' assessments of a book author's scholarly credibility (SC) and writing style (WS). In total, 100 book reviews were selected from the American Historical Review and coded for their positive/negative valence on these two dimensions. Most were coded as positive (68% for SC and 47% for WS), and there was also a small positive correlation between SC and WS (r=0.2). We then constructed a classifier, combining both manual design and machine learning, to categorize sentiment-based sentences in history book reviews. The machine classifier produced a matched accuracy (matched to the human coding) of approximately 75% for SC and 64% for WS. WS was found to be more difficult to classify by machine than SC because of the reviewers' use of more subtle language. With further training data, a machine-learning approach could be useful for automatically classifying a large number of history book reviews at once. Weighted megacitations can be especially valuable if they are used in conjunction with regular book/journal citations, and libcitations (i.e., library holding counts) for a comprehensive assessment of a book/monograph's scholarly impact. C1 [Zuccala, Alesia] Univ Amsterdam, Inst Log Language & Computat, Fac Humanities, NL-1090 GE Amsterdam, Netherlands. [van Someren, Maarten; van Bellen, Maurits] Univ Amsterdam, Fac Sci, Inst Informat, NL-1098 XG Amsterdam, Netherlands. C3 University of Amsterdam; University of Amsterdam RP Zuccala, A (corresponding author), Univ Amsterdam, Inst Log Language & Computat, Fac Humanities, Sci Pk 105, NL-1090 GE Amsterdam, Netherlands. EM a.a.zuccala@uva.nl; m.w.vansomeren@uva.nl; mauritsvanbellen@gmail.com CR [Anonymous], CITATION INDEXING IT [Anonymous], 1984, The citation process: The role and significance of citations in scientific communication Bilhartz T. D., 1984, HIST TEACHER, V17, P525 Blake V.L., 1989, Collection Management, V11, P1 Bornmann L, 2008, J DOC, V64, P45, DOI 10.1108/00220410810844150 Burges CJC, 1998, DATA MIN KNOWL DISC, V2, P121, DOI 10.1023/A:1009715923555 Carlo P. W., 1996, COLLECTION MANAGEMEN, V20, P97 Case DO, 2000, J AM SOC INFORM SCI, V51, P635, DOI 10.1002/(SICI)1097-4571(2000)51:7<635::AID-ASI6>3.0.CO;2-H CHAMPION DJ, 1973, AM J SOCIOL, V78, P1256, DOI 10.1086/225431 CHUBIN DE, 1975, SOC STUD SCI, V5, P423, DOI 10.1177/030631277500500403 COLE S, 1967, AM SOCIOL REV, V32, P377, DOI 10.2307/2091085 Cozzens S.E., 1981, ISSK Newsletter on the New Directions in the Sociology of Science, V7, P16 COZZENS SE, 1989, SCIENTOMETRICS, V15, P437, DOI 10.1007/BF02017064 CRONIN B, 1994, J AM SOC INFORM SCI, V45, P537, DOI 10.1002/(SICI)1097-4571(199408)45:7<537::AID-ASI8>3.0.CO;2-Q Cronin B, 1997, J DOC, V53, P263, DOI 10.1108/EUM0000000007200 Cronin B, 1998, SCIENTOMETRICS, V43, P45, DOI 10.1007/BF02458393 CULLARS J, 1992, LIBR QUART, V62, P325, DOI 10.1086/602473 Cullars JM, 1998, LIBR INFORM SCI RES, V20, P41, DOI 10.1016/S0740-8188(98)90005-6 Dilevko J, 2006, J ACAD LIBR, V32, P452, DOI 10.1016/j.acalib.2006.07.001 DIODATO V, 1984, P AM SOC INFORM SCI, V21, P217 Feldman R., 2006, TEXT MINING HDB ADV FROST CO, 1979, LIBR QUART, V49, P399 GARFIELD E, 1964, SCIENCE, V144, P649, DOI 10.1126/science.144.3619.649 GILBERT GN, 1977, SOC STUD SCI, V7, P113 Glenn NorvalD., 1978, Contemporary Sociology, V7, P254 Guillory J., 2005, ADE B, V137, P18 Hartley J., 2010, J TECHNICAL WRITING, V40, P473, DOI [10.2190/TW.40.4.g, DOI 10.2190/TW.40.4.G] Hartley J, 2006, J AM SOC INF SCI TEC, V57, P1194, DOI 10.1002/asi.20399 Haustein S., 2012, MULTIDIMENSIONAL J E Hirsch W., 1974, 81 PURD U I STUD SOC Holton G., 1978, METRIC SCI ADVENT SC, P39 Jordy ML, 1999, COLL RES LIBR, V60, P132, DOI 10.5860/crl.60.2.132 KAPLAN N, 1965, AM DOC, V16, P179, DOI 10.1002/asi.5090160305 Knievel JE, 2005, LIBR QUART, V75, P142, DOI 10.1086/431331 Kousha K, 2011, J AM SOC INF SCI TEC, V62, P2147, DOI 10.1002/asi.21608 Lewison G, 2001, RES EVALUAT, V10, P89, DOI 10.3152/147154401781777051 Leydesdorff L, 1998, SCIENTOMETRICS, V43, P5, DOI 10.1007/BF02458391 LEYDESDORFF L, 1990, SCI TECHNOL HUM VAL, V15, P305, DOI 10.1177/016224399001500303 Lindholm-Romantschuk Y., 1998, Scholarly Book Reviewing in the Social Sciences and Humanities: The Flow of Ideas within and among Disciplines Maricic S, 1998, J AM SOC INFORM SCI, V49, P530, DOI 10.1002/(SICI)1097-4571(19980501)49:6<530::AID-ASI5>3.0.CO;2-U Merton R. K., 1996, ISIS, V79, P606 Miranda E. O., 1996, J EDUC THOUGHT, V30, P101 Moed HF, 2005, INFORM SCI KNOWL MAN, V9, P1, DOI 10.1007/1-4020-3714-7 MORAVCSIK MJ, 1975, SOC STUD SCI, V5, P86, DOI 10.1177/030631277500500106 Motta-Roth Desiree., 1998, Genre Studies in English for Academic Purposes, P29 Mullen T, 2004, PROC 2004 C EMPIRIC, P412 Natowitz A., 1997, AM HIST REV J AM HIS, V58, P322 Nederhof AJ, 2006, SCIENTOMETRICS, V66, P81, DOI 10.1007/s11192-006-0007-2 Nicolaisen J, 2002, COLIS4: EMERGING FRAMEWORKS AND METHODS, P123 Nicolaisen J, 2002, J DOC, V58, P383, DOI 10.1108/00220410210431118 Nicolaisen J, 2002, RES EVALUAT, V11, P129, DOI 10.3152/147154402781776808 Pang B, 2002, PROCEEDINGS OF THE 2002 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING, P79, DOI 10.3115/1118693.1118704 Parker J. M., 1989, COLLECTION MANAGEMEN, V11, P41 Pichappan P, 1996, J AM SOC INFORM SCI, V47, P650, DOI 10.1002/(SICI)1097-4571(199608)47:8<650::AID-ASI9>3.0.CO;2-S Prabowo R, 2009, J INFORMETR, V3, P143, DOI 10.1016/j.joi.2009.01.003 PRICE DJD, 1980, C EV SCI TECHN THEOR RILEY LE, 1970, AM SOCIOL, V5, P358 Salvetti F, 2004, COLORADO RES LINGUIS, V17 SCHUBERT A, 1984, SCIENTOMETRICS, V6, P433, DOI 10.1007/BF02025830 Sebastiani F, 2002, ACM COMPUT SURV, V34, P1, DOI 10.1145/505282.505283 SEREBNICK J, 1992, LIBR QUART, V62, P259 Small H, 2011, SCIENTOMETRICS, V87, P373, DOI 10.1007/s11192-011-0349-2 SMALL HG, 1978, SOC STUD SCI, V8, P327, DOI 10.1177/030631277800800305 SNIZEK WE, 1979, CONTEMP SOCIOL, V8, P339, DOI 10.2307/2064545 Spink A, 1998, J AM SOC INFORM SCI, V49, P364, DOI 10.1002/(SICI)1097-4571(19980401)49:4<364::AID-ASI6>3.0.CO;2-3 STOWE S, 1991, J AM HIST, V78, P591, DOI 10.2307/2079535 Tang HF, 2009, EXPERT SYST APPL, V36, P10760, DOI 10.1016/j.eswa.2009.02.063 Taylor W. R., 1967, THESIS PURDUE U W LA Thelwall M, 2010, J AM SOC INF SCI TEC, V61, P2544, DOI 10.1002/asi.21416 Thomson Reuters, 2012, PUTT BOOKS BACK LIB Torres-Salinas D, 2012, REV ESP DOC CIENT, V35, P615, DOI 10.3989/redc.2012.4.1010 Torres-Salinas D, 2009, J INFORMETR, V3, P9, DOI 10.1016/j.joi.2008.10.002 Turney PD, 2002, 40TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, PROCEEDINGS OF THE CONFERENCE, P417 Van Raan AFJ, 1998, SCIENTOMETRICS, V43, P129, DOI 10.1007/BF02458401 Weiss S.M., 2010, Text Mining: Predictive Methods for Analyzing Unstructured Information, DOI 10.1007/978-0-387-34555-0 WHITE HD, 1981, J AM SOC INFORM SCI, V32, P163, DOI 10.1002/asi.4630320302 White HD, 2009, J AM SOC INF SCI TEC, V60, P1083, DOI 10.1002/asi.21045 Williams P, 2009, ASLIB PROC, V61, P67, DOI 10.1108/00012530910932294 Wouters P, 1999, SCIENTOMETRICS, V44, P561, DOI 10.1007/BF02458496 Zuccala A, 2011, J AM SOC INF SCI TEC, V62, P1979, DOI 10.1002/asi.21588 NR 80 TC 25 Z9 25 U1 1 U2 67 PU WILEY PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 2330-1635 EI 2330-1643 J9 J ASSOC INF SCI TECH PD NOV PY 2014 VL 65 IS 11 BP 2248 EP 2260 DI 10.1002/asi.23104 PG 13 WC Computer Science, Information Systems; Information Science & Library Science WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Computer Science; Information Science & Library Science GA AS4EE UT WOS:000344225200007 DA 2024-09-05 ER PT C AU Khor, KA Ko, G Theseira, W Cai, XQ Goh, YC AF Khor, Khiam Aik Ko, Giovanni Theseira, Walter Cai, Xin Qing Goh, Yeow Chong BE Catalano, G Daraio, C Gregori, M Moed, HF Ruocco, G TI Evaluating Human Versus Machine Learning Performance in Classifying Research Abstracts SO 17TH INTERNATIONAL CONFERENCE ON SCIENTOMETRICS & INFORMETRICS (ISSI2019), VOL II SE Proceedings of the International Conference on Scientometrics and Informetrics LA English DT Proceedings Paper CT 17th International Conference of the International-Society-for-Scientometrics-and-Informetrics (ISSI) on Scientometrics and Informetrics CY SEP 02-05, 2019 CL Sapienza Univ Rome, Rome, ITALY HO Sapienza Univ Rome AB Machine Learning (ML) methods are now applied to many problems in Scientometrics. Given sufficiently large training datasets, ML can efficiently complete natural language processing tasks such as classifying research abstracts and outputs, which otherwise require extensive manpower. But what are the relative strengths and limitations of ML methods versus human research assistance when training data is limited? Our study compares the performance of 63 student research assistants to that of an ML model. The task is classifying a research grant abstract into one of nineteen scientific funding areas in physical and life sciences defined by the European Research Council. We find that ML models, even trained on relatively small datasets, outperform the average human research assistant. While some research assistants perform at levels just below that of the ML models, the research assistants display lower inter-rater reliability. Crucially, human classification performance and reliability appears fixed over moderate levels of training and task exposure, suggesting that selecting research assistants based on pre-existing ability could be superior to relying on task-specific training. These results suggest ML classification may be superior to human research assistance for natural language processing tasks even when training datasets are limited. C1 [Khor, Khiam Aik] Nanyang Technol Univ, Talent Recruitment & Career Support TRACS Off & B, 50 Nanyang Ave, Singapore 639798, Singapore. [Ko, Giovanni] Singapore Management Univ, Sch Econ, 90 Stamford Rd, Singapore 178903, Singapore. [Theseira, Walter] Singapore Univ Social Sci, Sch Business, 463 Clementi Rd, Singapore 599494, Singapore. C3 Nanyang Technological University; Singapore Management University; Singapore University of Social Sciences (SUSS) RP Ko, G (corresponding author), Singapore Management Univ, Sch Econ, 90 Stamford Rd, Singapore 178903, Singapore. EM mkakhor@ntu.edu.sg; giovanniko@smu.edu.sg; waltertheseira@suss.edu.sg; xqcai@ntu.edu.sg; ycgoh@ntu.edu.sg RI Khor, Michael/B-6929-2009; Theseira, Walter/AAW-2209-2020 OI Theseira, Walter/0000-0002-8738-2341 CR BUCKLAND M, 1994, J AM SOC INFORM SCI, V45, P12, DOI 10.1002/(SICI)1097-4571(199401)45:1<12::AID-ASI2>3.0.CO;2-L COHEN J, 1960, EDUC PSYCHOL MEAS, V20, P37, DOI 10.1177/001316446002000104 European Research Council, 2018, START GRANTS FLEISS JL, 1971, PSYCHOL BULL, V76, P378, DOI 10.1037/h0031619 Freyman CA, 2016, RES EVALUAT, V25, P442, DOI 10.1093/reseval/rvw016 Joachims T., 1998, Machine Learning: ECML-98. 10th European Conference on Machine Learning. Proceedings, P137, DOI 10.1007/BFb0026683 Khor K. A., 2018, 23 INT C SCI TECHN I King DA, 2004, NATURE, V430, P311, DOI 10.1038/430311a McHugh ML, 2012, BIOCHEM MEDICA, V22, P276, DOI 10.11613/bm.2012.031 Schubert J., 2010, Proceedings of the 13th International Conference on Information Fusion (FUSION 2010) Simundic AM, 2009, CLIN CHEM LAB MED, V47, P1361, DOI 10.1515/CCLM.2009.306 Sing DC, 2017, SPINE, V42, P863, DOI 10.1097/BRS.0000000000002079 Sokolova M, 2009, INFORM PROCESS MANAG, V45, P427, DOI 10.1016/j.ipm.2009.03.002 Surowiecki J., 2004, WISDOM CROWDS Yau CK, 2014, SCIENTOMETRICS, V100, P767, DOI 10.1007/s11192-014-1321-8 NR 15 TC 0 Z9 0 U1 0 U2 2 PU INT SOC SCIENTOMETRICS & INFORMETRICS-ISSI PI LEUVEN PA KATHOLIEKE UNIV LEUVEN, FACULTEIT E T E W, DEKENSTRAAT 2, LEUVEN, B-3000, BELGIUM SN 2175-1935 BN 978-88-3381-118-5 J9 PRO INT CONF SCI INF PY 2019 BP 2157 EP 2162 PG 6 WC Computer Science, Interdisciplinary Applications; Information Science & Library Science WE Conference Proceedings Citation Index - Science (CPCI-S); Conference Proceedings Citation Index - Social Science & Humanities (CPCI-SSH) SC Computer Science; Information Science & Library Science GA BO2SO UT WOS:000508227200085 DA 2024-09-05 ER PT J AU SCHIMINOVICH, S AF SCHIMINOVICH, S TI AUTOMATIC CLASSIFICATION OF BIBLIOGRAPHIC DATA BASES - MODEL FOR COGNITIVE BIOLOGICAL PROCESSES AND ARTIFICIAL INTELLIGENCE SO BIOSCIENCES COMMUNICATIONS LA English DT Article C1 AMER INST PHYS,355 E 45 ST,NEW YORK,NY 10017. CR FEINMAN RD, 1973, J AM SOC INFORM SCI, V24, P382, DOI 10.1002/asi.4630240510 LANCASTER FW, 1968, JAN HEW NAT LIBR MED MACKAY DH, 1969, INFORMATION MECHANIS MCCARTHY J, 1955, ANN MATH STUD, V34, P5 SALTON G, 1965, AM DOCUMENTAT, V16 SALTON G, 1965, COMMUN ACM, V8 SCHIMINOVICH S, 1971, INFORM STORAGE RET, V6, P417, DOI 10.1016/0020-0271(71)90008-8 NR 7 TC 1 Z9 1 U1 0 U2 3 PU KARGER PI BASEL PA ALLSCHWILERSTRASSE 10, CH-4009 BASEL, SWITZERLAND SN 0378-9845 J9 BIOSCI COMMUN PY 1975 VL 1 IS 1 BP 24 EP 39 PG 16 WC Communication; Information Science & Library Science WE Social Science Citation Index (SSCI) SC Communication; Information Science & Library Science GA AT159 UT WOS:A1975AT15900003 DA 2024-09-05 ER PT J AU Kseoglu, MA AF Koseoglu, Mehmet Ali TI Identifying the intellectual structure of fields: introduction of the MAK approach SO SCIENTOMETRICS LA English DT Article DE Co-citation analysis; Text-net analysis; LDA; Strategic management ID STRATEGIC MANAGEMENT RESEARCH; INFORMATION-SYSTEMS; EVOLUTION; FUTURE AB This study introduces MAK approach to investigate intellectual structure of fields which combines text-net analysis (TNA), latent dirichlet allocation (LDA), and co-citation analysis. Researchers have previously deployed co-citation analysis to reveal the intellectual structure of fields. However, in these applications, the research has two technical limitations-small representativeness in datasets analyzed and the primary consideration for dated documents-towards the co-citation analysis. These limitations impede the formation of a larger picture in the structure. The present study seeks to eliminate these limitations by utilizing TNA and LDA methods as topic modeling approaches for 38,368 journal articles as references with 125,154 appearances in 2680 articles published between 1980 and 2019 in theStrategic Management Journal(SMJ). We suggest researchers should embrace MAK approach as complementary approach to research, with its focus on the intellectual structures of the field. We provide a workflow to show potential research applications and address advantages and limitations associated with the two new methods. C1 [Koseoglu, Mehmet Ali] Hong Kong Polytech Univ, Sch Hotel & Tourism Management, Kowloon, Hong Kong, Peoples R China. C3 Hong Kong Polytechnic University RP Kseoglu, MA (corresponding author), Hong Kong Polytech Univ, Sch Hotel & Tourism Management, Kowloon, Hong Kong, Peoples R China. EM MehmetAli.Koseoglu@polyu.edu.hk RI Koseoglu, Mehmet Ali/AAF-1401-2019 OI Koseoglu, Mehmet Ali/0000-0001-9369-1995 CR Guerras-Martín LA, 2014, BRQ-BUS RES Q, V17, P69, DOI 10.1016/j.brq.2014.03.001 Batistic S, 2017, LEADERSHIP QUART, V28, P86, DOI 10.1016/j.leaqua.2016.10.007 Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993 Bragge J, 2019, J BUS RES, V97, P141, DOI 10.1016/j.jbusres.2018.12.050 Cook DJ, 1997, ANN INTERN MED, V126, P376, DOI 10.7326/0003-4819-126-5-199703010-00006 CULNAN MJ, 1986, MANAGE SCI, V32, P156, DOI 10.1287/mnsc.32.2.156 Davis GF, 2014, ADMIN SCI QUART, V59, P193, DOI 10.1177/0001839214534186 Debortoli S, 2016, COMMUN ASSOC INF SYS, V39, P110, DOI 10.17705/1CAIS.03907 Eto M, 2019, INFORM PROCESS MANAG, V56, DOI 10.1016/j.ipm.2019.05.007 Ferreira JJM, 2016, SCIENTOMETRICS, V109, P1, DOI 10.1007/s11192-016-2008-0 Francisco GL, 2019, INT BUS REV, V28, P713, DOI 10.1016/j.ibusrev.2019.02.001 Furrer O, 2008, INT J MANAG REV, V10, P1, DOI 10.1111/j.1468-2370.2007.00217.x García-Lillo F, 2018, INT J CONTEMP HOSP M, V30, P1741, DOI [10.1108/ijchm-04-2017-0187, 10.1108/IJCHM-04-2017-0187] González-Teruel A, 2015, SCIENTOMETRICS, V103, P687, DOI 10.1007/s11192-015-1548-z Guba E. G., 1989, Fourth Generation Evaluation, V1st ed Guba EG, 1994, HDB QUALITATIVE RES, P105, DOI DOI 10.1093/INTQHC/MZM042 Guo Y, 2017, TOURISM MANAGE, V59, P467, DOI 10.1016/j.tourman.2016.09.009 Hota PK, 2020, J BUS ETHICS, V166, P89, DOI 10.1007/s10551-019-04129-4 Hou JH, 2018, SCIENTOMETRICS, V115, P869, DOI 10.1007/s11192-018-2695-9 Jelodar H, 2019, MULTIMED TOOLS APPL, V78, P15169, DOI 10.1007/s11042-018-6894-4 Koseoglu MA, 2019, ANN TOURISM RES, V79, DOI 10.1016/j.annals.2019.102760 Köseoglu MA, 2019, INT J HOSP MANAG, V78, P234, DOI 10.1016/j.ijhm.2018.09.006 Koseoglu MA, 2016, SCIENTOMETRICS, V109, P203, DOI 10.1007/s11192-016-1894-5 Koseoglu MA, 2016, BRQ-BUS RES Q, V19, P153, DOI 10.1016/j.brq.2016.02.001 Krippendorff K., 2011, Computing krippendorff's alpha-reliability, DOI DOI 10.1002/9781405186407.WBIECR029 Kunisch S., 2018, Organizational Research Methods, V21, P519, DOI [DOI 10.1177/1094428118770750, 10.1177/1094428118770750] Lampe J, 2020, ENTREP THEORY PRACT, V44, P784, DOI 10.1177/1042258719851217 Molina-Azorín JF, 2014, BRQ-BUS RES Q, V17, P102, DOI 10.1016/j.brq.2014.01.001 Müller O, 2016, EUR J INFORM SYST, V25, P289, DOI 10.1057/ejis.2016.2 Paranyushkin D, 2019, WEB CONFERENCE 2019: PROCEEDINGS OF THE WORLD WIDE WEB CONFERENCE (WWW 2019), P3584 Park E, 2018, INT J CONTEMP HOSP M, V30, P3386, DOI 10.1108/IJCHM-11-2017-0714 Ramos-Rodríguez AR, 2004, STRATEGIC MANAGE J, V25, P981, DOI 10.1002/smj.397 Schmiedel T, 2019, ORGAN RES METHODS, V22, P941, DOI 10.1177/1094428118773858 Shafique M, 2013, STRATEGIC MANAGE J, V34, P62, DOI 10.1002/smj.2002 Slevitch L, 2011, J QUAL ASSUR HOSP TO, V12, P73, DOI 10.1080/1528008X.2011.541810 SULLIVAN D, 1977, SOC STUD SCI, V7, P223, DOI 10.1177/030631277700700205 Tan LW, 2015, NANKAI BUS REV NT, V6, P20, DOI 10.1108/NBRI-09-2014-0036 Torraco RJ, 2016, HUM RESOUR DEV REV, V15, P404, DOI 10.1177/1534484316671606 Toubia O, 2019, J MARKETING RES, V56, P18, DOI 10.1177/0022243718820559 VANRAAN AFJ, 1990, NATURE, V347, P626, DOI 10.1038/347626a0 Webster J, 2002, MIS QUART, V26, pXIII Zhao HY, 2018, INT BUS REV, V27, P389, DOI 10.1016/j.ibusrev.2017.09.006 Zupic I, 2015, ORGAN RES METHODS, V18, P429, DOI 10.1177/1094428114562629 NR 43 TC 20 Z9 20 U1 4 U2 4 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0138-9130 EI 1588-2861 J9 SCIENTOMETRICS JI Scientometrics PD DEC PY 2020 VL 125 IS 3 BP 2169 EP 2197 DI 10.1007/s11192-020-03719-8 EA SEP 2020 PG 29 WC Computer Science, Interdisciplinary Applications; Information Science & Library Science WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Computer Science; Information Science & Library Science GA PE1YL UT WOS:000571691800002 DA 2024-09-05 ER PT C AU Brown, AO Crawford, RH Jensen, DD Rencis, JJ Liu, JC Watson, KA Jackson, KS Hackett, RK Schimpf, PH Chen, CC Orabi, II Akasheh, F Wood, JJ Dunlap, BU Sargent, ER AF Brown, Ashland O. Crawford, Richard H. Jensen, Daniel D. Rencis, Joseph J. Liu, Jiancheng Watson, Kyle A. Jackson, Kathy Schmidt Hackett, Rachelle Kisst Schimpf, Paul Henry Chen, Chuan-Chiang Orabi, Ismail I. Akasheh, Firas Wood, John J. Dunlap, Brock U. Sargent, Ella R. GP ASEE TI Assessment of Active Learning Modules: An Update of Research Findings SO 2013 ASEE ANNUAL CONFERENCE SE ASEE Annual Conference & Exposition LA English DT Proceedings Paper CT ASEE Annual Conference CY JUN 23-26, 2013 CL Atlanta, GA ID CURRICULUM AB The landscape of contemporary engineering education is ever changing, adapting and evolving. As an example, finite element theory and application has often been included in graduate-level courses in engineering programs; however, current industry needs bachelor's-level engineering graduates with skills in applying this essential analysis and design technique. Engineering education is also changing to include more active learning. In response to the need to introduce undergrads to the finite element method as well as the need for engineering curricula to include more active learning, we have developed, implemented and assessed a suite of Active Learning Module (ALMs). The ALMs are designed to improve student learning of difficult engineering concepts while students gain essential knowledge of finite element analysis. We have used the Kolb Learning Cycle as a conceptual framework to guide our design of the ALMs. Originally developed using MSC Nastran, followed by development efforts in SolidWorks Simulation, ANSOFT, ANSYS, and other commercial FEA software packages, a team of researchers, with National Science Foundation support, have created over twenty-eight active learning modules. We will discuss the implementation of these learning modules which have been incorporated into undergraduate courses that cover topics such as machine design, mechanical vibrations, heat transfer, bioelectrical engineering, electromagnetic field analysis, structural fatigue analysis, computational fluid dynamics, rocket design, chip formation during manufacturing, and large scale deformation in machining. This update on research findings includes statistical results for each module which compare performance on pre-and post-learning module quizzes to gauge change in student knowledge related to the difficult engineering concepts that each module addresses. Statistically significant student performance gains provide evidence of module effectiveness. In addition, we present statistical comparisons between different personality types (based on Myers-Briggs Type Indicator, MBTI, subgroups) and different learning styles (based on Felder-Solomon ILS subgroups) in regards to the average gains each group of students have made on quiz performance. Although exploratory, and generally based on small sample sizes at this point in our multi-year effort, the modules for which subgroup differences are found are being carefully reviewed in an attempt to determine whether modifications should be made to better ensure equitable impact of the modules across students from specific personality and /or learning styles subgroups (e.g., MBTI Intuitive versus Sensing; ILS Sequential versus Global). C1 [Brown, Ashland O.] Univ Pacific, Mech Engn, Sch Engn & Comp Sci, Stockton, CA 95211 USA. [Crawford, Richard H.] Univ Texas Austin, Mech Engn, Austin, TX 78712 USA. [Jensen, Daniel D.] US Air Force Acad, Engn Mech, Colorado Springs, CO 80840 USA. [Rencis, Joseph J.] Tennessee Technol Univ, Clay N Hixson Chair Engn Leadership, Cookeville, TN 38505 USA. [Rencis, Joseph J.] Tennessee Technol Univ, Mech Engn, Cookeville, TN 38505 USA. [Liu, Jiancheng] Univ Pacific, Dept Mech Engn, Stockton, CA 95211 USA. [Watson, Kyle A.] Univ Pacific, Mech Engn, Stockton, CA 95211 USA. [Jackson, Kathy Schmidt] Penn State Univ, Schreyer Inst Teaching Excellence, University Pk, PA 16802 USA. [Hackett, Rachelle Kisst] Univ Pacific, Stockton, CA 95211 USA. [Schimpf, Paul Henry] Eastern Washington Univ, Cheney, WA 99004 USA. [Chen, Chuan-Chiang] Calif State Polytech Univ Pomona, Dept Mech Engn, Pomona, CA 91768 USA. [Orabi, Ismail I.] Univ New Haven, Dept Mech Engn, West Haven, CT 06516 USA. [Akasheh, Firas] Tuskegee Univ, Tuskegee, AL 36088 USA. [Wood, John J.] US Air Force Acad, Engn Mech, Colorado Springs, CO 80840 USA. [Dunlap, Brock U.] Univ Texas Austin, Act Learning & Prototyping Methodol, Austin, TX 78712 USA. [Sargent, Ella R.] Univ Pacific, Benerd Sch Educ, Stockton, CA 95211 USA. C3 University of the Pacific; University of Texas System; University of Texas Austin; United States Department of Defense; United States Air Force; United States Air Force Academy; Tennessee Technological University; Tennessee Technological University; University of the Pacific; University of the Pacific; Pennsylvania Commonwealth System of Higher Education (PCSHE); Pennsylvania State University; Pennsylvania State University - University Park; University of the Pacific; Eastern Washington University; California State University System; California State Polytechnic University Pomona; University New Haven; Tuskegee University; United States Department of Defense; United States Air Force; United States Air Force Academy; University of Texas System; University of Texas Austin; University of the Pacific RP Brown, AO (corresponding author), Univ Pacific, Mech Engn, Sch Engn & Comp Sci, Stockton, CA 95211 USA. CR [Anonymous], EFF EV 2012 2013 ACC Baker J. R., 2002, Computers in Education Journal, V12, P10 Belytschko T, 1997, INT J ENG EDUC, V13, P457 BORCHERT R, 1999, P ASEE ANN C EXP CHA Bower M., 2000, P ASEE ANN C EXP ST Brinson L.C., 1997, Journal of Engineering Education, V86, P159 Brown A., 2004, ANAL NEURAL NETWORK, P1 Brown A.O, 2004, 2004 ASME INT MECH E Brown A.O., 2008, 2008 ASEE ANN C EXP Chiou R., 1998, Computers in Education Journal, V8, P50 Coffman J., 2009, P 2009 ASEE MIDDL AT FELDER RM, 1988, ENG EDUC, V78, P674 Graham L., 2002, Computers in Education Journal, V12, P32 Kaufman K., 2009, P ASEE ANN C EXP AUS Kaufman K., 2011, INT J ENG UNPUB OCT Kaufman K., 2011, ADV ENG ED UNPUB NOV Kolb D.A., 2014, Experiential Learning: Experience as a source of learning and development Linsey J., 2009, Advances in Engineering Education, V1, P1 Liu J., 2008, 2008 ASEE PAC SW REG Mahoney D. P., 1999, COMPUTER GRAPHI 0303, P30 Matthews J. M., 1999, Computers in Education Journal, V9, P46 Milton-Benoit J., 1998, J ENG EDUC, V87, P511 Myers IB., 1985, Manual: a Guide to the Development and Use of the Myers-Briggs Type Indicator Nesbit S.N., 1998, COMPUTER APPL ENG ED, V87, P511 Rencis J. J., 1999, Computers in Education Journal, V9, P22 Sorby SA, 1999, COMPUT APPL ENG EDUC, V7, P252, DOI 10.1002/(SICI)1099-0542(1999)7:4<252::AID-CAE7>3.0.CO;2-Z STICE JE, 1987, ENG EDUC, V77, P291 Thilmany J, 2001, MECH ENG, V123, P60 Thilmany J, 2000, MECH ENG, V122, P88, DOI 10.1115/1.2000-OCT-6 Watson K.A., 2009, P 2009 ASEE PAC SW C Watson KA, 2012, ASEE ANNU CONF EXPO NR 31 TC 0 Z9 0 U1 0 U2 8 PU AMER SOC ENGINEERING EDUCATION PI WASHINGTON PA 1818 N STREET, NW SUITE 600, WASHINGTON, DC 20036 USA SN 2153-5965 J9 ASEE ANNU CONF EXPO PY 2013 PG 26 WC Education & Educational Research; Education, Scientific Disciplines; Engineering, Multidisciplinary WE Conference Proceedings Citation Index - Science (CPCI-S); Conference Proceedings Citation Index - Social Science & Humanities (CPCI-SSH) SC Education & Educational Research; Engineering GA BE7HB UT WOS:000375256301018 DA 2024-09-05 ER PT J AU Goh, YC Cai, XQ Theseira, W Ko, G Khor, KA AF Goh, Yeow Chong Cai, Xin Qing Theseira, Walter Ko, Giovanni Khor, Khiam Aik TI Evaluating human versus machine learning performance in classifying research abstracts SO SCIENTOMETRICS LA English DT Article DE Discipline classification; Text classification; Supervised classification ID COMBINED COCITATION; WORD ANALYSIS; SCIENCE AB We study whether humans or machine learning (ML) classification models are better at classifying scientific research abstracts according to a fixed set of discipline groups. We recruit both undergraduate and postgraduate assistants for this task in separate stages, and compare their performance against the support vectors machine ML algorithm at classifying European Research Council Starting Grant project abstracts to their actual evaluation panels, which are organised by discipline groups. On average, ML is more accurate than human classifiers, across a variety of training and test datasets, and across evaluation panels. ML classifiers trained on different training sets are also more reliable than human classifiers, meaning that different ML classifiers are more consistent in assigning the same classifications to any given abstract, compared to different human classifiers. While the top five percentile of human classifiers can outperform ML in limited cases, selection and training of such classifiers is likely costly and difficult compared to training ML models. Our results suggest ML models are a cost effective and highly accurate method for addressing problems in comparative bibliometric analysis, such as harmonising the discipline classifications of research from different funding agencies or countries. C1 [Goh, Yeow Chong; Cai, Xin Qing] Nanyang Technol Univ, Sch Mech & Aerosp Engn, Singapore, Singapore. [Theseira, Walter] Singapore Univ Social Sci, Sch Business, Singapore, Singapore. [Ko, Giovanni] Singapore Management Univ, Sch Econ, Singapore, Singapore. [Khor, Khiam Aik] Nanyang Technol Univ, Talent Recruitment & Career Support TRACS Off & B, Singapore, Singapore. C3 Nanyang Technological University; Singapore University of Social Sciences (SUSS); Singapore Management University; Nanyang Technological University RP Khor, KA (corresponding author), Nanyang Technol Univ, Talent Recruitment & Career Support TRACS Off & B, Singapore, Singapore. EM mkakhor@ntu.edu.sg RI Khor, Michael/B-6929-2009; Theseira, Walter/AAW-2209-2020 OI Theseira, Walter/0000-0002-8738-2341 FU Singapore National Research Foundation [NRF2014-NRF-SRIE001-027] FX The study was partially funded by the Singapore National Research Foundation, Grant No. NRF2014-NRF-SRIE001-027. A portion of this study used the resources of the ASPIRE1 supercomputer hosted at the National Supercomputing Centre (NSCC) Singapore (https://www.nscc.sg/). CR Aggarwal C.C., 2012, MINING TEXT DATA Baeza-Yates Ricardo, 1999, MODERN INFORM RETRIE Bergstra J, 2012, J MACH LEARN RES, V13, P281 BRAAM RR, 1991, J AM SOC INFORM SCI, V42, P233, DOI 10.1002/(SICI)1097-4571(199105)42:4<233::AID-ASI1>3.0.CO;2-I BRAAM RR, 1991, J AM SOC INFORM SCI, V42, P252, DOI 10.1002/(SICI)1097-4571(199105)42:4<252::AID-ASI2>3.0.CO;2-G CALLON M, 1983, SOC SCI INFORM, V22, P191, DOI 10.1177/053901883022002003 CORTES C, 1995, MACH LEARN, V20, P273, DOI 10.1023/A:1022627411411 DEBRUIN RE, 1993, SCIENTOMETRICS, V26, P65, DOI 10.1007/BF02016793 European Research Council, 2019, INF APPL START CONS European Research Council, 2019, 2019 ERC EV PAN KEYW FLEISS JL, 1971, PSYCHOL BULL, V76, P378, DOI 10.1037/h0031619 Freyman CA, 2016, RES EVALUAT, V25, P442, DOI 10.1093/reseval/rvw016 Herzog C., 2016, OECD BLUE SKY 2016 F Khor K. A., 2018, 23 INT C SCI TECHN I King DA, 2004, NATURE, V430, P311, DOI 10.1038/430311a KING J, 1987, J INFORM SCI, V13, P261, DOI 10.1177/016555158701300501 LANDIS JR, 1977, BIOMETRICS, V33, P363, DOI 10.2307/2529786 Lariviere V., 2015, COMP SCIENTOMETRIC A Lee CH, 2009, EXPERT SYST APPL, V36, P2400, DOI 10.1016/j.eswa.2007.12.052 Liu XX, 2009, PROCEEDINGS OF THE THIRD INTERNATIONAL WORKSHOP ON MATRIX ANALYSIS AND APPLICATIONS, VOL 2, P49 Liu XH, 2012, SCIENTOMETRICS, V91, P473, DOI 10.1007/s11192-011-0600-x Liu XH, 2010, J AM SOC INF SCI TEC, V61, P1105, DOI 10.1002/asi.21312 McHugh ML, 2012, BIOCHEM MEDICA, V22, P276, DOI 10.11613/bm.2012.031 Moed H. F., 2006, 200601 CWTS Moed HF, 2010, J INFORMETR, V4, P265, DOI 10.1016/j.joi.2010.01.002 Nichols LG, 2014, SCIENTOMETRICS, V100, P741, DOI 10.1007/s11192-014-1319-2 Oberski J.E. J., 1988, Handbook of Quantitative Studies of Science and Technology, P431, DOI [DOI 10.1016/B978-0-44470537-2.50019-2, 10.1016/B978-0-44470537-2.50019-2] Piro FN, 2013, J AM SOC INF SCI TEC, V64, P307, DOI 10.1002/asi.22746 Radicchi F, 2008, P NATL ACAD SCI USA, V105, P17268, DOI 10.1073/pnas.0806977105 Schumacher Jan., 2010, Proc. ACMIEEE Int. Symp. on Empirical Software Eng. and Measurement. ESEM '10, V8, P1, DOI [10.1145/1852786.1852797, DOI 10.1145/1852786.1852797] Simundic AM, 2009, CLIN CHEM LAB MED, V47, P1361, DOI 10.1515/CCLM.2009.306 SMALL H, 1973, J AM SOC INFORM SCI, V24, P265, DOI 10.1002/asi.4630240406 Sokolova M, 2009, INFORM PROCESS MANAG, V45, P427, DOI 10.1016/j.ipm.2009.03.002 Weismayer C., 2018, INFORM COMMUNICATION, P365, DOI [DOI 10.1007/978-3-319-72923-7_28, 10.1007/978, DOI 10.1007/978] Xing Wei, 2006, Proceedings of the Twenty-Ninth Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, P178 Yau CK, 2014, SCIENTOMETRICS, V100, P767, DOI 10.1007/s11192-014-1321-8 NR 36 TC 24 Z9 25 U1 1 U2 18 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0138-9130 EI 1588-2861 J9 SCIENTOMETRICS JI Scientometrics PD NOV PY 2020 VL 125 IS 2 BP 1197 EP 1212 DI 10.1007/s11192-020-03614-2 EA JUL 2020 PG 16 WC Computer Science, Interdisciplinary Applications; Information Science & Library Science WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Computer Science; Information Science & Library Science GA OT3PI UT WOS:000549661600001 PM 32836529 OA Green Published, hybrid DA 2024-09-05 ER PT J AU Di Zio, S Tontodimamma, A del Gobbo, E Fontanella, L AF Di Zio, Simone Tontodimamma, Alice del Gobbo, Emiliano Fontanella, Lara TI Exploring the research dynamics of futures studies: An analysis of six top journals SO FUTURES LA English DT Article DE Futures studies; Bibliometrics analysis; Dynamic topic models; Latent Dirichlet Allocation; GIS ID EVOLUTION; SCIENCE; TRENDS; TOOL AB This paper focuses on the global literature on Futures Studies and foresight over the last thirty years by using a bibliographic dataset from the Scopus and using an integrated statistical methodological approach. Bibliometric measures, knowledge mapping tools, topic modelling, Geographical Information Systems and network analysis are used to understand the scholarly literature's evolution, main research areas, temporal evolution, geographical differences, and fragmentation. This allows to outline a separation between research areas and understand the dynamics of the main topics. The aim of this research is to fill the gap in the literature regarding the mapping of research themes in Futures Studies and foresight, as well as their temporal evolution and geographical distribution. Results showed a notable growth in the number of published articles in the last 32 years and identified (through Latent Dirichlet Allocation) 21 topics, which summarize the most important research themes in the context of Future Studies and foresight. A dynamic topic model helped to understand the evolution of topics, while the network analysis provided quantitative measures on the interactions between the topics as well as the international collaborations. Finally, a geographical analysis of both authors and topics highlighted the global distribution of research on Futures Studies. C1 [Di Zio, Simone; Tontodimamma, Alice; Fontanella, Lara] G dAnnunzio Univ Chieti Pescara, Dept Legal & Social Sci, Pescara, Italy. [del Gobbo, Emiliano] Univ Foggia, Dept Econ Management & Terr, Foggia, Italy. C3 G d'Annunzio University of Chieti-Pescara; University of Foggia RP Di Zio, S (corresponding author), G dAnnunzio Univ Chieti Pescara, Dept Legal & Social Sci, Pescara, Italy. EM simone.dizio@unich.it; alice.tontodimamma@unich.it; emiliano.delgobbo@unifg.it; lara.fontanella@unich.it OI del Gobbo, Emiliano/0000-0003-1088-7306; Di Zio, Simone/0000-0002-9139-1451 CR Alghamdi R, 2015, INT J ADV COMPUT SC, V6, P147 [Anonymous], 2006, MULTIPLE CORRES ANAL Aria M, 2022, SUSTAINABILITY-BASEL, V14, DOI 10.3390/su14063643 Aria M, 2017, J INFORMETR, V11, P959, DOI 10.1016/j.joi.2017.08.007 Arun R, 2010, LECT NOTES ARTIF INT, V6118, P391 Barua A, 2014, EMPIR SOFTW ENG, V19, P619, DOI 10.1007/s10664-012-9231-y Bell Wendell., 1997, Foundations of Futures Studies: Human Science for a New Era, vol. 2: Values, Objectivity, and the Good Society, V2 Blei D.M., 2006, P 23 INT C MACHINE L, P113, DOI [DOI 10.1145/1143844.1143859, 10.1145/1143844.1143859, 10.1145/1143844.114385] Blei DM, 2012, COMMUN ACM, V55, P77, DOI 10.1145/2133806.2133826 Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993 Brandes U, 2001, J MATH SOCIOL, V25, P163, DOI 10.1080/0022250X.2001.9990249 Buehring J, 2020, SHE JI, V6, P408, DOI 10.1016/j.sheji.2020.07.002 CALLON M, 1991, SCIENTOMETRICS, V22, P155, DOI 10.1007/BF02019280 Chowdhary K., 2020, FUNDAMENTALS ARTIFIC, P603, DOI 10.1007/978-81-322-3972-7_19 Cobo MJ, 2011, J INFORMETR, V5, P146, DOI 10.1016/j.joi.2010.10.002 Csardi G., 2006, INTERJOUR NALEZ COMP, V1695 Dator Jim., 2011, Leadership in Science and Technology, V1, P32 De Jouvenel B., 1964, ART CONJECTURE DEERWESTER S, 1990, J AM SOC INFORM SCI, V41, P391, DOI 10.1002/(SICI)1097-4571(199009)41:6<391::AID-ASI1>3.0.CO;2-9 Ebadi A, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0133061 Fergnani A, 2019, FUTURES, V105, P104, DOI 10.1016/j.futures.2018.09.007 Fortunato S, 2010, PHYS REP, V486, P75, DOI 10.1016/j.physrep.2009.11.002 Gan JX, 2021, ENTROPY-SWITZ, V23, DOI 10.3390/e23101301 Geurts Amber, 2022, Futures & Foresight Science, V4, DOI 10.1002/ffo2.99 Gidley JenniferM., 2017, The Future: A Very Short Introduction Hofmann T, 1999, SIGIR'99: PROCEEDINGS OF 22ND INTERNATIONAL CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, P50, DOI 10.1145/312624.312649 INAYATULLAH S, 1990, FUTURES, V22, P115, DOI 10.1016/0016-3287(90)90077-U Kayser V, 2020, TECHNOL FORECAST SOC, V156, DOI 10.1016/j.techfore.2020.120086 Krigsholm P, 2019, LAND-BASEL, V8, DOI 10.3390/land8120181 Kuosa T, 2011, FUTURES, V43, P327, DOI 10.1016/j.futures.2010.04.001 Masini EleonaraBarbieri., 1993, WHY FUTURE STUDIES Masini E, 2006, FUTURES, V38, P1158, DOI 10.1016/j.futures.2006.02.004 McPhee C, 2017, TECHNOL INNOV MANAG, V7, P5 Miller R, 2018, TRANSFORMING THE FUTURE: ANTICIPATION IN THE 21ST CENTURY, P1 Momtazmanesh Sara, 2021, SN Compr Clin Med, V3, P1699, DOI 10.1007/s42399-021-00896-2 Niiniluoto I, 2001, FUTURES, V33, P371, DOI 10.1016/S0016-3287(00)00080-X Price D. J. d. S., 1963, Little Science, Big Science Rehurek R., 2011, Gensim-statistical semantics in python" Rosa AB, 2021, FUTURES, V129, DOI 10.1016/j.futures.2021.102733 Sardar Z, 2010, FUTURES, V42, P177, DOI 10.1016/j.futures.2009.11.001 Schultz W.L., 2015, World Futures Review, V7, P324 Son H, 2015, FUTURES, V66, P120, DOI 10.1016/j.futures.2014.12.013 Steyvers M, 2006, LATENT SEMANTIC ANAL Sun Y, 2011, J COMPUT GRAPH STAT, V20, P316, DOI 10.1198/jcgs.2011.09224 Tontodimamma A, 2021, SCIENTOMETRICS, V126, P157, DOI 10.1007/s11192-020-03737-6 Wang C, 2008, P 24 C UNCERTAINTY A, P579 Wang Xuerui., P 12 ACM SIGKDD INT, P424 Zhang JL, 2017, ADV INTEL SYS RES, V132, P300 NR 48 TC 2 Z9 2 U1 5 U2 15 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0016-3287 EI 1873-6378 J9 FUTURES JI Futures PD OCT PY 2023 VL 153 AR 103232 DI 10.1016/j.futures.2023.103232 EA AUG 2023 PG 22 WC Economics; Regional & Urban Planning WE Social Science Citation Index (SSCI) SC Business & Economics; Public Administration GA Q1LC0 UT WOS:001055191300001 OA Bronze DA 2024-09-05 ER PT C AU Yu, TB Jiang, XY Wang, JR Su, YY Yu, G Wang, WS AF Yu, Tianbiao Jiang, Xingyu Wang, Jianrong Su, Yingying Yu, Ge Wang, Wanshan GP IEEE TI Research on project evaluation system based on "Black Box" technology SO 2007 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND BIOMIMETICS, VOLS 1-5 LA English DT Proceedings Paper CT IEEE International Conference on Robotics and Biomimetics (ROBIO 2007) CY DEC 15-18, 2007 CL Sanya, PEOPLES R CHINA DE black box; project evaluation; export performance evaluation; artificial intelligence AB To assure justice and science of scientific and technological project evaluation, avoiding the corrupt transaction in the process of project evaluation, scientific and technological project evaluation management model based on "black box" technology is presented, and the architecture of evaluation "black box" is established based on artificial intelligence, experts' selection based on knowledge reasoning is analyzed, system architecture and work workflow are studied, and evaluation model of experts' performance based on analytic hierarchy process and fuzzy comprehensive evaluation is established. Based on these a prototype system is developed, results of the system running prove the correctness of theory study and feasibility of technology research. The study works provides a scientific and reliable method of scientific and technological project evaluation. C1 [Yu, Tianbiao; Jiang, Xingyu; Wang, Jianrong; Su, Yingying; Yu, Ge; Wang, Wanshan] Northeastern Univ, Sch Mech Engn & Automat, Shenyang, Liaoning Prov, Peoples R China. C3 Northeastern University - China RP Yu, TB (corresponding author), Northeastern Univ, Sch Mech Engn & Automat, Shenyang, Liaoning Prov, Peoples R China. EM tbyu@me.neu.edu.cn RI Jiang, Xingyu/AGB-8636-2022; Yu, Ge/AAN-8191-2021; Wang, Shuai/JAZ-0277-2023; Wang, Jianrong/C-2222-2008 OI Yu, Tianbiao/0000-0002-6161-8838 CR DAN ZP, 1999, COMPUTER ENG, V24, P92 DONG J, 2007, COMPUTER APPL SOFTWA, V24, P145 FANG Y, 2006, CONTROL THEORY APPL, V23 Jiang Zhizhong, 2007, Computer Engineering, V33, P278 Li Jian-Xing, 2007, Journal of Software, V18, P582, DOI 10.1360/jos180582 YANG CY, 2005, INT J NETWORK SECURI, V1, P22 Yang Jian-chi, 2007, Journal of System Simulation, V19, P1199 Zhang Xin-Liang, 2007, Journal of Software, V18, P574, DOI 10.1360/jos180574 NR 8 TC 0 Z9 0 U1 0 U2 6 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA BN 978-1-4244-1761-2 PY 2007 BP 2250 EP 2255 PG 6 WC Automation & Control Systems; Computer Science, Artificial Intelligence; Engineering, Biomedical; Engineering, Electrical & Electronic; Robotics WE Conference Proceedings Citation Index - Science (CPCI-S) SC Automation & Control Systems; Computer Science; Engineering; Robotics GA BHW67 UT WOS:000257065801229 DA 2024-09-05 ER PT J AU Roy, J AF Roy, Jason TI Randomized treatment-belief trials SO CONTEMPORARY CLINICAL TRIALS LA English DT Article DE Causal inference; Comparative effectiveness research; Placebo effect; Potential outcomes; Pragmatic trials; Randomized trials ID CLINICAL-TRIALS AB It is widely recognized that traditional randomized controlled trials (RCTs) have limited generalizability due to the numerous ways in which conditions of RCTs differ from those experienced each day by patients and physicians. As a result, there has been a recent push towards pragmatic trials that better mimic real-world conditions. One way in which RCTs differ from normal everyday experience is that all patients in the trial have uncertainty about what treatment they were assigned. Outside of the RCT setting, if a patient is prescribed a drug then there is no reason for them to wonder if it is a placebo. Uncertainty about treatment assignment could affect both treatment and placebo response. We use a potential outcomes approach to define relevant causal effects based on combinations of treatment assignment and belief about treatment assignment. We show that traditional RCTs are designed to estimate a quantity that is typically not of primary interest. We propose a new study design that has the potential to provide information about a wider range of interesting causal effects. (C) 2011 Elsevier Inc. All rights reserved. C1 Univ Penn, Ctr Clin Epidemiol & Biostat, Philadelphia, PA 19104 USA. C3 University of Pennsylvania RP Roy, J (corresponding author), Univ Penn, Ctr Clin Epidemiol & Biostat, Philadelphia, PA 19104 USA. EM jaroy@upenn.edu CR Bailey SR, 2010, J SUBST ABUSE TREAT, V39, P150, DOI 10.1016/j.jsat.2010.05.013 Dumville JC, 2006, CONTEMP CLIN TRIALS, V27, P1, DOI 10.1016/j.cct.2005.08.003 Hall SM, 2007, NICOTINE TOB RES, V9, P467, DOI 10.1080/14622200701239480 Kirsch I., 1998, Prevention Treatment, V1 Kunz R, 1998, BRIT MED J, V317, P1185, DOI 10.1136/bmj.317.7167.1185 Lipkus I M, 1999, J Natl Cancer Inst Monogr, P149 Luce BR, 2009, ANN INTERN MED, V151, P206, DOI 10.7326/0003-4819-151-3-200908040-00126 Meissner K, 2007, BMC MED, V5, DOI 10.1186/1741-7015-5-3 Roy J, 2010, STAT MED, V29, P588, DOI 10.1002/sim.3831 RUBIN DB, 1974, J EDUC PSYCHOL, V66, P688, DOI 10.1037/h0037350 Ruppert D, 2003, SEMIPARAMETRIC REGRE Sox HC, 2009, ANN INTERN MED, V151, P203, DOI 10.7326/0003-4819-151-3-200908040-00125 Stewart WF, 2007, HEALTH AFFAIR, V26, pW181, DOI 10.1377/hlthaff.26.2.w181 NR 13 TC 10 Z9 10 U1 0 U2 7 PU ELSEVIER SCIENCE INC PI NEW YORK PA STE 800, 230 PARK AVE, NEW YORK, NY 10169 USA SN 1551-7144 EI 1559-2030 J9 CONTEMP CLIN TRIALS JI Contemp. Clin. Trials PD JAN PY 2012 VL 33 IS 1 BP 172 EP 177 DI 10.1016/j.cct.2011.09.011 PG 6 WC Medicine, Research & Experimental; Pharmacology & Pharmacy WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Research & Experimental Medicine; Pharmacology & Pharmacy GA 889KL UT WOS:000300072500025 PM 21989161 DA 2024-09-05 ER PT J AU Zhao, WD Yu, ZX Wu, R AF Zhao, Weidong Yu, Zhaoxin Wu, Ran TI A citation recommendation method based on context correlation SO INTELLIGENT DATA ANALYSIS LA English DT Article DE Citation recommendation; context correlation; neural networks; citation network; authority AB Researchers need to formulate their achievements as research papers. Representative references are essential to high-quality papers. Academic citation recommendation refers to providing the recommendation of citations for the author of papers when they write. With the help of citation recommendation, researchers can improve the efficiency of writing academic papers and reduce the omission of important related literature. To achieve this goal, some methods were proposed. Many of them used citation networks to learn the representation of papers and chose references, they tended to ignore the content properties of papers. There are also some methods used partial properties to recommend citation. But their performance can be further improved. In this paper, we propose a citation recommendation method based on context correlation. We use two neural network models to learn the representations of papers and their references, then calculate the context similarity of them. Besides, we also introduce the publishing time and authority of papers, two key properties of papers for citation evaluation. In the experiment section, we compare our method with other methods and evaluate the performance of different properties choice in our method, it shows that our method outperforms some baselines and the combination of the dimensions including time, authority and context performs better. C1 [Zhao, Weidong; Yu, Zhaoxin; Wu, Ran] Fudan Univ, Sch Software, Shanghai Key Lab Data Sci, 220 Handan Rd, Shanghai 200433, Peoples R China. C3 Fudan University RP Yu, ZX (corresponding author), Fudan Univ, Sch Software, Shanghai Key Lab Data Sci, 220 Handan Rd, Shanghai 200433, Peoples R China. EM 18212010047@fudan.edu.cn RI li, fei/JYP-3334-2024 FU National Nature Science Foundation of China [61671157] FX Third, this work was supported by the National Nature Science Foundation of China [grant number 61671157], we want to give our heartiest thanks for the National Nature Science Foundation of China. CR [Anonymous], 2010, P 19 INT C WORLD WID, DOI DOI 10.1145/1772690.1772731 [Anonymous], 2014, KDD, DOI [10 . 1145 / 2623330 . 2623732. arXiv: 1403.6652, DOI 10.1145/2623330.2623732] Bo Pang, 2008, Foundations and Trends in Information Retrieval, V2, P1, DOI 10.1561/1500000001 Brandes U, 2001, J MATH SOCIOL, V25, P163, DOI 10.1080/0022250X.2001.9990249 Cohen JL, 2014, REV ART, P37 Dai T, 2018, J AMB INTEL HUM COMP, V9, P957, DOI 10.1007/s12652-017-0497-1 de Arruda GF, 2018, PHYS REP, V756, P1, DOI 10.1016/j.physrep.2018.06.007 Dong YX, 2017, KDD'17: PROCEEDINGS OF THE 23RD ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, P135, DOI 10.1145/3097983.3098036 Ebesu T, 2017, SIGIR'17: PROCEEDINGS OF THE 40TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, P1093, DOI 10.1145/3077136.3080730 Fortunato S, 2010, PHYS REP, V486, P75, DOI 10.1016/j.physrep.2009.11.002 Galke L, 2018, PROCEEDINGS OF THE 26TH CONFERENCE ON USER MODELING, ADAPTATION AND PERSONALIZATION (UMAP'18), P197, DOI 10.1145/3209219.3209236 He Q., 2010, P 19 INT C WORLD WID, DOI DOI 10.1145/1772690.1772734 Hong CQ, 2015, IEEE T IMAGE PROCESS, V24, P5659, DOI 10.1109/TIP.2015.2487860 Jiang ZR, 2018, ACM/SIGIR PROCEEDINGS 2018, P635, DOI 10.1145/3209978.3210032 Kim J, 2018, INT J INFORM MANAGE, V38, P86, DOI 10.1016/j.ijinfomgt.2017.08.003 Li J., 2015, ARXIV150601057 Maharani W, 2014, 2014 8TH INTERNATIONAL CONFERENCE ON TELECOMMUNICATION SYSTEMS SERVICES AND APPLICATIONS (TSSA) Manning CD, 2014, PROCEEDINGS OF 52ND ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS: SYSTEM DEMONSTRATIONS, P55, DOI 10.3115/v1/p14-5010 McNee SM, 2002, P 2002 ACM C COMP SU, P116, DOI DOI 10.1145/587078.587096 Mu DJ, 2018, IEEE ACCESS, V6, P3107, DOI 10.1109/ACCESS.2017.2787179 Oldham S., 2018, ARXIV180502375 Page L., 1999, The PageRank citation ranking: bringing order to the web Pan SR, 2018, PROCEEDINGS OF THE TWENTY-SEVENTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, P2609 Radev DR, 2013, LANG RESOUR EVAL, V47, P919, DOI 10.1007/s10579-012-9211-2 Roffo G., 2016, INT WORKSH NEW FRONT Ruhnau B, 2000, SOC NETWORKS, V22, P357, DOI 10.1016/S0378-8733(00)00031-9 Shi J., 2011, J COMPUT RES DEV Strohman Trevor, 2007, 30th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, P705, DOI 10.1145/1277741.1277868 Tang J., 2009, PAC AS C KNOWL DISC Tang J, 2015, PROCEEDINGS OF THE 24TH INTERNATIONAL CONFERENCE ON WORLD WIDE WEB (WWW 2015), P1067, DOI 10.1145/2736277.2741093 West Jevin D., 2016, IEEE Transactions on Big Data, V2, P113, DOI 10.1109/TBDATA.2016.2541167 Zarrinkalam F, 2013, PROGRAM-ELECTRON LIB, V47, P92, DOI 10.1108/00330331311296320 Zhang Yun-tao, 2005, Journal of Zhejiang University (Science), V6A, P49, DOI 10.1631/jzus.2005.A0049 ZHOU D., 2008, WWW 08, P141 NR 34 TC 4 Z9 4 U1 1 U2 38 PU IOS PRESS PI AMSTERDAM PA NIEUWE HEMWEG 6B, 1013 BG AMSTERDAM, NETHERLANDS SN 1088-467X EI 1571-4128 J9 INTELL DATA ANAL JI Intell. Data Anal. PY 2021 VL 25 IS 1 BP 225 EP 243 DI 10.3233/IDA-195041 PG 19 WC Computer Science, Artificial Intelligence WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Computer Science GA QH1VI UT WOS:000618065600013 DA 2024-09-05 ER PT J AU Huo, Q Luo, X Xu, ZC Yang, XY AF Huo, Qing Luo, Xu Xu, Zu-Cai Yang, Xiao-Yan TI Machine learning applied to epilepsy: bibliometric and visual analysis from 2004 to 2023 SO FRONTIERS IN NEUROLOGY LA English DT Article DE machine learning; epilepsy; VOSviewer; CiteSpace; visual analysis ID SEIZURE ONSET; CLASSIFICATION; CONNECTIVITY; ALGORITHM; PATTERNS; TRENDS AB Background: Epilepsy is one of the most common serious chronic neurological disorders, which can have a serious negative impact on individuals, families and society, and even death. With the increasing application of machine learning techniques in medicine in recent years, the integration of machine learning with epilepsy has received close attention, and machine learning has the potential to provide reliable and optimal performance for clinical diagnosis, prediction, and precision medicine in epilepsy through the use of various types of mathematical algorithms, and promises to make better parallel advances. However, no bibliometric assessment has been conducted to evaluate the scientific progress in this area. Therefore, this study aims to visually analyze the trend of the current state of research related to the application of machine learning in epilepsy through bibliometrics and visualization. Methods: Relevant articles and reviews were searched for 2004-2023 using Web of Science Core Collection database, and bibliometric analyses and visualizations were performed in VOSviewer, CiteSpace, and Bibliometrix (R-Tool of R-Studio). Results: A total of 1,284 papers related to machine learning in epilepsy were retrieved from the Wo SCC database. The number of papers shows an increasing trend year by year. These papers were mainly from 1,957 organizations in 87 countries/regions, with the majority from the United States and China. The journal with the highest number of published papers is EPILEPSIA. Acharya, U. Rajendra (Ngee Ann Polytechnic, Singapore) is the authoritative author in the field and his paper "Deep Convolutional Neural Networks for Automated Detection and Diagnosis of Epileptic Seizures Using EEG Signals" was the most cited. Literature and keyword analysis shows that seizure prediction, epilepsy management and epilepsy neuroimaging are current research hotspots and developments. Conclusions: This study is the first to use bibliometric methods to visualize and analyze research in areas related to the application of machine learning in epilepsy, revealing research trends and frontiers in the field. This information will provide a useful reference for epilepsy researchers focusing on machine learning. C1 [Huo, Qing] Zunyi Med Univ, Sch Nursing, Zunyi, Peoples R China. [Luo, Xu] Zunyi Med Univ, Sch Med Informat Engn, Zunyi, Peoples R China. [Xu, Zu-Cai; Yang, Xiao-Yan] Zunyi Med Univ, Affiliated Hosp, Dept Neurol, Zunyi, Peoples R China. C3 Zunyi Medical University; Zunyi Medical University; Zunyi Medical University RP Luo, X (corresponding author), Zunyi Med Univ, Sch Med Informat Engn, Zunyi, Peoples R China. EM luoxu@zmu.edu.cn CR Abbasi B, 2019, EPILEPSIA, V60, P2037, DOI 10.1111/epi.16333 Ablakimova N, 2023, ANTIBIOTICS-BASEL, V12, DOI 10.3390/antibiotics12091411 Acharya UR, 2018, COMPUT BIOL MED, V100, P270, DOI 10.1016/j.compbiomed.2017.09.017 Acharya UR, 2013, KNOWL-BASED SYST, V45, P147, DOI 10.1016/j.knosys.2013.02.014 Aria M, 2017, J INFORMETR, V11, P959, DOI 10.1016/j.joi.2017.08.007 Attia TP, 2021, FRONT NEUROL, V12, DOI 10.3389/fneur.2021.704170 Beam AL, 2018, JAMA-J AM MED ASSOC, V319, P1317, DOI 10.1001/jama.2017.18391 Bernhardt BC, 2015, ANN NEUROL, V77, P436, DOI 10.1002/ana.24341 Brandes U, 2001, J MATH SOCIOL, V25, P163, DOI 10.1080/0022250X.2001.9990249 BROOKES BC, 1985, J INFORM SCI, V10, P173, DOI 10.1177/016555158501000406 Bruno E, 2018, EPILEPSY BEHAV, V85, P141, DOI 10.1016/j.yebeh.2018.05.044 Caciagli L, 2022, BRAIN, V145, P807, DOI 10.1093/brain/awac027 Caciagli L, 2019, BRAIN, V142, P2670, DOI 10.1093/brain/awz215 Caro V, 2022, IEEE ACCESS, V10, P32912, DOI 10.1109/ACCESS.2022.3159653 Cendes F, 2022, EPILEPSY CURR, V22, P91, DOI 10.1177/15357597211068600 Chen CM, 2014, J ASSOC INF SCI TECH, V65, P334, DOI 10.1002/asi.22968 Chen CM, 2006, J AM SOC INF SCI TEC, V57, P359, DOI 10.1002/asi.20317 Chen WN, 2023, BMC MED INFORM DECIS, V23, DOI 10.1186/s12911-023-02180-w Coito A, 2015, EPILEPSIA, V56, P207, DOI 10.1111/epi.12904 Corrales-Hernández MG, 2023, BIOMEDICINES, V11, DOI 10.3390/biomedicines11061632 Dai N, 2022, ESMO OPEN, V7, DOI 10.1016/j.esmoop.2022.100590 Deo RC, 2015, CIRCULATION, V132, P1920, DOI 10.1161/CIRCULATIONAHA.115.001593 Durieux V, 2010, RADIOLOGY, V255, P342, DOI 10.1148/radiol.09090626 Fan ZG, 2023, J NANOBIOTECHNOL, V21, DOI 10.1186/s12951-023-02051-6 Fisher RS, 2014, EPILEPSIA, V55, P475, DOI 10.1111/epi.12550 Fodjo JNS, 2019, LANCET, V394, P2072, DOI 10.1016/S0140-6736(19)31906-3 Golmohammadi M, 2019, FRONT HUM NEUROSCI, V13, DOI 10.3389/fnhum.2019.00076 Guekht A, 2021, EPILEPSIA, V62, P1057, DOI 10.1111/epi.16856 Guo Y, 2022, FRONT NEUROL, V12, DOI 10.3389/fneur.2021.823474 Hicks D, 2015, NATURE, V520, P429, DOI 10.1038/520429a Huang RZ, 2023, FRONT MICROBIOL, V13, DOI 10.3389/fmicb.2022.1074003 Jing J, 2020, JAMA NEUROL, V77, P103, DOI 10.1001/jamaneurol.2019.3485 Jordan MI, 2015, SCIENCE, V349, P255, DOI 10.1126/science.aaa8415 Kaestner E, 2023, NEUROLOGY, V101, pE324, DOI 10.1212/WNL.0000000000207411 Karakis I, 2022, EPILEPSY CURR, V22, P279, DOI 10.1177/15357597221105139 Kerr WT, 2023, CURR NEUROL NEUROSCI, V23, P869, DOI 10.1007/s11910-023-01318-7 Kim MC, 2020, J AM MED INFORM ASSN, V27, P1612, DOI 10.1093/jamia/ocaa107 Lee HW, 2014, NEUROLOGY, V83, P2269, DOI 10.1212/WNL.0000000000001068 Lee HM, 2022, BRAIN, V145, P897, DOI 10.1093/brain/awab425 Liu C, 2023, INT UROL NEPHROL, V55, P1509, DOI 10.1007/s11255-022-03456-2 Lopes MA, 2019, FRONT COMPUT NEUROSC, V13, DOI 10.3389/fncom.2019.00025 Truong ND, 2018, NEURAL NETWORKS, V105, P104, DOI 10.1016/j.neunet.2018.04.018 Rasheed K, 2021, IEEE REV BIOMED ENG, V14, P139, DOI 10.1109/RBME.2020.3008792 Sabé M, 2024, CURR NEUROPHARMACOL, V22, P736, DOI 10.2174/1570159X22666230927143106 Scheffer IE, 2017, EPILEPSIA, V58, P512, DOI 10.1111/epi.13709 Shoeibi A, 2021, INT J ENV RES PUB HE, V18, DOI 10.3390/ijerph18115780 Song B, 2023, FRONT ENDOCRINOL, V14, DOI 10.3389/fendo.2023.1252389 Tao SY, 2023, EUR J MED RES, V28, DOI 10.1186/s40001-023-01220-5 Vaessen MJ, 2012, CEREB CORTEX, V22, P2139, DOI 10.1093/cercor/bhr298 van Eck NJ, 2010, SCIENTOMETRICS, V84, P523, DOI 10.1007/s11192-009-0146-3 Wan YT, 2023, FRONT ONCOL, V13, DOI 10.3389/fonc.2023.1181164 Wan YT, 2022, FRONT IMMUNOL, V13, DOI 10.3389/fimmu.2022.1025861 Yang YK, 2022, IEEE J BIOMED HEALTH, V26, P3529, DOI 10.1109/JBHI.2022.3157877 Yang YH, 2021, IEEE J BIOMED HEALTH, V25, P2997, DOI 10.1109/JBHI.2021.3049649 Yuan WC, 2023, FRONT IMMUNOL, V14, DOI 10.3389/fimmu.2023.1323115 Zhang DW, 2022, FRONT ONCOL, V12, DOI 10.3389/fonc.2022.978427 Zhang J, 2021, FRONT ONCOL, V11, DOI 10.3389/fonc.2021.686726 Zhang QZ, 2021, BIOMED SIGNAL PROCES, V64, DOI 10.1016/j.bspc.2020.102293 Zhu JW, 2020, SCIENTOMETRICS, V123, P321, DOI 10.1007/s11192-020-03387-8 NR 59 TC 0 Z9 0 U1 20 U2 20 PU FRONTIERS MEDIA SA PI LAUSANNE PA AVENUE DU TRIBUNAL FEDERAL 34, LAUSANNE, CH-1015, SWITZERLAND SN 1664-2295 J9 FRONT NEUROL JI Front. Neurol. PD APR 2 PY 2024 VL 15 AR 1374443 DI 10.3389/fneur.2024.1374443 PG 18 WC Clinical Neurology; Neurosciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Neurosciences & Neurology GA NX9N5 UT WOS:001203871200001 PM 38628694 OA gold, Green Published DA 2024-09-05 ER PT J AU Valencia-Arias, A González-Ruiz, JD Flores, LV Vega-Mori, L Rodríguez-Correa, P Santos, GS AF Valencia-Arias, Alejandro Gonzalez-Ruiz, Juan David Flores, Lilian Verde Vega-Mori, Luis Rodriguez-Correa, Paula Santos, Gustavo Sanchez TI Machine Learning and Blockchain: A Bibliometric Study on Security and Privacy SO INFORMATION LA English DT Article DE Internet of Things; 5G networks; artificial intelligence; PRISMA-2020; cloud computing; intrusion detection; smart contracts ID IOT; AI AB Machine learning and blockchain technology are fast-developing fields with implications for multiple sectors. Both have attracted a lot of interest and show promise in security, IoT, 5G/6G networks, artificial intelligence, and more. However, challenges remain in the scientific literature, so the aim is to investigate research trends around the use of machine learning in blockchain. A bibliometric analysis is proposed based on the PRISMA-2020 parameters in the Scopus and Web of Science databases. An objective analysis of the most productive and highly cited authors, journals, and countries is conducted. Additionally, a thorough analysis of keyword validity and importance is performed, along with a review of the most significant topics by year of publication. Co-occurrence networks are generated to identify the most crucial research clusters in the field. Finally, a research agenda is proposed to highlight future topics with great potential. This study reveals a growing interest in machine learning and blockchain. Topics are evolving towards IoT and smart contracts. Emerging keywords include cloud computing, intrusion detection, and distributed learning. The United States, Australia, and India are leading the research. The research proposes an agenda to explore new applications and foster collaboration between researchers and countries in this interdisciplinary field. C1 [Valencia-Arias, Alejandro; Flores, Lilian Verde] Univ Senor Sipan, Escuela Ingn Ind, Chiclayo 14001, Peru. [Gonzalez-Ruiz, Juan David] Univ Nacl Colombia, Dept Econ, Medellin 050001, Colombia. [Vega-Mori, Luis; Santos, Gustavo Sanchez] Univ Ricardo Palma, Inst Invest & Estudios Mujer, Lima 15074, Peru. [Rodriguez-Correa, Paula] Inst Univ Escolme, Inst Universitaria Escolme, Ctr Invest Escolme CIES, Medellin 050001, Colombia. C3 Universidad Senor de Sipan; Universidad Nacional de Colombia; Universidad Ricardo Palma RP Valencia-Arias, A (corresponding author), Univ Senor Sipan, Escuela Ingn Ind, Chiclayo 14001, Peru. EM valenciajho@uss.edu.pe; jdgonza3@unal.edu.co; lilianverde@crece.uss.edu.pe; iepvlvega@gmail.com; cies4@escolme.edu.co; sanchezsantosgustavo1@gmail.com RI Arias, Alejandro Valencia/I-9436-2019 OI Arias, Alejandro Valencia/0000-0001-9434-6923; Verde Flores, Lilian Janet/0000-0003-0496-853X; Gonzalez Ruiz, Juan David/0000-0003-4425-7687; Vega Mori, Luis Angel/0000-0002-3825-7720 FU Universidad Seor de Sipn-USS FX No Statement Available CR Al-Qarafi A, 2022, APPL SCI-BASEL, V12, DOI 10.3390/app12125893 Azimov D., 2022, Business Management, V4, P52 Azimov D, 2021, ACCESS-ACCESS SCI BU, V2, P138, DOI 10.46656/access.2021.2.2(2) Baucas MJ., 2023, IEEE Trans Comput Soc Syst, DOI 10.48550/arXiv.2301.04511 Cao LB, 2021, INT J DATA SCI ANAL, V12, P81, DOI 10.1007/s41060-021-00278-w Carter D., 2018, Sage Journals, DOI DOI 10.1177/0266382118790150 Cheng ASK, 2021, ASIA-PAC J ONCOL NUR, V8, P720, DOI 10.4103/apjon.apjon-2140 Dibaei M, 2022, IEEE T INTELL TRANSP, V23, P683, DOI 10.1109/TITS.2020.3019101 Diro A, 2021, SENSORS-BASEL, V21, DOI 10.3390/s21248320 Durieux V, 2010, RADIOLOGY, V255, P342, DOI 10.1148/radiol.09090626 Dyzel V, 2020, FRONT EDUC, V5, DOI 10.3389/feduc.2020.578389 Femmy E., 2021, Jurnal Interkom: Jurnal Publikasi Ilmiah Bidang Teknologi Informasi dan Komunikasi, V16, P10, DOI 10.35969 Ferrag MA, 2020, IEEE T ENG MANAGE, V67, P1285, DOI 10.1109/TEM.2019.2922936 Gayialis SP, 2022, IFIP ADV INF COMM TE, V663, P477, DOI 10.1007/978-3-031-16407-1_56 Geldiev E.M., 2018, P CBU INT C P 2018 P George Joey F, 2020, P 41 INT C INF SYST Gong Y, 2022, IND MARKET MANAG, V102, P164, DOI 10.1016/j.indmarman.2022.01.010 Guo FX, 2021, IEEE INTERNET THINGS, V8, P11891, DOI 10.1109/JIOT.2021.3063686 Harbi Y, 2021, IEEE ACCESS, V9, P113292, DOI 10.1109/ACCESS.2021.3103725 Hassija V, 2021, IEEE COMMUN SURV TUT, V23, P2802, DOI 10.1109/COMST.2021.3097916 Hassija V, 2021, IEEE INTERNET THINGS, V8, P6222, DOI 10.1109/JIOT.2020.3025775 Hassija V, 2019, IEEE ACCESS, V7, P82721, DOI 10.1109/ACCESS.2019.2924045 Himeur Y, 2022, COMPUT SCI REV, V43, DOI 10.1016/j.cosrev.2021.100439 Kadian K, 2021, COMPUT SCI REV, V41, DOI 10.1016/j.cosrev.2021.100419 Kechagias EP, 2023, FOODS, V12, DOI 10.3390/foods12061220 Keshk M, 2020, IEEE T IND INFORM, V16, P5110, DOI 10.1109/TII.2019.2957140 Kumar NM, 2020, ENERGIES, V13, DOI 10.3390/en13215739 Kumar P, 2021, IEEE T NETW SCI ENG, V8, P2326, DOI 10.1109/TNSE.2021.3089435 Kumar P, 2021, J SYST ARCHITECT, V115, DOI 10.1016/j.sysarc.2020.101954 Lemos C, 2022, SUSTAINABILITY-BASEL, V14, DOI 10.3390/su14074172 Li Y, 2021, J HEALTHC ENG, V2021, DOI 10.1155/2021/9739219 Lu YL, 2020, IEEE T IND INFORM, V16, P4177, DOI 10.1109/TII.2019.2942190 Mendis GJ, 2021, IEEE T EMERG TOP COM, V9, P2201, DOI 10.1109/TETC.2020.2983007 Miglani A, 2021, COMPUT COMMUN, V178, P37, DOI 10.1016/j.comcom.2021.07.009 Mohanta BK, 2020, INTERNET THINGS-NETH, V11, DOI 10.1016/j.iot.2020.100227 Mololoth VK, 2023, ENERGIES, V16, DOI 10.3390/en16010528 Mrabet H, 2022, APPL SCI-BASEL, V12, DOI 10.3390/app12094641 Nguyen DC, 2021, IEEE ACCESS, V9, P95730, DOI 10.1109/ACCESS.2021.3093633 Nguyen DC, 2020, J NETW COMPUT APPL, V166, DOI 10.1016/j.jnca.2020.102693 Nouman A., 2022, Int J Of Computat Innovat Sci, V1, P1 Page MJ, 2021, BMJ-BRIT MED J, V372, DOI [10.1136/bmj.n71, 10.1016/j.ijsu.2021.105906, 10.1136/bmj.n160] Park JH, 2019, SUSTAINABILITY-BASEL, V11, DOI 10.3390/su11082264 Petrova M., 2022, P 2022 INT C COMM IN, DOI [10.1109/CIEES55704.2022.9990882, DOI 10.1109/CIEES55704.2022.9990882] Petrova MM, 2018, 2018 IEEE FIRST INTERNATIONAL CONFERENCE ON SYSTEM ANALYSIS & INTELLIGENT COMPUTING (SAIC), P256 Raj A, 2022, WIRELESS PERS COMMUN, V122, P1481, DOI 10.1007/s11277-021-08958-3 Salah K, 2019, IEEE ACCESS, V7, P10127, DOI 10.1109/ACCESS.2018.2890507 Shafay M, 2023, CLUSTER COMPUT, V26, P197, DOI 10.1007/s10586-022-03582-7 Shahbazi Z, 2021, SENSORS-BASEL, V21, DOI 10.3390/s21041467 Stahlschmidt S, 2022, SCIENTOMETRICS, V127, P2413, DOI 10.1007/s11192-022-04309-6 Taylor PJ, 2020, DIGIT COMMUN NETW, V6, P147, DOI 10.1016/j.dcan.2019.01.005 Tsoukas V, 2022, INFORMATION, V13, DOI 10.3390/info13050213 Waheed N, 2021, ACM COMPUT SURV, V53, DOI 10.1145/3417987 Wan YL, 2022, TECHNOL FORECAST SOC, V177, DOI 10.1016/j.techfore.2022.121540 Zerka F, 2020, IEEE ACCESS, V8, P183939, DOI 10.1109/ACCESS.2020.3029445 NR 54 TC 0 Z9 0 U1 4 U2 4 PU MDPI PI BASEL PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND EI 2078-2489 J9 INFORMATION JI Information PD JAN PY 2024 VL 15 IS 1 AR 65 DI 10.3390/info15010065 PG 25 WC Computer Science, Information Systems WE Emerging Sources Citation Index (ESCI) SC Computer Science GA GD9N1 UT WOS:001150846700001 OA gold DA 2024-09-05 ER PT J AU Galanti, TM Baker, CK Morrow-Leong, K Kraft, T AF Galanti, Terrie McLaughlin Baker, Courtney Katharine Morrow-Leong, Kimberly Kraft, Tammy TI Enriching TPACK in mathematics education: using digital interactive notebooks in synchronous online learning environments SO INTERACTIVE TECHNOLOGY AND SMART EDUCATION LA English DT Article DE Research; Mathematics; Distance learning; Higher education; Teaching methods; Assessment and e-assessment ID PEDAGOGICAL CONTENT KNOWLEDGE; TEACHERS; TECHNOLOGY AB Purpose - In spring 2020, educators throughout the world abruptly shifted to emergency remote teaching in response to an emerging pandemic. The instructors of a graduate-level synchronous online geometry and measurement course for practicing school teachers redesigned their summative assessments. Their goals were to reduce outside-of-class work and to model the integration of content, pedagogy and technology. This paper aims to describe the development of a digital interactive notebook (dINB) assignment using online presentation software, dynamic geometry tools and mathematical learning trajectories. Broader implications for dINBs as assessments in effective distance learning are presented. Design/methodology/approach - The qualitative analysis in this study consists of a sequence of first-cycle coding of mid-semester surveys and second-cycle thematic categorizations of mid-semester surveys and end-of-course reflections. Descriptive categorization counts along with select quotations from open-ended participant responses provided a window on evolving participant experiences with the dINB across the course. Findings - Modifications to the dINB design based on teacher mid-semester feedback created a flexible assessment tool aligned with the technological pedagogical content knowledge (TPACK) framework. The teachers also constructed their own visions for adapting the dINB for student-centered instructional technology integration in their own virtual classrooms. Originality/value - The development of the dINB enriched the TPACK understandings of the instructors in this study. It also positioned teachers to facilitate innovative synchronous and blended learning in their own school communities. Further analysis of dINB artifacts in future studies will test the hypothesis that practicing teachers' experiences as learners increased their TPACK knowledge. C1 [Galanti, Terrie McLaughlin] Univ North Florida, Dept Teaching Learning & Curriculum, Jacksonville, FL 32224 USA. [Baker, Courtney Katharine; Morrow-Leong, Kimberly; Kraft, Tammy] George Mason Univ, Math Educ Leadership, Fairfax, VA 22030 USA. C3 State University System of Florida; University of North Florida; George Mason University RP Galanti, TM (corresponding author), Univ North Florida, Dept Teaching Learning & Curriculum, Jacksonville, FL 32224 USA. EM terrie.galanti@unf.edu CR Akyuz D, 2018, COMPUT EDUC, V125, P212, DOI 10.1016/j.compedu.2018.06.012 [Anonymous], 2000, PRINC STAND SCH MATH [Anonymous], 2014, Principles to actions: Ensuring mathematical success for all Baker C.K., 2019, International Journal of Web-based Learning and Teaching Technologies, V14, P1, DOI DOI 10.4018/IJWLTT.2019010101 Battista M., 2006, TEACHING CHILDREN MA, V13, P140, DOI DOI 10.5951/TCM.13.3.0140 Baum, 2019, HDB RES FIELD BASED, P635 Borko H., 1996, HDB ED PSYCHOL, P673, DOI DOI 10.4324/9780203053874 Chesbro R., 2006, SCI SCOPE, V29, P30 Clements D.H., 2003, TEACHING CHILDREN MA, V8, P480 Culp K. M., 2005, Journal of Educational Computing Research, V32, P279, DOI 10.2190/7W71-QVT2-PAP2-UDX7 Ferdig R. E., 2020, Teaching, technology, and teacher education during the COVID-19 pandemic: Stories from the field Hersh, 2013, THESIS MANHATTANVILL Hodges C. B., 2020, DIFFERENCE EMERGENCY Howse T.D., 2014, Teaching Children Mathematics, V21, P304, DOI [10.5951/teacchilmath.21.5.0304, DOI 10.5951/TEACCHILMATH.21.5.0304] Jaladanki VS, 2014, QUAL REP, V19 Koehler M. J., 2005, Journal of Educational Computing Research, V32, P131, DOI 10.2190/0EW7-01WB-BKHL-QDYV Kopcha TJ, 2020, ETR&D-EDUC TECH RES, V68, P729, DOI 10.1007/s11423-020-09735-y Lesh R., 1987, PROBLEMS REPRESENTAT Li C., 2020, THIS IS Loong EYK, 2018, MATH EDUC RES J, V30, P475, DOI 10.1007/s13394-018-0235-9 Mallozzi F., 2013, ELECT J SCI ED, V17, P1 Martin B., 2015, International Journal on Integrating Technology in Education IJITE, V4, P17, DOI [10.5121/ijite.2015.4102, DOI 10.5121/IJITE.2015.4102] Maxwell J. A., 2005, Qualitative research design: An interactive approach, V2nd Merriam S. B., 2015, QUALITATIVE RES GUID Milman N., 2020, This Is Emergency Remote Teaching, Not Just Online Teaching There's a difference Mishra P, 2006, TEACH COLL REC, V108, P1017, DOI 10.1111/j.1467-9620.2006.00684.x National Council of Teachers of Mathematics (NCTM), 2012, NCTM CAEP STAND EL Niess C.A., 2016, HERALD SUN 0517, P1 Niess ML, 2017, AUSTRALAS J EDUC TEC, V33, P77, DOI 10.14742/ajet.3473 Niess ML, 2005, TEACH TEACH EDUC, V21, P509, DOI 10.1016/j.tate.2005.03.006 Owens LM, 2005, QUEST, V57, P392, DOI 10.1080/00336297.2005.10491864 Ravitch S., 2020, Penn GSE Perspectives on Urban Education Russell, 2017, MEASURING SPACE ONE Russell, 2017, EXAMINING FEATURES S Saldana Johnny, 2015, The coding manual for qualitative researchers, Vfourth Saubern R, 2020, AUSTRALAS J EDUC TEC, V36, DOI 10.14742/ajet.6378 Shulman LS, 2019, PROFESORADO, V23, P269, DOI 10.30827/profesorado.v23i3.11230 Smith M.S., 1998, MATH TEACHING MIDDLE, V3, P344, DOI DOI 10.5951/MTMS.3.5.0344 Urbina A, 2017, INT J INF LEARN TECH, V34, P439, DOI 10.1108/IJILT-06-2017-0054 Van de Walle J., 2018, ELEMENTARY MIDDLE SC, VFifth van Hiele P.M., 1984, English translation of selected writings of Dina van Hiele-Geldof and Pierre M. van Hiele, P243 Waldman C., 2009, SCI TEACHER, V76, P51 Walker C, 2016, TEACH TEACH EDUC, V54, P65, DOI 10.1016/j.tate.2015.11.013 Yin R. K., 2011, QUALITATIVE RES STAR NR 44 TC 10 Z9 10 U1 4 U2 51 PU EMERALD GROUP PUBLISHING LTD PI Leeds PA Floor 5, Northspring 21-23 Wellington Street, Leeds, W YORKSHIRE, ENGLAND SN 1741-5659 EI 1758-8510 J9 INTERACT TECHNOL SMA JI Interact. Technol. Smart Educ. PD OCT 4 PY 2021 VL 18 IS 3 SI SI BP 345 EP 361 DI 10.1108/ITSE-08-2020-0175 EA DEC 2020 PG 17 WC Education & Educational Research WE Emerging Sources Citation Index (ESCI) SC Education & Educational Research GA WC0FE UT WOS:000603426600001 DA 2024-09-05 ER PT J AU De Block, A Conix, S AF De Block, Andreas Conix, Stijn TI Responsible Dissemination in Sexual Orientation Research: The Case of the AI "Gaydar" SO PHILOSOPHY OF SCIENCE LA English DT Article AB A recent controversy about neural networks allegedly capable of detecting a person's sexual orientation raises the question of whether all research on homosexuality should be permitted. This paper considers two arguments for limits to such research, and concludes that there are good reasons to limit at least the dissemination of applied research on the etiology of homosexuality. The paper then briefly sketches how this could work, and looks at three objections against these limitations. C1 [De Block, Andreas; Conix, Stijn] Katholieke Univ Leuven, Inst Philosophy, Ctr L & Philosophy Sci, Leuven, Belgium. C3 KU Leuven RP De Block, A (corresponding author), Katholieke Univ Leuven, Inst Philosophy, Ctr L & Philosophy Sci, Leuven, Belgium. EM andreas.deblock@kuleuven.be RI Conix, Stijn/HKO-8315-2023 OI Conix, Stijn/0000-0002-1487-0213; De Block, Andreas/0000-0002-7927-8210 FU Research Council - Flanders [3H200026] FX The authors would like to thank Jacob Stegenga for organizing the symposium on "the sciences of sexual desire," and the attendees of that symposium for their interesting comments and suggestions on this paper. Stijn Conix gratefully acknowledges funding from the Research Council - Flanders (grant 3H200026). CR Andrew Gelman, 2018, PREPRINT [Anonymous], 2004, BIOT RES AG TERR April Bailey, 2021, PREPRINT Brundage M, 2018, Arxiv, DOI [arXiv:1802.07228, DOI 10.48550/ARXIV.1802.07228, 10.48550/arXiv.1802.07228] Carrier M, 2021, SYNTHESE, V198, P4749, DOI 10.1007/s11229-019-02254-1 De Block A, 2013, J SEX RES, V50, P276, DOI 10.1080/00224499.2012.738259 FAUSTOSTERLING A, 1995, J HOMOSEXUAL, V28, P217, DOI 10.1300/J082v28n03_02 Householder Allen D., 2017, CERT GUIDE COORDINAT Hull D.L., 1998, PHILOS BIOL, P383 Kitcher P, 2001, Science, truth, and democracy Kourany JA, 2016, PHILOS SCI, V83, P779, DOI 10.1086/687863 Långström N, 2010, ARCH SEX BEHAV, V39, P75, DOI 10.1007/s10508-008-9386-1 Leuner J, 2019, Arxiv, DOI [arXiv:1902.10739, DOI 10.48550/ARXIV.1902.10739] Margolin L, 2023, J HOMOSEXUAL, V70, P291, DOI 10.1080/00918369.2021.1945340 Miller AE, 2018, PSYCHOL SEX, V9, P188, DOI 10.1080/19419899.2018.1468353 Oldham JD, 1999, J SEX MARITAL THER, V25, P121, DOI 10.1080/00926239908403984 Ovadya A, 2019, Arxiv, DOI arXiv:1907.11274 Plant R., 2011, The pink triangle: The Nazi war against homosexuals Schuklenk U, 1997, HASTINGS CENT REP, V27, P6, DOI 10.2307/3528773 Selgelid MJ, 2011, INFECTIOUS DIEASE ETHICS: LIMITING LIBERTY IN CONTEXTS OF CONTAGION, P135, DOI 10.1007/s11569-009-0074-y Stein Edward., 1999, MISMEASURE DESIRE Talisse Robert., 2007, J SOC PHILOS, V38, P654 Tam V, 2019, NAT REV GENET, V20, P467, DOI 10.1038/s41576-019-0127-1 Wang Y, 2018, J PERS SOC PSYCHOL, V114, P246, DOI 10.1037/pspa0000098 Whittlestone J, 2020, Arxiv, DOI arXiv:1910.01170 NR 25 TC 0 Z9 0 U1 0 U2 5 PU CAMBRIDGE UNIV PRESS PI NEW YORK PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA SN 0031-8248 EI 1539-767X J9 PHILOS SCI JI Philos. Sci. PD DEC PY 2022 VL 89 IS 5 BP 1075 EP 1084 DI 10.1017/psa.2022.44 PG 10 WC History & Philosophy Of Science WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI); Arts & Humanities Citation Index (A&HCI) SC History & Philosophy of Science GA 8O7XM UT WOS:000926046700020 OA Bronze, Green Accepted DA 2024-09-05 ER PT J AU Kerekes, J King, KP AF Kerekes, Judit King, Kathleen P. TI THE KING'S CARPET: DRAMA PLAY IN TEACHER EDUCATION SO INTERNATIONAL JOURNAL OF INSTRUCTION LA English DT Article DE teacher education; collaboration; co-teaching; drama; role playing; active learning; critical thinking and research; inquiry based learning AB Trying to develop new perspectives of teaching is never easy, but trying to cultivate ownership and initiative among teacher education students is a still greater aspiration that is infrequently realized. This article addresses each of these highly valued goals for teacher educators as a case study reveals the impact of involving teacher candidates in interdisciplinary focused, constructivist and reflective models and planning for teaching, and then student teaching, which reaffirms this approach. Most significant is the phenomenon of several teacher candidates continuing their development and study of innovative drama play projects with their classes after the semester finishes. The resulting transformations in professional identity development, self-efficacy and studentteacher relationships confirm the value of the teacher education model which has developed over a decade of practice (Lyublinskaya & Kerekes, 2009). C1 [Kerekes, Judit] CUNY, 2800 Victory Blvd, Staten Isl, NY 10314 USA. [King, Kathleen P.] Fordham Univ, New York, NY 10023 USA. C3 City University of New York (CUNY) System; Fordham University RP Kerekes, J (corresponding author), CUNY, 2800 Victory Blvd, Staten Isl, NY 10314 USA. EM Kerekes@mail.csi.cuny.edu; kpking@fordham.edu CR [Anonymous], 1974, SOC SERV REV, DOI DOI 10.1086/643248 [Anonymous], 2000, CURR EV STAND SCH MA [Anonymous], 2009, EURASIA J MATH SCI T [Anonymous], 2002, Applied Social Research Methods Series Baji-Gal F., 2001, DRAMAPEDAGOGIA ALKAL Cranton P., 2003, NEW DIRECTIONS ADULT, V98, P31, DOI [DOI 10.1002/ACE.97, https://doi.org/10.1002/(ISSN)1536-0717, DOI 10.1002/(ISSN)1536-0717] Creswell J., 2003, RES DESIGN, V2nd Daloz L.A., 1999, MENTORING GUIDING JO Enriquez J., 2001, FUTURE CATCHES YOU Fosnot C., 2001, YOUNG MATH WORK, V1 Freire P., 1970, Pedagogy of the oppressed. Trans. Myra Bergman Ramos Freudenthal H., 1973, MATH ED TASK Glaser, 1978, THEORETICAL SENSITIV Jonassen D.H., 2003, LEARNING SOLVE PROBL, V2nd King K.P., 2005, Bringing transformative learning to life King KP, 2009, ADULT EDUC SPEC TOP, P1 Laszlo Kaposi, 2005, A DRAMA TANITASA Lyublinskaya I., 2009, INTEGRATING MATH SCI Merriam S.B., 2007, QUALITATIVE RES CASE Partnership for 21st Century Learning, 2008, INTELLECTUAL POLICY Schn D. A., 1987, Educating the reflexive practitioner NR 21 TC 10 Z9 13 U1 0 U2 0 PU ESKISEHIR OSMANGAZI UNIV, FAC EDUCATION PI ESKISEHIR PA ESKISEHIR OSMANGAZI UNIV, FAC EDUCATION, ESKISEHIR, 26480, TURKEY SN 1694-609X EI 1308-1470 J9 INT J INSTR JI Int. J. Instr. PD JAN PY 2010 VL 3 IS 1 BP 39 EP 60 PG 22 WC Education & Educational Research WE Emerging Sources Citation Index (ESCI) SC Education & Educational Research GA VA3AT UT WOS:000409779800004 DA 2024-09-05 ER PT J AU Ye, ZW Li, JL Wang, WJ Qin, FZ Li, KT Tan, H Zhang, C AF Ye, Zhiwei Li, Jialing Wang, Wenjun Qin, Fanzhi Li, Keteng Tan, Hao Zhang, Chen TI Data-driven visualization of the dynamics of machine learning in materials research SO JOURNAL OF CLEANER PRODUCTION LA English DT Article DE Materials; Machine learning; Visualization; Bibliometrics analysis; Environmental sustainability ID HIGH ENTROPY ALLOYS; PHASE PREDICTION; DESIGN; MODELS; SCIENCE AB The intricate interplay between material structure and properties lies at the heart of modern materials research. Understanding and manipulating this relationship is essential for the development of advanced materials with tailored properties for a wide range of applications. Machine learning (ML) has been intensively employed for prediction purposes. This trend of research into new insights, techniques, and research paradigms is gaining great popularity and demonstrating its promising potential for materials research. This study aims to conduct a bibliometric analysis of ML applications in materials, offering researchers, particularly those in the green energy sector, insights to incorporate into their future research plans. Here, the dataset was retrieved from the Web of Science Core Collection and the earliest related publication was recorded in 1998. Metrics based on retrieved data were extracted, including publication evaluations, countries, journals, and authors. Keywords temporal variations and citation-based scientific landscapes were constructed. The findings underscore the embryonic nature of machine learning's deployment in materials research but also highlight its significance as an emerging field that has captured the attention of scholars across multiple domains. Specifically, ongoing research efforts are directed towards optimizing ML models and algorithms, as well as refining data handling techniques to glean insights into complex structure-property relationships. The findings will provide novices with a data-driven visualization summary about the dynamics of this field, and its inspiration to environmental sustainability, and benefit a wide range of stakeholders to enhance their informed decisions on research funding and policy. C1 [Ye, Zhiwei; Qin, Fanzhi; Li, Keteng; Zhang, Chen] Hunan Univ, Coll Environm Sci & Engn, Changsha 410082, Peoples R China. [Li, Jialing; Tan, Hao] Hunan Univ, Sch Design, Changsha 410082, Hunan, Peoples R China. [Wang, Wenjun] Hunan Univ Technol & Business, Sch Resources & Environm, Changsha 410205, Peoples R China. C3 Hunan University; Hunan University; Hunan University of Technology & Business RP Zhang, C (corresponding author), Hunan Univ, Coll Environm Sci & Engn, Changsha 410082, Peoples R China.; Li, JL (corresponding author), Hunan Univ, Sch Design, Changsha 410082, Hunan, Peoples R China. EM zhangchen@hnu.edu.cn RI Zhang, Chen/AAY-8585-2021 OI Zhang, Chen/0000-0002-3579-6980 FU National Natural Science Foundation of China [52170162, 51809090]; Natural Science Foundation of Hunan Province, China [2022JJ10016]; Science and Technology Innovation Program of Hunan Province [2021RC3049]; Fundamental Research Funds for the Central Universities [531118010114] FX This study was financially supported by the program for the National Natural Science Foundation of China (52170162, 51809090) , the Natural Science Foundation of Hunan Province, China (2022JJ10016) , the Science and Technology Innovation Program of Hunan Province (2021RC3049) , and the Fundamental Research Funds for the Central Universities (531118010114) . CR Agrawal A, 2016, APL MATER, V4, DOI 10.1063/1.4946894 Ahmad T, 2022, RENEW SUST ENERG REV, V160, DOI 10.1016/j.rser.2022.112128 Akanbi LA, 2020, J CLEAN PROD, V274, DOI 10.1016/j.jclepro.2020.122843 Al-Wesabi F, 2022, SUSTAIN ENERGY TECHN, V52, DOI 10.1016/j.seta.2022.102040 Alberi K, 2019, J PHYS D APPL PHYS, V52, DOI 10.1088/1361-6463/aad926 Alexander J., 2019, Nature, V575 Bostanabad R, 2018, PROG MATER SCI, V95, P1, DOI 10.1016/j.pmatsci.2018.01.005 Butler KT, 2018, NATURE, V559, P547, DOI 10.1038/s41586-018-0337-2 Carrete J, 2014, PHYS REV X, V4, DOI 10.1103/PhysRevX.4.011019 Chen A, 2020, INFOMAT, V2, P553, DOI 10.1002/inf2.12094 Chen C, 2020, ADV ENERGY MATER, V10, DOI 10.1002/aenm.201903242 Chen CM, 2006, J AM SOC INF SCI TEC, V57, P359, DOI 10.1002/asi.20317 Chouard T, 2015, NATURE, V521, P435, DOI 10.1038/521435a Clayson IG, 2020, ADV MATER, V32, DOI 10.1002/adma.202002780 Correa-Baena JP, 2017, SCIENCE, V358, P739, DOI 10.1126/science.aam6323 Goh GB, 2017, J COMPUT CHEM, V38, P1291, DOI 10.1002/jcc.24764 Gómez-Bombarelli R, 2018, ACS CENTRAL SCI, V4, P268, DOI 10.1021/acscentsci.7b00572 Gómez-Bombarelli R, 2016, NAT MATER, V15, P1120, DOI [10.1038/nmat4717, 10.1038/NMAT4717] Gu GX, 2018, MATER HORIZ, V5, P939, DOI 10.1039/c8mh00653a Gul G, 2021, ENVIRON SCI-NANO, V8, P937, DOI 10.1039/d0en01240h HOHENBERG P, 1964, PHYS REV B, V136, pB864, DOI 10.1103/PhysRevB.7.1912 Huang SD, 2019, WIRES COMPUT MOL SCI, V9, DOI 10.1002/wcms.1415 Huang WJ, 2019, ACTA MATER, V169, P225, DOI 10.1016/j.actamat.2019.03.012 Jacsó P, 2011, ONLINE INFORM REV, V35, P821, DOI 10.1108/14684521111176525 Janet JP, 2017, CHEM SCI, V8, P5137, DOI 10.1039/c7sc01247k Jorgensen PB, 2018, J CHEM PHYS, V148, DOI 10.1063/1.5023563 Kimmig J, 2021, ADV MATER, V33, DOI 10.1002/adma.202004940 Koseoglu MA, 2016, ANN TOURISM RES, V61, P180, DOI 10.1016/j.annals.2016.10.006 Leydesdorff L, 2015, J ASSOC INF SCI TECH, V66, P1001, DOI 10.1002/asi.23243 Leydesdorff L, 2013, J AM SOC INF SCI TEC, V64, P2573, DOI 10.1002/asi.22946 Liu Y, 2017, J MATERIOMICS, V3, P159, DOI 10.1016/j.jmat.2017.08.002 Mohamed OA, 2016, ADV PROD ENG MANAG, V11, P227, DOI 10.14743/apem2016.3.223 Moosavi SM, 2020, J AM CHEM SOC, V142, P20273, DOI 10.1021/jacs.0c09105 Mou TY, 2023, NAT CATAL, V6, P122, DOI 10.1038/s41929-023-00911-w Mozaffar M., 2018, MANUF LETT, V18, P35, DOI DOI 10.1016/J.MFGLET.2018.10.002 Muratov EN, 2020, CHEM SOC REV, V49, P3525, DOI 10.1039/d0cs00098a Musib M, 2017, SCIENCE, V357, P28, DOI 10.1126/science.357.6346.28 Nosengo N, 2016, NATURE, V533, P22, DOI 10.1038/533022a Padula D, 2019, MATER HORIZ, V6, P343, DOI 10.1039/c8mh01135d Paszkowicz W, 2013, MATER MANUF PROCESS, V28, P708, DOI 10.1080/10426914.2012.746707 Pople JA, 1999, ANGEW CHEM INT EDIT, V38, P1894, DOI 10.1002/(SICI)1521-3773(19990712)38:13/14<1894::AID-ANIE1894>3.0.CO;2-H RAHMAN A, 1964, PHYS REV, V136, pA405, DOI 10.1103/PhysRev.136.A405 Rajan K, 2005, MATER TODAY, V8, P38, DOI 10.1016/S1369-7021(05)71123-8 Ramprasad R, 2017, NPJ COMPUT MATER, V3, DOI 10.1038/s41524-017-0056-5 Ramu P, 2022, STRUCT MULTIDISCIP O, V65, DOI 10.1007/s00158-022-03369-9 Rao ZY, 2022, SCIENCE, V378, P78, DOI 10.1126/science.abo4940 Ren F, 2018, SCI ADV, V4, DOI 10.1126/sciadv.aaq1566 Sanchez-Lengeling B, 2018, SCIENCE, V361, P360, DOI 10.1126/science.aat2663 Sha WX, 2021, INFOMAT, V3, P353, DOI 10.1002/inf2.12167 Shotton D, 2013, NATURE, V502, P295, DOI 10.1038/502295a Tabor DP, 2018, NAT REV MATER, V3, P5, DOI 10.1038/s41578-018-0005-z Tachibana Y, 2012, NAT PHOTONICS, V6, P511, DOI 10.1038/nphoton.2012.175 Tao QL, 2021, NPJ COMPUT MATER, V7, DOI 10.1038/s41524-021-00495-8 Tian CX, 2021, ADV INTELL SYST-GER, V3, DOI 10.1002/aisy.202100014 Trahey L, 2020, P NATL ACAD SCI USA, V117, P12550, DOI 10.1073/pnas.1821672117 Wallin JA, 2005, BASIC CLIN PHARMACOL, V97, P261, DOI 10.1111/j.1742-7843.2005.pto_139.x Wang C, 2020, ADDIT MANUF, V36, DOI 10.1016/j.addma.2020.101538 Ward L, 2017, PHYS REV B, V96, DOI 10.1103/PhysRevB.96.024104 Ward L, 2016, NPJ COMPUT MATER, V2, DOI 10.1038/npjcompumats.2016.28 Wen C, 2019, ACTA MATER, V170, P109, DOI 10.1016/j.actamat.2019.03.010 Xiong Z, 2020, COMP MATER SCI, V171, DOI 10.1016/j.commatsci.2019.109203 Xue RM, 2018, SMALL, V14, DOI 10.1002/smll.201801793 Zhang J, 2016, J ASSOC INF SCI TECH, V67, P967, DOI 10.1002/asi.23437 Zhang Y, 2020, ACTA MATER, V185, P528, DOI 10.1016/j.actamat.2019.11.067 Zhu XZ, 2020, J CLEAN PROD, V273, DOI 10.1016/j.jclepro.2020.122915 Zupic I, 2015, ORGAN RES METHODS, V18, P429, DOI 10.1177/1094428114562629 NR 66 TC 1 Z9 1 U1 12 U2 12 PU ELSEVIER SCI LTD PI London PA 125 London Wall, London, ENGLAND SN 0959-6526 EI 1879-1786 J9 J CLEAN PROD JI J. Clean Prod. PD APR 10 PY 2024 VL 449 AR 141410 DI 10.1016/j.jclepro.2024.141410 EA MAR 2024 PG 13 WC Green & Sustainable Science & Technology; Engineering, Environmental; Environmental Sciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Science & Technology - Other Topics; Engineering; Environmental Sciences & Ecology GA QI2Z5 UT WOS:001220195100001 DA 2024-09-05 ER PT J AU Zabezhailo, MI AF Zabezhailo, M. I. TI Three Comprehension Test Questions for Fellow Members SO PATTERN RECOGNITION AND IMAGE ANALYSIS LA English DT Article DE artificial intelligence; intelligent data analysis; research and developments; quality evaluation AB The work concerns the quality of intelligent-data-analysis results. Learning-sample quality for precedents of knowledge representation language and means for intelligent data analysis are considered. Several problems are formulated, acceptable answers to which will make it possible to increase the efficiency and quality of intelligent data analysis. C1 [Zabezhailo, M. I.] Russian Acad Sci, Fed Res Ctr Comp Sci & Control, Moscow 119333, Russia. C3 Russian Academy of Sciences; Federal Research Center "Computer Science & Control" of RAS RP Zabezhailo, MI (corresponding author), Russian Acad Sci, Fed Res Ctr Comp Sci & Control, Moscow 119333, Russia. EM m.zabezhailo@yandex.ru CR Finn VK, 2011, SCI TECH INF PROCESS, V38, P385, DOI 10.3103/S0147688211060037 Mitin A., 2020, Conf. in Memory of Academician O.M. Belotserkovsky Zabezhailo M., 2022, IMSC 2022 INTEGRATED, P50 Zabezhailo MI, 2022, SCI TECH INF PROCESS, V49, P385, DOI 10.3103/S0147688222050148 Zabezhailo MI, 2021, AUTOMAT DOC MATH LIN, V55, P94, DOI 10.3103/S0005105521030092 Zabezhailo MI, 2020, AUTOM DOC MATH LINGU, V54, P298, DOI 10.3103/S0005105520060072 Zabezhailo M. I., 2021, CEUR Workshop Proc, V3044, P98 [Забежайло Михаил Иванович Zabezhailo Michael I.], 2021, [Системы и средства информатики, Systems and Means of Informatics, Sistemy i sredstva informatiki], V31, P69, DOI 10.14357/08696527210106 NR 8 TC 0 Z9 0 U1 0 U2 0 PU SPRINGERNATURE PI LONDON PA CAMPUS, 4 CRINAN ST, LONDON, N1 9XW, ENGLAND SN 1054-6618 EI 1555-6212 J9 PATTERN RECOGN IMAGE JI Pattern Recogn. Image Anal. PD SEP PY 2023 VL 33 IS 3 SI SI BP 555 EP 559 DI 10.1134/S1054661823030501 PG 5 WC Computer Science, Interdisciplinary Applications WE Emerging Sources Citation Index (ESCI) SC Computer Science GA T0NU8 UT WOS:001075049100047 DA 2024-09-05 ER PT J AU Podestà, F AF Podesta, Federico TI Combining process tracing and synthetic control method: Bridging two ways of making causal inference in evaluation research SO EVALUATION LA English DT Article DE causation; process tracing; single-case study; Synthetic control method ID MECHANISMS AB This article discusses potential ways of combining two methods of evaluation in single-case studies: the synthetic control method and the process tracing method. Both are designed to examine certain events/programmes that take place in given cases but view these events/programmes from different causal perspectives. Seeing an event/programme as a cause, synthetic control estimates its impact on one or more outcomes. Conversely, starting from a certain outcome, process tracing uncovers the causes responsible. One can start from the causal explanation reached via one of the two methods and then proceed to examine that explanation through the other method. Once the causes of an outcome are traced via a process tracing analysis, that account can be validated by estimating the effects of those causes via synthetic control. Equally, once the impact of a certain event is estimated through synthetic control, causal mechanisms traceable via process tracing can be exploited to refine that impact evaluation. C1 [Podesta, Federico] Bruno Kessler Fdn, Trento, Italy. C3 Fondazione Bruno Kessler RP Podestà, F (corresponding author), Bruno Kessler Fdn, Res Inst Evaluat Publ Policies IRVAPP, Via S Croce 77, I-38122 Trento, Italy. EM podesta@irvapp.it OI Podesta, Federico/0000-0003-0307-8041 CR Abadie A, 2003, AM ECON REV, V93, P113, DOI 10.1257/000282803321455188 Abadie A, 2021, J ECON LIT, V59, P391, DOI 10.1257/jel.20191450 Abadie A, 2015, AM J POLIT SCI, V59, P495, DOI 10.1111/ajps.12116 Abadie A, 2010, J AM STAT ASSOC, V105, P493, DOI 10.1198/jasa.2009.ap08746 Arkhangelsky D, 2021, AM ECON REV, V111, P4088, DOI 10.1257/aer.20190159 Barrenechea R, 2019, SOCIOL METHOD RES, V48, P451, DOI 10.1177/0049124117701489 Beach D., 2019, Process-tracing methods: Foundations and guidelines Befani B., 2012, BROADENING RANGE DES Befani B, 2017, EVALUATION-US, V23, P42, DOI 10.1177/1356389016654584 Befani B, 2014, IDS BULL-I DEV STUD, V45, P17, DOI 10.1111/1759-5436.12110 Bennett A, 2015, STRAT SOC INQ, P1 Bennett A, 2006, ANNU REV POLIT SCI, V9, P455, DOI 10.1146/annurev.polisci.8.082103.104918 Bennett A, 2015, STRAT SOC INQ, P3 Bennett Andrew., 2010, RETHINKING SOCIAL IN, P207 Blatter J., 2012, Designing case studies: Explanatory approaches in small-N research, DOI [10.1057/9781137016669, DOI 10.1057/9781137016669] Busetti S, 2017, EVALUATION-US, V23, P256, DOI 10.1177/1356389017716738 Collier D, 2011, PS-POLIT SCI POLIT, V44, P823, DOI 10.1017/S1049096511001429 Collier David., 2010, RETHINKING SOCIAL IN, V2nd George Alexander., 1979, DIPLOMACY, P43 George Alexander L., 2005, CASE STUDIES THEORY, DOI DOI 10.1017/S1537592707070491 Gerring J, 2007, CASE STUDY RESEARCH: PRINCIPLES AND PRACTICES, P1 Gerring J, 2010, COMP POLIT STUD, V43, P1499, DOI 10.1177/0010414010376911 Hall PA, 2006, EUR MANAG REV, V3, P24, DOI 10.1057/palgrave.emr.1500050 Harvey FrankP., 2011, Explaining the Iraq War: Counterfactual Theory, Logic and Evidence Kay A, 2015, POLICY STUD J, V43, P1, DOI 10.1111/psj.12092 Keele L, 2015, J POLICY ANAL MANAG, V34, P937, DOI 10.1002/pam.21853 Mahoney J, 1999, AM J SOCIOL, V104, P1154, DOI 10.1086/210139 Mahoney J, 2006, POLIT ANAL, V14, P227, DOI 10.1093/pan/mpj017 Mahoney J, 2012, SOCIOL METHOD RES, V41, P570, DOI 10.1177/0049124112437709 MAYNE J., 2012, Making causal claims (Brief No. 26) Mayntz R, 2004, PHILOS SOC SCI, V34, P237, DOI 10.1177/0048393103262552 Mellace G., 2019, ARXIV E PRINTS Pawson R., 2013, The science of evaluation: A realist manifesto, DOI DOI 10.4135/9781473913820 Pierson P, 1996, WORLD POLIT, V48, P143, DOI 10.1353/wp.1996.0004 Podestà F, 2020, COMP EUR POLIT, V18, P819, DOI 10.1057/s41295-020-00211-8 Rohlfing I, 2014, SOCIOL METHOD RES, V43, P606, DOI 10.1177/0049124113503142 Schmitt J, 2015, EVALUATION-US, V21, P429, DOI 10.1177/1356389015607739 Skarbek D, 2020, J I ECON, V16, P409, DOI 10.1017/S174413741900078X Skocpol T., 1979, States and Social Revolutions: A Comparative Analysis of France, Russia and China Tarrow S, 2010, COMP POLIT STUD, V43, P230, DOI 10.1177/0010414009350044 Van Evera S., 1997, Guide to methods for students of political science NR 41 TC 0 Z9 0 U1 3 U2 11 PU SAGE PUBLICATIONS INC PI THOUSAND OAKS PA 2455 TELLER RD, THOUSAND OAKS, CA 91320 USA SN 1356-3890 EI 1461-7153 J9 EVALUATION-US JI Evaluation PD JAN PY 2023 VL 29 IS 1 BP 50 EP 66 DI 10.1177/13563890221139511 EA DEC 2022 PG 17 WC Social Sciences, Interdisciplinary WE Social Science Citation Index (SSCI) SC Social Sciences - Other Topics GA 7X3LH UT WOS:000893653200001 DA 2024-09-05 ER PT J AU Frandsen, TF Carlsen, AMF Eriksen, MB AF Frandsen, Tove Faber Carlsen, Anne-Marie Fiala Eriksen, Mette Brandt TI The use of subject headings varied in Embase and MEDLINE: An analysis of indexing across six subject areas SO JOURNAL OF INFORMATION SCIENCE LA English DT Article DE Bibliographic databases; Embase; linear regression; MEDLINE; subject headings; thesaurus ID SYSTEMATIC REVIEWS; ABSTRACTS; LENGTH; CINAHL; MESH AB Many bibliographic databases describe the content of a publication using a thesaurus. The vocabularies vary and the extent to which the databases apply them may also differ significantly. The aim of this study is to empirically explore the number of subject headings assigned to publications in two databases over time and to determine if publication characteristics are associated with the number of subject headings. Articles and reviews in MEDLINE and Embase from 1990 to 2019 assigned with one of the subject headings from six subject areas are included in this study. Each of the retrieved publications in Embase is matched with a similar publication in MEDLINE. Furthermore, multivariable linear regressions are used to explore the association of the number of subject headings in MEDLINE and Embase with six prespecified publication characteristics. The average number of assigned subject headings in MEDLINE is stable or even slightly decreasing over time. In Embase, the average number of assigned subject headings was stable until about 2000 where the average number increased dramatically during the next 3 years. Furthermore, linear regressions show that the average number of subject headings in MEDLINE and Embase is higher for publications in English, publications with longer abstract, recent publications and if it belongs to specific subject areas. However, reviews are assigned with more subject headings in Embase and fewer in MEDLINE. The implications of the results are discussed. C1 [Frandsen, Tove Faber] Univ Southern Denmark, Dept Design & Commun, Univ Sparken 1, DK-6000 Odence, Denmark. [Carlsen, Anne-Marie Fiala] UCL Univ Coll, Svendborg, Denmark. [Eriksen, Mette Brandt] Univ Southern Denmark, Univ Lib Southern Denmark, Cochrane Denmark, Odense, Denmark. [Eriksen, Mette Brandt] Univ Southern Denmark, Ctr Evidence Based Med Odense CEBMO, Odense, Denmark. C3 University of Southern Denmark; University of Southern Denmark; University of Southern Denmark RP Frandsen, TF (corresponding author), Univ Southern Denmark, Dept Design & Commun, Univ Sparken 1, DK-6000 Odence, Denmark. EM t.faber@sdu.dk RI Frandsen, Tove Faber/A-6185-2012 OI Frandsen, Tove Faber/0000-0002-8983-5009; Brandt Eriksen, Mette/0000-0001-6785-261X CR AITCHISON J., 2000, THESAURUS CONSTRUCTI, V4th [Anonymous], 2005, Guidelines for the construction, format, and management of monolingual controlled vocabularies Aromataris E., 2017, Joanna Briggs Institute reviewers manual [Internet] Banks J., 2004, TECH SERV Q, V21, P17 Bekhuis T, 2013, J MED LIBR ASSOC, V101, P92, DOI 10.3163/1536-5050.101.2.004 BETRANAP, 2005, BMC MED RES METHODOL, V5 Booth Andrew, 2012, Systematic approaches to a successful literature review Burns CS, 2021, PLOS ONE, V16, DOI 10.1371/journal.pone.0234221 Chen C, 2018, J INF SCI, V44, P3, DOI 10.1177/0165551516671629 Chu Heting., 2010, Information Representation and Retrieval in the Digital Age Cleveland D.B., 2013, INTRO INDEXING ABSTR Cooper H., 2019, The handbook of research synthesis and meta-analysis Dai SY, 2020, BIOINFORMATICS, V36, P1533, DOI 10.1093/bioinformatics/btz756 Elsevier, 2021, EMBASE INDEXING GUID Elsevier RD Solutions, 2015, COMP EMTR MESH Eriksen MB., 2016, UGESKRIFT LAEGER, V178, P1610 Frank J, 2018, SOCIOL ARTS, P1, DOI [10.1007/978-3-319-65036-4_1, 10.1002/jrsm.1302] Glanville J., 2015, PRUNING EMTREE DOES Green S, 2011, COCHRANE HDB SYSTEMA, DOI DOI 10.1002/9780470712184 Gross T, 2015, CAT CLASSIF Q, V53, P1, DOI 10.1080/01639374.2014.917447 Harpring P., 2010, Introduction to controlled vocabularies: Terminology for art, architecture, and other cultural works Hartley J, 2009, J AM SOC INF SCI TEC, V60, P2010, DOI 10.1002/asi.21102 HIGGINS JPT, 2011, COCHRANE HDB SYSTEMA, V0001 Hjorland B, 2001, ANNU REV INFORM SCI, V35, P249 Holly C., 2016, Comprehensive Systematic Review for Advanced Practice Nursing Jenuwine ES, 2004, J MED LIBR ASSOC, V92, P349 Kim E, 2021, SCI EDIT, V8, P39, DOI 10.6087/kcse.228 Koffel JB, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0125931 Lancaster FrederickW., 1991, Indexing and abstracting in theory and practice Liu H., 2013, J PHYS ED SPORT, V13, P53 Losee R, 2004, KNOWL ORGAN, V31, P245 Losee RM, 2007, INFORM PROCESS MANAG, V43, P958, DOI 10.1016/j.ipm.2006.08.011 Minozzi S, 2000, ARCH PHYS MED REHAB, V81, P720, DOI 10.1016/S0003-9993(00)90099-6 Mork J, 2017, J BIOMED SEMANT, V8, DOI 10.1186/s13326-017-0113-5 Volpato EDN, 2018, SAO PAULO MED J, V136, P103, DOI 10.1590/1516-3180.2017.0277100917 Parlak B, 2020, J INF SCI, V46, P648, DOI 10.1177/0165551519860982 Pieper D, 2021, J CLIN EPIDEMIOL, V132, P146, DOI 10.1016/j.jclinepi.2020.12.027 Premji Z, 2020, J CAN HEALTH LIBRARI, V41, P3, DOI 10.29173/jchla29437 Ratner B., 2009, Journal of Targeting, Measurement and Analysis for Marketing, V17, P139, DOI [DOI 10.1057/JT.2009.5, 10.1057/jt.2009.5] Salvador-Oliván JA, 2019, J MED LIBR ASSOC, V107, P210, DOI 10.5195/jmla.2019.567 Sampson M, 2006, J CLIN EPIDEMIOL, V59, P1057, DOI 10.1016/j.jclinepi.2006.01.007 Sanyal DK, 2021, J INF SCI, V47, P227, DOI 10.1177/0165551519888605 Suarez-Almazor ME, 2000, CONTROL CLIN TRIALS, V21, P476, DOI 10.1016/S0197-2456(00)00067-2 Subirana M, 2005, J CLIN EPIDEMIOL, V58, P20, DOI 10.1016/j.jclinepi.2004.06.001 TIBBO HR, 1994, AM ARCHIVIST, V57, P310 U.S. National Library of Medicine, INTR MESH HIST MESH Voorbij HJ, 1998, J DOC, V54, P466, DOI 10.1108/EUM0000000007178 Wilkins Thad, 2005, Can Fam Physician, V51, P848 Wright K, 2015, SYST REV-LONDON, V4, DOI 10.1186/s13643-015-0069-4 NR 49 TC 0 Z9 0 U1 2 U2 7 PU SAGE PUBLICATIONS LTD PI LONDON PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND SN 0165-5515 EI 1741-6485 J9 J INF SCI JI J. Inf. Sci. PD AUG PY 2024 VL 50 IS 4 BP 851 EP 860 DI 10.1177/01655515221107335 EA AUG 2022 PG 10 WC Computer Science, Information Systems; Information Science & Library Science WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Computer Science; Information Science & Library Science GA C3E8I UT WOS:000835912300001 DA 2024-09-05 ER PT J AU Nazarovets, S Teixeira da Silva, JA AF Nazarovets, Serhii Teixeira da Silva, Jaime A. TI ChatGPT as an "author": Bibliometric analysis to assess the validity of authorship SO ACCOUNTABILITY IN RESEARCH-ETHICS INTEGRITY AND POLICY LA English DT Article; Early Access DE Artificial intelligence (AI); authorship principles; ethics; responsibility; transparency AB Background: Following the 2023 surge in popularity of large language models like ChatGPT, significant ethical discussions emerged regarding their role in academic authorship. Notable ethics organizations, including the ICMJE and COPE, alongside leading publishers, have instituted ethics clauses explicitly stating that such models do not meet the criteria for authorship due to accountability issues.Objective: This study aims to assess the prevalence and ethical implications of listing ChatGPT as an author on academic papers, in violation of existing ethical guidelines set by the ICMJE and COPE.Methods: We conducted a comprehensive review using databases such as Web of Science and Scopus to identify instances where ChatGPT was credited as an author, co-author, or group author.Results: Our search identified 14 papers featuring ChatGPT in such roles. In four of those papers, ChatGPT was listed as an "author" alongside the journal's editor or editor-in-chief. Several of the ChatGPT-authored papers have accrued dozens, even hundreds of citations according to Scopus, Web of Science, and Google Scholar.Discussion: The inclusion of ChatGPT as an author on these papers raises critical questions about the definition of authorship and the accountability mechanisms in place for content produced by artificial intelligence. Despite the ethical guidelines, the widespread citation of these papers suggests a disconnect between ethical policy and academic practice.Conclusion: The findings suggest a need for corrective measures to address these discrepancies. Immediate review and amendment of the listed papers is advised, highlighting a significant oversight in the enforcement of ethical standards in academic publishing. C1 [Nazarovets, Serhii] Borys Grinchenko Kyiv Metropolitan Univ, Lib, 18-2 Bulvarno Kudriavska Str, UA-04053 Kiev, Ukraine. C3 Ministry of Education & Science of Ukraine; Borys Grinchenko Kyiv Metropolitan University RP Nazarovets, S (corresponding author), Borys Grinchenko Kyiv Metropolitan Univ, Lib, 18-2 Bulvarno Kudriavska Str, UA-04053 Kiev, Ukraine. EM sergiy.nazarovets@gmail.com RI Nazarovets, Serhii/I-1680-2012 OI Nazarovets, Serhii/0000-0002-5067-4498 CR Abalkina A, 2023, LEARN PUBL, V36, P689, DOI 10.1002/leap.1574 Berdejo-Espinola V, 2023, SCIENCE, V379, P991, DOI 10.1126/science.adg9714 Cellular and Molecular Bioengineering, 2024, SUBM GUID Christopher J, 2021, FEBS LETT, V595, P1751, DOI 10.1002/1873-3468.14143 COPE (Committee on Publication Ethics), 2024, AUTH AI TOOLS Hosseini M, 2023, RES ETHICS-UK, DOI 10.1177/17470161231180449 Hosseini M, 2023, ACCOUNT RES, DOI 10.1080/08989621.2023.2168535 Hutson M, 2022, NATURE, V611, P192, DOI 10.1038/d41586-022-03479-w ICMJE (International Committee of Medical Journal Editors), 2024, REC Joelving F, 2024, SCIENCE, V383, P252, DOI 10.1126/science.ado0309 Kaebnick GE, 2023, HASTINGS CENT REP, V53, P3, DOI 10.1002/hast.1507 King MR, 2023, CELL MOL BIOENG, V16, P1, DOI 10.1007/s12195-022-00754-8 Lund BD, 2024, LEARN PUBL, V37, P13, DOI 10.1002/leap.1582 Lund BD, 2023, J ASSOC INF SCI TECH, V74, P570, DOI 10.1002/asi.24750 O'Connor S, 2023, NURSE EDUC PRACT, V66, DOI 10.1016/j.nepr.2022.103537 Owens B, 2023, NATURE, V615, P20, DOI 10.1038/d41586-023-00500-8 Prillaman M, 2024, NATURE, V627, P16, DOI 10.1038/d41586-024-00592-w PubMed, 2024, ABOUT US Springer Nature, 2024, AUTHORSHIP Springer Nature, 2024, AUTH PRINC Stokel-Walker C, 2023, NATURE, V614, P214, DOI 10.1038/d41586-023-00340-6 Tang GY, 2023, ACCOUNT RES, DOI 10.1080/08989621.2023.2180359 Teixeira da Silva J. A., 2023, SCI EDITOR PUBLISHER, V8, P110, DOI [https://doi.org/10.24069/SEP-23-17, DOI 10.24069/SEP-23-17] Teixeira da Silva JA, 2023, DIAB MET SYND CLIN R, V17, DOI 10.1016/j.dsx.2023.102779 Teixeira da Silva JA, 2023, NURSE EDUC PRACT, V68, DOI 10.1016/j.nepr.2023.103600 Teixeira da Silva JA, 2021, PUBLISH RES Q, V37, P90, DOI 10.1007/s12109-021-09784-y Teixeira da Silva JA, 2017, BANGLADESH J MED SCI, V16, P610 Thorp HH, 2023, SCIENCE, V379, P313, DOI 10.1126/science.adg7879 van Woudenberg Rene, 2024, Philos Technol, V37, P34, DOI 10.1007/s13347-024-00715-1 Wykes T, 2023, J MENT HEALTH, V32, P865, DOI 10.1080/09638237.2023.2232217 NR 30 TC 1 Z9 1 U1 11 U2 11 PU TAYLOR & FRANCIS INC PI PHILADELPHIA PA 530 WALNUT STREET, STE 850, PHILADELPHIA, PA 19106 USA SN 0898-9621 EI 1545-5815 J9 ACCOUNT RES JI Account. Res. PD 2024 MAY 3 PY 2024 DI 10.1080/08989621.2024.2345713 EA MAY 2024 PG 11 WC Medical Ethics WE Science Citation Index Expanded (SCI-EXPANDED) SC Medical Ethics GA PS2Z6 UT WOS:001216019800001 PM 38693669 DA 2024-09-05 ER PT J AU Rosenkrantz, AB Doshi, AM Ginocchio, LA Aphinyanaphongs, Y AF Rosenkrantz, Andrew B. Doshi, Ankur M. Ginocchio, Luke A. Aphinyanaphongs, Yindalon TI Use of a Machine-learning Method for Predicting Highly Cited Articles Within General Radiology Journals SO ACADEMIC RADIOLOGY LA English DT Article DE Radiology; bibliometrics; biomedical journals; machine learning ID DATA SYSTEM; NODULES AB Rationale and Objectives: This study aimed to assess the performance of a text classification machine-learning model in predicting highly cited articles within the recent radiological literature and to identify the model's most influential article features. Materials and Methods: We downloaded from PubMed the title, abstract, and medical subject heading terms for 10,065 articles published in 25 general radiology journals in 2012 and 2013. Three machine-learning models were applied to predict the top 10% of included articles in terms of the number of citations to the article in 2014 (reflecting the 2-year time window in conventional impact factor calculations). The model having the highest area under the curve was selected to derive a list of article features (words) predicting high citation volume, which was iteratively reduced to identify the smallest possible core feature list maintaining predictive power. Overall themes were qualitatively assigned to the core features. Results: The regularized logistic regression (Bayesian binary regression) model had highest performance, achieving an area under the curve of 0.814 in predicting articles in the top 10% of citation volume. We reduced the initial 14,083 features to 210 features that maintain predictivity. These features corresponded with topics relating to various imaging techniques (eg, diffusion-weighted magnetic resonance imaging, hyperpolarized magnetic resonance imaging, dual-energy computed tomography, computed tomography reconstruction algorithms, tomosynthesis, elastography, and computer-aided diagnosis), particular pathologies (prostate cancer; thyroid nodules; hepatic adenoma, hepatocellular carcinoma, non-alcoholic fatty liver disease), and other topics (radiation dose, electroporation, education, general oncology, gadolinium, statistics). Conclusions: Machine learning can be successfully applied to create specific feature-based models for predicting articles likely to achieve high influence within the radiological literature. C1 [Rosenkrantz, Andrew B.; Doshi, Ankur M.; Ginocchio, Luke A.] NYU, Langone Med Ctr, Dept Radiol, 660 First Ave,3rd Floor, New York, NY 10016 USA. [Aphinyanaphongs, Yindalon] NYU, Ctr Healthcare Innovat & Delivery Sci, Langone Med Ctr, New York, NY USA. C3 New York University; NYU Langone Medical Center; NYU Langone Medical Center; New York University RP Rosenkrantz, AB (corresponding author), NYU, Langone Med Ctr, Dept Radiol, 660 First Ave,3rd Floor, New York, NY 10016 USA. EM Andrew.Rosenkrantz@nyumc.org OI Ginocchio, Luke/0000-0002-0183-7246; Aphinyanaphongs, Yin/0000-0001-8605-5392; Doshi, Ankur/0000-0002-9415-2763; Rosenkrantz, Andrew/0000-0002-1558-5350 CR [Anonymous], INCITES J CIT REP [Anonymous], MULTINOMIAL NAIVE BA Aphinyanaphongs Y, 2016, BIOCOMPUT-PAC SYM, P480 Aphinyanaphongs Y, 2014, J ASSOC INF SCI TECH, V65, P1964, DOI 10.1002/asi.23110 Barentsz JO, 2012, EUR RADIOL, V22, P746, DOI 10.1007/s00330-011-2377-y Brinjikji W, 2013, RADIOLOGY, V269, P272, DOI 10.1148/radiol.13122242 Bui-Mansfield LT, 2006, AM J ROENTGENOL, V186, P3, DOI 10.2214/AJR.05.1186 Castillo C, 2007, LECT NOTES COMPUT SC, V4726, P107, DOI 10.1007/978-3-540-75530-2_10 Cheng SP, 2013, HEAD NECK-J SCI SPEC, V35, P541, DOI 10.1002/hed.22985 Davenport MS, 2014, RADIOLOGY, V272, P132, DOI 10.1148/radiol.14131963 Dolan RS, 2015, EMERG RADIOL, V22, P667, DOI 10.1007/s10140-015-1345-2 Durieux V, 2010, RADIOLOGY, V255, P342, DOI 10.1148/radiol.09090626 Fu Lawrence D, 2008, AMIA Annu Symp Proc, P222 GARFIELD E, 1955, SCIENCE, V122, P108, DOI 10.1126/science.122.3159.108 Genkin A, 2007, TECHNOMETRICS, V49, P291, DOI 10.1198/004017007000000245 Joachims T., 1998, Machine Learning: ECML-98. 10th European Conference on Machine Learning. Proceedings, P137, DOI 10.1007/BFb0026683 Lokker C, 2008, BMJ-BRIT MED J, V336, P655, DOI 10.1136/bmj.39482.526713.BE McCallum Andrew Kachites, 2002, MALLET: A machine learning for language toolkit Pagni M, 2014, ACAD RADIOL, V21, P1056, DOI 10.1016/j.acra.2014.03.011 Purysko AS, 2012, RADIOGRAPHICS, V32, P1977, DOI 10.1148/rg.327125026 Rosenkrantz AB, 2016, ACAD RADIOL, V23, P661, DOI 10.1016/j.acra.2015.12.026 Rosenkrantz AB, 2013, RADIOLOGY, V269, P481, DOI 10.1148/radiol.13122233 Russ G, 2013, EUR J ENDOCRINOL, V168, P649, DOI 10.1530/EJE-12-0936 SIEGELMAN SS, 1988, RADIOLOGY, V168, P414, DOI 10.1148/radiology.168.2.3293111 Yoon DY, 2013, AM J ROENTGENOL, V201, P471, DOI 10.2214/AJR.12.10489 NR 25 TC 2 Z9 3 U1 2 U2 42 PU ELSEVIER SCIENCE INC PI NEW YORK PA STE 800, 230 PARK AVE, NEW YORK, NY 10169 USA SN 1076-6332 EI 1878-4046 J9 ACAD RADIOL JI Acad. Radiol. PD DEC PY 2016 VL 23 IS 12 BP 1573 EP 1581 DI 10.1016/j.acra.2016.08.011 PG 9 WC Radiology, Nuclear Medicine & Medical Imaging WE Science Citation Index Expanded (SCI-EXPANDED) SC Radiology, Nuclear Medicine & Medical Imaging GA EC8ZJ UT WOS:000388431300015 PM 27692588 DA 2024-09-05 ER PT J AU Aristovnik, A Karampelas, K Umek, L Ravselj, D AF Aristovnik, Aleksander Karampelas, Konstantinos Umek, Lan Ravselj, Dejan TI Impact of the COVID-19 pandemic on online learning in higher education: a bibliometric analysis SO FRONTIERS IN EDUCATION LA English DT Article DE online learning; e-learning; higher education; bibliometrics; mapping; visualization; VOSviewer; COVID-19 ID GOOGLE-SCHOLAR; SCIENCE; SCOPUS; WEB AB The outbreak of the COVID-19 pandemic significantly disrupted higher education by forcing the transition to online learning, which became a mandatory teaching process during the lockdowns. Although the epidemiological situation has gradually improved since then, online learning is becoming ever more popular as it provides new learning opportunities. Therefore, the paper aims to present recent research trends concerning online learning in higher education during the COVID-19 pandemic by using selected bibliometric approaches. The bibliometric analysis is based on 8,303 documents from the Scopus database published between January 2020 and March 2022, when repeated lockdowns meant most countries were experiencing constant disruptions to the educational process. The results show that the COVID-19 pandemic increased interest in online learning research, notably in English-speaking and Asian countries, with most research being published in open-access scientific journals. Moreover, the topics most frequently discussed in the online learning research during the COVID-19 pandemic were ICT and pedagogy, technology-enhanced education, mental health and well-being, student experience and curriculum and professional development. Finally, the COVID-19 pandemic encouraged explorations of emergency remote learning approaches like e-learning, distance learning and virtual learning, which are intended to limit physical contact between teachers and students, where the specific requirements of a given field of study often guide which online learning approach is the most suitable. The findings add to the existing body of scientific knowledge and support the evidence-based policymaking needed to ensure sustainable higher education in the future. C1 [Aristovnik, Aleksander; Umek, Lan; Ravselj, Dejan] Univ Ljubljana, Fac Publ Adm, Ljubljana, Slovenia. [Karampelas, Konstantinos] Univ Aegean, Dept Primary Level Educ, Rhodes, Greece. C3 University of Ljubljana; University of Aegean RP Aristovnik, A; Ravselj, D (corresponding author), Univ Ljubljana, Fac Publ Adm, Ljubljana, Slovenia. EM aleksander.aristovnik@fu.uni-lj.si; dejan.ravselj@fu.uni-lj.si RI Karampelas, Konstantinos/AFA-6504-2022; Ravšelj, Dejan/JMA-8751-2023 OI Karampelas, Konstantinos/0000-0001-6631-1408; Ravšelj, Dejan/0000-0003-0426-820X FU Slovenian Research Agency [P5-0093, Z5-4569] FX This research and the APC were funded by the Slovenian Research Agency under grant numbers P5-0093 and Z5-4569. CR Abu Kwaik A., 2021, INT J DENT ORAL SCI, V8, P1560, DOI [10.19070/2377-8075-21000310, DOI 10.19070/2377-8075-21000310] Adedoyin O.B., 2020, INTERACT LEARN ENVIR, P1, DOI DOI 10.1080/10494820.2020.1813180 Almazova N, 2020, EDUC SCI, V10, DOI 10.3390/educsci10120368 Aristovnik A, 2020, SUSTAINABILITY-BASEL, V12, DOI 10.3390/su12219132 Aristovnik A, 2020, SUSTAINABILITY-BASEL, V12, DOI 10.3390/su12208438 Baber H, 2022, INFORM LEARN SCI, V123, P214, DOI 10.1108/ILS-10-2021-0090 Bawa'aneh MS, 2021, CONTEMP EDUC TECHNOL, V13, DOI 10.30935/cedtech/10872 Bilal, 2022, RISK MANAG HEALTHC P, V15, P1353, DOI 10.2147/RMHP.S355895 Bismala L., 2021, International Journal of Evaluation and Research in Education, V10, P753, DOI [10.11591/ijere.v10i3.21467, DOI 10.11591/IJERE.V10I3.21467] Bonsaksen T, 2021, HEALTHCARE-BASEL, V9, DOI 10.3390/healthcare9070903 Bozkurt A, 2022, J INTERACT MEDIA EDU, DOI 10.5334/jime.751 Brika SKM, 2022, FRONT PSYCHOL, V12, DOI 10.3389/fpsyg.2021.762819 Campos E, 2022, FRONT EDUC, V7, DOI 10.3389/feduc.2022.991654 Chen K, 2020, J CHEM EDUC, V97, P3265, DOI 10.1021/acs.jchemed.0c00581 Chick RC, 2020, J SURG EDUC, V77, P729, DOI 10.1016/j.jsurg.2020.03.018 Dedeilia A, 2023, HUM RESOUR HEALTH, V21, DOI 10.1186/s12960-023-00799-4 Dedeilia A, 2020, IN VIVO, V34, P1603, DOI 10.21873/invivo.11950 Djeki E, 2022, J COMPUT EDUC, V9, P727, DOI 10.1007/s40692-021-00218-4 Duan DZ, 2021, LEARN PUBL, V34, P429, DOI 10.1002/leap.1382 Dwivedi YK, 2020, INT J INFORM MANAGE, V55, DOI 10.1016/j.ijinfomgt.2020.102211 Elmer T, 2020, PLOS ONE, V15, DOI 10.1371/journal.pone.0236337 Falagas ME, 2008, FASEB J, V22, P338, DOI 10.1096/fj.07-9492LSF Fauzi MA, 2022, HELIYON, V8, DOI 10.1016/j.heliyon.2022.e09433 Ferri F, 2020, SOCIETIES, V10, DOI 10.3390/soc10040086 Fried EI, 2022, CLIN PSYCHOL SCI, V10, P340, DOI 10.1177/21677026211017839 Fuchs K, 2022, FRONT EDUC, V7, DOI 10.3389/feduc.2022.921332 Gao Y., 2022, International Journal of Information and Education Technology, V12, P390, DOI [10.18178/ijiet.2022.12.5.1632, DOI 10.18178/IJIET.2022.12.5.1632] Garcia Penalvo F. J., 2020, EDUC KNOWL SOC, V21, P23086, DOI [10.14201/eks.23086, DOI 10.14201/EKS.23086] García-Alberti M, 2021, EDUC SCI, V11, DOI 10.3390/educsci11020059 Gavriluta C, 2022, INT J ENV RES PUB HE, V19, DOI 10.3390/ijerph19073990 Gonzalez C, 2020, J CHEM EDUC, V97, P2871, DOI 10.1021/acs.jchemed.0c00670 Gritsova OA, 2021, EKON REG, V17, P929, DOI 10.17059/ekon.reg.2021-3-15 Gurcan F, 2022, IEEE ACCESS, V10, P123349, DOI 10.1109/ACCESS.2022.3224034 Hamdan R, 2021, SUSTAINABILITY-BASEL, V13, DOI 10.3390/su132112021 Harzing AW, 2009, J AM SOC INF SCI TEC, V60, P41, DOI 10.1002/asi.20953 Hodges CB., 2020, Why IT Matters to Higher Education EDUCAUSE Review Hunter JD, 2007, COMPUT SCI ENG, V9, P90, DOI 10.1109/MCSE.2007.55 Iyer P, 2020, J DENT EDUC, V84, P718, DOI 10.1002/jdd.12163 James N, 2020, STUD ED ADULTS-NIACE, V52, P129, DOI 10.1080/02660830.2020.1811474 Kahwash BM, 2021, J ALLER CL IMM-PRACT, V9, DOI 10.1016/j.jaip.2020.09.036 Kapasia N, 2020, CHILD YOUTH SERV REV, V116, DOI 10.1016/j.childyouth.2020.105194 Kartimi Kartimi, 2022, Educ. quím, V33, P194, DOI 10.22201/fq.18708404e.2022.2.80579 Keri D., 2022, EGPA 2022 C 6 9 SEPT Kerzic D, 2021, PLOS ONE, V16, DOI 10.1371/journal.pone.0258807 Keskin G, 2021, PESQUI BRAS ODONTOPE, V21, DOI 10.1590/pboci.2021.102 Khan MA, 2021, SUSTAINABILITY-BASEL, V13, DOI 10.3390/su13010057 Küçük-Avci S, 2022, CROAT J EDUC, V24, P457, DOI 10.15516/cje.v24i2.4534 Leighton K, 2021, CLIN SIMUL NURS, V55, P37, DOI 10.1016/j.ecns.2021.03.006 McKinney W., 2012, Python for data analysis: Data wrangling with Pandas, NumPy, and IPython Misiejuk K, 2023, FRONT EDUC, V7, DOI 10.3389/feduc.2022.996006 Mongeon P, 2016, SCIENTOMETRICS, V106, P213, DOI 10.1007/s11192-015-1765-5 Müller AM, 2021, EDUC SCI, V11, DOI 10.3390/educsci11010019 Murphy MPA, 2020, CONTEMP SECUR POL, V41, P492, DOI 10.1080/13523260.2020.1761749 Navarro-Espinosa JA, 2021, INT J ENV RES PUB HE, V18, DOI 10.3390/ijerph18189605 Nguyen JG, 2020, J CHEM EDUC, V97, P3429, DOI 10.1021/acs.jchemed.0c00790 Ochnik D, 2021, J CLIN MED, V10, DOI 10.3390/jcm10235564 Okoro C, 2022, INT J ENV RES PUB HE, V19, DOI 10.3390/ijerph19094929 Pandey K., 2020, INT J MANAG HUMAN, V4, P104, DOI [10.35940/ijmh.H0834.044820, DOI 10.35940/IJMH.H0834.044820] Patience GS, 2017, HELIYON, V3, DOI 10.1016/j.heliyon.2017.e00300 Perets EA, 2020, J CHEM EDUC, V97, P2439, DOI 10.1021/acs.jchemed.0c00879 Pham P.T, 2022, European Journal of Educational Research, V11, P1363 Pokhrel S., 2021, High. Educ. Future, V8, P133, DOI DOI 10.1177/2347631120983481 Raccanello D, 2022, LEARN INSTR, V80, DOI 10.1016/j.learninstruc.2022.101629 Rapanta C., 2020, Postdigital Science and Education, V2, P923, DOI [10.1007/s42438-020-00155-y, DOI 10.1007/S42438-020-00155-Y] Rasheed RA, 2020, COMPUT EDUC, V144, DOI 10.1016/j.compedu.2019.103701 Rasli A, 2022, FRONT EDUC, V7, DOI 10.3389/feduc.2022.992063 Ravselj D, 2022, FUTURE INTERNET, V14, DOI 10.3390/fi14050126 Rhile IJ, 2020, J CHEM EDUC, V97, P2857, DOI 10.1021/acs.jchemed.0c00618 Rogers G, 2020, SCIENTOMETRICS, V125, P777, DOI 10.1007/s11192-020-03647-7 Rojas-Sánchez MA, 2023, EDUC INF TECHNOL, V28, P155, DOI 10.1007/s10639-022-11167-5 Saqr M, 2024, UNIVERSAL ACCESS INF, V23, P1163, DOI 10.1007/s10209-023-00989-w Schultz M, 2020, J CHEM EDUC, V97, P2678, DOI 10.1021/acs.jchemed.0c00620 Shapiro Hilary, 2021, US Cardiol, V15, DOI 10.15420/usc.2020.25 She L, 2021, FRONT PSYCHOL, V12, DOI 10.3389/fpsyg.2021.743936 Sobaih AE, 2020, SUSTAINABILITY-BASEL, V12, DOI 10.3390/su12166520 Sundarasen S, 2020, INT J ENV RES PUB HE, V17, DOI 10.3390/ijerph17176206 Tang KHD, 2023, EDUC RES POLICY PRAC, V22, P23, DOI 10.1007/s10671-022-09319-y Tlili A, 2022, TURK ONLINE J DISTAN, V23 Vaicondam Y, 2022, INT J ONLINE BIOMED, V18, P4, DOI 10.3991/ijoe.v18i08.31963 Van der Graaf L, 2021, Research for CULT Committee-Education and youth in post-COVID-19 Europe-Crisis effects and policy recommendations van Eck NJ, 2010, SCIENTOMETRICS, V84, P523, DOI 10.1007/s11192-009-0146-3 Vera-Baceta MA, 2019, SCIENTOMETRICS, V121, P1803, DOI 10.1007/s11192-019-03264-z Waller R, 2020, INT J LIFELONG EDUC, V39, P243, DOI 10.1080/02601370.2020.1790267 Wang C, 2020, OMEGA-INT J MANAGE S, V93, DOI 10.1016/j.omega.2019.08.005 Watermeyer R, 2021, HIGH EDUC, V81, P623, DOI 10.1007/s10734-020-00561-y Williams ND, 2022, J CHEM EDUC, V99, P1100, DOI 10.1021/acs.jchemed.1c00476 Yaghi A, 2022, J PUBLIC AFF EDUC, V28, P91, DOI 10.1080/15236803.2021.1954469 Yan H, 2022, JMIR RES PROTOC, V11, DOI 10.2196/34575 Yan Y, 2021, MED EDUC ONLINE, V26, DOI 10.1080/10872981.2021.1897267 Zhang L, 2022, BRIT J EDUC TECHNOL, V53, P620, DOI 10.1111/bjet.13191 NR 90 TC 10 Z9 11 U1 5 U2 18 PU FRONTIERS MEDIA SA PI LAUSANNE PA AVENUE DU TRIBUNAL FEDERAL 34, LAUSANNE, CH-1015, SWITZERLAND EI 2504-284X J9 FRONT EDUC JI Front. Educ. PD AUG 3 PY 2023 VL 8 AR 1225834 DI 10.3389/feduc.2023.1225834 PG 13 WC Education & Educational Research WE Emerging Sources Citation Index (ESCI) SC Education & Educational Research GA P3ZH4 UT WOS:001050058100001 OA gold DA 2024-09-05 ER PT C AU Hou, W Huang, Y Zhang, K AF Hou, Wei Huang, Yuan Zhang, Kao BE Ge, N Lu, J Wang, Y Howard, N Chen, P Tao, X Zhang, B Zadeh, LA TI Research of Micro-blog Diffusion Effect Based on Analysis of retweet Behavior SO PROCEEDINGS OF 2015 IEEE 14TH INTERNATIONAL CONFERENCE ON COGNITIVE INFORMATICS & COGNITIVE COMPUTING (ICCI*CC) LA English DT Proceedings Paper CT 14th IEEE International Conference on Cognitive Informatics and Cognitive Computing (ICCI*CC) CY JUL 06-08, 2015 CL Beijing, PEOPLES R CHINA DE Micro-Blog; Behavior Prediction; Retweet Scale; Diffusion Depth; Logistic Regression AB Research on the diffusion effect of micro-blog plays an important role in improving marketing efficiency, strengthening monitoring public opinion and accurately discovering hotspot etc. To solve the problems not taking users' differences into consideration in the previous research, this paper proposes an algorithm to predict scale and depth of retweet massages based on analysis of retweet behavior. With the combination of LR algorithm and nine related features extracted from micro-blog users themselves, their relationships and micro-blog contents, we proposes a prediction model of retweet behavior. Based on this model, we proposes an algorithm to predict the diffusion effect, which considers the character of information spreading along users and does statistical analysis of adjacent users iteratively. Experimental results on Sina micro-blog dataset show that the algorithm has a prediction accuracy of 87.1 % and 81.6% in scale and depth respectively, which indicates the model works well. C1 [Hou, Wei; Huang, Yuan] Natl Comp Network & Informat Secur Management Ctr, Beijing 100038, Peoples R China. [Zhang, Kao] Natl Digital Switching Syst Engn & Technol R&D Ct, Zhengzhou 450001, Peoples R China. C3 PLA Information Engineering University RP Hou, W (corresponding author), Natl Comp Network & Informat Secur Management Ctr, Beijing 100038, Peoples R China. EM 1004790227@qq.com CR [Anonymous], 2013, 31 CHIN INT NETW INF [Anonymous], 2010, P 2010 43 HAWAII INT, DOI DOI 10.1353/JSM.2016.0009 [Anonymous], 2010, P INT AAAI C WEB SOC, DOI DOI 10.1609/ICWSM.V4I1.14033 Bandari Roja., 2012, The Pulse of News in Social Media: Forecasting Popularity Kwak H., WWW'10, DOI DOI 10.1145/1772690.1772751 Lahiri M, 2010, P ART INT Li Ying-le, 2013, Application Research of Computers, V30, P2594, DOI 10.3969/j.issn.1001-3695.2013.09.008 Lian J, 2011, J TSINGHUA U SCI TEC, V10 Lin Xue-Min, 2011, Chinese Journal of Computers, V34, P1853, DOI 10.3724/SP.J.1016.2011.01853 Liu Q, 2002, APPL LINGUIST, V4, P50 Narayanam R, 2011, IEEE T AUTOM SCI ENG, V8, P130, DOI 10.1109/TASE.2010.2052042 Richardson M, 2004, WEB DYNAMICS: ADAPTING TO CHANGE IN CONTENT, SIZE TOPOLOG AND USE, P179 Shi C, 2005, COMPUTER AIDED ENG, V14, P74 Suh Bongwon, 2010, 2010 IEEE 2 INT C SO, P177, DOI DOI 10.1109/SOCIALCOM.2010.33 Zhang YC, 2011, ACTA PHYS SIN-CH ED, V60, DOI 10.7498/aps.60.050501 [张旸 Zhang Yang], 2012, [中文信息学报, Journal of Chinese Information Processing], V26, P109 [张玥 Zhang Yue], 2012, [中文信息学报, Journal of Chinese Information Processing], V26, P122 Zhao Li, 2009, Journal of Software, V20, P1384, DOI 10.3724/SP.J.1001.2009.03512 NR 18 TC 5 Z9 7 U1 0 U2 2 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA BN 978-1-4673-7290-9 PY 2015 BP 255 EP 261 PG 7 WC Computer Science, Hardware & Architecture; Computer Science, Theory & Methods WE Conference Proceedings Citation Index - Science (CPCI-S) SC Computer Science GA BF2GR UT WOS:000380466100040 DA 2024-09-05 ER PT C AU Rochd, E Quafafou, M Aznag, M AF Rochd, El Mehdi Quafafou, Mohamed Aznag, Mustapha GP IEEE TI Encoding local correspondence in Topic Models SO 2013 IEEE 25TH INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE (ICTAI) SE Proceedings-International Conference on Tools With Artificial Intelligence LA English DT Proceedings Paper CT 25th IEEE International Conference on Tools with Artificial Intelligence (ICTAI) CY NOV 04-06, 2013 CL Washington, DC DE Topic Models; Automatic Image Annotation; Local Influence; Probabilistic Graphical Models AB Exploiting label correlations is a challenging and crucial problem especially in multi-label learning context. Labels correlations are not necessarily shared by all instances and have generally a local definition. This paper introduces LOC-LDA, which is a latent variable model that adresses the problem of modeling annotated data by locally exploiting correlations between annotations. In particular, we represent explicitly local dependencies to define the correspondence between specific objects, i.e. regions of images and their annotations. We conducted experiments on a collection of pictures provided by the Wikipedia "Picture of the day" website (1), and evaluated our model on the task of "automatic image annotation". The results validate the effectiveness of our approach. C1 [Rochd, El Mehdi; Quafafou, Mohamed; Aznag, Mustapha] Aix Marseille Univ, LSIS, UMR 7296, Marseille, France. C3 Aix-Marseille Universite RP Rochd, E (corresponding author), Aix Marseille Univ, LSIS, UMR 7296, Marseille, France. EM el-mehdi.rochd@univ-amu.fr; mohamed.quafafou@univ-amu.fr; mustapha.aznag@univ-amu.fr CR [Anonymous], 1998, LEARNING GRAPHICAL M [Anonymous], 2002, ADV NEURAL INFORM PR Barnard K, 2003, J MACH LEARN RES, V3, P1107, DOI 10.1162/153244303322533214 Blei D., 2006, INT C MACH LEARN Blei D., 2003, ACM SIGIR INT C RES Blei DM, 2007, ANN APPL STAT, V1, P17, DOI 10.1214/07-AOAS114 Griffiths TL, 2004, P NATL ACAD SCI USA, V101, P5228, DOI 10.1073/pnas.0307752101 Jeon J., 2003, ACM SIGIR INT C RES Jia Y., 2011, INT C COMP VIS Jordan MI, 1999, MACH LEARN, V37, P183, DOI 10.1023/A:1007665907178 Jurman G., 2009, P ADV RANKING NIPS 0, P22 Lozano A. C., 2012, INT C MACH LEARN Mcauliffe J, 2007, ADV NEURAL INFORM PR, V20 McCallum A, 1999, AAAI WORKSH TEXT LEA Ramage Daniel, 2009, P C EMP METH NAT LAN Rockafellar R. T., 1993, SIAM REV Wang C., 2009, C COMP VIS PATT REC Xiao H., 2010, NIPS WORKSH MACH LEA Zhang M. L., 2010, ACM SIGKDD C KNOWL D Zhao B., 2010, EUR C COMP VIS NR 20 TC 1 Z9 1 U1 0 U2 0 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA SN 1082-3409 BN 978-1-4799-2971-9 J9 PROC INT C TOOLS ART PY 2013 BP 602 EP 609 DI 10.1109/ICTAI.2013.95 PG 8 WC Computer Science, Artificial Intelligence; Computer Science, Theory & Methods WE Conference Proceedings Citation Index - Science (CPCI-S) SC Computer Science GA BN4OO UT WOS:000482633400069 DA 2024-09-05 ER PT J AU Ning, T Duan, XD An, L Gou, T AF Ning, Tao Duan, Xiaodong An, Lu Gou, Tao TI Research on disruption management of urgent arrival in job shop with deteriorating effect SO JOURNAL OF INTELLIGENT & FUZZY SYSTEMS LA English DT Article DE Flexible job-shop scheduling; deteriorating effect; emergency order insertion; disruption management; multi-phase quantum particle swarm optimization ID OPTIMIZATION; ALGORITHM; RESOURCE; ROBUST; CLOUD AB A disruption management method based on cumulative prospect theory is proposed for the urgent with deteriorating effect arrival in flexible job shop scheduling problem (FJSP). First, the mathematical model of problem is established with minimizing the completion time of urgent order, minimizing the total process time of the system and minimizing the total cost as the target. Then, the cumulative prospect theory equation of the urgent arrival in job shop scheduling process is induced designed. Based on the selected model, an optimized multi-phase quantum particle swarm algorithm (MQPSO) is proposed for selecting processing route. Finally, using Solomon example simulation and company Z riveting shop example as the study object, the performance of the proposed method is analyzed. It is compared with the current common rescheduling methods, and the results verify that the method proposed in this paper not only meets the goal of the optimized objects, but improves the practical requirements for the stability of production and processing system during urgent arrival. Lastly, the optimized multiphase quantum particle swarm algorithm is used to solve disruption management of urgent arrival problem. Through instance analysis and comparison, the effectiveness and efficiency of urgent arrival disruption management method with deteriorating effect are verified. C1 [Ning, Tao; Duan, Xiaodong] Dalian Minzu Univ, Inst Comp Sci & Engn, Dalian, Peoples R China. [Ning, Tao; Duan, Xiaodong] Big Data Applicat Technol Key Lab State Ethn Affa, Dalian, Peoples R China. [An, Lu; Gou, Tao] Dalian Jiaotong Univ, Inst Software, Dalian, Peoples R China. C3 Dalian Minzu University; Dalian Jiaotong University RP Duan, XD (corresponding author), Dalian Minzu Univ, Inst Comp Sci & Engn, Dalian, Peoples R China.; Duan, XD (corresponding author), Big Data Applicat Technol Key Lab State Ethn Affa, Dalian, Peoples R China. EM daliannt@126.com RI An, Lu/V-1548-2018 FU Liaoning Provincial Natural Science Foundation [20180550499, 2019-ZD-0109]; Education Department Project of Liaoning Province [JDL2019022]; Science and technology innovation fund program of Dalian [2021JJ13SN81] FX Foundation items: Project supported by Liaoning Provincial Natural Science Foundation (20180550499, 2019-ZD-0109) and Education Department Project of Liaoning Province (JDL2019022). Science and technology innovation fund program of Dalian (2021JJ13SN81). CR Al-Hinai N, 2011, INT J PROD ECON, V132, P279, DOI 10.1016/j.ijpe.2011.04.020 Biggs AT, 2021, J DEF MODEL SIMUL-AP, V18, P125, DOI 10.1177/1548512919840445 Blavatskyy P, 2021, THEOR DECIS, V91, P403, DOI 10.1007/s11238-021-09811-6 Boudreau J., 2003, Manufacturing & Service Operations Management, V5, P179, DOI 10.1287/msom.5.3.179.16032 Gao KZ, 2016, KNOWL-BASED SYST, V109, P1, DOI 10.1016/j.knosys.2016.06.014 Gao K, 2021, TRANSPORT RES A-POL, V148, P1, DOI 10.1016/j.tra.2021.03.025 Gino F, 2008, M&SOM-MANUF SERV OP, V10, P676, DOI 10.1287/msom.1070.0205 Gong X, 2019, J CLEAN PROD, V209, P1078, DOI 10.1016/j.jclepro.2018.10.289 [韩文民 Han Wenmin], 2018, [运筹与管理, Operations Research and Management Science], V27, P68 Hao H., 2012, JOUNAL CHONGQING NOR, V29, P7 Laili YJ, 2013, COMPUT IND, V64, P448, DOI 10.1016/j.compind.2013.02.008 [刘作仪 LIU Zuo-yi], 2009, [管理科学学报, Journal of Management Sciences in China], V12, P64 Moratori P, 2012, INT J PROD RES, V50, P261, DOI 10.1080/00207543.2011.571458 Ning T, 2020, J CLEAN PROD, V263, DOI 10.1016/j.jclepro.2020.121449 [宁涛 Ning Tao], 2019, [系统工程理论与实践, Systems Engineering-Theory & Practice], V39, P1236 [宁涛 Ning Tao], 2019, [系统工程理论与实践, Systems Engineering-Theory & Practice], V39, P673 [宁涛 Ning Tao], 2018, [控制与决策, Control and Decision], V33, P2064 Pan Feng-shan, 2012, Industrial Engineering and Management, V17, P48 Rahmani D, 2014, J MANUF SYST, V33, P84, DOI 10.1016/j.jmsy.2013.03.004 Shen LJ, 2018, EUR J OPER RES, V265, P503, DOI 10.1016/j.ejor.2017.08.021 Sheng XY, 2015, J ALGORITHMS COMPUT, V9, P143 Singh S, 2016, J GRID COMPUT, V14, P217, DOI 10.1007/s10723-015-9359-2 Tao Ning, 2020, J AMB INTEL HUM COMP, V33, P125 Vijaychakaravarthy G, 2014, ARAB J SCI ENG, V39, P4285, DOI 10.1007/s13369-014-0994-x Walther M, 2021, J BEHAV FINANC, V22, P74, DOI 10.1080/15427560.2020.1735390 Wan P, 2020, J ALLOY COMPD, V826, DOI 10.1016/j.jallcom.2020.154047 [王征 Wang Zheng], 2013, [系统工程理论与实践, Systems Engineering-Theory & Practice], V33, P378 Yang De-li, 2014, OPERATION RES MANAGE, V22, P201 Yang Xiao-lin, 2019, Control Theory & Applications, V36, P803, DOI 10.7641/CTA.2018.70968 Zeng ZQ, 2018, J CLEAN PROD, V183, P925, DOI 10.1016/j.jclepro.2018.02.224 Zhang DG, 2019, IEEE ACCESS, V7, P158514, DOI 10.1109/ACCESS.2019.2950266 Zhang T, 2019, IEEE ACCESS, V7, P82571, DOI 10.1109/ACCESS.2019.2921310 Zheng X. L., 2018, INT J PROD RES, V54, P1 NR 33 TC 2 Z9 2 U1 2 U2 47 PU IOS PRESS PI AMSTERDAM PA NIEUWE HEMWEG 6B, 1013 BG AMSTERDAM, NETHERLANDS SN 1064-1246 EI 1875-8967 J9 J INTELL FUZZY SYST JI J. Intell. Fuzzy Syst. PY 2021 VL 41 IS 1 BP 1247 EP 1259 DI 10.3233/JIFS-210166 PG 13 WC Computer Science, Artificial Intelligence WE Science Citation Index Expanded (SCI-EXPANDED) SC Computer Science GA UB5PA UT WOS:000685896700075 DA 2024-09-05 ER PT J AU Kusumastuti, R Silalahi, M Sambodo, MT Juwono, V AF Kusumastuti, Retno Silalahi, Mesnan Sambodo, Maxensius Tri Juwono, Vishnu TI Understanding rural context in the social innovation knowledge structure and its sector implementations SO MANAGEMENT REVIEW QUARTERLY LA English DT Article DE Rural social innovation; knowledge structure; Topic modeling; Co-word analysis; Co-citation analysis ID CHALLENGES AB The concept of social innovation is increasingly being discussed to pursue sustainable development. New terms and keywords are created to cope with new ideas in various contexts. How these terms are developed in the current structure of knowledge and how we can reinterpret the semantic networks with the empirical context are the primary motivation of this paper. The rural social innovation knowledge structure is constructed to understand the phenomena better and cope with future needs. A multi-methods methodology is applied to construct the knowledge structure with the primary method being topic modeling. The results from topic modeling, co-word analysis, and co-citation are combined to co-construct the knowledge structure. The narratives for the built knowledge structure are then developed in the context of rural social innovation to enhance our understanding. This study found three findings. First, the trend of keywords "community", "governance", and "rural" have increased significantly in the field of social innovation. Second, an investigation of the intensity of the topics found six dominant groups of topics, namely actor, business model, natural resources, food security, governance, and urban. Third, the co-word analysis shows that the word innovation is closely related to the terms: sustainable development, social entrepreneurship, social enterprise, rural community, electronic commerce, co-design, and social behavior. The mapping of key terms shows that the structure of the global social innovation research landscape is quite complex. However, it can be broken down into five main parts: objectives, inputs, transformations, outputs, and outcomes. C1 [Kusumastuti, Retno; Juwono, Vishnu] Univ Indonesia, Fac Adm Sci, Jl Prof DR Selo Soemardjan, Depok 16424, ID, Indonesia. [Silalahi, Mesnan] Indonesian Inst Sci, Ctr Policy Res & Management Sci Technol & Innovat, Jl Gatot Subroto 10, Jakarta 12042, ID, Indonesia. [Sambodo, Maxensius Tri] Indonesian Inst Sci, Econ Res Ctr, Jl Gatot Subroto 10, Jakarta 12042, ID, Indonesia. C3 University of Indonesia; National Research & Innovation Agency of Indonesia (BRIN); Indonesian Institute of Sciences (LIPI); National Research & Innovation Agency of Indonesia (BRIN); Indonesian Institute of Sciences (LIPI) RP Silalahi, M (corresponding author), Indonesian Inst Sci, Ctr Policy Res & Management Sci Technol & Innovat, Jl Gatot Subroto 10, Jakarta 12042, ID, Indonesia. EM r.kusumastuti@ui.ac.id; mesnans@yahoo.com; smaxensius@yahoo.com; vjuwono@ui.ac.id OI Kusumastuti, Retno/0000-0001-9290-4952; Sambodo, Maxensius/0000-0003-3705-2245 FU Universitas Indonesia [NKB - 480/UN2, RST/HKP.05.00/2021]; University of Indonesia in the World Class University Scheme FX The process to produce this study and its publication is supported by funding from University of Indonesia in the World Class University Scheme, as outlined in the Assignment Agreement for the Publication of Review Article (PRA) of 2021 Number: NKB - 480/UN2.RST/HKP.05.00/2021. CR Abbasianchavari A., 2021, Manag Rev Q, V71, P1, DOI [10.1007/s11301-019-00179-0, DOI 10.1007/S11301-019-00179-0] [Anonymous], 2013, Guide to social innovation Ansell C, 2008, J PUBL ADM RES THEOR, V18, P543, DOI 10.1093/jopart/mum032 ATINA, 2022, Women social entrepreneurs are innovators creating social changes Audretsch DB, 2022, INT ENTREP MANAG J, V18, P217, DOI 10.1007/s11365-021-00789-9 Avelino F, 2019, TECHNOL FORECAST SOC, V145, P195, DOI 10.1016/j.techfore.2017.05.002 Baker S, 2015, Local Environment: The International Journal of Justice and, VSustainability20 Banerjee S, 2023, J RURAL STUD, V99, P252, DOI 10.1016/j.jrurstud.2021.04.007 Barth H, 2021, J CLEAN PROD, V304, DOI 10.1016/j.jclepro.2021.127004 Benckendorff P, 2013, ANN TOURISM RES, V43, P121, DOI 10.1016/j.annals.2013.04.005 Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993 Bonilla T, 2013, POETICS, V41, P650, DOI 10.1016/j.poetic.2013.06.003 Borzaga C, 2014, SOC POLICY SOC, V13, P411, DOI 10.1017/S1474746414000116 Callon Michel., 1986, Mapping the Dynamics of Science and Technology, P221 Carvalho J., 2015, Journal of Applied Management, V4, P49, DOI [10.9774/GLEAF.3709.2015.ap.00006, DOI 10.9774/GLEAF.3709.2015.AP.00006] Castro-Arce K, 2020, J RURAL STUD, V74, P45, DOI 10.1016/j.jrurstud.2019.11.010 Chang J, 2009, Adv. Neural Inf. Process. Syst., P288 Edwards-Schachter M, 2017, TECHNOL FORECAST SOC, V119, P64, DOI 10.1016/j.techfore.2017.03.012 Eichler GM, 2019, SUSTAINABILITY-BASEL, V11, DOI 10.3390/su11020522 Galego D, 2022, INNOVATION-ABINGDON, V35, P265, DOI 10.1080/13511610.2021.1879630 Georgios C, 2023, J RURAL STUD, V99, P193, DOI 10.1016/j.jrurstud.2021.06.004 Ghorbani M, 2022, Bonding Social Cap-ital of Rural Women in Southwest Iran: Application of Social Network Analysis, DOI [10.1111/ruso.12430, DOI 10.1111/RUSO.12430] Grimm R, 2013, INNOVATION-ABINGDON, V26, P436, DOI 10.1080/13511610.2013.848163 Guba EG., Alternative Paradigms Conference, Mar, 1989, Indiana U, School of Education, San Francisco, CA, US; 1990 Huang GQ, 2021, FRONT PSYCHOL, V12, DOI 10.3389/fpsyg.2021.614469 Indriati F, 2018, Open Innovation: Model Kolaborasi Penenun Sikka dan Pelanggan Janik A., 2021, Journal of Open Innovation: Technology, Market, and Complexity, V7, P226, DOI [10.3390/joitmc7040226, DOI 10.3390/JOITMC7040226] Kuhn TS., 1970, Postscript, V2, P174 Kuthrakun A, 2013, Japan Social Innovation Japan, V2 Leung XY, 2017, INT J HOSP MANAG, V66, P35, DOI 10.1016/j.ijhm.2017.06.012 Lindberg M., 2017, Eur Public Social Innov Rev, V2, P30, DOI [10.31637/epsir.17-2.3, DOI 10.31637/EPSIR.17-2.3] Linder J., 2000, Changing Business Models:Surveying the Landscape Lombardi M, 2020, SOC NETWORKS, V63, P11, DOI 10.1016/j.socnet.2020.04.001 Lorek S, 2019, ENERG POLICY, V126, P287, DOI 10.1016/j.enpol.2018.11.026 Maier D, 2018, COMMUN METHODS MEAS, V12, P93, DOI 10.1080/19312458.2018.1430754 Mair J, 2006, J WORLD BUS, V41, P36, DOI 10.1016/j.jwb.2005.09.002 Marques GD, 2020, EUR J MANAG BUS ECON, V29, P97, DOI 10.1108/EJMBE-06-2019-0110 Marques P, 2018, ENVIRON PLAN C-POLIT, V36, P496, DOI 10.1177/2399654417717986 Michelini L., 2012, Social Innovation and New Business Models: Creating shared value in low-income markets Mimno David, 2011, P C EMPIRICAL METHOD, P262 Mollet JA, 2011, Female labour force participation and economic development in West Papua Moulaert F, 2013, The international handbook on social innovation: Collective action, social learning and transdisciplinary research, V13 Müller S, 2018, ENTREP REGION DEV, V30, P224, DOI 10.1080/08985626.2017.1402092 Neumann T., 2020, Management Review Quarterly, DOI [10.1007/s11301-020-00193-7, DOI 10.1007/S11301-020-00193-7] Neumeier S, 2017, GEOGR J, V183, P34, DOI 10.1111/geoj.12180 Neumeier S, 2012, SOCIOL RURALIS, V52, P48, DOI 10.1111/j.1467-9523.2011.00553.x Pestoff V, 2012, VOLUNTAS, V23, P1102, DOI 10.1007/s11266-012-9308-7 Tan LP, 2021, COGENT BUS MANAG, V8, DOI 10.1080/23311975.2021.1896885 Pisani E., 2017, Social capital and local development: from theory to empirics Portales L., 2019, Social Innovation and Social Entrepreneurship, DOI DOI 10.1007/978-3-030-13456-3 Porter M, 2019, Institutional Investor16 Prahalad C.K., 2002, STRATEGY BUSINESS, DOI DOI 10.19177/REEN.V1E220081-23 Prahalad C.K., 2006, The Fortune at the Bottom of the Pyramid: Eradicating Poverty Through Profits Purwanto Yuliana CI, 2021, IOP Conference Series: Earth and Environmental Science, V917, DOI [10.1088/1755-1315/917/1/012010, DOI 10.1088/1755-1315/917/1/012010] Rajasekhar D., 2020, Cooperatives and Social Innovation: Experiences from the Asia Pacific Region, P1, DOI [10.1007/978-981-15-8880-8, DOI 10.1007/978-981-15-8880-8] Richter R., 2018, J Entrepreneurial Organizational Divers, V7, P61, DOI [10.5947/jeod.2018.004, DOI 10.5947/JEOD.2018.004] S&P Global, 2020, A Pandemic-Driven Surge In Social Bond Issuance Shows The Sustainable Debt Market Is Evolvin Saviera TM, 2022, INT J INNOV LEARN, V31, P91 Scott W.R., 2005, Great minds in management: The process of theory development, P460, DOI [DOI 10.1093/OSO/9780199276813.003.0022, 10.1093/oso/9780199276813.003.0022] SHRIVASTAVA U., 2021, Management Review Quarterly, V71, P753, DOI [10.1007/s11301-020-00199-1, DOI 10.1007/S11301-020-00199-1] Small H, 2003, J AM SOC INF SCI TEC, V54, P394, DOI 10.1002/asi.10225 Streb CK., 2017, Int J Entrepreneurship, V21, P75 Teece DJ, 2010, LONG RANGE PLANN, V43, P172, DOI 10.1016/j.lrp.2009.07.003 TURNER WA, 1991, SCIENTOMETRICS, V22, P139, DOI 10.1007/BF02019279 van der Have RP, 2016, RES POLICY, V45, P1923, DOI 10.1016/j.respol.2016.06.010 Vazquez JM, 2017, The role of indigenous knowledge and innovation in creating food sovereignty in the Oneida Nation of Wisconsin WeStart, 2015, Mapping Women's Social Entrepreneurship in Europe Westley F., 2010, INNOVATION J, V15, DOI DOI 10.1108/01437730710739675 Zhao Y, 2015, BMC BIOINFORMATICS, V16, DOI 10.1186/s12859-015-0558-4 Zivojinovic I, 2019, SUSTAINABILITY-BASEL, V11, DOI 10.3390/su11247248 NR 70 TC 2 Z9 2 U1 5 U2 5 PU SPRINGERNATURE PI LONDON PA CAMPUS, 4 CRINAN ST, LONDON, N1 9XW, ENGLAND SN 2198-1620 EI 2198-1639 J9 MANAG REV Q JI Manag. Rev. Q. PD DEC PY 2023 VL 73 IS 4 BP 1873 EP 1901 DI 10.1007/s11301-022-00288-3 PG 29 WC Business; Business, Finance; Management WE Emerging Sources Citation Index (ESCI) SC Business & Economics GA SI8D0 UT WOS:001233907400008 OA Bronze DA 2024-09-05 ER PT J AU Chen, Y Si, F Lu, XY Li, X AF Chen, Yan Si, Fan Lu, Xiying Li, Xin TI Research on the Influence Mechanism of the Across-Industrial-Chain Investment Speed on Innovation Performance of AI Enterprises: Improvement Path of Artificial Intelligence Technology Application SO MOBILE INFORMATION SYSTEMS LA English DT Article ID MANAGEMENT; IMPACT; TIME AB This paper presents a regression analysis by using the system generalized method of moments (SYS-GMM) model as the main regression model and combining it with the fixed effect of panel data and acquires the basic empirical research data from Wind database. The research shows that the speed of cross-industrial-chain investment can improve the innovation ability of AI enterprises, and AI enterprises with deep technology accumulation can improve their innovation performance in the rapid across-industrial-chain investment. In this paper, an across-industrial-chain investment decision path model for AI enterprises is proposed for the first time, suggesting that AI enterprises should pay attention to the related factors of industry and AI enterprises when making across-industrial-chain investment decisions. This helps to express the determination of investment, integration, and reconstruction to the target AI enterprises, and it can also facilitate fast across-industrial-chain investment and improve the innovation performance of AI enterprises. C1 [Chen, Yan; Si, Fan; Lu, Xiying] Beijing Univ Posts & Telecommun, Sch Econ & Management, Beijing, Peoples R China. [Li, Xin] Civil Aviat Univ China, Sch Econ & Management, Tianjin, Peoples R China. C3 Beijing University of Posts & Telecommunications; Civil Aviation University of China RP Li, X (corresponding author), Civil Aviat Univ China, Sch Econ & Management, Tianjin, Peoples R China. EM 2019071091@cauc.edu.cn CR Ahmed I, 2018, IEEE INTERNET THINGS, V5, P1598, DOI 10.1109/JIOT.2017.2787779 [Anonymous], 2006, MANAGE SCI, DOI [DOI 10.1287/mnsc.1050.0470, 10.1287/mnsc.1050.0470] Antràs P, 2013, ECONOMETRICA, V81, P2127, DOI 10.3982/ECTA10813 Barkema HG, 2008, ACAD MANAGE J, V51, P696 Bassetti Thomas., 2020, Artificial intelligence: impact on total factor productivity, E-commerce fintech Chen HQ, 2016, MANAGE DECIS, V54, P1320, DOI 10.1108/MD-10-2015-0458 Cockburn I. M., 1E IMPACT ARTIFICIAL Cross R, 2015, ORGAN DYN, V44, P204, DOI 10.1016/j.orgdyn.2015.05.006 Delaney JM, 2020, ECON SOC REV, V51, P189 Dimiduk DM, 2018, INTEGR MATER MANUF I, V7, P157, DOI 10.1007/s40192-018-0117-8 Duan YQ, 2019, INT J INFORM MANAGE, V48, P63, DOI 10.1016/j.ijinfomgt.2019.01.021 Dzwigol H., 2019, Virtual Econ, V2, P46, DOI [10.34021/ve.2019.02.04(3), DOI 10.34021/VE.2019.02.04(3)] Olmos MF, 2015, EUR J MARKETING, V49, P420, DOI 10.1108/EJM-06-2012-0365 Guo YY, 2018, SUSTAINABILITY-BASEL, V10, DOI 10.3390/su10040940 HANSEN LP, 1982, ECONOMETRICA, V50, P1029, DOI 10.2307/1912775 Hashai N, 2018, J MANAGE, V44, P707, DOI 10.1177/0149206315592030 Jonathan G. M, 2018, 17 INT C PERSP BUS I, P375 이강윤, 2016, [Korean Medical Education Review, 의학교육논단], V18, P51 Kunisch S, 2017, ACAD MANAG ANN, V11, P1005, DOI 10.5465/annals.2015.0133 Van Huy L, 2012, J GLOB INF MANAG, V20, P23, DOI 10.4018/jgim.2012070102 Lee OK, 2009, J GLOB INF MANAG, V17, P70, DOI 10.4018/jgim.2009010104 Liang ZX, 2015, INSUR MATH ECON, V65, P66, DOI 10.1016/j.insmatheco.2015.08.008 Lin SY, 2019, J GEN INTERN MED, V34, P1626, DOI 10.1007/s11606-019-05035-1 Liu J, 2020, TECHNOL FORECAST SOC, V158, DOI 10.1016/j.techfore.2020.120142 Neirotti P, 2019, EUR J INNOV MANAG, V22, P383, DOI 10.1108/EJIM-02-2018-0039 Raisch S, 2021, ACAD MANAGE REV, V46, P192, DOI 10.5465/amr.2018.0072 Sandberg A, 2019, FORESIGHT, V21, P84, DOI 10.1108/FS-04-2018-0044 Shi WL, 2012, J MANAGE, V38, P164, DOI 10.1177/0149206311424942 Tambe P, 2019, CALIF MANAGE REV, V61, P15, DOI 10.1177/0008125619867910 Teece DJ, 2007, STRATEGIC MANAGE J, V28, P1319, DOI 10.1002/smj.640 Tippins MJ, 2003, STRATEGIC MANAGE J, V24, P745, DOI 10.1002/smj.337 Wang D., 2017, SPATIAL TEMPORAL DAT Zawacki-Richter O, 2019, INT J EDUC TECHNOL H, V16, DOI 10.1186/s41239-019-0171-0 Zhang N, 2009, J GLOB INF MANAG, V17, P49, DOI 10.4018/jgim.2009010103 Zhou N, 2015, STRATEGIC MANAGE J, V36, P907, DOI 10.1002/smj.2242 NR 35 TC 0 Z9 0 U1 13 U2 52 PU HINDAWI LTD PI LONDON PA ADAM HOUSE, 3RD FLR, 1 FITZROY SQ, LONDON, W1T 5HF, ENGLAND SN 1574-017X EI 1875-905X J9 MOB INF SYST JI Mob. Inf. Syst. PD NOV 29 PY 2021 VL 2021 AR 6149746 DI 10.1155/2021/6149746 PG 12 WC Computer Science, Information Systems; Telecommunications WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Computer Science; Telecommunications GA YS4BN UT WOS:000750624400003 OA gold DA 2024-09-05 ER PT J AU Sampatrao, GS Dey, SR Bansal, A Saha, S AF Sampatrao, Gambhire Swati Dey, Sudeepa Roy Bansal, Abhishek Saha, Sriparna TI Analyzing the Common Wisdom of Binarization Doctrine in Internationality Classification of Journals: A Machine Learning Approach SO JOURNAL OF SCIENTOMETRIC RESEARCH LA English DT Article DE Journal Internationality; Binary classification; Bayesian Error rate function; web scraping; supervised learning; Non-Local Influence Quotient (NLIQ); Source-Normalized Impact per Paper (SNIP); Other Citation Quotient (OCQ); Unified Granular Neural Network (UGNN). AB Evaluating and identifying "Internationality" of peer reviewed journals is a hotly debated topic. The problem broadly focuses on whether a journal is international or not, indicating a strong tilt toward binary classification doctrine. The manuscript investigates the doctrine, for the first time. The authors have validated their study further by using minimum error rate classifier, investigated theoretical lower and upper bounds of classification error in the context of internationality. The novel approach has rich ramifications in Scientometrics. Further, we propose a new principle of classification that results in greater accuracy fortifying the assertion. C1 [Sampatrao, Gambhire Swati; Dey, Sudeepa Roy] PESIT BSC, Dept Comp Sci & Engn, Bangalore 560100, Karnataka, India. [Sampatrao, Gambhire Swati; Dey, Sudeepa Roy] Visvesvarya Tech Univ, Belagavi, Karnataka, India. [Bansal, Abhishek; Saha, Sriparna] IIT Patna, Dept Comp Sci, Patna, Bihar, India. C3 PES University; Visvesvaraya Technological University; Indian Institute of Technology System (IIT System); Indian Institute of Technology (IIT) - Patna RP Dey, SR (corresponding author), PESIT BSC, Dept Comp Sci & Engn, Bangalore 560100, Karnataka, India.; Dey, SR (corresponding author), Visvesvarya Tech Univ, Belagavi, Karnataka, India. EM sudeepar@gmail.com CR [Anonymous], 2017, S SAHAS MACHINE LEAR Bora K, 2016, ASTRONOMY COMPUTING, V17 Buchandiran G, 2011, EXPLORATORY STUDY IN Changa Chia-Lin, 2013, MATH COMPUT SIMULAT, V93 Duda RO, 2001, PATTERN CLASSIFICAT Ginde G., 2016, CORR Ginde G., 2015, P 4 NAT C I SCI Ginde G, 2016, SCIENTOMETRICS, V108, P1479, DOI 10.1007/s11192-016-2006-2 Gose Earl., 1997, Pattern Recognition and Image Analysis Kao C, 2009, SCIENTOMETRICS, V81, P123, DOI 10.1007/s11192-009-2093-4 Kumar DA, 2016, NEUROCOMPUTING, V216, P109, DOI 10.1016/j.neucom.2016.07.034 Waltman L, 2016, J INFORMETR, V10, P671, DOI 10.1016/j.joi.2015.12.008 Waltman L, 2013, J INFORMETR, V7, P272, DOI 10.1016/j.joi.2012.11.011 Yu LP, 2009, J INFORMETR, V3, P304, DOI 10.1016/j.joi.2009.04.002 Zupanc Gunther K. H., 2014, J COMP PHYSIOL A, V200 ZWEIG MH, 1993, CLIN CHEM, V39, P561 NR 16 TC 1 Z9 1 U1 0 U2 0 PU PHCOG NET PI KARNATAKA PA 17, 2ND FLR, BUDDHA VIHAR RD, NEAR SPORTS ZONE, COX TOWN, BENGALURU, KARNATAKA, 560005, INDIA SN 2321-6654 EI 2320-0057 J9 J SCIENTOMETR RES JI J. Scientometr. Res. PD MAY-AUG PY 2019 VL 8 IS 2 SI SI BP S7 EP S38 DI 10.5530/jscires.8.2.22 PG 32 WC Information Science & Library Science WE Emerging Sources Citation Index (ESCI) SC Information Science & Library Science GA KA8FQ UT WOS:000506037200003 DA 2024-09-05 ER PT J AU Shi, X Li, JN Xiong, QY Wu, YF Yuan, YP AF Shi, Xin Li, Jiannan Xiong, Qingyu Wu, Yinfang Yuan, Yupeng TI Research of uniformity evaluation model based on entropy clustering in the microwave heating processes SO NEUROCOMPUTING LA English DT Article DE Spectral clustering; Maximum entropy; Uniformity evaluation model; Microwave heating ID HIGH-DIMENSIONAL DATA; SELECTION; CONSTRAINT; ALGORITHM; OVENS AB This paper proposes a uniformity evaluation method based on Spectral Clustering and Maximum Information Entropy (ECUEM) for clustering the simulation results in the microwave heating system. The proposed method can effectively evaluate the dataset of the electric field E, the magnetic field H, the temperature field T, and analyze the non-uniformity phenomenon in the microwave heating processes. Compared with other clustering algorithms, the ECUEM can get better clustering results for the dataset in simulation of microwave heating. In particular, in the resonant cavity, the experimental results show that the minimum the evaluation results, the better the materials heating uniformity. In addition, when the ECUEM method is used to analyze the experiment of waveguide moving, the best position (0, 11/20*do, 3/14*ho) of waveguide can be obtained; at the same time, the uniformity or efficiency of materials microwave heating is the best. Moreover, other rules have been obtained in the microwave heating processes. Thus, the proposed method would provide a new method to guide the researchers who are working in the area of dataset clustering in the microwave heating. (C) 2015 Published by Elsevier B.V. C1 [Shi, Xin; Li, Jiannan; Yuan, Yupeng] Chongqing Univ, Dept Automat, Chongqing 630044, Peoples R China. [Xiong, Qingyu] Chongqing Univ, Dept Software, Chongqing 630044, Peoples R China. [Wu, Yinfang] Guangxi Normal Univ, Dept Foreign Studies, Guilin, Guangxi, Peoples R China. C3 Chongqing University; Chongqing University; Guangxi Normal University RP Shi, X (corresponding author), Chongqing Univ, Dept Automat, Chongqing 630044, Peoples R China. EM shixin@cqu.edu.cn; cdljn2011@126.com; xiong03@cqu.edu.cn; Wuyinfang77@163.com; yup@cqu.edu.cn FU National Basic Research Program of China [2013CB328903]; National Natural Science Foundation of China [61473050] FX The authors thank the editors and the anonymous reviewers for their helpful comments and suggestions. This research is supported by the National Basic Research Program of China (Grant no. 2013CB328903), the National Natural Science Foundation of China (Grant no. 61473050). CR Antonio C, 2005, J MATER PROCESS TECH, V169, P234, DOI 10.1016/j.jmatprotec.2005.03.024 Boutemedjet S, 2009, IEEE T PATTERN ANAL, V31, P1429, DOI 10.1109/TPAMI.2008.155 Cao H, 2013, NEUROCOMPUTING, V117, P54, DOI 10.1016/j.neucom.2013.01.040 Chandrasekaran S, 2013, FOOD RES INT, V52, P243, DOI 10.1016/j.foodres.2013.02.033 De Mulder W, 2013, INFORM SCIENCES, V223, P56, DOI 10.1016/j.ins.2012.09.051 Elhamifar E, 2013, IEEE T PATTERN ANAL, V35, P2765, DOI 10.1109/TPAMI.2013.57 Geedipalli SSR, 2007, J FOOD ENG, V82, P359, DOI 10.1016/j.jfoodeng.2007.02.050 Gunasekaran S, 2007, J FOOD ENG, V78, P1452, DOI 10.1016/j.jfoodeng.2006.01.017 Handl J, 2005, BIOINFORMATICS, V21, P3201, DOI 10.1093/bioinformatics/bti517 Hossan MR, 2010, INT J HEAT MASS TRAN, V53, P5129, DOI 10.1016/j.ijheatmasstransfer.2010.07.051 Hsu CC, 2007, INFORM SCIENCES, V177, P4474, DOI 10.1016/j.ins.2007.05.003 James C, 2002, INT J FOOD SCI TECH, V37, P879, DOI 10.1046/j.1365-2621.2002.00636.x Jiao LC, 2012, PATTERN RECOGN, V45, P4358, DOI 10.1016/j.patcog.2012.05.007 Kao YT, 2008, EXPERT SYST APPL, V34, P1754, DOI 10.1016/j.eswa.2007.01.028 Liu MY, 2014, IEEE T PATTERN ANAL, V36, P99, DOI 10.1109/TPAMI.2013.107 Liu XY, 2014, NEUROCOMPUTING, V142, P478, DOI 10.1016/j.neucom.2014.04.013 Milev M, 2012, APPL MATH COMPUT, V218, P5782, DOI 10.1016/j.amc.2011.11.093 Rebagliati N, 2011, NEUROCOMPUTING, V74, P1391, DOI 10.1016/j.neucom.2010.12.008 Saha S, 2010, PATTERN RECOGN, V43, P738, DOI 10.1016/j.patcog.2009.07.004 Santos T, 2011, APPL THERM ENG, V31, P3255, DOI 10.1016/j.applthermaleng.2011.06.006 [石欣 Shi Xin], 2014, [仪器仪表学报, Chinese Journal of Scientific Instrument], V35, P1938 Tao DC, 2007, IEEE T KNOWL DATA EN, V19, P568, DOI 10.1109/TKDE.2007.1003 Tao DC, 2009, IEEE T PATTERN ANAL, V31, P260, DOI 10.1109/TPAMI.2008.70 Tu EM, 2014, NEUROCOMPUTING, V143, P109, DOI 10.1016/j.neucom.2014.05.067 Wu S, 2014, NEUROCOMPUTING, V135, P229, DOI 10.1016/j.neucom.2013.12.027 Xia TA, 2010, IEEE T SYST MAN CY B, V40, P1438, DOI 10.1109/TSMCB.2009.2039566 Yang L, 2004, IEEE T PATTERN ANAL, V26, P1243, DOI 10.1109/TPAMI.2004.66 Yuwono M, 2014, IEEE T EVOLUT COMPUT, V18, P366, DOI 10.1109/TEVC.2013.2281545 Zhang HX, 2014, NEUROCOMPUTING, V139, P289, DOI 10.1016/j.neucom.2014.02.030 Zhao F, 2010, NEUROCOMPUTING, V73, P1704, DOI 10.1016/j.neucom.2009.12.029 NR 30 TC 8 Z9 10 U1 0 U2 23 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0925-2312 EI 1872-8286 J9 NEUROCOMPUTING JI Neurocomputing PD JAN 15 PY 2016 VL 173 BP 562 EP 572 DI 10.1016/j.neucom.2015.07.034 PG 11 WC Computer Science, Artificial Intelligence WE Science Citation Index Expanded (SCI-EXPANDED) SC Computer Science GA CZ1QG UT WOS:000366879800009 DA 2024-09-05 ER PT J AU Wing, C Bello-Gomez, RA AF Wing, Coady Bello-Gomez, Ricardo A. TI Regression Discontinuity and Beyond: Options for Studying External Validity in an Internally Valid Design SO AMERICAN JOURNAL OF EVALUATION LA English DT Article DE regression discontinuity design; external validity; extrapolation; causal inference; research design; program evaluation; quasi-experiments ID STUDENT-ACHIEVEMENT; VARIABLES; SCHOOL AB Treatment effect estimates from a regression discontinuity design (RDD) have high internal validity. However, the arguments that support the design apply to a subpopulation that is narrower and usually different from the population of substantive interest in evaluation research. The disconnect between RDD population and the evaluation population of interest suggests that RDD evaluations lack external validity. New methodological research offer strategies for studying and sometimes improving external validity in RDDs. This article examines four techniques: comparative RDD, covariate matching RDD, treatment effect derivatives, and statistical tests for local selection bias. The goal of the article is to help evaluators understand the logic, assumptions, data requirements, and reach of the new methods. C1 [Wing, Coady; Bello-Gomez, Ricardo A.] Indiana Univ, Sch Publ & Environm Affairs, 1315 East Tenth St,Room 339A, Bloomington, IN 47405 USA. C3 Indiana University System; Indiana University Bloomington RP Wing, C (corresponding author), Indiana Univ, Sch Publ & Environm Affairs, 1315 East Tenth St,Room 339A, Bloomington, IN 47405 USA. EM cwing@indiana.edu RI Bello-Gomez, Ricardo/U-1146-2019 OI Bello-Gomez, Ricardo/0000-0001-6479-4979 CR Abdulkadiroglu A, 2014, ECONOMETRICA, V82, P137, DOI 10.3982/ECTA10266 Angrist JD, 2004, ECON J, V114, pC52, DOI 10.1111/j.0013-0133.2003.00195.x Angrist JD, 2015, J AM STAT ASSOC, V110, P1331, DOI 10.1080/01621459.2015.1012259 [Anonymous], 1987, Stat Sci, DOI DOI 10.1214/SS/1177013232 [Anonymous], EVALUATING BIA UNPUB Athey S., 2016, STATE APPL ECO UNPUB Bertanha M., 2014, EXTERNAL VALID UNPUB Bertanha M., 2017, REGRESSION DIS UNPUB CAMPBELL DT, 1969, AM PSYCHOL, V24, P409, DOI 10.1037/h0027982 Cook TD, 2014, J POLICY ANAL MANAG, V33, P527, DOI 10.1002/pam.21750 DiNardo J, 2011, HBK ECON, V4, P463, DOI 10.1016/S0169-7218(11)00411-4 Dong YY, 2015, REV ECON STAT, V97, P1081, DOI 10.1162/REST_a_00510 Goodman J, 2008, J PUBLIC ECON, V92, P2121, DOI 10.1016/j.jpubeco.2008.03.009 Hahn JY, 2001, ECONOMETRICA, V69, P201, DOI 10.1111/1468-0262.00183 HAUSMAN JA, 1978, ECONOMETRICA, V46, P1251, DOI 10.2307/1913827 Hirano K, 2003, ECONOMETRICA, V71, P1161, DOI 10.1111/1468-0262.00442 HORVITZ DG, 1952, J AM STAT ASSOC, V47, P663, DOI 10.2307/2280784 Imbens GW, 2008, J ECONOMETRICS, V142, P615, DOI 10.1016/j.jeconom.2007.05.001 Jacob BA, 2004, REV ECON STAT, V86, P226, DOI 10.1162/003465304323023778 Kline P, 2011, AM ECON REV, V101, P532, DOI 10.1257/aer.101.3.532 Kowalski A. E., 2016, UNPUB LINDBLOM CE, 1979, PUBLIC ADMIN REV, V39, P517, DOI 10.2307/976178 Matsudaira JD, 2008, J ECONOMETRICS, V142, P829, DOI 10.1016/j.jeconom.2007.05.015 McCrary J, 2008, J ECONOMETRICS, V142, P698, DOI 10.1016/j.jeconom.2007.05.005 Papay JP, 2011, J ECONOMETRICS, V161, P203, DOI 10.1016/j.jeconom.2010.12.008 ROBINSON PM, 1988, ECONOMETRICA, V56, P931, DOI 10.2307/1912705 Stuart EA, 2008, J EDUC BEHAV STAT, V33, P279, DOI 10.3102/1076998607306078 Wing C, 2017, J POLICY ANAL MANAG, V36, P418, DOI 10.1002/pam.21965 Wing C, 2013, J POLICY ANAL MANAG, V32, P853, DOI 10.1002/pam.21721 WONG V, 2016, OBSERVATIONAL STUDIE, V2, P183 Wong VC, 2013, J EDUC BEHAV STAT, V38, P107, DOI 10.3102/1076998611432172 NR 31 TC 11 Z9 16 U1 0 U2 12 PU SAGE PUBLICATIONS INC PI THOUSAND OAKS PA 2455 TELLER RD, THOUSAND OAKS, CA 91320 USA SN 1098-2140 EI 1557-0878 J9 AM J EVAL JI Am. J. Eval. PD MAR PY 2018 VL 39 IS 1 BP 91 EP 108 DI 10.1177/1098214017736155 PG 18 WC Social Sciences, Interdisciplinary WE Social Science Citation Index (SSCI) SC Social Sciences - Other Topics GA FW1JZ UT WOS:000425054900007 OA Bronze DA 2024-09-05 ER PT C AU Zhang, JS Liu, XZ AF Zhang, Jinsong Liu, Xiaozhong GP ACM TI Full-text and Topic Based AuthorRank and Enhanced Publication Ranking SO JCDL'13: PROCEEDINGS OF THE 13TH ACM/IEEE-CS JOINT CONFERENCE ON DIGITAL LIBRARIES SE ACM-IEEE Joint Conference on Digital Libraries JCDL LA English DT Proceedings Paper CT 13th ACM/IEEE-CS Joint Conference on Digital Libraries (JCDL) CY JUL 22-26, 2013 CL Indianapolis, IN DE AuthorRank; Paper Ranking; Full-text; Labeled-LDA; PageRank with Priors; Citation Analysis AB The idea behind AuthorRank is that a content created by more popular authors should rank higher than the content created by less popular authors. This paper brings this idea into scientific publications analysis to test whether the optimized topical AuthorRank can replace or enhance topical PageRank for publication ranking. First, the PageRank with Priors (PRP) algorithm was employed to rank topic-based publications and authors. Second, the first author's reputation was used for generating an AuthorRank score. Additionally, linear combination method of topical AuthorRank and PageRank were compared with several baselines. Finally, as shown in our evaluation results, the performance of topical AuthorRank combined with topic-based PageRank is better than other baselines for publication ranking. C1 [Zhang, Jinsong] Dalian Maritime Univ, Coll Transportat Management, Dalian 116026, Peoples R China. [Liu, Xiaozhong] Indiana Univ, Sch Lib & Informat Sci, Bloomington, IN 47405 USA. C3 Dalian Maritime University; Indiana University System; Indiana University Bloomington RP Zhang, JS (corresponding author), Dalian Maritime Univ, Coll Transportat Management, Dalian 116026, Peoples R China. EM zhangjinsong85@163.com; liu237@indiana.edu CR [Anonymous], 1999, WWW 1999 [Anonymous], 2012, P 21 ACM INT C INFOR Dom B., 2003, Proceedings of the 8th ACM SIGMOD workshop on Research issues in data mining and knowledge discovery, DMKD '03, ACM, New York, NY, USA, P42, DOI DOI 10.1145/882082.882093 Fang H, 2007, LECT NOTES COMPUT SC, V4425, P418 GARFIELD E, 1972, SCIENCE, V178, P471, DOI 10.1126/science.178.4060.471 Haveliwala TH, 2003, IEEE T KNOWL DATA EN, V15, P784, DOI 10.1109/TKDE.2003.1208999 Ramage Daniel., 2009, EMNLP Rodriguez M. A, 2006, SIMULATING NETWORK I NR 8 TC 3 Z9 3 U1 0 U2 2 PU ASSOC COMPUTING MACHINERY PI NEW YORK PA 1515 BROADWAY, NEW YORK, NY 10036-9998 USA SN 2575-7865 EI 2575-8152 BN 978-1-4503-2076-4 J9 ACM-IEEE J CONF DIG PY 2013 BP 393 EP 394 PG 2 WC Information Science & Library Science WE Conference Proceedings Citation Index - Social Science & Humanities (CPCI-SSH) SC Information Science & Library Science GA BL7RG UT WOS:000455376400064 DA 2024-09-05 ER PT C AU Hassany, M Ke, JZ Brusilovsky, P Narayanan, ABL Akhuseyinoglu, K AF Hassany, Mohammad Ke, Jiaze Brusilovsky, Peter Narayanan, Arun Balajiee Lekshmi Akhuseyinoglu, Kamil GP ASSOC COMPUTING MACHINERY TI Authoring Worked Examples for Java Programming with Human-AI Collaboration SO 39TH ANNUAL ACM SYMPOSIUM ON APPLIED COMPUTING, SAC 2024 LA English DT Proceedings Paper CT 39th Annual ACM Symposium on Applied Computing (SAC) CY APR 08-12, 2024 CL Univ Salamanca, Avila, SPAIN HO Univ Salamanca DE Code Examples; Authoring Tool; Human-AI Collaboration AB Worked examples are among the most popular types of learning content in programming classes. However, instructors rarely have time to provide line-by-line explanations for a large number of examples typically used in a programming class. In this paper, we explore and assess a human-AI collaboration approach to authoring worked examples for Java programming. We introduce an authoring system for creating Java worked examples that generates a starting version of code explanations and presents it to the instructor to edit if necessary. We also present a study that assesses the quality of explanations created with this approach. C1 [Hassany, Mohammad; Brusilovsky, Peter; Narayanan, Arun Balajiee Lekshmi; Akhuseyinoglu, Kamil] Univ Pittsburgh, Pittsburgh, PA 15260 USA. [Ke, Jiaze] Carnegie Mellon Univ, Pittsburgh, PA USA. C3 Pennsylvania Commonwealth System of Higher Education (PCSHE); University of Pittsburgh; Carnegie Mellon University RP Hassany, M (corresponding author), Univ Pittsburgh, Pittsburgh, PA 15260 USA. EM moh70@pitt.edu; jiazek@andrew.cmu.edu; peterb@pitt.edu; arl122@pitt.edu; kaa108@pitt.edu OI Akhuseyinoglu, Kamil/0000-0002-7761-9755; Brusilovsky, Peter/0000-0002-1902-1464 CR Brusilovsky Peter, 2009, Journal of Educational Multimedia and Hypermedia, V18, P267 Chen Eason, 2023, Artificial Intelligence in Education. Posters and Late Breaking Results, Workshops and Tutorials, Industry and Innovation Tracks, Practitioners, Doctoral Consortium and Blue Sky: 24th International Conference, AIED 2023, Proceedings. Communications in Computer and Information Science (1831), P321, DOI 10.1007/978-3-031-36336-8_50 Hassany M, 2023, Arxiv, DOI [arXiv:2312.02105, 10.48550/arXiv.2312.02105, DOI 10.48550/ARXIV.2312.02105] Hosseini R, 2020, INT J ARTIF INTELL E, V30, P299, DOI 10.1007/s40593-020-00197-0 Hsiao IH, 2011, BRIT J EDUC TECHNOL, V42, P482, DOI 10.1111/j.1467-8535.2009.01030.x Khandwala K, 2018, PROCEEDINGS OF THE FIFTH ANNUAL ACM CONFERENCE ON LEARNING AT SCALE (L@S'18), DOI 10.1145/3231644.3231652 LINN MC, 1992, COMMUN ACM, V35, P121, DOI 10.1145/131295.131301 MacNeil S, 2023, PROCEEDINGS OF THE 54TH ACM TECHNICAL SYMPOSIUM ON COMPUTER SCIENCE EDUCATION, VOL 1, SIGCSE 2023, P931, DOI 10.1145/3545945.3569785 Sarsa Sami, 2022, ICER 2022 V1: Proceedings of the 2022 ACM Conference on International Computing Education Research V.1, P27, DOI 10.1145/3501385.3543957 NR 9 TC 0 Z9 0 U1 0 U2 0 PU ASSOC COMPUTING MACHINERY PI NEW YORK PA 1601 Broadway, 10th Floor, NEW YORK, NY, UNITED STATES BN 979-8-4007-0243-3 PY 2024 BP 101 EP 103 DI 10.1145/3605098.3636160 PG 3 WC Computer Science, Interdisciplinary Applications; Computer Science, Software Engineering; Computer Science, Theory & Methods WE Conference Proceedings Citation Index - Science (CPCI-S) SC Computer Science GA BX0OH UT WOS:001236958200015 OA Green Submitted DA 2024-09-05 ER PT J AU Kumar, P Prakash, K Dimri, A Khulbe, M Mishra, SC AF Kumar, Pankaj Prakash, Karuna Dimri, Anjali Khulbe, Manjula Mishra, Satish Chandra TI Using bibliometric analysis to determine the role of cutting-edge technologies in the development of future performance management system SO BENCHMARKING-AN INTERNATIONAL JOURNAL LA English DT Article; Early Access DE Performance management system; Artificial intelligence; Machine learning; Bibliometric analysis; VOS viewer ID BALANCED SCORECARD; PUBLIC-SECTOR; INFORMATION-SYSTEMS; SUPPLY CHAINS; WORK; KNOWLEDGE; FRAMEWORK; SCIENCE; INCENTIVES; EVOLUTION AB PurposePerformance management system (PMS) is a crucial element of strategic human resource practices in any organization. This research aims to provide a concise overview of how bibliometric analysis is employed to assess the influence and significance of cutting-edge technologies in shaping of PMS. This study seeks to identify key trends, emerging technologies and their impact on the evolution of performance management practices, contributing valuable insights for researchers, practitioners and policymakers in this field.Design/methodology/approachThis investigation is carried out utilizing total of eight research questions, which are examined through VOS Viewer and Biblioshiny software. The research offers visual diagrams and tables depicting the data extracted from the Scopus Database.FindingsThe study's results underscore a noticeable increase in research literature pertaining to PMS, indicating a shift from conventional methods to a strategic, technology-driven approach. These findings cover the way for further investigation across various disciplines, offering opportunities to enhance the efficacy and productivity of PMS.Practical implicationsThe implementation of new technologies such as Artificial intelligence (AI), machine learning and robotics etc. in PMS have also been analysed to give a sneak peak of the bigger future picture of AI and strategic human resource integration.Originality/valueTo the best of the authors' understanding, this analysis represents the inaugural application of bibliometric techniques to evaluate the advancement of research on Performance Management System (PMS) dating back to 1978, utilizing academic literature sourced from the Scopus database. C1 [Kumar, Pankaj; Prakash, Karuna; Dimri, Anjali; Khulbe, Manjula; Mishra, Satish Chandra] DIT Univ, Dept Management Studies, Dehra Dun, India. C3 DIT University RP Kumar, P (corresponding author), DIT Univ, Dept Management Studies, Dehra Dun, India. EM pankaj.kumar@dituniversity.edu.in CR Abdel-Kader M, 2011, REVIEW OF MANAGEMENT ACCOUNTING RESEARCH, P214 Aguinis H., 2013, Performance management, V3rd ed. Aguinis H, 2021, BRQ-BUS RES Q, V24, P233, DOI 10.1177/23409444211009528 Aguinis H, 2014, ACAD MANAG LEARN EDU, V13, P623, DOI 10.5465/amle.2014.0121 Agyemang G, 2015, ACCOUNT AUDIT ACCOUN, V28, P1018, DOI 10.1108/AAAJ-11-2013-1531 [Anonymous], 1934, Engineering, DOI [10.1177/016555158501000, DOI 10.1177/016555158501000] Armstrong M., 2009, Armstrong's Handbook of Performance management, V11th Armstrong M., 2010, Armstrongs Essential Human Resource Management Practice: A Guide to People Management Arnaboldi M, 2015, FINANC ACCOUNT MANAG, V31, P1, DOI 10.1111/faam.12049 Asadi S, 2020, J CLEAN PROD, V258, DOI 10.1016/j.jclepro.2020.120860 Bai CG, 2012, SUPPLY CHAIN MANAG, V17, P78, DOI 10.1108/13598541211212221 Barnes-Farrell JL, 2001, S APPL PSYC, P135 Beer M., 1979, Compensation Review, V11, P56 Bellisario A, 2018, PROD PLAN CONTROL, V29, P367, DOI 10.1080/09537287.2018.1432909 Bevan S., 1991, Personnel Management, V23, P36 Biron M, 2011, INT J HUM RESOUR MAN, V22, P1294, DOI 10.1080/09585192.2011.559100 Bititci U, 2012, INT J MANAG REV, V14, P305, DOI 10.1111/j.1468-2370.2011.00318.x Bititci US, 2018, INT J MANAG REV, V20, P653, DOI 10.1111/ijmr.12185 Boswell W.R., 2000, HUM RESOUR DEV Q, V11, P283, DOI [10.1002/1532-1096(200023)11:3andlt;283::AID-HRDQ6andgt;3.0.CO;2-3, DOI 10.1002/1532-1096(200023)11:3ANDLT;283::AID-HRDQ6ANDGT;3.0.CO;2-3] Bourne M, 2018, INT J OPER PROD MAN, V38, P2010, DOI 10.1108/IJOPM-11-2018-784 BOXALL P., 2003, Asia Pacific Journal of Human Resources, V41, P195, DOI DOI 10.1177/10384111030412006 Broadbent J, 2009, MANAGE ACCOUNT RES, V20, P283, DOI 10.1016/j.mar.2009.07.004 Buchner TW, 2007, HUM RESOUR DEV INT, V10, P59, DOI 10.1080/13678860601170294 Cardador MT, 2017, HUM RESOUR MANAGE R, V27, P353, DOI 10.1016/j.hrmr.2016.09.014 Chavan M, 2009, J MANAG DEV, V28, P393, DOI 10.1108/02621710910955930 Chowdhury S, 2023, HUM RESOUR MANAGE R, V33, DOI 10.1016/j.hrmr.2022.100899 Christensen T., 2008, Public Organization Review, V8, P97, DOI DOI 10.1007/S11115-008-0058-3 Claus L, 2009, INT J MANAG REV, V11, P175, DOI 10.1111/j.1468-2370.2008.00237.x Cobo MJ, 2011, J AM SOC INF SCI TEC, V62, P1382, DOI 10.1002/asi.21525 Conway E, 2016, HUM RESOUR MANAGE-US, V55, P901, DOI 10.1002/hrm.21691 CULNAN MJ, 1986, MIS QUART, V10, P289, DOI 10.2307/249263 Cuthbertson R, 2011, INT J PRODUCT PERFOR, V60, P583, DOI 10.1108/17410401111150760 Dabic M, 2014, BRQ-BUS RES Q, V17, P129, DOI 10.1016/j.brq.2013.09.001 de Waal A. A., 2003, Management Decision, V41, P688, DOI 10.1108/00251740310496206 de Waal AA, 2009, INT J PRODUCT PERFOR, V58, P367, DOI 10.1108/17410400910951026 DeNisi A.S., 2006, MANAGEMENT ORG REV, V2, P253, DOI DOI 10.1111/J.1740-8784.2006.00042.X DeNisi AS, 2017, J APPL PSYCHOL, V102, P421, DOI 10.1037/apl0000085 Di Minin A, 2010, CALIF MANAGE REV, V52, P132, DOI 10.1525/cmr.2010.52.3.132 Diab-Bahman R, 2020, INT J SOCIOL SOC POL, V40, P909, DOI 10.1108/IJSSP-07-2020-0262 Dias-Sardinha I., 2002, Environmental Quality Managemnet , winter, p, P51 Evans L, 2011, BRIT EDUC RES J, V37, P851, DOI 10.1080/01411926.2011.607231 Fernandes C, 2023, THUNDERBIRD INT BUS, V65, P9, DOI 10.1002/tie.22249 Ferreira A, 2009, MANAGE ACCOUNT RES, V20, P263, DOI 10.1016/j.mar.2009.07.003 Figge F., 2002, Business Strategy and the Environment, V11, P269, DOI [10.1002/bse.339, DOI 10.1002/BSE.339] Fletcher C., 1996, BRIT J MANAGE, V7, P169, DOI [DOI 10.1111/J.1467-8551.1996.TB00112.X, 10.1111/j.1467-8551.1996.tb00112.x] Franco-Santos M, 2007, INT J OPER PROD MAN, V27, P784, DOI 10.1108/01443570710763778 Furrer O, 2007, SERV BUS, V1, P93, DOI 10.1007/s11628-006-0006-7 Garengo P, 2020, INT J PRODUCT PERFOR, DOI 10.1108/IJPPM-03-2020-0102 GARFIELD E, 1955, SCIENCE, V122, P108, DOI 10.1126/science.122.3159.108 George RA, 2016, J CLEAN PROD, V136, P197, DOI 10.1016/j.jclepro.2016.01.097 Gerrish E, 2016, PUBLIC ADMIN REV, V76, P48, DOI 10.1111/puar.12433 Glänzel W, 2003, SCIENTOMETRICS, V56, P357, DOI 10.1023/A:1022378804087 Gruman JA, 2011, HUM RESOUR MANAGE R, V21, P123, DOI 10.1016/j.hrmr.2010.09.004 Gunasekaran A, 2004, INT J PROD ECON, V87, P333, DOI 10.1016/j.ijpe.2003.08.003 Gunasekaran A, 2001, INT J OPER PROD MAN, V21, P71, DOI 10.1108/01443570110358468 Gunasekaran A, 2007, INT J PROD RES, V45, P2819, DOI 10.1080/00207540600806513 Hassini E, 2012, INT J PROD ECON, V140, P69, DOI 10.1016/j.ijpe.2012.01.042 Heinrich CJ, 2010, J POLICY ANAL MANAG, V29, P183, DOI 10.1002/pam.20484 Hsu IC, 2006, INT J INFORM MANAGE, V26, P326, DOI 10.1016/j.ijinfomgt.2006.03.001 Inamdar N, 2002, J HEALTHC MANAG, V47, P179, DOI 10.1097/00115514-200205000-00008 Kallio KM, 2016, HUM RELAT, V69, P685, DOI 10.1177/0018726715596802 Kaplan RS, 1996, CALIF MANAGE REV, V39, P53, DOI 10.2307/41165876 Karapetrovic S., 1998, INT J QUALITY RELIAB, V15, P694, DOI DOI 10.1108/02656719810218220 Kellough EdwardJ., 2002, Review of Public Personnel Administration, V22, P146, DOI DOI 10.1177/0734371X0202200206 Kloot L., 2000, MANAGE ACCOUNT RES, V11, P231, DOI 10.1006/mare.2000.0130 Kumar Pankaj, 2022, International Journal of Social Ecology and Sustainable Development, p?, DOI 10.4018/IJSESD.315316 Kumar P., 2023, FOCUS: Journal of International Business, V10, P96, DOI [10.17492/jpi.focus.v10i2.1022305, DOI 10.17492/JPI.FOCUS.V10I2.1022305] Latham GP, 2008, INT PUBLIC MANAG J, V11, P385, DOI 10.1080/10967490802491087 Lawler EE., 2003, The Journal of Total Rewards, V12, P49 Lazaroiu G, 2020, SUSTAINABILITY-BASEL, V12, DOI 10.3390/su12187705 Lee J., 2004, LEADERSHIP ORG DEV J, V26, P655, DOI [10.1108/01437730510633728, DOI 10.1108/01437730510633728] Liang JQ, 2015, INT PUBLIC MANAG J, V18, P346, DOI 10.1080/10967494.2015.1043167 LihBrody L, 1996, DIGEST DIS SCI, V41, P2078, DOI 10.1007/BF02093613 Lotka Alfred J., 1945, HUMAN BIOL, V17, P167 Maltz AC, 2003, LONG RANGE PLANN, V36, P187, DOI 10.1016/S0024-6301(02)00165-6 Marchand M, 2008, INT J OPER PROD MAN, V28, P663, DOI 10.1108/01443570810881802 McAdam R, 2005, INT J PUBLIC SECT MA, V18, P256, DOI 10.1108/09513550510591542 Modell S, 2009, FINANC ACCOUNT MANAG, V25, P277, DOI 10.1111/j.1468-0408.2009.00477.x Mouritsen J, 2005, J INTELLECT CAP, V6, P8, DOI 10.1108/14691930510574636 Munro E, 2010, BRIT J SOC WORK, V40, P1135, DOI 10.1093/bjsw/bcq024 Narayanamurthy G, 2021, INT J PROD ECON, V234, DOI 10.1016/j.ijpe.2021.108075 Neely A, 2005, INT J OPER PROD MAN, V25, P1264, DOI 10.1108/01443570510633648 Neely A, 1995, INT J OPER PROD MAN, V15, P80, DOI 10.1108/01443579510083622 Nudurupati SS, 2005, PROD PLAN CONTROL, V16, P152, DOI 10.1080/09537280512331333057 Nyathani R., 2023, Journal of Artificial Intelligence & Cloud Computing, V2, P1, DOI [10.47363/JAICC/2023(2)134, DOI 10.47363/JAICC/2023(2)134] Otley D., 1999, MANAGE ACCOUNT RES, V10, P363, DOI [DOI 10.1006/MARE.1999.0115, https://doi.org/10.1006/mare.1999.0115] Pollitt C, 2013, EVALUATION-US, V19, P346, DOI 10.1177/1356389013505040 Pulakos ED, 2015, IND ORGAN PSYCHOL-US, V8, P51, DOI 10.1017/iop.2014.2 Radnor Z.J., 2004, INT J PRODUCT PERFOR, V53, P245, DOI DOI 10.1108/17410400410523783 Rajesh R, 2020, J CLEAN PROD, V247, DOI 10.1016/j.jclepro.2019.119600 Sardi A, 2023, MEAS BUS EXCELL, V27, P531, DOI 10.1108/MBE-06-2019-0053 Schaltegger S, 2018, J BUS ETHICS, V147, P241, DOI 10.1007/s10551-015-2938-0 Schläfke M, 2012, INT J PRODUCT PERFOR, V62, P110, DOI 10.1108/17410401311285327 Schleicher DJ, 2018, J MANAGE, V44, P2209, DOI 10.1177/0149206318755303 Schneider R, 2010, INT J PRODUCT PERFOR, V59, P493, DOI 10.1108/17410401011052904 Searcy C, 2012, J BUS ETHICS, V107, P239, DOI 10.1007/s10551-011-1038-z Shih HA, 2006, INT J MANPOWER, V27, P741, DOI 10.1108/01437720610713530 Snee RD, 2010, INT J LEAN SIX SIG, V1, P9, DOI 10.1108/20401461011033130 SPARROW P.R., 1996, HUM RESOUR MANAG J, V6, P75, DOI [10.1111/j.1748-8583.1996.tb00419.x, DOI 10.1111/J.1748-8583.1996.TB00419.X] Stroet H.P, 2020, Bachelor's thesis Tangen S., 2004, International Journal of Productivity and Performance Management, V53, P726, DOI [DOI 10.1108/17410400410569134, 10.1108/17410400410569134] Taticchi P, 2015, INT J PROD RES, V53, P6473, DOI 10.1080/00207543.2014.939239 Thompson DF, 2015, PHARMACOTHERAPY, V35, P551, DOI 10.1002/phar.1586 Townley B, 2002, ACAD MANAGE J, V45, P163, DOI 10.5465/3069290 Tranfield D, 2003, BRIT J MANAGE, V14, P207, DOI 10.1111/1467-8551.00375 Tseng ST, 2019, HUM RESOUR MANAGE R, V29, DOI 10.1016/j.hrmr.2018.10.001 Turzo T, 2022, J CLEAN PROD, V345, DOI 10.1016/j.jclepro.2022.131154 van Veen-Dirks P, 2002, LONG RANGE PLANN, V35, P407, DOI 10.1016/S0024-6301(02)00066-3 Veen A, 2020, WORK EMPLOY SOC, V34, P388, DOI 10.1177/0950017019836911 Visnjic Kastalli I, 2013, CALIF MANAGE REV, V56, P100, DOI 10.1525/cmr.2013.56.1.100 Vlachos PA, 2010, EUR J MARKETING, V44, P1478, DOI 10.1108/03090561011062934 Vrontis D, 2022, INT J HUM RESOUR MAN, V33, P1237, DOI 10.1080/09585192.2020.1871398 NR 112 TC 0 Z9 0 U1 3 U2 3 PU EMERALD GROUP PUBLISHING LTD PI Leeds PA Floor 5, Northspring 21-23 Wellington Street, Leeds, W YORKSHIRE, ENGLAND SN 1463-5771 EI 1758-4094 J9 BENCHMARKING JI Benchmarking PD 2024 JUN 17 PY 2024 DI 10.1108/BIJ-07-2023-0477 EA JUN 2024 PG 29 WC Management WE Emerging Sources Citation Index (ESCI) SC Business & Economics GA UP9A2 UT WOS:001249368000001 DA 2024-09-05 ER PT C AU Maiorino, A Padgett, Z Wang, C Yakubovskiy, M Jiang, P AF Maiorino, Antonio Padgett, Zoe Wang, Chun Yakubovskiy, Misha Jiang, Peng GP ACM TI Application and Evaluation of Large Language Models for the Generation of Survey Questions SO PROCEEDINGS OF THE 32ND ACM INTERNATIONAL CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, CIKM 2023 LA English DT Proceedings Paper CT 32nd ACM International Conference on Information and Knowledge Management (CIKM) CY OCT 21-25, 2023 CL Birmingham, ENGLAND DE Generative AI; Survey Research; Text Evaluation AB Generative Language Models have shown promising results in various domains, and some of the most successful applications are related to "concept expansion", which is the task of generating extensive text based on concise instructions provided through a "seed" prompt. In this presentation we will discuss the recent work conducted by the Data Science team at SurveyMonkey, where we have recently introduced a new feature that harnesses Generative AI models to streamline the survey design process. With this feature users can effortlessly initiate this process by specifying their desired objectives through a prompt, allowing them to automate the creation of surveys that include the critical aspects they wish to investigate. We will share our findings regarding some of the challenges encountered during the development of this feature. These include techniques for conditioning the model outputs, integrating generated text with industry-standard questions, fine-tuning Language Models using semi-synthetic Data Generation techniques, and more. Moreover, we will showcase the Evaluation Methodology that we have developed to measure the quality of the generated surveys across several dimensions. This evaluation process is crucial in ensuring that the generated surveys align well with user expectations and serve their intended purpose effectively. Our goal is to demonstrate the promising potential of Generative Language Models in the context of Survey Research, and we believe that sharing our learnings on these challenges and how we addressed them will be useful for practitioners working with Language Models on similar problems. C1 [Maiorino, Antonio] SurveyMonkey, Milan, Italy. [Padgett, Zoe] SurveyMonkey, Gaithersburg, MD USA. [Wang, Chun] SurveyMonkey, Ottawa, ON, Canada. [Yakubovskiy, Misha] SurveyMonkey, Bellevue, WA USA. [Jiang, Peng] SurveyMonkey, San Mateo, CA USA. RP Maiorino, A (corresponding author), SurveyMonkey, Milan, Italy. EM amaiorino@surveymonkey.com; zpadgett@surveymonkey.com; chunw@surveymonkey.com; myakubovskiy@surveymonkey.com; pjiang@surveymonkey.com NR 0 TC 0 Z9 0 U1 5 U2 5 PU ASSOC COMPUTING MACHINERY PI NEW YORK PA 1601 Broadway, 10th Floor, NEW YORK, NY, UNITED STATES BN 979-8-4007-0124-5 PY 2023 BP 5244 EP 5245 DI 10.1145/3583780.3615506 PG 2 WC Computer Science, Artificial Intelligence; Computer Science, Information Systems WE Conference Proceedings Citation Index - Science (CPCI-S) SC Computer Science GA BW5IO UT WOS:001161549505056 DA 2024-09-05 ER PT J AU Shahzad, M Alhoori, H Freedman, R Rahman, SA AF Shahzad, Murtuza Alhoori, Hamed Freedman, Reva Rahman, Shaikh Abdul TI Quantifying the online long-term interest in research SO JOURNAL OF INFORMETRICS LA English DT Article DE Long-term research interest; Online scholarly impact; Aging of articles; Social media; Altmetrics; Machine learning ID CITED OLD PAPERS; SOCIAL MEDIA; SOCIETAL IMPACT; OBSOLESCENCE; CITATION; ALTMETRICS; GROWTH; ARTICLE; PUBLICATION; CONTINUE AB Research articles are being shared in increasing numbers on multiple online platforms. Although the scholarly impact of these articles has been widely studied, the online interest determined by how long the research articles are shared online remains unclear. Being cognizant of how long a research article is mentioned online could be valuable information to the researchers. In this paper, we analyzed multiple social media platforms on which users share and/or discuss scholarly articles. We built three clusters for papers, based on the number of yearly online mentions having publication dates ranging from the year 1920 to 2016. Using the online social media metrics for each of these three clusters, we built machine learning models to predict the long-term online interest in research articles. We addressed the prediction task with two different approaches: regression and classification. For the regression approach, the Multi-Layer Perceptron model performed best, and for the classification approach, the tree-based models performed better than other models. We found that old articles are most evident in the contexts of economics and industry (i.e., patents). In contrast, recently published articles are most evident in research platforms (i.e., Mendeley) followed by social media platforms (i.e., Twitter). C1 [Shahzad, Murtuza; Alhoori, Hamed; Freedman, Reva; Rahman, Shaikh Abdul] Northern Illinois Univ, De Kalb, IL 60115 USA. C3 Northern Illinois University RP Shahzad, M (corresponding author), Northern Illinois Univ, De Kalb, IL 60115 USA. EM msyed1@niu.edu; alhoori@niu.edu; freedman@cs.niu.edu; ashaikh2@niu.edu RI Alhoori, Hamed/B-8106-2009 OI Alhoori, Hamed/0000-0002-4733-6586; Freedman, Reva/0000-0002-0823-6961; Syed, Mohammed Murtuza Shahzad/0000-0001-7630-1617 FU NSF [2022443]; SBE Off Of Multidisciplinary Activities; Direct For Social, Behav & Economic Scie [2022443] Funding Source: National Science Foundation FX This work is supported in part by NSF Grant No. 2022443. CR Abramo G., 2020, KNOWLEDGE SPILLOVERS Abramo G, 2019, J INFORMETR, V13, P32, DOI 10.1016/j.joi.2018.11.003 Adie E, 2013, LEARN PUBL, V26, P11, DOI 10.1087/20130103 Ahmed T, 2004, SCIENTOMETRICS, V61, P147, DOI 10.1023/B:SCIE.0000041645.60907.57 Akella AP, 2021, J INFORMETR, V15, DOI 10.1016/j.joi.2020.101128 Alhoori H, 2019, INT J DIGIT LIBRARIE, V20, P369, DOI 10.1007/s00799-018-0255-9 Allen HG, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0068914 [Anonymous], CITATION ANAL RES EV AVRAMESCU A, 1979, J AM SOC INFORM SCI, V30, P296, DOI 10.1002/asi.4630300509 Azoulay P, 2018, SCIENCE, V361, P1194, DOI 10.1126/science.aav2484 Barnes Barry., 1996, Scientific Knowledge: A Sociological Analysis Barnett GA, 2008, J AM SOC INF SCI TEC, V59, P526, DOI 10.1002/asi.20706 Bornmann L, 2014, J INFORMETR, V8, P895, DOI 10.1016/j.joi.2014.09.005 Bornmann L, 2013, J AM SOC INF SCI TEC, V64, P217, DOI 10.1002/asi.22803 Bornmann L, 2011, ANNU REV INFORM SCI, V45, P199, DOI 10.1002/aris.2011.1440450112 Bouabid H, 2013, SCIENTOMETRICS, V97, P695, DOI 10.1007/s11192-013-0995-7 BOXENBAUM H, 1984, INT J PHARM, V21, P135, DOI 10.1016/0378-5173(84)90088-7 Bozeman B, 2000, RES POLICY, V29, P627, DOI 10.1016/S0048-7333(99)00093-1 Bu Y, 2020, INFORM PROCESS MANAG, V57, DOI 10.1016/j.ipm.2020.102300 Cortex, 2001, CORTEX, V37, P575 CUNNINGHAM SJ, 1995, SCIENTOMETRICS, V34, P255, DOI 10.1007/BF02020423 Das A. K., 2014, ARXIV PREPRINT ARXIV Datta Subhajit, 2016, IEEE Transactions on Big Data, V2, P124, DOI 10.1109/TBDATA.2016.2580541 Ding Y, 2009, J AM SOC INF SCI TEC, V60, P2388, DOI 10.1002/asi.21190 EGGHE L, 1995, SCIENTOMETRICS, V34, P285, DOI 10.1007/BF02020425 EGGHE L, 1993, SCIENTOMETRICS, V27, P195, DOI 10.1007/BF02016550 EGGHE L, 1994, INFORM PROCESS MANAG, V30, P279, DOI 10.1016/0306-4573(94)90070-1 Fausto S, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0050109 Fortunato S, 2018, SCIENCE, V359, DOI 10.1126/science.aao0185 Freeman Cole, 2020, Proceedings of the ACM on Human-Computer Interaction, V4, DOI 10.1145/3375192 Freeman C, 2019, ACM-IEEE J CONF DIG, P301, DOI 10.1109/JCDL.2019.00050 Gupta BM, 1998, SCIENTOMETRICS, V42, P335, DOI 10.1007/BF02458376 Huntington P, 2006, J AM SOC INF SCI TEC, V57, P1840, DOI 10.1002/asi.20383 KOHUT JJ, 1974, J AM SOC INFORM SCI, V25, P242, DOI 10.1002/asi.4630250407 Kousha K, 2008, J AM SOC INF SCI TEC, V59, P2060, DOI 10.1002/asi.20920 Kousha K, 2016, J ASSOC INF SCI TECH, V67, P2993, DOI 10.1002/asi.23542 Larivière V, 2008, J AM SOC INF SCI TEC, V59, P288, DOI 10.1002/asi.20744 Liang GQ, 2020, J INFORMETR, V14, DOI 10.1016/j.joi.2020.101053 Lima H, 2013, ACM-IEEE J CONF DIG, P97 LINE MB, 1974, J DOC, V30, P283, DOI 10.1108/eb026583 Luc JGY, 2021, ANN THORAC SURG, V111, P296, DOI 10.1016/j.athoracsur.2020.04.065 MacRoberts MH, 1996, SCIENTOMETRICS, V36, P435, DOI 10.1007/BF02129604 MACROBERTS MH, 1989, J AM SOC INFORM SCI, V40, P342, DOI 10.1002/(SICI)1097-4571(198909)40:5<342::AID-ASI7>3.0.CO;2-U Martín-Martín A, 2016, SCIENTOMETRICS, V107, P1477, DOI 10.1007/s11192-016-1917-2 McKeown K, 2016, J ASSOC INF SCI TECH, V67, P2684, DOI 10.1002/asi.23612 Melero R, 2015, BIOCHEM MEDICA, V25, P152, DOI 10.11613/BM.2015.016 Mohammadi E, 2020, INFORM PROCESS MANAG, V57, DOI 10.1016/j.ipm.2020.102230 Neylon C, 2009, PLOS BIOL, V7, DOI 10.1371/journal.pbio.1000242 OPPENHEIM C, 1978, J AM SOC INFORM SCI, V29, P225, DOI 10.1002/asi.4630290504 Patel A, 2016, BRIT J GEN PRACT, V66, pE59, DOI 10.3399/bjgp16X683353 Pedregosa F, 2011, J MACH LEARN RES, V12, P2825 Penfield T, 2014, RES EVALUAT, V23, P21, DOI 10.1093/reseval/rvt021 Piwowar H., 2013, Bull Am Soc Inf Sci Technol., V39, P8, DOI [10.1002/bult.2013.1720390404, DOI 10.1002/BULT.2013.1720390404] Priem J., 2010, First Monday. Priem J, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0048753 Samuel GN, 2015, RES EVALUAT, V24, P229, DOI 10.1093/reseval/rvv007 Sangam SL, 1999, SCIENTOMETRICS, V44, P33, DOI 10.1007/BF02458476 Savov P, 2020, INFORM PROCESS MANAG, V57, DOI 10.1016/j.ipm.2019.102168 SEGLEN PO, 1992, J AM SOC INFORM SCI, V43, P628, DOI 10.1002/(SICI)1097-4571(199210)43:9<628::AID-ASI5>3.0.CO;2-0 Seglen PO, 1997, BRIT MED J, V314, P498 Sember M, 2017, MALAYS J LIBR INF SC, V22, P15, DOI 10.22452/mjlis.vol22no1.2 Shahzad M, 2022, J DATA INFO SCI, V7, P97, DOI 10.2478/jdis-2022-0003 Shaikh AR, 2019, ACM-IEEE J CONF DIG, P400, DOI 10.1109/JCDL.2019.00089 Sikdar S, 2017, ACM-IEEE J CONF DIG, P179 Singh M, 2017, ACM-IEEE J CONF DIG, P59 Siravuri HV, 2018, ACM-IEEE J CONF DIG, P385, DOI 10.1145/3197026.3203890 Stacey AG, 2021, SCIENTOMETRICS, V126, P619, DOI 10.1007/s11192-020-03761-6 Stegehuis C, 2015, J INFORMETR, V9, P642, DOI 10.1016/j.joi.2015.06.005 Stern DI, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0112520 STINSON ER, 1987, J INFORM SCI, V13, P65, DOI 10.1177/016555158701300201 Sugimoto CR, 2017, J ASSOC INF SCI TECH, V68, P2037, DOI 10.1002/asi.23833 Thelwall M, 2018, J INFORMETR, V12, P237, DOI 10.1016/j.joi.2018.01.008 Thelwall M, 2015, PROF INFORM, V24, P587, DOI 10.3145/epi.2015.sep.08 Thorndike RL, 1953, Psychometrika, V18, P267, DOI [10.1007/BF02289263, DOI 10.1007/BF02289263] Tonia T, 2016, INT J PUBLIC HEALTH, V61, P513, DOI 10.1007/s00038-016-0831-y Tsay MY, 2006, INFORM PROCESS MANAG, V42, P1567, DOI 10.1016/j.ipm.2006.03.020 Wallace ML, 2009, J INFORMETR, V3, P296, DOI 10.1016/j.joi.2009.03.010 Wang DS, 2013, SCIENCE, V342, P127, DOI 10.1126/science.1237825 Wang X, 2020, J INFORMETR, V14, DOI 10.1016/j.joi.2020.101019 WATSON JD, 1953, NATURE, V171, P737, DOI 10.1038/171737a0 Wouters P, 2019, SPRINGER HBK, P687, DOI 10.1007/978-3-030-02511-3_26 NR 81 TC 3 Z9 5 U1 3 U2 31 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS SN 1751-1577 EI 1875-5879 J9 J INFORMETR JI J. Informetr. PD MAY PY 2022 VL 16 IS 2 AR 101288 DI 10.1016/j.joi.2022.101288 EA APR 2022 PG 16 WC Computer Science, Interdisciplinary Applications; Information Science & Library Science WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Computer Science; Information Science & Library Science GA 2S3GW UT WOS:000821684900008 OA Green Submitted DA 2024-09-05 ER PT C AU Yang, H Ji, CJ Wu, QY AF Yang, Hua Ji, Chao-jun Wu, Qiao-yun BE Qi, E Shen, J Dou, R TI Research on Risk Assessment of the Equipment Maintenance Contractor Support SO 19TH INTERNATIONAL CONFERENCE ON INDUSTRIAL ENGINEERING AND ENGINEERING MANAGEMENT: MANAGEMENT SYSTEM INNOVATION LA English DT Proceedings Paper CT 19th International Conference on Industrial Engineering and Engineering Management CY OCT 27-29, 2012 CL Changsha, PEOPLES R CHINA DE Bayesian networks; Contractor support; Equipment maintenance; Risk identification; Risk assessment AB With regard to many uncertain factors which the process of military equipment maintenance support undertaken by contractors exists, this paper focuses on analysis and assessment of contractor support risks. Firstly, the whole procedure of the contractor support is formal described. Eight risk factors are identified through three aspects, including the army, the contractor, and both concerned parties. Secondly, a Bayesian Network diagram of these risk factors is constructed. Through an example, it has demonstrated the forward reasoning process of equipment maintenance contractor support risks, with using Bayesian Networks rational arithmetic. In order to control the most influencing risk factors, the sensitivity of different risk factors is finally analyzed. This method to identify, classify, and assess risks is useful for the army to prevent risks from occurring. C1 [Yang, Hua; Ji, Chao-jun; Wu, Qiao-yun] Univ Mil Transportat, Dept Equipment Support, Tianjin, Peoples R China. RP Yang, H (corresponding author), Univ Mil Transportat, Dept Equipment Support, Tianjin, Peoples R China. EM liuzesheng_1999@sina.com CR Al-Sobiei OS, 2005, CONSTR MANAG ECON, V23, P423, DOI 10.1080/01446190500041578 Anisur R, 2010, P 2010 INT C IND ENG, P9 Bao Qiang, 2010, Journal of the Academy of Equipment Command & Technology, V21, P31, DOI 10.3783/j.issn.1673-0127.2010.01.008 Bertolini M., 2004, International Journal of Quality Reliability Management, V21, P772, DOI [10.1108/02656710410549118, DOI 10.1108/02656710410549118] Cai Liying, 2011, Journal of the Academy of Equipment Command & Technology, V22, P24, DOI 10.3783/j.issn.1673-0127.2011.02.006 Gao PW, 2009, EUR J OPER RES, V192, P975, DOI 10.1016/j.ejor.2007.10.010 Ke Feng, 2011, ORDANCE IND AUTOMATI, V29, P23 Kumar R., 2004, INT J SURFACE MINING, V18, P299 Levery M., 1998, Engineering Management Journal, V8, P34, DOI 10.1049/em:19980111 Mak S, 2000, J CONSTR ENG M ASCE, V126, P130, DOI 10.1061/(ASCE)0733-9364(2000)126:2(130) Mohammad A. M., 1991, IEEE T ENG MANAGE, V38, P46 [叶跃祥 YE Yuexiang], 2007, [系统工程理论与实践, Systems Engineering-Theory & Practice], V27, P107 Zavadskas EK, 2010, J CIV ENG MANAG, V16, P33, DOI 10.3846/jcem.2010.03 Zhang HM, 2011, J ACAD EQUIP COMMAND, V22, P37 Zhang Hongmei, 2010, Journal of the Academy of Equipment Command & Technology, V21, P37, DOI 10.3783/j.issn.1673-0127.2010.05.009 NR 15 TC 0 Z9 0 U1 0 U2 0 PU SPRINGER-VERLAG BERLIN PI BERLIN PA HEIDELBERGER PLATZ 3, D-14197 BERLIN, GERMANY BN 978-3-642-38427-1; 978-3-642-38426-4 PY 2013 BP 1035 EP 1045 DI 10.1007/978-3-642-38427-1_109 PG 11 WC Management; Operations Research & Management Science WE Conference Proceedings Citation Index - Science (CPCI-S); Conference Proceedings Citation Index - Social Science & Humanities (CPCI-SSH) SC Business & Economics; Operations Research & Management Science GA BG8UK UT WOS:000392719200109 DA 2024-09-05 ER PT J AU Brown, P Brody, JG Morello-Frosch, R Tovar, J Zota, AR Rudel, RA AF Brown, Phil Brody, Julia Green Morello-Frosch, Rachel Tovar, Jessica Zota, Ami R. Rudel, Ruthann A. TI Measuring the Success of Community Science: The Northern California Household Exposure Study SO ENVIRONMENTAL HEALTH PERSPECTIVES LA English DT Article DE breast cancer; community-based participatory research; environmental justice; evaluation metrics; exposure science ID ENDOCRINE-DISRUPTING COMPOUNDS; BREAST-CANCER; PARTICIPATORY RESEARCH; AIR; EXPERIENCE; INDOOR; DUST AB BACKGROUND: Environmental health research involving community participation has increased substantially since the National Institute of Environmental Health Sciences (NIEHS) environmental justice and community-based participatory research (CBPR) partnerships began in the mid-1990s. The goals of these partnerships are to inform and empower better decisions about exposures, foster trust, and generate scientific knowledge to reduce environmental health disparities in low-income, minority communities. Peer-reviewed publication and clinical health outcomes alone are inadequate criteria to judge the success of projects in meeting these goals; therefore, new strategies for evaluating success are needed. OBJECTIVES: We reviewed the methods used to evaluate our project, "Linking Breast Cancer Advocacy and Environmental Justice," to help identify successful CBPR methods and to assist other teams in documenting effectiveness. Although our project precedes the development of the NIEHS Evaluation Metrics Manual, a schema to evaluate the success of projects funded through the Partnerships in Environmental Public Health (PEPH), our work reported here illustrates the record keeping and self-reflection anticipated in NIEHS's PEPH. DISCUSSION: Evaluation strategies should assess how CBPR partnerships meet the goals of all partners. Our partnership, which included two strong community-based organizations, produced a team that helped all partners gain organizational capacity. Environmental sampling in homes and reporting the results of that effort had community education and constituency-building benefits. Scientific results contributed to a court decision that required cumulative impact assessment for an oil refinery and to new policies for chemicals used in consumer products. All partners leveraged additional funding to extend their work. CONCLUSIONS: An appropriate evaluation strategy can demonstrate how CBPR projects can advance science, support community empowerment, increase environmental health literacy, and generate individual and policy action to protect health. C1 [Brown, Phil] Brown Univ, Dept Sociol, Providence, RI 02912 USA. [Brown, Phil] Brown Univ, Ctr Environm Studies, Providence, RI 02912 USA. [Brody, Julia Green; Rudel, Ruthann A.] Silent Spring Inst, Newton, MA USA. [Morello-Frosch, Rachel] Univ Calif Berkeley, Sch Publ Hlth, Berkeley, CA 94720 USA. [Morello-Frosch, Rachel] Univ Calif Berkeley, Dept Environm Sci Policy & Management, Berkeley, CA 94720 USA. [Tovar, Jessica] Commun Better Environm, Oakland, CA USA. [Zota, Ami R.] Univ Calif San Francisco, Program Reprod Hlth & Environm, Oakland, CA USA. C3 Brown University; Brown University; University of California System; University of California Berkeley; University of California System; University of California Berkeley; University of California System; University of California San Francisco RP Brown, P (corresponding author), Brown Univ, Dept Sociol, Box 1916, Providence, RI 02912 USA. EM phil_brown@brown.edu RI Rudel, Ruthann/AAJ-5956-2021 OI Rudel, Ruthann/0000-0002-1809-4127; Zota, Ami/0000-0003-0710-354X; Newman, Gregory/0000-0003-0503-5782; Morello-Frosch, Rachel/0000-0003-1153-7287 FU National Institute of Environmental Health Sciences [R25 ES013258]; National Science Foundation [SES 0450837]; breast cancer organizations FX This research was supported by the National Institute of Environmental Health Sciences (R25 ES013258) and the National Science Foundation (SES 0450837). J.G.B. and R.A.R. are employed at Silent Spring Institute, a scientific research organization dedicated to studying environmental factors in women's health. The institute is a 501(c)(3) public charity funded by federal grants and contracts, foundation grants, and private donations, including from breast cancer organizations. J.T. is employed by Communities for a Better Environment, Oakland, CA. CR Adams C, 2011, J HEALTH SOC BEHAV, V52, P180, DOI 10.1177/0022146510395593 Altman RG, 2008, J HEALTH SOC BEHAV, V49, P417, DOI 10.1177/002214650804900404 [Anonymous], NAT AMB AIR QUAL STA [Anonymous], 2005, 10 WAYS RED YOUR EXP Baron Sherry, 2009, Am J Public Health, V99 Suppl 3, pS517, DOI 10.2105/AJPH.2009.174557 Brody JG, 2007, AM J PUBLIC HEALTH, V97, P1547, DOI 10.2105/AJPH.2006.094813 Brody Julia Green, 2009, Am J Public Health, V99 Suppl 3, pS600, DOI 10.2105/AJPH.2008.149088 Brown P, 2006, SCI TECHNOL HUM VAL, V31, P499, DOI 10.1177/0162243906289610 Brown P, 2010, ENVIRON HEALTH-GLOB, V9, DOI 10.1186/1476-069X-9-39 California Environmental Protection Agency, 2011, CAL AMB AIR QUAL STA CBE (Communities for a Better Environment), 2008, CUM IMP E OAKL FIND City of Richmond, 2008, NOT AV FIN ENV IMP R City of Richmond, 2011, PLANN BUILD SERV Cohen A, 2012, HEALTH EDUC BEHAV, V39, P198, DOI 10.1177/1090198111412591 Consumer Federation of California, 2009, FIGHT PROT CHILDR TO Curtis K, 2007, IS IT US CHEM CONT O Drew CH, 2010, DRAFT PARTN ENV PUBL Israel BA, 1998, ANNU REV PUBL HEALTH, V19, P173, DOI 10.1146/annurev.publhealth.19.1.173 McCormick S, 2004, INT J HEALTH SERV, V34, P625, DOI 10.2190/HPXB-9RK8-ETVM-RVEA McCormick S, 2003, SOCIOL FORUM, V18, P545, DOI 10.1023/B:SOFO.0000003003.00251.2f Minkler M, 2008, HEALTH EDUC BEHAV, V35, P119, DOI 10.1177/1090198106287692 Morello-Frosch R, 2009, ENVIRON HEALTH-GLOB, V8, DOI 10.1186/1476-069X-8-6 O'Fallon LR, 2002, ENVIRON HEALTH PERSP, V110, P155, DOI 10.1289/ehp.02110s2155 Our Blog: News from the Frontlines, 2011, LA POISED DEAL HIDD Rhode Island Department of Environmental Management, 2009, POL CONS ENV JUST RE Rier DavidA., 2010, NEW BLACKWELL COMPAN, P163 Rudel RA, 2003, ENVIRON SCI TECHNOL, V37, P4543, DOI 10.1021/es0264596 Rudel RA, 2010, ENVIRON SCI TECHNOL, V44, P6583, DOI 10.1021/es100159c Rudel RA, 2008, ENVIRON HEALTH-GLOB, V7, DOI 10.1186/1476-069X-7-2 Silent Spring Institute, 2011, HOUS EXP STUD Silent Spring Institute, 2011, HOUS EXP STUD RICHM State of California, 1970, CAL ENV QUAL ACT CEQ State of California, 2000, REQ TEST PROC APP TE Titmuss R., 1972, GIFT REL HUM BLOOD S United States' Environmental Protection Agency (US EPA), 1994, FED ACT ADDR ENV JUS Wolfson M, 2010, SOCIAL MOVEMENTS DEV, P117 Zota AR, 2008, ENVIRON SCI TECHNOL, V42, P8158, DOI 10.1021/es801792z NR 37 TC 65 Z9 71 U1 1 U2 57 PU US DEPT HEALTH HUMAN SCIENCES PUBLIC HEALTH SCIENCE PI RES TRIANGLE PK PA NATL INST HEALTH, NATL INST ENVIRONMENTAL HEALTH SCIENCES, PO BOX 12233, RES TRIANGLE PK, NC 27709-2233 USA SN 0091-6765 EI 1552-9924 J9 ENVIRON HEALTH PERSP JI Environ. Health Perspect. PD MAR PY 2012 VL 120 IS 3 BP 326 EP 331 DI 10.1289/ehp.1103734 PG 6 WC Environmental Sciences; Public, Environmental & Occupational Health; Toxicology WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Environmental Sciences & Ecology; Public, Environmental & Occupational Health; Toxicology GA 907CF UT WOS:000301394700017 PM 22147336 OA gold, Green Published DA 2024-09-05 ER PT J AU Muthusi, J Mwalili, S Young, P AF Muthusi, Jacques Mwalili, Samuel Young, Peter TI %svy_logistic_regression: A generic SAS macro for simple and multiple logistic regression and creating quality publication-ready tables using survey or non-survey data SO PLOS ONE LA English DT Article ID REPRODUCIBLE RESEARCH; HIV; MEN; SEX AB Introduction Reproducible research is increasingly gaining interest in the research community. Automating the production of research manuscript tables from statistical software can help increase the reproducibility of findings. Logistic regression is used in studying disease prevalence and associated factors in epidemiological studies and can be easily performed using widely available software including SAS, SUDAAN, Stata or R. However, output from these software must be processed further to make it readily presentable. There exists a number of procedures developed to organize regression output, though many of them suffer limitations of flexibility, complexity, lack of validation checks for input parameters, as well as inability to incorporate survey design. Methods We developed a SAS macro, % svy_logistic_regression, for fitting simple and multiple logistic regression models. The macro also creates quality publication-ready tables using survey or non-survey data which aims to increase transparency of data analyses. It further significantly reduces turn-around time for conducting analysis and preparing output tables while also addressing the limitations of existing procedures. In addition, the macro allows for user-specific actions to handle missing data as well as use of replication-based variance estimation methods. Results We demonstrate the use of the macro in the analysis of the 2013-2014 National Health and Nutrition Examination Survey (NHANES), a complex survey designed to assess the health and nutritional status of adults and children in the United States. The output presented here is directly from the macro and is consistent with how regression results are often presented in the epidemiological and biomedical literature, with unadjusted and adjusted model results presented side by side. Conclusions The SAS code presented in this macro is comprehensive, easy to follow, manipulate and to extend to other areas of interest. It can also be incorporated quickly by the statistician for immediate use. It is an especially valuable tool for generating quality, easy to review tables which can be incorporated directly in a publication. C1 [Muthusi, Jacques; Mwalili, Samuel; Young, Peter] US Ctr Dis Control & Prevent, Div Global HIV & TB, Nairobi, Kenya. RP Muthusi, J (corresponding author), US Ctr Dis Control & Prevent, Div Global HIV & TB, Nairobi, Kenya. EM mwj6@cdc.gov RI Mwalili, Samuel/AAV-6758-2020; Muthusi, Jacques/ABB-1863-2021 OI Mwalili, Samuel/0000-0002-9703-6514; Muthusi, Jacques/0000-0003-4092-3486 FU President's Emergency Plan for AIDS Relief (PEPFAR) through the U.S. Centers for Disease Control and Prevention (CDC) FX This work was supported by the President's Emergency Plan for AIDS Relief (PEPFAR) through the U.S. Centers for Disease Control and Prevention (CDC). The funder had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. CR ALTMAN DG, 1983, BRIT MED J, V286, P1489, DOI 10.1136/bmj.286.6376.1489 [Anonymous], P MIWWEST SAS US GRO [Anonymous], 2011, Categorical data analysis [Anonymous], 1965, Survey Sampling [Anonymous], POL DAT SOFTW MAT MA [Anonymous], REFORMAT STATA MODUL [Anonymous], OP ACC POL 2017 [Anonymous], USING SAS LATEX CREA [Anonymous], OP GOV PLAN [Anonymous], OUTREG2 STATA MODULE [Anonymous], SCI EDITORS HDB [Anonymous], 2014, VITAL HLTH STAT [Anonymous], 2015, National Health and Nutrition Examination Survey [Anonymous], P MIDWEST SAS US GRO [Anonymous], BAS SAS 9 3 CAR [Anonymous], 2005, ANAL COMPLEX SURVEY [Anonymous], 2010, Sampling: Design and Analysis Archer KJ, 2007, COMPUT STAT DATA AN, V51, P4450, DOI 10.1016/j.csda.2006.07.006 Cherutich P, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0154318 Cochran WG., 2007, SAMPLING TECHNIQUES Dhand NK, 2010, J STAT SOFTW, V35, P1 Foreman E., 1991, SURVEY SAMPLING PRIN Hosmer W., 2000, Applied Logistic Regression, VSecond Iqbal SA, 2016, PLOS BIOL, V14, DOI 10.1371/journal.pbio.1002333 Jann B, 2007, STATA J, V7, P227, DOI 10.1177/1536867X0700700207 Jann B, 2005, STATA J, V5, P288 Leek JT, 2015, P NATL ACAD SCI USA, V112, P1645, DOI 10.1073/pnas.1421412111 Levy P.S., 2013, SAMPLING POPULATIONS Lumley T., 2020, J Stat Software Moore DM, 2016, JAIDS-J ACQ IMM DEF, V72, P87, DOI 10.1097/QAI.0000000000000934 Nalá R, 2015, AIDS BEHAV, V19, P393, DOI 10.1007/s10461-014-0895-8 Oluoch T, 2016, LANCET HIV, V3, pE76, DOI 10.1016/S2352-3018(15)00242-8 Peng RD, 2006, AM J EPIDEMIOL, V163, P783, DOI 10.1093/aje/kwj093 Peng RD, 2011, SCIENCE, V334, P1226, DOI 10.1126/science.1213847 Peng RD, 2009, BIOSTATISTICS, V10, P405, DOI 10.1093/biostatistics/kxp014 SAS Institute Inc, 2011, SAS/STAT 9.3 Users Guide Wolter K.M., 1985, INTRO VARIANCE ESTIM NR 37 TC 2 Z9 2 U1 0 U2 13 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA SN 1932-6203 J9 PLOS ONE JI PLoS One PD SEP 3 PY 2019 VL 14 IS 9 AR e0214262 DI 10.1371/journal.pone.0214262 PG 14 WC Multidisciplinary Sciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Science & Technology - Other Topics GA IY3OS UT WOS:000486302400001 PM 31479445 OA Green Published, gold, Green Submitted DA 2024-09-05 ER PT C AU Tang, J Sun, JM Wang, C Yang, Z AF Tang, Jie Sun, Jimeng Wang, Chi Yang, Zi GP ACM TI Social Influence Analysis in Large-scale Networks SO KDD-09: 15TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING LA English DT Proceedings Paper CT 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining CY JUN 28-JUL 01, 2009 CL Paris, FRANCE DE Social Influence Analysis; Topical Affinity Propagation; Large-scale Network; Social Networks AB In large social networks, nodes (users, entities) are influenced by others for various reasons. For example, the col leagues have strong influence on one's work, while the friends have strong influence on one's daily life. How to differentiate the social influences from different angles(topics)? How to quantify the strength of those social influences? How to estimate the model on real large networks? To address these fundamental questions, we propose Topical Affinity Propagation (TAP) to model the topic-level social influence on large networks. In particular, TAP can take results of any topic modeling and the existing network structure to perform topic-level influence propagation. With the help of the influence analysis, we present several important applications on real data sets such as 1) what are the representative nodes on a given topic? 2) how to identify the social influences of neighboring nodes on a particular node? To scale to real large networks, TAP is designed with efficient distributed learning algorithms that is implemented and tested under the Map-Reduce framework. We further present the common characteristics of distributed learning algorithms for Map-Reduce. Finally, we demonstrate the effectiveness and efficiency of TAP on real large data sets. C1 [Tang, Jie; Wang, Chi; Yang, Zi] Tsinghua Univ, Dept Comp Sci, Beijing, Peoples R China. C3 Tsinghua University RP Tang, J (corresponding author), Tsinghua Univ, Dept Comp Sci, Beijing, Peoples R China. EM jietang@tsinghau.edu.cn; jimeng@us.ibm.com; sonicive@gmail.com; yz@keg.cs.tsinghua.edu.cn RI tang, jie/KIE-8633-2024 OI Sun, Jimeng/0000-0003-1512-6426 CR Albert R., 2002, REV MODERN PHYS, V74, DOI arXivcond-mat/0106096v1 Anagnostopoulos A., 2008, P 14 ACM SIGKDD INT, P7, DOI [10.1145/1401890.1401897, DOI 10.1145/1401890.1401897] [Anonymous], 2007, 16 INT C WORLD WID W [Anonymous], P 17 INT C WORLD WID [Anonymous], 1992, NETWORKS ORG [Anonymous], 2009, Social Network Analysis. Methods and Applications [Anonymous], P 18 NEUR INF PROC S [Anonymous], P IEEE 6 C S OP SYST [Anonymous], P IEEE INT C DAT MIN Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993 Buckley C., 2004, Proceedings of Sheffield SIGIR 2004. The Twenty-Seventh Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, P25, DOI 10.1145/1008992.1009000 Crandall DavidJ., 2008, KDD, P160 CRASWELL N, 2005, TREC 2005 C NOT, P199 Das A. S., 2007, WWW Faloutsos M, 1999, COMP COMM R, V29, P251, DOI 10.1145/316194.316229 Flake G. W., 2000, Proceedings. KDD-2000. Sixth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, P150, DOI 10.1145/347090.347121 FREY BJ, 2006, P 18 NEUR INF PROC S, P379 GRANOVETTER MS, 1973, AM J SOCIOL, V78, P1360, DOI 10.1086/225469 Hofmann T, 1999, SIGIR'99: PROCEEDINGS OF 22ND INTERNATIONAL CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, P50, DOI 10.1145/312624.312649 Kschischang FR, 2001, IEEE T INFORM THEORY, V47, P498, DOI 10.1109/18.910572 Newman MEJ, 2003, SIAM REV, V45, P167, DOI 10.1137/S003614450342480 Singla P., 2008, WWW '08, P655 Smolensky P., 1986, Parallel distributed processing: explorations in the microstructure of cognition Strogatz SH, 2001, NATURE, V410, P268, DOI 10.1038/35065725 Tang J., 2008, KDD, P990, DOI DOI 10.1145/1401890.1402008 Tang J, 2008, IEEE DATA MINING, P1055, DOI 10.1109/ICDM.2008.71 Welling M., 2001, P INT C ART NEUR NET, P351 NR 27 TC 546 Z9 650 U1 1 U2 26 PU ASSOC COMPUTING MACHINERY PI NEW YORK PA 1515 BROADWAY, NEW YORK, NY 10036-9998 USA BN 978-1-60558-495-9 PY 2009 BP 807 EP 815 PG 9 WC Computer Science, Artificial Intelligence WE Conference Proceedings Citation Index - Science (CPCI-S) SC Computer Science GA BLS23 UT WOS:000270922000080 DA 2024-09-05 ER PT J AU Mauro, DM Ellis, JA Lilly, JF Dallaghan, GLB Jordan, SG AF Mauro, David M. Ellis, Joshua A. Lilly, John F., III Dallaghan, Gary L. Beck Jordan, Sheryl G. TI Creating an Open-Access Educational Radiology Website for Medical Students: A Guide for Radiology Educators SO ACADEMIC RADIOLOGY LA English DT Article DE Website; Active learning; Medical student education; Clinician educator; Radiology AB Rationale and objectives: Studies of medical school clerkship websites have reported efficient time management, resource utilization, and hands-on activities. We built a website devoted to medical student education in radiology to address student, educator, and school curricular needs and surveyed students to assess their satisfaction with the site. Materials and methods: The website was created using an easily-recalled name, no-cost institutional software, and no-cost enterprise-level university hardware. The main menu links to the student formal didactic lecture calendar, custom-built health sciences library e-resources in radiology, American College of Radiology Appropriateness Criteria, each radiology course page, and teaching files. Each course tab includes faculty-curated content from course lectures, supplemental articles and educational modules. At 6, 12, and 24 months, website analytics were assessed. At 12 and 24 months postimplementation, data were evaluated to include student assessment and satisfaction surveys and student course comments. This project was IRB-exempted. Results: At 6 months, the website had received 5792 views, at 12 months 10,022 views and at 24 months 19,478 views. The website homepage with the formal didactic lecture calendar received 7156 views, the general clerkship page 4233 views, the teaching file page 3884, and thereafter subspecialty pages as follows: breast 1478, body 633, pediatrics 361, neuro 346, cardiothoracic 291, musculoskele-tal 249, vascular interventional 178. One hundred fifty-two of 240 (63.3%) of students surveyed replied. Of students who utilized the web-site on the satisfaction survey, 80 of 97 (82.5%) indicated ratings of "extremely informative" and "very informative" to the question "How would you rate the website?." Students indicated convenience and structure as website strengths in their postcourse evaluations. Conclusion: The radiology medical student website incorporates demands and needs of today's students, faculty, and our medical school. A radiology clerkship website for medical students centralizes access to course resources and promotes an active learning experi-ence with high satisfaction. Instructions on setting up a website are offered to today's radiology educators, including pearls and pitfalls. C1 [Mauro, David M.; Lilly, John F., III; Jordan, Sheryl G.] UNC Hlth, Dept Radiol, 101 Manning Dr Campus Box 7510, Chapel Hill, NC 27514 USA. [Ellis, Joshua A.] Univ N Carolina, Sch Med, Chapel Hill, NC USA. [Dallaghan, Gary L. Beck] Univ N Carolina, Sch Med, Dept Pediat, Chapel Hill, NC USA. C3 University of North Carolina School of Medicine; University of North Carolina; University of North Carolina Chapel Hill; University of North Carolina School of Medicine; University of North Carolina; University of North Carolina Chapel Hill RP Mauro, DM (corresponding author), UNC Hlth, Dept Radiol, 101 Manning Dr Campus Box 7510, Chapel Hill, NC 27514 USA. EM david_mauro@med.unc.edu OI Ellis, Joshua/0000-0003-3284-2731; Jordan, Sheryl/0000-0002-6686-2100; Mauro, David/0000-0003-3088-1809 CR [Anonymous], 2011, ACR appropriateness criteria Desai NS, 2016, CURR PROBL DIAGN RAD, V45, P17, DOI 10.1067/j.cpradiol.2015.03.002 Ferenchick G, 1997, ACAD MED, V72, P277, DOI 10.1097/00001888-199704000-00011 Gill P, 2010, CLIN TEACH, V7, P53, DOI 10.1111/j.1743-498X.2009.00337.x Hopkins L, 2018, AM J OBSTET GYNECOL, V218, P188, DOI 10.1016/j.ajog.2017.06.001 Liaison Committee on Medical Education, FUNCT STRUCT MED SCH Ramnanan CJ, 2017, ADV MED EDUC PRACT, V8, P63, DOI 10.2147/AMEP.S109037 Scott K, 2018, CLIN TEACH, V15, P29, DOI 10.1111/tct.12630 Zafara S, 2014, EUR J RADIOL, V83, P2277, DOI 10.1016/j.ejrad.2014.08.017 NR 9 TC 8 Z9 8 U1 2 U2 4 PU ELSEVIER SCIENCE INC PI NEW YORK PA STE 800, 230 PARK AVE, NEW YORK, NY 10169 USA SN 1076-6332 EI 1878-4046 J9 ACAD RADIOL JI Acad. Radiol. PD NOV PY 2021 VL 28 IS 11 BP 1631 EP 1636 DI 10.1016/j.acra.2020.08.021 EA NOV 2021 PG 6 WC Radiology, Nuclear Medicine & Medical Imaging WE Science Citation Index Expanded (SCI-EXPANDED) SC Radiology, Nuclear Medicine & Medical Imaging GA WZ3MU UT WOS:000719875900018 PM 32972840 DA 2024-09-05 ER PT J AU Wang, CH AF Wang, Chien-hsing TI An Exploratory Study of Student Self-Assessment in an Online Learning Context SO INTERNATIONAL JOURNAL OF ONLINE PEDAGOGY AND COURSE DESIGN LA English DT Article DE Action Research; Classroom Management; Self-Assessment; Student Reflection; Teacher Education ID HIGHER-EDUCATION AB This paper reports the investigation of the application of self-assessment in an online learning setting based on action research. The reset:irk participants were students who completed their self-assessment when taking the course on Classroom Management taught by the teacher researcher. Although the analytic results show the lack of critical reflection in student self-assessment, the teacher researcher learned the following lessons: a) self-assessment helps the students to articulate their learning results in specific; (b) self-assessment can be a means to cultivate students' abilities in information-integration; (c) using multiple evaluative tools for assessing self-assessment is recommended to better describe the levels of student reflection; and (d) effective and efficient implementation of self-assessment requires a redesigning of the learning management system. Finally, further research can focus on the possibility of promoting the level of student reflection by encouraging students to use evaluative tools to assess their self-assessment. C1 [Wang, Chien-hsing] Natl Changhua Univ Educ, Grad Inst Educ, Changhua, Taiwan. C3 National Changhua University of Education RP Wang, CH (corresponding author), Natl Changhua Univ Educ, Grad Inst Educ, Changhua, Taiwan. CR Anderson T., 2001, Journal of Asynchronous Learning Networks, V5, P1, DOI [10.24059/olj.v5i2.1875, DOI 10.24059/OLJ.V5I2.1875] ANGELO TA, 1995, TEACH PSYCHOL, V22, P6, DOI 10.1207/s15328023top2201_1 [Anonymous], STRATEGY TRAINING DE [Anonymous], 2006, J ASYNCHRONOUS LEARN, DOI DOI 10.24059/OLJ.V10I1.1770 [Anonymous], ASSESSMENT VERSUS EV [Anonymous], ASSESSMENT VERSUS EV [Anonymous], SIGNAL Barab SA, 2003, INFORM SOC, V19, P197, DOI 10.1080/01972240309467 Bednar A.K., 1992, Constructivism and the technology of instruction, P17 Beebe R, 2010, ELECTRON J E-LEARN, V8, P1 Benson A.D., 2003, NEW DIRECTIONS ADULT, V100, P69 Bleakley A., 2000, TEACHING HIGHER ED, V5, P405, DOI DOI 10.1080/713699179 Brown J.S., 1989, Educational Researcher, V18, P32, DOI 10.3102/0013189x018001032 Clark R., 2003, eLearning and the science of instruction Dochy F, 1999, STUD HIGH EDUC, V24, P331, DOI 10.1080/03075079912331379935 Ducate LC, 2008, COMPUT ASSIST LANG L, V21, P9, DOI 10.1080/09588220701865474 Fischer C., 1995, AUTHENTIC ASSESSMENT Fourie I., 2001, Education for Information, V19, P107 Fund Z., 2002, Assessment Evaluation in Higher Education, V27, P485, DOI DOI 10.1080/0260293022000020264 Gale K., 2002, ASSESS EVAL HIGH EDU, V27, P557, DOI DOI 10.1080/0260293022000020318 Gersh S. O., 2001, Multimedia Schools, V8, P48 Griffin M.L., 2003, Reflective Practice, V4, P207, DOI [DOI 10.1080/14623940308274, 10.1080/14623940308274] Hanna D., 2000, 147 PRACTICAL TIPS T HATTON N, 1995, TEACH TEACH EDUC, V11, P33, DOI 10.1016/0742-051X(94)00012-U Huba M.E., 2000, LEARNER CTR ASSESSME Kearsley G., 2000, Online education: Learning and teaching in cyberspace Kling R, 2003, INFORM SOC, V19, P221, DOI 10.1080/01972240390210055 Kochtanek TR, 2000, ONLINE INFORM REV, V24, P280, DOI 10.1108/14684520010350632 Kuiper RA, 2004, J ADV NURS, V45, P381, DOI 10.1046/j.1365-2648.2003.02921.x Lave J., 1991, Situated learning: Legitimate peripheral participation Li Q, 2005, TECHTRENDS, V49, P51, DOI 10.1007/BF02824111 Palloff R., 1999, BUILDING LEARNING CO Palloff R.M., 2001, LESSONS CYBERSPACE C Pilkington R, 2004, J COMPUT ASSIST LEAR, V20, P161, DOI 10.1111/j.1365-2729.2004.00080.x Reeves TC, 2000, J EDUC COMPUT RES, V23, P101, DOI 10.2190/GYMQ-78FA-WMTX-J06C Ross JA, 2008, ASSESS EDUC, V15, P183, DOI 10.1080/09695940802164218 Schwen TM, 2003, INFORM SOC, V19, P257, DOI [10.1080/01972240390210073, 10.1080/01972240309462] Shrivastava P., 1999, J MANAG EDUC, V23, P691, DOI DOI 10.1177/105256299902300607 Smith S., 2001, J SPECIAL ED TECHNOL, V16, P55 Speck B.W., 2002, NEW DIRECTIONS TEACH, V91, P5, DOI DOI 10.1002/TL.61 Taras M., 2002, Assessment Evaluation in Higher Education, V27, P501, DOI DOI 10.1080/0260293022000020273 Tu C.-H., 2001, DISTANCE EDUC, V22, P245 Vonderwell S, 2007, J RES TECHNOL EDUC, V39, P309, DOI 10.1080/15391523.2007.10782485 Wang CH, 2004, ED-MEDIA 2004: World Conference on Educational Multimedia, Hypermedia & Telecommunications, Vols. 1-7, P5495 Wang F.-K., 2001, J ASYNCHRONOUS LEARN, V5, P131 White KW., 2000, The online teaching guide: A handbook of attitudes, strategies, and techniques for the virtual classroom Wilson B., 1999, Situated cognition in theoretical and practical context. From Ziegahn L., 2001, DISTANCE EDUC, V22, P144 NR 48 TC 1 Z9 1 U1 0 U2 2 PU IGI GLOBAL PI HERSHEY PA 701 E CHOCOLATE AVE, STE 200, HERSHEY, PA 17033-1240 USA SN 2155-6873 EI 2155-6881 J9 INT J ONLINE PEDAGOG JI Int. J. Online Pedagog. Course Des. PD OCT-DEC PY 2011 VL 1 IS 4 BP 50 EP 61 DI 10.4018/ijopcd.2011100104 PG 12 WC Education & Educational Research WE Emerging Sources Citation Index (ESCI) SC Education & Educational Research GA VF9OZ UT WOS:000444154700004 DA 2024-09-05 ER PT J AU Dalavi, AM Gomes, A Husain, AJ AF Dalavi, Amol M. Gomes, Alyssa Husain, Aaliya Javed TI Bibliometric analysis of nature inspired optimization techniques SO COMPUTERS & INDUSTRIAL ENGINEERING LA English DT Article DE Nature inspired optimization algorithms; Optimization; Bibliometric analysis; Citation analysis; Evolutionary algorithms; Bio-inspired algorithms ID SEARCH ALGORITHM; EVOLUTIONARY ALGORITHM; HEURISTIC OPTIMIZATION; GLOBAL OPTIMIZATION; GENETIC ALGORITHMS; DESIGN; BEHAVIOR; SCOPUS AB Nature-inspired optimization has gained immense popularity over the past six decades and has been extensively used across various disciplines. This paper aims to statistically evaluate the impact and importance of natureinspired optimization by presenting an analysis of works published between 2016 and 2020. The data is obtained from Scopus and focuses on metrics like the total number of publications, citations, average citations per publication, and the h-index. Graphical and statistical analysis was carried out using Excel, Python, RAWGraphs, and Tableau Public. All the data in the present work was accessed on 11th August 2021. A total of 91,507 publications were analysed. China, India, and the US are the highest contributors with 27045, 12129, and 8947 publications respectively. The Ministry of Education China has contributed the most to this field, followed by the Chinese Academy of Sciences. The National Natural Science Foundation of China has funded the highest number of works (14.72% publications). Zhang M. is the most productive author with 224 publications. Lecture Notes in Computer Science, Advances in Intelligent Systems and Computing, and IEEE Access are the most productive journals. The top disciplines contributing to research include Computer Science (55.22%), Engineering (48.06%), and Mathematics (27.30%), and the top application areas include optimization, artificial intelligence, and decision sciences. The most popular algorithms include Genetic Algorithms, Simulated Annealing, and Particle Swarm Optimization. This data could prove beneficial to scholars looking for an overview of nature-inspired algorithms to determine future research directions. C1 [Dalavi, Amol M.; Gomes, Alyssa; Husain, Aaliya Javed] Symbiosis Int Univ, Symbiosis Inst Technol, Dept Mech Engn, Pune 412115, India. C3 Symbiosis International University; Symbiosis Institute of Technology (SIT) RP Dalavi, AM (corresponding author), Symbiosis Int Univ, Symbiosis Inst Technol, Dept Mech Engn, Pune 412115, India. EM amol.dalavi@sitpune.edu.in RI Gomes, Alyssa/HKV-2935-2023 OI Gomes, Alyssa/0000-0002-1711-7999 CR Adorio EP, 2005, MVF-multivariate test functions library in C for unconstrained global optimization Ali AF, 2016, STUD COMPUT INTELL, V651, P431, DOI 10.1007/978-3-319-33793-7_19 [Anonymous], 2014, International Journal of Computer Applications, DOI DOI 10.5120/17593-8331 [Anonymous], 2021, POPULATION COUNTRY 2 [Anonymous], 2005, Advanced OR and AI Methods in Transportation Atashpaz-Gargari E, 2007, IEEE C EVOL COMPUTAT, P4661, DOI 10.1109/cec.2007.4425083 Baas J, 2020, QUANT SCI STUD, V1, P377, DOI 10.1162/qss_a_00019 Bandyopadhyay S, 2008, IEEE T EVOLUT COMPUT, V12, P269, DOI 10.1109/TEVC.2007.900837 Bar-Ilan J., 2018, Front Res Metr Anal, V3, P6, DOI DOI 10.3389/FRMA.2018.00006 BASKARAN A, 2015, INT J APPL ENG RES, V10, P19313 Bastos CJA, 2008, IEEE SYS MAN CYBERN, P2645 Bhuvaneswari M., 2014, INT J EMERGING TECHN, V12, P976 BISHOP JM, 1989, IEE CONF PUBL, P329 Bongale A, 2021, LIB PHILOS PRACTICE Bongale A. M, 2020, LIB PHILOS PRACTICE Braik MS, 2021, EXPERT SYST APPL, V174, DOI 10.1016/j.eswa.2021.114685 Camp CV, 2004, J STRUCT ENG, V130, P741, DOI 10.1061/(ASCE)0733-9445(2004)130:5(741) Chai ZJ, 2019, IOP CONF SER-MAT SCI, V646, DOI 10.1088/1757-899X/646/1/012040 Chen LJ, 2019, HEALTH CARE MANAG SC, V22, P304, DOI 10.1007/s10729-018-9438-6 Cheng MY, 2014, ENG APPL ARTIF INTEL, V29, P104, DOI 10.1016/j.engappai.2013.11.014 Civicioglu P, 2013, INFORM SCIENCES, V229, P58, DOI 10.1016/j.ins.2012.11.013 Civicioglu P, 2012, COMPUT GEOSCI-UK, V46, P229, DOI 10.1016/j.cageo.2011.12.011 Coelho LDS, 2008, EXPERT SYST APPL, V34, P1905, DOI 10.1016/j.eswa.2007.02.002 Coelho LD, 2010, EXPERT SYST APPL, V37, P1676, DOI 10.1016/j.eswa.2009.06.044 Coelho LD, 2009, CHAOS SOLITON FRACT, V39, P510, DOI 10.1016/j.chaos.2007.01.093 Cuevas E, 2015, INT J BIO-INSPIR COM, V7, P402, DOI 10.1504/IJBIC.2015.073178 Cuevas E, 2014, APPL INTELL, V40, P256, DOI 10.1007/s10489-013-0458-0 Cuevas E, 2014, EXPERT SYST APPL, V41, P412, DOI 10.1016/j.eswa.2013.07.067 Cuevas E, 2013, EXPERT SYST APPL, V40, P6374, DOI 10.1016/j.eswa.2013.05.041 Cuevas E, 2013, APPL SOFT COMPUT, V13, P3047, DOI 10.1016/j.asoc.2012.09.020 Cuevas E, 2012, INFORM SCIENCES, V182, P40, DOI 10.1016/j.ins.2010.12.024 Dahlman C. J, 2007, ISSUES SCI TECHNOL Dao SD, 2017, COMPUT IND ENG, V110, P395, DOI 10.1016/j.cie.2017.06.009 Darvishpoor S., NATURE INSPIRED OPTI Darwish Ashraf, 2018, Future Computing and Informatics Journal, V3, P231, DOI 10.1016/j.fcij.2018.06.001 Dash R, 2021, J KING SAUD UNIV-COM, V33, P195, DOI 10.1016/j.jksuci.2018.02.013 Segundo EHD, 2019, APPL THERM ENG, V156, P119, DOI 10.1016/j.applthermaleng.2019.04.038 Deb K, 2002, EVOL COMPUT, V10, P371, DOI 10.1162/106365602760972767 Deb K, 2001, LECT NOTES COMPUT SC, V1993, P67 Deb K, 2002, IEEE T EVOLUT COMPUT, V6, P182, DOI 10.1109/4235.996017 Deb K., 1994, SIMULATED BINARY CRO Deb K, 2008, EUR J OPER RES, V185, P1062, DOI 10.1016/j.ejor.2006.06.042 Dehghani M, 2022, IEEE ACCESS, V10, P19599, DOI 10.1109/ACCESS.2022.3151641 Dehghani M, 2021, IEEE ACCESS, V9, P162059, DOI 10.1109/ACCESS.2021.3133286 Del Ser J, 2019, SWARM EVOL COMPUT, V48, P220, DOI 10.1016/j.swevo.2019.04.008 Deng GF, 2012, EXPERT SYST APPL, V39, P6229, DOI 10.1016/j.eswa.2011.12.001 Derigs U., 2009, OPTIMIZATION OPERATI, V4 Dhiman G, 2019, ENG APPL ARTIF INTEL, V82, P148, DOI 10.1016/j.engappai.2019.03.021 Dhiman G, 2019, KNOWL-BASED SYST, V165, P169, DOI 10.1016/j.knosys.2018.11.024 Dhiman G, 2018, KNOWL-BASED SYST, V159, P20, DOI 10.1016/j.knosys.2018.06.001 Dhiman G, 2017, ADV ENG SOFTW, V114, P48, DOI 10.1016/j.advengsoft.2017.05.014 Díaz P, 2018, ENERGIES, V11, DOI 10.3390/en11030571 Dorigo M, 1999, ARTIF LIFE, V5, P137, DOI 10.1162/106454699568728 Dorigo M., 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406), P1470, DOI 10.1109/CEC.1999.782657 Dorigo M., 1992, Ph.D. thesis, DOI DOI 10.1002/9780470549070 Emami H, 2022, ENG COMPUT-GERMANY, V38, P3191, DOI 10.1007/s00366-021-01460-1 Enriquez E. A. T., 2021, ARXIV PREPRINT ARXIV Eusuff M, 2006, ENG OPTIMIZ, V38, P129, DOI 10.1080/03052150500384759 Eusuff MM, 2003, J WATER RES PLAN MAN, V129, P210, DOI 10.1061/(ASCE)0733-9496(2003)129:3(210) Ezugwu AE, 2021, ARTIF INTELL REV, V54, P4237, DOI 10.1007/s10462-020-09952-0 Fadafen M. K., 2021, TURKISH J COMPUTER M, V12 Faris H, 2016, PROCEEDINGS OF THE 8TH INTERNATIONAL JOINT CONFERENCE ON COMPUTATIONAL INTELLIGENCE, VOL 1: ECTA, P171, DOI 10.5220/0006048201710177 Ferreira C., 2001, Complex Systems, V13, P87 Fister Iztok, 2021, GECCO '21: Proceedings of the Genetic and Evolutionary Computation Conference Companion, P71, DOI 10.1145/3449726.3459413 Fister I, 2015, ADAPT LEARN OPTIM, V18, P3, DOI 10.1007/978-3-319-14400-9_1 Fister I, 2013, ELEKTROTEH VESTN, V80, P116 Geem ZW, 2001, SIMULATION, V76, P60, DOI 10.1177/003754970107600201 Gopalakrishnan SK, 2020, IET RENEW POWER GEN, V14, P1471, DOI 10.1049/iet-rpg.2019.0936 Gupta S, 2021, ENG COMPUT-GERMANY, V37, P1049, DOI 10.1007/s00366-019-00871-5 Halim AH, 2021, ARTIF INTELL REV, V54, P2323, DOI 10.1007/s10462-020-09906-6 Hamadicharef B, 2011, LECT NOTES ARTIF INT, V7004, P404, DOI 10.1007/978-3-642-23896-3_50 Hamdaoui F, 2013, INT J IMAG SYST TECH, V23, P265, DOI 10.1002/ima.22060 Hammed K, 2016, J SENSORS, V2016, DOI 10.1155/2016/9871826 Hedar A.R., Global optimization test problems Hildmann H., 2019, The IoT Physical Layer: Design and Implementation, P171 Hirsch JE, 2005, P NATL ACAD SCI USA, V102, P16569, DOI 10.1073/pnas.0507655102 Houssein EH, 2021, STUD COMPUT INTELL, V967, P239, DOI 10.1007/978-3-030-70542-8_11 Joshi R, 2021, LIB PHILOS PRACTICE Karakatic S, 2020, MATHEMATICS-BASEL, V8, DOI 10.3390/math8060900 Kashan AH, 2009, 2009 INTERNATIONAL CONFERENCE OF SOFT COMPUTING AND PATTERN RECOGNITION, P43, DOI 10.1109/SoCPaR.2009.21 Kaur Parmeet, 2022, Energy Conservation Solutions for Fog-Edge Computing Paradigms. Lecture Notes on Data Engineering and Communications Technologies (74), P49, DOI 10.1007/978-981-16-3448-2_3 Kaur S, 2020, ENG APPL ARTIF INTEL, V90, DOI 10.1016/j.engappai.2020.103541 Kaveh A, 2017, ADV ENG SOFTW, V110, P69, DOI 10.1016/j.advengsoft.2017.03.014 Kaveh A, 2017, SCI IRAN, V24, P551, DOI 10.24200/sci.2017.2417 Kaveh A, 2016, COMPUT STRUCT, V167, P69, DOI 10.1016/j.compstruc.2016.01.008 Kaveh A, 2014, COMPUT STRUCT, V139, P18, DOI 10.1016/j.compstruc.2014.04.005 Kaveh A, 2013, ADV ENG SOFTW, V59, P53, DOI 10.1016/j.advengsoft.2013.03.004 Kaveh A, 2012, COMPUT STRUCT, V112, P283, DOI 10.1016/j.compstruc.2012.09.003 Kaveh A, 2010, ACTA MECH, V213, P267, DOI 10.1007/s00707-009-0270-4 Kavlakoglu E., 2020, AI vs. Machine Learning vs. Deep Learning vs. Neural Networks: What's the Difference? Kelley T. R, 2010, TECHNOLOGY TEACHER, V69 Kennedy J., 1995, Proceedings of ICNN'95 - International Conference on Neural Networks, V4, P1942 Khamparia A., 2021, NATURE INSPIRED OPTI KIRKPATRICK S, 1983, SCIENCE, V220, P671, DOI 10.1126/science.220.4598.671 Kumar S.R., 2021, NATURE INSPIRED OPTI, V20 LaTorre A, 2021, SWARM EVOL COMPUT, V67, DOI 10.1016/j.swevo.2021.100973 Li C, 2022, INFORM SCIENCES, V586, P424, DOI 10.1016/j.ins.2021.11.043 Li H, 2020, IEEE ACCESS, V8, P72620, DOI 10.1109/ACCESS.2020.2987689 Lones M.A., 2020, SN Comput. Sci., V49, P9, DOI [10.1007/s42979-019-0050-8., DOI 10.1007/S42979-019-0050-8] Manohar Botcha V., 2020, J CRIT REV, V7, P752, DOI [10.31838/jcr.07.04.140, DOI 10.31838/JCR.07.04.140] Mashwani WK, 2021, COMPLEXITY, V2021, DOI 10.1155/2021/5515701 McCullough R, 2021, ELSEVIER SCOPUS BLOG Mirjalili S, 2017, ADV ENG SOFTW, V114, P163, DOI 10.1016/j.advengsoft.2017.07.002 Mirjalili S, 2016, ADV ENG SOFTW, V95, P51, DOI 10.1016/j.advengsoft.2016.01.008 Mirjalili S, 2016, NEURAL COMPUT APPL, V27, P1053, DOI 10.1007/s00521-015-1920-1 Mirjalili S, 2015, KNOWL-BASED SYST, V89, P228, DOI 10.1016/j.knosys.2015.07.006 Mirjalili S, 2016, NEURAL COMPUT APPL, V27, P495, DOI 10.1007/s00521-015-1870-7 Mirjalili S, 2015, ADV ENG SOFTW, V83, P80, DOI 10.1016/j.advengsoft.2015.01.010 Mirjalili S, 2014, ADV ENG SOFTW, V69, P46, DOI 10.1016/j.advengsoft.2013.12.007 Mohammadi A, 2017, ARTIF INTELL REV, V48, P237, DOI 10.1007/s10462-016-9500-z Molina D, 2020, COGN COMPUT, V12, P897, DOI 10.1007/s12559-020-09730-8 Molina D, 2018, IEEE C EVOL COMPUTAT, P1229, DOI 10.1109/CEC.2018.8477924 Mongeon P, 2016, SCIENTOMETRICS, V106, P213, DOI 10.1007/s11192-015-1765-5 Mozaffari MH, 2016, COMPUT INFORM, V35, P222 Mozaffari MH, 2013, 2013 FIRST IRANIAN CONFERENCE ON PATTERN RECOGNITION AND IMAGE ANALYSIS (PRIA) Nandy S, 2016, BIO-INSPIRED COMPUTATION AND APPLICATIONS IN IMAGE PROCESSING, P157, DOI 10.1016/B978-0-12-804536-7.00008-9 Niu WT, 2016, MATH PROBL ENG, V2016, DOI 10.1155/2016/7912863 Odili J B., 2018, The Eurasia Proceedings of Science, Technology, Engineering Mathematics, V2, P376 Osaba E, 2021, SWARM EVOL COMPUT, V64, DOI 10.1016/j.swevo.2021.100888 Pierezan J, 2018, IEEE C EVOL COMPUTAT, P2633, DOI 10.1109/CEC.2018.8477769 Rahimi I, 2022, PROCESSES, V10, DOI 10.3390/pr10010098 Rao RV, 2020, INT J IND ENG COMP, V11, P107, DOI 10.5267/j.ijiec.2019.6.002 Rashedi E, 2009, INFORM SCIENCES, V179, P2232, DOI 10.1016/j.ins.2009.03.004 Riza L. S., METAHEURISTIC OPTIMI Rosenstreich D., 2009, The British Accounting Review, V41, P227, DOI DOI 10.1016/J.BAR.2009.10.002 Roy PK, 2013, INT J ELEC POWER, V53, P10, DOI 10.1016/j.ijepes.2013.03.024 Rui Tang, 2012, 2012 Seventh International Conference on Digital Information Management (ICDIM 2012), P165, DOI 10.1109/ICDIM.2012.6360147 Sachan R. K., 2019, RECENT ADV COMPUTER, V14, P1706, DOI [10.2174/2666255813666191204145707, DOI 10.2174/2666255813666191204145707] Schulte RV, 2021, FRONT ROBOT AI, V8, DOI 10.3389/frobt.2021.710806 Scrucca L, 2013, J STAT SOFTW, V53, P1 Shahraki NS, 2021, KNOWL-BASED SYST, V219, DOI 10.1016/j.knosys.2021.106886 Sharma S, 2021, EVOL INTELL, V14, P1271, DOI 10.1007/s12065-019-00231-8 Singh A., 2021, Int. J. Adv. Intell. Paradig, V20, P388, DOI [10.1504/IJAIP.2021.119026, DOI 10.1504/IJAIP.2021.119026] Singh S, 2014, SOFTWARE DESIGN DEV, P644, DOI [10.4018/978-1-4666-4301-7.ch031, DOI 10.4018/978-1-4666-4301-7.CH031] Sinha GR, 2020, MODERN OPTIMIZATION METHODS FOR SCIENCE, ENGINEERING AND TECHNOLOGY, DOI 10.1088/978-0-7503-2404-5ch1 Sörensen K, 2015, INT T OPER RES, V22, P3, DOI 10.1111/itor.12001 Soni Vishnu, 2021, IOP Conference Series: Materials Science and Engineering, V1099, DOI 10.1088/1757-899X/1099/1/012055 Steer K. C. B., 2009, RATIONALE SEEKING IN Storn R, 1997, J GLOBAL OPTIM, V11, P341, DOI 10.1023/A:1008202821328 Surjanovic Sonja, 2013, Virtual Library of Simulation Experiments: Test Functions and Datasets Tamura K, 2011, J ADV COMPUT INTELL, V15, P1116, DOI 10.20965/jaciii.2011.p1116 Trojovsky P., 2022, HYBRID LEADER BASED, DOI [10.21203/rs.3.rs-1312581/v1, DOI 10.21203/RS.3.RS-1312581/V1] Trojovsky P, 2022, SENSORS-BASEL, V22, DOI 10.3390/s22030855 Tzanetos A., 2017, INT J ARTIF INTELL T, V26, DOI [10.1142/S0218213017500221, DOI 10.1142/S0218213017500221] Tzanetos A, 2021, **DATA OBJECT**, V2, DOI 10.17632/XFNZD2C8V7.2 Tzanetos A, 2021, ARTIF INTELL REV, V54, P1841, DOI 10.1007/s10462-020-09893-8 Tzanetos A, 2020, DATA BRIEF, V31, DOI 10.1016/j.dib.2020.105792 Tzanetos Alexandros., 2020, MACHINE LEARNING PAR, P337, DOI [10.1007/978-3-030-49724-8_15, DOI 10.1007/978-3-030-49724-8_15] Valdez F, 2021, ALGORITHMS, V14, DOI 10.3390/a14040122 Vamsi Krishna A. K., 2021, ADV INTELL SYST COMP, V1086, P59, DOI [10.1007/978-981-15-1275-9_6, DOI 10.1007/978-981-15-1275-9_6] Van Eck N.J., 2014, Measuring Scholarly Impact: Methods and Practice, P285, DOI 10.1007/978-3-319-10377-8_13(InEng.) Visser M, 2021, QUANT SCI STUD, V2, P20, DOI [10.1162/qss_a_00112, 10.1162/qes_a_00112] Walters WH, 2017, IEEE ACCESS, V5, P22036, DOI 10.1109/ACCESS.2017.2761400 Wang C, 2021, ARAB J SCI ENG, V46, P3443, DOI 10.1007/s13369-020-05129-7 Wang GG, 2019, NEURAL COMPUT APPL, V31, P1995, DOI 10.1007/s00521-015-1923-y Wang GG, 2018, INT J BIO-INSPIR COM, V12, P1, DOI 10.1504/IJBIC.2015.10004283 Wang GG, 2016, NEUROCOMPUTING, V177, P147, DOI 10.1016/j.neucom.2015.11.018 Wang GG, 2015, 2015 3RD INTERNATIONAL SYMPOSIUM ON COMPUTATIONAL AND BUSINESS INTELLIGENCE (ISCBI 2015), P1, DOI 10.1109/ISCBI.2015.8 Wang GG, 2016, SOFT COMPUT, V20, P3349, DOI 10.1007/s00500-015-1726-1 Wang GG, 2016, NEURAL COMPUT APPL, V27, P989, DOI 10.1007/s00521-015-1914-z Watson JP, 2006, COMPUT OPER RES, V33, P2623, DOI 10.1016/j.cor.2005.07.016 Whitacre JM, 2011, COMPUTING, V93, P135, DOI 10.1007/s00607-011-0156-x Wolpert D. H., 1997, IEEE Transactions on Evolutionary Computation, V1, P67, DOI 10.1109/4235.585893 Xin-She Yang, 2012, Unconventional Computation and Natural Computation. Proceedings of the 11th International Conference, UCNC 2012, P240, DOI 10.1007/978-3-642-32894-7_27 Xu YC, 2010, LECT NOTES COMPUT SC, V6466, P583, DOI 10.1007/978-3-642-17563-3_68 Yang X.-S., 2010, Engineering Optimization: An Introduction with Metaheuristic Applications, DOI DOI 10.1002/9780470640425 Yang X.S., 2008, Nature-Inspired Metaheuristic Algorithms Yang XS, 2020, J COMPUT SCI-NETH, V46, DOI 10.1016/j.jocs.2020.101104 Yang XS, 2009, WOR CONG NAT BIOL, P210, DOI 10.1109/nabic.2009.5393690 Yang XS, 2012, ENG COMPUTATION, V29, P464, DOI 10.1108/02644401211235834 Zandi Z, 2012, 2012 IEEE INTERNATIONAL CONFERENCE ON POWER AND ENERGY (PECON), P239, DOI 10.1109/PECon.2012.6450215 Zeidabadi F.A., 2022, Int J Intell Eng Syst, V15, P273 Zeidabadi FA, 2022, CMC-COMPUT MATER CON, V70, P5631, DOI 10.32604/cmc.2022.021072 Zolfaghari A, 2017, J BRAZ SOC MECH SCI, V39, P2121, DOI 10.1007/s40430-017-0733-9 NR 174 TC 7 Z9 7 U1 2 U2 20 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0360-8352 EI 1879-0550 J9 COMPUT IND ENG JI Comput. Ind. Eng. PD JUL PY 2022 VL 169 AR 108161 DI 10.1016/j.cie.2022.108161 EA APR 2022 PG 19 WC Computer Science, Interdisciplinary Applications; Engineering, Industrial WE Science Citation Index Expanded (SCI-EXPANDED) SC Computer Science; Engineering GA 1J5GJ UT WOS:000797946900009 DA 2024-09-05 ER PT C AU Palen-Michel, C Kim, J Lignos, C AF Palen-Michel, Chester Kim, June Lignos, Constantine BA Mariani, J BF Mariani, J BE Calzolari, N Bechet, F Blache, P Choukri, K Cieri, C Declerck, T Goggi, S Isahara, H Maegaard, B Mazo, H Odijk, H Piperidis, S TI Multilingual Open Text Release 1: Public Domain News in 44 Languages SO LREC 2022: THIRTEEN INTERNATIONAL CONFERENCE ON LANGUAGE RESOURCES AND EVALUATION LA English DT Proceedings Paper CT 13th International Conference on Language Resources and Evaluation (LREC) CY JUN 20-25, 2022 CL Marseille, FRANCE DE multilingual corpora; text data; low resource NLP; open access text AB We present a Multilingual Open Text (MOT), a new multilingual corpus containing text in 44 languages, many of which have limited existing text resources for natural language processing. The first release of the corpus contains over 2.8 million news articles and an additional 1 million short snippets (photo captions, video descriptions, etc.) published between 2001-2022 and collected from Voice of America's news websites. We describe our process for collecting, filtering, and processing the data. The source material is in the public domain, our collection is licensed using a creative commons license (CC BY 4.0), and all software used to create the corpus is released under the MIT License. The corpus will be regularly updated as additional documents are published. C1 [Palen-Michel, Chester; Kim, June; Lignos, Constantine] Brandeis Univ, Michtom Sch Comp Sci, Waltham, MA 02254 USA. C3 Brandeis University RP Palen-Michel, C (corresponding author), Brandeis Univ, Michtom Sch Comp Sci, Waltham, MA 02254 USA. EM cpalenmichel@brandeis.edu; junekim@brandeis.edu; lignos@brandeis.edu FU 2021 Brandeis University Provost Research Grant FX We thank the early adopters of our resource-many of whom are members of the Masakhane communitywho used preliminary releases and offered feedback. This work was supported by a 2021 Brandeis University Provost Research Grant. CR Adelani DI, 2021, T ASSOC COMPUT LING, V9, P1116, DOI 10.1162/tacl_a_00416 Agic E, 2019, 57TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2019), P3204 Bañón M, 2020, 58TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2020), P4555 Caswell I., 2021, ARXIV210312028 Conneau Alexis, 2020, P 58 ANN M ASS COMP, P8440, DOI [10.18653/v1/2020.acl-main.747, 10.18653/v1, DOI 10.18653/V1] Davies Mark., 2006, Corpus do Portugues: 45 million words, 1300s-1900s Devlin J, 2019, 2019 CONFERENCE OF THE NORTH AMERICAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS: HUMAN LANGUAGE TECHNOLOGIES (NAACL HLT 2019), VOL. 1, P4171 El-Kishky A, 2020, PROCEEDINGS OF THE 2020 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING (EMNLP), P5960 Espla-Gomis M., 2019, MTSUMMIT Gezmu A. M., 2021, 2 WORKSH AFR NAT LAN Hoang P. V., 2020, KHMER NATURAL LANGUA Honnibal M, 2020, SPACY IND STRENGTH N Louw W., 1993, ZAMBEZIA, V20, P131 Mohtaj S, 2018, PROCEEDINGS OF THE ELEVENTH INTERNATIONAL CONFERENCE ON LANGUAGE RESOURCES AND EVALUATION (LREC 2018), P1112 Niyongabo Rubungo Andre, 2020, P 28 INT C COMP LING, P5507, DOI DOI 10.18653/V1/2020.COLING-MAIN.480 Ogueji K, 2021, P 1 WORKSH MULT REPR, P116 Pfeiffer J, 2020, PROCEEDINGS OF THE 2020 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING (EMNLP), P7654 Qi P, 2020, 58TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2020): SYSTEM DEMONSTRATIONS, P101 Salcianu A, 2016, COMPACT LANGUAGE DET Santy S., 2020, P 58 ANN M ASS COMPU, P6282, DOI [10.18653/v1/2020.acl-main.560, DOI 10.18653/V1/2020.ACL-MAIN.560] Schwenk H., 2021, P 16 C EUR CHAPT ASS, P1351 Strassel S, 2016, LREC 2016 - TENTH INTERNATIONAL CONFERENCE ON LANGUAGE RESOURCES AND EVALUATION, P3273 Suárez PJO, 2020, 58TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2020), P1703 Tiedemann J, 2012, LREC 2012 - EIGHTH INTERNATIONAL CONFERENCE ON LANGUAGE RESOURCES AND EVALUATION, P2214 Tracey J, 2019, P 2 WORKSH TECHN MT, P48 Tracey J., 2020, P 1 JOINT WORKSHOP S, P277 Voice of America, 2016, TERMS US PRIV NOT Voice of America, 2021, VOA FIR LAW MOR 40 Y Voice of America, 2021, MISS VAL Wicks R., 2021, P 59 ANN M ASS COMP, V1, P3995 Yimam SM, 2021, FUTURE INTERNET, V13, DOI 10.3390/fi13110275 NR 31 TC 2 Z9 3 U1 1 U2 2 PU EUROPEAN LANGUAGE RESOURCES ASSOC-ELRA PI PARIS PA 55-57, RUE BRILLAT-SAVARIN, PARIS, 75013, FRANCE BN 979-10-95546-72-6 PY 2022 BP 2080 EP 2089 PG 10 WC Computer Science, Interdisciplinary Applications; Linguistics WE Conference Proceedings Citation Index - Science (CPCI-S); Conference Proceedings Citation Index - Social Science & Humanities (CPCI-SSH) SC Computer Science; Linguistics GA BU2ZO UT WOS:000889371702021 DA 2024-09-05 ER PT J AU Long, ZH Zhao, GJ Wang, J Zhang, MT Zhou, SY Zhang, L Huang, ZX AF Long, Zehai Zhao, Guojing Wang, Jing Zhang, Mengting Zhou, Shaoyu Zhang, Ling Huang, Zhaoxin TI Research on the Drivers of Entrepreneurship Education Performance of Medical Students in the Digital Age SO FRONTIERS IN PSYCHOLOGY LA English DT Article DE medical students; entrepreneurship education performance; driving factors; digital economy; ridge regression model ID RIDGE REGRESSION; INNOVATION; TEACHER; GENDER; INTENTIONS; BUSINESS; POLICY AB COVID-19 has made the entire society pay more attention to medical students training. Medicine development is inseparable from the spirit of innovation, focusing on cultivating medical students' innovative awareness and improving entrepreneurship education performance, which has an irreplaceable effect on both the students themselves and the society. This study is based on the ridge regression model to study the driving factors of the entrepreneurship education performance of medical students. Compared with traditional multiple regression, it can improve the consistency of parameter estimation and obtain more realistic results. Based on a large sample of empirical survey data of 24,677 medical students in China, this study analyzed the driving factors of the entrepreneurship education performance of medical students and found that medical students of different genders have differences in entrepreneurship education performance; the digital economy impacts entrepreneurship education performance of medical students; entrepreneurship course, entrepreneurship faculty, entrepreneurship competition, entrepreneurship practice, and entrepreneurship policy have a driving effect on the entrepreneurship education performance of medical students. Meanwhile, the impact of entrepreneurship policy is the most obvious, followed by entrepreneurship practice and entrepreneurship competition, followed by entrepreneurship course and entrepreneurship faculty. C1 [Long, Zehai; Zhao, Guojing; Wang, Jing; Zhang, Mengting; Zhou, Shaoyu; Huang, Zhaoxin] Wenzhou Med Univ, Inst China Innovat & Entrepreneurship Educ, Wenzhou, Peoples R China. [Zhang, Ling] Hangzhou Normal Univ, Sch Educ, Hangzhou, Peoples R China. C3 Wenzhou Medical University; Hangzhou Normal University RP Zhao, GJ; Zhou, SY; Huang, ZX (corresponding author), Wenzhou Med Univ, Inst China Innovat & Entrepreneurship Educ, Wenzhou, Peoples R China.; Zhang, L (corresponding author), Hangzhou Normal Univ, Sch Educ, Hangzhou, Peoples R China. EM 13600641869@126.com; shaowzmc@qq.com; 1046814422@qq.com; 25732880@wmu.edu.cn RI Tang, Hao/HHN-2620-2022 OI Zhao, Guojing/0000-0003-1920-0769 FU National Social Science Fund of China FX Funding This work was supported by the key project of the National Social Science Fund of Chinathe Research on Barriers and Policy Support Mechanisms for Female Entrepreneurship in the Digital Era (20ASH012). CR [Anonymous], 2021, Global entrepreneurship monitor 2020/2021 global report [Anonymous], 2002, J SMALL BUS STRATEGY Audretsch D.S., 2015, EVERYTHING ITS PLACE, DOI [10.1093/acprof:oso/9780199351251.001.0001, DOI 10.1093/ACPROF:OSO/9780199351251.001.0001] Béchard JP, 2005, ACAD MANAG LEARN EDU, V4, P22, DOI 10.5465/AMLE.2005.16132536 Brieger SA, 2021, SMALL BUS ECON, V56, P1007, DOI 10.1007/s11187-019-00314-x [Румана Бухт Bukht Rumana], 2018, [Вестник международных организаций: образование, наука, новая экономика, International Organisations Research Journal, Vestnik mezhdunarodnykh organizatsii: obrazovanie, nauka, novaya ekonomika], V13, P143 Byun C. G., 2018, Journal of Open Innovation: Technology, Market, and Complexity, V4, P26, DOI [10.3390/joitmc4030026, DOI 10.3390/JOITMC4030026] Callaway S., 2009, Service Science, V1, P225, DOI [DOI 10.1287/serv.1.4.225, 10.1287/serv.1.4.225, DOI 10.1287/SERV.1.4.225] Chang J.C., 2009, INT J VOCATIONAL TEC, V1, P25 Chen SC, 2015, INT ENTREP MANAG J, V11, P557, DOI 10.1007/s11365-013-0293-0 Cheung CK, 2008, EDUC TRAIN, V50, P500, DOI 10.1108/00400910810901827 Dahlstedt M., 2012, Journal of Pedagogy, V3, P242, DOI DOI 10.2478/V10159-012-0012-X Daniela L, 2021, SUSTAINABILITY-BASEL, V13, DOI 10.3390/su13073640 Deng W, 2020, ASIA PAC J MANAG, V37, P1013, DOI 10.1007/s10490-019-09660-6 Dickel P, 2021, J SMALL BUS MANAGE, V59, P196, DOI 10.1080/00472778.2019.1704489 Douglas E.J., 2002, Entrepreneurship Theory Practice, V26, P8190, DOI [DOI 10.1177/104225870202600305, 10.1177/104225870202600305, https://doi.org/10.1177/104225870202600305] Fan Y., 2013, Creat. Educ, V4, P92, DOI 10.4236/ce.2013.42013 Fayolle A., 2006, Journal of European Industrial Training, V30, P701, DOI 10.1108/03090590610715022 Fayolle A, 2013, ENTREP REGION DEV, V25, P692, DOI 10.1080/08985626.2013.821318 Fejes A, 2019, J CURRICULUM STUD, V51, P554, DOI 10.1080/00220272.2018.1488998 Fossen FM, 2021, J BUS RES, V125, P548, DOI 10.1016/j.jbusres.2019.09.019 Foster J, 2003, BRIT J EDUC TECHNOL, V34, P455, DOI 10.1111/1467-8535.00342 Giones F, 2017, TECHNOL INNOV MANAG, V7, P44, DOI 10.22215/timreview1076 Hasan SM, 2017, EDUC TRAIN, V59, P888, DOI 10.1108/ET-01-2016-0020 Hechavarría DM, 2017, SMALL BUS ECON, V48, P225, DOI 10.1007/s11187-016-9747-4 Higgins LM, 2018, INT FOOD AGRIBUS MAN, V21, P121, DOI [10.22434/IFAMR2016.0166, 10.22434/ifamr2016.0166] HOERL AE, 1970, TECHNOMETRICS, V12, P69, DOI 10.2307/1267352 HOERL AE, 1970, TECHNOMETRICS, V12, P55, DOI 10.1080/00401706.1970.10488634 Hoppe M, 2016, SMALL BUS ECON, V46, P13, DOI 10.1007/s11187-015-9676-7 Horel A.E., 1962, Chem Eng Prog, V58, P54 Hsu DH, 2007, RES POLICY, V36, P768, DOI 10.1016/j.respol.2007.03.001 Huang YJ, 2021, FRONT PSYCHOL, V12, DOI 10.3389/fpsyg.2021.585698 Huang YJ, 2020, FRONT PSYCHOL, V11, DOI 10.3389/fpsyg.2020.563381 Kang YY, 2021, INT J EDUC DEV, V84, DOI 10.1016/j.ijedudev.2021.102406 Kecskes Z, 2017, MED J AUSTRALIA, V206, P13, DOI 10.5694/mja16.01212 Kesner A, 2018, MED PHYS, V45, pE40, DOI 10.1002/mp.12794 Kop R, 2011, INT REV RES OPEN DIS, V12, P19, DOI 10.19173/irrodl.v12i3.882 Kuratko DF, 2005, ENTREP THEORY PRACT, V29, P577, DOI 10.1111/j.1540-6520.2005.00099.x Li GH, 2017, EURASIA J MATH SCI T, V13, P8149, DOI 10.12973/ejmste/80779 Lin S, 2017, MANAGE DECIS, V55, P1351, DOI 10.1108/MD-06-2016-0416 Mack EA, 2017, TELECOMMUN POLICY, V41, P120, DOI 10.1016/j.telpol.2016.12.001 Maes J, 2014, EUR MANAG J, V32, P784, DOI 10.1016/j.emj.2014.01.001 Matlay H, 2006, EDUC TRAIN, V48, P704, DOI 10.1108/00400910610710119 Moses CL, 2014, EDULEARN PROC, P7466 Mueller Susan, 2011, International Journal of Entrepreneurship and Small Business, V13, P55, DOI 10.1504/IJESB.2011.040416 Neck HM, 2011, J SMALL BUS MANAGE, V49, P55, DOI 10.1111/j.1540-627X.2010.00314.x Nichols SP, 2003, IEEE ANTENN PROPAG M, V45, P134, DOI 10.1109/MAP.2003.1189659 O'Connor A, 2013, J BUS VENTURING, V28, P546, DOI 10.1016/j.jbusvent.2012.07.003 Otache I, 2020, EDUC TRAIN, V62, P741, DOI 10.1108/ET-02-2020-0032 Ozdemir D, 2019, TECHNOL SOC, V58, DOI 10.1016/j.techsoc.2019.01.006 Ruskovaara E, 2015, J EDUC RES, V108, P236, DOI 10.1080/00220671.2013.878301 Ruskovaara E, 2013, EDUC TRAIN, V55, P204, DOI 10.1108/00400911311304832 Seikkula-Leino J, 2015, EDUC TRAIN, V57, P392, DOI 10.1108/ET-03-2013-0029 Seikkula-Leino J, 2010, EDUC TRAIN, V52, P117, DOI 10.1108/00400911011027716 Slisane A, 2021, SUSTAINABILITY-BASEL, V13, DOI 10.3390/su13116424 Srinivasan A, 2018, STRATEG ENTREP J, V12, P54, DOI 10.1002/sej.1272 Teerijoki H, 2014, INT J MANAG EDUC-OXF, V12, P479, DOI 10.1016/j.ijme.2014.05.005 Tkachev A., 1999, ENTREP REGION DEV, V11, P269, DOI DOI 10.1080/089856299283209 Wang SM, 2019, FRONT PSYCHOL, V10, DOI 10.3389/fpsyg.2019.02048 Wang X., 2020, CREAT ED, V11, P275, DOI [10.4236/ce.2020.113021, DOI 10.4236/CE.2020.113021] Watson K, 2019, EDUC TRAIN, V62, P31, DOI 10.1108/ET-11-2018-0234 Wen CT, 2007, INT J TECHNOL MANAGE, V39, P346, DOI 10.1504/IJTM.2007.013505 Whiteley T., 1995, Education and Training, V37, P4 Wilson Anne, 2012, Online J Issues Nurs, V17, P5 Wilson F, 2007, ENTREP THEORY PRACT, V31, P387, DOI 10.1111/j.1540-6520.2007.00179.x Wu WH, 2019, FRONT PSYCHOL, V10, DOI 10.3389/fpsyg.2019.01109 Yan D., 2020, OPEN J SOCIAL SCI, V8, P218 Yan XH, 2018, SUSTAINABILITY-BASEL, V10, DOI 10.3390/su10093335 Yunis M, 2018, J BUS RES, V88, P344, DOI 10.1016/j.jbusres.2017.12.030 Zhang Y, 2014, INT ENTREP MANAG J, V10, P623, DOI 10.1007/s11365-012-0246-z Zhao F, 2015, INTERNET RES, V25, P734, DOI 10.1108/IntR-02-2014-0055 Zhu YX, 2016, ACAD MANAG LEARN EDU, V15, P607, DOI 10.5465/amle.2013.0263 Zisser MR, 2019, GEND MANAG, V34, P666, DOI 10.1108/GM-08-2018-0105 NR 73 TC 8 Z9 8 U1 9 U2 85 PU FRONTIERS MEDIA SA PI LAUSANNE PA AVENUE DU TRIBUNAL FEDERAL 34, LAUSANNE, CH-1015, SWITZERLAND SN 1664-1078 J9 FRONT PSYCHOL JI Front. Psychol. PD OCT 29 PY 2021 VL 12 AR 733301 DI 10.3389/fpsyg.2021.733301 PG 17 WC Psychology, Multidisciplinary WE Social Science Citation Index (SSCI) SC Psychology GA WW3FM UT WOS:000717806900001 PM 34777115 OA gold, Green Published DA 2024-09-05 ER PT J AU Tahiru, F Parbanath, S Agbesi, S AF Tahiru, Fati Parbanath, Steven Agbesi, Samuel TI Machine Learning-based Predictive Systems in Higher Education: A Bibliometric Analysis SO JOURNAL OF SCIENTOMETRIC RESEARCH LA English DT Article DE Machine Learning; Predictive System; Data Analytics; Learning Analytics; Higher Education AB This paper aims to comprehensively review the present state and research trends in predictive systems in higher education. It also addresses the research contribution of countries in Machine Learning-based predictive systems in higher education to depict the research landscape given the growing number of related publications. A bibliometric analysis of publications on predictive systems in education published in the Scopus Database from 2015 to 2022 was conducted. The dataset obtained covered the contribution of authors, affiliations, countries, themes and trends in the field of Machine Learning-based predictive systems in higher education. A total of 72 publications with 3408 cited references were collected from Scopus for the bibliometric analysis. The technique used for the bibliometric analysis included performance analysis and science mapping. Research on Machine Learning-based predictive systems has been widely published from 2020 to 2022. Researchers in China, Belgium, Spain, India, and Korea were most active in researching Machine Learning-based predictive systems in education. However, international collaborations have remained infrequent except for the few involving Australia, Belgium, and Canada. There is a lack of research in the subject area in Africa. This study illustrates the intellectual landscape of Machine Learning-based predictive systems in higher education and the field's evolution and emerging trends. The findings highlight the area of research concentration and the most recent developments and suggest future research collaborations on a larger scale as well as additional research on the implementation of predictive systems in education in Africa. C1 [Tahiru, Fati; Parbanath, Steven] Durban Univ Technol, Dept Informat Technol, Kwa Zulu, South Africa. [Agbesi, Samuel] IT Univ Copenhagen, Dept Comp Sci, Copenhagen, Denmark. C3 Durban University of Technology; IT University Copenhagen RP Tahiru, F (corresponding author), Durban Univ Technol, Dept Informat Technol, Kwa Zulu, South Africa. EM 22176488@dut4life.ac.za CR Ahsan M.M., International Journal of Information Management Data Insights, V2, P100079, DOI DOI 10.1016/J.JJIMEI.2022.100079 Chung JY, 2019, CHILD YOUTH SERV REV, V96, P346, DOI 10.1016/j.childyouth.2018.11.030 de Oliveira TN, 2021, 2021 IEEE FRONTIERS IN EDUCATION CONFERENCE (FIE 2021), DOI 10.1109/FIE49875.2021.9637207 Djeki E, 2022, J COMPUT EDUC, V9, P727, DOI 10.1007/s40692-021-00218-4 dos Santos BS, 2019, COMPUT IND ENG, V138, DOI 10.1016/j.cie.2019.106120 Firdaus A, 2019, SCIENTOMETRICS, V120, P1289, DOI 10.1007/s11192-019-03170-4 Guo XR, 2021, SUSTAINABILITY-BASEL, V13, DOI 10.3390/su132313234 Kehinde Adeniyi Jide, 2022, Recent Innovations in Computing: Proceedings of ICRIC 2021. Lecture Notes in Electrical Engineering (855), P613, DOI 10.1007/978-981-16-8892-8_46 Koseoglu MA, 2016, ANN TOURISM RES, V61, P180, DOI 10.1016/j.annals.2016.10.006 Li KC, 2022, INTERACT TECHNOL SMA, V19, P3, DOI 10.1108/ITSE-05-2021-0083 Liao HC, 2019, OMEGA-INT J MANAGE S, V88, P223, DOI 10.1016/j.omega.2018.11.005 Liu XY, 2022, EDUC INF TECHNOL, V27, P9913, DOI 10.1007/s10639-022-11010-x Liu Y, 2021, MOB INF SYST, V2021, DOI 10.1155/2021/8161985 Mariani M, 2019, TECHNOL FORECAST SOC, V149, DOI 10.1016/j.techfore.2019.119752 Oralbayeva N, 2017, K-Qbot: Language Learning Chatbot based on Reinforcement Learning Pears M, 2022, Bibliometric Analysis of Chatbots in Health-Trend Shifts and Advancements in Artificial Intelligence for Personalised Conversational Agents, V2020, P494 Piñeiro-Chousa J, 2020, J BUS RES, V115, P475, DOI 10.1016/j.jbusres.2019.11.045 Prudencio RF, 2022, Arxiv, DOI arXiv:2203.01387 Romero C, 2020, WIRES DATA MIN KNOWL, V10, DOI 10.1002/widm.1355 Sandra L, 2021, TEM J, V10, P1919, DOI 10.18421/TEM104-56 Sassirekha MS, 2022, AUTOMATIKA-UK, V63, P605, DOI 10.1080/00051144.2022.2060652 Shukla AK, 2020, ENG APPL ARTIF INTEL, V92, DOI 10.1016/j.engappai.2020.103625 Suhaimi NA, 2021, 7 INT C RES INNOVATI, P0 Tahiru F, 2021, Digital Technology Advancements in Knowledge Management, P187 Tahiru F, 2021, J CASES INF TECHNOL, V23, P1, DOI 10.4018/JCIT.2021010101 Umer R, 2023, INTERACT LEARN ENVIR, V31, P3503, DOI 10.1080/10494820.2021.1933542 Xu XH, 2018, INT J PROD ECON, V204, P160, DOI 10.1016/j.ijpe.2018.08.003 Yang YF, 2020, J CLEAN PROD, V263, DOI 10.1016/j.jclepro.2020.121433 Yousafzai BK, 2020, EDUC INF TECHNOL, V25, P4677, DOI 10.1007/s10639-020-10189-1 Zhao L, 2020, PROCESS SAF ENVIRON, V133, P169, DOI 10.1016/j.psep.2019.11.014 NR 30 TC 0 Z9 0 U1 6 U2 6 PU PHCOG NET PI KARNATAKA PA 17, 2ND FLR, BUDDHA VIHAR RD, NEAR SPORTS ZONE, COX TOWN, BENGALURU, KARNATAKA, 560005, INDIA SN 2321-6654 EI 2320-0057 J9 J SCIENTOMETR RES JI J. Scientometr. Res. PD MAY-AUG PY 2023 VL 12 IS 2 BP 436 EP 447 DI 10.5530/jscires.12.2.040 PG 12 WC Information Science & Library Science WE Emerging Sources Citation Index (ESCI) SC Information Science & Library Science GA HF6A6 UT WOS:001158105300020 OA hybrid DA 2024-09-05 ER PT J AU Kim, J Kim, J AF Kim, Jinseok Kim, Jenna TI ANDez: An open-source tool for author name disambiguation using machine learning SO SOFTWAREX LA English DT Article DE Author name disambiguation; Authority control; Machine learning; Science of science; Scientometrics; Bibliometrics AB Author name disambiguation in bibliographic data is challenging due to the same names of different authors and name variations of authors. Various machine learning (ML) methods address this, but a unified framework for comparing them is lacking. This study introduces ANDez, an open-source tool that integrates top-performing ML techniques for author name disambiguation. Developed in Python using popular ML libraries, ANDez provides a transparent system, merging complex procedures from different ML approaches. This promotes the assessment, modification, and benchmarking of ML techniques in author name disambiguation. ANDez's user-friendly design also helps researchers analyze ambiguous bibliographic data without needing advanced ML coding expertise. C1 [Kim, Jinseok] Univ Michigan, Inst Social Res, 330 Packard St, Ann Arbor, MI 48104 USA. [Kim, Jinseok] Univ Michigan, Sch Informat, 330 Packard St, Ann Arbor, MI 48104 USA. [Kim, Jenna] Univ Illinois, Sch Informat Sci, 501 E Daniel St, Champaign, IL 61820 USA. C3 University of Michigan System; University of Michigan; University of Michigan System; University of Michigan; University of Illinois System; University of Illinois Urbana-Champaign RP Kim, J (corresponding author), Univ Michigan, Inst Social Res, 330 Packard St, Ann Arbor, MI 48104 USA.; Kim, J (corresponding author), Univ Michigan, Sch Informat, 330 Packard St, Ann Arbor, MI 48104 USA. EM jinseokk@umich.edu; jkim682@illinois.edu OI Kim, Jinseok/0000-0001-6481-2065 FU National Science Foundation (NSF NCSES) [1917663]; NSF; University of Michigan Institute for Data Science FX ANDez was created with support from the National Science Foundation (NSF NCSES Award #1917663: Creating a Data Quality Control Framework for Producing New Personnel-Based S & E Indicators) grant and additional NSF funding through the Research Experiences for Undergraduates (REU) program. A PODS grant from the University of Michigan Institute for Data Science also supported the development of ANDez. We thank Dr. Jason D. Owen-Smith (University of Michigan) for his valuable feedback and recommendations that have enhanced ANDez's accessibility and utility for a diverse group of social scientists. CR Albert PJ, 2021, PLOS ONE, V16, DOI 10.1371/journal.pone.0244641 [Anonymous], 1999, Statistical Research Division, US Census Bureau Backes T, 2018, CIKM'18: PROCEEDINGS OF THE 27TH ACM INTERNATIONAL CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, P803, DOI 10.1145/3269206.3271699 Fegley BD, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0070299 Ferreira AA, 2012, SIGMOD REC, V41, P15, DOI 10.1145/2350036.2350040 Han H, 2004, ACM-IEEE J CONF DIG, P296, DOI 10.1145/996350.996419 Han H., 2005, P 2005 ACM S APPL CO, P1065, DOI [10.1145/1066677.1066920, DOI 10.1145/1066677.1066920] Huang J, 2006, Efficient Name Disambiguation for Large-Scale Databases Hussain I, 2017, KNOWL ENG REV, V32, DOI 10.1017/S0269888917000182 Kim J, 2023, SOFTW IMPACTS, V16, DOI 10.1016/j.simpa.2023.100510 Kim J, 2023, J INF SCI, V49, P711, DOI 10.1177/01655515211018171 Kim J, 2021, J ASSOC INF SCI TECH, V72, P979, DOI 10.1002/asi.24459 Kim J, 2020, J ASSOC INF SCI TECH, V71, P839, DOI 10.1002/asi.24298 Kim J, 2019, SCIENTOMETRICS, V120, P661, DOI 10.1007/s11192-019-03143-7 Kim J, 2019, J ASSOC INF SCI TECH, V70, P685, DOI 10.1002/asi.24158 Kim J, 2019, SCIENTOMETRICS, V118, P253, DOI 10.1007/s11192-018-2968-3 Kim J, 2018, SCIENTOMETRICS, V117, P511, DOI 10.1007/s11192-018-2865-9 Kim J, 2016, J ASSOC INF SCI TECH, V67, P1446, DOI 10.1002/asi.23489 Kim K, 2020, Learning CNF Blocking for Large-scale Author Name Disambiguation Kim K, 2018, 2018 IEEE INTERNATIONAL CONFERENCE ON WEB SERVICES (IEEE ICWS 2018), P265, DOI 10.1109/ICWS.2018.00041 Levin M, 2012, J AM SOC INF SCI TEC, V63, P1030, DOI 10.1002/asi.22621 Liu WL, 2014, J ASSOC INF SCI TECH, V65, P765, DOI 10.1002/asi.23063 Louppe G, 2016, COMM COM INF SC, V649, P272, DOI 10.1007/978-3-319-45880-9_21 Lv CD, 2022, ADV MATER, V34, DOI 10.1002/adma.202101474 Milojevic S, 2013, J INFORMETR, V7, P767, DOI 10.1016/j.joi.2013.06.006 Pedregosa F, 2011, J MACH LEARN RES, V12, P2825 Qian YA, 2015, INFORM RETRIEVAL J, V18, P379, DOI 10.1007/s10791-015-9261-3 Sanyal DK, 2021, J INF SCI, V47, P227, DOI 10.1177/0165551519888605 Schulz J, 2016, SCIENTOMETRICS, V107, P1283, DOI 10.1007/s11192-016-1892-7 Smalheiser NR, 2009, ANNU REV INFORM SCI, V43, P287 Song M, 2015, J INFORMETR, V9, P924, DOI 10.1016/j.joi.2015.08.004 Strotmann A, 2012, J AM SOC INF SCI TEC, V63, P1820, DOI 10.1002/asi.22695 Subramanian S, 2021, ACM-IEEE J CONF DIG, P170, DOI 10.1109/JCDL52503.2021.00029 Torvik VI, 2009, ACM T KNOWL DISCOV D, V3, DOI 10.1145/1552303.1552304 Treeratpituk P, 2009, ACM-IEEE J CONF DIG, P39 Vishnyakova D, 2016, P 5 WORKSH BUILD EV, DOI 10.5167/uzh-132256 Yao ZP, 2023, NAT REV MATER, V8, P202, DOI 10.1038/s41578-022-00490-5 NR 37 TC 0 Z9 0 U1 0 U2 0 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS SN 2352-7110 J9 SOFTWAREX JI SoftwareX PD MAY PY 2024 VL 26 AR 101719 DI 10.1016/j.softx.2024.101719 EA APR 2024 PG 7 WC Computer Science, Software Engineering WE Science Citation Index Expanded (SCI-EXPANDED) SC Computer Science GA QQ9P4 UT WOS:001222456100001 OA gold DA 2024-09-05 ER PT C AU Zhang, QA Liu, TN AF Zhang, Qian Liu, Tongna BE Xu, H TI Research on Performance Evaluation of Project Management Based on Support Vector Machine and Fuzzy Rules SO 2ND IEEE INTERNATIONAL CONFERENCE ON ADVANCED COMPUTER CONTROL (ICACC 2010), VOL. 5 LA English DT Proceedings Paper CT 2nd IEEE International Conference on Advanced Computer Control CY MAR 27-29, 2010 CL Shenyang, PEOPLES R CHINA DE SVM; project management; performance evaluation; fuzzy rules AB The principle and step of performance evaluation of project management based on SVM and fuzzy rules are studied. The index system of performance evaluation of project management is set up. Then we built up the evaluation model on SVM and fuzzy rules. Finally, take some samples of project for an example, we carry on this model to instance. It can take a preferably evaluation, so that it is a viable method. C1 [Zhang, Qian] North China Elect Power Univ, Dept Econ Management, Baoding 071000, Hebei, Peoples R China. [Liu, Tongna] North China Elect Power Univ, Dept Elect & Commun ENgn, Baoding, Hebei, Peoples R China. C3 North China Electric Power University; North China Electric Power University RP Zhang, QA (corresponding author), North China Elect Power Univ, Dept Econ Management, Baoding 071000, Hebei, Peoples R China. EM hdzhq@yeah.net; hdltn@yeah.net FU Hebei Natural Science Fund [G2009001410] FX This research was supported by Hebei Natural Science Fund.!G2009001410" CR [Anonymous], INF SCI Hu Jun, 2005, Modular Machine Tool & Automatic Manufacturing Technique, P97 Kazama N., 1996, Information Infrastructure and Policy, V5, P279 Liu Shihong, 2005, AGR INFORM TECHNOLOG Machlup Fritz., 1962, The Production and Distribution of Knowledge in the United States National informatization evaluation center, 2002, EV ENT INF COMP US National informatization evaluation center, COMP STUD MEAS RES C Porat M U, 1984, SCIENCE, V10, p15~17 Qi Er-shi, 2005, Industrial Engineering Journal, V8, P52 Rai LP, 2000, TECHNOL SOC, V22, P221, DOI 10.1016/S0160-791X(00)00006-3 Yu EJ, 2005, LECT NOTES COMPUT SC, V3482, P1306 NR 11 TC 1 Z9 1 U1 0 U2 1 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA BN 978-1-4244-5847-9 PY 2010 BP 397 EP 400 DI 10.1109/ICACC.2010.5487081 PG 4 WC Automation & Control Systems; Engineering, Electrical & Electronic WE Conference Proceedings Citation Index - Science (CPCI-S) SC Automation & Control Systems; Engineering GA BUG32 UT WOS:000289207500093 DA 2024-09-05 ER PT J AU Wang, ZY Dong, W Yang, K AF Wang, Zhenyi Dong, Wen Yang, Kun TI Spatiotemporal Analysis and Risk Assessment Model Research of Diabetes among People over 45 Years Old in China SO INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH LA English DT Article DE spatiotemporal analysis; risk factors; binary logistic regression; random forest model ID GEOGRAPHIC INFORMATION-SYSTEMS; SPATIAL-ANALYSIS; PREVALENCE; HEALTH; HYPERTENSION; MELLITUS; SMOKING; INDEX AB Diabetes, which is a chronic disease with a high prevalence in people over 45 years old in China, is a public health issue of global concern. In order to explore the spatiotemporal patterns of diabetes among people over 45 years old in China, to find out diabetes risk factors, and to assess its risk, we used spatial autocorrelation, spatiotemporal cluster analysis, binary logistic regression, and a random forest model in this study. The results of the spatial autocorrelation analysis and the spatiotemporal clustering analysis showed that diabetes patients are mainly clustered near the Beijing-Tianjin-Hebei region, and that the prevalence of diabetes clusters is waning. Age, hypertension, dyslipidemia, and smoking history were all diabetes risk factors (p < 0.05), but the spatial heterogeneity of these factors was weak. Compared with the binary logistic regression model, the random forest model showed better accuracy in assessing diabetes risk. According to the assessment risk map generated by the random forest model, the northeast region and the Beijing-Tianjin-Hebei region are high-risk areas for diabetes. C1 [Wang, Zhenyi; Dong, Wen; Yang, Kun] Yunnan Normal Univ, Fac Geog, Kunming 650500, Yunnan, Peoples R China. [Wang, Zhenyi; Dong, Wen; Yang, Kun] Yunnan Normal Univ, GIS Technol Engn Res Ctr, West China Resources & Environm Educ Minist, Kunming 650500, Yunnan, Peoples R China. C3 Yunnan Normal University; China Resources Group; Yunnan Normal University RP Dong, W; Yang, K (corresponding author), Yunnan Normal Univ, Fac Geog, Kunming 650500, Yunnan, Peoples R China.; Dong, W; Yang, K (corresponding author), Yunnan Normal Univ, GIS Technol Engn Res Ctr, West China Resources & Environm Educ Minist, Kunming 650500, Yunnan, Peoples R China. EM kmynnu_gis@163.com; kmdcynu@163.com RI Yang, Kun/ISA-1094-2023; yang, kun/JGM-4169-2023 OI Yang, Kun/0000-0003-1335-3449; Wang, Zhenyi/0009-0001-4552-7207 FU National Natural Science Foundation of China [42161071, 42071381, 41661087] FX This research was supported by National Natural Science Foundation of China (Grants Nos. 42161071, 42071381, 41661087). CR Alcalá-Rmz V, 2021, HEALTHCARE-BASEL, V9, DOI 10.3390/healthcare9040422 Ali A, 2022, INT J ENV RES PUB HE, V19, DOI 10.3390/ijerph19073943 Asante DO, 2022, BIOMED RES INT-UK, V2022, DOI 10.1155/2022/9690964 Aswin M., 2022, HYPERTENSION CARDIOV, P159, DOI [10.1007/978-3-030-95734-6_12, DOI 10.1007/978-3-030-95734-6_12] Boateng E.Y., 2020, J. Data Analys. Inform. Proc., V8, P341, DOI [DOI 10.4236/JDAIP.2020.84020, 10.4236/JDAIP.2020.84020] Cao GZ, 2020, BMC HEALTH SERV RES, V20, DOI 10.1186/s12913-020-05609-4 Cheng F, 2022, FRONT PUBLIC HEALTH, V9, DOI 10.3389/fpubh.2021.823739 Cheruiyot K, 2022, REG SCI POLICY PRACT, V14, P307, DOI 10.1111/rsp3.12526 Chung S, 2019, NUTRIENTS, V11, DOI 10.3390/nu11102522 Daghistani T, 2020, J ADV INFORM TECHNOL, V11, P78, DOI 10.12720/jait.11.2.78-83 DeCesare NJ, 2012, ECOL APPL, V22, P1068, DOI 10.1890/11-1610.1 Dong W, 2017, BMC INFECT DIS, V17, DOI 10.1186/s12879-017-2781-2 Dudley T, 2013, J COMMUN HEALTH, V38, P951, DOI 10.1007/s10900-013-9705-x Eccles KM, 2015, CAN J PUBLIC HEALTH, V106, pE355, DOI 10.17269/cjph.106.4981 El-Shareif HJ, 2019, IBNOSINA J MED BIOME, V11, P171, DOI 10.4103/ijmbs.ijmbs_37_19 Freitas WWL, 2022, EXPERT SYST APPL, V195, DOI 10.1016/j.eswa.2022.116561 Ghosh K, 2020, J PUBLIC HEALTH-HEID, V28, P535, DOI 10.1007/s10389-019-01072-6 Hamat A, 2022, INT J ENV RES PUB HE, V19, DOI 10.3390/ijerph19116802 He BJ, 2023, PUBLIC HEALTH NUTR, V26, P190, DOI 10.1017/S1368980022001215 International Diabetes Federation, ABOUT US Isfandiari MA, 2022, HEALTHCARE-BASEL, V10, DOI 10.3390/healthcare10050872 Jesri N, 2021, BMC PUBLIC HEALTH, V21, DOI 10.1186/s12889-021-12267-6 Khodakarami L, 2022, EARTH SPACE SCI, V9, DOI 10.1029/2022EA002261 Lee S, 2021, INT J HEALTH GEOGR, V20, DOI 10.1186/s12942-021-00286-w Li CR, 2021, TECHNOL HEALTH CARE, V29, pS351, DOI 10.3233/THC-218033 Li JM, 2020, SOC SCI MED, V256, DOI 10.1016/j.socscimed.2020.113062 Li LQ, 2022, INT J ENV RES PUB HE, V19, DOI 10.3390/ijerph19063619 Liang WB, 2014, BIOMED RES INT, V2014, DOI 10.1155/2014/795741 Liu XN, 2021, SUSTAINABILITY-BASEL, V13, DOI 10.3390/su13094996 Masimalai P., 2014, Int. J. Med. Sci. Public Health, V3, P1430, DOI [10.5455/ijmsph.2014.081020141, DOI 10.5455/IJMSPH.2014.081020141] Medina-Chavez Juan Humberto, 2022, Rev Med Inst Mex Seguro Soc, V60, pS19 Miranda ML, 2013, PREV CHRONIC DIS, V10, DOI 10.5888/pcd10.120321 Murad A, 2022, GEOSPATIAL HEALTH, V17, DOI 10.4081/gh.2022.1072 Murad A, 2020, ISPRS INT J GEO-INF, V9, DOI 10.3390/ijgi9050328 Nayak BS, 2014, DIABETES METAB SYND, V8, P91, DOI 10.1016/j.dsx.2014.04.018 Oza Ami, 2022, Congress on Intelligent Systems: Proceedings of CIS 2021. Lecture Notes on Data Engineering and Communications Technologies (111), P407, DOI 10.1007/978-981-16-9113-3_30 Rabieenia E, 2020, DIABETES METAB SYND, V14, P1543, DOI 10.1016/j.dsx.2020.08.007 Ren ZD, 2020, IEEE ACCESS, V8, P206406, DOI 10.1109/ACCESS.2020.3037912 Ricketts TC, 2003, ANNU REV PUBL HEALTH, V24, P1, DOI 10.1146/annurev.publhealth.24.100901.140924 Saeedi P, 2019, DIABETES RES CLIN PR, V157, DOI 10.1016/j.diabres.2019.107843 Samet S, 2022, INT J DECIS SUPPORT, V14, DOI 10.4018/IJDSST.303943 Sandie AB, 2022, BMC INFECT DIS, V22, DOI 10.1186/s12879-022-07306-5 Sergeev A.V., 2015, ANN EPIDEMIOL, V25, P705, DOI [10.1016/j.annepidem.2015.06.020, DOI 10.1016/J.ANNEPIDEM.2015.06.020] Su BB, 2022, FRONT ENDOCRINOL, V12, DOI 10.3389/fendo.2021.777654 Su R, 2016, INT J ENV RES PUB HE, V13, DOI 10.3390/ijerph13080751 Tomic D, 2022, NAT REV ENDOCRINOL, V18, P525, DOI 10.1038/s41574-022-00690-7 Tonstad S, 2009, DIABETES RES CLIN PR, V85, P4, DOI 10.1016/j.diabres.2009.04.013 Vine MF, 1997, ENVIRON HEALTH PERSP, V105, P598, DOI 10.2307/3433605 Wang YJ, 2022, INT J ENV RES PUB HE, V19, DOI 10.3390/ijerph19052989 Wu Y, 2022, FRONT ENDOCRINOL, V12, DOI 10.3389/fendo.2021.808120 Xiao Lin, 2020, Asian Pac J Cancer Prev, V21, P17, DOI 10.31557/APJCP.2020.21.S1.17 Xu SY, 2013, BMC PUBLIC HEALTH, V13, DOI 10.1186/1471-2458-13-299 Xue D, 2022, LAND USE POLICY, V117, DOI 10.1016/j.landusepol.2022.106117 Yang LQ, 2022, REMOTE SENS-BASEL, V14, DOI 10.3390/rs14051266 Yatsuya H, 2021, J DIABETES INVEST, V12, P317, DOI 10.1111/jdi.13421 Yu JY, 2022, DIABETES-METAB RES, V38, DOI 10.1002/dmrr.3507 Yuan QL, 2022, INT J ENV RES PUB HE, V19, DOI 10.3390/ijerph19042096 Yuan YP, 2022, CHINESE MED J-PEKING, V135, P356, DOI 10.1097/CM9.0000000000001895 Zhang X, 2019, J DIABETES INVEST, V10, P272, DOI 10.1111/jdi.12899 Zhang Y, 2015, INT J ENV RES PUB HE, V12, P816, DOI 10.3390/ijerph120100816 Zhao Y, 2022, EUR J AGRON, V134, DOI 10.1016/j.eja.2022.126466 Zhou MG, 2015, DIABETES CARE, V38, P72, DOI 10.2337/dc14-1100 Zhou T, 2019, MEDICINE, V98, DOI 10.1097/MD.0000000000015581 Zhou YH, 2019, INT J ENV RES PUB HE, V16, DOI 10.3390/ijerph16010107 NR 64 TC 1 Z9 1 U1 7 U2 37 PU MDPI PI BASEL PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND EI 1660-4601 J9 INT J ENV RES PUB HE JI Int. J. Environ. Res. Public Health PD AUG PY 2022 VL 19 IS 16 AR 9861 DI 10.3390/ijerph19169861 PG 26 WC Environmental Sciences; Public, Environmental & Occupational Health WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Environmental Sciences & Ecology; Public, Environmental & Occupational Health GA 4B3JQ UT WOS:000845678700001 PM 36011493 OA gold, Green Published DA 2024-09-05 ER PT J AU Purnell, PJ AF Purnell, Philip J. TI A comparison of different methods of identifying publications related to the United Nations Sustainable Development Goals: Case study of SDG 13-Climate Action SO QUANTITATIVE SCIENCE STUDIES LA English DT Article DE artificial intelligence; bibliometrics; climate action; machine learning; sustainable development goal ID DIMENSIONS; WEB; SCOPUS AB As sustainability becomes an increasing priority throughout global society, academic and research institutions are assessed on their contribution to relevant research publications. This study compares four methods of identifying research publications related to United Nations Sustainable Development Goal 13-Climate Action (SDG 13). The four methods (Elsevier, STRINGS, SIRIS, and Dimensions) have each developed search strings with the help of subject matter experts, which are then enhanced through distinct methods to produce a final set of publications. Our analysis showed that the methods produced comparable quantities of publications but with little overlap between them. We visualized some difference in topic focus between the methods and drew links with the search strategies used. Differences between publications retrieved are likely to come from subjective interpretation of the goals, keyword selection, operationalizing search strategies, AI enhancements, and selection of bibliographic database. Each of the elements warrants deeper investigation to understand their role in identifying SDG-related research. Before choosing any method to assess the research contribution to SDGs, end users of SDG data should carefully consider their interpretation of the goal and determine which of the available methods produces the closest data set. Meanwhile, data providers might customize their methods for varying interpretations of the SDGs. C1 [Purnell, Philip J.] Leiden Univ, Ctr Sci & Technol Studies, Leiden, Netherlands. [Purnell, Philip J.] United Arab Emirates Univ, Al Ain, U Arab Emirates. C3 Leiden University; Leiden University - Excl LUMC; United Arab Emirates University RP Purnell, PJ (corresponding author), Leiden Univ, Ctr Sci & Technol Studies, Leiden, Netherlands.; Purnell, PJ (corresponding author), United Arab Emirates Univ, Al Ain, U Arab Emirates. EM p.j.purnell@cwts.leidenuniv.nl RI Purnell, Philip/JQX-0944-2023; Purnell, Philip/ITU-3369-2023; Purnell, Philip/A-3080-2009 OI Purnell, Philip/0000-0003-3146-2737 FU GCRF [AH/S011501/1] Funding Source: UKRI CR Adams J, 1998, NATURE, V396, P615, DOI 10.1038/25219 [Anonymous], 2021, Nature, DOI 10.1038/d41586-021-02406-9 [Anonymous], 2021, WORLD U RANK [Anonymous], 2014, The road to dignity by 2030: ending poverty, transforming all lives and protecting the planet: Synthesis report of the Secretary-General on the post-2015 sustainable development agenda Archambault É, 2009, J AM SOC INF SCI TEC, V60, P1320, DOI 10.1002/asi.21062 Armitage Caroline, 2020, DataverseNO, DOI 10.18710/98CMDR Armitage CS, 2020, QUANT SCI STUD, V1, P1092, DOI 10.1162/qss_a_00071 Association of Dutch Universities, 2019, SDG DASHB IMP DUTCH Baas J, 2020, QUANT SCI STUD, V1, P377, DOI 10.1162/qss_a_00019 Blasco N, 2021, SUSTAINABILITY-BASEL, V13, DOI 10.3390/su13010089 Clarivate, 2020, WEB SCI J EV PROC SE Confraria H, 2021, PRO INT CONF SCI INF, P281 Digital Science, 2021, WHICH PUBL DAT DOES Duran-Silva Nicolau, 2019, Zenodo Elsevier SciDev.Net, 2015, SUST SCI GLOB LANDSC European Commission, 2020, CORDIS-EU Research Results GARFIELD E, 1972, SCIENCE, V178, P471, DOI 10.1126/science.178.4060.471 Gläser J, 2017, SCIENTOMETRICS, V111, P981, DOI 10.1007/s11192-017-2296-z Harzing AW, 2019, SCIENTOMETRICS, V120, P341, DOI 10.1007/s11192-019-03114-y Herzog C, 2020, QUANT SCI STUD, V1, P387, DOI 10.1162/qss_a_00020 Hirsch JE, 2005, P NATL ACAD SCI USA, V102, P16569, DOI 10.1073/pnas.0507655102 Hook DW., 2018, FRONT RES METR ANAL, V3, P23, DOI DOI 10.3389/FRMA.2018.00023 International Science Council, 2015, REV TARGETS SUSTAINA James Chris, 2021, Mendeley Data, V4 Jayabalasingham B., 2019, **DATA OBJECT**, VV1, DOI [10.17632/87TXKW7KHS.1, 10.17632/87txkw7khs.1] Jetten T.H., 2019, EXPLORATIVE STUDY U, DOI [10.18174/476199, DOI 10.18174/476199] Huang CK, 2020, QUANT SCI STUD, V1, P445, DOI 10.1162/qss_a_00031 Körfgen A, 2018, SUSTAINABILITY-BASEL, V10, DOI 10.3390/su10093295 Lane A., 2017, Journal of Learning for Development-JL4D, V4 Nakamura M., 2019, Navigating the structure of research on sustainable development goals Provencal S., 2021, POLICY BRIEF J, DOI [10.2777/03227, DOI 10.2777/03227] Purnell Philip J, 2022, Zenodo, DOI 10.5281/ZENODO.6861335 Rafols I., 2021, SocArXiv, DOI DOI 10.31235/OSF.IO/YFQBD Schotten M., 2017, Research Analytics. Boosting University Productivity and Competitiveness through Scientometrics, P31, DOI [10.1201/9781315155890-3, DOI 10.1201/9781315155890-3] SIRIS Academic, 2020, IS EU FUND RES INN E Thelwall M, 2018, J INFORMETR, V12, P430, DOI 10.1016/j.joi.2018.03.006 Times Higher Education, 2021, IMP RANK 2021 METH van Nes F, 2010, EUR J AGEING, V7, P313, DOI 10.1007/s10433-010-0168-y Van Raan A, 1999, SCIENTOMETRICS, V45, P417, DOI 10.1007/BF02457601 Vanderfeesten M., 2017, SOC RELEVANT IMPACT, DOI [DOI 10.5281/ZENODO.1045839, 10.5281/ZENODO.1045839] Vanderfeesten Maurice, 2020, Zenodo Visser M, 2021, QUANT SCI STUD, V2, P20, DOI [10.1162/qss_a_00112, 10.1162/qes_a_00112] Waltman L, 2012, J AM SOC INF SCI TEC, V63, P2378, DOI 10.1002/asi.22748 Waltman L, 2011, SCIENTOMETRICS, V87, P467, DOI 10.1007/s11192-011-0354-5 Wastl J., 2020, Contextualizing Sustainable Development Research, DOI DOI 10.6084/M9.FIGSHARE.12200081 NR 45 TC 6 Z9 7 U1 7 U2 16 PU MIT PRESS PI CAMBRIDGE PA ONE ROGERS ST, CAMBRIDGE, MA 02142-1209 USA EI 2641-3337 J9 QUANT SCI STUD JI Quant. Sci. Stud. PD DEC 20 PY 2022 VL 3 IS 4 BP 976 EP 1002 DI 10.1162/qss_a_00215 PG 27 WC Information Science & Library Science WE Emerging Sources Citation Index (ESCI) SC Information Science & Library Science GA 9B9MZ UT WOS:000935055300005 OA gold, Green Submitted DA 2024-09-05 ER PT J AU Pan, X Zuo, DJ Zhang, WJ Hu, LH Wang, HX Jiang, J AF Pan, Xing Zuo, Dujun Zhang, Wenjin Hu, Lunhu Wang, Huixiong Jiang, Jing TI Research on Human Error Risk Evaluation Using Extended Bayesian Networks with Hybrid Data SO RELIABILITY ENGINEERING & SYSTEM SAFETY LA English DT Article DE Bayesian Network; Human Reliability Analysis; Hybrid Data ID HUMAN RELIABILITY-ANALYSIS; EPISTEMIC UNCERTAINTY; CREDAL NETWORKS; PROBABILITY; ALGORITHM; TANKER; SETS; 2U AB Bayesian networks (BNs) play an important role in performing uncertainty analysis. BNs, as a sort of directed acyclic graph with probabilities, can establish causality and clarify complex uncertain relationships to benefit risk analyze. A large number of accurate data must be obtained for precisely reasoning, but it is often difficult in human reliability analysis (HRA). Inadequate data on space launch sites make it necessary to utilize different types of data in engineering. This paper studies the uncertainty in BNs and classifies the using data. Besides, the concept of Extended BNs containing the most likely probabilities and probability boundaries is proposed to address the hybrid data problem in BNs. Accordingly, the mathematical model and usage of the Extended BNs are also developed to fuse different types of data in HRA. To verify the rationality and accuracy of this method, the Extended BN with hybrid data is applied to HRA for fueling task in space launch sites. Finally, the case study shows the validity of the uncertainty expression in Extended BNs, and the Extended BNs perform well in risk prediction and risk avoidance. C1 [Pan, Xing; Zuo, Dujun; Zhang, Wenjin; Hu, Lunhu; Wang, Huixiong; Jiang, Jing] Beihang Univ, Sch Reliabil & Syst Engn, Beijing, Peoples R China. [Jiang, Jing] China Astronauts Res & Training Ctr, Natl Key Lab Human Factors Engn, Beijing, Peoples R China. C3 Beihang University RP Zhang, WJ (corresponding author), 37 Xueyuan Rd, Beijing 100191, Peoples R China. EM panxing@buaa.edu.cn; zuodujun@buaa.edu.cn; zwjok@buaa.edu.cn; hulunhu@buaa.edu.cn; wanghuixiong@buaa.edu.cn; jiangjingbuaa@buaa.edu.cn RI Wang, Huixiong/M-3891-2019; XIONG, LIU/JOK-5886-2023; Zuo, Dujun/ABA-1204-2020; zhu, yujie/KBC-4009-2024 OI Wang, Huixiong/0000-0002-8954-1967; FU National Natural Science Foundation of China [72071011, 71571004]; Open Funding Project of National Key Laboratory of Human Factors Engineering [6142222190307] FX This work is supported by the National Natural Science Foundation of China under Grants No. 72071011/No. 71571004, and the Open Funding Project of National Key Laboratory of Human Factors Engineering under Grant No. 6142222190307. CR Amin MT, 2018, CHEM ENG SCI, V189, P191, DOI 10.1016/j.ces.2018.05.045 Antonucci Alessandro, 2013, Symbolic and Quantitative Approaches to Reasoning with Uncertainty. 12th European Conference, ECSQARU 2013. Proceedings. LNCS 7958, P13, DOI 10.1007/978-3-642-39091-3_2 Antonucci A, 2008, INT J APPROX REASON, V49, P345, DOI 10.1016/j.ijar.2008.02.005 Antonucci A, 2015, INT J APPROX REASON, V58, P25, DOI 10.1016/j.ijar.2014.10.003 Antonucci A, 2010, INT J APPROX REASON, V51, P474, DOI 10.1016/j.ijar.2010.01.007 Antonucci A, 2009, INT J APPROX REASON, V50, P666, DOI 10.1016/j.ijar.2009.01.005 Atanassov K. T., 1986, Fuzzy Sets and Systems, V20, P87, DOI 10.1016/S0165-0114(86)80034-3 Cozman FG, 2000, ARTIF INTELL, V120, P199, DOI 10.1016/S0004-3702(00)00029-1 Deng XY, 2018, ANN NUCL ENERGY, V117, P183, DOI 10.1016/j.anucene.2018.03.028 [董正国 Dong Zhengguo], 2012, [系统工程, Systems Engineering], V30, P123 DUBOIS D, 1989, EUR J OPER RES, V40, P135, DOI 10.1016/0377-2217(89)90326-3 DUBOIS D, 1993, SECOND IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS, VOLS 1 AND 2, P1059, DOI 10.1109/FUZZY.1993.327367 El-Gheriani M, 2017, PROCESS SAF ENVIRON, V106, P52, DOI 10.1016/j.psep.2016.12.004 Eleye-Datubo AG, 2006, RISK ANAL, V26, P695, DOI 10.1111/j.1539-6924.2006.00775.x Fagiuoli E, 1998, ARTIF INTELL, V106, P77, DOI 10.1016/S0004-3702(98)00089-7 Ge YF, 2013, 2013 10TH INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS AND KNOWLEDGE DISCOVERY (FSKD), P588, DOI 10.1109/FSKD.2013.6816265 Groth KM, 2013, RELIAB ENG SYST SAFE, V115, P33, DOI 10.1016/j.ress.2013.02.015 Guo P, 2010, EUR J OPER RES, V203, P444, DOI 10.1016/j.ejor.2009.07.020 Guoxing W, 2005, SPACE INT, V2, P18 Halliwell J, 2002, PROCEEDINGS OF THE 2002 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS, VOL 1 & 2, P596, DOI 10.1109/FUZZ.2002.1005059 Hancock JM, 2004, BAYESIAN NETWORK BEL Hu L, 2020, IEEE SYST J, P1 Hu LH, 2020, RELIAB ENG SYST SAFE, V198, DOI 10.1016/j.ress.2020.106874 Ide JS, 2008, INT J APPROX REASON, V48, P275, DOI 10.1016/j.ijar.2007.09.003 Jia S. K, 2015, SCI TECHNOLOGY MANAG, V1, P193 Junguang Z, 2012, J IND TECHNOLOGICAL, V12, P66 Kang R, 2016, CHINESE J AERONAUT, V29, P571, DOI 10.1016/j.cja.2016.04.004 Kuhnert PM, 2010, ECOL LETT, V13, P900, DOI 10.1111/j.1461-0248.2010.01477.x Li YT, 2020, PROCESS SAF ENVIRON, V134, P36, DOI 10.1016/j.psep.2019.11.033 Merz B, 2005, J HYDROL, V309, P114, DOI 10.1016/j.jhydrol.2004.11.015 Musharraf M, 2018, SAFETY SCI, V107, P216, DOI 10.1016/j.ssci.2017.07.010 Musharraf M, 2014, RELIAB ENG SYST SAFE, V132, P1, DOI 10.1016/j.ress.2014.06.016 Musharraf M, 2013, SAFETY SCI, V59, P19, DOI 10.1016/j.ssci.2013.04.001 Norazahar N, 2018, APPL OCEAN RES, V79, P1, DOI 10.1016/j.apor.2018.07.002 Norazahar N, 2018, OCEAN ENG, V147, P621, DOI 10.1016/j.oceaneng.2017.09.044 O'Hagan A, 2004, RELIAB ENG SYST SAFE, V85, P239, DOI 10.1016/j.ress.2004.03.014 Poussin H., 2017, Journal of Space Safety Engineering, V4, P45, DOI 10.1016/j.jsse.2017.03.001 Qiao WL, 2020, RISK ANAL, V40, P957, DOI 10.1111/risa.13444 Ren J, 2009, J OFFSHORE MECH ARCT, V131, DOI 10.1115/1.3124123 Shuiwang C., 1994, CRYOGENICS, V79, P1 Siu NO, 1998, RELIAB ENG SYST SAFE, V62, P89, DOI 10.1016/S0951-8320(97)00159-2 [宋建军 Song Jianjun], 2012, [航天控制, Aerospace Control], V30, P76 Sykora M, 2018, RELIAB ENG SYST SAFE, V169, P312, DOI 10.1016/j.ress.2017.09.006 Tessem B., 1992, International Journal of Approximate Reasoning, V7, P95, DOI 10.1016/0888-613X(92)90006-L Ung ST, 2018, SAFETY SCI, V104, P16, DOI 10.1016/j.ssci.2017.12.035 Wei Song, 2015, ICIC Express Letters, V9, P671 Xiong Wen-tao, 2009, Computer Engineering and Applications, V45, P27, DOI 10.3778/j.issn.1002-8331.2009.31.009 Yang ZL, 2019, OCEAN ENG, V186, DOI 10.1016/j.oceaneng.2019.05.077 Zadeh L. A., 1978, Fuzzy Sets and Systems, V1, P3, DOI 10.1016/0165-0114(78)90029-5 ZADEH LA, 1984, INFORM PROCESS MANAG, V20, P363, DOI 10.1016/0306-4573(84)90067-0 Zarei E, 2019, J LOSS PREVENT PROC, V57, P7, DOI 10.1016/j.jlp.2018.10.011 Zarei E, 2019, J LOSS PREVENT PROC, V57, P142, DOI 10.1016/j.jlp.2018.11.015 Zhang GZ, 2018, SAFETY SCI, V102, P211, DOI 10.1016/j.ssci.2017.10.016 [智文书 Zhi Wenshu], 2013, [低温工程, Cryogenics], P31 NR 54 TC 9 Z9 9 U1 5 U2 40 PU ELSEVIER SCI LTD PI London PA 125 London Wall, London, ENGLAND SN 0951-8320 EI 1879-0836 J9 RELIAB ENG SYST SAFE JI Reliab. Eng. Syst. Saf. PD MAY PY 2021 VL 209 AR 107336 DI 10.1016/j.ress.2020.107336 EA JAN 2021 PG 13 WC Engineering, Industrial; Operations Research & Management Science WE Science Citation Index Expanded (SCI-EXPANDED) SC Engineering; Operations Research & Management Science GA SV6DB UT WOS:000663909200002 DA 2024-09-05 ER PT J AU Leoni, RA Alves-Silva, L De Araujo , HI Jr AF Leoni, Ronaldo A. Alves-Silva, Lais De Araujo-Junior, Herminio Ismael TI Overview of computational methods in taphonomy based on the combination of bibliometric analysis and natural language SO ANAIS DA ACADEMIA BRASILEIRA DE CIENCIAS LA English DT Article DE artificial intelligence; google scholar; machine learning; paleontology; web scraping; scopus ID CUT MARKS; BONE AB Artificial intelligence tools are new in taphonomy and are growing fast. They are being used mainly to investigate bone surface marks. In order to investigate this subject, a bibliometric study was made to understand the growing rate of this intersectional field, the future, and gaps in the field until now. From Scopus and Google Scholar metadata, graphs were made to describe the data, and inferential statistics were made by regression with the Ordinary Least Squares method. Exploratory analysis with word clouds, topic modeling, and natural language processing with Latent Dirichlet Allocation as a method were also made using the entire corpus from the papers. From the first register until 2023, we found eight articles in Scopus and 32 in Google Scholar; the majority of the studies and the most cited were from Spain. The studies are growing fast from 2016 to 2018, and the regression shows that growth can be maintained in the coming years. Exploratory analysis shows the most frequent words are marks, models, data, and bone. Topic modeling shows that the studies are highly concentrated on similar problems and the tools to solve them, revealing that there is much more to explore with computational tools in taphonomy and paleontology as well. C1 [Leoni, Ronaldo A.; Alves-Silva, Lais; De Araujo-Junior, Herminio Ismael] Univ Estado Rio de Janeiro, Programa Posgrad Geociencias, Rua Sao Francisco Xavier 524, BR-20950000 Rio De Janeiro, RJ, Brazil. C3 Universidade do Estado do Rio de Janeiro RP Leoni, RA (corresponding author), Univ Estado Rio de Janeiro, Programa Posgrad Geociencias, Rua Sao Francisco Xavier 524, BR-20950000 Rio De Janeiro, RJ, Brazil. EM ronaldoaleoni@gmail.com RI ; Araujo-Junior, Herminio/E-5832-2013 OI Alves Silva, Lais/0000-0001-9692-9989; Araujo-Junior, Herminio/0000-0003-4371-0611 FU Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior - CAPES [88887.683402/2022-00, 88887.602327/2021-00]; Fundaco de Amparo a Pesquisa do Estado do Rio de Janeiro [E-26/201.371/2021, E-26/010.002218/2019]; Conselho Nacional de Desenvolvimento Cientifico e Tecnologico -CNPq [305576/2021-6]; UERJ FX We thank Mr. Eroaldo G. S. Junior for his support on the final development of the web scraping technique and useful discussions in the early stages of this work, and Mr. Zainal Salam for his several valuable suggestions and elucidations to improve the writing during the final stage of writing this manuscript. The authors are grateful to Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior - CAPES for funding RAL [CNPq; grants: 88887.683402/2022-00] and LAS (process number 88887.602327/2021-00) ; HIAJR thanks to Fundac & atilde;o de Amparo a Pesquisa do Estado do Rio de Janeiro (processes n degrees E-26/201.371/2021 and E-26/010.002218/2019) , Conselho Nacional de Desenvolvimento Cientifico e Tecnologico -CNPq (process n degrees 305576/2021-6) and UERJ (Prociencia grant) . CR ARRIAZAMC ARAMENDIJ, Quat Sci Atenstaedt R, 2012, BRIT J GEN PRACT, V62, P148, DOI 10.3399/bjgp12X630142 Barde BV, 2017, 2017 INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTING AND CONTROL SYSTEMS (ICICCS), P745, DOI 10.1109/ICCONS.2017.8250563 Beel J, 2009, PRO INT CONF SCI INF, V1, P230 BEHRENSMEYER AK, 1986, NATURE, V319, P768, DOI 10.1038/319768a0 BIRD S, 2001, NLTK Project. Natural Language Toolkit Documentation Byeon W, 2019, J COMPUT SCI-NETH, V32, P36, DOI 10.1016/j.jocs.2019.02.005 Arriaza MC, 2016, QUATERNARY SCI REV, V139, P43, DOI 10.1016/j.quascirev.2016.03.005 Cifuentes-Alcobendas G, 2019, SCI REP-UK, V9, DOI 10.1038/s41598-019-55439-6 Courtenay LA, 2019, QUATERN INT, V517, P55, DOI 10.1016/j.quaint.2018.12.019 Courtenay LA, 2019, PALAEOGEOGR PALAEOCL, V522, P28, DOI 10.1016/j.palaeo.2019.03.007 Domínguez-Rodrigo M, 2018, SCI REP-UK, V8, DOI 10.1038/s41598-018-24071-1 Domínguez-Rodrigo M, 2017, J ARCHAEOL SCI, V86, P14, DOI 10.1016/j.jas.2017.08.001 DOMINGUEZ-RODRIGOM, 2019, Successfulclassificationofexperimentalbonesurfacemodifications(BSM)throughmachinelearningalgorithms:asolutiontothecontroversialuseofBSMinpaleoanthropology?, VArchaeolAnthropolSci11, P2711 DOMINGUEZ-RODRIGOM&FERNANDEZ-LOPEZS ALCALAL, 2011, JournalofTaphonomy9, P1 DONTHUN KUMARS, 2021, Howtoconductabibliometricanalysis:Anoverviewandguidelines, VJBusRes133, P285 FARIASMT ANGELUCIACB&PASSARELLIB, 2021, Webscrapinganddatascienceinappliedresearchincommunication:Astudyononlinereviews.RevistaObservatorio7:a1en.FERNANDEZ-JALVO Y&ANDREWSP. 2016. Atlasof TaphonomicIdentifications1001+ImagesofFossilandRecentMammalBoneModification(VertebratePaleobiologyandPaleoanthropologySeries) Fernandez-Lopez Sixto Rafael, 2002, P27 FERNANDEZ-LOPEZSR, 2000, FERNANDEZ-LOPESSR.2005.Alteraciontafonomicaytafonomiaevolutiva, P149 JIANGH QIANGM&LINP, 2016, Atopicmodelingbasedbibliometricexplorationofhydropowerresearch, VRenewSustainEnergyRev57, P226 JIMENEZ-GARCIAB AZNARTEJ, 2020, Deeplearningimprovestaphonomicresolution:highaccuracyindifferentiatingtoothmarksmadebylionsandjaguars, VJRSocInterface17 KAESLERRL, 1993, AWindowofOpportunity:PeeringIntoaNewCenturyofPaleontology, VJPaleontol67, P329 Li X, 2021, J INF SCI, V47, P161, DOI 10.1177/0165551519877049 Lin LF, 2018, PLOS ONE, V13, DOI 10.1371/journal.pone.0204056 Martín-Martín A, 2021, SCIENTOMETRICS, V126, P871, DOI 10.1007/s11192-020-03690-4 Martín-Perea DM, 2020, PEERJ, V8, DOI 10.7717/peerj.8767 Mohammed S.H., 2020, Indonesian Journal of Electrical Engineering and Computer Science, V19, P353, DOI [10.11591/ijeecs.v19.i1, 10.11591/ijeecs.v19.i1.pp353-362, DOI 10.11591/IJEECS.V19.I1.PP353-362] Noruzi A, 2005, LIBRI, V55, P170, DOI 10.1515/LIBR.2005.170 OLSEN SL, 1988, J ARCHAEOL SCI, V15, P535, DOI 10.1016/0305-4403(88)90081-7 Pineda A, 2014, J ARCHAEOL SCI, V50, P84, DOI 10.1016/j.jas.2014.06.018 Pizarro-Monzo M, 2020, ARCHAEOL ANTHROP SCI, V12, DOI 10.1007/s12520-019-00966-6 Rehurek R., 2010, Proceedings of the LREC 2010 Workshop on New Challenges for NLP Frameworks Richardson L., 2007, Beautiful soup documentation Rovira C, 2021, FUTURE INTERNET, V13, DOI 10.3390/fi13020031 SANTANA TS, 2020, AN 14 WOM INF TECHN, P279 Santos BS, 2020, DATA BRIEF, V32, DOI 10.1016/j.dib.2020.106178 Scaccia JP, 2021, IMPLEMENT SCI, V16, DOI 10.1186/s13012-021-01120-4 Sequeiros L., 1998, LLULL, V21, P517 SPICHAK E, 2012, P 14 WORKSH FORM TEC, P20 Wang B, 2023, BIOLOGY-BASEL, V12, DOI 10.3390/biology12010016 Wang JW, 2022, DRUG DISCOV TODAY, V27, DOI 10.1016/j.drudis.2022.05.023 Xu YX, 2020, IEEE ACCESS, V8, P172972, DOI 10.1109/ACCESS.2020.3024819 NR 42 TC 0 Z9 0 U1 0 U2 0 PU ACAD BRASILEIRA DE CIENCIAS PI RIO JANEIRO PA RUA ANFILOFIO DE CARVALHO, 29, 3 ANDAR, 20030-060 RIO JANEIRO, BRAZIL SN 0001-3765 EI 1678-2690 J9 AN ACAD BRAS CIENC JI An. Acad. Bras. Cienc. PY 2024 VL 96 IS 3 AR e20230789 DI 10.1590/0001-3765202420230789 PG 15 WC Multidisciplinary Sciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Science & Technology - Other Topics GA A9J4F UT WOS:001285627100001 PM 39109751 DA 2024-09-05 ER PT C AU Juric, M Sandic, A Brcic, M AF Juric, Mislav Sandic, Agneza Brcic, Mario BE Koricic, M Skala, K Car, Z CincinSain, M Sruk, V Skvorc, D Ribaric, S Jerbic, B Gros, S Vrdoljak, B Mauher, M Tijan, E Katulik, T Pale, P Grbac, TG Fijan, NF Boukalov, A Cisic, D Gradisnik, V TI AI safety: state of the field through quantitative lens SO 2020 43RD INTERNATIONAL CONVENTION ON INFORMATION, COMMUNICATION AND ELECTRONIC TECHNOLOGY (MIPRO 2020) LA English DT Proceedings Paper CT 43rd International Convention on Information, Communication and Electronic Technology (MIPRO) CY SEP 28-OCT 02, 2020 CL Opatija, CROATIA DE AI safety; technical AI safety; research; surveys; bibliometrics ID INTELLIGENCE; SECURITY AB Last decade has seen major improvements in the performance of artificial intelligence which has driven wide-spread applications. Unforeseen effects of such mass-adoption has put the notion of AI safety into the public eye. AI safety is a relatively new field of research focused on techniques for building AI beneficial for humans. While there exist survey papers for the field of AI safety, there is a lack of a quantitative look at the research being conducted. The quantitative aspect gives a data-driven insight about the emerging trends, knowledge gaps and potential areas for future research. In this paper, bibliometric analysis of the literature finds significant increase in research activity since 2015. Also, the field is so new that most of the technical issues are open, including: explainability and its long-term utility, and value alignment which we have identified as the most important long-term research topic. Equally, there is a severe lack of research into concrete policies regarding AI. As we expect AI to be the one of the main driving forces of changes, AI safety is the field under which we need to decide the direction of humanity's future. C1 [Juric, Mislav; Sandic, Agneza; Brcic, Mario] Univ Zagreb, Fac Elect Engn & Comp, Zagreb, Croatia. C3 University of Zagreb RP Juric, M (corresponding author), Univ Zagreb, Fac Elect Engn & Comp, Zagreb, Croatia. EM mislav.juric2@fer.hr; agneza.sandic@fer.hr; mario.brcic@fer.hr RI Brčić, Mario/L-3415-2019 OI Brčić, Mario/0000-0002-7564-6805 CR Abel David, 2016, WORKSHOPS 30 AAAI C Adadi A, 2018, IEEE ACCESS, V6, P52138, DOI 10.1109/ACCESS.2018.2870052 Akhtar N, 2018, IEEE ACCESS, V6, P14410, DOI 10.1109/ACCESS.2018.2807385 Amodei D., 2016, ABS160606565 CORR [Anonymous], 2017, AAAI WORKSH Awad E, 2020, P NATL ACAD SCI USA, V117, P2332, DOI 10.1073/pnas.1911517117 Awad E, 2018, NATURE, V563, P59, DOI 10.1038/s41586-018-0637-6 Babcock J., 2017, ARXIV170708476 CS Barn BS, 2019, J INF COMMUN ETHICS, V18, P38, DOI 10.1108/JICES-04-2019-0039 Arrieta AB, 2020, INFORM FUSION, V58, P82, DOI 10.1016/j.inffus.2019.12.012 Brundage M., 2016, ARXIV160808196 CS Cath C, 2018, PHILOS T R SOC A, V376, DOI 10.1098/rsta.2018.0080 Cath C, 2018, SCI ENG ETHICS, V24, P505, DOI 10.1007/s11948-017-9901-7 Cervantes JA, 2020, SCI ENG ETHICS, V26, P501, DOI 10.1007/s11948-019-00151-x Chakraborty A., 2018, ARXIV181000069 CS ST Christiano P., 2018, ARXIV181008575 CS ST Coates DL, 2019, IBM J RES DEV, V63, DOI 10.1147/JRD.2019.2915062 Coglianese C, 2019, ADMIN LAW REV, V71, P1 Dafoe A., 2018, GOVERNANCE RES AGEND Dosilovic FK, 2018, 2018 41ST INTERNATIONAL CONVENTION ON INFORMATION AND COMMUNICATION TECHNOLOGY, ELECTRONICS AND MICROELECTRONICS (MIPRO), P210, DOI 10.23919/MIPRO.2018.8400040 Dwivedi YK, 2021, INT J INFORM MANAGE, V57, DOI 10.1016/j.ijinfomgt.2019.08.002 Everitt T., 2018, ARXIV180501109 CS García J, 2015, J MACH LEARN RES, V16, P1437 Guidotti R, 2019, ACM COMPUT SURV, V51, DOI 10.1145/3236009 Hagerty A., 2019, ARXIV190707892 CS Hubinger E., 2019, ARXIV190601820 CS Israelsen BW, 2019, ACM COMPUT SURV, V51, DOI 10.1145/3267338 Jobin A, 2019, NAT MACH INTELL, V1, P389, DOI 10.1038/s42256-019-0088-2 LaCroix T., 2019, ARXIV200100006 CS ST Leike J, 2017, ARXIV171109883 CS Leike J., 2018, ARXIV181107871 CS ST lrving G., 2018, ARXIV180500899 CS ST medium, BUILDING SAFE ARTIFI Mehrabi N, 2021, ACM COMPUT SURV, V54, DOI 10.1145/3457607 Mittelstadt BD, 2016, BIG DATA SOC, V3, P1, DOI 10.1177/2053951716679679 Morley J., 2019, SSRN Morley J, 2020, SCI ENG ETHICS, V26, P2141, DOI 10.1007/s11948-019-00165-5 Preece A, 2018, INTELL SYST ACCOUNT, V25, P63, DOI 10.1002/isaf.1422 Ramamoorthy A., 2018, ITU J, V1, P77 Rosenfeld A, 2019, AUTON AGENT MULTI-AG, V33, P673, DOI 10.1007/s10458-019-09408-y Rothenberger L., 2019, RELEVANCE ETHLCAL GU Russell S, 2015, AI MAG, V36, P105, DOI 10.1609/aimag.v36i4.2577 Scott P. J., 2019, ARXIV190707771 CS Soares N, 2017, FRONT COLLECT, P103, DOI 10.1007/978-3-662-54033-6_5 Soares Nate, 2015, WORKSH 29 AAAI C ART, P74 Sotala K, 2015, PHYS SCRIPTA, V90, DOI 10.1088/0031-8949/90/1/018001 Spiekermann S, 2019, P IEEE, V107, P600, DOI 10.1109/JPROC.2018.2866769 Taylor J., 2016, Ethics of Artificial Intelligence Townsend J, 2020, IEEE T NEUR NET LEAR, V31, P3456, DOI 10.1109/TNNLS.2019.2944672 Wang XM, 2019, J PARALLEL DISTR COM, V130, P12, DOI 10.1016/j.jpdc.2019.03.003 Yampolskiy R. V, 2019, ARXIV190703869 CS Yampolskiy R, 2013, TOPOI-INT REV PHILOS, V32, P217, DOI 10.1007/s11245-012-9128-9 Yu XY, 2019, IEEE T NEUR NET LEAR, V30, P2805, DOI 10.1109/TNNLS.2018.2886017 Zhang J. M., 2019, ARXIV190610742 CS ST Zhang JL, 2020, IEEE T NEUR NET LEAR, V31, P2578, DOI 10.1109/TNNLS.2019.2933524 Zhang X., 2020, ARXIV200104861 CS NR 56 TC 11 Z9 12 U1 3 U2 7 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA BN 978-953-233-099-1 PY 2020 BP 1254 EP 1259 PG 6 WC Engineering, Electrical & Electronic; Telecommunications WE Conference Proceedings Citation Index - Science (CPCI-S) SC Engineering; Telecommunications GA BT0NT UT WOS:000790326400227 DA 2024-09-05 ER PT J AU Dunkel, J Dominguez, D Borzdynski, OG Sanchez, A AF Dunkel, Juergen Dominguez, David Borzdynski, oscar G. Sanchez, Angel TI Solid Waste Analysis Using Open-Access Socio-Economic Data SO SUSTAINABILITY LA English DT Article DE solid waste management; OECD datasets; machine learning; forecasting models on countries; clustering on countries; smart cities ID DEVELOPING-COUNTRIES; NEURAL-NETWORKS; GENERATION; MANAGEMENT; PREDICTION AB Nowadays, problems related with solid waste management become a challenge for most countries due to the rising generation of waste, related environmental issues, and associated costs of produced wastes. Effective waste management systems at different geographic levels require accurate forecasting of future waste generation. In this work, we investigate how open-access data, such as provided from the Organisation for Economic Co-operation and Development (OECD), can be used for the analysis of waste data. The main idea of this study is finding the links between socio-economic and demographic variables that determine the amounts of types of solid wastes produced by countries. This would make it possible to accurately predict at the country level the waste production and determine the requirements for the development of effective waste management strategies. In particular, we use several machine learning data regression (Support Vector, Gradient Boosting, and Random Forest) and clustering models (k-means) to respectively predict waste production for OECD countries along years and also to perform clustering among these countries according to similar characteristics. The main contributions of our work are: (1) waste analysis at the OECD country-level to compare and cluster countries according to similar waste features predicted; (2) the detection of most relevant features for prediction models; and (3) the comparison between several regression models with respect to accuracy in predictions. Coefficient of determination (R2), Mean Absolute Error (MAE), Root Mean Square Error (RMSE), and Mean Absolute Percentage Error (MAPE), respectively, are used as indices of the efficiency of the developed models. Our experiments have shown that some data pre-processings on the OECD data are an essential stage required in the analysis; that Random Forest Regressor (RFR) produced the best prediction results over the dataset; and that these results are highly influenced by the quality of available socio-economic data. In particular, the RFR model exhibited the highest accuracy in predictions for most waste types. For example, for "municipal " waste, it produced, respectively, R-2 = 1 and MAPE=4.31 global error values for the test set; and for "household " waste, it, respectively, produced R-2 = 1 and MAPE=3.03. Our results indicate that the considered models (and specially RFR) all are effective in predicting the amount of produced wastes derived from input data for the considered countries. C1 [Dunkel, Juergen] Hsch Hannover, Comp Sci Dept, D-30459 Hannover, Germany. [Dominguez, David; Borzdynski, oscar G.] Univ Autonoma Madrid, Comp Engn Dept, Madrid 28049, Spain. [Sanchez, Angel] Univ Rey Juan Carlos, Comp Sci & Stat Dept, Mostoles 28933, Spain. C3 Hochschule Hannover-University of Applied Sciences & Arts; Autonomous University of Madrid; Universidad Rey Juan Carlos RP Dunkel, J (corresponding author), Hsch Hannover, Comp Sci Dept, D-30459 Hannover, Germany. EM juergen.dunkel@hs-hannover.de; david.dominguez@uam.es; oscar.gomezb@estudiante.uam.es; angel.sanchez@urjc.es RI Dominguez Carreta, David Renato/L-8715-2014; Sanchez, Angel/B-8271-2012 OI Dominguez Carreta, David Renato/0000-0003-0911-1834; Gomez Borzdynski, Oscar/0000-0001-6598-3448; Dunkel, Jurgen/0000-0003-3567-1173; Sanchez, Angel/0000-0001-9069-6985 FU Spanish Ministry of Science and Innovation [RTI2018-098019-B-I00, PID2020-114867RB-I00]; CYTED Network "IberoAmerican Thematic Network on ICT Applications for Smart Cities" [518RT0559] FX This work was funded by the Spanish Ministry of Science and Innovation projects with Grants No.: RTI2018-098019-B-I00 and PID2020-114867RB-I00; and by the CYTED Network "IberoAmerican Thematic Network on ICT Applications for Smart Cities" with Grant No.: 518RT0559. CR Abbasi M, 2016, WASTE MANAGE, V56, P13, DOI 10.1016/j.wasman.2016.05.018 Abdallah M, 2020, WASTE MANAGE, V109, P231, DOI 10.1016/j.wasman.2020.04.057 Abualigah L, 2022, EXPERT SYST APPL, V191, DOI 10.1016/j.eswa.2021.116158 Abualigah LMQ., 2019, FEATURE SELECTION EN, DOI [DOI 10.1007/978-3-030-10674-4, 10.1007/978-3-030-10674-4] Agovino M, 2016, LAND USE POLICY, V57, P669, DOI 10.1016/j.landusepol.2016.06.027 [Anonymous], 2019, Solid Waste Management Antanasijevic D, 2013, SUSTAIN SCI, V8, P37, DOI 10.1007/s11625-012-0161-9 Azevedo BD, 2021, WASTE MANAGE, V120, P772, DOI 10.1016/j.wasman.2020.11.001 BASRI HB, 1995, WASTE MANAGE RES, V13, P67, DOI 10.1177/0734242X9501300108 Beigl P, 2008, WASTE MANAGE, V28, P200, DOI 10.1016/j.wasman.2006.12.011 BOWLES MICHAEL., 2015, Machine learning in Python: Essential techniques for predictive analysis Caruso G, 2019, SOC SCI-BASEL, V8, DOI 10.3390/socsci8060186 Cubillos M, 2021, WASTE MANAGE, V127, P90, DOI 10.1016/j.wasman.2021.04.011 Cubillos M, 2020, WASTE MANAGE, V115, P8, DOI 10.1016/j.wasman.2020.06.046 Goel S., 2017, Modelling Trends in Solid and Hazardous Waste Management, P35, DOI [10.1007/978-981-10-2410-8_3, DOI 10.1007/978-981-10-2410-8_3] Guleryuz D, 2020, ENVIRON SCI TECHNOL, V3, P10 Guo HN, 2021, BIORESOURCE TECHNOL, V319, DOI 10.1016/j.biortech.2020.124114 Keser S, 2012, WASTE MANAGE, V32, P359, DOI 10.1016/j.wasman.2011.10.017 Kolekar KA, 2017, GLOBAL NEST J, V19, P511 Kolekar KA, 2016, PROCEDIA ENVIRON SCI, V35, P238, DOI 10.1016/j.proenv.2016.07.087 Kontokosta CE, 2018, COMPUT ENVIRON URBAN, V70, P151, DOI 10.1016/j.compenvurbsys.2018.03.004 Kulisz M, 2020, SUSTAINABILITY-BASEL, V12, DOI 10.3390/su122310088 Magazzino C, 2021, UTIL POLICY, V72, DOI 10.1016/j.jup.2021.101256 Márquez MY, 2008, RESOUR CONSERV RECY, V52, P1299, DOI 10.1016/j.resconrec.2008.07.011 Noori R, 2009, EXPERT SYST APPL, V36, P9991, DOI 10.1016/j.eswa.2008.12.035 Otoo D., 2014, ASIAN J SCI RES, V4, P460 Ramasami K., 2016, 2016 11 INT C EC VEH, DOI [10.1109/EVER.2016.7476430, DOI 10.1109/EVER.2016.7476424, 10.1109/ICCIC.2016.7919609, DOI 10.1109/EVER.2016.7476430] Rodriguez-Galiano V, 2015, ORE GEOL REV, V71, P804, DOI 10.1016/j.oregeorev.2015.01.001 Sharma N., 2020, PROC INT C ADV MACHI, P267 Meza JKS, 2019, HELIYON, V5, DOI 10.1016/j.heliyon.2019.e02810 Thanh NP, 2010, J ENVIRON MANAGE, V91, P2307, DOI 10.1016/j.jenvman.2010.06.016 Wu JS, 2012, ATLAS OF INTESTINAL STOMAS, P1, DOI 10.1007/978-0-387-78851-7_1 NR 32 TC 5 Z9 5 U1 1 U2 17 PU MDPI PI BASEL PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND EI 2071-1050 J9 SUSTAINABILITY-BASEL JI Sustainability PD FEB PY 2022 VL 14 IS 3 AR 1233 DI 10.3390/su14031233 PG 24 WC Green & Sustainable Science & Technology; Environmental Sciences; Environmental Studies WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Science & Technology - Other Topics; Environmental Sciences & Ecology GA YZ0BC UT WOS:000755147600001 OA Green Published, gold DA 2024-09-05 ER PT J AU Morris, V AF Morris, Victoria TI Automated Language Identification of Bibliographic Resources SO CATALOGING & CLASSIFICATION QUARTERLY LA English DT Article DE Language identification; machine learning; automatic metadata generation; metadata; legacy record enhancement AB This article describes experiments in the use of machine learning techniques at the British Library to assign language codes to catalog records, in order to provide information about the language of content of the resources described. In the first phase of the project, language codes were assigned to 1.15 million records with 99.7% confidence. The automated language identification tools developed will be used to contribute to future enhancement of over 4 million legacy records. C1 [Morris, Victoria] British Lib, Collect Metadata, Boston Spa, Wetherby, England. RP Morris, V (corresponding author), British Lib, Collect Metadata, Boston Spa, Wetherby, England. EM victoria.morris@bl.uk OI Morris, Victoria/0000-0002-5954-6994 CR Ahmed B., 2004, P STUD FAC RES DAY S Balazevic Ivana, 2016, ARXIV E PRINTS Balazevic Ivana, 2016, ARXIV E PRINTS Baldwin Timothy, 2010, Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the ACL, P229 Cavnar William B., 1994, Proceedings of SDAIR-94, 3rd Annual Symposium on Document Analysis and Information Retrieval, V161175 Dunning, 1994, COMPUTING RES LAB TE Duvenhage Bernardt, 2019, ARXIV E PRINTS GOLD EM, 1967, INFORM CONTROL, V10, P447, DOI 10.1016/S0019-9958(67)91165-5 Greenhill SJ, 2011, COMPUT LINGUIST, V37, P689, DOI 10.1162/COLI_a_00073 Library of Congress. Network Development and MARC Standards Office, 2007, MARC COD LIST LANG 2 Selamat A, 2016, J KING SAUD UNIV-COM, V28, P457, DOI 10.1016/j.jksuci.2014.12.004 Vatanen T, 2010, LREC 2010 - SEVENTH INTERNATIONAL CONFERENCE ON LANGUAGE RESOURCES AND EVALUATION, P3423 Winkelmolen Fela, 2011, ITALY NR 13 TC 3 Z9 3 U1 0 U2 9 PU ROUTLEDGE JOURNALS, TAYLOR & FRANCIS LTD PI ABINGDON PA 2-4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND SN 0163-9374 EI 1544-4554 J9 CAT CLASSIF Q JI Cat. Classif. Q. PY 2020 VL 58 IS 1 BP 1 EP 27 DI 10.1080/01639374.2019.1700201 PG 27 WC Information Science & Library Science WE Emerging Sources Citation Index (ESCI) SC Information Science & Library Science GA LD2IA UT WOS:000525854000001 DA 2024-09-05 ER PT J AU Phillips, JL Heneka, N Hickman, L Lam, L Shaw, T AF Phillips, Jane L. Heneka, Nicole Hickman, Louise Lam, Lawrence Shaw, Tim TI Impact of a novel online learning module on specialist palliative care nurses' pain assessment competencies and patients' reports of pain: Results from a quasi-experimental pilot study SO PALLIATIVE MEDICINE LA English DT Article DE Palliative care; nurses; pain assessment; learning; education-professional; intervention; translational medical research; teaching materials; patient-centred outcome research; inpatient ID SPACED EDUCATION; ASSESSMENT TOOLS; MANAGEMENT; BEHAVIOR; OUTCOMES; STANDARDS; PROGRAM; HEALTH AB Background: Pain is a complex multidimensional phenomenon moderated by consumer, provider and health system factors. Effective pain management cuts across professional boundaries, with failure to screen and assess contributing to the burden of unrelieved pain. Aim: To test the impact of an online pain assessment learning module on specialist palliative care nurses' pain assessment competencies, and to determine whether this education impacted positively on palliative care patients' reported pain ratings. Design: A quasi-experimental pain assessment education pilot study utilising 'Qstream (c)', an online methodology to deliver II case-based pain assessment learning scenarios, developed by an interdisciplinary expert panel and delivered to participants' work emails over a 28-day period in mid-2012. The 'Self-Perceived Pain Assessment Competencies' survey and chart audit data, including patient-reported pain intensity ratings, were collected pre-intervention (TI) and post-intervention (T2) and analysed using inferential statistics to determine key outcomes. Setting/participants: Nurses working at two Australian inpatient specialist palliative care services in 2012. Results: The results reported conform to the Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) Guidelines. Participants who completed the education intervention (n = 34) increased their pain assessment knowledge, assessment tool knowledge and confidence to undertake a pain assessment (p < 0.001). Participants were more likely to document pain intensity scores in patients' medical records than non-participants (95% confidence interval = 7.3%-22.7%, p = 0.021). There was also a significant reduction in the mean patient-reported pain ratings between the admission and audit date at post-test of 1.5 (95% confidence interval = 0.7-2.3) units in pain score. Conclusion: This pilot confers confidence of the education interventions capacity to improve specialist palliative care nurses' pain assessment practices and to reduce patient-rated pain intensity scores. C1 [Phillips, Jane L.] Univ Notre Dame, Sch Nursing, Sydney, NSW 2007, Australia. [Phillips, Jane L.] Cunningham Ctr Palliat Care, POB 944, Sydney, NSW 2007, Australia. [Hickman, Louise] Univ Technol Sydney, Fac Hlth, Sydney, NSW 2007, Australia. [Lam, Lawrence] Hong Kong Inst Educ, Dept Hlth & Phys Educ, Hong Kong, Hong Kong, Peoples R China. [Lam, Lawrence] Univ Sydney, Sydney Med Sch, Sydney, NSW 2006, Australia. [Shaw, Tim] Univ Sydney, Sydney Med Sch, WEDG, Sydney, NSW 2006, Australia. C3 The University of Notre Dame Australia; University of Technology Sydney; Education University of Hong Kong (EdUHK); University of Sydney; University of Sydney RP Phillips, JL (corresponding author), Cunningham Ctr Palliat Care, POB 944, Sydney, NSW 2007, Australia. EM jane.phillips@nd.edu.au RI Hickman, Louise D/AAV-1449-2020; Phillips, Jane/A-7780-2015; Lam, Lawrence/HTP-2419-2023; Heneka, Nicole/AAP-1807-2021 OI Hickman, Louise D/0000-0002-5116-6559; Phillips, Jane/0000-0002-3691-8230; Lam, Lawrence/0000-0001-6183-6854; Heneka, Nicole/0000-0001-8102-1871; shaw, tim/0000-0003-0783-1918 FU Curran Foundation; St Vincent's Clinic Multidisciplinary Research Grant; Cancer Institute New South Wales Academic Chairs Program FX This research was undertaken, in part, with funding support from the Curran Foundation, St Vincent's Clinic Multidisciplinary Research Grant and the Cancer Institute New South Wales Academic Chairs Program. CR Allard P, 2001, J Palliat Med, V4, P191, DOI 10.1089/109662101750290227 [Anonymous], 2000, A framework for development and evaluation of RCTs for complex interventions to improve health [Anonymous], 2022, CLIN PRACTICE GUIDEL Berry P H, 2000, Pain Manag Nurs, V1, P3, DOI 10.1053/jpmn.2000.5833 Bruera E, 2005, SUPPORT CARE CANCER, V13, P228, DOI 10.1007/s00520-004-0692-4 BRUNIER G, 1995, J PAIN SYMPTOM MANAG, V10, P436, DOI 10.1016/0885-3924(95)00020-Y Carr E., 2003, Learning in Health and Social Care, V2, P6, DOI [DOI 10.1046/j.1473-6861.2003.00038.x, 10.1046/j.14736861.2003.00038.x, DOI 10.1046/J.14736861.2003.00038.X] Cohen MZ, 2003, J PAIN SYMPTOM MANAG, V25, P519, DOI 10.1016/S0885-3924(03)00068-X Cummings GG, 2011, J PAIN SYMPTOM MANAG, V41, P915, DOI 10.1016/j.jpainsymman.2010.07.017 Curran VR, 2005, MED EDUC, V39, P561, DOI 10.1111/j.1365-2929.2005.02173.x de Rond MEJ, 2000, J PAIN SYMPTOM MANAG, V20, P424, DOI 10.1016/S0885-3924(00)00209-8 Dworkin RH, 2008, J PAIN, V9, P105, DOI 10.1016/j.jpain.2007.09.005 Dy SM, 2008, J CLIN ONCOL, V26, P3879, DOI 10.1200/JCO.2007.15.9517 Dy SM, 2010, CANCER J, V16, P500, DOI 10.1097/PPO.0b013e3181f45853 Eagar K, 2010, AUST HEALTH REV, V34, P186, DOI 10.1071/AH08718 Franck LS, 2009, PAIN RES MANAG, V14, P13, DOI 10.1155/2009/856587 Ger LP, 2004, J PAIN SYMPTOM MANAG, V27, P61, DOI 10.1016/j.jpainsymman.2003.05.006 Herr K, 2010, J PAIN SYMPTOM MANAG, V39, P803, DOI 10.1016/j.jpainsymman.2009.09.025 Hjermstad MJ, 2008, PALLIATIVE MED, V22, P895, DOI 10.1177/0269216308095701 Holen JC, 2006, J PAIN SYMPTOM MANAG, V32, P567, DOI 10.1016/j.jpainsymman.2006.05.025 Kerfoot BP, 2008, J UROLOGY, V179, P2351, DOI 10.1016/j.juro.2008.01.126 Kerfoot BP, 2010, AM J PREV MED, V39, P472, DOI 10.1016/j.amepre.2010.07.016 Kerfoot BP, 2010, J AM COLL SURGEONS, V211, P331, DOI 10.1016/j.jamcollsurg.2010.04.023 Kerfoot BP, 2010, J UROLOGY, V183, P678, DOI 10.1016/j.juro.2009.10.005 Kerns RD, 2003, J REHABIL RES DEV, V40, P371, DOI 10.1682/JRRD.2003.09.0371 Luckett T, 2014, ASIA-PAC J CLIN ONCO, V10, pE99, DOI 10.1111/ajco.12040 Mansouri M, 2007, J CONTIN EDUC HEALTH, V27, P6, DOI 10.1002/chp.88 McDonald MV, 2005, J PAIN SYMPTOM MANAG, V29, P474, DOI 10.1016/j.jpainsymman.2004.08.018 Miaskowski C, 2010, ONCOL NURS FORUM, V37, P27, DOI 10.1188/10.ONF.S1.27-32 Michie S, 2011, IMPLEMENT SCI, V6, DOI 10.1186/1748-5908-6-42 Norman GR., 2005, Evid Based Med, V10, P66, DOI [10.1136/ebm.10.3.66-a, DOI 10.1136/ebm.10.3.66-a] Palliative Care Outcomes Collaboration, 2012, PAT CAR EXP SURV RES Phillips JL, 2010, LEVEL QUALITY END OF Schiavenato M, 2010, CLIN J PAIN, V26, P667, DOI 10.1097/AJP.0b013e3181e72507 Shaw TJ, 2012, BMJ QUAL SAF, V21, P819, DOI 10.1136/bmjqs-2011-000702 Shaw T, 2011, J CONTIN EDUC HEALTH, V31, P103, DOI 10.1002/chp.20113 Sherman Deborah Witt, 2004, J Contin Educ Nurs, V35, P107 Sherman DW, 2004, J CONTIN EDUC NURS, V35, P141 Stiles CR, 2010, J PAIN SYMPTOM MANAG, V40, P301, DOI 10.1016/j.jpainsymman.2009.12.011 Therapeutic Guidelines, 2010, THER GUID PALL CAR V NR 40 TC 23 Z9 23 U1 1 U2 13 PU SAGE PUBLICATIONS LTD PI LONDON PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND SN 0269-2163 EI 1477-030X J9 PALLIATIVE MED JI Palliat. Med. PD JUN PY 2014 VL 28 IS 6 BP 521 EP 529 DI 10.1177/0269216314527780 PG 9 WC Health Care Sciences & Services; Public, Environmental & Occupational Health; Medicine, General & Internal WE Science Citation Index Expanded (SCI-EXPANDED) SC Health Care Sciences & Services; Public, Environmental & Occupational Health; General & Internal Medicine GA AI9NH UT WOS:000337258800008 PM 24685649 DA 2024-09-05 ER PT C AU Salatino, AA Osborne, F Thanapalasingam, T Motta, E AF Salatino, Angelo A. Osborne, Francesco Thanapalasingam, Thiviyan Motta, Enrico BE Doucet, A Isaac, A Golub, K Aalberg, T Jatowt, A TI The CSO Classifier: Ontology-Driven Detection of Research Topics in Scholarly Articles SO DIGITAL LIBRARIES FOR OPEN KNOWLEDGE, TPDL 2019 SE Lecture Notes in Computer Science LA English DT Proceedings Paper CT 23rd International Conference on Theory and Practice of Digital Libraries (TPDL) CY SEP 09-12, 2019 CL Oslo Metropolitan Univ, Oslo, NORWAY HO Oslo Metropolitan Univ DE Scholarly data; Digital libraries; Bibliographic data; Ontology; Text mining; Topic detection; Word embeddings; Science of science AB Classifying research papers according to their research topics is an important task to improve their retrievability, assist the creation of smart analytics, and support a variety of approaches for analysing and making sense of the research environment. In this paper, we present the CSO Classifier, a new unsupervised approach for automatically classifying research papers according to the Computer Science Ontology (CSO), a comprehensive ontology of research areas in the field of Computer Science. The CSO Classifier takes as input the metadata associated with a research paper (title, abstract, keywords) and returns a selection of research concepts drawn from the ontology. The approach was evaluated on a gold standard of manually annotated articles yielding a significant improvement over alternative methods. C1 [Salatino, Angelo A.; Osborne, Francesco; Thanapalasingam, Thiviyan; Motta, Enrico] Open Univ, Knowledge Media Inst, Milton Keynes MK7 6AA, Bucks, England. C3 Open University - UK RP Salatino, AA (corresponding author), Open Univ, Knowledge Media Inst, Milton Keynes MK7 6AA, Bucks, England. EM angelo.salatino@open.ac.uk; francesco.osborne@open.ac.uk; thiviyan.thanapalasingam@open.ac.uk; enrico.motta@open.ac.uk RI Salatino, Angelo A./AAD-7423-2022; Osborne, Francesco/HGU-2673-2022 OI Salatino, Angelo A./0000-0002-4763-3943; Osborne, Francesco/0000-0001-6557-3131; Thanapalasingam, Thiviyan/0000-0002-0170-9105; Motta, Enrico/0000-0003-0015-1952 CR [Anonymous], 2015, NAACL HLT 2015 2015 [Anonymous], 1998, P DARPA BROADC NEWS [Anonymous], 2013, P WORKSHOP ICLR 2013 Bhatia S, 2016, PROCEEDINGS OF 2016 FUTURE TECHNOLOGIES CONFERENCE (FTC), P958, DOI 10.1109/FTC.2016.7821720 Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993 Bolelli L, 2009, LECT NOTES COMPUT SC, V5478, P776, DOI 10.1007/978-3-642-00958-7_84 Caragea C., 2015, COTRAINING TOPIC CLA Chernyak E, 2015, WSDM'15: PROCEEDINGS OF THE EIGHTH ACM INTERNATIONAL CONFERENCE ON WEB SEARCH AND DATA MINING, P429, DOI 10.1145/2684822.2697032 Decker S.L., 2007, DETECTION BURSTY EME Duvvuru A, 2013, PROCEDIA COMPUT SCI, V20, P439, DOI 10.1016/j.procs.2013.09.300 Griffiths TL, 2004, P NATL ACAD SCI USA, V101, P5228, DOI 10.1073/pnas.0307752101 LANDIS JR, 1977, BIOMETRICS, V33, P159, DOI 10.2307/2529310 Lilleberg J, 2015, PROCEEDINGS OF 2015 IEEE 14TH INTERNATIONAL CONFERENCE ON COGNITIVE INFORMATICS & COGNITIVE COMPUTING (ICCI*CC), P136, DOI 10.1109/ICCI-CC.2015.7259377 Mai F, 2018, ACM-IEEE J CONF DIG, P169, DOI 10.1145/3197026.3197039 Mikolov T., 2013, Advances in Neural Information Processing Systems, P3111 Narayanan A, 2009, P IEEE S SECUR PRIV, P173, DOI 10.1109/SP.2009.22 Osborne Francesco, 2014, The Semantic Web: Trends and Challenges. 11th International Conference (ESWC 2014). Proceedings: LNCS 8465, P114, DOI 10.1007/978-3-319-07443-6_9 Osborne Francesco, 2012, The Semantic Web. 11th International Semantic Web Conference (ISWC 2012). Proceedings, P410, DOI 10.1007/978-3-642-35176-1_26 Osborne F, 2016, LECT NOTES COMPUT SC, V9982, P383, DOI 10.1007/978-3-319-46547-0_33 Osborne F, 2015, LECT NOTES COMPUT SC, V9366, P408, DOI 10.1007/978-3-319-25007-6_24 Osborne F, 2013, LECT NOTES COMPUT SC, V8218, P460, DOI 10.1007/978-3-642-41335-3_29 Salatino A., 2018, CLASSIFYING RES PAPE Salatino AC, 2019, J PERS DISORD, V33, P776, DOI 10.1521/pedi_2018_32_377 Salatino AA, 2018, LECT NOTES COMPUT SC, V11137, P187, DOI 10.1007/978-3-030-00668-6_12 Satopaa V., 2011, Proceedings of the 2011 31st International Conference on Distributed Computing Systems Workshops (ICDCS Workshops), P166, DOI 10.1109/ICDCSW.2011.20 Small H, 2014, RES POLICY, V43, P1450, DOI 10.1016/j.respol.2014.02.005 Thanapalasingam T, 2018, LECT NOTES COMPUT SC, V11137, P341, DOI 10.1007/978-3-030-00668-6_21 Zhang Y, 2018, J INFORMETR, V12, P1099, DOI 10.1016/j.joi.2018.09.004 NR 28 TC 39 Z9 41 U1 0 U2 3 PU SPRINGER INTERNATIONAL PUBLISHING AG PI CHAM PA GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND SN 0302-9743 EI 1611-3349 BN 978-3-030-30760-8; 978-3-030-30759-2 J9 LECT NOTES COMPUT SC PY 2019 VL 11799 BP 296 EP 311 DI 10.1007/978-3-030-30760-8_26 PG 16 WC Information Science & Library Science WE Conference Proceedings Citation Index - Social Science & Humanities (CPCI-SSH) SC Information Science & Library Science GA BP4BL UT WOS:000550576600026 OA Green Submitted DA 2024-09-05 ER PT J AU Urooj, A Khan, HU Iqbal, S Alghobiri, M AF Urooj, Amber Khan, Hikmat Ullah Iqbal, Saqib Alghobiri, Mohammed TI Exploring Author, Article, and Venue Feature Sets for Rising Star Prediction in Academic Network SO JOURNAL OF SCHOLARLY PUBLISHING LA English DT Article DE machine learning; scientometrics; rising star prediction; feature engineering; academic ranking AB Rising stars are the researchers who are relatively new to the research area and have published fewer research articles, but their research work is of such standard that they have the potential to be top researchers in near future. Research work on the evaluation of researchers and prediction of rising stars is getting attention because it can be useful for selecting capable candidates for the jobs, hiring young faculty members for institutes, and seeking reviewers for journals and conferences and members for different committees. In this research study, the authors address the research problem of finding rising stars and propose novel features in diverse feature sets of three categories: article, author, and venue. The real-world data set has been extracted, preprocessed, and used from the Web of Science for empirical analysis. Several diverse supervised machine learning, ensemble learning algorithms, and deep learning are applied to the data set. The results, using classifiers, are compared based on standard performance evaluation measures to reveal the significance of the proposed as well as existing features. It also shows that the novel features play a significant role in finding rising stars. The ensemble-based machine learning classifier generalized linear model outperforms all other classifiers and gives the highest accuracy and F-measure compared to other models and the existing studies in the relevant literature. C1 [Urooj, Amber; Khan, Hikmat Ullah] COMATS Univ Islamabad, Dept Comp Sci, Wah Campus, Wah Cantt, Pakistan. [Khan, Hikmat Ullah] Namal Univ Mianwali, Dept Comp Sci, Mianwali, Pakistan. [Iqbal, Saqib] Al Ain Univ, Coll Engn, Al Ain, U Arab Emirates. [Alghobiri, Mohammed] King Khalid Univ, Dept informat Syst, Abha, Asir, Saudi Arabia. C3 King Khalid University RP Urooj, A (corresponding author), COMATS Univ Islamabad, Dept Comp Sci, Wah Campus, Wah Cantt, Pakistan. RI Khan, Hikmat Ullah/GZG-2251-2022 CR Abdul-Majeed G, 2021, SCIENTOMETRICS, V126, P2349, DOI 10.1007/s11192-021-03866-6 ABRAHAMSON E, 1991, ACAD MANAGE REV, V16, P586, DOI 10.2307/258919 Agasisti T, 2021, SCIENTOMETRICS, V126, P5819, DOI 10.1007/s11192-021-03978-z Ahmad H, 2017, IEEE ACCESS, V5, P4104, DOI 10.1109/ACCESS.2017.2682162 Amjad Tehmina, 2018, 2018 IEEE 14 INT C E, P1 Amjad Tehmina, 2018, RANKING AUTHORS [Anonymous], INTEGRATED SOLUTION [Anonymous], PREDICTIONS RISING V [Anonymous], USING MACHINE LEARNI [Anonymous], ACAD RISING STAR PRE Bibi F, 2018, APPL SCI-BASEL, V8, DOI 10.3390/app8101824 Bin-Obaidellah, SCIENTOMETRIC INDICA Bin-Obaidellah O, 2019, 2019 7TH INTERNATIONAL CONFERENCE ON SMART COMPUTING & COMMUNICATIONS (ICSCC), P1 Chang LLH, 2021, SCIENTOMETRICS, V126, P7373, DOI 10.1007/s11192-021-04037-3 Daud, ACAD RISING STAR PRE Daud Ali, 2013, Database Systems for Advanced Applications.18th International Conference, DASFAA 2013. Proceedings, P13, DOI 10.1007/978-3-642-37487-6_4 Daud A, 2021, FUTURE GENER COMP SY, V115, P798, DOI 10.1016/j.future.2020.10.013 Daud A, 2017, WWW'17 COMPANION: PROCEEDINGS OF THE 26TH INTERNATIONAL CONFERENCE ON WORLD WIDE WEB, P33, DOI 10.1145/3041021.3054137 Daud A, 2015, SCIENTOMETRICS, V102, P1687, DOI 10.1007/s11192-014-1455-8 Ding F, 2018, IEEE ACCESS, V6, P29436, DOI 10.1109/ACCESS.2018.2812923 Dycke Nils, 2021, ARXIV, DOI DOI 10.48550/ARXIV.2109.01190 Farooq M, 2019, ELECTRON LIBR, V37, P67, DOI 10.1108/EL-03-2018-0064 Farooq M, 2017, INT J ADV APPL SCI, V4, P148, DOI 10.21833/ijaas.2017.06.021 Farooq M, 2017, IEEE ACCESS, V5, P19588, DOI 10.1109/ACCESS.2017.2744798 Gopavarapu AR., 2019, International Journal of Advance Research, Ideas, and Innovations in Technology, V5, P441 Kanellos I, 2021, PROC INT CONF DATA, P1997, DOI 10.1109/ICDE51399.2021.00190 Le LT, 2016, LECT NOTES ARTIF INT, V9622, P25, DOI 10.1007/978-3-662-49390-8_3 Li XL, 2009, LECT NOTES COMPUT SC, V5463, P288, DOI 10.1007/978-3-642-00887-0_25 Lindahl J, 2018, J INFORMETR, V12, P518, DOI 10.1016/j.joi.2018.04.002 Ma YL, 2020, COGN COMPUT, V12, P296, DOI 10.1007/s12559-019-09680-w Mahmood Z, 2021, KNOWL-BASED SYST, V211, DOI 10.1016/j.knosys.2020.106506 Malik N, 2019, NEW REV HYPERMEDIA M, V25, P182, DOI 10.1080/13614568.2019.1653996 Nawaz, RISING STARS PREDICT Nawaz A, 2022, ELECTRON COMMER RES, V22, P53, DOI 10.1007/s10660-021-09476-x Nie YB, 2019, SCIENTOMETRICS, V120, P461, DOI 10.1007/s11192-019-03131-x Ning Zhalong, 2017, 2017 INT S NETW COMP, P1 Ning ZL, 2017, IEEE ACCESS, V5, P24229, DOI 10.1109/ACCESS.2017.2765363 Nykl M, 2015, J INFORMETR, V9, P777, DOI 10.1016/j.joi.2015.07.002 Panagopoulos G, 2017, J INFORMETR, V11, P198, DOI 10.1016/j.joi.2016.11.003 Piazza A, 2020, INT J MANAG REV, V22, P264, DOI 10.1111/ijmr.12225 Scarpa F, 2018, SCIENTOMETRICS, V117, P997, DOI 10.1007/s11192-018-2913-5 Shah, 2016, INT J COMPUTER SCI I, P617 Zhang CX, 2017, LECT NOTES COMPUT SC, V10366, P475, DOI 10.1007/978-3-319-63579-8_36 Zhang Chuxu, 2016, ARXIV, DOI DOI 10.48550/ARXIV.1606.05752 Zhang J, 2016, PROCEEDINGS OF THE 25TH INTERNATIONAL CONFERENCE ON WORLD WIDE WEB (WWW'16 COMPANION), P395, DOI 10.1145/2872518.2890524 Zhu L, 2019, SCIENTOMETRICS, V121, P137, DOI 10.1007/s11192-019-03194-w Zia MA, 2017, J ADV COMPUT INTELL, V21, P650, DOI 10.20965/jaciii.2017.p0650 NR 47 TC 0 Z9 0 U1 4 U2 13 PU UNIV TORONTO PRESS INC PI TORONTO PA JOURNALS DIVISION, 5201 DUFFERIN ST, DOWNSVIEW, TORONTO, ON M3H 5T8, CANADA SN 1198-9742 EI 1710-1166 J9 J SCHOLARLY PUBL JI J. Sch. Publ. PD JUL 1 PY 2023 VL 54 IS 3 BP 445 EP 473 DI 10.3138/jsp-2022-0025 EA JUN 2023 PG 29 WC Humanities, Multidisciplinary; Information Science & Library Science WE Social Science Citation Index (SSCI); Arts & Humanities Citation Index (A&HCI) SC Arts & Humanities - Other Topics; Information Science & Library Science GA N4XJ2 UT WOS:001033650100001 DA 2024-09-05 ER PT J AU Li, XC Wu, Q Liu, YY AF Li, Xingchen Wu, Qiang Liu, Yuanyuan TI A quantitative analysis of researcher citation personal display considering disciplinary differences and influence factors SO SCIENTOMETRICS LA English DT Article DE Personal website; Citation personal display; Bibliometric indicators; Citation analysis; Binary logistic regression; Disciplinary differences; Influence factors ID HIGHLY CITED RESEARCHERS; BIBLIOMETRIC INDICATORS; SCIENTIFIC IMPACT; WEB; INDEX; VISIBILITY; HOMEPAGES; RANK AB Personal websites are a good place not only for the scientists to show a wealth of content, but also for researchers to excavate some useful information related to quantitative evaluation. Based on researchers' personal websites this study aims to investigate the degree of citation personal display (CPD) in three major disciplines (chemistry, mathematics, and physics), as well as disciplinary differences in CPD. This paper also studies the factors which have influences on CPD by using binary logistic regression. The datasets studied consisted of 5771 researchers in 39 U.S. universities. Results show that CPD varies significantly by discipline, with chemistry researchers having the highest CPD (15.3%), followed by physics researchers (12.7%), and mathematics researchers (7.1%). The binary logistic models indicate that total citations, h-index, and citations per publication have significantly positive effects on CPD in chemistry; for mathematics, total citations and h-index do; and for physics, only total citations does (p < .05). The significantly positive influence of publication counts occurs in chemistry and mathematics, and significantly negative influences of scientific age and academic rank only appear in chemistry (p < .05). C1 [Li, Xingchen; Wu, Qiang; Liu, Yuanyuan] Univ Sci & Technol China, Sch Management, 96 Jinzhai Rd, Hefei 230026, Anhui, Peoples R China. C3 Chinese Academy of Sciences; University of Science & Technology of China, CAS RP Wu, Q (corresponding author), Univ Sci & Technol China, Sch Management, 96 Jinzhai Rd, Hefei 230026, Anhui, Peoples R China. EM qiangwu@ustc.edu.cn RI Wu, Qiang/HLX-9353-2023; liu, yuanyuan/IQS-2755-2023; Wu, Qiang/JAC-9731-2023 OI Wu, Qiang/0000-0002-1308-1669 FU National Natural Science Foundation of China [71273250] FX This research was supported by the National Natural Science Foundation of China (Grant No. 71273250). We would like to thank the editor and anonymous reviewers for their constructive comments and suggestions, which helped us to improve the paper. CR Ajiferuke I, 2004, SCIENTOMETRICS, V59, P43, DOI 10.1023/B:SCIE.0000013298.22207.2b Ball P, 2005, NATURE, V436, P900, DOI 10.1038/436900a Barjak F, 2007, J AM SOC INF SCI TEC, V58, P200, DOI 10.1002/asi.20476 Bordons M, 2015, SCIENTOMETRICS, V102, P1385, DOI 10.1007/s11192-014-1491-4 Bornmann L, 2014, J INFORMETR, V8, P581, DOI 10.1016/j.joi.2014.04.008 Bornmann L, 2013, J INFORMETR, V7, P562, DOI 10.1016/j.joi.2013.02.005 Chung CJ, 2012, SCIENTOMETRICS, V93, P207, DOI 10.1007/s11192-012-0707-8 Costas R, 2010, J AM SOC INF SCI TEC, V61, P1564, DOI 10.1002/asi.21348 Cronin B, 2006, J AM SOC INF SCI TEC, V57, P1275, DOI 10.1002/asi.20354 Dumont K, 2005, COMPUT HUM BEHAV, V21, P73, DOI 10.1016/j.chb.2004.02.001 Espadas J, 2008, J AM SOC INF SCI TEC, V59, P1727, DOI 10.1002/asi.20865 GILBERT GN, 1977, SOC STUD SCI, V7, P113 Hirsch JE, 2005, P NATL ACAD SCI USA, V102, P16569, DOI 10.1073/pnas.0507655102 Jensen P, 2009, SCIENTOMETRICS, V78, P467, DOI 10.1007/s11192-007-2014-3 Knorr-Cetina K., 1981, MANUFACTURE KNOWLEDG, P68 Kousha K, 2014, J ASSOC INF SCI TECH, V65, P1615, DOI 10.1002/asi.23070 Larivière V, 2010, J AM SOC INF SCI TEC, V61, P126, DOI 10.1002/asi.21226 Latour B., 1986, LAB LIFE CONSTRUCTIO, P208 Li XC, 2017, J DOC, V73, P733, DOI 10.1108/JD-09-2016-0108 Lillquist E, 2010, SCIENTOMETRICS, V84, P749, DOI 10.1007/s11192-010-0162-3 Mas-Bleda A, 2014, SCIENTOMETRICS, V101, P337, DOI 10.1007/s11192-014-1345-0 Más-Bleda A, 2014, J DOC, V70, P148, DOI 10.1108/JD-12-2012-0156 Más-Bleda A, 2013, SCIENTOMETRICS, V96, P51, DOI 10.1007/s11192-013-0952-5 Merton RK., 1973, The sociology of science, P267 Radicchi F, 2008, P NATL ACAD SCI USA, V105, P17268, DOI 10.1073/pnas.0806977105 Slyder JB, 2011, SCIENTOMETRICS, V89, P955, DOI 10.1007/s11192-011-0467-x Van Noorden R., 2007, HIRSCH INDEX RANKS T Wildgaard L, 2014, SCIENTOMETRICS, V101, P125, DOI 10.1007/s11192-014-1423-3 Wouters P. F., 1999, INFORMALISIERUNG NR 29 TC 4 Z9 4 U1 1 U2 68 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0138-9130 EI 1588-2861 J9 SCIENTOMETRICS JI Scientometrics PD NOV PY 2017 VL 113 IS 2 BP 1093 EP 1112 DI 10.1007/s11192-017-2501-0 PG 20 WC Computer Science, Interdisciplinary Applications; Information Science & Library Science WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Computer Science; Information Science & Library Science GA FJ7EN UT WOS:000412920200021 DA 2024-09-05 ER PT J AU Mota, FB Braga, LAM Cabral, BP AF Mota, Fabio Batista Braga, Luiza Amara Maciel Cabral, Bernardo Pereira TI Alternative Dispute Resolution Research Landscape from 1981 to 2022 SO GROUP DECISION AND NEGOTIATION LA English DT Article DE Alternative dispute resolution; Scientific publications; Bibliometrics; Network analysis; Latent Dirichlet allocation analysis ID MEDICAL MALPRACTICE; MEDIATION; LITIGATION; ADR AB Alternative dispute resolution (ADR) is an important means of resolving disputes outside of traditional legal frameworks. It is usually adopted because of its flexibility, cost-effectiveness, and ability to preserve relationships that a contentious court battle might damage. This study aims to evaluate the scientific publication related to ADR. To do so, we used metadata of ADR-related articles from 1981 to 2022 collected in the Web of Science Core Collection and carried out a bibliometric, network, and latent Dirichlet allocation analysis. Our results indicate that ADR research is concentrated in North America, with research organizations from the United States accounting for most publications. At the same time, recent years have seen a shift to a more diverse group of countries, with the Chinese City University of Hong Kong and the Australian Victoria University leading in the last five years. The five main topics in ADR research include online dispute resolution for consumer protection, mediation for family law, arbitration in medical malpractice cases, ADR in construction projects, and ADR in employment law. The most frequent research areas assigned to ADR publications are Government & Law and Business & Economics. Network results show keywords ADR, Mediation, and Arbitration as central nodes, while the Chinese and North American organizations established the most frequent collaborations, addressing ADR applications in various sectors. The findings underscore the interdisciplinary nature of ADR research, its adaptability across industries, and the importance of cross-cultural research partnerships. C1 [Mota, Fabio Batista; Braga, Luiza Amara Maciel; Cabral, Bernardo Pereira] Fundacao Oswaldo Cruz, Oswaldo Cruz Inst, Lab Cellular Commun, Rio De Janeiro, Brazil. [Cabral, Bernardo Pereira] Univ Fed Bahia, Dept Econ, Salvador, Brazil. C3 Fundacao Oswaldo Cruz; Universidade Federal da Bahia RP Mota, FB (corresponding author), Fundacao Oswaldo Cruz, Oswaldo Cruz Inst, Lab Cellular Commun, Rio De Janeiro, Brazil. EM fabio.mota@fiocruz.br; luiza.braga@fiocruz.br; bernardo.cabral@fiocruz.br RI Mota, Fabio Batista/G-3164-2015; Braga, Luiza Amara Maciel/KUF-1504-2024 OI Mota, Fabio Batista/0000-0003-2401-7336; Braga, Luiza Amara Maciel/0000-0002-1726-2643 CR Abedi F, 2011, J GLOB MANAG, V2 Abedi F, 2019, INT J LAW INFORM TEC, V27, P209, DOI 10.1093/ijlit/eaz005 Abedi F, 2019, COMPUT LAW SECUR REV, V35, DOI 10.1016/j.clsr.2019.05.003 ABEL RL, 1981, SOCIOL TRAV, V81, P32 Akhtar N., 2022, J CONT ISSUES BUS GO, DOI [10.47750/cibg.2022.28.03.015, DOI 10.47750/CIBG.2022.28.03.015] [Anonymous], 2023, J LEGAL AFFAIRS DISP [Anonymous], 2023, NEGOTIATION J Balcerzak GA, 2008, PATIENT SAF QUAL HEA, P44 Balzer B, 2021, RAND J ECON, V52, P415, DOI 10.1111/1756-2171.12374 Barrett Jerome., 2004, HIST ALTERNATIVE DIS Beebeejaun Z, 2022, J WORLD ENERGY LAW B, V15, P97, DOI 10.1093/jwelb/jwac004 Bradford B, 2023, LAW SOCIAL INQUIRY, V48, P748, DOI 10.1017/lsi.2022.55 Camacho D, 2020, INFORM FUSION, V63, P88, DOI 10.1016/j.inffus.2020.05.009 Brophy CC, 2020, FAM COURT REV, V58, P710, DOI 10.1111/fcre.12508 Charkoudian L, 2019, CONFL RESOLUT Q, V37, P101, DOI 10.1002/crq.21264 Chen H, 2019, PERS INDIV DIFFER, V150, DOI 10.1016/j.paid.2019.109507 Chen HS, 2022, TECHNOL FORECAST SOC, V175, DOI 10.1016/j.techfore.2021.121402 Cheung SO, 2019, J LEG AFF DISPUTE RE, V11, DOI 10.1061/(ASCE)LA.1943-4170.0000287 Cheung SO, 2006, J PROF ISS ENG ED PR, V132, P48, DOI 10.1061/(ASCE)1052-3928(2006)132:1(48) Cheung SO, 2002, J CONSTR ENG M ASCE, V128, P409, DOI 10.1061/(ASCE)0733-9364(2002)128:5(409) Cortes P, 2023, LEGAL STUD, V43, P312, DOI 10.1017/lst.2022.42 Dauer EA, 2002, HEMATOL ONCOL CLIN N, V16, P1415, DOI 10.1016/S0889-8588(02)00069-2 DeSouza JR, 1998, J HEALTHC MANAG, V43, P453, DOI 10.1097/00115514-199809000-00013 Deutsch RM, 2018, FAM COURT REV, V56, P119, DOI 10.1111/fcre.12326 DeVries BE, 2018, FAM COURT REV, V56, P679, DOI 10.1111/fcre.12385 Fox S., 2009, Consulting Psychology Journal, V61, P220, DOI DOI 10.1037/A0016637 Garechana G, 2019, PLOS ONE, V14, DOI 10.1371/journal.pone.0210441 Gatto JD, 2022, ORTHOPEDICS, V45, pE47, DOI 10.3928/01477447-20211101-06 Hagg LJ, 2022, J MED INTERNET RES, V24, DOI 10.2196/33166 Hann D, 2019, ECON IND DEMOCRACY, V40, P776, DOI 10.1177/0143831X16663013 Hodson D, 2008, INT FAM LAW, P209 Ibrahim AS, 2022, LAND USE POLICY, V120, DOI 10.1016/j.landusepol.2022.106272 Illankoon IMCS, 2019, INT J CONSTR MANAG, DOI 10.1080/15623599.2019.1616415 Imam SK, 2020, PAK J CRIMINOL, P30 Jain S, 2021, ARBITR INT J ARBITR, P67 Kass Joseph S, 2016, AMA J Ethics, V18, P299, DOI 10.1001/journalofethics.2016.18.3.pfor6-1603 Kisi KP, 2020, J LEG AFF DISPUTE RE, V12, DOI 10.1061/(ASCE)LA.1943-4170.0000373 Lau ACK, 2022, PUBLIC ADMIN POLICY, V25, P264, DOI 10.1108/PAP-08-2022-0101 Lee CK, 2021, INT J CONSTR MANAG, V21, P27, DOI 10.1080/15623599.2018.1505026 Lee CK, 2018, J LEG AFF DISPUTE RE, V10, DOI 10.1061/(ASCE)LA.1943-4170.0000252 Lee CK, 2018, J LEG AFF DISPUTE RE, V10, DOI 10.1061/(ASCE)LA.1943-4170.0000245 Lee CK, 2016, INT J PROJ MANAG, V34, P494, DOI 10.1016/j.ijproman.2015.12.008 Braga LAM, 2021, COLLNET J SCIENTOMET, V15, P163, DOI 10.1080/09737766.2021.1949949 Mania K., 2015, INT COMPAR JURISPRUD, V1, P76, DOI [DOI 10.1016/J.ICJ.2015.10.006, 10.1016/j.icj.2015.10.006] McManus M., 2011, Brief History of Alternative Dispute Resolution in the United States Menkel-Meadow C, 2015, INT ENCY SOC BEHAV S Minter SP, 2018, FAM COURT REV, V56, P410, DOI 10.1111/fcre.12357 Morhe R, 2022, FAM COURT REV, V60, P411, DOI 10.1111/fcre.12662 Mueller TG, 2008, J EDUC PSYCHOL CONS, V18, P191, DOI 10.1080/10474410701864339 Newman NC, 2014, J ENG TECHNOL MANAGE, V32, P97, DOI 10.1016/j.jengtecman.2013.09.001 Ninkov A, 2022, PERSPECT MED EDUC, V11, P173, DOI 10.1007/s40037-021-00695-4 Noone MA, 2020, INT J LAW CONTEXT, V16, P108, DOI 10.1017/S1744552320000099 Nussbaum L, 2022, FAM COURT REV, V60, P777, DOI 10.1111/fcre.12675 Olapade DT, 2019, J PROP PLAN ENV LAW, V11, P67, DOI 10.1108/JPPEL-06-2018-0015 Orosco RK, 2012, J AM COLL SURGEONS, V215, P480, DOI 10.1016/j.jamcollsurg.2012.04.028 Peters S, 2021, REV CES DERECHO, V12, P3, DOI 10.21615/cesder.12.1.1 Pruett MK, 2018, FAM COURT REV, V56, P100, DOI 10.1111/fcre.12325 Qin HP, 2022, AIR SPACE LAW, V47, P347 Riveros C, 2019, REV DIREITO GV, V15, DOI 10.1590/2317-6172201914 Roche WK, 2023, ECON IND DEMOCRACY, V44, P634, DOI 10.1177/0143831X221086016 Ross WH, 2000, ACAD MANAGE REV, V25, P416, DOI 10.2307/259022 Russell ML, 2021, PEPP DISP RESOL L J, V173 Saeb A, 2018, CIV ENG J-TEHRAN, V4, P11, DOI 10.28991/cej-030965 Schmitz AJ, 2021, FAM COURT REV, V59, P250, DOI 10.1111/fcre.12572 Sgubini A, 2004, BRIDG MEDIAT Shang CS, 2020, ASIA PAC LAW REV, V28, P97, DOI 10.1080/10192557.2020.1786255 Si YT, 2022, ENERGY STRATEG REV, V41, DOI 10.1016/j.esr.2022.100859 Sohn DH, 2012, CLIN ORTHOP RELAT R, V470, P1370, DOI 10.1007/s11999-011-2206-2 Song YC, 2022, THER ADV GASTROINTES, V15, DOI 10.1177/26317745221111944 Stipanowich TJ, 2020, HARV NEGOT LAW REV Strazisar B, 2018, PRAVO, P214, DOI 10.17323/2072-8166.2018.3.214.233 Sustek P, 2017, ALTERNATIVE DISPUTE Szmania SJ, 2008, CONFL RESOLUT Q, V26, P71, DOI 10.1002/crq.224 Teague P, 2020, ILR REV, V73, P345, DOI 10.1177/0019793919872448 The government of the Hong Kong Special Administrative Region, 2023, OUR LEG SYST Thomas P, 2000, HOSP MED, V61, P302, DOI 10.12968/hosp.2000.61.5.1326 van Dijk F., 2023, OCJ, DOI [10.1108/OCJ-11-2021-0034, DOI 10.1108/OCJ-11-2021-0034] Wang JJ, 2020, J RETAILING, V96, P548, DOI 10.1016/j.jretai.2020.03.001 Wang MX, 2020, BMC HEALTH SERV RES, V20, DOI 10.1186/s12913-020-5044-7 Wang ZQJN, 2020, INT J LAW CONTEXT, V16, P165, DOI 10.1017/S1744552320000129 Wasser LA, 2021, FAM COURT REV, V59, P268, DOI 10.1111/fcre.12573 Wasserman S., 1994, Social Network Analysis Whaley KA, 2022, TRUSTS TRUSTEES, V28, pE8, DOI 10.1093/tandt/ttz115 Williams J, 2020, J LAW SOC, V47, P271, DOI 10.1111/jols.12224 Wiryawan IWG, 2020, ALTERNATIVE DISPUTE Zeller B, 2019, UNIV LAW REV, V24, P449, DOI 10.1093/ulr/unz020 NR 86 TC 0 Z9 0 U1 5 U2 15 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0926-2644 EI 1572-9907 J9 GROUP DECIS NEGOT JI Group Decis. Negot. PD DEC PY 2023 VL 32 IS 6 BP 1415 EP 1435 DI 10.1007/s10726-023-09848-8 EA AUG 2023 PG 21 WC Management; Social Sciences, Interdisciplinary WE Social Science Citation Index (SSCI) SC Business & Economics; Social Sciences - Other Topics GA U8BG5 UT WOS:001044846500001 DA 2024-09-05 ER PT C AU Baron, G AF Baron, Grzegorz BE Jedrzejowicz, P Czarnowski, I Howlett, RJ Jain, LC TI Influence of data discretization on efficiency of Bayesian classifier for authorship attribution SO KNOWLEDGE-BASED AND INTELLIGENT INFORMATION & ENGINEERING SYSTEMS 18TH ANNUAL CONFERENCE, KES-2014 SE Procedia Computer Science LA English DT Proceedings Paper CT 18th Annual International Conference on Knowledge-Based and Intelligent Information and Engineering Systems (KES) CY SEP 15-17, 2014 CL Pomeranian Sci & Technol, Gdynia, POLAND HO Pomeranian Sci & Technol DE Bayesian classifier; Naive Bayes; stylometry; authorship attribution; text analysis; classification; discretization; binarization ID DECISION TREE; NAIVE AB Authorship attribution is one of the research areas in data mining domain and various methods can be employed for performing that task. The paper presents results of research on influence of data discretization on efficiency of Naive Bayes classifier. The analysis has been carried on datasets founded on texts of two male and two female authors using the WEKA data mining software framework. The binary classification was performed separately for both datasets for wide range of parameters of discretization process in order to investigate dependency between ways of discretization and quality of classification using Naive Bayes method. The numerical results of tests have been compared and discussed and some observations and conclusions formulated. (C) 2014 The Authors. Published by Elsevier B. V. C1 Silesian Tech Univ, PL-44100 Gliwice, Poland. C3 Silesian University of Technology RP Baron, G (corresponding author), Silesian Tech Univ, PL-44100 Gliwice, Poland. EM grzegorz.baron@polsl.pl OI Baron, Grzegorz/0000-0001-8613-631X CR [Anonymous], 1993, Proceedings of the 13th International Joint Conference on Artificial Intelligence Chandra B, 2011, EXPERT SYST APPL, V38, P1293, DOI 10.1016/j.eswa.2010.06.076 Dougherty J., 1995, P 12 INT C MACH LEAR, P194, DOI [10.1016/B978-1-55860-377-6.50032-3, DOI 10.1016/B978-1-55860-377-6.50032-3] Farid DM, 2014, EXPERT SYST APPL, V41, P1937, DOI 10.1016/j.eswa.2013.08.089 Hall M., 2009, ACM SIGKDD Explor. Newsl., V11, P10, DOI DOI 10.1145/1656274.1656278 HOLMES DI, 1994, COMPUT HUMANITIES, V28, P87, DOI 10.1007/BF01830689 Jiang LX, 2009, IEEE T KNOWL DATA EN, V21, P1361, DOI 10.1109/TKDE.2008.234 John G. H., 1995, Proceedings of the Eleventh Conference on Uncertainty in Artificial Intelligence, P338, DOI DOI 10.1109/TGRS.2004.834800 Kim SB, 2006, IEEE T KNOWL DATA EN, V18, P1457, DOI 10.1109/TKDE.2006.180 Klement W, 2012, ARTIF INTELL MED, V54, P163, DOI 10.1016/j.artmed.2011.11.005 Koc L, 2012, EXPERT SYST APPL, V39, P13492, DOI 10.1016/j.eswa.2012.07.009 Koppel M, 2009, J AM SOC INF SCI TEC, V60, P9, DOI 10.1002/asi.20961 Kotsiantis S., 2006, GESTS International Transactions on Computer Science and Engineering, V32, P47 Loganantharaj R, 2007, LECT N BIOINFORMAT, V4463, P282 McCallum A., 1998, AAAI 98 WORKSH LEARN, VVolume 752, P41, DOI DOI 10.1109/TSMC.1985.6313426 Mukherjee S, 2012, PROC TECH, V4, P119, DOI 10.1016/j.protcy.2012.05.017 Muralidharan V, 2012, APPL SOFT COMPUT, V12, P2023, DOI 10.1016/j.asoc.2012.03.021 Sammut C, 2010, ENCY MACHINE LEARNIN, P713, DOI DOI 10.1007/978-1-4899-7502-7_581-1 Schneider KM, 2005, LECT NOTES COMPUT SC, V3406, P682 Setsirichok D, 2012, BIOMED SIGNAL PROCES, V7, P202, DOI 10.1016/j.bspc.2011.03.007 Stamatatos E, 1999, NINTH CONFERENCE OF THE EUROPEAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, PROCEEDINGS, P158 Stamatatos E, 2001, COMPUT HUMANITIES, V35, P193, DOI 10.1023/A:1002681919510 Stanczyk Urszula, 2013, Database and Expert Systems Applications. 24th International Conference, DEXA 2013. Proceedings: LNCS 8056, P1, DOI 10.1007/978-3-642-40173-2_1 STANCZYK U, 2013, SIST, V13, P441 Stanczyk U, 2013, J INTELL FUZZY SYST, V24, P429, DOI 10.3233/IFS-2012-0564 Valle MA, 2012, EXPERT SYST APPL, V39, P9939, DOI 10.1016/j.eswa.2011.11.126 Witten IH, 2011, MOR KAUF D, P1 Youn E, 2009, PATTERN RECOGN LETT, V30, P477, DOI 10.1016/j.patrec.2008.11.013 2014, OXFORD DICT STYLOMET NR 29 TC 16 Z9 18 U1 0 U2 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA SARA BURGERHARTSTRAAT 25, PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1877-0509 J9 PROCEDIA COMPUT SCI PY 2014 VL 35 BP 1112 EP 1121 DI 10.1016/j.procs.2014.08.201 PG 10 WC Computer Science, Artificial Intelligence; Computer Science, Software Engineering; Computer Science, Theory & Methods WE Conference Proceedings Citation Index - Science (CPCI-S) SC Computer Science GA BB7DO UT WOS:000345394100115 OA gold DA 2024-09-05 ER PT J AU Green, S Bevan, A Shapland, M AF Green, Susie Bevan, Andrew Shapland, Michael TI A comparative assessment of structure from motion methods for archaeological research SO JOURNAL OF ARCHAEOLOGICAL SCIENCE LA English DT Article DE Structure from motion; Computer vision; Bundler; Open source; Photogrammetry; Multi-view stereo AB This paper addresses the use of open source, structure from motion methods for creating 3d pointclouds from photographs and compares these with alternative workflows in other software, and relative accuracy compared to other 3D modelling methods. It describes a series of case studies that use structure from motion to record standing buildings and create digital elevation models. Looking at other recording techniques it finds that structure from motion can produce better results than traditional techniques such as plan drawing, topographic survey and photogrammetry, and is cheaper and more accessible than new techniques such as laser scanning and LiDAR, although it is less accurate in some regards. It demonstrates that good accuracy can be achieved if careful measurements are made, and concludes that it has great potential for widespread archaeological application. (C) 2014 Elsevier Ltd. All rights reserved. C1 [Green, Susie; Bevan, Andrew] UCL, Inst Archaeol, London WC1H 0PY, England. [Shapland, Michael] Archaeol South East UCL Ctr Appl Archaeol, Portslade BN41 1DR, E Sussex, England. C3 University of London; University College London RP Green, S (corresponding author), UCL, Inst Archaeol, 31-34 Gordon Sq, London WC1H 0PY, England. EM susan.green.10@ucl.ac.uk OI Bevan, Andrew/0000-0001-7967-3117 CR Agisoft, 2013, AGIS PHOT PROF ED [Anonymous], WINDMILL HILL AVEBUR ArcheOS, 2011, WHAT IS ARCHAEOS Autodesk, 2014, 123D CATCH Changchang Wu, 2011, 2011 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), P3057, DOI 10.1109/CVPR.2011.5995552 Crutchley S., 2010, The Light Fantastic: Using airborne lidar in archaeological survey Cunliffe B., 1971, Excavations at Fishbourne 1961-1969 De Reu J, 2013, J ARCHAEOL SCI, V40, P1108, DOI 10.1016/j.jas.2012.08.040 Ducke B, 2011, COMPUT GRAPH-UK, V35, P375, DOI 10.1016/j.cag.2011.01.006 Furukawa Y, 2010, PROC CVPR IEEE, P1434, DOI 10.1109/CVPR.2010.5539802 Girardeau-Montaut D., 2014, CloudCompare Lowe DG, 2004, INT J COMPUT VISION, V60, P91, DOI 10.1023/B:VISI.0000029664.99615.94 Olson BR, 2013, J FIELD ARCHAEOL, V38, P244, DOI 10.1179/0093469013Z.00000000056 Shapland M. G., 2012, THESIS U COLLEGE LON Snavely N, 2006, ACM T GRAPHIC, V25, P835, DOI 10.1145/1141911.1141964 Szeliski R, 2011, TEXTS COMPUT SCI, P1, DOI 10.1007/978-1-84882-935-0 Verhoeven G, 2012, J ARCHAEOL SCI, V39, P2060, DOI 10.1016/j.jas.2012.02.022 Verhoeven G, 2011, ARCHAEOL PROSPECT, V18, P67, DOI 10.1002/arp.399 Whittingham A., 1951, ARCHAEOL J, V108, P170 NR 19 TC 107 Z9 118 U1 1 U2 31 PU ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD PI LONDON PA 24-28 OVAL RD, LONDON NW1 7DX, ENGLAND SN 0305-4403 EI 1095-9238 J9 J ARCHAEOL SCI JI J. Archaeol. Sci. PD JUN PY 2014 VL 46 BP 173 EP 181 DI 10.1016/j.jas.2014.02.030 PG 9 WC Anthropology; Archaeology; Geosciences, Multidisciplinary WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI); Arts & Humanities Citation Index (A&HCI) SC Anthropology; Archaeology; Geology GA AI6UZ UT WOS:000337013800016 DA 2024-09-05 ER PT J AU Din, EU Hua, L Lu, ZY AF Din, Ejaz ud Hua, Long Lu, Zhongyu TI Research on Performance of the Classifying Models Based on Chinese, Pakistani, and Other Genres SO INTERNATIONAL JOURNAL OF INFORMATION RETRIEVAL RESEARCH LA English DT Article DE Audio Classification; Classifiers; Feature Extraction; MFCC; Pre-Processing ID CLASSIFICATION AB In recent years, with the increase in the amount of audio on the internet, the demand for audio classification is increasing. This paper focuses on finding the performance of the classifiers, uses Python for the simulation part, compares the performance, and finds the best classifier. Two experiments are performed for this paper; for the first part of the experiment, Pakistan and Chinese music samples are considered, and classifiers are used to classify these music samples. It is found that the artificial neural network (ANN) has lowest accuracy of 81.4%; additionally, support vector machine (SVM), k-nearest neighbor (KNN), and convolutional (CNN) accuracies remain between 82% to 86% based on the dataset. Random forest model has the highest accuracy of 94.3%. It is considered to be the best classifier. For the second part of the experiment, other genres such as classical, country, and pop music were added to the previous dataset. After adding these genres, performance of the classifying models varies slightly; it fluctuates between 75% to 84%. These results can be used for music recommendation applications. C1 [Din, Ejaz ud; Hua, Long] Kunming Univ Sci & Technol, Fac Informat Engn & Automat, Kunming, Yunnan, Peoples R China. [Lu, Zhongyu] Univ Huddersfield, Huddersfield, W Yorkshire, England. C3 Kunming University of Science & Technology; University of Huddersfield RP Din, EU (corresponding author), Kunming Univ Sci & Technol, Fac Informat Engn & Automat, Kunming, Yunnan, Peoples R China. RI Lu, Zhongyu/ABC-4006-2020 CR Apostolidis-Afentoulis V., 2015, SVM Classification with Linear and RBF kernels, DOI [10.13140/RG.2.1.3351.4083, DOI 10.13140/RG.2.1.3351.4083] Bischoff Kerstin., 2009, 10th International Society for Music Information Retrieval Conference, P657 Breiman L, 2001, MACH LEARN, V45, P5, DOI 10.1023/A:1010933404324 Cunningham P., 2007, MULTIPLE CLASSIFIER, V34, P1, DOI [DOI 10.48550/ARXIV.2004.04523, DOI 10.1145/3459665] Deshpande H., 2001, CLASSIFICATION MUSIC Elbir A, 2020, ELECTRON LETT, V56, P627, DOI 10.1049/el.2019.4202 Foote J., 2001, IEEE INT C MULT EXP, DOI [10.1109/ICME.2001.1237863, DOI 10.1109/ICME.2001.1237863] Fulzele P, 2018, INT CONF CONTEMP, P386 Gaana, PAK TRACKS Github, PYTH COD Janitza S, 2018, PLOS ONE, V13, DOI 10.1371/journal.pone.0201904 KIKUCHI Y., 2020, 2020 INT C ART INT I, P705, DOI [10.1109/ICAIIC48513.2020.9065046, DOI 10.1109/ICAIIC48513.2020.9065046] Kumpf K, 1996, ICSLP 96 - FOURTH INTERNATIONAL CONFERENCE ON SPOKEN LANGUAGE PROCESSING, PROCEEDINGS, VOLS 1-4, P1740, DOI 10.1109/ICSLP.1996.607964 Lambrou T, 1998, INT CONF ACOUST SPEE, P3621, DOI 10.1109/ICASSP.1998.679665 Lee CH, 2009, IEEE T MULTIMEDIA, V11, P670, DOI 10.1109/TMM.2009.2017635 Li Tao, 2003, P 26 ANN INT ACM SIG, P282, DOI [DOI 10.1145/860435.860487, DOI 10.1145/860484.860487, 10.1109/ISSPA.2003.1224828, DOI 10.1109/ISSPA.2003.1224828] Logan B., 2000, MEL FREQUENCY CEPSTR Panagakis Yannis, 2009, 2009 17th European Signal Processing Conference (EUSIPCO 2009), P1, DOI 10.1109/PS.2009.5307817 Pelchat N., 2019, 2019 IEEE CAN C EL C, DOI [10.1109/CCECE.2019.8861555, DOI 10.1109/CCECE.2019.8861555] Rabiner L. R., 1993, Fundamentals of speech recognition, V14 Ramdoss A., 2017, ADV ENG RES APPL, P447 Rong F, 2017, 2016 INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION, BIG DATA & SMART CITY (ICITBS), P81, DOI 10.1109/ICITBS.2016.98 Saunders J, 1996, INT CONF ACOUST SPEE, P993, DOI 10.1109/ICASSP.1996.543290 Scheirer E, 1997, INT CONF ACOUST SPEE, P1331, DOI 10.1109/ICASSP.1997.596192 Soltau H, 1998, INT CONF ACOUST SPEE, P1137, DOI 10.1109/ICASSP.1998.675470 Tzanetakis G, 2002, IEEE T SPEECH AUDI P, V10, P293, DOI 10.1109/TSA.2002.800560 Vishnupriya S, 2018, INT CONF COMP COMMUN Xuan Huang, 2021, 2021 IEEE Intl Conf on Dependable, Autonomic and Secure Computing, Intl Conf on Pervasive Intelligence and Computing, Intl Conf on Cloud and Big Data Computing, Intl Conf on Cyber Science and Technology Congress (DASC/PiCom/CBDCom/CyberSciTech), P867, DOI 10.1109/DASC-PICom-CBDCom-CyberSciTech52372.2021.00144 Zhang T, 1998, P SOC PHOTO-OPT INS, V3461, P432, DOI 10.1117/12.325703 Zupan J., 1994, ACTA CHIM SLOV, V41, P1 NR 30 TC 0 Z9 0 U1 0 U2 1 PU IGI GLOBAL PI HERSHEY PA 701 E CHOCOLATE AVE, STE 200, HERSHEY, PA 17033-1240 USA SN 2155-6377 EI 2155-6385 J9 INT J INF RETR RES JI Int. J. Inf. Retr. Res. PD OCT-DEC PY 2021 VL 11 IS 4 BP 61 EP 79 DI 10.4018/IJIRR.2021100104 PG 19 WC Computer Science, Information Systems WE Emerging Sources Citation Index (ESCI) SC Computer Science GA UE9ZL UT WOS:000688240900004 DA 2024-09-05 ER PT C AU Wang, XJ Guo, JF AF Wang Xuejun Guo Jianfang BA Zhou, Q BF Zhou, Q BE Luo, J TI Application Research of SVM in The Evaluation of Scientific Research Project SO 2008 INTERNATIONAL SYMPOSIUM ON INTELLIGENT INFORMATION TECHNOLOGY APPLICATION WORKSHOP: IITA 2008 WORKSHOPS, PROCEEDINGS LA English DT Proceedings Paper CT 2nd International Symposium on Intelligent Information Technology Application CY DEC 21-22, 2008 CL Shanghai, PEOPLES R CHINA AB In the management of scientific research project, the evaluation of scientific research project is one of important processes. Traditional evaluation methods can not suffice the increasing need in the evaluation of scientific research project. In order to improve the efficiency of the evaluation of scientific research Project., this paper on the basis of support vector machines(SVM) based on statistical learning theory, especially analyzes SVM for classification theory, and proposes a binary tree multi-class method based on two-class SVM algorithm and applies this method in the evaluation of scientific research Project. C1 [Wang Xuejun; Guo Jianfang] Shijiazhuang Railway Inst, Shijiazhuang 050043, Hebei, Peoples R China. C3 Shijiazhuang Tiedao University RP Wang, XJ (corresponding author), Shijiazhuang Railway Inst, Shijiazhuang 050043, Hebei, Peoples R China. EM wangxj@sjzri.edu.cn; guo_jian_fang@sina.com CR [Anonymous], P IEEE INT C AUT FAC [Anonymous], 1998, Encyclopedia of Biostatistics [Anonymous], 2000, NATURE STAT LEARNING, DOI DOI 10.1007/978-1-4757-3264-1 Cristianini N., 2000, Support Vector Machines and other kernel-based learning methods Guo GD, 2003, IEEE T NEURAL NETWOR, V14, P209, DOI 10.1109/TNN.2002.806626 QIU DH, 2003, MINIMICROSYSTENS, V11, P2004 NR 6 TC 0 Z9 0 U1 0 U2 1 PU IEEE COMPUTER SOC PI LOS ALAMITOS PA 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1264 USA BN 978-0-7695-3505-0 PY 2008 BP 364 EP 367 DI 10.1109/IITA.Workshops.2008.160 PG 4 WC Computer Science, Artificial Intelligence; Engineering, Electrical & Electronic WE Conference Proceedings Citation Index - Science (CPCI-S) SC Computer Science; Engineering GA BIY43 UT WOS:000263690400087 DA 2024-09-05 ER PT C AU Liu, JZ Shao, XK AF Liu Jianzhou Shao Xiongkai BE Wang, XL TI Research on Automated Assessment of Chinese Subjective Questions SO 2011 INTERNATIONAL CONFERENCE ON COMPUTER, ELECTRICAL, AND SYSTEMS SCIENCES, AND ENGINEERING (CESSE 2011) LA English DT Proceedings Paper CT International Conference on Computer, Electrical, and Systems Sciences, and Engineering CY APR 10-11, 2011 CL Wuhan, PEOPLES R CHINA DE semantic similarity; machine learning; HowNet; vector space model AB In this paper, based on the analysis of previous automated assessment methods of Chinese subjective questions, we have proposed a novel automated assessment algorithm using sentence semantic similarity in Natural Language Processing. At the same time, we make a full comparative study on two different similarity methods. The results of the research indicate that our algorithm is robust. C1 [Liu Jianzhou; Shao Xiongkai] Hubei Univ Technol, Sch Comp Sci, Wuhan, Hubei Province, Peoples R China. C3 Hubei University of Technology RP Liu, JZ (corresponding author), Hubei Univ Technol, Sch Comp Sci, Wuhan, Hubei Province, Peoples R China. EM xxzzsoft@163.com; shao_xk@163.com RI Liu, Jianzhou/ADN-7696-2022 OI Liu, Jianzhou/0000-0002-3721-6871 CR BING H, 2005, COMPUTER NETWORK, P50 Dong Zhendong, ABOUT HOWNET Hu Bin, 2005, COMPUTER NETWORK, P50 LIANG Z, 2001, COMPUTER ENG APPL, V37, P108 LIREN C, 1995, COMPUTER LANGUAGE DE, P152 SUJIAN L, 2002, COMPUTER ENG APPL, V38, P75 XIUBO Y, 2003, MODERN DISTANCE ED, P1 NR 7 TC 0 Z9 0 U1 0 U2 0 PU INFORMATION ENGINEERING RESEARCH INST, USA PI NEWARK PA 100 CONTINENTAL DR, NEWARK, DE 19713 USA BN 978-0-615-42292-3 PY 2011 BP 318 EP 321 PG 4 WC Automation & Control Systems; Computer Science, Information Systems; Computer Science, Interdisciplinary Applications WE Conference Proceedings Citation Index - Science (CPCI-S) SC Automation & Control Systems; Computer Science GA BWO35 UT WOS:000294390700079 DA 2024-09-05 ER PT J AU Sánchez-Núñez, P Cobo, MJ De las Heras-Pedrosa, C Peláez, JI Herrera-Viedma, E AF Sanchez-Nunez, Pablo Cobo, Manuel J. De las Heras-Pedrosa, Carlos Ignacio Pelaez, Jose Herrera-Viedma, Enrique TI Opinion Mining, Sentiment Analysis and Emotion Understanding in Advertising: A Bibliometric Analysis SO IEEE ACCESS LA English DT Article DE Advertising; Sentiment analysis; Bibliometrics; Organizations; Registers; Indexes; Computer science; Advertising research; bibliometrics; communication; consumer behavior; emotion understanding; opinion mining; science mapping analysis; SciMAT; sentiment analysis; VOSviewer; Web of Science (WoS) ID PREDICTION AB In the last decade, the advertising industry has experienced a quantum leap, powered by recent advances in neuroscience, a large investment in artificial intelligence, and a high degree of consumer expertise. Within this context, opinion mining, sentiment analysis, and emotion understanding bring us closer to one of the most sought-after objectives of advertising: to offer relevant ads at scale. The importance of studies about opinion mining, sentiment analysis, and emotion understanding in advertising has been rising exponentially over the last years. The peak of this new situation has been the interest of the research community in studying the relationship between such innovations and the spread of smart and contextual advertising. This article analyzes those works that address the relationship between sentiment analysis, opinion mining, and emotion understanding in advertising. The main objective is to clarify the current state of these studies, explore issues, methods, findings, themes, and gaps as well as to define their significance within the current convergence advertising research scenario. To reach such objectives, a bibliometric analysis was conducted, retrieving and analyzing 919 research works published between 2010 and 2019 based on results from Web of Science (WoS). C1 [Sanchez-Nunez, Pablo] Univ Malaga, Joint PhD Programme Commun, Malaga 29071, Spain. [Cobo, Manuel J.] Univ Cadiz, Dept Comp Sci & Engn, Cadiz 11202, Spain. [De las Heras-Pedrosa, Carlos] Univ Malaga, Fac Commun Sci, Dept Audiovisual Commun & Advertising, Malaga 29071, Spain. [Ignacio Pelaez, Jose] Univ Malaga, Higher Tech Sch Comp Engn, Dept Languages & Comp Sci, Malaga 29071, Spain. [Herrera-Viedma, Enrique] Univ Granada, Andalusian Res Inst Data Sci & Computat Intellige, Granada 18071, Spain. C3 Universidad de Malaga; Universidad de Cadiz; Universidad de Malaga; Universidad de Malaga; University of Granada RP De las Heras-Pedrosa, C (corresponding author), Univ Malaga, Fac Commun Sci, Dept Audiovisual Commun & Advertising, Malaga 29071, Spain. EM cheras@uma.es RI de las Heras-Pedrosa, Carlos/M-4492-2015; Cobo Martí­n, Manuel Jesús/C-5581-2011; HERRERA-VIEDMA, ENRIQUE/C-2704-2008; Pelaez Sanchez, Jose Ignacio/O-9450-2016 OI de las Heras-Pedrosa, Carlos/0000-0002-2738-4177; Cobo Martí­n, Manuel Jesús/0000-0001-6575-803X; HERRERA-VIEDMA, ENRIQUE/0000-0002-7922-4984; Sanchez Nunez, Pablo/0000-0001-7845-9506; Pelaez Sanchez, Jose Ignacio/0000-0002-2606-3849 FU Programa Operativo FEDER Andalucia [UMA 18-FEDERJA-148] FX This work was supported by the Programa Operativo FEDER Andalucia 2014-2020 under Grant UMA 18-FEDERJA-148. CR Añaños E, 2015, COMUNICAR, V23, P75, DOI 10.3916/C45-2015-08 Baraybar-Fernández A, 2017, COMUNICAR, V25, P19, DOI 10.3916/C52-2017-02 Baron AS, 2017, J MARKET MANAG-UK, V33, P893, DOI 10.1080/0267257X.2017.1323839 Bo Pang, 2008, Foundations and Trends in Information Retrieval, V2, P1, DOI 10.1561/1500000001 Bolderston A, 2008, J MED IMAGING RADIAT, V39, P86, DOI 10.1016/j.jmir.2008.04.009 Borth Damian, 2013, P 21 ACM INT C MULT, P459 Campos V, 2017, IMAGE VISION COMPUT, V65, P15, DOI 10.1016/j.imavis.2017.01.011 Chen CLP, 2014, INFORM SCIENCES, V275, P314, DOI 10.1016/j.ins.2014.01.015 Cobo MJ, 2012, J AM SOC INF SCI TEC, V63, P1609, DOI 10.1002/asi.22688 Cobo MJ, 2011, J INFORMETR, V5, P146, DOI 10.1016/j.joi.2010.10.002 Dafonte-Gómez A, 2014, COMUNICAR, V22, P199, DOI 10.3916/C43-2014-20 De Las Heras-Pedrosa C, 2020, COGENT SOC SCI, V6, DOI 10.1080/23311886.2020.1718578 Druga S, 2017, PROCEEDINGS OF THE 2017 ACM CONFERENCE ON INTERACTION DESIGN AND CHILDREN (IDC 2017), P595, DOI 10.1145/3078072.3084330 Dumay J, 2016, ACCOUNT FORUM, V40, P166, DOI 10.1016/j.accfor.2016.06.001 Gauba H, 2017, NEURAL NETWORKS, V92, P77, DOI 10.1016/j.neunet.2017.01.013 Glänzel W, 2001, SCIENTOMETRICS, V51, P69, DOI 10.1023/A:1010512628145 Gruebner O, 2017, PLOS ONE, V12, DOI 10.1371/journal.pone.0181233 Hirsch JE, 2005, P NATL ACAD SCI USA, V102, P16569, DOI 10.1073/pnas.0507655102 Ji RR, 2016, FRONT COMPUT SCI-CHI, V10, P602, DOI 10.1007/s11704-016-5453-2 Kim H, 2015, SUSTAINABILITY-BASEL, V7, P3683, DOI 10.3390/su7043683 Marin MM, 2015, FRONT HUM NEUROSCI, V9, DOI 10.3389/fnhum.2015.00443 Martínez MA, 2015, SCIENTOMETRICS, V102, P1713, DOI 10.1007/s11192-014-1460-y Montero-Díaz J, 2018, COMUNICAR, V26, P81, DOI 10.3916/C55-2018-08 Pavaloaia VD, 2019, SUSTAINABILITY-BASEL, V11, DOI 10.3390/su11164459 Peláez JI, 2020, SOFT COMPUT, V24, P1775, DOI 10.1007/s00500-019-04005-3 Pettit A, 2013, INT J MARKET RES, V55, P757, DOI 10.2501/IJMR-2013-065 Saura JR, 2020, SUSTAINABILITY-BASEL, V12, DOI 10.3390/su12031003 Romero M, 2010, COMUNICAR, V17, P125, DOI 10.3916/C34-2010-03-12 San Pedro Jose., 2012, WWW, P439 Sánchez-Núñez P, 2020, SOC SCI-BASEL, V9, DOI 10.3390/socsci9030023 Soleymani M, 2017, IMAGE VISION COMPUT, V65, P3, DOI 10.1016/j.imavis.2017.08.003 Umilta' MA, 2012, FRONT HUM NEUROSCI, V6, DOI 10.3389/fnhum.2012.00311 van Eck NJ, 2010, SCIENTOMETRICS, V84, P523, DOI 10.1007/s11192-009-0146-3 Webster J, 2002, MIS QUART, V26, pXIII Wereda W, 2019, SOC SCI-BASEL, V8, DOI 10.3390/socsci8060177 Xing BX, 2019, IEEE ACCESS, V7, P59844, DOI 10.1109/ACCESS.2019.2914872 Yang YW, 2017, IEEE INTELL SYST, V32, P3, DOI 10.1109/MIS.2017.58 Yuan Y, 2014, 2014 IEEE INTERNATIONAL CONFERENCE ON SERVICE OPERATIONS AND LOGISTICS, AND INFORMATICS (SOLI), P418, DOI 10.1109/SOLI.2014.6960761 Zhang KZK, 2016, DECIS SUPPORT SYST, V86, P95, DOI 10.1016/j.dss.2016.04.001 Zhao JQ, 2018, IEEE ACCESS, V6, P23253, DOI 10.1109/ACCESS.2017.2776930 NR 40 TC 41 Z9 46 U1 9 U2 64 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 2169-3536 J9 IEEE ACCESS JI IEEE Access PY 2020 VL 8 BP 134563 EP 134576 DI 10.1109/ACCESS.2020.3009482 PG 14 WC Computer Science, Information Systems; Engineering, Electrical & Electronic; Telecommunications WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Computer Science; Engineering; Telecommunications GA MS6CG UT WOS:000554360900001 OA gold, Green Submitted DA 2024-09-05 ER PT J AU D'Angelo, CA van Eck, NJ AF D'Angelo, Ciriaco Andrea van Eck, Nees Jan TI Collecting large-scale publication data at the level of individual researchers: a practical proposal for author name disambiguation SO SCIENTOMETRICS LA English DT Article DE Authorship disambiguation; Bibliometrics; Precision-recall; Publication oeuvre; Research evaluation ID CITATIONS AB The disambiguation of author names is an important and challenging task in bibliometrics. We propose an approach that relies on an external source of information for selecting and validating clusters of publications identified through an unsupervised author name disambiguation method. The application of the proposed approach to a random sample of Italian scholars shows encouraging results, with an overall precision, recall, and F-measure of over 96%. The proposed approach can serve as a starting point for large-scale census of publication portfolios for bibliometric analyses at the level of individual researchers. C1 [D'Angelo, Ciriaco Andrea] Univ Roma Tor Vergata, Dept Engn & Management, Rome, Italy. [van Eck, Nees Jan] Leiden Univ, Ctr Sci & Technol Studies, Leiden, Netherlands. C3 University of Rome Tor Vergata; Leiden University; Leiden University - Excl LUMC RP D'Angelo, CA (corresponding author), Univ Roma Tor Vergata, Dept Engn & Management, Rome, Italy. EM dangelo@dii.uniroma2.it; ecknjpvan@cwts.leidenuniv.nl RI D'Angelo, Ciriaco Andrea/J-8162-2012; van Eck, Nees Jan/B-6042-2008 OI D'Angelo, Ciriaco Andrea/0000-0002-6977-6611; van Eck, Nees Jan/0000-0001-8448-4521 CR Abdulhayoglu MA, 2017, SCIENTOMETRICS, V111, P1965, DOI 10.1007/s11192-017-2341-y Aksnes DW, 2008, J AM SOC INF SCI TEC, V59, P838, DOI 10.1002/asi.20788 Backes T, 2018, ACM-IEEE J CONF DIG, P203, DOI 10.1145/3197026.3197036 Caron E., 2014, In: Proceedings of the 2014 Science and Technology Indicators Conference, P79, DOI DOI 10.1007/978-981-32-9298-7_12 Chinchilla-Rodrguez Z., 2018, FRONTIERS RES METRIC, V3, P17, DOI DOI 10.3389/FRMA.2018.00017 Chinchilla-Rodríguez Z, 2018, SCIENTOMETRICS, V116, P569, DOI 10.1007/s11192-018-2738-2 CORNELL LL, 1982, J AM SOC INFORM SCI, V33, P102, DOI 10.1002/asi.4630330209 Cota RG, 2010, J AM SOC INF SCI TEC, V61, P1853, DOI 10.1002/asi.21363 Culotta A., 2007, P 6 INT WORKSH INF I, P32 D'Angelo CA, 2011, J AM SOC INF SCI TEC, V62, P257, DOI 10.1002/asi.21460 Enserink M, 2009, SCIENCE, V323, P1662, DOI 10.1126/science.323.5922.1662 Ferreira AA, 2012, SIGMOD REC, V41, P15, DOI 10.1145/2350036.2350040 Haak LL, 2012, LEARN PUBL, V25, P259, DOI 10.1087/20120404 Han H, 2005, ACM-IEEE J CONF DIG, P334, DOI 10.1145/1065385.1065462 Han H, 2004, ACM-IEEE J CONF DIG, P296, DOI 10.1145/996350.996419 Harman G, 2000, J HIGH EDUC POLICY M, V22, P11 Hicks D, 2009, HIGH EDUC, V57, P393, DOI 10.1007/s10734-008-9154-0 Hjorland B, 2010, J AM SOC INF SCI TEC, V61, P217, DOI 10.1002/asi.21261 Huang J, 2006, LECT NOTES ARTIF INT, V4213, P536 Huang SQ, 2014, SCIENTOMETRICS, V99, P823, DOI 10.1007/s11192-013-1214-2 Kanani P, 2007, 20TH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, P429 Kang IS, 2009, INFORM PROCESS MANAG, V45, P84, DOI 10.1016/j.ipm.2008.06.006 Kawashima H, 2015, SCIENTOMETRICS, V103, P1061, DOI 10.1007/s11192-015-1580-z Kim JI, 2019, PLANT BIOTECHNOL REP, V13, P419, DOI 10.1007/s11816-019-00581-w Kim J, 2019, SCIENTOMETRICS, V118, P253, DOI 10.1007/s11192-018-2968-3 Kim J, 2018, SCIENTOMETRICS, V116, P1867, DOI 10.1007/s11192-018-2824-5 Larivière V, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0162709 Larivière V, 2016, SOC STUD SCI, V46, P417, DOI 10.1177/0306312716650046 Levin M, 2012, J AM SOC INF SCI TEC, V63, P1030, DOI 10.1002/asi.22621 Liu WL, 2014, J ASSOC INF SCI TECH, V65, P765, DOI 10.1002/asi.23063 Mazov NA, 2014, SCI TECH INF PROCESS, V41, P206, DOI 10.3103/S0147688214030101 Morillo F, 2013, SCIENTOMETRICS, V95, P953, DOI 10.1007/s11192-013-0965-0 Müller MC, 2017, SCIENTOMETRICS, V111, P1467, DOI 10.1007/s11192-017-2363-5 On BW, 2005, ACM-IEEE J CONF DIG, P344, DOI 10.1145/1065385.1065463 Palmblad M, 2018, J AM SOC MASS SPECTR, V29, P447, DOI 10.1007/s13361-017-1846-1 Pereira DA, 2009, ACM-IEEE J CONF DIG, P49 Robinson-Garcia N, 2019, J INFORMETR, V13, P50, DOI 10.1016/j.joi.2018.11.002 Ruiz-Castillo J, 2014, J INFORMETR, V8, P917, DOI 10.1016/j.joi.2014.09.006 Sá PM, 2010, IEEE ENG MED BIO, P398, DOI 10.1109/IEMBS.2010.5627284 Schulz C, 2014, EPJ DATA SCI, V3, DOI 10.1140/epjds/s13688-014-0011-3 Schulz J, 2016, SCIENTOMETRICS, V107, P1283, DOI 10.1007/s11192-016-1892-7 Smalheiser NR, 2009, ANNU REV INFORM SCI, V43, P287 Soler JM, 2007, SCIENTOMETRICS, V72, P281, DOI 10.1007/s11192-007-1730-z Song M, 2015, J INFORMETR, V9, P924, DOI 10.1016/j.joi.2015.08.004 Song Y, 2007, ACM-IEEE J CONF DIG, P342, DOI 10.1145/1255175.1255243 Strotmann A, 2012, J AM SOC INF SCI TEC, V63, P1820, DOI 10.1002/asi.22695 Sugimoto CR, 2017, NATURE, V550, P29, DOI 10.1038/550029a Sun XL, 2013, INFORM PROCESS MANAG, V49, P454, DOI 10.1016/j.ipm.2012.09.001 Tekles A, 2019, ARXIV190412746 Tijssen R, 2017, NATURE, V544, P35, DOI 10.1038/544035c Treeratpituk P, 2009, ACM-IEEE J CONF DIG, P39 Veloso A, 2012, INFORM PROCESS MANAG, V48, P680, DOI 10.1016/j.ipm.2011.08.005 Yang KH, 2008, LECT NOTES COMPUT SC, V5173, P185 Youtie J, 2017, SCIENTOMETRICS, V113, P437, DOI 10.1007/s11192-017-2473-0 NR 54 TC 32 Z9 35 U1 1 U2 41 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0138-9130 EI 1588-2861 J9 SCIENTOMETRICS JI Scientometrics PD MAY PY 2020 VL 123 IS 2 BP 883 EP 907 DI 10.1007/s11192-020-03410-y PG 25 WC Computer Science, Interdisciplinary Applications; Information Science & Library Science WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Computer Science; Information Science & Library Science GA LJ0VN UT WOS:000529892100015 DA 2024-09-05 ER PT J AU Drummond, C AF Drummond, Chris TI Reproducible research: aminority opinion SO JOURNAL OF EXPERIMENTAL & THEORETICAL ARTIFICIAL INTELLIGENCE LA English DT Article DE machine learning; reproducible research; scientific evaluation; scientific communication AB Reproducible research, a growing movement within many scientific fields, including machine learning, would require the code, used to generate the experimental results, be published along with any paper. Probably the most compelling argument for this is that it is simply following good scientific practice, established over the years by the greats of science. The implication is that failure to follow such a practice is unscientific, not a label any machine learning researchers would like to carry. It is further claimed that misconduct is causing a growing crisis of confidence in science. That, without this practice being enforced, science would inevitably fall into disrepute. This viewpoint is becoming ubiquitous but here I offer a differing opinion. I argue that far from being central to science, what is being promulgated is a narrow interpretation of how science works. I contend that the consequences are somewhat overstated. I would also contend that the effort necessary to meet the movement's aims, and the general attitude it engenders would not serve well any of the research disciplines, including our own. C1 [Drummond, Chris] Natl Res Council Canada, Informat & Commun Technol, Ottawa, ON, Canada. C3 National Research Council Canada RP Drummond, C (corresponding author), Natl Res Council Canada, Informat & Commun Technol, Ottawa, ON, Canada. EM Chris.Drummond@nrc-cnrc.gc.ca CR AAAS, 2011, AAAS ANN M S DIG SCI AMP, 2011, APPL MATH PERSP WORK [Anonymous], 2016, RIG REPR [Anonymous], 2015, NATURE OCT [Anonymous], 2010, THE CANCER LETTER [Anonymous], 2006, The Sunday Times [Anonymous], 1989, NY TIMES [Anonymous], 2011, NY TIMES [Anonymous], 2012, NY Times [Anonymous], 1937, MANCHESTER GUARDIAN Asuncion A., 2007, TECHNICAL REPORT Baker BT, 2015, IEEE INT WORKS MACH, DOI 10.1038/nature.2015.18248 Bissell M, 2013, NATURE, V503, P333, DOI 10.1038/503333a Bridgman P., 1986, REFLECTIONS PHYS BROAD W, 1984, BETRAYERS TRUTH Broman K., 2017, Recommendations to Funding Agencies for Supporting Reproducible Research, V2, P1 Camerer CF, 2016, SCIENCE, V351, P1433, DOI 10.1126/science.aaf0918 Crocker J, 2011, SCIENCE, V334, P1182, DOI 10.1126/science.1216775 CST, 1993, CHICAGO SUN TIMES Drummond C., 2009, P 26 INT C MACH LEAR Drummond C., 2008, P 25 INT C MACH LEAR Drummond C, 2006, MACH LEARN, V65, P95, DOI 10.1007/s10994-006-8199-5 Drummond C, 2010, J EXP THEOR ARTIF IN, V22, P67, DOI 10.1080/09528130903010295 Economist Editorial, 2013, ECONOMIST Economist Editorial, 2011, ECONOMIST ENAR, 2011, ENAR 2011 BIOST ROL Feyerabend Paul., 1970, Against Method: Outline of an Anarchistic Theory of Knowledge Fisher R. A., 1946, Statistical methods for research workers. Fritzson P., 2005, P 46 C SIM MOD SCAND Groves T, 2012, BRIT MED J, V344, DOI 10.1136/bmj.e4383 HAMILTON DP, 1990, SCIENCE, V250, P1331, DOI 10.1126/science.2255902 HOLTON G, 1986, ADV SCI ITS BURDENS Iorns E, 2013, REPROD INITIATIVE RE Jasny BR, 2011, SCIENCE, V334, P1225, DOI 10.1126/science.334.6060.1225 Johns Hopkins University, 2015, REPR RES Kazai G., 2015, EUR C INF RETR SPEC Kenett RS, 2015, NAT METHODS, V12, P699, DOI 10.1038/nmeth.3489 Kibler D., 1988, EWSL 88: Proceedings of the Third European Working Session on Learning, P81 Knuth D., 1988, COMPUT J, V27, P97 Kuhn T.S., 1962, The structure of scientific revolutions Meehl PE., 1990, Psychological Inquiry, V1, P108, DOI DOI 10.1207/S15327965PLI0102_1 Moska S., 2015, WORKSH REPR RES COMP Nature Editorial, 2016, NATURE, V533 Neyman J, 1933, PHILOS T R SOC LOND, V231, P289, DOI 10.1098/rsta.1933.0009 NSF, 2010, NAT SCI FDN WORKSH C *OP SOC I, 2001, BUD OP ACC IN Oreskes N, 2004, SCIENCE, V306, P1686, DOI 10.1126/science.1103618 Peng RD, 2011, SCIENCE, V334, P1226, DOI 10.1126/science.1213847 Polanyi Michael, 1958, Personal knowledge: Toward a post critical philosophy Popper K., 2005, LOGIC SCI DISCOVERY Pournelle G. H., 1953, Journal of Mammalogy, V34, P133, DOI 10.1890/0012-9658(2002)083[1421:SDEOLC]2.0.CO;2 Push onto Protect New Troops from IEDS, 2010, US TODAY Reuters, 1981, NY TIMES Ryan MJ, 2011, SCIENCE, V334, P1229, DOI 10.1126/science.1214532 Sanders J., 2014, ROYAL SOC OPEN SCI Sandve G. K., 2013, PLOS COMPUTATIONAL B Schulte E., 2012, J STAT SOFTWARE, V46 Services A. W., 2016, AWS PUBL DAT SETS SIAM-CSE, 2011, SIAM C COMP SCI AMP SIAM-Geo, 2011, SIAM GEOSC WORKSH RE Sonnenburg S, 2007, J MACH LEARN RES, V8, P2443 Stallman R. M., 1981, AIM519A MIT ART INT Stodden V., 2014, THE R SERIES Swiss Institute of BioInformatics, 2015, REPR RES Vanschoren J, 2012, MACH LEARN, V87, P127, DOI 10.1007/s10994-011-5277-0 Weinberg Steven., 1995, Academic Questions, V8, P7 Wren K., 2014, AAAS NEWS MAY Yale Law Sch Roundtable Data Code, 2010, COMPUT SCI ENG, V12, P8 NR 68 TC 10 Z9 11 U1 0 U2 4 PU TAYLOR & FRANCIS LTD PI ABINGDON PA 2-4 PARK SQUARE, MILTON PARK, ABINGDON OR14 4RN, OXON, ENGLAND SN 0952-813X EI 1362-3079 J9 J EXP THEOR ARTIF IN JI J. Exp. Theor. Artif. Intell. PY 2018 VL 30 IS 1 BP 1 EP 11 DI 10.1080/0952813X.2017.1413140 PG 11 WC Computer Science, Artificial Intelligence WE Science Citation Index Expanded (SCI-EXPANDED) SC Computer Science GA FZ8SH UT WOS:000427879800001 OA Bronze DA 2024-09-05 ER PT J AU Kinnear, G Jones, I Sangwin, C Alarfaj, M Davies, B Fearn, S Foster, C Heck, A Henderson, K Hunt, T Iannone, P Kontorovich, I Larson, N Lowe, T Meyer, JC O'Shea, A Rowlett, PJ Sikurajapathi, I Wong, T AF Kinnear, George Jones, Ian Sangwin, Chris Alarfaj, Maryam Davies, Ben Fearn, Sam Foster, Colin Heck, Andre Henderson, Karen Hunt, Tim Iannone, Paola Kontorovich, Igor' Larson, Niclas Lowe, Tim Meyer, John Christopher O'Shea, Ann Rowlett, Peter James Sikurajapathi, Indunil Wong, Thomas TI A Collaboratively-Derived Research Agenda for E-assessment in Undergraduate Mathematics SO INTERNATIONAL JOURNAL OF RESEARCH IN UNDERGRADUATE MATHEMATICS EDUCATION LA English DT Article DE Online learning; Assessment; Feedback; Mathematics education; Delphi methods ID COMPUTER-AIDED ASSESSMENT; PEER-ASSESSMENT; EDUCATION; FEEDBACK; TESTS; PERFORMANCE; LESSONS; IMPACT AB This paper describes the collaborative development of an agenda for research on e-assessment in undergraduate mathematics. We built on an established approach to develop the agenda from the contributions of 22 mathematics education researchers, university teachers and learning technologists interested in this topic. The resulting set of 55 research questions are grouped into 5 broad themes: errors and feedback, student interactions with e-assessment, design and implementation choices, affordances offered by e-assessment tools, and mathematical skills. This agenda gives a framework for a programme of research aligned with practical concerns that will contribute to both theoretical and practical development. C1 [Kinnear, George; Sangwin, Chris; Alarfaj, Maryam] Univ Edinburgh, Sch Math, Edinburgh, Midlothian, Scotland. [Jones, Ian; Foster, Colin; Iannone, Paola] Loughborough Univ, Loughborough, Leics, England. [Davies, Ben] UCL, London, England. [Fearn, Sam] Univ Durham, Durham, England. [Heck, Andre] Univ Amsterdam, Amsterdam, Netherlands. [Henderson, Karen; Sikurajapathi, Indunil] Univ West England, Bristol, Avon, England. [Hunt, Tim; Lowe, Tim] Open Univ, Milton Keynes, Bucks, England. [Kontorovich, Igor'] Univ Auckland, Auckland, New Zealand. [Larson, Niclas] Univ Agder, Kristiansand, Norway. [O'Shea, Ann] Maynooth Univ, Maynooth, Kildare, Ireland. [Rowlett, Peter James] Sheffield Hallam Univ, Sheffield, S Yorkshire, England. [Wong, Thomas] Heriot Watt Univ, Edinburgh, Midlothian, Scotland. [Meyer, John Christopher] Univ Birmingham, Birmingham, W Midlands, England. [Alarfaj, Maryam] Saudi Elect Univ, Riyadh, Saudi Arabia. C3 University of Edinburgh; Loughborough University; University of London; University College London; Durham University; University of Amsterdam; University of West England; Open University - UK; University of Auckland; University of Agder; Maynooth University; Sheffield Hallam University; Heriot Watt University; University of Birmingham; Saudi Electronic University RP Kinnear, G (corresponding author), Univ Edinburgh, Sch Math, Edinburgh, Midlothian, Scotland. EM G.Kinnear@ed.ac.uk RI Kontorovich, Igor'/AFH-4311-2022; OShea, Ann/IUQ-3104-2023; Rowlett, Peter/R-2612-2017 OI Kontorovich, Igor'/0000-0002-3353-5445; OShea, Ann/0000-0001-8504-2290; Rowlett, Peter/0000-0003-1917-7458; Lowe, Tim/0000-0001-7154-0168; Meyer, John Christopher/0000-0003-0708-1088; Heck, Andre/0000-0002-7923-6360 CR Alarfaj M., 2022, MSOR CONNECTIONS, V20, P56, DOI [10.21100/msor.v20i1.1310, DOI 10.21100/MSOR.V20I1.1310] Alcock L., 2016, Journal of Numerical Cognition, V2, P20, DOI DOI 10.5964/JNC.V2I1.10 Alcock L, 2020, J RES MATH EDUC, V51, P26, DOI 10.5951/jresematheduc.2019.0006 Alcock L, 2013, RES MATH EDUCAT, V15, P97, DOI 10.1080/14794802.2013.797731 Anderson JR, 1995, J LEARN SCI, V4, P167, DOI 10.1207/s15327809jls0402_2 Appleby J, 1997, COMPUT EDUC, V28, P113, DOI 10.1016/S0360-1315(97)00001-8 Arnold IJM, 2016, INTERNET HIGH EDUC, V29, P98, DOI 10.1016/j.iheduc.2016.02.001 Ashenafi MM, 2017, ASSESS EVAL HIGH EDU, V42, P226, DOI 10.1080/02602938.2015.1100711 Ashton HS, 2006, BRIT J EDUC TECHNOL, V37, P93, DOI 10.1111/j.1467-8535.2005.00512.x Attali Y, 2017, COMPUT EDUC, V110, P154, DOI 10.1016/j.compedu.2017.03.012 Avigad J., 2019, MATH ED DIGITAL ERA, P277 Bakker A, 2021, EDUC STUD MATH, V107, P1, DOI 10.1007/s10649-021-10049-w Beeson M., 1998, COMPUTER HUMAN INTER, P89 Beevers C.E., 2003, Active Learning in Higher Education, V4, P127, DOI DOI 10.1177/1469787403004002002 Bhaird CMA, 2017, RES MATH EDUCAT, V19, P147, DOI 10.1080/14794802.2017.1318084 Braun V., 2006, QUAL RES PSYCHOL, V3, P77, DOI [10.1191/1478088706qp063oa, DOI 10.1191/1478088706QP063OA] Breen S., 2019, PRIMUS, V29, P9, DOI DOI 10.1080/10511970.2017.1396567 Broughton SJ, 2017, ADV EDUC TECHNOL INS, P415, DOI 10.4018/978-1-5225-2026-9.ch020 Byrne M, 2018, INT J RES UN MATH ED, V4, P228, DOI 10.1007/s40753-017-0059-0 Cai JF, 2020, J RES MATH EDUC, V51, P518, DOI 10.5951/jresematheduc-2020-0165 Cai JF, 2020, INT J SCI MATH EDUC, V18, P1, DOI 10.1007/s10763-020-10079-5 Cai JF, 2019, J RES MATH EDUC, V50, P114 Darlington E, 2014, TEACH MATH APPL, V33, P213, DOI 10.1093/teamat/hru021 Davies B, 2020, EDUC STUD MATH, V105, P181, DOI 10.1007/s10649-020-09984-x Devlin K, 2011, MATHEMATICS EDUCATION FOR A NEW ERA: VIDEO GAMES AS A MEDIUM FOR LEARNING, P1, DOI 10.1201/b10816 Dorko A, 2020, INT J RES UN MATH ED, V6, P446, DOI 10.1007/s40753-020-00113-w English L.D., 2008, Handbook of International Research in Mathematics Education, V2nd, P3 Foster C., 2014, European Journal of Science and Mathematics Education, V2, P147, DOI [10.30935/SCIMATH/9407, DOI 10.30935/SCIMATH/9407] Foster C, 2021, J CURRICULUM STUD, V53, P621, DOI 10.1080/00220272.2021.1902569 Freeman S, 2014, P NATL ACAD SCI USA, V111, P8410, DOI 10.1073/pnas.1319030111 Freudenthal H., 1973, MATH ED TASK Fyfe ER, 2021, ADV METH PRACT PSYCH, V4, DOI 10.1177/25152459211027575 Gierl MJ, 2017, REV EDUC RES, V87, P1082, DOI 10.3102/0034654317726529 Greenhow M, 2015, TEACH MATH APPL, V34, P117, DOI 10.1093/teamat/hrv012 Gruttmann S., 2008, P 11 IASTED INT C CO, P120 Hanna G., 1983, RIGOROUS PROOF MATH Hannah J, 2014, INT J MATH EDUC SCI, V45, P269, DOI 10.1080/0020739X.2013.822583 Harjula M., 2017, MSOR CONNECTIONS, V15, P60, DOI [10.21100/msor.v15i2.408, DOI 10.21100/MSOR.V15I2.408] Hart K.M., 1980, Secondary school children's understanding of mathematics: a report of the mathematics component of the concepts in secondary Mathematics and Science Programme Heck A., STUDENT ASSESSMENT D Heck A., 2017, MSOR CONNECTIONS, V15, P6, DOI [10.21100/msor.v15i2.412, DOI 10.21100/MSOR.V15I2.412] Hsu CC, 2007, PRACTICAL ASSESSMENT, V12, P1, DOI [DOI 10.7275/PDZ9-TH90, 10.7275/pdz9-th90] Iannone P, 2015, STUD HIGH EDUC, V40, P1046, DOI 10.1080/03075079.2013.858683 Iannone P, 2022, TEACH MATH APPL, V41, P22, DOI 10.1093/teamat/hrab007 Iannone P, 2019, EDUC STUD MATH, V101, P387, DOI 10.1007/s10649-018-9872-x Inglis M, 2018, J RES MATH EDUC, V49, P462 Jones I., 2017, NORDIC STUDIES MATH, V22, P147 Jones I, 2015, EDUC STUD MATH, V89, P337, DOI 10.1007/s10649-015-9607-1 Jones I, 2014, STUD HIGH EDUC, V39, P1774, DOI 10.1080/03075079.2013.821974 Jordan S, 2012, COMPUT EDUC, V58, P818, DOI 10.1016/j.compedu.2011.10.007 Kalyuga S, 2003, EDUC PSYCHOL-US, V38, P23, DOI 10.1207/S15326985EP3801_4 Kinnear G., MATH ED DIGITAL AGE Kinnear G, 2022, INT J MATH EDUC SCI, V53, P11, DOI 10.1080/0020739X.2021.1962554 Kinnear G, 2020, TEACH MATH APPL, V39, P281, DOI 10.1093/teamat/hrz017 Kluger AN, 1996, PSYCHOL BULL, V119, P254, DOI 10.1037/0033-2909.119.2.254 Kontorovich I., 2017, For the Learning of Mathematics, V37, P29 Lester FK, 2005, ZDM-MATH EDUC, V37, P457, DOI 10.1007/BF02655854 Lindsay E, 2022, MATH EDUC RES J, V34, P911, DOI 10.1007/s13394-021-00369-8 Lithner J., 2008, EDUC STUD MATH, V67, P255, DOI DOI 10.1007/S10649-007-9104-2 Lyle KB, 2020, EDUC PSYCHOL REV, V32, P277, DOI 10.1007/s10648-019-09489-x Maciejewski W, 2016, TEACH MATH APPL, V35, P187, DOI 10.1093/teamat/hrv019 Marton F., 1997, EXPERIENCE LEARNING, V2nd Mason J., 2000, INT J MATH EDUC SCI, V31 Mason J., 2010, THINKING MATH, VSecond McKenney S, 2012, CONDUCTING EDUCATIONAL DESIGN RESEARCH, P1 Mejía-Ramos JP, 2017, RES MATH EDUCAT, V19, P130, DOI 10.1080/14794802.2017.1325776 Oshler S., 2016, For the Learning of Mathematics, V36, P11 Oyengo M.O, 2021, INT M STACK COMMUNIT, DOI [10.5281/zenodo.5035980, DOI 10.5281/ZENODO.5035980] Palm T., 2017, Nordic Studies in Mathematics Education, V22, P25 Pointon A., 2003, International Journal of Mathematical Education in Science and Technology, V34, P671, DOI DOI 10.1080/0020739031000148930 Pollitt A, 2012, ASSESS EDUC, V19, P281, DOI 10.1080/0969594X.2012.665354 Polya G., 1954, MATH PLAUSIBLE REASO, V2 Popper P, 2022, EDUC STUD MATH, V110, P83, DOI 10.1007/s10649-021-10109-1 Rienties B, 2019, COMPUT HUM BEHAV, V100, P345, DOI 10.1016/j.chb.2019.07.007 Rohrer D, 2015, J EDUC PSYCHOL, V107, P900, DOI 10.1037/edu0000001 Ronning F, 2017, TEACH MATH APPL, V36, P94, DOI 10.1093/teamat/hrx001 Rowlett P, 2022, INT J MATH EDUC SCI, V53, P1413, DOI 10.1080/0020739X.2020.1822554 Sangwin C., 2003, International Journal of Mathematical Education in Science and Technology, V34, P813, DOI DOI 10.1080/00207390310001595474 Sangwin CJ, 2007, J SYMB COMPUT, V42, P920, DOI 10.1016/j.jsc.2007.07.002 Sangwin C.J, 2019, 11 C EUR SOC RES MAT Sangwin CJ, 2016, COMPUT EDUC, V94, P215, DOI 10.1016/j.compedu.2015.11.014 Sangwin CJ., 2013, COMPUTER AIDED ASSES, DOI [10.1093/acprof:oso/9780199660353.001.0001, DOI 10.1093/ACPROF:OSO/9780199660353.001.0001] Sangwin CJ., 2022, PRIMUS, V32, P927, DOI [10.1080/10511970.2021.1999352, DOI 10.1080/10511970.2021.1999352] Seaton K, 2022, INT J MATH EDUC SCI, V53, P559, DOI 10.1080/0020739X.2022.2008551 Selden A., 2018, PRIMUS, V28, P31, DOI [https://doi.org/10.1080/10511970.2017.1355858, DOI 10.1080/10511970.2017.1355858] Shute VJ, 2008, REV EDUC RES, V78, P153, DOI 10.3102/0034654307313795 Sikurajapathi Indunil, 2020, International Journal of Information and Education Technology, V10, P356, DOI 10.18178/ijiet.2020.10.5.1389 Sleeman D., 1982, INTELLIGENT TUTORING Smith G., 1996, International Journal o fMathematical Education in Science and Technology, V27, P65 Sutherland WJ, 2011, METHODS ECOL EVOL, V2, P238, DOI 10.1111/j.2041-210X.2010.00083.x Thoma A, 2022, INT J RES UN MATH ED, V8, P64, DOI 10.1007/s40753-021-00140-1 Bickerton RT, 2022, INT J MATH EDUC SCI, V53, P2637, DOI 10.1080/0020739X.2021.1896813 Topping K, 2009, THEOR PRACT, V48, P20, DOI 10.1080/00405840802577569 Vajda R., 2009, TEACHING MATH COMPUT, V7, P13, DOI [10.5485/TMCS.2009.0189, DOI 10.5485/TMCS.2009.0189] Vajda R, 2009, MATH COMPUT SIMULAT, V79, P2310, DOI 10.1016/j.matcom.2008.11.002 Van der Kleij FM, 2015, REV EDUC RES, V85, P475, DOI 10.3102/0034654314564881 VanDerHuck F, 2020, EXPLORACIONES, P1, DOI [10.18046/EUI/expl.13.2020, 10.1007/s11092-020-09331-x] Watson A., 2006, MATH CONSTRUCTIVE AC, DOI [10.4324/9781410613714, DOI 10.4324/9781410613714] Wiliam D, 2016, EDUC LEADERSHIP, V73, P10 Wood AK, 2021, TECHNOL PEDAGOG EDUC, V30, P443, DOI 10.1080/1475939X.2021.1917449 NR 100 TC 3 Z9 3 U1 0 U2 3 PU SPRINGER INT PUBL AG PI CHAM PA GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND SN 2198-9745 EI 2198-9753 J9 INT J RES UN MATH ED JI Int. J. Res. Undergrad. Math. Educ. PD APR PY 2024 VL 10 IS 1 BP 201 EP 231 DI 10.1007/s40753-022-00189-6 EA SEP 2022 PG 31 WC Education & Educational Research WE Emerging Sources Citation Index (ESCI) SC Education & Educational Research GA TV2J1 UT WOS:000852922600001 OA Green Accepted, Green Published, hybrid DA 2024-09-05 ER PT C AU Liu, HJ Xu, HZ Yan, Y Li, W AF Liu, Hong Jie Xu, Hong Zhe Yan, Yu Li, Wen BE Getov, V Gaudiot, JL Yamai, N Cimato, S Chang, M Teranishi, Y Yang, JJ Leong, HV Shahriar, H Takemoto, M Towey, D Takakura, H Elci, A Susumu Puri, S TI Research on Evaluation Function of Clustering Algorithm Based on Duty Cycle SO 2019 IEEE 43RD ANNUAL COMPUTER SOFTWARE AND APPLICATIONS CONFERENCE (COMPSAC), VOL 2 SE Proceedings International Computer Software and Applications Conference LA English DT Proceedings Paper CT 43rd IEEE-Computer-Society Annual International Computers, Software and Applications Conference (COMPSAC) CY JUL 15-19, 2019 CL Marquette Univ, Milwaukee, WI HO Marquette Univ DE DBSCAN; Validity dex; Density-based Clustering; Trajectory Clustering AB Density-based clustering (DBSCAN) is one of the most effective methods for trajectory data mining, but density based clustering algorithms are often limited by the choice of input parameters. In the trajectory data mining, clustering results are not only affected by the within-class distance and between-class distance, but also by the number of coordinate points in the cluster. Therefore, this paper proposes a novel cluster validity index based on the internal and external duty cycle to balance the three factors. In this way, the parameters of density clustering can be automatically selected, and effective clustering can be formed on different datasets. Then the clustering method is applied to the depth analysis and mining of travelers' behavior trajectories. The experiment proves that compared with the traditional Validity index, the evaluation function proposed in this paper can optimize input parameters and get better user location information clustering results. C1 [Liu, Hong Jie; Xu, Hong Zhe; Yan, Yu; Li, Wen] Xi An Jiao Tong Univ, Sch Elect & Informat Engn, Xian, Peoples R China. C3 Xi'an Jiaotong University RP Liu, HJ (corresponding author), Xi An Jiao Tong Univ, Sch Elect & Informat Engn, Xian, Peoples R China. EM hj_popel@stu.xjtu.edu.cn; xuhz@xjtu.edu.cn; yanyu94@stu.xjtu.edu.cn; leewhen@xjtu.edu.cn CR Acharya S, 2014, INT CONF SOFT COMP, P24, DOI 10.1109/ISCMI.2014.14 [Anonymous], 2016, IEEE T NEUR NET LEAR, DOI DOI 10.1109/TNNLS.2016.2608001 [Anonymous], J CYBERNETICS Chen D, 2020, INT J PAVEMENT ENG, V21, P416, DOI 10.1080/10298436.2018.1483503 Choong MY, 2014, PROCEEDINGS 2014 4TH INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE WITH APPLICATIONS IN ENGINEERING AND TECHNOLOGY ICAIET 2014, P199, DOI 10.1109/ICAIET.2014.41 DAVIES DL, 1979, IEEE T PATTERN ANAL, V1, P224, DOI 10.1109/TPAMI.1979.4766909 Hou J, 2016, IEEE T IMAGE PROCESS, V25, DOI 10.1109/TIP.2016.2559803 Karo I.M.K., 2017, 2 INT C INF COMP ICI, P1, DOI DOI 10.1109/IAC.2017.8280572 Rojas Thomas Juan Carlos, 2013, 2013 32nd International Conference of the Chilean Computer Science Society (SCCC). Proceedings, P49, DOI 10.1109/SCCC.2013.29 ROUSSEEUW PJ, 1987, J COMPUT APPL MATH, V20, P53, DOI 10.1016/0377-0427(87)90125-7 Sharma A, 2017, 2017 INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTING, INSTRUMENTATION AND CONTROL TECHNOLOGIES (ICICICT), P787, DOI 10.1109/ICICICT1.2017.8342664 Wang Z, 2017, 2017 INTERNATIONAL CONFERENCE ON SMART GRID AND ELECTRICAL AUTOMATION (ICSGEA), P538, DOI 10.1109/ICSGEA.2017.52 Zheng Y, 2015, ACM T INTEL SYST TEC, V6, DOI 10.1145/2743025 NR 13 TC 1 Z9 1 U1 1 U2 4 PU IEEE COMPUTER SOC PI LOS ALAMITOS PA 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1264 USA SN 0730-3157 BN 978-1-7281-2607-4 J9 P INT COMP SOFTW APP PY 2019 BP 48 EP 54 DI 10.1109/COMPSAC.2019.10182 PG 7 WC Computer Science, Interdisciplinary Applications; Computer Science, Software Engineering WE Conference Proceedings Citation Index - Science (CPCI-S) SC Computer Science GA BP1DH UT WOS:000538781300009 DA 2024-09-05 ER PT J AU Alemdag, E AF Alemdag, Ecenaz TI The effect of chatbots on learning: a meta-analysis of empirical research SO JOURNAL OF RESEARCH ON TECHNOLOGY IN EDUCATION LA English DT Article; Early Access DE Chatbot; conversational agent; learning; meta-analysis; artificial intelligence ID INTELLIGENT TUTORING SYSTEMS; CONVERSATIONAL AGENTS; FEEDBACK PRACTICE; TEACHING-ENGLISH; SKILLS; PERCEPTIONS; EDUCATION; GUIDANCE AB This meta-analysis aimed to comprehensively review empirical studies on the effect of chatbots on learning and quantitatively synthesize their findings to produce an overall effect size. Searching several databases yielded 28 eligible reports with 31 individual effect sizes. The results revealed a significant and medium effect (g = .48) of chatbots on learning. Further analyses indicated four significant moderators: the type of instruction in the comparison group, experimental duration, chatbot type, and chatbot tasks. The highest effect sizes emerged when the comparison group had no specific support, the experiment lasted only one session, and chatbots were task-focused and took care of frequently asked questions. These results suggest that chatbots can be more effective in certain cases within their overall contribution area to learning. C1 [Alemdag, Ecenaz] Tech Univ Dresden, Dresden, Germany. [Alemdag, Ecenaz] Tech Univ Dresden, Psychol Learning & Instruct, Dresden, Germany. C3 Technische Universitat Dresden; Technische Universitat Dresden RP Alemdag, E (corresponding author), Tech Univ Dresden, Psychol Learning & Instruct, Dresden, Germany. EM ecenazalemdag@gmail.com OI Alemdag, Ecenaz/0000-0003-2645-4732 FU The author completed this research during her postdoctoral fellowship funded by the Alexander von Humboldt Foundation. She is grateful to this foundation for providing financial support for her studies. She also expresses her gratitude to Dr. Merve Basdoga; Alexander von Humboldt Foundation FX The author completed this research during her postdoctoral fellowship funded by the Alexander von Humboldt Foundation. She is grateful to this foundation for providing financial support for her studies. She also expresses her gratitude to Dr. Merve Basdogan, who provided enormous help in the analysis stage of this study. CR Adamopoulou E, 2020, MACH LEARN APPL, V2, DOI 10.1016/j.mlwa.2020.100006 Bibauw S, 2022, LANG LEARN TECHNOL, V26 Borenstein M., 2009, INTRO META ANAL Bozkurt A., 2023, Asian Journal of Distance Education, V18, P198, DOI [10.5281/zenodo.7716416, DOI 10.5281/ZENODO.7716416] Brachten F, 2020, INF SYST E-BUS MANAG, V18, P187, DOI 10.1007/s10257-020-00471-7 BRUSTENGA Guillem, 2018, Briefing paper: Los chatbots en educacion Chang CY, 2022, EDUC TECHNOL SOC, V25, P15 Chang CY, 2022, BRIT J EDUC TECHNOL, V53, P171, DOI 10.1111/bjet.13158 Chang JN, 2023, ASIA-PAC SCI EDUC, V9, P44, DOI 10.1163/23641177-BJA10062 Chiu TKF, 2023, INTERACT LEARN ENVIR, DOI 10.1080/10494820.2023.2172044 Cohen J., 1977, STAT POWER ANAL BEHA Sáiz-Manzanares MC, 2023, HELIYON, V9, DOI 10.1016/j.heliyon.2023.e12843 Deeks JJ., 2022, COCHRANE HDB SYSTEMA Deng H, 2018, PROC INT CONF EDU IN, P234, DOI 10.1109/EITT.2018.00054 Deng XJ, 2023, SUSTAINABILITY-BASEL, V15, DOI 10.3390/su15042940 Farrokhnia M, 2024, INNOV EDUC TEACH INT, V61, P460, DOI 10.1080/14703297.2023.2195846 Fidan M, 2022, J EDUC COMPUT RES, V60, P1716, DOI 10.1177/07356331221077901 Fryer LK, 2017, COMPUT HUM BEHAV, V75, P461, DOI 10.1016/j.chb.2017.05.045 *Graesser A. C., 2003, P 25 ANN C COGN SCI, P1 Grudin J, 2019, CHI 2019: PROCEEDINGS OF THE 2019 CHI CONFERENCE ON HUMAN FACTORS IN COMPUTING SYSTEMS, DOI 10.1145/3290605.3300439 Han S, 2022, COMPUT EDUC, V179, DOI 10.1016/j.compedu.2021.104395 Hannafin M, 1999, INSTRUCTIONAL-DESIGN THEORIES AND MODELS, VOL II, P115 Hattie JAC, 2009, VISIBLE LEARNING: A SYNTHESIS OF OVER 800 META-ANALYSES RELATING TO ACHIEVEMENT, P1 Hayashi Y, 2020, INT J COMP-SUPP COLL, V15, P469, DOI 10.1007/s11412-020-09333-3 Hedges LV., 1985, Journal of Educational Statistics, DOI [DOI 10.2307/1164953, 10.1016/C2009-0-03396-0, DOI 10.1016/C2009-0-03396-0] Higgins J. P. T., 2021, COCHRANE HDB SYSTEMA Higgins JPT, 2003, BMJ-BRIT MED J, V327, P557, DOI 10.1136/bmj.327.7414.557 Hoque M, 2013, UBICOMP'13: PROCEEDINGS OF THE 2013 ACM INTERNATIONAL JOINT CONFERENCE ON PERVASIVE AND UBIQUITOUS COMPUTING, P697 Hsu MH, 2023, INTERACT LEARN ENVIR, V31, P4297, DOI 10.1080/10494820.2021.1960864 Hsu TC, 2023, EDUC TECHNOL SOC, V26, P218, DOI 10.30191/ETS.202301_26(1).0016 Huang WJ, 2022, J COMPUT ASSIST LEAR, V38, P237, DOI 10.1111/jcal.12610 Hwang GJ, 2023, INTERACT LEARN ENVIR, V31, P4099, DOI 10.1080/10494820.2021.1952615 Jasin J, 2023, EDUC INF TECHNOL, V28, P10665, DOI 10.1007/s10639-023-11602-1 Je-Young Lee, 2022, [Studies in English Language & Literature, 영어영문학연구], V48, P213 Jeon J, 2024, COMPUT ASSIST LANG L, V37, P1, DOI 10.1080/09588221.2021.2021241 Jeon J, 2023, COMPUT ASSIST LANG L, V36, P1338, DOI 10.1080/09588221.2021.1987272 Ji H, 2023, J RES TECHNOL EDUC, V55, P48, DOI 10.1080/15391523.2022.2142873 Kasneci E, 2023, LEARN INDIVID DIFFER, V103, DOI 10.1016/j.lindif.2023.102274 Kerly A, 2009, APPLICATIONS AND INNOVATIONS IN INTELLIGENT SYSTEMS XVI, P169 Kim HS, 2021, J ASIA TEFL, V18, P161, DOI 10.18823/asiatefl.2021.18.1.10.161 Kirschner PA, 2006, EDUC PSYCHOL-US, V41, P75, DOI 10.1207/s15326985ep4102_1 Kron FW, 2017, PATIENT EDUC COUNS, V100, P748, DOI 10.1016/j.pec.2016.10.024 Kuhail MA, 2023, EDUC INF TECHNOL, V28, P973, DOI 10.1007/s10639-022-11177-3 Kumar JA, 2021, INT J EDUC TECHNOL H, V18, DOI 10.1186/s41239-021-00302-w LANDIS JR, 1977, BIOMETRICS, V33, P159, DOI 10.2307/2529310 Lin H, 2019, INT REV RES OPEN DIS, V20, P1 Lin MPC, 2020, EDUC TECHNOL SOC, V23, P78 Lipsey MW., 2001, PRACTICAL META ANAL Ma WT, 2014, J EDUC PSYCHOL, V106, P901, DOI 10.1037/a0037123 Mageira K, 2022, APPL SCI-BASEL, V12, DOI 10.3390/app12073239 Mejbri N, 2017, 2017 6TH INTERNATIONAL CONFERENCE ON INFORMATION AND COMMUNICATION TECHNOLOGY AND ACCESSIBILITY (ICTA) Morris SB, 2008, ORGAN RES METHODS, V11, P364, DOI 10.1177/1094428106291059 Na-Young Kim, 2018, [Journal of Digital Convergence, 디지털융복합연구], V16, P19 Na-Young Kim, 2018, [Journal of Digital Convergence, 디지털융복합연구], V16, P1, DOI 10.14400/JDC.2018.16.2.001 Na-Young Kim, 2016, [Multimedia-Assisted Language Learning, 멀티미디어 언어교육], V19, P63 Nghi T. T., 2019, International Journal of Scientific & Technology research, V8, P897 Okonkwo CW., 2021, COMPUTERS ED ARTIFIC, V2, P100033, DOI [10.1016/j.caeai.2021.100033, DOI 10.1016/J.CAEAI.2021.100033] Page MJ, 2021, BMJ-BRIT MED J, V372, DOI 10.1136/bmj.n160 Pérez JQ, 2020, COMPUT APPL ENG EDUC, V28, P1549, DOI 10.1002/cae.22326 Petticrew M, 2006, SYSTEMATIC REVIEWS IN THE SOCIAL SCIENCES: A PRACTICAL GUIDE, P1, DOI 10.1002/9780470754887 ROSENTHAL R, 1979, PSYCHOL BULL, V86, P638, DOI 10.1037/0033-2909.86.3.638 Ruan S, 2021, IUI '21 - 26TH INTERNATIONAL CONFERENCE ON INTELLIGENT USER INTERFACES, P434, DOI 10.1145/3397481.3450648 Schmidt F., 2015, METHODS META ANAL CO, DOI [10.4135/9781483398105, DOI 10.4135/9781483398105] Slavin RE, 2008, EDUC RESEARCHER, V37, P5, DOI 10.3102/0013189X08314117 Smutny P, 2020, COMPUT EDUC, V151, DOI 10.1016/j.compedu.2020.103862 Song D, 2021, J RES TECHNOL EDUC, V53, P249, DOI 10.1080/15391523.2020.1767525 Suurmond R, 2017, RES SYNTH METHODS, V8, P537, DOI 10.1002/jrsm.1260 Tegos S, 2017, EDUC TECHNOL SOC, V20, P99 Tegos S, 2016, INT J COMP-SUPP COLL, V11, P417, DOI 10.1007/s11412-016-9246-2 Terras M.M., 2013, E-Learning and Digital Media, V10, P161, DOI [DOI 10.1016/J.TECHFORE.2018.01, 10.1016/j.techfore.2018.01] Tlili A, 2023, SMART LEARN ENVIRON, V10, DOI 10.1186/s40561-023-00237-x Topal AD, 2021, EDUC INF TECHNOL, V26, P6241, DOI 10.1007/s10639-021-10627-8 Vattoy KD, 2020, STUD EDUC EVAL, V64, DOI 10.1016/j.stueduc.2019.100828 Vattoy KD, 2019, TEACH TEACH EDUC, V85, P260, DOI 10.1016/j.tate.2019.06.024 Vázquez-Cano E, 2021, INT J EDUC TECHNOL H, V18, DOI 10.1186/s41239-021-00269-8 Viechtbauer W, 2010, RES SYNTH METHODS, V1, P112, DOI 10.1002/jrsm.11 *Wambsganss T., 2021, P 2021 CHI C HUM FAC, P1, DOI [https://doi.org/10.1145/3411764.3445781, DOI 10.1145/3411764.3445781] Winkler R., 2018, ACAD MANAGEMENT ANN, V2018, P15903, DOI DOI 10.5465/AMBPP.2018.15903ABSTRACT Winkler R, 2020, PROCEEDINGS OF THE 2020 CHI CONFERENCE ON HUMAN FACTORS IN COMPUTING SYSTEMS (CHI'20), DOI 10.1145/3313831.3376781 Wollny S, 2021, FRONT ARTIF INTELL, V4, DOI 10.3389/frai.2021.654924 Xia Q, 2023, BRIT J EDUC TECHNOL, V54, P967, DOI 10.1111/bjet.13305 Xu Y, 2021, COMPUT EDUC, V161, DOI 10.1016/j.compedu.2020.104059 Xu ZH, 2019, BRIT J EDUC TECHNOL, V50, P3119, DOI 10.1111/bjet.12758 Yilmaz Ramazan, 2023, Computers in Human Behavior: Artificial Humans, V1, DOI DOI 10.1016/J.CHBAH.2023.100005 Yin JQ, 2021, J EDUC COMPUT RES, V59, P154, DOI 10.1177/0735633120952067 Zhang RF, 2023, INTERACT LEARN ENVIR, DOI 10.1080/10494820.2023.2202704 Zhang SA, 2023, EDUC INF TECHNOL, V28, P15223, DOI 10.1007/s10639-023-11805-6 NR 87 TC 9 Z9 9 U1 39 U2 99 PU ROUTLEDGE JOURNALS, TAYLOR & FRANCIS LTD PI ABINGDON PA 2-4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND SN 1539-1523 EI 1945-0818 J9 J RES TECHNOL EDUC JI J. Res. Technol. Educ. PD 2023 SEP 4 PY 2023 DI 10.1080/15391523.2023.2255698 EA SEP 2023 PG 23 WC Education & Educational Research WE Social Science Citation Index (SSCI) SC Education & Educational Research GA R5BL3 UT WOS:001064500700001 DA 2024-09-05 ER PT C AU Chen, C Zhang, SM Zhang, H Li, XJ He, ZC AF Chen, Chong Zhang, Shimin Zhang, Hang Li, Xiaojun He, Zichen BE Reich, A Cluever, J TI RESEARCH ON RISK ASSESSMENT METHOD OF STICK-SLIP VIBRATION OF THE BIT BASED ON BP NEURAL NETWORK ALGORITHM SO PROCEEDINGS OF THE ASME PRESSURE VESSELS AND PIPING CONFERENCE, 2018, VOL 7 LA English DT Proceedings Paper CT ASME Pressure Vessels and Piping Conference (PVP 2018) CT COFOLA INTERNATIONAL 2017: Resolution of International Disputes Conference CY JUL 15-20, 2018 CY APR 27-29, 2017 CL Prague, CZECH REPUBLIC CL Masaryk Univ, Telc, CZECH REPUBLIC HO Masaryk Univ DE stick-slip vibration; time and frequency domain; kernel principal component analysis; backpropagation neural network; drilling risk AB During the drilling process, the non-linear contacts between the bit and the bottom hole, the drill string and the borehole wall can cause the bit's stick-slip vibration, which will shorten the life of the bit and even endanger the safety of the drill string. The severity of stick-slip vibration of a bit can be identified by the rotary speed of a bit, the triaxial accelerations of the drill string, the wellhead torque and other parameters measured by the measuring while drilling (MWD) tools in the downhole and devices on the surface. To evaluate the level of stick-slip vibration, this paper proposes a risk assessment method of sick-slip vibration based on backpropagation neural network (BPNN). According to the time and frequency domain analysis of the data collected from simulation, the feature parameters of the time and frequency domains of signals are extracted, and then the kernel principal component analysis (KPCA) is applied to reduce dimensions. Consequently, the feature vectors can be obtained, which become the input parameters of the BPNN. Based on BPNN algorithm, the stick slip vibration of the bit is determined, and the classification of stick-slip vibration strength is carried out. The results show that this method can effectively identify the severity of stick-slip vibration of a bit. Therefore, this method is valid to evaluate the stick-slip vibration of a bit, which will help drillers adjust the drilling parameters practically according to the severity of vibration, so as to reduce the risks of stick-slip vibration during drilling and improve the efficiency and safety of drilling operation. C1 [Chen, Chong; Zhang, Shimin; Zhang, Hang; He, Zichen] China Univ Petr, Beijing, Peoples R China. [Li, Xiaojun] CNPC Xibu Drilling Engn Co Ltd, Urumqi, Xinjiang, Peoples R China. C3 China University of Petroleum; China National Petroleum Corporation RP Chen, C (corresponding author), China Univ Petr, Beijing, Peoples R China. FU CNPC Xibu Drilling Engineering Company Limited FX The author would like to thank CNPC Xibu Drilling Engineering Company Limited, for sponsoring this study, and providing the field data. CR Besaisow A., 1988, SPE DRILLING ENG, V3, P93 Bresch-Pietri D, 2014, P AMER CONTR CONF, P386, DOI 10.1109/ACC.2014.6858642 Brett J.F., 1992, SPE Drilling Engineering, V7, P168, DOI DOI 10.2118/21943-PA Challamel N, 2000, P IADC SPE DRILL C Davis J, 2012, P IADC SPE DRILL C E Halsey G. W, 1988, P SPE TECHN C EXH HECHTNIELSEN R, 1988, NEURAL NETWORKS, V1, P131, DOI 10.1016/0893-6080(88)90015-9 Kyllingstad A, 2009, P SPE IADC DRILL C E LIN YQ, 1991, J ENG IND-T ASME, V113, P38, DOI 10.1115/1.2899620 Richard T, 2004, CR MECANIQUE, V332, P619, DOI 10.1016/j.crme.2004.01.016 Robnett E, 1999, P SPE IADC DRILL C RUMELHART DE, 1986, NATURE, V323, P533, DOI 10.1038/323533a0 Scholkopf B., 1997, Artificial Neural Networks - ICANN '97. 7th International Conference Proceedings, P583, DOI 10.1007/BFb0020217 NR 13 TC 0 Z9 0 U1 0 U2 0 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-5170-8 PY 2019 AR UNSP V007T07A026 PG 6 WC Engineering, Mechanical; Nuclear Science & Technology WE Conference Proceedings Citation Index - Science (CPCI-S) SC Engineering; Nuclear Science & Technology GA BM2GO UT WOS:000460999100026 DA 2024-09-05 ER PT J AU Xu, M AF Xu, Man TI Research on Evaluation and Improvement of Government Short Video Communication Effect Based on Big Data Statistics SO INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS LA English DT Article DE Big data statistics; short videos of government affairs; communication effect; linear regression; mainstream media ID FUEL MOISTURE-CONTENT; DATA SCIENCE; ERA AB Mainstream media is no longer the only way for people to obtain information, and the official media no longer has absolute control. People can choose the form and content of receiving information according to their preferences, which poses a new challenge to the government departments that have always been serious. From the beginning of short video to its prosperity, the government has shown great interest in its characteristics and functions. It has started to layout short video of government affairs on platforms such as Tiktok and Kwai, opened accounts one after another, and actively participated in the production and dissemination of content. Through the continuous launch of well-designed "hot money", the popularity of government affairs short videos on Tiktok and other platforms continued to rise, harvested a large number of fans, attracted social attention, and also brought good results and repercussions. This paper proposes an optimization design scheme for the evaluation and improvement of the dissemination effect of government short video based on big data statistics. The basic situation of government video is obtained through content analysis, and then the judgment coefficient and linear regression in big data statistics are used to extract common factors to improve the dissemination effect of government short video, so as to improve the dissemination influence of government short video. Finally, simulation test and analysis are carried out. Simulation results show that the proposed algorithm has certain accuracy, which is 8.24% higher than the traditional algorithm. Carrying out the research on the promotion planning and design with the dissemination of short videos of government affairs as the core has important practical guiding significance for guiding local grass-roots governments to build public services and public feedback. C1 [Xu, Man] Commun Univ China, Dept Journalism, Beijing 100020, Peoples R China. [Xu, Man] Qiqihar Univ, Qiqihar 161000, Heilongjiang, Peoples R China. C3 Communication University of China; Qiqihar University RP Xu, M (corresponding author), Commun Univ China, Dept Journalism, Beijing 100020, Peoples R China.; Xu, M (corresponding author), Qiqihar Univ, Qiqihar 161000, Heilongjiang, Peoples R China. CR Adnan K, 2019, J BIG DATA-GER, V6, DOI 10.1186/s40537-019-0254-8 Afolayan AO, 2019, ADV SPACE RES, V64, P2154, DOI 10.1016/j.asr.2019.06.019 Cao R, 2019, TEST-SPAIN, V28, P664, DOI 10.1007/s11749-019-00666-2 Chen LJ, 2020, COMPUT STAT DATA AN, V144, DOI 10.1016/j.csda.2019.106892 Cruz MG, 2020, INT J WILDLAND FIRE, V29, P1133, DOI 10.1071/WF20006 Daas PJH, 2015, J OFF STAT, V31, P249, DOI 10.1515/JOS-2015-0016 David JF, 2022, B MATH BIOL, V84, DOI 10.1007/s11538-022-01020-8 Dozier J, 2022, IEEE GEOSCI REMOTE S, V19, DOI 10.1109/LGRS.2021.3125278 Dunson DB, 2018, STAT PROBABIL LETT, V136, P4, DOI 10.1016/j.spl.2018.02.028 Genton MG, 2019, TEST-SPAIN, V28, P338, DOI 10.1007/s11749-019-00642-w Grzybowski A, 2018, ACTA OPHTHALMOL, V96, pE885, DOI 10.1111/aos.13756 Guo Z, 2018, ASTROPHYS J, V868, DOI 10.3847/1538-4357/aaeb9b Hong S, 2020, MON NOT R ASTRON SOC, V493, P5972, DOI 10.1093/mnras/staa566 James GM, 2018, STAT PROBABIL LETT, V136, P155, DOI 10.1016/j.spl.2018.02.034 McGrath S, 2019, STAT MED, V38, P969, DOI 10.1002/sim.8013 Nobis WP, 2020, J NEUROSURG, V132, P1313, DOI 10.3171/2019.1.JNS183157 Okulicz-Kozaryn A, 2017, SOC INDIC RES, V132, P953, DOI 10.1007/s11205-016-1327-0 Pimont F, 2019, INT J WILDLAND FIRE, V28, P127, DOI [10.1071/WF18091, 10.1071/wf18091] Pitcher BW, 2019, GEOCHIM COSMOCHIM AC, V265, P443, DOI 10.1016/j.gca.2019.08.035 Rehman A, 2022, MULTIMEDIA SYST, V28, P1339, DOI 10.1007/s00530-020-00736-8 Rossa CG, 2017, INT J WILDLAND FIRE, V26, P24, DOI 10.1071/WF16049 Sangalli LM, 2018, STAT PROBABIL LETT, V136, P1, DOI 10.1016/j.spl.2018.04.009 Scanlon DP, 2020, AM J MANAG CARE, V26, P241, DOI 10.37765/ajmc.2020.43142 Soomro K, 2019, WIRES DATA MIN KNOWL, V9, DOI 10.1002/widm.1319 Yuan Y, 2022, MULTIMEDIA SYST, V28, P387, DOI 10.1007/s00530-021-00777-7 Zhang YX, 2018, IEEE NETWORK, V32, P146, DOI 10.1109/MNET.2018.1700282 NR 26 TC 0 Z9 0 U1 4 U2 4 PU SCIENCE & INFORMATION SAI ORGANIZATION LTD PI WEST YORKSHIRE PA 19 BOLLING RD, BRADFORD, WEST YORKSHIRE, 00000, ENGLAND SN 2158-107X EI 2156-5570 J9 INT J ADV COMPUT SC JI Int. J. Adv. Comput. Sci. Appl. PD JAN PY 2024 VL 15 IS 1 BP 1073 EP 1083 PG 11 WC Computer Science, Theory & Methods WE Emerging Sources Citation Index (ESCI) SC Computer Science GA UV6A2 UT WOS:001250863900033 DA 2024-09-05 ER PT J AU Ni, Z Peng, ML Balakrishnan, V Tee, V Azwa, I Saifi, R Nelson, LE Vlahov, D Altice, FL AF Ni, Zhao Peng, Mary L. Balakrishnan, Vimala Tee, Vincent Azwa, Iskandar Saifi, Rumana Nelson, LaRon E. Vlahov, David Altice, Frederick L. TI Implementation of Chatbot Technology in Health Care: Protocol for a Bibliometric Analysis SO JMIR RESEARCH PROTOCOLS LA English DT Article DE artificial intelligence; AI; bibliometric analysis; chatbots; health care; health promotion AB Background: Chatbots have the potential to increase people's access to quality health care. However, the implementation of chatbot technology in the health care system is unclear due to the scarce analysis of publications on the adoption of chatbot in health and medical settings. Objective: This paper presents a protocol of a bibliometric analysis aimed at offering the public insights into the current state and emerging trends in research related to the use of chatbot technology for promoting health. Methods: In this bibliometric analysis, we will select published papers from the databases of CINAHL, IEEE Xplore, PubMed, Scopus, and Web of Science that pertain to chatbot technology and its applications in health care. Our search strategy includes keywords such as "chatbot," "virtual agent," "virtual assistant," "conversational agent," "conversational AI," "interactive agent," "health," and "healthcare." Five researchers who are AI engineers and clinicians will independently review the titles and abstracts of selected papers to determine their eligibility for a full-text review. The corresponding author (ZN) will serve as a mediator to address any discrepancies and disputes among the 5 reviewers. Our analysis will encompass various publication patterns of chatbot research, including the number of annual publications, their geographic or institutional distribution, and the number of annual grants supporting chatbot research, and further summarize the methodologies used in the development of health-related chatbots, along with their features and applications in health care settings. Software tool VOSViewer (version 1.6.19; Leiden University) will be used to construct and visualize bibliometric networks. Results: The preparation for the bibliometric analysis began on December 3, 2021, when the research team started the process of familiarizing themselves with the software tools that may be used in this analysis, VOSViewer and CiteSpace, during which they consulted 3 librarians at the Yale University regarding search terms and tentative results. Tentative searches on the aforementioned databases yielded a total of 2340 papers. The official search phase started on July 27, 2023. Our goal is to complete the screening of papers and the analysis by February 15, 2024. Conclusions: Artificial intelligence chatbots, such as ChatGPT (OpenAI Inc), have sparked numerous discussions within the health care industry regarding their impact on human health. Chatbot technology holds substantial promise for advancing health care systems worldwide. However, developing a sophisticated chatbot capable of precise interaction with health care consumers, delivering personalized care, and providing accurate health-related information and knowledge remain considerable challenges. C1 [Ni, Zhao; Nelson, LaRon E.; Vlahov, David] Yale Univ, Sch Nursing, Orange, CT USA. [Ni, Zhao; Nelson, LaRon E.; Vlahov, David; Altice, Frederick L.] Yale Univ, Ctr Interdisciplinary Res AIDS, New Haven, CT USA. [Peng, Mary L.] Harvard Univ, Harvard Med Sch, Dept Global Hlth & Social Med, Boston, MA USA. [Balakrishnan, Vimala] Univ Malaya, Fac Comp Sci & Informat Technol, Dept Informat Syst, Kuala Lumpur, Malaysia. [Tee, Vincent; Azwa, Iskandar; Saifi, Rumana; Altice, Frederick L.] Univ Malaya, Fac Med, Ctr Excellence Res AIDS, Kuala Lumpur, Malaysia. [Azwa, Iskandar] Univ Malaya, Fac Med, Infect Dis Unit, Kuala Lumpur, Malaysia. [Altice, Frederick L.] Yale Sch Med, Dept Internal Med, Sect Infect Dis, New Haven, CT USA. [Altice, Frederick L.] Yale Sch Publ Hlth, Div Epidemiol Microbial Dis, New Haven, CT USA. [Ni, Zhao] Yale Univ, Sch Nursing, 400 West Campus Dr, Orange, CT 06477 USA. C3 Yale University; Yale University; Harvard University; Harvard Medical School; Universiti Malaya; Universiti Malaya; Universiti Malaya; Yale University; Yale University; Yale University RP Ni, Z (corresponding author), Yale Univ, Sch Nursing, 400 West Campus Dr, Orange, CT 06477 USA. EM zhao.ni@yale.edu RI Ni, Zhao/HNB-9508-2023; Balakrishnan, Vimala/F-4037-2011; Azwa, Iskandar/N-9186-2017; Tee, Vincent/AAU-1296-2021 OI Ni, Zhao/0000-0002-9185-9894; Balakrishnan, Vimala/0000-0002-6859-4488; Azwa, Iskandar/0000-0003-1977-6709; Tee, Vincent/0000-0002-6562-2666; Peng, Lihong/0000-0001-9360-5487; Nelson, LaRon/0000-0002-2630-602X; Altice, Frederick L/0000-0002-7860-693X FU National Institutes of Health [R21TW011663, R33TW011663, D43TW011324]; Yale University School of Nursing FX This work was supported by grants from the National Institutes of Health (R21TW011663 and R33TW011663 for ZN and FLA; and D43TW011324 for FLA and RS) and faculty research funds from Yale University School of Nursing for ZN. CR Abd-Alrazaq AA, 2021, J MED INTERNET RES, V23, DOI 10.2196/17828 [Anonymous], 2023, NAT MED, V29, P505, DOI 10.1038/s41591-023-02289-5 Bender ME, 2015, PLOS NEGLECT TROP D, V9, DOI 10.1371/journal.pntd.0004182 Car LT, 2020, J MED INTERNET RES, V22, DOI 10.2196/17158 Cascella M, 2023, J MED SYST, V47, DOI 10.1007/s10916-023-01925-4 Coheur L, 2020, INFORM PROCESSING MA, V1237, P29 Corti K, 2015, FRONT PSYCHOL, V6, DOI 10.3389/fpsyg.2015.00634 de Cock C, 2020, JMIR RES PROTOC, V9, DOI 10.2196/16934 Donthu N, 2021, J BUS RES, V133, P285, DOI 10.1016/j.jbusres.2021.04.070 Feng H, 2021, GERIATR NURS, V42, P479, DOI 10.1016/j.gerinurse.2021.02.012 Gaffney H, 2019, JMIR MENT HEALTH, V6, DOI 10.2196/14166 Galescu Lucian., 2009, 2009 IEEE INT C BIOI, P302, DOI [DOI 10.1109/BIBMW.2009.5332111, 10.1109/BIBMW.2009.5332111] Geoghegan L, 2021, BJS OPEN, V5, DOI 10.1093/bjsopen/zrab070 Heyworth L, 2014, OSTEOPOROSIS INT, V25, P1519, DOI 10.1007/s00198-014-2629-1 Hoermann S, 2017, J MED INTERNET RES, V19, DOI 10.2196/jmir.7023 Holloway IW, 2017, JMIR MHEALTH UHEALTH, V5, DOI 10.2196/mhealth.6436 Howard A, 2023, LANCET INFECT DIS, V23, P405, DOI 10.1016/S1473-3099(23)00113-5 Kate B, 2019, Techtarget Koman J, 2020, J MED INTERNET RES, V22, DOI 10.2196/15185 Li HZ, 2023, LANCET DIGIT HEALTH, V5, pE333, DOI 10.1016/S2589-7500(23)00083-3 Linnenluecke MK, 2020, AUST J MANAGE, V45, P175, DOI 10.1177/0312896219877678 Luo TC, 2021, J MED INTERNET RES, V23, DOI 10.2196/25486 Luxton DD, 2020, B WORLD HEALTH ORGAN, V98, P285, DOI 10.2471/BLT.19.237636 Mesko B, 2021, The top 12 health Chatbots Miles O, 2021, DIGIT HEALTH, V7, DOI 10.1177/20552076211063012 Milne-Ives M, 2020, J MED INTERNET RES, V22, DOI 10.2196/20346 Nadarzynski T, 2019, DIGIT HEALTH, V5, DOI 10.1177/2055207619871808 Ni Z, 2022, J MED INTERNET RES, V24, DOI 10.2196/27202 Ni Z, 2018, Int J Nurs Sci, V5, P322, DOI 10.1016/j.ijnss.2018.09.003 Oh YJ, 2021, INT J BEHAV NUTR PHY, V18, DOI 10.1186/s12966-021-01224-6 Palanica A, 2019, J MED INTERNET RES, V21, DOI 10.2196/12887 Peng ML, 2022, JMIR FORM RES, V6, DOI 10.2196/42055 Sajjad M, 2023, ANN BIOMED ENG, V51, P1663, DOI 10.1007/s10439-023-03225-x Sallam M, 2023, HEALTHCARE-BASEL, V11, DOI 10.3390/healthcare11060887 Simon SR, 2010, ARCH INTERN MED, V170, P264, DOI 10.1001/archinternmed.2009.522 Vega-Olivero DA, 2019, INFORM PROCESS MANAG, V56, DOI 10.1016/j.ipm.2019.102063 Walpole SC, 2019, J CLIN EPIDEMIOL, V111, P127, DOI 10.1016/j.jclinepi.2019.03.004 Wang XF, 2023, LANCET REG HEALTH-W, V41, DOI 10.1016/j.lanwpc.2023.100905 Zheng Y, 2024, ANN BIOMED ENG, V52, P750, DOI 10.1007/s10439-023-03323-w NR 39 TC 0 Z9 0 U1 18 U2 18 PU JMIR PUBLICATIONS, INC PI TORONTO PA 130 QUEENS QUAY East, Unit 1100, TORONTO, ON M5A 0P6, CANADA SN 1929-0748 J9 JMIR RES PROTOC JI JMIR RES. Protoc. PY 2024 VL 13 AR e54349 DI 10.2196/54349 PG 7 WC Health Care Sciences & Services; Public, Environmental & Occupational Health WE Emerging Sources Citation Index (ESCI) SC Health Care Sciences & Services; Public, Environmental & Occupational Health GA JQ5Z9 UT WOS:001174657500001 PM 38228575 OA Green Published, gold DA 2024-09-05 ER PT J AU Pradhan, T Pal, S AF Pradhan, Tribikram Pal, Sukomal TI A hybrid personalized scholarly venue recommender system integrating social network analysis and contextual similarity SO FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE LA English DT Article DE Recommender system; Social network analysis; Citation analysis; Topic modeling; Factorization model; Main path analysis ID PATH-ANALYSIS; DATA FUSION; JOURNALS; COLLABORATION; COCITATION; CENTRALITY; WALK AB Rapidly developing academic venues throw a challenge to researchers in identifying the most appropriate ones that are in-line with their scholarly interests and of high relevance. Even a high-quality paper is sometimes rejected due to a mismatch between the area of the paper, and the scope of the journal attempted to. Recommending appropriate academic venues can, therefore, enable researchers to identify and take part in relevant conferences and to publish in impactful journals. Although a researcher may know a few leading high-profile venues for her specific field of interest, a venue recommender system becomes particularly helpful when one explores a new field or when more options are needed. We propose DISCOVER: A Diversified yet Integrated Social network analysis and COntextual similarity-based scholarly VEnue Recommender system. Our work provides an integrated framework incorporating social network analysis, including centrality measure calculation, citation and co-citation analysis, topic modeling based contextual similarity, and key-route identification based main path analysis of a bibliographic citation network. The paper also addresses cold start issues for a new researcher and a new venue along with a considerable reduction in data sparsity, computational costs, diversity, and stability problems. Experiments based on the Microsoft Academic Graph (MAG) dataset show that the proposed DISCOVER outperforms state-of-the-art recommendation techniques using standard metrics of precision@k, nDCG@k, accuracy, MRR, F - measure(macro), diversity, stability, and average venue quality. (C) 2019 Elsevier B.V. All rights reserved. C1 [Pradhan, Tribikram; Pal, Sukomal] Indian Inst Technol BHU, Dept Comp Sci & Engn, Varanasi, Uttar Pradesh, India. C3 Indian Institute of Technology System (IIT System); Indian Institute of Technology BHU Varanasi (IIT BHU Varanasi) RP Pradhan, T (corresponding author), Indian Inst Technol BHU, Dept Comp Sci & Engn, Varanasi, Uttar Pradesh, India. EM tpradhan.rs.cse16@itbhu.ac.in; spal.cse@itbhu.ac.in RI PRADHAN, TRIBIKRAM/AAY-1283-2021 OI PRADHAN, TRIBIKRAM/0000-0001-5458-2286 CR Adomavicius G, 2005, IEEE T KNOWL DATA EN, V17, P734, DOI 10.1109/TKDE.2005.99 Adomavicius G, 2015, IEEE T KNOWL DATA EN, V27, P1573, DOI 10.1109/TKDE.2014.2384502 Alhoori H, 2017, J INFORMETR, V11, P553, DOI 10.1016/j.joi.2017.03.006 Alhoori H, 2016, ACM-IEEE J CONF DIG, P239, DOI 10.1145/2910896.2925450 [Anonymous], 2018, 2018 INT JOINT C NEU [Anonymous], 1990, Six degrees of separation: A play [Anonymous], 2011, P 4 ACM INT C WEB SE, DOI DOI 10.1145/1935826.1935926 Beel J, 2016, INT J DIGIT LIBRARIE, V17, P305, DOI 10.1007/s00799-015-0156-0 Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993 Bobadilla J, 2013, KNOWL-BASED SYST, V46, P109, DOI 10.1016/j.knosys.2013.03.012 Bonacich P, 2007, SOC NETWORKS, V29, P555, DOI 10.1016/j.socnet.2007.04.002 Boukhris I, 2014, INT SYMP COMP INTELL, P465, DOI 10.1109/CINTI.2014.7028720 Bradley Keith, 2001, P 12 IR C ART INT CO, P85 Brandes U, 2001, J MATH SOCIOL, V25, P163, DOI 10.1080/0022250X.2001.9990249 Chen Z, 2015, WWW'15 COMPANION: PROCEEDINGS OF THE 24TH INTERNATIONAL CONFERENCE ON WORLD WIDE WEB, P579, DOI 10.1145/2740908.2741738 Cohen S, 2013, PROCEEDINGS OF THE 22ND INTERNATIONAL CONFERENCE ON WORLD WIDE WEB (WWW'13 COMPANION), P959 Egghe L, 2002, SCIENTOMETRICS, V55, P349, DOI 10.1023/A:1020458612014 Elmacioglu E, 2005, SIGMOD REC, V34, P33, DOI 10.1145/1083784.1083791 Errami M, 2007, NUCLEIC ACIDS RES, V35, pW12, DOI 10.1093/nar/gkm221 FREEMAN LC, 1979, SOC NETWORKS, V1, P215, DOI 10.1016/0378-8733(78)90021-7 Herrmannova D., D LIB MAG, V22 Hiep Luong, 2012, Proceedings of the 4th International Conference on Knowledge Discovery and Information Retrieval. KDIR 2012, P239 Luong H, 2012, LECT NOTES ARTIF INT, V7198, P426, DOI 10.1007/978-3-642-28493-9_45 Hornick MF, 2012, IEEE T KNOWL DATA EN, V24, P1478, DOI 10.1109/TKDE.2011.90 Hsu W., 2006, AAAI SPRING S SERIES Huang WY, 2015, AAAI CONF ARTIF INTE, P2404 HUMMON NP, 1989, SOC NETWORKS, V11, P39, DOI 10.1016/0378-8733(89)90017-8 Huynh T., 2012, TECHNOL APPL, P41 Kang N., 2015, P 9 ACM C RECOMMENDE, P261, DOI [DOI 10.1145/2792838.2799663, 10.1145/2792838.2799663] Klamma R, 2009, L N INST COMP SCI SO, V4, P657 Kleinberg JM, 1999, J ACM, V46, P604, DOI 10.1145/324133.324140 Kong X., J NETW COMPUT APPL Kong XJ, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0148492 Kunaver M, 2017, KNOWL-BASED SYST, V123, P154, DOI 10.1016/j.knosys.2017.02.009 Lai KK, 2005, INFORM PROCESS MANAG, V41, P313, DOI 10.1016/j.ipm.2003.11.004 Lee JH, 1997, PROCEEDINGS OF THE 20TH ANNUAL INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, P267, DOI 10.1145/258525.258587 Liang DW, 2016, PROCEEDINGS OF THE 25TH INTERNATIONAL CONFERENCE ON WORLD WIDE WEB (WWW'16), P951, DOI 10.1145/2872427.2883090 Liang W, 2018, FUTURE GENER COMP SY, V87, P591, DOI 10.1016/j.future.2017.12.038 Liang YC, 2011, LECT NOTES COMPUT SC, V6897, P403, DOI 10.1007/978-3-642-23535-1_35 Liu HF, 2015, IEEE ACCESS, V3, P1695, DOI 10.1109/ACCESS.2015.2481320 Liu JS, 2016, J ASSOC INF SCI TECH, V67, P465, DOI 10.1002/asi.23384 Liu X., ICONFERENCE 2016 P Lops P, 2011, RECOMMENDER SYSTEMS HANDBOOK, P73, DOI 10.1007/978-0-387-85820-3_3 Lu J, 2015, DECIS SUPPORT SYST, V74, P12, DOI 10.1016/j.dss.2015.03.008 Lu ZY, 2009, BIOINFORMATICS, V25, P3038, DOI 10.1093/bioinformatics/btp529 Pham MC, 2012, 2012 IEEE/ACM INTERNATIONAL CONFERENCE ON ADVANCES IN SOCIAL NETWORKS ANALYSIS AND MINING (ASONAM), P464, DOI 10.1109/ASONAM.2012.80 Medvet E, 2014, PROC INT C TOOLS ART, P1004, DOI 10.1109/ICTAI.2014.152 Minkov E., 2010, P 19 ACM INT C INFOR, P819, DOI DOI 10.1145/1871437.1871542.HTTP://P0RTAL.ACM.0RG/CITATI0N.CFM?D0ID=1871437.1871542 Montague M., 2001, Proceedings of the 2001 ACM CIKM. Tenth International Conference on Information and Knowledge Management, P427, DOI 10.1145/502585.502657 Newman MEJ, 2001, P NATL ACAD SCI USA, V98, P404, DOI 10.1073/pnas.021544898 Opsahl T, 2010, SOC NETWORKS, V32, P245, DOI 10.1016/j.socnet.2010.03.006 Pedersen T., 2004, PROCEEDING 19 NATL C, P38, DOI DOI 10.3115/1614025.1614037 Peng SC, 2018, J NETW COMPUT APPL, V106, P17, DOI 10.1016/j.jnca.2018.01.005 Pham M, 2010, P I KNOW CIT Pham MC, 2011, J UNIVERS COMPUT SCI, V17, P583 Porter M. F, 2001, Snowball: A language for stemming algorithms Real R, 1996, SYST BIOL, V45, P380, DOI 10.2307/2413572 Ricci F, 2011, RECOMMENDER SYSTEMS HANDBOOK, P1, DOI 10.1007/978-0-387-85820-3_1 Richards W.D., 2000, Journal of Social Structure, V1, P1 Schuemie MJ, 2008, BIOINFORMATICS, V24, P727, DOI 10.1093/bioinformatics/btn006 Sebastian Y, 2017, KNOWL-BASED SYST, V115, P66, DOI 10.1016/j.knosys.2016.10.015 Silva T, 2015, J ASSOC INF SCI TECH, V66, P180, DOI 10.1002/asi.23150 Sinha A, 2015, WWW'15 COMPANION: PROCEEDINGS OF THE 24TH INTERNATIONAL CONFERENCE ON WORLD WIDE WEB, P243, DOI 10.1145/2740908.2742839 Sokolova M, 2009, INFORM PROCESS MANAG, V45, P427, DOI 10.1016/j.ipm.2009.03.002 Son J, 2018, DECIS SUPPORT SYST, V105, P24, DOI 10.1016/j.dss.2017.10.011 Sparck-Jones K, 2000, INFORM PROCESS MANAG, V36, P809, DOI 10.1016/S0306-4573(00)00016-9 Stuckenschmidt H, 2002, LECT NOTES ARTIF INT, V2479, P114 Sugiyama Kazunari., 2015, SIGWEB Newsl. Winter, p4:1, DOI [10.1145/2719943.2719947, DOI 10.1145/2719943.2719947] Tang J., 2012, 18 ACM SIGKDD INT C, P1285, DOI DOI 10.1145/2339530.2339730 Trotman Andrew, 2014, P AUSTR DOC COMP S, P58, DOI [10.1145/2682862.2682863, DOI 10.1145/2682862.2682863] Villegas NM, 2018, KNOWL-BASED SYST, V140, P173, DOI 10.1016/j.knosys.2017.11.003 Wang G., BASED SYST Wu SL, 2012, EXPERT SYST APPL, V39, P1346, DOI 10.1016/j.eswa.2011.08.015 Wu SL, 2006, INFORM PROCESS MANAG, V42, P899, DOI 10.1016/j.ipm.2005.08.004 WU ZB, 1994, 32ND ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, P133 Xia F, 2017, IEEE T BIG DATA, V3, P18, DOI 10.1109/TBDATA.2016.2641460 Xia F, 2014, IEEE T EMERG TOP COM, V2, P364, DOI 10.1109/TETC.2014.2356505 Xia F, 2013, 2013 IEEE 10TH INTERNATIONAL CONFERENCE ON AND 10TH INTERNATIONAL CONFERENCE ON AUTONOMIC AND TRUSTED COMPUTING (UIC/ATC) UBIQUITOUS INTELLIGENCE AND COMPUTING, P134, DOI 10.1109/UIC-ATC.2013.81 Xiao Y, 2014, J INFORMETR, V8, P594, DOI 10.1016/j.joi.2014.05.001 Xu XL, 2012, J FAIL ANAL PREV, V12, P375, DOI 10.1007/s11668-012-9572-2 Yang ZH, 2014, 2014 PROCEEDINGS OF THE IEEE/ACM INTERNATIONAL CONFERENCE ON ADVANCES IN SOCIAL NETWORKS ANALYSIS AND MINING (ASONAM 2014), P566, DOI 10.1109/ASONAM.2014.6921643 Yang ZH, 2012, 2012 11TH INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS (ICMLA 2012), VOL 1, P681, DOI 10.1109/ICMLA.2012.127 Yu F., CoRR Yu J, 2012, PROCEEDINGS OF 2012 2ND INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND NETWORK TECHNOLOGY (ICCSNT 2012), P584, DOI 10.1109/ICCSNT.2012.6526005 Yu S, 2018, J NETW COMPUT APPL, V104, P38, DOI 10.1016/j.jnca.2017.12.004 Zhu B, 2010, DECIS SUPPORT SYST, V49, P151, DOI 10.1016/j.dss.2010.02.001 NR 86 TC 32 Z9 36 U1 1 U2 39 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS SN 0167-739X EI 1872-7115 J9 FUTURE GENER COMP SY JI Futur. Gener. Comp. Syst. PD SEP PY 2020 VL 110 BP 1139 EP 1166 DI 10.1016/j.future.2019.11.017 PG 28 WC Computer Science, Theory & Methods WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Computer Science GA LZ3UK UT WOS:000541153400091 DA 2024-09-05 ER PT J AU Traymbak, S Sharma, M Anand, A Shukla, A AF Traymbak, Shruti Sharma, Meghna Anand, Aastha Shukla, Anju TI Chatbot technology in the education sector: a bibliometrics analysis using VOS viewer SO INTERNATIONAL JOURNAL OF SYSTEM ASSURANCE ENGINEERING AND MANAGEMENT LA English DT Article; Early Access DE Artificial intelligence; Natural language processing; Chatbot; Education sector; Harzing's publish or perish software; Bibliometrics; VOS viewer; C8; C88; I2; I21 AB Chatbots that are powered by artificial intelligence and natural language processing, have found a significant foothold in the sphere of education. In this research, VOS viewer software was employed to conduct a comprehensive bibliometric analysis, focusing on 49 research papers and conference papers published between 2005 and 2023, with the keyword "chatbot in education." The analysis revealed an average of 30.76 citations per year and 10.67 citations per author, indicating a sustained and growing interest in the subject. Notably, the paper titled "An Overview of Chatbot Technology," (Adamopoulou and Moussiades in An overview of chatbot technology, Springer, Cham, 2020a), emerged as the most highly cited work with 573 citations, underscoring the robust recognition of chatbot research in the academic community. The recent increase in research serves to underscore the growing significance of this subject in educational discussions. The analysis suggested that the authors, Ahmed Tlili, Boulus Shehata, Michael Adarkwah, and Aras Bozkurt emerged as highly cited contributors, accumulating an annual mean of 209 citations. This study underscores the profound interest and influence of chatbots in the educational sector, as underscored by citation metrics and author analysis. The findings illuminate influential publications, eminent authors, and the interplay of keywords and research themes within this dynamic field. C1 [Traymbak, Shruti; Shukla, Anju] Jagannath Int Management Sch, New Delhi, India. [Sharma, Meghna; Anand, Aastha] Amity Univ, AIBS, Noida, India. C3 Amity University Noida RP Anand, A (corresponding author), Amity Univ, AIBS, Noida, India. EM shruti.traymbak@jagannath.org; msharma9@amity.edu; anand.aastha11@gmail.com; anju.shukla@jagannath.org OI traymbak, shruti/0000-0003-2306-7999 CR Adamopoulou E., 2020, ARTIF INTELL, P373, DOI [10.1007/978-3-030-49186-4_31, DOI 10.1007/978-3-030-49186-4_31] Adamopoulou E, 2020, MACH LEARN APPL, V2, DOI 10.1016/j.mlwa.2020.100006 Ahmad N.A., 2018, Int. J. Comput. Appl. Technol., V181, P7, DOI [DOI 10.5120/IJCA2018917606, 10.5120/ijca2018917606] Akkineni Haritha, 2022, IoT and Analytics for Sensor Networks: Proceedings of ICWSNUCA 2021. Lecture Notes in Networks and Systems (244), P477, DOI 10.1007/978-981-16-2919-8_43 Benotti Luciana., 2014, P 2014 C INNOVATION, P63, DOI 10.1145/2591708.2591728 Chen HL, 2020, J EDUC COMPUT RES, V58, P1161, DOI 10.1177/0735633120929622 Chocarro R, 2023, EDUC STUD-UK, V49, P295, DOI 10.1080/03055698.2020.1850426 Ciechanowski L, 2019, FUTURE GENER COMP SY, V92, P539, DOI 10.1016/j.future.2018.01.055 Clarizia Fabio, 2018, Cyberspace Safety and Security. 10th International Symposium, CSS 2018. Proceedings: Lecture Notes in Computer Science (LNCS 11161), P291, DOI 10.1007/978-3-030-01689-0_23 Colace F., 2018, Int. J. Mech. Eng. Robot. Res., V7, P528, DOI DOI 10.18178/IJMERR.7.5.528-533 Dsouza R, 2019, 2019 INT C ADV COMPU, DOI [DOI 10.1109/ICAC347590.2019.9036844, 10.1109/ICAC347590.2019.9036844] Fryer LK, 2019, COMPUT HUM BEHAV, V93, P279, DOI 10.1016/j.chb.2018.12.023 Haristiani Nuria, 2019, Journal of Physics: Conference Series, V1387, DOI 10.1088/1742-6596/1387/1/012020 Heller B, 2005, Computer Science Hien HT, 2018, PROCEEDINGS OF THE NINTH INTERNATIONAL SYMPOSIUM ON INFORMATION AND COMMUNICATION TECHNOLOGY (SOICT 2018), P69, DOI 10.1145/3287921.3287937 Huang WJ, 2022, J COMPUT ASSIST LEAR, V38, P237, DOI 10.1111/jcal.12610 Hwang GJ, 2023, INTERACT LEARN ENVIR, V31, P4099, DOI 10.1080/10494820.2021.1952615 Jia JY, 2009, KNOWL-BASED SYST, V22, P249, DOI 10.1016/j.knosys.2008.09.001 Kerly A, 2007, KNOWL-BASED SYST, V20, P177, DOI 10.1016/j.knosys.2006.11.014 King MR, 2023, CELL MOL BIOENG, V16, P1, DOI 10.1007/s12195-022-00754-8 Kiptonui B.P., 2013, Educational Research", Vol, V4, Issue, P218 Kooli C, 2023, SUSTAINABILITY-BASEL, V15, DOI 10.3390/su15075614 Kuhail MA, 2023, EDUC INF TECHNOL, V28, P973, DOI 10.1007/s10639-022-11177-3 Kumar JA, 2021, INT J EDUC TECHNOL H, V18, DOI 10.1186/s41239-021-00302-w Liu Chia-Wei, 2016, arXiv Meshram SG, 2022, IJST-T CIV ENG, V46, P2393, DOI 10.1007/s40996-021-00696-7 Meshram Siddhant., 2021, International Conference on Intelligent Technologies, (CONIT), P1, DOI [10.1109/CONIT51480.2021.9498508, DOI 10.1109/CONIT51480.2021.9498508] Molnar G, 2018, EEE 16 INT S INTELLI, DOI [10.1109/SISY.2018.8524609, DOI 10.1109/SISY.2018.8524609] Okonkwo CW, 2021, ENG LET, V29, P25 Okonkwo CW., 2021, COMPUTERS ED ARTIFIC, V2, P100033, DOI [10.1016/j.caeai.2021.100033, DOI 10.1016/J.CAEAI.2021.100033] Ondas Stanislav, 2019, 2019 17th International Conference on Emerging eLearning Technologies and Applications (ICETA). Proceedings, P575, DOI 10.1109/ICETA48886.2019.9040095 Pedro F., 2019, ARTIFICIAL INTELLIGE Pérez JQ, 2020, COMPUT APPL ENG EDUC, V28, P1549, DOI 10.1002/cae.22326 Rainer Winkler MS, 2018, 78 ANN M AC MAN CHIC Roos S., 2018, Chatbots in education: A passing trend or a valuable pedagogical tool? Ruan S., 2019, P 6 2019 ACM C LEARN Sameera A., 2015, International Journal of Advanced Computer Science and Applications, V6, DOI DOI 10.14569/IJACSA.2015.060712 Sandu N, 2019, INT CONF INFO TECH, DOI 10.1109/ithet46829.2019.8937382 Shawar B.A., 2007, LDV Forum, V22, P29, DOI DOI 10.21248/JLCL.22.2007.88 Smutny P, 2020, COMPUT EDUC, V151, DOI 10.1016/j.compedu.2020.103862 Tamrakar R, 2021, INT C LAT TRENDS CIV Tlili A, 2023, SMART LEARN ENVIRON, V10, DOI 10.1186/s40561-023-00237-x Tsivitanidou O, 2020, CEN EUR CON INFO INT, P55 Wang J., 2021, Comput. Educ. Artif. Intell, V2, P100023, DOI DOI 10.1016/J.CAEAI.2021.100023 Wollny S, 2021, FRONT ARTIF INTELL, V4, DOI 10.3389/frai.2021.654924 Yin JQ, 2021, J EDUC COMPUT RES, V59, P154, DOI 10.1177/0735633120952067 Zhang K., 2021, Computers and Education: Artificial Intelligence, V2, P100025, DOI [DOI 10.1016/J.CAEAI.2021.100025, 10.1016/j.caeai.2021.100025, https://doi.org/10.1016/j.caeai.2021.100025] NR 47 TC 0 Z9 0 U1 15 U2 23 PU SPRINGER INDIA PI NEW DELHI PA 7TH FLOOR, VIJAYA BUILDING, 17, BARAKHAMBA ROAD, NEW DELHI, 110 001, INDIA SN 0975-6809 EI 0976-4348 J9 INT J SYST ASSUR ENG JI Int. J. Syst. Assur. Eng. Manag. PD 2024 JAN 3 PY 2024 DI 10.1007/s13198-023-02230-6 EA JAN 2024 PG 12 WC Engineering, Multidisciplinary WE Emerging Sources Citation Index (ESCI) SC Engineering GA DV4U2 UT WOS:001134851900001 DA 2024-09-05 ER PT C AU Scozzi, MV Iacovides, I Linehan, C AF Scozzi, Monica Visani Iacovides, Ioanna Linehan, Conor GP Assoc Comp Machinery TI A Mixed Method Approach for Evaluating and Improving the Design of Learning in Puzzle Games SO CHI PLAY'17: PROCEEDINGS OF THE ANNUAL SYMPOSIUM ON COMPUTER-HUMAN INTERACTION IN PLAY LA English DT Proceedings Paper CT Annual Symposium on Computer-Human Interaction in Play (CHI PLAY) CY OCT 15-18, 2017 CL Amsterdam, NETHERLANDS DE Games; Learning Curves; Breakdowns; Player Experience; Evaluation Methods; Games User Research AB Despite the acknowledgment that learning is a necessary part of all gameplay, the area of Games User Research lacks an established evidence based method through which designers and researchers can understand, assess, and improve how commercial games teach players game-specific skills and information. In this paper, we propose a mixed method procedure that draws together both quantitative and experiential approaches to examine the extent to which players are supported in learning about the game world and mechanics. We demonstrate the method through presenting a case study of the game Portal involving 14 participants, who differed in terms of their gaming expertise. By comparing optimum solutions to puzzles against observed player performance, we illustrate how the method can indicate particular problems with how learning is structured within a game. We argue that the method can highlight where major breakdowns occur and yield design insights that can improve the player experience with puzzle games. C1 [Scozzi, Monica Visani] UCL, London, England. [Iacovides, Ioanna] Open Univ, Milton Keynes, Bucks, England. [Linehan, Conor] Univ Coll Cork, Cork, Ireland. C3 University of London; University College London; Open University - UK; University College Cork RP Scozzi, MV (corresponding author), UCL, London, England. EM monica.visani@gmail.com; jo.iacovides@open.ac.uk; conor.linehan@ucc.ie RI ; Iacovides, Ioanna/C-5124-2016 OI Linehan, Conor/0000-0002-7654-6697; Iacovides, Ioanna/0000-0001-9674-8440 FU EPSRC [EP/G059063/1] FX We thank all the volunteers who took part in both studies. This research was supported by the EPSRC funded CHI+ MED project (EP/G059063/1). CR Alexander JT, 2013, ENTERTAIN COMPUT, V4, P53, DOI 10.1016/j.entcom.2012.09.001 Andersen Erik, 2011, P CHI 12, P59 Anderson E, 2010, PROCEEDINGS OF THE 5TH INTERNATIONAL CONFERENCE ON INFORMATION WARFARE AND SECURITY, P1, DOI 10.1145/1822348.1822349 [Anonymous], 2008, Flow: The Psychology of Optimal Experience (Harper Perennial Modern Classics) [Anonymous], 2004, What video games have to teach us about language and learning [Anonymous], 2013, GAMES ANAL MAXIMIZIN, DOI DOI 10.1007/978-1-4471-4769-5 [Anonymous], 2005, A theory of fun for game design [Anonymous], 2007, Portal Blumberg FC, 2008, COMPUT HUM BEHAV, V24, P1530, DOI 10.1016/j.chb.2007.05.010 Brown E, 2010, HUM-COMPUT INT-SPRIN, P73, DOI 10.1007/978-1-84882-963-3_5 Cairns P, 2014, HANDBOOK OF DIGITAL GAMES, P339 Canossa A., 2009, PLAY PERSONA MODELIN Carter Marcus, 2014, P 1 ACM SIGCHI ANN S, P27 Cook D., 2007, CHEM GAME DESIGN GAM Desurvire H, 2010, HUM-COMPUT INT-SPRIN, P131, DOI 10.1007/978-1-84882-963-3_8 Desurvire H, 2009, LECT NOTES COMPUT SC, V5621, P557, DOI 10.1007/978-3-642-02774-1_60 El-Nasr MS, 2013, IEEE COMPUT GRAPH, V33, P6, DOI 10.1109/MCG.2013.26 Gee J.P., 2005, E-LEARNING DIGITAL M, V2, P5, DOI [DOI 10.2304/ELEA.2005.2.1.5, 10.2304/elea.2005.2.1.5, https://doi.org/10.2304/elea.2005.2.1.5] Harpstead Erik., 2015, Proceedings of the 2nd ACM SIGCHI annual symposium on Computer-human interaction in play - CHI PLAY 2015, P197, DOI 10.1145/2793107.2793128 Horn B, 2016, CHI PLAY 2016: PROCEEDINGS OF THE 2016 ANNUAL SYMPOSIUM ON COMPUTER-HUMAN INTERACTION IN PLAY, P142, DOI 10.1145/2967934.2968109 Iacovides I, 2015, HUM-COMPUT INTER-US, V30, P202, DOI 10.1080/07370024.2014.987347 Iacovides I, 2011, PROCEEDINGS OF THE 5TH EUROPEAN CONFERENCE ON GAMES BASED LEARNING, P275 Iacovides Ioanna., 2014, Proceedings of the First ACM SIGCHI Annual Symposium on Computer-Human Interaction in Play (CHI PLAY 2014), P131, DOI DOI 10.1145/2658537.2658697 Koeffel C, 2010, HUM-COMPUT INT-SPRIN, P233, DOI 10.1007/978-1-84882-963-3_13 Latham AJ, 2013, FRONT PSYCHOL, V4, DOI 10.3389/fpsyg.2013.00941 Linehan C, 2011, 29TH ANNUAL CHI CONFERENCE ON HUMAN FACTORS IN COMPUTING SYSTEMS, P1979 Linehan Conor, 2014, P 1 ACM C COMP HUM I, p[27, 181], DOI [10.1145/2658537.2658695, DOI 10.1145/2658537.2658695] Loftus Geoffrey R., 1983, MIND PLAY PSYCHOL VI lsbister Katherine, 2008, GAME USABILITY ADV P MALOUF DB, 1987, J SPEC EDUC, V21, P27 Mayo M.J., 2007, COMMUN ACM, V50, P31, DOI DOI 10.1145/1272516.1272536 Mirza-Babaei P., 2014, GAMES MEDIA ENTERTAI, P1, DOI DOI 10.1109/GEM.2014.7048098 Owen VElizabeth., 2014, American Educational Research Association Annual Meeting, P1 Pagulayan R.J., 2003, HUM FAC ER, P883, DOI 10 Pelletier C., 2006, Learning, Media Technology, V31, P329 Ryan William, 2009, P DIG GAM RES ASS DI Sharples M., 2009, Researching Mobile Learning: Frameworks, Tools and Research Designs, P17 Swartout W, 2003, COMMUN ACM, V46, P32, DOI 10.1145/792704.792727 Sweetser P., 2005, Computers in Entertainment, P3, DOI DOI 10.1145/1077246.1077253 Sweetser Penelope, 2012, J CREATIVE TECHNOLOG, V3 Tan CT, 2014, 32ND ANNUAL ACM CONFERENCE ON HUMAN FACTORS IN COMPUTING SYSTEMS (CHI 2014), P381, DOI 10.1145/2556288.2557326 Valve Corporation, 2011, PORT 2 Valve Corporation, 2007, PORT DEV COMM NR 43 TC 4 Z9 4 U1 0 U2 2 PU ASSOC COMPUTING MACHINERY PI NEW YORK PA 1515 BROADWAY, NEW YORK, NY 10036-9998 USA BN 978-1-4503-4898-0 PY 2017 BP 217 EP 228 DI 10.1145/3116595.3116628 PG 12 WC Computer Science, Cybernetics; Computer Science, Software Engineering WE Conference Proceedings Citation Index - Science (CPCI-S) SC Computer Science GA BL7OX UT WOS:000455267200019 OA Green Accepted DA 2024-09-05 ER PT J AU Burgelman, JC Pascu, C Szkuta, K Von Schomberg, R Karalopoulos, A Repanas, K Schouppe, M AF Burgelman, Jean-Claude Pascu, Corina Szkuta, Katarzyna Von Schomberg, Rene Karalopoulos, Athanasios Repanas, Konstantinos Schouppe, Michel TI Open Science, Open Data, and Open Scholarship: European Policies to Make Science Fit for the Twenty-First Century SO FRONTIERS IN BIG DATA LA English DT Article DE open science; open data; open access; open scholarship; European science policies; artificial intelligence AB Open science will make science more efficient, reliable, and responsive to societal challenges. The European Commission has sought to advance open science policy from its inception in a holistic and integrated way, covering all aspects of the research cycle from scientific discovery and review to sharing knowledge, publishing, and outreach. We present the steps taken with a forward-looking perspective on the challenges laying ahead, in particular the necessary change of the rewards and incentives system for researchers (for which various actors are co-responsible and which goes beyond the mandate of the European Commission). Finally, we discuss the role of artificial intelligence (AI) within an open science perspective. C1 [Burgelman, Jean-Claude; Pascu, Corina; Szkuta, Katarzyna; Von Schomberg, Rene; Karalopoulos, Athanasios; Repanas, Konstantinos; Schouppe, Michel] European Commiss, DG Res & Innovat, Open Sci, Brussels, Belgium. RP Burgelman, JC; Pascu, C (corresponding author), European Commiss, DG Res & Innovat, Open Sci, Brussels, Belgium. EM jean-claude.burgelman@ec.europa.eu; corina.pascu@ec.europa.eu RI Burgelman, Jean-Claude/KEH-1053-2024; Von Schomberg, Rene/J-5376-2014 OI Burgelman, Jean-Claude/0000-0003-4817-8425; Von Schomberg, Rene/0000-0003-1768-806X; Pascu, Corina/0000-0002-9068-5271; repanas, kostas/0000-0002-7848-2834 CR [Anonymous], 2015, VAL RES PUBL CONS SC Budroni Paolo, 2019, ABI Technik, V39, P130, DOI 10.1515/abitech-2019-2006 Burgelman J-C., 2015, SCI 2 0 CHANGE WILL, V15, DOI [10.5210/fm.v15i7.2961, DOI 10.5210/FM.V15I7.2961] Costas R., 2013, The value of research data metrics from a cultural and technical point of view Dodge J, 2019, 2019 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING AND THE 9TH INTERNATIONAL JOINT CONFERENCE ON NATURAL LANGUAGE PROCESSING (EMNLP-IJCNLP 2019), P2185 Elsevier, 2018, Artificial Intelligence: How Knowledge Is Created, Transferred, and Used European Commission, 2021, EUS OP SCI POL European Commission, 2018, Turning FAIR into Reality 2018: Final report and action plan from the European Commission Expert Group on FAIR Data, DOI [10.2777/1524, DOI 10.2777/54599, 10.2777/54599] European Commission, 2019, POLICY RECOMMENDATIO European Commission, 2016, Open Innovation Open Science Opent to the World-a Vision for Europe, DOI DOI 10.2777/061652 European Commission, 2019, COST BEN AN FAIR RES Euroscientist, 2015, COMMUNICATION Evans JA, 2011, SCIENCE, V331, P721, DOI 10.1126/science.1201765 Fecher B, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0118053 Fischer BA, 2010, SCI ENG ETHICS, V16, P783, DOI 10.1007/s11948-010-9239-x Ioannidis JPA, 2011, SCIENCE, V334, P1230, DOI 10.1126/science.1211811 King G, 2011, SCIENCE, V331, P719, DOI 10.1126/science.1197872 KNOBLOCH J, 1982, ANN INST PASTEUR VIR, V133, P125, DOI 10.1016/S0769-2617(82)80028-2 National Academies of Sciences Engineering and Medicine, 2018, OP SCI DES REAL VIS OECD, 2006, RECOMMENDATION COUNC OECD, 2017, OECD SCI TECHNOLOGY, DOI [10.1787/9789264268821-en, DOI 10.1787/9789264268821-EN] Pascu C., 2007, POTENTIAL DISRUPTIVE, V12 Peters I, 2016, SCIENTOMETRICS, V107, P723, DOI 10.1007/s11192-016-1887-4 Piwowar H, 2013, NATURE, V493, P159, DOI 10.1038/493159a Piwowar HA, 2007, PLOS ONE, V2, DOI 10.1371/journal.pone.0000308 Piwowar HA, 2011, NATURE, V473, P285, DOI 10.1038/473285a Sansone SA, 2019, NAT BIOTECHNOL, V37, P358, DOI 10.1038/s41587-019-0080-8 Scheliga Kaja, 2014, First Monday, V19, P1, DOI 10.5210/fm.v19i9.5381 Sinha A, 2015, WWW'15 COMPANION: PROCEEDINGS OF THE 24TH INTERNATIONAL CONFERENCE ON WORLD WIDE WEB, P243, DOI 10.1145/2740908.2742839 Szkuta K, 2016, FORESIGHT, V18, P204, DOI 10.1108/FS-06-2014-0040 Tenopir C, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0021101 von Schomberg Rene., 2019, The international handbook on responsible innovation, a global resource Wallis JC, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0067332 Wang KS, 2019, FRONT BIG DATA, V2, DOI 10.3389/fdata.2019.00026 Whitlock MC, 2011, TRENDS ECOL EVOL, V26, P61, DOI 10.1016/j.tree.2010.11.006 Wilkinson MD, 2018, SCI DATA, V5, DOI 10.1038/sdata.2018.118 Wilkinson MD, 2016, SCI DATA, V3, DOI 10.1038/sdata.2016.18 World Health Organization, 2015, Developing global norms for sharing data and results during public health emergencies. Statement arising from a WHO consultation held on 1-2 September 2015 NR 38 TC 81 Z9 83 U1 12 U2 118 PU FRONTIERS MEDIA SA PI LAUSANNE PA AVENUE DU TRIBUNAL FEDERAL 34, LAUSANNE, CH-1015, SWITZERLAND EI 2624-909X J9 FRONT BIG DATA JI Front. Big Data PD DEC 10 PY 2019 VL 2 AR 43 DI 10.3389/fdata.2019.00043 PG 6 WC Computer Science, Information Systems; Computer Science, Interdisciplinary Applications; Multidisciplinary Sciences WE Emerging Sources Citation Index (ESCI) SC Computer Science; Science & Technology - Other Topics GA TV4WA UT WOS:000681724000001 PM 33693366 OA Green Published, gold DA 2024-09-05 ER PT J AU Zhai, MM Li, WH Tie, P Wang, XC Xie, T Ren, H Zhang, Z Song, WM Quan, DC Li, MC Chen, LM Qiu, LX AF Zhai, Mengmeng Li, Wenhan Tie, Ping Wang, Xuchun Xie, Tao Ren, Hao Zhang, Zhuang Song, Weimei Quan, Dichen Li, Meichen Chen, Limin Qiu, Lixia TI Research on the predictive effect of a combined model of ARIMA and neural networks on human brucellosis in Shanxi Province, China: a time series predictive analysis SO BMC INFECTIOUS DISEASES LA English DT Article DE Human brucellosis; ARIMA-ERNN model; ARIMA-BPNN model; Predictive effect AB BackgroundBrucellosis is a major public health problem that seriously affects developing countries and could cause significant economic losses to the livestock industry and great harm to human health. Reasonable prediction of the incidence is of great significance in controlling brucellosis and taking preventive measures.MethodsOur human brucellosis incidence data were extracted from Shanxi Provincial Center for Disease Control and Prevention. We used seasonal-trend decomposition using Loess (STL) and monthplot to analyse the seasonal characteristics of human brucellosis in Shanxi Province from 2007 to 2017. The autoregressive integrated moving average (ARIMA) model, a combined model of ARIMA and the back propagation neural network (ARIMA-BPNN), and a combined model of ARIMA and the Elman recurrent neural network (ARIMA-ERNN) were established separately to make predictions and identify the best model. Additionally, the mean squared error (MAE), mean absolute error (MSE) and mean absolute percentage error (MAPE) were used to evaluate the performance of the model.ResultsWe observed that the time series of human brucellosis in Shanxi Province increased from 2007 to 2014 but decreased from 2015 to 2017. It had obvious seasonal characteristics, with the peak lasting from March to July every year. The best fitting and prediction effect was the ARIMA-ERNN model. Compared with those of the ARIMA model, the MAE, MSE and MAPE of the ARIMA-ERNN model decreased by 18.65, 31.48 and 64.35%, respectively, in fitting performance; in terms of prediction performance, the MAE, MSE and MAPE decreased by 60.19, 75.30 and 64.35%, respectively. Second, compared with those of ARIMA-BPNN, the MAE, MSE and MAPE of ARIMA-ERNN decreased by 9.60, 15.73 and 11.58%, respectively, in fitting performance; in terms of prediction performance, the MAE, MSE and MAPE decreased by 31.63, 45.79 and 29.59%, respectively.ConclusionsThe time series of human brucellosis in Shanxi Province from 2007 to 2017 showed obvious seasonal characteristics. The fitting and prediction performances of the ARIMA-ERNN model were better than those of the ARIMA-BPNN and ARIMA models. This will provide some theoretical support for the prediction of infectious diseases and will be beneficial to public health decision making. C1 [Zhai, Mengmeng; Li, Wenhan; Wang, Xuchun; Ren, Hao; Zhang, Zhuang; Song, Weimei; Quan, Dichen; Li, Meichen; Qiu, Lixia] Shanxi Med Univ, Sch Publ Hlth, Dept Hlth Stat, Taiyuan, Shanxi, Peoples R China. [Tie, Ping] Shanxi Ctr Dis Control & Prevent, Endem Dis Prevent & Control Sect, Taiyuan, Shanxi, Peoples R China. [Xie, Tao] Jiangxi Univ Finance & Econ, Sch Stat, Dept Math Stat, Nanchang, Jiangxi, Peoples R China. [Chen, Limin] Shanxi Prov Peoples Hosp, Taiyuan, Shanxi, Peoples R China. C3 Shanxi Medical University; Jiangxi University of Finance & Economics; Shanxi People's Hospital RP Qiu, LX (corresponding author), Shanxi Med Univ, Sch Publ Hlth, Dept Hlth Stat, Taiyuan, Shanxi, Peoples R China.; Chen, LM (corresponding author), Shanxi Prov Peoples Hosp, Taiyuan, Shanxi, Peoples R China. EM sxchenlimin@163.com; qlx_1126@163.com RI Chen, Limin/X-5598-2019 OI Chen, Limin/0000-0003-4937-2756; Xie, Tao/0000-0003-2930-2742 FU Key Research and Development Projects of Shanxi Province [201803D31066] FX This study was supported by Key Research and Development Projects of Shanxi Province [grant No. 201803D31066]. The funders had no role in design of the study and collection, analysis, and interpretation of data and in writing the manuscript. CR Ablikim M, 2018, PHYS REV D, V97, DOI 10.1103/PhysRevD.97.032013 Ahmed W, 2016, FRONT CELL INFECT MI, V6, DOI 10.3389/fcimb.2016.00030 Aladag CH, 2009, APPL MATH LETT, V22, P1467, DOI 10.1016/j.aml.2009.02.006 Bagheri H, 2020, PLOS ONE, V15, DOI 10.1371/journal.pone.0232910 Bagheri H, 2019, J RES HEALTH SCI, V19 BATES JM, 1969, OPER RES QUART, V20, P451, DOI 10.2307/3008764 Sánchez AB, 2013, ABSTR APPL ANAL, DOI 10.1155/2013/238259 Billah B, 2006, INT J FORECASTING, V22, P239, DOI 10.1016/j.ijforecast.2005.08.002 Boger Z, 2020, NEURAL PROCESS LETT, V51, P577, DOI 10.1007/s11063-019-10089-7 Buttigieg SC, 2018, FRONT VET SCI, V5, DOI 10.3389/fvets.2018.00147 Cao N, 2018, J INFECT PUBLIC HEAL, V11, P24, DOI 10.1016/j.jiph.2017.02.013 Chatrchyan S, 2013, PHYS REV LETT, V110, DOI 10.1103/PhysRevLett.110.022003 Cui BY., 2007, Dis. Surveill, V22, P649 Cui PJ, 2010, J ALZHEIMERS DIS, V19, P31, DOI 10.3233/JAD-2010-1207 Dean AS, 2012, PLOS NEGLECT TROP D, V6, DOI 10.1371/journal.pntd.0001865 Firmino PRA, 2015, NEUROCOMPUTING, V153, P242, DOI 10.1016/j.neucom.2014.11.030 Franc KA, 2018, BMC PUBLIC HEALTH, V18, DOI 10.1186/s12889-017-5016-y Hwarng HB, 2001, OMEGA-INT J MANAGE S, V29, P319, DOI 10.1016/S0305-0483(01)00027-5 Jia P, 2015, BMC INFECT DIS, V15, DOI 10.1186/s12879-015-0763-9 Kaan Jan A, 2012, Ned Tijdschr Geneeskd, V156, pA4460 Khashei M, 2011, APPL SOFT COMPUT, V11, P2664, DOI 10.1016/j.asoc.2010.10.015 Lee HS, 2013, PREV VET MED, V110, P190, DOI 10.1016/j.prevetmed.2012.12.003 Li SY, 2019, SUSTAINABILITY-BASEL, V11, DOI 10.3390/su11030695 Liu QY, 2011, BMC INFECT DIS, V11, DOI 10.1186/1471-2334-11-218 Liu WD, 2019, BMC INFECT DIS, V19, DOI 10.1186/s12879-019-4457-6 Ministry of Health of the People's Republic of China, 2007, 2692007 WS Nelson BK, 1998, ACAD EMERG MED, V5, P739, DOI 10.1111/j.1553-2712.1998.tb02493.x Pappas G, 2006, LANCET INFECT DIS, V6, P91, DOI 10.1016/S1473-3099(06)70382-6 Qi Y, 2014, TRANSPORT RES C-EMER, V43, P95, DOI 10.1016/j.trc.2014.02.007 Lasheras FS, 2015, RESOUR POLICY, V45, P37, DOI 10.1016/j.resourpol.2015.03.004 Sanchez-Vazquez MJ, 2012, PREV VET MED, V104, P65, DOI 10.1016/j.prevetmed.2011.11.003 Shang DQ, 2002, VET MICROBIOL, V90, P165, DOI 10.1016/S0378-1135(02)00252-3 Shirmohammadi-Khorram N, 2019, ZOONOSES PUBLIC HLTH, V66, P759, DOI 10.1111/zph.12622 Singh BB, 2015, PREV VET MED, V119, P211, DOI 10.1016/j.prevetmed.2015.03.013 Taskaya-Temizel T, 2005, NEURAL NETWORKS, V18, P781, DOI 10.1016/j.neunet.2005.06.003 Wang YW, 2019, BMJ OPEN, V9, DOI 10.1136/bmjopen-2018-025773 Wei WD, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0156768 Wu W, 2019, BMC INFECT DIS, V19, DOI 10.1186/s12879-019-4028-x Xu XK, 2019, ALGORITHMS, V12, DOI 10.3390/a12010022 Yan Wei-Rong, 2007, Zhonghua Liu Xing Bing Xue Za Zhi, V28, P1219 Yang XB, 2018, MEDICINE, V97, DOI 10.1097/MD.0000000000011787 Zhang GP, 2003, NEUROCOMPUTING, V50, P159, DOI 10.1016/S0925-2312(01)00702-0 Zhang GP, 2001, COMPUT OPER RES, V28, P381, DOI 10.1016/S0305-0548(99)00123-9 Zhang GL, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0080969 Zhang J, 2017, BIOSCI TRENDS, V11, P533, DOI 10.5582/bst.2017.01257 Zhao HY, 2018, ACM T DES AUTOMAT EL, V23, DOI 10.1145/3200904 Zheng RJ, 2018, BIOMED RES INT-UK, V2018, DOI 10.1155/2018/5712920 NR 47 TC 19 Z9 22 U1 6 U2 47 PU BMC PI LONDON PA CAMPUS, 4 CRINAN ST, LONDON N1 9XW, ENGLAND EI 1471-2334 J9 BMC INFECT DIS JI BMC Infect. Dis. PD MAR 19 PY 2021 VL 21 IS 1 AR 280 DI 10.1186/s12879-021-05973-4 PG 12 WC Infectious Diseases WE Science Citation Index Expanded (SCI-EXPANDED) SC Infectious Diseases GA RA6CF UT WOS:000631504200004 PM 33740904 OA gold, Green Published DA 2024-09-05 ER PT J AU Chen, XL Zou, D Cheng, G Xie, HR Jong, M AF Chen, Xieling Zou, Di Cheng, Gary Xie, Haoran Jong, Morris TI Blockchain in smart education: Contributors, collaborations, applications and research topics SO EDUCATION AND INFORMATION TECHNOLOGIES LA English DT Article DE Smart education; Blockchain; Topic modeling; Bibliometrics; Contributors; Collaborations ID INTERNET AB Researchers and practitioners are paying increasing attention to blockchain's potential for resolving trust, privacy, and transparency-related issues in smart education. Research on educational blockchain is also becoming an active field of research. Based on 206 studies published from 2017 to 2020, we identify contributors, collaborators, applications, and research topics using topic modeling and bibliometrics. Results indicate that currently, studies on the educational blockchain are mostly published in computer science conferences, with few in educational technology journals. Asian countries/regions (e.g., China and India) and institutions (e.g., University of Raharja) are active in this field. Countries/regions and institutions from the same regions tend to have close collaborations. Blockchain is mainly used to facilitate online testing and learning, education data mining and analytics, resource sharing, educational record verification and authentication, data management and storing, administration management, education/discipline of children, and college crowdfunding. Based on the results, we highlight the need to integrate artificial intelligence to enhance scalability and security and to facilitate justification and personalization of blockchain solutions based on accumulated big data to capture abnormal behaviors. This study assists researchers and practitioners in understanding educational blockchain research and becoming aware of the hot topics and future directions. C1 [Chen, Xieling] South China Normal Univ, Sch Informat Technol Educ, Guangzhou, Peoples R China. [Zou, Di] Educ Univ Hong Kong, Dept English Language Educ, Hong Kong, Peoples R China. [Xie, Haoran] Educ Univ Hong Kong, Dept Math & Informat Technol, Hong Kong, Peoples R China. [Jong, Morris] Lingnan Univ, Dept Comp & Decis Sci, Hong Kong, Peoples R China. [Cheng, Gary] Chinese Univ Hong Kong, Dept Curriculum & Instruct, Hong Kong, Peoples R China. C3 South China Normal University; Education University of Hong Kong (EdUHK); Education University of Hong Kong (EdUHK); Lingnan University; Chinese University of Hong Kong RP Zou, D (corresponding author), Educ Univ Hong Kong, Dept English Language Educ, Hong Kong, Peoples R China. EM xielingchen0708@gmail.com; dizoudaisy@gmail.com; chengks@eduhk.hk; hrxie2@gmail.com; mjong@cuhk.edu.hk RI Xie, Haoran/AFS-3515-2022 OI Xie, Haoran/0000-0003-0965-3617; PV, THAYYIB/0000-0001-8929-0398; ZOU, Di/0000-0001-8435-9739 CR Al Harthy K., 2019, 2019 4 MEC INT C Alam T., 2020, Universal J. Educ. Res, V8, P2164, DOI [10.13189/ujer.2020.080556, DOI 10.13189/UJER.2020.080556] Alammary A, 2019, APPL SCI-BASEL, V9, DOI 10.3390/app9122400 Filvà DA, 2018, SIXTH INTERNATIONAL CONFERENCE ON TECHNOLOGICAL ECOSYSTEMS FOR ENHANCING MULTICULTURALITY (TEEM'18), P997, DOI 10.1145/3284179.3284354 Arins A, 2019, INNOVATIONS, TECHNOLOGIES AND RESEARCH IN EDUCATION, 2019, P207, DOI 10.22364/atee.2019.itre.13 Arndt Timothy, 2020, International Journal of Information and Education Technology, V10, P7, DOI 10.18178/ijiet.2020.10.2.1344 BADR A, 2019, 2019 10 IFIP INT C N, P1 Bastian M., 2009, Gephi: An open source software for exploring and manipulating networks Bessa E., 2019, 7 INT WORKSH ADV ICT, P1 Bhagwat M., 2020, 2020 IEEE INT C ELEC, P1, DOI 10.1109/CONECCT50063.2020.9198665 Bhaskar P, 2021, INTERACT TECHNOL SMA, V18, P1, DOI 10.1108/ITSE-07-2020-0102 Chen G., 2018, SMART LEARN ENVIRON, V5, P1, DOI [10.1186/s40561-017-0050-x, DOI 10.1186/S40561-017-0050-X] Chen XL, 2021, INT J EDUC TECHNOL H, V18, DOI 10.1186/s41239-020-00239-6 Chen XL, 2022, NEURAL COMPUT APPL, V34, P11295, DOI 10.1007/s00521-020-05588-x Cheng H., 2020, Revised Selected Papers, V2, P456 Chung M, 2016, KSII T INTERNET INF, V10, P1311 Daraghmi EY, 2019, APPL SCI-BASEL, V9, DOI 10.3390/app9224966 Dettling Walter, 2020, Games and Learning Alliance. 9th International Conference, GALA 2020. Proceedings. Lecture Notes in Computer Science (LNCS 12517), P169, DOI 10.1007/978-3-030-63464-3_16 Dinh TN, 2018, COMPUTER, V51, P48, DOI 10.1109/MC.2018.3620971 Gong XY, 2018, CHIN AUTOM CONGR, P2390, DOI 10.1109/CAC.2018.8623198 Guo JQ, 2020, MULTIMED TOOLS APPL, V79, P9735, DOI 10.1007/s11042-019-08059-1 Hao Zhang, 2020, e-Learning, e-Education, and Online Training. 6th EAI International Conference, eLEOT 2020. Proceedings. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering (LNICST 340), P87, DOI 10.1007/978-3-030-63955-6_8 Hillman V, 2019, IEEE INT CONF BIG DA, P5754, DOI 10.1109/BigData47090.2019.9006190 Hoy Matthew B., 2017, Medical Reference Services Quarterly, V36, P273, DOI 10.1080/02763869.2017.1332261 Hsu CH, 2022, EDUC TECHNOL SOC, V25, P71 Islam Anik, 2019, Journal of Information and Communication Convergence Engineering, V17, P174, DOI 10.6109/jicce.2019.17.3.174 Kamisalic A, 2019, COMM COM INF SC, V1011, P114, DOI 10.1007/978-3-030-20798-4_11 Kontzinos Christos, 2019, Proceedings of the 18th International Conference www/internet, P93 Kuhn KD, 2018, TRANSPORT RES C-EMER, V87, P105, DOI 10.1016/j.trc.2017.12.018 Lam TY, 2022, INTERACT LEARN ENVIR, V30, P1229, DOI 10.1080/10494820.2020.1716022 Liang X., 2020, 2020 INT C HIGH PERF, P151, DOI [10.1109/HPBDIS49115.2020.9130584, DOI 10.1109/HPBDIS49115.2020.9130584] Liu MT, 2019, IEEE T IND INFORM, V15, P3559, DOI 10.1109/TII.2019.2897805 Lu LL, 2019, 2019 IEEE INTERNATIONAL CONFERENCE ON BLOCKCHAIN (BLOCKCHAIN 2019), P490, DOI 10.1109/Blockchain.2019.00074 Mentzer K., 2020, INFORM SYSTEMS ED J, V06, P57 Nurhaeni T., 2020, PROC 5 INT C INFORMA, P1, DOI DOI 10.1109/ICIC50835.2020.9288605 Ocheja P, 2019, RES PRACT TECH ENHAN, V14, DOI 10.1186/s41039-019-0097-0 Ocheja P, 2018, PROCEEDINGS OF THE 8TH INTERNATIONAL CONFERENCE ON LEARNING ANALYTICS & KNOWLEDGE (LAK'18): TOWARDS USER-CENTRED LEARNING ANALYTICS, P265, DOI 10.1145/3170358.3170365 Rashid MA, 2020, KNOWL ENG REV, V35, DOI 10.1017/S0269888920000326 Rasool S, 2020, IEEE T COMPUT SOC SY, V7, P827, DOI 10.1109/TCSS.2020.2973710 Roberts ME, 2016, J AM STAT ASSOC, V111, P988, DOI 10.1080/01621459.2016.1141684 Roberts ME, 2014, AM J POLIT SCI, V58, P1064, DOI 10.1111/ajps.12103 Roberts Margaret E., 2014, Journal of Statistical Software, V10, P1, DOI [DOI 10.18637/JSS.V000.I00, 10.18637/jss.v091.i02] Sharples M, 2016, LECT NOTES COMPUT SC, V9891, P490, DOI 10.1007/978-3-319-45153-4_48 Silge Julia., 2018, Training, Evaluating, and Interpreting Topic Models Srivastava A, 2018, 2018 SECOND INTERNATIONAL CONFERENCE ON ADVANCES IN COMPUTING, CONTROL AND COMMUNICATION TECHNOLOGY (IAC3T), P54, DOI 10.1109/IAC3T.2018.8674023 Suchaad SAL, 2018, PROCEEDINGS OF THE 2018 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND MACHINE INTELLIGENCE (MLMI 2018), P50, DOI 10.1145/3278312.3278326 Sunday Oyelere Solomon, 2020, Trends and Innovations in Information Systems and Technologies. Advances in Intelligent Systems and Computing (1161), P397, DOI 10.1007/978-3-030-45697-9_39 Tapscott A., 2017, HARVARD BUS REV Tentea E. C., 2019, 2019 11 INT C ELECT, P1 The World Bank, 2018, EUR CENTR AS EC UPD, DOI [10.1596/978-1-4648-1299-6, DOI 10.1596/978-1-4648-1299-6] Ting-sheng Weng, 2019, Innovative Technologies and Learning. Second International Conference, ICITL 2019. Proceedings. Lecture Notes in Computer Science (LNCS 11937), P513, DOI 10.1007/978-3-030-35343-8_55 Trines, 2017, WORLD ED NEWS REV, P1 Turkanovic M, 2018, IEEE ACCESS, V6, P5112, DOI 10.1109/ACCESS.2018.2789929 Ubaka M., 2020, Int. J. Adv. Trends Comput. Sci. Eng, V9, P2933, DOI [10.30534/ijatcse/2020/68932020, DOI 10.30534/IJATCSE/2020/68932020] Vasiuta, 2019, FUNDAMENTAL APPL RES, V31, P229, DOI [10.33531/farplss.2019.1.44, DOI 10.33531/FARPLSS.2019.1.44] Veena P., 2015, IBM Inst. Business Value, V17 de Castro AV, 2017, EDULEARN PROC, P4046 Wu Q, 2019, 2019 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (IEEE SSCI 2019), P2741, DOI 10.1109/SSCI44817.2019.9003096 Wu XZ, 2020, WIREL COMMUN MOB COM, V2020, DOI 10.1155/2020/8827084 Yang L, 2019, J IND INF INTEGR, V15, P80, DOI 10.1016/j.jii.2019.04.002 Yi-Ching Chen, 2019, 2019 IEEE 11th International Conference on Engineering Education (ICEED), P113, DOI 10.1109/ICEED47294.2019.8994934 Zhang ZC, 2020, IEEE COMMUN MAG, V58, P47, DOI 10.1109/MCOM.001.1900130 NR 62 TC 8 Z9 8 U1 12 U2 48 PU SPRINGER PI NEW YORK PA ONE NEW YORK PLAZA, SUITE 4600, NEW YORK, NY, UNITED STATES SN 1360-2357 EI 1573-7608 J9 EDUC INF TECHNOL JI Educ. Inf. Technol. PD APR PY 2023 VL 28 IS 4 BP 4597 EP 4627 DI 10.1007/s10639-022-11399-5 EA OCT 2022 PG 31 WC Education & Educational Research WE Social Science Citation Index (SSCI) SC Education & Educational Research GA F7WX6 UT WOS:000870636400003 DA 2024-09-05 ER PT C AU Fiallos, A Jimenes, K Vaca, C Ochoa, X AF Fiallos, Angel Jimenes, Karina Vaca, Carmen Ochoa, Xavier BE Teran, L Meier, A TI Scientific Communities Detection and Analysis in the Bibliographic Database: Scopus SO 2017 FOURTH INTERNATIONAL CONFERENCE ON EDEMOCRACY & EGOVERNMENT (ICEDEG) SE International Conference on eDemocracy and eGovernment ICEDEG LA English DT Proceedings Paper CT 4th International Conference on eDemocracy and eGovernment (ICEDEG) CY APR 19-21, 2017 CL Quito, ECUADOR DE LDA; TF-IDF; SNA; Scopus; authors; communities; Ecuador AB In recent years, Governments of many countries had promoted higher education in exclusive areas and disciplines to improve the quality of inhabitant's life, economy, and public management. However, there is no an effective way to help governments to verify if scientific works and research centers are aligned to a country priority research area. A dataset of 4552 scientific works associated to 29 research areas in Ecuador was collected from a bibliographic database SCOPUS. This work is focused on detection of the most important Ecuadorian research areas based on scientific collaboration in scientific publications in such areas through a proposed methodology. The methodology is subject to Social Network Analysis and Natural Language Processing to identify collaboration communities and the most relevant topics on densely connected communities. Finally, an exploratory analysis of a case study thought this methodology is presented to demonstrate that is possible to know which scientific areas are the most collaborative and which topics were the most popular in Ecuador. C1 [Fiallos, Angel; Jimenes, Karina; Vaca, Carmen; Ochoa, Xavier] Escuela Super Politecn Litoral, ESPOL8, Fac Ingn Elect & Computac, Campus Gustavo Galindo Km 30-5,Via Perimetral, Guayaquil, Ecuador. C3 Escuela Superior Politecnica del Litoral RP Fiallos, A (corresponding author), Escuela Super Politecn Litoral, ESPOL8, Fac Ingn Elect & Computac, Campus Gustavo Galindo Km 30-5,Via Perimetral, Guayaquil, Ecuador. EM anfiallos@fiec.espol.edu.ec; kbjimene@fiec.espol.edu.ec; cvaca@fiec.espol.edu.ec; xochoa@fiec.espol.edu.ec RI Fiallos, Angel/CAE-9290-2022; Vaca, Carmen/AAL-4156-2021; Ochoa, Xavier/AAJ-8085-2021 OI Ochoa, Xavier/0000-0002-4371-7701; Vaca Ruiz, Carmen Karina/0000-0002-0474-1901; Fiallos, Angel/0000-0002-7828-1207 CR [Anonymous], P 15 INT C KNOWL TEC [Anonymous], PLAN NAC BUEN VIV [Anonymous], AR EST U EXC [Anonymous], APPL TF IDF FACTOR S [Anonymous], 2004, Facilitating Interdisciplinary Research [Anonymous], P 26 AAAI C ART INT [Anonymous], LEARNING SEMANTIC CO [Anonymous], INT J PHARM TECHNOLO [Anonymous], INT J CARDIOLOGY Azam N, 2012, EXPERT SYST APPL, V39, P4760, DOI 10.1016/j.eswa.2011.09.160 Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993 Blondel VD, 2008, J STAT MECH-THEORY E, DOI 10.1088/1742-5468/2008/10/P10008 Cios K., 2007, Data Mining A Knowledge Discovery De Vocht L, 2015, WWW'15 COMPANION: PROCEEDINGS OF THE 24TH INTERNATIONAL CONFERENCE ON WORLD WIDE WEB, P1053, DOI 10.1145/2740908.2742030 Fortunato S, 2010, PHYS REP, V486, P75, DOI 10.1016/j.physrep.2009.11.002 Ian P., 2008, Proceedings of the 14th ACM SIGKDD international conference on Knowledge discovery and data mining, P569, DOI 10.1145/1401890.1401960 Jacomy M, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0098679 Kastrin A, 2017, SCIENTOMETRICS, V110, P791, DOI 10.1007/s11192-016-2203-z Newman MEJ, 2004, PHYS REV E, V69, DOI 10.1103/PhysRevE.69.066133 SALTON G, 1988, INFORM PROCESS MANAG, V24, P513, DOI 10.1016/0306-4573(88)90021-0 NR 20 TC 5 Z9 5 U1 0 U2 6 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA SN 2573-2005 EI 2573-1998 BN 978-1-5090-4830-4 J9 INT CONF EDEMOC EGOV PY 2017 BP 118 EP 124 PG 7 WC Computer Science, Interdisciplinary Applications; Computer Science, Theory & Methods; Political Science WE Conference Proceedings Citation Index - Science (CPCI-S); Conference Proceedings Citation Index - Social Science & Humanities (CPCI-SSH) SC Computer Science; Government & Law GA BM4XR UT WOS:000464415600020 DA 2024-09-05 ER PT J AU Zhang, W Bai, L Zhang, FY Zhao, FF Liu, ZL Xiong, XC AF Zhang, Wei Bai, Lu Zhang, Fengyi Zhao, Feifan Liu, Zilong Xiong, Xingchuang TI A comprehensive research on measurement and evaluation of intelligent meter reading systems SO ENGINEERING RESEARCH EXPRESS LA English DT Article DE meter; intelligent reading system; artificial intelligence; measurement and evaluation; metrology ID ROBUST AB Based on the machine vision and artificial intelligence technologies, the reading and acquisition of meter values have become the mainstream technical solutions for real-time monitoring of production data in the current industrial field. At the same time, the number of intelligent instruments and meters is increasing, and the quality varies. There is a lack of scientifically measurement methods and quality trust for intelligent meter reading algorithms. To promote their reliable and widespread application in various fields, it is necessary to conduct in-depth research on the assessment system of artificial intelligence in intelligent meter reading systems. This paper comprehensively studies various aspects involved in the emerging measurement field of artificial intelligence evaluation at the current stage, providing scientific measurement and evaluation references for the quality trust of artificial intelligence in the field of meters. C1 [Zhang, Wei; Bai, Lu; Zhang, Fengyi; Zhao, Feifan; Liu, Zilong; Xiong, Xingchuang] Natl Inst Metrol, Beijing 100029, Peoples R China. [Zhang, Wei; Bai, Lu; Zhang, Fengyi; Zhao, Feifan; Liu, Zilong; Xiong, Xingchuang] Key Lab Metrol Digitalizat & Digital Metrol State, Beijing 100029, Peoples R China. [Zhang, Fengyi] China Jiliang Univ, Coll Informat Engn, Hangzhou 310018, Zhejiang, Peoples R China. [Zhao, Feifan] Zhengzhou Univ, Sch Comp & Artificial Intelligence, Zhengzhou 450001, Peoples R China. C3 National Institute of Metrology China; China Jiliang University; Zhengzhou University RP Xiong, XC (corresponding author), Natl Inst Metrol, Beijing 100029, Peoples R China.; Xiong, XC (corresponding author), Key Lab Metrol Digitalizat & Digital Metrol State, Beijing 100029, Peoples R China. EM xiongxch@nim.ac.cn FU National Key R&D Program of China FX No Statement Available CR [Anonymous], 2012, GB/T 2900.90-2012 [Anonymous], 1992, GB/T 13983-1992 Azeem Abdullah, 2020, 2020 IEEE International Conference on Advances in Electrical Engineering and Computer Applications (AEECA), P209, DOI 10.1109/AEECA49918.2020.9213531 Cai M Q., 2018, Modern Computer: First Half of the Month Edition, V000, P38 Chorev S., 2022, J. Mach. Learn. Res, V23, p285:1, DOI [10.48550/arXiv.2203.08491, DOI 10.48550/ARXIV.2203.08491] Ebadi A, 2021, Arxiv, DOI [arXiv:2111.06827, 10.48550/arXiv.2111.06827, DOI 10.48550/ARXIV.2111.06827] Ghosh S, 2021, Arxiv, DOI [arXiv:2106.01410, 10.48550/arxiv.2106.01410] Girshick R., 2014, IEEE C COMP VIS PATT, DOI [DOI 10.1109/CVPR.2014.81, 10.1109/CVPR.2014.81] Girshick R, 2015, IEEE I CONF COMP VIS, P1440, DOI 10.1109/ICCV.2015.169 Guo JM, 2018, ESEC/FSE'18: PROCEEDINGS OF THE 2018 26TH ACM JOINT MEETING ON EUROPEAN SOFTWARE ENGINEERING CONFERENCE AND SYMPOSIUM ON THE FOUNDATIONS OF SOFTWARE ENGINEERING, P739, DOI 10.1145/3236024.3264835 [郭兰英 Guo Lanying], 2020, [计算机科学, Computer Science], V47, P187 He KM, 2017, IEEE I CONF COMP VIS, P2980, DOI [10.1109/TPAMI.2018.2844175, 10.1109/ICCV.2017.322] Humbatova N, 2021, ISSTA '21: PROCEEDINGS OF THE 30TH ACM SIGSOFT INTERNATIONAL SYMPOSIUM ON SOFTWARE TESTING AND ANALYSIS, P67, DOI 10.1145/3460319.3464825 Kendall A, 2017, Arxiv, DOI arXiv:1703.04977 Laroca R, 2021, IEEE ACCESS, V9, P67569, DOI 10.1109/ACCESS.2021.3077415 Laroca R, 2019, J ELECTRON IMAGING, V28, DOI 10.1117/1.JEI.28.1.013023 Liang WX, 2022, NAT MACH INTELL, V4, P669, DOI 10.1038/s42256-022-00516-1 Lin TY, 2017, PROC CVPR IEEE, P936, DOI 10.1109/CVPR.2017.106 Liu X B., 2019, Power supply, V36, P80, DOI [10.19421/j.cnki.1006-6357.2019.11.013, DOI 10.19421/J.CNKI.1006-6357.2019.11.013] Ma L, 2018, PROC INT SYMP SOFTW, P100, DOI 10.1109/ISSRE.2018.00021 Mena J, 2022, ACM COMPUT SURV, V54, DOI 10.1145/3477140 Rao YB, 2024, APPL INTELL, V54, P1847, DOI 10.1007/s10489-024-05278-4 Ren SQ, 2015, ADV NEUR IN, V28, DOI 10.1109/TPAMI.2016.2577031 Salomon G., 2022, Measurement, V204, DOI [10.1016/j.measurement.2022.112025, DOI 10.1016/J.MEASUREMENT.2022.112025] Salomon G, 2020, IEEE IJCNN, DOI 10.1109/ijcnn48605.2020.9207318 Shelhamer E, 2017, IEEE T PATTERN ANAL, V39, P640, DOI 10.1109/TPAMI.2016.2572683 Shu Y, 2023, Arxiv, DOI [arXiv:2302.14323, 10.48550/arXiv.2302.14323v2, DOI 10.48550/ARXIV.2302.14323V2] Sun JJ, 2023, NEURAL COMPUT APPL, V35, P8357, DOI 10.1007/s00521-022-08110-7 Tian YC, 2018, PROCEEDINGS 2018 IEEE/ACM 40TH INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING (ICSE), P303, DOI 10.1145/3180155.3180220 Waqar M, 2019, 2019 INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION IN INDUSTRY (ICRAI), DOI 10.1109/icrai47710.2019.8967357 Yang CJ, 2023, CONNECT SCI, V35, DOI 10.1080/09540091.2023.2241669 Yang F, 2019, IEEE ACCESS, V7, P11679, DOI 10.1109/ACCESS.2019.2891767 Yi J, 2013, 19TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING (KDD'13), P1294 Zhang G B., 2008, Industrial Automation Instrument and Process Control Zhang JM, 2022, IEEE T SOFTWARE ENG, V48, P1, DOI 10.1109/TSE.2019.2962027 Zou L, 2023, SENSORS-BASEL, V23, DOI 10.3390/s23146644 Zuo L, 2020, NEUROCOMPUTING, V388, P90, DOI 10.1016/j.neucom.2020.01.032 NR 37 TC 0 Z9 0 U1 2 U2 2 PU IOP Publishing Ltd PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2631-8695 J9 ENG RES EXPRESS JI Eng. Res. Express PD JUN 1 PY 2024 VL 6 IS 2 AR 025212 DI 10.1088/2631-8695/ad45b5 PG 16 WC Engineering, Multidisciplinary WE Emerging Sources Citation Index (ESCI) SC Engineering GA QP4E9 UT WOS:001222053600001 DA 2024-09-05 ER PT J AU Jiang, T Liu, XP Zhang, C Yin, CAH Liu, HZ AF Jiang, Tian Liu, Xiaoping Zhang, Chao Yin, Chuanhao Liu, Huizhou TI Overview of Trends in Global Single Cell Research Based on Bibliometric Analysis and LDA Model (2009-2019) SO JOURNAL OF DATA AND INFORMATION SCIENCE LA English DT Article DE LDA model; Topic evolution; Bibliometric analysis; Post-discretized; Single-cell AB Purpose: This article aims to describe the global research profile and the development trends of single cell research from the perspective of bibliometric analysis and semantic mining. Design/methodology/approach: The literatures on single cell research were extracted from Clarivate Analytic's Web of Science Core Collection between 2009 and 2019. Firstly, bibliometric analyses were performed with Thomson Data Analyzer (TDA). Secondly, topic identification and evolution trends of single cell research was conducted through the LDA topic model. Thirdly, taking the post-discretized method which is used for topic evolution analysis for reference, the topics were also be dispersed to countries to detect the spatial distribution. Findings: The publication of single cell research shows significantly increasing tendency in the last decade. The topics of single cell research field can be divided into three categories, which respectively refers to single cell research methods, mechanism of biological process, and clinical application of single cell technologies. The different trends of these categories indicate that technological innovation drives the development of applied research. The continuous and rapid growth of the topic strength in the field of cancer diagnosis and treatment indicates that this research topic has received extensive attention in recent years. The topic distributions of some countries are relatively balanced, while for the other countries, several topics show significant superiority. Research limitations: The analyzed data of this study only contain those were included in the Web of Science Core Collection. Practical implications: This study provides insights into the research progress regarding single cell field and identifies the most concerned topics which reflect potential opportunities and challenges. The national topic distribution analysis based on the post-discretized analysis method extends topic analysis from time dimension to space dimension. Originality/value: This paper combines bibliometric analysis and LDA model to analyze the evolution trends of single cell research field. The method of extending post-discretized analysis from time dimension to space dimension is distinctive and insightful. C1 [Jiang, Tian; Liu, Xiaoping; Zhang, Chao; Liu, Huizhou] Chinese Acad Sci, Natl Sci Lib, Beijing 100190, Peoples R China. [Yin, Chuanhao] Chinese Inst Elect, Beijing 100036, Peoples R China. C3 Chinese Academy of Sciences; National Science Library, CAS; Chinese Academy of Sciences; Institute of Electronics, CAS RP Liu, HZ (corresponding author), Chinese Acad Sci, Natl Sci Lib, Beijing 100190, Peoples R China. EM jiangtian@mail.las.ac.cn; liuxp@mail.las.ac.cn; zhangch@mail.las.ac.cn; cieyinchuanhao@163.com; liuhz@mail.las.ac.cn FU [E290001] FX This study was supported by the Chinese Academy of Sciences literature information capability construction project of 2020 "Construction of strategic information research and consultation system in science and technology field" (Grant No. E290001). CR Ai SS, 2019, NAT CELL BIOL, V21, P1164, DOI 10.1038/s41556-019-0383-5 Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993 Briggs JA, 2018, SCIENCE, V360, P980, DOI 10.1126/science.aar5780 Cao JY, 2019, NATURE, V566, P496, DOI 10.1038/s41586-019-0969-x Farrell JA, 2018, SCIENCE, V360, P979, DOI 10.1126/science.aar3131 Griffiths JA, 2018, MOL SYST BIOL, V14, DOI 10.15252/msb.20178046 Guo XY, 2018, NAT MED, V24, P978, DOI 10.1038/s41591-018-0045-3 Jelodar H, 2019, MULTIMED TOOLS APPL, V78, P15169, DOI 10.1007/s11042-018-6894-4 Junker JP, 2014, CELL, V157, P8, DOI 10.1016/j.cell.2014.02.010 Lee L, 2001, P ENGL INT WORKSH AR Lindstrom Sara, 2012, Methods Mol Biol, V853, P13, DOI 10.1007/978-1-61779-567-1_2 Nicolaisen J, 2010, J AM SOC INF SCI TEC, V61, P205, DOI 10.1002/asi.21181 Reece A, 2016, CURR OPIN BIOTECH, V40, P90, DOI 10.1016/j.copbio.2016.02.015 Wang QH, 2019, MOL CELL, V76, P206, DOI 10.1016/j.molcel.2019.07.015 Wei W, 2016, CANCER CELL, V29, P563, DOI 10.1016/j.ccell.2016.03.012 Zhang L, 2018, NATURE, V564, P268, DOI 10.1038/s41586-018-0694-x Zhang W, 2016, SCIENTOMETRICS, V109, P359, DOI 10.1007/s11192-016-1995-1 Zheng TL, 2016, SCIENTOMETRICS, V109, P53, DOI 10.1007/s11192-016-2004-4 NR 18 TC 1 Z9 1 U1 2 U2 48 PU SCIENDO PI WARSAW PA BOGUMILA ZUGA 32A, WARSAW, MAZOVIA, POLAND SN 2096-157X EI 2543-683X J9 J DATA INFO SCI JI J. Data Info. Sci. PD APR PY 2021 VL 6 IS 2 BP 163 EP 178 DI 10.2478/jdis-2021-0008 PG 16 WC Information Science & Library Science WE Emerging Sources Citation Index (ESCI) SC Information Science & Library Science GA RV9WI UT WOS:000646175200008 OA gold DA 2024-09-05 ER PT J AU Alon, I Chebance, Z Massucci, FA Bounartzi, T Ravitsky, V AF Alon, Ido Chebance, Zacharie Massucci, Francesco Alessandro Bounartzi, Theofano Ravitsky, Vardit TI Mapping international research output within ethical, legal, and social implications (ELSI) of assisted reproductive technologies SO JOURNAL OF ASSISTED REPRODUCTION AND GENETICS LA English DT Article DE Assisted reproductive technologies; Ethical; social; and legal implications; Mapping; Topic modeling; Geographic distribution of research; International research ID MITOCHONDRIAL REPLACEMENT TECHNIQUES; COMMERCIAL SURROGACY; INEQUALITIES; INFERTILITY AB PurposeResearch about ethical, legal, and social implications (ELSI) of assisted reproductive technologies (ART) is influenced by cultural and value-based perspectives. It impacts regulations, funding, and clinical practice, and shapes the perception of ART in society. We analyze trends in the global literature on ELSI of ART between 1999 and 2019. As most output is produced by North America, Western Europe, and Australia, we focus on international research, i.e., academic articles studying a different country than that of the corresponding author.MethodsThe corpus, extracted from PubMed, Web of Science, and Scopus, includes 7714 articles, of which 1260 involved international research. Analysis is based on titles, abstracts and keywords, classification into ART fields and Topic Modeling, the countries of corresponding author, and countries mentioned in abstracts.ResultsAn absolute increase in the number of international studies, and their relative proportion. Trends of decentralization are apparent, yet geographic centralization remains, which reflects an unequal distribution of research funds across countries and may result in findings that do not reflect global diversity of norms and values. Preference for studying conceptual challenges through philosophical analysis, and for fields that concern only a portion of ART cycles. Less attention was dedicated to economic analysis and barriers to access, or to knowledge of and attitudes. International studies provide an opportunity to expand and diversify the scope of ELSI research.ConclusionWe call on the research community to promote international collaborations, focus on less explored regions, and divert more attention to questions of cost, access, knowledge, and attitudes. C1 [Alon, Ido] Autonomous Univ Madrid, Dept Dev Econ, Madrid, Spain. [Alon, Ido; Ravitsky, Vardit] Univ Montreal, Montreal, PQ, Canada. [Chebance, Zacharie] Mines Paristech, Paris, France. [Massucci, Francesco Alessandro] SIRIS Acad, Res Div, SIRIS Lab, Barcelona, Spain. [Bounartzi, Theofano] Univ Thessaly, Fac Med, Sch Hlth Sci, Dept Obstet & Gynaecol, Larisa, Greece. [Ravitsky, Vardit] Harvard Med Sch, Boston, MA USA. C3 Autonomous University of Madrid; Universite de Montreal; Universite PSL; MINES ParisTech; University of Thessaly; Harvard University; Harvard Medical School RP Alon, I (corresponding author), Autonomous Univ Madrid, Dept Dev Econ, Madrid, Spain.; Alon, I (corresponding author), Univ Montreal, Montreal, PQ, Canada. EM idoalon77@gmail.com OI Alon, Ido/0000-0001-6603-7496 FU CRUE-CSIC; Springer Nature; Autonomous University of Madrid; Centre de recherche en ethique (CRE) at the University of Montreal FX & nbsp;Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature. This work received financial support provided by both the Margarita Salas Fellowship from the Autonomous University of Madrid and the Centre de recherche en ethique (CRE) at the University of Montreal which have both provided invaluable financial assistance, enabling us to conduct our research. CR Alon I, 2021, INT J EQUITY HEALTH, V20, DOI 10.1186/s12939-021-01438-x Alon I, 2019, J ASSIST REPROD GEN, V36, P1665, DOI 10.1007/s10815-019-01525-7 [Anonymous], 2017, Human genome editing: Science, ethics, and governance, DOI DOI 10.17226/24623 [Anonymous], 2018, Genome Editing and Human Reproduction: social and ethical issues Boggio A, 2017, EUR J HEALTH LAW, V24, P85, DOI 10.1163/15718093-12341409 Callier SL, 2016, BIOETHICS, V30, P698, DOI 10.1111/bioe.12285 CDC, 2020, ASSISTED REPROD TECH Chambers GM, 2014, FERTIL STERIL, V101, P191, DOI 10.1016/j.fertnstert.2013.09.005 Chambers GM, 2013, FERTIL STERIL, V100, P319, DOI 10.1016/j.fertnstert.2013.06.017 Cohen IG, 2020, ANNU REV GENOM HUM G, V21, P565, DOI 10.1146/annurev-genom-111119-101815 Csomós G, 2018, J INFORMETR, V12, P547, DOI 10.1016/j.joi.2018.05.003 Dhalwani NN, 2013, HUM REPROD, V28, P960, DOI 10.1093/humrep/des451 Doetsch JN, 2021, BMC PUBLIC HEALTH, V21, DOI 10.1186/s12889-021-10194-0 Eisenberg ML, 2010, FERTIL STERIL, V94, P2369, DOI 10.1016/j.fertnstert.2010.03.068 Ferraretti AP, 2017, HUM REPROD OPEN, V2017, DOI 10.1093/hropen/hox012 Fire M, 2019, GIGASCIENCE, V8, DOI 10.1093/gigascience/giz053 García D, 2020, REPROD BIOMED ONLINE, V40, P71, DOI 10.1016/j.rbmo.2019.10.013 Gerlach M, 2018, SCI ADV, V4, DOI 10.1126/sciadv.aaq1360 Gui QC, 2019, GEOFORUM, V105, P1, DOI 10.1016/j.geoforum.2019.06.017 Inhorn MC, 2015, HUM REPROD UPDATE, V21, P411, DOI 10.1093/humupd/dmv016 Ishihara O, 2021, REPROD MED BIOL, V20, P3, DOI 10.1002/rmb2.12358 Johnson MH, 2008, HUM REPROD, V23, P716, DOI 10.1093/humrep/dem387 Mladovsky P, 2010, HEALTH CARE ANAL, V18, P113, DOI 10.1007/s10728-009-0114-3 NIH, ETH LEG SOC IMPL RES Nuffield Council on Bioethics, 2016, GEN ED ETH REV Ormond KE, 2017, AM J HUM GENET, V101, P167, DOI 10.1016/j.ajhg.2017.06.012 Palacios-González C, 2017, J LAW BIOSCI, V4, P50, DOI 10.1093/jlb/lsw065 Pande A, 2016, CURR SOCIOL, V64, P244, DOI 10.1177/0011392115614786 Pande A, 2011, REPROD BIOMED ONLINE, V23, P618, DOI 10.1016/j.rbmo.2011.07.007 Parker LS, 2019, GENET MED, V21, P505, DOI 10.1038/s41436-018-0065-x Präg P, 2017, HUM REPROD, V32, P2305, DOI 10.1093/humrep/dex298 Ravitsky V, 2019, BIOL REPROD, V101, P872, DOI 10.1093/biolre/ioz161 Salter B, 2022, SCI TECHNOL HUM VAL, V47, P3, DOI 10.1177/0162243921991929 Sayers E, 2021, Entrez programming utilities help-a general introduction to the E-utilities Sobotka T, 2017, DEMOGR RES MONOGR, P17, DOI 10.1007/978-3-319-44667-7_2 White, 2019, PUBLICATIONS OUTPUT Wyns C, 2020, HUM REPROD OPEN, V2020, DOI 10.1093/hropen/hoaa032 NR 37 TC 4 Z9 4 U1 3 U2 7 PU SPRINGER/PLENUM PUBLISHERS PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1058-0468 EI 1573-7330 J9 J ASSIST REPROD GEN JI J. Assist. Reprod. Genet. PD SEP PY 2023 VL 40 IS 9 BP 2023 EP 2043 DI 10.1007/s10815-023-02834-8 EA JUN 2023 PG 21 WC Genetics & Heredity; Obstetrics & Gynecology; Reproductive Biology WE Science Citation Index Expanded (SCI-EXPANDED) SC Genetics & Heredity; Obstetrics & Gynecology; Reproductive Biology GA P6OS5 UT WOS:001020140100002 PM 37382788 OA Green Published, hybrid DA 2024-09-05 ER PT C AU Shang, WY Cordell, R Downie, JS AF Shang, Wenyi Cordell, Ryan Downie, J. Stephen GP ACM TI Book Size, Book Format: Historical Relationship in the HathiTrust Digital Library Metadata (1500-1799) SO 2023 ACM/IEEE JOINT CONFERENCE ON DIGITAL LIBRARIES, JCDL SE ACM-IEEE Joint Conference on Digital Libraries JCDL LA English DT Proceedings Paper CT 23rd ACM/IEEE Joint Conference on Digital Libraries (JCDL) CY JUN 26-30, 2023 CL Santa Fe, NM DE Digital library; Bibliographic metadata; Book history; Machine learning AB Digital libraries create new scholarly possibilities for investigating hook format at scale, providing a valuable perspective for hook history. This study evaluates the historical relationship between hook format and book size using the HathiTrust Digital Library metadata of 133,268 books published between 1500 and 1799. We found that: (1) the size of books generally decreased; (2) smaller hook formats gradually replaced larger hook formats; and, (3) book size can predict book format relatively accurately. Our findings suggest possible automated improvements to digital library metadata where information about book size is better represented than format, enabling book historians to estimate the prevalence of formats and analyze publication trends. C1 [Shang, Wenyi; Cordell, Ryan; Downie, J. Stephen] Univ Illinois, Sch Informat Sci, Champaign, IL 61820 USA. C3 University of Illinois System; University of Illinois Urbana-Champaign RP Shang, WY (corresponding author), Univ Illinois, Sch Informat Sci, Champaign, IL 61820 USA. EM wenyis3@illinois.edu; rcordell@illinois.edu; jdownie@illinois.edu CR McGill ML, 2018, EARLY AM STUD, V16, P671, DOI 10.1353/eam.2018.0033 Pettegree Andrew, 2010, The Book in the Renaissance, P354 Stallybrass P, 2004, PMLA, V119, P1347, DOI 10.1632/003081204X17914 NR 3 TC 0 Z9 0 U1 2 U2 3 PU ASSOC COMPUTING MACHINERY PI NEW YORK PA 1601 Broadway, 10th Floor, NEW YORK, NY, UNITED STATES SN 2575-7865 EI 2575-8152 BN 979-8-3503-9931-8 J9 ACM-IEEE J CONF DIG PY 2023 BP 279 EP 281 DI 10.1109/JCDL57899.2023.00059 PG 3 WC Computer Science, Information Systems; Computer Science, Interdisciplinary Applications WE Conference Proceedings Citation Index - Science (CPCI-S) SC Computer Science GA BW0PC UT WOS:001098971300049 DA 2024-09-05 ER PT J AU Maatouk, Y AF Maatouk, Yasser TI AI-SPedia: a novel ontology to evaluate the impact of research in the field of artificial intelligence SO PEERJ COMPUTER SCIENCE LA English DT Article DE Altmetrics; Bibliometrics; Semantic web; Ontology ID BIBLIOMETRIC INDICATORS; ALTMETRIC SCORE; SCIENCE; WEB AB Background. Sharing knowledge such as resources, research results, and scholarly documents, is of key importance to improving collaboration between researchers worldwide. Research results from the field of artificial intelligence (AI) are vital to share because of the extensive applicability of AI to several other fields of research. This has led to a significant increase in the number of AI publications over the past decade. The metadata of AI publications, including bibliometrics and altmetrics indicators, can be accessed by searching familiar bibliographical databases such as Web of Science (WoS), which enables the impact of research to be evaluated and identify rising researchers and trending topics in the field of AI. Problem description. In general, bibliographical databases have two limitations in terms of the type and form of metadata we aim to improve. First, most bibliographical databases, such as WoS, are more concerned with bibliometric indicators and do not offer a wide range of altmetric indicators to complement traditional bibliometric indi-cators. Second, the traditional format in which data is downloaded from bibliographical databases limits users to keyword-based searches without considering the semantics of the data. Proposed solution. To overcome these limitations, we developed a repository, named AI-SPedia. The repository contains semantic knowledge of scientific publications concerned with AI and considers both the bibliometric and altmetric indicators. Moreover, it uses semantic web technology to produce and store data to enable semantic-based searches. Furthermore, we devised related competency questions to be answered by posing smart queries against the AI-SPedia datasets. Results. The results revealed that AI-SPedia can evaluate the impact of AI research by exploiting knowledge that is not explicitly mentioned but extracted using the power of semantics. Moreover, a simple analysis was performed based on the answered questions to help make research policy decisions in the AI domain. The end product, AI-SPedia, is considered the first attempt to evaluate the impacts of AI scientific publications using both bibliometric and altmetric indicators and the power of semantic web technology. C1 [Maatouk, Yasser] King Abdulaziz Univ, Fac Comp & Informat Technol, Jeddah, Saudi Arabia. C3 King Abdulaziz University RP Maatouk, Y (corresponding author), King Abdulaziz Univ, Fac Comp & Informat Technol, Jeddah, Saudi Arabia. EM ymaatouk@kau.edu.sa RI Maatouk, Yasser/E-6548-2016 OI Maatouk, Yasser/0000-0001-9333-5907 FU Deanship of Scientific Research (DSR) , King Abdulaziz University, Jeddah; [DF-771-611-1441] FX Funding This project was funded by the Deanship of Scientific Research (DSR) , King Abdulaziz University, Jeddah, under Grant No. DF-771-611-1441. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. CR Aleman-Meza B, 2007, J WEB SEMANT, V5, P151, DOI 10.1016/j.websem.2007.03.001 Altmetric, 2021, ALTM HOM [Anonymous], 2009, HDB ONTOLOGIES INT H, DOI DOI 10.1007/978-3-540-92673-3_0 Archambault É, 2009, J AM SOC INF SCI TEC, V60, P1320, DOI 10.1002/asi.21062 Aslam Muhammad Ahtisham, 2018, International Journal of Information Engineering and Electronic Business, V10, P8, DOI 10.5815/ijieeb.2018.05.02 Aslam MA, 2021, PEERJ COMPUT SCI, DOI 10.7717/peerj-cs.445 Aslam MA, 2017, INT J SEMANT WEB INF, V13, P128, DOI 10.4018/IJSWIS.2017010108 Aslam MA, 2016, LECT NOTES COMPUT SC, V9658, P479, DOI 10.1007/978-3-319-39937-9_37 Butler JS, 2017, CLIN SPINE SURG, V30, P226, DOI 10.1097/BSD.0000000000000531 Collins CS, 2021, J SURG RES, V268, P705, DOI 10.1016/j.jss.2021.07.025 Corson-Rikert J, 2010, P IASSIST 10 SOC DAT Daraio C, 2016, SCIENTOMETRICS, V106, P857, DOI 10.1007/s11192-015-1814-0 DBLP, 2021, WHAT IS DBLP Durieux V, 2010, RADIOLOGY, V255, P342, DOI 10.1148/radiol.09090626 Franceschet M, 2010, SCIENTOMETRICS, V83, P243, DOI 10.1007/s11192-009-0021-2 Gandhi K, 2016, 2016 INT C ICT BUSIN, P18, DOI [10.1109/ICTBIG.2016.7892635, DOI 10.1109/ICTBIG.2016.7892635] Haustein S, 2016, J ASSOC INF SCI TECH, V67, P232, DOI 10.1002/asi.23456 Lei YF, 2019, J PHYS CONF SER, V1168, DOI 10.1088/1742-6596/1168/2/022027 Maatouk Y., 2021, ACAD LETT, V2021, P2781, DOI [10.20935/AL2781, DOI 10.20935/AL2781] Mellit A, 2008, PROG ENERG COMBUST, V34, P574, DOI 10.1016/j.pecs.2008.01.001 Nogales A, 2014, PROCEDIA COMPUT SCI, V33, P266, DOI 10.1016/j.procs.2014.06.042 Ortega JL, 2020, PROF INFORM, V29, DOI 10.3145/epi.2020.ene.07 Piwowar H, 2013, NATURE, V493, P159, DOI 10.1038/493159a Priem Jason, 2010, First Monday, V15, DOI 10.5210/fm.v15i7.2874 Rong LQ, 2020, BRIT J ANAESTH, V125, pE223, DOI [10.1016/j.bja.2020.05.033, 10.1016/j.bja.2020.04.086] Saeed-Ul Hassan, 2017, SCIENTOMETRICS, V113, P1037, DOI 10.1007/s11192-017-2512-x Samuel S, 2022, PEERJ COMPUT SCI, V8, DOI 10.7717/peerj-cs.921 Say Zeynep, 2020, Digital Libraries for Open Knowledge. 24th International Conference on Theory and Practice of Digital Libraries, TPDL 2020. Proceedings. Lecture Notes in Computer Science (LNCS 12246), P119, DOI 10.1007/978-3-030-54956-5_9 Thelwall M, 2018, J INFORMETR, V12, P237, DOI 10.1016/j.joi.2018.01.008 Warren VT, 2020, CLIN IMPLANT DENT R, V22, P54, DOI 10.1111/cid.12876 Web of Science, 2021, WEB SCI Yu HQ, 2017, J INFORMETR, V11, P466, DOI 10.1016/j.joi.2017.02.011 NR 32 TC 0 Z9 0 U1 3 U2 15 PU PEERJ INC PI LONDON PA 341-345 OLD ST, THIRD FLR, LONDON, EC1V 9LL, ENGLAND EI 2376-5992 J9 PEERJ COMPUT SCI JI PeerJ Comput. Sci. PD SEP 22 PY 2022 VL 8 AR e1099 DI 10.7717/peerj-cs.1099 PG 24 WC Computer Science, Artificial Intelligence; Computer Science, Information Systems; Computer Science, Theory & Methods WE Science Citation Index Expanded (SCI-EXPANDED) SC Computer Science GA 5A7EM UT WOS:000863046700001 PM 37346315 OA Green Published, gold DA 2024-09-05 ER PT J AU Yang, SC Guo, CY Ren, W AF Yang, Shucai Guo, Chaoyang Ren, Wei TI Research on optimization of milling performance of V-groove micro-texture ball-end milling cutter SO JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY LA English DT Article DE V-groove micro-texture; Ball-end milling cutter; Titanium alloy; Performance optimization; Simulated annealing algorithm ID WEAR AB Titanium alloys generally have problems such as sticking, large cutting force, and poor heat dissipation during the cutting process., research shows that processing microtextures on the surface of the tool can effectively improve the above problems. Therefore, this paper designs the V-groove micro-textures based on the principle of bionics. Use simulation software to analyze the milling behavior of different V-groove micro-texture ball-end milling cutters for milling titanium alloys. Build a test platform to study the milling performance of the V-groove micro-texture ball-end milling cutter for milling titanium alloys, obtain the prior choice range of V-groove micro-texture parameters, optimize the parameters based on the simulated annealing algorithm and conduct experimental verification. The results of the optimal tool parameters are that the opening angle of the V-groove micro-textures is 79 degrees, the V-groove micro-texture spacing is 170 mu m, and the V-groove micro-texture width is 30 mu m, the distance from blade of the V-groove micro-textures is 90 mu m. C1 [Yang, Shucai; Guo, Chaoyang; Ren, Wei] Harbin Univ Sci & Technol, Sch Mech & Power Engn, Harbin 150080, Peoples R China. C3 Harbin University of Science & Technology RP Yang, SC (corresponding author), Harbin Univ Sci & Technol, Sch Mech & Power Engn, Harbin 150080, Peoples R China. EM yangshucai@hrbust.edu.cn FU National Natural Science Foundation of China, China [51875144] FX This work was funded by the National Natural Science Foundation of China (Micro-texture preparation of cemented carbide ball end milling tool and its dynamic evolution of milling behavior [51875144]), China. CR Chen H., 2018, TOOL TECHNOLOGY, V52, P13 Dai ZD, 2006, CHINESE SCI BULL, V51, P2681, DOI 10.1007/s11434-006-2184-z Huang B., 2015, RES CUTTING PROCESS Kam M, 2021, SURF REV LETT, V28, DOI 10.1142/S0218625X21500414 Liu Y, 2018, AVIATION MANUFACTURI, V61, P38 Pang MH, 2018, INT J ADV MANUF TECH, V99, P737, DOI 10.1007/s00170-018-2498-4 Sugihara T., 2016, ADV MAT RES, V1136, P561 Tong J, 1998, WEAR, V221, P37, DOI 10.1016/S0043-1648(98)00261-0 Wei P., 2019, RES NC MACHINING TEC West N., 2016, P I MECH ENG L-J MAT Wu Z, 2012, AVIATION MANUFACTURI, P32 [谢志斌 Xie Zhibin], 2015, [兵器材料科学与工程, Ordnance Material Science and Engineering], V38, P33 Yang S., 2019, J HARBIN U SCI TECHN, V24, P47 Yang S., 2016, J HARBIN U SCI TECHN, V21, P5 Yang SC, 2020, ADV MECH ENG, V12, DOI 10.1177/1687814020908423 Yang SC, 2019, MICROMACHINES-BASEL, V10, DOI 10.3390/mi10010021 Yin SB, 2018, INT J ADV MANUF TECH, V99, P2929, DOI 10.1007/s00170-018-2657-7 Zhang W, 2008, AEROENGINE, P23 NR 18 TC 3 Z9 3 U1 3 U2 49 PU KOREAN SOC MECHANICAL ENGINEERS PI SEOUL PA KSTC NEW BLD. 7TH FLOOR, 635-4 YEOKSAM-DONG KANGNAM-KU, SEOUL 135-703, SOUTH KOREA SN 1738-494X EI 1976-3824 J9 J MECH SCI TECHNOL JI J. Mech. Sci. Technol. PD JUN PY 2022 VL 36 IS 6 BP 2849 EP 2860 DI 10.1007/s12206-022-0517-8 PG 12 WC Engineering, Mechanical WE Science Citation Index Expanded (SCI-EXPANDED) SC Engineering GA 2G8CH UT WOS:000813815300017 DA 2024-09-05 ER PT C AU Shivakumar, R Diddi, S Maitra, S AF Shivakumar, R. Diddi, Sreelakshmi Maitra, Samita GP IEEE TI Utilization of Unisim Design Tool for Enhanced Learning and Assessment in Engineering Education SO 2017 5TH IEEE INTERNATIONAL CONFERENCE ON MOOCS, INNOVATION AND TECHNOLOGY IN EDUCATION (MITE) LA English DT Proceedings Paper CT 5th IEEE International Conference on MOOCs, Innovation and Technology in Education (MITE) CY OCT 27-28, 2017 CL Bangalore, INDIA DE Virtual Experiments; Assessment tool; Active learning; Student Centered Learning; Open Ended Research and Self-Evaluation AB Virtual and augmented tools have revolutionized the changes in teaching styles and curriculum design of engineering education irrespective of the disciplines. These tools aims at improving their learning skills, bridge the gap between instructional laboratory experiments & open ended research experiments and initiate for student centred learning. Many initiatives for development of virtual labs from different universities across the world have proved that virtual reality can be one of the important tools in engineering education by bringing experience based learning in students. This article aims to project the applicability of virtual experiments as an important tool for learning and assessment of self-study component. Unisim Design tool is used to develop virtual experiments for core courses. These virtual experiments can be used as one of the self-assessment tools for all laboratory based courses in engineering education. A methodology for the assessment is proposed. C1 [Shivakumar, R.; Diddi, Sreelakshmi; Maitra, Samita] BMS Coll Engn, Dept Chem Engn, Bengaluru 19, India. C3 BMS College of Engineering RP Shivakumar, R (corresponding author), BMS Coll Engn, Dept Chem Engn, Bengaluru 19, India. RI R, Shivakumar/HLH-4693-2023; Diddi, Sreelakshmi/F-1370-2018; Maitra, Samita/ABA-8195-2020; R, Shivakumar/O-9688-2015 OI R, Shivakumar/0000-0002-1806-1878; Diddi, Sreelakshmi/0000-0002-5657-2564; R, Shivakumar/0000-0001-6729-4574; Maitra, Samita/0000-0003-0196-1762 FU TEQIP-II, MHRD, Govt. of India; BMS College of engineering FX The authors wish to acknowledge the funding under TEQIP-II, MHRD, Govt. of India for procuring UNISIM Simulation Software. Thanks to Principal, BMS College of engineering for the support. Our gratitude to Honeywell Automations Ltd., for seeding the idea to develop virtual experiments for chemical engineering using Unisim CR Abdulwahed M, 2009, J ENG EDUC, V98, P283, DOI 10.1002/j.2168-9830.2009.tb01025.x Barr R.B., 1995, Change Magazine, V27, P12, DOI DOI 10.1080/00091383.1995.10544672 Behzadan AH, 2011, WINT SIMUL C PROC, P3568, DOI 10.1109/WSC.2011.6148051 Bell J. T., 1996, Computer Applications in Engineering Education, V4, P285, DOI 10.1002/(SICI)1099-0542(1996)4:4<285::AID-CAE4>3.0.CO;2-9 Bell J. T., 1999, P 1999 AM SOC ENG ED, P5665 Bell J. T., 1995, COMPUTING SYSTEMS TE, V18, P1 Berqia Amine, 2002, INT C ENG ED AUG 18, P1 Cai S, 2014, COMPUT HUM BEHAV, V37, P31, DOI 10.1016/j.chb.2014.04.018 Chen WQ, 2016, EDUC CHEM ENG, V17, P44, DOI 10.1016/j.ece.2016.07.005 Feisel LD, 2005, J ENG EDUC, V94, P121, DOI 10.1002/j.2168-9830.2005.tb00833.x Fernandez-Sanchez P., 2011, USING VIRTUAL LAB SE, P569 Fogler, 2001, ELEMENTS CHEM REACTI Fogler H.S., 1996, COMPUT APPL ENG EDUC, V1, P11, DOI [10.1002/cae.6180010103, DOI 10.1002/CAE.6180010103] GOSSAGE JL, 2001, TECHNICAL OUTREACH C, V6, P1 Green D.W., 1973, PERRYS CHEM ENG HDB KIRSCHNER PA, 1988, HIGH EDUC, V17, P81, DOI 10.1007/BF00130901 Kolb AY, 2005, ACAD MANAG LEARN EDU, V4, P193, DOI 10.5465/AMLE.2005.17268566 Levenspeil Octave, 2007, CHEM REACTION ENG Maitra S, 2015, 2015 IEEE 3RD INTERNATIONAL CONFERENCE ON MOOCS, INNOVATION AND TECHNOLOGY IN EDUCATION (MITE), P204, DOI 10.1109/MITE.2015.7375315 Moure MJ, 2004, INT J ENG EDUC, V20, P188 Munipala Abhishake, 2012, 15 WORLD C EARTHQ EN, P1 Onyesolu Moses O., 2009, P WCECS 2009 OCT 20, VI Radhamani R., 2014, INT C E LEARN E ED O, P138 Raineri D, 2001, BIOCHEM MOL BIOL EDU, V29, P160, DOI 10.1111/j.1539-3429.2001.tb00107.x Rajendran L., 2010, INT J COMPUTER SCI E, V2, P2173 Ruiqing J, 2006, ASEE ANN C EXP EXC E, P1 Spicer JI, 2001, J COMPUT ASSIST LEAR, V17, P345, DOI 10.1046/j.0266-4909.2001.00191.x Webber KL, 2012, RES HIGH EDUC, V53, P201, DOI 10.1007/s11162-011-9245-0 NR 28 TC 2 Z9 2 U1 0 U2 3 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA BN 978-1-5386-3189-8 PY 2017 BP 108 EP 114 DI 10.1109/MITE.2017.00025 PG 7 WC Computer Science, Interdisciplinary Applications; Education & Educational Research WE Conference Proceedings Citation Index - Science (CPCI-S); Conference Proceedings Citation Index - Social Science & Humanities (CPCI-SSH) SC Computer Science; Education & Educational Research GA BM0AA UT WOS:000458537800021 DA 2024-09-05 ER PT J AU Gil, EL AF Gil, Esther L. TI Maximizing and assessing a one-shot information literacy session: A case study SO JOURNAL OF BUSINESS & FINANCE LIBRARIANSHIP LA English DT Article DE Active learning; assessment; bibliographic instruction; business education; information literacy ID BUSINESS STUDENTS; LIBRARY; INSTRUCTION; COLLABORATION; FACULTY AB This case study describes collaboration between an instructor and business librarian to maximize a one-shot information literacy session for a required marketing class for business majors. It includes an active-learning exercise where groups use three key business databases to conduct a company and industry analysis and an environmental scan for a company. The instructor then guides them in developing a strengths, weaknesses, opportunities, threats (SWOT) analysis. This session prepares students for the SWOT analysis they will have to submit for their actual projects. This article includes assessment of groups' in-class exercises as well as citation analysis of the assignments they turned in for their actual projects. C1 [Gil, Esther L.] Univ Denver, 2150 E Evans Ave, Denver, CO 80208 USA. C3 University of Denver RP Gil, EL (corresponding author), Univ Denver, Univ Lib, 2150 E Evans Ave, Denver, CO 80208 USA. EM egil@du.edu CR American Library Association, 2000, INF LIT COMP STAND H American Library Association, 1989, FIN REP AM LIB ASS P Atwong CT, 2008, J BUS FINANC LIBR, V13, P433, DOI 10.1080/08963560802202227 Bean T.M., 2010, PUBLIC SERVICES Q, V6, P237 Besharat A., 2016, MAREKTING LIB UNPUB Bowers CVM, 2009, J BUS FINANC LIBR, V14, P110, DOI 10.1080/08963560802362179 Byerly G, 2006, REF SERV REV, V34, P589, DOI 10.1108/00907320610716477 Cooney M, 2005, J BUS FINANC LIBR, V11, P3, DOI 10.1300/J109v11n01_02 Coulter Priscilla, 2007, Public Services Quarterly, V3, P147, DOI 10.1300/J295v03n01_08 Deemer Kevin, 2007, Community & Junior College Libraries, V14, P21, DOI 10.1300/J107v14n01_04 Detlor B, 2012, EDUC INFORM, V29, P147, DOI 10.3233/EFI-2012-0924 Jacobs HLM, 2009, REF USER SERV Q, V49, P72, DOI 10.5860/rusq.49n1.72 Lieberthal SP, 2009, J BUS FINANC LIBR, V14, P230, DOI 10.1080/08963560802362849 Markgraf J., 2015, MAXIMIZING ONE SHOT Mery Y, 2012, COLL RES LIBR, V73, P366, DOI 10.5860/crl-271 Mezick E.M., 2016, Journal of Business Finance Librarianship, V21, P95, DOI [DOI 10.1080/08963568.2016, 10.1080/08963568.2016.1169970, DOI 10.1080/08963568.2016.1169970] Rutledge D.P., 2003, J BUSINESS FINANCE L, V9, P3, DOI DOI 10.1300/J109V09N01_02 Senior H, 2009, J BUS FINANC LIBR, V14, P202, DOI 10.1080/08963560802370867 Strittmatter C, 2012, J BUS FINANC LIBR, V17, P95, DOI 10.1080/08963568.2012.630645 Taylor LH, 2008, COLL UNDERGRAD LIBR, V15, P141, DOI 10.1080/10691310802177127 Whitesell M, 2011, J BUS FINANC LIBR, V16, P125, DOI 10.1080/08963568.2011.554773 NR 21 TC 9 Z9 10 U1 0 U2 4 PU ROUTLEDGE JOURNALS, TAYLOR & FRANCIS LTD PI ABINGDON PA 2-4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND SN 0896-3568 EI 1547-0644 J9 J BUS FINANC LIBR JI J. Bus. Financ. Libr. PY 2017 VL 22 IS 2 BP 97 EP 110 DI 10.1080/08963568.2017.1285748 PG 14 WC Information Science & Library Science WE Emerging Sources Citation Index (ESCI) SC Information Science & Library Science GA FV5KO UT WOS:000424620400002 DA 2024-09-05 ER PT C AU de Cerqueira, JAS de Almeida, PS Canedo, ED Alves, GD Giozza, WF de Mendonça, FLL de Sousa, RT AF Siqueira de Cerqueira, Jose Antonio de Almeida, Paulo Santos Canedo, Edna Dias Alves, Gabriel de Oliveira Giozza, William Ferreira Lopes de Mendonca, Fabio Lucio de Sousa Jr, Rafael T. BE Rocha, A Perez, BE Penalvo, FG Miras, MD Goncalves, R TI Exploratory Overview on Breaking CAPTCHAs Using the Theory of the Consolidated Meta-Analytic Approach SO 2020 15TH IBERIAN CONFERENCE ON INFORMATION SYSTEMS AND TECHNOLOGIES (CISTI'2020) SE Iberian Conference on Information Systems and Technologies LA English DT Proceedings Paper CT 15th Iberian Conference on Information Systems and Technologies (CISTI) CY JUN 24-27, 2020 CL ELECTR NETWORK DE CAPTCHA; CAPTCHA Breaking; Bibliographic Research; State-of-the-art; Artificial Intelligence ID COCITATION AB This study sought to provide an integrating model of the main contributions of the literature on CAPTCHAs with an impact in this field. With the expansion of internet access, there is an increasing need for a mechanism to protect websites from attacks, although there are situations where it is interesting to be able to automate some activities. This work consisted of identifying the most influential CAPTCHA-related academic works and trends in the field, which could serve as a metric on what approaches to take when developing new studies. Data such as main authors, current lines of research and more prolific research centers are arrived at using the Theory of the Consolidated Meta-analytic Approach. Inputting the keyword "captcha" in the Web of Science database, 539 records were found, from 2001 to 2020. The main classes retrieved are: (a) Captcha in Security Context (31.9%), (b) Usability in Captcha Design (28%), (c) Captcha Recognition by AI (21.8%), (d) Captcha Approaches and Novel Implementation Proposals (18.2%). C1 [Siqueira de Cerqueira, Jose Antonio; Canedo, Edna Dias] Univ Brasilia UnB, Dept Comp Sci, POB 4466, BR-70910900 Brasilia, DF, Brazil. [de Almeida, Paulo Santos; Alves, Gabriel de Oliveira; Giozza, William Ferreira; Lopes de Mendonca, Fabio Lucio; de Sousa Jr, Rafael T.] Univ Brasilia UnB, Technol Coll, Elect Engn Dept ENE, Decis Technol Lab LATITUDE, Brasilia, DF, Brazil. C3 Universidade de Brasilia; Universidade de Brasilia RP de Cerqueira, JAS (corresponding author), Univ Brasilia UnB, Dept Comp Sci, POB 4466, BR-70910900 Brasilia, DF, Brazil. EM jose.cerqueira@redes.unb.br; paulo.almeida@redes.unb.br; ednacanedo@unb.br; gabriel.alves@redes.unb.br; giozza@unb.br; fabio.mendonca@redes.unb.br; desousa@unb.br RI Canedo, Edna Dias/D-5674-2015; de Sousa Júnior, Rafael/V-3293-2019; Giozza, William/AAH-4838-2019; Canedo, Edna Dias/AGR-0318-2022 OI Canedo, Edna Dias/0000-0002-2159-339X; de Sousa Júnior, Rafael/0000-0003-1101-3029; Giozza, William/0000-0002-3003-3458; Canedo, Edna Dias/0000-0002-2159-339X; Lopes de Mendonca, Fabio Lucio/0000-0001-7100-7304; Siqueira de Cerqueira, Jose Antonio/0000-0002-8143-1042 FU CAPES [23038.007604/2014-69 FORTE, 88887.144009/201700 PROBRAL]; CNPq [312180/2019-5 PQ-2, BRICS2017-591 LargEWiN, 465741/2014-2 INCT]; FAP-DF [0193.001366/2016 UIoT, 0193.001365/2016 SSDDC]; Ministry of the Economy [DIPLA 005/2016, ENAP 083/2016]; Institutional Security Office of the Presidency of the Republic [ABIN 002/2017]; Administrative Council for Economic Defense [CADE 08700.000047/2019-14]; General Attorney of the Union [AGU 697.935/2019] FX The authors would like to thank the support of the Brazilian research, development and innovation agencies CAPES (grants 23038.007604/2014-69 FORTE and 88887.144009/201700 PROBRAL), CNPq (grants 312180/2019-5 PQ-2, BRICS2017-591 LargEWiN, and 465741/2014-2 INCT in Cybersecurity) and FAP-DF (grants 0193.001366/2016 UIoT and 0193.001365/2016 SSDDC), as well as the cooperation projects with the Ministry of the Economy (grants DIPLA 005/2016 and ENAP 083/2016), the Institutional Security Office of the Presidency of the Republic (grant ABIN 002/2017), the Administrative Council for Economic Defense (grant CADE 08700.000047/2019-14) and the General Attorney of the Union (grant AGU 697.935/2019). CR Bacon S, 2020, J MED INTERNET RES, V22, DOI 10.2196/15603 Baird H. S., 2003, International Journal on Document Analysis and Recognition, V5, P158, DOI 10.1007/s10032-002-0089-1 Blum M., 2000, COMPLETELY AUTOMATIC Boyack KW, 2010, J AM SOC INF SCI TEC, V61, P2389, DOI 10.1002/asi.21419 C. M. University, 2000, CAPTCHA TELL HUM COM Csuka K., 2018, BREAKING CAPTCHAS DA Garg G, 2016, PROCEEDINGS OF 2016 FUTURE TECHNOLOGIES CONFERENCE (FTC), P853, DOI 10.1109/FTC.2016.7821703 George D, 2017, SCIENCE, V358, DOI 10.1126/science.aag2612 Hasan A, 2016, J PIPELINE SYST ENG, V7, DOI 10.1061/(ASCE)PS.1949-1204.0000235 Kaur K., 2014, INT J COMPUTER SCI I, V5, P6341 Kulkarni Sushama, 2018, Proceedings of the Second International Conference on Computational Intelligence and Informatics. ICCII-2017. Advances in Intelligent Systems and Computing (AISC 712), P359, DOI 10.1007/978-981-10-8228-3_33 Mariano A. M., 2018, INT JOINT C IND ENG, P243 MARIANO A. M, 2017, 26 C INT AC EUR DIR, V26 Moradi M, 2015, SECUR COMMUN NETW, V8, P2135, DOI 10.1002/sec.1157 Sharma S., 2015, INT J ENG TRENDS TEC, V22, P240 Singh V.P., 2014, INT J COMPUTER SCI I, V5, P2242 Sivakorn S, 2016, 1ST IEEE EUROPEAN SYMPOSIUM ON SECURITY AND PRIVACY, P388, DOI 10.1109/EuroSP.2016.37 SMALL H, 1973, J AM SOC INFORM SCI, V24, P265, DOI 10.1002/asi.4630240406 Tharad A, 2018, PROCEEDINGS OF THE 2018 INTERNATIONAL CONFERENCE ON COMPUTATIONAL TECHNIQUES, ELECTRONICS AND MECHANICAL SYSTEMS (CTEMS), P487, DOI 10.1109/CTEMS.2018.8769168 Ye GX, 2018, PROCEEDINGS OF THE 2018 ACM SIGSAC CONFERENCE ON COMPUTER AND COMMUNICATIONS SECURITY (CCS'18), P332, DOI 10.1145/3243734.3243754 Zi Y., 2019, IEEE T INF FOREN SEC, V15, P753 NR 21 TC 0 Z9 0 U1 0 U2 0 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA SN 2166-0727 BN 978-989-54659-0-3 J9 IBER CONF INF SYST PY 2020 PG 6 WC Computer Science, Information Systems WE Conference Proceedings Citation Index - Science (CPCI-S) SC Computer Science GA BQ6NN UT WOS:000612720600182 DA 2024-09-05 ER PT J AU Lyutov, A Uygun, Y Hütt, MT AF Lyutov, Alexey Uygun, Yilmaz Huett, Marc-Thorsten TI Machine learning misclassification of academic publications reveals non-trivial interdependencies of scientific disciplines SO SCIENTOMETRICS LA English DT Article DE Machine learning; Scientometrics; Maps of science; Classification algorithms; Interdisciplinary research ID SCIENCE; PAPER; MAP AB Exploring the production of knowledge with quantitative methods is the foundation of scientometrics. In an application of machine learning to scientometrics, we here consider the classification problem of the mapping of academic publications to the subcategories of a multidisciplinary journal-and hence to scientific disciplines-based on the information contained in the abstract. In contrast to standard classification tasks, we are not interested in maximizing the accuracy, but rather we ask, whether the failures of an automatic classification are systematic and contain information about the system under investigation. These failures can be represented as a 'misclassification network' inter-relating scientific disciplines. Here we show that this misclassification network (1) gives a markedly different pattern of interdependencies among scientific disciplines than common 'maps of science', (2) reveals a statistical association between misclassification and citation frequencies, and (3) allows disciplines to be classified as 'method lenders' and 'content explorers', based on their in-degree out-degree asymmetry. On a more general level, in a wide range of machine learning applications misclassification networks have the potential of extracting systemic information from the failed classifications, thus allowing to visualize and quantitatively assess those aspects of a complex system, which are not machine learnable. C1 [Lyutov, Alexey; Uygun, Yilmaz] Jacobs Univ, Dept Math & Logist, Campus Ring 1, D-28759 Bremen, Germany. [Huett, Marc-Thorsten] Jacobs Univ, Dept Life Sci & Chem, Campus Ring 1, D-28759 Bremen, Germany. C3 Jacobs University; Jacobs University RP Lyutov, A (corresponding author), Jacobs Univ, Dept Math & Logist, Campus Ring 1, D-28759 Bremen, Germany. EM a.lyutov@jacobs-university.de OI /0000-0003-1271-9672; Lyutov, Alexey/0000-0002-0733-2783 FU Projekt DEAL FX Open Access funding enabled and organized by Projekt DEAL. CR [Anonymous], 2011, J. Mach. Learn. Res. [Anonymous], SCOPUS API DOCUMENTA [Anonymous], About Nature Basurto-Flores R, 2018, SCIENTOMETRICS, V117, P123, DOI 10.1007/s11192-018-2860-1 Bilke S, 2001, PHYS REV E, V64, DOI 10.1103/PhysRevE.64.036106 Bird Steven, 2009, Natural language processing with python Blei DM, 2007, ANN APPL STAT, V1, P17, DOI 10.1214/07-AOAS114 Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993 Börner K, 2010, SCI TRANSL MED, V2, DOI 10.1126/scitranslmed.3001399 Boyack KW, 2005, SCIENTOMETRICS, V64, P351, DOI 10.1007/s11192-005-0255-6 Chawla NV., 2004, ACM SIGKDD EXPLORATI, V6, P1, DOI [10.1145/1007730.1007733, DOI 10.1145/1007730.1007733] Derntl M, 2014, INT J TECHNOL ENHANC, V6, P105, DOI 10.1504/IJTEL.2014.066856 Enders M, 2018, ECOSPHERE, V9, DOI 10.1002/ecs2.2146 Fortunato S, 2018, SCIENCE, V359, DOI 10.1126/science.aao0185 Guimerà R, 2005, SCIENCE, V308, P697, DOI 10.1126/science.1106340 He HB, 2009, IEEE T KNOWL DATA EN, V21, P1263, DOI 10.1109/TKDE.2008.239 Ipsen M, 2002, PHYS REV E, V66, DOI 10.1103/PhysRevE.66.046109 Ke Q, 2015, P NATL ACAD SCI USA, V112, P7426, DOI 10.1073/pnas.1424329112 Klavans R, 2007, PROCEEDINGS OF ISSI 2007: 11TH INTERNATIONAL CONFERENCE OF THE INTERNATIONAL SOCIETY FOR SCIENTOMETRICS AND INFORMETRICS, VOLS I AND II, P437 Klosik DF, 2014, PHYS REV E, V90, DOI 10.1103/PhysRevE.90.032811 Krumov L, 2011, EUR PHYS J B, V84, P535, DOI 10.1140/epjb/e2011-10746-5 Leydesdorff L., 2001, The Challenge of Scientometrics: The Development, Measurement, and Self-Organization of Scientific Communications Leydesdorff L, 2009, J AM SOC INF SCI TEC, V60, P348, DOI 10.1002/asi.20967 Lyutov A, 2019, COMPUT IND, V109, P215, DOI 10.1016/j.compind.2019.04.010 Ma YF, 2018, P NATL ACAD SCI USA, V115, P12608, DOI 10.1073/pnas.1800485115 Maslov S, 2002, SCIENCE, V296, P910, DOI 10.1126/science.1065103 Milojevic S, 2018, P NATL ACAD SCI USA, V115, P12616, DOI 10.1073/pnas.1800478115 Mingers J, 2015, EUR J OPER RES, V246, P1, DOI 10.1016/j.ejor.2015.04.002 PRICE DJD, 1976, J AM SOC INFORM SCI, V27, P292, DOI 10.1002/asi.4630270505 Redner S, 1998, EUR PHYS J B, V4, P131, DOI 10.1007/s100510050359 Shiffrin RM, 2018, P NATL ACAD SCI USA, V115, P2632, DOI 10.1073/pnas.1711786114 Small H, 2010, SCIENTOMETRICS, V83, P835, DOI 10.1007/s11192-009-0121-z Stringer MJ, 2008, PLOS ONE, V3, DOI 10.1371/journal.pone.0001683 Suominen A, 2016, J ASSOC INF SCI TECH, V67, P2464, DOI 10.1002/asi.23596 Trujillo CM, 2018, SCI ADV, V4, DOI 10.1126/sciadv.1701130 Tsallis C, 2000, EUR PHYS J B, V13, P777, DOI 10.1007/s100510050097 Velden T, 2017, SCIENTOMETRICS, V111, P1169, DOI 10.1007/s11192-017-2306-1 Way SF, 2019, P NATL ACAD SCI USA, V116, P10729, DOI 10.1073/pnas.1817431116 Wu LF, 2019, NATURE, V566, P378, DOI 10.1038/s41586-019-0941-9 Wuchty S, 2007, SCIENCE, V316, P1036, DOI 10.1126/science.1136099 Yau CK, 2014, SCIENTOMETRICS, V100, P767, DOI 10.1007/s11192-014-1321-8 Yegros-Yegros A, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0135095 Zhang Y, 2017, J ASSOC INF SCI TECH, V68, P1925, DOI 10.1002/asi.23814 Zong QJ, 2013, SCIENTOMETRICS, V94, P781, DOI 10.1007/s11192-012-0799-1 NR 44 TC 6 Z9 7 U1 2 U2 8 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0138-9130 EI 1588-2861 J9 SCIENTOMETRICS JI Scientometrics PD FEB PY 2021 VL 126 IS 2 BP 1173 EP 1186 DI 10.1007/s11192-020-03789-8 PG 14 WC Computer Science, Interdisciplinary Applications; Information Science & Library Science WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Computer Science; Information Science & Library Science GA 3U7TI UT WOS:000841168800001 OA hybrid DA 2024-09-05 ER PT C AU Mosans, G Kampars, J AF Mosans, Guntis Kampars, Janis GP IEEE TI Big Data-based Solutions for Sustainable Digital Services: Evaluation of Research Methods SO 2022 63RD INTERNATIONAL SCIENTIFIC CONFERENCE ON INFORMATION TECHNOLOGY AND MANAGEMENT SCIENCE OF RIGA TECHNICAL UNIVERSITY (ITMS) LA English DT Proceedings Paper CT 63rd International Scientific Conference on Information-Technology-and-Management-Science of Riga-Technical-University (ITMS) CY OCT 06-07, 2022 CL Riga, LATVIA DE digital services; graphs; machine learning AB Modern information technology infrastructure is highly complex, and its monitoring requires the integration of different monitoring tools and management systems. This is especially important for businesses that must be able to provide their digital services in crisis situations, such as the COVID-19 pandemic. This paper identifies research methods suitable to evaluate algorithms for integrated processing of graphs and vertex metrics in data streams. They are identified by means of a literature review. The research finding will serve as an input for further research activities on methods and technological solutions that enable the creation of resilient digital services that are able to adapt to changing contexts and crises, combining big data analysis, knowledge management, business data, and knowledge ecosystems. C1 [Mosans, Guntis; Kampars, Janis] Riga Tech Univ, Riga, Latvia. C3 Riga Technical University RP Mosans, G (corresponding author), Riga Tech Univ, Riga, Latvia. EM guntis.mosans@rtu.lv; janis.kampars@rtu.lv RI Mosans, Guntis/LDG-2421-2024 OI Mosans, Guntis/0000-0001-9373-4000 FU Riga Technical University's Doctoral Grant program FX This research/publication was supported by Riga Technical University's Doctoral Grant program. CR AlNuaimi N, 2022, APPL COMPUT INFORM, V18, P113, DOI 10.1016/j.aci.2019.01.001 BASILI VR, 1986, IEEE T SOFTWARE ENG, V12, P733, DOI 10.1109/TSE.1986.6312975 Boachie E, 2019, INT J CONTIN ENG EDU, V29, P5, DOI 10.1504/IJCEELL.2019.099217 Creswell J.W., 2014, Research Design: Qualitative, Quantitative, and Mixed Methods Approaches, P3 Eftekhari A, 2020, IEEE T PATTERN ANAL, V42, P2901, DOI 10.1109/TPAMI.2019.2919597 Guandalini I, 2022, J BUS RES, V148, P456, DOI 10.1016/j.jbusres.2022.05.003 Jafari N, 2021, J PARALLEL DISTR COM, V147, P140, DOI 10.1016/j.jpdc.2020.09.004 Kauffman S, 2021, J SYST ARCHITECT, V113, DOI 10.1016/j.sysarc.2020.101876 Kerber M, 2019, DISCRETE COMPUT GEOM, V61, P852, DOI 10.1007/s00454-018-0030-0 Kjus Y, 2016, POP COMMUN, V14, P127, DOI 10.1080/15405702.2016.1193183 Li JK, 2020, J CLEAN PROD, V273, DOI 10.1016/j.jclepro.2020.122953 Magelinski T, 2019, APPL NETW SCI, V4, DOI 10.1007/s41109-019-0136-1 Malthus C, 2017, HIGH EDUC RES DEV, V36, P872, DOI 10.1080/07294360.2017.1281284 Mohamadi H, 2017, BIOINFORMATICS, V33, P1324, DOI 10.1093/bioinformatics/btw832 Muallem A., 2017, J. Inf. Secur, V8, P720, DOI DOI 10.4236/JIS.2017.84022 Noel Steven, 2018, From Database to Cyber Security: Essays Dedicated to Sushil Jajodia on the Occasion of His 70th Birthday. Lecture Notes in Computer Science (LNCS 11170), P300, DOI 10.1007/978-3-030-04834-1_16 Sakr S, 2021, COMMUN ACM, V64, P62, DOI 10.1145/3434642 Sarkar B., 2021, ANN DATA SCI, V8, P667, DOI [10.1007/s40745-020-00301-0, DOI 10.1007/S40745-020-00301-0] Shanmugam K, 2013, IEEE T INFORM THEORY, V59, P8402, DOI 10.1109/TIT.2013.2281606 Siles I, 2020, BIG DATA SOC, V7, DOI 10.1177/2053951720923377 Street W. N., 2001, KDD-2001. Proceedings of the Seventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, P377, DOI 10.1145/502512.502568 Syamsuddin I., 2017, INT J ELECT COMPUTER, V7, P3529, DOI [10.11591/ijece.v7i6.pp3529-3535, DOI 10.11591/IJECE.V7I6.PP3529-3535] Verdecchia R, 2022, SUSTAIN COMPUT-INFOR, V35, DOI 10.1016/j.suscom.2022.100767 Williams K, 2008, EUR J INFORM SYST, V17, P505, DOI 10.1057/ejis.2008.38 Wu BF, 2020, GEOGR SUSTAIN, V1, P25, DOI 10.1016/j.geosus.2020.03.006 Yang ZY, 2020, J PROCESS CONTR, V85, P52, DOI 10.1016/j.jprocont.2019.10.010 Yu Kangqing, 2020, Sensors (Basel), V20, DOI 10.3390/s20051261 Zhang XY, 2005, IEEE INFOCOM SER, P2102 NR 28 TC 0 Z9 0 U1 0 U2 2 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA BN 979-8-3503-9985-1 PY 2022 DI 10.1109/ITMS56974.2022.9937095 PG 6 WC Computer Science, Information Systems; Operations Research & Management Science WE Conference Proceedings Citation Index - Science (CPCI-S) SC Computer Science; Operations Research & Management Science GA BU4DE UT WOS:000895918800004 DA 2024-09-05 ER PT C AU Dubson, M Johnsen, E Lieberman, D Olsen, J Finkelstein, N AF Dubson, Michael Johnsen, Ed Lieberman, David Olsen, Jack Finkelstein, Noah BE Engelhardt, PV Churukian, AD Jones, DL TI Apples vs. Oranges: Comparison of Student Performance in a MOOC vs. a Brick-and-Mortar Course SO 2014 PHYSICS EDUCATION RESEARCH CONFERENCE SE Physics Education Research Conference LA English DT Proceedings Paper CT Physics Education Research (PER) Conference on Outpacing New Technologies with Novel Pedagogies - The Role of PER in the Transforming Landscape of Higher Education CY JUL 30-31, 2014 CL Minneapolis, MN DE MOOC; online learning; FMCE; PER; education research; exam performance AB In the fall of 2013, we taught the calculus-based introductory physics course at the University of Colorado at Boulder and, at the same time we taught a MOOC version of the same course, through Coursera. Students in both courses received identical lectures, homework assignments, and timed exams. We present data on participation rates and exam performance for the two groups. We find that the MOOC is like a drug targeted at a very specific population. When it works, it works well, but it works for very few. This MOOC worked well for older, well-educated students, who already have a good understanding of Newtonian mechanics. C1 [Dubson, Michael; Johnsen, Ed; Olsen, Jack; Finkelstein, Noah] Univ Colorado, Dept Phys, UCB 390, Boulder, CO 80309 USA. [Lieberman, David] CUNY Queensborough Community Coll, Dept Phys, Bayside, NY 11364 USA. C3 University of Colorado System; University of Colorado Boulder; City University of New York (CUNY) System RP Dubson, M (corresponding author), Univ Colorado, Dept Phys, UCB 390, Boulder, CO 80309 USA. CR [Anonymous], TUTORIALS INTRO PHYS [Anonymous], 2013, RES PRACTICE ASSESSM, V8, P1 Fredericks C., 2013, 6 INT C MITS LEARN I Hake RR, 1998, AM J PHYS, V66, P64, DOI 10.1119/1.18809 KASHY E, 1993, AM J PHYS, V61, P1124, DOI 10.1119/1.17307 Lin S., PERC P 2013 PORTL OR Otero V, 2010, AM J PHYS, V78, P1218, DOI 10.1119/1.3471291 Thornton RK, 1998, AM J PHYS, V66, P338, DOI 10.1119/1.18863 NR 8 TC 0 Z9 1 U1 0 U2 4 PU AMER ASSOC PHYSICS TEACHERS PI COLLEGE PARK PA ONE PHYSICS ELLIPSE, COLLEGE PARK, MD 20740-3845 USA SN 2377-2379 BN 978-1-931024-23-5 J9 PHYS EDUC RES CONF PY 2014 BP 9 EP 12 DI 10.1119/perc.2014.plenary.001 PG 4 WC Education & Educational Research; Education, Scientific Disciplines; Physics, Multidisciplinary WE Conference Proceedings Citation Index - Science (CPCI-S); Conference Proceedings Citation Index - Social Science & Humanities (CPCI-SSH) SC Education & Educational Research; Physics GA BE7ED UT WOS:000375145900001 DA 2024-09-05 ER PT J AU Solstad, SM Kleiven, GS Castonguay, LG Moltu, C AF Solstad, Stig Magne Kleiven, Goril Solberg Castonguay, Louis Georges Moltu, Christian TI Clinical dilemmas of routine outcome monitoring and clinical feedback: A qualitative study of patient experiences SO PSYCHOTHERAPY RESEARCH LA English DT Article DE psychotherapy; outcome research; qualitative research; ROM; routine outcome monitoring; clinical feedback; IPR; interpersonal process recall ID MENTAL-HEALTH; PSYCHOTHERAPY; PERCEPTIONS; VIEWS AB Purpose:Routine outcome monitoring (ROM) and clinical feedback systems (CFS) are becoming prevalent in mental health services, but there are several challenges to successful implementation. ROM/CFS seem to be helpful for some patients, but not for others. To investigate this, we explored patients' experiences with ROM/CFS as an interpersonal and psychotherapeutic process, in naturalistic settings.Method:We used video-assisted interpersonal process recall interviews to investigate the experiences of 12 patients using ROM/CFS in a Norwegian mental health outpatient clinic. Data were analyzed through systematic text condensation.Results:Our analysis resulted in three pairs of experiences with ROM/CFS: (1) Explicit vs. implicit use of information, (2) Directing focus towards or away from therapeutic topics, and (3) Giving and receiving feedback. These experiences could be helpful or hindering, depending on participants' needs and preferences. All participants needed to know that the CFS was used in a meaningful way. If not, it could be detrimental to the therapeutic process.Conclusion:In order to be helpful for patients, ROM/CFS should be used in a way that is flexible, meaningful to patients, and sensitive to individual needs and preferences. Future research should further explore this how-to aspect of ROM/CFS with different CFS and populations. C1 [Solstad, Stig Magne; Kleiven, Goril Solberg; Moltu, Christian] Dist Gen Hosp Forde, Sunnfjord, Norway. [Castonguay, Louis Georges] Penn State Univ, Dept Psychol, University Pk, PA 16802 USA. [Moltu, Christian] Western Norway Univ Appl Sci, Dept Hlth & Caring Sci, Sunnfjord, Norway. C3 Pennsylvania Commonwealth System of Higher Education (PCSHE); Pennsylvania State University; Pennsylvania State University - University Park; Western Norway University of Applied Sciences RP Solstad, SM (corresponding author), Dist Gen Hosp Forde, POB 1000, N-6807 Forde, Norway. EM stig.magne.solstad@helse-forde.no FU Helse Vest [913032] FX This work was supported by Helse Vest [grant number 913032]. CR Barkham M., 2010, DEVELOPING DELIVERIN, P21, DOI [DOI 10.1002/9780470687994, DOI 10.1002/9780470687994.CH2] Black J, 2009, AUST HEALTH REV, V33, P93, DOI 10.1071/AH090093 Börjesson S, 2020, PSYCHOTHER RES, V30, P337, DOI 10.1080/10503307.2019.1630780 Boswell JF, 2015, PSYCHOTHER RES, V25, P6, DOI 10.1080/10503307.2013.817696 Callaly T, 2001, Aust Health Rev, V24, P43 Castonguay L.G., 2013, BERGIN GARFIELDS HDB, V6, P85 de Jong K, 2012, PSYCHOTHER RES, V22, P464, DOI 10.1080/10503307.2012.673023 Duong MT, 2016, INT J MENT HEALTH PR, V18, P49, DOI 10.1080/14623730.2015.1079429 Elliott R., 1986, The psychotherapeutic process: A research handbook, P503 Frankel Z, 2009, J CONTEMP PSYCHOTHER, V39, P171, DOI 10.1007/s10879-008-9087-z Glaser B., 1967, DISCOV GROUNDED THEO, DOI [10.4324/9780203793206, DOI 10.4324/9780203793206] Gondek D, 2016, ADM POLICY MENT HLTH, V43, P325, DOI 10.1007/s10488-015-0710-5 Greenhalgh J, 2018, J PATIENT-REP OUTCOM, V2, DOI 10.1186/s41687-018-0061-6 Guthrie D, 2008, INT J MENT HEALTH NU, V17, P92, DOI 10.1111/j.1447-0349.2008.00516.x Happell Brenda, 2008, Issues Ment Health Nurs, V29, P1098, DOI 10.1080/01612840802319852 Hetrick SE, 2015, EARLY INTERV PSYCHIA, V9, P66, DOI 10.1111/eip.12127 Hill CE, 2005, J COUNS PSYCHOL, V52, P196, DOI 10.1037/0022-0167.52.2.196 HORVATH AO, 1991, J COUNS PSYCHOL, V38, P139, DOI 10.1037/0022-0167.38.2.139 Hovland RT, 2019, INT J MENT HEALTH SY, V13, DOI 10.1186/s13033-019-0324-5 HOWARD KI, 1993, J CONSULT CLIN PSYCH, V61, P678, DOI 10.1037/0022-006X.61.4.678 Jones SA, 2016, PSYCHOL PSYCHOTHER-T, V89, P97, DOI 10.1111/papt.12061 Kagan N. I., 1991, INTERPERSONAL PROCES, P221 Kendrick T, 2016, COCHRANE DB SYST REV, DOI 10.1002/14651858.CD011119.pub2 Lambert MJ, 2018, CLIN PSYCHOL-SCI PR, V25, DOI 10.1111/cpsp.12268 Lambert MJ, 2018, PSYCHOTHERAPY, V55, P520, DOI 10.1037/pst0000167 Lewis CC, 2019, JAMA PSYCHIAT, V76, P324, DOI 10.1001/jamapsychiatry.2018.3329 Lutz W, 2015, PSYCHOTHER RES, V25, P647, DOI 10.1080/10503307.2015.1053553 Malterud K, 2016, QUAL HEALTH RES, V26, P1753, DOI 10.1177/1049732315617444 Malterud K, 2012, SCAND J PUBLIC HEALT, V40, P795, DOI 10.1177/1403494812465030 McAleavey A. A., 2020, INITIAL QUANTI UNPUB Miller SD, 2015, PSYCHOTHERAPY, V52, P449, DOI 10.1037/pst0000031 Moltu C, 2018, PSYCHOTHER RES, V28, P250, DOI 10.1080/10503307.2016.1189619 Muir HJ, 2019, PSYCHOTHERAPY, V56, P459, DOI 10.1037/pst0000246 Omer S, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0148415 Overington L, 2012, CAN PSYCHOL, V53, P82, DOI 10.1037/a0028017 Rennie D.L., 2001, Counselling and Psychotherapy Research: Linking research with practice, V1, P82, DOI DOI 10.1080/14733140112331385118 Roe D, 2015, INT REV PSYCHIATR, V27, P257, DOI 10.3109/09540261.2015.1070552 Sapyta J, 2005, J CLIN PSYCHOL, V61, P145, DOI 10.1002/jclp.20107 Solstad SM, 2021, QUAL LIFE RES, V30, P3117, DOI 10.1007/s11136-020-02550-1 Solstad SM, 2019, PSYCHOTHER RES, V29, P157, DOI 10.1080/10503307.2017.1326645 Sundet R, 2014, J FAM THER, V36, P195, DOI 10.1111/j.1467-6427.2012.00613.x Unsworth G, 2012, COUNS PSYCHOTHER RES, V12, P71, DOI 10.1080/14733145.2011.565125 Wampold BE, 2015, PSYCHOTHERAPY, V52, P458, DOI 10.1037/pst0000037 Wolpert M, 2016, ADM POLICY MENT HLTH, V43, P309, DOI 10.1007/s10488-014-0586-9 Wolpert M, 2014, ADM POLICY MENT HLTH, V41, P141, DOI 10.1007/s10488-013-0509-1 NR 45 TC 18 Z9 20 U1 0 U2 5 PU ROUTLEDGE JOURNALS, TAYLOR & FRANCIS LTD PI ABINGDON PA 2-4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND SN 1050-3307 EI 1468-4381 J9 PSYCHOTHER RES JI Psychother. Res. PD FEB 17 PY 2021 VL 31 IS 2 SI SI BP 200 EP 210 DI 10.1080/10503307.2020.1788741 EA JUL 2020 PG 11 WC Psychology, Clinical WE Social Science Citation Index (SSCI) SC Psychology GA QA4JE UT WOS:000547012500001 PM 32635834 DA 2024-09-05 ER PT J AU Cornford, R Millard, J González-Suárez, M Freeman, R Johnson, TF AF Cornford, Richard Millard, Joseph Gonzalez-Suarez, Manuela Freeman, Robin Johnson, Thomas Frederick TI Automated synthesis of biodiversity knowledge requires better tools and standardised research output SO ECOGRAPHY LA English DT Article DE data extraction; ecology; literature synthesis; machine learning; population trends; text mining AB As the impact of anthropogenic activity on the environment has grown, research into biodiversity change and associated threats has also accelerated. Synthesising this vast literature is important for understanding the drivers of biodiversity change and identifying those actions that will mitigate further ecological losses. However, keeping pace with an ever-increasing publication rate presents a substantial challenge to efficient syntheses, an issue which could be partly addressed by increasing levels of automation in the synthesis pipeline. Here, we evaluate the potential for automated tools to extract ecologically important information from the abstracts of articles compiled in the Living Planet Database. Specifically, we focused on extracting key information on taxonomy (studied species names), geographic location and estimated population trend, assessing the accuracy of automated versus manual information extraction, the potential for automated tools to introduce biases into syntheses, and evaluating if synthesising abstracts was enough to capture the key information from the full article. Taxonomic and geographic extraction tools performed reasonably well, although information on studied species was sometimes limited in the abstract (compared to the main text) preventing fast extraction. In contrast, extraction of trends was less successful, highlighting the challenges involved in automating information extraction from abstracts, such as deficiencies in the algorithms, linguistic complexity associated with ecological findings, and limited information when compared to the main text. In light of these results, we cautiously advocate for a wider use of automated taxonomic and geographic parsing tools for ecological synthesis. Additionally, to further the use of automated synthesis within ecology, we recommend a dual approach: development of improved computational tools to reduce biases; and enhanced protocols for abstracts (and associated metadata) to ensure key information is included in a format that facilitates machine-readability. C1 [Cornford, Richard] Imperial Coll London, Dept Life Sci, London, England. [Cornford, Richard; Freeman, Robin] Zool Soc London, Inst Zool, London, England. [Cornford, Richard] Nat Hist Museum, Dept Life Sci, London, England. [Millard, Joseph] UCL, Dept Genet Evolut & Environm, London, England. [Millard, Joseph] Univ Oxford, Leverhulme Ctr Demog Sci, Oxford, England. [Gonzalez-Suarez, Manuela] Univ Reading, Sch Biol Sci, Reading, Berks, England. [Johnson, Thomas Frederick] Univ Sheffield, Dept Anim & Plant Sci, Sheffield, S Yorkshire, England. C3 Imperial College London; Zoological Society of London; Natural History Museum London; University of London; University College London; University of Oxford; University of Reading; University of Sheffield RP Cornford, R (corresponding author), Imperial Coll London, Dept Life Sci, London, England.; Cornford, R (corresponding author), Zool Soc London, Inst Zool, London, England.; Cornford, R (corresponding author), Nat Hist Museum, Dept Life Sci, London, England. EM richard.cornford16@imperial.ac.uk RI Freeman, Robin/JOZ-4393-2023; González-Suárez, Manuela/B-9740-2008 OI Freeman, Robin/0000-0002-0560-8942; González-Suárez, Manuela/0000-0001-5069-8900; Cornford, Richard/0000-0002-9963-3603; Millard, Joseph/0000-0002-3025-3565; Johnson, Thomas/0000-0002-6363-1825 FU NERC [NE/R012229/1] FX RC was supported by the QMEE CDT, funded by NERC grant no. NE/R012229/1. CR Akella LM, 2012, BMC BIOINFORMATICS, V13, DOI 10.1186/1471-2105-13-211 Amano T, 2021, PLOS BIOL, V19, DOI 10.1371/journal.pbio.3001296 Ananiadou S, 2009, SOC SCI COMPUT REV, V27, P509, DOI 10.1177/0894439309332293 Anderson SC, 2021, FRONT ECOL ENVIRON, V19, P274, DOI 10.1002/fee.2320 Bongaarts J, 2019, POPUL DEV REV, V45, P680, DOI 10.1111/padr.12283 Brassey J, 2021, BMJ EVID-BASED MED, V26, P24, DOI 10.1136/bmjebm-2018-111126 Buscaldi D., 2008, Proceeding of the 2nd international workshop on Geographic information retrieval, GIR '08, P19, DOI DOI 10.1145/1460007.1460011 Ceballos G, 2015, SCI ADV, V1, DOI 10.1126/sciadv.1400253 Chamberlain S., 2018, R PACKAGE Chamberlain Scott A, 2013, F1000Res, V2, P191, DOI 10.12688/f1000research.2-191.v1 Cohen AM, 2012, BMC MED INFORM DECIS, V12, DOI 10.1186/1472-6947-12-33 Cornford R, 2021, GLOBAL ECOL BIOGEOGR, V30, P339, DOI 10.1111/geb.13219 D'Ignazio C., 2014, CLIFF‐CLAVIN: Determining geographic focus for news articles [extended abstract] Díaz S, 2018, SCIENCE, V359, P270, DOI 10.1126/science.aap8826 Ding DZ, 2018, WEB CONFERENCE 2018: PROCEEDINGS OF THE WORLD WIDE WEB CONFERENCE (WWW2018), P833, DOI 10.1145/3178876.3186131 Dornelas M, 2019, ECOL LETT, V22, P847, DOI 10.1111/ele.13242 Dornelas M, 2018, GLOBAL ECOL BIOGEOGR, V27, P760, DOI 10.1111/geb.12729 Fisher R, 2011, CONSERV LETT, V4, P64, DOI 10.1111/j.1755-263X.2010.00146.x Fournier AMV, 2019, CONSERV BIOL, V33, P1370, DOI 10.1111/cobi.13371 Gates, 2020, SYST REV-LONDON, V9, P1 Gerner M, 2010, BMC BIOINFORMATICS, V11, DOI 10.1186/1471-2105-11-85 Gonzalez A, 2016, ECOLOGY, V97, P1949, DOI 10.1890/15-1759.1 Grames EM, 2019, METHODS ECOL EVOL, V10, P1645, DOI 10.1111/2041-210X.13268 Guerra CA, 2020, NAT COMMUN, V11, DOI 10.1038/s41467-020-17688-2 Hennessy, 2021, PREV SCI, DOI 10.1007/s11121-021-01279-8 Hintzen RE, 2020, CONSERV BIOL, V34, P721, DOI 10.1111/cobi.13435 Hudson LN, 2017, ECOL EVOL, V7, P145, DOI 10.1002/ece3.2579 Humbert JY, 2009, OIKOS, V118, P1940, DOI 10.1111/j.1600-0706.2009.17839.x Jetz W, 2019, NAT ECOL EVOL, V3, P539, DOI 10.1038/s41559-019-0826-1 Johnson TF, 2021, METHODS ECOL EVOL, V12, P1329, DOI 10.1111/2041-210X.13596 Johnson TF, 2021, GLOBAL ECOL BIOGEOGR, V30, P51, DOI 10.1111/geb.13185 Jones Kate E., 2009, Ecology (Washington D C), V90, P2648, DOI 10.1890/08-1494.1 Kitamoto A., 2012, GEOMM 2012 P 2012 AC, V2012, P23 Kokla M, 2020, ISPRS INT J GEO-INF, V9, DOI 10.3390/ijgi9030146 Konno K, 2020, ECOL EVOL, V10, P6373, DOI 10.1002/ece3.6368 Kulkarni R, 2021, METHODS ECOL EVOL, V12, P1226, DOI 10.1111/2041-210X.13608 LANDIS JR, 1977, BIOMETRICS, V33, P159, DOI 10.2307/2529310 Leclère D, 2020, NATURE, V585, P551, DOI 10.1038/s41586-020-2705-y Leung B, 2020, NATURE, V588, DOI 10.1038/s41586-020-2920-6 Liu Y, 2019, 57TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2019), P5070 Magge A, 2018, BIOINFORMATICS, V34, P565, DOI 10.1093/bioinformatics/bty273 Marshall IJ, 2020, HEALTH PSYCHOL REV, V14, P145, DOI 10.1080/17437199.2020.1716198 Marshall IJ, 2019, SYST REV-LONDON, V8, DOI 10.1186/s13643-019-1074-9 Mcrae L, 2017, PLOS ONE, V12, DOI 10.1371/journal.pone.0169156 Millard JW, 2020, ECOGRAPHY, V43, P44, DOI 10.1111/ecog.04532 Nuñez MA, 2021, NAT ECOL EVOL, V5, P264, DOI 10.1038/s41559-020-01369-w Pachauri RK, 2014, 2014 IEEE STUDENTS' CONFERENCE ON ELECTRICAL, ELECTRONICS AND COMPUTER SCIENCE (SCEECS) Pereira HM, 2013, SCIENCE, V339, P277, DOI 10.1126/science.1229931 Rockström J, 2009, NATURE, V461, P472, DOI 10.1038/461472a Roskov Y., 2017, Species 2000 ITIS Cat. Life Shackelford GE, 2020, FUTURES, V116, DOI 10.1016/j.futures.2019.102508 Speriosu M, 2013, P 51 ANN M ASS COMP, P1466 Troudet J, 2017, SCI REP-UK, V7, DOI 10.1038/s41598-017-09084-6 Tydecks L, 2018, PLOS ONE, V13, DOI 10.1371/journal.pone.0199327 vanRossum G., 1995, Python Reference Manual Wallace BC, 2012, P ACM SIGHIT INT HLT, P819, DOI [DOI 10.1145/2110363.2110464, 10.1145/2110363.2110464] Wang JM, 2020, T GIS, V24, P719, DOI 10.1111/tgis.12627 Wei J, 2019, 2019 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING AND THE 9TH INTERNATIONAL JOINT CONFERENCE ON NATURAL LANGUAGE PROCESSING (EMNLP-IJCNLP 2019), P6382 Westergaard D, 2018, PLOS COMPUT BIOL, V14, DOI 10.1371/journal.pcbi.1005962 Westgate MJ, 2018, NAT ECOL EVOL, V2, P588, DOI 10.1038/s41559-018-0502-x Westgate MJ, 2015, CONSERV BIOL, V29, P1606, DOI 10.1111/cobi.12605 WWF (World Wildlife Fund), 2020, LIVING PLANET REPORT Yang C, 2020, ADV NUTR, V11, P1079, DOI 10.1093/advances/nmaa057 Yates KL, 2018, TRENDS ECOL EVOL, V33, P790, DOI 10.1016/j.tree.2018.08.001 NR 64 TC 2 Z9 3 U1 2 U2 14 PU WILEY PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0906-7590 EI 1600-0587 J9 ECOGRAPHY JI Ecography PD MAR PY 2022 VL 2022 IS 3 AR e06068 DI 10.1111/ecog.06068 EA FEB 2022 PG 9 WC Biodiversity Conservation; Ecology WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Biodiversity & Conservation; Environmental Sciences & Ecology GA ZK0BM UT WOS:000757297100001 OA Green Published, gold, Green Accepted DA 2024-09-05 ER PT J AU Gurcan, F Cagiltay, NE AF Gurcan, Fatih Cagiltay, Nergiz Ercil TI Exploratory Analysis of Topic Interests and Their Evolution in Bioinformatics Research Using Semantic Text Mining and Probabilistic Topic Modeling SO IEEE ACCESS LA English DT Article DE Bioinformatics; Market research; Biology; Analytical models; Genomics; Proteins; Computational modeling; Bioinformatics corpus; probabilistic topic modeling; textual content analysis; scientometric analysis; bioinformatics topics and trends ID TRENDS; FIELD; DYNAMICS; IMPACT; LDA AB Bioinformatics, which has developed rapidly in recent years with the collaborative contributions of the fields of biology and informatics, provides a deeper perspective on the analysis and understanding of complex biological data. In this regard, bioinformatics has an interdisciplinary background and a rich literature in terms of domain-specific studies. Providing a holistic picture of bioinformatics research by analyzing the major topics and their trends and developmental stages is critical for an understanding of the field. From this perspective, this study aimed to analyze the last 50 years of bioinformatics studies (a total of 71,490 articles) by using an automated text-mining methodology based on probabilistic topic modeling to reveal the main topics, trends, and the evolution of the field. As a result, 24 major topics that reflect the focuses and trends of the field were identified. Based on the discovered topics and their temporal tendencies from 1970 until 2020, the developmental periods of the field were divided into seven phases, from the "newborn" to the "wisdom" stages. Moreover, the findings indicated a recent increase in the popularity of the topics "Statistical Estimation", "Data Analysis Tools", "Genomic Data", "Gene Expression", and "Prediction". The results of the study revealed that, in bioinformatics studies, interest in innovative computing and data analysis methods based on artificial intelligence and machine learning has gradually increased, thereby marking a significant improvement in contemporary analysis tools and techniques based on prediction. C1 [Gurcan, Fatih] Karadeniz Tech Univ, Fac Engn, Dept Comp Engn, TR-61080 Trabzon, Turkey. [Cagiltay, Nergiz Ercil] Atilim Univ, Fac Engn, Dept Software Engn, TR-06830 Ankara, Turkey. C3 Karadeniz Technical University; Atilim University RP Gurcan, F (corresponding author), Karadeniz Tech Univ, Fac Engn, Dept Comp Engn, TR-61080 Trabzon, Turkey. EM fgurcan@ktu.edu.tr RI Cagiltay, Nergiz/O-3082-2019; GURCAN, Fatih/AAJ-7503-2021 OI Cagiltay, Nergiz/0000-0003-0875-9276; GURCAN, Fatih/0000-0001-9915-6686 CR Abdurakhmonov IY, 2016, BIOINFORMATICS - UPDATED FEATURES AND APPLICATIONS, P3, DOI 10.5772/63817 [Anonymous], 2013, BASICS BIOINFORMATIC Baxevanis A. D., 2020, Bioinformatics, V4th ed. Blei DM, 2007, ANN APPL STAT, V1, P17, DOI 10.1214/07-AOAS114 Blei DM, 2012, COMMUN ACM, V55, P77, DOI 10.1145/2133806.2133826 Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993 da Silva DSM, 2019, IEEE INT C BIOINFORM, P1862, DOI 10.1109/BIBM47256.2019.8982963 GitHub~WZB Social Science Center, TMTOOLKIT TEXT MININ Guan J, 2008, SCIENTOMETRICS, V75, P357, DOI 10.1007/s11192-007-1871-0 Gurcan F, 2023, INTERACT LEARN ENVIR, V31, P1007, DOI 10.1080/10494820.2020.1815795 Gurcan F, 2021, INT REV RES OPEN DIS, V22, P1 Gurcan F, 2021, INT J HUM-COMPUT INT, V37, P267, DOI 10.1080/10447318.2020.1819668 Gurcan F, 2019, IEEE ACCESS, V7, P82541, DOI 10.1109/ACCESS.2019.2924075 Gurcan F, 2019, INT J ENG EDUC, V35, P1110 Hahn A, 2017, LECT N BIOINFORMAT, V10330, P279, DOI 10.1007/978-3-319-59575-7_25 Heo GE, 2017, BMC BIOINFORMATICS, V18, DOI 10.1186/s12859-017-1640-x Hesper B., 1970, Kameleon, V1, P28 Hogeweg P, 2011, PLOS COMPUT BIOL, V7, DOI 10.1371/journal.pcbi.1002021 Ishaq M, 2019, IEEE ACCESS, V7, P68380, DOI 10.1109/ACCESS.2019.2916154 Jiang X, 2020, IEEE ACCESS, V8, P37352, DOI 10.1109/ACCESS.2020.2975585 Kastrin A, 2021, SCIENTOMETRICS, V126, P1415, DOI 10.1007/s11192-020-03811-z Kavvadias S, 2020, J BIOMED INFORM, V110, DOI 10.1016/j.jbi.2020.103574 Konrad M., 2017, TEXT MINING TOPIC MO Lesk A.M., 2019, Introduction to bioinformatics, Vfifth, DOI [10.1002/biot.200800277, DOI 10.1002/BIOT.200800277] Li C, 2019, IEEE ACCESS, V7, P6386, DOI 10.1109/ACCESS.2018.2887314 Lu Y, 2011, INFORM RETRIEVAL, V14, P178, DOI 10.1007/s10791-010-9141-9 Luo J, 2016, BIOMED INFORM INSIGH, V8, P1, DOI 10.4137/BII.S31559 Luscombe NM, 2001, METHOD INFORM MED, V40, P346, DOI 10.1055/s-0038-1634431 Manoharan A., 2011, IPCSIT, V16, P199 Mimno David, 2011, P C EMPIRICAL METHOD, P262 Mongeon P, 2016, SCIENTOMETRICS, V106, P213, DOI 10.1007/s11192-015-1765-5 Ouzounis CA, 2012, PLOS COMPUT BIOL, V8, DOI 10.1371/journal.pcbi.1002487 Patra SK, 2006, SCIENTOMETRICS, V67, P477, DOI 10.1556/Scient.67.2006.3.9 Perez-Iratxeta C, 2007, BRIEF BIOINFORM, V8, P88, DOI 10.1093/bib/bbl035 Porter M. F, 2001, Snowball: A language for stemming algorithms Song M, 2014, SCIENTOMETRICS, V101, P397, DOI 10.1007/s11192-014-1246-2 Song M, 2013, SCIENTOMETRICS, V96, P183, DOI 10.1007/s11192-012-0900-9 Tao ZY, 2020, IEEE ACCESS, V8, P89802, DOI 10.1109/ACCESS.2020.2992468 Uysal AK, 2014, INFORM PROCESS MANAG, V50, P104, DOI 10.1016/j.ipm.2013.08.006 van Altena Allard J., 2016, Journal of Big Data, V3, DOI 10.1186/s40537-016-0057-0 Vayansky I, 2020, INFORM SYST, V94, DOI 10.1016/j.is.2020.101582 Wren JD, 2016, BIOINFORMATICS, V32, P2686, DOI 10.1093/bioinformatics/btw284 Wu YM, 2010, PROCEEDINGS OF THE INTERNATIONAL SYMPOSIUM ON EMERGENCY MANAGEMENT 2010, P1 Yousaf A, 2018, 2018 IEEE LONG ISL S, P1 NR 44 TC 17 Z9 17 U1 5 U2 32 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 2169-3536 J9 IEEE ACCESS JI IEEE Access PY 2022 VL 10 BP 31480 EP 31493 DI 10.1109/ACCESS.2022.3160795 PG 14 WC Computer Science, Information Systems; Engineering, Electrical & Electronic; Telecommunications WE Science Citation Index Expanded (SCI-EXPANDED) SC Computer Science; Engineering; Telecommunications GA ZZ4FZ UT WOS:000773228200001 OA gold DA 2024-09-05 ER PT J AU Roda-Segarra, J Simón-Martín, M Rico, AP Huerta, JLH AF Roda-Segarra, Jacobo Simon-Martin, Meritxell Rico, Andres Paya Huerta, Jose Luis Hernandez TI History of Education Meets Digital Humanities: A Field-Specific Finding Aid to Review Past and Present Research SO HISTORY OF EDUCATION LA English DT Article DE Digital humanities/digital history; data sources; bibliographic data; artificial intelligence; Hecumen ID AHR-EXCHANGE; MANIFESTO; NETWORKS AB Research in the field of History of Education has experienced a remarkable increase in recent decades. Resulting publications are referenced in generalist databases that do not catalogue academic works according to the specific characteristics of History of Education. Seeking to give response to this bibliographic gap, we are developing a database catered for historians of education that aims to map out present, past, and future research. Conceived within the framework of Digital Humanities/Digital History, Hecumen is being designed, with the aid of Artificial Intelligence, as an open access finding aid that permits (1) conducting specific and multilevel complex engine searches, (2) having a panoramic view of publications; (3) mapping out relevant/missing areas of research, and, ultimately, (4) keeping up to date with the research produced by historians of education. This paper presents, contextualises, and problematises Hecumen - a digital tool that will facilitate and boost History of Education research. C1 [Roda-Segarra, Jacobo; Rico, Andres Paya] Univ Valencia, Dept Comparat Educ & Educ Hist, Ave Blasco Ibanez 30, Valencia 46010, Spain. [Simon-Martin, Meritxell] Univ Lleida, Dept Pedag, Lleida, Spain. [Huerta, Jose Luis Hernandez] Univ Valladolid, Dept Philosophy, Valladolid, Spain. C3 University of Valencia; Universitat de Lleida; Universidad de Valladolid RP Roda-Segarra, J (corresponding author), Univ Valencia, Dept Comparat Educ & Educ Hist, Ave Blasco Ibanez 30, Valencia 46010, Spain. EM jacobo.roda@uv.es OI Roda-Segarra, Jacobo/0000-0002-4717-6295; Paya Rico, Andres/0000-0001-7646-4539; Simon-Martin, Meritxell/0000-0002-9486-3020 FU MCIN/AEI [PID2019-105328GB-I00]; ESF Investing in Your Future [PRE2020-093276] FX This work was supported by the MCIN/AEI/10.13039/501100011033 and by "ESF Investing in Your Future" under Grant [PRE2020-093276]; MCIN/AEI/10.13039/501100011033 under Grant [PID2019-105328GB-I00]. CR Armitage D, 2015, AM HIST REV, V120, P543, DOI 10.1093/ahr/120.2.543 Blanco N., 2016, ESPACIOS PUBLICOS, V19, P97 Bruno V., 2005, P 17 AUSTR C COMP HU, P1 Cohen DJ, 2008, J AM HIST, V95, P452 Cohen D, 2015, AM HIST REV, V120, P530, DOI 10.1093/ahr/120.2.530 Donthu N, 2021, J BUS RES, V133, P285, DOI 10.1016/j.jbusres.2021.04.070 Edelstein D, 2016, MOD INTELLECT HIST, V13, P237, DOI 10.1017/S1479244314000833 Fickers A., 2022, DIGITAL HIST HERMENE GARFIELD E, 1970, NATURE, V227, P669, DOI 10.1038/227669a0 Garfield E., 1978, SCIENTOMETRICS, V1, P5 Gibbs F. W., 2013, WRITING HIST DIGITAL, P159, DOI [DOI 10.1353/BOOK.27633, DOI 10.2307/J.CTV65SX57.18] Grondin J., 2014, QUE HERMENEUTICA Guichot Reina V., 2006, REV LATINOAMERICANA, V2, P11 Guldi JoDavid Armitage., 2014, The History Manifesto Hernandez Huerta J. L., 2022, CONNECTING HIST ED R, P13 Hernandez Huerta J. L., 2019, BILDUNGSGESCHICHTE I, V9, P206 Huerta JLH, 2019, BORDON, V71, P45, DOI 10.13042/Bordon.2019.69624 Hiltmann T, 2021, GESCH GES, V47, P122 Hofstetter R., 2020, HIST LEDUCATION, P9, DOI DOI 10.4000/HISTOIRE-EDUCATION.5485 Hofstetter R, 2014, PAEDAGOG HIST, V50, P871, DOI 10.1080/00309230.2014.948017 Huerta JLH, 2023, FUTURO PASADO, P643, DOI 10.14201/fdp.28213 Laaziri M., 2019, International Journal of Electrical and Computer Engineering, V9, P704, DOI [DOI 10.11591/IJECE.V9I1.PP.704-712, DOI 10.11591/IJECE.V9I1.PP704-712] Lundberg B., 2022, NORDIC J ED HIST, V9, P1 May J, 2021, HIST EDUC REV, V50, P287, DOI 10.1108/HER-10-2020-0053 McCulloch G, 2011, FOUND FUTURES EDUC, P1 Miranda I. P., 2020, HIST LEDUCATION, V2, P177 Orera Orera L., 1995, REV GEN INFORM DOCUM, V5, P73 Rico AP, 2016, EDUC KNOWL SOC, V17, P55, DOI 10.14201/eks20161725572 Rico AP, 2016, HIST EDUC CHILD LIT, V11, P249 Piersma H, 2013, BMGN, V128, P78 PRICE DJD, 1965, B ATOM SCI, V21, P2 Ribeiro, 2022, INVESTIGACAO HIST ED, P23 Roda-Segarra J., 2023, CONECTANDO HIST EDUC, P95 Roda-Segarra J., IN PRESS Roda-Segarra J., 2023, THESIS U VALENCIA Roda-Segarra J, 2023, HSE-SOC EDUC HIST, V12, P85, DOI 10.17583/hse.11028 Romein CA, 2020, HISTORY-UK, V105, P291, DOI 10.1111/1468-229X.12969 Romele A., 2019, Digital Hermeneutics: Philosophical Investigations in New Media and Technologies Romele A, 2020, AI SOC, V35, P73, DOI 10.1007/s00146-018-0856-2 Rothschild E., 2011, GOING DIGITAL EVOLUT, P280 Sanchidrián Blanco Carmen, 2021, Rev. educ. sup, V50, P129, DOI 10.36857/resu.2021.199.1804 Sanchidrian C., 2020, HIST ED, V154, P49, DOI DOI 10.4000/HISTOIRE-EDUCATION.5525 Sani R., 2015, HIST EDUC CHILD LIT, V10, P13 Schwandt S, 2018, GESCH GES, V44, P107 Simon-Martin M., FORO EDUC-SPAIN Simon-Martin M., 2023, CONECTANDO HIST EDUC, P231 Somogyvári L, 2023, PAEDAGOG HIST, V59, P837, DOI 10.1080/00309230.2021.1962927 Staring J, 2013, HIST EDUC REV, V42, P85, DOI 10.1108/08198691311317714 Van Ruyskensvelde S, 2014, PAEDAGOG HIST, V50, P861, DOI 10.1080/00309230.2014.955511 Wang C, 2021, HIST EDUC REV, V50, P5, DOI 10.1108/HER-10-2019-0042 Zaagsma G, 2013, BMGN, V128, P3 NR 51 TC 1 Z9 1 U1 5 U2 5 PU ROUTLEDGE JOURNALS, TAYLOR & FRANCIS LTD PI ABINGDON PA 2-4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND SN 0046-760X EI 1464-5130 J9 HIST EDUC JI Hist. Educ. PD SEP 2 PY 2024 VL 53 IS 5 BP 893 EP 913 DI 10.1080/0046760X.2024.2337896 EA APR 2024 PG 21 WC Education & Educational Research; History Of Social Sciences WE Social Science Citation Index (SSCI) SC Education & Educational Research; Social Sciences - Other Topics GA A4N8L UT WOS:001208161500001 DA 2024-09-05 ER PT C AU Brown, AO Watson, KA Liu, JC Orabi, II Rencis, JJ Chen, CC Akasheh, F Wood, JJ Jackson, KS Hackett, RK Sargent, ER Dunlap, B Wejmar, CA Crawford, RH Jensen, DD AF Brown, Ashland O. Watson, Kyle A. Liu, Jiancheng Orabi, Ismail I. Rencis, Joseph J. Chen, Chuan-Chiang Akasheh, Firas Wood, John J. Jackson, Kathy Schmidt Hackett, Rachelle Kisst Sargent, Ella R. Dunlap, Brock Wejmar, Christopher Allen Crawford, Richard H. Jensen, Daniel D. GP ASEE TI Assessment of Finite Element Active Learning Modules: An Update in Research Findings SO 2014 ASEE ANNUAL CONFERENCE SE ASEE Annual Conference & Exposition LA English DT Proceedings Paper CT ASEE Annual Conference CY JUN 15-18, 2014 CL Indianapolis, IN ID CURRICULUM AB The landscape of contemporary engineering education is ever changing, adapting and evolving. As an example, finite element theory and application has often been included in graduate-level courses in engineering programs; however, current industry needs bachelor's-level engineering graduates with skills in applying this essential analysis and design technique. Engineering education is also changing to include more active learning. In response to the need to introduce undergrads to the finite element method as well as the need for engineering curricula to include more active learning, we have developed, implemented and assessed a suite of Active Learning Module (ALMs). The ALMs are designed to improve student learning of difficult engineering concepts while students gain essential knowledge of finite element analysis. We have used the Kolb Learning Cycle as a conceptual framework to guide our design of the ALMs. Originally developed using MSC Nastran, followed by development efforts in SolidWorks Simulation, ANSOFT, ANSYS, and other commercial FEA software packages, a team of researchers, with National Science Foundation support, have created over twenty-eight active learning modules. We will discuss the implementation of these learning modules which have been incorporated into undergraduate courses that cover topics such as machine design, mechanical vibrations, heat transfer, bioelectrical engineering, electromagnetic field analysis, structural fatigue analysis, computational fluid dynamics, rocket design, and chip formation during manufacturing, and large scale deformation in machining. This update on research findings includes statistical results for each module which compare performance on pre-and post-learning module quizzes to gauge change in student knowledge related to the difficult engineering concepts that each module addresses. Statistically significant student performance gains provide evidence of module effectiveness. In addition, we present statistical comparisons between different personality types (based on Myers-Briggs Type Indicator, MBTI, subgroups) and different learning styles (based on Felder-Solomon ILS subgroups) in regards to the average gains each group of students have made on quiz performance. Although exploratory, and generally based on small sample sizes at this point in our multi-year effort, the modules for which subgroup differences are found are being carefully reviewed in an attempt to determine whether modifications should be made to better ensure equitable impact of the modules across students from specific personality and / or learning styles subgroups (e.g., MBTI Intuitive versus Sensing; ILS Sequential versus Global). C1 [Brown, Ashland O.] Univ Pacific, Mech Engn, Sch Engn & Comp Sci, Stockton, CA 95211 USA. [Brown, Ashland O.] Univ Pacific, Engn, Stockton, CA 95211 USA. [Brown, Ashland O.; Watson, Kyle A.; Hackett, Rachelle Kisst; Sargent, Ella R.] Univ Pacific, Stockton, CA 95211 USA. [Liu, Jiancheng] Univ Pacific, Mech Engn, Stockton, CA 95211 USA. [Orabi, Ismail I.] Univ New Haven, West Haven, CT USA. [Rencis, Joseph J.] Tennessee Technol Univ, Mech Engn, Cookeville, TN 38505 USA. [Chen, Chuan-Chiang] Tuskegee Univ, Tuskegee, AL 36088 USA. [Akasheh, Firas] Tuskegee Univ, Tuskegee, AL 36088 USA. [Wood, John J.; Jensen, Daniel D.] US Air Force Acad, Engn Mech, Colorado Springs, CO 80840 USA. [Jackson, Kathy Schmidt] Penn State Univ, Schreyer Inst Teaching Excellence, University Pk, PA 16802 USA. [Dunlap, Brock] Univ Texas Austin, Austin, TX 78712 USA. [Wejmar, Christopher Allen] Univ Pacific, Sch Engn & Comp Sci, Stockton, CA 95211 USA. [Crawford, Richard H.] Univ Texas Austin, Mech Engn, Austin, TX 78712 USA. C3 University of the Pacific; University of the Pacific; University of the Pacific; University of the Pacific; University New Haven; Tennessee Technological University; Tuskegee University; Tuskegee University; United States Department of Defense; United States Air Force; United States Air Force Academy; Pennsylvania Commonwealth System of Higher Education (PCSHE); Pennsylvania State University; Pennsylvania State University - University Park; University of Texas System; University of Texas Austin; University of the Pacific; University of Texas System; University of Texas Austin RP Brown, AO (corresponding author), Univ Pacific, Mech Engn, Sch Engn & Comp Sci, Stockton, CA 95211 USA. CR [Anonymous], EFF EV 2012 2013 ACC Baker J. R., 2002, Computers in Education Journal, V12, P10 Belytschko T, 1997, INT J ENG EDUC, V13, P457 BORCHERT R, 1999, P ASEE ANN C EXP CHA Bower M., 2000, P ASEE ANN C EXP ST Brinson L.C., 1997, Journal of Engineering Education, V86, P159 Brown A.O, 2004, ASEE PAC SW SEC C U Brown A.O, 2004, 2004 ASME INT MECH E Brown A.O., 2008, 2008 ASEE ANN C EXP Chiou R., 1998, Computers in Education Journal, V8, P50 Coffman J., 2009, P 2009 ASEE MIDDL AT FELDER RM, 1988, ENG EDUC, V78, P674 Graham L., 2002, Computers in Education Journal, V12, P32 Kaufman K., 2009, P ASEE ANN C EXP AUS Kaufman K., 2011, ADV ENG ED UNPUB Kaufman K., 2011, INT J ENG ED UNPUB Kolb D.A., 2014, Experiential Learning: Experience as a source of learning and development Linsey J., 2009, Advances in Engineering Education, V1, P1 Liu J., 2008, 2008 ASEE PAC SW REG Mahoney DP, 1999, COMPUT GRAPH WORLD, V22, P30 Matthews J. M., 1999, Computers in Education Journal, V9, P46 Milton-Benoit J., 1998, J ENG EDUC, V87, P511 Myers IB., 1985, Manual: a Guide to the Development and Use of the Myers-Briggs Type Indicator Nesbit S.N., 1998, COMPUTER APPL ENG ED, V87, P511 Rencis J. J., 1999, Computers in Education Journal, V9, P22 Sorby SA, 1999, COMPUT APPL ENG EDUC, V7, P252, DOI 10.1002/(SICI)1099-0542(1999)7:4<252::AID-CAE7>3.0.CO;2-Z STICE JE, 1987, ENG EDUC, V77, P291 Thilmany J, 2001, MECH ENG, V123, P60 Thilmany J, 2000, MECH ENG, V122, P88, DOI 10.1115/1.2000-OCT-6 Watson K.A., 2009, P 2009 ASEE PAC SW C Watson KA, 2012, ASEE ANNU CONF EXPO NR 31 TC 0 Z9 0 U1 0 U2 4 PU AMER SOC ENGINEERING EDUCATION PI WASHINGTON PA 1818 N STREET, NW SUITE 600, WASHINGTON, DC 20036 USA SN 2153-5965 J9 ASEE ANNU CONF EXPO PY 2014 PG 31 WC Education & Educational Research; Education, Scientific Disciplines; Engineering, Multidisciplinary WE Conference Proceedings Citation Index - Science (CPCI-S); Conference Proceedings Citation Index - Social Science & Humanities (CPCI-SSH) SC Education & Educational Research; Engineering GA BF6XT UT WOS:000383779702062 DA 2024-09-05 ER PT C AU García-Sánchez, P Mora, AM Castillo, PA Pérez, IJ AF Garcia-Sanchez, Pablo Mora, Antonio M. Castillo, Pedro A. Perez, Ignacio J. BE HerreraViedma, E Shi, Y Berg, D Tien, J Cabrerizo, FJ Li, J TI A bibliometric study of the research area of videogames using Dimensions.ai database SO 7TH INTERNATIONAL CONFERENCE ON INFORMATION TECHNOLOGY AND QUANTITATIVE MANAGEMENT (ITQM 2019): INFORMATION TECHNOLOGY AND QUANTITATIVE MANAGEMENT BASED ON ARTIFICIAL INTELLIGENCE SE Procedia Computer Science LA English DT Proceedings Paper CT 7th International Conference on Information Technology and Quantitative Management (ITQM) - Information Technology and Quantitative Management Based on Artificial Intelligence CY NOV 03-06, 2019 CL Granada, SPAIN DE videogames; Dimensions.ai; bibliometrics; scientometrics ID GAMES AB Videogames are a very interesting area of research for fields as diverse as computer science, health, psychology or even social sciences. Every year a growing number of articles are published in different topics inside this field, so it is very convenient to study the different bibliometric data in order to consolidate the research efforts. Thus, the aim of this work is to conduct a study on the distribution of articles related to videogames in the different fields of research, as well as to measure their interest over time, to identify the sources, countries and authors with the highest scientific production. In order to carry out this analysis, the information system Dimensions.ai has been considered, since it covers a large number of documents and allows for easy downloading and analysis of datasets. According to the study, three countries are the most prolific in this area: USA, Canada and UK. The obtained results also indicate that the fields with the highest number of publications are Information and Computer Sciences, Medical and Health Sciences, and Psychology and Cognitive Sciences, in this order. With regard to the impact of the publications, differences between the number of citations, and the number of Altmetric Attention Score, have been found. (C) 2020 The Authors. Published by Elsevier B.V. C1 [Garcia-Sanchez, Pablo; Perez, Ignacio J.] Univ Cadiz, Dept Comp Sci & Engn, Escuela Super Ingn, Avda Univ 10, Cadiz 11519, Spain. [Mora, Antonio M.] Univ Granada, Dept Signal Theory Telemat & Commun, ETSIIT CITIC, Calle Periodista Daniel Saucedo Aranda S-N, Granada, Spain. [Castillo, Pedro A.] Univ Granada, Dept Comp Sci & Comp Architecture, ETSIIT CITIC, Calle Periodista Daniel Saucedo Aranda S-N, Granada, Spain. C3 Universidad de Cadiz; University of Granada; University of Granada RP García-Sánchez, P (corresponding author), Univ Cadiz, Dept Comp Sci & Engn, Escuela Super Ingn, Avda Univ 10, Cadiz 11519, Spain. EM pablo.garciasanchez@uca.es RI Castillo-Valdivieso, Pedro A./KBQ-6381-2024; Perez, Ignacio javier/M-2437-2015; García, Antonio M. M. Mora/M-1127-2014; García-Sánchez, Pablo/G-2166-2010 OI Castillo-Valdivieso, Pedro A./0000-0002-5258-0620; Perez, Ignacio javier/0000-0003-4253-8629; García-Sánchez, Pablo/0000-0003-4644-2894 FU Spanish Ministry of Economy and Competitiveness [TIN2016-75850-R, 11E2015-68752, TIN2017-85727-C4-2-P]; Program of Promotion and Development of Research Activity of the University of Cadiz (Programa de Fomento e Impulso de la actividad Investigadora de la Universidad de Cadiz); Junta de Andalucia [B-TIC-402-UGR18]; FEDER [B-TIC-402-UGR18] FX This contribution has been made possible thanks to Dimensions.ai database. Also, the authors would like to acknowledge FEDER funds provided by the Spanish Ministry of Economy and Competitiveness under grants TIN2016-75850-R, 11E2015-68752, TIN2017-85727-C4-2-P and Program of Promotion and Development of Research Activity of the University of Cadiz (Programa de Fomento e Impulso de la actividad Investigadora de la Universidad de Cadiz); and B-TIC-402-UGR18 (FEDER and Junta de Andalucia). CR [Anonymous], 2002, Education and Health Carbonell X, 2009, J MED LIBR ASSOC, V97, P102, DOI 10.3163/1536-5050.97.2.006 Ciftci S., 2017, J ED TRAINING STUDIE, V6 Cobo MJ, 2014, PROCEDIA COMPUT SCI, V31, P567, DOI 10.1016/j.procs.2014.05.303 Deutsch JE, 2008, PHYS THER, V88, P1196, DOI 10.2522/ptj.20080062 García-Sánchez P, 2018, LECT NOTES COMPUT SC, V11315, P138, DOI 10.1007/978-3-030-03496-2_16 Granic I, 2014, AM PSYCHOL, V69, P66, DOI 10.1037/a0034857 Lara-Cabrera R, 2019, FUTURE GENER COMP SY, V92, P516, DOI 10.1016/j.future.2017.12.056 Lara-Cabrera R, 2013, 2013 IEEE SYMPOSIUM ON FOUNDATIONS OF COMPUTATIONAL INTELLIGENCE (FOCI), P114, DOI 10.1109/FOCI.2013.6602463 Martí-Parreño J, 2016, J COMPUT ASSIST LEAR, V32, P663, DOI 10.1111/jcal.12161 Nguyen THD, 2018, ENTERTAIN COMPUT, V26, P88, DOI 10.1016/j.entcom.2018.02.002 Piwowar H, 2013, NATURE, V493, P159, DOI 10.1038/493159a Podlubny I, 2005, SCIENTOMETRICS, V64, P95, DOI 10.1007/s11192-005-0240-0 Yannakakis G. N., 2018, INTRODUCTION, P3 Yannakakis Georgios N, 2018, Artificial Intelligence and Games, V2, DOI 10.1007/978-3-319-63519-46 NR 15 TC 10 Z9 10 U1 2 U2 15 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA SARA BURGERHARTSTRAAT 25, PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1877-0509 J9 PROCEDIA COMPUT SCI PY 2019 VL 162 BP 737 EP 744 DI 10.1016/j.procs.2019.12.045 PG 8 WC Computer Science, Artificial Intelligence; Computer Science, Information Systems; Computer Science, Theory & Methods WE Conference Proceedings Citation Index - Science (CPCI-S) SC Computer Science GA BO4FC UT WOS:000514081500092 OA gold, Green Submitted, Green Published DA 2024-09-05 ER PT J AU Ding, X Wang, BZ He, GQ AF Ding, Xiao Wang, Bing-Zhong He, Guo-Qiang TI Research on a Millimeter-Wave Phased Array With Wide-Angle Scanning Performance SO IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION LA English DT Article DE Genetic algorithms; pattern reconfigurable antenna; phased array; wide-angle scanning ID ANTENNA AB In order to extend the scanning range of a phased array and maintain the scanning gain flatness, a novel millimeter-wave phased array with four linearly-arranged pattern reconfigurable elements is presented in this communication. The phased array has been designed, fabricated, measured and analyzed. The active patterns of each reconfigurable element are measured at different reconfigurable modes and the pattern scanning performance of the phased array is synthesized by using these active patterns. Furthermore, a genetic algorithm is used to lower the level of side lobes of the proposed phased array. The results show that the phased array can scan its main lobe from -75 degrees to + 75 degrees in the elevation plane with a gain fluctuation less than 3 dB. C1 [Ding, Xiao; Wang, Bing-Zhong; He, Guo-Qiang] Univ Elect Sci & Technol China, Inst Appl Phys, Chengdu 610054, Peoples R China. C3 University of Electronic Science & Technology of China RP Ding, X (corresponding author), Univ Elect Sci & Technol China, Inst Appl Phys, Chengdu 610054, Peoples R China. EM xiaoding.antenna@gmail.com; bzwang@uestc.edu.cn; guoqianghe22@gmail.com RI Wang, Bing/IAQ-0291-2023; ding, xiao/KAM-4458-2024; He, Guoqiang/AAV-7800-2021; Wang, Bing/IAP-6059-2023 OI ding, xiao/0000-0003-0804-6444; Wang, Bing-Zhong/0000-0003-0679-8925 FU Doctoral Program of Higher Education of China [20100185110021, 20120185130001]; National Natural Science Foundation of China [61071031]; [ITR1113] FX This work was supported in part by the Research Fund for the Doctoral Program of Higher Education of China (No. 20100185110021, No. 20120185130001), in part by the National Natural Science Foundation of China (No. 61071031), and in part by the Project ITR1113. CR Bai YY, 2011, IEEE T ANTENN PROPAG, V59, P4071, DOI 10.1109/TAP.2011.2164176 Bai YY, 2010, J INFRARED MILLIM TE, V31, P1, DOI 10.1007/s10762-009-9559-6 Balanis C. A., 1997, Antenna Theory: Analysis and Design, V2nd Beenamole KS, 2008, MICROW OPT TECHN LET, V50, P1737, DOI 10.1002/mop.23531 Ding X, 2013, J ELECTROMAGNET WAVE, V27, P649, DOI 10.1080/09205071.2013.759520 Ding X, 2010, IEEE ANTENN WIREL PR, V9, P303, DOI 10.1109/LAWP.2010.2047374 Fu JS, 1999, RADAR CONF, P22, DOI 10.1109/NRC.1999.767196 Johnson JM, 1999, WILEY MICRO, P1 Kedar A., 2011, Progress In Electromagnetics Research B, V27, P235 Mailloux R. J., 2008, PHASED ARRAY ANTENNA, V2nd Toshev AG, 2008, IEEE T ANTENN PROPAG, V56, P3330, DOI 10.1109/TAP.2008.929527 NR 11 TC 116 Z9 126 U1 2 U2 56 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-926X EI 1558-2221 J9 IEEE T ANTENN PROPAG JI IEEE Trans. Antennas Propag. PD OCT PY 2013 VL 61 IS 10 BP 5319 EP 5324 DI 10.1109/TAP.2013.2275247 PG 7 WC Engineering, Electrical & Electronic; Telecommunications WE Science Citation Index Expanded (SCI-EXPANDED) SC Engineering; Telecommunications GA 250DR UT WOS:000326831000051 DA 2024-09-05 ER PT J AU Hasumi, T Chiu, MS AF Hasumi, Toshiyuki Chiu, Mei-Shiu TI Online mathematics education as bio-eco-techno process: bibliometric analysis using co-authorship and bibliographic coupling SO SCIENTOMETRICS LA English DT Article DE Bibliometric analysis; Ecological technology theories; Mathematics education; Online learning; Flipped learning ID E-LEARNING SYSTEM; CLASSROOM; PATTERNS; DESIGN; PERFORMANCE; PRINCIPLES; COCITATION; CITATION; SCIENCE; TRENDS AB Under the COVID-19 pandemic, mathematics education has moved completely online. To tackle this new norm based on bio-eco-techno theories, this study aims to provide educators an overview of the research landscape for envisioning educational practices through bibliometric analysis of 319 articles and reviews published in peer-reviewed journals from 1993 to 2020. Country and institutional co-authorship depicts the social network structure of the field to identify top productive contributors. Bibliographic coupling of publications forms the conceptual structure, revealing research themes. Together, the results are mapped according to the bio-eco-techno perspective. The bioecological system highlights student achievement as the central concerns. The microsystem emphasizes techno-subsystems for supporting flipped learning. The exosystem and mesosystem require institution support for teacher pedagogical design, digital competencies, and collaboration. The macrosystem raises the issue of distribution or centralization in the strengths of online mathematics education and calls for greater cross-national boundary digital use and collaboration. The chronosystem asks: Does Covid-19 force the popularity of blended or flipped learning into online education? Based on the bio-eco-techno perspective, further recommendations are provided. C1 [Hasumi, Toshiyuki] Ming Chuan Univ, Int Coll, 250 Zhong Shan N Rd,Sec 5, Taipei 111, Taiwan. [Chiu, Mei-Shiu] Natl Chengchi Univ, Dept Educ, 64 Zhinan Rd,Sec 2, Taipei 11605, Taiwan. C3 Ming Chuan University; National Chengchi University RP Hasumi, T (corresponding author), Ming Chuan Univ, Int Coll, 250 Zhong Shan N Rd,Sec 5, Taipei 111, Taiwan. EM 107152521@g.nccu.edu.tw; chium@nccu.edu.tw RI Hasumi, Toshiyuki/IQV-0095-2023; Chiu, Mei-Shiu/Q-1116-2019 OI Hasumi, Toshiyuki/0000-0003-4259-5607; Chiu, Mei-Shiu/0000-0002-2929-5151 FU Ministry of Science and Technology, Taiwan [MOST 109-2629H-004-002] FX This work was supported by the Ministry of Science and Technology, Taiwan (MOST 109-2629H-004-002). An early part of this study was orally presented, without any written publication, as "Hasumi, T., & Chiu, M.-S. (2021, June 9). Online mathematics education: A bibliometric analysis [Conference session]. Global Conference on Education and Research, virtually hosted by University of South Florida, FL, United States. https://glocer.org/schedule/2/". CR Abu Talib M, 2021, EDUC INF TECHNOL, V26, P6719, DOI 10.1007/s10639-021-10507-1 Aghaei Chadegani A., 2013, Asian Social Science, V9, P18, DOI [10.5539/ass.v9n5p18, DOI 10.5539/ASS.V9N5P18] [Anonymous], 2014, PISA 2012 results: What students know and can do. Student performance in mathematics, V1 [Anonymous], 2010, PISA 2009 Results: What Students Know and Can Do - Student Performance in Reading, Mathematics and Science, VI, DOI [10.1787/9789264091450-en, DOI 10.1787/9789264091450-EN] [Anonymous], 2012, KURAM UYGUL EGIT BIL [Anonymous], 2007, PISA 2006: Science competencies for tomorrow's world: Volume 1: Analysis, DOI DOI 10.1787/9789264040014-EN Aria M, 2020, SOC INDIC RES, V149, P803, DOI 10.1007/s11205-020-02281-3 Aria M, 2017, J INFORMETR, V11, P959, DOI 10.1016/j.joi.2017.08.007 Aristovnik A, 2020, SUSTAINABILITY-BASEL, V12, DOI 10.3390/su12219132 Baier-Fuentes H, 2019, INT ENTREP MANAG J, V15, P385, DOI 10.1007/s11365-017-0487-y Bakker A, 2020, EDUC STUD MATH, V104, P1, DOI 10.1007/s10649-020-09946-3 Bano M, 2018, COMPUT EDUC, V121, P30, DOI 10.1016/j.compedu.2018.02.006 Bhagat KK, 2016, EDUC TECHNOL SOC, V19, P134 Borba MC, 2021, EDUC STUD MATH, V108, P385, DOI 10.1007/s10649-021-10043-2 Bouilheres F, 2020, EDUC INF TECHNOL, V25, P3049, DOI 10.1007/s10639-020-10100-y Boyack KW, 2010, J AM SOC INF SCI TEC, V61, P2389, DOI 10.1002/asi.21419 Bozkurt A, 2021, INT REV RES OPEN DIS, V22, P19 Brahimi T, 2015, COMPUT HUM BEHAV, V51, P604, DOI 10.1016/j.chb.2015.03.013 Bronfenbrenner U., 2006, Handbook of Child Psychology: Theoretical Models of Human Development, V1, P793, DOI DOI 10.1002/9780470147658.CHPSY0114 Bronfenbrenner W., 1979, The ecology of human development: Experiments by nature and design Chen CM, 2006, J AM SOC INF SCI TEC, V57, P359, DOI 10.1002/asi.20317 Chen SC, 2016, BRIT J EDUC TECHNOL, V47, P1096, DOI 10.1111/bjet.12278 Cheng L, 2019, ETR&D-EDUC TECH RES, V67, P793, DOI 10.1007/s11423-018-9633-7 Chi YL, 2009, EXPERT SYST APPL, V36, P7838, DOI 10.1016/j.eswa.2008.11.048 Chiu M-S, 2021, ED STUDIES, V47, P155, DOI [10.1080/03055698.2019.1672522, DOI 10.1080/03055698.2019.1672522] Chiu MS, 2022, RES SCI TECHNOL EDUC, V40, P549, DOI 10.1080/02635143.2020.1830270 Chiu MS, 2020, ETR&D-EDUC TECH RES, V68, P413, DOI 10.1007/s11423-019-09707-x Christy KR, 2014, COMPUT EDUC, V78, P66, DOI 10.1016/j.compedu.2014.05.005 Ramírez MC, 2019, MATH ENTHUS, V16, P37 Dalgarno B, 2009, COMPUT EDUC, V53, P853, DOI 10.1016/j.compedu.2009.05.005 Drijvers P, 2020, ZDM-MATH EDUC, V52, P1455, DOI 10.1007/s11858-020-01169-3 Engelbrecht J, 2020, ZDM-MATH EDUC, V52, P821, DOI 10.1007/s11858-020-01185-3 Engelbrecht J, 2020, ZDM-MATH EDUC, V52, P825, DOI 10.1007/s11858-020-01176-4 Ersozlu Z., 2019, EURASIA J MATH SCI T, V15, DOI DOI 10.29333/EJMSTE/102441 Garfield E., 1994, Current Contents: Social and Behavioural Sciences, V7, P5 Gasparyan AY, 2018, J KOREAN MED SCI, V33, DOI 10.3346/jkms.2018.33.e139 Gutiérrez-Salcedo M, 2018, APPL INTELL, V48, P1275, DOI 10.1007/s10489-017-1105-y Hansen JD, 2015, SCIENCE, V350, P1245, DOI 10.1126/science.aab3782 Hodges C., 2020, Educ. Rev., P1 Huang C, 2020, EDUC REV, V72, P281, DOI 10.1080/00131911.2019.1566212 Hwang GJ, 2017, EDUC TECHNOL SOC, V20, P184 Ibáñez MB, 2018, COMPUT EDUC, V123, P109, DOI 10.1016/j.compedu.2018.05.002 Jagust T, 2018, COMPUT EDUC, V125, P444, DOI 10.1016/j.compedu.2018.06.022 Johnson G.M., 2008, Canadian Journal of Learning Technology, V34, P19, DOI [10.21432/T2CP4T, DOI 10.21432/T2CP4T] Johnson GM, 2010, EDUC TECHNOL SOC, V13, P176 KESSLER MM, 1963, AM DOC, V14, P10, DOI 10.1002/asi.5090140103 Khaddage F, 2016, EDUC TECHNOL SOC, V19, P16 Khirwadkar A, 2020, BROCK EDUC, V29, P42 Koedinger KR, 2010, J EDUC COMPUT RES, V43, P489, DOI 10.2190/EC.43.4.d Kramarski B, 2006, J COMPUT ASSIST LEAR, V22, P24, DOI 10.1111/j.1365-2729.2006.00157.x Kumar Basak S., 2018, E-LEARNING DIGITAL M, V15, P191, DOI 10.1177%2F2042753018785180 Lai CL, 2016, COMPUT EDUC, V100, P126, DOI 10.1016/j.compedu.2016.05.006 Lassoued Z, 2020, EDUC SCI, V10, DOI 10.3390/educsci10090232 Lee J, 2017, ETR&D-EDUC TECH RES, V65, P427, DOI 10.1007/s11423-016-9502-1 Lo CK, 2018, COMPUT EDUC, V118, P150, DOI 10.1016/j.compedu.2017.12.003 Lo CK, 2017, EDUC RES REV-NETH, V22, P50, DOI 10.1016/j.edurev.2017.08.002 Lopes AP, 2018, INT J MANAG EDUC-OXF, V16, P105, DOI 10.1016/j.ijme.2018.01.001 Lundin M, 2018, INT J EDUC TECHNOL H, V15, DOI 10.1186/s41239-018-0101-6 Maag M, 2004, CIN-COMPUT INFORM NU, V22, P26, DOI 10.1097/00024665-200401000-00007 Makri K, 2007, EDUC TECHNOL SOC, V10, P73 Martin T, 2009, CHILD DEV PERSPECT, V3, P140, DOI 10.1111/j.1750-8606.2009.00094.x Mas-Tur A, 2020, REV MANAG SCI, V14, P933, DOI 10.1007/s11846-020-00406-z Muritala BA, 2020, SUSTAINABILITY-BASEL, V12, DOI 10.3390/su12239977 OECD, 2016, PISA 2015 results (volume I) Excellence and Equity in Education, DOI [10.1787/9789264266490-en, DOI 10.1787/9789264266490-EN, DOI 10.1787/9789264266490-11-EN] OECD, 2019, Where all students can succeed, DOI [DOI 10.1787/5F07C754-EN, DOI 10.1787/B5FD1B8F-EN] Okubo Y., 1997, OECD Science, Technology and Industry Working Papers, DOI DOI 10.1787/208277770603 Ozkaya A., 2018, Educational Research and Reviews, V13, P723, DOI [10.5897/ERR2018.3603, DOI 10.5897/ERR2018.3603, 10.5897/err2018.3603] Özyurt Ö, 2013, COMPUT HUM BEHAV, V29, P726, DOI 10.1016/j.chb.2012.11.013 Özyurt Ö, 2013, EXPERT SYST APPL, V40, P2914, DOI 10.1016/j.eswa.2012.12.008 Perianes-Rodriguez A, 2016, J INFORMETR, V10, P1178, DOI 10.1016/j.joi.2016.10.006 Perrotta C, 2018, LEARN MEDIA TECHNOL, V43, P3, DOI 10.1080/17439884.2016.1182927 PRITCHARD A, 1969, J DOC, V25, P348 Recker MM, 2004, EDUC TECHNOL SOC, V7, P93 Sahin A, 2015, EDUC TECHNOL SOC, V18, P142 Sarrafzadeh A, 2008, COMPUT HUM BEHAV, V24, P1342, DOI 10.1016/j.chb.2007.07.008 SMALL H, 1973, J AM SOC INFORM SCI, V24, P265, DOI 10.1002/asi.4630240406 Steen-Utheim AT, 2018, TEACH HIGH EDUC, V23, P307, DOI 10.1080/13562517.2017.1379481 Steenbergen-Hu S, 2013, J EDUC PSYCHOL, V105, P970, DOI 10.1037/a0032447 Sun ZR, 2018, INTERNET HIGH EDUC, V36, P41, DOI 10.1016/j.iheduc.2017.09.003 Sweileh WM, 2018, BMC PUBLIC HEALTH, V18, DOI 10.1186/s12889-018-5689-x Tartavulea CV, 2020, AMFITEATRU ECON, V22, P920, DOI 10.24818/EA/2020/55/920 Tempelaar DT, 2012, INTERNET HIGH EDUC, V15, P161, DOI 10.1016/j.iheduc.2011.10.003 Tibaná-Herrera G, 2018, PROF INFORM, V27, P1082, DOI 10.3145/epi.2018.sep.12 Trenholm S, 2020, INT J EDUC TECHNOL H, V17, DOI 10.1186/s41239-020-00215-0 UNESCO, 1 3 BILL LEARN AR ST UNESCO, HALF WORLDS STUD POP van Eck NJ, 2010, SCIENTOMETRICS, V84, P523, DOI 10.1007/s11192-009-0146-3 van Raan AFJ, 2004, HANDBOOK OF QUANTITATIVE SCIENCE AND TECHNOLOGY RESEARCH: THE USE OF PUBLICATION AND PATENT STATISTICS IN STUDIES OF S&T SYSTEMS, P19 Walker A, 2012, ETR&D-EDUC TECH RES, V60, P421, DOI 10.1007/s11423-012-9243-8 Waltman L, 2016, J INFORMETR, V10, P365, DOI 10.1016/j.joi.2016.02.007 Walton G, 2011, J DOC, V67, P449, DOI 10.1108/00220411111124541 Wang J, 2017, COMPUT HUM BEHAV, V71, P79, DOI 10.1016/j.chb.2017.01.049 Wang TH, 2014, COMPUT EDUC, V73, P189, DOI 10.1016/j.compedu.2013.12.002 WHO, 2020, WHO DIR GEN STAT IHR Wilson SG, 2013, TEACH PSYCHOL, V40, P193, DOI 10.1177/0098628313487461 Xing WL, 2015, COMPUT HUM BEHAV, V47, P168, DOI 10.1016/j.chb.2014.09.034 Zhu MH, 2021, J EDUC WORK, V34, P356, DOI 10.1080/13639080.2021.1922621 Zupic I, 2015, ORGAN RES METHODS, V18, P429, DOI 10.1177/1094428114562629 Zurita G, 2004, COMPUT EDUC, V42, P289, DOI 10.1016/j.compedu.2003.08.005 NR 99 TC 6 Z9 6 U1 5 U2 38 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0138-9130 EI 1588-2861 J9 SCIENTOMETRICS JI Scientometrics PD AUG PY 2022 VL 127 IS 8 BP 4631 EP 4654 DI 10.1007/s11192-022-04441-3 EA JUL 2022 PG 24 WC Computer Science, Interdisciplinary Applications; Information Science & Library Science WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Computer Science; Information Science & Library Science GA 3R1UC UT WOS:000820549600005 PM 35813407 OA Bronze, Green Published DA 2024-09-05 ER PT C AU Wu, KY Hu, SS AF Wu, Kunya Hu, Shuaishuai BE Liu, Z Wang, L TI Research on the Upgrade of Evaluation System Design of Vegetables Safety of Shenzhen SO 2017 INTERNATIONAL CONFERENCE ON FRONTIERS IN EDUCATIONAL TECHNOLOGIES AND MANAGEMENT SCIENCES (FETMS 2017) LA English DT Proceedings Paper CT International Conference on Frontiers in Educational Technologies and Management Sciences (FETMS) CY OCT 07-08, 2017 CL Nanjing, PEOPLES R CHINA DE Risk evaluation; Hierarchy analysis; Cluster analysis; Linear regression model AB Food safety issues are national security issues. Any food safety event they not only brings people great harm, but also hurts the credibility of the government. At present, many kinds of fresh vegetables are being imported into consumer market of Shenzhen via many channels. Different habitats and production management patterns pose a new challenge to the traditional vegetable safety supervision. This paper improves the traditional method of vegetable safety supervision through modeling and analysis of the factors directly related to vegetable safety. C1 [Wu, Kunya; Hu, Shuaishuai] BOHAI Univ, Coll Math & Phys, Jinzhou 121000, Peoples R China. C3 Bohai University RP Wu, KY (corresponding author), BOHAI Univ, Coll Math & Phys, Jinzhou 121000, Peoples R China. CR Cao Na, 2016, SCI TECHNOLOGY FOOD, V37 Wang Huimin, 2011, ISSUES AGR EC Zhou JH, 2015, J INTEGR AGR, V14, P2189, DOI 10.1016/S2095-3119(15)61115-7 Zhu Feng, 2015, CHINESE J HLTH LAB T, V25, P274 NR 4 TC 0 Z9 0 U1 0 U2 1 PU FRANCIS ACAD PRESS PI LONDON PA 35 IVOR PL, LOWER GROUND, LONDON, NW1 6EA, ENGLAND BN 978-1-912407-67-5 PY 2017 BP 422 EP 426 PG 5 WC Education & Educational Research; Management WE Conference Proceedings Citation Index - Social Science & Humanities (CPCI-SSH) SC Education & Educational Research; Business & Economics GA BL5HH UT WOS:000451521400098 DA 2024-09-05 ER PT J AU Maphosa, M Doorsamy, W Paul, BS AF Maphosa, Mfowabo Doorsamy, Wesley Paul, Babu Sena TI Factors Influencing Students' Choice of and Success in STEM: A Bibliometric Analysis and Topic Modeling Approach SO IEEE TRANSACTIONS ON EDUCATION LA English DT Article DE STEM; Engineering profession; Education; Analytical models; Citation analysis; Data visualization; Systematics; Choice of qualifications; social cognitive career theory (SCCT); science; technology; engineering; and mathematics (STEM) students; student retention ID ENGINEERING STUDENTS; COLLEGE MAJOR; SELF-EFFICACY; SCIENCE; CAREER; MATHEMATICS; IMPACT; PREDICTORS; INDICATORS; KNOWLEDGE AB Contribution: This article lends empirical evidence to this research area of factors influencing students' choice of and success in science, technology, engineering, and mathematics (STEM). Background: Understanding these factors is crucial as it informs recruitment and support interventions provided to students and constitutes a premise to improving graduation rates. The social cognitive career theory (SCCT) was used as a theoretical framework to provide insight regarding factors influencing students' choice of qualifications. Research Questions: What is the state of research on the factors influencing students' choice of and success in STEM programmes? Which of these factors have interested most researchers? What research themes are covered in articles investigating these factors? Methodology: This study followed the general bibliometric analysis workflow--study design, data collection, data analysis, data visualization, and interpretation. Data collection followed the preferred reporting items for systematic review and metaanalysis (PRISMA) guidelines. From an initial set of 408 articles, 179 related to the theme and were published in the Web of Science between 2004 and 2020. These articles were analyzed using the standard bibliometric metrics. Findings: Findings indicate that this research field is still growing. Thirty-two factors were identified and rated based using an objective assessment criterion. In addition, a classification of the factors is presented based on the SCCT. This study provides a theoretical reference for improving success rates for STEM qualifications and better understanding the theme. The study proposes a research agenda of what future research in the field should focus on, based on current gaps. C1 [Maphosa, Mfowabo; Doorsamy, Wesley; Paul, Babu Sena] Univ Johannesburg, Inst Intelligent Syst, ZA-2193 Johannesburg, South Africa. C3 University of Johannesburg RP Maphosa, M (corresponding author), Univ Johannesburg, Inst Intelligent Syst, ZA-2193 Johannesburg, South Africa. EM 201312940@student.uj.ac.za; wdoorsamy@uj.ac.za; bspaul@uj.ac.za RI Zandonade, Viviane/JKI-1817-2023 OI Doorsamy, Wesley/0000-0001-9043-9882; Maphosa, Mfowabo/0000-0003-3702-6821 FU U.S. Department of Commerce [BS123456] FX This work was supported in part by the U.S. Department of Commerce under Grant BS123456. CR Albert KA, 1999, J COUNS DEV, V77, P431, DOI 10.1002/j.1556-6676.1999.tb02470.x Anindita Chakrabarti Anindita Chakrabarti, 2009, South Asia Economic Journal, V10, P371, DOI 10.1177/139156140901000205 [Anonymous], 2006, REP Bandura, 1986, J APPL PSYCHOL, V12, P169, DOI [DOI 10.2307/258004, 10.4135/9781446221129.n6.] Bertoli-Barsotti L, 2017, SCIENTOMETRICS, V111, P1415, DOI 10.1007/s11192-017-2351-9 Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993 Blotnicky KA, 2018, INT J STEM EDUC, V5, DOI 10.1186/s40594-018-0118-3 Boles W, 2017, EUR J ENG EDUC, V42, P368, DOI 10.1080/03043797.2016.1189879 Börner K, 2003, ANNU REV INFORM SCI, V37, P179, DOI 10.1002/aris.1440370106 Bornmann L, 2007, J AM SOC INF SCI TEC, V58, P1381, DOI 10.1002/asi.20609 Bornmann L, 2014, J INFORMETR, V8, P895, DOI 10.1016/j.joi.2014.09.005 Chawla NV, 2013, J GEN INTERN MED, V28, pS660, DOI 10.1007/s11606-013-2455-8 Cole D, 2008, J COLL STUDENT DEV, V49, P285, DOI 10.1353/csd.0.0018 Crisp G, 2009, AM EDUC RES J, V46, P924, DOI 10.3102/0002831209349460 DiMaggio P, 2013, POETICS, V41, P570, DOI 10.1016/j.poetic.2013.08.004 Durieux V, 2010, RADIOLOGY, V255, P342, DOI 10.1148/radiol.09090626 Elchardus M, 2009, SOC SCI QUART, V90, P446, DOI 10.1111/j.1540-6237.2009.00626.x Espinosa LL, 2011, HARVARD EDUC REV, V81, P209, DOI 10.17763/haer.81.2.92315ww157656k3u French BF, 2005, J ENG EDUC, V94, P419, DOI 10.1002/j.2168-9830.2005.tb00869.x Gottfried M.A., 2013, Education Policy Analysis Archives, V21, P1, DOI [10.14507/epaa.v21n79.2013, DOI 10.14507/EPAA.V21N79.2013] Goyette KA, 2006, J HIGH EDUC, V77, P497, DOI 10.1353/jhe.2006.0020 Griffith AL, 2010, ECON EDUC REV, V29, P911, DOI 10.1016/j.econedurev.2010.06.010 Hirsch JE, 2005, P NATL ACAD SCI USA, V102, P16569, DOI 10.1073/pnas.0507655102 Ho YX, 2007, J VISION, V7, DOI 10.1167/7.1.1 Horta H, 2010, HIGH EDUC, V59, P387, DOI 10.1007/s10734-009-9253-6 Huai CQ, 2016, SCIENTOMETRICS, V108, P1531, DOI 10.1007/s11192-016-2019-x Hutchison MA, 2006, J ENG EDUC, V95, P39, DOI 10.1002/j.2168-9830.2006.tb00876.x Kushkowski JD, 2020, J DOC, V76, P1313, DOI 10.1108/JD-10-2019-0207 Law KMY, 2009, INT J ENG EDUC, V25, P1068 LENT RW, 1994, J VOCAT BEHAV, V45, P79, DOI 10.1006/jvbe.1994.1027 Liao YX, 2017, INT J PROD RES, V55, P3609, DOI 10.1080/00207543.2017.1308576 Lyons T., 2010, REP Maphosa M, 2020, INT J ADV COMPUT SC, V11, P287 Matusovich HM, 2010, J ENG EDUC, V99, P289, DOI 10.1002/j.2168-9830.2010.tb01064.x McGee EO, 2011, AM EDUC RES J, V48, P1347, DOI 10.3102/0002831211423972 Mingers J, 2015, EUR J OPER RES, V246, P1, DOI 10.1016/j.ejor.2015.04.002 Moakler MW, 2014, CAREER DEV Q, V62, P128, DOI 10.1002/j.2161-0045.2014.00075.x Montmarquette C, 2002, ECON EDUC REV, V21, P543, DOI 10.1016/S0272-7757(01)00054-1 Moore TJ, 2015, J RES SCI TEACH, V52, P296, DOI 10.1002/tea.21199 Moote J, 2020, J ENG EDUC, V109, P34, DOI 10.1002/jee.20302 Ochs LA, 2004, REHABIL COUNS BULL, V47, P224, DOI 10.1177/00343552040470040401 Page MJ, 2021, J CLIN EPIDEMIOL, V134, P178, DOI 10.1016/j.jclinepi.2021.03.001 Riegle-Crumb C, 2012, AM EDUC RES J, V49, P1048, DOI 10.3102/0002831211435229 Riegle-Crumb C, 2010, EDUC RESEARCHER, V39, P656, DOI 10.3102/0013189X10391657 Roehrig GH, 2012, SCHOOL SCI MATH, V112, P31, DOI 10.1111/j.1949-8594.2011.00112.x Sahin A, 2018, INT J SCI MATH EDUC, V16, pS69, DOI 10.1007/s10763-017-9847-x Seymour E., 2019, TALKING LEAVING REVI, DOI [10.1007/978-3-030-25304-2_1, DOI 10.1007/978-3-030-25304-2] Shahali EHM, 2017, EURASIA J MATH SCI T, V13, P1189, DOI 10.12973/eurasia.2017.00667a Sievert C., 2014, P WORKSH INT LANG LE, P63, DOI [10.3115/v1/W14-3110, DOI 10.3115/V1/W14-3110, 10.3115/v1/w14-3110] Spinks N., 2006, Educating engineers for the 21st century: The industry view Sweileh WM, 2021, GLOBALIZATION HEALTH, V17, DOI 10.1186/s12992-020-00651-7 Tilak JBG, 2020, YUKSEKOGRETIM DERG, V10, P163, DOI 10.2399/yod.19.017000 Tonso K.L., 1999, J WOMEN MINORITIES S, V5, P365, DOI DOI 10.1615/JWOMENMINORSCIENENG.V5.I4.60 Tonso KL, 2006, CULT STUD SCI EDUCAT, V1, P273, DOI 10.1007/s11422-005-9009-2 Van Eck N J., 2020, VOSviewer Manual: Manual for VOSviewer version 1 .6.8. CWTS Meaningful Metrics Van Raan AFJ, 2005, SCIENTOMETRICS, V62, P133, DOI 10.1007/s11192-005-0008-6 van Raan A, 2019, SPRINGER HBK, P237, DOI 10.1007/978-3-030-02511-3_10 Waltman L, 2020, QUANT SCI STUD, V1, P360, DOI 10.1162/qss_e_00026 Wang MT, 2013, DEV REV, V33, P304, DOI 10.1016/j.dr.2013.08.001 Zhao Dangzhi., 2015, Analysis and Visualization of Citation Networks, DOI DOI 10.2200/S00624ED1V01Y201501ICR039 Zhu JW, 2020, SCIENTOMETRICS, V123, P321, DOI 10.1007/s11192-020-03387-8 Zong QJ, 2013, SCIENTOMETRICS, V94, P781, DOI 10.1007/s11192-012-0799-1 Zupic I, 2015, ORGAN RES METHODS, V18, P429, DOI 10.1177/1094428114562629 NR 63 TC 8 Z9 8 U1 5 U2 30 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9359 EI 1557-9638 J9 IEEE T EDUC JI IEEE Trans. Educ. PD NOV PY 2022 VL 65 IS 4 BP 657 EP 669 DI 10.1109/TE.2022.3160935 EA MAR 2022 PG 13 WC Education, Scientific Disciplines; Engineering, Electrical & Electronic WE Science Citation Index Expanded (SCI-EXPANDED) SC Education & Educational Research; Engineering GA 5T5CV UT WOS:000778627200001 DA 2024-09-05 ER PT C AU Zhang, YF Wang, Y Wen, JX AF Zhang Yafei Wang Yong Wen Jingxuan BE Kuek, M Cheng, H Zhao, R TI Construction of Comprehensive Evaluation Model of Credit Rating of Small and Medium Enterprises and Empirical Research SO PROCEEDINGS OF 2013 INTERNATIONAL CONFERENCE - WTO & FINANCIAL ENGINEERING LA English DT Proceedings Paper CT International Conference on WTO and Financial Engineering CY SEP 15-16, 2013 CL Hangzhou, PEOPLES R CHINA DE Big data; Small and medium enterprises; Credit rating; RESSET database; Principal component analysis; Entropy method; Panel exponential smoothing AB From the perspective of analysis of big data, based on RESSET database of financial research, authors of this article choose quarterly financial index data of 60 companies in 20 quarters on small and medium board, combining with the selected non financial indicators and use principal component analysis, entropy method, panel exponential smoothing and the analytic hierarchy process (AHP) to construct the comprehensive evaluation model. The survey and empirical evidence have demonstrated that credit rating system designed in this paper can preferably reflect and predict the enterprise's credit rating, and the distribution of credit rating of sample enterprises basically agrees with actual situation in morphology and grade center. C1 [Zhang Yafei; Wang Yong; Wen Jingxuan] Nanjing Univ Finance & Econ, Sch Finance, Nanjing 210036, Jiangsu, Peoples R China. C3 Nanjing University of Finance & Economics CR Bian Ning, 2008, THESIS WUHAN U TECHN Chen Daidi, 2011, COMP ANAL ENLIGHTENM, P1 Chi Guotai, 2012, FINANCIAL PROBLEM, P63 Hu H.Q., 2012, Bus. Rev., V24, P70 Kang scholar, 2007, J HEBEI U PHILOS SOC, P26 Peng Jiangang, 2009, FINANCIAL THEORY PRA, P2 Xiong Xiaofen, 2007, THESIS WUHAN U TECHN [熊熊 Xiong Xiong], 2009, [南开管理评论, Nankai Business Review], V12, P92 Yan Chunhong, 2007, THESIS NW POLYTECHNI Zhi Tang, 2012, TIMES FINANCE, P317 NR 10 TC 0 Z9 0 U1 0 U2 9 PU ST PLUM-BLOSSOM PRESS PTY LTD PI HAWTHORN EAST PA STE 4, LEVEL 3, 695 BURKE RD, HAWTHORN EAST, VC 3123, AUSTRALIA BN 978-0-9874593-5-0 PY 2013 BP 39 EP 47 PG 9 WC Business; Business, Finance; Economics; Management WE Conference Proceedings Citation Index - Social Science & Humanities (CPCI-SSH) SC Business & Economics GA BB2XU UT WOS:000342522500007 DA 2024-09-05 ER PT J AU Shi, XQ Long, W Li, YY Deng, DS Wei, YL AF Shi, Xiaoqiu Long, Wei Li, Yanyan Deng, Dingshan Wei, Yonglai TI Research on the performance of multi-population genetic algorithms with different complex network structures SO SOFT COMPUTING LA English DT Article DE Complex network; Network structure; Multi-population; Genetic algorithm; Flexible job shop scheduling problem ID EVOLUTIONARY ALGORITHMS; OPTIMIZATION; COOPERATION; MODELS AB Genetic algorithm is a frequently used evolutionary algorithm that cannot avoid premature convergence. Multi-population is usually used to overcome this disadvantage, obtaining multi-population genetic algorithm (MGA). If sub-populations and communications among them are considered as nodes and edges, respectively, an MGA can be represented as a complex network. After reviewing previous researches, we find that the network structures used to design MGAs are limited and some parameters (SPS, sub-population size, and SPN, sub-population number) under a certain total individual number (TIN) are always ignored. Using seven network structures (BAnet, BDnet, CTnet, ERnet, HAnet, LCnet, and SWnet) to design MGAs that are used to solve some flexible job shop scheduling problems, how the network structures and parameters affect the performances of MGAs is addressed. The simulation results indicate that: (i) the MGA with ERnet rather than the famous BAnet often performs well although their performances are problem-dependent; (ii) the Hamming distance index proposed here can properly capture the phenomenon that the smaller the average path length, the higher the propagation rate; and (iii) under a certain TIN, their performances first increase and then decrease gradually as SPN increases, and their performances first increase rapidly and then remain almost unchanged as SPS increases. C1 [Shi, Xiaoqiu] Southwest Univ Sci & Technol, Sch Mfg Sci & Engn, Mianyang 621000, Sichuan, Peoples R China. [Long, Wei; Li, Yanyan; Deng, Dingshan; Wei, Yonglai] Sichuan Univ, Sch Mfg Sci & Engn, Chengdu 610000, Peoples R China. C3 Southwest University of Science & Technology - China; Sichuan University RP Shi, XQ (corresponding author), Southwest Univ Sci & Technol, Sch Mfg Sci & Engn, Mianyang 621000, Sichuan, Peoples R China. EM shixiaoqiu_scu@163.com RI 邓, 丁山/ABF-7645-2020; SHI, Xingqiang/D-8625-2011 OI 邓, 丁山/0000-0001-7553-8655; SHI, Xingqiang/0000-0003-2029-1506 FU National Green Manufacturing System Plan [[2017]327] FX This research was partially supported by the National Green Manufacturing System Plan ([2017]327). CR Alba E, 2002, IEEE T EVOLUT COMPUT, V6, P443, DOI 10.1109/TEVC.2002.800880 [Anonymous], 1959, Publicationes Mathematicae Bai XS, 2018, INFORM SCIENCES, V453, P227, DOI 10.1016/j.ins.2018.04.044 Barabási AL, 1999, SCIENCE, V286, P509, DOI 10.1126/science.286.5439.509 Berners-Lee T, 2006, SCIENCE, V313, P769, DOI 10.1126/science.1126902 Boccaletti S, 2006, PHYS REP, V424, P175, DOI 10.1016/j.physrep.2005.10.009 Boguñá M, 2009, NAT PHYS, V5, P74, DOI 10.1038/NPHYS1130 BRUCKER P, 1990, COMPUTING, V45, P369, DOI 10.1007/BF02238804 Bryden KM, 2006, IEEE T EVOLUT COMPUT, V10, P550, DOI 10.1109/TEVC.2005.863128 Cantú-Paz E, 2000, IEEE T EVOLUT COMPUT, V4, P216, DOI 10.1109/4235.873233 Chiang TC, 2013, INT J PROD ECON, V141, P87, DOI 10.1016/j.ijpe.2012.03.034 Chu XW, 2010, J PHYS A-MATH THEOR, V43, DOI 10.1088/1751-8113/43/6/065001 Deng ZH, 2018, CHAOS SOLITON FRACT, V114, P151, DOI 10.1016/j.chaos.2018.06.036 Ebel H, 2002, PHYS REV E, V66, DOI 10.1103/PhysRevE.66.035103 Garey M. R., 1976, Mathematics of Operations Research, V1, P117, DOI 10.1287/moor.1.2.117 Gasparri A, 2009, INTEL SERV ROBOT, V2, P31, DOI 10.1007/s11370-008-0025-4 Ghemawat P, 2008, MANAGE SCI, V54, P1638, DOI 10.1287/mnsc.1080.0883 Giacobini M, 2005, IEEE T EVOLUT COMPUT, V9, P489, DOI 10.1109/TEVC.2005.850298 Gong YJ, 2015, APPL SOFT COMPUT, V34, P286, DOI 10.1016/j.asoc.2015.04.061 Hauert C, 2004, NATURE, V428, P643, DOI 10.1038/nature02360 Herrera F, 2000, IEEE T EVOLUT COMPUT, V4, P43, DOI 10.1109/4235.843494 Huang S, 2016, SPRINGERPLUS, V5, DOI 10.1186/s40064-016-3054-z Ichinose G, 2018, NEW J PHYS, V20, DOI 10.1088/1367-2630/aac2a7 Jalili M, 2011, PHYSICA A, V390, P4588, DOI 10.1016/j.physa.2011.06.053 Kacem I, 2002, IEEE T SYST MAN CY C, V32, P1, DOI 10.1109/TSMCC.2002.1009117 Kang F, 2016, APPL MATH MODEL, V40, P6105, DOI 10.1016/j.apm.2016.01.050 Kang F, 2011, INFORM SCIENCES, V181, P3508, DOI 10.1016/j.ins.2011.04.024 Kim DH, 2008, NEW J PHYS, V10, DOI 10.1088/1367-2630/10/5/053022 Kim Y, 2015, J OPER MANAG, V33-34, P43, DOI 10.1016/j.jom.2014.10.006 Krapivsky PL, 2000, PHYS REV LETT, V85, P4629, DOI 10.1103/PhysRevLett.85.4629 Lienig J., 1997, IEEE Transactions on Evolutionary Computation, V1, P29, DOI 10.1109/4235.585890 Lu C, 2017, COMPUT IND ENG, V104, P156, DOI 10.1016/j.cie.2016.12.020 Mateo PM, 2018, APPL SOFT COMPUT, V62, P619, DOI 10.1016/j.asoc.2017.10.042 Mitzenmacher M., 2004, INTERNET MATH, V1, P226, DOI [10.1080/15427951.2004.10129088, DOI 10.1080/15427951.2004.10129088] Mustafi D, 2019, SOFT COMPUT, V23, P6361, DOI 10.1007/s00500-018-3289-4 Newman M. E. J., 2018, Network: An introduction, V2nd, DOI 10.1093/acprof:oso/9780199206650.001.0001 Nouiri M, 2018, J INTELL MANUF, V29, P603, DOI 10.1007/s10845-015-1039-3 Pastor-Satorras R, 2001, PHYS REV LETT, V86, P3200, DOI 10.1103/PhysRevLett.86.3200 Payne JL, 2009, IEEE T EVOLUT COMPUT, V13, P895, DOI 10.1109/TEVC.2009.2019825 Rauch EM, 2006, PHYS REV E, V73, DOI 10.1103/PhysRevE.73.020903 Rivkin JW, 2007, MANAGE SCI, V53, P1068, DOI 10.1287/mnsc.1060.0626 Rivkin JW, 2003, MANAGE SCI, V49, P290, DOI 10.1287/mnsc.49.3.290.12740 Shen XN, 2017, SOFT COMPUT, V21, P6531, DOI 10.1007/s00500-016-2245-4 Shi XQ, 2018, COMPUT INTEL NEUROSC, V2018, DOI 10.1155/2018/4617816 Shirali A, 2018, GENET PROGRAM EVOL M, V19, P505, DOI 10.1007/s10710-018-9326-3 Tettamanzi Andrea., 2001, Soft Computing: Integrating Evolutionary, Neural, and Fuzzy Systems, V1st Watts DJ, 1998, NATURE, V393, P440, DOI 10.1038/30918 Werfel J, 2004, P NATL ACAD SCI USA, V101, P11019, DOI 10.1073/pnas.0305059101 Wu AC, 2014, J STAT MECH-THEORY E, DOI 10.1088/1742-5468/2014/03/P03015 Yamauchi A, 2018, J THEOR BIOL, V441, P58, DOI 10.1016/j.jtbi.2017.12.027 Yu EL, 2010, INFORM SCIENCES, V180, P2815, DOI 10.1016/j.ins.2010.04.008 Zandavi SM, 2019, SOFT COMPUT, V23, P5559, DOI 10.1007/s00500-018-3213-y Zhang W, 2017, INT J SIMUL MODEL, V16, P313, DOI 10.2507/IJSIMM16(2)CO6 Zhou SY, 2018, PHYS REV E, V98, DOI 10.1103/PhysRevE.98.012303 NR 54 TC 16 Z9 18 U1 1 U2 35 PU SPRINGER PI NEW YORK PA ONE NEW YORK PLAZA, SUITE 4600, NEW YORK, NY, UNITED STATES SN 1432-7643 EI 1433-7479 J9 SOFT COMPUT JI Soft Comput. PD SEP PY 2020 VL 24 IS 17 BP 13441 EP 13459 DI 10.1007/s00500-020-04759-1 EA FEB 2020 PG 19 WC Computer Science, Artificial Intelligence; Computer Science, Interdisciplinary Applications WE Science Citation Index Expanded (SCI-EXPANDED) SC Computer Science GA MT2NR UT WOS:000516032500002 DA 2024-09-05 ER PT J AU Yaghtin, M Sotudeh, H Nikseresht, A Mirzabeigi, M AF Yaghtin, Maryam Sotudeh, Hajar Nikseresht, Alireza Mirzabeigi, Mahdieh TI Modeling the co-citation dependence on semantic layers of co-cited documents SO ONLINE INFORMATION REVIEW LA English DT Article DE Co-citation; Co-opinionatedness; MeSH; Content-based citation analysis; Natural language processing; Citation proximity index; Semantic similarity; Syntactic similarity ID SCIENTIFIC LITERATURE; CITATION; SIMILARITY AB Purpose - Co-citation frequency, defined as the number of documents co-citing two articles, is considered as a quantitative, and thus, an efficient proxy of subject relatedness or prestige of the co-cited articles. Despite its quantitative nature, it is found effective in retrieving and evaluating documents, signifying its linkage with the related documents' contents. To better understand the dynamism of the citation network, the present study aims to investigate various content features giving rise to the measure. Design/methodology/approach - The present study examined the interaction of different co-citation features in explaining the co-citation frequency. The features include the co-cited works' similarities in their full-texts, Medical Subject Headings (MeSH) terms, co-citation proximity, opinions and co-citances. A test collection is built using the CITREC dataset. The data were analyzed using natural language processing (NLP) and opinion mining techniques. A linear model was developed to regress the objective and subjective contentbased co-citation measures against the natural log of the co-citation frequency. Findings - The dimensions of co-citation similarity, either subjective or objective, play significant roles in predicting co-citation frequency. The model can predict about half of the co-citation variance. The interaction of co-opinionatedness and non-co-opinionatedness is the strongest factor in the model. Originality/value - It is the first study in revealing that both the objective and subjective similarities could significantly predict the co-citation frequency. The findings re-confirm the citation analysis assumption claiming the connection between the cognitive layers of cited documents and citation measures in general and the co-citation frequency in particular. C1 [Yaghtin, Maryam; Sotudeh, Hajar; Nikseresht, Alireza; Mirzabeigi, Mahdieh] Shiraz Univ, Sch Educ & Psychol, Dept Knowledge & Informat Sci, Shiraz, Iran. C3 Shiraz University RP Sotudeh, H (corresponding author), Shiraz Univ, Sch Educ & Psychol, Dept Knowledge & Informat Sci, Shiraz, Iran. EM sotudeh@shirazu.ac.ir RI Nikseresht, Alireza/GLN-3972-2022; Yaghtin, Maryam/ABE-6954-2021; Sotudeh, Hajar/D-5718-2016; Mirzabeigi, mahdieh/W-6831-2018 OI Nikseresht, Alireza/0000-0002-4516-0409; Yaghtin, Maryam/0000-0001-5806-3942; Sotudeh, Hajar/0000-0002-7949-7165; Mirzabeigi, mahdieh/0000-0002-3256-3153 CR Abu-Jbara A., 2013, NAACL, P596 Agarwal Shashank, 2010, AMIA Annu Symp Proc, V2010, P11 Aksnes DW, 2003, RES EVALUAT, V12, P159, DOI 10.3152/147154403781776645 Aljuaid H, 2021, TELEMAT INFORM, V56, DOI 10.1016/j.tele.2020.101492 Amadi UP., 2014, EXPLOITING ROLE POLA Andrejko A, 2009, COMPUT INFORM, V28, P429 [Anonymous], 1990, Introduction to informetrics: Quantitative methods in library, Documentation and Information Science [Anonymous], 2012, 2012 Conference of the North American Chapter of the Association for Computational Linguistics Athar A., 2014, Sentiment analysis of scientific citations, DOI DOI 10.48456/TR-856 BADRAN OM, 1984, P AM SOC INFORM SCI, V21, P137 BICHTELER J, 1980, J AM SOC INFORM SCI, V31, P278, DOI 10.1002/asi.4630310408 Boyack KW, 2013, J AM SOC INF SCI TEC, V64, P1759, DOI 10.1002/asi.22896 Boyack KW, 2010, J AM SOC INF SCI TEC, V61, P2389, DOI 10.1002/asi.21419 Bradshaw S, 2003, LECT NOTES COMPUT SC, V2769, P499 Bruni E, 2014, J ARTIF INTELL RES, V49, P1, DOI 10.1613/jair.4135 Callahan A, 2010, J AM SOC INF SCI TEC, V61, P1130, DOI 10.1002/asi.21313 Cavalcanti DC, 2011, PROC INT C TOOLS ART, P156, DOI 10.1109/ICTAI.2011.32 Colavizza G, 2018, J ASSOC INF SCI TECH, V69, P600, DOI 10.1002/asi.23981 Di Iorio A., 2013, SePublica, P63 Ding Y, 2014, J ASSOC INF SCI TECH, V65, P1820, DOI 10.1002/asi.23256 Ding Y, 2013, J INFORMETR, V7, P583, DOI 10.1016/j.joi.2013.03.003 Dong C., 2011, P 5 INT JOINT C NAT, P623 Doslu M, 2016, SCIENTOMETRICS, V108, P653, DOI 10.1007/s11192-016-1982-6 Elkiss A, 2008, J AM SOC INF SCI TEC, V59, P51, DOI 10.1002/asi.20707 Esuli Andrea., 2006, P 5 C LANG RES EV LR, P417 Eto M., 2012, P 5 ACM WORKSH RES A, P7, DOI DOI 10.1145/2390116.2390121 Eto M., 2014, PROC AM SOC INFORM S, V51, P1 Eto M, 2015, PROCEEDINGS OF THE 15TH ACM/IEEE-CS JOINT CONFERENCE ON DIGITAL LIBRARIES (JCDL'15), P245, DOI 10.1145/2756406.2756957 Eto M, 2013, SCIENTOMETRICS, V94, P651, DOI 10.1007/s11192-012-0756-z Ghosh S, 2018, LECT NOTES COMPUT SC, V9624, P292, DOI 10.1007/978-3-319-75487-1_23 Gipp B, 2009, PRO INT CONF SCI INF, V2, P571 Gipp Bela, 2015, ICONFERENCE 2015 P Goh D., 2007, Social Information Retrieval Systems: Emerging Technologies and Applications for Searching the Web Effectively: Emerging Technologies and Applications for Searching the Web Effectively: IGI Global Hamedani MR, 2016, INFORM SCIENCES, V334, P273, DOI 10.1016/j.ins.2015.12.001 Haozhen Zhao, 2014, 2014 IEEE International Conference on Big Data (Big Data), P77, DOI 10.1109/BigData.2014.7004500 Hernández-Alvarez M, 2016, NAT LANG ENG, V22, P327, DOI 10.1017/S1351324915000388 Hsiao T. M., 2017, P ASS INFORM SCI TEC, V54, P170, DOI DOI 10.1002/PRA2.2017 Janssens ACJW, 2015, BMC MED RES METHODOL, V15, DOI 10.1186/s12874-015-0077-z Jeong YK, 2014, J INFORMETR, V8, P197, DOI 10.1016/j.joi.2013.12.001 Jia M., 2018, THESIS U W ONTARIO Jochim C., 2012, P COLING 2012, P1343 Kilicoglu H, 2019, J BIOMED INFORM, V91, DOI 10.1016/j.jbi.2019.103123 Larsen, 2015, 2 WORKSH BIBL ENH IN, P14 Lin MF, 2013, INFORM SYST RES, V24, P906, DOI 10.1287/isre.2013.0480 Liu SB, 2014, SCIENTOMETRICS, V101, P1293, DOI 10.1007/s11192-014-1233-7 MACROBERTS MH, 1984, SOC STUD SCI, V14, P91, DOI 10.1177/030631284014001006 Mahalakshmi GS, 2015, SMART INNOV SYST TEC, V33, DOI 10.1007/978-81-322-2202-6_53 Nakov P. I., 2004, P SIGIR 04 WORKSH SE, P81 OCONNOR J, 1982, INFORM PROCESS MANAG, V18, P125, DOI 10.1016/0306-4573(82)90036-X Parthasarathy G, 2014, 2014 5TH INTERNATIONAL CONFERENCE CONFLUENCE THE NEXT GENERATION INFORMATION TECHNOLOGY SUMMIT (CONFLUENCE), P923, DOI 10.1109/CONFLUENCE.2014.6949321 Parthasarathy G., 2015, INDIAN J SCI TECHNOL, V8, P1 Piao SS., 2007, International Workshop on Computational Semantics (IWCS), P366 Ritchie A., 2008, P 17 ACM C INF KNOWL, P213, DOI DOI 10.1145/1458082.1458113 Ritchie A., 2009, THESIS U CAMBRIDGE Rodriguez-Prieto O, 2019, SCIENTOMETRICS, V120, P105, DOI 10.1007/s11192-019-03125-9 S Harispe, 2015, SYNTHESIS LECT HUMAN, V8, P1 Sanguri K, 2020, SCIENTOMETRICS, V125, P233, DOI 10.1007/s11192-020-03608-0 Saraçoglu R, 2007, EXPERT SYST APPL, V33, P600, DOI 10.1016/j.eswa.2006.06.002 Saric F., 2012, SEM 2012 1 JOINT C L, P441 Schäfer U, 2010, IEEE INT C SEMANT CO, P317, DOI 10.1109/ICSC.2010.40 Schneider J.W., 2014, STI 2014, P551 Segaran T., 2007, Programming Collective Intelligence: Building Smart Web 2.0 Applications Sendhilkumar S., 2013, P INT C ICCSEA, P411 SMALL H, 1973, J AM SOC INFORM SCI, V24, P265, DOI 10.1002/asi.4630240406 Small H., 1982, PROGR COMMUNICATION, V3, P287 Small H, 2011, SCIENTOMETRICS, V87, P373, DOI 10.1007/s11192-011-0349-2 SMALL HG, 1978, SOC STUD SCI, V8, P327, DOI 10.1177/030631277800800305 Su MS, 2001, IEEE T PATTERN ANAL, V23, P674, DOI 10.1109/34.927466 Teufel S., 2009, P 7 SIGDIAL WORKSH D, P80 Teufel S., 2006, P C EMP METH NAT LAN, DOI 10.3115/1610075.1610091 Thelwall M, 2014, J INFORMETR, V8, P963, DOI 10.1016/j.joi.2014.09.011 Wang B., 2018, DATA INFORM MANAGEME, V2, P70, DOI [10.2478/dim-2018-0009, DOI 10.2478/DIM-2018-0009] White H.D., 2016, P 3 WORKSHOP BIBLIOM, P63 Wilson T., 2005, Proceedings of HLT/EMNLP on Interactive Demonstrations -, P34 Yaghtin M., 2019, INT J INTEGRATED SUP, V17, P19 Yaghtin M, 2019, SCIENTOMETRICS, V119, P987, DOI 10.1007/s11192-019-03058-3 Yan EJ, 2020, J ASSOC INF SCI TECH, V71, P314, DOI 10.1002/asi.24237 Yoon SH, 2016, INFORM SCIENCES, V326, P25, DOI 10.1016/j.ins.2015.07.036 Yu Bei., 2013, P 76 ASIST ANN M CLO, P1, DOI [10.1002/meet.14505001084, DOI 10.1002/MEET.14505001084] NR 79 TC 2 Z9 2 U1 5 U2 42 PU EMERALD GROUP PUBLISHING LTD PI BINGLEY PA HOWARD HOUSE, WAGON LANE, BINGLEY BD16 1WA, W YORKSHIRE, ENGLAND SN 1468-4527 EI 1468-4535 J9 ONLINE INFORM REV JI Online Inf. Rev. PD JAN 25 PY 2022 VL 46 IS 1 BP 59 EP 78 DI 10.1108/OIR-04-2020-0126 EA MAY 2021 PG 20 WC Computer Science, Information Systems; Information Science & Library Science WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Computer Science; Information Science & Library Science GA YT5WW UT WOS:000649782500001 DA 2024-09-05 ER PT S AU Vaaler, PM Aguilera, RV Flores, R AF Vaaler, Paul M. Aguilera, Ruth V. Flores, Ricardo BE Ketchen, DJ Bergh, DD TI NEW METHODS FOR EX POST EVALUATION OF REGIONAL GROUPING SCHEMES IN INTERNATIONAL BUSINESS RESEARCH: A SIMULATED ANNEALING APPROACH SO RESEARCH METHODOLOGY IN STRATEGY AND MANAGEMENT, VOL 4 SE Research Methodology in Strategy and Management LA English DT Article; Book Chapter ID MULTINATIONAL-ENTERPRISES; NATIONAL CULTURE; OPTIMIZATION; GLOBE; GLOBALIZATION; CONSEQUENCES; PERFORMANCE; INVESTMENT; COUNTRIES; STRATEGY AB International business research has long acknowledged the importance of regional factors for foreign direct investment (FDI) by multinational corporations (MNCs). However, significant differences when defining these regions obscure the analysis about how and why regions matter. In response, we develop and empirically document support for a framework to evaluate alternative regional grouping schemes. We demonstrate application of this evaluative framework using data on the global location decisions by US-based MNCs from 1980 to 2000 and two alternative regional grouping schemes. We conclude with discussion of implications for future academic research related to understanding the impact of country groupings on MNC FDI decisions. C1 [Vaaler, Paul M.; Aguilera, Ruth V.; Flores, Ricardo] Coll Business, Dept Business Adm, Champaign, IL USA. RP Vaaler, PM (corresponding author), Coll Business, Dept Business Adm, Champaign, IL USA. RI Flores, Ricardo G/H-2351-2013; AGUILERA, Ruth/GSE-3899-2022; Vaaler, Paul/H-9703-2017 OI Flores, Ricardo G/0000-0003-2510-6840; AGUILERA, Ruth/0000-0002-1144-1499; Vaaler, Paul/0000-0002-3566-6764 CR Abramson P.R., 1995, Value change in global perspective Aerts JCJH, 2002, INT J GEOGR INF SCI, V16, P571, DOI 10.1080/13658810210138751 Agmon T, 2003, J INT BUS STUD, V34, P416, DOI 10.1057/palgrave.jibs.8400041 Aguilera R.V., 2007, INT STRATEGIC MANAGE Aguilera RV, 2004, ORGAN STUD, V25, P415, DOI 10.1177/0170840604040669 Alrefaei MH, 1999, MANAGE SCI, V45, P748, DOI 10.1287/mnsc.45.5.748 ANGEL JL, 2001, DIRECTORY AM FIRMS O, V1 ANGEL JL, 1991, DIRECTORY AM FIRMS O, V1 [Anonymous], 2005, WORLD INVESTMENT REP [Anonymous], 1999, AGGREGATING GOVERNAN [Anonymous], 2004, Journal of International Management, DOI DOI 10.1016/J.INTMAN.2004.08.007 Berkowitz D, 2003, EUR ECON REV, V47, P165, DOI 10.1016/S0014-2921(01)00196-9 Bird A., 2003, Journal of International Management, V9, P395, DOI [10.1016/j.intman.2003.08.003, DOI 10.1016/J.INTMAN.2003.08.003] Brodbeck FC, 2000, J OCCUP ORGAN PSYCH, V73, P1, DOI 10.1348/096317900166859 Buckley PJ, 2004, J INT BUS STUD, V35, P81, DOI 10.1057/palgrave.jibs.8400076 Carley KM, 1996, SOCIOL METHOD RES, V25, P138, DOI 10.1177/0049124196025001005 Chetty S, 2006, J INT BUS STUD, V37, P699, DOI 10.1057/palgrave.jibs.8400214 CLARK RP, 1997, GLOBAL IMPERATIVE Clark T., 2003, J OFINTERNATIONAL MA, V9, P361, DOI DOI 10.1016/J.INTMAN.2003.08.007 Dicken P., 1998, GLOBAL SHIFT Dow D, 2006, J INT BUS STUD, V37, P578, DOI 10.1057/palgrave.jibs.8400221 Dunning J.H., 2001, The Oxford Handbook of International Business Dunning JH, 1998, J INT BUS STUD, V29, P45, DOI 10.1057/palgrave.jibs.8490024 Dunning JH, 2007, J INT BUS STUD, V38, P177, DOI 10.1057/palgrave.jibs.8400241 Earley PC, 2006, J INT BUS STUD, V37, P922, DOI 10.1057/palgrave.jibs.8400236 EDEN L, 2006, GREAT CIRCLE DISTANC Elkins Z, 2006, INT ORGAN, V60, P811, DOI 10.1017/S0020818306060279 FLORES R, 2007, J INT BUSIN IN PRESS Fox I, 1997, STATISTICAL MODELS FOR STRATEGIC MANAGEMENT, P81 FURNHAM A, 1994, HUM RELAT, V47, P119, DOI 10.1177/001872679404700106 Gatignon H., 2004, The Insead-Wharton Alliance on Globalizing: Strategies for Building Successful Global Business GERINGER JM, 1989, STRATEGIC MANAGE J, V10, P109 Giddens A., 1999, Runaway World: How Globalisation is Reshaping Our Lives Globerman S, 2003, J INT BUS STUD, V34, P19, DOI 10.1057/palgrave.jibs.8400001 GOFFE WL, 1994, J ECONOMETRICS, V60, P65, DOI 10.1016/0304-4076(94)90038-8 Guiso L, 2006, J ECON PERSPECT, V20, P23, DOI 10.1257/jep.20.2.23 Gupta V, 2002, J WORLD BUS, V37, P11, DOI 10.1016/S1090-9516(01)00070-0 HAN BT, 1994, INFORM DECIS TECHNOL, V19, P393 Held David., 2000, GLOBALIZING WORLD CU Hofstede G., 1991, Cultures and organizations, DOI DOI 10.1016/S0005-7967(02)00184-5 Hofstede G, 2006, J INT BUS STUD, V37, P882, DOI 10.1057/palgrave.jibs.8400233 House R, 2002, J WORLD BUS, V37, P3, DOI 10.1016/S1090-9516(01)00069-4 Javidan M, 2006, J INT BUS STUD, V37, P897, DOI 10.1057/palgrave.jibs.8400234 Katrishen FA, 1998, J INT BUS STUD, V29, P305, DOI 10.1057/palgrave.jibs.8490038 Kirkman BL, 2006, J INT BUS STUD, V37, P285, DOI 10.1057/palgrave.jibs.8400202 KIRKPATRICK S, 1983, SCIENCE, V220, P671, DOI 10.1126/science.220.4598.671 KOGUT B, 1988, J INT BUS STUD, V19, P411, DOI 10.1057/palgrave.jibs.8490394 Krishna P, 1998, Q J ECON, V113, P227, DOI 10.1162/00335539851144162 Kwok CCY, 2006, J INT BUS STUD, V37, P227, DOI 10.1057/palgrave.jibs.8400188 La Porta R, 1999, J LAW ECON ORGAN, V15, P222, DOI 10.1093/jleo/15.1.222 La Porta R, 1998, J POLIT ECON, V106, P1113, DOI 10.1086/250042 Lenartowicz T, 2003, J INT BUS STUD, V34, P266, DOI 10.1057/palgrave.jibs.8400032 Leung K, 2005, J INT BUS STUD, V36, P357, DOI 10.1057/palgrave.jibs.8400150 LONGMAN X, 1995, DICT CONT ENGLISH METROPOLIS N, 1953, J CHEM PHYS, V21, P1087, DOI 10.1063/1.1699114 North D. C., 1990, I I CHANGE EC PERFOR, DOI DOI 10.1017/CBO9780511808678 Ohmae Kenichi., 1985, TRIAD POWER COMING S Press W. H., 2002, Numerical recipes in C++ Reynolds ThomasH., 1989, FOREIGN LAW CURRENT RONEN S, 1985, ACAD MANAGE REV, V10, P435, DOI 10.2307/258126 Rugman A.M., 2005, MIR MANAGEMENT INT R, P5 Rugman Alan., 2005, REGIONAL MULTINATION Rugman AM, 2007, J INT BUS STUD, V38, P200, DOI 10.1057/palgrave.jibs.8400242 Rugman AM, 2004, J INT BUS STUD, V35, P3, DOI 10.1057/palgrave.jibs.8400073 Semmler W, 1996, J ECON BEHAV ORGAN, V30, P301, DOI 10.1016/S0167-2681(96)00872-4 Short JC, 2007, STRATEGIC MANAGE J, V28, P147, DOI 10.1002/smj.574 Smith PB, 2006, J INT BUS STUD, V37, P915, DOI 10.1057/palgrave.jibs.8400235 *UN, 2007, WORLD REG Vaaler PA, 2004, ORGAN SCI, V15, P687, DOI 10.1287/orsc.1040.0089 Wei S.J., 1997, REGIONAL TRADING BLO NR 70 TC 2 Z9 2 U1 0 U2 1 PU EMERALD GROUP PUBLISHING LIMITED PI BINGLEY PA HOWARD HOUSE, WAGON LANE, BINGLEY, W YORKSHIRE BD16 1WA, ENGLAND SN 1479-8387 BN 978-0-7623-1404-1 J9 RES METHOD STRAT MAN PY 2007 VL 4 BP 161 EP 190 DI 10.1016/S1479-8387(07)04007-6 PG 30 WC Management WE Book Citation Index – Social Sciences & Humanities (BKCI-SSH) SC Business & Economics GA BLR18 UT WOS:000270845100008 DA 2024-09-05 ER PT J AU Schwenke, T Holzkämper, E AF Schwenke, Theresa Holzkamper, Eike TI Social (-Ecological) Network Analysis in Environmental Governance: Central Publications, Important Concepts, and Areas of Application SO HUMAN ECOLOGY REVIEW LA English DT Article DE bibliometric network analysis; environmental management; Latent Dirichlet Allocation; social network analysis; topic detection ID STAKEHOLDER ANALYSIS; WATER GOVERNANCE; CLIMATE-CHANGE; INSIGHTS; COLLABORATION; MANAGEMENT; COASTAL; POLICY; FOREST; TOOL AB Social and social-ecological network analysis (S(E)NA) have recently emerged as new methods in the environmental governance (EG) literature. By investigating networks of connections between actors, S(E)NA advances the understanding ofwho is involved in EG and how. We provide an overview of the EG literature applying S(E)NA and map (1) the citation network emerging from cross-references and (2) the similarity network emerging from word similarities between publications. We show that S(E)NA application in EG is in the process of developing into a field of research where publications frequently cite each other. We identify 20 publications which occupy positions as sources, storers, or bridges of knowledge in the citation network. While we see S(E)NA applied in diverse resource contexts, these are mainly discussed on the local spatial level, with a focus on "policy" or "collaboration." We discover that "power structures" and "the production of knowledge" are themes influencing the whole field. C1 [Schwenke, Theresa; Holzkamper, Eike] Leibniz Ctr Trop Marine Res, Social Ecol Syst Anal Working Grp, Dept Social Sci, Bremen, Germany. C3 Leibniz Zentrum fur Marine Tropenforschung (ZMT) RP Schwenke, T (corresponding author), Leibniz Ctr Trop Marine Res, Social Ecol Syst Anal Working Grp, Dept Social Sci, Bremen, Germany. EM theresa.schwenke@leibniz-zmt.de CR Adams J, 2005, SCIENTOMETRICS, V63, P567, DOI 10.1007/s11192-005-0228-9 Alexander S, 2015, THESIS [Anonymous], 2009, Social Network Analysis. Methods and Applications Armitage D, 2012, CONSERV LETT, V5, P245, DOI 10.1111/j.1755-263X.2012.00238.x Baggio JA, 2015, ECOL SOC, V20, DOI 10.5751/ES-07484-200202 Balint P.J., 2011, WICKED ENV PROBLEMS, DOI DOI 10.5822/978-1-61091-047-7 Barnett GA, 2011, SCIENTOMETRICS, V88, P449, DOI 10.1007/s11192-011-0381-2 Bastian M., 2009, Gephi: An open source software for exploring and manipulating networks Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993 Blondel VD, 2008, J STAT MECH-THEORY E, DOI 10.1088/1742-5468/2008/10/P10008 Bodin Ö, 2017, POLICY STUD J, V45, P289, DOI 10.1111/psj.12146 Bodin Ö, 2012, GLOBAL ENVIRON CHANG, V22, P430, DOI 10.1016/j.gloenvcha.2012.01.005 Bodin Ö, 2009, GLOBAL ENVIRON CHANG, V19, P366, DOI 10.1016/j.gloenvcha.2009.05.002 Borg R, 2015, FOREST POLICY ECON, V50, P90, DOI 10.1016/j.forpol.2014.06.008 Borgatti StephenP., 2002, UCINET for Windows. Version 6.178 Borrini-Feyerabend G, 2011, COMANAGEMENT SHARED, P5 Bulkeley H, 2005, POLIT GEOGR, V24, P875, DOI 10.1016/j.polgeo.2005.07.002 Chiesura A, 2003, ECOL ECON, V44, P219, DOI 10.1016/S0921-8009(02)00275-6 Cohen PJ, 2012, CONSERV LETT, V5, P376, DOI 10.1111/j.1755-263X.2012.00255.x Crona B., 2011, Social Networks and Natural Resource Management: Uncovering the Social Fabric in Environmental Governance, P44, DOI [10.1017/CBO9780511894985.004, DOI 10.1017/CBO9780511894985.004] CUMMINGS MM, 1973, AM SCI, V61, P163 Fliervoet JM, 2016, ENVIRON MANAGE, V57, P355, DOI 10.1007/s00267-015-0606-x Folke C, 2005, ANNU REV ENV RESOUR, V30, P441, DOI 10.1146/annurev.energy.30.050504.144511 FREEMAN LC, 1979, SOC NETWORKS, V1, P215, DOI 10.1016/0378-8733(78)90021-7 FREEMAN LC, 1991, SOC NETWORKS, V13, P141, DOI 10.1016/0378-8733(91)90017-N Galik CS, 2017, J ENVIRON MANAGE, V198, P75, DOI 10.1016/j.jenvman.2017.04.043 Garfield E, 2004, J INF SCI, V30, P119, DOI 10.1177/0165551504042802 Glaeser B, 2016, REG ENVIRON CHANGE, V16, P367, DOI 10.1007/s10113-015-0817-y Glasbergen P., 1998, COOPERATIVE ENV GOVE, P1, DOI DOI 10.1007/978-94-011-5143-6_1 GRANOVETTER MS, 1973, AM J SOCIOL, V78, P1360, DOI 10.1086/225469 Gropp C, 2019, IEEE INT CONF BIG DA, P4503, DOI 10.1109/BigData47090.2019.9005964 Hanneman R. A., 2005, INTRO SOCIAL NETWORK Hauck J, 2015, GLOBAL ENVIRON CHANG, V35, P400, DOI 10.1016/j.gloenvcha.2015.09.022 Huang A., 2008, NZCSRSC 2008 Ingold K, 2014, GLOBAL ENVIRON CHANG, V24, P88, DOI 10.1016/j.gloenvcha.2013.11.021 Jacomy M, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0098679 Kleinberg JM, 1999, J ACM, V46, P604, DOI 10.1145/324133.324140 Kuzdas C, 2015, WORLD DEV, V66, P254, DOI 10.1016/j.worlddev.2014.08.018 Larsen B., 1999, P 5 ACM SIGKDD INT C, DOI DOI 10.1145/312129.312186 Lebel L, 2006, ECOL SOC, V11 Lee M, 2003, I AN DEV MIN C Leydesdorff L, 2007, J AM SOC INF SCI TEC, V58, P1303, DOI 10.1002/asi.20614 Lienert J, 2013, J ENVIRON MANAGE, V125, P134, DOI 10.1016/j.jenvman.2013.03.052 Lipschutz R, 2009, ENV GOVERNANCE POWER, DOI [10.4324/9780203880104, DOI 10.4324/9780203880104] Lopez Jose., 2000, SOCIAL STRUCTURE Luthe T, 2012, REG ENVIRON CHANGE, V12, P839, DOI 10.1007/s10113-012-0294-5 Marin A, 2011, The SAGE handbook of social network analysis, P25, DOI DOI 10.4135/9781446294413.N2 Mierswa I, 2018, Data Science, Machine Learning, Predictive Analytics Mills M, 2014, BIOL CONSERV, V169, P6, DOI 10.1016/j.biocon.2013.10.015 Muñoz-Erickson TA, 2016, CURR OPIN ENV SUST, V18, P56, DOI 10.1016/j.cosust.2015.08.013 Nakazawa R, 2018, J VISUAL-JAPAN, V21, P681, DOI 10.1007/s12650-018-0483-5 Le NP, 2018, SUSTAINABILITY-BASEL, V10, DOI 10.3390/su10072314 Ostrom E., 1992, CRAFTING I SELF GOVE Paavola J, 2007, ECOL ECON, V63, P93, DOI 10.1016/j.ecolecon.2006.09.026 Pattberg P, 2015, MILLENNIUM-J INT ST, V43, P684, DOI 10.1177/0305829814561773 Pietri DM, 2015, GLOBAL ENVIRON CHANG, V33, P165, DOI 10.1016/j.gloenvcha.2015.05.005 Prell C, 2009, SOC NATUR RESOUR, V22, P501, DOI 10.1080/08941920802199202 Romolini M, 2013, LANDSCAPE URBAN PLAN, V120, P190, DOI 10.1016/j.landurbplan.2013.08.008 Ruzol C, 2017, GLOBAL ENVIRON CHANG, V45, P183, DOI 10.1016/j.gloenvcha.2017.06.009 Sayles JS, 2017, J ENVIRON MANAGE, V186, P64, DOI 10.1016/j.jenvman.2016.09.085 Schoon M, 2017, REG ENVIRON CHANGE, V17, P677, DOI 10.1007/s10113-016-1060-x Scott M, 2015, PROG HUM GEOG, V39, P449, DOI 10.1177/0309132514554322 SHAW R, 1981, Z NATURFORSCH A, V36, P80 Small H, 2014, RES POLICY, V43, P1450, DOI 10.1016/j.respol.2014.02.005 Stein C, 2011, PHYS CHEM EARTH, V36, P1085, DOI 10.1016/j.pce.2011.07.083 van Eck NJ, 2014, J INFORMETR, V8, P802, DOI 10.1016/j.joi.2014.07.006 Venturini T., 2015, VISUAL NETWORK ANAL Ware M., 2015, An overview of scientific and scholarly journal publishing Weiss K, 2012, GLOBAL ENVIRON CHANG, V22, P178, DOI 10.1016/j.gloenvcha.2011.09.007 Wijkman Anders., 2013, Bankrupting Nature: Denying Our Planetary Boundaries, V1st, DOI DOI 10.4324/9780203107980 Young OR., 2016, ENV GOVERNANCE SUSTA, DOI [10.4324/9781315633176, DOI 10.4324/9781315633176] Zhang Y, 2010, INT J MACH LEARN CYB, V1, P43, DOI 10.1007/s13042-010-0001-0 Zhuge H, 2016, COMPUT SCI REV TR, P1 NR 73 TC 2 Z9 2 U1 8 U2 30 PU ANU PRESS PI ACTON PA RG MENZIES LIBRARY, BLDG 2, AUSTRALIAN NATL UNIV, ACTON, ACT 2601 AP, AUSTRALIA SN 1074-4827 EI 2204-0919 J9 HUM ECOL REV JI Hum. Ecol. Rev. PY 2020 VL 26 IS 2 BP 103 EP 145 PG 43 WC Environmental Studies; Sociology WE Social Science Citation Index (SSCI) SC Environmental Sciences & Ecology; Sociology GA XN0CO UT WOS:000729183300006 DA 2024-09-05 ER PT J AU Van Eck, NJ Waltman, L AF Van Eck, Nees Jan Waltman, Ludo TI Bibliometric mapping of the computational intelligence field SO INTERNATIONAL JOURNAL OF UNCERTAINTY FUZZINESS AND KNOWLEDGE-BASED SYSTEMS LA English DT Article DE bibliometrics; bibliometric mapping; computational intelligence; neural networks; fuzzy systems; evolutionary computation ID DISCIPLINE; JACKKNIFE; SCIENCE; MAPS AB In this paper, a bibliometric study of the computational intelligence field is presented. Bibliometric maps showing the associations between the main concepts in the field are provided for the periods 1996-2000 and 2001-2005. Both the current structure of the field and the evolution of the field over the last decade are analyzed. In addition, a number of emerging areas in the fild are identified. It turns out that the computational intelligence can best be seen as a field that is structured around four important types of problems, namely control problems, classification problems, regression problemsm and optimization problems. Within the computational intelligence field, the neural networks and fuzzy systems sudfields are fairly intertwined, whereas the evolutionary computation subfield has a relatively independent postion. C1 Erasmus Univ, Erasmus Sch Econ, Inst Econometr, NL-3000 DR Rotterdam, Netherlands. C3 Erasmus University Rotterdam; Erasmus University Rotterdam - Excl Erasmus MC RP Van Eck, NJ (corresponding author), Erasmus Univ, Erasmus Sch Econ, Inst Econometr, PO Box 1738, NL-3000 DR Rotterdam, Netherlands. EM nvaneck@few.eur.nl; waltman@few.eur.nl RI van Eck, Nees Jan/B-6042-2008; White, Howard D./A-7034-2009; Waltman, Ludo/B-5561-2008 OI van Eck, Nees Jan/0000-0001-8448-4521; Waltman, Ludo/0000-0001-8249-1752 CR Borg I., 2005, Modern multidimensional scaling: theory and applications Börner K, 2003, ANNU REV INFORM SCI, V37, P179, DOI 10.1002/aris.1440370106 Chen C., 2006, Information visualization: Beyond the horizon DELEEUW J, 1986, J CLASSIF, V3, P97, DOI 10.1007/BF01896814 Engelbrecht A.P., 2003, Computational Intelligence: an Introduction HEISER WJ, 1983, J ECONOMETRICS, V22, P139, DOI 10.1016/0304-4076(83)90097-0 HEISER WJ, 1983, APPL PSYCH MEAS, V7, P381, DOI 10.1177/014662168300700402 HINZE S, 1994, SCIENTOMETRICS, V29, P353, DOI 10.1007/BF02033445 Justeson J.S., 1995, Natural Language Engineering, V1, P9, DOI [DOI 10.1017/S1351324900000048, 10.1017/S1351324900000048] Konar A., 2005, COMPUTATIONAL INTELL MCCAIN KW, 1990, J AM SOC INFORM SCI, V41, P433, DOI 10.1002/(SICI)1097-4571(199009)41:6<433::AID-ASI11>3.0.CO;2-Q NOVAK J.D., 1988, APRENDIENDO APRENDER Noyons ECM, 2004, HANDBOOK OF QUANTITATIVE SCIENCE AND TECHNOLOGY RESEARCH: THE USE OF PUBLICATION AND PATENT STATISTICS IN STUDIES OF S&T SYSTEMS, P237 Noyons ECM, 1998, J AM SOC INFORM SCI, V49, P68, DOI 10.1002/(SICI)1097-4571(1998)49:1<68::AID-ASI9>3.0.CO;2-1 PETERS HPF, 1993, RES POLICY, V22, P23, DOI 10.1016/0048-7333(93)90031-C RIP A, 1984, SCIENTOMETRICS, V6, P381, DOI 10.1007/BF02025827 Scott D.W., 2015, Multivariate density estimation, DOI 10.1002/9780470316849 Van Eck NJ, 2007, STUD CLASS DATA ANAL, P299 van Eck NJ, 2006, IEEE COMPUT INTELL M, V1, P6, DOI 10.1109/CI-M.2006.248043 van Eck NJ, 2006, INFORMATION VISUALIZATION-BOOK, P270 VANECK NJ, 2006, P 2006 IEEE INT C FU, P7862 VANRAAN AFJ, 1993, SCIENTOMETRICS, V26, P169, DOI 10.1007/BF02016799 WEINBERG SL, 1984, PSYCHOMETRIKA, V49, P475, DOI 10.1007/BF02302586 White HD, 1998, J AM SOC INFORM SCI, V49, P327, DOI 10.1002/(SICI)1097-4571(19980401)49:4<327::AID-ASI4>3.0.CO;2-W NR 24 TC 176 Z9 184 U1 5 U2 69 PU WORLD SCIENTIFIC PUBL CO PTE LTD PI SINGAPORE PA 5 TOH TUCK LINK, SINGAPORE 596224, SINGAPORE SN 0218-4885 EI 1793-6411 J9 INT J UNCERTAIN FUZZ JI Int. J. Uncertainty Fuzziness Knowl.-Based Syst. PD OCT PY 2007 VL 15 IS 5 BP 625 EP 645 DI 10.1142/S0218488507004911 PG 21 WC Computer Science, Artificial Intelligence WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Computer Science GA 238DG UT WOS:000251426900008 OA Green Submitted DA 2024-09-05 ER PT J AU Zhang, H Yang, S Guo, L Zhao, Y Shao, F Chen, F AF Zhang, Hui Yang, Sheng Guo, Li Zhao, Yang Shao, Fang Chen, Feng TI Comparisons of isomiR patterns and classification performance using the rank-based MANOVA and 10-fold cross-validation SO GENE LA English DT Article DE Differential expression; IsomiR pattems; Classification performance; miRNA sequencing research ID DIFFERENTIAL EXPRESSION ANALYSIS; ARM SELECTION; RNA-SEQ; MICRORNAS; EVENTS; MIRNAS AB Next generation sequencing technology has identified a series of miRNA variants (named "isomiRs"), which might be associated with cancer progression. We provide a new strategy to reanalyze the miR-seq datasets through a view of the isomiR spectrum. Firstly, differentially expressed (DE) isomiRs were detected with the DESeq algorithm based on negative binomial distribution. Secondly, the rank-based MANOVA was adopted to compare the isomiR patterns between normal and tumor tissues. Moreover, a comprehensive survey on classification performance of three features was conducted, including the logistic regression, k-nearest neighbors and Random Forest. Finally, functional enrichment analysis was performed with the putative targets of specific isomiRs to elucidate their biological functions. Furthermore, the methods were applied to the downloaded miR-seq datasets of breast invasive carcinoma from TCGA. We found that the expression levels of multiple isomiRs derived from the same miRNA locus showed significant inconsistency between normal and tumor samples. In most cases, logistic regression with multiple DE isomiRs was superior to the others, with highest ADC and lowest AIC. Similarly, DE isomiRs performed best in the average accuracy of standard classifiers. Integrated targets were significantly enriched in some cancer-related pathways, including MAPK signaling pathway, and focal adhesion. Collectively, we could recommend the rank-based MANOVA for comparing different isomiR patterns, and further investigation on isomiRs needs to be considered in miRNA sequencing research. (C) 2014 Elsevier B.V. All rights reserved. C1 [Zhang, Hui; Yang, Sheng; Guo, Li; Zhao, Yang; Shao, Fang; Chen, Feng] Nanjing Med Univ, Sch Publ Hlth, Dept Epidemiol & Biostat, Nanjing 211166, Jiangsu, Peoples R China. C3 Nanjing Medical University RP Chen, F (corresponding author), Nanjing Med Univ, Sch Publ Hlth, Dept Epidemiol & Biostat, Nanjing 211166, Jiangsu, Peoples R China. EM fengchen@njmu.edu.cn OI Chen, Feng/0000-0002-2699-7190; Zhang, Hui/0000-0002-5172-4039 FU National Natural Science Foundation of China [61301251, 81473070, 81373102]; Research Fund for the Doctoral Program of Higher Education of China [211323411002, 20133234120009]; National Natural Science Foundation of Jiangsu [BK20130885]; Natural Science Foundation of the Jiangsu Higher Education Institutions [12KJB310003, 13KJB330003, 14KJA310002]; Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD); Research and Innovation Project for College Graduates of Jiangsu Province [944] FX This work was supported by the National Natural Science Foundation of China (Nos. 61301251, 81473070 and 81373102), the Research Fund for the Doctoral Program of Higher Education of China (Nos. 211323411002 and 20133234120009), the National Natural Science Foundation of Jiangsu (No. BK20130885), the Natural Science Foundation of the Jiangsu Higher Education Institutions (Nos.12KJB310003, 13KJB330003, and 14KJA310002), the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD) and the Research and Innovation Project for College Graduates of Jiangsu Province (No. 944). CR Anders S, 2010, GENOME BIOL, V11, DOI 10.1186/gb-2010-11-10-r106 Bajan Sarah, 2014, Microrna, V3, P10 Baran-Gale J, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0073240 Burroughs AM, 2010, GENOME RES, V20, P1398, DOI 10.1101/gr.106054.110 Chan YT, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0058169 Chang HT, 2012, BMC GENOMICS, V13, DOI 10.1186/1471-2164-13-S7-S18 Cheng WC, 2013, NUCLEIC ACIDS RES, V41, pD285, DOI 10.1093/nar/gks1238 Cloonan N, 2011, GENOME BIOL, V12, DOI 10.1186/gb-2011-12-12-r126 Falcon S, 2007, BIOINFORMATICS, V23, P257, DOI 10.1093/bioinformatics/btl567 Fernandez-Valverde SL, 2010, RNA, V16, P1881, DOI 10.1261/rna.2379610 Fu SW, 2011, J CANCER, V2, P116, DOI 10.7150/jca.2.116 Griffiths-Jones S, 2006, NUCLEIC ACIDS RES, V34, pD140, DOI 10.1093/nar/gkj112 Guo L, 2014, GENE, V544, P1, DOI 10.1016/j.gene.2014.04.039 Guo L, 2014, GENE, V533, P149, DOI 10.1016/j.gene.2013.09.102 Guo L, 2013, MOL BIOL REP, V40, P2175, DOI 10.1007/s11033-012-2277-5 Guo L, 2012, MOL BIOL REP, V39, P6699, DOI 10.1007/s11033-012-1493-3 Guo L, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0021072 Hardcastle TJ, 2010, BMC BIOINFORMATICS, V11, DOI 10.1186/1471-2105-11-422 Li SC, 2012, BMC SYST BIOL, V6, DOI 10.1186/1752-0509-6-S2-S14 Li SC, 2012, BMC GENOMICS, V13, DOI 10.1186/1471-2164-13-S1-S13 Li SC, 2011, GENOMICS, V98, P453, DOI 10.1016/j.ygeno.2011.08.008 Marioni JC, 2008, GENOME RES, V18, P1509, DOI 10.1101/gr.079558.108 McCarthy DJ, 2012, NUCLEIC ACIDS RES, V40, P4288, DOI 10.1093/nar/gks042 Neilsen CT, 2012, TRENDS GENET, V28, P544, DOI 10.1016/j.tig.2012.07.005 Tan GC, 2014, NUCLEIC ACIDS RES, V42, P9424, DOI 10.1093/nar/gku656 NR 25 TC 25 Z9 29 U1 0 U2 20 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS SN 0378-1119 EI 1879-0038 J9 GENE JI Gene PD SEP 10 PY 2015 VL 569 IS 1 BP 21 EP 26 DI 10.1016/j.gene.2014.11.026 PG 6 WC Genetics & Heredity WE Science Citation Index Expanded (SCI-EXPANDED) SC Genetics & Heredity GA CN4IS UT WOS:000358394400004 PM 25447923 DA 2024-09-05 ER PT C AU Novotná, T AF Novotna, Tereza BE Schweighofer, E TI Human Evaluation Experiment of Legal Information Retrieval Methods SO LEGAL KNOWLEDGE AND INFORMATION SYSTEMS SE Frontiers in Artificial Intelligence and Applications LA English DT Proceedings Paper CT 34th Annual International Conference on Legal Knowledge and Information Systems (JURIX) CY DEC 08-10, 2021 CL Mykolas Romeris Univ, ELECTR NETWORK HO Mykolas Romeris Univ DE human evaluation; court decisions retrieval; doc2vec; citation analysis; LDA; multilayered approach AB In this article, I present the results of the human evaluation experiment of three commonly used methods in legal information retrieval and a new "multilayered" approach. I use the doc2vec model, citation network analysis and two topic modelling algorithms for the Czech Supreme Court decisions retrieval and evaluate their performance. To improve the accuracy of the results of these methods, I combine the methods in a "multilayered" way and perform the subsequent evaluation. Both evaluation experiments are conducted with a group of legal experts to assess the applicability and usability of the methods for legal information retrieval. The combination of the doc2vec and citations is found satisfactory accurate for practical use for the Czech court decisions retrieval. C1 [Novotna, Tereza] Masaryk Univ, Inst Law & Technol, Brno, Czech Republic. C3 Masaryk University Brno RP Novotná, T (corresponding author), Masaryk Univ, Inst Law & Technol, Brno, Czech Republic. EM tereza.novotna@law.muni.cz RI Novotná, Tereza/JNR-9159-2023 OI Novotná, Tereza/0000-0002-1426-4547 FU ERDF project "Internal grant agency of Masaryk University" [CZ.02.2.69/0.0/0.0/19 073/0016943] FX I acknowledge the support of the ERDF project "Internal grant agency of Masaryk University" (No. CZ.02.2.69/0.0/0.0/19 073/0016943). I would like to thank Jakub Hara.sta for consultations and ideas for this research. CR Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993 Fowler JH, 2007, POLIT ANAL, V15, P324, DOI 10.1093/pan/mpm011 Geist A, 2010, EUR J LEG STUD, V2, P137 Harasta J., 2020, Revue pro pravo a technologie, V11, P219 Harasta J, 2020, Arxiv, DOI arXiv:2002.02224 Kumar R., 2012, International Journal of Computer Science and Telecommunications, V3, P114 Kumar S., 2014, Doctoral dissertation, Ph. D. thesis Lu Qiang., 2011, Proc. of CIKM'11, P383 Novotna T., 2020, ASAIL 2020 Automated Semantic Analysis of Information in Legal Text Novotna T., 2020, Masaryk Univ. J. Law Technol., V14, P105, DOI [10.5817/MUJLT2020-1-5, DOI 10.5817/MUJLT2020-1-5] Novotna T, 2019, Arxiv, DOI arXiv:1910.09513 Le Q, 2014, PR MACH LEARN RES, V32, P1188 Renjit S., 2019, P FIRE, P12 NR 13 TC 0 Z9 0 U1 0 U2 0 PU IOS PRESS PI AMSTERDAM PA NIEUWE HEMWEG 6B, 1013 BG AMSTERDAM, NETHERLANDS SN 0922-6389 EI 1879-8314 BN 978-1-64368-253-2; 978-1-64368-252-5 J9 FRONT ARTIF INTEL AP PY 2021 VL 346 BP 131 EP 137 DI 10.3233/FAIA210328 PG 7 WC Computer Science, Artificial Intelligence; Computer Science, Information Systems; Information Science & Library Science; Law WE Conference Proceedings Citation Index - Science (CPCI-S); Conference Proceedings Citation Index - Social Science & Humanities (CPCI-SSH) SC Computer Science; Information Science & Library Science; Government & Law GA BW6PH UT WOS:001180102000018 OA hybrid DA 2024-09-05 ER PT J AU Kolakoti, A Tadros, M Ambati, VK Gudlavalleti, VNS AF Kolakoti, Aditya Tadros, Mina Ambati, Vijay Kumar Gudlavalleti, Venkata Naga Sai TI Optimization of biodiesel production, engine exhaust emissions, and vibration diagnosis using a combined approach of definitive screening design (DSD) and artificial neural network (ANN) SO ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH LA English DT Article DE Machine learning; Research operation; Biofuel production; Engine performance; Engine vibration; Palm oil; Feed forward back propagation algorithm; Correlation coefficient ID OIL; PERFORMANCE; MICROALGAE; BIOFUELS AB In this study, definitive screening design (DSD) optimization and artificial neural network (ANN) modelling techniques are applied for the production of palm oil biodiesel (POBD). These techniques are implemented to examine the vital contributing factors in achieving maximum POBD yield. For this purpose, seventeen experiments are conducted randomly by varying the four contributing factors. The results of DSD optimization reveal that a biodiesel yield of 96.06% is achieved. Also, the experimental results are trained in ANN for predicting the biodiesel yield. The results proved that the prediction capability of ANN is superior, with a high correlation coefficient (R-2) and low mean square error (MSE). Furthermore, the obtained POBD is characterized by significant fuel properties and fatty acid compositions and observed within the standards (ASTM-D675). Finally, the neat POBD is examined for exhaust emissions and engine cylinder vibration analysis. The emissions results confirm a significant drop in NOx (32.46%), HC (40.57%), CO (44.44%), and exhaust smoke (39.65%) compared to diesel fuel at 100% load. Likewise, the engine cylinder vibration measured on top of the cylinder head reveals a low spectral density with low amplitude vibrations observed for POBD at measured loads. C1 [Kolakoti, Aditya; Ambati, Vijay Kumar; Gudlavalleti, Venkata Naga Sai] Raghu Engn Coll A, Dept Mech Engn, Visakhapatnam, India. [Tadros, Mina] Univ Lisbon, Ctr Marine Technol & Ocean Engn CENTEC, Inst Super Tecn, Lisbon, Portugal. [Tadros, Mina] Alexandria Univ, Fac Engn, Naval Architecture & Marine Engn, Alexandria, Egypt. C3 Universidade de Lisboa; Egyptian Knowledge Bank (EKB); Alexandria University RP Tadros, M (corresponding author), Univ Lisbon, Ctr Marine Technol & Ocean Engn CENTEC, Inst Super Tecn, Lisbon, Portugal.; Tadros, M (corresponding author), Alexandria Univ, Fac Engn, Naval Architecture & Marine Engn, Alexandria, Egypt. EM mina.tadros@centec.tecnico.ulisboa.pt RI Tadros, Mina/D-1800-2018; Kolakoti, Aditya/AAO-8216-2020; Ambati, Vijay Kumar/GVS-3304-2022 OI Tadros, Mina/0000-0001-9065-3803; Kolakoti, Aditya/0000-0002-7515-8318; Ambati, Vijay Kumar/0000-0002-4902-0737 CR Atabani AE, 2013, RENEW SUST ENERG REV, V18, P211, DOI 10.1016/j.rser.2012.10.013 Atadashi IM, 2010, RENEW SUST ENERG REV, V14, P1999, DOI 10.1016/j.rser.2010.03.020 Bai A, 2016, TRANSPORT RES D-TR E, V47, P323, DOI 10.1016/j.trd.2016.06.009 Baudry G, 2018, TRANSPORT RES D-TR E, V63, P291, DOI 10.1016/j.trd.2018.05.012 Elgharbawy AA, 2017, WASTE BIOMASS VALORI, V8, P839, DOI 10.1007/s12649-016-9638-6 Fakudze S, 2021, ENERGY, V236, DOI 10.1016/j.energy.2021.121482 Fangfang F, 2021, SUSTAIN ENERGY TECHN, V46, DOI 10.1016/j.seta.2021.101265 Felix C, 2019, ENRGY PROCED, V158, P1149, DOI 10.1016/j.egypro.2019.01.296 Gupta S, 2022, FUEL, V310, DOI 10.1016/j.fuel.2021.122230 Hoang AT, 2021, SUSTAIN ENERGY TECHN, V47, DOI 10.1016/j.seta.2021.101416 Hoekman SK, 2012, FUEL PROCESS TECHNOL, V96, P237, DOI 10.1016/j.fuproc.2011.12.036 Hundie KB, 2022, HELIYON, V8, DOI 10.1016/j.heliyon.2022.e08965 Karthikeyan S, 2017, TRANSPORT RES D-TR E, V50, P385, DOI 10.1016/j.trd.2016.11.028 Kolakoti, 2022, INT J AMBIENT ENERGY, P1, DOI [10.1080/01430750.2022.2103730, DOI 10.1080/01430750.2022.2103730] Kolakoti A, 2020, J THERM ENG, V6, P712, DOI 10.18186/thermal.796761 Kolakoti A., 2022, Automot. Exp, V5, P3, DOI [10.31603/ae.6171, DOI 10.31603/AE.6171] Kolakoti A., 2023, COMPUTATIONAL INTELL, DOI [10.1002/9781119865421.ch6, DOI 10.1002/9781119865421.CH6] Kolakoti A, 2022, ENERGY, V260, DOI 10.1016/j.energy.2022.125054 Kolakoti A, 2022, INT J RENEW ENERGY D, V11, P703, DOI 10.14710/ijred.2022.43627 Kolakoti A, 2021, WORLD J ENG, V18, P805, DOI 10.1108/WJE-01-2021-0010 Kolakoti A, 2023, AUST J MECH ENG, V21, P316, DOI 10.1080/14484846.2020.1842298 Kolakoti A, 2019, BIOFUELS-UK, V10, P591, DOI 10.1080/17597269.2017.1332293 Kumar N, 2013, RENEW SUST ENERG REV, V21, P633, DOI 10.1016/j.rser.2013.01.006 Liyanaarachchi VC, 2021, BIOCHEM ENG J, V173, DOI 10.1016/j.bej.2021.108072 Mahler T, 2019, ELGAR STUD LAW REG, P1, DOI [10.1007/s11356-019-04563-x, 10.4337/9781786435149] Mishra VK, 2018, BIOFUELS-UK, V9, P273, DOI 10.1080/17597269.2017.1336350 Nawaz A, 2022, BIORESOUR TECH REP, V18, DOI 10.1016/j.biteb.2022.101110 Noor CWM, 2018, RENEW SUST ENERG REV, V94, P127, DOI 10.1016/j.rser.2018.05.031 Panoutsou C, 2021, ENERGY STRATEG REV, V34, DOI 10.1016/j.esr.2021.100633 Piloto-Rodríguez R, 2017, RENEW SUST ENERG REV, V69, P833, DOI 10.1016/j.rser.2016.11.015 Rajendra M, 2009, FUEL, V88, P868, DOI 10.1016/j.fuel.2008.12.008 Rajesh Y., 2019, INT J ENG SCI TECHNO, V11, P48, DOI [10.4314/ijest.v11i2.4, DOI 10.4314/IJEST.V11I2.4] Rao B.V.A., 2021, HDB RES ADVANCEMENTS, P25, DOI [10.4018/978-1-7998-4939-1.ch002, DOI 10.4018/978-1-7998-4939-1.CH002] Rao K. Prasada, 2017, Egyptian Journal of Petroleum, V26, P733, DOI 10.1016/j.ejpe.2016.10.003 Rulli MC, 2019, RENEW SUST ENERG REV, V105, P499, DOI 10.1016/j.rser.2018.12.050 Sambasivam KM, 2019, ENVIRON SCI POLLUT R, V26, P31301, DOI 10.1007/s11356-019-06214-7 Simsek S, 2022, ENERGY, V239, DOI 10.1016/j.energy.2021.122389 Soosai MR, 2022, J CLEAN PROD, V367, DOI 10.1016/j.jclepro.2022.132946 Tadros M, 2022, PROC MAR TECHNOL OC, V8, P545, DOI 10.1201/9781003320272-61 Tadros M, 2019, ENERGY, V168, P897, DOI 10.1016/j.energy.2018.11.146 Tadros M., 2021, Developments in Maritime Technology and Engineering, V2, P481, DOI [10.1201/9781003216599-51, DOI 10.1201/9781003216599-51] Talamala V, 2017, BIOFUELS-UK, V8, P307, DOI 10.1080/17597269.2016.1226723 Tong DM, 2011, J AM OIL CHEM SOC, V88, P415, DOI 10.1007/s11746-010-1672-0 Velmurugan K, 2017, INT J AMBIENT ENERGY, V38, P644, DOI 10.1080/01430750.2016.1155486 Vera-Rozo JR, 2022, FUEL, V321, DOI 10.1016/j.fuel.2022.124063 Yesilyurt MK, 2022, FUEL, V329, DOI 10.1016/j.fuel.2022.125406 Zivkovic S, 2018, ENVIRON SCI POLLUT R, V25, P191, DOI 10.1007/s11356-017-0649-z NR 47 TC 2 Z9 2 U1 1 U2 3 PU SPRINGER HEIDELBERG PI HEIDELBERG PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY SN 0944-1344 EI 1614-7499 J9 ENVIRON SCI POLLUT R JI Environ. Sci. Pollut. Res. PD AUG PY 2023 VL 30 IS 37 BP 87260 EP 87273 DI 10.1007/s11356-023-28619-1 EA JUL 2023 PG 14 WC Environmental Sciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Environmental Sciences & Ecology GA HH5V7 UT WOS:001024269500006 PM 37421526 DA 2024-09-05 ER PT J AU Dommeyer, CJ AF Dommeyer, Curt J. TI Lecture capturing: Its effects on students' absenteeism, performance, and impressions in a traditional marketing research course SO JOURNAL OF EDUCATION FOR BUSINESS LA English DT Article DE Distance learning; lecture capture; online learning ID IMPACT; WONT; IF AB A quasiexperiment was conducted among marketing research students to determine the effects of lecture capturing (LC). One group of students (the LC group) was allowed access to video recordings of the class lectures whereas another group of students in a parallel class (the control group) was not given access to the recordings. When both groups were compared on their absentee rate and performance variables, the LC group had a lower absentee rate and higher scores on all of the performance variables. Moreover, survey data revealed that the LC group made fewer visits to the instructor than the control group did. C1 [Dommeyer, Curt J.] Calif State Univ Northridge, David Nazarian Coll Business & Econ, Northridge, CA 91330 USA. C3 California State University System; California State University Northridge RP Dommeyer, CJ (corresponding author), Calif State Univ Northridge, David Nazarian Coll Business & Econ, Mkt, 18111 Nordhoff St, Northridge, CA 91330 USA. EM vcmkt001@csun.edu CR Al Nashash H, 2013, EDUC TECHNOL SOC, V16, P69 Aldamen H, 2015, ACCOUNT EDUC, V24, P291, DOI 10.1080/09639284.2015.1043563 [Anonymous], 2010, LECT CAPTURE GUIDE E Balfour J A D, 2006, BUILT ENV ED ANN C B Barker L., 2014, FRONT ED C P MADR SP Bollmeier SG, 2010, AM J PHARM EDUC, V74, DOI 10.5688/aj7407127 Briggs L., 2007, CAMPUS TECHNOLOGY Brotherton J. A., 2004, ACM Transactions on Computer-Human Interaction, V11, P121, DOI 10.1145/1005361.1005362 Cramer KM, 2007, BRIT J EDUC TECHNOL, V38, P106, DOI 10.1111/j.1467-8535.2006.00598.x Davis Simon, 2009, Engineering Education, V4, P4, DOI 10.11120/ened.2009.04020004 Drouin MA, 2014, TEACH PSYCHOL, V41, P11, DOI 10.1177/0098628313514172 Fernandes L., 2008, Journal of the International Association of Medical Science Educators, V18, P62 Ford MB, 2012, ACT LEARN HIGH EDUC, V13, P191, DOI 10.1177/1469787412452982 Grabe M, 2008, J COMPUT ASSIST LEAR, V24, P1, DOI [10.1111/j.1365-2729.2007.00228.x, 10.1111/J.1365-2729.2007.00228.x] Hove MC, 2008, TEACH PSYCHOL, V35, P91, DOI 10.1080/00986280802004560 Johnston ANB, 2013, NURSE EDUC PRACT, V13, P40, DOI 10.1016/j.nepr.2012.07.004 Larkin HE, 2010, AUSTRALAS J EDUC TEC, V26, P238 McNulty JA, 2009, BMC MED EDUC, V9, DOI 10.1186/1472-6920-9-6 Owston R, 2011, INTERNET HIGH EDUC, V14, P262, DOI 10.1016/j.iheduc.2011.05.006 Settle A., 2011, Proceedings of the 16th Annual Joint Conference on Innovation and Technology in Computer Science, P78, DOI DOI 10.1145/1999747.1999772 Shaw GP, 2011, BIOCHEM MOL BIOL EDU, V39, P416, DOI 10.1002/bmb.20552 Sloan TW, 2014, DECIS SCI-J INNOV ED, V12, P339, DOI 10.1111/dsji.12041 Smith C.M., 2011, Active Learning in Higher Education, V12, P151, DOI 10.1177/1469787411415082 Stroup M.D., 2012, TEACHER SCHOLAR J ST, V4, P43 Toppin IN, 2011, EDUC INF TECHNOL, V16, P383, DOI 10.1007/s10639-010-9140-x Traphagan T, 2010, ETR&D-EDUC TECH RES, V58, P19, DOI 10.1007/s11423-009-9128-7 von Konsky BR, 2009, AUSTRALAS J EDUC TEC, V25, P581 Whitley-Grassi N., 2010, INT J INSTRUCTIONAL, V7, P31 NR 28 TC 15 Z9 16 U1 0 U2 15 PU ROUTLEDGE JOURNALS, TAYLOR & FRANCIS LTD PI ABINGDON PA 2-4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND SN 0883-2323 EI 1940-3356 J9 J EDUC BUS JI J. Educ. Bus. PY 2017 VL 92 IS 8 BP 388 EP 395 DI 10.1080/08832323.2017.1398129 PG 8 WC Education & Educational Research WE Emerging Sources Citation Index (ESCI) SC Education & Educational Research GA FU5TE UT WOS:000423915100003 DA 2024-09-05 ER PT J AU Dahl, AA Bowling, J Krinner, LM Brown, CS Shaw, G Lewis, JB Moore-Harrison, T Clinton, SM Gartlan, SR AF Dahl, Alicia A. Bowling, Jessamyn Krinner, Lisa M. Brown, Candace S. Shaw, George, Jr. Lewis, Janaka B. Moore-Harrison, Trudy Clinton, Sandra M. Gartlan, Scott R. TI "If we can do it, anyone can!": Evaluating a virtual "Paper Chase" collaborative writing model for rapid research dissemination SO ACTIVE LEARNING IN HIGHER EDUCATION LA English DT Article DE active learning; collaborative writing; dissemination; higher education; Paper Chase; science communication ID GROUP WORK; PERCEPTIONS; EXPERIENCE; ATTITUDES AB The Paper Chase model is a synchronous collaborative approach to manuscript development. Through a structured and team-based design, authors participate in a "marathon" of writing, editing, revising, and submitting their publications within a specified period. This active-learning approach is considered a high-impact practice by engaging students in research dissemination through a collaborative project. This study sought to evaluate the feasibility and acceptability of a virtual Paper Chase exercise. We conducted the Paper Chase with six teams led by multidisciplinary faculty (with 24 undergraduate students and four graduate students). All participants were given pre-and post-surveys, with both open- and closed-ended questions. Results indicated that the process increased cooperative and problem-solving components of group work attitudes, increased participants' confidence in writing skills, increased understanding of research processes and that participants appreciated putting their skills immediately into practice. Participants identified strengths as well as opportunities for improvement in online modules and facilitation. The process was effective in that half of the manuscripts were submitted to peer-reviewed outlets within 90 days of the event. The positive evidence for learning in the virtual Paper Chase model supports future applications and may strengthen the involvement of students in research dissemination. Additional research may expand upon the findings by assessing group work dynamics, quality of final products, and conducting the process in a hybrid model. C1 [Dahl, Alicia A.; Bowling, Jessamyn] Univ N Carolina, Publ Hlth Sci, Charlotte, NC USA. [Krinner, Lisa M.] Univ N Carolina, Abacus, Chapel Hill, NC USA. [Brown, Candace S.] Univ N Carolina, Gerontol, Charlotte, NC USA. [Shaw, George, Jr.] Univ N Carolina, Dept Publ Hlth Sci, Charlotte, NC USA. [Lewis, Janaka B.] Univ N Carolina, English, Charlotte, NC USA. [Moore-Harrison, Trudy] Univ N Carolina, Dept Appl Physiol Hlth & Clin Sci, Charlotte, NC USA. [Clinton, Sandra M.] Univ N Carolina, Geog & Earth Sci, Charlotte, NC USA. [Gartlan, Scott R.] Univ N Carolina, Charlotte Teachers Inst, Charlotte, NC USA. C3 University of North Carolina; University of North Carolina Charlotte; University of North Carolina; University of North Carolina Chapel Hill; University of North Carolina; University of North Carolina Charlotte; University of North Carolina; University of North Carolina Charlotte; University of North Carolina; University of North Carolina Charlotte; University of North Carolina; University of North Carolina Charlotte; University of North Carolina; University of North Carolina Charlotte; University of North Carolina; University of North Carolina Charlotte RP Dahl, AA (corresponding author), Univ N Carolina, Dept Publ Hlth Sci, 9201 Univ City Blvd, Charlotte, NC 28223 USA. EM adahl3@uncc.edu; jessamyn.bowling@uncc.edu; lisa_krinner@med.unc.edu; cbrow342@uncc.edu; j.lewis@uncc.edu; tlmoore2@uncc.edu; sclinto1@uncc.edu; scott.gartlan@uncc.edu RI Dahl, Alicia/ITV-8301-2023; Brown, Candace S/KVB-3413-2024; Bowling, Jessamyn/ABI-5661-2020; Clinton, Sandra/V-8925-2019 OI Dahl, Alicia/0000-0002-6229-0926; Bowling, Jessamyn/0000-0001-7410-4433; Clinton, Sandra/0000-0002-8042-6671; Brown, Candace/0000-0001-6102-7483 FU Office of Undergraduate Research at the University of North Carolina at Charlotte; Women + Girls Research Alliance Seed Grant FX The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This work was supported by the Office of Undergraduate Research at the University of North Carolina at Charlotte; and the Women + Girls Research Alliance Seed Grant. CR Bandura A., 1986, Social foundations of thought and action: A social cognitive theory, Vxiii Brame C.J., 2015, Setting up and facilitating group work: Using Cooperative Learning Groups Effectively. From Cameron J, 2009, J GEOGR HIGHER EDUC, V33, P269, DOI 10.1080/03098260902734943 Caspi A, 2011, SOC PSYCHOL EDUC, V14, P283, DOI 10.1007/s11218-010-9141-z Chai PR, 2019, CLIN TEACH, V16, P565, DOI 10.1111/tct.12923 Chase JAD, 2013, WESTERN J NURS RES, V35, P155, DOI 10.1177/0193945912451163 Choe RC, 2019, CBE-LIFE SCI EDUC, V18, DOI 10.1187/cbe.18-08-0171 Cliff-Hodges G., 2002, READING, V36, P4, DOI DOI 10.1111/1467-9345.00178 Clughen L, 2012, ARTS HUM HIGH EDUC, V11, P333, DOI 10.1177/1474022211429543 Du JX, 2019, ETR&D-EDUC TECH RES, V67, P767, DOI 10.1007/s11423-018-9631-9 Ellis JM, 2019, CULT DIVERS ETHN MIN, V25, P266, DOI 10.1037/cdp0000198 Farrah MAH, 2011, ARAB WORLD ENGL J, V2, P136 Foldnes N, 2016, ACT LEARN HIGH EDUC, V17, P39, DOI 10.1177/1469787415616726 Frykedal KF, 2018, INT J DISABIL DEV ED, V65, P183, DOI 10.1080/1034912X.2017.1363381 Gazza EA, 2013, NURS EDUC TODAY, V33, P268, DOI 10.1016/j.nedt.2012.04.019 Hassanien A., 2007, Higher education in Europe, V32 Hensley MK., 2017, COLL RES LIBR, V79, pix Hopkins AL, 2013, SCIENTOMETRICS, V96, P515, DOI 10.1007/s11192-012-0893-4 Horta H, 2016, RES HIGH EDUC, V57, P28, DOI 10.1007/s11162-015-9380-0 Hsieh HF, 2005, QUAL HEALTH RES, V15, P1277, DOI 10.1177/1049732305276687 Hyun J., 2017, INT J TEACHING LEARN, V29, P108 Kim AA, 2022, COMPUT ASSIST LANG L, V35, P437, DOI 10.1080/09588221.2019.1705353 Kim T, 2011, BIOCHEM MOL BIOL EDU, V39, P412, DOI 10.1002/bmb.20551 Kuh G.D., 2013, ENSURING QUALITY TAK Kuh G. D., 2008, HIGH IMPACT ED PRACT, DOI [10.1080/00091380109601795, DOI 10.1080/00091380109601795] Lei S., 2009, Education, V130, P232 Limbu L, 2015, COMPUT EDUC, V82, P393, DOI 10.1016/j.compedu.2014.11.024 Lombardi D, 2021, PSYCHOL SCI PUBL INT, V22, P8, DOI 10.1177/1529100620973974 Lopatto David, 2007, CBE Life Sci Educ, V6, P297, DOI 10.1187/cbe.07-06-0039 Maiden B, 2011, ASSESS EVAL HIGH EDU, V36, P451, DOI 10.1080/02602930903429302 Marks MB, 2013, J EDUC BUS, V88, P147, DOI 10.1080/08832323.2012.664579 Martin F, 2019, INTERNET HIGH EDUC, V42, P34, DOI 10.1016/j.iheduc.2019.04.001 Michaelsen L. K., 2004, Team-based learning: A transformative use of small groups in college teaching Moore-Adams BL, 2016, DISTANCE EDUC, V37, P333, DOI 10.1080/01587919.2016.1232158 Morales DX, 2017, CBE-LIFE SCI EDUC, V16, DOI 10.1187/cbe.16-11-0326 Nosek BA, 2012, PSYCHOL INQ, V23, P308, DOI 10.1080/1047840X.2012.717907 Nykopp M, 2019, J COMPUT HIGH EDUC, V31, P536, DOI 10.1007/s12528-018-9203-3 Olson JS, 2017, ACM T COMPUT-HUM INT, V24, DOI 10.1145/3038919 Petrella John K, 2008, Int J Exerc Sci, V1, P91 Potter H, 2011, J CRIM JUSTICE EDUC, V22, P84, DOI 10.1080/10511253.2010.517653 Prince M, 2004, J ENG EDUC, V93, P223, DOI 10.1002/j.2168-9830.2004.tb00809.x Quitadamo Ian J, 2007, CBE Life Sci Educ, V6, P140, DOI 10.1187/cbe.06-11-0203 Risopoulos-Pichler F, 2020, SUSTAINABILITY-BASEL, V12, DOI 10.3390/su12156016 Russell SH, 2007, SCIENCE, V316, P548, DOI 10.1126/science.1140384 Sasa RI, 2020, TEACH LEARN NURS, V15, P137, DOI 10.1016/j.teln.2020.01.008 Schaumberg K., 2015, BEHAV THER, V38, P43 Scherman R, 2019, FRONT PSYCHOL, V10, DOI 10.3389/fpsyg.2019.01183 Scotland J, 2016, ASSESS EVAL HIGH EDU, V41, P15, DOI 10.1080/02602938.2014.977221 Shehadeh A, 2011, J SECOND LANG WRIT, V20, P286, DOI 10.1016/j.jslw.2011.05.010 Skarupski K.A., 2018, Journal of Faculty Development, V32, P47 Speare M, 2018, J ACAD LIBR, V44, P762, DOI 10.1016/j.acalib.2018.09.019 Springer L, 1999, REV EDUC RES, V69, P21, DOI 10.2307/1170643 Swanson E, 2019, ACT LEARN HIGH EDUC, V20, P39, DOI 10.1177/1469787417731201 van Dijk D, 2014, CURR BIOL, V24, pR516, DOI 10.1016/j.cub.2014.04.039 Winter J.K., 1995, Business Communication Quarterly, V58, P21, DOI [DOI 10.1177/108056999505800204, 10.1177/108056999505800204] Wuchty S, 2007, SCIENCE, V316, P1036, DOI 10.1126/science.1136099 NR 56 TC 0 Z9 0 U1 3 U2 14 PU SAGE PUBLICATIONS INC PI THOUSAND OAKS PA 2455 TELLER RD, THOUSAND OAKS, CA 91320 USA SN 1469-7874 EI 1741-2625 J9 ACT LEARN HIGH EDUC JI Act. Learn. High. Educ. PD MAR PY 2024 VL 25 IS 1 BP 115 EP 134 AR 14697874221099011 DI 10.1177/14697874221099011 EA JUN 2022 PG 20 WC Education & Educational Research WE Social Science Citation Index (SSCI) SC Education & Educational Research GA KF5B9 UT WOS:000808554300001 DA 2024-09-05 ER PT S AU Leetch, A Hauk, M AF Leetch, Amanda Hauk, Marna BE Filho, WL Mifsud, M Shiel, C Pretorius, R TI A Decade of Earth in the Mix: A Bibliometric Analysis of Emergent Scholarly Research on Sustainability Education and Ecopsychology in Higher Education SO HANDBOOK OF THEORY AND PRACTICE OF SUSTAINABLE DEVELOPMENT IN HIGHER EDUCATION, VOL 3 SE World Sustainability Series LA English DT Article; Book Chapter DE Sustainability education; Ecopsychology; Resilience; Latent dirichlet allocation; Bayesian network; Bibliometric analysis; Post-DESD sustainability education AB As part of understanding methodological approaches which aim to integrate the topic of sustainability in the curriculum of universities, the intersection of ecopsychology with education for sustainable development marks an emergent methodological and curricular bridge. Using Bayesian probablistic modeling of related topics, called latent Dirichlet allocation, an analysis of theses and dissertations published since the advent of the UN Decade of Education for Sustainable Development revealed a substantial volume of higher education research regarding ecopsychology and sustainability education in higher education (using Proquest Database). Within that larger field, several hundred works existed at the intersection of ecopsychology and education for sustainable development/sustainability education. This research reported on findings from analyzing titles, abstracts and keywords of this data set of theses and dissertations to identify emergent trends in topics within the research scholarship. Initial findings indicated directions for viable inter-and transdisciplinary collaboration in order to extend and integrate the reach of sustainability education across the university curriculum. Research from the field suggested such inter-and transdisciplinary curricular approaches to the "wicked" problems of sustainability are requisite to cultivate the next generation of sustainability innovators and educators. C1 [Leetch, Amanda] Prescott Coll, Dept Educ, Prescott, AZ 86301 USA. [Hauk, Marna] Prescott Coll, Dept Sustainabil Educ, Prescott, AZ USA. RP Leetch, A (corresponding author), Prescott Coll, Dept Educ, Prescott, AZ 86301 USA. EM amanda.leetch@student.prescott.edu; earthregenerative@gmail.com CR Adomssent M., 2007, International Journal of Sustainability in Higher Education, V8, P385, DOI DOI 10.1108/14676370710823564 Agyeman Julian., 2013, Introducing Just Sustainabilities: Policy, Planning, and Practice [Anonymous], 2008, PSYCHOL LIBERATION [Anonymous], THESIS Barth M., 2007, International Journal of Sustainability for Higher Education, V8, P416, DOI [DOI 10.1108/14676370710823582, 10.1108/1467637071082358] Bigelow Bill., 2014, PEOPLES CURRICULUM E Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993 Buzzell L., 2009, ECOTHERAPY HEALING N, P17 Chalquist C., 2009, Ecotherapy, P69 Chalquist C., 2007, TERRAPSYCHOLOGY REEN Chalquist Craig., 2010, RebEarths: Conversations with a world ensouled Corcoran PB, 2004, HIGHER EDUCATION AND THE CHALLENGE OF SUSTAINABILITY, P1, DOI 10.1007/0-306-48515-X Corral-Verdugo V., 2013, PSYCHOL APPROACHES S Doherty T. J., 2011, EC ENV FOC PSYCHOL A Edwards S., 2009, ECOTHERAPY HEALING N, P126 Farren Bradley J., 2010, Sustainability education: perspectives and practice across higher education, P257 Fisher A., 2002, Radical ecopsychology: Psychology in the service of life Hauk M., 2014, THESIS Huckle J, 2015, ENVIRON EDUC RES, V21, P491, DOI 10.1080/13504622.2015.1011084 Jickling B., 2012, Journal of Education for Sustainable Development, V6, P49, DOI 10.1177/097340821100600111 Jones P., 2010, Sustainability education: Perspectives and practice across higher education, P17 Judson Gillian., 2015, Sustainability frontiers: Critical and transformative voices from the borderlands of sustainability education, P205 Kahn R., 2009, CANADIAN J ENV ED, V14, P173 Koger SM, 2007, TEACH PSYCHOL, V34, P10, DOI 10.1207/s15328023top3401_3 Krasny M.E., 2013, Trading zones in environmental education: Creating transdisciplinary dialogue Leetch A., 2015, SCHEMAS GROUPS UNPUB Lotz-Sisitka H, 2015, CURR OPIN ENV SUST, V16, P73, DOI 10.1016/j.cosust.2015.07.018 Macy J., 2012, ACTIVE HOPE Macy J., 2014, COMING BACK LIFE UPD O'Connor T., 1995, ECOPSYCHOLOGY, P149 Peters S., 2013, Trading zones in environmental education: Creating transdisciplinary dialogue, P79 Roszak T., 2009, Ecotherapy: Healing with nature mind, P30 Roszak T., 1995, ECOPSYCHOLOGY, P1 Roszak T., 1994, REVISION, V16, P108 Selby D, 2015, SUSTAINABILITY FRONT Sewell L., 1995, ECOPSYCHOLOGY SHIVA M. MIES-A. SAL- LEH-V., 2014, ECOFEMINISM Shoreman-Ouimet E, 2015, BIOL CONSERV, V184, P320, DOI 10.1016/j.biocon.2015.01.030 Sipos Y., 2008, International Journal of Sustainability in Higher Education, V9, P68, DOI DOI 10.1108/14676370810842193 Sterling S., 2011, Learning and Teaching in Higher Education, V5, P17 Sterling S.R., 2001, Sustainable education: re-visioning learning and change Sterling S, 2010, ENVIRON EDUC RES, V16, P511, DOI 10.1080/13504622.2010.505427 Sterling S, 2004, HIGHER EDUCATION AND THE CHALLENGE OF SUSTAINABILITY, P49, DOI 10.1007/0-306-48515-X_5 Stibbe Arran., 2009, The Handbook of Sustainability Literacy: Skills for a Changing World Thomashow M., 1998, The Humanistic Psychologist, V26, P275 Wals AEJ, 2004, HIGHER EDUCATION AND THE CHALLENGE OF SUSTAINABILITY, P347, DOI 10.1007/0-306-48515-X_27 Wals ArjenE. J., 2010, SUSTAINABILITY ED PE, P55 Wals ArjenEJ., 2007, SOCIAL LEARNING SUST Ziegler B., 2009, 200910 CISL MASS I NR 49 TC 3 Z9 4 U1 0 U2 5 PU SPRINGER INTERNATIONAL PUBLISHING AG PI CHAM PA GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND SN 2199-7373 EI 2199-7381 BN 978-3-319-47895-1; 978-3-319-47894-4 J9 WORLD SUSTAIN SER PY 2017 BP 291 EP 306 DI 10.1007/978-3-319-47895-1_18 D2 10.1007/978-3-319-47895-1 PG 16 WC Green & Sustainable Science & Technology; Education & Educational Research WE Book Citation Index – Social Sciences & Humanities (BKCI-SSH) SC Science & Technology - Other Topics; Education & Educational Research GA BI5WY UT WOS:000412935300019 DA 2024-09-05 ER PT J AU Bodea, C AF Bodea, Constanta TI Artificial intelligence techniques applied to the evaluation of the research and technology development projects and programmes SO ECONOMIC COMPUTATION AND ECONOMIC CYBERNETICS STUDIES AND RESEARCH LA English DT Article DE KPI; RTD project; RTD programme; data mining; project portfolio; indicator template AB The paper presents the specific ways in which indicators and artificial intelligence methods and tools can be used for the evaluation of research projects and programmes. The author's research purpose is to improve the programme ex post evaluation and ex ante impact assessment thought the development of a improved set of strong integrated research performance indicators, structured according to the results chains and comprehensively described using a standard indicator template; the development of data sets and databases for projects and programmes evaluation and, finally the development of projects and programmes evaluation techniques, based on database and machine learning technologies. Using these methods a new and better understanding of the scientific, technological, human resources, structuring, economic, social, environmental etc impacts of national and European research programmes is possible. The research is financed by the Minister of Education and Research, IDEI programme. C1 Acad Econ Studies, Econ Informat Dept, Bucharest, Romania. C3 Bucharest University of Economic Studies RP Bodea, C (corresponding author), Acad Econ Studies, Econ Informat Dept, Bucharest, Romania. RI Bodea, Constanta-Nicoleta/GXV-2034-2022 OI Bodea, Constanta-Nicoleta/0000-0001-5542-8133 CR [Anonymous], 2002, Proposed standard practice for surveys on research and experimental development Fahrenkrog G., 2002, RTD EVALUATION TOOLB GHEORGIOU L, 2002, ASSESSING SOCIO EC I 2002, USE EVALUATION COMMI 1999, MANAGING NATL INNOVA NR 5 TC 3 Z9 3 U1 0 U2 26 PU ACAD ECONOMIC STUDIES PI BUCHAREST PA 15-17 CALEA DOROBANTI, SECTOR 1, BUCHAREST, 00000, ROMANIA SN 0424-267X EI 1842-3264 J9 ECON COMPUT ECON CYB JI Econ. Comput. Econ. Cybern. Stud. PY 2007 VL 41 IS 3-4 BP 141 EP 150 PG 10 WC Economics; Mathematics, Interdisciplinary Applications WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Business & Economics; Mathematics GA 339KE UT WOS:000258575700012 DA 2024-09-05 ER PT J AU Chen, XL Zou, D Xie, HR Chen, GL Lin, JH Cheng, GR AF Chen, Xieling Zou, Di Xie, Haoran Chen, Guanliang Lin, Jionghao Cheng, Gary TI Exploring contributors, collaborations, and research topics in educational technology: A joint analysis of mainstream conferences SO EDUCATION AND INFORMATION TECHNOLOGIES LA English DT Article DE Educational technology; Mainstream conferences; Bibliometrics; Structural topic modeling ID CITATION ANALYSIS; DECADES; SYSTEMS; IMPACT AB The diversity and advance of information, communication, and analytical technologies and their increasing adoption to assist instruction and learning give rise to various technology-driven conferences (e.g., artificial intelligence in education) in educational technology. Previous reviews on educational technology commonly focused on journal articles while seldom including mainstream conference papers which also contribute to an important part of scientific output in computer science and emerging disciplines like educational technology and are equally and even more important than articles in knowledge transmission. Hence, conference papers should also be included in bibliometric studies to produce a complete and precise picture of scientific production concerning educational technology. This study, therefore, uses bibliometrics and topic modeling to analyze papers from mainstream conferences, including Artificial Intelligence in Education, Learning Analytics and Knowledge, Educational Data Mining, Intelligent Tutoring System, and Learning at Scale, focusing on contributors, collaborations, and particularly research topics and topic evolutions to inform relevant stakeholders about educational technology's development and its future. Results indicate promising areas like affective computing and behavior mining for adaptive instruction, recommender systems in personalized learning recommendations, eye-tracking for cognitive process diagnosis, videos for feedback provision, and natural language processing in discourse analysis and language education. C1 [Chen, Xieling] South China Normal Univ, Sch Informat Technol Educ, Guangzhou, Peoples R China. [Zou, Di] Educ Univ Hong Kong, Dept English Language Educ, Hong Kong, Peoples R China. [Xie, Haoran] Lingnan Univ, Dept Comp & Decis Sci, Tuen Mun, Hong Kong, Peoples R China. [Chen, Guanliang; Lin, Jionghao] Monash Univ, Fac Informat Technol, Melbourne, Vic, Australia. [Cheng, Gary] Educ Univ Hong Kong, Dept Math & Informat Technol, Hong Kong, Peoples R China. C3 South China Normal University; Education University of Hong Kong (EdUHK); Lingnan University; Monash University; Education University of Hong Kong (EdUHK) RP Zou, D (corresponding author), Educ Univ Hong Kong, Dept English Language Educ, Hong Kong, Peoples R China.; Chen, GL (corresponding author), Monash Univ, Fac Informat Technol, Melbourne, Vic, Australia. EM xielingchen0708@gmail.com; dizoudaisy@gmail.com; hrxie2@gmail.com; guanliang.chen@monash.edu; jionghao.lin@monash.edu; chengks@eduhk.hk RI Lin, Jionghao/JEO-6478-2023; Xie, Haoran/AFS-3515-2022; Xie, Haoran/AAW-8845-2020 OI Lin, Jionghao/0000-0003-3320-3907; Xie, Haoran/0000-0003-0965-3617; ZOU, Di/0000-0001-8435-9739; PV, THAYYIB/0000-0001-8929-0398 CR Akram B., 2018, EDM, P208 Ashwin TS, 2019, IEEE ACCESS, V7, P150693, DOI 10.1109/ACCESS.2019.2947519 Atanassova Iana, 2019, Front Res Metr Anal, V4, P2, DOI 10.3389/frma.2019.00002 Bond M, 2019, BRIT J EDUC TECHNOL, V50, P12, DOI 10.1111/bjet.12730 Botelho A., 2018, P 11 INT C ED DAT MI, P157 Butler L, 2006, SCIENTOMETRICS, V66, P327, DOI 10.1007/s11192-006-0024-1 Butler L, 2008, SCIENTOMETRICS, V74, P39, DOI 10.1007/s11192-008-0102-7 Byrne Timothy, 2007, Computer Assisted Language Learning, V20, P459, DOI 10.1080/09588220701746039 Chan Kai Siang, 2019, JMIR Med Educ, V5, pe13930, DOI 10.2196/13930 Chen GL, 2020, LAK20: THE TENTH INTERNATIONAL CONFERENCE ON LEARNING ANALYTICS & KNOWLEDGE, P544, DOI 10.1145/3375462.3375500 Chen X, 2020, COMPUT EDUC, V151, DOI 10.1016/j.compedu.2020.103855 Chung JY, 2019, CHILD YOUTH SERV REV, V96, P346, DOI 10.1016/j.childyouth.2018.11.030 Dawson S, 2019, PROCEEDINGS OF THE 9TH INTERNATIONAL CONFERENCE ON LEARNING ANALYTICS & KNOWLEDGE (LAK'19), P446, DOI 10.1145/3303772.3303784 Duchowski AT, 2017, EYE TRACKING METHODO Dwivedi P, 2018, EDUC INF TECHNOL, V23, P819, DOI 10.1007/s10639-017-9637-7 Feinerer I., 2015, Package 'tm' Grafsgaard Joseph F., 2013, Artificial Intelligence in Education. Proceedings of 16th International Conference (AIED 2013): LNCS 7926, P1, DOI 10.1007/978-3-642-39112-5_1 Bote VPG, 2013, J AM SOC INF SCI TEC, V64, P392, DOI 10.1002/asi.22754 Harper F, 2018, LANG LEARN J, V46, P277, DOI 10.1080/09571736.2015.1061586 Head A, 2017, PROCEEDINGS OF THE FOURTH (2017) ACM CONFERENCE ON LEARNING @ SCALE (L@S'17), P89, DOI 10.1145/3051457.3051467 Higgins SE, 2011, INT J COMP-SUPP COLL, V6, P515, DOI 10.1007/s11412-011-9131-y Huang WJ, 2022, J COMPUT ASSIST LEAR, V38, P237, DOI 10.1111/jcal.12610 Kao GYM, 2019, COMPUT EDUC, V136, P99, DOI 10.1016/j.compedu.2019.03.010 Karumbaiah S., 2018, PREDICTING QUITTING Kendall M. G., 1948, Rank correlation methods. Khandwala K, 2018, PROCEEDINGS OF THE FIFTH ANNUAL ACM CONFERENCE ON LEARNING AT SCALE (L@S'18), DOI 10.1145/3231644.3231652 Kyvik S, 2017, SCIENTOMETRICS, V113, P951, DOI 10.1007/s11192-017-2497-5 Labarthe H., 2018, ITS 2018 WORKSH P, P63 Liefner I, 2003, HIGH EDUC, V46, P469, DOI 10.1023/A:1027381906977 Lisée C, 2008, J AM SOC INF SCI TEC, V59, P1776, DOI 10.1002/asi.20888 Liu CX, 2021, ASIA PAC EDUC REV, V22, P515, DOI 10.1007/s12564-021-09692-y Lucas C, 2015, POLIT ANAL, V23, P254, DOI 10.1093/pan/mpu019 Mann HB, 1945, ECONOMETRICA, V13, P245, DOI 10.2307/1907187 Mimno David, 2011, P C EMPIRICAL METHOD, P262 Mojarad S, 2018, LECT NOTES COMPUT SC, V10858, P130, DOI 10.1007/978-3-319-91464-0_13 Molina AI, 2018, COMPUT STAND INTER, V59, P45, DOI 10.1016/j.csi.2018.02.004 Nabizadeh AH, 2020, COMPUT EDUC, V147, DOI 10.1016/j.compedu.2019.103777 Nam S, 2019, LECT NOTES ARTIF INT, V11625, P345, DOI 10.1007/978-3-030-23204-7_29 Le NT, 2016, ADV INTELL SYST, V453, P141, DOI 10.1007/978-3-319-38884-7_11 Ninaus M, 2019, COMPUT EDUC, V142, DOI 10.1016/j.compedu.2019.103641 Ochoa X., 2014, Journal of Learning Analytics, V1, P5, DOI DOI 10.18608/JLA.2014.12.2 Ocumpaugh J, 2017, LECT NOTES ARTIF INT, V10331, P238, DOI 10.1007/978-3-319-61425-0_20 Peng BH, 2018, J CLEAN PROD, V197, P1177, DOI 10.1016/j.jclepro.2018.06.283 Pham P, 2018, LECT NOTES COMPUT SC, V10858, P150, DOI 10.1007/978-3-319-91464-0_15 Pohlert T., 2016, Package "trend" Rivers K, 2017, INT J ARTIF INTELL E, V27, P37, DOI 10.1007/s40593-015-0070-z Roberts ME, 2019, J STAT SOFTW, V91, P1, DOI 10.18637/jss.v091.i02 Romero L, 2018, PORTAL-LIBR ACAD, V18, P505, DOI 10.1353/pla.2018.0031 Serdyukov P., 2017, J RES INNOVATIVE TEA, V10, P4, DOI [10.1108/JRIT-10-2016-0007, DOI 10.1108/JRIT-10-2016-0007, 10.1108/jrit-10-2016-0007] Shen CW, 2020, COMPUT HUM BEHAV, V104, DOI 10.1016/j.chb.2019.106177 Staubitz T, 2016, PROCEEDINGS OF THE THIRD (2016) ACM CONFERENCE ON LEARNING @ SCALE (L@S 2016), P389, DOI 10.1145/2876034.2876043 Stewart A, 2018, LECT NOTES ARTIF INT, V10947, P545, DOI 10.1007/978-3-319-93843-1_40 Sullivan FR, 2019, BRIT J EDUC TECHNOL, V50, P3047, DOI 10.1111/bjet.12875 Sung YT, 2015, EDUC RES REV-NETH, V16, P68, DOI 10.1016/j.edurev.2015.09.001 Svensson G, 2010, EUR J MARKETING, V44, P23, DOI 10.1108/03090561011008583 Taub M, 2020, INT J ARTIF INTELL E, V30, P97, DOI 10.1007/s40593-019-00191-1 Tsai YL, 2018, COMPUT EDUC, V125, P345, DOI 10.1016/j.compedu.2018.06.020 Vanbecelaere S, 2021, BRIT J EDUC TECHNOL, V52, P112, DOI 10.1111/bjet.12957 Vanitha V, 2019, COMPUT ELECTR ENG, V77, P325, DOI 10.1016/j.compeleceng.2019.06.016 Wampfler Rafael, 2019, P 12 INT C ED DAT MI, P198, DOI 10.3929 Wang XH, 2018, BRIT J EDUC TECHNOL, V49, P742, DOI 10.1111/bjet.12646 Westera W, 2018, COMPUT EDUC, V123, P212, DOI 10.1016/j.compedu.2018.05.010 Xiao J, 2018, J AMB INTEL HUM COMP, V9, P667, DOI 10.1007/s12652-017-0466-8 Yang S. J. H., 2021, Computers and Education: Artificial Intelligence, V2, DOI [DOI 10.1016/J.CAEAI.2021.100008, 10.1016/j.caeai.2021.100008] Yenioglu BY, 2023, INTERACT LEARN ENVIR, V31, P4572, DOI 10.1080/10494820.2021.1976802 Zarzour H, 2020, COMPUT EDUC, V156, DOI 10.1016/j.compedu.2020.103957 Zawacki-Richter O, 2019, INT J EDUC TECHNOL H, V16, DOI 10.1186/s41239-019-0171-0 Zawacki-Richter O, 2018, COMPUT EDUC, V122, P136, DOI 10.1016/j.compedu.2018.04.001 Zhou YW, 2018, INFORM SCIENCES, V444, P135, DOI 10.1016/j.ins.2018.02.053 NR 69 TC 2 Z9 2 U1 13 U2 63 PU SPRINGER PI NEW YORK PA ONE NEW YORK PLAZA, SUITE 4600, NEW YORK, NY, UNITED STATES SN 1360-2357 EI 1573-7608 J9 EDUC INF TECHNOL JI Educ. Inf. Technol. PD FEB PY 2023 VL 28 IS 2 BP 1323 EP 1358 DI 10.1007/s10639-022-11209-y EA JUL 2022 PG 36 WC Education & Educational Research WE Social Science Citation Index (SSCI) SC Education & Educational Research GA 9Q6HD UT WOS:000829709100002 DA 2024-09-05 ER PT J AU Ghaffari, M Aliahmadi, A Khalkhali, A Zakery, A Daim, TU Yalcin, H AF Ghaffari, Mohsen Aliahmadi, Alireza Khalkhali, Abolfazl Zakery, Amir Daim, Tugrul U. Yalcin, Haydar TI Topic-based technology mapping using patent data analysis: A case study of vehicle tires SO TECHNOLOGICAL FORECASTING AND SOCIAL CHANGE LA English DT Article DE Bibliometrics; Patent analysis; Technology mapping; Tire Industry; Machine learning; Topic modeling; Emerging technologies ID FORECASTING TECHNOLOGY; EMERGING TECHNOLOGIES; TRANSPORTATION; CLASSIFICATION; IDENTIFICATION; PREDICTION; INNOVATION; SUCCESS; SCIENCE; AREAS AB The analysis of patent certificates for the purpose of determining the technologies of an industry is a method that has been used by experts and researchers of technology management and technology forecasting for nearly two decades. Meanwhile, using different techniques and software and completing the experiences of past researches have increased the speed, accuracy, and practicality of the relevant reports. In this study, the tire industry has been investigated with regard to its prominent role in the future automobile and transportation industry. All tirerelated patent certificates in the last 20 years were extracted from the Derwent Innovation Index database using a search string and IPC codes, and with the help of Latent Dirichlet Allocation (LDA) which is an unsupervised machine learning method, the relevant technology areas were extracted. The analysis of technologies and forecasting future technology areas were conducted regarding the share and growth rate of each technology in two 10-year periods (2000-2009 and 2010-2019) and the study of trends and technical indicators related to the industry and value chain. The analysis of nine technology areas considered by tire industry innovators during the last 20 years, as well as the analysis of trends and effective factors on these technologies indicated that the fields of airless tires and intelligent tires technology areas would be highly welcomed in the future and become the dominant and extensively-used technologies of the tire industry in the future. C1 [Ghaffari, Mohsen; Aliahmadi, Alireza; Khalkhali, Abolfazl; Zakery, Amir] Iran Univ Sci & Technol IUST, Tehran, Iran. [Daim, Tugrul U.] Portland State Univ, Portland, OR 97201 USA. [Daim, Tugrul U.; Yalcin, Haydar] Ege Univ, Izmir, Turkiye. [Daim, Tugrul U.] Chaoyang Univ Technol, Taichung, Taiwan. C3 Iran University Science & Technology; Portland State University; Ege University; Chaoyang University of Technology RP Daim, TU (corresponding author), Portland State Univ, Portland, OR 97201 USA.; Daim, TU (corresponding author), Ege Univ, Izmir, Turkiye.; Daim, TU (corresponding author), Chaoyang Univ Technol, Taichung, Taiwan. EM tugrul.u.daim@pdx.edu RI Ghaffari, Mohsen/IAQ-7348-2023; Zakery, Amir/R-8017-2018; Daim, Tugrul/JFJ-5740-2023; Yalcin, Haydar/HHN-1057-2022 OI Ghaffari, Mohsen/0009-0003-9109-2616; Zakery, Amir/0000-0002-6530-8933; CR Aldhufairi HS, 2018, P I MECH ENG D-J AUT, V232, P1865, DOI 10.1177/0954407017727195 Altuntas S, 2015, TECHNOL FORECAST SOC, V96, P202, DOI 10.1016/j.techfore.2015.03.011 Ampornphan P, 2020, INFORMATION, V11, DOI 10.3390/info11060333 amueller, WORDCLOUD PYTH DOC W An HJ, 2016, TECHNOL FORECAST SOC, V102, P132, DOI 10.1016/j.techfore.2015.06.015 AndreaGlover, 2020, MANN KENDALL TREND T [Anonymous], IMP FUT FUEL EC TARG [Anonymous], 1992, CONT SOCIOLOGICAL TH [Anonymous], TEXT MINING HDB ADV Ashouri S, 2021, SCIENTOMETRICS, V126, P5727, DOI 10.1007/s11192-021-04025-7 Askari H, 2019, ADV MATER TECHNOL-US, V4, DOI 10.1002/admt.201800105 Aznag M, 2013, INT J ADV COMPUT SC, V4, P285 Bankar Ravindra S., 2019, BIBEXCEL TUTOR UNPUB Behroozinia P, 2019, STRUCT HEALTH MONIT, V18, P390, DOI 10.1177/1475921718756602 Bhat MR, 2020, J INFORM OPTIM SCI, V41, P823, DOI 10.1080/02522667.2019.1616911 BOWONDER B, 1993, FUTURES, V25, P757, DOI 10.1016/0016-3287(93)90023-M Braghin F, 2006, VEHICLE SYST DYN, V44, P3, DOI 10.1080/00423110600867101 Chen HS, 2022, TECHNOL FORECAST SOC, V175, DOI 10.1016/j.techfore.2021.121402 Chen HS, 2017, TECHNOL FORECAST SOC, V119, P39, DOI 10.1016/j.techfore.2017.03.009 Choi D, 2018, SUSTAINABILITY-BASEL, V10, DOI 10.3390/su10082810 Clarivate, DERW WORLD PAT IND C Cunningham SW, 2017, INT J INNOV TECHNOL, V14, DOI 10.1142/S0219877017400090 da Costa-Luis C., tqdm documentation Daim TU, 2006, TECHNOL FORECAST SOC, V73, P981, DOI 10.1016/j.techfore.2006.04.004 Dehler-Holland J, 2022, TECHNOL FORECAST SOC, V175, DOI 10.1016/j.techfore.2021.121354 Dumais ST, 2004, ANNU REV INFORM SCI, V38, P189 Durmusoglu A, 2018, KYBERNETES, V47, P672, DOI 10.1108/K-04-2017-0144 Eligüzel N, 2020, ADV ENG INFORM, V46, DOI 10.1016/j.aei.2020.101151 Ernst H., 2003, World Patent Information, V25, P233, DOI 10.1016/S0172-2190(03)00077-2 Erzurumlu SS, 2020, TECHNOL FORECAST SOC, V156, DOI 10.1016/j.techfore.2020.120041 F. A. USA, NEW TIR TECHN YOU MU Feldman R., 2013, TEXT MINING HDB ADV Mendoza-Petit MF, 2020, SENSORS-BASEL, V20, DOI 10.3390/s20061750 Fernando J., 2003, COMPOUND ANN GROWTH Fokaides PA, 2019, CASE STUD TRANSP POL, V7, P470, DOI 10.1016/j.cstp.2019.01.003 Fountain S.B., 2012, ENCY SCI LEARNING, P1814, DOI DOI 10.1007/978-1-4419-1428-61042 Ghandriz T, 2020, TRANSPORT RES C-EMER, V115, DOI 10.1016/j.trc.2020.102610 Guo HY, 2019, IEEE T SYST MAN CY-S, V49, P14, DOI 10.1109/TSMC.2018.2819500 Han XT, 2021, TECHNOL FORECAST SOC, V167, DOI 10.1016/j.techfore.2021.120691 Hassler M., DATA MINING 7 DATA T, P13 Hotho A., 2005, BRIEF SURVEY TEXT MI Huenteler J, 2016, TECHNOL FORECAST SOC, V104, P102, DOI 10.1016/j.techfore.2015.09.022 Hwang Y, 2020, J MED INTERNET RES, V22, DOI 10.2196/15700 Jeong Y, 2019, TECHNOL FORECAST SOC, V146, P655, DOI 10.1016/j.techfore.2018.05.010 Jovanovic M, 2016, J MANUF SYST, V40, P119, DOI 10.1016/j.jmsy.2016.06.008 Jun S, 2016, TECHNOL ANAL STRATEG, V28, P156, DOI 10.1080/09537325.2015.1073252 Jun S, 2015, QUEEN MARY J INTELLE, V5, P474, DOI 10.4337/qmjip.2015.04.06 Jun S, 2014, EXPERT SYST APPL, V41, P3204, DOI 10.1016/j.eswa.2013.11.018 justia, DUR PAT PROT Kawakami A, 2017, ROAD MATER PAVEMENT, V18, P2, DOI 10.1080/14680629.2017.1304264 Kim H, 2019, TECHNOL FORECAST SOC, V146, P588, DOI 10.1016/j.techfore.2018.02.007 Kim JM, 2019, SOFT COMPUT, V23, P8815, DOI 10.1007/s00500-018-3481-6 Kim J, 2021, TECHNOL FORECAST SOC, V171, DOI 10.1016/j.techfore.2021.120972 Kim KH, 2019, SUSTAINABILITY-BASEL, V11, DOI 10.3390/su11226240 Kwok SWH, 2021, J MED INTERNET RES, V23, DOI 10.2196/26953 Landauer TK, 1997, PSYCHOL REV, V104, P211, DOI 10.1037/0033-295X.104.2.211 LAUGLAUG AS, 1987, LONG RANGE PLANN, V20, P21, DOI 10.1016/0024-6301(87)90089-6 Lee C, 2018, TECHNOL FORECAST SOC, V127, P291, DOI 10.1016/j.techfore.2017.10.002 Lee C, 2012, TECHNOL FORECAST SOC, V79, P16, DOI 10.1016/j.techfore.2011.06.009 Lee DW, 2021, SENSORS-BASEL, V21, DOI 10.3390/s21093233 Lee H, 2017, IEEE INTEL TRANSP SY, V9, P114, DOI 10.1109/MITS.2017.2666584 Lee J, 2012, INT J AUTO TECH-KOR, V13, P963, DOI 10.1007/s12239-012-0098-0 Lee YS, 2015, IEEE ICCE, P136, DOI 10.1109/ICCE-TW.2015.7216819 Li X, 2019, TECHNOL FORECAST SOC, V146, P432, DOI 10.1016/j.techfore.2019.01.012 Li X, 2019, TECHNOL FORECAST SOC, V146, P687, DOI 10.1016/j.techfore.2018.06.004 Madvar MD, 2019, INT J ENERG RES, V43, P1142, DOI 10.1002/er.4344 Matsuzaki R, 2008, SENSORS-BASEL, V8, P8123, DOI 10.3390/s8128123 McKinney W., 2011, pandas: a Foundational Python Library for Data Analysis and Statistics Mo YH, 2015, SYST REV-LONDON, V4, DOI 10.1186/s13643-015-0117-0 Momeni A, 2016, TECHNOL FORECAST SOC, V104, P16, DOI 10.1016/j.techfore.2015.12.003 Naeini AB, 2022, TECHNOL FORECAST SOC, V185, DOI 10.1016/j.techfore.2022.122052 Nagula M, 2016, J STAT MANAG SYST, V19, P73, DOI 10.1080/09720510.2014.1001601 nltk, Natural language toolkit Padmanabhan D, 2017, INFORMATION, V8, DOI 10.3390/info8020052 Pallas MA, 2016, APPL ACOUST, V113, P89, DOI 10.1016/j.apacoust.2016.06.012 Phan Xuan-Hieu, 2008, P 17 INT C WORLD WID, P91, DOI 10.1145/1367497.1367510 Pohl A, 1999, IEEE T INSTRUM MEAS, V48, P1041, DOI 10.1109/19.816111 Pohl A., 2015, IEEE T INSTRUM MEAS, V2015, P265 Pohl A., 2017, IEEE T INSTRUM MEAS, V2017, P236, DOI [10.1016/j.techfore.2017.08.002, DOI 10.1016/J.TECHFORE.2017.08.002] Pohl A., 2021, IEEE T INSTRUM MEAS, V2021, P61756, DOI [10.1109/ACCESS.2021.3073657, DOI 10.1109/ACCESS.2021.3073657] Priority Tire, TIR FUT NEW TECHN IN Qi GQ, 2019, TRANSPORT RES D-TR E, V66, P13, DOI 10.1016/j.trd.2018.05.002 radimrehurek, Gensim: Topic Modelling for Humans Remmerswaal T., DOES PATENT EXPIRE 2 researchgate, About us ResearchGate, BRIEF SURVEY TEXT MI Rortais A, 2021, FOOD CONTROL, V119, DOI 10.1016/j.foodcont.2020.107435 Sakthi Vel S., 2020, LANGUAGE TECHNOLOGY Sandu C, 2019, J TERRAMECHANICS, V86, P1, DOI 10.1016/j.jterra.2019.08.002 Sauvage T., 2003, International Journal of Physical Distribution & Logistics Management, V33, P236, DOI 10.1108/09600030310471989 Savin I, 2022, TECHNOL FORECAST SOC, V174, DOI 10.1016/j.techfore.2021.121280 Savoy J, 2013, INFORM PROCESS MANAG, V49, P341, DOI 10.1016/j.ipm.2012.06.003 Shao H, 2020, IEEE ACCESS, V8, P215943, DOI 10.1109/ACCESS.2020.3041645 Singh T, 2016, PROCEDIA COMPUT SCI, V89, P549, DOI 10.1016/j.procs.2016.06.095 Song A., 2021, 10 FUTURISTIC TIRES spacy, SPACY 101 EV YOU NEE Sun B, 2020, FRONT PSYCHOL, V11, DOI 10.3389/fpsyg.2020.00806 Technobis, US Trubia S, 2020, INFRASTRUCTURES-BASE, V5, DOI 10.3390/infrastructures5120107 Uhm D, 2020, APPL SCI-BASEL, V10, DOI 10.3390/app10020570 Uhm D, 2017, SUSTAINABILITY-BASEL, V9, DOI 10.3390/su9112025 Venugopalan S, 2015, TECHNOL FORECAST SOC, V94, P236, DOI 10.1016/j.techfore.2014.10.006 Wang YH, 2015, INNOV-MANAG POLICY P, V17, P196, DOI 10.1080/14479338.2015.1011061 webofscience, MICR BIOR OIL CONT S webofscience, PAT REL VEL CHIN PHA Wiley.com, ENCY ENV, V2nd Wiley.com, STAT METHODS ENV POL Xiong Y, 2018, SENSOR REV, V38, P231, DOI 10.1108/SR-07-2017-0132 Xu N, 2021, IEEE T VEH TECHNOL, V70, P2239, DOI 10.1109/TVT.2021.3059432 Xu S, 2021, TECHNOL FORECAST SOC, V162, DOI 10.1016/j.techfore.2020.120366 Yalcin H, 2022, TRANSPORT RES E-LOG, V168, DOI 10.1016/j.tre.2022.102943 Yalcin H, 2021, SCIENTOMETRICS, V126, P3775, DOI 10.1007/s11192-021-03876-4 Yang Y, 2014, INT J DATA MIN BIOIN, V10, P440, DOI 10.1504/IJDMB.2014.064894 Yang ZL, 2021, TECHNOL FORECAST SOC, V167, DOI 10.1016/j.techfore.2021.120673 Yuan H, 2016, DECIS SUPPORT SYST, V91, P67, DOI 10.1016/j.dss.2016.08.001 Zamani M, 2022, TECHNOL FORECAST SOC, V176, DOI 10.1016/j.techfore.2021.121456 Zhang H., 2021, TECHNOLOGICAL FORECA, V167 Zhang Y, 2016, TECHNOL FORECAST SOC, V105, P179, DOI 10.1016/j.techfore.2016.01.015 Zhou XP, 2020, GROWTH CHANGE, V51, P852, DOI 10.1111/grow.12374 Zhu L, 2022, TECHNOL FORECAST SOC, V174, DOI 10.1016/j.techfore.2021.121277 NR 120 TC 11 Z9 11 U1 47 U2 115 PU ELSEVIER SCIENCE INC PI NEW YORK PA STE 800, 230 PARK AVE, NEW YORK, NY 10169 USA SN 0040-1625 EI 1873-5509 J9 TECHNOL FORECAST SOC JI Technol. Forecast. Soc. Chang. PD AUG PY 2023 VL 193 AR 122576 DI 10.1016/j.techfore.2023.122576 EA MAY 2023 PG 15 WC Business; Regional & Urban Planning WE Social Science Citation Index (SSCI) SC Business & Economics; Public Administration GA I7TR5 UT WOS:001004779200001 DA 2024-09-05 ER PT J AU Alani, F Geng, F Toribio, M Grewal, R AF Alani, Faiez Geng, Fei Toribio, Mae Grewal, Rehmat TI Effect of Case-Based Learning (CBL) on Student Performance in Engineering Biotechnology Education SO INTERNATIONAL JOURNAL OF ENGINEERING EDUCATION LA English DT Article DE CBL; active learning; pedagogical research; student performance; engineering biotechnology ID CASE-BASED INSTRUCTION AB Case-based learning is a method that has been used increasingly in a variety of disciplines. However, in the engineering technology education, this method is still underutilized. The goal of this study was to evaluate the effect of case-based learning in the performance of engineering technology students. Students enrolled in an undergraduate biotechnology course answered an anonymous survey about the effects of CBL on different factors that are linked to improving their performance. The results demonstrate that CBL had a positive effect on the students' learning experience, concept understanding, and deep understanding for the course which contributed to the effectiveness of CBL in improving the students' performance. Furthermore, this study found that having more cases reviewed per term increased the student performance based on their final marks on the course, clearly indicating the positive impact of CBL on student performance. C1 [Alani, Faiez; Geng, Fei; Toribio, Mae; Grewal, Rehmat] W Booth Sch Engn Practice & Technol, 1280 Main St West ETB 121A, Hamilton, ON L8S 0A3, Canada. RP Alani, F (corresponding author), W Booth Sch Engn Practice & Technol, 1280 Main St West ETB 121A, Hamilton, ON L8S 0A3, Canada. EM alanif@mcmaster.ca CR Alani F, 2020, INT J ENG EDUC, V36, P896 Bonney KM, 2015, J MICROBIOL BIOL EDU, V16, P21, DOI 10.1128/jmbe.v16i1.846 Bozic CL, 2014, ASEE ANNU CONF EXPO Garcia J, 2012, INT J ENG EDUC, V28, P448 Henderson J.G., 2001, Reflective teaching: Professional artistry through inquiry Klein S.R., 2003, Teaching art in context: Case studies for preservice art education Krain M., 2016, Journal on Excellence in College Teaching, V27, P131 Raju P., 1999, Journal of Engineering Education, V88, P501 Thistlethwaite JE, 2012, MED TEACH, V34, pE421, DOI 10.3109/0142159X.2012.680939 Vivas JF, 2006, INT J ENG EDUC, V22, P236 Yadav A, 2019, INT J ENG EDUC, V35, P25 Yadav A, 2015, INT J ENG EDUC, V31, P1554 Yadav A, 2014, J RES SCI TEACH, V51, P659, DOI 10.1002/tea.21149 Yang Q, 2019, ACM T INTEL SYST TEC, V10, DOI 10.1145/3298981 Zarrajeria J, 2016, INT J ENG EDUC, V32, P830 NR 15 TC 3 Z9 3 U1 2 U2 7 PU TEMPUS PUBLICATIONS PI DURRUS, BANTRY PA IJEE , ROSSMORE,, DURRUS, BANTRY, COUNTY CORK 00000, IRELAND SN 0949-149X J9 INT J ENG EDUC JI Int. J. Eng. Educ PY 2022 VL 38 IS 2 BP 543 EP 548 PG 6 WC Education, Scientific Disciplines; Engineering, Multidisciplinary WE Science Citation Index Expanded (SCI-EXPANDED) SC Education & Educational Research; Engineering GA ZE1PN UT WOS:000758662400022 DA 2024-09-05 ER PT J AU Tran, HN Phan, GTT Do, QB Tran, VP AF Tran, Hoai-Nam Phan, Giang T. T. Do, Quang Binh Tran, Viet-Phu TI Comparative evaluation of the performance of improved genetic algorithms and differential evolution for in-core fuel management of a research reactor SO NUCLEAR ENGINEERING AND DESIGN LA English DT Article DE Genetic algorithm; Differential evolution; In-core fuel management; DNRR ID MULTIOBJECTIVE OPTIMIZATION; LOADING PATTERN AB This paper presents a comparative evaluation of the performance of Genetic Algorithm (GA) and Differential Evolution (DE) algorithm applied to in-core fuel management of the DNRR research reactor. Two GA variants corresponding to two selection operators, i.e., tournament (GA1) and roulette wheel (GA2) selections, respectively, with two-point crossover and scramble mutation were implemented for the ICFM problem. A comprehensive survey of the GA control parameters such as population size, crossover-type, mutation probability, and elitist archive size has been conducted to optimize the performance of the GAs. The basic DE was implemented with a standard mutation strategy DE/rand/1/bin. Numerical computations were performed based on the DNRR research reactor core loaded with 100 highly enriched uranium fuel (HEU) bundles for evaluating the performance of the GA and DE algorithms. Two main objectives were included in the fitness function to maximize the fuel cycle length and flatten the power distribution. The performance of the two GA variants and the basic DE was investigated with the same population size, fitness function, and convergence criterion. Each method was performed with 50 independent runs, and the best fitness values were collected for statistical analysis using Kruskal-Wallis and Mann-Whitney tests in comparison among the three methods. The statistical analysis shows that the performance of GA1 with tournament selection and DE are not significantly different and are better than GA2 with roulette wheel selection. DE is stable and efficient in exploring the search space to approach the global optimal solution in most runs. While, GA1 and GA2 were trapped at local optima by about 26% and 38%, respectively. However, the best solutions obtained with GA1 and GA2 after 50 independent runs are better than that obtained with DE in term of fitness values. This suggests an improvement of the basic DE is needed to maintain the potential good solutions during the evolution process. C1 [Tran, Hoai-Nam] PHENIKAA Univ, Fac Fundamental Sci, Hanoi 12116, Vietnam. [Phan, Giang T. T.] Duy Tan Univ, Inst Fundamental & Appl Sci, Ho Chi Minh City 700000, Vietnam. [Phan, Giang T. T.] Duy Tan Univ, Fac Nat Sci, Da Nang 550000, Vietnam. [Do, Quang Binh] Sai Gon Univ, Inst Environm Energy Technol, 230 An Duong Vuong,Dist 5, Ho Chi Minh City 700000, Vietnam. [Tran, Viet-Phu] VINATOM, Inst Nucl Sci & Technol, 179 Hoang Quoc Viet, Hanoi 100000, Vietnam. C3 Duy Tan University; Duy Tan University; Saigon University RP Tran, HN (corresponding author), PHENIKAA Univ, Fac Fundamental Sci, Hanoi 12116, Vietnam.; Phan, GTT (corresponding author), Duy Tan Univ, Inst Fundamental & Appl Sci, Ho Chi Minh City 700000, Vietnam. EM nam.tranhoai@phenikaa-uni.edu.vn; phantthuygiang@duytan.edu.vn FU National Foundation for Science and Technology Development (NAFOSTED) , Vietnam; [103.04-2020.06] FX Acknowledgment This research was funded by National Foundation for Science and Technology Development (NAFOSTED) , Vietnam under grant 103.04-2020.06. CR AEA Technology, 1997, WIMSD NEUTR COD STAN [Anonymous], 1975, Ann Arbor Charles A, 2019, ANN NUCL ENERGY, V127, P165, DOI 10.1016/j.anucene.2018.12.002 Chen ZP, 2019, ANN NUCL ENERGY, V134, P318, DOI 10.1016/j.anucene.2019.06.031 Costa L., 2004, ELITIST GENETIC ALGO, P217, DOI [10.1007/978-1-4757-4137-7_10, DOI 10.1007/978-1-4757-4137-7_10] Das S, 2011, IEEE T EVOLUT COMPUT, V15, P4, DOI 10.1109/TEVC.2010.2059031 DECHAINE MD, 1995, NUCL TECHNOL, V111, P109, DOI 10.13182/NT95-A35149 Ding H, 2020, ANN NUCL ENERGY, V137, DOI 10.1016/j.anucene.2019.107057 Do BQ, 2007, APPL MATH COMPUT, V187, P977, DOI 10.1016/j.amc.2006.09.024 Binh DQ, 2014, KERNTECHNIK, V79, P511, DOI 10.3139/124.110447 Fowler T., 1971, NUCL REACT COR AN CO Phan G, 2017, SCI TECHNOL NUCL INS, V2017, DOI 10.1155/2017/2615409 Israeli E, 2018, ANN NUCL ENERGY, V118, P35, DOI 10.1016/j.anucene.2018.03.042 Karahroudi MR, 2013, ANN NUCL ENERGY, V57, P142, DOI 10.1016/j.anucene.2013.01.051 Liang Y, 2011, APPL SOFT COMPUT, V11, P2017, DOI 10.1016/j.asoc.2010.06.017 Nguyen N.D., 2014, Nucl. Sci. Technol., V4, P1 Pachuau A., 2021, SMART INNOVATION SYS, P6 Phan GTT, 2020, NUCL ENG DES, V362, DOI 10.1016/j.nucengdes.2020.110582 Price K., 2005, NAT COMP SER, DOI 10.1007/3-540-31306-0 Do QB, 2019, NUCL ENG DES, V343, P197, DOI 10.1016/j.nucengdes.2019.01.011 Sacco WF, 2009, ANN NUCL ENERGY, V36, P1093, DOI 10.1016/j.anucene.2009.05.007 Sacco WF, 2014, PROG NUCL ENERG, V70, P140, DOI 10.1016/j.pnucene.2013.09.012 Shukla A, 2015, 2015 1ST INTERNATIONAL CONFERENCE ON FUTURISTIC TRENDS ON COMPUTATIONAL ANALYSIS AND KNOWLEDGE MANAGEMENT (ABLAZE), P515, DOI 10.1109/ABLAZE.2015.7154916 Storn R, 1997, J GLOBAL OPTIM, V11, P341, DOI 10.1023/A:1008202821328 Turinsky PJ, 2005, NUCL TECHNOL, V151, P3, DOI 10.13182/NT05-A3626 Tran VP, 2021, NUCL ENG DES, V377, DOI 10.1016/j.nucengdes.2021.111125 NR 26 TC 3 Z9 4 U1 3 U2 9 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0029-5493 EI 1872-759X J9 NUCL ENG DES JI Nucl. Eng. Des. PD NOV PY 2022 VL 398 AR 111953 DI 10.1016/j.nucengdes.2022.111953 EA SEP 2022 PG 14 WC Nuclear Science & Technology WE Science Citation Index Expanded (SCI-EXPANDED) SC Nuclear Science & Technology GA 5A0FZ UT WOS:000862573900003 DA 2024-09-05 ER PT J AU Kim, D Kim, E Cha, SK Son, S Kim, Y AF Kim, Dongkwan Kim, Eunsoo Cha, Sang Kil Son, Sooel Kim, Yongdae TI Revisiting Binary Code Similarity Analysis Using Interpretable Feature Engineering and Lessons Learned SO IEEE TRANSACTIONS ON SOFTWARE ENGINEERING LA English DT Article DE Benchmark testing; Computer architecture; Binary codes; Syntactics; Semantics; Licenses; Market research; Binary code similarity analysis; similarity measures; feature evaluation and selection; benchmark ID SEMANTICS; ACCURATE; GRAPH; SOFTWARE; SEARCH AB Binary code similarity analysis (BCSA) is widely used for diverse security applications, including plagiarism detection, software license violation detection, and vulnerability discovery. Despite the surging research interest in BCSA, it is significantly challenging to perform new research in this field for several reasons. First, most existing approaches focus only on the end results, namely, increasing the success rate of BCSA, by adopting uninterpretable machine learning. Moreover, they utilize their own benchmark, sharing neither the source code nor the entire dataset. Finally, researchers often use different terminologies or even use the same technique without citing the previous literature properly, which makes it difficult to reproduce or extend previous work. To address these problems, we take a step back from the mainstream and contemplate fundamental research questions for BCSA. Why does a certain technique or a certain feature show better results than the others? Specifically, we conduct the first systematic study on the basic features used in BCSA by leveraging interpretable feature engineering on a large-scale benchmark. Our study reveals various useful insights on BCSA. For example, we show that a simple interpretable model with a few basic features can achieve a comparable result to that of recent deep learning-based approaches. Furthermore, we show that the way we compile binaries or the correctness of underlying binary analysis tools can significantly affect the performance of BCSA. Lastly, we make all our source code and benchmark public and suggest future directions in this field to help further research. C1 [Kim, Dongkwan; Kim, Eunsoo; Cha, Sang Kil; Son, Sooel; Kim, Yongdae] Korea Adv Inst Sci & Technol, Daejeon 34141, South Korea. C3 Korea Advanced Institute of Science & Technology (KAIST) RP Cha, SK (corresponding author), Korea Adv Inst Sci & Technol, Daejeon 34141, South Korea. EM dkay@kaist.ac.kr; hahah@kaist.ac.kr; sangkilc@kaist.ac.kr; sl.son@kaist.ac.kr; yongdaek@kaist.ac.kr OI Kim, Yongdae/0000-0003-4879-1262; Son, Sooel/0000-0003-0904-2875; Cha, Sang Kil/0000-0002-6012-7228 FU Institute of Information & Communications Technology Planning & Evaluation (IITP) Grant, Korea Government (MSIT) [2021-0-01332] FX This work was supported by the Institute of Information & Communications Technology Planning & Evaluation (IITP) Grant, Korea Government (MSIT)under Grant 2021-0-01332, Developing Next-Generation Binary Decompiler. CR Alrabaee S, 2020, IEEE T INF FOREN SEC, V15, P3051, DOI 10.1109/TIFS.2020.2980190 Alrabaee S, 2018, ACM T PRIV SECUR, V21, DOI 10.1145/3175492 Alrabaee S, 2016, DIGIT INVEST, V18, pS11, DOI 10.1016/j.diin.2016.04.002 Alrabaee S, 2015, DIGIT INVEST, V12, pS61, DOI 10.1016/j.diin.2015.01.011 Andriesse D, 2017, 2017 IEEE EUROPEAN SYMPOSIUM ON SECURITY AND PRIVACY (EUROS&P), P177, DOI 10.1109/EuroSP.2017.11 Andriesse D, 2016, PROCEEDINGS OF THE 25TH USENIX SECURITY SYMPOSIUM, P583 [Anonymous], Diaphora: A Free and Open Source Program Diffing Tool [Anonymous], 2006, P 2006 ACM SIGPLAN S [Anonymous], CLANG CLANG C C OBJE [Anonymous], GNU PACKAGES [Anonymous], 2006, GPL VIOLATIONSORG PR [Anonymous], STUNNIX C C OBFUSCAT Arandjelovic R, 2013, PROC CVPR IEEE, P1578, DOI 10.1109/CVPR.2013.207 Artuso F, 2021, Arxiv, DOI arXiv:1912.07946 Babic Domagoj, 2011, Computer Aided Verification. Proceedings 23rd International Conference, CAV 2011, P116, DOI 10.1007/978-3-642-22110-1_10 Bao T, 2014, PROCEEDINGS OF THE 23RD USENIX SECURITY SYMPOSIUM, P845 Bindiff, ABOUT AS Bourquin M., 2013, P 2 ACM SIGPLAN PROG Bromley J., 1993, International Journal of Pattern Recognition and Artificial Intelligence, V7, P669, DOI 10.1142/S0218001493000339 Brumley David, 2013, P USENIX SEC, P353 Bunke H, 1997, PATTERN RECOGN LETT, V18, P689, DOI 10.1016/S0167-8655(97)00060-3 Calvet J., 2012, P 2012 ACM C COMP CO, P169, DOI [DOI 10.1145/2382196.2382217, 10.1145/2382196.2382217] Canali D., 2012, P 2012 INT S SOFTW T, P122, DOI [10.1145/2338965.2336768, DOI 10.1145/2338965.2336768] Tol MC, 2021, Arxiv, DOI arXiv:2006.14147 Capstone, ULT DIS Caruana R., 1994, Machine Learning Proceedings 1994, P28, DOI [10.1016/B978-1-55860-335-6.50012-X, DOI 10.1016/B978-1-55860-335-6.50012-X] Cha Sang Kil, 2010, NSDI, P377 Chandramohan M, 2016, FSE'16: PROCEEDINGS OF THE 2016 24TH ACM SIGSOFT INTERNATIONAL SYMPOSIUM ON FOUNDATIONS OF SOFTWARE ENGINEERING, P678, DOI 10.1145/2950290.2950350 Chen K, 2014, 36TH INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING (ICSE 2014), P175, DOI 10.1145/2568225.2568286 Chua ZL, 2017, PROCEEDINGS OF THE 26TH USENIX SECURITY SYMPOSIUM (USENIX SECURITY '17), P99 Collberg C., 2015, TIGRESS C DIVERSIFIE, V14 Comparetti PM, 2010, P IEEE S SECUR PRIV, P61, DOI 10.1109/SP.2010.12 Crosstool-NG, ABOUT AS Dai HJ, 2016, PR MACH LEARN RES, V48 David Y, 2018, ACM SIGPLAN NOTICES, V53, P392, DOI [10.1145/3173162.3177157, 10.1145/3296957.3177157] David Y, 2017, ACM SIGPLAN NOTICES, V52, P79, DOI [10.1145/3140587.3062387, 10.1145/3062341.3062387] David Y, 2016, ACM SIGPLAN NOTICES, V51, P266, DOI [10.1145/2980983.2908126, 10.1145/2908080.2908126] David Y, 2014, ACM SIGPLAN NOTICES, V49, P349, DOI [10.1145/2666356.2594343, 10.1145/2594291.2594343] Ding SHH, 2019, P IEEE S SECUR PRIV, P472, DOI 10.1109/SP.2019.00003 Ding SHH, 2016, KDD'16: PROCEEDINGS OF THE 22ND ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, P461, DOI 10.1145/2939672.2939719 Duan Y, 2020, 27TH ANNUAL NETWORK AND DISTRIBUTED SYSTEM SECURITY SYMPOSIUM (NDSS 2020), DOI 10.14722/ndss.2020.24311 Dullien T, 2005, SSTIC, V5, P3 Egele M, 2014, PROCEEDINGS OF THE 23RD USENIX SECURITY SYMPOSIUM, P303 ElWazeer K, 2013, ACM SIGPLAN NOTICES, V48, P51, DOI 10.1145/2499370.2462165 Eschweiler S, 2016, 23RD ANNUAL NETWORK AND DISTRIBUTED SYSTEM SECURITY SYMPOSIUM (NDSS 2016), DOI 10.14722/ndss.2016.23185 Farhadi MR, 2014, INT CONF SOFTW SECUR, P78, DOI 10.1109/SERE.2014.21 Feng Q., 2016, P 2016 ACM SIGSAC C, DOI 10.1145/2976749.2978370 Feng Q, 2017, PROCEEDINGS OF THE 2017 ACM ASIA CONFERENCE ON COMPUTER AND COMMUNICATIONS SECURITY (ASIA CCS'17), P346, DOI 10.1145/3052973.3052995 FERRANTE J, 1987, ACM T PROGR LANG SYS, V9, P319, DOI 10.1145/24039.24041 Flake H., 2004, Proceedings of the IEEE Conference on Detection of Intrusions and Malware Vulnerability Assessment DIMVA, P161 Forrest S, 1996, P IEEE S SECUR PRIV, P120, DOI 10.1109/SECPRI.1996.502675 Gao DB, 2008, LECT NOTES COMPUT SC, V5308, P238 Gao J, 2018, IEEE INT CONF AUTOM, P896, DOI 10.1145/3238147.3240480 Geurts P, 2006, MACH LEARN, V63, P3, DOI 10.1007/s10994-006-6226-1 Gröbert F, 2011, LECT NOTES COMPUT SC, V6961, P41, DOI 10.1007/978-3-642-23644-0_3 Guo H, 2020, IEEE ACCESS, V8, P120501, DOI 10.1109/ACCESS.2020.3004813 Guyon I., 2003, Journal of Machine Learning Research, V3, P1157, DOI 10.1162/153244303322753616 HAGBERG A., 2008, P 7 PYTH SCI C SCIPY, P11 He JX, 2018, PROCEEDINGS OF THE 2018 ACM SIGSAC CONFERENCE ON COMPUTER AND COMMUNICATIONS SECURITY (CCS'18), P1667, DOI 10.1145/3243734.3243866 Hemel Armijn, 2011, P INT C SOFTW ENG, P63, DOI [10.1145/1985441.1985453, DOI 10.1145/1985441.1985453] HENRY S, 1981, IEEE T SOFTWARE ENG, V7, P510, DOI 10.1109/TSE.1981.231113 Hex Rays, IDA Pro Hiebert D., 1999, EXUBERANT CTAGS Hochreiter S, 1997, NEURAL COMPUT, V9, P1735, DOI [10.1162/neco.1997.9.1.1, 10.1007/978-3-642-24797-2] HORWITZ S, 1990, ACM T PROGR LANG SYS, V12, P26, DOI 10.1145/960116.53994 Hu X, 2009, CCS'09: PROCEEDINGS OF THE 16TH ACM CONFERENCE ON COMPUTER AND COMMUNICATIONS SECURITY, P611 Hu YK, 2019, IEEE ACCESS, V7, P28170, DOI 10.1109/ACCESS.2019.2901951 Hu YK, 2018, PROC IEEE INT CONF S, P104, DOI 10.1109/ICSME.2018.00019 Hu YK, 2017, INT C PROGRAM COMPRE, P88, DOI 10.1109/ICPC.2017.22 Hu YK, 2016, 2016 IEEE 23RD INTERNATIONAL CONFERENCE ON SOFTWARE ANALYSIS, EVOLUTION, AND REENGINEERING (SANER), VOL 1, P57, DOI 10.1109/SANER.2016.50 Huang H, 2017, PROCEEDINGS OF THE 2017 ACM ASIA CONFERENCE ON COMPUTER AND COMMUNICATIONS SECURITY (ASIA CCS'17), P155, DOI 10.1145/3052973.3052974 Intel Corporation, Intel 64 and IA-32 Architectures Software Developer's Manuals Jang JY, 2011, PROCEEDINGS OF THE 18TH ACM CONFERENCE ON COMPUTER & COMMUNICATIONS SECURITY (CCS 11), P309 Jang JY, 2012, P IEEE S SECUR PRIV, P48, DOI 10.1109/SP.2012.13 Ji YD, 2021, ASIA CCS'21: PROCEEDINGS OF THE 2021 ACM ASIA CONFERENCE ON COMPUTER AND COMMUNICATIONS SECURITY, P702, DOI 10.1145/3433210.3437533 Jia L, 2020, IEEE ACCESS, V8, P23506, DOI 10.1109/ACCESS.2020.2966860 Jiang LX, 2007, PROC INT CONF SOFTW, P96 Jiang Ming, 2013, Information Security and Cryptology - ICISC 2012. 15th International Conference. Revised Selected Papers, P92, DOI 10.1007/978-3-642-37682-5_8 Jianguo Jiang, 2020, Computer Security - ESORICS 2020 25th European Symposium on Research in Computer Security, ESORICS 2020. Proceedings. Lecture Notes in Computer Science (LNCS 12308), P295, DOI 10.1007/978-3-030-58951-6_15 Jin W, 2012, 2012 11TH INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS (ICMLA 2012), VOL 1, P386, DOI 10.1109/ICMLA.2012.70 Jones E., 2001, SciPy: Open source scientific tools for Python Jung M., 2019, PROC NDSS WORKSHOP B Junod P, 2015, 2015 IEEE/ACM 1ST INTERNATIONAL WORKSHOP ON SOFTWARE PROTECTION (SPRO), P3, DOI 10.1109/SPRO.2015.10 Kamiya T, 2002, IEEE T SOFTWARE ENG, V28, P654, DOI 10.1109/TSE.2002.1019480 Karamitas C, 2018, 2018 25TH IEEE INTERNATIONAL CONFERENCE ON SOFTWARE ANALYSIS, EVOLUTION AND REENGINEERING (SANER 2018), P335, DOI 10.1109/SANER.2018.8330221 Kargén U, 2017, IEEE INT CONF AUTOM, P342, DOI 10.1109/ASE.2017.8115647 Dam HK, 2017, Arxiv, DOI arXiv:1708.02368 Khoo WM, 2013, IEEE WORK CONF MIN S, P329, DOI 10.1109/MSR.2013.6624046 Kim H, 2022, I C DEPEND SYS NETWO, P559, DOI 10.1109/DSN53405.2022.00061 Kim M, 2020, ANN COMPUT SECURITY, P733, DOI 10.1145/3427228.3427294 Kim S, 2017, P IEEE S SECUR PRIV, P595, DOI 10.1109/SP.2017.62 Kim S, 2017, IEEE INT CONF AUTOM, P353, DOI 10.1109/ASE.2017.8115648 Kim T, 2019, J SUPERCOMPUT, V75, P607, DOI 10.1007/s11227-016-1941-2 Kim Y, 2014, Arxiv, DOI arXiv:1408.5882 Kinder J, 2008, LECT NOTES COMPUT SC, V5123, P423 Lageman Nathaniel., 2016, Proceedings of the Security and Privacy in Communication Networks12th International Conference, SecureComm 2016, Guangzhou, China, 10-12 October 2016, P517 Lahiri Shuvendu K., 2012, Computer Aided Verification. Proceedings 24th International Conference, CAV 2012, P712, DOI 10.1007/978-3-642-31424-7_54 Lakhotia A., 2013, P 2 ACM SIGPLAN PROG LASZLO T, 2009, SECTIO COMPUTATORICA, V30, P3 Lee J., 2011, PROC NETW DISTRIB SY Li Z, 2016, ANN COMPUT SECURITY, P201, DOI 10.1145/2991079.2991102 Li ZM, 2004, USENIX ASSOCIATION PROCEEDINGS OF THE SIXTH SYMPOSIUM ON OPERATING SYSTEMS DESIGN AND IMPLEMENTATION (OSDE '04), P289 Liu BC, 2018, IEEE INT CONF AUTOM, P667, DOI 10.1145/3238147.3238199 Luo LN, 2017, IEEE T SOFTWARE ENG, V43, P1157, DOI 10.1109/TSE.2017.2655046 Luo LN, 2014, 22ND ACM SIGSOFT INTERNATIONAL SYMPOSIUM ON THE FOUNDATIONS OF SOFTWARE ENGINEERING (FSE 2014), P389, DOI 10.1145/2635868.2635900 Luo M., 2016, INT C SECURITY PRIVA, P517 MacKenzie D., 1996, AUTOCONF CREATING AU Manès VJM, 2021, IEEE T SOFTWARE ENG, V47, P2312, DOI 10.1109/TSE.2019.2946563 Marastoni N., 2018, P 1 INT WORKSH MACH, P26 Massarelli L., 2019, PROC NDSS WORKSHOP B Massarelli L, 2019, LECT NOTES COMPUT SC, V11543, P309, DOI 10.1007/978-3-030-22038-9_15 Meng XZ, 2017, LECT NOTES COMPUT SC, V10493, P286, DOI 10.1007/978-3-319-66399-9_16 Mikolov T, 2013, Arxiv, DOI [arXiv:1301.3781, 10.48550/arXiv.1301.3781, DOI 10.48550/ARXIV.1301.3781] Ming J, 2017, PROCEEDINGS OF THE 26TH USENIX SECURITY SYMPOSIUM (USENIX SECURITY '17), P253 Ming J, 2016, IEEE T RELIAB, V65, P1647, DOI 10.1109/TR.2016.2570554 Ming J, 2015, IFIP ADV INF COMM TE, V455, P416, DOI 10.1007/978-3-319-18467-8_28 *MIPS TECHN INC, 2001, MIPS32 ARCH PROGR Miyani D, 2017, Arxiv, DOI arXiv:1711.00830 Ng AY, 2002, ADV NEUR IN, V14, P849 Nouh L, 2017, IFIP ADV INF COMM TE, V502, P341, DOI 10.1007/978-3-319-58469-0_23 Oh J. W., 2015, DARUNGRIM PATCH ANAL Pedregosa F, 2011, J MACH LEARN RES, V12, P2825 Pewny J., 2014, P 30 ANN COMP SEC AP, P406 Pewny J, 2015, P IEEE S SECUR PRIV, P709, DOI 10.1109/SP.2015.49 Qasem A, 2021, ACM COMPUT SURV, V54, DOI 10.1145/3432893 Qiao R, 2017, I C DEPEND SYS NETWO, P201, DOI 10.1109/DSN.2017.29 Qiu J, 2015, 2015 22ND INTERNATIONAL CONFERENCE ON SOFTWARE ANALYSIS, EVOLUTION, AND REENGINEERING (SANER), P261, DOI 10.1109/SANER.2015.7081836 Le Q, 2014, PR MACH LEARN RES, V32, P1188 Rahimian Ashkan, 2013, Foundations and Practice of Security. 5th International Symposium, FPS 2012. Revised Selected Papers, P211, DOI 10.1007/978-3-642-37119-6_14 Real R, 1996, SYST BIOL, V45, P380, DOI 10.2307/2413572 Redmond K., 2019, PROC NDSS WORKSHOP B Reiss SP, 2009, PROC INT CONF SOFTW, P243, DOI 10.1109/ICSE.2009.5070525 Rosenblum N. E., 2011, P INT S SOFTW TEST A, P100, DOI 10.1145/2001420.2001433 Schkufza E, 2013, ACM SIGPLAN NOTICES, V48, P305, DOI 10.1145/2499368.2451150 Schleimer S., 2003, P 2003 ACM SIGMOD IN, V10, P76, DOI DOI 10.1145/872757.872770 Seal David, 2001, ARM ARCHITECTURE REF SecurityTeam, 2016, PIE Semantic Designs, SOURCE CODE OBFUSCAT Shalev N, 2018, PLAS'18: PROCEEDINGS OF THE 13TH WORKSHOP ON PROGRAMMING LANGUAGES AND ANALYSIS FOR SECURITY, P42, DOI 10.1145/3264820.3264821 Shin ECR, 2015, PROCEEDINGS OF THE 24TH USENIX SECURITY SYMPOSIUM, P611 Shirani Paria, 2017, Detection of Intrusions and Malware, and Vulnerability Assessment. 14th International Conference, DIMVA 2017. Proceedings: LNCS 10327, P301, DOI 10.1007/978-3-319-60876-1_14 Shirani P, 2018, LECT NOTES COMPUT SC, V10885, P114, DOI 10.1007/978-3-319-93411-2_6 Sun PF, 2020, I C DEPEND SYS NETWO, P373, DOI 10.1109/DSN48063.2020.00053 Tange O, 2011, The USENIX Magazine, V36, P42 Themida, ADV WINDOWS SOFTWARE Tian ZZ, 2020, IEEE ACCESS, V8, P160802, DOI 10.1109/ACCESS.2020.3021184 Ul Haq I, 2019, Arxiv, DOI arXiv:1909.11424 Using the GNU compiler collection (GCC), OPTIMIZE OPTIONS van der Veen V, 2016, P IEEE S SECUR PRIV, P934, DOI 10.1109/SP.2016.60 van der Walt S, 2011, COMPUT SCI ENG, V13, P22, DOI 10.1109/MCSE.2011.37 VMProtect, ABOUT AS Wang S, 2017, IEEE INT CONF AUTOM, P319, DOI 10.1109/ASE.2017.8115645 Wang S, 2017, PROC IEEE INT CONF S, P388, DOI 10.1109/ICSME.2017.59 Wang S, 2016, PROC INT CONF SOFTW, P297, DOI 10.1145/2884781.2884804 Wikipedia, 2018, RELATIVE CHANGE DIFF Xiao YJ, 2016, IEEE TRUST BIG, P252, DOI [10.1109/TrustCom.2016.70, 10.1109/TrustCom.2016.0071] Xu DP, 2017, P IEEE S SECUR PRIV, P921, DOI 10.1109/SP.2017.56 Xu XJ, 2017, CCS'17: PROCEEDINGS OF THE 2017 ACM SIGSAC CONFERENCE ON COMPUTER AND COMMUNICATIONS SECURITY, P363, DOI 10.1145/3133956.3134018 Xu ZZ, 2017, PROC INT CONF SOFTW, P462, DOI 10.1109/ICSE.2017.49 Xue YX, 2019, IEEE T SOFTWARE ENG, V45, P1125, DOI 10.1109/TSE.2018.2827379 Yakdan K, 2015, 22ND ANNUAL NETWORK AND DISTRIBUTED SYSTEM SECURITY SYMPOSIUM (NDSS 2015), DOI 10.14722/ndss.2015.23185 Yang Jun, 2007, Evaluating Bag-of-Visual-Words Representations in Scene Classification, P197 Yuan BG, 2018, COMPUT J, V61, P1202, DOI 10.1093/comjnl/bxy055 Zhang FF, 2014, PROC INT SYMP SOFTW, P66, DOI 10.1109/ISSRE.2014.18 Zhao L, 2020, CCS '20: PROCEEDINGS OF THE 2020 ACM SIGSAC CONFERENCE ON COMPUTER AND COMMUNICATIONS SECURITY, P149, DOI 10.1145/3372297.3423342 Zuo F, 2019, 26TH ANNUAL NETWORK AND DISTRIBUTED SYSTEM SECURITY SYMPOSIUM (NDSS 2019), DOI 10.14722/ndss.2019.23492 NR 166 TC 16 Z9 19 U1 1 U2 7 PU IEEE COMPUTER SOC PI LOS ALAMITOS PA 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1314 USA SN 0098-5589 EI 1939-3520 J9 IEEE T SOFTWARE ENG JI IEEE Trans. Softw. Eng. PD APR 1 PY 2023 VL 49 IS 4 BP 1661 EP 1682 DI 10.1109/TSE.2022.3187689 PG 22 WC Computer Science, Software Engineering; Engineering, Electrical & Electronic WE Science Citation Index Expanded (SCI-EXPANDED) SC Computer Science; Engineering GA E9NM9 UT WOS:000978723600015 OA hybrid, Green Submitted DA 2024-09-05 ER PT J AU Deka, M Buragohain, D Kumar, A AF Deka, Manashjyoti Buragohain, Dibanjyoti Kumar, Amit TI Two decades of research on Online Learning published by Springer Link: A bibliometric analysis SO QUALITATIVE & QUANTITATIVE METHODS IN LIBRARIES LA English DT Article DE Online Learning; SpringerLink; Annual Growth Rate; Relative Growth Rate; Degree of Collaboration and Collaboration Coefficient ID COLLABORATION AB The emergence of online learning has acquired the attention of learners and educators in the 21st century. The need has arisen especially when the world has suffered from the Covid-19 pandemic, the institutions of higher learning have come up with the latest technologies to combat the learning environment scenario. The present study mainly analysis the existing works of literature published on the topic of online learning which is abstracted from SpringerLink. The bibliometrics method of analyzing the data was adopted for the study. The study analysis the components such as the growth of literature,year-wise distribution, annual growth rate (AGR), compound annual growth rate (CAGR), relative growth rate (RGR), and doubling time (DT) of the publications authorship pattern and authors productivity of literature, Study the citation, altmetrics, download and access pattern of literature, the most prominent journals, publisher -wise, country -wise distribution of literature, most productive institutions and top -cited paper in the published literature on "online learning". The study shows that the highest number of publications can be noticed from the conference papers and there is a frequent rise in publications. The annual growth rate of the published literature is 533.34 in 2003 and the number of authors per publication on average was highest in 2017. The study shall contribute to examining the existing scenario of the published literature measurement on online learning and shall encourage more exciting researchers and academicians to work more in this specific field. C1 [Deka, Manashjyoti; Buragohain, Dibanjyoti] Mizoram Univ, Aizawl, Mizoram, India. [Kumar, Amit] Cent Univ Gujarat, Gandhinagar, Gujarat, India. C3 Mizoram University; Central University of Gujarat RP Deka, M (corresponding author), Mizoram Univ, Aizawl, Mizoram, India. CR Amoozegar A., 2018, International Journal of Information Research and Review, V5, P5352, DOI 10.6084/m9.figshare.6210536.v1 Aslam S., 2021, Library Philosophy and Practice, P1 Chandwani S., 2021, Library Philosophy and Practice (e-journal), V5330, P1 Dhawan Shivangi, 2020, Journal of Educational Technology Systems, V49, P5, DOI 10.1177/0047239520934018 Kumar A., 2021, Library Philosophy and Practice Kumar RS, 2015, SCIENTOMETRICS, V105, P921, DOI 10.1007/s11192-015-1710-7 Lawani SM, 1980, Quality, collaboration and citations in cancer research: a bibliometric study Liu L., 2011, International Journal of Technology in Teaching Learning, V7 Mahapatra M., 1985, P 15 IASLIC C, V6170 Moore JL, 2011, INTERNET HIGH EDUC, V14, P129, DOI 10.1016/j.iheduc.2010.10.001 Neelamma G., 2018, Library Philosophy and Practice (e-journal), V1879 Nisha F, 2015, DESIDOC J LIB INF TE, V35, P82, DOI 10.14429/djlit.35.2.8191 Savanur K, 2010, SCIENTOMETRICS, V84, P365, DOI 10.1007/s11192-009-0100-4 Sivakumaren K. S., 2019, Library Philosophy and Practices(eJournal), P3570 Sobral S. R., 2021, Two decades of research in e-learning: a deep bibliometric analysis SUBRAMANYAM K, 1983, J INFORM SCI, V6, P33, DOI 10.1177/016555158300600105 Tawiah R., 2019, Library Philosophy and Practice (ejournal), P2337 Tripathi M, 2010, DESIDOC J LIB INF TE, V30, P83, DOI 10.14429/djlit.30.618 Wahid R, 2020, INT REV RES OPEN DIS, V21, P292 Yoshikane F, 2009, SCIENTOMETRICS, V79, P435, DOI 10.1007/s11192-008-0429-8 Yu YT, 2020, ANN TRANSL MED, V8, DOI 10.21037/atm-20-4235 NR 21 TC 0 Z9 0 U1 3 U2 3 PU INT SOC ART SCIENCE & TECHNOLOGY-ISAST PI ATHINA PA INT SOC ART SCIENCE & TECHNOLOGY-ISAST, ATHINA, 00000, GREECE SN 2241-1925 J9 QUAL QUANT METHODS L JI Qual. Quant. Methods Libr. PD MAR PY 2024 VL 13 IS 1 BP 1 EP 34 PG 34 WC Information Science & Library Science WE Emerging Sources Citation Index (ESCI) SC Information Science & Library Science GA MX4O7 UT WOS:001196924600002 DA 2024-09-05 ER PT J AU Sánchez-Núñez, P de las Heras-Pedrosa, C Peláez, JI AF Sanchez-Nunez, Pablo de las Heras-Pedrosa, Carlos Ignacio Pelaez, Jose TI Opinion Mining and Sentiment Analysis in Marketing Communications: A Science Mapping Analysis in Web of Science (1998-2018) SO SOCIAL SCIENCES-BASEL LA English DT Article DE sentiment analysis; opinion mining; advertising; marketing; science mapping analysis; Web of Science (WoS); bibliometric indicators; scientific collaboration ID SCIENTIFIC COLLABORATION; DECISION-MAKING AB Opinion mining and sentiment analysis has become ubiquitous in our society, with applications in online searching, computer vision, image understanding, artificial intelligence and marketing communications (MarCom). Within this context, opinion mining and sentiment analysis in marketing communications (OMSAMC) has a strong role in the development of the field by allowing us to understand whether people are satisfied or dissatisfied with our service or product in order to subsequently analyze the strengths and weaknesses of those consumer experiences. To the best of our knowledge, there is no science mapping analysis covering the research about opinion mining and sentiment analysis in the MarCom ecosystem. In this study, we perform a science mapping analysis on the OMSAMC research, in order to provide an overview of the scientific work during the last two decades in this interdisciplinary area and to show trends that could be the basis for future developments in the field. This study was carried out using VOSviewer, CitNetExplorer and InCites based on results from Web of Science (WoS). The results of this analysis show the evolution of the field, by highlighting the most notable authors, institutions, keywords, publications, countries, categories and journals. C1 [Sanchez-Nunez, Pablo] Univ Malaga, Univ Huelva, Univ Cadiz, Doctorate Program Commun, Malaga 29071, Spain. [Sanchez-Nunez, Pablo] Univ Seville, Malaga 29071, Spain. [de las Heras-Pedrosa, Carlos] Univ Malaga, Fac Commun Sci, Dept Audiovisual Commun & Advertising, Malaga 29071, Spain. [Ignacio Pelaez, Jose] Univ Malaga, Higher Tech Sch Comp Engn, Dept Languages & Comp Sci, Malaga 29071, Spain. C3 Universidad de Huelva; Universidad de Cadiz; Universidad de Malaga; University of Sevilla; Universidad de Malaga; Universidad de Malaga RP Sánchez-Núñez, P (corresponding author), Univ Malaga, Univ Huelva, Univ Cadiz, Doctorate Program Commun, Malaga 29071, Spain.; Sánchez-Núñez, P (corresponding author), Univ Seville, Malaga 29071, Spain. EM psancheznunez@uma.es; cheras@uma.es; jipelaez@uma.es RI de las Heras-Pedrosa, Carlos/M-4492-2015; Pelaez Sanchez, Jose Ignacio/O-9450-2016 OI de las Heras-Pedrosa, Carlos/0000-0002-2738-4177; Sanchez Nunez, Pablo/0000-0001-7845-9506; Pelaez Sanchez, Jose Ignacio/0000-0002-2606-3849 FU Programa Operativo FEDER Andalucia 2014-2020 [UMA18-FEDERJA-148] FX The research was funded by Programa Operativo FEDER Andalucia 2014-2020, grant number "La reputacion de las organizaciones en una sociedad digital. Elaboracion de una Plataforma Inteligente para la Localizacion, Identificacion y Clasificacion de Influenciadores en los Medios Sociales Digitales (UMA18-FEDERJA-148)" and The APC was funded by the same research grant. CR Ahlgren P, 2013, SCIENTOMETRICS, V95, P771, DOI 10.1007/s11192-012-0819-1 Alvarez-Bornstein B, 2017, SCIENTOMETRICS, V112, P1793, DOI 10.1007/s11192-017-2453-4 Baraybar-Fernández A, 2017, COMUNICAR, V25, P19, DOI 10.3916/C52-2017-02 Baron AS, 2017, J MARKET MANAG-UK, V33, P893, DOI 10.1080/0267257X.2017.1323839 Beaver DD, 2001, SCIENTOMETRICS, V52, P365, DOI 10.1023/A:1014254214337 Bericat E, 2016, CURR SOCIOL, V64, P491, DOI 10.1177/0011392115588355 Bo Pang, 2008, Foundations and Trends in Information Retrieval, V2, P1, DOI 10.1561/1500000001 Chen CM, 2017, J DATA INFO SCI, V2, P1, DOI 10.1515/jdis-2017-0006 EGGHE L, 1994, SCIENTOMETRICS, V30, P389, DOI 10.1007/BF02018109 Fonseca BDFE, 2016, HEALTH RES POLICY SY, V14, DOI 10.1186/s12961-016-0104-5 Glänzel W, 2001, SCIENTOMETRICS, V51, P69, DOI 10.1023/A:1010512628145 HERAS-PEDROSA C. de las, 2018, PRISM SOC, V22, P229 Peláez JI, 2018, KNOWL-BASED SYST, V162, P252, DOI 10.1016/j.knosys.2018.07.023 Jasanoff Sheila., 2019, SPRINGER HDB SCI TEC, DOI [10.1007/978-3-030-02511-3, DOI 10.1007/978-3-030-02511-3] Kang D, 2014, EXPERT SYST APPL, V41, P1041, DOI 10.1016/j.eswa.2013.07.101 Katz JS, 1997, SCIENTOMETRICS, V40, P541, DOI 10.1007/BF02459299 Kennedy H, 2012, J BROADCAST ELECTRON, V56, P435, DOI 10.1080/08838151.2012.732141 Liu W., 2018, Soc Sci, V7, P141, DOI [10.3390/socsci7080141, DOI 10.3390/SOCSCI7080141] LUUKKONEN T, 1992, SCI TECHNOL HUM VAL, V17, P101, DOI 10.1177/016224399201700106 Mäntylä MV, 2018, COMPUT SCI REV, V27, P16, DOI 10.1016/j.cosrev.2017.10.002 Martínez-López FJ, 2018, EUR J MARKETING, V52, P439, DOI 10.1108/EJM-11-2017-0853 Mostafa MM, 2013, EXPERT SYST APPL, V40, P4241, DOI 10.1016/j.eswa.2013.01.019 Moya-Anegón F, 2013, SCIENTOMETRICS, V97, P421, DOI 10.1007/s11192-013-1046-0 Newman MEJ, 2001, P NATL ACAD SCI USA, V98, P404, DOI 10.1073/pnas.021544898 Peláez JI, 2020, SOFT COMPUT, V24, P1775, DOI 10.1007/s00500-019-04005-3 Pelaez JI, 2019, KNOWL-BASED SYST, V172, P33, DOI 10.1016/j.knosys.2019.02.009 Piryani R, 2017, INFORM PROCESS MANAG, V53, P122, DOI 10.1016/j.ipm.2016.07.001 Prabowo R, 2009, J INFORMETR, V3, P143, DOI 10.1016/j.joi.2009.01.003 Saaty Thomas L., 2012, Models, methods, concepts & applications of the analytic hierarchy process, DOI DOI 10.1007/978-1-4614-3597-6 Sebastian V, 2014, PROCD SOC BEHV, V127, P758, DOI 10.1016/j.sbspro.2014.03.350 Thelwall M, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0064841 UNESCO, 2015, UNESCO SCIENCE REPORT: TOWARDS 2030, P1 van Eck NJ, 2014, J INFORMETR, V8, P802, DOI 10.1016/j.joi.2014.07.006 van Eck NJ, 2010, SCIENTOMETRICS, V84, P523, DOI 10.1007/s11192-009-0146-3 van Eck NJ, 2009, J AM SOC INF SCI TEC, V60, P1635, DOI 10.1002/asi.21075 Wereda W, 2019, SOC SCI-BASEL, V8, DOI 10.3390/socsci8060177 NR 36 TC 13 Z9 13 U1 3 U2 13 PU MDPI PI BASEL PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND EI 2076-0760 J9 SOC SCI-BASEL JI Soc. Sci.-Basel PD MAR PY 2020 VL 9 IS 3 AR 23 DI 10.3390/socsci9030023 PG 20 WC Social Sciences, Interdisciplinary WE Emerging Sources Citation Index (ESCI) SC Social Sciences - Other Topics GA TY3DZ UT WOS:000683665600002 OA gold, Green Published DA 2024-09-05 ER PT C AU Hauffa, J Bräu, W Groh, G AF Hauffa, Jan Braeu, Wolfgang Groh, Georg BE Spezzano, F Chen, W Xiao, X TI Detection of Topical Influence in Social Networks via Granger-Causal Inference: A Twitter Case Study SO PROCEEDINGS OF THE 2019 IEEE/ACM INTERNATIONAL CONFERENCE ON ADVANCES IN SOCIAL NETWORKS ANALYSIS AND MINING (ASONAM 2019) LA English DT Proceedings Paper CT IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM) CY AUG 27-30, 2019 CL Vancouver, CANADA ID LINEAR-DEPENDENCE; FEEDBACK AB With the ever-increasing importance of computer-mediated communication in our everyday life, understanding the effects of social influence in online social networks has become a necessity. In this work, we argue that cascade models of information diffusion do not adequately capture attitude change, which we consider to be an essential element of social influence. To address this concern, we propose a topical model of social influence and attempt to establish a connection between influence and Granger-causal effects on a theoretical and empirical level. While our analysis of a social media dataset finds effects that are consistent with our model of social influence, evidence suggests that these effects can be attributed largely to external confounders. The dominance of external influencers, including mass media, over peer influence raises new questions about the correspondence between objectively measurable information diffusion and social influence as perceived by human observers. C1 [Hauffa, Jan; Braeu, Wolfgang; Groh, Georg] Tech Univ Munich, Dept Informat, Garching, Germany. C3 Technical University of Munich RP Hauffa, J (corresponding author), Tech Univ Munich, Dept Informat, Garching, Germany. EM hauffa@in.tum.de; braeuw@in.tum.de; grohg@in.tum.de OI Hauffa, Jan/0000-0001-5785-8698 CR AITCHISON J, 1980, BIOMETRIKA, V67, P261, DOI 10.2307/2335470 Anagnostopoulos A., 2008, P 14 ACM SIGKDD INT, P7, DOI [10.1145/1401890.1401897, DOI 10.1145/1401890.1401897] [Anonymous], CMUML06113 [Anonymous], 2003, P 9 ACM SIGKDD INT C Barnett L, 2009, PHYS REV LETT, V103, DOI 10.1103/PhysRevLett.103.238701 Basu S., 2017, SSRN Bessi Alessandro, 2016, First Monday, V21, P11, DOI [DOI 10.5210/FM.V21I11.7090, 10.5210/fm.v21i11.7090] Blei DM, 2012, COMMUN ACM, V55, P77, DOI 10.1145/2133806.2133826 Bossomaier T, 2013, COMPLEX ADAPT SYST M, V1, DOI 10.1186/2194-3206-1-9 Brahim A. S., 2013, P INT AAAI C WEBL SO, P546 Chaudhry A., 2017, P 34 INT C MACHINE L, V70, P684 Chua F. C., 2015, 150101270 ARXIV Galligan DJ, 2013, COMP CONST LAW POLIC, P3 Gandy A, 2014, SCAND J STAT, V41, P1083, DOI 10.1111/sjos.12085 GEWEKE J, 1982, J AM STAT ASSOC, V77, P304, DOI 10.2307/2287238 GEWEKE JF, 1984, J AM STAT ASSOC, V79, P907, DOI 10.2307/2288723 GRANGER CWJ, 1980, J ECON DYN CONTROL, V2, P329, DOI 10.1016/0165-1889(80)90069-X Hauffa J., 2016, P 2 INT WORKSH SOC I, P3 Javanmard A, 2014, J MACH LEARN RES, V15, P2869 Kumar N, 2016, PROCEEDINGS OF THE 2016 IEEE/ACM INTERNATIONAL CONFERENCE ON ADVANCES IN SOCIAL NETWORKS ANALYSIS AND MINING ASONAM 2016, P1329, DOI 10.1109/ASONAM.2016.7752408 Kwak HG, 2010, INT CONF ADV COMMUN, P591 Liotsiou D, 2016, LECT NOTES COMPUT SC, V10047, P116, DOI 10.1007/978-3-319-47874-6_9 Maziarz M, 2015, J PHILOS ECON, V8, P86 McKenney D, 2017, SOC NETW ANAL MIN, V7, DOI 10.1007/s13278-017-0421-x Ritzer George., 2007, BLACKWELL ENCY SOCIO, DOI DOI 10.1002/9781405165518.WBEOSS154 Schreiber T, 2000, PHYSICA D, V142, P346, DOI 10.1016/S0167-2789(00)00043-9 Sousa D., 2010, P 2 INT WORKSHOP SEA, P63, DOI DOI 10.1145/1871985.1871996 Tsur O., 2017, P INT AAAI C WEB SOC, P680 Tufekci Z., 2014, Proceedings of the International AAAI Conference on Web and Social Media NR 29 TC 2 Z9 2 U1 0 U2 4 PU ASSOC COMPUTING MACHINERY PI NEW YORK PA 1515 BROADWAY, NEW YORK, NY 10036-9998 USA BN 978-1-4503-6868-1 PY 2019 BP 969 EP 977 DI 10.1145/3341161.3345024 PG 9 WC Computer Science, Artificial Intelligence; Computer Science, Information Systems; Telecommunications WE Conference Proceedings Citation Index - Science (CPCI-S) SC Computer Science; Telecommunications GA BP5IK UT WOS:000555683800164 DA 2024-09-05 ER PT C AU Cui, JF Wang, HM Wang, CY Wan, JZ Mu, G AF Cui, Jiefan Wang, Hemin Wang, Chengyuan Wan, Junzhu Mu, Gang GP IEEE TI Research on High Performance Direct Torque Control System Based on DSP SO 2008 7TH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION, VOLS 1-23 LA English DT Proceedings Paper CT 7th World Congress on Intelligent Control and Automation CY JUN 25-27, 2008 CL Chongqing, PEOPLES R CHINA DE DSP; DTC; PMSM; SVM ID MOTOR-DRIVES AB To minimize the ripples of the electromagnetic torque and flux linkage, fix the variable switching frequency, produced in the conventional direct torque control (DTC) system for permanent magnet synchronous motor (PMSM), a space vector modulation (SVM) DTC strategy was introduced based on PI predictive controller. This strategy and the conventional DTC were simulated by the Matlab/Simulink toolbox, the conventional DTC and SVM-DTC PMSM drive system was implemented based on TMS320LF2407 digital signal processor (DSP), the steady state and dynamic performance of the two schemes was analyzed. The results show that the steady state performance is improved in the SVM DTC system while preserving the dynamic performance of conventional DTC system and achieving constant switching frequency. C1 [Cui, Jiefan; Wang, Hemin; Wang, Chengyuan; Wan, Junzhu; Mu, Gang] Shenyang Univ Technol, Sch Elect Engn, Shenyang, Liaoning Prov, Peoples R China. C3 Shenyang University of Technology RP Cui, JF (corresponding author), Shenyang Univ Technol, Sch Elect Engn, Shenyang, Liaoning Prov, Peoples R China. EM mugangsmart@126.com RI Mu, Gang/E-7851-2013 OI Mu, Gang/0000-0002-3907-1856 CR DEPENBROCK M, 1985, UNG ETZ ARCH, P211 Lai YS, 2001, IEEE T ENERGY CONVER, V16, P220, DOI 10.1109/60.937200 SUN D, PEDS 2003, V1, P692 Sun Dan, 2005, Proceedings of the CSEE, V25, P112 WANG CY, 2006, ELECT MACHINE MODERN *WARS U DEP EL ENG, 2002, IEEE T IND ELECTRON, V3, P723 ZHAO LJ, 2005, J SHENYANG U TECHNOL, V27 Zhong L, 1997, IEEE T POWER ELECTR, V12, P528, DOI 10.1109/63.575680 NR 8 TC 0 Z9 0 U1 0 U2 0 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA BN 978-1-4244-2113-8 PY 2008 BP 1494 EP 1497 DI 10.1109/WCICA.2008.4594456 PG 4 WC Automation & Control Systems; Computer Science, Artificial Intelligence; Computer Science, Cybernetics; Engineering, Electrical & Electronic; Robotics WE Conference Proceedings Citation Index - Science (CPCI-S) SC Automation & Control Systems; Computer Science; Engineering; Robotics GA BIJ02 UT WOS:000259965701053 DA 2024-09-05 ER PT J AU Wu, JF Huang, GY Zheng, H Huang, GL Cai, BR Chi, CH He, J AF Wu, Junfeng Huang, Guangyan Zheng, Hui Huang, Guang-Li Cai, Borui Chi, Chi-Hung He, Jing TI Emerging Scientific Topic Discovery by Analyzing Reliable Patterns of Infrequent Synonymous Biterms SO IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE LA English DT Article DE Reliability; Collaboration; Market research; Linguistics; Computational intelligence; Resource management; Linear regression; Emerging scientific topics; trend analysis; synonymous terms; text mining; clustering; adaptivity AB Emerging scientific topics are those topics that the number of related articles was small in the past but has grown dramatically in recent years. Automatic discovery of emerging scientific topics has become increasingly necessary because of the exponentially increasing of research papers. Such discovery enables broad applications, such as optimizing resource allocations for promising research areas, predicting future technology trends, finding knowledge gaps and new concepts, and recommending personalized research directions. In this paper, we provide a framework of emerging topic discovery methods using Infrequent Synonymous Biterm (ISB), which automatically extracts the dedicated knowledge from the infrequent patterns of synonymous biterms in a corpus (e.g., paper titles); each term in a synonymous biterm represents a collaborating supertopic, whose collaboration originates an emerging topic. In particular, we propose an Analyzing Reliable Patterns of Infrequent Synonymous Biterms (ARPISB) method, which guarantees the quality of the result emerging topics by adaptively giving larger weights to more reliable ISB. Extensive experiments on five subfields' scholarly papers demonstrate the significant and robust improvement of the accuracy of emerging scientific topic discovery. C1 [Wu, Junfeng; Huang, Guangyan; Huang, Guang-Li; Cai, Borui] Deakin Univ, Sch Informat Technol, Blackburn South 3130, Australia. [Zheng, Hui] CSIRO, Data61, Clayton, Vic 3168, Australia. [Chi, Chi-Hung] Nanyang Technol Univ, Singapore 639798, Singapore. [He, Jing] Univ Oxford, Nuffield Dept Clin Neurosci, Oxford OX1 2JD, England. C3 Deakin University; Commonwealth Scientific & Industrial Research Organisation (CSIRO); Nanyang Technological University; University of Oxford RP Huang, GY (corresponding author), Deakin Univ, Sch Informat Technol, Blackburn South 3130, Australia. EM wujunfeng@vip.163.com; guangyan.huang@deakin.edu.au; hui.zheng@data61.csiro.au; guangli.huang@qq.com; b.cai@deakin.edu.au; chihungchi@gmail.com; jing.he@ndcn.ox.ac.uk RI Zhang, Yuyao/KEH-7175-2024; Huang, Guang-Li/AED-6392-2022; Wu, Junfeng/C-7246-2019 OI Huang, Guang-Li/0000-0001-8698-2946; Wu, Junfeng/0000-0003-1263-3051 FU Australian Research Council [DP190100587] FX This work was supported by the Australian Research Council under Grant DP190100587.(Corresponding author: Guangyan Huang.). CR Alam MM, 2017, SCIENTOMETRICS, V113, P1325, DOI 10.1007/s11192-017-2548-y Chen KX, 2020, IEEE T NEUR NET LEAR, V31, P1747, DOI 10.1109/TNNLS.2019.2927224 de Arruda HF, 2016, CHAOS, V26, DOI 10.1063/1.4954215 Ezzeldin M., 2020, J STRUCT ENG, V146 Hazem A, 2018, PROCEEDINGS OF THE ELEVENTH INTERNATIONAL CONFERENCE ON LANGUAGE RESOURCES AND EVALUATION (LREC 2018), P297 Kim M, 2016, J SUPERCOMPUT, V72, P3663, DOI 10.1007/s11227-016-1831-7 King D, 2020, PROCEEDINGS OF THE 43RD INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL (SIGIR '20), P1549, DOI 10.1145/3397271.3401235 Luo MN, 2018, IEEE T CYBERNETICS, V48, P648, DOI 10.1109/TCYB.2017.2647904 Mikolov T., 2013, ADV NEURAL INFORM PR, P3111, DOI DOI 10.48550/ARXIV.1310.4546 Noh H, 2019, J TECHNOL TRANSFER, V44, P700, DOI 10.1007/s10961-017-9634-4 Piwowar H., 2022, OPEN SCI FACTSHEET N, DOI [10.48440/os.helmholtz.046, DOI 10.48440/OS.HELMHOLTZ.046] Porter M., 2013, ENGLISH PORTER2 STEM Prabhakaran V, 2016, PROCEEDINGS OF THE 54TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, VOL 1, P1170 Priem J., 2022, ARXIV Salatino AA, 2018, ACM-IEEE J CONF DIG, P303, DOI 10.1145/3197026.3197052 Salatino AA, 2018, LECT NOTES COMPUT SC, V11137, P187, DOI 10.1007/978-3-030-00668-6_12 Silva FN, 2016, J INFORMETR, V10, P487, DOI 10.1016/j.joi.2016.03.008 Tseng YH, 2009, SCIENTOMETRICS, V81, P73, DOI 10.1007/s11192-009-1885-x Wang KS, 2020, QUANT SCI STUD, V1, P396, DOI 10.1162/qss_a_00021 Wu J., 2020, PROC CHALLENGES LARG Wu JF, 2022, LECT NOTES ARTIF INT, V13280, P29, DOI 10.1007/978-3-031-05933-9_3 Zhang DL, 2020, IEEE T CYBERNETICS, V50, P3033, DOI 10.1109/TCYB.2019.2905157 NR 22 TC 0 Z9 0 U1 7 U2 10 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 2471-285X J9 IEEE T EM TOP COMP I JI IEEE Trans. Emerg. Top. Comput. Intell. PD FEB PY 2024 VL 8 IS 1 BP 752 EP 761 DI 10.1109/TETCI.2023.3266944 EA APR 2023 PG 10 WC Computer Science, Artificial Intelligence WE Science Citation Index Expanded (SCI-EXPANDED) SC Computer Science GA KA1I7 UT WOS:000980472900001 DA 2024-09-05 ER PT J AU Thomas, J Zaytseva, A AF Thomas, John Zaytseva, Anna TI Mapping complexity/Human knowledge as a complex adaptive system SO COMPLEXITY LA English DT Article DE knowledge architecture dynamics; scientometrics; knowledge as a complex adaptive system; emergence; Latent Dirichlet Allocation AB Cartography is the art of map-making that integrates science, technology, and visual aesthetics for the purpose of rendering the domain of interest, navigable. The science could aid the cartographer if it were to inform about the underlying process. Thus, Mendeleev's periodic table was informed by insights about the atomic mass periodicity. Likewise, Harvey's work on the circulatory system map was informed by his theoretical insights on Galen's errors. Mapping of human knowledge dates back at least to Porphyry who laid out the first tree-of-knowledge. Modern knowledge-cartographers use a wide array of scientometric techniques capable of rendering appealing visuals of massive scientific corpuses. But what has perhaps been lacking is a sound theoretical basis for rendering legible the adaptive dynamics of knowledge creation and accumulation. Proposed is a theoretical framework, knowledge as a complex adaptive system (CAS) patterned on Holland's work on CAS, as well as the view that knowledge is a hierarchically heterarchic dynamical system. As a first leg in the conjoining experimental phase, we extract terms from approximately 1400 complexity science papers published at the Santa Fe Institute, deduce the topic distribution using Latent Dirichlet Allocation, capture the underlying dynamics, and show how to navigate the corpus visually. (c) 2016 Wiley Periodicals, Inc. Complexity 21: 207-234, 2016 C1 [Thomas, John] Cognit Tools Ltd LLC, POB 695,255 North Ave, New Rochelle, NY 10801 USA. [Zaytseva, Anna] Univ Oslo, Postboks 1080 Blindern, N-0316 Oslo, Norway. C3 University of Oslo RP Thomas, J (corresponding author), Cognit Tools Ltd LLC, POB 695,255 North Ave, New Rochelle, NY 10801 USA. EM johntom@cogtools.com CR [Anonymous], MASS COLLABORATION E [Anonymous], 2011, Reinventing discovery Bar-Yam Y., 2002, Complexity rising: From human beings to human civilization, a complexity profile Barron B, 2016, COMPUT-SUPP COLLAB L, V16, P257, DOI 10.1007/978-3-319-13536-6_13 Binswanger H., 1990, BIOL BASIS TELEOLOGI Borner K., 2010, Atlas of Science: Visualizing what We Know Borner K., 2012, Springer Book in the Understanding Complex Systems Series Campbell T., 2009, INTERDISCIPLINARY RE Castellani B., SACS TOOLKIT E SOCIA Castellani B., MAP COMPLEXITY SCI Castellani B, 2009, UNDERST COMPLEX SYST, P1 Chase M, 2011, DIALOGUE-CAN PHILOS, V50, P511, DOI 10.1017/S0012217311000527 Chemistry World, 2014, INT CEL Chen C., 2013, Mapping scientific frontiers: The quest for knowledge visualization, DOI [10.1007/978-1-4471-5128-9, DOI 10.1007/978-1-4471-5128-9] Chen CM, 2001, COMPUTER, V34, P65, DOI 10.1109/2.910895 Collins A, 2016, COMPUT-SUPP COLLAB L, V16, P31, DOI 10.1007/978-3-319-13536-6_2 Cress U, 2016, COMPUT-SUPP COLLAB L, V16, P3, DOI 10.1007/978-3-319-13536-6_1 DeAngelis J., 2014, BUTTERFLY EFFECT UND Devedzic V., 2004, INT J ARTIFICIAL INT, V14, P165 Eimler SC, 2016, COMPUT-SUPP COLLAB L, V16, P285, DOI 10.1007/978-3-319-13536-6_14 Fairtlough G., 2005, The three ways of getting things done: Hierarchy, heterarchy and responsible autonomy in organizations Fischer G, 2016, COMPUT-SUPP COLLAB L, V16, P43, DOI 10.1007/978-3-319-13536-6_3 Fu W.T., 2016, MASS COLLABORATION E Ganter B., 1999, Formal concept analysis Haken Hermann., 1984, The science of structure: synergetics Hawkins Harriett., 1995, Strange Attractors: Literature, Culture and Chaos Theory Holland J. H., 2006, Journal of Systems Science and Complexity, V19, P1, DOI 10.1007/s11424-006-0001-z Holland J. H., 1989, INDUCTION PROCESSES Holland J. H., 1995, Hidden order Holland J.H., 1999, Emergence: From chaos to order Holland John H., COMPLEX ADAPTIVE SYS Jantsch E., 1947, Higher Education Quarterly, V1, P7, DOI [DOI 10.1111/J.1468-2273.1947.TB02067.X, 10.1111/j.1468-2273.1947.tb02067.x.] Kauffman S, 2006, BIOL PHILOS, V21, P501, DOI 10.1007/s10539-005-9003-9 Kauffman Stuart A., 1993 Kellert StephenH., 2008, Borrowed Knowledge: Chaos Theory and the Challenge of Learning Across Disciplines Kuhn T.S., 1962, The structure of scientific revolutions Licklider J.C.R., 1960, IRE Transactions on Human Factors in Electronics, P4, DOI [DOI 10.1109/THFE2.1960.4503259, 10.1109/THFE2.1960.4503259] LINSTONE HA, 1970, TECHNOL FORECAST SOC, V1, P263, DOI 10.1016/0099-3964(70)90028-1 Mann M.G, 1994, COMPLEXITY METAPHORS Morowitz H., 1995, SANTE FE I STUDIES S Morowitz HaroldJ., 1993, Entropy and the Magic Flute Pollack J., 2014, Emergence: Complexity Organization, V16, P74 Popper K. R., 2002, Conjectures and Refutations: The Growth of Scientific Knowledge Sokal A., 1999, FASHIONABLE NONSENSE Tabony J, 2006, BIOL CELL, V98, P603, DOI 10.1042/BC20050087 Thagard P., 1992, Conceptual revolution Thomas J., 1995, THESIS Thomas J, 2015, PROC CIRP, V34, P268, DOI 10.1016/j.procir.2015.08.010 Thorén H, 2013, J GEN PHILOS SCI, V44, P337, DOI 10.1007/s10838-013-9233-5 Vinokurova N.D., 2012, THESIS Weiss R., 1998, WASHINGTON POST Yang D., 2013, P 2013 NIPS DAT DRIV, V11, P14, DOI DOI 10.1109/APPEEC.2013.6837188 IEEE INTELL SYST APP, DOI DOI 10.1109/MIS.2010.131 NR 53 TC 11 Z9 12 U1 0 U2 25 PU WILEY-HINDAWI PI LONDON PA ADAM HOUSE, 3RD FL, 1 FITZROY SQ, LONDON, WIT 5HE, ENGLAND SN 1076-2787 EI 1099-0526 J9 COMPLEXITY JI Complexity PD NOV-DEC PY 2016 VL 21 IS S2 BP 207 EP 234 DI 10.1002/cplx.21799 PG 28 WC Mathematics, Interdisciplinary Applications; Multidisciplinary Sciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Mathematics; Science & Technology - Other Topics GA EC7ND UT WOS:000388325600020 DA 2024-09-05 ER PT J AU Briggs, DC AF Briggs, Derek C. TI Strive for Measurement, Set New Standards, and Try Not to Be Evil SO JOURNAL OF EDUCATIONAL AND BEHAVIORAL STATISTICS LA English DT Article; Early Access DE artificial intelligence; assessment; language comprehension/development; measurement; psychology; research methodology; validity/reliability AB I consider recent attempts to establish standards, principles, and goals for artificial intelligence (AI) through the lens of educational measurement. Distinctions are made between generative AI and AI-adjacent methods and applications of AI in formative versus summative assessment contexts. While expressing optimism about its possibilities, I caution that the examples of truly generative AI in educational testing have the potential to be overexaggerated, that efforts to establish standards for AI should complement the Standards for Educational and Psychological Testing and focus attention on the issues of fairness and social responsibility, and that scientific advance and transparency in the development and application of AI in educational assessment may be incompatible with the competitive marketplace that is funding this development. C1 [Briggs, Derek C.] Univ Colorado, Educ, Boulder, CO 80309 USA. C3 University of Colorado System; University of Colorado Boulder RP Briggs, DC (corresponding author), Univ Colorado, Educ, Boulder, CO 80309 USA. CR Ackerman TA, 2023, EDUC MEAS-ISSUES PRA, DOI 10.1111/emip.12581 [Anonymous], 2020, Relationship of the SAT/ACT to College Performance at the University of California [Anonymous], 2014, Standards for Educational Psychological Testing Attali Y, 2022, FRONT ARTIF INTELL, V5, DOI 10.3389/frai.2022.903077 Briggs D. C., 2024, Educational measurement, V5th ed Briggs D. C., 2021, Historical and conceptual foundations of measurement in the human sciences: Credos and controversies Briggs DC, 2022, J EDUC MEAS, V59, P398, DOI 10.1111/jedm.12350 Burstein J., 2023, The Duolingo English test responsible AI standards Cardwell R. L., 2023, Duolingo Research Report Cardwell RL, 2024, LANG TEST, V41, P192, DOI 10.1177/02655322231195027 Gierl M.J., 2013, Automatic Item Generation: Theory and Practice Giordani A, 2023, MEASUREMENT, V222, DOI 10.1016/j.measurement.2023.113598 International Test Commission and Association of Test Publishers, 2022, Guidelines for technology-based assessment Maris G., 2020, Duolingo Research Report, DRR-20-02 Russell M., 2023, Systemic Racism and Educational Measurement: Confronting Injustice in Testing, Assessment Swiecki Z., 2022, Computers and Education: Artificial Intelligence, V3, DOI DOI 10.1016/J.CAEAI.2022.100075 Wainer H., 2000, COMPUTERIZED ADAPTIV, DOI DOI 10.1002/9780470479216.CORPSY0213 Williamson D.M., 2006, AUTOMATED SCORING CO NR 18 TC 1 Z9 1 U1 6 U2 6 PU SAGE PUBLICATIONS INC PI THOUSAND OAKS PA 2455 TELLER RD, THOUSAND OAKS, CA 91320 USA SN 1076-9986 EI 1935-1054 J9 J EDUC BEHAV STAT JI J. Educ. Behav. Stat. PD 2024 APR 7 PY 2024 DI 10.3102/10769986241238479 EA APR 2024 PG 8 WC Education & Educational Research; Social Sciences, Mathematical Methods; Psychology, Mathematical WE Social Science Citation Index (SSCI) SC Education & Educational Research; Mathematical Methods In Social Sciences; Psychology GA NE5V5 UT WOS:001198799200001 DA 2024-09-05 ER PT C AU Rao, SG Rao, PV Rambabu, R Reddy, PCS AF Rao, Govinda S. Rao, Varaprasada P. Rambabu, R. Reddy, Chandra Sekahar P. BE Goswami, A TI A Novel Approach in Clustering Algorithm to Evaluate the Performance of Regression Analysis SO PROCEEDINGS OF THE 2018 IEEE 8TH INTERNATIONAL ADVANCE COMPUTING CONFERENCE (IACC 2018) SE IEEE International Advance Computing Conference LA English DT Proceedings Paper CT IEEE 8th International Advance Computing Conference (IACC) CY DEC 14-15, 2018 CL Bennett Univ, Greater Noida, INDIA HO Bennett Univ DE Modified K Means Clustering Algorithm; Regression Analysis; Cluster; SCImago; Bibliometric Index AB This paper, introduced a new methodology to raise the metric of a journal's impact. This method is depending on finding clusters from SC Imago database and creates datasets utilizing a modified k-means clustering algorithm. Farther, developing of linear regression analysis on these datasets is perplexed by seeing index values are dependent variables and citation parameters as independent variables result in assessing contributing factors to increase bibliometric index of any journal. next step, cluster quality metrics enforced to evaluate the perfectness of fit of the cluster such as homogeneity score, completeness score, V measure, accommodated rand score and silhouette coefficient. The output of modified k-means algorithm on a dataset of 1445 journals resulted in 3 clusters (k=3). Each cluster data clustered depending on the title. The regression analysis states that the publisher who desires to enhance his journal bibliometric indexes should deliberate the advice conferred, in this work, bring large number of paper submissions to their journal especially. Almost four indices which are of main importance in the publisher industry having been used this. The analysis ensure in strong advantage as the testing of output produced including regression parameters clarified with the identification of outliers by the inclusion of relative error calculation. Accordingly, seeing the suggestive features with increase or decrease in TD3, TC3, CD3, CD2 and RD values, the publisher would profit from raising their respective bibliometric index. C1 [Rao, Govinda S.; Rao, Varaprasada P.; Reddy, Chandra Sekahar P.] GRIET, CSE, Hyderabad, Telangana, India. [Rambabu, R.] RIET, CSE, Rajamahendravaram, India. C3 Gokaraju Rangaraju Institute of Engineering & Technology RP Rao, SG (corresponding author), GRIET, CSE, Hyderabad, Telangana, India. EM govind.griet@gmail.com; prasadp.griet@gmail.com; rambabureddy.rampatruni@gmail.com; pchandureddy@yahoo.com RI s, govinda rao/AAF-9720-2020; REDDY, P CHANDRA Sekhar/AAD-6388-2020; P, Varaprasada Rao/AAG-2920-2020 OI s, govinda rao/0000-0002-1331-1786; REDDY, P CHANDRA Sekhar/0000-0001-8666-2619; CR Abbasi A, 2011, J INFORMETR, V5, P594, DOI 10.1016/j.joi.2011.05.007 BASERGA R, 1995, CANCER RES, V55, P249 Bolin JH, 2014, J EDUC MEAS, V51, P335, DOI 10.1111/jedm.12050 Li Wei, 2008, IM SIGN PROC 2008 CI, V4 Patel VR, 2011, COMM COM INF SC, V250, P307 Rambabu R, 2016, J INFORM TECHNOLOGY, V5, P30 Rao S.G, 2015, I MANAGERS J COMPUTE, V3, P33 Rao S.G, 2015, INT J SCI ENG RES, V6, P726 Shafeeq A., 2012, P 2012 C INF COMP NE Su MS, 2001, IEEE T PATTERN ANAL, V23, P674, DOI 10.1109/34.927466 NR 10 TC 0 Z9 0 U1 0 U2 2 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA SN 2164-8263 BN 978-1-5386-6678-4 J9 IEEE INT ADV COMPUT PY 2018 BP 47 EP 52 PG 6 WC Computer Science, Theory & Methods WE Conference Proceedings Citation Index - Science (CPCI-S) SC Computer Science GA BO1AG UT WOS:000494356000008 DA 2024-09-05 ER PT J AU Wang, DL Guo, XW AF Wang, Daliang Guo, Xiaowen TI Research on Evaluation Model of Music Education Informatization System Based on Machine Learning SO SCIENTIFIC PROGRAMMING LA English DT Article AB Music education informatization system can promote music teaching; in addition, due to the characteristics of music disciplines such as the audiovisual nature of music, the influence of informatization on music teaching is self-evident. With the rapid development of the human ability to obtain information, machine learning algorithms have been widely used in various fields of scientific research and engineering, involving chemical production statistical process control, archeology text recognition, social and criminal investigation field fingerprint and image recognition, and genomic information research in the field of biomedicine. In order to correctly evaluate the music education information system based on machine learning, through the comparison of four models, it is concluded that the construction of the GBDT model is optimal. C1 [Wang, Daliang; Guo, Xiaowen] Henan Polytech, Mus Acad, Zhengzhou, Peoples R China. C3 Henan Polytechnic RP Wang, DL (corresponding author), Henan Polytech, Mus Acad, Zhengzhou, Peoples R China. EM daliangwang@hnzj.edu.cn; padoca@163.com CR Adams N, 2010, J R STAT SOC A STAT, V173, P274, DOI 10.1111/j.1467-985X.2009.00624_10.x Arel I, 2010, IEEE COMPUT INTELL M, V5, P13, DOI 10.1109/MCI.2010.938364 Chen GB, 2020, COMPUT COMMUN, V153, P538, DOI 10.1016/j.comcom.2020.02.033 Chen GB, 2021, ENTERP INF SYST-UK, V15, P935, DOI 10.1080/17517575.2020.1720828 Danyan X., 2013, INT C INF TECHN MAN, P391, DOI [10.1007/978-3-642-34910-2_44, DOI 10.1007/978-3-642-34910-2_44] Du J., 2014, CHINA ED TECHNOLOGY, V7 Duro DC, 2012, REMOTE SENS ENVIRON, V118, P259, DOI 10.1016/j.rse.2011.11.020 Guo T, 2008, PROCEEDINGS OF 2008 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS, VOLS 1-7, P3630, DOI 10.1109/ICMLC.2008.4621035 Hu S., 2012, MODERN DISTANCE ED R, V188, P6278 Huang B., 2018, CHINA ED TECHNOLOGY, V380, P69 Jordan MI, 2015, SCIENCE, V349, P255, DOI 10.1126/science.aaa8415 Lalit S., 2016, COMPUTING REV, V57, P237 Lemm S, 2011, NEUROIMAGE, V56, P387, DOI 10.1016/j.neuroimage.2010.11.004 Matoga Adrian, 2013, 2013 International Conference on High Performance Computing & Simulation (HPCS), P461, DOI 10.1109/HPCSim.2013.6641454 Rahman A., 2014, IJCTT, V10, DOI [10.14445/22312803/IJCTT-V10P137, DOI 10.14445/22312803/IJCTT-V10P137] Tag PM, 1996, J APPL METEOROL, V35, P714, DOI 10.1175/1520-0450(1996)035<0714:MLOMFF>2.0.CO;2 Wang HC, 2020, COMPUT COMMUN, V157, P336, DOI 10.1016/j.comcom.2020.04.039 Wang W., 2011, INFORM STUDIES THEOR Weimei Z., 2011, P 2011 NAT AC TEACH, P250 Yang DL, 2011, ADV MATER RES-SWITZ, V189-193, P823, DOI 10.4028/www.scientific.net/AMR.189-193.823 Zhou L., 2015, J XIAN POLY TECHNIC, V29, P772 Zubek J, 2015, PEERJ, V3, DOI 10.7717/peerj.1041 NR 22 TC 3 Z9 3 U1 0 U2 9 PU HINDAWI LTD PI LONDON PA ADAM HOUSE, 3RD FLR, 1 FITZROY SQ, LONDON, W1T 5HF, ENGLAND SN 1058-9244 EI 1875-919X J9 SCI PROGRAMMING-NETH JI Sci. Program. PD FEB 24 PY 2022 VL 2022 AR 9658735 DI 10.1155/2022/9658735 PG 12 WC Computer Science, Software Engineering WE Science Citation Index Expanded (SCI-EXPANDED) SC Computer Science GA ZZ0WL UT WOS:000772997100005 OA gold DA 2024-09-05 ER PT J AU RAITT, DI AF RAITT, DI TI RECALL AND PRECISION DEVICES IN INTERACTIVE BIBLIOGRAPHIC SEARCH AND RETRIEVAL-SYSTEMS SO ASLIB PROCEEDINGS LA English DT Article RP RAITT, DI (corresponding author), EUROPEAN SPACE AGCY,LIB & INFORMAT SERV,NL-2200 AG NOORDWIJK,NETHERLANDS. CR *AM SOC MET, 1976, THES MET TERMS *ENG IND INC, 1972, SUBJ HEAD ENGN *ENG JOINT COUNC, 1969, THES ENG SCI TERMS *I ELECT ENG, 1979, INSPEC THES 1971, TID5001 USAEC NTIS 1976, NASA THESAURUS, V1 1976, NASA THESAURUS, V2 1974, INIS THESAURUS NR 8 TC 5 Z9 5 U1 0 U2 1 PU ASLIB PI LONDON PA 20-24 OLD ST, LONDON, ENGLAND EC1V 9AP SN 0001-253X J9 ASLIB PROC JI Aslib Proc. PY 1980 VL 32 IS 7-8 BP 281 EP 301 DI 10.1108/eb050747 PG 21 WC Computer Science, Information Systems; Information Science & Library Science WE Social Science Citation Index (SSCI) SC Computer Science; Information Science & Library Science GA JZ642 UT WOS:A1980JZ64200001 DA 2024-09-05 ER PT J AU Qi, RH Wei, J Shao, Z Li, ZG Chen, H Sun, YH Li, SH AF Qi, Ruihua Wei, Jia Shao, Zhen Li, Zhengguang Chen, Heng Sun, Yunhao Li, Shaohua TI Multi-task learning model for citation intent classification in scientific publications SO SCIENTOMETRICS LA English DT Article DE Citation intent classification; Multi-task; Pretrained language model; Heterogeneous features AB Citations play a significant role in the evaluation of scientific literature and researchers. Citation intent analysis is essential for academic literature understanding. Meanwhile, it is useful for enriching semantic information representation for the citation intent classification task because of the rapid growth of publicly accessible full-text literature. However, some useful information that is readily available in citation context and facilitates citation intent analysis has not been fully explored. Furthermore, some deep learning models may not be able to learn relevant features effectively due to insufficient training samples of citation intent analysis tasks. Multi-task learning aims to exploit useful information between multiple tasks to help improve learning performance and exhibits promising results on many natural language processing tasks. In this paper, we propose a joint semantic representation model, which consists of pretrained language models and heterogeneous features of citation intent texts. Considering the correlation between citation intents, citation section and citation worthiness classification tasks, we build a multi-task citation classification framework with soft parameter sharing constraint and construct independent models for multiple tasks to improve the performance of citation intent classification. The experimental results demonstrate that the heterogeneous features and the multi-task framework with soft parameter sharing constraint proposed in this paper enhance the overall citation intent classification performance. C1 [Qi, Ruihua; Li, Zhengguang; Chen, Heng; Sun, Yunhao; Li, Shaohua] Dalian Univ Foreign Languages, Sch Software, Dalian, Liaoning, Peoples R China. [Qi, Ruihua; Wei, Jia; Shao, Zhen] Dalian Univ Foreign Languages, Res Ctr Language Intelligence, Dalian, Liaoning, Peoples R China. C3 Dalian University of Foreign Languages; Dalian University of Foreign Languages RP Qi, RH (corresponding author), Dalian Univ Foreign Languages, Sch Software, Dalian, Liaoning, Peoples R China.; Qi, RH (corresponding author), Dalian Univ Foreign Languages, Res Ctr Language Intelligence, Dalian, Liaoning, Peoples R China. EM rhqi@dlufl.edu.cn; lizhengguang2004@163.com FU This work is partially supported by grant from the Applied Basic Research Project of Liaoning Province (No. 2022JH2/101300270), the Scientific Research Innovation Team Project of Dalian University of Foreign Languages (No. 2016CXTD06) [2022JH2/101300270]; Applied Basic Research Project of Liaoning Province [2016CXTD06]; Scientific Research Innovation Team Project of Dalian University of Foreign Languages FX This work is partially supported by grant from the Applied Basic Research Project of Liaoning Province (No. 2022JH2/101300270), the Scientific Research Innovation Team Project of Dalian University of Foreign Languages (No. 2016CXTD06) CR Beltagy I, 2019, 2019 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING AND THE 9TH INTERNATIONAL JOINT CONFERENCE ON NATURAL LANGUAGE PROCESSING (EMNLP-IJCNLP 2019), P3615 Cohan A., 2019, STRUCTURAL SCAFFOLDS de Andrade C. M. V., 2020, P 8 INT WORKSH MIN S, P54 Devlin J, 2019, 2019 CONFERENCE OF THE NORTH AMERICAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS: HUMAN LANGUAGE TECHNOLOGIES (NAACL HLT 2019), VOL. 1, P4171 Dong C., 2011, P 5 INT JOINT C NAT, P623 GARFIELD E, 1972, SCIENCE, V178, P471, DOI 10.1126/science.178.4060.471 Hassan NR, 2019, J DOC, V75, P593, DOI 10.1108/JD-08-2018-0125 Hassan SU, 2018, SCIENTOMETRICS, V117, P1645, DOI 10.1007/s11192-018-2944-y Hu TZ, 2022, INT C ELECTR MACH SY, DOI 10.1109/ICEMS56177.2022.9983414 Jiang X, 2023, SEMIN OPHTHALMOL, V38, P744, DOI 10.1080/08820538.2023.2204939 Jochim C., 2012, P COLING 2012, P1343 Jurgens D., 2018, T ASSOC COMPUT LING, DOI 10.1162/tacl_a_00028 Lauscher A., 2021, MULTICITE MODELING R Lyu DQ, 2021, SCIENTOMETRICS, V126, P3243, DOI 10.1007/s11192-021-03908-z Maheshwari H., 2021, P 2 WORKSHOP SCHOLAR, P130 Oesterling A., 2021, MULTITASK LEARNING C PAICE CD, 1990, INFORM PROCESS MANAG, V26, P171, DOI 10.1016/0306-4573(90)90014-S Prester J, 2021, DECIS SUPPORT SYST, V140, DOI 10.1016/j.dss.2020.113432 Pride D, 2019, ACM-IEEE J CONF DIG, P329, DOI 10.1109/JCDL.2019.00055 Qayyum F, 2019, SCIENTOMETRICS, V118, P21, DOI 10.1007/s11192-018-2961-x Qi R. H., 2022, IN P 21 CHINESE NATL, P684 Qi RH, 2023, APPL INTELL, V53, P4145, DOI 10.1007/s10489-022-03684-0 Roman M, 2021, IEEE ACCESS, V9, P9982, DOI 10.1109/ACCESS.2021.3050547 Ruder Sebastian, 2017, arXiv, P1 Su X, 2019, ACM-IEEE J CONF DIG, P394, DOI 10.1109/JCDL.2019.00122 Teufel S, 2002, COMPUT LINGUIST, V28, P409, DOI 10.1162/089120102762671936 Teufel S., 2006, P C EMP METH NAT LAN, DOI 10.3115/1610075.1610091 Tuarob S, 2020, IEEE T KNOWL DATA EN, V32, P1881, DOI 10.1109/TKDE.2019.2913376 Valenzuela M., 2015, WORKSHOPS 20 9 AAAI Vaswani A, 2017, ADV NEUR IN, V30 Xiao X, 2013, 2013 CONFERENCE ON LASERS AND ELECTRO-OPTICS PACIFIC RIM (CLEO-PR) Yousif A, 2019, NEUROCOMPUTING, V335, P195, DOI 10.1016/j.neucom.2019.01.021 Zhang Y, 2021, LECT NOTES COMPUT SC, V13081, P363, DOI 10.1007/978-3-030-91560-5_26 Zhang Y, 2022, SCIENTOMETRICS, V127, P6557, DOI 10.1007/s11192-021-04242-0 Zhang Y, 2018, NATL SCI REV, V5, P30, DOI 10.1093/nsr/nwx105 Zhu XD, 2015, J ASSOC INF SCI TECH, V66, P408, DOI 10.1002/asi.23179 NR 36 TC 1 Z9 1 U1 6 U2 14 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0138-9130 EI 1588-2861 J9 SCIENTOMETRICS JI Scientometrics PD DEC PY 2023 VL 128 IS 12 BP 6335 EP 6355 DI 10.1007/s11192-023-04858-4 EA OCT 2023 PG 21 WC Computer Science, Interdisciplinary Applications; Information Science & Library Science WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Computer Science; Information Science & Library Science GA AH4D9 UT WOS:001097747800001 DA 2024-09-05 ER PT J AU Li, L Wang, JZ AF Li, Lin Wang, Juzhen TI Research on feature importance evaluation of wireless signal recognition based on decision tree algorithm in cognitive computing SO COGNITIVE SYSTEMS RESEARCH LA English DT Article DE Cognitive computing; Modulation recognition; Feature evaluation ID NETWORKS AB Cognitive computing is an important method in the field of wireless signal processing, analysis and recognition. How to select features to complete the cognitive computing quickly and effectively is an important role in real application. In this paper, three kinds of features are extracted from six communication signals: power spectrum entropy, singular spectrum entropy and wavelet energy entropy. And the importance of the features is evaluated. Box-diagram and recognition rate are used for the evaluation of single feature. The visual boundaries of feature classification are used to evaluate two features. Meanwhile, the confusion matrix and the visualization model of decision tree are given for more detailed evaluation. The evaluation results show that the combination of power spectrum entropy and singular spectrum entropy can get the best recognition performance. (C) 2018 Elsevier B.V. All rights reserved. C1 [Li, Lin] State Key Lab Complex Electromagnet Environm Effe, Luoyang 471003, Henan, Peoples R China. [Wang, Juzhen] Zhongxing Telecommun Equipment Corp ZTE Corp, 55 Keji Rd South, Shenzhen 518057, Peoples R China. RP Wang, JZ (corresponding author), Zhongxing Telecommun Equipment Corp ZTE Corp, 55 Keji Rd South, Shenzhen 518057, Peoples R China. EM wjzheu@163.com CR [Anonymous], INT J COMPUTER THEOR [Anonymous], INT J SIGNAL PROCESS [Anonymous], IJVDCS [Anonymous], 2018, IEEE T NEUR NET LEAR, DOI DOI 10.1109/TNNLS.2018.2827036 [Anonymous], 2018, MULTIMEDIA TOOLS APP, DOI DOI 10.1109/tfuzz.2018.2859904 [Anonymous], TR18292 STANF U CAL [Anonymous], SENSORS BASEL [Anonymous], 2018, WIRELESS PERSONAL CO [Anonymous], 2015, INT J ADV RES COMPUT [Anonymous], 2018, NATURE INSPIRED COMP Geronazzo A, 2018, BUILD ENVIRON, V128, P260, DOI 10.1016/j.buildenv.2017.11.030 Guo ZM, 2017, I COMP CONF WAVELET, P89, DOI 10.1109/ICCWAMTIP.2017.8301455 Jia M, 2016, IEEE WIREL COMMUN, V23, P96, DOI 10.1109/MWC.2016.1500108WC Li JC, 2014, 2014 2ND INTERNATIONAL CONFERENCE ON SYSTEMS AND INFORMATICS (ICSAI), P718, DOI 10.1109/ICSAI.2014.7009379 Li JC, 2015, KSII T INTERNET INF, V9, P4934, DOI 10.3837/tiis.2015.12.011 Li JH, 2015, SPRINGER THESES-RECO, P1, DOI 10.1007/978-3-662-46991-0_1 Lin Y., 2018, IEEE T RELIAB, P1 Lin Y, 2019, J SUPERCOMPUT, V75, P3010, DOI 10.1007/s11227-017-2216-2 Liu T, 2017, EURASIP J WIREL COMM, DOI 10.1186/s13638-017-0949-5 Nivedha R., 2015, INDIAN J SCI TECHNOL, V8 Quinlan J. R, 1983, Machine Learning: An Artificial Intelligence Approach, P463 Sathyadevan S, 2015, SMART INNOV SYST TEC, V31, P549, DOI 10.1007/978-81-322-2205-7_51 Shi CZ, 2018, PHYS COMMUN-AMST, V27, P99, DOI 10.1016/j.phycom.2018.02.001 Shi XH, 2018, ACM COMPUT SURV, V50, DOI 10.1145/3128571 Tang B, 2018, IEEE ACCESS, V6, P15713, DOI 10.1109/ACCESS.2018.2815741 Tu Y, 2018, CMC-COMPUT MATER CON, V55, P243, DOI 10.3970/cmc.2018.01755 Walenczykowska M, 2016, B POL ACAD SCI-TECH, V64, P257, DOI 10.1515/bpasts-2016-0028 Wang H, 2018, MOBILE NETW APPL, V23, P677, DOI 10.1007/s11036-018-1000-8 Wang H, 2017, 2017 FORUM ON COOPERATIVE POSITIONING AND SERVICE (CPGPS), P316, DOI 10.1109/CPGPS.2017.8075146 Wang H, 2017, FRACTALS, V25, DOI 10.1142/S0218348X17400084 Wu QD, 2017, MULTIMED TOOLS APPL, V76, P17179, DOI 10.1007/s11042-016-3760-0 Yang ZT, 2017, IEEE T VEH TECHNOL, V66, P5985, DOI 10.1109/TVT.2016.2617874 Zheng ZG, 2018, FUTURE GENER COMP SY, V88, P92, DOI 10.1016/j.future.2018.05.027 NR 33 TC 6 Z9 6 U1 0 U2 13 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS SN 2214-4366 EI 1389-0417 J9 COGN SYST RES JI Cogn. Syst. Res. PD DEC PY 2018 VL 52 BP 882 EP 890 DI 10.1016/j.cogsys.2018.09.007 PG 9 WC Computer Science, Artificial Intelligence; Neurosciences; Psychology, Experimental WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Computer Science; Neurosciences & Neurology; Psychology GA HB2GA UT WOS:000450854400089 DA 2024-09-05 ER PT C AU Kosch, O Szarucki, M AF Kosch, Oskar Szarucki, Marek BE Glanzel, W Heeffer, S Chi, PS Rousseau, R TI A model for Custom Bibliographic Databases Creation: Machine Learning Approach for Analogue Documents Inclusion SO 18TH INTERNATIONAL CONFERENCE ON SCIENTOMETRICS & INFORMETRICS (ISSI2021) SE Proceedings of the International Conference on Scientometrics and Informetrics LA English DT Proceedings Paper CT 18th International Conference on Scientometrics and Informetrics (ISSI) CY JUL 12-15, 2021 CL KU Leuven, ELECTR NETWORK HO KU Leuven ID SCOPUS; ERRORS/HORRORS; COVERAGE; SCIENCE; MUSEUM; WEB AB To fully take advantage of rigorous literature-based study (e.g., bibliometrics or systematic literature reviews), databases that enable the inclusion of all relevant documents are needed. As many currently available bibliographic databases inherit characteristics of the core-periphery model of scientific production or are unbalanced in their thematic structure, the need for a model for custom bibliographic databases creation procedure arises. At the same time, the adoption of machine learning is apparent throughout science, technology and business, as we learn how to maximise its usefulness. We investigate what model for custom bibliographic database could be adopted, especially taking into consideration the inclusion of analogue publications. Such documents need to be converted into digital form, hence we propose machine learning algorithms and then we explore their accuracy in analogue documents inclusion into the custom bibliographic database for the case of Polish management sciences methodology. We explore the application of neural networks for image preprocessing and optical character recognition, and subsequent application of conditional random fields to obtain a bibliographic database. Our results are highly suggestive and reveal the applicability of the proposed model consisting of database search and snowballing. C1 [Kosch, Oskar; Szarucki, Marek] Cracow Univ Econ, Rakowicka 27, PL-31510 Krakow, Poland. C3 Cracow University of Economics RP Kosch, O (corresponding author), Cracow Univ Econ, Rakowicka 27, PL-31510 Krakow, Poland. EM koscho@uek.krakow.pl; szaruckm@uek.krakow.pl RI Kosch, Oskar/AAD-3183-2021; Szarucki, Marek/T-2662-2018 OI Kosch, Oskar/0000-0003-2697-1393 CR Abadi M, 2016, PROCEEDINGS OF OSDI'16: 12TH USENIX SYMPOSIUM ON OPERATING SYSTEMS DESIGN AND IMPLEMENTATION, P265 Abrizah A, 2014, J ASSOC INF SCI TECH, V65, P2498, DOI 10.1002/asi.23145 Archambault É, 2006, SCIENTOMETRICS, V68, P329, DOI 10.1007/s11192-006-0115-z Baas J, 2020, QUANT SCI STUD, V1, P377, DOI 10.1162/qss_a_00019 Bar-Ilan J., 2017, CEUR WORKSHOP PROC, V1888 Birkle C, 2020, QUANT SCI STUD, V1, P363, DOI 10.1162/qss_a_00018 Botha L, 2011, INT J SOC RES METHOD, V14, P313, DOI 10.1080/13645579.2010.516644 Bradski G, 2000, DR DOBBS J, V25, P120 Bramer WM, 2017, SYST REV-LONDON, V6, DOI 10.1186/s13643-017-0644-y Breslin D, 2020, INT J MANAG REV, V22, P219, DOI 10.1111/ijmr.12234 Butler L, 2006, SCIENTOMETRICS, V66, P327, DOI 10.1007/s11192-006-0024-1 Cassell C, 2016, EUR MANAG J, V34, P453, DOI 10.1016/j.emj.2016.06.013 CeON, 2018, CEON CERMINE CONT EX Clarivate, WEB SCI MAST J LIST Cowhitt Thomas, 2020, Journal of Electronic Resources Librarianship, V32, P195, DOI 10.1080/1941126X.2020.1790952 De Moya-Anegón F, 2007, SCIENTOMETRICS, V73, P53, DOI 10.1007/s11192-007-1681-4 Echchakoui S, 2020, J MARK ANAL, V8, P165, DOI 10.1057/s41270-020-00081-9 Felizardo KR, 2016, ESEM'16: PROCEEDINGS OF THE 10TH ACM/IEEE INTERNATIONAL SYMPOSIUM ON EMPIRICAL SOFTWARE ENGINEERING AND MEASUREMENT, DOI 10.1145/2961111.2962630 Franceschini F, 2016, J INFORMETR, V10, P933, DOI 10.1016/j.joi.2016.07.003 Franceschini F, 2016, J INFORMETR, V10, P174, DOI 10.1016/j.joi.2015.11.006 Frandsen TF, 2008, J AM SOC INF SCI TEC, V59, P1570, DOI 10.1002/asi.20817 Hendricks G, 2020, QUANT SCI STUD, V1, P414, DOI 10.1162/qss_a_00022 Herzog C, 2020, QUANT SCI STUD, V1, P387, DOI 10.1162/qss_a_00020 inukshuk, 2020, INUKSHUK ANYSTYLE FA Jordan MI, 2015, SCIENCE, V349, P255, DOI 10.1126/science.aaa8415 Kawabe H, 2020, ADV INTELL SYST COMP, V1001, P322, DOI 10.1007/978-3-030-21248-3_24 kermitt2, 2020, KERMITT2 GROBID MACH Lee B, 2020, EUR MANAG REV, V17, P279, DOI 10.1111/emre.12398 Meester WJN, 2016, J INFORMETR, V10, P569, DOI 10.1016/j.joi.2016.04.011 Mourao E, 2020, INFORM SOFTWARE TECH, V123, DOI 10.1016/j.infsof.2020.106294 Peroni S, 2020, QUANT SCI STUD, V1, P428, DOI 10.1162/qss_a_00023 Prashanth P, 2019, PROCEEDINGS OF THE 2019 3RD INTERNATIONAL CONFERENCE ON COMPUTING METHODOLOGIES AND COMMUNICATION (ICCMC 2019), P1167, DOI [10.1109/iccmc.2019.8819725, 10.1109/ICCMC.2019.8819725] Quan N, 2016, 2016 IEEE INTERNATIONAL CONFERENCE ON INFORMATION AND AUTOMATION (ICIA), P579, DOI 10.1109/ICInfA.2016.7831888 Rebala G., 2019, INTRO MACHINE LEARNI, P1 Ronneberger O, 2015, LECT NOTES COMPUT SC, V9351, P234, DOI 10.1007/978-3-319-24574-4_28 Sile L, 2018, RES EVALUAT, V27, P310, DOI 10.1093/reseval/rvy016 Sivertsen G, 2012, SCIENTOMETRICS, V91, P567, DOI 10.1007/s11192-011-0615-3 Suddaby R, 2017, EUR MANAG J, V35, P285, DOI 10.1016/j.emj.2017.03.009 Bansal P, 2011, ACAD MANAGE J, V54, P233, DOI 10.5465/AMJ.2011.60262792 Tkaczyk D, 2018, ACM-IEEE J CONF DIG, P99, DOI 10.1145/3197026.3197048 Tkaczyk D, 2015, INT J DOC ANAL RECOG, V18, P317, DOI 10.1007/s10032-015-0249-8 Tunger D, 2018, SCIENTOMETRICS, V117, P2041, DOI 10.1007/s11192-018-2919-z van Raan A, 2019, SPRINGER HBK, P237, DOI 10.1007/978-3-030-02511-3_10 Waltman L, 2020, QUANT SCI STUD, V1, P360, DOI 10.1162/qss_e_00026 Wang KS, 2020, QUANT SCI STUD, V1, P396, DOI 10.1162/qss_a_00021 Web of Knowledge, J TITL ABBR NR 46 TC 0 Z9 0 U1 0 U2 1 PU INT SOC SCIENTOMETRICS & INFORMETRICS-ISSI PI LEUVEN PA KATHOLIEKE UNIV LEUVEN, FACULTEIT E T E W, DEKENSTRAAT 2, LEUVEN, B-3000, BELGIUM SN 2175-1935 BN 978-90-803282-2-8 J9 PRO INT CONF SCI INF PY 2021 BP 573 EP 584 PG 12 WC Computer Science, Interdisciplinary Applications; Information Science & Library Science WE Conference Proceedings Citation Index - Science (CPCI-S); Conference Proceedings Citation Index - Social Science & Humanities (CPCI-SSH) SC Computer Science; Information Science & Library Science GA BS3CO UT WOS:000709638700065 DA 2024-09-05 ER PT J AU Badia, G AF Badia, Giovanna TI Identifying "best bets" for searching in chemical engineering Comparing database content and performance for information retrieval SO JOURNAL OF DOCUMENTATION LA English DT Article DE Information retrieval; Searching; Comparative tests; Citation analysis; Online databases; Search recall ID BIBLIOGRAPHIC DATABASES; GOOGLE SCHOLAR; H-INDEX; COVERAGE; JOURNALS; EIGENFACTOR(TM); RECALL AB Purpose - Performing efficient literature searches and subscribing to the most comprehensive databases for interdisciplinary fields can be challenging since the literature is typically indexed in numerous databases to different extents. Comparing databases will help information professionals make appropriate choices when teaching, literature searching, creating online subject guides, and deciding which databases to renew when faced with fiscal challenges. The purpose of this paper is to compare databases for searching the chemical engineering literature. Design/methodology/approach - This paper compares journal indexing and search recall across seven databases that cover the chemical engineering literature in order to determine which database and database pair provide the most comprehensive coverage in this area. It also summarizes published, database comparison methods to aid information professionals in undertaking their own comparative assessments. Findings - SciFinder, Scopus, and Web of Science, listed alphabetically, were the leading databases for searching the chemical engineering literature. SciFinder-Scopus and SciFinder-Web of Science were the top two database pairs. No single database or pair provided 100 percent complete coverage of the literature examined. Searching a second database increased the recall of results by an average of 17.6 percent. Practical implications - The findings are useful since they identify "best bets" for performing an efficient search of the chemical engineering literature. Information professionals can also use the methods discussed to compare databases for any discipline or search topic. Originality/value - This paper builds on the previous literature by using a dual approach to compare the coverage of the chemical engineering literature across multiple databases. To the author's knowledge, comparing databases in the field of chemical engineering has not been reported in the literature thus far. C1 [Badia, Giovanna] McGill Univ, Schulich Lib Phys Sci Life Sci & Engn, Montreal, PQ, Canada. C3 McGill University RP Badia, G (corresponding author), McGill Univ, Schulich Lib Phys Sci Life Sci & Engn, Montreal, PQ, Canada. EM giovanna.badia@mcgill.ca RI Badia, Giovanna/A-5829-2009 OI Badia, Giovanna/0000-0003-1544-2728 CR Alpi Kristine M, 2006, J Med Libr Assoc, V94, pE107 [Anonymous], REFERENCE SERVICES R Barnett P., 2012, ISSUES SCI TECHNOLOG, V70 BAWDEN D, 1985, J CHEM INF COMP SCI, V25, P31, DOI 10.1021/ci00045a008 Bergman Elaine M. Lasda, 2011, Behavioral & Social Sciences Librarian, V30, P154, DOI 10.1080/01639269.2011.592803 Beyer FR, 2013, HEALTH INFO LIBR J, V30, P49, DOI 10.1111/hir.12009 BRADFORD SC, 1985, J INFORM SCI, V10, P176 Brettle AJ, 2001, B MED LIBR ASSOC, V89, P353 BROOKS K, 1980, DATABASE, V3, P38 BURTON RE, 1959, AM DOC, V10, P70, DOI 10.1002/asi.5090100109 Cavacini A, 2015, SCIENTOMETRICS, V102, P2059, DOI 10.1007/s11192-014-1506-1 Ciccone K, 2015, EVID BASED LIB INF P, V10, P34, DOI 10.18438/B86G6Q Delwiche F. A., 2010, MAPPING LIT NU UNPUB Elsevier, 2015, SCOPUS HAS ADDED 5MI Finch K., 2010, MISSISSIPPI LIB, V74, P9 Grabowsky A., 2015, ISSUES SCI TECHNOLOG, V2015 Grindlay DJC, 2012, J VET MED EDUC, V39, P404, DOI 10.3138/jvme.1111.109R Hanneke R, 2016, J MED LIBR ASSOC, V104, P109, DOI 10.3163/1536-5050.104.2.004 Hill B, 2009, J MED LIBR ASSOC, V97, P313, DOI 10.3163/1536-5050.97.4.017 Ingold C, 2007, LIBR TRENDS, V56, P449 Jacso P, 1997, ANNU REV INFORM SCI, V32, P231 JACSO P, 2001, CONTENT EVALUATION T Kawasaki J. L., 2002, Quarterly Bulletin of IAALD, V47, P33 Lehr J., 2015, THESIS McDonald S, 1999, Health Libr Rev, V16, P151 Michaleff ZA, 2011, PHYS THER, V91, P190, DOI 10.2522/ptj.20100116 Modak JM, 2008, CURR SCI INDIA, V94, P1265 Newton D, 2010, REF USER SERV Q, V49, P265, DOI 10.5860/rusq.49n3.265 PETERS HPF, 1988, INFORMETRICS 87 88, P175 Prathap G, 2011, CURR SCI INDIA, V100, P1276 Rashapov R., 2015, THESIS Reuters Thomson, 2016, HIST CIT IND Roberts D, 1999, TOP GERIATR REHABIL, V14, P10 Saracevic T., 2016, SYNTHESIS LECT INFOR, V8, pi Shultz M, 2007, J MED LIBR ASSOC, V95, P442, DOI 10.3163/1536-5050.95.4.442 SNOW B, 1984, ONLINE, V8, P37 Speare Marie, 2010, Science & Technology Libraries, V29, P1, DOI 10.1080/01942620802205561 Stirbu S, 2015, J ACAD LIBR, V41, P322, DOI 10.1016/j.acalib.2015.02.013 Stokes P, 2009, HEALTH INFO LIBR J, V26, P220, DOI 10.1111/j.1471-1842.2008.00822.x Tober M., 2011, Med. Laser Appl., V26, P139, DOI [10.1016/j.mla.2011.05.006, 10.1016/J.MLA.2011.05.006, DOI 10.1016/J.MLA.2011.05.006, 10.1016/j.mla.2011.05.006.] Todd J, 2006, ONLINE, V30, P35 Tremblay D., 2009, THESIS Veeder HB, 2011, ART DOC, V30, P54, DOI 10.1086/adx.30.1.27949568 Walters WH, 2003, J AM SOC INF SCI TEC, V54, P1305, DOI 10.1002/asi.10337 Walters WH, 2011, PORTAL-LIBR ACAD, V11, P971 Yin CY, 2011, CURR SCI INDIA, V100, P648 NR 46 TC 2 Z9 3 U1 0 U2 31 PU EMERALD GROUP PUBLISHING LTD PI BINGLEY PA HOWARD HOUSE, WAGON LANE, BINGLEY BD16 1WA, W YORKSHIRE, ENGLAND SN 0022-0418 EI 1758-7379 J9 J DOC JI J. Doc. PY 2018 VL 74 IS 1 BP 80 EP 98 DI 10.1108/JD-09-2016-0112 PG 19 WC Computer Science, Information Systems; Information Science & Library Science WE Social Science Citation Index (SSCI) SC Computer Science; Information Science & Library Science GA FR6QP UT WOS:000419191300005 DA 2024-09-05 ER PT J AU de Waal, A AF de Waal, Andre TI Evaluating High Performance the Evidence-Based Way: The Case of the Swagelok Transformers SO SAGE OPEN LA English DT Article DE high performance organizations; HPO framework; long-term research; North America; organizational performance ID ORGANIZATIONAL PERFORMANCE; SUBJECTIVE MEASURES; IMPACT; INNOVATION; EFFICIENCY; UNIVERSITY; RESOURCES; TURNOVER; GREAT; FOCUS AB Many of the publications on achieving high performance have been written by North American researchers and consultants, and the case companies they described originate mainly from the United States. However, there is a lack of long-term studies that subject the described techniques to rigorous evidence-based management research in North American companies, to test the ideas in practice over a period of time to evaluate their relevance to managerial practice. In this article, we evaluate the high performance organization (HPO) Framework, a scientifically validated technique for helping organizations become high performing, in the North American context. This framework evaluates the strengths and weaknesses of the internal organization of a company, using a questionnaire. This questionnaire was applied in 2013 at seven Swagelok locations in the United States and Canada. From the questionnaire improvement opportunities were identified on which the locations subsequently worked. In 2015, the questionnaire was repeated to evaluate the effects of these improvements on the locations' performance and to identify the most effective interventions. The study results show that the application of the HPO Framework had different outcomes depending on local circumstances. Some locations experienced a growth while other locations used the framework to battle the consequences of adverse economic circumstances. All locations agreed that the HPO Framework had been instrumental, in a positive way, to the development of their organization and its people. C1 [de Waal, Andre] HPO Ctr, Havenstr 29, NL-1211 KG Hilversum, Netherlands. RP de Waal, A (corresponding author), HPO Ctr, Havenstr 29, NL-1211 KG Hilversum, Netherlands. EM andredewaal@planet.nl CR [Anonymous], GLOBAL BUSINESS ORG [Anonymous], 2006, Hard facts, dangerous half-truths, total nonsense [Anonymous], 2013, Handbook of psychology: Research methods in psychology Axson D.A.J., 2010, The management mythbuster Baguley T, 2009, BRIT J PSYCHOL, V100, P603, DOI 10.1348/000712608X377117 Bhattacharya M., 2006, Journal of Managerial Issues, V18, P62 BOMMER WH, 1995, PERS PSYCHOL, V48, P587, DOI 10.1111/j.1744-6570.1995.tb01772.x Botner KA, 2015, J MARKETING RES, V52, P39, DOI 10.1509/jmr.13.0211 Bozarth C, 2001, INT J PROD RES, V39, P3237, DOI 10.1080/00207540110064929 Camfield L, 2014, EUR J DEV RES, V26, P1, DOI 10.1057/ejdr.2013.42 Chen CM, 2015, STRATEGIC MANAGE J, V36, P19, DOI 10.1002/smj.2199 Cohen J., 1977, STAT POWER ANAL BEHA Collins J., 2019, TURNING FLYWHEEL MON Collins JamesC., 1994, Built to Last: Successful Habits of Visionary Companies Dawes J., 1999, MARKETING B, V10, P65 De Waal A., 2006, Characteristics of a high performance organisation de Waal A. A, 2018, INT J PRODUCTION PER de Waal AA., 2012, What Makes a High Performance Organization: Five Validated Factors of Competitive Performance That Apply Worldwide de Waal A, 2017, MANAG RES REV, V40, P429, DOI 10.1108/MRR-03-2016-0058 de Waal A, 2015, J STRATEGY MANAG, V8, P87, DOI 10.1108/JSMA-07-2014-0065 de Waal A, 2011, INT J EMERG MARK, V6, P148, DOI 10.1108/17468801111119506 de Waal A, 2011, MEAS BUS EXCELL, V15, P4, DOI 10.1108/13683041111113213 DESS GG, 1984, STRATEGIC MANAGE J, V5, P265, DOI 10.1002/smj.4250050306 Dong JQ, 2016, J BUS RES, V69, P4358, DOI 10.1016/j.jbusres.2016.04.066 Dubois A, 2002, J BUS RES, V55, P553, DOI 10.1016/S0148-2963(00)00195-8 Edwards MT, 2013, J HEALTHC MANAG, V58, P369, DOI 10.1097/00115514-201309000-00011 Eesley C, 2017, RES POLICY, V46, P636, DOI 10.1016/j.respol.2017.01.010 Gomes P, 2017, INT J PRODUCT PERFOR, V66, P517, DOI 10.1108/IJPPM-03-2016-0057 Hale D, 2016, ACAD MANAGE J, V59, P906, DOI 10.5465/amj.2013.0546 Harrington M, 2015, MULTIVAR BEHAV RES, V50, P162, DOI 10.1080/00273171.2014.973989 Horgan J., 2003, IR J MANAG, V24, P26 Johnson PF, 2014, J PURCH SUPPLY MANAG, V20, P130, DOI 10.1016/j.pursup.2014.01.003 JOHNSTON MW, 1989, J BUS RES, V18, P141, DOI 10.1016/0148-2963(89)90032-5 Jones Mark R., 2014, Quality Management Journal, V21, P49 Kieser A, 2015, ACAD MANAG ANN, V9, P143, DOI 10.1080/19416520.2015.1011853 Kirby J, 2005, HARVARD BUS REV, V83, P30 Lawrence P., 1967, Organization and Environment: Managing Differentiation and Integration Mellat-Parast M, 2015, INT J PROD ECON, V164, P24, DOI 10.1016/j.ijpe.2015.02.027 Menard S., 2007, HDB LONGITUDINAL RES Niendorf B, 2008, ACAD MANAGE PERSPECT, V23, P13 Parnell JA, 2012, BRIT J MANAGE, V23, pS104, DOI 10.1111/j.1467-8551.2012.00815.x Peters T.J., 1982, SEARCH EXCELLENCE Ployhart RE, 2015, MORE STATISTICAL AND METHODOLOGICAL MYTHS AND URBAN LEGENDS, P85 Raynor ME, 2009, HARVARD BUS REV, V87, P18 Reichmann G, 2010, APPL ECON, V42, P311, DOI 10.1080/00036840701604511 Resnick BG, 2008, ACAD MANAGE PERSPECT, V23, P6 Robson C, 2002, REAL WORLD RES RECIP Saïd T, 2007, INT J HUM RESOUR MAN, V18, P2075, DOI 10.1080/09585190701695234 Saunders M., 2015, RES METHODS BUSINESS Shih T, 2016, IMP J, V10, P296, DOI 10.1108/IMP-08-2015-0044 Sirén C, 2016, LEADERSHIP QUART, V27, P653, DOI 10.1016/j.leaqua.2016.03.002 Tsikriktsis N, 2007, M&SOM-MANUF SERV OP, V9, P506, DOI 10.1287/msom.1060.0133 van Wingerden J, 2016, J MANAGE PSYCHOL, V31, P686, DOI 10.1108/JMP-03-2014-0086 Vij S, 2016, INT J PRODUCT PERFOR, V65, P603, DOI 10.1108/IJPPM-12-2014-0196 Waal A. A, 2017, J ADV MANAGEMENT RES, V14, P352 Wall TD, 2004, PERS PSYCHOL, V57, P95, DOI 10.1111/j.1744-6570.2004.tb02485.x Wallace J., 2012, SAM Advanced Management Journal, V77, P27 Wayhan VB, 2013, TOTAL QUAL MANAG BUS, V24, P171, DOI 10.1080/14783363.2012.746195 Whiston S.C., 1993, J CAREER DEV, V19, P175, DOI DOI 10.1007/BF01353276 Yeniyurt S, 2014, J ACAD MARKET SCI, V42, P291, DOI 10.1007/s11747-013-0360-7 NR 60 TC 2 Z9 3 U1 0 U2 2 PU SAGE PUBLICATIONS INC PI THOUSAND OAKS PA 2455 TELLER RD, THOUSAND OAKS, CA 91320 USA SN 2158-2440 J9 SAGE OPEN JI SAGE Open PD OCT 12 PY 2017 VL 7 IS 4 AR 2158244017736801 DI 10.1177/2158244017736801 PG 15 WC Social Sciences, Interdisciplinary WE Social Science Citation Index (SSCI) SC Social Sciences - Other Topics GA FJ7PE UT WOS:000412950400001 OA gold DA 2024-09-05 ER PT C AU Li, XL Xue, HA AF Li, Xueliang Xue, Haian BE Marcus, A Rosenzweig, E Soares, MM TI Cultivating Researcher-Sensibility in Novice Designers: Exploring Genre-Specific Heuristics for Game Evaluation in a Design Studio SO DESIGN, USER EXPERIENCE, AND USABILITY, DUXU 2023, PT II SE Lecture Notes in Computer Science LA English DT Proceedings Paper CT 12th International Conference on Design, User Experience, and Usability (DUXU) Held as Part of the 25th International Conference on Human-Computer Interaction (HCII) CY JUL 23-28, 2023 CL Copenhagen, DENMARK DE Design Education; Studio; Design Research Methodology; Design Evaluation AB This paper presents an eight-day design studio that teaches heuristic evaluation of games to third-year bachelor students at the School of Design, Southern University of Science and Technology. Through this course, students gain the first-hand experiences of developing heuristics for games through online survey and using them in idea generation and game evaluation. 13 students (working in groups of two or individually) developed 88 heuristics for 8 game genres by analyzing 349 quotes of game reviews collected from online. The heuristics were further developed into questionnaires and tested with invited 51 game players, followed up by post-interviews. The heuristics were also used as inspirational tools to help the students generate design ideas in an ideation exercise. Results of the students' work indicate usefulness of the heuristics as evaluative and inspirational tools. In the discussion, we reflected on the challenges encountered by the students over the course and how dealing with these challenges could reveal further directions of teaching research methods in HCI studios. C1 [Li, Xueliang] Southern Univ Sci & Technol, Sch Design, Chuangyuan Bldg 6,1088 Xueyuan Ave, Shenzhen, Guangdong, Peoples R China. [Xue, Haian] Delft Univ Technol, Fac Ind Design Engn, Landbergstr 15, NL-2628 CE Delft, Netherlands. C3 Southern University of Science & Technology; Delft University of Technology RP Li, XL (corresponding author), Southern Univ Sci & Technol, Sch Design, Chuangyuan Bldg 6,1088 Xueyuan Ave, Shenzhen, Guangdong, Peoples R China. EM lixl6@sustech.edu.cn; h.xue@tudelft.nl OI Xue, Haian/0000-0002-2351-9070 CR [Anonymous], 2003, Comput. Sci. Educ., DOI DOI 10.1076/CSED.13.3.191.14945 Bodker S, 1998, HUM-COMPUT INTERACT, V13, P107, DOI 10.1207/s15327051hci1302_1 Button G., 1994, REQUIREMENTS ENG SOC, P217 Churchill E.F., 2013, CHI '14: Extended abstracts on human factors in computing systems, P135 Cross N, 2007, BOARD INT RES DES, P41, DOI 10.1007/978-3-7643-8472-2_3 Davis Meredith., 2017, TEACHING DESIGN GUID Grandhi Sukeshini, 2015, Interactions, V22, P69, DOI 10.1145/2834811 Höök K, 2012, ACM T COMPUT-HUM INT, V19, DOI 10.1145/2362364.2362371 Jones J.C., 1980, Design Studies, V1, P172, DOI DOI 10.1016/0142-694X(80)90025-3 Korhonen H., 2009, INT C DES PLEAS PROD, VVolume 2009, P13 Lucero A., 2014, interactions, V21, P34, DOI [DOI 10.1145/2590973, https://doi.org/10.1145/2590973] Lucero A., 2013, Proceedings of the 6th International Conference on Designing Pleasurable Products and Interfaces, ACM, P221, DOI [10.1145/2513506.2513530, DOI 10.1145/2513506.2513530] Lucero A., 2010, Proceedings of the 3rd International Conference on Fun and Games, P28 Nagel J., 2014, Knowledge-A Very Short Introduction Nielsen Jakob., 1995, CONDUCT HEURISTIC EV, V1, P1 Petitmengin C., 2006, Phenomenol. Cogn. Sci, V5, P229, DOI [10.1007/s11097-006-9022-2, DOI 10.1007/S11097-006-9022-2] Pinelle D, 2008, CHI 2008: 26TH ANNUAL CHI CONFERENCE ON HUMAN FACTORS IN COMPUTING SYSTEMS VOLS 1 AND 2, CONFERENCE PROCEEDINGS, P1453 Plimmer B., P 11 ANN SIGCSE C IN, P53 Rajanen M., 2018, GamiFIN, P159 Rittel H., 1987, INT C PLANN DES THEO Rivard Kathryn., 2012, P DESIGNING INTERACT, P298, DOI DOI 10.1145/2317956.2318002 Schn D. A., 1987, Educating the reflexive practitioner Schon D.A., 1985, The Design Studio An Exploration of its Traditions and Potentials Strååt B, 2014, INT J GAMING COMPUT-, V6, P45, DOI 10.4018/ijgcms.2014100104 Vieira EAO, 2019, INFORM EDUC, V18, P427, DOI 10.15388/infedu.2019.20 Wilcox L, 2019, PROCEEDINGS OF THE 2019 ACM DESIGNING INTERACTIVE SYSTEMS CONFERENCE (DIS 2019), P871, DOI 10.1145/3322276.3322381 Xue H, 2019, DESIGN STUD, V63, P37, DOI 10.1016/j.destud.2019.03.001 NR 27 TC 0 Z9 0 U1 0 U2 0 PU SPRINGER INTERNATIONAL PUBLISHING AG PI CHAM PA GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND SN 0302-9743 EI 1611-3349 BN 978-3-031-35695-7; 978-3-031-35696-4 J9 LECT NOTES COMPUT SC PY 2023 VL 14031 BP 483 EP 496 DI 10.1007/978-3-031-35696-4_35 PG 14 WC Computer Science, Cybernetics; Computer Science, Software Engineering; Computer Science, Theory & Methods WE Conference Proceedings Citation Index - Science (CPCI-S) SC Computer Science GA BW8RY UT WOS:001206155200035 DA 2024-09-05 ER PT J AU Liang, K Wu, P Zhang, R AF Liang, Kun Wu, Peng Zhang, Rui TI Research on the Evaluation of Regional Scientific and Technological Innovation Capabilities Driven by Big Data SO SUSTAINABILITY LA English DT Article DE RSTI; big data; LDA; AHP-SMO ID DEVELOPMENT PROJECT-SELECTION; SYSTEM AB Scientific and technological innovation (STI) is an important internal driver of social and economic development. Reasonable evaluation of regional scientific and technological innovation (RSTI) capability helps discover shortcomings in the development of urban development and guides the allocation of scientific and technological resources and the formulation of policies to promote innovation. This paper analyzes new opportunities created by big data and artificial intelligence for the evaluation of RSTI capability, and based on this analysis, the collaborative evaluation schemes of multi-entity participation are investigated. In addition, considering the important value of unstructured data in evaluating STI, the Latent Dirichlet Allocation (LDA) topic model and sentiment analysis method are employed to analyze the construction of an evaluation indicator system that integrates scientific and technological news data. To fully utilize the respective advantages of human experts and machine learning in the field of complex issue evaluation, this paper proposes an RSTI capability evaluation model based on AHP-SMO human-machine fusion. This study promotes the integration of science and technology and economy and has theoretical and practical significance. C1 [Liang, Kun; Wu, Peng; Zhang, Rui] Anhui Univ, Sch Business, Hefei 230601, Peoples R China. C3 Anhui University RP Liang, K (corresponding author), Anhui Univ, Sch Business, Hefei 230601, Peoples R China. EM 17014@ahu.edu.cn; pengwu@ahu.edu.cn; 05073@ahu.edu.cn FU University Scientific Research Project of Anhui Province FX No Statement Available CR Alassery F, 2023, COMPUT SYST SCI ENG, V44, P859, DOI 10.32604/csse.2023.025796 Bai YC, 2022, INT J COOP INF SYST, V31, DOI 10.1142/S0218843021500040 BAKER NR, 1974, IEEE T ENG MANAGE, VEM21, P165, DOI 10.1109/TEM.1974.6448498 Barletta F, 2017, RES POLICY, V46, P1361, DOI 10.1016/j.respol.2017.05.007 Chang Y, 2020, IOP C SER EARTH ENV, V446, DOI 10.1088/1755-1315/446/2/022016 Dai YF, 2022, TECHNOL ECON DEV ECO, V28, P1313, DOI 10.3846/tede.2022.16988 Feller I, 2013, J TECHNOL TRANSFER, V38, P565, DOI 10.1007/s10961-012-9264-9 Furman JL, 2002, RES POLICY, V31, P899, DOI 10.1016/S0048-7333(01)00152-4 Gómez J, 2020, RES POLICY, V49, DOI 10.1016/j.respol.2020.104030 Gong C, 2021, MATH PROBL ENG, V2021, DOI 10.1155/2021/5528042 Gu WJ, 2023, FRONT PUBLIC HEALTH, V11, DOI 10.3389/fpubh.2023.1141757 Guo FR, 2020, IOP C SER EARTH ENV, V510, DOI 10.1088/1755-1315/510/3/032023 Hwangbo Wonju, 2021, Asian Journal of Innovation and Policy, V10, P39 Li HM, 2020, J SUPERCOMPUT, V76, P3283, DOI 10.1007/s11227-018-2542-z Li X, 2015, ADV INTEL SYS RES, V117, P1582 LIBERATORE MJ, 1987, IEEE T ENG MANAGE, V34, P12, DOI 10.1109/TEM.1987.6498854 Liu YF, 2020, IOP C SER EARTH ENV, V510, DOI 10.1088/1755-1315/510/3/032015 Luo Y, 2021, SUSTAINABILITY-BASEL, V13, DOI 10.3390/su132313495 Lv ZG, 2021, J INTELL FUZZY SYST, V40, P8371, DOI 10.3233/JIFS-189658 Minarikova E., 2015, P EUR C INN ENTR ECI Mohamed MMA, 2022, SUSTAINABILITY-BASEL, V14, DOI 10.3390/su14063586 Nelson R.R., 1987, Technology generation in Latin American manufacturing industries, P78 Ngo NDK, 2019, I C SERV SYST SERV M OAKEY R, 1988, RES POLICY, V17, P180, DOI 10.1016/0048-7333(88)90043-1 Otsuka K, 2012, APPL ECON LETT, V19, P1045, DOI 10.1080/13504851.2011.613743 Ou X., 2017, 7th International Conference on Education, Management, Information and Mechanical Engineering (EMIM 2017), P1430 Paredes-Frigolett H., 2014, Ranking the Performance of National Innovation Systems in the Iberian Peninsula and Latin America from a Neo-Schumpeterian Economics Perspective (FZID Discussion Papers No. 95-2014) Polednikova E., 2014, P ECMLG 2014 10 EUR Porter M., 1999, The New Challenge to America's Prosperity: Findings from the Innovation Index Ramirez-Hernandez Luis Fernando, 2019, Journal of Technology Management & Innovation, V14, P44 Raza A, 2023, IRRIG DRAIN, V72, P945, DOI 10.1002/ird.2838 Navarro-Machado VR, 2016, MEDICC REV, V18, P34, DOI 10.37757/MR2016.V18.N1-2.7 Rodríguez-Navarro A, 2022, SCIENTOMETRICS, V127, P2871, DOI 10.1007/s11192-022-04313-w SCHMIDT RL, 1992, IEEE T ENG MANAGE, V39, P189, DOI 10.1109/17.141276 Stankovic J.J., 2021, Multiple Criteria Decision Making, P69 TREVOR M, 1989, R&D MANAGE, V19, P278, DOI 10.1111/j.1467-9310.1989.tb00649.x Ture H, 2019, SOC INDIC RES, V142, P645, DOI 10.1007/s11205-018-1938-8 Wang JS, 2022, INT J ENV RES PUB HE, V19, DOI 10.3390/ijerph192416597 Wang XL, 2023, IEEE T ENG MANAGE, V70, P1808, DOI 10.1109/TEM.2021.3068989 Wang XT, 2020, J CLEAN PROD, V258, DOI 10.1016/j.jclepro.2020.120941 Xu HY, 2018, PROCEEDINGS OF THE 2018 IEEE INTERNATIONAL CONFERENCE ON ADVANCED MANUFACTURING (IEEE ICAM), P85, DOI 10.1109/AMCON.2018.8615038 Yang HC, 2022, TECHNOL FORECAST SOC, V178, DOI 10.1016/j.techfore.2022.121569 Yang YL, 2022, J INTELL FUZZY SYST, V43, P4911, DOI 10.3233/JIFS-220491 Zhang J, 2019, CHAOS SOLITON FRACT, V128, P25, DOI 10.1016/j.chaos.2019.07.036 Zhang JS, 2018, INT CONF SEMANT, P100, DOI 10.1109/SKG.2018.00021 Zhang R, 2022, ENERGY REP, V8, P425, DOI 10.1016/j.egyr.2021.11.282 NR 46 TC 0 Z9 0 U1 17 U2 17 PU MDPI PI BASEL PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND EI 2071-1050 J9 SUSTAINABILITY-BASEL JI Sustainability PD FEB PY 2024 VL 16 IS 4 AR 1379 DI 10.3390/su16041379 PG 22 WC Green & Sustainable Science & Technology; Environmental Sciences; Environmental Studies WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Science & Technology - Other Topics; Environmental Sciences & Ecology GA JJ0D2 UT WOS:001172670700001 OA gold DA 2024-09-05 ER PT J AU Mulhearn, TJ Watts, LL Todd, EM Medeiros, KE Connelly, S Mumford, MD AF Mulhearn, Tyler J. Watts, Logan L. Todd, E. Michelle Medeiros, Kelsey E. Connelly, Shane Mumford, Michael D. TI Validation and Use of a Predictive Modeling Tool: Employing Scientific Findings to Improve Responsible Conduct of Research Education SO ACCOUNTABILITY IN RESEARCH-ETHICS INTEGRITY AND POLICY LA English DT Article DE Education; ethics; evaluation; path model; RCR; responsible conduct of research; tool; training ID TEACHING MEDICAL-ETHICS; SENSEMAKING APPROACH; STUDENTS; INSTRUCTION AB Although recent evidence suggests ethics education can be effective, the nature of specific training programs, and their effectiveness, varies considerably. Building on a recent path modeling effort, the present study developed and validated a predictive modeling tool for responsible conduct of research education. The predictive modeling tool allows users to enter ratings in relation to a given ethics training program and receive instantaneous evaluative information for course refinement. Validation work suggests the tool's predicted outcomes correlate strongly (r=0.46) with objective course outcomes. Implications for training program development and refinement are discussed. C1 [Mulhearn, Tyler J.; Watts, Logan L.; Todd, E. Michelle; Connelly, Shane; Mumford, Michael D.] Univ Oklahoma, Dept Psychol, 201 Stephenson Pkwy,Ste 4100, Norman, OK 73019 USA. [Medeiros, Kelsey E.] Univ Texas Arlington, Dept Psychol, Arlington, TX 76019 USA. C3 University of Oklahoma System; University of Oklahoma - Norman; University of Texas System; University of Texas Arlington RP Mumford, MD (corresponding author), Univ Oklahoma, Dept Psychol, 201 Stephenson Pkwy,Ste 4100, Norman, OK 73019 USA. EM mmumford@ou.edu RI Watts, Logan L./I-5332-2019 OI Watts, Logan L./0000-0001-7629-0188; Medeiros, Kelsey/0000-0002-7388-3970 FU Office of Research Integrity [ORIIR140010-01-00] FX The project described was supported by grant number ORIIR140010-01-00 from the Office of Research Integrity. The contents of this publication are solely the responsibility of the authors and do not necessarily represent the official views of the Department of Health and Human Services or the Office of Research Integrity. CR Al-Jalahma Mariam, 2004, Educ Health (Abingdon), V17, P62, DOI 10.1080/13576280310001656187 [Anonymous], ACCOUNTABIL IN PRESS [Anonymous], ACCOUNTABIL IN PRESS [Anonymous], THESIS [Anonymous], SCI ENG ETH IN PRESS [Anonymous], ETHICS ASSESSM UNPUB [Anonymous], ETHICS BEHA IN PRESS [Anonymous], U KANSAS INITI UNPUB [Anonymous], J INFORM SYSTEMS ED Antes AL, 2014, ACCOUNT RES, V21, P50, DOI 10.1080/08989621.2013.822269 Austin KA, 2011, INSTR SCI, V39, P975, DOI 10.1007/s11251-010-9162-1 Barchi FH, 2013, BMC MED EDUC, V13, DOI 10.1186/1472-6920-13-14 Baykara ZG, 2015, NURS ETHICS, V22, P661, DOI 10.1177/0969733014542673 Bebeau M J, 1994, J Dent Educ, V58, P684 Cho KC, 2014, NURS ETHICS, V21, P484, DOI 10.1177/0969733013505310 Clarkeburn H, 2002, J MORAL EDUC, V31, P439, DOI 10.1080/0305724022000029662 COHEN J, 1992, PSYCHOL BULL, V112, P155, DOI 10.1037/0033-2909.112.1.155 Evans Bronwynne C, 2004, Nurs Educ Perspect, V25, P188 Frisch N C, 1987, J Nurs Educ, V26, P328 Gaul A L, 1987, J Nurs Educ, V26, P113 Goldie J, 2002, MED EDUC, V36, P489, DOI 10.1046/j.1365-2923.2002.01176.x GOLDMAN SA, 1979, J MED ETHICS, V5, P170, DOI 10.1136/jme.5.4.170 Goldstein I.L., 2002, TRAINING ORG NEEDS A, V4th Jurkiewicz CaroleL., 2002, Journal of Public Affairs Education, V8, P263 Kalichman M, 2014, ACCOUNT RES, V21, P68, DOI 10.1080/08989621.2013.822271 Kalichman MW, 2007, ACAD MED, V82, P870, DOI 10.1097/ACM.0b013e31812f77fe Kligyte V, 2008, SCI ENG ETHICS, V14, P251, DOI 10.1007/s11948-007-9048-z Major-Kincade T L, 2001, J Perinatol, V21, P161, DOI 10.1038/sj.jp.7200570 McCormack WT, 2014, ACCOUNT RES, V21, P34, DOI 10.1080/08989621.2013.822267 Mulhearn TJ, 2017, SCI ENG ETHICS, V23, P883, DOI 10.1007/s11948-016-9803-0 Mumford MD, 2015, ETHICS BEHAV, V25, P37, DOI 10.1080/10508422.2014.917417 Mumford M, 2008, ETHICS BEHAV, V18, P315, DOI 10.1080/10508420802487815 Myyry L, 2002, J MORAL EDUC, V31, P35, DOI 10.1080/03057240120111427 Powell ST, 2007, SCI ENG ETHICS, V13, P249, DOI 10.1007/s11948-007-9012-y Ramalingam S, 2014, J CLIN DIAGN RES, V8, pXC1, DOI 10.7860/JCDR/2014/8825.4561 Resnik DB, 2014, ACCOUNT RES, V21, P211, DOI 10.1080/08989621.2013.848800 Rozmus CL, 2015, NURS ETHICS, V22, P815, DOI 10.1177/0969733014547974 Schuh LA, 2004, NEUROLOGY, V62, P1897, DOI 10.1212/01.WNL.0000125252.41096.59 SELF DJ, 1992, MED EDUC, V26, P178, DOI 10.1111/j.1365-2923.1992.tb00151.x Steele LM, 2016, ACCOUNT RES, V23, P319, DOI 10.1080/08989621.2016.1186547 Steneck NH, 2013, SCIENCE, V340, P552, DOI 10.1126/science.1236373 Thirunavukarasu P, 2010, AM J SURG, V200, P665, DOI 10.1016/j.amjsurg.2010.08.002 Viswesvaran C, 1996, J APPL PSYCHOL, V81, P557, DOI 10.1037/0021-9010.81.5.557 Watts LL, 2017, ETHICS BEHAV, V27, P632, DOI 10.1080/10508422.2016.1247354 Watts LL, 2017, ETHICS BEHAV, V27, P351, DOI 10.1080/10508422.2016.1182025 Wilson WR, 2013, SCI ENG ETHICS, V19, P625, DOI 10.1007/s11948-011-9337-4 NR 46 TC 4 Z9 4 U1 0 U2 5 PU TAYLOR & FRANCIS INC PI PHILADELPHIA PA 530 WALNUT STREET, STE 850, PHILADELPHIA, PA 19106 USA SN 0898-9621 EI 1545-5815 J9 ACCOUNT RES JI Account. Res. PY 2017 VL 24 IS 4 BP 195 EP 210 DI 10.1080/08989621.2016.1274886 PG 16 WC Medical Ethics WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Medical Ethics GA EN0MS UT WOS:000395704700001 PM 28005407 DA 2024-09-05 ER PT J AU Basilio, MP Pereira, V de Oliveira, MWCM Neto, AFD de Moraes, OCR Siqueira, SCB AF Basilio, Marcio Pereira Pereira, Valdecy de Oliveira, Max William Coelho Moreira da Costa Neto, Antonio Fernandes de Moraes, Orlinda Claudia Rosa Siqueira, Samya Cotta Brandao TI Knowledge discovery in research on domestic violence: an overview of the last fifty years SO DATA TECHNOLOGIES AND APPLICATIONS LA English DT Article DE Domestic violence; Intimate partner violence; Bibliometric analysis; Latent Dirichlet allocation; Domestic abuse; Family violence AB Purpose The database of the Web of Science (WoS) was searched for publications from January 1945-May 7, 2020 on the topic of domestic violence in titles, abstracts and keywords. The references were analyzed using the R bibliometrix package, and abstracts were analyzed using latent Dirichlet allocation (LDA) with collapsed Gibbs sampling to obtain topics related to domestic violence. Design/methodology/approach The aim of the study is to explore and provide an overview of research carried out on domestic violence, in its various aspects, over the past fifty years. Findings As a result of the research, the authors can assert that in the last fifty years, 32,298 authors have produced 19,495 documents on the theme of policing strategy and related subjects in 111 countries. Scientific production in this area grows at a rate of 12.81 per year. The United States of America is the leading country in publications with 48.14%, followed by the United Kingdom with 7.57% and Australia with 6.05%. Regarding universities, the highlight is the University of California with 664 publications, followed by the University of London with 515 and the University of North Carolina with 484. As for journals, the highlight is the Journal of Interpersonal Violence, Journal of Family Violence and Violence Against Women, which account for more than 14.32% of all indexed literature. Regarding the authors, the highlight is Campbell J.C and Feder G. Probabilistic topic modeling revealed that 18% of the topics concentrate 90% of all tokens. Topic 1 accounts for 27.9% of the sample and conducts research related to intimate partner violence. Practical implications As a practical implication of using the LDA in the bibliographic review, we infer that its capacity to explore large masses of data allows the researcher to explore an infinitely greater amount than the traditional methods of systematic literature review. Originality/value The value of these studies is summarized in the presentation of an overview on the theme in the last fifty years, offering the opportunity for other researchers to use this research as a starting point for other analyses. C1 [Basilio, Marcio Pereira] Fed Fluminense Univ, Dept Prod Engn, Niteroi, RJ, Brazil. [Basilio, Marcio Pereira; da Costa Neto, Antonio Fernandes; Siqueira, Samya Cotta Brandao] Mil Police State Rio de Janeiro, Rio De Janeiro, Brazil. [da Costa Neto, Antonio Fernandes] Getulio Vargas Fdn, Rio De Janeiro, Brazil. C3 Universidade Federal Fluminense; Getulio Vargas Foundation RP Basilio, MP (corresponding author), Fed Fluminense Univ, Dept Prod Engn, Niteroi, RJ, Brazil.; Basilio, MP (corresponding author), Mil Police State Rio de Janeiro, Rio De Janeiro, Brazil. EM marcio_basilio@id.uff.br; valdecy.pereira@gmail.com; mwcoliveira@yahoo.com.br; antoniocostaneto@gmail.com; orlindamoraes@gmail.com; samyacotta@gmail.com RI Pereira, Valdecy/I-7493-2017; Basilio, Marcio Pereira/L-4363-2016 OI Pereira, Valdecy/0000-0003-0599-8888; Basilio, Marcio Pereira/0000-0002-9453-741X; Fernandes da Costa Neto, Antonio/0000-0002-6920-586X CR [Anonymous], 2009, Science of Science (Sci2) Tool Aria M, 2017, J INFORMETR, V11, P959, DOI 10.1016/j.joi.2017.08.007 Barabási AL, 2002, PHYSICA A, V311, P590, DOI 10.1016/S0378-4371(02)00736-7 Basilio MP, 2020, J MODEL MANAG, V15, P849, DOI 10.1108/JM2-10-2018-0166 Basilio MP, 2019, DATA TECHNOL APPL, V53, P333, DOI 10.1108/DTA-12-2018-0109 Blei DM, 2012, COMMUN ACM, V55, P77, DOI 10.1145/2133806.2133826 Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993 Borgatti SP, 2009, SCIENCE, V323, P892, DOI 10.1126/science.1165821 CALLON M, 1983, SOC SCI INFORM, V22, P191, DOI 10.1177/053901883022002003 Chan WC, 2017, STATUTE LAW REV, V38, P1, DOI 10.1093/slr/hmv032 Chen CM, 2006, J AM SOC INF SCI TEC, V57, P359, DOI 10.1002/asi.20317 Cheng B, 2014, EDUC RES REV-NETH, V11, P56, DOI 10.1016/j.edurev.2014.01.001 Cho H., 2016, CRIMINAL INVESTIGATI, P323 Cobo MJ, 2012, J AM SOC INF SCI TEC, V63, P1609, DOI 10.1002/asi.22688 Cobo MJ, 2011, J INFORMETR, V5, P146, DOI 10.1016/j.joi.2010.10.002 Coker AL, 2007, TRAUMA VIOLENCE ABUS, V8, P149, DOI 10.1177/1524838007301162 Dai SL, 2020, J CLEAN PROD, V262, DOI 10.1016/j.jclepro.2020.121168 Darling, 2011, THEORETICAL PRACTICA Das S, 2015, ECON REC, V91, P78, DOI 10.1111/1475-4932.12180 de la Hoz-Correa A, 2018, TOURISM MANAGE, V65, P200, DOI 10.1016/j.tourman.2017.10.001 de Santana IO, 2016, ARQ BRAS PSICOL APL, V68 Dervis H, 2019, J SCIENTOMETR RES, V8, P156, DOI 10.5530/jscires.8.3.32 Dutton D.G., 1981, VICTIMOLOGY, V6, P139 Elkan C.P., 2014, TEXT MINING TOPIC MO Emezue CN, 2021, J AGGRESS MALTREAT T, V30, P907, DOI 10.1080/10926771.2019.1685042 Esquivel-Santoveña EE, 2013, PARTN ABUSE, V4, P6, DOI 10.1891/1946-6560.4.1.6 Faleiros T.D., 2016, 409 U SAO PAUL I CIE Feinerer I, 2008, J STAT SOFTW, V25, P1 Fotheringham S, 2021, VIOLENCE AGAINST WOM, V27, P425, DOI 10.1177/1077801219897846 Gangoli G, 2018, J AGGRESS CONFL PEAC, V10, P251, DOI 10.1108/JACPR-09-2017-0323 García-Moreno C, 2009, INT J GYNECOL OBSTET, V106, P144, DOI 10.1016/j.ijgo.2009.03.053 Ghadimi P, 2019, RESOUR CONSERV RECY, V140, P72, DOI 10.1016/j.resconrec.2018.09.005 Gill N.S., 2019, INT J ADV TRENDS COM, V8, P795, DOI DOI 10.30534/IJATCSE/2019/71832019 González-Alcaide G, 2020, SCIENTOMETRICS, V123, P707, DOI 10.1007/s11192-020-03404-w Griffiths TL, 2004, P NATL ACAD SCI USA, V101, P5228, DOI 10.1073/pnas.0307752101 Grün B, 2011, J STAT SOFTW, V40, P1 Halket MM, 2014, J FAM VIOLENCE, V29, P35, DOI 10.1007/s10896-013-9555-4 Inamdar Z, 2021, J ENTERP INF MANAG, V34, P101, DOI 10.1108/JEIM-09-2019-0267 Jabeen S, 2021, J INTERPERS VIOLENCE, V36, pNP12481, DOI 10.1177/0886260519898442 Kartha, 2017, INT J COMMUNITY MED, V4, P1353, DOI [10.18203/2394-6040.ijcmph20171375, DOI 10.18203/2394-6040.IJCMPH20171375] Kee YH, 2019, MINDFULNESS, V10, P1474, DOI 10.1007/s12671-019-01136-4 León T, 2014, REV MED CHILE, V142, P1014, DOI 10.4067/S0034-98872014000800009 Leung XY, 2017, INT J HOSP MANAG, V66, P35, DOI 10.1016/j.ijhm.2017.06.012 MacGregor JCD, 2022, TRAUMA VIOLENCE ABUS, V23, P224, DOI 10.1177/1524838020933861 Hernández JM, 2020, MATHEMATICS-BASEL, V8, DOI 10.3390/math8040544 Mendonça CS, 2020, CIENC SAUDE COLETIVA, V25, P2247, DOI 10.1590/1413-81232020256.19332018 Merigó JM, 2017, OMEGA-INT J MANAGE S, V73, P37, DOI 10.1016/j.omega.2016.12.004 Perianes-Rodriguez A, 2016, J INFORMETR, V10, P1178, DOI 10.1016/j.joi.2016.10.006 Persson O., 2009, CELEBRATING SCHOLARL, V5, P9 Phan Xuan-Hieu, 2008, P 17 INT C WORLD WID, P91, DOI 10.1145/1367497.1367510 Ratten V, 2021, J FAM BUS MANAG, V11, P137, DOI 10.1108/JFBM-02-2020-0013 Ravikumar S, 2015, SCIENTOMETRICS, V102, P929, DOI 10.1007/s11192-014-1402-8 Robinson SR, 2021, TRAUMA VIOLENCE ABUS, V22, P1279, DOI 10.1177/1524838020916254 Rousseau D., 2012, The Oxford Handbook of Evidence Based Management, DOI DOI 10.1093/OXFORDHB/9780199763986.001.0001 Shah PS, 2010, J WOMENS HEALTH, V19, P2017, DOI 10.1089/jwh.2010.2051 Sievert C., 2014, P WORKSH INT LANG LE, P63, DOI [10.3115/v1/W14-3110, DOI 10.3115/V1/W14-3110, 10.3115/v1/w14-3110] Simon HA, 1955, Q J ECON, V69, P99, DOI 10.2307/1884852 Stark L, 2011, TRAUMA VIOLENCE ABUS, V12, P127, DOI 10.1177/1524838011404252 Stith SM, 2004, AGGRESS VIOLENT BEH, V10, P65, DOI 10.1016/j.avb.2003.09.001 Strong B., 2010, The Marriage and Family Experience: Intimate Relationships in a Changing Society, P447 Swan SC, 2008, VIOLENCE VICTIMS, V23, P301, DOI 10.1891/0886-6708.23.3.301 Turhan Z, 2021, TRAUMA VIOLENCE ABUS, V22, P856, DOI 10.1177/1524838019888554 van Eck NJ, 2014, J INFORMETR, V8, P802, DOI 10.1016/j.joi.2014.07.006 van Eck NJ, 2010, SCIENTOMETRICS, V84, P523, DOI 10.1007/s11192-009-0146-3 Wang C, 2020, OMEGA-INT J MANAGE S, V93, DOI 10.1016/j.omega.2019.08.005 Wang C, 2019, J CLEAN PROD, V206, P741, DOI 10.1016/j.jclepro.2018.09.172 West CM, 2016, J AGGRESS MALTREAT T, V25, P4, DOI 10.1080/10926771.2016.1116479 Yan EJ, 2012, J AM SOC INF SCI TEC, V63, P1313, DOI 10.1002/asi.22680 Zhang Y, 2019, MICROORGANISMS, V7, DOI 10.3390/microorganisms7080213 NR 69 TC 12 Z9 12 U1 2 U2 47 PU EMERALD GROUP PUBLISHING LTD PI BINGLEY PA HOWARD HOUSE, WAGON LANE, BINGLEY BD16 1WA, W YORKSHIRE, ENGLAND SN 2514-9288 EI 2514-9318 J9 DATA TECHNOL APPL JI Data Technol. Appl. PD AUG 5 PY 2021 VL 55 IS 4 BP 480 EP 510 DI 10.1108/DTA-08-2020-0179 EA MAR 2021 PG 31 WC Computer Science, Information Systems; Information Science & Library Science WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Computer Science; Information Science & Library Science GA TX9NL UT WOS:000625455900001 DA 2024-09-05 ER PT J AU Steinfeldt, C Mihaljevic, H AF Steinfeldt, Christian Mihaljevic, Helena TI A machine learning approach to quantify gender bias in collaboration practices of mathematicians SO FRONTIERS IN BIG DATA LA English DT Article DE collaboration networks; machine learning; gender in mathematics; regression-based analysis; authorship; scientific publishing; single-authored publications; coauthorship AB Collaboration practices have been shown to be crucial determinants of scientific careers. We examine the effect of gender on coauthorship-based collaboration in mathematics, a discipline in which women continue to be underrepresented, especially in higher academic positions. We focus on two key aspects of scientific collaboration-the number of different coauthors and the number of single authorships. A higher number of coauthors has a positive effect on, e.g., the number of citations and productivity, while single authorships, for example, serve as evidence of scientific maturity and help to send a clear signal of one's proficiency to the community. Using machine learning-based methods, we show that collaboration networks of female mathematicians are slightly larger than those of their male colleagues when potential confounders such as seniority or total number of publications are controlled, while they author significantly fewer papers on their own. This confirms previous descriptive explorations and provides more precise models for the role of gender in collaboration in mathematics. C1 [Steinfeldt, Christian; Mihaljevic, Helena] Univ Appl Sci, Hsch Tech & Wirtschaft Berlin, Dept Comp Sci Commun & Econ 4, Berlin, Germany. RP Mihaljevic, H (corresponding author), Univ Appl Sci, Hsch Tech & Wirtschaft Berlin, Dept Comp Sci Commun & Econ 4, Berlin, Germany. EM helena.mihaljevic@htw-berlin.de RI Mihaljevic, Helena/L-8928-2013 OI Mihaljevic, Helena/0000-0003-0782-5382 CR Allen L, 2014, NATURE, V508, P312, DOI 10.1038/508312a Barlow J, 2018, J APPL ECOL, V55, P1, DOI 10.1111/1365-2664.13040 Bertrand M, 2004, AM ECON REV, V94, P991, DOI 10.1257/0002828042002561 Boekhout H, 2021, arXiv Bozeman B, 2011, RES POLICY, V40, P1393, DOI 10.1016/j.respol.2011.07.002 Breiman L, 2001, MACH LEARN, V45, P5, DOI 10.1023/A:1010933404324 Caplar N, 2017, NAT ASTRON, V1, DOI 10.1038/s41550-017-0141 De Nicola A, 2021, SCIENTOMETRICS, V126, P3807, DOI 10.1007/s11192-021-03885-3 Ductor L., 2018, 856 QUEEN MAR U LOND, P36 Ductor L, 2023, REV ECON STAT, V105, P1366, DOI 10.1162/rest_a_01113 Ductor L, 2015, OXFORD B ECON STAT, V77, P385, DOI 10.1111/obes.12070 Epasto A, 2017, KDD'17: PROCEEDINGS OF THE 23RD ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, P145, DOI 10.1145/3097983.3098054 European Commission, 2018, She Figures 2018 Report Farber M, 2005, J INF SCI, V31, P62, DOI 10.1177/0165551505049261 FIZ Karlsruhe, 2022, AB ZBMATH OP Friedman JH, 2001, ANN STAT, V29, P1189, DOI 10.1214/aos/1013203451 Golbeck AL., 2018, NOTICES AMS, V65, P952 Gowers T., 2009, GOWERSS WEBLOG Grossman J. W., 2002, SIAM NEWS, V35, P485 Jadidi M, 2018, ADV COMPLEX SYST, V21, DOI 10.1142/S0219525917500114 Ryu BK, 2020, Arxiv, DOI arXiv:2001.00350 Kuld L, 2018, SCIENTOMETRICS, V114, P1207, DOI 10.1007/s11192-017-2588-3 Kwiek M, 2022, SCIENTOMETRICS, V127, P1697, DOI 10.1007/s11192-022-04308-7 Lindenlaub I., 2016, 807 QUEEN MAR U LOND Lundberg SM, 2017, ADV NEUR IN, V30 McKenzie R. H., 2012, CONDENSED CONCEPTS Mihaljevic H., 2020, GLOBAL APPROACH GEND, P83, DOI [10.5281/zenodo.3882609, DOI 10.5281/ZENODO.3882609] Mihaljevic H, 2019, FRONT BIG DATA, V2, DOI 10.3389/fdata.2019.00029 Mihaljevic-Brandt H., 2014, JOINT P MATHUI OPENM Mihaljevic-Brandt H, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0165367 Müller MC, 2017, SCIENTOMETRICS, V111, P1467, DOI 10.1007/s11192-017-2363-5 Olechnicka A., 2020, GEOGRAPHY SCI COLLAB Paul-Hus A, 2020, QUANT SCI STUD, V1, P582, DOI 10.1162/qss_a_00036 Pedregosa Fabian, 2011, The Journal of Machine Learning Research, V12, P2825 Pina DG, 2019, PLOS ONE, V14, DOI 10.1371/journal.pone.0212286 Price D. J. d. S., 1963, Little Science, Big Science Santamaría L, 2018, PEERJ COMPUT SCI, DOI 10.7717/peerj-cs.156 Sarigöl E, 2014, EPJ DATA SCI, V3, DOI 10.1140/epjds/s13688-014-0009-x Sarsons H, 2021, J POLIT ECON, V129, P101, DOI 10.1086/711401 Servia-Rodriguez S, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0114302 Vafeas N, 2010, EUROMED J BUS, V5, P332, DOI 10.1108/14502191011080845 West JD, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0066212 Wilson Robin J., 2002, CAMBRIDGE SCI MINDS, p[202, 202] Wuchty S, 2007, SCIENCE, V316, P1036, DOI 10.1126/science.1136099 Yamamoto J, 2022, PUBLICATIONS, V10, DOI 10.3390/publications10010010 Zeng XHT, 2016, PLOS BIOL, V14, DOI 10.1371/journal.pbio.1002573 NR 46 TC 1 Z9 1 U1 0 U2 4 PU FRONTIERS MEDIA SA PI LAUSANNE PA AVENUE DU TRIBUNAL FEDERAL 34, LAUSANNE, CH-1015, SWITZERLAND EI 2624-909X J9 FRONT BIG DATA JI Front. Big Data PD JAN 18 PY 2023 VL 5 AR 989469 DI 10.3389/fdata.2022.989469 PG 17 WC Computer Science, Information Systems; Computer Science, Interdisciplinary Applications; Multidisciplinary Sciences WE Emerging Sources Citation Index (ESCI) SC Computer Science; Science & Technology - Other Topics GA 8G0DS UT WOS:000920023500001 PM 36743404 OA gold, Green Published DA 2024-09-05 ER PT J AU Chen, X Zhang, QS Liu, RT Zhao, DK Li, HZ Pan, XD He, WL Shi, LL Guo, SX AF Chen, Xin Zhang, Qing-Song Liu, Ren-Tai Zhao, Du-Kun Li, Hong-Zhao Pan, Xu-Dong He, Wan-Li Shi, Le-Le Guo, Shao-Xuan TI Research on the impact of underground excavation metro on surface traffic safety and assessment method SO JOURNAL OF THE CHINESE INSTITUTE OF ENGINEERS LA English DT Article DE Ou; Yu-Chen; Risk assessment; underground engineering; traffic safety; ensemble learning ID TUNNEL CONSTRUCTION; SETTLEMENT; CHINA AB This study focuses on a problem that has been seriously troubled urban traffic managers: the impact of underground excavation metros on surface traffic safety during construction. In underground construc-tion, surface subsidence and road collapse due to concealed underground construction constantly occur, resulting in casualties property damage and seriously impairing normal urban road traffic. Urban road managers urgently need a quick, objective, and easy-to-use method for the early warning and prevention of such risks. Therefore, this study collates relevant accident cases that have occurred in China over the last 20 years and summarises the impact mechanisms of concealed underground works affecting surface road traffic capacity through a detailed study of natural factors, engineering geology, types of structures, and types of workmanship. Two indices, Rank(S-c) and Cr, are proposed to describe the impact of concealed underground works on surface traffic capacity, while an early warning method based on data on the impact of urban road capacity by concealed underground works is established using integrated learning methods and is well applied in practical projects. The results of this study are important for helping city managers quickly assess urban road traffic risks. C1 [Chen, Xin; Zhang, Qing-Song; Liu, Ren-Tai; Zhao, Du-Kun; Li, Hong-Zhao; Pan, Xu-Dong; Guo, Shao-Xuan] Shandong Univ, Geotech & Struct Engn Res Ctr, Jinan, Shandong, Peoples R China. [He, Wan-Li] Qingdao Metro Grp Co, Survey & Mapping Ctr, Qingdao, Shandong, Peoples R China. [Shi, Le-Le] Qingdao Survey & Mapping Inst, Operat Branch, Qingdao, Shandong, Peoples R China. C3 Shandong University RP Chen, X (corresponding author), Shandong Univ, Geotech & Struct Engn Res Ctr, Jinan, Shandong, Peoples R China. EM chenxinsdu@mail.sdu.edu.cn RI Zhou, Qi/JTT-3417-2023; pan, xu/KJL-1993-2024; Zhang, Qing/IZQ-5273-2023; Yang, Fei/JLM-3367-2023; Zhao, Xuan/JMR-2135-2023; GUO, SHAOXUAN/GWV-5154-2022; Wang, Xingyi/KHT-7171-2024; zhang, ly/JMB-7214-2023; qin, cheng/KHC-3344-2024; Yan, Miaochen/JLL-5061-2023 FU Key research and development project of Shandong ProvinceThe Major Science and Technology Innovation Project of Shandong Province [2019JZZY010427]; National Key research and development program Plan of China [2018YFB1600104,2020YFB1600504,2021YFB2600800] FX This work was supported by the Key research and development project of Shandong ProvinceThe Major Science and Technology Innovation Project of Shandong Province [2019JZZY010427]; The National Key research and development program Plan of China [2018YFB1600104,2020YFB1600504,2021YFB2600800]. CR Al-Omari RR, 2019, STUD GEOTECH MECH, V41, P102, DOI 10.2478/sgem-2019-0008 Ayeneh AL, 2022, INT J ENVIRON SCI TE, V19, P3061, DOI 10.1007/s13762-021-03427-7 Bo Y, 2022, TUNN UNDERGR SP TECH, V124, DOI 10.1016/j.tust.2022.104448 Chen WQ, 2022, SAFETY SCI, V147, DOI 10.1016/j.ssci.2021.105591 Choe S, 2020, SAFETY SCI, V124, DOI 10.1016/j.ssci.2019.104594 Cui YL, 2021, SYMMETRY-BASEL, V13, DOI 10.3390/sym13061048 Ding LY, 2014, SAFETY SCI, V62, P8, DOI 10.1016/j.ssci.2013.07.021 Gao MZ, 2018, GEOMECH GEOPHYS GEO, V4, P51, DOI 10.1007/s40948-017-0074-2 Golpasand MRB, 2019, TRANSP GEOTECH, V21, DOI 10.1016/j.trgeo.2019.100262 Guo YY, 2013, APPL MECH MATER, V353-356, P1588, DOI 10.4028/www.scientific.net/AMM.353-356.1588 He YY, 2021, GEOFLUIDS, V2021, DOI 10.1155/2021/6043807 Huang X, 2021, FRONT EARTH SC-SWITZ, V9, DOI 10.3389/feart.2021.795457 Jasechko S, 2014, WATER RESOUR RES, V50, P8845, DOI 10.1002/2014WR015809 Kang K, 2019, SAFETY SCI, V120, P226, DOI 10.1016/j.ssci.2019.06.034 Kianifar MA, 2022, J CHIN INST ENG, V45, P282, DOI 10.1080/02533839.2022.2034052 Kyriakidis M, 2012, SAFETY SCI, V50, P1535, DOI 10.1016/j.ssci.2012.03.004 Lan XD, 2022, ENVIRON EARTH SCI, V81, DOI 10.1007/s12665-022-10226-x Lee CJ, 2004, J CHIN INST ENG, V27, P1021, DOI 10.1080/02533839.2004.9670957 Li M, 2018, SAFETY SCI, V110, P418, DOI 10.1016/j.ssci.2018.03.026 Li XB, 2019, ADV CIV ENG, V2019, DOI 10.1155/2019/2724370 Lin DY, 2012, J CHIN INST ENG, V35, P285, DOI 10.1080/02533839.2012.655466 Liu QS, 2020, TUNN UNDERGR SP TECH, V106, DOI 10.1016/j.tust.2020.103595 Liu W, 2019, ADV CIV ENG, V2019, DOI 10.1155/2019/2045125 Liu W, 2018, SAFETY SCI, V105, P98, DOI 10.1016/j.ssci.2018.01.009 Lo HW, 2020, INT J CRIT INFR PROT, V28, DOI 10.1016/j.ijcip.2019.100336 Namli M, 2020, ARAB J GEOSCI, V13, DOI 10.1007/s12517-020-05456-x Ozcelik M, 2018, GEOTECH GEOL ENG, V36, P3437, DOI 10.1007/s10706-018-0545-4 Sarfarazi V, 2021, J MIN ENVIRON, V12, P785, DOI 10.22044/jme.2021.10846.2057 Shafiei S, 2022, TRANSP LETT, V14, P629, DOI 10.1080/19427867.2021.1916284 Song ZP, 2019, ADV CIV ENG, V2019, DOI 10.1155/2019/7328190 Sun G, 2021, ADV CIV ENG, V2021, DOI 10.1155/2021/9980837 Tang QL, 2021, ADV CIV ENG, V2021, DOI 10.1155/2021/8858874 Tu HL, 2020, TUNN UNDERGR SP TECH, V97, DOI 10.1016/j.tust.2019.103245 Wang F, 2016, SAFETY SCI, V87, P101, DOI 10.1016/j.ssci.2016.01.014 Wang HT, 2020, J CHIN INST ENG, V43, P681, DOI 10.1080/02533839.2020.1779615 Wang JX, 2021, APPL SCI-BASEL, V11, DOI 10.3390/app112110491 Wang SL, 2022, INT J CRIT INFR PROT, V38, DOI 10.1016/j.ijcip.2022.100536 Wang ZC, 2020, KSCE J CIV ENG, V24, P2345, DOI 10.1007/s12205-020-1958-1 Wu YK, 2011, KEY ENG MATER, V462-463, P732, DOI 10.4028/www.scientific.net/KEM.462-463.732 Xu N, 2021, SAFETY SCI, V138, DOI 10.1016/j.ssci.2021.105216 Yan HY, 2019, SAFETY SCI, V118, P583, DOI 10.1016/j.ssci.2019.05.042 Zeng S, 2019, ACTA GEOTECH, V14, P1643, DOI 10.1007/s11440-019-00806-w Zhang K, 2021, ADV CIV ENG, V2021, DOI 10.1155/2021/5523668 Zhang LM, 2014, SAFETY SCI, V63, P8, DOI 10.1016/j.ssci.2013.10.016 Zhang P, 2020, ARAB J GEOSCI, V13, DOI 10.1007/s12517-020-05880-z Zhang R, 2020, CAN GEOTECH J, V57, P423, DOI 10.1139/cgj-2018-0513 Zhang XL, 2016, SAFETY SCI, V84, P88, DOI 10.1016/j.ssci.2015.11.023 Zheng Z, 2020, ARAB J GEOSCI, V13, DOI 10.1007/s12517-020-06074-3 Zhou SH, 2020, INT J CRIT INFR PROT, V31, DOI 10.1016/j.ijcip.2020.100391 Zhou Z., 2021, SAFETY SCI, P139, DOI [10.1016/j.ssci.2821.105261, DOI 10.1016/J.SSCI.2821.105261] NR 50 TC 3 Z9 3 U1 13 U2 39 PU TAYLOR & FRANCIS LTD PI ABINGDON PA 2-4 PARK SQUARE, MILTON PARK, ABINGDON OR14 4RN, OXON, ENGLAND SN 0253-3839 EI 2158-7299 J9 J CHIN INST ENG JI J. Chin. Inst. Eng. PD APR 3 PY 2023 VL 46 IS 3 BP 267 EP 281 DI 10.1080/02533839.2023.2170928 EA FEB 2023 PG 15 WC Engineering, Multidisciplinary WE Science Citation Index Expanded (SCI-EXPANDED) SC Engineering GA 9G3LR UT WOS:000929529100001 DA 2024-09-05 ER PT C AU Dias, GP Gomes, H AF Dias, G. P. Gomes, H. BE Chova, LG Martinez, AL Torres, IC TI COMBINING RESEARCH AND LEARNING: AN EXAMPLE USING LOCAL E-GOVERNMENT EVALUATION SO 12TH INTERNATIONAL TECHNOLOGY, EDUCATION AND DEVELOPMENT CONFERENCE (INTED) SE INTED Proceedings LA English DT Proceedings Paper CT 12th International Technology, Education and Development Conference (INTED) CY MAR 05-07, 2018 CL Valencia, SPAIN DE research-based learning; active learning; higher education; e-government AB Between 2010 and 2015, the authors implemented a set of research-based learning activities in the context of two curricular units offered at the University of Aveiro in Portugal. Although initially designed with strictly pedagogical purposes and to familiarize students with research, these activities have formed the basis of several studies that have been published in journals and international conference proceedings. In general, the activities developed with students aimed at evaluating the maturity of municipal websites, under different perspectives of analysis, at different dates, and in different geographies, using content analysis and, as appropriate, maturity models or conceptual analysis. In this article, the motivations, methods, and results achieved are described. The experiment demonstrates that, in appropriate contexts, the link between teaching and learning and research can contribute to student motivation and the development of relevant learning and simultaneously be an added value for research. C1 [Dias, G. P.] Univ Aveiro, ESTGA GOVCOPP, Aveiro, Portugal. [Gomes, H.] Univ Aveiro, ESTGA IEETA, Aveiro, Portugal. C3 Universidade de Aveiro; Universidade de Aveiro RP Dias, GP (corresponding author), Univ Aveiro, ESTGA GOVCOPP, Aveiro, Portugal. RI Dias, Gonçalo Paiva/B-7461-2008; Gomes, Helder/JCD-7431-2023; Gomes, Helder/AAC-4495-2019 OI Dias, Gonçalo Paiva/0000-0002-8599-3798; CR [Anonymous], 2004, STUD HIGH EDUC, DOI DOI 10.1080/0307507042000287212 Clark BR, 1997, J HIGH EDUC, V68, P241, DOI 10.2307/2960040 Costa M., 2011, P 26 INT WORKSH STAT, P146 Dias G P., 2014, 2014 9th Iberian Conference on Information Systems and Technologies (CISTI), P1 Dias G. P., 2011, INF SYST TECHN CISTI, P1 Dias GP, 2013, ADV INTELL SYST, V206, P87, DOI 10.1007/978-3-642-36981-0_9 Healey M, 2005, J GEOGR HIGHER EDUC, V29, P183, DOI 10.1080/03098260500130387 Lambert C, 2009, PEDAGOG CULT SOC, V17, P295, DOI 10.1080/14681360903194327 Maciel G., 2016, J INFORM SYSTEMS ENG, V1, P91 Maciel G G., 2015, 2015 10th Iberian Conference on Information Systems and Technologies (CISTI), P1 Paiva Dias Goncalo, 2016, Electronic Government, V12, P301 Paiva Dias Goncalo, 2013, Electronic Government, V10, P284, DOI 10.1504/EG.2013.058785 NR 12 TC 0 Z9 0 U1 0 U2 2 PU IATED-INT ASSOC TECHNOLOGY EDUCATION & DEVELOPMENT PI VALENICA PA LAURI VOLPI 6, VALENICA, BURJASSOT 46100, SPAIN SN 2340-1079 BN 978-84-697-9480-7 J9 INTED PROC PY 2018 BP 5628 EP 5633 PG 6 WC Education & Educational Research WE Conference Proceedings Citation Index - Social Science & Humanities (CPCI-SSH) SC Education & Educational Research GA BL1ZA UT WOS:000448704000088 DA 2024-09-05 ER PT C AU Gao, LC Tang, Z Lin, XF AF Gao, Liangcai Tang, Zhi Lin, Xiaofan GP ACM TI CEBBIP: A Parser of Bibliographic Information in Chinese Electronic Books SO JCDL 09: PROCEEDINGS OF THE 2009 ACM/IEEE JOINT CONFERENCE ON DIGITAL LIBRARIES SE ACM-IEEE Joint Conference on Digital Libraries JCDL LA English DT Proceedings Paper CT 9th Annual International ACM/IEEE Joint Conference on Digital Libraries CY JUN 15-19, 2009 CL Austin, TX DE Metadata extraction; Digital Library; Chinese Electronic Book; Bibliography; Machine learning AB Bibliographic information is essential for many digital library applications, such as citation analysis, academic searching and topic discovery. And bibliographic data extraction has attracted a great deal of attention in recent years. In this paper, we address the problem of automatic extraction of bibliographic data in Chinese electronic book and propose a tool called CEBBIP. for the task, which includes three main systems: data preprocessing, data parsing and data postprocessing. In the data preprocessing system, the tool adopts a rules-based method to locate citation data in a book and to segment citation data into citation strings of individual referencing literature. And a learning-based approach, Conditional Random Fields (CRF), is employed to parse citation strings in the data parsing system. Finally, the tool takes advantage of document intrinsic local format consistency to enhance citation data segmentation and parsing through clustering techniques. CEBBIP has been used in a commercial E-book production system. Experimental results show that CEBBIP's precision rate is very high. More specially, adopting the document intrinsic local format consistency obviously improves the citation data segmenting and parsing accuracy. C1 [Gao, Liangcai; Tang, Zhi] Peking Univ, Inst Comp Sci & Technol, Beijing 100871, Peoples R China. C3 Peking University RP Gao, LC (corresponding author), Peking Univ, Inst Comp Sci & Technol, Beijing 100871, Peoples R China. EM gaoliangcai@icst.pku.edu.cn; tangzhi@icst.pku.edu.cn; xiaofan@vobileinc.com RI gao, liangcai/P-8338-2017 CR Besagni D, 2003, PROC INT CONF DOC, P384 Bollacker K. D., 1998, Proceedings of the Second International Conference on Autonomous Agents, P116, DOI 10.1145/280765.280786 Chen CC, 2008, 2008 22ND INTERNATIONAL WORKSHOPS ON ADVANCED INFORMATION NETWORKING AND APPLICATIONS, VOLS 1-3, P1175, DOI 10.1109/WAINA.2008.125 Cortez E, 2007, ACM-IEEE J CONF DIG, P215, DOI 10.1145/1255175.1255219 Day MY, 2007, DECIS SUPPORT SYST, V43, P152, DOI 10.1016/j.dss.2006.08.006 Gao L., 2008, P SPIE C DOC REC 15, p0B Han H, 2003, ACM-IEEE J CONF DIG, P37 Huang IA, 2004, LECT NOTES ARTIF INT, V3056, P539 Jain AK, 1999, ACM COMPUT SURV, V31, P264, DOI 10.1145/331499.331504 Li C., 2002, COMPUTER ENG APPL, V21, P189 [李朝光 Li Chaoguang], 2002, [计算机工程与应用, Computer Engineering and Application], V38, P189 Peng FC, 2004, HLT-NAACL 2004: HUMAN LANGUAGE TECHNOLOGY CONFERENCE OF THE NORTH AMERICAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, PROCEEDINGS OF THE MAIN CONFERENCE, P329 Seymore Kristie, 1999, AAAI 99 WORKSH MACH, P37 Takasu A, 2003, ACM-IEEE J CONF DIG, P49, DOI 10.1109/JCDL.2003.1204843 Wei W, 2007, PROC INT CONF DOC, P804 NR 15 TC 4 Z9 4 U1 0 U2 3 PU ASSOC COMPUTING MACHINERY PI NEW YORK PA 1515 BROADWAY, NEW YORK, NY 10036-9998 USA SN 2575-7865 EI 2575-8152 BN 978-1-60558-697-7 J9 ACM-IEEE J CONF DIG PY 2009 BP 73 EP 76 PG 4 WC Computer Science, Hardware & Architecture; Computer Science, Information Systems WE Conference Proceedings Citation Index - Science (CPCI-S) SC Computer Science GA BWY55 UT WOS:000295296700010 DA 2024-09-05 ER PT J AU Krange, I Segaran, M Gamlem, S Moltudal, S Engeness, I AF Krange, Ingeborg Segaran, Meerita Gamlem, Siv Moltudal, Synnove Engeness, Irina TI A Triple Challenge: Students' Identification, Interpretation, and Use of Individualized Automated Feedback in Learning to Write English as a Foreign Language. SO INTERACTION DESIGN AND ARCHITECTURES LA English DT Article DE Assessment for learning; sociocultural interpretation of learning and teaching; design-based research; interaction analysis; frequency analysis; artificial intelligence (AI); automatic essay assessment; junior high school ID SUPPORT; TEACHERS; QUALITY AB The aim of this study was to investigate eighth-grade students' assessment literacy and writing skills in English as a foreign language using an AI-based automated essay assessment tool (EAT). Data were gathered from a design-based research initiative where the EAT was designed, developed, and tested in naturalistic school settings. Fifty-six eighth-grade students wrote individual essays, for which they received automatic feedback. The feedback was discussed with their teachers and peers. Both the writing process and teacher and peer interactions were video recorded. The video data were analyzed using an interaction analysis. The improvements made on the essay based on the feedback logs registered by the EAT for each student's writing trajectory and the different versions of the essay were examined using frequency analyses. The findings demonstrate that automated essay assessment might be useful for fostering students' writing skills if teachers help students get started, identify errors, and share interpretations. C1 [Krange, Ingeborg; Segaran, Meerita; Engeness, Irina] Univ Coll Ostfold, Dept Pedag ICT & Learning, POB 700, NO-1757 Halden, Norway. [Gamlem, Siv; Moltudal, Synnove] Univ Coll Volda, Dept Humanities & Teacher Educ, POB 500, NO-6101 Volda, Norway. C3 Volda University College RP Krange, I (corresponding author), Univ Coll Ostfold, Dept Pedag ICT & Learning, POB 700, NO-1757 Halden, Norway. EM ingeborg.h.krange@hiof.no OI Gamlem, Siv M./0000-0002-6523-0486; Krange, Ingeborg/0009-0005-5946-0612; Kunna Segaran, Meerita/0000-0001-5592-038X; Engeness, Irina/0000-0001-5948-4992 FU Norwegian Research Council [326607] FX For their comments and helpful feedback at various stages of manuscript preparation, we thank Professor Halla Holmarsdottir, Oslo Metropolitan University; Associate Professor Sima Caspari-Sadeghi, Q stfold University College; and our research group RIDE (Research in Digital Education) . For their participation in this study, we thank the teachers and students. For the design and development of the essay assessment tool, we thank our interdisciplinary research team from Q stfold University College, Volda University College, Hypatia Learning, and Halden Municipality. For providing grant No. 326607, we thank the Norwegian Research Council. CR [Anonymous], 2003, Educational Researcher, DOI DOI 10.3102/0013189X032001005 Black P., 2012, Assessment and Learning, DOI [10.4135/9781446250808, DOI 10.4135/9781446250808] Black P, 2018, ASSESS EDUC, V25, P551, DOI 10.1080/0969594X.2018.1441807 Black P, 2009, EDUC ASSESS EVAL ACC, V21, P5, DOI 10.1007/s11092-008-9068-5 Brown A., 1992, J LEARN SCI, V2, P141, DOI [DOI 10.1207/S15327809JLS0202_2, https://doi.org/10.1207/s15327809jls0202_2] Collins A, 2004, J LEARN SCI, V13, P15, DOI 10.1207/s15327809jls1301_2 Danielsen AG, 2009, J EDUC RES, V102, P303, DOI 10.3200/JOER.102.4.303-320 Dasgupta J., 2019, New Paradigm of Industry 4.0: Internet of Things, Big Data & Cyber Physical Systems, P37 Engeness I, 2018, TECHNOL PEDAGOG EDUC, V27, P297, DOI 10.1080/1475939X.2017.1421259 Engeness I, 2016, NORD J DIGIT LIT, V11, P118, DOI 10.18261/issn.1891-943x-2016-02-03 Gamlem S. M., 2023, International encyclopedia of education, V13, P89, DOI [10.1016/j.tate.2019.06.024, DOI 10.1016/J.TATE.2019.06.024] Gamlem SM, 2013, ASSESS EDUC, V20, P150, DOI 10.1080/0969594X.2012.749212 Gamlem SM, 2015, TEACH DEV, V19, P461, DOI 10.1080/13664530.2015.1060254 Gamlem SM, 2014, CAMB J EDUC, V44, P75, DOI 10.1080/0305764X.2013.855171 Gao JM, 2021, INT J EMERG TECHNOL, V16, P322, DOI 10.3991/ijet.v16i11.19657 Graham E., 2018, The Cambridge handbook of instructional feedback, P145 Graham S, 2019, REV RES EDUC, V43, P277, DOI 10.3102/0091732X18821125 Graham S, 2012, J EDUC PSYCHOL, V104, P879, DOI 10.1037/a0029185 Han T, 2024, COMPUT ASSIST LANG L, V37, P961, DOI 10.1080/09588221.2022.2067179 Hannigan C, 2022, ASSESS EDUC, V29, P482, DOI 10.1080/0969594X.2022.2121911 Hattie JAC, 2009, VISIBLE LEARNING: A SYNTHESIS OF OVER 800 META-ANALYSES RELATING TO ACHIEVEMENT, P1 Hattie J, 2007, REV EDUC RES, V77, P81, DOI 10.3102/003465430298487 Hegelheimer V, 2016, CALICO J, V33, pI, DOI 10.1558/cj.v33i1.29251 Hopfenbeck TN, 2023, FRONT EDUC, V8, DOI 10.3389/feduc.2023.1270700 Jingxin G., 2020, Universal Journal of Educational Research, V8, P8334, DOI [10.13189/ujer.2020.082638, DOI 10.13189/UJER.2020.082638] Jordan B, 1995, J LEARN SCI, V4, P39, DOI 10.1207/s15327809jls0401_2 Link S, 2022, COMPUT ASSIST LANG L, V35, P605, DOI 10.1080/09588221.2020.1743323 Ludvigsen S, 2011, NEW PERSP LEARN INST, P105 Mercer N., 1995, Talk Amongst Teachers and Learners Moltudal S., 2020, Designs for Learning, V12, P13, DOI DOI 10.16993/DFL.138 Moltudal SH, 2022, FRONT EDUC, V7, DOI 10.3389/feduc.2022.830536 Munthe E., 2022, Digitalisering i grunnopplaering; kunnskap, trender og framtidig forskningsbehov. Digitalization in compulsory education, evidence, trends and future needs for research Price M., 2012, Assessment literacy: The foundation for improving student learning Qi P, 2020, Arxiv, DOI arXiv:2003.07082 Ranalli J, 2017, EDUC PSYCHOL-UK, V37, P8, DOI 10.1080/01443410.2015.1136407 Schildkamp K, 2020, INT J EDUC RES, V103, DOI 10.1016/j.ijer.2020.101602 Smith CD, 2013, ASSESS EVAL HIGH EDU, V38, P44, DOI 10.1080/02602938.2011.598636 Torkildsen L.G., 2016, Education Inquiry, V7, P27416, DOI DOI 10.3402/EDUI.V7.27416 Vattoy KD, 2022, EDUC INQ, DOI 10.1080/20004508.2022.2122202 Vattoy KD, 2020, CAMB J EDUC, V50, P371, DOI 10.1080/0305764X.2019.1707512 Wiliam D., 1998, ASSESS EDUC, V5, P7, DOI [DOI 10.1080/0969595980050102, 10.1080/0969595980050102] Wilson J., 2014, Learning Disabilities: A Contemporary Journal, V12, P93 NR 42 TC 1 Z9 1 U1 4 U2 4 PU INTERACTION DESIGN & ARCHITECTURES PI ROMA PA INTERACTION DESIGN & ARCHITECTURES, ROMA, 00000, ITALY SN 1826-9745 EI 2283-2998 J9 INTERACT DES ARCHIT JI Interact. Des. Archit. PD WIN PY 2023 IS 59 SI SI BP 37 EP 61 DI 10.55612/s-5002-059-001 PG 25 WC Education & Educational Research WE Emerging Sources Citation Index (ESCI) SC Education & Educational Research GA WC9L0 UT WOS:001252786900003 OA gold DA 2024-09-05 ER PT J AU Leiva, V Castro, C Vila, R Saulo, H AF Leiva, Victor Castro, Cecilia Vila, Roberto Saulo, Helton TI Unveiling patterns and trends in research on cumulative damage models for statistical and reliability analyses: Bibliometric and thematic explorations with data analytics SO CHILEAN JOURNAL OF STATISTICS LA English DT Article DE Bibliometrical analysis; Birnbaum-Saunders distribution; cumulative damage; fatigue life prediction; Gaussian inverse distribution; latent Dirichlet allocation ID BIRNBAUM-SAUNDERS DISTRIBUTION; TRUNCATED LIFE TESTS; ACCEPTANCE SAMPLING PLANS; FATIGUE DAMAGE; FAILURE; DISTRIBUTIONS; PREDICTION; DIAGNOSTICS; CORROSION; FAMILY AB This study comprehensively explores the research landscape within statistical and reliability studies, focusing on the Birnbaum-Saunders distribution, Gaussian inverse distribution, cumulative damage models, and fatigue life prediction. Using a combination of bibliometric analysis, network visualization, thematic mapping, and latent Dirichlet allocation, we analyze 465 articles from the ISI Web of Science database. These articles were selected for their relevance based on a targeted search strategy. Our analysis identifies key trends, collaboration networks, and emerging research themes. Notable growth in scholarly activity was observed from 2015 to 2021, with a peak around 2021, followed by a decline in the number of publications. Relevant contributions were noted from countries such as Brazil, Canada, Chile, China, Iran, Japan, and the United States. The thematic analysis of keywords reveals influential motor themes like the Birnbaum-Saunders distribution and expectation-maximization algorithm; specialized niche areas such as producer risk; emerging or declining themes like the generalized Birnbaum-Saunders distribution; and foundational themes including cumulative damage and fatigue life distributions. A cluster analysis states key focus areas, such as material durability and advanced statistical methods. Integrating latent Dirichlet allocation, six main topics are derived, capturing broad thematic structures. However, some niche areas do not align directly due to their specialized nature and limited cross-field impact. These findings map the current research on this thematic and suggest future research directions, including deeper exploration of niche themes, integration of advanced statistical methods in practical applications, and increased collaboration across diverse research areas to enhance the robustness and applicability of reliability models. C1 [Leiva, Victor] Pontificia Univ Catolica Valparaiso, Escuela Ingn Ind, Valparaiso, Chile. [Castro, Cecilia] Univ Minho, Ctr Math, Braga, Portugal. [Vila, Roberto; Saulo, Helton] Univ Brasilia, Dept Estat, Brasilia, DF, Brazil. C3 Pontificia Universidad Catolica de Valparaiso; Universidade do Minho; Universidade de Brasilia RP Leiva, V (corresponding author), Pontificia Univ Catolica Valparaiso, Escuela Ingn Ind, Valparaiso, Chile. EM victorleivasanchez@gmail.com RI Costa e Castro, Cecilia Maria Vasconcelos/ACU-7420-2022 OI Costa e Castro, Cecilia Maria Vasconcelos/0000-0001-9897-8186 FU FONDECYT, Chile [1200525]; National Agency for Research and Development (ANID) of the Chilean government under the Ministry of Science, Technology; Portuguese funds through the CMAT-Research Centre of Mathematics of University of Minho, Portugal [UIDB/00013/2020, UIDP/00013/2020]; Brazilian agency Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq) [309674/2020-4, 304716/2023-5] FX This research was partially supported by FONDECYT, Chile, grant number 1200525 (V.L.) , from the National Agency for Research and Development (ANID) of the Chilean government under the Ministry of Science, Technology, Knowledge, and Innovation; by Portuguese funds through the CMAT-Research Centre of Mathematics of University of Minho, Portugal, within projects UIDB/00013/2020 (https://doi.org/10.54499/UIDB/00013/2020) and UIDP/00013/2020 (https://doi.org/10.54499/UIDP/00013/2020) (C.C.) ; and funds provided by the Brazilian agency Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq) through grant numbers 309674/2020-4 and 304716/2023-5 (H.S.) . CR Aid A, 2011, MATER DESIGN, V32, P183, DOI 10.1016/j.matdes.2010.06.010 Arnold BC, 2023, REVSTAT-STAT J, V21, P1, DOI 10.57805/revstat.v21i1.396 Arnold BC, 2021, SYMMETRY-BASEL, V13, DOI 10.3390/sym13050762 Arun R, 2010, LECT NOTES ARTIF INT, V6118, P391 Azevedo C, 2012, COMPUT STAT DATA AN, V56, P3887, DOI 10.1016/j.csda.2012.05.007 Baklizi A, 2004, RISK ANAL, V24, P1453, DOI 10.1111/j.0272-4332.2004.00541.x Balakrishnan N, 2007, COMMUN STAT-SIMUL C, V36, P643, DOI 10.1080/03610910701207819 Balakrishnan N, 2019, APPL STOCH MODEL BUS, V35, P4, DOI 10.1002/asmb.2348 Balakrishnan N, 2011, J STAT PLAN INFER, V141, P2175, DOI 10.1016/j.jspi.2010.12.005 BHATTACHARYYA GK, 1982, IEEE T RELIAB, V31, P439, DOI 10.1109/TR.1982.5221421 Bhatti CR, 2010, MATH COMPUT SIMULAT, V80, P2062, DOI 10.1016/j.matcom.2010.01.011 BIRNBAUM ZW, 1969, J APPL PROBAB, V6, P328, DOI 10.2307/3212004 BIRNBAUM ZW, 1969, J APPL PROBAB, V6, P319, DOI 10.2307/3212003 BIRNBAUM ZW, 1968, SIAM J APPL MATH, V16, P637, DOI 10.1137/0116052 Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993 Blondel VD, 2008, J STAT MECH-THEORY E, DOI 10.1088/1742-5468/2008/10/P10008 Bourguignon M, 2022, APPL STOCH MODEL BUS, V38, P935, DOI 10.1002/asmb.2687 CALLON M, 1991, SCIENTOMETRICS, V22, P155, DOI 10.1007/BF02019280 Cao J, 2009, NEUROCOMPUTING, V72, P1775, DOI 10.1016/j.neucom.2008.06.011 Carcamo E., 2024, REVSTAT Statistical Journal Caro-Lopera FJ, 2012, J MULTIVARIATE ANAL, V104, P126, DOI 10.1016/j.jmva.2011.07.004 Chaves NL, 2019, CHIL J STAT, V10, P55 Cheng G, 1998, INT J FATIGUE, V20, P495, DOI 10.1016/S0142-1123(98)00018-8 Cordeiro GM, 2011, COMPUT STAT DATA AN, V55, P1445, DOI 10.1016/j.csda.2010.10.007 Costa E, 2021, SYMMETRY-BASEL, V13, DOI 10.3390/sym13060926 Durham SD, 1997, TECHNOMETRICS, V39, P34, DOI 10.2307/1270770 Fatemi A, 1998, INT J FATIGUE, V20, P9, DOI 10.1016/S0142-1123(97)00081-9 Fatemi A, 2011, INT J FATIGUE, V33, P948, DOI 10.1016/j.ijfatigue.2011.01.003 Fortunato S, 2010, PHYS REP, V486, P75, DOI 10.1016/j.physrep.2009.11.002 FREEMAN LC, 1979, SOC NETWORKS, V1, P215, DOI 10.1016/0378-8733(78)90021-7 Gallardo DI, 2024, STAT COMPUT, V34, DOI 10.1007/s11222-024-10458-w Girvan M, 2002, P NATL ACAD SCI USA, V99, P7821, DOI 10.1073/pnas.122653799 Gómez HW, 2009, STAT PROBABIL LETT, V79, P331, DOI 10.1016/j.spl.2008.08.014 Gómez-Déniz E, 2022, COMPUT APPL MATH, V41, DOI 10.1007/s40314-022-01875-6 Griffiths TL, 2004, P NATL ACAD SCI USA, V101, P5228, DOI 10.1073/pnas.0307752101 Grün B, 2011, J STAT SOFTW, V40, P1 Guiraud P, 2009, IEEE T RELIAB, V58, P152, DOI 10.1109/TR.2008.2011869 He MM, 2019, INT J ROCK MECH MIN, V114, P17, DOI 10.1016/j.ijrmms.2018.12.015 Kumar R, 2009, EARTHQ ENG STRUCT D, V38, P887, DOI 10.1002/eqe.873 Kundu D, 2008, COMPUT STAT DATA AN, V52, P2692, DOI 10.1016/j.csda.2007.09.021 Kundu D, 2010, J MULTIVARIATE ANAL, V101, P113, DOI 10.1016/j.jmva.2009.05.005 Kuroda M, 2002, INT J FATIGUE, V24, P699, DOI 10.1016/S0142-1123(01)00170-0 Leiva V., 2022, Bayesian Computation in Reliability and Survival Analysis, P41 Leiva V, 2008, ENVIRONMETRICS, V19, P235, DOI 10.1002/env.861 Leiva V, 2008, COMPUT STAT DATA AN, V52, P2079, DOI 10.1016/j.csda.2007.07.003 Leiva V, 2007, COMPUT STAT DATA AN, V51, P5694, DOI 10.1016/j.csda.2006.09.020 Leiva V, 2014, APPL STOCH MODEL BUS, V30, P115, DOI 10.1002/asmb.1944 Leiva V, 2014, STAT MODEL, V14, P21, DOI 10.1177/1471082X13494532 Lemonte AJ, 2007, COMPUT STAT DATA AN, V51, P4656, DOI 10.1016/j.csda.2006.08.016 Lio YL, 2010, COMMUN STAT-SIMUL C, V39, P119, DOI 10.1080/03610910903350508 Lv ZQ, 2015, INT J DAMAGE MECH, V24, P168, DOI 10.1177/1056789514524075 Marchant C, 2019, ENVIRONMETRICS, V30, DOI 10.1002/env.2551 Marchant C, 2013, REV ENVIRON CONTAM T, V223, P1, DOI 10.1007/978-1-4614-5577-6_1 Mazucheli J, 2021, SYMMETRY-BASEL, V13, DOI 10.3390/sym13040682 Mazucheli J, 2018, CHIL J STAT, V9, P47 Murakami Y, 2005, INT J FATIGUE, V27, P991, DOI 10.1016/j.ijfatigue.2004.10.009 Murzintcev N., 2016, R package version 0.2.0 NEWMAN M. E. J., 2010, Networks Ng HKT, 2003, COMPUT STAT DATA AN, V43, P283, DOI 10.1016/S0167-9473(02)00254-2 Park C, 2005, LIFETIME DATA ANAL, V11, P511, DOI 10.1007/s10985-005-5237-8 Park C, 2005, IEEE T RELIAB, V54, P530, DOI 10.1109/TR.2005.853278 Paula GA, 2012, APPL STOCH MODEL BUS, V28, P16, DOI 10.1002/asmb.887 Puentes R, 2021, MATHEMATICS-BASEL, V9, DOI 10.3390/math9060645 Rege K, 2017, INT J FATIGUE, V98, P234, DOI 10.1016/j.ijfatigue.2017.01.039 Reyes J, 2021, MATHEMATICS-BASEL, V9, DOI 10.3390/math9161891 RIECK JR, 1991, TECHNOMETRICS, V33, P51, DOI 10.2307/1269007 Risitano A, 2013, INT J FATIGUE, V48, P214, DOI 10.1016/j.ijfatigue.2012.10.020 Sánchez L, 2021, APPL STOCH MODEL BUS, V37, P53, DOI 10.1002/asmb.2556 Sanhueza A, 2008, COMMUN STAT-THEOR M, V37, P645, DOI 10.1080/03610920701541174 Shang DG, 1999, INT J FATIGUE, V21, P187, DOI 10.1016/S0142-1123(98)00069-3 Shi P, 2001, ENG FRACT MECH, V68, P1493, DOI 10.1016/S0013-7944(01)00041-8 Tang J, 2014, PR MACH LEARN RES, V32 Yao WX, 2000, COMPOS SCI TECHNOL, V60, P59, DOI 10.1016/S0266-3538(99)00100-1 Zhu SP, 2019, INT J FATIGUE, V128, DOI 10.1016/j.ijfatigue.2019.105185 NR 74 TC 2 Z9 2 U1 1 U2 1 PU SOC CHILENA ESTADISTICA-SOCHE PI SANTIAGO PA CASILLA 306, CORREO 22, SANTIAGO, 00000, CHILE SN 0718-7912 EI 0718-7920 J9 CHIL J STAT JI Chil. J. Stat. PD JUN PY 2024 VL 15 IS 1 BP 81 EP 109 DI 10.32372/chjs.15-01-05 PG 29 WC Statistics & Probability WE Emerging Sources Citation Index (ESCI) SC Mathematics GA XZ9N1 UT WOS:001265620900005 DA 2024-09-05 ER PT J AU Weinand, JM Sörensen, K San Segundo, P Kleinebrahm, M McKenna, R AF Weinand, Jann Michael Sorensen, Kenneth San Segundo, Pablo Kleinebrahm, Max McKenna, Russell TI Research trends in combinatorial optimization SO INTERNATIONAL TRANSACTIONS IN OPERATIONAL RESEARCH LA English DT Article DE combinatorial optimization; bibliometric analysis; metaheuristics; genetic algorithms; exact algorithms; OR in energy ID HARMONY SEARCH ALGORITHM; ANT COLONY OPTIMIZATION; BIG DATA; METAHEURISTICS; NETWORK; SYSTEM; UNCERTAINTY; DESIGN; MODELS; COMPUTATION AB Real-world problems are becoming highly complex and therefore have to be solved with combinatorial optimization (CO) techniques. Motivated by the strong increase in publications on CO, 8393 articles from this research field are subjected to a bibliometric analysis. The corpus of literature is examined using mathematical methods and a novel algorithm for keyword analysis. In addition to the most relevant countries, organizations, and authors as well as their collaborations, the most pertinent CO problems, solution methods, and application areas are presented. Publications on CO focus mainly on the development or enhancement of metaheuristics like genetic algorithms. The increasingly problem-oriented studies deal particularly with real-world applications within the energy sector, production sector, or data management, which are of increasing relevance due to various global developments. The demonstration of global research trends in CO can support researchers in identifying the relevant issues regarding this expanding and transforming research area. C1 [Weinand, Jann Michael; Kleinebrahm, Max] Karlsruhe Inst Technol, Inst Ind Prod, Chair Energy Econ, D-76131 Karlsruhe, Germany. [Sorensen, Kenneth] Univ Antwerp, Dept Engn Management, B-2000 Antwerp, Belgium. [San Segundo, Pablo] Univ Politecn Madrid, Ctr Automat & Robot, Madrid 28040, Spain. [McKenna, Russell] Univ Aberdeen, Sch Engn, Chair Energy Transit, Aberdeen AB24 3FX, Scotland. C3 Helmholtz Association; Karlsruhe Institute of Technology; University of Antwerp; Consejo Superior de Investigaciones Cientificas (CSIC); Universidad Politecnica de Madrid; CSIC-UPM - Centro de Automatica y Robotica; University of Aberdeen RP Weinand, JM (corresponding author), Karlsruhe Inst Technol, Inst Ind Prod, Chair Energy Econ, D-76131 Karlsruhe, Germany. EM jann.weinand@kit.edu; kenneth.sorensen@uantwerpen.be; pablo.sansegundo@upm.es; max.kleinebrahm@kit.edu; russell.mckenna@abdn.ac.uk RI Weinand, Jann Michael/AAH-4400-2020; Weinand, Jann/GNH-5511-2022 OI Kleinebrahm, Max/0000-0002-6957-2379; Weinand, Jann Michael/0000-0003-2948-876X; McKenna, Russell/0000-0001-6758-482X FU Spanish Ministry of Science, Innovation, and Universities through the project COGDRIVE [DPI2017-86915-C3-3-R]; Projekt DEAL FX This work has been partially funded by the Spanish Ministry of Science, Innovation, and Universities through the project COGDRIVE (DPI2017-86915-C3-3-R). In this context, we would also like to thank the Karlsruhe Institute of Technology.; Open access funding enabled and organized by Projekt DEAL. CR Abido MA, 2002, INT J ELEC POWER, V24, P563, DOI 10.1016/S0142-0615(01)00067-9 Akiba T, 2016, THEOR COMPUT SCI, V609, P211, DOI 10.1016/j.tcs.2015.09.023 Alharbi F, 2019, EXPERT SYST APPL, V120, P228, DOI 10.1016/j.eswa.2018.11.029 Amen M, 2006, EUR J OPER RES, V168, P747, DOI 10.1016/j.ejor.2004.07.026 [Anonymous], 2012, GENETIC ALGORITHMS S [Anonymous], 2013, Encyclopedia of Operations Research and Management Science, DOI DOI 10.1007/978-1-4419-1153-7 [Anonymous], 2010, The Design of Approximation Algorithms Aria M, 2017, J INFORMETR, V11, P959, DOI 10.1016/j.joi.2017.08.007 Barr R. S., 1995, Journal of Heuristics, V1, P9, DOI 10.1007/BF02430363 Becker C, 2009, EUR J OPER RES, V199, P359, DOI 10.1016/j.ejor.2008.11.051 Ben Meskina S, 2018, INFORM SCIENCES, V454, P73, DOI 10.1016/j.ins.2018.04.010 Bengio Y, 2021, EUR J OPER RES, V290, P405, DOI 10.1016/j.ejor.2020.07.063 Bidhandi HM, 2009, EUR J OPER RES, V198, P121, DOI 10.1016/j.ejor.2008.07.034 Biel K, 2016, COMPUT IND ENG, V101, P243, DOI 10.1016/j.cie.2016.08.021 BJORNDAL MH, 1995, EUR J OPER RES, V83, P253, DOI 10.1016/0377-2217(95)00005-B Blum C, 2003, ACM COMPUT SURV, V35, P268, DOI 10.1145/937503.937505 Blum C, 2005, PHYS LIFE REV, V2, P353, DOI 10.1016/j.plrev.2005.10.001 Blum C, 2011, APPL SOFT COMPUT, V11, P4135, DOI 10.1016/j.asoc.2011.02.032 Boykov Y, 2004, IEEE T PATTERN ANAL, V26, P1124, DOI 10.1109/TPAMI.2004.60 Boykov Y, 2006, INT J COMPUT VISION, V70, P109, DOI 10.1007/s11263-006-7934-5 Brandner H, 2013, EUR J OPER RES, V230, P581, DOI 10.1016/j.ejor.2013.05.010 Braun G, 2017, COMPUT COMPLEX, V26, P147, DOI 10.1007/s00037-016-0125-z Burke EK, 2013, J OPER RES SOC, V64, P1695, DOI 10.1057/jors.2013.71 Cacchiani V., 2018, EUR J OPER RES Campelo F., 2019, EC BESTIARY BESTIARY Clarivate, 2021, KEYWORDS PLUS GEN CR Conforti M, 2014, GRAD TEXTS MATH, V271, P1, DOI 10.1007/978-3-319-11008-0 Cook William, 2019, Computing and Software Science: State of the Art and Perspectives. Lecture Notes in Computer Science (LNCS 10000), P27, DOI 10.1007/978-3-319-91908-9_3 de Castro LN, 2002, IEEE T EVOLUT COMPUT, V6, P239, DOI 10.1109/TEVC.2002.1011539 Deng W, 2019, SOFT COMPUT, V23, P2445, DOI 10.1007/s00500-017-2940-9 Donoho DL, 2003, P NATL ACAD SCI USA, V100, P2197, DOI 10.1073/pnas.0437847100 Donoho DL, 2001, IEEE T INFORM THEORY, V47, P2845, DOI 10.1109/18.959265 Dorigo M, 2005, THEOR COMPUT SCI, V344, P243, DOI 10.1016/j.tcs.2005.05.020 Dorigo M, 1997, BIOSYSTEMS, V43, P73, DOI 10.1016/S0303-2647(97)01708-5 Dorigo M, 1996, IEEE T SYST MAN CY B, V26, P29, DOI 10.1109/3477.484436 Egghe L, 2006, SCIENTOMETRICS, V69, P131, DOI 10.1007/s11192-006-0144-7 Eskandarpour M, 2015, OMEGA-INT J MANAGE S, V54, P11, DOI 10.1016/j.omega.2015.01.006 Fan W., 2013, ACM sIGKDD Explorations Newsletter, V14, P1 FEO TA, 1995, J GLOBAL OPTIM, V6, P109, DOI 10.1007/BF01096763 Ferdows K, 2016, J OPER MANAG, V41, P63, DOI 10.1016/j.jom.2015.11.006 Fichte Johannes K., 2020, Principles and Practice of Constraint Programming. 26th International Conference, CP 2020. Proceedings. Lecture Notes in Computer Science (LNCS 12333), P267, DOI 10.1007/978-3-030-58475-7_16 Froger A, 2016, EUR J OPER RES, V251, P695, DOI 10.1016/j.ejor.2015.08.045 Gabrel V, 2014, EUR J OPER RES, V235, P471, DOI 10.1016/j.ejor.2013.09.036 Gandomi AH, 2014, ISA T, V53, P1168, DOI 10.1016/j.isatra.2014.03.018 Garey MichaelR., 2009, COMPUTERS INTRACTABI, V1 Geem ZW, 2001, SIMULATION, V76, P60, DOI 10.1177/003754970107600201 Gendreau M, 2005, ANN OPER RES, V140, P189, DOI 10.1007/s10479-005-3971-7 Gerkey BP, 2004, INT J ROBOT RES, V23, P939, DOI 10.1177/0278364904045564 Glover F., 1990, ORSA Journal on Computing, V2, P4, DOI [10.1287/ijoc.1.3.190, 10.1287/ijoc.2.1.4] Gocht Stephan, 2020, Principles and Practice of Constraint Programming. 26th International Conference, CP 2020. Proceedings. Lecture Notes in Computer Science (LNCS 12333), P338, DOI 10.1007/978-3-030-58475-7_20 Goderbauer S, 2019, COMPUT CHEM ENG, V124, P343, DOI 10.1016/j.compchemeng.2019.02.002 Goemans MX, 1995, J ACM, V42, P1115, DOI 10.1145/227683.227684 Haastrup P, 1998, EUR J OPER RES, V109, P330, DOI 10.1016/S0377-2217(98)00061-7 Halim AH, 2019, ARCH COMPUT METHOD E, V26, P367, DOI 10.1007/s11831-017-9247-y Han KH, 2002, IEEE T EVOLUT COMPUT, V6, P580, DOI 10.1109/TEVC.2002.804320 Hartmann S, 2010, EUR J OPER RES, V207, P1, DOI 10.1016/j.ejor.2009.11.005 Hertz A, 2003, EUR J OPER RES, V151, P247, DOI 10.1016/S0377-2217(02)00823-8 Hespe D, 2020, 2020 PROCEEDINGS OF THE SIAM WORKSHOP ON COMBINATORIAL SCIENTIFIC COMPUTING, CSC Hirsch JE, 2005, P NATL ACAD SCI USA, V102, P16569, DOI 10.1073/pnas.0507655102 Hooker J. N., 1995, Journal of Heuristics, V1, P33, DOI 10.1007/BF02430364 HOPFIELD JJ, 1985, BIOL CYBERN, V52, P141 Ibaraki T., 1976, Discrete Mathematics, V16, P39, DOI 10.1016/0012-365X(76)90091-1 Jaqaman K, 2008, NAT METHODS, V5, P695, DOI 10.1038/nmeth.1237 Johnson MW, 2011, NATURE, V473, P194, DOI 10.1038/nature10012 Jozefowiez N, 2008, EUR J OPER RES, V189, P293, DOI 10.1016/j.ejor.2007.05.055 Kendall G, 2016, J OPER RES SOC, V67, P676, DOI 10.1057/jors.2015.77 Kheiri A, 2019, EURO J TRANSP LOGIST, V8, P561, DOI 10.1007/s13676-019-00143-8 KIRKPATRICK S, 1983, SCIENCE, V220, P671, DOI 10.1126/science.220.4598.671 Knill E, 2001, NATURE, V409, P46, DOI 10.1038/35051009 Lanza G, 2019, CIRP ANN-MANUF TECHN, V68, P823, DOI 10.1016/j.cirp.2019.05.008 Levenshtein V. I., 1966, Soviet Physics Doklady, V10, P707 Li CM, 2018, INFORMS J COMPUT, V30, P137, DOI 10.1287/ijoc.2017.0770 Loiola EM, 2007, EUR J OPER RES, V176, P657, DOI 10.1016/j.ejor.2005.09.032 Marti R., 2018, Handbook of Heuristics Mavromatidis G, 2018, RENEW SUST ENERG REV, V88, P258, DOI 10.1016/j.rser.2018.02.021 Mladenovic N, 1997, COMPUT OPER RES, V24, P1097, DOI 10.1016/S0305-0548(97)00031-2 Mundi I, 2019, INT J PROD RES, V57, P5239, DOI 10.1080/00207543.2019.1566665 Nagy G, 2007, EUR J OPER RES, V177, P649, DOI 10.1016/j.ejor.2006.04.004 Nouiri M, 2018, J INTELL MANUF, V29, P603, DOI 10.1007/s10845-015-1039-3 Pardalos P. M., 2013, Handbook of combinatorial optimization Pessoa A, 2020, MATH PROGRAM, V183, P483, DOI 10.1007/s10107-020-01523-z Pillac V, 2013, EUR J OPER RES, V225, P1, DOI 10.1016/j.ejor.2012.08.015 Pop PC, 2020, EUR J OPER RES, V283, P1, DOI 10.1016/j.ejor.2019.05.017 Prodhon C, 2014, EUR J OPER RES, V238, P1, DOI 10.1016/j.ejor.2014.01.005 PUrez-Chacn R., 2020, CORONAVIRUS OPTIMIZA Rahmaniani R, 2017, EUR J OPER RES, V259, P801, DOI 10.1016/j.ejor.2016.12.005 Razmjooy N, 2016, J CONTROL AUTOM ELEC, V27, P419, DOI 10.1007/s40313-016-0242-6 San Segundo P, 2016, COMPUT OPER RES, V66, P81, DOI 10.1016/j.cor.2015.07.013 Santini A, 2018, J HEURISTICS, V24, P783, DOI 10.1007/s10732-018-9377-x Schmidt M, 2019, EUR J OPER RES, V275, P446, DOI 10.1016/j.ejor.2018.11.048 Shah-Hosseini H, 2009, INT J BIO-INSPIR COM, V1, P71, DOI 10.1504/IJBIC.2009.022775 Shishvan MS, 2015, EUR J OPER RES, V240, P825, DOI 10.1016/j.ejor.2014.07.040 Silver D, 2016, NATURE, V529, P484, DOI 10.1038/nature16961 Sörensen K, 2015, INT T OPER RES, V22, P3, DOI 10.1111/itor.12001 Sorensen K., 2018, HDB HEURISTICS, P791, DOI DOI 10.1007/978-3-319-07124-4_4 Sörensen K, 2019, INT T OPER RES, V26, P54, DOI 10.1111/itor.12443 Sörensen K, 2013, COMPUT OPER RES, V40, P3197, DOI 10.1016/j.cor.2013.02.005 Spiliopoulos K, 2007, EUR J OPER RES, V177, P525, DOI 10.1016/j.ejor.2005.09.005 Stützle T, 2000, FUTURE GENER COMP SY, V16, P889, DOI 10.1016/S0167-739X(00)00043-1 Swan J., 2020, METAHEURISTICS LARGE TAILLARD E, 1993, EUR J OPER RES, V64, P278, DOI 10.1016/0377-2217(93)90182-M Talbi EG, 2016, ANN OPER RES, V240, P171, DOI 10.1007/s10479-015-2034-y Tero A, 2010, SCIENCE, V327, P439, DOI 10.1126/science.1177894 UNESCO, 2020, SCI TECHN INN GROSS Van den Bergh J, 2013, EUR J OPER RES, V226, P367, DOI 10.1016/j.ejor.2012.11.029 Walteros JL, 2020, OPER RES, V68, P1866, DOI 10.1287/opre.2019.1970 Watson JP, 2003, ARTIF INTELL, V143, P189, DOI 10.1016/S0004-3702(02)00363-6 Weinand JM, 2020, ENERGIES, V13, DOI 10.3390/en13061367 Weinand JM, 2019, APPL ENERG, V251, DOI 10.1016/j.apenergy.2019.113367 Wen LL, 2018, RENEW SUST ENERG REV, V91, P59, DOI 10.1016/j.rser.2018.03.088 Wen ZW, 2013, MATH PROGRAM, V142, P397, DOI 10.1007/s10107-012-0584-1 Weyland D, 2015, OPER RES PERSPECT, V2, P97, DOI 10.1016/j.orp.2015.04.001 Weyland D, 2010, INT J APPL METAHEUR, V1, P50, DOI 10.4018/jamc.2010040104 Xia ZG, 2016, DALTON T, V45, P11214, DOI 10.1039/c6dt01230b Xiao L, 2004, SYST CONTROL LETT, V53, P65, DOI 10.1016/j.sysconle.2004.02.022 Xu L, 2014, IEEE ACCESS, V2, P1149, DOI 10.1109/ACCESS.2014.2362522 Xu P, 2013, NAT COMMUN, V4, DOI 10.1038/ncomms2425 Yao X, 1999, IEEE T EVOLUT COMPUT, V3, P82, DOI 10.1109/4235.771163 Zäpfel G, 2010, METAHEURISTIC SEARCH CONCEPTS, P145, DOI 10.1007/978-3-642-11343-7_8 Zhang C, 2017, RENEW SUST ENERG REV, V76, P353, DOI 10.1016/j.rser.2017.03.071 Zhou N. F., 2015, CONSTRAINT SOLVING P NR 121 TC 15 Z9 15 U1 0 U2 14 PU WILEY PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0969-6016 EI 1475-3995 J9 INT T OPER RES JI Int. Trans. Oper. Res. PD MAR PY 2022 VL 29 IS 2 BP 667 EP 705 DI 10.1111/itor.12996 EA MAY 2021 PG 39 WC Management; Operations Research & Management Science WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Business & Economics; Operations Research & Management Science GA WI8YH UT WOS:000655468200001 OA Green Published DA 2024-09-05 ER PT J AU Pudasaini, B Shahandashti, M AF Pudasaini, Binaya Shahandashti, Mohsen TI Seismic Rehabilitation Optimization of Water Pipe Networks Considering Spatial Variabilities of Demand Criticalities and Seismic Ground Motion Intensities SO JOURNAL OF INFRASTRUCTURE SYSTEMS LA English DT Article DE Critical infrastructure; Water pipe networks; Rehabilitation; Optimization; Simulated annealing; Operations research; Seismic vulnerability assessment; Spatial analyses ID RISK-ASSESSMENT; EARTHQUAKE; PIPELINES; FRAMEWORK AB Operation of critical infrastructure facilities such as hospitals, firefighting stations, and disaster shelters are critical during a postearthquake scenario. The serviceability of many such facilities is, in turn, dependent on the proper operation of water-supply systems providing water to these facilities. Due to such dependency of disaster relief systems on water supply, having a resilient water-supply system is even more critical in a postearthquake scenario as compared to a normal operating condition. Extant pertinent literature ignores spatial variabilities of the water demand priorities. It assumes that the water demand originating from critical facilities, such as hospitals and the water demand originating from less critical facilities such as golf courses and temporary storage facilities, are of equal importance. This oversimplification has made existing models practically limited, especially in a postearthquake scenario. The objective of this study is to create a methodology to identify optimized proactive seismic rehabilitation policy for water pipe networks considering spatial variabilities of demand criticalities and seismic ground motion intensities. A novel approach based on proximity analysis was created to determine the criticality of each node where the criticality was established based on the spatial distribution of water demand type in the neighborhood of the node. The spatial variabilities of demand criticalities along with the spatial variabilities of the seismic ground motion intensities integrated into the formulation of a stochastic combinatorial optimization problem to identify economical rehabilitation policies for enhancing seismic resilience of the water-supply network. A purpose-built simulated-annealing algorithm integrated with Monte Carlo simulation was then used to solve the optimization problem. A city-scale water pipe network was used as a testbed to demonstrate the effectiveness of the created methodology. The results of this study and their comparison with results from existing methods showed that the created methodology was highly effective in identifying economical proactive seismic rehabilitation policies for preventive intervention when the rehabilitation budget is limited. Furthermore, the results showed that the consideration of spatial variability in water demand type leads to the identification of rehabilitation policies that ensure higher postearthquake serviceability in nodes supplying water to critical facilities. C1 [Pudasaini, Binaya; Shahandashti, Mohsen] Univ Texas Arlington, Dept Civil Engn, 416 S Yates St, Arlington, TX 76019 USA. C3 University of Texas System; University of Texas Arlington RP Shahandashti, M (corresponding author), Univ Texas Arlington, Dept Civil Engn, 416 S Yates St, Arlington, TX 76019 USA. EM binaya.pudasaini@mavs.uta.edu; mohsen@uta.edu OI Shahandashti, Mohsen/0000-0002-2373-7596 CR Abdel-Mottaleb N, 2019, WATER RESOUR RES, V55, P5255, DOI 10.1029/2018WR024063 Abrahamson N.A., 2007, ABHRAMSON SILVA NGA Adachi T., 2007, Ph.D. thesis American Lifelines Alliance (ALA), 2001, SEISM FRAG FORM WAT Angeloudis P, 2006, PHYSICA A, V367, P553, DOI 10.1016/j.physa.2005.11.007 [Anonymous], 2003, P WORLD WAT ENV RES Arboleda CA, 2009, J INFRASTRUCT SYST, V15, P149, DOI 10.1061/(ASCE)1076-0342(2009)15:3(149) ASCE, 2016, ASCE 7-16 Baker J.W., 2013, INTRO PROBABILISTIC Baumberger L, 2007, FLORIDA WATER RESOUR, P15 Bellagamba X, 2019, EARTHQ SPECTRA, V35, P1397, DOI 10.1193/052218EQS119M Berche B, 2009, EUR PHYS J B, V71, P125, DOI 10.1140/epjb/e2009-00291-3 BRASSEL KE, 1979, GEOGR ANAL, V11, P289 Chen A, 2007, NETW SPAT ECON, V7, P241, DOI 10.1007/s11067-006-9012-5 Christodoulou S. E., 2014, 2014 International Conference on Computing in Civil and Building Engineering. Proceedings, P1812 Crucitti P, 2005, FLUCT NOISE LETT, V5, pL201, DOI 10.1142/S0219477505002562 Cunha MD, 1999, J WATER RES PL-ASCE, V125, P215, DOI 10.1061/(ASCE)0733-9496(1999)125:4(215) Datta TK, 1999, NUCL ENG DES, V192, P271, DOI 10.1016/S0029-5493(99)00113-2 Delaunay B, 1934, IZV AKAD NAUK SSSR O, V7, P1 Douglas J., 2019, Ground motion prediction equations 1964 2019 Du E, 2009, P INT C MAN SERV SCI, P1 Eagle J.M, 2017, PVC VS DUCT IR PIP I Faturechi R, 2014, COMPUT OPER RES, V43, P335, DOI 10.1016/j.cor.2013.10.009 Field EH, 2005, EARTHQ SPECTRA, V21, P329, DOI 10.1193/1.1898332 Gomez C, 2019, STRUCT SAF, V77, P1, DOI 10.1016/j.strusafe.2018.10.002 Gordian, 2019, HEAVY CONSTRUCTION C Hackl J, 2018, COMPUT-AIDED CIV INF, V33, P618, DOI 10.1111/mice.12346 Haddaway A., 2015, EARTHQUAKE RESITANT Han ZY, 2010, J LOSS PREVENT PROC, V23, P428, DOI 10.1016/j.jlp.2010.02.003 Honegger DG., 1992, Determination of the relative vulnerabilities to seismic damage for San Diego County Water Authority: water transmission pipelines Huang FY, 2007, IEEE WIREL COMMUN, V14, P48, DOI 10.1109/MWC.2007.4396942 Jayaram N, 2009, EARTHQ ENG STRUCT D, V38, P1687, DOI 10.1002/eqe.922 Jeon SS, 2005, B SEISMOL SOC AM, V95, P294, DOI 10.1785/0120040020 Kielhauser C, 2017, STRUCT INFRASTRUCT E, V13, P361, DOI 10.1080/15732479.2016.1162818 KIRKPATRICK S, 1983, SCIENCE, V220, P671, DOI 10.1126/science.220.4598.671 Klinkhamer C., 2017, FUNCTIONALLY FRACTAL Laucelli D, 2015, J WATER RES PLAN MAN, V141, DOI 10.1061/(ASCE)WR.1943-5452.0000478 Liu HX, 2017, J WATER RES PLAN MAN, V143, DOI 10.1061/(ASCE)WR.1943-5452.0000766 Maantay J, 2001, AM J PUBLIC HEALTH, V91, P1033, DOI 10.2105/AJPH.91.7.1033 METROPOLIS N, 1953, J CHEM PHYS, V21, P1087, DOI 10.1063/1.1699114 Mulyasari F, 2013, INT J DISAST RISK SC, V4, P89, DOI 10.1007/s13753-013-0010-1 Newmark N.M., 1971, Fundamentals of Earthquake Engineering O'Rourke M, 2004, EARTHQ SPECTRA, V20, P1167, DOI 10.1193/1.1808143 Pudasaini B, 2018, J INFRASTRUCT SYST, V24, DOI 10.1061/(ASCE)IS.1943-555X.0000439 Pudasaini B, 2017, COMPUTING IN CIVIL ENGINEERING 2017: SMART SAFETY, SUSTAINABILITY, AND RESILIENCE, P231 Pudasaini B, 2020, COMPUT-AIDED CIV INF, V35, P1101, DOI 10.1111/mice.12566 Rokneddin K., 2009, REDUCED COMPUTATIONA, P1 Shahandashti SM, 2019, NAT HAZARDS REV, V20, DOI 10.1061/(ASCE)NH.1527-6996.0000328 Shi P., 2006, SEISMIC RESPONSE MOD Sukru O., 2004, Water resource systems management tools, V7, P1 Sullivan JL, 2010, TRANSPORT RES A-POL, V44, P323, DOI 10.1016/j.tra.2010.02.003 WALSKI TM, 1993, RELIAB ENG SYST SAFE, V42, P21, DOI 10.1016/0951-8320(93)90051-Y Wang M, 2005, EARTHQ SPECTRA, V21, P1137, DOI 10.1193/1.2083887 Wang Y, 2010, EARTHQ SPECTRA, V26, P257, DOI 10.1193/1.3276900 Weatherill G., 2013, Vienna Congress on Recent Advances in Earthquake Engineering and Structural Dynamics, P28 Zanini MA, 2017, ENG STRUCT, V136, P219, DOI 10.1016/j.engstruct.2017.01.029 Zanini MA, 2016, CHEM ENGINEER TRANS, V53, P163, DOI 10.3303/CET1653028 Zischg J, 2018, WATER SCI TECHNOL, V77, P1851, DOI 10.2166/wst.2018.060 NR 58 TC 6 Z9 7 U1 3 U2 17 PU ASCE-AMER SOC CIVIL ENGINEERS PI RESTON PA 1801 ALEXANDER BELL DR, RESTON, VA 20191-4400 USA SN 1076-0342 EI 1943-555X J9 J INFRASTRUCT SYST JI J. Infrastruct. Syst. PD DEC 1 PY 2021 VL 27 IS 4 AR 04021028 DI 10.1061/(ASCE)IS.1943-555X.0000638 PG 12 WC Engineering, Civil WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Engineering GA WI1JZ UT WOS:000708123600016 DA 2024-09-05 ER PT J AU Watts, FM Dood, AJ Shultz, GV Rodriguez, JMG AF Watts, Field M. Dood, Amber J. Shultz, Ginger V. Rodriguez, Jon-Marc G. TI Comparing Student and Generative Artificial Intelligence Chatbot Responses to Organic Chemistry Writing-to-Learn Assignments SO JOURNAL OF CHEMICAL EDUCATION LA English DT Article DE Second-Year Undergraduate; Organic Chemistry; Writing; Problem Solving; Assessment; Mechanisms of Reactions; Internet/Web-Based Learning; Chemical Education Research ID MECHANISMS; FRAMEWORK; THINKING AB Chemistry education research demonstrates the value of open-ended writing tasks, such as writing-to-learn (WTL) assignments, for supporting students' learning with topics including reasoning about reaction mechanisms. The emergence of generative artificial intelligence (AI) technology, such as chatbots ChatGPT and Bard, raises concerns regarding the value of open-ended writing tasks in the classroom; one concern involves academic integrity and whether students will use these chatbots to produce sufficient responses to open-ended writing tasks. The present study investigates the degree to which generative AI chatbots exhibit mechanistic reasoning in response to organic chemistry WTL assignments. We produced responses from three generative AI chatbots (ChatGPT-3.5, ChatGPT-4, and Bard) to two WTL assignments developed to elicit students' mechanistic reasoning. Using previously reported machine learning models for analyzing student writing in response to the WTL assignments, we analyzed the chatbot responses for the inclusion of features pertinent to mechanistic reasoning. Herein, we report quantitative analyses of (1) the differences between chatbot responses on the two assignments and (2) the differences between chatbot and authentic student responses. Findings indicate that chatbots respond differently to different WTL assignments. Additionally, the chatbots rarely incorporated the discussion of electron movement, a key feature of mechanistic reasoning. Furthermore, the chatbots, in general, do not engage in mechanistic reasoning at the same level as students. We contextualize the results by considering academic integrity with the assumption that students' intentions are to engage in academically honest behavior, and we focus on understanding the ethical uses of generative AI for classroom assignments. C1 [Dood, Amber J.; Shultz, Ginger V.] Univ Michigan, Dept Chem, Ann Arbor, MI 48109 USA. [Watts, Field M.; Rodriguez, Jon-Marc G.] Univ Wisconsin, Dept Chem & Biochem, Milwaukee, WI 53211 USA. C3 University of Michigan System; University of Michigan; University of Wisconsin System; University of Wisconsin Milwaukee RP Watts, FM (corresponding author), Univ Wisconsin, Dept Chem & Biochem, Milwaukee, WI 53211 USA. EM wattsf@uwm.edu RI Watts, Field/ABA-1960-2021 OI Dood, Amber/0000-0003-4572-1402; Rodriguez, Jon-Marc G./0000-0001-6949-6823; Watts, Field/0000-0002-1800-1816 FU University of Michigan Provost's Third Century Initiative FX The authors would like to thank the University of Michigan Provost's Third Century Initiative for funding. We would like to thank the participating students, as well as Solaire Finkenstaedt-Quinn, Ina Zaimi, and Michael Petterson for their assistance in developing the two WTL assignments. The authors would additionally like to thank Solaire FinkenstaedtQuinn for discussions related to the preparation of this manuscript. CR Anderson P, 2015, RES TEACH ENGL, V50, P199 [Anonymous], 2000, Information literacy competency standards for higher education [Anonymous], THAL [Anonymous], ChatGPT [Anonymous], BARD AI EXPT GOOGLE Arnold K. C., 2021, JOINT P ACM IUI 2021 Ashenhurst J., WITTIG REACTION Asmussen G., 2022, ADV CHEM ED SERIES S, P90, DOI 10.1039/9781839167782-00090 Bodé NE, 2019, J CHEM EDUC, V96, P1068, DOI 10.1021/acs.jchemed.8b00719 Brandfonbrener PB, 2021, J CHEM EDUC, V98, P3431, DOI 10.1021/acs.jchemed.1c00660 Buriak JM, 2023, ACS NANO, V17, P4091, DOI 10.1021/acsnano.3c01544 Burke DD, 2018, J LEG STUD EDUC, V35, P5, DOI 10.1111/jlse.12068 Caspari I, 2018, CHEM EDUC RES PRACT, V19, P1117, DOI 10.1039/c8rp00131f Caspari I., 2019, Int. J. Phys. Chem. Educ., V11, P31 Clark TM, 2023, J CHEM EDUC, V100, P1905, DOI 10.1021/acs.jchemed.3c00027 Cooper G, 2023, J SCI EDUC TECHNOL, V32, P444, DOI 10.1007/s10956-023-10039-y Cotton DRE, 2024, INNOV EDUC TEACH INT, V61, P228, DOI 10.1080/14703297.2023.2190148 DeKorver BK, 2023, J CHEM EDUC, V100, P91, DOI 10.1021/acs.jchemed.2c00206 Dood AJ, 2023, J CHEM EDUC, V100, P53, DOI 10.1021/acs.jchemed.2c00572 Dood AJ, 2022, J CHEM EDUC, DOI 10.1021/acs.jchemed.2c00313 Dood AJ, 2020, J CHEM EDUC, V97, P3551, DOI 10.1021/acs.jchemed.0c00569 Dood AJ, 2020, CHEM EDUC RES PRACT, V21, P267, DOI 10.1039/c9rp00148d Dood AJ, 2019, CAN J CHEM, V97, P711, DOI 10.1139/cjc-2018-0479 Dood AJ, 2018, J CHEM EDUC, V95, P1267, DOI 10.1021/acs.jchemed.8b00177 Emenike ME, 2023, J CHEM EDUC, V100, P1413, DOI 10.1021/acs.jchemed.3c00063 Exintaris B, 2023, J CHEM EDUC, V100, P2972, DOI 10.1021/acs.jchemed.3c00481 Fergus S, 2023, J CHEM EDUC, V100, P1672, DOI 10.1021/acs.jchemed.3c00087 Finkenstaedt-Quinn S. A., 2023, International Journal for the Scholarship of Teaching and Learning, V17, DOI [10.20429/ijsotl.2023.17118, DOI 10.20429/IJSOTL.2023.17118] Finkenstaedt-Quinn SA, 2021, J CHEM EDUC, V98, P1548, DOI 10.1021/acs.jchemed.0c01482 Frost SJH, 2023, CHEM EDUC RES PRACT, V24, P706, DOI 10.1039/d2rp00327a Gere AR, 2019, WRIT COMMUN, V36, P99, DOI 10.1177/0741088318804820 Graulich N, 2019, CHEM EDUC RES PRACT, V20, P924, DOI 10.1039/c9rp00054b Graulich N, 2018, J CHEM EDUC, V95, P376, DOI 10.1021/acs.jchemed.7b00672 Graves BC, 2023, ASSESS WRIT, V57, DOI 10.1016/j.asw.2023.100754 Gupte T, 2021, CHEM EDUC RES PRACT, V22, P396, DOI 10.1039/d0rp00266f Haudek KC, 2012, CBE-LIFE SCI EDUC, V11, P283, DOI 10.1187/cbe.11-08-0084 Howitz WJ, 2021, J CHEM EDUC, V98, P385, DOI 10.1021/acs.jchemed.0c00450 Humphry T, 2023, J CHEM EDUC, V100, P1434, DOI 10.1021/acs.jchemed.3c00006 Jacques V, 2015, P NATL ACAD SCI USA, V112, pE1471, DOI 10.1073/pnas.1417832112 Jamieson MV, 2020, J CHEM EDUC, V97, P2768, DOI 10.1021/acs.jchemed.0c00785 Kranz D, 2023, CHEM EDUC RES PRACT, V24, P453, DOI 10.1039/d2rp00132b Krist C, 2019, J LEARN SCI, V28, P160, DOI 10.1080/10508406.2018.1510404 Lawrie G, 2023, CHEM EDUC RES PRACT, V24, P392, DOI 10.1039/d3rp90003g Lialin V., 2023, arXiv, parXiv2303.15647 Martin PP, 2023, CHEM EDUC RES PRACT, V24, P407, DOI 10.1039/d2rp00287f Moon A, 2019, CHEM EDUC RES PRACT, V20, P484, DOI 10.1039/c9rp00005d Nguyen JG, 2020, J CHEM EDUC, V97, P3429, DOI 10.1021/acs.jchemed.0c00790 Noyes K, 2020, J CHEM EDUC, V97, P3923, DOI 10.1021/acs.jchemed.0c00445 OpenAI, 2023, ARXIV Perkins M, 2023, J UNIV TEACH LEARN P, V20, DOI 10.53761/1.20.02.07 Petterson MN, 2022, CHEM EDUC RES PRACT, V23, P189, DOI 10.1039/d1rp00181g Raje S, 2020, J CHEM EDUC, V97, P3436, DOI 10.1021/acs.jchemed.0c00797 Raker J. R., 2022, STUDENT REASONING IN, DOI [10.1039/9781839167782-00304, DOI 10.1039/9781839167782-00304] Russ RS, 2008, SCI EDUC, V92, P499, DOI 10.1002/sce.20264 Salomon G., 1991, EDUC RESEARCHER, V20, P2, DOI [DOI 10.3102/0013189X020003002, 10.3102/0013189X020003002] Schmidt-McCormack JA, 2019, CHEM EDUC RES PRACT, V20, P383, DOI 10.1039/c8rp00260f Sheskin D. J., 2011, HDB PARAMETRIC NONPA Shibani A., 2023, P 16 INT C ED DAT MI, P283 Stowe RL, 2017, J CHEM EDUC, V94, P1852, DOI 10.1021/acs.jchemed.7b00335 Talanquer V, 2023, J CHEM EDUC, V100, P2821, DOI 10.1021/acs.jchemed.3c00472 Toledo S, 2017, J CHEM EDUC, V94, P1043, DOI 10.1021/acs.jchemed.6b00651 Tyson J, 2023, J CHEM EDUC, V100, P3098, DOI 10.1021/acs.jchemed.3c00361 Waltzer T, 2023, ETHICS BEHAV, V33, P130, DOI 10.1080/10508422.2022.2026775 Watts F. M., 2022, STUDENT REASONING OR, P285, DOI DOI 10.1039/9781839167782-00285 Watts F.M., 2023, ACM International Conference Proceeding Series, P531, DOI DOI 10.1145/3576050.3576053 Watts FM, 2022, CHEM EDUC RES PRACT, V23, P486, DOI 10.1039/d1rp00301a Watts FM, 2021, CHEM EDUC RES PRACT, V22, P364, DOI 10.1039/d0rp00298d Watts FM, 2020, CHEM EDUC RES PRACT, V21, P1148, DOI 10.1039/c9rp00185a West C. G., 2023, ARXIV, DOI DOI 10.48550/ARXIV.2303.17012 Winograd B, 2021, LAK21 CONFERENCE PROCEEDINGS: THE ELEVENTH INTERNATIONAL CONFERENCE ON LEARNING ANALYTICS & KNOWLEDGE, P586, DOI 10.1145/3448139.3448202 Xu WQ, 2022, INT J STEM EDUC, V9, DOI 10.1186/s40594-022-00377-5 Yik BJ, 2023, CHEM EDUC RES PRACT, V24, P263, DOI 10.1039/d2rp00184e Yik BJ, 2021, CHEM EDUC RES PRACT, V22, P866, DOI 10.1039/d1rp00111f Zhai XM, 2022, J RES SCI TEACH, V59, P1765, DOI 10.1002/tea.21773 Zhai XM, 2020, STUD SCI EDUC, V56, P111, DOI 10.1080/03057267.2020.1735757 NR 75 TC 19 Z9 19 U1 47 U2 123 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0021-9584 EI 1938-1328 J9 J CHEM EDUC JI J. Chem. Educ. PD SEP 7 PY 2023 VL 100 IS 10 BP 3806 EP 3817 DI 10.1021/acs.jchemed.3c00664 EA SEP 2023 PG 12 WC Chemistry, Multidisciplinary; Education, Scientific Disciplines WE Science Citation Index Expanded (SCI-EXPANDED) SC Chemistry; Education & Educational Research GA T5DC4 UT WOS:001070107700001 DA 2024-09-05 ER PT J AU Bian, YJ Lu, YC Li, JQ AF Bian, Yijie Lu, Yanchi Li, Jingqi TI Research on an Artificial Intelligence-Based Professional Ability Evaluation System from the Perspective of Industry-Education Integration SO SCIENTIFIC PROGRAMMING LA English DT Article AB The rapid development of artificial intelligence technology demands higher requirements for employment and talent training. The integration of industry and education is an important way to solve the mismatch between industrial demand and talent supply. Therefore, this study starts from the perspective of the integration of industry and education. We collect recruitment texts from the perspective of "industry" and mine the specific requirements of the artificial intelligence post system through the LDA topic model and the combination of Word2Vec and K-means. We then conduct expert consultations and adjust the selected indicators from the perspective of "education." Finally, we construct a four-dimensional vocational ability grade evaluation index system, including basic vocational skills of artificial intelligence, database, network skills, algorithm and design skills, and research and practice skills. The intuitionistic fuzzy analytic hierarchy process, which can eliminate the subjective uncertainty of experts in the scoring process, is applied to calculate the index weights. We find that the weight of algorithm and design skill is the highest, which is an important criterion for artificial intelligence professional ability evaluation. Among the second-level indicators, practical indicators such as team spirit, innovation ability, and communication ability are the focus of investigation from the perspective of industry, while in education, the cultivation of knowledge and skills such as programming ability, applied mathematics ability, data structures, and algorithms are more important. C1 [Bian, Yijie; Lu, Yanchi; Li, Jingqi] Hohai Univ, Business Sch, Nanjing 211100, Peoples R China. C3 Hohai University RP Lu, YC (corresponding author), Hohai Univ, Business Sch, Nanjing 211100, Peoples R China. EM byj@hhu.edu.cn; 1019238072@qq.com; lijingqi@hhu.edu.cn FU special key project "research on vocational skill level evaluation system of artificial intelligence integrated with industry and education" of the Modern Educational Technology Research Smart Campus in Jiangsu Province; [2020-R-84366] FX AcknowledgmentsThis work was supported by the special key project "research on vocational skill level evaluation system of artificial intelligence integrated with industry and education" of the Modern Educational Technology Research Smart Campus in Jiangsu Province (2020-R-84366). CR Acemoglu D, 2020, J POLIT ECON, V128, P2188, DOI 10.1086/705716 ATANASSOV KT, 1986, FUZZY SET SYST, V20, P87, DOI 10.1016/S0165-0114(86)80034-3 Bie Y, 2021, BIG DATA MIN ANAL, V4, P195, DOI 10.26599/BDMA.2021.9020003 Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993 BUCKLEY JJ, 1985, FUZZY SET SYST, V17, P233, DOI 10.1016/0165-0114(85)90090-9 Cao QC, 2021, TSINGHUA SCI TECHNOL, V26, P275, DOI 10.26599/TST.2019.9010035 Catlett Charlie, 2020, Journal of Social Computing, V1, P14, DOI 10.23919/JSC.2020.0003 Chen L, 2017, ANAL BIOCHEM, V526, P58, DOI 10.1016/j.ab.2017.03.017 Chen Y., 2022, China Communications Chen Y, 2022, IEEE T VEH TECHNOL, V71, P4584, DOI 10.1109/TVT.2021.3133586 Chen Y, 2022, INT J COMMUN SYST, DOI 10.1002/dac.5154 Chen Y, 2023, TSINGHUA SCI TECHNOL, V28, P421, DOI 10.26599/TST.2021.9010050 Chen Y, 2021, IEEE T IND INFORM, V17, P4925, DOI 10.1109/TII.2020.3028963 Dai HP, 2023, IEEE T MOBILE COMPUT, V22, P3589, DOI 10.1109/TMC.2021.3136967 Dai HP, 2022, IEEE T MOBILE COMPUT, V21, P2180, DOI 10.1109/TMC.2020.3032591 Dong W., 2019, CHINA ED TECHNOLOGY, V40, P1 Evans James, 2020, Journal of Social Computing, V1, P1, DOI 10.23919/JSC.2020.0002 Frey CB, 2017, TECHNOL FORECAST SOC, V114, P254, DOI 10.1016/j.techfore.2016.08.019 Gu R, 2022, IEEE T PARALL DISTR, V33, P2808, DOI 10.1109/TPDS.2021.3138825 Guo X, 2022, CMES-COMP MODEL ENG, V130, P23, DOI 10.32604/cmes.2021.017679 Hu M., 2019, CHINA U TEACHING, V41, P7 Huang H., 2019, CHINA U TEACHING, V39, P20 Huang JW, 2022, INT J COMMUN SYST, DOI 10.1002/dac.5161 Huang JW, 2022, IEEE T VEH TECHNOL, V71, P1964, DOI 10.1109/TVT.2021.3133696 Jing LP, 2010, KNOWL INF SYST, V25, P35, DOI 10.1007/s10115-009-0256-5 Li T., 2020, Intelligent and Converged Networks, V1, P1, DOI [DOI 10.23919/TUP-ICN.9195266, 10.23919/ICN.2020.0005, DOI 10.23919/ICN.2020.0005] Li Y., 2021, CHONGQING HIGHER ED, V9, P55 Li Y., 2021, CHINA ED TECHNOLOGY, V42, P88 Liu W., 2019, U ED SCI Lu YG, 2022, IEEE T NETW SERV MAN, V19, P3163, DOI 10.1109/TNSM.2022.3163297 Mikolov T., 2013, Advances in Neural Information Processing Systems, P3111 Nath Samrat, 2020, Intelligent and Converged Networks, V1, P181, DOI 10.23919/ICN.2020.0014 Peng C, 2022, TSINGHUA SCI TECHNOL, V27, P664, DOI 10.26599/TST.2021.9010055 Qi LY, 2021, IEEE T IND INFORM, V17, P4159, DOI 10.1109/TII.2020.3012157 Rahman G. M. Shafiqur, 2020, Intelligent and Converged Networks, V1, P243, DOI 10.23919/ICN.2020.0020 Rong G., 2022, 38 IEEE INT C DAT EN, P2183 Sandhu AK, 2022, BIG DATA MIN ANAL, V5, P32, DOI 10.26599/BDMA.2021.9020016 Shao QX, 2022, BIG DATA MIN ANAL, V5, P64, DOI 10.26599/BDMA.2021.9020021 VANLAARHOVEN PJM, 1983, FUZZY SET SYST, V11, P229, DOI 10.1016/S0165-0114(83)80083-9 Wang C., 2017, COMP EC SOCIAL SYSTE, V191, P10 Wang Q, 2022, CMES-COMP MODEL ENG, V130, P269, DOI 10.32604/cmes.2022.016437 Wang TT., 2018, J DISTANCE ED, V36, P52 Xin Gao, 2020, Journal of Social Computing, V1, P40, DOI 10.23919/JSC.2020.0005 Xu JJ, 2022, BUILD ENVIRON, V222, DOI 10.1016/j.buildenv.2022.109218 Xu ZS, 2014, IEEE T FUZZY SYST, V22, P749, DOI 10.1109/TFUZZ.2013.2272585 Yilin Xiao, 2020, Intelligent and Converged Networks, V1, P258, DOI 10.23919/ICN.2020.0021 Yu-Sung Su, 2020, Journal of Social Computing, V1, P28, DOI 10.23919/JSC.2020.0004 Zhai GL, 2020, BIG DATA MIN ANAL, V3, P311, DOI 10.26599/BDMA.2020.9020024 Zhang Cheng-yi, 2006, Computer Engineering and Applications, V42, P20 Zhang W, 2021, TSINGHUA SCI TECHNOL, V26, P95, DOI 10.26599/TST.2019.9010044 Zhou XK, 2021, IEEE T COMPUT SOC SY, V8, P171, DOI 10.1109/TCSS.2020.2987846 Zhou XK, 2021, IEEE ACM T COMPUT BI, V18, P912, DOI 10.1109/TCBB.2020.2994780 NR 52 TC 3 Z9 3 U1 23 U2 101 PU HINDAWI LTD PI LONDON PA ADAM HOUSE, 3RD FLR, 1 FITZROY SQ, LONDON, W1T 5HF, ENGLAND SN 1058-9244 EI 1875-919X J9 SCI PROGRAMMING-NETH JI Sci. Program. PD AUG 24 PY 2022 VL 2022 AR 4478115 DI 10.1155/2022/4478115 PG 20 WC Computer Science, Software Engineering WE Science Citation Index Expanded (SCI-EXPANDED) SC Computer Science GA 4O8IC UT WOS:000854936200002 OA gold DA 2024-09-05 ER PT J AU Meer, PFV Ring, DM Perez-Stable, MA AF Meer, Patricia Fravel Vander Ring, Donna M. Perez-Stable, Maria A. TI Engaging the Masses: Library Instruction with Large Undergraduate Classes SO COLLEGE & UNDERGRADUATE LIBRARIES LA English DT Article DE Library instruction; bibliographic instruction; user instruction; active learning; large classes AB This article discusses challenges in teaching library instruction to large classes and identifies practical ways librarians can use to engage large undergraduate classes in a single session. The authors searched the literature, examined related instructional services Web pages, and solicited feedback from instructional academic librarians. Various instructional techniques and activities are described. Discussion also includes areas such as classroom management, technology, risk-taking, and assessment. (C) 2007 by The Haworth Press, Inc. All rights reserved. C1 [Meer, Patricia Fravel Vander; Ring, Donna M.] Western Michigan Univ, Dwight B Waldo Lib, Kalamazoo, MI 49008 USA. [Perez-Stable, Maria A.] Western Michigan Univ, Cent Reference Dept, Dwight B Waldo Lib, Kalamazoo, MI 49008 USA. C3 Western Michigan University; Western Michigan University RP Meer, PFV (corresponding author), Western Michigan Univ, Dwight B Waldo Lib, Kalamazoo, MI 49008 USA. EM pat.vandermeer@wmich.edu; donna.ring@wmich.edu; maria.perez-stable@wmich.edu RI Perez-Stable, Maria/L-8113-2019 CR Betts J., 2004, SYLL 2004 C SAN FRAN Bonwell James., 1991, Active Learning: Creating Excitement in the Classroom AEHE-ER1C Higher Education Report No. 1 Carbone E., 1998, Teaching in large classes Centre for Teaching Excellence, 2005, LARG CLASS TEACH GUI Francis Barbara W., 1997, Medical Reference Services Quarterly, V16, P25 Fulton T. L., 1985, ED274353 ERIC U TEX Gedeon R., 1997, Research Strategies, V15, P301 Green T., 2000, CLEARING HOUSE, V73, P331, DOI 10.1080/00098650009599438 Iverson K., 2005, E LEARNING GAMES INT Jacobson T. E., 1995, Reference Librarian, P105, DOI 10.1300/J120v24n51_11 Jacobson TE, 2002, PORTAL-LIBR ACAD, V2, P423, DOI 10.1353/pla.2002.0055 MACADAM B, 1985, COLL RES LIBR, V46, P327, DOI 10.5860/crl_46_04_327 Ragains P., 1995, Research Strategies, V13, P40 Snavely L., 1998, DESIGNS ACTIVE LEARN, P114 Trefts Kristin, 2000, REFERENCE SERVICES R, V28, P369, DOI DOI 10.1108/00907320010359731 WILSON RC, 1986, J HIGH EDUC, V57, P196, DOI 10.2307/1981481 NR 16 TC 3 Z9 4 U1 0 U2 0 PU ROUTLEDGE JOURNALS, TAYLOR & FRANCIS LTD PI ABINGDON PA 2-4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND SN 1069-1316 EI 1545-2530 J9 COLL UNDERGRAD LIBR JI Coll. Undergrad. Libr. PY 2007 VL 14 IS 1 BP 39 EP 56 DI 10.1300/J106v14n01_04 PG 18 WC Information Science & Library Science WE Emerging Sources Citation Index (ESCI) SC Information Science & Library Science GA VC3DR UT WOS:000433665900004 DA 2024-09-05 ER PT J AU Smith, MK Wood, WB AF Smith, Michelle K. Wood, William B. TI Teaching Genetics: Past, Present, and Future SO GENETICS LA English DT Article DE active learning; assessment; discipline-based education research; instructional practices; teaching ID STUDENT PERFORMANCE; INVENTORY; INSTRUMENT; SCIENCE; COURSES; PEER; TOOL AB Genetics teaching at the undergraduate level has changed in many ways over the past century. Compared to those of 100 years ago, contemporary genetics courses are broader in content and are taught increasingly differently, using instructional techniques based on educational research and constructed around the principles of active learning and backward design. Future courses can benefit from wider adoption of these approaches, more emphasis on the practice of genetics as a science, and new methods of assessing student learning. C1 [Smith, Michelle K.] Univ Maine, Sch Biol & Ecol, 5751 Murray Hall, Orono, ME 04469 USA. [Smith, Michelle K.] Univ Maine, Maine Ctr Res STEM Sci Technol Engn & Math Educ, Orono, ME 04469 USA. [Wood, William B.] Univ Colorado, Mol Cellular & Dev Biol, Boulder, CO 80309 USA. C3 University of Maine System; University of Maine Orono; University of Maine System; University of Maine Orono; University of Colorado System; University of Colorado Boulder RP Smith, MK (corresponding author), Univ Maine, Sch Biol & Ecol, 5751 Murray Hall, Orono, ME 04469 USA. EM michelle.k.smith@maine.edu CR Adams WK, 2011, INT J SCI EDUC, V33, P1289, DOI 10.1080/09500693.2010.512369 [Anonymous], 2014, UNDERGRADUATE TEACHI [Anonymous], 1997, Peer Instruction - A User's Manual [Anonymous], 2015, AP Biology: Course and exam description [Anonymous], 2011, Vision and change in undergraduate biology education: A call to action [Anonymous], 2012, DISCIPLINE BASED ED Bowling BV, 2008, GENETICS, V178, P15, DOI 10.1534/genetics.107.079533 Brockliss L., 1996, CURRICULA HIST U EUR, VII, P565 Chen X., 2013, 2014001 NCES I ED SC, DOI DOI 10.3926/JOTSE.136 Couch B.A., 2015, CBE-LIFE SCI EDUC, V14, P1 Edwards AWF, 2013, GENETICS, V194, P529, DOI 10.1534/genetics.113.151266 Freeman S, 2014, P NATL ACAD SCI USA, V111, P8410, DOI 10.1073/pnas.1319030111 Glenna LL, 2007, SOC STUD SCI, V37, P281, DOI 10.1177/0306312706066177 Ha MS, 2011, CBE-LIFE SCI EDUC, V10, P379, DOI 10.1187/cbe.11-08-0081 Handelsman J, 2004, SCIENCE, V304, P521, DOI 10.1126/science.1096022 Hatfull GF, 2006, PLOS GENET, V2, P835, DOI 10.1371/journal.pgen.0020092 Hollister P. L., 1939, THESIS Hora M.T., 2014, Journal of College Science Teaching, V43, P36 Kalas P, 2013, CBE-LIFE SCI EDUC, V12, P655, DOI 10.1187/cbe.12-10-0174 Kober N., 2015, REACHING STUDENTS Lewin J., 2016, CBE-LIFE SCI EDUC, V15, P1 Lock R.H., 1906, Recent progress in the study of variation, heredity, and evolution Lopatto D, 2014, CBE-LIFE SCI EDUC, V13, P711, DOI 10.1187/cbe.13-10-0200 MacNell L, 2015, INNOV HIGH EDUC, V40, P291, DOI 10.1007/s10755-014-9313-4 Mawer S., 2006, Gregor Mendel: Planting the seeds of genetics National Research Council [NRC], 2011, FRAM SCI ED Newman DL, 2016, CBE-LIFE SCI EDUC, V15, DOI 10.1187/cbe.15-06-0124 Price RM, 2014, CBE-LIFE SCI EDUC, V13, P65, DOI 10.1187/cbe.13-08-0159 Redfield RJ, 2012, PLOS BIOL, V10, DOI 10.1371/journal.pbio.1001356 Seymour E., 2006, Talking about leaving: Why undergraduates leave the sciences Simon B., 2009, Journal of College Science Teaching, V39, P52 Smith MK, 2011, CBE-LIFE SCI EDUC, V10, P55, DOI 10.1187/cbe.10-08-0101 Smith MK, 2009, SCIENCE, V323, P122, DOI 10.1126/science.1165919 Smith MK, 2014, CBE-LIFE SCI EDUC, V13, P624, DOI 10.1187/cbe.14-06-0108 Smith MK, 2010, MICROBIOL AUST, V31, P35 Smith MK, 2013, CBE-LIFE SCI EDUC, V12, P618, DOI 10.1187/cbe.13-08-0154 Smith MK, 2012, GENETICS, V191, P21, DOI 10.1534/genetics.111.137810 Smith MK, 2008, CBE-LIFE SCI EDUC, V7, P422, DOI 10.1187/cbe.08-08-0045 Stanger-Hall KF, 2012, CBE-LIFE SCI EDUC, V11, P294, DOI 10.1187/cbe.11-11-0100 Stefanski KM, 2016, CBE-LIFE SCI EDUC, V15, DOI 10.1187/cbe.15-07-0162 Tsui CY, 2010, INT J SCI EDUC, V32, P1073, DOI 10.1080/09500690902951429 University of Maine, 1915, CAT U MAIN 1915 1916 University of Wisconsin, 1915, LONG MIDDL COURS AGR Urban-Lurain M., 2015, COMPUT ED J, V6, P65 Vickrey T, 2015, CBE-LIFE SCI EDUC, V14, DOI 10.1187/cbe.14-11-0198 Watkins J., 2013, J COLL SCI TEACH, V42, P36 Wieman C, 2014, CBE-LIFE SCI EDUC, V13, P552, DOI 10.1187/cbe.14-02-0023 Wiggins G., 2015, Understanding by design Wood W., 2004, DEV CELL, V7, P796 Wood WB, 2009, ANNU REV CELL DEV BI, V25, P93, DOI 10.1146/annurev.cellbio.24.110707.175306 NR 50 TC 17 Z9 20 U1 1 U2 25 PU GENETICS SOCIETY AMERICA PI BETHESDA PA 9650 ROCKVILLE AVE, BETHESDA, MD 20814 USA SN 0016-6731 EI 1943-2631 J9 GENETICS JI Genetics PD SEP PY 2016 VL 204 IS 1 BP 5 EP 10 DI 10.1534/genetics.116.187138 PG 6 WC Genetics & Heredity WE Science Citation Index Expanded (SCI-EXPANDED) SC Genetics & Heredity GA DW9RD UT WOS:000383998500003 PM 27601614 OA Green Published, Bronze DA 2024-09-05 ER PT J AU COHEN, PR HOWE, AE AF COHEN, PR HOWE, AE TI TOWARD AI RESEARCH METHODOLOGY - 3 CASE STUDIES IN EVALUATION SO IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS LA English DT Article RP COHEN, PR (corresponding author), UNIV MASSACHUSETTS,DEPT COMP & INFORMAT SCI,EXPTL KNOWLEDGE SYST LAB,AMHERST,MA 01003, USA. CR [Anonymous], 1976, Cognition and reality [Anonymous], INFORMATION RETRIEVA Barr A., 1981, The Handbook of Artificial Intelligence, Volume, V1 BUCHANAN BG, 1987, KSL8703 STANF U KNOW Buchanan BG., 1984, Rule based expert systems: the mycin experiments of the stanford heuristic programming project (the AddisonWesley series in artificial intelligence) CLANCEY WJ, 1984, 4TH P NAT C ART INT, P49 COHEN P, 1985, ART INTELL MAG, V6, P136 COHEN PR, 1987, INFORM PROCESS MANAG, V23, P255, DOI 10.1016/0306-4573(87)90017-3 COHEN PR, 1983, 8TH P INT JOINT C AR, P212 DAWSON G, 1986, CHILD DEV, V57, P1442 DIXON JR, 1984, 2UST P ACM IEEE DES ERMAN LD, 1980, COMPUT SURV, V12, P213, DOI 10.1145/356810.356816 GASCHNIG J, 1983, BUILDING EXPERT SYST, P241 Geissman J.R., 1988, AI EXPERT, V1, P26 HENRION M, 1987, 6TH P NAT C ART INT Hillier FrederickS., 1980, Introduction to operations research, V3rd Howe A. E., 1986, International Journal for Artificial Intelligence in Engineering, V1, P23 HOWE AE, 1986, EKSL8601 U MASS WORK Kemeny JG., 1959, PHILOS LOOKS SCI Langley P, 1987, MACH LEARN, V2, P195, DOI DOI 10.1023/A:1022603230145 Lenat D. B., 1976, STANCS76570 STANF U MITCHELL TM, 1977, 5TH P INT JOINT C AR, P305 MITCHELL TM, 1986, MACHINE LEARNING, V2, P46 NEWELL A, 1976, COMMUN ACM, V19, P113, DOI 10.1145/360018.360022 NEWELL A, 1975, SPEECH RECOGNITION, P3 Newell A., 1973, Visual information processing ORELUP MF, 1987, THESIS U MASS MECH E ROTHENBERG J, 1987, R3542DARPA RAND CORP Shortliffe E., 2012, Computer-based medical consultations: MYCIN, VVolume 2 Waltz D.L., 1975, GENERATING SEMANTIC, P19 NR 30 TC 30 Z9 33 U1 1 U2 2 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017-2394 SN 0018-9472 J9 IEEE T SYST MAN CYB JI IEEE Trans. Syst. Man Cybern. PD MAY-JUN PY 1989 VL 19 IS 3 BP 634 EP 646 DI 10.1109/21.31069 PG 13 WC Computer Science, Cybernetics; Engineering, Electrical & Electronic WE Science Citation Index Expanded (SCI-EXPANDED) SC Computer Science; Engineering GA AM016 UT WOS:A1989AM01600021 DA 2024-09-05 ER PT C AU Shtekh, G Kazakova, P Nikitinsky, N Skachkov, N AF Shtekh, Gennady Kazakova, Polina Nikitinsky, Nikita Skachkov, Nikolay BE Bodrunova, SS TI Exploring Influence of Topic Segmentation on Information Retrieval Quality SO INTERNET SCIENCE (INSCI 2018) SE Lecture Notes in Computer Science LA English DT Proceedings Paper CT 5th International Conference on Internet Science (INSCI) CY OCT 24-26, 2018 CL St. Petersburg, RUSSIA DE Information retrieval; Text segmentation; Topic modeling; Querying by example AB In the present paper we address the issue of how an information retrieval system might be improved via text segmentation and to what extent. We assume that topic text segmentation allows one to better model text structure and therefore language itself, which influences the quality of text representation. We propose a search pipeline based on text segmentation by means of BigARTM tool and TopicTiling algorithm. We test the initial hypothesis by conducting experiments with several baseline models on two textual collections. The results are rather contradictory: while one collection showed that segmentation does improve the quality of retrieval, the other one demonstrated that segmentation does not influence the quality significantly. C1 [Shtekh, Gennady; Kazakova, Polina] Natl Univ Sci & Technol MISIS, Leninsky Ave 4, Moscow 119049, Russia. [Nikitinsky, Nikita] Integrated Syst, Vorontsovskaya St,35B Bldg 3,Room 413, Moscow 109147, Russia. [Skachkov, Nikolay] Lomonosov Moscow State Univ, Leninskie Gory 1, Moscow 119991, Russia. C3 National University of Science & Technology (MISIS); Lomonosov Moscow State University RP Kazakova, P (corresponding author), Natl Univ Sci & Technol MISIS, Leninsky Ave 4, Moscow 119049, Russia. EM kazakova1537@gmail.com RI Nikitinsky, Nikita/AAE-4248-2022 FU Ministry of Education and Science of the Russian Federation [RFMEFI57917X0143] FX This research was supported by the Ministry of Education and Science of the Russian Federation under the unique research id RFMEFI57917X0143. CR [Anonymous], 2015, DOCUMENT EMBEDDING P [Anonymous], 2017, BILLION SCALE SIMILA [Anonymous], 2018, NAACL [Anonymous], 2016, T ASSOC COMPUT LING, DOI DOI 10.1162/TACL_A_00051 [Anonymous], 2018, P INT C LANG RES EV Chan S. K., 2007, 8 ANN C INT SPEECH C Du Lan., 2013, HLT-NAACL, P190 Galley M., 2003, P 41 ANN M ASS COMP Galuscakova P., APPL TOPIC SEGMENTAT Ganguly D., 2011, P 4 WORKSH WORKSH PH, P75 Honnibal Matthew, 2017, IN PRESS Lau J. H., 2016, arXiv preprint arXiv:1607.05368 Le Q., 2014, 31 INT C MACH LEARN, P1188, DOI DOI 10.1145/2740908.2742760 Mikolov T., 2013, Advances in Neural Information Processing Systems, P3111 Pennington J., 2014, P 2014 C EMP METH NA, P1532 Prince V, 2007, LECT NOTES COMPUT SC, V4592, P295 Riedl M., 2012, J LANG TECHNOL COMPU, V27, P47 Skachkov N., 2018, COMP LING INT TECHN, P652 Vorontsov K, 2015, COMM COM INF SC, V542, P370, DOI 10.1007/978-3-319-26123-2_36 Vorontsov K, 2015, MACH LEARN, V101, P303, DOI 10.1007/s10994-014-5476-6 NR 20 TC 1 Z9 1 U1 0 U2 3 PU SPRINGER INTERNATIONAL PUBLISHING AG PI CHAM PA GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND SN 0302-9743 EI 1611-3349 BN 978-3-030-01437-7; 978-3-030-01436-0 J9 LECT NOTES COMPUT SC PY 2018 VL 11193 BP 131 EP 140 DI 10.1007/978-3-030-01437-7_11 PG 10 WC Computer Science, Theory & Methods WE Conference Proceedings Citation Index - Science (CPCI-S) SC Computer Science GA BN2UQ UT WOS:000477766000011 DA 2024-09-05 ER PT J AU Liu, XW Doboli, A MacCarthy, T Doboli, S AF Liu, Xiaowei Doboli, Alex MacCarthy, Tom Doboli, Simona TI Understanding the Significance of Mid-Tier Research Teams in Idea Flow Through a Community SO IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS LA English DT Article DE Measurement; Magnetic heads; Ecology; Clustering algorithms; Testing; Mathematical models; Transforms; Experimental study; groups; impact of ideas; research community; role ID NETWORK; COLLABORATION; CENTRALITY; CREATIVITY; KNOWLEDGE; PATENTS AB Studying the dynamics of research communities has been an important yet tedious topic. It is important for devising management policies that optimize the quality of research outputs by promoting a certain composition, structure, and interaction patterns for a community. While there has been significant attention to understanding the roles of individuals, there has been less focus on studying the roles that research groups perform and how roles relate to the characteristics of the community. This article presents an experimental study on the roles that research groups have in the idea flow through a community. The study analyzes two facets: the contribution of different kinds of groups to the impact research ideas make on other groups and the importance of specific groups to connect a community together. The results showed that research groups can be classified into four categories depending on the number of received citations. Groups of the mid-tier categories (called categories B and C in this article) are important in tying a community together as they improve the idea impact and bridging between groups. Policies that aggressively eliminate such groups reduce the effectiveness of idea flow, even though research communities include a certain amount of robustness for moderate levels of group removals. C1 [Liu, Xiaowei; Doboli, Alex] SUNY Stony Brook, Dept Elect & Comp Engn, Stony Brook, NY 11794 USA. [MacCarthy, Tom] SUNY Stony Brook, Dept Appl Math & Stat, Stony Brook, NY 11794 USA. [Doboli, Simona] Hofstra Univ, Dept Comp Sci, Hempstead, NY 11549 USA. C3 State University of New York (SUNY) System; State University of New York (SUNY) Stony Brook; State University of New York (SUNY) System; State University of New York (SUNY) Stony Brook; Hofstra University RP Doboli, A (corresponding author), SUNY Stony Brook, Dept Elect & Comp Engn, Stony Brook, NY 11794 USA. EM alex.doboli@stonybrook.edu; thomas.maccarthy@stonybrook.edu; simona.doboli@hofstra.edu OI Doboli, Alex/0000-0003-2472-4014; Doboli, Simona/0000-0003-0158-4725 FU National Science Foundation [1247971]; Division Of Behavioral and Cognitive Sci; Direct For Social, Behav & Economic Scie [1247971] Funding Source: National Science Foundation FX This work was supported in part by the National Science Foundation under Grant 1247971. CR Agarwal P, 2008, BRIEF BIOINFORM, V9, P479, DOI 10.1093/bib/bbn035 Bettencourt LMA, 2011, P NATL ACAD SCI USA, V108, P19540, DOI 10.1073/pnas.1102712108 Borgatti SP, 2005, SOC NETWORKS, V27, P55, DOI 10.1016/j.socnet.2004.11.008 Burt RS, 2000, RES ORGAN BEHAV, V22, P345, DOI 10.1016/S0191-3085(00)22009-1 Cambria E., 2012, P 25 INT FLOR ART IN, P1 Capaldo A, 2007, STRATEGIC MANAGE J, V28, P585, DOI 10.1002/smj.621 de Montjoye YA, 2014, SCI REP-UK, V4, DOI 10.1038/srep05277 Dickinson RE, 2003, MATH COMPUT MODEL, V38, P1157, DOI [10.1016/S0895-7177(03)90116-6, 10.1016/S0895-7177(03)00327-3] Fleming L, 2007, ORGAN SCI, V18, P938, DOI 10.1287/orsc.1070.0289 FREEMAN LC, 1991, SOC NETWORKS, V13, P141, DOI 10.1016/0378-8733(91)90017-N GOFFMAN W, 1971, NATURE, V229, P103, DOI 10.1038/229103a0 Hansen MT, 1999, ADMIN SCI QUART, V44, P82, DOI 10.2307/2667032 Kennedy, 1986, POSITIVE SUM STRATEG, P263 Kim D, 2012, IEEE T AUTOM SCI ENG, V9, P723, DOI 10.1109/TASE.2012.2210214 Kuhn T.S., 1962, The structure of scientific revolutions Lucio-Arias D, 2008, J AM SOC INF SCI TEC, V59, P1948, DOI 10.1002/asi.20903 McFadyen MA, 2009, ORGAN SCI, V20, P552, DOI 10.1287/orsc.1080.0388 Newman MEJ, 2005, SOC NETWORKS, V27, P39, DOI 10.1016/j.socnet.2004.11.009 Newman MEJ, 2001, P NATL ACAD SCI USA, V98, P404, DOI 10.1073/pnas.021544898 Newman MEJ, 2001, PHYS REV E, V64, DOI [10.1103/PhysRevE.64.016131, 10.1103/PhysRevE.64.016132] Page L., 1999, The PageRank citation ranking: bringing order to the web Pentland A, 2012, HARVARD BUS REV, V90, P61 Perry-Smith JE, 2006, ACAD MANAGE J, V49, P85, DOI 10.2307/20159747 Perry-Smith JE, 2003, ACAD MANAGE REV, V28, P89 Rodriguez A, 2015, EXPERT SYST APPL, V42, P1479, DOI 10.1016/j.eswa.2014.08.051 Rost K, 2011, RES POLICY, V40, P588, DOI 10.1016/j.respol.2010.12.001 Scheffer M, 2006, P NATL ACAD SCI USA, V103, P6230, DOI 10.1073/pnas.0508024103 Scheffer M., 2009, Critical transitions in nature and society Skvoretz J., 2002, Complexity, V8, P47, DOI 10.1002/cplx.10062 Uzzi B, 2005, AM J SOCIOL, V111, P447, DOI 10.1086/432782 Wuchty S, 2007, SCIENCE, V316, P1036, DOI 10.1126/science.1136099 Zafarani R., 2014, Social Media Mining: An introduction, DOI DOI 10.1017/CBO9781139088510 NR 32 TC 0 Z9 0 U1 0 U2 2 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 2329-924X J9 IEEE T COMPUT SOC SY JI IEEE Trans. Comput. Soc. Syst. PD DEC PY 2023 VL 10 IS 6 BP 3422 EP 3432 DI 10.1109/TCSS.2022.3205279 EA OCT 2022 PG 11 WC Computer Science, Cybernetics; Computer Science, Information Systems WE Science Citation Index Expanded (SCI-EXPANDED) SC Computer Science GA CE5H8 UT WOS:000865079000001 DA 2024-09-05 ER PT C AU Xu, YH Jiang, WJ Xu, YS AF Xu, YH Jiang, WJ Xu, YS GP IEEE TI Research on reliability evaluation of series systems with optimization algorithm SO PROCEEDINGS OF 2005 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS, VOLS 1-9 LA English DT Proceedings Paper CT 4th International Conference on Machine Learning and Cybernetics CY AUG 18-21, 2005 CL Canton, PEOPLES R CHINA DE system reliability; First Order Second Moment; optimization algorithms; Monte Carlo method; importance sampling ID STRUCTURAL RELIABILITY; CODE AB The failure probability of a system can be expressed as an integral of the joint probability density function within the failure domain defined by the limit state functions of the system. Generally, it is very difficult to solve this integral directly. The evaluation of system reliability has been the active research area during the recent decades. Some methods were developed to solve system reliability analysis, such as Monte Carlo method, importance sampling method, bounding techniques and Probability Network Evaluation Technique (PNET). This paper presents the implementation of several optimization algorithms, modified Method of Feasible Direction (MFD), Sequential Linear Programming (SLP) and Sequential Quadratic programming (SQP), in order to demonstrate the convergence abilities and robust nature of the optimization technique when applied to series system reliability analysis. Examples taken from the published references were calculated and the results were compared with the answers of various other methods and the exact solution. Results indicate the optimization technique has a wide range of application with good convergence ability and robustness, and handle problems under generalized conditions or cases. C1 Zhuzhou Inst Technol, Dept Informat & Comp Sci, Zhuzhou 412008, Peoples R China. RP Zhuzhou Inst Technol, Dept Informat & Comp Sci, Zhuzhou 412008, Peoples R China. EM jwj3666@163.com; yshxu520@163.com CR Borri A, 1997, STRUCT SAF, V19, P361, DOI 10.1016/S0167-4730(97)00017-9 HASOFER AM, 1974, J ENG MECH DIV-ASCE, V100, P111 Jiang Wei-jin, 2004, Wuhan University Journal of Natural Sciences, V9, P735, DOI 10.1007/BF02831672 Jiang WJ, 2004, PROCEEDINGS OF THE 2004 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS, VOLS 1-7, P222 Melchers RE., 1999, STRUCTURAL RELIABILI RACKWITZ R, 1978, COMPUT STRUCT, V9, P489, DOI 10.1016/0045-7949(78)90046-9 Sorensen J.D., 1994, PRADSR RELIABILITY P *VAND RES DEV INC, 1999, DOT US MAN Xu L, 2003, STRUCT SAF, V25, P193, DOI 10.1016/S0167-4730(02)00056-5 Zhao YG, 1998, J STRUCT ENG, V124, P678, DOI 10.1061/(ASCE)0733-9445(1998)124:6(678) NR 10 TC 0 Z9 0 U1 0 U2 1 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA BN 0-7803-9091-1 PY 2005 BP 3438 EP 3442 PG 5 WC Computer Science, Artificial Intelligence; Computer Science, Cybernetics; Computer Science, Information Systems WE Conference Proceedings Citation Index - Science (CPCI-S) SC Computer Science GA BDT94 UT WOS:000235325605031 DA 2024-09-05 ER PT C AU Block, BM AF Block, Brit-Maren GP IEEE TI Digitalization in Engineering Education Research and Practice SO PROCEEDINGS OF 2018 IEEE GLOBAL ENGINEERING EDUCATION CONFERENCE (EDUCON) - EMERGING TRENDS AND CHALLENGES OF ENGINEERING EDUCATION SE IEEE Global Engineering Education Conference LA English DT Proceedings Paper CT IEEE Global Engineering Education Conference (EDUCON) - Emerging Trends and Challenges of Engineering Education CY APR 17-20, 2018 CL Santa Cruz de Tenerife, SPAIN DE digitalization; engineering education research; e-assessment; active learning; students competences AB Digitalization is the ongoing trend of recent years. It covers all areas of business, society and research. This paper makes a contribution to that discourse focusing on engineering education research and practice. The contribution aims at generating new insights in a threefold way: (I) by analyzing the significance of digitalization in the research area, (2) by describing an example of the implementation of digital methods in education practice, and (3) by presenting the theoretical and methodological framework of a course that covers the digital transformation and backlash effects on society. This approach generates empirically grounded knowledge on the state-of-the-art and contributes to the translation of engineering education research to practice. C1 [Block, Brit-Maren] Leuphana Univ Lueneburg, Inst Prod & Proc Innovat, Luneburg, Germany. C3 Leuphana University Luneburg RP Block, BM (corresponding author), Leuphana Univ Lueneburg, Inst Prod & Proc Innovat, Luneburg, Germany. CR [Anonymous], EUROPEAN J ENG ED [Anonymous], 2012, GIEE 2011 GENDER INT Block BM, 2014, IEEE GLOB ENG EDUC C, P23, DOI 10.1109/EDUCON.2014.6826062 Block BM, 2013, IEEE GLOB ENG EDUC C, P213, DOI 10.1109/EduCon.2013.6530108 DECI EL, 1993, Z PADAGOGIK, V39, P223 Kloos CD, 2015, IEEE GLOB ENG EDUC C, P967, DOI 10.1109/EDUCON.2015.7096090 Erpenbeck J., 2007, HDB COMPETENCE ASSES Hakala I, 2016, IEEE GLOB ENG EDUC C, P409, DOI 10.1109/EDUCON.2016.7474586 Harteis Ch., 2018, PROFESSIONAL PRACTIC, V21 Krapp A., 2006, ED PSYCHOL Kruse D, 2016, IEEE GLOB ENG EDUC C, P469, DOI 10.1109/EDUCON.2016.7474595 Lauer P., 2017, GLOBAL CURRICULUM PR Mayring Philipp., 2008, GRUNDLAGEN TECHNIKEN Mills J., 2010, GENDER INCLUSIVE ENG Ortelt TR, 2016, IEEE GLOB ENG EDUC C, P602, DOI 10.1109/EDUCON.2016.7474612 Riedel J., 2017, DIGITALIZATION U RES, V12, P3 Tsironis A, 2016, IEEE GLOB ENG EDUC C, P608, DOI 10.1109/EDUCON.2016.7474613 NR 17 TC 9 Z9 9 U1 0 U2 8 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA SN 2165-9567 BN 978-1-5386-2957-4 J9 IEEE GLOB ENG EDUC C PY 2018 BP 1024 EP 1028 PG 5 WC Education, Scientific Disciplines WE Conference Proceedings Citation Index - Science (CPCI-S) SC Education & Educational Research GA BK3EO UT WOS:000434866100143 DA 2024-09-05 ER PT J AU Wang, Y Li, F Dou, JL AF Wang, Yong Li, Fang Dou, Jia-Li TI Research on the Evaluation Model of the Overall Benefit of the Nonlinear Rural Pension Based on Particle Swarm Optimization Algorithm: From the Perspective of Migrant Workers Returning SO MATHEMATICAL PROBLEMS IN ENGINEERING LA English DT Article ID INFORMATION; COSTS AB In this paper, based on the existing research, the rural talent supply situation is analyzed. Rural talent relative to the existing rural labor force has a higher human capital of the labor force. We also discuss the part of moving workers who can be considered as talents. Financial dimension is mostly through literature collection and statistical data finding and computational calculation, according to the results of communicate indicators, to reflect its performance level. The performance analysis of organizational management dimension and institutional development dimension mainly focuses on qualitative analysis and comparative analysis, and then we summarize and evaluate the performance status of Shanghai basic endowment insurance system for urban and rural residents. Therefore, all countries in the world are constantly exploring and trying to improve the performance management model of their social security institutions. Through the evaluation and analysis of the above four dimensions, it can be found that the overall performance level of urban and rural residential insurance in Shanghai is relatively high, but there are still some problems in the operation process. C1 [Wang, Yong] Anhui Sci & Technol Univ Finance, Econ College1, Bengbu 233100, Anhui, Peoples R China. [Wang, Yong; Li, Fang] Nanjing Agr Univ, Sch Publ Adm, Nanjing 210095, Jiangsu, Peoples R China. [Dou, Jia-Li] Anhui Sci & Technol Univ Adm Coll, Bengbu 233100, Anhui, Peoples R China. C3 Nanjing Agricultural University RP Dou, JL (corresponding author), Anhui Sci & Technol Univ Adm Coll, Bengbu 233100, Anhui, Peoples R China. EM n3480646duxiezi56@163.com; bjwje204@163.com; doujl@ahstu.edu.cn FU Philosophy and Social Science Planning Project of Anhui Province, China [ahsky2016d18]; Industry university research innovation fund project of science and technology development center of the Ministry of Education [2018a01011] FX This study was supported by Philosophy and Social Science Planning Project of Anhui Province, China: Research on rural old-age security from the perspective of the return of elderly migrant workers--Based on the survey of Fuyang, Anhui Province (ahsky2016d18), and Industry university research innovation fund project of science and technology development center of the Ministry of Education: Research on influencing factors and mechanism of purchase intention of Internet personal financial products based on big data technology (2018a01011). CR ALCHIAN AA, 1972, AM ECON REV, V62, P777 FAMA EF, 1980, J POLIT ECON, V88, P288, DOI 10.1086/260866 GROSSMAN SJ, 1983, ECONOMETRICA, V51, P7, DOI 10.2307/1912246 GROSSMAN SJ, 1988, J FINANC ECON, V20, P175, DOI 10.1016/0304-405X(88)90044-X HOLMSTROM B, 1982, BELL J ECON, V13, P324, DOI 10.2307/3003457 Holmström B, 1999, REV ECON STUD, V66, P169, DOI 10.1111/1467-937X.00083 Holzmann R, 2005, OLD-AGE INCOME SUPPORT IN THE 21ST CENTURY: AN INTERNATIONAL PERSPECTIVE ON PENSION SYSTEMS AND REFORM, P55 JENSEN MC, 1976, J FINANC ECON, V3, P305, DOI 10.1016/0304-405X(76)90026-X Kennedy J., 1995, Proceedings of ICNN'95 - International Conference on Neural Networks, V4, P1942 KREPS DM, 1982, J ECON THEORY, V27, P245, DOI 10.1016/0022-0531(82)90029-1 Lewis A. W., 1954, MANCHESTER SCH EC SO, V22, P139, DOI DOI 10.1111/J.1467-9957.1954.TB00021.X Mirrlees J, 1974, ESSAYS EC BEHAV UNCE Qassoum M., 2004, LOCAL DIALECTIC PROD RANIS G, 1961, AM ECON REV, V51, P533 SPENCE M, 1971, AM ECON REV, V61, P380 TODARO MP, 1969, AM ECON REV, V59, P138 NR 16 TC 0 Z9 0 U1 2 U2 7 PU HINDAWI LTD PI LONDON PA ADAM HOUSE, 3RD FLR, 1 FITZROY SQ, LONDON, W1T 5HF, ENGLAND SN 1024-123X EI 1563-5147 J9 MATH PROBL ENG JI Math. Probl. Eng. PD APR 12 PY 2022 VL 2022 AR 6554300 DI 10.1155/2022/6554300 PG 8 WC Engineering, Multidisciplinary; Mathematics, Interdisciplinary Applications WE Science Citation Index Expanded (SCI-EXPANDED) SC Engineering; Mathematics GA 1V7CZ UT WOS:000806244400007 OA gold DA 2024-09-05 ER PT J AU Sasaki, H Hara, T Sakata, I AF Sasaki, Hajime Hara, Tadayoshi Sakata, Ichiro TI Identifying Emerging Research Related to Solar Cells Field using a Machine Learning Approach SO JOURNAL OF SUSTAINABLE DEVELOPMENT OF ENERGY WATER AND ENVIRONMENT SYSTEMS-JSDEWES LA English DT Article DE Solar cells; Photovoltaic; Emerging research; Technology prediction; Citation network; Machine learning; Scientometrics; Innovation management ID SCIENCE-AND-TECHNOLOGY; RECENT PROGRESS; POLYMER; CENTRALITY; LANDSCAPE; EFFICIENT; NETWORKS; GRAPHENE; DESIGN; TIO2 AB The number of research papers related to solar cells field is increasing rapidly. It is hard to grasp research trends and to identify emerging research issues because of exponential growth of publications, and the field's subdivided knowledge structure. Machine learning techniques can be applied to the enormous amounts of data and subdivided research fields to identify emerging researches. This paper proposed a prediction model using a machine learning approach to identify emerging solar cells related academic research, i.e. papers that might be cited very frequently within three years. The proposed model performed well and stable. The model highlighted some articles published in 2015 that will be emerging in the future. Research related to vegetable-based dye-sensitized solar cells was identified as the one of the promising researches by the model. The proposed prediction model is useful to gain foresight into research trends in science and technology, facilitating decision-making processes. C1 [Sasaki, Hajime; Sakata, Ichiro] Univ Tokyo, Policy Alternat Res Inst, Bunkyo Ku, 7-3-1 Hongo, Tokyo, Japan. [Hara, Tadayoshi; Sakata, Ichiro] Univ Tokyo, Innovat Policy Res Ctr, Inst Engn Innovat, Sch Engn,Bunkyo Ku, Yayoi 2-11-16, Tokyo, Japan. C3 University of Tokyo; University of Tokyo RP Sasaki, H (corresponding author), Univ Tokyo, Policy Alternat Res Inst, Bunkyo Ku, 7-3-1 Hongo, Tokyo, Japan. EM sasaki@pari.u-tokyo.ac.jp; t.hara@ipr-ctr.t.u-tokyo.ac.jp; isakata@ipr-ctr.t.u-tokyo.ac.jp RI Sasaki, Hajime/AHA-8512-2022; Sasaki, Hajime/AEB-0480-2022 OI Sasaki, Hajime/0000-0003-0026-4076; SAKATA, ICHIRO/0000-0001-5881-3790 FU Project of the NARO Bio-oriented Technology Research Advancement Institution FX This research was supported by grants from the Project of the NARO Bio-oriented Technology Research Advancement Institution (Integration research for agriculture and interdisciplinary fields). CR Adams J, 2005, SCIENTOMETRICS, V63, P567, DOI 10.1007/s11192-005-0228-9 Albero J, 2015, CHEM REC, V15, P803, DOI 10.1002/tcr.201500007 Bella F, 2015, CHEM SOC REV, V44, P3431, DOI 10.1039/c4cs00456f Berger T, 2012, CHEMPHYSCHEM, V13, P2824, DOI 10.1002/cphc.201200073 Bettencourt LMA, 2008, SCIENTOMETRICS, V75, P495, DOI 10.1007/s11192-007-1888-4 Bonacich P., 1972, Sociological methodology, V4, P176, DOI [DOI 10.2307/270732, 10.2307/270732] Bouclé J, 2012, POLYM INT, V61, P355, DOI 10.1002/pi.3157 Brin S, 2012, COMPUT NETW, V56, P3825, DOI 10.1016/j.comnet.2012.10.007 Burt RS, 2004, AM J SOCIOL, V110, P349, DOI 10.1086/421787 Calogero G, 2015, CHEM SOC REV, V44, P3244, DOI 10.1039/c4cs00309h Chakraborty T, 2014, ACM-IEEE J CONF DIG, P351, DOI 10.1109/JCDL.2014.6970190 Chen CM, 2009, J INFORMETR, V3, P191, DOI 10.1016/j.joi.2009.03.004 Chen W, 2012, ENERG ENVIRON SCI, V5, P8045, DOI 10.1039/c2ee22056c Cheng P, 2015, MATER HORIZ, V2, P462, DOI 10.1039/c5mh00090d Chueh CC, 2015, ENERG ENVIRON SCI, V8, P1160, DOI 10.1039/c4ee03824j Coontz R, SCI TOP 10 BREAKTHRO Davletov F., 2014, P 23 ACM INT C CONFE, P491, DOI [DOI 10.1145/2661829, 10.1145/2661829.2662066, 10.1145/2661829] Dong Y, 2015, WSDM'15: PROCEEDINGS OF THE EIGHTH ACM INTERNATIONAL CONFERENCE ON WEB SEARCH AND DATA MINING, P149, DOI 10.1145/2684822.2685314 Dou LT, 2012, NAT PHOTONICS, V6, P180, DOI [10.1038/nphoton.2011.356, 10.1038/NPHOTON.2011.356] FREEMAN LC, 1979, SOC NETWORKS, V1, P215, DOI 10.1016/0378-8733(78)90021-7 FREEMAN LC, 1977, SOCIOMETRY, V40, P35, DOI 10.2307/3033543 GOFFMAN W, 1964, NATURE, V204, P225, DOI 10.1038/204225a0 Guimerà R, 2005, NATURE, V433, P895, DOI 10.1038/nature03288 Kajikawa Y, 2007, SUSTAIN SCI, V2, P221, DOI 10.1007/s11625-007-0027-8 KAY A, 1993, J PHYS CHEM-US, V97, P6272, DOI 10.1021/j100125a029 Kojima A, 2009, J AM CHEM SOC, V131, P6050, DOI 10.1021/ja809598r Kumar P, 2012, PROG PHOTOVOLTAICS, V20, P377, DOI 10.1002/pip.1141 Li L., 2015, ARXIV150400948 Li LL, 2012, INT REV PHYS CHEM, V31, P420, DOI 10.1080/0144235X.2012.733539 Liang ZQ, 2015, ENERG ENVIRON SCI, V8, P3442, DOI 10.1039/c5ee02510a Liu ZK, 2015, CHEM SOC REV, V44, P5638, DOI 10.1039/c4cs00455h Lizin S, 2013, RENEW ENERG, V57, P5, DOI 10.1016/j.renene.2013.01.027 Lu LY, 2015, CHEM REV, V115, P12666, DOI 10.1021/acs.chemrev.5b00098 Mishra A, 2012, ANGEW CHEM INT EDIT, V51, P2020, DOI 10.1002/anie.201102326 Newman MEJ, 2006, P NATL ACAD SCI USA, V103, P8577, DOI 10.1073/pnas.0601602103 Ooyama Y, 2012, CHEMPHYSCHEM, V13, P4032, DOI 10.1002/cphc.201200218 Sakata I., 2013, NAT RESOUR, V4, P134, DOI [10.4236/nr.2013.41A017, DOI 10.4236/NR.2013.41A017] Shibata N, 2010, TECHNOL FORECAST SOC, V77, P1147, DOI 10.1016/j.techfore.2010.03.008 Singh E, 2015, SCI ADV MATER, V7, P1863, DOI 10.1166/sam.2015.2438 Wang DS, 2013, SCIENCE, V342, P127, DOI 10.1126/science.1237825 Watts DJ, 1998, NATURE, V393, P440, DOI 10.1038/30918 Winnink JJ, 2015, SCIENTOMETRICS, V102, P113, DOI 10.1007/s11192-014-1451-z Wu JH, 2015, CHEM REV, V115, P2136, DOI 10.1021/cr400675m Yip HL, 2012, ENERG ENVIRON SCI, V5, P5994, DOI 10.1039/c2ee02806a Zhou HX, 2012, MACROMOLECULES, V45, P607, DOI 10.1021/ma201648t NR 45 TC 11 Z9 11 U1 0 U2 20 PU INT CENTRE SUSTAINABLE DEV ENERGY WATER & ENV SYSTEMS-SDEWES PI ZAGREB PA IVANA LUCICA 5, ZAGREB, 10000, CROATIA SN 1848-9257 J9 J SUSTAIN DEV ENERGY JI J. Sustain. Dev. Energy Water Environ. Syst.-JSDEWES PD DEC PY 2016 VL 4 IS 4 BP 418 EP 429 DI 10.13044/j.sdewes.2016.04.0032 PG 12 WC Environmental Sciences WE Emerging Sources Citation Index (ESCI) SC Environmental Sciences & Ecology GA FG1KH UT WOS:000409554200008 OA gold, Green Submitted DA 2024-09-05 ER PT J AU Sahni, S Verma, S Kaurav, RPS AF Sahni, Shalini Verma, Sushma Kaurav, Rahul Pratap Singh TI Understanding digital transformation challenges for online learning and teaching in higher education institutions: a review and research framework SO BENCHMARKING-AN INTERNATIONAL JOURNAL LA English DT Article; Early Access DE HEIs; Digital transformation; Online teaching; Online learning; Bibliometrics; TCM framework; Sustainable higher education ID STUDENT SATISFACTION; MENTAL-HEALTH; COVID-19; ENGAGEMENT; EXPERIENCES; UNIVERSITIES; PERFORMANCE; MOTIVATION; IMPROVE; IMPACT AB PurposeThe widespread uptake of digital technology tools for online teaching and learning reached its peak during the nationwide lockdown triggered by the COVID-19 pandemic. It transformed the higher education institutions (HEIs) marketplace both in developed and developing countries. However, in this process of digital transformation, several HEIs, specifically from developing countries, faced major challenges. That threatened to affect their sustainability and performance. In this vein, this study conducts a bibliometric review to map the challenges during the COVID-19 pandemic and suggest strategies for HEIs to cope with post-pandemic situations in the future.Design/methodology/approachThis comprehensive review encompasses 343 papers published between 2020 and 2023, employing a systematic approach that combines bibliometrics and content analysis to thoroughly evaluate the articles.FindingsThe investigation revealed a lack of published work addressing the specific challenges faced by the faculty members affecting their well-being. The study underscores the importance of e-learning technology adoption for higher education sustainability by compelling both students and teachers to rely heavily on social media platforms to maintain social presence and facilitate remote learning. The reduced interpersonal interaction during the pandemic has had negative consequences for academic engagement and professional advancement for both educators and students.Practical implicationsThis has implications for policymakers and the management of HEIs, as it may prove useful in reenvisioning and redesigning future curricula. The paper concludes by developing a sustainable learning framework using a blended approach. Additionally, we also provide directions for future research to scholars.Originality/valueThis study has implications for policymakers and HEI management to rethink the delivery of future courses with a focus on education and institute sustainability. Finally, the research also proposes a hybrid learning framework for sustainability and forms a robust foundation for scholars in future research. C1 [Sahni, Shalini] Koach Scholar, New Delhi, India. [Verma, Sushma] Vivekanand Educ Soc, Inst Management Studies & Res, Mumbai, Maharashtra, India. [Kaurav, Rahul Pratap Singh] FORE Sch Management, New Delhi, India. C3 FORE School of Management RP Kaurav, RPS (corresponding author), FORE Sch Management, New Delhi, India. EM drshalini2532@gmail.com; sushma.verma@ves.ac.in; rsinghkaurav@gmail.com RI Kaurav, Rahul Pratap Singh/K-8505-2015; Verma, Sushma/KGL-2188-2024 OI Kaurav, Rahul Pratap Singh/0000-0001-9851-6854; Verma, Sushma/0000-0003-2027-380X; sahni, Shalini/0000-0002-9096-6524 CR Abuhmaid A., 2022, Nature, V16, P54, DOI [10.55951/nurture.v16i2.127, DOI 10.55951/NURTURE.V16I2.127] Akram H, 2021, J INF TECHNOL EDUC-R, V20, P263, DOI 10.28945/4784 Al-Salman S, 2021, ONLINE LEARN, V25, P286, DOI 10.24059/olj.v25i1.2470 Aleynikova D.V., 2021, XLinguae, V14, P170, DOI [10.18355/xl.2021.14.01.14, DOI 10.18355/XL.2021.14.01.14] Ali W., 2020, HIGHER ED STUDIES, V10, P16, DOI DOI 10.5539/HES.V10N3P16 Alkhalil SM, 2021, J HUM BEHAV SOC ENVI, V31, P464, DOI 10.1080/10911359.2020.1829243 Almazova N, 2020, EDUC SCI, V10, DOI 10.3390/educsci10120368 Almusharraf NM, 2020, INT J EMERG TECHNOL, V15, P246, DOI 10.3991/ijet.v15i21.15647 Alonso-García M, 2021, SUSTAINABILITY-BASEL, V13, DOI 10.3390/su13115938 AlTameemy F.A., 2021, Impact of Covid-19 on English language teaching in Yemen: challenges and opportunities Anderson PJ, 2022, EDUC SCI, V12, DOI 10.3390/educsci12120911 Anderson T., 2001, Journal of Asynchronous Learning Networks, V5, P1, DOI [10.24059/olj.v5i2.1875, DOI 10.24059/OLJ.V5I2.1875] Andersson A, 2009, ELECTR J INF SYS DEV, V38 Ando S, 2021, J HUM BEHAV SOC ENVI, V31, P435, DOI 10.1080/10911359.2020.1814928 [Anonymous], 2021, Education at a glance 2021: OECD indicators, DOI DOI 10.1787/69096873-EN Aqdas S, 2023, INT J INSTR, V16, P753 Aria M, 2020, SOC INDIC RES, V149, P803, DOI 10.1007/s11205-020-02281-3 Aria M, 2017, J INFORMETR, V11, P959, DOI 10.1016/j.joi.2017.08.007 Arrabal R, 2022, J CHEM EDUC, V99, P3298, DOI 10.1021/acs.jchemed.2c00644 Aspland T., 2022, Journal of Applied Learning and Teaching, V5, P145 Azman A, 2020, SOC WORK EDUC, V39, P1058, DOI 10.1080/02615479.2020.1815692 Bajaj P, 2021, COGENT EDUC, V8, DOI 10.1080/2331186X.2021.2002130 Bao W, 2020, HUM BEHAV EMERG TECH, V2, P113, DOI 10.1002/hbe2.191 Berger K.A., 1997, Journal of Marketing for Higher Education, V7, P61, DOI 10.1300/j050v07n04_05 Blondel VD, 2008, J STAT MECH-THEORY E, DOI 10.1088/1742-5468/2008/10/P10008 Breiki M.A., 2022, Int. J. Emerg. Technol. Learn, V17, P4, DOI [10.3991/ijet.v17i20.29441, DOI 10.3991/IJET.V17I20.29441] Bruggeman B, 2021, INTERNET HIGH EDUC, V48, DOI 10.1016/j.iheduc.2020.100772 Çakiroglu Ü, 2022, AUSTRALAS J EDUC TEC, V38, P87, DOI 10.14742/ajet.7307 Cameron-Standerford A, 2020, FRONT EDUC, V5, DOI 10.3389/feduc.2020.583881 Chandrasinghe PC, 2020, BMC MED EDUC, V20, DOI 10.1186/s12909-020-02236-9 Chi Zhang, 2023, International Journal of Emerging Technologies in Learning, P152, DOI 10.3991/ijet.v18i01.36705 Chierichetti M, 2021, EDUC SCI, V11, DOI 10.3390/educsci11080419 Christensen MK, 2022, ADV HEALTH SCI EDUC, V27, P577, DOI 10.1007/s10459-022-10102-0 Chu AMY, 2021, SUSTAINABILITY-BASEL, V13, DOI 10.3390/su13095038 Clipper B, 2020, NURSE LEAD, V18, P500, DOI 10.1016/j.mnl.2020.06.008 Clum K, 2022, ONLINE LEARN, V26, P323 Crisp BR, 2021, BRIT J SOC WORK, V51, P1839, DOI 10.1093/bjsw/bcab108 Dahabiyeh L, 2022, INT J INF LEARN TECH, V39, P97, DOI 10.1108/IJILT-09-2021-0147 Das R, 2021, J UNIV TEACH LEARN P, V18 David S, 2022, EDUC SCI, V12, DOI 10.3390/educsci12100693 DAVIS FD, 1989, MIS QUART, V13, P319, DOI 10.2307/249008 del Barrio-García S, 2020, J BUS RES, V121, P73, DOI 10.1016/j.jbusres.2020.08.023 Denyer D., 2009, The Sage handbook of organizational research methods, P671 Devkota KR, 2021, INT REV EDUC, V67, P145, DOI 10.1007/s11159-021-09886-x Ding LL, 2023, J RES TECHNOL EDUC, V55, P817, DOI 10.1080/15391523.2022.2038315 Diningrat S.W.M., 2020, Jurnal Cakrawala Pendidikan, V39, P705, DOI DOI 10.21831/CP.V39I3.32304 Donlon E, 2022, IRISH EDUC STUD, V41, P41, DOI 10.1080/03323315.2021.2022520 Donthu N, 2021, J BUS RES, V133, P285, DOI 10.1016/j.jbusres.2021.04.070 Eden J, 2022, KOME, V10, P60, DOI 10.17646/KOME.75672.91 Elmer T, 2020, PLOS ONE, V15, DOI 10.1371/journal.pone.0236337 Frank AG, 2019, TECHNOL FORECAST SOC, V141, P341, DOI 10.1016/j.techfore.2019.01.014 Golinelli D, 2020, J MED INTERNET RES, V22, DOI 10.2196/22280 Gourlay L, 2021, J INTERACT MEDIA EDU, DOI 10.5334/jime.655 Gradisek P, 2021, SODOB PEDAGOG, V72, P286 Guan W, 2020, NEW ENGL J MED, V382, P1708, DOI 10.1056/NEJMoa2002032 Guangul FM, 2020, EDUC ASSESS EVAL ACC, V32, P519, DOI 10.1007/s11092-020-09340-w Hadjeris F, 2021, HUM BEHAV EMERG TECH, V3, P160, DOI 10.1002/hbe2.245 Hardt D, 2022, LABOUR ECON, V78, DOI 10.1016/j.labeco.2022.102220 Harsch C, 2021, SYSTEM, V103, DOI 10.1016/j.system.2021.102673 Heeks R, 2002, INFORM SOC, V18, P101, DOI 10.1080/01972240290075039 Heilporn G, 2021, INT J EDUC TECHNOL H, V18, DOI 10.1186/s41239-021-00260-3 Heyang T, 2024, RES DANC EDUC, V25, P343, DOI 10.1080/14647893.2022.2114446 Hjorland B, 2013, KNOWL ORGAN, V40, P11 Pichardo JI, 2021, EDUC SCI, V11, DOI 10.3390/educsci11110667 Iivari N, 2020, INT J INFORM MANAGE, V55, DOI 10.1016/j.ijinfomgt.2020.102183 Jebarajakirthy C, 2021, INT J CONSUM STUD, V45, P1258, DOI 10.1111/ijcs.12728 Jelinska M, 2021, ONLINE LEARN, V25, P303, DOI 10.24059/olj.v25i1.2492 Jin TJ, 2023, EUR J ENG EDUC, V48, P300, DOI 10.1080/03043797.2022.2117023 Johnson N, 2020, ONLINE LEARN, V24, P6, DOI 10.24059/olj.v24i2.2285 Joshi A, 2021, INTERACT TECHNOL SMA, V18, P205, DOI 10.1108/ITSE-06-2020-0087 Kabilan MK, 2022, STUD EDUC EVAL, V74, DOI 10.1016/j.stueduc.2022.101182 Kallunki V, 2023, EDUC INF TECHNOL, V28, P10005, DOI 10.1007/s10639-022-11559-7 Kamble A, 2022, EDUC MEDIA INT, V59, P324, DOI 10.1080/09523987.2022.2153989 Kang XW, 2023, INTERACT LEARN ENVIR, V31, P1029, DOI 10.1080/10494820.2020.1817758 Kanwar A., 2020, Journal of Learning for Development, V7, P326 Karasneh A. A. F., 2022, European Journal of Educational Research, V11, P1197, DOI [https://doi.org/10.12973/eu-jer.11.2.1197, DOI 10.12973/EU-JER.11.2.1197] Katai Z, 2023, EDUC INF TECHNOL, V28, P3089, DOI 10.1007/s10639-022-11306-y Kaurav RPS, 2022, FIIB BUS REV, V11, P382, DOI 10.1177/23197145221136966 Kaushal N, 2023, MANAG REV Q, V73, P455, DOI 10.1007/s11301-021-00249-2 Kebritchi Mansureh, 2017, Journal of Educational Technology Systems, V46, P4, DOI 10.1177/0047239516661713 Kumar P, 2023, HIGH EDUC SKILL WORK, V13, P720, DOI 10.1108/HESWBL-03-2022-0052 Kummitha H.R., 2021, Higher Education for the Future, V8, P90, DOI [10.1177/2347631120983650, DOI 10.1177/2347631120983650] Lambie I., 2020, 19 EUR C E LEARN AC, P270 Lapitan LDS, 2020, EDUC CHEM ENG, V35, P116, DOI 10.1016/j.ece.2021.01.012 Lazer D., 2009, CONNECTIONS, V29, P43 Lee J, 2021, INT J EDUC TECHNOL H, V18, DOI 10.1186/s41239-021-00286-7 Lee KCS, 2022, SAGE OPEN, V12, DOI 10.1177/21582440221082126 Leydesdorff L, 2011, J INFORMETR, V5, P469, DOI 10.1016/j.joi.2011.01.008 Li ZY, 2022, INT J INF COMMUN TEC, V18, DOI 10.4018/IJICTE.313424 Lima CO, 2020, NAT HAZARDS, V102, P1589, DOI 10.1007/s11069-020-03974-1 Lin X, 2022, ONLINE LEARN, V26, P347, DOI 10.24059/olj.v26i4.3117 Liu SY, 2020, PSYCHIAT RES, V289, DOI 10.1016/j.psychres.2020.113070 Longhurst GJ, 2020, ANAT SCI EDUC, V13, P298, DOI 10.1002/ase.1967 Lu KL, 2021, INT J EDUC TECHNOL H, V18, DOI 10.1186/s41239-020-00238-7 Luan L, 2023, INTERACT LEARN ENVIR, V31, P1703, DOI 10.1080/10494820.2020.1855211 Mahajan R., 2023, Global Business and Organisational Excellence, V43, P135, DOI [10.1002/joe.22207, DOI 10.1002/JOE.22207] Mahmood S, 2021, HUM BEHAV EMERG TECH, V3, P199, DOI 10.1002/hbe2.218 Makina A, 2022, PYTHAGORAS, V43, DOI 10.4102/pythagoras.v43i1.644 Marczuk A, 2024, J STUD INT EDUC, V28, P165, DOI 10.1177/10283153221150116 Martinho D, 2021, EDUC SCI, V11, DOI 10.3390/educsci11020053 Maulana AE, 2022, ELECTRON J E-LEARN, V20, P554 Mhandu J, 2021, COGENT SOC SCI, V7, DOI 10.1080/23311886.2021.1947568 Mishra Lokanath, 2020, Int J Educ Res Open, V1, P100012, DOI 10.1016/j.ijedro.2020.100012 Mittal A, 2022, INF DISCOV DELIV, V50, P117, DOI 10.1108/IDD-09-2020-0114 Mo CY, 2021, SUSTAINABILITY-BASEL, V13, DOI 10.3390/su13105471 Mo DY, 2022, EDUC INF TECHNOL, V27, P12543, DOI 10.1007/s10639-022-11098-1 Mohammed AS, 2021, SUSTAINABILITY-BASEL, V13, DOI 10.3390/su132011401 Mok KH., 2021, International Journal of Chinese Education, V10, P1, DOI [DOI 10.1177/22125868211007011, https://doi.org/10.1177/22125868211007011] Muhaji U., 2023, Indonesian Journal of Applied Linguistics, V12, P840, DOI [10.17509/ijal.v12i3.38930, DOI 10.17509/IJAL.V12I3.38930] Mukherjee D, 2022, J BUS RES, V148, P101, DOI 10.1016/j.jbusres.2022.04.042 Müller C, 2021, EDUC RES REV-NETH, V34, DOI 10.1016/j.edurev.2021.100394 Murakami K, 2022, HUMAN ARENAS, DOI 10.1007/s42087-022-00292-9 Navarro-Espinosa JA, 2021, SUSTAINABILITY-BASEL, V13, DOI 10.3390/su13116363 Nayak A, 2023, INFORM TECHNOL PEOPL, V36, P1939, DOI 10.1108/ITP-01-2021-0043 Nesar S, 2021, J EDUC HEALTH PROMOT, V10, DOI 10.4103/jehp.jehp_951_20 Newman MEJ, 2004, EUR PHYS J B, V38, P321, DOI 10.1140/epjb/e2004-00124-y Newman MEJ, 2004, PHYS REV E, V69, DOI 10.1103/PhysRevE.69.026113 Ng LK, 2023, EDUC SCI, V13, DOI 10.3390/educsci13010042 Nuere S, 2021, TECHNOL KNOWL LEARN, V26, P931, DOI 10.1007/s10758-020-09454-6 O'Dea X, 2023, POLICY FUTURES EDUC, V21, P372, DOI 10.1177/14782103221088154 O'Leary DE, 2020, J ORG COMP ELECT COM, V30, P1, DOI 10.1080/10919392.2020.1755790 Obada DO, 2023, EDUC INF TECHNOL, V28, P4649, DOI 10.1007/s10639-022-11330-y Oducado RM., 2020, Universal Journal of Educational Research, V8, P4736 Ohanu IB, 2018, EDUC INF TECHNOL, V23, P3029, DOI 10.1007/s10639-018-9757-8 Organisation for economic co-operation and Development (OECD), 2012, Connected Mind Technology and Today's Learners. Education Research and Innovation Orlowski M, 2021, J HOSP TOUR EDUC, V33, P163, DOI 10.1080/10963758.2021.1907193 Patil Y. M., 2021, Journal of Engineering Education Transformations, V34, DOI [https://doi.org/10.16920/jeet/2021/v34i0/157194, DOI 10.16920/JEET/2021/V34I0/157194] Paul J, 2021, INT J CONSUM STUD, DOI 10.1111/ijcs.12695 Peimani N, 2021, EDUC SCI, V11, DOI 10.3390/educsci11020072 Peng MH, 2022, SUSTAINABILITY-BASEL, V14, DOI 10.3390/su14138031 Persson O., 2009, CELEBRATING SCHOLARL, V5, P9 Pieters R, 2002, J ECON LIT, V40, P483, DOI 10.1257/002205102320161348 Plummer L, 2021, EDUC SCI, V11, DOI 10.3390/educsci11030130 Pokhrel S., 2021, High. Educ. Future, V8, P133, DOI DOI 10.1177/2347631120983481 Ponomarev IV, 2014, SCIENTOMETRICS, V100, P755, DOI 10.1007/s11192-014-1320-9 Prakasha G. S., 2022, International Journal of Information and Education Technology, P1056, DOI 10.18178/ijiet.2022.12.10.1720 Quezada RL, 2020, J EDUC TEACHING, V46, P472, DOI 10.1080/02607476.2020.1801330 Rahim N.N.A., 2022, Asian Journal of University Education, V18, P406 Rajesh M., 2003, Turkish Online Journal of Distance Education, V4 Rameez A., 2020, J. Educ. Soc. Res, V10, P341, DOI [10.36941/jesr-2020-0132, DOI 10.36941/JESR-2020-0132] Ramesh G., 2023, International Journal of Evaluation and Research in Education, V12, P197, DOI [10.11591/ijere.v12i1.23469, DOI 10.11591/IJERE.V12I1.23469] Randhawa K, 2016, J PROD INNOVAT MANAG, V33, P750, DOI 10.1111/jpim.12312 Rapanta C., 2020, Postdigital Science and Education, V2, P923, DOI [10.1007/s42438-020-00155-y, DOI 10.1007/S42438-020-00155-Y] Rawat S, 2023, TEACH PUBLIC ADMIN, V41, P122, DOI 10.1177/01447394221119092 Raza SA, 2023, BENCHMARKING, V30, P834, DOI 10.1108/BIJ-12-2021-0755 Rehman UU, 2020, BUS PROCESS MANAG J, V26, P1731, DOI 10.1108/BPMJ-07-2019-0274 Rossi R, 2020, FRONT PSYCHIATRY, V11, DOI 10.3389/fpsyt.2020.00790 Saleem Imran, 2023, International Journal of Information and Education Technology, P102, DOI 10.18178/ijiet.2023.13.1.1785 Sarra Annalina, 2022, Qual Quant, P1, DOI 10.1007/s11135-022-01567-7 Schauffel N, 2022, PSYCHOL LEARN TEACH-, V21, P235, DOI 10.1177/14757257221102563 Schildkamp K, 2020, J PROF CAP COMMUNITY, V5, P281, DOI 10.1108/JPCC-06-2020-0034 Shaharanee M., 2020, Ilkogretim Online-Elementary Education Online, V19, P79 Sharma S, 2022, J FURTH HIGHER EDUC, V46, P721, DOI 10.1080/0309877X.2021.1998395 Shen SW, 2022, J HOSP LEIS SPORT TO, V30, DOI 10.1016/j.jhlste.2022.100373 Shi YN, 2022, SUSTAINABILITY-BASEL, V14, DOI 10.3390/su142114006 Shohel MMC, 2022, EDUC SCI, V12, DOI 10.3390/educsci12120857 Sinclair J, 2008, J INF SCI, V34, P15, DOI 10.1177/0165551506078083 Singh S, 2020, PSYCHIAT RES, V293, DOI 10.1016/j.psychres.2020.113429 Sobaih AE, 2020, SUSTAINABILITY-BASEL, V12, DOI 10.3390/su12166520 Soesmanto T, 2023, STUD EDUC EVAL, V77, DOI 10.1016/j.stueduc.2023.101253 Stead S, 2022, J SERV RES-US, V25, P440, DOI 10.1177/10946705221079941 Stevens G., 2001, Distance learning for technical and vocational education in sub-Sahara Africa: Challenges and opportunities English Stremersch S, 2007, J MARKETING, V71, P171, DOI 10.1509/jmkg.71.3.171 Stukalo N., 2020, Universal Journal of Educational Research, V8, P3673, DOI 10.13189/ujer.2020.080846 Sun GY, 2023, INTERACT LEARN ENVIR, V31, P4652, DOI 10.1080/10494820.2021.1978503 Tang YM, 2021, COMPUT EDUC, V168, DOI 10.1016/j.compedu.2021.104211 Terblanche W, 2023, S AFR J ACCOUNT RES, V37, P35, DOI 10.1080/10291954.2022.2101328 Thumiki Venkat Ram Raj, 2022, International Journal of Information and Education Technology, P840, DOI 10.18178/ijiet.2022.12.9.1692 Thumvichit A., 2021, Teaching English with Technology, V21, P14 Trevisan O, 2023, ETR&D-EDUC TECH RES, V71, P79, DOI 10.1007/s11423-023-10197-1 Tuan NA, 2023, POLICY FUTURES EDUC, V21, P335, DOI 10.1177/14782103221124181 Tzafilkou K, 2021, EDUC INF TECHNOL, V26, P7279, DOI 10.1007/s10639-021-10586-0 UNESCO, 2020, 10 recommendations to ensure that learning remains uninterrupted United Nations, 2020, Policy brief: Education during COVID-19 and beyond, DOI DOI 10.24215/18509959.26.E12 Usman J, 2022, ISS EDUC RES, V32, P1196 van Eck NJ, 2010, SCIENTOMETRICS, V84, P523, DOI 10.1007/s11192-009-0146-3 Waghid Z, 2021, INT J INF LEARN TECH, V38, P413, DOI 10.1108/IJILT-01-2021-0006 Wan FZ, 2023, J CHINA TOUR RES, V19, P517, DOI 10.1080/19388160.2022.2096165 Wang K, 2021, J DENT EDUC, V85, P128, DOI 10.1002/jdd.12413 Wang Y, 2022, EDUC SCI, V12, DOI 10.3390/educsci12100664 West H, 2024, J GEOGR HIGHER EDUC, V48, P157, DOI 10.1080/03098265.2023.2190962 Wut TM, 2021, ASIA PAC EDUC REV, V22, P371 Xiong JQ, 2020, J AFFECT DISORDERS, V277, P55, DOI 10.1016/j.jad.2020.08.001 Yau AHY, 2022, STUD EDUC EVAL, V72, DOI 10.1016/j.stueduc.2022.101128 Ye L, 2021, INT J ART DES EDUC, V40, P342, DOI 10.1111/jade.12347 Yeung MWL, 2022, EDUC INF TECHNOL, V27, P181, DOI 10.1007/s10639-021-10656-3 Yu HY, 2022, ASIA PAC J EDUC, DOI 10.1080/02188791.2022.2122021 Zeqiri Jusuf, 2022, International Journal of Technology Enhanced Learning, V14, P163, DOI 10.1504/IJTEL.2022.121815 Zhai YS, 2020, LANCET PSYCHIAT, V7, pE22, DOI 10.1016/S2215-0366(20)30089-4 Zhang J, 2023, INNOV EDUC TEACH INT, V60, P174, DOI 10.1080/14703297.2021.2000473 Zhang WN, 2020, J RISK FINANC MANAG, V13, DOI 10.3390/jrfm13030055 Zhao J, 2023, EDUC SCI, V13, DOI 10.3390/educsci13030300 NR 192 TC 0 Z9 0 U1 3 U2 3 PU EMERALD GROUP PUBLISHING LTD PI Leeds PA Floor 5, Northspring 21-23 Wellington Street, Leeds, W YORKSHIRE, ENGLAND SN 1463-5771 EI 1758-4094 J9 BENCHMARKING JI Benchmarking PD 2024 MAY 10 PY 2024 DI 10.1108/BIJ-04-2022-0245 EA MAY 2024 PG 35 WC Management WE Emerging Sources Citation Index (ESCI) SC Business & Economics GA PU1L8 UT WOS:001216504800001 DA 2024-09-05 ER PT J AU Wang, KQ Wang, T Wang, TY Cai, ZQ AF Wang, Keqin Wang, Ting Wang, Tianyi Cai, Zhiqiang TI Research on Evaluation Methods for Sustainable Enrollment Plan Configurations in Chinese Universities Based on Bayesian Networks SO SUSTAINABILITY LA English DT Article DE enrollment plan configurations; sustainable enrollment policies; advanced education rate prediction; importance ranking; indicator combination strategy ID BIRNBAUM IMPORTANCE; EDUCATION AB Evaluation methods based on data-driven techniques and artificial intelligence for the sustainable enrollment plan configurations of Chinese universities have become a research hotspot in the field of higher education teaching reform. Enrollment, education, and employment constitute the three key pillars of talent cultivation in universities. However, due to an unclear understanding of their interconnection, universities have yet to establish robust quantitative relationship models, hindering the formation of an evaluation mechanism for sustainable enrollment plan configurations. This study begins by constructing a relevant indicator system and utilizing real enrollment data from a specific university. Through statistical methods such as correlation analysis, it systematically sorts out key variables and identifies seven effective indicators, including average admission score and first-time graduation rate. Subsequently, by using the increase or decrease in enrollment quotas for each major as the experimental target, evaluation models for sustainable enrollment plan configurations aimed at enhancing the advanced education rate are constructed using naive Bayes networks and tree-augmented Bayesian networks; these are compared with three other classic machine learning methods. The accuracy of these models is evaluated through confusion matrices and receiver operating characteristic curves. Additionally, the Birnbaum importance analysis method is utilized to prioritize remaining variables, ultimately identifying the optimal combination strategy of indicators conducive to the sustainable development of the advanced education rate. The results indicate that the average admission score, transfer rate, and student/teacher ratio are the top 3 prognostic factors affecting the advanced education rate, with the TAN model achieving an accuracy of 96.49%, thus demonstrating good reliability. C1 [Wang, Keqin] Northwestern Polytech Univ, Undergrad Acad Affairs Off, Xian 710072, Peoples R China. [Wang, Keqin] Northwestern Polytech Univ, Sch Management, Xian 710072, Peoples R China. [Wang, Ting; Wang, Tianyi; Cai, Zhiqiang] Northwestern Polytech Univ, Dept Ind Engn, Xian 710072, Peoples R China. C3 Northwestern Polytechnical University; Northwestern Polytechnical University; Northwestern Polytechnical University RP Cai, ZQ (corresponding author), Northwestern Polytech Univ, Dept Ind Engn, Xian 710072, Peoples R China. EM keqinwang@nwpu.edu.cn; wt3377@mail.nwpu.edu.cn; wangtianyi@mail.nwpu.edu.cn; caizhiqiang@nwpu.edu.cn OI Cai, Zhiqiang/0000-0002-7380-8110; Wang, Keqin/0000-0001-5248-7672 FU Key Research Project on Undergraduate and Higher Continuing Education Teaching Reform in Shaanxi Province FX No Statement Available CR Alghamdi J, 2020, EDUC INF TECHNOL, V25, P4721, DOI 10.1007/s10639-020-10169-5 Altbach P.G., 2016, International Higher Education, P21, DOI [DOI 10.6017/IHE.2016.84.9116, 10.6017/ihe.2016.84, DOI 10.6017/IHE.2016.84] Anafinova S, 2020, INT J EDUC DEV, V78, DOI 10.1016/j.ijedudev.2020.102246 Atuahene-Gima K, 2007, J INT MARKETING, V15, P1, DOI 10.1509/jimk.15.2.1 Cai ZQ, 2013, QUAL TECHNOL QUANT M, V10, P203, DOI 10.1080/16843703.2013.11673317 Colbert BA, 2004, ACAD MANAGE REV, V29, P341, DOI 10.2307/20159047 Dixon W. J., 1951, Introduction to statistical analysis Faggian A, 2009, TIJDSCHR ECON SOC GE, V100, P210, DOI 10.1111/j.1467-9663.2009.00530.x Fang F., 2021, International Conference on Frontier Computing, P973 Gupta S., 2021, Theme Aiu Zon. Vice Chancellors' Meet, V18, P14 Huang H, 2022, J COMB OPTIM, V44, P2515, DOI 10.1007/s10878-021-00761-x Jacobi Maryann., 1987, COLL STUDENT OUTCOME Jiang YM, 2021, ANN SURG, V274, pE1153, DOI 10.1097/SLA.0000000000003778 Lee KW, 2015, INT J EDUC DEV, V40, P19, DOI 10.1016/j.ijedudev.2014.11.014 Liu XY, 2012, NEURAL NETWORKS, V33, P58, DOI 10.1016/j.neunet.2012.04.002 Middaugh M.F., 2011, Planning and assessment in higher education: Demonstrating institutional effectiveness Miziula P, 2019, IEEE T RELIAB, V68, P439, DOI 10.1109/TR.2019.2895400 Peterson P., 2011, Int. High. Educ, V62, P10, DOI [10.6017/ihe.2011.62.8527, DOI 10.6017/IHE.2011.62.8527] Peyser J.A., 2023, Educ. Next, V23, P44 Raja R., 2018, J Appl Adv Res., V3, P33, DOI [10.21839/jaar.2018.v3iS1.165, DOI 10.21839/JAAR.2018.V3IS1.165] Shalev-Shwartz S, 2014, UNDERSTANDING MACHIN Song P.C., 2016, J. Telecommun. Electron. Comput. Eng. (JTEC), V8, P105 Tanveer M, 2023, IEEE IJCNN, DOI 10.1109/IJCNN54540.2023.10191119 Thelwall M., 2021, Synthesis Lectures on Information Concepts, Retrieval, and Services, V13, pi Wang CC, 2022, J MATER SCI TECHNOL, V128, P31, DOI 10.1016/j.jmst.2022.04.014 Wang HF, 2005, PROCEEDINGS OF THE 2005 INTERNATIONAL CONFERENCE ON NEURAL NETWORKS AND BRAIN, VOLS 1-3, P279 Wang YL, 2017, EURASIA J MATH SCI T, V13, P6875, DOI 10.12973/ejmste/78525 Xiang BS, 2023, SUSTAINABILITY-BASEL, V15, DOI 10.3390/su152115540 Yang F, 2019, INFORM-INT J COMPUT, V43, P573, DOI 10.31449/inf.v43i4.3008 Zhang XL, 2023, SUSTAINABILITY-BASEL, V15, DOI 10.3390/su15032335 Zhu M.Q., 2016, P ASEES 123 C EXPOSI Zhuang YF, 2017, INT CONF SOFTW ENG, P194, DOI 10.1109/ICSESS.2017.8342895 NR 32 TC 0 Z9 0 U1 8 U2 8 PU MDPI PI BASEL PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND EI 2071-1050 J9 SUSTAINABILITY-BASEL JI Sustainability PD APR PY 2024 VL 16 IS 7 AR 2998 DI 10.3390/su16072998 PG 18 WC Green & Sustainable Science & Technology; Environmental Sciences; Environmental Studies WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Science & Technology - Other Topics; Environmental Sciences & Ecology GA NN8D5 UT WOS:001201212000001 OA gold DA 2024-09-05 ER PT J AU Wan, M AF Wan, Min TI Research on economic system based on fuzzy set comprehensive evaluation model SO JOURNAL OF INTELLIGENT & FUZZY SYSTEMS LA English DT Article DE Fuzzy set; machine learning; comprehensive evaluation; economic system ID BIG DATA; PREDICTION; ANALYTICS AB The development of the economic system is affected by many factors, and the stability of the traditional economic analysis model is difficult to maintain. In order to explore the efficient and stable economic system evaluation and analysis model, based on machine learning ideas, this study uses rough set algorithm as the basic algorithm, and applies the related methods of rough set and catastrophe model theory to the evaluation of ecological economic development level. Moreover, this study reduces the redundant index of the index system and calculates the importance of the index after reduction. Based on the catastrophe set model, this study uses MATLAB software programming to comprehensively quantify the ecological economy, and finally divides the ecological economic grade. In addition, this study combines rough set theory with fuzzy mathematics, and initially establishes a two-branch fuzzy evaluation model. Finally, this study combines the actual situation to use the established model to evaluate the regional eco-economic system. The research results show that the method proposed in this paper has a certain effect, which can provide a reference for subsequent related research. C1 [Wan, Min] East China Jiaotong Univ, Inst Technol, Nanchang, Jiangxi, Peoples R China. C3 East China Jiaotong University RP Wan, M (corresponding author), East China Jiaotong Univ, Inst Technol, Nanchang, Jiangxi, Peoples R China. EM wanmin516@163.com RI wan, min/KLC-3833-2024 CR Ataka K., 2014, RESUSCITATION, V96, P84 Barde S, 2015, COMPUT ECON, V45, P337, DOI 10.1007/s10614-014-9422-2 Bhattacharya D, 2019, APPL SOFT COMPUT, V76, P31, DOI 10.1016/j.asoc.2018.12.003 Cordioli E, 2017, VALUE HEALTH, V20, pA923, DOI 10.1016/j.jval.2017.08.2884 Daksiya V, 2017, NAT HAZARDS, V87, P515, DOI 10.1007/s11069-017-2774-x Ellis M, 2014, CONTROL ENG PRACT, V22, P242, DOI 10.1016/j.conengprac.2013.02.016 Ferramosca A, 2017, J PROCESS CONTR, V54, P1, DOI 10.1016/j.jprocont.2017.02.014 Ferramosca A, 2014, IEEE T AUTOMAT CONTR, V59, P2657, DOI 10.1109/TAC.2014.2326013 Geng YQ, 2020, DISCRETE DYN NAT SOC, V2020, DOI 10.1155/2020/1406978 Gordini N, 2014, EXPERT SYST APPL, V41, P6433, DOI 10.1016/j.eswa.2014.04.026 He XF, 2016, ENG FRACT MECH, V163, P189, DOI 10.1016/j.engfracmech.2016.07.002 Vu HL, 2019, WASTE MANAGE, V84, P129, DOI 10.1016/j.wasman.2018.11.038 Jahedpari F, 2017, IEEE INTELL SYST, V32, P61, DOI 10.1109/MIS.2017.12 Jane C.J.A., 2018, J GREY SYST-UK, V21, P91 Karanikic P., 2019, QUALITY QUANTITY, V53, P1095, DOI [DOI 10.1007/S11135-019-00843-3, 10.1007/s11135-019-00843-3] Lahmiri S, 2016, EXPERT SYST APPL, V55, P268, DOI 10.1016/j.eswa.2016.02.025 Nassirtoussi AK, 2014, EXPERT SYST APPL, V41, P7653, DOI 10.1016/j.eswa.2014.06.009 Paredes P, 2014, AGR WATER MANAGE, V135, P27, DOI 10.1016/j.agwat.2013.12.010 Paul A, 2019, HUM BEHAV EMERG TECH, V1, P37, DOI 10.1002/hbe2.133 Paul A, 2016, IEEE WIREL COMMUN, V23, P68, DOI 10.1109/MWC.2016.7721744 Paul A, 2017, IEEE SYST J, V11, P1249, DOI 10.1109/JSYST.2015.2411856 Paul A, 2012, ACM T EMBED COMPUT S, V11, DOI 10.1145/2331147.2331149 Peters J, 2014, ASYSTEMATIC REV VALU, V17, P56 Pu Y, 2020, DYNAM SYST APPL, V29, P648 Rajsic P, 2016, EUPHYTICA, V210, P259, DOI 10.1007/s10681-016-1716-0 Rathore MM, 2018, SUSTAIN CITIES SOC, V40, P600, DOI 10.1016/j.scs.2017.12.022 Ryoo CS, 2019, DYNAM SYST APPL, V28, P153, DOI 10.12732/dsa.v28i1.9 Schultz W, 2017, CURR OPIN NEUROBIOL, V43, P139, DOI 10.1016/j.conb.2017.03.013 Teljeur C, 2014, INT J TECHNOL ASSESS, V30, P44, DOI 10.1017/S0266462313000676 Zhou LG, 2014, INT J SYST SCI, V45, P241, DOI 10.1080/00207721.2012.720293 NR 30 TC 2 Z9 2 U1 1 U2 10 PU IOS PRESS PI AMSTERDAM PA NIEUWE HEMWEG 6B, 1013 BG AMSTERDAM, NETHERLANDS SN 1064-1246 EI 1875-8967 J9 J INTELL FUZZY SYST JI J. Intell. Fuzzy Syst. PY 2021 VL 40 IS 4 BP 7471 EP 7481 DI 10.3233/JIFS-189569 PG 11 WC Computer Science, Artificial Intelligence WE Science Citation Index Expanded (SCI-EXPANDED) SC Computer Science GA RN7FL UT WOS:000640518000150 DA 2024-09-05 ER PT C AU Gomez, MJ Ruipérez-Valiente, JA Clemente, FJG AF Gomez, Manuel J. Ruiperez-Valiente, Jose A. Garcia Clemente, Felix J. BE DeLaet, T Klemke, R AlarioHoyos, C Hilliger, I OrtegaArranz, A TI Bibliometric Analysis of the Last Ten Years of the European Conference on Technology-Enhanced Learning SO TECHNOLOGY-ENHANCED LEARNING FOR A FREE, SAFE, AND SUSTAINABLE WORLD, EC-TEL 2021 SE Lecture Notes in Computer Science LA English DT Proceedings Paper CT 16th European Conference on Technology Enhanced Learning (EC-TEL) CY SEP 20-24, 2021 CL ELECTR NETWORK DE Technology-enhanced learning; Bibliometrics; Natural language processing; Education ID EDUCATION AB Over the last decade, we have seen a large amount of research being performed in technology-enhanced learning. The European Conference on Technology-enhanced Learning (EC-TEL) is one of the conferences with the most extended trajectory in this area. The goal of this paper is to provide an overview of the last ten years of the conference. We collected all papers from the last ten years of the conference, along with the metadata, and used their keywords to find the most important ones across the papers. We also parsed papers' full text automatically, and used it to extract information about this year's conference topic. These results will shed some light on the latest trends and evolution of EC-TEL. C1 [Gomez, Manuel J.; Ruiperez-Valiente, Jose A.; Garcia Clemente, Felix J.] Univ Murcia, Fac Comp Sci, Murcia, Spain. C3 University of Murcia RP Gomez, MJ (corresponding author), Univ Murcia, Fac Comp Sci, Murcia, Spain. EM manueljesus.gomezm@um.es RI Gomez Moratilla, Manuel Jesus/HMW-0780-2023; Clemente, Félix Jesús Garcia/AAM-8396-2020; Ruiperez-Valiente, Jose A./U-8795-2018 OI Clemente, Félix Jesús Garcia/0000-0001-6181-5033; Ruiperez-Valiente, Jose A./0000-0002-2304-6365; Gomez, Manuel J./0000-0003-0571-2923 CR [Anonymous], 2009, COMP STUDY METHODOLO Elsevier, 2021, About Scopus Fabry DL, 1997, J EDUC COMPUT RES, V17, P385, DOI 10.2190/C770-AWA1-CMQR-YTYV Firssova O, 2014, LECT NOTES COMPUT SC, V8719, P112, DOI 10.1007/978-3-319-11200-8_9 Kammer T, 2011, LECT NOTES COMPUT SC, V6964, P196, DOI 10.1007/978-3-642-23985-4_16 Kirkwood A, 2014, LEARN MEDIA TECHNOL, V39, P6, DOI 10.1080/17439884.2013.770404 Noble H., 2018, REV LIT CHOOSING REV Ohrstrom P, 2013, LECT NOTES COMPUT SC, V8095, P410, DOI 10.1007/978-3-642-40814-4_32 Prieto LP, 2011, LECT NOTES COMPUT SC, V6964, P285, DOI 10.1007/978-3-642-23985-4_23 Science W.O, 2021, WEB SCI Springer, 2021, EUROPEAN C TECHNOLOG NR 11 TC 1 Z9 1 U1 0 U2 1 PU SPRINGER INTERNATIONAL PUBLISHING AG PI CHAM PA GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND SN 0302-9743 EI 1611-3349 BN 978-3-030-86436-1; 978-3-030-86435-4 J9 LECT NOTES COMPUT SC PY 2021 VL 12884 BP 337 EP 341 DI 10.1007/978-3-030-86436-1_31 PG 5 WC Computer Science, Information Systems; Computer Science, Software Engineering; Computer Science, Theory & Methods; Education & Educational Research WE Conference Proceedings Citation Index - Science (CPCI-S); Conference Proceedings Citation Index - Social Science & Humanities (CPCI-SSH) SC Computer Science; Education & Educational Research GA BT0SL UT WOS:000791071400031 DA 2024-09-05 ER PT J AU El-Taliawi, OG Goyal, N Howlett, M AF El-Taliawi, Ola G. Goyal, Nihit Howlett, Michael TI Holding out the promise of Lasswell's dream: Big data analytics in public policy research and teaching(sic)(sic)(sic)Palabras Clave SO REVIEW OF POLICY RESEARCH LA English DT Article DE bibliometric review; big data analytics; machine learning; pedagogy; policy sciences; public policy; topic modeling ID SUPPLY CHAIN; BIOMEDICAL TEXT; SCIENCE; INFORMATION; PERFORMANCE; COMPLEXITY; ONTOLOGIES; DISCOVERY; STRATEGY; BEHAVIOR AB While the emergence of big data raises concerns regarding governance and public policy, it also creates opportunities for diversifying the toolkit for analysis for the policy sciences as a whole, i.e., research concerning policy analysis as well as policy studies. Further, it opens avenues for practice, which together with research requires adaptation in teaching curricula if policy education were to remain relevant. However, it is not clear to what extent this opportunity is being realized in public policy research and teaching. In this study, we examine the prevalence of big data analytics in public policy research and pedagogy using bibliometric analysis and topic modeling for the former, and content analysis of course titles and descriptions for the latter. We find that despite significant scope for application of various big data techniques, the use of these analytic techniques in public policy has been largely limited to select institutions in a few countries. Further, data science has received limited attention in policy pedagogy, once again with significant geographic variation in its prevalence. We conclude that, to stay relevant, the policy sciences need to pay more attention to the integration of big data techniques in policy research, pedagogy, and thereby practice. C1 [Goyal, Nihit] Delft Univ Technol, Fac Technol Policy & Management, Delft, Netherlands. [El-Taliawi, Ola G.] Carleton Univ, Fac Publ Affairs, Dept Polit Sci, Ottawa, ON, Canada. [Howlett, Michael] Simon Fraser Univ, Dept Polit Sci, Burnaby, BC, Canada. C3 Delft University of Technology; Carleton University; Simon Fraser University RP Goyal, N (corresponding author), Delft Univ Technol TU Delft, Fac Technol Policy & Management, Jaffalaan 5, NL-2628 BX Delft, Netherlands. EM nihit.goyal@tudelft.nl RI Howlett, Michael/W-7544-2019 OI Howlett, Michael/0000-0003-4689-740X; Goyal, Nihit/0000-0002-1025-7585; El-Taliawi, Ola G./0000-0002-1615-6021 CR Acquisti A, 2015, SCIENCE, V347, P509, DOI 10.1126/science.aaa1465 Adeyinka DA, 2020, BMC PUBLIC HEALTH, V20, DOI 10.1186/s12889-020-09672-8 Akodéwou A, 2020, SUSTAINABILITY-BASEL, V12, DOI 10.3390/su12135439 Alashri S, 2016, PROCEEDINGS OF THE 2016 IEEE/ACM INTERNATIONAL CONFERENCE ON ADVANCES IN SOCIAL NETWORKS ANALYSIS AND MINING ASONAM 2016, P795, DOI 10.1109/ASONAM.2016.7752329 Allahyari Mehdi, 2017, A Brief Survey of Text Mining: Classification, Clustering and Extraction Techniques. Aria M, 2017, J INFORMETR, V11, P959, DOI 10.1016/j.joi.2017.08.007 Arkhipov V, 2016, COMPUT LAW SECUR REV, V32, P868, DOI 10.1016/j.clsr.2016.07.009 Aronson AR, 2001, J AM MED INFORM ASSN, P17 Athukorala D, 2020, SUSTAINABILITY-BASEL, V12, DOI 10.3390/su12197953 Aznar-Lou I, 2018, BMJ QUAL SAF, V27, P878, DOI 10.1136/bmjqs-2017-007416 Barnes L, 2018, AM J POLIT SCI, V62, P340, DOI 10.1111/ajps.12346 Bates DW, 2014, HEALTH AFFAIR, V33, P1123, DOI 10.1377/hlthaff.2014.0041 Bax V, 2018, APPL GEOGR, V91, P99, DOI 10.1016/j.apgeog.2018.01.002 Bayen E, 2017, J MED INTERNET RES, V19, DOI 10.2196/jmir.8095 Berk RA, 2013, CRIMINOL PUBLIC POL, V12, P513, DOI 10.1111/1745-9133.12047 Bibri SE, 2019, ADV SCI TECHNOL INN, P95, DOI 10.1007/978-3-030-17312-8_5 Bilgili M, 2012, RENEW SUST ENERG REV, V16, P404, DOI 10.1016/j.rser.2011.08.005 Blei DM, 2007, ANN APPL STAT, V1, P17, DOI 10.1214/07-AOAS114 Blei DM, 2012, COMMUN ACM, V55, P77, DOI 10.1145/2133806.2133826 Boyd D, 2012, INFORM COMMUN SOC, V15, P662, DOI 10.1080/1369118X.2012.678878 Breiman L, 2001, STAT SCI, V16, P199, DOI 10.1214/ss/1009213726 Cairney P, 2012, POLIT STUD REV, V10, P346, DOI 10.1111/j.1478-9302.2012.00270.x Caputo F, 2019, KYBERNETES, V48, P108, DOI 10.1108/K-07-2017-0274 Chun J, 2020, TOURISM MANAGE, V81, DOI 10.1016/j.tourman.2020.104136 Clarke A, 2017, CAN PUBLIC ADMIN, V60, P476, DOI 10.1111/capa.12228 Cohen AM, 2005, BRIEF BIOINFORM, V6, P57, DOI 10.1093/bib/6.1.57 Conrad C, 2017, APPL GEOGR, V86, P102, DOI 10.1016/j.apgeog.2017.06.016 Constantinides P, 2018, INFORM SYST RES, V29, P381, DOI 10.1287/isre.2018.0794 Croitoru A, 2020, CRIMINOL PUBLIC POL, V19, P335, DOI 10.1111/1745-9133.12486 D'Orazio P, 2017, J ECON METHODOL, V24, P410, DOI 10.1080/1350178X.2017.1362151 De Alban JDT, 2018, REMOTE SENS-BASEL, V10, DOI 10.3390/rs10020306 Desdemoustier J, 2019, CITIES, V92, P175, DOI 10.1016/j.cities.2019.03.021 Donovan S, 2008, NATURE, V455, P461, DOI 10.1038/455461d Du SF, 2018, ANN OPER RES, V270, P125, DOI 10.1007/s10479-016-2291-4 El-Taliawi OG, 2021, POLICY SCI, V54, P371, DOI 10.1007/s11077-020-09413-z El-Taliawi OG, 2021, J CONTING CRISIS MAN, V29, P104, DOI 10.1111/1468-5973.12337 Feldman R., 2006, TEXT MINING HDB ADV Gawankar SA, 2020, INT J PROD RES, V58, P1574, DOI 10.1080/00207543.2019.1668070 Gerum PCL, 2019, TRANSPORT RES C-EMER, V107, P137, DOI 10.1016/j.trc.2019.07.020 Greene D, 2017, POLIT ANAL, V25, P77, DOI 10.1017/pan.2016.7 Guo TD, 2019, SCI TOTAL ENVIRON, V681, P202, DOI 10.1016/j.scitotenv.2019.05.122 Hämäläinen M, 2020, CONTRIB MANAG SCI, P63, DOI 10.1007/978-3-030-23604-5_5 Hernandez-Boussard T, 2020, CANCER EPIDEM BIOMAR, V29, P816, DOI 10.1158/1055-9965.EPI-19-0873 Howie L, 2014, HEALTH AFFAIR, V33, P1220, DOI 10.1377/hlthaff.2014.0225 Huo D, 2015, ROM J ECON FORECAST, V18, P148 Hysing E, 2009, GOVERNANCE, V22, P647, DOI 10.1111/j.1468-0491.2009.01457.x IBM Center for Business of Government, 2015, 5 EX FED AG US BIG D Janssen M, 2022, SOC SCI COMPUT REV, V40, P478, DOI 10.1177/0894439320980118 Jordan MI, 2015, SCIENCE, V349, P255, DOI 10.1126/science.aaa8415 Jung SH, 2019, SUSTAINABILITY-BASEL, V11, DOI 10.3390/su11133499 Kim JD, 2003, BIOINFORMATICS, V19, pi180, DOI 10.1093/bioinformatics/btg1023 Kitchin R., 2013, Dialogues in Human Geography, V3, P262, DOI 10.1177/2043820613513388 Kleinberg Jon, 2018, Q J Econ, V133, P237, DOI 10.1093/qje/qjx032 Kong L, 2018, URBAN STUD, V55, P679, DOI 10.1177/0042098017746528 Kwakkel JH, 2016, TECHNOL FORECAST SOC, V111, P124, DOI 10.1016/j.techfore.2016.06.014 Lai YY, 2018, INT J LOGIST MANAG, V29, P676, DOI 10.1108/IJLM-06-2017-0153 Lasswell H.D., 1971, A Pre-View of Policy Sciences LASSWELL HD, 1970, POLICY SCI, V1, P3, DOI 10.1007/BF00145189 Li JY, 2017, ENERGIES, V10, DOI 10.3390/en10101520 Liu LC, 2017, J CLEAN PROD, V142, P1044, DOI 10.1016/j.jclepro.2016.08.011 Liu P, 2017, J CLEAN PROD, V164, P1614, DOI 10.1016/j.jclepro.2017.07.049 Lyu XZ, 2020, SCIENTOMETRICS, V123, P909, DOI 10.1007/s11192-020-03415-7 Marelli L, 2020, POLICY STUD-UK, V41, P447, DOI 10.1080/01442872.2020.1724929 Marley TL, 2019, AM BEHAV SCI, V63, P722, DOI 10.1177/0002764218799130 MAYER-SCHONBERGER Viktor, 2013, Big Data: A Revolution That Will Transform How We Live, Work, and Think Mostert M, 2016, EUR J HUM GENET, V24, P956, DOI 10.1038/ejhg.2015.239 Moyano A, 2018, J TRANSP GEOGR, V73, P84, DOI 10.1016/j.jtrangeo.2018.10.010 Nazir MS, 2020, SUSTAINABILITY-BASEL, V12, DOI 10.3390/su12093778 Netzer O, 2012, MARKET SCI, V31, P521, DOI 10.1287/mksc.1120.0713 Nieminen H, 2016, EUR J COMMUN, V31, P19, DOI 10.1177/0267323115614198 Noy NF, 2009, NUCLEIC ACIDS RES, V37, pW170, DOI 10.1093/nar/gkp440 Pandey A, 2020, J CLIN MED, V9, DOI 10.3390/jcm9020442 Rabini C, 2020, BRIT J POLIT INT REL, V22, P256, DOI 10.1177/1369148120910984 Ranagalage M, 2019, SUSTAINABILITY-BASEL, V11, DOI 10.3390/su11195517 Rasouli S, 2014, EUR J TRANSP INFRAST, V14, P412 Rieser V, 2011, COMPUT LINGUIST, V37, P153, DOI 10.1162/coli_a_00038 Rikin S, 2015, ACAD PEDIATR, V15, P651, DOI 10.1016/j.acap.2015.08.008 Roberts Margaret E., 2014, Journal of Statistical Software, V10, P1, DOI [DOI 10.18637/JSS.V000.I00, 10.18637/jss.v091.i02] Rosen-Zvi M, 2004, Proceedings of the 20th conference on Uncertainty in artificial intelligence, P487 Sanga S, 2019, NORTHWEST U LAW REV, V113, P1121 Sözen A, 2011, ENERG SOURCE PART B, V6, P263, DOI 10.1080/15567240802534268 Spasic I, 2005, BRIEF BIOINFORM, V6, P239, DOI 10.1093/bib/6.3.239 Srinivasan P, 2004, J AM SOC INF SCI TEC, V55, P396, DOI 10.1002/asi.10389 Talamini E, 2012, SCI PUBL POLICY, V39, P13, DOI 10.3152/030234212X13214603531923 Townsend BA, 2019, S AFR J HUM RIGHTS, V35, P329, DOI 10.1080/02587203.2020.1717366 van Loenen B, 2016, GOV INFORM Q, V33, P338, DOI 10.1016/j.giq.2016.04.002 Wang XR, 2007, IEEE DATA MINING, P697, DOI 10.1109/ICDM.2007.86 Wen L, 2020, J CLEAN PROD, V250, DOI 10.1016/j.jclepro.2019.119492 Xiang Z, 2015, INT J HOSP MANAG, V44, P120, DOI 10.1016/j.ijhm.2014.10.013 Ying CS, 2020, TRANSPORT RES B-METH, V140, P210, DOI 10.1016/j.trb.2020.08.005 Zenk SN, 2018, AM J HEALTH PROMOT, V32, P779, DOI 10.1177/0890117117694448 Zhang XY, 2017, DESTECH TRANS SOC, P123 Zhao HR, 2017, ENERGIES, V10, DOI 10.3390/en10070874 Zharova AK, 2017, COMPUT LAW SECUR REV, V33, P482, DOI 10.1016/j.clsr.2017.03.025 NR 94 TC 14 Z9 15 U1 2 U2 44 PU WILEY PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1541-132X EI 1541-1338 J9 REV POLICY RES JI Rev. Policy Res. PD NOV PY 2021 VL 38 IS 6 BP 640 EP 660 DI 10.1111/ropr.12448 EA SEP 2021 PG 21 WC Political Science; Public Administration WE Social Science Citation Index (SSCI) SC Government & Law; Public Administration GA WN8JA UT WOS:000694642700001 OA hybrid DA 2024-09-05 ER PT C AU Song, HM Cao, ZX AF Song, Huaming Cao, Zhexiu GP IEEE TI Research on Product Quality Evaluation Based on Big Data Analysis SO 2017 IEEE 2ND INTERNATIONAL CONFERENCE ON BIG DATA ANALYSIS (ICBDA) LA English DT Proceedings Paper CT 2nd IEEE International Conference on Big Data Analysis (ICBDA) CY MAR 10-12, 2017 CL Beijing, PEOPLES R CHINA DE quality evaluation; online reviews; big data analysis; machine learning ID SENTIMENT ANALYSIS AB In order to evaluate product quality from nonnumerical data, we propose the product quality evaluation model based on big data analysis including data collecting, data preprocessing, quality feature extraction, vector quantization and quality classification. Quality feature word extension algorithm, reviews quantization algorithm and machine learning algorithm are applied. We finally obtain the qualified rate(88.94%) and 7 features that most concerned by consumers through the analysis of 184,967 effective product reviews of wooden toys. In the end, we compare the SVM machine learning algorithm with decision tree and naive bayes, and discuss the credibility of the results. Our research on product quality evaluation extends the application of big data analysis, and also presents a new method to evaluate product quality in the field of manufacture. C1 [Song, Huaming; Cao, Zhexiu] Nanjing Univ Sci & Technol, Sch Econ Management, Nanjing, Jiangsu, Peoples R China. C3 Nanjing University of Science & Technology RP Song, HM (corresponding author), Nanjing Univ Sci & Technol, Sch Econ Management, Nanjing, Jiangsu, Peoples R China. EM huaming@njust.edu.cn; caozhexiu@126.com CR Ghiassi M, 2013, EXPERT SYST APPL, V40, P6266, DOI 10.1016/j.eswa.2013.05.057 Holmes G., 2012, P INT C ENV MOD SOFT Hu Y., 2013, P INT JOINT C ART IN, P2540 Jing RZ, 2015, J ORG COMP ELECT COM, V25, P316, DOI 10.1080/10919392.2015.1058125 Kang D, 2014, EXPERT SYST APPL, V41, P1041, DOI 10.1016/j.eswa.2013.07.101 Li DC, 2012, J INTELL MANUF, V23, P835, DOI 10.1007/s10845-010-0440-1 Mollazade K, 2015, INT J FOOD PROP, V18, P880, DOI 10.1080/10942912.2013.835822 Mostafa MM, 2013, EXPERT SYST APPL, V40, P4241, DOI 10.1016/j.eswa.2013.01.019 Pérez-Palacios T, 2014, J FOOD ENG, V131, P82, DOI 10.1016/j.jfoodeng.2014.01.015 Peters H, 2012, STAHL EISEN, V132, P29 Sun M, 2012, MANAGE SCI, V58, P696, DOI 10.1287/mnsc.1110.1458 Tian Jiu-le, 2010, Journal of Jilin University (Information Science Edition), V28, P602 Yussupova N, 2016, ACTA POLYTECH HUNG, V13, P45 Zhang WH, 2012, EXPERT SYST APPL, V39, P10283, DOI 10.1016/j.eswa.2012.02.166 NR 14 TC 0 Z9 0 U1 0 U2 9 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA BN 978-1-5090-3619-6 PY 2017 BP 178 EP 182 PG 5 WC Computer Science, Artificial Intelligence; Computer Science, Information Systems; Operations Research & Management Science WE Conference Proceedings Citation Index - Science (CPCI-S) SC Computer Science; Operations Research & Management Science GA BJ6KQ UT WOS:000426794900037 DA 2024-09-05 ER PT C AU Omae, Y Mitsui, T Takahashi, H AF Omae, Yuto Mitsui, Takako Takahashi, Hirotaka GP IEEE TI Rubric Evaluation for Project Research as Active Learning in Super Science High School SO 2016 IEEE/SICE INTERNATIONAL SYMPOSIUM ON SYSTEM INTEGRATION (SII) SE IEEE/SICE International Symposium on System Integration LA English DT Proceedings Paper CT IEEE/SICE International Symposium on System Integration (SII) CY DEC 13-15, 2016 CL Sapporo, JAPAN AB In Super Science High School's (SSH's) educational activities, the students at Yamanashi Eiwa Senior and Junior high school are working on the project research as active learning. In this paper, we report on the results of rubric evaluation and questionnaire survey of motivation for the project research. By using the rubric evaluation's items and questionnaire for motivation between two points of time, we measured the rubric score and motivation of the students in SSH class (n = 17). Moreover, to measure the rubric score as others evaluation, the committee consisted of the researchers and teachers also evaluated at the same time. The results of analysis of the rubric score showed that the average scores were improved significantly and the students and committee could evaluate consistently. The results of analysis of the questionnaire for motivations showed the motivation of interesting, importance and confidence were improved. From the results of the detailed analysis of the relation between the rubric score of others evaluation and motivation, we found that the rubric score of others evaluation was improved by promoting the motivation of interesting. These results suggested that the project research as active learning had an effect to increase the motivation of research activity. As the result, the students worked on the research activity strenuously. C1 [Omae, Yuto] Japan Inst Sports Sci, Tokyo, Japan. [Mitsui, Takako] Yamanashi Eiwa Jr & Senior High Sch, Yamanashi, Japan. [Takahashi, Hirotaka] Nagaoka Univ Technol, Niigata, Japan. C3 Nagaoka University of Technology RP Omae, Y (corresponding author), Japan Inst Sports Sci, Tokyo, Japan. EM yuto.omae@gmail.com; hirotaka@kjs.nagaokaut.ac.jp FU JSPS [16K04672]; Grants-in-Aid for Scientific Research [16K04672] Funding Source: KAKEN FX We would like to thank the teachers at Yamanashi Eiwa Junior and Senior High School for cooperating on our research. This work was supported in part by JSPS Grant-in-Aid for Scientific Research (C) (Grant Number 16K04672; H. Takahashi). CR Ichihara M, 2006, JPN J EDUC PSYCHOL, V54, P199, DOI 10.5926/jjep1953.54.2_199 Japan Science and Technology Agency, SUP SCI HIGH SCH Omae Y., 2016, J YAMANASHI EI UNPUB, V15 Omae Y, 2015, 2015 IEEE/SICE INTERNATIONAL SYMPOSIUM ON SYSTEM INTEGRATION (SII), P146, DOI 10.1109/SII.2015.7404969 Sohma S., 2014, J HIROSHIMA SHUDO U, V55, P15 Yamanashi Eiwa Junior and Senior High School, 2016, 3 ANN REP RES DEV SU Yumoto A., 2012, C JAP SOC ENG ED YEA, V60, P520 NR 7 TC 0 Z9 0 U1 0 U2 2 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA SN 2474-2317 BN 978-1-5090-3329-4 J9 IEEE/SICE I S SYS IN PY 2016 BP 827 EP 831 PG 5 WC Computer Science, Interdisciplinary Applications; Engineering, Electrical & Electronic WE Conference Proceedings Citation Index - Science (CPCI-S) SC Computer Science; Engineering GA BH6MF UT WOS:000401914000135 DA 2024-09-05 ER PT J AU Avram, S Velter, V Dumitrache, I AF Avram, Sorin Velter, Victor Dumitrache, Ioan TI Semantic Analysis Applications in Computational Bibliometrics SO CONTROL ENGINEERING AND APPLIED INFORMATICS LA English DT Article DE bibliometrics; citation weighting; natural language processing; text similarity AB Continuing a previous theoretical research in bibliometrics, this study aims to conclude a bibliometric endeavor, in the quest of finding an adapted impact measure for scientific papers. Its main objective is to define a technological solution capable to interpret both citations and papers' content, in an integrative approach. The solution employs natural language processors, similarity measures and graph computation algorithms, while integrating them in a software prototype. Describing the design and implementation phases, the research underlines specific solutions and optimizations for relevance computing in citation networks. C1 [Avram, Sorin; Dumitrache, Ioan] Univ Politehn Bucuresti, Bucharest 060042, Romania. [Velter, Victor] Execut Agcy Higher Educ, Bucharest 010362, Romania. C3 National University of Science & Technology POLITEHNICA Bucharest RP Avram, S (corresponding author), Univ Politehn Bucuresti, Bucharest 060042, Romania. EM avram.sorin@gmail.com; victor.velter@uefiscdi.ro; ioan.dumitrache@acse.pub.ro RI VELTER, Victor/E-9135-2017; VELTER, Victor/J-3536-2013 OI VELTER, Victor/0000-0003-0566-3789; VELTER, Victor/0000-0003-0566-3789 CR ACETIC CYBERLEX, 2013, SEM SEARCH ENG TEXT Ahlgren P, 2009, J INFORMETR, V3, P49, DOI 10.1016/j.joi.2008.11.003 [Anonymous], 2005, P 14 INT C WORLD WID, DOI 10.1145/1060745.1060827 Avram S, 2012, CONTROL ENG APPL INF, V14, P35 Ball R, 2006, SCIENTOMETRICS, V66, P561, DOI 10.1007/s11192-006-0041-0 Braun T, 2010, NATURE, V465, P870, DOI 10.1038/465870a Brin S., 1998, TECHNICAL REPORT Caragea D., 2011, MANUAL AUTORAT STIIN Griffin C, 2010, LEARN PUBL, V23, P132, DOI 10.1087/20100208 HEIMERIKS G, 2002, STATE ART BIBLIOMETR Huang A., 2008, NZCSRSC 2008 Karlin I, 2012, EVALUATION NLP TOOLK Kleinberg JM, 1999, J ACM, V46, P604, DOI 10.1145/324133.324140 Lee DL, 1997, IEEE SOFTWARE, V14, P67, DOI 10.1109/52.582976 Levitt JM, 2011, INFORM PROCESS MANAG, V47, P300, DOI 10.1016/j.ipm.2010.09.005 Li W., 2005, P 2 AS C AS INF RETR Ma N, 2008, INFORM PROCESS MANAG, V44, P800, DOI 10.1016/j.ipm.2007.06.006 Molette P, 2012, DOCUMENTATION LOGICI RAGHAVAN VV, 1986, J AM SOC INFORM SCI, V37, P279, DOI 10.1002/asi.4630370502 Ryzko D., 2011, EMERGING INTELIGENT Sidiropoulos A, 2005, SIGMOD REC, V34, P54, DOI 10.1145/1107499.1107506 SPARCKJONES K, 1972, J DOC, V28, P11, DOI 10.1108/eb026526 The Apache Software Foundation, 2010, AP OPENNLP The Stanford Natural Language Processing Group, 2013, COR NLP TOOLS Velter V., 2010, ANN CONSTANTIN BRANC, V3, P119 Webster GD, 2009, EVOL PSYCHOL-US, V7, P348 West JD, 2010, COLL RES LIBR, V71, P236, DOI 10.5860/0710236 Ye J, 2012, GROUP DECIS NEGOT, V21, P519, DOI 10.1007/s10726-010-9224-4 NR 28 TC 3 Z9 4 U1 0 U2 21 PU ROMANIAN SOC CONTROL TECH INFORMATICS PI BUCHAREST PA 313 SPLAIUL INDEPENDENTEI, BUCHAREST, 060042, ROMANIA SN 1454-8658 J9 CONTROL ENG APPL INF JI Control Eng. Appl. Inform. PD MAR PY 2014 VL 16 IS 1 BP 62 EP 69 PG 8 WC Automation & Control Systems WE Science Citation Index Expanded (SCI-EXPANDED) SC Automation & Control Systems GA AE1JB UT WOS:000333724500007 DA 2024-09-05 ER PT C AU Bugajska, M AF Bugajska, Malgorzata BE Ackerman, M DiengKuntz, R Simone, C Wulf, V TI "KT" CarePacks - Collaboration patterns for knowledge transfer: Learning from IS/IT-outsourcing case at a Swiss financial institution SO KNOWLEDGE MANAGEMENT IN ACTION SE International Federation for Information Processing LA English DT Proceedings Paper CT 20th World Computer Congress CY SEP 07-10, 2008 CL Milan, ITALY DE knowledge transfer; IS/IT outsourcing; patterns AB Organizations now more than ever focus on fostering team work in their daily activities to secure better results for their stakeholders. Team work and collaboration are especially important for inter-organizational outsourcing relationships where these qualities are crucial for the successful knowledge transfer conducted throughout all phases of outsourcing relationship. Knowledge workers involved in such complex, inter-organizational collaboration processes require support to secure structured and well managed collaboration. Consequently, there is a strong need of service receiver organizations to use sustainable approaches for the knowledge transfer to satisfy recurring transfer processes in forthcoming sourcing activities. Idea of "pattern" offers encapsulated approach for describing solutions for recurring problems and is already successfully used within the IT domain. In this paper we present the concept of patterns for the sustainable knowledge transfer for outsourcing relationships. We introduce CarePacks - reusable patterns for supporting act of the collaborative knowledge transfer and present lessons learned from introducing them at a Swiss financial - institution while conducting six knowledge transfer pilots in three consecutive trials. C1 [Bugajska, Malgorzata] Univ Zurich, Dept Informat, CH-8006 Zurich, Switzerland. C3 University of Zurich EM bugajska@gmail.coni CR Alexander C., 1977, PATTERN LANGUAGE TOW [Anonymous], 1993, METHODEN ENG SPEZIFI [Anonymous], 2000, COMMON KNOWLEDGE COM [Anonymous], 2000, Technology, Learning, and Innovation: Experiences of Newly Industrializing Economies [Anonymous], 1979, The Timeless Way of Building Becker J., 2004, REFERENZMODELLIERUNG Bloch M., 2005, MCKINSEY Q Braun C., 2004, Methodenkonstruktion als wissenschaftlicher Erkenntnisansatz BRIGGS RO, 2003, J MANAGEMENT INFORM, V19 BUGAJSKA M, 2006, P 3 INT C KNOWL MAN BUGAJSKA M, 2007, PILOTING KNOWLEDGE T Carmel E., 2005, Offshoring Information Technology: Sourcing and Outsourcing to a Global Workforce Cohen Linda., 2006, Multisourcing: Moving Beyond Outsourcing to Achieve Growth and Agility Collison C., 2004, LEARNING FLY PRACTIC Darr ED, 2000, ORGAN BEHAV HUM DEC, V82, P28, DOI 10.1006/obhd.2000.2885 Davenport T.H., 2005, Thinking for a living: How to get better performance and results from knowledge workers Davenport T.H., 2000, WORKING KNOWLEDGE OR, DOI DOI 10.1145/347634.348775 de Vreede GJ, 2006, INT J COMPUT APPL T, V25, P140, DOI 10.1504/IJCAT.2006.009064 DEVREEDE GJ, 2005, INT C SYST SCI, V3 ENGLISH W, 2006, WINNING KNOWLEDGE TR FOWLER B, 2006, IS INSOURCING NEW OU Gamma E., 1994, Design Patterns: Elements of Reusable Object-Oriented Software Gottschalk P., 2007, KNOWLEDGE MANAGEMENT Gregor S, 2006, MIS QUART, V30, P611 Heinzl A, 2001, WIRTSCHAFTSINF, V43, P223, DOI 10.1007/BF03252668 Hinds PJ, 2003, SHARING EXPERTISE: BEYOND KNOWLEDGE MANAGEMENT, P3 HUTZSCHENREUTER T, 2004, EVALUATOR KNOWLEDGE JENSEN MC, 1976, J FINANC ECON, V3, P305, DOI 10.1016/0304-405X(76)90026-X Ko DG, 2005, MIS QUART, V29, P59 Lukosch S, 2006, INT J HUM-COMPUT ST, V64, P599, DOI 10.1016/j.ijhcs.2006.02.006 Mulder U., 2007, Journal of Knowledge Management, V11, P68, DOI 10.1108/13673270710728240 Nonaka I., 1995, The knowledge-creating company: How Japanese companies create the dynamics of innovation Owen C.L., 1997, Journal of the Japanese Society for the Science of Design, V5, P36, DOI DOI 10.11247/JSSDS.5.2_36 Pavitt K, 2002, IND CORP CHANGE, V11, P117, DOI 10.1093/icc/11.1.117 Rulke DL, 2000, ORGAN BEHAV HUM DEC, V82, P134, DOI 10.1006/obhd.2000.2892 Szulanski G, 2000, ORGAN BEHAV HUM DEC, V82, P9, DOI 10.1006/obhd.2000.2884 Thatchenkery T., 2005, APPRECIATIVE SHARING VOIGT B, 2007, MANAGE KNOWLEDGE TRA VONKROGH G, 1998, UNTERNEHMUNG, V52, P235 Willcocks LP, 2006, TECHNOL WORK GLOB, pXII *WKWI, 1994, WIRTSCHAFTSINF, V36, P80 NR 41 TC 0 Z9 0 U1 0 U2 4 PU SPRINGER PI NEW YORK PA 233 SPRING STREET, NEW YORK, NY 10013, UNITED STATES SN 1571-5736 BN 978-0-387-09658-2 J9 INT FED INFO PROC PY 2008 VL 270 BP 17 EP 36 PG 20 WC Computer Science, Information Systems; Management; Operations Research & Management Science WE Conference Proceedings Citation Index - Science (CPCI-S); Conference Proceedings Citation Index - Social Science & Humanities (CPCI-SSH) SC Computer Science; Business & Economics; Operations Research & Management Science GA BIC05 UT WOS:000258322500003 DA 2024-09-05 ER PT C AU Wang, Z Zhang, XC AF Wang, Zheng Zhang, Xianchao BE Zhao, C TI Research on real-time and intelligent learning performance testing method SO PROCEEDINGS OF 2008 INTERNATIONAL COLLOQUIUM ON ARTIFICIAL INTELLIGENCE IN EDUCATION LA English DT Proceedings Paper CT International Colloquium on Artificial Intelligence in Education CY OCT 17-18, 2008 CL Wuhan, PEOPLES R CHINA DE online learning; learning performance; real-time and intelligent testing method; distance learning ID TUTORING SYSTEMS AB Based on the results of online exams, a tree-like representation method for course resources and a knowledge-based testing method for students' online learning performance are presented in the paper, by introducing the methodology of artificial intelligence, knowledge engineering and fuzzy mathematics. A real-time and intelligent testing system is realized based on the testing method, which tests whether students have mastered the course's knowledge. The application and its feedback from students prove the scientificity and validity of the testing method. C1 [Wang, Zheng] Dalian Univ Technol, Software Sch, Dalian, Peoples R China. C3 Dalian University of Technology CR Akhras FN, 2002, INSTR SCI, V30, P1, DOI 10.1023/A:1013544300305 Hwang GJ, 2003, COMPUT EDUC, V40, P217, DOI 10.1016/S0360-1315(02)00121-5 MYMIC LLC, 2004, OUTSTANDING RES ISSU WANG QH, 2006, RES DESIGN ANAL SYST YACEF K, 2003, AIED 2003 WORKSH P I NR 5 TC 0 Z9 0 U1 0 U2 4 PU WORLD ACAD UNION-WORLD ACAD PRESS PI LIVERPOOL PA 113, ACADEMIC HOUSE, MILL LANE, WAVERTREE TECHNOLOGY PARK, LIVERPOOL, L13 4 AH, ENGLAND BN 978-1-84626-173-2 PY 2008 BP 37 EP 41 PG 5 WC Computer Science, Artificial Intelligence; Education & Educational Research; Education, Scientific Disciplines WE Conference Proceedings Citation Index - Science (CPCI-S); Conference Proceedings Citation Index - Social Science & Humanities (CPCI-SSH) SC Computer Science; Education & Educational Research GA BIM65 UT WOS:000260861200008 DA 2024-09-05 ER PT J AU Glänzel, W Thijs, B AF Glanzel, Wolfgang Thijs, Bart TI Using hybrid methods and 'core documents' for the representation of clusters and topics: the astronomy dataset SO SCIENTOMETRICS LA English DT Article DE Astronomy; Astrophysics; Clustering; NLP; Bibliographic coupling; Hybrid clustering; Core documents ID COCITATION ANALYSIS; INFORMATION; NETWORK; TOOL AB Based on a dataset on Astronomy and Astrophysics, hybrid cluster analyses have been conducted. In order to obtain an optimum solution and to analyse possible issues resulting from the bibliometric methodologies used, we have systematically studied three models and, within these models, two scenarios each. The hybrid clustering was based on a combination of bibliographic coupling and textual similarities using the Louvain method at two resolution levels. The procedure resulted in three clearly hierarchical structures with six and thirteen, seven and thirteen and finally five and eleven clusters, respectively. These structures are analysed with the help of a concordance table. The statistics reflect a high quality of classification. The results of these three models are presented, discussed and compared with each other. For labelling and interpreting clusters, core documents representing the obtained clusters are used. Furthermore, these core documents help depict the internal structure of the complete network and the clusters. This work has been done as part of the international project 'Measuring the Diversity of Research' and in the framework a special workshop on the comparative analysis of algorithms for the identification of topics in science organised in Berlin in August 2014. C1 [Glanzel, Wolfgang; Thijs, Bart] Katholieke Univ Leuven, ECOOM, Louvain, Belgium. [Glanzel, Wolfgang; Thijs, Bart] Katholieke Univ Leuven, Dept MSI, Louvain, Belgium. [Glanzel, Wolfgang] Lib Hungarian Acad Sci, Dept Sci Policy & Scientometr, Budapest, Hungary. C3 KU Leuven; KU Leuven; Hungarian Academy of Sciences RP Glänzel, W (corresponding author), Katholieke Univ Leuven, ECOOM, Louvain, Belgium.; Glänzel, W (corresponding author), Katholieke Univ Leuven, Dept MSI, Louvain, Belgium.; Glänzel, W (corresponding author), Lib Hungarian Acad Sci, Dept Sci Policy & Scientometr, Budapest, Hungary. EM wolfgang.glanzel@kuleuven.be RI Glanzel, Wolfgang/AAE-4395-2021 CR Ahlgren P, 2009, J INFORMETR, V3, P49, DOI 10.1016/j.joi.2008.11.003 [Anonymous], 1989, Sociological Methodology, DOI DOI 10.2307/270949 Batagelj V, 2004, MATH VIS, P77 Blondel VD, 2008, J STAT MECH-THEORY E, DOI 10.1088/1742-5468/2008/10/P10008 Boyack KW, 2010, J AM SOC INF SCI TEC, V61, P2389, DOI 10.1002/asi.21419 CALLON M, 1991, SCIENTOMETRICS, V22, P155, DOI 10.1007/BF02019280 GARFIELD E, 1969, CC/LIFE SCI, V12, P4 Glänzel W, 2011, SCIENTOMETRICS, V88, P297, DOI 10.1007/s11192-011-0347-4 Glanzel W, 1996, SCIENTOMETRICS, V37, P195, DOI 10.1007/BF02093621 Glanzel W., 2012, BIBLIOMETRIE PRAXIS, V1, DOI [10.5283/bpf.156., DOI 10.5283/BPF.156] Glänzel W, 2015, PRO INT CONF SCI INF, P1085 Glänzel W, 2012, SCIENTOMETRICS, V93, P113, DOI 10.1007/s11192-012-0639-3 Glänzel W, 2012, SCIENTOMETRICS, V91, P399, DOI 10.1007/s11192-011-0591-7 Glenisson P, 2005, INFORM PROCESS MANAG, V41, P1548, DOI 10.1016/j.ipm.2005.03.021 HICKS D, 1987, SOC STUD SCI, V17, P295, DOI 10.1177/030631287017002004 Janssens F., 2007, THESIS Janssens F, 2008, SCIENTOMETRICS, V75, P607, DOI 10.1007/s11192-007-2002-7 Klein D, 2003, 41ST ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, PROCEEDINGS OF THE CONFERENCE, P423, DOI 10.3115/1075096.1075150 Kostoff RN, 1997, J INF SCI, V23, P301, DOI 10.1177/016555159702300404 Thijs B., 2015, P WORKSH MIN SCI PAP, V1384 Thijs B, 2013, SCIENTOMETRICS, V96, P667, DOI 10.1007/s11192-012-0896-1 TODOROV R, 1992, SCIENTOMETRICS, V23, P319, DOI 10.1007/BF02017044 Turner W.A., 1988, HDB QUANTITATIVE STU Zitt M, 1996, SCIENTOMETRICS, V37, P223, DOI 10.1007/BF02093622 NR 24 TC 51 Z9 53 U1 2 U2 114 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0138-9130 EI 1588-2861 J9 SCIENTOMETRICS JI Scientometrics PD MAY PY 2017 VL 111 IS 2 BP 1071 EP 1087 DI 10.1007/s11192-017-2301-6 PG 17 WC Computer Science, Interdisciplinary Applications; Information Science & Library Science WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Computer Science; Information Science & Library Science GA ES9JC UT WOS:000399871500024 OA Green Accepted DA 2024-09-05 ER PT J AU Panchendrarajan, R Saxena, A AF Panchendrarajan, Rrubaa Saxena, Akrati TI Topic-based influential user detection: a survey SO APPLIED INTELLIGENCE LA English DT Article DE Topic-based influential user detection; Topic modeling; Influence mining; Online social network ID LEVEL INFLUENCERS; SOCIAL NETWORKS; OPINION LEADER; TWITTER; RECOMMENDATION; REGRESSION; MODEL; BERT AB Online Social networks have become an easy means of communication for users to share their opinion on various topics, including breaking news, public events, and products. The content posted by a user can influence or affect other users, and the users who could influence or affect a high number of users are called influential users. Identifying such influential users has a wide range of applications in the field of marketing, including product advertisement, recommendation, and brand evaluation. However, the users' influence varies in different topics, and hence a tremendous interest has been shown towards identifying topic-based influential users over the past few years. Topic-level information in the content posted by the users can be used in various stages of the topic-based influential user detection (IUD) problem, including data gathering, construction of influence network, quantifying the influence between two users, and analyzing the impact of the detected influential user. This has opened up a wide range of opportunities to utilize the existing techniques to model and analyze the topic-level influence in online social networks. In this paper, we perform a comprehensive study of existing techniques used to infer the topic-based influential users in online social networks. We present a detailed review of these approaches in a taxonomy while highlighting the challenges and limitations associated with each technique. Moreover, we perform a detailed study of different evaluation techniques used in the literature to overcome the challenges that arise in evaluating topic-based IUD approaches. Furthermore, closely related research topics and open research questions in topic-based IUD are discussed to provide a deep understanding of the literature and future directions. C1 [Panchendrarajan, Rrubaa] Sri Lanka Inst Informat Technol, Fac Comp, Colombo, Sri Lanka. [Saxena, Akrati] Eindhoven Univ Technol, Dept Math & Comp Sci, Eindhoven, Netherlands. C3 Sri Lanka Institute of Information Technology (SLIIT); Eindhoven University of Technology RP Saxena, A (corresponding author), Eindhoven Univ Technol, Dept Math & Comp Sci, Eindhoven, Netherlands. EM rrubaa.p@sliit.lk; a.saxena@tue.nl OI Saxena, Akrati/0000-0002-7151-6309 CR Abuzayed A, 2021, PROCEDIA COMPUT SCI, V189, P191, DOI 10.1016/j.procs.2021.05.096 Agness JA, 2018, P 3 INT C INTERNET T, P26 Aizawa A, 2003, INFORM PROCESS MANAG, V39, P45, DOI 10.1016/S0306-4573(02)00021-3 Al-Garadi MA, 2018, ACM COMPUT SURV, V51, DOI 10.1145/3155897 Al-Yazidi S, 2020, IEEE ACCESS, V8, P105824, DOI 10.1109/ACCESS.2020.2999033 ALLEN LJS, 1994, MATH BIOSCI, V124, P83, DOI 10.1016/0025-5564(94)90025-6 Alp ZZ, 2018, KNOWL-BASED SYST, V141, P211, DOI 10.1016/j.knosys.2017.11.021 [Anonymous], 2012, P SIGCHI C HUM FACT, DOI [DOI 10.1145/2207676.2208672, 10.1145/2207676.2208672] [Anonymous], 2012, P 24 BEN C ART INT B [Anonymous], 2008, Proceedings of NIPS'08 Asgari-Chenaghlu M, 2021, CHAOS SOLITON FRACT, V151, DOI 10.1016/j.chaos.2021.111274 Balmin AL, 2016, Google Patents, Patent No. [9,449,096, 9449096] Bamakan SMH, 2019, EXPERT SYST APPL, V115, P200, DOI 10.1016/j.eswa.2018.07.069 Barbieri N, 2013, KNOWL INF SYST, V37, P555, DOI 10.1007/s10115-013-0646-6 Bashari B, 2020, MEAS CONTROL-UK, V53, P409, DOI 10.1177/0020294019877489 Bi B, 2014, WSDM'14: PROCEEDINGS OF THE 7TH ACM INTERNATIONAL CONFERENCE ON WEB SEARCH AND DATA MINING, P513, DOI 10.1145/2556195.2556229 Bingol K, 2019, IEEE T SERV COMPUT, V12, P970, DOI 10.1109/TSC.2016.2619688 Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993 Bogdanov P, 2014, SOC NETW ANAL MIN, V4, DOI 10.1007/s13278-014-0204-6 Breiman L., 2001, Machine Learning, V45, P5, DOI 10.1023/A:1010933404324 Cano AE, 2014, SEMANT WEB, V5, P357, DOI 10.3233/SW-130108 Cha M., 2010, P INT AAAI C WEB SOC, V10 Chakrabarti S, 2003, VLDB J, V12, P170, DOI 10.1007/s00778-003-0098-9 Chen L, 2019, P 2019 SIAM INT C DA, P262 Chen S, 2015, PROC VLDB ENDOW, V8, P666, DOI 10.14778/2735703.2735706 Chen Stanley F, 1998, Evaluation metrics for language models Dhali A, 2020, 2020 IEEE ASIA PACIF, P1 Ding ZY, 2013, CHINA COMMUN, V10, P93, DOI 10.1109/CC.2013.6457533 Dong G., 2019, INT J PERFORMABILITY, V15, P3024, DOI DOI 10.23940/IJPE.19.11.P22.30243030 Eliacik AB, 2018, EXPERT SYST APPL, V92, P403, DOI 10.1016/j.eswa.2017.10.006 Embar VR, 2015, KDD'15: PROCEEDINGS OF THE 21ST ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, P1759, DOI 10.1145/2783258.2788593 Enliang Xu, 2014, Database and Expert Systems Applications 25th International Conference (DEXA 2014). Proceedings: LNCS 8645, P131, DOI 10.1007/978-3-319-10085-2_11 Fan J, 2018, PROC INT CONF DATA, P1569, DOI 10.1109/ICDE.2018.00178 Fang Q, 2014, IEEE T MULTIMEDIA, V16, P796, DOI 10.1109/TMM.2014.2298216 Farahani HS, 2017, 2017 INTERNATIONAL CONFERENCE ON INNOVATIVE MECHANISMS FOR INDUSTRY APPLICATIONS (ICIMIA), P581, DOI 10.1109/ICIMIA.2017.7975527 Fei H, 2006, FRIEND SCI AMATEURS, V6 Frey BJ, 2007, SCIENCE, V315, P972, DOI 10.1126/science.1136800 Fuglede B, 2004, 2004 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, PROCEEDINGS, P31 Gelfand AE, 2000, J AM STAT ASSOC, V95, P1300, DOI 10.2307/2669775 González-Bailón S, 2011, SCI REP-UK, V1, DOI 10.1038/srep00197 Graves A., 2013, Generating sequences with recurrent neural networks, P1 Grootendorst Maarten, 2020, Bertopic: Leveraging bert and c-tf-idf to create easily interpretable topics, DOI DOI 10.5281/ZENODO Hamzehei A, 2019, MACH LEARN, V108, P1831, DOI 10.1007/s10994-018-05776-w Hamzehei A, 2017, AUSTRALAS J INF SYST, V21 Herzig J., 2014, Proc. 25th ACM Conf. Hypertext Soc. media Hethcote HW, 2000, SIAM REV, V42, P599, DOI 10.1137/S0036144500371907 Hofmann T, 2013, UNC ART INT P Ishfaq U, 2022, BEHAV INFORM TECHNOL, V41, P2201, DOI 10.1080/0144929X.2021.1915384 Jagarlamudi J., 2012, EACL 2012 13 C EUROP, P204 Jain L, 2018, PROC IEEE INT SOFT, P10 Jeh G., 2003, WWW, P271, DOI DOI 10.1145/775152.775191 Kefato ZT, PERSONALIZED INFLUEN Kempe D., 2005, Automata, Languages and Programming. 32nd International Colloquium, ICALP 2005. Proceedings (Lecture Notes in Computer Science Vol. 3580), P1127, DOI 10.1007/11523468_91 Kempe David, 2003, Theory Comput., P137, DOI DOI 10.1145/956750.956769 Kim D, 2016, PROC INT CONF DATA, P13, DOI 10.1109/ICDE.2016.7498225 Kleinberg JM, 1999, J ACM, V46, P604, DOI 10.1145/324133.324140 Koren Y, 2009, COMPUTER, V42, P30, DOI 10.1109/MC.2009.263 Koutrouli Eleni, 2018, Discovery Science. 21st International Conference, DS 2018. Proceedings: Lecture Notes in Artificial Intelligence (LNAI 11198), P405, DOI 10.1007/978-3-030-01771-2_26 Lahoti P., 2017, P 2017 IEEE ACM INT, P155, DOI 10.1145/3110025.3110044 Lee RKW, 2021, IEEE T KNOWL DATA EN, V33, P70, DOI 10.1109/TKDE.2019.2922962 Letierce Julie., 2010, Understanding how Twitter is used to spread scientific messages" Li DF, 2015, J ASSOC INF SCI TECH, V66, P2657, DOI 10.1002/asi.23350 Li Daifeng., 2012, 21 ACM INT C INFORM, P1562 Li X, 2017, NEUROCOMPUTING, V230, P197, DOI 10.1016/j.neucom.2016.12.024 Li Y., 2015, Social Context Analysis for Topic-Specific Expert Finding in Online Learning Communities, P57 Liengpradit P., 2014, INT J COMPUTER INTER, V22, P33 Lim E.-P., 2018, P 2018 SIAM INT C DA, P378 Liu Lu., 2010, CIKM Liu XY, 2014, 2014 IEEE INTERNATIONAL CONFERENCE ON DATA MINING WORKSHOP (ICDMW), P1012, DOI 10.1109/ICDMW.2014.11 Loh WY., 2014, Classification and Regression Tree Methods Lu ML, 2019, IEEE ACCESS, V7, P101665, DOI 10.1109/ACCESS.2019.2931146 Ma QC, 2019, CONCURR COMP-PRACT E, V31, DOI 10.1002/cpe.5029 Ma X, 2017, ARXIV 170301468 Makita M, 2021, ISSUES MENT HEALTH N, V42, P437, DOI 10.1080/01612840.2020.1814914 Mikolov T., 2013, ARXIV Mittal D, 2020, PROCEDIA COMPUT SCI, V167, P1861, DOI 10.1016/j.procs.2020.03.205 Myung IJ, 2003, J MATH PSYCHOL, V47, P90, DOI 10.1016/S0022-2496(02)00028-7 Oo MM, DETECTING INFLUENTIA Oro E, 2018, IEEE T MULTIMEDIA, V20, P1195, DOI 10.1109/TMM.2017.2763324 Page L., 1999, The PageRank citation ranking: bringing order to the web Pal A., 2011, P 4 ACM INT C WEB SE, P45, DOI [10.1145/1935826.1935843, DOI 10.1145/1935826.1935843] Pal A, 2016, PROCEEDINGS OF THE 25TH INTERNATIONAL CONFERENCE ON WORLD WIDE WEB (WWW'16), P1203, DOI 10.1145/2872427.2883078 Petre A-N, 2014, SEARCHING TOPICAL AU Qian Y, 2020, WORLD WIDE WEB, V23, P831, DOI 10.1007/s11280-019-00751-4 Ramya GR, 2021, SOC NETW ANAL MIN, V11, DOI 10.1007/s13278-021-00732-4 Reynolds DA, 2000, DIGIT SIGNAL PROCESS, V10, P19, DOI 10.1006/dspr.1999.0361 Riquelme F, 2016, INFORM PROCESS MANAG, V52, P949, DOI 10.1016/j.ipm.2016.04.003 Santos Henrique DP, POPULAR TOPICAL AUTH Saquib S, 2017, 2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTING, COMMUNICATION AND AUTOMATION (ICCCA), P98, DOI 10.1109/CCAA.2017.8229780 Saxena Akrati, 2022, Principles of Social Networking: The New Horizon and Emerging Challenges. Smart Innovation, Systems and Technologies (246), P355, DOI 10.1007/978-981-16-3398-0_16 Saxena A, 2020, WWW'20: COMPANION PROCEEDINGS OF THE WEB CONFERENCE 2020, P363, DOI 10.1145/3366424.3383297 Shalaby M., 2013, ACTA PRESS, V793, P16 Shalaby M, 2014, IDENTIFYING TOPIC SP Shalaby M, 2015, 2015 FIRST INTERNATIONAL CONFERENCE ON ARABIC COMPUTATIONAL LINGUISTICS (ACLING 2015): ADVANCES IN ARABIC COMPUTATIONAL LINGUISTICS, P118, DOI 10.1109/ACLing.2015.24 Shen HW, 2014, P NATL ACAD SCI USA, V111, P12325, DOI 10.1073/pnas.1401992111 Shi LL, 2020, IEEE T COMPUT SOC SY, V7, P141, DOI 10.1109/TCSS.2019.2938954 Shinde M, 2016, 2016 INTERNATIONAL CONFERENCE ON COMPUTING, ANALYTICS AND SECURITY TRENDS (CAST), P144, DOI 10.1109/CAST.2016.7914956 Socher Richard, 2014, Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), P1532, DOI [10.3115/v1/D14-1162.https, DOI 10.3115/V1/D14-1162.HTTPS, 10.3115/v1/D14-1162] Su S, 2018, MACH LEARN, V107, P551, DOI 10.1007/s10994-017-5665-1 Subbian K, 2016, PROCEEDINGS OF THE NINTH ACM INTERNATIONAL CONFERENCE ON WEB SEARCH AND DATA MINING (WSDM'16), P493, DOI 10.1145/2835776.2835788 Tang J., 2008, Proceedings of the 17th international conference on World Wide Web, P1193 Tang J., 2011, KDD, P769 Tang J, 2009, KDD-09: 15TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, P807 van Erven T, 2014, IEEE T INFORM THEORY, V60, P3797, DOI 10.1109/TIT.2014.2320500 Vega L, 2021, SOC NETW ANAL MIN, V11, DOI 10.1007/s13278-020-00705-z Wall ME, 2003, PRACTICAL APPROACH M, P91, DOI DOI 10.1007/0-306-47815-3_5 Wang B., 2017, NAT CCF C NAT LANG P, P477 Wang J, 2017, CHINESE J ELECTRON, V26, P106, DOI 10.1049/cje.2016.11.017 Wang J, 2015, 2015 IEEE/WIC/ACM INTERNATIONAL CONFERENCE ON WEB INTELLIGENCE AND INTELLIGENT AGENT TECHNOLOGY (WI-IAT), VOL 1, P123, DOI 10.1109/WI-IAT.2015.202 Wang L, 2015, INT C COMP SUPP COOP, P176, DOI 10.1109/CSCWD.2015.7230954 Wang YK, 2016, FRONT ARTIF INTEL AP, V285, P1559, DOI 10.3233/978-1-61499-672-9-1559 Weinberg T., 2009, The new community rules: Marketing on the social web Weng J., 2010, P 3 ACM INT C WEB SE, P261, DOI [10.1145/1718487.1718520, DOI 10.1145/1718487.1718520] Wright R.E., 1995, READING UNDERSTANDIN, P217 Xia F, 2020, IEEE TETCI, V4, P95, DOI 10.1109/TETCI.2019.2952908 Xiao F, 2014, J WEB ENG, V13, P405 Xing WP, 2004, SECOND ANNUAL CONFERENCE ON COMMUNICATION NETWORKS AND SERVICES RESEARCH, PROCEEDINGS, P305, DOI 10.1109/DNSR.2004.1344743 Xu Songhua, 2016, JMIR Public Health Surveill, V2, pe17, DOI 10.2196/publichealth.5205 Yan X, 2013, WWW, P1445, DOI [10.1145/2488388.2488514, DOI 10.1145/2488388.2488514] Yao QP, 2015, WWW'15 COMPANION: PROCEEDINGS OF THE 24TH INTERNATIONAL CONFERENCE ON WORLD WIDE WEB, P139, DOI 10.1145/2740908.2742767 Yong Quan, 2019, Artificial Intelligence and Security. 5th International Conference, ICAIS 2019. Proceedings: Lecture Notes in Computer Science (LNCS 11635), P476, DOI 10.1007/978-3-030-24268-8_44 Yu Y, 2016, KSII T INTERNET INF, V10, P2627, DOI 10.3837/tiis.2016.06.010 Zar J.H., 2005, Encyclopedia of biostatistics, V7, DOI [DOI 10.1002/0470011815.B2A15150, 10.1002/0470011815.b2a15150] Zemel RS, 2001, ADV NEUR IN, V13, P696 Zhang SX, 2017, MOBILE NETW APPL, V22, P228, DOI 10.1007/s11036-016-0790-9 Zhao QC, 2019, IEEE ACCESS, V7, P175917, DOI 10.1109/ACCESS.2019.2953243 Zhao T, 2018, LECT NOTES COMPUT SC, V10827, P372, DOI 10.1007/978-3-319-91452-7_25 Zhao WNX, 2011, LECT NOTES COMPUT SC, V6611, P338, DOI 10.1007/978-3-642-20161-5_34 Zheng C, 2021, IDENTIFYING HIV RELA Zheng C, 2020, CIKM '20: PROCEEDINGS OF THE 29TH ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT, P2337, DOI 10.1145/3340531.3412134 Zheng C, 2020, IEEE ACCESS, V8, P82481, DOI [10.1109/access.2020.2991683, 10.1109/ACCESS.2020.2991683] Zhou J, 2017, 2017 2ND IEEE INTERNATIONAL CONFERENCE ON CLOUD COMPUTING AND BIG DATA ANALYSIS (ICCCBDA 2017), P133, DOI 10.1109/ICCCBDA.2017.7951898 NR 132 TC 7 Z9 8 U1 5 U2 20 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0924-669X EI 1573-7497 J9 APPL INTELL JI Appl. Intell. PD MAR PY 2023 VL 53 IS 5 BP 5998 EP 6024 DI 10.1007/s10489-022-03831-7 EA JUL 2022 PG 27 WC Computer Science, Artificial Intelligence WE Science Citation Index Expanded (SCI-EXPANDED) SC Computer Science GA A3ZV8 UT WOS:000822010200013 OA hybrid DA 2024-09-05 ER PT J AU Argoubi, M Jammeli, H Masri, H AF Argoubi, Majdi Jammeli, Haifa Masri, Hatem TI The intellectual structure of the waste management field SO ANNALS OF OPERATIONS RESEARCH LA English DT Article DE Waste management; Intellectual structure; Optimization; Heuristics; Co-citation analysis; Literature mapping ID REVERSE LOGISTICS NETWORK; DECISION-SUPPORT-SYSTEM; LANDFILL SITE SELECTION; RIO-GRANDE VALLEY; PROGRAMMING APPROACH; ENVIRONMENTAL ASSESSMENT; OPTIMIZATION MODEL; ALGORITHM; GREY; DESIGN AB Waste management is an important issue in the field of green logistics. It has consequently drawn the attention of the scientific community and has been extensively investigated over the past few years. Through an analysis of the existing waste management literature, we attempt in this paper to better understand past developments in this area as well as emerging trends and recent developments. Emphasis will be put mainly on Operations Research and Management Science techniques when dealing with waste management problems. To reach this target, we follow bibliometric-based methods, specifically Co-citation Analysis, Betweenness Centrality and Burst Detection combined with network visualization. After identifying the research papers published between 1990 and 2018 within the Thomson Reuters Web of Science database, a Co-citation network has been constructed. We propose an algorithm for modularity-based clustering in small networks that iteratively solves a sequence of Mixed Integer Non-linear Programming problems to maximize the modularity therefore providing a non-overlapping partition of the network. A display of the principal research areas and landmark articles that shape the intellectual structure of the waste management problems during the last 30 years is reported. C1 [Argoubi, Majdi] Univ Sousse, Rue Abdlaaziz Behi, Sousse, Tunisia. [Jammeli, Haifa] Univ Tunis, Rue Liberte, Le Bardo, Tunisia. [Jammeli, Haifa] HIGHFI, HF LAB, Paris, France. [Masri, Hatem] Univ Bahrain, POB 32038, Sakhir, Bahrain. C3 Universite de Sousse; Universite de Tunis; University of Bahrain RP Masri, H (corresponding author), Univ Bahrain, POB 32038, Sakhir, Bahrain. EM mejdiargoubi@yahoo.fr; haifa.echaarika@gmail.com; hmasri@uob.edu.bh RI ARGOUBI, Majdi/AEI-8735-2022; Masri, Hatem/M-9133-2015; jammeli, haifa/P-3141-2017 OI Masri, Hatem/0000-0002-2750-129X; Jammeli, Haifa/0000-0003-0326-1321 CR Achillas C, 2010, WASTE MANAGE, V30, P870, DOI 10.1016/j.wasman.2009.11.029 Ahmed S, 2004, MATH PROGRAM, V100, P355, DOI 10.1007/s10107-003-0475-6 [Anonymous], THESIS Aras N, 2008, EUR J OPER RES, V191, P1223, DOI 10.1016/j.ejor.2007.08.002 Beliën J, 2014, TRANSPORT SCI, V48, P78, DOI 10.1287/trsc.1120.0448 Bettencourt LMA, 2011, P NATL ACAD SCI USA, V108, P19540, DOI 10.1073/pnas.1102712108 Brandes U, 2001, J MATH SOCIOL, V25, P163, DOI 10.1080/0022250X.2001.9990249 Brin S, 1998, COMPUT NETWORKS ISDN, V30, P107, DOI 10.1016/S0169-7552(98)00110-X Cao MF, 2010, STOCH ENV RES RISK A, V24, P1163, DOI 10.1007/s00477-010-0390-3 Chang NB, 1996, 7TH ISWA INTERNATIONAL CONGRESS, PROCEEDINGS II, pII295 Chang NB, 2008, WASTE MANAGE, V28, P776, DOI 10.1016/j.wasman.2007.04.002 Chang NB, 2007, WASTE MANAGE, V27, P820, DOI 10.1016/j.wasman.2006.05.002 Chang NB, 2011, CRIT REV ENV SCI TEC, V41, P1449, DOI 10.1080/10643381003608326 Chen, 2012, TURNING POINTS NATUR, DOI 10.1007/978-3-642-19160-2 Chen CM, 2006, J AM SOC INF SCI TEC, V57, P359, DOI 10.1002/asi.20317 Chen HB, 2015, J AIR WASTE MANAGE, V65, P1161, DOI 10.1080/10962247.2015.1083913 Chen MM, 2014, IEEE T COMPUT SOC SY, V1, P46, DOI 10.1109/TCSS.2014.2307458 Cobo MJ, 2012, J AM SOC INF SCI TEC, V63, P1609, DOI 10.1002/asi.22688 Davila E, 2005, J ENVIRON MANAGE, V75, P353, DOI 10.1016/j.jenvman.2004.11.015 Ding Y, 2011, INFORM PROCESS MANAG, V47, P80, DOI 10.1016/j.ipm.2010.01.002 Eriksson O, 2005, J CLEAN PROD, V13, P241, DOI 10.1016/j.jclepro.2004.02.018 Fortunato S, 2010, PHYS REP, V486, P75, DOI 10.1016/j.physrep.2009.11.002 FRUCHTERMAN TMJ, 1991, SOFTWARE PRACT EXPER, V21, P1129, DOI 10.1002/spe.4380211102 Ghinea C, 2010, ENVIRON ENG MANAG J, V9, P869 Salema MIG, 2007, EUR J OPER RES, V179, P1063, DOI 10.1016/j.ejor.2005.05.032 Gorsevski PV, 2012, WASTE MANAGE, V32, P287, DOI 10.1016/j.wasman.2011.09.023 Govindan K, 2015, EUR J OPER RES, V240, P603, DOI 10.1016/j.ejor.2014.07.012 Guo P, 2008, ENVIRON MODELL SOFTW, V23, P1422, DOI 10.1016/j.envsoft.2008.04.009 Hanine M, 2016, SPRINGERPLUS, V5, DOI 10.1186/s40064-016-2131-7 Hokkanen J, 1997, EUR J OPER RES, V98, P19, DOI 10.1016/0377-2217(95)00325-8 Hsin-Neng, 1993, J RESOURCE MANAGEMEN, V21, P194 HUANG GH, 1995, EUR J OPER RES, V83, P594, DOI 10.1016/0377-2217(94)00093-R HUANG GH, 1992, CIVIL ENG SYST, V9, P319, DOI 10.1080/02630259208970657 Huang GH, 2001, ENVIRON MODEL ASSESS, V6, P271, DOI 10.1023/A:1013394118863 Iakovou E, 2009, RESOUR CONSERV RECY, V53, P329, DOI 10.1016/j.resconrec.2009.02.001 Jiménez M, 2007, EUR J OPER RES, V177, P1599, DOI 10.1016/j.ejor.2005.10.002 KAMADA T, 1989, INFORM PROCESS LETT, V31, P7, DOI 10.1016/0020-0190(89)90102-6 Kara SS, 2010, INT J ENVIRON SCI TE, V7, P717, DOI 10.1007/BF03326181 Karmakar S, 2006, ADV WATER RESOUR, V29, P1088, DOI 10.1016/j.advwatres.2006.04.003 Kirkeby JT, 2006, WASTE MANAGE RES, V24, P3, DOI 10.1177/0734242X06062580 Kleinberg J, 2003, DATA MIN KNOWL DISC, V7, P373, DOI 10.1023/A:1024940629314 Ko HJ, 2007, COMPUT OPER RES, V34, P346, DOI 10.1016/j.cor.2005.03.004 Korucu MK, 2012, WASTE MANAGE, V32, P2315, DOI 10.1016/j.wasman.2012.07.003 Laurent A, 2014, WASTE MANAGE, V34, P573, DOI 10.1016/j.wasman.2013.10.045 Lee DH, 2008, TRANSPORT RES E-LOG, V44, P455, DOI 10.1016/j.tre.2006.11.003 Leskovec J., 2007, ACM Transactions on the Web (TWEB), V1, P5 Li YP, 2010, J COMPUT CIVIL ENG, V24, P188, DOI 10.1061/(ASCE)CP.1943-5487.0000025 Lu HW, 2009, J ENVIRON MANAGE, V90, P396, DOI 10.1016/j.jenvman.2007.10.011 Lu ZQ, 2007, COMPUT OPER RES, V34, P299, DOI 10.1016/j.cor.2005.03.002 Maqsood M, 2003, J AIR WASTE MANAGE, V53, P540, DOI 10.1080/10473289.2003.10466195 Minciardi R, 2008, WASTE MANAGE, V28, P2202, DOI 10.1016/j.wasman.2007.10.003 Morrissey AJ, 2004, WASTE MANAGE, V24, P297, DOI 10.1016/j.wasman.2003.09.005 Najm MA, 2004, ENVIRON MODELL SOFTW, V19, P1151, DOI 10.1016/j.envsoft.2003.12.005 Ness AR, 1997, INT J EPIDEMIOL, V26, P1, DOI 10.1093/ije/26.1.1 Newman MEJ, 2004, PHYS REV E, V69, P24 Nie XH, 2007, J ENVIRON MANAGE, V84, P1, DOI 10.1016/j.jenvman.2006.04.006 Opsahl T, 2010, SOC NETWORKS, V32, P245, DOI 10.1016/j.socnet.2010.03.006 REVELLE C, 1991, TRANSPORT SCI, V25, P138, DOI 10.1287/trsc.25.2.138 Riber C, 2008, WASTE MANAGE RES, V26, P96, DOI 10.1177/0734242X08088583 Saaty TL, 1980, ANAL HIERARCHY PROCE Sener S, 2010, WASTE MANAGE, V30, P2037, DOI 10.1016/j.wasman.2010.05.024 SMALL H, 1973, J AM SOC INFORM SCI, V24, P265, DOI 10.1002/asi.4630240406 SMALL HG, 1977, SOC STUD SCI, V7, P139, DOI 10.1177/030631277700700202 Tan Q, 2010, J ENVIRON MANAGE, V91, P1898, DOI 10.1016/j.jenvman.2010.04.005 Thelwall M, 2008, J INF SCI, V34, P605, DOI 10.1177/0165551507087238 van Leeuwen T, 2006, SCIENTOMETRICS, V66, P133, DOI 10.1007/s11192-006-0010-7 White HD, 2003, J AM SOC INF SCI TEC, V54, P423, DOI 10.1002/asi.10228 White P., 1995, INTEGRATED SOLID WAS, DOI DOI 10.1007/978-1-4615-2369-7 Wu YN, 2016, ENERGIES, V9, DOI 10.3390/en9030157 Yang LJ, 2016, ALGORITHMS, V9, DOI 10.3390/a9040073 Yeomans JS, 2003, J ENVIRON INFORM, V1, P37, DOI 10.3808/jei.200300005 Zarei M, 2010, MATH PROBL ENG, V2010, DOI 10.1155/2010/649028 Zeng Y, 2005, J ENVIRON INFORM, V6, P1, DOI 10.3808/jei.200500050 Zhang BC, 2005, ACM SIGCOMM COMP COM, V35, P53, DOI 10.1145/1052812.1052825 ZHU ZP, 1990, CIVIL ENG SYST, V7, P29, DOI 10.1080/02630259008970567 NR 75 TC 8 Z9 9 U1 3 U2 22 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0254-5330 EI 1572-9338 J9 ANN OPER RES JI Ann. Oper. Res. PD NOV PY 2020 VL 294 IS 1-2 SI SI BP 655 EP 676 DI 10.1007/s10479-020-03570-3 EA MAR 2020 PG 22 WC Operations Research & Management Science WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Operations Research & Management Science GA OP9XW UT WOS:000564403200001 DA 2024-09-05 ER PT J AU Kusch, JD Nelson, DA Simpson, D Gerrits, R Glass, L AF Kusch, Jennifer D. Nelson, David A. Simpson, Deborah Gerrits, Ronald Glass, Laurie TI Using AI to Understand Key Success Features in Evolving CTSAs SO CTS-CLINICAL AND TRANSLATIONAL SCIENCE LA English DT Article DE clinical translational science; appreciative inquiry; research; qualitative evaluation; organizational change AB A vital role for Clinical and Translational Science Award (CTSA) evaluators is to first identify and then articulate the necessary change processes that support the research infrastructures and achieve synergies needed to improve health through research. The use of qualitative evaluation strategies to compliment quantitative tracking measures (e.g., number of grants/publications) is an essential but under-utilized approach in CTSA evaluations. The Clinical and Translational Science Institute of Southeast Wisconsin implemented a qualitative evaluation approach using appreciative inquiry (AI) that has revealed three critical features associated with CTSA infrastructure transformation success: developing open communication, creating opportunities for proactive collaboration, and ongoing attainment of milestones at the key function group level. These findings are consistent with Bolman & Deal's four interacting hallmarks of successful organizations: structural (infrastructure), political (power distribution; organizational politics), human resource (facilitating change among humans necessary for continued success), and symbolic (visions and aspirations). Data gathered through this longitudinal AI approach illuminates how these change features progress over time as CTSA funded organizations successfully create the multiinstitutional infrastructures to connect laboratory discoveries with the diagnosis and treatment of human disease. C1 [Kusch, Jennifer D.] Med Coll Wisconsin, Clin & Translat Sci Inst Southeast Wisconsin, Milwaukee, WI 53226 USA. [Nelson, David A.; Simpson, Deborah] Med Coll Wisconsin, Milwaukee, WI 53226 USA. [Simpson, Deborah] Aurora Hlth Care, Milwaukee, WI USA. [Gerrits, Ronald] Milwaukee Sch Engn, Milwaukee, WI USA. [Glass, Laurie] Univ Wisconsin, Milwaukee, WI 53201 USA. C3 Medical College of Wisconsin; Medical College of Wisconsin; Milwaukee School Engineering; University of Wisconsin System; University of Wisconsin Milwaukee RP Kusch, JD (corresponding author), Med Coll Wisconsin, Clin & Translat Sci Inst Southeast Wisconsin, Milwaukee, WI 53226 USA. EM jkusch@mcw.edu RI Nelson, David A/A-8306-2008 FU National Center for Advancing Translational Sciences, National Institutes of Health [8UL1TR000055] FX This publication was supported by the National Center for Advancing Translational Sciences, National Institutes of Health, through Grant Number 8UL1TR000055. Its Contents are solely the responsibility of the authors and do not necessarily represent the official views of the NIH. CR Bolman L.G., 2008, Reframing organizations, artistry, choice and leadership, VFourth Bushe G.R., 2005, J APPL BEHAV SCI, V41, P161, DOI [10.1177/0021886304270337, DOI 10.1177/0021886304270337] Preskill H., 2006, REFRAMING EVALUATION Zerhouni E, 2003, SCIENCE, V302, P63, DOI 10.1126/science.1091867 Zerhouni EA, 2005, NEW ENGL J MED, V353, P1621, DOI 10.1056/NEJMsb053723 Zerhouni EA, 2005, JAMA-J AM MED ASSOC, V294, P1352, DOI 10.1001/jama.294.11.1352 NR 6 TC 1 Z9 1 U1 0 U2 11 PU WILEY PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1752-8054 EI 1752-8062 J9 CTS-CLIN TRANSL SCI JI CTS-Clin. Transl. Sci. PD AUG PY 2013 VL 6 IS 4 BP 314 EP 316 DI 10.1111/cts.12027 PG 3 WC Medicine, Research & Experimental WE Science Citation Index Expanded (SCI-EXPANDED) SC Research & Experimental Medicine GA 196GR UT WOS:000322762300013 PM 23919368 OA Green Published, Green Accepted, hybrid DA 2024-09-05 ER PT C AU Hou, JB AF Hou, Jinbiao BE Luo, Q Wang, T TI Research on Design of an Automatic Evaluation System of Search Engine SO 2009 ETP INTERNATIONAL CONFERENCE ON FUTURE COMPUTER AND COMMUNICATION (FCC 2009) LA English DT Proceedings Paper CT 1st International Conference on Future Computer and Communication (FCC 2009) CY JUN 06-07, 2009 CL Wuhan, PEOPLES R CHINA DE search engine; evaluation system; recall rate; accuracy rate AB At present, the search engine is getting more and more important. The frequency of use is getting higher and higher. In order to help users to choose a highly effective search engine, C# is used as a development tool. It researches and implements an automatic evaluation system of search engine which is accurate, highly effective, highly automatic, safe. The structure of the system is simple. It has four modules. Its functions are powerful. It can implement evaluation to search engines on the web. It has the good promotion and application value. C1 Dezhou Univ, Dept Comp Sci & Technol, Dezhou, Peoples R China. C3 Dezhou University RP Hou, JB (corresponding author), Dezhou Univ, Dept Comp Sci & Technol, Dezhou, Peoples R China. EM houjinb@126.com CR LI CL, 2006, ASP NET SQL SERVER D, P63 LIBERTY J, 2001, PROGRAMMING C, P86 LIU GQ, 2006, DESIGN RES TOPIC SPE, P8 Liu Y, 2007, CYTOKINE, V39, P25, DOI 10.1016/j.cyto.2007.07.096 MEN FC, 2008, MODERN INFORM, P21 QIU JL, 2007, VISUAL C NET PROGRAM, P121 WANG JC, 2001, J COMPUTER RES DEV, P187 ZHANG X, 2004, MICROW OPT TECHN LET, P142 NR 8 TC 3 Z9 3 U1 0 U2 0 PU IEEE COMPUTER SOC PI LOS ALAMITOS PA 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1264 USA BN 978-0-7695-3676-7 PY 2009 BP 16 EP 18 DI 10.1109/FCC.2009.11 PG 3 WC Computer Science, Hardware & Architecture; Engineering, Electrical & Electronic; Telecommunications WE Conference Proceedings Citation Index - Science (CPCI-S) SC Computer Science; Engineering; Telecommunications GA BVF72 UT WOS:000291396200004 DA 2024-09-05 ER PT J AU Li, XX Bai, Y Kang, YF AF Li, Xixi Bai, Yun Kang, Yanfei TI Exploring the social influence of the Kaggle virtual community on the M5 competition SO INTERNATIONAL JOURNAL OF FORECASTING LA English DT Article DE Forecasting competition; Virtual community; Social influence; Topic modeling; Social network analysis; M5 ID LEADERSHIP; ROLES AB One of the most significant differences of M5 over previous forecasting competitions is that it was held on Kaggle, an online platform for data scientists and machine learning practitioners. Kaggle provides a gathering place, or virtual community, for web users who are interested in the M5 competition. Users can share code, models, features, and loss functions through online notebooks and discussion forums. Here, we study the social influence of this virtual community on user behavior in the M5 competition. We first research the content of the M5 virtual community by topic modeling and trend analysis. Further, we perform social media analysis to identify the potential relationship network of the virtual community. We study the roles and characteristics of some key participants who promoted the diffusion of information within the M5 virtual community. Overall, this study provides in-depth insights into the mechanism of the virtual community's influence on the participants and has potential implications for future online competitions.(c) 2021 International Institute of Forecasters. Published by Elsevier B.V. All rights reserved. C1 [Li, Xixi] Univ Manchester, Dept Math, Manchester, England. [Bai, Yun; Kang, Yanfei] Beihang Univ, Sch Econ & Management, Beijing, Peoples R China. C3 University of Manchester; Beihang University RP Kang, YF (corresponding author), Beihang Univ, Sch Econ & Management, Beijing, Peoples R China. EM xixi.li@manchester.ac.uk; baiyun12138@buaa.edu.cn; yanfeikang@buaa.edu.cn RI Kang, Yanfei/ITT-3438-2023 OI Kang, Yanfei/0000-0001-8769-6650; Bai, Yun/0000-0003-4237-7589; Li, Xixi/0000-0001-5846-3460 FU National Natural Science Foundation of China; National Key Re-search and Development Program; [72171011]; [72021001]; [2019YFB1404600] FX Acknowledgments The authors are grateful to the editors and two anony-mous reviewers for their helpful comments that improved the content of the paper. Yanfei Kang is supported by the National Natural Science Foundation of China (No. 72171011 and No. 72021001) and the National Key Re-search and Development Program (No. 2019YFB1404600) . This research was supported by the high-performance computing (HPC) resources at Beihang University. CR Ågerfalk PJ, 2013, EUR J INFORM SYST, V22, P251, DOI 10.1057/ejis.2013.6 Aletras N, 2013, P 10 INT C COMP SEM, P13, DOI [10.1145/2537052, DOI 10.1145/2537052] [Anonymous], 2006, P 39 ANN HAW INT C S [Anonymous], 1989, Sociological Methodology, DOI DOI 10.2307/270949 Bai Y., 2020, J PHYS C SERIES Benamar L, 2017, J COMPUT-MEDIAT COMM, V22, P337, DOI 10.1111/jcc4.12195 Blei D.M., 2006, P 23 INT C MACH LEAR, DOI [DOI 10.1145/1143844.1143859, 10.1145/1143844.1143859] Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993 Chau M, 2012, MIS QUART, V36, P1189 Cialdini R.B., 1998, Social Influence, Social Norms, Conformity and Compliance, VVolume 2, P151 Creswell J. W., 2018, Designing and conducting mixed methods research, V3rd Disney A., 2020, SOCIAL NETWORK ANAL Ellison N.B., 2013, SOCIALITY SOCIAL NET, DOI [10.1093/oxfordhb/9780199589074.001.0001, DOI 10.1093/OXFORDHB/9780199589074.013.0008] Fournier S, 2009, HARVARD BUS REV, V87, P105 Gleave E., 2009, Proceedings of the 42nd Hawaii International Conference on System Science, P1 Golbeck J., 2013, Analyzing the social web, DOI DOI 10.1016/B978-0-12-405531-5.00003-1 Golbeck J., 2015, Syngress Hoppe B, 2010, LEADERSHIP QUART, V21, P600, DOI 10.1016/j.leaqua.2010.06.004 Hovland Carl I, 1953, Communication and persuasion Huberty M, 2015, INT J FORECASTING, V31, P992, DOI 10.1016/j.ijforecast.2014.08.005 Huffaker D, 2010, HUM COMMUN RES, V36, P593, DOI 10.1111/j.1468-2958.2010.01390.x Jacobi C, 2016, DIGIT JOURNAL, V4, P89, DOI 10.1080/21670811.2015.1093271 Ke GL, 2017, ADV NEUR IN, V30 Kim YoungJi., 2015, Annals of the International Communication Association, V39, P163, DOI DOI 10.1080/23808985.2015.11679175 Kwok N, 2018, LEADERSHIP QUART, V29, P648, DOI 10.1016/j.leaqua.2018.04.003 Makridakis, 2020, INT J FORECASTING, DOI [10.1016/j.ijforecast.2021.10.009, DOI 10.1016/J.IJFORECAST.2021.10.009] Makridakis S, 2000, INT J FORECASTING, V16, P451, DOI 10.1016/S0169-2070(00)00057-1 MAKRIDAKIS S, 1982, J FORECASTING, V1, P111, DOI 10.1002/for.3980010202 Makridakis S, 2020, INT J FORECASTING, V36, P54, DOI 10.1016/j.ijforecast.2019.04.014 Newman D., 2010, P HUM LANG TECHN ANN, P100 O'Callaghan D, 2015, EXPERT SYST APPL, V42, P5645, DOI 10.1016/j.eswa.2015.02.055 Page L., 1999, Technical Report Stanford InfoLab Pavlinek M, 2017, EXPERT SYST APPL, V80, P83, DOI 10.1016/j.eswa.2017.03.020 Pfeil U, 2011, INT J HUM-COMPUT INT, V27, P323, DOI 10.1080/10447318.2011.540490 SCOTT J, 1988, SOCIOLOGY, V22, P109, DOI 10.1177/0038038588022001007 Turner TC, 2005, J COMPUT-MEDIAT COMM, V10 Venkatesh V, 2013, MIS QUART, V37, P21 Walther JB, 2012, J COMPUT-MEDIAT COMM, V18, P2, DOI 10.1111/j.1083-6101.2012.01592.x Xixi L., 2017, 2017 INT C SERVICE S, P1 Xue J, 2020, PLOS ONE, V15, DOI 10.1371/journal.pone.0239441 Ye LS, 2021, INT J INFORM MANAGE, V56, DOI 10.1016/j.ijinfomgt.2020.102248 Zhang H, 2015, KDD'15: PROCEEDINGS OF THE 21ST ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, P1425, DOI 10.1145/2783258.2783293 NR 42 TC 1 Z9 1 U1 9 U2 16 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS SN 0169-2070 EI 1872-8200 J9 INT J FORECASTING JI Int. J. Forecast. PD OCT-DEC PY 2022 VL 38 IS 4 SI SI BP 1507 EP 1518 DI 10.1016/j.ijforecast.2021.10.001 EA OCT 2022 PG 12 WC Economics; Management WE Social Science Citation Index (SSCI) SC Business & Economics GA 5U0AG UT WOS:000876216700022 OA Green Submitted DA 2024-09-05 ER PT J AU Arguello, J Callan, J Shulman, S AF Arguello, Jaime Callan, Jamie Shulman, Stuart TI Recognizing Citations in Public Comments SO JOURNAL OF INFORMATION TECHNOLOGY & POLITICS LA English DT Article DE Citation analysis; public comments; e-rulemaking; text mining; information extraction; machine learning ID ALGORITHM AB Notice and comment rulemaking is central to how U.S. federal agencies craft new regulation. E-rulemaking, the process of soliciting and considering public comments that are submitted electronically, poses a challenge for agencies. The large volume of comments received makes it difficult to distill and address the most substantive concerns of the public. This work attempts to alleviate this burden by applying existing machine learning techniques to the problem of recognizing citation sentences. A citation in this context is defined as a statement in which the author of the public comment references an external source of factual information that is associated with a specific person or organization. The problem is formulated as a binary classification problem: Is a specific person or organization mentioned in a sentence being referenced as an external source of information? We show that our definition of a citation is reproducible by human judges and that citations can be detected using machine learning techniques with some success. Casting this as a machine learning problem requires selecting an appropriate representation of the sentence. Several feature sets are evaluated individually and in combination. Superior results are obtained by combining feature sets. Syntactic features, which characterize the structure of the sentence rather than its content, significantly improve accuracy when combined with other features, but not when used in isolation. Although prediction error rate is adequate, coverage could be improved. An error analysis enumerates short-term and long-term challenges that must be overcome to improve recall. C1 [Arguello, Jaime] Carnegie Mellon Univ, Language Technol Inst, Pittsburgh, PA 15213 USA. [Callan, Jamie] Carnegie Mellon Univ, Sch Comp Sci, Language Technol Inst, Grad Dept, Pittsburgh, PA 15213 USA. [Shulman, Stuart] Univ Pittsburgh, Sch Informat Sci, Sara Fine Inst, Pittsburgh, PA 15260 USA. [Shulman, Stuart] Univ Pittsburgh, Ctr Social & Urban Res, Qualitat Data Anal Program, Pittsburgh, PA 15260 USA. [Shulman, Stuart] DARPA, Natl Inst Hlth, Natl Sci Fdn, Arlington, VA 22203 USA. C3 Carnegie Mellon University; Carnegie Mellon University; Pennsylvania Commonwealth System of Higher Education (PCSHE); University of Pittsburgh; Pennsylvania Commonwealth System of Higher Education (PCSHE); University of Pittsburgh; National Science Foundation (NSF); National Institutes of Health (NIH) - USA; United States Department of Defense; Defense Advanced Research Projects Agency (DARPA) RP Arguello, J (corresponding author), Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. EM jaime@cs.cmu.edu RI Shulman, Stuart/JQW-7521-2023 CR [Anonymous], 2007, HUMAN LANGUAGE TECHN [Anonymous], 1968, Public Knowledge: An Essay Concerning the Social Dimension of Science Bikel DM, 1999, MACH LEARN, V34, P211, DOI 10.1023/A:1007558221122 Blum A., 1998, Proceedings of the Eleventh Annual Conference on Computational Learning Theory, P92, DOI 10.1145/279943.279962 Bunescu Razvan C, 2005, P C HUM LANG TECHN E Carletta J, 1996, COMPUT LINGUIST, V22, P249 ERKAN G, 2007, P 2007 JOINT C EMP M, P228 Green R., 2004, ACL 2004, P375 Joachims T., 1998, MAKING LARGE SCALE S Kim Y., 2006, P CODATA COMM DAT SC Pasanek B., LIT LINGUISTIC COMPU PORTER MF, 1980, PROGRAM-AUTOM LIBR, V14, P130, DOI 10.1108/eb046814 Powley B., 2007, P RIAO C I D RILOFF E, 1993, PROCEEDINGS OF THE ELEVENTH NATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE, P811 Ruppenhofer J., 2006, FRAMENET 2 EXTENDED Stevenson M, 2005, Proceedings of the 43rd Annual Meeting of the Association for Computational Linguistics (ACL'05), P379, DOI DOI 10.3115/1219840.1219887 Teufel S., 2006, P 7 SIGDIAL WORKSHOP, P80, DOI [10.3115/1654595.1654612, DOI 10.3115/1654595.1654612] Teufel S., 2006, P C EMP METH NAT LAN, DOI 10.3115/1610075.1610091 Vapnik Vladimir N., 1995, The nature of statistical learning theory Wiebe J, 2004, COMPUT LINGUIST, V30, P277, DOI 10.1162/0891201041850885 WOLPERT DH, 1990, LAUR903460 COMPL SYS Yang H., 2006, Proceedings of the Twenty-Ninth Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, P421, DOI 10.1145/1148170.1148243 Yangarber R, 2003, 41ST ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, PROCEEDINGS OF THE CONFERENCE, P343 NR 23 TC 2 Z9 3 U1 1 U2 5 PU ROUTLEDGE JOURNALS, TAYLOR & FRANCIS LTD PI ABINGDON PA 2-4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND SN 1933-1681 EI 1933-169X J9 J INF TECHNOL POLITI JI J. Inf. Technol. Politics PY 2008 VL 5 IS 1 SI SI BP 49 EP 71 DI 10.1080/19331680802153683 PG 23 WC Communication; Political Science WE Emerging Sources Citation Index (ESCI) SC Communication; Government & Law GA V92JK UT WOS:000212989900005 DA 2024-09-05 ER PT J AU Fitzgerald, L Wong, P Hannon, J Tokerud, MS Lyons, J AF Fitzgerald, Les Wong, Pauline Hannon, John Tokerud, Marte Solberg Lyons, Judith TI Curriculum learning designs: Teaching health assessment skills for advanced nursing practitioners through sustainable flexible learning SO NURSE EDUCATION TODAY LA English DT Article DE Action research; Clinical practice; Curriculum development; Nursing; Online learning; Health assessment AB Background: Innovative curriculum designs are vital for effective learning in contemporary nursing education where traditional modes of delivery are not adequate to meet the learning needs of postgraduate students. This instance of postgraduate teaching in a distributed learning environment offered the opportunity to design a flexible learning model for teaching advanced clinical skills. Aim: To present a sustainable model for flexible learning that enables specialist nurses to gain postgraduate qualifications without on-campus class attendance by teaching and assessing clinical health care skills in an authentic workplace setting. Methods: An action research methodology was used to gather evidence and report on the process of curriculum development of a core unit, Comprehensive Health Assessment (CHA), within 13 different postgraduate speciality courses. Qualitative data was collected from 27 teaching academics, 21 clinical specialist staff, and 7 hospital managers via interviews, focus groups and journal reflections. Evaluations from the initial iteration of CHA from 36 students were obtained. Data was analyzed to develop and evaluate the curriculum design of CHA. Results: The key factors indicated by participants in the curriculum design process were coordination and structuring of teaching and assessment; integration of content development; working with technologies, balancing specialities and core knowledge; and managing induction and expectations. Conclusions: A set of recommendations emerged as a result of the action research process. These included: a constructive alignment approach to curriculum design; the production of a facilitator's guide that specifies expectations and unit information for academic and clinical education staff; an agreed template for content authors; and the inclusion of synchronous communication for real-time online tutoring. The highlight of the project was that it built curriculum design capabilities of clinicians and students which can sustain this alternative model of online learning. (C) 2012 Elsevier Ltd. All rights reserved. C1 [Fitzgerald, Les; Hannon, John; Lyons, Judith] La Trobe Univ, La Trobe Rural Hlth Sch, Bundoora, Vic 3086, Australia. [Wong, Pauline] La Trobe Univ, Alfred Hlth Clin Sch, Bundoora, Vic 3086, Australia. [Tokerud, Marte Solberg] La Trobe Univ, Sch Nursing & Midwifery, Bundoora, Vic 3086, Australia. C3 La Trobe University; La Trobe University; La Trobe University RP Fitzgerald, L (corresponding author), La Trobe Univ, La Trobe Rural Hlth Sch, Bundoora, Vic 3086, Australia. EM L.Fitzgerald@latrobe.edu.au; P.Wong@latrobe.edu.au; J.Hannon@latrobe.edu.au; M.SolbergTokerud@latrobe.edu.au; Judith.Lyons@latrobe.edu.au RI Wong, Pauline/X-2488-2019; Hannon, John/AAZ-4722-2021; Wong, Pauline/JCE-4682-2023; Wong, Pauline/AAQ-1526-2020 OI Lyons, Judith/0000-0002-3184-173X; Hannon, John/0000-0002-1790-0860; Wong, Pauline/0000-0002-6396-0338 CR [Anonymous], 2004, THEORY PRACTICE ONLI [Anonymous], INT J NURSING ED SCH Biggs J., 2003, Aligning Teaching for Constructing Learning Carr W., 2003, BECOMING CRITICAL ED Decker S, 2008, J CONTIN EDUC NURS, V39, P74, DOI 10.3928/00220124-20080201-06 Fraser DM, 2000, MIDWIFERY, V16, P213, DOI 10.1054/midw.2000.0223 Jeffries P., 2007, SIMHLATION NURSING E Jeffries PR, 2005, NURS EDUC PERSPECT, V26, P96 Koeckeritz Jane, 2002, Nurse Educ, V27, P283, DOI 10.1097/00006223-200211000-00010 Lyons J, 1998, Contemp Nurse, V7, P98 Milton J., 2003, Higher Education Research Development, V22, P297 Stringer E.T., 2007, ACTION RES-LONDON Tallent-Runnels MK, 2006, REV EDUC RES, V76, P93, DOI 10.3102/00346543076001093 Wozniak H, 2009, AUSTRALAS J EDUC TEC, V25, P221 NR 14 TC 8 Z9 11 U1 0 U2 33 PU CHURCHILL LIVINGSTONE PI EDINBURGH PA JOURNAL PRODUCTION DEPT, ROBERT STEVENSON HOUSE, 1-3 BAXTERS PLACE, LEITH WALK, EDINBURGH EH1 3AF, MIDLOTHIAN, SCOTLAND SN 0260-6917 EI 1532-2793 J9 NURS EDUC TODAY JI Nurse Educ. Today PD OCT PY 2013 VL 33 IS 10 BP 1230 EP 1236 DI 10.1016/j.nedt.2012.05.029 PG 7 WC Education, Scientific Disciplines; Nursing WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Education & Educational Research; Nursing GA 244SP UT WOS:000326410800025 PM 22749437 DA 2024-09-05 ER PT J AU Liang, ZT Mao, J Lu, K Ba, ZC Li, G AF Liang, Zhentao Mao, Jin Lu, Kun Ba, Zhichao Li, Gang TI Combining deep neural network and bibliometric indicator for emerging research topic prediction SO INFORMATION PROCESSING & MANAGEMENT LA English DT Article DE Emerging topic prediction; Time series forecasting; Neural network; Bibliometric indicator ID SCIENTIFIC LITERATURES; IDENTIFICATION; EVOLUTION; IMPACT; TECHNOLOGIES; EMERGENCE; SCIENCE; TRENDS AB Predicting emerging research topics is important to researchers and policymakers. In this study, we propose a two-step solution to the problem of emerging topic prediction. The first step forecasts the future popularity score, a novel indicator reflecting the impact and growth, of candidate topics in a time-series manner. The second step selects novel topics from the candidates predicted to be popular in the first step. Terms with domain characteristics are used as candidate topics. Deep neural networks, specifically LSTM and NNAR, are applied with nine features of topics to predict popularity score. We evaluated the models and five baselines on two datasets from two perspectives, i.e., the ability to (1) predict the correct indicator value and (2) reconstruct the optimal ranking order. Two types of training strategies were compared, including a global strategy that trains a model with all topics and two local strategies that train separate models with different groups of topics. Our results show that LSTM and NNAR outperform other models in predicting the value of popularity score measured by MAE and RMSE, while LightGBM is a competitive baseline in ranking the topics in terms of NDCG@20. The performance difference of global and local strategies is not significant. Emerging topics predicted by our approach are compared with those by other methods. A qualitative assessment on nominated emerging topics suggests topics nominated by machine learning methods are more alike than those by the rulebased model. Some important topics are nominated according to a preliminary literature analysis. This study exploited the strengths of both machine learning and bibliometric indicator approaches for emerging topic prediction. Deep neural networks are applied where objective optimization target can be defined and measured. Bibliometric indicator offers an efficient way to select novel topics from candidates. The hybrid approach shows promise in considering various characteristics of emerging topics when making predictions. C1 [Liang, Zhentao; Mao, Jin; Li, Gang] Wuhan Univ, Ctr Studies Informat Resources, Bayi Rd 299, Wuhan 430072, Peoples R China. [Liang, Zhentao; Mao, Jin] Wuhan Univ, Sch Informat Management, Bayi Rd 299, Wuhan 430072, Peoples R China. [Lu, Kun] Univ Oklahoma, Sch Lib & Informat Studies, Norman, OK 73019 USA. [Ba, Zhichao] Nanjing Univ Sci & Technol, Dept Informat Management, Xiaolingwei St 200, Nanjing 210094, Peoples R China. C3 Wuhan University; Wuhan University; University of Oklahoma System; University of Oklahoma - Norman; Nanjing University of Science & Technology RP Mao, J (corresponding author), Wuhan Univ, Ctr Studies Informat Resources, Bayi Rd 299, Wuhan 430072, Peoples R China.; Mao, J (corresponding author), Wuhan Univ, Sch Informat Management, Bayi Rd 299, Wuhan 430072, Peoples R China. EM maojin@whu.edu.cn RI Ba, Zhichao/IAR-0606-2023; Liang, Zhentao/AAP-7103-2020; Lu, Kun/G-2416-2015 OI Liang, Zhentao/0000-0003-2927-3523; Lu, Kun/0000-0001-5614-7042; ba, zhi chao/0000-0001-7005-8265 FU National Natural Science Foundation of China (NSFC) [71804135, 71921002, 71790612]; world class discipline project of the Ministry of Education "Library, Information, and Data Science" in China FX This study was funded by the National Natural Science Foundation of China (NSFC) Grant Nos. 71804135, 71921002, and 71790612. This research was also supported by the world class discipline project of the Ministry of Education "Library, Information, and Data Science" in China. In addition, we are very grateful to the anonymous reviewers for their helpful comments. CR Aboagye-Sarfo P, 2015, J BIOMED INFORM, V57, P62, DOI 10.1016/j.jbi.2015.06.022 Abrishami A, 2019, J INFORMETR, V13, P485, DOI 10.1016/j.joi.2019.02.011 Altuntas S, 2020, SCIENTOMETRICS, V124, P1157, DOI 10.1007/s11192-020-03535-0 Asooja K, 2016, LREC 2016 - TENTH INTERNATIONAL CONFERENCE ON LANGUAGE RESOURCES AND EVALUATION, P417 Batlle D, 2020, J AM SOC NEPHROL, V31, P1380, DOI 10.1681/ASN.2020040419 Ben Taieb S, 2012, EXPERT SYST APPL, V39, P7067, DOI 10.1016/j.eswa.2012.01.039 Boyack KW, 2014, J ENG TECHNOL MANAGE, V32, P147, DOI 10.1016/j.jengtecman.2013.07.001 Chen BT, 2017, J INFORMETR, V11, P1175, DOI 10.1016/j.joi.2017.10.003 Chen CY, 2018, AAAI CONF ARTIF INTE, P2111 Cho TS, 2011, SCIENTOMETRICS, V89, P795, DOI 10.1007/s11192-011-0457-z Cozzens S, 2010, TECHNOL ANAL STRATEG, V22, P361, DOI 10.1080/09537321003647396 Dietz L., 2007, ICML, P233, DOI DOI 10.1145/1273496.1273526 Fang YC, 2020, RADIOLOGY, V296, pE115, DOI 10.1148/radiol.2020200432 Glänzel W, 2012, SCIENTOMETRICS, V91, P399, DOI 10.1007/s11192-011-0591-7 Gök A, 2016, J ASSOC INF SCI TECH, V67, P715, DOI 10.1002/asi.23406 Goldstein J., 1999, Emergence, V1, P49, DOI DOI 10.1207/S15327000EM01014 Guo HN, 2011, SCIENTOMETRICS, V89, P421, DOI 10.1007/s11192-011-0433-7 Hill JT, 2014, DEV DYNAM, V243, P1632, DOI 10.1002/dvdy.24183 Hochreiter S, 1997, NEURAL COMPUT, V9, P1735, DOI [10.1162/neco.1997.9.1.1, 10.1007/978-3-642-24797-2] Hu K, 2019, INFORM PROCESS MANAG, V56, P1185, DOI 10.1016/j.ipm.2019.02.014 Hua H, 2019, J HEMATOL ONCOL, V12, DOI 10.1186/s13045-019-0754-1 Huang Y, 2019, NAT BIOTECHNOL, V37, P1107, DOI 10.1038/s41587-019-0275-z Jeong Y, 2019, TECHNOL FORECAST SOC, V146, P655, DOI 10.1016/j.techfore.2018.05.010 Ke GL, 2017, ADV NEUR IN, V30 Khatibi A, 2020, INFORM PROCESS MANAG, V57, DOI 10.1016/j.ipm.2019.102057 Kim M, 2018, J ASSOC INF SCI TECH, V69, P329, DOI 10.1002/asi.23960 Kleinberg J, 2003, DATA MIN KNOWL DISC, V7, P373, DOI 10.1023/A:1024940629314 Krenn M, 2020, P NATL ACAD SCI USA, V117, P1910, DOI 10.1073/pnas.1914370116 Larivière V, 2015, J ASSOC INF SCI TECH, V66, P1323, DOI 10.1002/asi.23266 Lee C, 2018, TECHNOL FORECAST SOC, V127, P291, DOI 10.1016/j.techfore.2017.10.002 LESHNO M, 1993, NEURAL NETWORKS, V6, P861, DOI 10.1016/S0893-6080(05)80131-5 Machuca TN, 2015, AM J TRANSPLANT, V15, P993, DOI 10.1111/ajt.13124 Mariani MS, 2019, TECHNOL FORECAST SOC, V146, P644, DOI 10.1016/j.techfore.2018.01.036 McKeown K, 2016, J ASSOC INF SCI TECH, V67, P2684, DOI 10.1002/asi.23612 Meyers A. L., 2018, Frontiers in Research Metrics and Analytics, V3, P19, DOI [10.3389/frma.2018.00019, DOI 10.3389/FRMA.2018.00019] Muhlroth C, 2022, IEEE T ENG MANAGE, V69, P493, DOI 10.1109/TEM.2020.2989214 Porter AL, 2019, TECHNOL FORECAST SOC, V146, P628, DOI 10.1016/j.techfore.2018.04.016 PRICE DJD, 1965, SCIENCE, V149, P510 Rotolo D, 2015, RES POLICY, V44, P1827, DOI 10.1016/j.respol.2015.06.006 Savarimuthu S, 2020, J CARDIAC SURG, V35, P1298, DOI 10.1111/jocs.14635 SMALL H, 1974, SCI STUD, V4, P17, DOI 10.1177/030631277400400102 Small H, 2014, RES POLICY, V43, P1450, DOI 10.1016/j.respol.2014.02.005 Sutskever I, 2014, ADV NEUR IN, V27 Taskaya-Temizel T, 2005, NEURAL NETWORKS, V18, P781, DOI 10.1016/j.neunet.2005.06.003 Tu YN, 2012, INFORM PROCESS MANAG, V48, P303, DOI 10.1016/j.ipm.2011.07.006 Wacker D, 2013, SCIENCE, V340, P615, DOI 10.1126/science.1232808 Wang J, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0127298 Wang Q, 2018, J ASSOC INF SCI TECH, V69, P290, DOI 10.1002/asi.23930 Winnink JJ, 2019, TECHNOL FORECAST SOC, V146, P673, DOI 10.1016/j.techfore.2018.05.018 Xu J, 2018, SCIENTOMETRICS, V117, P973, DOI 10.1007/s11192-018-2897-1 Xu S, 2019, J INFORMETR, V13, DOI 10.1016/j.joi.2019.100983 Xu S, 2020, SCIENTOMETRICS, V122, P607, DOI 10.1007/s11192-019-03288-5 Yan EJ, 2018, SCIENTOMETRICS, V115, P369, DOI 10.1007/s11192-017-2583-8 NR 53 TC 34 Z9 39 U1 20 U2 220 PU ELSEVIER SCI LTD PI London PA 125 London Wall, London, ENGLAND SN 0306-4573 EI 1873-5371 J9 INFORM PROCESS MANAG JI Inf. Process. Manage. PD SEP PY 2021 VL 58 IS 5 AR 102611 DI 10.1016/j.ipm.2021.102611 EA APR 2021 PG 18 WC Computer Science, Information Systems; Information Science & Library Science WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Computer Science; Information Science & Library Science GA TU6HG UT WOS:000681134700007 DA 2024-09-05 ER PT J AU Marrone, M Lemke, S Kolbe, LM AF Marrone, Mauricio Lemke, Sascha Kolbe, Lutz M. TI Entity linking systems for literature reviews SO SCIENTOMETRICS LA English DT Article DE Word-sense disambiguation; Entity annotation; Science mapping; Bibliometric methods; Systematic mapping; Systematic literature review; Named entity recognition ID SCIENCE; MANAGEMENT; TOOL; KNOWLEDGE; LANGUAGE AB Computer-assisted methods and tools can help researchers automate the coding process of literature reviews and accelerate the literature review process. However, existing approaches for coding textual data do not account for lexical ambiguity; that is, instances in which individual words have multiple meanings. To counter this, we developed a method to conduct rapid and comprehensive analyses of diverse literature types. Our method uses entity linking and keyword analysis and is embedded into a literature review framework. Next, we apply the framework to review the literature on digital disruption and digital transformation. We outline the method's advantages and its applicability to any research topic. C1 [Marrone, Mauricio] Macquarie Univ, Dept Accounting & Corp Governance, Sydney, NSW 2109, Australia. [Lemke, Sascha; Kolbe, Lutz M.] Univ Goettingen, Chair Informat Syst, Gottingen, Germany. C3 Macquarie University; University of Gottingen RP Marrone, M (corresponding author), Macquarie Univ, Dept Accounting & Corp Governance, Sydney, NSW 2109, Australia. EM mauricio.marrone@mq.edu.au OI Marrone, Mauricio/0000-0003-3896-6049 FU CAUL FX Open Access funding enabled and organized by CAUL and its Member Institutions. CR Alghamdi R, 2015, INT J ADV COMPUT SC, V6, P147 Anthony L, 2005, 2005 IEEE INTERNATIONAL PROFESSIONAL COMMUNICATION CONFERENCE (IPCC), P729 Antons D, 2019, J MANAGE, V45, P3035, DOI 10.1177/0149206318774619 Aria M, 2017, J INFORMETR, V11, P959, DOI 10.1016/j.joi.2017.08.007 Bal AS, 2010, J PUBLIC AFF, V10, P313, DOI 10.1002/pa.366 Bandara W, 2015, COMMUN ASSOC INF SYS, V37, P154 Banks GC, 2016, ACAD MANAGE J, V59, P2205, DOI 10.5465/amj.2015.0728 Barry CA, 1998, SOCIOL RES ONLINE, V3 Baskerville RL, 2009, MIS QUART, V33, P647 BENBASAT I, 1987, MIS QUART, V11, P369, DOI 10.2307/248684 Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993 Boell SK, 2014, COMMUN ASSOC INF SYS, V34, P257 Bonaccorsi A, 2021, SCIENTOMETRICS, V126, P1745, DOI 10.1007/s11192-020-03803-z Braun V., 2006, QUAL RES PSYCHOL, V3, P77, DOI [10.1191/1478088706qp063oa, DOI 10.1191/1478088706QP063OA] Brendel A. B., 2020, WHAT LIT REV A SYNTH Cai CW, 2019, ABACUS, V55, P709, DOI 10.1111/abac.12179 Callon Michel., 1986, Mapping the Dynamics of Science and Technology, P163 Campbell C, 2011, J ADVERTISING, V40, P87, DOI 10.2753/JOA0091-3367400106 Cifariello P, 2019, INFORM SYST, V82, P1, DOI 10.1016/j.is.2018.12.003 Cornolti Marco., 2013, Proceedings of the 22nd international conference on World Wide Web, P249, DOI [10.1145/2488388.2488411, DOI 10.1145/2488388.2488411] Crichton G, 2017, BMC BIOINFORMATICS, V18, DOI 10.1186/s12859-017-1776-8 Cuzzola J, 2015, EXPERT SYST APPL, V42, P6864, DOI 10.1016/j.eswa.2015.04.054 Dunning T., 1993, Computational Linguistics, V19, P61 Dyson RG, 2004, EUR J OPER RES, V152, P631, DOI 10.1016/S0377-2217(03)00062-6 Fortunato S, 2018, SCIENCE, V359, DOI 10.1126/science.aao0185 Gallon J. R., 1991, NITROGEN FIXING ORGA Garrett-Jones S, 2010, J TECHNOL TRANSFER, V35, P527, DOI 10.1007/s10961-009-9139-x George G, 2016, ACAD MANAGE J, V59, P1493, DOI 10.5465/amj.2016.4005 Giorgi JM, 2018, BIOINFORMATICS, V34, P4087, DOI 10.1093/bioinformatics/bty449 González-Albo B, 2011, J INFORMETR, V5, P369, DOI 10.1016/j.joi.2011.01.011 Granato D, 2018, TRENDS FOOD SCI TECH, V72, P83, DOI 10.1016/j.tifs.2017.12.006 Hannigan TR, 2019, ACAD MANAG ANN, V13, P586, DOI 10.5465/annals.2017.0099 Hasibi Faegheh, 2016, Advances in Information Retrieval. 38th European Conference on IR Research, ECIR 2016. Proceedings; LNCS 9626, P436, DOI 10.1007/978-3-319-30671-1_32 Hobolt S. B., 2005, WHY LABOUR DIDNT LIS Hoon C, 2013, ORGAN RES METHODS, V16, P522, DOI 10.1177/1094428113484969 Indulska M, 2012, EUR J INFORM SYST, V21, P49, DOI 10.1057/ejis.2011.37 Kemp M, 2009, NATURE, V459, P32, DOI 10.1038/459032a Kitchenham B., 2007, EBSE Technical Report, Keele University and Durham University Joint Report, Report EBSE 2007-001 Kolev KD, 2019, J MANAGE STUD, V56, P1138, DOI 10.1111/joms.12444 Kuckartz U., 2019, Analyzing qualitative data with MAXQDA: Text, audio, and video Larsen KR, 2016, MIS QUART, V40, P529, DOI 10.25300/MISQ/2016/40.3.01 Levac D, 2010, IMPLEMENT SCI, V5, DOI 10.1186/1748-5908-5-69 Lewis RB, 2007, FIELD METHOD, V19, P87, DOI 10.1177/1525822X06296589 Li J, 2017, J LOSS PREVENT PROC, V49, P103, DOI 10.1016/j.jlp.2016.06.003 Linnenluecke MK, 2020, AUST J MANAGE, V45, P175, DOI 10.1177/0312896219877678 Maclaran P., 2002, Marketing Intelligence Planning, V20, P319 Marrone M., 2016, Proceedings of the 37th International Conference on Information Systems (ICIS 2016), P1 Marrone M, 2020, SCIENTOMETRICS, V122, P357, DOI 10.1007/s11192-019-03274-x Marrone M, 2017, COMMUN ASSOC INF SYS, V41, P517, DOI 10.17705/1CAIS.04123 McInnes L, 2020, Arxiv, DOI [arXiv:1802.03426, DOI 10.48550/ARXIV.1802.03426, 10.21105/joss.00861] Meuser JD, 2016, J MANAGE, V42, P1374, DOI 10.1177/0149206316647099 Molla A., 2016, ARXIV PREPRINT ARXIV Nakagawa S, 2019, TRENDS ECOL EVOL, V34, P224, DOI 10.1016/j.tree.2018.11.007 Navigli R, 2009, ACM COMPUT SURV, V41, DOI 10.1145/1459352.1459355 Papadimitriou C. H., 1998, Proceedings of the Seventeenth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems. PODS 1998, P159, DOI 10.1145/275487.275505 Paré G, 2015, INFORM MANAGE-AMSTER, V52, P183, DOI 10.1016/j.im.2014.08.008 Patriotta G, 2020, J MANAGE STUD, V57, P1272, DOI 10.1111/joms.12608 Paulus Trena., 2013, DIGITAL TOOLS QUALIT Piccinno F., 2014, 37 ANN INT ACM SIGIR Pollack J., 2006, International Journal of Project Management, V24, P175, DOI 10.1016/j.ijproman.2005.10.005 Preiss J, 2016, BMC MED INFORM DECIS, V16, DOI 10.1186/s12911-016-0296-1 Rayson P., 2004, 7 INT C STAT AN TEXT Schryen G, 2015, COMMUN ASSOC INF SYS, V37, P286 Scott M, 2006, STUD CORPUS LINGUIST, V22, P1 Shen W, 2015, IEEE T KNOWL DATA EN, V27, P443, DOI 10.1109/TKDE.2014.2327028 Smith A.E., 2003, Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology: Demonstrations, V4, P23 Smith AE, 2006, BEHAV RES METHODS, V38, P262, DOI 10.3758/BF03192778 Smith C., 2001, QUAL SOCIOL, V24, P401, DOI DOI 10.1023/A:1010643025038 Snow C.P., 1961, 2 CULTURES SCI REVOL Snyder H, 2019, J BUS RES, V104, P333, DOI 10.1016/j.jbusres.2019.07.039 Sotiriadou P, 2014, ANN LEIS RES, V17, P218, DOI 10.1080/11745398.2014.902292 Sridhar Vivek Kumar Rangarajan, 2015, P 1 WORKSH VECT SPAC, P192, DOI 10.3115/v1/w15-1526 Templier M, 2015, COMMUN ASSOC INF SYS, V37, P112 Templier M, 2018, EUR J INFORM SYST, V27, P503, DOI 10.1080/0960085X.2017.1398880 Tienari J, 2003, J MANAGE INQUIRY, V12, P377, DOI 10.1177/1056492603258975 Vaara E, 2002, ORGANIZATION, V9, P275, DOI 10.1177/1350508402009002912 van der Maaten L, 2008, J MACH LEARN RES, V9, P2579 van Eck NJ, 2017, SCIENTOMETRICS, V111, P1053, DOI 10.1007/s11192-017-2300-7 Vesti H, 2017, ISPIM INNOVATION SUM Weber R.P., 1990, Basic Content Analysis, DOI 10.4135/9781412983488 Westgate MJ, 2019, RES SYNTH METHODS, V10, P606, DOI 10.1002/jrsm.1374 WHITTAKER J, 1989, SOC STUD SCI, V19, P473, DOI 10.1177/030631289019003004 Wickham M, 2005, QUAL REP, V10, P687 Wu GQ, 2018, IEEE ACCESS, V6, P6220, DOI 10.1109/ACCESS.2017.2787787 Xu ZS, 2021, TECHNOL FORECAST SOC, V170, DOI 10.1016/j.techfore.2021.120896 Zhai X, 2015, SCIENTOMETRICS, V105, P509, DOI 10.1007/s11192-015-1700-9 Zupic I, 2015, ORGAN RES METHODS, V18, P429, DOI 10.1177/1094428114562629 NR 87 TC 3 Z9 3 U1 3 U2 26 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0138-9130 EI 1588-2861 J9 SCIENTOMETRICS JI Scientometrics PD JUL PY 2022 VL 127 IS 7 BP 3857 EP 3878 DI 10.1007/s11192-022-04423-5 EA JUN 2022 PG 22 WC Computer Science, Interdisciplinary Applications; Information Science & Library Science WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Computer Science; Information Science & Library Science GA 3L2ZJ UT WOS:000817847200005 OA hybrid DA 2024-09-05 ER PT C AU Gabureanu, S Istrate, O AF Gabureanu, Simona Istrate, Olimpius BE Soare, E TI The effects of using intelligent tutoring systems for language learning - findings of a research evaluation report SO 5TH INTERNATIONAL CONFERENCE EDU-WORLD 2012 - EDUCATION FACING CONTEMPORARY WORLD ISSUES SE Procedia Social and Behavioral Sciences LA English DT Proceedings Paper CT 5th International Conference EDU-WORLD - Education Facing Contemporary World Issues CY NOV 29-DEC 01, 2012 CL Pitesti, ROMANIA DE language learning; intelligent tutoring system; online learning platform AB The present paper aims to present the pilot project "ICE3- Integrating CALL in early education environments" - developed in Romania, Spain and Germany and the impact of the ICE3 platform usage - a state-of-the-art online platform for learning English or German as a foreign language - on students learning, on teaching, on development of educational situations using ICT. The evaluation research developed within the project comprised data from a sample of 513 students which have participated in the instructional activities performed within the project. The article is describing the outcomes of the evaluation: (1) the effects of using an innovative didactic pathway on students' learning motivation, (2) learners preferences for different language learning activities such as individual study and communication, (3) increasing the learners' preference for practicing different language skills such as understanding a written text, writing a text, (4) increase in students' digital competences used for learning, (5) the degree to which students better understand the content after using intelligent feed-back provided on the AutoTutor exercises. (c) 2013 The Authors. Published by Elsevier Ltd. Selection and/or peer-review under responsibility of the University of Pitesti, Romania C1 [Gabureanu, Simona] Univ Politehn Bucuresti, Bucharest 060042, Romania. [Istrate, Olimpius] Univ Bucharest, Bucharest 050107, Romania. C3 National University of Science & Technology POLITEHNICA Bucharest; University of Bucharest RP Gabureanu, S (corresponding author), Univ Politehn Bucuresti, Bucharest 060042, Romania. RI Gabureanu, Simona/AAY-2267-2020; Gabureanu, Simona N./IQS-7425-2023; Istrate, Olimpius/E-8553-2011 OI Istrate, Olimpius/0000-0002-1940-6284 CR [Anonymous], ICVL P 6 INT C VIRT Badia T, 2011, P E SOC IADIS INT C, P1354 Estrada Mariona, 2009, P E SOC IADIS INT C, VII, P95 NR 3 TC 0 Z9 0 U1 0 U2 17 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA SARA BURGERHARTSTRAAT 25, PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1877-0428 J9 PROCD SOC BEHV PY 2013 VL 76 BP 351 EP 355 DI 10.1016/j.sbspro.2013.04.126 PG 5 WC Education & Educational Research WE Conference Proceedings Citation Index - Social Science & Humanities (CPCI-SSH) SC Education & Educational Research GA BFH50 UT WOS:000319885300064 OA gold DA 2024-09-05 ER PT J AU Wang, XB Dai, ZY Li, H Yang, JF AF Wang, Xibin Dai, Zhenyu Li, Hui Yang, Jianfeng TI Research on Hybrid Collaborative Filtering Recommendation Algorithm Based on the Time Effect and Sentiment Analysis SO COMPLEXITY LA English DT Article AB In this study, we focus on the problem of information expiration when using the traditional collaborative filtering algorithm and propose a new collaborative filtering algorithm by integrating the time factor (ITWCF). This algorithm considers information influence attenuation over time, introduces an information retention period based on the information half-value period, and proposes a time-weighted function, which is applied to the nearest neighbor selection and score prediction to assign different time weights to the scores. In addition, to further improve the quality of the nearest neighbor selection and alleviate the problem of data sparsity, a method of calculating users' sentiment tendency by analysis of user review features is proposed to mine users' attitudes about the reviewed items, which expands the score matrix. The time factor and sentiment tendency are then integrated into the K-means clustering algorithm to select the nearest neighbor. A hybrid collaborative filtering model (TWCHR) based on the improved K-means clustering algorithm is then proposed, by combining item-based and user-based collaborative filtering. Finally, the experimental results show that the proposed algorithm can address the time effect and sentiment analysis in recommendations and improve the predictive performance of the model. C1 [Wang, Xibin; Yang, Jianfeng] Guizhou Inst Technol, Sch Data Sci, Guiyang 550003, Guizhou, Peoples R China. [Wang, Xibin; Yang, Jianfeng] Special Key Lab Artificial Intelligence & Intelli, Guiyang 550003, Guizhou, Peoples R China. [Dai, Zhenyu; Li, Hui] Guizhou Univ, Coll Comp Sci & Technol, Guiyang 550025, Guizhou, Peoples R China. C3 Guizhou Institute of Technology; Guizhou University RP Li, H (corresponding author), Guizhou Univ, Coll Comp Sci & Technol, Guiyang 550025, Guizhou, Peoples R China. EM cse.huili@gzu.edu.cn RI Yang, Jianfeng/AAC-5521-2021 OI Yang, Jianfeng/0000-0003-3486-9604; Wang, Xibin/0000-0003-1831-9872 FU Technology Foundation of Guizhou Province [QianKeHeJiChu[2020]1Y269]; New Academic Seedling Cultivation and Exploration Innovation Project [QianKeHe Platform Talents[2017]5789-21]; Program for Innovative Talent of Guizhou Province [QianCaiJiao[2018]190]; National Natural Science Foundation of China [71901078, 71964009]; High-Level Talent Project of Guizhou Institute of Technology [XJGC20190929]; Special Key Laboratory of Artificial Intelligence and Intelligent Control of Guizhou Province [KY[2020]001] FX This work was partially supported by the Technology Foundation of Guizhou Province (Grant no. QianKeHeJiChu[2020]1Y269), New Academic Seedling Cultivation and Exploration Innovation Project (Grant no. QianKeHe Platform Talents[2017]5789-21), Program for Innovative Talent of Guizhou Province (Grant no. QianCaiJiao[2018]190), National Natural Science Foundation of China (Grant nos. 71901078 and 71964009), High-Level Talent Project of Guizhou Institute of Technology (Grant no. XJGC20190929), and Special Key Laboratory of Artificial Intelligence and Intelligent Control of Guizhou Province (Grant no. KY[2020]001). CR [Anonymous], 2015, INT J UAND E SERVICE, DOI [10.14257/ijunesst.2015.8.4.23, DOI 10.14257/IJUNESST.2015.8.4.23] Chao C., 2014, J COMPUTER COMMUNICA, V2, P59, DOI [10.4236/jcc.2014.214006, DOI 10.4236/JCC.2014.214006] Chen J, 2014, PROCEEDINGS OF THE 2014 ACM CONFERENCE ON MULTIMEDIA (MM'14), P921, DOI 10.1145/2647868.2654954 Chen L, 2015, USER MODEL USER-ADAP, V25, P99, DOI 10.1007/s11257-015-9155-5 Dehkordi Y., P IEEE 4 INT C BIG D Ding Y., P 14 ACM INT C INF K, P485 Dong Z, 2006, Hownet and the computation of meaning Du XY, 2019, ACM T INFORM SYST, V37, DOI 10.1145/3357154 Feng CJ, 2020, INFORM SCIENCES, V521, P365, DOI 10.1016/j.ins.2020.02.052 Ganu G, 2012, INFORM SYST, V38, P1, DOI 10.1016/j.is.2012.03.001 Guo GB, 2016, IEEE T KNOWL DATA EN, V28, P1607, DOI 10.1109/TKDE.2016.2528249 Latha R, 2019, PHYSICA A, V533, DOI 10.1016/j.physa.2019.122052 Liu J, 2009, PHYSICA A, V388, P3643, DOI 10.1016/j.physa.2009.05.021 McAuley J., P 7 ACM C REC SYST A, P165 Qiu L, 2016, KNOWL-BASED SYST, V110, P233, DOI 10.1016/j.knosys.2016.07.033 Song H., 2011, P 6 INT C COMP SCI C Wang J., P 2017 IEEE INT C CO [邢春晓 Xing Chunxiao], 2007, [计算机研究与发展, Journal of Computer Research and Development], V44, P296, DOI 10.1360/crad20070216 Yao L, 2019, AAAI CONF ARTIF INTE, P7370 Zhu H, 2018, NEURAL COMPUT, V30, P3281, DOI 10.1162/neco_a_01140 NR 20 TC 7 Z9 7 U1 3 U2 24 PU WILEY-HINDAWI PI LONDON PA ADAM HOUSE, 3RD FL, 1 FITZROY SQ, LONDON, WIT 5HE, ENGLAND SN 1076-2787 EI 1099-0526 J9 COMPLEXITY JI Complexity PD MAR 8 PY 2021 VL 2021 AR 6635202 DI 10.1155/2021/6635202 PG 11 WC Mathematics, Interdisciplinary Applications; Multidisciplinary Sciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Mathematics; Science & Technology - Other Topics GA RB1UK UT WOS:000631901200006 OA gold, Green Published DA 2024-09-05 ER PT J AU Li, X Chen, HC Zhang, Z Li, JX Nunamaker, JF AF Li, Xin Chen, Hsinchun Zhang, Zhu Li, Jiexun Nunamaker, Jay F., Jr. TI Managing Knowledge in Light of Its Evolution Process: An Empirical Study on Citation Network-Based Patent Classification SO JOURNAL OF MANAGEMENT INFORMATION SYSTEMS LA English DT Article DE citation analysis; classification; kernel-based method; knowledge management; machine learning; patent management ID ECONOMICS; WEB AB Knowledge management is essential to modem organizations. Due to the information overload problem, managers are facing critical challenges in utilizing the data in organizations. Although several automated tools have been applied, previous applications often deem knowledge items independent and use solely contents, which may limit their analysis abilities. This study focuses on the process of knowledge evolution and proposes to incorporate this perspective into knowledge management tasks. Using a patent classification task as an example, we represent knowledge evolution processes with patent citations and introduce a labeled citation graph kernel to classify patents under a kernel-based machine learning framework. In the experimental study, our proposed approach shows more than 30 percent improvement in classification accuracy compared to traditional content-based methods. The approach can potentially affect the existing patent management procedures. Moreover, this research ends strong support to considering knowledge evolution processes in other knowledge management tasks. C1 [Li, Xin] City Univ Hong Kong, Dept Informat Syst, Hong Kong, Hong Kong, Peoples R China. [Zhang, Zhu] Univ Arizona, Dept MIS, Tucson, AZ 85721 USA. [Li, Jiexun] Drexel Univ, Coll Informat Sci & Technol, Philadelphia, PA USA. [Nunamaker, Jay F., Jr.] Univ Arizona, Ctr Management Informat, Tucson, AZ 85721 USA. C3 City University of Hong Kong; University of Arizona; Drexel University; University of Arizona RP Li, X (corresponding author), City Univ Hong Kong, Dept Informat Syst, Hong Kong, Hong Kong, Peoples R China. RI Li, Xin/K-8045-2015 OI Li, Xin/0000-0002-0041-3134 FU NSF [IIS-0311652, DMI-0533749] FX This research is supported by the NSF: IIS-0311652 "Intelligent Patent Analysis for Nanoscale Science and Engineering" and DMI-0533749 "NanoMap: Mapping Nanotechnology Development." The authors thank the USPTO for making their data available for research purposes. CR Almeida P, 1999, MANAGE SCI, V45, P905, DOI 10.1287/mnsc.45.7.905 Amsler R., 1972, Application of Citation-based Automatic Classification [Anonymous], 2003, SIGKDD [Anonymous], 1996, Bow: A toolkit for statistical language modeling, text retrieval, classification and clustering [Anonymous], P SIGIR [Anonymous], 2003, ACM SIGIR FOR 2003, DOI DOI 10.1145/945546.945547 Bieber M, 2002, J MANAGE INFORM SYST, V18, P11, DOI 10.1080/07421222.2002.11045707 Borgwardt KM, 2005, BIOINFORMATICS, V21, pI47, DOI 10.1093/bioinformatics/bti1007 Broder A, 2000, COMPUT NETW, V33, P309, DOI 10.1016/S1389-1286(00)00083-9 Calado P, 2006, J AM SOC INF SCI TEC, V57, P208, DOI 10.1002/asi.20266 Chakrabarti S., 1998, SIGMOD Record, V27, P307, DOI 10.1145/276305.276332 Chang CC, 2011, ACM T INTEL SYST TEC, V2, DOI 10.1145/1961189.1961199 Craven M, 2001, MACH LEARN, V43, P97, DOI 10.1023/A:1007676901476 Cristianini Nello, 2000, An introduction to support Vector Machines: and other kernel-based learning methods CRISTO M, 2003, P INT S STRING PROC, P43 Dunford R., 2000, Journal of Knowledge Management, V4, P295, DOI 10.1108/13673270010379849 Fall CJ, 2004, EXPERT SYST APPL, V26, P269, DOI 10.1016/S0957-4174(03)00141-6 Fleming L, 2001, MANAGE SCI, V47, P117, DOI 10.1287/mnsc.47.1.117.10671 Gallini NT, 2002, J ECON PERSPECT, V16, P131, DOI 10.1257/0895330027292 Ghani R., 2001, Proceedings of the 18th International Conference on Machine Learning, P178 Ginsparg P, 2004, P NATL ACAD SCI USA, V101, P5236, DOI 10.1073/pnas.0308253100 Haussler D., 1999, Technical report Huang MH, 2007, J MANAGE INFORM SYST, V24, P79, DOI 10.2753/MIS0742-1222240303 Huang Z, 2003, J NANOPART RES, V5, P333, DOI 10.1023/A:1025556800994 HULL D, 2001, WORLD PATENT INFORM, V21, P265 Hunt R.M., 2001, Federal Reserve Bank of Philadelphia Business Review, VQ1, P5 Joachims T., 2001, Proceedings of 18th International Conference on Machine Learning, P250 Kashima Hisashi, 2003, P 20 INT C MACH LEAR, P321 KESSLER MM, 1963, AM DOC, V14, P10, DOI 10.1002/asi.5090140103 King J.L., 2003, Patents in the Knowledge-Based Economy, P54 Koller D., 2002, em Proceedings of the Eighteenth conference on Uncertainty in artificial intelligence, P485 Koster CHA, 2003, LECT NOTES COMPUT SC, V2890, P546 Krier M., 2002, World Patent Information, V24, P187, DOI 10.1016/S0172-2190(02)00026-1 Lanckriet GRG, 2004, BIOINFORMATICS, V20, P2626, DOI 10.1093/bioinformatics/bth294 Larkey L.S., 1999, 4th ACM Conference on Digital Libraries, P79 Le Si Quang, 2004, Genome Inform, V15, P82 Li X, 2007, J NANOPART RES, V9, P337, DOI 10.1007/s11051-006-9194-2 LOH HT, 2006, WORLD PAT INF, V28, P6 NARIN F, 1994, SCIENTOMETRICS, V30, P147, DOI 10.1007/BF02017219 Nerkar A, 2003, MANAGE SCI, V49, P211, DOI 10.1287/mnsc.49.2.211.12747 Nidumolu SR, 2001, J MANAGE INFORM SYST, V18, P115, DOI 10.1080/07421222.2001.11045675 Redner S, 1998, EUR PHYS J B, V4, P131, DOI 10.1007/s100510050359 Richter G, 2005, WORLD PAT INF, V27, P13, DOI 10.1016/j.wpi.2004.08.001 Scherer FM, 2002, ACAD MED, V77, P1348, DOI 10.1097/00001888-200212001-00006 Sebastiani F, 2002, ACM COMPUT SURV, V34, P1, DOI 10.1145/505282.505283 SINCLAIR G, 2004, P 2004 INT JOINT WOR, P69 Singh J, 2005, MANAGE SCI, V51, P756, DOI 10.1287/mnsc.1040.0349 SMALL H, 1973, J AM SOC INFORM SCI, V24, P265, DOI 10.1002/asi.4630240406 Smith SR, 2002, J PSYCHOPATHOL BEHAV, V24, P269, DOI 10.1023/A:1020731117022 Spangler S, 2003, J MANAGE INFORM SYST, V19, P191 Stenmark D, 2000, J MANAGE INFORM SYST, V17, P9 Tan Y, 2004, IEEE T KNOWL DATA EN, V16, P385, DOI 10.1109/TKDE.2004.1269664 Teichert T, 2002, IEMC-2002: IEEE INTERNATIONAL ENGINEERING MANAGEMENT CONFERENCE, VOLS I AND II, PROCEEDINGS, P596, DOI 10.1109/IEMC.2002.1038503 *US PAT TRAD OFF, 2005, US PAT STAT CHART CA YANG YK, 2002, RRD ENDOCRINOL 1, V3, P219 Yiming Yang, 1999, Information Retrieval, V1, P69, DOI 10.1023/A:1009982220290 NR 56 TC 19 Z9 21 U1 7 U2 106 PU ROUTLEDGE JOURNALS, TAYLOR & FRANCIS LTD PI ABINGDON PA 2-4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND SN 0742-1222 EI 1557-928X J9 J MANAGE INFORM SYST JI J. Manage. Inform. Syst. PD SUM PY 2009 VL 26 IS 1 BP 129 EP 153 DI 10.2753/MIS0742-1222260106 PG 25 WC Computer Science, Information Systems; Information Science & Library Science; Management WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Computer Science; Information Science & Library Science; Business & Economics GA 477LL UT WOS:000268520500007 DA 2024-09-05 ER PT J AU Willis, M Duckworth, P Coulter, A Meyer, ET Osborne, M AF Willis, Matthew Duckworth, Paul Coulter, Angela Meyer, Eric T. Osborne, Michael TI The Future of Health Care: Protocol for Measuring the Potential of Task Automation Grounded in the National Health Service Primary Care System SO JMIR RESEARCH PROTOCOLS LA English DT Article DE qualitative research; supervised machine learning; automation; interdisciplinary research; task performance and analysis ID TIME; JOBS AB Background: Recent advances in technology have reopened an old debate on which sectors will be most affected by automation. This debate is ill served by the current lack of detailed data on the exact capabilities of new machines and how they are influencing work. Although recent debates about the future of jobs have focused on whether they are at risk of automation, our research focuses on a more fine-grained and transparent method to model task automation and specifically focus on the domain of primary health care. Objective: This protocol describes a new wave of intelligent automation, focusing on the specific pressures faced by primary care within the National Health Service (NHS) in England. These pressures include staff shortages, increased service demand, and reduced budgets. A critical part of the problem we propose to address is a formal framework for measuring automation, which is lacking in the literature. The health care domain offers a further challenge in measuring automation because of a general lack of detailed, health care-specific occupation and task observational data to provide good insights on this misunderstood topic. Methods: This project utilizes a multimethod research design comprising two phases: a qualitative observational phase and a quantitative data analysis phase; each phase addresses one of the two project aims. Our first aim is to address the lack of task data by collecting high-quality, detailed task-specific data from UK primary health care practices. This phase employs ethnography, observation, interviews, document collection, and focus groups. The second aim is to propose a formal machine learning approach for probabilistic inference of task- and occupation-level automation to gain valuable insights. Sensitivity analysis is then used to present the occupational attributes that increase/decrease automatability most, which is vital for establishing effective training and staffing policy. Results: Our detailed fieldwork includes observing and documenting 16 unique occupations and performing over 130 tasks across six primary care centers. Preliminary results on the current state of automation and the potential for further automation in primary care are discussed. Our initial findings are that tasks are often shared amongst staff and can include convoluted workflows that often vary between practices. The single most used technology in primary health care is the desktop computer. In addition, we have conducted a large-scale survey of over 156 machine learning and robotics experts to assess what tasks are susceptible to automation, given the state-of-the-art technology available today. Further results and detailed analysis will be published toward the end of the project in early 2019. Conclusions: We believe our analysis will identify many tasks currently performed manually within primary care that can be automated using currently available technology. Given the proper implementation of such automating technologies, we expect considerable staff resources to be saved, alleviating some pressures on the NHS primary care staff. C1 [Willis, Matthew; Meyer, Eric T.] Univ Oxford, Oxford Internet Inst, 1 St Giles, Oxford OX1 3JS, England. [Duckworth, Paul; Osborne, Michael] Univ Oxford, Dept Engn Sci, Machine Learning Res Grp, Oxford, England. [Coulter, Angela] Univ Oxford, Nuffield Dept Populat Hlth, Hlth Serv Res Unit, Oxford, England. [Meyer, Eric T.] Univ Texas Austin, Sch Informat, Austin, TX 78712 USA. C3 University of Oxford; University of Oxford; University of Oxford; University of Texas System; University of Texas Austin RP Willis, M (corresponding author), Univ Oxford, Oxford Internet Inst, 1 St Giles, Oxford OX1 3JS, England. EM mwillis@syr.edu RI Coulter, Angela/N-6998-2019; Meyer, Eric T./C-1029-2011 OI Coulter, Angela/0000-0002-6308-8375; Frey, Carl Benedikt/0000-0002-0034-6293; Osborne, Michael/0000-0003-1959-012X FU Health Foundation [7559]; Oxford Martin Programme on Technology and Employment; Rhodes Trust FX We thank The Health Foundation (award #7559), the Oxford Martin Programme on Technology and Employment, and the Rhodes Trust. CR Alaa AM, 2018, IEEE T BIO-MED ENG, V65, P207, DOI 10.1109/TBME.2017.2698602 Anand V, 2012, PEDIATRICS, V129, pE1275, DOI 10.1542/peds.2011-2875 [Anonymous], 2017, A future that works: automation, employment, and productivity [Anonymous], 2016, PRESSURE WHAT COMMON Arntz M., 2016, OECD Social, Employment and Migration Working Papers, V189, DOI [10.1787/5jlz9h56dvq7-en, DOI 10.1787/5JLZ9H56DVQ7-EN] Autor DH, 2013, J LABOUR MARK RES, V46, P185, DOI 10.1007/s12651-013-0128-z Autor DH, 2013, AM ECON REV, V103, P1553, DOI 10.1257/aer.103.5.1553 Baird B., 2016, KINGS FUND Bakhshi H., FUTURE SKILLS EMPLOY Bruegel Bowles J., 2014, COMPUTERISATION EURO Chu W, 2005, J MACH LEARN RES, V6, P1019 Clifton L, 2013, IEEE T BIO-MED ENG, V60, P193, DOI 10.1109/TBME.2012.2208459 Dahl TS, 2014, ROBOTICS, V3, P1, DOI 10.3390/robotics3010001 Frey CB, 2017, TECHNOL FORECAST SOC, V114, P254, DOI 10.1016/j.techfore.2016.08.019 Goddard K, 2011, STUD HEALTH TECHNOL, V164, P17, DOI 10.3233/978-1-60750-709-3-17 Grace K., 2017, When will AI exceed human performance? Evidence from AI experts Greenes RA., 2007, Clinical Decision Support: The Road Ahead, V1 Grewal D, 2018, J MARKET EDUC, V40, P85, DOI 10.1177/0273475318755838 Handel MJ, 2016, J LABOUR MARK RES, V49, P157, DOI 10.1007/s12651-016-0199-8 Jemma I, 2015, BRAWN BRAINS IMPACT Liaw A, 2002, CLASSIFICATION REGRE Moran WP, 2012, SOUTH MED J, V105, P18, DOI 10.1097/SMJ.0b013e31823d22a8 Novek J, 2000, SOC SCI MED, V51, P491, DOI 10.1016/S0277-9536(99)00488-8 O'Sullivan D, 2014, CLIN MED, V14, P338, DOI 10.7861/clinmedicine.14-4-338 Onwuegbuzie Anthony J., 2009, International Journal of Multiple Research Approaches, V3, P114, DOI [10.5172/mra.3.2.114, DOI 10.5172/MRA.3.2.114] Pooler M, 2017, FINANCIAL TIMES Pope C, 2013, BMC HEALTH SERV RES, V13, DOI 10.1186/1472-6963-13-111 Rasmussen CE, 2005, ADAPT COMPUT MACH LE, P1 TAKAHASHI T, 2012, PROC 15TH INT CONF A, P61 Weiner JP, 2013, HEALTH AFFAIR, V32, P1998, DOI 10.1377/hlthaff.2013.0680 NR 30 TC 6 Z9 6 U1 0 U2 6 PU JMIR PUBLICATIONS, INC PI TORONTO PA 59 WINNERS CIRCLE, TORONTO, ON M4L 3Y7, CANADA SN 1929-0748 J9 JMIR RES PROTOC JI JMIR RES. Protoc. PD APR PY 2019 VL 8 IS 4 AR e11232 DI 10.2196/11232 PG 9 WC Health Care Sciences & Services; Public, Environmental & Occupational Health WE Emerging Sources Citation Index (ESCI) SC Health Care Sciences & Services; Public, Environmental & Occupational Health GA HW2EW UT WOS:000466496800019 PM 30964437 OA Green Published, Green Submitted, gold DA 2024-09-05 ER PT J AU Peng, Z Zhang, H Tang, HT Feng, Y Yin, WM AF Peng, Zhao Zhang, Huan Tang, Hongtao Feng, Yue Yin, Weiming TI Research on flexible job-shop scheduling problem in green sustainable manufacturing based on learning effect SO JOURNAL OF INTELLIGENT MANUFACTURING LA English DT Article DE Green sustainable development; Man– machine dual resource constraint mechanism; FJSP; Learning effect; HDMICA; Improved simulated annealing ID SEARCH ALGORITHM; MACHINE; OPTIMIZATION; NOISE; TIME AB As one of the manufacturing industries with high energy consumption and high pollution, sand casting is facing major challenges in green manufacturing. In order to balance production and green sustainable development, this paper puts forward man-machine dual resource constraint mechanism. In addition, a multi-objective flexible job shop scheduling problem model constrained by job transportation time and learning effect is constructed, and the goal is to minimize processing time energy consumption and noise. Subsequently, a hybrid discrete multi-objective imperial competition algorithm (HDMICA) is developed to solve the model. The global search mechanism based on the HDMICA improves two aspects: a new initialization method to improve the quality of the initial population, and the empire selection method based on Pareto non-dominated solution to balance the empire forces. Then, the improved simulated annealing algorithm is embedded in imperial competition algorithm (ICA), which overcomes the premature convergence problem of ICA. Therefore, four neighborhood structures are designed to help the algorithm jump out of the local optimal solution. Finally, an example is used to verify the feasibility of the proposed algorithm. By comparing with the original ICA and other four algorithms, the effectiveness of the proposed algorithm in the quality of the first frontier solution is verified. C1 [Peng, Zhao; Zhang, Huan; Tang, Hongtao; Feng, Yue; Yin, Weiming] Wuhan Univ Technol, Hubei Key Lab Digital Mfg, Sch Mech & Elect Engn, Wuhan 430070, Peoples R China. C3 Wuhan University of Technology RP Tang, HT (corresponding author), Wuhan Univ Technol, Hubei Key Lab Digital Mfg, Sch Mech & Elect Engn, Wuhan 430070, Peoples R China. EM pz@whut.edu.cn; 2932532969@qq.com; tanghongtaozc@163.com; 2662133749@qq.com; 528566385@qq.com RI 殷, 伟铭/HJY-3493-2023 OI 殷, 伟铭/0009-0002-9074-1699 CR [Anonymous], 2011, APPL SOFT COMPUT, DOI DOI 10.1016/j.asoc.2010.05.029 Atashpaz-Gargari E, 2007, IEEE C EVOL COMPUTAT, P4661, DOI 10.1109/cec.2007.4425083 Azzouz A, 2017, IEEE C EVOL COMPUTAT, P1827, DOI 10.1109/CEC.2017.7969523 Behnamian J, 2011, APPL MATH MODEL, V35, P1107, DOI 10.1016/j.apm.2010.07.057 Bewoor LA, 2018, PROCEDIA MANUF, V22, P57, DOI 10.1016/j.promfg.2018.03.010 Biskup D, 1999, EUR J OPER RES, V115, P173, DOI 10.1016/S0377-2217(98)00246-X Boutsinas B, 2013, EUR J OPER RES, V230, P563, DOI 10.1016/j.ejor.2013.05.007 Cao S., A novel constrained multi-objective imperialist competitive algorithm Information and Control, Patent No. 20194804437451 Coca G, 2019, J CLEAN PROD, V209, P146, DOI 10.1016/j.jclepro.2018.10.193 Deb K, 2000, LECT NOTES COMPUTER, P849, DOI [10.1109/4235.996017, DOI 10.1109/4235.996017, DOI 10.1007/3-540-45356-3_83] Gen M, 2014, J INTELL MANUF, V25, P849, DOI 10.1007/s10845-013-0804-4 Gong GL, 2018, J CLEAN PROD, V174, P560, DOI 10.1016/j.jclepro.2017.10.188 Hajiaghaei-Keshteli M, 2018, COMPUT IND ENG, V123, P378, DOI 10.1016/j.cie.2018.07.009 Hans E, 2011, INT J PROD RES, V49, P2481, DOI 10.1080/00207543.2010.532913 Hosseini S, 2019, J INTELL MANUF, V30, P207, DOI 10.1007/s10845-016-1241-y Karimi S, 2017, APPL MATH MODEL, V41, P667, DOI 10.1016/j.apm.2016.09.022 Lei Deming, 2018, Journal of Huazhong University of Science and Technology (Natural Science Edition), V46, P104, DOI 10.13245/j.hust.180820 Li MQ, 2017, IEEE COMPUT INTELL M, V12, P88, DOI 10.1109/MCI.2017.2742869 Liu QQ, 2021, CURR PSYCHOL, V40, P5134, DOI 10.1007/s12144-019-00464-x Lu C, 2018, J CLEAN PROD, V196, P773, DOI 10.1016/j.jclepro.2018.06.137 Nowicki E, 1996, MANAGE SCI, V42, P797, DOI 10.1287/mnsc.42.6.797 Olayinka OS, 2009, IND HEALTH, V47, P123, DOI 10.2486/indhealth.47.123 Pan, 2015, J CHANGSHA U SCI TEC, V30, P103 Shivasankaran N, 2015, INT J COMPUT INT SYS, V8, P455, DOI 10.1080/18756891.2015.1017383 Tandon N, 2000, SADHANA-ACAD P ENG S, V25, P331, DOI 10.1007/BF02703549 Tang HT, 2019, APPL SOFT COMPUT, V78, P176, DOI 10.1016/j.asoc.2019.02.011 Wan JF, 2016, IEEE ACCESS, V4, P8977, DOI 10.1109/ACCESS.2016.2631152 Wang B, 2018, APPL SOFT COMPUT, V62, P259, DOI 10.1016/j.asoc.2017.10.020 Wang SY, 2016, COMPUT NETW, V101, P158, DOI 10.1016/j.comnet.2015.12.017 Wirojanagud P, 2007, INT J PROD RES, V45, P525, DOI 10.1080/00207540600792242 Wu MT, 2019, J INTELL MANUF, V30, P1111, DOI 10.1007/s10845-017-1315-5 Wu XL, 2018, J CLEAN PROD, V172, P3249, DOI 10.1016/j.jclepro.2017.10.342 [徐云琴 Xu Yunqin], 2019, [计算机应用研究, Application Research of Computers], V36, P3033 Yin LJ, 2017, SUSTAIN COMPUT-INFOR, V13, P15, DOI 10.1016/j.suscom.2016.11.002 Yu J, 2016, RES LEARNING CURVE B Zhang J, 2014, RES FLEXIBLE JOB SHO Zhang J, 2019, J INTELL MANUF, V30, P1809, DOI 10.1007/s10845-017-1350-2 Zhao CL, 2017, COMPUT IND ENG, V112, P447, DOI 10.1016/j.cie.2017.08.010 Zhou Ji, 2015, China Mechanical Engineering, V26, P2273, DOI 10.3969/j.issn.1004-132X.2015.17.001 NR 39 TC 41 Z9 43 U1 14 U2 227 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0956-5515 EI 1572-8145 J9 J INTELL MANUF JI J. Intell. Manuf. PD AUG PY 2022 VL 33 IS 6 BP 1725 EP 1746 DI 10.1007/s10845-020-01713-8 EA MAR 2021 PG 22 WC Computer Science, Artificial Intelligence; Engineering, Manufacturing WE Science Citation Index Expanded (SCI-EXPANDED) SC Computer Science; Engineering GA 2O2EH UT WOS:000631323400001 DA 2024-09-05 ER PT C AU Wei, ZJ Han, BY Zhou, EX AF Wei, Zhongji Han, Baiyang Zhou, Enxian GP IOP TI Research on Text Emotion Analysis and Product Performance based on NLP and VAR Model SO 2020 ASIA CONFERENCE ON GEOLOGICAL RESEARCH AND ENVIRONMENTAL TECHNOLOGY SE IOP Conference Series-Earth and Environmental Science LA English DT Proceedings Paper CT Asia Conference on Geological Research and Environmental Technology (GRET) CY OCT 10-11, 2020 CL ELECTR NETWORK AB Customers' evaluations, in terms of text or ratings, are important sources of information for online shops to decide products and marketing strategies. In this paper, we discuss methods to conclude and predict merchants' performance and characteristics of customers' behavior of target products based on Amazon dataset. First, we design a Natural Language Processing (NLP) model, Amazon-BERT, to predict text to rating based on transfer learning. We improve the model accuracy by 20% compared to the original pre-trained BERT, and we use the predicted rating in our following steps of modeling. Second, we use PCA to extract 5 principle components, which estimate review's popularity, product's reputation and so on. And then, for pacifier, we find that vector auto regression (VAR) model fits better, we apply it to the regression and doing a Granger causality test. Finally, we looked at the impulse response and variance decomposition. All 3 factors included do have a small impact. C1 [Wei, Zhongji; Han, Baiyang; Zhou, Enxian] Tsinghua Univ, Sch Econ & Management, Beijing 100084, Peoples R China. C3 Tsinghua University RP Wei, ZJ (corresponding author), Tsinghua Univ, Sch Econ & Management, Beijing 100084, Peoples R China. EM zhongjiwei@tsinghua.edu.cn CR Breitung J, 2005, STAT NEERL, V59, P414, DOI 10.1111/j.1467-9574.2005.00299.x Chen Q., 2014, Advanced econometrics and Stata applications, V2nd Devlin J., 2018, ARXIV Ding Mingzhou, 2016, QUANTITATIVE BIOL, P826 Kaiser H. F., ED PSYCHOL MEASUREME, V34, P111 Liu Xuetian, 2017, FEATURE ANAL DETECTI NR 6 TC 0 Z9 0 U1 0 U2 6 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 1755-1307 J9 IOP C SER EARTH ENV JI IOP Conf. Ser. Earth Envir. Sci. PY 2021 VL 632 AR 052077 DI 10.1088/1755-1315/632/5/052077 PG 7 WC Green & Sustainable Science & Technology; Energy & Fuels; Engineering, Civil; Engineering, Geological; Environmental Sciences WE Conference Proceedings Citation Index - Science (CPCI-S) SC Science & Technology - Other Topics; Energy & Fuels; Engineering; Environmental Sciences & Ecology GA BS1EX UT WOS:000688420702092 OA gold DA 2024-09-05 ER PT C AU Wahle, JP Ruas, T Mohammad, SM Gipp, B AF Wahle, Jan Philip Ruas, Terry Mohammad, Saif M. Gipp, Bela BA Mariani, J BF Mariani, J BE Calzolari, N Bechet, F Blache, P Choukri, K Cieri, C Declerck, T Goggi, S Isahara, H Maegaard, B Mazo, H Odijk, H Piperidis, S TI D3: A Massive Dataset of Scholarly Metadata for Analyzing the State of Computer Science Research SO LREC 2022: THIRTEEN INTERNATIONAL CONFERENCE ON LANGUAGE RESOURCES AND EVALUATION LA English DT Proceedings Paper CT 13th International Conference on Language Resources and Evaluation (LREC) CY JUN 20-25, 2022 CL Marseille, FRANCE DE Computer Science; Scientometrics; Research Trends; NLP; DBLP; AI AB DBLP is the largest open-access repository of scientific articles on computer science and provides metadata associated with publications, authors, and venues. We retrieved more than 6 million publications from DBLP and extracted pertinent metadata (e.g., abstracts, author affiliations, citations) from the publication texts to create the DBLP Discovery Dataset (D3). D3 can be used to identify trends in research activity, productivity, focus, bias, accessibility, and impact of computer science research. We present an initial analysis focused on the volume of computer science research (e.g., number of papers, authors, research activity), trends in topics of interest, and citation patterns. Our findings show that computer science is a growing research field (approximate to 15% annually), with an active and collaborative researcher community. While papers in recent years present more bibliographical entries in comparison to previous decades, the average number of citations has been declining. Investigating papers' abstracts reveals that recent topic trends are clearly reflected in D3. Finally, we list further applications of D3 and pose supplemental research questions. The D3 dataset, our findings, and source code are publicly available for research purposes. C1 [Wahle, Jan Philip; Ruas, Terry; Gipp, Bela] Univ Wuppertal, Wuppertal, Germany. [Mohammad, Saif M.] Natl Res Council Canada, Ottawa, ON, Canada. C3 University of Wuppertal; National Research Council Canada RP Wahle, JP (corresponding author), Univ Wuppertal, Wuppertal, Germany. EM wahle@uni-wuppertal.de; ruas@uni-wuppertal.de; saif.mohammad@nrc-cnrc.gc.ca; gipp@uni-wuppertal.de OI Lima Ruas, Terry/0000-0002-9440-780X FU DBLP, ACL Anthology, Semantic Scholar and teams FX This work would not be possible without the great resources offered by DBLP, ACL Anthology, Semantic Scholar and teams, to whom we are very thankful. We also thank Lennart K ull who helped us during the initial phase of the project. CR AALBERTS JJJ, 2019, FRONTIERS RES METRIC, V3 Devlin J, 2019, 2019 CONFERENCE OF THE NORTH AMERICAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS: HUMAN LANGUAGE TECHNOLOGIES (NAACL HLT 2019), VOL. 1, P4171 Dror R, 2018, PROCEEDINGS OF THE 56TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL), VOL 1, P1383 Lavergne T, 2010, ACL 2010: 48TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, P504 Lo K., 2020, Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, P4969, DOI [DOI 10.18653/V1/2020.ACL-MAIN.447, 10.18653/v1/2020.acl-main.447] Mohammad S. M., 2020, P 58 ANN M ASS COMPU, P7860, DOI [10.18653/v1/2020.acl-main.702, DOI 10.18653/V1/2020.ACL-MAIN.702] Mohammad SM, 2020, PROCEEDINGS OF THE 12TH INTERNATIONAL CONFERENCE ON LANGUAGE RESOURCES AND EVALUATION (LREC 2020), P868 Mohammad Saif M., 2020, P 58 ANN M ASS COMP, P5199 Parmar Monarch, 2020, Advances in Information Retrieval. 42nd European Conference on IR Research, ECIR 2020. Proceedings. Lecture Notes in Computer Science (LNCS 12036), P476, DOI 10.1007/978-3-030-45442-5_61 RADEV DR, 2009, P ACL WORKSH NAT LAN Schumann Anne-Kathrin, 2016, INNOVATION SUSTAINAB, P1 Sharma A., 2021, ARXIV210701198CS Vaswani A, 2017, ADV NEUR IN, V30 NR 13 TC 1 Z9 1 U1 0 U2 1 PU EUROPEAN LANGUAGE RESOURCES ASSOC-ELRA PI PARIS PA 55-57, RUE BRILLAT-SAVARIN, PARIS, 75013, FRANCE BN 979-10-95546-72-6 PY 2022 BP 2642 EP 2651 PG 10 WC Computer Science, Interdisciplinary Applications; Linguistics WE Conference Proceedings Citation Index - Science (CPCI-S); Conference Proceedings Citation Index - Social Science & Humanities (CPCI-SSH) SC Computer Science; Linguistics GA BU2ZO UT WOS:000889371702080 DA 2024-09-05 ER PT J AU Taheri, S Aliakbary, S AF Taheri, Soroush Aliakbary, Sadegh TI Research trend prediction in computer science publications: a deep neural network approach SO SCIENTOMETRICS LA English DT Article DE Scientometrics; Research trends; Time-series prediction; Deep learning; Computer science AB Thousands of research papers are being published every day, and among all these research works, one of the fastest-growing fields is computer science (CS). Thus, learning which research areas are trending in this particular field of study is advantageous to a significant number of scholars, research institutions, and funding organizations. Many scientometric studies have been done focusing on analyzing the current CS trends and predicting future ones from different perspectives as a consequence. Despite the large datasets from this vast number of CS publications and the power of deep learning methods in such big data problems, deep neural networks have not yet been used to their full potential in this area. Therefore, the objective of this paper is to predict the upcoming years' CS trends using long short-term memory neural networks. Accordingly, CS papers from 1940 and their corresponding fields of study from the microsoft academic graph dataset have been exploited for solving this research trend prediction problem. The prediction accuracy of the proposed method is then evaluated using RMSE and coefficient of determination (R-2) metrics. The evaluations show that the proposed method outperforms the baseline approaches in terms of the prediction accuracy in all considered time periods. Subsequently, adopting the proposed method's predictions, we investigate future trending areas in computer science research from various viewpoints. C1 [Taheri, Soroush; Aliakbary, Sadegh] Shahid Beheshti Univ, Fac Comp Sci & Engn, Tehran, Iran. C3 Shahid Beheshti University RP Aliakbary, S (corresponding author), Shahid Beheshti Univ, Fac Comp Sci & Engn, Tehran, Iran. EM so.taheri@mail.sbu.ac.ir; s_aliakbary@sbu.ac.ir RI Taheri, Soroush/GVU-0703-2022 OI Taheri, Soroush/0000-0002-5885-3036 CR Abrishami A, 2019, J INFORMETR, V13, P485, DOI 10.1016/j.joi.2019.02.011 [Anonymous], 2001, CHALLENGE SCIENTOMET [Anonymous], 2014, ARXIV PREPRINT ARXIV [Anonymous], 2015, ARXIV151203131 Behrouzi S, 2020, J INFORMETR, V14, DOI 10.1016/j.joi.2020.101079 Brockwell PJ., 2013, THEORY METHODS, V3, P77, DOI DOI 10.1007/s11192-015-1559-9 Chen CY, 2018, AAAI CONF ARTIF INTE, P2111 Cheng Q, 2015, SCIENTOMETRICS, V103, P453, DOI 10.1007/s11192-015-1559-9 Chong E, 2017, EXPERT SYST APPL, V83, P187, DOI 10.1016/j.eswa.2017.04.030 Chung J., 2014, NIPS 2014 WORKSH DEE Clauset A, 2004, PHYS REV E, V70, DOI 10.1103/PhysRevE.70.066111 Clauset A, 2017, SCIENCE, V355, P477, DOI 10.1126/science.aal4217 Dargan S, 2020, ARCH COMPUT METHOD E, V27, P1071, DOI 10.1007/s11831-019-09344-w DEGROOT MH, 1974, J AM STAT ASSOC, V69, P118, DOI 10.2307/2285509 Deng L, 2013, INT CONF ACOUST SPEE, P8599, DOI 10.1109/ICASSP.2013.6639344 Dridi A, 2021, WIRES DATA MIN KNOWL, V11, DOI 10.1002/widm.1395 Ebadi A, 2020, J INFORMETR, V14, DOI 10.1016/j.joi.2020.101018 Effendy S, 2017, WWW'17 COMPANION: PROCEEDINGS OF THE 26TH INTERNATIONAL CONFERENCE ON WORLD WIDE WEB, P1245, DOI 10.1145/3041021.3053064 Fortunato S, 2018, SCIENCE, V359, DOI 10.1126/science.aao0185 Garousi V, 2013, INT J SOFTW ENG KNOW, V23, P1343, DOI 10.1142/S0218194013500423 Goodall AH, 2006, J DOC, V62, P388, DOI 10.1108/00220410610666529 Goodfellow I, 2016, ADAPT COMPUT MACH LE, P1 Han J, 2012, MOR KAUF D, P1 Hegselmann R, 2002, JASSS-J ARTIF SOC S, V5 Hochreiter S, 1997, ADV NEUR IN, V9, P473 Hoonlor A, 2013, COMMUN ACM, V56, P74, DOI 10.1145/2500892 Hurtado Jose L., 2016, Journal of Big Data, V3, DOI 10.1186/s40537-016-0039-2 Jablonska-Sabuka M, 2014, J INFORMETR, V8, P111, DOI 10.1016/j.joi.2013.11.003 Katsurai M, 2019, SCIENTOMETRICS, V121, P1583, DOI 10.1007/s11192-019-03241-6 Krenn M, 2020, P NATL ACAD SCI USA, V117, P1910, DOI 10.1073/pnas.1914370116 Mahalakshmi GS, 2017, 2017 SECOND INTERNATIONAL CONFERENCE ON RECENT TRENDS AND CHALLENGES IN COMPUTATIONAL MODELS (ICRTCCM), P222, DOI 10.1109/ICRTCCM.2017.22 Mandic DP, 2001, ADAPT LEARN SYST SIG, DOI 10.1002/047084535X Pham MC, 2011, SOC NETW ANAL MIN, V1, P321, DOI 10.1007/s13278-011-0024-x Poznanski A, 2016, PROC CVPR IEEE, P2305, DOI 10.1109/CVPR.2016.253 Rzhetsky A, 2015, P NATL ACAD SCI USA, V112, P14569, DOI 10.1073/pnas.1509757112 Salatino AA, 2018, ACM-IEEE J CONF DIG, P303, DOI 10.1145/3197026.3197052 Sanderson M, 1999, SIGIR'99: PROCEEDINGS OF 22ND INTERNATIONAL CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, P206, DOI 10.1145/312624.312679 Sari N, 2012, PROCEDIA ENGINEER, V50, P871, DOI 10.1016/j.proeng.2012.10.095 Shen ZH, 2018, 56TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2018): PROCEEDINGS OF SYSTEM DEMONSTRATIONS, P87 Sinha A, 2015, WWW'15 COMPANION: PROCEEDINGS OF THE 24TH INTERNATIONAL CONFERENCE ON WORLD WIDE WEB, P243, DOI 10.1145/2740908.2742839 Sitarz R, 2012, COMPUT-AIDED CHEM EN, V30, P437 Tang J., 2008, KDD, P990, DOI DOI 10.1145/1401890.1402008 Tseng YH, 2009, SCIENTOMETRICS, V81, P73, DOI 10.1007/s11192-009-1885-x Wu Y, 2016, PEERJ COMPUT SCI, DOI 10.7717/peerj-cs.41 Xia F, 2017, IEEE T BIG DATA, V3, P18, DOI 10.1109/TBDATA.2016.2641460 Young T, 2018, IEEE COMPUT INTELL M, V13, P55, DOI 10.1109/MCI.2018.2840738 NR 46 TC 10 Z9 10 U1 6 U2 49 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0138-9130 EI 1588-2861 J9 SCIENTOMETRICS JI Scientometrics PD FEB PY 2022 VL 127 IS 2 BP 849 EP 869 DI 10.1007/s11192-021-04240-2 EA JAN 2022 PG 21 WC Computer Science, Interdisciplinary Applications; Information Science & Library Science WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Computer Science; Information Science & Library Science GA YY7GU UT WOS:000744421100005 DA 2024-09-05 ER PT J AU Wang, R AF Wang, Ran TI Legal technology in contemporary USA and China SO COMPUTER LAW & SECURITY REVIEW LA English DT Article DE Legal technology; Big data; Artificial intelligence; Intelligent legal research; Risk assessment; Judicial system AB The US and China are two typical models that present legal tech trends that are common world over. In China, robust regional models of intelligent judicial systems have emerged alongside some common applications that include the same-type case referencing, auto-mated sentencing decision, uniform standards of evidence, and judges' data profiling systems. In the US, legal tech refers to artificial intelligence in domains such as innovative legal research, predictive litigation analysis, e-discovery, and contract review. The common elements in the development of legal tech in both countries are useful for other countries to understand. However, the legal tech in both countries has distinct characteristics, as seen in their different driving forces, target groups and purposes. The characteristics of legal tech are heavily related to each country's political background, legal system, and judicial structure. The different paths taken toward legal tech also remind us to reflect on the mistakes made and to explore some experiences pertaining to developing legal tech. For the strategic deployment, it is reasonable to apply cutting-edge technologies to the legal field until they are truly matured, and combine the top-level design with local pilot projects. For the target groups, litigants and vulnerable groups should not be neglected in legal tech service provision. For the purposes, machines should play an auxiliary role rather than replace judges altogether. (C) 2020 Ran Wang. Published by Elsevier Ltd. All rights reserved. C1 [Wang, Ran] Tianjin Univ TJU, Law Sch, Tianjin, Peoples R China. [Wang, Ran] TJU, Inst Intelligent Rule Law, Tianjin, Peoples R China. RP Wang, R (corresponding author), Tianjin Univ TJU, Law Sch, Tianjin, Peoples R China.; Wang, R (corresponding author), TJU, Inst Intelligent Rule Law, Tianjin, Peoples R China. EM ran.wang@tju.edu.cn FU Chinese Scholarship Council of the Ministry of Education; Youth Project of the National Social Science Fund of China "Research on Big Data Evidence" [18CFX036] FX This project was supported by the Chinese Scholarship Council of the Ministry of Education and the Youth Project of the National Social Science Fund of China "Research on Big Data Evidence"(18CFX036). CR Angwin J., 2016, Machine Bias. There's software used across the country to predict future criminals. And it's biased against blacks, P23 [Anonymous], 2019, REPORT SELECT COMMIT [Anonymous], 2018, LAW REV [Anonymous], WHAT IS AUTOMATED IN [Anonymous], 2009, DATA PROFILING [Anonymous], 2019, NARROWING ACCESS JUS [Anonymous], 2018, C L REV [Anonymous], VS LAWYERS ULTIMATE [Anonymous], 2016, OUTLINE NATL INFORM [Anonymous], 2017, HARV. L.REV., V130, P1530 [Anonymous], 2018, JIN J PHIL SOC SCI [Anonymous], 2006, NATL INFORMATIZATION [Anonymous], 2016, INNOVATION DRIVEN TE [Anonymous], 2012, USING TECHNOLOGY ENH [Anonymous], 2018, SPP ISSUES OPINIONS [Anonymous], 2017, CHIN J L, DOI DOI 10.1186/S40035-017-0072-X [Anonymous], 2015, DOCUMENT 50 STATE CO [Anonymous], 2017, CHIN J L, DOI DOI 10.1093/GIGASCIENCE/GIX066 [Anonymous], 2014, Boston College Law Review [Anonymous], 2001, ADVERSARIAL LEGALISM [Anonymous], 2016, BEIJ REV, V59, P44 [Anonymous], J ANHUI U PHILOS SOC [Anonymous], 2019, ACCELERATING AM LEAD [Anonymous], ACCESS JUSTICE RULE [Anonymous], 2016, 13th Five-Year Plan for National Science and Technology Innovation [Anonymous], LEGAL TECH NON LAWYE, P11 [Anonymous], 2017, DOCUMENT 35 STATE CO [Anonymous], 2019, CHINA COMPUTATIONAL Arruda Andrew, 2018, ROSS NEWS 0807 Bai Jianjun, 2016, CHIN J L, V6, P140 Beaty Dan, 2019, LAW Bergal Jenni, 2014, COURTS PLUNGE DIGITA Billotte Raymond, 2017, CM, V32, P6 Bose P.K., 2017, J Enam Med Col., V7, P29, DOI DOI 10.3329/JEMC.V7I1.30748 Branting Karl, 2017, NACM ANN C Bues Micha- Manuel, 2017, LIQ LEG MANAG PROF, V90, P91 BulletProof, EDNAS CONTINUOUS PRO Cabral JamesE., 2012, HARVARD J LAW TECHNO, V26, P241 Chen XD, 2019, INT J CONCR STRUCT M, V13, DOI 10.1186/s40069-018-0305-0 Chessman C, 2017, CALIF LAW REV, V105, P179, DOI 10.15779/Z38S27M Cohen Andrew, 2019, BERKELEY JUDICIAL I Dajun Qian, 2018, L REV, V36, P141 Deng Jinting, 2019, GEO L TECH REV, V3, P236 Deng Jinting, 2019, GEo. L. TECH. REV., V3, P223 Goodman Aaron, 2016, LITIG, V43, P25 Goodman Aaron, 2016, LITIGATION, V43, P23 Hongdao Q, 2019, SUSTAINABILITY-BASEL, V11, DOI 10.3390/su11041015 Kanaracus Chris, 2012, PCWORLD Kehl Danielle, 2017, ALGORITHMS CRIMINAL, P4 Kwong Katherine, 2017, HARV JL TECH, V31, P281 Kwong Katherine, 2017, Harv. JL & Tech., V31, P275 Lat David, ARTIFICIAL INTELLIGE Liddy E. D., 2001, Natural language processing Lijun Mao, 2017, E DAY 1007 Losey Ralph, 2013, REGENT U L REV, V26, P7 Losey Ralph, 2013, REGENT U L REV, V26, P24 Lucy Ricca, 2019, STATE FARMWORKERS CA Murray David, 2015, THE COURIER MAIL Nelson Sharon, 2018, J LAW TECHNOLOGY Obama White House, 2016, FACT SHEET LAUNCHING Ping Lin, 2019, PAPER 2702 Pivovarov Valentin, 2019, FORBES Polans Daniel S., 2018, 201802 INT NAT ASS C, P1 Ran Wang, 2018, JIN J PHIL SOC SCI, V7, P61 Roth A, 2016, GEORGETOWN LAW J, V104, P1245 Roth Andrea, 2016, EO L J, V104, P1275 Schallhorn Kaitlyn, 2019, FOX NEWS Shao Y, 2019, J MANUF PROCESS, V43, P9, DOI 10.1016/j.jmapro.2019.05.012 Shen KL, 2020, WORLD J PEDIATR, V16, P223, DOI 10.1007/s12519-020-00343-7 STRIER F, 1992, JUDICATURE, V76, P109 The Supreme People's Court of PRC, 2019, **NON-TRADITIONAL**, P82 The White House, 2019, EXECUTIVE ORDER MAIN United States Courts, 2016, LONG RANGE PLAN INFO Wang Heng, 2017, Guiyang Judiciary Big Data Case Handling System: Innovating Use of Big Data Technology to Solve the Judicial Problems' Wang Lusheng, 2020, J COMP LAW, V2, P133 Wang Lusheng, 2018, CHINA LAW REV, V20, P46 Wang Lusheng, 2020, J COMP LAW, V2, P145 Wang Lusheng, 2018, CHIN L REV, V20, P48 Wang Wenhua, 2019, WORLD JUDICIAL INFOR, V2, P3 Weimin Zuo, 2020, Legal Forum, V35, P17 Xu Qingyu, 2017, PRACTICAL EXPLORATIO Yuan S., 2019, CHINA DAILY Zhang Ziyang, 2004, CALCULATING SENTENCI Zhou Qiang, 2020, DEEPENING REFORM JUD Zuo Weimin, 2020, LEGAL FORUM, V35, P20 NR 85 TC 13 Z9 13 U1 5 U2 31 PU ELSEVIER ADVANCED TECHNOLOGY PI OXFORD PA OXFORD FULFILLMENT CENTRE THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0267-3649 J9 COMPUT LAW SECUR REV JI Comput. Law Secur. Rev. PD NOV PY 2020 VL 39 AR 105459 DI 10.1016/j.clsr.2020.105459 PG 20 WC Law WE Social Science Citation Index (SSCI) SC Government & Law GA OP8LV UT WOS:000588342700003 DA 2024-09-05 ER PT J AU Balbuena, LD AF Balbuena, Lloyd D. TI The UK Research Excellence Framework and the Matthew effect: Insights from machine learning SO PLOS ONE LA English DT Article ID ASSESSMENT EXERCISE RATINGS; CITATION COUNTS; H-INDEX; SCIENCE; IMPACT; PRODUCTIVITY; UNIVERSITIES; KNOWLEDGE; SYSTEM; SCOPUS AB With the high cost of the research assessment exercises in the UK, many have called for simpler and less time-consuming alternatives. In this work, we gathered publicly available REF data, combined them with library-subscribed data, and used machine learning to examine whether the overall result of the Research Excellence Framework 2014 could be replicated. A Bayesian additive regression tree model predicting university grade point average (GPA) from an initial set of 18 candidate explanatory variables was developed. One hundred and nine universities were randomly divided into a training set (n = 79) and test set (n = 30). The model "learned" associations between GPA and the other variables in the training set and was made to predict the GPA of universities in the test set. GPA could be predicted from just three variables: the number of Web of Science documents, entry tariff, and percentage of students coming from state schools (r-squared = .88). Implications of this finding are discussed and proposals are given. C1 [Balbuena, Lloyd D.] Univ Saskatchewan, Dept Psychiat, Saskatoon, SK, Canada. C3 University of Saskatchewan RP Balbuena, LD (corresponding author), Univ Saskatchewan, Dept Psychiat, Saskatoon, SK, Canada. EM lloyd.balbuena@usask.ca RI Balbuena, Lloyd/H-5658-2013 OI Balbuena, Lloyd/0000-0002-3745-5426 CR Adams J, 2005, SCIENTOMETRICS, V63, P567, DOI 10.1007/s11192-005-0228-9 Althouse BM, 2009, J AM SOC INF SCI TEC, V60, P27, DOI 10.1002/asi.20936 [Anonymous], 2016, TIMES HIGHER ED Auranen O, 2010, RES POLICY, V39, P822, DOI 10.1016/j.respol.2010.03.003 Bar-Ilan J, 2008, SCIENTOMETRICS, V74, P257, DOI 10.1007/s11192-008-0216-y BERRY C, 1981, BRIT J SOCIOL, V32, P381, DOI 10.2307/589284 Bishop D, DEP H INDEX IS MORE Boliver V, 2015, OXFORD REV EDUC, V41, P608, DOI 10.1080/03054985.2015.1082905 Bornmann L, 2008, J AM SOC INF SCI TEC, V59, P830, DOI 10.1002/asi.20806 Burris V, 2004, AM SOCIOL REV, V69, P239, DOI 10.1177/000312240406900205 Castelvecchi D, 2016, NATURE, V538, P21, DOI 10.1038/538020a Chang YC, 2009, RES POLICY, V38, P936, DOI 10.1016/j.respol.2009.03.005 Chipman HA, 2010, ANN APPL STAT, V4, P266, DOI 10.1214/09-AOAS285 Choobbasti HJ, 2007, RES SOC STRAT MOBIL, V25, P233, DOI DOI 10.1016/J.RSSM.2007.04.001 COHEN J, 1992, PSYCHOL BULL, V112, P155, DOI 10.1037/0033-2909.112.1.155 Dobbin KK, 2011, BMC MED GENOMICS, V4, DOI 10.1186/1755-8794-4-31 Farla K., 2015, REF 2014 accountability review: Costs, benefits and burden Fortin JM, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0065263 Gannon F, 2004, EMBO REP, V5, P323, DOI 10.1038/sj.embor.7400138 Gibbons M, 1994, NEW PRODUCTION KNOWL, Vix Gordon R, 2009, ACCOUNT RES, V16, P13, DOI 10.1080/08989620802689821 Gray R, 2015, J PSYCHIATR MENT HLT, V22, P155, DOI 10.1111/jpm.12217 Harnad S, 2009, SCIENTOMETRICS, V79, P147, DOI 10.1007/s11192-009-0409-z Hicks Diana, 2015, Nature, V520, P429, DOI 10.1038/520429a Higher Education Funding Council for England, 2015, REF 2014 KEY FACTS Hirsch JE, 2005, P NATL ACAD SCI USA, V102, P16569, DOI 10.1073/pnas.0507655102 Hoare T, 2011, IMPACT SUTTON TRUSTS Jump P, WINNERS LOSERS HEFCE Kapelner A, 2016, J STAT SOFTW, V70, P1 Lombardi JV, 2000, TOP AM RES U LONG JS, 1981, AM SOCIOL REV, V46, P422, DOI 10.2307/2095262 LONG JS, 1978, AM SOCIOL REV, V43, P889, DOI 10.2307/2094628 Martin BR, 2011, RES EVALUAT, V20, P247, DOI 10.3152/095820211X13118583635693 McKnight A, DOWNWARD MOBILITY OP Meho LI, 2007, J AM SOC INF SCI TEC, V58, P2105, DOI 10.1002/asi.20677 Merton RK., 1973, SOCIOLOGY SCI THEORE, Vxxxi Mryglod O, 2015, SCIENTOMETRICS, V104, P1013, DOI 10.1007/s11192-015-1567-9 Mryglod O, 2015, SCIENTOMETRICS, V102, P2165, DOI 10.1007/s11192-014-1512-3 Norris M, 2003, J DOC, V59, P709, DOI 10.1108/00220410310698734 Nowotny H, 2003, MINERVA, V41, P179, DOI 10.1023/A:1025505528250 OPPENHEIM C, 1995, J DOC, V51, P18, DOI 10.1108/eb026940 Oppenheim C, 1997, J DOC, V53, P477, DOI 10.1108/EUM0000000007207 Owens B, 2013, NATURE, V502, P288, DOI 10.1038/502288a Pournelle G. H., 1953, Journal of Mammalogy, V34, P133, DOI 10.1890/0012-9658(2002)083[1421:SDEOLC]2.0.CO;2 Reay D, 2001, SOCIOLOGY, V35, P855, DOI 10.1177/0038038501035004004 Reeves R.V., 2013, The Glass Floor: Education, Downward Mobility, and Opportunity Hoarding Reich ES, 2013, NATURE, V502, P291, DOI 10.1038/502291a RESKIN BF, 1977, AM SOCIOL REV, V42, P491, DOI 10.2307/2094753 Russell Group, 2012, JEW CROWN IMP CHAR U Sayer D., 2014, Five reasons why the REF is not fit for purpose Scott P, 2009, ISSUES HIGH EDUC, P58 Stephan PE, 2012, EC SHAPES SCI, Vxiv Stern L., 2016, Building on Success and Learning from Experience: An Independent Review of the Research Excellence Framework Stern LN, ITS OUR DUTY ASSESS Sutton Trust, DEGR SUCC U CHANC IN Universiteit Leiden, P SCI TECHN IND C 20 University and College Union, 2013, RES EXC FRAM REF UCU Van Raan AFJ, 2005, SCIENTOMETRICS, V62, P133, DOI 10.1007/s11192-005-0008-6 NR 58 TC 3 Z9 3 U1 0 U2 10 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA SN 1932-6203 J9 PLOS ONE JI PLoS One PD NOV 26 PY 2018 VL 13 IS 11 AR e0207919 DI 10.1371/journal.pone.0207919 PG 13 WC Multidisciplinary Sciences WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Science & Technology - Other Topics GA HB8GM UT WOS:000451325700088 PM 30475868 OA gold, Green Published, Green Submitted DA 2024-09-05 ER PT J AU Hidalgo, RC Elias, RP Torres-Moreno, JM Villegas, OOV Salgado, GR Salazar, AM AF Cuellar Hidalgo, Rodrigo Pinto Elias, Raul Torres-Moreno, Juan-Manuel Vergara Villegas, Osslan Osiris Reyes Salgado, Gerardo Magadan Salazar, Andrea TI Neural Architecture Comparison for Bibliographic Reference Segmentation: An Empirical Study SO DATA LA English DT Article DE reference mining; BiLSTM; transformers; byte-pair encoding; Conditional Random Fields ID EXTRACTION AB In the realm of digital libraries, efficiently managing and accessing scientific publications necessitates automated bibliographic reference segmentation. This study addresses the challenge of accurately segmenting bibliographic references, a task complicated by the varied formats and styles of references. Focusing on the empirical evaluation of Conditional Random Fields (CRF), Bidirectional Long Short-Term Memory with CRF (BiLSTM + CRF), and Transformer Encoder with CRF (Transformer + CRF) architectures, this research employs Byte Pair Encoding and Character Embeddings for vector representation. The models underwent training on the extensive Giant corpus and subsequent evaluation on the Cora Corpus to ensure a balanced and rigorous comparison, maintaining uniformity across embedding layers, normalization techniques, and Dropout strategies. Results indicate that the BiLSTM + CRF architecture outperforms its counterparts by adeptly handling the syntactic structures prevalent in bibliographic data, achieving an F1-Score of 0.96. This outcome highlights the necessity of aligning model architecture with the specific syntactic demands of bibliographic reference segmentation tasks. Consequently, the study establishes the BiLSTM + CRF model as a superior approach within the current state-of-the-art, offering a robust solution for the challenges faced in digital library management and scholarly communication. C1 [Cuellar Hidalgo, Rodrigo] Biblioteca Daniel Cosio Villegas, Colegio Mexico, Carretera Picacho Ajusco 20, Mexico City 14110, Mexico. [Pinto Elias, Raul; Magadan Salazar, Andrea] Tecnol Nacl Mexico CENIDET, Cuernavaca 62490, Mexico. [Torres-Moreno, Juan-Manuel] Univ Avignon, Lab Informat Avignon, 339 Chemin Meinajaries, F-84911 Avignon 9, France. [Vergara Villegas, Osslan Osiris] Univ Autonoma Ciudad Juarez, Ind & Mfg Engn Dept, Ciudad Juarez 32310, Mexico. [Reyes Salgado, Gerardo] Univ Rey Juan Carlos, Dept Informat & Estadist, Ave Alcalde de Mostoles, Madrid 28933, Spain. C3 Colegio de Mexico; Avignon Universite; Universidad Autonoma de Ciudad Juarez; Universidad Rey Juan Carlos RP Torres-Moreno, JM (corresponding author), Univ Avignon, Lab Informat Avignon, 339 Chemin Meinajaries, F-84911 Avignon 9, France. EM rcuellar@colmex.mx; raul.pe@cenidet.tecnm.mx; juan-manuel.torres@univ-avignon.fr; overgara@uacj.mx; gerardo.reyes@urjc.es; andrea.ms@cenidet.tecnm.mx RI Reyes Salgado, Gerardo/U-4717-2018; Torres-Moreno, Juan-Manuel/K-5137-2012; Vergara Villegas, Osslan Osiris/N-1898-2016 OI Reyes Salgado, Gerardo/0000-0001-7942-2967; Torres-Moreno, Juan-Manuel/0000-0002-4392-1825; Vergara Villegas, Osslan Osiris/0000-0002-6572-6596 CR Akbik A, 2019, NAACL HLT 2019: THE 2019 CONFERENCE OF THE NORTH AMERICAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS: HUMAN LANGUAGE TECHNOLOGIES: PROCEEDINGS OF THE DEMONSTRATIONS SESSION, P54 Anzaroot S., 2013, P ICML 2013 WORKSH P Becker DA, 2015, J ACAD LIBR, V41, P613, DOI 10.1016/j.acalib.2015.06.022 Bergmark D., 2000, Automatic Extraction of Reference Linking Information from Onlinedocuments Bornmann L, 2015, J ASSOC INF SCI TECH, V66, P2215, DOI 10.1002/asi.23329 Choi W, 2023, PLOS ONE, V18, DOI 10.1371/journal.pone.0280637 Councill IG, 2008, SIXTH INTERNATIONAL CONFERENCE ON LANGUAGE RESOURCES AND EVALUATION, LREC 2008, P661 Devlin J, 2019, Arxiv, DOI arXiv:1810.04805 Escobar Farfn J.I., 2021, P 10 C INT BIBL REP Grennan M., 2020, P 8 INT WORKSH MIN S, P27 Grennan M., 2019, P 27 AIAI IR C ART I, VVolume 2563, P260 Hetzner Erik, 2008, Joint Conference on Digital Libraries (JCDL 2008), P280, DOI 10.1145/1378889.1378937 Huang ZH, 2015, Arxiv, DOI arXiv:1508.01991 Jain Vidhi, 2023, Decision Intelligence: Proceedings of the International Conference on Information Technology, InCITe 2023. Lecture Notes in Electrical Engineering (1079), P287, DOI 10.1007/978-981-99-5997-6_25 Khabsa M, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0093949 Lafferty John, 2001, em Proceedings of the Eighteenth International Conference on Machine Learning Lopez P, 2009, LECT NOTES COMPUT SC, V5714, P473, DOI 10.1007/978-3-642-04346-8_62 Mitrofan M, 2022, PROCEEDINGS OF THE 21ST WORKSHOP ON BIOMEDICAL LANGUAGE PROCESSING (BIONLP 2022), P316 Patro Sunanda, 2011, Database and Expert Systems Applications. Proceedings 22nd International Conference, DEXA 2011, P172, DOI 10.1007/978-3-642-23088-2_12 Peng FC, 2006, INFORM PROCESS MANAG, V42, P963, DOI 10.1016/j.ipm.2005.09.002 Prasad A, 2018, INT J DIGIT LIBRARIE, V19, P323, DOI 10.1007/s00799-018-0242-1 Rizvi STR, 2020, IEEE ACCESS, V8, P217231, DOI 10.1109/ACCESS.2020.3042455 Rodrigues Alves D., 2018, FRONT RES METR ANAL, V3, P21, DOI DOI 10.3389/FRMA.2018.00021 Tkaczyk D., 2018, P 26 AIAI IR C ART I, V2259, P162 Tkaczyk D, 2018, ACM-IEEE J CONF DIG, P99, DOI 10.1145/3197026.3197048 Vaswani A, 2023, Arxiv, DOI [arXiv:1706.03762, 10.48550/ARXIV.1706.03762, DOI 10.48550/ARXIV.1706.03762] Ware M., 2015, STM REPORT OVERVIEW Yan H, 2019, Arxiv, DOI arXiv:1911.04474 NR 28 TC 0 Z9 0 U1 1 U2 1 PU MDPI PI BASEL PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND EI 2306-5729 J9 DATA-BASEL JI Data PD MAY PY 2024 VL 9 IS 5 AR 71 DI 10.3390/data9050071 PG 24 WC Computer Science, Information Systems; Multidisciplinary Sciences WE Emerging Sources Citation Index (ESCI) SC Computer Science; Science & Technology - Other Topics GA SC3Q1 UT WOS:001232224300001 OA gold DA 2024-09-05 ER PT J AU Bartolomé, E Benítez, P AF Bartolome, Elena Benitez, Paula TI Failure mode and effect analysis (FMEA) to improve collaborative project-based learning: Case study of a Study and Research Path in mechanical engineering SO INTERNATIONAL JOURNAL OF MECHANICAL ENGINEERING EDUCATION LA English DT Article DE Failure mode and effect analysis; active learning; collaborative and project-based learning; Study and Research Paths; Mechanical Engineering; Theory of Machines and Mechanisms ID RISK-MANAGEMENT; OPPORTUNITIES; WEAKNESSES; STRENGTHS; THREATS; TOOL AB Failure Mode and Effect Analysis (FMEA) is a powerful quality tool, widely used in industry, for the identification of failure modes, their effects and causes. In this work, we investigated the utility of FMEA in the education field to improve active learning processes. In our case study, the FMEA principles were adapted to assess the risk of failures in a Mechanical Engineering course on "Theory of Machines and Mechanisms" conducted through a project-based, collaborative "Study and Research Path (SRP)" methodology. The SRP is an active learning instruction format which is initiated by a generating question that leads to a sequence of derived questions and answers, and combines moments of study and inquiry. By applying the FMEA, the teaching team was able to identify the most critical failures of the process, and implement corrective actions to improve the SRP in the subsequent year. Thus, our work shows that FMEA represents a simple tool of risk assesment which can serve to identify criticality in educational process, and improve the quality of active learning. C1 [Bartolome, Elena; Benitez, Paula] Escola Univ Salesiana Sarria EUSS, Mech Engn Dept, Passeig St Joan Bosco 74, Barcelona 08017, Spain. RP Bartolomé, E (corresponding author), Escola Univ Salesiana Sarria EUSS, Mech Engn Dept, Passeig St Joan Bosco 74, Barcelona 08017, Spain. EM ebartolome@euss.es RI Bartolomé, Elena/AFS-0763-2022; Bartolome, Elena/K-9014-2017; Bartolome, Elena/R-5486-2019 OI Bartolome, Elena/0000-0001-5108-0977; Bartolome, Elena/0000-0001-5108-0977 CR Mesa FA, 2015, WORLD J SURG, V39, P536, DOI 10.1007/s00268-014-2827-1 Alonso-Tristán C, 2017, ICERI PROC, P3491 [Anonymous], 2013, RECHERCHES DIDACTIQU [Anonymous], 2012, PROJECT APPROACHES L Barquero B., 2008, P 5 C EUR SOC RES MA, P2050 BARQUERO B., 2015, New ICMI Study Series, P249 Bartolomé E, 2020, EUR J ENG EDUC, V45, P985, DOI 10.1080/03043797.2020.1819962 Bartolomé E, 2021, INT J ENG EDUC, V37, P446 Bartolomé E, 2019, EUR J ENG EDUC, V44, P330, DOI 10.1080/03043797.2018.1490699 Bluvband Z, 2004, P REL MAINT S, P31, DOI 10.1109/RAMS.2004.1285419 Bosch M., 2015, STUDY RES PATHS U MA, P1 Boylan, 2011, INT C ED NEW LEARN T Buljubasic-Kuzmanovic Senka, 2016, DIDACT SLOV-PEDAGOS, P118 Catelani M, 2020, IEEE ACCESS, V8, P20181, DOI 10.1109/ACCESS.2020.2968812 Chandrasekaran, 2012, SEFI 2012 ENG ED 202, P8 Chevallard Y., 2015, P 12 INT C MATH ED, P173, DOI DOI 10.1007/978-3-319-12688-3_13 de Du, 2009, RES PPL PRACTICE ENG Deming W.E., 1950, ELEMENTARY PRINCIPLE Lantada AD, 2013, INT J ENG EDUC, V29, P476 Dieste-Velasco MI, 2016, ICERI PROC, P900, DOI 10.21125/iceri.2016.1205 Dieste-Velasco MI, 2015, ICERI PROC, P5862 Dill, 1963, 63TMP22 RM GEN EL CO DRAGAN P, 2014, SERB J MANAG, V9, P219 Florensa, 2018, CONTRIBUTIONS EPISTE Florensa G., 2019, 11 C EUR SOC RES MAT Florensa I, 2018, INT J ENG EDUC, V34, P1848 Flyvbjerg B, 2006, QUAL INQ, V12, P219, DOI 10.1177/1077800405284363 Ford EC, 2009, INT J RADIAT ONCOL, V74, P852, DOI 10.1016/j.ijrobp.2008.10.038 Gascon J, 2011, REV LAT AM INV MAT E, V14, P203 Grimson J., 2002, European Journal of Engineering Education, V27, P31, DOI 10.1080/03043790110100803 Gurses AP, 2019, INFECT CONT HOSP EP, V40, P178, DOI 10.1017/ice.2018.292 Habek P, 2017, PROCEEDINGS OF THE 6TH INTERNATIONAL CONFERENCE ON OPERATIONS RESEARCH AND ENTERPRISE SYSTEMS (ICORES), P57, DOI 10.5220/0006118600570065 Hamid Haghshenas Gorgani (last), 2016, Journal of Engineering and Applied Sciences, V11, P37 Hande S, 2014, ANN MED HEALTH SCI R, V4, P336, DOI 10.4103/2141-9248.133455 Hari R., 2015, GLOBAL J RES ANAL, V4, P330 Iadanza E, 2019, IEEE ACCESS, V7, P181546, DOI 10.1109/ACCESS.2019.2960235 Kruger D, 2015, PORTL INT CONF MANAG, P1424, DOI 10.1109/PICMET.2015.7273000 Lee H, 2017, DRUG DES DEV THER, V11, P3035, DOI 10.2147/DDDT.S145310 Liu HC, 2019, COMPUT IND ENG, V135, P881, DOI 10.1016/j.cie.2019.06.055 Liu HC, 2013, EXPERT SYST APPL, V40, P828, DOI 10.1016/j.eswa.2012.08.010 Mazumder, 2014, ASEE ANN C EXP C P I McDermott R.E., 2008, The basics of FMEA Neal, 1962, WANLTNR042 WEST EL C Prince M, 2004, J ENG EDUC, V93, P223, DOI 10.1002/j.2168-9830.2004.tb00809.x Rodríguez-Amigo C, 2016, EDULEARN PROC, P1397 Rugarcia A., 2000, CHEM ENG EDUC, V34, P16, DOI DOI 10.1109/FIE.2002.1157986 Segismundo A, 2008, INT J QUAL RELIAB MA, V25, P899, DOI 10.1108/02656710810908061 Serafini A, 2016, ANN IG MED PREV COMU, V28, P288, DOI 10.7416/ai.2016.2108 Silva MM, 2014, INT J INFORM MANAGE, V34, P733, DOI 10.1016/j.ijinfomgt.2014.07.005 Simona Duicu, 2011, Recent Advances in Signal Processing, Computational Geometry and Systems Theory. Proceedings of the 11th WSEAS International Conference on Signal Processing, Computational Geometry and Artificial Vision (ISCGAV 2011). Proceedings of the 11th WSEAS International Conference on Systems Theory and Scientific Computation (ISTASG 2011), P189 Sinthavalai, 2008, IEEE INT ENG MAN C E Sriraman B, 2010, ADVNCS MTHMTCS EDUC, V1, P7, DOI 10.1007/978-3-642-00742-2_2 Stamatis D.H., 1995, Failure Mode and Effect Analysis FMEA from Theory to Execution ASQC Tooranloo HS, 2018, KNOWL INF SYST, V57, P183, DOI 10.1007/s10115-018-1172-3 van Hattum-Jansen, 2007, INT C ENG ED COIMBR Vázquez-Valencia Agustín, 2018, Rev. colomb. anestesiol., V46, P3, DOI 10.1097/cj9.0000000000000002 Vinodh Sekar, 2012, TQM Journal, V24, P260, DOI 10.1108/17542731211226772 Winslow C, 2013, EDUC STUD MATH, V83, P267, DOI 10.1007/s10649-012-9453-3 Yin R.K., 2014, Case study research, V5th ed. Zhao YX, 2012, ADV DIFFER EQU-NY, P1, DOI 10.1186/1687-1847-2012-15 NR 60 TC 8 Z9 8 U1 3 U2 18 PU SAGE PUBLICATIONS INC PI THOUSAND OAKS PA 2455 TELLER RD, THOUSAND OAKS, CA 91320 USA SN 0306-4190 EI 2050-4586 J9 INT J MECH ENG EDUC JI Int. J. Mech. Eng. Educ. PD APR PY 2022 VL 50 IS 2 BP 291 EP 325 DI 10.1177/0306419021999046 PG 35 WC Education, Scientific Disciplines; Engineering, Mechanical WE Emerging Sources Citation Index (ESCI) SC Education & Educational Research; Engineering GA ZZ5IQ UT WOS:000773302700005 DA 2024-09-05 ER PT C AU Obaideen, K AlShabi, M Bettayeb, M Faroukh, Y Bonny, T AF Obaideen, Khaled AlShabi, Mohammad Bettayeb, Maamar Faroukh, Yousuf Bonny, Talal BE Schwartz, PJ Jensen, B Hohil, ME TI The confluence of PSO and MDO: a bibliometric perspective SO ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING FOR MULTI-DOMAIN OPERATIONS APPLICATIONS VI SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Artificial Intelligence and Machine Learning for Multi-Domain Operations Applications VI CY APR 22-26, 2024 CL National Harbor, MD DE Particle Swarm Optimization; Multi-Disciplinary Design Optimization; VOSviewer; Bibliometric; MDO ID PARTICLE SWARM OPTIMIZATION; NEURAL-NETWORKS; DESIGN AB This paper presents a thorough investigation into the convergence of Particle Swarm Optimization (PSO) and Multi-Disciplinary Design Optimization (MDO), two pivotal methodologies in the realm of computational optimization. By harnessing the strengths of PSO's heuristic search capabilities and MDO's integrative design approach, this study explores the synergistic potential of combining these methods to tackle complex optimization challenges. Through a systematic literature review and bibliometric analysis, we delve into the evolution, methodologies, applications, and outcomes of this interdisciplinary integration, drawing from a diverse array of scholarly works. Our analysis reveals a growing trend in the application of PSO within MDO frameworks, highlighting significant advancements, identifying gaps in the current literature, and suggesting fruitful directions for future research. The findings underscore the robustness and adaptability of PSO-MDO integration across various domains, offering insights into its potential to enhance optimization practices and contribute to the advancement of engineering and technology. This study not only charts the current landscape of PSO and MDO convergence but also sets the groundwork for future explorations in this promising research domain. C1 [Obaideen, Khaled] Univ Sharjah, Biosensing & Biosensors Grp, Smart Automat & Commun Technol, RISE, Sharjah, U Arab Emirates. [AlShabi, Mohammad] Univ Sharjah, Coll Engn, Dept Mech & Nucl Engn, Sharjah, U Arab Emirates. [Bettayeb, Maamar] Univ Sharjah, Coll Engn, Dept Elect Engn, Sharjah, U Arab Emirates. [Faroukh, Yousuf] Univ Sharjah, Sharjah Acad Astron Space Sci & Technol, CubeSat Lab, Sharjah, U Arab Emirates. [Bonny, Talal] Univ Sharjah, Coll Comp & Informat, Sharjah, U Arab Emirates. C3 University of Sharjah; University of Sharjah; University of Sharjah; University of Sharjah; University of Sharjah RP Obaideen, K (corresponding author), Univ Sharjah, Biosensing & Biosensors Grp, Smart Automat & Commun Technol, RISE, Sharjah, U Arab Emirates. OI Obaideen, Khaled/0000-0002-6472-2753 CR Abanades S, 2022, ENERGY SCI ENG, V10, P630, DOI 10.1002/ese3.1030 Abushihab K, 2023, J RELIG HEALTH, DOI 10.1007/s10943-023-01955-9 Adebayo PO, 2024, SCI AFR, V23, DOI 10.1016/j.sciaf.2023.e02012 Afzal M, 2020, J CLEAN PROD, V260, DOI 10.1016/j.jclepro.2020.120623 Ahmed R, 2021, SUSTAIN ENERGY TECHN, V47, DOI 10.1016/j.seta.2021.101488 Al-geelani NA, 2015, RENEW SUST ENERG REV, V45, P20, DOI 10.1016/j.rser.2015.01.047 Al-Shabi M., 2020 IEEE CAN C EL C, P1 Al-Shabi M., 2021, IAES Int. J. Artif. Intell, V10, P398, DOI [10.11591/ijai.v10.i2.pp398-406, DOI 10.11591/IJAI.V10.I2.PP398-406] Al-Shabi M., 2017 7 INT C MOD SIM, P1 Al-Shabi M, 2019, INT J ROBOT AUTOM, V34, P632, DOI 10.2316/J.2019.206-0160 Alam S, 2014, SWARM EVOL COMPUT, V17, P1, DOI 10.1016/j.swevo.2014.02.001 Alhammadi A, 2023, Cleaner Engineering and Technology Alhammadi A., INT S IND ENG AUT, P37 AlMallahi M., SPIE, V12513, P113 AlShabi M., 2021, IAES International Journal of Artificial Intelligence, V10, P166 AlShabi M, 2021, J THERM ANAL CALORIM, V144, P1655, DOI 10.1007/s10973-020-09895-2 Avzayesh M, 2021, DIGIT SIGNAL PROCESS, V110, DOI 10.1016/j.dsp.2020.102912 Balasubramanian K, 2020, RENEW ENERG FOCUS, V35, P84, DOI 10.1016/j.ref.2020.09.001 Barber KA, 2022, RENEW SUST ENERG REV, V160, DOI 10.1016/j.rser.2022.112359 Batista NE, 2023, RENEW SUST ENERG REV, V182, DOI 10.1016/j.rser.2023.113377 Bianchi S, 2024, BUILD ENVIRON, V250, DOI 10.1016/j.buildenv.2024.111184 Chehouri A, 2015, APPL ENERG, V142, P361, DOI 10.1016/j.apenergy.2014.12.043 Chenhong X., 2022, Sustainable Cities and Society, V87 Cicconi P, 2023, J ENERGY STORAGE, V73, DOI 10.1016/j.est.2023.109197 Cura T, 2012, EXPERT SYST APPL, V39, P1582, DOI 10.1016/j.eswa.2011.07.123 Ekici B, 2019, BUILD ENVIRON, V147, P356, DOI 10.1016/j.buildenv.2018.10.023 Eskandarpour M, 2015, OMEGA-INT J MANAGE S, V54, P11, DOI 10.1016/j.omega.2015.01.006 Gadsden S. A., 2011, ISRN Signal Processing, DOI 10.5402/2011/120351 Gan VJL, 2020, J CLEAN PROD, V254, DOI 10.1016/j.jclepro.2020.120012 Ghadge R, 2022, COMPOS STRUCT, V280, DOI 10.1016/j.compstruct.2021.114875 Hatamleh KS, 2015, APPL SOFT COMPUT, V36, P457, DOI 10.1016/j.asoc.2015.06.031 Isuwa J, 2023, EGYPT INFORM J, V24, DOI 10.1016/j.eij.2023.100416 Jiang TY, 2015, CHINESE J AERONAUT, V28, P865, DOI 10.1016/j.cja.2015.04.005 Jordehi AR, 2015, RENEW SUST ENERG REV, V52, P1260, DOI 10.1016/j.rser.2015.08.007 Khare A, 2013, APPL SOFT COMPUT, V13, P2997, DOI 10.1016/j.asoc.2012.11.033 Kumar SBV, 2020, J KING SAUD UNIV-COM, V32, P1095, DOI 10.1016/j.jksuci.2018.01.001 Lee AS, 2021, IEEE SIGNAL PROC LET, V28, P1295, DOI 10.1109/LSP.2021.3089918 Li LL, 2023, ENERG CONVERS MANAGE, V297, DOI 10.1016/j.enconman.2023.117637 Liu Z, 2020, ENG APPL ARTIF INTEL, V95, DOI 10.1016/j.engappai.2020.103771 Lu YZ, 2015, INFORM SCIENCES, V297, P21, DOI 10.1016/j.ins.2014.11.017 Mbungu NT, 2023, RENEW SUST ENERG REV, V179, DOI 10.1016/j.rser.2023.113251 Messinger TL, 2023, AEROSP SCI TECHNOL, V140, DOI 10.1016/j.ast.2023.108495 Mohebbi A, 2019, ENG APPL ARTIF INTEL, V82, P192, DOI 10.1016/j.engappai.2019.03.025 Obaideen Khaled, 2022, Diabetes Metab Syndr, V16, P102566, DOI 10.1016/j.dsx.2022.102566 Sethi N, 2022, ARRAY-NY, V14, DOI 10.1016/j.array.2022.100183 Shan JJ, 2014, AEROSP SCI TECHNOL, V36, P114, DOI 10.1016/j.ast.2014.04.004 Singh Y., 2024, Advances in Computers Wang KG, 2024, EXPERT SYST APPL, V244, DOI 10.1016/j.eswa.2023.122732 Wang KG, 2023, COMPUT METHOD APPL M, V416, DOI 10.1016/j.cma.2023.116307 Wang XH, 2021, ACTA ASTRONAUT, V178, P595, DOI 10.1016/j.actaastro.2020.09.040 Yang FF, 2023, FINITE ELEM ANAL DES, V223, DOI 10.1016/j.finel.2023.103989 Yu QQ, 2024, ADV SPACE RES, V73, P1952, DOI 10.1016/j.asr.2023.11.007 Yuan YL, 2023, OCEAN ENG, V285, DOI 10.1016/j.oceaneng.2023.115426 NR 53 TC 0 Z9 0 U1 0 U2 0 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X EI 1996-756X BN 978-1-5106-7421-9; 978-1-5106-7420-2 J9 PROC SPIE PY 2024 VL 13051 AR 130511P DI 10.1117/12.3013817 PG 7 WC Computer Science, Artificial Intelligence; Computer Science, Interdisciplinary Applications WE Conference Proceedings Citation Index - Science (CPCI-S) SC Computer Science GA BX2FO UT WOS:001259449700049 DA 2024-09-05 ER PT J AU Ribeiro, VM AF Ribeiro, Vitor Miguel TI Pioneering paradigms: unraveling niche opportunities in green finance through bibliometric analysis of nation brands and brand culture SO GREEN FINANCE LA English DT Article DE bibliometric analysis; latent Dirichlet allocation; multinomial discrete choice analysis; nation brand; brand culture; green economy; green finance ID COUNTRY-OF-ORIGIN; EXPRESSING HERSELF; GOOGLE-SCHOLAR; SOCIAL MEDIA; SCIENCE; IMPACT; IDENTITY; CHINA; MANAGEMENT; INFRASTRUCTURE AB This study reviews the literature focused on nation brands and brand culture through the innovative combination of latent Dirichlet allocation with a multinomial and unordered discrete choice analysis. Unlike a narrow perspective of bibliometric work, which confines itself to reviewing existing literature within a specific research domain, a broader viewpoint leverages bibliometric analysis to pinpoint potential research opportunities indicative of emerging trends in related fields. Adopting this comprehensive paradigm, the current study scrutinizes 60 articles spanning the timeframe from 1992 to 2021. The analysis discerns six prospective marketing strategies instrumental in propelling a country to global brand prominence: the synergistic integration of country -of -origin and city brands, consumption branding, materialistic branding, green branding, ideological branding, and scientific branding. Notably, environmental branding has assumed a pivotal global role post-2015, while ideological branding represents a more recent trend centered on diligent e fforts to invigorate national identity systems. Empirical insights underscore the need of a multidisciplinary approach in the creation of nation brands, suggesting that distinct strategies need not be mutually exclusive. Quantitatively, it is found evidence that covering one additional environmental topic in a study increases (decreases) its likelihood of belonging to the consumption (ideology) cluster by 50.8 (50.6) percentage points, respectively. Strategic recommendations for future national endeavors emphasize the significance of becoming a Stackelberg leader in the race to generate added value. Collectively, these findings underscore that the bibliometric analysis employed to elucidate the evolution of nation brands and brand culture, typically associated with international marketing, unveils two promising niche areas for future research in green finance: green nation brands and green brand culture . The former pertains to asset allocations within green enterprises and environmental sectors, enhancing a country's symbolic commitment to the burgeoning green paradigm. Meanwhile, the later delves into the internalization of fintech development's growth and intermediary e ffects, fostering green innovation, energy e fficiency, and green supply chains. This bottom -up approach is geared towards meeting community -based needs and presents valuable avenues for future exploration in the field of green finance. C1 [Ribeiro, Vitor Miguel] Univ Porto, Fac Econ, Dept Econ, Econometr Grp, Rua Dr Roberto Frias, P-4200464 Porto, Portugal. C3 Universidade do Porto RP Ribeiro, VM (corresponding author), Univ Porto, Fac Econ, Dept Econ, Econometr Grp, Rua Dr Roberto Frias, P-4200464 Porto, Portugal. EM vsribeiro@fep.up.pt OI Ribeiro, Vitor Miguel/0000-0002-7223-9841 FU FCT [DSAIPA-CS-0086-2020] FX V. M. Ribeiro acknowledges financial support from the FCT project DSAIPA-CS-0086-2020. Any necessary material for replication of this study can be provided upon request to vsribeiro@fep.up.pt. V. M. Ribeiro also appreciates the comments and suggestions from two anonymous reviewers, the Editor -in -Chief, the Editor -in -Charge, the Assistant Editor, and the English Editor, which substantially improved the quality of the final version of this manuscript. CR Aaker DA, 1996, CALIF MANAGE REV, V38, P102, DOI 10.2307/41165845 Abramo G, 2011, SCIENTOMETRICS, V87, P499, DOI 10.1007/s11192-011-0352-7 Adda J, 2016, Q J ECON, V131, P891, DOI 10.1093/qje/qjw005 Adriaanse LS, 2013, ELECTRON LIBR, V31, P727, DOI 10.1108/EL-12-2011-0174 Aguilar-Moreno JA, 2024, AIMS MATH, V9, P4337, DOI 10.3934/math.2024215 Aldridge Stephen., 2002, SOCIAL CAPITAL DISCU Alserhan BA, 2015, J RES MARK ENTREP, V17, P36, DOI 10.1108/JRME-09-2014-0024 Anderson B, 1983, Imagined communities: Reflections on the origin and spread of nationalism Verso books, DOI [10.4324/9781003060963-46/imagined-communities-benedict-anderson, DOI 10.4324/9781003060963-46/IMAGINED-COMMUNITIES-BENEDICT-ANDERSON] Anholt S, 2005, J ADVERTISING RES, V45, P296, DOI 10.1017/S0021849905050336 Anholt S., 2002, Journal of Brand Management, V10, P59, DOI [10.1057/palgrave.bm.2540101, DOI 10.1057/PALGRAVE.BM.2540101] Appio FP, 2016, SCIENTOMETRICS, V108, P355, DOI 10.1007/s11192-016-1955-9 Appio FP, 2014, SCIENTOMETRICS, V101, P623, DOI 10.1007/s11192-014-1329-0 Aria M, 2022, SUSTAINABILITY-BASEL, V14, DOI 10.3390/su14063643 Aria M, 2020, SOC INDIC RES, V149, P803, DOI 10.1007/s11205-020-02281-3 Aria M, 2017, J INFORMETR, V11, P959, DOI 10.1016/j.joi.2017.08.007 Aronczyk Melissa., 2008, INT J COMMUN-US, V2, P25 Bartikowski B, 2021, J BUS ETHICS, V169, P261, DOI 10.1007/s10551-020-04483-8 Batra R, 2019, J CONSUM PSYCHOL, V29, P535, DOI 10.1002/jcpy.1122 BELK RW, 1984, ADV CONSUM RES, V11, P291 Bellostas A, 2023, GREEN FINANC, V5, P211, DOI 10.3934/GF.2023009 Benneworth P, 2005, EUR PLAN STUD, V13, P537, DOI 10.1080/09654310500107175 Bennink H, 2023, GREEN FINANC, V5, P154, DOI 10.3934/GF.2023007 BILKEY WJ, 1982, J INT BUS STUD, V13, P89, DOI 10.1057/palgrave.jibs.8490539 Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993 Boell SK, 2015, J INF TECHNOL-UK, V30, P161, DOI 10.1057/jit.2014.26 Bulmer S, 2010, AUSTRALAS MARK J, V18, P199, DOI 10.1016/j.ausmj.2010.07.002 Caffrey J., 1971, ESTIMATING IMPACT CO Carlsen L, 2023, GREEN FINANC, V5, P89, DOI 10.3934/GF.2023005 Chabowski BR, 2013, J INT BUS STUD, V44, P622, DOI 10.1057/jibs.2013.20 Chappin EJL, 2014, RENEW SUST ENERG REV, V30, P715, DOI 10.1016/j.rser.2013.11.013 Clayton R, 1998, WORLD POLIT, V51, P67, DOI 10.1017/S0043887100007796 Clifton N, 2014, J DESTIN MARK MANAGE, V3, P122, DOI 10.1016/j.jdmm.2014.02.003 Cobo MJ, 2011, J INFORMETR, V5, P146, DOI 10.1016/j.joi.2010.10.002 Cohen J., 1992, Current directions in psychological science, V1, P98, DOI [10.1111/1467-8721.ep10768783, DOI 10.1111/1467-8721.EP10768783] Connor Walker., 1978, Ethnic and Racial Studies, V1, P377 D'Angelo CA, 2011, J AM SOC INF SCI TEC, V62, P257, DOI 10.1002/asi.21460 De Cillia R, 1999, DISCOURSE SOC, V10, P149, DOI 10.1177/0957926599010002002 de Nooy W, 2011, SOC NETWORKS, V33, P31, DOI 10.1016/j.socnet.2010.09.003 Demangeot C, 2015, INT MARKET REV, V32, P118, DOI 10.1108/IMR-01-2015-0017 Demir G., 2024, Decis. Making Appl. Manag. Eng, V7, P290, DOI [10.31181/dmame7120241037, DOI 10.31181/DMAME7120241037] Demir G, 2024, EXPERT SYST APPL, V237, DOI 10.1016/j.eswa.2023.121660 Desalegn G, 2023, GREEN FINANC, V5, P195, DOI 10.3934/GF.2023008 Dinnie K., 2003, J CUSTOMER BEHAV, V3, P165, DOI DOI 10.1362/1475392041829537 Dinnie K, 2010, INT MARKET REV, V27, P388, DOI 10.1108/02651331011058572 Dinnie Keith., 2004, Place Branding, V1, P106, DOI https://doi.org/10.1057/palgrave.pb.5990010 Donato H, 2019, ACTA MEDICA PORT, V32, P227, DOI 10.20344/amp.11923 Druckmann Daniel., 1994, MERSHON INT STUD REV, V38, P43, DOI DOI 10.2307/222610 Ductor L, 2015, OXFORD B ECON STAT, V77, P385, DOI 10.1111/obes.12070 Dwivedi Y, 2008, ECIS 2008 P, V112 Dzhengiz T, 2020, GREEN FINANC, V2, P323, DOI 10.3934/GF.2020018 EVERETT DH, 1952, T FARADAY SOC, V48, P749, DOI 10.1039/tf9524800749 Ezuma REMR, 2022, GREEN FINANC, V4, P450, DOI 10.3934/GF.2022.2022022 Failler P, 2019, GREEN FINANC, V1, P1, DOI 10.3934/GF.2019.1.1 Falagas ME, 2008, FASEB J, V22, P338, DOI 10.1096/fj.07-9492LSF Fan Y, 2010, PLACE BRANDING PUBLI, V6, P97, DOI 10.1057/pb.2010.16 Fetscherin M, 2010, INT MARKET REV, V27, P466, DOI 10.1108/02651331011058617 Foscht T, 2008, J PROD BRAND MANAG, V17, P131, DOI 10.1108/10610420810875052 Frankenberger-Graham KD, 2015, P 1993 AC MARK SCI A, P15, DOI [10.1007/978-3-319-13159-74, DOI 10.1007/978-3-319-13159-74] FREEMAN LC, 1977, SOCIOMETRY, V40, P35, DOI 10.2307/3033543 Friedman Milton., 1980, Free to choose: a personal statement Gaggiotti H, 2008, PLACE BRANDING PUBLI, V4, P115, DOI 10.1057/palgrave.pb.6000081 Gan CM, 2015, SCIENTOMETRICS, V105, P1167, DOI 10.1007/s11192-015-1723-2 Geary D, 2013, TOURIST STUD, V13, P36, DOI 10.1177/1468797612471105 Gellner E, 1994, Philos Quart, V47 Gielens K, 2019, INT J RES MARK, V36, P367, DOI 10.1016/j.ijresmar.2019.01.005 Gong W, 2014, J RES INTERACT MARK, V8, P37, DOI 10.1108/JRIM-09-2013-0064 Gorelick J, 2020, GREEN FINANC, V2, P114, DOI 10.3934/GF.2020007 Gössling S, 2020, GLOBAL ENVIRON CHANG, V65, DOI 10.1016/j.gloenvcha.2020.102194 Gould M, 2007, PLACE BRANDING PUBLI, V3, P100, DOI 10.1057/palgrave.pb.6000051 Griffiths TL, 2004, P NATL ACAD SCI USA, V101, P5228, DOI 10.1073/pnas.0307752101 Grimson A, 2010, SOC IDENT, V16, P61, DOI 10.1080/13504630903465894 Gupta N, 2011, ASIA PAC J MARKET LO, V23, P251, DOI 10.1108/13555851111143204 Guzman F., 2005, The ICFAI Journal of Brand Management, V2, P30 Haas R, 2021, GREEN FINANC, V3, P90, DOI 10.3934/GF.2021006 Hahn ED, 2005, J R Stat Soc Series B, P1 Hanson K, 2019, POLIT PSYCHOL, V40, P777, DOI 10.1111/pops.12561 Hao AW, 2021, INT MARKET REV, V38, P46, DOI 10.1108/IMR-01-2019-0028 He JX, 2021, INT MARKET REV, V38, P19, DOI 10.1108/IMR-11-2019-0268 Hewett K, 2022, INT J RES MARK, V39, P619, DOI 10.1016/j.ijresmar.2021.09.003 Hicks D, 1999, SCIENTOMETRICS, V44, P193, DOI 10.1007/BF02457380 HILL MO, 1973, ECOLOGY, V54, P427, DOI 10.2307/1934352 HONG ST, 1989, J CONSUM RES, V16, P175, DOI 10.1086/209206 Hsieh MH, 2005, J PROD BRAND MANAG, V14, P14, DOI 10.1108/10610420510583716 Huang YC, 2023, GREEN FINANC, V5, P1, DOI 10.3934/GF.2023001 HUTCHESON K, 1970, J THEOR BIOL, V29, P151, DOI 10.1016/0022-5193(70)90124-4 Ilic B, 2019, GREEN FINANC, V1, P94, DOI 10.3934/GF.2019.2.94 van Eck NJ, 2011, Arxiv, DOI arXiv:1109.2058 Johansson J.K., 1985, J MARKETING RES, V22, P388 Kalamova MM, 2010, KYKLOS, V63, P400, DOI 10.1111/j.1467-6435.2010.00480.x Kaufmann HR, 2008, EUROMED J BUS, V3, P38, DOI 10.1108/14502190810873812 Keillor BD, 1999, INT MARKET REV, V16, P65, DOI 10.1108/02651339910257656 Kemfert C, 2019, GREEN FINANC, V1, P237, DOI 10.3934/GF.2019.3.237 Khasseh AA, 2017, INFORM PROCESS MANAG, V53, P705, DOI 10.1016/j.ipm.2017.02.001 Kirloskar-Steinbach M, 2019, EDUC PHILOS THEORY, V51, P1490, DOI 10.1080/00131857.2018.1562850 Klein JillG., 1999, J INT CONSUM MARK, V11, P5, DOI [10.1300/J046v11n04_02, DOI 10.1300/J046V11N04_02] KLEIN LR, 1978, AM ECON REV, V68, P1 KOSTERMAN R, 1989, POLIT PSYCHOL, V10, P257, DOI 10.2307/3791647 Kotler P., 2002, Journal of Brand Management, V9, P249, DOI DOI 10.1057/PALGRAVE.BM.2540076 Lantz G, 1998, ADV CONSUM RES, V25, P486 Lewison G, 1998, SCIENTOMETRICS, V41, P5, DOI 10.1007/BF02457962 Li W.K., 1994, Journal of Consumer Psychology, V3, P187 Loo T, 2006, CORP REPUT REV, V9, P198, DOI 10.1057/palgrave.crr.1550025 Maciel FA, 2013, Latin Am Bus Rev, V14, P139, DOI [10.1080/10978526.2013.808950, DOI 10.1080/10978526.2013.808950] Magurran AE, 1988, Why diversity? Ecological Diversity and its Measurement, DOI [10.1007/978-94-015-7358-0, DOI 10.1007/978-94-015-7358-0] Magurran AE, 2010, Biological diversity: frontiers in measurement and assessment, DOI DOI 10.1086/666756 MAHESWARAN D, 1994, J CONSUM RES, V21, P354, DOI 10.1086/209403 Margalef R, 1972, Homage to Evelyn Hutchinson, or why there is an upper limit to diversity Marino-Romero JA, 2024, TECHNOL FORECAST SOC, V199, DOI 10.1016/j.techfore.2023.123014 Matzler K, 2016, TOURISM MANAGE, V52, P507, DOI 10.1016/j.tourman.2015.07.017 May RM, 1979, Ecol Evol Communities, V1, P81 McFadden D., 1974, Journal of Public Economics, V3, P303, DOI DOI 10.1016/0047-2727(74)90003-6 Martínez NM, 2016, J PLACE MANAG DEV, V9, P73, DOI 10.1108/JPMD-11-2015-0052 PIELOU E C, 1969, P286 Porta J., 1998, GEODERMA, V87, P31, DOI DOI 10.1080/10641734.1998.10505081 Ribeiro HCM, 2013, Revista De Administracao e Inovacao, V10, P208, DOI [10.5773/rai.v10i4.1139, DOI 10.5773/RAI.V10I4.1139] Ribeiro VM, 2016, B ECON RES, V68, pS133, DOI 10.1111/boer.12084 Rojas-Mendez JI, 2023, J PROD BRAND MANAG, V32, P107, DOI 10.1108/JPBM-04-2021-3444 Roztocki N, 2008, P 14 AM C INF SYST, V1, P1 SAMIEE S, 1994, J INT BUS STUD, V25, P579, DOI 10.1057/palgrave.jibs.8490213 Schwarz C, 2018, STATA J, V18, P101, DOI 10.1177/1536867X1801800107 Seo J, 2008, ASIAN PERSPEC, V32, P39 Seo J, 2024, THIRD WORLD Q, V45, P1106, DOI 10.1080/01436597.2021.1937098 SHIMP TA, 1987, J MARKETING RES, V24, P280, DOI 10.2307/3151638 Shugurov M, 2023, GREEN FINANC, V5, P102, DOI 10.3934/GF.2023006 Silva ST, 2009, J EVOL ECON, V19, P605, DOI 10.1007/s00191-008-0121-9 Smith P.M., 1994, Journal of Global Marketing, V7, P103, DOI DOI 10.1300/J042V07N0306 Södergren J, 2021, INT J CONSUM STUD, V45, P645, DOI 10.1111/ijcs.12651 Song YA, 2013, CORP REPUT REV, V16, P80, DOI 10.1057/crr.2012.24 Stalnaker S, 2002, Hub culture: The next wave of urban consumers Wiley Steenkamp JB, 2021, INT MARKET REV, V38, P6, DOI 10.1108/IMR-10-2019-0253 Steenkamp JBEM, 2010, J MARKETING RES, V47, P1011, DOI 10.1509/jmkr.47.6.1011 Steenkamp JBEM, 1999, J MARKETING, V63, P55, DOI 10.2307/1251945 Tajfel H., 1986, An Integrative Theory of Intergroup Conflict, P33 Teixeira AAC, 2017, SCIENTOMETRICS, V110, P541, DOI 10.1007/s11192-016-2186-9 Therkelsen A, 2010, SCAND J HOSP TOUR, V10, P107, DOI 10.1080/15022250903561903 Tuan Y.-F., 1990, Topophilia: A Study of Environmental Perception, Attitudes, and Values Turner G, 1994, Making it national: Australian nationalism and popular culture, DOI [10.4324/9781003116363, DOI 10.4324/9781003116363] Turner G, 1994, Metro Magazine: Media and Education Magazine, V1, P32, DOI [10.3316/ielapa.153836366722575, DOI 10.3316/IELAPA.153836366722575] van Eck NJ, 2010, SCIENTOMETRICS, V84, P523, DOI 10.1007/s11192-009-0146-3 van Eck NJ, 2009, J AM SOC INF SCI TEC, V60, P1635, DOI 10.1002/asi.21075 Verlegh PWJ, 1999, J ECON PSYCHOL, V20, P521, DOI 10.1016/S0167-4870(99)00023-9 Volcic Z, 2009, Television in the Balkans: The rise of commercial nationalism Volcic Z, 2011, INT J COMMUN-US, V5, P598 Wakkee I, 2019, TECHNOL FORECAST SOC, V141, P195, DOI 10.1016/j.techfore.2018.10.013 Wallström Å, 2010, J BRAND MANAG, V18, P228, DOI 10.1057/bm.2010.45 Waltman L, 2010, J INFORMETR, V4, P629, DOI 10.1016/j.joi.2010.07.002 Wang YF, 2023, GREEN FINANC, V5, P452, DOI 10.3934/GF.2023018 White GO, 2016, MANAGE INT REV, V56, P35, DOI 10.1007/s11575-015-0260-9 White L, 2009, TOUR REV INT, V13, P139, DOI 10.3727/154427209789604633 Wilson JAJ, 2010, J ISLAMIC MARK, V1, P177, DOI 10.1108/17590831011055905 Winit W, 2014, INT MARKET REV, V31, P102, DOI 10.1108/IMR-01-2012-0001 Wolfswinkel JF, 2013, EUR J INFORM SYST, V22, P45, DOI 10.1057/ejis.2011.51 Zong QJ, 2013, SCIENTOMETRICS, V94, P781, DOI 10.1007/s11192-012-0799-1 NR 153 TC 0 Z9 0 U1 1 U2 1 PU AMER INST MATHEMATICAL SCIENCES-AIMS PI SPRINGFIELD PA PO BOX 2604, SPRINGFIELD, MO 65801-2604, UNITED STATES SN 2643-1092 J9 GREEN FINANC JI Green Financ. PY 2024 VL 6 IS 2 BP 287 EP 347 DI 10.3934/GF.2024012 PG 61 WC Business, Finance; Green & Sustainable Science & Technology WE Emerging Sources Citation Index (ESCI) SC Business & Economics; Science & Technology - Other Topics GA UL8R0 UT WOS:001248310400001 OA gold DA 2024-09-05 ER PT J AU Altuntas, S Dereli, T AF Altuntas, Serkan Dereli, Turkay TI A Regression-Based "Patent Data Analysis" Approach: A Case Study for "Weapon Technology" Evaluation Process SO IEEE TRANSACTIONS ON ENGINEERING MANAGEMENT LA English DT Article DE Patents; Weapons; Defense industry; Data analysis; Linear regression; Companies; Market research; Linear regression model; patent analysis; technology evaluation; weapon technology ID SOCIAL NETWORK ANALYSIS; DEFENSE INDUSTRY; MILITARY TECHNOLOGY; KNOWLEDGE; FUTURE; CHINA; FIRMS; PERFORMANCE; INNOVATION; DOCUMENTS AB Technology evaluation is one of the most essential tasks for today's companies to make correct decisions that will increase their competitiveness. To date, numeroushave been made to address technology evaluation in the literature. Nevertheless, none of them have built a technology map or classified technologies based on their effects on the competitive power of a company in practice. To overcome the limitations of previous studies, a regression-based patent data analysis is proposed here for technology evaluation in this article. To this end, the proposed approach builds a technology map and classifies the technologies into four classes with respect to the technology effect ratio, namely 1) very high effect class, 2) high effect class, 3) medium effect class, and 4) low effect class. The technology evaluation of weapon technology in the defense industry has been conducted to show how the proposed approach works in real life. A good technology management strategy can be selected among available alternatives by decision makers and managers using the proposed approach. The results show that the proposed technology evaluation process can be used effectively in practice. C1 [Altuntas, Serkan] Yildiz Tech Univ, Dept Ind Engn, TR-34349 Istanbul, Turkey. [Dereli, Turkay] Hasan Kalyoncu Univ, Off President, TR-27010 Gaziantep, Turkey. C3 Yildiz Technical University; Hasan Kalyoncu University RP Altuntas, S (corresponding author), Yildiz Tech Univ, Dept Ind Engn, TR-34349 Istanbul, Turkey. EM serkan@yildiz.edu.tr; turkay.dereli@hku.edu.tr RI Altuntas, Serkan/ABA-3083-2020 OI Altuntas, Serkan/0000-0003-4383-4710; Dereli, Turkay/0000-0002-2130-5503 CR Abbas A, 2014, WORLD PAT INF, V37, P3, DOI 10.1016/j.wpi.2013.12.006 Altuntas F., 2017, GIRISIMCILIK VE INOV, V6, P97 Altuntas F, 2021, KYBERNETES, V50, P1180, DOI 10.1108/K-11-2019-0761 Altuntas S, 2020, SCIENTOMETRICS, V124, P1157, DOI 10.1007/s11192-020-03535-0 Altuntas S, 2015, TECHNOL FORECAST SOC, V96, P202, DOI 10.1016/j.techfore.2015.03.011 Altuntas S, 2015, TECHNOL FORECAST SOC, V92, P249, DOI 10.1016/j.techfore.2014.09.012 Atesoglu S., 1990, DEFENC ECON, V2, P19, DOI DOI 10.1080/10430719008404675 Azimi S, 2022, IEEE T ENG MANAGE, V69, P1394, DOI 10.1109/TEM.2020.2981284 Barros CP, 2002, DEFENCE PEACE ECON, V13, P311, DOI 10.1080/10242690212359 Bitzinger RA, 2011, J STRATEGIC STUD, V34, P425, DOI 10.1080/01402390.2011.574985 Capelle-Blancard G, 2008, REV FINANC ECON, V17, P14, DOI 10.1016/j.rfe.2007.02.001 Castellacci F, 2014, DEFENCE PEACE ECON, V25, P549, DOI 10.1080/10242694.2013.857451 CASTRO AureliaVALINO., 2001, Defence and Peace Economics, V12, P395, DOI [https://doi.org/10.1080/10430710108404996, DOI 10.1080/10430710108404996] CHAKRABARTI AK, 1994, INT J TECHNOL MANAGE, V9, P757 CHAKRABARTI AK, 1993, IEEE T ENG MANAGE, V40, P91, DOI 10.1109/17.206656 Chen W, 2022, IEEE T ENG MANAGE, V69, P1135, DOI 10.1109/TEM.2020.2975988 Choi J, 2014, TECHNOL FORECAST SOC, V83, P170, DOI 10.1016/j.techfore.2013.07.004 Cowey K, 2004, CURR OPIN SOLID ST M, V8, P367, DOI 10.1016/j.cossms.2004.12.004 Dagdeviren M, 2009, EXPERT SYST APPL, V36, P8143, DOI 10.1016/j.eswa.2008.10.016 Daim T, 2020, TECHNOL FORECAST SOC, V161, DOI 10.1016/j.techfore.2020.120329 de Oliveira L. G, 2012, J DEFENCE MANAGE, V2 Dehghani Milad, 2018, International Journal of Product Development, V22, P293 Dereli T, 2010, CYBERNET SYST, V41, P371, DOI 10.1080/01969722.2010.486225 Dowdall P, 2004, DEFENCE PEACE ECON, V15, P565, DOI 10.1080/1024269042000246684 Dunne P, 2001, DEFENCE PEACE ECON, V12, P5, DOI 10.1080/10430710108404974 Ernest Nick., 2015, J DEF MANAG, V6, P2167 Ernst H., 2003, World Patent Information, V25, P233, DOI 10.1016/S0172-2190(03)00077-2 Esper Thomas., 1969, SLAVIC REV, V28, P185 Guillou S, 2009, RES POLICY, V38, P170, DOI 10.1016/j.respol.2008.10.015 Günlük-Senesen G, 2001, DEFENCE PEACE ECON, V12, P27, DOI 10.1080/10430710108404975 HACKER BC, 1977, TECHNOL CULT, V18, P43, DOI 10.2307/3103204 Heshmati A, 2009, PRODUCTIVITY EFFICIE Hsueh CC, 2009, 2009 INTERNATIONAL CONFERENCE ON ADVANCES IN SOCIAL NETWORKS ANALYSIS AND MINING, P393, DOI 10.1109/ASONAM.2009.68 Jang, 2012, J INTELLECT PROP RIG, V17, P539 Jun S., 2012, INT J SOFTWARE ENG I, V6, P107 Jun S., 2015, INT J STW ENG APPL, V9, P155 Jun S., 2010, Journal of Modern Mathematics and Statistics, V4, P101 Jun S, 2018, TECHNOL ANAL STRATEG, V30, P311, DOI 10.1080/09537325.2017.1309015 Jun S, 2016, TECHNOL ANAL STRATEG, V28, P156, DOI 10.1080/09537325.2015.1073252 Jun S, 2013, IND MANAGE DATA SYST, V113, P890, DOI 10.1108/IMDS-01-2013-0032 Jun S, 2012, COMM COM INF SC, V340, P28 Jun S, 2012, COMM COM INF SC, V340, P1 Jun S, 2011, COMM COM INF SC, V258, P21 Kim DH, 2016, TECHNOL FORECAST SOC, V105, P140, DOI 10.1016/j.techfore.2016.01.025 Kim H, 2013, TECHNOL FORECAST SOC, V80, P944, DOI 10.1016/j.techfore.2012.10.014 Kim YG, 2008, EXPERT SYST APPL, V34, P1804, DOI 10.1016/j.eswa.2007.01.033 Kirkpatrick D, 2008, DEFENCE PEACE ECON, V19, P479, DOI 10.1080/10242690701750668 Kirkpatrick DLI, 2004, DEFENCE PEACE ECON, V15, P259, DOI 10.1080/1024269032000123203 Kollias C, 1997, DEFENCE PEACE ECON, V8, P189, DOI 10.1080/10430719708404875 Kollias C, 2003, DEFENCE PEACE ECON, V14, P311, DOI 10.1080/10242690302927 Li SY, 2019, TECHNOL FORECAST SOC, V148, DOI 10.1016/j.techfore.2019.119731 Li X, 2022, IEEE T ENG MANAGE, V69, P2603, DOI 10.1109/TEM.2019.2949124 Lundmark M, 2016, EMERGING CRITICAL TE, P37 Madani F, 2017, INT J MANAG SCI ENG, V12, P1, DOI 10.1080/17509653.2015.1100525 Sempere CM, 2017, DEFENCE PEACE ECON, V28, P319, DOI 10.1080/10242694.2015.1072377 Mittal V, 2021, IEEE T ENG MANAGE, V68, P1195, DOI 10.1109/TEM.2020.3017459 Park S, 2016, IND MANAGE DATA SYST, V116, P122, DOI 10.1108/IMDS-05-2015-0206 Park S, 2015, SUSTAINABILITY-BASEL, V7, P13126, DOI 10.3390/su71013126 Patil AS, 2004, J POWER SOURCES, V136, P220, DOI 10.1016/j.jpowsour.2004.03.009 Linares IMP, 2019, TECHNOL SOC, V59, DOI 10.1016/j.techsoc.2019.04.010 Qiu ZP, 2022, IEEE T ENG MANAGE, V69, P1216, DOI 10.1109/TEM.2020.2978849 Ranaei S, 2014, PORTL INT CONF MANAG, P2924 Sezgin S, 1997, DEFENCE PEACE ECON, V8, P381, DOI 10.1080/10430719708404887 Siddiqa-Agha A, 1999, DEFENCE PEACE ECON, V10, P347, DOI 10.1080/10430719908404932 Sternitzke C, 2008, WORLD PAT INF, V30, P115, DOI 10.1016/j.wpi.2007.08.003 Struys W, 2004, DEFENCE PEACE ECON, V15, P551, DOI 10.1080/1024269042000246648 Trappey AJC, 2021, IEEE T ENG MANAGE, V68, P1334, DOI 10.1109/TEM.2019.2957842 Trappey CV, 2011, ADV ENG INFORM, V25, P53, DOI 10.1016/j.aei.2010.05.007 Tseng FM, 2002, TECHNOL FORECAST SOC, V69, P71, DOI 10.1016/S0040-1625(00)00113-X Vekstein D, 1999, TECHNOVATION, V19, P615, DOI 10.1016/S0166-4972(99)00066-8 Vekstein D., 1997, The Journal of Technology Transfer, V22, P47, DOI DOI 10.1007/BF02509153 Wang PM, 1998, J BUS ECON STAT, V16, P27, DOI 10.2307/1392013 Weng C, 2012, J KNOWL ECON, V3, P327, DOI 10.1007/s13132-011-0048-5 Wu C.-C., 2012, Data Sci. J, V11, P110, DOI DOI 10.2481/DSJ.011-003 Zervos V, 2009, DEFENCE PEACE ECON, V20, P27, DOI 10.1080/10242690701833183 NR 75 TC 3 Z9 3 U1 6 U2 39 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9391 EI 1558-0040 J9 IEEE T ENG MANAGE JI IEEE Trans. Eng. Manage. PD DEC PY 2022 VL 69 IS 6 BP 3874 EP 3886 DI 10.1109/TEM.2021.3088804 EA JUN 2021 PG 13 WC Business; Engineering, Industrial; Management WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Business & Economics; Engineering GA 5Y1MO UT WOS:000732640600001 DA 2024-09-05 ER PT C AU Kim, J Le, DX Thoma, GR AF Kim, Jongwoo Le, Daniel X. Thoma, George R. GP IEEE TI Identification of Investigator Name Zones using SVM Classifiers and Heuristic Rules SO 2013 12TH INTERNATIONAL CONFERENCE ON DOCUMENT ANALYSIS AND RECOGNITION (ICDAR) SE Proceedings of the International Conference on Document Analysis and Recognition LA English DT Proceedings Paper CT 12th International Conference on Document Analysis and Recognition (ICDAR) CY AUG 25-28, 2013 CL Washington, DC DE Investigator Names; MEDLINE; Support Vector Machine; heuristic rules; labeling; bibliographic information AB The research reported in biomedical articles often involves large numbers of investigators at different institutions. To properly credit these investigators, an article's authors frequently name them together in some part of the article. These Investigator Names (IN) now constitute a required field in the MEDLINE (R) citation for the article. The automated extraction of these names is implemented in a system developed by a research group at the U. S. National Library of Medicine, consisting of three modules based on Support Vector Machine (SVM) classifiers and heuristic rules. The SVM classifiers label text blocks ("zones") that possibly contain Investigator Names, and the heuristic rules identify the actual zones. We collect eleven sets of word lists to train and test the classifiers, each set containing 100 to 56,000 words. Experimental results on online biomedical articles show a Precision of 0.90, 0.95 Recall, 0.92 F-Measure, and 0.99 Accuracy. C1 [Kim, Jongwoo; Le, Daniel X.; Thoma, George R.] Natl Lib Med, Bethesda, MD 20894 USA. C3 National Institutes of Health (NIH) - USA; NIH National Library of Medicine (NLM) RP Kim, J (corresponding author), Natl Lib Med, 8600 Rockville Pike, Bethesda, MD 20894 USA. EM jongkim@mail.nih.gov CR [Anonymous], 1998, MACHINE LEARNING ECM, DOI DOI 10.1007/BFB0026666 [Anonymous], 2008, TECHNICAL MEMORANDUM Burges CJC, 1998, DATA MIN KNOWL DISC, V2, P121, DOI 10.1023/A:1009715923555 Chang C.-C., 2001, LIBSVM A LIBRARY FOR Dumais S., 1998, Proceedings of the 1998 ACM CIKM International Conference on Information and Knowledge Management, P148, DOI 10.1145/288627.288651 Gabrilovich E., 2004, P 21 INT C MACH LEAR, P321 Joachims T., 1998, Machine Learning: ECML-98. 10th European Conference on Machine Learning. Proceedings, P137, DOI 10.1007/BFb0026683 Johnson M., 2008, SVM NET SOFTWARE Jongwoo Kim, 2008, Proceedings of the 2008 International Conference on Data Mining, P373 Kim J., 2010, IS T SPIES 22 ANN S Kim J., 2009, PROCEEDINGS OF THE 2 Kim J, 2012, PROC SPIE, V8297, DOI 10.1117/12.910517 Lafferty John, 2001, PROC 18 INT C MACH L PROC 18 INT C MACH L PROC 18 INT C MACH L PROC 18 INT C MACH L PROC 18 INT C MACH L PROC 18 INT C MACH L PROC 18 INT C MACH L PROC 18 INT C MACH L, V1, P282 Madigan D., 2005, STAT GUIDE UNKNOWN, P135 McCallum A., 1998, PROC THE AAAI 98 WOR, V577 Shetty S., 2007, PROCEEDING OF DOCUME Zhang C., 2008, J Comput Informat Syst, V4, P1169 NR 17 TC 2 Z9 2 U1 0 U2 1 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA SN 1520-5363 J9 PROC INT CONF DOC PY 2013 BP 140 EP 144 DI 10.1109/ICDAR.2013.35 PG 5 WC Computer Science, Artificial Intelligence; Engineering, Electrical & Electronic WE Conference Proceedings Citation Index - Science (CPCI-S) SC Computer Science; Engineering GA BB4XX UT WOS:000343489100026 DA 2024-09-05 ER PT C AU Dong, HQ Cao, GH Huang, L AF Dong, Huan Qing Cao, Gao Hui Huang, Lu GP ASSOC COMPUTING MACHINERY TI Research on evaluation system of human-computer interaction system in university library under the background of artificial intelligence SO 2024 6TH ASIA PACIFIC INFORMATION TECHNOLOGY CONFERENCE, APIT 2024 LA English DT Proceedings Paper CT 6th Asia Pacific Information Technology Conference (APIT) CY JAN 29-31, 2024 CL Bangkok, THAILAND DE university library; human-computer interaction system; evaluation index system; analytic hierarchy process AB The human-computer interaction system of university library plays a vital role in the digital age. In order to comprehensively evaluate the quality and performance of the system, the optimization of human-computer interaction system in the field of university library is promoted. Through literature investigation and expert investigation, this study screens the factors that affect the human-computer interaction system, constructs the evaluation index system of the human-computer interaction system of university library, and uses the analytic hierarchy process to analyze. The evaluation index system consists of 4 primary indicators and 14 secondary indicators. The results show that user experience is the most important index in the evaluation system of university library human-computer interaction system, followed by intelligent interaction performance, and finally system performance and application technology performance. Through the evaluation index system constructed, it is expected to provide an effective evaluation tool for the human-computer interaction system of university library and provide a reference for improving the quality of the human-computer interaction system of university library. C1 [Dong, Huan Qing; Cao, Gao Hui] Cent China Normal Univ, Sch Informat Management, Wuhan, Peoples R China. [Huang, Lu] Cent China Normal Univ, Natl Res Ctr Cultural Ind, Wuhan, Peoples R China. C3 Central China Normal University; Central China Normal University RP Dong, HQ (corresponding author), Cent China Normal Univ, Sch Informat Management, Wuhan, Peoples R China. EM donghuanqing13@163.com; ghcao@mail.ccnu.edu.cn; huanglu433123@163.com CR [Anonymous], 2010, DIS I S O. 9241-210 Apraiz A, 2023, INT J SOC ROBOT, V15, P187, DOI 10.1007/s12369-022-00957-z Blackwell A. F., 2015, HCI as an Inter-Discipline Cresswell K, 2023, HEALTH POLICY, V136, DOI 10.1016/j.healthpol.2023.104889 Daghouri A, 2018, INT J ADV COMPUT SC, V9, P291 Gul S, 2019, ELECTRON LIBR, V37, P764, DOI 10.1108/EL-02-2019-0052 Helia Vembri Noor, 2018, MATEC Web of Conferences, V154, DOI 10.1051/matecconf/201815401101 Heun V., 2013, CHI 13 HUM FACT COMP Ishii H., 2003, P INT S MIX AUGM REA KANG JANG MOOK, 2019, The International Journal of Advanced Smart Convergence, V8, P1 Kato H, 2000, IEEE AND ACM INTERNATIONAL SYMPOSIUM ON AUGMENTED REALITY, PROCEEDING, P111, DOI 10.1109/ISAR.2000.880934 Ke ZY, 2022, SECUR COMMUN NETW, V2022, DOI 10.1155/2022/9562104 Li X., 2022, Computational Intelligence and Neuroscience, V2022 Liu XX, 2019, IOP C SER EARTH ENV, V252, DOI 10.1088/1755-1315/252/4/042090 Lund A., 2001, Usability and User Experience Newsletter of the STC Usability SIG, V8, P3, DOI DOI 10.1177/1078087402250360 Morrison A, 2009, CHI2009: PROCEEDINGS OF THE 27TH ANNUAL CHI CONFERENCE ON HUMAN FACTORS IN COMPUTING SYSTEMS, VOLS 1-4, P1889 Piumsomboon T, 2013, LECT NOTES COMPUT SC, V8118, P282 Ramanayaka K. H., 2018, Digital Information Research Foundation Reilly D, 2015, CHI 2015: PROCEEDINGS OF THE 33RD ANNUAL CHI CONFERENCE ON HUMAN FACTORS IN COMPUTING SYSTEMS, P887, DOI 10.1145/2702123.2702506 Saaty T. L., 2002, Sharif University of Technology SAATY TL, 1990, EUR J OPER RES, V48, P9, DOI 10.1016/0377-2217(90)90057-I Santhanes D., 2018, Factors influencing HPV Vaccine Hesitancy in SEAR and WPR: A Systematic Review and Meta-Analysis Turk M, 2014, PATTERN RECOGN LETT, V36, P189, DOI 10.1016/j.patrec.2013.07.003 NR 23 TC 0 Z9 0 U1 1 U2 1 PU ASSOC COMPUTING MACHINERY PI NEW YORK PA 1601 Broadway, 10th Floor, NEW YORK, NY, UNITED STATES BN 979-8-4007-1621-8 PY 2024 BP 69 EP 77 DI 10.1145/3651623.3651634 PG 9 WC Computer Science, Artificial Intelligence; Computer Science, Information Systems; Computer Science, Interdisciplinary Applications WE Conference Proceedings Citation Index - Science (CPCI-S) SC Computer Science GA BX0CD UT WOS:001228306500011 DA 2024-09-05 ER PT J AU Ingwersen, P Serrano-López, AE AF Ingwersen, Peter Eleazar Serrano-Lopez, Antonio TI Smart city research 1990-2016 SO SCIENTOMETRICS LA English DT Article DE Smart city research; Publication and citation analysis; Median age of references; Median age of citations; Topic modeling; Social network analysis; Clustering AB This scientometric analysis of the area of smart city(ies)' research covers 1990-2016, divided into three nine year periods: 1990-1998; 1999-2007; and 2008-2016. The methodology is partly based on the issue management' approach by Lancaster and Lee (J Assoc Inf Sci Technol 36(6):389-397, 1985) partly on common publication and citation analysis of the set of source documents (n=4725), the set of their references (n=27,099) and the set of publications (n=7863) citing the source documents. Median age analyses are included for the sets of references and citations to the source documents. DIVA-like diagrams (Database Information Visualization and Analysis system) are used to demonstrate the distribution of source documents over document types, time and volume of citations obtained. Social Network Analysis (SNA) is applied to topic modeling of the top-100 central WoS Categories of smart city(ies)' research and to the set of references. Findings show that the first mention of the concept smart city(ies)' in publication titles takes place in 1999. The research area demonstrates a strong multidisciplinary nature and an exponential growth of research publications (in WoS) 2008-2016 dominated by China, Italy, USA, Spain and England. The same five countries are also among the most citing and cited countries. Aside from a constantly strong ICT (Information and Communication Technology) and Electrical/Electronic Engineering presence sustainability' elements (Energy, Transport, Environment) are also vital, in particular during the first and third analysis period. The references from the source documents have more distinct topical clusters than the source documents. Artificial Intelligence (AI) appears as a novel field among the source documents 2008-2016, but disappears from the top-25 list in the citing documents. Instead Economics, Water Resources and Meteorology and Atmospheric Sciences move into the list. Proceedings papers, as in many other engineering and technology based research fields, are the dominant document type (70%) but have small citation impact (0.6c/p), thus decreasing the overall impact of the area to 3.6c/p. Journal articles are the most cited type with 76% of all citations received (impact 2008-2016: 7.5c/p). Most citations to journal articles derive from journal articles themselves (76%). C1 [Ingwersen, Peter] Aalborg Univ, Copenhagen, Denmark. [Eleazar Serrano-Lopez, Antonio] Carlos III Univ Madrid, Madrid, Spain. C3 Aalborg University RP Ingwersen, P (corresponding author), Aalborg Univ, Copenhagen, Denmark. EM ingwersen@id.aau.dk RI Lopez, Antonio Eleazar Serrano/D-4726-2013; Ingwersen, Peter/AEC-1759-2022 OI Lopez, Antonio Eleazar Serrano/0000-0003-1261-386X; Ingwersen, Peter/0000-0001-7964-5896 FU Spanish Ministry of Economy and Competitiveness [CSO 2014-51,916-C2-1-R]; Titled "La investigacion en eficiencia energetica y transporte sostenibles en el medio urbano FX This research was funded by the Spanish Ministry of Economy and Competitiveness under the Project CSO 2014-51,916-C2-1-R. Titled "La investigacion en eficiencia energetica y transporte sostenibles en el medio urbano: analisis del desarrollo cientifico y la percepcion social del tema desde la perspectiva de los estudios metricos de la informacion" "(Research on energy efficiency and sustainable transport in the urban environment: analysis of the scientific development and the social perception of the topic from the perspective of the metric studies of information)" CR [Anonymous], 2011, Proceedings of the 12th Annual International Digital Government Research Conference on Digital Government Innovation in Challenging Times - dg.o'11, DOI DOI 10.1145/2037556.2037602 Arun R, 2010, LECT NOTES ARTIF INT, V6118, P391 Cao J, 2009, NEUROCOMPUTING, V72, P1775, DOI 10.1016/j.neucom.2008.06.011 Cocchia A, 2014, PROGR IS, P13, DOI 10.1007/978-3-319-06160-3_2 Csardi G., 2017, PARSEDATE RECOGNIZE DEVEAUD R, 2014, DOCUMENT NUMERIQUE, V0017 Durán-Sánchez A, 2017, INNOV TECH KNOWL MAN, P159, DOI 10.1007/978-3-319-40895-8_12 Efrain-García P, 2016, REV ESP DOC CIENT, V39, DOI 10.3989/redc.2016.1.1223 Egghe L, 2018, BECOMING METRIC WISE Serrano-López AE, 2017, SCIENTOMETRICS, V112, P1471, DOI 10.1007/s11192-017-2447-2 Gagolewski M., 2016, R PACKAGE STRINGI CH, P385, DOI [10. 5281/zenodo. 19071, DOI 10.5281/ZENODO.19071] Griffiths TL, 2004, P NATL ACAD SCI USA, V101, P5228, DOI 10.1073/pnas.0307752101 Harrison C, 2010, IBM J RES DEV, V54, DOI 10.1147/JRD.2010.2048257 Ingwersen P, 2000, ASIST MON SER, P373 Ingwersen P, 2001, CHINESE SCI BULL, V46, P524, DOI 10.1007/BF03187274 LANCASTER FW, 1985, J AM SOC INFORM SCI, V36, P389, DOI 10.1002/asi.4630360608 Mora L, 2019, TECHNOL FORECAST SOC, V142, P56, DOI 10.1016/j.techfore.2018.07.019 Mora L, 2017, J URBAN TECHNOL, V24, P3, DOI 10.1080/10630732.2017.1285123 Moritz S., 2015, imputeTS: time series missing value imputation in R. R package version 0.4 Morris S, 2002, COMPUT IND ENG, V43, P841, DOI 10.1016/S0360-8352(02)00143-2 Nenadic O, 2007, J STAT SOFTW, V20 Ojo A., 2016, SMARTER NEW URBAN AG, V11, DOI [DOI 10.1007/978-3-319-17620-82, DOI 10.1007/978-3-319-17620-8_2] ProQuest Dialog, 2017, HISTORY Ricciardi F, 2015, FROM INFORMATION TO SMART SOCIETY, P163, DOI 10.1007/978-3-319-09450-2_14 Sanz-Casado E, 2014, RENEW ENERG, V68, P733, DOI 10.1016/j.renene.2014.03.013 Sanz-Casado E, 2013, SCIENTOMETRICS, V95, P197, DOI 10.1007/s11192-012-0825-3 Su LX, 2015, SCIENTOMETRICS, V105, P449, DOI 10.1007/s11192-015-1697-0 WETHERELL C, 1994, J INTERDISCIPL HIST, V24, P639, DOI 10.2307/205629 Wickham H, 2016, EASILY TIDY DATA SPR NR 29 TC 38 Z9 39 U1 4 U2 129 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0138-9130 EI 1588-2861 J9 SCIENTOMETRICS JI Scientometrics PD NOV PY 2018 VL 117 IS 2 BP 1205 EP 1236 DI 10.1007/s11192-018-2901-9 PG 32 WC Computer Science, Interdisciplinary Applications; Information Science & Library Science WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Computer Science; Information Science & Library Science GA HC4EA UT WOS:000451754300024 DA 2024-09-05 ER PT J AU Wang, J Zhu, L Dai, T Wang, YB AF Wang, Jie Zhu, Li Dai, Tao Wang, Yabin TI Deep memory network with Bi-LSTM for personalized context-aware citation recommendation SO NEUROCOMPUTING LA English DT Article DE Context-aware citation recommendation; Memory network; Bi-LSTM; Personalized author; Citation relationship ID SYSTEM AB The explosive growth of data leads researchers to waste time and energy to search for papers they need. Context-aware citation recommendation aims to solve this problem by analyzing a citation context and provides a list of recommended papers. In this paper, we propose a context-aware citation recommendation model based on end to end memory network. The model learns the representations of papers and citation contexts respectively based on bidirectional long short-term memory (Bi-LSTM). In particular, we jointly integrate author information and citation relationship in the distributed vector representations of citation contexts and papers. Then calculates the continuous relevance between them based on a computational multilayers memory network. We also conduct experiments on three real-world datasets to evaluate the performance of our model. (C) 2020 Elsevier B.V. All rights reserved. C1 [Wang, Jie; Zhu, Li; Dai, Tao; Wang, Yabin] Xi An Jiao Tong Univ, Sch Software Engn, Xian, Shaanxi, Peoples R China. C3 Xi'an Jiaotong University RP Zhu, L (corresponding author), Xi An Jiao Tong Univ, Sch Software Engn, Xian, Shaanxi, Peoples R China. EM zhuli@xjtu.edu.cn OI wang, jie/0009-0005-7117-8580; wang, Yabin/0000-0003-2931-572X FU National Key Research and Development Project [2019YFB2102500] FX This research is supported by National Key Research and Development Project (No. 2018AAA0101100) and National Key Research and Development Project (No. 2019YFB2102500). CR Alhamid M F., 2013, Proceedings of the 1st ACM International Workshop on Multimedia Indexing and Information Retrieval for Healthcare. MIIRH'13, P41, DOI DOI 10.1145/2505323.2505332 [Anonymous], 2011, P 4 ACM INT C WEB SE, DOI DOI 10.1145/1935826.1935926 [Anonymous], ARXIV150804025 [Anonymous], ARXIV160507683 Bahdanau D., ICLR Bethard S., 2010, Proceedings of the 19th ACM International Conference on Information and Knowledge Management, P609, DOI [DOI 10.1145/1871437.1871517, 10.1145/1871437.1871517] Cai XY, 2018, IEEE T NEUR NET LEAR, V29, P6026, DOI 10.1109/TNNLS.2018.2817245 Choi JY, 2007, EXPERT SYST, V24, P32 Dodge J., ARXIV151106931 Ebesu T, 2017, SIGIR'17: PROCEEDINGS OF THE 40TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, P1093, DOI 10.1145/3077136.3080730 Gipp B., 2009, Proceedings of the International Conference on Emerging Trends in Computing, P309 Gori M, 2006, 2006 IEEE/WIC/ACM INTERNATIONAL CONFERENCE ON WEB INTELLIGENCE, (WI 2006 MAIN CONFERENCE PROCEEDINGS), P778, DOI 10.1109/WI.2006.149 Graves A., ARXIV14105401 He Q., 2010, P 19 INT C WORLD WID, DOI DOI 10.1145/1772690.1772734 Hill F., ARXIV151102301 Huang WY, 2015, AAAI CONF ARTIF INTE, P2404 Huang WY, 2014, ACM-IEEE J CONF DIG, P371, DOI 10.1109/JCDL.2014.6970192 Huang Wenyi, 2012, P 21 ACM INT C INF K, P1910, DOI DOI 10.1145/2396761.2398542 Jeong C., ARXIV190306464 Jia H., ARXIV181203835 Jiang ZR, 2018, ACM/SIGIR PROCEEDINGS 2018, P635, DOI 10.1145/3209978.3210032 Kataria S., TOPIC MODELS LINK PR Khadka A, 2018, 12TH ACM CONFERENCE ON RECOMMENDER SYSTEMS (RECSYS), P362, DOI 10.1145/3240323.3240379 Kumar A, 2016, PR MACH LEARN RES, V48 Lee JS, 2007, LECT NOTES COMPUT SC, V4836, P45 Livne A, 2014, SIGIR'14: PROCEEDINGS OF THE 37TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, P807, DOI 10.1145/2600428.2609585 Lu HQ, 2016, NEUROCOMPUTING, V216, P61, DOI 10.1016/j.neucom.2016.07.011 Lu Y, 2011, INFORMATION SYSTEMS DEVELOPMENT: ASIAN EXPERIENCES, P201 Luo X, 2020, IEEE T CYBERNETICS, V50, P1798, DOI 10.1109/TCYB.2019.2903736 Luo X, 2018, IEEE T CYBERNETICS, V48, P1216, DOI 10.1109/TCYB.2017.2685521 Luo YH, 2020, IEEE-CAA J AUTOMATIC, V7, P48, DOI 10.1109/JAS.2019.1911798 Meng FQ, 2013, PROCEEDINGS OF THE 22ND ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT (CIKM'13), P1509 Miller A., ARXIV160603126 Nallapati R. M., 2008, P 14 ACM SIGKDD INT, P542, DOI DOI 10.1145/1401890.1401957 Peng H, 2016, PROCEEDINGS OF THE 54TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, VOL 1, P388 Qiao JF, 2020, IEEE-CAA J AUTOMATIC, V7, P276, DOI 10.1109/JAS.2019.1911852 Le Q, 2014, PR MACH LEARN RES, V32, P1188 Radev DR, 2013, LANG RESOUR EVAL, V47, P919, DOI 10.1007/s10579-012-9211-2 Ren X, 2014, PROCEEDINGS OF THE 20TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING (KDD'14), P821, DOI 10.1145/2623330.2623630 Rush A.M., ARXIV150900685 Shang MS, 2019, IEEE-CAA J AUTOMATIC, V6, P131, DOI 10.1109/JAS.2018.7511189 Shaoping Z., 2010, THESIS Strohman Trevor, 2007, 30th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, P705, DOI 10.1145/1277741.1277868 Sukhbaatar S., 2015, ADV NEURAL INFORM PR, P1 Tang XW, 2014, SIGIR'14: PROCEEDINGS OF THE 37TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, P817, DOI 10.1145/2600428.2609564 Weissenborn D., ARXIV160703316 Weston J., ARXIV150205698 Weston J., ARXIV14103916 Weston J. E., 2016, Advances in Neural Information Processing Systems, P829 Xiong CM, 2016, PR MACH LEARN RES, V48 Yang LB, 2018, IEEE ACCESS, V6, P59618, DOI 10.1109/ACCESS.2018.2872730 Yin J, 2017, LECT NOTES COMPUT SC, V10367, P285, DOI 10.1007/978-3-319-63564-4_23 Zerari N, 2019, IEEE-CAA J AUTOMATIC, V6, P278, DOI 10.1109/JAS.2018.7511255 Zhao Z, 2016, IEEE T KNOWL DATA EN, V28, P2522, DOI 10.1109/TKDE.2016.2569096 NR 54 TC 35 Z9 36 U1 5 U2 37 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29a, 1043 NX AMSTERDAM, NETHERLANDS SN 0925-2312 EI 1872-8286 J9 NEUROCOMPUTING JI Neurocomputing PD OCT 14 PY 2020 VL 410 BP 103 EP 113 DI 10.1016/j.neucom.2020.05.047 PG 11 WC Computer Science, Artificial Intelligence WE Science Citation Index Expanded (SCI-EXPANDED) SC Computer Science GA OD4CB UT WOS:000579799300010 DA 2024-09-05 ER PT J AU Song, YH Cao, JY AF Song, Yanhui Cao, Jiayi TI An ARIMA-based study of bibliometric index prediction SO ASLIB JOURNAL OF INFORMATION MANAGEMENT LA English DT Article DE ARIMA model; Literature indicators; Indicator forecasting; Time series forecasting ID CITATION COUNTS; H-INDEX; IMPACT; MODELS; TIME AB Purpose The purpose of this paper is to predict bibliometric indicators based on ARIMA models and to study the short-term trends of bibliometric indicators. Design/methodology/approach This paper establishes a non-stationary time series ARIMA (p, d, q) model for forecasting based on the bibliometric index data of 13 journals in the library intelligence category selected from the Chinese Social Sciences Citation Index (CSSCI) as the data source database for the period 1998-2018, and uses ACF and PACF methods for parameter estimation to predict the development trend of the bibliometric index in the next 5 years. The predicted model was also subjected to error analysis. Findings ARIMA models are feasible for predicting bibliometric indicators. The model predicted the trend of the four bibliometric indicators in the next 5 years, in which the number of publications showed a decreasing trend and the H-value, average citations and citations showed an increasing trend. Error analysis of the model data showed that the average absolute percentage error of the four bibliometric indicators was within 5%, indicating that the model predicted well. Research limitations/implications This study has some limitations. 13 Chinese journals were selected in the field of Library and Information Science as the research objects. However, the scope of research based on bibliometric indicators of Chinese journals is relatively small and cannot represent the evolution trend of the entire discipline. Therefore, in the future, the authors will select different fields and different sources for further research. Originality/value This study predicts the trend changes of bibliometric indicators in the next 5 years to understand the trend of bibliometric indicators, which is beneficial for further in-depth research. At the same time, it provides a new and effective method for predicting bibliometric indicators. C1 [Song, Yanhui; Cao, Jiayi] Hangzhou Dianzi Univ, Hangzhou, Peoples R China. C3 Hangzhou Dianzi University RP Song, YH (corresponding author), Hangzhou Dianzi Univ, Hangzhou, Peoples R China. EM syh687@163.com RI lan, xueyao/JZD-4201-2024 OI song, yan hui/0000-0003-2456-222X FU major project of National Social Science Foundation of China [19ZDA348]; Fundamental Research Funds for the Provincial Universities of Zhejiang [GK209907299001-201] FX This study was funded by major project of National Social Science Foundation of China (19ZDA348), and the Fundamental Research Funds for the Provincial Universities of Zhejiang (GK209907299001-201). CR Abrishami A, 2019, J INFORMETR, V13, P485, DOI 10.1016/j.joi.2019.02.011 Acuna DE, 2013, MED PHYS, V40, DOI 10.1118/1.4816659 Acuna DE, 2012, NATURE, V489, P201, DOI 10.1038/489201a Adebiyi AA, 2014, UKSIM INT CONF COMP, P106, DOI 10.1109/UKSim.2014.67 Ayaz S, 2018, SCIENTOMETRICS, V114, P993, DOI 10.1007/s11192-017-2618-1 Braun T, 2006, SCIENTOMETRICS, V69, P169, DOI 10.1007/s11192-006-0147-4 Chakraborty T, 2014, ACM-IEEE J CONF DIG, P351, DOI 10.1109/JCDL.2014.6970190 Contreras J, 2003, IEEE T POWER SYST, V18, P1014, DOI 10.1109/TPWRS.2002.804943 Dong YX, 2015, LECT NOTES ARTIF INT, V9286, P259, DOI 10.1007/978-3-319-23461-8_26 Durieux V, 2010, RADIOLOGY, V255, P342, DOI 10.1148/radiol.09090626 Fu LD, 2010, SCIENTOMETRICS, V85, P257, DOI 10.1007/s11192-010-0237-1 Guns R, 2009, J AM SOC INF SCI TEC, V60, P410, DOI 10.1002/asi.20973 Hirsch JE, 2007, P NATL ACAD SCI USA, V104, P19193, DOI 10.1073/pnas.0707962104 Ibáñez A, 2009, BIOINFORMATICS, V25, P3303, DOI 10.1093/bioinformatics/btp585 Kumar SV, 2015, EUR TRANSP RES REV, V7, DOI 10.1007/s12544-015-0170-8 Kumar U, 2010, STOCH ENV RES RISK A, V24, P751, DOI 10.1007/s00477-009-0361-8 Lercher A, 2013, J AM SOC INF SCI TEC, V64, P455, DOI 10.1002/asi.22776 Liu Q, 2008, LIB INFORM SERVICE, V52, P31 Liu Q, 2008, INFORM STUDIES THEOR, V31, P37 Mishra PN, 2010, MALAYS J LIBR INF SC, V15, P91 Narayanan P, 2013, CR GEOSCI, V345, P22, DOI 10.1016/j.crte.2012.12.001 Prathap G, 2010, SCIENTOMETRICS, V84, P153, DOI 10.1007/s11192-009-0066-2 Quan S.Y, 2015, J INTELL-BASEL, V34, P54 Robson BJ, 2016, ENVIRON MODELL SOFTW, V75, P94, DOI 10.1016/j.envsoft.2015.10.007 Rousseau R, 2014, ASLIB J INFORM MANAG, V66, P2, DOI 10.1108/AJIM-01-2013-0001 Soheili F, 2017, ASLIB J INFORM MANAG, V69, P215, DOI 10.1108/AJIM-01-2017-0027 Stegehuis C, 2015, J INFORMETR, V9, P642, DOI 10.1016/j.joi.2015.06.005 Wang KT, 2022, SUBST ABUS, V43, P171, DOI [10.1080/08897077.2021.1903652, 10.7506/spkx1002-6630-20211218-213] Wu R, 2021, CELL J, V23, P238, DOI 10.22074/cellj.2021.7143 Yu T, 2014, SCIENTOMETRICS, V101, P1233, DOI 10.1007/s11192-014-1279-6 Yunus K, 2016, IEEE T POWER SYST, V31, P2546, DOI 10.1109/TPWRS.2015.2468586 Zhang, 2017, J MODERN INFORM, V37, P74 Zhang Z.Q, 2017, J MODERN INFORM, V37, P66 Zhou Y, 2021, FRONT PSYCHOL, V12, DOI 10.3389/fpsyg.2021.669000 NR 34 TC 2 Z9 2 U1 6 U2 56 PU EMERALD GROUP PUBLISHING LTD PI BINGLEY PA HOWARD HOUSE, WAGON LANE, BINGLEY BD16 1WA, W YORKSHIRE, ENGLAND SN 2050-3806 EI 1758-3748 J9 ASLIB J INFORM MANAG JI Aslib J. Inf. Manag. PD JAN 3 PY 2022 VL 74 IS 1 BP 94 EP 109 DI 10.1108/AJIM-03-2021-0072 EA OCT 2021 PG 16 WC Computer Science, Information Systems; Information Science & Library Science WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Computer Science; Information Science & Library Science GA XW8ED UT WOS:000710628000001 DA 2024-09-05 ER PT J AU Talafidaryani, M Jalali, SMJ Moro, S AF Talafidaryani, Mojtaba Jalali, Seyed Mohammad Jafar Moro, Sergio TI Tracing the evolution of digitalisation research in business and management fields: Bibliometric analysis, topic modelling and deep learning trend forecasting SO JOURNAL OF INFORMATION SCIENCE LA English DT Article; Early Access DE bibliometric analysis; business and management; digital transformation; digital X; digitalization; topic modelling; trend forecasting ID INFORMATION-TECHNOLOGY; INTELLECTUAL STRUCTURE; OPEN INNOVATION; IMPACT; ENTREPRENEURSHIP; CAPABILITIES; INTERNET; DETERMINANTS; HOSPITALITY; GENERATION AB Research on digitalisation trends and digital topics has become one of the most prolific streams of research within the fields of business and management during the course of the past few years. The purpose of this study is to provide a general picture of the intellectual structure and the conceptual space of this research realm. To this purpose, 6067 publications related to digital topics, indexed in the business and management categories of Web of Science (WoS), and dated from 1990 to 2020 are explored based on the approaches of bibliometric analysis, topic modelling and trend forecasting. The results of the bibliometric analysis comprise insights into the publication and citation structure, the most productive authors, the most productive universities, the most productive countries, the most productive journals, the most cited studies and the most prevalent themes and sub-themes on digitalisation in business and management. In addition, the outcomes of the topic modelling give new knowledge on the latent topical structure along with the rising, falling and fluctuating trends of this literature. In addition, the results of the trend forecasting enable readers to have a glimpse of how the underlying trends of the literature will probably change within the next years until 2025. These results provide guidance and orientation for both academics and practitioners who are initiating or currently developing their efforts in this discipline. C1 [Talafidaryani, Mojtaba] Univ Tehran, Fac Management, Tehran, Iran. [Jalali, Seyed Mohammad Jafar] Deakin Univ, Inst Intelligent Syst Res & Innovat, Burwood, Australia. [Moro, Sergio] Inst Univ Lisboa ISCTE IUL, ISTAR, Lisbon, Portugal. C3 University of Tehran; Deakin University; Instituto Universitario de Lisboa RP Talafidaryani, M (corresponding author), Univ Tehran, Fac Management, Tehran, Iran. EM mojtabatalafi@ut.ac.ir FU Fundacxao para a Ci<^>encia e Tecnologia (FCT) [UIDB/04466/2020, UIDP/04466/2020] FX The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: The work by Sergio Moro was supported by the Fundacxao para a Ciencia e Tecnologia (FCT) within the following Projects: UIDB/04466/2020 and UIDP/04466/2020. CR Adner R, 2001, MANAGE SCI, V47, P611, DOI 10.1287/mnsc.47.5.611.10482 Albort-Morant G, 2018, EUR RES MANAG BUS EC, V24, P42, DOI 10.1016/j.iedeen.2017.06.004 Albort-Morant G, 2016, J BUS RES, V69, P1775, DOI 10.1016/j.jbusres.2015.10.054 Alfaro-García VG, 2020, INT J FUZZY SYST, V22, P2414, DOI 10.1007/s40815-020-00924-8 Alonso S, 2009, J INFORMETR, V3, P273, DOI 10.1016/j.joi.2009.04.001 Amado A, 2018, EUR RES MANAG BUS EC, V24, P1, DOI 10.1016/j.iedeen.2017.06.002 Ananda S, 2020, J FINANC SERV MARK, V25, P14, DOI 10.1057/s41264-020-00072-y Bakos Y, 1999, MANAGE SCI, V45, P1613, DOI 10.1287/mnsc.45.12.1613 Barua A, 2004, MIS QUART, V28, P585 Baskerville RL, 2020, MIS QUART, V44, P509, DOI 10.25300/MISQ/2020/14418 Beck R, 2017, BUS INFORM SYST ENG+, V59, P381, DOI 10.1007/s12599-017-0505-1 Belanger F, 2011, MIS QUART, V35, P1017 Belk RW, 2013, J CONSUM RES, V40, P477, DOI 10.1086/671052 Berman B, 2012, BUS HORIZONS, V55, P155, DOI 10.1016/j.bushor.2011.11.003 Bharadwaj A, 2013, MIS QUART, V37, P471, DOI 10.25300/MISQ/2013/37:2.3 Björkdahl J, 2020, CALIF MANAGE REV, V62, P17, DOI 10.1177/0008125620920349 Blei DM, 2012, COMMUN ACM, V55, P77, DOI 10.1145/2133806.2133826 Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993 Bolton RN, 2013, J SERV MANAGE, V24, P245, DOI 10.1108/09564231311326987 Bonilla CA, 2015, SCIENTOMETRICS, V105, P1239, DOI 10.1007/s11192-015-1747-7 Brynjolfsson E, 2003, MANAGE SCI, V49, P1580, DOI 10.1287/mnsc.49.11.1580.20580 Budler M, 2021, J BUS RES, V135, P480, DOI 10.1016/j.jbusres.2021.06.045 Bughin J, 2017, MIT SLOAN MANAGE REV, V58, P80 Higuita LC, 2012, ESTUD GERENC, V28, P213 CALLON M, 1983, SOC SCI INFORM, V22, P191, DOI 10.1177/053901883022002003 Cancino CA, 2020, J INTELL FUZZY SYST, V38, P5463, DOI 10.3233/JIFS-179638 Cancino CA, 2017, COMPUT IND ENG, V113, P614, DOI 10.1016/j.cie.2017.08.033 Caputo A, 2021, J BUS RES, V123, P489, DOI 10.1016/j.jbusres.2020.09.053 Cho J, 2014, J INF SCI, V40, P386, DOI 10.1177/0165551514524686 Ciriello RF, 2018, BUS INFORM SYST ENG+, V60, P563, DOI 10.1007/s12599-018-0559-8 Coronado FC, 2021, J INTELL FUZZY SYST, V40, P1865, DOI 10.3233/JIFS-189192 Loureiro SMC, 2021, J BUS RES, V129, P911, DOI 10.1016/j.jbusres.2020.11.001 Danaher B, 2010, MARKET SCI, V29, P1138, DOI 10.1287/mksc.1100.0600 Day GS, 2011, J MARKETING, V75, P183, DOI 10.1509/jmkg.75.4.183 de Reuver M, 2018, J INF TECHNOL-UK, V33, P124, DOI 10.1057/s41265-016-0033-3 Delen D, 2018, J BUS RES, V90, P186, DOI 10.1016/j.jbusres.2018.05.013 Donthu N, 2021, J BUS RES, V133, P285, DOI 10.1016/j.jbusres.2021.04.070 Du K, 2015, INFORM SYST RES, V26, P829, DOI 10.1287/isre.2015.0604 Givi ME, 2022, J INTELLECT CAP, V23, P864, DOI 10.1108/JIC-02-2020-0057 Forman C, 2008, INFORM SYST RES, V19, P291, DOI 10.1287/isre.1080.0193 de Soto BG, 2020, INT J CONSTR MANAG, V20, P900, DOI 10.1080/15623599.2018.1502929 Gilbert CG, 2005, ACAD MANAGE J, V48, P741, DOI 10.2307/20159695 Gobble MM, 2018, RES TECHNOL MANAGE, V61, P56, DOI 10.1080/08956308.2018.1471280 Griffiths TL, 2004, P NATL ACAD SCI USA, V101, P5228, DOI 10.1073/pnas.0307752101 Gubiani D, 2020, INT J INNOV LEARN, V27, P37, DOI 10.1504/IJIL.2020.103887 Hajiheydari N, 2019, FORESIGHT, V21, P654, DOI 10.1108/FS-01-2019-0002 Hajiheydari N, 2019, ICSLT 2019: PROCEEDINGS OF THE 5TH INTERNATIONAL CONFERENCE ON E-SOCIETY, E-LEARNING AND E-TECHNOLOGIES, P98, DOI 10.1145/3312714.3312728 Hanna R, 2011, BUS HORIZONS, V54, P265, DOI 10.1016/j.bushor.2011.01.007 Hannigan TR, 2019, ACAD MANAG ANN, V13, P586, DOI 10.5465/annals.2017.0099 Heidari A, 2021, J STRATEG MANAGE STU, V12, P161 Hirsch JE, 2005, P NATL ACAD SCI USA, V102, P16569, DOI 10.1073/pnas.0507655102 Hong W, 2001, J MANAGE INFORM SYST, V18, P97, DOI 10.1080/07421222.2002.11045692 Hou XL, 2019, J BEHAV ADDICT, V8, P306, DOI [10.1556/2006.8.2019.26, 10.1016/j.techfore.2019.04.022] Jalali SMJ, 2021, DIGIT SCHOLARSH HUM, V36, P361, DOI 10.1093/llc/fqaa012 Jelodar H, 2019, MULTIMED TOOLS APPL, V78, P15169, DOI 10.1007/s11042-018-6894-4 Jiang HC, 2016, RENEW SUST ENERG REV, V57, P226, DOI 10.1016/j.rser.2015.12.194 Kannan PK, 2017, INT J RES MARK, V34, P22, DOI 10.1016/j.ijresmar.2016.11.006 Kim J, 2021, J BUS RES, V130, P552, DOI 10.1016/j.jbusres.2019.09.043 Kohli R, 2019, INFORM SYST J, V29, P200, DOI 10.1111/isj.12193 Korhonen HME, 2017, TECHNOL INNOV MANAG, V7, P17, DOI 10.22215/timreview/1103 Kovács A, 2015, SCIENTOMETRICS, V104, P951, DOI 10.1007/s11192-015-1628-0 Krishen AS, 2021, J BUS RES, V131, P183, DOI 10.1016/j.jbusres.2021.03.061 Laengle S, 2020, ANN OPER RES, V294, P769, DOI 10.1007/s10479-018-3017-6 Leviäkangas P, 2016, TECHNOL SOC, V47, P1, DOI 10.1016/j.techsoc.2016.07.001 Li X, 2021, J INF SCI, V47, P161, DOI 10.1177/0165551519877049 Litvin SW, 2008, TOURISM MANAGE, V29, P458, DOI 10.1016/j.tourman.2007.05.011 Lu Y, 2018, TECHNOL FORECAST SOC, V136, P285, DOI 10.1016/j.techfore.2018.01.022 Lusch RF, 2015, MIS QUART, V39, P155 Ma M, 2007, INFORM SYST RES, V18, P42, DOI 10.1287/isre.1070.0113 Martínez-López FJ, 2018, EUR J MARKETING, V52, P439, DOI 10.1108/EJM-11-2017-0853 Merigó JM, 2015, J BUS RES, V68, P2645, DOI 10.1016/j.jbusres.2015.04.006 Merigó JM, 2017, OMEGA-INT J MANAGE S, V73, P37, DOI 10.1016/j.omega.2016.12.004 Merigó JM, 2016, GLOBALIZATION HEALTH, V12, DOI 10.1186/s12992-016-0186-4 Merigó JM, 2016, J BUS ECON MANAG, V17, P397, DOI 10.3846/16111699.2013.807868 Merigó JM, 2017, AUST ACCOUNT REV, V27, P71, DOI 10.1111/auar.12109 Merigó JM, 2015, APPL SOFT COMPUT, V27, P420, DOI 10.1016/j.asoc.2014.10.035 Moro S, 2019, J BUS RES, V103, P275, DOI 10.1016/j.jbusres.2019.01.053 Mulet-Forteza C, 2019, J BUS RES, V101, P819, DOI 10.1016/j.jbusres.2018.12.002 Muñoz-Leiva F, 2021, EUR J MARKETING, V55, P2269, DOI 10.1108/EJM-02-2019-0179 Nambisan S, 2017, ENTREP THEORY PRACT, V41, P1029, DOI 10.1111/etap.12254 Oliveira E, 2015, J VACAT MARK, V21, P53, DOI 10.1177/1356766714544235 Parviainen P, 2017, IJISPM-INT J INF SYS, V5, P63, DOI 10.12821/ijispm050104 Petter S, 2018, MIS Q EXEC, V17, P315, DOI 10.17705/2msqe.00004 Podsakoff PM, 2008, J MANAGE, V34, P641, DOI 10.1177/0149206308319533 Raeesi Vanani I., 2022, Quality Quantity, V56, P1293 Rai A, 2006, MIS QUART, V30, P225 Rauwers F, 2018, INT J ADVERT, V37, P806, DOI 10.1080/02650487.2018.1470918 Reis Joao, 2020, Proceedings on 25th International Joint Conference on Industrial Engineering and Operations Management - IJCIEOM. The Next Generation of Production and Service Systems. Lecture Notes on Multidisciplinary Industrial Engineering (LNMUINEN), P443, DOI 10.1007/978-3-030-43616-2_47 Rey-Martí A, 2016, J BUS RES, V69, P1651, DOI 10.1016/j.jbusres.2015.10.033 Rodriguez-Crespo E, 2021, EMERG MARK FINANC TR, V57, P3017, DOI 10.1080/1540496X.2019.1676225 Saheb T., 2021, INT J INF MANAG DATA, V1 SALTON G, 1988, INFORM PROCESS MANAG, V24, P513, DOI 10.1016/0306-4573(88)90021-0 Salvi A, 2021, J BUS RES, V124, P437, DOI 10.1016/j.jbusres.2020.10.025 Sambamurthy V, 2003, MIS QUART, V27, P237 Sashi CM, 2012, MANAGE DECIS, V50, P253, DOI 10.1108/00251741211203551 Schau HJ, 2003, J CONSUM RES, V30, P385 Schmiedel T, 2019, ORGAN RES METHODS, V22, P941, DOI 10.1177/1094428118773858 Schwab K., 2017, 4 IND REVOLUTION Sebastian I., 2017, MIS Q EXEC Seyedghorban Z, 2020, PROD PLAN CONTROL, V31, P96, DOI 10.1080/09537287.2019.1631461 Sklyar A, 2019, J BUS RES, V104, P450, DOI 10.1016/j.jbusres.2019.02.012 Sohrabi B, 2019, J INF KNOWL MANAG, V18, DOI 10.1142/S0219649219500436 Su HN, 2010, SCIENTOMETRICS, V85, P65, DOI 10.1007/s11192-010-0259-8 Sun LJ, 2017, TRANSPORT RES C-EMER, V77, P49, DOI 10.1016/j.trc.2017.01.013 Svensson G, 2010, EUR J MARKETING, V44, P23, DOI 10.1108/03090561011008583 Talafi M., 2018, Innovation Management Journal, V7, P57 Talafidaryani M., 2019, THESIS U TEHRAN TEHR Talafidaryani M, 2020, IRAN J INF MANAGE, V5, P197 Talafidaryani M, 2021, BUS INF REV, V38, P79 Talafidaryani M, 2021, MANAG RES REV, V44, P236, DOI 10.1108/MRR-03-2020-0139 Tandon A, 2021, TECHNOL FORECAST SOC, V166, DOI 10.1016/j.techfore.2021.120649 Taylor SJ, 2018, AM STAT, V72, P37, DOI 10.1080/00031305.2017.1380080 Torres P, 2020, TECHNOL FORECAST SOC, V161, DOI 10.1016/j.techfore.2020.120279 Triebe O., 2021, arXiv, DOI [DOI 10.48550/ARXIV.2111.15397, 10.48550/arXiv.2111.15397] Tripsas M, 2000, STRATEGIC MANAGE J, V21, P1147, DOI 10.1002/1097-0266(200010/11)21:10/11<1147::AID-SMJ128>3.3.CO;2-I Trittin-Ulbrich H, 2021, ORGANIZATION, V28, P8, DOI 10.1177/1350508420968184 Urbinati A, 2020, R&D MANAGE, V50, P136, DOI 10.1111/radm.12313 Valenzuela-Fernández L, 2018, INT J ENG BUS MANAG, V10, DOI 10.1177/1847979017751484 Vallaster C, 2019, J BUS RES, V99, P226, DOI 10.1016/j.jbusres.2019.02.050 Van Eck N.J., 2014, Measuring Scholarly Impact: Methods and Practice, P285, DOI 10.1007/978-3-319-10377-8_13(InEng.) van Eck NJ, 2010, J AM SOC INF SCI TEC, V61, P2405, DOI 10.1002/asi.21421 van Eck NJ, 2010, SCIENTOMETRICS, V84, P523, DOI 10.1007/s11192-009-0146-3 van Eck NJ, 2009, J AM SOC INF SCI TEC, V60, P1635, DOI 10.1002/asi.21075 Verhoef PC, 2015, J RETAILING, V91, P174, DOI 10.1016/j.jretai.2015.02.005 Verma S, 2020, J BUS RES, V118, P253, DOI 10.1016/j.jbusres.2020.06.057 Vial G, 2019, J STRATEGIC INF SYST, V28, P118, DOI 10.1016/j.jsis.2019.01.003 Waltman L, 2010, J INFORMETR, V4, P629, DOI 10.1016/j.joi.2010.07.002 Yan BN, 2015, SCIENTOMETRICS, V105, P1285, DOI 10.1007/s11192-015-1740-1 Yau CK, 2014, SCIENTOMETRICS, V100, P767, DOI 10.1007/s11192-014-1321-8 Yoo Y, 2012, ORGAN SCI, V23, P1398, DOI 10.1287/orsc.1120.0771 Yoo YJ, 2010, INFORM SYST RES, V21, P724, DOI 10.1287/isre.1100.0322 Yu DJ, 2015, APPL SOFT COMPUT, V32, P189, DOI 10.1016/j.asoc.2015.03.027 Zaheer H, 2019, TECHNOL FORECAST SOC, V148, DOI 10.1016/j.techfore.2019.119735 Zekhnini K, 2021, BENCHMARKING, V28, P465, DOI 10.1108/BIJ-04-2020-0156 Zhang L, 2011, ELECTRON COMMER R A, V10, P545, DOI 10.1016/j.elerap.2011.01.004 Zhang X., 2017, Journal of Management Science and Engineering, V2, P95, DOI 10.3724/SP.J.1383.202005 Zupic I, 2015, ORGAN RES METHODS, V18, P429, DOI 10.1177/1094428114562629 Zurita G, 2020, J INTELL FUZZY SYST, V38, P5441, DOI 10.3233/JIFS-179636 NR 138 TC 0 Z9 0 U1 9 U2 63 PU SAGE PUBLICATIONS LTD PI LONDON PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND SN 0165-5515 EI 1741-6485 J9 J INF SCI JI J. Inf. Sci. PD 2023 JAN 17 PY 2023 DI 10.1177/01655515221148365 EA JAN 2023 PG 29 WC Computer Science, Information Systems; Information Science & Library Science WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Computer Science; Information Science & Library Science GA 7X7WV UT WOS:000914408700001 OA Green Accepted DA 2024-09-05 ER PT J AU Zhou, XJ Wang, Y Tsafnat, G Coiera, E Bourgeois, FT Dunn, AG AF Zhou, Xujuan Wang, Ying Tsafnat, Guy Coiera, Enrico Bourgeois, Florence T. Dunn, Adam G. TI Citations alone were enough to predict favorable conclusions in reviews of neuraminidase inhibitors SO JOURNAL OF CLINICAL EPIDEMIOLOGY LA English DT Article DE Neuraminidase inhibitors; Bibliometrics; Evidence synthesis; Reviews as a topic; Citation analysis; Supervised machine learning ID NETWORK ANALYSIS SEBRINA; STATISTICALLY SIGNIFICANT; SYSTEMATIC REVIEWS; INFLUENZA; OSELTAMIVIR; BIAS; CLASSIFICATION; METAANALYSIS; SELECTION; ADULTS AB Objectives: To examine the use of supervised machine learning to identify biases in evidence selection and determine if citation information can predict favorable conclusions in reviews about neuraminidase inhibitors. Study Design and Setting: Reviews of neuraminidase inhibitors published during January 2005 to May 2013 were identified by searching PubMed. In a blinded evaluation, the reviews were classified as favorable if investigators agreed that they supported the use of neuraminidase inhibitors for prophylaxis or treatment of influenza. Reference lists were used to identify all unique citations to primary articles. Three classification methods were tested for their ability to predict favorable conclusions using only citation information. Results: Citations to 4,574 articles were identified in 152 reviews of neuraminidase inhibitors, and 93 (61%) of these reviews were graded as favorable. Primary articles describing drug resistance were among the citations that were underrepresented in favorable reviews. The most accurate classifier predicted favorable conclusions with 96.2% accuracy, using citations to only 24 of 4,574 articles. Conclusion: Favorable conclusions in reviews about neuraminidase inhibitors can be predicted using only information about the articles they cite. The approach highlights how evidence exclusion shapes conclusions in reviews and provides a method to evaluate citation practices in a corpus of reviews. (C) 2015 Elsevier Inc. All rights reserved. C1 [Zhou, Xujuan; Wang, Ying; Tsafnat, Guy; Coiera, Enrico; Dunn, Adam G.] Univ New S Wales, Australian Inst Hlth Innovat, Ctr Hlth Informat, Sydney, NSW 2052, Australia. [Bourgeois, Florence T.] Boston Childrens Hosp, Div Emergency Med, Boston, MA USA. [Bourgeois, Florence T.] Harvard Univ, Sch Med, Dept Pediat, Boston, MA 02115 USA. [Bourgeois, Florence T.] Boston Childrens Hosp, Childrens Hosp Informat Program, Boston, MA USA. C3 University of New South Wales Sydney; Harvard University; Boston Children's Hospital; Harvard University; Harvard Medical School; Harvard University; Boston Children's Hospital RP Dunn, AG (corresponding author), Univ New S Wales, Australian Inst Hlth Innovat, Ctr Hlth Informat, Sydney, NSW 2052, Australia. EM a.dunn@unsw.edu.au RI Wang, Xuejun/K-8874-2013; Dunn, Adam/H-4425-2019; Tsafnat, Guy/C-2292-2008; Bourgeois, Florence/H-6710-2016; Zhou, Xujuan/HIZ-7836-2022 OI Wang, Xuejun/0000-0001-9267-1343; Dunn, Adam/0000-0002-1720-8209; Bourgeois, Florence/0000-0001-7798-4560; Coiera, Enrico/0000-0002-6444-6584; Wang, Ying/0000-0001-8537-3954; Zhou, Xujuan/0000-0002-1736-739X FU National Health and Medical Research Council [568612, 1045065] FX This study was supported by National Health and Medical Research Council Program Grant 568612 and Project Grant 1045065. The sponsors had no role in the study. CR Adisasmito W, 2010, J INFECT DIS, V202, P1154, DOI 10.1086/656316 Bax L, 2011, J CLIN EPIDEMIOL, V64, P459, DOI 10.1016/j.jclinepi.2010.09.003 Bekhuis T, 2012, ARTIF INTELL MED, V55, P197, DOI 10.1016/j.artmed.2012.05.002 Burch J, 2009, HEALTH TECHNOL ASSES, V13, P1, DOI 10.3310/hta13580 Cohen D, 2010, BRIT MED J, V340, DOI 10.1136/bmj.c2912 CORTES C, 1995, MACH LEARN, V20, P273, DOI 10.1023/A:1022627411411 COVER TM, 1967, IEEE T INFORM THEORY, V13, P21, DOI 10.1109/TIT.1967.1053964 Domingos P, 1997, MACH LEARN, V29, P103, DOI 10.1023/A:1007413511361 Doshi P, 2009, BMJ-BRIT MED J, V339, DOI 10.1136/bmj.b5164 Dunn AG, 2014, ANN INTERN MED, V161, P513, DOI 10.7326/M14-0933 Egger M, 1998, BMJ-BRIT MED J, V316, P61, DOI 10.1136/bmj.316.7124.61 Etter JF, 2009, J CLIN EPIDEMIOL, V62, P831, DOI 10.1016/j.jclinepi.2008.09.015 Falagas ME, 2006, FASEB J, V20, P1039, DOI 10.1096/fj.06-0603ufm Fiorentino F, 2011, BRIT J CANCER, V104, P1085, DOI 10.1038/sj.bjc.6606060 GOTZSCHE PC, 1987, BMJ-BRIT MED J, V295, P654, DOI 10.1136/bmj.295.6599.654 Greenberg SA, 2011, J EVAL CLIN PRACT, V17, P389, DOI 10.1111/j.1365-2753.2011.01646.x Greenberg SA, 2009, BMJ-BRIT MED J, V339, DOI 10.1136/bmj.b2680 Guyon I, 2003, J MACH LEARN RES, V3, P1157, DOI DOI 10.1162/153244303322753616 Hand DJ, 2001, INT STAT REV, V69, P385, DOI 10.2307/1403452 Jannot AS, 2013, J CLIN EPIDEMIOL, V66, P296, DOI 10.1016/j.jclinepi.2012.09.015 Jefferson T, 2014, BMJ-BRIT MED J, V348, DOI 10.1136/bmj.g2545 Jefferson T, 2014, BMJ-BRIT MED J, V348, DOI 10.1136/bmj.g2263 Jefferson T, 2009, BMJ-BRIT MED J, V339, DOI 10.1136/bmj.b5106 Jones M, 2006, EXPERT OPIN DRUG SAF, V5, P603, DOI 10.1517/14740338.5.5.603 Kamber M., 2011, Pei. data mining concepts and techniques Kho ME, 2012, J CLIN EPIDEMIOL, V65, P1010, DOI 10.1016/j.jclinepi.2012.03.009 Kho ME, 2012, J CLIN EPIDEMIOL, V65, P996, DOI 10.1016/j.jclinepi.2012.03.008 Kiso M, 2010, PLOS PATHOG, V6, DOI 10.1371/journal.ppat.1000786 Kohavi R, 1997, ARTIF INTELL, V97, P273, DOI 10.1016/S0004-3702(97)00043-X Krutnholz HM, 2013, BMJ-BRIT MED J, P346 Kulkarni AV, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0020885 Latourrette M, 2000, LECT NOTES ARTIF INT, V1810, P238 Lau AYS, 2006, J AM SOC INF SCI TEC, V57, P873, DOI 10.1002/asi.20377 Mierswa I, 2006, P 12 ACM SIGKDD INT, V2006, P935, DOI DOI 10.1145/1150402.1150531 Monto AS, 2009, CLIN INFECT DIS, V48, pS20, DOI 10.1086/591853 Moscati R, 1994, Acad Emerg Med, V1, P267 Moscona A, 2005, NEW ENGL J MED, V353, P1363, DOI 10.1056/NEJMra050740 Nguyen HT, 2010, CLIN INFECT DIS, V51, P983, DOI 10.1086/656439 Nieminen P, 2007, J CLIN EPIDEMIOL, V60, P939, DOI 10.1016/j.jclinepi.2006.11.014 Okike K, 2011, J CLIN EPIDEMIOL, V64, P331, DOI 10.1016/j.jclinepi.2010.03.019 Perneger TV, 2010, J CLIN EPIDEMIOL, V63, P660, DOI 10.1016/j.jclinepi.2009.09.012 Scholkopf B., 2001, Learning with Kernels | Shotton D, 2013, NATURE, V502, P295, DOI 10.1038/502295a Smith JR, 2011, ADV THER, V28, P927, DOI 10.1007/s12325-011-0072-7 Trikalinos TA, 2012, J CLIN EPIDEMIOL, V65, P16, DOI 10.1016/j.jclinepi.2011.07.006 Tumpey TM, 2002, P NATL ACAD SCI USA, V99, P13849, DOI 10.1073/pnas.212519699 NR 46 TC 9 Z9 9 U1 0 U2 28 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0895-4356 EI 1878-5921 J9 J CLIN EPIDEMIOL JI J. Clin. Epidemiol. PD JAN PY 2015 VL 68 IS 1 BP 87 EP 93 DI 10.1016/j.jclinepi.2014.09.014 PG 7 WC Health Care Sciences & Services; Public, Environmental & Occupational Health WE Science Citation Index Expanded (SCI-EXPANDED) SC Health Care Sciences & Services; Public, Environmental & Occupational Health GA AX1EL UT WOS:000346690800011 PM 25450452 DA 2024-09-05 ER PT C AU Yang, P Xia, HH Liu, WY Li, ZS AF Yang, Ping Xia, Huanhuan Liu, Wangyang Li, Zesong GP IEEE TI Research on Government Integrity Evaluation Based on Big Data SO 2019 2ND INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND BIG DATA (ICAIBD 2019) LA English DT Proceedings Paper CT 2nd International Conference on Artificial Intelligence and Big Data (ICAIBD) CY MAY 25-28, 2019 CL Chengdu, PEOPLES R CHINA DE government integrity; evaluation; big data; internet public opinion; credit scorecard model; NLP AB By studying the international advanced practices of government integrity evaluation represented by Standard & Poor's, Global Integrity, Transparency International and Korea, this paper found that most of the evaluations are based on perceptual surveys. Although this method of data acquisition is simple and easy to implement, it has inherent defects, such as strong subjectivity, lack of details, prone to cause sample deviation, etc. Based on the goal of improving government capacity in integrity, this paper put forward a new idea of government integrity evaluation based on big data: Firstly, collect the behavior data and complaint reporting data in the government business systems, combine with the public opinion data on the Internet. Then, use the big data technology to get the evaluation indicator data of government integrity. Finally, construct a scientific evaluation model through the credit scorecard method. Compared with the traditional measure of evaluation, the government integrity evaluation based on big data in this paper not only can obtain more accurate evaluation results, but also has great value in its evaluation process. A large amount of objective and quantitative - rather than subjective and perceived data - can better support government decision-making and reform. The scientific evaluation indicator system can also guide the specific work of the government. C1 [Yang, Ping; Li, Zesong] CETC Big Data Res Inst Co Ltd, Chengdu Branch, Chengdu, Peoples R China. [Xia, Huanhuan; Liu, Wangyang] CETC Big Data Res Inst Co Ltd, Gen Technol Res Ctr, Guiyang, Peoples R China. RP Yang, P (corresponding author), CETC Big Data Res Inst Co Ltd, Chengdu Branch, Chengdu, Peoples R China. EM yangping@cetcbigdata.com; xiahuanhuan@cetcbigdata.com; liuwangyang@cetcbigdata.com; lizesongcd@cetcbigdata.com FU China Electronics Technology Group Corporation [KJ1805002] FX This paper is the research achievement of Technology Innovation Fund Project "Research on Key Technologies and Systems of Intelligent Governance System for Promoting Government Executive Power" (KJ1805002) of China Electronics Technology Group Corporation. CR Alvarez-Diaz M., 2018, Corruption perceptions index 2017 statistical assessment [Anonymous], 2016, INTRO KOREAS ANTICOR [Anonymous], 2012, GLOBAL INTEGRITY REP Beers D.T., 2004, Sovereign Credit Ratings: A Primer Han Bing, 2018, W LEATHER, V40, P50 Lei Youxi, 2016, MARKET MODERNIZATION, P254 Ni Xianqing, 2017, CREDIT SCORING CARD OECD, 2009, OECD PAPERS QIN P, 2017, ELECT DESIGN ENG, V22, P68, DOI DOI 10.11841/J.ISSN.1007-4333.2017.01.09 Wang Huan, 2019, SCI TECHNOLOGICAL EN, V32, P145 Wu Jinmei, 2018, MODERN MANAGEMENT SC, P3 Yang Dengfeng, 2018, J NINGXIA TEACHERS U, V39, P72 Yang Qiong, 2018, RES STRUCTURE EVALUA Yang Qiuju, 2015, CREDIT REFERENCE, V33, P60 Yang Qiuju, 2015, ADM TRIBUNE, V22, P96 NR 15 TC 3 Z9 3 U1 0 U2 5 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA BN 978-1-7281-0831-5 PY 2019 BP 28 EP 35 PG 8 WC Computer Science, Artificial Intelligence; Computer Science, Theory & Methods WE Conference Proceedings Citation Index - Science (CPCI-S) SC Computer Science GA BQ4OL UT WOS:000591586200006 DA 2024-09-05 ER PT C AU Kim, J Le, DX Thoma, GR AF Kim, Jongwoo Le, Daniel X. Thoma, George R. BE ViardGaudin, C Zanibbi, R TI Combining SVM Classifiers to Identify Investigator Name Zones in Biomedical Articles SO DOCUMENT RECOGNITION AND RETRIEVAL XIX SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Document Recognition and Retrieval XIX (DRR)/Electronic Imaging Symposium CY JAN 25-26, 2012 CL Burlingame, CA DE Investigator Names; MEDLINE; Support Vector Machine; labeling; text classification; bibliographic information AB This paper describes an automated system to label zones containing Investigator Names (IN) in biomedical articles, a key item in a MEDLINE (R) citation. The correct identification of these zones is necessary for the subsequent extraction of IN from these zones. A hierarchical classification model is proposed using two Support Vector Machine (SVM) classifiers. The first classifier is used to identify an IN zone with highest confidence, and the other classifier identifies the remaining IN zones. Eight sets of word lists are collected to train and test the classifiers, each set containing collections of words ranging from 100 to 1,200. Experiments based on a test set of 105 journal articles show a Precision of 0.88, 0.97 Recall, 0.92 F-Measure, and 0.99 Accuracy. C1 [Kim, Jongwoo; Le, Daniel X.; Thoma, George R.] Natl Lib Med, Bethesda, MD 20894 USA. C3 National Institutes of Health (NIH) - USA; NIH National Library of Medicine (NLM) RP Kim, J (corresponding author), Natl Lib Med, 8600 Rockville Pike, Bethesda, MD 20894 USA. EM jongkim@mail.nih.gov CR [Anonymous], 2008, TECHN MEM 484 INV NA Burges CJC, 1998, DATA MIN KNOWL DISC, V2, P121, DOI 10.1023/A:1009715923555 Chang CC, 2011, ACM T INTEL SYST TEC, V2, DOI 10.1145/1961189.1961199 Dumais S., 1998, Proceedings of the 1998 ACM CIKM International Conference on Information and Knowledge Management, P148, DOI 10.1145/288627.288651 Gabrilovich E., 2004, P 21 INT C MACH LEAR, P321 Joachims Thorsten, 1998, ECML, P137, DOI DOI 10.1007/BFB0026683 Johnson M., 2008, SVM NET Jongwoo Kim, 2008, Proceedings of the 2008 International Conference on Data Mining, P373 Kim J., 2010, IS T SPIES 22 ANN S Kim J., 2009, P 22 IEEE INT S COMP Lewis D. D., 1998, EUR C MACH LEARN, P4, DOI DOI 10.1007/BFB0026666 Madigan D., 2005, STAT GUIDE UNKNOWN, P135 McCallum A., 1998, P AAAI 98 WORKSH LEA, P577 NR 13 TC 1 Z9 1 U1 0 U2 1 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X EI 1996-756X BN 978-0-81948-944-9 J9 PROC SPIE PY 2012 VL 8297 AR 829704 DI 10.1117/12.910517 PG 8 WC Computer Science, Artificial Intelligence; Engineering, Electrical & Electronic; Optics WE Conference Proceedings Citation Index - Science (CPCI-S) SC Computer Science; Engineering; Optics GA BYT89 UT WOS:000300251700003 DA 2024-09-05 ER PT J AU Kunoe, G AF Kunoe, Gorm TI Using persuasive marketing methods and mobile phones as active learning devices to enhance students' learning SO JOURNAL OF PEDAGOGIC DEVELOPMENT LA English DT Article DE Mobile learning parcels; a four-factor pedagogy model; learning evaluation model; action research AB One of the latest additions to the educator's toolbox are learning parcels sent to the students' mobile phones. We used a four factor sales and marketing model from previous research to produce and evaluate the contents of the learning parcels and the mobile phone concept. The four factors are: Relevance, timeliness, responsibility and value. In an action research program during the first semester of 2015, we tested to which degree the students felt their curriculum knowledge improved through the use of learning parcels on their mobile phones. We learned that the novelty effect of using mobile phones as a medium quickly evaporated. The use of the learning parcels depends to a high degree on the instant feeling of high usefulness in relation to the four factors and is decisive for students' use of the learning parcels and the concept as such. A significant number of the students liked the concept, and were sure of its positive learning outcome. Purpose The purpose of this paper is to present the development and effectiveness test of a series of learning packets sent to the mobile phones of students taking a Bachelor's degree. A four-factor research model is presented that can be used for accessing new teaching tools and the contents of learning parcels. Design/methodology/approach We tested the four-factor model and the use of learning parcels on one class of Norwegian students. 135 students established an account, and 57 student made use of the APP and downloaded in total ten learning parcels. These were weekly send to their mobile phones, assisting them in understanding specific parts of the curriculum. Findings - Students experienced improved learning outcomes through the use of learning parcels on their mobile phones. The contents of the learning parcels should be optimized by the use of our four-factor model. The universal model can be used to judge learning parcels in industrial teaching and training programs. The contents are more engaging when the medium is a mobile phone and the length of the contents is short and engaging. Research limitations/implications It would be rewarding to measure the effect on the outcome of the mobile learning parcels on the results of the students. We have only their own opinion on the effect. The results from the action research will be used in a new round of action research this year and next year. It will then be possible to compare the alterations made from the first round of research presented here. Originality/value This paper appears to be the first, which simultaneously examines the use of a marketing model to target contents of learning parcels and the use of mobile phones as learning media. C1 [Kunoe, Gorm] Norwegian Business Sch, Inst Mkt, Oslo, Norway. C3 BI Norwegian Business School RP Kunoe, G (corresponding author), Norwegian Business Sch, Inst Mkt, Oslo, Norway. CR Benshoff J. M, 2011, PROFESSIONAL COUNCEL, V1 Burns A., 2010, International House Journal, V29, P3 Dichter E., 1966, HARVARD BUSINESS REV, V44 Husman J., 2000, ANN M AM PSYCH ASS W Kunoe Gorm, 2006, SPAREBANKBLADET Mertler Craig A., 2012, J PEDAGOGIC DEV, V3 Toffler A., 1980, 3 WAVE Wlodkowski R., 1995, DIVERSITY MOTIVATION NR 8 TC 0 Z9 0 U1 0 U2 1 PU UNIV BEDFORDSHIRE, CENTRE LEARNING EXCELLENCE PI BEDS PA UNIVERSITY SQ, LUTON, BEDS, LU1 3JU, ENGLAND SN 2047-3257 EI 2047-3265 J9 J PEDAGOG DEV JI J. Pedagog. Dev. PY 2016 VL 6 IS 1 BP 64 EP 70 PG 7 WC Education & Educational Research WE Emerging Sources Citation Index (ESCI) SC Education & Educational Research GA EL5CM UT WOS:000394639200008 DA 2024-09-05 ER PT J AU Prasad, KDV Vaidya, R AF Prasad, K. D., V Vaidya, Rajesh TI Causes and Effect of Job Stress and Coping on Performance and Psychological Well-being among the Agricultural Research Sector Employees: An Empirical Study Using Multinomial Logistic Regression Approach SO HELIX LA English DT Article DE Job Stress; Agricultural Research Sector (ARS); Psychological Well-being; Coping; Gender AB This manuscript reports the results of our study to assess the influence of stress due to job, strategies adopted for coping the stress, their association, and effect on performance and psychological well-being of agricultural research sector (ARS) employees. A survey of 700 staff working in the ARS in Hyderabad Metro, consisting of 360 women and 340 men were carried out. The 14 independent job stress components, harassment, role ambiguity, psychological factors, peer support, workload, co-workers, role conflict, career, physiological factors, behavioral factors, job control and social support, strategies of coping both the approach & avoidance strategies on dependent factors Performance and Psychological well-being of the agricultural research sector employees were estimated. The Cronbach's alpha value for the whole sample is 0.87, and C-alpha values for the job stress components and outcome factors performance and psychological well-being ranged between 0.70-0.81. The odds ratios (ORs) were measured to calculate the level of relation of job stress, coping methods, relationship with performance and psychological well-being of ARS staff. The age and gender differences were also studied. C1 [Prasad, K. D., V] Int Crops Res Inst Semi Arid Trop, Hyderabad, Telangana, India. [Vaidya, Rajesh] Shri Ramdeobaba Coll Engn & Management, Dept Management Technol, Katol Rd, Nagpur 444013, Maharashtra, India. C3 CGIAR; International Crops Research Institute for the Semi-Arid-Tropics (ICRISAT); Rashtrasant Tukadoji Maharaj Nagpur University; Shri Ramdeobaba College of Engineering & Management RP Prasad, KDV (corresponding author), Int Crops Res Inst Semi Arid Trop, Hyderabad, Telangana, India. EM k.d.prasad@cgiar.org; rwvaidya@gmail.com RI PRASAD, KDV/AAF-7097-2019; Vaidya, Rajesh W/AAC-6790-2021 OI PRASAD, KDV/0000-0001-9921-476X; Vaidya, Rajesh W/0000-0002-7541-2187 CR Annamali Sumathi, 2015, OCCUPATIONAL STRESS, P165 Burns KL, 2006, PERCEIVED ORG SUPPOR, P1 CAMPBELL CH, 1990, PERS PSYCHOL, V43, P277, DOI 10.1111/j.1744-6570.1990.tb01559.x Cochran W., 1977, Sampling techniques Cooper C., 1978, Sources of managerial and White Collar Stress- Wiley Cronbach LJ, 1951, PSYCHOMETRIKA, V16, P297 Francis Andre, 2008, BUSINESS MATH STAT, P50 Kahn R.L., 1964, Organizational Stress: Studies in Role Conflict and Ambiguity MasoudLotfizadeh, 2014, MALAYSIAN J PUBLIC H, V14, P79 Odetunmibi Oluwole A., 2017, P WORLD C ENG COMP S, VI, P1 Prasad KDV, 2018, PAC BUS REV INT, V10, P27 Prasad K.D. V., 2015, International Journal of Management Research and Business Strategy pp, P68 RYFF CD, 1995, J PERS SOC PSYCHOL, V69, P719 Sateesh Kumar K, 2012, INT J ADV ENG TECHNO, V2, P410 Selye H, 1956, J CLIN ENDOCRINOLOGY, V2, P117 Selye H., 1976, STRESS HLTH DIS BUTT Sharma SK, 2012, MANAG-J CONTEMP MANA, V17, P1 Srivastava A.K., 1984, OCCUPATIONAL STRESS Srivastava AK, 2001, COPING STRATEGY SCAL Stephen EB., 1984, INT J SCI RES MANAGE, V2, P1417 Suryawanshi A., 2015, INT J SCI RES PUBLIC, V5, P1 Trochim K.M., 2006, Research Methods Knowledge Base NR 22 TC 1 Z9 1 U1 1 U2 12 PU BIOAXIS DNA RESEARCH CENTRE PRIVATE LIMITED PI HYDERBAD PA 13-51, SRI LAKSHMI NAGAR COLONY, BESIDES BLG BAZAR, NEAR KAMINENI HOSPITALS, GSI POST BANDAGUDA, HYDERBAD, 500068, INDIA SN 2277-3495 EI 2319-5592 J9 HELIX JI Helix PY 2018 VL 8 IS 6 BP 4114 EP 4119 DI 10.29042/2018-4114-4119 PG 6 WC Biotechnology & Applied Microbiology WE Emerging Sources Citation Index (ESCI) SC Biotechnology & Applied Microbiology GA HN2LK UT WOS:000460016500002 OA Bronze DA 2024-09-05 ER PT C AU Anupkant, S Kumar, PVMS Sateesh, N Mahesh, DB AF Anupkant, S. Kumar, P. V. M. Seravana Sateesh, Nayani Mahesh, D. Bhanu BE Niranjan, SK TI Opinion mining on author's citation characteristics of scientific publications SO PROCEEDINGS OF THE 2017 INTERNATIONAL CONFERENCE ON BIG DATA ANALYTICS AND COMPUTATIONAL INTELLIGENCE (ICBDAC) LA English DT Proceedings Paper CT International Conference on Big Data Analytics and Computational Intelligence (ICBDAC) CY MAR 23-25, 2017 CL Chirala Engn Coll, Chirala, INDIA HO Chirala Engn Coll DE Opinion mining; citation; publications; egression; sentiment analysis ID INDEX AB Opinion mining of authors opinions on scientific papers in citations is an important feature of scientific publications. Opinion mining aims to determine the defiance of a topic with respect to the overall polarity of a document. The main engine that drives opinion mining is the processing of subjective information. A dataset in the form of sentence-based collection of over 785 citations were collected. After excluding neutral citations, the dataset of 234 opinion citations were analyzed for the presence of positive and negative features. It was observed that majority (91.6 %) were found to be positive, the fraction of citations with negative orientation amounted to 8.4% and nearly 6% of the citations contained opinion terms of both positive and negative polarity. Logistic regression applied on training set resulted in 0.98 precision obtained on a classification model; hence the obtained regression model was applied on test set data to reveal positive and negative opinions. C1 [Anupkant, S.; Kumar, P. V. M. Seravana; Sateesh, Nayani; Mahesh, D. Bhanu] CVR Coll Engn, Dept IT, Hyderabad 501510, Andhra Pradesh, India. RP Anupkant, S (corresponding author), CVR Coll Engn, Dept IT, Hyderabad 501510, Andhra Pradesh, India. EM anupkant@gmail.com; seravanakumar@gmail.com; nayanisateesh@gmail.com; dbhanumahesh@gmail.com RI D, BHANU MAHESH/IAL-9086-2023; NAYANI, SATEESH/HHM-7838-2022 OI D, BHANU MAHESH/0000-0003-3082-0598; N, Sateesh/0000-0003-0094-1057; NAYANI, SATEESH/0000-0001-8216-1809 CR [Anonymous], 2004, INT C INF SYST Athar A., 2011, P ACL 2011 STUD SESS, P81 Bird SB, 2008, J MED TOXICOL, V4, P261, DOI 10.1007/BF03161211 BONZI S, 1982, J AM SOC INFORM SCI, V33, P208, DOI 10.1002/asi.4630330404 Breck Eric., 2007, P INT JOINT C ARTIFI Cardie Claire., 2003, P AAAI SPRING S NEW, P20 Chen YB, 2008, MANAGE SCI, V54, P477, DOI 10.1287/mnsc.1070.0810 Chesley P., 2006, Training, V580, P233 CORTES C, 1995, MACH LEARN, V20, P273, DOI 10.1023/A:1022627411411 Das SanjivR., 2001, P 8 ASIA PACIFIC FIN Dave K., 2003, P 12 INT C WORLD WID, P519, DOI DOI 10.1145/775152.775226 Egghe L, 2006, SCIENTOMETRICS, V69, P131, DOI 10.1007/s11192-006-0144-7 Fukuhara T, 2007, P INT C WEBL SOC MED Glanzel W, 2002, SCIENTOMETRICS, V53, P171, DOI 10.1023/A:1014848323806 González-Pereira B, 2010, J INFORMETR, V4, P379, DOI 10.1016/j.joi.2010.03.002 Hatzivassiloglou V, 1997, 35TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS AND THE 8TH CONFERENCE OF THE EUROPEAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, PROCEEDINGS OF THE CONFERENCE, P174, DOI 10.3115/976909.979640 Hirsch JE, 2005, P NATL ACAD SCI USA, V102, P16569, DOI 10.1073/pnas.0507655102 JINDAL N, 2006, P ACM SPEC INT GROUP Joshi Medha A, 2014, J Contemp Dent Pract, V15, P258 Kaur G., 2016, INT J ADV RES COMPUT, V5, P148 Kosmulski M., 2006, ISSI NEWSLETTER, V2, P4, DOI [10.1177/01655515211014478, DOI 10.1177/01655515211014478] Li Y., 2005, SIGKDD EXPLORATIONS, V7, P91 Lita L.V., 2005, Proceedings of the national conference on artificial intelligence, V20, P1616 Liu Bing, 2006, WEB DATA MINING EXPL Pang B, 2002, PROCEEDINGS OF THE 2002 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING, P79, DOI 10.3115/1118693.1118704 Piao SS., 2007, International Workshop on Computational Semantics (IWCS), P366 Radev DragomirR., 2009, Journal of the American Society for Information Science and Technology (JASIST) Tatemura J., 2000, IUI 2000. 2000 International Conference on Intelligent User Interfaces, P272, DOI 10.1145/325737.325870 Tong R.M., 2001, P ACM SIGIR WORKSH O West JD, 2010, COLL RES LIBR, V71, P236, DOI 10.5860/0710236 NR 30 TC 1 Z9 2 U1 0 U2 6 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA BN 978-1-5090-6400-7 PY 2017 BP 348 EP 351 PG 4 WC Computer Science, Artificial Intelligence; Computer Science, Hardware & Architecture; Computer Science, Software Engineering WE Conference Proceedings Citation Index - Science (CPCI-S) SC Computer Science GA BJ5EI UT WOS:000425843000064 DA 2024-09-05 ER PT J AU Min, J Han, YX Sun, Y Jin, FX Li, T AF Min, Ji Yunxiu, Han Yong, Sun Fengxiang, Jin Ting, Li TI Research on Analysis of Evaluation Influence Factors of Air Quality Opinions Sentiment Value and Quantification Method SO WATER AIR AND SOIL POLLUTION LA English DT Article DE Air quality perception; Social media; Opinion mining; Sentiment analysis; Public perceptions ID MORTALITY; HEALTH AB More and more people make opinions on air quality on social media, as science develops and the seriousness of air quality issues. Studies on sentiment analysis keyed to this kind of public opinions will do help in the introduction and perfection of policy of air quality. The evaluation of opinions sentiment is still a hard point in at this stage. There are only a few researches about the factors of the value of opinions sentiment. This article uses opinions related to air quality from Sina Weibo (Chinese Twitter) users, by online questionnaire surveys, and studies the results of opinions sentiment value about air quality in different groups, aiming at doing a research on the evaluation influence factors of opinions sentiment value on air quality. Furthermore, we came up with a solution synthesizing the influential level to calculate opinions sentiment value. We found amounts of respondents had a negative attitude to the opinions. We can now say with some confidence that education is the most significant influence factor on the public to tell the degree of sentiment level of air quality opinions. The sentiment calculation method where we come up could reduce the one-sidedness of different individuals' evaluations of the same opinion to some extent. The research could be reference for air quality management from the perspective of public opinion sentiment analysis. C1 [Min, Ji; Yunxiu, Han; Ting, Li] Shandong Univ Sci & Technol, Coll Geodesy & Geomat, Qingdao 266590, Peoples R China. [Yong, Sun; Fengxiang, Jin] Shandong Jianzhu Univ, Sch Surveying & Geoinformat, Jinan 250000, Peoples R China. C3 Shandong University of Science & Technology; Shandong Jianzhu University RP Han, YX (corresponding author), Shandong Univ Sci & Technol, Coll Geodesy & Geomat, Qingdao 266590, Peoples R China. EM HanYunxiu1997@163.com FU Major Science and Technology Innovation Projects of Shandong Province [2019JZZY020103] FX This research was funded by the Major Science and Technology Innovation Projects of Shandong Province (2019JZZY020103). CR [Anonymous], 2011, INT C PERS TECHN [Anonymous], MACHINE LEARNING Barbosa L., 2010, P 23 INT C COMP LING, P36 Bickerstaff K, 2003, PROG HUM GEOG, V27, P45, DOI 10.1191/0309132503ph412oa BOFFEY PM, 1968, SCIENCE, V161, P990, DOI 10.1126/science.161.3845.990 Breiman L., 2001, Machine Learning, V45, P5, DOI 10.1023/A:1010933404324 Calle M Luz, 2011, Brief Bioinform, V12, P86, DOI 10.1093/bib/bbq011 Chen YX, 2018, PROCEEDINGS OF THE 2018 ACM MULTIMEDIA CONFERENCE (MM'18), P117, DOI 10.1145/3240508.3240533 Cody EM, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0136092 de Santana FB, 2019, FOOD CHEM, V293, P323, DOI 10.1016/j.foodchem.2019.04.073 Eden S., 1996, PUBLIC UNDERST SCI, V5, P183, DOI [10.1088/0963-6625/5/3/001, DOI 10.1088/0963-6625/5/3/001] Goldstein BA, 2011, STAT APPL GENET MOL, V10, DOI 10.2202/1544-6115.1691 Gruebner O, 2017, PLOS ONE, V12, DOI 10.1371/journal.pone.0181233 [何炎祥 He Yanxiang], 2017, [计算机学报, Chinese Journal of Computers], V40, P773 Hornberg C, 1998, TOXICOL LETT, V96-7, P215, DOI 10.1016/S0378-4274(98)00075-7 Hu M., 2004, P 10 ACM SIGKDD INT, P168, DOI [10.1145/1014052.1014073, DOI 10.1145/1014052.1014073] Huang J, 2018, LANCET PLANET HEALTH, V2, pE313, DOI 10.1016/S2542-5196(18)30141-4 Kim Y., 2014, C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS Muindi K, 2014, BMC PUBLIC HEALTH, V14, DOI 10.1186/1471-2458-14-226 Pope CA, 2002, JAMA-J AM MED ASSOC, V287, P1132, DOI 10.1001/jama.287.9.1132 Riddel M, 2006, J RISK UNCERTAINTY, V32, P131, DOI 10.1007/s11166-006-8290-0 Taboada M, 2011, COMPUT LINGUIST, V37, P267, DOI 10.1162/COLI_a_00049 Tang D., 2015, Computer Science The State Council of China, 2013, AIR POLL PREV CONTR Turney PD, 2003, ACM T INFORM SYST, V21, P315, DOI 10.1145/944012.944013 Vincent B., 2014, PLOS ONE, V9, DOI [10.1371/journal.pone.0093379, DOI 10.1371/JOURNAL.PONE.0093379] Wang H, 2020, RESOUR CONSERV RECY, V158, DOI 10.1016/j.resconrec.2020.104813 Wang X, 2018, ATMOS ENVIRON, V194, P188, DOI 10.1016/j.atmosenv.2018.09.041 Wang X, 2015, PROCEEDINGS OF THE 53RD ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS AND THE 7TH INTERNATIONAL JOINT CONFERENCE ON NATURAL LANGUAGE PROCESSING, VOL 1, P1343 Yan Z., 2020, ENV POLLUTION CONTRO, V42, P1182 Ye, 2020, J FINANC ECON, V1, P126, DOI [DOI 10.16538/J.CNKI.JFE.2020.01.009, 10.16538/J.CNKI.JFE.2020.01.009] Yuan JH, 2020, SCI CHINA TECHNOL SC, V63, P1947, DOI 10.1007/s11431-020-1634-3 Zhang L, 2018, WIRES DATA MIN KNOWL, V8, DOI 10.1002/widm.1253 Zhang X, 2017, J ENVIRON ECON MANAG, V85, P81, DOI 10.1016/j.jeem.2017.04.001 NR 34 TC 1 Z9 1 U1 1 U2 31 PU SPRINGER INT PUBL AG PI CHAM PA GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND SN 0049-6979 EI 1573-2932 J9 WATER AIR SOIL POLL JI Water Air Soil Pollut. PD JUL PY 2021 VL 232 IS 7 AR 256 DI 10.1007/s11270-021-05197-x PG 17 WC Environmental Sciences; Meteorology & Atmospheric Sciences; Water Resources WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences; Water Resources GA UJ8XE UT WOS:000691561700004 DA 2024-09-05 ER PT J AU Zeng, ST Cai, YF Zhang, RS Lyu, X AF Zeng, Shaoting Cai, Yifei Zhang, Renshui Lyu, Xin TI Research on Human-Machine Collaborative Aesthetic Decision-Making and Evaluation Methods in Automotive Body Design: Based on DCGAN and ANN Models SO IEEE ACCESS LA English DT Article DE Automobiles; Generators; Training; Collaboration; Human-machine systems; Solid modeling; Noise measurement; Machine learning; Design for manufacture; Automotive components; Human-machine collaboration; human calculating and machine computing; machine learning; aesthetic evaluation and optimization; automotive body design AB The main content of this study is the human-machine collaborative design research, taking the car body design as the carrier. The research framework focused on two phases of car body design process, that of design ideation and evaluation. In the ideation stage, we trained an imperfect Deep Convolutional Generative Adversarial Network (DCGAN) model that just could generate blur automobile images as the blur design motherboards for the iterative sketching, which had design uncertainties and blanks, thus activating designers' subjective initiative and aesthetic intuition to provide more creative deepen sketches. We leveraged motherboards to address uncertainty through sketching and aesthetic intuition, refining options and ultimately selecting an optimal design. In the evaluation phase, we initially constructed a parametric 3D model with 20 parameters based on the optimal design, and invited 32 designers conducting participatory design experiments, getting 1024 human-designed schemes. Following this, we administered an online survey to assess the aesthetic qualities of a total of 1024 design schemes. Leveraging the collected score data (The first round of surveys engaged 279 participants, while the second round involved 73 participants), we trained an Artificial Neural Network (ANN) model to serve as an aesthetic evaluation score predictor for unknown parameter configurations. The machine could evaluate designs autonomously, thus selecting best design from 20,000 schemes generated randomly by machine. We utilized the parametric design converting sketching images to the numeric parameters, switching the qualitative ideation to the quantitative evaluation, thus achieving aesthetic evaluation and optimization. This study explores the relationship between human cognitive intuition and machine intelligence and how they can collaborate with each other. C1 [Zeng, Shaoting; Cai, Yifei; Zhang, Renshui; Lyu, Xin] Beijing Univ Technol, Coll Art & Design, Beijing 100124, Peoples R China. C3 Beijing University of Technology RP Zeng, ST (corresponding author), Beijing Univ Technol, Coll Art & Design, Beijing 100124, Peoples R China. EM sjmjzst@gmail.com RI Lyu, Xin/IVH-1329-2023 OI Lyu, Xin/0009-0008-0118-2834; Zeng, Shaoting/0000-0003-4720-7351 FU R&D Program of Beijing Municipal Education Commission [SM202310005009] FX This work was supported by the R&D Program of Beijing Municipal Education Commission under Grant SM202310005009. This work involved human subjects or animals in its research. Approval of all ethical and experimental procedures and protocols was granted by the Science and Technology Ethics Committee of Beijing University of Technology. CR Abdullaeva N. B., 2015, Theor. Appl. Sci., V29, P169 Agatonovic-Kustrin S, 2000, J PHARMACEUT BIOMED, V22, P717, DOI 10.1016/S0731-7085(99)00272-1 Ali AK, 2019, J CLEAN PROD, V234, P1033, DOI 10.1016/j.jclepro.2019.06.202 Bansal GG, 2021, AAAI CONF ARTIF INTE, V35, P11405 Barenji AV, 2021, ROBOT CIM-INT MANUF, V67, DOI 10.1016/j.rcim.2020.102043 Becerik-Gerber B, 2022, SCI REP-UK, V12, DOI 10.1038/s41598-022-25047-y Berdiev N., 2021, Amer. J. Social Sci. Educ. Innov., V3, P397 Bolojan D., 2021, CAADRIA P, P1 Bouchard C., 2006, Journal of Design Research, V5, DOI 10.1504/JDR.2006.010810 Burnap A, 2023, MARKET SCI, V42, P1029, DOI 10.1287/mksc.2022.1429 Casini L, 2023, SCI REP-UK, V13, DOI 10.1038/s41598-023-36015-5 Cetinic E, 2022, ACM T MULTIM COMPUT, V18, DOI 10.1145/3475799 Cheng JW, 2022, SURV GEOPHYS, V43, P1395, DOI 10.1007/s10712-022-09718-z Cross N., 1996, DESIGN STUD, V17, P91 Cui YR, 2018, COMPUT GRAPH FORUM, V37, P109, DOI 10.1111/cgf.13552 Dash T, 2022, SCI REP-UK, V12, DOI 10.1038/s41598-021-04590-0 Davies A, 2021, NATURE, V600, P70, DOI 10.1038/s41586-021-04086-x Dew R, 2022, MARKET SCI, V41, P401, DOI 10.1287/mksc.2021.1326 Duan LB, 2017, ENG OPTIMIZ, V49, P1247, DOI 10.1080/0305215X.2016.1241780 Epstein Z, 2023, Arxiv, DOI arXiv:2306.04141 Epstein Z, 2023, SCIENCE, V380, P1110, DOI 10.1126/science.adh4451 Farzaneh N, 2023, NPJ DIGIT MED, V6, DOI 10.1038/s41746-023-00797-9 Folkmann MN, 2018, DES RES FOUND, P263, DOI 10.1007/978-3-319-73302-9_13 Gatys LA, 2017, PROC CVPR IEEE, P3730, DOI 10.1109/CVPR.2017.397 Goodfellow IJ, 2014, ADV NEUR IN, V27, P2672, DOI 10.1145/3422622 Gorji HT, 2023, SCI REP-UK, V13, DOI 10.1038/s41598-023-29647-0 Hekkert P., 2008, Product Experience, P85 Hewer P, 2007, INT J SOCIOL SOC POL, V27, P106, DOI 10.1108/01443330710741057 HOHENDAHL PU, 1977, NEW GER CRIT, P29, DOI 10.2307/487671 Hu ZY, 2019, COMPUT ANIMAT VIRT W, V30, DOI 10.1002/cav.1889 Huang CY, 2022, BUILD ENVIRON, V224, DOI 10.1016/j.buildenv.2022.109575 Jia D, 2013, PROC CVPR IEEE, P580, DOI 10.1109/CVPR.2013.81 Kanarik KJ, 2023, NATURE, V616, P707, DOI 10.1038/s41586-023-05773-7 Kang WJ, 2023, SCI REP-UK, V13, DOI 10.1038/s41598-023-33055-9 Krause J, 2013, 2013 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW), P554, DOI 10.1109/ICCVW.2013.77 Kuglitsch MM, 2022, NAT COMMUN, V13, DOI 10.1038/s41467-022-29285-6 Lin S, 2023, SCI REP-UK, V13, DOI 10.1038/s41598-023-32827-7 Mukherkjee D, 2022, SCI REP-UK, V12, DOI 10.1038/s41598-022-12646-y Oxman R, 2017, DESIGN STUD, V52, P4, DOI 10.1016/j.destud.2017.06.001 Ozili P.K., 2022, SSRN, DOI [DOI 10.2139/SSRN.4128165, 10.2139/ssrn.4128165] Palmer SE, 2013, ANNU REV PSYCHOL, V64, P77, DOI 10.1146/annurev-psych-120710-100504 Qiong W., 2020, P WEB C, P1 Radford A, 2016, Arxiv, DOI [arXiv:1511.06434, DOI 10.48550/ARXIV.1511.06434] Reverberi C, 2022, SCI REP-UK, V12, DOI 10.1038/s41598-022-18751-2 Soon CS, 2008, NAT NEUROSCI, V11, P543, DOI 10.1038/nn.2112 Stiny G., 2012, Dosya, Comput. Des., V29, P6 Sylolypavan A, 2023, NPJ DIGIT MED, V6, DOI 10.1038/s41746-023-00773-3 Tian R., 2020, P 40 ANN C ASS COMP, P1 Toubia O, 2017, MARKET SCI, V36, P1, DOI 10.1287/mksc.2016.0994 Vitruvius, 1914, 10 BOOKS ARCHITECTUR Wang DK, 2020, CHI'20: EXTENDED ABSTRACTS OF THE 2020 CHI CONFERENCE ON HUMAN FACTORS IN COMPUTING SYSTEMS, DOI 10.1145/3334480.3381069 Wang XG, 2022, ADV MECH ENG, V14, DOI 10.1177/16878132221078495 Wilson J, 2018, HARVARD BUS REV, V96, P115 Wong Alexander, 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). Proceedings, P684, DOI 10.1109/CVPRW.2019.00095 Yousif S., 2017, P ACADIA, P1 Zuo WJ, 2013, ADV ENG SOFTW, V64, P1, DOI 10.1016/j.advengsoft.2013.04.003 NR 56 TC 0 Z9 0 U1 1 U2 1 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 2169-3536 J9 IEEE ACCESS JI IEEE Access PY 2024 VL 12 BP 91575 EP 91589 DI 10.1109/ACCESS.2024.3422134 PG 15 WC Computer Science, Information Systems; Engineering, Electrical & Electronic; Telecommunications WE Science Citation Index Expanded (SCI-EXPANDED) SC Computer Science; Engineering; Telecommunications GA YQ0V0 UT WOS:001269840500001 OA gold DA 2024-09-05 ER PT C AU Wiechetek, L AF Wiechetek, Lukasz BE Chova, LG Martinez, AL Torres, IC TI EDUCATORS AND ACADEMICS IN SPECIALIZED SOCIAL NETWORKS. COMPARISON OF GOOGLE SCHOLAR AND RESEARCHGATE USAGE BY BUSINESS RESEARCHERS OF MCSU SO EDULEARN19: 11TH INTERNATIONAL CONFERENCE ON EDUCATION AND NEW LEARNING TECHNOLOGIES SE EDULEARN Proceedings LA English DT Proceedings Paper CT 11th International Conference on Education and New Learning Technologies (EDULEARN) CY JUL 01-03, 2019 CL Palma, SPAIN DE social network; specialized social network; SNS; ResearchGate; Google Scholar; business scientist; comparative analysis; WEB 2.0; research evaluation; research evaluation metrics; researcher reputation ID WEB-OF-SCIENCE; SCOPUS AB Social networks play significant role not only in entertainment but also can improve the effectiveness of business and scientific processes. IT tools accelerate the knowledge dissemination, promote provided services or goods but also scientific achievements. At present researchers and scientists not only have to find interesting, up to date and significant topic of research, plan and perform the research in accordance with the methodology. They have to analyze and clearly visualize collected data and describe the final outcomes, prepare the scientific articles, but also effectively manage the research teams and widely promote the research and achievements. In today's fast changing and digital world, single researcher is not able to perform the whole complex research process on global scale and in a short time. Also, after performing the hard research work, the outcomes should by widely disseminated to promote the results, the author and the research organization. Research results have to reach a large, global audience, otherwise they could be not noticed or quickly forgotten. In this case very useful can be specialized social network sites like ResearchGate or Google Scholar. They integrate researchers with similar or supplementary interests, allow for building scientific portfolio by adding papers, research data, projects description. They can be also successfully used for improving communication, give the possibility of worldwide promotion of research outcomes and offer useful mechanisms for evaluation and comparison of educators, academics and research centers. The aim of the article is to present and compare the usage of specialized social network platforms by MCSU business researchers. The author compares two popular platforms Google Scholar and ResearchGate. The article contains the characteristics of analyzed platforms, main profits and problems related to their usage and comparison of offered functionalities. The main part of the paper is the quantitative analysis of business researchers' profiles on ResearchGate and Google Scholar. The data collected in April 2018 were used to answer the following research questions: If SNS platforms are widely used by the researchers?, What are the values of main metrics provided by both systems? and What are the differences between profiles created on explored platforms by various groups of users? The literature research, analysis of services offered by the explored portals and performed quantitative analysis indicate that possessing SNS profile is not very popular among analyzed researchers. Metrics presented by Google Scholar are higher than available on ResearchGate. However, RG presents more metrics which allow for a more in-depth achievements analysis. The author experiences and opinions of active SNS users indicate that use of specialized social networks is easy and intuitive. The main initial barrier is manual profile creating. Many activities like metrics calculation, development of the publication list is performed automatically without the extra effort of the researchers. Therefore, it is worth to create the profile in social network sites for researchers to be more recognizable and boost the development of scientific career. C1 [Wiechetek, Lukasz] Marie Curie Sklodowska Univ, Fac Econ, Lublin, Poland. C3 Maria Curie-Sklodowska University RP Wiechetek, L (corresponding author), Marie Curie Sklodowska Univ, Fac Econ, Lublin, Poland. RI Ločičnik, Aleksandra/ABE-7348-2021; Wiechetek, Łukasz/AAH-7309-2021 OI Wiechetek, Łukasz/0000-0001-7755-2282 CR Bar-Ilan J, 2008, SCIENTOMETRICS, V74, P257, DOI 10.1007/s11192-008-0216-y Falagas ME, 2008, FASEB J, V22, P338, DOI 10.1096/fj.07-9492LSF Harzing A., 2008, Ethics in Science and Environmental Politics, V8, P61, DOI [DOI 10.3354/ESEP00076, 10.3354/esep00076] Jacso P, 2005, CURR SCI INDIA, V89, P1537 Jacsó P, 2005, ONLINE INFORM REV, V29, P208, DOI 10.1108/14684520510598066 Jamali HR, 2017, SCIENTOMETRICS, V112, P241, DOI 10.1007/s11192-017-2291-4 Kraker P., 2015, P QUANT AN SCHOL COM Kulkarni AV, 2009, JAMA-J AM MED ASSOC, V302, P1092, DOI 10.1001/jama.2009.1307 Nicholas D, 2016, LEARN PUBL, V29, P173, DOI 10.1002/leap.1035 Noruzi A, 2005, LIBRI, V55, P170, DOI 10.1515/LIBR.2005.170 Orduna-Malea E, 2017, SCIENTOMETRICS, V112, P443, DOI 10.1007/s11192-017-2396-9 Shultz M., 2004, J MED LIB ASS JMLA, V95, P442 Thelwall M, 2017, J ASSOC INF SCI TECH, V68, P468, DOI 10.1002/asi.23675 Van Noorden R, 2014, NATURE, V512, P126, DOI 10.1038/512126a Yu MC, 2016, COMPUT HUM BEHAV, V55, P1001, DOI 10.1016/j.chb.2015.11.007 NR 15 TC 4 Z9 4 U1 0 U2 2 PU IATED-INT ASSOC TECHNOLOGY EDUCATION & DEVELOPMENT PI VALENICA PA LAURI VOLPI 6, VALENICA, BURJASSOT 46100, SPAIN SN 2340-1117 BN 978-84-09-12031-4 J9 EDULEARN PROC PY 2019 BP 8039 EP 8051 PG 13 WC Education & Educational Research WE Conference Proceedings Citation Index - Social Science & Humanities (CPCI-SSH) SC Education & Educational Research GA BP4NG UT WOS:000553304902092 DA 2024-09-05 ER PT J AU Bukowski, M Geisler, S Schmitz-Rode, T Farkas, R AF Bukowski, Mark Geisler, Sandra Schmitz-Rode, Thomas Farkas, Robert TI Feasibility of activity-based expert profiling using text mining of scientific publications and patents SO SCIENTOMETRICS LA English DT Article DE Supervised learning; Biomedical engineering domain model; Translational value chain; Research evaluation; Author contribution; Domain-specific recommendation; Self; and external-assessment ID SLEEPING BEAUTIES; GOOGLE-SCHOLAR; CLASSIFICATION; COLLABORATION; TECHNOLOGY; AUTHORSHIP; INNOVATION; PRODUCTIVITY; NETWORKS; JOURNALS AB Research and development (R&D) in many technological areas is characterized by growing complexity. In biomedical engineering, too, interdisciplinary collaboration is regarded as a promising way to master this challenge. Therefore, identifying suitable experts becomes crucial, which is currently being researched, amongst others, by analyzing semantic data. However, previous approaches lack clarity and traceability of the mechanisms for compiling top-n lists of recommended experts, as domain specificity in profiling is insufficient. Moreover, these recommenders are mainly based on scientific publications, while patents are rarely considered as an important outcome of R&D. Thus, we study the feasibility of profiling 16 biomedical engineering experts using both publications and patents. These documents are automatically labeled according to a three-dimensional domain model by machine learning-based classifiers. On this basis, we created various activity-based representations, including author-contribution-weighting. We evaluated the profiling through self- and external-assessments and tested the recommendation compared to scientometric measures in three case studies. All interviewed experts identify themselves among 10 pseudonymous profiles and 96% of all 51 external-assignments are correct. The recommendation over three case studies reaches a high mean average precision of 89% and contrasts with the use of scientometric measures (41%). Moreover, the activity based on patents primarily corresponds to that of publications but patents also introduce new activities. The author-contribution-weighting improves the performance. In conclusion, our findings show that exploiting publications and patents enables comprehensible profiling of biomedical engineering experts that allows visual comparisons and clear selection and ranking of potential R&D collaboration partners along the translational value chain. C1 [Bukowski, Mark; Farkas, Robert] Rhein Westfal TH Aachen, Univ Hosp Aachen, Inst Appl Med Engn, Helmholtz Inst,Dept Sci Management, Pauwelsstr 20, D-52074 Aachen, Germany. [Geisler, Sandra] Fraunhofer Inst Appl Informat Technol FIT, Schloss Birlinghoven, D-53754 St Augustin, Germany. [Schmitz-Rode, Thomas] Rhein Westfal TH Aachen, Univ Hosp Aachen, Inst Appl Med Engn, Helmholtz Inst, Pauwelsstr 20, D-52074 Aachen, Germany. C3 Helmholtz Association; RWTH Aachen University; RWTH Aachen University Hospital; Fraunhofer Gesellschaft; RWTH Aachen University; RWTH Aachen University Hospital; Helmholtz Association RP Bukowski, M (corresponding author), Rhein Westfal TH Aachen, Univ Hosp Aachen, Inst Appl Med Engn, Helmholtz Inst,Dept Sci Management, Pauwelsstr 20, D-52074 Aachen, Germany. EM bukowski@ame.rwth-aachen.de RI Bukowski, Mark/M-4621-2019 OI Bukowski, Mark/0000-0003-4563-1159; Farkas, Robert/0000-0002-8199-6764; Geisler, Sandra/0000-0002-8970-6282; Schmitz-Rode, Thomas/0000-0002-1181-2165 FU Klaus Tschira Stiftung gGmbH [00.263.2015] FX This study was funded by the Klaus Tschira Stiftung gGmbH (Grant No. 00.263.2015). CR albertbup, 2017, A python implementation of deep belief networks built upon numpy and tensorflow with scikit-learn compatibility Alstott J, 2017, DES SCI, V3, DOI 10.1017/dsj.2017.21 [Anonymous], 2010, MEASURING INNOVATION [Anonymous], INT STAT CLASS DIS R [Anonymous], 2009, OECD Patent Statistics Manual [Anonymous], 2003, ACM SIGIR FOR 2003, DOI DOI 10.1145/945546.945547 Baerlocher MO, 2007, J INVEST MED, V55, P174, DOI 10.2310/6650.2007.06044 Balog Krisztian, 2007, 30th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, P551, DOI 10.1145/1277741.1277836 Balog K, 2012, FOUND TRENDS INF RET, V6, P127, DOI 10.1561/1500000024 Balog K, 2007, 20TH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, P2657 Benzineb K, 2011, INFORM RETRIEVAL SER, V29, P239, DOI 10.1007/978-3-642-19231-9_12 Bercovitz J, 2011, RES POLICY, V40, P81, DOI 10.1016/j.respol.2010.09.008 Berendsen R, 2013, J AM SOC INF SCI TEC, V64, P2024, DOI 10.1002/asi.22908 Borge L, 2017, CREAT INNOV MANAG, V26, P311, DOI 10.1111/caim.12222 Brink PA, 2013, CARDIOVASC J AFR, V24, P295 Bukowski M., 2017, P 2 INT WORKSH HLTH Chang CC, 2011, ACM T INTEL SYST TEC, V2, DOI 10.1145/1961189.1961199 Chen H.-H., 2015, ARXIVABS151102058 CO Chen SY, 2017, J THORAC DIS, V9, P1725, DOI 10.21037/jtd.2017.05.34 Chin-Dusting J, 2005, NAT REV DRUG DISCOV, V4, P891, DOI 10.1038/nrd1879 Clarivate Analytics, 2018, WEB SCI COR COLL CIT Clarivate Analytics, 2018, INCITES J CIT REP Cope AP, 2018, NAT REV RHEUMATOL, V14, P53, DOI 10.1038/nrrheum.2017.200 Corbi A, 2019, IEEE ACCESS, V7, P9105, DOI 10.1109/ACCESS.2018.2887272 da Silva J. A. Teixeira, 2017, ACAD QUESTIONS, V30, P433, DOI DOI 10.1007/S12129-017-9671-3 Ding Y, 2011, J INFORMETR, V5, P187, DOI 10.1016/j.joi.2010.10.008 Du GC, 2018, PROCEEDINGS OF 2018 IEEE 4TH INFORMATION TECHNOLOGY AND MECHATRONICS ENGINEERING CONFERENCE (ITOEC 2018), P75, DOI 10.1109/ITOEC.2018.8740444 Falagas ME, 2008, FASEB J, V22, P338, DOI 10.1096/fj.07-9492LSF Farkas R, 2017, S VOR TECHN 2017 PAD, P239 Farkas R., 2005, STUDIE SITUATION MED Felfernig A., 2018, SPRINGERBRIEFS ELECT Ferguson MWJ, 2016, NATURE, V538, P453, DOI 10.1038/538453a Fernández-Delgado M, 2014, J MACH LEARN RES, V15, P3133 FLEISS JL, 1971, PSYCHOL BULL, V76, P378, DOI 10.1037/h0031619 George S, 2020, SCIENTOMETRICS, V122, P127, DOI 10.1007/s11192-019-03286-7 Guan JC, 2009, J AM SOC INF SCI TEC, V60, P35, DOI 10.1002/asi.20954 Guan JC, 2016, RES POLICY, V45, P97, DOI 10.1016/j.respol.2015.08.002 Haeussler C, 2013, RES POLICY, V42, P688, DOI 10.1016/j.respol.2012.09.009 Hampton SE, 2011, BIOSCIENCE, V61, P900, DOI 10.1525/bio.2011.61.11.9 Harzing AW, 2016, SCIENTOMETRICS, V106, P787, DOI 10.1007/s11192-015-1798-9 Heidemeier H, 2009, J APPL PSYCHOL, V94, P353, DOI 10.1037/0021-9010.94.2.353 Hicks Diana, 2015, Nature, V520, P429, DOI 10.1038/520429a Huang YM, 2005, PROCEEDINGS OF 2005 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS, VOLS 1-9, P4365 Konski AF, 2015, CSH PERSPECT MED, V5, DOI 10.1101/cshperspect.a020859 Kuan CH, 2011, J INFORMETR, V5, P303, DOI 10.1016/j.joi.2011.01.002 Lanjouw JO, 2004, ECON J, V114, P441, DOI 10.1111/j.1468-0297.2004.00216.x Li SB, 2018, SCIENTOMETRICS, V117, P721, DOI 10.1007/s11192-018-2905-5 Lin SY, 2017, J INTELL INF SYST, V49, P255, DOI 10.1007/s10844-016-0440-5 Lissoni F, 2013, J ECON BEHAV ORGAN, V95, P49, DOI 10.1016/j.jebo.2013.08.016 Ma JT, 2017, IEEE ACCESS, V5, P12031, DOI 10.1109/ACCESS.2017.2717921 Manotungvorapun N, 2016, PORTL INT CONF MANAG, P420, DOI 10.1109/PICMET.2016.7806579 Massa P, 2007, RECSYS 07: PROCEEDINGS OF THE 2007 ACM CONFERENCE ON RECOMMENDER SYSTEMS, P17 Mattsson P, 2011, SCIENTOMETRICS, V87, P99, DOI 10.1007/s11192-010-0310-9 McHugh ML, 2012, BIOCHEM MEDICA, V22, P276, DOI 10.11613/bm.2012.031 Mindruta D, 2013, STRATEGIC MANAGE J, V34, P644, DOI 10.1002/smj.2036 Moehrle MG, 2005, R&D MANAGE, V35, P513, DOI 10.1111/j.1467-9310.2005.00408.x NGUYEN J, 2015, IEEE INT FUZZY SYST, P1 Pan B, 2007, J COMPUT-MEDIAT COMM, V12, P801, DOI 10.1111/j.1083-6101.2007.00351.x Pedregosa F, 2011, J MACH LEARN RES, V12, P2825 Powers D M W, 2011, INT J MACH LEARN TEC, V2, P37 Renjun Chi, 2018, 2018 IEEE Third International Conference on Data Science in Cyberspace (DSC). Proceedings, P881, DOI 10.1109/DSC.2018.00141 Rexha A, 2018, SCIENTOMETRICS, V115, P223, DOI 10.1007/s11192-018-2661-6 Ribeiro LC, 2018, SCIENTOMETRICS, V114, P159, DOI 10.1007/s11192-017-2573-x Rose S., 2010, TEXT MINING APPL THE, P1, DOI [DOI 10.1002/9780470689646.CH1, 10.1002/9780470689646.CH1, 10.1002/9780470689646.ch1] Rybak Jan, 2014, Advances in Information Retrieval. 36th European Conference on IR Research, ECIR 2014. Proceedings: LNCS 8416, P540, DOI 10.1007/978-3-319-06028-6_54 Rycroft RW, 2007, TECHNOL FORECAST SOC, V74, P565, DOI 10.1016/j.techfore.2006.10.005 Sateli B, 2017, PEERJ COMPUT SCI, DOI 10.7717/peerj-cs.121 Sauermann H, 2017, SCI ADV, V3, DOI 10.1126/sciadv.1700404 Schillebeeckx SJD, 2019, J MANAGE STUD, V56, P1073, DOI 10.1111/joms.12447 Schlotelburg Cord., 2008, IDENTIFIZIERUNG INNO Schuemie MJ, 2008, BIOINFORMATICS, V24, P727, DOI 10.1093/bioinformatics/btn006 Schuh G, 2016, PROCEEDINGS 2016 IEEE INTERNATIONAL CONFERENCE ON INDUSTRIAL TECHNOLOGY (ICIT), P1022, DOI 10.1109/ICIT.2016.7474894 Sekercioglu CH, 2008, SCIENCE, V322, P371, DOI 10.1126/science.322.5900.371a Serdyukov P, 2011, LECT NOTES COMPUT SC, V6611, P399, DOI 10.1007/978-3-642-20161-5_40 Silva T, 2017, INF DISCOV DELIV, V45, P169, DOI 10.1108/IDD-03-2017-0021 Silva T, 2015, J ASSOC INF SCI TECH, V66, P180, DOI 10.1002/asi.23150 Silvello G, 2017, INT J DIGIT LIBRARIE, V18, P145, DOI 10.1007/s00799-016-0172-8 Singh H, 2013, HEALTHC INFORM RES, V19, P243, DOI 10.4258/hir.2013.19.4.243 Singh R, 2018, IEEE RAD FREQ INTEGR, P4, DOI 10.1109/RFIC.2018.8429031 Squicciarini M., 2013, Measuring patent quality: Indicators of technological and economic value, DOI DOI 10.1787/5K4522WKW1R8-EN Stephan P, 2017, NATURE, V544, P411, DOI 10.1038/544411a Tang J., 2008, ArnetMiner Tie-Yan Liu, 2009, Foundations and Trends in Information Retrieval, V3, P225, DOI 10.1561/1500000016 Trappey AJC, 2012, ADV ENG INFORM, V26, P26, DOI 10.1016/j.aei.2011.06.005 Tscharntke T, 2007, PLOS BIOL, V5, P13, DOI 10.1371/journal.pbio.0050018 Tseng YH, 2007, INFORM PROCESS MANAG, V43, P1216, DOI 10.1016/j.ipm.2006.11.011 van Raan AFJ, 2004, SCIENTOMETRICS, V59, P467, DOI 10.1023/B:SCIE.0000018543.82441.f1 van Raan AFJ, 2018, SCIENTOMETRICS, V114, P701, DOI 10.1007/s11192-017-2603-8 Vavrycuk V, 2018, PLOS ONE, V13, DOI 10.1371/journal.pone.0195509 Wallach H. M., 2006, P 23 INT C MACH LEAR, V23, P977, DOI [10.1145/1143844.1143967, DOI 10.1145/1143844.1143967] Wang BC, 2015, IEEE ACM T COMPUT BI, V12, P1286, DOI 10.1109/TCBB.2015.2430338 Wang Q, 2017, DECIS SUPPORT SYST, V103, P46, DOI 10.1016/j.dss.2017.09.001 Wu CH, 2010, APPL SOFT COMPUT, V10, P1164, DOI 10.1016/j.asoc.2009.11.033 Ystrom A., 2018, CREATIVITY INNOVATIO Zhang L., 2015, SIGKDD Explor. Newsl, V16, P1, DOI DOI 10.1145/2783702.2783704 Zhang Q, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0111795 Zhou JL, 2018, SCIENTOMETRICS, V117, P1721, DOI 10.1007/s11192-018-2918-0 Zhu L, 2019, SCIENTOMETRICS, V121, P137, DOI 10.1007/s11192-019-03194-w NR 98 TC 6 Z9 6 U1 3 U2 69 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0138-9130 EI 1588-2861 J9 SCIENTOMETRICS JI Scientometrics PD MAY PY 2020 VL 123 IS 2 BP 579 EP 620 DI 10.1007/s11192-020-03414-8 EA MAR 2020 PG 42 WC Computer Science, Interdisciplinary Applications; Information Science & Library Science WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Computer Science; Information Science & Library Science GA LJ0VN UT WOS:000520818400002 DA 2024-09-05 ER PT C AU Hou, L Li, JZ Li, XL Su, Y AF Hou, Lei Li, Juanzi Li, Xiao-Li Su, Yu BE Renz, M Shahabi, C Zhou, X Cheema, MA TI Measuring the Influence from User-Generated Content to News via Cross-Dependence Topic Modeling SO DATABASE SYSTEMS FOR ADVANCED APPLICATIONS, PT1 SE Lecture Notes in Computer Science LA English DT Proceedings Paper CT 20th International Conference on Database Systems for Advanced Applications (DASFAA) CY APR 20-23, 2015 CL Hanoi, VIETNAM DE News stream; User-generated content; Cross dependence; Influence; Response AB Online news has become increasingly prevalent as it helps the public access timely information conveniently. Meanwhile, the rapid proliferation of Web 2.0 applications has enabled the public to freely express opinions and comments over news (user-generated content, or UGC for short), making the current Web a highly interactive platform. Generally, a particular event often brings forth two correlated streams from news agencies and the public, and previous work mainly focuses on the topic evolution in single or multiple streams. Studying the inter-stream influence poses a new research challenge. In this paper, we study the mutual influence between news and UGC streams (especially the UGC-to-news direction) through a novel three-phase framework. In particular, we first propose a cross-dependence temporal topic model (CDTTM) for topic extraction, then employ a hybrid method to discover short and long term influence links across streams, and finally introduce four measures to quantify how the unique topics from one stream affect or influence the generation of the other stream (e.g. UGC to news). Extensive experiments are conducted on five actual news datasets from Sina, New York Times and Twitter, and the results demonstrate the effectiveness of the proposed methods. Furthermore, we observe that not only news triggers the generation of UGC, but also UGC conversely drives the news reports. C1 [Hou, Lei; Li, Juanzi] Tsinghua Univ, Tsinghua Natl Lab Informat Sci & Technol, Dept Comp Sci & Technol, Beijing 100084, Peoples R China. [Li, Xiao-Li] ASTAR, Inst Infocomm Res, Singapore 138632, Singapore. [Su, Yu] Xinhua News Agcy, Commun Technol Bur, Beijing 100803, Peoples R China. C3 Tsinghua University; Agency for Science Technology & Research (A*STAR); A*STAR - Institute for Infocomm Research (I2R) RP Hou, L (corresponding author), Tsinghua Univ, Tsinghua Natl Lab Informat Sci & Technol, Dept Comp Sci & Technol, Beijing 100084, Peoples R China. EM houl10@mails.tsinghua.edu.cn; lijuanzi@tsinghua.edu.cn; xlli@i2r.a-star.edu.sg; suyu@xinhua.org RI Li, Zhiyuan/AAT-1121-2020; Li, Xiaoli/C-9739-2012; Li, Xiaoli/GYQ-7384-2022 OI Li, Xiaoli/0000-0002-0762-6562; Hou, Lei/0000-0002-8907-3526 CR Ahmed Amr, 2010, UAI'10, V20, P29 AJZEN I, 1991, ORGAN BEHAV HUM DEC, V50, P179, DOI 10.1016/0749-5978(91)90020-T Ajzen I., 1985, ACTION CONTROL, P11 AlSumait L, 2008, IEEE DATA MINING, P3, DOI 10.1109/ICDM.2008.140 [Anonymous], 2009, P 2009 SIAM INT C DA [Anonymous], 2009, WSDM [Anonymous], 1999, PERSONALITY SOCIAL P [Anonymous], 2011, Proceedings of the 17th ACM SIGKDD Interna- tional Conference on Knowledge Discovery and Data Mining Arnold A, 2007, KDD-2007 PROCEEDINGS OF THE THIRTEENTH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, P66 Blei D.M., 2006, P 23 INT C MACH LEAR, DOI [DOI 10.1145/1143844.1143859, 10.1145/1143844.1143859] Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993 Cheng DH, 2014, PROCEEDINGS OF THE 20TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING (KDD'14), P382, DOI 10.1145/2623330.2623709 Chung YF, 2011, INT C PAR DISTRIB SY, P372, DOI 10.1109/ICPADS.2011.28 Daily C. Y., 2013, CHINA YOUTH DAIL DEC Danescu-Niculescu-Mizil Cristian, 2013, P 22 INT C WORLD WID, P307, DOI [DOI 10.1145/2488388.2488416, 10.1145/2488388.2488416] Gao Z. J., 2011, Proceedings of the 2011 IEEE 11th International Conference on Data Mining (ICDM 2011), P1056, DOI 10.1109/ICDM.2011.148 Giorgino T, 2009, J STAT SOFTW, V31, P1, DOI 10.18637/jss.v031.i07 Hanska-Ahy M., 2013, J AUDIENCE RECEPTION, V10, P436 Holcomb J., 2013, News use across social media platforms Hou Lei, 2013, P 23 INT JOINT C ART, P1401 Jo Yookyung., 2011, P 20 INT C WORLD WID, P257, DOI DOI 10.1145/1963405.1963444 Jönsson AM, 2011, JOURNAL PRACT, V5, P127, DOI 10.1080/17512786.2010.501155 McCombs M., 2011, POLITY Mei Qiaozhu., 2005, KDD 05, P198, DOI DOI 10.1145/1081870.1081895 Morinaga S., 2004, ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD), P811, DOI DOI 10.1145/1014052.1016919 Petrovic Sasa, 2013, P 7 INT AAAI C WEBL, V7 Po Hu, 2011, Proceedings of the 2011 IEEE 11th International Conference on Data Mining (ICDM 2011), P260, DOI 10.1109/ICDM.2011.71 Rosen-Zvi Michal., 2004, UAI Sheeran P, 2003, PERS SOC PSYCHOL B, V29, P205, DOI 10.1177/0146167202239046 Wang XH, 2007, KDD-2007 PROCEEDINGS OF THE THIRTEENTH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, P784 Wang Xuerui., P 12 ACM SIGKDD INT, P424 Zhao WNX, 2011, LECT NOTES COMPUT SC, V6611, P338, DOI 10.1007/978-3-642-20161-5_34 NR 32 TC 0 Z9 0 U1 0 U2 4 PU SPRINGER-VERLAG BERLIN PI BERLIN PA HEIDELBERGER PLATZ 3, D-14197 BERLIN, GERMANY SN 0302-9743 EI 1611-3349 BN 978-3-319-18120-2; 978-3-319-18119-6 J9 LECT NOTES COMPUT SC PY 2015 VL 9049 BP 125 EP 141 DI 10.1007/978-3-319-18120-2_8 PG 17 WC Computer Science, Information Systems; Computer Science, Theory & Methods WE Conference Proceedings Citation Index - Science (CPCI-S) SC Computer Science GA BD5PI UT WOS:000361697600008 DA 2024-09-05 ER PT J AU Traag, VA AF Traag, V. A. TI Inferring the causal effect of journals on citations SO QUANTITATIVE SCIENCE STUDIES LA English DT Article DE Bayesian model; causal inference; citations; journal effects; science of science ID IMPACT; PERFORMANCE; BIAS AB Articles in high-impact journals are, on average, more frequently cited. But are they cited more often because those articles are somehow more "citable"? Or are they cited more often simply because they are published in a high-impact journal? Although some evidence suggests the latter, the causal relationship is not clear. We here compare citations of preprints to citations of the published version to uncover the causal mechanism. We build on an earlier model of citation dynamics to infer the causal effect of journals on citations. We find that high-impact journals select articles that tend to attract more citations. At the same time, we find that high-impact journals augment the citation rate of published articles. Our results yield a deeper understanding of the role of journals in the research system. The use of journal metrics in research evaluation has been increasingly criticized in recent years and article-level citations are sometimes suggested as an alternative. Our results show that removing impact factors from evaluation does not negate the influence of journals. This insight has important implications for changing practices of research evaluation. C1 [Traag, V. A.] Leiden Univ, Ctr Sci & Technol Studies CWTS, Leiden, Netherlands. C3 Leiden University - Excl LUMC; Leiden University RP Traag, VA (corresponding author), Leiden Univ, Ctr Sci & Technol Studies CWTS, Leiden, Netherlands. EM v.a.traag@cwts.leidenuniv.nl RI Traag, Vincent/A-1897-2011 OI Traag, Vincent/0000-0003-3170-3879 CR Abramo G, 2019, J INFORMETR, V13, P32, DOI 10.1016/j.joi.2018.11.003 Adams J, 2008, SCIENTOMETRICS, V75, P81, DOI 10.1007/s11192-007-1832-7 Bareinboim E., 2012, Artificial Intelligence and Statistics, P100 Bornmann L, 2008, J DOC, V64, P45, DOI 10.1108/00220410810844150 Callaham M, 2002, JAMA-J AM MED ASSOC, V287, P2847, DOI 10.1001/jama.287.21.2847 Cantrill S., 2016, CHEM CONNECTIONS BLO Davis P., 2010, IMPACT FACTORS SELF Eyre-Walker A, 2013, PLOS BIOL, V11, DOI 10.1371/journal.pbio.1001675 Fortunato S, 2018, SCIENCE, V359, DOI 10.1126/science.aao0185 Kim L, 2020, J ASSOC INF SCI TECH, V71, P1218, DOI 10.1002/asi.24326 Klein M, 2016, ACM-IEEE J CONF DIG, P153, DOI 10.1145/2910896.2910909 Kuroki M, 2014, BIOMETRIKA, V101, P423, DOI 10.1093/biomet/ast066 Larivière V, 2019, SPRINGER HBK, P3, DOI 10.1007/978-3-030-02511-3_1 Larivière V, 2014, J ASSOC INF SCI TECH, V65, P1157, DOI 10.1002/asi.23044 Larivière V, 2010, J AM SOC INF SCI TEC, V61, P424, DOI 10.1002/asi.21232 Lariviere Vincent., 2016, BioRxiv, P062109, DOI DOI 10.1101/062109 Levitt JM, 2011, INFORM PROCESS MANAG, V47, P300, DOI 10.1016/j.ipm.2010.09.005 Mckiernan EC, 2019, ELIFE, V8, DOI 10.7554/eLife.47338 Medoff MH, 2006, J ECON METHODOL, V13, P485, DOI 10.1080/13501780601049079 Müller R, 2017, RES EVALUAT, V26, P157, DOI 10.1093/reseval/rvx023 Onodera N, 2015, J ASSOC INF SCI TECH, V66, P739, DOI 10.1002/asi.23209 PERITZ BC, 1995, J INFORM SCI, V21, P63, DOI 10.1177/016555159502100108 Perneger TV, 2010, J CLIN EPIDEMIOL, V63, P660, DOI 10.1016/j.jclinepi.2009.09.012 Petersen AM, 2014, P NATL ACAD SCI USA, V111, P15316, DOI 10.1073/pnas.1323111111 PRICE DJD, 1976, J AM SOC INFORM SCI, V27, P292, DOI 10.1002/asi.4630270505 Rushforth A, 2015, MINERVA, V53, P117, DOI 10.1007/s11024-015-9274-5 SEGLEN PO, 1994, J AM SOC INFORM SCI, V45, P1, DOI 10.1002/(SICI)1097-4571(199401)45:1<1::AID-ASI1>3.0.CO;2-Y Smaldino PE, 2016, ROY SOC OPEN SCI, V3, DOI 10.1098/rsos.160384 Stegehuis C, 2015, J INFORMETR, V9, P642, DOI 10.1016/j.joi.2015.06.005 Traag VA, 2019, PALGR COMMUN, V5, DOI 10.1057/s41599-019-0233-x Traag V.A., 2020, REPLICATION SOURCE C Traag V.A., 2020, REPLICATION DATA INF Waltman Ludo, 2020, F1000Res, V9, P366, DOI 10.12688/f1000research.23418.1 Wang DS, 2013, SCIENCE, V342, P127, DOI 10.1126/science.1237825 Wouters P, 2019, NATURE, V569, P621, DOI 10.1038/d41586-019-01643-3 Zitt M, 2005, SCIENTOMETRICS, V63, P373, DOI 10.1007/s11192-005-0218-y NR 36 TC 16 Z9 16 U1 4 U2 22 PU MIT PRESS PI CAMBRIDGE PA ONE ROGERS ST, CAMBRIDGE, MA 02142-1209 USA EI 2641-3337 J9 QUANT SCI STUD JI Quant. Sci. Stud. PD JUL 15 PY 2021 VL 2 IS 2 BP 496 EP 504 DI 10.1162/qss_a_00128 PG 9 WC Information Science & Library Science WE Emerging Sources Citation Index (ESCI) SC Information Science & Library Science GA YX2LG UT WOS:000753939000005 OA Green Published, gold, Green Submitted DA 2024-09-05 ER PT J AU Aljohani, NR Fayoumi, A Saeed-Ul Hassan AF Aljohani, Naif Radi Fayoumi, Ayman Saeed-Ul Hassan TI Bot prediction on social networks of Twitter in altmetrics using deep graph convolutional networks SO SOFT COMPUTING LA English DT Article DE Social media; Twitter; Information spread; Smart cities; Bots; Prediction; Altmetrics; Deep learning ID CITIES; MEDIA; ALGORITHM; INNOVATION; QUALITY; TWEETS AB In the context of smart cities, it is crucial to filter out falsified information spread on social media channels through paid campaigns or bot-user accounts that significantly influence communication networks across the social communities and may affect smart decision-making by the citizens. In this paper, we focus on two major aspects of the Twitter social network associated with altmetrics: (a) to analyze the properties of bots on Twitter networks and (b) to distinguish between bots and human accounts. Firstly, we employed state-of-the-art social network analysis techniques that exploit Twitter's social network properties in novel altmetrics data. We found that 87% of tweets are affected by bots that are involved in the network's dominant communities. We also found that, to some extent, community size and the degree of distribution in Twitter's altmetrics network follow a power-law distribution. Furthermore, we applied a deep learning model, graph convolutional networks, to distinguish between organic (human) and bot Twitter accounts. The deployed model achieved the promising results, providing up to 71% classification accuracy over 200 epochs. Overall, the study concludes that bot presence in altmetrics-associated social media platforms can artificially inflate the number of social usage counts. As a result, special attention is required to eliminate such discrepancies when using altmetrics data for smart decision-making, such as research assessment either independently or complementary along with traditional bibliometric indices. C1 [Aljohani, Naif Radi; Fayoumi, Ayman] King Abdulaziz Univ, Fac Comp & Informat Technol, Jeddah, Saudi Arabia. [Saeed-Ul Hassan] Informat Technol Univ, Dept Comp Sci, 346-B,Ferozepur Rd, Lahore, Pakistan. C3 King Abdulaziz University RP Saeed-Ul Hassan (corresponding author), Informat Technol Univ, Dept Comp Sci, 346-B,Ferozepur Rd, Lahore, Pakistan. EM nraljohani@kau.edu.sa; afayoumi@kau.edu.sa; saeed-ul-hassan@itu.edu.pk RI Fayoumi, Ayman/E-7236-2014; Aljohani, Naif R/S-1109-2017; Hassan, Saeed-Ul/G-1889-2016 OI Fayoumi, Ayman/0000-0002-4160-3305; Hassan, Saeed-Ul/0000-0002-6509-9190 CR Abokhodair N, 2015, PROCEEDINGS OF THE 2015 ACM INTERNATIONAL CONFERENCE ON COMPUTER-SUPPORTED COOPERATIVE WORK AND SOCIAL COMPUTING (CSCW'15), P839, DOI 10.1145/2675133.2675208 Adamic LA, 2000, SCIENCE, V287, DOI 10.1126/science.287.5461.2115a Al-Janabi Samaher, 2020, International Journal of Computers and Applications, V42, P244, DOI 10.1080/1206212X.2018.1512460 Al-Janabi S, 2020, SOFT COMPUT, V24, P555, DOI 10.1007/s00500-019-03972-x Al-Janabi S, 2014, 2014 INTERNATIONAL CONGRESS ON TECHNOLOGY, COMMUNICATION AND KNOWLEDGE (ICTCK) Al-Zoubi AM, 2018, KNOWL-BASED SYST, V153, P91, DOI 10.1016/j.knosys.2018.04.025 Alarifi A, 2016, INFORM SCIENCES, V372, P332, DOI 10.1016/j.ins.2016.08.036 ALJANABI S, 2019, INT J GRID UTIL COMP, V10, P512 ALJANABI S, 2019, INT C BIG DAT NETW T, P231, DOI DOI 10.1007/978-3-030-23672-4_18 AlJanabi S., 2020, INT C BIG DAT NETW T, P84, DOI [DOI 10.1007/978-3-030-23672-4_8, 10.1007/978-3-030-23672-4_8] Alkhammash EH, 2019, IEEE ACCESS, V7, P116267, DOI 10.1109/ACCESS.2019.2935186 Alperin JP, 2017, ALTMETRICS17 WORKSH Alsinet T, 2019, SOFT COMPUT, V23, P2147, DOI 10.1007/s00500-018-3380-x Alvisi L, 2013, P IEEE S SECUR PRIV, P382, DOI 10.1109/SP.2013.33 Ananiadou Sophia, 2013, Computational Linguistics and Intelligent Text Processing. 14th International Conference, CICLing 2013. Proceedings, P318, DOI 10.1007/978-3-642-37256-8_27 [Anonymous], 2019, SUSTAINABILITY BASEL, DOI DOI 10.3390/SU11185067 [Anonymous], 2018, SUSTAINABILITY BASEL, DOI DOI 10.3390/su10092974 [Anonymous], 2020, Lecture Notes in Networks and Systems, DOI DOI 10.1007/978-3-030-23672-4_10 [Anonymous], 2010, P AM SOC INFORM SCI, DOI DOI 10.1002/MEET.14504701201 Arif MH, 2018, SOFT COMPUT, V22, P7281, DOI 10.1007/s00500-017-2729-x Batista-Navarro Riza Theresa, 2013, Computational Linguistics and Intelligent Text Processing. 14th International Conference, CICLing 2013. Proceedings, P559, DOI 10.1007/978-3-642-37247-6_45 Bessi A, 2016, 1 MONDAY, V21, P11 Cai CY, 2017, 2017 IEEE INTERNATIONAL CONFERENCE ON INTELLIGENCE AND SECURITY INFORMATICS (ISI), P128, DOI 10.1109/ISI.2017.8004887 Chu Z, 2010, 26TH ANNUAL COMPUTER SECURITY APPLICATIONS CONFERENCE (ACSAC 2010), P21 Costas R, 2015, J ASSOC INF SCI TECH, V66, P2003, DOI 10.1002/asi.23309 Didegah F, 2018, J INFORMETR, V12, P960, DOI 10.1016/j.joi.2018.08.002 Edwards C, 2014, COMPUT HUM BEHAV, V33, P372, DOI 10.1016/j.chb.2013.08.013 Elovici Y, 2014, SCI ENG ETHICS, V20, P1027, DOI 10.1007/s11948-013-9473-0 Ersahin B, 2017, 2017 INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND ENGINEERING (UBMK), P388, DOI 10.1109/UBMK.2017.8093420 Ferrara E, 2016, COMMUN ACM, V59, P96, DOI 10.1145/2818717 Gilani Zafar, 2017, 2017 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM), P489, DOI 10.1145/3110025.3110091 Gilani Z, 2016, PROCEEDINGS OF THE 25TH INTERNATIONAL CONFERENCE ON WORLD WIDE WEB (WWW'16 COMPANION), P37, DOI 10.1145/2872518.2889360 Gong VX, 2018, IEEE ACCESS, V6, P36325, DOI 10.1109/ACCESS.2018.2845339 Haustein S, 2019, SPRINGER HBK, P729, DOI 10.1007/978-3-030-02511-3_28 Haustein S, 2016, J ASSOC INF SCI TECH, V67, P232, DOI 10.1002/asi.23456 Haustein S, 2014, J ASSOC INF SCI TECH, V65, P656, DOI 10.1002/asi.23101 Holmberg K, 2018, SCIENTOMETRICS, V116, P435, DOI 10.1007/s11192-018-2710-1 Ismagilova E, 2019, INT J INFORM MANAGE, V47, P88, DOI 10.1016/j.ijinfomgt.2019.01.004 Ismail HM, 2018, SOFT COMPUT, V22, P6011, DOI 10.1007/s00500-017-2994-8 Jahangir M, 2017, PROCEEDINGS OF THE 2017 INTELLIGENT SYSTEMS CONFERENCE (INTELLISYS), P722, DOI 10.1109/IntelliSys.2017.8324209 Jia JY, 2017, I C DEPEND SYS NETWO, P273, DOI 10.1109/DSN.2017.55 Kaghed NH, 2006, IEEE 2006 2 INT C IN, P430, DOI DOI 10.1109/ICTTA.2006.1684408 Kalajdzic K, 2015, COMPUT STAND INTER, V37, P53, DOI 10.1016/j.csi.2014.05.005 Kantepe M, 2017, 2017 INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND ENGINEERING (UBMK), P630, DOI 10.1109/UBMK.2017.8093483 Kipf Thomas N, 2017, P 5 INT C LEARN REPR Liu LG, 2013, SOFT POWER THEORY DEVELOPMENT, PRACTISE AND INNOVATION, P448 Lytras MD, 2018, SUSTAINABILITY-BASEL, V10, DOI 10.3390/su10061998 Lytras MD, 2017, INT REV RES OPEN DIS, V18, pI Lytras MD, 2017, INT J SEMANT WEB INF, V13, P1, DOI 10.4018/IJSWIS.2017010101 Lytras MD, 2015, J UNIVERS COMPUT SCI, V21, P1379 Mehrotra A, 2016, PROCEEDINGS OF THE 2016 2ND INTERNATIONAL CONFERENCE ON CONTEMPORARY COMPUTING AND INFORMATICS (IC3I), P499, DOI 10.1109/IC3I.2016.7918016 Nawaz R, 2012, LREC 2012 - EIGHTH INTERNATIONAL CONFERENCE ON LANGUAGE RESOURCES AND EVALUATION, P3505 Priem J., 2010, ALTMETRICS MANIFESTO SAEEDULHASSAN, 2019, SCIENTOMETRICS, V119, P481, DOI DOI 10.1007/S11192-019-03044-9 SAEEDULHASSAN, 2017, SCIENTOMETRICS, V113, P1037, DOI DOI 10.1007/S11192-017-2512-X Safder I, 2019, SCIENTOMETRICS, V119, P257, DOI 10.1007/s11192-019-03025-y Said A, 2019, SCIENTOMETRICS, V120, P217, DOI 10.1007/s11192-019-03112-0 Said A, 2018, APPL SOFT COMPUT, V63, P59, DOI 10.1016/j.asoc.2017.11.014 Shardlow M, 2018, BMC MED INFORM DECIS, V18, DOI 10.1186/s12911-018-0639-1 Shuai X, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0047523 Stein Tao., 2011, Proceedings of the 4th Workshop on Social Network Systems, page, P8 Subrahmanian VS, 2016, COMPUTER, V49, P38, DOI 10.1109/MC.2016.183 Sugimoto CR, 2017, J ASSOC INF SCI TECH, V68, P2037, DOI 10.1002/asi.23833 Thompson P, 2017, LANG RESOUR EVAL, V51, P409, DOI 10.1007/s10579-016-9344-9 Toor HI, 2018, 2018 IEEE CONFERENCE ON SYSTEMS, PROCESS AND CONTROL (ICSPC), P17, DOI 10.1109/SPC.2018.8703981 Varol O, 2017, 11 INT AAAI C WEB SO Visvizi A, 2020, COMPUT HUM BEHAV, V107, DOI 10.1016/j.chb.2019.03.022 Visvizi A, 2018, J SCI TECHNOL POLICY, V9, P134, DOI 10.1108/JSTPM-02-2018-0020 Visvizi A, 2018, J SCI TECHNOL POLICY, V9, P126, DOI 10.1108/JSTPM-07-2018-079 Visvizi A, 2017, J SCI TECHNOL POLICY, V8, P227, DOI 10.1108/JSTPM-05-2017-0020 Yang B, 2011, ISTM/2011: 9TH INTERNATIONAL SYMPOSIUM ON TEST AND MEASUREMENT, P318 Yang KC, 2019, HUM BEHAV EMERG TECH, V1, P48, DOI 10.1002/hbe2.115 Zahedi Z, 2018, J INFORMETR, V12, P191, DOI 10.1016/j.joi.2017.12.005 Zhang JX, 2016, IEEE ACM T NETWORK, V24, P2866, DOI 10.1109/TNET.2015.2494059 Zhao S, 2012, INT CONF SOFTW ENG, P15 Zhuhadar L, 2017, COMPUT HUM BEHAV, V66, P273, DOI 10.1016/j.chb.2016.09.030 NR 76 TC 11 Z9 12 U1 4 U2 39 PU SPRINGER PI NEW YORK PA ONE NEW YORK PLAZA, SUITE 4600, NEW YORK, NY, UNITED STATES SN 1432-7643 EI 1433-7479 J9 SOFT COMPUT JI Soft Comput. PD AUG PY 2020 VL 24 IS 15 SI SI BP 11109 EP 11120 DI 10.1007/s00500-020-04689-y PG 12 WC Computer Science, Artificial Intelligence; Computer Science, Interdisciplinary Applications WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Computer Science GA MI8VP UT WOS:000547678300009 DA 2024-09-05 ER PT J AU Sun, C Li, XJ AF Sun, Chan Li, Xiaojuan TI Research on the Relationship between Human Resource Management Activities and Enterprise Performance Based on the Supervised Learning Model SO DISCRETE DYNAMICS IN NATURE AND SOCIETY LA English DT Article ID PERSPECTIVE AB HRMS is a very critical tool for companies. The recruitment text contains rich information that can provide strong information support for the company's recruitment work and also improve the efficiency of job seekers in finding job opportunities. To this end, for the problem of multilabel text classification of recruitment information, this paper provides two algorithms for multilayer classification based on supported SVM. First, the same learning subclass method is used for text sorting subclass acquisition, and then, the class of the text is determined. Second, the hemispherical support SVM is used to find the smallest hypersphere in the feature space that contains the most text of that class and segment the text of that class from other texts. For the text to be classified, the distance from it to the center of each hypersphere is used to determine the class of the text. Experimental results on recruitment data demonstrate that the algorithm in this paper has a high check-all rate, check-accuracy rate, and F1. And, the relationship between HRM activities and corporate performance is discussed. C1 [Sun, Chan] Hunan Int Econ Univ, Sch Business, Changsha 410000, Hunan, Peoples R China. [Li, Xiaojuan] Hunan Univ Finance & Econ, Sch Business Adm, Changsha 410205, Hunan, Peoples R China. C3 Hunan University of Finance & Economics RP Li, XJ (corresponding author), Hunan Univ Finance & Econ, Sch Business Adm, Changsha 410205, Hunan, Peoples R China. EM lixiaojuan@hufe.edu.cn FU National Social Science Fund Project: Research on Inter-organizational Knowledge Sharing Behavior and Its Dynamic Incentive Mechanism in Differentiation Context [20BGL126] FX This work was supported by National Social Science Fund Project: Research on Inter-organizational Knowledge Sharing Behavior and Its Dynamic Incentive Mechanism in Differentiation Context, under Grant no. 20BGL126. CR Ali B.J., 2021, J HUMANITIES ED DEV, V3, P16, DOI [10.22161/jhed.3.3.4, DOI 10.22161/JHED.3.3.4, DOI 10.22161/JHED.3.3] Ali B.J., 2021, International Journal of Engineering, Business and Management, V5, P31, DOI [10.22161/ijebm.5.2.4, DOI 10.22161/IJEBM.5.2.4] Ali BJ, 2021, Marketing Strategy: Pricing strategies and its influence on consumer purchasing decision. International journal of Rural Development, Environment and Health Research, V5, P26, DOI DOI 10.22161/IJREH.5.2.4 Alvis Armando, 2008, Inf. tecnol., V19, P19, DOI [10.4067/S0718-07642008000100004, 10.4067/S0718-07642008000500004] Bajo J, 2012, EXPERT SYST APPL, V39, P6921, DOI 10.1016/j.eswa.2012.01.001 Bliss L. R., 2011, INT J HLTH WELLNESS, V1, P129 Brito R., 2005, ENTIFIC MANAGEMENT R, V13, P90 Elshaer IA, 2021, SUSTAINABILITY-BASEL, V13, DOI 10.3390/su13041956 Fayolle A, 2014, INT ENTREP MANAG J, V10, P679, DOI 10.1007/s11365-014-0306-7 Hon AHY, 2012, CORNELL HOSP Q, V53, P53, DOI 10.1177/1938965511424725 Jamal AliB., 2021, INT J ENGLISH LIT SO, V6, P361, DOI DOI 10.22161/IJELS.62.52 Jiang YH, 2021, J BUS ECON MANAG, V22, P1288, DOI 10.3846/jbem.2021.14950 Kumar R, 2001, MANAGE LEARN, V32, P363, DOI 10.1177/1350507601323005 Liang X, 2009, MANAGE INT REV, V49, P269, DOI 10.1007/s11575-009-0143-z Martínez-Ferrero J, 2016, J BUS ETHICS, V133, P305, DOI 10.1007/s10551-014-2399-x Matimbwa H., 2019, J HUMAN RESOURCE MAN, V7, P131, DOI [10.11648/j.jhrm.20190704.17, DOI 10.11648/J.JHRM.20190704.17] Ping L, 2021, MICROPROCESS MICROSY, V80, DOI 10.1016/j.micpro.2020.103330 Rai A, 2019, ENVIRON MODELL SOFTW, V118, P252, DOI 10.1016/j.envsoft.2019.03.016 Recupero DR, 2015, COGN COMPUT, V7, P211, DOI 10.1007/s12559-014-9302-z Rynes S, 2007, ACAD MANAGE J, V50, P985, DOI 10.5465/AMJ.2007.27151929 Sarkar S, 2015, ADV INTELL SYST, V339, P705, DOI 10.1007/978-81-322-2250-7_71 Tahiri Alberta, 2021, INT J EC BUSINESS AD, VIX, P292, DOI 10.35808/ijeba/673 Trauth JM, 2011, PUBLIC HEALTH REP, V126, P294, DOI 10.1177/003335491112600223 Ubeda-García M, 2021, J BUS RES, V123, P57, DOI 10.1016/j.jbusres.2020.09.055 Vidal JC, 2011, APPL SOFT COMPUT, V11, P1600, DOI 10.1016/j.asoc.2010.04.020 Walmsley B, 2013, ARTS HUM HIGH EDUC, V12, P222, DOI 10.1177/1474022212473944 Wang L, 2018, 2018 NINTH INTERNATIONAL CONFERENCE ON INTELLIGENT CONTROL AND INFORMATION PROCESSING (ICICIP), P160, DOI 10.1109/ICICIP.2018.8606711 Wilson DC, 2012, WASTE MANAGE RES, V30, P237, DOI 10.1177/0734242X12437569 Wu D, 2021, TRAIT SIGNAL, V38, P775, DOI 10.18280/ts.380324 Xia R, 2015, IEEE T KNOWL DATA EN, V27, P2120, DOI 10.1109/TKDE.2015.2407371 Xie T, 2019, IEEE ACCESS, V7, P11338, DOI 10.1109/ACCESS.2018.2889717 Xue FR, 2021, ADV MATER SCI ENG, V2021, DOI 10.1155/2021/5360443 Zafra A, 2010, INFORM SCIENCES, V180, P4496, DOI 10.1016/j.ins.2010.07.031 Zhang CJ, 2019, IET NETW, V8, P107, DOI 10.1049/iet-net.2018.5072 Zhang LJ, 2004, FOREST SCI, V50, P117 Zhu Q. J., 2014, APPL MECH MAT, V687, P4560 NR 36 TC 1 Z9 1 U1 5 U2 15 PU HINDAWI LTD PI LONDON PA ADAM HOUSE, 3RD FLR, 1 FITZROY SQ, LONDON, W1T 5HF, ENGLAND SN 1026-0226 EI 1607-887X J9 DISCRETE DYN NAT SOC JI Discrete Dyn. Nat. Soc. PD NOV 28 PY 2021 VL 2021 AR 4094704 DI 10.1155/2021/4094704 PG 7 WC Mathematics, Interdisciplinary Applications; Multidisciplinary Sciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Mathematics; Science & Technology - Other Topics GA 2T8VP UT WOS:000822746100001 OA gold DA 2024-09-05 ER PT S AU Devyatkin, D Suvorov, R Tikhomirov, I Grigoriev, O AF Devyatkin, D. Suvorov, R. Tikhomirov, I. Grigoriev, O. BE Sgurev, V Jotsov, V Kacprzyk, J TI Scientific Research Funding Criteria: An Empirical Study of Peer Review and Scientometrics SO PRACTICAL ISSUES OF INTELLIGENT INNOVATIONS SE Studies in Systems Decision and Control LA English DT Article; Book Chapter DE Decision making; Decision analysis; Research funding; R&D support; Peer review; Feature selection; Criteria importance; Machine learning; Random forest; ReliefF; Gini importance; Linear SVM ID INDICATORS AB In this paper we investigated the problem of scientific research funding from the perspective of data-mining. The object was to conduct versatile retrospective analysis of decisions made by the Russian Foundation for Basic Research regarding scientific research funding. The central task of the analysis was to compare the impact of various items of information on final decision making. In other words, we tried to answer two questions: (a) what does an evaluation committee mainly look at when it selects projects for funding; (b) are scientometric indicators (or science metrics) useful in decision analysis? To achieve this, we built predictive models (classifiers), performed introspection (extracted feature importance) and compared them. The input data was a set of review forms (questionnaires) from the Russian Foundation for Basic Research completed in by peer reviewers. Final decision is made by the foundation board (an evaluation committee). Finally, we concluded that the available input (project proposals, expert assessments and scientometric data) was not enough to explain all the decisions. We showed that scientometric data does not have any significant influence on project proposals assessment. It also means that h-index, mean impact factor, publication and citation number cannot supersede the peer review procedure. C1 [Devyatkin, D.; Suvorov, R.; Tikhomirov, I.; Grigoriev, O.] Russian Acad Sci, Fed Res Ctr Comp Sci & Control, Moscow, Russia. C3 Federal Research Center "Computer Science & Control" of RAS; Russian Academy of Sciences RP Devyatkin, D (corresponding author), Russian Acad Sci, Fed Res Ctr Comp Sci & Control, Moscow, Russia. EM devyatkin@isa.ru; rsuvorov@isa.ru; tih@isa.ru; oleggpolikvart@yandex.ru RI Grigoriev, Oleg/AAO-5552-2021; Tikhomirov, Ilya A/I-3771-2016; Devyatkin, Dmitry/R-1809-2019 OI Devyatkin, Dmitry/0000-0002-0811-725X; Grigoriev, Oleg/0000-0001-9660-2396 CR ATANASSOV KT, 1986, FUZZY SET SYST, V20, P87, DOI 10.1016/S0165-0114(86)80034-3 Benner M, 2000, RES POLICY, V29, P291, DOI 10.1016/S0048-7333(99)00067-0 Bergstra J, 2012, J MACH LEARN RES, V13, P281 Bornmann L, 2011, J INFORMETR, V5, P346, DOI 10.1016/j.joi.2011.01.006 Breiman L., 2001, Machine Learning, V45, P5, DOI 10.1023/A:1010933404324 Breiman L, 1996, MACH LEARN, V24, P41, DOI 10.1023/A:1018094028462 Colledge L., BASKET METRICSTHE BE Geuna A, 2003, MINERVA, V41, P277, DOI 10.1023/B:MINE.0000005155.70870.bd Green J.T., 2013, The Academic Executive Brief, V3, P12 Hiroaki Y, 2012, IPSJ SIG TECHNICAL R, V89, P1 Joussleme A.-L., 2001, Information Fusion, V2, P91, DOI 10.1016/S1566-2535(01)00026-4 Juznic P, 2010, SCIENTOMETRICS, V85, P429, DOI 10.1007/s11192-010-0230-8 KIRA K, 1992, AAAI-92 PROCEEDINGS : TENTH NATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE, P129 Kononenko I, 1997, APPL INTELL, V7, P39, DOI 10.1023/A:1008280620621 Larichev O., 1979, MOSCOW SCI, V200 Laudel G., 2006, Science and Public Policy, V33, P489, DOI DOI 10.3152/147154306781778777 Lee CJ, 2013, J AM SOC INF SCI TEC, V64, P2, DOI 10.1002/asi.22784 Mladenic D., 2004, Proceedings of Sheffield SIGIR 2004. The Twenty-Seventh Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, P234, DOI 10.1145/1008992.1009034 Olson K, 2010, FIELD METHOD, V22, P295, DOI 10.1177/1525822X10379795 Olson R., 2016, RELIEFF 1 RELEASE, DOI [10.5281/zenodo.47803, DOI 10.5281/ZEN0D0.47803] Osipov G, 2016, STUD COMPUT INTELL, V586, P269, DOI 10.1007/978-3-319-14194-7_14 Öztaysi B, 2015, ADV ENV ENG GREEN TE, P191, DOI 10.4018/978-1-4666-6631-3.ch008 Pedregosa F, 2011, J MACH LEARN RES, V12, P2825 Petrovsky A., 2012, INFORM MODELS ANAL, P349 Pislyakov V, 2010, SCIENTOMETRICS, V83, P739, DOI 10.1007/s11192-009-0144-5 Saeys Y, 2008, LECT NOTES ARTIF INT, V5212, P313, DOI 10.1007/978-3-540-87481-2_21 Schilling C., 2016, MED DECIS MAK Strobl C, 2007, BMC BIOINFORMATICS, V8, DOI 10.1186/1471-2105-8-25 Van Raan AFJ, 2006, SCIENTOMETRICS, V67, P491, DOI 10.1556/Scient.67.2006.3.10 Webber W, 2010, ACM T INFORM SYST, V28, DOI 10.1145/1852102.1852106 Weingart P, 2005, SCIENTOMETRICS, V62, P117, DOI 10.1007/s11192-005-0007-7 Wessely S, 1998, LANCET, V352, P301, DOI 10.1016/S0140-6736(97)11129-1 Zhu JJ, 2015, INFORM FUSION, V24, P93, DOI 10.1016/j.inffus.2014.09.006 NR 33 TC 1 Z9 1 U1 0 U2 13 PU SPRINGER INTERNATIONAL PUBLISHING AG PI CHAM PA GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND SN 2198-4182 EI 2198-4190 BN 978-3-319-78437-3; 978-3-319-78436-6 J9 STUD SYST DECIS CONT PY 2018 VL 140 BP 277 EP 292 DI 10.1007/978-3-319-78437-3_12 D2 10.1007/978-3-319-78437-3 PG 16 WC Automation & Control Systems; Computer Science, Artificial Intelligence; Engineering, Electrical & Electronic WE Book Citation Index – Science (BKCI-S) SC Automation & Control Systems; Computer Science; Engineering GA BM6GS UT WOS:000466552900013 DA 2024-09-05 ER PT J AU Poggi, F Ciancarini, P Gangemi, A Nuzzolese, AG Peroni, S Presutti, V AF Poggi, Francesco Ciancarini, Paolo Gangemi, Aldo Nuzzolese, Andrea Giovanni Peroni, Silvio Presutti, Valentina TI Predicting the results of evaluation procedures of academics SO PEERJ COMPUTER SCIENCE LA English DT Article DE Predictive Models; Scientometrics; Research Evaluation; Data Processing; ASN; Machine Learning; National Scientific Habilitation; Academic assessment; Science of Science; Informetrics ID BIBLIOMETRIC INDICATORS; CITATION COUNTS; H-INDEX; PUBLICATIONS; INFORMATION; APPLICANTS; EXCELLENCE; DECISIONS; QUALITY; WORK AB Background. The 2010 reform of the Italian university system introduced the National Scientific Habilitation (ASN) as a requirement for applying to permanent professor positions. Since the CVs of the 59,149 candidates and the results of their assessments have been made publicly available, the ASN constitutes an opportunity to perform analyses about a nation-wide evaluation process. Objective. The main goals of this paper are: (i) predicting the ASN results using the information contained in the candidates' CVs; (ii) identifying a small set of quantitative indicators that can be used to perform accurate predictions. Approach. Semantic technologies are used to extract, systematize and enrich the information contained in the applicants' CVs, and machine learning methods are used to predict the ASN results and to identify a subset of relevant predictors. Results. For predicting the success in the role of associate professor, our best models using all and the top 15 predictors make accurate predictions (F-measure values higher than 0.6) in 88% and 88.6% of the cases, respectively. Similar results have been achieved for the role of full professor. Evaluation. The proposed approach outperforms the other models developed to predict the results of researchers' evaluation procedures. Conclusions. Such results allow the development of an automated system for supporting both candidates and committees in the future ASN sessions and other scholars' evaluation procedures. C1 [Poggi, Francesco; Ciancarini, Paolo] Univ Bologna, Dept Comp Sci & Engn DISI, Bologna, Italy. [Ciancarini, Paolo] Innopolis Univ, Inst Data Sci & Artificial Intelligence, Innopolis, Russia. [Gangemi, Aldo; Peroni, Silvio] Univ Bologna, Dept Class Philol & Italian Studies, Bologna, Italy. [Nuzzolese, Andrea Giovanni; Presutti, Valentina] CNR, Inst Cognit Sci & Technol, STLab, Rome, Italy. C3 University of Bologna; Innopolis University; University of Bologna; Consiglio Nazionale delle Ricerche (CNR); Istituto di Scienze e Tecnologie della Cognizione (ISTC-CNR) RP Poggi, F (corresponding author), Univ Bologna, Dept Comp Sci & Engn DISI, Bologna, Italy. EM fpoggi@cs.unibo.it RI Poggi, Francesco/AGK-3974-2022; Nuzzolese, Andrea Giovanni/AAC-8369-2020; Gangemi, Aldo/C-7420-2013; Nuzzolese, Andrea Giovanni/S-2298-2016; Ciancarini, Paolo/ABA-8413-2020 OI Poggi, Francesco/0000-0001-6577-5606; Gangemi, Aldo/0000-0001-5568-2684; Ciancarini, Paolo/0000-0002-7958-9924 FU Italian National Agency for the Assessment of Universities and Research (ANVUR); CINI (ENAV project); CNR-ISTC FX This research has been supported by the Italian National Agency for the Assessment of Universities and Research (ANVUR) within the Uniform Representation of Curricular Attributes (URCA) project (see articolo 4 of the `Concorso Pubblico di Idee di Ricerca' bando ANVUR, 12 February 2015). Paolo Ciancarini was also supported by CINI (ENAV project) and by CNR-ISTC. There was no additional external funding received for this study. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. CR Abramo G, 2009, RES POLICY, V38, P206, DOI 10.1016/j.respol.2008.11.001 AHA DW, 1991, MACH LEARN, V6, P37, DOI 10.1007/BF00153759 Aittola H., 2009, Higher Education in Europe, V34, P303, DOI DOI 10.1080/03797720903355521 Aksnes DW, 2003, SCIENTOMETRICS, V56, P235, DOI 10.1023/A:1021919228368 [Anonymous], 2015, supplementary report ii to the independent review of the role of metrics in research assessment and management), DOI [DOI 10.13140/RG.2.1.3362.4162, 10.13140/RG.2.1.3362.4162] Bornmann L, 2007, J INFORMETR, V1, P204, DOI 10.1016/j.joi.2007.01.002 Bornmann L, 2006, SCIENTOMETRICS, V68, P427, DOI 10.1007/s11192-006-0121-1 Bornmann L, 2018, PLOS ONE, V13, DOI 10.1371/journal.pone.0197133 Bornmann L, 2013, J AM SOC INF SCI TEC, V64, P587, DOI 10.1002/asi.22792 Bornmann L, 2008, PLOS ONE, V3, DOI 10.1371/journal.pone.0003480 Breiman L., 2001, Machine Learning, V45, P5, DOI 10.1023/A:1010933404324 Cronin B, 2006, J AM SOC INF SCI TEC, V57, P1275, DOI 10.1002/asi.20354 Danell R, 2011, J AM SOC INF SCI TEC, V62, P50, DOI 10.1002/asi.21454 Franceschet M, 2011, J INFORMETR, V5, P275, DOI 10.1016/j.joi.2010.12.002 Franceschet M, 2009, J AM SOC INF SCI TEC, V60, P1950, DOI 10.1002/asi.21152 Fu LD, 2010, SCIENTOMETRICS, V85, P257, DOI 10.1007/s11192-010-0237-1 Hall MA, 2003, IEEE T KNOWL DATA EN, V15, P1437, DOI 10.1109/TKDE.2003.1245283 He HB, 2009, IEEE T KNOWL DATA EN, V21, P1263, DOI 10.1109/TKDE.2008.239 Ibáñez A, 2016, J ASSOC INF SCI TECH, V67, P1703, DOI 10.1002/asi.23467 Jensen P, 2009, SCIENTOMETRICS, V78, P467, DOI 10.1007/s11192-007-2014-3 John G. H., 1995, Uncertainty in Artificial Intelligence. Proceedings of the Eleventh Conference (1995), P338 Keerthi SS, 2001, NEURAL COMPUT, V13, P637, DOI 10.1162/089976601300014493 Leydesdorff L, 2009, J AM SOC INF SCI TEC, V60, P1327, DOI 10.1002/asi.21024 Lindahl J, 2018, J INFORMETR, V12, P518, DOI 10.1016/j.joi.2018.04.002 Marzolla M, 2015, J INFORMETR, V9, P285, DOI 10.1016/j.joi.2015.02.006 NEDERHOF AJ, 1987, SCIENTOMETRICS, V11, P333, DOI 10.1007/BF02279353 Norris M, 2003, J DOC, V59, P709, DOI 10.1108/00220410310698734 Nuzzolese AG, 2019, SCIENTOMETRICS, V118, P539, DOI 10.1007/s11192-018-2988-z Peroni S, 2019, ARXIV190306142 Peroni S, 2019, C P Poggi F, 2016, 4 INT WORKSH LINK DA, P44 Poggi F, 2018, PREDICTING RESULTS E, DOI [10.6084/m9.figshare.6814550, DOI 10.6084/M9.FIGSHARE.6814550] Poggi F, 2018, PREDICTING RESULTS E, DOI [10.6084/m9.figshare.6814502, DOI 10.6084/M9.FIGSHARE.6814502] Quinlan J. R., 1993, C4 5 PROGRAMS MACHIN Taylor J, 2011, BRIT J MANAGE, V22, P202, DOI 10.1111/j.1467-8551.2010.00722.x Tregellas JR, 2018, PEERJ, V6, DOI 10.7717/peerj.5707 Van Raan AFJ, 2006, SCIENTOMETRICS, V67, P491, DOI 10.1556/Scient.67.2006.3.10 Vieira ES, 2014, J ASSOC INF SCI TECH, V65, P560, DOI 10.1002/asi.22981 Vieira ES, 2014, J INFORMETR, V8, P390, DOI 10.1016/j.joi.2014.01.012 W3C OWL Working Group, 2012, OWL 2 WEB ONT LANG NR 40 TC 7 Z9 7 U1 0 U2 9 PU PEERJ INC PI LONDON PA 341-345 OLD ST, THIRD FLR, LONDON, EC1V 9LL, ENGLAND EI 2376-5992 J9 PEERJ COMPUT SCI JI PeerJ Comput. Sci. PD JUN 21 PY 2019 AR e199 DI 10.7717/peerj-cs.199 PG 28 WC Computer Science, Artificial Intelligence; Computer Science, Information Systems; Computer Science, Theory & Methods WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Computer Science GA OH0RK UT WOS:000582279900001 PM 33816852 OA Green Submitted, Green Published, gold DA 2024-09-05 ER PT J AU Wilson, AJ Ekti, AR Follum, J Biswas, S Annalicia, C Joo, JY Aziz, O Lian, JM AF Wilson, Aaron J. Ekti, Ali Riza Follum, Jim Biswas, Shuchismita Annalicia, Christabella Joo, Jhi-Young Aziz, Omer Lian, Jamie TI The Grid Event Signature Library: An Open-Access Repository of Power System Measurement Signatures SO IEEE ACCESS LA English DT Article DE Phasor measurement units; Taxonomy; Current measurement; Voltage measurement; Labeling; Frequency measurement; Streams; Climate change; Artificial intelligence; Data models; Power systems; Power grids; data-driven applications; power systems; signatures AB The power grid is undergoing massive changes, driven by the need to improve both reliability and resiliency, as well as meeting goals intended to combat climate change. Many solutions to such problems will require vast amounts of data. Almost all measurement, control - and in the future, artificial intelligence (AI) - systems utilize sensing mechanisms designed to capture, transmit, or even act on voltage and/or current measurement parsing and characterization. In this paper, a free, open-access online repository of such grid signatures is presented with the intent of encouraging open sharing of power grid data for the development of artificial intelligence and data-driven applications to meet the goals of tomorrow's grid. Known as the Grid Event Signature Library, or GESL, this Department of Energy-funded endeavour has seen a growth of over 200 users worldwide since its inception. C1 [Wilson, Aaron J.; Ekti, Ali Riza; Aziz, Omer; Lian, Jamie] Oak Ridge Natl Lab, Oak Ridge, TN 37830 USA. [Follum, Jim; Biswas, Shuchismita] Pacific Northwest Natl Lab, Richland, WA 99354 USA. [Annalicia, Christabella; Joo, Jhi-Young] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. C3 United States Department of Energy (DOE); Oak Ridge National Laboratory; United States Department of Energy (DOE); Pacific Northwest National Laboratory; United States Department of Energy (DOE); Lawrence Livermore National Laboratory RP Wilson, AJ (corresponding author), Oak Ridge Natl Lab, Oak Ridge, TN 37830 USA. EM wilsonaj@ornl.gov OI Biswas, Shuchismita/0000-0003-2090-6830 FU U.S. Department of Energy (DOE), Office of Electricity, through UT-Battelle, LLC FX No Statement Available CR Alaca Ozgur, 2023, 2023 IEEE International Black Sea Conference on Communications and Networking (BlackSeaCom), P247, DOI 10.1109/BlackSeaCom58138.2023.10299692 Alaca O, 2023, IEEE T SMART GRID, V14, P4980, DOI 10.1109/TSG.2023.3309532 [Anonymous], 2013, The IIA's Global Internal Audit Competency Framework, P1 Banning J., 2021, Tech. Rep. PNNL-32303 Biswas J., 2023, IEEE Access, V11 Biswas S., 2022, Tech. Rep. PNNL-33548 Biswas S, 2022, IEEE T POWER DELIVER, V37, P3302, DOI 10.1109/TPWRD.2021.3126843 Brunner C, 2008, TRANS DISTRIB CONF, P1342 Ehsani N, 2023, NORTH AMER POW SYMP, DOI 10.1109/NAPS58826.2023.10318763 Ekti AR, 2022, ENERGIES, V15, DOI 10.3390/en15228367 Follum S., 2024, P 57 HAW INT C SYST Folsom M., 2016, Magnetotelluric Data Collected in 2016 Overthe San Emidio Geothermal Field in Nevada IEEE recommended practice for monitoring electric power quality, 2019, IEEE Std 1619-2018, P1, DOI [DOI 10.1109/IEEESTD.2019.8796486, DOI 10.1109/IEEESTD.2019.8637988] Kiritchenko S., 2005, P ACL WORKSHOPLINKIN McEachern A., 2022, P IEEE POW ENERGYSOC, P1 Mooney M., 2016, PV Rooftop Database Neon Neue Energieokonomik Technical University of Berlin DIW Berlinand ETH Zurich, 2020, Open Power System Data: A Free and Open DataPlatform for Power System Modeling North Amer. Electric Rel. Corp. (NERC), 2023, Inverter-based ResourcePerformance Issues Report: Findings From the Level 2 Alert North Amer. Electric Rel. Corp. (NERC), 2021, Recommended OscillationAnalysis for Monitoring and Mitigation Oak Ridge National Laboratory Lawrence Livermore National LaboratoryPacific Northwest National Laboratory, 2022, Grid Event SignatureLibrary Open Energy Platform, ABOUT US Silla CN, 2011, DATA MIN KNOWL DISC, V22, P31, DOI 10.1007/s10618-010-0175-9 Steppan J., A Few Samples From the MNIST Test Dataset Tekbiyik K, 2019, IEEE ACCESS, V7, P138890, DOI 10.1109/ACCESS.2019.2942368 Wilson AJ, 2022, SENSORS-BASEL, V22, DOI 10.3390/s22228827 WILSON AJ, 2022, P 2022 IEEEPES TRANS, P1 Zhang YC, 2010, IEEE T SMART GRID, V1, P159, DOI 10.1109/TSG.2010.2050345 NR 27 TC 0 Z9 0 U1 2 U2 2 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 2169-3536 J9 IEEE ACCESS JI IEEE Access PY 2024 VL 12 BP 76207 EP 76218 DI 10.1109/ACCESS.2024.3404886 PG 12 WC Computer Science, Information Systems; Engineering, Electrical & Electronic; Telecommunications WE Science Citation Index Expanded (SCI-EXPANDED) SC Computer Science; Engineering; Telecommunications GA SW0D8 UT WOS:001237359900001 OA gold DA 2024-09-05 ER PT C AU Packer, S Seals, C Dozier, G AF Packer, Sadaira Seals, Cheryl Dozier, Gerry BE Moallem, A TI Towards the Improvement of UI/UX of a Human-AI Adversarial Authorship System SO HCI FOR CYBERSECURITY, PRIVACY AND TRUST, HCI-CPT 2022 SE Lecture Notes in Computer Science LA English DT Proceedings Paper CT 4th International Conference on HCI for Cybersecurity, Privacy and Trust (HCI-CPT) Held as Part of the 24th International Conference on Human-Computer Interaction (HCII) CY JUN 26-JUL 01, 2022 CL ELECTR NETWORK DE Human-AI collaboration; Adversarial authorship; AuthorCAAT; Usability AB AuthorCAAT (Author Cyber Analysis & Advisement Tool) is a tool created to aid users in protecting their online privacy by assisting them in altering their writing style through Adversarial Authorship. There have been several iterations of AuthorCAAT that were all tested for efficiency, but not for usability. In this work, we conduct a preliminary study on AuthorCAAT-V to determine any features that need improvement to inform our iterative design decisions for an Adversarial Authorship framework JohariMAA. We plan to develop JohariMAA to adapt to the evolving authorship attribution field and be accessible to a broad audience. Our usability assessment of AuthorCAAT reveals issues involving task complexity, usability, user experience, and user interface efficiency. We discuss potential design decisions for JohariMAA planned to alleviate these issues. C1 [Packer, Sadaira; Seals, Cheryl; Dozier, Gerry] Auburn Univ, Auburn, AL 36849 USA. C3 Auburn University System; Auburn University RP Packer, S (corresponding author), Auburn Univ, Auburn, AL 36849 USA. EM smp0043@auburn.edu; sealscd@auburn.edu; doziegv@auburn.edu CR Allred J., 2020, IEEE SOUTHEASTCON, P1 [Anonymous], 2016, CLEF WORKING NOTES [Anonymous], 2003, Proceedings of the Seventh Conference on Natural Language Learning at HLT-NAACL 2003-Volume 4, CONLL'03 Back T., 1997, IEEE Transactions on Evolutionary Computation, V1, P3, DOI 10.1109/4235.585888 Boyd Ryan L, 2015, Tech. Rep. Brennan M, 2012, ACM T INFORM SYST SE, V15, DOI 10.1145/2382448.2382450 Brooke J., 1996, USABILITY EVALUATION, P189, DOI DOI 10.1201/9781498710411-35 Castro-Castro D., 2017, CLEF WORKING NOTES Davis L, 1991, HDB GENETIC ALGORITH Day S., 2016, MODERN ARTIFICIAL IN, V1584, P41 Day S, 2016, IEEE IC COMP COM NET Dean B., 2021, SOCIAL NETWORK USAGE DEJONG K, 1993, PROCEEDINGS OF THE FIFTH INTERNATIONAL CONFERENCE ON GENETIC ALGORITHMS, P618 Dozier G., 2011, IEEE SSCI 2011 S SER, P152, DOI DOI 10.1109/CIBIM.2011.5949211 Dozier G., 2001, ACM S APPL COMPUTING Faust C., 2017, 2017 IEEE S SERIES C Gaston J, 2018, 2018 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (IEEE SSCI), P933, DOI 10.1109/SSCI.2018.8628647 Gaston J, 2018, 2018 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (IEEE SSCI), P920, DOI 10.1109/SSCI.2018.8628769 Kemp S., TIKTOK GAINS 8 NEW U Keselj V., 2003, Proc. of the conference pacific association for computational linguistics, VVolume 3, P255 Koppel M, 2011, LANG RESOUR EVAL, V45, P83, DOI 10.1007/s10579-009-9111-2 Mack Nathan, 2015, International Journal of Machine Learning and Computing, V5, P409, DOI 10.7763/IJMLC.2015.V5.543 McCallum Andrew Kachites, 2002, MALLET: A machine learning for language toolkit McDonald A.W., 2012, USE FEWER INSTANCES Narayanan M, 2018, 2018 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (IEEE SSCI), P928, DOI 10.1109/SSCI.2018.8628806 Neal T., 2017, 2016 IEEE EUROPEAN S Oh C, 2018, PROCEEDINGS OF THE 2018 CHI CONFERENCE ON HUMAN FACTORS IN COMPUTING SYSTEMS (CHI 2018), DOI 10.1145/3173574.3174223 Rahgouy M., 2018, AUTHOR MASKING DIREC Riloff E, 2003, PROCEEDINGS OF THE 2003 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING, P105 Roy Q, 2019, CHI 2019: PROCEEDINGS OF THE 2019 CHI CONFERENCE ON HUMAN FACTORS IN COMPUTING SYSTEMS, DOI 10.1145/3290605.3300750 Shrestha P., 2017, P 15 C EUROPEAN CHAP, V2, P669, DOI 10.18653/v1/e17-2106 Spears W. M., 1993, Machine Learning: ECML-93. European Conference on Machine Learning Proceedings, P442 Takagi H, 2001, P IEEE, V89, P1275, DOI 10.1109/5.949485 Tausczik YR, 2010, J LANG SOC PSYCHOL, V29, P24, DOI 10.1177/0261927X09351676 Teahan W.J., 2003, Language modeling for information retrieval, P141 Wiebe J, 2005, LANG RESOUR EVAL, V39, P165, DOI 10.1007/s10579-005-7880-9 Williams Henry C., 2014, International Journal of Machine Learning and Computing, V4, P250, DOI 10.7763/IJMLC.2014.V4.420 Wilson T., 2005, P HUM LANG TECHN C E, P347 Wilson TS, 2005, PHIL EDUC, P347, DOI 10.3115/1220575.1220619 NR 39 TC 0 Z9 0 U1 3 U2 4 PU SPRINGER INTERNATIONAL PUBLISHING AG PI CHAM PA GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND SN 0302-9743 EI 1611-3349 BN 978-3-031-05563-8; 978-3-031-05562-1 J9 LECT NOTES COMPUT SC PY 2022 VL 13333 BP 194 EP 205 DI 10.1007/978-3-031-05563-8_13 PG 12 WC Computer Science, Cybernetics; Computer Science, Information Systems; Computer Science, Theory & Methods WE Conference Proceedings Citation Index - Science (CPCI-S) SC Computer Science GA BU5CT UT WOS:000911440600013 DA 2024-09-05 ER PT C AU Mariani, J Francopoulo, G Paroubek, P AF Mariani, Joseph Francopoulo, Gil Paroubek, Patrick BA Declerck, T BF Declerck, T BE Calzolari, N Choukri, K Cieri, C Hasida, K Isahara, H Maegaard, B Mariani, J Moreno, A Odijk, J Piperidis, S Tokunaga, T Goggi, S Mazo, H TI Measuring Innovation in Speech and Language Processing Publications SO PROCEEDINGS OF THE ELEVENTH INTERNATIONAL CONFERENCE ON LANGUAGE RESOURCES AND EVALUATION (LREC 2018) LA English DT Proceedings Paper CT 11th International Conference on Language Resources and Evaluation (LREC) CY MAY 07-12, 2018 CL Miyazaki, JAPAN DE Speech Processing; Natural Language Processing; Text Analytics; Bibliometrics; Scientometrics AB The goal of this paper is to propose measures of innovation through the study of publications in the field of speech and language processing. It is based on the NLP4NLP corpus, which contains the articles published in major conferences and journals related to speech and language processing over 50 years (1965-2015). It represents 65,003 documents from 34 different sources, conferences and journals, published by 48,894 different authors in 558 events, for a total of more than 270 million words and 324,422 bibliographical references. The data was obtained in textual form or as an image that had to be converted into text. This resulted in a lower quality for the most ancient papers, that we measured through the computation of an unknown word ratio. The multi-word technical terms were automatically extracted after parsing, using a set of general language text corpora. The occurrences, frequencies, existences and presences of the terms were then computed overall, for each year and for each document. It resulted in a list of 3.5 million different terms and 24 million term occurrences. The evolution of the research topics over the year, as reflected by the terms presence, was then computed and we propose a measure of the topic popularity based on this computation. The author(s) who introduced the terms were searched for, together with the year when the term was first introduced and the publication where it was introduced. We then studied the global and evolutional contributions of authors to a given topic. We also studied the global and evolutional contributions of the various publications to a given topic. We finally propose a measure of innovativeness for authors and publications. C1 [Mariani, Joseph; Paroubek, Patrick] Univ Paris Saclay, CNRS, LIMSI, Rue John von Neumann, F-91400 Orsay, France. [Francopoulo, Gil] Tagmatica, 126 Rue Picpus, F-75012 Paris, France. C3 Universite Paris Cite; Centre National de la Recherche Scientifique (CNRS); Universite Paris Saclay RP Mariani, J (corresponding author), Univ Paris Saclay, CNRS, LIMSI, Rue John von Neumann, F-91400 Orsay, France. EM Joseph.Mariani@limsi.fr; gil.francopoulo@wanadoo.fr; pap@limsi.fr CR Banchs R. E., 2012, P ACL 2012 SPEC WORK Drouin Patrick, 2004, P LANG RES EV C LREC Francopoulo G., 2013, LMF Lexical Markup Framework Francopoulo Gil, 2016, NLP4NLP NLP SCI PAPE Francopoulo Gil, 2015, WORKSH MIN SCI PAP C Francopoulo Gil, 2015, 4 INT WORKSH MIN SCI Francopoulo Gil, 2007, ICGL INT C GLOB INT Karagoz Y., 2014, SPSS 21.1 Uygulamali Biyoistatistik Litchfield Ben, 2005, JAVA DEV J 0324 Mariani J, 2013, INTERSPEECH, P3370 Mariani J, 2014, LREC 2014 - NINTH INTERNATIONAL CONFERENCE ON LANGUAGE RESOURCES AND EVALUATION, P4632 Mariani Joseph, 2015, L TC 2015 Paul M., 2009, INT C RANLP 2009, P337 NR 13 TC 0 Z9 0 U1 0 U2 0 PU EUROPEAN LANGUAGE RESOURCES ASSOC-ELRA PI PARIS PA 55-57, RUE BRILLAT-SAVARIN, PARIS, 75013, FRANCE BN 979-10-95546-00-9 PY 2018 BP 1890 EP 1895 PG 6 WC Computer Science, Interdisciplinary Applications; Linguistics; Language & Linguistics WE Conference Proceedings Citation Index - Science (CPCI-S); Conference Proceedings Citation Index - Social Science & Humanities (CPCI-SSH) SC Computer Science; Linguistics GA BS5BI UT WOS:000725545001150 DA 2024-09-05 ER PT J AU Rizvi, STR Dengel, A Ahmed, S AF Rizvi, Syed Tahseen Raza Dengel, Andreas Ahmed, Sheraz TI A Hybrid Approach and Unified Framework for Bibliographic Reference Extraction SO IEEE ACCESS LA English DT Article DE Layout; Feature extraction; Task analysis; Metadata; Tools; Portable document format; Libraries; Reference extraction; layout detection; image-based reference detection; bibliography ID METADATA AB Publications are an integral part of a scientific community. Bibliographic reference extraction from scientific publication is a challenging task due to diversity in referencing styles and document layout. Existing methods perform sufficiently on one dataset however, applying these solutions to a different dataset proves to be challenging. Therefore, a generic solution was anticipated which could overcome the limitations of the previous approaches. The contribution of this paper is three-fold. First, it presents a novel approach called DeepBiRD which is inspired by human visual perception and exploits layout features to identify individual references in a scientific publication. Second, we release a large dataset for image-based reference detection with 2401 scans containing 38863 references, all manually annotated for individual reference. Third, we present a unified and highly configurable end-to-end automatic bibliographic reference extraction framework called BRExSys which employs DeepBiRD along with state-of-the-art text-based models to detect and visualize references from a bibliographic document. Our proposed approach pre-processes the images in which a hybrid representation is obtained by processing the given image using different computer vision techniques. Then, it performs layout driven reference detection using Mask R-CNN on a given scientific publication. DeepBiRD was evaluated on two different datasets to demonstrate the generalization of this approach. The proposed system achieved an AP50 of 98.56% on our dataset. DeepBiRD significantly outperformed the current state-of-the-art approach on their dataset. Therefore, suggesting that DeepBiRD is significantly superior in performance, generalized, and independent of any domain or referencing style. C1 [Rizvi, Syed Tahseen Raza; Dengel, Andreas; Ahmed, Sheraz] German Res Ctr Artificial Intelligence, D-67663 Kaiserslautern, Germany. [Rizvi, Syed Tahseen Raza] Tech Univ Kaiserslautern, Dept Comp Sci, D-67663 Kaiserslautern, Germany. C3 University of Kaiserslautern RP Rizvi, STR (corresponding author), German Res Ctr Artificial Intelligence, D-67663 Kaiserslautern, Germany.; Rizvi, STR (corresponding author), Tech Univ Kaiserslautern, Dept Comp Sci, D-67663 Kaiserslautern, Germany. EM syed_tahseen_raza.rizvi@dfki.de OI Dengel, Andreas/0000-0002-6100-8255; Rizvi, Syed Tahseen Raza/0000-0002-4359-4772 FU BMBF Project DeFuseNN [01IW17002]; JSPS KAKENHI [JP17H06100] FX This work was supported in part by the BMBF Project DeFuseNN under Grant 01IW17002, and in part by JSPS KAKENHI under Grant JP17H06100. CR Ahmed MW, 2020, IEEE ACCESS, V8, P99458, DOI 10.1109/ACCESS.2020.2997907 [Anonymous], 2018, Tech. Rep. Bhardwaj A., 2018, ICONIP DATASAET LABE Bhardwaj A, 2017, LECT NOTES COMPUT SC, V10635, P286, DOI 10.1007/978-3-319-70096-0_30 Boukhers Z, 2019, ACM-IEEE J CONF DIG, P186, DOI 10.1109/JCDL.2019.00035 Chen CC, 2012, IEEE T KNOWL DATA EN, V24, P236, DOI 10.1109/TKDE.2010.231 Councill IG, 2008, SIXTH INTERNATIONAL CONFERENCE ON LANGUAGE RESOURCES AND EVALUATION, LREC 2008, P661 Dai JF, 2016, ADV NEUR IN, V29 Dai JF, 2017, IEEE I CONF COMP VIS, P764, DOI 10.1109/ICCV.2017.89 Erhard L., 2019, REFDET DATASET ADDIT Girshick R., 2018, Detectron Girshick R, 2017, P IEEE INT C COMPUTE Grennan M., 2020, ABS200410410 CORR He KM, 2016, PROC CVPR IEEE, P770, DOI 10.1109/CVPR.2016.90 Hochreiter S., 1997, Neural Comput., V9, P1735, DOI 10.1162/neco.1997.9.8.1735 Kunnas E., PDFSSA4MET Lafferty John, 2001, em Proceedings of the Eighteenth International Conference on Machine Learning Lauscher A, 2018, ACM-IEEE J CONF DIG, P109, DOI 10.1145/3197026.3197050 Lin TY, 2017, PROC CVPR IEEE, P936, DOI 10.1109/CVPR.2017.106 Long J, 2015, PROC CVPR IEEE, P3431, DOI 10.1109/CVPR.2015.7298965 Lopez P, 2009, LECT NOTES COMPUT SC, V5714, P473, DOI 10.1007/978-3-642-04346-8_62 Matsuoka D, 2016, 2016 ELEVENTH INTERNATIONAL CONFERENCE ON DIGITAL INFORMATION MANAGEMENT (ICDIM 2016), P243, DOI 10.1109/ICDIM.2016.7829774 Mongeon P, 2016, SCIENTOMETRICS, V106, P213, DOI 10.1007/s11192-015-1765-5 Prasad A, 2018, INT J DIGIT LIBRARIE, V19, P323, DOI 10.1007/s00799-018-0242-1 Ren SQ, 2015, ADV NEUR IN, V28, DOI 10.1109/TPAMI.2016.2577031 Rizvi STR, 2019, 2019 DIGITAL IMAGE COMPUTING: TECHNIQUES AND APPLICATIONS (DICTA), P400, DOI [10.1109/dicta47822.2019.8945991, 10.1145/3345838.3356005] Sautter Guido, 2012, Theory and Practice of Digital Libraries. Second International Conference, TPDL 2012. Proceedings: LNCS 7489, P370, DOI 10.1007/978-3-642-33290-6_40 Tkaczyk D., 2018, ARXIV181110369 Tkaczyk D, 2015, INT J DOC ANAL RECOG, V18, P317, DOI 10.1007/s10032-015-0249-8 Ware M., 2015, TECH REP Zou J, 2010, INT J DOC ANAL RECOG, V13, P107, DOI 10.1007/s10032-009-0105-9 NR 31 TC 4 Z9 4 U1 1 U2 3 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 2169-3536 J9 IEEE ACCESS JI IEEE Access PY 2020 VL 8 BP 217231 EP 217245 DI 10.1109/ACCESS.2020.3042455 PG 15 WC Computer Science, Information Systems; Engineering, Electrical & Electronic; Telecommunications WE Science Citation Index Expanded (SCI-EXPANDED) SC Computer Science; Engineering; Telecommunications GA PE3AH UT WOS:000598239200001 OA Green Submitted, gold DA 2024-09-05 ER PT J AU Du, YF You, SB Zhang, MY Song, Z Liu, WS Li, DJ AF Du, Yuanfang You, Shibing Zhang, Mengyu Song, Ze Liu, Weisheng Li, Dongju TI Analysis of Correlation between Quality of Life and Subjective Evaluation of Air Quality-Empirical Research Based on CHARLS 2018 Data SO ATMOSPHERE LA English DT Article DE air quality satisfaction; quality of life; binomial logistic regression; health utility value; experienced utility AB This paper mainly focuses on the relationship between the subjective evaluation of air quality and the quality of life (QOL) of middle-aged and elderly residents in China. The 2018 China Health and Retirement Longitudinal Study (CHARLS) project database is the key sources of data, from which 16,736 valid samples were used in our research. Multivariate linear regression analysis and binomial logistic regression model were applied to detect the impact of the subjective evaluation of air quality on QOL, which was evaluated in two dimensions, which are health utility and experienced utility, using the health utility EQ-5D score and the experienced utility of life satisfaction score. Our results show that there is a significant positive correlation between the subjective evaluation of air quality and the two dimensions of QOL. Age, education, marital status and sleep status also have a relatively great impact on the QOL of residents. This worked studied the overall QOL of middle-aged and elderly residents in China, while policy suggestions regarding high-quality air public goods are also given in the paper. C1 [Du, Yuanfang; You, Shibing; Zhang, Mengyu; Song, Ze] Wuhan Univ, Sch Econ & Management, Wuhan 430072, Peoples R China. [Du, Yuanfang] Tibet Univ, Math Dept, Lhasa 850000, Peoples R China. [Liu, Weisheng] Jiangxi Univ Finance & Econ, Sch Econ, Nanchang 330013, Peoples R China. [Li, Dongju] Henan Univ Econ & Law, Sch Stat & Big Data, Zhengzhou 450046, Peoples R China. C3 Wuhan University; Tibet University; Jiangxi University of Finance & Economics; Henan University of Economics & Law RP Du, YF (corresponding author), Wuhan Univ, Sch Econ & Management, Wuhan 430072, Peoples R China.; Du, YF (corresponding author), Tibet Univ, Math Dept, Lhasa 850000, Peoples R China. EM ruyier521@whu.edu.cn; 00001839@whu.edu.cn; 2019201050157@whu.edu.cn; songze@whu.edu.cn; liu.wilson.edu@gmail.com; 20100452@huel.edu.cn CR Chen YY, 2013, P NATL ACAD SCI USA, V110, P12936, DOI 10.1073/pnas.1300018110 China Health and Retirement Longitudinal Study (CHARLS), 2018, WAV 4 Darçin M, 2014, ENVIRON SCI POLLUT R, V21, P1954, DOI 10.1007/s11356-013-2101-3 EuroQol Research Foundation, 2018, EQ-5D-3L User Guide Liao L, 2014, ATMOS OCEAN SCI LETT, V7, P434, DOI 10.3878/j.issn.1674-2834.14.0023 Liao X, 2015, ATMOS POLLUT RES, V6, P835, DOI 10.5094/APR.2015.092 Liu GG, 2014, VALUE HEALTH, V17, P597, DOI 10.1016/j.jval.2014.05.007 Mendoza Y, 2019, SOC INDIC RES, V145, P367, DOI 10.1007/s11205-019-02103-1 Rickenbacker HJ, 2020, J ARCHIT ENG, V26, DOI 10.1061/(ASCE)AE.1943-5568.0000439 Shi XM, 2022, ENVIRON DEV SUSTAIN, V24, P6860, DOI 10.1007/s10668-021-01730-4 Suwandee S, 2014, PROCD SOC BEHV, V88, P205, DOI 10.1016/j.sbspro.2013.08.497 Wang HM, 2013, QUAL LIFE RES, V22, P1577, DOI 10.1007/s11136-012-0306-4 Wu TT, 2020, Chin Gen Pract, V23, P47 NR 13 TC 2 Z9 2 U1 12 U2 59 PU MDPI PI BASEL PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND EI 2073-4433 J9 ATMOSPHERE-BASEL JI Atmosphere PD DEC PY 2021 VL 12 IS 12 AR 1551 DI 10.3390/atmos12121551 PG 15 WC Environmental Sciences; Meteorology & Atmospheric Sciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA XW0EH UT WOS:000735303000001 OA gold DA 2024-09-05 ER PT J AU Jung, JH Lee, JHY Choi, S Baek, W AF Jung, Jihoo Lee, Jehyun Choi, Sangjin Baek, Woonho TI Information Analysis on Foreign Institution for International R&D Collaboration Using Natural Language Processing SO ENERGIES LA English DT Article DE open API; international cooperation; data analysis; R&D planning; text mining ID PYROLYSIS AB The number of international collaborations in research and development (R&D) has been increasing in the energy sector to solve global environmental problems-such as climate change and the energy crisis-and to reduce the time, cost, and risk of failure. Successful international project planning requires the analysis of research fields and the technology expertise of cooperative partner institutions or countries, but this takes time and resources. In this study, we developed a method to analyze the information on research organizations and topics, taking advantage of data analysis as well as deep learning natural language processing (NLP) models. A method to evaluate the relative superiority of efficient international collaboration was suggested, assuming international collaboration of the National Renewable Energy Laboratory (NREL) and the Korea Institute of Energy Research (KIER). Additionally, a workflow of an automated executive summary and a translation of tens of web-posted articles is also suggested for a quick glance. The valuation of the suggested methodology is estimated as much as the annual salary of an experienced employee. C1 [Jung, Jihoo; Choi, Sangjin; Baek, Woonho] Korea Inst Energy Res, Global Strategy Team, Daejeon 34129, South Korea. [Lee, Jehyun] Korea Inst Energy Res, Computat Sci & Engn Lab, Daejeon 34129, South Korea. C3 Korea Institute of Energy Research (KIER); Korea Institute of Energy Research (KIER) RP Lee, JHY (corresponding author), Korea Inst Energy Res, Computat Sci & Engn Lab, Daejeon 34129, South Korea. EM jehyunlee@kier.re.kr OI Lee, Jehyun/0000-0003-1752-3564 FU Korea Institute of Energy Research (KIER) [C2-2444, C2-2447] FX This work was conducted under the framework of Research and Development Program of the Korea Institute of Energy Research (KIER) (C2-2444 and C2-2447). CR Abusnina M, 2015, IEEE PHOT SPEC CONF Aghajanyan Armen, 2020, ARXIV Amano K, 2004, HUM MOL GENET, V13, P1333, DOI 10.1093/hmg/ddh154 [Anonymous], 2008, US [Anonymous], 2022, FAST FLOW FUTURE HEA [Anonymous], 2019, PUBLICATIONS OUTPUT [Anonymous], 2022, INT COLLABORATION GA [Anonymous], python-docx Baranowski LL, 2016, SEMICOND SCI TECH, V31, DOI 10.1088/0268-1242/31/12/123004 Beiter Philipp, 2017, Electricity Journal, V30, P47, DOI 10.1016/j.tej.2017.01.011 Biswal AK, 2022, BIOTECHNOL BIOF BIOP, V15, DOI 10.1186/s13068-022-02119-9 Blei David M, 2003, Proceedings of the 26th annual international ACM SIGIR conference on Research and development in informaion retrieval, P127 Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993 BRECKLER SJ, 1985, MUSIC PERCEPT, V2, P459 Brown T., 2020, NEURIPS Cachola I, 2020, Arxiv, DOI arXiv:2004.15011 Chang H., 2018, J KOREA TECHNOL INNO, V21, P213 Charikar Moses S., 2002, P THIR 4 ANN ACM S T, P380, DOI [DOI 10.1145/509907.509965, 10.1145/509907.509965] Conneau A., 2019, P 33 C NEURAL INFORM Coulling AJ, 2013, PROCEEDINGS OF THE ASME 32ND INTERNATIONAL CONFERENCE ON OCEAN, OFFSHORE AND ARCTIC ENGINEERING - 2013 - VOL 8 Dimitrievska M, 2018, J PHYS CHEM C, V122, P15198, DOI 10.1021/acs.jpcc.8b04385 Dumitrache A, 2016, BIOTECHNOL BIOFUELS, V9, DOI 10.1186/s13068-016-0445-x Eiband M, 2018, IUI 2018: PROCEEDINGS OF THE 23RD INTERNATIONAL CONFERENCE ON INTELLIGENT USER INTERFACES, P211, DOI 10.1145/3172944.3172961 Energiepartnershaft Deutchland-Korea, 2022, HOME Fire M, 2019, GIGASCIENCE, V8, DOI 10.1093/gigascience/giz053 Godínez-Salomón F, 2018, ACS CATAL, V8, P10498, DOI 10.1021/acscatal.8b02171 Google Translate, About us Grootendorst M., 2020, KeyBERT: minimal keyword extraction with BERT, v0.1.3 Guz AN, 2009, INT APPL MECH+, V45, P351, DOI 10.1007/s10778-009-0189-4 Herrmannova D., 2016, ANAL MICROSOFT ACAD Honnibal M., 2017, spacy 2: natural language understanding with bloom embeddings, convolutional neural networks and incremental parsing, DOI DOI 10.3233/978-1-60750-588-4-1080 Huang JQ, 2022, ELECTR POW SYST RES, V213, DOI 10.1016/j.epsr.2022.108305 Hull R, 2007, NEUROPSYCHOLOGIA, V45, P1987, DOI 10.1016/j.neuropsychologia.2007.03.002 Hunter JD, 2007, COMPUT SCI ENG, V9, P90, DOI 10.1109/MCSE.2007.55 IEA, 2000, INT COLL EN TECHN Ingole PG, 2017, J IND ENG CHEM, V48, P5, DOI 10.1016/j.jiec.2016.09.041 Jaehong P., 2015, P PHYS CHEM INTERFAC Jain N., 2016, P 2016 IEEE 43 PHOTO Jehyun Lee, 2022, [Journal of The Korean Solar Energy Society, 한국태양에너지학회 논문집], V42, P13 Johnston S, 2014, IEEE J PHOTOVOLT, V4, P1295, DOI 10.1109/JPHOTOV.2014.2339491 Jung J., 2021, P KOREA ENERGY SOC C Jung J., 2019, P KOREA ENERGY SOC C Kim Young-In, 2009, [Journal of Korea Technology Innovation Society, 기술혁신학회지], V12, P545 Kinsey GS, 2022, RENEW ENERG, V196, P995, DOI 10.1016/j.renene.2022.07.011 Kluyver T, 2016, POSITIONING AND POWER IN ACADEMIC PUBLISHING: PLAYERS, AGENTS AND AGENDAS, P87, DOI 10.3233/978-1-61499-649-1-87 Leal W, 2022, NAT COMMUN, V13, DOI 10.1038/s41467-022-28230-x Lee Hyungjin, 2014, [Journal of Korea Technology Innovation Society, 기술혁신학회지], V17, P584 Lee J., 2022, P APPL ARTIFICIAL IN Lee J, 2018, SUSTAINABILITY-BASEL, V10, DOI 10.3390/su10072278 Li M, 2017, BIOTECHNOL BIOFUELS, V10, DOI 10.1186/s13068-016-0695-7 Lieberman R, 2001, UROLOGY, V57, P4, DOI 10.1016/S0090-4295(00)00931-6 Limpens R, 2018, NANOSCALE, V10, P12068, DOI 10.1039/c8nr02173b Ma ZW, 2017, PROCEEDINGS OF THE ASME 11TH INTERNATIONAL CONFERENCE ON ENERGY SUSTAINABILITY, 2017 Magrini K, 2022, BIOMASS BIOENERG, V163, DOI 10.1016/j.biombioe.2022.106502 McLevey John., 2022, DOING COMPUTATIONAL Mihalcea Rada, 2004, Textrank: bringing order into text, DOI DOI 10.3115/1219044.1219064 Muhammad HA, 2022, ENERGY, V239, DOI 10.1016/j.energy.2021.122216 Nathan Paco, 2016, Pytextrank, a python implementation of textrank for phrase extraction and summarization of text documents National Laboratories Department of Energy, NAT LAB National Renewable Energy Laboratory, About us Oesper L, 2011, SOURCE CODE BIOL MED, V6, DOI 10.1186/1751-0473-6-7 Oshman C, 2017, APPL THERM ENG, V126, P1141, DOI 10.1016/j.applthermaleng.2017.01.038 Page L., 1999, Technical Report Stanford InfoLab Paulus Romain, 2017, A deep reinforced model for abstractive summarization arXiv preprint arXiv:1705 04304 Paye JMD, 2016, BIOTECHNOL BIOFUELS, V9, DOI 10.1186/s13068-015-0412-y RapidAPI, ABOUT US Rehman SU, 2022, J ENERGY CHEM, V70, P201, DOI 10.1016/j.jechem.2022.02.052 Rehurek R., 2011, GENSIM PYTHON FRAMEW, V3, P2 Robey R, 2022, ATMOS MEAS TECH, V15, P4585, DOI 10.5194/amt-15-4585-2022 Rose ME, 2019, SOFTWAREX, V10, DOI 10.1016/j.softx.2019.100263 Shin Hyung-Deok, 2010, [Journal of Korea Technology Innovation Society, 기술혁신학회지], V13, P638 Sievert C., 2014, LDAVIS METHOD VISUAL, DOI 10.13140/2.1.1394.3043 Simeone CE, 2023, J AIR WASTE MANAGE, V73, P25, DOI 10.1080/10962247.2022.2100510 Starace AK, 2017, ACS SUSTAIN CHEM ENG, V5, P11761, DOI 10.1021/acssuschemeng.7b03344 Tikofsky R.S., 1967, LENNEBERG BIOL FDN L, V13, P493 UNESCO, 2015, UNESCO SCIENCE REPORT: TOWARDS 2030, P1 van Eck NJ, 2010, SCIENTOMETRICS, V84, P523, DOI 10.1007/s11192-009-0146-3 Veinberg-Vidal E., 2017, P 2017 IEEE 44 PHOTO Vorpahl F, 2014, WIND ENERGY, V17, P519, DOI 10.1002/we.1588 Wang SH, 2022, ENVIRON IMPACT ASSES, V97, DOI 10.1016/j.eiar.2022.106895 Waskom M., 2021, Journal of Open Source Software, V6, P3021, DOI [10.21105/joss.03021, DOI 10.21105/JOSS.03021] Weers J., 2019, P OFFSHORE TECHNOLOG Zacher AH, 2014, ENERG FUEL, V28, P7510, DOI 10.1021/ef5017945 Zakutayev A, 2013, J AM CHEM SOC, V135, P10048, DOI 10.1021/ja311599g Zhang XX, 2019, 57TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2019), P5059 NR 85 TC 0 Z9 0 U1 2 U2 5 PU MDPI PI BASEL PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND EI 1996-1073 J9 ENERGIES JI Energies PD JAN PY 2023 VL 16 IS 1 AR 33 DI 10.3390/en16010033 PG 17 WC Energy & Fuels WE Science Citation Index Expanded (SCI-EXPANDED) SC Energy & Fuels GA 7R6QF UT WOS:000910194700001 OA gold DA 2024-09-05 ER PT J AU Kim, M Park, Y Yoon, J AF Kim, Mujin Park, Youngjin Yoon, Janghyeok TI Generating patent development maps for technology monitoring using semantic patent-topic analysis SO COMPUTERS & INDUSTRIAL ENGINEERING LA English DT Article DE Patent development map; Technology monitoring; Patent map; Bibliometrics; Latent Dirichlet allocation; Topic analysis; 3D printing technology ID SYSTEM; TRENDS AB Patent development maps (PDMs) are a useful visual and monitoring tool for technology-trend identification, and therefore proper technology planning, because they provide an overall understanding of a technology's historical development and current stage. The rapid increase in technical data, however, has made it costly and time-consuming to monitor the technology development progress manually. Although some studies have suggested how to identify development paths among patents, little attention has been paid to synthetic consideration of the two core factors for PDMs: (1) the succession relationship among patents in terms of technological content and (2) the technological taxonomies of individual patents. Therefore, this paper suggests a semantic patent topic analysis-based bibliometric method for PDM generation. The method consists of (1) collecting and preprocessing patents, (2) structuring each patent into a term vector, (3) identifying the technological taxonomies of patents by applying latent Dirichlet allocation, and (4) visualizing the development paths among patents through sensitivity analyses based on semantic patent similarities and citations. This method is illustrated using patents related to 3D printing technology. This method contributes to quantifying PDM generation and, in particular, will become a useful monitoring tool for effective understanding of the technologies including massive patents. (C) 2016 Elsevier Ltd. All rights reserved. C1 [Kim, Mujin; Park, Youngjin; Yoon, Janghyeok] Konkuk Univ, Dept Ind Engn, Seoul, South Korea. C3 Konkuk University RP Yoon, J (corresponding author), Konkuk Univ, Dept Ind Engn, Seoul, South Korea. EM janghyoon@konkuk.ac.kr FU Konkuk University FX This paper was supported by Konkuk University in 2014. CR ALBERT MB, 1991, RES POLICY, V20, P251, DOI 10.1016/0048-7333(91)90055-U [Anonymous], 2009, P 3 ACM C REC SYST, DOI DOI 10.1145/1639714.1639726 [Anonymous], 2014, SOFT COMPUTING BIG D [Anonymous], 2007, Google news personalization: scalable online collaborative filtering, DOI DOI 10.1145/1242572.1242610 [Anonymous], [No title captured] [Anonymous], WHY RES SHOULD CAR P Bergmann I, 2008, R&D MANAGE, V38, P550, DOI 10.1111/j.1467-9310.2008.00533.x Biro I., 2008, AIRWeb, P29 Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993 Brent Stucker Ian Gibson DavidRosen., 2010, Additive manufacturing technologies, Vsecond, DOI [DOI 10.1007/978-1-4419-1120-9, 10.1007/978-1-4419-1120-9] Chang PL, 2010, SCIENTOMETRICS, V82, P5, DOI 10.1007/s11192-009-0033-y Choi C, 2009, TECHNOL FORECAST SOC, V76, P754, DOI 10.1016/j.techfore.2008.10.007 DEERWESTER S, 1990, J AM SOC INFORM SCI, V41, P391, DOI 10.1002/(SICI)1097-4571(199009)41:6<391::AID-ASI1>3.0.CO;2-9 Gress B, 2010, WORLD PAT INF, V32, P3, DOI 10.1016/j.wpi.2009.05.005 Hellinger E, 1909, J REINE ANGEW MATH, V136, P210, DOI 10.1515/crll.1909.136.210 Hirschey Mark., 2001, Pacific Basin Finance Journal, V9, P65, DOI [10.1016/S0927-538X(00)00038-X, DOI 10.1016/S0927-538X(00)00038-X] Hu ZY, 2014, SCIENTOMETRICS, V100, P787, DOI 10.1007/s11192-014-1328-1 Hull CW, 1986, US Pat, Patent No. 4575330 Hung SW, 2010, SCIENTOMETRICS, V82, P121, DOI 10.1007/s11192-009-0032-z Jang-Hyeok Yoon,, 2012, Journal of Information Management, V43, P169, DOI 10.1633/JIM.2012.43.2.169 Jin X., 2005, KDD 05, P612 Kim YG, 2008, EXPERT SYST APPL, V34, P1804, DOI 10.1016/j.eswa.2007.01.033 Miller JosephScott., 2005, Lewis Clark Law Review, V9, P177 박영진, 2015, [The Journal of Intellectual Property, 지식재산연구], V10, P169, DOI 10.34122/jip.2015.03.10.1.169 Park H, 2013, EXPERT SYST APPL, V40, P2373, DOI 10.1016/j.eswa.2012.10.073 Sachs EM H.J., 1993, Three-dimensional Printing Techniques, Patent No. [5204055, 5204055A] Wang B, 2014, SCIENTOMETRICS, V101, P685, DOI 10.1007/s11192-014-1342-3 Wang Chong, 2011, P ACM SIGKDD INT C K, P448, DOI DOI 10.1145/2020408.2020480 Wang Y, 2007, LECT NOTES COMPUT SC, V4814, P240 Xing DS, 2007, PATTERN RECOGN LETT, V28, P1727, DOI 10.1016/j.patrec.2007.04.015 Yoon B., 2004, The Journal of High Technology Management Research, V15, P37, DOI DOI 10.1016/J.HITECH.2003.09.003 Yoon J, 2014, J NANOPART RES, V16, DOI 10.1007/s11051-014-2471-6 Yoon J, 2013, SCIENTOMETRICS, V94, P313, DOI 10.1007/s11192-012-0830-6 Yoon J, 2012, SCIENTOMETRICS, V90, P445, DOI 10.1007/s11192-011-0543-2 Yoon J, 2011, SCIENTOMETRICS, V88, P213, DOI 10.1007/s11192-011-0383-0 NR 35 TC 38 Z9 39 U1 6 U2 114 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0360-8352 EI 1879-0550 J9 COMPUT IND ENG JI Comput. Ind. Eng. PD AUG PY 2016 VL 98 BP 289 EP 299 DI 10.1016/j.cie.2016.06.006 PG 11 WC Computer Science, Interdisciplinary Applications; Engineering, Industrial WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Computer Science; Engineering GA DU1EA UT WOS:000381949800025 DA 2024-09-05 ER PT J AU Rodríguez-Sabiote, C Ubeda-Sánchez, AM Alvarez-Rodríguez, J Alvarez-Ferrándiz, D AF Rodriguez-Sabiote, Clemente Ubeda-Sanchez, Alvaro Manuel Alvarez-Rodriguez, Jose Alvarez-Ferrandiz, Daniel TI Active Learning in an Environment of Innovative Training and Sustainability. Mapping of the Conceptual Structure of Research Fronts through a Bibliometric Analysis SO SUSTAINABILITY LA English DT Article DE active learning; teacher training; digital learning environments; information and communication technologies; bibliometric analysis ID EDUCATION; CENTRALITY; NETWORKS AB The present study seeks to map and visualize up-to-date perspectives of the topic of active learning by analyzing and interpreting the different elements that make up learning ecosystems within the European Higher Education Area. With this aim, scientometric methods were employed to analyze a sample of 474 articles recovered from Web of Science (WoS) during the three-year period between 2018 and 2020. All articles examined the topic of active learning. Keywords (authors' keywords and 'keywords plus') from the manuscripts were examined through co-occurrence analysis in order to establish the conceptual structure of active learning. Among the different trends and emerging topics identified, there is an important presence of topics related to technology applied to the field of education, where digital contexts acquire a preponderant role in current education. These innovative changes focused on the digital updating and exploitation of technology represent a methodological challenge that requires an involvement and commitment to this new space for educational practice by teachers and students. C1 [Rodriguez-Sabiote, Clemente; Ubeda-Sanchez, Alvaro Manuel] Univ Granada, Dept Res Methods & Diagnost Educ, Granada 18071, Spain. [Alvarez-Rodriguez, Jose] Univ Granada, Dept Pedag, Granada 18071, Spain. [Alvarez-Ferrandiz, Daniel] Univ Granada, Fac Educ Sci, Granada 18071, Spain. C3 University of Granada; University of Granada; University of Granada RP Rodríguez-Sabiote, C (corresponding author), Univ Granada, Dept Res Methods & Diagnost Educ, Granada 18071, Spain. EM clerosa@ugr.es; amsu@correo.ugr.es; alvarez@ugr.es; ferrandiz98@correo.ugr.es RI Rodríguez-Sabiote, Clemente/R-5941-2017 OI Ubeda-Sanchez, Alvaro Manuel/0000-0001-8948-8767; Alvarez Rodriguez, Jose/0000-0002-8411-9265; Alvarez Ferrandiz, Daniel/0000-0003-4924-1334; Rodriguez Sabiote, Clemente/0000-0003-3094-9199 CR Anderson T, 2003, HANDBOOK OF DISTANCE EDUCATION, P129 Andrews TM, 2011, CBE-LIFE SCI EDUC, V10, P394, DOI 10.1187/cbe.11-07-0061 Andrioni F, 2018, SUSTAINABILITY-BASEL, V10, DOI 10.3390/su10051539 Anglada-Tort M., 2019, Music & Science, V2, P1, DOI [10.1177/2059204318811786, DOI 10.1177/2059204318811786] Aria M, 2017, J INFORMETR, V11, P959, DOI 10.1016/j.joi.2017.08.007 Arici F, 2019, COMPUT EDUC, V142, DOI 10.1016/j.compedu.2019.103647 Bernard RM, 2009, REV EDUC RES, V79, P1243, DOI 10.3102/0034654309333844 Börner K, 2003, ANNU REV INFORM SCI, V37, P179, DOI 10.1002/aris.1440370106 Brown G., 2002, EFFECTIVE TEACHING H, P136 Buil-Fabregá M, 2019, SUSTAINABILITY-BASEL, V11, DOI 10.3390/su11174577 CALLON M, 1983, SOC SCI INFORM, V22, P191, DOI 10.1177/053901883022002003 Chang V., 2007, P IN IEEE IES DIG EC, P420, DOI DOI 10.1109/DEST.2007.372010 Cobo MJ, 2011, J INFORMETR, V5, P146, DOI 10.1016/j.joi.2010.10.002 Cretu DM, 2020, SUSTAINABILITY-BASEL, V12, DOI 10.3390/su12124923 del Río-Rama MD, 2020, SUSTAINABILITY-BASEL, V12, DOI 10.3390/su12020724 De la Rosa Troyano F., 2005, REDES REV HISPANA AN, V8, P1, DOI DOI 10.5565/REV/REDES.65 Deslauriers L, 2011, SCIENCE, V332, P862, DOI 10.1126/science.1201783 Escamilla-Fajardo P, 2020, SUSTAINABILITY-BASEL, V12, DOI 10.3390/su12114499 Esteves M, 2018, INT J ENG PEDAGOG, V8, P115, DOI 10.3991/ijep.v8i2.8146 Fabregat-Aibar L, 2019, SUSTAINABILITY-BASEL, V11, DOI 10.3390/su11092526 Fellnhofer K, 2019, EDUC RES REV-NETH, V27, P28, DOI 10.1016/j.edurev.2018.10.002 FREEMAN LC, 1979, SOC NETWORKS, V1, P215, DOI 10.1016/0378-8733(78)90021-7 FREEMAN LC, 1977, SOCIOMETRY, V40, P35, DOI 10.2307/3033543 GARFIELD E, 1993, J AM SOC INFORM SCI, V44, P298, DOI 10.1002/(SICI)1097-4571(199306)44:5<298::AID-ASI5>3.0.CO;2-A Giannakos Michail N., 2016, Smart Learning Environments, V3, DOI 10.1186/s40561-016-0034-2 Giannakos MN, 2016, LECT N EDUC TECHNOL, P105, DOI 10.1007/978-981-287-868-7_12 Glänzel W, 2001, SCIENTOMETRICS, V51, P69, DOI 10.1023/A:1010512628145 Grosseck G, 2019, SUSTAINABILITY-BASEL, V11, DOI 10.3390/su11216136 Gvaramadze I, 2008, EUR J EDUC, V43, DOI 10.1111/j.1465-3435.2008.00376.x Hake RR, 1998, AM J PHYS, V66, P64, DOI 10.1119/1.18809 Hallinger P, 2019, SUSTAINABILITY-BASEL, V11, DOI 10.3390/su11082401 Jarden RJ, 2019, BMC NURS, V18, DOI 10.1186/s12912-019-0343-1 Hinojo-Lucena FJ, 2018, SUSTAINABILITY-BASEL, V10, DOI 10.3390/su10051334 Johnson D.W., 2000, ACTIVE LEARNING COOP, P81 Kehm B.M., 2010, Change, V42, P40, DOI [DOI 10.1080/00091381003704677, 10.1080/00091381003704677] Knight Jennifer K, 2005, Cell Biol Educ, V4, P298, DOI 10.1187/05-06-0082 Lancichinetti A, 2009, PHYS REV E, V80, DOI 10.1103/PhysRevE.80.056117 Lanjie Chen, 2010, 2010 5th International Conference on Computer Science & Education (ICCSE 2010), P515, DOI 10.1109/ICCSE.2010.5593561 Liu JS, 2016, OMEGA-INT J MANAGE S, V58, P33, DOI 10.1016/j.omega.2015.04.004 March A.F., 2006, Educatio siglo, V24, P35 Marín-Díaz V, 2020, SUSTAINABILITY-BASEL, V12, DOI 10.3390/su12156134 Meyer CO, 2005, EUR J INT RELAT, V11, P523, DOI 10.1177/1354066105057899 Morris SA, 2008, ANNU REV INFORM SCI, V42, P213 Pollock SJ, 2008, PHYS REV SPEC TOP-PH, V4, DOI 10.1103/PhysRevSTPER.4.010110 Restrepo-Arango C., 2018, REV CONHEC ACAO, V2, P1, DOI [10.5897/IJLIS2015.0584, DOI 10.5897/IJLIS2015.0584] Rico C, 2010, INTERPRET TRANSL TRA, V4, P89, DOI 10.1080/1750399X.2010.10798798 Robelo OG., 2018, INT J ED EXCELLENCE, V4, P15, DOI [10.18562/ijee.031, DOI 10.18562/IJEE.031] Schmidt R, 2009, EUR J EDUC, V44, P399, DOI 10.1111/j.1465-3435.2009.01393.x Seop Lee Gi, 2018, [Journal of Korean Society of Coastal and Ocean Engineers, 한국해안·해양공학회논문집], V30, P19, DOI 10.9765/KSCOE.2018.30.1.19 Sharma A., 2011, Journal of Education and Practice, V2, P1 Shen CW, 2020, COMPUT HUM BEHAV, V104, DOI 10.1016/j.chb.2019.106177 Shum SB, 2012, EDUC TECHNOL SOC, V15, P3 Small H, 1997, SCIENTOMETRICS, V38, P275, DOI 10.1007/BF02457414 Terrón-López MJ, 2020, SUSTAINABILITY-BASEL, V12, DOI 10.3390/su12124817 Turpen C, 2009, PHYS REV SPEC TOP-PH, V5, DOI 10.1103/PhysRevSTPER.5.020101 Ulazia A, 2020, SUSTAINABILITY-BASEL, V12, DOI 10.3390/su12062495 Wheeldon J., 2011, VISUALIZING SOCIAL S, P115 Zempoalteca Durán Beatriz, 2017, Apert. (Guadalaj., Jal.), V9, P80, DOI 10.32870/ap.v9n1.922 Zhang J, 2016, J ASSOC INF SCI TECH, V67, P967, DOI 10.1002/asi.23437 Zhao L, 2019, SUSTAINABILITY-BASEL, V11, DOI 10.3390/su11236648 Zheng MQ, 2018, SUSTAINABILITY-BASEL, V10, DOI 10.3390/su10030748 Zhou L, 2019, SUSTAINABILITY-BASEL, V11, DOI 10.3390/su11072151 NR 62 TC 14 Z9 14 U1 0 U2 13 PU MDPI PI BASEL PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND EI 2071-1050 J9 SUSTAINABILITY-BASEL JI Sustainability PD OCT PY 2020 VL 12 IS 19 AR 8012 DI 10.3390/su12198012 PG 18 WC Green & Sustainable Science & Technology; Environmental Sciences; Environmental Studies WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Science & Technology - Other Topics; Environmental Sciences & Ecology GA ON1YE UT WOS:000586504700001 OA Green Published, gold DA 2024-09-05 ER PT J AU Manju, G Kavitha, V Geetha, TV AF Manju, G. Kavitha, V Geetha, T., V TI Influential Researcher Identification in Academic Network Using Rough Set Based Selection of Time-Weighted Academic and Social Network Features SO INTERNATIONAL JOURNAL OF INTELLIGENT INFORMATION TECHNOLOGIES LA English DT Article DE Academic Influence; Feature Selection; Influential Researcher; Map Reduce Paradigm; Recommendation System; Rough Set Theory; Spreading Activation; Time-Weighted Relation ID SIMILARITY AB Researchers entering into a new research area are interested in knowing the current research trends, popular publications and influential (popular) researchers in that area in order to initiate their research. In this work, we attempt to determine the influential researcher for a specific topic. The active participation of the researchers in both the academic and social network activities signifies the researchers' influence level across time. The content and frequency of social interaction to a researcher reflects his or her influence. In our system, appropriate time-based social and academic features are selected using entropy based feature selection approach of rough set theory. A three layer model comprising semantically related concepts, researcher and social relations is developed based on the appropriate (influential) features. The researchers' topic trajectories are identified and recommended using Spreading activation algorithm. To cope up with the scalable academic network, map reduce paradigm has been employed in the spreading activation algorithm. C1 [Manju, G.; Kavitha, V; Geetha, T., V] Anna Univ, Dept Comp Sci, Madras, Tamil Nadu, India. C3 Anna University; Anna University Chennai RP Manju, G (corresponding author), Anna Univ, Dept Comp Sci, Madras, Tamil Nadu, India. CR [Anonymous], 1997, PROC 10 RES COMPUTAT [Anonymous], 2012, ARCH ENVIRON CON TOX, DOI [DOI 10.1007/S00244-011-9745-0, 10.1007/s00244-011-9745-0] [Anonymous], 2007, PROCC 16 ACM C C INF, DOI DOI 10.1145/1321440.1321528 Caragea C., 2013, P ICONFERENCE, P849 Caruana R. A., 1994, P AAAI S REL NEW ORL Dahimene R, 2015, INT J INTELL INF TEC, V11, P30, DOI 10.4018/ijiit.2015010103 Ding Yi, 2005, Proceedings of the 14th ACM international conference on Information and knowledge management, P485, DOI DOI 10.1145/1099554.1099689 Firdaus A., 2013, SCALING PERFORMANCE Ganapathy S, 2013, EURASIP J WIREL COMM, DOI 10.1186/1687-1499-2013-271 Groth P., 2010, STUDYING SCI DISCOUR Haron N, 2010, INNOVATIONS IN COMPUTING SCIENCES AND SOFTWARE ENGINEERING, P477, DOI 10.1007/978-90-481-9112-3_81 Haury AC, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0028210 Huang Z, 2004, ACM T INFORM SYST, V22, P116, DOI 10.1145/963770.963775 Kannan A, 2015, INT J INTELL INF TEC, V11, P1, DOI 10.4018/IJIIT.2015100101 Kavitha V, 2014, 2014 INTERNATIONAL CONFERENCE ON ADVANCES IN COMPUTING, COMMUNICATIONS AND INFORMATICS (ICACCI), P1053, DOI 10.1109/ICACCI.2014.6968216 Khalid NEA, 2011, P 15 WSEAS INT C COM, P313 Kohavi R, 1997, ARTIF INTELL, V97, P273, DOI 10.1016/S0004-3702(97)00043-X Li H, 2011, IEICE T INF SYST, VE94D, P1854, DOI 10.1587/transinf.E94.D.1854 Li X, 2008, IEEE DATA MINING, P893, DOI 10.1109/ICDM.2008.155 Li YH, 2003, IEEE T KNOWL DATA EN, V15, P871, DOI 10.1109/TKDE.2003.1209005 Li YH, 2006, IEEE T KNOWL DATA EN, V18, P1138, DOI 10.1109/TKDE.2006.130 Lippmann R. P., 1987, IEEE ASSP Magazine, V4, P4, DOI 10.1145/44571.44572 Liu L, 2012, DATA MIN KNOWL DISC, V25, P511, DOI 10.1007/s10618-012-0252-3 Manju G., 2013, Mining Intelligence and Knowledge Exploration. First International Conference, MIKE 2013. Proceedings: LNCS 8284, P677, DOI 10.1007/978-3-319-03844-5_66 Matsatsinis NF, 2007, P 11 PANH C INF, P135 Moreira C., 2013, PROGR ARTIFICIAL INT Morid MA, 2014, INFORM RETRIEVAL, V17, P137, DOI 10.1007/s10791-013-9224-5 Na Li, 2013, 2013 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM), P608 Nagwani N., 2015, Journal of Big Data, V2, P6, DOI [DOI 10.1186/S40537-015-0020-5, 10.1186/s40537-015-0020-5] Neylon C, 2009, PLOS BIOL, V7, DOI 10.1371/journal.pbio.1000242 Pawlak Z, 2002, INFORM SCIENCES, V147, P1, DOI 10.1016/S0020-0255(02)00197-4 PAWLAK Z, 1982, INT J COMPUT INF SCI, V11, P341, DOI 10.1007/BF01001956 Pawlak Z., 1993, Foundations of Computing and Decision Sciences, V18, P157 Priem Jason, 2010, First Monday, V15, DOI 10.5210/fm.v15i7.2874 Quinlan J. R., 1993, C4 5 PROGRAMS MACHIN Sayyadi H., 2009, FUTURERANK RANKING S Shaparenko B., 2009, P ECML Sie RLL, 2012, INT J TECHNOL ENHANC, V4, P121, DOI 10.1504/IJTEL.2012.048314 Suguna N., 2010, Journal of Computing, V2, P49 Sun Y., 2011, P ASONAM Tang J, 2007, IEEE DATA MINING, P292, DOI 10.1109/ICDM.2007.30 Taraborelli D., 2008, P 8 INT C DES COOP S, P99 Walker D, 2007, J STAT MECH-THEORY E, DOI 10.1088/1742-5468/2007/06/P06010 Wang Senzhang., 2014, P 2014 SIAM INT C DA, P749, DOI DOI 10.1137/1.9781611973440.86 Weng J., 2011, EVENT DETECTION TWIT Xu YG, 2010, INT J ADAPT CONTROL, V24, P20, DOI 10.1002/acs.1102 Yin HJ, 2014, INT J INTELL INF TEC, V10, P57, DOI 10.4018/ijiit.2014010104 Zeng M, 2013, 27 AAAI C ART INT Zhang Y.-D., 2013, MATH PROBL ENG, P1 Zhang YF, 2014, INT J INTELL INF TEC, V10, P1, DOI 10.4018/ijiit.2014100101 NR 50 TC 4 Z9 4 U1 0 U2 7 PU IGI GLOBAL PI HERSHEY PA 701 E CHOCOLATE AVE, STE 200, HERSHEY, PA 17033-1240 USA SN 1548-3657 EI 1548-3665 J9 INT J INTELL INF TEC JI Int. J. Intell. Inf. Technol. PD JAN-MAR PY 2017 VL 13 IS 1 BP 1 EP 25 DI 10.4018/IJIIT.2017010101 PG 25 WC Computer Science, Information Systems WE Emerging Sources Citation Index (ESCI) SC Computer Science GA EO5GQ UT WOS:000396721700001 DA 2024-09-05 ER PT J AU García-Pineda, V Valencia-Arias, A Patino-Vanegas, JC Cueto, JJF Arango-Botero, D Coronel, AMR Rodríguez-Correa, PA AF Garcia-Pineda, Vanessa Valencia-Arias, Alejandro Patino-Vanegas, Juan Camilo Flores Cueto, Juan Jose Arango-Botero, Diana Rojas Coronel, Angel Marcelo Rodriguez-Correa, Paula Andrea TI Research Trends in the Use of Machine Learning Applied in Mobile Networks: A Bibliometric Approach and Research Agenda SO INFORMATICS-BASEL LA English DT Article DE mobile networks; mobile communication systems; 5G; PRISMA; machine learning; internet of things ID MASSIVE MIMO; 5G NETWORKS; 6G; FRAMEWORK; SYSTEMS; ACCESS; ENERGY; INTELLIGENCE; CHALLENGES; MANAGEMENT AB This article aims to examine the research trends in the development of mobile networks from machine learning. The methodological approach starts from an analysis of 260 academic documents selected from the Scopus and Web of Science databases and is based on the parameters of the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement. Quantity, quality and structure indicators are calculated in order to contextualize the documents' thematic evolution. The results reveal that, in relation to the publications by country, the United States and China, who are competing for fifth generation (5G) network coverage and are responsible for manufacturing devices for mobile networks, stand out. Most of the research on the subject focuses on the optimization of resources and traffic to guarantee the best management and availability of a network due to the high demand for resources and greater amount of traffic generated by the many Internet of Things (IoT) devices that are being developed for the market. It is concluded that thematic trends focus on generating algorithms for recognizing and learning the data in the network and on trained models that draw from the available data to improve the experience of connecting to mobile networks. C1 [Garcia-Pineda, Vanessa] Corp Univ Amer, Fac Ingn, Medellin 055428, Colombia. [Valencia-Arias, Alejandro] Univ Senor Sipan, Escuela Ingn Ind, Chiclayo 14001, Peru. [Patino-Vanegas, Juan Camilo; Arango-Botero, Diana] Inst Tecnol Metropolitano, Fac Ciencias Econ & Adm, Medellin 050034, Colombia. [Flores Cueto, Juan Jose] Univ San Martin Porres, Unidad Virtualizac Acad, Santa Anita 15011, Peru. [Rojas Coronel, Angel Marcelo] Univ Senor Sipan, Escuela Ingn Mecan, Chiclayo 14001, Peru. [Rodriguez-Correa, Paula Andrea] Inst Univ Escolme, Ctr Invest, Medellin 050012, Colombia. C3 Universidad Senor de Sipan; Universidad de San Martin de Porres; Universidad Senor de Sipan RP Valencia-Arias, A (corresponding author), Univ Senor Sipan, Escuela Ingn Ind, Chiclayo 14001, Peru. EM vgarcia@americana.edu.co; valenciajho@crece.uss.edu.pe; juanpatino@itm.edu.co; jfloresc@usmp.pe; dianaarangob@itm.edu.co; rmarcelo@crece.uss.edu.pe; cies4@escolme.edu.co RI Arango-Botero, Diana/W-6231-2018; Arias, Alejandro Valencia/I-9436-2019 OI Arias, Alejandro Valencia/0000-0001-9434-6923; Rojas Coronel, Angel Marcelo/0000-0002-2720-9707; Rodriguez Correa, Paula/0000-0002-9748-0148; Garcia Pineda, Vanessa/0000-0003-3418-8956 FU Corporacion Universitaria Americana (Colombia); Universidad Senor de Sipan (Peru) FX This research was funded by the Corporacion Universitaria Americana (Colombia) and the Universidad Senor de Sipan (Peru). The APC was funded by Universidad Senor de Sipan (Peru). CR Abdulqadder IH, 2020, COMPUT NETW, V179, DOI 10.1016/j.comnet.2020.107364 Abusubaih M, 2022, J NETW SYST MANAG, V30, DOI 10.1007/s10922-021-09625-5 Aqdus A, 2023, CMC-COMPUT MATER CON, V74, P1413, DOI 10.32604/cmc.2023.031719 Aryal B., 2021, J COMMUN, V16, P267, DOI [10.12720/jcm.16.7.267-275, DOI 10.12720/JCM.16.7.267-275] Bagchi S, 2020, IEEE INTERNET THINGS, V7, P11330, DOI 10.1109/JIOT.2020.3007690 Balachandran A, 2014, PROCEEDINGS OF THE 20TH ANNUAL INTERNATIONAL CONFERENCE ON MOBILE COMPUTING AND NETWORKING (MOBICOM '14), P213, DOI 10.1145/2639108.2639137 Bastug E, 2015, J COMMUN NETW-S KOR, V17, P549, DOI 10.1109/JCN.2015.000102 Ben Yahia IG, 2017, CONF INNOV CLOUD, P252, DOI 10.1109/ICIN.2017.7899421 Bi Q, 2019, IEEE COMMUN MAG, V57, P31, DOI 10.1109/MCOM.001.1900315 Björnson E, 2019, DIGIT SIGNAL PROCESS, V94, P3, DOI 10.1016/j.dsp.2019.06.007 Cao B., 2016, P 31 ANN ACM S APPL, P546 Chaccour C, 2022, IEEE COMMUN SURV TUT, V24, P967, DOI 10.1109/COMST.2022.3143454 Chen G, 2022, SENSORS-BASEL, V22, DOI 10.3390/s22093495 Chen Y, 2018, IEEE COMMUN MAG, V56, P19, DOI 10.1109/MCOM.2018.1700845 Comsa IS, 2020, IEEE T NETW SERV MAN, V17, P1110, DOI 10.1109/TNSM.2019.2960849 Dai YY, 2019, IEEE NETWORK, V33, P10, DOI 10.1109/MNET.2019.1800376 Das S, 2012, 2012 25TH IEEE CANADIAN CONFERENCE ON ELECTRICAL & COMPUTER ENGINEERING (CCECE) Dharmani P, 2021, J BUS RES, V135, P252, DOI 10.1016/j.jbusres.2021.06.037 Dubreil H, 2005, IEEE VTS VEH TECHNOL, P1865 Elijah O, 2022, IEEE ACCESS, V10, P102532, DOI 10.1109/ACCESS.2022.3208284 Faisal KM, 2022, IEEE ACCESS, V10, P27343, DOI 10.1109/ACCESS.2022.3157651 Fang H, 2019, IEEE WIREL COMMUN, V26, P55, DOI 10.1109/MWC.001.1900054 Gavrilovska L, 2020, WIRELESS PERS COMMUN, V113, P1523, DOI 10.1007/s11277-020-07231-3 Guo FX, 2021, IEEE INTERNET THINGS, V8, P11891, DOI 10.1109/JIOT.2021.3063686 Haneda E.M.K., 2017, Millimetre-Wave Based Mobile Radio Access Network for Fifth Generation Integrated Communications (mmMAGIC), P1 Hua YX, 2020, IEEE J SEL AREA COMM, V38, P334, DOI 10.1109/JSAC.2019.2959185 Jagannath A, 2022, PHYS COMMUN-AMST, V54, DOI 10.1016/j.phycom.2022.101793 Jiang W., 2017, P EUR WIR 2017 23 EU, P1 Jiang W, 2021, IEEE OPEN J COMM SOC, V2, P334, DOI 10.1109/OJCOMS.2021.3057679 Kader MA, 2015, IEEE GLOBE WORK Kairouz P, 2021, FOUND TRENDS MACH LE, V14, P1, DOI 10.1561/2200000083 Kamruzzaman MM, 2022, COMPUT ELECTR ENG, V102, DOI 10.1016/j.compeleceng.2022.108233 Kato N, 2017, IEEE WIREL COMMUN, V24, P146, DOI 10.1109/MWC.2016.1600317WC Kazi BU, 2019, WIREL NETW, V25, P2041, DOI 10.1007/s11276-018-1796-y Kirsur S.M., 2022, Computational Intelligence and Data Analytics. Lecture Notes on Data Engineering and Communications Technologies, P89 Klaine PV, 2017, IEEE COMMUN SURV TUT, V19, P2392, DOI 10.1109/COMST.2017.2727878 Koudouridis GP, 2022, EURASIP J WIREL COMM, V2022, DOI 10.1186/s13638-022-02164-w Kumar R., 2021, Internet Things Anal. Agric, V3, P141, DOI [10.1007/978-981-16-6210-2_7, DOI 10.1007/978-981-16-6210-2_7] Le LV, 2018, 2018 IEEE 5G WORLD FORUM (5GWF), P20, DOI 10.1109/5GWF.2018.8516953 Letaief KB, 2019, IEEE COMMUN MAG, V57, P84, DOI 10.1109/MCOM.2019.1900271 Lim WYB, 2020, IEEE INTERNET THINGS, V7, P9575, DOI 10.1109/JIOT.2020.2985694 Liu YW, 2022, IEEE J SEL AREA COMM, V40, P1037, DOI 10.1109/JSAC.2022.3145234 López-Pérez D, 2022, IEEE COMMUN SURV TUT, V24, P653, DOI 10.1109/COMST.2022.3142532 Lu YT, 2020, IEEE T VEH TECHNOL, V69, P8459, DOI 10.1109/TVT.2020.2995160 Luong NC, 2019, IEEE COMMUN SURV TUT, V21, P3133, DOI 10.1109/COMST.2019.2916583 Mach P, 2017, IEEE COMMUN SURV TUT, V19, P1628, DOI 10.1109/COMST.2017.2682318 Mahmood MR, 2022, IEEE ACCESS, V10, P87535, DOI 10.1109/ACCESS.2022.3199689 Mao BM, 2017, IEEE T COMPUT, V66, P1946, DOI 10.1109/TC.2017.2709742 Mao Q, 2018, IEEE COMMUN SURV TUT, V20, P2595, DOI 10.1109/COMST.2018.2846401 Maraqa O, 2020, IEEE COMMUN SURV TUT, V22, P2192, DOI 10.1109/COMST.2020.3013514 Mason F, 2021, 2021 19TH MEDITERRANEAN COMMUNICATION AND COMPUTER NETWORKING CONFERENCE (MEDCOMNET), DOI [10.1109/MedComNet52149.2021.9501279, 10.1109/MEDCOMNET52149.2021.9501279] Mazin A, 2018, IEEE VTS VEH TECHNOL Moher D., 2015, Revista Espaola de Nutricin Humana y Diettica, V4, P1, DOI [DOI 10.1186/S13643-015-0163-7, 10.1186/2046-4053-4-1, DOI 10.14306/RENHYD.20.2.223] Moysen J, 2018, COMPUT COMMUN, V129, P248, DOI 10.1016/j.comcom.2018.07.015 Mozaffari M, 2019, IEEE T WIREL COMMUN, V18, P357, DOI 10.1109/TWC.2018.2879940 Mughees A, 2020, IEEE ACCESS, V8, P187498, DOI 10.1109/ACCESS.2020.3029903 Mwanje S., 2016, P 2016 IEEE 27 ANN I, P1 Nakao A, 2018, IEICE T COMMUN, VE101B, P1536, DOI 10.1587/transcom.2017CQI0002 Narmanlioglu Omer, 2017, 2017 IFIP/IEEE Symposium on Integrated Network and Service Management (IM), P929, DOI 10.23919/INM.2017.7987414 Nasri R, 2006, ANN TELECOMMUN, V61, P1119, DOI 10.1007/BF03219884 Nawaz SJ, 2019, IEEE ACCESS, V7, P46317, DOI 10.1109/ACCESS.2019.2909490 Nomikos N, 2022, IEEE ACCESS, V10, P4380, DOI 10.1109/ACCESS.2022.3140719 Page MJ, 2021, J CLIN EPIDEMIOL, V134, P178, DOI 10.1016/j.jclinepi.2021.03.001 Valencia CMP, 2019, 2019 IEEE 4TH COLOMBIAN CONFERENCE ON AUTOMATIC CONTROL (CCAC): AUTOMATIC CONTROL AS KEY SUPPORT OF INDUSTRIAL PRODUCTIVITY, DOI [10.1109/ccac.2019.8920902, 10.1109/iwmn.2019.8805017] Park J, 2019, P IEEE, V107, P2204, DOI 10.1109/JPROC.2019.2941458 Paropkari R.A., 2022, 2022 INT C WIR COMM, P244 Perez JS, 2017, INT BLACK SEA CONF, P92 Pranckute R, 2021, PUBLICATIONS-BASEL, V9, DOI 10.3390/publications9010012 Pham QV, 2020, IEEE ACCESS, V8, P116974, DOI 10.1109/ACCESS.2020.3001277 Rahman A, 2023, FUTURE GENER COMP SY, V138, P61, DOI 10.1016/j.future.2022.08.004 Rodrigues TK, 2022, IEEE WIREL COMMUN, V29, P104, DOI 10.1109/MWC.001.2100287 Savazzi S, 2023, IEEE T GREEN COMMUN, V7, P248, DOI 10.1109/TGCN.2022.3186439 Shajin FH, 2022, J CIRCUIT SYST COMP, V31, DOI 10.1142/S0218126622500931 Shang X., 2021, IEEE Trans. Netw. Sci. Eng.. early access, DOI [10.1109/TNSE.2021.3109538, DOI 10.1109/TNSE.2021.3109538] Sharma SK, 2020, IEEE COMMUN SURV TUT, V22, P426, DOI 10.1109/COMST.2019.2916177 Singh Monika, 2021, 2021 2nd International Conference on Computational Methods in Science & Technology (ICCMST), P24, DOI 10.1109/ICCMST54943.2021.00017 Sun DF, 2019, IFAC PAPERSONLINE, V52, P219, DOI 10.1016/j.ifacol.2019.12.411 Sun G., 2018, P 2018 IEEE 37 INT P, P1 Sundsoy Pal, 2014, Social Computing, Behavioral-Cultural Modeling and Prediction. 7th International Conference, SBP 2014. Proceedings: LNCS 8393, P367, DOI 10.1007/978-3-319-05579-4_45 Thantharate A, 2023, J NETW SYST MANAG, V31, DOI 10.1007/s10922-022-09693-1 Tömösközi M, 2016, IEEE VTS VEH TECHNOL Upadhyay Deepak, 2023, ICT with Intelligent Applications: Proceedings of ICTIS 2022. Smart Innovation, Systems and Technologies (311), P643, DOI 10.1007/978-981-19-3571-8_59 Vaezi M, 2019, IEEE WIREL COMMUN, V26, P174, DOI 10.1109/MWC.2019.1800598 Viswanathan H, 2020, IEEE ACCESS, V8, P57063, DOI 10.1109/ACCESS.2020.2981745 Thang VV, 2019, J COMPUT NETW COMMUN, V2019, DOI 10.1155/2019/4708201 Vukobratovic D, 2016, IEEE ACCESS, V4, P3360, DOI 10.1109/ACCESS.2016.2585468 Wei-Cheng Kao, 2018, 2018 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS), P278, DOI 10.1109/ISPACS.2018.8923234 Wild T, 2021, IEEE ACCESS, V9, P30845, DOI 10.1109/ACCESS.2021.3059488 Xie JF, 2019, IEEE COMMUN SURV TUT, V21, P393, DOI 10.1109/COMST.2018.2866942 Xu HS, 2018, IEEE ACCESS, V6, P78238, DOI [10.1109/access.2018.2884906, 10.1109/ACCESS.2018.2884906] Xu Y, 2019, IEEE J SEL AREA COMM, V37, P1291, DOI 10.1109/JSAC.2019.2904330 Zhang CY, 2019, IEEE COMMUN SURV TUT, V21, P2224, DOI 10.1109/COMST.2019.2904897 Zhang JX, 2019, IEEE ACCESS, V7, P65811, DOI 10.1109/ACCESS.2019.2917751 Zhang ZM, 2022, COMPUT NETW, V218, DOI 10.1016/j.comnet.2022.109376 Zhao YL, 2019, IEEE ACCESS, V7, P95397, DOI 10.1109/ACCESS.2019.2928564 Zhou YB, 2018, IEEE NETWORK, V32, P28, DOI 10.1109/MNET.2018.1800085 NR 96 TC 1 Z9 1 U1 0 U2 3 PU MDPI PI BASEL PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND EI 2227-9709 J9 INFORMATICS-BASEL JI Informatics-Basel PD SEP PY 2023 VL 10 IS 3 AR 73 DI 10.3390/informatics10030073 PG 24 WC Computer Science, Interdisciplinary Applications WE Emerging Sources Citation Index (ESCI) SC Computer Science GA S8OC5 UT WOS:001073697200001 OA gold DA 2024-09-05 ER PT C AU Feng, WW Wang, P Zhou, C Hu, Y Guo, L AF Feng, Weiwei Wang, Peng Zhou, Chuan Hu, Yue Guo, Li BE Lu, Y Wu, X Zhang, X TI Nonparametric Topic-Aware Sparsification of Influence Networks SO TRUSTWORTHY COMPUTING AND SERVICES (ISCTCS 2014) SE Communications in Computer and Information Science LA English DT Proceedings Paper CT International Standard Conference on Trustworthy Computing and Services (ISCTCS) CY NOV 28-29, 2014 CL Beijing, PEOPLES R CHINA DE Social network; Sparsification; HDP-LDA AB In the last decade social networks are becoming denser and denser, which makes analyzing their structures and properties very difficult. However, for certain task, if we can remove the inactive users and irrelevant links, the network will be amazingly sparse and tractable. In this paper we propose the Nonparametric Topic-aware Sparsification (NTAS) algorithm, which can simplify social networks for a specific task. To determine whether a link is relevant to the task, we adopt nonparametric topic model to analyze the topic distribution of links and the task. We empirically demonstrate that our algorithm can return a more sparse network compared with other state-of-the-art methods in the task of network monitoring. C1 [Feng, Weiwei; Zhou, Chuan; Hu, Yue; Guo, Li] Chinese Acad Sci, Inst Informat Engn, Beijing, Peoples R China. [Wang, Peng] Chinese Acad Sci, Inst Comp Technol, Beijing, Peoples R China. C3 Chinese Academy of Sciences; Institute of Information Engineering, CAS; Chinese Academy of Sciences; Institute of Computing Technology, CAS RP Feng, WW (corresponding author), Chinese Acad Sci, Inst Informat Engn, Beijing, Peoples R China. EM fengweiwei@iie.ac.cn; peng860215@gmail.com; zhouchuan@iie.ac.cn; huyue@iie.ac.cn; guoli@iie.ac.cn RI WANG, Peng/GSN-5263-2022; Zhou, Chuan/JFS-4721-2023; Hu, Yue/HGE-1673-2022 OI Zhou, Chuan/0000-0001-9958-8673; CR [Anonymous], 2008, Proceedings of the 17th international conference on World Wide Web [Anonymous], 2 SNA KDD WORKSH [Anonymous], 2011, ACM SIGKDD INT C KNO, DOI DOI 10.1145/2020408.2020492 ANTONIAK CE, 1974, ANN STAT, V2, P1152, DOI 10.1214/aos/1176342871 Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993 Bonchi F, 2013, DATA MIN KNOWL DISC, V27, P321, DOI 10.1007/s10618-013-0328-8 CASELLA G, 1992, AM STAT, V46, P167, DOI 10.2307/2685208 Dumais ST, 2004, ANNU REV INFORM SCI, V38, P189 Foti NJ, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0016431 Steyvers Mark, 2007, Handbook of latent semantic analysis, V427, P424 Teh YW, 2006, J AM STAT ASSOC, V101, P1566, DOI 10.1198/016214506000000302 Yin H., 2014, TEMPORAL CONTEXT AWA NR 12 TC 0 Z9 0 U1 0 U2 1 PU SPRINGER-VERLAG BERLIN PI BERLIN PA HEIDELBERGER PLATZ 3, D-14197 BERLIN, GERMANY SN 1865-0929 EI 1865-0937 BN 978-3-662-47401-3; 978-3-662-47400-6 J9 COMM COM INF SC PY 2015 VL 520 BP 83 EP 90 DI 10.1007/978-3-662-47401-3_11 PG 8 WC Computer Science, Information Systems; Computer Science, Theory & Methods WE Conference Proceedings Citation Index - Science (CPCI-S) SC Computer Science GA BE1QX UT WOS:000368404900011 DA 2024-09-05 ER PT J AU Liu, J Wang, C Liu, ZL Gao, MH Xu, YH Chen, JY Cheng, YC AF Liu, Jun Wang, Cong Liu, Zile Gao, Minghui Xu, Yanhua Chen, Jiayu Cheng, Yichun TI A bibliometric analysis of generative AI in education: current status and development SO ASIA PACIFIC JOURNAL OF EDUCATION LA English DT Article DE Generative AI; education; bibliometric analysis; visualization; CiteSpace; VOSviewer ID INTELLIGENCE; EVOLUTION AB The rapid advancement of generative AI technology offers new opportunities for the innovation and transformation of education. However, this also brings forth risks and challenges, including the potential to exacerbate educational inequality and integrity. This study aims to address the extensive controversies surrounding the application of generative AI technology in education by providing an objective and comprehensive understanding of its current state, development in educational contexts. Using the CiteSpace and VOSviewer software, we conducted visual analyses of relevant literature from the Web of Science core collection pertaining to the application of generative AI in education.Subsequently, we identified productive journals, productive articles, collaboration patterns, article hotspots, and prevalent topics in this field.This study will facilitate the promotion of in-depth research and practical implementation of AI in education. C1 [Liu, Jun; Wang, Cong; Liu, Zile] Capital Normal Univ, Coll Educ, Beijing, Peoples R China. [Gao, Minghui; Chen, Jiayu; Cheng, Yichun] Capital Normal Univ, Coll Teacher Educ, Beijing, Peoples R China. [Xu, Yanhua] Jiangxi Normal Univ, Sch Geog & Environm, Nanchang 330022, Jiangxi, Peoples R China. C3 Capital Normal University; Capital Normal University; Jiangxi Normal University RP Xu, YH (corresponding author), Jiangxi Normal Univ, Sch Geog & Environm, Nanchang 330022, Jiangxi, Peoples R China. EM yanhuaxuedu@foxmail.com RI guo, yi/KHC-4669-2024; ren, jun/KHG-7717-2024; liu, qi/KHC-7509-2024; li, cheng/KCZ-0615-2024; zhu, hao/KHW-3813-2024; Zhang, Lu/KHE-5879-2024; liu, qi/KFA-4047-2024; Liu, Yu/KFS-0769-2024; zhang, yan/KHC-3163-2024; Chen, Yang/KHD-8849-2024; su, lin/KHC-5034-2024; li, jing/KHC-8303-2024 OI Wang, Cong/0000-0002-6976-0433 FU Major Educational Project of National Social Science Fund [VHA220005]; The 2023 Open Research Project "Artificial Intelligence in Education" in the College of Education in Capital Normal University FX This work was supported by Major Educational Project of National Social Science Fund under the Grant [number VHA220005], and 2023 Open Research Project "Artificial Intelligence in Education" in the College of Education in Capital Normal University. CR Abd-alrazaq A, 2023, JMIR MED EDUC, V9, DOI 10.2196/48291 Adamopoulou E, 2020, MACH LEARN APPL, V2, DOI 10.1016/j.mlwa.2020.100006 Anderson Lauren B, 2023, Geohealth, V7, pe2023GH000875, DOI 10.1029/2023GH000875 Assefa SG, 2013, J AM SOC INF SCI TEC, V64, P2513, DOI 10.1002/asi.22917 Bogolyubova O, 2022, J EMDR PRACT RES, V16, P76, DOI 10.1891/EMDR-2021-0008 Bornmann L, 2015, J ASSOC INF SCI TECH, V66, P2215, DOI 10.1002/asi.23329 Bowles DC, 2023, PEDAGOGY HEAL PROMOT, V9, P75, DOI 10.1177/23733799231175171 Brown T., 2020, ADV NEURAL INFORM PR, V33, P1877, DOI DOI 10.48550/ARXIV.2005.14165 Byrne MD, 2023, J PERIANESTH NURS, V38, P519, DOI 10.1016/j.jopan.2023.04.001 Cao Y., 2023, ARXIV, DOI DOI 10.48550/ARXIV.2303.04226 Chan CKY, 2023, INT J EDUC TECHNOL H, V20, DOI 10.1186/s41239-023-00408-3 Chang CH, 2023, INT RES GEOGR ENVIRO, V32, P85, DOI 10.1080/10382046.2023.2194036 Chaudhry IS, 2023, COGENT EDUC, V10, DOI 10.1080/2331186X.2023.2210461 Chen C., 2023, CITE SPACE HOMEPAGE Chen HC, 2012, MIS QUART, V36, P1165 Chen XL, 2019, ONLINE INFORM REV, V43, P29, DOI 10.1108/OIR-03-2018-0068 Chen XL, 2018, BMC MED INFORM DECIS, V18, DOI 10.1186/s12911-018-0692-9 Chomsky N., 2023, FALSE PROMISE CHATGP Cobo MJ, 2011, J INFORMETR, V5, P146, DOI 10.1016/j.joi.2010.10.002 Dave T, 2023, FRONT ARTIF INTELL, V6, DOI 10.3389/frai.2023.1169595 Devlin J, 2019, 2019 CONFERENCE OF THE NORTH AMERICAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS: HUMAN LANGUAGE TECHNOLOGIES (NAACL HLT 2019), VOL. 1, P4171 Donthu N, 2021, J BUS RES, V133, P285, DOI 10.1016/j.jbusres.2021.04.070 Dowling M, 2023, FINANC RES LETT, V53, DOI 10.1016/j.frl.2023.103662 Dwivedi YK, 2023, INT J INFORM MANAGE, V71, DOI 10.1016/j.ijinfomgt.2023.102642 Dzikowski P, 2018, J BUS RES, V85, P281, DOI 10.1016/j.jbusres.2017.12.054 Eck v. Waltman, 2023, VOSVIEWER HOMEPAGE Eggmann F, 2023, J ESTHET RESTOR DENT, V35, P1098, DOI 10.1111/jerd.13046 Ellis AR, 2023, J STAT DATA SCI EDUC, V31, P128, DOI 10.1080/26939169.2023.2223609 Emenike ME, 2023, J CHEM EDUC, V100, P1413, DOI 10.1021/acs.jchemed.3c00063 Floridi L, 2020, MIND MACH, V30, P681, DOI 10.1007/s11023-020-09548-1 Franceschelli G, 2022, DATA POLICY, V4, DOI 10.1017/dap.2022.10 Fryer LK, 2019, COMPUT HUM BEHAV, V93, P279, DOI 10.1016/j.chb.2018.12.023 Fu SC, 2021, MATH PROBL ENG, V2021, DOI 10.1155/2021/5555058 Gentile M, 2023, FRONT EDUC, V8, DOI 10.3389/feduc.2023.1161777 Gimenez E, 2018, SUSTAINABILITY-BASEL, V10, DOI 10.3390/su10020391 Gonzalez C, 2023, TOP COGN SCI, DOI 10.1111/tops.12673 Huang L, 2020, ENVIRON SCI POLLUT R, V27, P8740, DOI 10.1007/s11356-019-07489-6 Iskender A, 2023, EUR J TOUR RES, V34, DOI 10.54055/ejtr.v34i.3169 Jeon J, 2023, EDUC INF TECHNOL, V28, P11963, DOI 10.1007/s10639-023-11656-1 Karabacak M, 2023, JMIR MED EDUC, V9, DOI 10.2196/48163 Kasneci E, 2023, LEARN INDIVID DIFFER, V103, DOI 10.1016/j.lindif.2023.102274 Kiili K, 2023, INT J SERIOUS GAMES, V10, P93, DOI 10.17083/ijsg.v10i4.629 Kohnke L, 2023, RELC J, V54, P537, DOI 10.1177/00336882231162868 Koohi-Moghadam M, 2023, J MED SYST, V47, DOI 10.1007/s10916-023-01987-4 Lee H, 2024, ANAT SCI EDUC, V17, P926, DOI 10.1002/ase.2270 Li H, 2022, COMMUN ACM, V65, P56, DOI 10.1145/3490443 Lin S, 2021, IEEE ACCESS, V9, P111181, DOI 10.1109/ACCESS.2021.3102606 Liu YH, 2019, INFORM SYST RES, DOI 10.48550/arXiv.1907.11692 Lodge JM, 2023, AUSTRALAS J EDUC TEC, V39, P18, DOI 10.14742/ajet.8695 Lu YQ, 2023, ANN BIOMED ENG, V51, P1898, DOI 10.1007/s10439-023-03234-w Lund Brady D., 2023, Library Hi Tech News, P26, DOI 10.1108/LHTN-01-2023-0009 Marcato A, 2023, CAN J CHEM ENG, V101, P3013, DOI 10.1002/cjce.24838 Megahed FM, 2024, QUAL ENG, V36, P287, DOI 10.1080/08982112.2023.2206479 Mongeon P, 2016, SCIENTOMETRICS, V106, P213, DOI 10.1007/s11192-015-1765-5 Murugesan S, 2023, COMPUTER, V56, P116, DOI 10.1109/MC.2023.3253292 Nikolic S, 2023, EUR J ENG EDUC, V48, P559, DOI 10.1080/03043797.2023.2213169 Oh M., 2023, J HUMANITIES, V89, P255, DOI [https://doi.org/10.31310/HUM.089.08, DOI 10.31310/HUM.089.08] Page MJ, 2021, BMJ-BRIT MED J, V372, DOI [10.1136/bmj.n71, 10.1016/j.ijsu.2021.105906, 10.1136/bmj.n160] Pedersen I, 2023, FRONT ARTIF INTELL, V6, DOI 10.3389/frai.2023.1259407 Peters ME, 2019, 2019 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING AND THE 9TH INTERNATIONAL JOINT CONFERENCE ON NATURAL LANGUAGE PROCESSING (EMNLP-IJCNLP 2019), P43 Pradana M, 2023, COGENT EDUC, V10, DOI 10.1080/2331186X.2023.2243134 Presswire M., 2023, M2 PRESSWIRE Qadir Junaid, 2023, 2023 IEEE Global Engineering Education Conference (EDUCON), P1, DOI 10.1109/EDUCON54358.2023.10125121 Radford A., 2018, OPENAI Raffel C, 2020, J MACH LEARN RES, V21 Rahman MM, 2023, APPL SCI-BASEL, V13, DOI 10.3390/app13095783 Ramos L, 2023, CIENC ING, V44, P131 Rawat KS, 2021, COMPUT APPL ENG EDUC, V29, P1324, DOI 10.1002/cae.22388 Reynolds DA., 2009, ENCY BIOMETRICS, V741, P659, DOI 10.1007/978-0-387-73003-5_196 Rousseau R., 2018, Becoming metric-wise A bibliometric guide for researchers, DOI DOI 10.1016/B978-0-08-102474-4.00009-1 Sánchez-Ruiz LM, 2023, APPL SCI-BASEL, V13, DOI 10.3390/app13106039 Shoja MM, 2023, CUREUS J MED SCIENCE, V15, DOI 10.7759/cureus.40883 Shoufan A, 2023, IEEE ACCESS, V11, P38805, DOI 10.1109/ACCESS.2023.3268224 Skrabut S., 2023, 80 ways to use ChatGPT in the classroom: Using AI to enhance teaching and learning Snoswell CL, 2023, J TELEMED TELECARE, DOI 10.1177/1357633X231169055 Su YF, 2023, ASSESS WRIT, V57, DOI 10.1016/j.asw.2023.100752 Susnjak T., 2022, ARXIV, DOI [DOI 10.48550/ARXIV.2212.09292, 10.48550/arXiv.2212.09292] Taylor A, 2006, CALICO J, V23, P309 Thunström AO, 2022, SCI AM, V327, P70, DOI 10.1038/scientificamerican0922-70 Thurzo A, 2023, EDUC SCI, V13, DOI 10.3390/educsci13020150 Tlili A, 2023, SMART LEARN ENVIRON, V10, DOI 10.1186/s40561-023-00237-x Waisberg E, 2023, PREHOSPITAL DISASTER, V38, P532, DOI 10.1017/S1049023X23005848 Wang J. T. H., 2023, IS LAB REPORT DEAD C, DOI [https://doi.org/10.1071/ma23042, DOI 10.1071/MA23042] Wang T, 2023, APPL SCI-BASEL, V13, DOI 10.3390/app13116716 Wang WH, 2020, SOFT COMPUT, V24, P8173, DOI 10.1007/s00500-019-04384-7 Wesendrup K, 2023, COMPUT IND ENG, V179, DOI 10.1016/j.cie.2023.109216 Xing, 2023, J ARTIFICIAL INTELLI, V6 Yu H, 2023, FRONT EDUC, V8, DOI 10.3389/feduc.2023.1183162 Zawacki-Richter O, 2019, INT J EDUC TECHNOL H, V16, DOI 10.1186/s41239-019-0171-0 Zawacki-Richter O, 2018, COMPUT EDUC, V122, P136, DOI 10.1016/j.compedu.2018.04.001 Zupic I, 2015, ORGAN RES METHODS, V18, P429, DOI 10.1177/1094428114562629 NR 91 TC 4 Z9 4 U1 152 U2 179 PU ROUTLEDGE JOURNALS, TAYLOR & FRANCIS LTD PI ABINGDON PA 2-4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND SN 0218-8791 EI 1742-6855 J9 ASIA PAC J EDUC JI Asia Pac. J. Educ. PD JAN 2 PY 2024 VL 44 IS 1 SI SI BP 156 EP 175 DI 10.1080/02188791.2024.2305170 EA JAN 2024 PG 20 WC Education & Educational Research WE Social Science Citation Index (SSCI) SC Education & Educational Research GA JG4I1 UT WOS:001151191800001 DA 2024-09-05 ER PT J AU Wang, CS Zhou, J Wu, HR Li, JX Zhao, CJ Liu, R AF Wang, Chunshan Zhou, Ji Wu, Huarui Li, Jiuxi Chunjiang, Zhao Liu, Rong TI Research on the Evaluation Method of Eggshell Dark Spots Based on Machine Vision SO IEEE ACCESS LA English DT Article DE Object segmentation; Image segmentation; Manuals; Clustering algorithms; Production; Lighting; eggshell; dark spot; evaluation; machine vision; K-means ID CRACK DETECTION; PENETRATION; SALMONELLA AB Dark spots, which are widely present in different species of eggs, not only significantly affect the appearance and reduce the commercial value of eggs, but also increase the safety hazards of edible eggs in view of that Salmonella can easily penetrate the eggshell at the location of dark spots. During the first 5 days after egg production, it is difficult to identify and evaluate dark spots on the eggshell surface under natural lighting conditions. Therefore, it is a great challenge to automatically classify commercial eggs according to the amount of dark spots at the initial stage. In this paper, a method based on machine vision was proposed for identifying and evaluating eggshell dark spots. First, the K-means clustering algorithm was used to segment the individual egg image on the production line in order to obtain the complete eggshell surface area; then, the unsharp masking method was used to enhance the dark-spot features so as to realize the recognition of dark spots; and finally, quantitative evaluation was conducted according to the amount of dark spots on the eggshell surface and the ratio of the dark-spot projected area. Our experimental results show that the proposed method is able to quickly and accurately calculate the distribution of dark spots and the ratio of the dark-spot projected area. Specifically, the processing speed of dark-spot image is 1 frame/0.5s, which is 960 times faster than the speed of manual marking (1 frame/480s), and the detection capacity of the experimental device is 3600 eggs/h. It provides an automated method for quantitatively examining dark spots on eggshells, a scientific tool for conducting further research on the formation mechanism of dark spots, as well as a technical means for the high-throughput online examination of egg quality. C1 [Wang, Chunshan; Zhou, Ji] Hebei Agr Univ, Sch Informat Sci & Technol, Baoding 071001, Peoples R China. [Wang, Chunshan; Wu, Huarui; Chunjiang, Zhao] Natl Engn Res Ctr Informat Technol Agr, Beijing 100097, Peoples R China. [Wang, Chunshan; Wu, Huarui; Chunjiang, Zhao] Beijing Res Ctr Informat Technol Agr, Beijing 100097, Peoples R China. [Li, Jiuxi; Liu, Rong] Hebei Agr Univ, Sch Mech & Elect Engn, Baoding 071001, Peoples R China. C3 Hebei Agricultural University; Beijing Academy of Agriculture & Forestry Sciences (BAAFS); Beijing Academy of Agriculture & Forestry Sciences (BAAFS); Hebei Agricultural University RP Zhao, CJ (corresponding author), Natl Engn Res Ctr Informat Technol Agr, Beijing 100097, Peoples R China.; Zhao, CJ (corresponding author), Beijing Res Ctr Informat Technol Agr, Beijing 100097, Peoples R China. EM zhaocj@nercita.org.cn RI wang, chunshan/ADR-4786-2022 OI wang, chunshan/0000-0002-0222-8397 FU National Natural Science Foundation of China [61871041]; Beijing Municipal Science and Technology Project [Z191100004019007]; Hebei Province Key Research and Development Project [20326630D]; Project of Introducing Overseas Students in Hebei Province [C20190340] FX This work was supported in part by the National Natural Science Foundation of China under Grant 61871041, in part by the Beijing Municipal Science and Technology Project under Grant Z191100004019007, in part by the Hebei Province Key Research and Development Project under Grant 20326630D, and in part by the Project of Introducing Overseas Students in Hebei Province under Grant C20190340. They respectively provided equipment development, experimental location, experimental conditions and technical support for the research work of this paper. CR Abdullah MH, 2017, COMPUT ELECTRON AGR, V141, P81, DOI 10.1016/j.compag.2017.07.006 [Anonymous], 2019, CHINA POULTRY, DOI DOI 10.3969/J.ISSN.1674-0858.2019.05.12 Bao GJ, 2019, COMPUT ELECTRON AGR, V158, P159, DOI 10.1016/j.compag.2019.01.005 Chen X, 2019, POULTRY SCI, V98, P940, DOI 10.3382/ps/pey369 Chousalkar KK, 2010, INT J FOOD MICROBIOL, V142, P207, DOI 10.1016/j.ijfoodmicro.2010.06.029 [邓海霞 DENG Haixia], 2006, [华中农业大学学报, Journal of Huazhong Agricultural University], V25, P452 Duan YuFei Duan YuFei, 2016, Transactions of the Chinese Society of Agricultural Engineering, V32, P282, DOI 10.11975/j.issn.1002-6819.2016.15.039 Fei L., 2019, APPL MACHINE LEARNIN He K, 2019, IEEE ACCESS, V7, P176248, DOI 10.1109/ACCESS.2019.2957504 Mertens K, 2005, POULTRY SCI, V84, P1653, DOI 10.1093/ps/84.10.1653 Mingrong Z., 2016, RES EGGSHELL DARK SP Mizuno N, 2020, IEEE/SICE I S SYS IN, P195, DOI [10.1109/sii46433.2020.9025861, 10.1109/SII46433.2020.9025861] Okinda C, 2020, J FOOD ENG, V283, DOI 10.1016/j.jfoodeng.2020.110041 Pan LeiQing Pan LeiQing, 2010, Transactions of the Chinese Society of Agricultural Engineering, V26, P332 Priyadumkol J, 2017, J FOOD ENG, V209, P76, DOI 10.1016/j.jfoodeng.2017.04.015 Ray A, 2015, FOOD RES INT, V78, P34, DOI 10.1016/j.foodres.2015.11.010 Shi XueFeng Shi XueFeng, 2018, China Poultry, V40, P35 Sinaga KP, 2020, IEEE ACCESS, V8, P80716, DOI 10.1109/ACCESS.2020.2988796 Sun K, 2017, COMPUT ELECTRON AGR, V142, P429, DOI 10.1016/j.compag.2017.09.034 Wang DH, 2019, POULTRY SCI, V98, P6677, DOI 10.3382/ps/pez539 Wang Qiaohua, 2019, Transactions of the Chinese Society of Agricultural Engineering, V35, P314, DOI 10.11975/j.issn.1002-6819.2019.24.037 Wang ShuCai Wang ShuCai, 2017, Transactions of the Chinese Society of Agricultural Engineering, V33, P265, DOI 10.11975/j.issn.1002-6819.2017.03.036 Wang XR, 2020, IEEE ACCESS, V8, P109325, DOI 10.1109/ACCESS.2020.2999942 [吴兰兰 Wu Lanlan], 2016, [华中农业大学学报, Journal of Huazhong Agricultural University], V35, P136 Xiaoguang D., 2019, NONDESTRUCTIVE COMPR Yang MS, 2019, IEEE ACCESS, V7, P114472, DOI 10.1109/ACCESS.2019.2934179 Zhang P., 2010, P INT C MECH AUT CON, P5718 Zhang ShiQing Zhang ShiQing, 2014, Nongye Jixie Xuebao = Transactions of the Chinese Society for Agricultural Machinery, V45, P204 [周雨程 Zhou Yucheng], 2017, [华中农业大学学报, Journal of Huazhong Agricultural University], V36, P113 NR 29 TC 0 Z9 0 U1 3 U2 23 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 2169-3536 J9 IEEE ACCESS JI IEEE Access PY 2020 VL 8 BP 160116 EP 160125 DI 10.1109/ACCESS.2020.3020260 PG 10 WC Computer Science, Information Systems; Engineering, Electrical & Electronic; Telecommunications WE Science Citation Index Expanded (SCI-EXPANDED) SC Computer Science; Engineering; Telecommunications GA NP3QU UT WOS:000570094400001 OA gold DA 2024-09-05 ER PT J AU Mendes, AM Tonin, FS Buzzi, MF Pontarolo, R Fernandez-Llimos, F AF Mendes, Antonio M. Tonin, Fernanda S. Buzzi, Maiko F. Pontarolo, Roberto Fernandez-Llimos, Fernando TI Mapping pharmacy journals: A lexicographic analysis SO RESEARCH IN SOCIAL & ADMINISTRATIVE PHARMACY LA English DT Article DE Pharmacy; Periodicals as topic; Bibliometrics; Principal component analysis ID SCIENCE; KNOWLEDGE; ARTICLES AB Background: Pharmacy journals constitute a heterogeneous group that can be map to identify Pharmacy scientific subareas. Objective: This study aimed to objectively map Pharmacy journals by means of a lexicographic analysis of the titles of published articles. Methods: Active journals between 2006 and 2016 containing any of the terms 'pharmacy', 'pharmacist*', 'pharmaceut*', 'pharmacol*', or 'pharmacotherap*' in their titles were searched in four databases (01/15/2018): Medline, PubMed Central, Science Citation Index expanded/Social Sciences Citation Index expanded (SCIe/SSCIe), and Scopus CiteScore Metrics. The titles of all the articles (Jan-2006 to Dec-2016) in the identified journals were gathered into a single text corpus. The following analyses were performed (Iramuteq 0.7): lexicographic analysis to determine the number, frequency and distribution of active words; descending hierarchical classification (DHC) to categorize active words and journals into lexical classes; factorial correspondence analyses (FCA) to obtain bi- and tri-dimensional graphs. Results: A total of 285 journals comprising 316,089 articles (median 70.4 articles [IQR 34.0-141.0] per journal per year) were included for the analyses. The journals were indexed in Scopus (90.2%) with a median CiteScore of 1.16 (IQR 0.28-2.55); in SCIe/SSCIe (44.6%) with a median impact factor of 2.410 (IQR 1.629-3.316); and in PubMed (65.7%). The DHC of active words produced three major groups (A, B, C) with two lexical classes each, representing six Pharmacy subareas depicted by the FCA as: Group A comprising 'Cell Pharmacology' (20 journals) and 'Molecular Pharmacology' (46 journals), Group B with 'Clinical Pharmacology' (57 journals) and 'Pharmacy Practice' (67 journals), and Group C with 'Pharmaceutics' (35 journals) and 'Pharmaceutical Analysis' (60 journals). Coverage of the classes in bibliographic databases and impact metrics is unbalanced. Conclusions: Pharmacy journals that can be objectively classified into six different classes that represent different research subareas with uneven coverage in bibliographic databases. C1 [Mendes, Antonio M.; Tonin, Fernanda S.] Univ Fed Parana, Pharmaceut Sci Postgrad Programme, Curitiba, Parana, Brazil. [Buzzi, Maiko F.] Univ Tecnol Fed Parana, Dept Math, Curitiba, Parana, Brazil. [Pontarolo, Roberto] Univ Fed Parana, Dept Pharm, Curitiba, Parana, Brazil. [Fernandez-Llimos, Fernando] Univ Lisbon, Dept Social Pharm, Fac Pharm, Res Inst Med iMed ULisboa, Av Prof Gama Pinto, P-1649003 Lisbon, Portugal. C3 Universidade Federal do Parana; Universidade Tecnologica Federal do Parana; Universidade Federal do Parana; Pontificia Universidade Catolica do Parana; Universidade Federal do Parana; Universidade de Lisboa RP Fernandez-Llimos, F (corresponding author), Univ Lisbon, Dept Social Pharm, Fac Pharm, Res Inst Med iMed ULisboa, Av Prof Gama Pinto, P-1649003 Lisbon, Portugal. EM mmendesantonio@gmail.com; stumpf.tonin@ufpr.br; maikobuzzi@hotmail.com; pontarolo@ufpr.br; f-llimos@ff.ulisboa.pt RI Tonin, Fernanda S/O-2050-2017; Tonin, Fernanda S./AAE-3435-2022; Fernandez-Llimos, Fernando/B-8931-2008; Pontarolo, Roberto/G-6948-2014 OI Tonin, Fernanda S/0000-0003-4262-8608; Tonin, Fernanda S./0000-0003-4262-8608; Fernandez-Llimos, Fernando/0000-0002-8529-9595; Matoso Mendes, Antonio Eduardo/0000-0002-5752-349X; Pontarolo, Roberto/0000-0002-7049-4363 CR Almarsdóttir AB, 2014, RES SOC ADMIN PHARM, V10, P252, DOI 10.1016/j.sapharm.2013.04.002 [Anonymous], 2003, PHARM J, V270, P674 [Anonymous], 1962, The Structure of Scientific Revolutions [Anonymous], 1973, L'Analyse des Donnees Baroni M, 2006, CORPUS LINGUISTICS I Barrett A, 2016, J MED LIBR ASSOC, V104, P118, DOI 10.3163/1536-5050.104.2.005 BIGLAN A, 1973, J APPL PSYCHOL, V57, P195, DOI 10.1037/h0034701 Börner K, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0039464 BORNER K, 2003, ANN REV INFORM SCI T Boyack KW, 2004, P NATL ACAD SCI USA, V101, P5192, DOI 10.1073/pnas.0307509100 Boyack KW, 2005, SCIENTOMETRICS, V64, P351, DOI 10.1007/s11192-005-0255-6 Clausen S., 1998, APPL CORRES ANAL INT De Alba M, 2004, PAPERS SOCIAL REPRES, V13, P1 Desselle S.P., 2002, J PHARM TEACH, V9, P27 Desselle SP, 2019, RES SOC ADMIN PHARM, V15, P1, DOI 10.1016/j.sapharm.2018.10.026 Desselle SP, 2018, RES SOC ADMIN PHARM, V14, P727, DOI 10.1016/j.sapharm.2017.09.001 Desselle SP, 2002, J PHARM TEACH, V9, P1 Dorta-González P, 2013, SCIENTOMETRICS, V95, P645, DOI 10.1007/s11192-012-0929-9 Fabry G, 2017, GMS J MED EDU, V34, DOI 10.3205/zma001104 Fernandez-Llimos F, 2018, PHARM PRACT-GRANADA, V16, DOI [10.18549/PharmPract.2018.02.1282, 10.18549/pharmpract.2018.02.1282] Gagnon ML, 2011, J CLIN EPIDEMIOL, V64, P25, DOI 10.1016/j.jclinepi.2009.08.013 Garcia-Cardenas V, 2016, EUR RESPIR J, V47, P1134, DOI 10.1183/13993003.01497-2015 Gonzalez B, 1991, MULTIVARIATE ANAL Irwin AN, 2017, RES SOC ADMIN PHARM, V13, P389, DOI 10.1016/j.sapharm.2016.04.006 Lebart L., 2000, STAT ANAL TEXTS Lemaire B., 2008, ACT 9 JOURN INT AN S, P725 LEYDESDORFF L, 1987, SCIENTOMETRICS, V11, P295, DOI 10.1007/BF02279351 Lotriet CJ, 2012, AUSTRALAS MED J, V5, P26, DOI 10.4066/AMJ.2012.1165 Mendes Antonio E., 2016, Pharmacy Pract (Granada), V14, P847, DOI [10.18549/pharmpract.2016.04.847, 10.18549/PharmPract.2016.04.847] Minguet F, 2017, INT J CLIN PHARM-NET, V39, P989, DOI 10.1007/s11096-017-0527-2 Minguet F, 2015, RES SOC ADMIN PHARM, V11, P686, DOI 10.1016/j.sapharm.2014.11.004 Morillo F, 2003, J AM SOC INF SCI TEC, V54, P1237, DOI 10.1002/asi.10326 NLM, MEDLINE PUBMED PMC P Pintor-Mármol A, 2012, PHARMACOEPIDEM DR S, V21, P799, DOI 10.1002/pds.3296 Pudovkin AI, 2002, J AM SOC INF SCI TEC, V53, P1113, DOI 10.1002/asi.10153 Rawat S, 2014, J RES MED SCI, V19, P87 Reinert M., 1990, BMS-B SOCIOL METHOD, V26, P24, DOI DOI 10.1177/075910639002600103 Reinert Max., 1983, CAHIERS LANALYSE DON, V8, P187 Reinert P. M., 1987, Bulletin of Sociological Methodology/Bulletin de Mthodologie Sociologique, V13, P53, DOI [https://doi.org/10.1177/075910638701300107, DOI 10.1177/075910638701300107, 10.1177/075910638701300107] Rodriguez RW, 2016, AM J HEALTH-SYST PH, V73, P569, DOI 10.2146/ajhp150319 Rodriguez RW, 2014, AM J HEALTH-SYST PH, V71, P321, DOI 10.2146/ajhp130421 Skau K, 2007, AM J PHARM EDUC, V71, DOI 10.5688/aj710111 Small H, 1999, J AM SOC INFORM SCI, V50, P799, DOI 10.1002/(SICI)1097-4571(1999)50:9<799::AID-ASI9>3.0.CO;2-G Sourial N, 2010, J CLIN EPIDEMIOL, V63, P638, DOI 10.1016/j.jclinepi.2009.08.008 Spasser MA, 1997, SCIENTOMETRICS, V39, P77, DOI 10.1007/BF02457431 Tonin FS, 2018, PLOS ONE, V13, DOI 10.1371/journal.pone.0196644 van Assen MALM, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0084896 Wallach JD, 2018, RES INTEGR PEER REV, V3, DOI 10.1186/s41073-017-0045-8 NR 48 TC 31 Z9 33 U1 0 U2 10 PU ELSEVIER SCIENCE INC PI NEW YORK PA STE 800, 230 PARK AVE, NEW YORK, NY 10169 USA SN 1551-7411 EI 1934-8150 J9 RES SOC ADMIN PHARM JI Res. Soc. Adm. Pharm. PD DEC PY 2019 VL 15 IS 12 BP 1464 EP 1471 DI 10.1016/j.sapharm.2019.01.011 PG 8 WC Public, Environmental & Occupational Health; Pharmacology & Pharmacy WE Social Science Citation Index (SSCI) SC Public, Environmental & Occupational Health; Pharmacology & Pharmacy GA JS8TO UT WOS:000500574500012 PM 30683600 DA 2024-09-05 ER PT C AU Schedl, M Seyerlehner, K Schnitzer, D Widmer, G Schiketanz, C AF Schedl, Markus Seyerlehner, Klaus Schnitzer, Dominik Widmer, Gerhard Schiketanz, Cornelia BE Chen, HH Efthimiadis, EN Savoy, J Crestani, F MarchandMaillet, S TI Three Web-based Heuristics to Determine a Person's or Institution's Country of Origin SO SIGIR 2010: PROCEEDINGS OF THE 33RD ANNUAL INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH DEVELOPMENT IN INFORMATION RETRIEVAL LA English DT Proceedings Paper CT 33rd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval CY JUL 19-23, 2010 CL Geneva, SWITZERLAND DE information extraction; country of origin detection; term weighting; music information research; evaluation AB We propose three heuristics to determine the country of origin of a person or institution via text-based IE from the Web. We evaluate all methods on a collection of music artists and bands, and show that some heuristics outperform earlier work on the topic by terms of coverage, while retaining similar precision levels. We further investigate an extension using country-specific synonym lists. C1 [Schedl, Markus; Seyerlehner, Klaus; Schnitzer, Dominik; Widmer, Gerhard; Schiketanz, Cornelia] Johannes Kepler Univ Linz, Dept Computat Percept, A-4040 Linz, Austria. C3 Johannes Kepler University Linz RP Schedl, M (corresponding author), Johannes Kepler Univ Linz, Dept Computat Percept, A-4040 Linz, Austria. EM markus.schedl@jku.at; klaus.seyerlehner@jku.at; dominik.schnitzer@ofai.at; gerhard.widmer@jku.at; music@jku.at RI Widmer, Gerhard/B-8218-2017 OI Widmer, Gerhard/0000-0003-3531-1282 CR [Anonymous], 1979, INFORM RETRIEVAL Baeza-Yates Ricardo, 1999, MODERN INFORM RETRIE GOVAERTS S, 2009, P 10 ISMIR OCT KNEES P, 2004, P 5 ISMIR OCT KNEES P, 2007, P 30 ACM SIGIR JUL SCHEDL M, 2010, P 2 ADMIRE JUL TURNBULL D, 2007, P 30 ACM SIGIR JUL NR 7 TC 0 Z9 0 U1 1 U2 1 PU ASSOC COMPUTING MACHINERY PI NEW YORK PA 1515 BROADWAY, NEW YORK, NY 10036-9998 USA BN 978-1-60558-896-4 PY 2010 BP 801 EP 802 PG 2 WC Computer Science, Information Systems WE Conference Proceedings Citation Index - Science (CPCI-S) SC Computer Science GA BTG52 UT WOS:000286904100146 DA 2024-09-05 ER PT C AU Wen, L Li, JF AF Wen, Lei Li, Junfei BE Chen, Y Abraham, A TI Research of credit grade assessment for suppliers based on multi-layer SVM classifier SO ISDA 2006: SIXTH INTERNATIONAL CONFERENCE ON INTELLIGENT SYSTEMS DESIGN AND APPLICATIONS, VOL 1 LA English DT Proceedings Paper CT 6th International Conference on Intelligent Systems Design and Applications (ISDA 2006) CY OCT 16-18, 2006 CL Jinan Univ, Jinan, PEOPLES R CHINA HO Jinan Univ AB It is very important to choose swift, powerful and compatible suppliers in supply chain management (SCM). According to the credit grade assessment for suppliers in practice and the related theories, a set of index system which assesses a supplier's credit grade is established. Basing on the index system, a multi-layer support vector machines (SVM) classifier is established to assess and classify the suppliers' credit grade in SC. In order to verify the effectiveness of the method, a real case is given and BP neural network is also used assess the same data. The experimental results show that multi-layer SVM classifier is effective in credit level assessment and achieves better performance than BP neural network. C1 [Wen, Lei; Li, Junfei] North China Elect Power Univ, Dept Econ Management, Baoding 071003, Hebei, Peoples R China. C3 North China Electric Power University RP Wen, L (corresponding author), North China Elect Power Univ, Dept Econ Management, Baoding 071003, Hebei, Peoples R China. EM leejfgood@126.com FU Doctor Foundation of North China Electric Power University [20041205]; nature science planning project of hebei provence education bureau [z2005117] FX This paper was supported by Doctor Foundation of North China Electric Power University. number:20041205 And the nature science planning project of hebei provence education bureau, number :z2005117. CR [Anonymous], NEW APPROACH DATA MI Campbell C, 2002, NEUROCOMPUTING, V48, P63, DOI 10.1016/S0925-2312(01)00643-9 CHANG LF, 2001, MANAGE SCI, P117 Gold C, 2003, NEUROCOMPUTING, V55, P221, DOI 10.1016/S0925-2312(03)00375-8 Haykin S., 2004, Neural Network: A comprehensive foundation." Em, V2A Kim HC, 2003, PATTERN RECOGN, V36, P2757, DOI 10.1016/S0031-3203(03)00175-4 LV YG, 2001, ELECT POWER SYSTEM A, V17, P23 Min JH, 2005, EXPERT SYST APPL, V28, P603, DOI 10.1016/j.eswa.2004.12.008 Shih FY, 2005, INT J PATTERN RECOGN, V19, P775, DOI 10.1142/S0218001405004320 SINALINGAM DM, 2005, INT J PATTERN RECOGN, V5, P663 Vapnik V., 2000, NATURE STAT THEORY WANG XD, 2003, COMPUTER ENG APPL, P75 XU J, 2003, SOFT SCI, V17, P12 NR 13 TC 1 Z9 1 U1 0 U2 0 PU IEEE COMPUTER SOC PI LOS ALAMITOS PA 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1264 USA BN 0-7695-2528-8 PY 2006 BP 207 EP 211 PG 5 WC Computer Science, Artificial Intelligence WE Conference Proceedings Citation Index - Science (CPCI-S) SC Computer Science GA BFK66 UT WOS:000242507000039 DA 2024-09-05 ER PT J AU CZERWON, HJ AF CZERWON, HJ TI SCIENTOMETRIC INDICATORS FOR A SPECIALTY IN THEORETICAL HIGH-ENERGY PHYSICS - MONTE-CARLO METHODS IN LATTICE FIELD-THEORY SO SCIENTOMETRICS LA English DT Article RP CZERWON, HJ (corresponding author), ACAD SCI GDR,CTR SCI INF,SCHIFFBAUERDAMM 19,O-1040 BERLIN,GERMANY. CR AVERSA ES, 1985, SCIENTOMETRICS, V7, P383, DOI 10.1007/BF02017156 BENNION BC, 1986, CZECH J PHYS, V36, P19, DOI 10.1007/BF01599718 BONITZ M, 1980, J RADIOANAL CHEM, V57, P7, DOI 10.1007/BF02519858 Braun T., 1985, Scientometric indicators:a 32-country comparative evaluation of publishing performance and citation impact CHEN YS, 1987, SCIENTOMETRICS, V11, P183, DOI 10.1007/BF02016591 Cole JR., 1973, Social stratification in science CRANE D, 1980, SOC STUD SCI, V10, P23, DOI 10.1177/030631278001000102 CZERWON HJ, 1986, CZECH J PHYS, V36, P1343, DOI 10.1007/BF01598035 CZERWON HJ, 1986, CZECH J PHYS, V36, P1101, DOI 10.1007/BF01597776 CZERWON HJ, 1986, CZECH J PHYS, V36, P33, DOI 10.1007/BF01599721 GARFIELD E, 1985, CURR CONTENTS, V50, P3 GARFIELD E, 1984, CURR CONTENTS, V48, P3 GARFIELD E, 1983, CURR CONTENTS, V46, P5 GARFIELD E, 1986, CURR CONTENTS, V47, P3 GARFIELD E, 1983, CURR CONTENTS, V20, P5 GARFIELD E, 1982, CURR CONTENTS, V32, P5 KOESTER D, 1982, SOC STUD SCI, V12, P73, DOI 10.1177/030631282012001004 LINDSEY D, 1980, SOC STUD SCI, V10, P145, DOI 10.1177/030631278001000202 LIPATOV YS, 1986, SCIENTOMETRICS, V9, P197, DOI 10.1007/BF02017243 MORAVCSIK MJ, 1979, SCIENTOMETRICS, V1, P161, DOI 10.1007/BF02016968 PAO ML, 1986, J AM SOC INFORM SCI, V37, P26, DOI 10.1002/(SICI)1097-4571(198601)37:1<26::AID-ASI4>3.0.CO;2-Z PICKERING A, 1987, SOC STUD SCI, V17, P87, DOI 10.1177/030631287017001004 PRICE DJD, 1976, J AM SOC INFORM SCI, V27, P292, DOI 10.1002/asi.4630270505 SCHUBERT A, 1986, SCIENTOMETRICS, V9, P281, DOI 10.1007/BF02017249 SCHUBERT A, 1983, 1ST P NAT C INT PART, P80 SMALL H, 1985, J INFORM SCI, V11, P147, DOI 10.1177/016555158501100402 SULLIVAN D, 1980, SCIENTOMETRICS, V2, P309, DOI 10.1007/BF02016351 VLACHY J, 1980, CZECH J PHYS, V30, P477, DOI 10.1007/BF01596104 VLACHY J, 1985, SCIENTOMETRICS, V7, P505, DOI 10.1007/BF02017164 VLACHY J, 1980, SCI YUGOSL, V6, P155 WHITE DH, 1979, PHYS TODAY, V32, P40, DOI 10.1063/1.2995489 WHITE DH, 1980, SCI YUG, V6, P203 NR 32 TC 14 Z9 16 U1 0 U2 8 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0138-9130 J9 SCIENTOMETRICS JI Scientometrics PD JAN PY 1990 VL 18 IS 1-2 BP 5 EP 20 DI 10.1007/BF02019159 PG 16 WC Computer Science, Interdisciplinary Applications; Information Science & Library Science WE Social Science Citation Index (SSCI) SC Computer Science; Information Science & Library Science GA CP071 UT WOS:A1990CP07100001 DA 2024-09-05 ER PT C AU Zhang, CX AF Zhang, Chenxiang BE Chen, T Xu, L TI Research on recognition algorithm of network public opinion in view of evaluation SO PROCEEDINGS OF THE 2015 2ND INTERNATIONAL CONFERENCE ON ELECTRICAL, COMPUTER ENGINEERING AND ELECTRONICS (ICECEE 2015) SE ACSR-Advances in Comptuer Science Research LA English DT Proceedings Paper CT 2nd International Conference on Electrical, Computer Engineering and Electronics (ICECEE) CY MAY 29-31, 2015 CL Jinan, PEOPLES R CHINA DE Internet public opinion; Online review; Opinion analysis; Feature presentation; Ensemble learning; Combination optimization; Review spam detection AB In This paper, firstly, discusses the theoretical background, the existed research achievements and commercial products of Internet public opinion monitoring and analysis, according to preceding context we find the needs of public opinion analysis and the deficiency in the existed systems, and then raise the prototype of Internet public opinion mining with the function of opinion tracking. Secondly, decomposes the prototype to figure out the technology points, then corroding to them, gives a detailed introduction of their theories. Thirdly, describes the overall system design and detail works in each module of the Internet public opinion monitoring and analysis system. C1 Suzhou Ind Pk Inst Serv Outsourcing, Suzhou 215123, Jiangsu, Peoples R China. RP Zhang, CX (corresponding author), Suzhou Ind Pk Inst Serv Outsourcing, Suzhou 215123, Jiangsu, Peoples R China. EM kylinbaby@163.com CR Bo Pang, 2008, Foundations and Trends in Information Retrieval, V2, P1, DOI 10.1561/1500000001 Hu M., 2006, AAAI, P1621 Mukherjee Arjun., 2011, P 20 INT C COMPANION, P93, DOI DOI 10.1145/1963192.1963240 Xie S., 2012, Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, P823, DOI DOI 10.1145/2339530.2339662 Zakoian J. M., 2013, J ECON DYN CONTROL, V18, P931 NR 5 TC 0 Z9 0 U1 0 U2 10 PU ATLANTIS PRESS PI PARIS PA 29 AVENUE LAVMIERE, PARIS, 75019, FRANCE SN 2352-538X BN 978-94-62520-81-3 J9 ACSR ADV COMPUT PY 2015 VL 24 BP 178 EP 181 PG 4 WC Engineering, Electrical & Electronic WE Conference Proceedings Citation Index - Science (CPCI-S) SC Engineering GA BD3KZ UT WOS:000359820600040 DA 2024-09-05 ER PT J AU Cappelletti-Montano, B Cherchi, G Manca, B Montaldo, S Musio, M AF Cappelletti-Montano, Beniamino Cherchi, Gianmarco Manca, Benedetto Montaldo, Stefano Musio, Monica TI How to Measure the Researcher Impact with the Aid of its Impactable Area: A Concrete Approach Using Distance Geometry SO JOURNAL OF CLASSIFICATION LA English DT Article; Early Access DE Bibliometrics; Dimensionality reduction; Linear programming ID INDIVIDUAL RESEARCHERS; SINGLE RESEARCHERS; LOCALIZATION AB Assuming that the subject of each scientific publication can be identified by one or more classification entities, we address the problem of determining a similarity function (distance) between classification entities based on how often two classification entities are used in the same publication. This similarity function is then used to obtain a representation of the classification entities as points of an Euclidean space of a suitable dimension by means of optimization and dimensionality reduction algorithms. This procedure allows us also to represent the researchers as points in the same Euclidean space and to determine the distance between researchers according to their scientific production. As a case study, we consider as classification entities the codes of the American Mathematical Society Classification System. C1 [Cappelletti-Montano, Beniamino; Cherchi, Gianmarco; Manca, Benedetto; Montaldo, Stefano; Musio, Monica] Univ Cagliari, Dept Math & Comp Sci, Via Osped 72, I-09124 Cagliari, Italy. C3 University of Cagliari RP Manca, B (corresponding author), Univ Cagliari, Dept Math & Comp Sci, Via Osped 72, I-09124 Cagliari, Italy. EM b.cappellettimontano@unica.it; g.cherchi@unica.it; bmanca@unica.it; montaldo@unica.it; mmusio@unica.it FU PRIN 2022 - EUD4XR End User Development for eXtended Reality FX No Statement AvailableDAS:The datasets generated by the survey research during and/or analyzed during the current study are available in the Zentralblatt MATH repository, https://zbmath.org. CR Abramo G, 2015, ECON POLIT-ITALY, V32, P329, DOI 10.1007/s40888-015-0016-9 Baccini A, 2019, PLOS ONE, V14, DOI 10.1371/journal.pone.0221212 Baccini F, 2022, J INFORMETR, V16, DOI 10.1016/j.joi.2021.101226 Bahr A, 2009, INT J ROBOT RES, V28, P714, DOI 10.1177/0278364908100561 Bornmann L, 2018, SCIENTOMETRICS, V115, P385, DOI 10.1007/s11192-018-2658-1 Bornmann L, 2014, SCIENTOMETRICS, V98, P487, DOI 10.1007/s11192-013-1161-y Cagan R, 2013, DIS MODEL MECH, V6, P869, DOI 10.1242/dmm.012955 Cappelletti-Montano B, 2021, J INFORMETR, V15, DOI 10.1016/j.joi.2021.101164 Cherchi G., 2019, IT CHAPT C 2019 SMAR, P121 Cox T.F., 2000, Multidimensional Scaling, V88, P328, DOI DOI 10.1201/9781420036121 Dasgupta S., 1999, 40th Annual Symposium on Foundations of Computer Science (Cat. No.99CB37039), P634, DOI 10.1109/SFFCS.1999.814639 DAVIES DL, 1979, IEEE T PATTERN ANAL, V1, P224, DOI 10.1109/TPAMI.1979.4766909 Demetrescu C, 2020, SCIENTOMETRICS, V124, P2207, DOI 10.1007/s11192-020-03548-9 Glnzel W., 2019, Springer handbook of science and technology indicators, DOI [10.1007/978-3-030-02511-3, DOI 10.1007/978-3-030-02511-3] Gurobi Optimization LLC, 2024, Gurobi Optimizer Reference Manual Haunschild R, 2019, SCIENTOMETRICS, V120, P925, DOI 10.1007/s11192-019-03147-3 Hotelling H, 1933, J EDUC PSYCHOL, V24, P417, DOI 10.1037/h0071325 Indyk P., 1998, Proceedings of the Thirtieth Annual ACM Symposium on Theory of Computing, P604, DOI 10.1145/276698.276876 Ioannidis J.P., 2022, Mendeley Data, V4 Ioannidis JPA, 2019, PLOS BIOL, V17, DOI 10.1371/journal.pbio.3000384 Jackson JE, 1991, USERS GUIDE PRINCIPA Johnson W., 1984, Contemp. Math., V26, P1, DOI DOI 10.1090/CONM/026/737400 Jolliffe IT, 2002, Principal Component Analysis, V2nd Kurimo M, 1999, KOHONEN MAPS, P363, DOI 10.1016/B978-044450270-4/50029-2 Liberti L, 2020, TOP, V28, P271, DOI 10.1007/s11750-020-00563-0 Livesu Marco, 2019, Transactions on Computational Science XXXIV. Lecture Notes in Computer Science (LNCS 11820), P64, DOI 10.1007/978-3-662-59958-7_4 Marzolla M, 2016, J INFORMETR, V10, P408, DOI 10.1016/j.joi.2016.01.009 McInnes L, 2020, Arxiv, DOI [arXiv:1802.03426, DOI 10.48550/ARXIV.1802.03426, 10.21105/joss.00861] MURASE H, 1995, INT J COMPUT VISION, V14, P5, DOI 10.1007/BF01421486 Murtagh F, 2018, J CLASSIF, V35, P5, DOI 10.1007/s00357-018-9247-0 Petrera M., 2021, arXiv ROUSSEEUW PJ, 1987, J COMPUT APPL MATH, V20, P53, DOI 10.1016/0377-0427(87)90125-7 Singer A, 2011, APPL COMPUT HARMON A, V30, P20, DOI 10.1016/j.acha.2010.02.001 Tabaghi P, 2019, INT CONF ACOUST SPEE, P4893, DOI 10.1109/ICASSP.2019.8682653 Tenenbaum JB, 2000, SCIENCE, V290, P2319, DOI 10.1126/science.290.5500.2319 TURK M, 1991, J COGNITIVE NEUROSCI, V3, P71, DOI 10.1162/jocn.1991.3.1.71 Waltman L, 2013, SCIENTOMETRICS, V96, P699, DOI 10.1007/s11192-012-0913-4 WUTHRICH K, 1989, SCIENCE, V243, P45, DOI 10.1126/science.2911719 Xie HZ, 2018, Arxiv, DOI arXiv:1706.04371 NR 39 TC 0 Z9 0 U1 0 U2 0 PU SPRINGER PI NEW YORK PA ONE NEW YORK PLAZA, SUITE 4600, NEW YORK, NY, UNITED STATES SN 0176-4268 EI 1432-1343 J9 J CLASSIF JI J. Classif. PD 2024 AUG 26 PY 2024 DI 10.1007/s00357-024-09490-2 EA AUG 2024 PG 29 WC Mathematics, Interdisciplinary Applications; Psychology, Mathematical WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Mathematics; Psychology GA D7F0C UT WOS:001297789800001 OA hybrid DA 2024-09-05 ER PT J AU Nguyen, VA Boyd-Graber, J Resnik, P Cai, DA Midberry, JE Wang, YX AF Viet-An Nguyen Boyd-Graber, Jordan Resnik, Philip Cai, Deborah A. Midberry, Jennifer E. Wang, Yuanxin TI Modeling topic control to detect influence in conversations using nonparametric topic models SO MACHINE LEARNING LA English DT Article DE Bayesian nonparametrics; Influencer detection; Topic modeling; Topic segmentation; Gibbs sampling ID DISCOURSE; DOMINANCE; TEXT; LEADERSHIP; MEETINGS; TURNS; TIME AB Identifying influential speakers in multi-party conversations has been the focus of research in communication, sociology, and psychology for decades. It has been long acknowledged qualitatively that controlling the topic of a conversation is a sign of influence. To capture who introduces new topics in conversations, we introduce SITS-Speaker Identity for Topic Segmentation-a nonparametric hierarchical Bayesian model that is capable of discovering (1) the topics used in a set of conversations, (2) how these topics are shared across conversations, (3) when these topics change during conversations, and (4) a speaker-specific measure of "topic control". We validate the model via evaluations using multiple datasets, including work meetings, online discussions, and political debates. Experimental results confirm the effectiveness of SITS in both intrinsic and extrinsic evaluations. C1 [Viet-An Nguyen] Univ Maryland, Dept Comp Sci, College Pk, MD 20742 USA. [Boyd-Graber, Jordan] Univ Maryland, ISch, College Pk, MD 20742 USA. [Boyd-Graber, Jordan; Resnik, Philip] Univ Maryland, UMIACS, College Pk, MD 20742 USA. [Resnik, Philip] Univ Maryland, Dept Linguist, College Pk, MD 20742 USA. [Cai, Deborah A.; Midberry, Jennifer E.; Wang, Yuanxin] Temple Univ, Sch Media & Commun, Philadelphia, PA 19122 USA. C3 University System of Maryland; University of Maryland College Park; University System of Maryland; University of Maryland College Park; University System of Maryland; University of Maryland College Park; University System of Maryland; University of Maryland College Park; Pennsylvania Commonwealth System of Higher Education (PCSHE); Temple University RP Nguyen, VA (corresponding author), Univ Maryland, Dept Comp Sci, College Pk, MD 20742 USA. EM vietan@cs.umd.edu; jbg@umiacs.umd.edu; resnik@umd.edu; debcai@temple.edu; jmidberry@gmail.com; yuanxin@gmail.com RI Midberry, Jennifer/KIC-3279-2024; Boyd-Graber, Jordan/A-9976-2016; Cai, Deborah A/N-8816-2018 OI Midberry, Jennifer/0000-0003-0709-2406; Boyd-Graber, Jordan/0000-0002-7770-4431 FU Army Research Laboratory through ARL [W911NF-09-2-0072]; Office of the Director of National Intelligence (ODNI), Intelligence Advanced Research Projects Activity (IARPA), through the Army Research Laboratory; US National Science Foundation Grant NSF [1018625, IIS1211153]; Direct For Computer & Info Scie & Enginr; Div Of Information & Intelligent Systems [1211153] Funding Source: National Science Foundation; Division of Computing and Communication Foundations; Direct For Computer & Info Scie & Enginr [1018625] Funding Source: National Science Foundation FX We would like to thank the reviewers for their insightful comments. We are grateful to Eric Hardisty, Pranav Anand, Craig Martell, Douglas W. Oard, Earl Wagner, and Marilyn Walker for helpful discussions. This research was funded in part by the Army Research Laboratory through ARL Cooperative Agreement W911NF-09-2-0072 and by the Office of the Director of National Intelligence (ODNI), Intelligence Advanced Research Projects Activity (IARPA), through the Army Research Laboratory. Jordan Boyd-Graber and Philip Resnik are supported by US National Science Foundation Grant NSF #1018625. Viet-An Nguyen and Philip Resnik are also supported by US National Science Foundation Grant NSF #IIS1211153. Any opinions, findings, conclusions, or recommendations expressed are the authors' and do not necessarily reflect those of the sponsors. CR Abbott Rob, 2011, P WORKSH LANG SOC ME Ahmed A., 2010, P UNC ART INT Alarcon-del Amo M., 2011, CYBERPSYCHOLOGY BEHA, V14 Anand Pranav, 2011, AAAI 2011 WORKSH COM Andrzejewski D., 2007, P EUR C MACH LEARN [Anonymous], 2009, KNOWLEDGE DISCOVERY [Anonymous], 1991, Contexts of accommodation, DOI DOI 10.1017/CBO9780511663673.001 [Anonymous], P EMP METH NAT LANG [Anonymous], P INT C MACH LEARN [Anonymous], 1986, Exchange and power in social life [Anonymous], 2009, ADV NEURAL INFORM PR [Anonymous], P EMP METH NAT LANG [Anonymous], UMIACSTR201004 [Anonymous], 2012, P WORLD WID WEB C [Anonymous], P UNC ART INT [Anonymous], P ADV NEUR INF PROC [Anonymous], 1994, PUBLIC OPIN Q [Anonymous], 2008, FDN TRENDS INF RETRI, DOI DOI 10.1561/1500000001 [Anonymous], 2012, Multilingual topic models for unaligned text [Anonymous], P SIAM INT C DAT MIN [Anonymous], 2001, LEARNING HUMAN INTER ANTONIAK CE, 1974, ANN STAT, V2, P1152, DOI 10.1214/aos/1176342871 Aran O., 2010, P INT C PATT REC ICP Artstein R, 2008, COMPUT LINGUIST, V34, P555, DOI 10.1162/coli.07-034-R2 Bales R.F., 1970, PERSONALITY INTERPER Beeferman D, 1999, MACH LEARN, V34, P177, DOI 10.1023/A:1007506220214 Bender Emily M, 2011, P WORKSH LANG SOC ME Biran O., 2012, P WORKSH LANG SOC ME Blei D.M., 2006, P 23 INT C MACH LEAR Blei DM, 2012, COMMUN ACM, V55, P77, DOI 10.1145/2133806.2133826 Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993 Booth N, 2011, CORP COMMUN, V16, P184, DOI 10.1108/13563281111156853 Boydstun A. E., 2013, AM POLITICS RES Brooke M.E., 1986, J LANG SOC PSYCHOL, V5, P201 Burrel N.A., 1998, PERSUASION ADV METAA Butler B., 2008, INT C HUM FACT COMP Chen H., 2009, COMPUTATIONAL LINGUI Choi F.Y., 2001, P EMP METH NAT LANG Cialdini R.B., 2000, Influence: Science and practice, V4th CORTES C, 1995, MACH LEARN, V20, P273, DOI 10.1023/A:1022627411411 Cowans P. J., 2006, THESIS U CAMBRIDGE Daly JA., 1977, Western Journal of Speech Communication: WJSC, V41, P175, DOI DOI 10.1080/10570317709389610 Danescu-Niculescu-Mizil Cristian, 2012, Proceedings of the 21st international conference on World Wide Web, P699 Davis J., 2006, P INT C MACH LEARN Dowman M, 2008, IEEE T AUDIO SPEECH, V16, P1238, DOI 10.1109/TASL.2008.925867 DRAKE BH, 1986, ACAD MANAGE REV, V11, P567, DOI 10.2307/258311 Du L., 2010, INT C DAT MIN Ehlen P, 2007, P AAAI SPRING S INT Eisenstein J., 2008, P EMP METH NAT LANG Emerson R.M., 1981, SOCIAL PSYCHOL SOCIO Fallows J., 2008, The Atlantic Monthly FERGUSON TS, 1973, ANN STAT, V1, P209, DOI 10.1214/aos/1176342360 Fleischmann K. R., 2011, ICONFERENCE Foa U.G., 1972, STUDIES DYADIC COMMU, P291, DOI DOI 10.1016/B978-0-08-015867-9.50017-4 FOX EB, 2008, P INT C MACH LEARN Galley M., 2003, P ASS COMP LING Galley M., 2004, P ASS COMP LING Gardner M., 2010, P ADV NEUR INF PROC Gershman SJ, 2012, J MATH PSYCHOL, V56, P1, DOI 10.1016/j.jmp.2011.08.004 Greene Stephan, 2009, NAACL Grimmer J, 2011, POLIT ANAL, V19, P32, DOI [10.1093/pan/mpq027, 10.1093/pan/mpp034] Halliday M.A.K., 1976, Language, Context, and Text: Aspects of Language in a Social-Semiotic Perspective Hamilton M. A., 1998, PERSUATION ADV METAA Hardisty Eric, 2010, P EMP METH NAT LANG Hawes T, 2009, J AM SOC INF SCI TEC, V60, P1607, DOI 10.1002/asi.21087 Hearst MA, 1997, COMPUT LINGUIST, V23, P33 Hirschberg J., 1993, Computational Linguistics, V19, P501 Hoffman M. D., 2009, P C DIG AUD EFF Horton S., 2008, HARPERS MAGAZINE Hsueh P., 2006, P EUR CHAPT ASS COMP Hu Y., 2011, P ASS COMP LING Huffaker D, 2010, HUM COMMUN RES, V36, P593, DOI 10.1111/j.1468-2958.2010.01390.x Hung H, 2011, IEEE T AUDIO SPEECH, V19, P847, DOI 10.1109/TASL.2010.2066267 Ireland ME, 2011, PSYCHOL SCI, V22, P39, DOI 10.1177/0956797610392928 Janin A., 2003, IEEE INT C AC SPEECH Jayagopi DB, 2009, IEEE T AUDIO SPEECH, V17, P501, DOI 10.1109/TASL.2008.2008238 Johnson M., 2010, P ASS COMP LING Katz E., 1955, PERSONAL INFLUENCE P Kellermann K, 2004, J LANG SOC PSYCHOL, V23, P308, DOI 10.1177/0261927x04266811 Marin A., 2010, Proceedings 2010 IEEE Spoken Language Technology Workshop (SLT 2010), P49, DOI 10.1109/SLT.2010.5700821 Mast MS, 2002, HUM COMMUN RES, V28, P420, DOI 10.1111/j.1468-2958.2002.tb00814.x McCombs M, 2009, COMMUN SER, P1 Mimno David., 2011, Proceedings of the 27th Conference on Uncertainty in Artificial Intelligence, P506 Morris J., 1991, Computational Linguistics, V17, P21 Müller P, 2004, STAT SCI, V19, P95, DOI 10.1214/088342304000000017 Murray Gabriel, 2005, EUR C SPEECH COMM TE Neal RM, 2000, J COMPUT GRAPH STAT, V9, P249, DOI 10.2307/1390653 Neal RM, 2003, ANN STAT, V31, P705, DOI 10.1214/aos/1056562461 Ng S. H., 1993, POWER LANGUAGE VERBA NG SH, 1993, BRIT J SOC PSYCHOL, V32, P265, DOI 10.1111/j.2044-8309.1993.tb01000.x Nguyen V. A., 2012, P ASS COGN LING Olney A., 2005, P HUM MANG TECHN C Otsuka K., 2006, INT C HUM FACT COMP PALMER MT, 1989, COMMUN MONOGR, V56, P1, DOI 10.1080/03637758909390246 Passonneau RJ, 1997, COMPUT LINGUIST, V23, P103 Paul Michael, 2010, ASS ADV ARTIFICIAL I Paul R., 2007, TEXAS STRAIGHT TALK Pele O., 2009, INT C COMP VIS Pele O, 2008, LECT NOTES COMPUT SC, V5304, P495, DOI 10.1007/978-3-540-88690-7_37 Pevzner L, 2002, COMPUT LINGUIST, V28, P19, DOI 10.1162/089120102317341756 PLANALP S, 1980, COMMUNICATION YB, V4, P237 Purver M., 2011, SPOKEN LANGUAGE UNDE Purver M., 2006, P ASS COMP LING REGULA CR, 1973, J SOC PSYCHOL, V89, P115, DOI 10.1080/00224545.1973.9922575 Reid SA, 2000, EUR J SOC PSYCHOL, V30, P83, DOI 10.1002/(SICI)1099-0992(200001/02)30:1<83::AID-EJSP983>3.0.CO;2-I Ren L., 2008, P INT C MACH LEARN RIENKS R, 2006, P INT C MULT INT ICM Rienks Rutger, 2005, P 2 JOINT WORKSH MUL Rubner Y, 2000, INT J COMPUT VISION, V40, P99, DOI 10.1023/A:1026543900054 Sayeed AB., 2012, North American Association of Computational Linguistics SCHEER LK, 1992, J MARKETING RES, V29, P128, DOI 10.2307/3172498 SCHLENKER BR, 1976, SOCIOMETRY, V39, P316, DOI 10.2307/3033497 Sorrentino R. M., 1972, J EXPT SOCIAL PSYCHO, V5, P403 STANG DJ, 1973, J PERS SOC PSYCHOL, V27, P405, DOI 10.1037/h0034940 Teh Y. W., 2006, P ASS COMP LING Teh YW, 2006, J AM STAT ASSOC, V101, P1566, DOI 10.1198/016214506000000302 Thomas M., 2006, P EMP METH NAT LANG Trammell KD, 2005, J MASS COMMUN Q, V82, P968, DOI 10.1177/107769900508200413 Tur G, 2010, IEEE T AUDIO SPEECH, V18, P1601, DOI 10.1109/TASL.2009.2038810 Wallach HM, 2008, THESIS U CAMBRIDGE Zhang D., 2005, P ADV NEUR INF PROC NR 121 TC 16 Z9 27 U1 1 U2 14 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0885-6125 EI 1573-0565 J9 MACH LEARN JI Mach. Learn. PD JUN PY 2014 VL 95 IS 3 SI SI BP 381 EP 421 DI 10.1007/s10994-013-5417-9 PG 41 WC Computer Science, Artificial Intelligence WE Science Citation Index Expanded (SCI-EXPANDED) SC Computer Science GA AH3OO UT WOS:000336034000006 OA Bronze DA 2024-09-05 ER PT J AU Street, JN Santhanakrishnan, M AF Street, Jeffrey N. Santhanakrishnan, Mukunthan TI Real options logic in R&D project valuation A useful tool for decision making through the lens of heuristics SO JOURNAL OF STRATEGY AND MANAGEMENT LA English DT Article DE Decision making; Research and development; Return on investment; Project evaluation AB Purpose - Decision making for acceptance of an R&D project occurs under uncertainty and may involve predominantly quantitative analyses, such as net-present value, predominantly intuitive analyses, such as real options logic, or some combination thereof. This paper attempts to bring together two concepts of decision theory, i.e. heuristics and framing, and real options logic into one integrated view relative to R&D project valuation. It is believed that the integration of theory helps explain expected and unexpected decisions resulting from the R&D project valuation process. Design/methodology/approach - It is proposed here that, under a typical R&D project review, aspects of two theoretical concepts integrate to aid project valuation and decision making. The aim of this paper is to develop a research framework leading to advancement in the understanding of the relationship of heuristic principles from decision theory and the valuation methodology of real options logic. Findings - As a conceptual paper, propositions and a research model representing the conceptual framework are presented. Research limitations/implications - Stemming from the propositions and research model, it is believed that the degree of influence that heuristics potentially exhibit on real options logic can be successfully measured. Confirming the degree of influence is a matter for future empirical research. Originality/value - The originality of this paper is to develop a research framework leading to advancement in the understanding of the relationship of heuristic principles from decision theory and the valuation methodology of real options logic. In this framework, heuristics has been positioned as a moderator affecting project valuation derived by real options logic. C1 [Street, Jeffrey N.; Santhanakrishnan, Mukunthan] Idaho State Univ, Coll Business, Pocatello, ID 83209 USA. C3 Idaho; Idaho State University RP Street, JN (corresponding author), Idaho State Univ, Coll Business, Pocatello, ID 83209 USA. EM strejeff@isu.edu CR Alchian A.A., 1982, Corporate Enterprise in a New Environment, P11 AMIT R, 1993, STRATEGIC MANAGE J, V14, P33, DOI 10.1002/smj.4250140105 [Anonymous], 1993, Organizations [Anonymous], 1974, Strategy, structure and economic performance [Anonymous], 2006, JUDGMENT MANAGERIAL Barnett ML, 2003, J MANAGE INQUIRY, V12, P185, DOI 10.1177/1056492603012002012 BARNEY J, 1991, J MANAGE, V17, P99, DOI 10.1177/014920639101700108 BLACK F, 1973, J POLIT ECON, V81, P637, DOI 10.1086/260062 Boer FP, 2000, RES TECHNOL MANAGE, V43, P26, DOI 10.1080/08956308.2000.11671365 Bollen NPB, 1999, MANAGE SCI, V45, P670, DOI 10.1287/mnsc.45.5.670 BOWMAN EH, 1993, ACAD MANAGE REV, V18, P760, DOI 10.2307/258597 Bowman EH, 2001, ORGAN SCI, V12, P772, DOI 10.1287/orsc.12.6.772.10080 Christensen CM, 1996, STRATEGIC MANAGE J, V17, P197, DOI 10.1002/(SICI)1097-0266(199603)17:3<197::AID-SMJ804>3.0.CO;2-U Christensen CM, 2001, HARVARD BUS REV, V79, P72 Christensen CM, 2000, HARVARD BUS REV, V78, P66 Coff R.W., 2002, DILEMMAS EXERCISE DE Cohen MA, 1996, MANAGE SCI, V42, P173, DOI 10.1287/mnsc.42.2.173 CONNER KR, 1991, J MANAGE, V17, P121, DOI 10.1177/014920639101700109 COPELAND T.V. ANTIKAROV., 2001, REAL OPTIONS PRACTIT Eisenhardt KM, 2000, STRATEGIC MANAGE J, V21, P1105, DOI 10.1002/1097-0266(200010/11)21:10/11<1105::AID-SMJ133>3.0.CO;2-E Ettlie JE, 2004, J PROD INNOVAT MANAG, V21, P95, DOI 10.1111/j.0737-6782.2004.00060.x Folta TB, 2004, STRATEGIC MANAGE J, V25, P121, DOI 10.1002/smj.368 Foster S. T, 2003, MANAGING QUALITY INT Garud R, 1998, ACAD MANAGE REV, V23, P212, DOI 10.5465/AMR.1998.26096183 HENDERSON RM, 1990, ADMIN SCI QUART, V35, P9, DOI 10.2307/2393549 Hill CWL, 2003, ACAD MANAGE REV, V28, P257 Howells J, 1997, RES POLICY, V25, P1209, DOI 10.1016/S0048-7333(96)00904-3 Hultnik E.J., 1999, J PROD INNOVAT MANAG, V17, P5 Kahneman D, 2003, AM PSYCHOL, V58, P697, DOI 10.1037/0003-066X.58.9.697 Kessler EH, 1999, J PROD INNOVAT MANAG, V16, P231, DOI 10.1016/S0737-6782(98)00048-4 Kogut B, 2001, ORGAN SCI, V12, P744, DOI 10.1287/orsc.12.6.744.10082 Kulatilaka N, 1998, MANAGE SCI, V44, P1021, DOI 10.1287/mnsc.44.8.1021 Kyläheiko K, 2002, INT J PROD ECON, V80, P65, DOI 10.1016/S0925-5273(02)00244-X McGrath RG, 2000, RES TECHNOL MANAGE, V43, P35, DOI 10.1080/08956308.2000.11671367 McGrath RG, 1997, ACAD MANAGE REV, V22, P974, DOI 10.2307/259251 McGrath RG, 2004, STRATEGIC MANAGE J, V25, P1, DOI 10.1002/smj.358 Miller KD, 2002, STRATEGIC MANAGE J, V23, P655, DOI 10.1002/smj.244 Moel A, 2002, REV FINANC STUD, V15, P35, DOI 10.1093/rfs/15.1.35 Motavalli J., 2010, FORD FOCUS ELECT GET Oriani R, 2008, STRATEGIC MANAGE J, V29, P343, DOI 10.1002/smj.664 Pandza K, 2003, INT J OPER PROD MAN, V23, P1010, DOI 10.1108/01443570310491756 PINDYCK RS, 1988, AM ECON REV, V78, P969 Porter Mu., 1985, Competitive Advantage: Creating and Sustaining Superior Performance QUIGG L, 1993, J FINANC, V48, P621, DOI 10.2307/2328915 Rice MP, 2001, R&D MANAGE, V31, P409, DOI 10.1111/1467-9310.00228 SIMON HA, 1979, AM ECON REV, V69, P493 Simon HA, 1955, Q J ECON, V69, P99, DOI 10.2307/1884852 Stanovich KE, 2000, BEHAV BRAIN SCI, V23, P645, DOI 10.1017/S0140525X00003435 Turner I.D, 2002, MANAGER UPDATE, V13, P1 TVERSKY A, 1981, SCIENCE, V211, P453, DOI 10.1126/science.7455683 TVERSKY A, 1986, J BUS, V59, pS251, DOI 10.1086/296365 TVERSKY A, 1974, SCIENCE, V185, P1124, DOI 10.1126/science.185.4157.1124 WERNERFELT B, 1984, STRATEGIC MANAGE J, V5, P171, DOI 10.1002/smj.4250050207 NR 53 TC 1 Z9 2 U1 0 U2 1 PU EMERALD GROUP PUBLISHING LTD PI BINGLEY PA HOWARD HOUSE, WAGON LANE, BINGLEY BD16 1WA, W YORKSHIRE, ENGLAND SN 1755-425X J9 J STRATEGY MANAG JI J. Strategy Manag. PY 2011 VL 4 IS 2 BP 155 EP 171 DI 10.1108/17554251111128628 PG 17 WC Management WE Emerging Sources Citation Index (ESCI) SC Business & Economics GA V15MD UT WOS:000214551800004 DA 2024-09-05 ER PT J AU VOIGT, K PEPPING, T KOTCHETOVA, E MUCKE, W AF VOIGT, K PEPPING, T KOTCHETOVA, E MUCKE, W TI TESTING OF ONLINE DATABASES IN THE INFORMATION-SYSTEM FOR ENVIRONMENTAL CHEMICALS WITH A TESTSET OF 68 CHEMICALS SO CHEMOSPHERE LA English DT Article DE DATA-BANKS; DATABASES; BIBLIOGRAPHIC DATABASES; NUMERIC DATABASES; ENVIRONMENTAL CHEMICALS; EXISTING CHEMICALS; TEST SET; HOSTS ID FOOD AB As part of the research project "Information system for environmental chemicals' we tested 265 databases with the help of a testset of 68 environmentally relevant chemicals. The different groups of chemicals in the testset and their number of hits in our Databank of Databases on Environmental Chemicals (DADB) are shown. On top of the general difficulties in searching for information on chemicals there are considerable differences in using either bibliographic or numeric databases. The differences searching by chemical name or by CAS-Number are illustrated and discussed. C1 MV LOMONOSOV STATE UNIV,DEPT ORGAN CHEM,INFORMAT SERV,MOSCOW 117234,USSR. TECH UNIV MUNICH,INST TOXIKOL & UMWELTHYG,W-8000 MUNICH 19,GERMANY. C3 Lomonosov Moscow State University; Technical University of Munich RP VOIGT, K (corresponding author), GSF FORSCHUNGSZENTRUM UMWELT & GESUNDHEIT GMBH,W-8042 NEUHERBERG,GERMANY. CR MUCKE W, 1986, TOXICOL ENVIRON CHEM, V13, P129, DOI 10.1080/02772248609357175 MUCKE W, 1989, Z LEBENSM UNTERS FOR, V189, P99, DOI 10.1007/BF01332939 VOIGT K, 1990, CHEMOSPHERE, V21, P1429, DOI 10.1016/0045-6535(90)90047-W VOIGT K, 1989, TOXICOL ENVIRON CHEM, V23, P243, DOI 10.1080/02772248909357469 VOIGT K, 1990, GSF2190 FORSCH ZENTR 1991, CUADRA DIRECTORY ONL 1987, ALTSTOFFBEURTEILUNG 1991, BEDIENUNGSANLEITUNG 1986, EXISTING CHEM SYSTEM NR 9 TC 5 Z9 5 U1 0 U2 0 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD, ENGLAND OX5 1GB SN 0045-6535 J9 CHEMOSPHERE JI Chemosphere PD APR PY 1992 VL 24 IS 7 BP 857 EP 866 DI 10.1016/0045-6535(92)90005-C PG 10 WC Environmental Sciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Environmental Sciences & Ecology GA HM303 UT WOS:A1992HM30300004 DA 2024-09-05 ER PT J AU Raman, R Aljafari, R Venkatesh, V Richardson, V AF Raman, Raji Aljafari, Ruba Venkatesh, Viswanath Richardson, Vernon TI Mixed-methods research in the age of analytics, an exemplar leveraging sentiments from news articles to predict firm performance SO INTERNATIONAL JOURNAL OF INFORMATION MANAGEMENT LA English DT Article DE Sentiments; Machine learning; Abnormal returns; Econometrics ID INFORMATION-CONTENT; STOCK; IMPACT; MEDIA; TEXT AB Investors and companies have always aspired to make informed investment decisions by using diverse information sources. With the explosion of information sources on the web and emergence of predictive analytics, many investors moved beyond traditional financial measures, as key predictors of firm performance, to textual content from analysts' reports. Empirical research suggests that these information sources complement each other by providing a clear picture of firm performance, but remains silent on the role of additional textual content that continues to emerge and reach more potential investors on the web. We build on this line of research to examine the effect of textual content from business journals in conjunction with summary measures on cumulative abnormal returns. We use sentiment analysis with machine learning and econometrics methods to examine content extracted from textual articles about S&P 500 index companies that are published in the Wall Street Journal (years 2013-2016). Textual analysis of business journals in conjunction with quantitative measures revealed direct and interaction effects on abnormal returns over time. We also tested for robustness by replicating the analysis with different variable operationalization and observe consistent patterns. Relative to positive sentiments, negative sentiments have more profound effects on cumulative abnormal returns. The effect of positive sentiments becomes weaker when past quantitative measures are high. As information sources continue to emerge on the web, this work makes key contributions to the practice of sentiment analysis in financial markets. C1 [Raman, Raji; Venkatesh, Viswanath] Virginia Tech, Pamplin Coll Business, Blacksburg, VA 24061 USA. [Aljafari, Ruba] Univ Pittsburgh, Katz Grad Sch Business, Pittsburgh, PA USA. [Richardson, Vernon] Univ Arkansas, Walton Coll Business, Fayetteville, AR USA. C3 Virginia Polytechnic Institute & State University; Pennsylvania Commonwealth System of Higher Education (PCSHE); University of Pittsburgh; University of Arkansas System; University of Arkansas Fayetteville RP Venkatesh, V (corresponding author), Virginia Tech, Pamplin Coll Business, Blacksburg, VA 24061 USA. EM rajiraman@vt.edu; raljafari@katz.pitt.edu; vvenkatesh@vvenkatesh.us; vrichardson@walton.uark.edu RI Venkatesh, Viswanath/ABD-9343-2020 OI Venkatesh, Viswanath/0000-0001-8473-376X CR Adamopoulos P, 2018, INFORM SYST RES, V29, P612, DOI 10.1287/isre.2017.0768 Ahmad SN, 2017, INT J INFORM MANAGE, V37, P202, DOI 10.1016/j.ijinfomgt.2016.08.004 Altinkiliç O, 2009, J ACCOUNT ECON, V48, P17, DOI 10.1016/j.jacceco.2009.04.005 Asquith P, 2005, J FINANC ECON, V75, P245, DOI 10.1016/j.jfineco.2004.01.002 Ballinger GA, 2004, ORGAN RES METHODS, V7, P127, DOI 10.1177/1094428104263672 Barth ME, 1998, J ACCOUNT ECON, V25, P1, DOI 10.1016/S0165-4101(98)00017-2 Bo Pang, 2008, Foundations and Trends in Information Retrieval, V2, P1, DOI 10.1561/1500000001 Choi JJ, 2002, J FINANC ECON, V64, P397, DOI 10.1016/S0304-405X(02)00130-7 Choudhury P, 2021, STRATEGIC MANAGE J, V42, P30, DOI 10.1002/smj.3215 Comparitech, 2017, AN DAT BREACH AFF ST Das SR, 2007, MANAGE SCI, V53, P1375, DOI 10.1287/mnsc.1070.0704 Deng SY, 2018, MIS QUART, V42, P895, DOI 10.25300/MISQ/2018/14268 El-Haj M, 2019, J BUS FINAN ACCOUNT, V46, P265, DOI 10.1111/jbfa.12378 Ertimur Y, 2003, REV ACC STUD, V8, P185, DOI 10.1023/A:1024409311267 Givoly D, 2009, ACCOUNT REV, V84, P1877, DOI 10.2308/accr.2009.84.6.1877 Goode S, 2017, MIS QUART, V41, P703 Grover P, 2018, INT J INFORM MANAGE, V43, P85, DOI 10.1016/j.ijinfomgt.2018.07.003 Grover P, 2022, ANN OPER RES, V308, P177, DOI 10.1007/s10479-020-03683-9 Grover P, 2019, INT J INFORM MANAGE, V48, P39, DOI 10.1016/j.ijinfomgt.2019.01.009 Hájek P, 2018, NEURAL COMPUT APPL, V29, P343, DOI 10.1007/s00521-017-3194-2 Hu YH, 2016, INT J INFORM MANAGE, V36, P929, DOI 10.1016/j.ijinfomgt.2016.06.003 Huang AH, 2018, MANAGE SCI, V64, P2833, DOI 10.1287/mnsc.2017.2751 Huang AH, 2014, ACCOUNT REV, V89, P2151, DOI 10.2308/accr-50833 John St, 2018, FACEBOOK BREACH EXPO Johns G, 2006, ACAD MANAGE REV, V31, P386, DOI 10.5465/amr.2006.20208687 Kar AK, 2020, INT J INFORM MANAGE, V54, DOI 10.1016/j.ijinfomgt.2020.102205 Kar AK, 2021, INFORM SYST FRONT, V23, P1341, DOI 10.1007/s10796-020-10045-0 Kumar S, 2021, INT J INFORM MANAGE, DOI DOI 10.1016/J.JJIMEI.2021.100008 Kushwaha A. K., 2021, International Journal of Information Management Data Insights, V1, DOI DOI 10.1016/J.JJIMEI.2021.100017 Lee H, 2017, SUSTAINABILITY-BASEL, V9, DOI 10.3390/su9060978 Li T, 2018, J INF TECHNOL-UK, V33, P50, DOI 10.1057/s41265-016-0034-2 Lo AW, 2004, J PORTFOLIO MANAGE, P15, DOI 10.3905/jpm.2004.442611 Jimenez-Marquez JL, 2019, INT J INFORM MANAGE, V44, P1, DOI 10.1016/j.ijinfomgt.2018.09.003 Mighty Guides, 2016, APPL TEXT AN MARK Shannon C. E., 2001, Bell Labs Technical Journal, V5, P3, DOI [DOI 10.1002/J.1538-7305.1948.TB01338.X, 10.1002/j.1538-7305.1948.tb01338.x] Shmueli G, 2011, MIS QUART, V35, P553 Tang CY, 2016, INT J INFORM MANAGE, V36, P1124, DOI 10.1016/j.ijinfomgt.2016.03.015 Tetlock PC, 2007, J FINANC, V62, P1139, DOI 10.1111/j.1540-6261.2007.01232.x Venkatesh V, 2006, ORGAN BEHAV HUM DEC, V100, P160, DOI 10.1016/j.obhdp.2006.02.003 Venkatesh V, 2021, IND MANAGE DATA SYST, V121, P30, DOI 10.1108/IMDS-08-2020-0506 Wang Q, 2018, INFORM SYST RES, V29, P273, DOI 10.1287/isre.2017.0735 Yu H, 2003, PROCEEDINGS OF THE 2003 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING, P129 NR 42 TC 5 Z9 5 U1 5 U2 39 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0268-4012 EI 1873-4707 J9 INT J INFORM MANAGE JI Int. J. Inf. Manage. PD JUN PY 2022 VL 64 AR 102451 DI 10.1016/j.ijinfomgt.2021.102451 EA FEB 2022 PG 11 WC Information Science & Library Science WE Social Science Citation Index (SSCI) SC Information Science & Library Science GA 0Z8FW UT WOS:000791308400008 OA Green Accepted, hybrid DA 2024-09-05 ER PT J AU Bhatt, PC Lu, TC AF Bhatt, Priyanka C. C. Lu, Tzu-Chuen TI Identifying Firm Significance and Positions in the Patent Innovation Based on Centrality Measures' Clustering Approach SO IEEE ACCESS LA English DT Article DE Patents; Technological innovation; Organizations; Knowledge engineering; Position measurement; Trajectory; Research and development; Patent analysis; innovation assessment; k-means clustering; patent centrality analysis; social network analysis ID TECHNOLOGICAL CONVERGENCE; NETWORK AB Organizations strive to achieve technological competence in the current era of inevitable technological progress. One way to measure the adaptability of firms to huge technological shifts is through various parameters, including patenting activities. This study presents a method for identifying the significance of firms in an innovation network using patent citation analysis and centrality measures. Specifically, the study employs k-means clustering to classify firms into similar clusters based on network-based centrality measures such as betweenness, closeness, and eigenvector centrality. The study then develops a cluster relational network by establishing a cluster adjacency network and identifying firm positions within and between clusters. By examining the relationship between clusters, the cluster network identifies the significance of firms. The study identifies four positions, namely, leader, follower, knowledge inertia, and significantly emerging, that align with the status of firms in patenting innovation capability. The method is implemented using blockchain technology as a case study. The novelty of the study lies in the structured approach to identifying firm significance by adding another layer of adjacency network to existing patent citation analysis techniques. C1 [Bhatt, Priyanka C. C.; Lu, Tzu-Chuen] Chaoyang Univ Technol, Dept Informat Management, Taichung 413, Taiwan. C3 Chaoyang University of Technology RP Lu, TC (corresponding author), Chaoyang Univ Technol, Dept Informat Management, Taichung 413, Taiwan. EM tclu@cyut.edu.tw OI Lu, Tzu-Chuen/0000-0001-7305-4622; Bhatt, Priyanka Chand/0000-0001-5638-6844 FU Ministry of Science and Technology (MOST), Taiwan, Republic of China [MOST 109-2221-E-324-025-MY3] FX This work was supported in part by the Ministry of Science and Technology (MOST), Taiwan, Republic of China, under Grant MOST 109-2221-E-324-025-MY3. CR Aaldering LJ, 2018, EXPERT SYST APPL, V100, P17, DOI 10.1016/j.eswa.2018.01.045 Altuntas F, 2021, KYBERNETES, V50, P2548, DOI 10.1108/K-06-2020-0365 Ampornphan P, 2020, INFORMATION, V11, DOI 10.3390/info11060333 Baruffaldi SH, 2020, RES POLICY, V49, DOI 10.1016/j.respol.2020.103927 Bhatt P.C., 2020, 12 AS C INT INF DAT, P456, DOI [10.1007/978-981-15-3380-840, DOI 10.1007/978-981-15-3380-840] Bhatt PC, 2021, TECHNOL SOC, V67, DOI 10.1016/j.techsoc.2021.101709 Chang CL, 2017, INT ICE CONF ENG, P111, DOI 10.1109/ICE.2017.8279877 Chang HJ., 2020, INT J INFORM MANAGE, V31, P55, DOI [10.6186/IJIMS.20200331(1).0004, DOI 10.6186/IJIMS.20200331(1).0004] Chang YH, 2017, SCIENTOMETRICS, V113, P1733, DOI 10.1007/s11192-017-2556-y Chen TM, 2018, 2018 7TH INTERNATIONAL CONGRESS ON ADVANCED APPLIED INFORMATICS (IIAI-AAI 2018), P793, DOI 10.1109/IIAI-AAI.2018.00163 Cho Y, 2021, SUSTAINABILITY-BASEL, V13, DOI 10.3390/su13052424 Choi S, 2022, IEEE ACCESS, V10, P19284, DOI 10.1109/ACCESS.2022.3151870 Choi S, 2018, IEEE ACCESS, V6, P3573, DOI 10.1109/ACCESS.2017.2788918 Daim T, 2020, TECHNOL FORECAST SOC, V161, DOI 10.1016/j.techfore.2020.120329 Das P, 2018, EUR J INNOV MANAG, V21, P96, DOI 10.1108/EJIM-03-2017-0028 Feng LJ, 2020, INT J ENV RES PUB HE, V17, DOI 10.3390/ijerph17082928 Ficara Annamaria, 2022, Proceedings of Sixth International Congress on Information and Communication Technology: ICICT 2021. Lecture Notes in Networks and Systems (216), P901, DOI 10.1007/978-981-16-1781-2_78 Hu YG, 2015, J KNOWL MANAG, V19, P1250, DOI 10.1108/JKM-10-2014-0431 Jee SJ, 2019, J INFORMETR, V13, DOI 10.1016/j.joi.2019.100985 Jeon J, 2019, DATA TECHNOL APPL, V53, P269, DOI 10.1108/DTA-09-2018-0077 Kumar V, 2021, J KNOWL MANAG, V25, P477, DOI 10.1108/JKM-01-2020-0080 Lai KK, 2021, J INFORMETR, V15, DOI 10.1016/j.joi.2021.101143 Lai KK, 2021, J KNOWL MANAG, V25, P402, DOI 10.1108/JKM-01-2020-0037 Lai KK, 2017, SCIENTOMETRICS, V111, P1327, DOI 10.1007/s11192-017-2376-0 Lin Wenguang, 2020, China Mechanical Engineering, V31, P842, DOI 10.3969/j.issn.1004-132X.2020.07.010 Miau S, 2018, TECHNOL ANAL STRATEG, V30, P1029, DOI 10.1080/09537325.2018.1434138 Park I, 2018, J INFORMETR, V12, P1199, DOI 10.1016/j.joi.2018.09.007 Park J, 2017, SCIENTOMETRICS, V111, P67, DOI 10.1007/s11192-017-2276-3 Saqr M, 2022, EDUC RES REV-NETH, V35, DOI 10.1016/j.edurev.2022.100437 Soto-Acosta P, 2018, J KNOWL MANAG, V22, P824, DOI 10.1108/JKM-10-2017-0448 Sukumar A, 2020, J KNOWL MANAG, V24, P965, DOI 10.1108/JKM-10-2019-0590 Sun AW, 2022, IEEE ACCESS, V10, P79335, DOI 10.1109/ACCESS.2022.3194531 Tang CY, 2022, IEEE T ENG MANAGE, V69, P2102, DOI 10.1109/TEM.2020.3001561 Wada T, 2018, SCIENTOMETRICS, V117, P825, DOI 10.1007/s11192-018-2885-5 Wang ZN, 2019, TECHNOL FORECAST SOC, V146, P723, DOI 10.1016/j.techfore.2018.12.015 Xu XG, 2021, ENVIRON SCI POLLUT R, V28, P68300, DOI 10.1007/s11356-021-15298-z Yalcin H, 2021, SCIENTOMETRICS, V126, P3775, DOI 10.1007/s11192-021-03876-4 Yan BW, 2019, NETW SCI, V7, P70, DOI 10.1017/nws.2018.27 Zhao Y, 2022, IEEE ACCESS, V10, P89745, DOI 10.1109/ACCESS.2022.3200753 NR 39 TC 1 Z9 1 U1 11 U2 36 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 2169-3536 J9 IEEE ACCESS JI IEEE Access PY 2023 VL 11 BP 30515 EP 30528 DI 10.1109/ACCESS.2023.3261331 PG 14 WC Computer Science, Information Systems; Engineering, Electrical & Electronic; Telecommunications WE Science Citation Index Expanded (SCI-EXPANDED) SC Computer Science; Engineering; Telecommunications GA D0TP5 UT WOS:000965940000001 OA gold DA 2024-09-05 ER PT J AU Saha, S Jangid, N Mathur, A Narsimhamurthy, AM AF Saha, Snehanshu Jangid, Neelam Mathur, Archana Narsimhamurthy, Anand M. TI DSRS: Estimation and forecasting of journal influence in the science and technology domain via a lightweight quantitative approach SO COLLNET JOURNAL OF SCIENTOMETRICS AND INFORMATION MANAGEMENT LA English DT Article DE Journal Influence Score (JIS); Downselection with Regression and Significance scheme (DSRS); Multiple Linear Regression (MLR); Clustering; Significance test; Internationality; Principal representative features ID IMPACT; INTERNATIONALITY AB The evaluation of journals based on their influence is of interest for numerous reasons. Various methods of computing a score have been proposed for measuring the scientific influence of scholarly journals. Typically the computation of any of these scores involves compiling the citation information pertaining to the journal under consideration. This involves significant overhead since the article citation information of not only the journal under consideration but also that of other journals for the recent few years need to be stored. Our work is motivated by the idea of developing a computationally lightweight approach that does not require any data storage, yet yields a score which is useful for measuring the importance of journals. In this paper, a regression analysis based method is proposed to calculate Journal Influence Score. Proposed model is validated using historical data from the SCImago portal. The results show that the error is small between rankings obtained using the proposed method and the SCImago Journal Rank, thus proving that the proposed approach is a feasible and effective method of calculating scientific impact of journals. C1 [Saha, Snehanshu; Jangid, Neelam; Mathur, Archana] PESIT South Campus, Dept Comp Sci & Engn, Bangalore 560100, Karnataka, India. [Narsimhamurthy, Anand M.] BITS Hyderabad, Hyderabad, Andhra Pradesh, India. C3 PES University; Birla Institute of Technology & Science Pilani (BITS Pilani) RP Saha, S (corresponding author), PESIT South Campus, Dept Comp Sci & Engn, Bangalore 560100, Karnataka, India. EM snehanshusaha@pes.edu; neelu.jangid88@gmail.com; archanamathur@pes.edu; anand@hyderabad.bits-pilani.ac.in RI /AAD-2304-2020 CR [Anonymous], 2006, Google's PageRank and Beyond: The Science of Search Engine Rankings [Anonymous], SCI AAAS, V122, P108, DOI [10.1126/science.122.3159.108, DOI 10.1126/SCIENCE.122.3159.108] Buchandiran G., EXPLORATORY STUDY IN Buela-Casal G, 2006, SCIENTOMETRICS, V67, P45, DOI 10.1556/Scient.67.2006.1.4 Buela-Casal G, 2012, PSICOTHEMA, V24, P435 Dwivedi Nandita, 2015, JIMI J INT MODELLING GARFIELD E, 1972, SCIENCE, V178, P471, DOI 10.1126/science.178.4060.471 Ginde Gouri, 2015, 4 NAT C I SCI Government of India, 2012, BIBL STUD IND SCI PU Haddow G, 2010, SCIENTOMETRICS, V85, P471, DOI 10.1007/s11192-010-0198-4 Jain Raj, 2014, ART COMPUTER SYSTEM Jangid N, 2014, IERI PROC, V10, P57, DOI 10.1016/j.ieri.2014.09.091 Kao C, 2009, SCIENTOMETRICS, V81, P123, DOI 10.1007/s11192-009-2093-4 Moed HF, 2010, J INFORMETR, V4, P265, DOI 10.1016/j.joi.2010.01.002 Svensson G, 2008, MARK INTELL PLAN, V26, P340, DOI 10.1108/02634500810879250 Waltman L, 2013, SCIENTOMETRICS, V96, P699, DOI 10.1007/s11192-012-0913-4 Waltman L, 2013, J INFORMETR, V7, P272, DOI 10.1016/j.joi.2012.11.011 Wormell I, 1998, J DOC, V54, P584, DOI 10.1108/EUM0000000007182 NR 18 TC 6 Z9 6 U1 0 U2 3 PU ROUTLEDGE JOURNALS, TAYLOR & FRANCIS LTD PI ABINGDON PA 2-4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND SN 0973-7766 EI 2168-930X J9 COLLNET J SCIENTOMET JI Collnet J. Scientometr. Inf. Manag. PD JUN PY 2016 VL 10 IS 1 BP 41 EP 70 DI 10.1080/09737766.2016.1177939 PG 30 WC Information Science & Library Science WE Emerging Sources Citation Index (ESCI) SC Information Science & Library Science GA DW8DF UT WOS:000383882900004 OA Green Submitted DA 2024-09-05 ER PT J AU Patkar, V AF Patkar, Vivek TI A Passage to Ontology Tool for Information Organisation in the Digital Age SO DESIDOC JOURNAL OF LIBRARY & INFORMATION TECHNOLOGY LA English DT Article DE Artificial intelligence; bibliographic control; information architecture; knowledge representation; ontology evaluation; semantic Web; social tagging AB To facilitate access to relevant documents and information has been the core of the library and information science (LIS) profession. In this regard tools like classification, cataloguing, and indexing formed the basis of library practice for a long time. These served particularly well for the material that was predominantly in the print form and required physical location for storage. New information sources, however, in contrast are increasingly in the electronic or digital form and stored on medium like computer hard disks requiring completely different strategy for access and management. Extension of the traditional bibliographic control tools as well as construction of new tools has therefore become pertinent. Ontology is one of the latest tools in this context. The paper discusses progress of information organising tools culminating in ontology, highlights the commonality of the concept of ontology and its applications among the fields of philosophy, computer science and LIS. It also discusses the select features of ontology development in practice and directions for features of ontology development in practice and directions for further RP Patkar, V (corresponding author), D-1,Anita C H S,Plot 612,Sect 6,Kandivali West, Bombay 400067, Maharashtra, India. EM vnpatkar2004@yahoo.co.in CR [Anonymous], 1989, Automatic Text Processing: The Transformation, Analysis, and Retrieval of [Anonymous], 1991, FACETS SYSTEMS SCI, DOI DOI 10.1007/978-1-4899-0718-9_28 Berners-Lee T, 2001, SCI AM, V284, P34, DOI 10.1038/scientificamerican0501-34 Broughton V, 2006, ASLIB PROC, V58, P49, DOI 10.1108/00012530610648671 Chandra C, 2005, HUM SYST MANAGE, V24, P245 Chandrasekaran B, 1999, IEEE INTELL SYST APP, V14, P20, DOI 10.1109/5254.747902 Chowdhury G.G., 2007, ORGANISING INFORM SH Colace F, 2009, INTERACT TECHNOL SMA, V6, P6, DOI 10.1108/17415650910965173 CUTTER CharlesAmmi., 1962, Rules for a dictionary catalog, V4th DEERWESTER S, 1990, J AM SOC INFORM SCI, V41, P391, DOI 10.1002/(SICI)1097-4571(199009)41:6<391::AID-ASI1>3.0.CO;2-9 Dublin Core Metadata Initiative, 2006, DUBL COR MET EL SET Georgiev I., 2005, P INT C COMP SYST TE Gilchrist A, 2006, J DOC, V62, P21, DOI 10.1108/00220410610642020 Gilchrist A, 2003, J DOC, V59, P7, DOI 10.1108/00220410310457984 GILCHRIST A., 2004, INFORM ARCHITECTURE Gilliand-Swedand A., 2004, METADATA APPL MANAGE Gokhale Pratibha A., 2009, Information Studies, V15, P233 GRUBER TR, 1993, KNOWL ACQUIS, V5, P199, DOI 10.1006/knac.1993.1008 Gruber TR, 1995, INT J HUM-COMPUT ST, V43, P907, DOI 10.1006/ijhc.1995.1081 Guarino N., 1998, P 1 INT C Hunter E.J., 1991, CATALOGUING Ingarden Roman., 1973, LIT WORK ART INVESTI Kruk R.S., 2006, 5 EUR NETW KNOWL ORG Lausen H., 2005, Journal of Knowledge Management, V9, P40, DOI 10.1108/13673270510622447 Library of Congress, 2006, LIB C SUBJ HEAD Lozano-Tello A, 2004, J DATABASE MANAGE, V15, P1, DOI 10.4018/jdm.2004040101 MARC 21, 2004, LIB C NETW DEV MARC McCarthy L., 2000, Integrated Manufacturing Systems, V11, P16, DOI 10.1108/09576060010303631 McGuinness D.L., 2000, PRINCIPLES KNOWLEDGE Mealy G.H., 1967, P FALL JOINT COMPUTE, P525, DOI 10.1145/1465611.1465682 Noy N., 2001, Ontology development 101: A guide to creating your first ontology Patkar V., 2007, KNOWLEDGE LIB INFORM, P23 Patkar V., 2010, KNOWLEDGE LIB INFORM, P113 Patkar V, 2009, DESIDOC J LIB INF TE, V29, P14, DOI 10.14429/djlit.29.225 Ranganathan S., 1987, COLON CLASSIFICATION Rees R.V., 2003, CONSTRUCTION INFORM Rifkin J., 1981, ENTROPY A NEW WORLD SMITH B, 1978, GRAZER PHILOS STUDIE, V6, P39 Vickery B.C., 1993, J INF SCI, V23, P276 W3C semantic activity, 2002, SEM WEB ACT STAT Zaho G., 2003, P IADIS INT C SOC, P745 NR 41 TC 4 Z9 4 U1 0 U2 1 PU DEFENCE SCIENTIFIC INFORMATION DOCUMENTATION CENTRE PI DELHI PA METCALFE HOUSE, DELHI 110054, INDIA SN 0974-0643 EI 0976-4658 J9 DESIDOC J LIB INF TE JI DESIDOC J. Lib. Inf. Technol. PD MAR PY 2011 VL 31 IS 2 SI SI BP 90 EP 102 DI 10.14429/djlit.31.2.861 PG 13 WC Information Science & Library Science WE Emerging Sources Citation Index (ESCI) SC Information Science & Library Science GA V9N1L UT WOS:000422463200004 DA 2024-09-05 ER PT J AU Bryda, G Costa, AP AF Bryda, Grzegorz Costa, Antonio Pedro TI Qualitative Research in Digital Era: Innovations, Methodologies and Collaborations SO SOCIAL SCIENCES-BASEL LA English DT Article DE CAQDAS; artificial intelligence; digital methods; digital skills; collaborative analysis ID COMPETENCE; STRATEGIES; PROJECT; SKILLS AB The differentiation of contemporary approaches to qualitative data analysis can seem daunting even for experienced social science researchers. Especially when they move forward in the data analysis process from general analytical strategies used in qualitative research to more specific approaches for different types of qualitative data, including interviews, text, audio, images, videos, and so-called virtual data, by discovering the domain ontology of the qualitative research field, we see that there are more than twice as many different classes of data analysis methods as qualitative research methods. This article critically reflects on qualitative research and the qualitative computer data analysis process, emphasising its significance in harnessing digital opportunities and shaping collaborative work. Using our extensive analytical and research project experience, the last research results, and a literature review, we try to show the impact of new technologies and digital possibilities on our thinking. We also try to do the qualitative data analysis. The essence of this procedure is a dialectical interplay between the new world of digital technology and the classic methodology. The use of digital possibilities in qualitative research practices shapes the researcher's identity and their analytical and research workshop. Moreover, it teaches collaborative thinking and teamwork and fosters the development of new analytical, digital, and Information Technology (IT) skills. Imagining contemporary qualitative research and data analysis in the humanities and social sciences is difficult. Opening to modern technologies in computer-based qualitative data analysis shapes our interpretation frameworks and changes the optics and perception of research problems. C1 [Bryda, Grzegorz] Jagiellonian Univ, Inst Sociol, CAQDAS TM Lab, PL-31007 Krakow, Poland. [Costa, Antonio Pedro] Univ Aveiro, Res Ctr Didact & Technol Educ Trainers, Dept Educ & Psychol, P-3810193 Aveiro, Portugal. C3 Jagiellonian University; Universidade de Aveiro; Centro Investigacao Didatica Tecnologia Formacao Formadores (CIDTFF) RP Bryda, G (corresponding author), Jagiellonian Univ, Inst Sociol, CAQDAS TM Lab, PL-31007 Krakow, Poland. EM grzegorz.bryda@uj.edu.pl; pcosta@ua.pt RI Costa, António Pedro/M-4494-2016 OI Costa, António Pedro/0000-0002-4644-5879; Bryda, Grzegorz/0000-0002-8892-099X FU Narodowe Centrum Nauki (Poland) [2016/23/B/HS6/00301]; national funds through FCT-Fundacao para a Ciencia e a Tecnologia (Portugal) [CDL-CTTRI-248-SGRH/2022]; CIDTFF [UIDB/00194/2020, UIDP/00194/2020] FX The work of the first author was entitled "The domain ontology as a model of knowledgerepresentation about the contemporary field of qualitative research" and financed from 2017 to 2021 by Narodowe Centrum Nauki (Poland, Project No. 2016/23/B/HS6/00301). The work of the secondauthor is funded by national funds through FCT-Fundacao para a Ciencia e a Tecnologia (Portugal), under the Scientific Employment Stimulus-Institutional Call-[CDL-CTTRI-248-SGRH/2022] and the CIDTFF (projects UIDB/00194/2020 and UIDP/00194/2020). CR Akkerman S, 2006, CULT PSYCHOL, V12, P461, DOI 10.1177/1354067X06069947 Bartunek J.M., 1992, Journal of Management Inquiry, V1, P101, DOI DOI 10.1177/105649269212002 Berelson B., 1984, CONTENT ANAL COMMUNI Berry D., 2011, Culture Machine, V12, P1, DOI DOI 10.1007/S12599-014-0342-4 Brent Edward E., 1990, Computer Applications in the Social Sciences Bringer JD, 2006, FIELD METHOD, V18, P245, DOI 10.1177/1525822X06287602 Broer Christian., 2016, Forum Qualitative Sozialforschung/Forum: Qualitative Social Research, V17, P3, DOI [10.17169/FQS-17.3.2388, DOI 10.17169/FQS-17.3.2388] Brown David., 2002, Forum Qualitative Sozialforschung/Forum: Qualitative Social Research, V3, DOI [10.17169/FQS-3.2.851, DOI 10.17169/FQS-3.2.851] Bryda G., 2020, Przeglad Socjologii Jakosciowej, V16, P120, DOI [DOI 10.18778/1733-8069.16.3.08, 10.18778/17338069.16.3.08, DOI 10.18778/17338069.16.3.08] Bryda G, 2020, ADV INTELL SYST COMP, V1068, P72, DOI 10.1007/978-3-030-31787-4_6 Bryda Grzegorz., Domain Ontology Bryda Grzegorz., 2014, Metody i Techniki Odkrywania Wiedzy. Narzedzia CAQDAS w Procesie Analizy Danych Jakociowych Chi-Jung L., 2008, INT J MULTIPLE RES, V2, P105, DOI 10.5172/mra.455.2.1.105 Costa Antonio Pedro., 2016, Actas de La 11 a Conferencia Iberica de Sistemas y Tecnologias de Informacion, P935 Costa Antonio Pedro., 2023, Revista Lusofona de Educacao, V59, P67, DOI [10.24140/issn.1645-7250.rle59.04, DOI 10.24140/ISSN.1645-7250.RLE59.04] Costa Elisabete Pinto da., 2017, Educacao a Distancia e Praticas Educativas Comunicacionais e Interculturais, V17, P61 Costa PA, 2016, J Soc Tech Environ Sci., V5, P153, DOI [10.21664/2238-8869.2016v5i2.p153-161, DOI 10.21664/2238-8869.2016V5I2.P153-161] Crichton Susan., 2012, Online Research Methods in Urban and Planning Studies, P284, DOI [10.4018/978-1-4666-0074-4.ch017, DOI 10.4018/978-1-4666-0074-4.CH017] Davidson J, 2016, QUAL INQ, V22, P606, DOI 10.1177/1077800415622505 Dicks B., 2012, Digital qualitative research methods Fielding N., 1991, USING COMPUTERS QUAL Flensburg S, 2023, NEW MEDIA SOC, V25, P1451, DOI 10.1177/14614448211046616 Freitas F., 2017, Computer Supported Qualitative Research, P176, DOI DOI 10.1007/978-3-319-61121-1_16 Freitas F, 2017, DIGIT EDUC REV, P97 Frost N, 2010, QUAL RES, V10, P441, DOI 10.1177/1468794110366802 Gillespie A., 2014, The SAGE Handbook of Qualitative Data Analysis, P79, DOI [10.4135/9781446282243, DOI 10.4135/9781446282243] Glaser, 1978, THEORETICAL SENSITIV Hall WA, 2005, QUAL HEALTH RES, V15, P394, DOI 10.1177/1049732304272015 Hartley J., 2000, EUR J WORK ORGAN PSY, V9, P463, DOI [DOI 10.1080/13594320050203085, 10.1080/13594320050203085] Janssen J, 2013, COMPUT EDUC, V68, P473, DOI 10.1016/j.compedu.2013.06.008 Jemielniak Dariusz., 2020, THICK BIG DATA DOING, DOI [10.1093/oso/9780198839705.001.0001, DOI 10.1093/OSO/9780198839705.001.0001] Kitchin R., 2014, The Data Revolution, DOI DOI 10.4135/9781473909472 Kitchin R, 2014, BIG DATA SOC, V1, DOI 10.1177/2053951714528481 Lazer D, 2009, SCIENCE, V323, P721, DOI 10.1126/science.1167742 Lindqvist L, 2023, FEM MEDIA STUD, V23, P4089, DOI 10.1080/14680777.2022.2149604 Makel MC, 2019, AERA OPEN, V5, DOI 10.1177/2332858419891963 Markova I, 2007, INTEGR PSYCHOL BEHAV, V41, P124, DOI 10.1007/s12124-007-9014-y McCrohon Mark., 2013, CONT APPR RES MATH S, DOI [10.13140/RG.2.1.1269.7769, DOI 10.13140/RG.2.1.1269.7769] Mertens E, 2017, QUAL RES J, V17, P306, DOI 10.1108/QRJ-06-2016-0034 Negroponte Nicholas., 1996, BEING DIGITAL O'Connor C, 2020, INT J QUAL METH, V19, DOI 10.1177/1609406919899220 Oberländer M, 2020, COMPUT EDUC, V146, DOI 10.1016/j.compedu.2019.103752 Palys T, 2012, INT J QUAL METH, V11, P352, DOI 10.1177/160940691201100404 Paulus T.M., 2014, Digital tools for qualitative research, DOI [DOI 10.4135/9781473957671, 10.4135/9781473957671] Pope EM, 2023, QUAL REP, V28, P2838, DOI 10.46743/2160-3715/2023.6676 Richards KAR, 2018, J TEACH PHYS EDUC, V37, P225, DOI 10.1123/jtpe.2017-0084 Robins CS, 2017, QUAL INQ, V23, P768, DOI 10.1177/1077800417731089 Rogers Richard., 2009, The End of the Virtual: Digital Methods. The End of the Virtual: Digital Methods, DOI [DOI 10.5117/9789056295936, https://doi.org/10.5117/9789056295936] Rogers-Dillon R.H., 2005, Qualitative Research, V5, P437, DOI DOI 10.1177/1468794105056922 Schallmo DRA., 2021, Digitalization: Approaches, Case Studies, and Tools for Strategy, Transformation and Implementation Schwarz O., 2021, Sociological Theory for Digital Society: The Codes that Bind Us Together Seror J., 2012, ENCY APPL LINGUISTIC, DOI DOI 10.1002/9781405198431.WBEAL0177 Sweeney A, 2013, HEALTH EXPECT, V16, pE89, DOI 10.1111/j.1369-7625.2012.00810.x Tartas V, 2007, INTEGR PSYCHOL BEHAV, V41, P154, DOI 10.1007/s12124-007-9019-6 Torrato Janette B., 2023, ACM International Conference Proceeding Series, P19, DOI [10.1145/3588243.3588250, DOI 10.1145/3588243.3588250] Uehara Edwina S., 1996, Journal of Teaching in Social Work, V14, P45, DOI [10.1300/J067v14n01_04, DOI 10.1300/J067V14N01_04] van Dijck J, 2014, SURVEILL SOC, V12, P197, DOI 10.24908/ss.v12i2.4776 Wa-Mbaleka Safary., 2020, WORLD C QUALITATIVE Watts DJ, 2007, NATURE, V445, P489, DOI 10.1038/445489a Woods M, 2016, INT J SOC RES METHOD, V19, P385, DOI 10.1080/13645579.2015.1023964 Yang H, 2012, COMMUN ASSOC INF SYS, V31, P35 NR 61 TC 3 Z9 3 U1 8 U2 14 PU MDPI PI BASEL PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND EI 2076-0760 J9 SOC SCI-BASEL JI Soc. Sci.-Basel PD OCT PY 2023 VL 12 IS 10 AR 570 DI 10.3390/socsci12100570 PG 17 WC Social Sciences, Interdisciplinary WE Emerging Sources Citation Index (ESCI) SC Social Sciences - Other Topics GA X6EZ8 UT WOS:001099375600001 OA gold DA 2024-09-05 ER PT J AU Dzikowicz, DJ Carey, MG AF Dzikowicz, Dillon J. Carey, Mary G. TI The Use of Interactive Technology to Improve Student Accuracy on Electrocardiographic Interpretation SO NURSING EDUCATION PERSPECTIVES LA English DT Article DE Electrocardiography (ECG) Instruction; Online Learning; Research Evaluation; Teaching and Learning; Technology in Education AB Electrocardiography (ECG) instruction relies heavily on memorization of interpretation rules and lacks opportunities for hands-on practice. Consequently, nursing students struggle with ECG interpretation. In an online undergradute nursing course, we implemented interactive technology to facilitate kinesthetic pedagogy. Accuracy was evaluated at midterm and during final assessments by two experts using a standardized rubric. Students who engaged with interactive technology at both assessments demonstrated consistent accuracy of ECG interpretation; students who did not failed to demonstrate consistent accuracy with ECG interpretation. Incorporating interactive technology to facilitate psychomotor learning may be essential in improving the accuracy of ECG interpretation. C1 [Dzikowicz, Dillon J.] Univ Rochester Med Ctr, Rochester, NY 14627 USA. [Dzikowicz, Dillon J.; Carey, Mary G.] Univ Rochester, Sch Nursing, Rochester, NY 14627 USA. C3 University of Rochester; University of Rochester RP Dzikowicz, DJ (corresponding author), Univ Rochester Med Ctr, Rochester, NY 14627 USA.; Dzikowicz, DJ (corresponding author), Univ Rochester, Sch Nursing, Rochester, NY 14627 USA. EM illon_dzikowicz@urmc.rochester.edu; Mary_Carey@URMC.Rochester.edu OI Carey, Mary/0000-0002-5013-3464 CR Brooks CA, 2016, AM J CRIT CARE, V25, P61, DOI 10.4037/ajcc2016556 Dzikowicz D. J., 2020, MEDSURG NURSING, V29, P263 Funk M, 2017, CIRC-CARDIOVASC QUAL, V10, DOI 10.1161/CIRCOUTCOMES.116.003132 Rubenstein CD, 2017, NURS EDUC, V42, P85, DOI 10.1097/NNE.0000000000000293 Schwimer D, 2022, CRIT CARE NURSE, V42, P33, DOI 10.4037/ccn2022465 Suba S, 2022, AM J CRIT CARE, V31, P83, DOI 10.4037/ajcc2022748 Viljoen CA, 2021, BMC MED EDUC, V21, DOI 10.1186/s12909-021-02854-x Viljoen CA, 2020, BMC MED EDUC, V20, DOI 10.1186/s12909-020-02354-4 Weeks KW, 2019, NURSE EDUC PRACT, V37, P29, DOI 10.1016/j.nepr.2019.04.010 NR 9 TC 0 Z9 0 U1 0 U2 0 PU LIPPINCOTT WILLIAMS & WILKINS PI PHILADELPHIA PA TWO COMMERCE SQ, 2001 MARKET ST, PHILADELPHIA, PA 19103 USA SN 1536-5026 EI 1943-4685 J9 NURS EDUC PERSPECT JI Nurs. Educ. Perspect. PD JUL-AUG PY 2023 VL 44 IS 4 BP 247 EP 249 DI 10.1097/01.NEP.0000000000001078 PG 3 WC Education & Educational Research WE Emerging Sources Citation Index (ESCI) SC Education & Educational Research GA L7SL8 UT WOS:001025220600011 PM 36729816 DA 2024-09-05 ER PT J AU Wang, R Li, SJ Yin, Q Zhang, J Yao, RJ Wu, O AF Wang, Rui Li, Shijie Yin, Qing Zhang, Ji Yao, Rujing Wu, Ou TI Improved PageRank and New Indices for Academic Impact Evaluation Using AI Papers as Case Studies SO JOURNAL OF INFORMATION SCIENCE LA English DT Article DE Group evaluation; PageRank; Paper evaluation ID H-INDEX; CITATION; PERFORMANCE; INDICATOR; ARTICLES; SCIENCE AB Evaluating academic papers and groups is important in scholar evaluation and literature retrieval. However, current evaluation indices, which pay excessive attention to the citation number rather than the citation importance and unidirectionality, are relatively simple. This study proposes new evaluation indices for papers and groups. First, an improved PageRank (PR) algorithm introducing citation importance is proposed to obtain a new citation-based paper index (CPI) via a pre-ranking and fine-tuning strategy. Second, to evaluate the paper's influence inside and outside its research field, the focus citation-based paper index (FCPI) and diversity citation-based paper index (DCPI) are proposed based on topic similarity and diversity, respectively. Third, aside from the statistical indices for academic papers, we propose a foreign academic degree of dependence (FAD) to characterise the dependence between two academic groups. Finally, artificial intelligence (AI) papers from 2005 to 2019 are utilised for a case study. C1 [Wang, Rui; Li, Shijie; Yin, Qing; Yao, Rujing; Wu, Ou] Tianjin Univ, Tianjin, Peoples R China. [Zhang, Ji] Zhejiang Lab, Hangzhou, Peoples R China. C3 Tianjin University; Zhejiang Laboratory RP Wu, O (corresponding author), Tianjin Univ, Ctr Appl Math, 92 Weijin Rd, Tianjin 300072, Peoples R China. EM wuou@tju.edu.cn FU ZJFund [2019KB0AB03]; NSFC [62076178]; TJ-NSF [19JCZDJC31300, 19ZXAZNGX00050] FX The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This study is supported by ZJFund 2019KB0AB03, NSFC 62076178, TJ-NSF (19JCZDJC31300, 19ZXAZNGX00050). CR [Anonymous], 2013, P AAAI C ART INT Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993 Chao Min, 2017, Proceedings of the Association for Information Science and Technology, V54, DOI 10.1002/pra2.2017.14505401147 Chen P, 2007, J INFORMETR, V1, P8, DOI 10.1016/j.joi.2006.06.001 Chu JSG, 2021, P NATL ACAD SCI USA, V118, DOI 10.1073/pnas.2021636118 Devlin J., 2018, ARXIV Ding JD, 2020, SCIENTOMETRICS, V122, P1303, DOI 10.1007/s11192-020-03364-1 Ding Y, 2013, J INFORMETR, V7, P583, DOI 10.1016/j.joi.2013.03.003 Ding Y, 2009, J AM SOC INF SCI TEC, V60, P2229, DOI 10.1002/asi.21171 Fiala D, 2012, J INFORMETR, V6, P370, DOI 10.1016/j.joi.2012.02.002 GARFIELD E, 1970, NATURE, V227, P669, DOI 10.1038/227669a0 GARFIELD E, 1955, SCIENCE, V122, P108, DOI 10.1126/science.122.3159.108 GARFIELD E, 1972, SCIENCE, V178, P471, DOI 10.1126/science.178.4060.471 Gerrish SM., P ICML 2010 Gerrish SM, DROPPED REF González-Pereira B, 2010, J INFORMETR, V4, P379, DOI 10.1016/j.joi.2010.03.002 Gotelli N.J., 2013, The encyclopedia of biodiversity, Vsecond, DOI DOI 10.1016/B978-0-12-384719-5.00424-X Hirsch JE, 2010, SCIENTOMETRICS, V85, P741, DOI 10.1007/s11192-010-0193-9 Hu ZG, 2013, J INFORMETR, V7, P887, DOI 10.1016/j.joi.2013.08.005 Jiang XR, 2016, J ASSOC INF SCI TECH, V67, P1679, DOI 10.1002/asi.23463 Lu C, 2017, SCIENTOMETRICS, V112, P927, DOI 10.1007/s11192-017-2398-7 Ma N, 2008, INFORM PROCESS MANAG, V44, P800, DOI 10.1016/j.ipm.2007.06.006 Meyers MA, 2017, J MATER RES TECHNOL, V6, P304, DOI 10.1016/j.jmrt.2017.09.004 Mingcui Du, 2009, 2009 WRI World Congress on Computer Science and Information Engineering, CSIE, P277, DOI 10.1109/CSIE.2009.479 Moed HF, 2010, J INFORMETR, V4, P265, DOI 10.1016/j.joi.2010.01.002 Nykl M, 2014, J INFORMETR, V8, P683, DOI 10.1016/j.joi.2014.06.005 Page L., 1999, The PageRank citation ranking: bringing order to the web Pajic D, 2015, J INFORMETR, V9, P990, DOI 10.1016/j.joi.2015.08.005 Priem J., 2010, Altmetrics: a manifesto Schubert A, 2009, SCIENTOMETRICS, V78, P559, DOI 10.1007/s11192-008-2208-3 Siudem G, 2020, P NATL ACAD SCI USA, V117, P13896, DOI 10.1073/pnas.2001064117 Socher Richard, 2014, Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), P1532, DOI [10.3115/v1/D14-1162.https, DOI 10.3115/V1/D14-1162.HTTPS, 10.3115/v1/D14-1162] Waltman L, 2012, J AM SOC INF SCI TEC, V63, P406, DOI 10.1002/asi.21678 WANG S, 2016, ACM T INTEL SYST TEC, V7, P1, DOI DOI 10.1145/2897371 Xu J, 2019, SCIENTOMETRICS, V119, P1597, DOI 10.1007/s11192-019-03106-y Yan E, 2010, J AM SOC INF SCI TEC, V61, P1635, DOI 10.1002/asi.21349 Ye FY, 2014, J ASSOC INF SCI TECH, V65, P742, DOI 10.1002/asi.23075 Yuan J., P 24 INT C WORLD WID Zhang F, 2020, J INFORMETR, V14, DOI 10.1016/j.joi.2020.101035 NR 39 TC 2 Z9 2 U1 7 U2 51 PU SAGE PUBLICATIONS LTD PI LONDON PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND SN 0165-5515 EI 1741-6485 J9 J INF SCI JI J. Inf. Sci. PD JUN PY 2024 VL 50 IS 3 BP 690 EP 702 DI 10.1177/01655515221105038 EA JUL 2022 PG 13 WC Computer Science, Information Systems; Information Science & Library Science WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Computer Science; Information Science & Library Science GA SS2E6 UT WOS:000828846900001 DA 2024-09-05 ER PT J AU Brand, C Ward, F MacDonagh, N Cunningham, S Timulak, L AF Brand, Charles Ward, Fiona MacDonagh, Niamh Cunningham, Sharon Timulak, Ladislav TI A national evaluation of the Irish public health counselling in primary care service- examination of initial effectiveness data SO BMC PSYCHIATRY LA English DT Article DE Psychotherapy research; Primary care counselling; Practice-based evidence; National counselling service evaluation; Logistic regression; Multi-level modelling ID DOSE-EFFECT RELATIONS; PSYCHOLOGICAL THERAPY; CORE-OM; PSYCHOTHERAPY; RECOVERY; OUTCOMES; DURATION AB Background The Counselling in Primary Care service (CIPC) is the first and only nationally available public counselling service in the Republic of Ireland. This study provides initial data for the effectiveness of short-term psychotherapy delivered in a primary care setting in Ireland for the first time. Method A practice-based observational research approach was employed to examine outcome data from 2806 clients receiving therapy from 130 therapists spread over 150 primary care locations throughout Ireland. Pre-post outcomes were assessed using the CORE-OM and reliable and clinically significant change proportions. Binary logistic regression examined the effect of pre therapy symptom severity on the log odds of recovering. Six and 12 month follow up data from a subsample of 276 clients were also analysed using growth curve analysis. Results Of 14,156 referred clients, 5356 presented for assessment and 52.3% (N = 2806) consented to participate. Between assessment and post-therapy a large reduction in severity of symptoms was observed- Cohen's d = 0.98. Furthermore, 47% of clients achieved recovery,a further 15.5% reliably improved, 2.7% reliably deteriorated and34.7% showed no reliable improvement. Higher initial severity was associated with less chance of recovering at post-therapy. Significant gains were maintained between assessment and12 months after therapy- Cohen's d = 0.50. Conclusions Outcomes for clients in the CIPC service compared favourably with large scale counselling and psychotherapy services in jurisdictions in the U.K., the U.S.A., Norway and Sweden. This study expands the international primary care psychotherapy research base to include the entire Republic of Ireland jurisdiction. C1 [Brand, Charles; Timulak, Ladislav] Trinity Coll Dublin, Sch Psychol, Dublin 2, Ireland. [Brand, Charles; Timulak, Ladislav] Counselling Primary Care Natl Evaluat, Hlth Serv Execut, 19 Upper Ormond Quay, Dublin 2, Ireland. [Ward, Fiona] Hlth Serv Execut, 34 Brews Hill, Navan, Meath, Ireland. [MacDonagh, Niamh] Primary Care Ctr, Hlth Serv Execut, 1st Floor Junct House,Airton Rd, Dublin, Ireland. [Cunningham, Sharon] Hlth Serv Execut, Unit 8A Brulington Business Pk,Srah Ave, Tullamore, Offaly, Ireland. C3 Trinity College Dublin RP Brand, C (corresponding author), Trinity Coll Dublin, Sch Psychol, Dublin 2, Ireland.; Brand, C (corresponding author), Counselling Primary Care Natl Evaluat, Hlth Serv Execut, 19 Upper Ormond Quay, Dublin 2, Ireland. EM brandc@tcd.ie RI Timulak, Ladislav/P-6881-2017 OI Timulak, Ladislav/0000-0003-2785-0753; BRAND, CHARLES/0000-0001-9831-1189 FU Irish Research Council [EBPPG12015, 124] FX This work was supported by the Irish Research Council (Project ID: EBPPG12015 vertical bar 124). The funding body was not involved in study design, data collection, analyses, data interpretation, or manuscript preparation. CR Ammerman A, 2014, ANNU REV PUBL HEALTH, V35, P47, DOI 10.1146/annurev-publhealth-032013-182458 [Anonymous], 2006, VIS CHANG REP EXP GR Barkham M, 1996, J CONSULT CLIN PSYCH, V64, P927, DOI 10.1037/0022-006X.64.5.927 Barkham M, 2006, J CONSULT CLIN PSYCH, V74, P160, DOI 10.1037/0022-006X.74.1.160 Barkham M, 2005, BRIT J PSYCHIAT, V186, P239, DOI 10.1192/bjp.186.3.239 Barkham M., 2010, DEV DELIVERING PRACT Barkham M, 2007, PSYCHOL PSYCHOTHER-T, V80, P269, DOI 10.1348/147608306X148048 Barkham M, 2012, PSYCHOL PSYCHOTHER-T, V85, P1, DOI 10.1111/j.2044-8341.2011.02019.x Batt V., 2002, PERSPECTIVES PROVISI Bourke M., 2012, IRISH PSYCHOL, V38, P262 Connell J, 2007, BRIT J PSYCHIAT, V190, P69, DOI 10.1192/bjp.bp.105.017657 *CORE SYST GROUP, 1998, CORE SYST INF MAN HD Draper H, 2009, FAM PRACT, V26, P231, DOI 10.1093/fampra/cmp011 Evans C., 1998, EVID-BASED MENT HEAL, V1, P70, DOI [10.1136/ebmh.1.3.70, DOI 10.1136/EBMH.1.3.70] Falkenström F, 2016, PSYCHOTHERAPY, V53, P130, DOI 10.1037/pst0000039 Gagliardi AR, 2015, PATIENT EDUC COUNS, V98, P412, DOI 10.1016/j.pec.2014.11.020 Gu H, 2009, MIXED MODEL APPROACH Gyani A, 2013, BEHAV RES THER, V51, P597, DOI 10.1016/j.brat.2013.06.004 Heck RH, 2014, QUANT METH SER, P409 HSRC NCS., 2003, SENCS SURV EXP NAT C JACOBSON NS, 1991, J CONSULT CLIN PSYCH, V59, P12, DOI 10.1037/0022-006X.59.1.12 Knapstad M, 2018, BMC PSYCHIATRY, V18, DOI 10.1186/s12888-018-1838-0 Martin E, 2008, IR PSYCHOL McGrath T, 2010, LIFE SHINES 10 YEARS, P252 Mellor-Clark J., 1999, EUROPEAN J PSYCHOTHE, V2, P357, DOI DOI 10.1080/13642539908400818 Mellor-Clark J, 2006, COUNS PSYCHOTHER RES, V6, P1, DOI 10.1080/14733140600581176 Mullin T, 2006, COUNS PSYCHOTHER RES, V6, P68, DOI 10.1080/14733140600581515 NHS Digital, 2018, PSYCH THER ANN REP U Peugh JL, 2010, J SCHOOL PSYCHOL, V48, P85, DOI 10.1016/j.jsp.2009.09.002 Ray-Sannerud BN, 2012, FAM SYST HEALTH, V30, P60, DOI 10.1037/a0027029 Sawchuk CN, 2018, GEN HOSP PSYCHIAT, V54, P5, DOI 10.1016/j.genhosppsych.2018.06.005 Saxon D, 2010, COUNS PSYCHOTHER RES, V10, P13, DOI 10.1080/14733140902914604 Saxon D, 2008, COUNS PSYCHOTHER RES, V8, P223, DOI 10.1080/14733140802163872 Skre I, 2013, BMC PUBLIC HEALTH, V13, DOI 10.1186/1471-2458-13-873 Sterne JAC, 2009, BMJ-BRIT MED J, V339, DOI 10.1136/bmj.b2393 Stiles WB, 2008, PSYCHOL MED, V38, P677, DOI 10.1017/S0033291707001511 Stiles WB, 2015, BRIT J PSYCHIAT, V207, P115, DOI 10.1192/bjp.bp.114.145565 Viswesvaran C, 2003, PERS PSYCHOL, V56, P1085 Werbart A, 2013, PSYCHOTHERAPY, V50, P119, DOI 10.1037/a0031386 Wu L., 2016, BMJ OPEN, V6 NR 40 TC 4 Z9 4 U1 0 U2 0 PU BMC PI LONDON PA CAMPUS, 4 CRINAN ST, LONDON N1 9XW, ENGLAND EI 1471-244X J9 BMC PSYCHIATRY JI BMC Psychiatry PD MAY 3 PY 2021 VL 21 IS 1 AR 227 DI 10.1186/s12888-021-03226-x PG 10 WC Psychiatry WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Psychiatry GA SK3SS UT WOS:000656139500006 PM 33941127 OA gold, Green Published DA 2024-09-05 ER PT J AU SLATER, PB AF SLATER, PB TI HIERARCHICAL-CLUSTERING OF MATHEMATICAL JOURNALS BASED UPON CITATION MATRICES SO SCIENTOMETRICS LA English DT Article RP SLATER, PB (corresponding author), UNIV CALIF SANTA BARBARA,COMMUNITY & ORG RES INST,SANTA BARBARA,CA 93106, USA. RI Slater, Paul B/U-1847-2018 CR CARPENTER MP, 1973, J AM SOC INFORM SCI, V24, P425, DOI 10.1002/asi.4630240604 CHILKO DM, 1978, SAS S102 SAS I TECHN CHILKO DM, 1977, 3RD P ANN C SAS US G, P255 Leusmann C. S., 1977, Computer Applications, V4, P769 MIYAMOTO S, 1980, IEEE T SYST MAN CYB, V10, P899 PRICE DD, 1981, SCIENTOMETRICS, V3, P55 SLATER PB, 1976, IEEE T SYST MAN CYB, V6, P321, DOI 10.1109/TSMC.1976.5408783 SLATER PB, 1981, QUAL QUANT, V15, P179, DOI 10.1007/BF00144259 SLATER PB, 1981, SOCIOECONOMIC PLANNI, V15, P2 NR 9 TC 12 Z9 12 U1 0 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0138-9130 J9 SCIENTOMETRICS JI Scientometrics PY 1983 VL 5 IS 1 BP 55 EP 58 DI 10.1007/BF02097177 PG 4 WC Computer Science, Interdisciplinary Applications; Information Science & Library Science WE Social Science Citation Index (SSCI); Science Citation Index Expanded (SCI-EXPANDED) SC Computer Science; Information Science & Library Science GA QD335 UT WOS:A1983QD33500003 DA 2024-09-05 ER PT C AU Tsuji, K Takizawa, N Sato, S Ikeuchi, U Ikeuchi, A Yoshikane, F Itsumura, H AF Tsuji, Keita Takizawa, Nobuya Sato, Sho Ikeuchi, Ui Ikeuchi, Atsushi Yoshikane, Fuyuki Itsumura, Hiroshi BE Giannakopoulos, G Sakas, DP Vlachos, DS KyriakiManessi, D TI Book Recommendation Based on Library Loan Records and Bibliographic Information SO 3RD INTERNATIONAL CONFERENCE ON INTEGRATED INFORMATION (IC-ININFO) SE Procedia Social and Behavioral Sciences LA English DT Proceedings Paper CT 3rd International Conference on Integrated Information (IC-ININFO) CY SEP 05-09, 2013 CL Prague, CZECH REPUBLIC DE Book Recommendation; Recommender System; Library Loan Records; Support Vector Machine; SVM AB In order to show the effectiveness of using (a) library loan records and (b) information about book contents as a basis for book recommendations, we entered various data into a support vector machine (SVM), used it to recommend books to subjects, and asked them for evaluations of the recommendations that were given. The data that we used were (1) confidence and support with an association rule that was based on the loan records, (2) similarities between book titles, (3) matches/mismatches between the Nippon Decimal Classification (NDC) categories of the books, and (4) similarities between the outlines of the books in the BOOK Database. The subjects were 32 students who belonged to T University. The books that we recommended and the loan records that we used were obtained from the T University Library. The results showed that the combinations of (1), (2), (3) and (1), (2) were rated more favorably by the subjects than the other combinations. However, the books that were recommended by Amazon were rated even more favorably by the subjects. This is a topic for further research. (C) 2014 Elsevier Ltd. This is an open under the CC BY-NC-ND license (http://creavativecommons.org/licenses/by-nc-nd/3.0/). Selection and peer-review under responsibility of the 3rd International Conference on Integrated Information. C1 [Tsuji, Keita; Ikeuchi, Atsushi; Yoshikane, Fuyuki; Itsumura, Hiroshi] Univ Tsukuba, Fac Lib Informat & Media Sci, Tsukuba, Ibaraki 3058550, Japan. [Takizawa, Nobuya] Univ Tsukuba, Coll Knowledge & Lib Sci, Sch Informat, Tsukuba, Ibaraki 3058550, Japan. [Sato, Sho] Doshisha Univ, Fac Social Studies, Kamigyo Ku, Kyoto 6028580, Japan. [Ikeuchi, Ui] Univ Tsukuba, Grad Sch Lib Informat & Media Studies, Tsukuba, Ibaraki 3058550, Japan. C3 University of Tsukuba; University of Tsukuba; Doshisha University; University of Tsukuba RP Tsuji, K (corresponding author), Univ Tsukuba, Fac Lib Informat & Media Sci, 1-2 Kasuga, Tsukuba, Ibaraki 3058550, Japan. EM keita@slis.tsukuba.ac.jp RI Ikeuchi, Ui/M-5494-2019; Ikeuchi, Ui/N-8436-2015 OI Ikeuchi, Ui/0000-0002-5680-1881; Ikeuchi, Ui/0000-0002-5680-1881 CR Chen CC, 2007, ELECTRON LIBR, V25, P711, DOI 10.1108/02640470710837137 Harada T., 2010, DIGITAL LIB, V38, P54 Harada T., 2009, DIGITAL LIB, V36, P22 RESNICK P, 1994, ACM C COMP SUPP COOP, V1, P175 Shirgaonkar S, 2010, INT C WORKSH EM TREN, P535 Tsuji K., 2011, P INT C INT INF IC I Tsuji K., 2012, TOSHOKANKAI LIB WORL, V64, P176 Whitney C., 2006, D LIB MAGAZINE, V12 Yongcheng Luo, 2009, Proceedings of the 2009 Second International Workshop on Computer Science and Engineering (WCSE 2009), P323, DOI 10.1109/WCSE.2009.822 NR 9 TC 13 Z9 16 U1 2 U2 17 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA SARA BURGERHARTSTRAAT 25, PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1877-0428 J9 PROCD SOC BEHV PY 2014 VL 147 BP 478 EP 486 DI 10.1016/j.sbspro.2014.07.142 PG 9 WC Information Science & Library Science WE Conference Proceedings Citation Index - Social Science & Humanities (CPCI-SSH) SC Information Science & Library Science GA BD4GO UT WOS:000360703000065 OA gold DA 2024-09-05 ER PT C AU Wilson, M AF Wilson, Marianne BE Kamps, J Goeuriot, L Crestani, F Maistro, M Joho, H Davis, B Gurrin, C Kruschwitz, U Caputo, A TI Designing Useful Conversational Interfaces for Information Retrieval in Career Decision-Making Support SO ADVANCES IN INFORMATION RETRIEVAL, ECIR 2023, PT III SE Lecture Notes in Computer Science LA English DT Proceedings Paper CT 45th European Conference on Information Retrieval (ECIR) CY APR 02-06, 2023 CL Dublin, IRELAND DE Conversational information retrieval; Applied NLP; Research-through-design; Social impact; Evaluation Ethics AB The proposal is an interdisciplinary problem-focused study to explore the usefulness of conversational information retrieval (CIR) in a complex domain. Aresearch-through-design methodology will be used to identify the informational, practical, affective, and ethical requirements for a CIR system in the specific context of Career Education, Information, Advice & Guidance (CEIAG) services for young people in Scotland. Later phases of the research will use these criteria to identify appropriate techniques in the literature, and design and evaluate artefacts intended to meet these. This research will use an interdisciplinary approach to further understanding on the use and limitations of dialogue systems as intermediaries for information retrieval where there are awide range of possible information tasks and specific users' needs may be ambiguous. C1 [Wilson, Marianne] Edinburgh Napier Univ, 10 Colinton Rd, Edinburgh EH10 5DT, Scotland. C3 Edinburgh Napier University RP Wilson, M (corresponding author), Edinburgh Napier Univ, 10 Colinton Rd, Edinburgh EH10 5DT, Scotland. EM m.wilson2@napier.ac.uk OI Wilson, Marianne Clare/0000-0002-4780-2401 CR Akhgar B., 2022, CENTRIC ACCOUNTABILI Avgustis I, 2021, LECT NOTES COMPUT SC, V12935, P155, DOI 10.1007/978-3-030-85610-6_10 Avula S, 2018, CHIIR'18: PROCEEDINGS OF THE 2018 CONFERENCE ON HUMAN INFORMATION INTERACTION & RETRIEVAL, P52, DOI 10.1145/3176349.3176380 Bender Emily, 2019, S DAT SCI STAT BELL Bimrose J., 2021, OXFORD HDB CAREER DE, P282, DOI [10.1093/oxfordhb/9780190069704.013.21, DOI 10.1093/OXFORDHB/9780190069704.013.21] Blodgett SL, 2020, Arxiv, DOI arXiv:2005.14050 Borsci Simone, 2022, Personal and Ubiquitous Computing, V26, P95, DOI 10.1007/s00779-021-01582-9 Career Review Programme Board, 2022, CAREERS DESIGN Centre for Data Ethics and Innovation, 2021, The roadmap to an effective AI assurance ecosystem Clark L, 2019, CHI 2019: PROCEEDINGS OF THE 2019 CHI CONFERENCE ON HUMAN FACTORS IN COMPUTING SYSTEMS, DOI 10.1145/3290605.3300705 Custer R.L., 1999, The modified delphi technique-a rotational modification, DOI DOI 10.21061/JCTE.V15I2.702 Dignum V, 2019, ARTIF INTELL-FOUND, P1, DOI 10.1007/978-3-030-30371-6 Eggink W, 2016, E&PDE, P216 Elsweiler David, 2020, Datenbank-Spektrum, V20, P37, DOI 10.1007/s13222-020-00333-z Folstad A., 2020, QUALITY USER EXPERIE, V5, P3, DOI DOI 10.1007/S41233-020-00033-2 Hooley T., 2021, OXFORD HDB CAREER DE, P296, DOI [10.1093/oxfordhb/9780190069704.013.22, DOI 10.1093/OXFORDHB/9780190069704.013.22] International Organization for Standardization, 2018, 9241112018 BS EN ISO Kerr A, 2020, BIG DATA SOC, V7, DOI 10.1177/2053951720915939 Kettunen J, 2019, INT J EDUC VOCAT GUI, V19, P1, DOI 10.1007/s10775-018-9365-6 Kiesel Johannes, 2021, ACM Transactions on Information Systems, V39, DOI 10.1145/3468868 Koene A, 2019, GOVERNANCE FRAMEWORK, DOI DOI 10.2861/59990 Kuziemski M, 2020, TELECOMMUN POLICY, V44, DOI 10.1016/j.telpol.2020.101976 Law B, 1999, BRIT J GUID COUNS, V27, P35, DOI 10.1080/03069889908259714 Linstone H. A., 2002, DELPHI METHOD TECHNI McMahon M, 2014, INT CULT PSYCHOL, P13, DOI 10.1007/978-1-4614-9460-7_2 Moore N, 2021, J NAT I CAREER ED CO, V46, P25, DOI [10.20856/jnicec.4605, DOI 10.20856/JNICEC.4605] Moore RJ, 2018, HUM-COMPUT INT-SPRIN, P1, DOI 10.1007/978-3-319-95579-7 OECD, 2021, OECDLEGAL0449 OECD (Organisation for Economic Co-operation and Development), 2021, STAT IMPL OECD AI PR Radlinski F, 2017, CHIIR'17: PROCEEDINGS OF THE 2017 CONFERENCE HUMAN INFORMATION INTERACTION AND RETRIEVAL, P117, DOI 10.1145/3020165.3020183 Rahwan I, 2018, ETHICS INF TECHNOL, V20, P5, DOI 10.1007/s10676-017-9430-8 Robertson PJ, 2021, INT J EDUC VOCAT GUI, V21, P309, DOI 10.1007/s10775-020-09443-2 Sampson JP, 2020, INT J EDUC VOCAT GUI, V20, P191, DOI 10.1007/s10775-019-09399-y Savickas M.L., 2019, International handbook of career guidance, P25, DOI [DOI 10.1007/978-3-030-25153-6_2, DOI 10.1007/978-3-030-25153-62LOSECOSISTEMASECONOMICOS] Scottish Government, 2021, SCOTL ART INT STRAT Scottish Government, 2019, SCOTT APPR SERV DES Skills Development Scotland, 2020, DELIVERING SCOTLANDS Skills Development Scotland, 2020, SKILLS DEV SCOTL ANN Skills Development Scotland, 2022, ANN REV 2021 22 Skjuve M, 2019, LECT NOTES COMPUT SC, V11551, P113, DOI 10.1007/978-3-030-17705-8_10 Smestad TL, 2019, LECT NOTES COMPUT SC, V11551, P170, DOI 10.1007/978-3-030-17705-8_15 Spillner L, 2021, PROCEEDINGS OF 23RD ACM INTERNATIONAL CONFERENCE ON MOBILE HUMAN-COMPUTER INTERACTION (MOBILEHCI 2021): MOBILE APART, MOBILE TOGETHER, DOI 10.1145/3447526.3472050 Sun YM, 2018, ACM/SIGIR PROCEEDINGS 2018, P235, DOI 10.1145/3209978.3210002 Thies IM, 2017, LECT NOTES COMPUT SC, V10513, P441, DOI 10.1007/978-3-319-67744-6_28 Thomas Paul, 2021, ACM Transactions on Information Systems, V39, DOI 10.1145/3439869 Thomas P, 2018, CHIIR'18: PROCEEDINGS OF THE 2018 CONFERENCE ON HUMAN INFORMATION INTERACTION & RETRIEVAL, P42, DOI 10.1145/3176349.3176388 Trippas JR, 2018, CHIIR'18: PROCEEDINGS OF THE 2018 CONFERENCE ON HUMAN INFORMATION INTERACTION & RETRIEVAL, P32, DOI 10.1145/3176349.3176387 UNICEF, 2021, POL GUID CHILDR Vakulenko S, 2020, Arxiv, DOI arXiv:2012.03704 Varjo J, 2022, J EDUC POLICY, V37, P1009, DOI 10.1080/02680939.2021.1971772 Wang ZD, 2022, ACM T INFORM SYST, V40, DOI 10.1145/3507357 Watts AG, 2010, INT J EDUC VOCAT GUI, V10, P89, DOI 10.1007/s10775-010-9177-9 Watts A.G., 2004, International Journal for Educational and Vocational Guidance, V4, P105, DOI [DOI 10.1007/S10775-005-1025-Y, 10.1007/s10775-005-1025-y] Weiss A, 2015, 2015 24TH IEEE INTERNATIONAL SYMPOSIUM ON ROBOT AND HUMAN INTERACTIVE COMMUNICATION (RO-MAN), P381, DOI 10.1109/ROMAN.2015.7333568 Wilson M., 2022, Journal of the National Institute for Career Education and Counselling, V48, P48, DOI [DOI 10.20856/JNICEC.4807, 10.20856/jnicec.4807] Yates J., 2020, OXFORD HDB CAREER DE, DOI [10.1093/oxfordhb/9780190069704.013.10, DOI 10.1093/OXFORDHB/9780190069704.013.10] Zamani H., 2022, Conversational Information Seeking, DOI DOI 10.1561/XXXXXXXXX Zimmerman J., 2014, Research Through Design in HCI, DOI DOI 10.1007/978-1-4939-0378-8_8 NR 58 TC 0 Z9 0 U1 0 U2 0 PU SPRINGER INTERNATIONAL PUBLISHING AG PI CHAM PA GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND SN 0302-9743 EI 1611-3349 BN 978-3-031-28240-9; 978-3-031-28241-6 J9 LECT NOTES COMPUT SC PY 2023 VL 13982 BP 482 EP 488 DI 10.1007/978-3-031-28241-6_56 PG 7 WC Computer Science, Information Systems; Computer Science, Software Engineering; Computer Science, Theory & Methods WE Conference Proceedings Citation Index - Science (CPCI-S) SC Computer Science GA BV1RO UT WOS:000995495200056 DA 2024-09-05 ER PT C AU Kang, H Yoo, SJ Han, D AF Kang, Hanhoon Yoo, Seong Joon Han, Dongil BE Ko, FIS DalKwack, K Hwang, S Kawata, S Chen, YW TI Social Ranking of Medical Institutions Based on Social Information SO 2011 6TH INTERNATIONAL CONFERENCE ON COMPUTER SCIENCES AND CONVERGENCE INFORMATION TECHNOLOGY (ICCIT) LA English DT Proceedings Paper CT 6th International Conference on Computer Sciences and Convergence Information Technology (ICCIT) CY NOV 29-DEC 01, 2011 CL Jeju Island, SOUTH KOREA DE medical institutions; ranking; sentiment analysis AB In this paper we propose a method with which to rank medical institutions by utilizing the social information provided by social network services (SNS). Furthermore, the gap between the rankings proposed in this paper and the rankings based on the existing method provided by USNews.com is analyzed, and a need for social marketing by medical institutions is proposed. USNews.com ranks medical institutions each year and publishes the data through its site. Here, the rankings are determined based on the information generated offline, based on the ranking criteria determined by a specific group, in order to provide the applicable information. Consequently, the rankings perceived by the patients who actually visit the medical institutions may be somewhat different from the rankings provided by USNews.com. For this paper the social information related to medical institutions was crawled from the SNS sites in order to rank the medical institutions based on the information generated by many users in the social media, and these rankings were compared to the ranking results provided by USNews.com. The data used for the experiment comprised the basic information on the 892 medical institutions crawled from USNews.com and the social information crawled from the SNS sites. Social information was available for only 443 institutions. The rankings were computed for these institutions based on the method proposed in this paper, so as to compare to the existing results. According to the ranking results for 316 institutions, the rankings improved from one place to 846 places, with the average improvement being 330 places. C1 [Kang, Hanhoon; Yoo, Seong Joon; Han, Dongil] Sejong Univ, Dept Comp Engn, Seoul 143747, South Korea. C3 Sejong University RP Yoo, SJ (corresponding author), Sejong Univ, Dept Comp Engn, 98 Gunja, Seoul 143747, South Korea. EM sjyoo@sejong.ac.kr RI YOO, SEONG JOON/AAB-3791-2021 CR [Anonymous], 2005, INFORM SYST J, V1, P203 [Anonymous], 1997, ICML [Anonymous], 2004, Mining and Summarizing Customer Reviews [Anonymous], J EXPERT SYSTEMS APP Baeza-Yates Ricardo, 1999, MODERN INFORM RETRIE Bertoli C, 2008, PROCEEDINGS OF THE 2008 IEEE INTERNATIONAL CONFERENCE ON INFORMATION REUSE AND INTEGRATION, P160 Brin S, 1998, COMPUT NETWORKS ISDN, V30, P107, DOI 10.1016/S0169-7552(98)00110-X Brin S., 1997, STANFORD DIGITAL LIB Chang CH, 2006, IEEE T KNOWL DATA EN, V18, P1411, DOI 10.1109/TKDE.2006.152 Dave K., 2003, PROCEEDINGS OF THE 1, P512 Diligenti M., 2002, PROC OF 11TH INTL WW Doan Son, 2004, PROCEEDINGS OF THE 4 Esuli A., PROCEEDINGS OF THE 5, P417 Hanhoon Kang, PROC OF THE INTERNAT Jaeyoung Yang, 2004, Intelligent Agents and Multi-Agent Systems. 7th Pacific Rim International Workshop on Multi-Agents, PRIMA 2004. Revised Selected Papers (Lecture Notes on Computer Science Vol.3371), P291 JawWon Hwang, 2008, Journal of KISS: Computing Practices, V14, P336 Kang H, 2009, LECT NOTES COMPUT SC, V5616, P359, DOI 10.1007/978-3-642-02713-0_38 Kim Seong-Whan., 2004, Proceedings of the 37th Hawaii International Conference on System Sciences 2004, P1 Kim Y, 2008, LECT NOTES COMPUT SC, V4993, P466 Kleiber J., 1998, PROC OF 9TH ACM SIAM Lempel R, 2000, COMPUT NETW, V33, P387, DOI 10.1016/S1389-1286(00)00034-7 Liao Ciya, ARTIFICIAL INTELLIGE Miao Q., 2008, Proceeding of the 17th ACM conference on Information and knowledge management, CIKM '08. New York, NY, P1369, DOI DOI 10.1145/1458082.1458284 Miao QL, 2009, EXPERT SYST APPL, V36, P7192, DOI 10.1016/j.eswa.2008.09.035 Pang B, 2002, PROCEEDINGS OF THE 2002 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING, P79, DOI 10.3115/1118693.1118704 Popescu Ana-Maria, 2005, P C HUM LANG TECHN E, P339, DOI DOI 10.3115/1220575.1220618 Rafiei D., 2000, PROC OF THE 9TH INTL Shang WQ, 2007, EXPERT SYST APPL, V33, P1, DOI 10.1016/j.eswa.2006.04.001 SODERLAND S, 1999, MACHINE LEARNING Su Q, 2006, LECT NOTES ARTIF INT, V4285, P22 Turney PD, 2002, 40TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, PROCEEDINGS OF THE CONFERENCE, P417 NR 31 TC 0 Z9 0 U1 0 U2 1 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA BN 978-89-88678-55-8 PY 2012 BP 155 EP 162 PG 8 WC Computer Science, Theory & Methods; Engineering, Electrical & Electronic WE Conference Proceedings Citation Index - Science (CPCI-S) SC Computer Science; Engineering GA BCC83 UT WOS:000309767600031 DA 2024-09-05 ER PT J AU Zwilling, M Eckhaus, E AF Zwilling, Moti Eckhaus, Eyal TI Do managers learn more about successful project management methods from articles in high impact factor journals? SO HUMAN SYSTEMS MANAGEMENT LA English DT Article DE Project management; project procedures; prospect theory; project management decision making; machine learning ID PERFORMANCE; BENCHMARKING; FRAMEWORK; EDUCATION; SYSTEM; IMPROVEMENT; RISKS AB BACKGROUND: In recent years, the need to develop performance-based measurement systems to improve project management outcomes has dramatically increased. Managers still take various risks during the course of managing projects which lead to ineffective decision making. A range of theories discuss such behaviors. These theories demonstrate that the discussion of risk embedded in non-optimal decision-making processes is based on theory rather than practical knowledge. However, various components of project management can be derived from academic best practices for decision making. OBJECTIVE: The study aims to explore whether articles in high impact journals tend to embody practical, rather than theoretical, knowledge thus closing the gap between academia and industry. The study is based on SEM and various machine learning classification methods. METHOD: The study was conducted using an NLP analysis of 1461 academic journals in the field of project management. RESULTS: Results show a significant positive relationship between the success of projects and the impact of new practical procedures. In contrast, a negative correlation was found between theories that use non-practical processes of effective project management. CONCLUSION: Managers can learn about newmethods for project management from articles in high impact factor journals. C1 [Zwilling, Moti; Eckhaus, Eyal] Ariel Univ, Dept Econ & Business Adm, Ramat Hagolan 65 St, Ariel, Israel. C3 Ariel University RP Zwilling, M (corresponding author), Ariel Univ, Dept Econ & Business Adm, Ramat Hagolan 65 St, Ariel, Israel. EM motiz@ariel.ac.il RI Eckhaus, Eyal/AAX-2557-2020; Zwilling, Moti/AAD-3965-2020 OI Eckhaus, Eyal/0000-0002-1815-0045; Zwilling, Moti/0000-0001-7628-8889 CR Alarcon LF, 1996, J CONSTR ENG M ASCE, V122, P265, DOI 10.1061/(ASCE)0733-9364(1996)122:3(265) Allen I.E, 2010, CLASS DIFFRENCES ONL Andersen ES, 2009, PROJ MANAG J, V40, P19, DOI 10.1002/pmj.20096 [Anonymous], 2009, ABAC J [Anonymous], 2000, Project Management Journal Atkinson R., 1999, Internaltional Journal of Project Management, V17, P337, DOI DOI 10.1016/S0263-7863(98)00069-6 Badewi A, 2016, INT J PROJ MANAG, V34, P761, DOI 10.1016/j.ijproman.2015.05.005 Barberis N, 2003, HDB EC FINANCE ASURV Bentham H., 2013, Journal of Teacher Education of Sustainability, V15, P25 Boiangiu CA, 2019, EDUC SCI, V9, DOI 10.3390/educsci9010026 Bornmann L, 2019, SCIENTOMETRICS, V120, P841, DOI 10.1007/s11192-019-03140-w Caramidaru I, 2020, HUM SYST MANAGE, V39, P529, DOI 10.3233/HSM-201039 Cha HS, 2018, KSCE J CIV ENG, V22, P1614, DOI 10.1007/s12205-017-0156-2 Chan TK, 2009, CONSTR MANAG ECON, V27, P1231, DOI 10.1080/01446190903233137 Chen CY, 2011, J SYST SOFTWARE, V84, P479, DOI 10.1016/j.jss.2010.10.042 Dang A., 2016, P COLING 2016 26 INT, P3553 Davidovitch N., 2018, Higher Education Studies, V8, P92, DOI [https://doi.org/10.5539/hes.v8n2p92, DOI 10.5539/HES.V8N2P92] Devedzic V, 2011, IEEE T EDUC, V54, P273, DOI 10.1109/TE.2010.2052104 Djikhy S, 2019, HUM SYST MANAGE, V38, P423, DOI 10.3233/HSM-190614 Eckhaus E, 2018, E J SOCIAL BEHAV RES, V9, P1 Eckhaus E, 2017, BUS MANAGE ED, V15, P42, DOI 10.3846/bme.2017.345 Eckhaus E, 2018, RISK MANAG-UK, V20, P304, DOI 10.1057/s41283-018-0037-0 Eckhaus E, 2019, J GENDER STUD, V28, P97, DOI 10.1080/09589236.2017.1411789 Eckhaus E, 2018, TRAMES-J HUMANIT SOC, V22, P273, DOI 10.3176/tr.2018.3.04 Eskerod P, 2009, PROJ MANAG J, V40, P4, DOI 10.1002/pmj.20098 Flores NH, 2016, PROCD SOC BEHV, V228, P436, DOI 10.1016/j.sbspro.2016.07.067 Globerson S, 2009, PROJECT MANAGEMENT P Haponava T, 2012, J MANAGE ENG, V28, P140, DOI 10.1061/(ASCE)ME.1943-5479.0000078 Herroelen W, 2001, J OPER MANAG, V19, P559, DOI 10.1016/S0272-6963(01)00054-7 Hwang BG, 2008, CONSTR MANAG ECON, V26, P177, DOI 10.1080/01446190701802398 KAPLAN RS, 1984, ACCOUNT REV, V59, P390 Kirasich K., 2018, SMU Data Sci. Rev., V1, P9 Kumar A, 2015, REBRIEF Kwak YH, 2009, PROJ MANAG J, V40, P94, DOI 10.1002/pmj.20111 Lee SH, 2005, J CONSTR ENG M ASCE, V131, P790, DOI 10.1061/(ASCE)0733-9364(2005)131:7(790) LEMA NM, 1995, J MANAGE ENG, V11, P28, DOI 10.1061/(ASCE)0742-597X(1995)11:1(28) Mandrekar JN, 2010, J THORAC ONCOL, V5, P1315, DOI 10.1097/JTO.0b013e3181ec173d Matarese V, 2010, ANN I SUPER SANITA, V46, P451, DOI 10.4415/ANN_10_04_14 McCoach DB, 2013, INSTRUMENT DEVELOPMENT IN THE AFFECTIVE DOMAIN: SCHOOL AND CORPORATE APPLICATIONS, THIRD EDITION, P109, DOI 10.1007/978-1-4614-7135-6_4 Medagoda N, 2015, 2015 12TH INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS AND KNOWLEDGE DISCOVERY (FSKD), P1418, DOI 10.1109/FSKD.2015.7382152 Meneghini R, 2008, PLOS ONE, V3, DOI 10.1371/journal.pone.0003804 Mengel T, 2009, PROJ MANAG J, V40, P28, DOI 10.1002/pmj.20097 Mir FA, 2014, INT J PROJ MANAG, V32, P202, DOI 10.1016/j.ijproman.2013.05.012 Moeini M, 2019, MIS QUART, V43, P475, DOI 10.25300/MISQ/2019/14505 Ozorhon B, 2011, J CONSTR ENG M ASCE, V137, P403, DOI 10.1061/(ASCE)CO.1943-7862.0000314 Panda RM, 2017, ECOL EVOL, V7, P10850, DOI 10.1002/ece3.3569 Pereira Suzanne, 2008, AMIA Annu Symp Proc, P586 Petroutsatou K, 2019, INT J CONSTR MANAG, DOI 10.1080/15623599.2019.1619225 Popescu S, 2020, HUM SYST MANAGE, V39, P511, DOI 10.3233/HSM-201034 Radygin VY, 2017, AIP CONF PROC, V1797, DOI 10.1063/1.4972435 Rand G.K., 2000, International Journal of Project Management, V18, P173, DOI [10.1016/S0263-7863(99)00019-8, DOI 10.1016/S0263-7863(99)00019-8, https://doi.org/10.1016/S0263-7863(99)00019-8] Razavi AH, 2014, J INTELL INF SYST, V42, P393, DOI 10.1007/s10844-013-0273-4 Ritter JR., 2003, PACIFIC BASIN FINANC, V11, P429, DOI [10.1016/S0927-538X(03)00048-9, DOI 10.1016/S0927-538X(03)00048-9] Machado TCS, 2015, INT T OPER RES, V22, P287, DOI 10.1111/itor.12078 Seglen PO, 1997, BRIT MED J, V314, P498 Serra CEM, 2015, INT J PROJ MANAG, V33, P53, DOI 10.1016/j.ijproman.2014.03.011 Sobel M.E., 1982, SOCIOLOGICAL METHODO, P290 Tahmoush D, FECS 2009, P135 Tereso A, 2019, PROJ MANAG J, V50, P6, DOI 10.1177/8756972818810966 Vasconcelos SMR, 2008, EMBO REP, V9, P700, DOI 10.1038/embor.2008.143 Yang Y, 2018, HUM SYST MANAGE, V37, P333, DOI 10.3233/HSM-17136 Yu I, 2007, J MANAGE ENG, V23, P131, DOI 10.1061/(ASCE)0742-597X(2007)23:3(131) Zhai L, 2009, PROJ MANAG J, V40, P99, DOI 10.1002/pmj.20099 Zhu W., 2010, NESUG proceedings: health care and life sciences NR 64 TC 0 Z9 0 U1 0 U2 21 PU IOS PRESS PI AMSTERDAM PA NIEUWE HEMWEG 6B, 1013 BG AMSTERDAM, NETHERLANDS SN 0167-2533 EI 1875-8703 J9 HUM SYST MANAGE JI Hum. Syst. Manag. PY 2022 VL 41 IS 1 BP 119 EP 141 DI 10.3233/HSM-211194 PG 23 WC Management WE Emerging Sources Citation Index (ESCI) SC Business & Economics GA YU8KK UT WOS:000752285400009 DA 2024-09-05 ER PT C AU Kehoe, AK Torvik, VI AF Kehoe, Adam K. Torvik, Vetle I. GP IEEE TI Predicting Medical Subject Headings Based on Abstract Similarity and Citations to MEDLINE Records SO 2016 IEEE/ACM JOINT CONFERENCE ON DIGITAL LIBRARIES (JCDL) SE ACM-IEEE Joint Conference on Digital Libraries JCDL LA English DT Proceedings Paper CT 16th ACM/IEEE-CS Joint Conference on Digital Libraries (JCDL) CY JUN 19-23, 2016 CL Newark, NJ DE Controlled vocabularies; Medical subject headings; Machine Learning; Curation of bibliographic databases ID MESH; ASSIGNMENT AB We describe a classifier-enhanced nearest neighbor approach to assigning Medical Subject Headings (MeSH (R)) to unlabeled documents using a combination of abstract similarities and direct citations to labeled MEDLINE records. The approach frames the classification problem by decomposing it into sets of siblings in the MeSH hierarchy (e.g., training a classifier for predicting "Heterocyclic Compounds, 2-Ring" vs. other "Heterocyclic Compounds"). Preliminary experiments using a small but diverse set of MeSH terms shows the highest performance when using both abstracts and citations compared to each alone, and coupled with a non-naive classifier: 90+% precision and recall with 10-fold cross-validation. NLM's Medical Text Indexer (MTI) tool achieves similar overall performance but varies more across the terms tested. For example, MTI performs better on "Heterocyclic Compounds, 2-Ring", while our approach performs better on Alzheimer Disease and Neuroimaging. Our approach can be applied broadly to documents with abstracts that are similar to (or cite) MEDLINE abstracts, which would help linking and searching across bibliographic databases beyond MEDLINE. C1 [Kehoe, Adam K.; Torvik, Vetle I.] Univ Illinois, Grad Sch Lib & Informat Sci, Champaign, IL 61801 USA. C3 University of Illinois System; University of Illinois Urbana-Champaign RP Kehoe, AK (corresponding author), Univ Illinois, Grad Sch Lib & Informat Sci, Champaign, IL 61801 USA. EM kehoe2@illinois.edu; vtorvik@illinois.edu RI Torvik, Vetle I/A-2327-2008 OI Torvik, Vetle/0000-0002-0035-1850 CR Agarwal S., Patci: A probabilistic citation matcher Huang ML, 2011, J AM MED INFORM ASSN, V18, P660, DOI 10.1136/amiajnl-2010-000055 Kim W, 2001, J AM MED INFORM ASSN, P319 Mork J.G., 2013, CEUR WORKSHOP PROC Mork JG., 2014, Working Notes for Conference and Labs of the Evaluation Forum 2014, P1328 Ruch P, 2006, BIOINFORMATICS, V22, P658, DOI 10.1093/bioinformatics/bti783 Sohn S, 2008, J AM MED INFORM ASSN, V15, P546, DOI 10.1197/jamia.M2431 Torvik V.I., Absim: A tool for calculating bm25 similarity among pairs of abstracts in pubmed Trieschnigg D, 2009, BIOINFORMATICS, V25, P1412, DOI 10.1093/bioinformatics/btp249 Wahle Manuel, 2012, AMIA Annu Symp Proc, V2012, P940 Wilbur W John, 2014, AMIA Annu Symp Proc, V2014, P1198 NR 11 TC 2 Z9 3 U1 0 U2 6 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA SN 2575-7865 EI 2575-8152 BN 978-1-4503-4229-2 J9 ACM-IEEE J CONF DIG PY 2016 BP 167 EP 170 DI 10.1145/2910896.2910920 PG 4 WC Computer Science, Interdisciplinary Applications WE Conference Proceedings Citation Index - Science (CPCI-S) SC Computer Science GA BG5HY UT WOS:000389502300026 DA 2024-09-05 ER PT C AU Zhang, HY Zhang, J Liu, XC Yan, GH Liu, YZ AF Zhang, Hongyuan Zhang, Jing Liu, Xuecheng Yan, Guohui Liu, Yanzhao BE Jinhui, L Hualong, H TI Research on method of health assessment about the destruction equipment for high-risk hazardous chemical waste SO SEVENTH INTERNATIONAL CONFERENCE ON WASTE MANAGEMENT AND TECHNOLOGY (ICWMT 7) SE Procedia Environmental Sciences LA English DT Proceedings Paper CT 7th International Conference on Waste Management and Technology (ICWMT) CY SEP 05-07, 2012 CL Beijing, PEOPLES R CHINA DE health status; destruc*tion equipment; high-risk hazardous chemical wastes; Bayesian Networks; health assessment AB The destroying tasks of high-risk hazardous chemical waste have a strict request to the health status of destruction equipment. The paper proposes the health status classification method based on time between failures for the destruction of equipment, set up health status assessment model based on Time-varying Bayesian Networks and the time slice, which can take advantage of history fault information and health status monitoring indicator information to health status assessment for the destruction equipment, and which provides a reliable and safe evaluation method. (C) 2012 Selection and/or peer-review under responsibility of Basel Convention Coordinating Centre for Asia and the Pacific and National Center of Solid Waste Management, Ministry of Environmental Protection of China. C1 [Zhang, Hongyuan; Zhang, Jing; Liu, Xuecheng; Yan, Guohui; Liu, Yanzhao] Inst Chem Def CPLA, Beijing 102205, Peoples R China. [Zhang, Hongyuan] Sch Automat Sci & Elect Engn BUAA, Beijing 100083, Peoples R China. C3 Research Institute of Chemical Defense - China; Beihang University RP Zhang, J (corresponding author), Inst Chem Def CPLA, Beijing 102205, Peoples R China. EM zhybeijing@sina.com RI Chen, Liang/JXX-7887-2024 CR Bing Guangfu, 2010, THEORY PRACTICE SYST, V30 Bobbio A, 1999, LECT NOTES COMPUT SC, V1698, P310 Chen Xiaotong, 2005, REL PRACT GUID, P7 Jia Yunxian, RELIABILITY BASED MA People's Liberation Army General Armament Department, 1999, GJB Z108 NONW STAT E People's Liberation Army General Armament Department, 1999, GJB Z 299B 98 EXP RE Shukla CS, 2001, INT J ADV MANUF TECH, V18, P422, DOI 10.1007/s001700170052 Wang Guangyan, 2004, THEORY PRACTICE SYST, P76 Wang Guoping, 2004, Journal of System Simulation, V16, P963 [吴波 Wu BO], 2009, [计算机测量与控制, Computer Measurement & Control], V17, P2345 NR 10 TC 2 Z9 4 U1 1 U2 9 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA SARA BURGERHARTSTRAAT 25, PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1878-0296 J9 PROCEDIA ENVIRON SCI PY 2012 VL 16 BP 192 EP 201 DI 10.1016/j.proenv.2012.10.027 PG 10 WC Environmental Sciences WE Conference Proceedings Citation Index - Science (CPCI-S) SC Environmental Sciences & Ecology GA BDN49 UT WOS:000314024400026 OA gold DA 2024-09-05 ER PT J AU Ortega, JL AF Luis Ortega, Jose TI Disciplinary differences of the impact of altmetric SO FEMS MICROBIOLOGY LETTERS LA English DT Article DE altmetrics; disciplinary differences; principal component analysis (PCA); PlumX; Crossref; citations ID CITATION; MENDELEY; READERSHIP; TWITTER; METRICS; TWEETS; USAGE AB The main objective of this work was to group altmetric indicators according to their relationships and detect disciplinary differences with regard to altmetric impact in a set of 3793 research articles published in 2013. Three of the most representative altmetric providers (Altmetric, PlumX and Crossref Event Data) and Scopus were used to extract information about these publications and their metrics. Principal component analysis was used to summarize the information on these metrics and detect groups of indicators. The results show that these metrics can be grouped into three components: social media, gathering metrics from social networks and online media; usage, including metrics on downloads and views; and citations and saves, grouping metrics related to research impact and saves in bookmarking sites. With regard to disciplinary differences, articles in the General category attract more attention from social media, Social Sciences articles have higher usage than Physical Sciences, and General articles are more cited and saved than Health Sciences and Social Sciences articles. C1 [Luis Ortega, Jose] CSIC, Cybermetr Lab, Serrano 113, Madrid 2006, Spain. C3 Consejo Superior de Investigaciones Cientificas (CSIC) RP Ortega, JL (corresponding author), CSIC, Cybermetr Lab, Serrano 113, Madrid 2006, Spain. EM jortega@orgc.csic.es OI Ortega, Jose Luis/0000-0001-9857-1511 CR [Anonymous], METRICS 2011 [Anonymous], RESEARCHGATE [Anonymous], BIBLIOMETRIE PRAXIS [Anonymous], J AESTHET ART CRITIC Bollen J, 2009, PLOS ONE, V4, DOI 10.1371/journal.pone.0006022 Bornmann L, 2016, J INFORMETR, V10, P776, DOI 10.1016/j.joi.2016.04.015 Bornmann L, 2015, SCIENTOMETRICS, V103, P1123, DOI 10.1007/s11192-015-1565-y Costas R, 2015, J ASSOC INF SCI TECH, V66, P2003, DOI 10.1002/asi.23309 Ellison N.B., 2013, SOCIALITY SOCIAL NET, DOI [10.1093/oxfordhb/9780199589074.001.0001, DOI 10.1093/OXFORDHB/9780199589074.013.0008] Gorraiz J, 2014, SCIENTOMETRICS, V101, P1077, DOI 10.1007/s11192-014-1271-1 Haustein S, 2014, J ASSOC INF SCI TECH, V65, P656, DOI 10.1002/asi.23101 Li XM, 2012, SCIENTOMETRICS, V91, P461, DOI 10.1007/s11192-011-0580-x Liu CL, 2013, J MED INTERNET RES, V15, DOI 10.2196/jmir.2707 Ortega JL, 2017, ASLIB J INFORM MANAG, V69, P674, DOI 10.1108/AJIM-02-2017-0055 Ortega J, 2016, SCIENTOMETRICS, V109, P1353, DOI 10.1007/s11192-016-2113-0 Ortega JL, 2015, ONLINE INFORM REV, V39, P520, DOI 10.1108/OIR-03-2015-0093 Maflahi N, 2016, J ASSOC INF SCI TECH, V67, P191, DOI 10.1002/asi.23369 Murdough Chris., 2009, J INTERACTIVE ADVERT, V10, P94, DOI [DOI 10.1080/15252019.2009.10722165, 10.1080/15252019.2009.10722165] Ortega JL, 2016, CHANDOS INF PROF SER, P1 Paroutis S, 2009, J KNOWL MANAG, V13, P52, DOI 10.1108/13673270910971824 Schloegl C, 2011, J AM SOC INF SCI TEC, V62, P161, DOI 10.1002/asi.21420 Schloegl C, 2010, SCIENTOMETRICS, V82, P567, DOI 10.1007/s11192-010-0172-1 Shema H, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0035869 Tattersall A., 2016, Altmetrics: A practical guide for librarians, researchers and academics Thelwall M, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0064841 Torres-Salinas D, 2017, SCIENTOMETRICS, V113, P1371, DOI 10.1007/s11192-017-2539-z Vaughan L, 2017, SCIENTOMETRICS, V111, P1533, DOI 10.1007/s11192-017-2308-z Wan JK, 2010, SCIENTOMETRICS, V82, P555, DOI 10.1007/s11192-010-0171-2 Zahedi Z., 2015, 2015 ALTM WORKSH AMS Zahedi Z, 2017, J ASSOC INF SCI TECH, V68, P2511, DOI 10.1002/asi.23883 Zahedi Z, 2014, SCIENTOMETRICS, V101, P1491, DOI 10.1007/s11192-014-1264-0 NR 31 TC 25 Z9 25 U1 2 U2 49 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0378-1097 EI 1574-6968 J9 FEMS MICROBIOL LETT JI FEMS Microbiol. Lett. PD APR PY 2018 VL 365 IS 7 AR fny049 DI 10.1093/femsle/fny049 PG 6 WC Microbiology WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Microbiology GA GP7TA UT WOS:000441110500013 PM 29518193 OA Bronze, Green Published DA 2024-09-05 ER PT C AU Ma, YJ Hou, YY Liu, YS Xue, YH AF Ma, Yongjun Hou, Yangyang Liu, Yushan Xue, Yonghao GP IEEE TI Research of Food Safety Risk Assessment Methods based on Big Data SO PROCEEDINGS OF 2016 IEEE INTERNATIONAL CONFERENCE ON BIG DATA ANALYSIS (ICBDA) LA English DT Proceedings Paper CT IEEE International Conference on Big Data Analysis (ICBDA) CY MAR 12-14, 2016 CL Hangzhou, PEOPLES R CHINA DE Big Data; Food Safety Risk Assessment; The cascade SVM AB The risk of food safety is serious in China, there are more and more food safety problems involving complex application of big data. The food safety risk assessment under the background of big data is an important issue. The paper takes dairy productions as an example to explain a method of dairy productions risk assessment using parallel support vector machine in the big data platform. We establish big data platform firstly, parallel the cascade support vector machine in the big data platform to obtain the assessment model secondly and get assessment results by data process according to the features of real-time data at last. The results of experiments show that big data platform can process dairy productions big data real-time. The accuracy of dairy productions safety assessment has improved. C1 [Ma, Yongjun; Hou, Yangyang; Liu, Yushan; Xue, Yonghao] Tianjin Univ Sci & Technol, Coll Comp Sci & Informat Engn, Tianjin, Peoples R China. C3 Tianjin University Science & Technology RP Ma, YJ (corresponding author), Tianjin Univ Sci & Technol, Coll Comp Sci & Informat Engn, Tianjin, Peoples R China. EM yjma@tust.edu.cn RI Liu, YuShan/KRO-9598-2024 OI Liu, YuShan/0009-0001-6470-7879 CR [Anonymous], 2012, Hadoop: The definitive guide Chongming Wu, 2009, Proceedings of the 2009 Sixth International Conference on Fuzzy Systems and Knowledge Discovery (FSKD 2009), P551, DOI 10.1109/FSKD.2009.784 Collobert R, 2002, NEURAL COMPUT, V14, P1105, DOI 10.1162/089976602753633402 Gong Xia-yi, 2014, Journal of System Simulation, V26, P489 Graf H.P., 2004, NIPS Li Z.W., 2005, J HARBIN ENG U, V26, P643 Qi Li, 2010, Proceedings 10th International Conference on Intelligent Systems Design and Applications (ISDA 2010), P1131, DOI 10.1109/ISDA.2010.5687033 Saradadevi M, 2008, INT J COMPUT SCI NET, V8, P183 Zhang P.X., 2014, RES SANDSTORM METEOR [张巍 Zhang Wei], 2013, [计算机科学, Computer Science], V40, P69 NR 10 TC 1 Z9 1 U1 1 U2 13 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA BN 978-1-4673-9591-5 PY 2016 BP 142 EP 146 PG 5 WC Computer Science, Information Systems; Engineering, Electrical & Electronic WE Conference Proceedings Citation Index - Science (CPCI-S) SC Computer Science; Engineering GA BG6HN UT WOS:000390299100028 DA 2024-09-05 ER PT J AU Qin, W Lin, QN AF Qin, Wei Lin, Qingna TI Research on the Fusion Model of Professional Vocal Music Performance Voice Care and Artificial Intelligence Technology in Intelligent Medical Treatment SO WIRELESS COMMUNICATIONS & MOBILE COMPUTING LA English DT Article AB Intelligent medical treatment is an important research field in today's world. Artificial intelligence technology is the key factor to construct intelligent medical treatment. In the development of artificial intelligence technology, it is necessary to establish a scientific, systematic, and comprehensive system analysis model, inevitably with certain professional characteristics. At present, in the research of vocal health care in professional vocal music performance, the application of intelligent medical care and vocal health care in professional vocal music performance is studied. According to the DEMATEL-ISM research method, this paper constructs 4 internal and external factors and 16 influencing factors to build a comprehensive and systematic weight analysis model, which provides a theoretical and practical basis for the scientific construction of AI technology algorithms. The aim is to improve the value and research significance of intelligent medical artificial intelligence technology in professional vocal music performance sound care. C1 [Qin, Wei; Lin, Qingna] Chongqing Univ Posts & Telecommun, Chongqing South Bank, Chongqing 400065, Peoples R China. C3 Chongqing University of Posts & Telecommunications RP Lin, QN (corresponding author), Chongqing Univ Posts & Telecommun, Chongqing South Bank, Chongqing 400065, Peoples R China. EM qinwei@cqupt.edu.cn; linqn@cqupt.edu.cn OI qin, wei/0000-0001-6598-327X FU Chongqing Natural Science Foundation (Postdoctoral Fund) Project: Development and Research of Interactive Accurate Evaluation Platform for Professional Solfeggio Training Based on Reinforcement Learning [cstc2021jcyj-bsh0202] FX This work was financially supported by the Chongqing Natural Science Foundation (Postdoctoral Fund) Project: Development and Research of Interactive Accurate Evaluation Platform for Professional Solfeggio Training Based on Reinforcement Learning (No. cstc2021jcyj-bsh0202, host: Qin Wei). CR [Anonymous], 2016, Nurs Outlook, V64, P103 Arunachalam R, 2014, J VOICE, V28, DOI 10.1016/j.jvoice.2013.08.003 Baird BJ, 2020, J VOICE, V34, DOI 10.1016/j.jvoice.2018.10.003 Bartlett I, 2017, J VOICE, V31, DOI 10.1016/j.jvoice.2016.04.003 Chen Y., 2018, BASIC THEORY VOCAL M, V6 Devadas U, 2020, J VOICE, V34, DOI 10.1016/j.jvoice.2018.09.013 Feng C., 2020, NO MUSIC, V9, P78 Flavia Z.A., 2021, J VOICE, V35, P17 García M, 2017, J VOICE, V31, DOI 10.1016/j.jvoice.2016.08.007 Gebhardt R. M., 2016, VOICE YELLOW RIVER Gunjawate DR, 2017, J VOICE, V31, DOI 10.1016/j.jvoice.2016.06.022 Kun X., 2012, GRAND STAGE, V12, P190 Tepe ES, 2002, J VOICE, V16, P244, DOI 10.1016/S0892-1997(02)00093-0 NR 13 TC 1 Z9 1 U1 4 U2 17 PU WILEY-HINDAWI PI LONDON PA ADAM HOUSE, 3RD FL, 1 FITZROY SQ, LONDON, WIT 5HE, ENGLAND SN 1530-8669 EI 1530-8677 J9 WIREL COMMUN MOB COM JI Wirel. Commun. Mob. Comput. PD MAY 9 PY 2022 VL 2022 AR 2947554 DI 10.1155/2022/2947554 PG 7 WC Computer Science, Information Systems; Engineering, Electrical & Electronic; Telecommunications WE Science Citation Index Expanded (SCI-EXPANDED) SC Computer Science; Engineering; Telecommunications GA 1Q6SK UT WOS:000802814700031 OA gold DA 2024-09-05 ER PT C AU Mariani, J Francopoulo, G Paroubek, P Vernier, F AF Mariani, Joseph Francopoulo, Gil Paroubek, Patrick Vernier, Frederic GP IEEE TI REDISCOVERING 50 YEARS OF DISCOVERIES IN SPEECH AND LANGUAGE PROCESSING: A SURVEY. SO 2017 20TH CONFERENCE OF THE ORIENTAL CHAPTER OF THE INTERNATIONAL COORDINATING COMMITTEE ON SPEECH DATABASES AND SPEECH I/O SYSTEMS AND ASSESSMENT (O-COCOSDA) LA English DT Proceedings Paper CT 20th Conference of the Oriental-Chapter-of-the-International-Coordinating-Committee-on-Speech-D atabases-and-Speech-I/O-Systems-and-Assessment (O-COCOSDA) CY NOV 01-03, 2017 CL Seoul, SOUTH KOREA DE Speech Processing; Natural Language Processing; Text Analytics; Bibliometrics; Scientometrics; Informetrics AB We have created the NLP4NLP corpus to study the content of scientific publications in the field of speech and natural language processing. It contains articles published in 34 major conferences and journals in that field over a period of 50 years (1965-2015). comprising 65.000 documents. gathering 50.000 authors. including 325.000 references and representing approximately 270 million words. Most of these publications are in English. some are in French. German or Russian. Some are open access. others have been provided by the publishers. In order to constitute and analyze this corpus several tools have been used or developed. Some of them use Natural Language Processing methods that have been published in the corpus. hence its name. Numerous manual corrections were necessary. which demonstrated the importance of establishing standards for uniquely identifying authors. publications or resources. We have conducted various studies: evolution over time of the number of articles and authors. collaborations between authors. citations between papers and authors. evolution of research themes and identification of the authors who introduced them. measure of innovation and detection of epistemological ruptures. use of language resources. reuse of articles and plagiarism in the context of a global or comparative analysis between sources. C1 [Mariani, Joseph; Paroubek, Patrick; Vernier, Frederic] CNRS, LIMSI, Paris, France. [Francopoulo, Gil] Tagmatica, Paris, France. C3 Centre National de la Recherche Scientifique (CNRS); Universite Paris Saclay RP Mariani, J (corresponding author), CNRS, LIMSI, Paris, France. EM Joseph.Mariani@limsi.fr; gil.francopoulo@wanadoo.fr; pap@limsi.fr; frederic.vernier@limsi.fr CR [Anonymous], 2012, P ACL 2012 SPECIAL W [Anonymous], 1948, HUMAN ORG [Anonymous], P LANG RES EV C LREC [Anonymous], P ACL 2012 SPEC WORK Bavelas A, 1950, J ACOUST SOC AM, V57, P271, DOI DOI 10.1121/1.1906679 Drouin Patrick, 2004, P LANG RES EV C LREC Dunne C, 2012, J AM SOC INF SCI TEC, V63, P2351, DOI 10.1002/asi.22652 Francopoulo G., 2013, LMF Lexical Markup Framework Francopoulo Gil, 2015, WORKSH MIN COMP LING Francopoulo Gil, 2007, ICGL ING C GLOB INT Francopoulo Gil, 2015, 4 INT WORKSH MIN SCI Francopoulo Gil, 2015, D LIB, V21 FREEMAN LC, 1979, SOC NETWORKS, V1, P215, DOI 10.1016/0378-8733(78)90021-7 Fu Y, 2010, LREC 2010 - SEVENTH INTERNATIONAL CONFERENCE ON LANGUAGE RESOURCES AND EVALUATION, P3417 Gollapalli Sujatha Das, 2015, EMNLP VERSUS ACL ANA Hall David, 2008, P 2008 C EMP METH NA, P363, DOI DOI 10.3115/1613715.1613763 Ide Nancy, 2010, P 7 C INT LANG RES E Jha R, 2017, NAT LANG ENG, V23, P93, DOI 10.1017/S1351324915000443 Joerg Brigitte, 2012, 11 INT C CURR RES IN Karagoz Y., 2014, SPSS 21.1 Uygulamali Biyoistatistik Li H., 2006, P 15 INT C WORLD WID Mariani J, 2018, INT J DIGIT LIBRARIE, V19, P113, DOI 10.1007/s00799-017-0211-0 Mariani J, 2016, LANG RESOUR EVAL, V50, P165, DOI 10.1007/s10579-016-9352-9 Mariani Joseph, 1990, NOTES DOCUMENTS LIMS Mariani Joseph, 2014, P LREC 2014 26 31 MA Mariani Joseph, 2015, P L TC 2015 27 29 NO Mariani Joseph, 2013, P INT 2013 26 29 AUG Moro Andrea, 2014, T ACL Osborne F, 2013, INT SEM WEB C SYDN A Paul M, 2009, RECENT ADV NATURAL L Perin Charles, 2016, IEEE COMPUTER GRAPHI Radev DR, 2013, LANG RESOUR EVAL, V47, P919, DOI 10.1007/s10579-012-9211-2 Rochat Y., 2009, ASNA Tang J, 2008, P 14 INT C KNOWL DIS Witten IH, 2011, MOR KAUF D, P1 NR 35 TC 0 Z9 0 U1 0 U2 3 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA BN 978-1-5386-3333-5 PY 2017 PG 23 WC Computer Science, Interdisciplinary Applications; Engineering, Multidisciplinary; Engineering, Electrical & Electronic WE Conference Proceedings Citation Index - Science (CPCI-S) SC Computer Science; Engineering GA BM4XH UT WOS:000464400300001 DA 2024-09-05 ER PT J AU Thijs, B Glänzel, W AF Thijs, Bart Glanzel, Wolfgang TI The contribution of the lexical component in hybrid clustering, the case of four decades of "Scientometrics" SO SCIENTOMETRICS LA English DT Article DE Science mapping; Lexical similarity; Hybrid clustering; Natural Language Processing; Scientometrics ID INFORMATION AB The introduction of textual analysis and the use of lexical similarities already proved an important asset in science mapping. Earlier research showed the added value of hybrid document networks over link-based ones through the reduction of the extreme sparseness. However, it was only after the application of Natural Language Processing and phrase extraction that networks purely based on lexical similarities could be used as input for topic detection in quantitative science studies. This study investigates the contribution of the lexical component in hybrid cluster on a set of articles published in the journal Scientometrics since its foundation during four decades. Shifting the weight of the lexical components generates changes in the structure of the underlying hybrid network, which can be detected through clustering techniques. We show that these changes are not moving documents randomly, but in fact identify small groups of papers either at the borderline between different topics or combining those. In addition, the analysis substantiates that the lexical component adopts the structure of the network rather than amplifies hidden structures of the link-based network. C1 [Thijs, Bart; Glanzel, Wolfgang] Katholieke Univ Leuven, ECOOM, Louvain, Belgium. [Glanzel, Wolfgang] Katholieke Univ Leuven, Dept MSI, Louvain, Belgium. [Glanzel, Wolfgang] Lib Hungarian Acad Sci, Dept Sci Policy & Scientometr, Budapest, Hungary. C3 KU Leuven; KU Leuven; Hungarian Academy of Sciences RP Thijs, B (corresponding author), Katholieke Univ Leuven, ECOOM, Louvain, Belgium. EM bart.thijs@kuleuven.be; wolfgang.glanzel@kuleuven.be RI Glanzel, Wolfgang/AAE-4395-2021; Thijs, Bart CM/C-2995-2008; Glanzel, Wolfgang/A-6280-2008 OI Glanzel, Wolfgang/0000-0001-7529-5198 CR Blondel VD, 2008, J STAT MECH-THEORY E, DOI 10.1088/1742-5468/2008/10/P10008 Boyack KW, 2010, J AM SOC INF SCI TEC, V61, P2389, DOI 10.1002/asi.21419 CALLON M, 1991, SCIENTOMETRICS, V22, P155, DOI 10.1007/BF02019280 GARFIELD E, 1969, CC/LIFE SCI, V12, P4 Glänzel W, 2011, SCIENTOMETRICS, V88, P297, DOI 10.1007/s11192-011-0347-4 Glänzel W, 2017, SCIENTOMETRICS, V111, P1071, DOI 10.1007/s11192-017-2301-6 Glenisson P, 2005, INFORM PROCESS MANAG, V41, P1548, DOI 10.1016/j.ipm.2005.03.021 Good BH, 2010, PHYS REV E, V81, DOI 10.1103/PhysRevE.81.046106 Janssens F, 2008, SCIENTOMETRICS, V75, P607, DOI 10.1007/s11192-007-2002-7 Manning CD, 2014, PROCEEDINGS OF 52ND ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS: SYSTEM DEMONSTRATIONS, P55, DOI 10.3115/v1/p14-5010 Thijs B., 2017, MSI1703 FEB KU LEUV Thijs B, 2012, BIBLIOMETRIE PRAXIS, V1 TODOROV R, 1990, SCIENTOMETRICS, V19, P35, DOI 10.1007/BF02130464 NR 13 TC 7 Z9 7 U1 3 U2 51 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0138-9130 EI 1588-2861 J9 SCIENTOMETRICS JI Scientometrics PD APR PY 2018 VL 115 IS 1 BP 21 EP 33 DI 10.1007/s11192-018-2659-0 PG 13 WC Computer Science, Interdisciplinary Applications; Information Science & Library Science WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Computer Science; Information Science & Library Science GA FY4PT UT WOS:000426807700002 DA 2024-09-05 ER PT J AU Yao, JX Shepperd, M AF Yao, Jingxiu Shepperd, Martin TI The impact of using biased performance metrics on software defect prediction research SO INFORMATION AND SOFTWARE TECHNOLOGY LA English DT Article DE Software engineering; Machine learning; Software defect prediction; Computational experiment; Classification metrics ID CLASSIFICATION; REVIEWS AB Context: Software engineering researchers have undertaken many experiments investigating the potential of software defect prediction algorithms. Unfortunately some widely used performance metrics are known to be problematic, most notably F1, but nevertheless F1 is widely used. Objective: To investigate the potential impact of using F1 on the validity of this large body of research. Method: We undertook a systematic review to locate relevant experiments and then extract all pairwise comparisons of defect prediction performance using F1 and the unbiased Matthews correlation coefficient (MCC). Results: We found a total of 38 primary studies. These contain 12,471 pairs of results. Of these comparisons, 21.95% changed direction when the MCC metric is used instead of the biased F1 metric. Unfortunately, we also found evidence suggesting that F1 remains widely used in software defect prediction research. Conclusion: We reiterate the concerns of statisticians that the F1 is a problematic metric outside of an information retrieval context, since we are concerned about both classes (defect-prone and not defect-prone units). This inappropriate usage has led to a substantial number (more than one fifth) of erroneous (in terms of direction) results. Therefore we urge researchers to (i) use an unbiased metric and (ii) publish detailed results including confusion matrices such that alternative analyses become possible. C1 [Yao, Jingxiu] Beihang Univ, Beijing, Peoples R China. [Shepperd, Martin] Brunel Univ London, London, England. C3 Beihang University; Brunel University RP Shepperd, M (corresponding author), Brunel Univ London, London, England. EM JingxiuYao@buaa.edu.cn; martin.shepperd@brunel.ac.uk RI Shepperd, Martin/F-9683-2013; Yao, Jingxiu/HKE-8358-2023 OI Shepperd, Martin/0000-0003-1874-6145; Yao, Jingxiu/0000-0003-3742-9612 FU China Scholarship Council FX The authors wish to thank the reviewers and the editor for their helpful and constructive comments. They also thank the authors of the 38 primary studies included for providing sufficient information to make this analysis possible. We also wish to stress that our criticism of F1 does not mean we are criticising their papers. On the contrary, their foresight that alternative metrics to F1 are needed, has been invaluable. Jingxiu Yao wishes to acknowledge the support of the China Scholarship Council. CR Abaei G., 2018, J KING SAUD U COMPUT Al Dallal J, 2018, ARAB J SCI ENG, V43, P7153, DOI 10.1007/s13369-017-3012-2 Ali U., 2020, INT J MOD ED COMPUT, V12 Allison DB, 2016, NATURE, V530, P27, DOI 10.1038/530027a Amasaki S, 2020, EMPIR SOFTW ENG, V25, P1573, DOI 10.1007/s10664-019-09777-8 Amasaki S, 2018, PROMISE'18: PROCEEDINGS OF THE 14TH INTERNATIONAL CONFERENCE ON PREDICTIVE MODELS AND DATA ANALYTICS IN SOFTWARE ENGINEERING, P32, DOI 10.1145/3273934.3273938 [Anonymous], 1979, INFORM RETRIEVAL Antal G, 2021, TECHNOLOGIES, V9, DOI 10.3390/technologies9010003 Ayon SI, 2019, 2019 1 INT C ADV SCI, P1 Baldi P, 2000, BIOINFORMATICS, V16, P412, DOI 10.1093/bioinformatics/16.5.412 Bangash AA, 2020, EMPIR SOFTW ENG, V25, P5047, DOI 10.1007/s10664-020-09878-9 Bowes D., 2012, Proceedings of the 8th International Conference on Predictive Models in Software Engineering, P109, DOI DOI 10.1145/2365324.2365338 Bowes D., 2015, 11 ACM INT C PRED MO, P1 Bowes D, 2018, SOFTWARE QUAL J, V26, P525, DOI 10.1007/s11219-016-9353-3 Bowes D, 2014, AUTOMAT SOFTW ENG, V21, P287, DOI 10.1007/s10515-013-0129-8 Brown LD, 2001, STAT SCI, V16, P101, DOI 10.1214/ss/1009213286 Catal C, 2009, EXPERT SYST APPL, V36, P7346, DOI 10.1016/j.eswa.2008.10.027 Chen H., 2020, IEEE T SOFTW ENG COHEN J, 1994, AM PSYCHOL, V49, P997, DOI 10.1037/0003-066X.50.12.1103 Colquhoun D, 2014, ROY SOC OPEN SCI, V1, DOI 10.1098/rsos.140216 Donoho DL, 2009, COMPUT SCI ENG, V11, P8, DOI 10.1109/MCSE.2009.15 ELMORE RF, 1991, REV EDUC RES, V61, P293 Fawcett T, 2006, PATTERN RECOGN LETT, V27, P861, DOI 10.1016/j.patrec.2005.10.010 Felix EA, 2020, PLOS ONE, V15, DOI 10.1371/journal.pone.0229131 Fernández DM, 2019, EMPIR SOFTW ENG, V24, P1057, DOI 10.1007/s10664-019-09712-x Flach PA, 2015, ADV NEUR IN, V28 Garousi V, 2019, INFORM SOFTWARE TECH, V106, P101, DOI 10.1016/j.infsof.2018.09.006 Ge JX, 2018, 2018 19TH IEEE/ACIS INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING, ARTIFICIAL INTELLIGENCE, NETWORKING AND PARALLEL/DISTRIBUTED COMPUTING (SNPD), P399, DOI 10.1109/SNPD.2018.8441143 Gelman A, 2006, AM STAT, V60, P328, DOI 10.1198/000313006X152649 Gelman A, 2009, AM STAT, V63, P1, DOI 10.1198/tast.2009.0001 Gong LN, 2019, J SOFTW-EVOL PROC, V31, DOI 10.1002/smr.2172 Hall T, 2012, IEEE T SOFTWARE ENG, V38, P1276, DOI 10.1109/TSE.2011.103 Hand D, 2018, STAT COMPUT, V28, P539, DOI 10.1007/s11222-017-9746-6 Hand DJ, 2009, MACH LEARN, V77, P103, DOI 10.1007/s10994-009-5119-5 Herbold S., 2019, IEEE T SOFTW ENG Herbold S, 2018, IEEE T SOFTWARE ENG, V44, P811, DOI 10.1109/TSE.2017.2724538 Hosseini S, 2019, IEEE T SOFTWARE ENG, V45, P111, DOI 10.1109/TSE.2017.2770124 Iqbal A., 2020, International Journal of Modern Education Computer Science, V12, DOI [10.5815/ijmecs.2020.01.03, DOI 10.5815/IJMECS.2020.01.03] Jingxiu Yao, 2020, EASE2020. Proceedings of the Evaluation and Assessment in Software Engineering, P120, DOI 10.1145/3383219.3383232 Khoshgoftaar T. M., 1998, Empirical Software Engineering, V3, P275, DOI 10.1023/A:1009736205722 Son LH, 2019, SYMMETRY-BASEL, V11, DOI 10.3390/sym11020212 Lenarduzzi V, 2020, PROCEEDINGS OF THE 2020 IEEE 27TH INTERNATIONAL CONFERENCE ON SOFTWARE ANALYSIS, EVOLUTION, AND REENGINEERING (SANER '20), P501, DOI [10.1109/saner48275.2020.9054821, 10.1109/SANER48275.2020.9054821] Li N, 2020, INFORM SOFTWARE TECH, V122, DOI 10.1016/j.infsof.2020.106287 Luque A, 2019, PATTERN RECOGN, V91, P216, DOI 10.1016/j.patcog.2019.02.023 Malhotra R, 2015, APPL SOFT COMPUT, V27, P504, DOI 10.1016/j.asoc.2014.11.023 Matloob F., 2019, INT J MOD ED COMPUT, V12, P14 Mittas N, 2015, INFORM SOFTWARE TECH, V57, P310, DOI 10.1016/j.infsof.2014.05.010 Morasca S, 2020, EMPIR SOFTW ENG, V25, P3977, DOI 10.1007/s10664-020-09861-4 Munafò MR, 2017, NAT HUM BEHAV, V1, DOI 10.1038/s41562-016-0021 Naseem R., 2020, COMPLEXITY 2020 NezhadShokouhi MM, 2020, J SUPERCOMPUT, V76, P602, DOI 10.1007/s11227-019-03051-w Niu L, 2020, NEURAL PROCESS LETT, V52, P2415, DOI 10.1007/s11063-020-10355-z Özakinci R, 2018, J SYST SOFTWARE, V144, P216, DOI 10.1016/j.jss.2018.06.025 Pan C, 2019, APPL SCI-BASEL, V9, DOI 10.3390/app9102138 Pandey SK, 2020, EXPERT SYST APPL, V144, DOI 10.1016/j.eswa.2019.113085 Pecorelli F, 2020, J SYST SOFTWARE, V169, DOI 10.1016/j.jss.2020.110693 Powers D, 2003, P 2003 INT C COGN SC Powers D M W, 2011, INT J MACH LEARN TEC, V2, P37 Rizwan S., 2017, P 2017 INT C SOFTWAR, P55, DOI DOI 10.1145/3178212.3178221 Rodriguez D., 2014, P 18 INT C EV ASS SO, P1 Schober P, 2018, ANESTH ANALG, V126, P1763, DOI 10.1213/ANE.0000000000002864 Shepperd M, 2019, LECT NOTES COMPUT SC, V11871, P102, DOI 10.1007/978-3-030-33607-3_12 Shepperd M, 2014, IEEE T SOFTWARE ENG, V40, P603, DOI 10.1109/TSE.2014.2322358 Shippey T, 2018, EUROMICRO CONF PROC, P239, DOI 10.1109/SEAA.2018.00047 Sokolova M, 2009, INFORM PROCESS MANAG, V45, P427, DOI 10.1016/j.ipm.2009.03.002 Sun YM, 2009, INT J PATTERN RECOGN, V23, P687, DOI 10.1142/S0218001409007326 Tian YL, 2020, 2020 IEEE 20TH INTERNATIONAL CONFERENCE ON SOFTWARE QUALITY, RELIABILITY, AND SECURITY (QRS 2020), P212, DOI 10.1109/QRS51102.2020.00038 Tong HN, 2020, APPL SCI-BASEL, V10, DOI 10.3390/app10228059 Tong HN, 2018, INFORM SOFTWARE TECH, V96, P94, DOI 10.1016/j.infsof.2017.11.008 Tran H., 2019, 2019 11 INT C KNOWL, P1 Wang S, 2013, IEEE T RELIAB, V62, P434, DOI 10.1109/TR.2013.2259203 Xu Z., 2020, J SYST SOFTWARE, V170 Xu Z, 2019, INFORM SOFTWARE TECH, V106, P182, DOI 10.1016/j.infsof.2018.10.004 Xuan X, 2015, 30TH ANNUAL ACM SYMPOSIUM ON APPLIED COMPUTING, VOLS I AND II, P1644, DOI 10.1145/2695664.2695959 YOUDEN WJ, 1950, BIOMETRICS, V6, P172, DOI 10.1002/1097-0142(1950)3:1<32::AID-CNCR2820030106>3.0.CO;2-3 Zhang F, 2016, EMPIR SOFTW ENG, V21, P2107, DOI 10.1007/s10664-015-9396-2 Zhang YW, 2020, J SYST SOFTWARE, V166, DOI 10.1016/j.jss.2020.110585 Zhao LC, 2019, IEEE ACCESS, V7, P7663, DOI 10.1109/ACCESS.2018.2889061 NR 78 TC 32 Z9 33 U1 1 U2 7 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS SN 0950-5849 EI 1873-6025 J9 INFORM SOFTWARE TECH JI Inf. Softw. Technol. PD NOV PY 2021 VL 139 AR 106664 DI 10.1016/j.infsof.2021.106664 EA JUN 2021 PG 14 WC Computer Science, Information Systems; Computer Science, Software Engineering WE Science Citation Index Expanded (SCI-EXPANDED) SC Computer Science GA US8LY UT WOS:000697678300007 OA Green Submitted DA 2024-09-05 ER PT J AU Wang, MY Jiao, SJ Zhang, JQ Zhang, XR Zhu, N AF Wang, Mingyang Jiao, Shijia Zhang, Jiaqi Zhang, Xiangrong Zhu, Na TI Identification High Influential Articles by Considering the Topic Characteristics of Articles SO IEEE ACCESS LA English DT Article DE Feature extraction; Bibliometrics; Task analysis; Semantics; Physics; Oncology; Neurology; High influential articles; topic characteristics; LDA; feature extraction ID CITATION COUNTS MEASURE; OPEN ACCESS; RESEARCH PERFORMANCE; SCHOLARLY ARTICLES; IMPACT; PUBLICATION; JOURNALS; USAGE; FIELD; COLLABORATION AB The topic of one article reflects its main semantic content, which is also the main guidance for researchers to choose reference literature. In order to explore whether the topic of an article will affect its citation trend in future, this paper establishes a machine learning framework to study the role of topic characteristics in the prediction of future high influential articles. Articles from four different disciplines are collected as experimental samples to verify whether the framework proposed in this paper can be applied to the prediction task in different disciplines. The Latent Dirichlet Allocation (LDA) is used to determine the topic characteristics of sample articles. LDA can map sample articles to current hot topics and generate the mapping probability of sample articles under different hot topics. The maximum mapping probability of the sample article under the hot topics is extracted as the topic feature of the article. Then the feature space for the prediction task is constructed by combining the topic feature and some bibliometrics indices of articles. Three feature selection algorithms, Fisher Score, Relief-F and Spectral Feature Selection (SPEC), are taken to select the important features in the feature space. The prediction performance of these features is finally tested by three classifiers, SVM, KNN and Bagging. The experimental results show that the topic characteristics of article, the early citation characteristics of article, and the reputation of the author are the key factors that determine whether an article can grow into a highly influential one. The important value of topic characteristics in articles' citation activities shows that the content of the article is an important factor in attracting more citations. C1 [Wang, Mingyang; Jiao, Shijia; Zhang, Jiaqi] Northeast Forestry Univ, Coll Informat & Comp Engn, Harbin 150040, Peoples R China. [Zhang, Xiangrong] Heilongjiang Inst Technol, Coll Econ & Business Adm, Harbin 150040, Peoples R China. [Zhu, Na] Harbin Univ, Lib, Harbin 150086, Peoples R China. C3 Northeast Forestry University - China; Heilongjiang Institute of Technology; Harbin University RP Wang, MY (corresponding author), Northeast Forestry Univ, Coll Informat & Comp Engn, Harbin 150040, Peoples R China. EM wmynefu@163.com RI wang, mingyang/KSM-1989-2024; zhang, jiaqi/JNR-7443-2023 OI zhang, jiaqi/0000-0001-8888-9542 FU National Natural Science Foundation of China [71473034, 717D1063]; Heilongjiang Provincial Natural Science Foundation of China [LH2019G001]; Financial Assistance from Postdoctoral Scientific Research Developmental Fund of Heilongjiang Province [LBH-Q16003]; Heilongjiang Province Art Planning Project: Research on Discipline Theme Evolution Based on Multi-source Data Fusion [2019C027] FX This work was supported in part by the National Natural Science Foundation of China under Grant 71473034 and Grant 717D1063, in part by the Heilongjiang Provincial Natural Science Foundation of China under Grant LH2019G001, in part by the Financial Assistance from Postdoctoral Scientific Research Developmental Fund of Heilongjiang Province under Grant LBH-Q16003, and in part by the Heilongjiang Province Art Planning Project: Research on Discipline Theme Evolution Based on Multi-source Data Fusion under Grant 2019C027. CR Adams J, 2005, SCIENTOMETRICS, V63, P567, DOI 10.1007/s11192-005-0228-9 Aksnes DW, 2003, RES EVALUAT, V12, P159, DOI 10.3152/147154403781776645 Amara N, 2015, SCIENTOMETRICS, V103, P489, DOI 10.1007/s11192-015-1537-2 Annalingam A, 2014, SPRINGERPLUS, V3, DOI 10.1186/2193-1801-3-140 [Anonymous], 2013, P ASIST ANN M [Anonymous], 2014, PROCEEDINGS OF THE 1 Antoniou GA, 2015, ANN VASC SURG, V29, P286, DOI 10.1016/j.avsg.2014.09.017 Asubiaro T, 2019, SCIENTOMETRICS, V120, P1261, DOI 10.1007/s11192-019-03157-1 Ayres I, 2000, J LEGAL STUD, V29, P427, DOI 10.1086/468081 Bai XM, 2017, INFORMATION, V8, DOI 10.3390/info8030073 Bai XM, 2016, PROCEEDINGS OF THE 25TH INTERNATIONAL CONFERENCE ON WORLD WIDE WEB (WWW'16 COMPANION), P9, DOI 10.1145/2872518.2889383 Bar-Ilan J, 2004, SCIENTOMETRICS, V59, P391, DOI 10.1023/B:SCIE.0000018540.33706.c1 Biscaro C, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0099502 Bornmann L, 2008, J DOC, V64, P45, DOI 10.1108/00220410810844150 Bornmann L, 2017, SCIENTOMETRICS, V110, P937, DOI 10.1007/s11192-016-2200-2 Bornmann L, 2014, J INFORMETR, V8, P581, DOI 10.1016/j.joi.2014.04.008 Bornmann L, 2013, J INFORMETR, V7, P562, DOI 10.1016/j.joi.2013.02.005 Bornmann L, 2010, J INFORMETR, V4, P83, DOI 10.1016/j.joi.2009.09.001 Bosquet C, 2013, SCIENTOMETRICS, V97, P831, DOI 10.1007/s11192-013-0996-6 Callaham M, 2002, JAMA-J AM MED ASSOC, V287, P2847, DOI 10.1001/jama.287.21.2847 Cerovsek T, 2014, J INFORMETR, V8, P147, DOI 10.1016/j.joi.2013.11.004 Chakraborty T, 2014, ACM-IEEE J CONF DIG, P351, DOI 10.1109/JCDL.2014.6970190 Chen PH, 2005, APPL STOCH MODEL BUS, V21, P111, DOI 10.1002/asmb.537 Chi PS, 2019, SCIENTOMETRICS, V120, P1461, DOI 10.1007/s11192-019-03168-y Chi PS, 2018, SCIENTOMETRICS, V116, P537, DOI 10.1007/s11192-018-2708-8 Jabbour CJC, 2013, SERIALS REV, V39, P93, DOI 10.1016/j.serrev.2013.03.001 Chuang KY, 2011, SCIENTOMETRICS, V87, P551, DOI 10.1007/s11192-011-0365-2 Collet F, 2014, STRATEG ORGAN, V12, P157, DOI 10.1177/1476127014530124 Didegah F, 2018, J ASSOC INF SCI TECH, V69, P832, DOI 10.1002/asi.23934 Didegah F, 2013, J AM SOC INF SCI TEC, V64, P1055, DOI 10.1002/asi.22806 Dong Y, 2015, WSDM'15: PROCEEDINGS OF THE EIGHTH ACM INTERNATIONAL CONFERENCE ON WEB SEARCH AND DATA MINING, P149, DOI 10.1145/2684822.2685314 Dorta-González P, 2014, J INFORMETR, V8, P406, DOI 10.1016/j.joi.2014.01.013 Falagas ME, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0049476 Farshad M., 2013, European Orthopaedics and Traumatology, V4, P125, DOI DOI 10.1007/S12570-013-0174-6 Fawcett T, 2006, PATTERN RECOGN LETT, V27, P861, DOI 10.1016/j.patrec.2005.10.010 Figuerola CG, 2017, SCIENTOMETRICS, V112, P1507, DOI 10.1007/s11192-017-2432-9 Fragkiadaki E, 2011, SCIENTOMETRICS, V86, P671, DOI 10.1007/s11192-010-0302-9 Frandsen TF, 2017, J ASSOC INF SCI TECH, V68, P1278, DOI 10.1002/asi.23746 Frandsen TF, 2013, J AM SOC INF SCI TEC, V64, P437, DOI 10.1002/asi.22785 Frosch DL, 2010, HEALTH PSYCHOL, V29, P555, DOI 10.1037/a0020750 Fu LD, 2010, SCIENTOMETRICS, V85, P257, DOI 10.1007/s11192-010-0237-1 Gargouri Y, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0013636 Ginsberg MD, 2012, STROKE, V43, P1695, DOI 10.1161/STROKEAHA.111.640235 Glänzel W, 2014, SCIENTOMETRICS, V101, P939, DOI 10.1007/s11192-014-1247-1 Glänzel W, 2016, SCIENTOMETRICS, V107, P857, DOI 10.1007/s11192-016-1870-0 Glänzel W, 2012, J AM SOC INF SCI TEC, V63, P1420, DOI 10.1002/asi.22643 HARGENS LL, 1990, SOC SCI RES, V19, P205, DOI 10.1016/0049-089X(90)90006-5 Haslam N, 2010, PSYCHOL REP, V106, P891, DOI 10.2466/PR0.106.3.891-900 Hastie T, 1996, IEEE T PATTERN ANAL, V18, P607, DOI 10.1109/34.506411 Hirsch JE, 2005, P NATL ACAD SCI USA, V102, P16569, DOI 10.1073/pnas.0507655102 Hu ZY, 2014, SCIENTOMETRICS, V100, P787, DOI 10.1007/s11192-014-1328-1 Huang H, 2012, J AM SOC INF SCI TEC, V63, P490, DOI 10.1002/asi.21707 Ingwersen P, 2014, SCIENTOMETRICS, V101, P1273, DOI 10.1007/s11192-014-1335-2 Jelodar H, 2019, MULTIMED TOOLS APPL, V78, P15169, DOI 10.1007/s11042-018-6894-4 Jonkers K, 2008, SCIENTOMETRICS, V77, P309, DOI 10.1007/s11192-007-1971-x Kim MC, 2015, SCIENTOMETRICS, V104, P239, DOI 10.1007/s11192-015-1595-5 Kononenko I., 1994, Machine Learning: ECML-94. European Conference on Machine Learning. Proceedings, P171 Korn F, 2001, IEEE T KNOWL DATA EN, V13, P96, DOI 10.1109/69.908983 Kousha K, 2017, J ASSOC INF SCI TECH, V68, P762, DOI 10.1002/asi.23694 Lamba M, 2019, SCIENTOMETRICS, V120, P477, DOI 10.1007/s11192-019-03137-5 Lee DH, 2019, SCIENTOMETRICS, V121, P1481, DOI 10.1007/s11192-019-03232-7 Li SC, 2018, IEEE ACCESS, V6, P17153, DOI 10.1109/ACCESS.2018.2817497 Li Z, 2008, SCIENTOMETRICS, V75, P97, DOI 10.1007/s11192-007-1838-1 Ling CX, 2003, LECT NOTES ARTIF INT, V2671, P329 Lira Rodrigo Pessoa Cavalcanti, 2014, Rev. bras.oftalmol., V73, P07, DOI 10.5935/0034-7280.20140002 Ortega J, 2016, SCIENTOMETRICS, V109, P1353, DOI 10.1007/s11192-016-2113-0 Lynn FB, 2014, SOC FORCES, V93, P355, DOI 10.1093/sf/sou069 Ma TC, 2018, SCIENTOMETRICS, V117, P789, DOI 10.1007/s11192-018-2891-7 Marashi SA, 2013, EXCLI J, V12, P15 McGillivray B, 2019, SCIENTOMETRICS, V121, P817, DOI 10.1007/s11192-019-03228-3 Mimno D. M., 2011, P C EMP METH NAT LAN, P96 Moin M, 2005, SCIENTOMETRICS, V62, P239, DOI 10.1007/s11192-005-0017-5 Nomaler Ö, 2013, J INFORMETR, V7, P966, DOI 10.1016/j.joi.2013.10.001 Onodera N, 2015, J ASSOC INF SCI TECH, V66, P739, DOI 10.1002/asi.23209 Onyancha OB, 2011, SCIENTOMETRICS, V87, P315, DOI 10.1007/s11192-010-0330-5 Pagel PS, 2011, J CARDIOTHOR VASC AN, V25, P761, DOI 10.1053/j.jvca.2011.03.003 Patterson MS, 2009, SCIENTOMETRICS, V80, P343, DOI 10.1007/s11192-008-2064-1 Perianes-Rodríguez A, 2019, SCIENTOMETRICS, V121, P1737, DOI 10.1007/s11192-019-03265-y Perneger TV, 2015, J CLIN EPIDEMIOL, V68, P1440, DOI 10.1016/j.jclinepi.2015.01.024 Prasad AM, 2006, ECOSYSTEMS, V9, P181, DOI 10.1007/s10021-005-0054-1 Puuska HM, 2014, SCIENTOMETRICS, V98, P823, DOI 10.1007/s11192-013-1181-7 Qian HM, 2010, PATTERN RECOGN LETT, V31, P100, DOI 10.1016/j.patrec.2009.09.019 Rees T., 2012, P ISMPP, P9 Ren J, 2019, IEEE ACCESS, V7, P178675, DOI 10.1109/ACCESS.2019.2958649 Rosenkrantz AB, 2017, ACAD RADIOL, V24, P891, DOI 10.1016/j.acra.2016.11.019 Royle P, 2013, SYST REV-LONDON, V2, DOI 10.1186/2046-4053-2-74 Shu F, 2018, SCIENTOMETRICS, V116, P505, DOI 10.1007/s11192-018-2732-8 Sin SCJ, 2011, J AM SOC INF SCI TEC, V62, P1770, DOI 10.1002/asi.21572 So M, 2015, QUAL QUANT, V49, P1513, DOI 10.1007/s11135-014-0110-z Stevens, 2012, Empirical Methods in Natural Language Processing, P952, DOI DOI 10.5555/2390948.2391052 Stremersch S, 2007, J MARKETING, V71, P171, DOI 10.1509/jmkg.71.3.171 Subotic S, 2014, J INF SCI, V40, P115, DOI 10.1177/0165551513511393 Tahamtan I, 2019, SCIENTOMETRICS, V121, P1635, DOI 10.1007/s11192-019-03243-4 Tahamtan I, 2018, J INFORMETR, V12, P203, DOI 10.1016/j.joi.2018.01.002 Tahamtan I, 2016, SCIENTOMETRICS, V107, P1195, DOI 10.1007/s11192-016-1889-2 Thelwall M, 2018, SCIENTOMETRICS, V115, P1231, DOI 10.1007/s11192-018-2715-9 Thijs B, 2017, SCIENTOMETRICS, V111, P829, DOI 10.1007/s11192-017-2282-5 Thor A, 2018, SCIENTOMETRICS, V116, P591, DOI 10.1007/s11192-018-2733-7 Tijssen RJW, 2007, SCIENTOMETRICS, V71, P303, DOI 10.1007/s11192-007-1658-3 Turney PD, 2010, J ARTIF INTELL RES, V37, P141, DOI 10.1613/jair.2934 van Leeuwen T, 2006, SCIENTOMETRICS, V66, P133, DOI 10.1007/s11192-006-0010-7 Vanclay JK, 2013, J INFORMETR, V7, P265, DOI 10.1016/j.joi.2012.11.009 Walters GD, 2006, SCIENTOMETRICS, V69, P499, DOI 10.1007/s11192-006-0166-1 Waltman L, 2016, J INFORMETR, V10, P365, DOI 10.1016/j.joi.2016.02.007 Wang B, 2014, SCIENTOMETRICS, V101, P685, DOI 10.1007/s11192-014-1342-3 Wang L, 2015, SCIENTOMETRICS, V105, P843, DOI 10.1007/s11192-015-1735-y Wang MY, 2019, PLOS ONE, V14, DOI 10.1371/journal.pone.0225276 Wang MY, 2019, SCIENTOMETRICS, V121, P261, DOI 10.1007/s11192-019-03196-8 Wang MY, 2019, IEEE ACCESS, V7, P96198, DOI 10.1109/ACCESS.2019.2927016 Wang MY, 2019, SCIENTOMETRICS, V119, P1575, DOI 10.1007/s11192-019-03052-9 Wang MY, 2019, SCIENTOMETRICS, V119, P1621, DOI 10.1007/s11192-019-03085-0 Wang MY, 2017, SCIENTOMETRICS, V112, P1557, DOI 10.1007/s11192-017-2433-8 Wang MY, 2012, SCIENTOMETRICS, V93, P635, DOI 10.1007/s11192-012-0766-x Wang MY, 2012, J INFORMETR, V6, P586, DOI 10.1016/j.joi.2012.06.002 Wang XW, 2016, SCIENTOMETRICS, V109, P917, DOI 10.1007/s11192-016-2093-0 Willis DL, 2011, BJU INT, V107, P1876, DOI 10.1111/j.1464-410X.2010.10028.x Wu QQ, 2019, SCIENTOMETRICS, V118, P979, DOI 10.1007/s11192-018-2989-y Wu ZM, 2019, IEEE ACCESS, V7, P51759, DOI 10.1109/ACCESS.2019.2910239 Xia JF, 2011, J INF SCI, V37, P19, DOI 10.1177/0165551510389358 Xie J, 2019, SCIENTOMETRICS, V118, P763, DOI 10.1007/s11192-019-03015-0 Xu JG, 2019, IEEE ACCESS, V7, P92248, DOI 10.1109/ACCESS.2019.2927011 Yan R, 2011, P 20 ACM INT C INF K, P1247, DOI DOI 10.1145/2063576.2063757 Yang ZY, 2019, IEEE ACCESS, V7, P77738, DOI 10.1109/ACCESS.2019.2921019 Youk S, 2019, SCIENTOMETRICS, V120, P1237, DOI 10.1007/s11192-019-03169-x Yu T, 2014, SCIENTOMETRICS, V101, P1233, DOI 10.1007/s11192-014-1279-6 Zhang J, 2018, IEEE ACCESS, V6, P55661, DOI 10.1109/ACCESS.2018.2863938 Zhang L, 2011, J INFORMETR, V5, P583, DOI 10.1016/j.joi.2011.05.004 Zhao Z., 2007, INT C MACH LEARN, P1151 NR 128 TC 5 Z9 6 U1 17 U2 59 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 2169-3536 J9 IEEE ACCESS JI IEEE Access PY 2020 VL 8 BP 107887 EP 107899 DI 10.1109/ACCESS.2020.3001190 PG 13 WC Computer Science, Information Systems; Engineering, Electrical & Electronic; Telecommunications WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Computer Science; Engineering; Telecommunications GA MD5WH UT WOS:000544042700021 OA gold DA 2024-09-05 ER PT J AU Gharaibeh, MK AF Gharaibeh, Malik Khlaif TI Measuring student satisfaction of Microsoft teams as an online learning platform in Jordan: An application of UTAUT2 model SO HUMAN SYSTEMS MANAGEMENT LA English DT Article DE Microsoft teams; UTAUT2; ministry of higher education and scientific research; performance expectancy; effort expectancy ID INFORMATION-TECHNOLOGY; USER ACCEPTANCE; INTENTION AB BACKGROUND: As a result of the Covid-19 pandemic, educational institutions have shifted to electronic education at the global level, after face-to-face education was common in most countries of the world. From this aspect, assessing students' satisfaction with the platforms used in e-learning is very important. In this study, students' satisfaction with Microsoft Teams was measured, as it is one of the most important programs used in the educational process in various educational institutions. OBJECTIVE: This study uses five variables from the UTAUT2 model namely; performance expectancy, effort expectancy, facilitating conditions, social influence, price value, as well as two new variables which include student satisfaction, and flexibility to study the learning satisfaction with Microsoft Teams. METHODS: 520 questionnaires were distributed to Yarmouk and Ajloun National Universities students to collect the required data, and the data was analyzed using Smart PLS. RESULTS: The results showed that performance expectancy, effort expectancy, social influence, price value, facilitating conditions, student confidence, and flexibility are important indicators of satisfaction with Microsoft Teams. CONCLUSIONS: This study adds to the body of knowledge by building a conceptual model capable of effectively predicting student satisfaction with the Microsoft Teams platform. It concluded that the expected benefit from using Microsoft Teams will increase student satisfaction. C1 [Gharaibeh, Malik Khlaif] Ajloun Natl Univ, Management Informat Syst, Ajloun, Jordan. RP Gharaibeh, MK (corresponding author), Ajloun Natl Univ, Management Informat Syst, Ajloun, Jordan. EM malik.gharaibeh@anu.edu.jo OI Gharaibeh, Malik/0000-0002-8462-9599 CR AJZEN I, 1991, ORGAN BEHAV HUM DEC, V50, P179, DOI 10.1016/0749-5978(91)90020-T Al-Rahmi WM, 2019, INTERACT LEARN ENVIR, DOI 10.1080/10494820.2019.1629599 Al-Salman S, 2021, ONLINE LEARN, V25, P286, DOI 10.24059/olj.v25i1.2470 Alasmari T, 2019, EDUC INF TECHNOL, V24, P2127, DOI 10.1007/s10639-019-09865-8 Almaiah MA, 2019, EDUC INF TECHNOL, V24, P1433, DOI 10.1007/s10639-018-9840-1 Alrajawy I., 2018, International Journal of Management and Human Science, V2, P1 Alsadoon E., 2018, The Turkish Online Journal of Educational Technology, V17, P226 Alsharida RA, 2021, INT J EMERG TECHNOL, V16, P147, DOI 10.3991/ijet.v16i05.18093 Alshurideh M, 2019, INT C ADV INTELLI GE Amid A., 2021, Journal of Personalized Learning, V4, P57 [Anonymous], 2016, Methodology in the social sciences. Principles and practice of structural equation modeling BANDURA A, 1986, J SOC CLIN PSYCHOL, V4, P359, DOI 10.1521/jscp.1986.4.3.359 Bervell B, 2022, AUSTRALAS J EDUC TEC, V38, P115, DOI 10.14742/ajet.7178 Bhattacherjee A, 2006, MIS QUART, V30, P805 Chung N, 2014, COMPUT HUM BEHAV, V30, P59, DOI 10.1016/j.chb.2013.07.035 DAVIS FD, 1989, MIS QUART, V13, P319, DOI 10.2307/249008 Dimitrova M, 2003, 14TH INTERNATIONAL WORKSHOP ON DATABASE AND EXPERT SYSTEMS APPLICATIONS, PROCEEDINGS, P287, DOI 10.1109/DEXA.2003.1232037 Gharaibeh M, 2022, 1139TH INT C SCI TEC Gharaibeh M., 2018, J ENG APPL SCI, V13, P2023 Gharaibeh M., 2016, World Applied Sciences Journal, V34, P931 Gharaibeh Malik Khlaif, 2021, International Journal of Sociotechnology and Knowledge Development, V13, P31, DOI 10.4018/IJSKD.2021040103 Gharaibeh MK, 2021, COMPUT SYST SCI ENG, V37, P187, DOI 10.32604/csse.2021.014902 Gharaibeh MK., 2020, International Journal of Advanced Science and Technology, V29, P3426 Gharaibeh MK., 2020, Advances in Science, Technology and Engineering Systems Journal, V5, P1261, DOI [10.25046/aj0505151, DOI 10.25046/AJ0505151] Gharaibeh MK, 2018, INT J INTERACTIVE MO, V12 Gharaibeh N., 2020, International Journal of Scientific Technology Research, V9, P3826 GharaibehMK MK, 2022, INT J SERVICE SCI MA, V13, P1 Goh E, 2020, J TEACH TRAVEL TOUR, V20, P156, DOI 10.1080/15313220.2020.1740636 Guri-Rosenblit S., 2011, Journal of Distance Education, V25, P1 Hadullo K., 2018, International Journal of Education and Development Using Information and Communication Technology, V14, P152 Hair J.F., 2009, A Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM), Vseventh Jebril H, 2021, ASIAN J ED SOCIAL ST, V23, P46 JUSOH S., 2019, J THEORETICAL APPL I, V97 Khan SMH, 2021, AIUB J SCI ENG AJSE, V20, P133 Kosiba JPB, 2022, J FURTH HIGHER EDUC, V46, P988, DOI 10.1080/0309877X.2022.2030687 Lee EY, 2020, SUSTAINABILITY-BASEL, V12, DOI 10.3390/su12072672 Lee SG, 2013, J WORLD BUS, V48, P20, DOI 10.1016/j.jwb.2012.06.003 Meyliana Widjaja HAE, 2020, 4 INT C INFORMATICS Ministry of higher education and scientific research, PLANS REP EX ACT PLA Nortvig AM, 2018, ELECTRON J E-LEARN, V16, P46 Nunnally J.C., 1978, Psychometric Theory, Vsecond Paechter M, 2010, COMPUT EDUC, V54, P222, DOI 10.1016/j.compedu.2009.08.005 Pal D, 2020, CHILD YOUTH SERV REV, V119, DOI 10.1016/j.childyouth.2020.105535 Podsakoff PM, 2003, J APPL PSYCHOL, V88, P879, DOI 10.1037/0021-9010.88.5.879 RogersEM, 1983, DIFFUSION INNOVATION Rudhumbu N., 2022, Asian Association of Open Universities Journal Sahu P, 2020, CUREUS J MED SCIENCE, V12, DOI 10.7759/cureus.7541 Sangeeta, 2021, J PUBLIC AFF, V21, DOI 10.1002/pa.2503 Saroia AI, 2019, INNOV EDUC TEACH INT, V56, P569, DOI 10.1080/14703297.2018.1557068 Tabachnick B.G., 2007, Using Multivariate Statistics, Vfifth Tandon Urvashi, 2019, Journal of Information Technology Case and Application Research, V21, P13, DOI 10.1080/15228053.2019.1609779 Tiyar F., 2015, World Journal on Educational Technology, t, V7, br, P157 Tseng TH, 2022, INTERACT LEARN ENVIR, V30, P635, DOI 10.1080/10494820.2019.1674888 Venkatesh V, 2003, MIS QUART, V27, P425, DOI 10.2307/30036540 Venkatesh V, 2012, MIS QUART, V36, P157 Vitoria L, 2018, J PHYS C SERIES West SG, 1995, Structural Equation Modeling: Concepts, Issues, and Applications, P56 Yu ZG, 2019, COMPUT ASSIST LANG L, V32, P323, DOI 10.1080/09588221.2018.1517093 NR 58 TC 2 Z9 2 U1 0 U2 5 PU IOS PRESS PI AMSTERDAM PA NIEUWE HEMWEG 6B, 1013 BG AMSTERDAM, NETHERLANDS SN 0167-2533 EI 1875-8703 J9 HUM SYST MANAGE JI Hum. Syst. Manag. PY 2023 VL 42 IS 2 BP 121 EP 130 DI 10.3233/HSM-220032 PG 10 WC Management WE Emerging Sources Citation Index (ESCI) SC Business & Economics GA C8ZC2 UT WOS:000964726300002 DA 2024-09-05 ER PT J AU Xiong, H Li, QY Liu, JZ AF Xiong, Hui Li, Qingyu Liu, Jinzhen TI Performance Optimization and Simulation Research of New Coil for Transcranial Magnetic Stimulation Based on Improved Particle Swarm Optimizer SO IEEE TRANSACTIONS ON MAGNETICS LA English DT Article DE Optimization; Focusing; Magnetic heads; Convergence; Electric fields; Particle swarm optimization; Attenuation; Particle swarm optimizer (PSO) algorithm; three-layer multicoil (TLMC); transcranial magnetic stimulation (TMS); von-Neumann topology AB Transcranial magnetic stimulation (TMS) is a noninvasive technology used to treat certain brain disorders. As an important part of the TMS system, the stimulation coil induces the electric field (EF) in the brain, which can change the excitability of nerve tissue. First, a three-layer multicoil (TLMC) is proposed on the basis of the principle of superposition and cancellation of magnetic field (MF). The simulation results in COMSOL show that this structure can significantly improve focality and stimulation strength, but it reduces the depth of stimulation. Second, a novel improved particle swarm optimizer (PSO) is proposed with three improved strategies. The novel improved PSO has higher convergence accuracy and stability in the test function. Finally, we utilized the novel improved PSO to optimize the current configuration and rotation angle of the TLMC three times. The numerical results show that the TLMC after the second optimization can increase stimulation strength by 19.10% on the basis of satisfying the stimulation depth of 15 mm. Compared with the unoptimized, the optimized TLMC can better balance the focality and stimulation depth. C1 [Xiong, Hui] Tiangong Univ, Sch Control Sci & Engn, Tianjin 300387, Peoples R China. Tiangong Univ, Key Lab Intelligent Control Elect Equipment, Tianjin 300387, Peoples R China. C3 Tiangong University; Tiangong University RP Xiong, H (corresponding author), Tiangong Univ, Sch Control Sci & Engn, Tianjin 300387, Peoples R China. EM xionghui@tiangong.edu.cn OI Li, Qingyu/0000-0002-7820-1908 FU National Natural Science Foundation of China [62071329]; Natural Science Foundation Applying System of Tianjin [18JCYBJC90400, 18JCQNJC84000]; Science and Technology Development Fund of Tianjin Education Commission for Higher Education [2019KJ014] FX This work was supported in part by the National Natural Science Foundation of China under Grant 62071329, in part by the Natural Science Foundation Applying System of Tianjin under Grant 18JCYBJC90400 and Grant 18JCQNJC84000, and in part by the Science and Technology Development Fund of Tianjin Education Commission for Higher Education under Grant 2019KJ014. CR Çomak E, 2019, EXPERT SYST, V36, DOI 10.1111/exsy.12330 Deng B, 2017, IEEE T MAGN, V53, DOI 10.1109/TMAG.2017.2661244 Deng ZD, 2014, CLIN NEUROPHYSIOL, V125, P1202, DOI 10.1016/j.clinph.2013.11.038 Deng ZD, 2013, BRAIN STIMUL, V6, P1, DOI 10.1016/j.brs.2012.02.005 Gomez LJ, 2018, J NEURAL ENG, V15, DOI 10.1088/1741-2552/aac967 Guadagnin V, 2016, IEEE T BIO-MED ENG, V63, P1543, DOI 10.1109/TBME.2015.2498646 Isserles M, 2013, BRAIN STIMUL, V6, P377, DOI 10.1016/j.brs.2012.07.008 Jalinous R., 1998, Guide to Magnetic Stimulation Kennedy J, 2002, IEEE C EVOL COMPUTAT, P1671, DOI 10.1109/CEC.2002.1004493 Kennedy J, 1995, 1995 IEEE INTERNATIONAL CONFERENCE ON NEURAL NETWORKS PROCEEDINGS, VOLS 1-6, P1942, DOI 10.1109/icnn.1995.488968 Laudani A, 2015, IEEE T MAGN, V51, DOI 10.1109/TMAG.2014.2364176 Lee WH, 2016, EUR PSYCHIAT, V36, P55, DOI 10.1016/j.eurpsy.2016.03.003 Li CS, 2019, BIOMED RES INT, V2019, DOI 10.1155/2019/9461018 Li YN, 2018, IEEE T MAGN, V54, DOI 10.1109/TMAG.2017.2751260 Ma HP, 2019, SWARM EVOL COMPUT, V44, P365, DOI 10.1016/j.swevo.2018.04.011 Rastogi P, 2017, AIP ADV, V7, DOI 10.1063/1.4973604 Rossi S, 2009, CLIN NEUROPHYSIOL, V120, P2008, DOI 10.1016/j.clinph.2009.08.016 Ruohonen J, 1997, ANN BIOMED ENG, V25, P840, DOI 10.1007/BF02684168 Ruohonen J, 1998, BIOELECTROCH BIOENER, V47, P213, DOI 10.1016/S0302-4598(98)00191-3 Ruohonen J, 1998, MED BIOL ENG COMPUT, V36, P297, DOI 10.1007/BF02522474 Shi YH, 1998, IEEE C EVOL COMPUTAT, P69, DOI 10.1109/ICEC.1998.699146 Vora M, 2018, NAT COMPUT, V17, P901, DOI 10.1007/s11047-017-9639-9 Xia XW, 2020, COMPUTING, V102, P1587, DOI 10.1007/s00607-019-00782-9 Xiong H, 2020, ARTIF INTELL MED, V104, DOI 10.1016/j.artmed.2020.101790 Xiong H, 2016, PROG ELECTROMA RES M, V48, P145, DOI 10.2528/PIERM16040509 Zhang Z, 2017, IEEE T MAGN, V53, DOI 10.1109/TMAG.2017.2700319 Zucca M, 2017, IEEE T MAGN, V53, DOI 10.1109/TMAG.2017.2709402 NR 27 TC 3 Z9 3 U1 1 U2 24 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9464 EI 1941-0069 J9 IEEE T MAGN JI IEEE Trans. Magn. PD DEC PY 2021 VL 57 IS 12 AR 5800711 DI 10.1109/TMAG.2021.3121338 PG 11 WC Engineering, Electrical & Electronic; Physics, Applied WE Science Citation Index Expanded (SCI-EXPANDED) SC Engineering; Physics GA XA2XX UT WOS:000720517600019 DA 2024-09-05 ER PT J AU Druskat, S AF Druskat, Stephan TI Software and Dependencies in Research Citation Graphs SO COMPUTING IN SCIENCE & ENGINEERING LA English DT Article DE Software; Publishing; Stakeholders; Metadata; Sociotechnical systems; Computational modeling; Digital systems; Citation analysis; Bibliometrics; Graphical models; Scholarship; software citation; citation graphs; transitive credit ID SCIENCE; LIGHT AB Following the widespread digitalization of scholarship, software has become essential for research, but the current sociotechnical system of citation does not reflect this sufficiently. Citation provides context for research, but the current model for the respective research citation graphs does not integrate software. In this article, I develop a directed graph model to alleviate this, describe challenges for its instantiation, and give an outlook of useful applications of research citation graphs, including transitive credit. C1 [Druskat, Stephan] German Aerosp Ctr DLR, Cologne, Germany. [Druskat, Stephan] Humboldt Univ, Dept Comp Sci, Berlin, Germany. [Druskat, Stephan] Friedrich Schiller Univ Jena, Jena, Germany. C3 Helmholtz Association; German Aerospace Centre (DLR); Humboldt University of Berlin; Friedrich Schiller University of Jena RP Druskat, S (corresponding author), German Aerosp Ctr DLR, Cologne, Germany.; Druskat, S (corresponding author), Humboldt Univ, Dept Comp Sci, Berlin, Germany.; Druskat, S (corresponding author), Friedrich Schiller Univ Jena, Jena, Germany. RI Druskat, Stephan/AAS-5131-2021 OI Druskat, Stephan/0000-0003-4925-7248 CR Abramatic JF, 2018, COMMUN ACM, V61, P29, DOI 10.1145/3183558 AlNoamany Y, 2018, PEERJ COMPUT SCI, DOI 10.7717/peerj-cs.163 [Anonymous], 2019, NAT METHODS, V16, P207, DOI 10.1038/s41592-019-0350-x [Anonymous], [No title captured] [Anonymous], [No title captured] [Anonymous], 1983, ARCHAEOLOGY KNOWLEDG [Anonymous], [No title captured] [Anonymous], [No title captured] [Anonymous], [No title captured] [Anonymous], [No title captured] [Anonymous], [No title captured] [Anonymous], [No title captured] [Anonymous], [No title captured] Beck G, 2011, J RISK RES, V14, P1, DOI 10.1080/13669877.2010.505348 Berez-Kroeker AL, 2018, LINGUISTICS, V56, P1, DOI 10.1515/ling-2017-0032 Bonisch Sebastian, 2013, Intelligent Computer Mathematics. MKM, Calculemus, DML, and Systems and Projects 2013 Held as Part of CICM 2013. Proceedings. LNCS 7961, P369, DOI 10.1007/978-3-642-39320-4_31 Borgman C.L., 2007, SCHOLARSHIP DIGITAL, DOI DOI 10.7551/MITPRESS/7434.003.0009 Brand A, 2015, LEARN PUBL, V28, P151, DOI 10.1087/20150211 Chun Wendy Hui Kyong, 2005, GREY ROOM, V18, P26, DOI [DOI 10.1162/1526381043320741, 10.1162/1526381043320741] Constantinou E, 2016, ASIA PAC SOFWR ENG, P365, DOI [10.1109/APSEC.2016.061, 10.1109/APSEC.2016.32] Cousijn H, 2018, SCI DATA, V5, DOI 10.1038/sdata.2018.259 De Bellis N, 2009, Bibliometrics and Citation Analysis: From the Science Citation Index to Cybermetrics Druskat S., 2018, CITATION FILE FORMAT, DOI DOI 10.5281/ZENODO.1003149 GARFIELD E, 1955, SCIENCE, V122, P108, DOI 10.1126/science.122.3159.108 GARFIELD E, 1972, SCIENCE, V178, P471, DOI 10.1126/science.178.4060.471 Goble C, 2014, IEEE INTERNET COMPUT, V18, P4, DOI 10.1109/MIC.2014.88 Greenberg SA, 2009, BMJ-BRIT MED J, V339, DOI 10.1136/bmj.b2680 Hafer L, 2009, COMMUN ACM, V52, P126, DOI 10.1145/1610252.1610285 Hanson B, 2011, SCIENCE, V331, P649, DOI 10.1126/science.1203354 Howison J, 2016, J ASSOC INF SCI TECH, V67, P2137, DOI 10.1002/asi.23538 Jones MB, 2017, CodeMeta: An Exchange Schema for Software Metadata, DOI [DOI 10.5063/SCHEMA/CODEMETA-2.0, 10.5063/schema/codemeta-2.0.] Katz D.S., 2014, Journal of Open Research Software, V2, DOI DOI 10.5334/JORS.BE Katz D.S., 2015, Journal of Open Research Software, V3, pe7, DOI [DOI 10.5334/JORS.BY, DOI 10.5334/J0RS.BY] Katz D. S., 2019, ARXIV 1905 08674 CS Li K, 2017, J INFORMETR, V11, P989, DOI 10.1016/j.joi.2017.08.003 McNutt MK, 2018, P NATL ACAD SCI USA, V115, P2557, DOI 10.1073/pnas.1715374115 Morin A, 2012, SCIENCE, V336, P159, DOI 10.1126/science.1218263 Neylon C, 2009, PLOS BIOL, V7, DOI 10.1371/journal.pbio.1000242 Nicholas D, 2014, LEARN PUBL, V27, P121, DOI 10.1087/20140206 Park H, 2019, J INFORMETR, V13, P574, DOI 10.1016/j.joi.2019.03.005 Peng RD, 2011, SCIENCE, V334, P1226, DOI 10.1126/science.1213847 Peroni S, 2015, J DOC, V71, P253, DOI 10.1108/JD-12-2013-0166 Piwowar H, 2013, NATURE, V493, P159, DOI 10.1038/493159a Recio T., 2019, F1000RESEARCH, V8, P1353, DOI DOI 10.12688/F1000RESEARCH.19994.2 Shamir L, 2013, ASTRON COMPUT, V1, P54, DOI 10.1016/j.ascom.2013.04.001 Smith AM, 2018, PEERJ COMPUT SCI, DOI 10.7717/peerj-cs.147 Smith AM, 2016, PEERJ COMPUT SCI, DOI 10.7717/peerj-cs.86 Stodden V, 2016, SCIENCE, V354, P1240, DOI 10.1126/science.aah6168 Yang SF, 2016, INT J DEV NEUROSCI, V53, P1, DOI 10.1016/j.ijdevneu.2016.05.009 NR 49 TC 7 Z9 7 U1 0 U2 9 PU IEEE COMPUTER SOC PI LOS ALAMITOS PA 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1314 USA SN 1521-9615 EI 1558-366X J9 COMPUT SCI ENG JI Comput. Sci. Eng. PD MAR-APR PY 2020 VL 22 IS 2 BP 8 EP 21 DI 10.1109/MCSE.2019.2952840 PG 14 WC Computer Science, Interdisciplinary Applications WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Computer Science GA KU4RW UT WOS:000519698500002 OA Green Submitted, Green Accepted DA 2024-09-05 ER PT C AU Alsukhni, M Zhu, Y AF Alsukhni, Mohammad Zhu, Ying BE Zhang, C Joshi, J Bertino, E Thuraisingham, B TI Interactive Visualization of the Social Network of Research Collaborations SO 2012 IEEE 13TH INTERNATIONAL CONFERENCE ON INFORMATION REUSE AND INTEGRATION (IRI) LA English DT Proceedings Paper CT 13th IEEE International Conference on Information Reuse and Integration (IEEE IRI) / DIM / WICSOC / IEEE EM- RITE / IRI-HI CY AUG 08-10, 2012 CL Las Vegas, NV DE Social network; co-authorships network; Multidimensional scaling; digital bibliography and library project; information retrieval; gradient descent; graphs AB Social networks have been evolving over the past few years, leading to a rapid increase in the number and complexity of relationships among their entities. In this paper, we focus on a large scale dataset known as the Digital Bibliography and Library Project (DBLP), which contains information on all publications that have been published in computer and information science related journals and conference proceedings. We model the DBLP dataset as a social network of research collaborations. DBLP is a structured and dynamic dataset stored in the XML file format; it contains over 850,000 authors and 2 million publications and the resulting collaboration social network is a scale-free network. We define DBLP collaboration social network as a graph that consists of researchers as nodes and links representing the collaboration among the researchers. In this work, we implement a data analysis algorithm called Multidimensional Scaling (MDS) to represent the degree of collaboration among the DBLP authors as Euclidean distances in order to analyze, mine and understand the relational information in this large scale network in a visual way. MDS requires a highly computational complexity for large scale graphs such as the DBLP graph. Therefore, we propose different solutions to overcome this problem, and improve the MDS performance. In addition, as the quality of the MDS result is measured by a metric known as the stress value, we use the steepest descent method to minimize the stress in an iterative process called stress optimization in order to generate the best geometric layout of the graph. We also propose a solution to further enhance the graph visualization by partitioning the graph into sub-graphs and using repelling forces among nodes within the same sub-graph. C1 [Alsukhni, Mohammad; Zhu, Ying] Univ Ontario, Inst Technol, Fac Engn & Appl Sci, Oshawa, ON, Canada. C3 Ontario Tech University RP Alsukhni, M (corresponding author), Univ Ontario, Inst Technol, Fac Engn & Appl Sci, Oshawa, ON, Canada. EM mohammad.alsukhni@uoit.ca; ying.zhu@uoit.ca CR Alsukhni Mohammad, 2012, THESIS Barabasi A., PHYSICA A, V311, P590 Barabási AL, 1999, SCIENCE, V286, P509, DOI 10.1126/science.286.5439.509 Chen Min, 2009, COMPUTER GRAPHICS AN, V29, P12 France S. L., 2010, SYSTEMS MAN AND CYBE, V41, P644 Groenen Patrick J.F., 2004, ECONOMETRIC INSTITUT Holland Steven M., NON METRIC MULTIDIME, P30602 Ley Michael, 2009, UNIVERSIT AT TRIER I Meza Juan C., 2010, TECHNICAL REPORT LBN Michael A., 2008, HDB DATA VISUALIZATI, P316 The DBLP Computer Science Bibliography, THE DBLP COMPUTER SC Young F., 1985, ENCY STAT SCI, V5 NR 12 TC 1 Z9 1 U1 0 U2 4 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA BN 978-1-4673-2284-3 PY 2012 BP 247 EP 254 PG 8 WC Computer Science, Theory & Methods; Engineering, Electrical & Electronic WE Conference Proceedings Citation Index - Science (CPCI-S) SC Computer Science; Engineering GA BDC08 UT WOS:000312540300039 DA 2024-09-05 ER PT C AU Yi, XT AF Yi, Xitian BE Lee, LK Wang, FL Kato, Y Hui, YK Sato, S TI Research on the Cognitive Input Evaluation Model of MOOC Online Learning from the Perspective of Learning Analysis SO 2021 INTERNATIONAL SYMPOSIUM ON EDUCATIONAL TECHNOLOGY (ISET 2021) SE International Symposium on Educational Technology LA English DT Proceedings Paper CT International Symposium on Educational Technology (ISET) CY AUG 10-13, 2021 CL Nihon Fukushi Univ, ELECTR NETWORK HO Nihon Fukushi Univ DE learning cognitive input; evalution model; learing analysis AB Learning cognitive input is one of the most direct and continuous issues in educational practice. As a key element of online learning quality, effective evaluation of students' cognitive input in online learning can encourage students to actively participate in the online learning process. However, it is currently unclear which indicators can reflect the cognitive input of learners in the online learning process. Therefore, from the perspective of learning analysis, this research explored the relationship between online learning behavior and online cognitive input, clarified evaluation indicators that can represent online cognitive input, and attempted to build a learning analysis model for online cognitive input evaluation. C1 [Yi, Xitian] South China Normal Univ, Sch Informat Technol Educ, Guangzhou, Peoples R China. C3 South China Normal University RP Yi, XT (corresponding author), South China Normal Univ, Sch Informat Technol Educ, Guangzhou, Peoples R China. EM 1019672875@qq.com CR Feng X., 2016, J. Dist. Educ, V34, P39 Gunawardena CN, 1997, J EDUC COMPUT RES, V17, P397, DOI 10.2190/7MQV-X9UJ-C7Q3-NRAG Henri F., 1992, Collaborative Learning Through Computer Conferencing: the Najaden Papers. Proceedings of the NATO Advanced Research Workshop, P117 Hew KF, 2010, INSTR SCI, V38, P571, DOI 10.1007/s11251-008-9087-0 Jiang Xiuye, 2014, J SCI ED MID TERM, P25 Kop R, 2011, INT REV RES OPEN DIS, V12, P74, DOI 10.19173/irrodl.v12i7.1041 Li Shuang, 2015, OPEN ED RES, P62 Liang Yunzhen, 2018, ED RES, P66 Mazzolini M, 2007, COMPUT EDUC, V49, P193, DOI 10.1016/j.compedu.2005.06.011 Nandi D, 2012, AUSTRALAS J EDUC TEC, V28, P684 Ravindran B, 2005, J EDUC RES, V98, P222, DOI 10.3200/JOER.98.4.222-233 Wang G., 2016, E ED RES, V37, P66 Wang L., 2009, CHINA E ED, V265, P5 XinHua Net, 2019, MIN ED FULL IMPL 6 E Yin R., 2016, Open Education Research, V22, P89, DOI [10.13966/j.cnki.kfjyyj.2016.03.010, DOI 10.13966/J.CNKI.KFJYYJ.2016.03.010] Zhou Yuan, 2018, ED RES, P99 NR 16 TC 1 Z9 1 U1 5 U2 55 PU IEEE COMPUTER SOC PI LOS ALAMITOS PA 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1264 USA SN 2766-2144 EI 2766-2128 BN 978-1-6654-2859-0 J9 INT SYMP EDUC TECH PY 2021 BP 211 EP 215 DI 10.1109/ISET52350.2021.00051 PG 5 WC Computer Science, Interdisciplinary Applications; Education & Educational Research; Education, Scientific Disciplines WE Conference Proceedings Citation Index - Science (CPCI-S); Conference Proceedings Citation Index - Social Science & Humanities (CPCI-SSH) SC Computer Science; Education & Educational Research GA BS6XE UT WOS:000754450200041 DA 2024-09-05 ER PT J AU Geng, CX Wen, BH Liu, R AF Geng, Chengxuan Wen, Bihan Liu, Rui TI Research on Financing Environment Evaluation of Scientific Innovation Industry Based on the Bayesian Network Model under the Background of Green Economy SO POLISH JOURNAL OF ENVIRONMENTAL STUDIES LA English DT Article DE environmental crisis; green economy; scientific innovation industry; financing environment; bayesian networks AB As the global environmental crisis evolves, China's traditional industries have serious problems of high energy consumption, high emission and low energy efficiency. Developing green industries has become an important direction of China's industrial transformation and upgrading. This paper selects scientific innovation industry as a typical representative of green industry and studies its financing environment assessment. In order to solve the financing dilemma faced by the science and technology innovation industry, this paper puts forward the evaluation method of the financing environment of science and technology innovation industry based on Bayesian network from the Angle of industry particularity. In this paper, Netica software is used to construct a Bayesian network model of the financing environment of the science and technology innovation industry, and the financing environment of the science and technology innovation industry in 2016-2020 is inferred according to the annual probability distribution. Then, the sensitivity analysis is carried out, and the hierarchical policy simulation is used to simulate the conditional probability of the initial node and the intermediate node respectively, so as to determine the impact of each node on the financing environment, and finally obtain the optimization path. The research results can be of great value for improving the financing environment of scientific innovation industry and promoting the development of green industry. C1 [Geng, Chengxuan; Wen, Bihan; Liu, Rui] Nanjing Univ Aeronaut & Astronaut, Coll Econ & Management, Nanjing 211106, Jiangsu, Peoples R China. C3 Nanjing University of Aeronautics & Astronautics RP Wen, BH; Liu, R (corresponding author), Nanjing Univ Aeronaut & Astronaut, Coll Econ & Management, Nanjing 211106, Jiangsu, Peoples R China. EM Wenbihan98@163.com; Ruiliu_68@163.com FU project "Research on the Driving Mechanism and Promotion Path of the market-oriented Allocation of Scientific Innovation Industry Elements under the Background of Digital Economy" [22BJL140] FX y This paper is supported by the project "Research on the Driving Mechanism and Promotion Path of the market-oriented Allocation of Scientific Innovation Industry Elements under the Background of Digital Economy". The project approval number is 22BJL140. CR [白云 Bai Yun], 2022, [水资源与水工程学报, Journal of Water Resources and Water Engineering], V33, P1 Bayes T., 1763, PHILOS T ROY SOC LON, V53, P370, DOI DOI 10.1098/RSTL.1763.0053 Belas J., 2020, Oeconomia Copernicana, V11 CAO X.L, 2020, Statistics and Decision, V36, P153 Come E, 2022, Spatial structures resuming by Bayesian network and fusion with diagnosis data in the transferable belief model framework FU W., 2022, Journal of Intelligent Manufacturing, V33 GENG C.X., 2021, Science and Technology Management Research, V41, P58, DOI DOI 10.3969/J.ISSN.1000-7695.2021.13.008 GUAN Y.L, 2019, DEStech Transactions on Social Science Education and Human Science HOU Z.Y, 2019, Financial development review, P146 JEFFREYS H, 1946, PROC R SOC LON SER-A, V186, P453, DOI 10.1098/rspa.1946.0056 JIA L.J., 2023, Review of Political Economy, V14, P100 KANG J.P, 2021, China Finance, V965, P96 KANG J.P., 2022, Western finance, V571, P17 LI C.X., 2022, Digital library forum, V214, P66 LI J.C., 2019, Statistical Research, V36, P4, DOI DOI 10.19343/J.CNKI.11-1302/C.2019.01.001 [李玥琪 Li Yueqi], 2022, [情报学报, Journal of the China Society for Scientific and Technical Information], V41, P1085 LIU Y, 2022, Commercial economic research, V5, P7 LUO X.E, 2021, Western Economic Management Forum, V32, P48 Pearl J., 2014, Probabilistic reasoning in intelligent systems: networks of plausible inference Pikner T., 2022, Temporary clusters within knowledge dissemination: a case of networks towards a cross-border small business environment QU C, 2016, Statistics and Decision, V65 QUAN Z., 2009, Evaluation on Financing Environment of Attracting Private Capital into Government Projects SHANNON CE, 1948, BELL SYST TECH J, V27, P623, DOI 10.1002/j.1538-7305.1948.tb00917.x SONG L.P, 2021, Technology and management, V23, P21 Tracy Gonzalez -Padron G, 2007, Industrial Marketing Management, V37 [王必好 Wang Bihao], 2019, [科学学研究, Studies in Science of Science], V37, P1364 WANG L, 2022, Journal of Mathematics WANG Q., 2022, Environmental Research Communications, V4 WENG Y, 2021, Performance Evaluation of High-tech Innovation Enterprises Based on Grey Chaotic Neural Network WU S.Q., 2020, Scientific Management Research, V38, P157 XIE R.Q, 2023, Shanghai Economic Research, V413, P64 YAN Y.Z, 2018, China's development, V18, P45 YANG S.H., 2023, Soft science, V37, P27 YANG X.Y., 2021, MARINE B, V40, P473 YUAN Z.M, 2018, Journal of Jiaxing University Zeng Z, 2017, J INTELL FUZZY SYST, V33, P2085, DOI 10.3233/JIFS-161812 ZHANG L.Y., 2021, Financial Forum, V26, P3 ZHANG R.C., 2022, Tax Research, V449, P102 ZHANG Y, 2021, Comprehensive Utilization Pattern of the Bohai Rim Coastline Using the Restrictive Composite Index Method ZHAO K.L., 2019, Journal of Changchun Finance College Zheng Y., 2022, Bull Chinese Acad Sci, V36, P757, DOI DOI 10.16418/J.ISSN.1000-3045.20210518007 [朱月月 Zhu Yueyue], 2021, [测绘科学, Science of Surveying and Mapping], V46, P195 NR 42 TC 0 Z9 0 U1 10 U2 12 PU HARD PI OLSZTYN 5 PA POST-OFFICE BOX, 10-718 OLSZTYN 5, POLAND SN 1230-1485 EI 2083-5906 J9 POL J ENVIRON STUD JI Pol. J. Environ. Stud. PY 2023 VL 32 IS 6 BP 5047 EP 5060 DI 10.15244/pjoes/169619 PG 14 WC Environmental Sciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Environmental Sciences & Ecology GA EJ2S6 UT WOS:001138499200038 OA gold DA 2024-09-05 ER PT C AU Taxitari, L Cappa, C Ferro, M Marzi, C Nadalini, A Pirrelli, V AF Taxitari, Loukia Cappa, Claudia Ferro, Marcello Marzi, Claudia Nadalini, Andrea Pirrelli, Vito BE Elmohajir, M AlAchhab, M Elmohajir, BE Ane, BK Jellouli, I TI Using mobile technology for reading assessment SO 2020 6TH IEEE CONGRESS ON INFORMATION SCIENCE AND TECHNOLOGY (IEEE CIST'20) SE Colloquium in Information Science and Technology LA English DT Proceedings Paper CT 6th IEEE International Congress on Information Science and Technology (IEEE CiSt) CY JUN 05-12, 2021 CL Innov.org, Agadir, MOROCCO HO Innov.org DE reading assessment; reading research; mobile technology; NLP; cloud computing; special education needs ID COGNITIVE SKILLS; WORD RECOGNITION; SIMPLE VIEW; COMPREHENSION; LANGUAGE; DIFFICULTIES AB The enormous potential of Information and Communication Technologies (ICT) for addressing critical educational issues is generally acknowledged, but its use in the assessment of the complex skills of reading and understanding a text has been very limited to date. The paper contrasts traditional reading assessment protocols with ReadLet, an ICT platform with a tablet front-end, designed to support online monitoring of silent and oral reading abilities in early graders. ReadLet makes use of cloud computing and mobile technology for large-scale data collection and allows the time alignment of the child's reading behaviour with texts tagged using Natural Language Processing (NLP) tools. Initial findings replicate established benchmarks from the psycholinguistic literature on reading in both typically and atypically developing children, making the application a new ground-breaking approach in the evaluation of reading skills. C1 [Taxitari, Loukia; Ferro, Marcello; Marzi, Claudia; Nadalini, Andrea; Pirrelli, Vito] CNR, Inst Computat Linguist Antonio Zampolli, Pisa, Italy. [Cappa, Claudia] CNR, Inst Clin Physiol, Pisa, Italy. C3 Consiglio Nazionale delle Ricerche (CNR); Istituto di Linguistica Computazionale "A. Zampolli" (ILC-CNR); Consiglio Nazionale delle Ricerche (CNR); Istituto di Fisiologia Clinica (IFC-CNR) RP Taxitari, L (corresponding author), CNR, Inst Computat Linguist Antonio Zampolli, Pisa, Italy. EM loukia.taxitari@ilc.cnr.it; claudia.cappa@ilc.cnr.it; marcello.ferro@ilc.cnr.it; claudia.marzi@ilc.cnr.it; andrea.nadalini@ilc.cnr.it; vito.pirrelli@ilc.cnr.it RI ; MARZI, CLAUDIA/C-8034-2012 OI Nadalini, Andrea/0000-0001-8859-9449; MARZI, CLAUDIA/0000-0002-3427-2827 FU Italian Ministry of University and Research [2017W8HFRX] FX We gratefully acknowledge the financial support of PRIN grant 2017W8HFRX "ReadLet: reading to understand. An ICT-driven, large-scale investigation of early grade children's reading strategies" (2020-2022), from the Italian Ministry of University and Research. CR [Anonymous], 2009, ACQUIRING KNOWLEDGE [Anonymous], Vision: A Computational Investigation into the Human Representation and Processing of Visual Information Benfatto MN, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0165508 Burani C, 2008, COGNITION, V108, P243, DOI 10.1016/j.cognition.2007.12.010 Chzhen Y, 2018, 15 UNICEF OFF RES Coltheart M, 2001, PSYCHOL REV, V108, P204, DOI 10.1037//0033-295X.108.1.204 Commodari E, 2017, I-PERCEPTION, V8, DOI 10.1177/2041669517718557 Cutting LE, 2006, SCI STUD READ, V10, P277, DOI 10.1207/s1532799xssr1003_5 De Luca M, 2008, COGN BEHAV NEUROL, V21, P227, DOI 10.1097/WNN.0b013e318190d162 Dehaene S., 2009, READING BRAIN SCI EV DellOrletta F., 2011, P 2 WORKSH SPEECH LA, P73 Eason SH, 2012, J EDUC PSYCHOL, V104, P515, DOI 10.1037/a0027182 Ferrari M., 2018, 2018 9 IEEE INT S PO, P1 Ferro M., 11 INT C MENT LEX 25, P61 Francis D. J, 2005, CTR IMPROVEMENT EARL Frank MC, 2016, J COGN DEV, V17, P1, DOI 10.1080/15248372.2015.1061528 Grabe W., 2019, TEACHING RES READING, DOI DOI 10.4324/9781315726274-2 HOOVER WA, 1990, READ WRIT, V2, P127, DOI 10.1007/BF00401799 Keenan JM, 2008, SCI STUD READ, V12, P281, DOI 10.1080/10888430802132279 Lio G, 2019, NAT COMMUN, V10, DOI 10.1038/s41467-019-13285-0 Maffei Lamberto., 2018, Elogio della parola Marzi C, 2015, J COGN SCI, V16, P493 Nation K, 1997, BRIT J EDUC PSYCHOL, V67, P359, DOI 10.1111/j.2044-8279.1997.tb01250.x Nation K, 2019, AUST J LEARN DIFFIC, V24, P47, DOI 10.1080/19404158.2019.1609272 O'Reilly T, 2014, EDUC PSYCHOL REV, V26, P403, DOI 10.1007/s10648-014-9269-z OECD, 2018, EQ ED BREAK BARR SOC, DOI 10.1787/9789264073234-en Pirrelli V., 2020, WORD KNOWLEDGE WORD, V337, P23 Price CJ, 2012, NEUROIMAGE, V62, P816, DOI 10.1016/j.neuroimage.2012.04.062 Sabatini J., 2019, ETS RES REPORT SERIE, V2019, P1 Semmelmann K, 2016, FRONT PSYCHOL, V7, DOI 10.3389/fpsyg.2016.01021 Vorstius C, 2014, VIS COGN, V22, P458, DOI 10.1080/13506285.2014.881445 Wayman MM, 2007, J SPEC EDUC, V41, P85, DOI 10.1177/00224669070410020401 Wolf M., 2018, Reader, Come Home: The Reading Brain in a Digital World Zoccolotti P, READ WRIT, V22, P965 NR 34 TC 4 Z9 4 U1 1 U2 10 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA SN 2327-185X BN 978-1-7281-6646-9 J9 COLLOQ INF SCI TECH PY 2020 BP 302 EP 307 DI 10.1109/CIST49399.2021.9357173 PG 6 WC Computer Science, Artificial Intelligence; Computer Science, Information Systems; Information Science & Library Science WE Conference Proceedings Citation Index - Science (CPCI-S); Conference Proceedings Citation Index - Social Science & Humanities (CPCI-SSH) SC Computer Science; Information Science & Library Science GA BR5TS UT WOS:000657322100052 DA 2024-09-05 ER PT C AU Zhang, LN Yang, B AF Zhang, Li-na Yang, Bo BE Liu, HW Wang, G Zhang, GW TI Research on the Evaluation of Students' Development Based on Support Vector Machine SO MATERIAL SCIENCE, CIVIL ENGINEERING AND ARCHITECTURE SCIENCE, MECHANICAL ENGINEERING AND MANUFACTURING TECHNOLOGY II SE Applied Mechanics and Materials LA English DT Proceedings Paper CT 3rd International Conference on Advanced Engineering Materials and Architecture Science (ICAEMAS) CY JUL 26-27, 2014 CL Huhhot, PEOPLES R CHINA DE Development of the students; Index of evaluation; SVM AB This paper applies SVM theory to the evaluation of student development system, and study on the content of students' development contains, at the same time establish the evaluation index system of students' development. Through the use of sample data on the evaluation system for a certain amount of training, we get a trained model, then evaluate and analyze the students' data to be measured. This approach can make students' assessment more accurate and reasonable, and evaluation results can be used in scientific. It can be seen from the development point of view, evaluation of all aspects of students' quality, and reduce the error caused by subjective on evaluation process. C1 [Zhang, Li-na] Jilin Agr Univ, Changchun 130118, Jilin, Peoples R China. [Yang, Bo] Changchun Univ Finance & Econ, Changchun 130122, Jilin, Peoples R China. C3 Jilin Agricultural University; Jilin University of Finance & Economics RP Zhang, LN (corresponding author), Jilin Agr Univ, Changchun 130118, Jilin, Peoples R China. EM mail_zhangln@163.com; mail_yangbo@163.com CR Hsu CW, 2002, IEEE T NEURAL NETWOR, V13, P415, DOI 10.1109/72.991427 Kenneth A., 1988, MATHCED MISMATCHED P, V28, P291 PHETKAEW T, 2003, P 2003 INT JOINT C N, V2, P236 Rowley J., 2000, INT J EDUC MANAG, V3, P36 TIAN X, 2004, P 5 WORLD C INT CONT NR 5 TC 2 Z9 2 U1 0 U2 3 PU TRANS TECH PUBLICATIONS LTD PI DURNTEN-ZURICH PA KREUZSTRASSE 10, 8635 DURNTEN-ZURICH, SWITZERLAND SN 1660-9336 BN 978-3-03835-267-9 J9 APPL MECH MATER PY 2014 VL 651-653 BP 2502 EP + DI 10.4028/www.scientific.net/AMM.651-653.2502 PG 2 WC Construction & Building Technology; Engineering, Civil; Engineering, Mechanical; Materials Science, Multidisciplinary WE Conference Proceedings Citation Index - Science (CPCI-S) SC Construction & Building Technology; Engineering; Materials Science GA BC0UL UT WOS:000349617700530 DA 2024-09-05 ER PT C AU Hooper, CJ Neves, B Bordea, G AF Hooper, Clare J. Neves, Bruna Bordea, Georgeta BE Tiropanis, T Vakali, A Sartori, L Burnap, P TI A Disciplinary Analysis of Internet Science SO INTERNET SCIENCE (INSCI 2015) SE Lecture Notes in Computer Science LA English DT Proceedings Paper CT 2nd International Conference on Internet Science - Societies, Governance and Innovation (INSCI) CY MAY 27-29, 2015 CL Brussels, BELGIUM DE Internet Science; Disciplinary analysis; Interdisciplinarity; Bibliometrics; Natural language processing AB Internet Science is an interdisciplinary field. Motivated by the unforeseen scale and impact of the Internet, it addresses Internet-related research questions in a holistic manner, incorporating epistemologies from a broad set of disciplines. Nonetheless, there is little empirical evidence of the levels of disciplinary representation within this field. This paper describes an analysis of the presence of different disciplines in Internet Science based on techniques from Natural Language Processing and network analysis. Key terms from Internet Science are identified, as are nine application contexts. The results are compared with a disciplinary analysis of Web Science, showing a surprisingly low amount of overlap between these two related fields. A practical use of the results within Internet Science is described. Finally, next steps are presented that will consolidate the analysis regarding representation of less technologically-oriented disciplines within Internet Science. C1 [Hooper, Clare J.; Neves, Bruna] Univ Southampton, IT Innovat Ctr, Southampton, Hants, England. [Bordea, Georgeta] Natl Univ Ireland Univ Coll Galway, Insight, Galway, Ireland. C3 University of Southampton; Ollscoil na Gaillimhe-University of Galway RP Hooper, CJ (corresponding author), Univ Southampton, IT Innovat Ctr, Southampton, Hants, England. EM cjh@it-innovation.soton.ac.uk; georgeta.bordea@insight-centre.org RI Bordea, Georgeta/T-5762-2019 OI Bordea, Georgeta/0000-0001-9921-8234 CR Ananiadou S., 1994, 15 C COMP LING Barthélemy M, 2004, EUR PHYS J B, V38, P163, DOI 10.1140/epjb/e2004-00111-4 Blondel VD, 2008, J STAT MECH-THEORY E, DOI 10.1088/1742-5468/2008/10/P10008 Bordea G., 2010, P 5 INT WORKSH SEM E Bordea G., 2013, THESIS Bordea Georgeta, 2013, 10 INT C TERM ART IN CALLON M, 1983, SOC SCI INFORM, V22, P191, DOI 10.1177/053901883022002003 Chen C., 1999, 10 ACM C HYP HYP Coulter N, 1998, J AM SOC INFORM SCI, V49, P1206, DOI 10.1002/(SICI)1097-4571(1998)49:13<1206::AID-ASI7>3.0.CO;2-F Dini P., 2013, INT C INT SCI, P42 Fdidia S., 2013, ACM WEB SCI 2013 Guevara K., 2013, INT C INT SCI, P37 Henry N, 2007, INT J HUM-COMPUT INT, V23, P239, DOI 10.1080/10447310701702402 Hooper C., 2012, P ACM WEBSCI 2012 Hooper Clare J., 2013, Interactions, V20, P52, DOI 10.1145/2451856.2451868 Hooper C.J., 2014, INTERDISCIPLINARY CO Hooper C. J., 2013, WEB SCI 200 CULTURES Hooper C.J., 2014, FP7288021 NETW EXC I Kraker P., 2013, P ACM WEBSCI 2013 Lopez-Herrera A., 2010, INT J HYBRID INTELLI, V7, P17, DOI DOI 10.3233/HIS-2010-0102 Lungeanu A, 2014, J INFORMETR, V8, P59, DOI 10.1016/j.joi.2013.10.006 Monaghan F., 2010, SEM WEB CHALL INT SE Nagel T., 2011, 22 ACM C HYP HYP DEM Navigli R., 2011, P 22 INT JOINT C ART Sahal A., 2013, 1 INT C INT SCI Stavrakakis I., 2014, FP7288021 NETW EXC I Velardi P., 2007, 7 C TERM INT ART Wang ZY, 2012, SCIENTOMETRICS, V90, P855, DOI 10.1007/s11192-011-0563-y Zhang Z., 2008, P 6 INT C LANG RES E NR 29 TC 1 Z9 1 U1 0 U2 8 PU SPRINGER-VERLAG BERLIN PI BERLIN PA HEIDELBERGER PLATZ 3, D-14197 BERLIN, GERMANY SN 0302-9743 EI 1611-3349 BN 978-3-319-18609-2; 978-3-319-18608-5 J9 LECT NOTES COMPUT SC PY 2015 VL 9089 BP 63 EP 77 DI 10.1007/978-3-319-18609-2_5 PG 15 WC Computer Science, Artificial Intelligence; Computer Science, Hardware & Architecture; Computer Science, Information Systems; Computer Science, Theory & Methods; Robotics WE Conference Proceedings Citation Index - Science (CPCI-S) SC Computer Science; Robotics GA BD6MA UT WOS:000362365800005 DA 2024-09-05 ER PT C AU David, P Hawes, T AF David, Peter Hawes, Timothy BE Hanratty, TP Llinas, J TI Quantity and Unit Extraction for Scientific and Technical Intelligence Analysis SO NEXT-GENERATION ANALYST V SE Proceedings of SPIE LA English DT Proceedings Paper CT 5th Conference on Next-Generation Analyst CY APR 10-11, 2017 CL Anaheim, CA DE Natural Language Processing; Quantity Extraction; Unit of Measure; Scientometrics AB Scientific and Technical (S&T) intelligence analysts consume huge amounts of data to understand how scientific progress and engineering efforts affect current and future military capabilities. One of the most important types of information S&T analysts exploit is the quantities discussed in their source material. Frequencies, ranges, size, weight, power, and numerous other properties and measurements describing the performance characteristics of systems and the engineering constraints that define them must be culled from source documents before quantified analysis can begin. Automating the process of finding and extracting the relevant quantities from a wide range of S&T documents is difficult because information about quantities and their units is often contained in unstructured text with ad hoc conventions used to convey their meaning. Currently, even simple tasks, such as searching for documents discussing RF frequencies in a band of interest, is a labor intensive and error prone process. This research addresses the challenges facing development of a document processing capability that extracts quantities and units from S&T data, and how Natural Language Processing algorithms can be used to overcome these challenges. C1 [David, Peter; Hawes, Timothy] Decis Analyt Corp, 1400 Crystal Dr,Suite 1400, Arlington, VA 22202 USA. RP David, P (corresponding author), Decis Analyt Corp, 1400 Crystal Dr,Suite 1400, Arlington, VA 22202 USA. FU Army Research Laboratory [W911QX-15-C-0031]; Air Force Research Laboratory [FA8750-14-C-0135] FX The research reported in this document/presentation was performed under the sponsorship the DoD Rapid Innovation Fund in conjunction with the Army Research Laboratory under contract No W911QX-15-C-0031, and the Air Force Research Laboratory under contract No. FA8750-14-C-0135. The views and conclusions contained in this document/presentation are those of the author and should not be interpreted as presenting the official policies or position, either expressed or implied, of the Army Research Laboratory, the Air Force Research Laboratory or the U.S. Government. CR Agarwal P, 2008, BRIEF BIOINFORM, V9, P479, DOI 10.1093/bib/bbn035 Berrahou Soumia Lilia, 2013, KDIR & KMIS 2013. Proceedings of the International Conference on Knowledge Discovery and Information Retrieval and the International Conference on Knowledge Management and Information Sharing, P249 Cho K., 2014, P 8 WORKSH SYNT SEM Graves A, 2005, IEEE IJCNN, P2047 Harmston Nathan, 2010, Human Genomics, V5, P17 Hoffmann Raphael, 2011, P 49 ANN M ASS COMPU Kang Yanna Shen, 2013, J Pathol Inform, V4, P23, DOI 10.4103/2153-3539.117450 Mintz Mike, 2009, Dis-tant supervision for relation extraction without labeled data Pereyra G., 2017, CORR Schuster M, 1997, IEEE T SIGNAL PROCES, V45, P2673, DOI 10.1109/78.650093 Srivastava N, 2014, J MACH LEARN RES, V15, P1929 SWANSON DR, 1986, PERSPECT BIOL MED, V30, P7 van Assem M, 2010, LECT NOTES COMPUT SC, V6496, P16, DOI 10.1007/978-3-642-17746-0_2 Willems D. J., 2012, P WORKSH SEM WEB INF, P43 NR 14 TC 0 Z9 0 U1 0 U2 2 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X EI 1996-756X BN 978-1-5106-0915-0; 978-1-5106-0916-7 J9 PROC SPIE PY 2017 VL 10207 AR UNSP 102070F DI 10.1117/12.2266039 PG 7 WC Computer Science, Artificial Intelligence; Computer Science, Cybernetics; Computer Science, Theory & Methods WE Conference Proceedings Citation Index - Science (CPCI-S) SC Computer Science GA BJ2TD UT WOS:000422621500014 DA 2024-09-05 ER PT J AU Rokach, L Kalech, M Blank, I Stern, R AF Rokach, Lior Kalech, Meir Blank, Ido Stern, Rami TI Who Is Going to Win the Next Association for the Advancement of Artificial Intelligence Fellowship Award? Evaluating Researchers by Mining Bibliographic Data SO JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE AND TECHNOLOGY LA English DT Article ID H-INDEX; SCIENCE; WEB; SCOPUS AB Accurately evaluating a researcher and the quality of his or her work is an important task when decision makers have to decide on such matters as promotions and awards. Publications and citations play a key role in this task, and many previous studies have proposed using measurements based on them for evaluating researchers. Machine learning techniques as a way of enhancing the evaluating process have been relatively unexplored. We propose using a machine learning approach for evaluating researchers. In particular, the proposed method combines the outputs of three learning techniques (logistics regression, decision trees, and artificial neural networks) to obtain a unified prediction with improved accuracy. We conducted several experiments to evaluate the model's ability to: (a) classify researchers in the field of artificial intelligence as Association for the Advancement of Artificial Intelligence (AAAI) fellows and (b) predict the next AAAI fellowship winners. We show that both our classification and prediction methods are more accurate than are previous measurement methods, and reach a precision rate of 96% and a recall of 92%. C1 [Rokach, Lior; Kalech, Meir; Blank, Ido] Ben Gurion Univ Negev, Dept Informat Syst Engn, POB 653, IL-84105 Beer Sheva, Israel. [Rokach, Lior; Stern, Rami] Ben Gurion Univ Negev, Deutsch Telekom Labs, IL-84105 Beer Sheva, Israel. C3 Ben Gurion University; Deutsche Telekom AG; Ben Gurion University RP Rokach, L (corresponding author), Ben Gurion Univ Negev, Dept Informat Syst Engn, POB 653, IL-84105 Beer Sheva, Israel. EM liorrk@bgu.ac.il; kalech@bgu.ac.il; blanki@bgu.ac.il; sternr@bgu.ac.il RI Rokach, Lior/F-8247-2010; Kalech, Meir/AAC-5476-2019 OI Kalech, Meir/0000-0001-7394-4713 CR Ali KM, 1996, MACH LEARN, V24, P173, DOI 10.1023/A:1018249309965 [Anonymous], 2007, International Society for Scientometrics and Informetrics newsletter Batista PD, 2006, SCIENTOMETRICS, V68, P179, DOI 10.1007/s11192-006-0090-4 Bornmann L, 2008, J AM SOC INF SCI TEC, V59, P830, DOI 10.1002/asi.20806 Bornmann L, 2007, J AM SOC INF SCI TEC, V58, P1381, DOI 10.1002/asi.20609 Breiman L., 2001, Machine Learning, V45, P5, DOI 10.1023/A:1010933404324 Chawla NV., 2004, ACM SIGKDD EXPLORATI, V6, P1, DOI [10.1145/1007730.1007733, DOI 10.1145/1007730.1007733] Cohen William W., 1995, MACHINE LEARNING P 1, V1995, P115, DOI DOI 10.1016/B978-1-55860-377-6.50023-2 Egghe L, 2006, SCIENTOMETRICS, V69, P131, DOI 10.1007/s11192-006-0144-7 Feitelson DG, 2004, J DOC, V60, P44, DOI 10.1108/00220410410516644 Frolik J, 2001, IEEE T INSTRUM MEAS, V50, P1761, DOI 10.1109/19.982977 García S, 2010, INFORM SCIENCES, V180, P2044, DOI 10.1016/j.ins.2009.12.010 García-Pérez MA, 2011, J INFORMETR, V5, P214, DOI 10.1016/j.joi.2010.07.006 García-Pérez MA, 2010, J AM SOC INF SCI TEC, V61, P2070, DOI 10.1002/asi.21372 Harzing A. W., 2011, The publish or perish book Hirsch JE, 2005, P NATL ACAD SCI USA, V102, P16569, DOI 10.1073/pnas.0507655102 Jensen P, 2009, SCIENTOMETRICS, V78, P467, DOI 10.1007/s11192-007-2014-3 Jin BH, 2007, CHINESE SCI BULL, V52, P855, DOI 10.1007/s11434-007-0145-9 Kan MY, 2008, COMMUN ACM, V51, P91, DOI 10.1145/1314215.1314231 KIRA K, 1992, AAAI-92 PROCEEDINGS : TENTH NATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE, P129 Koren Y., 2009, Netflix prize documentation, V81, P1 Kretschmer H, 2004, SCIENTOMETRICS, V60, P409, DOI 10.1023/B:SCIE.0000034383.86665.22 Levine-Clark M, 2008, J BUS FINANC LIBR, V14, P32, DOI 10.1080/08963560802176348 Ley M., 2006, Extraction et gestion des connais- sances (EGC'2006), Actes des sixiemes journees Extraction et Gestion des Connaissances, P17 Li JA, 2010, J INFORMETR, V4, P554, DOI 10.1016/j.joi.2010.06.005 Liu X, 2011, J AM SOC INF SCI TEC, V62, P1166, DOI 10.1002/asi.21528 Meho LI, 2007, J AM SOC INF SCI TEC, V58, P2105, DOI 10.1002/asi.20677 Mengle SSR, 2009, J AM SOC INF SCI TEC, V60, P1037, DOI 10.1002/asi.21023 MITCHELL T, 1989, ANNU REV COMPUT SCI, V4, P417 Newman MEJ, 2001, P NATL ACAD SCI USA, V98, P404, DOI 10.1073/pnas.021544898 Patterson D., 1999, COMPUTING RES NEWS, V11, pA Polikar R., 2006, IEEE Circuits and Systems Magazine, V6, P21, DOI 10.1109/MCAS.2006.1688199 Rokach L, 2006, INT J PATTERN RECOGN, V20, P329, DOI 10.1142/S0218001406004739 Rokach L, 2010, ARTIF INTELL REV, V33, P1, DOI 10.1007/s10462-009-9124-7 Ruane F., 2008, SCIENTOMETRICS Schreiber M, 2008, NEW J PHYS, V10, DOI 10.1088/1367-2630/10/4/040201 Setiono R., 1995, P 7 IEEE INT C TOOLS Sidiropoulos A, 2007, SCIENTOMETRICS, V72, P253, DOI 10.1007/s11192-007-1722-z Vinkler P, 2009, J INF SCI, V35, P602, DOI 10.1177/0165551509103601 Witten I.H., 2005, Data Mining: Practical Machine Learning Tools and Techniques, V3rd ed. Zhang C, 2009, PLOS ONE, V4, DOI [10.1371/journal.pone.0004881, 10.1371/journal.pone.0005429] Zhang CT, 2010, J AM SOC INF SCI TEC, V61, P625, DOI 10.1002/asi.21274 NR 42 TC 12 Z9 12 U1 1 U2 30 PU WILEY PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1532-2882 EI 1532-2890 J9 J AM SOC INF SCI TEC JI J. Am. Soc. Inf. Sci. Technol. PD DEC PY 2011 VL 62 IS 12 BP 2456 EP 2470 DI 10.1002/asi.21638 PG 15 WC Computer Science, Information Systems; Information Science & Library Science WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Computer Science; Information Science & Library Science GA 851WT UT WOS:000297303100014 OA Green Submitted DA 2024-09-05 ER PT J AU Li, K Rollins, J Yan, E AF Li, Kai Rollins, Jason Yan, Erjia TI Web of Science use in published research and review papers 1997-2017: a selective, dynamic, cross-domain, content-based analysis SO SCIENTOMETRICS LA English DT Article DE Web of Science; Scientometrics; Natural language processing; Eugene Garfield ID IMPACT FACTOR; SCIENTOMETRICS; CITATIONS; BIBLIOMETRICS; TRENDS; TOOL AB Clarivate Analytics's Web of Science (WoS) is the world's leading scientific citation search and analytical information platform. It is used as both a research tool supporting a broad array of scientific tasks across diverse knowledge domains as well as a dataset for large-scale data-intensive studies. WoS has been used in thousands of published academic studies over the past 20 years. It is also the most enduring commercial legacy of Eugene Garfield. Despite the central position WoS holds in contemporary research, the quantitative impact of WoS has not been previously examined by rigorous scientific studies. To better understand how this key piece of Eugene Garfield's heritage has contributed to science, we investigated the ways in which WoS (and associated products and features) is mentioned in a sample of 19,478 English-language research and review papers published between 1997 and 2017, as indexed in WoS databases. We offered descriptive analyses of the distribution of the papers across countries, institutions and knowledge domains. We also used natural language processingtechniques to identify the verbs and nouns in the abstracts of these papers that are grammatically connected to WoS-related phrases. This is the first study to empirically investigate the documentation of the use of the WoS platform in published academic papers in both scientometric and linguistic terms. C1 [Li, Kai; Yan, Erjia] Drexel Univ, 30N 33rd St, Philadelphia, PA 19104 USA. [Rollins, Jason] Clarivate Analyt, 50 Calif St, San Francisco, CA 94111 USA. C3 Drexel University; Clarivate RP Li, K (corresponding author), Drexel Univ, 30N 33rd St, Philadelphia, PA 19104 USA. EM kl696@drexel.edu; Jason.rollins@clarivate.com; Erjia.yan@drexel.edu RI Li, Kai/N-3209-2013; Yan, Erjia/E-7887-2011 OI Li, Kai/0000-0002-7264-365X; Yan, Erjia/0000-0002-0365-9340; Rollins, Jason/0000-0001-6201-1133 CR Adair W.C., 1955, American Documentation, V6, P31, DOI DOI 10.1002/ASI.5090060105 Amin M., 2004, INT J ENVIRON SCI TE, V1, P1 [Anonymous], 2016, P LREC [Anonymous], ARXIV171001895 [Anonymous], RES DATA EXPLORED CI [Anonymous], 2010, ENDURING VALUE SOCIA Apai D, 2010, PUBL ASTRON SOC PAC, V122, P808, DOI 10.1086/654851 Arnold T, 2016, COMPUTER SOFTWARE MA Belter CW, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0092590 Bernes S., 2017, SCI ENG ETHICS Bornmann L., 2017, REFERENCE PUBLICATIO BROADUS RN, 1987, SCIENTOMETRICS, V12, P373, DOI 10.1007/BF02016680 Cameron BD, 2005, PORTAL-LIBR ACAD, V5, P105, DOI 10.1353/pla.2005.0003 Carroll John, 1999, ARXIVCS9907013 Cawkell T., 2001, INFORM SERVICES USE, V21, P79 Chao TC., 2011, Proceedings of the American Society for Information Science and Technology, V48, P1, DOI DOI 10.1002/MEET.2011.14504801125 *CLAR AN, 2017, WEB SCI PROD WEBP Coelho PMZ, 2003, BRAZ J MED BIOL RES, V36, P1605, DOI 10.1590/S0100-879X2003001200001 Demarest B, 2015, J ASSOC INF SCI TECH, V66, P1374, DOI 10.1002/asi.23271 Dorch S. B. F, 2012, H PRINTS HUMANITIES Garfield E, 1996, LIBR QUART, V66, P449, DOI 10.1086/602912 GARFIELD E, 1955, SCIENCE, V122, P108, DOI 10.1126/science.122.3159.108 GARFIELD E, 1972, SCIENCE, V178, P471, DOI 10.1126/science.178.4060.471 Garfield E., 1977, SCI J CITATION REPOR Garfield E, 2007, INT MICROBIOL, V10, P65, DOI 10.2436/20.1501.01.10 Gleditsch N. P., 2003, INT STUDIES PERSPECT, V4, P89, DOI DOI 10.1111/1528-3577.04105 HANSSON S, 1995, LANCET, V346, P906, DOI 10.1016/S0140-6736(95)92749-2 He L, 2017, LIBR HI TECH, V35, P332, DOI 10.1108/LHT-12-2016-0158 He L, 2016, ASLIB J INFORM MANAG, V68, P478, DOI 10.1108/AJIM-01-2016-0008 Henneken E. A., 2011, LINKING DATA EFFECT Hood WW, 2001, SCIENTOMETRICS, V52, P291, DOI 10.1023/A:1017919924342 Ioannidis JPA, 2009, NAT GENET, V41, P149, DOI 10.1038/ng.295 Jelercic S, 2010, FAM PRACT, V27, P582, DOI 10.1093/fampra/cmq032 Klein D, 2003, 41ST ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, PROCEEDINGS OF THE CONFERENCE, P423, DOI 10.3115/1075096.1075150 Klein DB, 2004, ECON J WATCH, V1, P134 Kumar V, 2009, SINGAP MED J, V50, P752 Lazerow S., 1974, Encyclopedia of Library and Information Science, V12, P89 Leng ZK, 2013, NEURAL REGEN RES, V8, P1286, DOI 10.3969/j.issn.1673-5374.2013.14.005 Manning CD, 2014, PROCEEDINGS OF 52ND ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS: SYSTEM DEMONSTRATIONS, P55, DOI 10.3115/v1/p14-5010 MAYO C, 2016, INT J DIGITAL CURATI, V0011 Meho LI, 2007, PHYS WORLD, V20, P32 Nalimov V.V., 1969, Scientometrics Orosz K, 2016, SCIENTOMETRICS, V108, P829, DOI 10.1007/s11192-016-1971-9 Pan XL, 2015, J INFORMETR, V9, P860, DOI 10.1016/j.joi.2015.07.012 PENDLEBURY DA, 1993, SCIENTIST, V7, P1 Peters I, 2016, SCIENTOMETRICS, V107, P723, DOI 10.1007/s11192-016-1887-4 Piqueras JA, 2017, J AFFECT DISORDERS, V218, P153, DOI 10.1016/j.jad.2017.04.022 Piwowar HA, 2007, PLOS ONE, V2, DOI 10.1371/journal.pone.0000308 Piwowar HA, 2013, PEERJ, V1, DOI 10.7717/peerj.175 Ponomarev IV, 2014, TECHNOL FORECAST SOC, V81, P49, DOI 10.1016/j.techfore.2012.09.017 Pringle J, 2008, LEARN PUBL, V21, P85, DOI 10.1087/095315108X288901 Raats M. M., 1991, Food Quality and Preference, V3, P89, DOI 10.1016/0950-3293(91)90028-D Rumsey E, 2010, E GARFIELD LIB GRAND Salager-Meyer F., 1990, TEXT, V10, P365, DOI [10.1515/text.1.1990.10.4.365, DOI 10.1515/TEXT.1.1990.10.4.365] Salager-Meyer F., 1992, ENGL SPECIF PURP, V11, P93, DOI DOI 10.1016/S0889-4906(05)80002-X Samraj B, 2005, ENGL SPECIF PURP, V24, P141, DOI 10.1016/j.esp.2002.10.001 Seglen PO, 1997, ALLERGY, V52, P1050, DOI 10.1111/j.1398-9995.1997.tb00175.x SENGUPTA IN, 1992, LIBRI, V42, P75, DOI 10.1515/libr.1992.42.2.75 Shuai X, 2017, J ASSOC INF SCI TECH, V68, P2225, DOI 10.1002/asi.23826 Simons K, 2008, SCIENCE, V322, P165, DOI 10.1126/science.1165316 SMALL H, 1973, J AM SOC INFORM SCI, V24, P265, DOI 10.1002/asi.4630240406 Small H., 1982, PROGR COMMUNICATION, V3, P287 Small H, 2011, SCIENTOMETRICS, V87, P373, DOI 10.1007/s11192-011-0349-2 Swales J.M., 1981, Aspects of article introduction Teufel S., 2006, P C EMP METH NAT LAN, DOI 10.3115/1610075.1610091 van Raan A. F. J., 2017, E GARFIELD 1925 2017 VanRaan AFJ, 1997, SCIENTOMETRICS, V38, P205, DOI 10.1007/BF02461131 Wang YQ, 2017, ONCOTARGET, V8, P59666, DOI 10.18632/oncotarget.19611 Yan E, 2014, J ASSOC INF SCI TECH, V65, P2331, DOI 10.1002/asi.23106 Yan J, 2017, CLIN LAB, V63, P1187, DOI 10.7754/Clin.Lab.2017.170522 Zhang ZH, 2017, PRO INT CONF SCI INF, P1052 Zhao M., J ASS INFORM SCI TEC Zupic I, 2015, ORGAN RES METHODS, V18, P429, DOI 10.1177/1094428114562629 NR 73 TC 310 Z9 325 U1 28 U2 242 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0138-9130 EI 1588-2861 J9 SCIENTOMETRICS JI Scientometrics PD APR PY 2018 VL 115 IS 1 BP 1 EP 20 DI 10.1007/s11192-017-2622-5 PG 20 WC Computer Science, Interdisciplinary Applications; Information Science & Library Science WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Computer Science; Information Science & Library Science GA FY4PT UT WOS:000426807700001 PM 29527070 OA Green Published, hybrid HC Y HP N DA 2024-09-05 ER PT C AU Cosh, K Ramingwong, S Eiamkanitchat, N Ramingwong, L AF Cosh, Kenneth Ramingwong, Sakgasit Eiamkanitchat, Narissara Ramingwong, Lachana GP IEEE TI Automatically Identifying Themes and Trends in Software Engineering Research SO 2018 10TH INTERNATIONAL CONFERENCE ON KNOWLEDGE AND SMART TECHNOLOGY (KST 2018) - CYBERNETICS IN THE NEXT DECADES SE International Conference on Knowledge and Smart Technology LA English DT Proceedings Paper CT 10th International Conference on Knowledge and Smart Technology (KST) - Cybernetics in the Next Decades CY JAN 31-FEB 03, 2018 CL Chiangmai, THAILAND DE Bibliometric Analysis; Natural Language Processing; Information Extraction; Software Engineering AB Understanding the ways that research topics are evolving in a research domain is important when considering research proposals. Bibliometric analysis provides a variety of tools for exploring publication data, but often involves manual effort. This paper presents an automatic method for extracting and examining key research themes by using natural language processing to parse a large collection of papers. The method was applied to over 8,000 papers published in the software engineering field over the past 20 years. Key research themes were identified and visualized, so that trends could be highlighted. Some research fields that are in decline are identified, along with newly popular research topics such as fuzzy set membership, cloud computing, feature selection and agile development teams. C1 [Cosh, Kenneth; Ramingwong, Sakgasit; Eiamkanitchat, Narissara; Ramingwong, Lachana] Chiang Mai Univ, Comp Engn Dept, Chiang Mai, Thailand. C3 Chiang Mai University RP Cosh, K (corresponding author), Chiang Mai Univ, Comp Engn Dept, Chiang Mai, Thailand. EM drkencosh@gmail.com RI Eiamkanitchat, Narissara/GRX-3360-2022 OI Eiamkanitchat, Narissara/0000-0001-7473-9762 CR Agarwal Parul, 2011, IJCSI INT J COMPUTER, V8 Aggarwal C.C., 2012, MINING TEXT DATA, P77, DOI 10.1007/978-1-4614-3223-4 Borodin M., 2010, C COMP HIGH EN NUCL Cosh K., 2015, LECT NOTES ELECT ENG, V339 Cosh KJ, 2008, LIBR REV, V57, P722, DOI 10.1108/00242530810911824 Cronin B, 2014, BEYOND BIBLIOMETRICS: HARNESSING MULTIDIMENSIONAL INDICATORS OF SCHOLARLY IMPACT, P3 Deville S, 2015, J AM CERAM SOC, V98, P2324, DOI 10.1111/jace.13699 Do H., 2006, EMPIRICAL SOFTWARE E, V11 Jackson P., 2002, NATURAL LANGUGE PROC Jarke M, 2013, SEMINAL CONTRIBUTION, P15, DOI [10. 1007/978-3-642-36926-1_2, DOI 10.1007/978-3-642-36926-1_2] Jui-Long Hung, 2012, Journal of Computing in Higher Education, V24, P1, DOI 10.1007/s12528-011-9044-9 Keshava, 2008, Information Studies, V14, P223 Lee MR, 2012, KNOWL-BASED SYST, V28, P47, DOI 10.1016/j.knosys.2011.11.016 Ma J., 2012, IEEE T SYSTEMS MAN A, V42 Mogil JS, 2009, PAIN, V142, P48, DOI 10.1016/j.pain.2008.11.012 Rayson P, 2000, WORKSH COMP CORP HEL Robert P., 1976, J ROYAL STAT SOC, V25 Teng T, 2008, FEATURE INTERACTIONS IN SOFTWARE AND COMMUNICATION SYSTEMS IX, P49 Thelwall M, 2008, J INF SCI, V34, P605, DOI 10.1177/0165551507087238 ZITT M, 1994, SCIENTOMETRICS, V30, P333, DOI 10.1007/BF02017232 NR 20 TC 2 Z9 2 U1 0 U2 2 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA SN 2374-314X BN 978-1-5386-4015-9 J9 INT CONF KNOWL SMART PY 2018 BP 106 EP 111 PG 6 WC Computer Science, Artificial Intelligence; Engineering, Electrical & Electronic WE Conference Proceedings Citation Index - Science (CPCI-S) SC Computer Science; Engineering GA BO1RK UT WOS:000502134300021 DA 2024-09-05 ER PT J AU Cueva, K Cueva, M Revels, L Hensel, M Dignan, M AF Cueva, Katie Cueva, Melany Revels, Laura Hensel, Michelle Dignan, Mark TI Culturally Relevant Online Cancer Education Supports Tribal Primary Care Providers to Reduce Their Cancer Risk and Share Information About Cancer SO HEALTH PROMOTION PRACTICE LA English DT Article DE Alaska Native; Indigenous; community-based participatory research; online learning; evaluation; survey; distance education; cancer ID COMMUNITY-HEALTH AIDES/PRACTITIONERS AB Background. Culturally relevant education is an opportunity to reduce health disparities, and online learning is an emerging avenue for health promotion. In 2014-2019, a team based at the Alaska Native Tribal Health Consortium developed, implemented, and evaluated culturally relevant online cancer education modules with, and for, Alaska's tribal primary care providers. The project was guided by Indigenous Ways of Knowing and the principles of community-based participatory action research and was evaluated in alignment with empowerment theory. About 265 unique learners completed 1,898 end-of-module evaluation surveys between March 2015 and August 2019, and 13 people completed a follow-up survey up to 28 months post module completion. Key Findings. Learners described the modules as culturally respectful and informative and reported feeling more knowledgeable and comfortable talking about cancer as a result of the modules. About 98% of the learners planned to reduce their cancer risk because of the modules, and all follow-up survey respondents had reduced their risk, including by quitting smoking, getting screened for cancer, eating healthier, and exercising more. About 98% of the learners planned to share information with their patients, families, friends, and community members because of the modules, with all follow-up survey respondents indicating that they had shared information about cancer from the modules. Implications for Practice and Further Research. Culturally relevant online modules have the capacity for positive behavioral change and relatively high correlations between intent and behavior change. Future research could determine which aspects of the modules catalyzed reduced cancer risk and increased dissemination of cancer information. C1 [Cueva, Katie] Univ Alaska Anchorage, Anchorage, AK USA. [Cueva, Melany; Revels, Laura; Hensel, Michelle] Alaska Native Tribal Hlth Consortium, Anchorage, AK USA. [Dignan, Mark] Univ Kentucky, Lexington, KY USA. C3 University of Alaska System; University of Alaska Anchorage; Alaska Native Tribal Health Consortium; University of Kentucky RP Cueva, K (corresponding author), Univ Alaska Anchorage, Inst Social & Econ Res Anchorage, 3211 Providence Dr, Anchorage, AK 99508 USA. EM kcueva@alaska.edu OI Cueva, Katie/0000-0002-8013-9680 CR Alaska Community Health Aide Program, 2017, AL COMM HLTH AID [Anonymous], 2015, Cancer in Alaska Native People: 1969-2013: The 45 Year Report Blake I., 2016, Alaska native mortality update: 2009-2013 Carcaise-Edinboro P, 2008, MED CARE, V46, P738, DOI 10.1097/MLR.0b013e318178935a Centers for Disease Control and Prevention, BRFSS PREV TRENDS DA Cueva K, 2018, J COMMUN HEALTH, V43, P660, DOI 10.1007/s10900-018-0465-5 Cueva K, 2019, J CANCER EDUC, V34, P647, DOI 10.1007/s13187-018-1350-8 Cueva K, 2018, J CANCER EDUC, V33, P1102, DOI 10.1007/s13187-017-1217-4 Cueva K, 2017, J CANCER EDUC, V32, P426, DOI 10.1007/s13187-015-0961-6 Cueva M, 2005, J CANCER EDUC, V20, P85, DOI 10.1207/s15430154jce2002_8 Cueva M, 2014, J CANCER EDUC, V29, P613, DOI 10.1007/s13187-013-0590-x Cueva M, 2014, J CANCER EDUC, V29, P529, DOI 10.1007/s13187-013-0577-7 Cueva M, 2012, INT J LIFELONG EDUC, V31, P341, DOI 10.1080/02601370.2012.683615 Dignan, 2008, IHS PRIMARY CARE PRO, V33, P1, DOI 10.1037/e405312008-001 Duran B., 2008, COMMUNITY BASED PART, P31 Federal Communications Commission, 2019, 2019 broadband deployment report Fetscherin M, 2008, J ELECTRON COMMER RE, V9, P231 Gorin SS, 2004, CANCER EPIDEM BIOMAR, V13, P2012 Montano D.E., 2015, Health behavior: Theory, research and practice, DOI DOI 10.5771/9783845288277 MONTANO DE, 1991, SOC SCI MED, V32, P733, DOI 10.1016/0277-9536(91)90153-4 Perkins DD, 1995, AM J COMMUN PSYCHOL, V23, P569, DOI 10.1007/BF02506982 Petrella RJ, 2002, CAN FAM PHYSICIAN, V48, P72 Redwood S.H, 2018, CANC HLTH DISPARITIE, V2, pE1 WALLERSTEIN N, 1988, HEALTH EDUC QUART, V15, P379, DOI 10.1177/109019818801500402 Webb TL, 2010, J MED INTERNET RES, V12, DOI 10.2196/jmir.1376 Zimmerman MA, 1995, AM J COMMUN PSYCHOL, V23, P581, DOI 10.1007/BF02506983 NR 26 TC 1 Z9 1 U1 1 U2 2 PU SAGE PUBLICATIONS INC PI THOUSAND OAKS PA 2455 TELLER RD, THOUSAND OAKS, CA 91320 USA SN 1524-8399 EI 1552-6372 J9 HEALTH PROMOT PRACT JI Health Promot. Pract. PD JUL PY 2022 VL 23 IS 4 BP 631 EP 639 DI 10.1177/15248399211027827 EA AUG 2021 PG 9 WC Public, Environmental & Occupational Health WE Emerging Sources Citation Index (ESCI) SC Public, Environmental & Occupational Health GA 3W6UR UT WOS:000686964900001 PM 34416831 DA 2024-09-05 ER PT J AU Wang, YM Liu, ZF Zhao, YS Cheng, Q Cai, LG AF Wang, Yumo Liu, Zhifeng Zhao, Yongsheng Cheng, Qiang Cai, Ligang TI Research on an ANN system for monitoring hydrostatic turntable performance based on ODNE training SO TRIBOLOGY INTERNATIONAL LA English DT Article DE Hydrostatic turntable; Artificial neural network training; Intelligent monitoring system; Performance evaluation ID OPTIMIZATION; PREDICTION; BEARING; DESIGN; IMPACT; FORCE; WEAR AB Reliable operating conditions of hydrostatic turntables are prerequisite to ensuring machine tool performance. The hydrostatic turntable is affected by multiple working conditions, therefore, methods for evaluating turntable load-carrying capacity has become research hotspot. In this paper, by analyzing bearing capacity, parameters closely related to the support performance of turntables are selected as recognition features and an artificial neural network (ANN) training method is proposed. The ANN method is based on numerical solutions of over-determined nonlinear equations (ODNE) to intelligently evaluate turntable performance. In this study, ANN and ODNE training are applied to evaluate the performance of hydrostatic turntables. Finally, to verify the feasibility of the method, an intelligent monitoring system is established to collect data on machine tools. C1 [Wang, Yumo; Liu, Zhifeng; Zhao, Yongsheng; Cheng, Qiang; Cai, Ligang] Beijing Univ Technol, Inst Adv Mfg & Intelligent Technol, Beijing 100124, Peoples R China. [Wang, Yumo; Liu, Zhifeng; Zhao, Yongsheng; Cheng, Qiang; Cai, Ligang] Beijing Univ Technol, Mech Ind Lab Heavy Machine Tool Digital Design &, Beijing 100124, Peoples R China. C3 Beijing University of Technology; Beijing University of Technology RP Liu, ZF (corresponding author), Beijing Univ Technol, Inst Adv Mfg & Intelligent Technol, Beijing 100124, Peoples R China. EM lzfeng1@126.com RI Wang, Yumo/G-2572-2017; Liu, Zhifeng/AGZ-4638-2022 FU National Natural Science Fund [51575009]; National Science and Technology Major Project [2018ZX04043001]; Jing-Hua Talents Project of Beijing University of Technology FX This research was supported by the National Natural Science Fund (grant no. 51575009), National Science and Technology Major Project (grant no. 2018ZX04043001), and Jing-Hua Talents Project of Beijing University of Technology. CR Cai LG, 2015, J VIBROENG, V17, P2781 Cheng Q, 2015, STROJ VESTN-J MECH E, V61, P432, DOI 10.5545/sv-jme.2015.2478 Delgado A, 2018, J TRIBOL-T ASME, V140, DOI 10.1115/1.4040114 Díaz S, 2017, ENERG CONVERS MANAGE, V140, P334, DOI 10.1016/j.enconman.2017.02.064 El-Thalji I, 2015, MECH SYST SIGNAL PR, V60-61, P252, DOI 10.1016/j.ymssp.2015.02.008 Erdemir D, 2017, APPL THERM ENG, V112, P1317, DOI 10.1016/j.applthermaleng.2016.10.145 Feng S, 2015, WEAR, V336, P1, DOI 10.1016/j.wear.2015.04.007 Goyal D, 2016, ARCH COMPUT METHOD E, V23, P585, DOI 10.1007/s11831-015-9145-0 Griffin JM, 2017, INT J ADV MANUF TECH, V93, P811, DOI 10.1007/s00170-017-0320-3 Gu JX, 2018, PATTERN RECOGN, V77, P354, DOI 10.1016/j.patcog.2017.10.013 Hashemi S, 2017, TRIBOL INT, V115, P319, DOI 10.1016/j.triboint.2017.05.013 Kumar V, 2017, P I MECH ENG J-J ENG, V231, P716, DOI 10.1177/1350650116676739 Lai TH, 2017, TRIBOL INT, V107, P206, DOI 10.1016/j.triboint.2016.11.037 Li GC, 2017, INT J MACH TOOL MANU, V122, P149, DOI 10.1016/j.ijmachtools.2017.07.003 Lin XK, 2017, INT J ADV MANUF TECH, V92, P3319, DOI 10.1007/s00170-017-0396-9 Liu ZF, 2017, ADV MECH ENG, V9, DOI 10.1177/1687814017730536 Liu ZF, 2016, INT J ADV MANUF TECH, V84, P261, DOI 10.1007/s00170-015-8066-2 Martinez ELF, 2017, J TRIBOL, V139 Nagarajaiah S, 2017, STRUCT CONTROL HLTH, V24, DOI 10.1002/stc.1851 Qi EB, 2016, TRIBOL INT, V95, P279, DOI 10.1016/j.triboint.2015.11.032 Sinchev B, 2018, INT J NUMER METH FL, V86, P625, DOI 10.1002/fld.4470 Wang YM, 2018, STROJ VESTN-J MECH E, V64, P95, DOI 10.5545/sv-jme.2017.4742 Wang YM, 2018, IND LUBR TRIBOL, V70, P316, DOI 10.1108/ILT-11-2016-0285 Yang K, 2017, WEAR, V376, P1222, DOI 10.1016/j.wear.2016.11.027 Yu XH, 2018, INT J PRECIS ENG MAN, V19, P395, DOI 10.1007/s12541-018-0047-6 Zha J, 2017, INT J MACH TOOL MANU, V112, P1, DOI 10.1016/j.ijmachtools.2016.10.002 Zhang PH, 2018, INT J MACH TOOL MANU, V125, P55, DOI 10.1016/j.ijmachtools.2017.10.006 Zhao ZM, 2017, TRIBOL INT, V114, P77, DOI 10.1016/j.triboint.2017.04.021 Zhu XL, 2017, TRIBOL INT, V109, P473, DOI 10.1016/j.triboint.2017.01.015 NR 29 TC 9 Z9 9 U1 3 U2 50 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0301-679X EI 1879-2464 J9 TRIBOL INT JI Tribol. Int. PD MAY PY 2019 VL 133 BP 21 EP 31 DI 10.1016/j.triboint.2018.12.041 PG 11 WC Engineering, Mechanical WE Science Citation Index Expanded (SCI-EXPANDED) SC Engineering GA HL7TI UT WOS:000458943500003 DA 2024-09-05 ER PT J AU Obaideen, K Albasha, L Iqbal, U Mir, H AF Obaideen, Khaled Albasha, Lutfi Iqbal, Usama Mir, Hasan TI Wireless power transfer: Applications, challenges, barriers, and the role of AI in achieving sustainable development goals - A bibliometric analysis SO ENERGY STRATEGY REVIEWS LA English DT Article DE Wireless power transfer; Wireless charging; Sustainable development goals; Electric vehicle; Artificial intelligence; Sustainable cities ID ENERGY MANAGEMENT; DESIGN; SYSTEM; NETWORKS; COMMUNICATION; ARCHITECTURE; AGRICULTURE; INTERNET; TRENDS; THINGS AB This study presents a comprehensive bibliometric analysis of 19,235 publications on Wireless Power Transfer (WPT) from 2015 to 2023, underlining its critical role in advancing the Sustainable Development Goals (SDGs). Focusing on SDG 7 (Affordable and Clean Energy) and SDG 3 (Good Health and Well-being), the research highlights WPT ' s significant contributions to sustainability across economic, environmental, and social realms. Utilizing Biblioshiny and VOSviewer, we extract and visualize key insights into WPT ' s recent progress, technological applications, top keywords, publication trends, geographical distribution, and thematic clusters. Our findings indicate a strong emphasis on sustainable energy solutions, with 1589 publications directly related to SDG 7. WPT also supports SDG 9 (Industry, Innovation, and Infrastructure) with 56 publications and SDG 11 (Sustainable Cities and Communities) with 171 publications, contributing to resilient infrastructure and sustainable urban development. Moreover, the study uncovers WPT ' s potential in environmental conservation, with notable attention to SDG 14 (Life Below Water) and SDG 15 (Life on Land). The synergy of Artificial Intelligence (AI) with WPT is emphasized for enhancing efficiency and broad application in areas such as affordable energy, agricultural yields, health standards, digital education, and water purification. Despite challenges like financial constraints, technical hurdles, and environmental concerns, the paper suggests innovative solutions through funding, research, environmental assessments, and collaborative policymaking. Highlighting the promise of state -of -the -art WPT techniques, this analysis advocates for democratizing technology access in marginalized regions, presenting WPT as a pivotal tool for a sustainable, equitable future aligned with the SDGs. C1 [Obaideen, Khaled; Albasha, Lutfi; Iqbal, Usama; Mir, Hasan] Amer Univ Sharjah, Dept Elect Engn, Sharjah, U Arab Emirates. C3 American University of Sharjah RP Obaideen, K (corresponding author), Amer Univ Sharjah, Dept Elect Engn, Sharjah, U Arab Emirates. EM Khaled.obaideen@gmail.com; lalbasha@aus.edu; b00063610@alumni.aus.edu; hmir@aus.edu RI Kudrina, Olha/KHU-2090-2024; Adenidji, Eriola/ACX-8694-2022 OI Obaideen, Khaled/0000-0002-6472-2753 FU American University of Sharjah-UAE research fund [FRG20-L- E76, FRG21-M-E80] FX The authors would like to acknowledge the Energy, Water, and Sustainable Environment Research Center at the American University of Sharjah-UAE, for their essential support. This work has been funded by the American University of Sharjah-UAE research fund no. FRG20-L- E76 and fund no. FRG21-M-E80. CR Abdelhamid A.A., 2022, Comput. Mater. Continua (CMC), V72 Aboelezz AM, 2023, SMART CITIES-BASEL, V6, P1435, DOI 10.3390/smartcities6030069 Adepoju W.O., 2021, 2021 IEEE VEH POW PR, P1 Adepoju W.O., 2022, Modeling, Artificial Intelligence-Based Optimization and Experimental Implementation of Novel Low Frequency Metamaterial for Efficient Wireless Power Transfer Afshar S, 2021, RENEW SUST ENERG REV, V152, DOI 10.1016/j.rser.2021.111654 Ahluwalia U., 2022, System for wireless charging of battery-powered underwater sensor networks, P1 Ahmad A, 2018, IEEE T TRANSP ELECTR, V4, P38, DOI 10.1109/TTE.2017.2771619 AL Mahmud SA, 2022, IEEE ACCESS, V10, P40496, DOI 10.1109/ACCESS.2022.3167162 Alam Bilal, 2022, Intelligent Data Analytics for Power and Energy Systems. Lecture Notes in Electrical Engineering (802), P501, DOI 10.1007/978-981-16-6081-8_25 Albreem MA, 2021, IEEE ACCESS, V9, P38833, DOI 10.1109/ACCESS.2021.3061697 Allam Z, 2022, SMART CITIES-BASEL, V5, P539, DOI 10.3390/smartcities5020029 AlSuwaidi M., 2022, 2022 ADV SCI ENG TEC, P1 Amjad M, 2022, RENEW SUST ENERG REV, V167, DOI 10.1016/j.rser.2022.112730 Angurala M., 2023, International Journal of Intelligent Systems and Applications in Engineering, V11, P171 [Anonymous], 2017, IEEE Microwave Magazine, V18, P56, DOI 10.1109/MMM.2017.2680078 B Sridhar, 2023, 2023 Second International Conference on Electronics and Renewable Systems (ICEARS), P347, DOI 10.1109/ICEARS56392.2023.10085244 Bana V, 2015, 2015 IEEE Wireless Power Transfer Conference (WPTC) Bashir H, 2023, ENVIRON SUSTAIN IND, V19, DOI 10.1016/j.indic.2023.100267 Bi ZC, 2016, APPL ENERG, V179, P413, DOI 10.1016/j.apenergy.2016.07.003 Bibri Simon Elias, 2023, Energy Inform, V6, P9, DOI 10.1186/s42162-023-00259-2 Bidkar R, 2012, IND INT C POW ELECT Biswa R., 2012, FEASIBILITY WIRELESS, P1 Briggs MA, 2021, SCI TOTAL ENVIRON, V756, DOI 10.1016/j.scitotenv.2020.143838 Butler JC, 2002, SENSOR ACTUAT A-PHYS, V102, P61, DOI 10.1016/S0924-4247(02)00342-4 Cacciuttolo C, 2023, SENSORS-BASEL, V23, DOI 10.3390/s23156846 Chapman GR, 2020, J MANAGE ORGAN, V26, P1030, DOI 10.1017/jmo.2020.16 Chen WY, 2022, IEEE ACCESS, V10, P88398, DOI 10.1109/ACCESS.2022.3197632 Chhawchharia S, 2018, RENEW SUST ENERG REV, V91, P888, DOI 10.1016/j.rser.2018.04.101 Chiti F, 2021, J SENS ACTUAT NETW, V10, DOI 10.3390/jsan10010006 Choi BG, 2021, IEEE T IND ELECTRON, V68, P12162, DOI 10.1109/TIE.2020.3047041 Clerckx B, 2021, IEEE J-STSP, V15, P1060, DOI 10.1109/JSTSP.2021.3098478 Corti F, 2024, IEEE T IND ELECTRON, V71, P4586, DOI 10.1109/TIE.2023.3283679 Coufal O, 2017, INT J APPL ELECTROM, V54, P263, DOI 10.3233/JAE-160123 Dabirzadeh A, 2009, CONCEPT MAGN RESON B, V35B, P121, DOI 10.1002/cmr.b.20139 Das Barman S, 2015, RENEW SUST ENERG REV, V51, P1525, DOI 10.1016/j.rser.2015.07.031 Degen C, 2021, EURASIP J WIREL COMM, V2021, DOI 10.1186/s13638-021-01994-4 Delichte SD, 2018, AM J PHYS, V86, P623, DOI 10.1119/1.5037705 Devi R., 2022, 2022 International Conference on Applied Artificial Intelligence and Computing (ICAAIC)., P1766, DOI 10.1109/ICAAIC53929.2022.9793153 Dimitriadou K, 2023, ENERGIES, V16, DOI 10.3390/en16042057 Ding JP, 2020, APPL SCI-BASEL, V10, DOI 10.3390/app10186463 Ejaz W, 2021, IEEE T IND INFORM, V17, P7075, DOI 10.1109/TII.2020.3025510 Ejaz W, 2017, IEEE COMMUN MAG, V55, P84, DOI 10.1109/MCOM.2017.1600218CM El-Shahat A, 2019, ENRGY PROCED, V162, P24, DOI 10.1016/j.egypro.2019.04.004 Elijah O, 2018, IEEE INTERNET THINGS, V5, P3758, DOI 10.1109/JIOT.2018.2844296 EPA, 2019, Used Household Batteries Esteban B, 2015, IEEE T POWER ELECTR, V30, P6408, DOI 10.1109/TPEL.2015.2440256 Faraci G, 2020, APPL ENERG, V259, DOI 10.1016/j.apenergy.2019.114204 Fathollahi A, 2022, SUSTAIN ENERGY GRIDS, V32, DOI 10.1016/j.segan.2022.100836 Fathollahi A, 2022, IEEE ACCESS, V10, P117105, DOI 10.1109/ACCESS.2022.3219055 Fidje Eline, 2023, Procedia Computer Science, P905, DOI 10.1016/j.procs.2023.01.366 Fisher TM, 2014, WIREL POWER TRANSF, V1, P87, DOI 10.1017/wpt.2014.8 Fonseca LM, 2020, SUSTAINABILITY-BASEL, V12, DOI 10.3390/su12083359 Fontaine J.M., 2018, SEG Technical Program Expanded Abstracts 2018, P2491 Gagliardi G, 2020, SMART CITIES-BASEL, V3, P1495, DOI 10.3390/smartcities3040071 Gan KW, 2019, 2019 IEEE PELS WORKSHOP ON EMERGING TECHNOLOGIES - WIRELESS POWER TRANSFER (WOW), P71, DOI [10.1109/WoW45936.2019.9030635, 10.1109/wow45936.2019.9030635] García-Vázquez CA, 2017, ENERGY, V137, P42, DOI 10.1016/j.energy.2017.07.016 Gardasevic G, 2020, SENSORS-BASEL, V20, DOI 10.3390/s20133619 Giuliani G, 2008, EPL-EUROPHYS LETT, V81, DOI 10.1209/0295-5075/81/60002 Gonzalez M., 2023, IEEE Internet Things J., P1, DOI [10.1109/JIOT.2023.3263976,1, DOI 10.1109/JIOT.2023.3263976,1] Gu XQ, 2022, P IEEE, V110, P56, DOI 10.1109/JPROC.2021.3127930 Guo LK, 2022, ENERG CONVERS MANAGE, V252, DOI 10.1016/j.enconman.2021.115080 Gupta A, 2022, T EMERG TELECOMMUN T, V33, DOI 10.1002/ett.4603 Haddad D., 2022, 2022 IEEE POW EN C I, P1 Hak T, 2016, ECOL INDIC, V60, P565, DOI 10.1016/j.ecolind.2015.08.003 He SB, 2024, IEEE T MOBILE COMPUT, V23, P2395, DOI 10.1109/TMC.2023.3255980 Helseth LE, 2022, EUR J PHYS, V43, DOI 10.1088/1361-6404/ac5123 Ho L, 2020, J CLEAN PROD, V277, DOI 10.1016/j.jclepro.2020.124082 Huang ZY, 2022, ENERGY REP, V8, P447, DOI 10.1016/j.egyr.2022.10.139 Huda SMA, 2022, SENSORS-BASEL, V22, DOI 10.3390/s22082952 Hui S. Y. Ron, 2018, IEEE Electromagnetic Compatibility Magazine, V7, P78, DOI 10.1109/MEMC.0.8339551 Hui S.Y. R., 2016, CPSS Transactions on Power Electronics and Applications, V1, P83 Ijemaru GK, 2022, ELECTRONICS-SWITZ, V11, DOI 10.3390/electronics11030371 Ijemaru GK, 2021, ELECTRONICS-SWITZ, V10, DOI 10.3390/electronics10060697 Jang YJ, 2016, IEEE SYST J, V10, P495, DOI 10.1109/JSYST.2014.2369485 Jawad AM, 2017, ENERGIES, V10, DOI 10.3390/en10071022 Jeebklum Pharida, 2023, Proceedings of the 5th International Conference on Clean Energy and Electrical Systems: Proceedings of CEES 2023. Lecture Notes in Electrical Engineering (1058), P373, DOI 10.1007/978-981-99-3888-9_27 Jiang L, 2019, IEEE NETWORK, V33, P164, DOI 10.1109/MNET.001.1900008 Joseph PK, 2018, J ENERGY STORAGE, V16, P145, DOI 10.1016/j.est.2017.12.019 Juliet F.-J.O., 2019, Int. J. Eng. Res., V8, P103 K Vinoth Kumar, 2022, 2022 International Conference on Automation, Computing and Renewable Systems (ICACRS), P198, DOI 10.1109/ICACRS55517.2022.10029261 Kalialakis C., 2016, Wireless Power Transfer Algorithms, Technologies and Applications in Ad Hoc Communication Networks, P161 Kamalapathi K., 2023, Power Electronics for Electric Vehicles and Energy Storage, P271 Kamarudin S.I., 2023, Trends in Sciences, V20, P3444 Kamruzzaman MM, 2022, ENERGIES, V15, DOI 10.3390/en15155608 Karimi MJ, 2021, IEEE SENS J, V21, P7145, DOI 10.1109/JSEN.2021.3049918 Karunathilake EMBM, 2023, AGRICULTURE-BASEL, V13, DOI 10.3390/agriculture13081593 Katsidimas I, 2019, IEEE INT CONF DISTR, P473, DOI 10.1109/DCOSS.2019.00093 Bai H, 2022, IEEE POWER ELECTRON, V9, P14, DOI 10.1109/MPEL.2022.3173543 Khalid Reda, 2022, IEEE Communications Standards Magazine, V6, P24, DOI 10.1109/MCOMSTD.0001.2200022 Khan MZ, 2021, ELECTRONICS-SWITZ, V10, DOI 10.3390/electronics10192377 Kopyl S, 2021, MATER TODAY BIO, V12, DOI 10.1016/j.mtbio.2021.100149 Kruk ME, 2018, LANCET GLOB HEALTH, V6, pE1196, DOI 10.1016/S2214-109X(18)30386-3 Kufeoglu S., 2022, Emerging Technologies: Value Creation for Sustainable Development, P1 Kyriakarakos G., 2022, Information and Communication Technologies for Agriculture-Theme IV: Actions, P55 La Rosa R, 2019, SENSORS-BASEL, V19, DOI 10.3390/s19122660 Lai YS, 2023, J POWER ELECTRON, V23, P581, DOI 10.1007/s43236-022-00560-5 Laumann F, 2022, LANCET PLANET HEALTH, V6, pE422, DOI 10.1016/S2542-5196(22)00070-5 Lazzeroni P., 2021, Renewable and Sustainable Energy Reviews, V138, P110537, DOI 10.1016/j.rser.2020.110537 Le A.M., 2020, EAI Endorsed Transactions on Industrial Networks and Intelligent Systems, V7, P5 Li B, 2019, IEEE ACCESS, V7, DOI 10.1109/ACCESS.2019.2936250 Li K, 2023, RENEW SUST ENERG REV, V184, DOI 10.1016/j.rser.2023.113569 Lin H.-T., 2017, 2017 IEEE INT S CIRC, P1 Lin JC, 2021, IEEE ACCESS, V9, P125342, DOI 10.1109/ACCESS.2021.3108966 Lin W, 2021, PROCEEDINGS OF THE 2021 CROSS STRAIT RADIO SCIENCE AND WIRELESS TECHNOLOGY CONFERENCE (CSRSWTC), P200, DOI 10.1109/CSRSWTC52801.2021.9631634 Ling JK, 2022, ESCIENCE, V2, P347, DOI 10.1016/j.esci.2022.07.002 Liu H., 2022, IECON 2022 48 ANN C, P1 Liu LS, 2022, IEEE INTERNET THINGS, V9, P5216, DOI 10.1109/JIOT.2021.3110138 Liu W, 2023, RENEW SUST ENERG REV, V180, DOI 10.1016/j.rser.2023.113298 Lu CH, 2019, IEEE T ELECTROMAGN C, V61, P1438, DOI 10.1109/TEMC.2018.2865520 Lu X, 2016, IEEE COMMUN SURV TUT, V18, P1413, DOI 10.1109/COMST.2015.2499783 Lu X, 2015, IEEE NETWORK, V29, P68, DOI 10.1109/MNET.2015.7340427 Ma FY, 2022, IEEE GLOB COMM CONF, P4995, DOI 10.1109/GLOBECOM48099.2022.10001490 Machura P, 2019, RENEW SUST ENERG REV, V104, P209, DOI 10.1016/j.rser.2019.01.027 Mashat A.A., 2022, Comput. Mater. Continua (CMC), V72 Mishra R.K., 2023, Journal of Marine Science and Research Mittal M., 2019, Concepts, Paradigms and Solutions, Studies in Systems, Decision and Control, P1 Mohsan SAH, 2022, J MAR SCI ENG, V10, DOI 10.3390/jmse10091282 Mohsan SAH, 2022, DRONES-BASEL, V6, DOI 10.3390/drones6060147 Mohsan SAH, 2022, MICROMACHINES-BASEL, V13, DOI 10.3390/mi13060977 Moisello Elisabetta, 2023, IEEE Open Journal of the Solid-State Circuits Society, P197, DOI 10.1109/OJSSCS.2023.3313575 Mou X., 2022, IEEE Journal of Emerging and Selected Topics in Industrial Electronics, V4, P147 Moyssides PG, 2014, EUR PHYS J PLUS, V129, DOI 10.1140/epjp/i2014-14034-2 Musavi F, 2012, IEEE ENER CONV, P1804, DOI 10.1109/ECCE.2012.6342593 Na K, 2020, IEEE WIREL POWER TRA, P443, DOI [10.1109/wptc48563.2020.9295544, 10.1109/WPTC48563.2020.9295544] Nastasi B, 2022, RENEW SUST ENERG REV, V157, DOI 10.1016/j.rser.2022.112071 Nguyen DH, 2021, INT J SUSTAIN ENG, V14, P1780, DOI 10.1080/19397038.2021.1988187 Obaideen K, 2023, SUSTAINABILITY-BASEL, V15, DOI 10.3390/su15021418 Obaideen Khaled, 2022, Diabetes Metab Syndr, V16, P102566, DOI 10.1016/j.dsx.2022.102566 Obaideen K, 2022, J TAIWAN INST CHEM E, V131, DOI 10.1016/j.jtice.2022.104207 Obaideen Khaled., 2021, International Journal of Thermofluids, V12, P100, DOI [DOI 10.1016/J.IJFT.2021.100123, 10.1016/j.ijft.2021.100123] Okasili I, 2022, ELECTRONICS-SWITZ, V11, DOI 10.3390/electronics11091355 Olabi A., 2023, Therm. Sci. Eng. Prog. Olabi AG, 2023, PROCESS SAF ENVIRON, V177, P664, DOI 10.1016/j.psep.2023.06.069 Olabi AG, 2022, RENEW SUST ENERG REV, V158, DOI 10.1016/j.rser.2022.112111 Olabi AG, 2022, RENEW SUST ENERG REV, V153, DOI 10.1016/j.rser.2021.111710 Olabi AG, 2023, THERM SCI ENG PROG, V41, DOI 10.1016/j.tsep.2023.101851 Pan HY, 2017, APPL ENERG, V195, P334, DOI 10.1016/j.apenergy.2017.03.069 Panchal C, 2018, ENG SCI TECHNOL, V21, P922, DOI 10.1016/j.jestch.2018.06.015 Peters CN, 2020, GROUNDWATER, V58, P645, DOI 10.1111/gwat.12937 Pravin A.M.A., 2014, International Journel of Emerging Technology and Computer Science, V8, P126 Purvis B, 2019, SUSTAIN SCI, V14, P681, DOI 10.1007/s11625-018-0627-5 Qiu JH, 2023, TRANSPORT RES C-EMER, V146, DOI 10.1016/j.trc.2022.103968 Qureshi KN, 2021, SUSTAIN CITIES SOC, V71, DOI 10.1016/j.scs.2021.102990 Rahangdale Harshal, 2022, ECS Transactions, V107, P1973, DOI 10.1149/10701.1973ecst Rajaram K, 2019, NANO ENERGY, V57, P317, DOI 10.1016/j.nanoen.2018.12.021 Ravichandran V., 2023, 2023 8th International Conference on Communication and Electronics Systems (ICCES), P263, DOI 10.1109/ICCES57224.2023.10192740 Raza U, 2020, SMART CITIES-BASEL, V3, P308, DOI 10.3390/smartcities3020017 Sabarish P., 2020, IOP Conference Series: Materials Science and Engineering, V937, DOI 10.1088/1757-899X/937/1/012013 Sachs JD, 2019, NAT SUSTAIN, V2, P805, DOI 10.1038/s41893-019-0352-9 Sakai K, 2018, INT POWER ELECT ELEC, P268, DOI 10.1109/SPEEDAM.2018.8445354 Sayed ET, 2021, CARBON RES CONVERS, V4, P169, DOI 10.1016/j.crcon.2021.04.004 Shanmugam Y, 2022, IEEE ACCESS, V10, P133617, DOI 10.1109/ACCESS.2022.3227217 Sharifi A, 2024, CITIES, V146, DOI 10.1016/j.cities.2023.104659 Sharifi A, 2023, PROG PLANN, V173, DOI 10.1016/j.progress.2023.100740 Shishehgarkhaneh MB, 2023, SMART CITIES-BASEL, V6, P819, DOI 10.3390/smartcities6020040 Singh A., 2022, 2022 IEEE 8 WORLD FO, P1 Singh RK, 2021, IEEE ACCESS, V9, P136253, DOI 10.1109/ACCESS.2021.3116814 Soares L, 2022, RENEW SUST ENERG REV, V158, DOI 10.1016/j.rser.2022.112110 Sridharan B, 2023, SENSORS-BASEL, V23, DOI 10.3390/s23167290 St. John Stuart A., 2017, Physics Education, V52, DOI 10.1088/1361-6552/aa7f44 Streich J, 2020, CURR OPIN BIOTECH, V61, P217, DOI 10.1016/j.copbio.2020.01.010 Su W., 2015, Plug In Electric Vehicles in Smart Grids: Integration Techniques, P61 Subudhi PS, 2020, INT J EMERG ELECTR P, V21, DOI 10.1515/ijeeps-2019-0151 Suh IS, 2013, 2013 IEEE INTERNATIONAL ELECTRIC MACHINES & DRIVES CONFERENCE (IEMDC), P234 Suja S, 2013, INT CONF COMPUT POW, P93, DOI 10.1109/ICCPEIC.2013.6778505 Sukhwani V, 2020, SMART CITIES-BASEL, V3, P1266, DOI 10.3390/smartcities3040062 Tamura M, 2018, IEEE T MICROW THEORY, V66, P5873, DOI 10.1109/TMTT.2018.2875960 Tarakci S., 2018, Natural and Engineering Sciences Teeneti CR, 2021, IEEE J OCEANIC ENG, V46, P68, DOI 10.1109/JOE.2019.2953015 Thiagarajan K, 2023, IETE J RES, V69, P2761, DOI 10.1080/03772063.2021.1905089 Torun HM, 2018, ELEC COMP C, P2374, DOI 10.1109/ECTC.2018.00358 Tran MT, 2023, ENERGIES, V16, DOI 10.3390/en16072953 Trinko D, 2022, ETRANSPORTATION, V11, DOI 10.1016/j.etran.2021.100154 Triviño A, 2021, ENERGIES, V14, DOI 10.3390/en14061547 Uddin MK, 2014, 2014 IEEE CONFERENCE ON ENERGY CONVERSION (CENCON), P412, DOI 10.1109/CENCON.2014.6967539 Ullah MA, 2022, IEEE ACCESS, V10, P17231, DOI 10.1109/ACCESS.2022.3149276 Urano M, 2017, 2017 IEEE INTERNATIONAL MEETING FOR FUTURE OF ELECTRON DEVICES, KANSAI (IMFEDK), P36, DOI 10.1109/IMFEDK.2017.7998030 van Eck NJ, 2017, SCIENTOMETRICS, V111, P1053, DOI 10.1007/s11192-017-2300-7 van Eck NJ, 2010, SCIENTOMETRICS, V84, P523, DOI 10.1007/s11192-009-0146-3 Van Mulders J, 2022, SENSORS-BASEL, V22, DOI 10.3390/s22155573 Van Neste CW, 2020, J ELECTROCHEM SOC, V167, DOI 10.1149/1945-7111/ab729d Vanus J, 2022, WORLD ELECTR VEHIC J, V13, DOI 10.3390/wevj13100176 Wang CJ, 2016, 2016 IEEE INTERNATIONAL CONFERENCE ON MECHATRONICS AND AUTOMATION, P2449, DOI 10.1109/ICMA.2016.7558950 Wu ZY, 2022, ELECTRONICS-SWITZ, V11, DOI 10.3390/electronics11234050 Xie LG, 2012, IEEE ACM T NETWORK, V20, P1748, DOI 10.1109/TNET.2012.2185831 Xu S, 2022, SCI TRANSL MED, V14, DOI 10.1126/scitranslmed.abn6036 Yang J, 2018, MOBILE NETW APPL, V23, P188, DOI 10.1007/s11036-017-0930-x Yang TN, 2020, PSYCHOL HEALTH MED, V25, P653, DOI 10.1080/13548506.2019.1668564 Yazdan A, 2017, IEEE MICROW MAG, V18, P18, DOI 10.1109/MMM.2017.2691422 Yeh E., 2016, Microwave Journal Yoo S, 2021, ADV HEALTHC MATER, V10, DOI 10.1002/adhm.202100614 Yousef BAA, 2024, ENERGY STRATEG REV, V52, DOI 10.1016/j.esr.2024.101356 Youssef Yazan, 2023, 2023 IEEE Industrial Electronics and Applications Conference (IEACon), P36, DOI 10.1109/IEACon57683.2023.10370611 Youssef Y, 2023, IEEE T AERO ELEC SYS, V59, P3388, DOI 10.1109/TAES.2022.3212027 Yu Chunlai, 2022, 2022 5th International Conference on Power and Energy Applications (ICPEA), P157, DOI 10.1109/ICPEA56363.2022.10052116 Zeng YQ, 2023, IEEE T POWER ELECTR, V38, P1440, DOI 10.1109/TPEL.2022.3214318 Zeng Y, 2017, IEEE T COMMUN, V65, P2264, DOI 10.1109/TCOMM.2017.2676103 Zheng Y., 2022, 2022 IEEE 10 AS PAC, P1 Zhong WF, 2022, IEEE T GREEN COMMUN, V6, P2073, DOI 10.1109/TGCN.2022.3164967 Zhou BC, 2021, SUSTAIN ENERG FUELS, V5, P5139, DOI 10.1039/d1se00739d NR 200 TC 1 Z9 1 U1 11 U2 11 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS SN 2211-467X EI 2211-4688 J9 ENERGY STRATEG REV JI Energy Strateg. Rev. PD MAY PY 2024 VL 53 AR 101376 DI 10.1016/j.esr.2024.101376 EA APR 2024 PG 25 WC Energy & Fuels WE Science Citation Index Expanded (SCI-EXPANDED) SC Energy & Fuels GA RK9P0 UT WOS:001227679000001 OA gold DA 2024-09-05 ER PT J AU Miner-Romanoff, K Sweetland, Y Yang, Y Fennema, B AF Miner-Romanoff, Karen Sweetland, Yuerong Yang, Yi Fennema, Barbara TI Assessment of Professional Development and Research-Based Instructional Strategies for Instructors of Online Undergraduate STEM Courses SO INTERNATIONAL JOURNAL OF ONLINE PEDAGOGY AND COURSE DESIGN LA English DT Article DE Active Learning; Observations; Online Faculty; Professional Development; Research-Based Instructional Strategies; STEM ID HIGHER-EDUCATION; SCIENCE; FACULTY AB Professional development (PD) programs for faculty are critical for improvement of STEM instruction. Little research exists on the impact of such programs in the online environment. This article reports the pilot study results of an observation protocol (OP) on the development of an online PD program for STEM faculty grounded in research-based instructional strategies (RBIS) and the development plan for the program. The RBIS-based OP in place at Franklin University will be used to identify and assess online STEM instructors' teaching practices before and after the PD program. Pilot study results suggested that the OP yields valid and reliable evidence of STEM faculty's RBIS usage. Approximately 80 STEM course sections will be observed using the OP with data collected pre- and post-PD (3 year period). The mixed-method data will be analyzed by university researchers in conjunction with a community research partner. This project will test the success of an online professional development program with RBIS for higher education STEM faculty, aid determination of which RBIS can contribute most effectively to improving student outcomes and produce the first robust evidence of the impact of an online PD for STEM faculty. C1 [Miner-Romanoff, Karen] NYU, Acad Qual, Sch Profess Studies, New York, NY 10003 USA. [Miner-Romanoff, Karen] NYU, Sch Profess Studies, Ctr Acad Excellence & Support, New York, NY 10003 USA. [Sweetland, Yuerong] Franklin Univ, Assessment, Columbus, OH USA. [Sweetland, Yuerong] Franklin Univ, Columbus, OH USA. [Yang, Yi] Franklin Univ, Doctor Profess Studies, Instruct Design Leadership Program, Columbus, OH USA. [Fennema, Barbara] Franklin Univ, Int Inst Innovat Instruct, Columbus, OH USA. C3 New York University; New York University; University System of Ohio; Franklin University; University System of Ohio; Franklin University; University System of Ohio; Franklin University; University System of Ohio; Franklin University RP Miner-Romanoff, K (corresponding author), NYU, Acad Qual, Sch Profess Studies, New York, NY 10003 USA.; Miner-Romanoff, K (corresponding author), NYU, Sch Profess Studies, Ctr Acad Excellence & Support, New York, NY 10003 USA. CR American Association for the Advancement of Science, 2013, TRANSF UND STEM ED L Avery Zanj K., 2013, Journal of Technology Education, V25, P55 Baker LA, 2014, J CHEM EDUC, V91, P1874, DOI 10.1021/ed500547n Bergeron L, 2017, INT J SCI MATH EDUC, V15, P433, DOI 10.1007/s10763-015-9693-7 Bonura K. B, 2016, J CTR TEACHING LEARN, V4, P79 Borrego M, 2014, J ENG EDUC, V103, P220, DOI 10.1002/jee.20040 Borrego M, 2013, J ENG EDUC, V102, P394, DOI 10.1002/jee.20020 Bradforth SE, 2015, NATURE, V523, P282, DOI 10.1038/523282a Committee on Science. Engineering Medicine and Public Policy, 2016, PROM PRACT STRENGTH Creswell J., 2012, Educational Research. Planning, V4th Dede C., 2016, Teacher learning in the digital age: Online professional development in STEM education DeJarnette N.K., 2012, Education, V133, P77, DOI DOI 10.1007/S10649-005-9002-4 Derting TL, 2016, SCI ADV, V2, DOI 10.1126/sciadv.1501422 Early D.M., 2014, HIGH SCH J, V97, P219, DOI DOI 10.1353/HSJ.2014.0008 Ebert-May D, 2015, CBE-LIFE SCI EDUC, V14, DOI 10.1187/cbe.14-12-0222 Fabrigar L.R., 2011, Exploratory Factor Analysis, DOI [10.1093/acprof:osobl/9780199734177.001.0001, DOI 10.1093/ACPROF:OSOBL/9780199734177.001.0001] Freeman S, 2014, P NATL ACAD SCI USA, V111, P8410, DOI 10.1073/pnas.1319030111 Froyd J. E., 2008, EV PROM PRACT UND SC Gagne R, 1985, The Conditions of Learning, V4th Hallgren Kevin A, 2012, Tutor Quant Methods Psychol, V8, P23 Henderson C, 2007, PHYS REV SPEC TOP-PH, V3, DOI 10.1103/PhysRevSTPER.3.020102 Jordan A, 2014, IEEE PULSE, V5, P46, DOI 10.1109/MPUL.2014.2321491 Kennedy TJ., 2014, SCI ED INT, V25, P246 Kober N., 2015, Reaching students: What research says about effective instruction in undergraduate science and engineering Labov JB, 2009, CBE-LIFE SCI EDUC, V8, P157, DOI 10.1187/cbe.09-06-0038 Lund TJ, 2015, CBE-LIFE SCI EDUC, V14, DOI 10.1187/cbe.14-10-0168 Merrill MD, 2002, ETR&D-EDUC TECH RES, V50, P43, DOI 10.1007/BF02505024 National Science Foundation, 2015, REV STEM WORKF Perez-Foguet A, 2017, PROMOTING SUSTAINABL Ring EA, 2017, J SCI TEACH EDUC, V28, P444, DOI 10.1080/1046560X.2017.1356671 Sawada D., 2002, School Science and Mathematics, V102, P245 Shulman LS, 2005, DAEDALUS-US, V134, P52, DOI 10.1162/0011526054622015 Sibley K, 2015, EDUCAUSE Teräs H, 2016, PROF DEV EDUC, V42, P258, DOI 10.1080/19415257.2014.961094 Whittaker JA, 2014, INNOV HIGH EDUC, V39, P263, DOI 10.1007/s10755-013-9277-9 Wieman C., 2015, Change, the Magazine of Higher Learning, V47, P6, DOI DOI 10.1080/00091383.2015.996077 NR 36 TC 2 Z9 3 U1 1 U2 19 PU IGI GLOBAL PI HERSHEY PA 701 E CHOCOLATE AVE, STE 200, HERSHEY, PA 17033-1240 USA SN 2155-6873 EI 2155-6881 J9 INT J ONLINE PEDAGOG JI Int. J. Online Pedagog. Course Des. PD JAN-MAR PY 2019 VL 9 IS 1 BP 51 EP 61 DI 10.4018/IJOPCD.2019010104 PG 11 WC Education & Educational Research WE Emerging Sources Citation Index (ESCI) SC Education & Educational Research GA HN1FS UT WOS:000459933300004 DA 2024-09-05 ER PT J AU Melnychuk, T Galke, L Seidlmayer, E Broring, S Forstner, KU Tochtermann, K Schultz, C AF Melnychuk, Tetyana Galke, Lukas Seidlmayer, Eva Broring, Stefanie Forstner, Konrad U. Tochtermann, Klaus Schultz, Carsten TI Development of Similarity Measures From Graph-Structured Bibliographic Metadata: An Application to Identify Scientific Convergence SO IEEE TRANSACTIONS ON ENGINEERING MANAGEMENT LA English DT Article; Early Access DE Data enrichment; machine learning; network analysis; science dynamics; scientific convergence; similarity indicator ID INTERNATIONAL JOINT RESEARCH; TECHNOLOGY CONVERGENCE; INDUSTRY CONVERGENCE; SCIENCE CONVERGENCE; KNOWLEDGE DIFFUSION; SEARCH REGIMES; IDENTIFICATION; INNOVATION; DYNAMICS; FIELDS AB Scientific convergence is a phenomenon where the distance between hitherto distinct scientific fields narrows and the fields gradually overlap over time. It is creating important potential for research, development, and innovation. Although scientific convergence is crucial for the development of radically new technology, the identification of emerging scientific convergence is particularly difficult since the underlying knowledge flows are rather fuzzy and unstable in the early convergence stage. Nevertheless, novel scientific publications emerging at the intersection of different knowledge fields may reflect convergence processes. Thus, in this article, we exploit the growing number of research and digital libraries providing bibliographic metadata to propose an automated analysis of science dynamics. We utilize and adapt machine-learning methods (DeepWalk) to automatically learn a similarity measure between scientific fields from graphs constructed on bibliographic metadata. With a time-based perspective, we apply our approach to analyze the trajectories of evolving similarities between scientific fields. We validate the learned similarity measure by evaluating it within the well-explored case of cholesterol-lowering ingredients in which scientific convergence between the distinct scientific fields of nutrition and pharmaceuticals has partially taken place. Our results confirm that the similarity trajectories learned by our approach resemble the expected behavior, indicating that our approach may allow researchers and practitioners to detect and predict scientific convergence early. C1 [Melnychuk, Tetyana; Schultz, Carsten] Univ Kiel, Kiel Inst Responsible Innovat, D-24118 Kiel, Germany. [Galke, Lukas] Leibniz Informat Ctr Econ ZBW, D-24105 Kiel, Germany. [Galke, Lukas] Max Planck Inst Psycholinguist, NL-6525 XD Nijmegen, Netherlands. [Seidlmayer, Eva; Forstner, Konrad U.] Informat Ctr Life Sci ZB Med, D-50931 Cologne, Germany. [Broring, Stefanie] Ruhr Univ Bochum, Fac Management & Econ, D-44780 Bochum, Germany. [Tochtermann, Klaus] Leibniz Informat Ctr Econ ZBW, D-24105 Kiel, Germany. C3 University of Kiel; Deutsche Zentralbibliothek fur Wirtschaftswissenschaften (ZBW); Max Planck Society; Ruhr University Bochum; Deutsche Zentralbibliothek fur Wirtschaftswissenschaften (ZBW) RP Melnychuk, T (corresponding author), Univ Kiel, Kiel Inst Responsible Innovat, D-24118 Kiel, Germany. EM melnychuk@bwl.uni-kiel.de; lukas.galke@mpi.nl; seidlmayer@zbmed.de; stefanie.broering@ruhr-uni-bochum.de; foerstner@zbmed.de; k.tochtermann@zbw-online.eu; schultz@bwl.uni-kiel.de RI Schultz, Carsten/G-5554-2016 OI Schultz, Carsten/0000-0002-5984-9872; Galke, Lukas/0000-0001-6124-1092; Tochtermann, Klaus/0000-0003-2471-2697; Broring, Stefanie/0000-0003-2014-2586; Seidlmayer, Eva/0000-0001-7258-0532; Melnychuk, Tetyana/0000-0002-7258-2842; Forstner, Konrad U./0000-0002-1481-2996 FU German Federal Ministry of Education and Research (BMBF) [01PU17013A, 01PU17013B]; [01PU17013C] FX This work was supported by the German Federal Ministry of Education and Research (BMBF) represented by the executing agency the German Aerospace Center (DLR) within the framework of the Research Project Q-AKTIV under Grant 01PU17013A, Grant 01PU17013B,and Grant 01PU17013C within the funding line "Quantitative Research on the Science Sector." CR Aaldering LJ, 2019, TECHNOL FORECAST SOC, V138, P95, DOI 10.1016/j.techfore.2018.08.012 Appio FP, 2023, IEEE T ENG MANAGE, V70, P1389, DOI 10.1109/TEM.2023.3242518 Ardito L, 2023, IEEE T ENG MANAGE, V70, P1442, DOI 10.1109/TEM.2021.3103878 Battard N, 2012, TECHNOVATION, V32, P234, DOI 10.1016/j.technovation.2011.09.001 Bonaccorsi A, 2008, MINERVA, V46, P285, DOI 10.1007/s11024-008-9101-3 Bonaccorsi A, 2010, RES POLICY, V39, P1034, DOI 10.1016/j.respol.2010.05.002 Bornkessel S., 2014, Journal on Chain and Network Science, V14, P213, DOI 10.3920/JCNS2014.x011 Bornkessel Sabine, 2016, PharmaNutrition, V4, P29, DOI 10.1016/j.phanu.2015.10.002 Bröring S, 2006, R&D MANAGE, V36, P487, DOI 10.1111/j.1467-9310.2006.00449.x Broring S., 2005, The front end of innovation in converging industries: the case of nutraceuticals and functional foods Caferoglu H, 2023, IEEE T ENG MANAGE, V70, P1504, DOI 10.1109/TEM.2021.3092211 Carley S, 2017, J DATA INFO SCI, V2, P68, DOI 10.1515/jdis-2017-0015 Carley SF, 2018, SCIENTOMETRICS, V115, P35, DOI 10.1007/s11192-018-2654-5 Caviggioli F, 2016, TECHNOVATION, V55-56, P22, DOI 10.1016/j.technovation.2016.04.003 CHUBIN DE, 1976, SOCIOL QUART, V17, P448, DOI 10.1111/j.1533-8525.1976.tb01715.x Coccia M, 2021, SCIENTOMETRICS, V126, P9405, DOI 10.1007/s11192-021-04172-x Coccia M, 2020, SCIENTOMETRICS, V124, P451, DOI 10.1007/s11192-020-03464-y Coccia M, 2020, TECHNOL SOC, V60, DOI 10.1016/j.techsoc.2019.101198 Coccia M, 2018, SCIENTOMETRICS, V117, P1265, DOI 10.1007/s11192-018-2902-8 Curran CS, 2011, TECHNOL FORECAST SOC, V78, P256, DOI 10.1016/j.techfore.2010.06.021 Curran CS, 2009, INT J INNOV MANAG, V13, P637, DOI 10.1142/S1363919609002455 Curran CS, 2010, TECHNOL FORECAST SOC, V77, P385, DOI 10.1016/j.techfore.2009.10.002 Dane E, 2010, ACAD MANAGE REV, V35, P579, DOI 10.5465/AMR.2010.53502832 DEERWESTER S, 1990, J AM SOC INFORM SCI, V41, P391, DOI 10.1002/(SICI)1097-4571(199009)41:6<391::AID-ASI1>3.0.CO;2-9 Dong YX, 2017, KDD'17: PROCEEDINGS OF THE 23RD ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, P135, DOI 10.1145/3097983.3098036 Ebert D, 2021, COMPUT SCI ENG, V23, P99, DOI 10.1109/MCSE.2021.3069342 Galke L., 2019, INFORMATIK 2019 50 J, P219 Geum Y, 2016, TECHNOL FORECAST SOC, V107, P112, DOI 10.1016/j.techfore.2016.03.020 Gingras Y., 2016, Bibliometrics and research evaluation. Uses and abuses Giordano V, 2023, IEEE T ENG MANAGE, V70, P1490, DOI 10.1109/TEM.2021.3078231 Grégoire DA, 2006, ENTREP THEORY PRACT, V30, P333, DOI 10.1111/j.1540-6520.2006.00124.x Grover A, 2016, KDD'16: PROCEEDINGS OF THE 22ND ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, P855, DOI 10.1145/2939672.2939754 Hacklin F, 2023, IEEE T ENG MANAGE, V70, P1518, DOI 10.1109/TEM.2021.3087365 Hagedoorn J, 2002, J MANAGE STUD, V39, P167, DOI 10.1111/1467-6486.00287 Hallikainen M, 2011, ATHEROSCLEROSIS, V217, P473, DOI 10.1016/j.atherosclerosis.2011.03.041 Han SF, 2016, SCI REP-UK, V6, DOI 10.1038/srep31337 Heimeriks G, 2012, TECHNOL ANAL STRATEG, V24, P51, DOI 10.1080/09537325.2012.643562 Hoskins MH, 2006, FUTURE LIPIDOL, V1, P579, DOI 10.2217/17460875.1.5.579 Hwang I, 2020, PLOS ONE, V15, DOI 10.1371/journal.pone.0228616 Jeong DH, 2016, TECHNOL FORECAST SOC, V108, P15, DOI 10.1016/j.techfore.2016.03.017 Jeong D, 2018, ASIAN J TECHNOL INNO, V26, P246, DOI 10.1080/19761597.2018.1522961 Jeong S, 2015, SCIENTOMETRICS, V104, P841, DOI 10.1007/s11192-015-1606-6 Kim J, 2017, SCIENTOMETRICS, V111, P47, DOI 10.1007/s11192-017-2275-4 Kim N, 2015, RES POLICY, V44, P1734, DOI 10.1016/j.respol.2015.02.001 Kim TS, 2020, TECHNOL FORECAST SOC, V157, DOI 10.1016/j.techfore.2020.120095 Klarin A, 2023, IEEE T ENG MANAGE, V70, P1531, DOI 10.1109/TEM.2021.3126055 Kong DJ, 2020, SCIENTOMETRICS, V125, P1983, DOI 10.1007/s11192-020-03696-y Kose T, 2019, TECHNOL FORECAST SOC, V146, P751, DOI 10.1016/j.techfore.2018.09.005 Kuhn T.S., 1962, The structure of scientific revolutions Lee H, 2017, ETRI J, V39, P467, DOI 10.4218/etrij.17.0116.0874 Leydesdorff L, 2012, J AM SOC INF SCI TEC, V63, P2239, DOI 10.1002/asi.22715 Linkov I, 2014, ENVIRON SCI TECHNOL, V48, P10539, DOI 10.1021/es503585u Luan CJ, 2024, IEEE T ENG MANAGE, V71, P346, DOI 10.1109/TEM.2021.3120709 Maine E, 2014, J ENG TECHNOL MANAGE, V32, P1, DOI 10.1016/j.jengtecman.2013.10.007 Malina DMT, 2015, J CLIN LIPIDOL, V9, P542, DOI 10.1016/j.jacl.2015.04.003 Mikolov T., 2013, Advances in Neural Information Processing Systems, P3111 Mittelstrass J, 2018, GAIA, V27, P201, DOI 10.14512/gaia.27.2.4 MULKAY MJ, 1975, SOCIOL REV, V23, P509, DOI 10.1111/j.1467-954X.1975.tb02231.x Niemann H, 2017, TECHNOL FORECAST SOC, V115, P210, DOI 10.1016/j.techfore.2016.10.004 Perozzi B, 2014, PROCEEDINGS OF THE 20TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING (KDD'14), P701, DOI 10.1145/2623330.2623732 Petersen AM, 2021, HUM SOC SCI COMMUN, V8, DOI 10.1057/s41599-021-00869-9 Petersen AM, 2016, RES POLICY, V45, P666, DOI 10.1016/j.respol.2015.12.004 Phillips LT, 2018, CURR DIR PSYCHOL SCI, V27, P156, DOI 10.1177/0963721417753600 Porter AL, 2009, SCIENTOMETRICS, V81, P719, DOI 10.1007/s11192-008-2197-2 Price D. J. d. S., 1963, Little Science, Big Science Romer S, 2006, COLLOID SURFACE A, V282, P435, DOI 10.1016/j.colsurfa.2005.12.032 Rotolo D, 2015, RES POLICY, V44, P1827, DOI 10.1016/j.respol.2015.06.006 Saha S, 2003, J MED LIBR ASSOC, V91, P42 SALTON G, 1988, INFORM PROCESS MANAG, V24, P513, DOI 10.1016/0306-4573(88)90021-0 Sanyal DK, 2021, J INF SCI, V47, P227, DOI 10.1177/0165551519888605 Scarselli F, 2009, IEEE T NEURAL NETWOR, V20, P61, DOI 10.1109/TNN.2008.2005605 Sick N, 2022, TECHNOL FORECAST SOC, V175, DOI 10.1016/j.techfore.2021.121321 Sick N, 2019, TECHNOVATION, V84-85, P48, DOI 10.1016/j.technovation.2018.08.001 SMALL H, 1973, J AM SOC INFORM SCI, V24, P265, DOI 10.1002/asi.4630240406 Song CH, 2017, TECHNOL FORECAST SOC, V116, P98, DOI 10.1016/j.techfore.2016.11.001 Stancu C, 2001, J CELL MOL MED, V5, P378, DOI 10.1111/j.1582-4934.2001.tb00172.x Sugimoto CR, 2013, NATURE, V504, P211, DOI 10.1038/504211a Sun XL, 2013, SCI REP-UK, V3, DOI 10.1038/srep01069 Upham SP, 2010, SCIENTOMETRICS, V83, P525, DOI 10.1007/s11192-009-0102-2 Venugopalan S, 2015, TECHNOL FORECAST SOC, V94, P236, DOI 10.1016/j.techfore.2014.10.006 Wagner CS, 2011, J INFORMETR, V5, P14, DOI 10.1016/j.joi.2010.06.004 Wenneras C, 1997, NATURE, V387, P341, DOI 10.1038/387341a0 West JD, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0066212 Wikidata, 2022, Wikipedia: Statistics Yegros-Yegros A, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0135095 Ying Rex, 2019, Adv Neural Inf Process Syst, V32, P9240 Zhou Y, 2019, TECHNOL FORECAST SOC, V144, P205, DOI 10.1016/j.techfore.2019.03.014 2015, bioRxiv, DOI [10.1101/031971, 10.1101/031971, DOI 10.1101/031971] NR 88 TC 1 Z9 1 U1 11 U2 24 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9391 EI 1558-0040 J9 IEEE T ENG MANAGE JI IEEE Trans. Eng. Manage. PD 2023 SEP 12 PY 2023 DI 10.1109/TEM.2023.3308008 EA SEP 2023 PG 17 WC Business; Engineering, Industrial; Management WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Business & Economics; Engineering GA S1PN6 UT WOS:001068962400001 OA Green Accepted, hybrid DA 2024-09-05 ER PT J AU Menekse, M Chi, MTH AF Menekse, Muhsin Chi, Michelene T. H. TI The role of collaborative interactions versus individual construction on students? learning of engineering concepts SO EUROPEAN JOURNAL OF ENGINEERING EDUCATION LA English DT Article DE Engineering education research; teamwork; assessment of learning outcomes; active learning; peer learning; teaching ID TEAMS; INQUIRY; EXPLANATIONS; INSTRUCTION; MATHEMATICS; TECHNOLOGY; ENGAGEMENT; FRAMEWORK; WORK AB This study primarily investigated the role of interactional factors in an unstructured face-to-face collaborative learning environment with challenging engineering activities. We explored dialogue patterns in terms of quality of interaction, students? scaffolding instances, and discourse moves for productive interactions of collaborative dyads in the context of the Interactive-Constructive-Active-Passive (ICAP) framework. The sample included 72 engineering students for the interactive and constructive conditions. Students? understanding of material science and engineering concepts were measured using pre and posttest design. Results showed students in the interactive condition performed significantly better than students in the constructive condition. Verbal analysis of approximately 12 hours video recordings and 210 pages of transcriptions for students? dialogue in the interactive condition indicated a strong relation between the quality of interaction, scaffolding instances, and individual learning gains. In addition, a verbal analysis examining each utterance based on the discourse moves revealed that the certain moves are significantly linked with learning outcomes. C1 [Menekse, Muhsin] Purdue Univ, Sch Engn Educ, W Lafayette, IN 47907 USA. [Menekse, Muhsin] Purdue Univ, Dept Curriculum & Instruct, W Lafayette, IN 47907 USA. [Chi, Michelene T. H.] Arizona State Univ, Mary Lou Fulton Teachers Coll, Tempe, AZ USA. C3 Purdue University System; Purdue University; Purdue University System; Purdue University; Arizona State University; Arizona State University-Tempe RP Menekse, M (corresponding author), Purdue Univ, Sch Engn Educ, W Lafayette, IN 47907 USA.; Menekse, M (corresponding author), Purdue Univ, Dept Curriculum & Instruct, W Lafayette, IN 47907 USA. EM menekse@purdue.edu OI Menekse, Muhsin/0000-0002-5547-5455 FU USA National Science Foundation [0935235]; Div Of Engineering Education and Centers; Directorate For Engineering [0935235] Funding Source: National Science Foundation FX This material is based upon work supported by the USA National Science Foundation under Grant No. 0935235. CR Alfieri L, 2013, EDUC PSYCHOL-US, V48, P87, DOI 10.1080/00461520.2013.775712 [Anonymous], THESIS [Anonymous], 2006, ANAL DYADIC DATA [Anonymous], PROC FRONT EDUC CONF [Anonymous], 2013, International Handbook of Collaborative Learning Asterhan CSC, 2014, LEARN INSTR, V34, P1, DOI 10.1016/j.learninstruc.2014.07.003 Azevedo R, 2008, ETR&D-EDUC TECH RES, V56, P45, DOI 10.1007/s11423-007-9067-0 Biswas G, 2005, APPL ARTIF INTELL, V19, P363, DOI 10.1080/08839510590910200 Callister W., 2009, Materials Science and Engineering: An Introduction, V8th Chi M.T. H., 2015, Socializing Intelligence Through Academic Talk and Dialogue, V21, P263 Chi MTH, 2014, EDUC PSYCHOL-US, V49, P219, DOI 10.1080/00461520.2014.965823 Chi MTH, 2009, TOP COGN SCI, V1, P73, DOI 10.1111/j.1756-8765.2008.01005.x Chi MTH, 1997, J LEARN SCI, V6, P271, DOI 10.1207/s15327809jls0603_1 Czerniak C.M., 1998, J SCI TEACH EDUC, V9, P303, DOI [10.1023/A:1009431400397, DOI 10.1023/A:1009431400397] Dillenbourg P., 1999, What do You Mean by Collaborative Learning?, P1, DOI DOI 10.1016/S0360-1315(00)00011-7 Fila ND, 2014, INT J ENG EDUC, V30, P848 Gadgil S, 2012, APPL COGNITIVE PSYCH, V26, P410, DOI 10.1002/acp.1843 Gijlers H, 2013, J LEARN SCI, V22, P340, DOI 10.1080/10508406.2012.748664 Hake RR, 1998, AM J PHYS, V66, P64, DOI 10.1119/1.18809 Hmelo-Silver CE, 2008, COGNITION INSTRUCT, V26, P48, DOI 10.1080/07370000701798495 Hsiung CM, 2010, J ENG EDUC, V99, P45, DOI 10.1002/j.2168-9830.2010.tb01041.x Hsung CM, 2012, J ENG EDUC, V101, P119 Huang HC, 2011, INT J ENG EDUC, V27, P875 Kaartinen S, 2002, LEARN INSTR, V12, P189, DOI 10.1016/S0959-4752(01)00004-4 Kimmerle J, 2008, INT J COMP-SUPP COLL, V3, P85, DOI 10.1007/s11412-007-9027-z King A, 2002, THEOR PRACT, V41, P33, DOI 10.1207/s15430421tip4101_6 King A, 1999, RUTG INV SYMP EDUC S, P87 Kirschner F, 2009, EDUC PSYCHOL REV, V21, P31, DOI 10.1007/s10648-008-9095-2 Kollar I, 2007, LEARN INSTR, V17, P708, DOI 10.1016/j.learninstruc.2007.09.021 Kramarski B, 2009, J EDUC COMPUT RES, V40, P377, DOI 10.2190/EC.40.4.a Kuhn D, 2015, EDUC RESEARCHER, V44, P46, DOI 10.3102/0013189X15569530 Lakens D, 2013, FRONT PSYCHOL, V4, DOI 10.3389/fpsyg.2013.00863 Lou YP, 1996, REV EDUC RES, V66, P423, DOI 10.2307/1170650 Lou YP, 2001, REV EDUC RES, V71, P449, DOI 10.3102/00346543071003449 Menekse M, 2017, J ENG EDUC, V106, P564, DOI 10.1002/jee.20178 Menekse M, 2013, J ENG EDUC, V102, P346, DOI 10.1002/jee.20021 Mishra D, 2015, INT J ENG EDUC, V31, P627 Newell J., 2009, ESSENTIALS MODERN MA O'Donnell A.M., 2006, Handbook of educational psychology, V2nd, P781, DOI DOI 10.4324/9780203874790 Okada T, 1997, COGNITIVE SCI, V21, P109, DOI 10.1016/S0364-0213(99)80020-2 Pasha-Zaidi N, 2015, INT J ENG EDUC, V31, P953 Puntambekar S, 2006, COMPUT EDUC, V47, P332, DOI 10.1016/j.compedu.2004.10.012 Purzer S, 2011, J ENG EDUC, V100, P655 Raudenbush Stephen W., 2002, HIERARCHICAL LINEAR Renkl A., 1995, Learning and Instruction, V5, P21, DOI DOI 10.1016/0959-4752(94)00015-H Roscoe RD, 2007, REV EDUC RES, V77, P534, DOI 10.3102/0034654307309920 Rummel N, 2005, J LEARN SCI, V14, P201, DOI 10.1207/s15327809jls1402_2 Scherbaum CA, 2009, ORGAN RES METHODS, V12, P347, DOI 10.1177/1094428107308906 Slavin R., 1995, Cooperative learning: Theory, research, and practice Springer L, 1999, REV EDUC RES, V69, P21, DOI 10.2307/1170643 Stahl G, 2014, CAMBRIDGE HANDBOOK OF THE LEARNING SCIENCES, 2ND EDITION, P479 Stahl G, 2009, INT J COMP-SUPP COLL, V4, P365, DOI 10.1007/s11412-009-9075-7 Streveler RA, 2017, J ENG EDUC, V106, P186, DOI 10.1002/jee.20160 Summers M, 2010, EUR J PSYCHOL EDUC, V25, P473, DOI 10.1007/s10212-010-0026-5 Terenzini P.T., 2001, J ENG EDUC, V90, P123, DOI DOI 10.1002/J.2168-9830.2001.TB00579.X Tonso KL, 2006, J ENG EDUC, V95, P25, DOI 10.1002/j.2168-9830.2006.tb00875.x Volet S, 2009, LEARN INSTR, V19, P128, DOI 10.1016/j.learninstruc.2008.03.001 WASSERTHEIL S, 1970, BIOMETRICS, V26, P588, DOI 10.2307/2529115 Webb NM., 1989, INT J EDUC RES, V13, P21, DOI [DOI 10.1016/0883-0355(89)90014-1, 10.1016/0883-0355(89)90014-1] Wentzel KR, 2011, EDUC PSYCHOL HANDB, P322 Yetter G, 2006, J EXP EDUC, V74, P137, DOI 10.3200/JEXE.74.2.137-160 Zafft CR, 2009, J ENG EDUC, V98, P273, DOI 10.1002/j.2168-9830.2009.tb01024.x NR 62 TC 31 Z9 38 U1 3 U2 29 PU TAYLOR & FRANCIS LTD PI ABINGDON PA 2-4 PARK SQUARE, MILTON PARK, ABINGDON OR14 4RN, OXON, ENGLAND SN 0304-3797 EI 1469-5898 J9 EUR J ENG EDUC JI Eur. J. Eng. Educ. PD SEP 3 PY 2019 VL 44 IS 5 BP 702 EP 725 DI 10.1080/03043797.2018.1538324 PG 24 WC Education & Educational Research WE Emerging Sources Citation Index (ESCI) SC Education & Educational Research GA JB3PR UT WOS:000488469700006 DA 2024-09-05 ER PT J AU Li, WD Yigitcanlar, T Liu, A Erol, I AF Li, Wenda Yigitcanlar, Tan Liu, Aaron Erol, Isil TI Mapping two decades of smart home research: A systematic scientometric analysis SO TECHNOLOGICAL FORECASTING AND SOCIAL CHANGE LA English DT Article DE Smart home; Home automation; Home innovation; Domotics; Internet-of-things (IoT); Artificial intelligence (AI) ID ARTIFICIAL-INTELLIGENCE; ENERGY MANAGEMENT; PRESENT STATE; HEALTH-CARE; INTERNET; THINGS; URBAN; CHALLENGES; SECURITY; MODEL AB Technological advancements such as information and communication technologies (ICTs), artificial intelligence (AI), internet-of-things (IoT), and the increasing popularity of the smart city and smart living movements during the last couple of decades boosted the developments in the smart home domain. Although the number of smart home related research has been expanding rapidly, there is still a lack of systematic analysis of the evolution of this research domain. This study helps to generate an understanding of the historical vicissitude, state-of-the-art and emerging trends, and the existing smart home research clusters. The study applies a scientometric method to analyse the published scholarly research (n = 17,153) over the last two decades, from 2000 to 2021. The scientometric analysis findings reveal that: Smart home literature has experienced steady growth during the last two decades; Smart home research has mainly clustered around ICT for home automation, home information management, AI for home automation, domestic energy management, IoT for home automation, and home-based healthcare areas; IoT is seen as the most popular technology to realise fully functioning smart homes; Limited evidence exists on the urban perspective and social issues of smart home technology; Smart homes are seen potentially as a strong driver of the smart city agenda. C1 [Li, Wenda; Yigitcanlar, Tan; Liu, Aaron] Queensland Univ Technol, Sch Architecture & Built Environm, 2 George St, Brisbane, Qld 4000, Australia. [Erol, Isil] Univ Reading, Henley Business Sch, Reading RG6 6UD, Berks, England. C3 Queensland University of Technology (QUT); University of Reading RP Yigitcanlar, T (corresponding author), Queensland Univ Technol, Sch Architecture & Built Environm, 2 George St, Brisbane, Qld 4000, Australia. EM tan.yigitcanlar@qut.edu.au RI Liu, Aaron/T-7759-2019; Li, Wenda/ISB-6315-2023; Yigitcanlar, Tan/J-1142-2012 OI Liu, Aaron/0000-0001-7690-6608; Li, Wenda/0000-0002-4430-7405; Yigitcanlar, Tan/0000-0001-7262-7118; Erol, Isil/0000-0001-8125-9118 CR Alaa M, 2017, J NETW COMPUT APPL, V97, P48, DOI 10.1016/j.jnca.2017.08.017 Aldossari MQ, 2020, J COMPUT INFORM SYST, V60, P507, DOI 10.1080/08874417.2018.1543000 Almusaylim ZA, 2019, WIREL NETW, V25, P3193, DOI 10.1007/s11276-018-1712-5 Amiribesheli M, 2015, J AMB INTEL HUM COMP, V6, P495, DOI 10.1007/s12652-015-0270-2 [Anonymous], 2010, KNOWLEDGE BASED DEV Badar AQH, 2022, ADV BUILD ENERGY RES, V16, P118, DOI 10.1080/17512549.2020.1806925 Bennett J, 2017, SUSTAINABILITY-BASEL, V9, DOI 10.3390/su9050840 Chan M, 2008, COMPUT METH PROG BIO, V91, P55, DOI 10.1016/j.cmpb.2008.02.001 Choi D, 2019, J ASIAN ARCHIT BUILD, V18, P194, DOI 10.1080/13467581.2019.1617718 Choi W, 2021, J CLEAN PROD, V301, DOI 10.1016/j.jclepro.2021.126908 Dahmen Jessamyn, 2017, J Reliab Intell Environ, V3, P83, DOI 10.1007/s40860-017-0035-0 Deutch J, 2018, ISSUES SCI TECHNOL, V34, P37 Dorri Ali, 2017, 2017 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops), P618, DOI 10.1109/PERCOMW.2017.7917634 Ellegaard O, 2015, SCIENTOMETRICS, V105, P1809, DOI 10.1007/s11192-015-1645-z Faisal A, 2021, J URBAN TECHNOL, V28, P45, DOI 10.1080/10630732.2020.1780868 Fan XD, 2017, ENRGY PROCED, V105, P2545, DOI 10.1016/j.egypro.2017.03.732 Ford R, 2017, BUILD ENVIRON, V123, P543, DOI 10.1016/j.buildenv.2017.07.020 Goldsmith A, 2005, Wireless Communications Gu T, 2005, J NETW COMPUT APPL, V28, P1, DOI 10.1016/j.jnca.2004.06.002 Guo YM, 2019, SUSTAINABILITY-BASEL, V11, DOI 10.3390/su11133606 Hui TKL, 2017, FUTURE GENER COMP SY, V76, P358, DOI 10.1016/j.future.2016.10.026 Khan MA, 2018, FUTURE GENER COMP SY, V82, P395, DOI 10.1016/j.future.2017.11.022 Kim H, 2021, RENEW SUST ENERG REV, V140, DOI 10.1016/j.rser.2021.110755 Kim M, 2019, J SENSORS, V2019, DOI 10.1155/2019/1654013 Koltsaklis N, 2021, ENERGIES, V14, DOI 10.3390/en14061724 Kravchenko Y, 2017, 2017 4TH INTERNATIONAL SCIENTIFIC-PRACTICAL CONFERENCE PROBLEMS OF INFOCOMMUNICATIONS-SCIENCE AND TECHNOLOGY (PIC S&T), P579, DOI 10.1109/INFOCOMMST.2017.8246467 Lee SH, 2008, INNOV-MANAG POLICY P, V10, P282, DOI 10.5172/impp.453.10.2-3.282 Li WD, 2021, ENERGY RES SOC SCI, V80, DOI 10.1016/j.erss.2021.102211 Lynggaard P, 2016, SENSORS-BASEL, V16, DOI 10.3390/s16111840 Majumder S, 2017, SENSORS-BASEL, V17, DOI 10.3390/s17112496 Marcus S. J., 1983, INTELLIGENT BUILDING Marikyan D, 2021, INT J E-BUS RES, V17, P1, DOI 10.4018/IJEBR.2021040101 Marikyan D, 2019, TECHNOL FORECAST SOC, V138, P139, DOI 10.1016/j.techfore.2018.08.015 Mekuria DN, 2021, J AMB INTEL HUM COMP, V12, P4485, DOI 10.1007/s12652-019-01572-z Mukhopadhyay SC, 2015, IEEE SENS J, V15, P1321, DOI 10.1109/JSEN.2014.2370945 Oliveira L, 2020, PERS UBIQUIT COMPUT, V24, P613, DOI 10.1007/s00779-019-01302-4 Omar O, 2018, ALEX ENG J, V57, P2903, DOI 10.1016/j.aej.2018.07.004 Pandya S, 2018, APPL SYST INNOV, V1, DOI 10.3390/asi1040042 Park JY, 2018, DATA BRIEF, V17, P529, DOI 10.1016/j.dib.2018.01.033 Patel S, 2012, J NEUROENG REHABIL, V9, DOI 10.1186/1743-0003-9-21 Pedrasa MAA, 2010, IEEE T SMART GRID, V1, P134, DOI 10.1109/TSG.2010.2053053 Perri C, 2020, TECHNOL FORECAST SOC, V155, DOI 10.1016/j.techfore.2020.119991 Sapci A Hasan, 2019, JMIR Aging, V2, pe15429, DOI 10.2196/15429 Sepasgozar S, 2020, APPL SCI-BASEL, V10, DOI 10.3390/app10093074 Sheikhnejad Y, 2020, SUSTAINABILITY-BASEL, V12, DOI 10.3390/su12041293 Shi WS, 2016, IEEE INTERNET THINGS, V3, P637, DOI 10.1109/JIOT.2016.2579198 Solaimani S, 2015, INDOOR BUILT ENVIRON, V24, P370, DOI 10.1177/1420326X13516350 Sovacool BK, 2020, RENEW SUST ENERG REV, V120, DOI 10.1016/j.rser.2019.109663 Stojkoska BLR, 2017, J CLEAN PROD, V140, P1454, DOI 10.1016/j.jclepro.2016.10.006 Stolojescu-Crisan C, 2021, SENSORS-BASEL, V21, DOI 10.3390/s21113784 Strengers Y, 2020, INT J HUM-COMPUT ST, V136, DOI 10.1016/j.ijhcs.2019.102379 Strengers Y, 2017, ENERGY RES SOC SCI, V32, P86, DOI 10.1016/j.erss.2017.02.008 van Eck NJ, 2017, SCIENTOMETRICS, V111, P1053, DOI 10.1007/s11192-017-2300-7 Viana J, 2017, REMOTE SENS-BASEL, V9, DOI 10.3390/rs9121225 Vlachokostas C, 2020, INT J SUSTAIN ENERGY, V39, P648, DOI 10.1080/14786451.2020.1746789 Yigitcanlar T., 2019, Journal of Open Innovation: Technology, Market, and Complexity, V5, P24 Yigitcanlar T, 2022, CITIES, V120, DOI 10.1016/j.cities.2021.103434 Yigitcanlar T, 2020, SUSTAINABILITY-BASEL, V12, DOI 10.3390/su12208548 Yigitcanlar T, 2021, J URBAN TECHNOL, V28, P135, DOI 10.1080/10630732.2020.1753483 Yigitcanlar T, 2020, SENSORS-BASEL, V20, DOI 10.3390/s20102988 Yigitcanlar T, 2020, ENERGIES, V13, DOI 10.3390/en13061473 Yigitcanlar T, 2019, LAND USE POLICY, V88, DOI 10.1016/j.landusepol.2019.104187 Yigitcanlar T, 2019, J URBAN TECHNOL, V26, P21, DOI 10.1080/10630732.2018.1476794 Zhao GL, 2018, QUAL RELIAB ENG INT, V34, P37, DOI 10.1002/qre.2234 Zhou B, 2016, RENEW SUST ENERG REV, V61, P30, DOI 10.1016/j.rser.2016.03.047 NR 65 TC 19 Z9 19 U1 28 U2 142 PU ELSEVIER SCIENCE INC PI NEW YORK PA STE 800, 230 PARK AVE, NEW YORK, NY 10169 USA SN 0040-1625 EI 1873-5509 J9 TECHNOL FORECAST SOC JI Technol. Forecast. Soc. Chang. PD JUN PY 2022 VL 179 AR 121676 DI 10.1016/j.techfore.2022.121676 EA APR 2022 PG 13 WC Business; Regional & Urban Planning WE Social Science Citation Index (SSCI) SC Business & Economics; Public Administration GA 1C1XP UT WOS:000792920900004 OA Green Published, Green Accepted DA 2024-09-05 ER PT J AU Klein, SA Baiocchi, M Rodu, J Baker, H Rosemond, E Doyle, JM AF Klein, Sean A. Baiocchi, Michael Rodu, Jordan Baker, Heather Rosemond, Erica Doyle, Jamie Mihoko TI An analysis of the Clinical and Translational Science Award pilot project portfolio using data from Research Performance Progress Reports SO JOURNAL OF CLINICAL AND TRANSLATIONAL SCIENCE LA English DT Article DE Portfolio analysis; CTSA; evaluation; machine learning; networks; collaboration AB Introduction: Pilot projects ("pilots") are important for testing hypotheses in advance of investing more funds for full research studies. For some programs, such as Clinical and Translational Science Awards (CTSAs) supported by the National Center for Translational Sciences, pilots also make up a significant proportion of the research projects conducted with direct CTSA support. Unfortunately, administrative data on pilots are not typically captured in accessible databases. Though data on pilots are included in Research Performance Progress Reports, it is often difficult to extract, especially for large programs like the CTSAs where more than 600 pilots may be reported across all awardees annually. Data extraction challenges preclude analyses that could provide valuable information about pilots to researchers and administrators. Methods: To address those challenges, we describe a script that partially automates extraction of pilot data from CTSA research progress reports. After extraction of the pilot data, we use an established machine learning (ML) model to determine the scientific content of pilots for subsequent analysis. Analysis of ML-assigned scientific categories reveals the scientific diversity of the CTSA pilot portfolio and relationships among individual pilots and institutions. Results: The CTSA pilots are widely distributed across a number of scientific areas. Content analysis identifies similar projects and the degree of overlap for scientific interests among hubs. Conclusion: Our results demonstrate that pilot data remain challenging to extract but can provide useful information for communicating with stakeholders, administering pilot portfolios, and facilitating collaboration among researchers and hubs. C1 [Klein, Sean A.] US Dept HHS, Off Sci & Data Policy, Off Assistant Secretary Nanning & Evaluat, Washington, DC 20201 USA. [Baiocchi, Michael] Stanford Univ, Dept Epidemiol & Populat Hlth, Stanford, CA 94305 USA. [Rodu, Jordan] Univ Virginia, Dept Stat, Charlottesville, VA USA. [Baker, Heather; Rosemond, Erica; Doyle, Jamie Mihoko] NIH, Div Clin Innovat, Natl Ctr ForAdv Translat Sci, Bldg 10, Bethesda, MD 20892 USA. C3 Stanford University; University of Virginia; National Institutes of Health (NIH) - USA RP Klein, SA (corresponding author), US Dept HHS, Planning & Evaluat, Room 440F1,200 Independence Ave SW, Washington, DC 20201 USA. EM sean.klein@hhs.gov CR Altimus CM, 2019, ALZHEIMERS DEMENT, V15, P42, DOI 10.1016/j.jalz.2018.07.218 [Anonymous], 2 OPTIONS INCLUDE NI [Anonymous], OVERVIEW RCDC Assistant Secretary for Planning and Resonse, DET PUBL HLTH EM EX Austin CP, 2018, NAT REV DRUG DISCOV, V17, P455, DOI 10.1038/nrd.2018.27 Azoulay P., 2020, NBER WORKING PAPER S, DOI 10.3386/w26889 Ballreich JM, 2021, JAMA NETW OPEN, V4, DOI 10.1001/jamanetworkopen.2020.34890 Dozier A., AD HOC WORKGROUP COM Farooq F, 2020, JAMA NETW OPEN, V3, DOI 10.1001/jamanetworkopen.2020.1737 Ghazarian AL, 2022, ALZHEIMERS DEMENT, V18, P348, DOI 10.1002/alz.12392 Gilliland CT, 2019, ACS PHARMACOL TRANSL, V2, P213, DOI 10.1021/acsptsci.9b00022 Hutchins BI, 2019, PLOS BIOL, V17, DOI 10.1371/journal.pbio.3000416 Leeper T.J., 2018, TABULIZER BINDINGS T Li D, 2017, SCIENCE, V356, P78, DOI 10.1126/science.aal0010 Morozumi K, 2021, J CLIN TRANSL SCI, V5, DOI 10.1017/cts.2020.557 National Center for Accelerating Translational Science, PAR21293 NAT CTR ACC National Center for Accelerating Translational Science, CTSA PROGR GOV GUID NIH Office of Extramural Research, 2022, NIH OTH PHS AG RES P NIH RePORT, EST FUND VAR RES CON Oliveira DFM, 2019, JAMA-J AM MED ASSOC, V321, P898, DOI 10.1001/jama.2018.21944 Ooms OJ, 2020, PDFTOOLS TEXT EXTRAC Pournelle G. H., 1953, Journal of Mammalogy, V34, P133, DOI 10.1890/0012-9658(2002)083[1421:SDEOLC]2.0.CO;2 Rankin Tracy, COMMUNICATION Rees CA, 2021, JAMA PEDIATR, V175, P1236, DOI 10.1001/jamapediatrics.2021.3360 report.nih, ABOUT US Rollins L, 2021, J CLIN TRANSL SCI, V5, DOI 10.1017/cts.2020.542 Sampat BN, 2021, HEALTH AFFAIR, V40, P400, DOI 10.1377/hlthaff.2020.02097 Schmidt S, 2018, J CLIN TRANSL SCI, V2, P135, DOI 10.1017/cts.2018.30 Surkis A, 2016, J TRANSL MED, V14, DOI 10.1186/s12967-016-0992-8 Wickham H., 2019, WELC, DOI [DOI 10.21105/JOSS.01686, 10.21105/joss.01686] Zerhouni E, 2008, NIH REFORM ACT 2006 US NR 32 TC 0 Z9 0 U1 0 U2 1 PU CAMBRIDGE UNIV PRESS PI CAMBRIDGE PA EDINBURGH BLDG, SHAFTESBURY RD, CB2 8RU CAMBRIDGE, ENGLAND EI 2059-8661 J9 J CLIN TRANSL SCI JI J. Clin. Transl. Sci. PD AUG 18 PY 2022 VL 6 IS 1 AR e113 DI 10.1017/cts.2022.444 PG 8 WC Medicine, Research & Experimental WE Emerging Sources Citation Index (ESCI) SC Research & Experimental Medicine GA 4P9QY UT WOS:000855724800001 PM 36285022 OA gold, Green Published DA 2024-09-05 ER PT J AU Bhullar, PS Joshi, M Chugh, R AF Bhullar, Pritpal Singh Joshi, Mahesh Chugh, Ritesh TI ChatGPT in higher education - a synthesis of the literature and a future research agenda SO EDUCATION AND INFORMATION TECHNOLOGIES LA English DT Article; Early Access DE ChatGPT; Artificial Intelligence; Generative AI; Higher education; Plagiarism; Academic integrity; Systematic review; Bibliometric analysis ID RESEARCH-FRONT; PERFORMANCE AB ChatGPT has emerged as a significant subject of research and exploration, casting a critical spotlight on teaching and learning practices in the higher education domain. This study examines the most influential articles, leading journals, and productive countries concerning citations and publications related to ChatGPT in higher education, while also shedding light on emerging thematic and geographic clusters within research on ChatGPT's role and challenges in teaching and learning at higher education institutions. Forty-seven research papers from the Scopus database were shortlisted for bibliometric analysis. The findings indicate that the use of ChatGPT in higher education, particularly issues of academic integrity and research, has been studied extensively by scholars in the United States, who have produced the largest volume of publications, alongside the highest number of citations. This study uncovers four distinct thematic clusters (academic integrity, learning environment, student engagement, and scholarly research) and highlights the predominant areas of focus in research related to ChatGPT in higher education, including student examinations, academic integrity, student learning, and field-specific research, through a country-based bibliographic analysis. Plagiarism is a significant concern in the use of ChatGPT, which may reduce students' ability to produce imaginative, inventive, and original material. This study offers valuable insights into the current state of ChatGPT in higher education literature, providing essential guidance for scholars, researchers, and policymakers. C1 [Bhullar, Pritpal Singh] Maharaja Ranjit Singh Punjab Tech Univ, Univ Business Sch, Bathinda, Punjab, India. [Joshi, Mahesh] RMIT Univ, Sch Accounting Informat Syst & Supply Chain, Dept Financial Planning & Tax, Melbourne, Australia. [Chugh, Ritesh] Cent Queensland Univ, CML NET & CREATE Res Ctr, Sch Engn & Technol, Rockhampton, Qld, Australia. C3 Royal Melbourne Institute of Technology (RMIT); Central Queensland University RP Chugh, R (corresponding author), Cent Queensland Univ, CML NET & CREATE Res Ctr, Sch Engn & Technol, Rockhampton, Qld, Australia. EM mgtpritpal@mrsptu.ac.in; mahesh.joshi@rmit.edu.au; r.chugh@cqu.edu.au OI Chugh, Ritesh/0000-0003-0061-7206 FU Central Queensland University FX No Statement Available CR Adetayo A. J., 2023, Internet Reference Services Quarterly, V27, P131, DOI [https://doi.org/10.1080/10875301.2023.2203681, DOI 10.1080/10875301.2023.2203681] AlAfnan M. A., 2023, Journal of Artificial Intelligence and Technology, V3, P60, DOI [https://doi.org/10.37965/jait.2023.0184, DOI 10.37965/JAIT.2023.0184] Alnaqbi NM., 2023, International Journal of Neutrosophic Science, V20, P181, DOI [10.54216/IJNS.200414, DOI 10.54216/IJNS.200414] Archambault É, 2009, J AM SOC INF SCI TEC, V60, P1320, DOI 10.1002/asi.21062 Bajaj Y, 2021, J ADV MANAG RES, V18, P173, DOI 10.1108/JAMR-01-2020-0017 Bauer E, 2023, BRIT J EDUC TECHNOL, DOI 10.1111/bjet.13336 Boyack KW, 2010, J AM SOC INF SCI TEC, V61, P2389, DOI 10.1002/asi.21419 Cingillioglu I, 2023, INT J INF LEARN TECH, V40, P259, DOI 10.1108/IJILT-03-2023-0043 Clark TM, 2023, J CHEM EDUC, V100, P1905, DOI 10.1021/acs.jchemed.3c00027 Cotton DRE, 2024, INNOV EDUC TEACH INT, V61, P228, DOI 10.1080/14703297.2023.2190148 Crawford J, 2023, J UNIV TEACH LEARN P, V20, DOI 10.53761/1.20.3.02 Crompton H, 2023, INT J EDUC TECHNOL H, V20, DOI 10.1186/s41239-023-00392-8 da Silva JAT, 2023, PLANT CELL REP, V42, P1529, DOI 10.1007/s00299-023-03022-9 De Angelis L, 2023, FRONT PUBLIC HEALTH, V11, DOI 10.3389/fpubh.2023.1166120 Dehouche Nassim, 2021, Ethics in Science and Environmental Politics, V21, P17, DOI DOI 10.3354/ESEP00195 Dencik L, 2022, INTERNET POLICY REV, V11, DOI 10.14763/2022.1.1615 Donthu N, 2020, J BUS RES, V109, P1, DOI 10.1016/j.jbusres.2019.10.039 Emenike ME, 2023, J CHEM EDUC, V100, P1413, DOI 10.1021/acs.jchemed.3c00063 Eysenbach Gunther, 2023, JMIR Med Educ, V9, pe46885, DOI 10.2196/46885 Farrokhnia M, 2024, INNOV EDUC TEACH INT, V61, P460, DOI 10.1080/14703297.2023.2195846 Fergus S, 2023, J CHEM EDUC, V100, P1672, DOI 10.1021/acs.jchemed.3c00087 Firat M., 2023, OSF, DOI DOI 10.31219/OSF.IO/9GE8M Gardner DE, 2023, J CHEM EDUC, V100, P1705, DOI 10.1021/acs.jchemed.3c00011 Gilson Aidan, 2023, JMIR Med Educ, V9, pe45312, DOI 10.2196/45312 Gisev N, 2013, RES SOC ADMIN PHARM, V9, P330, DOI 10.1016/j.sapharm.2012.04.004 Gupta R, 2021, J BUS RES, V125, P74, DOI 10.1016/j.jbusres.2020.12.005 Ibrahim H, 2023, IEEE INTELL SYST, V38, P24, DOI 10.1109/MIS.2023.3255599 Iskender A, 2023, EUR J TOUR RES, V34, DOI 10.54055/ejtr.v34i.3169 Ivanov S, 2021, J TOUR FUTURES, V9, P214, DOI 10.1108/JTF-02-2023-0038 Jarneving B, 2007, J INFORMETR, V1, P287, DOI 10.1016/j.joi.2007.07.004 Jeon J, 2023, INTERACT LEARN ENVIR, DOI 10.1080/10494820.2023.2204343 Johinke R, 2023, J UNIV TEACH LEARN P, V20, DOI 10.53761/1.20.02.01 Karaali Gizem, 2023, NUMERACY, V16, DOI [10.5038/1936-4660.16.1.1438, DOI 10.5038/1936-4660.16.1.1438] Kasneci E, 2023, LEARN INDIVID DIFFER, V103, DOI 10.1016/j.lindif.2023.102274 Lawrie G, 2023, CHEM EDUC RES PRACT, V24, P392, DOI 10.1039/d3rp90003g Lee H, 2024, ANAT SCI EDUC, V17, P926, DOI 10.1002/ase.2270 Li Y., 2023, Computers and Education: Artificial Intelligence, V4, DOI DOI 10.1016/J.CAEAI.2023.100140 Liberati A, 2009, BMJ-BRIT MED J, V339, DOI [10.1016/j.ijsu.2010.02.007, 10.1136/bmj.b2700, 10.1136/bmj.b2535, 10.1186/2046-4053-4-1, 10.1371/journal.pmed.1000097, 10.1136/bmj.i4086, 10.1016/j.ijsu.2010.07.299] Liebrenz M, 2023, LANCET DIGIT HEALTH, V5, pE105, DOI 10.1016/S2589-7500(23)00019-5 Lim WM, 2023, INT J MANAG EDUC-OXF, V21, DOI 10.1016/j.ijme.2023.100790 Lin CC, 2023, SUSTAINABILITY-BASEL, V15, DOI 10.3390/su15054012 Memarian B., 2023, Computers in Human Behavior: Artificial Humans, V100022, P1 Mishra D, 2017, SUSTAIN PROD CONSUMP, V10, P85, DOI 10.1016/j.spc.2017.01.003 Nautiyal R, 2023, ANN TOURISM RES, V99, DOI 10.1016/j.annals.2023.103544 Neumann M, 2023, 2023 IEEE/ACM 5TH INTERNATIONAL WORKSHOP ON SOFTWARE ENGINEERING EDUCATION FOR THE NEXT GENERATION, SEENG, P29, DOI 10.1109/SEENG59157.2023.00010 Page MJ, 2021, BMJ-BRIT MED J, V372, DOI [10.1136/bmj.n71, 10.1016/j.ijsu.2021.105906, 10.1136/bmj.n160] Palomo J, 2017, SCIENTOMETRICS, V113, P123, DOI 10.1007/s11192-017-2484-x Patrício LD, 2021, J ADV MANAG RES, V18, P1, DOI 10.1108/JAMR-04-2020-0051 Paul J, 2021, INT J CONSUM STUD, DOI 10.1111/ijcs.12695 Pechenkina K., 2023, Higher education for good: Teaching and learning futures Perkins M, 2023, J UNIV TEACH LEARN P, V20, DOI 10.53761/1.20.02.07 Rahman MM, 2023, APPL SCI-BASEL, V13, DOI 10.3390/app13095783 Rana S, 2023, FIIB BUS REV, V12, P7, DOI 10.1177/23197145231161408 Seetharaman R, 2023, J MED SYST, V47, DOI 10.1007/s10916-023-01957-w Seth I, 2023, ANN SURG ONCOL, DOI 10.1245/s10434-023-13642-w Shoufan A, 2023, IEEE ACCESS, V11, P38805, DOI 10.1109/ACCESS.2023.3268224 Singh VK, 2021, SCIENTOMETRICS, V126, P5113, DOI 10.1007/s11192-021-03948-5 Skavronskaya L, 2023, J TEACH TRAVEL TOUR, V23, P253, DOI 10.1080/15313220.2023.2196658 Strzelecki A, 2023, INTERACT LEARN ENVIR, DOI 10.1080/10494820.2023.2209881 Su JH, 2023, ECNU REV EDUC, V6, P355, DOI 10.1177/20965311231168423 Subramani M, 2023, ADV PHYSIOL EDUC, V47, P270, DOI 10.1152/advan.00036.2023 Sun GH, 2023, NURS EDUC, V48, P119, DOI 10.1097/NNE.0000000000001390 Tang GY, 2023, IRISH J MED SCI, V192, P3195, DOI 10.1007/s11845-023-03374-x Tang GY, 2023, ACCOUNT RES, DOI 10.1080/08989621.2023.2180359 Thorp HH, 2023, SCIENCE, V379, P313, DOI 10.1126/science.adg7879 Tlili A, 2023, SMART LEARN ENVIRON, V10, DOI 10.1186/s40561-023-00237-x van Eck NJ, 2010, SCIENTOMETRICS, V84, P523, DOI 10.1007/s11192-009-0146-3 Vijaya V., 2023, Purushartha, V15, P32 Vogels E., 2023, A majority of Americans have heard of ChatGPT, but few have tried it themselves Wooten J., 2023, AM ECON, p056943452311696 Wu R, 2024, BRIT J EDUC TECHNOL, V55, DOI 10.1111/bjet.13334 Wu TY, 2023, IEEE-CAA J AUTOMATIC, V10, P1122, DOI 10.1109/JAS.2023.123618 Yan D, 2023, EDUC INF TECHNOL, V28, P13943, DOI 10.1007/s10639-023-11742-4 Yeadon W., 2023, Physics Education, V58, P1 Zhai X., 2022, CHATGPT USER EXPERIE, DOI DOI 10.2139/SSRN.4312418 NR 75 TC 2 Z9 2 U1 81 U2 81 PU SPRINGER PI NEW YORK PA ONE NEW YORK PLAZA, SUITE 4600, NEW YORK, NY, UNITED STATES SN 1360-2357 EI 1573-7608 J9 EDUC INF TECHNOL JI Educ. Inf. Technol. PD 2024 MAY 2 PY 2024 DI 10.1007/s10639-024-12723-x EA MAY 2024 PG 22 WC Education & Educational Research WE Social Science Citation Index (SSCI) SC Education & Educational Research GA PV9O8 UT WOS:001216978200002 OA hybrid DA 2024-09-05 ER PT J AU Hoekstra, RC van Arkel, H Leurs, B AF Hoekstra, Rinke C. van Arkel, Henk Leurs, Bas TI MODELING LOCAL MONETARY FLOWS IN POOR REGIONS: A RESEARCH SETUP TO SIMULATE THE MULTIPLIER EFFECT IN LOCAL ECONOMIES SO INTERDISCIPLINARY DESCRIPTION OF COMPLEX SYSTEMS LA English DT Article DE multiplier effect; simulation; multi-agent based simulation; social accounting matrix; artificial intelligence techniques AB In poor regions, lack of local monetary circulation is one of the key elements causing underdevelopment. The more incoming money is passed from hand to hand, the more the local economy will be stimulated. However, in most poor areas money is spent outside the community before circulating locally, reducing the effectiveness of money inflow dramatically. Development programs would increase their effectiveness if knowledge was available on how spending money could lead to optimized and prolonged local circulation. To gain this knowledge a simulation tool will be created, which is able to analyze financial flows, to evaluate the potency of specific actions aimed on local development, and to monitor a development scheme during the execution phase. The basic model will be developed through a multi-agent approach, where each agent represents one (or more) family/households belonging to one of several socio-economic groups. A Social Accounting Matrix (SAM) of the local economy will be used as a basis to set up a spendings matrix for each agent, defining its spending priorities. Artificial Intelligence techniques will be used to give the agent the possibility to make decisions on how to satisfy these spending priorities. Also, social dynamics, the simulation of strategic planning behavior, learning, and exchange in limited networks will be addressed. The simulation application will consist of a common user interface allowing the user to "play" the simulation. This user interface layer will be "pluggable" with the underlying programming layer responsible for the calculations on the simulation, so that different plug-ins may be used for different simulation techniques. C1 [Hoekstra, Rinke C.; van Arkel, Henk; Leurs, Bas] STRO Fdn, Utrecht, Netherlands. RP Hoekstra, RC (corresponding author), Stichting STROhalm, Oude Gracht 42, NL-3511 AR Utrecht, Netherlands. EM rinke@strohalm.nl CR ADELMAN I, 1988, J DEV STUD, V25, P5, DOI 10.1080/00220388808422092 [Anonymous], 1986, AGR HOUSEHOLD MODELS [Anonymous], JAPANESE J MANAGEMEN Cogneau D., 2000, GROWTH DISTRIBUTION Davies JamesB., 2004, MICROSIMULATION CGE Fisher I., 2006, The purchasing power of money: its' determination and relation to credit interest and crises Fisher I., 2003, PROJ FOM FORT FIN RE Lattarulo P., 2003, 212003 IRPET Robilliard A., 2001, Crisis and income distribution: A micromacro model for Indonesia Schreinemachers P., 2005, IRRELEVANCE CROP YIE Taylor J.E., 1996, VILLAGE EC DESIGN ES Wilhite A, 2006, HANDB ECON, V13, P1013 NR 12 TC 1 Z9 1 U1 0 U2 0 PU CROATIAN INTERDISCIPLINARY SOC PI SESVETE PA SIMUNCEVECKA 38B, SESVETE, HR-10360, CROATIA SN 1334-4684 EI 1334-4676 J9 INTERDISCIP DESCR CO JI Interdiscip. Descr. Complex Syst. PD OCT PY 2007 VL 5 IS 2 BP 138 EP 150 PG 13 WC Social Sciences, Interdisciplinary WE Emerging Sources Citation Index (ESCI) SC Social Sciences - Other Topics GA VA6YI UT WOS:000410261300005 DA 2024-09-05 ER PT C AU Mojzes, M Kukal, J AF Mojzes, Matej Kukal, Jaromir BE Prazak, P TI Bayesian Study on When to Restart Heuristic Search SO MATHEMATICAL METHODS IN ECONOMICS (MME 2017) LA English DT Proceedings Paper CT 35th International Conference Mathematical Methods in Economics (MME) CY SEP 13-15, 2017 CL Hradec Kralove, CZECH REPUBLIC DE Heuristics; search process; performance measure; restart strategy; Bayesian analysis; operational research ID ALGORITHMS AB Heuristic algorithm performance measures assess the quality of a search process by statistically analyzing its performance data, typically the number of objective function evaluations before optimal or acceptable solution is found. Such criteria are not only intended to provide the verdict on which algorithm is better for what task, but also to help make the best possible use of a given algorithm on a given task. This target may be achieved by an appropriate restart strategy of the search process. In our paper we formulate axiomatic approach which also describes existing performance measures. Novelty of this paper consist in performance measure analysis via Marko-ian chain calculation and its direct Bayesian estimation based on Monte Carlo simulations. Practical results are demonstrated on combinatorial optimization problems and are applicable e.g. to NP-hard problems from the field of operational research. C1 [Mojzes, Matej; Kukal, Jaromir] FNSPE CTU, Dept Software Engn, Trojanova 13, Prague, Czech Republic. C3 Czech Technical University Prague RP Mojzes, M (corresponding author), FNSPE CTU, Dept Software Engn, Trojanova 13, Prague, Czech Republic. EM mojzemat@fjfi.cvut.cz; jaromir.kukal@fjfi.cvut.cz FU Czech Technical University in Prague [SGS17/196/OHK4/3T/14] FX This paper was created under the support of grant SGS17/196/OHK4/3T/14 Czech Technical University in Prague. CR [Anonymous], 2005, PRACTICAL MATH OPTIM [Anonymous], 2010, HDB METAHEURISTICS [Anonymous], 2009, MARKOV CHAINS STOCHA Auger A, 2005, IEEE C EVOL COMPUTAT, P1777 Babai L., 1979, UNIVERSIT TDE MONTR, P79 Balakrish V. B., 2005, PRIMER STAT DISTRIBU, P274 BATTITI R, 1992, MICROPROCESS MICROSY, V16, P351, DOI 10.1016/0141-9331(92)90003-C BENJAMINI Y, 1995, J R STAT SOC B, V57, P289, DOI 10.1111/j.2517-6161.1995.tb02031.x CERNY V, 1985, J OPTIMIZ THEORY APP, V45, P41, DOI 10.1007/BF00940812 Feoktistov V, 2006, SPRINGER SER OPTIM A, V5, pXI Guo Y, 2012, INT SYM COMPUT INTEL, P423, DOI 10.1109/ISCID.2012.254 Hanning C., 2010, DISCRETE DYNAMICS NA, V2010 Hansen N, 2010, Real-parameter black-box optimization benchmarking 2010: Experimental setup HILbERT D., 1894, Acta Math., V18, P155, DOI [DOI 10.1007/BF02418278, 10.1007/BF02418278] Hoos H. H., 1998, Uncertainty in Artificial Intelligence. Proceedings of the Fourteenth Conference (1998), P238 Hoos H. H, 2005, Stochastic Local Search. Foundations and Applications Howson Colin., 2005, SCI REASONING BAYESI, V3rd LUBY M, 1993, INFORM PROCESS LETT, V47, P173, DOI 10.1016/0020-0190(93)90029-9 Mojzes M, 2011, MENDEL, P244 Schrijver A., 1997, Combinatorial Optimization TAILLARD E, 1991, PARALLEL COMPUT, V17, P443, DOI 10.1016/S0167-8191(05)80147-4 Taillard E. D., 1994, ORSA Journal on Computing, V6, P108, DOI 10.1287/ijoc.6.2.108 TENEIKELDER HMM, 1996, METAHEURISTICS THEOR, P605 Tvrdik J., 2012, 18 INT C SOFT COMP M, P132 Wolpert D. H., 1997, IEEE Transactions on Evolutionary Computation, V1, P67, DOI 10.1109/4235.585893 Yang XS, 2009, WOR CONG NAT BIOL, P210, DOI 10.1109/nabic.2009.5393690 NR 26 TC 0 Z9 0 U1 1 U2 3 PU UNIV HRADEC KRALOVE PI HRADEC KRALOVE 3 PA ROKITANSKEHO 62, HRADEC KRALOVE 3, 500 03, CZECH REPUBLIC BN 978-80-7435-678-0 PY 2017 BP 480 EP 485 PG 6 WC Economics; Operations Research & Management Science; Mathematics, Interdisciplinary Applications; Social Sciences, Mathematical Methods WE Conference Proceedings Citation Index - Science (CPCI-S); Conference Proceedings Citation Index - Social Science & Humanities (CPCI-SSH) SC Business & Economics; Operations Research & Management Science; Mathematics; Mathematical Methods In Social Sciences GA BJ7ED UT WOS:000427151400082 DA 2024-09-05 ER PT J AU Gou, W Ren, ZT Chen, HX Xing, L Zhou, ZX Xia, XX Shi, JF AF Gou, Wei Ren, Zhaoting Chen, Huanxin Xing, Lu Zhou, Zhenxin Xia, Xingxiang Shi, Jingfeng TI Experimental research on the performance and parameters sensitivity analysis of variable refrigerant flow system with common faults imposed in heating mode SO ENERGY AND BUILDINGS LA English DT Article DE Variable refrigerant flow systems; Fault impacts; Sensitivity analysis; Feature selection; Fault decoupling variables ID AIR-CONDITIONER; PUMP; CHARGE; IMPACT; CONDENSER AB Due to improper installation, operation, and maintenance, many common faults inevitably occur in the air conditioning systems. However, the same fault could demonstrate different characteristics under dif-ferent load rates and fault levels; different faults may present similar fault phenomena. This paper reveals the quantitative impact of faults on system performance of VRF system with common faults imposed in heating mode through fault experiments. The system parameters sensitivity study has been carried out to understand the internal impact mechanism related to system parameters. This provides a reference for selecting characteristic parameters and fault decoupling variables and developing interpretable, profes-sional, and reliable fault detection and diagnosis models. The results show that the outdoor unit fouling fault can cause the heating capacity to drop by 73.2%, and the indoor unit fouling can cause the system power to drop by 65.5%. The coefficient of performance drop is as high as 48.6%. The sensitivity study result shows that the system load rate is an influential parameter; it needs to be considered when char-acteristic parameters and fault decoupling variables are selected.(c) 2022 Elsevier B.V. All rights reserved. C1 [Gou, Wei; Chen, Huanxin; Zhou, Zhenxin] Huazhong Univ Sci & Technol, Sch Energy & Power Engn, Dept Refrigerant & Cryogen Engn, Wuhan 430074, Peoples R China. [Ren, Zhaoting; Xia, Xingxiang; Shi, Jingfeng] Qingdao Hisense Hitachi Air Conditioning Syst Co L, Qingdao 266510, Peoples R China. [Xing, Lu] Northumbria Univ, Mech & Construct Engn, Newcastle Upon Tyne NE1 8ST, England. C3 Huazhong University of Science & Technology; Northumbria University RP Chen, HX (corresponding author), Huazhong Univ Sci & Technol, Sch Energy & Power Engn, Dept Refrigerant & Cryogen Engn, Wuhan 430074, Peoples R China. EM chenhuanxin@tsinghua.org.cn RI Xing, Lu/ABH-4014-2022 OI Xing, Lu/0000-0002-5561-7417 FU National Natural Science Foundation of China; [51876070] FX Acknowledgments The authors gratefully acknowledge the support of the National Natural Science Foundation of China (Grant number 51876070) . CR Ali AHH, 2008, HVAC&R RES, V14, P209, DOI 10.1080/10789669.2008.10391004 [Anonymous], 2012, 2011 BUILD EN DAT BO Bellanco I, 2021, J BUILD ENG, V39, DOI 10.1016/j.jobe.2021.102254 Breuker MS, 1998, HVAC&R RES, V4, P303, DOI 10.1080/10789669.1998.10391406 Bultman DH, 1995, J ENERG RESOUR-ASME, V117, P349, DOI 10.1115/1.2835434 Cho JM, 2014, APPL THERM ENG, V67, P1, DOI 10.1016/j.applthermaleng.2014.03.010 Choi JM, 2002, ENERGY, V27, P391, DOI 10.1016/S0360-5442(01)00093-7 Dooley J.B, 2005, EFFECTS SYSTEM CYCLI Du ZM, 2016, APPL THERM ENG, V98, P61, DOI 10.1016/j.applthermaleng.2015.11.108 F.M, 1990, MODELING EFFECTS REF FARZAD M, 1991, INT J REFRIG, V14, P321, DOI 10.1016/0140-7007(91)90027-E Gao Y, 2021, ENERG BUILDINGS, V251, DOI 10.1016/j.enbuild.2021.111318 Hu Y, 2022, APPL THERM ENG, V215 Hu YF, 2022, ENERG BUILDINGS, V254, DOI 10.1016/j.enbuild.2021.111630 Hu YF, 2021, ENERG BUILDINGS, V242, DOI 10.1016/j.enbuild.2021.110975 Hu YF, 2021, APPL THERM ENG, V184, DOI 10.1016/j.applthermaleng.2020.116116 Jon W., 2020, APPL ENERG, V278 Katipamula Srinivas, 2005, METHODS FAULT DETE 1 Kim M, 2009, APPL THERM ENG, V29, P770, DOI 10.1016/j.applthermaleng.2008.04.009 Kim W, 2012, INT J REFRIG, V35, P1805, DOI 10.1016/j.ijrefrig.2012.06.007 Koebrich Samuel., 2017, Renewable Energy Data Book: Including Data and Trends for Energy Storage and Electric Vehicles Li JB, 2020, INT J REFRIG, V112, P14, DOI 10.1016/j.ijrefrig.2019.12.020 Mehrabi M, 2017, INT J REFRIG, V76, P367, DOI 10.1016/j.ijrefrig.2017.02.014 Pak BC, 2005, ASHRAE TRAN, V111, P496 Palmiter L, 2011, ENERG BUILDINGS, V43, P1802, DOI 10.1016/j.enbuild.2011.03.026 Qureshi BA, 2014, INT J REFRIG, V38, P260, DOI 10.1016/j.ijrefrig.2013.08.012 Schein J, 2006, ENERG BUILDINGS, V38, P1485, DOI 10.1016/j.enbuild.2006.04.014 Wu JH, 2019, ENERG POLICY, V125, P368, DOI 10.1016/j.enpol.2018.10.038 Xu YZ, 2020, SUSTAIN CITIES SOC, V62, DOI 10.1016/j.scs.2020.102369 Yan K, 2018, INT J REFRIG, V86, P401, DOI 10.1016/j.ijrefrig.2017.11.003 Zhang P, 2019, APPL SOFT COMPUT, V85, DOI 10.1016/j.asoc.2019.105859 Zhao Y, 2019, RENEW SUST ENERG REV, V109, P85, DOI 10.1016/j.rser.2019.04.021 Zhenxin Z, 2022, APPL THERM ENG, V202 Zhong FL, 2022, ENERGY, V258, DOI 10.1016/j.energy.2022.124762 NR 34 TC 4 Z9 4 U1 3 U2 6 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0378-7788 EI 1872-6178 J9 ENERG BUILDINGS JI Energy Build. PD JAN 1 PY 2023 VL 278 AR 112624 DI 10.1016/j.enbuild.2022.112624 EA NOV 2022 PG 14 WC Construction & Building Technology; Energy & Fuels; Engineering, Civil WE Science Citation Index Expanded (SCI-EXPANDED) SC Construction & Building Technology; Energy & Fuels; Engineering GA 6V3QN UT WOS:000894967000002 DA 2024-09-05 ER PT J AU Casey, M Raynor, M Jacob, C Sharp, S McFarlane, E AF Casey, Monica Raynor, Michael Jacob, Catherine Sharp, Stephen McFarlane, Emma TI Improving the precision of search strategies for guideline surveillance SO RESEARCH SYNTHESIS METHODS LA English DT Article DE databases; bibliographic; information storage and retrieval; search precision; search recall; search strategy ID HEALTH AB Introduction and aim NICE guideline surveillance determines whether previously published guidelines need updating. The surveillance process must balance time constraints with methodological rigor. It includes a rapid review to identify new evidence to contradict, reinforce or clarify guideline recommendations. Despite this approach, the screening burden can still be high. Applying additional search techniques may increase the precision of the database searches. Methods A retrospective analysis was conducted on five surveillance reviews with less than 2% of the studies included after screening. Modified searches were run in MEDLINE, Embase and PsycINFO (where appropriate) to test the impact of additional search techniques: focused subject headings, subheadings, frequency operators and title only searches. Modified searches were compared to original search results to determine: the retrieval of included studies, the precision of the search and the number needed to read. Studies not retrieved by the modified search were checked to determine if the surveillance decision would have been affected. Results The additional search techniques tested indicated that a combination of focused subject headings and frequency operators could improve the precision of surveillance searches. The modified search retrieved all the original studies included in the surveillance review for three of the reviews tested. Some of the original included studies were not retrieved for two reviews but the missing studies would not have affected the surveillance decision. Conclusions Combining focused subject headings and frequency operators is a viable option for improving the precision of surveillance searches without compromising recall and without impacting the surveillance decision. C1 [Casey, Monica; Jacob, Catherine] Natl Inst Hlth & Care Excellence, Informat Serv, London, England. [Raynor, Michael; Sharp, Stephen; McFarlane, Emma] Natl Inst Hlth & Care Excellence, Ctr Guidelines, London, England. C3 National Institute for Health & Care Excellence; National Institute for Health & Care Excellence RP Casey, M (corresponding author), Natl Inst Hlth & Care Excellence, Informat Serv, London, England. EM monica.casey@nice.org.uk RI Jacob, Catherine/IXD-2619-2023 OI Casey, Monica/0000-0002-9483-9012 CR Abou-Setta AM, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0165903 Alderson LJH, 2014, J CLIN EPIDEMIOL, V67, P52, DOI 10.1016/j.jclinepi.2013.07.012 [Anonymous], 2015, PRUN EMTR DOES FOC E [Anonymous], 2012, Autism spectrum disorder in adults: diagnosis and management (CG142) [Anonymous], 2012, NEON INF EARL ONS AN Bramer WM, 2018, SYST REV-LONDON, V7, DOI 10.1186/s13643-018-0864-9 Haby MM, 2016, HEALTH RES POLICY SY, V14, DOI 10.1186/s12961-016-0155-7 Harker J, 2012, INT J EVID-BASED HEA, V10, P397, DOI 10.1111/j.1744-1609.2012.00290.x Levay P, 2016, RES SYNTH METHODS, V7, P34, DOI 10.1002/jrsm.1158 Moore G, 2018, HEALTH RES POLICY SY, V16, DOI 10.1186/s12961-018-0293-1 NICE, 2012, PSYCH SCHIZ CHILDR Y NICE, 2012, AC UPP GASTR BLEED O NICE, 2018, DEV NICE GUID MAN (NICE) NIoHaCE, 2013, FEV 5S ASS IN MAN CL Nussbaumer-Streit B, 2016, SYST REV, V5, DOI 10.1186/s13643-016-0380-8 Sharp S, 2018, GUID INT NETW GIN C Tricco AC, 2015, BMC MED, V13, DOI 10.1186/s12916-015-0465-6 NR 17 TC 6 Z9 6 U1 0 U2 1 PU WILEY PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1759-2879 EI 1759-2887 J9 RES SYNTH METHODS JI Res. Synth. Methods PD NOV PY 2020 VL 11 IS 6 BP 903 EP 912 DI 10.1002/jrsm.1461 PG 10 WC Mathematical & Computational Biology; Multidisciplinary Sciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Mathematical & Computational Biology; Science & Technology - Other Topics GA OR4HP UT WOS:000589433800014 PM 32985071 DA 2024-09-05 ER PT C AU Schilling, K AF Schilling, Katherine BE Beldhuis, H TI The Efficacy of eLearning for Information-Retrieval Skills in Medical Education SO PROCEEDINGS OF THE 11TH EUROPEAN CONFERENCE ON E-LEARNING LA English DT Proceedings Paper CT 11th European Conference on E-Learning (ECEL) CY OCT 26-27, 2012 CL Univ Groningen, Groningen, NETHERLANDS HO Univ Groningen DE online learning; distance education; literature searching; bibliographic retrieval; information-retrieval skills; evidence-based practice ID FACE-TO-FACE; STUDENTS; LITERACY; MEDLINE; ONLINE; CURRICULUM; OUTCOMES; SEEKING AB A randomised, blinded study addressed the extent to which the training method used to deliver information literacy skills instruction impacted on students' information-retrieval skills and other variables. First-year medical students at a major U. S. university (N = 128) were randomly assigned to a control or intervention group for information-retrieval skills training on searching the MEDLINE database for the best evidence on common patient problems. The control group (n = 63) participated in traditional, instructor-led information and MEDLINE searching skills training, and the intervention group (n = 65) participated in the same instruction via a web-based tutorial. Data was gathered from multiple sources including a) pre- and post-training surveys, skills self-assessments, and written skills tests; b) the evaluation of students' MEDLINE literature searches; and c) follow-up surveys administered at the end of the semester measuring students' use of information resources for evidence-based practice. Students' MEDLINE literature searches were evaluated by expert searchers, allowing for a comprehensive analysis of students' literature searching skills for identifying the best evidence in the biomedical journals. Intervention group (e-learning) students earned slightly higher MEDLINE searching scores. Data analysis showed no statistically significant differences (P = 0.065) between the training groups, however, illustrating that e-learning methods and face-to-face training were equally effective. Study results provide a picture of students' MEDLINE searching skills, information usage patterns and behaviours, and attitudes regarding library and information services and resources. Research findings are important for assessing the viability of self-paced, online tutorials for teaching and promoting effective information skills, particularly in evidence-based practice environments in which literature searching is routinely required. C1 [Schilling, Katherine] Indiana Univ, Sch Lib Informat Sci, Indianapolis, IN 46204 USA. C3 Indiana University System; Indiana University Indianapolis EM katschil@iupui.edu CR Abdous M, 2010, INTERNET HIGH EDUC, V13, P248, DOI 10.1016/j.iheduc.2010.04.005 Anderson K, 2010, J ACAD LIBR, V36, P495, DOI 10.1016/j.acalib.2010.08.005 [Anonymous], 1992, QUALITATIVE RES INFO [Anonymous], 1974, STAT MED Anwar MA, 2012, J LIBR INF SCI, V44, P36, DOI 10.1177/0961000611425568 Artino AR, 2012, INTERNET HIGH EDUC, V15, P170, DOI 10.1016/j.iheduc.2012.01.006 Artino AR, 2010, INTERNET HIGH EDUC, V13, P272, DOI 10.1016/j.iheduc.2010.07.005 Association of College and Research Libraries, 2000, INF LIT COMP STAND H Association of College and Research Libraries, 1998, ACRL GUID DIST LEARN Bloom Benjamin S, 1956, HDB 1 COGNITIVE DOMA, V1, P20 Brettle A, 2007, HEALTH INFO LIBR J, V24, P18, DOI 10.1111/j.1471-1842.2007.00740.x Bruce C, 2011, AUST LIBR J, V60, P334, DOI 10.1080/00049670.2011.10722653 BURROWS S, 1989, B MED LIBR ASSOC, V77, P245 Burrows SC, 1999, B MED LIBR ASSOC, V87, P471 Figa Elizabeth, 2009, Journal of Library & Information Services in Distance Learning, V3, P67, DOI 10.1080/15332900902979119 Garg Anupama, 2003, Health Info Libr J, V20, P33, DOI 10.1046/j.1471-1842.2003.00416.x Gilstrap DL, 2008, COLL RES LIBR, V69, P407, DOI 10.5860/0690407 HAYNES RB, 1990, ANN INTERN MED, V112, P78, DOI 10.7326/0003-4819-112-1-78 HAYNES RB, 1993, ONLINE J CURREN 0511 Kuhlthau C.C., 1993, Seeking meaning: A process approach to library and information services KUHLTHAU CC, 1990, LIBR INFORM SCI RES, V12, P5 Kwon N, 2008, COLL RES LIBR, V69, P117, DOI 10.5860/crl.69.2.117 Lai NM, 2010, EDUC HEALTH, V23, P151 Lindsay EB, 2004, J ACAD LIBR, V30, P482, DOI 10.1016/j.acalib.2004.07.007 Marcinek M., 2011, IATUL ANN C P, V21, P1 MARSHALL JG, 1993, B MED LIBR ASSOC, V81, P299 Nesbitt K.W., 2001, ANN M MED LIB ASS OR Niedbala MA, 2010, J LIBR ADM, V50, P867, DOI 10.1080/01930826.2010.488986 PAO ML, 1993, COMPUT BIOMED RES, V26, P541, DOI 10.1006/cbmr.1993.1038 PAO ML, 1994, ACAD MED, V69, P914, DOI 10.1097/00001888-199411000-00014 Plutchak T.S., 1989, MED REF SER QUART, V8, P45 RANKIN JA, 1992, B MED LIBR ASSOC, V80, P36 Rosenberg WMC, 1998, J ROY COLL PHYS LOND, V32, P557 Russell T.L., 1999, NO SIGNIFICANT DIFFE Scaramozzino JM, 2010, J LIBR ADM, V50, P315, DOI 10.1080/01930821003666981 Schilling K, 2006, FAM MED, V38, P126 Straus SE., 2005, Evidence-Based Medicine: How to Practice and Teach EBM, V3rd TAYLOR RS, 1968, COLL RES LIBR, V29, P178, DOI 10.5860/crl_29_03_178 Thornes S.S., 2012, Journal of Information Literacy, V6, P81 Usova T., 2011, The Canadian Journal Of Library Information Practice Research, V6, P1 WILDEMUTH BM, 1995, B MED LIBR ASSOC, V83, P294 Wildemuth BM, 1993, END USER SEARCHING M Yukawa J., 2010, Journal of Education for Library and Information Science, V51, P54 Zoellner K, 2008, COLL RES LIBR, V69, P370, DOI 10.5860/crl.69.4.370 NR 44 TC 6 Z9 6 U1 0 U2 38 PU ACAD CONFERENCES LTD PI NR READING PA CURTIS FARM, KIDMORE END, NR READING, RG4 9AY, ENGLAND BN 978-1-908272-74-4 PY 2012 BP 515 EP 522 PG 8 WC Education & Educational Research WE Conference Proceedings Citation Index - Social Science & Humanities (CPCI-SSH) SC Education & Educational Research GA BFW04 UT WOS:000321613000062 DA 2024-09-05 ER PT J AU Leiva, R Kimber, D AF Leiva, Ricardo Kimber, David TI A Persistent Gender Bias in Chilean Press: The Influence of Journalist's Gender and Editor's Gender SO JOURNALISM & MASS COMMUNICATION QUARTERLY LA English DT Article DE gatekeeping; newspaper and online news; newspaper; Chile; logistic regression; content analysis; gender ID INFORMATION-SOURCES; SOURCE SELECTION; NEWS COVERAGE; WOMEN; NEWSPAPER; MEDIA; US; AMERICAN; MODEL AB There is a lot of evidence about gender bias in the media, but not clear evidence about its causes. In this article, we study the influence of journalist's gender and editor's gender on gender bias in Chilean press through time. Based on content analysis of 2,645 news articles from Chilean leading newspapers and logistics regression, results confirm the relevance of the gender of both, journalists and editors, on the presence of gender bias in Chilean press, being a permanent behavior through time. Our research supports that the more women in the newsrooms, the greater women's representation by the news media. C1 [Leiva, Ricardo] Univ Los Andes, Sch Commun, Monsenor Alvaro del Portillo 12455, Santiago 7550000, Chile. [Kimber, David] Univ Los Andes, Sch Business & Econ, Santiago, Chile. C3 Universidad de los Andes - Chile; Universidad de los Andes - Chile RP Leiva, R (corresponding author), Univ Los Andes, Sch Commun, Monsenor Alvaro del Portillo 12455, Santiago 7550000, Chile. EM rleiva@uandes.cl RI Kimber, David/G-2864-2015 OI Kimber, David/0000-0002-3006-9231 CR Aaker D., 2012, Marketing Research, V11th [Anonymous], 2005, WOM TAK CAR MEN TAK [Anonymous], 2015, WHO MAKES NEWS GLOBA [Anonymous], 2005, Who makes the news? Global Media Monitoring Project 2005 [Anonymous], 2005, Analyzing media messages: Using quantitative content analysis in research [Anonymous], 2012, CLOS GEND GAP ACT NO [Anonymous], 2010, STAT NEWS MED [Anonymous], 2014, STAT WOM US MED 2014 Armstrong CL, 2005, J MASS COMMUN Q, V82, P820, DOI 10.1177/107769900508200405 Armstrong CL, 2004, JOURNALISM MASS COMM, V81, P139, DOI 10.1177/107769900408100110 Balch O., 2009, GUARDIAN Banerjee M, 1999, CAN J STAT, V27, P3, DOI 10.2307/3315487 Beam RA, 2010, J MASS COMMUN Q, V87, P393, DOI 10.1177/107769901008700211 Buckley HL, 2014, NEW ZEAL J ECOL, V38, P335 Byerly C., 2018, GLOBAL REPORT STATUS Cadem, 2018, CHIL QUE VIEN Camara de Diputados de Chile, 2020, GAL HIST CAM DIP 201 Campbell X. M., 2014, THESIS Candidaturas Chile, 2017, INF COMP C NAC 2018 Cattell RB, 1943, PSYCHOL BULL, V40, P153, DOI 10.1037/h0059973 Collins RL, 2011, SEX ROLES, V64, P290, DOI 10.1007/s11199-010-9929-5 Craft S, 2004, JOURNALISM MASS COMM, V81, P124, DOI 10.1177/107769900408100109 Davis Aeron., 2000, JOURNALISM, V1, P282 DAVIS J, 1982, JOURNALISM QUART, V59, P456, DOI 10.1177/107769908205900316 Dides C, 2010, ESTUDIO COMPARATIVO Dow Jones & Co, 2010, WALL STREET J MEDIA Dow Jones & Co, 2010, WALL STREET J DIGITA Egon Zehnder, 2016, E ZEHND LAT AM BOARD Elmore C., 2007, Women Language, V30, P18 Everbach T, 2006, J MASS COMMUN Q, V83, P477, DOI 10.1177/107769900608300301 Fort L., 2007, Chile-reconciling the gender paradox Freedman E., 2005, MASS COMMUNICATION S, V8, P257, DOI DOI 10.1207/S15327825MCS0803_5 Freedman E, 2007, J WOMEN POLIT POLICY, V29, P57, DOI 10.1300/J501v29n01_04 Rodríguez-Zoya LG, 2015, PALABRA CLAVE, V18, P905, DOI 10.5294/pacla.2015.18.3.12 Gallagher Margaret., 2010, Who makes the news? Global Media Monitoring Project 2010 Gambino L., 2019, Government shutdown: How bad is it and can it be resolved? Gans H. J., 2004, Deciding what's news: A study of CBS Evening News, NBC Nightly News. Newsweek GANS HJ, 1979, COLUMBIA JOURNAL REV, V17, P40 Gaonkar DP, 2002, PUBLIC CULTURE, V14, P1, DOI 10.1215/08992363-14-1-1 Gidengil E, 1999, HARV INT J PRESS-POL, V4, P48, DOI 10.1177/1081180X99004001005 Godoy-Pressland A, 2014, MEDIA CULT SOC, V36, P595, DOI 10.1177/0163443714532977 GoodyearGrant E, 2013, GENDERED NEWS: MEDIA COVERAGE AND ELECTORAL POLITICS IN CANADA, P1 Grandy K, 2014, J MASS COMMUN Q, V91, P578, DOI 10.1177/1077699014538832 Greenwald MarilynS., 1990, NEWSPAPER RES J, V11, P68 Greenwood J, 2016, AM ECON J-MACROECON, V8, P1, DOI 10.1257/mac.20130156 Harp D, 2014, J MASS COMMUN Q, V91, P289, DOI 10.1177/1077699014527457 Harris J., 2002, International Review for the Sociology of Sport, V37, P397, DOI 10.1177/1012690202037004024 Vu HT, 2018, J MASS COMMUN Q, V95, P565, DOI 10.1177/1077699017714224 Islam Roumeen., 2002, RIGHT TELL, P1 Jalalzai F, 2006, POLITICS POLICY, V34, P606, DOI 10.1111/j.1747-1346.2006.00030.x Kriefing L.A., 2002, Women in Management Review, V17, P104 Kristjanpoller WD, 2015, SEX ROLES, V72, P50, DOI 10.1007/s11199-014-0439-8 Lavery L, 2013, POLITICS POLICY, V41, P877, DOI 10.1111/polp.12051 Lavie A, 2003, EUR J COMMUN, V18, P5, DOI 10.1177/0267323103018001224 Layton Alexi., 2013, Lack of female sources in NY Times front-page stories highlights need for change Lazarsfeld P. F., 1974, IND CULTURAL SOC MAS, P231 Lewin K, 1947, HUM RELAT, V1, P143, DOI 10.1177/001872674700100201 Liebler CM, 1997, J BROADCAST ELECTRON, V41, P58 MCSHANE SL, 1995, JOURNALISM MASS COMM, V72, P190, DOI 10.1177/107769909507200116 Mellado C., 2012, The Global Journalist of the 21st century, P382 Mellado C, 2010, CUAD INFO-SANTIAGO, P45, DOI 10.7764/cdi.26.11 Metz I, 2009, ACAD MANAG LEARN EDU, V8, P540, DOI 10.5465/AMLE.2009.47785472 Mineduc, 2019, INF MATR 2019 ED SUP Mitsu D., 2013, STATUS WOMEN S MEDIA National Institute of Statistics [INE], 2016, ENC SUPL INGR I NACL National Institute of Statistics [INE], 2019, POBL ED TRAB SIT FUE Neuendorf KA, 2011, SEX ROLES, V64, P276, DOI 10.1007/s11199-010-9893-0 Neuendorf KA, 2010, SEX ROLES, V62, P747, DOI 10.1007/s11199-009-9644-2 Oggins J, 2014, SEX ROLES, V71, P182, DOI 10.1007/s11199-014-0382-8 Organisation for Economic Co-operation and Development, 2015, COUNTR STAT PROF CHI, DOI 10.1787/csp-chl-table-2015-2-en Organisation for Economic Co-operation and Development, 2016, BETT LIF IND 2015 Organisation for Economic Co-operation and Development, 2015, EC SURV CHIL 2015 Parsons W., 1989, POWER FINANCIAL PRES Peiser W, 2000, JOURNALISM MASS COMM, V77, P243, DOI 10.1177/107769900007700202 Matud MP, 2011, SEX ROLES, V64, P253, DOI 10.1007/s11199-010-9874-3 Programa de las Naciones Unidas para el desarrollo, 2017, DES OR CAMB DES BREC Reinardy S., 2012, NEWSPAPER RES J, V33, P54 Rodgers S, 2003, J COMMUN, V53, P658, DOI 10.1111/j.1460-2466.2003.tb02916.x Rodgers YanaVan Der Meulen., 2006, Visual Communication, P139 Rosas-Moreno TC, 2014, WOMEN IN POLITICS AND MEDIA: PERSPECTIVES FROM NATIONS IN TRANSITION, P131 Ross Karen., 2002, SEX MONEY FEMINISM P, P112, DOI DOI 10.5749/J.CTTTV3ZG.2 Sanchez-Aranda Jose J., 2003, MUJER PUBLICADA MUJE Schwartz J, 2011, SEX ROLES, V64, P265, DOI 10.1007/s11199-010-9825-z Senado de la Republica de Chile, 2016, LIST SEN Servel, 2018, PART MUJ POL SHELLEY M, 1984, J AM STAT ASSOC, V79, P240, DOI 10.2307/2288384 Shoemaker PJ, 2009, INT COMMUN ASSOC HAN, P73 Shoemaker PJ, 2001, JOURNALISM MASS COMM, V78, P233, DOI 10.1177/107769900107800202 Shoemaker PJ., 1996, Mediating the Message: Theories of Influences on Mass Media Content, V2nd SrebernyMohammadi A, 1996, PARLIAMENT AFF, V49, P103, DOI 10.1093/oxfordjournals.pa.a028661 SVS, 2015, REG DIR EJ ENT FISC Sylvie G, 2008, J MASS COMMUN Q, V85, P61, DOI 10.1177/107769900808500105 Tan G., 2018, BLOOMBERG NEWS Tokman A, 2011, Mujeres en puestos de responsabilidad empresarial informe de estudio TUCHMAN G, 1979, SIGNS, V4, P528, DOI 10.1086/493636 Tuchman Gaye., 1978, Hearth and Home: Images of Women in the Mass Media, P186 Usher N, 2018, INT J PRESS/POLIT, V23, P324, DOI 10.1177/1940161218781254 Valenzuela S., 2009, International Communication Gazette, V71, P203 Valida, 2014, IND CIRC LECT CHIL 2 Valida, 2016, IND CIRC LECT CHIL 2 Van Zoonen L., 1988, EUR J COMMUN, VI, P35, DOI DOI 10.1177/0267323188003001003 Vega M., 2014, EL MERCURIO, pC3 Weaver D.H., 1996, AM JOURNALIST 1990S White DM, 1950, JOURNALISM QUART, V27, P383, DOI 10.1177/107769905002700403 Wilson JB, 2014, J VEG SCI, V25, P4, DOI 10.1111/jvs.12136 World Bank, 2018, PIB US PREC ACT World Economic Forum, 2018, GLOB GEND GAP REP WO World Economic Forum, 2015, GLOB GEND GAP REP WO World Economic Forum, 2011, GLOB GEND GAP REP WO World Economic Forum, 2006, GLOB GEND GAP REP WO Zeldes GeriAlumit., 2005, MASS COMMUNICATION S, V8, P373, DOI [DOI 10.1207/S15327825MCS0804_5, 10.1207/s15327825mcs08045, DOI 10.1207/S15327825MCS08045] Zoch LM, 1998, JOURNALISM MASS COMM, V75, P762, DOI 10.1177/107769909807500410 NR 112 TC 9 Z9 9 U1 3 U2 23 PU SAGE PUBLICATIONS INC PI THOUSAND OAKS PA 2455 TELLER RD, THOUSAND OAKS, CA 91320 USA SN 1077-6990 EI 2161-430X J9 J MASS COMMUN Q JI Journal. Mass Commun. Q. PD MAR PY 2022 VL 99 IS 1 BP 156 EP 182 AR 1077699020958753 DI 10.1177/1077699020958753 EA SEP 2020 PG 27 WC Communication WE Social Science Citation Index (SSCI) SC Communication GA YX7ZR UT WOS:000572397500001 DA 2024-09-05 ER PT J AU Cooper, C Snowsill, T Worsley, C Prowse, A O'Mara-Eves, A Greenwood, H Boulton, E Strickson, A AF Cooper, Chris Snowsill, Tristan Worsley, Christine Prowse, Amanda O'Mara-Eves, Alison Greenwood, Helen Boulton, Emma Strickson, Amanda TI Handsearching had best recall but poor efficiency when exporting to a bibliographic tool: case study SO JOURNAL OF CLINICAL EPIDEMIOLOGY LA English DT Article ID RANDOMIZED CONTROLLED-TRIALS; SYSTEMATIC REVIEWS; PUBLIC-HEALTH; ABSTRACTS; SEARCHES; JOURNALS C1 [Cooper, Chris] UCL, Dept Clin Educ & Hlth Psychol, London WC1E 7HB, England. [Snowsill, Tristan] Univ Exeter, Med Sch, Hlth Econ Grp, Exeter, Devon, England. [Worsley, Christine; Prowse, Amanda; Boulton, Emma; Strickson, Amanda] Tolley Hlth Econ, Buxton, England. [O'Mara-Eves, Alison] UCL, EPPi Ctr, London, England. [Greenwood, Helen] Royal Coll Psychiatrists, London, England. C3 University of London; University College London; University of Exeter; University of London; University College London; UCL Institute of Education RP Cooper, C (corresponding author), UCL, 1-19 Torrington Pl, London WC1E 7HB, England. EM ucjucc4@ucl.ac.uk RI Cooper, Chris/C-9318-2012 OI Cooper, Chris/0000-0003-0864-5607; O'Mara-Eves, Alison/0000-0002-0359-6423 FU Takeda Pharmaceuticals, Cambridge MA, USA FX The systematic review related to this study was sponsored by Takeda Pharmaceuticals, Cambridge MA, USA. The case study presented here was undertaken without any specific sponsorship or funding. CR ADAMS CE, 1994, PSYCHOL MED, V24, P741, DOI 10.1017/S0033291700027896 Adams J, 2016, SYST REV-LONDON, V5, DOI 10.1186/s13643-016-0337-y [Anonymous], 2009, Systematic reviews: CRD's guidancefor undertaking reviews in health care [Anonymous], HLTH LIB REV Armstrong R, 2005, J PUBLIC HEALTH, V27, P388, DOI 10.1093/pubmed/fdi056 Bethel A, 2014, HEALTH INFO LIBR J, V31, P43, DOI 10.1111/hir.12054 Blümle A, 2008, DEUT MED WOCHENSCHR, V133, P230, DOI 10.1055/s-2008-1017501 Booth A, 2010, INT J TECHNOL ASSESS, V26, P431, DOI 10.1017/S0266462310000966 Collaboration for Environmental Evidence, 2013, GUID SYST REV EV SYS Cooper C, 2019, COMP 5 METHODS DOWNL Cooper C, 2018, BMC MED RES METHODOL, V18, DOI 10.1186/s12874-018-0545-3 Cooper C, 2018, RES SYNTH METHODS, V9, P361, DOI 10.1002/jrsm.1315 Cooper C, 2018, RES SYNTH METHODS, V9, P195, DOI 10.1002/jrsm.1286 Cooper C, 2018, J CLIN EPIDEMIOL, V99, P53, DOI 10.1016/j.jclinepi.2018.02.025 Cooper C, 2017, SYST REV-LONDON, V6, DOI 10.1186/s13643-017-0625-1 Croft A M, 1999, J R Army Med Corps, V145, P86 Dundar Y, 2006, HEALTH TECHNOL ASSES, V10, pIII Eden J, 2011, FINDING WHAT WORKS IN HEALTH CARE: STANDARDS FOR SYSTEMATIC REVIEWS, P1 Elsevier, 2019, EMBASE CONTENT Finelli C, 2018, BLOOD, V132, DOI 10.1182/blood-2018-99-117714 Finelli C, 2016, BLOOD, V128, DOI 10.1182/blood.V128.22.3169.3169 Garcia-Manero G, 2016, BLOOD C 58 ANN M AM, P128 Heale Roberta, 2018, Evid Based Nurs, V21, P7, DOI 10.1136/eb-2017-102845 Higgins JPT., 2016, Methodological Expectations of Cochrane Intervention Reviews (MECIR). Hirt J, 2019, GMS MED BIBLIOTHEK I, V19, p1e2 Hopewell S, 2002, STAT MED, V21, P1625, DOI 10.1002/sim.1191 Hopewell S, 2015, J CLIN EPIDEMIOL, V68, P1488, DOI 10.1016/j.jclinepi.2015.03.006 Jadad AR, 1993, ONLINE J CURR CLIN T, V33 Langham J, 1999, ANN EMERG MED, V34, P25, DOI 10.1016/S0196-0644(99)70268-4 Lefebvre C., 2008, COCHRANE HDB SYSTEMA Mahood Q, 2014, RES SYNTH METHODS, V5, P221, DOI 10.1002/jrsm.1106 Mathieu Sylvain, 2017, Joint Bone Spine, P109, DOI 10.1016/j.jbspin.2016.12.011 Mattioli S, 2012, OCCUP ENVIRON MED, V69, P522, DOI 10.1136/oemed-2011-100180 Milne R, 1996, J EPIDEMIOL COMMUN H, V50, P178, DOI 10.1136/jech.50.2.178 NICE, DEV NICE GUID MAN 20 Paez Arsenio, 2017, J Evid Based Med, DOI [10.1111/jebm.12266, 10.1111/jebm.12265] Saric L, 2019, EUR J PAIN, V23, P107, DOI 10.1002/ejp.1289 Saric L, 2019, J CLIN EPIDEMIOL Scherer RW, 2007, COCHRANE DB SYST REV, DOI [10.1002/14651858.MR000005.pub4, 10.1002/14651858.MR000005.pub3] Scherer RW, 2019, SYST REV-LONDON, V8, DOI 10.1186/s13643-019-1188-0 Schreiber A, 2011, LC GC EUR, P6 Schutze H., 2008, Introduction to information retrieval, V39 Shao Z, 2018, FINAL RESULTS PHASE Shemilt I, 2014, RES SYNTH METHODS, V5, P31, DOI 10.1002/jrsm.1093 The Institute of Medicine (IOM), 2011, FIND WHAT WORKS HLTH Wagner G, 2017, BMC MED RES METHODOL, V17, DOI 10.1186/s12874-017-0406-5 WEINTRAUB WH, 1987, J PEDIATR SURG, V22, P11, DOI 10.1016/S0022-3468(87)80005-2 Worsley C, 2019, PEVONEDISTAT HYDROCH Young T, 2011, COCHRANE DB SYST REV, V9 NR 49 TC 6 Z9 6 U1 0 U2 4 PU ELSEVIER SCIENCE INC PI NEW YORK PA STE 800, 230 PARK AVE, NEW YORK, NY 10169 USA SN 0895-4356 EI 1878-5921 J9 J CLIN EPIDEMIOL JI J. Clin. Epidemiol. PD JUL PY 2020 VL 123 BP 39 EP 48 DI 10.1016/j.jclinepi.2020.03.013 PG 10 WC Health Care Sciences & Services; Public, Environmental & Occupational Health WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Health Care Sciences & Services; Public, Environmental & Occupational Health GA LY4AU UT WOS:000540472200006 PM 32229252 OA Green Accepted, Green Published DA 2024-09-05 ER PT J AU Thorburn, D AF Thorburn, D TI Significance testing, interval estimation or Bayesian inference: Comments to "Extracting a maximum of useful information from statistical research data" by S. Sohlberg and G. Andersson SO SCANDINAVIAN JOURNAL OF PSYCHOLOGY LA English DT Article DE Bayesian paradigm; information building; model selection; posterior distribution; scientific knowledge AB Statistical inference plays an important part in the formation of scientific knowledge in psychology. Starting from a paper by Sohlberg and Andersson (2005; Scandinavian Journal of Psychology, 46, 69-77) these issues are discussed. It is argued that interval estimates are easy to understand and that they are more suitable than significance testing for most problems. Bayesian inference is a coherent description of the information building process. With some examples it is shown that null hypothesis significance testing is full of contradictions. Finally, some other important issues like convenience sampling and model selection are shortly mentioned. C1 Stockholm Univ, Dept Stat, SE-10691 Stockholm, Sweden. C3 Stockholm University RP Thorburn, D (corresponding author), Stockholm Univ, Dept Stat, SE-10691 Stockholm, Sweden. EM Daniel.Thorburn@stat.su.se CR [Anonymous], 2009, Bayesian Theory [Anonymous], 1979, MEASURES ASS CROSS C Chow S. C., 1992, Design and Analysis of Bioavailability and Bioequivalence Studies Dale A.I., 1999, A history of inverse probability: from Thomas Bayes to Karl Pearson EDWARDS W, 1963, PSYCHOL REV, V70, P193, DOI 10.1037/h0044139 Gamerman D., 1997, MARKOV CHAIN MONTE C Howson C., 2006, SCI REASONING BAYESI MADIGAN D, 1994, J AM STAT ASSOC, V89, P1536 THORBURN D, 1998, 199810 STOCKH U DEP NR 9 TC 0 Z9 0 U1 0 U2 3 PU BLACKWELL PUBL LTD PI OXFORD PA 108 COWLEY RD, OXFORD OX4 1JF, OXON, ENGLAND SN 0036-5564 J9 SCAND J PSYCHOL JI Scand. J. Psychol. PD FEB PY 2005 VL 46 IS 1 BP 79 EP 82 DI 10.1111/j.1467-9450.2005.00437.x PG 4 WC Psychology, Multidisciplinary WE Social Science Citation Index (SSCI) SC Psychology GA 888MJ UT WOS:000226378100009 PM 15660636 DA 2024-09-05 ER PT J AU Ortega, JL Lopez-Romero, E Fernández, I AF Luis Ortega, Jose Lopez-Romero, Elena Fernandez, Ines TI Multivariate approach to classify research institutes according to their outputs: The case of the CSIC's institutes SO JOURNAL OF INFORMETRICS LA English DT Article DE Scientometrics; Principal component analysis; Linear discriminant analysis; Research centres classification ID PRINCIPAL COMPONENT ANALYSIS; CLASSIFICATION; UNIVERSITIES; PERFORMANCE AB This paper attempts to build a classification model according to the research products created by those institutes and hence to design specific evaluation processes. Several scientific input/output indicators belonging to 109 research institutes from the Spanish National Research Council (CSIC) were selected. A multidimensional approach was proposed to resume these indicators in various components. A clustering analysis was used to classify the institutes according to their scores with those components (principal component analysis). Moreover, the validity of the a priori classification was tested and the most discriminant variables were detected (linear discriminant analysis). Results show that there are three types of institutes according to their research outputs: Humanistic, Scientific and Technological. It is argue that these differences oblige to design more precise assessment exercises which focus on the particular results of each type of institute. We conclude that this method permits to build more precise research assessment exercises which consider the varied nature of the scientific activity. (C) 2011 Elsevier Ltd. All rights reserved. C1 [Luis Ortega, Jose; Lopez-Romero, Elena; Fernandez, Ines] CSIC, R&DUnit, E-28006 Madrid, Spain. C3 Consejo Superior de Investigaciones Cientificas (CSIC) RP Ortega, JL (corresponding author), CSIC, R&DUnit, Serrano 113, E-28006 Madrid, Spain. EM jortega@orgc.csic.es; elena.lopez@orgc.csic.es; ines.fernandez@orgc.csic.es RI FERNANDEZ PINTADO, INES/E-3209-2014 OI Ortega, Jose Luis/0000-0001-9857-1511 CR [Anonymous], INT J INNOVATION REG Bollen J, 2009, PLOS ONE, V4, DOI 10.1371/journal.pone.0006022 Cheng Y, 2006, SCIENTOMETRICS, V68, P135, DOI 10.1007/s11192-006-0087-z Coccia M, 2005, SCIENTOMETRICS, V65, P307, DOI 10.1007/s11192-005-0276-1 Coccia M, 2004, R&D MANAGE, V34, P267, DOI 10.1111/j.1467-9310.2004.00338.x Fisher RA, 1936, ANN EUGENIC, V7, P179, DOI 10.1111/j.1469-1809.1936.tb02137.x GIESE E, 1990, SCIENTOMETRICS, V19, P363, DOI 10.1007/BF02020699 Glänzel W, 2003, SCIENTOMETRICS, V56, P357, DOI 10.1023/A:1022378804087 HARRIS G, 1994, HIGH EDUC, V27, P191, DOI 10.1007/BF01384088 Hotelling H, 1933, J EDUC PSYCHOL, V24, P417, DOI 10.1037/h0071325 KAISER HF, 1958, PSYCHOMETRIKA, V23, P187, DOI 10.1007/BF02289233 Katz JS, 1999, RES POLICY, V28, P501, DOI 10.1016/S0048-7333(99)00010-4 Kuhlmann S., 2003, LEARNING SCI TECHNOL Lin JS, 2007, ELE COM ENG, P139 LINE MB, 1970, J DOC, V26, P46, DOI 10.1108/eb026486 Martin BR, 1996, SCIENTOMETRICS, V36, P343, DOI 10.1007/BF02129599 Martìnez AM, 2001, IEEE T PATTERN ANAL, V23, P228, DOI 10.1109/34.908974 MICHEL AG, 1993, COMPUT CHEM, V17, P49, DOI 10.1016/0097-8485(93)80028-C Modlin IM, 2009, ANN SURG ONCOL, V16, P487, DOI 10.1245/s10434-008-0251-1 Pearson K, 1901, PHILOS MAG, V2, P559, DOI 10.1080/14786440109462720 Polanco X, 1998, SCIENTOMETRICS, V41, P69, DOI 10.1007/BF02457968 Ramani SV, 2002, RES POLICY, V31, P381, DOI 10.1016/S0048-7333(01)00115-9 Schubert A, 1996, SCIENTOMETRICS, V36, P311, DOI 10.1007/BF02129597 Skoie H, 1999, SCIENTOMETRICS, V45, P433, DOI 10.1007/BF02457603 Sneath P. H. A., NUMERICAL TAXONOMY Tagarelli A, 2004, AI COMMUN, V17, P111 Thijs B, 2008, SCIENTOMETRICS, V74, P223, DOI 10.1007/s11192-008-0214-0 Van Raan AFJ, 2005, SCIENTOMETRICS, V62, P133, DOI 10.1007/s11192-005-0008-6 Zhou F, 2007, SCIENTOMETRICS, V73, P265, DOI 10.1007/s11192-007-1798-5 NR 29 TC 17 Z9 17 U1 0 U2 37 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS SN 1751-1577 EI 1875-5879 J9 J INFORMETR JI J. Informetr. PD JUL PY 2011 VL 5 IS 3 BP 323 EP 332 DI 10.1016/j.joi.2011.01.004 PG 10 WC Computer Science, Interdisciplinary Applications; Information Science & Library Science WE Social Science Citation Index (SSCI) SC Computer Science; Information Science & Library Science GA 769QF UT WOS:000291032500001 OA Green Submitted DA 2024-09-05 ER PT J AU Zou, J Le, D Thoma, GR AF Zou, Jie Le, Daniel Thoma, George R. TI Locating and parsing bibliographic references in HTML medical articles SO INTERNATIONAL JOURNAL ON DOCUMENT ANALYSIS AND RECOGNITION LA English DT Article; Proceedings Paper CT 16th Document Recognition and Retrieval Conference CY JAN, 2009 CL San Jose, CA DE HTML document analysis; Document Object Model (DOM); Reference parsing; Support Vector Machine (SVM); Conditional Random Field (CRF) ID EXTRACTION; REPRESENTATION; METADATA AB The set of references that typically appear toward the end of journal articles is sometimes, though not always, a field in bibliographic (citation) databases. But even if references do not constitute such a field, they can be useful as a preprocessing step in the automated extraction of other bibliographic data from articles, as well as in computer-assisted indexing of articles. Automation in data extraction and indexing to minimize human labor is key to the affordable creation and maintenance of large bibliographic databases. Extracting the components of references, such as author names, article title, journal name, publication date and other entities, is therefore a valuable and sometimes necessary task. This paper describes a two-step process using statistical machine learning algorithms, to first locate the references in HTML medical articles and then to parse them. Reference locating identifies the reference section in an article and then decomposes it into individual references. We formulate this step as a two-class classification problem based on text and geometric features. An evaluation conducted on 500 articles drawn from 100 medical journals achieves near-perfect precision and recall rates for locating references. Reference parsing identifies the components of each reference. For this second step, we implement and compare two algorithms. One relies on sequence statistics and trains a Conditional Random Field. The other focuses on local feature statistics and trains a Support Vector Machine to classify each individual word, followed by a search algorithm that systematically corrects low confidence labels if the label sequence violates a set of predefined rules. The overall performance of these two reference-parsing algorithms is about the same: above 99% accuracy at the word level, and over 97% accuracy at the chunk level. C1 [Zou, Jie; Le, Daniel; Thoma, George R.] Natl Lib Med, Lister Hill Natl Ctr Biomed Commun, NIH, Bethesda, MD 20894 USA. C3 National Institutes of Health (NIH) - USA; NIH National Library of Medicine (NLM) RP Zou, J (corresponding author), Natl Lib Med, Lister Hill Natl Ctr Biomed Commun, NIH, 8600 Rockville Pike, Bethesda, MD 20894 USA. EM jzou@mail.nlm.nih.gov CR [Anonymous], P INT C VER LARG DAT Aronson AR, 2000, J AM MED INFORM ASSN, P17 Baird H. S., 1990, Proceedings. 10th International Conference on Pattern Recognition (Cat. No.90CH2898-5), P820, DOI 10.1109/ICPR.1990.118223 Besagni D, 2003, PROC INT CONF DOC, P384 BUYUKKOKTEN O, 2001, P SIGCHI C HUM FACT, P213 Chang CC, 2011, ACM T INTEL SYST TEC, V2, DOI 10.1145/1961189.1961199 Chowdhury GG, 1999, LIBR TRENDS, V48, P182 Cortez E, 2009, J AM SOC INF SCI TEC, V60, P1144, DOI 10.1002/asi.21049 Councill IG, 2008, P 6 INT LANG RES EV Day MY, 2007, DECIS SUPPORT SYST, V43, P152, DOI 10.1016/j.dss.2006.08.006 Day MY, 2005, PROCEEDINGS OF THE 2005 IEEE INTERNATIONAL CONFERENCE ON INFORMATION REUSE AND INTEGRATION, P50 Ding Ying., 1999, Proceedings of the Second Asian Digital Library Conference, Taiwan, P47 GALAVOTTI L, 2000, P 4 EUR C RES ADV TE, P59 HA J, 1995, P 3 INT C DOC AN REC, P952 Hauser SE, 2000, P SOC PHOTO-OPT INS, V3967, P248 Huang IA, 2004, P 8 PAC AS C KNOWL D, P26 Jain AK, 1998, IEEE T PATTERN ANAL, V20, P294, DOI 10.1109/34.667886 KAASINEN E, 2000, P 9 INT WORLD WID WE, P231 KIM I, 2007, P SPIE C DOC REC RET Kim J, 2001, PROC SPIE, V4307, P111 Klink S., 2001, International Journal on Document Analysis and Recognition, V4, P18, DOI 10.1007/PL00013570 Lafferty John, 2001, em Proceedings of the Eighteenth International Conference on Machine Learning Lawrence S, 1999, COMPUTER, V32, P67, DOI 10.1109/2.769447 Likforman-Sulem L, 2006, PATTERN ANAL APPL, V9, P211, DOI [10.1007/s10044-006-0038-6, 10.1007/S10044-006-0038-6] Liu B, 2004, IEEE INTELL SYST, V19, P49, DOI 10.1109/MIS.2004.68 McCallum Andrew Kachites, 2002, MALLET: A machine learning for language toolkit Nagy G, 2000, IEEE T PATTERN ANAL, V22, P38, DOI 10.1109/34.824820 NAGY G, 1992, COMPUTER, V25, P10, DOI 10.1109/2.144436 OGORMAN L, 1993, IEEE T PATTERN ANAL, V15, P1162, DOI 10.1109/34.244677 Okada T, 2004, LECT NOTES COMPUT SC, V3232, P501 Parmentier F, 1997, PROC INT CONF DOC, P1072, DOI 10.1109/ICDAR.1997.620673 PAVLIDIS T, 1992, CVGIP-GRAPH MODEL IM, V54, P484, DOI 10.1016/1049-9652(92)90068-9 Peng FC, 2004, HLT-NAACL 2004: HUMAN LANGUAGE TECHNOLOGY CONFERENCE OF THE NORTH AMERICAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, PROCEEDINGS OF THE MAIN CONFERENCE, P329 Reis D.d.C., 2004, 13 INT C WORLD WIDE, P502, DOI DOI 10.1145/988672.988740 Sebastiani F, 2002, ACM COMPUT SURV, V34, P1, DOI 10.1145/505282.505283 Sutton Charles, 2006, Introduction to Statistical Relational Learning, V2 Takasu A, 2003, ACM-IEEE J CONF DIG, P49, DOI 10.1109/JCDL.2003.1204843 Zhai YH, 2006, IEEE T KNOWL DATA EN, V18, P1614, DOI 10.1109/TKDE.2006.197 ZOU J, 2007, P DOCENG, P119 Zou J, 2008, PROC SPIE, V6815, DOI 10.1117/12.765907 NR 40 TC 16 Z9 18 U1 0 U2 11 PU SPRINGER HEIDELBERG PI HEIDELBERG PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY SN 1433-2833 EI 1433-2825 J9 INT J DOC ANAL RECOG JI Int. J. Doc. Anal. Recognit. PD JUN PY 2010 VL 13 IS 2 SI SI BP 107 EP 119 DI 10.1007/s10032-009-0105-9 PG 13 WC Computer Science, Artificial Intelligence WE Science Citation Index Expanded (SCI-EXPANDED); Conference Proceedings Citation Index - Science (CPCI-S) SC Computer Science GA 613UJ UT WOS:000279007000004 PM 20640222 OA Green Accepted DA 2024-09-05 ER PT J AU Tompos, A Margitfalvi, JL Tfirst, E Végvári, L AF Tompos, A Margitfalvi, JL Tfirst, E Végvári, L TI Evaluation of catalyst library optimization algorithms:: Comparison of the Holographic Research Strategy and the Genetic Algorithm in virtual catalytic experiments SO APPLIED CATALYSIS A-GENERAL LA English DT Article DE catalyst library design; combinatorial catalysis; Holographic Research Strategy; Genetic Algorithm; visualization ID ARTIFICIAL NEURAL-NETWORKS; DESIGN; OXIDATION; PROPANE; METHANE AB In this study two catalyst library optimization methods, the Holographic Research Strategy (HRS) and the Genetic Algorithm (GA) were compared based on their ability to find the optimum compositions in a given multi-dimensional experimental space. Results obtained in three different case studies were used to investigate both the rate and the certainty of the optimum search. In these case studies the activity-composition relationships were established using Artificial Neural Networks (ANNs) trained with catalytic data published earlier. The above relationships were used in "virtual optimization experiments" using both HRS and GA for catalyst library optimization. Upon using the stochastic GA its exceedingly divers mode of sampling often resulted in poor catalytic materials in the next catalyst generation. This fact resulted in a decreased rate of convergence to the optimum. In contrast, in HRS, which is a deterministic optimization algorithm, a moderate level of diversity in the catalyst library can easily be achieved. In this way an acceptable rate in optimum search can be accomplished. The visualization ability of HRS allows the illustration of all virtually tested compositions in a two-dimensional form regardless the optimization algorithm used. Upon using HRS a structured arrangement of experimental points in the virtual holograms was observed. However, when GA was applied for virtual optimization "starry sky"-like arrangement of compositions in the virtual holograms was obtained. Therefore based on virtual holograms, upon using HRS the relationship between the composition of catalytic materials and their performance can be qualitatively revealed, while no similar correlation can be obtained using GA. (c) 2006 Elsevier B.V. All rights reserved. C1 Hungarian Acad Sci, Chem Res Ctr, Inst Surface Chem & Catalysis, H-1525 Budapest, Hungary. Meditor Gen Innovat Bur, H-2623 Kismaros, Hungary. C3 Hungarian Academy of Sciences; Hungarian Research Network; HUN-REN Research Centre for Natural Sciences RP Hungarian Acad Sci, Chem Res Ctr, Inst Surface Chem & Catalysis, POB 17, H-1525 Budapest, Hungary. EM joemarg@chemres.hu RI Tompos, Andras/K-8462-2019 CR Corma A, 2002, CHEMPHYSCHEM, V3, P939, DOI 10.1002/1439-7641(20021115)3:11<939::AID-CPHC939>3.0.CO;2-E Cundari TR, 2001, IND ENG CHEM RES, V40, P5475, DOI 10.1021/ie010316v Hashem S, 1997, NEURAL NETWORKS, V10, P599, DOI 10.1016/S0893-6080(96)00098-6 Holena M, 2003, CATAL TODAY, V81, P485, DOI 10.1016/S0920-5861(03)00147-0 HOLENA M, 2003, EXPT DESIGN COMBINAT, P163 Huang K, 2001, APPL CATAL A-GEN, V219, P61, DOI 10.1016/S0926-860X(01)00659-7 Rodemerck U, 2001, CHEM ENG J, V82, P3, DOI 10.1016/S1385-8947(00)00348-X Tompos A, 2005, APPL CATAL A-GEN, V285, P65, DOI 10.1016/j.apcata.2005.02.019 Tompos A, 2003, APPL CATAL A-GEN, V254, P161, DOI 10.1016/S0926-860X(03)00285-0 Végvári L, 2003, CATAL TODAY, V81, P517, DOI 10.1016/S0920-5861(03)00150-0 Wolf D, 2000, APPL CATAL A-GEN, V200, P63, DOI 10.1016/S0926-860X(00)00643-8 WOLF D, 2003, EXPT DESIGN COMBINAT, P147 NR 12 TC 20 Z9 22 U1 0 U2 7 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0926-860X EI 1873-3875 J9 APPL CATAL A-GEN JI Appl. Catal. A-Gen. PD APR 18 PY 2006 VL 303 IS 1 BP 72 EP 80 DI 10.1016/j.apcata.2006.01.028 PG 9 WC Chemistry, Physical; Environmental Sciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Chemistry; Environmental Sciences & Ecology GA 034GM UT WOS:000236917100010 DA 2024-09-05 ER PT J AU Wu, H Jiao, HZ Yu, Y Li, ZG Peng, ZH Liu, LB Zeng, Z AF Wu, Hao Jiao, Hongzan Yu, Yang Li, Zhigang Peng, Zhenghong Liu, Lingbo Zeng, Zheng TI Influence Factors and Regression Model of Urban Housing Prices Based on Internet Open Access Data SO SUSTAINABILITY LA English DT Article DE regression model; housing prices; geographically weighted regression; influence factor; hedonic model; artificial neural network (ANN); geographically weighted regression (GWR); urban planning ID GEOGRAPHICALLY WEIGHTED REGRESSION; ACCESSIBILITY; IMPACTS; CHOICE AB With the commercialization of housing and the deepening of urbanization in China, housing prices are having increasing influence on the land market, and thus indirectly affecting urban development. As various spatial features of an urban housing property directly affect its price, the study of this connection has significance for urban planning. The present study uses mainly open internet data of housing prices, supplemented by other data sources, to identify the spatial features of housing prices and the influence factors in a case study city, Wuhan. Methods employed in the study include the hedonic linear regression model, the geographically weighted regression (GWR) model and the artificial neural network (ANN) model, etc. Progress is made in the following two aspects: first, when calculating the influence factors, hierarchical values for accessibility variables of certain public facilities are used instead of simple Euclidean distance and the results shows a better model fit; second, the ANN model shows the best fit in the study, and while the three models all show respective strengths, the combined use of all models offers the possibility of a more comprehensive analysis of the influence factors of housing prices. C1 [Wu, Hao; Jiao, Hongzan; Peng, Zhenghong] Wuhan Univ, Sch Urban Design, Dept Graph & Digital Technol, Wuhan 430072, Hubei, Peoples R China. [Yu, Yang; Li, Zhigang; Liu, Lingbo] Wuhan Univ, Sch Urban Design, Dept Urban Planning, Wuhan 430072, Hubei, Peoples R China. [Zeng, Zheng] China Univ Geosci, Dept Sch Arts & Commun, Wuhan 430074, Hubei, Peoples R China. C3 Wuhan University; Wuhan University; China University of Geosciences RP Yu, Y (corresponding author), Wuhan Univ, Sch Urban Design, Dept Urban Planning, Wuhan 430072, Hubei, Peoples R China. EM wh79@whu.edu.cn; jiaohongzan@whu.edu.cn; yuyang1@whu.edu.cn; zhigangli@whu.edu.cn; pengzhenghong@whu.edu.cn; lingbo.liu@whu.edu.cn; zeng_cug@hotmail.com RI li, zhigang/AFT-5267-2022; Liu, Lingbo/AAH-8240-2019; Wu, Hao/HJG-9487-2022 OI Liu, Lingbo/0000-0002-9876-8506; Wu, Hao/0000-0001-7107-8081; Yu, Yang/0000-0001-8776-0157 FU China Postdoctoral Science Foundation [2016M600609, 2016M602357]; National Science Fund for Young Scholars [51708425, 51708426]; English Course Program of Wuhan University [209411800012] FX The study is funded by the China Postdoctoral Science Foundation (No. 2016M600609); National Science Fund for Young Scholars (No. 51708425); China Postdoctoral Science Foundation (No. 2016M602357); National Science Fund for Young Scholars (No. 51708426); and English Course Program of Wuhan University (No. 209411800012). CR Adair A, 2000, HOUSING STUD, V15, P699, DOI 10.1080/02673030050134565 ATKINSON SE, 1987, J APPL ECONOMET, V2, P27, DOI 10.1002/jae.3950020103 Basu S, 1998, J REAL ESTATE FINANC, V17, P61, DOI 10.1023/A:1007703229507 Bitter C, 2007, J GEOGR SYST, V9, P7, DOI 10.1007/s10109-006-0028-7 Brunsdon C, 1999, J REGIONAL SCI, V39, P497, DOI 10.1111/0022-4146.00146 Brunsdon C, 1996, GEOGR ANAL, V28, P281, DOI 10.1111/j.1538-4632.1996.tb00936.x BUTLER RV, 1982, LAND ECON, V58, P96, DOI 10.2307/3146079 Cai JX, 2017, REMOTE SENS ENVIRON, V202, P210, DOI 10.1016/j.rse.2017.06.039 CASSEL E, 1985, J URBAN ECON, V18, P135, DOI 10.1016/0094-1190(85)90012-9 Do A.Quang., 1993, J REAL ESTATE RES, V8, P253 Dziauddin MF, 2015, APPL SPAT ANAL POLIC, V8, P1, DOI 10.1007/s12061-014-9117-z Efthymiou D, 2013, TRANSPORT RES A-POL, V52, P1, DOI 10.1016/j.tra.2013.04.002 Esri. Geographically Weighted Regression (GWR), 2013, GEOGR WEIGHT REGR GW Fotheringham AS, 2015, ANN REGIONAL SCI, V54, P417, DOI 10.1007/s00168-015-0660-6 Ge Y., 2016, T GIS, V21 Glaeser EL, 2018, ECON INQ, V56, P114, DOI 10.1111/ecin.12364 HALVORSEN R, 1981, J URBAN ECON, V10, P37, DOI 10.1016/0094-1190(81)90021-8 Hu SG, 2016, APPL GEOGR, V68, P48, DOI 10.1016/j.apgeog.2016.01.006 Huang B, 2010, INT J GEOGR INF SCI, V24, P383, DOI 10.1080/13658810802672469 Jim CY, 2006, LANDSCAPE URBAN PLAN, V78, P422, DOI 10.1016/j.landurbplan.2005.12.003 Kuminoff NV, 2010, J ENVIRON ECON MANAG, V60, P145, DOI 10.1016/j.jeem.2010.06.001 Law S, 2017, CITIES, V60, P166, DOI 10.1016/j.cities.2016.08.008 Lu BB, 2014, INT J GEOGR INF SCI, V28, P660, DOI 10.1080/13658816.2013.865739 Mulley C, 2014, URBAN STUD, V51, P1707, DOI 10.1177/0042098013499082 Nakaya Tomoki., 2001, GeoJournal, V53, P347, DOI DOI 10.1023/A:1020149315435 Rasmussen D. W., 1988, APPL ECON, V22, P431 ROSEN S, 1974, J POLIT ECON, V82, P34, DOI 10.1086/260169 Selim H, 2009, EXPERT SYST APPL, V36, P2843, DOI 10.1016/j.eswa.2008.01.044 SMITH VK, 1995, J POLIT ECON, V103, P209, DOI 10.1086/261981 STRASZHEIM M.R., 1975, ECONOMETRIC ANAL URB Sunak Y, 2017, PAP REG SCI, V96, P423, DOI 10.1111/pirs.12197 TOBLER WR, 1970, ECON GEOGR, V46, P234, DOI 10.2307/143141 Wang D., 2007, CITY PLANNING REV, V31, P34 WANG D, 2005, CITY PLAN, V29, P62 Wu B, 2014, INT J GEOGR INF SCI, V28, P1186, DOI 10.1080/13658816.2013.878463 Wu CM, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0164334 You W, 2015, REMOTE SENS ENVIRON, V168, P276, DOI 10.1016/j.rse.2015.07.020 Yrigoyen C. C., 2007, MPRA PAP, V50, P321 NR 38 TC 29 Z9 33 U1 12 U2 90 PU MDPI PI BASEL PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND EI 2071-1050 J9 SUSTAINABILITY-BASEL JI Sustainability PD MAY PY 2018 VL 10 IS 5 AR 1676 DI 10.3390/su10051676 PG 17 WC Green & Sustainable Science & Technology; Environmental Sciences; Environmental Studies WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Science & Technology - Other Topics; Environmental Sciences & Ecology GA GJ7RP UT WOS:000435587100372 OA gold DA 2024-09-05 ER PT J AU Bach, MP Ivec, A Hrman, D AF Bach, Mirjana Pejic Ivec, Arian Hrman, Danijela TI Industrial Informatics: Emerging Trends and Applications in the Era of Big Data and AI SO ELECTRONICS LA English DT Article DE industrial informatics; Scopus; bibliometrics; VosViewer; Big Data; AI ID GOOGLE-SCHOLAR; SCIENCE; CITATION; BIBLIOMETRICS; WEB AB Industrial informatics is a rapidly developing scientific field that deals with the knowledge-based automation of industrial design and manufacturing processes. In the last decade, industrial informatics has been strongly influenced by the rapid rise of data-based technologies such as Data Science, Big Data, and artificial intelligence. The goal of this paper is to provide a literature review of academic research analyzing the extensive spectrum of industrial informatics. Articles indexed in Scopus with the term "Industrial Informatics" in the title, abstract, or keywords were extracted since the term emerged in the 1990s, over a period of 29 years. The main journals, conferences, authors and countries were studied using bibliometric analysis. Text mining using VosViewer was used to extract the thematic groups of research related to industrial informatics, which are as follows: (i) Internet of Things, (ii) machine learning, (iii) engineering education, (iv) cyber-physical systems, and (v) embedded systems. We also found that China, Germany, and Brazil dominate research in industrial computing. The results showed that research in industrial informatics is related to the emergence of new methods and tools, and is nowadays shifting towards the application of intelligent methods such as machine learning and Big Data. C1 [Bach, Mirjana Pejic] Univ Zagreb, Fac Econ & Business, Dept Informat, Zagreb 10000, Croatia. [Ivec, Arian] Univ Zagreb, Fac Sci, Dept Phys, Zagreb 10000, Croatia. [Hrman, Danijela] Probotica D o o, Zagreb 10000, Croatia. C3 University of Zagreb; University of Zagreb RP Bach, MP (corresponding author), Univ Zagreb, Fac Econ & Business, Dept Informat, Zagreb 10000, Croatia. EM mpejic@net.efzg.hr RI Pejic Bach, Mirjana/E-7313-2012 OI Pejic Bach, Mirjana/0000-0003-3899-6707 CR Adibhatla VA, 2020, ELECTRONICS-SWITZ, V9, DOI 10.3390/electronics9091547 Aguillo IF, 2012, SCIENTOMETRICS, V91, P343, DOI 10.1007/s11192-011-0582-8 [Anonymous], 2012, NEW YORK TIMES Ansari AQ, 2012, HANDBOOK OF RESEARCH ON INDUSTRIAL INFORMATICS AND MANUFACTURING INTELLIGENCE: INNOVATIONS AND SOLUTIONS, P1, DOI 10.4018/978-1-4666-0294-6.ch001 Ballew B.S., 2009, Journal of Electronic Resources in Medical Libraries, V6, P245 Belter CW, 2013, WIRES CLIM CHANGE, V4, P417, DOI 10.1002/wcc.229 Bhattacharya S, 1998, SCIENTOMETRICS, V43, P359, DOI 10.1007/BF02457404 Bi ZM, 2017, ENTERP INF SYST-UK, V11, P949, DOI 10.1080/17517575.2016.1258734 Borrett SR, 2018, ECOL MODEL, V382, P63, DOI 10.1016/j.ecolmodel.2018.04.020 Borrett SR, 2014, ECOL MODEL, V293, P111, DOI 10.1016/j.ecolmodel.2014.02.019 Boyack KW, 2010, J AM SOC INF SCI TEC, V61, P2389, DOI 10.1002/asi.21419 Burnham Judy F, 2006, Biomed Digit Libr, V3, P1 Chen MQ, 2022, COMPUT IND, V134, DOI 10.1016/j.compind.2021.103551 Chunlei Ye, 2018, 2018 14th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD), P927, DOI 10.1109/FSKD.2018.8687153 Cobo MJ, 2011, J AM SOC INF SCI TEC, V62, P1382, DOI 10.1002/asi.21525 De Silva D, 2020, IEEE IND ELECTRON M, V14, P57, DOI 10.1109/MIE.2019.2952165 Ding X, 2022, ELECTRON COMMER RES, V22, P787, DOI 10.1007/s10660-020-09410-7 Falagas ME, 2008, FASEB J, V22, P338, DOI 10.1096/fj.07-9492LSF Fu HZ, 2022, CLIMATIC CHANGE, V170, DOI 10.1007/s10584-022-03324-z Greengard S., 2015, The Internet of Things, DOI DOI 10.7551/MITPRESS/10277.001.0001 He Q, 1999, LIBR TRENDS, V48, P133 Holmstrom J, 2010, IND INFORM DESIGN US, P1, DOI 10.4018/978-1-61520-692-6 Jackson D J., 2005, ACM SIGBED Review, V2, P1, DOI DOI 10.1145/1121812.1121814 van Eck NJ, 2011, Arxiv, DOI arXiv:1109.2058 Javaid M., 2023, Green Technologies and Sustainability, V1, P100001, DOI [https://doi.org/10.1016/j.grets.2022.100001, DOI 10.1016/J.GRETS.2022.100001] Jonsson K, 2008, INFORM SYST J, V18, P227, DOI 10.1111/j.1365-2575.2007.00267.x Jonsson K, 2009, INFORM ORGAN-UK, V19, P233, DOI 10.1016/j.infoandorg.2009.07.001 Kaelbling L. P., 1993, Learning in Embedded Systems Kling R, 2007, INFORM SOC, V23, P205, DOI 10.1080/01972240701441556 Kuzior A, 2022, SUSTAINABILITY-BASEL, V14, DOI 10.3390/su14138206 Lee E.A., 2011, Introduction to embedded systems: A cyberphysical systems approach Li JF, 2011, GLOBAL PLANET CHANGE, V77, P13, DOI 10.1016/j.gloplacha.2011.02.005 Marzi G, 2017, SCIENTOMETRICS, V113, P673, DOI 10.1007/s11192-017-2500-1 McAllister James T. III, 2022, Science & Technology Libraries, V41, P319, DOI 10.1080/0194262X.2021.1991547 McKinley DC, 2012, FOREST POLICY ECON, V21, P1, DOI 10.1016/j.forpol.2012.03.007 Mehta D, 2022, NAT COMMUN, V13, DOI 10.1038/s41467-022-29320-6 Moral-Muñoz JA, 2020, PROF INFORM, V29, DOI 10.3145/epi.2020.ene.03 Morris SA, 2008, ANNU REV INFORM SCI, V42, P213 Moura L R., 2020, Emerging Science Journal, V4, P365, DOI DOI 10.28991/ESJ-2020-01237 Oyewola DO, 2022, SN APPL SCI, V4, DOI 10.1007/s42452-022-05027-7 Pfeiffer S, 2017, NANOETHICS, V11, P107, DOI 10.1007/s11569-016-0280-3 Rahman T, 2022, 2022 INTERNATIONAL SYMPOSIUM ON THE TSETLIN MACHINE (ISTM 2022), P29, DOI 10.1109/ISTM54910.2022.00014 Raja Mohd Ali R. H., 2020, Journal of Physics: Conference Series, V1529, DOI 10.1088/1742-6596/1529/2/022075 Ricci J, 2019, IEEE SECUR PRIV, V17, P34, DOI 10.1109/MSEC.2018.2875877 Rönnbäck L, 2007, IND MANAGE DATA SYST, V107, P1276, DOI 10.1108/02635570710833965 Small H, 1999, J AM SOC INFORM SCI, V50, P799, DOI 10.1002/(SICI)1097-4571(1999)50:9<799::AID-ASI9>3.0.CO;2-G Thelwall M, 2008, J INF SCI, V34, P605, DOI 10.1177/0165551507087238 Van Eck N.J., 2014, Measuring Scholarly Impact: Methods and Practice, P285, DOI 10.1007/978-3-319-10377-8_13(InEng.) Van Eck NJ, 2007, STUD CLASS DATA ANAL, P299 van Eck NJ, 2017, SCIENTOMETRICS, V111, P1053, DOI 10.1007/s11192-017-2300-7 van Eck NJ, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0062395 van Eck NJ, 2010, J AM SOC INF SCI TEC, V61, P2405, DOI 10.1002/asi.21421 van Eck NeesJan., 2011, Methodological advances in bibliometric mapping of science Waltman L, 2010, J INFORMETR, V4, P629, DOI 10.1016/j.joi.2010.07.002 Wang B, 2014, NAT HAZARDS, V74, P1649, DOI 10.1007/s11069-014-1260-y Wiberg M., 2005, The interaction society practice, theories and supportive technologies Xin Xiang, 2021, 2021 2nd International Conference on Information Science and Education (ICISE-IE), P720, DOI 10.1109/ICISE-IE53922.2021.00168 NR 57 TC 3 Z9 3 U1 7 U2 24 PU MDPI PI BASEL PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND EI 2079-9292 J9 ELECTRONICS-SWITZ JI Electronics PD MAY 15 PY 2023 VL 12 IS 10 AR 2238 DI 10.3390/electronics12102238 PG 16 WC Computer Science, Information Systems; Engineering, Electrical & Electronic; Physics, Applied WE Science Citation Index Expanded (SCI-EXPANDED) SC Computer Science; Engineering; Physics GA H5SG1 UT WOS:000996553400001 OA gold DA 2024-09-05 ER PT J AU DAVIDSON, WN WORRELL, DL AF DAVIDSON, WN WORRELL, DL TI Research notes and communications: The effect of product recall announcements on shareholder wealth SO STRATEGIC MANAGEMENT JOURNAL LA English DT Article DE PRODUCT RECALLS; SHAREHOLDER WEALTH ID MODERN FINANCIAL THEORY; ORGANIZATIONAL ECONOMICS; CORPORATE-STRATEGY; PUBLIC-POLICY; IMPACT AB Previous research has found that product recall announcements in the automobile industry are associated with negative abnormal returns. We extend this research by examining announcements of product recalls and products taken off the market outside the automobile industry. We find negative abnormal returns for these announcements and that the returns are significantly more negative when products are replaced (or the purchase price is returned) than when the products are checked and repaired. We find only limited evidence that government-ordered recalls produce more negative returns than voluntary recalls. C1 APPALACHIAN STATE UNIV, DEPT MANAGEMENT, BOONE, NC 28608 USA. C3 University of North Carolina; Appalachian State University RP SO ILLINOIS UNIV, DEPT FINANCE, CARBONDALE, IL 62901 USA. RI Sharma, Kulwant Kumar/AAE-7849-2022 OI Sharma, Kulwant Kumar/0000-0002-3564-6130 CR BARNEY JB, 1990, ACAD MANAGE REV, V15, P382, DOI 10.2307/258014 BETTIS RA, 1983, ACAD MANAGE REV, V8, P406 BROMILEY P, 1989, STRATEGIC MANAGE J, V10, P233 COCHRAN PL, 1984, ACAD MANAGE J, V27, P42, DOI 10.5465/255956 DAVIDSON WN, 1988, ACAD MANAGE J, V31, P195, DOI 10.5465/256506 DODD P, 1983, J FINANC ECON, V11, P401, DOI 10.1016/0304-405X(83)90018-1 HESTERLY WS, 1990, ACAD MANAGE REV, V15, P402, DOI 10.2307/258016 HOFFER GE, 1988, J POLIT ECON, V96, P663, DOI 10.1086/261556 Hoffer GeorgeE., 1987, Financial Review, V22, P433, DOI DOI 10.1111/J.1540-6288.1987.TB01265.X JARRELL G, 1985, J POLIT ECON, V93, P512, DOI 10.1086/261313 Jemison D.B., 1981, ACAD MANAGE REV, V6, P601, DOI DOI 10.5465/AMR.1981.4285702 LUBATKIN M, 1986, ACAD MANAGE REV, V11, P497, DOI 10.2307/258307 MYERS SC, 1984, J FINANC ECON, V13, P187, DOI 10.1016/0304-405X(84)90023-0 OVIATT BM, 1988, ACAD MANAGE REV, V13, P214, DOI 10.2307/258573 PEAVY JW, 1984, ACAD MANAGE REV, V9, P152, DOI 10.2307/258241 PRUITT SW, 1986, J FINANC RES, V9, P113, DOI 10.1111/j.1475-6803.1986.tb00441.x RAPPAPORT A, 1981, HARVARD BUS REV, V59, P139 ROSS SA, 1977, BELL J ECON, V8, P23, DOI 10.2307/3003485 NR 18 TC 140 Z9 189 U1 1 U2 37 PU WILEY PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0143-2095 EI 1097-0266 J9 STRATEGIC MANAGE J JI Strateg. Manage. J. PD SEP PY 1992 VL 13 IS 6 BP 467 EP 473 DI 10.1002/smj.4250130606 PG 7 WC Business; Management WE Social Science Citation Index (SSCI) SC Business & Economics GA JK648 UT WOS:A1992JK64800005 DA 2024-09-05 ER PT J AU Gu, SS Wang, KY Gao, LY Liu, J AF Gu, Suishan Wang, Kangyu Gao, Lianyue Liu, Jun TI Research on express service defect evaluation based on semantic network diagram and SERVQUAL model SO FRONTIERS IN PUBLIC HEALTH LA English DT Article DE express service defects; text mining; semantic network diagram; SERVQUAL model; LDA topic model ID BIG DATA; FAILURE AB This paper constructs a defect evaluation model of express service, uses the text mining methods of web crawler, SVM (Support Vector Machine) emotion analysis and LDA (Linear Discriminant Analysis) topic model to capture and clean up the online negative comment data of express service, establishes a semantic network diagram, and uses LDA topic model to extract the characteristic words of defect topic. Based on SERVQUAL model, it can classify the subject characteristic words of express service defects from the dimensions of tangibility, reliability, responsiveness, assurance, empathy and economy, etc., calculate the degree value and attention value of express service defects, and establish IPA model for defect mapping and identify the improvement direction. The evaluation model constructed in this paper has reference value for evaluating the defects of service industry and improving service quality. It is found that the "responsiveness" defect is the primary improvement direction, and the reliability, assurance and economy are the secondary improvement defects. Among them, the "responsiveness" defect has five improvement detail defects. The evaluation model constructed in this paper has reference value for evaluating the defects of service industry and improving service quality. C1 [Gu, Suishan; Wang, Kangyu; Gao, Lianyue] Jilin Univ, Sch Business & Management, Changchun, Jilin, Peoples R China. [Liu, Jun] China Shipbldg Ind Grp Co Ltd, Res Inst 716, Lianyungang, Jiangsu, Peoples R China. C3 Jilin University RP Gu, SS (corresponding author), Jilin Univ, Sch Business & Management, Changchun, Jilin, Peoples R China. EM guss@jlu.edu.cn CR Aloini D, 2020, INT J INFORM MANAGE, V51, DOI 10.1016/j.ijinfomgt.2019.03.012 Berman J., 2020, MODERN MAT HANDLING, V75, P9 Cao X., 2015, RAILWAY TRANSP EC, V37, P93, DOI [10.14097/j.cnki.5392/2020.22.015, DOI 10.14097/J.CNKI.5392/2020.22.015] Chen YL, 2021, SUSTAINABILITY-BASEL, V13, DOI 10.3390/su132414046 Dong Z., 1998, Appl. Linguist., V03, P79 Dospinescu O, 2022, KYBERNETES, V51, P1, DOI 10.1108/K-03-2021-0197 Fan X, 2012, APPL MECH MATER, V121-126, P4456, DOI 10.4028/www.scientific.net/AMM.121-126.4456 Ge YB., 2013, SCI TECHNOL INF, P196, DOI [10.3969/j.issn.1005-5800.2011.29.060, DOI 10.3969/J.ISSN.1005-5800.2011.29.060] Glaser S, INT J LOGIST-RES APP, P1 Guo YY, 2020, LOGISTICS SCI TECH, V43, P22 Haung XB., 2005, NETWORK INFORM MININ, P99 He Y, 2016, NEW TECHNOL LIB INF, V31, P58, DOI [10.14089/j.cnki.cn11-3664/f.2019.01.005, DOI 10.14089/J.CNKI.CN11-3664/F.2019.01.005] Hess RL, 2003, J ACAD MARKET SCI, V31, P127, DOI 10.1177/0092070302250898 Hong W, 2019, SUSTAINABILITY-BASEL, V11, DOI 10.3390/su11133570 Hsiao YH, 2017, TELEMAT INFORM, V34, P284, DOI 10.1016/j.tele.2016.08.002 Jing L, 2020, COMPUT SCI Joung J, 2021, SAGE OPEN, V11, DOI 10.1177/2158244020988249 Khan M, 2020, INT J COMPUT SCI NET, V20, P138, DOI 10.22937/IJCSNS.2020.20.12.15 Ku LW, 2007, J AM SOC INF SCI TEC, V58, P1838, DOI 10.1002/asi.20630 Li J, 2007, PROCEEDINGS OF THE 2007 IEEE INTERNATIONAL CONFERENCE ON NATURAL LANGUAGE PROCESSING AND KNOWLEDGE ENGINEERING (NLP-KE'07), P393 Li M, 2019, J COMPUT APPL, V39, P15, DOI [10.19695/j.cnki.cn12-1369.2018.06.49, DOI 10.19695/J.CNKI.CN12-1369.2018.06.49] Li XS, 2020, MODERN BUS, V39, P33 Liu J.Y., 2018, Digit Technol Appl, V36, P84, DOI [10.1140/epjc/s10052-018-5559-9, DOI 10.1140/EPJC/S10052-018-5559-9, DOI 10.19695/J.CNKI.CN12-1369.2018.06.49] Liu Ziyu, 2017, Journal of Hebei University of Science and Technology, V38, P600, DOI 10.7535/hbkd.2017yx06014 Ma PP, 2021, MATH PROBL ENG, V2021, DOI 10.1155/2021/8883370 MARTILLA JA, 1977, J MARKETING, V41, P77, DOI 10.2307/1250495 Matthias O, 2017, INT J OPER PROD MAN, V37, P37, DOI 10.1108/IJOPM-02-2015-0084 Meng Y., 2017, MANAG REV, V29, P144 Muda M, 2021, J RES INTERACT MARK, V15, P441, DOI 10.1108/JRIM-04-2020-0072 Park Y, 2009, TRANSPORT RES E-LOG, V45, P321, DOI 10.1016/j.tre.2008.09.004 Qi JY, 2016, INFORM MANAGE-AMSTER, V53, P951, DOI 10.1016/j.im.2016.06.002 Ralevic P, 2016, CENT EUR J OPER RES, V24, P637, DOI 10.1007/s10100-014-0369-0 Rampal N., 2022, IND TRUJILLO 0829, V38, P100525, DOI 10.1093/eurheartj/10.suppl_H.85 Saito J, 2014, PROC CIRP, V16, P235, DOI 10.1016/j.procir.2014.01.026 Sampaio M. I. C., 2004, Ciencia da Informacao, V33, P142, DOI 10.1590/S0100-19652004000100017 Shi YP, 2019, J BEIJING INF SCI TE, V34, P41, DOI [10.16508/j.cnki.11-5866/n.2019.02.009, DOI 10.16508/J.CNKI.11-5866/N.2019.02.009] Wang YH., 2019, STAT DEC, V35, P150, DOI [10.3969/j.issn.1001-9960.2013.10.171, DOI 10.3969/J.ISSN.1001-9960.2013.10.171] Wu PJ, 2018, TELEMAT INFORM, V35, P237, DOI 10.1016/j.tele.2017.11.004 Xia YF, 2011, CHINA BUS TRADE, V47, P126, DOI [10.1080/13675567.2021.2005005, DOI 10.1080/13675567.2021.2005005] Yao YB., 2018, COMMER RES, V60, P107, DOI [10.2307/1250495, DOI 10.2307/1250495] Zeithaml V.A., 1993, J ACAD MARKET SCI, V21, P1, DOI [DOI 10.1177/0092070393211001, 10.1177/0092070393211001] Zhang N, 2021, J ORGAN END USER COM, V33, DOI 10.4018/JOEUC.20211101.oa3 Zhang Z., 2019, CHINA BUS MARKET, V33, P43, DOI [10.14089/j.cnki.cn11-3664/f.2019.01.005, DOI 10.13714/J.CNKI.1002-3100.2020.12.006] Zhen X, 2014, ADV INTEL SYS RES, V101, P262 Zhuo J, 2009, I C SERV SYST SERV M, P78 NR 45 TC 0 Z9 0 U1 16 U2 71 PU FRONTIERS MEDIA SA PI LAUSANNE PA AVENUE DU TRIBUNAL FEDERAL 34, LAUSANNE, CH-1015, SWITZERLAND EI 2296-2565 J9 FRONT PUBLIC HEALTH JI Front. Public Health PD DEC 2 PY 2022 VL 10 AR 1056575 DI 10.3389/fpubh.2022.1056575 PG 11 WC Public, Environmental & Occupational Health WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Public, Environmental & Occupational Health GA 7B1GC UT WOS:000898889800001 PM 36530722 OA gold, Green Published DA 2024-09-05 ER PT J AU Hamilton, L Elliott, D Quick, A Smith, S Choplin, V AF Hamilton, Leah Elliott, Desha Quick, Aaron Smith, Simone Choplin, Victoria TI Exploring the Use of AI in Qualitative Analysis: A Comparative Study of Guaranteed Income Data SO INTERNATIONAL JOURNAL OF QUALITATIVE METHODS LA English DT Article DE methods in qualitative inquiry; phenomenology; qualitative evaluation; social justice; community based research AB This study explores the potential of the AI chatbot ChatGPT to supplement human-centered tasks such as qualitative research analysis. The study compares the emergent themes in human and AI-generated qualitative analyses of interviews with guaranteed income pilot recipients. The results reveal that there are similarities and differences between human and AI-generated analyses, with the human coders recognizing some themes that ChatGPT did not and vice versa. The study concludes that AI like ChatGPT provides a powerful tool to supplement complex human-centered tasks, and predicts that such tools will become an additional tool to facilitate research tasks. Future research could explore feeding raw interview transcripts into ChatGPT and incorporating AI-generated themes into triangulation discussions to help identify oversights, alternative frames, and personal biases. C1 [Hamilton, Leah; Choplin, Victoria] Appalachian State Univ, Dept Social Work, ASU Box 32155, 1179 State Farm Rd, Boone, NC 28608 USA. [Elliott, Desha; Quick, Aaron; Smith, Simone] Clark Atlanta Univ, Dept Social Work, Atlanta, GA USA. C3 University of North Carolina; Appalachian State University; Clark Atlanta University RP Hamilton, L (corresponding author), Appalachian State Univ, Dept Social Work, ASU Box 32155, 1179 State Farm Rd, Boone, NC 28608 USA. EM hamiltonl@appstate.edu OI Hamilton, Leah/0000-0002-1253-171X FU Give Directly FX The author(s) disclosed receipt of the following financial support forthe research, authorship, and/or publication of this article: This workwas supported by the Give Directly. CR Brewer LC, 2019, AM J PUBLIC HEALTH, V109, P385, DOI 10.2105/AJPH.2018.304939 Bruun EPG, 2018, BASIC INCOME STUD, V13, DOI 10.1515/bis-2018-0018 Bureau of Labor Statistics, 2022, A look at falls, slips, and trips in the construction industry: The Economics Daily: U.S. Bureau of Labor Statistics Chelliah John, 2017, Human Resource Management International Digest, V25, P1, DOI 10.1108/HRMID-11-2016-0152 Chow Andrew, 2023, Time Chowdhury H, 2023, Insider Creswell J.W., 2017, Qualitative inquiry and research design: Choosing among five approaches Dastin Jeffrey, 2022, Reuters Geronimus DAT., 2023, Weathering: The Extraordinary Stress of Ordinary Life in an Unjust Society Gordon C., 2023, FORBES FEB Kuskoff E, 2022, BRIT J SOC WORK, V52, P3982, DOI 10.1093/bjsw/bcac027 Lincoln Y. S., 1985, Naturalistic Enquiry, DOI DOI 10.1016/0147-1767(85)90062-8 Mesec B., 2023, PREPRINT, DOI [10.22541/au.168182047.70243364/v1, DOI 10.22541/AU.168182047.70243364/V1] Miller K., 2021, Stanford HAI Morrow R., 2015, PSYCHOLOGIST, V28, P643, DOI DOI 10.1016/J.JCIN.2015.03.004 Moustakas C., 1994, Phenomenological Research Methods, P180, DOI [https://doi.org/10.4135/9781412995658, DOI 10.4135/9781412995658] Open AI, CHATGPT GEN FAQ Smith A., 2014, AI, robotics, and the future of jobs Tabone W., 2023, Using ChatGPT for human-computer interaction research: A primer Van Manen M, 2016, Researching lived experience: human science for an action sensitive pedagogy, VSecond NR 20 TC 5 Z9 9 U1 15 U2 31 PU SAGE PUBLICATIONS INC PI THOUSAND OAKS PA 2455 TELLER RD, THOUSAND OAKS, CA 91320 USA SN 1609-4069 J9 INT J QUAL METH JI Int. J. Qual. Meth. PD SEP PY 2023 VL 22 AR 16094069231201504 DI 10.1177/16094069231201504 PG 13 WC Social Sciences, Interdisciplinary WE Social Science Citation Index (SSCI) SC Social Sciences - Other Topics GA R1AC1 UT WOS:001061726100001 OA gold DA 2024-09-05 ER PT J AU Zhang, WS Ma, LP AF Zhang, Wangshu Ma, Liping TI Research and application of second-hand commodity price evaluation methods on B2C platform: take the used car platform as an example SO ANNALS OF OPERATIONS RESEARCH LA English DT Article DE Second-hand product price; Business to customer (B2C) platform; Support vector machine regression (SVR) model; Gradient boosting decision tree (GBDT) algorithm; Boruta algorithm ID MODEL AB Taking the business to customer used car trading platform as an example, two feature selection algorithms, namely, gradient boosting decision tree (GBDT) and Boruta, have been used for optimizing the support vector machine regression (SVR) model in order to explore efficient and accurate second-hand commodity price evaluation methods. On comparing the prediction accuracy of the original SVR model, the GBDT-SVR model, and the Boruta-SVR model, it has been found that the error between the price predicted by the Boruta-SVR model and the actual given price is the smallest among the three models. Thus, this model can provide an accurate evaluation of the prices of used cars. This method can also be extended to other second-hand goods by incorporating their respective attributes and the price evaluation link of the second-hand trading platform in the consumer to business to consumer model, which will help in improving the efficiency of the merchant price evaluation and the merchant evaluation process. C1 [Zhang, Wangshu; Ma, Liping] Capital Univ Econ & Business, Sch Stat, Beijing 100071, Peoples R China. C3 Capital University of Economics & Business RP Zhang, WS (corresponding author), Capital Univ Econ & Business, Sch Stat, Beijing 100071, Peoples R China. EM zws19971009@126.com CR Chi XC, 2015, OPT MATER, V46, P350, DOI 10.1016/j.optmat.2015.04.043 Feng Guohe, 2011, Computer Engineering and Applications, V47, P123, DOI 10.3778/j.issn.1002-8331.2011.03.037 Kanisha B, 2018, PERS UBIQUIT COMPUT, V22, P1083, DOI 10.1007/s00779-018-1139-0 Liu, 2020, BUS ECON, V525, P139 Liu BH, 2017, INT J COMMUN SYST, V30, DOI 10.1002/dac.3050 [刘承照 Liu Chengzhao], 2019, [地学前缘, Earth Science Frontiers], V26, P138 Liu Z, 2019, INFORM SYSTEM ENG, V08, P95 Manogaran G, 2022, IEEE T COMPUT SOC SY, V9, P174, DOI 10.1109/TCSS.2021.3051330 Prieto M, 2015, J RETAIL CONSUM SERV, V22, P206, DOI 10.1016/j.jretconser.2014.08.013 Ruo SY, 2004, J SHANGHAI U ENG SCI, V3, P195 Shi P.X, 2017, EVALUATION PREDICTIO Wang C, 2022, COMPUT INTELL-US, V38, P842, DOI 10.1111/coin.12430 Xia Yanjiao, 2020, COMPUTER SYSTEMS APP, V29, P209 Zhang J, 2015, ENTERPRISE TECHNICAL, V34, P116 Zhao F, 2013, JOUNAL XINGTAI VOCAT, V30, P54 NR 15 TC 3 Z9 3 U1 8 U2 84 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0254-5330 EI 1572-9338 J9 ANN OPER RES JI Ann. Oper. Res. PD JUL PY 2023 VL 326 IS SUPPL 1 SU 1 BP 37 EP 37 DI 10.1007/s10479-021-04332-5 EA OCT 2021 PG 1 WC Operations Research & Management Science WE Science Citation Index Expanded (SCI-EXPANDED) SC Operations Research & Management Science GA N0LM4 UT WOS:000712497400002 DA 2024-09-05 ER PT J AU Jing, WX Zhen, LM Wei, SY Wang, X AF Jing, Wang X. Zhen, Liu M. Wei, Sun Y. Wang, Xin TI Research on low-speed performance of continuous rotary electro-hydraulic servo motor based on robust control with Adaboost prediction SO JOURNAL OF ENGINEERING-JOE LA English DT Article AB In order to improve the robustness and low-speed performance of continuous rotary electro-hydraulic servo system under influences of dynamic uncertainties, parametric perturbation, friction, other non-linear properties, and uncertainties, the robust control strategy was proposed with Adaboost prediction. Firstly, basing on the system mathematic model, the model with structured uncertainty and generalised state equation was established with parametric perturbation and external disturbances, and then the robust controller was developed by adopting $H_\infty $H infinity theory. Furthermore, Adaboost algorithm based on radial basis function (RBF) neural network was applied to design the system feedback mechanism, so the multiple weak neural network learners were obtained by using Adaboost algorithm to train system actual output and input. Also, these weak neural network learners constituted a strong learner to predict the electro-hydraulic servo system output and calculate the predictive error so as to adjust the system robust control output, so the real-time control was carried out by the robust controller. Some comparative simulated results are obtained to verify the proposed controller guarantees performances of low speed, tracking accuracy, and ability of anti-interference, which greatly expands the band of frequency response and improve the system robustness. C1 [Jing, Wang X.; Zhen, Liu M.; Wei, Sun Y.] Harbin Univ Sci & Technol, Sch Mech & Power Engn, Harbin, Heilongjiang, Peoples R China. [Wang, Xin] Jilin Univ, Sch Mech & Aerosp Engn, Changchun, Jilin, Peoples R China. C3 Harbin University of Science & Technology; Jilin University RP Zhen, LM (corresponding author), Harbin Univ Sci & Technol, Sch Mech & Power Engn, Harbin, Heilongjiang, Peoples R China. EM mzliu94@163.com FU National Natural Science Foundation of China [51305108]; Post Doctoral Researchers Settled in Heilongjiang Research Start Funding Projects [LBH-Q15069] FX This project was supported by National Natural Science Foundation of China (grant no. 51305108), and Post Doctoral Researchers Settled in Heilongjiang Research Start Funding Projects (no. LBH-Q15069). CR Cao Y., 2013, J AUTOM, V17, P342 Fu Q, 2018, IEEE SENS J, V18, P5024, DOI 10.1109/JSEN.2018.2830109 GUO Juan, 2009, THESIS Han Songshan, 2014, Journal of Beijing University of Aeronautics and Astronautics, V40, P321 He, 2010, RES PERFORMANCE CONT, P6 Hu J, 2015, ACTA ARMAMENTARII, V36, P34 Jammoussi AY, 2014, SPRINGERPLUS, V3, DOI 10.1186/2193-1801-3-355 Kuo W. H, 2017, IMCOM 17 P 11 INT C, V1 Li S., 2017, Modeling and compensation design of air pressure variation in high-speed elevator car and its application Liu C, 2010, J INSTRUM INSTRUM, V15, P345 Liu H., 2013, J INSTRUM INSTRUM, V34, P643 Liu Xiao-dong, 2011, Journal of Shanghai Jiaotong University, V45, P393 Liu Z. K, 2013, LINEAR ROBUST CONTRO Mohanty A, 2011, IEEE T CONTR SYST T, V19, P567, DOI 10.1109/TCST.2010.2048569 Mukherjee I, 2013, J MACH LEARN RES, V14, P2315 Sun M. H, 2016, MACH TOOLS HYDRAUL, V6, P1232 Sun WC, 2013, IEEE-ASME T MECH, V18, P1072, DOI 10.1109/TMECH.2012.2204765 Wu J. L, 2012, POWER GRID TECHNOL, V36, P345 Xiao L, 2018, ENERG CONVERS MANAGE, V160, P273, DOI 10.1016/j.enconman.2018.01.038 Xu DD., 2015, AIRCRAFT MANUF TECHN, V479, P86 Yao JY, 2012, CHINESE J AERONAUT, V25, P766, DOI 10.1016/S1000-9361(11)60443-3 NR 21 TC 1 Z9 2 U1 0 U2 7 PU INST ENGINEERING TECHNOLOGY-IET PI HERTFORD PA MICHAEL FARADAY HOUSE SIX HILLS WAY STEVENAGE, HERTFORD SG1 2AY, ENGLAND SN 2051-3305 J9 J ENG-JOE JI J. Eng.-JOE PD JAN PY 2019 IS 13 BP 60 EP 67 DI 10.1049/joe.2018.8970 PG 8 WC Engineering, Multidisciplinary WE Emerging Sources Citation Index (ESCI) SC Engineering GA HN0ZX UT WOS:000459918000009 OA gold DA 2024-09-05 ER PT J AU Doloreux, D de la Puerta, JG Pastor-López, I Gómez, IP Sanz, B Zabala-Iturriagagoitia, JM AF Doloreux, David Gaviria de la Puerta, Jose Pastor-Lopez, Iker Porto Gomez, Igone Sanz, Borja Mikel Zabala-Iturriagagoitia, Jon TI Territorial innovation models: to be or not to be, that's the question SO SCIENTOMETRICS LA English DT Article DE Territorial innovation models; Bibliometric analysis; Natural language processing; Regional development ID RESEARCH-AND-DEVELOPMENT; INDUSTRIAL DISTRICTS; KEYWORD COOCCURRENCE; LEARNING REGION; CLUSTERS; SCIENCE; SYSTEMS; POLICY; DYNAMICS; KNOWLEDGE AB Industrial agglomerations are key in explaining the development paths followed by territories, particularly at sub-national levels. This field of research has received increasing attention in the last decades, what has led to the emergence of a variety of models intended to characterize innovation at the regional level. Moulaert and Sekia (Reg Stud 37:289-302, 2003) introduced the concept of 'Territorial Innovation Models' (TIMs) as a generic name that embraced these conceptual models of regional innovation in the literature. However, the literature does not help to assess the extent to which convergence or divergence is found across TIMs. In this paper we aim to clarify if there are clear boundaries across TIMs, so each TIM has particular characteristics that make it conceptually different from others, and hence, justify its introduction in the literature. Based on natural language processing methodologies, we extract the key terms of a large volume of academic papers published in peer review journals indexed in the Web of Science for the following TIMS: industrial districts, innovative milieu, learning regions, clusters, regional innovation systems, local production systems and new industrial spaces. We resort to Rapid Automatic Keyword Extraction to identify the associations between the topics extracted from the previous corpus. Finally, a configuration to visualise the results of the methodology followed is also proposed. Our results evidence that the previous models do not have a unique flavour but are rather similar in their taste. We evidence that there is quite little that is truly new in the different TIMs in terms of theory-building and the concepts being used in each model. C1 [Doloreux, David] HEC Montreal, Dept Int Business, Montreal, PQ, Canada. [Gaviria de la Puerta, Jose; Pastor-Lopez, Iker; Sanz, Borja] Univ Deusto, Fac Engn, Ave Universidades 24, Bilbao 48007, Spain. [Porto Gomez, Igone] Univ Deusto, Deusto Business Sch, Ave Universidades 24, Bilbao 48007, Spain. [Mikel Zabala-Iturriagagoitia, Jon] Univ Deusto, Deusto Business Sch, Camino Mundaiz 50, Donostia San Sebastian 20012, Spain. C3 Universite de Montreal; HEC Montreal; University of Deusto; University of Deusto; University of Deusto RP Gómez, IP (corresponding author), Univ Deusto, Deusto Business Sch, Ave Universidades 24, Bilbao 48007, Spain. EM igone.porto@deusto.es RI Gomez, Igone Porto/J-4501-2014; Zabala-Iturriagagoitia, Jon Mikel/L-9297-2013; Sanz, Borja/L-8365-2014; Doloreux, David/Y-7368-2019 OI Gomez, Igone Porto/0000-0003-2865-4818; Zabala-Iturriagagoitia, Jon Mikel/0000-0003-1975-2555; Sanz, Borja/0000-0003-2039-7773; Doloreux, David/0000-0001-7101-2170 FU Eusko Jaurlaritza [IT885-16, H2020-700367] FX The funding was provided by Eusko Jaurlaritza (Grand No. IT885-16) and H2020 Societal Challenges (Grand No. H2020-700367). CR Agrawal R., 1993, SIGMOD Record, V22, P207, DOI 10.1145/170036.170072 Amara N, 2012, SCIENTOMETRICS, V93, P553, DOI 10.1007/s11192-012-0729-2 [Anonymous], 2005, OXFORD HDB INNOVATIO [Anonymous], 2005, P 1 INT WORKSH OP SO, DOI DOI 10.1145/1133905.1133907 Archambault É, 2006, SCIENTOMETRICS, V68, P329, DOI 10.1007/s11192-006-0115-z Archambault É, 2009, J AM SOC INF SCI TEC, V60, P1320, DOI 10.1002/asi.21062 Asheim BT, 2016, HANDBOOK ON THE GEOGRAPHIES OF INNOVATION, P45 Asheim BT, 2011, REG STUD, V45, P893, DOI 10.1080/00343404.2010.543126 Barrutia J, 2018, EVOL INST ECON REV, V15, P213, DOI 10.1007/s40844-018-0109-6 BECATTINI G., 1979, REV EC A POLITICA IN, P7 Becattini G., 2009, A Handbook of industrial districts Bergman EML, 2012, J ACAD LIBR, V38, P370, DOI 10.1016/j.acalib.2012.08.002 Bornmann L, 2018, SCIENTOMETRICS, V114, P427, DOI 10.1007/s11192-017-2591-8 Boschma R., 2007, IND INNOV, V14, P177, DOI [DOI 10.1080/13662710701253441, 10.1080/13662710701253441] Cainelli G, 2008, GROWTH CHANGE, V39, P414, DOI 10.1111/j.1468-2257.2008.00432.x Chavarro D, 2018, RES EVALUAT, V27, P106, DOI 10.1093/reseval/rvy001 Chen BT, 2017, J INFORMETR, V11, P1175, DOI 10.1016/j.joi.2017.10.003 Cobo MJ, 2012, J AM SOC INF SCI TEC, V63, P1609, DOI 10.1002/asi.22688 Cooke P, 1997, RES POLICY, V26, P475, DOI 10.1016/S0048-7333(97)00025-5 Courlet C, 1994, ORG PRODUCTION TERRI, P45 Crescenzi R, 2011, ENVIRON PLANN A, V43, P773, DOI 10.1068/a43492 Crevoisier O, 2004, ECON GEOGR, V80, P367 Cruz SCS, 2010, REG STUD, V44, P1263, DOI 10.1080/00343400903234670 De Marchi V, 2014, COMPET CHANG, V18, P70, DOI 10.1179/1024529413Z.00000000049 Doloreux D, 2017, EUR PLAN STUD, V25, P371, DOI 10.1080/09654313.2016.1244516 Dotti N. F, 2014, 1 GREATPI VRIJ U CTR Elgaml E. M., 2015, INT J COMPUTER ELECT, V9, P1087, DOI DOI 10.5281/ZENODO.1100847 Enkel E, 2009, R&D MANAGE, V39, P311, DOI 10.1111/j.1467-9310.2009.00570.x Evens E, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0098221 Fang L, 2015, J PLAN LIT, V30, P239, DOI 10.1177/0885412215589848 FLORIDA R, 1995, FUTURES, V27, P527, DOI 10.1016/0016-3287(95)00021-N Garcia-Lillo F, 2017, PAPERS REGIONAL SCI, V97, P835 Hahsler M., 2011, R Project Module, P223 Hassink R, 2005, EUR PLAN STUD, V13, P521, DOI 10.1080/09654310500107134 Henry N, 1996, AREA, V28, P25 Hervas-Oliver JL, 2015, EUR PLAN STUD, V23, P1827, DOI 10.1080/09654313.2015.1021300 Horváth K, 2019, REG STUD, V53, P330, DOI 10.1080/00343404.2018.1469741 Isaksen A., 1996, Norsk Geografisk Tidsskrift, V50, P113, DOI [10.1080/00291959608542834, DOI 10.1080/00291959608542834] Isaksen A, 2017, ECON GEOGR, V93, P436 Isaksen A, 2009, REG STUD, V43, P1155, DOI 10.1080/00343400802094969 Jesson J.K., 2011, Doing your literature review Lee PC, 2010, INNOV-MANAG POLICY P, V12, P26, DOI 10.5172/impp.12.1.26 Liu ZG, 2015, SCIENTOMETRICS, V103, P135, DOI 10.1007/s11192-014-1517-y LOUNSBURY JW, 1979, COMMUNITY MENT HLT J, V15, P267 Lundvall B.-A., 1988, Technical change and economic theory, P349 Maillat D., 1998, RECHERCHES CONOMIQUE, V64, P111 Markusen A, 2003, REG STUD, V37, P701, DOI 10.1080/0034340032000108796 Marshall A., 1890, PRINCIPLES EC MARSHALL Alfred., 1919, IND TRADE Mazzucato M, 2018, TECHNOL FORECAST SOC, V136, P166, DOI 10.1016/j.techfore.2017.03.034 Miettinen R., 2002, NATL INNOVATION SYST Morgan K, 1997, REG STUD, V31, P491, DOI 10.1080/00343409750132289 Moulaert F, 2005, EUR URBAN REG STUD, V12, P45, DOI 10.1177/0969776405048500 Moulaert F, 2003, REG STUD, V37, P289, DOI 10.1080/0034340032000065442 Muscio A, 2006, EUR PLAN STUD, V14, P773, DOI 10.1080/09654310500496073 O'Gorman C, 2004, ENTREP REGION DEV, V16, P459, DOI 10.1080/0898562042000224369 Olsen LS, 2012, EUR PLAN STUD, V20, P1785, DOI 10.1080/09654313.2012.723421 Onan A, 2016, EXPERT SYST APPL, V57, P232, DOI 10.1016/j.eswa.2016.03.045 Ortega-Colomer Francisco Javier, 2016, Journal of Technology Management & Innovation, V11, P139 Piore M., 1984, The Second Industrial Divide: Possibilities for Prosperity PORTER ME, 1990, HARVARD BUS REV, V68, P73 Porter ME, 2000, ECON DEV Q, V14, P15, DOI 10.1177/089124240001400105 Porter ME., 2008, EU C INN CLUST STOCK Porto Gomez I., 2014, THESIS Gómez IP, 2016, ENTREP REGION DEV, V28, P26, DOI 10.1080/08985626.2015.1095946 Rose S., 2010, TEXT MINING APPL THE, P1, DOI [DOI 10.1002/9780470689646.CH1, 10.1002/9780470689646.CH1, 10.1002/9780470689646.ch1] Santos I, 2012, EXPERT SYST APPL, V39, P13417, DOI 10.1016/j.eswa.2012.05.061 Scaringella L, 2018, TECHNOL FORECAST SOC, V136, P59, DOI 10.1016/j.techfore.2017.09.023 Scaringella L, 2016, TECHNOL FORECAST SOC, V112, P92, DOI 10.1016/j.techfore.2016.05.026 Schot J, 2018, RES POLICY, V47, P1554, DOI 10.1016/j.respol.2018.08.011 SCOTT AJ, 1988, INT J URBAN REGIONAL, V12, P171, DOI 10.1111/j.1468-2427.1988.tb00448.x Storper L.M., 1988, The Power of Geography, P21 Sun H, 2013, ADV INTEL SYS RES, V52, P250 Sun YT, 2016, SCIENTOMETRICS, V106, P17, DOI 10.1007/s11192-015-1778-0 Thushara MG, 2017, 2017 INTERNATIONAL CONFERENCE ON ADVANCES IN COMPUTING, COMMUNICATIONS AND INFORMATICS (ICACCI), P1695, DOI 10.1109/ICACCI.2017.8126087 Tödtling F, 2005, RES POLICY, V34, P1203, DOI 10.1016/j.respol.2005.01.018 Toivanen H, 2011, SCIENTOMETRICS, V88, P471, DOI 10.1007/s11192-011-0390-1 Tranfield D, 2003, BRIT J MANAGE, V14, P207, DOI 10.1111/1467-8551.00375 Tremblay D.G., 2005, Geographie, economie, societe, n, P37 Uriona-Maldonado M, 2012, SCIENTOMETRICS, V91, P977, DOI 10.1007/s11192-012-0653-5 Uyarra E, 2016, EU-SPRI FORUM SCI TE, P196 Wolfe DA, 2004, URBAN STUD, V41, P1071, DOI 10.1080/00420980410001675832 NR 82 TC 13 Z9 16 U1 2 U2 44 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0138-9130 EI 1588-2861 J9 SCIENTOMETRICS JI Scientometrics PD SEP PY 2019 VL 120 IS 3 BP 1163 EP 1191 DI 10.1007/s11192-019-03181-1 PG 29 WC Computer Science, Interdisciplinary Applications; Information Science & Library Science WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Computer Science; Information Science & Library Science GA IR4WE UT WOS:000481434200010 DA 2024-09-05 ER PT J AU Zope, B Mishra, S Shaw, K Vora, DR Kotecha, K Bidwe, RV AF Zope, Bhushan Mishra, Sashikala Shaw, Kailash Vora, Deepali Rahul Kotecha, Ketan Bidwe, Ranjeet Vasant TI Question Answer System: A State-of-Art Representation of Quantitative and Qualitative Analysis SO BIG DATA AND COGNITIVE COMPUTING LA English DT Article DE question answering system; bibliometric analysis; natural language processing; machine comprehension ID WEB; CATEGORIZATION; SIMILARITY; QUERIES; MODELS AB Question Answer System (QAS) automatically answers the question asked in natural language. Due to the varying dimensions and approaches that are available, QAS has a very diverse solution space, and a proper bibliometric study is required to paint the entire domain space. This work presents a bibliometric and literature analysis of QAS. Scopus and Web of Science are two well-known research databases used for the study. A systematic analytical study comprising performance analysis and science mapping is performed. Recent research trends, seminal work, and influential authors are identified in performance analysis using statistical tools on research constituents. On the other hand, science mapping is performed using network analysis on a citation and co-citation network graph. Through this analysis, the domain's conceptual evolution and intellectual structure are shown. We have divided the literature into four important architecture types and have provided the literature analysis of Knowledge Base (KB)-based and GNN-based approaches for QAS. C1 [Zope, Bhushan; Mishra, Sashikala; Shaw, Kailash; Vora, Deepali Rahul; Bidwe, Ranjeet Vasant] Symbiosis Int Deemed Univ SIU, Symbiosis Inst Technol, Pune 412115, India. [Kotecha, Ketan] Symbiosis Int Deemed Univ SIU, Symbiosis Inst Technol, Symbiosis Ctr Appl Artificial Intelligence SCAAI, Pune 412115, India. C3 Symbiosis International University; Symbiosis Institute of Technology (SIT); Symbiosis International University; Symbiosis Institute of Technology (SIT) RP Zope, B (corresponding author), Symbiosis Int Deemed Univ SIU, Symbiosis Inst Technol, Pune 412115, India. EM bhushan.zope.phd2021@sitpune.edu.in RI Vora, Deepali/AAB-8430-2019; Zope, Bhushan/GQP-7499-2022; Shaw, Kailash/AHC-6550-2022; Bidwe, Ranjeet/AGD-7872-2022; Shaw, Kailash/AAG-4625-2021; Kotecha, K/U-3927-2017 OI Vora, Deepali/0000-0003-3969-9800; Zope, Bhushan/0000-0003-2636-223X; Bidwe, Ranjeet/0000-0002-6801-3102; Shaw, Kailash/0000-0001-5677-7423; Kotecha, K/0000-0003-2653-3780 CR Inan HA, 2019, Arxiv, DOI arXiv:1909.12764 Abad-Navarro F, 2021, IEEE ACCESS, V9, P91282, DOI 10.1109/ACCESS.2021.3091413 Abujabal A, 2017, PROCEEDINGS OF THE 26TH INTERNATIONAL CONFERENCE ON WORLD WIDE WEB (WWW'17), P1191, DOI 10.1145/3038912.3052583 Akour Mohammed, 2011, American Journal of Applied Sciences, V8, P652, DOI 10.3844/ajassp.2011.652.661 [Anonymous], 2012, WWW 12, DOI DOI 10.1145/2187836.2187923 Athenikos SJ, 2010, COMPUT METH PROG BIO, V99, P1, DOI 10.1016/j.cmpb.2009.10.003 Bakhshi M, 2020, EXPERT SYST APPL, V146, DOI 10.1016/j.eswa.2020.113205 Bastian M., 2009, Association for the Advancement of Artificial Intelligence, DOI 10.13140/2.1.1341.1520 Berant Jonathan, 2013, EMPIRICAL METHODS NA, P1533 Berger A., 2000, SIGIR Forum, V34, P192 Bidwe RV, 2022, BIG DATA COGN COMPUT, V6, DOI 10.3390/bdcc6020044 Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993 Blooma MJ, 2009, PROCEEDINGS OF THE 2009 SIXTH INTERNATIONAL CONFERENCE ON INFORMATION TECHNOLOGY: NEW GENERATIONS, VOLS 1-3, P1522, DOI 10.1109/ITNG.2009.96 BOBROW DG, 1977, ARTIF INTELL, V8, P155, DOI 10.1016/0004-3702(77)90018-2 Bollacker K., 2008, P 2008 ACM SIGMOD IN, P1247 Budiharto W, 2020, J BIG DATA-GER, V7, DOI 10.1186/s40537-020-00341-6 Burke RD, 1997, AI MAG, V18, P57 Cai DF, 2004, FOURTH INTERNATIONAL CONFERENCE ON COMPUTER AND INFORMATION TECHNOLOGY, PROCEEDINGS, P1141, DOI 10.1109/CIT.2004.1357348 Cao NicolaDe., 2018, Question answering by reasoning across documents with graph convolutional networks Cao Yang Trista, 2019, arXiv Chen DQ, 2017, PROCEEDINGS OF THE 55TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2017), VOL 1, P1870, DOI 10.18653/v1/P17-1171 Chen DY, 2019, PROCEEDINGS OF THE 42ND INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL (SIGIR '19), P1021, DOI 10.1145/3331184.3331328 Chen YH, 2021, IEEE ACCESS, V9, P158638, DOI 10.1109/ACCESS.2021.3130667 Clark P., 1999, Question Answering Systems. Papers from the 1999 AAAI Fall Symposium, P43 Cocco R., 2019, P CEUR WORKSHOP P, V2400 Cui H, 2007, ACM T INFORM SYST, V25, DOI 10.1145/1229179.1229182 Cui WY, 2017, PROC VLDB ENDOW, V10, P565, DOI 10.14778/3055540.3055549 Dai ZH, 2016, PROCEEDINGS OF THE 54TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, VOL 1, P800 Das A, 2018, IEEE COMPUT SOC CONF, P2135, DOI 10.1109/CVPRW.2018.00279 Nguyen DQ, 2017, SEMANT WEB, V8, P511, DOI 10.3233/SW-150204 Day MY, 2020, 2020 IEEE 21ST INTERNATIONAL CONFERENCE ON INFORMATION REUSE AND INTEGRATION FOR DATA SCIENCE (IRI 2020), P419, DOI 10.1109/IRI49571.2020.00070 Devlin J., 2018, ARXIV Diefenbach D, 2018, KNOWL INF SYST, V55, P529, DOI 10.1007/s10115-017-1100-y Diefenbach D, 2017, IN SY AP IN WE HC, V10577, P48, DOI 10.1007/978-3-319-70407-4_10 Dimitrakis E, 2020, J INTELL INF SYST, V55, P233, DOI 10.1007/s10844-019-00584-7 Ding Ming, 2019, ARXIV Dong L, 2015, PROCEEDINGS OF THE 53RD ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS AND THE 7TH INTERNATIONAL JOINT CONFERENCE ON NATURAL LANGUAGE PROCESSING, VOL 1, P260 Donthu N, 2021, J BUS RES, V133, P285, DOI 10.1016/j.jbusres.2021.04.070 Du YP, 2005, LECT NOTES COMPUT SC, V3248, P81 Esposito M, 2020, INFORM SCIENCES, V514, P88, DOI 10.1016/j.ins.2019.12.002 Fader A, 2014, PROCEEDINGS OF THE 20TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING (KDD'14), P1156, DOI 10.1145/2623330.2623677 Ferrucci D, 2010, AI MAG, V31, P59, DOI 10.1609/aimag.v31i3.2303 Figueroa A, 2014, EXPERT SYST APPL, V41, P4730, DOI 10.1016/j.eswa.2014.02.004 Green Jr Bert F, 1961, Proceedings of the Western Joint Computer Conference, P219 Hao XY, 2007, 2007 THIRD INTERNATIONAL CONFERENCE ON INTELLIGENT INFORMATION HIDING AND MULTIMEDIA SIGNAL PROCESSING, VOL II, PROCEEDINGS, P325 Hao YC, 2017, PROCEEDINGS OF THE 55TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2017), VOL 1, P221, DOI 10.18653/v1/P17-1021 He X., 2016, ARXIV160400727 Hermann KM, 2015, ADV NEUR IN, V28 Hirschman L., 2001, Natural Language Engineering, V7, P275, DOI 10.1017/S1351324901002807 Hochreiter S, 1997, NEURAL COMPUT, V9, P1735, DOI [10.1162/neco.1997.9.1.1, 10.1007/978-3-642-24797-2] Höffner K, 2017, SEMANT WEB, V8, P895, DOI 10.3233/SW-160247 Hu S, 2018, P 2018 C EMP METH NA, P2098, DOI 10.18653/v1/d18-1234 Hu S, 2018, IEEE T KNOWL DATA EN, V30, P824, DOI 10.1109/TKDE.2017.2766634 Hu X, 2021, KNOWL INF SYST, V63, P819, DOI 10.1007/s10115-020-01534-4 Huang X, 2019, PROCEEDINGS OF THE TWELFTH ACM INTERNATIONAL CONFERENCE ON WEB SEARCH AND DATA MINING (WSDM'19), P105, DOI 10.1145/3289600.3290956 Huang Z, 2020, IEEE ACCESS, V8, P94341, DOI 10.1109/ACCESS.2020.2988903 Ittycheriah A., 2000, P 10 TEXT RETRIEVAL Jabalameli M, 2020, ETRI J, V42, P239, DOI 10.4218/etrij.2018-0312 Jiao J, 2021, KNOWL-BASED SYST, V228, DOI 10.1016/j.knosys.2021.107270 Jin H, 2019, IEEE ACCESS, V7, P75235, DOI 10.1109/ACCESS.2019.2918675 Kepei Zhang, 2010, 2010 Seventh International Conference on Fuzzy Systems and Knowledge Discovery (FSKD 2010), P2692, DOI 10.1109/FSKD.2010.5569607 Khodadi I, 2016, INFORM PROCESS MANAG, V52, P340, DOI 10.1016/j.ipm.2015.09.001 Khot T, 2018, AAAI CONF ARTIF INTE, P5189 Kim MY, 2015, LECT NOTES ARTIF INT, V9067, P244, DOI 10.1007/978-3-662-48119-6_18 Kolomiyets O, 2011, INFORM SCIENCES, V181, P5412, DOI 10.1016/j.ins.2011.07.047 Kwok C, 2001, ACM T INFORM SYST, V19, P242, DOI 10.1145/502115.502117 Le H., 2014, P KNOWLEDGE SYSTEMS Lehman J., 2010, P GEN EV COMP C, P103 Li G., 2018, P 30 INT C SOFTWARE Liu S, 2013, LECT NOTES ARTIF INT, V8208, P73, DOI 10.1007/978-3-642-41491-6_8 Liu XA, 2018, 2018 14TH INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND SECURITY (CIS), P179, DOI 10.1109/CIS2018.2018.00046 Liu YQ, 2016, 2016 3RD INTERNATIONAL CONFERENCE ON INFORMATION SCIENCE AND CONTROL ENGINEERING (ICISCE), P115, DOI 10.1109/ICISCE.2016.35 Lopez V, 2007, J WEB SEMANT, V5, P72, DOI 10.1016/j.websem.2007.03.003 Lopez V, 2011, SEMANT WEB, V2, P125, DOI 10.3233/SW-2011-0041 Lu JT, 2021, KNOWL-BASED SYST, V225, DOI 10.1016/j.knosys.2021.107098 Lu XL, 2019, PROCEEDINGS OF THE 42ND INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL (SIGIR '19), P105, DOI 10.1145/3331184.3331252 Lukovnikov D, 2019, LECT NOTES COMPUT SC, V11778, P470, DOI 10.1007/978-3-030-30793-6_27 Lukovnikov D, 2017, PROCEEDINGS OF THE 26TH INTERNATIONAL CONFERENCE ON WORLD WIDE WEB (WWW'17), P1211, DOI 10.1145/3038912.3052675 Luo D, 2020, IEEE IJCNN, DOI 10.1109/ijcnn48605.2020.9207186 Luo KQ, 2018, 2018 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING (EMNLP 2018), P2185 Maheshwari G, 2019, LECT NOTES COMPUT SC, V11778, P487, DOI 10.1007/978-3-030-30793-6_28 Manning CD, 2014, PROCEEDINGS OF 52ND ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS: SYSTEM DEMONSTRATIONS, P55, DOI 10.3115/v1/p14-5010 Mansouri A, 2008, INTERNATIONAL SYMPOSIUM OF INFORMATION TECHNOLOGY 2008, VOLS 1-4, PROCEEDINGS, P1014 Meditskos G., 2016, ACM INT C PROCEEDING, P153, DOI [10.1145/2993318.2993331, DOI 10.1145/2993318.2993331] Mikolov T., 2013, Advances in Neural Information Processing Systems, P3111 MILLER GA, 1995, COMMUN ACM, V38, P39, DOI 10.1145/219717.219748 Mishra A., 2010, Proceedings of the 2010 International Conference on Computational Intelligence and Communication Networks (CICN 2010), P548, DOI 10.1109/CICN.2010.108 Moldovan D, 2003, ACM T INFORM SYST, V21, P133, DOI 10.1145/763693.763694 Mollá D, 2007, COMPUT LINGUIST, V33, P41, DOI 10.1162/coli.2007.33.1.41 Moschitti A, 2003, PROC INT C TOOLS ART, P241, DOI 10.1109/TAI.2003.1250197 Neshati M, 2017, INFORM PROCESS MANAG, V53, P1026, DOI 10.1016/j.ipm.2017.04.002 Bach NX, 2020, CYBERN INF TECHNOL, V20, P112, DOI 10.2478/cait-2020-0008 Nicula B, 2015, ROEDUNET IEEE, P167, DOI 10.1109/RoEduNet.2015.7311988 NOSOFSKY RM, 1986, J EXP PSYCHOL GEN, V115, P39, DOI 10.1037/0096-3445.115.1.39 Otsuka A, 2018, COMPANION PROCEEDINGS OF THE WORLD WIDE WEB CONFERENCE 2018 (WWW 2018), P1063, DOI 10.1145/3184558.3191537 Pal A, 2012, ACM T INFORM SYST, V30, DOI 10.1145/2180868.2180872 Panchbhai A, 2020, COMM COM INF SC, V1232, P158, DOI 10.1007/978-3-030-65384-2_12 Patil S, 2022, INT J ADV COMPUT SC, V13, P445 Pedregosa F, 2011, J MACH LEARN RES, V12, P2825 Qiu XP, 2015, PROCEEDINGS OF THE TWENTY-FOURTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE (IJCAI), P1305 Qu YQ, 2018, Arxiv, DOI arXiv:1804.03317 Quarteroni S, 2009, NAT LANG ENG, V15, P73, DOI 10.1017/S1351324908004919 Rajpurkar P., 2016, P 2016 C EMPIRICAL M, P2383, DOI 10.18653/v1/D16-1264 Rajpurkar P, 2018, PROCEEDINGS OF THE 56TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, VOL 2, P784 Ravichandran D, 2002, 40TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, PROCEEDINGS OF THE CONFERENCE, P41 Rodrigo A, 2017, KNOWL-BASED SYST, V137, P83, DOI 10.1016/j.knosys.2017.09.015 Ruseti S., 2015, P CEUR WORKSHOP P, VVolume 1391 Seo Min Joon, 2016, arXiv Shah AA, 2019, KNOWL INF SYST, V58, P611, DOI 10.1007/s10115-018-1203-0 Shekarpour S, 2015, J WEB SEMANT, V30, P39, DOI 10.1016/j.websem.2014.06.002 Shin S, 2019, INFORM PROCESS MANAG, V56, P445, DOI 10.1016/j.ipm.2018.12.003 Singh K, 2018, LECT NOTES COMPUT SC, V10843, P624, DOI 10.1007/978-3-319-93417-4_40 Socher Richard, 2014, Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), P1532, DOI [10.3115/v1/D14-1162.https, DOI 10.3115/V1/D14-1162.HTTPS, 10.3115/v1/D14-1162] Song B, 2018, LECT NOTES COMPUT SC, V10942, P522, DOI 10.1007/978-3-319-93818-9_50 Song DZ, 2015, LECT NOTES COMPUT SC, V9367, P21, DOI 10.1007/978-3-319-25010-6_2 Song LF, 2018, Arxiv, DOI arXiv:1809.02040 Soricut R, 2006, INFORM RETRIEVAL, V9, P191, DOI 10.1007/s10791-006-7149-y Soricut R, 2004, HLT-NAACL 2004: HUMAN LANGUAGE TECHNOLOGY CONFERENCE OF THE NORTH AMERICAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, PROCEEDINGS OF THE MAIN CONFERENCE, P57 Srba I, 2016, ACM T WEB, V10, DOI 10.1145/2934687 Sutskever I, 2014, ADV NEUR IN, V27 To ND, 2020, IEEE SYS MAN CYBERN, P4236, DOI [10.1109/smc42975.2020.9282949, 10.1109/SMC42975.2020.9282949] Toba H, 2014, INFORM SCIENCES, V261, P101, DOI 10.1016/j.ins.2013.10.030 Tong PH, 2019, DATA SCI ENG, V4, P323, DOI 10.1007/s41019-019-00109-w Tran Q., 2014, KNOWLEDGE SYSTEMS EN Tu M., 2019, arXiv Tu M, 2019, 57TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2019), P2704 Vakulenko S, 2019, PROCEEDINGS OF THE 28TH ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT (CIKM '19), P1431, DOI 10.1145/3357384.3358026 van Eck NJ, 2010, SCIENTOMETRICS, V84, P523, DOI 10.1007/s11192-009-0146-3 Vollmers D., 2021, arXiv Wang LJ, 2016, LECT NOTES COMPUT SC, V10102, P885, DOI 10.1007/978-3-319-50496-4_82 Wang RZ, 2019, IEEE ACCESS, V7, P46773, DOI 10.1109/ACCESS.2019.2909826 Wang SJ, 2020, WWW'20: COMPANION PROCEEDINGS OF THE WEB CONFERENCE 2020, P63, DOI 10.1145/3366424.3382698 Wang SH, 2018, AAAI CONF ARTIF INTE, P5981 Wang W, 2018, PROCEEDINGS OF THE 56TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL), VOL 1, P1705 Wang WH, 2017, PROCEEDINGS OF THE 55TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2017), VOL 1, P189, DOI 10.18653/v1/P17-1018 Wang XZ, 2018, J COMPUT SCI TECH-CH, V33, P625, DOI 10.1007/s11390-018-1845-0 Wu LJ, 2020, COMM COM INF SC, V1157, P170, DOI 10.1007/978-981-15-3412-6_17 Xia L, 2008, PROCEEDINGS OF THE SECOND INTERNATIONAL SYMPOSIUM ON UNIVERSAL COMMUNICATION, P317, DOI 10.1109/ISUC.2008.18 Xiao Y., 2019, P 57 ANN M ASS COMPU Xie ZW, 2016, LECT NOTES COMPUT SC, V10102, P300, DOI 10.1007/978-3-319-50496-4_25 Xiong C, 2017, ARXIV Xiong HB, 2021, KNOWL-BASED SYST, V221, DOI 10.1016/j.knosys.2021.106954 Xu K, 2018, IEEE INT SYMP CIRC S, DOI 10.1109/ISCAS.2018.8350934 Xu K, 2015, LECT NOTES COMPUT SC, V9283, P414, DOI 10.1007/978-3-319-24027-5_43 Yang Z, 2018, arXiv Yin J., 2016, P 25 INT JOINT C ART, P2972 Yu M, 2017, PROCEEDINGS OF THE 55TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2017), VOL 1, P571, DOI 10.18653/v1/P17-1053 Yuan Sui, 2021, Journal of Physics: Conference Series, V1883, DOI 10.1088/1742-6596/1883/1/012064 Yue Wang, 2020, ICIAI 2020: Proceedings of the 2020 the 4th International Conference on Innovation in Artificial Intelligence, P170, DOI 10.1145/3390557.3394296 Zafar H, 2018, LECT NOTES COMPUT SC, V10843, P714, DOI 10.1007/978-3-319-93417-4_46 Zhang XB, 2018, INT CONF MANAGE DATA, P1753, DOI 10.1145/3183713.3193555 Zhao Z, 2015, IEEE T KNOWL DATA EN, V27, P993, DOI 10.1109/TKDE.2014.2356461 Zheng HT, 2018, PLOS ONE, V13, DOI 10.1371/journal.pone.0205097 Zheng WG, 2019, INFORM SCIENCES, V481, P141, DOI 10.1016/j.ins.2018.12.032 Zhu CH, 2018, Arxiv, DOI arXiv:1510.04780 Zhu GG, 2018, EXPERT SYST APPL, V101, P8, DOI 10.1016/j.eswa.2018.02.011 Zou L, 2014, SIGMOD'14: PROCEEDINGS OF THE 2014 ACM SIGMOD INTERNATIONAL CONFERENCE ON MANAGEMENT OF DATA, P313, DOI 10.1145/2588555.2610525 NR 157 TC 4 Z9 4 U1 2 U2 17 PU MDPI PI BASEL PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND EI 2504-2289 J9 BIG DATA COGN COMPUT JI Big Data Cogn. Comput. PD DEC PY 2022 VL 6 IS 4 AR 109 DI 10.3390/bdcc6040109 PG 33 WC Computer Science, Artificial Intelligence; Computer Science, Information Systems; Computer Science, Theory & Methods WE Emerging Sources Citation Index (ESCI) SC Computer Science GA 7D2TR UT WOS:000900349900001 OA gold DA 2024-09-05 ER PT J AU Cumiskey, KM Humphreys, L AF Cumiskey, Kathleen M. Humphreys, Lee TI Social, seamless, just, and open: Advancing mobile communication research SO NEW MEDIA & SOCIETY LA English DT Article DE AI; diversity; inclusivity; mobile phones; open access; open research; seamless; smartphones; social; social justice ID PHONE; TECHNOLOGY; INFORMATION; MIDWIVES; ACCESS; AGE AB Through integrating the research featured in this issue, this article describes generative areas for future research and the means to advance the impact of our field. Reflective practices related to field building and knowledge access for which Rich Ling helped to lay the groundwork are highlighted. Ling's work in mobile media and telecommunications has influenced the theoretical, methodological, and empirical opportunities for mobile communication research. Four themes for future mobile communication research have emerged: social, seamless, just, and open. These themes align with the work featured in this issue and with Ling's promotion of practices that enhance our field to develop relevancy, integrity, and ecological validity. This article places special focus on global and social justice as leading to a better understanding of mobile communication in the world. C1 [Cumiskey, Kathleen M.] CUNY, Coll Staten Isl, Dept Psychol, New York, NY USA. [Humphreys, Lee] Cornell Univ, Dept Commun, Ithaca, NY USA. [Humphreys, Lee] Cornell Univ, Qualitat & Interpret Res Inst, Ithaca, NY USA. [Cumiskey, Kathleen M.] CUNY, Coll Staten Isl, 2800 Victory Blvd,Bldg 4S-108, Staten Isl, NY 10314 USA. C3 City University of New York (CUNY) System; College of Staten Island (CUNY); Cornell University; Cornell University; City University of New York (CUNY) System; College of Staten Island (CUNY) RP Cumiskey, KM (corresponding author), CUNY, Coll Staten Isl, 2800 Victory Blvd,Bldg 4S-108, Staten Isl, NY 10314 USA. EM Katie.cumiskey@csi.cuny.edu CR Ali C, 2021, INFORM POL, P1 Alper M, 2017, JOHN D CATH T MAC, P1 [Anonymous], 2002, Smart mobs: The next social revolution Archambault JS, 2011, NEW MEDIA SOC, V13, P444, DOI 10.1177/1461444810393906 Bayer JB, 2016, COMMUN THEOR, V26, P128, DOI 10.1111/comt.12090 Brock A.L., 2020, Distributed blackness: African American cybercultures Brough M, 2018, MOB MEDIA COMMUN, V6, P247, DOI 10.1177/2050157917737812 Campbell S., 2014, Media and Social Life, P176 Campbell Scott W., 2014, Living Inside Mobile Social Information, P23 Chib A, 2013, MOB MEDIA COMMUN, V1, P69, DOI 10.1177/2050157912459502 Chib A, 2011, NEW MEDIA SOC, V13, P486, DOI 10.1177/1461444810393902 Chib A, 2010, J COMPUT-MEDIAT COMM, V15, P500, DOI 10.1111/j.1083-6101.2010.01515.x Clark MD., WE TRIED TELL YALL B Cumiskey K.M., 2017, Haunting Hands: Mobile Media Practices and Loss Silva ADE, 2011, NEW MEDIA SOC, V13, P411, DOI 10.1177/1461444810393901 Dienlin T, 2021, J COMMUN, V71, P1, DOI 10.1093/joc/jqz052 DIgnazio C, 2020, STRONG IDEAS SERIES, P1 Donner J, 2015, INFORM SOC SER, P1 Freelon Deen., 2016, HASHTAGS FERGUSON BL, DOI DOI 10.2139/SSRN.2747066 Gershon I, 2021, NEW MEDIA SOC, V23, P853, DOI 10.1177/1461444820954184 Goffman E., 1959, PRESENTATION SELF EV Goggin G, 2017, NEW MEDIA SOC, V19, P1563, DOI 10.1177/1461444817717512 Gonzales A, 2016, INFORM COMMUN SOC, V19, P234, DOI 10.1080/1369118X.2015.1050438 HJORTH L, 2020, ROUTL COMPANIONS Hjorth L, 2012, FEM MEDIA STUD, V12, P477, DOI 10.1080/14680777.2012.741860 Humphreys L, 2021, J COMMUN, V71, P855, DOI 10.1093/joc/jqab026 Humphreys L, 2021, MOB MEDIA COMMUN, V9, P103, DOI 10.1177/2050157920927062 Lewis NA, 2020, COMMUN METHODS MEAS, V14, P71, DOI 10.1080/19312458.2019.1685660 Lexander KV, 2011, NEW MEDIA SOC, V13, P427, DOI 10.1177/1461444810393905 Lim S.S., 2019, Transcendent Parenting: Raising Children in the Digital Age Ling R, 2010, NEW TECH, NEW TIES, P1 Ling R, 2012, TAKEN FOR GRANTEDNESS: THE EMBEDDING OF MOBILE COMMUNICATION INTO SOCIETY, P1 Ling R, 2002, PERPETUAL CONTACT: MOBILE COMMUNICATION, PRIVATE TALK, PUBLIC PERFORMANCE, P139 Ling R., 1997, Communications on the move: The experience of mobile telephony in the 1990s, P97 Ling R., 1997, THEMES MOBILE TELEPH Ling R, 2018, J COMPUT-MEDIAT COMM, V23, P69, DOI 10.1093/jcmc/zmy003 Ling R, 2016, J COMMUN, V66, P834, DOI 10.1111/jcom.12251 Ling R, 2014, INFORM SOC, V30, P282, DOI 10.1080/01972243.2014.915279 Ling R, 2011, NEW MEDIA SOC, V13, P363, DOI 10.1177/1461444810393899 Ling R, 2010, AM BEHAV SCI, V53, P1133, DOI 10.1177/0002764209356245 Ling Rich., 2011, Mobile Communication: Bringing Us Together and Tearing Us Apart Liu J., 2020, Shifting dynamics of contention in the digital age: Mobile communication and politics in China Morozov Evgeny., 2011, The Net Delusion: How Not to Liberate the World Nosek BA, 2015, SCIENCE, V348, P1422, DOI 10.1126/science.aab2374 Palackal A, 2011, NEW MEDIA SOC, V13, P391, DOI 10.1177/1461444810393900 Pearce KE, 2013, J COMMUN, V63, P721, DOI 10.1111/jcom.12045 Pew Research Center, 2019, MOB TECHN HOM BROADB Qiu JL, 2009, WORKING-CLASS NETWORK SOCIETY: COMMUNICATION TECHNOLOGY AND THE INFORMATION HAVE-LESS IN URBAN CHINA, P1 Reeves B., 1996, MEDIA EQUATION PEOPL, DOI 10.1300/j105v24n03_14 Richardson A., 2020, Bearing Witness While Black: African Americans, Smartphones, and the New Protest #Journalism Sey A, 2011, NEW MEDIA SOC, V13, P375, DOI 10.1177/1461444810393907 Steele C.K., 2021, Digital Black feminism Stevic A, 2022, MOB MEDIA COMMUN, V10, P294, DOI 10.1177/20501579211051820 Tenhunen S., 2018, A village goes mobile: Telephony, mediation, and social change in Rural India Wallis C, 2011, NEW MEDIA SOC, V13, P471, DOI 10.1177/1461444810393904 Wei R., 2021, News in Their Pockets: A Cross-City Comparative Study of Mobile News Consumption in Asia Wilken R., 2018, SAGE HDB SOCIAL MEDI, P279, DOI DOI 10.4135/9781473984066.N16 NR 57 TC 0 Z9 0 U1 1 U2 8 PU SAGE PUBLICATIONS LTD PI LONDON PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND SN 1461-4448 EI 1461-7315 J9 NEW MEDIA SOC JI New Media Soc. PD APR PY 2023 VL 25 IS 4 SI SI BP 833 EP 848 DI 10.1177/14614448231158642 EA APR 2023 PG 16 WC Communication WE Social Science Citation Index (SSCI) SC Communication GA E2SW2 UT WOS:000973458000001 DA 2024-09-05 ER PT C AU Rao, Y Zhong, XH Lu, SM AF Rao, Yuan Zhong, Xuhui Lu, Shumin GP IEEE TI Research on News Topic-driven Market Flucatuation and Predication SO 2016 INTERNATIONAL CONFERENCE ON IDENTIFICATION, INFORMATION AND KNOWLEDGE IN THE INTERNET OF THINGS (IIKI) LA English DT Proceedings Paper CT International Conference on Identification, Information and Knowledge in the Internet of Things (IIKI) CY OCT 20-21, 2016 CL Beijing, PEOPLES R CHINA DE News Topic Recognition; LP-based LDA; Degree of Influence; Price Movement AB In order to forecast the price movement of stock with the correlated news events, an enhanced Topic-driven model with the positional weight of feature words and label of stocks, named LP-LDA model, is proposed to represent and analyze the intrinsic mechanism in financial market. The experiment results show that LP-LDA has a better performance than traditional LDA model. Especially, when the number of topics are increasing, the running time of LP-LDA model are 0.69s, 0.78 s and 1.15s at 100, 200 and 300 topics, respectively, which are better than LDA. Furthermore, Degree of Influence (DoI) is defined to describe the considerable influence about the news events on the price movement of certain stock, which provides a new mechanism to measure the fluctuating price. The experiment results shown that the coefficient of correlation between news topic and return rate of stock is 0.9137, which is much higher than other results of experiment. C1 [Rao, Yuan; Zhong, Xuhui] Xi An Jiao Tong Univ, Sch Software Engn, Lab Social Intelligence & Complex Data Proc, Xian 710049, Peoples R China. [Lu, Shumin] Xi An Jiao Tong Univ, Sch Humanity Social Sci, Lab Social Intelligence & Complex Data Proc, Xian 710049, Peoples R China. C3 Xi'an Jiaotong University; Xi'an Jiaotong University RP Rao, Y (corresponding author), Xi An Jiao Tong Univ, Sch Software Engn, Lab Social Intelligence & Complex Data Proc, Xian 710049, Peoples R China. EM yuanrao@163.com; 2998999684@qq.com; Shuminlu@126.com FU Science and Technology Project of Xi'an City in China [CXY1514(5)]; Key Science and Technology Project of YanTa District of Xi'an [QX1404-2]; Key Collaborative Innovation Project of Shanxi Province in China [2015XT-21] FX This paper is joint supported by "2015 Key Collaborative Innovation Project of Shanxi Province in China (2015XT-21)", "2015 Science and Technology Project of Xi'an City in China(CXY1514(5))" and "2014 Key Science and Technology Project of YanTa District of Xi'an (QX1404-2)". CR [Anonymous], 2000, P KDD 2000 WORKSHOP Arthur W. B., 1995, Complexity, V1, P20 Blei D. M., 2003, LATENT DIRICHLET ALL Bordino I, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0040014 Engle R., 2016, VOLATILITY OVERVIEW Kullmann L, 2002, PHYS REV E, V66, DOI 10.1103/PhysRevE.66.026125 Montier James, 2010, DEFENSE OLD ALWAYS Preis T, 2013, SCI REP-UK, V3, DOI 10.1038/srep01684 Schumaker RP, 2009, ACM T INFORM SYST, V27, DOI 10.1145/1462198.1462204 Shiller Robert J, 1980, AM EC REV Zhang X, 2011, PROCD SOC BEHV, V26, DOI 10.1016/j.sbspro.2011.10.562 NR 11 TC 2 Z9 2 U1 0 U2 4 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA BN 978-1-5090-5952-2 PY 2016 BP 559 EP 562 DI 10.1109/IIKI.2016.93 PG 4 WC Computer Science, Information Systems; Engineering, Electrical & Electronic WE Conference Proceedings Citation Index - Science (CPCI-S) SC Computer Science; Engineering GA BJ6WP UT WOS:000426969900103 DA 2024-09-05 ER PT J AU Anghelescu, A Ciobanu, I Munteanu, C Anghelescu, LAM Onose, G AF Anghelescu, Aurelian Ciobanu, Ilinca Munteanu, Constantin Anghelescu, Lucia Ana Maria Onose, Gelu TI ChatGPT: "To be or not to be"... in academic research. The human mind's analytical rigor and capacity to discriminate between AI bots' truths and hallucinations SO BALNEO AND PRM RESEARCH JOURNAL LA English DT Article DE ChatGPT; academic writing; bibliographic resources; metha-analyse AB Background. ChatGPT can generate increasingly realistic language, but the correctness and integrity of implementing these models in scientific papers remain unknown. Recently published literature emphasized the "three faces of the coin" of ChatGPT: the negative impact on academic writing, limitations in analyzing and conducting extensive searches of references across multiple databases, and the superiority of the human mind. Method. The present study assessed the chatbot's ability for improvement and its propensity for self-correction at various points in 2023. Starting from previous papers published in our clinic, the authors repeatedly challenged the ChatGPT to conduct extensive searches for references across multiple databases at different time intervals (in March and September 2023). The bot was asked to find recent meta-analyses on a particular topic. Results. The replies (print screens) generated in March and September 2023 serve as evidence of the OpenAI platform's qualitative development and improvement. During the first contact with ChatGPT-3, one noticed significant content flows and drawbacks. ChatGPT provided references and short essays, but none of them were real, despite ChatGPT's clear affirmative response. When searching PubMed IDs, all DOI numbers indicated by the chatbot correlated to various unconnected manuscripts. After a few months, the authors repeated the same interrogative provocations and observed a significant shift in the replies. The ChatGPT-3.5 delivered balanced responses, emphasizing the superiority of the human intellect and advocating traditional academic research techniques and methods. Discussion. A recent comparative systematic analysis using the PRISMA method using the same keyword syntactic correlations to search for systematic literature or open sources has revealed the superiority of the classical scholarly method of research. In contrast, every document (title, authors, doi) that ChatGPT-3 initially delivered was erroneous and associated with a different field or topic. Literature published during the first trimester of 2023 emphasized ChatGPT`s hallucinatory tendency to supply fake "bibliographic resources" and confabulatory attempts to paraphrase nonexistent "research papers" presented as authentic articles. A second inquiry was realized six months later generated reserved and cautious solutions, indicating the researcher should analyze and carefully verify the information from specialized academic databases. Conclusions. The paper succinctly describes the flows and initial limitations of the ChatGPT-3 version and the process of updating and improving the GPT-3.5 system during 2023. ChatGPT might be a possible adjunct to academic writing and scientific research, considering any limitations that might jeopardize the study. The new perspective from ChatGPT claims that human intelligence and thought must thoroughly assess any AI information. C1 [Anghelescu, Aurelian; Onose, Gelu] Carol Davila Univ Med & Pharm, Bucharest, Romania. [Anghelescu, Aurelian; Ciobanu, Ilinca; Munteanu, Constantin; Onose, Gelu] Teaching Emergency Hosp Bagdasar Arseni TEHBA, Bucharest, Romania. [Munteanu, Constantin] Univ Med & Pharm Grigore T Popa Iasi, Iasi, Romania. C3 Carol Davila University of Medicine & Pharmacy; Grigore T Popa University of Medicine & Pharmacy RP Anghelescu, A (corresponding author), Carol Davila Univ Med & Pharm, Bucharest, Romania.; Anghelescu, A (corresponding author), Teaching Emergency Hosp Bagdasar Arseni TEHBA, Bucharest, Romania. EM aurelian.anghelescu@umfcd.ro RI Munteanu, Constantin/ACM-9541-2022 OI Munteanu, Constantin/0000-0002-1084-7710 CR Alkaissi H, 2023, CUREUS J MED SCIENCE, V15, DOI 10.7759/cureus.35179 Anghelescu A, 2023, BIOMEDICINES, V11, DOI 10.3390/biomedicines11061623 Azamfirei R, 2023, CRIT CARE, V27, DOI 10.1186/s13054-023-04393-x Beutel G, 2023, CRIT CARE, V27, DOI 10.1186/s13054-023-04425-6 Cahan P, 2023, STEM CELL REP, V18, P1, DOI 10.1016/j.stemcr.2022.12.009 Cascella M, 2023, J MED SYST, V47, DOI 10.1007/s10916-023-01925-4 Dahmen J, 2023, KNEE SURG SPORT TR A, V31, P1187, DOI 10.1007/s00167-023-07355-6 Eysenbach Gunther, 2023, JMIR Med Educ, V9, pe46885, DOI 10.2196/46885 Folstad A, 2021, COMPUTING, V103, P2915, DOI 10.1007/s00607-021-01016-7 Huh S, 2023, J EDUC EVAL HEALTH P, V20, DOI 10.3352/jeehp.2023.20.1 Jeblick Katharina, 2022, arXiv, DOI 10.48550/arXiv.2212.14882 Kostick-Quenet KM, 2022, NPJ DIGIT MED, V5, DOI 10.1038/s41746-022-00737-z la Fleur P, 2022, PLOS ONE, V17, DOI 10.1371/journal.pone.0270497 Lee JY, 2023, J EDUC EVAL HEALTH P, V20, DOI 10.3352/jeehp.2023.20.6 Liverpool L, 2023, NATURE, V618, P222, DOI 10.1038/d41586-023-01780-w Marchandot Benjamin, 2023, Eur Heart J Open, V3, poead007, DOI 10.1093/ehjopen/oead007 Moons P, ChatGPT: Can Artificial Intelligence Language Models be of Value for Cardiovascular Nurses and Allied Health Professionals, DOI [10.1093/eurjcn/zvad022/7031481, DOI 10.1093/EURJCN/ZVAD022/7031481] Munteanu C, 2022, CURR ISSUES MOL BIOL, V44, P3378, DOI 10.3390/cimb44080233 Onose G, 2022, INT J MOL SCI, V23, DOI 10.3390/ijms23020907 Onose G, 2021, FRONT BIOSCI-LANDMRK, V26, P1204, DOI 10.52586/5020 Onose G, 2017, FARMACIA, V65, P772 opengenus, About us Patel S, 2023, LANCET DIGIT HEALTH, V5, pE102, DOI 10.1016/S2589-7500(23)00023-7 Sallam M, 2023, HEALTHCARE-BASEL, V11, DOI 10.3390/healthcare11060887 Salvagno M, 2023, CRIT CARE, V27, DOI 10.1186/s13054-023-04380-2 Shen YQ, 2023, RADIOLOGY, V307, DOI 10.1148/radiol.230163 Stokel-Walker C, 2023, NATURE, V614, P214, DOI 10.1038/d41586-023-00340-6 Stokel-Walker Chris, 2022, Nature, DOI 10.1038/d41586-022-04397-7 NR 28 TC 0 Z9 0 U1 11 U2 11 PU ROMANIAN ASSOC BALNEOLOGY PI BUCHAREST PA SECTOR 2, ALEEA DOBRINA NO 7, BL D10, SC A, AP 4, BUCHAREST, ROMANIA SN 2734-844X EI 2734-8458 J9 BALNEO PRM RES J JI Balneo PRM Res. J. PD DEC PY 2023 VL 14 IS 4 AR 614 DI 10.12680/balneo.2023.614 PG 9 WC Rehabilitation WE Emerging Sources Citation Index (ESCI) SC Rehabilitation GA IN9F3 UT WOS:001167118000019 OA gold DA 2024-09-05 ER PT J AU Mateo, FW Redchuk, A AF Walas Mateo, Federico Redchuk, Andres TI Artificial Intelligence as a Process Optimization Driver under Industry 4.0 Framework and the Role of IIoT, a Bibliometric Analysis SO JOURNAL OF INDUSTRIAL INTEGRATION AND MANAGEMENT-INNOVATION AND ENTREPRENEURSHIP LA English DT Article; Early Access DE Industry digitalization; Industry 4.0; industrial Internet of Things (IIoT); AI/ML; data-driven culture; people empowerment; data-driven process optimization AB Connected products generate data that are being seen as a key source of competitive advantage, and the management and processing of that data are generating new challenges in the industrial environment. This paper proposes a conceptual framework and preliminary findings to go deeper into a bibliometric analysis around the idea of artificial intelligence and machine learning (AI/ML) as a tool for the optimization of processes within the Industry 4.0 model. Methodologically, a technological mapping was carried out through an exercise on Scopus indexed database, the results of which were analyzed using bibliometric indicators. The bibliometric study is completed with a screening of relevant papers searching for linking among the industrial Internet of Thing (IIoT) or Internet of Thing (IoT), IA/ML and process optimization. Finally, this paper gives information about the state-of-the-art AI/ML applied to the optimization of industrial processes and presents a novel Canadian startup that has a business model that aims to make AI/ML easy to use in the industrial world towards a lean processes strategy. C1 [Walas Mateo, Federico] Univ Nacl Arturo Jauretche, RA-1888 Buenos Aires, DF, Argentina. [Redchuk, Andres] Univ Nacl Lomas de Zamora, Fac Ingn, Buenos Aires, DF, Argentina. [Redchuk, Andres] Univ Rey Juan Carlos, ETSII, Madrid, Spain. C3 National University of Lomas de Zamora; Universidad Rey Juan Carlos RP Mateo, FW (corresponding author), Univ Nacl Arturo Jauretche, RA-1888 Buenos Aires, DF, Argentina. EM fedewalas@gmail.com RI Redchuk, Andrés/ABF-6067-2021 OI Redchuk, Andrés/0000-0001-5903-166X; WALAS MATEO, FEDERICO/0000-0001-5437-5789 FU Resolution Engineering Faculty of University of Lomas de Zamora, Buenos Aires, Argentine [148-18-UNAJ] FX The authors wish to thank for the support received from two research projects. The projects are "Analisis del abordaje de herramientas de Produccion 4.0 en PyMEs locales," approved by Resolution (R) No. 148-18-UNAJ INVESTIGA 2017 Program, and "Mejora de Procesos, Optimizacion y Data Analytics," approved by Resolution Engineering Faculty of University of Lomas de Zamora, Buenos Aires, Argentine. CR Bellini P, 2022, J IND INF INTEGR, V26, DOI 10.1016/j.jii.2021.100276 Brun L, 2019, BOOK TRANSFORMING IN Chen H, 2021, J MANAG ANAL, V8, P36, DOI 10.1080/23270012.2020.1852895 Chen YJ., 2018, APPL SOFT COMPUT Da Silva VL, 2020, INT J COMPUT INTEG M, V33, P325, DOI 10.1080/0951192X.2019.1699258 Davenport TH, 2020, IS AI GETTING EASIER Davenport TH, 2018, J BUS ANAL, V1, P73, DOI 10.1080/2573234X.2018.1543535 Erozan I, 2019, J MANUF SYST, V52, P110, DOI 10.1016/j.jmsy.2019.06.002 Gorkhali A, 2022, J IND INTEGR MANAG, V07, P311, DOI 10.1142/S2424862222500075 Grover V, 2018, J MANAGE INFORM SYST, V35, P388, DOI 10.1080/07421222.2018.1451951 Hansen EB, 2021, J MANUF SYST, V58, P362, DOI 10.1016/j.jmsy.2020.08.009 Ibarra D, 2018, PROCEDIA MANUF, V22, P4, DOI 10.1016/j.promfg.2018.03.002 Islam N., 2019, TECHNOLOGICAL FORECA Javaid M, 2022, J IND INTEGR MANAG, V07, P83, DOI 10.1142/S2424862221300040 Kagermann H, 2011, VDI NACHRICHTEN, V13, P2 Kang ZQ, 2020, COMPUT IND ENG, V149, DOI 10.1016/j.cie.2020.106773 Lara P, 2020, J IND INF INTEGR, V19, DOI 10.1016/j.jii.2020.100160 Lu Y, 2019, J MANAG ANAL, V6, P1, DOI 10.1080/23270012.2019.1570365 Merediz-Solà I, 2019, RES INT BUS FINANC, V50, P294, DOI 10.1016/j.ribaf.2019.06.008 Merkas Zvonko, 2020, International Journal of E-Services and Mobile Applications, V12, P1, DOI 10.4018/IJESMA.2020010101 Muhuri PK, 2019, ENG APPL ARTIF INTEL, V78, P218, DOI 10.1016/j.engappai.2018.11.007 Park Y, 2020, INT J COMPUT INTEG M, V33, P1259, DOI 10.1080/0951192X.2020.1815850 Porter ME, 2014, HARVARD BUS REV, V92, P64 Ruiz-Sarmiento JR, 2020, ENG APPL ARTIF INTEL, V87, DOI 10.1016/j.engappai.2019.103289 Seetharaman A, 2019, J MANUF TECHNOL MANA, V30, P1161, DOI 10.1108/JMTM-08-2018-0278 Sharma D, 2019, COMPETING AGE AISTRA Silveira GDN, 2020, SENSORS-BASEL, p5752S Van Eck N.J., 2020, VOSviewer Manual Version 1.6.16, P1 Vater J, 2019, PROC 2019 8 INT C IN Walas Mateo F, 2020, IND INTERNET THINGS, P1123 Xu LD., 2014, ENTERPRISE INTEGRATI Xu LD, 2011, IEEE T IND INFORM, V7, P630, DOI 10.1109/TII.2011.2167156 Yang S, 2020, COMPUT CHEM ENG, V140, DOI 10.1016/j.compchemeng.2020.106874 Zhang CM, 2021, J IND INF INTEGR, V23, DOI 10.1016/j.jii.2021.100224 NR 34 TC 7 Z9 7 U1 8 U2 43 PU WORLD SCIENTIFIC PUBL CO PTE LTD PI SINGAPORE PA 5 TOH TUCK LINK, SINGAPORE 596224, SINGAPORE SN 2424-8622 EI 2424-8630 J9 J IND INTEGR MANAG JI J. Ind. Integr. Manag. PD 2022 SEP 17 PY 2022 DI 10.1142/S2424862222500130 EA SEP 2022 PG 16 WC Management WE Emerging Sources Citation Index (ESCI) SC Business & Economics GA 4P0VC UT WOS:000855112700001 DA 2024-09-05 ER PT J AU Semushin, IV Tsyganova, JV Ugarov, VV Afanasova, AI AF Semushin, I. V. Tsyganova, J. V. Ugarov, V. V. Afanasova, A. I. TI The WHATs and HOWs of maturing computational and software engineering skills in Russian higher education institutions SO EUROPEAN JOURNAL OF ENGINEERING EDUCATION LA English DT Article DE Active learning; assessment of learning outcomes; engineering education research; mathematics education; project organised learning ID LEARNING APPROACH; MOTIVATION; MODEL AB Russian higher education institutions' tradition of teaching large-enrolled classes is impairing student striving for individual prominence, one-upmanship, and hopes for originality. Intending to converting these drawbacks into benefits, a Project-Centred Education Model (PCEM) has been introduced to deliver Computational Mathematics and Information Science courses. The model combines a Frontal Competitive Approach and a Project-Driven Learning (PDL) framework. The PDL framework has been developed by stating and solving three design problems: (i) enhance the diversity of project assignments on specific computation methods algorithmic approaches, (ii) balance similarity and dissimilarity of the project assignments, and (iii) develop a software assessment tool suitable for evaluating the technological maturity of students' project deliverables and thus reducing instructor's workload and possible overlook. The positive experience accumulated over 15 years shows that implementing the PCEM keeps students motivated to strive for success in rising to higher levels of their computational and software engineering skills. C1 [Semushin, I. V.; Tsyganova, J. V.; Ugarov, V. V.; Afanasova, A. I.] Ulyanovsk State Univ, Math Informat & Aviat Technol Fac, Ulyanovsk, Russia. C3 Ulyanovsk State University RP Semushin, IV (corresponding author), Ulyanovsk State Univ, Math Informat & Aviat Technol Fac, Ulyanovsk, Russia. EM i.v.semushin@ieee.org RI Tsyganova, Julia V./F-7169-2013 OI Tsyganova, Julia V./0000-0001-8812-6035 CR 21CenturyEdTech, 2015, 21 CENT ED TECHN LEA Abran A., 2010, Software metrics and software metrology Afanasova A. I., 2015, [No title captured], Patent No. 2015611297 Al Qutaish R.E., 2005, International Workshop on Software Measurement, P337 Al-Qutaish RE, 2011, J RES PRACT INF TECH, V43, P307 Ala-Mutka KM, 2005, COMPUT SCI EDUC, V15, P83, DOI 10.1080/08993400500150747 [Anonymous], 2007, Mindset: The new psychology of success [Anonymous], 2011, Education Digest, V77, P43 Bandor M. S., 2006, CMU/SEI-2006-TN-026 Barge S., 2010, Principles of problem and project based learning: The Aalborg PBL Model Bell Stephanie., 2010, CLEARING HOUSE, V83, P39, DOI [10.1080/00098650903505415, DOI 10.1080/00098650903505415] Berander P., 2005, SOFTWARE QUALITY ATT Boehm B.W., 1978, Characteristics of Software Quality Bucur I., 2006, J APPL QUANTITATIVE, V1, P210 Chawla S, 2013, INT J ADV COMPUT SC, V4, P161 Cheong F, 2008, J INF TECHNOL EDUC-R, V7, P47 Chuchalin A, 2016, EUR J ENG EDUC, V41, P426, DOI 10.1080/03043797.2015.1085837 Crawley E., 2001, CDIO SYLLABUS STATEM, V1, P2001 Davies J., 2011, PBL across the disciplines: Research into best practice de Graaff E., 2015, P 13 INT WORKSH ACT Dhawan K., 2012, INT J SOFTWARE WEB S, P4 DiPiro JT, 2009, AM J PHARM EDUC, V73, DOI 10.5688/aj7308137 Dole S, 2016, INTERDIS J PROBL-BAS, V10, DOI 10.7771/1541-5015.1538 Douce C., 2005, Journal on Educational Resources in Computing (JERIC), V5, P4, DOI DOI 10.1145/1163405.1163409 DROMEY RG, 1995, IEEE T SOFTWARE ENG, V21, P146, DOI 10.1109/32.345830 Dumestre J., 1997, P 2 INT SIM TECHN TR, P447 Faculty Development and Instructional Design Center, 2015, RUBR ASS Forcheri P., 2007, GIVING TEACHERS HDB, P301 Frank M, 2003, INT J TECHNOL DES ED, V13, P273, DOI 10.1023/A:1026192113732 Frier J. R., 2015, J COMPUTER SCI INFOR, V3, P01, DOI [10. 15640/jcsit. v3n1a1, DOI 10.15640/JCSIT.V3N1A1] Gancarski A.L., 2013, P 2 S LANGUAGES APPL, VVolume 29, P129, DOI [10.4230/OASIcs.SLATE.2013.129, DOI 10.4230/OASICS.SLATE.2013.129] Gelman A, 2005, ANN STAT, V33, P1, DOI 10.1214/009053604000001048 Hadim H. A., 2002, 32nd Annual Frontiers in Education. Conference Proceedings (Cat.No.02CH37351), pF3F, DOI 10.1109/FIE.2002.1158200 Halstead Maurice Howard, 1977, Elements of software science, V7 Harrigan G., 2014, THESIS Heitmann G., 1996, European Journal of Engineering Education, V21, P121, DOI 10.1080/03043799608923395 Herman Geoffrey L., 2013, 2013 IEEE Frontiers in Education Conference (FIE), P1203, DOI 10.1109/FIE.2013.6685021 Humphrey W.S., 1989, MANAGING SOFTWARE PR HUMPHREY WS, 1988, IEEE SOFTWARE, V5, P73, DOI 10.1109/52.2014 HUNG SL, 1993, COMPUT EDUC, V20, P183, DOI 10.1016/0360-1315(93)90086-X Ihantola P., 2011, THESIS Ihantola Petri, 2010, P 10 KOL CALL INT C, P86, DOI 10.1145/1930464.1930480 [International Software Testing Qualifications Board ISTQB Glossary Working Group Judy McKay (Chair) and Matthias Hamburg (Vice-Chair)], 2015, STAND GLOSS TERMS US Jackson D, 1996, COMPUT EDUC, V27, P171, DOI 10.1016/S0360-1315(96)00025-5 Jackson D, 2000, SIGCSE BULL, V32, P164, DOI 10.1145/353519.343160 Jones D., 2009, LEARNING PYRAMID TRU Khalane T., 2013, THESIS Kolmos A., 1996, European Journal of Engineering Education, V21, P141, DOI 10.1080/03043799608923397 Leach R. J., 1995, SIGCSE Bulletin, V27, P41, DOI 10.1145/201998.202010 Lehmann M, 2008, EUR J ENG EDUC, V33, P283, DOI 10.1080/03043790802088566 Levine D.M., 2008, Statistics for managers using Microsoft Excel, V5th Lincke R, 2008, INT S SOFTW TEST AN, P131 Llorens A, 2017, EUR J ENG EDUC, V42, P382, DOI 10.1080/03043797.2016.1189880 Love B, 2014, INT J MATH EDUC SCI, V45, P317, DOI 10.1080/0020739X.2013.822582 Ma K, 2014, INT J EMERG TECHNOL, V9, P26, DOI 10.3991/ijet.v9i9.4006 Manoharan T., 2014, INT J RES INFO TECH, V2, P1 McDermott K. J., 2007, 37 ASEE IEEE FRONT E, P1 Mengel SA, 1999, PROCEEDINGS OF THE THIRTIETH SIGCSE TECHNICAL SYMPOSIUM ON COMPUTER SCIENCE EDUCATION, P78, DOI 10.1145/384266.299689 Mengel SA, 1998, PROC FRONT EDUC CONF, P1213, DOI 10.1109/FIE.1998.738617 Metiri Group Commissioned by Cisco, 2008, MULT LEARN MED WHAT Miller CJ, 2013, ADV PHYSIOL EDUC, V37, P347, DOI 10.1152/advan.00050.2013 Miller H., 2013, PROJECT LAB MAT Mills J. E., 2003, J. Australasian Assoc. Eng. Educ., V3, P2 Min Liu, 2002, Journal of Interactive Learning Research, V13, P311 Murgu A., 2017, P REG SCI METH C UL, P151 Noguez J., 2004, P 2 INT WORKSH DES C, P83 Okeyinka A. E., 2012, INT J APPL SCI TECHN, V2, P106 Ortega J. M., 1998, INTRO PARALLEL VECTO ostlund B., 2015, EUROPEAN J OPEN DIST Paulk M. C., 1995, The Capability Maturity Model: Guide- lines for Improving the Software Process Pearlman Bob., 2009, 21 CENTURY SKILLS RE, P117 Pearlman Bob., 2009, T L 2009 C DENV CO O Perrenet J C, 2000, Teaching in Higher Education, V3, P345, DOI [DOI 10.1080/13562510050084730, 10.1080/713699144, DOI 10.1080/713699144] Pintrich PR, 2003, J EDUC PSYCHOL, V95, P667, DOI 10.1037/0022-0663.95.4.667 Powell P., 2000, CHARACTERISTICS PROJ Proctor H., 2015, CONTROVERSIES EDUCAT Renyi A., 1967, DIALOGUSOK MATEMATIK Roerich N., 1921, NICHOLAS ROERICH MUS Rooch A., 2015, EUROPEAN J ENG ED, P1, DOI 10. 1080/03043797. 2015. 1056095 Sanders J., 1994, SOFTWARE QUALITY FRA Sarper Huseyin., 2013, P 2013 AM SOC ENG ED, P105 Sawyer SF, 2009, J MAN MANIP THER, V17, pE27, DOI 10.1179/jmt.2009.17.2.27E Schachterle L., 1996, European Journal of Engineering Education, V21, P115, DOI [DOI 10.1080/03043799608923394, https://doi.org/10.1080/03043799608923394] Semoushin I, 2003, LECT NOTES COMPUT SC, V2658, P1098 Semushin I. V., 2005, PRACTICAL WORKS OPTI Semushin I. V., 2014, COMPUTING METHODS US Semushin I. V., 2002, 2 INT C TEACH MATH U Semushin I. V., 1995, LAB EXPT COMPUTATI 1 Semushin I. V., 1997, STOCHASTIC MODELS ES Semushin I. V., 2005, LINEAR PROGRAMMING E Semushin I. V., 2011, COMPUTATIONAL METHOD Semushin I. V., 1999, PRACTICAL COURSE OPT Semushin I. V., 2014, COMPUTATIONAL LINEAR Shereni T., 2014, THESIS Smith B., 1992, What is Collaborative Learning? Collaborative Learning: A Sourcebook for Higher Education, P9 Stevens J. W., 2013, P 2013 AM SOC ENG ED, P27 Sturmer I., 2010, AUTOMOTIVE SAFETY SE, P69 Talbert R., 2014, Primus, V24, P361, DOI [DOI 10.1080/10511970.2014.883457, 10.1080/10511970.2014.883457] Thinkful's Curriculum Team, 2015, PROJ BAS VS PROJ DRI Thomas J. W., 2000, REV RES PROJECT BASE Tien C. J., 2004, P 9 WORLD C CONT ENG, P15 Trenshaw KF, 2014, INT J ENG EDUC, V30, P837 Tsypkin J. Z., 1970, INTRO SELF LEARNING Ugarov V. V., 2005, THESIS Wade A. M., 2013, IMPACTING STUDENT AT Willey K., 2012, P 42 ASEE IEEE FRONT, P15 Willey K, 2013, 2013 ASEE INTERNATIONAL FORUM Wolkenhauer O., 2001, DATA ENG FUZZY MATH Yang Aimin, 2009, Journal of Software, V4, P1110, DOI 10.4304/jsw.4.10.1110-1118 Yu S., 2010, 2010 2 IEEE INT C IN, P352, DOI [10.1109/ICIME.2010.5477581, DOI 10.1109/ICIME.2010.5477581] NR 110 TC 1 Z9 1 U1 0 U2 3 PU TAYLOR & FRANCIS LTD PI ABINGDON PA 2-4 PARK SQUARE, MILTON PARK, ABINGDON OR14 4RN, OXON, ENGLAND SN 0304-3797 EI 1469-5898 J9 EUR J ENG EDUC JI Eur. J. Eng. Educ. PY 2018 VL 43 IS 3 SI SI BP 446 EP 472 DI 10.1080/03043797.2017.1385594 PG 27 WC Education & Educational Research WE Emerging Sources Citation Index (ESCI) SC Education & Educational Research GA GA9QF UT WOS:000428675200009 DA 2024-09-05 ER PT J AU Chen, HS Wang, XM Pan, SR Xiong, F AF Chen, Hongshu Wang, Ximeng Pan, Shirui Xiong, Fei TI Identify Topic Relations in Scientific Literature Using Topic Modeling SO IEEE TRANSACTIONS ON ENGINEERING MANAGEMENT LA English DT Article DE Bibliometrics; tech mining; text mining; topic analysis ID BIG DATA; CITATION; TEXT; INFORMATION; TECHNOLOGY; SCIENCE; EMERGENCE; MAP AB Over the past five years, topic models have been applied to bibliometrics research as an efficient tool for discovering latent and potentially useful content. The combination of topic modeling algorithms and bibliometrics has generated new challenges of interpreting and understanding the outcome of topic modeling. Motivated by these new challenges, this paper proposes a systematic methodology for topic analysis in scientific literature corpora to face the concerns of conducting post topic modeling analysis. By linking the corpus metadata with the discovered topics, we feature them with a number of topic-based analytic indices to explore their significance, developing trend, and received attention. A topic relation identification approach is then presented to quantitatively model the relations among the topics. To demonstrate the feasibility and effectiveness of our methodology, we present two case studies, using big data and dye-sensitized solar cell publications derived from searches in World of Science. Possible application of the methodology in telling good stories of a target corpus is also explored to facilitate further research management and opportunity discovery. C1 [Chen, Hongshu] Beijing Inst Technol, Sch Management & Econ, Beijing 100081, Peoples R China. [Wang, Ximeng; Xiong, Fei] Beijing Jiaotong Univ, Sch Elect & Informat Engn, Beijing 100044, Peoples R China. [Wang, Ximeng] Univ Technol Sydney, Fac Engn & Informat Techno Logy, Ctr Artificial Intelligence, Ultimo, NSW 2007, Australia. [Pan, Shirui] Monash Univ, Fac Informat & Technol, Clayton, Vic 3800, Australia. C3 Beijing Institute of Technology; Beijing Jiaotong University; University of Technology Sydney; Monash University RP Xiong, F (corresponding author), Beijing Jiaotong Univ, Sch Elect & Informat Engn, Beijing 100044, Peoples R China. EM Hongsue1114@hotmail.com; wangxm@bjtu.edu.cn; shirui.pan@monash.edu; xiongf@bjtu.edu.cn RI Pan, Shirui/K-6763-2018; Chen, Hongshu/O-2926-2017 OI Pan, Shirui/0000-0003-0794-527X; Chen, Hongshu/0000-0002-0893-1817; Xiong, Fei/0000-0002-1610-335X; Wang, Ximeng/0000-0002-2445-6737 FU National Natural Science Foundation of China [61872033]; Humanity and Social Science Youth Foundation of Ministry of Education of China [18YJCZH204]; Beijing Natural Science Foundation [4184084] FX This work was supported in part by the National Natural Science Foundation of China under Grant 61872033, in part by the Humanity and Social Science Youth Foundation of Ministry of Education of China under Grant 18YJCZH204, and in part by the Beijing Natural Science Foundation under Grant 4184084. CR Ahlgren P, 2009, J INFORMETR, V3, P49, DOI 10.1016/j.joi.2008.11.003 Basole RC, 2019, IEEE T ENG MANAGE, V66, P568, DOI 10.1109/TEM.2018.2855435 Bello-Orgaz G, 2016, INFORM FUSION, V28, P45, DOI 10.1016/j.inffus.2015.08.005 Blei DM, 2012, COMMUN ACM, V55, P77, DOI 10.1145/2133806.2133826 Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993 Boyack KW, 2014, J INFORMETR, V8, P569, DOI 10.1016/j.joi.2014.04.001 Boyack KW, 2014, J ENG TECHNOL MANAGE, V32, P147, DOI 10.1016/j.jengtecman.2013.07.001 Boyack KW, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0018029 Boyack KW, 2010, J AM SOC INF SCI TEC, V61, P2389, DOI 10.1002/asi.21419 Broniatowski DA, 2017, IEEE T ENG MANAGE, V64, P337, DOI 10.1109/TEM.2017.2677744 Cao JC, 2013, PROCEEDINGS OF THE ASME 32ND INTERNATIONAL CONFERENCE ON OCEAN, OFFSHORE AND ARCTIC ENGINEERING - 2013 - VOL 6 Cao MD, 2005, LECT NOTES ARTIF INT, V3809, P143 Cascini G., INT J PROD DEV, V4, P52 Chen HS, 2017, TECHNOL FORECAST SOC, V119, P39, DOI 10.1016/j.techfore.2017.03.009 Chen HS, 2015, PORTL INT CONF MANAG, P2049, DOI 10.1109/PICMET.2015.7273098 Cotelo JM, 2016, INFORM FUSION, V31, P54, DOI 10.1016/j.inffus.2016.01.002 Cunningham SW, 2006, TECHNOL FORECAST SOC, V73, P915, DOI 10.1016/j.techfore.2006.06.004 De Battisti F, 2015, SCIENTOMETRICS, V103, P413, DOI 10.1007/s11192-015-1554-1 De Maio C, 2016, INFORM FUSION, V28, P60, DOI 10.1016/j.inffus.2015.06.004 Ding Y, 2011, J AM SOC INF SCI TEC, V62, P449, DOI 10.1002/asi.21467 Glenisson P, 2005, INFORM PROCESS MANAG, V41, P1548, DOI 10.1016/j.ipm.2005.03.021 Gregor H., 2009, PARAMETER ESTIMATION PARAMETER ESTIMATION Griffiths TL, 2004, P NATL ACAD SCI USA, V101, P5228, DOI 10.1073/pnas.0307752101 Guo Y, 2012, TECHNOL ANAL STRATEG, V24, P843, DOI 10.1080/09537325.2012.715491 Huang AH, 2018, MANAGE SCI, V64, P2833, DOI 10.1287/mnsc.2017.2751 Huang Y., TECHNOL FORECASTING JIANG EP, 2010, TEXT MINING APPL THE, P37 Ketata I, 2015, R&D MANAGE, V45, P60, DOI 10.1111/radm.12052 Kim D, 2011, LECT NOTES COMPUT SC, V6609, P163, DOI 10.1007/978-3-642-19437-5_13 Klavans R, 2017, J INFORMETR, V11, P1158, DOI 10.1016/j.joi.2017.10.002 Kostoff RN, 2001, TECHNOL FORECAST SOC, V68, P223, DOI 10.1016/S0040-1625(01)00133-0 Krzywinski M, 2009, GENOME RES, V19, P1639, DOI 10.1101/gr.092759.109 Lin J, 2007, BMC BIOINFORMATICS, V8, DOI 10.1186/1471-2105-8-423 Liu SB, 2013, J AM SOC INF SCI TEC, V64, P627, DOI 10.1002/asi.22771 McAfee A, 2012, HARVARD BUS REV, V90, P60 Phaal R, 2004, TECHNOL FORECAST SOC, V71, P5, DOI 10.1016/S0040-1625(03)00072-6 Porter A.L., 2004, Tech mining: Exploiting new technologies for competitive advantage Radicchi F, 2012, J INFORMETR, V6, P121, DOI 10.1016/j.joi.2011.09.002 Steyvers Mark, 2007, Handbook of latent semantic analysis, V427, P424 Suominen A, 2016, J ASSOC INF SCI TECH, V67, P2464, DOI 10.1002/asi.23596 Tseng YH, 2007, INFORM PROCESS MANAG, V43, P1216, DOI 10.1016/j.ipm.2006.11.011 Waltman L, 2013, J INFORMETR, V7, P833, DOI 10.1016/j.joi.2013.08.002 Waltman L, 2010, J INFORMETR, V4, P629, DOI 10.1016/j.joi.2010.07.002 Xing Wei, 2006, Proceedings of the Twenty-Ninth Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, P178 Xiong F, 2020, IEEE T SYST MAN CY-S, V50, P3804, DOI 10.1109/TSMC.2018.2854000 Yan EJ, 2015, J INFORMETR, V9, P455, DOI 10.1016/j.joi.2015.04.003 Yau CK, 2014, SCIENTOMETRICS, V100, P767, DOI 10.1007/s11192-014-1321-8 Yoon B, 2005, TECHNOL FORECAST SOC, V72, P145, DOI 10.1016/j.techfore.2004.08.011 Zhang Y., TECHNOL FORECASTING Zhang Y, 2017, J ASSOC INF SCI TECH, V68, P1925, DOI 10.1002/asi.23814 Zhang Y, 2016, TECHNOL FORECAST SOC, V105, P179, DOI 10.1016/j.techfore.2016.01.015 Zhang Y, 2014, TECHNOL FORECAST SOC, V85, P26, DOI 10.1016/j.techfore.2013.12.019 NR 52 TC 14 Z9 16 U1 6 U2 57 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9391 EI 1558-0040 J9 IEEE T ENG MANAGE JI IEEE Trans. Eng. Manage. PD OCT PY 2021 VL 68 IS 5 BP 1232 EP 1244 DI 10.1109/TEM.2019.2903115 PG 13 WC Business; Engineering, Industrial; Management WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Business & Economics; Engineering GA TK4EZ UT WOS:000674114900003 DA 2024-09-05 ER PT J AU Sang, NM AF Sang, Nguyen Minh TI "Bibliometric insights into the evolution of digital marketing trends SO INNOVATIVE MARKETING LA English DT Article DE artificial intelligence; content marketing; customer engagement; digital transformation; machine learning; social media marketing; technology adoption; virtual reality ID SOCIAL MEDIA; STRATEGIES; PERSONALIZATION; PERCEPTIONS; ACCEPTANCE; RICHNESS; CHANNELS; BEHAVIOR; WORD AB This bibliometric analysis aims to delineate the progression of research in the domain of digital marketing by examining 513 English -language articles published in Scopus during the period of 2003-2024. An examination of scholarly productivity indicates an upward trend, as evidenced by the increase in publications from one in 2003 to 115 in 2022 and citations from 79 in 2003 to 1131 in 2021, as determined by keyword, citation, and authorship analyses. A review of citation patterns reveals that publications with significant impact are primarily found in prestigious academic journals, such as Industrial Marketing Management and International Journal of Research in Marketing. Prominent contributors hail from Jordan, Finland, Spain, the United Arab Emirates, and Saudi Arabia; among other regions - the United States, the Middle East, Europe, and Asia. Keyword analysis revealed an emphasis on emerging technologies such as artificial intelligence and traditional digital marketing techniques (e.g., social media, content marketing, internet marketing). Co -occurrence theme analysis highlighted digital marketing strategy, digital marketing audiences, the digital transformation of business and marketing, and the acceleration of digital adoption as a result of COVID-19. Further areas of investigation encompass optimizing the utilization of emergent social media platforms, implementing virtual and augmented reality technologies to enhance the customer experience, and capitalizing on the potential of artificial intelligence and machine learning to augment the efficacy of digital marketing. By utilizing data -driven insights, this study offers guidance for curricular enhancements, scholarly agendas, and digital marketing practice. C1 [Sang, Nguyen Minh] Ho Chi Minh Univ Banking, Fac Int Econ, Ho Chi Minh City, Vietnam. RP Sang, NM (corresponding author), Ho Chi Minh Univ Banking, Fac Int Econ, Ho Chi Minh City, Vietnam. OI Sang, Nguyen Minh/0000-0002-4272-0247 CR Adam M, 2021, ELECTRON MARK, V31, P427, DOI 10.1007/s12525-020-00414-7 Aghaei Chadegani A., 2013, Asian Social Science, V9, P18, DOI [10.5539/ass.v9n5p18, DOI 10.5539/ASS.V9N5P18] Aguirre E, 2015, J RETAILING, V91, P34, DOI 10.1016/j.jretai.2014.09.005 Al-Jamimi HA, 2022, SCIENTOMETRICS, V127, P5879, DOI 10.1007/s11192-022-04490-8 Al-Slehat Z. A. F., 2023, Business: Theory and Practice, V24, P183, DOI [10.3846/btp.2023.17624, DOI 10.3846/BTP.2023.17624] Anderson C., 2012, The Social Media Reader, P137, DOI DOI 10.18574/NYU/9780814763025.003.0014 Behera RK, 2020, J RETAIL CONSUM SERV, V53, DOI 10.1016/j.jretconser.2019.03.026 Blomster M, 2022, INF SYST E-BUS MANAG, V20, P123, DOI 10.1007/s10257-021-00547-y Carpenter CR, 2014, ACAD EMERG MED, V21, P1160, DOI 10.1111/acem.12482 Carroll A, 2007, INT J ADVERT, V26, P79, DOI 10.1080/02650487.2007.11072997 Chaffey D., 2012, J DIRECT DATA DIGITA, V14, P30, DOI [DOI 10.1057/DDDMP.2012.20, 10.1057/dddmp.2012.20] Chaffey D., 2009, INTERNET MARKETING S, Vfourth Cobo MJ, 2011, J AM SOC INF SCI TEC, V62, P1382, DOI 10.1002/asi.21525 DAFT RL, 1986, MANAGE SCI, V32, P554, DOI 10.1287/mnsc.32.5.554 DAVIS FD, 1989, MIS QUART, V13, P319, DOI 10.2307/249008 De Pelsrnacker P, 2018, INT J HOSP MANAG, V72, P47, DOI 10.1016/j.ijhm.2018.01.003 Ellegaard O, 2015, SCIENTOMETRICS, V105, P1809, DOI 10.1007/s11192-015-1645-z Felix R, 2017, J BUS RES, V70, P118, DOI 10.1016/j.jbusres.2016.05.001 Gutiérrez-Salcedo M, 2018, APPL INTELL, V48, P1275, DOI 10.1007/s10489-017-1105-y Herhausen D, 2020, IND MARKET MANAG, V90, P276, DOI 10.1016/j.indmarman.2020.07.022 Herrero J, 2023, TECHNOL FORECAST SOC, V188, DOI 10.1016/j.techfore.2022.122292 Hudson S, 2016, INT J RES MARK, V33, P27, DOI 10.1016/j.ijresmar.2015.06.004 Jaafar Nor Safura, 2022, International Journal of Interactive Mobile Technologies, V16, P130, DOI 10.3991/ijim.v16i09.27915 Järvinen J, 2016, IND MARKET MANAG, V54, P164, DOI 10.1016/j.indmarman.2015.07.002 Järvinen J, 2015, IND MARKET MANAG, V50, P117, DOI 10.1016/j.indmarman.2015.04.009 Kannan PK, 2017, INT J RES MARK, V34, P22, DOI 10.1016/j.ijresmar.2016.11.006 Ketter E, 2021, J TRAVEL TOUR MARK, V38, P819, DOI 10.1080/10548408.2021.1921670 Kitsios F, 2021, APPL SCI-BASEL, V11, DOI 10.3390/app11178032 Levy S, 2015, J ADVERTISING RES, V55, P95, DOI 10.2501/JAR-55-1-095-109 Lu JY, 2015, CURR ISSUES TOUR, V18, P1059, DOI 10.1080/13683500.2015.1043248 Luangrath AW, 2022, J MARKETING RES, V59, P306, DOI 10.1177/00222437211059540 Mazodier M, 2014, INT J RES MARK, V31, P16, DOI 10.1016/j.ijresmar.2013.08.004 Mehrabian A., 1974, An approach to environmental psychology. Tiago MTPMB, 2014, BUS HORIZONS, V57, P703, DOI 10.1016/j.bushor.2014.07.002 Mogaji E, 2021, AUSTRALAS MARK J, V29, P235, DOI 10.1016/j.ausmj.2020.05.003 Muñoz-Leiva F, 2012, ONLINE INFORM REV, V36, P879, DOI 10.1108/14684521211287945 Ngai EWT, 2015, INT J INFORM MANAGE, V35, P33, DOI 10.1016/j.ijinfomgt.2014.09.004 Nightingale JM, 2012, RADIOGRAPHY, V18, P60, DOI 10.1016/j.radi.2011.10.044 Okazaki S, 2008, J BUS RES, V61, P4, DOI 10.1016/j.jbusres.2006.05.003 Saura JR, 2021, J INNOV KNOWL, V6, P92, DOI 10.1016/j.jik.2020.08.001 Royle J, 2014, INT J INFORM MANAGE, V34, P65, DOI 10.1016/j.ijinfomgt.2013.11.008 Sahni NS, 2018, MARKET SCI, V37, P236, DOI 10.1287/mksc.2017.1066 Saura JR, 2021, IND MARKET MANAG, V98, P161, DOI 10.1016/j.indmarman.2021.08.006 Sedighi M, 2016, LIBR REV, V65, P52, DOI 10.1108/LR-07-2015-0075 Shah N. U., 2021, Library Philosophy and Practice, V2021, P1 Shankar V, 2010, J INTERACT MARK, V24, P111, DOI 10.1016/j.intmar.2010.02.006 Shin DH, 2012, COMPUT HUM BEHAV, V28, P1417, DOI 10.1016/j.chb.2012.03.004 Singh V, 2023, INFORM SYST FRONT, V25, P1621, DOI 10.1007/s10796-022-10314-0 Smith KT, 2011, J STRATEG MARK, V19, P489, DOI 10.1080/0965254X.2011.581383 Smith KT, 2012, J CONSUM MARK, V29, P86, DOI 10.1108/07363761211206339 Taiminen HM, 2015, J SMALL BUS ENTERP D, V22, P633, DOI 10.1108/JSBED-05-2013-0073 Tang YM, 2023, J THEOR APPL EL COMM, V18, P889, DOI 10.3390/jtaer18020046 Tariq E., 2022, International Journal of Data and Network Science, V6, P401, DOI [10.5267/j.ijdns.2021.12.014, DOI 10.5267/J.IJDNS.2021.12.014] Unni R., 2007, J INTERACTIVE ADVERT, V7, P28, DOI DOI 10.1080/15252019.2007.10722129 van Eck NJ, 2017, SCIENTOMETRICS, V111, P1053, DOI 10.1007/s11192-017-2300-7 Vieira VA, 2019, J ACAD MARKET SCI, V47, P1085, DOI 10.1007/s11747-019-00687-1 Wang CG, 2022, INFORM PROCESS MANAG, V59, DOI 10.1016/j.ipm.2022.103085 Whiting A, 2013, QUAL MARK RES, V16, P362, DOI 10.1108/QMR-06-2013-0041 Wymbs C, 2011, J MARKET EDUC, V33, P93, DOI 10.1177/0273475310392544 Yi-Shun Wang, 2003, Journal of End User Computing, V15, P14 Zupic I, 2015, ORGAN RES METHODS, V18, P429, DOI 10.1177/1094428114562629 NR 61 TC 0 Z9 0 U1 15 U2 15 PU LLC CPC BUSINESS PERSPECTIVES PI SUMY PA HRYHORII SKOVORODA LN, 10, SUMY, 40022, UKRAINE SN 1814-2427 EI 1816-6326 J9 INNOV MARKET JI Innovation Marketing PY 2024 VL 20 IS 2 DI 10.21511/im.20(2).2024.01 PG 15 WC Business WE Emerging Sources Citation Index (ESCI) SC Business & Economics GA RV4B4 UT WOS:001230411600012 OA gold DA 2024-09-05 ER PT J AU Hahn, J AF Hahn, Jim TI Semi-Automated Methods for BIBFRAME Work Entity Description SO CATALOGING & CLASSIFICATION QUARTERLY LA English DT Article DE RDF; BIBFRAME; work entity description; bibliographic entities; machine learning; RDF editors; linked data ID MARC AB This paper reports an investigation of machine learning methods for the semi-automated creation of a BIBFRAME Work entity description within the RDF linked data editor Sinopia (https://sinopia.io). The automated subject indexing software Annif was configured with the Library of Congress Subject Headings (LCSH) vocabulary from the Linked Data Service at https://id.loc.gov/. The training corpus was comprised of 9.3 million titles and LCSH linked data references from the IvyPlus POD project (https://pod.stanford. edu/) and from Share-VDE (https://wiki.share-vde.org). Semi-automated processes were explored to support and extend, not replace, professional expertise. C1 [Hahn, Jim] Univ Penn, Univ Lib, Philadelphia, PA 19104 USA. C3 University of Pennsylvania RP Hahn, J (corresponding author), Univ Penn, Univ Lib, Philadelphia, PA 19104 USA. EM jimhahn@upenn.edu OI Hahn, Jim/0000-0001-7924-5294 CR Aizawa A, 2003, INFORM PROCESS MANAG, V39, P45, DOI 10.1016/S0306-4573(02)00021-3 Clemente, DATA SCI D'Ignazio C, 2020, STRONG IDEAS SERIES, P1 Gebru T, 2021, COMMUN ACM, V64, P86, DOI 10.1145/3458723 GitHub/jimfhahn, ANN TUT DAT Github/Kubeflow, KUB KUB GitHub/lcnetdev, LCNETD BFE GitHub/LD4P, SIN ED GitHub/NatLibFi, ANN TUT GitHub/samvera, QUEST AUTH Haas Konstantinos, P 25 ACM SIGKDD INT, DOI 10.1145/3292500.3340408 Hahn, 2020, P ASS INFORM SCI TEC, V57, DOI 10.1002/pra2.408 Hahn, 2020, CODE4LIB J Hahn Jim, 2021, Proceedings of the Association for Information Science and Technology, V58, DOI 10.1002/pra2.479 Hao, MIT TECHNOL REV Harper CA, 2007, CAT CLASSIF Q, V43, P47, DOI [10.1300/J104v43n03_04, 10.1300/J104v43n03_03] IvyPlus Library Confederation, AGGREGATOR POD DATA Järvelin K, 2002, ACM T INFORM SYST, V20, P422, DOI 10.1145/582415.582418 Library of Congress, LINK DAT SERV TECHN Library of Congress, OV BIBFRAME 2 0 MOD Michael B., 2019, INT C DUBL COR MET A, P26 Mitchell M., 2019, ARTIFICIAL INTELLIGE Mitchell M, 2019, FAT*'19: PROCEEDINGS OF THE 2019 CONFERENCE ON FAIRNESS, ACCOUNTABILITY, AND TRANSPARENCY, P220, DOI 10.1145/3287560.3287596 Nelson, 2019, CODE4LIB J ONeil C., 2016, Weapons of math destruction Pedregosa F, 2011, J MACH LEARN RES, V12, P2825 Raptor RDF Syntax Library, RDF PARSER UTILITY Reese, 2018, SERIALS LIBR, V74, P3, DOI [10.1080/036152 6X.2018.1439247, DOI 10.1080/0361526X.2018.1439247] Riva Pat., 2017, IFLA LIB REFERENCE M Russell Stuart, 2019, HUMAN COMPATIBLE ART Samples J, 2020, CAT CLASSIF Q, V58, P403, DOI 10.1080/01639374.2020.1751764 Samuylova, MACHINE LEARNING PRO Share-VDE, SHAREVDE LIB Summers E., 2008, P 8 INT C DUBLIN COR Suominen Osma, 2019, LIBER Quarterly, V29, DOI 10.18352/lq.10285 Suominen Osma, ITALIAN J LIB ARCH I Svenonius, 2000, INTELLECTUAL FDN INF, P36 Svenonius E, 2018, CAT CLASSIF Q, V56, P711, DOI 10.1080/01639374.2018.1524284 Thomas Rachel, PROBLEM METRICS IS F Thomas Rachel, AND WHY CREATE GOOD Vizine-Goetz Diane, 2010, NEXTSPACE, V14, P14 Wang Yining, THEORETICAL ANAL NDC Xu A, 2018, CAT CLASSIF Q, V56, P224, DOI 10.1080/01639374.2017.1388326 NR 43 TC 3 Z9 3 U1 1 U2 10 PU ROUTLEDGE JOURNALS, TAYLOR & FRANCIS LTD PI ABINGDON PA 2-4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND SN 0163-9374 EI 1544-4554 J9 CAT CLASSIF Q JI Cat. Classif. Q. PD DEC 4 PY 2021 VL 59 IS 8 SI SI BP 853 EP 867 DI 10.1080/01639374.2021.2014011 EA DEC 2021 PG 15 WC Information Science & Library Science WE Emerging Sources Citation Index (ESCI) SC Information Science & Library Science GA YU1BN UT WOS:000734206800001 OA hybrid DA 2024-09-05 ER PT B AU Fister, B AF Fister, Barbara BA Flaspohler, MR BF Flaspohler, MR TI Pragmatic pedagogical approaches SO ENGAGING FIRST-YEAR STUDENTS IN MEANINGFUL LIBRARY RESEARCH: A PRACTICAL GUIDE FOR TEACHING FACULTY SE Chandos Information Professional Series LA English DT Article; Book Chapter DE novice researchers; information landscape; librarian advice; assignment design; staggered approach; faculty assumptions; topic generation; higher-order research skills; Internet; research projects; research process; outcomes; constructivist theory; Bloom's Taxonomy; Taxonomy for Information Literacy; information literacy; curricular planning; library programs; collaboration; pedagogy; active learning; faculty buy-in; semantics AB This chapter offers practical advice to faculty who plan to include research projects in their work with first-year students. After briefly discussing constructivist learning theory and Bloom's Taxonomy of Educational Outcomes, the author suggests using an Information Literacy Taxonomy as a framework for developing increasingly complex library competencies among novice researchers. Additionally, the value of student-based, active learning is described and a number of guidelines for effective assignment design are provided. Finally, this chapter concludes by offering suggestions for moving information literacy beyond the first year. C1 Gustavus Adolphus Coll, St Peter, MN 56082 USA. C3 Gustavus Adolphus College RP Fister, B (corresponding author), Gustavus Adolphus Coll, St Peter, MN 56082 USA. NR 0 TC 0 Z9 0 U1 0 U2 3 PU CHANDOS PUBL PI SAWSTON PA 80 HIGH ST, SAWSTON, CAMBRIDGE CB22 3HJ, ENGLAND BN 978-1-78063-294-0 J9 CHANDOS INF PROF SER PY 2012 BP 99 EP 158 PG 60 WC Information Science & Library Science WE Book Citation Index – Social Sciences & Humanities (BKCI-SSH) SC Information Science & Library Science GA BYV76 UT WOS:000300620800005 DA 2024-09-05 ER PT J AU Cherkaoui, A Aliat, M AF Cherkaoui, Adil Aliat, Marouane TI Mapping the field of responsible sourcing: Topic modeling through bibliometric analysis SO BUSINESS STRATEGY AND DEVELOPMENT LA English DT Article DE bibliometric analysis; co-wording analysis; responsible sourcing; sustainability; sustainable procurement ID SUSTAINABLE PROCUREMENT; PUBLIC PROCUREMENT; ORGANIZATIONS; FUTURE; SECTOR AB Academic interest concerning inclusion of sustainability principles in the field of procurement has been in steady increase over the last 20 years. However, there is an apparent void in bibliometric analyses in this field. To address this gap, VosViewer is used in this study to examine the academic literature on responsible sourcing. 575 peer-reviewed papers from Scopus were analyzed to reveal important topics, authors, and publications connected to the subject in hand. The first part of the analysis analyzed publication activity and listed all high impact journals covering the topic. Geographical distribution of findings showed that developed countries are the most productive in the field, in addition to an increasing interest from developing countries over the last decade. Keyword analysis generated from Vosviewer yielded to four main clusters covering the topic and shaping the intellectual structure of the study: (1) sustainable development & supply chain management, (2) environmental impact of procurement, (3) lifecycle analysis, (4) social responsibility and ethical sourcing. The article discusses the four main clusters and ends with concluding remarks encompassing six knowledge gaps and potential future research fields. C1 [Cherkaoui, Adil; Aliat, Marouane] Hassan II Univ Casablanca, Fac Legal Econ & Social Sci, Res Lab Dev Econ & Governance Org LAREDGO, Casablanca, Morocco. [Cherkaoui, Adil] Hassan II Univ Casablanca, Fac Legal Econ & Social Sci, Res Lab Dev Econ & Governance Org LAREDGO, Km 8,Route El Jadida,BP 8110, Oasis, Casablanca, Morocco. C3 Hassan II University of Casablanca; Hassan II University of Casablanca RP Cherkaoui, A (corresponding author), Hassan II Univ Casablanca, Fac Legal Econ & Social Sci, Res Lab Dev Econ & Governance Org LAREDGO, Km 8,Route El Jadida,BP 8110, Oasis, Casablanca, Morocco. EM cherkaoui.adil.casa@gmail.com RI CHERKAOUI, Adil/CAH-1494-2022 OI CHERKAOUI, Adil/0000-0002-9857-3629 CR Afonso M., 2020, INT J SUPPLY CHAIN O, V4, P239 [Anonymous], 2000, J FASH MARK MANAG Azevedo D., 2020, SUSTAINABILITY-BASEL, V12, P3826 Aziz M. A., 2020, SUSTAINABILITY-BASEL, V12, P4489 Baumgartner S., 2017, J CLEAN PROD, V152, P463 Becker B., 2020, SUSTAINABILITY-BASEL, V12, P1076 Boak G, 2016, ACTION LEARN, V13, P204, DOI 10.1080/14767333.2016.1215290 Brammer S, 2011, INT J OPER PROD MAN, V31, P452, DOI 10.1108/01443571111119551 Brinkman J., 2017, J BUS ETHICS, V144, P207 Carraher M., 2020, RESOURCES, V9, P549 Chen RCY, 2017, APPL ECON, V49, P3422, DOI 10.1080/00036846.2016.1262516 Chen Z., 2020, SUSTAINABILITY-BASEL, V12, P7062 CLARK SD, 1990, LIBR ACQUIS PRACT TH, V14, P265, DOI 10.1016/0364-6408(90)90027-R Connelly K., 2015, BUS SOC REV, V54, P835 Cooper L, 2023, BUS SOC, V62, P229, DOI 10.1177/00076503211056540 Dai X., 2019, SUSTAINABILITY-BASEL, V11, P5386 Dalgliesh C D., 1997, Engineering, Construction and Architectural Management, V4, P23, DOI 10.1108/eb021038 Darso L., 2020, TRANSPORT RES D-TR E, V77, P899 De la Riva A., 2020, SUSTAIN PROD CONSUMP, V25, P71 De Pelsmacker P, 2007, J BUS ETHICS, V75, P361, DOI 10.1007/s10551-006-9259-2 Deng XM, 2015, GEOFORUM, V67, P204, DOI 10.1016/j.geoforum.2015.03.018 Denyse M., 2018, INDIAN J MARKETING, V48, P21 Dermody J, 2018, J BUS RES, V86, P333, DOI 10.1016/j.jbusres.2017.09.041 Dey PK, 2022, INT J PROD ECON, V248, DOI 10.1016/j.ijpe.2022.108496 Donthu N, 2021, J BUS RES, V133, P285, DOI 10.1016/j.jbusres.2021.04.070 Ecker A., 2020, INT J MANAG REV, V22, P109 Fennell D., 2015, Journal of Ecotourism, V14, P48, DOI 10.1080/14724049.2015.1080716 Fields M., 2011, AGR HUM VALUES, V28, P289 Fotakis V., 2020, INT J SUST DEV WORLD, V27, P413 French J. J., 2013, J INT ACAD CASE STUD, V19, P75 Gama A., 2020, SUSTAINABILITY-BASEL, V12, P5237 Gillespie S., 2018, J BUS ETHICS, V150, P85 Goebel P, 2012, INT J PROD ECON, V140, P7, DOI 10.1016/j.ijpe.2012.02.020 Goodall R., 2018, INT J PUBLIC SECT MA, V31, P169 Hancock L, 2018, J CLEAN PROD, V187, P485, DOI 10.1016/j.jclepro.2018.03.097 Harrison A., 2017, J CLEAN PROD, V161, P1033 Heydinger T. S., 2018, SUSTAINABILITY-BASEL, V10, P1 Hoejmose SU, 2012, J PURCH SUPPLY MANAG, V18, P232, DOI 10.1016/j.pursup.2012.06.002 Hollos D, 2012, INT J PROD RES, V50, P2968, DOI 10.1080/00207543.2011.582184 Hsu C. H., 2014, J BUS ETHICS, V122, P439 Humphreys C., 2018, SUPPLY CHAIN MANAG, V23, P265 Islam MM, 2020, SUSTAINABILITY-BASEL, V12, DOI 10.3390/su122310168 Islam MM, 2017, INT J SUST DEV WORLD, V24, P289, DOI 10.1080/13504509.2016.1209794 Jager J., 2020, RESOUR CONSERV RECY, V157, P639 Janssen M., 2019, INT J OPER PROD MAN, V39, P2548 Jham V, 2019, INT J SERV TECHNOL M, V25, P36, DOI 10.1504/IJSTM.2019.10017174 Kalra A., 2020, RESOUR CONSERV RECY, V160, P750 Kannan D, 2021, TRANSPORT RES E-LOG, V146, DOI 10.1016/j.tre.2020.102092 Kelleher C., 2020, INT J PROCUREMENT MA, V13, P543 Khan A., 2021, INT J SUSTAINABLE SU, V5, P146 Khan M. J., 2019, SUSTAINABILITY-BASEL, V11, P4785 Kim S, 2022, J BUS ETHICS, V179, P887, DOI 10.1007/s10551-021-04841-0 Kshetri N, 2022, INT J LOGIST MANAG, V33, P1, DOI 10.1108/IJLM-02-2021-0108 Lai C. C., 2018, INT J PROD RES, V56, P1821 Lang M., 2020, J BUS ETHICS, V159, P817 Lee K., 2020, INT J PROD RES, V58, P4535 Liang X., 2020, INT J PROD ECON, V223, P31 Lowenthal J., 2014, J BUS ETHICS, V123, P437 Maignan I., 2002, EUR MANAG J, V20, P641, DOI [https://doi.org/10.1016/S0263-2373, DOI 10.1016/S0263-2373(02)00115-9] Marr C., 2020, SUSTAINABILITY-BASEL, V12, P5339 Martinez M., 2019, INT J ENV RES PUB HE, V16, P645 Mashele F., 2018, J BUS RETAIL MANAGE, V12, P121 McCrudden C, 2004, NAT RESOUR FORUM, V28, P257, DOI 10.1111/j.1477-8947.2004.00099.x McMurray AJ, 2014, J PURCH SUPPLY MANAG, V20, P195, DOI 10.1016/j.pursup.2014.02.005 Meehan J, 2011, BUS STRATEG ENVIRON, V20, P94, DOI 10.1002/bse.678 Moffatt J., 2020, J RESPONSIBLE RETAIL, V5, P1 Münch C, 2022, J PURCH SUPPLY MANAG, V28, DOI 10.1016/j.pursup.2022.100793 Naseri M., 2020, SUSTAINABILITY-BASEL, V12, P7072 Navare K, 2021, RESOUR CONSERV RECY, V170, DOI 10.1016/j.resconrec.2021.105563 Nguyen N. T. T., 2019, SUSTAINABILITY-BASEL, V11, P3854 O'Connor P., 2020, SUSTAINABILITY-BASEL, V12, P5414 Phanthanouvon S., 2020, INT J SUPPLY CHAIN M, V9, P572 Pillay M., 2020, SUSTAINABILITY-BASEL, V12, P279 Preuss L, 2011, PUBLIC ADMIN, V89, P493, DOI 10.1111/j.1467-9299.2010.01893.x Preuss L, 2009, SUPPLY CHAIN MANAG, V14, P213, DOI 10.1108/13598540910954557 Qazi AA, 2022, SUSTAIN PROD CONSUMP, V33, P343, DOI 10.1016/j.spc.2022.07.013 Scheu C., 2020, SUSTAINABILITY-BASEL, V12, P2859 Schulte M., 2022, INT J INTELL ENG INF, V9, P438 Schulte M, 2021, SUSTAINABILITY-BASEL, V13, DOI 10.3390/su13084558 Singhry H B., 2015, International Journal of Supply Chain Management, V4, P115 Stevenson J., 2018, J BUS ETHICS, V151, P505 Tajuddin S. M., 2018, SUSTAINABILITY-BASEL, V10, P4255 Tatrai, 2013, ERA FORUM, V14, P59 Thorsen B., 2010, INT J AGR MANAGEMENT, V4, P41 Vacchiano G., 2018, SUSTAINABILITY-BASEL, V10, P1475 Verde R., 2018, INT J PROCUREMENT MA, V11, P589 Vermeulen D., 2020, SUSTAINABILITY-BASEL, V12, P3788 Vianna S. S., 2018, SUSTAIN PROD CONSUMP, V16, P54 Vlaanderen B. V., 2016, RESOUR CONSERV RECY, V112, P115 Walker Helen, 2009, International Journal of Procurement Management, V2, P41, DOI 10.1504/IJPM.2009.021729 Walker H, 2012, INT J PROD ECON, V140, P256, DOI 10.1016/j.ijpe.2012.01.008 Walker H, 2009, SUPPLY CHAIN MANAG, V14, P128, DOI 10.1108/13598540910941993 Walker HL, 2009, J MANAG EDUC, V33, P348, DOI 10.1177/1052562908323190 Watkins C., 2016, GEOFORUM, V73, P101 WCED SWS., 1987, Our Common Future, V17, P1 Wu ZH, 2011, J OPER MANAG, V29, P577, DOI 10.1016/j.jom.2010.10.001 Xu Y., 2020, SUSTAINABILITY-BASEL, V12, P4288 Yim J., 2020, INT J PROCUREMENT MA, V13, P344 Young S, 2016, PUBLIC MANAG REV, V18, P993, DOI 10.1080/14719037.2015.1051575 Zhou W., 2020, SUSTAINABILITY-BASEL, V12, P9071 Zijp M, 2022, SUSTAINABILITY-BASEL, V14, DOI 10.3390/su141610271 Zorzini M, 2015, INT J OPER PROD MAN, V35, P60, DOI 10.1108/IJOPM-07-2013-0355 NR 102 TC 1 Z9 1 U1 2 U2 16 PU WILEY PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA EI 2572-3170 J9 BUS STRATEGY DEV JI Bus. Strategy Dev. PD SEP PY 2023 VL 6 IS 3 BP 397 EP 410 DI 10.1002/bsd2.246 EA MAY 2023 PG 14 WC Business; Environmental Studies WE Emerging Sources Citation Index (ESCI) SC Business & Economics; Environmental Sciences & Ecology GA Q9YT2 UT WOS:000988483600001 DA 2024-09-05 ER PT J AU Kennedy, JV Arendale, DR AF Kennedy, Jolie V. Arendale, David R. TI Investigating Metacognitive Strategies and Exam Performance: A Cross-Sectional Survey Research Study SO EDUCATION SCIENCES LA English DT Article DE exam preparation; history; active learning; cooperative learning; metacognitive learning strategies; Universal Design for Learning; constructivism; self-regulated learning AB This investigation used cross-sectional survey research methods in a high-enrollment undergraduate history course, setting out to examine test performance and metacognitive strategies that subjects self-selected prior to class, during class, and during the exam. This study examined the differences in exam scores between one group of students who self-reported completing specific metacognitive strategies and one group of students who self-reported not completing them. An online survey instrument was used to collect data from 121 students about the frequency of occurrence of specific behaviors. Frequencies and an Independent Samples T-Test were used to analyze metacognitive strategies and exam performance. The results showed the following strategies were statistically significant at the 0.05 alpha level: (1) read or listened to assigned readings and audio files before they were discussed during class; (2) frequently took part in small group discussion at the table during the class session; (3) created outlines for each of the potential essay questions to prepare for the examination; and (4) made an outline of the essay question before beginning to write while taking the exam. Limitations of the study, implications of the results, and recommendations for future research are provided. With the challenges of supporting students to earn higher grades and persist toward graduation, faculty members need to join the rest of the campus to be active agents in supporting students through simple learning strategies and effective student behaviors embedded into their courses. This may require extra time and effort to engage in professional development to learn how to embed practice with metacognitive strategies during class sessions. C1 [Kennedy, Jolie V.] Empire State Univ, Educ Technol & Learning Design, Saratoga Springs, NY 12866 USA. [Arendale, David R.] Univ Minnesota Twin Cities, Curriculum & Instruct, Minneapolis, MN 55455 USA. C3 University of Minnesota System; University of Minnesota Twin Cities RP Arendale, DR (corresponding author), Univ Minnesota Twin Cities, Curriculum & Instruct, Minneapolis, MN 55455 USA. EM jolie.kennedy@sunyempire.edu; arendale@umn.edu RI Kennedy, Jolie V./KFS-7391-2024; Arendale, David/GNW-5740-2022 OI Kennedy, Jolie V./0000-0002-7317-5173; Arendale, David/0000-0003-1928-9310 CR [Anonymous], 1963, The Developmental Psychology of Jean Piaget Arendale D.R., 2007, Centerpoints Newsl, V4 Arendale D.R., 2012, Cultivating Change in the Academy: 50+ Stories from the Digital Frontiers at the University of Minnesota in 2012 Arendale D.R., 2008, Pedagogy and Student Services for Institutional Transformation: Implementing Universal Design in Higher Education, P113 Astin A.W., 1997, What matters in college? Four critical years revisited Banks T., 2019, Higher Education Studies, V9, P118, DOI DOI 10.5539/HES.V9N1P118 Braxton J., 2014, Rethinking college student retention, V1st Burgstabler S.E., 2015, Universal Design in Higher Education: From Principles to Practice, V2nd Burke A., 2019, COLL UNIV, V94, P12 Canning EA, 2020, SOC PSYCHOL PERS SCI, V11, P647, DOI 10.1177/1948550619882032 Conefrey T, 2021, J COLL STUD RETENT-R, V23, P139, DOI 10.1177/1521025118807402 Correll SJ, 1997, CONTEMP SOCIOL, V26, P644, DOI 10.2307/2655673 Craig M., 2016, P 47 ACM TECHNICAL S, P285, DOI [10.1145/2839509.2844561, DOI 10.1145/2839509.2844561] Dennis JL, 2023, HIGH EDUC, V86, P99, DOI 10.1007/s10734-022-00904-x Dinsmore D, 2008, EDUC PSYCHOL REV, V20, P391, DOI 10.1007/s10648-008-9083-6 Dunlosky J, 2013, PSYCHOL SCI PUBL INT, V14, P4, DOI 10.1177/1529100612453266 Edlund JE, 2020, TEACH PSYCHOL, V47, P156, DOI 10.1177/0098628320901385 Ellis R.A., 2019, The Education Ecology of Universities: Integrating Learning, Strategy and the Academy Friedlandeer J., 1984, J. Dev. Remedial Educ, V7, P13 Fritzgerald A., 2020, Antiracism and universal design for learning building expressways to success Gezer-Templeton PG, 2017, J FOOD SCI EDUC, V16, P28, DOI 10.1111/1541-4329.12103 Gordon David., 2014, Universal Design for Learning: Theory and Practice Habley W., 2012, Increasing persistence: Research based strategies for college student success Kaplan M., 2013, Using reflection and metacognition to improve student learning: Across the disciplines, across the academy, VFirst Lourenco O, 1996, PSYCHOL REV, V103, P143 Lovett M.C., 2013, USING REFLECTION MET, P18 McGuire S.Y., 2015, TEACH STUDENTS LEARN McKinney L, 2019, RES HIGH EDUC, V60, P184, DOI 10.1007/s11162-018-9509-z Nussbaumer A., 2015, Responsive Open Learning Environments: Outcomes of Research from the ROLE Project Cham, P17, DOI DOI 10.1007/978-3-319-02399-12 Piaget J., 1970, Genetic epistemology Pintrich P., 1994, Student motivation, cognition PINTRICH PR, 1990, J EDUC PSYCHOL, V82, P33, DOI 10.1037/0022-0663.82.1.33 Ross D.H., 2002, Teaching Every Student in the Digital Age: Universal Design for Learning SCHRAW G, 1995, EDUC PSYCHOL REV, V7, P351, DOI 10.1007/BF02212307 Sethares KA, 2022, NURS EDUC, V47, P37, DOI 10.1097/NNE.0000000000001026 Shapiro SL, 2006, J CLIN PSYCHOL, V62, P373, DOI 10.1002/jclp.20237 Tight M, 2020, J FURTH HIGH EDUC, V44, P689, DOI 10.1080/0309877X.2019.1576860 Tinto V., 2012, COMPLETING COLL RETH Tinto V., 1993, LEAVING COLL RETHINK, DOI DOI 10.7208/CHICAGO/9780226922461.001.0001 Tobin TJ., 2018, Reach everyone, teach everyone: Universal design for learning in higher education Winkelmes M., 2019, Transparent Design in Higher Education Teaching and Leadership: A Guide to Implementing the Transparency Framework Institution-Wide to Improve Learning and Retention Zamora-Polo F, 2019, SUSTAINABILITY-BASEL, V11, DOI 10.3390/su11154224 Zimmerman B. J., 2000, Handbook of Self-Regulation, P13, DOI [10.1016/B978-012109890-2/50031-7, DOI 10.1016/B978-012109890-2/50031-7] NR 43 TC 0 Z9 0 U1 2 U2 3 PU MDPI PI BASEL PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND EI 2227-7102 J9 EDUC SCI JI Educ. Sci. PD NOV PY 2023 VL 13 IS 11 AR 1132 DI 10.3390/educsci13111132 PG 17 WC Education & Educational Research WE Emerging Sources Citation Index (ESCI) SC Education & Educational Research GA Y8VQ3 UT WOS:001107988600001 OA gold DA 2024-09-05 ER PT J AU Fang, KL Li, L Wu, YF AF Fang, Kailun Li, Li Wu, Yifei TI Research on student engagement in distance learning in sustainability science to design an online intelligent assessment system SO FRONTIERS IN PSYCHOLOGY LA English DT Article DE student engagement; engagement assessment system; distance learning; higher education; machine learning algorithms ID HIGHER-EDUCATION AB Distance learning programs in sustainability science provide a structured curriculum that covers various aspects of sustainability. Despite the growing recognition of distance learning in higher education, existing literature has primarily focused on specific and detailed factors, without a comprehensive summary of the global themes, especially neglecting in-depth exploration of poor engagement factors. This study bridged this gap by not only examining detailed factors but also synthesizing the overarching themes that influenced student engagement. The aim of this study was to investigate the factors that impact student engagement in distance learning within higher education institutions across different countries. By developing a theoretical framework, three key aspects of student engagement in higher education were identified. A total of 42 students and 2 educators affiliated with universities participated in semi-structured interviews. The findings of this paper indicated that sociocultural, infrastructure, and digital equity factors were the main influencing factors of student engagement. Furthermore, a student engagement assessment system was developed using machine learning algorithms to identify students with low levels of engagement and conduct further analysis that considers the three aforementioned factors. The proposed automated approach holds the potential to enhance and revolutionize digital learning methodologies. C1 [Fang, Kailun] Guangzhou Urban Planning & Design Co Ltd, Guangzhou, Peoples R China. [Li, Li] Shanghai Baiaoheng New Mat Co Ltd, Shanghai, Peoples R China. [Wu, Yifei] Shenzhen Polytech Univ, Sch Architectural Engn, Shenzhen, Peoples R China. C3 Shenzhen Polytechnic University RP Wu, YF (corresponding author), Shenzhen Polytech Univ, Sch Architectural Engn, Shenzhen, Peoples R China. EM wuyifei@szpt.edu.cn OI WU, YIFEI/0000-0001-7574-9479 FU Teaching and Research Program of Shenzhen Polytechnic University [7023310200] FX The author(s) declare financial support was received for the research, authorship, and/or publication of this article. The authors gratefully acknowledge financial support from Teaching and Research Program of Shenzhen Polytechnic University (grant no. 7023310200). CR Abuhammad S, 2020, HELIYON, V6, DOI 10.1016/j.heliyon.2020.e05482 Aguilar SJ, 2020, INFORM LEARN SCI, V121, P285, DOI 10.1108/ILS-04-2020-0084 Al-Balas M, 2020, BMC MED EDUC, V20, DOI 10.1186/s12909-020-02257-4 Alea LA., 2020, INT J LEARNING TEACH, V19, P127, DOI [10.26803/ijlter.19.6.8., DOI 10.26803/IJL-TER.19.6.8, 10.26803/ijlter.19.6.8, DOI 10.26803/IJLTER.19.6.8] Almajali D, 2022, SUSTAINABILITY-BASEL, V14, DOI 10.3390/su14127353 Appolloni A, 2021, SUSTAINABILITY-BASEL, V13, DOI 10.3390/su13031388 Arbaugh JB, 2006, ACAD MANAG LEARN EDU, V5, P435, DOI 10.5465/AMLE.2006.23473204 Arinto P, 2016, INT REV RES OPEN DIS, V17, P162 Asif T, 2020, SUSTAINABILITY-BASEL, V12, DOI 10.3390/su12073014 Avsec S, 2022, SUSTAINABILITY-BASEL, V14, DOI 10.3390/su14073928 Caballé S, 2010, MOB INF SYST, V6, P27, DOI 10.1155/2010/935169 Capone R, 2022, TECHNOL KNOWL LEARN, V27, P1259, DOI 10.1007/s10758-021-09571-w Davis N, 2005, EDUC INF TECHNOL, V10, P249, DOI 10.1007/s10639-005-3006-7 Demouy V., 2016, The EuroCALL Review, V24, P10, DOI DOI 10.4995/EUROCALL.2016.5663 Dixson M. D., 2015, Learning, V19, P561, DOI [10.24059/olj.v19i4.561, DOI 10.24059/OLJ.V19I4.561] Dranias M., 2020, J BEHAV BRAIN SCI, V10, P165, DOI [DOI 10.4236/JBBS.2020.103010, 10.4236/JBBS.2020.103010] Edisherashvili N, 2022, FRONT PSYCHOL, V12, DOI 10.3389/fpsyg.2021.792422 Ferri F, 2020, SOCIETIES, V10, DOI 10.3390/soc10040086 Fwa H.L., 2018, GSTF J COMPUTING JOC, V6, P1, DOI [10.5176/2251-3043_6.1.114, DOI 10.5176/2251-3043_6.1.114] Gan YQ, 2007, PERS INDIV DIFFER, V43, P851, DOI 10.1016/j.paid.2007.02.009 Henriksen E.K., 2015, Understanding student participation and choice in science and technology education Huang EY, 2012, COMPUT EDUC, V58, P338, DOI 10.1016/j.compedu.2011.08.003 Kahu ER, 2013, STUD HIGH EDUC, V38, P758, DOI 10.1080/03075079.2011.598505 Kaplan AM, 2016, BUS HORIZONS, V59, P441, DOI 10.1016/j.bushor.2016.03.008 Kusmaryono I., 2021, International Journal of Education, V14, P62, DOI [DOI 10.17509/IJE.V14I1.29191, 10.17509/iie.v14i1.29191] Nocua ACL, 2021, EDUC SCI, V11, DOI 10.3390/educsci11090540 Lee J, 2019, SUSTAINABILITY-BASEL, V11, DOI 10.3390/su11040985 Liu HM, 2021, SUSTAINABILITY-BASEL, V13, DOI 10.3390/su13116212 Liu S, 2019, MOBILE NETW APPL, V24, P1, DOI 10.1007/s11036-018-1136-6 Moore RL, 2018, EDUC COMMUN TECHNOL, P87, DOI 10.1007/978-3-319-61780-0_7 Morrison AL, 2020, CLIMATIC CHANGE, V159, P17, DOI 10.1007/s10584-019-02576-6 Muhammad I, 2022, ENVIRON SCI POLLUT R, V29, P90147, DOI 10.1007/s11356-022-22011-1 Orji F, 2020, IEEE INT CONF INF VI, P480, DOI 10.1109/IV51561.2020.00083 Park JY, 2015, TECHNOL PEDAGOG EDUC, V24, P389, DOI 10.1080/1475939X.2014.935743 Pittman J, 2021, J MULTICULT EDUC, V15, P68, DOI 10.1108/JME-09-2020-0099 Rigler G, 2022, SUSTAINABILITY-BASEL, V14, DOI 10.3390/su14063647 Rudenko S., 2020, Ukr. Policymaker, V7, P52, DOI [10.29202/up/7/7, DOI 10.29202/UP/7/7] Saleh TA, 2022, RSC ADV, V12, P23869, DOI 10.1039/d2ra03242b Senthil S, 2017, PROCEEDINGS OF THE 2017 INTERNATIONAL CONFERENCE ON SMART TECHNOLOGIES FOR SMART NATION (SMARTTECHCON), P699, DOI 10.1109/SmartTechCon.2017.8358461 Southernwood Julie, 2008, Community Pract, V81, P21 Starr-Glass D, 2020, HORIZON, V28, P125, DOI 10.1108/OTH-06-2020-0020 Stenman S, 2020, INT J INF LEARN TECH, V37, P87, DOI 10.1108/IJILT-10-2019-0096 Tsarapkina J. M., 2020, Journal of Physics: Conference Series, V1691, DOI 10.1088/1742-6596/1691/1/012094 Vanderlinde R, 2010, J COMPUT ASSIST LEAR, V26, P434, DOI 10.1111/j.1365-2729.2010.00358.x Wang YH, 2021, IEEE SENS J, V21, P22402, DOI 10.1109/JSEN.2021.3105706 Yu SM, 2020, SUSTAINABILITY-BASEL, V12, DOI 10.3390/su12156288 Zhoc KCH, 2019, RES HIGH EDUC, V60, P219, DOI 10.1007/s11162-018-9510-6 NR 47 TC 0 Z9 0 U1 5 U2 11 PU FRONTIERS MEDIA SA PI LAUSANNE PA AVENUE DU TRIBUNAL FEDERAL 34, LAUSANNE, CH-1015, SWITZERLAND SN 1664-1078 J9 FRONT PSYCHOL JI Front. Psychol. PD NOV 23 PY 2023 VL 14 AR 1282386 DI 10.3389/fpsyg.2023.1282386 PG 13 WC Psychology, Multidisciplinary WE Social Science Citation Index (SSCI) SC Psychology GA AA0N8 UT WOS:001115614700001 PM 38078210 OA gold DA 2024-09-05 ER PT C AU Mohammad, SM AF Mohammad, Saif M. BE Calzolari, N Bechet, F Blache, P Choukri, K Cieri, C Declerck, T Goggi, S Isahara, H Maegaard, B Mariani, J Mazo, H Moreno, A Odijk, J Piperidis, S TI NLP Scholar: A Dataset for Examining the State of NLP Research SO PROCEEDINGS OF THE 12TH INTERNATIONAL CONFERENCE ON LANGUAGE RESOURCES AND EVALUATION (LREC 2020) LA English DT Proceedings Paper CT 12th International Conference on Language Resources and Evaluation (LREC) CY MAY 11-16, 2020 CL Marseille, FRANCE DE Scientometrics; Trends in Research; Google Scholar; ACL Anthology; Citations ID CITATIONS AB Google Scholar is the largest web search engine for academic literature that also provides access to rich metadata associated with the papers. The ACL Anthology (AA) is the largest repository of articles on Natural Language Processing (NLP). We extracted information from AA for about 44 thousand NLP papers and identified authors who published at least three papers in AA. We then extracted citation information from Google Scholar for all their papers (not just their AA papers). This resulted in a dataset of 1.1 million papers and associated Google Scholar information. We aligned the information in the AA and Google Scholar datasets to create the NLP Scholar Dataset-a single unified source of information (from both AA and Google Scholar) for tens of thousands of NLP papers. NLP Scholar can be used to identify broad trends in productivity, focus, and impact of NLP research. We present here initial work on analyzing the volume of research in NLP over the years and identifying the most cited papers in NLP. We also list a number of additional potential applications. C1 [Mohammad, Saif M.] Natl Res Council Canada, Ottawa, ON, Canada. C3 National Research Council Canada RP Mohammad, SM (corresponding author), Natl Res Council Canada, Ottawa, ON, Canada. EM saif.mohammad@nrc-cnrc.gc.ca CR Anderson A., 2013, ACL 2012 SPEC WORKSH, P13 [Anonymous], 2011, Proceedings of the 2011 conference on empirical methods in natural language processing, DOI 10.18653/v1/d16-1202 Aya S., 2005, KNOWLEDGE MANAGEMENT, P287 Bird S, 2008, SIXTH INTERNATIONAL CONFERENCE ON LANGUAGE RESOURCES AND EVALUATION, LREC 2008, P1755 Bos A. R., 2019, DATA SCI J, V18 Bulaitis Z, 2017, PALGR COMMUN, V3, DOI 10.1057/s41599-017-0002-7 Gildea D, 2018, NLP OPEN SOURCE SOFTWARE (NLP-OSS), P23 Gusenbauer M, 2019, SCIENTOMETRICS, V118, P177, DOI 10.1007/s11192-018-2958-5 Howland J. L., 2010, SCHOLARLY IS GOOGLE Ioannidis JPA, 2019, PLOS BIOL, V17, DOI 10.1371/journal.pbio.3000384 Khabsa M, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0093949 Mariani Joseph, 2018, FRONTIERS RES METRIC, V3, P36 Martín-Martín A, 2018, J INFORMETR, V12, P1160, DOI 10.1016/j.joi.2018.09.002 Mingers J, 2015, EUR J OPER RES, V246, P1, DOI 10.1016/j.ejor.2015.04.002 Mishra S, 2018, PLOS ONE, V13, DOI 10.1371/journal.pone.0195773 Mohammad MAB, 2020, PR IEEE SEN ARRAY, DOI [10.1109/sam48682.2020.9104381, 10.1109/SAM48682.2020.9104381] Mohammad S., 2009, P HUMAN LANGUAGE TEC, P584 Mohammad S. M., 2020, REVIEW UNPUB Nanba H., 2011, ADV CLASSIFICATION R, V11, P117, DOI DOI 10.7152/acro.v11i1.12774 Orduna-Malea E., 2014, ARXIV14076239, P1 Pham SB, 2003, LECT NOTES ARTIF INT, V2903, P759 Priem J., 2010, 1 MONDAY, V15, DOI 10.5210/fm.v15i7.2874 Qazvinian V, 2013, J ARTIF INTELL RES, V46, P165, DOI 10.1613/jair.3732 Radev DR, 2016, J ASSOC INF SCI TECH, V67, P683, DOI 10.1002/asi.23394 Ravenscroft J, 2017, PLOS ONE, V12, DOI 10.1371/journal.pone.0173152 Saggion H., 2017, BIRNDL SIGIR, V2017, P26 Schluter N., 2018, P 2018 C EMP METH NA, P2793 Teich E, 2010, LANG COMPUT, V71, P233 Teufel S., 2006, P C EMP METH NAT LAN, DOI 10.3115/1610075.1610091 Zhu XD, 2015, J ASSOC INF SCI TECH, V66, P408, DOI 10.1002/asi.23179 NR 30 TC 10 Z9 10 U1 0 U2 0 PU EUROPEAN LANGUAGE RESOURCES ASSOC-ELRA PI PARIS PA 55-57, RUE BRILLAT-SAVARIN, PARIS, 75013, FRANCE BN 979-10-95546-34-4 PY 2020 BP 868 EP 877 PG 10 WC Computer Science, Interdisciplinary Applications; Linguistics; Language & Linguistics WE Conference Proceedings Citation Index - Science (CPCI-S); Conference Proceedings Citation Index - Social Science & Humanities (CPCI-SSH) SC Computer Science; Linguistics GA BS4ZZ UT WOS:000724697200109 DA 2024-09-05 ER PT J AU Phillips, F AF Phillips, Fred TI 50 years of TF&SC SO TECHNOLOGICAL FORECASTING AND SOCIAL CHANGE LA English DT Article DE Technology assessment; Technology forecasting; Technology management; Artificial intelligence; Complexity; Operations research; Technology diffusion; Multiple perspectives; Technology transitions ID TRANSITIONS; INNOVATION AB On Technological Forecasting & Social Change's 50th birthday, the journal's second and current Editor-in-Chief remarks on TF&SC's progress, the changes in the technological, cultural, and geopolitical environments in which the journal operates, TF&SC articles' changing topics and origins, and where future TF&SC volumes may lead. C1 [Phillips, Fred] Univ New Mexico, Albuquerque, NM 87131 USA. [Phillips, Fred] SUNY Stony Brook, Stony Brook, NY 11794 USA. C3 University of New Mexico; State University of New York (SUNY) System; State University of New York (SUNY) Stony Brook RP Phillips, F (corresponding author), Univ New Mexico, Albuquerque, NM 87131 USA. EM fred.phillips@stonybrook.edu OI Phillips, Fred/0000-0002-1409-6889 FU FITE Department of the University of New Mexico's Anderson School of Management FX Appreciation goes to the FITE Department of the University of New Mexico's Anderson School of Management for providing a research assistant to support the preparation of this special anniversary issue. The Editor-in-Chief is grateful also to Professor U.N. Umesh for taking on guest editor responsibilities attending to this issue. CR [Anonymous], 23921EN EUR EUR COMM [Anonymous], 2018, TOTALLY RANDOM WHY N [Anonymous], B AT SCI [Anonymous], 2018, SECRET LIFE SCI IT R [Anonymous], SLATE [Anonymous], WALL STREET J [Anonymous], 2018, NY TIMES [Anonymous], 1985, BIFURCATION ANAL [Anonymous], 2009, Nudge [Anonymous], EMFD GLOBAL NET 0907 Brem A, 2019, TECHNOL FORECAST SOC, V144, P348, DOI 10.1016/j.techfore.2017.11.020 Brem A, 2017, TECHNOL FORECAST SOC, V123, P130, DOI 10.1016/j.techfore.2017.01.002 Coccia M, 2018, TECHNOL FORECAST SOC, V128, P287, DOI 10.1016/j.techfore.2017.11.013 Diamandis P.H., 2012, Abundance: The future is better than you think Geels FW, 2017, SCIENCE, V357, P1242, DOI 10.1126/science.aao3760 Geels FW, 2005, TECHNOL FORECAST SOC, V72, P681, DOI 10.1016/j.techfore.2004.08.014 Harari Y. N., 2018, 21 lessons for the 21st century Hutson M, 2018, SCIENCE, V361, P215, DOI 10.1126/science.361.6399.215 Kortenkamp A, 2018, SCIENCE, V361, P224, DOI 10.1126/science.aat9219 LEARNER DB, 1993, SOCIO ECON PLAN SCI, V27, P9, DOI 10.1016/0038-0121(93)90025-E LINSTONE HA, 1989, TECHNOL FORECAST SOC, V36, P1, DOI 10.1016/0040-1625(89)90002-4 Linstone HA., 1994, CHALLENGE 21 CENTURY Linstone HA, 2013, TECHNOL FORECAST SOC, V80, P1438, DOI 10.1016/j.techfore.2013.04.011 Linstone HA, 2012, TECHNOL FORECAST SOC, V79, P414, DOI 10.1016/j.techfore.2011.11.001 Marr B., 2018, How Much Data Do We Create Every Day? The Mind-Blowing Stats Everyone Should Read Modis T, 2017, TECHNOL FORECAST SOC, V122, P63, DOI 10.1016/j.techfore.2017.04.015 Phillips F, 2008, TECHNOL FORECAST SOC, V75, P721, DOI 10.1016/j.techfore.2008.03.005 Phillips F, 2016, TECHNOL FORECAST SOC, V111, P1, DOI 10.1016/j.techfore.2016.08.021 Phillips F, 2016, TECHNOL FORECAST SOC, V105, P158, DOI 10.1016/j.techfore.2016.01.007 Phillips F, 2014, TECHNOL FORECAST SOC, V82, P1, DOI 10.1016/j.techfore.2013.09.008 Rogge KS, 2020, TECHNOL FORECAST SOC, V151, DOI 10.1016/j.techfore.2018.04.002 Sanwal A., 2017, CB Insights Tangermann Victor, 2018, FUTURISM Verbong GPJ, 2010, TECHNOL FORECAST SOC, V77, P1214, DOI 10.1016/j.techfore.2010.04.008 NR 34 TC 8 Z9 8 U1 0 U2 23 PU ELSEVIER SCIENCE INC PI NEW YORK PA STE 800, 230 PARK AVE, NEW YORK, NY 10169 USA SN 0040-1625 EI 1873-5509 J9 TECHNOL FORECAST SOC JI Technol. Forecast. Soc. Chang. PD JUN PY 2019 VL 143 BP 125 EP 131 DI 10.1016/j.techfore.2019.03.004 PG 7 WC Business; Regional & Urban Planning WE Social Science Citation Index (SSCI) SC Business & Economics; Public Administration GA IB1RT UT WOS:000470043000012 DA 2024-09-05 ER PT C AU Chandrasekaran, MK Jaidka, K Mayr, P AF Chandrasekaran, Muthu Kumar Jaidka, Kokil Mayr, Philipp GP ACM/SIGIR TI Joint Workshop on Bibliometric-enhanced Information Retrieval and Natural Language Processing for Digital Libraries (BIRNDL 2018) SO ACM/SIGIR PROCEEDINGS 2018 LA English DT Proceedings Paper CT 41st Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR) CY JUL 08-12, 2018 CL Univ Michigan, Ann Arbor, MI HO Univ Michigan AB The large scale of scholarly publications poses a challenge for scholars in information seeking and sensemaking. Information retrieval (IR), bibliometric and natural language processing (NLP) techniques could enhance scholarly search, retrieval and user experience but are not yet widely used. To this purpose, we propose the third iteration of the Joint Workshop on Bibliometric-enhanced Information Retrieval and Natural Language Processing for Digital Libraries (BIRNDL) [1, 3]. The workshop is intended to stimulate IR, NLP researchers and Digital Library professionals to elaborate on new approaches in natural language processing, information retrieval, scientometrics, text mining and recommendation techniques that can advance the state-of-the-art in scholarly document understanding, analysis, and retrieval at scale. The BIRNDL workshop will incorporate multiple invited talks, paper sessions, a poster session and the 4th edition of the Computational Linguistics (CL) Scientific Summarization Shared Task. C1 [Chandrasekaran, Muthu Kumar] Natl Univ Singapore, Sch Comp, Singapore, Singapore. [Jaidka, Kokil] Univ Penn, Sch Arts & Sci, Philadelphia, PA 19104 USA. [Mayr, Philipp] GESIS Leibniz Inst Social Sci, Mannheim, Germany. C3 National University of Singapore; University of Pennsylvania; Leibniz Institut fur Sozialwissenschaften (GESIS) RP Chandrasekaran, MK (corresponding author), Natl Univ Singapore, Sch Comp, Singapore, Singapore. EM muthu.chandra@comp.nus.edu.sg; jaidka@sas.upenn.edu; philipp.mayr@gesis.org RI Jaidka, Kokil/AAK-2618-2020 OI Jaidka, Kokil/0000-0002-8127-1157; Chandrasekaran, Muthu Kumar/0000-0001-6479-5904 FU Microsoft Research Asia FX We thank Microsoft Research Asia for their generous support in funding the development, dissemination and organization of the CL-SciSumm dataset and the Shared Task. We immensely thank Prof. Dragomir Radev and Michihiro Yasunaga from Yale University for co-organising CL-Scisumm with us this time. We are also grateful to the co-organizers of the 1st BIRNDL workshop - Guillaume Cabanac, Ingo Frommholz, Min-Yen Kan and Dietmar Wolfram, for their continued support and involvement. CR Cabanac G., 2017, SIGIR FORUM, V50, P36, DOI [10.1145/3053408.3053417, DOI 10.1145/3053408.3053417] Jaidka Kokil, 2014, The computational linguistics summarization pilot task Mayr P, 2018, INT J DIGIT LIBRARIE, V19, P107, DOI 10.1007/s00799-017-0230-x Mayr Philipp, 2017, SIGIR FORUM, V51, P29 Nakov P. I., 2004, P SIGIR 04 WORKSH SE, P81 Philipp Mayr, 2017, SIGIR FORUM, V51, P107 Teufel S., 2017, P 2 JOINT WORKSHOP B, P7 Wolfram D, 2016, P JOINT WORKSH BIBL, P6 NR 8 TC 1 Z9 1 U1 1 U2 5 PU ASSOC COMPUTING MACHINERY PI NEW YORK PA 1515 BROADWAY, NEW YORK, NY 10036-9998 USA BN 978-1-4503-5657-2 PY 2018 BP 1415 EP 1418 DI 10.1145/3209978.3210194 PG 4 WC Computer Science, Information Systems WE Conference Proceedings Citation Index - Science (CPCI-S) SC Computer Science GA BL4TH UT WOS:000450784600232 OA Green Submitted DA 2024-09-05 ER PT C AU Baran, M Kulakowski, K Ligeza, A AF Baran, Mateusz Kulakowski, Konrad Ligeza, Antoni BE Rutkowski, L Korytkowski, M Scherer, R Tadeusiewicz, R Zadeh, LA Zurada, JM TI A Note on Machine Learning Approach to Analyze the Results of Pairwise Comparison Based Parametric Evaluation of Research Units SO ARTIFICIAL INTELLIGENCE AND SOFT COMPUTING, ICAISC 2014, PT II SE Lecture Notes in Artificial Intelligence LA English DT Proceedings Paper CT 13th International Conference on Artificial Intelligence and Soft Computing (ICAISC) CY JUN 01-05, 2014 CL Zakopane, POLAND ID CONSISTENCY; PRIORITIES AB This paper presents an attempt at an analysis of parametric evaluation of research units with machine learning toolkit. The main goal was to investigate if the rules of evaluation can be expressed in a readable, transparent, and easy to interpret way. A further attempt was made at investigating consistency of the applied procedure and presentation of some observed anomalies. C1 [Baran, Mateusz; Kulakowski, Konrad; Ligeza, Antoni] AGH Univ Sci & Technol, PL-30059 Krakow, Poland. C3 AGH University of Krakow RP Baran, M (corresponding author), AGH Univ Sci & Technol, Al Mickiewicza 30, PL-30059 Krakow, Poland. EM mateusz.baran@agh.edu.pl; konrad.kulakowski@agh.edu.pl; antoni.ligeza@agh.edu.pl RI Ligeza, Antoni/E-2422-2012; Baran, Mateusz/U-9571-2019; Kulakowski, Konrad/C-1784-2013 OI Ligeza, Antoni/0000-0002-6573-4246; Baran, Mateusz/0000-0001-9667-5579; Kulakowski, Konrad/0000-0002-2857-0916 CR [Anonymous], 1979, Multiple attribute decision making: methods and applications: a state-of-the-art survey [Anonymous], TITLE ERROR Bana E Costa CA, 2008, EUR J OPER RES, V187, P1422, DOI 10.1016/j.ejor.2006.09.022 Chang C.-C., 2001, LIBSVM A LIBRARY FOR Cios K.J., 2007, DATA MINING A KNOWLE Colomer J.M., 2011, SOCIAL CHOICE AND WE, V40, P317 DYER JS, 1990, MANAGE SCI, V36, P249, DOI 10.1287/mnsc.36.3.249 Fedrizzi M, 2007, EUR J OPER RES, V183, P303, DOI 10.1016/j.ejor.2006.09.065 Flach P., 2012, Machine Learning-The art and science of algorithms that make sense of data Frank E., 1998, Machine Learning. Proceedings of the Fifteenth International Conference (ICML'98), P144 Gaines B. R., 1995, Journal of Intelligent Information Systems: Integrating Artificial Intelligence and Database Technologies, V5, P211, DOI 10.1007/BF00962234 Greco S, 2011, LECT NOTES ARTIF INT, V6954, P126, DOI 10.1007/978-3-642-24425-4_19 Hall M., 2009, ACM SIGKDD Explor. Newsl., V11, P10, DOI DOI 10.1145/1656274.1656278 Huehn J.C., 2009, FURIA AN ALGORITHM F Koczkodaj W.W., 2014, SCIENTOMETRICS ACCEP KOCZKODAJ WW, 1993, MATH COMPUT MODEL, V18, P79, DOI 10.1016/0895-7177(93)90059-8 Kulakowski K, 2015, CENT EUR J OPER RES, V23, P187, DOI 10.1007/s10100-013-0311-x Landwehr N, 2005, MACH LEARN, V59, P161, DOI 10.1007/s10994-005-0466-3 Miettinen K, 2012, NONLINEAR MULTIOBJEC, V12 Perron O, 1907, MATH ANN, V64, P248, DOI 10.1007/BF01449896 Quinlan R., 1993, C4 5 PROGRAMS FOR MA SAATY TL, 1977, J MATH PSYCHOL, V15, P234, DOI 10.1016/0022-2496(77)90033-5 Sumner M, 2005, LECT NOTES ARTIF INT, V3721, P675 THURSTONE LL, 1994, PSYCHOL REV, V101, P266, DOI 10.1037/0033-295X.101.2.266 NR 24 TC 1 Z9 1 U1 0 U2 4 PU SPRINGER-VERLAG BERLIN PI BERLIN PA HEIDELBERGER PLATZ 3, D-14197 BERLIN, GERMANY SN 0302-9743 EI 1611-3349 BN 978-3-319-07175-6; 978-3-319-07176-3 J9 LECT NOTES ARTIF INT PY 2014 VL 8468 BP 27 EP 39 PG 13 WC Computer Science, Artificial Intelligence WE Conference Proceedings Citation Index - Science (CPCI-S) SC Computer Science GA BB1EQ UT WOS:000341055600003 DA 2024-09-05 ER PT J AU Chen, F AF Chen, Feng TI Research on the Performance of Network Propagation by Using the Machine Learning and Internet-of-Things Technology Integrating Model SO COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE LA English DT Article ID CONTEXT AB We combine machine learning with Internet of Things technology to study the performance of network propagation model. This paper first introduces the construction environment of the business push system and then realizes user clustering and active business push by using the experimental data. Experimental results show that the active service push system constructed in this paper is feasible and effective. The experiment also compares and analyzes the influence of different clustering methods on the accuracy of service push. The results show that the clustering effect of the multi-Markov chain model (m-MCM) method is superior to that of the K-means method, a commonly used machine learning method, and the accuracy of user-service push obtained by the m-MCM method is superior to that obtained by the K-means method. Finally, on the basis of the existing experimental results, the shortcomings of the service push system are summarized, the future improvement direction and specific implementation measures are proposed, and new requirements for the future update of the service push system are put forward. C1 [Chen, Feng] Zhejiang Coll Secur Technol, Coll Artificial Intelligence, Wenzhou 325016, Zhejiang, Peoples R China. RP Chen, F (corresponding author), Zhejiang Coll Secur Technol, Coll Artificial Intelligence, Wenzhou 325016, Zhejiang, Peoples R China. EM chenfeng@zjcst.edu.cn CR Arnold C., 2017, BHM Berg-und Huttenmannische Monatshefte, V16, P371, DOI [10.1007/s00501-017-0667-7, DOI 10.1007/S00501-017-0667-7] Baldwin C.Y., 2009, The architecture of platforms: A unified view Baldwin C, 2011, ORGAN SCI, V22, P1399, DOI 10.1287/orsc.1100.0618 Borges J, 2000, LECT NOTES COMPUT SC, V1836, P92 Chesbrough H., 2006, OPEN INNOVATION RES Cusumano MA, 2002, MIT SLOAN MANAGE REV, V43, P51 Gierej S, 2017, PROCEDIA ENGINEER, V182, P206, DOI 10.1016/j.proeng.2017.03.166 Hagiu A, 2006, RAND J ECON, V37, P720, DOI 10.1111/j.1756-2171.2006.tb00039.x Hartman M., 2015, P 26 INT SOC PROFESS Iivari M M., 2016, Journal of Business Models, V4, DOI DOI 10.5278/OJS.JBM.V4I2.1624 Kazuyuki M., 2017, RIETI POLICY DISCUSS, V17, P1 Kobayashi I, 2008, NEW GENERAT COMPUT, V26, P39, DOI 10.1007/s00354-007-0033-5 Krotov V, 2017, BUS HORIZONS, V60, P831, DOI 10.1016/j.bushor.2017.07.009 Montori F, 2018, PERVASIVE MOB COMPUT, V50, P56, DOI 10.1016/j.pmcj.2018.08.002 Palmisano C, 2008, IEEE T KNOWL DATA EN, V20, P1535, DOI 10.1109/TKDE.2008.110 Pramanik A., 2014, ASIAN J MULTIDISCIPL, V2, P195 Rochet JC, 2003, J EUR ECON ASSOC, V1, DOI 10.1162/154247603322493212 Tosi D, 2004, FOURTH INTERNATIONAL CONFERENCE ON WEB INFORMATION SYSTEMS ENGINEERING WORKSHOPS, PROCEEDINGS, P193, DOI 10.1109/WISEW.2003.1286802 Wang XV, 2012, ENTERP INF SYST-UK, V6, P291, DOI 10.1080/17517575.2011.587544 Xu X., ROBOTICS COMPUTER IN NR 20 TC 0 Z9 0 U1 0 U2 4 PU HINDAWI LTD PI LONDON PA ADAM HOUSE, 3RD FLR, 1 FITZROY SQ, LONDON, W1T 5HF, ENGLAND SN 1687-5265 EI 1687-5273 J9 COMPUT INTEL NEUROSC JI Comput. Intell. Neurosci. PD SEP 19 PY 2022 VL 2022 AR 5480015 DI 10.1155/2022/5480015 PG 13 WC Mathematical & Computational Biology; Neurosciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Mathematical & Computational Biology; Neurosciences & Neurology GA 5E5FF UT WOS:000865649400012 PM 36172310 OA Green Published, gold DA 2024-09-05 ER PT C AU Raval, MS Kaya, T AF Raval, Mehul S. Kaya, Tolga BE Cardoso, A Alves, GR Restivo, MT TI Effect of Multinational Projects on Engineering Students through a Summer Exposure Research Program SO PROCEEDINGS OF THE 2020 IEEE GLOBAL ENGINEERING EDUCATION CONFERENCE (EDUCON 2020) SE IEEE Global Engineering Education Conference LA English DT Proceedings Paper CT IEEE Global Engineering Education Conference (IEEE EDUCON) CY APR 27-30, 2020 CL ELECTR NETWORK DE active learning; global competencies; engineering education; multinational projects ID EXPERIENCE AB This paper studies and quantifies the impact of active learning experienced through multinational projects. The hypothesis was engineering education delivered through Active Learning in multicultural environment improves student competencies. The investigation captures the impact of international exposure program in developing global competencies of the modern engineer. The paper shows positive trends in the development of domain and life skills of engineering students. Post-survey after six months of completion of the program revealed that the program was valuable to students and their motivation increased. C1 [Raval, Mehul S.] Pandit Deendayal Petr Univ, Sch Technol, Gandhinagar, India. [Kaya, Tolga] Sacred Heart Univ, Sch Comp Sci & Engn, Fairfield, CT USA. C3 Pandit Deendayal Energy University; Sacred Heart University RP Raval, MS (corresponding author), Pandit Deendayal Petr Univ, Sch Technol, Gandhinagar, India. EM mehul.raval@sot.pdpu.ac.in; kayat@sacredheart.edu OI Kaya, Tolga/0000-0003-3425-4298; Raval, Mehul/0000-0002-3895-1448 CR Adams R., 2013, J COMPUT SCI COLL, V29, P10 Al-Janabi S., 2011, 2011 IEEE Global Engineering Education Conference (EDUCON), P86, DOI 10.1109/EDUCON.2011.5773118 [Anonymous], 2014, A Whole New Engineer: The Coming Revolution in Engineering Education Campbell K., 2016, Journal of international Mobility, V4, P189, DOI DOI 10.3917/JIM.004.0189 Cavrak I, 2018, PROCEEDINGS 2018 ACM/IEEE 13TH INTERNATIONAL CONFERENCE ON GLOBAL SOFTWARE ENGINEERING ICGSE 2018, P112, DOI 10.1145/3196369.3196370 Cheng AYN, 2014, PROCD SOC BEHV, V116, P4277, DOI 10.1016/j.sbspro.2014.01.931 European Commission, WHAT IS ER Gallarza MG, 2019, INT J EDUC MANAG, V33, P218, DOI 10.1108/IJEM-11-2017-0322 Gardner K., 2011, J AM SOC ENG ED Giorgio D. P., 2019, U STUDY ABROAD GRADU International Monetary Fund (IMF), 2000, Globalization: Threat or Opportunity? Jackson TM, 2018, PR IEEE INT CONF TEA, P783, DOI 10.1109/TALE.2018.8615407 Jeschke S, 2011, AUTOMATION, COMMUNICATION AND CYBERNETICS IN SCIENCE AND ENGINEERING 2009/2010, P71, DOI 10.1007/978-3-642-16208-4_6 Jurica B., 2019, 15 INT C TELECOMMUNI, P1 Nascimbeni F, 2018, IEEE GLOB ENG EDUC C, P285, DOI 10.1109/EDUCON.2018.8363241 Ocampo JR, 2017, IEEE GLOB ENG EDUC C, P281, DOI 10.1109/EDUCON.2017.7942860 Poulova P, 2018, IEEE GLOB ENG EDUC C, P1283, DOI 10.1109/EDUCON.2018.8363377 Raval M. S., 2019, INT J ELECT ENG ED Rodriguez J, 2017, IEEE REV IBEROAM TEC, V12, P218, DOI 10.1109/RITA.2017.2776446 Strenger N., 2016, SPRINGER ENG ED 4 0, V4, P611 Strenger N, 2017, IEEE GLOB ENG EDUC C, P226, DOI 10.1109/EDUCON.2017.7942852 Yelamarthi K, 2017, INT J ENG EDUC, V33, P1699 NR 22 TC 1 Z9 1 U1 0 U2 4 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA SN 2165-9567 BN 978-1-7281-0930-5 J9 IEEE GLOB ENG EDUC C PY 2020 BP 51 EP 55 DI 10.1109/educon45650.2020.9125095 PG 5 WC Education, Scientific Disciplines; Engineering, Multidisciplinary WE Conference Proceedings Citation Index - Science (CPCI-S) SC Education & Educational Research; Engineering GA BQ7NB UT WOS:000617739900013 DA 2024-09-05 ER PT J AU Gomez, MJ Ruipérez-Valiente, JA Clemente, FGJ AF Gomez, Manuel J. Ruiperez-Valiente, Jose A. Garcia Clemente, Felix J. TI Analyzing Trends and Patterns Across the Educational Technology Communities Using Fontana Framework SO IEEE ACCESS LA English DT Article DE Bibliometrics; Market research; Task analysis; Metadata; Social networking (online); Databases; Network analyzers; EdTech; data mining; bibliometrics; NLP; network analysis; topic modeling ID NETWORK ANALYSIS AB Nowadays, the use of technology in continuously increasing, making a significant impact in almost every area, including education. New areas have gained much popularity in the last years in educational technology (EdTech), such as Massive Open Online Courses (MOOCs) or computer-supported collaborative learning. In addition, research and interest in this area have also been growing over the years. The quantity of research and scientific publications in EdTech is constantly increasing, and trying to analyze and extract information from a set of research papers is often a very time-consuming task. To make this process easier and solve these limitations, we present Fontana, a framework that can quickly perform trend and social network analysis using any corpus of documents and its metadata. Specifically, the framework can: 1) Discover the latest trends given any corpus of documents, using Natural Language Processing (NLP) analysis and keywords (bibliometric approach); 2) Discover the evolution of the trends previously identified over the years; 3) Discover the primary authors and papers, along with hidden relationships between existing communities. To test its functionality, we evaluated the framework using a corpus of papers from the EdTech research field. We also followed an open science methodology making the entire framework available in Open Science Framework (OSF) easy to access and use. The case study successfully proved the capabilities of the framework, revealing some of the most frequent topics in the area, such as "EDM," "learning analytics," or "collaborative learning." We expect our work to help identifying trends and patterns in the EdTech area, using natural language processing and social network analysis to objectively process large amounts of research. C1 [Gomez, Manuel J.; Ruiperez-Valiente, Jose A.; Garcia Clemente, Felix J.] Univ Murcia, Fac Comp Sci, Murcia 30003, Spain. C3 University of Murcia RP Gomez, MJ (corresponding author), Univ Murcia, Fac Comp Sci, Murcia 30003, Spain. EM manueljesus.gomezm@um.es RI Clemente, Félix Jesús Garcia/AAM-8396-2020; Gomez Moratilla, Manuel Jesus/HMW-0780-2023; Ruiperez-Valiente, Jose A./U-8795-2018 OI Clemente, Félix Jesús Garcia/0000-0001-6181-5033; Ruiperez-Valiente, Jose A./0000-0002-2304-6365; Gomez, Manuel J./0000-0003-0571-2923 CR Abu-Jbara A., 2013, NAACL, P596 [Anonymous], 2013, ACM International Conference Proceeding Series, DOI [DOI 10.1145/2460296.2460316, 10.1145/2460296.2460316] [Anonymous], 2021, Web of Science [Anonymous], 2009, COMP STUDY METHODOLO Atanassova I., 2019, FRONTIERS RES METRIC, V4, P2 Bastian M., 2009, Gephi: An open source software for exploring and manipulating networks Bond M, 2019, BRIT J EDUC TECHNOL, V50, P12, DOI 10.1111/bjet.12730 Bordea G, 2014, LREC 2014 - NINTH INTERNATIONAL CONFERENCE ON LANGUAGE RESOURCES AND EVALUATION, P2083 BROADUS RN, 1987, SCIENTOMETRICS, V12, P373, DOI 10.1007/BF02016680 Buck S, 2015, SCIENCE, V348, P1403, DOI 10.1126/science.aac8041 Burch~eld R. W., 1972, SUPPLEMENT OXFORD EN Chen XL, 2020, BRIT J EDUC TECHNOL, V51, P692, DOI 10.1111/bjet.12907 Chen XL, 2019, J COMPUT EDUC, V6, P563, DOI 10.1007/s40692-019-00149-1 Choi HS, 2017, COMPUT SECUR, V67, P244, DOI 10.1016/j.cose.2017.03.007 Chowdhury GG, 2003, ANNU REV INFORM SCI, V37, P51, DOI 10.1002/aris.1440370103 Dawson S., 2014, P 4 INT C LEARNING A, P231 DeShazo JP, 2009, BMC MED INFORM DECIS, V9, DOI 10.1186/1472-6947-9-7 Díaz O, 2017, LECT NOTES COMPUT SC, V10243, P231, DOI 10.1007/978-3-319-59144-5_14 Elsevier, 2021, About Scopus Fabry DL, 1997, J EDUC COMPUT RES, V17, P385, DOI 10.2190/C770-AWA1-CMQR-YTYV Anta AF, 2013, PROCES LENG NAT, P45 Fidler F., 2021, The Stanford Encyclopedia of Philosophy Gao Y, 2019, ENVIRON SCI POLLUT R, V26, P17809, DOI 10.1007/s11356-019-05071-8 Gomez M. J., 2021, ANAL TRENDS PATTERNS González-Alcaide G, 2012, REV INST MED TROP SP, V54, P219, DOI 10.1590/S0036-46652012000400007 Gurcan F, 2021, INT REV RES OPEN DIS, V22, P1 Harman K, 2014, IND MANAGE DATA SYST, V114, P1438, DOI 10.1108/IMDS-07-2014-0208 Huang R., 2019, Educational Technology, P3, DOI [10.1007/978981-13-6643-7_1/FIGURES/4, DOI 10.1007/978-981-13-6643-7_1] Huang R., 2019, Educational technology a primer for the 21st century, DOI DOI 10.1007/978-981-13-6643-7 Hulme EW, 1923, Statistical bibliography in relation to the growth of modern civilization, DOI DOI 10.1038/112585A0 Hung JL, 2012, BRIT J EDUC TECHNOL, V43, P5, DOI 10.1111/j.1467-8535.2010.01144.x IAALDE, 2021, INT ALL ADV LEARN DI Jack C, 2019, INT J EARLY YEARS ED, V27, P222, DOI 10.1080/09669760.2018.1504754 Kajikawa Y, 2009, TECHNOL FORECAST SOC, V76, P1115, DOI 10.1016/j.techfore.2009.04.004 Kajikawa Y, 2007, SUSTAIN SCI, V2, P221, DOI 10.1007/s11625-007-0027-8 Kapadia Shashank., 2019, EVALUATE TOPIC MODEL Kirkwood A, 2014, LEARN MEDIA TECHNOL, V39, P6, DOI 10.1080/17439884.2013.770404 Kizilcec R. F., 2013, P 3 INT C LEARN AN K, P170, DOI [10.1145/2460296.2460330, DOI 10.1145/2460296.2460330] Kokol P, 2021, HEALTH INFO LIBR J, V38, P125, DOI 10.1111/hir.12295 Kovacevic A, 2012, COMPUT SPEECH LANG, V26, P105, DOI [10.1016/j.csl.2011.09.001, 10.1016/j.cs1.2011.09.001] Kross S, 2018, PROCEEDINGS OF THE FIFTH ANNUAL ACM CONFERENCE ON LEARNING AT SCALE (L@S'18), DOI 10.1145/3231644.3231662 Kumar S, 2015, ASLIB J INFORM MANAG, V67, P55, DOI 10.1108/AJIM-09-2014-0116 Lee LK, 2020, J COMPUT EDUC, V7, P1, DOI 10.1007/s40692-020-00155-8 Liddy E.D, 2001, Encyclopedia of Library and Information Science, V2nd Lu WZ, 2007, KNOWL INF SYST, V11, P105, DOI 10.1007/s10115-006-0023-9 Lv PH, 2011, SCIENTOMETRICS, V88, P399, DOI 10.1007/s11192-011-0386-x Marin A, 2011, The SAGE handbook of social network analysis, P25, DOI DOI 10.4135/9781446294413.N2 Meyers A. L., 2018, Frontiers in Research Metrics and Analytics, V3, P19, DOI [10.3389/frma.2018.00019, DOI 10.3389/FRMA.2018.00019] Miau S, 2018, TECHNOL ANAL STRATEG, V30, P1029, DOI 10.1080/09537325.2018.1434138 Mirrlees T., 2019, EDTECH INC SELLING A NetworkX, NETWORKX NETW AN PYT Noble Helen, 2018, Evid Based Nurs, V21, P39, DOI 10.1136/eb-2018-102895 O'Callaghan D, 2015, EXPERT SYST APPL, V42, P5645, DOI 10.1016/j.eswa.2015.02.055 Otte E, 2002, J INF SCI, V28, P441, DOI 10.1177/016555150202800601 Palmer J. A., 2021, pdftotext PRITCHARD A, 1969, J DOC, V25, P348 PyVis, 2021, PYVIS INTR Röder M, 2015, WSDM'15: PROCEEDINGS OF THE EIGHTH ACM INTERNATIONAL CONFERENCE ON WEB SEARCH AND DATA MINING, P399, DOI 10.1145/2684822.2685324 Scheuer O., 2012, ENCY SCI LEARNING SCOTT J, 1988, SOCIOLOGY, V22, P109, DOI 10.1177/0038038588022001007 Sood SK, 2024, IEEE T ENG MANAGE, V71, P671, DOI 10.1109/TEM.2021.3134128 Streeter C.L., 1992, Journal of Social Service Research, V16, P201, DOI [DOI 10.1300/J079V16N0110, 10.1300/J079v16n01_10, DOI 10.1300/J079V16N01_10] Syed S, 2017, PR INT CONF DATA SC, P165, DOI 10.1109/DSAA.2017.61 van der Zee T, 2018, AERA OPEN, V4, DOI 10.1177/2332858418787466 Yao LM, 2009, KDD-09: 15TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, P937 Zaihan Yang, 2013, 2013 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM), P324 NR 66 TC 2 Z9 2 U1 3 U2 17 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 2169-3536 J9 IEEE ACCESS JI IEEE Access PY 2022 VL 10 BP 35336 EP 35351 DI 10.1109/ACCESS.2022.3163253 PG 16 WC Computer Science, Information Systems; Engineering, Electrical & Electronic; Telecommunications WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Computer Science; Engineering; Telecommunications GA 0H6YD UT WOS:000778877900001 OA gold DA 2024-09-05 ER PT J AU Cabrera, PR Bolívar, CR Ramírez, T AF Cabrera, Pablo Rios Bolivar, Carlos Ruiz Ramirez, Tulio TI Online Course Evaluation for the Development of Research Competences under a Socio-constructivist Pedagogical Approach SO REVISTA EDUCACION LA English DT Article DE Investigative Competencies; Socio-Constructivist Approach; Project-Based Teaching; Pedagogical Innovation; Active Learning; Teamwork; Formative Evaluation AB The results of the evaluation of an online course are presented to develop investigative skills under a socio-constructivist pedagogical approach. Eleven subjects of both genders, university professionals from Latin America, and members of a cohort of the International Diploma in Investigative Competences participated in the course. Moreover, a mixed research design was used. For the quantitative analysis, a self-assessment scale (pretest and posttest) was used, which served to measure the acquisition of investigative skills. For the qualitative analysis, the focus group, a self-assessment rubric, and a final evaluation questionnaire of the course were used. The results indicate that there were statistically significant differences between the pretest and posttest of investigative skills (p < .001). 73% of the participants consider that they fully achieved the investigative competencies, while 27% partially achieved them and there were no participants in the not achieved category. In addition, the participants reached their achievement expectations in 90.6% of the cases and 63.6% of the individuals exceeded their achievement expectations. Therefore, it is concluded that the socio-constructivist pedagogical approach used was effective and efficient in the development of investigative skills, so its use in teaching research at the university is highly recommended. This research highlights the importance of the mediating work of teachers in the integration of research theory and practice, as well as the use of digital technologies to achieve active and collaborative learning. Thus, this study offers an innovative pedagogical perspective for the teaching of research at the university. However, the small sample size is recognized as a limitation. Hence, it is suggested that in future research the study be extended to a greater number of participants in different university contexts. C1 [Cabrera, Pablo Rios; Ramirez, Tulio] Univ Catolica Andres Bello, Caracas, Venezuela. [Bolivar, Carlos Ruiz] Nova Southeastern Univ, Ft Lauderdale, FL USA. C3 Nova Southeastern University RP Cabrera, PR (corresponding author), Univ Catolica Andres Bello, Caracas, Venezuela. EM pablorioscabrera@gmail.com; cr1255@nova.edu; tuliorc1@gmail.com CR Aguilar-Torres H., 2021, THESIS U AUTONOMA PU Anama A., 2020, PRACTICAS ED SOCIOCO Buendía-Arias Ximena Paola, 2018, Folios, P179 Castellaro Mariano, 2020, Perfiles educativos, V42, P140, DOI 10.22201/iisue.24486167e.2020.168.59439 Chacón Reyes Jorge, 2013, RMIE, V18, P735 Creswell J. W., 2017, MIXED METHODS RES Davila A., 2015, REV EDUCACION DISTAN, V45, P7 Dewey J., 1952, BUSQUEDA CERTEZA EST Fluckiger J., 2010, The Delta Kappa Gamma Bulletin, P18 Gamboa-Mora M., 2012, Res. Mag. UNAD, V11, P77, DOI [10.22490/25391887.789, DOI 10.22490/25391887.789] Guerra Santana Mónica, 2019, Rev. estud. exp. educ., V18, P269, DOI 10.21703/rexe.20191836guerra5 GUERRERO USEDA MARÍA EUGENIA, 2007, Act.Colom.Psicol., V10, P190 Hernandez I. B., 2021, Revista de Ciencias Sociales, V27, P242 Johnson B., 2019, Educational research: Quantitative, qualitative, and mixed approaches, V7th Jonnaert P., 2001, SESION CONGRESO 2 CO Kaye H., 2018, CREATIVITY CRITIQUE, P59, DOI [10.1007/978-3-319-78298-0_4, DOI 10.1007/978-3-319-78298-0_4] Krippendorff Klaus., 1990, Metodologia de analisis de contenido - Teoria e Practica Ramírez-Díaz JL, 2020, REV ELECTRON EDUCARE, V24 Mendioroz Lacabra Ana, 2022, REDIE, V24, pe28, DOI 10.24320/redie.2022.24.e28.4182 Miyahira Arakaki Juan M, 2009, Rev Med Hered, V20, P119 Organizacion para la Cooperacion y el Desarrollo Economicos [OCDE], 2005, PROYECT DESECO DEF S Paredes I. M., 2018, CONGRESO CIENCIA TEC, DOI [10.24133/cctespe.v13i1.724, DOI 10.24133/CCTESPE.V13I1.724] Porras L. A., 2021, FACTORES ASOCIADOS E, DOI [10.57998/bdigital.handle.001.5239, DOI 10.57998/BDIGITAL.HANDLE.001.5239] Ramos E., 2022, RISEI ACAD J, V2, P52 Real Academia Espanola (RAE), 2021, Diccionario de la lengua espanola. Voz "aborto Rios P., 2023, Arete, Revista Digital del Doctorado en Educacion, V9, P147, DOI [10.55560/arete.2023.17.9.7, DOI 10.55560/ARETE.2023.17.9.7] Rivas L. A., 2011, REV INVESTIGACION AD, V108, P43 Lizcano-Dallos AR, 2019, MAGIS, V12, P5, DOI 10.11144/Javeriana.m12-24.acat Rodriguez Garcia A. B., 2014, Revista Academia y Virtualidad, V7, P53, DOI [10.18359/ravi.318, DOI 10.18359/RAVI.318] Rodriguez M., 2023, DIDACTICA GEOGRAFICA, V24, P39 Ruiz C., 2014, COMO LLEGAR SER TUTO, V2da Ruiz C., 2002, REV EDUCACION CIENCI, V10, P69 Ruiz C., 2021, CUESTIONARIO E UNPUB Scager K, 2016, CBE-LIFE SCI EDUC, V15, DOI 10.1187/cbe.16-07-0219 Shah RK., 2019, Journal of Pedagogical Research, V3, P38, DOI [10.33902/JPR.2019254159, DOI 10.33902/JPR.2019254159] Toro-Ocampo J., 2016, SESION CONGRESO ENCU Valarino E., 2011, SESION CONFERENCIA Vygotsky L., 1979, DESARROLLO PROCESOS Zajac S, 2021, FRONT COMMUN, V6, DOI 10.3389/fcomm.2021.606445 Zambrano-Sandoval H, 2021, REV EDUC-COSTA RICA, V45, DOI 10.15517/revedu.v45i1.43646 NR 40 TC 0 Z9 0 U1 3 U2 7 PU UNIV COSTA RICA, EDITORIAL PI SAN JOSE PA SEDE RODRIGO FACIO BRENES, MONTES DE OCA, SAN JOSE, 00000, COSTA RICA SN 0379-7082 EI 2215-2644 J9 REV EDUC-COSTA RICA JI Rev. Educ. PD JUL-DEC PY 2023 VL 47 IS 2 AR 53856 DI 10.15517/revedu.v47i2.53856 PG 20 WC Education & Educational Research WE Emerging Sources Citation Index (ESCI) SC Education & Educational Research GA O0MF9 UT WOS:001040842100002 OA gold DA 2024-09-05 ER PT C AU Rehs, A AF Rehs, Andreas BE Glanzel, W Heeffer, S Chi, PS Rousseau, R TI The scientific productivity of German PhD graduates: A machine learning-based author name disambiguation and record linkage approach SO 18TH INTERNATIONAL CONFERENCE ON SCIENTOMETRICS & INFORMETRICS (ISSI2021) SE Proceedings of the International Conference on Scientometrics and Informetrics LA English DT Proceedings Paper CT 18th International Conference on Scientometrics and Informetrics (ISSI) CY JUL 12-15, 2021 CL KU Leuven, ELECTR NETWORK HO KU Leuven C1 [Rehs, Andreas] Univ Kassel, Int Ctr Higher Educ Res, Monchebergstr 17, D-34109 Kassel, Germany. C3 Universitat Kassel RP Rehs, A (corresponding author), Univ Kassel, Int Ctr Higher Educ Res, Monchebergstr 17, D-34109 Kassel, Germany. EM andreasrehs@googlemail.com RI Rehs, Andreas/AAG-3062-2022; Rehs, Andreas/AFK-4297-2022 OI Rehs, Andreas/0000-0003-1947-2051; Rehs, Andreas/0000-0003-1947-2051 CR Blakely T, 2002, INT J EPIDEMIOL, V31, P1246, DOI 10.1093/ije/31.6.1246 BuWiN (Konsortium Bundesbericht Wissenschaftlicher Nachwuchs), 2017, BUND WISS NACHW 2017 DEMPSTER AP, 1977, J ROY STAT SOC B MET, V39, P1, DOI 10.1111/j.2517-6161.1977.tb01600.x Enamorado T, 2019, AM POLIT SCI REV, V113, P353, DOI 10.1017/S0003055418000783 FELLEGI IP, 1969, J AM STAT ASSOC, V64, P1183, DOI 10.2307/2286061 Rehs A, 2021, J INFORMETR, V15, DOI 10.1016/j.joi.2021.101166 Stephan PE, 2004, ECON DEV Q, V18, P151, DOI 10.1177/0891242403262019 NR 7 TC 0 Z9 0 U1 0 U2 1 PU INT SOC SCIENTOMETRICS & INFORMETRICS-ISSI PI LEUVEN PA KATHOLIEKE UNIV LEUVEN, FACULTEIT E T E W, DEKENSTRAAT 2, LEUVEN, B-3000, BELGIUM SN 2175-1935 BN 978-90-803282-2-8 J9 PRO INT CONF SCI INF PY 2021 BP 1531 EP 1532 PG 2 WC Computer Science, Interdisciplinary Applications; Information Science & Library Science WE Conference Proceedings Citation Index - Science (CPCI-S); Conference Proceedings Citation Index - Social Science & Humanities (CPCI-SSH) SC Computer Science; Information Science & Library Science GA BS3CO UT WOS:000709638700205 DA 2024-09-05 ER PT C AU Tran, HN Huynh, T Do, T AF Hung Nghiep Tran Tin Huynh Tien Do BE Nguyen, NT Attachoo, B Trawinski, B Somboonviwat, K TI Author Name Disambiguation by Using Deep Neural Network SO INTELLIGENT INFORMATION AND DATABASE SYSTEMS, PT 1 SE Lecture Notes in Computer Science LA English DT Proceedings Paper CT 6th Asian Conference on Intelligent Information and Database Systems (ACIIDS) CY APR 07-09, 2014 CL Bangkok, THAILAND DE Digital Library; Bibliographic Data; Author Name Disambiguation; Machine Learning; Feature Learning; Deep Neural Network AB Author name ambiguity is one of the problems that decrease the quality and reliability of information retrieved from digital libraries. Existing methods have tried to solve this problem by predefining a feature set based on expert's knowledge for a specific dataset. In this paper, we propose a new approach which uses deep neural network to learn features automatically for solving author name ambiguity. Additionally, we propose the general system architecture for author name disambiguation on any dataset. We evaluate the proposed method on a dataset containing Vietnamese author names. The results show that this method significantly outperforms other methods that use predefined feature set. The proposed method achieves 99.31% in terms of accuracy. Prediction error rate decreases from 1.83% to 0.69%, i.e., it decreases by 1.14%, or 62.3% relatively compared with other methods that use predefined feature set (Table 3). C1 [Hung Nghiep Tran; Tin Huynh; Tien Do] Univ Informat Technol Vietnam, Linh Trung Ward, Ho Chi Minh City, Vietnam. RP Tran, HN (corresponding author), Univ Informat Technol Vietnam, Linh Trung Ward, Ho Chi Minh City, Vietnam. EM nghiepth@uit.edu.vn; tinhn@uit.edu.vn; tiendv@uit.edu.vn RI Do, Tien/IVU-9134-2023 CR [Anonymous], 2007, NIPS Bhattacharya I., 2007, ACM T KNOWL DISCOV D, V1 Bilenko M, 2003, IEEE INTELL SYST, V18, P16, DOI 10.1109/MIS.2003.1234765 Ciresan D, 2012, PROC CVPR IEEE, P3642, DOI 10.1109/CVPR.2012.6248110 Cohen W.W., 2003, IIWeb, P73 Ferreira AA, 2012, SIGMOD REC, V41, P15, DOI 10.1145/2350036.2350040 Glorot X., 2011, P 14 INT C ARTIFICIA, V15, P315 Glorot X., 2010, JMLR Workshop and Conference Proceedings., P249 Hinton GE, 2006, NEURAL COMPUT, V18, P1527, DOI 10.1162/neco.2006.18.7.1527 Krizhevsky A, 2017, COMMUN ACM, V60, P84, DOI 10.1145/3065386 McClelland J., 1987, Learning Internal Representations by Error Propagation, V1, P318 Huynh T, 2013, LECT NOTES COMPUT SC, V7802, P226, DOI 10.1007/978-3-642-36546-1_24 Torvik VI, 2009, ACM T KNOWL DISCOV D, V3, DOI 10.1145/1552303.1552304 Torvik VI, 2005, J AM SOC INF SCI TEC, V56, P140, DOI 10.1002/asi.20105 Yu D., 2013, CORRABS13013605 NR 15 TC 36 Z9 44 U1 0 U2 9 PU SPRINGER-VERLAG BERLIN PI BERLIN PA HEIDELBERGER PLATZ 3, D-14197 BERLIN, GERMANY SN 0302-9743 EI 1611-3349 BN 978-3-319-05476-6; 978-3-319-05475-9 J9 LECT NOTES COMPUT SC PY 2014 VL 8397 BP 123 EP 132 PG 10 WC Computer Science, Artificial Intelligence; Computer Science, Information Systems; Computer Science, Theory & Methods WE Conference Proceedings Citation Index - Science (CPCI-S) SC Computer Science GA BA6XT UT WOS:000337302600013 DA 2024-09-05 ER PT C AU Ghosh, S Das, D Chakraborty, T AF Ghosh, Souvick Das, Dipankar Chakraborty, Tanmoy BE Gelbukh, A TI Determining Sentiment in Citation Text and Analyzing Its Impact on the Proposed Ranking Index SO COMPUTATIONAL LINGUISTICS AND INTELLIGENT TEXT PROCESSING, (CICLING 2016), PT II SE Lecture Notes in Computer Science LA English DT Proceedings Paper CT 17th International Conference on Intelligent Text Processing and Computational Linguistics (CICLing) CY APR 03-09, 2016 CL Mevlana Univ, Konya, TURKEY HO Mevlana Univ DE Sentiment analysis; Citation; Citation sentiment analysis; Citation polarity; Ranking; Bibliometrics AB Whenever human beings interact with each other, they exchange or express opinions, emotions and sentiments. These opinions can be expressed in text, speech or images. Analysis of these sentiments is one of the popular research areas of present day researchers. Sentiment analysis, also known as opinion mining tries to identify or classify these sentiments or opinions into two broad categories - positive and negative. Much work on sentiment analysis has been done on social media conversations, blog posts, newspaper articles and various narrative texts. However, when it came to identifying emotions from scientific papers, researchers used to face difficulties due to the implicit and hidden natures of opinions or emotions. As the citation instances are considered inherently positive in emotion, popular ranking and indexing paradigms often neglect the opinion present while citing. Therefore in the present paper, we deployed a system of citation sentiment analysis to achieve three major objectives. First, we identified sentiments in the citation text and assigned a score to each of the instances. We have used a supervised classifier for this purpose. Secondly, we have proposed a new index (we shall refer to it hereafter as M-index) which takes into account both the quantitative and qualitative factors while scoring a paper. Finally, we developed a ranking of research papers based on the M-index. We have also shown the impacts of M-index on the ranking of scientific papers. C1 [Ghosh, Souvick; Das, Dipankar] Jadavpur Univ, Kolkata 700032, India. [Chakraborty, Tanmoy] Univ Maryland, College Pk, MD 20742 USA. C3 Jadavpur University; University System of Maryland; University of Maryland College Park RP Ghosh, S (corresponding author), Jadavpur Univ, Kolkata 700032, India. EM souvick.gh@gmail.com; dipankar.dipnil2005@gmail.com; tanchak@umiacs.umd.edu OI Ghosh, Souvick/0000-0003-1610-9038; CHAKRABORTY, TANMOY/0000-0002-0210-0369 CR Abu-Jbara A., 2011, P ACL Abu-Jbara A., 2013, NAACL, P596 [Anonymous], 2012, 2012 Conference of the North American Chapter of the Association for Computational Linguistics [Anonymous], 2005, PROC 14 INT C WORLD Athar A., 2011, P ACL 2011 STUD SESS, P81 Athar A., 1994, UCAMCLTR856 GIRT COL Athar Awais., 2012, PROC ACL WORKSHOP DE, P18 BONZI S, 1982, J AM SOC INFORM SCI, V33, P208, DOI 10.1002/asi.4630330404 Egghe L, 2006, SCIENTOMETRICS, V69, P131, DOI 10.1007/s11192-006-0144-7 Garfield E., 1994, T REUTERS IMPACT FAC Hall M., 2009, ACM SIGKDD Explor. Newsl., V11, P10, DOI DOI 10.1145/1656274.1656278 Hirsch JE, 2010, SCIENTOMETRICS, V85, P741, DOI 10.1007/s11192-010-0193-9 Hirsch JE, 2005, P NATL ACAD SCI USA, V102, P16569, DOI 10.1073/pnas.0507655102 Pang B, 2002, PROCEEDINGS OF THE 2002 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING, P79, DOI 10.3115/1118693.1118704 Radev D. R., 2009, J AM SOC INFORM SCI, V1001, P41092 Singh S.K., 2014, International Journal Of Database Theory and Application, V7, P39 Tandon N., 2014, POST DEM TRACK 35 GE, P98 Teufel S., 2006, P C EMP METH NAT LAN, DOI 10.3115/1610075.1610091 Yu B., 2013, P 76 ASIS T ANN M CL NR 19 TC 5 Z9 5 U1 0 U2 10 PU SPRINGER INTERNATIONAL PUBLISHING AG PI CHAM PA GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND SN 0302-9743 EI 1611-3349 BN 978-3-319-75487-1; 978-3-319-75486-4 J9 LECT NOTES COMPUT SC PY 2018 VL 9624 BP 292 EP 306 DI 10.1007/978-3-319-75487-1_23 PN II PG 15 WC Computer Science, Artificial Intelligence; Computer Science, Software Engineering; Computer Science, Theory & Methods WE Conference Proceedings Citation Index - Science (CPCI-S) SC Computer Science GA BP1NL UT WOS:000540377700023 DA 2024-09-05 ER PT C AU Mao, CH AF Mao, Chunhua BE Zhang, H Jin, D Zhao, XJ TI Research on Information System for Teaching Quality Evaluation Model of Business English Translation Based on SVM SO ADVANCED RESEARCH ON MATERIAL SCIENCE, ENVIROMENT SCIENCE AND COMPUTER SCIENCE III SE Advanced Materials Research LA English DT Proceedings Paper CT 3rd International Conference on Material Science, Environment Science and Computer Science (MSESCS 2014) CY JAN 11-12, 2014 CL Wuhan, PEOPLES R CHINA DE Business English Translation; Teaching Quality Evaluation; Support Vector Machine; Information Applied Technology ID INNOVATION AB The teaching quality evaluation of business English translation is a key basis to discover the teaching problems of business English translation and to promote the teaching quality. Compared with the traditional teaching quality evaluation method, support vector machine which is a type of information applied technology has many unique advantages, such as high accuracy, easily operation and fast implementation. This paper studies the current teaching quality on the basis of business English translation, and establishes the teaching quality evaluation model of business English translation based on SVM, and the experimental results show the superiority and validity of this method in the teaching quality assessment of business English translation. C1 Hunan Vocat Coll Commerce, Changsha 410205, Hunan, Peoples R China. RP Mao, CH (corresponding author), Hunan Vocat Coll Commerce, Changsha 410205, Hunan, Peoples R China. EM 465756969@qq.com CR ABERNATHY WJ, 1978, TECHNOL REV, V80, P40 Gang Fu Yong, 2004, COMPUTER ENG, V30, P15 Godoe H, 2000, RES POLICY, V29, P1033, DOI 10.1016/S0048-7333(99)00051-7 Ming Yang Zhi, 2007, UNCERTAINTY PRINCIPL, P55 Qi Chang Ming, 2011, NATURAL DISASTERS, V6, P167 Yu Chen Hang, 2005, EC SOCIAL DEV, V3, P154 NR 6 TC 4 Z9 4 U1 0 U2 10 PU TRANS TECH PUBLICATIONS LTD PI STAFA-ZURICH PA LAUBLSRUTISTR 24, CH-8717 STAFA-ZURICH, SWITZERLAND SN 1022-6680 BN 978-3-03835-011-8 J9 ADV MATER RES-SWITZ PY 2014 VL 886 BP 552 EP 555 DI 10.4028/www.scientific.net/AMR.886.552 PG 4 WC Materials Science, Multidisciplinary WE Conference Proceedings Citation Index - Science (CPCI-S) SC Materials Science GA BA7XQ UT WOS:000337849000122 DA 2024-09-05 ER PT J AU Asatani, K Takeda, H Yamano, H Sakata, I AF Asatani, Kimitaka Takeda, Haruo Yamano, Hiroko Sakata, Ichiro TI Scientific Attention to Sustainability and SDGs: Meta-Analysis of Academic Papers SO ENERGIES LA English DT Article DE bibliometrics; network analysis; SDGs; natural language processing; information retrieval; scientific foresight ID ENERGY-STORAGE; LANDSCAPE; EVOLUTION; TOURISM; BATTERY AB Scientific research plays an important role in the achievement of a sustainable society. However, grasping the trends in sustainability research is difficult because studies are not devised and conducted in a top-down manner with Sustainable Development Goals (SDGs). To understand the bottom-up research activities, we analyzed over 300,000 publications concerned with sustainability by using citation network analysis and natural language processing. The results suggest that sustainability science's diverse and dynamic changes have been occurring over the last few years; several new topics, such as nanocellulose and global health, have begun to attract widespread scientific attention. We further examined the relationship between sustainability research subjects and SDGs and found significant correspondence between the two. Moreover, we extracted SDG topics that were discussed following a convergent approach in academic studies, such as "inclusive society" and "early childhood development", by observing the convergence of terms in the citation network. These results are valuable for government officials, private companies, and academic researchers, empowering them to understand current academic progress along with research attention devoted to SDGs. C1 [Asatani, Kimitaka; Yamano, Hiroko; Sakata, Ichiro] Univ Tokyo, Grad Sch Engn, Tokyo 1138654, Japan. [Takeda, Haruo] Hitachi Ltd, Tokyo 1008280, Japan. C3 University of Tokyo; Hitachi Limited RP Asatani, K (corresponding author), Univ Tokyo, Grad Sch Engn, Tokyo 1138654, Japan. EM asatani@ipr-ctr.t.u-tokyo.ac.jp; haruo.takeda.vp@hitachi.com; yamano@pari.u-tokyo.ac.jp; isakata@ipr-ctr.t.u-tokyo.ac.jp OI SAKATA, ICHIRO/0000-0001-5881-3790; Asatani, Kimitaka/0000-0003-3595-8940 FU NEDO (New Energy and Industrial Technology Development Organization), the funding agency of the Japan Ministry of Economy, Trade and Industry (METI) FX This project was funded by NEDO (New Energy and Industrial Technology Development Organization), the funding agency of the Japan Ministry of Economy, Trade and Industry (METI). CR Aizawa A, 2003, INFORM PROCESS MANAG, V39, P45, DOI 10.1016/S0306-4573(02)00021-3 [Anonymous], UN NEWS Baland J.Bardhan., 2018, Inequality, cooperation, and environmental sustainability Bar-On YM, 2018, P NATL ACAD SCI USA, V115, P6506, DOI 10.1073/pnas.1711842115 Berruti A, 2016, FRONT MICROBIOL, V6, DOI 10.3389/fmicb.2015.01559 Bird Steven, 2004, NLTK: The Natural Language Toolkit, P31 Blondel VD, 2008, J STAT MECH-THEORY E, DOI 10.1088/1742-5468/2008/10/P10008 De Almeida DG, 2016, FRONT MICROBIOL, V7, DOI 10.3389/fmicb.2016.01718 Dinda S, 2004, ECOL ECON, V49, P431, DOI 10.1016/j.ecolecon.2004.02.011 Dunn B, 2011, SCIENCE, V334, P928, DOI 10.1126/science.1212741 Goodenough JB, 2013, J AM CHEM SOC, V135, P1167, DOI 10.1021/ja3091438 Higgins-Desbiolles F, 2018, TOUR MANAG PERSPECT, V25, P157, DOI 10.1016/j.tmp.2017.11.017 Kajikawa Y, 2017, SUSTAIN SCI, V12, P869, DOI 10.1007/s11625-017-0477-6 Kajikawa Y, 2007, SUSTAIN SCI, V2, P221, DOI 10.1007/s11625-007-0027-8 Kates RW, 2001, SCIENCE, V292, P641, DOI 10.1126/science.1059386 Khan MI, 2018, MICROB CELL FACT, V17, DOI 10.1186/s12934-018-0879-x Klewitz J, 2014, J CLEAN PROD, V65, P57, DOI 10.1016/j.jclepro.2013.07.017 Kush P, 2015, J MATER CHEM A, V3, P8098, DOI 10.1039/c4ta06551d Lang DJ, 2012, SUSTAIN SCI, V7, P25, DOI 10.1007/s11625-011-0149-x Li M, 2018, ADV MATER, V30, DOI 10.1002/adma.201800561 Marchi B, 2018, ENERGIES, V11, DOI 10.3390/en11040858 Marchi B, 2017, ENERGIES, V10, DOI 10.3390/en10101618 Martinuzzi Andre., 2017, TRANSNATIONAL CORPOR, V24, P33, DOI [10.18356/cfb5b8b6-e, DOI 10.18356/CFB5B8B6-EN, 10.18356/cfb5b8b6-en] Mata TM, 2010, RENEW SUST ENERG REV, V14, P217, DOI 10.1016/j.rser.2009.07.020 Mooney R., 1999, P 16 NAT C ART INT O, V334 Newman MEJ, 2006, P NATL ACAD SCI USA, V103, P8577, DOI 10.1073/pnas.0601602103 OECD, 2013, GOV GLANC 2013 PROC, P193 Olasanmi IO, 2018, SUSTAINABILITY-BASEL, V10, DOI 10.3390/su10124817 Pagliaro M, 2019, HELIYON, V5, DOI 10.1016/j.heliyon.2019.e01866 Panwar NL, 2011, RENEW SUST ENERG REV, V15, P1513, DOI 10.1016/j.rser.2010.11.037 Pasetti M, 2018, APPL SCI-BASEL, V8, DOI 10.3390/app8030432 Rogelj J, 2016, NATURE, V534, P631, DOI 10.1038/nature18307 Ruhanen L, 2015, J SUSTAIN TOUR, V23, P517, DOI 10.1080/09669582.2014.978790 Santmartí A, 2018, SUSTAIN-CONTRIB SCI, P67 Shapla UM, 2018, CHEM CENT J, V12, DOI 10.1186/s13065-018-0408-3 Shi YM, 2016, CHEM SOC REV, V45, P1529, DOI 10.1039/c5cs00434a Sparck-Jones K, 2004, J DOC, V60, P493, DOI [10.1108/00220410410560573, 10.1108/eb026526] Sterling S.R., 2001, Sustainable education: re-visioning learning and change Tang J, 2016, PROCEEDINGS OF THE 25TH INTERNATIONAL CONFERENCE ON WORLD WIDE WEB (WWW'16), P287, DOI 10.1145/2872427.2883041 Traag VA, 2019, SCI REP-UK, V9, DOI 10.1038/s41598-019-41695-z Weitzel T, 2018, EUR J OPER RES, V264, P582, DOI 10.1016/j.ejor.2017.06.052 Xu C, 2019, NANOMATERIALS-BASEL, V9, DOI 10.3390/nano9010103 NR 42 TC 18 Z9 18 U1 3 U2 42 PU MDPI PI BASEL PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND EI 1996-1073 J9 ENERGIES JI Energies PD FEB PY 2020 VL 13 IS 4 AR 975 DI 10.3390/en13040975 PG 21 WC Energy & Fuels WE Science Citation Index Expanded (SCI-EXPANDED) SC Energy & Fuels GA KY3TB UT WOS:000522492700203 OA Green Submitted, gold DA 2024-09-05 ER PT C AU Liu, D Li, GG Zeng, W Sun, M Li, CB AF Liu Ding Li Gege Zeng Wei Sun Min Li Cunbin GP IOP TI Research on Comprehensive Benefit Post Evaluation of Photovoltaic Poverty Alleviation Projects Based on FCM and SVM SO 2019 3RD INTERNATIONAL CONFERENCE ON ENVIRONMENTAL AND ENERGY ENGINEERING (IC3E 2019) SE IOP Conference Series-Earth and Environmental Science LA English DT Proceedings Paper CT 3rd International Conference on Environmental and Energy Engineering (IC3E) CY MAR 14-16, 2019 CL Shanghai, PEOPLES R CHINA AB Photovoltaic (PV) Poverty Alleviation makes full use of the solar energy in poverty-stricken areas so as to achieve sTable incomes increase for the poor households for 25 years. It is an advanced mode integrating new energy development, emission reduction and accurate poverty alleviation. Post evaluation of PV poverty alleviation project is of great guiding significance for new energy development planning, poverty alleviation promoting and construction and operation of PV power stations. Under the guidance of the practical experience of PV poverty alleviation in Jiangxi province, China, this paper firstly builds a comprehensive evaluation index system with 7 second-level targets based on the post evaluation theory. Then, considering that projects with different sizes, construction and operation mode have different features in the evaluation, this paper uses pattern recognition method based on fuzzy C-means clustering algorithm and support vector machine to classify the projects. Then comparative analysis is carried out within each class to achieve comprehensive benefits evaluation. The method can reduce the information loss of multi-index weighted aggregation of traditional post evaluation methods. The features of PV poverty alleviation projects are highlighted to help to find the weak points of the projects. So the evaluation results are more scientific and reasonable. C1 [Liu Ding; Li Gege; Li Cunbin] North China Elect Power Univ, Beijing Key Lab New Energy & Low Carbon Dev, Beijing 102206, Peoples R China. [Zeng Wei; Sun Min] State Grid Jiangxi Elect Power Co Elect Power Res, Nanchang 330039, Jiangxi, Peoples R China. C3 North China Electric Power University RP Liu, D (corresponding author), North China Elect Power Univ, Beijing Key Lab New Energy & Low Carbon Dev, Beijing 102206, Peoples R China. EM liuding@163.com RI Lau, Dean/IZP-7679-2023 FU Natural Science Foundation of China [71671065]; Science and Technology Project of State Grid Corporation of China "Research and Application of Improving the Accommodation Capacity and Guarantee Technologies of Power Grid in PV Poverty Alleviation Areas" [52182017000W] FX This study is supported by the Natural Science Foundation of China (71671065) and the Science and Technology Project of State Grid Corporation of China "Research and Application of Improving the Accommodation Capacity and Guarantee Technologies of Power Grid in PV Poverty Alleviation Areas" (52182017000W). CR Akinyele DO, 2017, ENERGY, V130, P515, DOI 10.1016/j.energy.2017.04.126 Ayompe LM, 2014, SUSTAIN ENERGY TECHN, V7, P257, DOI 10.1016/j.seta.2013.10.002 Dabaieh M, 2018, J BUILDING ENG LI Fen, 2011, SCI HYDROPOWER ENERG, V29, P188 Li Y, 2018, RENEW SUST ENERG REV, V94, P214, DOI 10.1016/j.rser.2018.06.012 [李彦斌 Li Yanbin], 2013, [电网技术, Power System Technology], V37, P1514 Mamia I, 2016, RENEW SUST ENERG REV, V55, P713, DOI 10.1016/j.rser.2015.11.009 Singh GK, 2013, ENERGY, V53, P1, DOI 10.1016/j.energy.2013.02.057 Nguyen THT, 2017, INT J ELEC POWER, V89, P27, DOI 10.1016/j.ijepes.2016.12.012 Zhang Yan-xia, 2010, High Voltage Engineering, V36, P3097 NR 10 TC 5 Z9 5 U1 0 U2 23 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 1755-1307 J9 IOP C SER EARTH ENV JI IOP Conf. Ser. Earth Envir. Sci. PY 2019 VL 281 AR 012034 DI 10.1088/1755-1315/281/1/012034 PG 9 WC Energy & Fuels; Engineering, Environmental; Environmental Sciences WE Conference Proceedings Citation Index - Science (CPCI-S) SC Energy & Fuels; Engineering; Environmental Sciences & Ecology GA BO1EL UT WOS:000495364600034 OA gold DA 2024-09-05 ER PT J AU Gomes, RC de Azevedo, CB AF Gomes, Ricardo Correa de Azevedo, Clovis Bueno TI Balanced Scorecard: A Literature Review to Trace its Trajectory in the Public Administration Domain SO INTERNATIONAL JOURNAL OF PUBLIC ADMINISTRATION LA English DT Article; Early Access DE Balanced scorecard; performance management; public administration; bibliometric studies; natural language processing ID PERFORMANCE-MEASUREMENT; MANAGEMENT; SERVICE; SECTOR; IMPLEMENTATION; DEPARTMENTS; CONTEXT; ISSUES; CITY; TOOL AB The Balanced Scorecard (BSC) has been a strategic and performance management tool for 30 years, initially for for-profit organizations but later adopted by other types. This study reviews its use by public administration scholars, analyzing articles from the Web of Science database with bibliometric tools and Artificial Intelligence for lexical and semantic analysis. The analysis concluded that BSC is mainly used in local government for performance management and measurement. The study enhances theoretical understanding by exploring BSC's application in the public sector, its effectiveness, distinctions from for-profit use, and identifying areas for further research. C1 [Gomes, Ricardo Correa] Res Degree Program Publ Adm, FGV EAESP, Rua Ingleses,484,Apto 83, BR-1329000 Sao Paulo, SP, Brazil. [de Azevedo, Clovis Bueno] FGV EAESP, Publ Management, Sao Paulo, Brazil. C3 Getulio Vargas Foundation; Getulio Vargas Foundation RP Gomes, RC (corresponding author), Res Degree Program Publ Adm, FGV EAESP, Rua Ingleses,484,Apto 83, BR-1329000 Sao Paulo, SP, Brazil. EM ricardo.gomes@fgv.br RI Gomes, Ricardo/D-8311-2017 OI Gomes, Ricardo/0000-0002-4164-5986 CR Admiraal RJ, 2003, PUBLIC MONEY MANAGE, V23, P113, DOI 10.1111/1467-9302.00354 Aria M, 2017, J INFORMETR, V11, P959, DOI 10.1016/j.joi.2017.08.007 Arnaboldi M, 2015, FINANC ACCOUNT MANAG, V31, P1, DOI 10.1111/faam.12049 Askim J., 2004, International Public Management Journal, V7, P415 Bakir C, 2017, POLICY SCI, V50, P585, DOI 10.1007/s11077-017-9299-8 Benoit Kenneth, 2018, J OPEN SOURCE SOFTW, V3, P774, DOI [10.21105/joss.00774, DOI 10.21105/JOSS.00774] Biswas A., 2021, The Management Accountant Journal, V56, P58, DOI [https://doi.org/10.33516/maj.v56i2.58-62p, DOI 10.33516/MAJ.V56I2.58-62P] Boland T., 2000, INT J PUBLIC SECTOR, V13, P417, DOI [DOI 10.1108/09513550010350832, 10.1108/09513550010350832] Boyne GA, 2003, PUBLIC ADMIN, V81, P211, DOI 10.1111/1467-9299.00343 Bryson JohnM., 2018, Strategic planning for public and nonprofit organizations: An guide to strengthening and sustaining organizational achievement, V4th BUDD JM, 1988, RES HIGH EDUC, V28, P180, DOI 10.1007/BF00992890 Chung CC, 2016, SUSTAINABILITY-BASEL, V8, DOI 10.3390/su8060518 Costa E, 2021, J PUBLIC BUDGET ACC, V33, P289, DOI 10.1108/JPBAFM-02-2020-0012 Cugini A, 2011, PUBLIC MONEY MANAGE, V31, P271, DOI 10.1080/09540962.2011.586240 Denhardt RB, 2000, PUBLIC ADMIN REV, V60, P549, DOI 10.1111/0033-3352.00117 Di Luozzo S, 2023, INT J PRODUCT PERFOR, V72, P625, DOI 10.1108/IJPPM-03-2021-0176 Dreveton B, 2013, PUBLIC MONEY MANAGE, V33, P131, DOI 10.1080/09540962.2013.763425 Dumais ST, 2004, ANNU REV INFORM SCI, V38, P189 Dyckhoff H, 2011, BUS INFORM SYST ENG+, V3, P65, DOI 10.1007/s12599-011-0145-9 Farneti F, 2009, PUBLIC MONEY MANAGE, V29, P313, DOI 10.1080/09540960903205964 Fleisher CS, 1997, PUBLIC RELAT REV, V23, P117, DOI 10.1016/S0363-8111(97)90020-5 Funck E, 2007, J ACCOUNT ORGAN CHAN, V3, P88, DOI 10.1108/18325910710756122 Gao J, 2015, PUBLIC ADMIN DEVELOP, V35, P86, DOI 10.1002/pad.1704 Gomes R, 2010, PUBLIC MANAG REV, V12, P53, DOI 10.1080/14719030902800218 Griffiths J, 2003, AUST J PUBL ADMIN, V62, P70, DOI 10.1111/j..2003.00350.x Gunn E, 2014, LOCAL GOV STUD, V40, P851, DOI 10.1080/03003930.2013.815614 Guthrie J, 2024, J PUBLIC BUDGET ACC, V36, P1, DOI 10.1108/JPBAFM-10-2023-0176 Hagood WO, 2002, PUBLIC PERS MANAGE, V31, P543, DOI 10.1177/009102600203100410 Hippisley A, 2010, CH CRC MACH LEARN PA, P31 Höglund L, 2021, J PUBLIC BUDGET ACC, V33, P468, DOI 10.1108/JPBAFM-12-2019-0180 HOOD C, 1991, PUBLIC ADMIN, V69, P3, DOI 10.1111/j.1467-9299.1991.tb00779.x Jelavic SR, 2021, STRATEG MANAG, V26, P37, DOI 10.5937/StraMan2104037R Kaplan R., 2001, NONPROFIT MANAG LEAD, V11, P353, DOI DOI 10.1002/NML.11308 Kaplan R.S., 2001, Accounting Horizons, V15, P87, DOI DOI 10.2308/ACCH.2001.15.2.147 KAPLAN RS, 1993, HARVARD BUS REV, V71, P134 KAPLAN RS, 1992, HARVARD BUS REV, V70, P71 Karasneh AA, 2022, J PUBLIC AFF, V22, DOI 10.1002/pa.2359 Köper B, 2009, SCAND J WORK ENV HEA, V35, P413 Kong E, 2008, INT J MANAG REV, V10, P281, DOI 10.1111/j.1468-2370.2007.00224.x Král M, 2022, INT J PUBLIC ADMIN, V45, P726, DOI 10.1080/01900692.2021.1891425 Kumar A, 2023, PUBLIC ORGAN REV, V23, P1143, DOI 10.1007/s11115-022-00646-5 Langbein L, 2010, INT PUBLIC MANAG J, V13, P9, DOI 10.1080/10967490903547134 Li SJ, 2022, INT J PUBLIC ADMIN, V45, P537, DOI 10.1080/01900692.2019.1660990 Liddy E.D., 2003, Natural language processing, V2nd Lin WC, 2013, LEX LOCALIS, V11, P21, DOI 10.4335/199 Lindermüller D, 2022, INT PUBLIC MANAG J, V25, P639, DOI 10.1080/10967494.2020.1799888 Lu Y, 2023, MANAGE SCI, V69, P4888, DOI 10.1287/mnsc.2022.4554 Mahoney M, 2019, POLICY DES PRACT, V2, P383, DOI 10.1080/25741292.2019.1642072 Manville G, 2013, PUBLIC MANAG REV, V15, P992, DOI 10.1080/14719037.2012.761722 Marzuki S., 2020, Journal of the Community Development in Asia, V3, P29, DOI [DOI 10.32535/JCDA.V3I3.888, https://doi.org/10.32535/jcda.v3i3.888] McAdam R, 2003, PUBLIC ADMIN, V81, P873, DOI 10.1111/j.0033-3298.2003.00375.x Mendes P, 2012, J CLEAN PROD, V24, P20, DOI 10.1016/j.jclepro.2011.11.007 Micheli P, 2005, PROD PLAN CONTROL, V16, P125, DOI 10.1080/09537280512331333039 Monteiro S, 2017, MANAG ENVIRON QUAL, V28, P332, DOI 10.1108/MEQ-11-2015-0201 Mook L, 2019, CAN J NONPROFIT SOC, V10, P81, DOI 10.29173/anserj.2019v10n2a343 Mourato J, 2019, QUAL ASSUR EDUC, V27, P269, DOI 10.1108/QAE-02-2019-0019 Nica E., 2013, Economics, Management and Financial Markets, V8, P179 Northcott D, 2012, INT J PUBLIC SECT MA, V25, P166, DOI 10.1108/09513551211224234 Norton D, 1996, BALANCED SCORECARD T Nurcahyo R., 2018, 2018 4 INT C SCI TEC Osborne SP, 2006, PUBLIC MANAG REV, V8, P377, DOI 10.1080/14719030600853022 Osborne SP, 2018, PUBLIC MANAG REV, V20, P225, DOI 10.1080/14719037.2017.1350461 Piotrowski SJ, 2002, PUBLIC ADMIN REV, V62, P643, DOI 10.1111/1540-6210.00247 Pollitt C., 2000, Public Management, V2, P181 PORTER ME, 1991, STRATEGIC MANAGE J, V12, P95, DOI 10.1002/smj.4250121008 Pucek M, 2014, TRANSYLV REV ADM SCI, P146 Quinlivan D, 2000, AUST J PUBL ADMIN, V59, P36, DOI 10.1111/1467-8500.00178 Rao PK, 2024, INT J PRODUCT PERFOR, V73, P2016, DOI 10.1108/IJPPM-04-2023-0199 Ratnadi NMD, 2020, INT J PUBLIV LEADERS, V16, P337, DOI 10.1108/IJPL-05-2019-0022 Sharma B, 2011, AUST J PUBL ADMIN, V70, P167, DOI 10.1111/j.1467-8500.2011.00718.x Soujaa I, 2023, RISK HAZARDS CRISIS, DOI 10.1002/rhc3.12285 Vitezic N, 2019, NISPACEE J PUBLIC AD, V12, P199, DOI 10.2478/nispa-2019-0009 Vosselman E, 2016, ADMIN SOC, V48, P602, DOI 10.1177/0095399713514844 Welbers K, 2017, COMMUN METHODS MEAS, V11, P245, DOI 10.1080/19312458.2017.1387238 Yetano A, 2009, AUST J PUBL ADMIN, V68, P167, DOI 10.1111/j.1467-8500.2009.00632.x Zhu JW, 2020, SCIENTOMETRICS, V123, P321, DOI 10.1007/s11192-020-03387-8 NR 76 TC 0 Z9 0 U1 4 U2 4 PU ROUTLEDGE JOURNALS, TAYLOR & FRANCIS LTD PI ABINGDON PA 2-4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND SN 0190-0692 EI 1532-4265 J9 INT J PUBLIC ADMIN JI Int. J. Public Adm. PD 2024 JUL 19 PY 2024 DI 10.1080/01900692.2024.2376053 EA JUL 2024 PG 17 WC Public Administration WE Emerging Sources Citation Index (ESCI) SC Public Administration GA YW0I3 UT WOS:001271399400001 DA 2024-09-05 ER PT J AU Watrianthos, R Ahmad, ST Muskhir, M AF Watrianthos, Ronal Ahmad, Selamat Triono Muskhir, Mukhlidi TI CHARTING THE GROWTH AND STRUCTURE OF EARLY CHATGPT-EDUCATION RESEARCH: A BIBLIOMETRIC STUDY SO JOURNAL OF INFORMATION TECHNOLOGY EDUCATION-INNOVATIONS IN PRACTICE LA English DT Article DE artificial intelligence; bibliometric; ChatGPT; education AB Aim/Purpose The purpose of this article is to provide an overview and analysis of the emerging research landscape surrounding the integration of ChatGPT into education. The main problem appears to be that this is a new, rapidly developing research area for which there is no comprehensive synthesis of the current literature. The aim of the article is to fill this gap by conducting a timely bibliometric study to map publication trends, influential works, themes, and opportunities, thus representing the growth and structure of ChatGPT educational research.Background This article addresses the issue of the lack of a comprehensive synthesis of the new research on ChatGPT in education by conducting a bibliometric analysis. Specifically, the authors use statistical and network analysis techniques to examine the patterns of publication, citation, and keywords and map the growth, contributions, themes, structure, and opportunities in this evolving field. The bibliometric approach provides a comprehensive, evidence-based overview of the current state of the literature to uncover trends and gaps and help researchers improve their understanding of appropriate and effective applications of ChatGPT in educational contexts. Methodology The authors used bibliometric analysis as the primary method to summarize the new research on ChatGPT in education. We searched the database of the Web of Science Core Collection to find 51 relevant documents from 2023 that included ChatGPT in the title and were classified as 'educational research.' The sample consisted of these 51 documents, including articles, early access articles, editorials, reviews, and letters. Statistical techniques examined publication, citation, and keyword patterns. Network analysis visualized citation and co -occurrence networks to reveal intellectual structure. The multifaceted bibliometric approach allowed a comprehensive study of the sample from a productive, conceptual, and intellectual perspective. Contribution This article conducts comprehensive bibliometric analysis of this emerging research area and synthesizes publication, citation, and keyword data to map the growth and structure of the literature. The results reveal important trends, such as the rapid growth of publications since the release of ChatGPT, initial authorship patterns, the focus on higher education applications, and distinct research clusters around pedagogical, ethical, and assessment issues. Visualizing citation networks identifies seminal studies while mapping co-occurrence clarifies conceptual relationships between topics. The comparative analysis highlights the differences between document types, topics, and time periods. Knowledge mapping highlights gaps in the literature, such as lack of focus on K-12 contexts, and highlights opportunities for further research.Findings Key findings from this bibliometric analysis of the emerging research landscape surrounding ChatGPT integration in education include the following:center dot Since ChatGPT was released in late 2022, the number of releases has increased significantly, indicating rapid growth in this emerging space.center dot The most cited authors initially came primarily from Anthropic, but over time, the citations spread throughout the research community. center dot The topics focused primarily on higher education applications, with a clear focus on pedagogical strategies, ethical risks, and implications for assessment.center dot Citation networks visualized seminal studies, while the co-occurrence of keywords clarified conceptual connections. center dot Gaps such as applications in the K-12 context were uncovered, and opportunities for further research were highlighted.center dot The literature is rapidly evolving and requires ongoing monitoring of the development of this field. In general, the analysis presents the productivity, contributors, themes, structure, and opportunities in this emerging area around the integration of ChatGPT in education based on current scientific evidence. The key findings focus on the growing early interest, gaps and developments that can provide insight for researchers and educators.Recommendations for Practitioners Practitioners should carefully integrate ChatGPT into education based on new evidence, carefully assess contextual applicability, and proactively develop guidelines for ethical and equitable implementation. Ongoing advice, impact monitoring, and research partnerships are crucial to informing best practices. Educators must be vigilant for risks such as privacy, student well-being, and competence impairment while staying abreast of advances in knowledge to dynamically adapt integration strategies. The introduction should empower diverse learners through measured, integrative approaches based on continuous contextual analysis and ethical principles.Recommendations for Researchers This article recommends that researchers conduct more studies in under- researched contexts, use multiple methods to capture nuanced impacts, increase focus on responsible integration strategies, develop tailored assessments, conduct interdisciplinary collaborations, monitor long-term adoption, mix with interactive explain and publish open access technologies, help guide adoption pathways through actionable studies, and synthesize the exponentially growing literature through updated systematic reviews.Impact on Society The rapid publication growth and prevailing optimism suggest that the integration of ChatGPT into education will accelerate, increasing the need for rigorous research that guides ethical, responsible innovations that avoid risks and improve outcomes in all educational contexts. The findings have broader implications for guiding adoption trajectories through ongoing evidence synthesis and expanded investigations in under-researched areas to address knowledge gaps. Ultimately, continued monitoring and updated guidance are critical to ensure that ChatGPT's educational penetration progresses carefully by maximizing benefits and minimizing harms in rapidly evolving AI-powered learning ecosystems.Future Research Based on the basic mapping provided by this paper, recommended research directions include longitudinal impact studies, research tailored to under- researched contexts such as K-12, qualitative research to capture stakeholder perspectives, development and testing of AI-calibrated assessments as well as explorations that combine conversational and interactive learning technologies, updated systematic reviews, and co-designed implementation research that explain pedagogical strategies that ethically unlock learning potential while mitigating risks in diverse educational environments. Such multilayered tracking can provide critical insights to guide context-specific, responsible ChatGPT integration and monitor impact within rapidly evolving AI-powered education ecosystems. C1 [Watrianthos, Ronal] Univ Negeri Padang, Fac Engn, Tech Vocat Educ, Padang, Indonesia. [Ahmad, Selamat Triono] Univ Negeri Medan, Fac Engn, Medan, Indonesia. [Ahmad, Selamat Triono] Univ Negeri Medan, Vocat & Tech Educ, Medan, Indonesia. [Muskhir, Mukhlidi] Univ Negeri Padang, Dept Elect Engn, Padang, Indonesia. C3 Universitas Negeri Padang; Universitas Negeri Medan; Universitas Negeri Medan; Universitas Negeri Padang RP Watrianthos, R (corresponding author), Univ Negeri Padang, Fac Engn, Tech Vocat Educ, Padang, Indonesia. EM ronal.watrianthos@gmail.com; striono.ahmad@gmail.com; muskhir@ft.unp.ac.id RI Watrianthos, Ronal/AEQ-0522-2022 OI Watrianthos, Ronal/0000-0003-3475-7266 CR Ahmad S. T., 2023, International Journal of Modern Education and Computer Science (IJMECS), V15, P43, DOI [10.5815/ijmecs.2023.04.04, DOI 10.5815/IJMECS.2023.04.04] Aksnes DW, 2019, SAGE OPEN, V9, DOI 10.1177/2158244019829575 Alhaidry Hind M, 2023, Cureus, V15, pe38317, DOI 10.7759/cureus.38317 Ali A. A. S., 2021, International Journal for Research in Applied Science and Engineering Technology, V9, P135, DOI [10.22214/ijraset.2021.37293, DOI 10.22214/IJRASET.2021.37293] Alzubi J, 2018, J PHYS CONF SER, V1142, DOI 10.1088/1742-6596/1142/1/012012 Aoki N, 2020, GOV INFORM Q, V37, DOI 10.1016/j.giq.2020.101490 Aria M, 2017, J INFORMETR, V11, P959, DOI 10.1016/j.joi.2017.08.007 Arif TB, 2023, MED EDUC ONLINE, V28, DOI 10.1080/10872981.2023.2181052 Baidoo-Anu D., 2023, Journal of AI, V7, P52, DOI [DOI 10.61969/JAI.1337500, 10.2139/ssrn.4337484, DOI 10.2139/SSRN.4337484, 10.61969/jai.1337500] Bar-Ilan J, 2008, SCIENTOMETRICS, V74, P257, DOI 10.1007/s11192-008-0216-y Ciolacu MI, 2021, IEEE GLOB ENG EDUC C, P1449, DOI 10.1109/EDUCON46332.2021.9453959 Cooper G, 2023, J SCI EDUC TECHNOL, V32, P444, DOI 10.1007/s10956-023-10039-y Cotton DRE, 2024, INNOV EDUC TEACH INT, V61, P228, DOI 10.1080/14703297.2023.2190148 Crawford J, 2023, J UNIV TEACH LEARN P, V20, DOI 10.53761/1.20.3.02 Dempere J, 2023, FRONT EDUC, V8, DOI 10.3389/feduc.2023.1206936 Ekbia HR, 2010, ANNU REV INFORM SCI, V44, P201, DOI 10.1002/aris.2010.1440440112 Fauzi F., 2023, Journal on Education, V5, P14886, DOI DOI 10.31004/JOE.V5I4.2563 Fransson G, 2020, EDUC INF TECHNOL, V25, P3383, DOI 10.1007/s10639-020-10119-1 Galassi A, 2021, IEEE T NEUR NET LEAR, V32, P4291, DOI 10.1109/TNNLS.2020.3019893 Hacker P, 2023, PROCEEDINGS OF THE 6TH ACM CONFERENCE ON FAIRNESS, ACCOUNTABILITY, AND TRANSPARENCY, FACCT 2023, P1112, DOI 10.1145/3593013.3594067 Halaweh M, 2023, CONTEMP EDUC TECHNOL, V15, DOI 10.30935/cedtech/13036 Hopkins AM, 2023, JNCI CANCER SPECT, V7, DOI 10.1093/jncics/pkad010 Huang ZY, 2012, COMM COM INF SC, V316, P331 Huh S, 2023, J EDUC EVAL HEALTH P, V20, DOI 10.3352/jeehp.2023.20.1 Karakose T., 2023, Educ. Process Int. J, V12, P7, DOI [10.22521/edupij.2023.121.1, DOI 10.22521/EDUPIJ.2023.121.1] Khurana D, 2023, MULTIMED TOOLS APPL, V82, P3713, DOI 10.1007/s11042-022-13428-4 Liu R, 2018, J SYST SCI SYST ENG, V27, P479, DOI 10.1007/s11518-018-5375-7 Lo CK, 2023, EDUC SCI, V13, DOI 10.3390/educsci13040410 McBurney MK, 2002, IPCC 2002, REFLECTIONS ON COMMUNICATION, PROCEEDINGS, P108, DOI 10.1109/IPCC.2002.1049094 Montenegro-Rueda M, 2023, COMPUTERS, V12, DOI 10.3390/computers12080153 Nikolic S, 2023, EUR J ENG EDUC, V48, P559, DOI 10.1080/03043797.2023.2213169 Ninkov A, 2022, PERSPECT MED EDUC, V11, P173, DOI 10.1007/s40037-021-00695-4 Opara E., 2023, Glob. Acad. J. Human. Soc. Sci, V5, P33, DOI DOI 10.36348/GAJHSS.2023.V05I02.001 Radha L., 2021, Shanlax Int. J. Arts Sci. Humanities, V9, P44, DOI [DOI 10.34293/SIJASH.V9I2.4197, 10.34293/sijash.v9i2.4197] Rahman MM, 2023, APPL SCI-BASEL, V13, DOI 10.3390/app13095783 Rosa S, 2020, INT J TECHNOL HIGH E, V17, P88, DOI 10.18162/ritpu-2020-v17n1-16 Samala Agariadne Dwinggo, 2023, International Journal of Emerging Technologies in Learning, P231, DOI 10.3991/ijet.v18i05.35501 Shoufan A, 2023, IEEE ACCESS, V11, P38805, DOI 10.1109/ACCESS.2023.3268224 Singh VK, 2021, SCIENTOMETRICS, V126, P5113, DOI 10.1007/s11192-021-03948-5 Susnjak T., 2022, arXiv, DOI [DOI 10.48550/ARXIV.2212.09292, 10.48550/arXiv.2212.09292] Tlili A, 2023, SMART LEARN ENVIRON, V10, DOI 10.1186/s40561-023-00237-x Tsang R, 2023, J MED EDUC CURRIC DE, V10, DOI 10.1177/23821205231178449 Watrianthos R., 2022, JTEV JURNAL TEKNIK E, V8, P187, DOI [10.24036/jtev.v8i2.117045, DOI 10.24036/JTEV.V8I2.117045] Watrianthos R., 2023, Jurnal RESTI (Rekayasa Sistem Dan Teknologi Informasi),, V7, P970, DOI [10.29207/resti.v7i4.5101, DOI 10.29207/RESTI.V7I4.5101] Wiranto W., 2022, Jurnal RESTI (Rekayasa Sistem Dan Teknologi Informasi),, V6, P998, DOI [10.29207/resti.v6i6.4542, DOI 10.29207/RESTI.V6I6.4542] Yi F, 2020, IEEE ACCESS, V8, P30692, DOI 10.1109/ACCESS.2020.2973207 Zhai X., 2022, CHATGPT USER EXPERIE, DOI DOI 10.2139/SSRN.4312418 NR 47 TC 1 Z9 1 U1 37 U2 53 PU INFORMING SCIENCE INST PI SANTA ROSA PA 131 BROOKHILL CT, SANTA ROSA, CA 95409 USA SN 2165-3151 EI 2165-316X J9 J INF TECHNOL EDUC-I JI J. Inf. Technol. Educ.-Innov. Pract. PY 2023 VL 22 BP 235 EP 253 DI 10.28945/5221 PG 19 WC Education & Educational Research WE Emerging Sources Citation Index (ESCI) SC Education & Educational Research GA CE5Q2 UT WOS:001123588900001 OA gold DA 2024-09-05 ER PT J AU Lamirel, JC Chen, Y Cuxac, P Al Shehabi, S Dugue, N Liu, ZY AF Lamirel, Jean-Charles Chen, Yue Cuxac, Pascal Al Shehabi, Shadi Dugue, Nicolas Liu, Zeyuan TI An overview of the history of Science of Science in China based on the use of bibliographic and citation data: a new method of analysis based on clustering with feature maximization and contrast graphs SO SCIENTOMETRICS LA English DT Article DE Science of Science; China; World; Topic tracking; Feature maximization; Unsupervised learning; Diachronic analysis AB In the first part of this paper, we shall discuss the historical context of Science of Science both in China and at world level. In the second part, we use the unsupervised combination of GNG clustering with feature maximization metrics and associated contrast graphs to present an analysis of the contents of selected academic journal papers in Science of Science in China and the construction of an overall map of the research topics' structure during the last 40 years. Furthermore, we highlight how the topics have evolved through analysis of publication dates and also use author information to clarify the topics' content. The results obtained have been reviewed and approved by 3 leading experts in this field and interestingly show that Chinese Science of Science has gradually become mature in the last 40 years, evolving from the general nature of the discipline itself to related disciplines and their potential interactions, from qualitative analysis to quantitative and visual analysis, and from general research on the social function of science to its more specific economic function and strategic function studies. Consequently, the proposed novel method can be used without supervision, parameters and help from any external knowledge to obtain very clear and precise insights about the development of a scientific domain. The output of the topic extraction part of the method (clustering + feature maximization) is finally compared with the output of the well-known LDA approach by experts in the domain which serves to highlight the very clear superiority of the proposed approach. C1 [Lamirel, Jean-Charles] INRIA Nancy Grand Est, SYNALP Team LORIA, Vandoeuvre Les Nancy, France. [Chen, Yue; Liu, Zeyuan] Dalian Univ Technol, WISELAB, Dalian, Peoples R China. [Cuxac, Pascal] INIST CNRS, Vandoeuvre Les Nancy, France. [Al Shehabi, Shadi] Univ Turkish Aeronaut Assoc, Ankara, Turkey. [Dugue, Nicolas] Univ Mans, LIUM, Le Mans, France. C3 Universite de Lorraine; Dalian University of Technology; Centre National de la Recherche Scientifique (CNRS); Turk Hava Kurumu University; Turkish Aeronautical Association; Le Mans Universite RP Lamirel, JC (corresponding author), INRIA Nancy Grand Est, SYNALP Team LORIA, Vandoeuvre Les Nancy, France. EM jean-charles.lamirel@loria.fr; chenyue@dlut.edu.cn; pascal.cuxac@inist.fr; shadialshehabi@gmail.com; nicolas.dugue@univ-lemans.fr; liuzy@dlut.edu.cn RI cuxac, pascal/AAE-3002-2019; Shehabi, Shadi Al/X-4322-2019 OI Shehabi, Shadi Al/0000-0003-0545-9104; Cuxac, Pascal/0000-0002-6809-5654 CR [Anonymous], 2006, P IASTED INT C DAT A Bernal J.D., 1939, SOCIAL FUNCTION SCI Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993 Calinski T., 1974, Commun. Stat., V3, P1, DOI [DOI 10.1080/03610927408827101, 10.1080/03610927408827101] [陈悦 Chen Yue], 2017, [科学学研究, Studies in Science of Science], V35, P4 [陈悦 Chen Yue], 2005, [科学学研究, Studies in Science of Science], V23, P149 CUXAC P, 2013, 14 COLLNET M DAVIES DL, 1979, IEEE T PATTERN ANAL, V1, P224, DOI 10.1109/TPAMI.1979.4766909 Dunn J. C., 1974, Journal of Cybernetics, V4, P95, DOI 10.1080/01969727408546059 Etzkowitz H., 1997, TRIPLE HELIX U IND G Fortunato S, 2018, SCIENCE, V359, DOI 10.1126/science.aao0185 Fritzke B., 1995, Advances in Neural Information Processing Systems 7, P625 [和钰 He Yu], 2017, [科学学研究, Studies in Science of Science], V35, P1121 Hessen Boris., 1931, The Social and Economic Roots of Newton's 'Principia' Hoffman Matthew D., 2010, Adv. Neural Inf. Process. Syst. (NIPS), DOI DOI 10.5555/2997189.2997285 Huang Junming., 2012, Proceedings of the Fifth ACM International Conference on Web Search and Data Mining, WSDM '12, P573 Kassab Randa, 2008, Proceedings of the IASTED International Conference on Artificial Intelligence and Applications, P232 Kobourov S. G., 2012, ARXIV12013011 Lamirel JC, 2016, IEEE IJCNN, P3649, DOI 10.1109/IJCNN.2016.7727669 Lamirel JC, 2015, J INTELL INF SYST, V45, P379, DOI 10.1007/s10844-014-0317-4 Lamirel JC, 2011, 2011 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), P956, DOI 10.1109/IJCNN.2011.6033326 Liu C, 2013, PETROL SCI TECHNOL, V31, P1762, DOI 10.1080/10916466.2011.588634 [刘则渊 Liu Zeyuan], 2017, [科学学研究, Studies in Science of Science], V35, P655 MacQueen J., 1967, P 5 BERK S MATH STAT, P281, DOI DOI 10.1007/S11665-016-2173-6 PU G, 1998, J DIALETICS NATURE, V5, P29 ROUSSEEUW PJ, 1987, J COMPUT APPL MATH, V20, P53, DOI 10.1016/0377-0427(87)90125-7 Shen HW, 2014, P NATL ACAD SCI USA, V111, P12325, DOI 10.1073/pnas.1401992111 Sinatra R, 2016, SCIENCE, V354, DOI 10.1126/science.aaf5239 TSIEN H, 1979, MARXS PHILOS PHILOS, V1, P20 TSIEN H, 1980, RES MANAGE, P3 Wacker D, 2013, SCIENCE, V340, P615, DOI 10.1126/science.1232808 XIE XLL, 1991, IEEE T PATTERN ANAL, V13, P841, DOI 10.1109/34.85677 Zeng A, 2017, PHYS REP, V714, P1, DOI 10.1016/j.physrep.2017.10.001 Zhang ZH, 2012, OPEN CIRRUS SUMMIT, P16, DOI 10.1109/OCS.2012.33 ZHAO H, 1988, STUDIES SCI SCI, V6, P14 ZHAO H, 1983, SCI SCI S T MANAGEME, V3 NR 36 TC 7 Z9 8 U1 3 U2 50 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0138-9130 EI 1588-2861 J9 SCIENTOMETRICS JI Scientometrics PD DEC PY 2020 VL 125 IS 3 BP 2971 EP 2999 DI 10.1007/s11192-020-03503-8 EA MAY 2020 PG 29 WC Computer Science, Interdisciplinary Applications; Information Science & Library Science WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Computer Science; Information Science & Library Science GA PE1YL UT WOS:000534949200002 DA 2024-09-05 ER PT J AU Lascialfari, M Magrini, MB Cabanac, G AF Lascialfari, Matteo Magrini, Marie-Benoit Cabanac, Guillaume TI Unpacking research lock-in through a diachronic analysis of topic cluster trajectories in scholarly publications SO SCIENTOMETRICS LA English DT Article DE Bibliometric data; Path-dependency; Natural language processing; Science mapping; Sustainability concern ID SCIENCE; NETWORKS; EVOLUTION; SYSTEMS; FUTURE; SHIFTS; FIELD; PATH; MAPS; FOOD AB Lock-in and path-dependency are well-known concepts in economics dealing with unbalanced development of alternative options. Lock-in was studied in various sectors, considering production or consumption sides. Lock-in in academic research went little addressed. Yet, science develops through knowledge accumulation and cross-fertilisation of research topics, that could lead to similar phenomena when some topics do not sufficiently benefit from accumulation mechanisms, reducing innovation opportunities from the concerned field consequently. We introduce an original method to explore these phenomena by comparing topic trajectories in research fields according to strong or weak accumulative processes over time. We combine the concepts of 'niche' and 'mainstream' from transition studies with scientometric tools to revisit Callon's strategic diagram with a diachronic perspective of topic clusters over time. Considering the trajectories of semantic clusters, derived from titles and authors' keywords extracted from scholarly publications in the Web of Science, we applied our method to two competing research fields in food sciences and technology related to pulses and soya over the last 60 years worldwide. These highly interesting species for the sustainability of agrifood systems experienced unbalanced development and thus is under-debated. Our analysis confirms that food research for soya was more dynamic than for pulses: soya topic clusters revealed a stronger accumulative research path by cumulating mainstream positions while pulses research did not meet the same success. This attempt to unpack research lock-in for evaluating the competition dynamics of scientific fields over time calls for future works, by strengthening the method and testing it on other research fields. [GRAPHICS] . C1 [Lascialfari, Matteo; Magrini, Marie-Benoit] Univ Toulouse, INRAE, AGIR, Castanet Tolosan, France. [Cabanac, Guillaume] Univ Toulouse, CNRS, IRIT, Toulouse, France. C3 INRAE; Centre National de la Recherche Scientifique (CNRS); Universite Federale Toulouse Midi-Pyrenees (ComUE); Universite de Toulouse; Institut National Polytechnique de Toulouse; Universite Toulouse III - Paul Sabatier RP Magrini, MB (corresponding author), Univ Toulouse, INRAE, AGIR, Castanet Tolosan, France. EM mtt.lascialfari@gmail.com; Marie-benoit.magrini@inrae.fr; guillaume.cabanac@univ-tlse3.fr RI Cabanac, Guillaume/C-5913-2011 OI Cabanac, Guillaume/0000-0003-3060-6241; Lascialfari, Matteo/0000-0001-8128-572X; MAGRINI, Marie-Benoit/0000-0001-8027-7496 FU European Union [727672 LEGVALUE]; Agence Nationale de la Recherche (ANR) [ANR-11-LABX-0066]; Occitanie region in France; Agence Nationale de la Recherche (ANR) [ANR-11-LABX-0066] Funding Source: Agence Nationale de la Recherche (ANR) FX This work was supported by funding from the European Union's Horizon 2020 research and innovation program under grant agreement No. 727672 LEGVALUE (Fostering sustainable legume-based farming systems and agri-feed and food chains in the EU); from the Agence Nationale de la Recherche (ANR) under grant number ANR-11-LABX-0066; and the Occitanie region in France. CR Abdullah MMH, 2017, NUTRIENTS, V9, DOI 10.3390/nu9070793 Adams J, 2016, SYST REV-LONDON, V5, DOI 10.1186/s13643-016-0337-y [Anonymous], 1994, Increasing Returns and Path Dependence in the Economy Arthur W. B., 2009, The Nature of Technology: What It Is and How It Evolves, DOI DOI 10.20396/RBI.V8I2.8648990 Bailón-Moreno R, 2006, J AM SOC INF SCI TEC, V57, P949, DOI 10.1002/asi.20362 Balconi M, 2004, RES POLICY, V33, P127, DOI 10.1016/S0048-7333(03)00108-2 Bastian M., 2009, Gephi: An open source software for exploring and manipulating networks Borsi B, 2011, SCIENTOMETRICS, V86, P133, DOI 10.1007/s11192-010-0235-3 Cahlik T, 2000, SCIENTOMETRICS, V49, P373, DOI 10.1023/A:1010581421990 CALLON M, 1983, SOC SCI INFORM, V22, P191, DOI 10.1177/053901883022002003 CALLON M, 1991, SCIENTOMETRICS, V22, P155, DOI 10.1007/BF02019280 Callon M., 1986, Mapping the Dynamics of Science and Technology: Sociology of Science in the Real World Chavalarias D., 2009, ARXIV Chavalarias D, 2008, SCIENTOMETRICS, V75, P37, DOI 10.1007/s11192-007-1825-6 Chavalarias D, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0054847 Ciarli T, 2019, RES POLICY, V48, P949, DOI 10.1016/j.respol.2018.10.027 Cobo MJ, 2011, J INFORMETR, V5, P146, DOI 10.1016/j.joi.2010.10.002 Conti C, 2021, GLOB FOOD SECUR-AGR, V31, DOI 10.1016/j.gfs.2021.100576 Coulter N, 1998, J AM SOC INFORM SCI, V49, P1206, DOI 10.1002/(SICI)1097-4571(1998)49:13<1206::AID-ASI7>3.0.CO;2-F COURTIAL JP, 1993, SCIENTOMETRICS, V26, P231, DOI 10.1007/BF02016216 Cusworth G, 2021, GLOBAL ENVIRON CHANG, V69, DOI 10.1016/j.gloenvcha.2021.102321 Daim TU, 2006, TECHNOL FORECAST SOC, V73, P981, DOI 10.1016/j.techfore.2006.04.004 Dosi G, 2012, HBK ECON, V1, P51, DOI 10.1016/S0169-7218(10)01003-8 Drieger P, 2013, PROCD SOC BEHV, V79, P4, DOI 10.1016/j.sbspro.2013.05.053 Epicoco M, 2014, TECHNOL FORECAST SOC, V81, P388, DOI 10.1016/j.techfore.2013.03.006 European Commission, 2018, COM/2018/757 final Foyer CH, 2019, PLANT CELL ENVIRON, V42, P373, DOI 10.1111/pce.13466 Geels FW, 2004, RES POLICY, V33, P897, DOI 10.1016/j.respol.2004.01.015 Glanzel W., 2019, Springer Handbook of Science and Technology Indicators, DOI DOI 10.1007/978-3-030-02511-3 Guéguen J, 2016, CAH NUTR DIET, V51, P177, DOI 10.1016/j.cnd.2016.02.001 Hallström E, 2015, J CLEAN PROD, V91, P1, DOI 10.1016/j.jclepro.2014.12.008 Havemeier S, 2017, ANN NY ACAD SCI, V1392, P58, DOI 10.1111/nyas.13308 Heimeriks G, 2014, J ECON GEOGR, V14, P339, DOI 10.1093/jeg/lbs052 Hotchkiss J., 1998, FOOD SCI Hu XJ, 2018, J INFORMETR, V12, P842, DOI 10.1016/j.joi.2018.07.004 Jackson M., 2010, SOCIAL EC NETWORKS, DOI [DOI 10.2307/J.CTVCM4GH1, 10.2307/j.ctvcm4gh1] Jallinoja P, 2016, FUTURES, V83, P4, DOI 10.1016/j.futures.2016.03.006 Johnson Rob, 2018, The STM report: an overview of scientific and scholarly publishing, V5th Kuhn TS, 1970, STRUCTURE SCI REVOLU Lascialfari M, 2019, J INNOV ECON MANAG, P111, DOI 10.3917/jie.028.0111 Lee PC, 2011, TECHNOL FORECAST SOC, V78, P132, DOI 10.1016/j.techfore.2010.06.002 Leydesdorff L, 2011, J INFORMETR, V5, P469, DOI 10.1016/j.joi.2011.01.008 Magrini MB, 2023, FOOD SECUR, V15, P187, DOI 10.1007/s12571-022-01294-9 Magrini MB, 2019, SUSTAINABILITY-BASEL, V11, DOI 10.3390/su11236833 Magrini MB, 2018, FRONT SUSTAIN FOOD S, V2, DOI 10.3389/fsufs.2018.00064 Magrini MB, 2016, ECOL ECON, V126, P152, DOI 10.1016/j.ecolecon.2016.03.024 Manners R, 2018, GLOBAL ENVIRON CHANG, V53, P182, DOI 10.1016/j.gloenvcha.2018.09.010 Marvuglia A, 2020, RENEW SUST ENERG REV, V124, DOI 10.1016/j.rser.2020.109788 Moed H. F., 2004, Handbook of Quantitative Science and Technology Research Peacock Mark S., 2009, SOC EPISTEMOL, V23, P105, DOI [DOI 10.1080/02691720902962813, 10.1080/02691720902962813] Peoples MB, 2019, AGROECOSYSTEM DIVERSITY: RECONCILING CONTEMPORARY AGRICULTURE AND ENVIRONMENTAL QUALITY, P123, DOI 10.1016/B978-0-12-811050-8.00008-X Pinto Alexandra, 2016, Rev. de Ciências Agrárias, V39, P571 Poux X., 2018, An agroecological Europe in 2050: multifunctional agriculture for healthy eating Prabhakaran T, 2018, SCIENTOMETRICS, V117, P1611, DOI 10.1007/s11192-018-2931-3 Qian Y, 2020, J INFORMETR, V14, DOI 10.1016/j.joi.2020.101047 Rafols I, 2014, TECHNOL FORECAST SOC, V81, P22, DOI 10.1016/j.techfore.2012.06.007 Rezaeian M, 2017, TECHNOL FORECAST SOC, V118, P270, DOI 10.1016/j.techfore.2017.02.027 Rosvall M, 2008, P NATL ACAD SCI USA, V105, P1118, DOI 10.1073/pnas.0706851105 Roth C, 2010, SOC NETWORKS, V32, P16, DOI 10.1016/j.socnet.2009.04.005 Rule A, 2015, P NATL ACAD SCI USA, V112, P10837, DOI 10.1073/pnas.1512221112 Semba RD, 2021, GLOB FOOD SECUR-AGR, V28, DOI 10.1016/j.gfs.2021.100520 Sonnino A., 2016, ATT SEM LEG GRAN SAN, P45 Sorenson O, 2004, RES POLICY, V33, P1615, DOI 10.1016/j.respol.2004.09.008 Stegmann J, 2003, SCIENTOMETRICS, V56, P111, DOI 10.1023/A:1021954808804 van Eck NJ, 2010, SCIENTOMETRICS, V82, P581, DOI 10.1007/s11192-010-0173-0 Wasserman S., 1994, Social Network Analysis Weindl I, 2020, GLOB FOOD SECUR-AGR, V25, DOI 10.1016/j.gfs.2020.100367 Willett W, 2019, LANCET, V393, P447, DOI 10.1016/S0140-6736(18)31788-4 Xu HY, 2020, J INFORMETR, V14, DOI 10.1016/j.joi.2020.101014 Yang Y, 2012, SCIENTOMETRICS, V90, P659, DOI 10.1007/s11192-011-0541-4 NR 70 TC 6 Z9 6 U1 7 U2 26 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0138-9130 EI 1588-2861 J9 SCIENTOMETRICS JI Scientometrics PD NOV PY 2022 VL 127 IS 11 BP 6165 EP 6189 DI 10.1007/s11192-022-04514-3 EA SEP 2022 PG 25 WC Computer Science, Interdisciplinary Applications; Information Science & Library Science WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Computer Science; Information Science & Library Science GA 5U5FU UT WOS:000860397400003 DA 2024-09-05 ER PT J AU Dana, LP Crocco, E Culasso, F Giacosa, E AF Dana, Leo-Paul Crocco, Edoardo Culasso, Francesca Giacosa, Elisa TI Mapping the field of digital entrepreneurship: a topic modeling approach SO INTERNATIONAL ENTREPRENEURSHIP AND MANAGEMENT JOURNAL LA English DT Article DE Digital entrepreneurship; Enterprise; Bibliometric review; Digital platforms ID BIBLIOMETRIC ANALYSIS; EFFECTUATION; BUSINESS; WEB AB In the evolving landscape of entrepreneurship, digital technologies have ushered in new possibilities, attracting considerable academic attention. Despite the burgeoning research in Digital Entrepreneurship, the field remains fragmented, warranting a synthesized overview and structured research agenda. Consistently with the above, the paper presents a quantitative mapping of Digital Entrepreneurship through a bibliometric analysis of its publications. The research aims to address the need for a comprehensive, bibliometric overview of the topic, which has been echoed in recently published papers. In order to achieve this goal, we collected data from the Web of Science database, a common and scientifically sound choice in entrepreneurship research. The data were analyzed by applying Latent Dirichlet Allocation and topic modeling, thus providing a unique approach to bibliometric mapping. Topic modeling allows for the processing and analysis of significant amounts of scientific data, thus making it an ideal tool for bibliometric research. We find the field of Digital Entrepreneurship to be rather lively and in rapid development, with several publication outlets, affiliations, and countries contributing to it. We found four main topics to be extracted: the implications of Digital Entrepreneurship for innovation, Digital Entrepreneurship as an enabler for empowerment, the transformation of business models through digitalization, and the surge of digital platforms as entrepreneurial ecosystems. Additionally, we have provided a comprehensive overview of the theoretical lenses used amid the sample and a structured research agenda built upon extant gaps. From a theoretical perspective, the article serves as a starting point for future research on the topic and a comprehensive analysis of its present and past. From a practical perspective, the study is of interest to digital entrepreneurs willing to learn more about the opportunities and challenges provided by the digital landscape. C1 [Dana, Leo-Paul] ICD Business Sch, Lappeenranta, Finland. [Dana, Leo-Paul] Lappeenranta Univ Technol, Lappeenranta, Finland. [Crocco, Edoardo; Culasso, Francesca; Giacosa, Elisa] Univ Turin, Turin, Italy. C3 Lappeenranta-Lahti University of Technology LUT; University of Turin RP Crocco, E (corresponding author), Univ Turin, Turin, Italy. EM edoardo.crocco@unito.it OI Dana, Leo-Paul/0000-0002-0806-1911; Culasso, Francesca/0000-0001-8357-1914; GIACOSA, Elisa/0000-0002-0445-3176 FU Universit degli Studi di Torino FX No Statement Available CR Alhajri A, 2024, INT J ENTREP BEHAV R, V30, P369, DOI 10.1108/IJEBR-09-2022-0790 Ammirato S, 2022, MEAS BUS EXCELL, V26, P6, DOI 10.1108/MBE-01-2021-0012 [Anonymous], 2015, EUROPEAN COMMISSION Anwar MN, 2016, J ENTERPRISING CULT, V24, P419, DOI 10.1142/S0218495816500151 Autio E, 2018, STRATEG ENTREP J, V12, P72, DOI 10.1002/sej.1266 Aziz S, 2022, EUR FINANC MANAG, V28, P744, DOI 10.1111/eufm.12326 Basly S, 2020, J ENTREP, V29, P326, DOI 10.1177/0971355720930573 Berger ESC, 2021, J BUS RES, V125, P436, DOI 10.1016/j.jbusres.2019.12.020 Biclesanu I, 2021, ADM SCI, V11, DOI 10.3390/admsci11040125 Blei DM, 2012, COMMUN ACM, V55, P77, DOI 10.1145/2133806.2133826 Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993 Bogusz CI, 2019, EUR J INFORM SYST, V28, P318, DOI 10.1080/0960085X.2018.1534039 Cano-Marin E, 2023, TECHNOL FORECAST SOC, V190, DOI 10.1016/j.techfore.2023.122386 Chalmers D, 2021, J BUS RES, V125, P577, DOI 10.1016/j.jbusres.2019.09.002 Chandna V, 2022, ELECTRON COMMER RES, DOI 10.1007/s10660-022-09574-4 Cruz MC, 2024, INT ENTREP MANAG J, V20, P451, DOI 10.1007/s11365-022-00811-8 Davidson E, 2010, P ANN HICSS, P2978 Denyer D., 2009, SAGE HDB ORG RES MET, P671 Deyanova K, 2022, REV MANAG SCI, V16, P2083, DOI 10.1007/s11846-022-00525-9 Donthu N, 2021, J BUS RES, V133, P285, DOI 10.1016/j.jbusres.2021.04.070 Duparc E, 2022, ELECTRON MARK, V32, P727, DOI 10.1007/s12525-022-00557-9 Dy AM, 2018, ORGANIZATION, V25, P585, DOI 10.1177/1350508418777891 Dy AM, 2017, HUM RELAT, V70, P286, DOI 10.1177/0018726716650730 Elia G, 2021, ADM SCI, V11, DOI 10.3390/admsci11030096 Elia G, 2020, TECHNOL FORECAST SOC, V150, DOI 10.1016/j.techfore.2019.119791 Engel JS, 2015, CALIF MANAGE REV, V57, P36, DOI 10.1525/cmr.2015.57.2.36 Fernandes C, 2022, TECHNOL SOC, V70, DOI 10.1016/j.techsoc.2022.101979 Filieri R, 2021, INT J CONTEMP HOSP M, V33, P4099, DOI 10.1108/IJCHM-02-2021-0220 Finch A, 2012, CHANDOS PUBL SER, P243 Fischer E, 2014, J BUS VENTURING, V29, P565, DOI 10.1016/j.jbusvent.2014.02.004 Gabrielsson M, 2022, MANAGE INT REV, V62, P137, DOI 10.1007/s11575-022-00469-y Gartner W.B., 1988, ENTREP THEORY PRACT, V13, P47, DOI [10.1177/104225878801200401, DOI 10.1177/104225878801200401, 10.1177/104225878901300406, DOI 10.1177/104225878901300406] Ghezzi A, 2019, TECHNOL FORECAST SOC, V146, P945, DOI 10.1016/j.techfore.2018.09.017 Ghezzi A, 2020, J BUS RES, V110, P519, DOI 10.1016/j.jbusres.2018.06.013 Gil-Gomez H, 2023, INT ENTREP MANAG J, V19, P27, DOI 10.1007/s11365-021-00784-0 Giones F, 2017, TECHNOL INNOV MANAG, V7, P44, DOI 10.22215/timreview1076 Griva A, 2023, INT J INFORM MANAGE, V69, DOI 10.1016/j.ijinfomgt.2021.102427 Hansen B, 2019, SMALL ENTERP RES, V26, P36, DOI 10.1080/13215906.2019.1570321 Harzing AW, 2016, SCIENTOMETRICS, V106, P787, DOI 10.1007/s11192-015-1798-9 Huang J, 2017, MIS QUART, V41, P301, DOI 10.25300/MISQ/2017/41.1.16 Huber F, 2022, IND INNOV, V29, P992, DOI 10.1080/13662716.2022.2109455 Hull Clyde Eirikur, 2007, International Journal of Networking and Virtual Organisations, V4, P290, DOI 10.1504/IJNVO.2007.015166 Jawad M, 2021, BUS STRATEGY DEV, V4, P220, DOI 10.1002/bsd2.145 Kalantari Ali, 2017, Journal of Big Data, V4, DOI 10.1186/s40537-017-0088-1 Kang HY, 2022, TECHNOVATION, V114, DOI 10.1016/j.technovation.2022.102522 Kaushik V, 2023, TECHNOL FORECAST SOC, V191, DOI 10.1016/j.techfore.2023.122516 Khlystova O, 2022, J BUS RES, V139, P1192, DOI 10.1016/j.jbusres.2021.09.062 Kollmann T, 2006, INT J TECHNOL MANAGE, V33, P322, DOI 10.1504/IJTM.2006.009247 Kollmann T, 2022, BUS INFORM SYST ENG+, V64, P15, DOI 10.1007/s12599-021-00728-6 Koomson I, 2023, INFORM TECHNOL PEOPL, V36, P996, DOI 10.1108/ITP-11-2021-0906 Kraus S., 2019, International Journal of Entrepreneurial Behavior Research, V25, P353, DOI [10.1108/IJEBR-06-2018-0425, DOI 10.1108/IJEBR-06-2018-0425] Lall SA, 2023, SMALL BUS ECON, V61, P631, DOI 10.1007/s11187-022-00704-8 Leung WF, 2019, INT J CULTURAL STUD, V22, P264, DOI 10.1177/1367877918821234 Li K, 2018, SCIENTOMETRICS, V115, P1, DOI 10.1007/s11192-017-2622-5 Ligorio L, 2022, TECHNOL FORECAST SOC, V176, DOI 10.1016/j.techfore.2021.121447 Lin YK, 2022, ORGAN SCI, V33, P212, DOI 10.1287/orsc.2021.1538 Liu JY, 2018, J STRATEGIC INF SYST, V27, P311, DOI 10.1016/j.jsis.2018.10.003 Majdouline I, 2022, TECHNOL FORECAST SOC, V179, DOI 10.1016/j.techfore.2022.121589 Martínez-Climent C, 2018, INT ENTREP MANAG J, V14, P527, DOI 10.1007/s11365-018-0511-x McAdam M, 2019, TECHNOL FORECAST SOC, V146, P912, DOI 10.1016/j.techfore.2018.07.051 McMullen JS, 2013, J MANAGE STUD, V50, P1481, DOI 10.1111/joms.12049 Merigó JM, 2017, OMEGA-INT J MANAGE S, V73, P37, DOI 10.1016/j.omega.2016.12.004 Merigó JM, 2016, J BUS ECON MANAG, V17, P397, DOI 10.3846/16111699.2013.807868 Miniesy R, 2022, INT J GEND ENTREP, V14, P235, DOI 10.1108/IJGE-06-2021-0085 Nájera-Sánchez JJ, 2023, INT ENTREP MANAG J, V19, P563, DOI 10.1007/s11365-022-00814-5 Nambisan S, 2021, J BUS RES, V125, P520, DOI 10.1016/j.jbusres.2019.06.037 Nambisan S, 2019, RES POLICY, V48, DOI 10.1016/j.respol.2019.03.018 Nambisan S, 2017, ENTREP THEORY PRACT, V41, P1029, DOI 10.1111/etap.12254 North D.C., 1990, Institutions, Institutional Change and Economic Performance, DOI [10.1017/CBO9780511808678, DOI 10.1017/CBO9780511808678, DOI 10.1257/JEP.5.1.97] Ojala A, 2018, J WORLD BUS, V53, P725, DOI 10.1016/j.jwb.2018.05.001 Park H, 2021, CREAT INNOV MANAG, V30, P96, DOI 10.1111/caim.12404 Paul J, 2023, J BUS RES, V156, DOI 10.1016/j.jbusres.2022.113507 Pejic Bach M, 2018, ECON RES-EKON ISTRAZ, V31, P1453, DOI 10.1080/1331677X.2018.1478321 Perez-Vega R, 2022, J BUS RES, V151, P1, DOI 10.1016/j.jbusres.2022.06.028 Prashantham S, 2019, INT SMALL BUS J, V37, P3, DOI 10.1177/0266242618796145 Ratten V., 2023, Global Business and Organizational Excellence, V42, P79, DOI [10.1002/joe.22217, DOI 10.1002/JOE.22217] Reuschke D, 2022, FUTURES, V135, DOI 10.1016/j.futures.2020.102542 Rippa P, 2019, TECHNOL FORECAST SOC, V146, P900, DOI 10.1016/j.techfore.2018.07.013 Rogers G, 2020, SCIENTOMETRICS, V125, P777, DOI 10.1007/s11192-020-03647-7 Sahut JM, 2021, SMALL BUS ECON, V56, P1159, DOI 10.1007/s11187-019-00260-8 Sarasvathy SD, 2001, ACAD MANAGE REV, V26, P243, DOI 10.2307/259121 Sarkar S, 2023, R&D MANAGE, V53, P695, DOI 10.1111/radm.12555 Satalkina L, 2020, SUSTAINABILITY-BASEL, V12, DOI 10.3390/su12072764 Shane S, 2000, ACAD MANAGE REV, V25, P217, DOI 10.5465/amr.2000.2791611 Shukla A, 2021, J ENTERP COMMUNITIES, V15, P137, DOI 10.1108/JEC-04-2020-0071 Sigfusson T, 2013, J WORLD BUS, V48, P260, DOI 10.1016/j.jwb.2012.07.011 Sofia AT, 2022, INT ENTREP MANAG J, V18, P1707, DOI 10.1007/s11365-022-00798-2 Solaimani S, 2022, INT J ENTREP BEHAV R, V28, P198, DOI 10.1108/IJEBR-04-2021-0270 Solaimani S, 2018, EUR MANAG REV, V15, P79, DOI 10.1111/emre.12124 Soluk J, 2021, ENTREP THEORY PRACT, V45, P867, DOI 10.1177/1042258721998946 Srinivasan A, 2018, STRATEG ENTREP J, V12, P54, DOI 10.1002/sej.1272 Stevenson H.H., 1983, PERSPECTIVE ENTREPRE Sussan F, 2017, SMALL BUS ECON, V49, P55, DOI 10.1007/s11187-017-9867-5 Tang HJ, 2023, EUR J INNOV MANAG, V26, P1106, DOI 10.1108/EJIM-08-2021-0431 Ughetto E, 2020, SMALL BUS ECON, V55, P305, DOI 10.1007/s11187-019-00298-8 Upadhyay N, 2023, INT J ENTREP BEHAV R, V29, P80, DOI 10.1108/IJEBR-02-2022-0154 Vadana II, 2020, INT MARKET REV, V37, P471, DOI 10.1108/IMR-04-2018-0129 Wang N, 2022, J CLEAN PROD, V380, DOI 10.1016/j.jclepro.2022.134754 Yu YY, 2022, INT ENTREP MANAG J, V18, P1475, DOI 10.1007/s11365-022-00804-7 Zaheer H, 2019, TECHNOL FORECAST SOC, V148, DOI 10.1016/j.techfore.2019.119735 Zahra SA, 2023, TECHNOVATION, V119, DOI 10.1016/j.technovation.2022.102457 Zhai YM, 2023, J BUS IND MARK, V38, P637, DOI 10.1108/JBIM-05-2021-0244 Zupic I, 2015, ORGAN RES METHODS, V18, P429, DOI 10.1177/1094428114562629 NR 103 TC 0 Z9 0 U1 22 U2 34 PU SPRINGER PI NEW YORK PA ONE NEW YORK PLAZA, SUITE 4600, NEW YORK, NY, UNITED STATES SN 1554-7191 EI 1555-1938 J9 INT ENTREP MANAG J JI Int. Entrep. Manag. J. PD MAR PY 2024 VL 20 IS 1 BP 55 EP 88 DI 10.1007/s11365-023-00926-6 EA DEC 2023 PG 34 WC Business; Management WE Social Science Citation Index (SSCI) SC Business & Economics GA JD4G8 UT WOS:001120224200003 OA hybrid DA 2024-09-05 ER PT J AU Hao, TY Chen, XL Li, GZ Yan, J AF Hao, Tianyong Chen, Xieling Li, Guozheng Yan, Jun TI A bibliometric analysis of text mining in medical research SO SOFT COMPUTING LA English DT Article DE Text mining; Medical; Bibliometric analysis; Topic modeling ID MODEL APPROACH; TOPIC MODEL; SIMULATION; PARENTS; SPEECH AB Text mining has become an increasingly significant role in processing medical information. The research of text mining enhanced medical has attracted much attention in view from the substantial expansion of literature. This study aims to systematically review the existing academic research outputs of the field from Web of Science and PubMed by using techniques such as geographic visualization, collaboration degree, social network analysis, and topic modeling analysis. Specifically, publication statistical characteristics, geographical distribution, collaboration relations, and research topic are quantitatively analyzed. This study contributes to the text mining enhanced medical research field in a number of ways. First, it provides the latest research status for researchers who are interested in the field through literature analysis. Second, it helps scholars become more aware of the research subfields through hot topic identification. Third, it provides insights to researchers engaging in the field and motivates attention on the relevant research. C1 [Hao, Tianyong] South China Normal Univ, Sch Comp Sci, Guangzhou, Guangdong, Peoples R China. [Chen, Xieling] Jinan Univ, Coll Econ, Guangzhou, Guangdong, Peoples R China. [Li, Guozheng] China Acad Chinese Med Sci, Natl Data Ctr Tradit Chinese Med, Beijing, Peoples R China. [Yan, Jun] Yidu Cloud Beijing Technol Co Ltd, AI Lab, Beijing, Peoples R China. C3 South China Normal University; Jinan University; China Academy of Chinese Medical Sciences RP Chen, XL (corresponding author), Jinan Univ, Coll Econ, Guangzhou, Guangdong, Peoples R China. EM haoty@126.com; shaylyn_chen@163.com; gzli@ndctcm.cn; jun.yan@yiducloud.cn RI Hao, Tianyong/HJH-2742-2023; Li, Guo-Zheng/D-5744-2011; Yang, Jing/JFK-4046-2023 OI Hao, Tianyong/0000-0002-9792-3949; Yang, Jing/0009-0004-8274-9863; PV, THAYYIB/0000-0001-8929-0398; Chen, Xieling/0000-0003-3417-7421 FU National Natural Science Foundation of China [61772146]; Guangzhou Science Technology and Innovation Commission [201803010063] FX The work was funded by the grant from National Natural Science Foundation of China (No. 61772146) and Guangzhou Science Technology and Innovation Commission (No. 201803010063). CR Ahmed S, 2013, NEUROPSYCHOLOGY, V27, P79, DOI 10.1037/a0031288 Alzheimer's A, 2014, ALZHEIMERS DEMENT, V2014, pe47, DOI [DOI 10.1016/J.JALZ.2010.01.009, DOI 10.1016/J.JALZ.2015.02.003] [Anonymous], 2005, P 43 ANN M ASS COMP, DOI DOI 10.3115/1219840.1219885 Apte C., 1998, CITESEER Baker NC, 2018, DRUG DISCOV TODAY, V23, P661, DOI 10.1016/j.drudis.2018.01.018 Batet M, 2011, J BIOMED INFORM, V44, P118, DOI 10.1016/j.jbi.2010.09.002 Blei DM, 2007, ANN APPL STAT, V1, P17, DOI 10.1214/07-AOAS114 Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993 Borgatti SP, 2009, SCIENCE, V323, P892, DOI 10.1126/science.1165821 Bouyssou D, 2011, J AM SOC INF SCI TEC, V62, P1761, DOI 10.1002/asi.21544 Chen XY, 2017, ICPRAM: PROCEEDINGS OF THE 6TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION APPLICATIONS AND METHODS, P89, DOI 10.5220/0006119900890095 Chen XL, 2018, BMC MED INFORM DECIS, V18, DOI [10.1186/s12911-018-0594-x, 10.1186/s12870-018-1555-3] Chen Xieling, 2018, Wireless Communications and Mobile Computing, V2018, P1, DOI [DOI 10.1155/2018/1827074, DOI 10.1109/JI0T.2018.2876279] Chou WYS, 2014, TRANSL BEHAV MED, V4, P314, DOI 10.1007/s13142-014-0256-1 Feinerer I, 2008, J STAT SOFTW, V25, P1 Fey MK, 2015, NURS EDUC PERSPECT, V36, P361, DOI 10.5480/14-1520 Fraser V, 2015, J APPL RES INTELLECT, V28, P319, DOI 10.1111/jar.12142 Fu HZ, 2010, WASTE MANAGE, V30, P2410, DOI 10.1016/j.wasman.2010.06.008 Glnzel W., 2003, Bibliometrics as a research field: A course on theory and application of bibliometric indicators Grün B, 2011, J STAT SOFTW, V40, P1 He P, 2017, SOFT COMPUT, V21, P5413, DOI 10.1007/s00500-016-2130-1 He P, 2016, SOFT COMPUT, V20, P3537, DOI 10.1007/s00500-015-1710-9 Hearst Marti., 2003, WHAT IS TEXT MINING Hoek J, 2014, BMJ OPEN, V4, DOI 10.1136/bmjopen-2014-006716 Hofmann T, 1999, SIGIR'99: PROCEEDINGS OF 22ND INTERNATIONAL CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, P50, DOI 10.1145/312624.312649 Jiang HC, 2016, RENEW SUST ENERG REV, V57, P226, DOI 10.1016/j.rser.2015.12.194 Jin JH, 2016, INT J MED INFORM, V86, P91, DOI 10.1016/j.ijmedinf.2015.11.002 Kantrowitz-Gordon I, 2016, JOGNN-J OBST GYN NEO, V45, P196, DOI 10.1016/j.jogn.2015.12.004 Khan MS, 2016, J CARDIOVASC MAGN R, V18, DOI 10.1186/s12968-016-0303-9 Kim K, 2015, NURS ETHICS, V22, P467, DOI 10.1177/0969733014538892 Knight R, 2012, SOCIOL HEALTH ILL, V34, P1246, DOI 10.1111/j.1467-9566.2012.01471.x Leonard AD, 2010, PERSPECT SEX REPRO H, V42, P110, DOI 10.1363/4211010 Li W, 2015, ENVIRON IMPACT ASSES, V50, P158, DOI 10.1016/j.eiar.2014.09.012 Li ZH, 2017, IEEE T KNOWL DATA EN, V29, P2100, DOI 10.1109/TKDE.2017.2728531 Lin WW, 2017, INFORM SCIENCES, V397, P168, DOI 10.1016/j.ins.2017.02.054 Liu FF, 2011, J AM MED INFORM ASSN, V18, P625, DOI 10.1136/amiajnl-2010-000071 Lu K, 2012, J AM SOC INF SCI TEC, V63, P1973, DOI 10.1002/asi.22628 Lucini FR, 2017, INT J MED INFORM, V100, P1, DOI 10.1016/j.ijmedinf.2017.01.001 Luo MN, 2017, COMPUT VIS IMAGE UND, V163, P67, DOI 10.1016/j.cviu.2017.07.001 Mann HB, 1945, ECONOMETRICA, V13, P245, DOI 10.2307/1907187 Mårtensson G, 2014, J PSYCHIATR MENT HLT, V21, P782, DOI 10.1111/jpm.12145 Mazloumian A, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0049246 Merigó JM, 2015, APPL SOFT COMPUT, V27, P420, DOI 10.1016/j.asoc.2014.10.035 Meystre Stephane, 2005, BMC Med Inform Decis Mak, V5, P30, DOI 10.1186/1472-6947-5-30 Nafade V, 2018, PLOS ONE, V13, DOI 10.1371/journal.pone.0199706 Nichols LG, 2014, SCIENTOMETRICS, V100, P741, DOI 10.1007/s11192-014-1319-2 Oscar N, 2017, J GERONTOL B-PSYCHOL, V72, P742, DOI 10.1093/geronb/gbx014 Peñaloza C, 2015, APHASIOLOGY, V29, P724, DOI 10.1080/02687038.2014.982500 Pistono A, 2016, J ALZHEIMERS DIS, V50, P687, DOI 10.3233/JAD-150408 Rees CE, 2015, J ADV NURS, V71, P169, DOI 10.1111/jan.12457 Robertson S, 2004, J DOC, V60, P503, DOI 10.1108/00220410410560582 Romero C, 2007, EXPERT SYST APPL, V33, P135, DOI 10.1016/j.eswa.2006.04.005 SALTON G, 1975, COMMUN ACM, V18, P613, DOI 10.1145/361219.361220 Saraswathi K, 2016, J MED IMAG HEALTH IN, V6, P1594, DOI 10.1166/jmihi.2016.1856 Savova GK, 2010, J AM MED INFORM ASSN, V17, P507, DOI 10.1136/jamia.2009.001560 Shin S, 2015, NURS EDUC TODAY, V35, P176, DOI 10.1016/j.nedt.2014.09.009 Tan HL, 2018, PATTERN RECOGN, V76, P434, DOI 10.1016/j.patcog.2017.11.020 Tan HL, 2017, IEEE ACCESS, V5, P15001, DOI 10.1109/ACCESS.2017.2733718 TEH Y. W., 2005, Advances in neural information processing systems, P1385 Wang H, 2018, INFORM SCIENCES, V438, P95, DOI 10.1016/j.ins.2018.01.041 [魏一鸣 Wei Yiming], 2013, [系统工程理论与实践, Systems Engineering-Theory & Practice], V33, P1905 Xieling Chen, 2017, Emerging Technologies for Education. Second International Symposium, SETE 2017 Held in Conjunction with ICWL 2017. Revised Selected Papers: LNCS 10676, P507, DOI 10.1007/978-3-319-71084-6_60 Yau CK, 2014, SCIENTOMETRICS, V100, P767, DOI 10.1007/s11192-014-1321-8 Yeung AWK, 2017, FRONT NEUROSCI-SWITZ, V11, DOI 10.3389/fnins.2017.00120 Yu DJ, 2018, KNOWL-BASED SYST, V141, P188, DOI 10.1016/j.knosys.2017.11.018 Zhang K, 2016, RENEW SUST ENERG REV, V58, P297, DOI 10.1016/j.rser.2015.12.089 Zhang SH, 2017, IEEE ACCESS, V5, P16904, DOI 10.1109/ACCESS.2017.2741221 Zhong SZ, 2016, J CLEAN PROD, V139, P122, DOI 10.1016/j.jclepro.2016.08.039 NR 68 TC 66 Z9 68 U1 5 U2 85 PU SPRINGER PI NEW YORK PA ONE NEW YORK PLAZA, SUITE 4600, NEW YORK, NY, UNITED STATES SN 1432-7643 EI 1433-7479 J9 SOFT COMPUT JI Soft Comput. PD DEC PY 2018 VL 22 IS 23 SI SI BP 7875 EP 7892 DI 10.1007/s00500-018-3511-4 PG 18 WC Computer Science, Artificial Intelligence; Computer Science, Interdisciplinary Applications WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Computer Science GA HC0FI UT WOS:000451472000019 DA 2024-09-05 ER PT C AU Zheng, H Chen, XY Duan, X AF Zheng, Han Chen, Xiaoyu Duan, Xu BE Jatowt, A Maeda, A Syn, SY TI An Overview of Altmetrics Research: A Typology Approach SO DIGITAL LIBRARIES AT THE CROSSROADS OF DIGITAL INFORMATION FOR THE FUTURE, ICADL 2019 SE Lecture Notes in Computer Science LA English DT Proceedings Paper CT 21st International Conference on Asia-Pacific Digital Libraries (ICADL) CY NOV 04-07, 2019 CL Kuala Lumpur, MALAYSIA DE Altmetrics research; Typology; Topic modeling; Text mining AB Altmetrics, novel metrics based on social media, have received much attention from scholars in recent years. As an emerging research area in information science, it is essential to understand the overview of altmetrics research. We extracted 731 altmetrics-related articles from the Scopus databases and adopted a text mining method (i.e., topic modeling) to develop a typology of altmetrics research. Six major themes were identified in our analysis, including altmetrics research in general, bibliometric and altmetrics, measuring research impact, metrics application, social media use, and performance evaluation. We interpreted the meaning of the six themes and their associations with altmetrics research. This paper is a first step in mapping the landscape of altmetrics research through uncovering the core topics discussed by scholars. Limitations and future work are also discussed. C1 [Zheng, Han; Chen, Xiaoyu; Duan, Xu] Nanyang Technol Univ, Wee Kim Wee Sch Commun & Informat, Singapore, Singapore. C3 Nanyang Technological University RP Zheng, H (corresponding author), Nanyang Technol Univ, Wee Kim Wee Sch Commun & Informat, Singapore, Singapore. EM hn019@e.ntu.edu.sg; xiaoyu001@e.ntu.edu.sg; xu007@e.ntu.edu.sg RI Chen, Xiaoyu/AGX-8179-2022; Zheng, Han/AAD-6949-2020; Duan, Xu/JDD-4522-2023 OI Chen, Xiaoyu/0000-0003-1741-0674; Zheng, Han/0000-0003-4032-4299; CR [Anonymous], 2015, Incentives and Performance Atenstaedt R, 2012, BRIT J GEN PRACT, V62, P148, DOI 10.3399/bjgp12X630142 Aung HH, 2019, J ASSOC INF SCI TECH, V70, P872, DOI 10.1002/asi.24162 Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993 Borgman CL, 2002, ANNU REV INFORM SCI, V36, P3 Bungo J, 2011, IEEE POTENTIALS, V30, P17, DOI 10.1109/MPOT.2010.938614 Chua AYK, 2008, J AM SOC INF SCI TEC, V59, P2156, DOI 10.1002/asi.20929 Erdt M, 2016, SCIENTOMETRICS, V109, P1117, DOI 10.1007/s11192-016-2077-0 Eysenbach G, 2011, J MED INTERNET RES, V13, DOI 10.2196/jmir.2012 Harley D, 2013, SCIENCE, V342, P80, DOI 10.1126/science.1243622 Nicholas David, 2011, Information Services & Use, V31, P61, DOI 10.3233/ISU-2011-0623 Noh Y., 2011, P 11 ANN INT ACM IEE, P411, DOI [10.1145/1998076.1998160, DOI 10.1145/1998076.1998160] Pal Amitangshu., 2016, Proceedings of the Association for Information Science and Technology, P1 Papachristopoulos L, 2019, INT J DIGIT LIBRARIE, V20, P125, DOI 10.1007/s00799-017-0222-x Thelwall M, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0064841 Yoshida M, 2005, LECT NOTES ARTIF INT, V3651, P269, DOI 10.1007/11562214_24 Yu HQ, 2018, J INFORMETR, V12, P605, DOI 10.1016/j.joi.2018.06.003 Zahedi Z, 2014, SCIENTOMETRICS, V101, P1491, DOI 10.1007/s11192-014-1264-0 Zheng H, 2018, COMM COM INF SC, V856, P72, DOI 10.1007/978-981-13-1053-9_6 Zheng H, 2019, J ASSOC INF SCI TECH, V70, P256, DOI 10.1002/asi.24124 NR 20 TC 1 Z9 1 U1 3 U2 38 PU SPRINGER INTERNATIONAL PUBLISHING AG PI CHAM PA GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND SN 0302-9743 EI 1611-3349 BN 978-3-030-34058-2; 978-3-030-34057-5 J9 LECT NOTES COMPUT SC PY 2019 VL 11853 BP 33 EP 39 DI 10.1007/978-3-030-34058-2_4 PG 7 WC Computer Science, Artificial Intelligence; Computer Science, Information Systems; Computer Science, Theory & Methods; Information Science & Library Science; Imaging Science & Photographic Technology WE Conference Proceedings Citation Index - Science (CPCI-S); Conference Proceedings Citation Index - Social Science & Humanities (CPCI-SSH) SC Computer Science; Information Science & Library Science; Imaging Science & Photographic Technology GA BQ3BB UT WOS:000583740100004 DA 2024-09-05 ER PT J AU Sheller, MJ Edwards, B Reina, GA Martin, J Pati, S Kotrotsou, A Milchenko, M Xu, WL Marcus, D Colen, RR Bakas, S AF Sheller, Micah J. Edwards, Brandon Reina, G. Anthony Martin, Jason Pati, Sarthak Kotrotsou, Aikaterini Milchenko, Mikhail Xu, Weilin Marcus, Daniel Colen, Rivka R. Bakas, Spyridon TI Federated learning in medicine: facilitating multi-institutional collaborations without sharing patient data SO SCIENTIFIC REPORTS LA English DT Article AB Several studies underscore the potential of deep learning in identifying complex patterns, leading to diagnostic and prognostic biomarkers. Identifying sufficiently large and diverse datasets, required for training, is a significant challenge in medicine and can rarely be found in individual institutions. Multi-institutional collaborations based on centrally-shared patient data face privacy and ownership challenges. Federated learning is a novel paradigm for data-private multi-institutional collaborations, where model-learning leverages all available data without sharing data between institutions, by distributing the model-training to the data-owners and aggregating their results. We show that federated learning among 10 institutions results in models reaching 99% of the model quality achieved with centralized data, and evaluate generalizability on data from institutions outside the federation. We further investigate the effects of data distribution across collaborating institutions on model quality and learning patterns, indicating that increased access to data through data private multi-institutional collaborations can benefit model quality more than the errors introduced by the collaborative method. Finally, we compare with other collaborative-learning approaches demonstrating the superiority of federated learning, and discuss practical implementation considerations. Clinical adoption of federated learning is expected to lead to models trained on datasets of unprecedented size, hence have a catalytic impact towards precision/personalized medicine. C1 [Sheller, Micah J.; Edwards, Brandon; Reina, G. Anthony; Martin, Jason; Xu, Weilin] Intel Corp, 2200 Mission Coll Blvd, Santa Clara, CA 95052 USA. [Pati, Sarthak; Bakas, Spyridon] Univ Penn, Richards Med Res Labs, Ctr Biomed Image Comp & Analyt CBICA, Floor 7,3700 Hamilton Walk, Philadelphia, PA 19104 USA. [Pati, Sarthak; Bakas, Spyridon] Univ Penn, Richards Med Res Labs, Perelman Sch Med, Dept Radiol, Floor 7,3700 Hamilton Walk, Philadelphia, PA 19104 USA. [Kotrotsou, Aikaterini; Colen, Rivka R.] Univ Texas MD Anderson Canc Ctr, Dept Diagnost Radiol, 1400 Pressler St, Houston, TX 77030 USA. [Kotrotsou, Aikaterini; Colen, Rivka R.] Univ Texas MD Anderson Canc Ctr, Dept Canc Syst Imaging, 1881 East Rd,3SCRB4, Houston, TX 77054 USA. [Milchenko, Mikhail; Marcus, Daniel] Washington Univ, Sch Med, Dept Radiol, St Louis, MO 63110 USA. [Colen, Rivka R.] Univ Pittsburgh, Med Ctr, Hillman Canc Ctr, Pittsburgh, PA 15232 USA. [Colen, Rivka R.] Univ Pittsburgh, Dept Radiol, Pittsburgh, PA 15213 USA. [Bakas, Spyridon] Univ Penn, Richards Med Res Labs, Perelman Sch Med, Dept Pathol & Lab Med, Floor 7,3700 Hamilton Walk, Philadelphia, PA 19104 USA. C3 Intel Corporation; University of Pennsylvania; University of Pennsylvania; University of Texas System; UTMD Anderson Cancer Center; University of Texas System; UTMD Anderson Cancer Center; Washington University (WUSTL); Pennsylvania Commonwealth System of Higher Education (PCSHE); University of Pittsburgh; Pennsylvania Commonwealth System of Higher Education (PCSHE); University of Pittsburgh; University of Pennsylvania RP Bakas, S (corresponding author), Univ Penn, Richards Med Res Labs, Ctr Biomed Image Comp & Analyt CBICA, Floor 7,3700 Hamilton Walk, Philadelphia, PA 19104 USA.; Bakas, S (corresponding author), Univ Penn, Richards Med Res Labs, Perelman Sch Med, Dept Radiol, Floor 7,3700 Hamilton Walk, Philadelphia, PA 19104 USA.; Bakas, S (corresponding author), Univ Penn, Richards Med Res Labs, Perelman Sch Med, Dept Pathol & Lab Med, Floor 7,3700 Hamilton Walk, Philadelphia, PA 19104 USA. EM sbakas@upenn.edu RI Pati, Sarthak/AAL-1334-2020 OI Pati, Sarthak/0000-0003-2243-8487; Reina, G Anthony/0000-0001-9623-9259 FU National Institutes of Health (NIH) [NCI:U01CA242871, NINDS:R01NS042645, NCI:U24CA189523, NCI:U24CA204854, UPMC CCSG P30CA047904] FX The authors would like to thank Dr. Christos Davatzikos for his insightful comments during writing of this manuscript. Research reported in this publication was partly supported by the National Institutes of Health (NIH) under Award Numbers NCI:U01CA242871, NINDS:R01NS042645, NCI:U24CA189523, NCI:U24CA204854, and UPMC CCSG P30CA047904. The content of this publication is solely the responsibility of the authors and does not necessarily represent the official views of the NIH. CR Aldape K, 2018, NEURO-ONCOLOGY, V20, P873, DOI 10.1093/neuonc/noy020 Annas GJ, 2003, NEW ENGL J MED, V348, P1486, DOI 10.1056/NEJMlim035027 [Anonymous], **DATA OBJECT**, DOI DOI 10.7937/K9/TCIA.2017.GJQ7R0EF [Anonymous], **DATA OBJECT**, DOI DOI 10.7937/K9/TCIA.2017.KLXWJJ1Q Bakas S., 2018, arXiv Bakas S, 2017, SCI DATA, V4, DOI 10.1038/sdata.2017.117 Bilic P., 2023, arXiv, V84 Borovec J, 2020, IEEE T MED IMAGING, V39, P3042, DOI 10.1109/TMI.2020.2986331 Brisimi TS, 2018, INT J MED INFORM, V112, P59, DOI 10.1016/j.ijmedinf.2018.01.007 Carlini N., 2018, ARXIV180208232 Chang K, 2018, J AM MED INFORM ASSN, V25, P945, DOI 10.1093/jamia/ocy017 Cheng M, 2016, INT J HYPERTHER, V32, P316, DOI 10.3109/02656736.2015.1137640 Clark K, 2013, J DIGIT IMAGING, V26, P1045, DOI 10.1007/s10278-013-9622-7 Davatzikos C, 2020, NEURO-ONCOLOGY, V22, P886, DOI 10.1093/neuonc/noaa045 DICE LR, 1945, ECOLOGY, V26, P297, DOI 10.2307/1932409 Fredrikson M, 2015, CCS'15: PROCEEDINGS OF THE 22ND ACM SIGSAC CONFERENCE ON COMPUTER AND COMMUNICATIONS SECURITY, P1322, DOI 10.1145/2810103.2813677 French RM, 1999, TRENDS COGN SCI, V3, P128, DOI 10.1016/S1364-6613(99)01294-2 Heller N, 2019, ARXIV190400445 Hitaj B, 2017, CCS'17: PROCEEDINGS OF THE 2017 ACM SIGSAC CONFERENCE ON COMPUTER AND COMMUNICATIONS SECURITY, P603, DOI 10.1145/3133956.3134012 Kiley R, 2017, NEW ENGL J MED, V377, P1990, DOI 10.1056/NEJMsb1708278 Kingma DP, 2014, ADV NEUR IN, V27 Li WQ, 2019, LECT NOTES COMPUT SC, V11861, P133, DOI 10.1007/978-3-030-32692-0_16 Li ZY, 2019, J BIOMED INFORM, V92, DOI 10.1016/j.jbi.2019.103138 McCarthy AM, 2016, JNCI-J NATL CANCER I, V108, DOI 10.1093/jnci/djw104 McMahan B., 2017, FEDERATED LEARNING C McMahan HB, 2017, PR MACH LEARN RES, V54, P1273 Menze BH, 2015, IEEE T MED IMAGING, V34, P1993, DOI 10.1109/TMI.2014.2377694 Rohlfing T, 2010, HUM BRAIN MAPP, V31, P798, DOI 10.1002/hbm.20906 Ronneberger O., INT C MED IM COMP AS, P234 Sheller MJ, 2019, LECT NOTES COMPUT SC, V11383, P92, DOI 10.1007/978-3-030-11723-8_9 Simpson A. L., 2019, LARGE ANNOTATED MEDI Taichman DB, 2016, NEW ENGL J MED, V374, P384, DOI 10.1056/NEJMe1515172 Tresp V, 2016, P IEEE, V104, P2180, DOI 10.1109/JPROC.2016.2615052 Voigt P., 2017, PRACTICAL GUIDE, V1st Zech JR, 2018, PLOS MED, V15, DOI 10.1371/journal.pmed.1002683 Zhao Y., 2018, ARXIV180600582 NR 36 TC 460 Z9 486 U1 10 U2 63 PU NATURE PORTFOLIO PI BERLIN PA HEIDELBERGER PLATZ 3, BERLIN, 14197, GERMANY SN 2045-2322 J9 SCI REP-UK JI Sci Rep PD JUL 28 PY 2020 VL 10 IS 1 AR 12598 DI 10.1038/s41598-020-69250-1 PG 12 WC Multidisciplinary Sciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Science & Technology - Other Topics GA MV5LE UT WOS:000556398500021 PM 32724046 OA gold, Green Published HC Y HP N DA 2024-09-05 ER PT C AU Kergosien, E Farvardin, A Teisseire, M Bessagnet, MN Schöpfel, J Chaudiron, S Jacquemin, B Lacayrelle, A Roche, M Sallaberry, C Tonneau, JP AF Kergosien, Eric Farvardin, Amin Teisseire, Maguelonne Bessagnet, Marie-Noelle Schopfel, Joachim Chaudiron, Stephane Jacquemin, Bernard Lacayrelle, Annig Roche, Mathieu Sallaberry, Christian Tonneau, Jean Philippe BA Declerck, T BF Declerck, T BE Calzolari, N Choukri, K Cieri, C Hasida, K Isahara, H Maegaard, B Mariani, J Moreno, A Odijk, J Piperidis, S Tokunaga, T Goggi, S Mazo, H TI Automatic Identification of Research Fields in Scientific Papers SO PROCEEDINGS OF THE ELEVENTH INTERNATIONAL CONFERENCE ON LANGUAGE RESOURCES AND EVALUATION (LREC 2018) LA English DT Proceedings Paper CT 11th International Conference on Language Resources and Evaluation (LREC) CY MAY 07-12, 2018 CL Miyazaki, JAPAN DE text mining; natural language processing; geographical information retrieval; scientometrics; document analysis AB The TERRE-ISTEX project aims to identify scientific research dealing with specific geographical territories areas based on heterogeneous digital content available in scientific papers. The project is divided into three main work packages: (1) identification of the periods and places of empirical studies, and which reflect the publications resulting from the analyzed text samples, (2) identification of the themes which appear in these documents, and (3) development of a web-based geographical information retrieval tool (GIR). The first two actions combine Natural Language Processing patterns with text mining methods. The integration of the spatial, thematic and temporal dimensions in a GIR contributes to a better understanding of what kind of research has been carried out, of its topics and its geographical and historical coverage. Another originality of the TERRE-ISTEX project is the heterogeneous character of the corpus, including PhD theses and scientific articles from the ISTEX digital libraries and the CIRAD research center. C1 [Kergosien, Eric; Schopfel, Joachim; Chaudiron, Stephane; Jacquemin, Bernard] Univ Lille, GERiiCO, EA 4073, F-59000 Lille, France. [Bessagnet, Marie-Noelle; Lacayrelle, Annig; Sallaberry, Christian] Univ Pau & Pays Adour, LIUPPA, Pau, France. [Teisseire, Maguelonne; Roche, Mathieu; Tonneau, Jean Philippe] Univ Montpellier, TETIS, APT, Cirad,CNRS,Irstea, Montpellier, France. [Roche, Mathieu; Tonneau, Jean Philippe] Cirad, Montpellier, France. [Farvardin, Amin] Univ Paris 09, LAMSADE, Paris, France. [Schopfel, Joachim] ANRT, Lille, France. C3 Universite de Lille; Universite de Pau et des Pays de l'Adour; Universite de Montpellier; Centre National de la Recherche Scientifique (CNRS); CIRAD; INRAE; AgroParisTech; CIRAD; Universite PSL; Universite Paris-Dauphine RP Kergosien, E (corresponding author), Univ Lille, GERiiCO, EA 4073, F-59000 Lille, France. EM eric.kergosien@univ-lille.fr; MohammadAmin.Farvardin@dauphine.eu; maguelonne.teisseire@teledetection.fr; marie-noelle.bessagnet@univ-pau.fr; joachim.schopfel@univ-lille.fr; stephane.chaudiron@univ-lille.fr; bernard.jacquemin@univ-lille.fr; annig.lacayrelle@univ-pau.fr; mathieu.roche@teledetection.fr; christian.sallaberry@univ-pau.fr; jean.tonneau@teledetection.fr RI Jacquemin, Bernard/D-9532-2016 OI Jacquemin, Bernard/0000-0001-9274-7424 FU ISTEX; SONGES project (Occitanie Fund); SONGES project (European Regional Development Fund); DYNAMITEF project (CNES) FX This work is funded by ISTEX (https://www.istex.fr/), SONGES project (Occitanie and European Regional Development Funds), and DYNAMITEF project (CNES). CR [Anonymous], 2013, P 7 INT WORKSH SEM E [Anonymous], 2013, P 3 INT C WEB INT MI KERGOSIEN E, 2015, P 7 INT C KNOWL DISC, P301 Lossio-Ventura JA, 2016, INFORM RETRIEVAL J, V19, P59, DOI 10.1007/s10791-015-9262-2 Maurer D, 2011, TRAIT AUTOM LANG, V52, P69 Moriceau V, 2014, LREC 2014 - NINTH INTERNATIONAL CONFERENCE ON LANGUAGE RESOURCES AND EVALUATION, P3239 Pustejovsky James., 2017, Handbook of Linguistic Annotation, P989, DOI DOI 10.1007/978-94-024-0881-237 Rajbhandari S, 2012, J INTEGR AGR, V11, P694, DOI 10.1016/S2095-3119(12)60058-6 Sallaberry C., 2009, The Geospatial Web, P93 Strötgen J, 2013, LANG RESOUR EVAL, V47, P269, DOI 10.1007/s10579-012-9179-y NR 10 TC 1 Z9 1 U1 0 U2 0 PU EUROPEAN LANGUAGE RESOURCES ASSOC-ELRA PI PARIS PA 55-57, RUE BRILLAT-SAVARIN, PARIS, 75013, FRANCE BN 979-10-95546-00-9 PY 2018 BP 1902 EP 1907 PG 6 WC Computer Science, Interdisciplinary Applications; Linguistics; Language & Linguistics WE Conference Proceedings Citation Index - Science (CPCI-S); Conference Proceedings Citation Index - Social Science & Humanities (CPCI-SSH) SC Computer Science; Linguistics GA BS5BI UT WOS:000725545001152 DA 2024-09-05 ER PT J AU Xue, Y AF Xue, Yi TI Towards automated writing evaluation: A comprehensive review with bibliometric, scientometric, and meta-analytic approaches SO EDUCATION AND INFORMATION TECHNOLOGIES LA English DT Article; Early Access DE Natural language processing; Automated writing evaluation; Self-set corpus; Writing proficiency; Moderator effects ID WRITTEN CORRECTIVE FEEDBACK; FOREIGN-LANGUAGE; SYNTACTIC COMPLEXITY; STUDENTS; IMPACT; EFFICIENCY; EVOLUTION; ACCURACY; ENGLISH; INDEXES AB The new era of generative artificial intelligence has sparked the blossoming academic fireworks in the realm of education and information technologies. Driven by natural language processing (NLP), automated writing evaluation (AWE) tools become a ubiquitous practice in intelligent computer-assisted language learning (CALL) environments. Based on the self-set corpus of the plain text file encompassing 1524 documents from the Web of Science core collection, the current study adopts quantitative and qualitative methods and integrates bibliometric, scientometric, and meta-analytic approaches aiming to comprehensively review automated writing evaluation (AWE) over fifteen years from 2008 to 2023. Feedback literacy is the theoretical framework of automated written corrective feedback (AWCF). Through VOSviewer, this study bibliographically visualized AWE-relevant keywords, documents, authors, organizations, and regions at a macro level. Science mapping analysis (SMA), mapping knowledge domain (MKD), and author co-citation analysis (ACA) are the theoretical foundations of visualization on VOSviewer. Through Stata/SE 16 and SPSS 29, this study meta-analytically investigated moderator effects of various AWE tools, feedback types, intervention duration, target language learners, educational levels, genres of writing, regions, document types, and publication year at a micro level. It is concluded that AWE tools could facilitate writing proficiency at a statistical significance level (SMD = 0.422, p < 0.001) based on 29 experimental studies. The findings illuminate future research directions and provide heuristic implications for practitioners, researchers, and AWE technology developers. C1 [Xue, Yi] Beijing Language & Culture Univ, Fac Foreign Studies, 15 Xueyuan Rd, Beijing 100083, Peoples R China. C3 Beijing Language & Culture University RP Xue, Y (corresponding author), Beijing Language & Culture Univ, Fac Foreign Studies, 15 Xueyuan Rd, Beijing 100083, Peoples R China. EM 3252393470@qq.com RI Yi, Xue/JRY-7660-2023 OI Yi, Xue/0009-0003-8573-0845 FU Beijing Language and Culture University FX The author would like to extend her heartfelt gratitude to anonymous reviewers and editors. The author sincerely appreciates the constructive and thorough feedback provided by editors and reviewers. The author sincerely appreciates Doctor Zhang Qi, Professor Liu Linjun, Professor Zhu Erqian, Professor Xu Hongchen, beloved family, kind friends, and Beijing Language and Culture University. The process of writing academic articles is not only a self-actualization, but also a panacea. CR Al-Mofti K., 2020, Journal of College of Education for Women, V31, P1, DOI [10.36231/coeduw/vol31no3.12, DOI 10.36231/COEDUW/VOL31NO3.12] Aluthman ES, 2016, INT J ENGL LINGUIST, V6, P54, DOI 10.5539/ijel.v6n5p54 [Anonymous], 2006, Educational Researcher, V35, P33, DOI [10.3102/0013189X035006033, DOI 10.3102/0013189X035006033] Aria M, 2017, J INFORMETR, V11, P959, DOI 10.1016/j.joi.2017.08.007 Bai LF, 2017, EDUC PSYCHOL-UK, V37, P67, DOI 10.1080/01443410.2016.1223275 Barrot JS, 2024, EDUC INF TECHNOL, V29, P7155, DOI 10.1007/s10639-023-12083-y Barrot JS, 2023, COMPUT ASSIST LANG L, V36, P584, DOI 10.1080/09588221.2021.1936071 Bayes T., 1763, Philos. Trans. R. Soc. Lond, V53, P157, DOI [10.1098/rstl.1763.0053, DOI 10.1098/RSTL.1763.0053] Bennett R. E., 2015, Technology and testing: Improving educational and psychological measurement, P142, DOI DOI 10.4324/9781315871493-8 Borenstein M., 2009, Introduction to meta-analysis, DOI [10.1002/9780470743386, DOI 10.1002/9780470743386] Brown D, 2023, LANG TEACH RES, DOI 10.1177/13621688221147374 Bu Y, 2016, SCIENTOMETRICS, V108, P143, DOI 10.1007/s11192-016-1959-5 Carless D, 2023, TEACH HIGH EDUC, V28, P150, DOI 10.1080/13562517.2020.1782372 Carless D, 2018, ASSESS EVAL HIGH EDU, V43, P1315, DOI 10.1080/02602938.2018.1463354 Chang CY, 2021, COMPUT EDUC, V164, DOI 10.1016/j.compedu.2020.104123 Cheng G, 2022, INTERACT LEARN ENVIR, V30, P353, DOI 10.1080/10494820.2019.1655769 Cheng G, 2017, INTERNET HIGH EDUC, V34, P18, DOI 10.1016/j.iheduc.2017.04.002 Chew CS, 2019, J COMPUT ASSIST LEAR, V35, P435, DOI 10.1111/jcal.12349 COCHRAN WG, 1954, BIOMETRICS, V10, P417, DOI 10.2307/3001616 Cohen J., 1977, STAT POWER ANAL BEHA Cooper H., 2017, Research Synthesis and Meta-Analysis: A Step-by-Step Approach, V5th, DOI DOI 10.4135/9781071878644 Debray TPA, 2018, RES SYNTH METHODS, V9, P41, DOI 10.1002/jrsm.1266 Ding LQ, 2024, EDUC INF TECHNOL, DOI 10.1007/s10639-023-12402-3 Dong Z, 2023, ASSESS EVAL HIGH EDU, V48, P1103, DOI 10.1080/02602938.2023.2175781 Egger M, 1997, BMJ-BRIT MED J, V315, P629, DOI 10.1136/bmj.315.7109.629 Ellis R, 2009, ELT J, V63, P97, DOI 10.1093/elt/ccn023 Ellis R, 2008, SYSTEM, V36, P353, DOI 10.1016/j.system.2008.02.001 Elola I, 2010, LANG LEARN TECHNOL, V14, P51 Escalante J, 2023, INT J EDUC TECHNOL H, V20, DOI 10.1186/s41239-023-00425-2 Fan N, 2023, SAGE OPEN, V13, DOI 10.1177/21582440231181296 Fleckenstein J, 2023, FRONT ARTIF INTELL, V6, DOI 10.3389/frai.2023.1162454 Frost K. L., 2009, The effects of automated essay scoring as a high school classroom intervention Fu QK, 2024, COMPUT ASSIST LANG L, V37, P179, DOI 10.1080/09588221.2022.2033787 Gao JW, 2022, LANG TEACH RES, V26, P986, DOI 10.1177/1362168820915337 Gao JW, 2019, LANG LEARN TECHNOL, V23, P65 Grimes D., 2010, The Journal of Technology, Learning, and Assessment, V8 Han T, 2024, COMPUT ASSIST LANG L, V37, P961, DOI 10.1080/09588221.2022.2067179 Han YX, 2021, FRONT PSYCHOL, V12, DOI 10.3389/fpsyg.2021.752793 Haque M, 2023, EDUC INF TECHNOL, V28, P13841, DOI 10.1007/s10639-023-11744-2 Harrer M., 2021, Doing Meta-Analysis With R: A HandsOn Guide, DOI [10.1201/9781003107347, DOI 10.1201/9781003107347] Hassanzadeh M, 2021, J COMPUT ASSIST LEAR, V37, P1494, DOI 10.1111/jcal.12587 Hedges L. V., 2014, Statistical methods for meta-analysis Heift T, 2017, ESL APPL LINGUIST, P51 Heigham J., 2009, Qualitative research in applied linguistics: A practical introduction, DOI DOI 10.1057/9780230239517 Higgins J, 2008, Cochrane handbook for systematic reviews of interventions Higgins JPT, 2003, BMJ-BRIT MED J, V327, P557, DOI 10.1136/bmj.327.7414.557 Higgins JPT, 2002, STAT MED, V21, P1539, DOI 10.1002/sim.1186 Ho R., 2013, Handbook of univariate and multivariate data analysis with IBM SPSS, VSecond, DOI [DOI 10.1201/B15605, 10.1201/b15605.] Hockly N, 2019, ELT J, V73, P82, DOI 10.1093/elt/ccy044 Hou JH, 2017, SCIENTOMETRICS, V110, P1437, DOI 10.1007/s11192-016-2206-9 Huang S, 2020, INNOV LANG LEARN TEA, V14, P15, DOI 10.1080/17501229.2018.1471083 Huawei S, 2023, EDUC INF TECHNOL, V28, P771, DOI 10.1007/s10639-022-11200-7 Hyland Ken., 1990, RELC J, V21, P66, DOI [10.1177/003368829002100105, DOI 10.1177/003368829002100105] Hyland K, 2019, CAM APPL L, P1 Jacobs HL., 1981, Testing ESL composition: A practical approach, P01969 Johri P., 2021, Lecture notes in networks and systems, V167, DOI [10.1007/978, DOI 10.1007/978] Karim K, 2020, LANG TEACH RES, V24, P519, DOI 10.1177/1362168818802469 Ke M., 2013, English Language Teaching, V6, P158, DOI DOI 10.5539/ELT.V6N7P158 Knapp G, 2003, STAT MED, V22, P2693, DOI 10.1002/sim.1482 Koltovskaia S, 2020, ASSESS WRIT, V44, DOI 10.1016/j.asw.2020.100450 Krishna K, 2023, Arxiv, DOI arXiv:2303.13408 Kyle K, 2015, TESOL QUART, V49, P757, DOI 10.1002/tesq.194 Lachner A., 2017, Journal of Experimental Psychology: Applied, DOI [10.1037/xap000011, DOI 10.1037/XAP000011] Lai YH, 2010, BRIT J EDUC TECHNOL, V41, P432, DOI 10.1111/j.1467-8535.2009.00959.x Laird AR, 2005, NEUROINFORMATICS, V3, P65, DOI 10.1385/NI:3:1:065 Larivière S, 2023, NEUROIMAGE, V266, DOI 10.1016/j.neuroimage.2022.119807 Lauriola I, 2022, NEUROCOMPUTING, V470, P443, DOI 10.1016/j.neucom.2021.05.103 Lee C, 2009, COMPUT ASSIST LANG L, V22, P57, DOI 10.1080/09588220802613807 Li JR, 2015, J SECOND LANG WRIT, V27, P1, DOI 10.1016/j.jslw.2014.10.004 Li R, 2023, BRIT J EDUC TECHNOL, V54, P773, DOI 10.1111/bjet.13294 Li SF, 2019, J SECOND LANG WRIT, V45, P1, DOI 10.1016/j.jslw.2019.03.003 Liao HC, 2016, ELT J, V70, P308, DOI 10.1093/elt/ccv058 Lin JJ, 2019, COMPUT ASSIST LANG L, V32, P878, DOI 10.1080/09588221.2018.1541359 Liu CC, 2023, INTERACT LEARN ENVIR, V31, P5614, DOI 10.1080/10494820.2021.2012812 Liu QD, 2015, J SECOND LANG WRIT, V30, P66, DOI 10.1016/j.jslw.2015.08.011 Lozano S, 2019, SCIENTOMETRICS, V120, P609, DOI 10.1007/s11192-019-03132-w Lu XF, 2011, TESOL QUART, V45, P36, DOI 10.5054/tq.2011.240859 Lu XF, 2010, INT J CORPUS LINGUIS, V15, P474, DOI 10.1075/ijcl.15.4.02lu Maley A, 2011, ELT J, V65, P192, DOI 10.1093/elt/ccr007 Masoumi S, 2022, BMC MED RES METHODOL, V22, DOI 10.1186/s12874-022-01673-y Matsuura K., 2023, Bayesian Statistical Modeling with Stan, R, and Python MCCAIN KW, 1990, J AM SOC INFORM SCI, V41, P433, DOI 10.1002/(SICI)1097-4571(199009)41:6<433::AID-ASI11>3.0.CO;2-Q Mohsen MA, 2024, INNOV LANG LEARN TEA, V18, P109, DOI 10.1080/17501229.2023.2236084 Mohsen MA, 2022, J EDUC COMPUT RES, V60, P1253, DOI 10.1177/07356331211064066 Molloy E, 2020, ASSESS EVAL HIGH EDU, V45, P527, DOI 10.1080/02602938.2019.1667955 Morphy P, 2012, READ WRIT, V25, P641, DOI 10.1007/s11145-010-9292-5 Mulchenko Z. M., 1971, Proc. Natl. Acad.Sci. USA, V405, P210 Ngo TTN, 2024, INTERACT LEARN ENVIR, V32, P727, DOI 10.1080/10494820.2022.2096642 Nunes A, 2022, J COMPUT ASSIST LEAR, V38, P599, DOI 10.1111/jcal.12635 O'Brien S, 2018, MACH TRANS TECH APPL, V1, P237, DOI 10.1007/978-3-319-91241-7_11 Palmer TomM., 2016, Meta-Analysis in Stata: An Updated Collection from the Stata Journal Pekrun R, 2014, LEARN INSTR, V29, P115, DOI 10.1016/j.learninstruc.2013.09.002 PRITCHARD A, 1969, J DOC, V25, P348 Rad HS, 2023, INTERACT LEARN ENVIR, DOI 10.1080/10494820.2023.2208170 Ranalli J, 2018, COMPUT ASSIST LANG L, V31, P653, DOI 10.1080/09588221.2018.1428994 Ranalli J, 2018, ASSESS WRIT, V36, P77, DOI 10.1016/j.asw.2018.03.007 Rassaei E, 2023, LANG TEACH RES, DOI 10.1177/13621688231195141 Rich CS, 2012, CHIN J APPL LINGUIST, V35, P63, DOI 10.1515/cjal-2012-0006 Richards J C., 2013, Longman dictionary of language teaching and applied linguistics, V4th, DOI [DOI 10.4324/9781315833835, https://doi.org/10.4324/9781315833835] Salo T., 2023, APERTURE NEURO, V3, P1, DOI [10.52294/001c.87681, DOI 10.52294/001C.87681] Schmidt F.L., 2014, METHODS META ANAL CO, V3rd, DOI DOI 10.4135/9781483398105 Sen S., 2022, Psych, V4, P640, DOI DOI 10.3390/PSYCH4040049 Sherafati N, 2020, EDUC INF TECHNOL, V25, P4591, DOI 10.1007/s10639-020-10177-5 Shintani N, 2017, STUD SECOND LANG ACQ, V39, P129, DOI 10.1017/S0272263116000127 Shintani N, 2016, MOD LANG J, V100, P296, DOI 10.1111/modl.12317 Shintani N, 2014, LANG LEARN, V64, P103, DOI 10.1111/lang.12029 Sidik K, 2002, STAT MED, V21, P3153, DOI 10.1002/sim.1262 Soava G, 2018, TECHNOL ECON DEV ECO, V24, P914, DOI 10.3846/tede.2018.1426 Stamatatos E, 2009, J AM SOC INF SCI TEC, V60, P538, DOI 10.1002/asi.21001 Stevenson M, 2014, ASSESS WRIT, V19, P51, DOI 10.1016/j.asw.2013.11.007 Sun B, 2022, STUD EDUC EVAL, V72, DOI 10.1016/j.stueduc.2021.101123 Tang J., 2017, JALT CALL Journal, V13, P117 Teakel S, 2024, ASSESS EVAL HIGH EDU, V49, P320, DOI 10.1080/02602938.2023.2232955 Truscott J, 1996, LANG LEARN, V46, P327, DOI 10.1111/j.1467-1770.1996.tb01238.x Valverde S, 2017, NEUROIMAGE, V155, P159, DOI 10.1016/j.neuroimage.2017.04.034 van Eck NJ, 2017, SCIENTOMETRICS, V111, P1053, DOI 10.1007/s11192-017-2300-7 van Eck NJ, 2010, SCIENTOMETRICS, V84, P523, DOI 10.1007/s11192-009-0146-3 Van Eck NJ., 2023, VOSviewer Manual. Manual for VOSviewer version 1.6.20 Venables L, 2009, MOTIV EMOTION, V33, P63, DOI 10.1007/s11031-008-9116-y Viechtbauer W, 2005, J EDUC BEHAV STAT, V30, P261, DOI 10.3102/10769986030003261 Waer H, 2023, INNOV LANG LEARN TEA, V17, P47, DOI 10.1080/17501229.2021.1914062 Wang J., 2019, Theory and Practice in Language Studies, V9, P1555, DOI [10.17507/tpls.0912.12, DOI 10.17507/TPLS.0912.12] Wang YJ, 2013, COMPUT ASSIST LANG L, V26, P234, DOI 10.1080/09588221.2012.655300 Wilson J, 2020, J EDUC COMPUT RES, V58, P87, DOI 10.1177/0735633119830764 Yarkoni T, 2011, NAT METHODS, V8, P665, DOI [10.1038/NMETH.1635, 10.1038/nmeth.1635] Yu Q, 2024, EDUC INF TECHNOL, V29, P4055, DOI 10.1007/s10639-023-11977-1 Yu SL, 2021, ASSESS WRIT, V48, DOI 10.1016/j.asw.2021.100525 Yu SL, 2020, J SECOND LANG WRIT, V48, DOI 10.1016/j.jslw.2020.100728 Zhai N, 2023, J EDUC COMPUT RES, V61, P875, DOI 10.1177/07356331221127300 Zhai N, 2022, COMPUT ASSIST LANG L, V35, P2817, DOI 10.1080/09588221.2021.1897019 Zhang Q., 2014, International Journal of English Language Teaching, V1, P35, DOI [10.5430/ijelt.v1n2p35, DOI 10.5430/IJELT.V1N2P35] Zhang Q, 2024, EDUC INF TECHNOL, DOI 10.1007/s10639-024-12538-w Zhang Z, 2023, COMPUT ASSIST LANG L, DOI 10.1080/09588221.2023.2256815 Zhang Z, 2020, ASSESS WRIT, V43, P78, DOI 10.1016/j.asw.2019.100439 NR 134 TC 2 Z9 2 U1 42 U2 42 PU SPRINGER PI NEW YORK PA ONE NEW YORK PLAZA, SUITE 4600, NEW YORK, NY, UNITED STATES SN 1360-2357 EI 1573-7608 J9 EDUC INF TECHNOL JI Educ. Inf. Technol. PD 2024 MAR 23 PY 2024 DI 10.1007/s10639-024-12596-0 EA MAR 2024 PG 42 WC Education & Educational Research WE Social Science Citation Index (SSCI) SC Education & Educational Research GA LY1G5 UT WOS:001190274400002 DA 2024-09-05 ER PT C AU Drago, C Hoxhalli, G AF Drago, Carlo Hoxhalli, Gentian BE Schiuma, G TI Bibliometric Big Data Analysis in Economics SO 15TH INTERNATIONAL FORUM ON KNOWLEDGE ASSET DYNAMICS (IFKAD 2020): KNOWLEDGE IN DIGITAL AGE SE Proceedings IFKAD LA English DT Proceedings Paper CT 15th International Forum on Knowledge Asset Dynamics (IFKAD) - Knowledge in Digital Age CY SEP 09-11, 2020 CL ELECTR NETWORK DE Bibliometric Analysis; Big Data; Symbolic Data Analysis; Regression Discontinuity; Causal Inference ID NETWORKS; SCIENCE AB Over the last years there has been a relevant increase of large scale data. "Volume", Velocity", "Variety", "Veracity" and, more importantly today, "Value" are the dimensions that characterize Big Data. Big data are increasingly important in the real world. In this paper, we deal with bibliometric datasets which represent relevant information and value for applications, usually difficult to identify. In economic analyses, bibliographic networks are useful to represent the data and provide relevant insights on research findings. In this work we will propose to apply a framework based on symbolic data and, in particular, one based on data-based symbolic observation interval which represent relevant patterns and information from complex data. These results are important because they consider a relevant case of complex information which is transformed into a representation useful to be analysed as network data. From these network representations of the information (considering a co-occurrence network from the relevant concepts of the studied literature of "regression discontinuity") we are able to identify the most relevant patterns in data, as "communities" of concepts maximally connected to each other. From the communities we are able to represent the semantic cores of the literature. C1 [Drago, Carlo; Hoxhalli, Gentian] Univ Niccolo Cusano, Via Don Carlo Gnocchi 3, I-00166 Rome, Italy. [Drago, Carlo] NCI Univ, Northern & Shell Tower,4 Selsdon Way, London E14 9GL, England. [Hoxhalli, Gentian] Luarasi Univ, Rruga Dritan Hoxha 127-1, Tirana, Albania. C3 Niccolo Cusano Online University RP Drago, C (corresponding author), Univ Niccolo Cusano, Via Don Carlo Gnocchi 3, I-00166 Rome, Italy.; Drago, C (corresponding author), NCI Univ, Northern & Shell Tower,4 Selsdon Way, London E14 9GL, England. RI Drago, Carlo/Y-3357-2019 OI Drago, Carlo/0000-0002-3920-0267 CR Aguero C, 2019, RSDA R SYMBOLIC DATA [Anonymous], 2001, HDB PERFORMANCE MEAS Aria M, 2017, J INFORMETR, V11, P959, DOI 10.1016/j.joi.2017.08.007 Ball R., 2017, An Introduction to Bibliometrics: New Development and Trends BARNEY J, 1991, J MANAGE, V17, P99, DOI 10.1177/014920639101700108 Bello-Orgaz G, 2016, INFORM FUSION, V28, P45, DOI 10.1016/j.inffus.2015.08.005 Billard L, 2003, J AM STAT ASSOC, V98, P470, DOI 10.1198/016214503000242 Chen M, 2014, MOBILE NETW APPL, V19, P171, DOI 10.1007/s11036-013-0489-0 Davenport T.H., 1998, Working Knowledge: How Organizations Manage What They Know, DOI DOI 10.1109/EMR.2003.1267012 Drago C., 2017, MCA BASED COMMUNITY Drago C, 2015, ANN MEMOTEF, V2016 Drago C., 2019, NEW STAT DEV DATA SC Fortunato S, 2010, PHYS REP, V486, P75, DOI 10.1016/j.physrep.2009.11.002 Gandomi A, 2015, INT J INFORM MANAGE, V35, P137, DOI 10.1016/j.ijinfomgt.2014.10.007 GARFIELD E, 1955, SCIENCE, V122, P108, DOI 10.1126/science.122.3159.108 Hadi H J, 2015, INT J ADV ELECT COMP, V2 Halevi G., 2014, SEM BIBL AC SIGL 21 Hanneman RobertA., 2011, SAGE HDB SOCIAL NETW, P364 Harle C., 2016, Journal of Health Administration Education, V33, P285 Hirsch JE, 2005, P NATL ACAD SCI USA, V102, P16569, DOI 10.1073/pnas.0507655102 Huang Y, 2015, SCIENTOMETRICS, V105, P2005, DOI 10.1007/s11192-015-1638-y Kitchin R, 2014, GEOJOURNAL, V79, P1, DOI 10.1007/s10708-013-9516-8 Mingers J, 2015, EUR J OPER RES, V246, P1, DOI 10.1016/j.ejor.2015.04.002 Moed H. F., 2014, OECD WORKSH PAR 25 M Nepusz T, 2006, InterJournal Comp. Syst., VComplex Systems, P1695 Newman M.E., 2008, The New Palgrave Encyclopedia of Economics, V2, P1, DOI DOI 10.1057/978-1-349-95121-52565-1 Pons P, 2005, LECT NOTES COMPUT SC, V3733, P284 PRICE DJD, 1965, SCIENCE, V149, P510 Wasserman S., 1994, SOCIAL NETWORK ANAL, V8 White H., 2017, IMPACT EVALUATION DE NR 30 TC 0 Z9 0 U1 0 U2 3 PU IKAM-INST KNOWLEDGE ASSET MANAGEMENT PI MATERA PA VIA D SCHIAVONE 1, MATERA, MT 75100, ITALY SN 2280-787X BN 978-88-96687-13-0 J9 PR IFKAD PY 2020 BP 148 EP 155 PG 8 WC Business; Computer Science, Interdisciplinary Applications; Information Science & Library Science; Management; Operations Research & Management Science WE Conference Proceedings Citation Index - Science (CPCI-S); Conference Proceedings Citation Index - Social Science & Humanities (CPCI-SSH) SC Business & Economics; Computer Science; Information Science & Library Science; Operations Research & Management Science GA BS4CI UT WOS:000717224200010 DA 2024-09-05 ER PT J AU Chen, C Du, GL Tong, DN Lv, GD Lv, XY Si, RM Tang, J Li, HY Ma, HB Mo, JQ AF Chen, Cheng Du, Guoli Tong, Dongni Lv, Guodong Lv, Xiaoyi Si, Rumeng Tang, Jun Li, Hongyi Ma, Hongbing Mo, Jiaqing TI Exploration research on the fusion of multimodal spectrum technology to improve performance of rapid diagnosis scheme for thyroid dysfunction SO JOURNAL OF BIOPHOTONICS LA English DT Article DE PCA; serum; spectral fusion; SVM; thyroid dysfunction ID RAMAN-SPECTROSCOPY AB The spectral fusion by Raman spectroscopy and Fourier infrared spectroscopy combined with pattern recognition algorithms is utilized to diagnose thyroid dysfunction serum, and finds the spectral segment with the highest sensitivity to further advance diagnosis speed. Compared with the single infrared spectroscopy or Raman spectroscopy, the proposal can improve the detection accuracy, and can obtain more spectral features, indicating greater differences between thyroid dysfunction and normal serum samples. For discriminating different samples, principal component analysis (PCA) was first used for feature extraction to reduce the dimension of high-dimension spectral data and spectral fusion. Then, support vector machine (SVM), back propagation neural network, extreme learning machine and learning vector quantization algorithms were employed to establish the discriminant diagnostic models. The accuracy of spectral fusion of the best analytical model PCA-SVM, single Raman spectral accuracy and single infrared spectral accuracy is 83.48%, 78.26% and 80%, respectively. The accuracy of spectral fusion is higher than the accuracy of single spectrum in five classifiers. And the diagnostic accuracy of spectral fusion in the range of 2000 to 2500cm(-1) is 81.74%, which greatly improves the sample measure speed and data analysis speed than analysis of full spectra. The results from our study demonstrate that the serum spectral fusion technique combined with multivariate statistical methods have great potential for the screening of thyroid dysfunction. C1 [Chen, Cheng; Lv, Xiaoyi; Si, Rumeng; Mo, Jiaqing] Xinjiang Univ, Coll Informat Sci & Engn, Urumqi 830046, Xinjiang, Peoples R China. [Du, Guoli; Tong, Dongni] Xinjiang Med Univ, Affiliated Hosp 1, Urumqi, Peoples R China. [Lv, Guodong] Xinjiang Med Univ, Affiliated Hosp 1, State Key Lab Pathogenesis Prevent & Treatment Ce, Urumqi, Peoples R China. [Tang, Jun] Xinjiang Univ, Phys & Chem Detecting Ctr, Urumqi 830046, Xinjiang, Peoples R China. [Li, Hongyi] Qual Prod Supervis & Inspect Inst, Urumqi, Peoples R China. [Ma, Hongbing] Tsinghua Univ, Dept Elect Engn, Beijing, Peoples R China. C3 Xinjiang University; Xinjiang Medical University; Xinjiang Medical University; Xinjiang University; Tsinghua University RP Lv, XY (corresponding author), Xinjiang Univ, Coll Informat Sci & Engn, Urumqi 830046, Xinjiang, Peoples R China.; Tang, J (corresponding author), Xinjiang Univ, Phys & Chem Detecting Ctr, Urumqi 830046, Xinjiang, Peoples R China. EM xiaoz813@163.com; tangjunwq@163.com RI ARSLAN, Okan/AAA-3232-2020 OI Chen, Cheng/0000-0002-6739-1937 FU National Science Foundation of China [61765014]; Urumqi Science and Technology Project [P161310002] FX the National Science Foundation of China, Grant/Award Number: 61765014; the Urumqi Science and Technology Project, Grant/Award Number: P161310002 CR Antonelli A, 2015, AUTOIMMUN REV, V14, P174, DOI 10.1016/j.autrev.2014.10.016 Chang CC, 2011, ACM T INTEL SYST TEC, V2, DOI 10.1145/1961189.1961199 Hands JR, 2016, J NEURO-ONCOL, V127, P463, DOI 10.1007/s11060-016-2060-x Hunter R, 2018, J RAMAN SPECTROSC, V49, P1435, DOI 10.1002/jrs.5410 Khan S, 2016, BIOMED OPT EXPRESS, V7, P2249, DOI 10.1364/BOE.7.002249 Kim W, 2018, BIOSENS BIOELECTRON, V111, P59, DOI 10.1016/j.bios.2018.04.003 Li S, 2014, APPL PHYS LETT, V105, DOI 10.1063/1.4900758 Li XZ, 2016, J RAMAN SPECTROSC, V47, P917, DOI 10.1002/jrs.4924 Li Y, 2018, SCI REP-UK, V8, DOI 10.1038/s41598-017-19131-x Lin SW, 2008, EXPERT SYST APPL, V35, P1817, DOI 10.1016/j.eswa.2007.08.088 Luo SW, 2013, J BIOMED OPT, V18, DOI 10.1117/1.JBO.18.6.067004 Mehta K, 2018, ANALYST, V143, P1916, DOI 10.1039/c8an00224j Movasaghi Z, 2007, APPL SPECTROSC REV, V42, P493, DOI 10.1080/05704920701551530 Rieben C, 2016, J CLIN ENDOCR METAB, V101, P4945, DOI 10.1210/jc.2016-2129 Silvestri M, 2013, ANAL CHIM ACTA, V769, P1, DOI 10.1016/j.aca.2013.01.024 Singh R, 2014, INFORM FUSION, V19, P49, DOI 10.1016/j.inffus.2012.09.005 Sitole L, 2014, OMICS, V18, P513, DOI 10.1089/omi.2013.0157 Tian DY, 2018, LASER PHYS LETT, V15, DOI 10.1088/1612-202X/aa981e Vargas-Obieta E, 2016, LASER MED SCI, V31, P1317, DOI 10.1007/s10103-016-1976-x Zheng X., 2018, IEEE PHOTON J, V10, P1, DOI DOI 10.1109/ Zheng XX, 2018, LASER PHYS LETT, V15, DOI 10.1088/1612-202X/aac29f NR 21 TC 40 Z9 40 U1 3 U2 133 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA POSTFACH 101161, 69451 WEINHEIM, GERMANY SN 1864-063X EI 1864-0648 J9 J BIOPHOTONICS JI J. Biophotonics PD FEB PY 2020 VL 13 IS 2 AR e201900099 DI 10.1002/jbio.201900099 EA NOV 2019 PG 9 WC Biochemical Research Methods; Biophysics; Optics WE Science Citation Index Expanded (SCI-EXPANDED) SC Biochemistry & Molecular Biology; Biophysics; Optics GA KM1BB UT WOS:000497056500001 PM 31593625 DA 2024-09-05 ER PT J AU Yik, BJ Dood, AJ AF Yik, Brandon J. Dood, Amber J. TI ChatGPT Convincingly Explains Organic Chemistry Reaction Mechanisms Slightly Inaccurately with High Levels of Explanation Sophistication SO JOURNAL OF CHEMICAL EDUCATION LA English DT Article DE Second-Year Undergraduate; Upper-DivisionUndergraduate; Organic Chemistry; Testing and Assessment; Mechanistic Reasoning; Generative Artificial Intelligence; Chemistry Education Research ID FEATURES; MODES AB The chemistry education research community values and emphasizes the role of constructing explanations and mechanistic reasoning to support students' learning of organic chemistry. Emerging large language model (LLM) and generative artificial intelligence (GAI) technologies are uniquely equipped to advance the teaching and learning of chemistry. GAI-based chatbots, such as ChatGPT, have the potential to help students learn mechanistic reasoning through their generated responses. This study investigates the extent to which 255 ChatGPT-generated responses are accurate explanations of 85 different reaction mechanisms and exhibit mechanistic reasoning as categorized by the levels of explanation sophistication framework. The study also explores the effects of prompt engineering on mechanism accuracy and explanation sophistication through three types of prompt cueing. Study findings show that (1) a quarter of responses are fully accurate explanations of reaction mechanisms and the majority contain predominantly accurate explanations of chemical phenomena and identification of nucleophiles and electrophiles, (2) responses exhibit high levels of explanation sophistication, and (3) prompt engineering plays a significant role in eliciting high levels of explanation sophistication but not mechanism description accuracy. Results are situated in mechanistic reasoning and prompt engineering frameworks with a focus on how these new technologies can be integrated into the chemistry classroom. C1 [Yik, Brandon J.] Univ Virginia, Dept Chem, Charlottesville, VA 22904 USA. [Dood, Amber J.] Univ Michigan, Dept Chem, Ann Arbor, MI 48109 USA. C3 University of Virginia; University of Michigan System; University of Michigan RP Yik, BJ (corresponding author), Univ Virginia, Dept Chem, Charlottesville, VA 22904 USA. EM byik@virginia.edu RI Yik, Brandon/AAS-6477-2021 OI Yik, Brandon/0000-0001-8124-8451; Dood, Amber/0000-0003-4572-1402 CR Adamopoulou E, 2020, MACH LEARN APPL, V2, DOI 10.1016/j.mlwa.2020.100006 Alasadi EA, 2023, J CHEM EDUC, V100, P2965, DOI 10.1021/acs.jchemed.3c00323 [Anonymous], 2022, arXiv [Anonymous], 2023, PERPLEXITYAI [Anonymous], 2020, arXiv [Anonymous], 2023, Gemini Bodé NE, 2019, J CHEM EDUC, V96, P1068, DOI 10.1021/acs.jchemed.8b00719 Bongers A, 2020, CHEM EDUC RES PRACT, V21, P496, DOI 10.1039/c9rp00198k Caspari I, 2018, CHEM EDUC RES PRACT, V19, P1117, DOI 10.1039/c8rp00131f Caspari I, 2018, CHEM EDUC RES PRACT, V19, P42, DOI 10.1039/c7rp00124j Christian K, 2012, CHEM EDUC RES PRACT, V13, P286, DOI 10.1039/c2rp20010d Clark TM, 2023, J CHEM EDUC, V100, P3934, DOI 10.1021/acs.jchemed.3c00500 Clark TM, 2023, J CHEM EDUC, V100, P1905, DOI 10.1021/acs.jchemed.3c00027 COHEN J, 1960, EDUC PSYCHOL MEAS, V20, P37, DOI 10.1177/001316446002000104 Cooper MM, 2016, J CHEM EDUC, V93, P1703, DOI 10.1021/acs.jchemed.6b00417 Cotton DRE, 2024, INNOV EDUC TEACH INT, V61, P228, DOI 10.1080/14703297.2023.2190148 Crandell OM, 2020, J CHEM EDUC, V97, P313, DOI 10.1021/acs.jchemed.9b00815 Crandell OM, 2019, J CHEM EDUC, V96, P213, DOI 10.1021/acs.jchemed.8b00784 Crowder CJ, 2024, J CHEM EDUC, V101, P398, DOI 10.1021/acs.jchemed.3c00710 Dahlkemper MN, 2023, PHYS REV PHYS EDUC R, V19, DOI 10.1103/PhysRevPhysEducRes.19.010142 DAIR.AI, 2024, ELEMENTS PROMPT Deng JM, 2023, J CHEM EDUC, V100, P1523, DOI 10.1021/acs.jchemed.2c01063 Deng JM, 2021, CHEM EDUC RES PRACT, V22, P749, DOI 10.1039/d0rp00320d Dood AJ, 2022, J CHEM EDUC, DOI 10.1021/acs.jchemed.2c00313 Dood AJ, 2020, J CHEM EDUC, V97, P3551, DOI 10.1021/acs.jchemed.0c00569 Dood AJ, 2020, CHEM EDUC RES PRACT, V21, P267, DOI 10.1039/c9rp00148d Dood AJ, 2019, CAN J CHEM, V97, P711, DOI 10.1139/cjc-2018-0479 Dood AJ, 2018, J CHEM EDUC, V95, P1267, DOI 10.1021/acs.jchemed.8b00177 DUNN OJ, 1964, TECHNOMETRICS, V6, P241, DOI 10.2307/1266041 Ellis AR, 2017, J STAT SOFTW, V76, P1, DOI 10.18637/jss.v076.i04 Emenike ME, 2023, J CHEM EDUC, V100, P1413, DOI 10.1021/acs.jchemed.3c00063 Exintaris B, 2023, J CHEM EDUC, V100, P2972, DOI 10.1021/acs.jchemed.3c00481 Fergus S, 2023, J CHEM EDUC, V100, P1672, DOI 10.1021/acs.jchemed.3c00087 Frost SJH, 2023, CHEM EDUC RES PRACT, V24, P706, DOI 10.1039/d2rp00327a Giray L, 2023, ANN BIOMED ENG, V51, P2629, DOI 10.1007/s10439-023-03272-4 Google Gemini Team, 2023, ARXIV Graulich N, 2019, CHEM EDUC RES PRACT, V20, P924, DOI 10.1039/c9rp00054b Guo Y, 2023, J CHEM EDUC, V100, P4876, DOI 10.1021/acs.jchemed.3c00505 Hasrod T, 2024, J CHEM EDUC, V101, P653, DOI 10.1021/acs.jchemed.3c01170 HuggingFace, 2024, HUGGINGCHAT Humphry T, 2023, J CHEM EDUC, V100, P1434, DOI 10.1021/acs.jchemed.3c00006 Johnson R, 2022, J CHEM EDUC, V99, P3631, DOI 10.1021/acs.jchemed.2c01035 Keiner L, 2020, CHEM EDUC RES PRACT, V21, P469, DOI 10.1039/c9rp00241c Keiner L, 2021, CHEM EDUC RES PRACT, V22, P146, DOI 10.1039/d0rp00206b Kendall MG, 1938, BIOMETRIKA, V30, P81, DOI 10.2307/2332226 Kraft A, 2010, CHEM EDUC RES PRACT, V11, P281, DOI 10.1039/C0RP90003F KRUSKAL WH, 1952, J AM STAT ASSOC, V47, P583, DOI 10.1080/01621459.1952.10483441 Lawrie G, 2023, CHEM EDUC RES PRACT, V24, P392, DOI 10.1039/d3rp90003g Leon AJ, 2023, J CHEM EDUC, V100, P3859, DOI 10.1021/acs.jchemed.3c00288 Lialin V., 2023, arXiv, parXiv2303.15647 Lolinco AT, 2023, J CHEM EDUC, V100, P4092, DOI 10.1021/acs.jchemed.3c00520 Mahapatra S, 2024, SMART LEARN ENVIRON, V11, DOI 10.1186/s40561-024-00295-9 Malik A., 2023, OPENAIS CHATGPTNOW H McHugh ML, 2012, BIOCHEM MEDICA, V22, P276, DOI 10.11613/bm.2012.031 Microsoft, 2024, MICROSOFT COPILOT Natl Res Council, 2012, FRAMEWORK FOR K-12 SCIENCE EDUCATION: PRACTICES, CROSSCUTTING CONCEPTS, AND CORE IDEAS, P1 NGSSLead States, 2013, NEXT GENERATIONSCIEN OpenAI, 2023, ARXIV OpenAI, 2023, INTRODUCINGGPTS OpenAI, 2024, CHATGPT RELEASENOTES OpenAI, 2023, CHATGPT Perkins M, 2023, J UNIV TEACH LEARN P, V20, DOI 10.53761/1.20.02.07 Pournelle G. H., 1953, Journal of Mammalogy, V34, P133, DOI 10.1890/0012-9658(2002)083[1421:SDEOLC]2.0.CO;2 Raker J. R., 2022, STUDENT REASONINGIN Sevian H, 2014, CHEM EDUC RES PRACT, V15, P10, DOI 10.1039/c3rp00111c Tack A., 2022, PROCEEDS 15 INT C ED Talanquer V, 2023, J CHEM EDUC, V100, P2821, DOI 10.1021/acs.jchemed.3c00472 Tyson J, 2023, J CHEM EDUC, V100, P3098, DOI 10.1021/acs.jchemed.3c00361 Waltzer T, 2023, ETHICS BEHAV, V33, P130, DOI 10.1080/10508422.2022.2026775 Watts FM, 2023, J CHEM EDUC, V100, P3806, DOI 10.1021/acs.jchemed.3c00664 Watts FM, 2020, CHEM EDUC RES PRACT, V21, P1148, DOI 10.1039/c9rp00185a Weinrich ML, 2016, CHEM EDUC RES PRACT, V17, P394, DOI 10.1039/c5rp00208g Wilks SS, 1932, BIOMETRIKA, V24, P471 Yik BJ, 2023, CHEM EDUC RES PRACT, V24, P263, DOI 10.1039/d2rp00184e Yik BJ, 2021, CHEM EDUC RES PRACT, V22, P866, DOI 10.1039/d1rp00111f Yuriev E, 2023, J CHEM EDUC, V100, P3168, DOI 10.1021/acs.jchemed.3c00829 NR 76 TC 3 Z9 3 U1 34 U2 34 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0021-9584 EI 1938-1328 J9 J CHEM EDUC JI J. Chem. Educ. PD APR 25 PY 2024 VL 101 IS 5 BP 1836 EP 1846 DI 10.1021/acs.jchemed.4c00235 EA APR 2024 PG 11 WC Chemistry, Multidisciplinary; Education, Scientific Disciplines WE Science Citation Index Expanded (SCI-EXPANDED) SC Chemistry; Education & Educational Research GA RE6I2 UT WOS:001208324000001 OA hybrid DA 2024-09-05 ER PT J AU Danesh, F Ghavidel, S AF Danesh, Farshid Ghavidel, Somayeh TI A longitudinal study on knowledge organization publications: using hierarchical clustering and multidimensional scaling SO GLOBAL KNOWLEDGE MEMORY AND COMMUNICATION LA English DT Article DE Knowledge organization (KO); Scientometrics; Co-word; Strategic diagram; Multidimensional scaling; Bibliometrics ID CO-WORD ANALYSIS; INFORMATION-SCIENCE; INTELLECTUAL STRUCTURE; LIBRARY; SCIENTOMETRICS; DISSERTATIONS; COCITATION; EVOLUTION; NETWORKS; KEYWORD AB PurposeThe purpose of this study was a longitudinal study on knowledge organization (KO) realm structure and cluster concepts and emerging KO events based on co-occurrence analysis. Design/methodology/approachThis longitudinal study uses the co-occurrence analysis. This research population includes keywords of articles indexed in the Web of Science Core Collection 1975-1999 and 2000-2018. Hierarchical clustering, multidimensional scaling and co-occurrence analysis were used to conduct the present research. SPSS, UCINET, VOSviewer and NetDraw were used to analyze and visualize data. FindingsThe "Information Technology" in 1975-1999 and the "Information Literacy" in 2000-2018, with the highest frequency, were identified as the most widely used keywords of KO in the world. In the first period, the cluster "Knowledge Management" had the highest centrality, the cluster "Strategic Planning" had the highest density in 2000-2018 and the cluster "Information Retrieval" had the highest centrality and density. The two-dimensional map of KO's thematic and clustering of KO topics by cluster analysis method indicates that in the periods examined in this study, thematic clusters had much overlap in terms of concept and content. Originality/valueThe present article uses a longitudinal study to examine the KO's publications in the past half-century. This paper also uses hierarchical clustering and multidimensional scaling methods. Studying the concepts and thematic trends in KO can impact organizing information as the core of libraries, museums and archives. Also, it can scheme information organizing and promote knowledge management. Because the results obtained from this article can help KO policymakers determine and design the roadmap, research planning, and micro and macro budgeting processes. C1 [Danesh, Farshid] Reg Informat Ctr Sci & Technol, Informat Management Dept, Shiraz, Iran. [Ghavidel, Somayeh] Iran Publ Lib Fdn, Tehran, Iran. RP Ghavidel, S (corresponding author), Iran Publ Lib Fdn, Tehran, Iran. EM farshiddanesh@ricest.ac.ir; ghavidel62@gmail.com RI Danesh, Farshid/AAG-5286-2020; Danesh, Farshid/D-3829-2011 OI Danesh, Farshid/0000-0003-2581-7052; Danesh, Farshid/0000-0001-5481-3988 CR Ahmadi H., 2017, NATL STUDIES LIB INF, V28, P125 Alajmi B, 2016, EDUC INFORM, V32, P411, DOI 10.3233/EFI-160084 [Anonymous], SCI CITATION INDEX 1 Arkiv, 2009, TIM KNOWL ORG Birkle C, 2020, QUANT SCI STUD, V1, P363, DOI 10.1162/qss_a_00018 Blessinger K, 2007, COLL RES LIBR, V68, P155, DOI 10.5860/crl.68.2.155 CALLON M, 1983, SOC SCI INFORM, V22, P191, DOI 10.1177/053901883022002003 Callon M.J., 1986, MAPPING DYNAMICS SCI, P1, DOI DOI 10.1007/978-1-349-07408-2 Castriotta M, 2019, SCIENTOMETRICS, V118, P407, DOI 10.1007/s11192-018-2977-2 Chang YW, 2015, SCIENTOMETRICS, V105, P2071, DOI 10.1007/s11192-015-1762-8 Coulter N, 1998, J AM SOC INFORM SCI, V49, P1206, DOI 10.1002/(SICI)1097-4571(1998)49:13<1206::AID-ASI7>3.0.CO;2-F Davarpanah M., 2005, LIB INFORM SCI, V8, P67 Deng SL, 2020, SCIENTOMETRICS, V124, P489, DOI 10.1007/s11192-020-03465-x Galvez C, 2018, TRANSINFORMACAO, V30, P277, DOI 10.1590/2318-08892018000300001 Giannakos Michail, 2020, International Journal of Child-Computer Interaction, V23, DOI 10.1016/j.ijcci.2020.100165 Castanha RCG, 2018, KNOWL ORGAN, V45, P13, DOI 10.5771/0943-7444-2018-1-13 He Q, 1999, LIBR TRENDS, V48, P133 Hjorland B, 2003, KNOWL ORGAN, V30, P87 Hjorland B., 2020, REPRESENTATIONS AUTH, V47, P461 Hjorland B., 2013, 13 M GERMAN ISKO POT, V40, P169 Hjorland B., 2008, International Journal Devoted to Concept Theory, Classification, Indexing and Knowledge Representation, V35, P86 Hjorland B, 2015, KNOWL ORGAN, V42, P113 Hjorland B, 2009, J AM SOC INF SCI TEC, V60, P1519, DOI 10.1002/asi.21082 Hu CP, 2013, SCIENTOMETRICS, V97, P369, DOI 10.1007/s11192-013-1076-7 Kaiser J., 2011, SYSTEMATIC INDEXING Khasseh AA, 2017, INFORM PROCESS MANAG, V53, P705, DOI 10.1016/j.ipm.2017.02.001 Liu GY, 2012, SCIENTOMETRICS, V91, P203, DOI 10.1007/s11192-011-0586-4 Makkizadeh Fatemah, 2019, Nanomedicine Research Journal, V4, P101, DOI 10.22034/nmrj.2019.02.007 Marco F.J.G., 2016, BRAZILIAN J INFO SCI, V10 Mazzocchi F, 2018, KNOWL ORGAN, V45, P54, DOI 10.5771/0943-7444-2018-1-54 Melcer E., 2015, network, V17, P20 Mohammadi E, 2012, SCIENTOMETRICS, V92, P593, DOI 10.1007/s11192-012-0644-6 Mokhtarpour R, 2021, J INF SCI, V47, P794, DOI 10.1177/0165551520932119 Nova-Reyes A, 2020, SUSTAINABILITY-BASEL, V12, DOI 10.3390/su12083141 Ponzi LJ, 2002, SCIENTOMETRICS, V55, P259, DOI 10.1023/A:1019619824850 Qiu JP, 2014, SCIENTOMETRICS, V101, P1345, DOI 10.1007/s11192-014-1315-6 Ravikumar S, 2015, SCIENTOMETRICS, V102, P929, DOI 10.1007/s11192-014-1402-8 Smiraglia R.P., 2014, ELEMENTS KNOWLEDGE O, P1 Smiraglia R.P., 2014, ELEMENTS KNOWLEDGE O, P33 Soheili F., 2018, LIBRARIANSHIP INFORM, V29, P171 Soheili F., 2016, HUMAN INFORM INTERAC, V2, P21 Sugimoto CR, 2011, J AM SOC INF SCI TEC, V62, P185, DOI 10.1002/asi.21435 Wang XD, 2014, CYBERN INF TECHNOL, V14, P145, DOI 10.2478/cait-2014-0051 Weismayer C, 2017, SCIENTOMETRICS, V113, P1757, DOI 10.1007/s11192-017-2555-z Wu Ke, 2013, Knowledge Science, Engineering and Management. 6th International Conference, KSEM 2013. Proceedings. LNCS 8041, P538, DOI 10.1007/978-3-642-39787-5_45 Zhao DZ, 2014, J ASSOC INF SCI TECH, V65, P995, DOI 10.1002/asi.23027 Zhao RY, 2017, KNOWL ORGAN, V44, P335, DOI 10.5771/0943-7444-2017-5-335 Zhao RY, 2017, KNOWL ORGAN, V44, P326, DOI 10.5771/0943-7444-2017-5-326 Zolfaghari S., 2015, RAHYAFT J, V25, P51 Zong QJ, 2013, SCIENTOMETRICS, V94, P781, DOI 10.1007/s11192-012-0799-1 Zou Q., 2018, INT J LIBRARIANSHIP, V3, P67 NR 51 TC 2 Z9 2 U1 7 U2 16 PU EMERALD GROUP PUBLISHING LTD PI Leeds PA Floor 5, Northspring 21-23 Wellington Street, Leeds, W YORKSHIRE, ENGLAND SN 2514-9342 EI 2514-9350 J9 GLOB KNOWL MEM COMMU JI Glob. Knowl. Mem. Commun. PD JUL 23 PY 2024 VL 73 IS 6/7 BP 929 EP 955 DI 10.1108/GKMC-05-2022-0111 EA DEC 2022 PG 27 WC Information Science & Library Science WE Emerging Sources Citation Index (ESCI) SC Information Science & Library Science GA ZD4P5 UT WOS:000899121500001 DA 2024-09-05 ER PT J AU Llewellyn, A Whittington, C Stewart, G Higgins, JPT Meader, N AF Llewellyn, Alexis Whittington, Craig Stewart, Gavin Higgins, Julian P. T. Meader, Nick TI The Use of Bayesian Networks to Assess the Quality of Evidence from Research Synthesis: 2. Inter-Rater Reliability and Comparison with Standard GRADE Assessment SO PLOS ONE LA English DT Article AB Background The grades of recommendation, assessment, development and evaluation (GRADE) approach is widely implemented in systematic reviews, health technology assessment and guideline development organisations throughout the world. We have previously reported on the development of the Semi-Automated Quality Assessment Tool (SAQAT), which enables a semi-automated validity assessment based on GRADE criteria. The main advantage to our approach is the potential to improve inter-rater agreement of GRADE assessments particularly when used by less experienced researchers, because such judgements can be complex and challenging to apply without training. This is the first study examining the inter-rater agreement of the SAQAT. Methods We conducted two studies to compare: a) the inter-rater agreement of two researchers using the SAQAT independently on 28 meta-analyses and b) the inter-rater agreement between a researcher using the SAQAT (who had no experience of using GRADE) and an experienced member of the GRADE working group conducting a standard GRADE assessment on 15 meta-analyses. Results There was substantial agreement between independent researchers using the Quality Assessment Tool for all domains (for example, overall GRADE rating: weighted kappa 0.79; 95% CI 0.65 to 0.93). Comparison between the SAQAT and a standard GRADE assessment suggested that inconsistency was parameterised too conservatively by the SAQAT. Therefore the tool was amended. Following amendment we found fair-to-moderate agreement between the standard GRADE assessment and the SAQAT (for example, overall GRADE rating: weighted kappa 0.35; 95% CI 0.09 to 0.87). Conclusions Despite a need for further research, the SAQAT may aid consistent application of GRADE, particularly by less experienced researchers. C1 [Llewellyn, Alexis; Meader, Nick] Univ York, Ctr Reviews & Disseminat, York YO10 5DD, N Yorkshire, England. [Whittington, Craig] UCL, Dept Clin Educ & Hlth Psychol, Ctr Outcomes Res & Effectiveness Res, London, England. [Stewart, Gavin] Newcastle Univ, Sch Agr Food & Rural Dev, Newcastle Upon Tyne NE1 7RU, Tyne & Wear, England. [Higgins, Julian P. T.] Univ Bristol, Sch Social & Community Med, Bristol, Avon, England. C3 University of York - UK; University of London; University College London; Newcastle University - UK; University of Bristol RP Stewart, G (corresponding author), Newcastle Univ, Sch Agr Food & Rural Dev, Newcastle Upon Tyne NE1 7RU, Tyne & Wear, England. EM gavin.stewart@newcastle.ac.uk RI Higgins, Julian/H-4008-2011; Whittington, Craig/B-1380-2008 OI Higgins, Julian/0000-0002-8323-2514; Stewart, Gavin/0000-0001-5684-1544; Meader, Nick/0000-0001-9332-6605; Whittington, Craig/0000-0002-1950-0334 FU National Institute for Health Research; MRC [MR/K025643/1] Funding Source: UKRI FX This work was funded by the National Institute for Health Research. CR [Anonymous], GRADEPRO [Anonymous], J CLIN EPIDEMIOL [Anonymous], PLOS ONE [Anonymous], BAYESIAN NETWORKS A [Anonymous], 2001, BAYESIAN NETWORKS AN Archer J, 2012, COCHRANE DB SYST REV, DOI 10.1002/14651858.CD006525.pub2 Baumeister H, 2012, COCHRANE DB SYST REV, DOI 10.1002/14651858.CD008381.pub2 Brozek J, 2011, J CLIN EPIDEMIOL Cipriani A, 2009, COCHRANE DB SYST REV, DOI 10.1002/14651858.CD006532.pub2 Cleary M, 2008, COCHRANE DB SYST REV, DOI 10.1002/14651858.CD001088.pub2 COHEN J, 1968, PSYCHOL BULL, V70, P213, DOI 10.1037/h0026256 Depping AM, 2010, COCHRANE DB SYST REV, DOI 10.1002/14651858.CD008120.pub2 Dieterich M, 2010, COCHRANE DB SYST REV, DOI 10.1002/14651858.CD007906.pub2 Gillies D, 2012, COCHRANE DB SYST REV, DOI 10.1002/14651858.CD007986.pub2 James AC, 2013, COCHRANE DB SYST REV, DOI [10.1002/14651858.CD004690.pub3, 10.1002/14651858.CD004690.pub4] Kisely SR, 2011, COCHRANE DB SYST REV, DOI 10.1002/14651858.CD004408.pub3 Macdonald G, 2012, COCHRANE DB SYST REV, DOI 10.1002/14651858.CD001930.pub3 Matar HE, 2013, COCHRANE DB SYST REV, DOI 10.1002/14651858.CD006352.pub2 Meader N, 2014, SYST REV-LONDON, V3, DOI 10.1186/2046-4053-3-82 Mustafa RA, 2013, J CLIN EPIDEMIOL, V66, P736, DOI 10.1016/j.jclinepi.2013.02.004 Pani PP, 2011, COCHRANE DB SYST REV, DOI 10.1002/14651858.CD002950.pub3 Rolinski M, 2012, COCHRANE DB SYST REV, DOI 10.1002/14651858.CD006504.pub2 Shrier I, 2011, RES SYNTH METHODS, V2, P223, DOI 10.1002/jrsm.52 Soomro GM, 2008, COCHRANE DB SYST REV, DOI 10.1002/14651858.CD001765.pub3 Stewart GB, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0114497 Thornton J, 2013, J CLIN EPIDEMIOL, V66, P124, DOI 10.1016/j.jclinepi.2011.12.007 Vernooij-Dassen M, 2011, COCHRANE DB SYST REV, DOI 10.1002/14651858.CD005318.pub2 Williams A.C.D.C., 2012, Cochrane Database of Systematic Reviews, V11, Art. No, pCD007407 NR 28 TC 7 Z9 7 U1 0 U2 13 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA SN 1932-6203 J9 PLOS ONE JI PLoS One PD DEC 30 PY 2015 VL 10 IS 12 AR e0123511 DI 10.1371/journal.pone.0123511 PG 11 WC Multidisciplinary Sciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Science & Technology - Other Topics GA DA0TN UT WOS:000367510500001 PM 26716874 OA gold, Green Published, Green Submitted DA 2024-09-05 ER PT J AU Bogdanovich, B Shah, PR Patel, PA Bui, T Boyd, CJ AF Bogdanovich, Brennan Shah, Pearl Patel, Parth A. Bui, Tommy Boyd, Carter J. TI Altmetric Analysis of Artificial Intelligence Articles in Plastic Surgery SO ARCHIVES OF PLASTIC SURGERY-APS LA English DT Article C1 [Bogdanovich, Brennan; Shah, Pearl; Patel, Parth A.; Bui, Tommy] Augusta Univ, Med Coll Georgia, Augusta, GA USA. [Boyd, Carter J.] NYU Langone Hlth, Hansjorg Wyss Dept Plast Surg, New York, NY USA. [Boyd, Carter J.] NYU, Hansjorg Wyss Dept Plast Surg, Langone Hlth, 305 East 47th St,Suite 1A, New York, NY 10017 USA. C3 University System of Georgia; Augusta University; NYU Langone Medical Center; New York University RP Boyd, CJ (corresponding author), NYU, Hansjorg Wyss Dept Plast Surg, Langone Hlth, 305 East 47th St,Suite 1A, New York, NY 10017 USA. EM Carterjosephboyd@gmail.com OI Shah, Pearl/0009-0000-7949-2586; Patel, Parth/0000-0001-6001-8462; Bui, Tommy/0000-0002-7389-125X; Bogdanovich, Brennan/0009-0006-8252-4255; Boyd, Carter/0000-0002-1421-6852 CR [Anonymous], 2018, GLOBAL GENDER GAP RE Bui T, 2023, ASIA-PAC J OPHTHALMO, V12, P625, DOI 10.1097/APO.0000000000000587 Collier M., ACCENTURE Elmore SA, 2018, TOXICOL PATHOL, V46, P252, DOI 10.1177/0192623318758294 Silvestre J, 2016, PLAST RECONSTR SURG, V138, p136E, DOI 10.1097/PRS.0000000000002308 NR 5 TC 0 Z9 0 U1 0 U2 2 PU GEORG THIEME VERLAG KG PI STUTTGART PA RUDIGERSTR 14, D-70469 STUTTGART, GERMANY SN 2234-6163 EI 2234-6171 J9 ARCH PLAST SURG-APS JI Arch. Plast. Surg.-APS PD MAR PY 2024 VL 51 IS 02 DI 10.1055/a-2223-5458 EA JAN 2024 PG 2 WC Surgery WE Emerging Sources Citation Index (ESCI) SC Surgery GA NC9C9 UT WOS:001153227300001 PM 38596152 OA Green Published, gold DA 2024-09-05 ER PT J AU Rothut, S Schulze, H Hohner, J Rieger, D AF Rothut, Sophia Schulze, Heidi Hohner, Julian Rieger, Diana TI Ambassadors of ideology: A conceptualization and computational investigation of far-right influencers, their networking structures, and communication practices SO NEW MEDIA & SOCIETY LA English DT Article; Early Access DE Computational; mobilization; network analysis; parasocial opinion leadership; political influencers; radicalization; social influence; Telegram; topic modeling; far-right extremism ID HATE AB Increasingly, influencers are employed to market not only products but also ideas and beliefs. The far right has recognized the strategic potential of influencer communication to tap into new target groups and mobilize supporters. This paper provides insights into the little-explored field of far-right influencers. We conceptualize them as individual actors characterized by far-right ideology, positioned as political influencers, actively advocating for their ideological aims. Employing a multi-layered computational approach to explore communication practices and networking structures of 243 German-speaking far-right influencers on Telegram, we derive a typology and observe the emergence of a functionally differentiated influencer collective. In this collective, each community has specific functions and characteristics that emphasize different ideological aspects, mobilization modes, and influencer practices. Despite the decentralized organization, we find high efficiency in information dissemination. The results corroborate the assumed potential of far-right influencers as disseminators of ideological content who can be particularly persuasive through their role as parasocial opinion leaders. C1 [Rothut, Sophia; Schulze, Heidi; Hohner, Julian; Rieger, Diana] Ludwig Maximilian Univ Munich, Dept Media & Commun, Munich, Germany. [Rothut, Sophia] Ludwig Maximilian Univ Munich, Dept Media & Commun, Oettingenstr 67, D-80538 Munich, Germany. C3 University of Munich; University of Munich RP Rothut, S (corresponding author), Ludwig Maximilian Univ Munich, Dept Media & Commun, Oettingenstr 67, D-80538 Munich, Germany. EM sophia.rothut@ifkw.lmu.de; heidi.schulze@ifkw.lmu.de; julian.hohner@ifkw.lmu.de; diana.rieger@ifkw.lmu.de OI Hohner, Julian/0000-0002-5872-0954; Rothut, Sophia/0000-0003-0990-8034; Rieger, Diana/0000-0002-2417-0480 FU German Federal Ministry of Education and Research [MOTRA-13N15223] FX The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This study was supported by grants from the German Federal Ministry of Education and Research within the framework of the program "Research for Civil Security" of the Federal Government (grant no. MOTRA-13N15223). CR Adenion, 2021, Blog2Social Åkerlund M, 2021, SOC MEDIA SOC, V7, DOI 10.1177/20563051211008831 Asprem A., 2019, HDB CONSPIRACY THEOR, P207 Bastian M., 2009, INT AAAI C WEBL SOC, DOI DOI 10.1609/ICWSM.V3I1.13937 Bause Halina., 2021, Publizistik, V66, P295 Benoit Kenneth., 2018, J OPEN SOURCE SOFTW, V3, P774, DOI DOI 10.21105/JOSS.00774 Berntzen L. E., 2018, THESIS EUROPEAN U I Berntzen LE, 2016, J INTERCULT STUD, V37, P556, DOI 10.1080/07256868.2016.1235021 Bjorgo T., 2019, Report Bliuc AM, 2021, FRONT PSYCHOL, V12, DOI 10.3389/fpsyg.2021.641215 Blondel VD, 2008, J STAT MECH-THEORY E, DOI 10.1088/1742-5468/2008/10/P10008 Campbell C, 2020, BUS HORIZONS, V63, P469, DOI 10.1016/j.bushor.2020.03.003 Carter E, 2018, J POLIT IDEOL, V23, P157, DOI 10.1080/13569317.2018.1451227 Chan C., 2020, J OPEN SOURCE SOFTW, V5, P2461, DOI https://doi.org/10.21105/joss.02461 Chung SY, 2017, PSYCHOL MARKET, V34, P481, DOI 10.1002/mar.21001 Conway M., 2019, Report De Gregorio G, 2022, GERMAN LAW J, V23, P204, DOI 10.1017/glj.2022.15 De Veirman M, 2017, INT J ADVERT, V36, P798, DOI 10.1080/02650487.2017.1348035 Dekoninck H, 2022, ENVIRON COMMUN, V16, P458, DOI 10.1080/17524032.2022.2027801 Douglas KM, 2019, POLIT PSYCHOL, V40, P3, DOI 10.1111/pops.12568 Enke N., 2019, INT J STRATEG COMMUN, V13, P261, DOI [DOI 10.1080/1553118X.2019.1620234, 10.1080/1553118X.2019.1620234] Epskamp S, 2012, J STAT SOFTW, V48, P1, DOI 10.18637/jss.v048.i04 Fielitz M., 2020, Report Fransen ML, 2015, FRONT PSYCHOL, V6, DOI 10.3389/fpsyg.2015.01201 Gaden Georgia, 2015, First Monday, V20, DOI 10.5210/fm.v20i1.4985 Garry A., 2021, Journal for Deradicalization, V26, P152 Geise Stephanie., 2017, Meinungsfuhrer und der Flow of Communication Gephi, 2011, Gephi tutorial layouts German Federal Office for the Protection of the Constitution, 2021, Report Geyser W., 2021, Influencer rates: how much do influencers really cost in 2021? González-Bailón S, 2013, AM BEHAV SCI, V57, P943, DOI 10.1177/0002764213479371 Grimmer J, 2013, POLIT ANAL, V21, P267, DOI 10.1093/pan/mps028 Hartmann T., 2004, Publizistik, V49, P25, DOI [10.1007/s11616-004-0003-6, DOI 10.1007/S11616-004-0003-6] Heitmeyer W., 2020, RECHTE BEDROHUNGSALL HORTON D, 1956, PSYCHIATR, V19, P215, DOI 10.1080/00332747.1956.11023049 Hudders L, 2021, INT J ADVERT, V40, P327, DOI 10.1080/02650487.2020.1836925 Humphries MD, 2008, PLOS ONE, V3, DOI 10.1371/journal.pone.0002051 Klein O, 2019, EUR SOC, V21, P540, DOI 10.1080/14616696.2018.1494293 Kleinberg JM, 1999, J ACM, V46, P604, DOI 10.1145/324133.324140 Kupper B., 2014, The Palgrave Handbook of Global Political Psychology, P268 Lazarsfeld P. F., 1944, The People's Choice Lewis R., 2018, Alternative influence: Broadcasting the reactionary right on YouTube Mahl D., 2021, Social Media + Society, V7, p20563051211017482, DOI [10.1177/20563051211017482, DOI 10.1177/20563051211017482] Maier D, 2018, SOC SCI COMPUT REV, V36, P3, DOI 10.1177/0894439317690337 Maireder A., 2015, Digital Methods in Communication Science, P115 Maly I, 2020, SOC SCI-BASEL, V9, DOI 10.3390/socsci9070113 Marcks H, 2022, TERROR POLIT VIOLENC, V34, P1415, DOI 10.1080/09546553.2020.1788544 Marres N., 2005, MAKING THINGS PUBLIC McPherson M, 2001, ANNU REV SOCIOL, V27, P415, DOI 10.1146/annurev.soc.27.1.415 Minkenberg M, 2021, INT POLIT SCI REV, V42, P649, DOI 10.1177/0192512120972883 Mudde C., 2000, IDEOLOGY EXTREME RIG Munn L., 2019, First Monday, V24, DOI DOI 10.5210/FM.V24I6.10108 Naderer B., 2022, Communications, DOI [10.1515/commun-2021-0006., DOI 10.1515/COMMUN-2021-0006] Nepusz T, 2006, InterJournal Comp. Syst., VComplex Systems, P1695 Newman MEJ, 2003, PHYS REV E, V67, DOI 10.1103/PhysRevE.67.026126 Oaten A, 2014, PATTERNS PREJUDICE, V48, P331, DOI 10.1080/0031322X.2014.950454 Peeters S., 2022, Computational Communication Research, V4, P571 Pfahl-Traughber A., 2010, JB EXTREMISMUS TERRO, P273 Pirro ALP, 2023, NATIONS NATL, V29, P101, DOI 10.1111/nana.12860 R Core Team, 2020, R (Version 4.0.3) Rajan A., 2021, Report Reuters Institute, 2020, The Reuters Institute Digital News Report 2021 [Internet] Riedl M, 2021, FRONT COMMUN, V6, DOI 10.3389/fcomm.2021.752656 Rieger D., 2020, Handbuch Extremismuspravention-Gesamtgesellschaftlich.Phanomenubergreifend, P351 Ritzmann A., 2021, Report Roberts ME, 2019, J STAT SOFTW, V91, P1, DOI 10.18637/jss.v091.i02 Rogers R, 2020, EUR J COMMUN, V35, P213, DOI 10.1177/0267323120922066 Schils N, 2017, INT J CONFL VIOLENCE, V11, DOI 10.4119/UNIBI/ijcv.473 Schliessler Clara, 2020, Autoritare Dynamiken: Alte Ressentiments-neue Radikalitat: Leipziger Autoritarismus Studie 2020, P283 Schouten AP, 2020, INT J ADVERT, V39, P258, DOI 10.1080/02650487.2019.1634898 Schulz A, 2020, DISCOURSE SOC, V31, P235, DOI 10.1177/0957926519889109 Schulze H., 2021, Zeitschrift fur Semiotik, V41 Schwarzenegger C, 2018, SCM STUD COMM MEDIA, V7, P473, DOI 10.5771/2192-4007-2018-4-473 Schwemmer C, 2021, SOC MEDIA SOC, V7, DOI 10.1177/20563051211041650 Senholt JC., 2013, Contemporary Esotericism, P244 Stehr P, 2015, INT J COMMUN-US, V9, P982 Urman A, 2022, INFORM COMMUN SOC, V25, P904, DOI 10.1080/1369118X.2020.1803946 van der Vegt I, 2021, J COMPUT SOC SCI, V4, P333, DOI 10.1007/s42001-020-00080-x van Prooijen JW, 2018, EUR J SOC PSYCHOL, V48, P320, DOI 10.1002/ejsp.2331 van Reijmersdal EA, 2020, J YOUTH ADOLESCENCE, V49, P1531, DOI 10.1007/s10964-019-01191-z Vermeer SAM, 2021, INT J PRESS/POLIT, V26, P410, DOI 10.1177/1940161220925020 Wellman ML, 2021, NEW MEDIA SOC, V23, P3557, DOI 10.1177/1461444820958719 Winter A, 2019, PALGR STUD CYBERCRIM, P39, DOI 10.1007/978-3-030-12633-9_2 Winter C, 2020, INT J CONFL VIOLENCE, V14 Wood MJ, 2012, SOC PSYCHOL PERS SCI, V3, P767, DOI 10.1177/1948550611434786 Zick A, 2008, J SOC ISSUES, V64, P363, DOI 10.1111/j.1540-4560.2008.00566.x NR 86 TC 6 Z9 6 U1 10 U2 17 PU SAGE PUBLICATIONS LTD PI LONDON PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND SN 1461-4448 EI 1461-7315 J9 NEW MEDIA SOC JI New Media Soc. PD 2023 MAY 31 PY 2023 DI 10.1177/14614448231164409 EA MAY 2023 PG 28 WC Communication WE Social Science Citation Index (SSCI) SC Communication GA U3LM4 UT WOS:001083846700001 OA hybrid DA 2024-09-05 ER PT S AU McKillop, CA AF McKillop, Christena A. BE Sengupta, E Blessinger, P Cox, MD TI DESIGNING EFFECTIVE LIBRARY LEARNING SPACES-STUDENT2SCHOLAR: A CASE STUDY SO DESIGNING EFFECTIVE LIBRARY LEARNING SPACES IN HIGHER EDUCATION SE Innovations in Higher Education Teaching and Learning LA English DT Article; Book Chapter DE Student2Scholar; online learning; e-resource; information literacy; academic literacies; research skills; graduate students; higher education; academic librarians; Canadian universities; Association of College and Research Libraries ACRL; Queens University; University of Toronto Ontario Institute for Studies in Education; University of Western Ontario; pedagogy; collaboration; learning outcomes; teaching; learning design; feedback; testing; assessment AB In this chapter, the author examines Student2Scholar (S2S), an online e-learning resource for graduate students in the social sciences, as a case study that coalesces around effective learning design, innovation, and collaboration to meet and overcome the changes, challenges, and opportunities that have arisen in the twenty-first century. The author provides an overview of the S2S project, including an examination of the key design choices and pedagogy which were both strategic and critical in setting the foundation for effective learning in an online environment. This chapter also examines different elements of the project with a focus on the structure, purpose, and goals specific to a limited budget and a tight project timeline. A unique aspect of the project was the collaboration in and across three Canadian universities. The diverse project group of experts and important contributions by the team members played a significant role in creating a richer and more innovative product. These elements combined in such a way that led to the successful creation and launch of S2S, an award-winning e-learning resource. C1 [McKillop, Christena A.] Univ Calgary, Taylor Family Digital Lib, Prestigious Arch & Special Collect, Calgary, AB, Canada. C3 University of Calgary RP McKillop, CA (corresponding author), Univ Calgary, Taylor Family Digital Lib, Prestigious Arch & Special Collect, Calgary, AB, Canada. FU Government of Ontario, Ministry of Training, Colleges and Universities' Shared Online Course Fund, the Ontario Online Initiative FX The author wishes to acknowledge the contributions of all the S2S team members over the course of the project. As experts in library and information services, graduate research, and online learning for adults, the team members' dedication and passion for the project was essential. Dr Elan Paulson as the Primary Investigator inspired and encouraged the team throughout the project. The author gratefully acknowledges the Government of Ontario, Ministry of Training, Colleges and Universities' Shared Online Course Fund, the Ontario Online Initiative's funding support, and eCampus Ontario which have made creating and freely sharing S2S possible. CR ACRL, 2015, Framework for Information Literacy for Higher Education Anderson L. W., 2001, A Taxonomy for Learning, Teaching, and Assessing: A Revision of Bloom's Taxonomy of Educational Objectives [Anonymous], 2021, STUDENT2SCHOLAR S2S Association of College and Research Libraries(ACRL), 2016, INSTR SECT PRIMO Bates A.W., 2019, Teaching in a digital age: guidelines for designing, teaching and learning Blaschke LM, 2012, INT REV RES OPEN DIS, V13, P56, DOI 10.19173/irrodl.v13i1.1076 Blessinger P, 2013, CUT TECHNOL HIGH ED, V6G, P3, DOI 10.1108/S2044-9968(2013)000006G003 Bloom Benjamin S., 1956, Taxonomy of Educational Objectives: The Classification of Educational Goals; Handbook I: Cognitive Domain, VI Goodman VD, 2009, CHANDOS INF PROF SER, P1 Knowles MS, 1975, J CONTIN EDUC NURS Krathwohl DR, 2002, THEOR PRACT, V41, P212, DOI 10.1207/s15430421tip4104_2 Laverty C., 2017, STUDENT SCHOLAR BUIL Lederman D., 2018, New data: Online enrollments grow, and share of overall enrollment grows faster Mills M., 2015, MIIETL C W U Ontario College and University Library Association (OCULA), 2019, OCULA SPEC ACH AW Ontario Council of University Faculty Associations (OCUFA), 2018, AC MATT Ontario Universities Council on Quality Assurance, 2010, OCAVS UND GRAD DEGR Paulson E., 2018, J LIB INFORM SERVICE, V12, P35, DOI [10.1080/1533290X.2017.1415242, DOI 10.1080/1533290X.2017.1415242] Prensky M., 2001, DIGITAL NATIVES DIGI, V9, DOI 10.1108/10748120110424816/FULL/PDF Slavin Robert., 2009, Educational psychology: Theory and practice, V9th Student2Scholar (S2S), 2016, ACRL INSTR SECT WEBS Su CH, 2016, MULTIMED TOOLS APPL, V75, P10013, DOI 10.1007/s11042-015-2799-7 West M.A., 2011, The handbook of organizational culture and climate, V2nd, P249 Wiggin G., 2005, UNDERSTANDING DESIGN, DOI DOI 10.14483/CALJ.V19N1.11490 NR 24 TC 0 Z9 0 U1 0 U2 1 PU EMERALD GROUP PUBLISHING LTD PI BINGLEY PA HOWARD HOUSE, WAGON LANE, BINGLEY, W YORKSHIRE BD16 1WA, ENGLAND SN 2055-3641 BN 978-1-83909-782-9; 978-1-83909-783-6 J9 INNOV HIGH EDUC TEAC PY 2020 VL 29 BP 45 EP 59 DI 10.1108/S2055-364120200000029005 D2 10.1108/S2055-3641202029 PG 15 WC Education & Educational Research; Information Science & Library Science WE Book Citation Index – Social Sciences & Humanities (BKCI-SSH) SC Education & Educational Research; Information Science & Library Science GA BS8YK UT WOS:000778450500005 DA 2024-09-05 ER PT J AU Bohn, S Braun, T AF Bohn, Stephan Braun, Timo TI Field-configuring projects: How projects shape the public reflection of electric mobility in Germany SO INTERNATIONAL JOURNAL OF PROJECT MANAGEMENT LA English DT Article DE Temporary organising; Field-level influence; Field-configuring events (FCE); Electric mobility; Topic modeling; Framing; Industry; Configuration; Mixed-method ID MANAGEMENT RESEARCH; INSTITUTIONAL WORK; TRANSFORMATION; CULTURE; EVENTS; ORGANIZATIONS; CONSTRUCTION; CONFERENCES; DISCOURSE; DYNAMICS AB Organising in the context of projects has been extensively investigated with a focus on project-level processes. However, the industry and market impact, i.e. the field influencing potential of this temporary form of organizing, is still poorly understood. By using concepts derived from the literature on field-configuring events (FCE), we analyse the influence of two projects on the field of electric mobility in Germany. To capture the role of projects within fields, we apply a longitudinal mixed-methods approach combining interpretative qualitative methods with a topic modeling machine learning research strategy. The results highlight how projects can shape fields by opening and closing public debates and narratives in the sense of discursive institutional work. Additionally, we offer concepts that enable a more complete understanding of the sequential entanglement between projects and events, based on three scenarios: the project-by-itself, project-follows-event, and event-follows-project scenarios. With these insights, our empirical study contributes to the project management and institutional literature. C1 [Bohn, Stephan] Humboldt Inst Internet & Soc HIIG, Berlin, Germany. [Bohn, Stephan; Braun, Timo] Univ Appl Sci Darmstadt, Business Sch, Haardtring 100, D-64295 Darmstadt, Germany. C3 Hochschule Darmstadt RP Braun, T (corresponding author), Univ Appl Sci Darmstadt, Business Sch, Haardtring 100, D-64295 Darmstadt, Germany. EM stephan.bohn@hiig.de; timo.braun@h-da.de OI Braun, Timo/0000-0002-4427-2644; Bohn, Stephan/0000-0003-2404-4617 CR [Anonymous], 1995, Scandinavian Journal of Management, DOI [10.1016/0956-5221(95)00035-T, DOI 10.1016/0956-5221(95)00035-T] Bail CA, 2014, THEOR SOC, V43, P465, DOI 10.1007/s11186-014-9216-5 Baker BN., 1997, PROJECT MANAGEMENT H, P902 Bakker RM, 2016, ORGAN STUD, V37, P1703, DOI 10.1177/0170840616655982 Bakker RM, 2010, INT J MANAG REV, V12, P466, DOI 10.1111/j.1468-2370.2010.00281.x Blei DM, 2012, COMMUN ACM, V55, P77, DOI 10.1145/2133806.2133826 Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993 Blomquist T, 2010, PROJ MANAG J, V41, P5, DOI 10.1002/pmj.20141 Bohn S., 2018, ACAD MANAGEMENT P Carroll Craig., 2003, Corporate REputation Review, V6, P36, DOI DOI 10.1057/PALGRAVE.CRR.1540188 Cicmil S., 2006, International Journal of Project Management, V24, P675, DOI 10.1016/j.ijproman.2006.08.006 CORBIN J, 1990, Z SOZIOL, V19, P418, DOI 10.1007/BF00988593 Croidieu G, 2018, ADMIN SCI QUART, V63, P1, DOI 10.1177/0001839216686531 DAUG, 1996, ERPR EL NEUEST GEN I DiMaggio P, 2013, POETICS, V41, P570, DOI 10.1016/j.poetic.2013.08.004 DiMaggio PJ, 2000, ADV STRATEG MANAGE, V 17, P143, DOI 10.2307/2095101 Engwall M, 2003, RES POLICY, V32, P789, DOI 10.1016/S0048-7333(02)00088-4 Fligstein N, 2017, AM SOCIOL REV, V82, P879, DOI 10.1177/0003122417728240 Fred M., 2018, PROJECTIFICATION TRO Garud R, 2008, J MANAGE STUD, V45, P1061, DOI 10.1111/j.1467-6486.2008.00783.x German_Government, 2007, BER UMS KAB 23 24 08 German_Government, 2009, NAT ENTW EL BUND Gioia DA, 2013, ORGAN RES METHODS, V16, P15, DOI 10.1177/1094428112452151 Grabher G, 2002, REG STUD, V36, P205, DOI 10.1080/00343400220122025 Hannigan TR, 2019, ACAD MANAG ANN, V13, P586, DOI 10.5465/annals.2017.0099 Hardy C, 2010, ACAD MANAGE J, V53, P1365, DOI 10.5465/AMJ.2010.57318384 Hiatt SR, 2019, STRATEGIC MANAGE J, V40, P865, DOI 10.1002/smj.2989 HOLM P, 1995, ADMIN SCI QUART, V40, P398, DOI 10.2307/2393791 IPCC (Intergovernmental Panel on Climate Change), 2007, Climate Change Jensen A, 2016, PROJ MANAG J, V47, P21, DOI 10.1177/875697281604700303 Jugdev K., 2005, Project Management Journal, V36, P19, DOI [10.1177/875697280503600403, DOI 10.1177/875697280503600403] Kadefors A., 1995, SCAND J MANAG, V11, P395, DOI 10.1016/0956-5221(95)00017-P Kaplan S, 2015, STRATEGIC MANAGE J, V36, P1435, DOI 10.1002/smj.2294 Konrad M., 2020, WZBSOCIALSCIENCECENT Lampel J, 2008, J MANAGE STUD, V45, P1025, DOI 10.1111/j.1467-6486.2008.00787.x Lieftink B, 2019, INT J PROJ MANAG, V37, P269, DOI 10.1016/j.ijproman.2018.03.005 Lockwood C, 2019, J MANAGE, V45, P7, DOI 10.1177/0149206318777599 Lundin R. A., 1995, Scandinavian Journal of Management, V11, P437 Lundin R. A., 2013, INT J MANAG PROJ BUS, V6 Lundin RA., 2015, Managing and Working in Project Society Maguire S, 2013, ACAD MANAGE J, V56, P231, DOI 10.5465/amj.2010.0714 Maylor H., 2006, International Journal of Project Management, V24, P663, DOI 10.1016/j.ijproman.2006.09.014 Meyer AD, 2005, ORGAN SCI, V16, P456, DOI 10.1287/orsc.1050.0135 Meyer RE, 2010, ACAD MANAGE J, V53, P1241, DOI 10.5465/AMJ.2010.57317829 NPE, 2012, FORTSCHR NAT PLATF E NPE, 2014, FORTSCHR 2014 BIL MA NPE - Nationale Plattform Elektromobilitat, 2010, ZWISCH NAT PLATTF EL Phillips N, 2004, ACAD MANAGE REV, V29, P635, DOI 10.2307/20159075 Schmiedel T, 2019, ORGAN RES METHODS, V22, P941, DOI 10.1177/1094428118773858 Schüssler E, 2014, ACAD MANAGE J, V57, P140, DOI 10.5465/amj.2011.0812 Scott, 2014, I ORG 1000 OAKS Söderlund J, 2019, INT J PROJ MANAG, V37, P259, DOI 10.1016/j.ijproman.2019.01.001 Söderlund J, 2011, INT J MANAG REV, V13, P153, DOI 10.1111/j.1468-2370.2010.00290.x Sydow J, 2018, INT J PROJ MANAG, V36, P4, DOI 10.1016/j.ijproman.2017.04.012 Thiel J, 2015, IND INNOV, V22, P229, DOI 10.1080/13662716.2015.1033841 Tukiainen S, 2016, ORGAN STUD, V37, P1819, DOI 10.1177/0170840616662683 TVERSKY A, 1981, SCIENCE, V211, P453, DOI 10.1126/science.7455683 van den Ende L, 2019, INT J PROJ MANAG, V37, P331, DOI 10.1016/j.ijproman.2018.07.003 Vergne JP, 2011, ORGAN RES METHODS, V14, P484, DOI 10.1177/1094428109359811 Zietsma C, 2010, ADMIN SCI QUART, V55, P189, DOI 10.2189/asqu.2010.55.2.189 NR 60 TC 5 Z9 5 U1 3 U2 23 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0263-7863 EI 1873-4634 J9 INT J PROJ MANAG JI Int. J. Proj. Manag. PD AUG PY 2021 VL 39 IS 6 BP 605 EP 619 DI 10.1016/j.ijproman.2021.04.006 EA SEP 2021 PG 15 WC Management WE Social Science Citation Index (SSCI) SC Business & Economics GA UR8PC UT WOS:000697003100003 DA 2024-09-05 ER PT C AU Sykownik, P Masuch, M Emmerich, K Peketz, J AF Sykownik, Philipp Masuch, Maic Emmerich, Katharina Peketz, Jochen GP Assoc Comp Machinery TI Blending Science and Practice: A Collaborative Approach for Evaluating the Value of Heart Rate Measurement SO CHI PLAY'19: EXTENDED ABSTRACTS OF THE ANNUAL SYMPOSIUM ON COMPUTER-HUMAN INTERACTION IN PLAY LA English DT Proceedings Paper CT 6th ACM SIGCHI Annual Symposium on Computer-Human Interaction in Play (CHI PLAY) CY OCT 22-25, 2019 CL Barcelona, SPAIN DE playtests; game user research; game industry; evaluation methods; biometrics; heart rate monitoring; stimulated recall; interviews AB We report on our collaboration between the user research team of Ubisoft Blue Byte (UBB) Dusseldorf and the Entertainment Computing Research Group (ECG) of the University of Duisburg-Essen. Based on a shared interest in exploring the use of biometrics for evaluating the player experience, we opted for heart rate (HR) monitoring in order to gain initial experience with general requirements for psychophysiological methods. We conducted two subsequent studies: the first at the university to evaluate the method in general, the second at UBB to gain insights into the particular requirements of playtests in practice. This two-stage process was chosen to reduce resource requirements on the company's side and to refine the procedure before testing it in the field. Experiences with guidelines to use biometrics are shared and discussed regarding opportunities for collaboration between academics and practitioners. C1 [Sykownik, Philipp; Masuch, Maic; Emmerich, Katharina] Univ Duisurg Essen, D-47058 Duisburg, Germany. [Peketz, Jochen] Ubisoft Blue Byte, D-40211 Dusseldorf, Germany. RP Sykownik, P (corresponding author), Univ Duisurg Essen, D-47058 Duisburg, Germany. EM philipp.sykownik@uni-due.de; maic.masuch@uni-due.de; katharina.emmerich@uni-due.de; jochen.peketz@ubisoft.de CR [Anonymous], 2012, P CHI 2012 Blue Byte, 2019, ANN 1800 GAM PC Cacioppo JT, 2007, HANDBOOK OF PSYCHOPHYSIOLOGY, 3RD EDITION, P1, DOI 10.2277/ 0521844711 Chalfoun P., 2018, OXFORD SCHOLARSHIP O, P281, DOI [10.1093/oso/9780198794844.003.0017, DOI 10.1093/OSO/9780198794844.003.0017] Drachen A, 2010, P 5 ACM SIGGRAPH S V, P49, DOI DOI 10.1145/1836135.1836143 Drachen Anders, 2018, Games User Research Fairclough Stephen H., 2011, BIOMETRICS GAME EVAL IJsselsteijn W., 2013, Eindhoven: Technische Universiteit Eindhoven Isbister K., 2008, Using biometric measurement to help develop emotionally compelling games, P187, DOI DOI 10.1016/B978-0-12-374447-0.00013-5 Kivikangas JM, 2011, J GAMING VIRTUAL WOR, V3, P181, DOI 10.1386/jgvw.3.3.181_1 Mandryk R. L., 2006, Conference on Human Factors in Computing Systems. CHI2006, P1027 Mandryk ReganL., 2008, Game usability: Advice from the experts for advancing the player experience, P207 Mandryk RL, 2006, BEHAV INFORM TECHNOL, V25, P141, DOI 10.1080/01449290500331156 Mirza-Babaei P., 2011, DiGRA conference Mirza-Babaei Pejman., 2013, Proceedings of the SIGCHI Conference on Human Factors in Computing Systems - CHI '13, P1499, DOI DOI 10.1145/2470654.2466200 Nacke L.E., 2013, GAMES ANAL MAXIMIZIN, P585 Nacke Lennart E., 2018, Games User Research, P281, DOI DOI 10.1093/OSO/9780198794844.003.0016 Pitkanen Jori., 2015, Game Research Methods, P117 Ravaja N, 2006, MEDIA PSYCHOL, V8, P343, DOI 10.1207/s1532785xmep0804_2 NR 19 TC 0 Z9 0 U1 0 U2 1 PU ASSOC COMPUTING MACHINERY PI NEW YORK PA 1515 BROADWAY, NEW YORK, NY 10036-9998 USA BN 978-1-4503-6871-1 PY 2019 BP 211 EP 222 DI 10.1145/3341215.3354644 PG 12 WC Computer Science, Cybernetics; Computer Science, Interdisciplinary Applications; Computer Science, Theory & Methods WE Conference Proceedings Citation Index - Science (CPCI-S) SC Computer Science GA BO5NK UT WOS:000518428000027 DA 2024-09-05 ER PT C AU Port, D Korte, M AF Port, Dan Korte, Marcel GP ACM TI Comparative Studies of the Model Evaluation Criterions MMRE and PRED in Software Cost Estimation Research SO ESEM'08: PROCEEDINGS OF THE 2008 ACM-IEEE INTERNATIONAL SYMPOSIUM ON EMPIRICAL SOFTWARE ENGINEERING AND MEASUREMENT LA English DT Proceedings Paper CT ACM/IEEE International Symposium on Empirical Software Engineering and Measurement CY OCT 09-10, 2008-2009 CL Kaiserslautern, GERMANY DE Cost Estimation; Cost Model; Standard Error; Confidence; MMRE; PRED; Model Selection; Parameters; Calibration; Bootstrapping; Confidence Interval AB Software cost model research results depend on model accuracy criteria such as MMRE and PRIED. Despite criticism, MMRE has emerged as the de facto standard criterion. Many alternatives have been proposed and studied, surprisingly however PRED, the second most popular criterion, has not been extensively studied. This work attempts to fill this gap in the literature and expand the understanding and use of evaluation criterion in general. The majority of this work is empirically based, applying MMRE and PRED to a number of COCOMO model variations with respect to a simulated data set and four publicly available cost estimation data sets. We replicate a number of results based on MMRE and extend them to PRED. We study qualities of MMRE and PRED as sample estimator statistics for parameters of a cost model error distribution. Standard error is used to ensure greater confidence in replicated and new results based on sample data. C1 [Port, Dan] Univ Hawaii Manoa, 2404 Maile Way,E303, Honolulu, HI 96822 USA. [Korte, Marcel] Univ Appl Sci & Arts, Dortmund, Germany. C3 University of Hawaii System; University of Hawaii Manoa; Hochschule Hannover-University of Applied Sciences & Arts RP Port, D (corresponding author), Univ Hawaii Manoa, 2404 Maile Way,E303, Honolulu, HI 96822 USA. EM dport@hawaii.edu; marcel.korte@stud.fh-dortmund.de CR [Anonymous], 2007, The PROMISE Repository of Empirical Software Engineering Data [Anonymous], P 27 INT C SOFTW ENG [Anonymous], 11 IEEE INT SOFTW ME [Anonymous], INT S EMP SOFTW ENG [Anonymous], 1981, Software engineering economics [Anonymous], 2005, An introduction to mathematical statistics BRIAND L, 1999, P 21 INT C SOFTW ENG Briand L. C., 2000, Proceedings of the 2000 International Conference on Software Engineering. ICSE 2000 the New Millennium, P377, DOI 10.1109/ICSE.2000.870428 BRIAND LC, 2001, ENCY SOFTWARE ENG, P1160 Conte SD., 1986, Software Engineering Metrics and Models Desharnais J., 1989, Analyse Statistique de la Productivitie des Projets Informatique a Partie de la Technique des Point des Function EFRON B, 1979, ANN STAT, V7, P1, DOI 10.1214/aos/1176344552 FOSS T, 2003, IEEE T SOFTWARE ENG, V20 JORGENSEN M, 1995, IEEE T SOFTWARE ENG, V21, P674, DOI 10.1109/32.403791 JORGENSEN M, 2003, ACM SIGSOFT SOFTWARE, V28 Jorgensen M, 2007, IEEE T SOFTWARE ENG, V33, P33, DOI 10.1109/TSE.2007.256943 KITCHENHAM B, 2001, P IEEE, V148 Kitchenham BA, 2007, IEEE T SOFTWARE ENG, V33, P316, DOI 10.1109/TSE.2007.1101 LAND CE, 1971, ANN MATH STAT, V42, P1187, DOI 10.1214/aoms/1177693235 LUM K, 2006, P ISPA INT C SEATTL MAIR C, 2005, INT C SOFTW ENG ST L Menzies T, 2006, IEEE T SOFTWARE ENG, V32, P883, DOI 10.1109/TSE.2006.114 MOONEY C, 1993, SAGE PUBLICATIONS MYRTWEIT I, 2005, IEEE T SOFTWARE ENG, V31 SHEPPERD M, 2001, P 5 INT SOFTW METR S SHEPPERD M, 1997, IEEE T SOFTWARE ENG WIECZOREK I, 2002, P 8 IEEE S SOFTW MET BESTWEB BETTER ESTIM 2007, DESHARNIS DATASET 2007, NASA 93 DATASET 2007, COCOMO81 DATASET 2008, COCOMONASA DATASET NR 32 TC 49 Z9 50 U1 0 U2 0 PU ASSOC COMPUTING MACHINERY PI NEW YORK PA 1515 BROADWAY, NEW YORK, NY 10036-9998 USA BN 978-1-59593-971-5 PY 2008 BP 51 EP + PG 2 WC Computer Science, Software Engineering WE Conference Proceedings Citation Index - Science (CPCI-S) SC Computer Science GA BJJ30 UT WOS:000266371500006 DA 2024-09-05 ER PT J AU Glänzel, W Heeffer, S Thijs, B AF Glanzel, Wolfgang Heeffer, Sarah Thijs, Bart TI Lexical analysis of scientific publications for nano-level scientometrics SO SCIENTOMETRICS LA English DT Article; Proceedings Paper CT 6th Global Tech Mining Conference CY SEP, 2016 CL Valencia, SPAIN DE Quantitative linguistics; Word-frequency; Waring distribution; Natural language processing; Nano-level analysis AB In earlier studies (e.g. Glanzel and Thijs in Scientometrics, 2017) we have used components of text analysis in combination with link-based techniques to cluster documents spaces and to detect emerging research topics on the large scale. Taking up now the objectives of evaluative scientometrics, we attempt to link the textual analysis of small sets of individual scientific papers to evaluative bibliometrics. The objective is, however, quite similar. We focus on the detection of similarities and on monitoring structural changes but this time on the small scale. We proceed from earlier approaches used in quantitative linguistics applied to bibliometrics (Telcs et al. in Math Soc Sci; 10(2):169-178, 1985). In the present pilot study we have selected 18 papers by Andras Schubert and published in three different periods with 6 papers each: 1983-1985, 1993-1998 and 2010-2013. The objective is twofold: We first try only to detect linguistic regularities in the scientometric text by applying a Waring model to the analysis of Schubert's vocabulary on the basis of all words and nouns. The second goal refers to the identification of changes in the used vocabulary over a period of three decades. The main findings are discussed along with future research tasks, which arise from these result in the context of the analysis of dynamics and emergence of research topics at the micro and nano level. C1 [Glanzel, Wolfgang; Heeffer, Sarah; Thijs, Bart] Katholieke Univ Leuven, ECOOM, Naamsestr 61, B-3000 Leuven, Belgium. [Glanzel, Wolfgang; Heeffer, Sarah; Thijs, Bart] Katholieke Univ Leuven, Dept MSI, Naamsestr 61, B-3000 Leuven, Belgium. [Glanzel, Wolfgang] Lib Hungarian Acad Sci, Dept Sci Policy & Scientometr, Arany Janos U 1, H-1051 Budapest, Hungary. C3 KU Leuven; KU Leuven; Hungarian Academy of Sciences RP Glänzel, W (corresponding author), Katholieke Univ Leuven, ECOOM, Naamsestr 61, B-3000 Leuven, Belgium.; Glänzel, W (corresponding author), Katholieke Univ Leuven, Dept MSI, Naamsestr 61, B-3000 Leuven, Belgium.; Glänzel, W (corresponding author), Lib Hungarian Acad Sci, Dept Sci Policy & Scientometr, Arany Janos U 1, H-1051 Budapest, Hungary. EM Wolfgang.Glanzel@kuleuven.be; Sarah.Heeffer@kuleuven.be; Bart.Thijs@kuleuven.be RI Glanzel, Wolfgang/AAE-4395-2021; Glanzel, Wolfgang/A-6280-2008; Thijs, Bart CM/C-2995-2008 OI Glanzel, Wolfgang/0000-0001-7529-5198; CR Braun T, 2016, REV ROUM CHIM, V61, P231 Gelbukh A, 2001, LECT NOTES COMPUT SC, V2004, P332 Glänzel W, 2014, SCIENTOMETRICS, V101, P939, DOI 10.1007/s11192-014-1247-1 Glänzel W, 2017, SCIENTOMETRICS, V111, P1071, DOI 10.1007/s11192-017-2301-6 Kelih E, 2006, STUD CLASS DATA ANAL, P382, DOI 10.1007/3-540-31314-1_46 Kelih E., 2004, GLOTTOMETRICS, V8, P23 Kim SN, 2013, LANG RESOUR EVAL, V47, P723, DOI 10.1007/s10579-012-9210-3 Klein D, 2003, 41ST ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, PROCEEDINGS OF THE CONFERENCE, P423, DOI 10.3115/1075096.1075150 Kornai A., 2002, Glottometrics, V4, P61 Mullins N.C., 1988, Handbook of quantitative studies of science and technology, P81 Piantadosi ST, 2014, PSYCHON B REV, V21, P1112, DOI 10.3758/s13423-014-0585-6 PORTER MF, 1980, PROGRAM-AUTOM LIBR, V14, P130, DOI 10.1108/eb046814 Schubert A., 2013, ATOMS MOLECULES SCIE Shah PK, 2003, BMC BIOINFORMATICS, V4, DOI 10.1186/1471-2105-4-20 SICHEL HS, 1974, J ROY STAT SOC A STA, V137, P25, DOI 10.2307/2345142 TELCS A, 1985, MATH SOC SCI, V10, P169, DOI 10.1016/0165-4896(85)90033-2 NR 16 TC 4 Z9 4 U1 1 U2 45 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0138-9130 EI 1588-2861 J9 SCIENTOMETRICS JI Scientometrics PD JUN PY 2017 VL 111 IS 3 BP 1897 EP 1906 DI 10.1007/s11192-017-2336-8 PG 10 WC Computer Science, Interdisciplinary Applications; Information Science & Library Science WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI); Conference Proceedings Citation Index - Social Science & Humanities (CPCI-SSH); Conference Proceedings Citation Index - Science (CPCI-S) SC Computer Science; Information Science & Library Science GA EV4RE UT WOS:000401747900037 DA 2024-09-05 ER PT J AU Schwemmer, C Wieczorek, O AF Schwemmer, Carsten Wieczorek, Oliver TI The Methodological Divide of Sociology: Evidence from Two Decades of Journal Publications SO SOCIOLOGY-THE JOURNAL OF THE BRITISH SOCIOLOGICAL ASSOCIATION LA English DT Article DE natural language processing; research methodology; scientometrics; sociology of science; sociology of Sociology ID RESEARCH COLLABORATION; SCIENCE; BOUNDARIES; CRISIS; MODEL AB Past research indicates that Sociology is a low-consensus discipline, where different schools of thought have distinct expectations about suitable scientific practices. This division of Sociology into different subfields is to a large extent related to methodology and choices between qualitative or quantitative research methods. Relying on theoretical constructs of the academic prestige economy, boundary demarcation and taste for research, we examine the methodological divide in generalist Sociology journals. Using automated text analysis for 8737 abstracts of articles published between 1995 and 2017, we discover evidence of this divide, but also of an entanglement between methodological choices and different research topics. Moreover, our results suggest a marginally increasing time trend for the publication of quantitative research in generalist journals. We discuss how this consolidation of methodological practices could enforce the entrenchment of different schools of thought, which ultimately reduces the potential for innovative and effective sociological research. C1 [Schwemmer, Carsten] Univ Bamberg, Field Computat Social Sci, Bamberg, Germany. [Schwemmer, Carsten] Univ Bamberg, Chair Polit Sociol, Feldkirchenstr 21, D-96052 Bamberg, Germany. [Wieczorek, Oliver] Univ Bamberg, Chair Sociol, Especially Sociol Theory, Bamberg, Germany. C3 Otto Friedrich University Bamberg; Otto Friedrich University Bamberg; Otto Friedrich University Bamberg RP Schwemmer, C (corresponding author), Univ Bamberg, Chair Polit Sociol, Feldkirchenstr 21, D-96052 Bamberg, Germany. EM c.schwem2er@gmail.com RI Wieczorek, Oliver/ABC-8053-2020 OI Wieczorek, Oliver/0000-0002-6504-0965; Schwemmer, Carsten/0000-0001-9084-946X CR Abramo G, 2009, HIGH EDUC, V57, P155, DOI 10.1007/s10734-008-9139-z Adorno TW, 1987, POSITIVISMUSSTREIT D [Anonymous], 2016, TIDYVERSE EASILY INS Au A, 2018, AM SOCIOL, V49, P98, DOI 10.1007/s12108-017-9348-y Benoit K., 2016, Quanteda: Quantitative analysis of textual data Berger Peter L., 1991, SOCIAL CONSTRUCTION Blei DM, 2012, COMMUN ACM, V55, P77, DOI 10.1145/2133806.2133826 BOURDIEU P, 1985, POETICS, V14, P13, DOI 10.1016/0304-422X(85)90003-8 Bourdieu P., 1992, INVITATION REFLEXIVE Bourdieu Pierre., 1989, SOCIOL THEOR, V7, P14, DOI [DOI 10.2307/202060, 10.2307/202060] Bourdieu Pierre, 2001, SCI SCI REFLEXIVITE Boyns David., 2005, The American Sociologist, V36, P5 Brown SL, 2006, SOC SCI RES, V35, P454, DOI 10.1016/j.ssresearch.2006.03.001 Bryman A., 2008, SAGE HDB SOCIAL RES, P12, DOI [DOI 10.4135/9781446212165.N2, 10.4135/9781446212165.n2] Burawoy M, 2005, AM SOCIOL REV, V70, P4, DOI 10.1177/000312240507000102 Byrne D, 2012, SOCIOLOGY, V46, P13, DOI 10.1177/0038038511419178 COLLINS R, 1994, SOCIOL FORUM, V9, P155, DOI 10.1007/BF01476360 COLLINS R, 1989, AM SOCIOL REV, V54, P124, DOI 10.2307/2095666 Croteau D, 2003, SOC PROBL, V50, P251, DOI 10.1525/sp.2003.50.2.251 Erola J, 2015, SOCIOLOGY, V49, P374, DOI 10.1177/0038038514542495 Feller I, 2009, MINERVA, V47, P323, DOI 10.1007/s11024-009-9129-z Gage N.L., 1989, TEACH COLL REC, V18, P4, DOI https://doi.org/10.3102/0013189X018007004 Gläser J, 2016, ARCH EUR SOCIOL, V57, P117, DOI 10.1017/S0003975616000047 Glaser B. G., 2017, The discovery of grounded theory: Strategies for qualitative research Grimmer J, 2013, POLIT ANAL, V21, P267, DOI 10.1093/pan/mps028 Harzing AW, 2013, SCIENTOMETRICS, V94, P23, DOI 10.1007/s11192-012-0738-1 Hunter Laura., 2008, AM SOCIOL, V39, P290, DOI [DOI 10.1007/S12108-008-9042-1, 10.1007/s12108-008-9042-1] Kuhn T.S., 1962, The structure of scientific revolutions L'decke D., 2018, Journal of Open Source Software, V3, P772, DOI [DOI 10.21105/JOSS.00772, 10.21105/joss.00772] Lamont M, 2002, ANNU REV SOCIOL, V28, P167, DOI 10.1146/annurev.soc.28.110601.141107 Lampropoulou S., 2013, QUALITATIVE SOCIAL R, V14, P1 Le S, 2008, J STAT SOFTW, V25, P1, DOI 10.18637/jss.v025.i01 Leahey E, 2010, RES SOC STRAT MOBIL, V28, P135, DOI 10.1016/j.rssm.2009.12.001 Leahey Erin, 2014, SOC CURR, V1, P228, DOI [DOI 10.1177/2329496514540131, 10.1177/2329496514540131] Lee S, 2005, SOC STUD SCI, V35, P673, DOI 10.1177/0306312705052359 Legewie J, 2016, AM J SOCIOL, V122, P125, DOI 10.1086/686942 Leifeld P, 2013, J STAT SOFTW, V55, P1 MERTON RK, 1968, SCIENCE, V159, P56, DOI 10.1126/science.159.3810.56 MERTON RK, 1988, ISIS, V79, P606, DOI 10.1086/354848 Moksony F, 2014, SCIENTOMETRICS, V101, P1715, DOI 10.1007/s11192-013-1218-y Moody J, 2004, AM SOCIOL REV, V69, P213, DOI 10.1177/000312240406900204 Moody J., 2006, The American Sociologist, V38, P67, DOI [10.1007/s12108-006-1006-8, DOI 10.1007/S12108-006-1006-8] Münch R, 2018, Z SOZIOL, V47, P1, DOI 10.1515/zfsoz-2018-1000 Munch R., 2014, Routledge Advances in Sociology, V121 Oromaner M., 2008, AM SOCIOL, V39, P279 Pachucki MA, 2007, POETICS, V35, P331, DOI 10.1016/j.poetic.2007.10.001 Payne G, 2004, SOCIOLOGY, V38, P153, DOI 10.1177/0038038504039372 Popper KR, 2008, ROUTLEDGE CLASSICS Puddephatt AJ, 2015, CAN REV SOCIOL, V52, P310, DOI 10.1111/cars.12079 Roberts ME, 2014, AM J POLIT SCI, V58, P1064, DOI 10.1111/ajps.12103 Schmitz A, 2017, SOC SCI INFORM, V56, P49, DOI 10.1177/0539018416675071 Slapin JB, 2008, AM J POLIT SCI, V52, P705, DOI 10.1111/j.1540-5907.2008.00338.x Smelser N.J., 2015, The American Sociologist, V46, P303, DOI DOI 10.1007/S12108-015-9260-2 Traag V., 2016, Revealing the quantitative-qualitative divide in sociology using bibliometric visualization Blog post Turner JH, 1998, SOCIOL PERSPECT, V41, P243, DOI 10.2307/1389475 Turner JH, 2006, SOCIOL QUART, V47, P451, DOI 10.1111/j.1533-8525.2006.00053.x Turner Jonathan H., 2016, The American Sociologist, V47, P289, DOI DOI 10.1007/S12108-015-9296-3 Vanderstraeten R, 2010, SOCIOLOGY, V44, P559, DOI 10.1177/0038038510362477 Varga AV, 2011, SCIENTOMETRICS, V88, P163, DOI 10.1007/s11192-011-0342-9 Wieczorek O, 2017, HIGH EDUC, V73, P887, DOI 10.1007/s10734-017-0116-2 Williams M, 2017, SOCIOL RES ONLINE, V22, P132, DOI 10.1177/1360780417734146 Ylijoki OH, 2011, HIGH EDUC, V62, P721, DOI 10.1007/s10734-011-9414-2 NR 62 TC 35 Z9 37 U1 5 U2 19 PU SAGE PUBLICATIONS LTD PI LONDON PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND SN 0038-0385 EI 1469-8684 J9 SOCIOLOGY JI Sociol.-J. Brit. Sociol. Assoc. PD FEB PY 2020 VL 54 IS 1 BP 3 EP 21 DI 10.1177/0038038519853146 PG 19 WC Sociology WE Social Science Citation Index (SSCI) SC Sociology GA KF0YQ UT WOS:000508978500001 OA hybrid, Green Submitted DA 2024-09-05 ER PT J AU Zhao, XL Zhang, YM Xue, JF Shan, C Liu, Z AF Zhao, Xiaolin Zhang, Yiman Xue, Jingfeng Shan, Chun Liu, Zhen TI Research on Network Risk Evaluation Method Based on a Differential Manifold SO IEEE ACCESS LA English DT Article DE Security; Measurement; Communication networks; Standards; Analytic hierarchy process; Machine learning; Manifolds; Network risk evaluation; differential manifold; Riemannian manifold; analytic hierarchy process; common vulnerability scoring system AB With the rapid development of networks, network security is a serious problem. To evaluate a network accurately, this paper proposes a network risk evaluation method based on a differential manifold (DM) and research on traditional methods. The DM divides the network risk evaluation into network structure risk and network behavior risk evaluations. Network structure risk evaluates the network identity, and network behavior risk evaluates the attack and defense of the network. Network assets and asset vulnerabilities characterize a network, and the analytic hierarchy process (AHP) and the Common Vulnerability Scoring System (CVSS) are combined to evaluate the network identity. Network behavior causes high-dimensional indicator changes, and DMs are used to measure network behavior. To examine the effectiveness and accuracy of DMs, two experiments were performed. The experimental results show that the DM method is valid and accurate for evaluating network risk. C1 [Zhao, Xiaolin; Xue, Jingfeng; Shan, Chun; Liu, Zhen] Beijing Inst Technol, Beijing 100081, Peoples R China. [Zhang, Yiman] China Ship Dev & Design Ctr, Wuhan 430064, Peoples R China. C3 Beijing Institute of Technology RP Xue, JF (corresponding author), Beijing Inst Technol, Beijing 100081, Peoples R China. EM xuejf@bit.edu.cn RI liu, zhen/GZK-9546-2022 OI Zhao, Xiaolin/0000-0002-9741-2954; LIU, ZHEN/0000-0003-2473-0086 FU National Key Research and Development Program of China [2016YFB0800700] FX This work was supported by the National Key Research and Development Program of China under Grant 2016YFB0800700. CR Agyeya O, 2019, LECT NOTE DATA ENG, V28, P1, DOI 10.1007/978-981-13-6459-4_1 [Anonymous], INTRO DIFFERENTIABLE [Anonymous], APPL MECH MAT [Anonymous], P IEEE SMARTWORLD UB [Anonymous], 2017, Intrusion Detection Evaluation Dataset (CIC-IDS2017) [Anonymous], INTRO SYMPLECTIC GEO [Anonymous], P DESTECH T COMP SCI [Anonymous], P INT C INF TECHN UN [Anonymous], DIFFERENTIAL GEOMETR [Anonymous], P INT C MACH LEARN B [Anonymous], HARMONIC MAPPINGS RI [Anonymous], DIFFERENTIAL MANIFOL [Anonymous], 2018, A Short Course in Differential Topology, Cambridge Mathematical Textbooks [Anonymous], ANAL PSEUDODIFFERENT [Anonymous], NONLINEAR DYNAMICS 2 [Anonymous], 2013, Differential Forms in Algebraic Topology Azwar H., 2018, 2018 IEEE 5th International Conference on Engineering Technologies and Applied Sciences (ICETAS), P1, DOI [10.1109/ICETAS.2018.8629197, DOI 10.1109/ICETAS.2018.8629197] Banerjee M, 2015, LECT NOTES COMPUT SC, V9349, P719, DOI 10.1007/978-3-319-24553-9_88 Bhaya Wesam, 2017, 2017 Annual Conference on New Trends in Information & Communications Technology Applications (NTICT), P168, DOI 10.1109/NTICT.2017.7976110 Chobanian AV, 2003, HYPERTENSION, V42, P1206, DOI 10.1161/01.HYP.0000107251.49515.c2 Doynikova E, 2017, EUROMICRO WORKSHOP P, P346, DOI 10.1109/PDP.2017.44 Gao LJ, 2019, IEEE ACCESS, V7, P43018, DOI 10.1109/ACCESS.2019.2905812 Gu YH, 2019, IEEE ACCESS, V7, P64351, DOI 10.1109/ACCESS.2019.2917532 Hu CZ, 2018, ENGINEERING-PRC, V4, P78, DOI 10.1016/j.eng.2018.02.010 Kebande Victor R., 2018, CVSS METRIC BASED AN [雷柯楠 Lei Kenan], 2017, [计算机研究与发展, Journal of Computer Research and Development], V54, P2296 Musa T, 2019, INT CONF COMP COMMUN, DOI 10.1109/iccci.2019.8822179 Ramos A, 2017, IEEE COMMUN SURV TUT, V19, P2704, DOI 10.1109/COMST.2017.2745505 Sharafaldin I, 2018, ICISSP: PROCEEDINGS OF THE 4TH INTERNATIONAL CONFERENCE ON INFORMATION SYSTEMS SECURITY AND PRIVACY, P108, DOI 10.5220/0006639801080116 Shuo Wang, 2018, 2018 IEEE 4th International Conference on Computer and Communications (ICCC). Proceedings, P1149, DOI 10.1109/CompComm.2018.8780688 Sun FX, 2017, J PHYS CONF SER, V910, DOI 10.1088/1742-6596/910/1/012005 Wang Qi, 2019, 2019 IEEE 2nd International Conference on Electronics Technology (ICET), P381, DOI 10.1109/ELTECH.2019.8839529 Zhao XL, 2019, IEEE ACCESS, V7, P70610, DOI 10.1109/ACCESS.2019.2919141 NR 33 TC 1 Z9 2 U1 1 U2 22 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 2169-3536 J9 IEEE ACCESS JI IEEE Access PY 2020 VL 8 BP 66315 EP 66326 DI 10.1109/ACCESS.2020.2985547 PG 12 WC Computer Science, Information Systems; Engineering, Electrical & Electronic; Telecommunications WE Science Citation Index Expanded (SCI-EXPANDED) SC Computer Science; Engineering; Telecommunications GA LF4US UT WOS:000527415200029 OA gold DA 2024-09-05 ER PT J AU Li, X Shen, YF Cheng, HL Yuan, F Huang, LC AF Li, Xin Shen, Yuanfei Cheng, Haolun Yuan, Fei Huang, Lucheng TI Identifying the Development Trends and Technological Competition Situations for Digital Twin: A Bibliometric Overview and Patent Landscape Analysis SO IEEE TRANSACTIONS ON ENGINEERING MANAGEMENT LA English DT Article DE Patents; Market research; Hidden Markov models; Analytical models; Digital twin; Bibliometrics; Industries; Bibliometric analysis; competitive situation; digital twin; evolutionary trends; patent analysis ID MODEL AB Digital twin is increasingly prominent for realizing the digital and intelligent transformation of various industries as an emerging technological means to connect the physical and virtual world. While there has been a recent growth of interest in digital twin in industry, finance, and academia, most relevant studies lack a systematic analysis of the status quo, development trends, and technological competition situations for digital twin. In this article, we used bibliometrics and patent analysis to conduct comprehensive and in-depth research of digital twin by reviewing the current status of academic research and technological development, distribution of countries and institutions, and technological competition situations. We found that academic research and technological development in digital twin are currently in the early stages of rapid growth, which is radiating from applications in smart manufacturing to other scenarios such as medical and health, smart cities, energy, transportation, public emergency, and agricultural food. Artificial intelligence technology, digital twin integrated architecture and system, intelligent real-time control have gradually become the key topics of academic research and technology research and development in the field of digital twin in recent years. The digital framework, sustainable digital twin, deep learning and neural network algorithms, and full lifecycle management have the potential to become technology development trends. USA and Germany are the technology leaders and occupy first-mover advantage at present, while China, the U.K., and South Korea are the powerful chasers in the future. C1 [Li, Xin; Shen, Yuanfei; Yuan, Fei; Huang, Lucheng] Beijing Univ Technol, Coll Management & Econ, Beijing 100124, Peoples R China. [Cheng, Haolun] Beijing Inst Graph Commun, Coll New Media, Beijing 102600, Peoples R China. C3 Beijing University of Technology RP Li, X (corresponding author), Beijing Univ Technol, Coll Management & Econ, Beijing 100124, Peoples R China. EM lixinyz@bjut.edu.cn; yuan@bjut.edu.cn; haoluncheng1997@163.com; 18810601577@163.com; hlch@bjut.edu.cn RI Yuan, Fei/D-5734-2011 OI Yuan, Fei/0000-0001-7633-0573 FU National Natural Science Foundation of China [72174017, 71673018]; Social Science Program of Beijing Municipal Education Commission [SM202110005012] FX This work was supported in part by the National Natural Science Foundation of China under Grant 72174017 and Grant 71673018 and in part by the Social Science Program of Beijing Municipal Education Commission under Grant SM202110005012. CR [Anonymous], 2020, INT PAT CLASS Ante L, 2021, MANUF LETT, V27, P96, DOI 10.1016/j.mfglet.2021.01.003 BRADFORD SC, 1985, J INFORM SCI, V10, P176 Budman M., 2020, DELOITTE INSIGHTS TE C. E. S. Institute and L. RootcloudTechnology Co, 2020, WHIT PAP DIG TWIN AP Costello K., 2019, Gartner Survey Reveals Digital Twins Are Entering Mainstream use D. T. Laboratory, 2019, WHIT PAP DIG TWIN TE Donthu N, 2020, J BUS RES, V109, P1, DOI 10.1016/j.jbusres.2019.10.039 Ernst H., 2003, World Patent Information, V25, P233, DOI 10.1016/S0172-2190(03)00077-2 Glaessgen E., 2012, P 53 AIAA ASME ASCE, DOI 10.2514/6.2012-1818 Grieves M., 2011, VIRTUALLY PERFECT DR Grieves M., 2017, Transdisciplinary perspectives on complex systems, P85, DOI [10.1007/978-3-319-38756-7_4, DOI 10.1007/978-3-319-38756-7_4] Harhoff D, 2003, RES POLICY, V32, P1343, DOI 10.1016/S0048-7333(02)00124-5 He B, 2021, ADV MANUF, V9, P1, DOI 10.1007/s40436-020-00302-5 Hu C., 2012, CHIN PHARM AFFAIRS, V26, P134 Hualong, 2021, WHIT PAP DIG TWIN TE Huang L., 2016, SCI TECHNOLOGY MANAG, V36, P213, DOI DOI 10.3969/J.ISSN.1000-7695.2016.12.039 Karvonen M, 2016, J CLEAN PROD, V112, P3735, DOI 10.1016/j.jclepro.2015.06.031 Kritzinger W, 2018, IFAC PAPERSONLINE, V51, P1016, DOI 10.1016/j.ifacol.2018.08.474 Lee YG, 2007, SCIENTOMETRICS, V70, P27, DOI 10.1007/s11192-007-0102-z Li X, 2020, INT J TECHNOL MANAGE, V82, P322, DOI 10.1504/IJTM.2020.108987 Li X, 2019, TECHNOL FORECAST SOC, V146, P432, DOI 10.1016/j.techfore.2019.01.012 Lim KYH, 2020, J INTELL MANUF, V31, P1313, DOI 10.1007/s10845-019-01512-w Liu MN, 2021, J MANUF SYST, V58, P346, DOI 10.1016/j.jmsy.2020.06.017 Liu Y., 2016, Sci. Res. Manag., V37, P337, DOI [10.19571/j.cnki.1000-2995.2016.s1.049, DOI 10.19571/J.CNKI.1000-2995.2016.S1.049] Ma Y.T., 2014, NUCL INSTRUM METH A, V33, P38 McWilliams K., 2013, P 28 TECH C AM SOC C, P114 Moore S., 2019, TOP TRENDS GARTNER H Negri E, 2017, PROCEDIA MANUF, V11, P939, DOI 10.1016/j.promfg.2017.07.198 Nikolakis N, 2019, INT J COMPUT INTEG M, V32, P1, DOI 10.1080/0951192X.2018.1529430 Oyekan JO, 2019, ROBOT CIM-INT MANUF, V55, P41, DOI 10.1016/j.rcim.2018.07.006 P. I. Team, 2013, GRAPH WORLDW PAT LAN Panetta K, 2020, 5 Trends Drive the Gartner Hype Cycle for Emerging Technologies, 2020 Piascik B., 2010, TECHNOLOGY AREA 12 M Poppe A, 2019, ENERGIES, V12, DOI 10.3390/en12101909 Rosen R, 2015, IFAC PAPERSONLINE, V48, P567, DOI 10.1016/j.ifacol.2015.06.141 Schluse M, 2018, IEEE T IND INFORM, V14, P1722, DOI 10.1109/TII.2018.2804917 Shafto M., 2010, TECHNOLOGY AREA 11 M Söderberg R, 2017, CIRP ANN-MANUF TECHN, V66, P137, DOI 10.1016/j.cirp.2017.04.038 Tao Fei, 2019, Computer Integrated Manufacturing Systems, V25, P1, DOI 10.13196/j.cims.2019.01.001 Tao F, 2019, IEEE T IND INFORM, V15, P2405, DOI 10.1109/TII.2018.2873186 Tao F, 2018, CIRP ANN-MANUF TECHN, V67, P169, DOI 10.1016/j.cirp.2018.04.055 Tao Fei, 2018, Computer Integrated Manufacturing Systems, V24, P1, DOI 10.13196/j.cims.2018.01.001 Tao F, 2018, INT J ADV MANUF TECH, V94, P3563, DOI 10.1007/s00170-017-0233-1 Tao F, 2017, IEEE ACCESS, V5, P20418, DOI 10.1109/ACCESS.2017.2756069 Tuegel E. J., 2011, International Journal of Aerospace Engineering, V2011, DOI 10.1155/2011/154798 Walker M., 2018, Hype cycle for emerging technologies Wang KJ, 2020, INT J ADV MANUF TECH, V107, P4687, DOI 10.1007/s00170-020-05314-w Weber C, 2017, PROC CIRP, V63, P173, DOI 10.1016/j.procir.2017.03.309 Xiao Y., 2021, MATERIALS, V14, P1 Zhang H, 2017, IEEE ACCESS, V5, P26901, DOI 10.1109/ACCESS.2017.2766453 NR 51 TC 5 Z9 5 U1 30 U2 226 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9391 EI 1558-0040 J9 IEEE T ENG MANAGE JI IEEE Trans. Eng. Manage. PY 2024 VL 71 BP 1998 EP 2021 DI 10.1109/TEM.2022.3166794 EA MAY 2022 PG 24 WC Business; Engineering, Industrial; Management WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Business & Economics; Engineering GA EO4E7 UT WOS:000791727000001 DA 2024-09-05 ER PT J AU Rejeb, A Rejeb, K Appolloni, A Treiblmaier, H AF Rejeb, Abderahman Rejeb, Karim Appolloni, Andrea Treiblmaier, Horst TI Foundations and knowledge clusters in TikTok (Douyin) research: evidence from bibliometric and topic modelling analyses SO MULTIMEDIA TOOLS AND APPLICATIONS LA English DT Article DE TikTok; Public health; Body image; Bibliometrics; Topic modeling ID SOCIAL MEDIA; COVID-19 INFORMATION; SHORT VIDEO; MANAGEMENT; DOMAIN; VISUALIZATION; OPPORTUNITIES; ENGAGEMENT; BUSINESS; SCIENCE AB The goal of this study is to comprehensively analyze the dynamics and structure of TikTok research since its initial development. The scholarly composition of articles dealing with TikTok was dissected via a bibliometric study based on a corpus of 542 journal articles from the Scopus database. The results show that TikTok research has flourished in recent years and also demonstrate that the authors' collaboration networks are disjointed, indicating a lack of cooperation among TikTok researchers. Furthermore, the analysis reveals that research collaboration among academic institutions reflects the North-South divide, also highlighting a limited research collaboration between institutions in developed and developing countries. Based on the keyword co-occurrence network and topic modeling, TikTok research revolves mainly around five thematic areas, including public health, health communication and education, platform governance, body image, and its impact on children and students. Based on these findings, numerous suggestions for further research are offered. As far as the authors are aware, this is the first application of bibliometrics and topic modeling to assess the growth of TikTok research and reveal the intellectual base of this knowledge domain. C1 [Rejeb, Abderahman] Univ Roma Tor Vergata, Fac Econ, Dept Management & Law, Via Columbia 2, I-00133 Rome, Italy. [Rejeb, Karim] Univ Carthage, Fac Sci Bizerte, Zarzouna 7021, Bizerte, Tunisia. [Appolloni, Andrea] Univ Roma Tor Vergata, Fac Econ, Dept Management & Law, Via Columbia 2, I-00133 Rome, Italy. [Treiblmaier, Horst] Modul Univ Vienna, Sch Int Management, Kahlenberg 1, A-1190 Vienna, Austria. C3 University of Rome Tor Vergata; Universite de Carthage; University of Rome Tor Vergata RP Treiblmaier, H (corresponding author), Modul Univ Vienna, Sch Int Management, Kahlenberg 1, A-1190 Vienna, Austria. EM horst.treiblmaier@modul.ac.at RI Appolloni, Andrea/L-3607-2014 OI Appolloni, Andrea/0000-0001-5741-398X FU MODUL University Vienna GmbH FX No Statement Available CR Abdollahi A, 2021, SUSTAINABILITY-BASEL, V13, DOI 10.3390/su132112011 AI-Maroof R., 2021, International Journal of Data and Network Science, V5, P197, DOI [10.5267/j.ijdns.2021.6.013, DOI 10.5267/J.IJDNS.2021.6.013] AJIFERUKE I, 1988, SCIENTOMETRICS, V14, P421, DOI 10.1007/BF02017100 Alalwan AA, 2017, TELEMAT INFORM, V34, P1177, DOI 10.1016/j.tele.2017.05.008 Anderson K. E., 2020, Library hi tech news, V37, P7, DOI DOI 10.1108/LHTN-01-2020-0001 [Anonymous], 2021, MEDICINA LITHUANIA, DOI DOI 10.3390/MEDICINA57070648 [Anonymous], 1934, Engineering, DOI [10.1177/016555158501000, DOI 10.1177/016555158501000] Arora SD, 2022, TECHNOL FORECAST SOC, V183, DOI 10.1016/j.techfore.2022.121942 Arroyo-Machado W, 2020, PLOS ONE, V15, DOI 10.1371/journal.pone.0228713 Aryadoust V, 2021, COMPUT ASSIST LANG L, V34, P898, DOI 10.1080/09588221.2019.1647251 Ashta A, 2021, STRATEG CHANG, V30, P211, DOI 10.1002/jsc.2404 Avdeeff MK, 2021, CONTEMP MUSIC REV, V40, P78, DOI 10.1080/07494467.2021.1945225 Bai GC, 2022, FRONT PUBLIC HEALTH, V10, DOI 10.3389/fpubh.2022.924748 Bandy Jack, 2021, Proceedings of the ACM on Human-Computer Interaction, V5, DOI 10.1145/3449148 Barta S, 2023, J RETAIL CONSUM SERV, V70, DOI 10.1016/j.jretconser.2022.103149 Basch CH, 2021, JMIR PEDIATR PARENT, V4, DOI 10.2196/30681 Basch CH, 2021, JMIR PUBLIC HLTH SUR, V7, DOI 10.2196/26392 Basch Corey H, 2022, Int J Adolesc Med Health, V34, P367, DOI 10.1515/ijamh-2020-0111 Bassell K, 2010, TEACH LEARN NURS, V5, P143, DOI 10.1016/j.teln.2010.07.007 Bolton RN, 2013, J SERV MANAGE, V24, P245, DOI 10.1108/09564231311326987 Bozzola E, 2022, INT J ENV RES PUB HE, V19, DOI 10.3390/ijerph19169960 Brooks R, 2022, BMJ GLOB HEALTH, V7, DOI 10.1136/bmjgh-2022-009112 Brown Y, 2024, J SOCIOL, V60, P121, DOI 10.1177/14407833221110267 Bossen CB, 2020, YOUNG CONSUM, V21, P463, DOI 10.1108/YC-07-2020-1186 BURRELL QL, 1989, J DOC, V45, P302, DOI 10.1108/eb026847 Caputo A, 2023, INT J CONFL MANAGE, V34, P1, DOI 10.1108/IJCMA-07-2021-0117 Chai XN, 2022, FRONT PUBLIC HEALTH, V9, DOI 10.3389/fpubh.2021.774675 Chang CY, 2021, NURS EDUC TODAY, V96, DOI 10.1016/j.nedt.2020.104645 Chen XL, 2022, COGN COMPUT, V14, P24, DOI 10.1007/s12559-021-09861-6 Chobanyan K., 2021, J RUSSIAN MEDIA JOUR, V3, DOI [10.30547/worldofmedia.3.2021.3, DOI 10.30547/WORLDOFMEDIA.3.2021.3] Cleofas JV, 2022, ARCH PSYCHIAT NURS, V40, P97, DOI 10.1016/j.apnu.2022.06.003 Cobo MJ, 2011, J AM SOC INF SCI TEC, V62, P1382, DOI 10.1002/asi.21525 Colicchia C, 2019, SUPPLY CHAIN MANAG, V24, P5, DOI 10.1108/SCM-01-2018-0003 Colicchia C, 2012, SUPPLY CHAIN MANAG, V17, P403, DOI 10.1108/13598541211246558 Cooper BR, 2022, CURR DERMATOL REP, V11, P103, DOI 10.1007/s13671-022-00359-4 Cuccurullo C, 2016, SCIENTOMETRICS, V108, P595, DOI 10.1007/s11192-016-1948-8 Dabic M, 2020, SMALL BUS ECON, V55, P705, DOI 10.1007/s11187-019-00181-6 De La Garza H, 2021, INT J ENV RES PUB HE, V18, DOI 10.3390/ijerph18095002 De Leyn T, 2022, J YOUTH STUD, V25, P1108, DOI 10.1080/13676261.2021.1939286 de Solla Price DJ, 1963, LITTLE SCI BIG SCI, DOI DOI 10.7312/PRIC91844 De Veirman M, 2019, FRONT PSYCHOL, V10, DOI 10.3389/fpsyg.2019.02685 Della Corte V, 2018, BRIT FOOD J, V120, P2270, DOI 10.1108/BFJ-09-2017-0538 Demiroz F, 2019, LOCAL GOV STUD, V45, P308, DOI 10.1080/03003930.2018.1541796 Deng DS, 2022, J HOSP TOUR TECHNOL, V13, P683, DOI 10.1108/JHTT-05-2021-0143 Dias P., 2022, J. Digit. Soc. Media Mark., V10, P82 Ding Y, 2011, J INFORMETR, V5, P187, DOI 10.1016/j.joi.2010.10.008 Dinic BM, 2021, CURR PSYCHOL, V40, P3206, DOI 10.1007/s12144-019-00250-9 Doyle B, 2023, TikTok Statistics Dwivedi Y.K., 2015, The Marketing Review, V15, P289, DOI [DOI 10.1362/146934715X14441363377999, 10.1362/146934715x14441363377999, 10.1362/146934715X14441363377999] Eghtesadi M, 2020, CAN J PUBLIC HEALTH, V111, P389, DOI 10.17269/s41997-020-00343-0 Escamilla-Fajardo P, 2021, J HOSP LEIS SPORT TO, V28, DOI 10.1016/j.jhlste.2021.100302 ESFAHANI H J., 2019, Int J Data Netw Sci, V3, P145, DOI [10.5267/j.ijdns.2019.2.007, DOI 10.5267/J.IJDNS.2019.2.007] Fahimnia B, 2015, INT J PROD ECON, V162, P101, DOI 10.1016/j.ijpe.2015.01.003 Fraticelli L, 2021, INT J ENV RES PUB HE, V18, DOI 10.3390/ijerph182413260 Gamir-Ríos J, 2022, COMMUN SOC-SPAIN, V35, P37, DOI 10.15581/003.35.2.37-52 Gao LQ, 2022, FRONT PHYS-LAUSANNE, V9, DOI 10.3389/fphy.2021.787185 Garrido-Cardenas JA, 2020, TUBERCULOSIS, V121, DOI 10.1016/j.tube.2020.101917 Gillespie T, 2014, INSIDE TECHNOL, P1 Glänzel W, 2005, SCIENTOMETRICS, V65, P323, DOI 10.1007/s11192-005-0277-0 González-Teruel A, 2015, SCIENTOMETRICS, V103, P687, DOI 10.1007/s11192-015-1548-z Gray JE, 2021, INTERNET POLICY REV, V10, DOI 10.14763/2021.2.1557 Greene Derek, 2014, Machine Learning and Knowledge Discovery in Databases. European Conference, ECML PKDD 2014. Proceedings: LNCS 8724, P498, DOI 10.1007/978-3-662-44848-9_32 Guarda Teresa, 2021, Marketing and Smart Technologies. Proceedings of ICMarkTech 2020. Smart Innovation, Systems and Technologies (SIST 205), P35, DOI 10.1007/978-981-33-4183-8_4 He M, 2022, APPL SCI-BASEL, V12, DOI 10.3390/app12189136 Helbach J, 2021, J SPORT SCI MED, V20, P642, DOI 10.52082/jssm.2021.642 Hermida A, 2012, JOURNALISM STUD, V13, P815, DOI 10.1080/1461670X.2012.664430 Herrick SSC, 2021, INT J EAT DISORDER, V54, P516, DOI 10.1002/eat.23463 Holland G, 2016, BODY IMAGE, V17, P100, DOI 10.1016/j.bodyim.2016.02.008 Hopfer S, 2022, FRONT DIGIT HEALTH, V4, DOI 10.3389/fdgth.2022.819228 Jain J, 2022, MANAG REV Q, V72, P823, DOI 10.1007/s11301-021-00215-y Janmaijaya M, 2021, ENG APPL ARTIF INTEL, V103, DOI 10.1016/j.engappai.2021.104280 Kajikawa Y, 2022, TECHNOL FORECAST SOC, V182, DOI 10.1016/j.techfore.2022.121877 Karizat Nadia, 2021, Proceedings of the ACM on Human-Computer Interaction, V5, DOI 10.1145/3476046 Kaye D.B. V., 2022, TikTok: Creativity and culture in short video Keim Y, 2022, ELECTRONICS-SWITZ, V11, DOI 10.3390/electronics11182972 Khan GF, 2016, COMMUN ASSOC INF SYS, V39, P367, DOI 10.17705/1CAIS.03918 Khan Y, 2022, ADV ARCHAEOL PRACT, V10, P452, DOI 10.1017/aap.2022.28 KINNUCAN MT, 1990, INFORM PROCESS MANAG, V26, P777, DOI 10.1016/0306-4573(90)90051-3 Knani M, 2022, INT J HOSP MANAG, V107, DOI 10.1016/j.ijhm.2022.103317 Kozlowski D, 2021, PLOS ONE, V16, DOI 10.1371/journal.pone.0245393 LAW J, 1988, SCIENTOMETRICS, V14, P251, DOI 10.1007/BF02020078 Li M, 2022, CHEMOSPHERE, V304, DOI 10.1016/j.chemosphere.2022.135337 Li Y, 2021, Front Econ Manag, V2, P176, DOI [10.6981/FEM.202102_2(2).0022, DOI 10.6981/FEM.202102_2(2).0022] Li YC, 2021, HEALTH EDUC RES, V36, P261, DOI 10.1093/her/cyab010 Liang J, 2022, J MED INTERNET RES, V24, DOI 10.2196/39360 Liu ZY, 2023, TECHNOL FORECAST SOC, V187, DOI 10.1016/j.techfore.2022.122253 Ma YL, 2021, MANAGE ORGAN REV, V17, P382, DOI 10.1017/mor.2020.69 MacKinnon KR, 2021, J MED INTERNET RES, V23, DOI 10.2196/30315 Manago A.M., 2015, FRIENDSHIP HAPPINESS, P187, DOI DOI 10.1007/978-94-017-9603-3_11 McCashin D, 2023, CLIN CHILD PSYCHOL P, V28, P279, DOI 10.1177/13591045221106608 Meng KS, 2021, TELECOMMUN POLICY, V45, DOI 10.1016/j.telpol.2021.102172 Mhalla M, 2020, INT J INNOV TECHNOL, V17, DOI 10.1142/S0219877020500509 Miao WS, 2023, MEDIA INT AUST, V186, P97, DOI 10.1177/1329878X211013919 Mobin MA, 2021, EURASIAN ECON REV, DOI 10.1007/s40822-021-00193-2 Morales M, 2022, INT J ENV RES PUB HE, V19, DOI 10.3390/ijerph19031820 Mostafa MM, 2020, TRENDS FOOD SCI TECH, V99, P660, DOI 10.1016/j.tifs.2020.03.022 Muhl DD, 2022, HELIYON, V8, DOI 10.1016/j.heliyon.2022.e09369 Nekmahmud M, 2022, TECHNOL FORECAST SOC, V185, DOI 10.1016/j.techfore.2022.122067 Olvera C, 2021, MOV DISORD CLIN PRAC, V8, P1200, DOI 10.1002/mdc3.13316 Omar Bahiyah, 2020, International Journal of Interactive Mobile Technologies, V14, P121, DOI 10.3991/ijim.v14i04.12429 Ostrovsky AM, 2020, J ADOLESCENT HEALTH, V67, P730, DOI 10.1016/j.jadohealth.2020.07.039 Pan WJ, 2022, FRONT PSYCHOL, V13, DOI 10.3389/fpsyg.2022.846390 Patra SK, 2006, SCIENTOMETRICS, V67, P477, DOI 10.1556/Scient.67.2006.3.9 Pop LM, 2022, INT J ENV RES PUB HE, V19, DOI 10.3390/ijerph19095064 Prieto-Gutirrez J. J., 2019, The Serials Librarian, V77, P38, DOI [10.1080/0361526X.2019.1637387, DOI 10.1080/0361526X.2019.1637387] Purushothaman V, 2022, J MED INTERNET RES, V24, DOI 10.2196/34050 Qin Y, 2022, FRONT PSYCHOL, V13, DOI 10.3389/fpsyg.2022.932805 Radin AGB, 2022, J MICROBIOL BIOL EDU, V23, DOI 10.1128/jmbe.00236-21 Ramos-Rodríguez AR, 2004, STRATEGIC MANAGE J, V25, P981, DOI 10.1002/smj.397 Rand JR, 2021, SCHOLE: A J Leisure Stud Recreat Educ, DOI [10.1080/1937156X.2021.1962219, DOI 10.1080/1937156X.2021.1962219] Rejeb A, 2022, TELEMAT INFORM, V73, DOI 10.1016/j.tele.2022.101876 Reuter K, 2021, JMIR PUBLIC HLTH SUR, V7, DOI 10.2196/24429 Rosas SR, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0017428 Ruparel N, 2023, J BUS RES, V156, DOI 10.1016/j.jbusres.2022.113482 Rutherford BN, 2022, INT J ENV RES PUB HE, V19, DOI 10.3390/ijerph19031141 SALTON G, 1991, SCIENCE, V253, P974, DOI 10.1126/science.253.5023.974 Sari E. F. N., 2022, International Journal of Human Movement and Sports Sciences, V10, P187, DOI [10.13189/saj.2022.100208, DOI 10.13189/SAJ.2022.100208] Schellewald A, 2021, INT J COMMUN, V15, P0 Scherr S, 2021, COMPUT HUM BEHAV, V124, DOI 10.1016/j.chb.2021.106893 Song SJ, 2021, INTERNET RES, V31, P2120, DOI 10.1108/INTR-10-2020-0593 Southerton C, 2021, J Commun, V15, P0 Southwick L, 2021, J ADOLESCENT HEALTH, V69, P234, DOI 10.1016/j.jadohealth.2021.05.010 Su HN, 2010, SCIENTOMETRICS, V85, P65, DOI 10.1007/s11192-010-0259-8 Su YR, 2020, INT J SPORT COMMUN, V13, P436, DOI 10.1123/ijsc.2020-0238 Sun TZ, 2023, TOB CONTROL, V32, P251, DOI 10.1136/tobaccocontrol-2021-056619 Szeto MD, 2021, CURR DERMATOL REP, V10, P97, DOI 10.1007/s13671-021-00343-4 Tang KY, 2023, INTERACT LEARN ENVIR, V31, P2134, DOI 10.1080/10494820.2021.1875001 Umar IM, 2022, J ACCOUNT EMERG ECON, V12, P741, DOI 10.1108/JAEE-01-2021-0011 Van Eck N.J., 2014, Measuring Scholarly Impact: Methods and Practice, P285, DOI 10.1007/978-3-319-10377-8_13(InEng.) Vanni T, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0093376 Vázquez-Herrero J, 2022, JOURNALISM, V23, P1717, DOI 10.1177/1464884920969092 Wakefield R., 2008, The British Accounting Review, V40, P228, DOI DOI 10.1016/J.BAR.2008.03.001 Wamba SF, 2017, BUS PROCESS MANAG J, V23, P477, DOI 10.1108/BPMJ-02-2017-0047 Wang SS, 2022, SEXUALITIES, DOI 10.1177/13634607221106912 Wang YW, 2020, COMPUT HUM BEHAV, V110, DOI 10.1016/j.chb.2020.106373 Watts DJ, 1998, NATURE, V393, P440, DOI 10.1038/30918 Weimann G, 2023, STUD CONFL TERROR, V46, P752, DOI 10.1080/1057610X.2020.1780027 Wengel Y, 2022, J OUTDOOR REC TOUR, V37, DOI 10.1016/j.jort.2021.100458 Whiting A, 2013, QUAL MARK RES, V16, P362, DOI 10.1108/QMR-06-2013-0041 Wu JX, 2022, INT J ENV RES PUB HE, V19, DOI 10.3390/ijerph19127064 Xi JN, 2023, COMPUT BIOL MED, V155, DOI 10.1016/j.compbiomed.2023.106672 Xi JN, 2022, NEUROCOMPUTING, V468, P60, DOI 10.1016/j.neucom.2021.10.013 Xue J, 2020, PLOS ONE, V15, DOI 10.1371/journal.pone.0239441 Yan RT, 2022, INT J MACH LEARN CYB, V13, P839, DOI 10.1007/s13042-021-01356-y Yang Y., 2021, J INTERACTIVE ADVERT, V21, P297, DOI DOI 10.1080/15252019.2021.1995544 Yeung AWK, 2018, CHEMOSENS PERCEPT, V11, P42, DOI 10.1007/s12078-018-9243-0 Yuan CX, 2022, J INTELL MANUF, V33, P425, DOI 10.1007/s10845-021-01885-x Yuan L, 2022, IND MANAGE DATA SYST, V122, P1956, DOI 10.1108/IMDS-12-2021-0754 Zeng J, 2022, POLICY INTERNET, V14, P79, DOI 10.1002/poi3.287 Zheng DX, 2021, PEDIATR DERMATOL, V38, P336, DOI 10.1111/pde.14471 Zhu R, 2023, CURR ISSUES TOUR, V26, P2762, DOI 10.1080/13683500.2022.2097058 Zong QJ, 2013, SCIENTOMETRICS, V94, P781, DOI 10.1007/s11192-012-0799-1 Zou HB, 2015, J MANAG ANAL, V2, P295, DOI 10.1080/23270012.2015.1100969 Zou X, 2018, ACCIDENT ANAL PREV, V118, P131, DOI 10.1016/j.aap.2018.06.010 Zulli D, 2022, NEW MEDIA SOC, V24, P1872, DOI 10.1177/1461444820983603 NR 155 TC 1 Z9 1 U1 16 U2 21 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 1380-7501 EI 1573-7721 J9 MULTIMED TOOLS APPL JI Multimed. Tools Appl. PD MAR PY 2024 VL 83 IS 11 BP 32213 EP 32243 DI 10.1007/s11042-023-16768-x EA SEP 2023 PG 31 WC Computer Science, Information Systems; Computer Science, Software Engineering; Computer Science, Theory & Methods; Engineering, Electrical & Electronic WE Science Citation Index Expanded (SCI-EXPANDED) SC Computer Science; Engineering GA KF5H9 UT WOS:001070386400002 OA hybrid DA 2024-09-05 ER PT J AU Hake, J Crowley, M Coy, A Shanks, D Eoff, A Kirmer-Voss, K Dhanda, G Parente, DJ AF Hake, Joel Crowley, Miles Coy, Allison Shanks, Denton Eoff, Aundria Kirmer-Voss, Kalee Dhanda, Gurpreet Parente, Daniel J. TI Quality, Accuracy, and Bias in ChatGPT-Based Summarization of Medical Abstracts SO ANNALS OF FAMILY MEDICINE LA English DT Article DE artificial intelligence; large language models; ChatGPT; primary care research; critical assessment of scientific literature; bias; text mining; text analysis AB PURPOSE Worldwide clinical knowledge is expanding rapidly, but physicians have sparse time to review scientific literature. Large language models (eg, Chat Generative Pretrained Transformer [ChatGPT]), might help summarize and prioritize research articles to review. However, large language models sometimes "hallucinate" incorrect information. METHODS We evaluated ChatGPT's ability to summarize 140 peer -reviewed abstracts from 14 journals. Physicians rated the quality, accuracy, and bias of the ChatGPT summaries. We also compared human ratings of relevance to various areas of medicine to ChatGPT relevance ratings. RESULTS ChatGPT produced summaries that were 70% shorter (mean abstract length of 2,438 characters decreased to 739 characters). Summaries were nevertheless rated as high quality (median score 90, interquartile range [IQR] 87.0-92.5; scale 0-100), high accuracy (median 92.5, IQR 89.0-95.0), and low bias (median 0, IQR 0-7.5). Serious inaccuracies and hallucinations were uncommon. Classification of the relevance of entire journals to various fields of medicine closely mirrored physician classifications (nonlinear standard error of the regression [SER] 8.6 on a scale of 0-100). However, relevance classification for individual articles was much more modest (SER 22.3). CONCLUSIONS Summaries generated by ChatGPT were 70% shorter than mean abstract length and were characterized by high quality, high accuracy, and low bias. Conversely, ChatGPT had modest ability to classify the relevance of articles to medical specialties. We suggest that ChatGPT can help family physicians accelerate review of the scientific literature and have developed software (pyJournalWatch) to support this application. Life -critical medical decisions should remain based on full, critical, and thoughtful evaluation of the full text of research articles in context with clinical guidelines. C1 [Hake, Joel; Crowley, Miles; Coy, Allison; Shanks, Denton; Eoff, Aundria; Kirmer-Voss, Kalee; Dhanda, Gurpreet; Parente, Daniel J.] Univ Kansas, Dept Family Med & Community Hlth, Med Ctr, Kansas City, KS USA. [Parente, Daniel J.] 3901 Rainbow Blvd,MS 4010, Kansas City, KS 66160 USA. C3 University of Kansas; University of Kansas Medical Center RP Parente, DJ (corresponding author), 3901 Rainbow Blvd,MS 4010, Kansas City, KS 66160 USA. EM dparente@kumc.edu FU REDCap data management platform at the University of Kansas Medical Center - National Center for Advancing Translational Sciences (NCATS) [UL1TR002366] FX This work was not directly funded but used the REDCap data management platform at the University of Kansas Medical Center, which was supported by a Clinical and Translational Science Awards grant from the National Center for Advancing Translational Sciences (NCATS) awarded to the University of Kansas for Frontiers: University of Kansas Clinical and Translational Science Institute (#UL1TR002366) . This work is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health or NCATS. This agency had no role in the design and conduct of the study; collection, management, analysis, and interpretation of the data; preparation, review, or approval of the manuscript; or decision to submit the manuscript for publication. CR Agrawal A, Harv Bus Rev. Amatriain X, 2024, Arxiv, DOI [arXiv:2302.07730, DOI 10.48550/ARXIV.2302.07730] Azamfirei R, 2023, CRIT CARE, V27, DOI 10.1186/s13054-023-04393-x Bradley EA, 2022, CIRCULATION, V146, pe229, DOI 10.1161/CIR.0000000000001093 Brown T., 2020, NEURIPS Browne R., 2021, CNBC Chen M., 2021, arXiv Densen Peter, 2011, Trans Am Clin Climatol Assoc, V122, P48 Dillon EC, 2020, J GEN INTERN MED, V35, P261, DOI 10.1007/s11606-019-05381-0 Goyal J. J., 2022, arXiv Gupta A, 2021, Arxiv, DOI arXiv:2108.01064 Harris PA, 2019, J BIOMED INFORM, V95, DOI 10.1016/j.jbi.2019.103208 Harris PA, 2009, J BIOMED INFORM, V42, P377, DOI 10.1016/j.jbi.2008.08.010 Kirk H, 2021, Arxiv, DOI arXiv:2102.04130 Kojima T, 2022, Arxiv, DOI [arXiv:2205.11916, 10.48550/arXiv.2205.11916] Kung Tiffany H, 2023, PLOS Digit Health, V2, pe0000198, DOI 10.1371/journal.pdig.0000198 Le Scao T., 2022, arXiv, DOI 10.48550/arXiv.2211.05100 Neelakantan A., 2022, arXiv Nozza D, 2022, BIGSCIENCE EP 5 WORK O'brien M., 2019, AP NEWS Open AI, API Reference-OpenAI API 2023 Ouyang L., 2022, arXiv Roller S, 2020, Arxiv, DOI arXiv:2004.13637 Sayers Eric., 2009, Entrez Programming Utilities Help [Internet] Shuster K., 2021, arXiv, DOI DOI 10.48550/ARXIV.2104.07567 Stiennon N, 34 C NEUR INF PROC S Sun Weiwei, 2022, arXiv Thoppilan R., 2022, arXiv Vaswani A, 2024, 31 C NEUR INF PROC S Warzel C., The Atlantic Wei JS, 2022, Arxiv, DOI [arXiv:2201.11903, 10.48550/arXiv.2201.11903] Wobben G, Medium Wunker S., 2015, Forbes NR 33 TC 0 Z9 0 U1 16 U2 16 PU ANNALS FAMILY MEDICINE PI LEAWOOD PA 11400 TOMAHAWK CREEK PARKWAY, LEAWOOD, KS 66211-2672 USA SN 1544-1709 EI 1544-1717 J9 ANN FAM MED JI Ann. Fam. Med. PD MAR-APR PY 2024 VL 22 IS 2 BP 113 EP 120 DI 10.1370/afm.3075 PG 8 WC Primary Health Care; Medicine, General & Internal WE Science Citation Index Expanded (SCI-EXPANDED) SC General & Internal Medicine GA NA2N2 UT WOS:001197653100009 PM 38527823 OA gold DA 2024-09-05 ER PT J AU Vieira, ES Gomes, JANF AF Vieira, Elizabeth S. Gomes, Jose A. N. F. TI The bibliometric indicators as predictors of the final decision of the peer review SO RESEARCH EVALUATION LA English DT Article DE peer review; bibliometric indicators; logistic regression; auxiliary instrument; margins ID ASSESSMENT EXERCISE RATINGS; CITATION COUNTS; COMPUTER-SCIENCE; UNIVERSITY; INDEX; INFORMATION; ARCHAEOLOGY; VALIDATION; EXPERIENCE; METRICS AB Peer review of candidates' proposals for research position is generally used as the best method available to select the most promising researchers, but it is very costly and has its limitations. This article analyzes to what extent bibliometric indicators can predict the results of the peer review exercise using the example of a particular selection process. Two composite indicators are found to be strongly correlated with peer review-based decisions. We calculated that the probability of the estimated prediction, as determined by the composite indicators, for a selected applicant to be higher than the estimated prediction determined for a rejected applicant is about 75%. C1 [Vieira, Elizabeth S.; Gomes, Jose A. N. F.] Univ Porto, Fac Ciencias, Dept Quim & Bioquim, REQUIMTE, Rua Campo Alegre,687, P-4169007 Oporto, Portugal. C3 Universidade do Porto RP Vieira, ES (corresponding author), Univ Porto, Fac Ciencias, Dept Quim & Bioquim, REQUIMTE, Rua Campo Alegre,687, P-4169007 Oporto, Portugal. EM elizabeth.vieira@fc.up.pt RI de Sousa Vieira, Elizabeth/A-6820-2010 OI de Sousa Vieira, Elizabeth/0000-0002-2240-110X CR Abramo G, 2009, RES POLICY, V38, P206, DOI 10.1016/j.respol.2008.11.001 Aksnes DW, 2004, RES EVALUAT, V13, P33, DOI 10.3152/147154404781776563 [Anonymous], CITATION ANAL RES EV [Anonymous], 2007, SJR SCIMAGO J COUNTR [Anonymous], 2013, APPL LOGISTIC REGRES Bornmann L, 2008, J AM SOC INF SCI TEC, V59, P1841, DOI 10.1002/asi.20901 Bornmann L, 2007, J INFORMETR, V1, P204, DOI 10.1016/j.joi.2007.01.002 Bornmann L, 2013, J INFORMETR, V7, P286, DOI 10.1016/j.joi.2012.12.003 Bornmann L, 2011, ANNU REV INFORM SCI, V45, P199, DOI 10.1002/aris.2011.1440450112 Butler L, 2011, EUR POLIT SCI, V10, P44, DOI 10.1057/eps.2010.13 Cabezas-Clavijo A, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0068258 Cicero T., 2013, BIBLIOMETRIC PEER RE De Sutter B, 2012, COMMUN ACM, V55, P69, DOI 10.1145/2240236.2240256 Franceschet M, 2011, J INFORMETR, V5, P275, DOI 10.1016/j.joi.2010.12.002 Glänzel W, 2003, SCIENTOMETRICS, V58, P571, DOI 10.1023/B:SCIE.0000006881.30700.ea Glänzel W, 2006, SCIENTOMETRICS, V68, P457, DOI 10.1007/s11192-006-0124-y González-Pereira B, 2010, J INFORMETR, V4, P379, DOI 10.1016/j.joi.2010.03.002 HEFCE, 2014, IND REV ROL METR RES Hirsch JE, 2005, P NATL ACAD SCI USA, V102, P16569, DOI 10.1073/pnas.0507655102 Jayasinghe UW, 2001, EDUC EVAL POLICY AN, V23, P343, DOI 10.3102/01623737023004343 Jensen P, 2009, SCIENTOMETRICS, V78, P467, DOI 10.1007/s11192-007-2014-3 Lisée C, 2008, J AM SOC INF SCI TEC, V59, P1776, DOI 10.1002/asi.20888 Marsh HW, 2008, AM PSYCHOL, V63, P160, DOI 10.1037/0003-066X.63.3.160 McKay S, 2012, SOC POLICY ADMIN, V46, P526, DOI 10.1111/j.1467-9515.2011.00824.x Meyer B, 2009, COMMUN ACM, V52, P31, DOI 10.1145/1498765.1498780 Moed HF, 2010, J INFORMETR, V4, P265, DOI 10.1016/j.joi.2010.01.002 Neufeld J, 2013, RES EVALUAT, V22, P237, DOI 10.1093/reseval/rvt014 Norris M, 2003, J DOC, V59, P709, DOI 10.1108/00220410310698734 OPPENHEIM C, 1995, J DOC, V51, P18, DOI 10.1108/eb026940 Oppenheim C, 1997, J DOC, V53, P477, DOI 10.1108/EUM0000000007207 Reale E, 2007, RES EVALUAT, V16, P216, DOI 10.3152/095820207X227501 Rinia EJ, 1998, RES POLICY, V27, P95, DOI 10.1016/S0048-7333(98)00026-2 Scopus, 2013, SCOP CONT COV GUID Taylor J, 2011, BRIT J MANAGE, V22, P202, DOI 10.1111/j.1467-8551.2010.00722.x Van Raan AFJ, 2006, SCIENTOMETRICS, V67, P491, DOI 10.1556/Scient.67.2006.3.10 Vieira ES, 2014, J ASSOC INF SCI TECH, V65, P560, DOI 10.1002/asi.22981 Vieira ES, 2014, J INFORMETR, V8, P390, DOI 10.1016/j.joi.2014.01.012 Vieira ES, 2011, SCIENTOMETRICS, V89, P607, DOI 10.1007/s11192-011-0464-0 NR 38 TC 5 Z9 5 U1 2 U2 63 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0958-2029 EI 1471-5449 J9 RES EVALUAT JI Res. Evaluat. PD APR PY 2016 VL 25 IS 2 BP 170 EP 183 DI 10.1093/reseval/rvv037 PG 14 WC Information Science & Library Science WE Social Science Citation Index (SSCI) SC Information Science & Library Science GA DT1XB UT WOS:000381274300006 DA 2024-09-05 ER PT J AU Kim, H AF Kim, Heesop TI Retrieval effectiveness of controlled and uncontrolled index terms in INSPEC database SO MALAYSIAN JOURNAL OF LIBRARY & INFORMATION SCIENCE LA English DT Article DE Bibliographic Databases; Controlled vocabulary; Uncontrolled vocabulary; INSPEC database; Information retrieval; Index terms; Precision and recall ID INFORMATION-RETRIEVAL; CONTROLLED VOCABULARY; FREE-TEXT; NATURAL-LANGUAGE; RELEVANCE; SEARCH; SCIENCE AB The purpose of this empirical study is to assess the retrieval effectiveness of controlled and uncontrolled index terms in bibliographic database. Two types of index terms were tested in a web-based environment using the operational large-scale INSPEC database. 15 query types used in the study were both controlled terms and uncontrolled index terms derived from inverse document frequency weights. The retrieval effectiveness was evaluated using Precision. The main finding indicates there are statistically significant differences in precision arising from the two types of index terms; the uncontrolled index terms demonstrate better precision than the controlled index terms. C1 Kyungpook Natl Univ, Dept Lib & Informat Sci, Taegu 702701, South Korea. C3 Kyungpook National University (KNU) RP Kim, H (corresponding author), Kyungpook Natl Univ, Dept Lib & Informat Sci, Taegu 702701, South Korea. EM heesop@knu.ac.kr CR Aitchison T.M., 1970, INSPEC5 I EL ENG Aitchison T.M., 1969, INSPEC4 I EL ENG Belkin N., 2009, P SIGIR 2009 WORKSHO, P7, DOI DOI 10.1145/1670564.1670567 BHATTACHARYYA K, 1974, J DOC, V30, P235, DOI 10.1108/eb026580 Borlund P, 2003, J AM SOC INF SCI TEC, V54, P913, DOI 10.1002/asi.10286 BOYCE BR, 1989, J AM SOC INFORM SCI, V40, P273, DOI 10.1002/(SICI)1097-4571(198907)40:4<273::AID-ASI8>3.0.CO;2-T Bradshaw S, 2003, LECT NOTES COMPUT SC, V2769, P499 Browne G, 2007, INDEXING COMPANION, P1, DOI 10.1017/CBO9781139168595 Buckley C., 2000, SIGIR Forum, V34, P33 CALKINS ML, 1980, DATABASE, V3, P53 Carrow D., 1981, INFORMATION MANAGEME, P131 Chu Heting., 2003, INFORM REPRESENTATIO Cleveland DonaldB., 2001, INTRO INDEXING ABSTR, V3e FIDEL R, 1991, J AM SOC INFORM SCI, V42, P501, DOI 10.1002/(SICI)1097-4571(199108)42:7<501::AID-ASI5>3.0.CO;2-V FUGMANN R, 1982, INT CLASSIF, V9, P140 HARTER SP, 1992, J AM SOC INFORM SCI, V43, P602, DOI 10.1002/(SICI)1097-4571(199210)43:9<602::AID-ASI3>3.0.CO;2-Q HEINE MH, 1984, INFORM TECHNOL R & D, V3, P95 HENZLER RG, 1978, INT CLASSIF, V5, P21 Järvelin K, 2009, LECT NOTES COMPUT SC, V5766, P289, DOI 10.1007/978-3-642-04417-5_28 Jones K.S., 1981, INFORM RETRIEVAL EXP Kekäläinen J, 2002, J AM SOC INF SCI TEC, V53, P1120, DOI 10.1002/asi.10137 Kim H., 1998, THESIS U SHEFFIELD D Lancaster F.W., 1998, INDEXING ABSTRACTING, V2nd Muddamalle MR, 1998, J AM SOC INFORM SCI, V49, P881, DOI 10.1002/(SICI)1097-4571(199808)49:10<881::AID-ASI4>3.0.CO;2-M PAO M.LEE., 1989, CONCEPTS INFORM RETR ROBERTSON SE, 1976, J AM SOC INFORM SCI, V27, P129, DOI 10.1002/asi.4630270302 ROWLEY J, 1994, J INFORM SCI, V20, P108, DOI 10.1177/016555159402000204 Ruthven I., 2005, NEW DIRECTIONS COGNI Saracevic T, 2007, J AM SOC INF SCI TEC, V58, P1915, DOI 10.1002/asi.20682 Savoy J, 2005, INFORM PROCESS MANAG, V41, P873, DOI 10.1016/j.ipm.2004.01.004 SCHAMBER L, 1994, ANNU REV INFORM SCI, V29, P3 Soergel D., 1985, Organizing information: principles of data base and retrieval systems SVENONIUS E, 1986, J AM SOC INFORM SCI, V37, P331, DOI 10.1002/(SICI)1097-4571(198609)37:5<331::AID-ASI8>3.0.CO;2-E SWETS JA, 1963, SCIENCE, V141, P245, DOI 10.1126/science.141.3577.245 The Institution of Engineering and Technology, 2012, IET INSPECDIRECT US Waffenschmidt S, 2010, HEALTH INFO LIBR J, V27, P262, DOI [10.1111/j.1471-1842.2010.00910.x, 10.1111/J.1471-1842.2010.00910.x] WALLACE PM, 1993, RQ, V33, P239 White H, 2013, CAT CLASSIF Q, V51, P655, DOI 10.1080/01639374.2013.777004 NR 38 TC 6 Z9 6 U1 0 U2 21 PU UNIV MALAYA, FAC COMPUTER SCIENCE & INFORMATION TECH PI KUALA LUMPUR PA UNIV MALAYA, FAC COMPUTER SCIENCE & INFORMATION TECH, KUALA LUMPUR, 50603, MALAYSIA SN 1394-6234 J9 MALAYS J LIBR INF SC JI Malays. J. Libr. Sci. PY 2014 VL 19 IS 2 BP 103 EP 117 PG 15 WC Information Science & Library Science WE Social Science Citation Index (SSCI) SC Information Science & Library Science GA AO3MH UT WOS:000341233600007 DA 2024-09-05 ER PT J AU Yang, AM Choi, IM Abeliuk, A Saffer, A AF Yang, Aimei Choi, Ian Myoungsu Abeliuk, Andres Saffer, Adam TI The Influence of Interdependence in Networked Publics Spheres: How Community-Level Interactions Affect the Evolution of Topics in Online Discourse SO JOURNAL OF COMPUTER-MEDIATED COMMUNICATION LA English DT Article DE Networked Public Spheres; Cyberbalkanization; Twitter Discourse; Community-Level Interaction; Network Analysis; Dynamic Topic Modeling AB Investigations of networked public spheres often examine the structures of online platforms by studying users' interactions. These works suggest that users' interactions can lead to cyberbalkanization when interlocutors form homophilous communities that typically have few connections to others with opposing ideologies. Yet, rather than assuming communities are isolated, this study examines community-level interactions to reveal how communities in online discourses are more interdependent than previously theorized. Specifically, we examine how such interactions influence the evolution of topics overtime in source and target communities. Our analysis found that (a) the size of a source community (the community that initiates interactions) and a target community (the community that receives interactions), (b) the stability of the source community, and (c) the volume of mentions from a source community to a target community predicts the level of influence one community has on another's discussion topics. We argue this has significant theoretical and practical implications. Lay Summary Political discussions online, especially those in the United States, seem to range between harmonious discussions of likeminded people and heated debates that end with few, if any, who have changed their minds. Researchers have often examined these balkanized/polarized situations by studying online communities as isolated echo chambers of opinion. Our study focuses on the interactions between online communities who have different worldviews. We examine communities engaged in the global refugee crisis. We consider how the inter-community interactions influence the agenda of the respective communities. Our longitudinal analysis on the one hand confirms previous studies, namely that intra-community interactions indeed resemble echo chambers. On the other hand, we also find that there is interdependence in the inter-community discussion topics, albeit some communities had greater influence on other communities' discussion topics. For example, larger, more stable communities command more influence. C1 [Yang, Aimei] Univ Southern Calif, Annenberg Sch Commun & Journalism, Los Angeles, CA 90089 USA. [Choi, Ian Myoungsu] Univ Southern Calif, Viterbi Sch Engn, Informat Sci Inst, Marina Del Rey, CA 90292 USA. [Abeliuk, Andres] Univ Chile, Dept Comp Sci, Santiago, Chile. [Saffer, Adam] Univ Minnesota, Hubbard Sch Journalism & Mass Commun, Minneapolis, MN 55455 USA. C3 University of Southern California; University of Southern California; Universidad de Chile; University of Minnesota System; University of Minnesota Twin Cities RP Yang, AM (corresponding author), Univ Southern Calif, Annenberg Sch Commun & Journalism, Los Angeles, CA 90089 USA. EM aimei.yang@usc.edu RI Saffer, Adam/GRY-0838-2022 OI Saffer, Adam/0000-0001-8032-4256 CR [Anonymous], 1990, Social Text, DOI [10.2307/466240, DOI 10.2307/466240] [Anonymous], 2009, INT ENCY CIVIL SOC [Anonymous], 2010, ICML Ausserhofer J, 2013, INFORM COMMUN SOC, V16, P291, DOI 10.1080/1369118X.2012.756050 Barberá P, 2015, PSYCHOL SCI, V26, P1531, DOI 10.1177/0956797615594620 Benkler Y, 2015, POLIT COMMUN, V32, P594, DOI 10.1080/10584609.2014.986349 Blei D, 2006, P 23 INT C MACH LEAR, P113 Brummette J, 2018, J MASS COMMUN Q, V95, P497, DOI 10.1177/1077699018769906 Chan CH, 2018, J INF TECHNOL POLITI, V15, P378, DOI 10.1080/19331681.2018.1519480 Colleoni E, 2014, J COMMUN, V64, P317, DOI 10.1111/jcom.12084 Dahlgren P, 2009, COMMUN SOC POLIT, P1 DOWNS A, 1972, PUBLIC INTEREST, P38 Freelon D, 2018, NEW MEDIA SOC, V20, P990, DOI 10.1177/1461444816676646 GRIFFITH BC, 1972, SCIENCE, V177, P959, DOI 10.1126/science.177.4053.959 Habermas J, 1989, The Structural Transformation of the Public Sphere: An Inquiry into a Category of Bourgeois Society Habermas Jurgen, 2015, FACTS NORMS CONTRIBU Himelboim I, 2013, COMMUN METHODS MEAS, V7, P195, DOI 10.1080/19312458.2013.813922 Jackson SJ, 2016, INFORM COMMUN SOC, V19, P397, DOI 10.1080/1369118X.2015.1106571 Marwick AE, 2011, NEW MEDIA SOC, V13, P114, DOI 10.1177/1461444810365313 Metzler S, 2019, SOC NETWORKS, V58, P50, DOI 10.1016/j.socnet.2018.12.004 Sabatier Paul A., 2007, THEORIES POLICY PROC, P189, DOI DOI 10.4324/9780367274689-7 Shulman S. W., 2011, P 12 ANN INT DIGITAL, P373 Uitermark J, 2016, SOC NETWORKS, V47, P107, DOI 10.1016/j.socnet.2016.05.006 UNHCR (United Nations High Commissioner for Refugees), 2019, FIG GLANC STAT YB Waisanen D, 2012, COMMUN MONOGR, V79, P232, DOI 10.1080/03637751.2012.673230 NR 25 TC 4 Z9 5 U1 7 U2 77 PU OXFORD UNIV PRESS INC PI CARY PA JOURNALS DEPT, 2001 EVANS RD, CARY, NC 27513 USA SN 1083-6101 J9 J COMPUT-MEDIAT COMM JI J. Comput.-Mediat. Commun. PD MAY PY 2021 VL 26 IS 3 BP 148 EP 166 DI 10.1093/jcmc/zmab002 EA MAY 2021 PG 19 WC Communication; Information Science & Library Science WE Social Science Citation Index (SSCI) SC Communication; Information Science & Library Science GA UE2WK UT WOS:000687753900002 OA gold DA 2024-09-05 ER PT J AU Mustapha, KB Yap, EH Abakr, YA AF Mustapha, Khameel B. Yap, Eng Hwa Abakr, Yousif Abdalla TI Bard, ChatGPT and 3DGPT: a scientometric analysis of generative AI tools and assessment of implications for mechanical engineering education SO INTERACTIVE TECHNOLOGY AND SMART EDUCATION LA English DT Article; Early Access DE Generative AI; ChatGPT; Bard; 3DGPT; Mechanical engineering; Engineering education ID ARTIFICIAL-INTELLIGENCE; COMMUNICATION; MATHEMATICS; PERCEPTIONS; CHALLENGES; CURRICULUM; MODELS AB PurposeFollowing the recent rise in generative artificial intelligence (GenAI) tools, fundamental questions about their wider impacts have started to reverberate around various disciplines. This study aims to track the unfolding landscape of general issues surrounding GenAI tools and to elucidate the specific opportunities and limitations of these tools as part of the technology-assisted enhancement of mechanical engineering education and professional practices.Design/methodology/approachAs part of the investigation, the authors conduct and present a brief scientometric analysis of recently published studies to unravel the emerging trend on the subject matter. Furthermore, experimentation was done with selected GenAI tools (Bard, ChatGPT, DALL.E and 3DGPT) for mechanical engineering-related tasks.FindingsThe study identified several pedagogical and professional opportunities and guidelines for deploying GenAI tools in mechanical engineering. Besides, the study highlights some pitfalls of GenAI tools for analytical reasoning tasks (e.g., subtle errors in computation involving unit conversions) and sketching/image generation tasks (e.g., poor demonstration of symmetry).Originality/valueTo the best of the authors' knowledge, this study presents the first thorough assessment of the potential of GenAI from the lens of the mechanical engineering field. Combining scientometric analysis, experimentation and pedagogical insights, the study provides a unique focus on the implications of GenAI tools for material selection/discovery in product design, manufacturing troubleshooting, technical documentation and product positioning, among others. C1 [Mustapha, Khameel B.; Abakr, Yousif Abdalla] Univ Nottingham Malaysia, Dept Mech Mat & Mfg Engn, Semenyih, Malaysia. [Yap, Eng Hwa] Xian Jiaotong Liverpool Univ, XJTLU Entrepreneur Coll Taicang, Sch Robot, Taicang, Greater Suzhou, Peoples R China. C3 University of Nottingham Malaysia; Xi'an Jiaotong-Liverpool University RP Mustapha, KB (corresponding author), Univ Nottingham Malaysia, Dept Mech Mat & Mfg Engn, Semenyih, Malaysia. EM Khameelb.Mustapha@nottingham.edu.my; Eng.Hwa@xjtlu.edu.cn; Yousif.Ab@nottingham.edu.my CR Abid A, 2021, NAT MACH INTELL, V3, P461, DOI 10.1038/s42256-021-00359-2 Akin F, 2016, MATER DESIGN, V90, P1207, DOI 10.1016/j.matdes.2015.04.045 Albort-Morant G, 2017, SUSTAINABILITY-BASEL, V9, DOI 10.3390/su9061011 ALLEN TJ, 1980, IEEE T ENG MANAGE, V27, P2, DOI 10.1109/TEM.1980.6447372 Almazrouei E., 2023, FINDINGS ASS COMPUTA, P10755 Anil R, 2023, Arxiv, DOI [arXiv:2305.10403, 10.48550/arXiv.2305.10403] Aria M, 2017, J INFORMETR, V11, P959, DOI 10.1016/j.joi.2017.08.007 Authentise, 2023, 3DGPT Badini S, 2023, ADV IND ENG POLY RES, V6, P278, DOI 10.1016/j.aiepr.2023.03.003 Baechle-Clayton M, 2022, J COMPOS SCI, V6, DOI 10.3390/jcs6070202 Bahroun Z, 2023, SUSTAINABILITY-BASEL, V15, DOI 10.3390/su151712983 Bannour N., 2021, P 2 WORKSH SIMPL EFF, P11, DOI DOI 10.18653/V1/2021.SUSTAINLP-1.2 Bender EM, 2021, PROCEEDINGS OF THE 2021 ACM CONFERENCE ON FAIRNESS, ACCOUNTABILITY, AND TRANSPARENCY, FACCT 2021, P610, DOI 10.1145/3442188.3445922 Berdanier CGP, 2023, J ENG EDUC, V112, P583, DOI 10.1002/jee.20541 Bird J., 2014, Mechanical engineering principles, V3 Birhane A, 2023, NAT REV PHYS, V5, P277, DOI 10.1038/s42254-023-00581-4 Biswas SS, 2023, ANN BIOMED ENG, V51, P868, DOI 10.1007/s10439-023-03172-7 Blanco-González A, 2023, PHARMACEUTICALS-BASE, V16, DOI 10.3390/ph16060891 Bockting CL, 2023, NATURE, V614, P224, DOI 10.1038/d41586-023-00288-7 Bommasani Rishi, 2021, On the opportunities and risks of foundation models Borji A, 2023, Arxiv, DOI [arXiv:2302.03494, DOI 10.48550/ARXIV.2302.03494] Brainard S, 2017, SPACE POLICY, V42, P70, DOI 10.1016/j.spacepol.2017.07.001 Brown T., 2020, ADV NEURAL INFORM PR, V33, P1877, DOI DOI 10.48550/ARXIV.2005.14165 Care C, 2010, HIST COMPUT-SPRINGER, P1, DOI 10.1007/978-1-84882-948-0 Carr D.F., 2023, ChatGPT grew another 55.8% in march, overtaking Bing and DuckDuckGo Carvallo Juan Pablo, 2023, Proceedings of the 18th Latin American Conference on Learning Technologies (LACLO 2023). Lecture Notes in Educational Technology, P328, DOI 10.1007/978-981-99-7353-8_25 Chan AKC, 2016, ENGINEERING-PRC, V2, P10, DOI 10.1016/J.ENG.2016.01.003 Chen HL, 2024, Arxiv, DOI arXiv:2311.16989 Chen Y, 2023, INFORM SYST FRONT, V25, P161, DOI 10.1007/s10796-022-10291-4 Chong S, 2018, SUSTAINABILITY-BASEL, V10, DOI 10.3390/su10113960 Chu Z, 2023, Arxiv, DOI arXiv:2309.15402 Cooper G, 2023, J SCI EDUC TECHNOL, V32, P444, DOI 10.1007/s10956-023-10039-y Dang H, 2022, Arxiv, DOI [arXiv:2209.01390, 10.48550/arXiv.2209.01390, DOI 10.48550/ARXIV.2209.01390, 10.48550/ARXIV.2209.01390] Deeley SJ, 2018, ASSESS EVAL HIGH EDU, V43, P439, DOI 10.1080/02602938.2017.1356906 Dhillon B.S., 2006, Creativity for engineers, DOI 10.1080.030437905000087423 Duong CD, 2024, INTERACT TECHNOL SMA, V21, P356, DOI 10.1108/ITSE-05-2023-0096 Dwivedi YK, 2023, INT J INFORM MANAGE, V71, DOI 10.1016/j.ijinfomgt.2023.102642 Eager B, 2023, J UNIV TEACH LEARN P, V20 Edström K, 2014, EUR J ENG EDUC, V39, P539, DOI 10.1080/03043797.2014.895703 Eke D., 2023, Journal of Responsible Technology, V13, DOI [10.1016/j.jrt.2023.100060, DOI 10.1016/J.JRT.2023.100060] Ellegaard O, 2015, SCIENTOMETRICS, V105, P1809, DOI 10.1007/s11192-015-1645-z Fan LZ, 2023, Arxiv, DOI arXiv:2304.02020 Farrokhnia M, 2024, INNOV EDUC TEACH INT, V61, P460, DOI 10.1080/14703297.2023.2195846 Flegg J, 2012, INT J MATH EDUC SCI, V43, P717, DOI 10.1080/0020739X.2011.644333 Frenkel ME, 2023, Arxiv, DOI arXiv:2309.15866 Frieder S, 2023, Arxiv, DOI arXiv:2301.13867 Gabajiwala E., 2022, FUTURISTIC TRENDS NE, V936, P523 Gill S. S., 2024, INTERNET THINGS CYBE, V4, P19, DOI DOI 10.1016/J.IOTCPS.2023.06.002 González-Pérez LI, 2022, SUSTAINABILITY-BASEL, V14, DOI 10.3390/su14031493 Gozalo-Brizuela R, 2023, Arxiv, DOI arXiv:2306.02781 Gravel J., 2023, Mayo Clinic Proceedings: Digital Health, V1, P226, DOI DOI 10.1016/J.MCPDIG.2023.05.004 Guersenzvaig A., 2023, Nobody writing and nobody reading: artificial intelligence chatbots and the science we want Hacker P, 2023, PROCEEDINGS OF THE 6TH ACM CONFERENCE ON FAIRNESS, ACCOUNTABILITY, AND TRANSPARENCY, FACCT 2023, P1112, DOI 10.1145/3593013.3594067 Hariri W, 2024, Arxiv, DOI [arXiv:2304.02017, 10.48550/arxiv.2304.02017, DOI 10.48550/ARXIV.2304.02017] Hazell J, 2023, Arxiv, DOI arXiv:2305.06972 Henderson M, 2019, ASSESS EVAL HIGH EDU, V44, P1237, DOI 10.1080/02602938.2019.1599815 Hodge B., 2002, Journal of Engineering Education, V91, P415 Hopfenbeck TN, 2023, ASSESS EDUC, V30, P99, DOI 10.1080/0969594X.2023.2212192 Ibrahim D, 2011, PROCEDIA COMPUT SCI, V3, DOI 10.1016/j.procs.2010.12.140 Iqbal S, 2014, 2014 IEEE INTERNATIONAL CONFERENCE ON MOOC, INNOVATION AND TECHNOLOGY IN EDUCATION (MITE), P101, DOI 10.1109/MITE.2014.7020249 Jablonka KM, 2023, DIGIT DISCOV, V2, P1233, DOI 10.1039/d3dd00113j Javaid M., 2023, BenchCouncil Transactions on Benchmarks, Standards and Evaluations, V3, DOI DOI 10.1016/J.TBENCH.2023.100115 John Schulman B.Z., 2023, Introducing ChatGPT Johri A, 2023, J ENG EDUC, V112, P572, DOI 10.1002/jee.20537 Jovanovic M, 2022, COMPUTER, V55, P107, DOI 10.1109/MC.2022.3192720 Kang D., 2023, arXiv Kasirzadeh A., 2023, Philos. & Technol., DOI [10.1007/s13347-023-00606-x, DOI 10.1007/S13347-023-00606-X] Kasneci E, 2023, LEARN INDIVID DIFFER, V103, DOI 10.1016/j.lindif.2023.102274 Katona Z, 2011, J MARKETING RES, V48, P425, DOI 10.1509/jmkr.48.3.425 Klahn C., 2020, P AMPA2020 Koukis N, 2019, INTERACT TECHNOL SMA, V16, P74, DOI 10.1108/ITSE-10-2018-0081 Kwan C.C.L., 2023, INT C TECHNOLOGY ED, P275 Lahat A, 2023, SCI REP-UK, V13, DOI 10.1038/s41598-023-31412-2 Le Scao T., 2022, arXiv, DOI 10.48550/arXiv.2211.05100 Leonarcl D.A., 2011, Creativity and Innovation, V325 Li Junyi, 2022, arXiv Lin T, 2022, AI Open Lo CK, 2023, EDUC SCI, V13, DOI 10.3390/educsci13040410 Luccioni A. S., 2022, arXiv, DOI [DOI 10.48550/ARXIV.2211.02001, 10.48550/arXiv.2211.02001] Lund BD, 2023, J ASSOC INF SCI TECH, V74, P570, DOI 10.1002/asi.24750 Martinez P, 2019, AUTOMAT CONSTR, V107, DOI 10.1016/j.autcon.2019.102947 Menekse M, 2023, J ENG EDUC, V112, P578, DOI 10.1002/jee.20539 Meta A., 2023, Meta AI Michko G.M., 2008, 2008 38 ANN FRONTIER, pS1A Milano S, 2023, NAT MACH INTELL, V5, P333, DOI 10.1038/s42256-023-00644-2 Mishra S., 2022, arXiv Mitchell M, 2023, P NATL ACAD SCI USA, V120, DOI 10.1073/pnas.2215907120 Mollick E.R., 2023, Including Prompts Mollick E.R., 2022, New Modes of Learning Enabled by AI Chatbots: Three Methods and Assignments Mollick E, 2023, RES TECHNOL MANAGE, V66, P11, DOI 10.1080/08956308.2023.2213102 Moore S, 2022, LECT NOTES COMPUT SC, V13450, P243, DOI 10.1007/978-3-031-16290-9_18 Moral-Muñoz JA, 2020, PROF INFORM, V29, DOI 10.3145/epi.2020.ene.03 Mozes M, 2023, Arxiv, DOI arXiv:2308.12833 Narayan A, 2022, Arxiv, DOI arXiv:2205.09911 Necesal P, 2012, LECT NOTES ENG COMP, P271 Neto DDES, 2016, J CONSTR ENG M, V142, DOI 10.1061/(ASCE)CO.1943-7862.0001163 Nikolic S, 2023, EUR J ENG EDUC, V48, P559, DOI 10.1080/03043797.2023.2213169 Norton R.L., 2010, Machine Design Oduro S, 2022, EUR J INNOV MANAG, V25, P567, DOI 10.1108/EJIM-10-2020-0425 Ouyang L, 2022, ADV NEUR IN Ozkan A, 2016, EURASIAN J EDUC RES, P239 Palmer S, 2011, EUR J ENG EDUC, V36, P357, DOI 10.1080/03043797.2011.593095 Pavlik V. J., 2023, Journalism Mass Communication Educator, V78, P84, DOI DOI 10.1177/10776958221149577 Peng Y., 2023, Nature Medicine, V29, P1 Peres R, 2023, INT J RES MARK, V40, P269, DOI 10.1016/j.ijresmar.2023.03.001 Perkins M, 2023, J UNIV TEACH LEARN P, V20, DOI 10.53761/1.20.02.07 Pursnani V, 2023, Arxiv, DOI arXiv:2304.12198 Qadir J., 2023, 2023 IEEE GLOBAL ENG, P1 Rahman MM, 2023, APPL SCI-BASEL, V13, DOI 10.3390/app13095783 Ramalhete PS, 2010, MATER DESIGN, V31, P2275, DOI 10.1016/j.matdes.2009.12.013 Redecker C., 2017, Joint Research Centre (JRC) Science for Policy report, DOI DOI 10.2760/159770 Rillig MC, 2023, ENVIRON SCI TECHNOL, DOI 10.1021/acs.est.3c01106 Salah M., 2023, Computers in Human Behavior: Artificial Humans, V1, P100006, DOI [DOI 10.1016/J.CHBAH.2023.100006, https://doi.org/10.1016/j.chbah.2023.100006] Sánchez-Ruiz LM, 2023, APPL SCI-BASEL, V13, DOI 10.3390/app13106039 Sazhin SS, 1998, INT J ENG EDUC, V14, P145 Sezgin S, 2021, COMPUT APPL ENG EDUC, V29, P950, DOI 10.1002/cae.22350 Shanahan M, 2022, Arxiv, DOI arXiv:2212.03551 SHANNON CE, 1948, BELL SYST TECH J, V27, P623, DOI 10.1002/j.1538-7305.1948.tb00917.x Solaiman I, 2021, ADV NEUR IN, V34 Sorby SA, 1999, COMPUT APPL ENG EDUC, V7, P252, DOI 10.1002/(SICI)1099-0542(1999)7:4<252::AID-CAE7>3.0.CO;2-Z Sosa ME, 2002, IEEE T ENG MANAGE, V49, P45, DOI 10.1109/17.985747 SprutCAM Tech, 2023, Meet the SprutCAM X AI assistant Stiene Riemer M.S., 2023, A generative AI roadmap for financial institutions Tan H, 2021, J ENVIRON MANAGE, V297, DOI 10.1016/j.jenvman.2021.113382 Thirunavukarasu AJ, 2023, NAT MED, V29, P1930, DOI 10.1038/s41591-023-02448-8 Thorp HH, 2023, SCIENCE, V379, P313, DOI 10.1126/science.adg7879 Thurzo A, 2023, EDUC SCI, V13, DOI 10.3390/educsci13020150 Tiwari CK, 2023, INTERACT TECHNOL SMA, DOI 10.1108/ITSE-04-2023-0061 Tolouei-Rad M., 2006, Journal of Achievements in Materials and Manufacturing Engineering, V18, P31 Tshai K.Y., 2014, ENG EDUC, V9, P74, DOI [DOI 10.11120/ENED.2014.00020, 10.11120/ened.2014.00020] van Eck NJ, 2010, SCIENTOMETRICS, V84, P523, DOI 10.1007/s11192-009-0146-3 van Kesteren IEH, 2008, MATER DESIGN, V29, P133, DOI 10.1016/j.matdes.2006.11.008 Vaswani A, 2017, ADV NEUR IN, V30 Wang HF, 2023, ENGINEERING-PRC, V25, P51, DOI 10.1016/j.eng.2022.04.024 Watkins R., 2023, AI Ethics, P1 Wei JS, 2022, Arxiv, DOI arXiv:2206.07682 Wiggins WF, 2022, RADIOL-ARTIF INTELL, V4, DOI 10.1148/ryai.220119 Wiliam D., 1998, ASSESS EDUC, V5, P7, DOI [DOI 10.1080/0969595980050102, 10.1080/0969595980050102] World Health Organization, 2021, Ethics and governance of artificial intelligence for health: WHO guidance WOS, 2023, Web of Science Wu CJ., 2022, PROC MACH LEARN SYST, V4, P795, DOI DOI 10.48550/ARXIV.2111.00364 Yang JF, 2023, Arxiv, DOI [arXiv:2304.13712, DOI 10.48550/ARXIV.2304.13712] Zhai Xiaoming, 2023, XRDS: Crossroads, The ACM Magazine for Students, P42, DOI 10.1145/3589649 Zhao WX, 2023, Arxiv, DOI [arXiv:2303.18223, DOI 10.48550/ARXIV.2303.18223, 10.48550/arXiv.2303.18223] Zhavoronkov A, 2023, NAT MED, V29, P532, DOI 10.1038/d41591-023-00014-w Zhu PF, 2023, Arxiv, DOI arXiv:2302.04456 NR 146 TC 0 Z9 0 U1 19 U2 24 PU EMERALD GROUP PUBLISHING LTD PI Leeds PA Floor 5, Northspring 21-23 Wellington Street, Leeds, W YORKSHIRE, ENGLAND SN 1741-5659 EI 1758-8510 J9 INTERACT TECHNOL SMA JI Interact. Technol. Smart Educ. PD 2024 FEB 16 PY 2024 DI 10.1108/ITSE-10-2023-0198 EA FEB 2024 PG 37 WC Education & Educational Research WE Emerging Sources Citation Index (ESCI) SC Education & Educational Research GA HS1H6 UT WOS:001161398500001 DA 2024-09-05 ER PT J AU Farhat, F Sohail, SS Madsen, DO AF Farhat, Faiza Sohail, Shahab Saquib Madsen, Dag Oivind TI How trustworthy is ChatGPT? The case of bibliometric analyses SO COGENT ENGINEERING LA English DT Article DE ChatGpt; bibliometrics; trustworthiness; artificial intelligence; chatbots AB The introduction of the AI-powered chatbot ChatGPT by OpenAI has sparked much interest and debate among academic researchers. Commentators from different scientific disciplines have raised many concerns and issues, especially related to the ethics of using these tools in scientific writing and publications. In addition, there has been discussions about whether ChatGPT is trustworthy, effective, and useful in increasing researchers' productivity. Therefore, in this paper, we evaluate ChatGPT's performance on tasks related to bibliometric analysis, by comparing the output provided by the chatbot with a recently conducted bibliometric study on the same topic. The findings show that there are large discrepancies and ChatGPT's trustworthiness is low in this particular area. Therefore, researchers should exercise caution when using ChatGPT as a tool in bibliometric studies. C1 [Farhat, Faiza] Aligarh Muslim Univ, Dept Zool, Aligarh, India. [Sohail, Shahab Saquib] Jamia Hamdard, Dept Comp Sci & Engn, New Delhi, India. [Madsen, Dag Oivind] Univ South Eastern Norway, USN Sch Business, Dept Business Mkt & Law, Honefoss, Norway. C3 Aligarh Muslim University; Jamia Hamdard University; University College of Southeast Norway RP Madsen, DO (corresponding author), Univ South Eastern Norway, USN Sch Business, Dept Business Mkt & Law, Honefoss, Norway. EM dag.oivind.madsen@usn.no RI FARHAT, FAIZA/KIK-8175-2024; Madsen, Dag Øivind/I-1587-2016; sohail, shahab/O-3263-2019 OI Madsen, Dag Øivind/0000-0001-8735-3332; sohail, shahab/0000-0002-5944-7371 CR Biswas S, 2023, RADIOLOGY, V307, DOI 10.1148/radiol.223312 Cotton D., 2023, PREPRINT, DOI DOI 10.35542/OSF.IO/MRZ8H Donthu N, 2021, J BUS RES, V133, P285, DOI 10.1016/j.jbusres.2021.04.070 Dowling M, 2023, FINANC RES LETT, V53, DOI 10.1016/j.frl.2023.103662 Dwivedi YK, 2023, INT J INFORM MANAGE, V71, DOI 10.1016/j.ijinfomgt.2023.102642 Ellegaard O, 2015, SCIENTOMETRICS, V105, P1809, DOI 10.1007/s11192-015-1645-z Else H, 2023, NATURE, V613, P423, DOI 10.1038/d41586-023-00056-7 Farhat F, 2023, FRONT MICROBIOL, V14, DOI 10.3389/fmicb.2023.1179312 Farhat F, 2023, LIFE-BASEL, V13, DOI 10.3390/life13010143 Gao CA, 2022, bioRxiv, DOI [10.1101/2022.12.23.521610, 10.1101/2022.12.23.521610, DOI 10.1101/2022.12.23.521610, DOI 10.1101/2022.12.23.521610V1] Graham Flora, 2022, Nature, DOI 10.1038/d41586-022-04437-2 Hill-Yardin EL, 2023, BRAIN BEHAV IMMUN, V110, P152, DOI 10.1016/j.bbi.2023.02.022 Khosravi H, 2023, Arxiv, DOI arXiv:2304.05436 King MR, 2023, CELL MOL BIOENG, V16, P1, DOI 10.1007/s12195-022-00754-8 Kitamura FC, 2023, RADIOLOGY, V307, DOI 10.1148/radiol.230171 Koo Malcolm, 2023, Radiology, V307, pe230312, DOI 10.1148/radiol.230312 Lee JY, 2023, J EDUC EVAL HEALTH P, V20, DOI 10.3352/jeehp.2023.20.6 Lo CK, 2023, EDUC SCI, V13, DOI 10.3390/educsci13040410 Maggio LA, 2021, PERSPECT MED EDUC, V10, P79, DOI 10.1007/s40037-020-00626-9 McMurtrie, 2023, CHRONICLES HIGHER ED Omar R., 2017, CURRENT STATUS FUTUR Perrier L, 2016, J CLIN EPIDEMIOL, V73, P50, DOI 10.1016/j.jclinepi.2015.02.019 Sallam M, 2023, RES PRACTICE SYSTEMA, P1 Salvagno M, 2023, CRIT CARE, V27, DOI 10.1186/s13054-023-04380-2 Sharples M., 2022, NEW AI TOOLS CAN WRI Sohail S. S., 2023, CURRENT CHALLENGES P, DOI [https://doi.org/10.2139/ssrn.4413921, DOI 10.2139/SSRN.4413921] Stokel-Walker C, 2023, NATURE, V613, P620, DOI 10.1038/d41586-023-00107-z Teixeira da Silva JA, 2023, NURSE EDUC PRACT, V68, DOI 10.1016/j.nepr.2023.103600 Thorp HH, 2023, SCIENCE, V379, P313, DOI 10.1126/science.adg7879 Zupic I, 2015, ORGAN RES METHODS, V18, P429, DOI 10.1177/1094428114562629 NR 30 TC 16 Z9 16 U1 17 U2 123 PU TAYLOR & FRANCIS AS PI OSLO PA KARL JOHANS GATE 5, NO-0154 OSLO, NORWAY SN 2331-1916 J9 COGENT ENG JI Cogent Eng. PD DEC 31 PY 2023 VL 10 IS 1 AR 2222988 DI 10.1080/23311916.2023.2222988 PG 8 WC Engineering, Multidisciplinary WE Emerging Sources Citation Index (ESCI) SC Engineering GA K4RV1 UT WOS:001016335100001 OA Green Published, gold DA 2024-09-05 ER PT J AU Lin, QN Zhuo, LZ AF Lin, Qingna Zhuo, Lizheng TI Research on the Evaluation and Optimization Method of the Impact of Chorus Education on University Culture Based on Coevolution Model in the Background of Artificial Intelligence SO SCIENTIFIC PROGRAMMING LA English DT Article AB The development of artificial intelligence technology is a field where all walks of life need to carry out in-depth research in the future, and the introduction of artificial intelligence technology in the field of university evaluation has become an inevitable trend. Through the collection and collation of the literature at home and abroad, the influence of chorus education on college culture in China has long remained in qualitative and experiential judgment and the significance and value of chorus education to colleges and universities are relatively single. Therefore, it is of great innovative value and practical significance to establish a scientific, systematic, and comprehensive evaluation mechanism for the impact of chorus education on university culture and to scientifically analyze key issues, establish evaluation criteria, and inject new research perspectives into the promotion of chorus education in colleges and universities in China, combining with the mature coevolution theoretical model of management science. It is of great innovative value and significance to combine the DEMATEL research method with the current practice of promoting chorus education in China's colleges and universities and to systematically and comprehensively construct the evaluation system and research paradigm in line with chorus education by using the qualitative and quantitative methods. C1 [Lin, Qingna; Zhuo, Lizheng] Krirk Univ, Int Coll, Bangkok 10220, Thailand. C3 Krirk University RP Zhuo, LZ (corresponding author), Krirk Univ, Int Coll, Bangkok 10220, Thailand. EM linqn@cqupt.edu.cn; 845902916@qq.com CR Ahn HJ, 2015, J AUDIOL OTOL, V19, P79, DOI 10.7874/jao.2015.19.2.79 Albert E., 2016, EINSTEIN SCI ED, V4, P102 Barrientos-Fernández A, 2019, DATA BRIEF, V25, DOI 10.1016/j.dib.2019.104124 Chang Y, 2021, SCI TECHNOLOGY MANAG, V41, P238 Crickmore L, 2017, FRONT PSYCHOL, V8, DOI 10.3389/fpsyg.2017.00651 Das P., 2020, PROCEDIA COMPUT SCI, V172, P1033, DOI DOI 10.1016/J.PROCS.2020.05.151 Du Y., 2018, SCI FDN CHINA, V2, P161 Duarte P, 2018, EVENT MANAGE, V22, P517, DOI [10.3727/152599518X15264726192451, 10.3727/152599518x15264726192451] EHRLICH PR, 1964, EVOLUTION, V18, P586, DOI 10.2307/2406212 Eisenhardt KM, 2000, HARVARD BUS REV, V78, P91 Fan S, 2013, VOICE YELLOW RIVER, V21, P35 González JG, 2017, COMPLEMENT THER CLIN, V27, P61, DOI 10.1016/j.ctcp.2017.03.004 Gorrochotegui A, 2009, CHORUS, V6, P83 Guo Y, 2016, J JIAOZUO U, V30, P105 Hodgson GM, 2002, J EVOL ECON, V12, P259, DOI 10.1007/s00191-002-0118-8 Hu S, 2019, P NAT TEACH RES FUND, P2 Huang Z., 2017, U ELECT SCI TECHNOLO, V4, P4 Huaxia, 2015, POPULAR TECHNOLOGY, V17, P209 Jacob K, 2016, SCI TESTS MEASUREMEN, V10, P32 JANZEN DH, 1980, EVOLUTION, V34, P611, DOI 10.1111/j.1558-5646.1980.tb04849.x Jin R, 2016, J HEIHE U, V7, P159 Li C., 2019, 60 THEORIES COMMONLY, V03, P21 Li W., 2017, RES TEACHING REFORM, P58 Liu W, 2014, J XINGHAI CONSERVATO, V2, P140 Music G., 2018, NORD J MUSIC THER, V27 NORGAARD RB, 1984, ECON DEV CULT CHANGE, V32, P525, DOI 10.1086/451404 Pan M, 2016, J XIANGNAN U, V37, P86 Pan Q, 2020, THE ARTIST, V9, P120 Pei L., 2001, CHINESE MUSIC, V4 Shao Y, 2020, VOICE YELLOW RIVER, V7, P174 Shin O.P., 2019, J APPL MEASUREMENT, V20 SungWon Yoon, 2012, [Journal of Music Education Science, 음악교육공학], V14, P81 Tai DM, 2018, EDUC PSYCHOL-UK, V38, P633, DOI 10.1080/01443410.2017.1280129 Tang L., 2013, SCI SCI MANAGEMENT S, V12, P89 Wang Wengjuan, 2016, STUDIES SCI SCI, V3, P471 Wang Z., 2017, ARTHRITIS RES, V1, P196 Washnik NJ, 2016, NOISE HEALTH, V18, P98, DOI 10.4103/1463-1741.178510 Wesolowski BC, 2019, J EDUC MEAS, V56, P610, DOI 10.1111/jedm.12227 Xu Q, 2014, YIHAI, V10, P84 Zhang J, 2013, NO MUSIC, V10, P47 Zhang L., 2006, STAT DECIS MAK, V8, P10 Zhou H., 1989, ED EVALUATION EVALUA, V7, P1 Zhu W, 2011, MUSIC COMPOSITION, V6, P141 안비화, 2015, [Resach of Dance Education, 한국무용교육학회지], V26, P19 조홍기, 2017, 미디어와 공연예술 연구, V12, P157, DOI 10.22534/broad.2017.12.3.157 NR 45 TC 0 Z9 0 U1 2 U2 30 PU HINDAWI LTD PI LONDON PA ADAM HOUSE, 3RD FLR, 1 FITZROY SQ, LONDON, W1T 5HF, ENGLAND SN 1058-9244 EI 1875-919X J9 SCI PROGRAMMING-NETH JI Sci. Program. PD OCT 31 PY 2021 VL 2021 AR 9261934 DI 10.1155/2021/9261934 PG 10 WC Computer Science, Software Engineering WE Science Citation Index Expanded (SCI-EXPANDED) SC Computer Science GA XM9ZL UT WOS:000729175200004 OA gold DA 2024-09-05 ER PT C AU Tran, HMT Anvari, F AF Hien Minh Thi Tran Anvari, Farshid BE Blooma, J Nkhoma, M Leung, N TI How Reflective Professionals Design and Evaluate Financial Information Management Systems Courses SO PROCEEDINGS OF THE 4TH INTERNATIONAL CONFERENCE ON INFORMATION SYSTEMS MANAGEMENT AND EVALUATION (ICIME 2013) LA English DT Proceedings Paper CT 4th International Conference on Information Systems Management and Evaluation (ICIME) CY MAY 13-14, 2013 CL RMIT Univ Vietnam, Ho Chi Minh City, VIETNAM HO RMIT Univ Vietnam DE active learning; reflective practice strategies; action-research; evaluation; financial information management systems (FIMS); accounting information systems (AIS) ID PRACTITIONER PERSPECTIVE AB Financial Information Management Systems (FIMS) or Accounting Information Systems (AIS) is a cross-discipline subject, often taught by Computing and Accounting disciplines. In recent years, demand for this subject has grown. However, educators have lamented high failure rates among accounting information systems students; professional bodies have reported that graduates lack sufficient meta-cognitive knowledge of information systems to perform their tasks. Quality teaching of FIMS or AIS requires instructors to actively update their knowledge of accounting systems and information technology as well as to reflect on teaching techniques. Reflection and reflective practices are taught within the education discipline, and have grown in popularity among many other disciplines. Yet little has been written about how accounting and IT professionals reflect on their practice and how they apply their reflections to their teaching. This paper explores the research question: how can reflective professionals assist computing and accounting academics in the design and delivery of the FIMS or AIS courses? Through our case study at an Australian university, we provide insights into the application of constructivist theory and reflective practice strategies in teaching FIMS courses. We discuss (1) the rationale for the importance of constructivist theory, cognitive load theory, reflective and action-research in teaching and learning, (2) Bloom's Revised Taxonomy, (3) the applications of Bloom and the reflective concept to design and deliver FIMS courses, (4) reflection on our teaching strategies in applying these concepts and, (5) conclusions on how reflective professionals can assist computing and accounting academics in the design and delivery of FIMS or AIS courses. Our study supports the view that reflection is a strategy; the Bloom's Revised Taxonomy and the PEER Model are tools to assist instructors in designing and delivering courses that enhance participant's learning abilities. We propose the five dimensional reflective cycle to facilitate reflective practice among academic and professional instructors for designing and delivering FIMS and AIS courses. C1 [Hien Minh Thi Tran] Macquarie Univ, Off Financial Serv, N Ryde, NSW 2109, Australia. C3 Macquarie University EM hien.tran@mq.edu.au CR Anderson L., 2009, TAXONOMY LEARNING TE [Anonymous], 2004, J INFORM SYSTEMS ED [Anonymous], 1999, High Educ. Res. Dev. [Anonymous], ACCOUNTING FUTURE MO Aoun C., 2010, AMCIS P Arum R., 2011, Academically adrift: Limited learning on college campuses Badua F. A., 2011, ACCOUNTING ED J, V21, P89 Biggs J.D., 2009, Teaching for quality learning at university: What the student does Çepni S, 2006, COMPUT EDUC, V46, P192, DOI 10.1016/j.compedu.2004.07.008 Del Carlo D, 2010, J SCI EDUC TECHNOL, V19, P58, DOI 10.1007/s10956-009-9178-y DeLotell P.J., 2010, AM J BUSINESS ED, V3 Essayyad M., 2011, INT J TRADE GLOBAL M, V4 Falchikov N, 2008, J UNIV TEACH LEARN P, V5 Harrast S., 2010, ACCOUNTING ED J, V20, P1 Hazzan O, 2002, J SYST SOFTWARE, V63, P161, DOI 10.1016/S0164-1212(02)00012-2 Hazzan O, 2003, LECT NOTES COMPUT SC, V2753, P51 IFAC, 2007, IEPS 2, V2 Kelly P., 2008, GLOBO SAPIENS TRANSF KILLION JP, 1991, EDUC LEADERSHIP, V48, P14 Krathwohl D.R., 2002, THEORY PRACTICE, V41 Lenard M. J., 2010, AM J BUSINESS ED, V3 Macquarie University, 2012, PEER REV LEARN TEACH Mahani S., 2012, J COLL TEACHING LEAR, V9 Mann K, 2009, ADV HEALTH SCI EDUC, V14, P595, DOI 10.1007/s10459-007-9090-2 McGuigan N., 2010, ATN ASS C ASS SUST D McGuigan N.C., 2009, International Journal of Learning, V16, P49, DOI [DOI 10.18848/1447-9494/CGP/V16I09/46586, 10.18848/1447-9494/CGP/v16i09/46586] Plack MM, 2005, PEDIATRICS, V116, P1546, DOI 10.1542/peds.2005-0209 Ragan J., 2006, J BUSINESS CASE STUD, V2, P17 Roberts F.D., 2007, College Student Journal, V41, P423 Samkin G, 2008, ACCOUNT EDUC, V17, P233, DOI 10.1080/09639280701577460 Schon D. A., 1984, REFLECTIVE PRACTITIO St Edward's University, 2004, TASK OR QUEST CONSTR Stowe K., 2010, Journal for Economic Educators, V10, P33 Sweller J, 1998, EDUC PSYCHOL REV, V10, P251, DOI 10.1023/A:1022193728205 Tan F. T. C., 2010, ACIS P Thorpe K., 2004, Reflective Practice, V5, P327, DOI DOI 10.1080/1462394042000270655 UTS, 2007, KEEP REFL J Vatanasakdakul S., 2009, AMCIS P Vatanasakdakul S, 2011, INT J EDUC MANAG, V25, P328, DOI 10.1108/09513541111136621 Velayutham S., 2008, INT J MANAGEMENT ED, V7 Yong R., 2008, ASIAN SOCIAL SCI, V4, P60 NR 41 TC 0 Z9 0 U1 0 U2 1 PU ACAD CONFERENCES LTD PI NR READING PA CURTIS FARM, KIDMORE END, NR READING, RG4 9AY, ENGLAND BN 978-1-909507-20-3 PY 2013 BP 263 EP 271 PG 9 WC Business; Computer Science, Information Systems; Information Science & Library Science; Management WE Conference Proceedings Citation Index - Science (CPCI-S); Conference Proceedings Citation Index - Social Science & Humanities (CPCI-SSH) SC Business & Economics; Computer Science; Information Science & Library Science GA BFY80 UT WOS:000321909400032 DA 2024-09-05 ER PT J AU Zan, P Zhao, YT Zhong, H Yu, Y Wang, YB Shao, YJ Li, CY AF Zan, Peng Zhao, Yutong Zhong, Hua Yu, Yang Wang, Yuanbo Shao, Yijia Li, Chunyong TI Research on the evaluation of rectal function after LAR based on CEEMDAN-Fast-ICA algorithm SO IET SCIENCE MEASUREMENT & TECHNOLOGY LA English DT Article DE CEEMDAN; FAST-ICA; multi-sensor information fusion; PSO-SVM; rectal function assessment ID INDEPENDENT COMPONENT ANALYSIS; ANTERIOR RESECTION SYNDROME; CANCER; MANOMETRY; SURGERY AB Rectal cancer is one of the most common lower gastrointestinal diseases worldwide. Currently, the common treatment is low anterior resection (LAR) of the rectum, which preserves the anus of the patient. However, it is easy to cause low anterior resection syndrome after surgery, which has a significant negative impact on the life of patients, and there is no unified evaluation standard for postoperative rectal function. To solve this problem, a multi-sensor fusion rectal information acquisition system is designed in this paper, and a rectal signal processing method is proposed to theoretically evaluate the rectal function of postoperative patients. The method uses the complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) to decompose the one-dimensional rectal signal to solve the underdetermined ICA problem, uses the Fast independent component analysis (Fast-ICA) to separate the pure rectal signal, uses the wavelet packet to extract features, and uses the particle swarm optimization optimizes support vector machine (PSO-SVM) to classify and evaluate postoperative function. According to the experimental results, the rectal signal preprocessing effect is good, the evaluation prediction rate is 99.5565%, and the algorithm classification results are accurate, which provides a certain preliminary theoretical basis and reference value for the evaluation of rectal function after LAR. C1 [Zan, Peng; Zhao, Yutong; Zhong, Hua; Yu, Yang; Wang, Yuanbo] Shanghai Univ, Sch Mechatron Engn & Automat, Shanghai Key Lab Power Stn Automat Technol, Shanghai, Peoples R China. [Shao, Yijia] Southeast Univ, Sch Elect Sci & Engn, Nanjing, Jiangsu, Peoples R China. [Li, Chunyong] Beijing Inst Radiat Med, Beijing, Peoples R China. [Li, Chunyong] Beijing Inst Radiat Med, 27 Taiping Rd, Beijing 100850, Peoples R China. C3 Shanghai University; Southeast University - China; Academy of Military Medical Sciences - China; Academy of Military Medical Sciences - China RP Li, CY (corresponding author), Beijing Inst Radiat Med, 27 Taiping Rd, Beijing 100850, Peoples R China. EM lcy07@tsinghua.org.cn RI li, chunyong/JJE-0805-2023; zhong, hua/JRW-4786-2023 FU Science and Technology Commission of Shanghai Municipality; Development Fund for Shanghai Talents; [22xtcx00300]; [2020010] FX ACKNOWLEDGEMENTS This work was sponsored by Science and Technology Commission of Shanghai Municipality (No. 22xtcx00300) and the Development Fund for Shanghai Talents (No. 2020010). CR Battersby NJ, 2016, DIS COLON RECTUM, V59, P270, DOI 10.1097/DCR.0000000000000552 Bin, 2021, CHINESE J ONCOL, V13, P113 Bing, 2019, CHIN COMMUN PHYS, V35, P119 Bing D., 2019, CHIN COMM PHYS, V35, P2 Bryant CLC, 2012, LANCET ONCOL, V13, pE403, DOI 10.1016/S1470-2045(12)70236-X Carrington EV, 2018, NAT REV GASTRO HEPAT, V15, P309, DOI 10.1038/nrgastro.2018.27 Christensen P, 2021, COLORECTAL DIS, V23, P461, DOI 10.1111/codi.15517 COMON P, 1994, SIGNAL PROCESS, V36, P287, DOI 10.1016/0165-1684(94)90029-9 Dai CY, 2019, COMPUT BIOL MED, V109, P171, DOI 10.1016/j.compbiomed.2019.04.033 Deng W, 2022, INFORM SCIENCES, V612, P576, DOI 10.1016/j.ins.2022.08.115 Deng W, 2022, APPL SOFT COMPUT, V127, DOI 10.1016/j.asoc.2022.109419 Deng W, 2022, IEEE T SYST MAN CY-S, V52, P1578, DOI 10.1109/TSMC.2020.3030792 Du DL, 2018, CLIN COLORECTAL CANC, V17, P13, DOI 10.1016/j.clcc.2017.10.012 Dulskas A, 2020, SCI REP-UK, V10, DOI 10.1038/s41598-020-68900-8 Dulskas A, 2018, INT J COLORECTAL DIS, V33, P251, DOI 10.1007/s00384-017-2954-x Dulskas A, 2016, ACTA CHIR BELG, V116, P1, DOI 10.1080/00015458.2015.1136482 Emmertsen KJ, 2012, ANN SURG, V255, P922, DOI 10.1097/SLA.0b013e31824f1c21 Glia A, 1998, SCAND J GASTROENTERO, V33, P1273 Gu Qian-wei, 2014, Application Research of Computers, V31, P1551, DOI 10.3969/j.issn.1001-3695.2014.05.065 Harpale, 2017, SIGNIFICANCE INDEPEN Herault J., 1986, AIP Conference Proceedings, P206, DOI 10.1063/1.36258 Hyvärinen A, 1999, IEEE T NEURAL NETWOR, V10, P626, DOI 10.1109/72.761722 Ihnát P, 2018, ANZ J SURG, V88, pE512, DOI 10.1111/ans.14207 Japan Social Enterprise short term University, 1951, ALL SOC UND PROBL JA Jemal A, 2011, CA-CANCER J CLIN, V61, P134, DOI [10.3322/caac.20115, 10.3322/caac.21492, 10.3322/caac.20107] Kadam ST, 2019, J NEUROSCI METH, V322, P71, DOI 10.1016/j.jneumeth.2019.04.008 Keane C, 2020, DIS COLON RECTUM, V63, P274, DOI [10.1097/DCR.0000000000001583, 10.1111/codi.14957] KUMAR D, 1990, DIGEST DIS SCI, V35, P641, DOI 10.1007/BF01540414 Li Q. R., 2008, BEIJING BIOMED ENG, V27, P281 Luo Zhizeng, 2018, Chinese Journal of Sensors and Actuators, V31, P1211, DOI 10.3969/j.issn.1004-1699.2018.08.012 [马潇 Ma Xiao], 2016, [计算机科学, Computer Science], V43, P112 Oblizajek NR, 2019, NEUROGASTROENT MOTIL, V31, DOI 10.1111/nmo.13597 Pieniowski EHA, 2019, DIS COLON RECTUM, V62, P14, DOI 10.1097/DCR.0000000000001228 Rao SSC, 2001, AM J PHYSIOL-GASTR L, V280, pG629, DOI 10.1152/ajpgi.2001.280.4.G629 Shizhong, 1990, CHINESE J COLOPROCTO, V3, P9 Song YJ, 2023, EXPERT SYST APPL, V213, DOI 10.1016/j.eswa.2022.118834 Sun, 2007, THESIS SHANXI MED U Torres ME, 2011, INT CONF ACOUST SPEE, P4144 Wang YT, 2022, INT J ENV RES PUB HE, V19, DOI 10.3390/ijerph19020629 Wei, 2022, OPT LASER TECHNOL, V158 Wei, 2020, CHIN J GEN BASIC CLI, P624 Xugang, 2012, J SENS TECHNOL, V25, P6 Yan, 2020, CHIN GEN PRACT, V18, P1177, DOI [10.16766/j.cnki.issn.1674-4152.001459, DOI 10.16766/J.CNKI.ISSN.1674-4152.001459] Yongbing, 2016, BIOMED ENG CLIN MED, V20, P143, DOI [10.13339/j.cnki.sglc.20160303.006, DOI 10.13339/J.CNKI.SGLC.20160303.006] Zhao, 2016, THESIS SHANGHAI JIAO, DOI [10.27307/d.cnki.gsjtu.2016.003036, DOI 10.27307/D.CNKI.GSJTU.2016.003036] Zhiqiang, 2021, J N U CHINA, V42, P7 NR 46 TC 1 Z9 1 U1 3 U2 14 PU WILEY PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1751-8822 EI 1751-8830 J9 IET SCI MEAS TECHNOL JI IET Sci. Meas. Technol. PD JUN PY 2023 VL 17 IS 4 BP 167 EP 182 DI 10.1049/smt2.12140 EA JAN 2023 PG 16 WC Engineering, Electrical & Electronic WE Science Citation Index Expanded (SCI-EXPANDED) SC Engineering GA H7BW9 UT WOS:000909425200001 OA gold DA 2024-09-05 ER PT C AU Lei, YF Liu, ZB AF Lei, Yufei Liu, Zhongbao GP IOP TI The development of artificial intelligence: a bibliometric analysis, 2007-2016 SO 2018 INTERNATIONAL CONFERENCE ON COMPUTER INFORMATION SCIENCE AND APPLICATION TECHNOLOGY SE Journal of Physics Conference Series LA English DT Proceedings Paper CT International Conference on Computer Information Science and Application Technology (CISAT) CY DEC 07-09, 2018 CL NE Petr Univ, Daqing, PEOPLES R CHINA HO NE Petr Univ AB The aim of this study is to research the development of artificial intelligence in bibliometrics perspective. Bibliometrics, as one sub-field of scientometric, is an effective tool to evaluating research trends in different fields. The total number of 1188 publications between 1st January 2007 to 31, December 2016 was identified from an academic database Web of Science. In this study, yearly research output, distribution of publication by countries, most productive publication institutions, most productive authors, distribution of research field, artificial intelligence-related researches were analyzed based on bibliometrics. This study tries to provide a valuable reference for researchers to understand the development of artificial intelligence in multiple perspectives. C1 [Lei, Yufei; Liu, Zhongbao] Quanzhou Univ Informat Engn, Sch Software, Quanzhou 362000, Fujian, Peoples R China. [Liu, Zhongbao] North Univ China, Sch Software, Taiyuan 030051, Shanxi, Peoples R China. C3 North University of China RP Liu, ZB (corresponding author), Quanzhou Univ Informat Engn, Sch Software, Quanzhou 362000, Fujian, Peoples R China.; Liu, ZB (corresponding author), North Univ China, Sch Software, Taiyuan 030051, Shanxi, Peoples R China. EM liuzb@nuc.edu.cn CR Archambault É, 2009, J AM SOC INF SCI TEC, V60, P1320, DOI 10.1002/asi.21062 Arel I, 2010, IEEE COMPUT INTELL M, V5, P13, DOI 10.1109/MCI.2010.938364 Chau KW, 2006, MAR POLLUT BULL, V52, P726, DOI 10.1016/j.marpolbul.2006.04.003 He A, 2010, IEEE T VEH TECHNOL, V59, P1578, DOI 10.1109/TVT.2010.2043968 Kisi O, 2012, COMPUT GEOSCI-UK, V41, P169, DOI 10.1016/j.cageo.2011.08.027 Lin WYC, 2012, SCIENTOMETRICS, V92, P7, DOI 10.1007/s11192-012-0725-6 Lv PH, 2011, SCIENTOMETRICS, V88, P399, DOI 10.1007/s11192-011-0386-x Mellit A, 2008, PROG ENERG COMBUST, V34, P574, DOI 10.1016/j.pecs.2008.01.001 Milanez DH, 2013, MATER RES-IBERO-AM J, V16, P1282, DOI 10.1590/S1516-14392013005000130 Pan YH, 2016, ENGINEERING, V2, P409, DOI 10.1016/J.ENG.2016.04.018 Ranchum S. D., 2012, COMMUN ACM, V55, P86 Uriona-Maldonado M, 2012, SCIENTOMETRICS, V91, P977, DOI 10.1007/s11192-012-0653-5 Wang WC, 2009, J HYDROL, V374, P294, DOI 10.1016/j.jhydrol.2009.06.019 Zang YP, 2015, MATER HORIZ, V2, P140, DOI 10.1039/c4mh00147h NR 14 TC 14 Z9 14 U1 5 U2 40 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 1742-6588 EI 1742-6596 J9 J PHYS CONF SER PY 2019 VL 1168 AR 022027 DI 10.1088/1742-6596/1168/2/022027 PG 6 WC Computer Science, Theory & Methods WE Conference Proceedings Citation Index - Science (CPCI-S) SC Computer Science GA BM9MB UT WOS:000471120700027 OA gold DA 2024-09-05 ER PT C AU Shubankar, K Singh, AP Pudi, V AF Shubankar, Kumar Singh, Aditya Pratap Pudi, Vikram GP IEEE BE Famili, FA Osman, IH Kendall, G Hamdan, AR Othman, Z Sarim, HM Abdullah, S TI A Frequent Keyword-Set Based Algorithm for Topic Modeling and Clustering of Research Papers SO 2011 3RD CONFERENCE ON DATA MINING AND OPTIMIZATION (DMO) SE IEEE International Conference on Data Mining LA English DT Proceedings Paper CT 3rd Conference on Data Mining and Optimization (DMO)/1st Multi Conference on Artificial Intelligence Technology (MCAIT) CY JUN 28-29, 2011 CL Putrajaya, MALAYSIA DE Closed Frequent Keyword-set; Topic Detection; Graph Mining; Citation Network; Authoritative Score AB In this paper we introduce a novel and efficient approach to detect topics in a large corpus of research papers. With rapidly growing size of academic literature, the problem of topic detection has become a very challenging task. We present a unique approach that uses closed frequent keyword-set to form topics. Our approach also provides a natural method to cluster the research papers into hierarchical, overlapping clusters using topic as similarity measure. To rank the research papers in the topic cluster, we devise a modified PageRank algorithm that assigns an authoritative score to each research paper by considering the sub-graph in which the research paper appears. We test our algorithms on the DBLP dataset and experimentally show that our algorithms are fast, effective and scalable. C1 [Shubankar, Kumar; Singh, Aditya Pratap; Pudi, Vikram] IIIT Hyderabad, Ctr Data Engn, Hyderabad, Andhra Pradesh, India. C3 International Institute of Information Technology Hyderabad RP Shubankar, K (corresponding author), IIIT Hyderabad, Ctr Data Engn, Hyderabad, Andhra Pradesh, India. EM shubankar@students.iiit.ac.in; aditya_pratap@students.iiit.ac.in; vikram@iiit.ac.in RI Pudi, Vikram/O-8981-2017 OI Pudi, Vikram/0000-0002-0589-6366 CR Agarwal R., 1993, P 1993 ACM SIGMOD C [Anonymous], 1998, P 7 INT C WORLD WID [Anonymous], P NATL ACAD SCI [Anonymous], 1994, P 20 VLDB C BEIL F, 2002, P 8 INT C KNOWL DISC Blei D.M., 2005, CORRELATED TOPIC MOD Chong Z., 2006, WUHAN J NATURAL SCI, V11, P1345 *DBLP, DBLP COMP SCI BIBL Erosheva E., 2004, P NATL ACAD SCI Geng X., 2008, P 1 INT C ADV COMP T Jo Y., 2007, P 13 ACM SIGKDD INT KLEINBERG J, 2002, P SIGKDD Klienberg J., 1998, P 9 ANN ACM SIAM S D Krishna S. M., 2010, EUROPEAN J SCI RES Lin C. Y., 2002, P COLING C Lloret E, 2009, TOPIC DETECTION SEGM MANN GS, 2006, JCDL McCallum A., 2004, AUTHOR RECIPIENT TOP MEI Q, 2005, P SIGKDD Pasquier N., 1999, INFORM SYSTEMS Steyvers M., 2004, P SIGKDD WANG X, 2006, P SIGKDD Wartena C., 2008, P 19 INT C DAT EXP S Zhou D., 2006, P WWW Zhuang L., 2004, P 4 INT C COMP INF T NR 25 TC 12 Z9 12 U1 0 U2 6 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA SN 1550-4786 BN 978-1-61284-212-7 J9 IEEE DATA MINING PY 2011 BP 96 EP 102 PG 7 WC Computer Science, Artificial Intelligence; Computer Science, Information Systems WE Conference Proceedings Citation Index - Science (CPCI-S) SC Computer Science GA BYP33 UT WOS:000299559300016 DA 2024-09-05 ER PT J AU Blair, BL Slagle, DR Williams, AM AF Blair, Bruce L. Slagle, Derek R. Williams, Adam M. TI Institutional and programmatic determinants for graduate public affairs' online education: Assessing the influence of faculty workload SO TEACHING PUBLIC ADMINISTRATION LA English DT Article DE Public Affairs Education; Higher Education; FacultyWorkload; Online Learning; COVID-19 ID DISTANCE EDUCATION AB The research explores why some public affairs graduate programs choose to develop fully online degree offerings while others do not. The study attempts to address questions surrounding how different institutions and programs are pursuing degree offerings and the potential influence of faculty workload. The research utilizes a quantitative, cross-sectional design analyzing results from a survey on institutional and programmatic practices in workload, hiring, and degree offerings administered to primary points of contact within public affairs academic units from all institutions found in the US News World Report Graduate Programs in Public Affairs Rankings from 2019. Survey data is paired with program information from the accrediting body institutional member database. Findings indicate differences from both institutional and programmatic groupings do demonstrate workload measures have unique characteristics depending upon the type of institution and rank of the program. Further analysis discusses the influence of the COVID-19 pandemic on future public affairs programming. C1 [Blair, Bruce L.] Clayton State Univ, Morrow, GA USA. [Slagle, Derek R.] Univ Arkansas, Little Rock, AR USA. C3 University System of Georgia; Clayton State University; University of Arkansas System; University of Arkansas Little Rock; University of Arkansas Fayetteville RP Williams, AM (corresponding author), Univ Illinois, One Univ Plaza,MS PAC 420, Springfield, IL 62704 USA. EM adamwilliams1986@yahoo.com OI Slagle, Derek/0000-0002-0367-3185; Williams, Adam/0000-0001-5307-5370 CR Allen I.E. Seaman., 2007, ONLINE NATION 5 YEAR [Anonymous], TABL 311 2 NUMB PERC Anttiroiko AV., 2018, ONLINE COURSE MANAGE, P1148, DOI [10.4018/978-1-5225-5472-1.ch058, DOI 10.4018/978-1-5225-5472-1.CH058] Austin EK, 2009, J PUBLIC AFF EDUC, V15, P161, DOI 10.1080/15236803.2009.12001551 Bach S., 2007, Online learning and teaching in higher education Barth T.J., 2004, INT J ADM, V6, P439 Blankenberger B., 2020, Administrative Theory Praxis, V42, P404, DOI [10.1080/10841806.2020.1771907, DOI 10.1080/10841806.2020.1771907] Bocchi J., 2004, J EDUC BUS, V79, P245 Bolliger DU, 2009, DISTANCE EDUC, V30, P103, DOI 10.1080/01587910902845949 Brammer S, 2020, BRIT J MANAGE, V31, P453, DOI 10.1111/1467-8551.12425 Dupin-Byrant P.A., 2004, AM J DISTANCE EDUC, V18, P199, DOI 10.1207/s15389286ajde1804_2 Folkers DA, 2005, INF RESOUR MANAG J, V18, P61, DOI 10.4018/irmj.2005010105 Fortune MF, 2006, J EDUC BUS, V81, P210, DOI 10.3200/JOEB.81.4.210-214 Gigliotti RA, 2021, INNOV HIGH EDUC, V46, P429, DOI 10.1007/s10755-021-09545-x Ginn MH, 2012, J PUBLIC AFF EDUC, V18, P247, DOI 10.1080/15236803.2012.12001683 Griffith AS, 2020, INNOV EDUC TEACH INT, V57, P691, DOI 10.1080/14703297.2020.1786432 Hilbe J.M., 2015, Practical guide to logistic regression, DOI DOI 10.1201/B18678 Hosmer DW, 2013, WILEY SER PROBAB ST, P153 Krieg E. J., 2019, STAT DATA ANAL SOCIA NASPAA, FIND YOUR GRAD DEGR Perreault H., 2002, J EDUC BUS, V77, P313, DOI [DOI 10.1080/08832320209599681, 10.1080/08832320209599681#.VMJ-o0eG-So, DOI 10.1080/08832320209599681#.VMJ-O0EG-SO] Privitera G.J., 2018, Statistics for the behavioral sciences, V3rd Schiffman S., 2007, Journal of Asynchronous Learning Networks, V11, P61 Slagle D, 2019, J PUBLIC AFF EDUC, V25, P441, DOI 10.1080/15236803.2018.1477370 Slagle DR, 2021, ONLINE INFORM REV, V45, P656, DOI 10.1108/OIR-09-2020-0415 Slagle DR, 2022, J CONTIN HIGH EDUC, V70, P21, DOI 10.1080/07377363.2020.1859349 Stack M, 2021, INT REV EDUC, V67, P127, DOI 10.1007/s11159-021-09891-0 Strange K., 2018, PRODUCTIVITY HIGHER, P252 Tomei L.A., 2006, J TECHNOLOGY TEACHER, V14, P531 Vernon R, 2009, J SOC WORK EDUC, V45, P263, DOI 10.5175/JSWE.2009.200700081 Williams SL, 2006, AM J DISTANCE EDUC, V20, P127, DOI 10.1207/s15389286ajde2003_2 Wilson, 2020, TEACH PUBLIC ADMIN, V38 NR 32 TC 1 Z9 1 U1 1 U2 4 PU SAGE PUBLICATIONS INC PI THOUSAND OAKS PA 2455 TELLER RD, THOUSAND OAKS, CA 91320 USA SN 0144-7394 EI 2047-8720 J9 TEACH PUBLIC ADMIN JI Teach. Public Admin. PD JUL PY 2022 VL 40 IS 2 BP 181 EP 198 DI 10.1177/01447394211017326 EA MAY 2021 PG 18 WC Education & Educational Research WE Emerging Sources Citation Index (ESCI) SC Education & Educational Research GA 2G4CL UT WOS:000652700900001 OA Bronze DA 2024-09-05 ER PT C AU Chagas, RRFF Modesti, PH Borsato, M AF Chagas, Ruan R. F. F. Modesti, Paulo H. Borsato, Milton BE Pokojski, J Gil, M Newnes, L Stjepandic, J Wognum, N TI Bibliometric and Systemic Analysis of Production Planning Optimization SO TRANSDISCIPLINARY ENGINEERING FOR COMPLEX SOCIO-TECHNICAL SYSTEMS - REAL-LIFE APPLICATIONS SE Advances in Transdisciplinary Engineering LA English DT Proceedings Paper CT 27th ISTE International Conference on Transdisciplinary Engineering (TE) - Transdisciplinary Engineering for Complex Socio-Technical Systems in Perspective of Real-Life Application CY JUL 01-10, 2020 CL ELECTR NETWORK DE Artificial intelligence; optimization; production planning ID SEQUENCE-DEPENDENT SETUPS AB Having good production planning is essential to companies who need to maximize the use of their resources and boost their profits. However, to formulate efficient production planning is necessary to consider many variables. That makes analytical solutions almost impossible, forcing companies to use computational methods to solve this kind of problem. Even so, because of the complexity of the problems, much computational effort is needed. In that sense, using 4.0 industry concepts, like artificial intelligence, has been helping companies formulate optimal, or near-optimal, production plans for their process in a feasible time. Since each company has different characteristics and variables, the possibilities to formulate and optimize production planning are diverse. Thus, many case studies can be carried out. Generating a huge range of research opportunities. So, this study is a survey attempting to find some of these gaps through a systemic and bibliometric analysis. To achieve this goal the methodological procedure Knowledge Development Process - Constructivist (ProKnow - C) was used. This method aims to minimize the amount of content out of alignment with the research subject. In the first search, 44,609 articles were found, and after a filtering process that prioritized scientific recognized articles and journals, only 15 articles remained. Finally, common themes among the articles and opportunities for future work were highlighted. C1 [Chagas, Ruan R. F. F.; Modesti, Paulo H.; Borsato, Milton] Univ Tecnol Fed Parana UTFPR, Curitiba, Parana, Brazil. C3 Universidade Tecnologica Federal do Parana RP Chagas, RRFF (corresponding author), Univ Tecnol Fed Parana UTFPR, Curitiba, Parana, Brazil. EM ruan@alunos.utfpr.edu.br RI Borsato, Milton/H-5937-2012 OI Borsato, Milton/0000-0002-3607-8315 FU Fundacao de Apoio a Universidade Tecnologica Federal do Parana FX The authors wish to thank Fundacao de Apoio a Universidade Tecnologica Federal do Parana for supporting the present research. CR Afonso M. H. F., 2012, Revista de Gestao Social E Ambiental, V5, P47, DOI [DOI 10.24857/RGSA.V5I2.424, https://doi.org/10.24857/rgsa.v5i2.424] Chakrabortty RK, 2015, COMPUT IND ENG, V88, P366, DOI 10.1016/j.cie.2015.07.021 Cheraghalikhani A, 2019, INT J IND ENG COMP, V10, P309, DOI 10.5267/j.ijiec.2018.6.002 Chergui A, 2018, COMPUT IND ENG, V126, P292, DOI 10.1016/j.cie.2018.09.048 Cho HM, 2017, COMPUT IND ENG, V106, P174, DOI 10.1016/j.cie.2017.02.010 Du BG, 2016, COMPUT IND ENG, V94, P158, DOI 10.1016/j.cie.2015.12.015 Fang CC, 2017, COMPUT IND ENG, V108, P88, DOI 10.1016/j.cie.2017.04.015 Gajpal Y, 2015, RELIAB ENG SYST SAFE, V144, P204, DOI 10.1016/j.ress.2015.06.019 Ji QK, 2016, EUR J OPER RES, V253, P383, DOI 10.1016/j.ejor.2016.02.021 Kilger C., 2008, Supply Chain Management and Advanced Planning: Concepts, Models, Software, and Case Studies, VFourth, P263 Lin JH, 2016, COMPUT OPER RES, V72, P189, DOI 10.1016/j.cor.2016.03.002 Lu HC, 2015, EUR J OPER RES, V246, P51, DOI 10.1016/j.ejor.2015.04.044 Poldi KC, 2016, ANN OPER RES, V238, P497, DOI 10.1007/s10479-015-2103-2 Polotski V, 2015, J MANUF SYST, V37, P703, DOI 10.1016/j.jmsy.2015.02.001 Roblek V, 2016, SAGE OPEN, V6, DOI 10.1177/2158244016653987 Torkaman S, 2018, APPL SOFT COMPUT, V71, P1085, DOI 10.1016/j.asoc.2017.10.019 Torkaman S, 2017, COMPUT IND ENG, V113, P602, DOI 10.1016/j.cie.2017.09.040 Xu LD, 2018, INT J PROD RES, V56, P2941, DOI 10.1080/00207543.2018.1444806 Yan HS, 2015, J OPER RES SOC, V66, P1250, DOI 10.1057/jors.2014.88 Zhou KL, 2015, 2015 12TH INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS AND KNOWLEDGE DISCOVERY (FSKD), P2147, DOI 10.1109/FSKD.2015.7382284 NR 20 TC 0 Z9 1 U1 1 U2 2 PU IOS PRESS PI AMSTERDAM PA NIEUWE HEMWEG 6B, 1013 BG AMSTERDAM, NETHERLANDS SN 2352-7528 BN 978-1-64368-111-5; 978-1-64368-110-8 J9 ADV TRANSDISCIPL ENG PY 2020 VL 12 BP 661 EP 669 DI 10.3233/ATDE200128 PG 9 WC Engineering, Industrial WE Conference Proceedings Citation Index - Science (CPCI-S) SC Engineering GA BR3OM UT WOS:000648613100067 OA gold DA 2024-09-05 ER PT C AU Mathew, G Agrawal, A Menzies, T AF Mathew, George Agrawal, Amritanshu Menzies, Tim GP IEEE TI Trends in Topics at SE Conferences (1993-2013) SO PROCEEDINGS OF THE 2017 IEEE/ACM 39TH INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING COMPANION (ICSE-C 2017) SE Proceedings of the IEEE-ACM International Conference on Software Engineering Companion LA English DT Proceedings Paper CT IEEE/ACM 39th International Conference on Software Engineering Companion (ICSE-C) CY MAY 20-28, 2017 CL Buenos Aires, ARGENTINA DE Software Engineering; Bibliometrics; Topic Modeling; Text Mining AB Using topic modeling, we analyse the titles and abstracts of nearly 10,000 papers from 20 years published in 11 top-ranked Software Engineering(SE) conferences between 1993 to 2013. Seven topics are identified as the dominant themes in modern software engineering. We show that these topics are not static; rather, some of them are becoming decidedly less prominent over time (modeling) while others are become very prominent indeed (defect analysis). By clustering conferences according to the topics they publish, we identify four large groups of SE conferences; e. g. ASE, FSE and ICSE publish mostly the same work (exceptions: there are more program analysis results in FSE than in ASE or ICSE). Using these results, we offer numerous recommendations including how to plan an individuals research program; when to make or merge conferences; and how to encourage a broader range of topics at SE conferences. An extended version of this paper, that analyzes more conferences and papers, is available on https://goo. gl/mVdyfj C1 [Mathew, George; Agrawal, Amritanshu; Menzies, Tim] NCSU, Comp Sci, Raleigh, NC 27695 USA. C3 North Carolina State University RP Mathew, G (corresponding author), NCSU, Comp Sci, Raleigh, NC 27695 USA. EM george.meg91@gmail.com; aagrawa8@ncsu.edu; tim@menzies.us RI Agrawal, Amritanshu/R-7093-2019; Menzies, Tim/X-7680-2019 OI Agrawal, Amritanshu/0000-0002-1220-8533; Menzies, Tim/0000-0002-5040-3196 CR AGRAWAL A, IST UNPUB Tang J., 2008, KDD, P990, DOI DOI 10.1145/1401890.1402008 Vasilescu B, 2013, IEEE WORK CONF MIN S, P373, DOI 10.1109/MSR.2013.6624051 NR 3 TC 11 Z9 11 U1 2 U2 2 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA SN 2574-1926 BN 978-1-5386-1589-8 J9 PROC IEEE ACM INT C PY 2017 BP 397 EP 398 DI 10.1109/ICSE-C.2017.52 PG 2 WC Computer Science, Software Engineering; Engineering, Electrical & Electronic WE Conference Proceedings Citation Index - Science (CPCI-S) SC Computer Science; Engineering GA BJ5GY UT WOS:000425916900125 DA 2024-09-05 ER PT J AU Kumar, S Sharma, D Rao, SD Lim, WM Mangla, SK AF Kumar, Satish Sharma, Dipasha Rao, Sandeep Lim, Weng Marc Mangla, Sachin Kumar TI Past, present, and future of sustainable finance: insights from big data analytics through machine learning of scholarly research SO ANNALS OF OPERATIONS RESEARCH LA English DT Article; Early Access DE Sustainable finance; Sustainable development goals; Socially responsible investing; Climate financing; Green financing; Impact investing; Carbon financing; Energy financing; Governance; Big data analytics; Machine learning; Bibliometric analysis; Systematic literature review ID CLIMATE FINANCE; CARBON FINANCE; SOCIAL-RESPONSIBILITY; BIBLIOMETRIC ANALYSIS; PERFORMANCE EVIDENCE; POLITICAL-ECONOMY; GREEN FINANCE; IMPACT; INVESTMENT; BONDS AB Sustainable finance is a rich field of research. Yet, existing reviews remain limited due to the piecemeal insights offered through a sub-set rather than the entire corpus of sustainable finance. To address this gap, this study aims to conduct a large-scale review that would provide a state-of-the-art overview of the performance and intellectual structure of sustainable finance. To do so, this study engages in a review of sustainable finance research using big data analytics through machine learning of scholarly research. In doing so, this study unpacks the most influential articles and top contributing journals, authors, institutions, and countries, as well as the methodological choices and research contexts for sustainable finance research. In addition, this study reveals insights into seven major themes of sustainable finance research, namely socially responsible investing, climate financing, green financing, impact investing, carbon financing, energy financing, and governance of sustainable financing and investing. To drive the field forward, this study proposes several suggestions for future sustainable finance research, which include developing and diffusing innovative sustainable financing instruments, magnifying and managing the profitability and returns of sustainable financing, making sustainable finance more sustainable, devising and unifying policies and frameworks for sustainable finance, tackling greenwashing of corporate sustainability reporting in sustainable finance, shining behavioral finance on sustainable finance, and leveraging the power of new-age technologies such as artificial intelligence, blockchain, internet of things, and machine learning for sustainable finance. C1 [Kumar, Satish] Malaviya Natl Inst Technol Jaipur, Dept Management Studies, Jaipur 302017, Rajasthan, India. [Kumar, Satish; Lim, Weng Marc] Swinburne Univ Technol, Sch Business, Jalan Simpang Tiga, Sarawak 93350, Malaysia. [Sharma, Dipasha] Symbiosis Int, Symbiosis Ctr Management & Human Resource Dev, Pune, Maharashtra, India. [Rao, Sandeep] Dublin City Univ, DCU Business Sch, Dublin 09, Ireland. [Lim, Weng Marc] Swinburne Univ Technol, Swinburne Business Sch, John St, Hawthorn, Vic 3122, Australia. [Mangla, Sachin Kumar] OP Jindal Global Univ, Jindal Global Business Sch, Sonipat, Haryana, India. C3 National Institute of Technology (NIT System); Malaviya National Institute of Technology Jaipur; Swinburne University of Technology Sarawak; Swinburne University of Technology; Symbiosis International University; Symbiosis Centre for Management & Human Resource Development (SCMHRD); Dublin City University; Swinburne University of Technology; O.P. Jindal Global University RP Mangla, SK (corresponding author), OP Jindal Global Univ, Jindal Global Business Sch, Sonipat, Haryana, India. EM skumar.dms@mnit.ac.in; dipasha_sharma@scmhrd.edu; sandeep.keshavarao@dcu.ie; lim@wengmarc.com; smangla@jgu.edu.in RI Sharma, Dipasha/AAK-3480-2020; Lim, Weng Marc/I-1723-2019; Rao, Sandeep/AAU-1452-2020; Kumar, Satish/M-8694-2017 OI Sharma, Dipasha/0000-0002-6804-0055; Lim, Weng Marc/0000-0001-7196-1923; Rao, Sandeep/0000-0001-7752-4492; Kumar, Satish/0000-0001-5200-1476; KUMAR MANGLA, SACHIN/0000-0001-7166-5315 CR Abadie LM, 2013, MITIG ADAPT STRAT GL, V18, P943, DOI 10.1007/s11027-012-9401-7 Abedin MZ, 2021, ANN OPER RES, DOI 10.1007/s10479-021-04420-6 Aglietta M, 2015, INT ENVIRON AGREEM-P, V15, P403, DOI 10.1007/s10784-015-9298-1 Agrawal A, 2019, SUSTAINABILITY-BASEL, V11, DOI 10.3390/su11154117 Agrawal Anirudh., 2021, J SMALL BUSINESS ENT, V33, P153, DOI [10.1080/08276331.2018.1551457, DOI 10.1080/08276331.2018.1551457] Alda M, 2021, J CLEAN PROD, V298, DOI 10.1016/j.jclepro.2021.126812 Alda M, 2020, FINANC RES LETT, V36, DOI 10.1016/j.frl.2019.101313 Alessandrini F, 2020, J PORTFOLIO MANAGE, V46, P75, DOI 10.3905/jpm.2020.46.3.075 Alsaifi K, 2020, BUS STRATEG ENVIRON, V29, P711, DOI 10.1002/bse.2426 [Anonymous], PHYS REV E 2 Ari I, 2021, ENERGY, V222, DOI 10.1016/j.energy.2021.119925 Arouri M, 2021, FINANC RES LETT, V42, DOI 10.1016/j.frl.2021.101927 Bag S, 2020, ANN OPER RES, DOI 10.1007/s10479-020-03790-7 Baker HK, 2020, J BUS RES, V108, P232, DOI 10.1016/j.jbusres.2019.11.025 Bannier C, 2021, FINANC RES LETT, DOI DOI 10.1016/J.FRL.2021.102160 Barua S, 2019, BUS STRATEG ENVIRON, V28, P1131, DOI 10.1002/bse.2307 Bauer R, 2007, J BUS ETHICS, V70, P111, DOI 10.1007/s10551-006-9099-0 Belghitar Y, 2014, J BANK FINANC, V47, P54, DOI 10.1016/j.jbankfin.2014.06.027 Benjamin 7, 2014, Climate Law, V4, P94 Bolton RN, 2022, AUSTRALAS MARK J, V30, P107, DOI 10.1177/18393349211005200 Bredin D, 2014, INT REV FINANC ANAL, V34, P222, DOI 10.1016/j.irfa.2014.03.003 BROADUS RN, 1987, SCIENTOMETRICS, V12, P373, DOI 10.1007/BF02016680 Brunner S, 2014, GLOBAL ENVIRON CHANG, V27, P138, DOI 10.1016/j.gloenvcha.2014.05.005 Bui TD, 2020, J RISK FINANC MANAG, V13, DOI 10.3390/jrfm13110264 Burton B, 2020, EUR J FINANC, V26, P1817, DOI 10.1080/1351847X.2020.1754873 CALLON M, 1983, SOC SCI INFORM, V22, P191, DOI 10.1177/053901883022002003 Camey B F, 1994, Health Prog, V75, P20 Camilleri MA, 2021, SOC RESPONSIB J, V17, P412, DOI 10.1108/SRJ-06-2019-0194 Cao X, 2021, CHINA ECON REV, V66, DOI 10.1016/j.chieco.2020.101582 Carè R, 2020, SUSTAINABILITY-BASEL, V12, DOI 10.3390/su12187291 Caseau C, 2020, FINANC ANAL J, V76, P40, DOI 10.1080/0015198X.2020.1779561 Castriotta M, 2019, SCIENTOMETRICS, V118, P407, DOI 10.1007/s11192-018-2977-2 Cerqueti R, 2021, J FINANC STABIL, V54, DOI 10.1016/j.jfs.2021.100887 Chatzitheodorou K, 2019, SUSTAIN PROD CONSUMP, V19, P117, DOI 10.1016/j.spc.2019.03.006 Chen HY, 2020, PAC-BASIN FINANC J, V63, DOI 10.1016/j.pacfin.2020.101407 Chen L, 2021, J MANAGE SCI ENG, V6, P75, DOI 10.1016/j.jmse.2021.02.005 Chen MK, 2020, J PORTFOLIO MANAGE, V46, P65, DOI 10.3905/jpm.2020.46.3.065 Chen YF, 2021, ENERG POLICY, V153, DOI 10.1016/j.enpol.2021.112252 Cheng C, 2019, J CLEAN PROD, V232, P1148, DOI 10.1016/j.jclepro.2019.05.360 Chow GWS, 2014, AUST J MANAGE, V39, P645, DOI 10.1177/0312896213516327 Clark R, 2018, LAND USE POLICY, V71, P335, DOI 10.1016/j.landusepol.2017.12.013 Clarkin JE, 2016, ENTREP RES J, V6, P135, DOI 10.1515/erj-2014-0011 Cobo MJ, 2011, J AM SOC INF SCI TEC, V62, P1382, DOI 10.1002/asi.21525 Comerio N, 2019, TOURISM ECON, V25, P109, DOI 10.1177/1354816618793762 Craig C, 2021, Sustainable finance starts with data Cui HR, 2020, J CLEAN PROD, V269, DOI 10.1016/j.jclepro.2020.121799 Dam L, 2015, RESOUR ENERGY ECON, V41, P103, DOI 10.1016/j.reseneeco.2015.04.008 Daugaard D, 2020, ACCOUNT FINANC, V60, P1501, DOI 10.1111/acfi.12479 Dedusenko EA., 2017, J ENV MANAGEMENT TOU, V8, P1474 Dikau S, 2021, ECOL ECON, V184, DOI 10.1016/j.ecolecon.2021.107022 Diltz J.D., 1995, APPL FINANCIAL EC, V5, P69 Donthu N, 2021, J BUS RES, V133, P285, DOI 10.1016/j.jbusres.2021.04.070 Donthu N, 2021, J INT MARKETING, V29, P1, DOI 10.1177/1069031X211004234 Donthu N, 2021, PSYCHOL MARKET, V38, P834, DOI 10.1002/mar.21472 Donthu N, 2021, INT J INFORM MANAGE, V57, DOI 10.1016/j.ijinfomgt.2020.102307 Donthu N, 2020, J BUS RES, V109, P1, DOI 10.1016/j.jbusres.2019.10.039 Dorfleitner G, 2021, FINANC RES LETT, V43, DOI 10.1016/j.frl.2021.101990 Dorfleitner G, 2015, J ASSET MANAG, V16, P450, DOI 10.1057/jam.2015.31 Durisin B, 2009, CORP GOV-OXFORD, V17, P266, DOI 10.1111/j.1467-8683.2009.00739.x Eccles NS, 2011, J BUS ETHICS, V104, P389, DOI 10.1007/s10551-011-0917-7 Elavarasan RM, 2021, SUSTAIN CITIES SOC, V68, DOI 10.1016/j.scs.2021.102789 Ellegaard O, 2015, SCIENTOMETRICS, V105, P1809, DOI 10.1007/s11192-015-1645-z Escrig-Olmedo E, 2013, BUS STRATEG ENVIRON, V22, P410, DOI 10.1002/bse.1755 European Commission, 2021, Overview of sustainable finance Fabregat-Aibar L, 2019, SUSTAINABILITY-BASEL, V11, DOI 10.3390/su11092526 Ferris S.P., 1986, Business and Society, V25, P1, DOI [10.1177/000765038602500101, DOI 10.1177/000765038602500101] Cunha FAFD, 2021, BUS STRATEG ENVIRON, V30, P3821, DOI 10.1002/bse.2842 Fonta WM, 2018, CLIM POLICY, V18, P1210, DOI 10.1080/14693062.2018.1459447 Friede G., 2015, Journal of Sustainable Finance and Investment, V5, P210, DOI [10.1080/20430795.2015.1118917, DOI 10.1080/20430795.2015.1118917] Fu YF, 2020, RES INT BUS FINANC, V52, DOI 10.1016/j.ribaf.2019.101117 Garcia AS, 2017, J CLEAN PROD, V150, P135, DOI 10.1016/j.jclepro.2017.02.180 Geczy C, 2021, J FINANC ECON, V142, P697, DOI 10.1016/j.jfineco.2021.01.006 Geobey S., 2017, ACRN OXFORD J FINANC, V6, P17 Giacomantonio C, 2017, J SOC ENTREP, V8, P47, DOI 10.1080/19420676.2016.1271348 Giese G, 2019, J PORTFOLIO MANAGE, V45, P69, DOI 10.3905/jpm.2019.45.5.069 Giglio S., 2020, Inside the mind of a stock market crash, DOI DOI 10.3386/W27272 Goyal K, 2021, INT J BANK MARK, V39, P1166, DOI 10.1108/IJBM-12-2020-0612 Guerard JB, 1997, J FORECASTING, V16, P475, DOI 10.1002/(SICI)1099-131X(199712)16:7<475::AID-FOR668>3.3.CO;2-O Gupta S., 2009, PROD OPER MANAG, V15, P448 Gupta S, 2020, IND MARKET MANAG, V89, P499, DOI 10.1016/j.indmarman.2019.09.009 Guptill A, 2021, AGR HUM VALUES, V38, P741, DOI 10.1007/s10460-020-10185-8 Gutierrez M., 2019, Development, V62, P136, DOI [10.1057/s41301-019-00204-5, DOI 10.1057/S41301-019-00204-5] Halbritter G, 2015, REV FINANC ECON, V26, P25, DOI 10.1016/j.rfe.2015.03.004 Harari MB, 2020, J VOCAT BEHAV, V118, DOI 10.1016/j.jvb.2020.103377 Harmeling S, 2011, IDS BULL-I DEV STUD, V42, P23, DOI 10.1111/j.1759-5436.2011.00219.x Heinkel R, 2001, J FINANC QUANT ANAL, V36, P431, DOI 10.2307/2676219 Herremans IM, 1993, ACCOUNT ORG SOC, V18, P587, DOI 10.1016/0361-3682(93)90044-7 Himick D., 2011, Critical Perspectives on Accounting, V22, P158, DOI [10.1016/j.cpa.2010.07.002, DOI 10.1016/J.CPA.2010.07.002] Huang HF, 2020, TRANSPORT RES E-LOG, V140, DOI 10.1016/j.tre.2020.101976 Hutton R.Bruce., 1998, Business Society, V37, P281, DOI [10.1177/000765039803700303, DOI 10.1177/000765039803700303] Ibrahim K, 2016, GEOMAT NAT HAZ RISK, V7, P1754, DOI 10.1080/19475705.2016.1155503 Jackson E.T., 2013, Journal of Sustainable Finance Investment, V3, P95, DOI [10.1080/20430795.2013.776257, DOI 10.1080/20430795.2013.776257] Jackson ET, 2013, COMMUNITY DEV, V44, P608, DOI 10.1080/15575330.2013.854258 Jafri J, 2019, REV INT POLIT ECON, V26, P520, DOI 10.1080/09692290.2019.1608842 Jakob M, 2015, CLIM DEV, V7, P1, DOI 10.1080/17565529.2014.934768 Jan AA, 2021, J CLEAN PROD, V315, DOI 10.1016/j.jclepro.2021.128099 Joliet R, 2018, J BANK FINANC, V97, P70, DOI 10.1016/j.jbankfin.2018.09.011 Kamble SS, 2023, ANN OPER RES, V327, P575, DOI 10.1007/s10479-021-04129-6 Khan MA, 2021, J BUS RES, V125, P295, DOI 10.1016/j.jbusres.2020.12.015 Kling G, 2021, WORLD DEV, V137, DOI 10.1016/j.worlddev.2020.105131 Kollenda P, 2022, J BANK FINANC, V136, DOI 10.1016/j.jbankfin.2021.106224 Kumar S, 2021, J BUS RES, V134, P275, DOI 10.1016/j.jbusres.2021.05.041 Kumar S, 2021, BUS STRATEG ENVIRON, V30, P3454, DOI 10.1002/bse.2813 Kumar S, 2021, ELECTRON COMMER RES, V21, P1, DOI 10.1007/s10660-021-09464-1 La Torre M, 2019, SUSTAINABILITY-BASEL, V11, DOI 10.3390/su11071887 Landi G, 2019, SOC RESPONSIB J, V15, P11, DOI 10.1108/SRJ-11-2017-0254 Lesser K, 2014, J ASSET MANAG, V15, P317, DOI 10.1057/jam.2014.31 Li WA, 2020, J CLEAN PROD, V260, DOI 10.1016/j.jclepro.2020.121008 Lieberman D, 2020, J INVEST, V29, P58, DOI 10.3905/joi.2019.1.112 Lim WM, 2021, TOUR RECREAT RES, V46, P314, DOI 10.1080/02508281.2021.1881708 Lim WM, 2021, J BUS RES, V122, P534, DOI 10.1016/j.jbusres.2020.08.051 Lim WM, 2019, IND MARKET MANAG, V76, P136, DOI 10.1016/j.indmarman.2018.08.007 Lim WM, 2015, J INF SCI, V41, P399, DOI 10.1177/0165551515577913 Lokuwaduge CSD, 2017, BUS STRATEG ENVIRON, V26, P438, DOI 10.1002/bse.1927 MacDonald A, 2019, J BUS ETHICS, V160, P409, DOI 10.1007/s10551-018-3885-3 Malhotra G, 2020, Gedrag & Organisatie Review, V33, P583 Marti E, 2013, ANAL KRITIK, V35, P219 Mekonnen A, 2014, J AFR ECON, V23, P50, DOI 10.1093/jae/eju012 Migliorelli M, 2021, SUSTAINABILITY-BASEL, V13, DOI 10.3390/su13020975 Mollet JC, 2014, REV FINANC ECON, V23, P208, DOI 10.1016/j.rfe.2014.08.003 Muganyi T, 2021, ENVIRON SCI ECOTECH, V7, DOI 10.1016/j.ese.2021.100107 Muhamat AA, 2017, ADV SCI LETT, V23, P7670, DOI 10.1166/asl.2017.9549 Ng AW, 2018, J CLEAN PROD, V195, P585, DOI 10.1016/j.jclepro.2018.05.250 Nielsen KP., 2011, Journal of Sustainable Finance and Investment, V1, P209, DOI DOI 10.1080/20430795.2012.655889 Norris M, 2007, J INFORMETR, V1, P161, DOI 10.1016/j.joi.2006.12.001 OECD, 2020, Technical report Pattnaik D, 2020, RES INT BUS FINANC, V54, DOI 10.1016/j.ribaf.2020.101287 Paul J, 2021, INT J CONSUM STUD, DOI 10.1111/ijcs.12695 Pedersen LH, 2021, J FINANC ECON, V142, P572, DOI 10.1016/j.jfineco.2020.11.001 Pender H, 2011, JASSA, P26 Pesta Bryan, 2018, J Intell, V6, DOI 10.3390/jintelligence6040046 PIERCE TJ, 1993, SOC SCI J, V30, P13, DOI 10.1016/0362-3319(93)90003-E Pinsky V., 2020, GLOBAL J FLEXIBLE SY, V21, P49 Pinsky VC, 2019, REV GEST AMBIENT SUS, V8, P468, DOI 10.5585/GEAS.V8I3.15766 Popescu IS, 2021, J CLEAN PROD, V314, DOI 10.1016/j.jclepro.2021.128016 Purdon M, 2015, WORLD DEV, V74, P462, DOI 10.1016/j.worlddev.2015.05.024 Quatrini Simone, 2021, Ecosyst Serv, V48, P101240, DOI 10.1016/j.ecoser.2020.101240 Rahman M., 2020, Asian Journal of Sustainability and Social Responsibility, V5, P1 Rajan AT, 2014, J PRIV EQUITY, V17, P37, DOI 10.3905/jpe.2014.17.2.037 Rao PI, 2023, J SMALL BUS MANAGE, V61, P1247, DOI 10.1080/00472778.2021.1955123 Refinitiv, 2020, SUST FIN REV Renneboog L, 2008, J BANK FINANC, V32, P1723, DOI 10.1016/j.jbankfin.2007.12.039 Revelli C, 2015, BUS ETHICS, V24, P158, DOI 10.1111/beer.12076 Rezaee Z, 2017, ADV ACCOUNT, V39, P47, DOI 10.1016/j.adiac.2017.08.001 Richardson BJ, 2009, J BUS ETHICS, V87, P555, DOI 10.1007/s10551-008-9958-y Rizzello A, 2020, SUSTAINABILITY-BASEL, V12, DOI 10.3390/su12135362 Robb R., 2016, CAPITALISM SOC, V11 Roblek V, 2020, SUSTAINABILITY-BASEL, V12, DOI 10.3390/su12208497 Roehrer C., 2015, NEW DIRECTIONS EVALU, V147, P129, DOI DOI 10.1002/ev.20136 Roundy PT, 2019, SOC RESPONSIB J, V16, P467, DOI 10.1108/SRJ-11-2018-0302 Ryan Hogarth J., 2012, Journal of Sustainable Finance Investment, V2, P257 Säve-Söderbergh J, 2010, ECON LETT, V107, P270, DOI 10.1016/j.econlet.2010.02.003 Schramade Willem., 2016, Journal of Sustainable Finance Investment, V6, P95, DOI [10.1080/20430795.2016.1176425, DOI 10.1080/20430795.2016.1176425] Schulz KA, 2020, FUTURES, V122, DOI 10.1016/j.futures.2020.102611 Sinha A, 2021, J ENVIRON MANAGE, V292, DOI 10.1016/j.jenvman.2021.112751 Sisodia GS, 2020, BUS STRATEG ENVIRON, V29, P2789, DOI 10.1002/bse.2543 Sisodia RS, 2013, CALIF MANAGE REV, V55, P87, DOI 10.1525/cmr.2013.55.3.87 Sisodia RS, 2009, J INDIAN BUS RES, V1, P188, DOI 10.1108/17554190911005354 Sivarajah U, 2020, IND MARKET MANAG, V86, DOI 10.1016/j.indmarman.2019.04.005 Skovgaard J, 2015, ENVIRON POLIT, V24, P951, DOI 10.1080/09644016.2015.1056575 Statman M., 2000, Financial Analysts Journal, V56, P30, DOI DOI 10.2469/FAJ.V56.N3.2358 Sun ZY, 2019, J CLEAN PROD, V231, P1489, DOI 10.1016/j.jclepro.2019.05.335 Taghizadeh-Hesary F, 2019, FINANC RES LETT, V31, P98, DOI 10.1016/j.frl.2019.04.016 Tan LH, 2017, QUAL RES FINANC MARK, V9, P359, DOI 10.1108/QRFM-01-2017-0002 Tang DY, 2020, J CORP FINANC, V61, DOI 10.1016/j.jcorpfin.2018.12.001 Thomä J, 2019, J APPL ACCOUNT RES, V20, P439, DOI 10.1108/JAAR-03-2018-0034 Tian P, 2019, J CLEAN PROD, V217, P432, DOI 10.1016/j.jclepro.2019.01.209 United Nations, 2021, REP FINDS COVID 19 R United Nations, 2020, The Sustainable Development Agenda Urban Boris, 2018, International Journal of Sustainable Economy, V10, P61 Uyar A, 2020, J CLEAN PROD, V253, DOI 10.1016/j.jclepro.2020.119997 Van Der Laan S., 2004, AUST ACCOUNT REV, V14, P21 van Eck NJ, 2017, SCIENTOMETRICS, V111, P1053, DOI 10.1007/s11192-017-2300-7 Vanderheiden S, 2015, INT SPECT, V50, P31, DOI 10.1080/03932729.2015.985523 Vazquez KC, 2019, GLOB POLICY, V10, P593, DOI 10.1111/1758-5899.12771 Vivers S., 2011, Corporate Ownership and Control, V8, P25, DOI DOI 10.22495/C0CV8I3C1P5 Viviani JL, 2019, RES INT BUS FINANC, V47, P31, DOI 10.1016/j.ribaf.2018.01.001 Viviers S, 2012, S AFR J BUS MANAG, V43, P1 Wallis M., 2015, BUSINESS RES, V8, P61, DOI DOI 10.1007/S40685-014-0015-7 Wang C, 2013, CALIF MANAGE REV, V55, P97, DOI 10.1525/cmr.2013.55.3.97 Wang C, 2013, CALIF MANAGE REV, V55, P60, DOI 10.1525/cmr.2013.55.3.60 Wang CN, 2022, J SUSTAIN FINANC INV, V12, P630, DOI 10.1080/20430795.2020.1796101 Watson R, 2011, J FINANC REGUL COMPL, V19, P100, DOI 10.1108/13581981111123825 Widyawati L, 2020, BUS STRATEG ENVIRON, V29, P619, DOI 10.1002/bse.2393 Wilson R., 1997, INT J SOC ECON, V24, P1325, DOI [10.1108/03068299710193624, DOI 10.1108/03068299710193624] Yao SY, 2021, ENERG ECON, V101, DOI 10.1016/j.eneco.2021.105415 Yenneti K, 2012, ENVIRON URBAN ASIA, V3, P303, DOI 10.1177/0975425312473227 Yeoh P, 2008, INT J LAW MANAG, V50, P189, DOI 10.1108/17542430810890369 Yesuf A.J., 2020, Heliyon, V6, pe04562, DOI [DOI 10.1016/J.HELIYON.2020.E04562, 10.1016/j.heliyon.2020.e04562] Yu CH, 2021, ENERG POLICY, V153, DOI 10.1016/j.enpol.2021.112255 Yu EPY, 2020, RES INT BUS FINANC, V52, DOI 10.1016/j.ribaf.2020.101192 Zhang DY, 2019, FINANC RES LETT, V29, P425, DOI 10.1016/j.frl.2019.02.003 Zhang DJ, 2021, J CLEAN PROD, V315, DOI 10.1016/j.jclepro.2021.128294 Zhang MS, 2020, ENERGY STRATEG REV, V30, DOI 10.1016/j.esr.2020.100520 Zupic I, 2015, ORGAN RES METHODS, V18, P429, DOI 10.1177/1094428114562629 NR 195 TC 166 Z9 170 U1 215 U2 1156 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0254-5330 EI 1572-9338 J9 ANN OPER RES JI Ann. Oper. Res. PD 2022 JAN 4 PY 2022 DI 10.1007/s10479-021-04410-8 EA JAN 2022 PG 44 WC Operations Research & Management Science WE Science Citation Index Expanded (SCI-EXPANDED) SC Operations Research & Management Science GA XZ5SE UT WOS:000737710700001 PM 35002001 OA Green Published, Bronze, Green Accepted HC Y HP N DA 2024-09-05 ER PT J AU Zhang, LP Qiu, HH Chen, JY Zhou, WH Li, HL AF Zhang, Liping Qiu, Hanhui Chen, Jinyi Zhou, Wenhao Li, Hailin TI How Do Heterogeneous Networks Affect a Firm's Innovation Performance? A Research Analysis Based on Clustering and Classification SO ENTROPY LA English DT Article DE innovation performance; IUR collaboration network; IF collaboration network; decision rules; machine learning algorithms; entropy weight ID INBOUND OPEN INNOVATION; QUALITY AB Based on authorized patents of China's artificial intelligence industry from 2013 to 2022, this paper constructs an Industry-University-Research institution (IUR) collaboration network and an Inter-Firm (IF) collaboration network and used the entropy weight method to take both the quantity and quality of patents into account to calculate the innovation performance of firms. Through the hierarchical clustering algorithm and classification and regression trees (CART) algorithm, in-depth analysis has been conducted on the intricate non-linear influence mechanisms between multiple variables and a firm's innovation performance. The findings indicate the following: (1) Based on the network centrality (NC), structural hole (SH), collaboration breadth (CB), and collaboration depth (CD) of both IUR and IF collaboration networks, two types of focal firms are identified. (2) For different types of focal firms, the combinations of network characteristics affecting their innovation performance are various. (3) In the IUR collaboration network, focal firms with a wide range of heterogeneous collaborative partners can obtain high innovation performance. However, focal firms in the IF collaboration network can achieve the same aim by maintaining deep collaboration with other focal firms. This paper not only helps firms make scientific decisions for development but also provides valuable suggestions for government policymakers. C1 [Zhang, Liping; Qiu, Hanhui; Chen, Jinyi; Zhou, Wenhao; Li, Hailin] Huaqiao Univ, Coll Business Adm, Quanzhou 362021, Peoples R China. [Zhang, Liping; Li, Hailin] Huaqiao Univ, Res Ctr Appl Stat & Big Data, Xiamen 361021, Peoples R China. C3 Huaqiao University; Huaqiao University RP Li, HL (corresponding author), Huaqiao Univ, Coll Business Adm, Quanzhou 362021, Peoples R China.; Li, HL (corresponding author), Huaqiao Univ, Res Ctr Appl Stat & Big Data, Xiamen 361021, Peoples R China. EM zhanglp@hqu.edu.cn; 2016411039@stu.hqu.edu.cn; 2116104003@stu.hqu.edu.cn; wenhaoz2021@stu.hqu.edu.cn; hailin@hqu.edu.cn RI Chen, Yinglong/D-2104-2011 OI Chen, Yinglong/0000-0003-0798-8683; Zhou, Wenhao/0000-0001-9421-8526; Li, Hailin/0000-0001-6924-9689 FU Social Science Foundation Project of Fujian Province of China FX No Statement Available CR Aghagolzadeh M, 2011, ENTROPY-SWITZ, V13, P450, DOI 10.3390/e13020450 Banalieva ER, 2019, J INT BUS STUD, V50, P1372, DOI 10.1057/s41267-019-00243-7 Basole RC, 2016, DECIS SUPPORT SYST, V83, P22, DOI 10.1016/j.dss.2015.12.005 Boxu Y., 2022, J Innov Knowl, V7, DOI DOI 10.1016/J.JIK.2022.100210 Breiman L., 1984, Classi cation and Regression Trees Briggs K, 2014, APPL ECON, V46, P4370, DOI 10.1080/00036846.2014.957446 Broekhuizen TLJ, 2021, IND INNOV, V28, P1270, DOI 10.1080/13662716.2021.1941800 Cai Y., 2021, Forum Sci. Technol. China, V306, P94 Chen KH, 2020, TECHNOVATION, V94-95, DOI 10.1016/j.technovation.2017.10.005 Chen YL, 2011, INFORM PROCESS MANAG, V47, P309, DOI 10.1016/j.ipm.2010.06.001 Cui WJ, 2022, TECHNOL SOC, V70, DOI 10.1016/j.techsoc.2022.102025 Dakiche N, 2019, INFORM PROCESS MANAG, V56, P1084, DOI 10.1016/j.ipm.2018.03.005 Font-Julián CI, 2022, J INFORMETR, V16, DOI 10.1016/j.joi.2021.101247 Guan JC, 2015, RES POLICY, V44, P545, DOI 10.1016/j.respol.2014.12.007 Guo M, 2021, TECHNOL FORECAST SOC, V173, DOI 10.1016/j.techfore.2021.121129 Hou JH, 2023, J INFORMETR, V17, DOI 10.1016/j.joi.2023.101393 Jiang YS, 2020, IND MARKET MANAG, V88, P22, DOI 10.1016/j.indmarman.2020.03.020 Kaufman L., 2005, Finding Groups in Data An Introduction to Cluster Analysis, V2nd, P199 Kobarg S, 2019, RES POLICY, V48, P1, DOI 10.1016/j.respol.2018.07.014 Li FY, 2021, TECHNOL SOC, V64, DOI 10.1016/j.techsoc.2020.101483 Li HL, 2022, FRONT PUBLIC HEALTH, V10, DOI 10.3389/fpubh.2022.971971 Li HL, 2021, PATTERN RECOGN, V115, DOI 10.1016/j.patcog.2021.107919 Li HL, 2021, INFORM SCIENCES, V547, P592, DOI 10.1016/j.ins.2020.08.089 Li HC, 2024, IEEE INTERNET THINGS, V11, P8871, DOI [10.1109/JIOT.2023.3321931, 10.1109/TIE.2023.3236109, 10.1109/TEM.2023.3292339] Li MX, 2021, MATH PROBL ENG, V2021, DOI 10.1155/2021/4771113 Li XJ, 2022, ENVIRON DEV SUSTAIN, V24, P11626, DOI 10.1007/s10668-021-01926-8 Lin WB, 2022, ENTROPY-SWITZ, V24, DOI 10.3390/e24070950 Lin WG, 2022, ENTROPY-SWITZ, V24, DOI 10.3390/e24040549 Luo J., 2020, Social Network Analysis, V3rd ed., P141 Lyu YB, 2019, TECHNOL FORECAST SOC, V144, P12, DOI 10.1016/j.techfore.2019.03.018 Moaniba IM, 2020, TECHNOL FORECAST SOC, V157, DOI 10.1016/j.techfore.2020.120070 Seo E, 2023, IND INNOV, V30, P423, DOI 10.1080/13662716.2022.2036598 Sime S, 2023, TECHNOVATION, V127, DOI 10.1016/j.technovation.2023.102826 Stefan I, 2017, TECHNOL FORECAST SOC, V120, P252, DOI 10.1016/j.techfore.2017.03.014 Walsh JP, 2016, RES POLICY, V45, P172, DOI 10.1016/j.respol.2016.04.013 Wang CH, 2015, TECHNOL FORECAST SOC, V99, P222, DOI 10.1016/j.techfore.2015.07.006 Wang MC, 2018, J BUS RES, V88, P222, DOI 10.1016/j.jbusres.2018.03.034 Wu HZ, 2021, TECHNOL SOC, V67, DOI 10.1016/j.techsoc.2021.101756 Xie XM, 2023, TECHNOVATION, V124, DOI 10.1016/j.technovation.2023.102740 Zeng SX, 2010, TECHNOVATION, V30, P181, DOI 10.1016/j.technovation.2009.08.003 Zhang RX, 2023, J CLEAN PROD, V391, DOI 10.1016/j.jclepro.2023.136041 Zhang YF, 2022, IND MARKET MANAG, V102, P190, DOI 10.1016/j.indmarman.2022.01.018 [周文浩 Zhou Wenhao], 2023, [系统管理学报, Journal of Systems & Management], V32, P367 Zhou Y., 2010, Sci. Technol. Econ, V123, P4 钱锡红, 2010, [管理世界, Management World], P118 NR 45 TC 1 Z9 1 U1 8 U2 15 PU MDPI PI BASEL PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND EI 1099-4300 J9 ENTROPY-SWITZ JI Entropy PD NOV PY 2023 VL 25 IS 11 AR 1560 DI 10.3390/e25111560 PG 18 WC Physics, Multidisciplinary WE Science Citation Index Expanded (SCI-EXPANDED) SC Physics GA AT5Z4 UT WOS:001120733100001 PM 37998252 OA gold DA 2024-09-05 ER PT J AU Obrenovic, B Gu, X Wang, GY Godinic, D Jakhongirov, I AF Obrenovic, Bojan Gu, Xiao Wang, Guoyu Godinic, Danijela Jakhongirov, Ilimdorjon TI Generative AI and human-robot interaction: implications and future agenda for business, society and ethics SO AI & SOCIETY LA English DT Article; Early Access DE Generative AI; HRI; Human-robot interaction; Anthropomorphism; Humanoid robot; Robot; ChatGPT; Scientometric analyses ID ANTHROPOMORPHISM; INTELLIGENCE; INTERFACE; TRUST AB The revolution of artificial intelligence (AI), particularly generative AI, and its implications for human-robot interaction (HRI) opened up the debate on crucial regulatory, business, societal, and ethical considerations. This paper explores essential issues from the anthropomorphic perspective, examining the complex interplay between humans and AI models in societal and corporate contexts. We provided a comprehensive review of existing literature on HRI, with a special emphasis on the impact of generative models such as ChatGPT. The scientometric study posits that due to their advanced linguistic capabilities and ability to mimic human-like behavior, generative AIs like ChatGPT will continue to grow in popularity in pair with human rational empathy, tendency for personification and their advanced linguistic capabilities and ability to mimic human-like behavior. As they blur the boundaries between humans and robots, these models introduce fresh moral and philosophical dilemmas. Our research aims to extrapolate key trends and unique factors in HRI and to elucidate the technical aspects of generative AI that enhance its effectiveness in this field compared to traditional rule-based AI systems. We further discuss the challenges and limitations of applying generative AI in HRI, providing a future research agenda for AI optimization in diverse applications, including education, entertainment, and healthcare. C1 [Obrenovic, Bojan] Zagreb Sch Econ & Management, Zagreb 10000, Croatia. [Gu, Xiao; Wang, Guoyu] Commun Univ Zhejiang, Media Literacy Res Inst, Hangzhou 310018, Zhejiang, Peoples R China. [Godinic, Danijela] Univ Zagreb, Fac Humanities & Social Sci, Zagreb 10000, Croatia. [Jakhongirov, Ilimdorjon] Ferghana Polytech Inst, Ferghana 150107, Uzbekistan. C3 Communication University of Zhejiang; University of Zagreb; Fergana Polytechnic Institute RP Gu, X (corresponding author), Commun Univ Zhejiang, Media Literacy Res Inst, Hangzhou 310018, Zhejiang, Peoples R China. EM bojan@inovatus-usluge.hr; guxiao0705@163.com; wangguoyu0323@126.com; danijela.godinic5@gmail.com; jahongirov@inbox.ru RI Gu, Xiao/HLX-4953-2023 OI Gu, Xiao/0000-0002-8346-4964 FU National Social Science Fund of China FX No Statement Available CR Adam M, 2021, ELECTRON MARK, V31, P427, DOI 10.1007/s12525-020-00414-7 Alam A., 2021, 2021 INT C COMPUTATI, P1 An HY, 2023, PSYCHOL RES BEHAV MA, V16, P3303, DOI 10.2147/PRBM.S416100 Araujo T, 2018, COMPUT HUM BEHAV, V85, P183, DOI 10.1016/j.chb.2018.03.051 Arslan A, 2022, INT J MANPOWER, V43, P75, DOI 10.1108/IJM-01-2021-0052 Atlas S., 2023, ChatGPT for Higher Education and Professional Development: A guide to conversational AI Bail CA, 2023, Can Generative AI Improve Social Science?, DOI [10.31235/osf.io/rwtzs, DOI 10.31235/OSF.IO/RWTZS] Bankins S., 2021, Redefining the psychological contract in the digital era: Issues for research and practice, P55 Bartneck C, 2009, INT J SOC ROBOT, V1, P71, DOI 10.1007/s12369-008-0001-3 Behrens R., 2015, P 8 INT C SAF IND AU, P18 Billard A., 2008, Handbook of robotics Bryson JJ, 2010, Close Engagements with Artificial Companions: Key social, psychological, ethical and design issues, P63, DOI [10.1075/nlp.8.11bry, DOI 10.1075/NLP.8.11BRY] Carter S., 2017, Distill, DOI DOI 10.23915/DISTILL.00009 Celik I, 2023, COMPUT HUM BEHAV, V138, DOI 10.1016/j.chb.2022.107468 Chen M, 2020, ACM T HUM-ROBOT INTE, V9, DOI 10.1145/3359616 Chen RJ, 2021, NAT BIOMED ENG, V5, P493, DOI 10.1038/s41551-021-00751-8 Cheng B, 2023, J BUS RES, V164, DOI 10.1016/j.jbusres.2023.113987 Chui M., 2018, McKinsey_Global_Institute Coeckelbergh M, 2022, INT J SOC ROBOT, V14, P2049, DOI 10.1007/s12369-021-00770-0 Coeckelbergh M, 2018, ETHICS INF TECHNOL, V20, P71, DOI 10.1007/s10676-017-9441-5 Conti D, 2019, ACMIEEE INT CONF HUM, P630, DOI 10.1109/hri.2019.8673204 Cooper G, 2023, J SCI EDUC TECHNOL, V32, P444, DOI 10.1007/s10956-023-10039-y Cope B, 2021, EDUC PHILOS THEORY, V53, P1229, DOI 10.1080/00131857.2020.1728732 Coronado E, 2022, J MANUF SYST, V63, P392, DOI 10.1016/j.jmsy.2022.04.007 Crowell Charles R, 2019, JMIR Hum Factors, V6, pe12629, DOI 10.2196/12629 Crowell CR, 2009, 2009 IEEE-RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS, P3735, DOI 10.1109/IROS.2009.5354204 Damholdt MF, 2023, INT J SOC ROBOT, V15, P1203, DOI 10.1007/s12369-023-01014-z Du GL, 2018, IEEE T IND ELECTRON, V65, P9571, DOI 10.1109/TIE.2018.2823667 Duffy BR, 2003, ROBOT AUTON SYST, V42, P177, DOI 10.1016/S0921-8890(02)00374-3 Epley N, 2007, PSYCHOL REV, V114, P864, DOI 10.1037/0033-295X.114.4.864 Eyssel F, 2017, ROBOT AUTON SYST, V87, P363, DOI 10.1016/j.robot.2016.08.029 Eyssel F, 2013, ACMIEEE INT CONF HUM, P121, DOI 10.1109/HRI.2013.6483531 Eyssel F, 2012, ACMIEEE INT CONF HUM, P125 Felten EW, 2023, Occupational Heterogeneity in Exposure to Generative AI Fischer K., 2021, ACM Trans Hum-Robot Interact, V11, p4:1 Fiske A, 2019, J MED INTERNET RES, V21, DOI 10.2196/13216 Gautam AK, 2014, PROCEDIA ENGINEER, V97, P291, DOI 10.1016/j.proeng.2014.12.252 Goodrich Michael A., 2007, Foundations and Trends in Human-Computer Interaction, V1, P203, DOI 10.1561/1100000005 Gu X, 2023, SUSTAINABILITY-BASEL, V15, DOI 10.3390/su15065312 Guberina T, 2023, PLOS ONE, V18, DOI 10.1371/journal.pone.0284766 Guthrie S.E., 1997, ANTHROPOMORPHISM ANE, P50 Haase J, 2023, Arxiv, DOI [arXiv:2303.12003, DOI 10.48550/ARXIV.2303.12003] Häring M, 2014, ACMIEEE INT CONF HUM, P9, DOI 10.1145/2559636.2559673 Hancock PA, 2011, HUM FACTORS, V53, P517, DOI 10.1177/0018720811417254 Hee Rin Lee, 2012, 2012 RO-MAN: The 21st IEEE International Symposium on Robot and Human Interactive Communication, P803, DOI 10.1109/ROMAN.2012.6343850 Hegel F., 2011, 2011 RO-MAN: The 20th IEEE International Symposium on Robot and Human Interactive Communication, P72, DOI 10.1109/ROMAN.2011.6005246 Horvitz E, 1999, IEEE INTELL SYST APP, V14, P17 Ishiguro H., 2006, 2006 International Conference on Intelligent User Interfaces, P2, DOI 10.1145/1111449.1111451 Javaid M, 2022, J IND INTEGR MANAG, V07, P83, DOI 10.1142/S2424862221300040 Kalla D, 2023, INT J INNOV SCI RES, V8 Karaarslan E., 2023, Acad Platform J Eng Smart Syst, V11, P118, DOI [DOI 10.21541/APJESS.1293702, DOI 10.2139/SSRN.4341500] Kasneci E, 2023, LEARN INDIVID DIFFER, V103, DOI 10.1016/j.lindif.2023.102274 Kendell C, 2020, BMC FAM PRACT, V21, DOI 10.1186/s12875-020-01206-w Kidd CD, 2008, 2008 IEEE/RSJ INTERNATIONAL CONFERENCE ON ROBOTS AND INTELLIGENT SYSTEMS, VOLS 1-3, CONFERENCE PROCEEDINGS, P3230, DOI 10.1109/IROS.2008.4651113 Kory-Westlund JM, 2019, FRONT ROBOT AI, V6, DOI 10.3389/frobt.2019.00081 Krägeloh CU, 2019, ROBOTICS, V8, DOI 10.3390/robotics8040088 Kuchenbrandt D, 2013, INT J SOC ROBOT, V5, P409, DOI 10.1007/s12369-013-0197-8 Leong B, 2019, FAT*'19: PROCEEDINGS OF THE 2019 CONFERENCE ON FAIRNESS, ACCOUNTABILITY, AND TRANSPARENCY, P299, DOI 10.1145/3287560.3287591 Lihui Wang, 2020, Proceedings of 5th International Conference on the Industry 4.0 Model for Advanced Manufacturing, (AMP 2020). Lecture Notes in Mechanical Engineering (LNME), P15, DOI 10.1007/978-3-030-46212-3_2 Loveys K, 2019, J MED INTERNET RES, V21, DOI 10.2196/13664 Luo J.T., 2006, Journal of Services Marketing, V20, P112, DOI [10.1108/08876040610657048, DOI 10.1108/08876040610657048] Luo YY, 2024, ASIA PAC EDUC REV, V25, P267, DOI 10.1007/s12564-022-09749-6 MacDorman KF, 2015, INTERACT STUD, V16, P141, DOI 10.1075/is.16.2.01mac Makarius EE, 2020, J BUS RES, V120, P262, DOI 10.1016/j.jbusres.2020.07.045 Marvel JA, 2020, ACM T HUM-ROBOT INTE, V9, DOI 10.1145/3385009 Matheson E, 2019, ROBOTICS, V8, DOI 10.3390/robotics8040100 Mathur MB, 2016, COGNITION, V146, P22, DOI 10.1016/j.cognition.2015.09.008 Mazzone M, 2019, ARTS, V8, DOI 10.3390/arts8010026 McGinn C, 2020, INT J SOC ROBOT, V12, P281, DOI 10.1007/s12369-019-00564-5 Miseikis J, 2020, IEEE ROBOT AUTOM LET, V5, P5339, DOI 10.1109/LRA.2020.3007462 Mohammadpour A, 2019, Artificial Intelligence Techniques to Support Design and Construction, DOI [10.22260/ISARC2019/0172, DOI 10.22260/ISARC2019/0172] Morris MR, 2023, Arxiv, DOI arXiv:2304.10547 Mukherjee D, 2022, ROBOT CIM-INT MANUF, V73, DOI 10.1016/j.rcim.2021.102231 Musbahi O, 2021, DIGIT HEALTH, V7, DOI 10.1177/20552076211063682 Olaronke Iroju, 2017, International Journal of Information Engineering and Electronic Business, V9, P43, DOI 10.5815/ijieeb.2017.03.06 Oswald FL, 2020, ANNU REV ORGAN PSYCH, V7, P505, DOI 10.1146/annurev-orgpsych-032117-104553 Pataranutaporn P, 2021, NAT MACH INTELL, V3, P1013, DOI 10.1038/s42256-021-00417-9 Pavlik V. J., 2023, Journalism Mass Communication Educator, V78, P84, DOI DOI 10.1177/10776958221149577 Peca A, 2016, IEEE TECHNOL SOC MAG, V35, P54, DOI 10.1109/MTS.2016.2554701 Pei Wang, 2019, Journal of Artificial General Intelligence, V10, P1, DOI 10.2478/jagi-2019-0002 Pollmann K, 2023, TECHNOL FORECAST SOC, V189, DOI 10.1016/j.techfore.2023.122376 Richardson K., 2018, Animism beyond the soul: ontology, reflexivity, and the making of anthropological knowledge, P110, DOI [10.2307/j.ctvw04dg0.10, DOI 10.2307/J.CTVW04DG0.10] Roesler E, 2021, SCI ROBOT, V6, DOI 10.1126/scirobotics.abj5425 Ross A, 2021, CHI '21: PROCEEDINGS OF THE 2021 CHI CONFERENCE ON HUMAN FACTORS IN COMPUTING SYSTEMS, DOI 10.1145/3411764.3445296 Salem M, 2014, ACMIEEE INT CONF HUM, P74, DOI 10.1145/2559636.2559683 Salles Arleen, 2020, AJOB Neurosci, V11, P88, DOI 10.1080/21507740.2020.1740350 Samuel JL., 2019, Ethics Progr, V10, P8, DOI [10.14746/eip.2019.2.2, DOI 10.14746/EIP.2019.2.2] Saunderson S, 2019, INT J SOC ROBOT, V11, P575, DOI 10.1007/s12369-019-00523-0 Scharth M., 2022, The ChatGPT chatbot is blowing people away with its writing skills Sharkawy AN, 2021, Arxiv, DOI arXiv:2102.00928 Shiomi M, 2020, PLOS ONE, V15, DOI 10.1371/journal.pone.0240622 Shoham Y., 2018, The AI Index 2018 Annual Report Skjuve M, 2023, PROCEEDINGS OF THE 5TH INTERNATIONAL CONFERENCE ON CONVERSATIONAL USER INTERFACES, CUI 2023, DOI 10.1145/3571884.3597144 Song Y, 2020, SENSORS-BASEL, V20, DOI 10.3390/s20185087 Sproull L, 1996, HUM-COMPUT INTERACT, V11, P97, DOI 10.1207/s15327051hci1102_1 Ullrich D, 2017, PROCEEDINGS OF THE 12TH INTERNATIONAL JOINT CONFERENCE ON COMPUTER VISION, IMAGING AND COMPUTER GRAPHICS THEORY AND APPLICATIONS (VISIGRAPP 2017), VOL 2, P39, DOI 10.5220/0006155900390045 Wang CY, 2022, INT J EMERG TECHNOL, V17, P110, DOI 10.3991/ijet.v17i06.30019 Winkle K, 2023, ACM T HUM-ROBOT INTE, V12, DOI 10.1145/3571718 Woods S, 2006, 9TH IEEE INTERNATIONAL WORKSHOP ON ADVANCED MOTION CONTROL, VOLS 1 AND 2, PROCEEDINGS, P750, DOI 10.1109/AMC.2006.1631754 Xiao D, 2021, Sci Program, V2021, P1 Yang W., 2022, Computers and Education: Artificial Intelligence, V3, P100061, DOI DOI 10.1016/J.CAEAI.2022.100061 Yu PL, 2015, IND MANAGE DATA SYST, V115, P235, DOI 10.1108/IMDS-09-2014-0262 Zawacki-Richter O, 2019, INT J EDUC TECHNOL H, V16, DOI 10.1186/s41239-019-0171-0 Zhang H., 2021, Front Soc Sci Technol, V3, P11, DOI 10.25236/FSST.2021.030202 Zierock B., 2023, Learning, V116, P63 Zlotowski J, 2015, INT J SOC ROBOT, V7, P347, DOI 10.1007/s12369-014-0267-6 NR 106 TC 1 Z9 1 U1 55 U2 55 PU SPRINGER PI NEW YORK PA ONE NEW YORK PLAZA, SUITE 4600, NEW YORK, NY, UNITED STATES SN 0951-5666 EI 1435-5655 J9 AI SOC JI AI Soc. PD 2024 MAR 15 PY 2024 DI 10.1007/s00146-024-01889-0 EA MAR 2024 PG 14 WC Computer Science, Artificial Intelligence WE Emerging Sources Citation Index (ESCI) SC Computer Science GA LA8H8 UT WOS:001184143100001 DA 2024-09-05 ER PT C AU Bertin, M Atanassova, I AF Bertin, Marc Atanassova, Iana BE Reyes, E Szoniecky, S Mkadmi, A Kembellec, G Fournier-S'niehotta, R Siala-Kallel, F Ammi, M Labelle, S TI Recommending Scientific Papers The Role of Citation Contexts SO DTUC'18: PROCEEDINGS OF THE 1ST INTERNATIONAL CONFERENCE ON DIGITAL TOOLS & USES CONGRESS LA English DT Proceedings Paper CT 1st International Conference on Digital Tools and Uses (DTU) CY OCT 03-05, 2018 CL Maison Sci Homme Paris Nord, Saint Denis, FRANCE HO Maison Sci Homme Paris Nord DE Citation Context Analysis; Bibliometrics; Natural Language Processing; Recommender Systems; Information Retrieval; Scientific Papers ID SYSTEMS AB This paper addresses the problem of building recommender systems for scientific papers based on the linguistic and contextual analysis of citation contexts. We explain the importance of taking into consideration citation contexts and the different methodologies that exist as well as the ways that citations impact recommender systems. We also discuss the limits of using citation contexts to generate recommendations. C1 [Bertin, Marc] Univ Claude Bernard Lyon 1, ELICO, Villeurbanne, France. [Atanassova, Iana] Univ Franche Comte, CRIT, Besancon, France. C3 Universite Claude Bernard Lyon 1; Universite de Franche-Comte RP Bertin, M (corresponding author), Univ Claude Bernard Lyon 1, ELICO, Villeurbanne, France. EM marc.bertin@univ-lyon1.fr; iana.atanassova@univ-fcomte.fr RI Atanassova, Iana/ABC-5986-2020; Bertin, Marc/U-7606-2019; Bertin, Marc/GQB-3671-2022; Bertin, Marc/ACT-2020-2022 OI Atanassova, Iana/0000-0003-3571-4006; Bertin, Marc/0000-0003-1803-6952; Bertin, Marc/0000-0003-1803-6952; Bertin, Marc/0000-0003-1803-6952 CR Agarwal N, 2005, LECT NOTES COMPUT SC, V3739, P475 [Anonymous], INT J ADV MANUF TECH [Anonymous], 2011, P 4 ACM INT C WEB SE, DOI DOI 10.1145/1935826.1935926 [Anonymous], 2010, Proceedings of the 10th Joint Conference on Digital Libraries, DOI DOI 10.1145/1816123.1816129 Beel J., 2017, CEUR Workshop Proceedings, V1823, P6 Beel J, 2016, INT J DIGIT LIBRARIE, V17, P305, DOI 10.1007/s00799-015-0156-0 Beel J, 2013, ACM-IEEE J CONF DIG, P459 Bertin Marc, 2012, D-Lib Magazine, V18, DOI 10.1045/july2012-bertin BERTIN M, 2014, INF RETR WORKSH EUR, V1143, P5 Bertin Marc, 2015, P 1 WORKSH BIBL ENH Bertin Marc, 2015, AAAS ANN M Bobadilla J, 2013, KNOWL-BASED SYST, V46, P109, DOI 10.1016/j.knosys.2013.03.012 Bogers Toine., 2008, Proc. DIR, P21 Bollacker KD, 2000, IEEE INTELL SYST APP, V15, P42, DOI 10.1109/5254.850826 CRONIN B, 1981, J DOC, V37, P16, DOI 10.1108/eb026703 Garfield E., 1992, Science and Public Policy, V19, P321, DOI [DOI 10.1093/SPP/19.5.321, 10.1093/spp/19.5.321] Gasparic M, 2015, 2015 IEEE/ACM 2ND INTERNATIONAL WORKSHOP ON CONTEXT FOR SOFTWARE DEVELOPMENT, P1, DOI 10.1109/CSD.2015.7 Giles C. L., 1998, Digital 98 Libraries. Third ACM Conference on Digital Libraries, P89, DOI 10.1145/276675.276685 Gipp B., 2009, Proceedings of the International Conference on Emerging Trends in Computing, P309 Gori M, 2006, 2006 IEEE/WIC/ACM INTERNATIONAL CONFERENCE ON WEB INTELLIGENCE, (WI 2006 MAIN CONFERENCE PROCEEDINGS), P778, DOI 10.1109/WI.2006.149 Harper FM, 2005, LECT NOTES ARTIF INT, V3538, P307 He Q., 2010, P 19 INT C WORLD WID, DOI DOI 10.1145/1772690.1772734 Herrmannova D., 2017, P 1 WORKSH SCHOL WEB, P41 Huang WY, 2015, AAAI CONF ARTIF INTE, P2404 Huang WY, 2014, ACM-IEEE J CONF DIG, P371, DOI 10.1109/JCDL.2014.6970192 Huang Wenyi, 2012, P 21 ACM INT C INF K, P1910, DOI DOI 10.1145/2396761.2398542 Huang Z., 2002, JCDL 2002. Proceedings of the Second ACM/IEEE-CS Joint Conference on Digital Libraries, P65, DOI 10.1145/544220.544231 Kucuktunc Onur, 2012, ARXIV12051143 Küçüktunç O, 2015, ACM T INTEL SYST TEC, V5, DOI 10.1145/2668106 Lee J., 2013, ARXIV13045457 Liang YC, 2011, LECT NOTES COMPUT SC, V6897, P403, DOI 10.1007/978-3-642-23535-1_35 Livne A, 2014, SIGIR'14: PROCEEDINGS OF THE 37TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, P807, DOI 10.1145/2600428.2609585 Lops P, 2011, RECOMMENDER SYSTEMS HANDBOOK, P73, DOI 10.1007/978-0-387-85820-3_3 MARSHAKOVA IV, 1973, NAUCH-TEKHN INFORM 2, P3 Matsatsinis NF, 2007, P 11 PANH C INF, P135 McNee S., 2006, ACM Conference on Computer Supported Cooperative Work (CSCW), P171 McNee S.M., 2006, Being accurate is not enough, P1097, DOI DOI 10.1145/1125451.1125659 Meng FQ, 2013, PROCEEDINGS OF THE 22ND ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT (CIKM'13), P1509 Middleton SE, 2004, ACM T INFORM SYST, V22, P54, DOI 10.1145/963770.963773 Middleton Stuart E., 2002, CS0204012 ARXIV MORAVCSIK MJ, 1975, SOC STUD SCI, V5, P86, DOI 10.1177/030631277500500106 Nascimento C., 2011, Proceeding of the 11th annual international ACMIEEE Joint Conference on Digital libraries, P297, DOI DOI 10.1145/1998076.1998132 Park DH, 2012, EXPERT SYST APPL, V39, P10059, DOI 10.1016/j.eswa.2012.02.038 Pohl S, 2007, ACM-IEEE J CONF DIG, P417, DOI 10.1145/1255175.1255260 Pruitikanee Siwipa, 2012, FUTURE COMPUTING 201, V7 Ren X, 2014, PROCEEDINGS OF THE 20TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING (KDD'14), P821, DOI 10.1145/2623330.2623630 Sinha A, 2015, WWW'15 COMPANION: PROCEEDINGS OF THE 24TH INTERNATIONAL CONFERENCE ON WORLD WIDE WEB, P243, DOI 10.1145/2740908.2742839 SMALL H, 1973, J AM SOC INFORM SCI, V24, P265, DOI 10.1002/asi.4630240406 Small H., 1982, PROGR COMMUNICATION, V3, P287 Strohman Trevor, 2007, 30th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, P705, DOI 10.1145/1277741.1277868 Sugiyama K, 2013, ACM-IEEE J CONF DIG, P153 Tang J, 2009, LECT NOTES ARTIF INT, V5476, P572, DOI 10.1007/978-3-642-01307-2_55 West Jevin D., 2016, IEEE Transactions on Big Data, V2, P113, DOI 10.1109/TBDATA.2016.2541167 White HD, 2004, APPL LINGUIST, V25, P89, DOI 10.1093/applin/25.1.89 Yonggang Wang, 2010, 2010 Seventh International Conference on Fuzzy Systems and Knowledge Discovery (FSKD 2010), P2777, DOI 10.1109/FSKD.2010.5569227 NR 55 TC 1 Z9 1 U1 3 U2 12 PU ASSOC COMPUTING MACHINERY PI NEW YORK PA 1515 BROADWAY, NEW YORK, NY 10036-9998 USA BN 978-1-4503-6451-5 PY 2018 DI 10.1145/3240117.3240123 PG 4 WC Computer Science, Interdisciplinary Applications; Computer Science, Theory & Methods WE Conference Proceedings Citation Index - Science (CPCI-S) SC Computer Science GA BO0IC UT WOS:000491157600006 DA 2024-09-05 ER PT J AU Zhang, ZB Wang, JY Li, JW Wang, Y Yin, K Fei, XC AF Zhang, Zhibo Wang, Jingyi Li, Jiuwei Wang, Yao Yin, Ke Fei, Xunchang TI Impacts of regional socioeconomic statuses and global events on solid waste research reflected in six waste-focused journals SO WASTE MANAGEMENT LA English DT Article DE Solid waste research; Bibliometric analysis; Natural language processing; Socioeconomic status; Global environmental events ID BIBLIOMETRIC ANALYSIS; CO-AUTHORSHIP; MANAGEMENT; TRENDS; GENERATION; ENERGY; INCINERATION; REUSE; LONG AB The research pertaining to solid waste is undergoing extensive advancement, thereby necessitating a consolidation and analysis of its research trajectories. The existing biblio-studies on solid waste research (SWR) lack thorough analyses of the factors influencing its trends. This article presents an innovative categorization framework that categorizes publications from six SWR journals utilizing Source Latent Dirichlet Allocation. First analyse changes in publication numbers across main categories, subcategories, journals, and regions, providing a macro-level study of SWR. Temporal analysis of keywords supplements a micro-level study of SWR, which highlights that emerging technologies with low Technology Readiness Level receive significant attention, while studies on widespread technologies are diminishing. Additionally, this study demonstrates the substantial influence of socioeconomic factors and previous SWR publications on current and future SWR trends. Finally, the article confirms the impact of global events on SWR trends by examining the structural breakpoints of SWR and their correlation with global events. C1 [Zhang, Zhibo; Li, Jiuwei; Wang, Yao; Fei, Xunchang] Nanyang Technol Univ, Sch Civil & Environm Engn, 50 Nanyang Ave, Singapore 639798, Singapore. [Wang, Jingyi] Natl Univ Singapore, Dept Stat & Data Sci, Sci Dr 2, Singapore 117546, Singapore. [Li, Jiuwei; Fei, Xunchang] Nanyang Environm & Water Res Inst, Residues & Resource Reclamat Ctr, 1 Cleantech Loop, Singapore 637141, Singapore. [Yin, Ke] Nanjing Forestry Univ, Sch Biol & Environm, Dept Environm Engn, Nanjing 210037, Peoples R China. [Fei, Xunchang] Nanyang Technol Univ, Sch Civil & Environm Engn, NI Bldg 01C-70,50 Nanyang Ave, Singapore 639798, Singapore. C3 Nanyang Technological University; National University of Singapore; Nanyang Technological University; Nanjing Forestry University; Nanyang Technological University RP Fei, XC (corresponding author), Nanyang Technol Univ, Sch Civil & Environm Engn, NI Bldg 01C-70,50 Nanyang Ave, Singapore 639798, Singapore. EM xcfei@ntu.edu.sg OI Wang, Yao/0000-0003-2373-0201; Wang, Jingyi/0009-0003-4100-813X; Zhang, Zhibo/0000-0002-7239-4833; Fei, Xunchang/0000-0002-7435-9011 FU Nanyang Technological Uni- versity (Singapore) FX Yao Wang would like to acknowledge Nanyang Technological Uni- versity (Singapore) for a scholarship support. CR Agreement P., 2015, FCCC/CP/2015/L. 9/Rev. 1 Animah I, 2018, SAFETY AND RELIABILITY - SAFE SOCIETIES IN A CHANGING WORLD, P1767 [Anonymous], 2023, Technology readiness level Arai Y, 2007, ECONOMET REV, V26, P705, DOI 10.1080/07474930701653776 Barles S., 2014, The Basic Environmental History, P199, DOI [10.1007/978-3-319-09180-87, DOI 10.1007/978-3-319-09180-8_7, DOI 10.1007/978-3-319-09180-87] Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993 Brooks AL, 2018, SCI ADV, V4, DOI 10.1126/sciadv.aat0131 Brunner PH, 2023, WASTE MANAGE RES, V41, P1717, DOI 10.1177/0734242X231172104 Chen DMC, 2020, ENVIRON RES LETT, V15, DOI 10.1088/1748-9326/ab8659 De Clercq D, 2019, SCI TOTAL ENVIRON, V673, P402, DOI 10.1016/j.scitotenv.2019.04.051 Dias JL, 2021, WASTE MANAGE RES, V39, P1331, DOI 10.1177/0734242X211042276 Ding ZK, 2021, ENVIRON SCI POLLUT R, V28, P30499, DOI 10.1007/s11356-021-13989-1 Donthu N, 2021, J BUS RES, V133, P285, DOI 10.1016/j.jbusres.2021.04.070 Duan J.-C., 2019, Variable selection with big data based on zero norm and via sequential monte carlo, DOI [10.2139/ssrn.3377038, DOI 10.2139/SSRN.3377038] Ezeah C, 2014, HABITAT INT, V41, P121, DOI 10.1016/j.habitatint.2013.07.007 Faybishenko B., 2017, International approaches for nuclear waste disposal in geological formations: Geological challenges in radioactive waste isolation-fifth worldwide review Fei X., 2016, Experimental Assessment of Coupled Physical-Biochemical-MechanicalHydraulic Processes of Municipal Solid Waste Undergoing Biodegradation Fei XC, 2022, NAT REV EARTH ENV, V3, P733, DOI 10.1038/s43017-022-00354-0 Fei XC, 2021, NAT CLIM CHANGE, V11, P1004, DOI 10.1038/s41558-021-01220-5 Fletcher CA, 2021, J CLEAN PROD, V306, DOI 10.1016/j.jclepro.2021.127169 Fu HZ, 2010, WASTE MANAGE, V30, P2410, DOI 10.1016/j.wasman.2010.06.008 Gajalakshmi S, 2008, CRIT REV ENV SCI TEC, V38, P311, DOI 10.1080/10643380701413633 GEORGE EI, 1993, J AM STAT ASSOC, V88, P881, DOI 10.2307/2290777 Ghisellini P, 2016, J CLEAN PROD, V114, P11, DOI 10.1016/j.jclepro.2015.09.007 Giusti L, 2009, WASTE MANAGE, V29, P2227, DOI 10.1016/j.wasman.2009.03.028 Gross R, 2018, ENERG POLICY, V123, P682, DOI 10.1016/j.enpol.2018.08.061 Gruchlik Y, 2018, J ENVIRON MANAGE, V206, P202, DOI 10.1016/j.jenvman.2017.10.020 Guo W, 2021, RESOUR CONSERV RECY, V173, DOI 10.1016/j.resconrec.2021.105727 Hayo B., 1971, Applied econometrics Hoffert MI, 2002, SCIENCE, V298, P981, DOI 10.1126/science.1072357 Ikhlas N, 2024, J CLEAN PROD, V434, DOI 10.1016/j.jclepro.2023.140031 Karak T, 2012, CRIT REV ENV SCI TEC, V42, P1509, DOI 10.1080/10643389.2011.569871 Kaza S., 2018, What a Waste 2.0: A Global Snapshot of Solid Waste Management to 2050, DOI DOI 10.1596/978-1-4648-1329-0 Khan D, 2016, WASTE MANAGE, V49, P15, DOI 10.1016/j.wasman.2016.01.019 Khor KA, 2016, SCIENTOMETRICS, V107, P1095, DOI 10.1007/s11192-016-1905-6 Korenius T., 2004, P 13 ACM INT C INF K, P625, DOI [DOI 10.1145/1031171.1031285, 10.1145/1031171.1031285] Kowalski Z, 2022, FRONT ENERGY RES, V10, DOI 10.3389/fenrg.2022.919415 Lee P., 2017, study. Europ. Union, DOI [10.2861/978568, DOI 10.2861/978568] Li N, 2018, RESOUR CONSERV RECY, V130, P109, DOI 10.1016/j.resconrec.2017.11.008 Liu YS, 2005, ENVIRON SCI TECHNOL, V39, P3855, DOI 10.1021/es040408m MacLeo M, 2021, SCIENCE, V373, P61, DOI 10.1126/science.abg5433 Marshall RE, 2013, WASTE MANAGE, V33, P988, DOI 10.1016/j.wasman.2012.12.023 Mazzei HG, 2023, J ENVIRON CHEM ENG, V11, DOI 10.1016/j.jece.2023.109309 Modrow WM, 2005, J BUS FINANC LIBR, V11, P78 Montgomery D.C., 2015, Introduction to time series analysis and forecasting, DOI [10.1111/jtsa.12203, DOI 10.1111/JTSA.12203] Munir MT, 2021, RENEW SUST ENERG REV, V145, DOI 10.1016/j.rser.2021.111080 Namlis KG, 2019, WASTE MANAGE, V89, P190, DOI 10.1016/j.wasman.2019.04.012 Nanda S, 2021, ENVIRON CHEM LETT, V19, P1433, DOI 10.1007/s10311-020-01100-y Nayyar D., 2013, Catch up: Developing countries in the world economy, DOI [10.1093/acprof:oso/9780199652983.001.0001, DOI 10.1093/ACPROF:OSO/9780199652983.001.0001] Ngoc UN, 2009, WASTE MANAGE, V29, P1982, DOI 10.1016/j.wasman.2008.08.031 Nwachukwu MA, 2017, WASTE MANAGE RES, V35, P923, DOI 10.1177/0734242X17715099 Olawumi TO, 2018, J CLEAN PROD, V183, P231, DOI 10.1016/j.jclepro.2018.02.162 Paulsen EB, 2021, ENERGIES, V14, DOI 10.3390/en14144247 Perez C, 2011, TECHNOLOGICAL REVOLUTIONS AND FINANCIAL CAPITAL: THE DYNAMICS OF BUBBLES AND GOLDEN AGES, P1 Pfaff B, 2008, J STAT SOFTW, V27, P1 Powell JT, 2018, WASTE MANAGE, V80, P137, DOI 10.1016/j.wasman.2018.09.008 Rodrigues S, 2016, J CLEAN PROD, V113, P374, DOI 10.1016/j.jclepro.2015.09.143 Rybicka J, 2016, J CLEAN PROD, V112, P1001, DOI 10.1016/j.jclepro.2015.08.104 Schubert A, 2006, SCIENTOMETRICS, V69, P409, DOI 10.1007/s11192-006-0160-7 Shahbaz M., 2022, Value-chain of Biofuels, P335, DOI [10.1016/B978-0-12-824388-6.00017-8, DOI 10.1016/B978-0-12-824388-6.00017-8] Sales JCS, 2021, WORLD J MICROB BIOT, V37, DOI 10.1007/s11274-021-03089-0 Stern DI, 2004, WORLD DEV, V32, P1419, DOI 10.1016/j.worlddev.2004.03.004 Suthar S, 2015, SUSTAIN CITIES SOC, V14, P56, DOI 10.1016/j.scs.2014.07.004 Taherzadeh M.J., 2014, Waste Management and Sustainable Consumption: Reflections on Consumer Waste, V67, DOI [10.4324/9781315757261, DOI 10.4324/9781315757261] Talang RPN, 2021, J CLEAN PROD, V312, DOI 10.1016/j.jclepro.2021.127761 Voutilainen A., 2003, The Oxford handbook of computational linguistics Wang Y, 2016, RENEW SUST ENERG REV, V66, P95, DOI 10.1016/j.rser.2016.07.006 Williams E, 2008, ENVIRON SCI TECHNOL, V42, P6446, DOI 10.1021/es702255z Wood J, 2017, PROC INT CONF DATA, P411, DOI 10.1109/ICDE.2017.99 Yang L, 2013, SCIENTOMETRICS, V96, P133, DOI 10.1007/s11192-012-0911-6 Zhang JT, 2022, Arxiv, DOI [arXiv:2212.12338, 10.48550/arXiv.2212.12338, DOI 10.48550/ARXIV.2212.12338] Zhang Z., 2023, 9 INT C ENV GEOT, DOI [10.53243/ICEG2023-431, DOI 10.53243/ICEG2023-431] Zhu JJ, 2021, ENVIRON SCI TECHNOL, V55, P3453, DOI 10.1021/acs.est.0c07551 NR 73 TC 0 Z9 0 U1 7 U2 7 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0956-053X EI 1879-2456 J9 WASTE MANAGE JI Waste Manage. PD JUN 15 PY 2024 VL 182 BP 113 EP 123 DI 10.1016/j.wasman.2024.04.028 EA APR 2024 PG 11 WC Engineering, Environmental; Environmental Sciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Engineering; Environmental Sciences & Ecology GA SC7V0 UT WOS:001232333200001 PM 38648689 DA 2024-09-05 ER PT C AU Beaudoin, BL Nusinovich, GS Turner, C Karakkad, JA Narayan, AH Thomson, C Antonsen, TM AF Beaudoin, Brian L. Nusinovich, Gregory S. Turner, Charles Karakkad, Jayakrishnan A. Narayan, Amith H. Thomson, Connor Antonsen, Thomas M., Jr. GP IEEE TI Novel High-Power Radio-Frequency Sources for Ionospheric Heating SO 2016 IEEE INTERNATIONAL VACUUM ELECTRONICS CONFERENCE (IVEC) SE IEEE International Vacuum Electronics Conference IVEC LA English DT Proceedings Paper CT 17th IEEE International Vacuum Electronics Conference (IVEC) CY APR 19-21, 2016 CL Monterey, CA DE Inductive output tube; Ionospher; Radio frequency; Space-charge; Inductive adders; Transformers; High-frequency Active Auroral Research Program (HAARP) AB Development of Mobile Ionospheric Heating sources (MIHs) would allow investigators to conduct needed research at different latitudes without building permanent and costly installations. As part of an Air Force Multi-University Research Initiative (MURI), the University of Maryland is designing a prototype of a powerful Radio Frequency (RF) source utilizing Inductive Output Tube (IOT) technology operating in class-D with a mod-anode controlled electron gun [1]. This technology was chosen because it has the potential to operate at efficiencies exceeding 90% [2]. C1 [Beaudoin, Brian L.; Nusinovich, Gregory S.; Turner, Charles; Karakkad, Jayakrishnan A.; Narayan, Amith H.; Thomson, Connor; Antonsen, Thomas M., Jr.] Univ Maryland, Inst Res Elect & Appl Phys, College Pk, MD 20742 USA. C3 University System of Maryland; University of Maryland College Park RP Beaudoin, BL (corresponding author), Univ Maryland, Inst Res Elect & Appl Phys, College Pk, MD 20742 USA. RI Nusinovich, Gregory S/C-1314-2017; Nusinovich, Gregory/B-4751-2017; Beaudoin, Brian/D-5174-2017; Antonsen, Thomas/D-8791-2017 OI Nusinovich, Gregory/0000-0002-8641-5156; Beaudoin, Brian/0000-0001-9935-4658; Antonsen, Thomas/0000-0002-2362-2430 CR Beaudoin B. L., 2015, IPAC2015, P3398 Nusinovich G., 2016, IVEC2016 Pedersen T, 2015, PHYS TODAY, V68, P72, DOI 10.1063/PT.3.3032 Petillo JJ, 2005, IEEE T ELECTRON DEV, V52, P742, DOI 10.1109/TED.2005.845800 NR 4 TC 0 Z9 0 U1 0 U2 0 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA BN 978-1-4673-9217-4 J9 IEEE INT VAC ELECT C PY 2016 PG 2 WC Engineering, Electrical & Electronic WE Conference Proceedings Citation Index - Science (CPCI-S) SC Engineering GA BG0DO UT WOS:000386185700013 DA 2024-09-05 ER PT J AU Jha, D Alam, S Pyun, JY Lee, KH Kwon, GR AF Jha, Debesh Alam, Saruar Pyun, Jae-Young Lee, Kun Ho Kwon, Goo-Rak TI Alzheimer's Disease Detection Using Extreme Learning Machine, Complex Dual Tree Wavelet Principal Coefficients and Linear Discriminant Analysis SO JOURNAL OF MEDICAL IMAGING AND HEALTH INFORMATICS LA English DT Article DE Alzheimer's Disease; Computer-Aided Diagnosis; Dual-Tree Complex Wavelet Transform; Principal Component Analysis; Linear Discriminant Analysis; Extreme Learning Machine; Alzheimer's Disease Neuroimaging Initiative; Open Access Series of Imaging Studies ID SUPPORT VECTOR MACHINE; MILD COGNITIVE IMPAIRMENT; CLASS IMBALANCE; CLASSIFICATION; BRAIN; PREDICTION; DIAGNOSIS; SCANS; MRI AB The early detection and classification of Alzheimer's disease (AD) are important clinical support tasks for medical practitioners in customizing patient treatment programs to have better manage the development and progression of these diseases. Efforts are being made to diagnose these neurodegenerative disorders in the early stages. Efficient early categorization of the AD and mild Cognitive Impairment (MCI) from HC is necessary as prompt preventive care could assist to mitigate risk factors. For analysis and prognosis of disease, Magnetic resonance imaging (MRI). In this paper, we proposed a novel computer-aided diagnosis (CAD) cascade model to discriminate patients with the AD from healthy controls using dual-tree complex wavelet transforms (DTCWT), principal component analysis, linear discriminant analysis, and extreme learning machine (ELM). The proposed method obtained accuracy of 90.26 +/- 1.17, a specificity of 90.20 +/- 1.56 and sensitivity of 90.27 +/- 1.29 on the Alzheimer's disease Neuroimaging Initiative (ADNI) dataset and accuracy of 95.72 +/- 1.54, a sensitivity of 96.59 +/- 2.34 and specificity of 93.03 +/- 1.67 on the Open Access Series of Imaging Studies (OASIS) dataset. The proposed method is effective and superior to the existing models. C1 [Jha, Debesh; Alam, Saruar; Pyun, Jae-Young; Kwon, Goo-Rak] Chosun Univ, Dept Informat & Commun Engn, 375 Seosuk Dong, Gwangju 501759, South Korea. [Lee, Kun Ho] Chosun Univ, Natl Res Ctr Dementia, 375 Seosuk Dong, Gwangju 501759, South Korea. [Lee, Kun Ho] Chosun Univ, Dept Biomed Sci, 375 Seosuk Dong, Gwangju 501759, South Korea. C3 Chosun University; Chosun University; Chosun University RP Kwon, GR (corresponding author), Chosun Univ, Dept Informat & Commun Engn, 375 Seosuk Dong, Gwangju 501759, South Korea. RI Jha, Debesh/M-2526-2019 OI Jha, Debesh/0000-0002-8078-6730 FU Brain Research Program through the National Research Foundation of Korea - Ministry of Science, ICT and Future Planning [NRF-2014M3C7A1046050]; National Research Foundation of Korea Grant - Korean Government [NRF-2017R1A2B4006533]; Alzheimer's Disease Neuroimaging Initiative (ADNI) (National Institutes of Health) [U01 AG024904]; DOD ADNI (Department of Defense) [W81XWH-12-2-0012] FX This research was supported by the Brain Research Program through the National Research Foundation of Korea funded by the Ministry of Science, ICT and Future Planning (NRF-2014M3C7A1046050). And this work was supported by the National Research Foundation of Korea Grant funded by the Korean Government (NRF-2017R1A2B4006533). Data collection and sharing for this project was funded by the Alzheimer's Disease Neuroimaging Initiative (ADNI) (National Institutes of Health Grant U01 AG024904) and DOD ADNI (Department of Defense award number W81XWH-12-2-0012). The funding details of ADNI can be found at: http://adni.loni.usc.edu/about/funding/. CR Alam Saruar, 2016, [The Journal of Korean Institute of Next Generation Computing, 한국차세대컴퓨팅학회 논문지], V12, P51 Andersen AH, 1999, MAGN RESON IMAGING, V17, P795, DOI 10.1016/S0730-725X(99)00028-4 [Anonymous], J HEALTHCARE ENG JUN [Anonymous], SIGNAL PROCESS [Anonymous], 1986, The Fourier Transform and Its Applications Ashburner J, 2011, NEUROIMAGE, V56, P422, DOI 10.1016/j.neuroimage.2010.03.059 Barri A, 2012, J MATH ANAL APPL, V389, P1303, DOI 10.1016/j.jmaa.2012.01.010 Chaplot S, 2006, BIOMED SIGNAL PROCES, V1, P86, DOI 10.1016/j.bspc.2006.05.002 Chupin M, 2009, HIPPOCAMPUS, V19, P579, DOI 10.1002/hipo.20626 Ecker C, 2010, J NEUROSCI, V30, P10612, DOI 10.1523/JNEUROSCI.5413-09.2010 Fisher RA, 1936, ANN EUGENIC, V7, P179, DOI 10.1111/j.1469-1809.1936.tb02137.x Fletcher R., 1981, Practical methods of optimization, volume 2, Constrained Optimization, V2 Gray KR, 2013, NEUROIMAGE, V65, P167, DOI 10.1016/j.neuroimage.2012.09.065 Huang GB, 2007, NEUROCOMPUTING, V70, P3056, DOI 10.1016/j.neucom.2007.02.009 Huang GB, 2006, NEUROCOMPUTING, V70, P489, DOI 10.1016/j.neucom.2005.12.126 Jha D, 2017, J MED IMAG HEALTH IN, V7, P1744, DOI 10.1166/jmihi.2017.2269 Jha D, 2017, COMPUT INTEL NEUROSC, V2017, DOI 10.1155/2017/4205141 Jha D, 2017, J HEALTHC ENG, V2017, DOI 10.1155/2017/9060124 Jha Debesh, 2016, [Journal of Korean Institute of Information Technology, 한국정보기술학회논문지], V14, P121, DOI 10.14801/jkiit.2016.14.8.121 Klöppel S, 2008, BRAIN, V131, P681, DOI 10.1093/brain/awm319 Koutsouleris N, 2009, ARCH GEN PSYCHIAT, V66, P700, DOI 10.1001/archgenpsychiatry.2009.62 Lu SY, 2017, CNS NEUROL DISORD-DR, V16, P23, DOI 10.2174/1871527315666161019153259 Mirza B, 2015, NEUROCOMPUTING, V149, P316, DOI 10.1016/j.neucom.2014.03.075 Mirza B, 2013, NEURAL PROCESS LETT, V38, P465, DOI 10.1007/s11063-013-9286-9 Moritz CH, 2000, AM J NEURORADIOL, V21, P1629 Plant C, 2010, NEUROIMAGE, V50, P162, DOI 10.1016/j.neuroimage.2009.11.046 Sankari Z, 2011, J NEUROSCI METH, V197, P165, DOI 10.1016/j.jneumeth.2011.01.027 Savio A, 2013, EXPERT SYST APPL, V40, P1619, DOI 10.1016/j.eswa.2012.09.009 Schmitter D, 2015, NEUROIMAGE-CLIN, V7, P7, DOI 10.1016/j.nicl.2014.11.001 Tomar D, 2015, EGYPT INFORM J, V16, P55, DOI 10.1016/j.eij.2014.12.003 Weygandt M, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0021138 Yotter RA, 2011, NEUROIMAGE, V56, P961, DOI 10.1016/j.neuroimage.2011.02.007 Zhang YD, 2015, PEERJ, V3, DOI 10.7717/peerj.1251 Zhang YD, 2015, FRONT COMPUT NEUROSC, V9, DOI 10.3389/fncom.2015.00066 Zhang YD, 2014, PROG ELECTROMAGN RES, V144, P171, DOI 10.2528/PIER13121310 Zhang YD, 2011, EXPERT SYST APPL, V38, P10049, DOI 10.1016/j.eswa.2011.02.012 NR 36 TC 19 Z9 20 U1 0 U2 19 PU AMER SCIENTIFIC PUBLISHERS PI VALENCIA PA 26650 THE OLD RD, STE 208, VALENCIA, CA 91381-0751 USA SN 2156-7018 EI 2156-7026 J9 J MED IMAG HEALTH IN JI J. Med. Imaging Health Inform. PD JUN PY 2018 VL 8 IS 5 BP 881 EP 890 DI 10.1166/jmihi.2018.2381 PG 10 WC Mathematical & Computational Biology; Radiology, Nuclear Medicine & Medical Imaging WE Science Citation Index Expanded (SCI-EXPANDED) SC Mathematical & Computational Biology; Radiology, Nuclear Medicine & Medical Imaging GA GJ1AF UT WOS:000434985100003 DA 2024-09-05 ER PT J AU Baier-Fuentes, H Cascón-Katchadourian, J Martínez, MA Herrera-Viedma, E Merigó, JM AF Baier-Fuentes, Hugo Cascon-Katchadourian, Jesus Martinez, M. A. Herrera-Viedma, Enrique Merigo, Jose M. TI A Bibliometric Overview of the International Journal of Interactive Multimedia and Artificial Intelligence SO INTERNATIONAL JOURNAL OF INTERACTIVE MULTIMEDIA AND ARTIFICIAL INTELLIGENCE LA English DT Article DE Bibliometrics; Web Of Science; VOS Viewer ID MANAGEMENT; UNIVERSITY; ECONOMICS; HISTORY; SCIENCE; FIELD AB The International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI) published its first issue ten years ago. Currently, IJIMAI is indexed in the important database Emerging Sources Citation Index. This paper aims to identify, through a mapping of science, those most relevant aspects of the structure of publications made during the first 10 years of IJIMAI. Using VOSviewer software, the structural maps of the IJIMAI publications are analysed according to techniques such as bibliographic coupling, co-citations and co-occurrence of keywords. In addition, the evolution of the publications, citations and an analysis of the most cited papers of the journal are presented. The results show that IJIMAI has experienced a remarkable growth of both publications and citations in the last five years. We also observe that IJIMAI does not only capture the attention of the Spanish scientific community, but also of emerging countries such as India and Iran and emerging Latin American countries such as Colombia. With a such increasing behaviour, it is expected in the coming years that IJIMAI will position itself among the best journals with similar scientific scope. C1 [Baier-Fuentes, Hugo] Univ Catolica Santisima Concepcion, Dept Business Adm, Av Alonso de Ribera 2850, Concepcion, Chile. [Cascon-Katchadourian, Jesus] Colegio Maximo Cartuja, Fac Commun & Documentat, Dept Informat & Commun, Granada 18071, Spain. [Martinez, M. A.] Univ Granada, Dept Social Work & Social Serv, Granada, Spain. [Herrera-Viedma, Enrique] Univ Granada, Dept Comp Sci & Artificial Intelligence, Av Periodista Daniel Saucedo S-N, Granada, Spain. [Merigo, Jose M.] Univ Technol Sydney, Fac Engn & Informat Technol, Sch Syst Management & Leadership, 81 Broadway, Ultimo, NSW 2007, Australia. [Merigo, Jose M.] Univ Chile, Sch Econ & Business, Dept Management Control & Informat Syst, Av Diagonal Paraguay 257, Santiago 8330015, Chile. C3 Universidad Catolica de la Santisima Concepcion; University of Granada; University of Granada; University of Technology Sydney; Universidad de Chile RP Merigó, JM (corresponding author), Univ Technol Sydney, Fac Engn & Informat Technol, Sch Syst Management & Leadership, 81 Broadway, Ultimo, NSW 2007, Australia.; Merigó, JM (corresponding author), Univ Chile, Sch Econ & Business, Dept Management Control & Informat Syst, Av Diagonal Paraguay 257, Santiago 8330015, Chile. EM hbaier@ucsc.cl; jesuscascon@gmail.com; mundodesilencio@ugr.es; viedma@decsai.ugr.es; jmerigo@fen.uchile.cl RI Merigó, José M./K-1500-2019; Sánchez, Maria Angeles Martínez/AAB-7403-2019; Katchadourian, Jesús Daniel Cascón/E-7704-2016; Baier-Fuentes, Hugo/AAP-5413-2020; HERRERA-VIEDMA, ENRIQUE/C-2704-2008 OI Merigó, José M./0000-0002-4672-6961; Katchadourian, Jesús Daniel Cascón/0000-0002-3388-7862; Baier-Fuentes, Hugo/0000-0002-6436-1222; HERRERA-VIEDMA, ENRIQUE/0000-0002-7922-4984 FU FEDER [TIN2016-75850-P]; Spanish Ministry of Science, Innovation and Universities; Fondecyt Regular program [1160286]; Chilean Government through Conicyt FX This project was funded by the FEDER financial support from the Project TIN2016-75850-P provided by the Spanish Ministry of Science, Innovation and Universities. The last author acknowledges support from the Fondecyt Regular program (project number 1160286) of the Chilean Government through Conicyt. CR [Anonymous], 2018, APPL INTELL, DOI [10.1007/s10489-017-1105-y., DOI 10.1007/s10489-017-1105-y, DOI 10.1007/S10489-017-1105-Y] Baier-Fuentes H, 2019, INT ENTREP MANAG J, V15, P385, DOI 10.1007/s11365-017-0487-y Biemans W, 2007, J PROD INNOVAT MANAG, V24, P193, DOI 10.1111/j.1540-5885.2007.00245.x Blanco-Mesa F, 2017, J INTELL FUZZY SYST, V32, P2033, DOI 10.3233/JIFS-161640 Bonilla CA, 2015, SCIENTOMETRICS, V105, P1239, DOI 10.1007/s11192-015-1747-7 CALLON M, 1983, SOC SCI INFORM, V22, P191, DOI 10.1177/053901883022002003 Cancino CA, 2017, COMPUT IND ENG, V113, P614, DOI 10.1016/j.cie.2017.08.033 Cancino CA, 2017, J INNOV KNOWL, V2, P106, DOI 10.1016/j.jik.2017.03.006 Chen CM, 2006, J AM SOC INF SCI TEC, V57, P359, DOI 10.1002/asi.20317 Cobo MJ, 2015, KNOWL-BASED SYST, V80, P3, DOI 10.1016/j.knosys.2014.12.035 Cobo MJ, 2011, J AM SOC INF SCI TEC, V62, P1382, DOI 10.1002/asi.21525 Cobo MJ, 2011, J INFORMETR, V5, P146, DOI 10.1016/j.joi.2010.10.002 Gaviria-Marin M, 2019, TECHNOL FORECAST SOC, V140, P194, DOI 10.1016/j.techfore.2018.07.006 Gaviria-Marin M, 2018, J KNOWL MANAG, V22, P1655, DOI 10.1108/JKM-10-2017-0497 Huang Y, 2017, SCIENTOMETRICS, V111, P2041, DOI 10.1007/s11192-017-2349-3 Karagoz Y., 2014, SPSS 21.1 Uygulamali Biyoistatistik KESSLER MM, 1963, AM DOC, V14, P10, DOI 10.1002/asi.5090140103 Laengle S, 2017, EUR J OPER RES, V262, P803, DOI 10.1016/j.ejor.2017.04.027 Martínez-López FJ, 2018, EUR J MARKETING, V52, P439, DOI 10.1108/EJM-11-2017-0853 Valenzuela L, 2017, J BUS IND MARK, V32, P1, DOI 10.1108/JBIM-04-2016-0079 Merigó JM, 2019, SOFT COMPUT, V23, P1477, DOI 10.1007/s00500-018-3168-z Merigó JM, 2018, INFORM SCIENCES, V432, P245, DOI 10.1016/j.ins.2017.11.054 Merigó JM, 2017, INT J INTELL SYST, V32, P526, DOI 10.1002/int.21859 Morris SA, 2008, ANNU REV INFORM SCI, V42, P213 Mulet-Forteza C, 2018, J TRAVEL TOUR MARK, V35, P1201, DOI 10.1080/10548408.2018.1487368 Persson O., 2009, CELEBRATING SCHOLARL, V5, P9 PETERS HPF, 1991, SCIENTOMETRICS, V20, P235, DOI 10.1007/BF02018157 Podsakoff PM, 2008, J MANAGE, V34, P641, DOI 10.1177/0149206308319533 Porter A.L., 2005, Tech mining: exploiting new technologies for competitive advantage PRITCHARD A, 1969, J DOC, V25, P348 SCHWERT GW, 1993, J FINANC ECON, V33, P369, DOI 10.1016/0304-405X(93)90012-Z SMALL H, 1973, J AM SOC INFORM SCI, V24, P265, DOI 10.1002/asi.4630240406 Small H, 1999, J AM SOC INFORM SCI, V50, P799, DOI 10.1002/(SICI)1097-4571(1999)50:9<799::AID-ASI9>3.0.CO;2-G Tur-Porcar A, 2018, J PSYCHOL, V152, P199, DOI 10.1080/00223980.2018.1440516 Van Eck N.J., 2014, Measuring Scholarly Impact: Methods and Practice, P285, DOI 10.1007/978-3-319-10377-8_13(InEng.) van Eck NJ, 2010, SCIENTOMETRICS, V84, P523, DOI 10.1007/s11192-009-0146-3 Van Raan A., 2005, HDB QUANTITATIVE SCI Wang WR, 2018, INT J UNCERTAIN FUZZ, V26, P169, DOI 10.1142/S0218488518500095 NR 38 TC 16 Z9 16 U1 1 U2 35 PU UNIV INT RIOJA-UNIR PI LOGRONO PA RECTORADO, AVENIDA DE LA PAZ, 137, LOGRONO, 26006, SPAIN SN 1989-1660 J9 INT J INTERACT MULTI JI Int. J. Interact. Multimed. Artif. Intell. PD DEC PY 2018 VL 5 IS 3 BP 9 EP 16 DI 10.9781/ijimai.2018.12.003 PG 8 WC Computer Science, Artificial Intelligence; Computer Science, Interdisciplinary Applications WE Science Citation Index Expanded (SCI-EXPANDED) SC Computer Science GA HC5WZ UT WOS:000451874400002 OA gold, Green Submitted DA 2024-09-05 ER PT J AU Levin, G Brezinov, Y Meyer, R AF Levin, Gabriel Brezinov, Yoav Meyer, Raanan TI Exploring the use of ChatGPT in OBGYN: a bibliometric analysis of the first ChatGPT-related publications SO ARCHIVES OF GYNECOLOGY AND OBSTETRICS LA English DT Article DE Artificial intelligence; Bibliometrics; ChatGPT; OBGYN literature; Research AB PurposeLittle is known about the scientific literature regarding the new revolutionary tool, ChatGPT. We aim to perform a bibliometric analysis to identify ChatGPT-related publications in obstetrics and gynecology (OBGYN).Study designA bibliometric study through PubMed database. We mined all ChatGPT-related publications using the search term "ChatGPT". Bibliometric data were obtained from the iCite database. We performed a descriptive analysis. We further compared IF among publications describing a study vs. other publications.ResultsOverall, 42 ChatGPT-related publications were published across 26 different journals during 69 days. Most publications were editorials (52%) and news/briefing (22%), with only one (2%) research article identified. Five (12%) publications described a study performed. No ChatGPT-related publications in OBGYN were found. The leading journal by the number of publications was Nature (24%), followed by Lancet Digital Health and Radiology (7%, for both). The main subjects of publications were ChatGPT's scientific writing quality (26%) and a description of ChatGPT (26%) followed by tested performance of ChatGPT (14%), authorship and ethical issues (10% for both topics).In a comparison of publications describing a study performed (n = 5) vs. other publications (n = 37), mean IF was lower in the study-publications (mean 6.25 +/- 0 vs. 25.4 +/- 21.6, p < .001).ConclusionsThe study highlights main trends in ChatGPT-related publications. OBGYN is yet to be represented in this literature. C1 [Levin, Gabriel] Hadassah Hebrew Univ, Med Ctr, Dept Gynecol Oncol, Jerusalem, Israel. [Levin, Gabriel] McGill Univ, Jewish Gen Hosp, Lady Davis Inst Canc Res, Quebec City, PQ, Canada. [Brezinov, Yoav] McGill Univ, Expt Surg, Quebec City, PQ, Canada. [Meyer, Raanan] Cedars Sinai Med Ctr, Dept Obstet & Gynecol, Div Minimally Invas Gynecol Surg, Los Angeles, CA USA. [Meyer, Raanan] Sheba Med Ctr, Dr Pinchas Bornstein Talpiot Med Leadership Progra, Ramat Gan, Israel. C3 Hebrew University of Jerusalem; Hadassah University Medical Center; McGill University; McGill University; Cedars Sinai Medical Center; Chaim Sheba Medical Center RP Levin, G (corresponding author), Hadassah Hebrew Univ, Med Ctr, Dept Gynecol Oncol, Jerusalem, Israel.; Levin, G (corresponding author), McGill Univ, Jewish Gen Hosp, Lady Davis Inst Canc Res, Quebec City, PQ, Canada. EM levin.gaby@gmail.com RI Levin, Gabriel/AAF-2239-2020 OI Brezinov, Yoav/0000-0001-6452-9868 CR Agarwal A, 2016, ASIAN J ANDROL, V18, P296, DOI 10.4103/1008-682X.171582 Ahn C, 2023, RESUSCITATION, V185, DOI 10.1016/j.resuscitation.2023.109729 [Anonymous], ChatGPT Arezzo F, 2022, ARCH GYNECOL OBSTET, V306, P2143, DOI 10.1007/s00404-022-06578-1 Biswas S, 2023, RADIOLOGY, V307, DOI 10.1148/radiol.223312 Bockting CL, 2023, NATURE, V614, P224, DOI 10.1038/d41586-023-00288-7 D'Amico RS, 2023, NEUROSURGERY, V92, P663, DOI 10.1227/neu.0000000000002414 Else H, 2023, NATURE, V613, P423, DOI 10.1038/d41586-023-00056-7 Fijaoko N, 2023, RESUSCITATION, V185, DOI 10.1016/j.resuscitation.2023.109732 Fisher SA, 2022, CLIN OBSTET GYNECOL, V65, P290, DOI 10.1097/GRF.0000000000000695 Hackelöer M, 2023, ARCH GYNECOL OBSTET, V308, P1663, DOI 10.1007/s00404-022-06864-y Kokol P, 2021, HEALTH INFO LIBR J, V38, P125, DOI 10.1111/hir.12295 Lee KS, 2022, ARCH GYNECOL OBSTET, V305, P1369, DOI 10.1007/s00404-022-06405-7 Stokel-Walker C, 2023, NATURE, V613, P620, DOI 10.1038/d41586-023-00107-z Stokel-Walker Chris, 2022, Nature, DOI 10.1038/d41586-022-04397-7 NR 15 TC 11 Z9 11 U1 23 U2 135 PU SPRINGER HEIDELBERG PI HEIDELBERG PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY SN 0932-0067 EI 1432-0711 J9 ARCH GYNECOL OBSTET JI Arch. Gynecol. Obstet. PD DEC PY 2023 VL 308 IS 6 BP 1785 EP 1789 DI 10.1007/s00404-023-07081-x EA MAY 2023 PG 5 WC Obstetrics & Gynecology WE Science Citation Index Expanded (SCI-EXPANDED) SC Obstetrics & Gynecology GA U5KK2 UT WOS:000994086600001 PM 37222839 DA 2024-09-05 ER PT J AU Bornmann, L Stefaner, M Anegon, FD Mutz, R AF Bornmann, Lutz Stefaner, Moritz de Moya Anegon, Felix Mutz, Ruediger TI Excellence networks in science: A Web-based application based on Bayesian multilevel logistic regression (BMLR) for the identification of institutions collaborating successfully SO JOURNAL OF INFORMETRICS LA English DT Article DE Citation network; Best paper rate; Co-authorship; Collaboration ID GEOGRAPHICAL PROXIMITY; CITATION; PERFORMANCE; IMPACT; RANK; MAP AB In this study we present an application which can be accessed via www.excellence-networks.net and which represents networks of scientific institutions worldwide. The application is based on papers (articles, reviews and conference papers) published between 2007 and 2011. It uses (network) data, on which the SCImago Institutions Ranking is based (Scopus data from Elsevier). Using this data, institutional networks have been estimated with statistical models (Bayesian multilevel logistic regression, BMLR) for a number of Scopus subject areas. Within single subject areas, we have investigated and visualized how successfully overall an institution (reference institution) has collaborated (compared to all the other institutions in a subject area), and with which other institutions (network institutions) a reference institution has collaborated particularly successfully. The "best paper rate" (statistically estimated) was used as an indicator for evaluating the collaboration success of an institution. This gives the proportion of highly cited papers from an institution, and is considered generally as an indicator for measuring impact in bibliometrics. (C) 2016 Elsevier Ltd. All rights reserved. C1 [Bornmann, Lutz] Max Planck Gesell, Div Sci & Innovat Studies, Adm Headquarters, Munich, Germany. [Stefaner, Moritz] Eickedorfer Damm 35, D-28865 Lilienthal, Germany. [de Moya Anegon, Felix] CSIC, Inst Publ Goods & Policies IPP, Madrid, Spain. [Mutz, Ruediger] ETH, Social Psychol & Res Higher Educ, Zurich, Switzerland. C3 Max Planck Society; Consejo Superior de Investigaciones Cientificas (CSIC); CSIC - Instituto de Politicas y Bienes Publicos (IPP); Swiss Federal Institutes of Technology Domain; ETH Zurich RP Bornmann, L (corresponding author), Max Planck Gesell, Div Sci & Innovat Studies, Adm Headquarters, Munich, Germany. EM bornmann@gv.mpg.de RI Mutz, Rüdiger/AAA-9629-2021; de Moya Anegón, Félix/C-4004-2009; Mutz, Ruediger/A-2226-2009; Bornmann, Lutz/A-3926-2008; de Moya Anegón, Félix/V-3678-2019 OI Mutz, Rüdiger/0000-0003-3345-6090; de Moya Anegón, Félix/0000-0002-0255-8628 CR Adams J, 2012, NATURE, V490, P335, DOI 10.1038/490335a [Anonymous], 2020, arm: Data analysis using regression and multilevel / hierarchical models [Anonymous], UK SER GROUP UKSG AN [Anonymous], 2013, SAS/STAT 13.1 User's Guide, P6247 [Anonymous], PLOS ONE [Anonymous], MAP PROJECTIONS WORK [Anonymous], FIELD NORMALIZED CIT [Anonymous], MULTILEVEL MODEL [Anonymous], INFORM VISUAL [Anonymous], 2013, BAYESIAN DATA ANAL, DOI DOI 10.1201/B16018 Apolloni A, 2013, EUR PHYS J-SPEC TOP, V222, P1467, DOI 10.1140/epjst/e2013-01937-5 Bayarri MJ, 2004, STAT SCI, V19, P58, DOI 10.1214/088342304000000116 Börner K, 2007, ANNU REV INFORM SCI, V41, P537, DOI 10.1002/aris.2007.1440410119 Bornmann L, 2015, COLLNET J SCIENTOMET, V9, P65, DOI 10.1080/09737766.2015.1027090 Bornmann L, 2015, SCIENTOMETRICS, V102, P455, DOI 10.1007/s11192-014-1425-1 Bornmann L, 2014, J INFORMETR, V8, P581, DOI 10.1016/j.joi.2014.04.008 Bornmann L, 2014, ONLINE INFORM REV, V38, P43, DOI 10.1108/OIR-12-2012-0214 Bornmann L, 2013, J INFORMETR, V7, P933, DOI 10.1016/j.joi.2013.09.003 Bornmann L, 2013, J AM SOC INF SCI TEC, V64, P1649, DOI 10.1002/asi.22857 Bornmann L, 2012, J INFORMETR, V6, P333, DOI 10.1016/j.joi.2011.11.006 Bornmann L, 2011, J R STAT SOC A STAT, V174, P857, DOI 10.1111/j.1467-985X.2011.00689.x Bozeman B., 2013, J TECHNOL TRANSFER, V38, P1, DOI [DOI 10.1007/s10961-012-9281-8, DOI 10.1007/S10961-012-9281-8] Chessa A, 2013, SCIENCE, V339, P650, DOI 10.1126/science.1227970 Cimenler O, 2014, J INFORMETR, V8, P667, DOI 10.1016/j.joi.2014.06.004 Congdon PD, 2010, Applied Bayesian hierarchical methods FRENKEN K., 2014, Measuring Scholarly Impact, P127, DOI [10.1007/978-3-319-10377-86, DOI 10.1007/978-3-319-10377-86, DOI 10.1007/978-3-319-10377-8_6] Gelman A, 2014, AM SCI, V102, P460, DOI 10.1511/2014.111.460 GOLDSTEIN H, 1995, J ROY STAT SOC A STA, V158, P175, DOI 10.2307/2983411 Greenland S, 2000, INT J EPIDEMIOL, V29, P158, DOI 10.1093/ije/29.1.158 Guerrero-Bote VP, 2012, J INFORMETR, V6, P674, DOI 10.1016/j.joi.2012.07.001 Hamaker EL., 2011, HDB ADV MULTILEVEL A, P137 Hicks D, 2015, NATURE, V520, P429, DOI 10.1038/520429a Hox J.J., 2017, Multilevel analysis, V3rd HUNTER RS, 1948, J OPT SOC AM, V38, P1094 Jacomy M, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0098679 Jebb AT, 2015, ORGAN RES METHODS, V18, P92, DOI 10.1177/1094428114553060 Kass RE, 2011, STAT SCI, V26, P1, DOI 10.1214/10-STS337 KATZ JS, 1994, SCIENTOMETRICS, V31, P31, DOI 10.1007/BF02018100 Katz JS, 1997, RES POLICY, V26, P1, DOI 10.1016/S0048-7333(96)00917-1 Knoke D., 2008, QUANTITATIVE APPL SO, V154 Kumar S, 2015, ASLIB J INFORM MANAG, V67, P55, DOI 10.1108/AJIM-09-2014-0116 Lancho-Barrantes BS, 2013, SCIENTOMETRICS, V94, P817, DOI 10.1007/s11192-012-0797-3 Larivière V, 2015, J ASSOC INF SCI TECH, V66, P1323, DOI 10.1002/asi.23266 Levitt JM, 2010, SCIENTOMETRICS, V85, P171, DOI 10.1007/s11192-010-0197-5 Leydesdorff L, 2013, PROF INFORM, V22, P87, DOI 10.3145/epi.2013.ene.12 Lunn D, 2013, The BUGS book Mutz R, 2007, DIAGNOSTICA, V53, P3, DOI 10.1026/0012-1924.53.1.3 SAS Institute Inc., 2011, SASSTAR 9 3 USERS GU Simonton DK, 2013, NATURE, V493, P602, DOI 10.1038/493602a SMITH R, 1988, BRIT MED J, V296, P774, DOI 10.1136/bmj.296.6624.774 Snijders T.A.B., 2004, Multilevel analysis: An introduction to basic and advanced multilevel modeling Snijders T.A.B., 1995, J QUANTITATIVE ANTHR, V5, P85 SUBRAMANYAM K, 1983, J INFORM SCI, V6, P33, DOI 10.1177/016555158300600105 Sugimoto CR, 2011, LIBR INFORM SCI RES, V33, P3, DOI 10.1016/j.lisr.2010.05.003 Wagner CS, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0131816 Waltman L, 2013, J AM SOC INF SCI TEC, V64, P372, DOI 10.1002/asi.22775 Waltman L, 2012, J AM SOC INF SCI TEC, V63, P2419, DOI 10.1002/asi.22708 Waltman L, 2011, J INFORMETR, V5, P574, DOI 10.1016/j.joi.2011.05.003 ZIMAN J. M., 2000, Real science: what it is and what it means NR 59 TC 13 Z9 13 U1 1 U2 44 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS SN 1751-1577 EI 1875-5879 J9 J INFORMETR JI J. Informetr. PD FEB PY 2016 VL 10 IS 1 BP 312 EP 327 DI 10.1016/j.joi.2016.01.005 PG 16 WC Computer Science, Interdisciplinary Applications; Information Science & Library Science WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Computer Science; Information Science & Library Science GA DG2ZF UT WOS:000371938600026 OA Green Submitted DA 2024-09-05 ER PT J AU Wang, JN Li, J Ji, Y AF Wang, Jiani Li, Jian Ji, Yong TI Mendelian randomization as a cornerstone of causal inference for gut microbiota and related diseases from the perspective of bibliometrics SO MEDICINE LA English DT Article DE bibliometric analysis; causality; CiteSpace; gut microbiota; Mendelian randomization; VOSviewer ID SCIENCE AB Gut microbiota, a special group of microbiotas in the human body, contributes to health in a way that can't be ignored. In recent years, Mendelian randomization, which is a widely used and successful method of analyzing causality, has been investigated for the relationship between the gut microbiota and related diseases. Unfortunately, there seems to be a shortage of systematic bibliometric analysis in this field. Therefore, this study aims to investigate the research progress of Mendelian randomization for gut microbiota through comprehensive bibliometric analysis. In this study, publications about Mendelian randomization for gut microbiota were gathered from 2013 to 2023, utilizing the Web of Science Core Collection as our literature source database. The search strategies were as follows: TS = (intestinal flora OR gut flora OR intestinal microflora OR gut microflora OR intestinal microbiota OR gut microbiota OR bowel microbiota OR bowel flora OR gut bacteria OR intestinal tract bacteria OR bowel bacteria OR gut metabolites OR gut microbiota) and TS = (Mendelian randomization). VOSviewer (version 1.6.18), CiteSpace (version 6.1.R1), Microsoft Excel 2021, and Scimago Graphica were employed for bibliometric and visualization analysis. According to research, from January 2013 to August 2023, 154 publications on Mendelian randomization for gut microbiota were written by 1053 authors hailing from 332 institutions across 31 countries and published in 86 journals. China had the highest number of publications, with 109. Frontiers in Microbiology is the most prolific journal, and Lei Zhang has published the highest number of significant articles. The most popular keywords were "Mendelian randomization," "gut microbiota," "instruments," "association," "causality," "gut microbiome," "risk," "bias," "genome-wide association," and "causal relationship." Moreover, the current research hotspots in this field focus on utilizing a 2-sample Mendelian randomization to investigate the relationship between gut microbiota and associated disorders. This research systematically reveals a comprehensive overview of the literature that has been published over the last 10 years about Mendelian randomization for gut microbiota. Moreover, the knowledge of key information in the field from a bibliometric perspective may greatly facilitate future research in the field. C1 [Wang, Jiani] Shanxi Med Univ, Dept Pediat, Taiyuan, Peoples R China. [Li, Jian] Shanxi Med Univ, Shanxi Bethune Hosp, Shanxi Acad Med Sci, Dept Orthoped,Hosp 3, Taiyuan, Peoples R China. [Ji, Yong] Matern Hosp Shanxi Prov, Childrens Hosp Shanxi Prov, Maternal & Child Heath Hosp Shanxi Prov, Dept Neonatal Intens Care Unit, Taiyuan, Peoples R China. C3 Shanxi Medical University; Shanxi Medical University; Shanxi Medical University RP Ji, Y (corresponding author), Matern Hosp Shanxi Prov, Childrens Hosp Shanxi Prov, Maternal & Child Heath Hosp Shanxi Prov, Dept Neonatal Intens Care Unit, Taiyuan, Peoples R China. EM wjn_aoliao_lj@163.com; jianlisyd@163.com; jiyongnicu@163.com FU National Clinical Key Specialty Neonatal Construction Funding FX This work was supported by National Clinical Key Specialty Neonatal Construction Funding. CR Belvoncikova P, 2022, INT J MOL SCI, V23, DOI 10.3390/ijms231810729 Bowden J, 2016, GENET EPIDEMIOL, V40, P304, DOI 10.1002/gepi.21965 Bowden J, 2015, INT J EPIDEMIOL, V44, P512, DOI 10.1093/ije/dyv080 Brandt JS, 2019, JAMA NETW OPEN, V2, DOI 10.1001/jamanetworkopen.2019.18007 Cao JM, 2023, FRONT IMMUNOL, V14, DOI 10.3389/fimmu.2023.977587 Chen CM, 2017, J DATA INFO SCI, V2, P1, DOI 10.1515/jdis-2017-0006 Falagas ME, 2008, FASEB J, V22, P338, DOI 10.1096/fj.07-9492LSF Giuliani C, 2019, CIRC RES, V124, pE2, DOI 10.1161/CIRCRESAHA.118.314440 Giuliani C, 2018, CIRC RES, V123, P745, DOI 10.1161/CIRCRESAHA.118.312562 Hemani G, 2018, ELIFE, V7, DOI 10.7554/eLife.34408 Hughes DA, 2020, NAT MICROBIOL, V5, P1079, DOI 10.1038/s41564-020-0743-8 Iannone LF, 2022, NEUROBIOL DIS, V174, DOI 10.1016/j.nbd.2022.105897 Jia JZ, 2019, DIABETES, V68, P1747, DOI 10.2337/db19-0153 Jin QB, 2023, FRONT IMMUNOL, V14, DOI 10.3389/fimmu.2023.1121273 Kurilshikov A, 2021, NAT GENET, V53, P156, DOI 10.1038/s41588-020-00763-1 Lamina C, 2022, ATHEROSCLEROSIS, V349, P36, DOI 10.1016/j.atherosclerosis.2022.04.013 Lee SY, 2022, FOOD RES INT, V156, DOI 10.1016/j.foodres.2022.111327 Ley RE, 2006, CELL, V124, P837, DOI 10.1016/j.cell.2006.02.017 Li N, 2023, NUTRIENTS, V15, DOI 10.3390/nu15020360 Li PS, 2022, BMC MED, V20, DOI 10.1186/s12916-022-02657-x Liu KC, 2022, FRONT IMMUNOL, V13, DOI 10.3389/fimmu.2022.930318 Liu XM, 2022, NAT GENET, V54, P52, DOI 10.1038/s41588-021-00968-y Luo MJ, 2023, FRONT CELL INFECT MI, V13, DOI 10.3389/fcimb.2023.1163898 Luo Q, 2022, FRONT NUTR, V9, DOI 10.3389/fnut.2022.899746 Ma J, 2023, LIVER INT, V43, P221, DOI 10.1111/liv.15466 Ni JJ, 2022, BMC CANCER, V22, DOI 10.1186/s12885-022-10483-w Ni JJ, 2022, FRONT MICROBIOL, V12, DOI 10.3389/fmicb.2021.737197 Plotnikov D, 2019, OPHTHAL PHYSL OPT, V39, P11, DOI 10.1111/opo.12596 Qin YW, 2022, NAT GENET, V54, P134, DOI 10.1038/s41588-021-00991-z Qiu P, 2022, FRONT CELL INFECT MI, V12, DOI 10.3389/fcimb.2022.733992 Rühlemann MC, 2021, NAT GENET, V53, P147, DOI 10.1038/s41588-020-00747-1 Sekula P, 2016, J AM SOC NEPHROL, V27, P3253, DOI 10.1681/ASN.2016010098 Synnestvedt Marie B, 2005, AMIA Annu Symp Proc, P724 Tin A, 2021, J AM SOC NEPHROL, V32, P2400, DOI 10.1681/ASN.2020121760 van Eck NJ, 2010, SCIENTOMETRICS, V84, P523, DOI 10.1007/s11192-009-0146-3 Verbanck M, 2018, NAT GENET, V50, P693, DOI 10.1038/s41588-018-0099-7 Verhaar BJH, 2020, NUTRIENTS, V12, DOI 10.3390/nu12102982 Wang H, 2022, CURR PROB CARDIOLOGY, V47, DOI 10.1016/j.cpcardiol.2022.101213 Wang JC, 2022, FRONT IMMUNOL, V13, DOI 10.3389/fimmu.2022.845243 Wu HY, 2021, ARCH OSTEOPOROS, V16, DOI 10.1007/s11657-021-00929-2 Wu RR, 2023, J AUTOIMMUN, V141, DOI 10.1016/j.jaut.2023.103062 Xie N, 2023, NUTRIENTS, V15, DOI 10.3390/nu15132937 Xu FZ, 2020, MICROBIOME, V8, DOI 10.1186/s40168-020-00923-9 Yang Q, 2018, AM J EPIDEMIOL, V187, P1916, DOI 10.1093/aje/kwy096 Yang XL, 2022, EUR J CLIN NUTR, V76, P1017, DOI 10.1038/s41430-021-01065-3 Zabor EC, 2020, CHEST, V158, pS79, DOI 10.1016/j.chest.2020.03.013 Zhang XL, 2020, FOODS, V9, DOI 10.3390/foods9020166 Zhuang ZH, 2022, EUR J CLIN NUTR, V76, P1024, DOI 10.1038/s41430-022-01074-w Zhuang ZH, 2020, J NEUROINFLAMM, V17, DOI 10.1186/s12974-020-01961-8 NR 49 TC 0 Z9 0 U1 9 U2 9 PU LIPPINCOTT WILLIAMS & WILKINS PI PHILADELPHIA PA TWO COMMERCE SQ, 2001 MARKET ST, PHILADELPHIA, PA 19103 USA SN 0025-7974 EI 1536-5964 J9 MEDICINE JI Medicine (Baltimore) PD JUN 28 PY 2024 VL 103 IS 26 AR e38654 DI 10.1097/MD.0000000000038654 PG 13 WC Medicine, General & Internal WE Science Citation Index Expanded (SCI-EXPANDED) SC General & Internal Medicine GA YD9H4 UT WOS:001266661100006 PM 38941393 OA gold DA 2024-09-05 ER PT J AU Massonnaud, CR Kerdelhué, G Grosjean, J Lelong, R Griffon, N Darmoni, SJ AF Massonnaud, Clement R. Kerdelhue, Gaetan Grosjean, Julien Lelong, Romain Griffon, Nicolas Darmoni, Stefan J. TI Identification of the Best Semantic Expansion to Query PubMed Through Automatic Performance Assessment of Four Search Strategies on All Medical Subject Heading Descriptors: Comparative Study SO JMIR MEDICAL INFORMATICS LA English DT Article DE bibliographic database; information retrieval; literature search; Medical Subject Headings; MEDLINE; PubMed; precision; recall; search strategy; thesaurus ID KNOWLEDGE AB Background: With the continuous expansion of available biomedical data, efficient and effective information retrieval has become of utmost importance. Semantic expansion of queries using synonyms may improve information retrieval. Objective: The aim of this study was to automatically construct and evaluate expanded PubMed queries of the form "preferred term"[MH] OR "preferred term"[TIAB] OR "synonym 1"[TIAB] OR "synonym 2"[TIAB] OR..., for each of the 28,313 Medical Subject Heading (MeSH) descriptors, by using different semantic expansion strategies. We sought to propose an innovative method that could automatically evaluate these strategies, based on the three main metrics used in information science (precision, recall, and F-measure). Methods: Three semantic expansion strategies were assessed. They differed by the synonyms used to build the queries as follows: MeSH synonyms, Unified Medical Language System (UMLS) mappings, and custom mappings (Catalogue et Index des Sites Medicaux de langue Francaise [CISMeF]). The precision, recall, and F-measure metrics were automatically computed for the three strategies and for the standard automatic term mapping (ATM) of PubMed. The method to automatically compute the metrics involved computing the number of all relevant citations (A), using National Library of Medicine indexing as the gold standard ("preferred term"[MH]), the number of citations retrieved by the added terms ("synonym 1"[TIAB] OR "synonym 2"[TIAB] OR...) (B), and the number of relevant citations retrieved by the added terms (combining the previous two queries with an "AND" operator) (C). It was possible to programmatically compute the metrics for each strategy using each of the 28,313 MeSH descriptors as a "preferred term," corresponding to 239,724 different queries built and sent to the PubMed application program interface. The four search strategies were ranked and compared for each metric. Results: ATM had the worst performance for all three metrics among the four strategies. The MeSH strategy had the best mean precision (51%, SD 23%). The UMLS strategy had the best recall and F-measure (41%, SD 31% and 36%, SD 24%, respectively). CISMeF had the second best recall and F-measure (40%, SD 31% and 35%, SD 24%, respectively). However, considering a cutoff of 5%, CISMeF had better precision than UMLS for 1180 descriptors, better recall for 793 descriptors, and better F-measure for 678 descriptors. Conclusions: This study highlights the importance of using semantic expansion strategies to improve information retrieval. However, the performances of a given strategy, relatively to another, varied greatly depending on the MeSH descriptor. These results confirm there is no ideal search strategy for all descriptors. Different semantic expansions should be used depending on the descriptor and the user's objectives. Thus, we developed an interface that allows users to input a descriptor and then proposes the best semantic expansion to maximize the three main metrics (precision, recall, and F-measure). C1 [Massonnaud, Clement R.; Kerdelhue, Gaetan; Grosjean, Julien; Lelong, Romain; Griffon, Nicolas; Darmoni, Stefan J.] Rouen Univ Hosp, Dept Biomed Informat, 1 Rue Germont, Rouen, France. [Massonnaud, Clement R.; Kerdelhue, Gaetan; Grosjean, Julien; Lelong, Romain; Griffon, Nicolas; Darmoni, Stefan J.] Sorbonne Univ, Lab Informat Med & Ingn Connaissances & Sante, INSERM, U1142, Paris, France. C3 Universite de Rouen Normandie; CHU de Rouen; Institut National de la Sante et de la Recherche Medicale (Inserm); Sorbonne Universite RP Massonnaud, CR (corresponding author), Rouen Univ Hosp, Dept Biomed Informat, 1 Rue Germont, Rouen, France. EM clement.massonnaud@gmail.com RI Kerdelhué, Gaétan/J-6933-2019 OI Kerdelhué, Gaétan/0000-0001-5803-5554; Massonnaud, Clement/0000-0003-0292-9668; Grosjean, Julien/0000-0002-7446-644X; LELONG, Romain/0000-0003-1865-8786; Griffon, Nicolas/0000-0002-9602-6429 CR Afzal M, 2019, JMIR MED INF, V7, P111, DOI 10.2196/13430 Afzal M, 2015, SENSORS-BASEL, V15, P21294, DOI 10.3390/s150921294 Aronson AR, 1997, J AM MED INFORM ASSN, P485 Collins, 2019, NLM TECH B, P2 Cooper C, 2018, BMC MED RES METHODOL, V18, DOI 10.1186/s12874-018-0545-3 Griffon N, 2012, BMC MED INFORM DECIS, V12, DOI 10.1186/1472-6947-12-12 Grosjean J, 2011, STUD HEALTH TECHNOL, V166, P129, DOI 10.3233/978-1-60750-740-6-129 Hersh W, 2000, J AM MED INFORM ASSN, P344 Herskovic JR, 2007, J AM MED INFORM ASSN, V14, P212, DOI 10.1197/jamia.M2191 Hoogendam A, 2008, BMC MED INFORM DECIS, V8, DOI 10.1186/1472-6947-8-42 Kim S, 2017, J BIOMED INFORM, V75, P122, DOI 10.1016/j.jbi.2017.09.014 Lin J, 2007, BMC BIOINFORMATICS, V8, DOI 10.1186/1471-2105-8-423 Majid S, 2011, J MED LIBR ASSOC, V99, P229, DOI 10.3163/1536-5050.99.3.010 Massonnaud C, 2021, HEALTH INFO LIBR J, V38, P113, DOI 10.1111/hir.12291 Mosa AM, 2013, BMC MED INFORM DECIS, V13, DOI 10.1186/1472-6947-13-8 National Library of Medicine, PUBM WORKS AUT TERM National Library of Medicine, YEARL CIT TOT 2017 M National Library of Medicine, KEY MED R IND Nelson S, 2001, REPORT OPERATION FIN, P978 Thirion B, 2009, STUD HEALTH TECHNOL, V150, P238, DOI 10.3233/978-1-60750-044-5-238 van Dijk N, 2010, ACAD MED, V85, P1163, DOI 10.1097/ACM.0b013e3181d4152f Vassar M, 2016, J MED LIBR ASSOC, V104, P302, DOI 10.3163/1536-5050.104.4.009 Wei C, 2016, 2016 2ND INTERNATIONAL CONFERENCE ON SOCIAL SCIENCE, MANAGEMENT AND ECONOMICS (SSME 2016), P234 Wright T. B., 2017, DATABASE, V2017, P1 Xu B, 2019, IEEE ACM T COMPUT BI, V16, P954, DOI 10.1109/TCBB.2018.2801303 Zwolsman S, 2012, BRIT J GEN PRACT, V62, DOI 10.3399/bjgp12X652382 NR 26 TC 3 Z9 3 U1 0 U2 7 PU JMIR PUBLICATIONS, INC PI TORONTO PA 130 QUEENS QUAY E, STE 1102, TORONTO, ON M5A 0P6, CANADA EI 2291-9694 J9 JMIR MED INF JI JMIR Med. Inf. PD JUN PY 2020 VL 8 IS 6 AR e12799 DI 10.2196/12799 PG 9 WC Medical Informatics WE Science Citation Index Expanded (SCI-EXPANDED) SC Medical Informatics GA MG9YS UT WOS:000546388900001 PM 32496201 OA Green Submitted, Green Published, gold DA 2024-09-05 ER PT J AU Abdelfattah, F Al Alawi, AM Dahleez, KA El Saleh, A AF Abdelfattah, Fadi Al Alawi, Abrar Mohammed Dahleez, Khalid Abed El Saleh, Ayman TI Reviewing the critical challenges that influence the adoption of the e-learning system in higher educational institutions in the era of the COVID-19 pandemic SO ONLINE INFORMATION REVIEW LA English DT Article DE COVID-19; E-Learning; Online learning; System; Obstacles; Challenges ID STUDENTS; ACCEPTANCE; MODEL AB Purpose - This paper aims to review the critical challenges and factors influencing the successful adoption of electronic learning (e-learning) systems in higher educational institutions before and during the current propagation of the coronavirus disease 2019 (COVID-19) pandemic.Design/methodology/approach - This study undertook a literature review concerning the in-depth revision of previous studies published in 2020 and 2021. A total of 100 out of 170 selected research papers were adopted to identify and recognise the factors restricting the application of e-learning systems.Findings - The findings determine and illuminate the most challenging factors that impact the successful application of online learning, particularly during the wide propagation of the COVID-19 pandemic. The review of the literature provides evidence that technological, organisational and behavioural issues constitute significant drivers that frontier the facilitation of the e-learning process in higher educational institutions.Practical implications - The current paper suggests a guide for managers and scholars in educational institutions and acts as a roadmap for practitioners and academics in the educational field and policymakers as this research spotlights the significant factors challenging the e-learning process before and during the pandemic crisis.Originality/value - The provided in-depth literature review in this research will support the researchers and system designers with a comprehensive review and recent studies conducted before and during the COVID-19 pandemic considering the factors limiting the e-learning process. This paper formulates a valuable contribution to the body of knowledge that will assist the stakeholders in the higher educational institutions' context.Peer review - The peer review history for this article is available at: . C1 [Abdelfattah, Fadi] Modern Coll Business & Sci, Business & Econ Dept, Al Khuwair, Oman. [Al Alawi, Abrar Mohammed] Univ Nizwa, Entrepreneurship Ctr, Nizwa, Oman. [Dahleez, Khalid Abed] ASharqiyah Univ, Coll Business Adm, Ibra, Oman. [El Saleh, Ayman] ASharqiyah Univ, Coll Engn, Ibra, Oman. C3 University of Nizwa RP Abdelfattah, F (corresponding author), Modern Coll Business & Sci, Business & Econ Dept, Al Khuwair, Oman. EM fadi_fattah@yahoo.com; abraralalawi@unizwa.edu.om; khalid.dahleez@asu.edu.om; ayman.elsaleh@asu.edu.om RI AbdelFattah, Fadi/L-7441-2014; El-Saleh, Ayman A A./B-3732-2010; Dahleez, Khalid Abed/M-6157-2017 OI AbdelFattah, Fadi/0000-0002-4665-4777; Dahleez, Khalid Abed/0000-0002-1526-8750 FU Research Council (TRC) of the Sultanate of Oman under the Block Funding Program [TRC/BFP/ASU/01/2018] FX The research leading to these results has received fund from The Research Council (TRC) of the Sultanate of Oman under the Block Funding Program (No: TRC/BFP/ASU/01/2018). CR Abbasi S, 2020, PAK J MED SCI, V36, pS57, DOI 10.12669/pjms.36.COVID19-S4.2766 Fattah FAMA, 2022, GLOB KNOWL MEM COMMU, V71, P27, DOI 10.1108/GKMC-10-2020-0152 Fattah FAMA, 2021, GLOB KNOWL MEM COMMU, V70, P611, DOI 10.1108/GKMC-07-2020-0104 Abdelfattah F, 2024, GLOB KNOWL MEM COMMU, V73, P292, DOI 10.1108/GKMC-02-2022-0033 Abdullahi MS, 2022, IND COMMER TRAIN, V54, P589, DOI 10.1108/ICT-10-2021-0075 AbuHassan L.F., 2012, WORLD C ISL THOUGHTS, P70 Adnan M., 2020, J. Pedagogical Sociology Psychol, V2, P45, DOI [DOI 10.33902/JPSP.2020261309, 10.33902/jpsp.2020261309] Agormedah EK., 2020, Journal of Educational Technology and Online Learning, V3, P183, DOI [10.31681/jetol.726441, 10.3126/kumj.v18i2.32943] Al-Adwan AS, 2018, INT REV RES OPEN DIS, V19, P221 Al-Amri AS, 2020, SAGE OPEN, V10, DOI 10.1177/2158244020947440 Al-Emran M, 2021, J ENTERP INF MANAG, V34, P1229, DOI 10.1108/JEIM-02-2020-0052 Al-Fraihat D, 2020, COMPUT HUM BEHAV, V102, P67, DOI 10.1016/j.chb.2019.08.004 Al-Gahtani S.S., 2016, Appl. Comput. Inform, V12, P27, DOI [https://doi.org/10.1016/j.aci.2014.09.001, DOI 10.1016/J.ACI.2014.09.001, 10.1016/j.aci.2014.09.001] Al-Okaily M, 2020, DATA BRIEF, V32, DOI 10.1016/j.dib.2020.106176 Allam S N., 2020, International Journal of Academic Research in Business Social Sciences, V10, P642, DOI [10.6007/ijarbss/v10-i5/7236, DOI 10.6007/IJARBSS/V10-I5/7236, 10.6007/IJARBSS/v10-i5/7236] Almaiah MA, 2020, EDUC INF TECHNOL, V25, P5261, DOI 10.1007/s10639-020-10219-y Almaiah MA, 2016, ENG SCI TECHNOL, V19, P1314, DOI 10.1016/j.jestch.2016.03.004 Almekhlafy S.S. A., 2020, PSU Research Review, V5, P16, DOI DOI 10.1108/PRR-08-2020-0026 Almusharraf NM, 2021, J COMPUT ASSIST LEAR, V37, P1285, DOI 10.1111/jcal.12569 Alqahtani AY, 2020, EDUC SCI, V10, DOI 10.3390/educsci10090216 Amanor-Mfoafo N.K., 2020, Eur. J. Open Educ. E-Learning Stud, V5, P2, DOI [10.46827/ejoe.v5i2.3476, DOI 10.46827/EJOE.V5I2.3476] Asad MM, 2021, J APPL RES HIGH EDUC, V13, P649, DOI 10.1108/JARHE-04-2020-0103 Asuman Baguma, 2018, International Journal of Web-Based Learning and Teaching Technologies, V13, P33, DOI 10.4018/IJWLTT.2018070103 Aydogdu S, 2020, EDUC INF TECHNOL, V25, P1913, DOI 10.1007/s10639-019-10053-x Barteit S, 2020, COMPUT EDUC, V145, DOI 10.1016/j.compedu.2019.103726 Bhaskar P, 2021, INTERACT TECHNOL SMA, V18, P1, DOI 10.1108/ITSE-07-2020-0102 Bisht R.K., 2020, ACCEPTABILITY CHALLE, DOI [10.1108/AEDS-05-2020-0119, DOI 10.1108/AEDS-05-2020-0119] Chang CT, 2017, COMPUT EDUC, V111, P128, DOI 10.1016/j.compedu.2017.04.010 Chin SPP, 2016, VINE J INF KNOWL MAN, V46, P123, DOI 10.1108/VJIKMS-02-2014-0015 Chopra G, 2019, INTERACT TECHNOL SMA, V16, P94, DOI 10.1108/ITSE-05-2018-0027 Choudhury S, 2020, COMPUT EDUC, V144, DOI 10.1016/j.compedu.2019.103657 Christian M., 2020, Technology Reports of Kansai University, V62, P2799 Dahleez KA, 2021, INT J INF LEARN TECH, V38, P473, DOI 10.1108/IJILT-04-2021-0057 Dahleez KA, 2021, INT J EDUC MANAG, V35, P1312, DOI 10.1108/IJEM-04-2021-0120 Darras KE, 2021, CAN ASSOC RADIOL J, V72, P194, DOI 10.1177/0846537120944821 Demir A, 2021, J APPL RES HIGH EDUC, V13, P1436, DOI 10.1108/JARHE-08-2020-0253 Dong CM, 2020, CHILD YOUTH SERV REV, V118, DOI 10.1016/j.childyouth.2020.105440 Ebner M, 2020, FUTURE INTERNET, V12, DOI 10.3390/fi12060094 Fandiño FGE, 2020, HELIYON, V6, DOI 10.1016/j.heliyon.2020.e04630 Fatima M.N., 2020, JRSP ELT, V21, P2456 Gani MO, 2022, BOTTOM LINE, V35, P90, DOI 10.1108/BL-03-2022-0045 Gomez INB, 2023, WORLD FED OCCUP THER, V79, P4, DOI 10.1080/14473828.2020.1836791 Grant MM, 2019, ETR&D-EDUC TECH RES, V67, P361, DOI 10.1007/s11423-018-09641-4 Guessar S., 2020, EUR J EDUC, V3, P73, DOI DOI 10.26417/949THO19T Haider AS, 2020, DATA BRIEF, V32, DOI 10.1016/j.dib.2020.106104 Hasan N, 2020, CHILD YOUTH SERV REV, V118, DOI 10.1016/j.childyouth.2020.105355 Hussein E, 2020, CHILD YOUTH SERV REV, V119, DOI 10.1016/j.childyouth.2020.105699 Hussein MH, 2021, INTERACT TECHNOL SMA, V18, P380, DOI 10.1108/ITSE-06-2020-0095 Joshi A, 2021, INTERACT TECHNOL SMA, V18, P205, DOI 10.1108/ITSE-06-2020-0087 Kapo A, 2021, INFORM TECHNOL PEOPL, V34, P1462, DOI 10.1108/ITP-04-2020-0223 Karuppannan S., 2020, International Journal of Management and Human Science (IJMHS), V4, P19 Khan H.U., 2006, Directory of Open Access Journal, V5, P21, DOI [10.11120/ital.2006.05040021, DOI 10.11120/ITAL.2006.05040021] Khan MA, 2021, SUSTAINABILITY-BASEL, V13, DOI 10.3390/su13010057 Kim MK, 2020, J COMPUT ASSIST LEAR, V36, P610, DOI 10.1111/jcal.12431 Kitchenham, 2004, PROC PERF SYST REV Kundu A, 2021, CORP GOV-INT J BUS S, V21, P1250, DOI 10.1108/CG-09-2020-0377 Laamanen M, 2021, INT J EDUC TECHNOL H, V18, DOI 10.1186/s41239-020-00236-9 Lie A, 2020, J INF TECHNOL EDUC-R, V19, P803, DOI 10.28945/4626 Lin L, 2021, INT J ENV RES PUB HE, V18, DOI 10.3390/ijerph18042114 Liu M, 2021, INT J ACCOUNT INF MA, V29, P217, DOI 10.1108/IJAIM-08-2020-0129 Lysenko I, 2020, EDUC SCI, V10, DOI 10.3390/educsci10090245 Mailizar AlmanthariA., 2020, EURASIA J MATH SCI T, V16, pem1860, DOI DOI 10.29333/EJMSTE/8240 Majanja MK, 2020, LIBR MANAGE, V41, P317, DOI 10.1108/LM-05-2020-0084 Malik A., 2020, Creative Education, V11, P1152 Mallillin L L. D., 2020, European Journal of Open Education and E-learning Studies, V5, P71, DOI DOI 10.46827/EJOE.V5I2.3321 Mishra Lokanath, 2020, Int J Educ Res Open, V1, P100012, DOI 10.1016/j.ijedro.2020.100012 Mittal A, 2022, INF DISCOV DELIV, V50, P117, DOI 10.1108/IDD-09-2020-0114 Mohamed AHHM, 2022, GLOB KNOWL MEM COMMU, V71, P529, DOI 10.1108/GKMC-02-2021-0021 Ho NTT, 2021, INTERACT TECHNOL SMA, V18, P246, DOI 10.1108/ITSE-08-2020-0164 Nie D., 2020, SUSTAINABILITY-BASEL, P3 Okour MK, 2021, GLOB KNOWL MEM COMMU, V70, P756, DOI 10.1108/GKMC-08-2020-0117 Olum R, 2020, J MED EDUC CURRIC DE, V7, DOI 10.1177/2382120520973212 Pajarianto H., 2020, TALENT DEV EXCELLENC PARK C, 2020, DECIS SCI-J INNOV ED, P1 Patricia Aguilera-Hermida A, 2020, Int J Educ Res Open, V1, P100011, DOI 10.1016/j.ijedro.2020.100011 Pham HH, 2020, HIGH EDUC RES DEV, V39, P1327, DOI 10.1080/07294360.2020.1823945 Pima JM, 2018, INT J MOB BLENDED LE, V10, P1, DOI 10.4018/IJMBL.2018010101 Polo F.A.E., 2020, EUR J MOL CLIN MED, V7, P1 Prabu D.P.S., 2020, DEV NEXT GENERATION, VII, P3101 Purwanto A., 2020, J SUSTAIN SCI MANAG, V15, P20, DOI DOI 10.46754/jssm.2020.10.003 Rachmadtullah R., 2020, International Journal of Advanced Science and Technology, V29, P3272 Rafique GM, 2021, J ACAD LIBR, V47, DOI 10.1016/j.acalib.2021.102346 Rahman MS, 2022, J BUS IND MARK, V37, P1990, DOI 10.1108/JBIM-12-2020-0564 Rahman MS, 2021, GLOB KNOWL MEM COMMU, V70, P1, DOI 10.1108/GKMC-10-2019-0122 Rapanta C., 2020, Postdigital Science and Education, V2, P923, DOI [10.1007/s42438-020-00155-y, DOI 10.1007/S42438-020-00155-Y] Rasmitadila R., 2020, Journal of Ethnic and Cultural Studies, V7, P90, DOI [10.29333/ejecs/388, DOI 10.29333/EJECS/388] Regmi K, 2020, BMC MED EDUC, V20, DOI 10.1186/s12909-020-02007-6 Roskvist R, 2020, EDUC PRIM CARE, V31, P247, DOI 10.1080/14739879.2020.1772123 Ruales STP, 2021, EDUC INF TECHNOL, V26, P165, DOI 10.1007/s10639-020-10247-8 Sabarinath R, 2020, EDUC INF TECHNOL, V25, P3553, DOI 10.1007/s10639-020-10111-9 Salloum SA, 2019, EDUC INF TECHNOL, V24, P509, DOI 10.1007/s10639-018-9786-3 Salloum SA, 2019, ADV INTELL SYST COMP, V845, P469, DOI 10.1007/978-3-319-99010-1_43 Sangeeta, 2021, J PUBLIC AFF, V21, DOI 10.1002/pa.2503 Santally MI, 2020, BUS PROCESS MANAG J, V26, P1687, DOI 10.1108/BPMJ-11-2018-0335 Scherer R, 2021, COMPUT HUM BEHAV, V118, DOI 10.1016/j.chb.2020.106675 Shahijan M K., 2016, International Journal of Management in Education, V10, P145, DOI [DOI 10.1504/IJMIE.2016.075556, 10.1504/ijmie.2016.075556] Shahzad Arfan, 2021, Qual Quant, V55, P805, DOI 10.1007/s11135-020-01028-z Shannaq B., 2020, CURR CONTENTS, V29, P13597 Shawaqfeh MS, 2020, J MED EDUC CURRIC DE, V7, DOI 10.1177/2382120520963039 Shehzadi S, 2021, ASIAN EDUC DEV STUD, V10, P276, DOI 10.1108/AEDS-04-2020-0063 Siddaway AP, 2019, ANNU REV PSYCHOL, V70, P747, DOI 10.1146/annurev-psych-010418-102803 Singh A, 2021, INTERACT TECHNOL SMA, V18, P493, DOI 10.1108/ITSE-05-2020-0070 Somyürek S, 2021, INT J INF LEARN TECH, V38, P49, DOI 10.1108/IJILT-05-2020-0073 Sukendro S, 2020, HELIYON, V6, DOI 10.1016/j.heliyon.2020.e05410 Sulisworo D., 2020, International Journal of Evaluation and Research in Education (IJERE), V9, P723, DOI DOI 10.11591/IJERE.V9I3.20642 Swanson JA, 2020, TECHNOL KNOWL LEARN, V25, P389, DOI 10.1007/s10758-018-9372-1 Syahrin S, 2020, ARAB WORLD ENGL J, V11, P42, DOI 10.24093/awej/vol11no3.3 Tan C, 2021, ASIAN EDUC DEV STUD, V10, P308, DOI 10.1108/AEDS-05-2020-0084 Tinungki G. M., 2020, International Journal of Advanced Science and Technology, V29, P5793 van Alten DCD, 2021, COMPUT HUM BEHAV, V118, DOI 10.1016/j.chb.2020.106676 Vladova G, 2021, FRONT PSYCHOL, V12, DOI 10.3389/fpsyg.2021.636086 Yates A, 2021, TECHNOL PEDAGOG EDUC, V30, P59, DOI 10.1080/1475939X.2020.1854337 Yilmaz R, 2020, J COMPUT HIGH EDUC, V32, P628, DOI 10.1007/s12528-020-09250-2 Zhao LL, 2021, CRIT REV FOOD SCI, V61, P3489, DOI 10.1080/10408398.2020.1799327 NR 114 TC 11 Z9 11 U1 0 U2 8 PU EMERALD GROUP PUBLISHING LTD PI Leeds PA floor 5, Northspring 21-23 Wellington Street, Leeds, W YORKSHIRE, ENGLAND SN 1468-4527 EI 1468-4535 J9 ONLINE INFORM REV JI Online Inf. Rev. PD NOV 8 PY 2023 VL 47 IS 7 BP 1225 EP 1247 DI 10.1108/OIR-02-2022-0085 EA APR 2023 PG 23 WC Computer Science, Information Systems; Information Science & Library Science WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Computer Science; Information Science & Library Science GA W6CS8 UT WOS:000962019700001 DA 2024-09-05 ER PT J AU Guo, H AF Guo, Hao TI Research on the Construction of the Quality Evaluation Model System for the Teaching Reform of Physical Education Students in Colleges and Universities under the Background of Artificial Intelligence SO SCIENTIFIC PROGRAMMING LA English DT Article ID CHALLENGES AB With the continuous progress of the times, the reform of physical education teaching in colleges and universities has to be promoted day by day. The most important task in the process of reform is how to improve the quality of physical education teaching. Only by reforming colleges and universities can we transport outstanding talents into the society. It is very important to improve the teaching quality by improving the physical education quality evaluation system. As artificial intelligence technology has been more and more widely used in different fields, various educational administration systems based on information management have been established in various colleges and universities. On the one hand, it has brought great convenience to the management of physical education in colleges and universities and improvement of the efficiency of sports education management, but on the other hand, there are many shortcomings in the process of practical application. For example, the application of the database does not fully reflect its function and convenience, and it is only used at the level of query and statistics. Therefore, a better evaluation system of physical education teaching quality has become the common expectation of all colleges and universities. This paper makes a powerful analysis of the current quality evaluation of physical education in colleges and universities and proposes a method of establishing a basic framework through expert systems, filling in details with the idea of knowledge base and fuzzy sets, and further using a three-layer B/S framework model to design universal teaching quality assessment system. When discussing the requirements, functional framework, and actual development of the teaching evaluation system, the characteristics of the traditional physical education evaluation model are deeply analyzed, and the system's interactivity, flexibility, accuracy, and fairness are emphasized in the implementation process. Object-oriented design and analysis are carried out on the requirements of the system, and finally, black-box testing is carried out to ensure the reliability and correctness of the system logic. C1 [Guo, Hao] Chongqing Coll Humanities, Sci & Technol, Chongqing 401524, Peoples R China. RP Guo, H (corresponding author), Chongqing Coll Humanities, Sci & Technol, Chongqing 401524, Peoples R China. EM ym520@swu.edu.cn CR Barnes T, 2017, INT J ARTIF INTELL E, V27, P1, DOI 10.1007/s40593-016-0123-y Bayne S, 2015, TEACH HIGH EDUC, V20, P455, DOI 10.1080/13562517.2015.1020783 Canbek G.N., 2016, INT J HUMAN SCI, V13, P592, DOI DOI 10.14687/IJHS.V13I1.3549 Carbone A, 2017, J HIGH EDUC POLICY M, V39, P183, DOI 10.1080/1360080X.2017.1276629 Ford J.H., 2016, BMC MED EDUC, V16 Goos M, 2017, RES HIGH EDUC, V58, P341, DOI 10.1007/s11162-016-9429-8 Hajra A., 2014, SEEU REV, V9 Holotescu C., 2016, ROCHI, P91, DOI 10.14687/ijhs.v13i1.3549 Li LH, 2022, J IND INF INTEGR, V26, DOI 10.1016/j.jii.2021.100289 McArthur D., 2005, Journal of Educational Technology, V1, P42 Ozbey N, 2016, INT CONF INFO TECH Pinkwart N, 2016, INT J ARTIF INTELL E, V26, P771, DOI 10.1007/s40593-016-0099-7 Popescu Elvira, 2011, International Journal of Information Systems and Social Change, V2, P31, DOI 10.4018/jissc.2011010103 Roll I, 2016, INT J ARTIF INTELL E, V26, P582, DOI 10.1007/s40593-016-0110-3 Stone Peter, 2016, Artificial intelligence and life in 2030: One hundred year study on artificial intelligence Timms MJ, 2016, INT J ARTIF INTELL E, V26, P701, DOI 10.1007/s40593-016-0095-y Vail AK, 2016, LECT NOTES COMPUT SC, V9684, P154, DOI 10.1007/978-3-319-39583-8_15 Woolf BP, 2013, AI MAG, V34, P66, DOI 10.1609/aimag.v34i4.2490 Yin HB, 2015, ASSESS EVAL HIGH EDU, V40, P1032, DOI 10.1080/02602938.2014.963837 NR 19 TC 0 Z9 0 U1 11 U2 35 PU HINDAWI LTD PI LONDON PA ADAM HOUSE, 3RD FLR, 1 FITZROY SQ, LONDON, W1T 5HF, ENGLAND SN 1058-9244 EI 1875-919X J9 SCI PROGRAMMING-NETH JI Sci. Program. PD MAY 9 PY 2022 VL 2022 AR 6556631 DI 10.1155/2022/6556631 PG 9 WC Computer Science, Software Engineering WE Science Citation Index Expanded (SCI-EXPANDED) SC Computer Science GA 1S3JN UT WOS:000803950700011 OA gold DA 2024-09-05 ER PT C AU Tang, L Zhou, CY He, L Zhang, SH AF Tang, Li Zhou, Caiyun He, Li Zhang, Shuhua BE Liu, C Cheung, KS TI Research on Evaluation of Morality and Ability of Teachers in Universities Based on the Perspective of Data Mining SO PROCEEDINGS OF THE 2017 INTERNATIONAL CONFERENCE ON MANAGEMENT, EDUCATION AND SOCIAL SCIENCE (ICMESS 2017) SE Advances in Social Science Education and Humanities Research LA English DT Proceedings Paper CT International Conference on Management, Education and Social Science (ICMESS) CY JUN 23-25, 2017 CL Qingdao, PEOPLES R CHINA DE Support Vector Machine (SVM); Morality of Teachers; Ability of teachers; Data Mining AB The evaluation of professional morality and ability of teachers is an important part of management in the colleges and universities. Focusing on the evaluation of teachers in Chinese universities, this paper designs an evaluation model, and constructs an evaluation metrics from the perspective of data mining. Furthermore, a new evaluation method for teachers based on Support Vector Machine (SVM) is proposed. The prediction levels of the morality and ability of teachers will be given by SVM. Finally, it gives the relative policies to promote the morality and ability of teachers. It will efficiently improve the quality of teaching and bring benefit to the teaching reform. C1 [Tang, Li; He, Li] Tianjin Univ Finance & Econ, Dept Informat Sci & Technol, Tianjin, Peoples R China. [Zhou, Caiyun] Tianjin Univ Finance & Econ, Dept Econ, Tianjin, Peoples R China. [Zhang, Shuhua] Tianjin Univ Finance & Econ, Coordinated Innovat Ctr Computable Modeling Manag, Tianjin, Peoples R China. C3 Tianjin University of Finance & Economics; Tianjin University of Finance & Economics; Tianjin University of Finance & Economics RP Tang, L (corresponding author), Tianjin Univ Finance & Econ, Dept Informat Sci & Technol, Tianjin, Peoples R China. EM tangli0831@tjufe.edu.cn; zhoucaiyun_0119@163.com; renkeheli@163.com; shuhua55@126.com FU Tianjin Social Science Foundation of China [TJYY15-017] FX This research is supported by the Tianjin Social Science Foundation of China (TJYY15-017). CR Chang C.-C., LIBSVM: A library for support vector machines Dong K., 2016, J ANHUI SCI TECHNOLO, V30, P100 Gao T., 2011, SCI TECHNOLOGY MANAG, V31, P131 Jiang M. S., 2016, J HUBEI CORRES U, V29, P5 Li L., 2014, J CHONGQING U TECHNO, V28, P69 VAPNIK, 2000, NATURE STAT LEARNING Yong Zhang, 2013, 2013 Fifth International Conference on Computational and Information Sciences (ICCIS 2013), P1879, DOI 10.1109/ICCIS.2013.491 Zhang J., 2014, RES EVALUATION MODEL NR 8 TC 1 Z9 1 U1 1 U2 4 PU ATLANTIS PRESS PI PARIS PA 29 AVENUE LAVMIERE, PARIS, 75019, FRANCE SN 2352-5398 BN 978-94-6252-348-7 J9 ADV SOC SCI EDUC HUM PY 2017 VL 72 BP 167 EP 170 PG 4 WC Social Sciences, Interdisciplinary WE Conference Proceedings Citation Index - Social Science & Humanities (CPCI-SSH) SC Social Sciences - Other Topics GA BI9GX UT WOS:000416086100040 DA 2024-09-05 ER PT J AU Persson, RAX AF Persson, Rasmus A. X. TI Bibliometric author evaluation through linear regression on the coauthor network SO JOURNAL OF INFORMETRICS LA English DT Article DE Multiple authorship; Statistical method; Coauthor contribution ID CITATION IMPACT INDICATORS; H-INDEX; ARTICLES; CREDIT; PUBLICATION; BIOMEDICINE; COUNTS AB The rising trend of coauthored academic works obscures the credit assignment that is the basis for decisions of funding and career advancements. In this paper, a simple model based on the assumption of an unvarying "author ability" is introduced. With this assumption, the weight of author contributions to a body of coauthored work can be statistically estimated. The method is tested on a set of some more than five-hundred authors in a coauthor network from the CiteSeerX database. The ranking obtained agrees fairly well with that given by total fractional citation counts for an author, but noticeable differences exist. (C) 2017 Elsevier Ltd. All rights reserved. C1 [Persson, Rasmus A. X.] Univ Gothenburg, Dept Chem & Mol Biol, SE-41296 Gothenburg, Sweden. C3 University of Gothenburg RP Persson, RAX (corresponding author), Univ Gothenburg, Dept Chem & Mol Biol, SE-41296 Gothenburg, Sweden. EM rasmus.a.persson@gmail.com RI Persson, Rasmus A. X./AAN-5310-2021; Persson, Rasmus/A-6436-2011 OI Persson, Rasmus A. X./0000-0001-6587-5287; Persson, Rasmus/0000-0001-6587-5287 CR [Anonymous], 2007, International Society for Scientometrics and Informetrics newsletter Ausloos M, 2015, PHYSICA A, V422, P136, DOI 10.1016/j.physa.2014.12.004 Aziz NA, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0059814 Batista PD, 2006, SCIENTOMETRICS, V68, P179, DOI 10.1007/s11192-006-0090-4 Bornmann L, 2005, SCIENTOMETRICS, V65, P391, DOI 10.1007/s11192-005-0281-4 Bornmann L, 2008, J AM SOC INF SCI TEC, V59, P830, DOI 10.1002/asi.20806 Bornmann L, 2007, J AM SOC INF SCI TEC, V58, P1381, DOI 10.1002/asi.20609 Bornmann L, 2007, J AM SOC INF SCI TEC, V58, P1100, DOI 10.1002/asi.20531 Bras-Amorós M, 2011, J INFORMETR, V5, P248, DOI 10.1016/j.joi.2010.11.001 Eaton J.W., 2009, GNU Octave version 3.0.1 manual: a high-level interactive language for numerical computations Egghe L, 1998, SCIENTOMETRICS, V43, P57, DOI 10.1007/BF02458394 Egghe L., 2006, ISSI newsletter., V2, P8 Egghe L, 2008, INFORM PROCESS MANAG, V44, P770, DOI 10.1016/j.ipm.2007.05.003 Figg WD, 2006, PHARMACOTHERAPY, V26, P759, DOI 10.1592/phco.26.6.759 Hagen NT, 2009, SCIENCE, V323, P583, DOI 10.1126/science.323.5914.583a Hirsch JE, 2007, P NATL ACAD SCI USA, V104, P19193, DOI 10.1073/pnas.0707962104 Hirsch JE, 2005, P NATL ACAD SCI USA, V102, P16569, DOI 10.1073/pnas.0507655102 Jin B., 2006, SCI FOCUS, V1, P8, DOI 10.1209/0295-5075/78/30002 Jin BH, 2007, CHINESE SCI BULL, V52, P855, DOI 10.1007/s11434-007-0145-9 Ke WM, 2013, SCIENTOMETRICS, V94, P981, DOI 10.1007/s11192-012-0787-5 Kosmulski M., 2006, ISSI NEWSLETTER, V2, P4, DOI [10.1177/01655515211014478, DOI 10.1177/01655515211014478] Lokker C, 2008, BMJ-BRIT MED J, V336, P655, DOI 10.1136/bmj.39482.526713.BE Schreiber M, 2008, J INFORMETR, V2, P211, DOI 10.1016/j.joi.2008.05.001 Sekercioglu CH, 2008, SCIENCE, V322, P371, DOI 10.1126/science.322.5900.371a Shen HW, 2014, P NATL ACAD SCI USA, V111, P12325, DOI 10.1073/pnas.1401992111 Tol RSJ, 2011, SCIENTOMETRICS, V89, P291, DOI 10.1007/s11192-011-0451-5 Waltman L, 2016, J INFORMETR, V10, P365, DOI 10.1016/j.joi.2016.02.007 Waltman L, 2015, J INFORMETR, V9, P872, DOI 10.1016/j.joi.2015.08.001 Wang H, 2016, SCIENTOMETRICS, V109, P827, DOI 10.1007/s11192-016-2057-4 Zhang CT, 2009, EMBO REP, V10, P416, DOI 10.1038/embor.2009.74 NR 30 TC 8 Z9 9 U1 1 U2 43 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1751-1577 EI 1875-5879 J9 J INFORMETR JI J. Informetr. PD FEB PY 2017 VL 11 IS 1 BP 299 EP 306 DI 10.1016/j.joi.2017.01.003 PG 8 WC Computer Science, Interdisciplinary Applications; Information Science & Library Science WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Computer Science; Information Science & Library Science GA EO3SM UT WOS:000396614600022 OA Green Submitted DA 2024-09-05 ER PT J AU Grodzinski, N Grodzinski, B Davies, BM AF Grodzinski, Noah Grodzinski, Ben Davies, Benjamin M. TI Can co-authorship networks be used to predict author research impact? A machine-learning based analysis within the field of degenerative cervical myelopathy research SO PLOS ONE LA English DT Article ID SCIENTIFIC COLLABORATION; SPONDYLOTIC MYELOPATHY; SURGICAL DECOMPRESSION AB Introduction Degenerative Cervical Myelopathy (DCM) is a common and disabling condition, with a relatively modest research capacity. In order to accelerate knowledge discovery, the AO Spine RECODE-DCM project has recently established the top priorities for DCM research. Uptake of these priorities within the research community will require their effective dissemination, which can be supported by identifying key opinion leaders (KOLs). In this paper, we aim to identify KOLs using artificial intelligence. We produce and explore a DCM co-authorship network, to characterise researchers' impact within the research field. Methods Through a bibliometric analysis of 1674 scientific papers in the DCM field, a co-authorship network was created. For each author, statistics about their connections to the co-authorship network (and so the nature of their collaboration) were generated. Using these connectedness statistics, a neural network was used to predict H-Index for each author (as a proxy for research impact). The neural network was retrospectively validated on an unseen author set. Results DCM research is regionally clustered, with strong collaboration across some international borders (e.g., North America) but not others (e.g., Western Europe). In retrospective validation, the neural network achieves a correlation coefficient of 0.86 (p<0.0001) between the true and predicted H-Index of each author. Thus, author impact can be accurately predicted using only the nature of an author's collaborations. Discussion Analysis of the neural network shows that the nature of collaboration strongly impacts an author's research visibility, and therefore suitability as a KOL. This also suggests greater collaboration within the DCM field could help to improve both individual research visibility and global synergy. C1 [Grodzinski, Noah] Univ Cambridge, St Johns Coll, Cambridge, England. [Grodzinski, Ben] Univ Cambridge, Sch Clin Med, Cambridge, England. [Davies, Benjamin M.] Univ Cambridge, Dept Clin Neurosci, Div Neurosurg, Cambridge, England. C3 University of Cambridge; University of Cambridge; University of Cambridge RP Davies, BM (corresponding author), Univ Cambridge, Dept Clin Neurosci, Div Neurosurg, Cambridge, England. EM bd375@cam.ac.uk OI Grodzinski, Ben/0000-0001-8839-4718 CR Abadi M, 2016, PROCEEDINGS OF OSDI'16: 12TH USENIX SYMPOSIUM ON OPERATING SYSTEMS DESIGN AND IMPLEMENTATION, P265 Azondekon R, 2018, SCI AUTHORSHIP COLLA Andrade HB, 2009, RES EVALUAT, V18, P301, DOI 10.3152/095820209X451041 Brownlee Jason, 2018, Imbalanced Classification with Python: Better Metrics, Balance Skewed Classes, Cost-Sensitive Learning Coccia M, 2016, P NATL ACAD SCI USA, V113, P2057, DOI 10.1073/pnas.1510820113 Davies B, 2019, BMJ OPEN, V9, DOI 10.1136/bmjopen-2019-031486 Davies BM, 2022, GLOB SPINE J, V12, P432, DOI 10.1177/2192568220953811 Davies BM, 2019, GLOB SPINE J, V9, p65S, DOI 10.1177/2192568219832855 Davies BM, 2018, BMC MED RES METHODOL, V18, DOI 10.1186/s12874-018-0529-3 Davies BM, 2018, BMJ-BRIT MED J, V360, DOI 10.1136/bmj.k186 Davies BM, 2017, PLOS ONE, V12, DOI 10.1371/journal.pone.0172564 Davies BM, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0157263 Davies BM, GSJ Davies BM., 2019, CONSENSUS PROCESS IM, V9 Fehlings MG, 2017, GLOB SPINE J, V7, p70S, DOI 10.1177/2192568217701914 Fehlings MG, 2015, SPINE, V40, P1322, DOI 10.1097/BRS.0000000000000988 Fehlings MG, 2013, J BONE JOINT SURG AM, V95A, P1651, DOI 10.2106/JBJS.L.00589 FREEMAN LC, 1977, SOCIOMETRY, V40, P35, DOI 10.2307/3033543 Ghogawala Z, 2021, JAMA-J AM MED ASSOC, V325, P942, DOI 10.1001/jama.2021.1233 Bote VPG, 2013, J AM SOC INF SCI TEC, V64, P392, DOI 10.1002/asi.22754 Hara N, 2003, J AM SOC INF SCI TEC, V54, P952, DOI 10.1002/asi.10291 Hilton B, 2019, BMJ OPEN, V9, DOI 10.1136/bmjopen-2018-027000 Hirsch JE, 2010, SCIENTOMETRICS, V85, P741, DOI 10.1007/s11192-010-0193-9 INGHAM AG, 1974, J EXP SOC PSYCHOL, V10, P371, DOI 10.1016/0022-1031(74)90033-X Khan DZ, 2020, J RHEUMATOL, V47, P633, DOI 10.3899/jrheum.191225 Khan DZ, 2020, JMIR RES PROTOC, V9, DOI 10.2196/15922 Kreiner G, 2016, FRONT HUM NEUROSCI, V10, DOI 10.3389/fnhum.2016.00556 Leathers SJ, 2016, ADM POLICY MENT HLTH, V43, P768, DOI 10.1007/s10488-015-0694-1 Mallapaty S., 2018, NATURE INDEX Mao A, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0153048 Mowforth OD, 2020, GLOB SPINE J, V10, P476, DOI 10.1177/2192568219847439 Nepusz T, 2006, InterJournal Comp. Syst., VComplex Systems, P1695 Oh T, 2017, WORLD NEUROSURG, V106, P699, DOI 10.1016/j.wneu.2016.12.124 Petit-Zeman S, 2010, LANCET, V376, P667, DOI 10.1016/S0140-6736(10)60712-X Rose M., 2019, PYBLIOMETRICS SCRIPT, V10 SABIDUSSI G, 1966, PSYCHOMETRIKA, V31, P581, DOI 10.1007/BF02289527 Schmidhuber J, 2005, DEEP LEARNING NEURAL Smalheiser NR, 2005, PLOS BIOL, V3, P963, DOI 10.1371/journal.pbio.0030217 Smith SS, GLOB SPINE J Waqar M, 2019, POSTGRAD MED J, V95, P524, DOI 10.1136/postgradmedj-2019-136805 Yin M, 2020, BIBLIOMETRIC ANAL VI Zuo KJ, 2020, J SURG RES, V256, P282, DOI 10.1016/j.jss.2020.06.054 NR 42 TC 15 Z9 15 U1 1 U2 18 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA SN 1932-6203 J9 PLOS ONE JI PLoS One PD SEP 2 PY 2021 VL 16 IS 9 AR e0256997 DI 10.1371/journal.pone.0256997 PG 14 WC Multidisciplinary Sciences WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Science & Technology - Other Topics GA WG5QV UT WOS:000707050100085 PM 34473796 OA Green Published, gold DA 2024-09-05 ER PT J AU Massonnaud, C Lelong, R Kerdelhué, G Lejeune, E Grosjean, J Griffon, N Darmoni, SJ AF Massonnaud, Clement Lelong, Romain Kerdelhue, Gaetan Lejeune, Emeline Grosjean, Julien Griffon, Nicolas Darmoni, Stefan J. TI Performance evaluation of three semantic expansions to query PubMed SO HEALTH INFORMATION AND LIBRARIES JOURNAL LA English DT Article DE bibliographic databases; information retrieval; literature searching; medical subject headings (MeSH); MEDLINE; precision; PubMed; recall; search strategies; thesaurus ID INFORMATION; BEHAVIOR AB Background PubMed is one of the most important basic tools to access medical literature. Semantic query expansion using synonyms can improve retrieval efficacy. Objective The objective was to evaluate the performance of three semantic query expansion strategies. Methods Queries were built for forty MeSH descriptors using three semantic expansion strategies (MeSH synonyms, UMLS mappings, and mappings created by the CISMeF team), then sent to PubMed. To evaluate expansion performances for each query, the first twenty citations were selected, and their relevance were judged by three independent evaluators based on the title and abstract. Results Queries built with the UMLS expansion provided new citations with a slightly higher mean precision (74.19%) than with the CISMeF expansion (70.28%), although the difference was not significant. Inter-rater agreement was 0.28. Results varied greatly depending on the descriptor selected. Discussion The number of citations retrieved by the three strategies and their precision varied greatly according to the descriptor. This heterogeneity could be explained by the quality of the synonyms. Optimal use of these different expansions would be through various combinations of UMLS and CISMeF intersections or unions. Conclusion Information retrieval tools should propose different semantic expansions depending on the descriptor and the search objectives. C1 [Massonnaud, Clement; Lelong, Romain; Kerdelhue, Gaetan; Lejeune, Emeline; Grosjean, Julien; Griffon, Nicolas; Darmoni, Stefan J.] Rouen Univ Hosp, Dept Biomed Informat, 1 Rue Germont, F-76000 Rouen, Normandy, France. [Massonnaud, Clement; Lelong, Romain; Kerdelhue, Gaetan; Lejeune, Emeline; Grosjean, Julien; Griffon, Nicolas; Darmoni, Stefan J.] Sorbonne Univ, LIMICS, U1142, Paris, France. C3 Universite de Rouen Normandie; CHU de Rouen; Sorbonne Universite RP Massonnaud, C (corresponding author), Rouen Univ Hosp, Dept Biomed Informat, 1 Rue Germont, F-76000 Rouen, Normandy, France. EM clement.massonnaud@gmail.com RI LEJEUNE, Emeline/KAM-4290-2024; Stefan, Darmoni J/H-4554-2016; Kerdelhué, Gaétan/J-6933-2019 OI LEJEUNE, Emeline/0000-0001-6177-2125; Kerdelhué, Gaétan/0000-0001-5803-5554; Darmoni, Stefan/0000-0002-7162-318X; Massonnaud, Clement/0000-0003-0292-9668; Griffon, Nicolas/0000-0002-9602-6429; Grosjean, Julien/0000-0002-7446-644X; LELONG, Romain/0000-0003-1865-8786 CR Alving BE, 2018, HEALTH INFO LIBR J, V35, P3, DOI 10.1111/hir.12204 Aronson AR, 1997, J AM MED INFORM ASSN, P485 Baorto DM, 2000, J AM MED INFORM ASSN, P47 Bouadjenek MR, 2017, DATABASE-OXFORD, DOI 10.1093/database/bax062 Carpineto C, 2012, ACM COMPUT SURV, V44, DOI 10.1145/2071389.2071390 CONGER AJ, 1980, PSYCHOL BULL, V88, P322, DOI 10.1037/0033-2909.88.2.322 Glocker K, 2017, STUD HEALTH TECHNOL, V243, P197, DOI 10.3233/978-1-61499-808-2-197 Green R, 2001, RELATIONSHIP MEDICAL, V171 Griffon N, 2012, BMC MED INFORM DECIS, V12, DOI 10.1186/1472-6947-12-12 Grosjean J, 2011, STUD HEALTH TECHNOL, V166, P129, DOI 10.3233/978-1-60750-740-6-129 Harris JK, 2014, PREV CHRONIC DIS, V11, DOI 10.5888/pcd11.140201 Hersh W., 1994, SIGIR '94. Proceedings of the Seventeenth Annual International ACM-SIGIR Conference on Research and Development in Information Retrieval, P192 Hersh W, 2000, J AM MED INFORM ASSN, P344 Herskovic JR, 2007, J AM MED INFORM ASSN, V14, P212, DOI 10.1197/jamia.M2191 Hisham R, 2016, BMJ OPEN, V6, DOI 10.1136/bmjopen-2015-010565 Hoogendam A, 2008, BMC MED INFORM DECIS, V8, DOI 10.1186/1472-6947-8-42 Isham A, 2016, J DENT EDUC, V80, P569 kahouei Mehdi, 2015, J Evid Based Med, V8, P91, DOI 10.1111/jebm.12154 LINDBERG DAB, 1993, METHOD INFORM MED, V32, P281, DOI 10.1055/s-0038-1634945 Lu ZY, 2011, DATABASE-OXFORD, DOI 10.1093/database/baq036 Mahmood W., 2018, DATABASE-OXFORD, V2018 Merabti T, 2015, STUD HEALTH TECHNOL, V216, P544, DOI 10.3233/978-1-61499-564-7-544 Schuers M, 2016, INT J MED INFORM, V89, P9, DOI 10.1016/j.ijmedinf.2016.02.003 Thirion B, 2009, STUD HEALTH TECHNOL, V150, P238, DOI 10.3233/978-1-60750-044-5-238 Torre S., 2013, AUTHOR KEYWORDS PUBM Vanopstal K, 2013, EXPERT SYST APPL, V40, P4106, DOI 10.1016/j.eswa.2013.01.036 Wright TB, 2017, DATABASE-OXFORD, DOI 10.1093/database/bax065 NR 27 TC 2 Z9 2 U1 0 U2 10 PU WILEY PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1471-1834 EI 1471-1842 J9 HEALTH INFO LIBR J JI Heatlth Info. Libr. J. PD JUN PY 2021 VL 38 IS 2 BP 113 EP 124 DI 10.1111/hir.12291 PG 12 WC Information Science & Library Science WE Social Science Citation Index (SSCI) SC Information Science & Library Science GA TB9RL UT WOS:000668281300004 PM 31837099 DA 2024-09-05 ER PT J AU Verma, MK Yuvaraj, M AF Verma, Manoj Kumar Yuvaraj, Mayank TI What's up in WhatsApp research: a comprehensive analysis of 12,947 papers indexed in Dimensions.ai SO LIBRARY HI TECH LA English DT Article; Early Access DE WhatsApp; Instant messaging platform; Bibliometrics; Dimensions.ai; Performance analysis; Science mapping; Cluster analysis AB PurposeIn recent years, instant messaging platforms like WhatsApp have gained substantial popularity in both academic and practical domains. However, despite this growth, there is a lack of a comprehensive overview of the literature in this field. The primary purpose of this study is to bridge this gap by analyzing a substantial dataset of 12,947 articles retrieved from the Dimensions.ai, database spanning from 2011 to March 2023.Design/methodology/approachTo achieve the authors' objective, the authors employ bibliometric analysis techniques. The authors delve into various bibliometric networks, including citation networks, co-citation networks, collaboration networks, keywords and bibliographic couplings. These methods allow for the uncovering of the social and conceptual structures within the academic discourse surrounding WhatsApp.FindingsThe authors' analysis reveals several significant findings. Firstly, the authors observe a remarkable and continuous growth in the number of academic studies dedicated to WhatsApp over time. Notably, two prevalent themes emerge: the impact of coronavirus disease 2019 (COVID-19) and the role of WhatsApp in the realm of social media. Furthermore, the authors' study highlights diverse applications of WhatsApp, including its utilization in education and learning, as a communication tool, in medical education, cyberpsychology, security, psychology and behavioral learning.Originality/valueThis paper contributes to the field by offering a comprehensive overview of the scholarly research landscape related to WhatsApp. The findings not only illuminate the burgeoning interest in WhatsApp among researchers but also provide insights into the diverse domains where WhatsApp is making an impact. The analysis of bibliometric networks offers a unique perspective on the social and conceptual structures within this field, shedding light on emerging trends and influential research. This study thus serves as a valuable resource for scholars, practitioners and policymakers seeking to navigate the evolving landscape of WhatsApp research. The study will also be useful for researchers interested in conducting bibliometric analysis using Dimensions.ai, a free database. C1 [Verma, Manoj Kumar] Mizoram Univ, Dept Lib & Informat Sci, Aizawl, India. [Yuvaraj, Mayank] Cent Univ South Bihar, Rajarshi Janak Cent Lib, Gaya, India. C3 Mizoram University; Central University of South Bihar RP Yuvaraj, M (corresponding author), Cent Univ South Bihar, Rajarshi Janak Cent Lib, Gaya, India. EM mayank.yuvaraj@gmail.com RI Verma, Manoj Kumar/ABE-4906-2020 OI Verma, Prof. Manoj Kumar/0000-0002-3009-3258 CR Acedo FJ, 2006, J MANAGE STUD, V43, P957, DOI 10.1111/j.1467-6486.2006.00625.x Agrawal S.R., 2021, J RELATIONSHIP MARKE, V20, P261, DOI DOI 10.1080/15332667.2020.1802643 Agrawal SR, 2019, INT J EDUC MANAG, V33, P954, DOI 10.1108/IJEM-07-2018-0205 Ahad A, 2016, ADV INTELL SYST, V433, P235, DOI 10.1007/978-81-322-2755-7_24 Aker S, 2020, J COMMUN HEALTH, V45, P684, DOI 10.1007/s10900-020-00841-9 Alabasi M K., 2019, Arab World English Journal, V1, P129, DOI [10.24093/awej/elt1.10, DOI 10.24093/AWEJ/ELT1.10] Alabdulkareem SA, 2015, PROCD SOC BEHV, V182, P213, DOI 10.1016/j.sbspro.2015.04.758 Alam S, 2023, LIBR HI TECH, V41, P287, DOI 10.1108/LHT-07-2021-0244 Alamer A, 2023, J COMPUT ASSIST LEAR, V39, P417, DOI 10.1111/jcal.12753 AlFaris E, 2018, MED TEACH, V40, pS77, DOI 10.1080/0142159X.2018.1465536 Alsobayel Hana, 2016, JMIR Med Educ, V2, pe15 Amadeu Dutra Moresi Eduardo, 2022, Computer Supported Qualitative Research: New Trends in Qualitative Research (WCQR2022). Lecture Notes in Networks and Systems (466), P194, DOI 10.1007/978-3-031-04680-3_13 Amin F., 2020, Studies in English Language and Education, V7, P362, DOI DOI 10.24815/SIELE.V7I2.16929 Andujar A, 2016, SYSTEM, V62, P63, DOI 10.1016/j.system.2016.07.004 Anglano C, 2014, DIGIT INVEST, V11, P201, DOI 10.1016/j.diin.2014.04.003 [Anonymous], 2016, International Journal of Electrical and Computer Engineering, DOI [DOI 10.11591/IJECE.V6I3.10271, 10.11591/ijece.v6i3.10271, 10.11591/ijece.v6i3.pp909-914, DOI 10.11591/IJECE.V6I3.PP909-914] [Anonymous], 2017, COMUNICAR, DOI [DOI 10.3916/C50-2017-04, 10.3916/C50-2017-04] Apaolaza V, 2019, CYBERPSYCH BEH SOC N, V22, P388, DOI 10.1089/cyber.2018.0681 Apuke OD, 2021, ONLINE INFORM REV, V45, P220, DOI 10.1108/OIR-03-2020-0116 Aria M, 2017, J INFORMETR, V11, P959, DOI 10.1016/j.joi.2017.08.007 Astarcioglu MA, 2015, AM J EMERG MED, V33, P1382, DOI 10.1016/j.ajem.2015.07.029 Aung HH, 2019, J ASSOC INF SCI TECH, V70, P872, DOI 10.1002/asi.24162 Awada G, 2016, COGENT EDUC, V3, DOI 10.1080/2331186X.2016.1264173 Awan WA, 2023, LIBR HI TECH, V41, P309, DOI 10.1108/LHT-07-2021-0233 Balatamoghna Nagajayanthi, 2022, Lecture Notes in Electrical Engineering, V792, P885 Bano S, 2019, CHILD YOUTH SERV REV, V103, P200, DOI 10.1016/j.childyouth.2019.06.002 Banshal SK, 2022, LIBR HI TECH, V40, P1337, DOI 10.1108/LHT-01-2022-0083 Barhoumi C, 2017, ELECTRON LIBR, V35, P977, DOI 10.1108/EL-03-2016-0069 Bartolo M., 2018, Multidisciplinary Teleconsultation in Developing Countries, DOI [10.1007/978-3-319-72763-9, DOI 10.1007/978-3-319-72763-9] Basumatary B, 2023, LIBR HI TECH, DOI 10.1108/LHT-02-2023-0031 Belsti Y, 2021, J MULTIDISCIP HEALTH, V14, P1233, DOI 10.2147/JMDH.S312637 Boczkowski PJ, 2018, J COMPUT-MEDIAT COMM, V23, P245, DOI 10.1093/jcmc/zmy012 Boote DavidN., 2005, Educational Researcher, V34, P3, DOI [10.3102/0013189X034006003, DOI 10.3102/0013189X034006003] Bouhnik D, 2014, J INF TECHNOL EDUC-R, V13, P217 Boulos MNK, 2016, FUTURE INTERNET, V8, DOI 10.3390/fi8030037 Bowles J, 2020, PLOS ONE, V15, DOI 10.1371/journal.pone.0240005 Callon M., 1986, Mapping the Dynamics of Science and Technology: Sociology of Science in the Real World Chagas V, 2022, J INF TECHNOL POLITI, V19, P253, DOI 10.1080/19331681.2021.1962779 Chakraborty S, 2020, PAC BUS REV INT, V13, P46 Chan M, 2018, COMPUT HUM BEHAV, V87, P254, DOI 10.1016/j.chb.2018.05.027 [陈继文 Chen Jiwen], 2019, [现代制造工程, Modern Manufacturing Engineering], P1 Cheng ZC, 2023, INT J PRESS/POLIT, V28, P995, DOI [10.1177/19401612221075936, 10.24507/icicel.16.07.759] Cheung YTD, 2015, J MED INTERNET RES, V17, DOI 10.2196/jmir.4829 Chiu DKW, 2023, LIBR HI TECH, V41, P277, DOI 10.1108/LHT-04-2023-586 Choudhury T., 2022, Telemedicine: the Computer Transformation of Healthcare, DOI [10.1007/978-3-030-99457-0, DOI 10.1007/978-3-030-99457-0] Coleman E, 2019, BMC MED EDUC, V19, DOI 10.1186/s12909-019-1706-8 Conde MA, 2021, UNIVERSAL ACCESS INF, V20, P441, DOI 10.1007/s10209-020-00772-1 Cong T, 2022, SCIENTOMETRICS, V127, P7091, DOI 10.1007/s11192-022-04347-0 Cordero J., 2022, Applied Computing and Informatics, DOI [10.1108/ACI-06-2022-0148, DOI 10.1108/ACI-06-2022-0148] Correia AP, 2020, DISTANCE EDUC, V41, P429, DOI 10.1080/01587919.2020.1821607 Costa E, 2022, SOC MEDIA SOC, V8, DOI 10.1177/20563051211069053 Cotrin P, 2020, AM J ORTHOD DENTOFAC, V158, P661, DOI 10.1016/j.ajodo.2020.06.028 Dong JH, 2023, RECALL, V35, P339, DOI 10.1017/S0958344022000222 Donthu N, 2021, J BUS RES, V133, P285, DOI 10.1016/j.jbusres.2021.04.070 Dorwal P, 2016, J MED SYST, V40, DOI 10.1007/s10916-015-0384-2 Duffy J.C., 2021, The Charleston Advisor, V23, P9, DOI [10.5260/chara.23.1.9, DOI 10.5260/CHARA.23.1.9] Durgungoz A, 2022, LEARNING ENVIRON RES, V25, P423, DOI 10.1007/s10984-021-09371-0 Ellanti P, 2017, CUREUS J MED SCIENCE, V9, DOI 10.7759/cureus.1040 Elmore SA, 2018, TOXICOL PATHOL, V46, P252, DOI 10.1177/0192623318758294 Ermel A.P. C., 2021, Literature Reviews, DOI DOI 10.1007/978-3-030-75722-9 ESFAHANI H J., 2019, Int J Data Netw Sci, V3, P145, DOI [10.5267/j.ijdns.2019.2.007, DOI 10.5267/J.IJDNS.2019.2.007] Evans D, 2002, INT J NURS STUD, V39, P735, DOI 10.1016/S0020-7489(02)00015-9 Fasae JK, 2021, LIBR HI TECH, V39, P696, DOI 10.1108/LHT-07-2020-0166 Ganasegeran K, 2017, INT J MED INFORM, V97, P145, DOI 10.1016/j.ijmedinf.2016.10.013 García-Gómez A, 2022, COMPUT ASSIST LANG L, V35, P1310, DOI 10.1080/09588221.2020.1799822 Gaviria-Marin M, 2019, TECHNOL FORECAST SOC, V140, P194, DOI 10.1016/j.techfore.2018.07.006 Gazit T, 2019, ONLINE INFORM REV, V44, P139, DOI 10.1108/OIR-03-2019-0076 de Zúñiga HG, 2021, INFORM COMMUN SOC, V24, P201, DOI 10.1080/1369118X.2019.1642933 Giordano V, 2017, INTERACT J MED RES, V6, DOI 10.2196/ijmr.6214 Giordano V, 2015, INT J MED INFORM, V84, P141, DOI 10.1016/j.ijmedinf.2014.11.002 Giudice A, 2020, INT J ENV RES PUB HE, V17, DOI 10.3390/ijerph17103399 Gorwa R, 2019, INFORM COMMUN SOC, V22, P854, DOI 10.1080/1369118X.2019.1573914 Grover S, 2020, J POSTGRAD MED, V66, P17, DOI 10.4103/jpgm.JPGM_2_19 Gulacti U, 2016, J MED SYST, V40, DOI 10.1007/s10916-016-0483-8 Guo Y, 2022, INFORM TECHNOL LIBR, V41, DOI 10.6017/ital.v41i3.14325 Gutiérrez-Salcedo M, 2018, APPL INTELL, V48, P1275, DOI 10.1007/s10489-017-1105-y Hasan MR, 2021, LIBR HI TECH, V39, P814, DOI 10.1108/LHT-02-2021-0071 Hasumi T, 2022, SCIENTOMETRICS, V127, P4631, DOI 10.1007/s11192-022-04441-3 Hazzam J, 2018, J MED INTERNET RES, V20, DOI 10.2196/12035 Henry JV, 2016, GLOB HEALTH-SCI PRAC, V4, P311, DOI 10.9745/GHSP-D-15-00386 Herrero-Solana V, 2022, SOCIETIES, V12, DOI 10.3390/soc12060164 Herzog C, 2020, QUANT SCI STUD, V1, P387, DOI 10.1162/qss_a_00020 Hook DW., 2018, FRONT RES METR ANAL, V3, P23, DOI DOI 10.3389/FRMA.2018.00023 Huang PS, 2023, LIBR HI TECH, V41, P1, DOI 10.1108/LHT-02-2023-585 Huang YH, 2024, LIBR HI TECH, V42, P885, DOI 10.1108/LHT-03-2022-0159 Hui SC, 2023, LIBR HI TECH, DOI 10.1108/LHT-11-2022-0533 Iftikhar R, 2017, J MED INTERNET RES, V19, DOI 10.2196/jmir.5989 Irvine L., 2022, Making Literature Reviews Work: A Multidisciplinary Guide to Systematic Approaches, P145 Jahangiry L, 2020, BMC PUBLIC HEALTH, V20, DOI 10.1186/s12889-020-09681-7 Jailobaev T, 2021, BMS-B SOCIOL METHOD, V149, P60, DOI 10.1177/0759106320978337 Jain J, 2022, MANAG REV Q, V72, P823, DOI 10.1007/s11301-021-00215-y Jakhar D, 2020, CLIN EXP DERMATOL, V45, P739, DOI 10.1111/ced.14227 Jamal A, 2016, JMIR MHEALTH UHEALTH, V4, P136, DOI 10.2196/mhealth.4904 Johnston MJ, 2015, AM J SURG, V209, P45, DOI 10.1016/j.amjsurg.2014.08.030 Kanyike AM, 2021, TROP MED HEALTH, V49, DOI 10.1186/s41182-021-00331-1 Kapasia N, 2020, CHILD YOUTH SERV REV, V116, DOI 10.1016/j.childyouth.2020.105194 Kapoor KK, 2018, INFORM SYST FRONT, V20, P531, DOI 10.1007/s10796-017-9810-y Karapanos E, 2016, COMPUT HUM BEHAV, V55, P888, DOI 10.1016/j.chb.2015.10.015 Karimii Z, 2020, RISK MANAG HEALTHC P, V13, P1271, DOI 10.2147/RMHP.S258785 Karimuribo Esron Daniel, 2017, JMIR Public Health Surveill, V3, pe94, DOI 10.2196/publichealth.7373 Karpisek F, 2015, DIGIT INVEST, V15, P110, DOI 10.1016/j.diin.2015.09.002 Kartal G., 2019, International Journal of Contemporary Educational Research, V6, P352, DOI DOI 10.33200/IJCER.599138 Kaufmann K, 2020, MOB MEDIA COMMUN, V8, P229, DOI 10.1177/2050157919852392 Kaufmann K, 2018, INFORM COMMUN SOC, V21, P882, DOI 10.1080/1369118X.2018.1437205 Kaye LK, 2020, INT J HUM-COMPUT INT, V36, P190, DOI 10.1080/10447318.2019.1620524 Khanna Vishesh, 2015, Eur J Orthop Surg Traumatol, V25, P821, DOI 10.1007/s00590-015-1600-y Khasne RW, 2020, INDIAN J CRIT CARE M, V24, P664, DOI 10.5005/jp-journals-10071-23518 Klein AZ, 2018, INT J DIST EDUC TECH, V16, P51, DOI 10.4018/IJDET.2018040104 Kligler-Vilenchik N, 2022, DIGIT JOURNAL, V10, P300, DOI 10.1080/21670811.2021.1972020 Krämer NC, 2015, COMPUT HUM BEHAV, V51, P255, DOI 10.1016/j.chb.2015.05.005 Kuhn T.S., 2012, The structures of scientific revolutions Latif Muhammad Zahid, 2019, Acta Inform Med, V27, P133, DOI 10.5455/aim.2019.27.133-138 Latina D, 2023, J CLIN MED, V12, DOI 10.3390/jcm12052056 Lee CE, 2023, EDUC SCI, V13, DOI 10.3390/educsci13030244 Li L, 2023, LIBR HI TECH, V41, P921, DOI 10.1108/LHT-05-2021-0161 Li YT, 2023, LIBR HI TECH, V41, P1039, DOI 10.1108/LHT-01-2021-0034 Lim TS, 2019, ADV INTELL SYST, V783, P626, DOI 10.1007/978-3-319-94709-9_61 Lim WM, 2021, J BUS RES, V122, P534, DOI 10.1016/j.jbusres.2020.08.051 Linnenluecke MK, 2020, AUST J MANAGE, V45, P175, DOI 10.1177/0312896219877678 MACROBERTS MH, 1989, J AM SOC INFORM SCI, V40, P342, DOI 10.1002/(SICI)1097-4571(198909)40:5<342::AID-ASI7>3.0.CO;2-U Malik UR, 2020, INT J ENV RES PUB HE, V17, DOI 10.3390/ijerph17176395 Malka V, 2015, MEDIA WAR CONFL, V8, P329, DOI 10.1177/1750635215611610 Manca S, 2020, INTERNET HIGH EDUC, V44, DOI 10.1016/j.iheduc.2019.100707 Manji K, 2021, HEALTH POLICY PLANN, V36, P774, DOI 10.1093/heapol/czab024 Mars M, 2019, J TELEMED TELECARE, V25, P524, DOI 10.1177/1357633X19873233 Martin-Villares C, 2021, EUR ARCH OTO-RHINO-L, V278, P1605, DOI 10.1007/s00405-020-06220-3 Matassi M, 2019, NEW MEDIA SOC, V21, P2183, DOI 10.1177/1461444819841890 Matthes J, 2020, COMPUT HUM BEHAV, V105, DOI 10.1016/j.chb.2019.106217 McDonald ACE, 2022, ANZ J SURG, V92, P825, DOI 10.1111/ans.17550 Melo PD, 2019, Arxiv, DOI arXiv:1909.08740 Mohamed Inaam N, 2021, Sudan J Paediatr, V21, P48, DOI 10.24911/SJP.106-1596913564 Montag C, 2020, J BEHAV ADDICT, V9, P908, DOI 10.1556/2006.8.2019.59 Montag C, 2018, FRONT PSYCHOL, V9, DOI 10.3389/fpsyg.2018.02247 Montag Christian, 2015, BMC Res Notes, V8, P331, DOI 10.1186/s13104-015-1280-z Moorefield-Lang HM, 2017, LIBR HI TECH, V35, P81, DOI 10.1108/LHT-04-2016-0039 Morris C, 2021, INT J ENV RES PUB HE, V18, DOI 10.3390/ijerph182413426 Mostafa MM, 2023, MULTIMED TOOLS APPL, V82, P12423, DOI 10.1007/s11042-022-13908-7 Dávila CM, 2023, FAM RELAT, V72, P547, DOI 10.1111/fare.12816 Moyle L, 2019, INT J DRUG POLICY, V63, P101, DOI 10.1016/j.drugpo.2018.08.005 Mrad M, 2022, QUAL MARK RES, V25, P337, DOI 10.1108/QMR-10-2021-0132 Muller-Bloch C., 2015, ICIS 2015 P Nachimuthu S, 2020, DIABETES METAB SYND, V14, P579, DOI 10.1016/j.dsx.2020.04.053 Nguyen Minh-Hoang, 2021, SN Bus Econ, V1, P2, DOI 10.1007/s43546-020-00002-z Nobre GP, 2022, INFORM PROCESS MANAG, V59, DOI 10.1016/j.ipm.2021.102757 Noyons ECM, 1999, J AM SOC INFORM SCI, V50, P115, DOI 10.1002/(SICI)1097-4571(1999)50:2<115::AID-ASI3>3.3.CO;2-A Nyashanu M, 2020, GLOB PUBLIC HEALTH, V15, P1443, DOI 10.1080/17441692.2020.1805787 Obreja DM, 2023, SOC SCI COMPUT REV, V41, P1712, DOI 10.1177/08944393221117749 Okunlaya RO, 2022, LIBR HI TECH, V40, P1869, DOI 10.1108/LHT-07-2021-0242 Olum R., 2020, JMIR Public Health and Surveillance, V6, P19847, DOI 10.2196/19847 Olum R, 2020, J MED EDUC CURRIC DE, V7, DOI 10.1177/2382120520973212 Olum R, 2020, FRONT PUBLIC HEALTH, V8, DOI 10.3389/fpubh.2020.00181 Ortiz C, 2018, ACCIDENT ANAL PREV, V117, P239, DOI 10.1016/j.aap.2018.04.018 Ortiz-Peregrina S, 2020, SCI REP-UK, V10, DOI 10.1038/s41598-020-70288-4 Pang Natalie., 2020, First Monday, DOI [DOI 10.5210/FM.V25I12.10417, https://doi.org/10.5210/fm.v25i12.10417] Petersen David, 2022, Journal of Electronic Resources in Medical Libraries, P94, DOI 10.1080/15424065.2022.2113348 Petruzzi M, 2016, OR SURG OR MED OR PA, V121, P248, DOI 10.1016/j.oooo.2015.11.005 Pramukti I, 2020, J MED INTERNET RES, V22, DOI 10.2196/24487 Prebor G, 2023, LIBR HI TECH, V41, P969, DOI 10.1108/LHT-02-2021-0074 Qayyum A, 2019, IT PROF, V21, P16, DOI 10.1109/MITP.2019.2910503 Raiman L, 2017, BMC MED EDUC, V17, DOI 10.1186/s12909-017-0855-x Rambe P., 2013, INT C ADV INF COMM T, P1, DOI [10.2991/icaicte.2013.66, DOI 10.2991/ICAICTE.2013.66] Rejeb A, 2022, TELEMAT INFORM, V73, DOI 10.1016/j.tele.2022.101876 Rosales A., 2016, Romanian Journal of Communication and Public Relations, V18, P27, DOI [10.21018/rjcpr.2016.1.200, DOI 10.21018/RJCPR.2016.1.200] Rozgonjuk D, 2020, ADDICT BEHAV, V110, DOI 10.1016/j.addbeh.2020.106487 Saefi M, 2020, DATA BRIEF, V31, DOI 10.1016/j.dib.2020.105855 Sallam M, 2020, PLOS ONE, V15, DOI 10.1371/journal.pone.0243264 Sampietro A, 2019, J PRAGMATICS, V143, P109, DOI 10.1016/j.pragma.2019.02.009 Schmidt F, 2008, ORGAN RES METHODS, V11, P96, DOI 10.1177/1094428107303161 Serra G, 2021, ITAL J PEDIATR, V47, DOI 10.1186/s13052-021-01102-8 Sha Peng, 2019, Addict Behav Rep, V9, P100148, DOI 10.1016/j.abrep.2018.100148 Shen CW, 2021, LIBR HI TECH, V39, P488, DOI 10.1108/LHT-10-2019-0210 Shiau WL, 2018, INT J INFORM MANAGE, V43, P52, DOI 10.1016/j.ijinfomgt.2018.06.006 So W.W.S., 2016, Turkish Online Journal of Educational Technology, V2016, P1359 Sperling D, 2021, NURS ETHICS, V28, P1096, DOI 10.1177/09697330211005175 Srivastava V., 2020, arXiv, DOI [10.48550/arXiv.2010.13263, DOI 10.48550/ARXIV.2010.13263] Statista, 2021, Number of WhatsApp users in selected countries worldwide as of June 2021 Statista, 2022, Russia: COVID-19 influenced WhatsApp traffic 2020 Statista, 2022, Coronavirus (COVID-19) impact on the internet and media in Italy-statistics & facts Statista, Impact of the coronavirus (COVID-19) on social media usage across India from January to July 2020 Statista, 2023, Most popular global mobile messenger apps as of January 2023, based on number of monthly active users Sultan AJ, 2014, SOC SCI J, V51, P57, DOI 10.1016/j.soscij.2013.09.003 Supriyanto J., 2020, The use of Whatsapp to reduce students' speaking anxiety in a blended learning activity (A Case Study at the Tenth Grade of a Vocational School in Wanareja) Swart J, 2019, DIGIT JOURNAL, V7, P187, DOI 10.1080/21670811.2018.1465351 Syairofi A., 2023, Computer Assisted Language Learning, V24, P305 Thomas K, 2018, BMJ-BRIT MED J, V360, DOI 10.1136/bmj.k622 Torun E.D., 2020, Acta Educationis Generalis, V10, P112, DOI DOI 10.2478/ATD-2020-0013 Trere Emiliano., 2020, First Monday, V25, DOI [10.5210/fm.v25i12.10404, DOI 10.5210/FM.V25I12.10404] Urooj U, 2020, PAK J MED SCI, V36, pS37, DOI 10.12669/pjms.36.COVID19-S4.2643 van Eck NJ, 2010, SCIENTOMETRICS, V84, P523, DOI 10.1007/s11192-009-0146-3 van Steden R, 2022, CRIME MEDIA CULT, V18, P543, DOI 10.1177/17416590211041017 Van-Raan AFJ., 2004, HDB QUANTITATIVE SCI, P19, DOI [DOI 10.1007/1-4020-2755-9_2, DOI 10.1007/1-4020-2755-92] Verma MK, 2022, J BUS FINANC LIBR, V27, P268, DOI 10.1080/08963568.2022.2100089 Vöelker J, 2021, COMPUT HUM BEHAV REP, V3, DOI 10.1016/j.chbr.2021.100062 Vogiatzis D., 2022, Open World Learning, V1st ed., P44, DOI [10.4324/9781003177098-5, DOI 10.4324/9781003177098-5] Wang DY, 2022, LIBR HI TECH, V40, P1954, DOI 10.1108/LHT-01-2021-0031 Wani Shabeer Ahmad, 2013, Indian J Plast Surg, V46, P502, DOI 10.4103/0970-0358.121990 Waterloo SF, 2018, NEW MEDIA SOC, V20, P1813, DOI 10.1177/1461444817707349 Wegmann Elisa, 2017, Addict Behav Rep, V5, P33, DOI 10.1016/j.abrep.2017.04.001 Wegmann E, 2016, FRONT PSYCHOL, V7, DOI 10.3389/fpsyg.2016.01747 Willemse Juliana J., 2015, Curationis, V38, P1, DOI 10.4102/curationis.v38i2.1512 Wu L L., 2009, 2009, P1, DOI [DOI 10.1109/HICSS.2009.368, 10.1109/hicss.2009.368] Yadav D, 2022, PROCEEDINGS OF THE 2022 CHI CONFERENCE ON HUMAN FACTORS IN COMPUTING SYSTEMS (CHI' 22), DOI 10.1145/3491102.3517575 Yarchi M, 2021, POLIT COMMUN, V38, P98, DOI 10.1080/10584609.2020.1785067 Yeshua-Katz D, 2021, INT J ENV RES PUB HE, V18, DOI 10.3390/ijerph18094576 Yeung AWK, 2020, J ETHNOPHARMACOL, V250, DOI 10.1016/j.jep.2019.112414 Yoon J, 2023, LIBR HI TECH, V41, P833, DOI 10.1108/LHT-10-2021-0360 Yu PY, 2023, LIBR HI TECH, V41, P108, DOI 10.1108/LHT-10-2021-0342 Yuan CW, 2023, LIBR HI TECH, V41, P877, DOI 10.1108/LHT-01-2022-0080 Zhang K, 2023, LIBR HI TECH, V41, P788, DOI 10.1108/LHT-07-2021-0218 Zhang LJ, 2017, 2017 INTERNATIONAL CONFERENCE ON COMPUTER SYSTEMS, ELECTRONICS AND CONTROL (ICCSEC), P1324, DOI 10.1109/ICCSEC.2017.8446863 Zhang XL, 2020, FOODS, V9, DOI 10.3390/foods9020166 Zhitomirsky-Geffet M, 2017, ASLIB J INFORM MANAG, V69, P721, DOI 10.1108/AJIM-04-2017-0083 Zupic I, 2015, ORGAN RES METHODS, V18, P429, DOI 10.1177/1094428114562629 NR 213 TC 0 Z9 0 U1 4 U2 13 PU EMERALD GROUP PUBLISHING LTD PI Leeds PA Floor 5, Northspring 21-23 Wellington Street, Leeds, W YORKSHIRE, ENGLAND SN 0737-8831 J9 LIBR HI TECH JI Libr. Hi Tech PD 2023 DEC 5 PY 2023 DI 10.1108/LHT-11-2023-0525 EA DEC 2023 PG 36 WC Information Science & Library Science WE Social Science Citation Index (SSCI) SC Information Science & Library Science GA Z5JB3 UT WOS:001112425400001 DA 2024-09-05 ER PT J AU Hassan, SU Aljohani, NR Tarar, UI Safder, I Sarwar, R Alelyani, S Nawaz, R AF Hassan, Saeed-Ul Aljohani, Naif Radi Tarar, Usman Iqbal Safder, Iqra Sarwar, Raheem Alelyani, Salem Nawaz, Raheel TI Exploiting tweet sentiments in altmetrics large-scale data SO JOURNAL OF INFORMATION SCIENCE LA English DT Article DE Altmetrics; aspect-based sentiment analysis; lexicon; Twitter ID RESEARCH EXCELLENCE; IMPACT; AGREEMENT; OPINIONS AB This article aims to exploit social exchanges on scientific literature, specifically tweets, to analyse social media users' sentiments towards publications within a research field. First, we employ the SentiStrength tool, extended with newly created lexicon terms, to classify the sentiments of 6,482,260 tweets associated with 1,083,535 publications provided by Altmetric.com. Then, we propose harmonic means-based statistical measures to generate a specialised lexicon, using positive and negative sentiment scores and frequency metrics. Next, we adopt a novel article-level summarisation approach to domain-level sentiment analysis to gauge the opinion of social media users on Twitter about the scientific literature. Last, we propose and employ an aspect-based analytical approach to mine users' expressions relating to various aspects of the article, such as tweets on its title, abstract, methodology, conclusion or results section. We show that research communities exhibit dissimilar sentiments towards their respective fields. The analysis of the field-wise distribution of article aspects shows that in Medicine, Economics, Business and Decision Sciences, tweet aspects are focused on the results section. In contrast, in Physics and Astronomy, Materials Sciences and Computer Science, these aspects are focused on the methodology section. Overall, the study helps us to understand the sentiments of online social exchanges of the scientific community on scientific literature. Specifically, such a fine-grained analysis may help research communities in improving their social media exchanges about the scientific articles to disseminate their scientific findings effectively and to further increase their societal impact. C1 [Hassan, Saeed-Ul] Informat Technol Univ, Dept Comp Sci, Lahore, Pakistan. [Aljohani, Naif Radi] King Abdulaziz Univ, Fac Comp & Informat Technol, Jeddah, Saudi Arabia. [Tarar, Usman Iqbal] Informat Technol Univ, Dept Comp Sci, Lahore, Pakistan. [Safder, Iqra] FAST NU Lahore, FAST Sch Comp, Lahore, Pakistan. [Sarwar, Raheem] Manchester Metropolitan Univ, Dept Operat Technol Events & Hospitality Managemen, Manchester, England. [Alelyani, Salem] King Khalid Univ, Ctr Artificial Intelligence CAI, Abha, Saudi Arabia. [Alelyani, Salem] King Khalid Univ, Coll Comp Sci, Abha, Saudi Arabia. [Nawaz, Raheel] Staffordshire Univ, Stoke On trent, England. C3 King Abdulaziz University; Manchester Metropolitan University; King Khalid University; King Khalid University; Staffordshire University RP Sarwar, R (corresponding author), Manchester Metropolitan Univ, Dept Operat Technol Events & Hospitality Managemen, Manchester, England. EM R.Sarwar@mmu.ac.uk RI Nawaz, Raheel/AAX-5293-2021; Aljohani, Naif R/S-1109-2017; Safder, Iqra/JXN-8069-2024; Hassan, Saeed-Ul/G-1889-2016 OI Nawaz, Raheel/0000-0001-9588-0052; /0000-0002-0640-807X; Hassan, Saeed-Ul/0000-0002-6509-9190 CR Bornmann L, 2019, J INFORMETR, V13, P325, DOI 10.1016/j.joi.2019.01.008 Bornmann L, 2014, J INFORMETR, V8, P895, DOI 10.1016/j.joi.2014.09.005 Chaturvedi I, 2018, INFORM FUSION, V44, P65, DOI 10.1016/j.inffus.2017.12.006 COHEN J, 1960, EDUC PSYCHOL MEAS, V20, P37, DOI 10.1177/001316446002000104 Diamantini C, 2019, FUTURE GENER COMP SY, V95, P816, DOI 10.1016/j.future.2018.01.051 Didegah F, 2018, J ASSOC INF SCI TECH, V69, P832, DOI 10.1002/asi.23934 Drongstrup D., 2019, ISSI 2019 C 17 INT C, P984 El Rahman SA, 2019, 2019 INTERNATIONAL CONFERENCE ON COMPUTER AND INFORMATION SCIENCES (ICCIS), P336, DOI 10.1109/iccisci.2019.8716464 Friedrich N., 2015, DO TWEETS SCI ARTICL FRIEDRICH N, 2015, ARXIV PREPRINT ARXIV Gallo FR, 2020, FUTURE GENER COMP SY, V110, P918, DOI 10.1016/j.future.2019.10.044 Haddawy P, 2017, J INFORMETR, V11, P389, DOI 10.1016/j.joi.2017.02.004 Hammarfelt B, 2014, SCIENTOMETRICS, V101, P1419, DOI 10.1007/s11192-014-1261-3 Haustein S, 2019, SPRINGER HBK, P729, DOI 10.1007/978-3-030-02511-3_28 Haustein S, 2016, SCIENTOMETRICS, V108, P413, DOI 10.1007/s11192-016-1910-9 Haustein S, 2016, J ASSOC INF SCI TECH, V67, P232, DOI 10.1002/asi.23456 Haustein S, 2014, SCIENTOMETRICS, V101, P1145, DOI 10.1007/s11192-013-1221-3 Holmberg K, 2018, SCIENTOMETRICS, V116, P435, DOI 10.1007/s11192-018-2710-1 LANDIS JR, 1977, BIOMETRICS, V33, P159, DOI 10.2307/2529310 Li S, 2010, P 23 INT C COMP LING, P635 Liu XZ, 2017, SCIENTOMETRICS, V111, P349, DOI 10.1007/s11192-017-2279-0 Plaza-del-Arco FM, 2020, FUTURE GENER COMP SY, V110, P1000, DOI 10.1016/j.future.2019.09.034 Pak A, 2010, LREC Priem J., 2010, Proceedings of the American Society for Information Science and Technology, V47, P1, DOI [DOI 10.1002/MEET.14504701201, 10.1002/meet.14504701201] Priem J., 2010, Altmetrics: A manifesto Priem J, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0048753 Robinson-Garcia N, 2017, PLOS ONE, V12, DOI 10.1371/journal.pone.0183551 Saeed-Ul Hassan, 2020, KNOWL-BASED SYST, V192, DOI 10.1016/j.knosys.2019.105383 Saeed-Ul Hassan, 2019, SCIENTOMETRICS, V119, P481, DOI 10.1007/s11192-019-03044-9 Thelwall M, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0064841 Thelwall M, 2012, J AM SOC INF SCI TEC, V63, P163, DOI 10.1002/asi.21662 Vairetti C, 2020, FUTURE GENER COMP SY, V102, P838, DOI 10.1016/j.future.2019.09.023 Wouters P, 2019, SPRINGER HBK, P687, DOI 10.1007/978-3-030-02511-3_26 Yu HQ, 2017, SCIENTOMETRICS, V111, P267, DOI 10.1007/s11192-017-2251-z NR 34 TC 1 Z9 1 U1 5 U2 32 PU SAGE PUBLICATIONS LTD PI LONDON PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND SN 0165-5515 EI 1741-6485 J9 J INF SCI JI J. Inf. Sci. PD OCT PY 2023 VL 49 IS 5 BP 1229 EP 1245 DI 10.1177/01655515211043713 EA NOV 2022 PG 17 WC Computer Science, Information Systems; Information Science & Library Science WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Computer Science; Information Science & Library Science GA R5HB5 UT WOS:000888554300001 OA Green Submitted, Green Accepted DA 2024-09-05 ER PT C AU Bernadt, J Soh, LK AF Bernadt, J Soh, LK BE Arabnia, HR Mun, Y TI Authoritative citation KNN learning with noisy training datasets SO IC-AI '04 & MLMTA'04 , VOL 1 AND 2, PROCEEDINGS LA English DT Proceedings Paper CT International Conference on Artificial Intelligence/International Conference on Machine Learning, Models, Technologies and Applications CY JUN 21-24, 2004 CL Las Vegas, NV AB In this paper, we investigate the effectiveness of Citation K-Nearest Neighbors (KNN) learning with noisy training datasets. We devise an authority measure associated with each training instance that changes based on the outcome of Citation KNN classification. We show that by modifying only the authority measures, the classification accuracy by Citation KNN improves significantly in a variety of datasets with different noise levels. Also, by analyzing the authority measures, we are able to identify and correct noisy training instances. C1 Univ Nebraska, Dept Comp Sci & Engn, Lincoln, NE 68588 USA. C3 University of Nebraska System; University of Nebraska Lincoln RP Bernadt, J (corresponding author), Univ Nebraska, Dept Comp Sci & Engn, Lincoln, NE 68588 USA. CR Aha David, 1997, Lazy learning Amaro R R., 2001, Pobreza e exclusao social nas sociedades contemporaneas. Formar, P3 Angluin D., 1988, Machine Learning, V2, P343, DOI 10.1023/A:1022873112823 [Anonymous], P 11 INT C ART INT I [Anonymous], 1998, Introduction to Reinforcement Learning [Anonymous], 2000, 17th International Conference on Machine Learning Aslam JA, 1996, INFORM PROCESS LETT, V57, P189, DOI 10.1016/0020-0190(96)00006-3 Dietterich TG, 1997, ARTIF INTELL, V89, P31, DOI 10.1016/S0004-3702(96)00034-3 Garfield E, 1979, CITATION INDEXING IT NR 9 TC 0 Z9 0 U1 0 U2 0 PU C S R E A PRESS PI ATHENS PA 115 AVALON DR, ATHENS, GA 30606 USA BN 1-932415-33-5 PY 2004 BP 916 EP 921 PG 6 WC Computer Science, Artificial Intelligence WE Conference Proceedings Citation Index - Science (CPCI-S) SC Computer Science GA BBL81 UT WOS:000226030400139 DA 2024-09-05 ER PT J AU Carson, S Kanchanaraksa, S Gooding, I Mulder, F Schuwer, R AF Carson, Stephen Kanchanaraksa, Sukon Gooding, Ira Mulder, Fred Schuwer, Robert TI Impact of OpenCourseWare Publication on Higher Education Participation and Student Recruitment SO INTERNATIONAL REVIEW OF RESEARCH IN OPEN AND DISTRIBUTED LEARNING LA English DT Article DE Distance education; open learning; open universities; distance universities; higher education; e-learning; online learning AB The free and open publication of course materials (OpenCourseWare or OCW) was initially undertaken by Massachusetts Institute of Technology (MIT) and other universities primarily to share educational resources among educators (Abelson, 2007). OCW, however, and more in general open educational resources (OER),(1) have also provided well-documented opportunities for all learners, including the so-called "informal learners" and "independent learners" (Carson, 2005; Mulder, 2006, p. 35). Universities have also increasingly documented clear benefits for specific target groups such as secondary education students and lifelong learners seeking to enter formal postsecondary education programs. In addition to benefitting learners, OCW publication has benefitted the publishing institutions themselves by providing recruiting advantages. Finally enrollment figures from some institutions indicate that even in the case of the free and open publication of materials from online programs, OCW does not negatively affect enrollment. This paper reviews evaluation conducted at Massachusetts Institute of Technology, Johns Hopkins Bloomberg School of Public Health (JHSPH), and Open Universiteit Nederland (OUNL) concerning OCW effects on higher education participation and student recruitment. C1 [Carson, Stephen] MIT, Cambridge, MA 02139 USA. C3 Massachusetts Institute of Technology (MIT) RP Carson, S (corresponding author), MIT, 77 Massachusetts Ave, Cambridge, MA 02139 USA. RI Schuwer, Robert/IZE-0549-2023 OI Schuwer, Robert/0000-0001-5756-5406 CR Abelson H., 2007, J SCI ED TECHNOLOGY [Anonymous], CASE STUDIES I OPEN Butcher N., 2012, Exploring the business case for Open Educational Resources Carson S., 2003, PROGRAM EVALUA UNPUB CARSON S, 2005, PROGRAM EVALUATION F Janssen B., 2012, C P CAMBR 2012 INN I Mulder F., 2006, PRESENTATIONS DIES N Schuwer R, 2009, OPEN LEARN, V24, P67, DOI 10.1080/02680510802627852 Wiley D, 2012, INT REV RES OPEN DIS, V13, P263, DOI 10.19173/irrodl.v13i3.1153 NR 9 TC 19 Z9 21 U1 0 U2 30 PU ATHABASCA UNIV PRESS PI ATHABASCA PA 1 UNIVERSITY DR, ATHABASCA, AB T9S 3A3, CANADA SN 1492-3831 J9 INT REV RES OPEN DIS JI Int. Rev. Res. Open Distrib. Learn. PY 2012 VL 13 IS 4 BP 19 EP 32 DI 10.19173/irrodl.v13i4.1238 PG 14 WC Education & Educational Research WE Social Science Citation Index (SSCI) SC Education & Educational Research GA 072HK UT WOS:000313660500003 OA Green Submitted, gold DA 2024-09-05 ER PT C AU Guo, LJ Yan, HJ Gao, WS Chen, Y Hao, YQ AF Guo, Lijuan Yan, Haijun Gao, Wensheng Chen, Yun Hao, Yongqi GP IOP TI Research on big data risk assessment of major transformer defects and faults fusing power grid, equipment and environment based on SVM SO 2017 3RD INTERNATIONAL CONFERENCE ON ENVIRONMENTAL SCIENCE AND MATERIAL APPLICATION (ESMA2017), VOLS 1-4 SE IOP Conference Series-Earth and Environmental Science LA English DT Proceedings Paper CT 3rd International Conference on Environmental Science and Material Application (ESMA) CY NOV 25-26, 2017 CL Chongqing, PEOPLES R CHINA ID PARTIAL-DISCHARGE; PD AB With the development of power big data, considering the wider power system data, the appropriate large data analysis method can be used to mine the potential law and value of power big data. On the basis of considering all kinds of monitoring data and defects and fault records of main transformer, the paper integrates the power grid, equipment as well as environment data and uses SVM as the main algorithm to evaluate the risk of the main transformer. It gets and compares the evaluation results under different modes, and proves that the risk assessment algorithms and schemes have certain effectiveness. This paper provides a new idea for data fusion of smart grid, and provides a reference for further big data evaluation of power grid equipment. C1 [Guo, Lijuan; Yan, Haijun] Guangxi Elect Power Res Inst, Nanning, Peoples R China. [Gao, Wensheng; Chen, Yun] Tsinghua Univ, Sch Elect Engn, Beijing, Peoples R China. [Hao, Yongqi] Southwest Jiaotong Univ, Sch Elect Engn, Chengdu, Sichuan, Peoples R China. C3 Tsinghua University; Southwest Jiaotong University RP Hao, YQ (corresponding author), Southwest Jiaotong Univ, Sch Elect Engn, Chengdu, Sichuan, Peoples R China. EM haoyongqi001@163.com CR [Anonymous], 2016, Automation of Electric Power Systems, DOI DOI 10.7500/AEPS20151208005 Bai Cuifen, 2013, ADV ENG SCI, V2 [邓松 Deng Song], 2016, [电子测量与仪器学报, Journal of Electronic Measurement and Instrument], V30, P1679 Ding Dengwei, 2014, HIGH VOLTAGE APPARAT, V8 [高文胜 Gao Wensheng], 2015, [电网技术, Power System Technology], V39, P523 Gao WS, 2015, IEEE T DIELECT EL IN, V22, P1654, DOI [10.1109/TDEI.2014.004951, 10.1109/TDEI.2015.7116362] Gao WS, 2014, IEEE T POWER DELIVER, V29, P38, DOI 10.1109/TPWRD.2013.2242206 Gao WS, 2013, IEEE T POWER DELIVER, V28, P2540, DOI 10.1109/TPWRD.2013.2250316 Hu J, 2010, J AM CERAM SOC, V93, P2155, DOI 10.1111/j.1551-2916.2010.03692.x Ji Xuan, 2016, HEILONGJIANG SCI TEC, P143 Liu J, 2011, MATER CHEM PHYS, V125, P9, DOI 10.1016/j.matchemphys.2010.09.023 [孙莹 Sun Ying], 2016, [高电压技术, High Voltage Engineering], V42, P2054 Wang Dewen, 2016, P CSEE, P5111 Wang Yiping, 2016, ELECTROTECHNICS ELEC, P24 wei Wang, 2016, ELECT POWER INFORM C, V14, P1 [张友强 Zhang Youqiang], 2016, [电网技术, Power System Technology], V40, P768 Zheng Like, 2016, High Voltage Apparatus, V52, P85, DOI 10.13296/j.1001-1609.hva.2016.02.014 Zheng XL, 2017, NANO ENERGY, V38, P1, DOI 10.1016/j.nanoen.2017.05.040 Zhou RX, 2014, ADV METEOROL, V2014, DOI 10.1155/2014/735491 Zhou Zhicheng, 2016, Journal of Southeast University (Natural Science Edition), V46, P964, DOI 10.3969/j.issn.1001-0505.2016.05.011 NR 20 TC 1 Z9 1 U1 2 U2 19 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 1755-1307 J9 IOP C SER EARTH ENV JI IOP Conf. Ser. Earth Envir. Sci. PY 2018 VL 108 AR 052027 DI 10.1088/1755-1315/108/5/052027 PG 5 WC Engineering, Environmental; Environmental Sciences WE Conference Proceedings Citation Index - Science (CPCI-S) SC Engineering; Environmental Sciences & Ecology GA BL0RY UT WOS:000446447200314 OA gold DA 2024-09-05 ER PT J AU King, CH Yoon, N Wang, XX Lo, NC Alsallaq, R Ndeffo-Mbah, M Li, E Gurarie, D AF King, Charles H. Yoon, Nara Wang, Xiaoxia Lo, Nathan C. Alsallaq, Ramzi Ndeffo-Mbah, Martial Li, Emily Gurarie, David TI Application of Schistosomiasis Consortium for Operational Research and Evaluation Study Findings to Refine Predictive Modeling of Schistosoma mansoni and Schistosoma haematobium Control in Sub-Saharan Africa SO AMERICAN JOURNAL OF TROPICAL MEDICINE AND HYGIENE LA English DT Article ID SOIL-TRANSMITTED HELMINTHIASIS; DRUG ADMINISTRATION STRATEGIES; PERSISTENT HOTSPOTS; MATHEMATICAL-MODELS; TRANSMISSION; DYNAMICS; PRAZIQUANTEL; IMPACT; CHEMOTHERAPY; INFECTIONS AB An essential mission of the Schistosomiasis Consortium for Operational Research and Evaluation (SCORE) was to help inform global health practices related to the control and elimination of schistosomiasis. To provide more accurate, evidence-based projections of the most likely impact of different control interventions, whether implemented alone or in combination, SCORE supported mathematical modeling teams to provide simulations of community-level Schistosoma infection outcomes in the setting of real or hypothetical programs implementing multiyear mass drug administration (MDA) for parasite control. These models were calibrated using SCORE experience with Schistosoma mansoni and Schistosoma haematobium gaining and sustaining control studies, and with data from comparable programs that used community-based or school-based praziquantel MDA in other parts of sub-Saharan Africa. From 2010 to 2019, models were developed and refined, first to project the likely SCORE control outcomes, and later to more accurately reflect impact of MDA across different transmission settings, including the role of snail ecology and the impact of seasonal rainfall on snail abundance. Starting in 2014, SCORE modeling projections were also compared with the models of colleagues in the Neglected Tropical Diseases Modelling Consortium. To explore further possible improvement to program-based control, later simulations examined the cost-effectiveness of combining MDA with environmental snail control, and the utility of early impact assessment to more quickly identify persistent hot spots of transmission. This article provides a nontechnical summary of the 11 SCORE-related modeling projects and provides links to the original open-access articles describing model development and projections relevant to schistosomiasis control policy. C1 [King, Charles H.; Alsallaq, Ramzi; Gurarie, David] Case Western Reserve Univ, Ctr Global Hlth & Dis, Cleveland, OH 44106 USA. [King, Charles H.] Univ Georgia, Ctr Trop & Emerging Global Dis, Schistosomiasis Consortium Operat Res & Evaluat, Athens, GA 30602 USA. [Yoon, Nara; Wang, Xiaoxia; Gurarie, David] Case Western Reserve Univ, Dept Math Appl Math & Stat, Cleveland, OH 44106 USA. [Lo, Nathan C.] Univ Calif San Francisco, Dept Med, San Francisco, CA 94143 USA. [Ndeffo-Mbah, Martial] Yale Univ, Yale Sch Publ Hlth, New Haven, CT USA. [Li, Emily] Case Western Reserve Univ, Sch Med, Cleveland, OH USA. C3 University System of Ohio; Case Western Reserve University; University System of Georgia; University of Georgia; University System of Ohio; Case Western Reserve University; University of California System; University of California San Francisco; Yale University; University System of Ohio; Case Western Reserve University RP King, CH (corresponding author), CWRU Sch Med, Ctr Global Hlth & Dis, 2109 Adelbert Rd, Cleveland, OH 44106 USA. EM chk@cwru.edu; nyoon@adelphi.edu; xiaoxiawang248@gmail.com; nathan.lo@ucsf.edu; ramzi.alsallaq@gmail.com; mndeffo@cvm.tamu.edu; yel3@case.edu; dxg5@cwru.edu OI Ndeffo Mbah, Martial/0000-0003-4158-7613; King, Charles/0000-0001-8349-9270 FU University of Georgia Research Foundation, Inc. - Bill AMP; Melinda Gates Foundation; Children's Investment Fund Foundation (UK) ("CIFF") FX These studies received financial support from the University of Georgia Research Foundation, Inc., which was funded by the Bill & Melinda Gates Foundation for the SCORE project. Schistosomiasis modeling at the NTD Modelling Consortium was also was funded by The Children's Investment Fund Foundation (UK) ("CIFF") through a grant to the Neglected Tropical Diseases Modelling Consortium at Warwick University, United Kingdom. CR Alsallaq RA, 2017, PLOS NEGLECT TROP D, V11, DOI 10.1371/journal.pntd.0005544 Anderson RM, 2015, PARASITE VECTOR, V8, DOI 10.1186/s13071-015-1157-y ANDERSON R M, 1991 ANDERSON RM, 1985, ADV PARASIT, V24, P1, DOI 10.1016/S0065-308X(08)60561-8 [Anonymous], 2013, SUST DRIV OV GLOB [Anonymous], 2012, ACC WORK OV GLOB IMP Bergquist R, 2008, PLOS NEGLECT TROP D, V2, DOI 10.1371/journal.pntd.0000244 Binder S, 2020, AM J TROP MED HYG, V103, P105, DOI 10.4269/ajtmh.19-0789 Bisanzio D, 2014, PLOS NEGLECT TROP D, V8, DOI 10.1371/journal.pntd.0002992 Bustinduy AL, 2011, PLOS NEGLECT TROP D, V5, DOI 10.1371/journal.pntd.0001213 Campbell CH, 2020, AM J TROP MED HYG, V103, P58, DOI 10.4269/ajtmh.19-0825 Chami GF, 2016, CLIN INFECT DIS, V62, P200, DOI 10.1093/cid/civ829 Colley DG, 2020, AM J TROP MED HYG, V103, P5, DOI 10.4269/ajtmh.19-0785 Ezeamama AE, 2016, BMC INFECT DIS, V16, DOI 10.1186/s12879-016-1575-2 Gurarie D, 2017, ADV WATER RESOUR, V108, P397, DOI 10.1016/j.advwatres.2016.11.008 Gurarie D, 2010, PARASITOLOGY, V137, P1951, DOI 10.1017/S0031182010000867 Gurarie D, 2018, PLOS NEGLECT TROP D, V12, DOI 10.1371/journal.pntd.0006514 Gurarie D, 2016, PARASITE VECTOR, V9, DOI 10.1186/s13071-016-1681-4 Gurarie D, 2015, PARASITE VECTOR, V8, DOI 10.1186/s13071-015-1144-3 Gurarie D, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0115875 GUYATT HL, 1994, PARASITOLOGY, V109, P45, DOI 10.1017/S0031182000077751 Hilborn Ray, 1997, V28 Hollingsworth TD, 2015, PARASITE VECTOR, V8, DOI 10.1186/s13071-015-1235-1 Karmakar S, 2014, J INFECT DIS, V209, P1929, DOI 10.1093/infdis/jiu031 Keitel WA, 2019, VACCINE, V37, P6500, DOI 10.1016/j.vaccine.2019.08.075 King CH, 2000, EMERG INFECT DIS, V6, P585, DOI 10.3201/eid0606.000606 King CH, 2008, CHRONIC ILLN, V4, P65, DOI 10.1177/1742395307084407 King CH, 2020, AM J TROP MED HYG, V103, P14, DOI 10.4269/ajtmh.19-0829 Kittur N, 2020, AM J TROP MED HYG, V103, P24, DOI 10.4269/ajtmh.19-0815 Kittur N, 2019, AM J TROP MED HYG, V101, P617, DOI 10.4269/ajtmh.19-0193 Kittur N, 2017, AM J TROP MED HYG, V97, P1810, DOI 10.4269/ajtmh.17-0368 Li EY, 2019, LANCET GLOB HEALTH, V7, pE1414, DOI 10.1016/S2214-109X(19)30346-8 Lo NC, 2018, P NATL ACAD SCI USA, V115, pE584, DOI 10.1073/pnas.1708729114 Lo NC, 2017, LANCET INFECT DIS, V17, pE64, DOI 10.1016/S1473-3099(16)30535-7 Lo NC, 2016, LANCET INFECT DIS, V16, P1065, DOI 10.1016/S1473-3099(16)30073-1 Lo NC, 2015, LANCET GLOB HEALTH, V3, pE629, DOI 10.1016/S2214-109X(15)00047-9 MACDONAL.G, 1965, T ROY SOC TROP MED H, V59, P489, DOI 10.1016/0035-9203(65)90152-5 MAY RM, 1977, MATH BIOSCI, V35, P301, DOI 10.1016/0025-5564(77)90030-X Muchiri EM, 1996, AM J TROP MED HYG, V55, P127, DOI 10.4269/ajtmh.1996.55.127 NASELL I, 1973, COMMUN PUR APPL MATH, V26, P395, DOI 10.1002/cpa.3160260402 Phillips AE, 2017, PLOS NEGLECT TROP D, V11, DOI 10.1371/journal.pntd.0006061 STURROCK RF, 1990, T ROY SOC TROP MED H, V84, P257, DOI 10.1016/0035-9203(90)90278-M Tendler M, 2018, TROP MED INFECT DIS, V3, DOI 10.3390/tropicalmed3040121 Tian-Bi YNT, 2018, BMC PUBLIC HEALTH, V18, DOI 10.1186/s12889-018-5044-2 Toor J, 2018, PLOS NEGLECT TROP D, V12, DOI 10.1371/journal.pntd.0006717 Toor J, 2018, CLIN INFECT DIS, V66, pS245, DOI 10.1093/cid/ciy001 Truscott JE, 2017, EPIDEMICS-NETH, V18, P29, DOI 10.1016/j.epidem.2017.02.003 Wang XX, 2012, PLOS NEGLECT TROP D, V6, DOI 10.1371/journal.pntd.0001903 Webster JP, 2020, AM J TROP MED HYG, V103, P80, DOI 10.4269/ajtmh.19-0827 WHO, 2011, HELMINTH CONTROL IN SCHOOL-AGE CHILDREN: A GUIDE FOR MANAGERS OF CONTROL PROGRAMMES, SECOND EDITION, P1 WHO, 2006, Preventive Chemotherapy in Human Helminthiasis: Coordinated Use of Anthelminthic Drugs in Control Interventions: A Manual for Health Professionals and Programme Managers Wilson RA, 2006, MEM I OSWALDO CRUZ, V101, P13, DOI 10.1590/S0074-02762006000900004 World Health Organization, 2012, 6521 WHO World Health Organization, 2002, World Health Organ Tech Rep Ser NR 54 TC 3 Z9 3 U1 0 U2 2 PU AMER SOC TROP MED & HYGIENE PI MCLEAN PA 8000 WESTPARK DR, STE 130, MCLEAN, VA 22101 USA SN 0002-9637 EI 1476-1645 J9 AM J TROP MED HYG JI Am. J. Trop. Med. Hyg. PD JUL PY 2020 VL 103 IS 1 SU S BP 97 EP 104 DI 10.4269/ajtmh.19-0852 PG 8 WC Public, Environmental & Occupational Health; Tropical Medicine WE Science Citation Index Expanded (SCI-EXPANDED) SC Public, Environmental & Occupational Health; Tropical Medicine GA MS9QP UT WOS:000554606800013 PM 32400357 OA Green Published, Bronze DA 2024-09-05 ER PT J AU Shackelford, J Thompson, DS James, MB AF Shackelford, J Thompson, DS James, MB TI Teaching strategy and assignment design - Assessing the quality and validity of information via the Web SO SOCIAL SCIENCE COMPUTER REVIEW LA English DT Article; Proceedings Paper CT Annual Conference of the CSS / IASSIST on Global Access, Local Support - Social Science Computing in the Age of the World Wide Web CY MAY 19-22, 1998 CL YALE UNIV, NEW HAVEN, CONNECTICUT HO YALE UNIV DE information resources; active learning; pedagogy; Web-based information; critical thinking skills; research strategies; Web assignments; evaluation of Internet sites AB As students increasingly use Internet technology to access information, new educational issues and opportunities arise. This article examines ways in which instructors and teaching professionals might work with students in guiding their research to establish "good practices" in both citing and using resources. The authors report on the process of crafting, administering, and assessing an assignment that might serve as a model for research-based papers and projects in a variety of disciplines. This assignment employs active learning strategies to encourage students to become better editors and critics as well as to teach them skills that they will be able to employ as this technology changes and others emerge. C1 Bucknell Univ, Dept Econ, Lewisburg, PA 17837 USA. Bucknell Univ, User Educ Serv, Bertrand Lib, Lewisburg, PA 17837 USA. Bucknell Univ, Comp & Commun Serv, Lewisburg, PA 17837 USA. C3 Bucknell University; Bucknell University; Bucknell University RP Shackelford, J (corresponding author), Bucknell Univ, Dept Econ, Lewisburg, PA 17837 USA. CR Bonwell James., 1991, Active Learning: Creating Excitement in the Classroom AEHE-ER1C Higher Education Report No. 1 *BUCKN U, 1998, BUCKN U CAGT Chickering A.W., 1991, New Directions for Teaching and Learning, V47 KNOWLTON SK, 1997, NY TIMES 1102, pA21 Lackie P, 1999, SOC SCI COMPUT REV, V17, P189, DOI 10.1177/089443939901700205 MORAN JM, 1997, MANHATTAN MERCU 0803, pC7 SHACKELFORD J, 1999, FEMINIST EC MAR, P87 Spender D., 1996, Nattering on the net: Women, power and cyberspace Stoll C., 1996, Silicon snake oil: Second thoughts on the information highway YOUNG JR, 1997, CHRONICLE HIGHE 1003, pA26 Zuboff S., 1998, In the age of the smart machine - the future work and power [No title captured] NR 12 TC 7 Z9 8 U1 0 U2 4 PU SAGE PUBLICATIONS INC PI THOUSAND OAKS PA 2455 TELLER RD, THOUSAND OAKS, CA 91320 USA SN 0894-4393 J9 SOC SCI COMPUT REV JI Soc. Sci. Comput. Rev. PD SUM PY 1999 VL 17 IS 2 BP 196 EP 208 DI 10.1177/089443939901700206 PG 13 WC Computer Science, Interdisciplinary Applications; Information Science & Library Science; Social Sciences, Interdisciplinary WE Conference Proceedings Citation Index - Social Science & Humanities (CPCI-SSH); Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Computer Science; Information Science & Library Science; Social Sciences - Other Topics GA 183WT UT WOS:000079577700006 DA 2024-09-05 ER PT J AU Vázquez-Cano, E Parra-González, ME Segura-Robles, A López-Meneses, E AF Vazquez-Cano, Esteban Parra-Gonzalez, M. Elena Segura-Robles, Adrian Lopez-Meneses, Eloy TI The Negative Effects of Technology on Education: A Bibliometric and Topic Modeling Mapping Analysis (2008-2019) SO INTERNATIONAL JOURNAL OF INSTRUCTION LA English DT Article DE disadvantages; problems; technology; education; bibliometrics ID ACADEMIC-ACHIEVEMENT; UNIVERSITY-STUDENTS; INFORMATION; TEACHERS; PRIVACY; IMPACT; MEDIA; ICT AB This study aims to analyze the scientific research that has addressed the negative impact of technology in the educational field. The research is implemented from a methodological approach based on the bibliometric mapping of the scientific production registered in the Web of Science in the period 2008-2019. To do this, indicators of growth, production, impact, topics, keywords, journal references, and analysis of co-citations of authors and co-authors are analyzed. This bibliometric approach is complemented by the analysis of the density, frequency and degree of centrality of the main terms associated with the difficulties and problems of technology in education located in the abstracts and discussion of results in the period 2016-2019. For this purpose, graph theory is developed, using the sigma, cytoscape and graphology libraries. The results show that, among the most common disadvantages linked to the use of technology in education, are: privacy problems, discerning reliable and relevant information, the time required for the preparation of educational materials, the negative impact on academic performance of the students, the lack of resources for its implementation in the classrooms and the infoxication. Finally, it should be noted that in the last three years, the negative impact of technology in the psychosocial field and its impact on teaching-learning processes are beginning to be analyzed in greater depth. C1 [Vazquez-Cano, Esteban] Univ Nacl Educ Distancia, Madrid, Spain. [Parra-Gonzalez, M. Elena; Segura-Robles, Adrian] Univ Granada, Granada, Spain. [Lopez-Meneses, Eloy] Univ Pablo de Olavide, Seville, Spain. C3 Universidad Nacional de Educacion a Distancia (UNED); University of Granada; Universidad Pablo de Olavide RP Vázquez-Cano, E (corresponding author), Univ Nacl Educ Distancia, Madrid, Spain. EM evazquez@edu.uned.es; elenaparra@ugr.es; adrianseg@ugr.es; elopmen@upo.es RI Segura, Adrián/B-4963-2019; López-Meneses, Eloy/G-1307-2011; Vazquez-Cano, Esteban/K-5424-2014 OI Segura, Adrián/0000-0003-0753-7129; López-Meneses, Eloy/0000-0003-0741-5367; Vazquez-Cano, Esteban/0000-0002-6694-7948 FU I+D+I Project entitled: "Gamification and ubiquitous learning in Primary Education [RTI2018099764-B-100]; FEDER (European Regional Development Fund); Ministry of Science, Innovation and Universities of Spain FX This research has been developed with the support of the I+D+I Project entitled: "Gamification and ubiquitous learning in Primary Education. Development of a map of teaching, learning and parental competences and resources "GAUBI". (RTI2018099764-B-100) (MICINN/FEDER) financed by FEDER (European Regional Development Fund) and Ministry of Science, Innovation and Universities of Spain. CR Gómez JIA, 2010, NEW EDUC REV, V22, P103 Aguaded J. I., 2010, PIXEL BIT REV MEDIOS, V36, P5 Allcott Hunt, 2019, 25514 NAT BUR EC RES, DOI [10.3386/w25514, DOI 10.3386/W25514] [Anonymous], 2019, TALIS 2018 results (Volume I): Teachers and school leaders as lifelong learners, DOI [DOI 10.1787/1D0BC92A-EN, 10.1104/pp.56.3.394] Barnett R., 2015, PALGRAVE HDB CRITICA Behar-Horenstein L. S., 2011, Journal of College Teaching & Learning, V8, DOI [DOI 10.19030/TLC.V8I2.3554, 10.19030/tlc.v8i2.3554] Beltrán Llavador José, 2015, Sinéctica, P01 Biddix JP, 2011, INTERNET HIGH EDUC, V14, P175, DOI 10.1016/j.iheduc.2011.01.003 BRADFORD SC, 1985, J INFORM SCI, V10, P176 Almenara JC, 2018, AULA ABIERTA, V47, P327, DOI 10.17811/rifie.47.3.2018.327-336 Caldeiro-Pedreira MC, 2017, VIRTUALIDAD EDUC CIE, V8, P92 Chen YNK, 2019, COMUNICAR, V27, P61, DOI 10.3916/C60-2019-06 Choudrie J, 2020, INFORM SYST FRONT, V22, P673, DOI [10.1007/s10796-018-9875-2, 10.1080/10298436.2018.1549325] Clarke D, 2017, DCMI INT C DUBL COR Curran D., 2018, GUARDIAN, V30 De Gracia Blanco., 2002, Anales de Psicologia, V18, P273 Demertzis Nicolas., 2021, J DIGITAL SOCIAL RES, V3, P2021, DOI DOI 10.33621/JDSR.V3I1.75 Desmurget M., 2020, FABRIQUE CRETIN DIGI Coscollola MD, 2011, COMUNICAR, V19, P169, DOI 10.3916/C37-2011-03-09 Durán SM, 2019, SCI ADV, V5, DOI 10.1126/sciadv.aaw8114 Ebermann C, 2016, P ANN HICSS, P1338, DOI 10.1109/HICSS.2016.169 Education and Training Monitor, 2020, EXECUTIVE SUMMARY Parra-González ME, 2020, INT J EDUC RES INNOV, P166 Elena-Bucea A, 2021, INFORM SYST FRONT, V23, P1007, DOI 10.1007/s10796-020-10012-9 Fernandez-Robles B., 2017, INT J ED RES INNOV, V9, P90 Fox G, 2018, INFORM SYST J, V28, P995, DOI 10.1111/isj.12179 Gaudreau P, 2014, COMPUT EDUC, V70, P245, DOI 10.1016/j.compedu.2013.08.019 Gogus A, 2019, HELIYON, V5, DOI 10.1016/j.heliyon.2019.e01614 González-Sanmamed M, 2020, COMUNICAR, V28, P9, DOI 10.3916/C62-2020-01 Harris A., 2019, J INFORM SYSTEMS ED, V20, P137 Hattie JAC, 2009, VISIBLE LEARNING: A SYNTHESIS OF OVER 800 META-ANALYSES RELATING TO ACHIEVEMENT, P1 Hoadley C, 2019, COMPUT-SUPP COLLAB L, P1, DOI 10.1007/978-3-030-14610-8_1 Huang CJ, 2018, COMPUT EDUC, V119, P76, DOI 10.1016/j.compedu.2017.12.010 IE University, 2020, INF OV TECHN IS CHAN Jackson LA, 2011, COMPUT HUM BEHAV, V27, P228, DOI 10.1016/j.chb.2010.08.001 John Surej P., 2015, Contad. Adm, V60, P230 Junco R, 2012, COMPUT HUM BEHAV, V28, P187, DOI 10.1016/j.chb.2011.08.026 Kilic M, 2016, J ADDICT NURS, V27, P39, DOI 10.1097/JAN.0000000000000110 Lange C, 2019, ISS EDUC RES, V29, P158 Laskaris D, 2017, INT J TECHNOL ENHANC, V9, P339, DOI 10.1504/IJTEL.2017.087793 Lepp A, 2015, SAGE OPEN, V5, DOI 10.1177/2158244015573169 Leví-Orta G, 2020, EUR J EDUC, V55, P441, DOI 10.1111/ejed.12404 Livingstone S., 2009, EU kids online I: Final report López-Gil M, 2019, INT J EDUC RES INNOV, P83 López-Meneses E, 2020, AUSTRALAS J EDUC TEC, V36, P69, DOI 10.14742/ajet.5583 Lotka A.J., 1926, J Wash Acad Sci Wash D C, V16, P23 Mosquera R., 2019, WORKING PAPER, DOI [10.2139/ssrn.3312462, DOI 10.2139/SSRN.3312462] Nield D., 2019, WIRED, V27 Norval A, 2017, NEW MEDIA SOC, V19, P637, DOI 10.1177/1461444816688896 Paramio-Perez G., 2018, Educacion y Comunicacion mediada por las tecnologias: tendencias y retos de investigacion, P91 de la Hoz JP, 2018, REV COMPLUT EDUC, V29, P491, DOI 10.5209/RCED.53428 García LR, 2016, REV ICONO 14, V14, P24, DOI 10.7195/ri14.v14i1.885 Romero M., 2018, Revista Referencia Pedagogica, V6, P2 Schleicher A., 2016, CULTURE QUI LIBERE Sharkova N., 2014, Education Inquiry, V5, DOI DOI 10.3402/EDUI.V5.24610 Shorey S, 2016, INT J COMMUN, V10, P24 Smith D., 2020, CNET, V7 Talebian S, 2014, PROCD SOC BEHV, V152, P300, DOI 10.1016/j.sbspro.2014.09.199 Tondeur J, 2016, COMPUT EDUC, V94, P134, DOI 10.1016/j.compedu.2015.11.009 Troseth GL, 2016, J CHILD MEDIA, V10, P54, DOI 10.1080/17482798.2015.1123166 UNESCO, 2020, STARTL DIG DIV DIST Uzun AM, 2019, COMPUT HUM BEHAV, V90, P196, DOI 10.1016/j.chb.2018.08.045 Vassilakopoulou P, 2023, INFORM SYST FRONT, V25, P955, DOI 10.1007/s10796-020-10096-3 Vázquez-Cano E, 2020, SUSTAINABILITY-BASEL, V12, DOI 10.3390/su12020749 Vázquez-Cano E, 2020, SUSTAINABILITY-BASEL, V12, DOI 10.3390/su12020476 Vázquez-Cano E, 2014, KURAM UYGUL EGIT BIL, V14, P1505 Ventura RC, 2018, AULA ABIERTA, V47, P355, DOI 10.17811/rifie.47.3.2018.355-364 Warsah I, 2021, INT J INSTR, V14, P443, DOI 10.29333/iji.2021.14225a Weiss AP, 2020, INT J EDUC INTEGR, V16, DOI 10.1007/s40979-019-0049-x Wisniewski PJ, 2017, INT J HUM-COMPUT ST, V98, P95, DOI 10.1016/j.ijhcs.2016.09.006 Zulfiani Z, 2021, INT J INSTR, V14, P735, DOI 10.29333/iji.2021.14241a NR 71 TC 9 Z9 11 U1 7 U2 27 PU GATE ASSOC TEACHING & EDUCATION-GATE, SWITZERLAND PI BASEL PA GATE ASSOC TEACHING & EDUCATION-GATE, SWITZERLAND, BASEL, SWITZERLAND SN 1694-609X EI 1308-1470 J9 INT J INSTR JI Int. J. Instr. PD APR PY 2022 VL 15 IS 2 BP 37 EP 60 DI 10.29333/iji.2022.1523a PG 24 WC Education & Educational Research WE Emerging Sources Citation Index (ESCI) SC Education & Educational Research GA 0U3GZ UT WOS:000787542400005 OA Green Published, gold DA 2024-09-05 ER PT J AU Rokach, L Mitra, P AF Rokach, Lior Mitra, Prasenjit TI Parsimonious citer-based measures: The artificial intelligence domain as a case study SO JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE AND TECHNOLOGY LA English DT Article DE bibliometric scatter; citation indexes ID CITATION ANALYSIS; IMPACT; AUTHORS AB This article presents a new Parsimonious Citer-Based Measure for assessing the quality of academic papers. This new measure is parsimonious as it looks for the smallest set of citing authors (citers) who have read a certain paper. The Parsimonious Citer-Based Measure aims to address potential distortion in the values of existing citer-based measures. These distortions occur because of various factors, such as the practice of hyperauthorship. This new measure is empirically compared with existing measures, such as the number of citers and the number of citations in the field of artificial intelligence (AI). The results show that the new measure is highly correlated with those two measures. However, the new measure is more robust against citation manipulations and better differentiates between prominent and nonprominent AI researchers than the above-mentioned measures. C1 [Rokach, Lior] Ben Gurion Univ Negev, Dept Informat Syst Engn, IL-84105 Beer Sheva, Israel. [Mitra, Prasenjit] Penn State Univ, Coll Informat Sci & Technol, University Pk, PA 16802 USA. C3 Ben Gurion University; Pennsylvania Commonwealth System of Higher Education (PCSHE); Pennsylvania State University; Pennsylvania State University - University Park RP Rokach, L (corresponding author), Ben Gurion Univ Negev, Dept Informat Syst Engn, POB 653, IL-84105 Beer Sheva, Israel. EM liorrk@bgu.ac.il; pmitra@ist.psu.edu RI Rokach, Lior/F-8247-2010 FU U.S. National Science Foundation [0845487]; Direct For Computer & Info Scie & Enginr; Div Of Information & Intelligent Systems [0845487] Funding Source: National Science Foundation FX This paper is based on work supported partially by the U.S. National Science Foundation under grant no. 0845487. CR Ajiferuke I, 2010, J AM SOC INF SCI TEC, V61, P2086, DOI 10.1002/asi.21383 Ajiferuke I, 2010, SCIENTOMETRICS, V83, P623, DOI 10.1007/s11192-009-0127-6 [Anonymous], PLENUM COMPLEXITY CO Braun T., 1985, Scientometric indicators:a 32-country comparative evaluation of publishing performance and citation impact Cronin B, 2001, J AM SOC INF SCI TEC, V52, P558, DOI 10.1002/asi.1097 Cronin B, 2002, SCIENTOMETRICS, V54, P31, DOI 10.1023/A:1015628320056 DIEKS D, 1976, SOC STUD SCI, V6, P247, DOI 10.1177/030631277600600204 Egghe L, 2011, J AM SOC INF SCI TEC, V62, P1637, DOI 10.1002/asi.21557 Franceschini F, 2010, SCIENTOMETRICS, V85, P203, DOI 10.1007/s11192-010-0165-0 Grossman T, 1997, EUR J OPER RES, V101, P81, DOI 10.1016/S0377-2217(96)00161-0 Lazar R, 2004, Acta Paediatr, V93, P589 Meho LI, 2007, PHYS WORLD, V20, P32 Persson O, 2004, SCIENTOMETRICS, V60, P421, DOI 10.1023/B:SCIE.0000034384.35498.7d Radicchi F, 2008, P NATL ACAD SCI USA, V105, P17268, DOI 10.1073/pnas.0806977105 Rokach L, 2011, J AM SOC INF SCI TEC, V62, P2456, DOI 10.1002/asi.21638 Serenko A, 2011, J INFORMETR, V5, P629, DOI 10.1016/j.joi.2011.06.002 Serenko A, 2010, J INFORMETR, V4, P447, DOI 10.1016/j.joi.2010.04.001 van Raan AFJ, 2006, J AM SOC INF SCI TEC, V57, P1919, DOI 10.1002/asi.20389 White HD, 2001, J AM SOC INF SCI TEC, V52, P87, DOI 10.1002/1097-4571(2000)9999:9999<::AID-ASI1542>3.3.CO;2-K NR 19 TC 1 Z9 2 U1 4 U2 37 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1532-2882 J9 J AM SOC INF SCI TEC JI J. Am. Soc. Inf. Sci. Technol. PD SEP PY 2013 VL 64 IS 9 BP 1951 EP 1959 DI 10.1002/asi.22887 PG 9 WC Computer Science, Information Systems; Information Science & Library Science WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Computer Science; Information Science & Library Science GA 197SG UT WOS:000322870300017 DA 2024-09-05 ER PT J AU Gao, F Jia, XF Zhao, ZY Chen, CC Xu, F Geng, Z Song, XT AF Gao, Fang Jia, Xiaofeng Zhao, Zhiyun Chen, Chih-Cheng Xu, Feng Geng, Zhe Song, Xiaotong TI Bibliometric analysis on tendency and topics of artificial intelligence over last decade SO MICROSYSTEM TECHNOLOGIES-MICRO-AND NANOSYSTEMS-INFORMATION STORAGE AND PROCESSING SYSTEMS LA English DT Article ID CO-WORD ANALYSIS; DEEP; EXPLORATION AB Artificial intelligence (AI), together with its applications, has received world-wide attentions and is expected to exert force on the development of global economy and society in the future. By means of bibliometric method, the study aims at providing an overview on the research tendency and the most concerned topics of AI during the past decade. The database of Web of Science was chosen and the articles published in AI journals were retrieved. Top 10% of the yearly high-citation articles (12,301 articles) published since the year of 2008 were selected as sampling articles for the analysis. The bibliographic records were used for the overall analysis, and the core keywords were studied and classified into three categories (algorithm, general technology and application technology) for topics analysis. As results, number of articles in AI by year and country, the country collaboration and well-known institutes and researchers in AI were presented. Also we proposed and concluded the five most concerned topics, which are perception intelligence (1st), human mind simulated intelligence (2nd), classical model based machine learning (3rd), bio-inspired intelligence (4th), and big-data based intelligence (5th). It is the authors' wish that the study were helpful for researchers to have an overall grasp of the recent status of AI development. C1 [Gao, Fang; Jia, Xiaofeng; Zhao, Zhiyun; Xu, Feng; Geng, Zhe; Song, Xiaotong] Inst Sci & Tech Informat China ISTIC, Beijing 100038, Peoples R China. [Gao, Fang; Jia, Xiaofeng; Zhao, Zhiyun; Xu, Feng; Geng, Zhe; Song, Xiaotong] Minist Sci & Technol Peoples Republ China Most, New Generat Artificial Intelligence Dev Res Ctr, Beijing 100038, Peoples R China. [Chen, Chih-Cheng] Jimei Univ, Sch Informat Engn, Xiamen 361021, Fujian, Peoples R China. C3 Jimei University RP Jia, XF (corresponding author), Inst Sci & Tech Informat China ISTIC, Beijing 100038, Peoples R China.; Jia, XF (corresponding author), Minist Sci & Technol Peoples Republ China Most, New Generat Artificial Intelligence Dev Res Ctr, Beijing 100038, Peoples R China.; Chen, CC (corresponding author), Jimei Univ, Sch Informat Engn, Xiamen 361021, Fujian, Peoples R China. EM jiaxiaofeng@istic.ac.cn; 201761000018@jmu.edu.cn RI jia, xiaofeng/KVB-5084-2024; zhao, zhiyun/E-6560-2011 CR Alickovic E, 2017, NEURAL COMPUT APPL, V28, P753, DOI 10.1007/s00521-015-2103-9 Amodei D, 2016, PR MACH LEARN RES, V48 An XY, 2011, SCIENTOMETRICS, V88, P133, DOI 10.1007/s11192-011-0374-1 [Anonymous], 2015, Arxiv.Org, DOI DOI 10.3389/FPSYG.2013.00124 Archambault E., 2004, USE BIBLIOMETRICS SO Baskin II, 2017, RUSS CHEM REV+, V86, P1127, DOI 10.1070/RCR4746 Brunette ES, 2009, PROCEEDINGS OF THE FOURTH INTERNATIONAL CONFERENCE ON AUTONOMOUS ROBOTS AND AGENTS, P650 CALLON M, 1991, SCIENTOMETRICS, V22, P155, DOI 10.1007/BF02019280 Campbell M, 2002, ARTIF INTELL, V134, P57, DOI 10.1016/S0004-3702(01)00129-1 Cronin B, 2004, J AM SOC INF SCI TEC, V55, P160, DOI 10.1002/asi.10353 Ding Y, 2001, INFORM PROCESS MANAG, V37, P817, DOI 10.1016/S0306-4573(00)00051-0 Eslami M, 2011, PRZ ELEKTROTECHNICZN, V87, P188 Fang Gao, 2011, Proceedings of the 2011 International Conference on Machine Learning and Cybernetics (ICMLC 2011), P666, DOI 10.1109/ICMLC.2011.6016759 Glänzel W, 2004, HANDBOOK OF QUANTITATIVE SCIENCE AND TECHNOLOGY RESEARCH: THE USE OF PUBLICATION AND PATENT STATISTICS IN STUDIES OF S&T SYSTEMS, P257 Jha SK, 2017, RENEW SUST ENERG REV, V77, P297, DOI 10.1016/j.rser.2017.04.018 Jia XF, 2014, SCIENTOMETRICS, V99, P881, DOI 10.1007/s11192-013-1220-4 Kostoff RN, 2001, TECHNOL FORECAST SOC, V68, P223, DOI 10.1016/S0040-1625(01)00133-0 Lazer D, 2014, SCIENCE, V343, P1203, DOI 10.1126/science.1248506 Lee EJ, 2017, J STROKE, V19, P277, DOI 10.5853/jos.2017.02054 Lu HM, 2018, MOBILE NETW APPL, V23, P368, DOI 10.1007/s11036-017-0932-8 Mansiaux Y, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0051408 Mellit A, 2008, PROG ENERG COMBUST, V34, P574, DOI 10.1016/j.pecs.2008.01.001 Mnih V, 2016, PR MACH LEARN RES, V48 Neff MW, 2009, SCIENTOMETRICS, V80, P657, DOI 10.1007/s11192-008-2099-3 Negnevitsky M, 2002, INF COMPUT SCI, V48, P284 Niu JQ, 2016, ISPRS INT J GEO-INF, V5, DOI 10.3390/ijgi5050066 Pan YH, 2016, ENGINEERING, V2, P409, DOI 10.1016/J.ENG.2016.04.018 Pasandideh SHR, 2011, EXPERT SYST APPL, V38, P2708, DOI 10.1016/j.eswa.2010.08.060 Poria S, 2017, INFORM FUSION, V37, P98, DOI 10.1016/j.inffus.2017.02.003 Silver D, 2016, NATURE, V529, P484, DOI 10.1038/nature16961 Wasserman P.D., 1989, Neural Computing: Theory and Practice NR 31 TC 22 Z9 22 U1 2 U2 29 PU SPRINGER HEIDELBERG PI HEIDELBERG PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY SN 0946-7076 EI 1432-1858 J9 MICROSYST TECHNOL JI Microsyst. Technol. PD APR PY 2021 VL 27 IS 4 SI SI BP 1545 EP 1557 DI 10.1007/s00542-019-04426-y PG 13 WC Engineering, Electrical & Electronic; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Engineering; Science & Technology - Other Topics; Materials Science; Physics GA RY3FC UT WOS:000647800200047 DA 2024-09-05 ER PT J AU Guns, R Rousseau, R AF Guns, Raf Rousseau, Ronald TI Recommending research collaborations using link prediction and random forest classifiers SO SCIENTOMETRICS LA English DT Article; Proceedings Paper CT 14th International-Society-of-Scientometrics-and-Informetrics Conference (ISSI) CY JUL 15-20, 2013 CL Vienna, AUSTRIA DE Collaboration; Networks; Link prediction; Machine learning; Random forest classifiers; Recommendation; Facilitator cities ID NETWORKS AB We introduce a method to predict or recommend high-potential future (i.e., not yet realized) collaborations. The proposed method is based on a combination of link prediction and machine learning techniques. First, a weighted co-authorship network is constructed. We calculate scores for each node pair according to different measures called predictors. The resulting scores can be interpreted as indicative of the likelihood of future linkage for the given node pair. To determine the relative merit of each predictor, we train a random forest classifier on older data. The same classifier can then generate predictions for newer data. The top predictions are treated as recommendations for future collaboration. We apply the technique to research collaborations between cities in Africa, the Middle East and South-Asia, focusing on the topics of malaria and tuberculosis. Results show that the method yields accurate recommendations. Moreover, the method can be used to determine the relative strengths of each predictor. C1 [Guns, Raf; Rousseau, Ronald] Univ Antwerp, IBW, Inst Educ & Informat Sci, B-2000 Antwerp, Belgium. [Rousseau, Ronald] Katholieke Univ Leuven, B-3000 Leuven, Belgium. C3 University of Antwerp; KU Leuven RP Guns, R (corresponding author), Univ Antwerp, IBW, Inst Educ & Informat Sci, Venusstr 35, B-2000 Antwerp, Belgium. EM raf.guns@uantwerpen.be; ronald.rousseau@uantwerpen.be RI Guns, Raf/D-6762-2012 OI Guns, Raf/0000-0003-3129-0330 CR Adamic LA, 2003, SOC NETWORKS, V25, P211, DOI 10.1016/S0378-8733(03)00009-1 [Anonymous], 2002, P 8 ACM SIGKDD INT C [Anonymous], 1 MONDAY [Anonymous], ISSI NEWSLETTER [Anonymous], THESIS ANTWERP U [Anonymous], 2009, Social Network Analysis. Methods and Applications Antonellis I, 2008, PROC VLDB ENDOW, V1, P408, DOI 10.14778/1453856.1453903 Blewitt ME, 2008, NAT GENET, V40, P663, DOI 10.1038/ng.142 Boshoff N, 2010, SCIENTOMETRICS, V84, P481, DOI 10.1007/s11192-009-0120-0 Breiman L, 2001, MACH LEARN, V45, P5, DOI 10.1023/A:1010933404324 Egghe L, 2003, J AM SOC INF SCI TEC, V54, P193, DOI 10.1002/asi.10155 Frenken K, 2009, J INFORMETR, V3, P222, DOI 10.1016/j.joi.2009.03.005 Guns R, 2013, PRO INT CONF SCI INF, P1409 Guns R, 2011, PRO INT CONF SCI INF, P249 Katz Leo, 1953, PSYCHOMETRIKA, V18, P39 Langville AN, 2005, SIAM REV, V47, P135, DOI 10.1137/S0036144503424786 Liben-Nowell D, 2007, J AM SOC INF SCI TEC, V58, P1019, DOI 10.1002/asi.20591 Newman MEJ, 2001, PHYS REV E, V64, DOI [10.1103/PhysRevE.64.016131, 10.1103/PhysRevE.64.016132] Opsahl T, 2010, SOC NETWORKS, V32, P245, DOI 10.1016/j.socnet.2010.03.006 Pedregosa F, 2011, J MACH LEARN RES, V12, P2825 PINSKI G, 1976, INFORM PROCESS MANAG, V12, P297, DOI 10.1016/0306-4573(76)90048-0 Platt JC, 2000, ADV NEUR IN, P61 Schubert T, 2010, SCIENTOMETRICS, V83, P181, DOI 10.1007/s11192-009-0074-2 Shibata N, 2012, J AM SOC INF SCI TEC, V63, P78, DOI 10.1002/asi.21664 Van Eck NJ, 2007, STUD CLASS DATA ANAL, P299 van Eck NJ, 2010, SCIENTOMETRICS, V84, P523, DOI 10.1007/s11192-009-0146-3 Yang L., 2006, ISSI Newsletter, V2, P7 NR 27 TC 59 Z9 75 U1 2 U2 112 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0138-9130 EI 1588-2861 J9 SCIENTOMETRICS JI Scientometrics PD NOV PY 2014 VL 101 IS 2 BP 1461 EP 1473 DI 10.1007/s11192-013-1228-9 PG 13 WC Computer Science, Interdisciplinary Applications; Information Science & Library Science WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI); Conference Proceedings Citation Index - Social Science & Humanities (CPCI-SSH); Conference Proceedings Citation Index - Science (CPCI-S) SC Computer Science; Information Science & Library Science GA AR5FF UT WOS:000343609900034 DA 2024-09-05 ER PT J AU Wu, TT Yu, ZG AF Wu, Tiantian Yu, Zhonggen TI Bibliometric and Systematic Analysis of Artificial Intelligence Chatbots' Use for Language Education SO JOURNAL OF UNIVERSITY TEACHING AND LEARNING PRACTICE LA English DT Article ID CONTINUANCE INTENTION; EXPERIENCES; ANALYTICS; LEARNERS AB This research aimed to comprehensively analyze the use of chatbots in language education and its potential for advancing educational development. Through a bibliometric and systematic approach, the study identified influential authors, references, organizations, and countries in the field of chatbot application in language education using VOSviewer. A total of 26 peer-reviewed publications were selected for a systematic review. The findings of the study indicated that chatbots have a positive impact on language learning, although they are limited in terms of facilitating listening and writing practice. The study extended the Human-Organization-Technology (HOT) fit framework for chatbots' use for language education and discussed the factors that frustrate learners' use of chatbots for language education from human, organization, and technology dimensions. Furthermore, the author further discussed the suggestions for chatbots' better application for language education based on the three dimensions. C1 [Wu, Tiantian; Yu, Zhonggen] Beijing Language & Cultural Univ, Beijing, Peoples R China. C3 Beijing Language & Culture University RP Wu, TT (corresponding author), Beijing Language & Cultural Univ, Beijing, Peoples R China. FU Fundamental Research Funds for the Central Universities; Research Funds of Beijing Language and Culture University [23YCX021] FX Funding This work is supported by the Fundamental Research Funds for the Central Universities, and the Research Funds of Beijing Language and Culture University, grant number 23YCX021. CR Adamopoulou E, 2020, MACH LEARN APPL, V2, DOI 10.1016/j.mlwa.2020.100006 Ahmadi H, 2017, COMPUT HUM BEHAV, V67, P161, DOI 10.1016/j.chb.2016.10.023 Alm A, 2020, INT J COMPUT-ASSIST, V10, P51, DOI 10.4018/IJCALLT.2020100104 Baber H, 2024, INFORM LEARN SCI, V125, P587, DOI 10.1108/ILS-04-2023-0035 Bailey D, 2021, INTERACT TECHNOL SMA, V18, P85, DOI 10.1108/ITSE-08-2020-0170 Bao MH, 2019, ARAB WORLD ENGL J, P28, DOI 10.24093/awej/call5.3 Barrot JS, 2023, ASSESS WRIT, V57, DOI 10.1016/j.asw.2023.100745 Chen CC, 2018, LIBR HI TECH, V36, P705, DOI 10.1108/LHT-11-2016-0129 Chen HL, 2020, J EDUC COMPUT RES, V58, P1161, DOI 10.1177/0735633120929622 Chen XL, 2023, EDUC TECHNOL SOC, V26, P171, DOI 10.30191/ETS.202301_26(1).0013 Cheng YM, 2021, J ENTERP INF MANAG, V34, P1169, DOI 10.1108/JEIM-12-2019-0401 Chocarro R, 2023, EDUC STUD-UK, V49, P295, DOI 10.1080/03055698.2020.1850426 Coniam D, 2014, TEXT TALK, V34, P545, DOI 10.1515/text-2014-0018 Devlin J, 2019, 2019 CONFERENCE OF THE NORTH AMERICAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS: HUMAN LANGUAGE TECHNOLOGIES (NAACL HLT 2019), VOL. 1, P4171 Divekar RR, 2022, COMPUT ASSIST LANG L, V35, P2332, DOI 10.1080/09588221.2021.1879162 Donthu N, 2021, J BUS RES, V133, P285, DOI 10.1016/j.jbusres.2021.04.070 Escalante J, 2023, INT J EDUC TECHNOL H, V20, DOI 10.1186/s41239-023-00425-2 Fryer L, 2006, LANG LEARN TECHNOL, V10, P8 Fryer LK, 2019, COMPUT HUM BEHAV, V93, P279, DOI 10.1016/j.chb.2018.12.023 Fryer LK, 2017, COMPUT HUM BEHAV, V75, P461, DOI 10.1016/j.chb.2017.05.045 Ghasemaghaei M, 2017, DECIS SUPPORT SYST, V101, P95, DOI 10.1016/j.dss.2017.06.004 Guo K, 2022, ASSESS WRIT, V54, DOI 10.1016/j.asw.2022.100666 Guo KY, 2024, EXPERT OPIN DRUG SAF, V23, P487, DOI [10.1080/14740338.2024.2327502, 10.1007/s10639-023-12230-5] Haristiani N, 2022, J TECH EDUC TRAIN, V14, P143, DOI 10.30880/jtet.2022.14.02.013 Hockly N, 2023, RELC J, V54, P445, DOI 10.1177/00336882231168504 Hsu MH, 2023, INTERACT LEARN ENVIR, V31, P4297, DOI 10.1080/10494820.2021.1960864 Huang WJ, 2022, J COMPUT ASSIST LEAR, V38, P237, DOI 10.1111/jcal.12610 Jeon J, 2023, EDUC INF TECHNOL, V28, P15873, DOI 10.1007/s10639-023-11834-1 Jeon J, 2023, INTERACT LEARN ENVIR, DOI 10.1080/10494820.2023.2204343 Jeon J, 2023, COMPUT ASSIST LANG L, V36, P1338, DOI 10.1080/09588221.2021.1987272 Jeyaraj A, 2006, J INF TECHNOL-UK, V21, P1, DOI 10.1057/palgrave.jit.2000056 Ji H, 2023, J RES TECHNOL EDUC, V55, P48, DOI 10.1080/15391523.2022.2142873 Jung J, 2022, J INT NETW KOR LANG, V19, P405, DOI 10.15652/ink.2022.19.3.405 Klimova B, 2023, SYSTEMS-BASEL, V11, DOI 10.3390/systems11010042 Kohnke L, 2023, INT J MOB LEARN ORG, V17, P214, DOI 10.1504/IJMLO.2023.128339 Kohnke L, 2023, RELC J, V54, P828, DOI 10.1177/00336882211067054 Kuhail MA, 2023, EDUC INF TECHNOL, V28, P973, DOI 10.1007/s10639-022-11177-3 Lee YH, 2011, KNOWL-BASED SYST, V24, P355, DOI 10.1016/j.knosys.2010.09.005 Li XM, 2024, BRIT J EDUC TECHNOL, DOI 10.1111/bjet.13430 Lian JW, 2014, INT J INFORM MANAGE, V34, P28, DOI 10.1016/j.ijinfomgt.2013.09.004 Lin CJ, 2021, EDUC TECHNOL SOC, V24, P16 Lin YP, 2024, INTERACT TECHNOL SMA, V21, P189, DOI 10.1108/ITSE-12-2022-0165 Liu CC, 2022, COMPUT EDUC, V189, DOI 10.1016/j.compedu.2022.104576 Luo X., 2023, 31 INT C COMP ED ICC Mohamed AM, 2024, EDUC INF TECHNOL, V29, P3195, DOI 10.1007/s10639-023-11917-z Page MJ, 2021, BMJ-BRIT MED J, V372, DOI [10.1136/bmj.n71, 10.1016/j.ijsu.2021.105906, 10.1136/bmj.n160] Papineni K, 2002, 40TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, PROCEEDINGS OF THE CONFERENCE, P311, DOI 10.3115/1073083.1073135 Peura L, 2023, NORD J DIGIT LIT, V18, P100, DOI 10.18261/njdl.18.2.3 Polyzi P, 2023, EDUC INF TECHNOL, V28, P16431, DOI 10.1007/s10639-023-11810-9 Qian K., 2023, Communications in Computer and Information Science Ruan S., 2021, INT C INT US INT P I Shamseer L, 2015, BMJ-BRIT MED J, V349, DOI 10.1136/bmj.g7647 Smutny P, 2020, COMPUT EDUC, V151, DOI 10.1016/j.compedu.2020.103862 Su YF, 2023, ASSESS WRIT, V57, DOI 10.1016/j.asw.2023.100752 Tai TY, 2023, INTERACT LEARN ENVIR, V31, P1485, DOI 10.1080/10494820.2020.1841801 van Eck NJ, 2017, SCIENTOMETRICS, V111, P1053, DOI 10.1007/s11192-017-2300-7 Vancová H, 2023, J LANG CULT EDUC, V11, P12, DOI 10.2478/jolace-2023-0022 Vaswani A, 2017, ADV NEUR IN, V30 Vázquez-Cano E, 2021, INT J EDUC TECHNOL H, V18, DOI 10.1186/s41239-021-00269-8 Wang YF, 2017, BRIT J EDUC TECHNOL, V48, P431, DOI 10.1111/bjet.12388 WEIZENBAUM J, 1966, COMMUN ACM, V9, P36, DOI 10.1145/357980.357991 Wu B, 2017, COMPUT HUM BEHAV, V67, P221, DOI 10.1016/j.chb.2016.10.028 Xu JY, 2022, TECHNOL SOC, V70, DOI 10.1016/j.techsoc.2022.102010 Yan D, 2023, EDUC INF TECHNOL, V28, P13943, DOI 10.1007/s10639-023-11742-4 Ye YW, 2022, INT J MOB BLENDED LE, V14, DOI 10.4018/IJMBL.299405 Yu ZG, 2024, FOREIGN LANG ANN, V57, P550, DOI 10.1111/flan.12748 Yu ZG, 2023, BEHAV INFORM TECHNOL, DOI 10.1080/0144929X.2023.2260893 Yuan YJ, 2023, INTERACT LEARN ENVIR, DOI 10.1080/10494820.2023.2282112 Zhang RF, 2023, INNOV LANG LEARN TEA, V17, P932, DOI 10.1080/17501229.2023.2197417 Zhang RF, 2023, INTERACT LEARN ENVIR, DOI 10.1080/10494820.2023.2220374 NR 70 TC 0 Z9 0 U1 0 U2 0 PU Open Access Publishing Assoc PI Launceston PA 28a Brisbane St, Launceston, Tasmania, AUSTRALIA SN 1449-9789 J9 J UNIV TEACH LEARN P JI J. Univ. Teach. Learn. Pract. PY 2024 VL 21 IS 6 AR 54 PG 25 WC Education & Educational Research WE Emerging Sources Citation Index (ESCI) SC Education & Educational Research GA D5J4K UT WOS:001296541300001 DA 2024-09-05 ER PT J AU Archambault, PM Thanh, J Blouin, D Gagnon, S Poitras, J Fountain, RM Fleet, R Bilodeau, A de Belt, THV Légaré, F AF Archambault, Patrick M. Thanh, Jasmine Blouin, Danielle Gagnon, Susie Poitras, Julien Fountain, Renee-Marie Fleet, Richard Bilodeau, Andrea de Belt, Tom H. van Legare, France TI Emergency medicine residents' beliefs about contributing to an online collaborative slideshow SO CANADIAN JOURNAL OF EMERGENCY MEDICINE LA English DT Article DE online learning; collaborative writing applications; medical education; Theory of Planned Behaviour; free and open access medical education (# FOAMed); knowledge translation; evidence-based medicine ID HEALTH-CARE PROFESSIONALS; WEB 2.0 TOOLS; PLANNED BEHAVIOR; CLINICAL-RESEARCH; NET GENERATION; SOCIAL MEDIA; EDUCATION; WIKIS; UNDERGRADUATE; TECHNOLOGIES AB Objective: Collaborative writing applications (CWAs), such as the Google Docs (TM) platform, can improve skill acquisition, knowledge retention, and collaboration in medical education. Using CWAs to support the training of residents offers many advantages, but stimulating them to contribute remains challenging. The purpose of this study was to identify emergency medicine (EM) residents' beliefs about their intention to contribute summaries of landmark articles to a Google Docs (TM) slideshow while studying for their Royal College of Physicians and Surgeons of Canada (RCPSC) certification exam. Method: Using the Theory of Planned Behavior, the authors interviewed graduating RCPSC EM residents about contributing to a slideshow. Residents were asked about behavioral beliefs (advantages/disadvantages), normative beliefs (positive/ negative referents), and control beliefs (barriers/facilitators). Two reviewers independently performed qualitative content analysis of interview transcripts to identify salient beliefs in relation to the defined behaviors. Results: Of 150 eligible EM residents, 25 participated. The main reported advantage of contributing to the online slideshow was learning consolidation (n = 15); the main reported disadvantage was information overload (n = 3). The most frequently reported favorable referents were graduating EM residents writing the certification exam (n = 16). Few participants (n = 3) perceived any negative referents. The most frequently reported facilitator was peerreviewed high-quality scientific information (n = 9); and the most frequently reported barrier was time constraints (n = 22). Conclusion: Salient beliefs exist regarding EM residents' intention to contribute content to an online collaborative writing project using a Google Docs (TM) slideshow. Overall, participants perceived more advantages than disadvantages to contributing and believed that this initiative would receive wide support. However, participants reported several barriers that need to be addressed to increase contributions. Our intention is for the beliefs identified in this study to contribute to the design of a theory-based questionnaire to explore determinants of residents' intentions to contribute to an online collaborative writing project. This will help develop implementation strategies for increasing contributions to other CWAs in medical education. C1 [Archambault, Patrick M.; Fleet, Richard; Legare, France] Univ Laval, Dept Family Med & Emergency Med, Quebec City, PQ G1K 7P4, Canada. [Archambault, Patrick M.; Gagnon, Susie; Fleet, Richard] CHAU Levis, CSSS Alphonse Desjardins, Levis, ON G6V 3Z1, Canada. [Thanh, Jasmine; Poitras, Julien] Univ Laval, Fac Med, Quebec City, PQ G1K 7P4, Canada. [Blouin, Danielle] Queens Univ, Dept Emergency Med, Kingston, ON, Canada. [Fountain, Renee-Marie] Univ Laval, Fac Sci Educ, Ste Foy, PQ G1K 7P4, Canada. [Bilodeau, Andrea] Minist Sante & Serv Sociaux, Quebec City, PQ, Canada. [de Belt, Tom H. van] Radboud Univ Nijmegen, Med Ctr, Radboud Reshape & Innovat Ctr, NL-6525 ED Nijmegen, Netherlands. [Legare, France] Univ Laval, Canada Res Chair Implementat Shared Decis Making, Ste Foy, PQ G1K 7P4, Canada. [Legare, France] Univ Quebec, Ctr Hosp, Quebec City, PQ, Canada. C3 Laval University; Laval University; Queens University - Canada; Laval University; Radboud University Nijmegen; Laval University; Laval University; University of Quebec RP Archambault, PM (corresponding author), CHAU Levis, CSSS Alphonse Desjardins, 143 Rue Wolfe, Levis, ON G6V 3Z1, Canada. EM patrick.m.archambault@gmail.com RI Blouin, Danielle/AAF-9083-2019; van de Belt, Tom H/AAN-4345-2020 OI van de Belt, Tom H/0000-0002-5401-8973; Legare, France/0000-0002-2296-6696; Archambault, Patrick M/0000-0002-5090-6439 FU Gilles Cormier Fund (Fonds Gilles Cormier) [FO099395]; Faculty of Medicine at Universite Laval; Fonds de Recherche du Quebec - Sante [FQ102051] FX The principal author (PA) has received honoraria for presentations at the National Emergency Medicine Review course at Queen's University. All other authors declare that they have no competing interests. None of the authors have a financial interest in the free online collaborative tool discussed, and no patents are pending for this tool. This study was supported by a grant from the Gilles Cormier Fund (Fonds Gilles Cormier reference number: FO099395). This fund provided by the Faculty of Medicine at Universite Laval supports research projects in medical education. The funding organization did not influence the design of the study or content of the manuscript. Patrick Archambault holds a career scientist award from the Fonds de Recherche du Quebec - Sante (reference number: FQ102051). France Legare holds a Canada Research Chair in Implementation of Shared Decision Making in Primary Care. CR AJZEN I, 1991, ORGAN BEHAV HUM DEC, V50, P179, DOI 10.1016/0749-5978(91)90020-T Ajzen I., 2005, EBOOK: Attitudes, Personality and Behaviour Anderson C., 2008, LONG TAIL REVISED UP [Anonymous], J PATHOL INFORM [Anonymous], PREDICTING HLTH BEHA Archambault P, 2010, OPEN MED, V4, P214 Archambault PM, 2013, J MED INTERNET RES, V15, P4, DOI 10.2196/jmir.2787 Archambault Patrick M, 2011, Inform Prim Care, V19, P207 Archambault PM, 2012, J MED INTERNET RES, V14, DOI 10.2196/jmir.1983 Bender Jacqueline L, 2011, Open Med, V5, pe201 Benkler Y., 2005, Common wisdom: Peer production of educational materials [lemill.org] Boulos Maged N Kamel, 2006, BMC Med Educ, V6, P41, DOI 10.1186/1472-6920-6-41 Carvas M, 2010, MED TEACH, V32, P270, DOI 10.3109/01421591003719525 Cheston CC, 2013, ACAD MED, V88, P893, DOI 10.1097/ACM.0b013e31828ffc23 Chu LF, CURR OPIN ANAESTHESI, V23, P218 Cohen N, 2013, NY TIMES, pB5 Cook DA, 2008, JAMA-J AM MED ASSOC, V300, P1181, DOI 10.1001/jama.300.10.1181 Cook DA, 2010, ACAD MED, V85, P909, DOI 10.1097/ACM.0b013e3181d6c319 Fishbein M, 2003, COMMUN THEOR, V13, P164, DOI 10.1111/j.1468-2885.2003.tb00287.x Francis J, 2004, Quality of life and management of living resources, DOI DOI 10.1177/0018726707075703 Francis JJ, 2010, PSYCHOL HEALTH, V25, P1229, DOI 10.1080/08870440903194015 Free Open Access Meducation, LIF FAST LAN Friedman RB, 1996, ACAD MED, V71, P979, DOI 10.1097/00001888-199609000-00013 Gagnon MP, 2012, J MED SYST, V36, P241, DOI 10.1007/s10916-010-9473-4 Godin G, 1996, AM J HEALTH PROMOT, V11, P87, DOI 10.4278/0890-1171-11.2.87 Hamm MP, 2013, ACAD MED, V88, P1376, DOI 10.1097/ACM.0b013e31829eb91c Heilman JM, 2011, J MED INTERNET RES, V13, P153, DOI 10.2196/jmir.1589 Hollinderbaumer Anke, 2013, GMS Z Med Ausbild, V30, pDoc14, DOI 10.3205/zma000857 Holmes B, 2004, COMMUNAL CONSTRUCTIV Hulbert-Williams Nicholas J, 2010, LEARNING TEACHING, V9, P45 Jalali A, 2009, MED EDUC, V43, P1117, DOI 10.1111/j.1365-2923.2009.03480.x Johnson MO, 2010, ACAD MED, V85, P484, DOI 10.1097/ACM.0b013e3181cccd12 Kaplan AM, 2010, BUS HORIZONS, V53, P59, DOI 10.1016/j.bushor.2009.09.003 Kardong-Edgren Suzan EE, 2009, INT J NURS ED SCHOLA, V6 Kohli MD, 2011, J DIGIT IMAGING, V24, P170, DOI 10.1007/s10278-010-9292-7 Luoma TJ, FINDING DROPBOX CONF MacKenzie J D, 1997, JAMA, V278, P1785, DOI 10.1001/jama.278.21.1785 McGee JB, 2008, MED TEACH, V30, P164, DOI 10.1080/01421590701881673 McGowan BS, 2012, J MED INTERNET RES, V14, DOI 10.2196/jmir.2138 Millstein SG, 1996, HEALTH PSYCHOL, V15, P398, DOI 10.1037/0278-6133.15.5.398 Mirk SM, 2010, CURR PHARM TEACH LEA, V2, P72, DOI 10.1016/j.cptl.2010.01.002 Moeller S, 2010, MED TEACH, V32, pE328, DOI 10.3109/0142159X.2010.490860 Mohammed S, 2008, Int J Electron Healthc, V4, P24, DOI 10.1504/IJEH.2008.018919 Morley DA, 2012, NURS EDUC TODAY, V32, P261, DOI 10.1016/j.nedt.2011.03.007 Park Seung, 2012, J Pathol Inform, V3, P32 Phadtare A, 2009, BMC MED EDUC, V9, DOI 10.1186/1472-6920-9-27 Priedhorsky R., 2007, P 2007 INT ACM C SUP Rutter D., 2002, CHANGING HLTH BEHAV, P1 Montano BS, 2010, HEALTH INFO LIBR J, V27, P217, DOI 10.1111/j.1471-1842.2010.00893.x Sandars J, 2007, POSTGRAD MED J, V83, P759, DOI 10.1136/pgmj.2007.063123 Sandars J, 2007, MED TEACH, V29, P85, DOI 10.1080/01421590601176380 Sandars J, 2006, MED TEACH, V28, P680, DOI 10.1080/01421590601106353 Sandars J, 2007, EDUC PRIM CARE, V18, P16, DOI 10.1080/14739879.2007.11493522 Stutsky BJ, 2009, THESIS NOVA SE U Thompson C L, 2011, AMIA Annu Symp Proc, V2011, P1392 Triola MM, 2011, BMC MED EDUC, V11, DOI 10.1186/1472-6920-11-4 Varga-Atkins T, 2010, MED TEACH, V32, P824, DOI 10.3109/01421591003686245 Webb TL, 2010, J MED INTERNET RES, V12, DOI 10.2196/jmir.1376 Wood A, 2010, MED TEACH, V32, P618, DOI 10.3109/0142159X.2010.497719 Yan KK, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0019917 NR 60 TC 9 Z9 11 U1 1 U2 14 PU CAMBRIDGE UNIV PRESS PI NEW YORK PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA SN 1481-8035 EI 1481-8043 J9 CAN J EMERG MED JI Can. J. Emerg. Med. PD JUL PY 2015 VL 17 IS 4 BP 374 EP 386 DI 10.1017/cem.2014.49 PG 13 WC Emergency Medicine WE Science Citation Index Expanded (SCI-EXPANDED) SC Emergency Medicine GA CL9XM UT WOS:000357332400005 PM 26134054 OA Bronze DA 2024-09-05 ER PT J AU Wang, YF Fan, LP Wu, L AF Wang, Yuefen Fan, Lipeng Wu, Lei TI A validation test of the Uzzi et al. novelty measure of innovation and applications to collaboration patterns between institutions SO SCIENTOMETRICS LA English DT Article DE Novelty; Atypical combination; Institutional collaborative pattern; Artificial intelligence ID COMBINATIONS; IMPACT AB Exploring a robust and universal appeal bibliometric indicator for assessing creativity is essential but challenging. The novelty measure of innovation proposed by Uzzi et al. (NoveltyU) has sparked considerable interest and debate. Thus, further validation and understanding of its portfolio form of novelty and scope of application are necessary. This paper delves into the calculation and application of the NoveltyU method to shed light on its effectiveness and scope. Analysis of the calculation process reveals that journal pairs with higher novelty often span independent fundamental areas, while those with lower novelty tend to focus on similar and applied fields. Utilizing collaboration patterns between institutions, as discussed in our prior study (Fan et al., Scientometrics 125:1179-1196, 2020), offers insight into the method's performance in real-world contexts. Results consistently show higher mean NoveltyU values in MM pattern over time, affirming the method's validity. Categorizing papers into high conventional, low conventional, low novel, and high novel categories unveils higher overlap degree of terms among different patterns in high novel papers. Moreover, leading terms in MM pattern exhibit specific information, while delay terms tend to be more general, and simultaneous terms are even more so. These findings offer valuable insights into identifying hot and frontier topics, bolstering the credibility and application potential of the NoveltyU method, aligning with the broader objective of establishing valid measures of innovativeness in research. C1 [Wang, Yuefen; Fan, Lipeng] Tianjin Normal Univ, Tianjin, Peoples R China. [Wu, Lei] Shandong Normal Univ, Jinan, Shandong, Peoples R China. C3 Tianjin Normal University; Shandong Normal University RP Fan, LP (corresponding author), Tianjin Normal Univ, Tianjin, Peoples R China. EM yuefen163@163.com; funnypower@126.com; ccnustone@yeah.net OI , Lipeng/0000-0003-4884-511X FU National Social Science of China [16ZDA224]; National Natural Science Foundation of China [62307026] FX This study is supported by the National Social Science of China (16ZDA224) and National Natural Science Foundation of China (62307026). CR Arts S, 2021, RES POLICY, V50, DOI 10.1016/j.respol.2020.104144 Bornmann L, 2019, J INFORMETR, V13, DOI 10.1016/j.joi.2019.100979 Bornmann L, 2011, ANNU REV INFORM SCI, V45, P199, DOI 10.1002/aris.2011.1440450112 Campanario JM, 1998, SCI COMMUN, V19, P181, DOI 10.1177/1075547098019003002 Chen JY, 2021, RES POLICY, V50, DOI 10.1016/j.respol.2020.104115 Chen SJ, 2024, SCIENTOMETRICS, V129, P2615, DOI 10.1007/s11192-024-04981-w Fan LP, 2020, SCIENTOMETRICS, V125, P1179, DOI 10.1007/s11192-020-03609-z Fontana M, 2020, RES POLICY, V49, DOI 10.1016/j.respol.2020.104063 Funk RJ, 2017, MANAGE SCI, V63, P791, DOI 10.1287/mnsc.2015.2366 Gao Q, 2021, J INFORMETR, V15, DOI 10.1016/j.joi.2021.101165 Gault F, 2018, RES POLICY, V47, P617, DOI 10.1016/j.respol.2018.01.007 Hofstra B, 2020, P NATL ACAD SCI USA, V117, P9284, DOI 10.1073/pnas.1915378117 Hou JH, 2022, J INFORMETR, V16, DOI 10.1016/j.joi.2022.101306 Li X, 2022, TECHNOL FORECAST SOC, V184, DOI 10.1016/j.techfore.2022.122042 Luo ZR, 2022, J INFORMETR, V16, DOI 10.1016/j.joi.2022.101282 Matsumoto K, 2021, SCIENTOMETRICS, V126, P6891, DOI 10.1007/s11192-021-04049-z Min C, 2021, TECHNOL FORECAST SOC, V164, DOI 10.1016/j.techfore.2020.120502 Min C, 2018, J ASSOC INF SCI TECH, V69, P1271, DOI 10.1002/asi.24047 Mukherjee S, 2016, J PROD INNOVAT MANAG, V33, P224, DOI 10.1111/jpim.12294 Park M, 2023, NATURE, V613, P138, DOI 10.1038/s41586-022-05543-x Savov P, 2020, INFORM PROCESS MANAG, V57, DOI 10.1016/j.ipm.2019.102168 Schneider JW, 2017, J ASSOC INF SCI TECH, V68, P709, DOI 10.1002/asi.23695 Shibayama S, 2020, SCIENTOMETRICS, V122, P409, DOI 10.1007/s11192-019-03263-0 Sun BX, 2021, TECHNOL FORECAST SOC, V165, DOI 10.1016/j.techfore.2020.120534 Tahamtan I, 2018, J INFORMETR, V12, P906, DOI 10.1016/j.joi.2018.07.005 UTTERBACK JM, 1971, ACAD MANAGE J, V14, P75, DOI 10.5465/254712 Uzzi B, 2013, SCIENCE, V342, P468, DOI 10.1126/science.1240474 Wagner CS, 2019, RES POLICY, V48, P1260, DOI 10.1016/j.respol.2019.01.002 Wang J, 2017, RES POLICY, V46, P1416, DOI 10.1016/j.respol.2017.06.006 Wang SY, 2023, J ASSOC INF SCI TECH, V74, P150, DOI 10.1002/asi.24719 Wu LF, 2019, NATURE, V566, P378, DOI 10.1038/s41586-019-0941-9 Xu HY, 2022, INFORM PROCESS MANAG, V59, DOI 10.1016/j.ipm.2021.102862 Yan Y, 2020, SCIENTOMETRICS, V122, P895, DOI 10.1007/s11192-019-03314-6 NR 33 TC 0 Z9 0 U1 5 U2 5 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0138-9130 EI 1588-2861 J9 SCIENTOMETRICS JI Scientometrics PD JUL PY 2024 VL 129 IS 7 BP 4379 EP 4394 DI 10.1007/s11192-024-05071-7 EA JUN 2024 PG 16 WC Computer Science, Interdisciplinary Applications; Information Science & Library Science WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Computer Science; Information Science & Library Science GA ZU5Q7 UT WOS:001258044800003 DA 2024-09-05 ER PT C AU Bernadt, J Soh, LK AF Bernadt, J Soh, LK BE Kantardzic, M Nasraoui, O Milanova, M TI Authoritative citation KNN learning in multiple-instance problems SO PROCEEDINGS OF THE 2004 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS (ICMLA'04) LA English DT Proceedings Paper CT 3rd International Conference on Machine Learning and Applications CY DEC 16-18, 2004 CL Louisville, KY AB In this paper, we propose an authoritative citation K-nearest neighbor (ACKNN) algorithm for learning and classification in multiple-instance problems. We devise an authority measure for each instance or each bag of instances. This authority measure records how well an instance or a bag of instances has contributed to a correct classification, thus documenting how well an instance or a bag has been cited as a nearest neighbor. Based on our experiments with the Musk1 and Musk2 datasets, by learning the authority measures, the ACKNN algorithm outperforms Most other algorithms in Musk1 classification accuracy, but only performs reasonably well in Musk2 classification accuracy. C1 Univ Nebraska, Dept Comp Sci & Engn, Lincoln, NE 68588 USA. C3 University of Nebraska System; University of Nebraska Lincoln RP Bernadt, J (corresponding author), Univ Nebraska, Dept Comp Sci & Engn, Lincoln, NE 68588 USA. CR Aha David, 1997, Lazy learning Amaro R R., 2001, Pobreza e exclusao social nas sociedades contemporaneas. Formar, P3 Angluin D., 1988, Machine Learning, V2, P343, DOI 10.1023/A:1022873112823 [Anonymous], P 11 INT C ART INT I [Anonymous], 1998, Introduction to Reinforcement Learning [Anonymous], 2000, 17th International Conference on Machine Learning Aslam JA, 1996, INFORM PROCESS LETT, V57, P189, DOI 10.1016/0020-0190(96)00006-3 Atkeson CG, 1997, ARTIF INTELL REV, V11, P11, DOI 10.1023/A:1006559212014 AUER P, 1997, P 14 ICML SAN FRANC BERNADT JJ, 2004, THESIS U NEBRASKA LI BERNADT JJ, 2004, INT C MLMTA 04 COST S, 1993, MACH LEARN, V10, P57, DOI 10.1007/BF00993481 Dietterich TG, 1997, ARTIF INTELL, V89, P31, DOI 10.1016/S0004-3702(96)00034-3 Garfield E, 1979, CITATION INDEXING IT MARON O, 1998, ADV NEURAL INFORMATI Wettschereck D, 1997, ARTIF INTELL REV, V11, P273, DOI 10.1023/A:1006593614256 Zhang Q., 2001, Advances in neural information processing systems, P14 NR 17 TC 0 Z9 0 U1 0 U2 0 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA BN 0-7803-8823-2 PY 2004 BP 410 EP 417 PG 8 WC Computer Science, Artificial Intelligence; Computer Science, Information Systems WE Conference Proceedings Citation Index - Science (CPCI-S) SC Computer Science GA BBR87 UT WOS:000227493000058 DA 2024-09-05 ER PT J AU Lei, Y Qiu, XD AF Lei, Yi Qiu, Xiaodong TI Research on the Evaluation of Cross-Border E-Commerce Overseas Strategic Climate Based on Decision Tree and Adaptive Boosting Classification Models SO FRONTIERS IN PSYCHOLOGY LA English DT Article DE cross-border e-commerce; strategic climate; "Belt and Road" countries; machine learning; Decision Tree; Adaptive Boosting ID CHINA BELT; LOGISTICS AB At present, China's cross-border e-commerce has ushered in a golden period of development. When developing cross-border e-commerce, enterprises should first assess the market climate of the target country and reasonably select the target country. Based on the PESTEL theory, an evaluation index system is established for China's cross-border e-commerce overseas strategic climate. Taking "One Belt, One Road" as the opportunity and background, the overseas strategic climate of cross-border e-commerce in 62 countries along the "One Belt, One Road" is selected as the research object, and the Decision Tree and Adaptive Boosting classification methods in machine learning are applied to train and predict the established index system. Finally an overall picture of the overseas strategic climate of the 62 countries is obtained. The results are compared and analysed in depth to identify the most suitable countries for cross-border e-merchants and to provide reference for cross-border e-merchants investors. C1 [Lei, Yi; Qiu, Xiaodong] Beijing Jiaotong Univ, Sch Econ & Management, Beijing, Peoples R China. C3 Beijing Jiaotong University RP Lei, Y; Qiu, XD (corresponding author), Beijing Jiaotong Univ, Sch Econ & Management, Beijing, Peoples R China. EM 18113082@bjtu.edu.cn; xdqiu@bjtu.edu.cn CR Abdelmoaty HM, 2021, DESALINATION, V508, DOI 10.1016/j.desal.2021.115021 Agarwal A, 2014, J MACH LEARN RES, V15, P1111 Alshammri F, 2021, J STAT PLAN INFER, V212, P201, DOI 10.1016/j.jspi.2020.08.007 Aqlan M.A.A., 2020, OPEN J BUSINESS MANA, V08, P1536, DOI [10.4236/ojbm.2020.84097, DOI 10.4236/OJBM.2020.84097] Ascarza E, 2018, MARKET SCI, V37, P54, DOI 10.1287/mksc.2017.1057 Asch T.V., 2020, RES TRANSP ECON, V79 Athey S, 2016, P NATL ACAD SCI USA, V113, P7353, DOI 10.1073/pnas.1510489113 Beskese A., 2014, AHMET, V14, P434 Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993 Bunnell S, 2020, J COMPUT INF SCI ENG, V20, DOI 10.1115/1.4047428 Chapelle Olivier, 2014, ACM Transactions on Intelligent Systems and Technology, V5, DOI 10.1145/2532128 [程豪 CHENG Hao], 2008, [自动化学报, Acta Automatica Sinica], V34, P1312 Dunford M, 2019, CAMB J REG ECON SOC, V12, P145, DOI 10.1093/cjres/rsy032 García-Aracil A, 2012, REV ESP DOC CIENT, V35, P119, DOI 10.3989/redc.2012.1.863 Giuffrida M, 2017, INT J PHYS DISTR LOG, V47, P772, DOI 10.1108/IJPDLM-08-2016-0241 Gray JE, 2020, BIG DATA SOC, V7, DOI 10.1177/2053951720919963 Hallak R, 2013, TOUR ANAL, V18, P691, DOI 10.3727/108354213X13824558188749 He HH, 2019, EXPERT SYST, V36, DOI 10.1111/exsy.12349 Herrero AG, 2017, CHINA WORLD ECON, V25, P84, DOI 10.1111/cwe.12222 Hoffman Matthew D., 2010, Adv. Neural Inf. Process. Syst. (NIPS), DOI DOI 10.5555/2997189.2997285 Huang RJ, 2020, COMPUT ECON, V55, P1233, DOI 10.1007/s10614-019-09886-y Huang YP, 2016, CHINA ECON REV, V40, P314, DOI 10.1016/j.chieco.2016.07.007 Jiang X., 2021, SCI J EC MANAG RES, V3, P6 Kamel MS, 2018, CAMB REV INT AFF, V31, P76, DOI 10.1080/09557571.2018.1480592 Kawa A, 2016, LOGFORUM, V12, P63, DOI 10.17270/J.LOG.2016.1.6 Kelly M, 2000, AM ECON REV, V90, P1110, DOI 10.1257/aer.90.5.1110 Khan A, 2020, SCI PROGRAMMING-NETH, V2020, DOI 10.1155/2020/4621196 Kim JW, 2001, INT J ELECTRON COMM, V5, P45, DOI 10.1080/10864415.2001.11044215 Kumar E.A., 2018, IND J PUBLIC HLTH RE, V1, P193 Lei Y, 2020, INFORMATION, V11, DOI 10.3390/info11110526 Li BJ, 2020, J COASTAL RES, P628, DOI 10.2112/JCR-SI104-106.1 Li G., 2018, IND J PUBLIC HLTH RE, V1, P351 Liu J, 2018, MARKET SCI, V37, P930, DOI 10.1287/mksc.2018.1112 Liu ZD, 2020, COMPUT COMMUN, V155, P40, DOI 10.1016/j.comcom.2020.03.014 Luo YB, 2020, TUNN UNDERGR SP TECH, V106, DOI 10.1016/j.tust.2020.103591 Muravev D, 2020, SYMMETRY-BASEL, V12, DOI 10.3390/sym12010143 Nizamani S, 2011, LECT NOTES SOC NETW, P249, DOI 10.1007/978-3-7091-0388-3_13 Pan W, 2019, J MANAGE ENG, V35, DOI 10.1061/(ASCE)ME.1943-5479.0000662 Panigrahi R, 2021, MATHEMATICS-BASEL, V9, DOI 10.3390/math9060690 Petrauskiene K, 2020, SUSTAINABILITY-BASEL, V12, DOI 10.3390/su12072935 Qi ZC, 2021, J ELECTRON MATER, V50, P2066, DOI 10.1007/s11664-020-08704-8 Raphael K., 2004, MARKET INTELL PLAN, V22, P455 Razeghi O, 2020, SOFTWAREX, V12, DOI 10.1016/j.softx.2020.100570 Sheikh S., 2017, INT J ADV COMPUT APP, V8, P189 Sun LY, 2017, ECOL INDIC, V73, P554, DOI 10.1016/j.ecolind.2016.10.018 Vanneste P, 2021, MATHEMATICS-BASEL, V9, DOI 10.3390/math9030287 Wang YY, 2021, MATHEMATICS-BASEL, V9, DOI 10.3390/math9060632 Wu PJ, 2018, TELEMAT INFORM, V35, P237, DOI 10.1016/j.tele.2017.11.004 Yan XS, 2012, NEUROCOMPUTING, V87, P51, DOI 10.1016/j.neucom.2012.02.002 Zhan H, 2009, KYBERNETES, V38, P1812, DOI 10.1108/03684920910994330 Zhang XH, 2021, J SENSORS, V2021, DOI 10.1155/2021/7021151 Zhongliang Liu, 2020, International Journal of Computers and Applications, V42, P533, DOI 10.1080/1206212X.2018.1477321 NR 52 TC 3 Z9 3 U1 3 U2 52 PU FRONTIERS MEDIA SA PI LAUSANNE PA AVENUE DU TRIBUNAL FEDERAL 34, LAUSANNE, CH-1015, SWITZERLAND SN 1664-1078 J9 FRONT PSYCHOL JI Front. Psychol. PD DEC 23 PY 2021 VL 12 AR 803989 DI 10.3389/fpsyg.2021.803989 PG 10 WC Psychology, Multidisciplinary WE Social Science Citation Index (SSCI) SC Psychology GA YK5EU UT WOS:000745236600001 PM 35002896 OA Green Published, gold DA 2024-09-05 ER PT J AU Li, SY Yu, TZ Cao, X Pei, Z Yi, WC Chen, Y Lv, RF AF Li, Shiyun Yu, Tianzong Cao, Xu Pei, Zhi Yi, Wenchao Chen, Yong Lv, Ruifeng TI Machine learning-based scheduling: a bibliometric perspective SO IET COLLABORATIVE INTELLIGENT MANUFACTURING LA English DT Article AB In recent years, the rapid development of artificial intelligence and data science has given rise to the study of data driven algorithms in highly volatile systems. The scheduling of complex shop floor resources falls into such a category, which is often non-linear in nature, time varying, multi-objective, and subject to interruptions. Ergo, the machine learning-based scheduling, has become a research hotspot and attracted the attention of many scholars. In the literature, the research methods employed in solving scheduling problems are based on various perspectives, such as mathematical programming, combinatorial optimization, and heuristic rules. However, due to the inherent complexity of the problem, many issues remain to be addressed. In particular, with the availability of production data, the progress of computing power, and the breakthrough in intelligent algorithms, a novel branch of data driven algorithms present great potential, for example, the deep learning and reinforcement learning-based algorithms. To reveal the value of machine learning-based scheduling methods, bibliometric analysis was conducted to analyse the relevant articles and documents from the year 1980 to 2019. Finally, the future research trend in the domain of machine learning-based scheduling is considered and tips are provided for researchers as well as practitioners to find leading scientists for collaborations. C1 [Li, Shiyun; Yu, Tianzong; Cao, Xu; Pei, Zhi; Yi, Wenchao; Chen, Yong; Lv, Ruifeng] Zhejiang Univ Technol, Coll Mech Engn, Hangzhou, Peoples R China. C3 Zhejiang University of Technology RP Pei, Z (corresponding author), Zhejiang Univ Technol, Coll Mech Engn, Hangzhou, Peoples R China. EM peizhi@zjut.edu.cn RI Pei, Zhi/AFO-6324-2022 OI Pei, Zhi/0000-0001-6808-1490 FU Natural Science Foundation of China [71871203, 52005447, 51305400, L1924063]; Zhejiang Provincial Natural Science Foundation of China [LY18G010017, LY18G010020] FX Natural Science Foundation of China, Grant/Award Number: 71871203, 52005447, 51305400, L1924063; Zhejiang Provincial Natural Science Foundation of China, Grant/Award Number: LY18G010017, LY18G010020 CR Agarwal A, 2006, EUR J OPER RES, V175, P296, DOI 10.1016/j.ejor.2005.03.045 Ahmed U, 2021, SOFT COMPUT, V25, P407, DOI 10.1007/s00500-020-05152-8 Aissani N, 2012, J INTELL MANUF, V23, P2513, DOI 10.1007/s10845-011-0580-y Alzahrani SI, 2020, J INFECT PUBLIC HEAL, V13, P914, DOI 10.1016/j.jiph.2020.06.001 Amiri MM, 2019, IEEE T SIGNAL PROCES, V67, P6270, DOI 10.1109/TSP.2019.2952051 Amudha S, 2021, J AMB INTEL HUM COMP, V12, P7441, DOI 10.1007/s12652-020-02421-0 ARCISZEWSKI T, 1994, APPL ARTIF INTELL, V8, P109, DOI 10.1080/08839519408945434 Arens S, 2018, ENERGIES, V11, DOI 10.3390/en11112913 AYTUG H, 1994, IEEE T ENG MANAGE, V41, P165, DOI 10.1109/17.293383 Benda F, 2019, OR SPECTRUM, V41, P871, DOI 10.1007/s00291-019-00567-8 Bengio Y., 2020, EUR J OPERATION RES Billaut JC, 1996, INT J PROD RES, V34, P1555, DOI 10.1080/00207549608904984 Biskup D, 1999, EUR J OPER RES, V115, P173, DOI 10.1016/S0377-2217(98)00246-X Breiman L., 2001, Machine Learning, V45, P5, DOI 10.1023/A:1010933404324 CHANG CY, 1995, IEEE INT CONF ROBOT, P202, DOI 10.1109/ROBOT.1995.525286 CHATURVEDI AR, 1994, IEEE T ENG MANAGE, V41, P194, DOI 10.1109/17.293386 CHEN LN, 1995, NEURAL NETWORKS, V8, P915, DOI 10.1016/0893-6080(95)00033-V Cheng TCE, 2009, INFORM SCIENCES, V179, P3127, DOI 10.1016/j.ins.2009.05.002 Dalal G, 2019, IEEE T POWER SYST, V34, P2528, DOI 10.1109/TPWRS.2018.2889237 Ding DR, 2019, IEEE T CYBERNETICS, V49, P2372, DOI 10.1109/TCYB.2018.2827037 ERENGUC SS, 1994, IEEE T ENG MANAGE, V41, P107, DOI 10.1109/17.293376 Guo K, 2020, NEURAL COMPUT APPL, V32, P1857, DOI 10.1007/s00521-019-04571-5 Guo P, 2019, OMEGA-INT J MANAGE S, V89, P110, DOI 10.1016/j.omega.2018.10.003 Ham AM, 2016, COMPUT IND ENG, V102, P160, DOI 10.1016/j.cie.2016.11.001 Hong JK, 2004, APPL INTELL, V20, P71, DOI 10.1023/B:APIN.0000011143.95085.74 Hu H, 2020, COMPUT IND ENG, V149, DOI 10.1016/j.cie.2020.106749 Jiang ZB, 2019, COMPUT IND ENG, V127, P1131, DOI 10.1016/j.cie.2018.05.050 Jun S, 2021, INT J PROD RES, V59, P2838, DOI 10.1080/00207543.2020.1741716 Jun S, 2019, INT J PROD RES, V57, P3290, DOI 10.1080/00207543.2019.1581954 Jung SK, 2016, AM J ORTHOD DENTOFAC, V149, P127, DOI 10.1016/j.ajodo.2015.07.030 KADABA N, 1991, EXPERT SYST APPL, V2, P15, DOI 10.1016/0957-4174(91)90131-W Kang Y, 2019, COMPUT IND ENG, V132, P271, DOI 10.1016/j.cie.2019.04.044 Kang ZQ, 2020, COMPUT IND ENG, V149, DOI 10.1016/j.cie.2020.106773 Kim BG, 2016, IEEE T SMART GRID, V7, P2187, DOI 10.1109/TSG.2015.2495145 LeCun Y, 2015, NATURE, V521, P436, DOI 10.1038/nature14539 Lee CY, 1997, INT J PROD RES, V35, P1171, DOI 10.1080/002075497195605 Lee WC, 2009, EXPERT SYST APPL, V36, P10295, DOI 10.1016/j.eswa.2009.01.047 Li JY, 2016, COMPUT IND ENG, V102, P113, DOI 10.1016/j.cie.2016.10.012 LIEPINS G, 1990, AI APPL NAT RES MAN, V4, P9 Luo L, 2018, INT J HEALTH PLAN M, V33, P941, DOI 10.1002/hpm.2552 Marandi F, 2019, COMPUT IND ENG, V132, P293, DOI 10.1016/j.cie.2019.04.032 Matias JM, 2007, J HAZARD MATER, V147, P60, DOI 10.1016/j.jhazmat.2006.12.042 Mendes-Moreira J, 2015, INFORM SCIENCES, V293, P299, DOI 10.1016/j.ins.2014.09.005 Monch L, 2006, ENG APPL ARTIF INTEL, V19, P235, DOI 10.1016/j.engappai.2005.10.001 NAKASUKA S, 1992, INT J PROD RES, V30, P411, DOI 10.1080/00207549208942903 Ngo MH, 2010, IEEE T SIGNAL PROCES, V58, P438, DOI 10.1109/TSP.2009.2027735 Nitisiri K, 2019, COMPUT IND ENG, V130, P381, DOI 10.1016/j.cie.2019.02.035 Nonaka Y, 2012, CIRP ANN-MANUF TECHN, V61, P449, DOI 10.1016/j.cirp.2012.03.045 Park I.B., 2019, IEEE T AUTOM SCI ENG Park M, 2019, PROCESSES, V7, DOI 10.3390/pr7060370 Peng T, 2020, RENEW ENERG, V156, P804, DOI 10.1016/j.renene.2020.03.168 Priore P, 2006, ENG APPL ARTIF INTEL, V19, P247, DOI 10.1016/j.engappai.2005.09.009 Qin Y, 2020, J SUPERCOMPUT, V76, P455, DOI 10.1007/s11227-019-03033-y Romero M, 2018, COMPUT ELECTRON AGR, V147, P109, DOI 10.1016/j.compag.2018.02.013 Salodkar N, 2010, IEEE T MOBILE COMPUT, V9, P1391, DOI 10.1109/TMC.2010.106 Sang HY, 2014, ASIA PAC J OPER RES, V31, DOI 10.1142/S0217595914500456 Sbihi M, 2008, COMPUT IND ENG, V55, P830, DOI 10.1016/j.cie.2008.03.005 Shafaei R, 1999, INT J PROD RES, V37, P4105, DOI 10.1080/002075499189682 Shafaei R, 2000, INT J PROD RES, V38, P85, DOI 10.1080/002075400189590 Shahrabi J, 2017, COMPUT IND ENG, V110, P75, DOI 10.1016/j.cie.2017.05.026 Sui X, 2019, EURASIP J WIREL COMM, DOI 10.1186/s13638-019-1454-9 Sutton R. S., 1988, Machine Learning, V3, P9, DOI 10.1023/A:1022633531479 Tang ZY, 2015, IEEE T VEH TECHNOL, V64, P3167, DOI 10.1109/TVT.2014.2350510 VAITHYANATHAN S, 1992, COMPUT OPER RES, V19, P241, DOI 10.1016/0305-0548(92)90046-8 Vasile MA, 2018, INFORM SCIENCES, V433, P401, DOI 10.1016/j.ins.2017.01.005 Wang H, 2003, EXPERT SYST, V20, P208, DOI 10.1111/1468-0394.00245 Wang JB, 2008, COMPUT MATH APPL, V56, P1941, DOI 10.1016/j.camwa.2008.04.019 Wang K, 2014, INT J PROD RES, V52, P7360, DOI 10.1080/00207543.2014.930535 Wang K, 2016, IEEE T IND INFORM, V12, P2091, DOI 10.1109/TII.2016.2537788 Wang YC, 2004, ROBOT CIM-INT MANUF, V20, P553, DOI [10.1016/j.rcim.2004.07.003, 10.1016/j.rcim.2004.07.033] Wang Y, 2011, INT J ROBOT AUTOM, V26, P369, DOI 10.2316/Journal.206.2011.4.206-3486 WILLIAMS RJ, 1992, MACH LEARN, V8, P229, DOI 10.1007/BF00992696 Wojtusiak J, 2012, COMPUT MATH APPL, V64, P3658, DOI 10.1016/j.camwa.2012.01.079 Wu WH, 2014, INT J COMPUT INTEG M, V27, P20, DOI 10.1080/0951192X.2013.800229 Xu X, 2020, IEEE T SMART GRID, V11, P3201, DOI 10.1109/TSG.2020.2971427 Xue Y, 2019, MEMET COMPUT, V11, P423, DOI 10.1007/s12293-019-00295-0 Yang J, 2019, FUTURE GENER COMP SY, V95, P140, DOI 10.1016/j.future.2018.11.014 Yang TT, 2019, IEEE T COGN COMMUN, V5, P1155, DOI 10.1109/TCCN.2019.2939813 Yang X.C., 2015, MATH PROBL ENG Zhang Z, 2019, INT J SIMUL MODEL, V18, P699, DOI 10.2507/IJSIMM18(4)CO18 Zhang ZC, 2013, ASIA PAC J OPER RES, V30, DOI 10.1142/S0217595913500140 Zhang ZC, 2012, COMPUT OPER RES, V39, P1315, DOI 10.1016/j.cor.2011.07.019 NR 82 TC 7 Z9 7 U1 7 U2 10 PU WILEY PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA EI 2516-8398 J9 IET COLL INTEL MANUF JI IET Collab. Intell. Manufact. PD JUN PY 2021 VL 3 IS 2 BP 131 EP 146 DI 10.1049/cim2.12004 PG 16 WC Engineering, Industrial; Engineering, Manufacturing WE Emerging Sources Citation Index (ESCI) SC Engineering GA VM0RA UT WOS:000937711000004 OA gold DA 2024-09-05 ER PT J AU Chen, XL Zou, D Xie, HR AF Chen, Xieling Zou, Di Xie, Haoran TI Fifty years of British Journal of Educational Technology: A topic modeling based bibliometric perspective SO BRITISH JOURNAL OF EDUCATIONAL TECHNOLOGY LA English DT Article ID LEARNING-EXPERIENCES; DECADES AB The British Journal of Educational Technology (BJET) has been active in the field of educational technology since 1970. To celebrate its 50th anniversary and to demonstrate a comprehensive overview of the field, we conducted a bibliometric analysis of the 3710 publications in this journal from 1971 to 2018 as indexed in the Web of Science with full bibliographic information. This study aimed to (1) identify the publication and citation trends, (2) explore the distribution of paper types, (3) recognize the most relevant countries/regions, affiliations and authors, and (4) reveal relevant thematic features by analyzing publication abstracts and titles with the use of word cloud analysis and topic modeling analysis. The results highlighted several research hotspots and emerging topics such as Technology-enhanced classroom pedagogy, Blended learning, Online social communities, Mobile assisted language learning, Game-based learning and Socialized e-learning. C1 [Chen, Xieling; Zou, Di] Educ Univ Hong Kong, Hong Kong, Peoples R China. [Xie, Haoran] Lingnan Univ, Hong Kong, Peoples R China. C3 Education University of Hong Kong (EdUHK); Lingnan University RP Zou, D (corresponding author), Educ Univ Hong Kong, Dept English Language Educ, Hong Kong, Peoples R China. EM dizoudaisy@gmail.com RI Xie, Haoran/AAW-8845-2020; Xie, Haoran/AFS-3515-2022 OI Xie, Haoran/0000-0003-0965-3617; ZOU, Di/0000-0001-8435-9739; PV, THAYYIB/0000-0001-8929-0398 FU Standing Committee on Language Education and Research [EDB(LE)/PR/EL/175/2]; Education Bureau of the Hong Kong Special Administrative Region; Interdisciplinary Research Scheme of the Dean's Research Fund 2018-19 [FLASS/DRF/IDS-3]; Departmental Collaborative Research Fund 2019 of The Education University of Hong Kong [MIT/DCRF-R2/18-19]; [RG93/2018-2019R]; [RG 1/2019-2020R] FX This research received grants from the Standing Committee on Language Education and Research (EDB(LE)/P&R/EL/175/2), the Education Bureau of the Hong Kong Special Administrative Region, the Internal Research Grant (RG93/2018-2019R), the Internal Research Fund (RG 1/2019-2020R), Interdisciplinary Research Scheme of the Dean's Research Fund 2018-19 (FLASS/DRF/IDS-3) and Departmental Collaborative Research Fund 2019 (MIT/DCRF-R2/18-19) of The Education University of Hong Kong. CR Beelen K, 2017, CAN J POLIT SCI, V50, P849, DOI 10.1017/S0008423916001165 Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993 Bond M, 2019, BRIT J EDUC TECHNOL, V50, P12, DOI 10.1111/bjet.12730 Chen MH, 2018, BRIT J EDUC TECHNOL, V49, P69, DOI 10.1111/bjet.12526 Chen XL, 2019, J COMPUT EDUC, V6, P563, DOI 10.1007/s40692-019-00149-1 Chen XL, 2019, BMC MED INFORM DECIS, V19, DOI 10.1186/s12911-019-0757-4 Chen XL, 2019, ONLINE INFORM REV, V43, P29, DOI 10.1108/OIR-03-2018-0068 Chen XL, 2018, BMC MED INFORM DECIS, V18, DOI [10.1186/s12911-018-0594-x, 10.1186/s12870-018-1555-3] Cheng XS, 2016, BRIT J EDUC TECHNOL, V47, P803, DOI 10.1111/bjet.12382 Diep AN, 2017, BRIT J EDUC TECHNOL, V48, P473, DOI 10.1111/bjet.12431 Dzeng RJ, 2014, BRIT J EDUC TECHNOL, V45, P1115, DOI 10.1111/bjet.12189 Hao TY, 2018, SOFT COMPUT, V22, P7875, DOI 10.1007/s00500-018-3511-4 Herodotou C, 2018, BRIT J EDUC TECHNOL, V49, P6, DOI 10.1111/bjet.12546 Hew KF, 2016, BRIT J EDUC TECHNOL, V47, P320, DOI 10.1111/bjet.12235 Jiang HC, 2016, RENEW SUST ENERG REV, V57, P226, DOI 10.1016/j.rser.2015.12.194 Kali Y, 2018, BRIT J EDUC TECHNOL, V49, P1145, DOI 10.1111/bjet.12698 Kuhn KD, 2018, TRANSPORT RES C-EMER, V87, P105, DOI 10.1016/j.trc.2017.12.018 Lameras P, 2017, BRIT J EDUC TECHNOL, V48, P972, DOI 10.1111/bjet.12467 Lesnikowski A, 2019, WIRES CLIM CHANGE, V10, DOI 10.1002/wcc.576 Mann HB, 1945, ECONOMETRICA, V13, P245, DOI 10.2307/1907187 Merigó JM, 2019, SOFT COMPUT, V23, P1477, DOI 10.1007/s00500-018-3168-z Nel L, 2017, BRIT J EDUC TECHNOL, V48, P1131, DOI 10.1111/bjet.12549 Nichols LG, 2014, SCIENTOMETRICS, V100, P741, DOI 10.1007/s11192-014-1319-2 Song Y, 2019, COMPUT EDUC, V137, P12, DOI 10.1016/j.compedu.2019.04.002 Tunstall P., 1996, BRIT EDUC RES J, V22, P389, DOI DOI 10.1080/0141192960220402 Vosinakis S, 2018, BRIT J EDUC TECHNOL, V49, P30, DOI 10.1111/bjet.12531 Walter-Laager C, 2017, BRIT J EDUC TECHNOL, V48, P1062, DOI 10.1111/bjet.12472 Zawacki-Richter O, 2018, COMPUT EDUC, V122, P136, DOI 10.1016/j.compedu.2018.04.001 NR 28 TC 91 Z9 94 U1 24 U2 121 PU WILEY PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0007-1013 EI 1467-8535 J9 BRIT J EDUC TECHNOL JI Br. J. Educ. Technol. PD MAY PY 2020 VL 51 IS 3 SI SI BP 692 EP 708 DI 10.1111/bjet.12907 EA FEB 2020 PG 17 WC Education & Educational Research WE Social Science Citation Index (SSCI) SC Education & Educational Research GA LI2BT UT WOS:000511218300001 DA 2024-09-05 ER PT C AU Meng, QX Kennedy, PJ AF Meng, Qinxue Kennedy, Paul J. GP IEEE TI Using field of research codes to discover research groups from co-authorship networks SO 2012 IEEE/ACM INTERNATIONAL CONFERENCE ON ADVANCES IN SOCIAL NETWORKS ANALYSIS AND MINING (ASONAM) LA English DT Proceedings Paper CT IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining CY AUG 26-29, 2012 CL Kadir Has Univ, Istanbul, TURKEY HO Kadir Has Univ DE academic networks; academic collaboration; co-authorship; academic network; spectral clustering AB Nowadays, academic collaboration has become more prevalent and crucial than ever before and many studies of academic collaboration analysis are implemented based on co-authorship networks. This paper aims to build a novel co-authorship network by importing field of research codes based on Newman's model, and then analyze and extract research groups via spectral clustering. In order to explain the effectiveness of this revised network, we take the academic collaboration at the University of Technology, Sydney (UTS) as an example. The result of this study advances methods for selecting the most prolific research groups and individuals in research institutions, and provides scientific evidence for policymakers to manage laboratories and research groups more efficiently in the future. C1 [Meng, Qinxue; Kennedy, Paul J.] Univ Technol Sydney, Fac Engn & Informat Technol, Ctr Quantum Computat & Intelligent Syst, Sydney, NSW 2007, Australia. C3 University of Technology Sydney RP Meng, QX (corresponding author), Univ Technol Sydney, Fac Engn & Informat Technol, Ctr Quantum Computat & Intelligent Syst, Sydney, NSW 2007, Australia. EM Qinxue.Meng@student.uts.edu.au; Paul.Kennedy@uts.edu.au RI Kennedy, Paul/GPC-6789-2022 OI Kennedy, Paul/0000-0001-7837-3171 CR Abbasi A, 2011, J INFORMETR, V5, P594, DOI 10.1016/j.joi.2011.05.007 [Anonymous], 2007, Understanding Complex Datasets: Data Mining with Matrix Decomposition [Anonymous], 2011, Neural Networks and Learning Machines Boccaletti S, 2006, PHYS REP, V424, P175, DOI 10.1016/j.physrep.2005.10.009 Gross J. L., 2006, GRAPH THEORY ITS APP Han Y., 2009, P 9 SIAM INT C DAT M, P1111 Hollstein B., 2011, SAGE HDB SOCIAL NETW Kamber M., 2011, Pei. data mining concepts and techniques Lu HQ, 2009, SCIENTOMETRICS, V81, P499, DOI 10.1007/s11192-008-2173-x Moody J, 2003, AM SOCIOL REV, V68, P103, DOI 10.2307/3088904 Newman MEJ, 2001, P NATL ACAD SCI USA, V98, P404, DOI 10.1073/pnas.021544898 Pilkington A, 2009, J OPER MANAG, V27, P185, DOI 10.1016/j.jom.2008.08.001 Pink B., 2008, Australian and New Zealand Standard Research Classification (ANZSRC), 2008 von Luxburg U, 2007, STAT COMPUT, V17, P395, DOI 10.1007/s11222-007-9033-z Yu Q, 2011, SCIENTOMETRICS, V89, P553, DOI 10.1007/s11192-011-0465-z NR 15 TC 2 Z9 3 U1 1 U2 2 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA BN 978-0-7695-4799-2 PY 2012 BP 289 EP 293 PG 5 WC Computer Science, Information Systems; Computer Science, Theory & Methods WE Conference Proceedings Citation Index - Science (CPCI-S) SC Computer Science GA BFL86 UT WOS:000320443500042 DA 2024-09-05 ER PT J AU Sokil, JP Osorio, L AF Pablo Sokil, Juan Osorio, Laura TI Scientific p roduction i n the fi eld of gender studies: analysis of se lected Web of Science journals (2008-2018) SO REVISTA ESPANOLA DE DOCUMENTACION CIENTIFICA LA English DT Article DE gender studies; gender gap; bibliometrics; topic modeling; sex prediction AB The following research analyzes the scientific production of gender studies worldwide indexed in the Web of Science (WOS) between 2008 and 2018. The objectives are to analyze the dynamics of participation of women and men within this area and investigate what topics they investigate (separately and together) using sex classification and topic modeling algorithms. The results show that gender studies are one of the most feminized research areas, with the greatest gender gap and that there were no changes throughout the selected period. The identified topics segment the preferences between the authors: female authors specialize in feminism, politics, violence, male authors have a distributed production and mixed authorship specializes in medicine/ health and statistics/ methodology. C1 [Pablo Sokil, Juan; Osorio, Laura] OCTS OEI, Org Estados Iberoamer, Observ Iberoamer Ciencia Tecnol & Soc, Madrid, Spain. RP Sokil, JP (corresponding author), OCTS OEI, Org Estados Iberoamer, Observ Iberoamer Ciencia Tecnol & Soc, Madrid, Spain. EM juanpablosokil@gmail.com; losorio.oei@gmail.com CR Amoros Celia y., 2005, Teoria feminista de la ilustracion a la globalizacion [Anonymous], 2004, EQUIDAD GENERO CIENC [Anonymous], 2012, P ACL 2012 SPECIAL W Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993 Bonder G., 1984, Revista Desarrollo y Sociedad, V13, P27, DOI [10.13043/dys.13.1, DOI 10.13043/DYS.13.1] Elsevier, 2021, GENDER GLOBAL RES LA Elsevier, 2015, MAPP GEND GERM RES A Elsevier, 2020, The Researcher Journey Through a Gender Lens Flores Espinola A., 2010, CLAVES ACTUALES PENS, P171 Flores Espinola A., 2016, REV IBEROAM CIENC TE, V31 González Marta I., 2016, Rev. iberoam. cienc. tecnol. soc., V11, P51 Hall David, 2008, P 2008 C EMP METH NA, P363, DOI DOI 10.3115/1613715.1613763 LONG JS, 1990, SOC FORCES, V68, P1297, DOI 10.2307/2579146 Lopez-Bassols V., 2018, BRECHAS GENERO CIENC, DOI [10.18235/0001082, DOI 10.18235/0001082] Maffia D., 2008, ACT 7 C IB CIENC TEC Morales S., 2018, CIENCIA Mullen Lincoln., 2018, gender: Predict Gender from Names Using Historical Data. R package version 0.5.2 Noriega GN, 2016, CULTURALES, V4, P9 ORG. FOR ECON. COOP. & DEV, 2018, PHARMACEUTICAL INNOVATION AND ACCESS TO MEDICINES, P1 Papadopulos J., 2006, IESALC, P117 Penner AM, 2015, SCIENCE, V347, P234, DOI 10.1126/science.aaa3781 Perez Sedeno E., 2001, MUJERES SISTEMA CIEN, P9 Thelwall M, 2019, J INFORMETR, V13, P149, DOI 10.1016/j.joi.2018.12.002 UNESCO, 2017, PLAN ACC UNESCO PRIO UNESCO Institute for Statistics, 2019, WOM SCI Zuckerman H., 1991, The Outer Circle: Women in the Scientific Community, P27 NR 26 TC 4 Z9 4 U1 0 U2 7 PU CONSEJO SUPERIOR INVESTIGACIONES CIENTIFICAS-CSIC PI MADRID PA VITRUVIO 8, 28006 MADRID, SPAIN SN 0210-0614 EI 1988-4621 J9 REV ESP DOC CIENT JI Rev. Esp. Doc. Cient. PD JAN-MAR PY 2022 VL 45 IS 1 AR e320 DI 10.3989/redc.2022.1.1849 PG 14 WC Information Science & Library Science WE Social Science Citation Index (SSCI) SC Information Science & Library Science GA YR7KU UT WOS:000750172500003 OA gold DA 2024-09-05 ER PT J AU Zhou, X Guo, Y Li, FS Wang, J Wei, HA Yu, MM Chen, SL AF Zhou, Xiao Guo, Ying Li, Fangshun Wang, Jin Wei, Huanan Yu, Miaomiao Chen, Siliang TI Identifying and Assessing Innovation Pathways for Emerging Technologies: A Hybrid Approach Based on Text Mining and Altmetrics SO IEEE TRANSACTIONS ON ENGINEERING MANAGEMENT LA English DT Article DE Altmetrics; gold nanoparticles; sentiment analysis; technological innovation pathways ID SENTIMENT ANALYSIS; EXTRACTION; REVIEWS AB Accurately identifying core technological innovation pathways (TIPs) and evaluating opportunities in emerging technologies is important. In this article, we present an integrated framework that combines sentiment analysis, subject-action-object (SAO) analysis, machine learning, altmetrics, and expert judgments to extract technical intelligence, chart technological innovation pathways, and analyze which research avenues have the most future promise. For industry stakeholders, our approach provides a comprehensive, time-efficient, and future-oriented evaluation system to support decision making. For researchers, our methodology should inspire new ways of thinking about technological opportunity analysis-particularly, exploring the merits of finding new and advantageous combinations of existing bibliometric and nonbibliometric techniques, rather than reinventing the wheel. For example, this methodology is to integrate bibliometric analysis with sentiment analysis to gauge the attitudes of domain experts toward a topic's potential value. We combine SAO analysis and machine learning to identify relationships between topics from tremendous short texts. Beyond traditional techniques, we have also drawn on altmetrics to further validate the findings our of analysis. A case study on gold nanoparticles demonstrates the merits of our framework, revealing anti-cancer therapies and dye-sensitized solar cells (DSSCs) as the two applications with most future potential and societal impact in this field. C1 [Zhou, Xiao; Chen, Siliang] Xidian Univ, Sch Econ & Management, Xian 710000, Peoples R China. [Guo, Ying] China Univ Polit Sci & Law, Business Sch, Beijing 100000, Peoples R China. [Li, Fangshun] Univ Elect Sci & Technol China, Sch Econ & Management, Chengdu 610000, Peoples R China. [Wang, Jin; Wei, Huanan; Yu, Miaomiao] Beijing Inst Thchnol, Sch Management & Econ, Beijing 100000, Peoples R China. C3 Xidian University; China University of Political Science & Law; University of Electronic Science & Technology of China RP Guo, Y (corresponding author), China Univ Polit Sci & Law, Business Sch, Beijing 100000, Peoples R China. EM belinda1214@126.com; guoying_cup1@126.com; lifangshunlfs@163.com; wangjin_bit@163.com; hnwei97@163.com; 18165268237@163.com; siliang_chen547@163.com FU Chinese National Science Foundation for Young Scholars Award [71704139]; Chinese National Science Foundation Award [71874013]; National Science Foundation of Shaanxi Province Award [2019JQ-661]; Basic Research Foundation of Xidian University Award [RW180171, JB190603]; Program for Qian Duansheng Excellent Researcher in China University of Political Science and Law FX This work was supported in part by the Chinese National Science Foundation for Young Scholars Award 71704139, in part by the Chinese National Science Foundation Award 71874013, in part by the Program for Qian Duansheng Excellent Researcher in China University of Political Science and Law, in part by the National Science Foundation of Shaanxi Province Award 2019JQ-661, and in part by the Basic Research Foundation of Xidian UniversityAward RW180171 and JB190603. CR Bornmann L, 2014, J INFORMETR, V8, P895, DOI 10.1016/j.joi.2014.09.005 Bro R, 2014, ANAL METHODS-UK, V6, P2812, DOI 10.1039/c3ay41907j Carley SF, 2018, SCIENTOMETRICS, V115, P35, DOI 10.1007/s11192-018-2654-5 Cho SK, 2019, MAT SCI ENG C-MATER, V97, P784, DOI 10.1016/j.msec.2018.12.113 Guo JF, 2016, TECHNOL FORECAST SOC, V105, P27, DOI 10.1016/j.techfore.2016.01.028 Han HY, 2018, MULTIMED TOOLS APPL, V77, P21265, DOI 10.1007/s11042-017-5529-5 Hui Cao, 2013, 2013 International Conference on Asian Language Processing (IALP 2013), P220, DOI 10.1109/IALP.2013.63 Kelly K., 2016, The Inevitable: Understanding the 12 Technological Forces That Will Shape Our Future Khiavi MA, 2019, COLLOID SURFACE A, V572, P333, DOI 10.1016/j.colsurfa.2019.04.019 Li X, 2018, FAGUANGXUEBAO, V39, P96 Li X, 2019, TECHNOL FORECAST SOC, V146, P687, DOI 10.1016/j.techfore.2018.06.004 Li X, 2015, TECHNOL FORECAST SOC, V97, P205, DOI 10.1016/j.techfore.2014.05.007 Li Y, 2008, INT J COMPUT APPL T, V28, P108 Liu XY, 2018, POLYMERS-BASEL, V10, DOI 10.3390/polym10010042 Liu Y, 2017, INFORM FUSION, V36, P149, DOI 10.1016/j.inffus.2016.11.012 Manek AS, 2017, WORLD WIDE WEB, V20, P135, DOI 10.1007/s11280-015-0381-x Maria L, 2010, P INT C LANG RES EV P INT C LANG RES EV, P2054 Medhat W, 2014, AIN SHAMS ENG J, V5, P1093, DOI 10.1016/j.asej.2014.04.011 Negahdari B, 2019, ARTIF CELL NANOMED B, V47, P469, DOI 10.1080/21691401.2018.1546185 Onan A, 2019, IEEE ACCESS, V7, P145614, DOI 10.1109/ACCESS.2019.2945911 Rotolo D, 2015, RES POLICY, V44, P1827, DOI 10.1016/j.respol.2015.06.006 Serrano-Guerrero J, 2015, INFORM SCIENCES, V311, P18, DOI 10.1016/j.ins.2015.03.040 Severyukhina AN, 2015, ACS APPL MATER INTER, V7, P15466, DOI 10.1021/acsami.5b03696 Sud P, 2014, SCIENTOMETRICS, V98, P1131, DOI 10.1007/s11192-013-1117-2 Tang J, 2014, P 31 INT C MACH LEAR P 31 INT C MACH LEAR, P337 Weilin H., 2018, J. Inf. Resour. Manag., V8, P55 Xu JY, 2015, DYES PIGMENTS, V123, P55, DOI 10.1016/j.dyepig.2015.07.019 Zhou X, 2019, TECHNOL FORECAST SOC, V146, P785, DOI 10.1016/j.techfore.2018.04.026 Zhou X, 2019, SCIENTOMETRICS, V121, P699, DOI 10.1007/s11192-019-03218-5 Zhou X, 2014, NANOMED-NANOTECHNOL, V10, P889, DOI 10.1016/j.nano.2014.03.001 NR 30 TC 6 Z9 7 U1 8 U2 134 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9391 EI 1558-0040 J9 IEEE T ENG MANAGE JI IEEE Trans. Eng. Manage. PD OCT PY 2021 VL 68 IS 5 BP 1360 EP 1371 DI 10.1109/TEM.2020.2994049 PG 12 WC Business; Engineering, Industrial; Management WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Business & Economics; Engineering GA TK4EZ UT WOS:000674114900013 OA hybrid DA 2024-09-05 ER PT C AU Jung, SW Datta, R Segev, A AF Jung, Sukhwan Datta, Rituparna Segev, Aviv BE Wu, XT Jermaine, C Xiong, L Hu, XH Kotevska, O Lu, SY Xu, WJ Aluru, S Zhai, CX Al-Masri, E Chen, ZY Saltz, J TI Identification and Prediction of Emerging Topics through Their Relationships to Existing Topics SO 2020 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA) SE IEEE International Conference on Big Data LA English DT Proceedings Paper CT 8th IEEE International Conference on Big Data (Big Data) CY DEC 10-13, 2020 CL ELECTR NETWORK DE Topic Evolution; Topic Prediction; Network-based Topic Modeling; Scientometric ID TRENDS; EVOLUTION AB Understanding the current research topics and their histories allow researchers to focus their capabilities on the current research trends. The field of topic evolution helps the understanding by automatically model and detect the set of shared research fields in the academic papers as topics. The authors propose a novel topic evolution method for identifying and predicting the emergence of new topics under the assumption that neighborhoods of new topics in the future have distinguishable structural features. Eight journals were selected from the Microsoft Academic Graph dataset, each representing topics networks with varying size, history, and research domains. Both retrospective classification and prospective prediction showed promising performance with classifications above 0.89 for six journals and coefficients of determination exceeding 0.95 for five journals. The result showed both the retrospective identification and the prospective prediction can be done, validating the assumption that topic evolution events can be predicted with a network-based approach. C1 [Jung, Sukhwan; Datta, Rituparna; Segev, Aviv] Univ S Alabama, Dept Comp Sci, Mobile, AL 36688 USA. C3 University of South Alabama RP Jung, SW (corresponding author), Univ S Alabama, Dept Comp Sci, Mobile, AL 36688 USA. EM shjung@southalabama.edu; rdatta@southalabama.edu; segev@southalabama.edu RI Segev, Aviv/C-2060-2011; Jung, Suk hwan/HIK-1039-2022 CR [Anonymous], 2009, P 2009 SIAM INT C DA [Anonymous], 2009, Proceeding of the 18th ACM Conference on Information and Knowledge Management, DOI DOI 10.1145/1645953.1646076 [Anonymous], 1998, P DARPA BROADC NEWS Balili C, 2020, IEEE ACCESS, V8, P108514, DOI 10.1109/ACCESS.2020.3000948 Balili C, 2017, IEEE INT CONF BIG DA, P1694, DOI 10.1109/BigData.2017.8258108 Battistella C, 2014, TECHNOL FORECAST SOC, V87, P60, DOI 10.1016/j.techfore.2013.10.022 Blei D, 2006, P 23 INT C MACH LEAR, P113 Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993 Bongers A, 2014, TECHNOL FORECAST SOC, V87, P125, DOI 10.1016/j.techfore.2013.12.007 Chen BT, 2017, J INFORMETR, V11, P1175, DOI 10.1016/j.joi.2017.10.003 Chen CM, 2006, J AM SOC INF SCI TEC, V57, P359, DOI 10.1002/asi.20317 Clauset A, 2004, PHYS REV E, V70, DOI 10.1103/PhysRevE.70.066111 Dietz L., 2007, ICML, P233, DOI DOI 10.1145/1273496.1273526 Fiscus JG, 2002, KLUW S INF, V12, P17 Gencosman BC, 2014, INFORM PROCESS MANAG, V50, P821, DOI 10.1016/j.ipm.2014.06.005 Guo Z, 2014, IEEE T KNOWL DATA EN, V26, P780, DOI 10.1109/TKDE.2013.56 Hug SE, 2017, SCIENTOMETRICS, V111, P371, DOI 10.1007/s11192-017-2247-8 Jo Yookyung., 2011, P 20 INT C WORLD WID, P257, DOI DOI 10.1145/1963405.1963444 Jung S., 2013, P ACM INT C INF KNOW, P15, DOI [10.1145/2513549.2513553, DOI 10.1145/2513549.2513553] Jung S, 2020, J INFORMETR, V14, DOI 10.1016/j.joi.2020.101040 Jung S, 2016, IEEE INT CONGR BIG, P357, DOI 10.1109/BigDataCongress.2016.57 Jung S, 2014, KNOWL-BASED SYST, V69, P34, DOI 10.1016/j.knosys.2014.04.036 Kay L, 2014, J ASSOC INF SCI TECH, V65, P2432, DOI 10.1002/asi.23146 Kim J, 2017, ACM T INTEL SYST TEC, V8, DOI 10.1145/2898362 Li MN, 2017, J INF SCI, V43, P725, DOI 10.1177/0165551516661914 Liu TY, 2004, IEEE IMAGE PROC, P1617 Mei Qiaozhu., 2005, KDD 05, P198, DOI DOI 10.1145/1081870.1081895 Newman NC, 2014, J ENG TECHNOL MANAGE, V32, P97, DOI 10.1016/j.jengtecman.2013.09.001 Ozmutlu HC, 2005, INFORM PROCESS MANAG, V41, P1243, DOI 10.1016/j.ipm.2004.04.018 Ozmutlu S, 2006, INFORM PROCESS MANAG, V42, P934, DOI 10.1016/j.ipm.2005.10.002 PORTER AL, 1995, TECHNOL FORECAST SOC, V49, P237, DOI 10.1016/0040-1625(95)00022-3 Rosvall M, 2008, P NATL ACAD SCI USA, V105, P1118, DOI 10.1073/pnas.0706851105 Segev A, 2015, IEEE T SERV COMPUT, V8, P903, DOI 10.1109/TSC.2014.2338855 Segev A, 2013, IEEE INT CONGR BIG, P419, DOI 10.1109/BigData.Congress.2013.65 Sinha A, 2015, WWW'15 COMPANION: PROCEEDINGS OF THE 24TH INTERNATIONAL CONFERENCE ON WORLD WIDE WEB, P243, DOI 10.1145/2740908.2742839 Steyvers Mark, 2007, Handbook of latent semantic analysis, V427, P424, DOI [DOI 10.4324/9780203936399.CH21, 10.4324/9780203936399.ch21, DOI 10.1371/JOURNAL.PONE.0073791] Wang KS, 2019, FRONT BIG DATA, V2, DOI 10.3389/fdata.2019.00045 Yu J, 2005, PLOS BIOL, V3, P266, DOI 10.1371/journal.pbio.0030038 NR 38 TC 7 Z9 7 U1 2 U2 24 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA SN 2639-1589 BN 978-1-7281-6251-5 J9 IEEE INT CONF BIG DA PY 2020 BP 5078 EP 5087 DI 10.1109/BigData50022.2020.9378277 PG 10 WC Computer Science, Artificial Intelligence; Computer Science, Information Systems; Computer Science, Theory & Methods WE Conference Proceedings Citation Index - Science (CPCI-S) SC Computer Science GA BR6NZ UT WOS:000662554705020 DA 2024-09-05 ER PT J AU Li, DC Okamoto, J Liu, HF Leischow, S AF Li, Dingcheng Okamoto, Janet Liu, Hongfang Leischow, Scott TI A bibliometric analysis on tobacco regulation investigators SO BIODATA MINING LA English DT Article DE Author topic modeling; Bibliometric analysis; Tobacco regulation science; FDA; Principle investigators ID SCIENCE AB Background: To facilitate the implementation of the Family Smoking Prevention and Tobacco Control Act of 2009, the Federal Drug Agency (FDA) Center for Tobacco Products (CTP) has identified research priorities under the umbrella of tobacco regulatory science (TRS). As a newly integrated field, the current boundaries and landscape of TRS research are in need of definition. In this work, we conducted a bibliometric study of TRS research by applying author topic modeling (ATM) on MEDLINE citations published by currently-funded TRS principle investigators (PIs). Results: We compared topics generated with ATM on dataset collected with TRS PIs and topics generated with ATM on dataset collected with a TRS keyword list. It is found that all those topics show a good alignment with FDA's funding protocols. More interestingly, we can see clear interactive relationships among PIs and between PIs and topics. Based on those interactions, we can discover how diverse each PI is, how productive they are, which topics are more popular and what main components each topic involves. Temporal trend analysis of key words shows the significant evaluation in four prime TRS areas. Conclusions: The results show that ATM can efficiently group articles into discriminative categories without any supervision. This indicates that we may incorporate ATM into author identification systems to infer the identity of an author of articles using topics generated by the model. It can also be useful to grantees and funding administrators in suggesting potential collaborators or identifying those that share common research interests for data harmonization or other purposes. The incorporation of temporal analysis can be employed to assess the change over time in TRS as new projects are funded and the extent to which new research reflects the funding priorities of the FDA. C1 [Li, Dingcheng; Liu, Hongfang] Mayo Clin, Dept Biomed Stat & Informat, Rochester, MN 55905 USA. [Okamoto, Janet; Leischow, Scott] Mayo Clin, Dept Hematol Oncol, Scottsdale, AZ USA. C3 Mayo Clinic; Mayo Clinic; Mayo Clinic Phoenix RP Li, DC (corresponding author), Mayo Clin, Dept Biomed Stat & Informat, Rochester, MN 55905 USA. EM Li.Dingcheng@mayo.edu RI Liu, Hongfang/ISU-9369-2023 OI Liu, Hongfang/0000-0002-4352-2533 FU NLM NIH HHS [R01 LM009959] Funding Source: Medline CR Aldworth Jeremy., 2009, Results from the 2007 National Survey on Drug Use and Health: National Findings Bhattacharya I., 2005, LATENT DIRICHLET MOD Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993 Blot WJ, 2011, JNCI-J NATL CANCER I, V103, P810, DOI 10.1093/jnci/djr102 Dumais ST, 2004, ANNU REV INFORM SCI, V38, P189 Hall KL, 2012, AM J PREV MED, V42, P157, DOI 10.1016/j.amepre.2011.10.011 Hofmann T, 1999, SIGIR'99: PROCEEDINGS OF 22ND INTERNATIONAL CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, P50, DOI 10.1145/312624.312649 Leischow SJ, 2012, NICOTINE TOB RES, V14, P1, DOI 10.1093/ntr/ntr057 Lipscomb CE, 2000, B MED LIBR ASSOC, V88, P265 Mann GS, 2006, OPENING INFORMATION HORIZONS, P65 Mark Steyvers TG, 2014, MATLAB TOPIC MODELIN McCallum A., 2005, The author-recipient-topic model for topic and role discovery in social networks: Experiments with enron and academic email," McCallum A., 1999, AAAI 99 WORKSH TEXT, P1 McCallum Andrew Kachites, 2002, MALLET: A machine learning for language toolkit Newman12 D, TOPIC MODELS INTERPR Porter M. F, 2001, Snowball: A language for stemming algorithms Rosen-Zvi Michal., 2004, UAI Sonnenwald DH, 2007, ANNU REV INFORM SCI, V41, P643, DOI 10.1002/aris.2007.1440410121 Steyvers M., 2004, Proceedings of the International Conference on Knowledge Discovery and Data Mining (SIGKDD), P306, DOI [10.1145/1014052.1014087, 10.1145/1014052, DOI 10.1145/1014052] Taylor JB, 2011, J ECON LIT, V49, P686, DOI 10.1257/jel.49.3.686 Troy JD, 2013, CANC EPIDEMIOLOGY Turney PD, 2010, J ARTIF INTELL RES, V37, P141, DOI 10.1613/jair.2934 Wheat LA, 2011, ARTERIOSCL THROM VAS, V31, P1598, DOI 10.1161/ATVBAHA.111.227124 NR 23 TC 7 Z9 7 U1 0 U2 14 PU BMC PI LONDON PA CAMPUS, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1756-0381 J9 BIODATA MIN JI BioData Min. PD MAR 21 PY 2015 VL 8 AR 11 DI 10.1186/s13040-015-0043-7 PG 20 WC Mathematical & Computational Biology WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Mathematical & Computational Biology GA CI1NA UT WOS:000354509700001 PM 25984237 OA Green Published, gold DA 2024-09-05 ER PT J AU DeStefano, I Oey, LA Brockbank, E Vul, E AF DeStefano, Isabella Oey, Lauren A. Brockbank, Erik Vul, Edward TI Integration by Parts: Collaboration and Topic Structure in the CogSci Community SO TOPICS IN COGNITIVE SCIENCE LA English DT Article DE Co‐ authorship networks; Topic modeling; Interdisciplinarity; Multidisciplinarity; Scientometrics ID COGNITIVE SCIENCE; NETWORK; INFORMATION; GROWTH AB Is cognitive science interdisciplinary or multidisciplinary? We contribute to this debate by examining the authorship structure and topic similarity of contributions to the Cognitive Science Society from 2000 to 2019. Our analysis focuses on graph theoretic features of the co-authorship network-edge density, transitivity, and maximum subgraph size-as well as clustering within the space of scientific topics. We also combine structural and semantic information with an analysis of how authors choose their collaborators based on their interests and prior collaborations. We compare findings from CogSci to abstracts from the Vision Science Society over the same time frame and validate our approach by predicting new collaborations in the 2020 CogSci proceedings. Our results suggest that collaboration across authors and topics within cognitive science has become increasingly integrated in the last 19 years. More broadly, we argue that a formal quantitative approach which combines structural co-authorship information and semantic topic analysis provides inroads to questions about the level of interdisciplinary collaboration in a scientific community. C1 [DeStefano, Isabella; Oey, Lauren A.; Brockbank, Erik; Vul, Edward] Univ Calif San Diego, Dept Psychol, 9500 Gilman Dr, La Jolla, CA 92093 USA. C3 University of California System; University of California San Diego RP DeStefano, I; Oey, LA (corresponding author), Univ Calif San Diego, Dept Psychol, 9500 Gilman Dr, La Jolla, CA 92093 USA. EM idestefa@ucsd.edu; loey@ucsd.edu OI Oey, Lauren/0000-0002-4959-5135; Brockbank, Erik/0000-0001-8702-239X FU UCSD Research Grant [RG095178]; NSF Graduate Research Fellowship [DGE-1650112] FX We thank Rafael Nunez, Carson Miller Rigoli, Michael Allen, and Richard Gao for helpful discussion. We also thank Jamal Williams and Hayden Schill for their assistance with an earlier version of the analyses presented here. Finally, we thank the CogSci 2020 organizers for graciously sharing an early list of the authors published in the 2020 proceedings. This material is based upon work supported by a UCSD Research Grant to I.D., the NSF Graduate Research Fellowship under Grant No. DGE-1650112 to L.A.O. and UCSD Research Grant No. RG095178 to E.B. CR Acedo FJ, 2006, J MANAGE STUD, V43, P957, DOI 10.1111/j.1467-6486.2006.00625.x Barabási AL, 2002, PHYSICA A, V311, P590, DOI 10.1016/S0378-4371(02)00736-7 Bender A, 2019, TOP COGN SCI, V11, P853, DOI 10.1111/tops.12464 Bergmann T, 2017, COGNITIVE SCI, V41, P1412, DOI 10.1111/cogs.12352 Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993 Chater N, 1999, TRENDS COGN SCI, V3, P57, DOI 10.1016/S1364-6613(98)01273-X Feng SH, 2020, SCI REP-UK, V10, DOI 10.1038/s41598-020-64351-3 Goldstone RL, 2006, COGNITIVE SCI, V30, P983, DOI 10.1207/s15516709cog0000_96 Gopnik A, 2000, CHILD DEV, V71, P1205, DOI 10.1111/1467-8624.00224 Gowanlock M, 2013, SCIENTOMETRICS, V94, P133, DOI 10.1007/s11192-012-0765-y Gray WD, 2019, TOP COGN SCI, V11, P838, DOI 10.1111/tops.12471 Griffiths TL, 2004, P NATL ACAD SCI USA, V101, P5228, DOI 10.1073/pnas.0307752101 Newman MEJ, 2004, P NATL ACAD SCI USA, V101, P5200, DOI 10.1073/pnas.0307545100 Newman MEJ, 2001, P NATL ACAD SCI USA, V98, P404, DOI 10.1073/pnas.021544898 Nichols LG, 2014, SCIENTOMETRICS, V100, P741, DOI 10.1007/s11192-014-1319-2 Núñez R, 2020, TOP COGN SCI, V12, P790, DOI 10.1111/tops.12511 Núñez R, 2019, NAT HUM BEHAV, V3, P782, DOI 10.1038/s41562-019-0626-2 Parinov S, 2014, SCIENTOMETRICS, V98, P927, DOI 10.1007/s11192-013-1108-3 Porter AL, 2007, SCIENTOMETRICS, V72, P117, DOI 10.1007/s11192-007-1700-5 Porter AL, 2009, SCIENTOMETRICS, V81, P719, DOI 10.1007/s11192-008-2197-2 Priva UC, 2015, COGNITION, V135, P4, DOI 10.1016/j.cognition.2014.11.006 Rafols I, 2010, SCIENTOMETRICS, V82, P263, DOI 10.1007/s11192-009-0041-y Ravikumar S, 2015, SCIENTOMETRICS, V102, P929, DOI 10.1007/s11192-014-1402-8 Roberts Margaret E., 2014, Journal of Statistical Software, V10, P1, DOI [DOI 10.18637/JSS.V000.I00, 10.18637/jss.v091.i02] Rothe A., 2018, Proceedings of the 40th Annual Conference of the Cognitive Science Society, P979 Rumelhart D., 1986, Explorations in the Microstructure of Cognition: Foundations, P318, DOI 10.1016/b978-1-4832-1446-7.50035-2 Schunn CD, 1998, COGNITIVE SCI, V22, P107, DOI 10.1207/s15516709cog2201_4 SWETS JA, 1988, SCIENCE, V240, P1285, DOI 10.1126/science.3287615 Wagner CS, 2011, J INFORMETR, V5, P14, DOI 10.1016/j.joi.2010.06.004 Wagner CS, 2005, RES POLICY, V34, P1608, DOI 10.1016/j.respol.2005.08.002 NR 30 TC 4 Z9 5 U1 0 U2 5 PU WILEY PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1756-8757 EI 1756-8765 J9 TOP COGN SCI JI Top. Cogn. Sci. PD APR PY 2021 VL 13 IS 2 SI SI BP 399 EP 413 DI 10.1111/tops.12526 EA MAR 2021 PG 15 WC Psychology, Experimental WE Social Science Citation Index (SSCI) SC Psychology GA RU2QQ UT WOS:000630752600001 PM 33742776 OA Bronze DA 2024-09-05 ER PT J AU Dantu, R Dissanayake, I Nerur, S AF Dantu, Ramakrishna Dissanayake, Indika Nerur, Sridhar TI Exploratory Analysis of Internet of Things (IoT) in Healthcare: A Topic Modelling & Co-citation Approaches SO INFORMATION SYSTEMS MANAGEMENT LA English DT Article DE Internet of things; healthcare; topic modeling; author co-citation; smart health ID MONITORING-SYSTEM; BIG DATA; SENSOR; INTEGRATION; MEDICINE; CITATION AB Internet of Things (IoT) have made a significant impact in healthcare domain. The purpose of this study is to unravel key themes latent in the academic literature on IoT applications in healthcare. Using topic modeling and author co-citation techniques, we identified five dominant clusters of research. Our results show that research in healthcare IoT has mainly focused on the technical aspects with little attention to social concerns. Our paper provides directions for future research. C1 [Dantu, Ramakrishna] Calif State Univ Sacramento, Informat Syst & Business Analyt Dept, Sacramento, CA 95819 USA. [Dissanayake, Indika] Univ N Carolina, Dept Informat Syst & Supply Chain Management, Greensboro, NC USA. [Nerur, Sridhar] Univ Texas Arlington, Dept Informat Syst & Operat Management, Arlington, TX 76019 USA. C3 California State University System; California State University Sacramento; University of North Carolina; University of North Carolina Greensboro; University of Texas System; University of Texas Arlington RP Dantu, R (corresponding author), Calif State Univ Sacramento, Coll Business Adm, Informat Syst & Business Analyt Dept, 6000 J St, Sacramento, CA 95819 USA. EM Ramakrishna.dantu@csus.edu CR A. W.S Marketplace, 2019, MON REM PAT HLTH APP Alaiad A, 2017, IEEE T PROF COMMUN, V60, P4, DOI 10.1109/TPC.2016.2632822 Aldossari MQ, 2020, J COMPUT INFORM SYST, V60, P507, DOI 10.1080/08874417.2018.1543000 Ali Z, 2017, IEEE ACCESS, V5, P3900, DOI 10.1109/ACCESS.2017.2680467 Ammar M, 2018, J INF SECUR APPL, V38, P8, DOI 10.1016/j.jisa.2017.11.002 An R., 2016, LECT NOTES DATA ENG, V2 [Anonymous], 2014, CHIN PAT [Anonymous], 2015, Data Science from Scratch, First Principles with Python [Anonymous], 2016, EX OV PRIV SEC HLTH [Anonymous], 2017, Gartner says 8.4 billion connected "things" will be inuse in 2017, up 31 percent from 2016 Bauer Harald., 2014, The Internet of Things: Sizing up the opportunity Bibani O, 2016, INT CONF CLOUD COMP, P472, DOI [10.1109/CloudCom.2016.0081, 10.1109/CloudCom.2016.79] Blei DM, 2012, COMMUN ACM, V55, P77, DOI 10.1145/2133806.2133826 Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993 Botta A, 2016, FUTURE GENER COMP SY, V56, P684, DOI 10.1016/j.future.2015.09.021 Cai HM, 2017, IEEE INTERNET THINGS, V4, P75, DOI 10.1109/JIOT.2016.2619369 Catalyst N., 2018, NEJM CATAL, V4, DOI [10.1056/CAT.18.0290?targetBtn=articleToolSaveBtn, DOI 10.1056/CAT.18.0290?TARGETBTN=ARTICLETOOLSAVEBTN] Catarinucci L, 2015, IEEE INTERNET THINGS, V2, P515, DOI 10.1109/JIOT.2015.2417684 Cavaleri S., 1993, MANAGEMENT SYSTEMS G Chen M, 2017, IEEE COMMUN MAG, V55, P54, DOI 10.1109/MCOM.2017.1600410CM Chen M, 2016, MOBILE NETW APPL, V21, P825, DOI 10.1007/s11036-016-0745-1 Chen M, 2011, MOBILE NETW APPL, V16, P171, DOI 10.1007/s11036-010-0260-8 Darwish A, 2011, SENSORS-BASEL, V11, P5561, DOI 10.3390/s110605561 Diegmann P., 2018, PROC INT CONF INFORM Dimitrov DV, 2016, HEALTHC INFORM RES, V22, P156, DOI 10.4258/hir.2016.22.3.156 Dinl S, 2015, I CONF SENS TECHNOL, P677, DOI 10.1109/ICSensT.2015.7438483 Econsultancy, 2019, INTERNET THINGS HEAL Fan YJ, 2014, IEEE T IND INFORM, V10, P1568, DOI 10.1109/TII.2014.2302583 Fortino G, 2014, WIREL NETW, V20, P1925, DOI 10.1007/s11276-014-0714-1 Fu Y, 2015, PROCEDIA MANUF, V3, P1187, DOI 10.1016/j.promfg.2015.07.197 Greer C., 2019, SPECIAL PUBLICATION, DOI [10.6028/NIST.SP.1900-202, DOI 10.6028/NIST.SP.1900-202] Gubbi J, 2013, FUTURE GENER COMP SY, V29, P1645, DOI 10.1016/j.future.2013.01.010 Tran HA, 2017, INT CONF KNOWL SYS, P1, DOI 10.1109/KSE.2017.8119425 He DB, 2015, IEEE INTERNET THINGS, V2, P72, DOI 10.1109/JIOT.2014.2360121 HealthIT.Gov, 2019, HIPAA BAS PRIV SEC Hofmann T, 2001, MACH LEARN, V42, P177, DOI 10.1023/A:1007617005950 Hossain MS, 2016, COMPUT NETW, V101, P192, DOI 10.1016/j.comnet.2016.01.009 Ishii H, 2016, PROCEDIA COMPUT SCI, V96, P1332, DOI 10.1016/j.procs.2016.08.178 Islam SMR, 2015, IEEE ACCESS, V3, P678, DOI 10.1109/ACCESS.2015.2437951 Ismail NHAB, 2014, 2014 INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE AND TECHNOLOGY (ICCST) Istepanian RSH, 2011, IEEE ENG MED BIO, P5264, DOI 10.1109/IEMBS.2011.6091302 Jara A. J., 2012, LECT NOTES COMPUTER, V7657, DOI [10.1007/978-3-642-35395-6_34, DOI 10.1007/978-3-642-35395-6_34] Jara AJ, 2011, PERS UBIQUIT COMPUT, V15, P431, DOI 10.1007/s00779-010-0353-1 Jovanov E, 2011, J MED SYST, V35, P1245, DOI 10.1007/s10916-011-9661-x Kalis B., 2017, ACCENTURE 2017 INTER Kario K, 2017, PROG CARDIOVASC DIS, V60, P435, DOI 10.1016/j.pcad.2017.10.002 KESSLER MM, 1963, AM DOC, V14, P10, DOI 10.1002/asi.5090140103 KIM JH, 2017, J IND INTEGR MANAG, V2, DOI DOI 10.1142/S2424862217500117 Krawiec R., 2015, No appointment necessary: How the IoT and patient-generated data can unlock health care value-The Internet of Things in health care Kumaresh S., 2016, INT C EL EL OPT TECH Kwon MC, 2017, INT CONF UBIQ FUTUR, P735 Laplante PA, 2018, IEEE SYST J, V12, P3030, DOI 10.1109/JSYST.2017.2662602 Lee S, 2010, J COMPUT INFORM SYST, V51, P1 Li CT, 2017, SENSORS-BASEL, V17, DOI 10.3390/s17071482 Li SC, 2018, J IND INF INTEGR, V10, P1, DOI 10.1016/j.jii.2018.01.005 Liang X, 2011, DIABETIC MED, V28, P455, DOI 10.1111/j.1464-5491.2010.03180.x Lin J, 2017, IEEE INTERNET THINGS, V4, P1125, DOI 10.1109/JIOT.2017.2683200 Malvade PS, 2017, 2017 INTERNATIONAL CONFERENCE ON COMPUTING, COMMUNICATION, CONTROL AND AUTOMATION (ICCUBEA) Manning C. D., 2008, INTRO INFORM RETRIEV Mansuri S, 2018, HEALTHWORKS COL 1120 McCallum Andrew Kachites, 2002, MALLET: A machine learning for language toolkit Nagao T, 2016, PROCEEDINGS OF THE 18TH INTERNATIONAL SYMPOSIUM ON PRINCIPLES AND PRACTICE OF DECLARATIVE PROGRAMMING (PPDP 2016), P50, DOI 10.1145/2967973.2968598 Nerur SP, 2008, STRATEG MANAGE J, V29, P319, DOI 10.1002/smj.659 Ng CK, 2018, ENTERP INF SYST-UK, V12, P820, DOI 10.1080/17517575.2018.1464666 Qin Z, 2017, MOB INF SYST, V2017, DOI 10.1155/2017/7514867 Rathore MM, 2017, ACM T INTERNET TECHN, V18, DOI 10.1145/3108936 Roy A, 2016, PROCEDIA ENGINEER, V159, P199, DOI 10.1016/j.proeng.2016.08.159 Sahi MA, 2018, IEEE ACCESS, V6, P464, DOI 10.1109/ACCESS.2017.2767561 Sareen S, 2017, ENTERP INF SYST-UK, V11, P1436, DOI 10.1080/17517575.2016.1277558 Sarkar S, 2017, IEEE COMMUN LETT, V21, P2492, DOI 10.1109/LCOMM.2017.2739141 Shahamabadi MS, 2016, 2016 INTERNATIONAL CONFERENCE ON IDENTIFICATION, INFORMATION AND KNOWLEDGE IN THE INTERNET OF THINGS (IIKI), P305, DOI 10.1109/IIKI.2016.110 Sircar S, 2001, MIS QUART, V25, P457, DOI 10.2307/3250991 SMALL H, 1973, J AM SOC INFORM SCI, V24, P265, DOI 10.1002/asi.4630240406 Sood SK, 2017, COMPUT IND, V91, P33, DOI 10.1016/j.compind.2017.05.006 Staff, 2015, INTERNET THINGS PRIV Statista, 2018, IOT NUMB CONN DEV WO Sun J, 2016, AGING DIS, V7, DOI 10.14336/AD.2015.1011 Takamiya Makoto, 2015, 2015 International Symposium on VLSI Design, Automation and Test (VLSI-DAT). Proceedings, P1, DOI 10.1109/VLSI-DAT.2015.7114542 Taylor J, 2017, INFORM SYST MANAGE, V34, P105, DOI 10.1080/10580530.2017.1288521 Tyagi S, 2016, 2016 6TH INTERNATIONAL CONFERENCE - CLOUD SYSTEM AND BIG DATA ENGINEERING (CONFLUENCE), P503, DOI 10.1109/CONFLUENCE.2016.7508172 Ukil A, 2016, INT CON ADV INFO NET, P994, DOI 10.1109/AINA.2016.158 US Department of Health and Human Services, 2019, HLTH INF PRIV van Eck NJ, 2010, SCIENTOMETRICS, V84, P523, DOI 10.1007/s11192-009-0146-3 Varshney U, 2014, DECIS SUPPORT SYST, V66, P20, DOI 10.1016/j.dss.2014.06.001 Versel N., 2013, INFORMATIONWEEK Walter C, 2013, KNOWL MAN RES PRACT, V11, P221, DOI 10.1057/kmrp.2013.25 Wang NX, 2016, DECIS SUPPORT SYST, V86, P35, DOI 10.1016/j.dss.2016.03.006 Whitmore A, 2015, INFORM SYST FRONT, V17, P261, DOI 10.1007/s10796-014-9489-2 Xu BY, 2014, IEEE T IND INFORM, V10, P1578, DOI 10.1109/TII.2014.2306382 Xu L., 2014, IEEE Transactions on Industrial Informatics, P1, DOI [DOI 10.1109/TII.2014.2300753, 10.1109/TII.2014.2300753] Xu W., 2003, INT ACM SIGIR C RES, P267, DOI DOI 10.1145/860435.860485 Yan HR, 2015, J MANAG ANAL, V2, P121, DOI 10.1080/23270012.2015.1029550 Yang G, 2014, IEEE T IND INFORM, V10, P2180, DOI 10.1109/TII.2014.2307795 Yang P, 2018, IEEE T SYST MAN CY-S, V48, P50, DOI 10.1109/TSMC.2016.2586075 Yean S, 2016, 7TH IEEE ANNUAL INFORMATION TECHNOLOGY, ELECTRONICS & MOBILE COMMUNICATION CONFERENCE IEEE IEMCON-2016 Yin YH, 2016, J IND INF INTEGR, V1, P3, DOI 10.1016/j.jii.2016.03.004 Zanella A, 2014, IEEE INTERNET THINGS, V1, P22, DOI 10.1109/JIOT.2014.2306328 Zhang L, 2016, J MED SYST, V40, DOI [10.1007/s10916-016-0480-y, 10.1007/s10916-016-0644-9] Zhikun Deng, 2015, 2015 IEEE International Conferences on Computer and Information Technology; Ubiquitous Computing and Communications; Dependable, Autonomic and Secure Computing; and Pervasive Intelligence and Computing (CIT/IUCC/DASC/PICOM). Proceedings, P2315, DOI 10.1109/CIT/IUCC/DASC/PICOM.2015.342 Zicari R, 2016, EXPLOSION BIG DATA H NR 100 TC 25 Z9 29 U1 0 U2 27 PU TAYLOR & FRANCIS INC PI PHILADELPHIA PA 530 WALNUT STREET, STE 850, PHILADELPHIA, PA 19106 USA SN 1058-0530 EI 1934-8703 J9 INFORM SYST MANAGE JI Inf. Syst. Manage. PD JAN 2 PY 2021 VL 38 IS 1 BP 62 EP 78 DI 10.1080/10580530.2020.1746982 EA APR 2020 PG 17 WC Computer Science, Information Systems WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Computer Science GA PC3BG UT WOS:000528370200001 DA 2024-09-05 ER PT J AU Dobos, I Halmai, P Sasvári, P AF Dobos, Imre Halmai, Peter Sasvari, Peter TI Compilation of an International Journal List in the HAS IX. Section of the Doctoral Committee for Economics and Management SO PUBLIC FINANCE QUARTERLY-HUNGARY LA English DT Article DE scientometrics; list of journals; linear regression AB Only some of the Sections of the Hungarian Academy of Sciences (HAS) compile a list of journals. One of these is the IX Section of Economics and Law of the MTA. The section(sic)s doctoral committees evaluate candidates for the title of Doctor of the Academy of Sciences on the basis of eight lists of journals. The lists are generally stable in the sense that they remain unchanged for about five years, but renewal of the lists becomes necessary from time to time. In this publication, we describe the process of renewing the list of journals of the Qualification Committee for Doctoral Candidates in Economics and Management, Section IX of the Academy of Sciences, from the method of compiling the list of journals to the statistical methods used to determine the A, B, C, and D. C1 [Dobos, Imre; Halmai, Peter] Budapest Univ Technol & Econ, Fac Econ & Social Sci, Budapest, Hungary. [Halmai, Peter] Hungarian Acad Sci, Budapest, Hungary. [Halmai, Peter; Sasvari, Peter] Univ Publ Serv, Fac Publ Governance & Int Stud, Budapest, Hungary. [Sasvari, Peter] Univ Miskolc, Fac Mech Engn & Informat, Miskolc, Hungary. C3 Budapest University of Technology & Economics; Hungarian Academy of Sciences; Ludovika University of Public Service; University of Miskolc RP Sasvári, P (corresponding author), Univ Publ Serv, Fac Publ Governance & Int Stud, Budapest, Hungary.; Sasvári, P (corresponding author), Univ Miskolc, Fac Mech Engn & Informat, Miskolc, Hungary. EM dobos.imre@gtk.bme.hu; halmai.peter@gtk.bme.hu; sasvari.peter@uni-nke.hu RI Dobos, Imre/A-5180-2013; Sasvari, Peter/B-5149-2013 OI Dobos, Imre/0000-0001-6248-2920; Sasvari, Peter/0000-0002-4031-4843 CR [Anonymous], 2019, AZ MTA GAZDASAGES JO Clarivate, J CIT IND Clarivate, Essential science indicators: learn the basics Clarivate, Journal Citation Reports Csaba L., 2014, MAGYAR TUDOMANY, P442 Dobos I., 2022, MAGYAR TUDOMANY, V183, P495 Guerrero-Bote VP, 2012, J INFORMETR, V6, P674, DOI 10.1016/j.joi.2012.07.001 Harzing A-W, 2022, Journal Quality List SCImago, SJR SCIMAGO J COUNTR WU-Wirstchaftsuniversitat Wien, 2021, J RATINGS PERFORMANC Zalai E., 2006, KOZGAZDASAGI SZEMLE, V53, P380 NR 11 TC 0 Z9 0 U1 0 U2 2 PU CORVINUS UNIV BUDAPEST PI BUDAPEST PA VILLANYI UT 29/43, BUDAPEST, H-1118, HUNGARY SN 0031-496X EI 2064-8278 J9 PUBLIC FINANC Q-HUNG JI Public Financ. Q.-Hung. PY 2023 VL 69 IS 2 BP 67 EP 80 DI 10.35551/PFQ_2023_2_4 PG 14 WC Business, Finance WE Emerging Sources Citation Index (ESCI) SC Business & Economics GA P6FB1 UT WOS:001051602100007 OA Green Accepted, Bronze DA 2024-09-05 ER PT J AU Jung, S Segev, A AF Jung, Sukhwan Segev, Aviv TI Analyzing the generalizability of the network-based topic emergence identification method SO SEMANTIC WEB LA English DT Article DE Topic evolution; topic prediction; network-based topic modeling; scientometrics ID TRENDS AB Topic evolution helps the understanding of current research topics and their histories by automatically modeling and detecting the set of shared research fields in academic publications as topics. This paper provides a generalized analysis of the topic evolution method for predicting the emergence of new topics, which can operate on any dataset where the topics are defined as the relationships of their neighborhoods in the past by extrapolating to the future topics. Twenty sample topic networks were built with various fields-of-study keywords as seeds, covering domains such as business, materials, diseases, and computer science from the Microsoft Academic Graph dataset. The binary classifier was trained for each topic network using 15 structural features of emerging and existing topics and consistently resulted in accuracy and F1 over 0.91 for all twenty datasets over the periods of 2000 to 2019. Feature selection showed that the models retained most of the performance with only one-third of the tested features. Incremental learning was tested within the same topic over time and between different topics, which resulted in slight performance improvements in both cases. This indicates there is an underlying pattern to the neighbors of new topics common to research domains, likely beyond the sample topics used in the experiment. The result showed that network-based new topic prediction can be applied to various research domains with different research patterns. C1 [Jung, Sukhwan; Segev, Aviv] Univ S Alabama, Dept Comp Sci, 150 Student Serv Dr, Mobile, AL 36608 USA. C3 University of South Alabama RP Jung, S (corresponding author), Univ S Alabama, Dept Comp Sci, 150 Student Serv Dr, Mobile, AL 36608 USA. EM shjung@southalabama.edu RI Jung, Suk hwan/HIK-1039-2022; Segev, Aviv/C-2060-2011 CR Allan J, 1998, TOPIC DETECTION TRAC, DOI [DOI 10.1184/R1/6626252.V1, 10.1184/R1/6626252. v1] [Anonymous], 2009, Proceeding of the 18th ACM Conference on Information and Knowledge Management, DOI DOI 10.1145/1645953.1646076 Balili C, 2017, IEEE INT CONF BIG DA, P1694, DOI 10.1109/BigData.2017.8258108 Battistella C, 2014, TECHNOL FORECAST SOC, V87, P60, DOI 10.1016/j.techfore.2013.10.022 Blei D, 2006, P 23 INT C MACH LEAR, P113 Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993 Bongers A, 2014, TECHNOL FORECAST SOC, V87, P125, DOI 10.1016/j.techfore.2013.12.007 Chen BT, 2017, J INFORMETR, V11, P1175, DOI 10.1016/j.joi.2017.10.003 Chen CM, 2006, J AM SOC INF SCI TEC, V57, P359, DOI 10.1002/asi.20317 Clauset A, 2004, PHYS REV E, V70, DOI 10.1103/PhysRevE.70.066111 Dieng AB, 2020, T ASSOC COMPUT LING, V8, P439, DOI 10.1162/tacl_a_00325 Dietz L., 2007, ICML, P233, DOI DOI 10.1145/1273496.1273526 Fiscus JG, 2002, KLUW S INF, V12, P17 Gencosman BC, 2014, INFORM PROCESS MANAG, V50, P821, DOI 10.1016/j.ipm.2014.06.005 Gohr Andrll., 2009, SDM, P859, DOI DOI 10.1137/1.9781611972795.74 Guo Z, 2014, IEEE T KNOWL DATA EN, V26, P780, DOI 10.1109/TKDE.2013.56 Hug SE, 2017, SCIENTOMETRICS, V111, P371, DOI 10.1007/s11192-017-2247-8 Jo Yookyung., 2011, P 20 INT C WORLD WID, P257, DOI DOI 10.1145/1963405.1963444 Jung S., 2013, P ACM INT C INF KNOW, P15, DOI [10.1145/2513549.2513553, DOI 10.1145/2513549.2513553] Jung SW, 2020, IEEE INT CONF BIG DA, P5078, DOI 10.1109/BigData50022.2020.9378277 Jung S, 2020, J INFORMETR, V14, DOI 10.1016/j.joi.2020.101040 Jung S, 2016, IEEE INT CONGR BIG, P357, DOI 10.1109/BigDataCongress.2016.57 Jung S, 2014, KNOWL-BASED SYST, V69, P34, DOI 10.1016/j.knosys.2014.04.036 Kay L, 2014, J ASSOC INF SCI TECH, V65, P2432, DOI 10.1002/asi.23146 Li MN, 2017, J INF SCI, V43, P725, DOI 10.1177/0165551516661914 Mei Qiaozhu., 2005, KDD 05, P198, DOI DOI 10.1145/1081870.1081895 Newman NC, 2014, J ENG TECHNOL MANAGE, V32, P97, DOI 10.1016/j.jengtecman.2013.09.001 Osborne F, 2017, K-CAP 2017: PROCEEDINGS OF THE KNOWLEDGE CAPTURE CONFERENCE, DOI 10.1145/3148011.3148080 Ozmutlu HC, 2005, INFORM PROCESS MANAG, V41, P1243, DOI 10.1016/j.ipm.2004.04.018 Ozmutlu S, 2006, INFORM PROCESS MANAG, V42, P934, DOI 10.1016/j.ipm.2005.10.002 Parés F, 2018, STUD COMPUT INTELL, V689, P229, DOI 10.1007/978-3-319-72150-7_19 PORTER AL, 1995, TECHNOL FORECAST SOC, V49, P237, DOI 10.1016/0040-1625(95)00022-3 Salatino AA, 2019, LECT NOTES COMPUT SC, V11799, P296, DOI 10.1007/978-3-030-30760-8_26 Salatino AA, 2018, ACM-IEEE J CONF DIG, P303, DOI 10.1145/3197026.3197052 Salatino AA, 2017, PEERJ COMPUT SCI, DOI 10.7717/peerj-cs.119 Segev A, 2015, IEEE T SERV COMPUT, V8, P903, DOI 10.1109/TSC.2014.2338855 Segev A, 2013, IEEE INT CONGR BIG, P419, DOI 10.1109/BigData.Congress.2013.65 Shen ZH, 2018, 56TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2018): PROCEEDINGS OF SYSTEM DEMONSTRATIONS, P87 Sinha A, 2015, WWW'15 COMPANION: PROCEEDINGS OF THE 24TH INTERNATIONAL CONFERENCE ON WORLD WIDE WEB, P243, DOI 10.1145/2740908.2742839 Steyvers Mark, 2007, Handbook of latent semantic analysis, V427, P424 Wang KS, 2019, FRONT BIG DATA, V2, DOI 10.3389/fdata.2019.00045 Zhang J., 2004, ADV NEURAL INFORM PR Zhu CY, 1997, ACM T MATH SOFTWARE, V23, P550, DOI 10.1145/279232.279236 NR 43 TC 6 Z9 6 U1 1 U2 19 PU IOS PRESS PI AMSTERDAM PA NIEUWE HEMWEG 6B, 1013 BG AMSTERDAM, NETHERLANDS SN 1570-0844 EI 2210-4968 J9 SEMANT WEB JI Semant. Web PY 2022 VL 13 IS 3 BP 423 EP 439 DI 10.3233/SW-212951 PG 17 WC Computer Science, Artificial Intelligence; Computer Science, Information Systems; Computer Science, Theory & Methods WE Science Citation Index Expanded (SCI-EXPANDED) SC Computer Science GA 0J3YH UT WOS:000780041500007 OA hybrid DA 2024-09-05 ER PT J AU Li, R Wang, XD Lei, L Wu, CM AF Li, Rui Wang, Xiaodan Lei, Lei Wu, Chongming TI Representation learning by hierarchical ELM auto-encoder with double random hidden layers SO IET COMPUTER VISION LA English DT Article DE learning (artificial intelligence); pattern classification; random hidden mapping layers; output layer; decoding feature; stacking DELM-AE; hierarchical structure; H-DELM model; feature representation; original input information; original input data; expressive feature; compact feature; deep learning algorithms; extreme learning machine; multilayer network architecture lead; extremely fast training speed; expressive representation learning method; hierarchical ELM; H-ELM; novel architectural unit; double random hidden layers ELM; auto-encoder; novel DELM-AE; research developments; relevant multilayer ELM ID EXTREME; MACHINE; NETWORKS AB Recent research developments of extreme learning machine (ELM) with multilayer network architecture lead to a promising high performance with extremely fast training speed for representation learning. In this work, the authors are dedicated to develop an efficient and expressive representation learning method with hierarchical ELM, and proposing a novel architectural unit named as double random hidden layers ELM auto-encoder (DELM-AE). The novel DELM-AE consists of one input layer, two random hidden mapping layers for encoding feature, and one output layer for decoding feature. When stacking DELM-AE in the hierarchical structure, they can construct an H-DELM model, where the input of the current AE is the feature representation learned by the previous one, but the output is identical to the original input information and is not the input. Hence, the H-DELM can reproduce the original input data as much as possible to learn more expressive and compact feature. They validate their method on various widely public datasets, and the results demonstrate that H-DELM can bring significant performance improvements in terms of classification accuracy and robustness compared with existing relevant multilayer ELM and other deep learning algorithms at a slight computational cost. C1 [Li, Rui; Wang, Xiaodan; Lei, Lei] Air Force Engn Univ, Coll Air & Missile Def, Xian 710051, Shanxi, Peoples R China. [Wu, Chongming] Xijing Univ, Coll Business, Xian 710123, Shanxi, Peoples R China. C3 Air Force Engineering University; Xijing University RP Wang, XD (corresponding author), Air Force Engn Univ, Coll Air & Missile Def, Xian 710051, Shanxi, Peoples R China. EM afeu_wang@163.com RI Li, June/JEF-1173-2023; wang, xiao/HZI-9156-2023; Wu, Chongming/AAQ-9085-2021 OI Li, Rui/0000-0003-1770-906X FU National Natural Science Foundation of China [61876189, 61806219, 61503407, 61703426, 61273275] FX This work was supported by the National Natural Science Foundation of China under Grants nos. 61876189, 61806219, 61503407, 61703426, and 61273275. CR Bengio Y, 2013, IEEE T PATTERN ANAL, V35, P1798, DOI 10.1109/TPAMI.2013.50 Bengio Y, 2009, FOUND TRENDS MACH LE, V2, P1, DOI 10.1561/2200000006 Chang CC, 2011, ACM T INTEL SYST TEC, V2, DOI 10.1145/1961189.1961199 Chen L, 2018, MOL GENET GENOMICS, V293, P137, DOI 10.1007/s00438-017-1372-7 Guo YM, 2016, NEUROCOMPUTING, V187, P27, DOI 10.1016/j.neucom.2015.09.116 He B, 2014, COGN COMPUT, V6, P264, DOI 10.1007/s12559-013-9224-1 Hinton GE, 2006, SCIENCE, V313, P504, DOI 10.1126/science.1127647 Huang G, 2015, NEURAL NETWORKS, V61, P32, DOI 10.1016/j.neunet.2014.10.001 Huang GB, 2006, NEUROCOMPUTING, V70, P489, DOI 10.1016/j.neucom.2005.12.126 Huang GB, 2006, IEEE T NEURAL NETWOR, V17, P879, DOI 10.1109/TNN.2006.875977 Huang GB, 2015, COGN COMPUT, V7, P263, DOI 10.1007/s12559-015-9333-0 Huang GB, 2012, IEEE T SYST MAN CY B, V42, P513, DOI 10.1109/TSMCB.2011.2168604 Huang MX, 2016, J APPL ANAL COMPUT, V6, P376, DOI 10.11948/2016029 Huang ZY, 2017, IEEE T CYBERNETICS, V47, P920, DOI 10.1109/TCYB.2016.2533424 Jiang XJ, 2013, 2013 SIXTH INTERNATIONAL CONFERENCE ON ADVANCED COMPUTATIONAL INTELLIGENCE (ICACI), P256, DOI 10.1109/ICACI.2013.6748512 Kasun LLC, 2013, IEEE INTELL SYST, V28, P31 Krizhevsky A, 2017, COMMUN ACM, V60, P84, DOI 10.1145/3065386 Liou CY, 2014, NEUROCOMPUTING, V139, P84, DOI 10.1016/j.neucom.2013.09.055 Ma Z., 2017, NEURAL PROCESS LETT, V44, P1 Meng LH, 2017, INT J MACH LEARN CYB, V8, P1719, DOI 10.1007/s13042-016-0550-y RUMELHART DE, 1986, NATURE, V323, P533, DOI 10.1038/323533a0 Salakhutdinov R., 2009, Deep boltzmann machines, V5, P448 Schmidhuber J, 2015, NEURAL NETWORKS, V61, P85, DOI 10.1016/j.neunet.2014.09.003 Song G, 2017, KNOWL-BASED SYST, V134, P31, DOI 10.1016/j.knosys.2017.07.014 Sun K, 2017, NEUROCOMPUTING, V230, P374, DOI 10.1016/j.neucom.2016.12.027 Tang JX, 2016, IEEE T NEUR NET LEAR, V27, P809, DOI 10.1109/TNNLS.2015.2424995 Vincent P, 2010, J MACH LEARN RES, V11, P3371 Wang YS, 2016, NEUROCOMPUTING, V184, P232, DOI 10.1016/j.neucom.2015.08.104 Yang YM, 2016, IEEE T CYBERNETICS, V46, P2570, DOI 10.1109/TCYB.2015.2481713 Yao L, 2018, IEEE T IND ELECTRON, V65, P1490, DOI 10.1109/TIE.2017.2733448 Yu WC, 2015, NEUROCOMPUTING, V149, P308, DOI 10.1016/j.neucom.2014.03.077 Yu Y, 2012, IEEE T AUTOM SCI ENG, V9, P276, DOI 10.1109/TASE.2011.2173800 Zhang N, 2016, NEUROCOMPUTING, V171, P1066, DOI 10.1016/j.neucom.2015.07.058 NR 33 TC 9 Z9 9 U1 0 U2 24 PU WILEY PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1751-9632 EI 1751-9640 J9 IET COMPUT VIS JI IET Comput. Vis. PD JUN PY 2019 VL 13 IS 4 BP 411 EP 419 DI 10.1049/iet-cvi.2018.5590 PG 9 WC Computer Science, Artificial Intelligence; Engineering, Electrical & Electronic WE Science Citation Index Expanded (SCI-EXPANDED) SC Computer Science; Engineering GA IG7TO UT WOS:000474000800007 OA Bronze DA 2024-09-05 ER PT J AU Kawamura, T Egami, S AF Kawamura, Takahiro Egami, Shusaku TI Bilingual Textual Similarity in Scientific Documents SO IEEE TRANSACTIONS ON ENGINEERING MANAGEMENT LA English DT Article DE Artificial intelligence; bibliometrics; semantic web; text mining ID INFORMATION AB Y Maps of science visualizing the structure of science help us analyze the current spread of science, technology, and innovation (ST&I). ST&I enterprises can use the maps of science as competitive technical intelligence to anticipate changes, especially those initiated in their immediate vicinity. Research laboratories and universities can understand their environmental changes and use the map for their research management. However, traditional maps based on bibliometrics, such as citation and cocitation, have difficulty in representing recently published papers and ongoing projects that have few or no references; thus, maps based on contents, i.e., text-mining, have been developed in recent years for locating research papers/projects, for example, using word and paragraph vectors. The content-based maps, however, still pose difficulty in comparing documents in different languages. Therefore, aiming to construct a bilingual (English and Japanese) content-based map of science for the analyses of ST&I information resources in different languages, this article proposes a method for creating word and paragraph vectors corresponding to bilingual textual information in the same multidimensional space. In a comparison of 11 methods for generating document vectors, we confirmed that the best method achieved 87% accuracy of the bilingual content matching based on 10 000 IEEE papers. Finally, we published a map of approximately 150 000 funding projects of the National Science Foundation, Japan Society for the Promotion of Science, and Japan Science and Technology agency from 2013 to 2017. C1 [Kawamura, Takahiro] Natl Agr & Food Res Org, Tokyo 1000013, Japan. [Kawamura, Takahiro] Japan Sci & Technol Agcy, Tokyo 1028666, Japan. [Egami, Shusaku] Natl Inst Maritime Port & Aviat Technol, Tokyo 1820012, Japan. C3 National Agriculture & Food Research Organization - Japan; Japan Science & Technology Agency (JST) RP Kawamura, T (corresponding author), Natl Agr & Food Res Org, Tokyo 1000013, Japan. EM takahiro.kawamura@affrc.go.jp; s-egami@mpat.go.jp RI Egami, Shusaku/R-6180-2019 OI Egami, Shusaku/0000-0002-3821-6507; Kawamura, Takahiro/0000-0002-2765-6232 CR Ahlgren P, 2009, J INFORMETR, V3, P49, DOI 10.1016/j.joi.2008.11.003 [Anonymous], 2015, VS@ HLT-NAACL [Anonymous], 2014, ADV NEURAL INFORM PR [Anonymous], 2009, Science of science (Sci2) tool [Anonymous], 2013, COMPUTER SCI [Anonymous], 2015, P 2015 INT C N AM CH [Anonymous], 1957, STUDIES LINGUISTIC A Archambault É, 2011, PRO INT CONF SCI INF, P66 Bérard A, 2016, LREC 2016 - TENTH INTERNATIONAL CONFERENCE ON LANGUAGE RESOURCES AND EVALUATION, P4188 Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993 Boyack KW, 2013, J AM SOC INF SCI TEC, V64, P1759, DOI 10.1002/asi.22896 Boyack KW, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0018029 Cer D., 2017, SEMEVAL ACL, P1, DOI DOI 10.18653/V1/S17-2001 Fillmore C., 1968, UNIVERSALS LINGUIST, P1, DOI DOI 10.4236/ENG Griffiths TL, 2004, P NATL ACAD SCI USA, V101, P5228, DOI 10.1073/pnas.0307752101 Hermann KM, 2014, PROCEEDINGS OF THE 52ND ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, VOL 1, P58 Herr BW, 2009, INFORMATION VISUALIZATION, IV 2009, PROCEEDINGS, P505, DOI 10.1109/IV.2009.105 Kawamura T., 2017, P 9 ACM INT C KNOWL, P9 Kawamura T., 2018, P 23 INT C SCI TECHN, P385 Kawamura T, 2017, PRO INT CONF SCI INF, P1107 Kawamura T, 2018, SCIENTOMETRICS, V116, P941, DOI 10.1007/s11192-018-2783-x Kawamura T, 2016, NEW GENERAT COMPUT, V34, P307, DOI 10.1007/s00354-016-0401-0 Kimura T., 2015, P 14 INT SEM WEB C Klavans R, 2017, J INFORMETR, V11, P1158, DOI 10.1016/j.joi.2017.10.002 Klementiev Alexandre, 2012, P COLING 2012, P1459 Koopman R, 2017, SCIENTOMETRICS, V111, P1119, DOI 10.1007/s11192-017-2303-4 KULLBACK S, 1951, ANN MATH STAT, V22, P79, DOI 10.1214/aoms/1177729694 Lafferty John, 2001, em Proceedings of the Eighteenth International Conference on Machine Learning Le Q., 2014, 31 INT C MACH LEARN, P1188, DOI DOI 10.1145/2740908.2742760 Mikolov T., 2013, Advances in Neural Information Processing Systems, P3111 Mikolov T., 2013, INT C LEARNING REPRE Mooney R. J., 2014, CS 388 NATURAL LANGU PRICE DJD, 1965, SCIENCE, V149, P510 Ruder Sebastian, 2017, ARXIV170604902 Salah A., 2013, P ICIS 2013, P75 Sammons M., 2014, SEMANTIC ROLE LABELI Sammons M., 2014, SEMANTIC PARSING SEM Sparck-Jones K, 2000, INFORM PROCESS MANAG, V36, P779, DOI 10.1016/S0306-4573(00)00015-7 Steyvers M., 2007, HDB LATENT SEMANTIC, V427, P32 Talley EM, 2011, NAT METHODS, V8, P443, DOI 10.1038/nmeth.1619 Waltman L, 2017, PRO INT CONF SCI INF, P691 Wang SH, 2017, SCIENTOMETRICS, V111, P1017, DOI 10.1007/s11192-017-2298-x Xing C., 2015, P 2015 C N AM CHAPT, P1006, DOI [DOI 10.3115/V1/N15-1104, 10.3115/v1/N15-1104] NR 43 TC 0 Z9 0 U1 3 U2 21 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9391 EI 1558-0040 J9 IEEE T ENG MANAGE JI IEEE Trans. Eng. Manage. PD OCT PY 2021 VL 68 IS 5 BP 1299 EP 1308 DI 10.1109/TEM.2019.2946886 PG 10 WC Business; Engineering, Industrial; Management WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Business & Economics; Engineering GA TK4EZ UT WOS:000674114900008 OA hybrid DA 2024-09-05 ER PT J AU Gurcan, F Dalveren, GGM Cagiltay, NE Soylu, A AF Gurcan, Fatih Dalveren, Gonca Gokce Menekse Cagiltay, Nergiz Ercil Soylu, Ahmet TI Detecting Latent Topics and Trends in Software Engineering Research Since 1980 Using Probabilistic Topic Modeling SO IEEE ACCESS LA English DT Article DE Market research; Systematics; Software engineering; Software; Bibliometrics; Text mining; Licenses; Corpus creation; research trends and topics; software engineering; text mining; topic model ID SYSTEMATIC LITERATURE-REVIEWS; CITED ARTICLES; EMPIRICAL-RESEARCH; JOURNALS; SCHOLARS AB The landscape of software engineering research has changed significantly from one year to the next in line with industrial needs and trends. Therefore, today's research literature on software engineering has a rich and multidisciplinary content that includes a large number of studies; however, not many of them demonstrate a holistic view of the field. From this perspective, this study aimed to reveal a holistic view that reflects topics, trends, and trajectories in software engineering research by analyzing the majority of domain-specific articles published over the last 40 years. This study first presents an objective and systematic method for corpus creation through major publication sources in the field. A corpus was then created using this method, which includes 44 domain-specific conferences and journals and 57,174 articles published between 1980 and 2019. Next, this corpus was analyzed using an automated text-mining methodology based on a probabilistic topic-modeling approach. As a result of this analysis, 24 main topics were found. In addition, topical trends in the field were revealed. Finally, three main developmental stages of the field were identified as: the programming age, the software development age, and the software optimization age. C1 [Gurcan, Fatih] Karadeniz Tech Univ, Fac Engn, Dept Comp Engn, TR-61080 Trabzon, Turkey. [Dalveren, Gonca Gokce Menekse; Cagiltay, Nergiz Ercil] Atilim Univ, Fac Engn, Dept Software Engn, TR-06830 Ankara, Turkey. [Soylu, Ahmet] Norwegian Univ Sci & Technol, Dept Comp Sci, N-2815 Gjovik, Norway. C3 Karadeniz Technical University; Atilim University; Norwegian University of Science & Technology (NTNU) RP Soylu, A (corresponding author), Norwegian Univ Sci & Technol, Dept Comp Sci, N-2815 Gjovik, Norway. EM ahmet.soylu@ntnu.no RI Cagiltay, Nergiz/O-3082-2019; GURCAN, Fatih/AAJ-7503-2021; Soylu, Ahmet/D-9960-2011; Menekse Dalveren, Gonca Gokce/HHS-4591-2022; Forti, Stefano/I-3083-2018 OI Cagiltay, Nergiz/0000-0003-0875-9276; GURCAN, Fatih/0000-0001-9915-6686; Menekse Dalveren, Gonca Gokce/0000-0002-8649-1909; Forti, Stefano/0000-0002-4159-8761 CR [Anonymous], 2004, TRSE0401 U KEEL NAT [Anonymous], TOMOTOPY TOPIC MODEL [Anonymous], 1998, ACM COMPUTING CLASSI [Anonymous], 2005, Int. Sugar J. Barua A, 2014, EMPIR SOFTW ENG, V19, P619, DOI 10.1007/s10664-012-9231-y Binkley D, 2016, J SOFTW-EVOL PROC, V28, P893, DOI 10.1002/smr.1802 Blei DM, 2007, ANN APPL STAT, V1, P17, DOI 10.1214/07-AOAS114 Blei DM, 2012, COMMUN ACM, V55, P77, DOI 10.1145/2133806.2133826 Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993 Boehm B., 2006, Systems Engineering, V9, P1, DOI 10.1002/sys.20044 Brereton P, 2007, J SYST SOFTWARE, V80, P571, DOI 10.1016/j.jss.2006.07.009 Buyya R, 2019, ACM COMPUT SURV, V51, DOI 10.1145/3241737 Cai KY, 2008, J SYST SOFTWARE, V81, P1051, DOI 10.1016/j.jss.2007.08.028 Cosh K, 2018, INT CONF KNOWL SMART, P106, DOI 10.1109/KST.2018.8426070 da Silva FQB, 2011, INFORM SOFTWARE TECH, V53, P899, DOI 10.1016/j.infsof.2011.04.004 Datta Subhajit, 2016, IEEE Transactions on Big Data, V2, P124, DOI 10.1109/TBDATA.2016.2580541 de Freitas F.G., 2011, LECT NOTES COMPUTER, P5, DOI 10.1007/978-3-642-14843-9 Farhoodi R, 2013, INT J SOFTW ENG KNOW, V23, P463, DOI 10.1142/S0218194013500137 Felizardo KR, 2011, INT SYMP EMP SOFTWAR, P77, DOI 10.1109/ESEM.2011.16 Fernandes JM, 2014, SCIENTOMETRICS, V101, P257, DOI 10.1007/s11192-014-1331-6 Garousi V., 2010, COMPUT INF SCI, V3, P1 Garousi V, 2016, INFORM SOFTWARE TECH, V80, P195, DOI 10.1016/j.infsof.2016.09.002 Garousi V, 2016, INFORM SOFTWARE TECH, V79, P106, DOI 10.1016/j.infsof.2016.07.006 Garousi V, 2016, COMPUT SCI REV, V19, P56, DOI 10.1016/j.cosrev.2015.12.002 Garousi V, 2016, INFORM SOFTWARE TECH, V71, P108, DOI 10.1016/j.infsof.2015.11.003 Garousi V, 2015, SCIENTOMETRICS, V105, P23, DOI 10.1007/s11192-015-1663-x Garousi V, 2013, INT J SOFTW ENG KNOW, V23, P1343, DOI 10.1142/S0218194013500423 Gurcan F., INTERACT LEARN ENV Gurcan F, 2022, IEEE ACCESS, V10, P31480, DOI 10.1109/ACCESS.2022.3160795 Gurcan F, 2021, INT REV RES OPEN DIS, V22, P1 Gurcan F, 2021, INT J HUM-COMPUT INT, V37, P267, DOI 10.1080/10447318.2020.1819668 Gurcan F, 2019, IEEE ACCESS, V7, P82541, DOI 10.1109/ACCESS.2019.2924075 Gurcan F, 2019, INT J ENG EDUC, V35, P1110 Hall T, 2009, ACM T SOFTW ENG METH, V18, DOI 10.1145/1525880.1525883 Hamadicharef B, 2012, ADV INTEL SOFT COMPU, V144, P101 Hassler E, 2016, INFORM SOFTWARE TECH, V70, P122, DOI 10.1016/j.infsof.2015.10.011 Jalali S, 2012, J SOFTW-EVOL PROC, V24, P643, DOI 10.1002/smr.561 Kitchenham B.A., 2007, GUIDELINES PERFORMIN Kitchenham BA, 2002, IEEE T SOFTWARE ENG, V28, P721, DOI 10.1109/TSE.2002.1027796 Kitchenham B, 2013, INFORM SOFTWARE TECH, V55, P2049, DOI 10.1016/j.infsof.2013.07.010 Kitchenham B, 2010, J SYST SOFTWARE, V83, P37, DOI 10.1016/j.jss.2009.06.041 Kitchenham B, 2009, INFORM SOFTWARE TECH, V51, P7, DOI 10.1016/j.infsof.2008.09.009 Konrad M., 2017, TEXT MINING TOPIC MO MacDonell S, 2010, IEEE T SOFTWARE ENG, V36, P676, DOI 10.1109/TSE.2010.28 Mathew George, 2018, IEEE Transactions on Software Engineering, DOI 10.1109/TSE.2018.2870388 Mimno David, 2011, P C EMPIRICAL METHOD, P262 Mongeon P, 2016, SCIENTOMETRICS, V106, P213, DOI 10.1007/s11192-015-1765-5 Nazar N, 2016, J COMPUT SCI TECH-CH, V31, P883, DOI 10.1007/s11390-016-1671-1 Porter Martin., Snowball Ramírez A, 2019, IEEE T SOFTWARE ENG, V45, P760, DOI 10.1109/TSE.2018.2803055 Rodríguez-Pérez G, 2021, EMPIR SOFTW ENG, V26, DOI 10.1007/s10664-021-09992-2 Shakeel Y, 2020, ACM J DATA INF QUAL, V12, DOI 10.1145/3356901 Sun XB, 2016, 2016 17TH IEEE/ACIS INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING, ARTIFICIAL INTELLIGENCE, NETWORKING AND PARALLEL/DISTRIBUTED COMPUTING (SNPD), P357, DOI 10.1109/SNPD.2016.7515925 Uysal AK, 2014, INFORM PROCESS MANAG, V50, P104, DOI 10.1016/j.ipm.2013.08.006 Vayansky I, 2020, INFORM SYST, V94, DOI 10.1016/j.is.2020.101582 Verner J. M., 2012, 16th International Conference on Evaluation & Assessment in Software Engineering (EASE 2012), P2, DOI 10.1049/ic.2012.0001 Wohlin C, 2005, INFORM SOFTWARE TECH, V47, P957, DOI 10.1016/j.infsof.2005.09.002 Wohlin C, 2008, INFORM SOFTWARE TECH, V50, P3, DOI 10.1016/j.infsof.2007.10.002 Wohlin C, 2007, INFORM SOFTWARE TECH, V49, P2, DOI 10.1016/j.infsof.2006.08.004 Wong WE, 2008, J SYST SOFTWARE, V81, P1059, DOI 10.1016/j.jss.2007.09.018 Wong WE, 2011, J SYST SOFTWARE, V84, P162, DOI 10.1016/j.jss.2010.09.036 Wong WE, 2009, J SYST SOFTWARE, V82, P1370, DOI 10.1016/j.jss.2009.06.018 Zhang L, 2018, J COMPUT SCI TECH-CH, V33, P876, DOI 10.1007/s11390-018-1864-x Zuo Y, 2016, KDD'16: PROCEEDINGS OF THE 22ND ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, P2105, DOI 10.1145/2939672.2939880 NR 64 TC 11 Z9 11 U1 3 U2 10 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 2169-3536 J9 IEEE ACCESS JI IEEE Access PY 2022 VL 10 BP 74638 EP 74654 DI 10.1109/ACCESS.2022.3190632 PG 17 WC Computer Science, Information Systems; Engineering, Electrical & Electronic; Telecommunications WE Science Citation Index Expanded (SCI-EXPANDED) SC Computer Science; Engineering; Telecommunications GA 3Q9KV UT WOS:000838542600001 OA Green Submitted, gold DA 2024-09-05 ER PT J AU Yin, ZL Wang, HY Chen, B Zhang, X Lin, XG Sun, HL Li, AJ Zhou, CY AF Yin, Zilong Wang, Haoyu Chen, Bin Zhang, Xin Lin, Xiaogang Sun, Hangling Li, Anji Zhou, Chenyu TI Federated semi-supervised representation augmentation with cross-institutional knowledge transfer for healthcare collaboration SO KNOWLEDGE-BASED SYSTEMS LA English DT Article DE Healthcare collaboration; Vertical federated learning; Knowledge transfer; Semi-supervised representation augmentation ID BIG DATA; SECURE; CHALLENGES; ATTACK AB In the healthcare field, cross-institutional collaboration can fasten medical research progress. Vertical federated learning (VFL) addresses data heterogeneity across multiple medical institutions while ensuring medical data privacy, thereby enhancing the accuracy of disease diagnoses and treatments. However, traditional VFL only benefits from aligned samples, thereby limiting its applicability due to constrained sample sizes, and a large amount of non-aligned data remains untapped, resulting in wasted data. To exert full leverage on the value of all data obtained from medical institutions, this paper proposes a federated healthcare collaborative framework based on semi-supervised representation augmentation mechanism with cross-institutional knowledge transfer (CrossKT-FRA). Specifically, the developed method comprises three steps. First, the federated representations of shared data (aligned data) among medical institutions are extracted through efficient vertical federated representation learning (FRL) methods. Second, the federated knowledge contained in federated representations and potential labels derived through recurrent learning assist local shared data representations in performing supervised augmented learning. Finally, the federated knowledge is transferred indirectly from the representation augmentation module for shared data to the unsupervised representation augmentation module for local private data (non-aligned data). The experimental results show the effectiveness of the proposed knowledge transfer mechanism, whether applied independently or used to enhance VFL on medical datasets. Our findings contribute to a deeper theoretical understanding of VFL, further facilitating the utilization of high- value medical data. By promoting cross-institutional and cross-disciplinary collaboration in healthcare data sharing, our study enhances the quality efficiency of medical services, thereby accelerating the development of interdisciplinary medical research. Code is available at https://github.com/LieLieLieLieLie/CrossKT-FRA. C1 [Yin, Zilong; Wang, Haoyu; Chen, Bin] Univ Shanghai Sci & Technol, Sch Mech Engn, Shanghai, Peoples R China. [Sun, Hangling] Hengtu Imalligent Technol Shanghai Co Ltd, Shanghai, Peoples R China. [Li, Anji] Abbott Labs Shanghai Co Ltd, Shanghai, Peoples R China. [Zhang, Xin] Tianjin Univ Technol, Tianjin, Peoples R China. [Lin, Xiaogang] North Univ China, Taiyuan, Peoples R China. [Zhou, Chenyu] Xinjiang Univ, Sch Comp Sci & Technol, Urumqi, Peoples R China. [Chen, Bin] Shanghai Jiao Tong Univ, Sch Mech Engn, Shanghai, Peoples R China. [Zhou, Chenyu] Tsinghua Univ, Beijing, Peoples R China. C3 University of Shanghai for Science & Technology; Tianjin University of Technology; North University of China; Xinjiang University; Shanghai Jiao Tong University; Tsinghua University RP Chen, B (corresponding author), Univ Shanghai Sci & Technol, Sch Mech Engn, Shanghai, Peoples R China. EM zilong_yin@163.com; ambityuki@gmail.com; chenbin1933@163.com; kxamanda@163.com; lxg2630782125@163.com; sunnyhl2000@gmail.com; anjicake@gmail.com; Zhou_cy@stu.xju.edu.cn OI Yin, Zilong/0009-0002-7994-2772 CR Abadi M, 2016, CCS'16: PROCEEDINGS OF THE 2016 ACM SIGSAC CONFERENCE ON COMPUTER AND COMMUNICATIONS SECURITY, P308, DOI 10.1145/2976749.2978318 Adjei-Mensah I, 2024, ENG APPL ARTIF INTEL, V128, DOI 10.1016/j.engappai.2023.107448 Alzubi JA, 2023, IEEE T IND INFORM, V19, P1080, DOI 10.1109/TII.2022.3189170 Antunes RS, 2022, ACM T INTEL SYST TEC, V13, DOI 10.1145/3501813 Bercea CI, 2022, NAT MACH INTELL, V4, P685, DOI 10.1038/s42256-022-00515-2 Bharati Subrato, 2022, Int. J. Hybrid Intell. Syst., V18, P19 Bonawitz K, 2017, CCS'17: PROCEEDINGS OF THE 2017 ACM SIGSAC CONFERENCE ON COMPUTER AND COMMUNICATIONS SECURITY, P1175, DOI 10.1145/3133956.3133982 Chai D, 2022, PROCEEDINGS OF THE 28TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, KDD 2022, P46, DOI 10.1145/3534678.3539402 Cheng KW, 2021, IEEE INTELL SYST, V36, P87, DOI 10.1109/MIS.2021.3082561 Cheung YM, 2021, LECT NOTES COMPUT SC, V13080, P173, DOI 10.1007/978-3-030-90888-1_14 China Knowledge Centre for Engineering Sciences and Technology, 2016, Aminer database Dash S, 2019, J BIG DATA-GER, V6, DOI 10.1186/s40537-019-0217-0 Dayan I, 2021, NAT MED, V27, P1735, DOI 10.1038/s41591-021-01506-3 Devi P, 2024, HEALTH TECHNOL-GER, V14, P623, DOI 10.1007/s12553-024-00861-8 Dhruva SS, 2020, NPJ DIGIT MED, V3, DOI 10.1038/s41746-020-0265-z Dwork C, 2013, FOUND TRENDS THEOR C, V9, P211, DOI 10.1561/0400000042 Emanuel EJ, 2020, NEW ENGL J MED, V382, P2049, DOI 10.1056/NEJMsb2005114 Esteva A, 2019, NAT MED, V25, P24, DOI 10.1038/s41591-018-0316-z Fattahi M, 2023, EUR J OPER RES, V304, P192, DOI 10.1016/j.ejor.2022.01.023 Feng YJ, 2021, PROCEEDINGS OF THE WORLD WIDE WEB CONFERENCE 2021 (WWW 2021), P183, DOI 10.1145/3442381.3449811 Fu C, 2022, PROCEEDINGS OF THE 31ST USENIX SECURITY SYMPOSIUM, P1397 Gao JQ, 2023, IEEE T DEPEND SECURE, V20, P147, DOI 10.1109/TDSC.2021.3128679 Gao JQ, 2022, IEEE T IND INFORM, V18, P6340, DOI 10.1109/TII.2022.3145837 Gu B, 2022, IEEE T NEUR NET LEAR, V33, P6103, DOI 10.1109/TNNLS.2021.3072238 Hazra A, 2022, IEEE NETWORK, V36, P56, DOI 10.1109/MNET.007.2100549 Hou JP, 2022, IEEE INTERNET THINGS, V9, P22158, DOI 10.1109/JIOT.2021.3090951 Hu YC, 2019, KDD'19: PROCEEDINGS OF THE 25TH ACM SIGKDD INTERNATIONAL CONFERENCCE ON KNOWLEDGE DISCOVERY AND DATA MINING, P2232, DOI 10.1145/3292500.3330765 Huang Chung-ju, 2023, WWW '23: Proceedings of the ACM Web Conference 2023, P4188, DOI 10.1145/3543507.3583874 Huang L, 2024, P 36 INT C NEUR INF Iwendi C, 2020, FRONT PUBLIC HEALTH, V8, DOI 10.3389/fpubh.2020.00357 Jin X., 2021, Advances in Neural Information Processing Systems, P994 Johnson AEW, 2016, SCI DATA, V3, DOI 10.1038/sdata.2016.35 Kaggle, 2022, Breast cancer wisconsin (diagnostic) data set Kairouz P, 2021, FOUND TRENDS MACH LE, V14, P1, DOI 10.1561/2200000083 Kaissis GA, 2020, NAT MACH INTELL, V2, P305, DOI 10.1038/s42256-020-0186-1 Kang Y, 2024, Arxiv, DOI arXiv:2008.10838 Kang Y, 2022, ACM T INTEL SYST TEC, V13, DOI 10.1145/3510031 Khalid N, 2023, COMPUT BIOL MED, V158, DOI 10.1016/j.compbiomed.2023.106848 Kosinski M, 2013, P NATL ACAD SCI USA, V110, P5802, DOI 10.1073/pnas.1218772110 Kushner T, 2020, WEB CONFERENCE 2020: PROCEEDINGS OF THE WORLD WIDE WEB CONFERENCE (WWW 2020), P2906, DOI 10.1145/3366423.3380056 Lenert L, 2020, J AM MED INFORM ASSN, V27, P963, DOI 10.1093/jamia/ocaa039 Li FS, 2021, MEAS SCI TECHNOL, V32, DOI 10.1088/1361-6501/abf61a Li Tian, 2020, MLSys, P429 Lima EM, 2021, medRxiv, DOI [10.1101/2021.02.19.21251232, 10.1101/2021.02.19.21251232, DOI 10.1101/2021.02.19.21251232] Liu QD, 2021, PROC CVPR IEEE, P1013, DOI 10.1109/CVPR46437.2021.00107 Liu Y, 2024, IEEE T KNOWL DATA EN, V36, P3615, DOI 10.1109/TKDE.2024.3352628 Liu Y, 2020, IEEE INTELL SYST, V35, P70, DOI 10.1109/MIS.2020.2988525 Liu ZL, 2022, AAAI CONF ARTIF INTE, P12396 Ma J, 2021, PROCEEDINGS OF THE WORLD WIDE WEB CONFERENCE 2021 (WWW 2021), P171, DOI 10.1145/3442381.3449832 Mawuli CB, 2023, INFORM SCIENCES, V643, DOI 10.1016/j.ins.2023.119235 McMahan HB, 2017, PR MACH LEARN RES, V54, P1273 Messinis S, 2024, COMPUT BIOL MED, V170, DOI 10.1016/j.compbiomed.2024.108036 Nock R, 2018, Arxiv, DOI arXiv:1803.04035 Parsa AB, 2020, ACCIDENT ANAL PREV, V136, DOI 10.1016/j.aap.2019.105405 Rong G, 2020, ENGINEERING-PRC, V6, P291, DOI 10.1016/j.eng.2019.08.015 Shen M, 2020, IEEE J SEL AREA COMM, V38, P1229, DOI 10.1109/JSAC.2020.2986619 Shilo S, 2020, NAT MED, V26, P29, DOI 10.1038/s41591-019-0727-5 Song MK, 2020, IEEE J SEL AREA COMM, V38, P2430, DOI 10.1109/JSAC.2020.3000372 Thapa C, 2021, COMPUT BIOL MED, V129, DOI 10.1016/j.compbiomed.2020.104130 Wang JB, 2024, INFORM SCIENCES, V662, DOI 10.1016/j.ins.2024.120201 Wang KIK, 2022, IEEE T IND INFORM, V18, P4088, DOI 10.1109/TII.2021.3088057 Wei K, 2020, IEEE T INF FOREN SEC, V15, P3454, DOI 10.1109/TIFS.2020.2988575 Wu Q, 2022, IEEE T MOBILE COMPUT, V21, P2818, DOI 10.1109/TMC.2020.3045266 Wu YC, 2020, PROC VLDB ENDOW, V13, P2090, DOI 10.14778/3407790.3407811 Xing WC, 2020, IEEE ACCESS, V8, P28808, DOI 10.1109/ACCESS.2019.2955754 Xu J, 2021, J HEALTHC INFORM RES, V5, P1, DOI 10.1007/s41666-020-00082-4 Yang Q, 2021, KDD '21: PROCEEDINGS OF THE 27TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING, P3845, DOI 10.1145/3447548.3467185 Yang Q, 2019, ACM T INTEL SYST TEC, V10, DOI 10.1145/3298981 Yao A. C., 1982, 23rd Annual Symposium on Foundations of Computer Science, P160, DOI 10.1109/SFCS.1982.38 Yin LH, 2021, IEEE T NETW SCI ENG, V8, P2706, DOI 10.1109/TNSE.2021.3074185 Yin XF, 2021, ACM COMPUT SURV, V54, DOI 10.1145/3460427 Zaldo-Aubanell Q, 2022, SCI TOTAL ENVIRON, V806, DOI 10.1016/j.scitotenv.2021.150308 Zhang XZ, 2017, ETHNIC DIS, V27, P95, DOI 10.18865/ed.27.2.95 Zhong ZY, 2023, COMPLEX INTELL SYST, V9, P1995, DOI 10.1007/s40747-022-00894-4 Zhou JX, 2024, COMPUT BIOL MED, V169, DOI 10.1016/j.compbiomed.2023.107861 Zhou Z, 2023, IEEE T IND INFORM, V19, P6669, DOI 10.1109/TII.2022.3215192 NR 76 TC 0 Z9 0 U1 1 U2 1 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS SN 0950-7051 EI 1872-7409 J9 KNOWL-BASED SYST JI Knowledge-Based Syst. PD SEP 27 PY 2024 VL 300 AR 112208 DI 10.1016/j.knosys.2024.112208 EA JUL 2024 PG 21 WC Computer Science, Artificial Intelligence WE Science Citation Index Expanded (SCI-EXPANDED) SC Computer Science GA ZK3H4 UT WOS:001275148500001 DA 2024-09-05 ER PT J AU Basilio, MP Pereira, V de Oliveira, MWCM AF Basilio, Marcio Pereira Pereira, Valdecy Oliveira, Max William Coelho Moreira de TI Knowledge discovery in research on policing strategies: an overview of the past fifty years SO JOURNAL OF MODELLING IN MANAGEMENT LA English DT Article DE Community policing; Bibliometric analysis; Policing strategies; Problem-oriented policing; Predictive policing; Latent Dirichlet allocation; Focused policing; Police crackdown; Repeat offenders; Hot spot policing; Foot patrol; Radio patrol ID FOOT PATROL; BIBLIOMETRIC ANALYSIS; CRIME REDUCTION; HOT-SPOTS; BIG DATA; COMMUNITY; IMPACT; PERCEPTIONS; COCITATION; EVOLUTION AB Purpose The insecurity generated, today in various parts of the planet, by the various conflicts that arise in the violence in large cities, has motivated the academy to research the solutions and strategies adopted by local governments in the fight against crime. The volume of data generated by several universities over the past 50 years has increased exponentially. Consequently, researchers struggle to process essential data in today's competitive world. The aim of this study is to explore and provide an overview of the studies carried out in the field of action to combat crime in different countries. Design/methodology/approach The Web of Science and Scopus databases were searched for publications from January 1945 to September 3, 2020 on the topic of policing strategies in titles, abstracts and keywords. References were analyzed using the R bibliometrix package, and abstracts were analyzed using latent Dirichlet allocation (LDA) with collapsed Gibbs sampling for topics related to policing and related subjects. Findings As a result of the research, this paper can assert that in the last 50 years, 3,361 authors have produced 2,085 documents on the theme of policing strategy and related subjects in 58 countries. Scientific production in this area grows at a rate of 5.10 per year. The USA is the leading country in publications with 42.58%, followed by the UK with 8.39% and Canada with 4.07%. As for journals, the highlight is Policing, Policing and Society and Police Quarterly, which account for more than 15.44% of all indexed literature. Regarding the authors, the highlight is Weisburd and Braga. As a result, the LDA grouped the latent words in the articles analyzed by themes studied and presented the list of articles by themes. The thematic map identifies the following themes as basic research subjects: community policing, problem-oriented policing, predictive policing, fear of crime and social control. Practical implications As the main implication between the combination of the bibliometric analysis method with the probabilistic topic modelling, is the emergence of a primordial step in the systematic literature review process, as this method allows to explore and group a large volume of data. Another practical implication that is intended is to provide the beginning researcher or any other reader with a panoramic view of the main authors who study the themes that impact police activity in any city in the world, which are the countries and reference centers of the study on the subject and, finally, the evolution of the main themes researched in the police area. Originality/value The value of these studies is summarized in the presentation of an overview on the theme in the last 50 years, offering the opportunity for other researchers to use this research as a starting point for other analyses. C1 [Basilio, Marcio Pereira; Pereira, Valdecy] Fed Fluminense Univ, Prod Engn Dept, Niteroi, RJ, Brazil. [Basilio, Marcio Pereira] Mil Police State Rio de Janeiro, Rio De Janeiro, Brazil. [Oliveira, Max William Coelho Moreira de] Secretariat State Mil Police, Coordinat Special Affairs, Rio De Janeiro, Brazil. C3 Universidade Federal Fluminense RP Basilio, MP (corresponding author), Fed Fluminense Univ, Prod Engn Dept, Niteroi, RJ, Brazil.; Basilio, MP (corresponding author), Mil Police State Rio de Janeiro, Rio De Janeiro, Brazil. EM marciopbasilio@gmail.com; valdecy.pereira@gmail.com; mwcoliveira@yahoo.com.br RI Basilio, Marcio Pereira/L-4363-2016; Pereira, Valdecy/I-7493-2017 OI Basilio, Marcio Pereira/0000-0002-9453-741X; Pereira, Valdecy/0000-0003-0599-8888 FU Federal Fluminense University; Military Police of the State of Rio de Janeiro; coordination for the improvement of Higher Education Personnel - Brazil (CAPES) FX The authors thank the Federal Fluminense University and the Military Police of the State of Rio de Janeiro for the unrestricted support received for the research. In addition to the coordination for the improvement of Higher Education Personnel - Brazil (CAPES), for partial funding of the research. Finally, the authors would like to thank the contributions of the reviewers and editors that resulted in this publication. CR Alves MC, 2012, POLIC SOC, V22, P101, DOI 10.1080/10439463.2011.597857 Andresen MA, 2019, INT J OFFENDER THER, V63, P1446, DOI 10.1177/0306624X19828586 Andresen MA, 2018, POLICING, V41, P314, DOI 10.1108/PIJPSM-01-2018-0012 Aria M, 2017, J INFORMETR, V11, P959, DOI 10.1016/j.joi.2017.08.007 Barabási AL, 2002, PHYSICA A, V311, P590, DOI 10.1016/S0378-4371(02)00736-7 Basilio M.P., 2017, UNIVERSAL J MANAGEME, V5, P549, DOI [10.13189/ujm.2017.051202, DOI 10.13189/UJM.2017.051202] Basilio M.P., 2019, Exacta, V18, P130, DOI [10.5585/exactaep.v18n1.8725, DOI 10.5585/EXACTAEP.V18N1.8725] Basilio M. P., 2020, J MODEL MANAG, V15 Basilio MP, 2021, DATA TECHNOL APPL, V55, P480, DOI 10.1108/DTA-08-2020-0179 Basilio MP, 2021, J MODEL MANAG, V16, P1185, DOI 10.1108/JM2-05-2020-0122 Basilio MP, 2020, J MODEL MANAG, V15, P849, DOI 10.1108/JM2-10-2018-0166 Basilio MP, 2019, DATA TECHNOL APPL, V53, P333, DOI 10.1108/DTA-12-2018-0109 Basílio Márcio Pereira, 2010, Sociologias, P438 Bayley D.H., 1994, Police for the future Belina B, 2016, MONATS KRIMINOL, V99, P85, DOI 10.1515/mks-2016-990201 Benbouzid B, 2015, CHAMP PENAL, V12, DOI 10.4000/champpenal.9050 Blei, 2011, COMMUN ACM Blei DM, 2012, COMMUN ACM, V55, P77, DOI 10.1145/2133806.2133826 Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993 Borgatti SP, 2009, SCIENCE, V323, P892, DOI 10.1126/science.1165821 Bullock K, 2013, POLIC SOC, V23, P125, DOI 10.1080/10439463.2012.671822 CALLON M, 1983, SOC SCI INFORM, V22, P191, DOI 10.1177/053901883022002003 Carson JV, 2018, POLICE Q, V21, P139, DOI 10.1177/1098611117744005 Chen, 2008, J INFORM TECHNOLOGY, V2, P43 Chen CT, 2017, KNOWL-BASED SYST, V126, P1, DOI 10.1016/j.knosys.2017.04.006 Chen CM, 2006, J AM SOC INF SCI TEC, V57, P359, DOI 10.1002/asi.20317 Cheng B, 2014, EDUC RES REV-NETH, V11, P56, DOI 10.1016/j.edurev.2014.01.001 Cobo MJ, 2011, J INFORMETR, V5, P146, DOI 10.1016/j.joi.2010.10.002 Costa H.G., 2018, J MODEL MANAG, V14 Crowl JN, 2017, POLICE PRACT RES, V18, P449, DOI 10.1080/15614263.2017.1303771 Cunnigham FW, 1933, P IRE, V21, P1239, DOI 10.1109/JRPROC.1933.225930 Darling, 2011, THEORETICAL PRACTICA Dervis H, 2019, J SCIENTOMETR RES, V8, P156, DOI 10.5530/jscires.8.3.32 Drenth AR, 2020, J CRIME JUSTICE, V43, P486, DOI 10.1080/0735648X.2020.1722202 Dunn KM, 2016, POLICE PRACT RES, V17, P196, DOI 10.1080/15614263.2015.1015126 Egbert S, 2019, SURVEILL SOC, V17, P83, DOI 10.24908/ss.v17i1/2.12920 Elkan C.P., 2014, TEXT MINING TOPIC MO Eterno JA, 2021, POLICE PRACT RES, V22, P886, DOI 10.1080/15614263.2020.1725273 Faleiros T.D., 2016, 409 U SAO PAUL I CIE Feinerer I, 2008, J STAT SOFTW, V25, P1 Frydl K., 2004, FAIRNESS EFFECTIVENE Ghadimi P, 2019, RESOUR CONSERV RECY, V140, P72, DOI 10.1016/j.resconrec.2018.09.005 Gill N.S., 2019, INT J ADV TRENDS COM, V8, P795, DOI DOI 10.30534/IJATCSE/2019/71832019 González-Alcaide G, 2020, SCIENTOMETRICS, V123, P707, DOI 10.1007/s11192-020-03404-w Griffiths TL, 2004, P NATL ACAD SCI USA, V101, P5228, DOI 10.1073/pnas.0307752101 Grün B, 2011, J STAT SOFTW, V40, P1 Haberman CP, 2019, POLICE Q, V22, P247, DOI 10.1177/1098611118813531 Hendrix JA, 2019, POLIC SOC, V29, P727, DOI 10.1080/10439463.2017.1322966 Hutt O, 2018, POLICING, V41, P339, DOI 10.1108/PIJPSM-09-2017-0117 Inamdar Z, 2021, J ENTERP INF MANAG, V34, P101, DOI 10.1108/JEIM-09-2019-0267 Jere M, 2012, REV KRIMINALISTIKO K, V63, P3 Jones NA, 2019, CAN J CRIMINOL CRIM, V61, P41, DOI 10.3138/cjccj.2017-0060.r2 Kailemia M, 2019, INT J COMP APPL CRIM, V43, P145, DOI 10.1080/01924036.2018.1515093 Kee YH, 2019, MINDFULNESS, V10, P1474, DOI 10.1007/s12671-019-01136-4 Kringen JA, 2020, POLIC-J POLICY PRACT, V14, P218, DOI 10.1093/police/pay006 KUYKENDALL JL, 1974, CRIMINOLOGY, V12, P229, DOI 10.1111/j.1745-9125.1974.tb00633.x Leigh J, 2019, ANN OPER RES, V283, P395, DOI [10.1007/s10479-017-2528-x, 10.1007/s10479-017-2528-X] Leung XY, 2017, INT J HOSP MANAG, V66, P35, DOI 10.1016/j.ijhm.2017.06.012 Lombardo RM, 2018, POLICE PRACT RES, V19, P427, DOI 10.1080/15614263.2017.1405265 Costa ATM, 2019, DADOS-REV CIENC SOC, V62, DOI 10.1590/001152582019172 Hernández JM, 2020, MATHEMATICS-BASEL, V8, DOI 10.3390/math8040544 Martin JT, 2014, CRIME LAW SOCIAL CH, V61, P401, DOI 10.1007/s10611-013-9496-0 Mazerolle L, 2013, POLICING, V36, P543, DOI 10.1108/PIJPSM-06-2012-0055 Meijer A, 2019, INT J PUBLIC ADMIN, V42, P1031, DOI 10.1080/01900692.2019.1575664 Merigó JM, 2017, OMEGA-INT J MANAGE S, V73, P37, DOI 10.1016/j.omega.2016.12.004 Mucchielli L, 2017, DEVIANCE SOC, V41, P239, DOI 10.3917/ds.412.0239 Peng Chen, 2019, 2019 IEEE 4th International Conference on Big Data Analytics (ICBDA), P118, DOI 10.1109/ICBDA.2019.8713192 Perianes-Rodriguez A, 2016, J INFORMETR, V10, P1178, DOI 10.1016/j.joi.2016.10.006 Porsché Y, 2021, DISCOURSE STUD, V23, P67, DOI 10.1177/1461445620942908 Prisian K, 2019, REV KRIMINALISTIKO K, V70, P483 Punch M, 2002, POLICING, V25, P60, DOI 10.1108/13639510210417908 Ratcliffe JH, 2011, CRIMINOLOGY, V49, P795, DOI 10.1111/j.1745-9125.2011.00240.x Ribeiro L, 2018, REV ADM PUBL-RIO JAN, V52, P1155, DOI 10.1590/0034-761220170288 Riccio V., 2017, UNIVERSAL J MANAGEME, V5, P570, DOI DOI 10.13189/UJM.2017.051204 Rousseau D., 2012, The Oxford Handbook of Evidence Based Management, DOI DOI 10.1093/OXFORDHB/9780199763986.001.0001 Sandhu A, 2021, POLIC SOC, V31, P66, DOI 10.1080/10439463.2020.1803315 Santos RB, 2014, J CONTEMP CRIM JUST, V30, P147, DOI 10.1177/1043986214525080 Shapiro A, 2019, SURVEILL SOC, V17, P456, DOI 10.24908/ss.v17i3/4.10410 Sherman L., 1997, PREVENTING CRIME WHA, P8 Sorg ET, 2013, CRIMINOLOGY, V51, P65, DOI 10.1111/j.1745-9125.2012.00290.x Sytsma VA, 2018, POLICE PRACT RES, V19, P347, DOI 10.1080/15614263.2017.1364998 Telep CW, 2012, POLICE Q, V15, P331, DOI 10.1177/1098611112447611 Thomas L, 2017, PROF DEV EDUC, V43, P497, DOI 10.1080/19415257.2016.1228538 Wang C, 2020, OMEGA-INT J MANAGE S, V93, DOI 10.1016/j.omega.2019.08.005 Wang C, 2019, J CLEAN PROD, V206, P741, DOI 10.1016/j.jclepro.2018.09.172 Yan EJ, 2012, J AM SOC INF SCI TEC, V63, P1313, DOI 10.1002/asi.22680 Zavrsnik A, 2017, REV KRIMINALISTIKO K, V68, P135 Zhang Y, 2019, MICROORGANISMS, V7, DOI 10.3390/microorganisms7080213 NR 88 TC 14 Z9 14 U1 4 U2 25 PU EMERALD GROUP PUBLISHING LTD PI BINGLEY PA HOWARD HOUSE, WAGON LANE, BINGLEY BD16 1WA, W YORKSHIRE, ENGLAND SN 1746-5664 EI 1746-5672 J9 J MODEL MANAG JI J. Model. Manag. PD NOV 29 PY 2022 VL 17 IS 4 BP 1372 EP 1409 DI 10.1108/JM2-10-2020-0268 EA AUG 2021 PG 38 WC Management WE Emerging Sources Citation Index (ESCI) SC Business & Economics GA 6R1FP UT WOS:000681522800001 DA 2024-09-05 ER PT J AU Jing, YH Zhao, LY Zhu, KK Wang, HM Wang, CL Xia, Q AF Jing, Yuhui Zhao, Leying Zhu, Keke Wang, Haoming Wang, Chengliang Xia, Qi TI Research Landscape of Adaptive Learning in Education: A Bibliometric Study on Research Publications from 2000 to 2022 SO SUSTAINABILITY LA English DT Article DE adaptive learning; artificial intelligence; bibliometrics; intelligent technology; learning system ID FUZZY-NEURAL-NETWORK; SYSTEM; MODEL; PATH; FRAMEWORK; SCIENCE; ONLINE; PERSONALIZATION; CLASSIFICATION; ENVIRONMENT AB Adaptive learning is an approach toward personalized learning and places the concept of "learner-centered education" into practice. With the rapid development of artificial intelligence and other technologies in recent years, there have been many breakthroughs in adaptive learning. Thus, it is important to gain insight into the evolution of related research and to track the research frontiers to further promote its development. This study used CiteSpace and VOSviewer to conduct a bibliometric analysis of 644 adaptive learning journal papers indexed in the WoS database from 2000 to 2022. This study presented a general view of the field of adaptive learning research over the last two decades using quantitative analysis. Currently, adaptive learning research is rapidly developing. In terms of the major research forces, a core group of authors including Qiao J. F., Han H. G. and Song Q has been formed; the major publishing country in this field is China; the core publishing journals include IEEE Transactions on Neural Networks and Learning Systems. Four major research topics in this field were identified using cluster analysis, namely the application of deep learning in educational data analysis, the development and application of adaptive learning model in AI education, the development and application of intelligent tutoring system in tutoring and teaching, cutting-edge modeling technology for feature modeling and knowledge tracing. Through evolution analyses, the logic of adaptive learning research's development was determined; that is, technological changes have played a key role in the development of this field. Following the logic, we presented three frontiers of adaptive learning with burst terms: feature extraction, adaptation model and computational modeling. Adaptive learning is a core research topic for both computer science and educational technology disciplines, and it is also an important field where emerging technologies empowering education and teaching can play a part. The findings of the study clearly presented the current research status, evolutionary logic and research frontiers of this topic, which can provide references for the further development of this research field. C1 [Jing, Yuhui; Zhao, Leying; Wang, Haoming; Wang, Chengliang] Zhejiang Univ Technol, Coll Educ Sci & Technol, Hangzhou 310023, Peoples R China. [Zhu, Keke] Zhejiang Univ Technol, Coll Foreign Languages, Hangzhou 310023, Peoples R China. [Xia, Qi] Chinese Univ Hong Kong, Instruction Fac Educ, Dept Curriculum, Hongkong 999077, Peoples R China. C3 Zhejiang University of Technology; Zhejiang University of Technology; Chinese University of Hong Kong RP Zhao, LY; Wang, CL (corresponding author), Zhejiang Univ Technol, Coll Educ Sci & Technol, Hangzhou 310023, Peoples R China. EM 202005720434@zjut.edu.cn; 201906120404@zjut.edu.cn RI Wang, Henry/HMD-3336-2023; Wang, Chengliang/JEZ-9556-2023; XIA, Qi/KRO-3142-2024 OI Wang, Henry/0000-0003-3624-2127; Wang, Chengliang/0000-0003-2208-3508; XIA, Qi/0000-0003-0538-7665; Jing, Yuhui/0000-0002-8593-2725 FU National Social Science Foundation Education Youth Project "Research on the Strategy of Creating Learning Space Value and Empowering Classroom Teaching under the background of Double Reduction'" [CCA220319] FX This research was supported by the 2022 National Social Science Foundation Education Youth Project "Research on the Strategy of Creating Learning Space Value and Empowering Classroom Teaching under the background of Double Reduction'" (Grant No. CCA220319). CR Adnan M, 2022, PEERJ COMPUT SCI, V8, DOI 10.7717/peerj-cs.803 Agand P, 2017, ENG APPL ARTIF INTEL, V65, P1, DOI 10.1016/j.engappai.2017.07.009 [Anonymous], 2022, EDUCAUSE HOR REP TEA Azevedo R, 2010, EDUC PSYCHOL-US, V45, P210, DOI 10.1080/00461520.2010.515934 Bang HJ, 2023, EARLY CHILD EDUC J, V51, P717, DOI 10.1007/s10643-022-01332-3 Bernacki ML, 2021, EDUC PSYCHOL REV, V33, P1675, DOI 10.1007/s10648-021-09615-8 Beyhan S, 2011, INT J ADAPT CONTROL, V25, P168, DOI 10.1002/acs.1214 Bhasin S, 2013, AUTOMATICA, V49, P82, DOI 10.1016/j.automatica.2012.09.019 Binet A, 1904, ANN PSYCHOL, V11, P191 Binet A., 1916, The development of intelligence in children (The Binet-Simon Scale), P37, DOI [10.1037/11069-002, DOI 10.1037/11069-002] Binh HT, 2021, EDUC INF TECHNOL, V26, P4969, DOI 10.1007/s10639-021-10485-4 Birkle C, 2020, QUANT SCI STUD, V1, P363, DOI 10.1162/qss_a_00018 Bodily R, 2019, BRIT J EDUC TECHNOL, V50, P64, DOI 10.1111/bjet.12712 Brusilovsky P, 1998, ADAPTIVE HYPERTEXT AND HYPERMEDIA, P1 Caballé S, 2014, J COMPUT ASSIST LEAR, V30, P51, DOI 10.1111/jcal.12021 Campus Computing, 2018, 29 NAT SURV COMP INF Capuano N, 2020, AI MAG, V41, P96 Cavanagh T, 2020, INT REV RES OPEN DIS, V21, P172 Chang TY, 2013, J NETW COMPUT APPL, V36, P533, DOI 10.1016/j.jnca.2012.04.002 Chen HL, 2020, COMPUT EDUC, V150, DOI 10.1016/j.compedu.2020.103836 Chen J, 2022, FRONT PSYCHOL, V13, DOI 10.3389/fpsyg.2022.883150 Chen JY, 2023, FRONT PSYCHOL, V13, DOI 10.3389/fpsyg.2022.1079955 Chen XL, 2023, EDUC INF TECHNOL, V28, P1323, DOI 10.1007/s10639-022-11209-y Chu HC, 2021, EDUC TECHNOL SOC, V24, P36 Cobo MJ, 2015, KNOWL-BASED SYST, V80, P3, DOI 10.1016/j.knosys.2014.12.035 Coello CAC, 2002, IEEE C EVOL COMPUTAT, P1051, DOI 10.1109/CEC.2002.1004388 Daghestani LF, 2020, COMPUT APPL ENG EDUC, V28, P568, DOI 10.1002/cae.22227 de Melo FR, 2014, COMPUT EDUC, V79, P126, DOI 10.1016/j.compedu.2014.07.012 Dhakshinamoorthy A, 2019, COMPUT APPL ENG EDUC, V27, P319, DOI 10.1002/cae.22076 Dima A, 2023, ELECTRONICS-SWITZ, V12, DOI 10.3390/electronics12010062 Ding X, 2022, ELECTRON COMMER RES, V22, P787, DOI 10.1007/s10660-020-09410-7 Diodato VP., 2013, DICT BIBLIOMETRICS, DOI [10.4324/9780203714133, DOI 10.4324/9780203714133] Donthu N, 2020, J BUS RES, V109, P1, DOI 10.1016/j.jbusres.2019.10.039 Dutt S, 2022, EDUC INF TECHNOL, V27, P2613, DOI 10.1007/s10639-021-10713-x Dwivedi P, 2018, EDUC INF TECHNOL, V23, P819, DOI 10.1007/s10639-017-9637-7 Ebibi M, 2012, TECH TECHNOL EDUC MA, V7, P864 Faber TJE, 2022, LEARN INSTR, V83, DOI 10.1016/j.learninstruc.2022.101666 Fernandez G., 2003, LECT NOTES COMPUT SC, DOI [10.1007/978-3-540-45200-3_2, DOI 10.1007/978-3-540-45200-3_2] Gandomkar R, 2020, MED EDUC, V54, P727, DOI 10.1111/medu.14079 González-Castro N, 2021, AUSTRALAS J EDUC TEC, V37, P24, DOI 10.14742/ajet.6646 Gu K, 2017, IEEE T IMAGE PROCESS, V26, P4005, DOI 10.1109/TIP.2017.2711279 Gu K, 2018, IEEE T NEUR NET LEAR, V29, P1301, DOI 10.1109/TNNLS.2017.2649101 Han HG, 2011, NEURAL NETWORKS, V24, P717, DOI 10.1016/j.neunet.2011.04.006 Han HG, 2014, IEEE T CYBERNETICS, V44, P554, DOI 10.1109/TCYB.2013.2260537 Hassan MA, 2021, INTERACT LEARN ENVIR, V29, P545, DOI 10.1080/10494820.2019.1588745 Holmes M, 2018, IEEE T LEARN TECHNOL, V11, P5, DOI 10.1109/TLT.2017.2754497 Hwang GJ, 2021, MATHEMATICS-BASEL, V9, DOI 10.3390/math9060584 Karampiperis P, 2005, EDUC TECHNOL SOC, V8, P128 Kärki T, 2022, EDUC STUD MATH, V110, P101, DOI 10.1007/s10649-021-10120-6 Kiumarsi B, 2018, IEEE T NEUR NET LEAR, V29, P2042, DOI 10.1109/TNNLS.2017.2773458 LeCun Y, 2015, NATURE, V521, P436, DOI 10.1038/nature14539 Lewis FL, 2012, IEEE CONTR SYST MAG, V32, P76, DOI 10.1109/MCS.2012.2214134 Li FY, 2021, EDUC TECHNOL SOC, V24, P256 Lin CF, 2013, COMPUT EDUC, V68, P199, DOI 10.1016/j.compedu.2013.05.009 Lin YT, 2016, IEEE T EDUC, V59, P175, DOI 10.1109/TE.2015.2487341 Liu HI, 2005, IEEE T EDUC, V48, P676, DOI 10.1109/TE.2005.858398 Lo JJ, 2005, BRIT J EDUC TECHNOL, V36, P43, DOI 10.1111/j.1467-8535.2005.00437.x Luo ZN, 2021, EDUC INF TECHNOL, V26, P4457, DOI 10.1007/s10639-021-10468-5 Martin F, 2020, ETR&D-EDUC TECH RES, V68, P1903, DOI 10.1007/s11423-020-09793-2 Martins AF, 2021, SOFT COMPUT, V25, P11019, DOI 10.1007/s00500-021-05836-9 Mavroudi A, 2018, INTERACT LEARN ENVIR, V26, P206, DOI 10.1080/10494820.2017.1292531 Mo CY, 2022, FRONT PSYCHOL, V13, DOI 10.3389/fpsyg.2022.839982 Narciss S, 2014, COMPUT EDUC, V71, P56, DOI 10.1016/j.compedu.2013.09.011 Nedungadi P, 2012, ETR&D-EDUC TECH RES, V60, P659, DOI 10.1007/s11423-012-9250-9 Nguyen UP, 2020, SIMULAT GAMING, V51, P744, DOI 10.1177/1046878120941569 Nilashi M, 2022, EDUC INF TECHNOL, V27, P9401, DOI 10.1007/s10639-022-10997-7 Normadhi NBA, 2019, COMPUT EDUC, V130, P168, DOI 10.1016/j.compedu.2018.11.005 Pavlik PI Jr, 2021, IEEE T LEARN TECHNOL, V14, P624, DOI 10.1109/TLT.2021.3128569 Peng HC, 2019, SMART LEARN ENVIRON, V6, DOI 10.1186/s40561-019-0089-y Peng P, 2022, MOBILE NETW APPL, V27, P1186, DOI 10.1007/s11036-022-01942-6 Peng T, 2008, KNOWL INF SYST, V16, P281, DOI 10.1007/s10115-007-0107-1 Popescu DV, 2022, AMFITEATRU ECON, V24, P314, DOI 10.24818/EA/2022/60/410 Pranckute R, 2021, PUBLICATIONS-BASEL, V9, DOI 10.3390/publications9010012 Pressey SL, 1927, SCHOOL SOC, V25, P549 PRITCHARD A, 1969, J DOC, V25, P348 Qiao JF, 2017, IEEE T NEUR NET LEAR, V28, P391, DOI 10.1109/TNNLS.2016.2514275 Reinstein I, 2021, ADV HEALTH SCI EDUC, V26, P881, DOI 10.1007/s10459-021-10027-0 Roach M, 2001, INNOV EDUC TRAIN INT, V38, P369, DOI 10.1080/14703290110074957 Santos J.M., 2003, P INT C COMPUTATIONA, DOI [10.1007/3-540-44862-4_116, DOI 10.1007/3-540-44862-4_116] Sariyalcinkaya A D., 2021, Advancing the Power of Learning Analytics and Big Data in Education, P61, DOI DOI 10.4018/978-1-7998-7103-3.CH003 Schumacher C, 2021, INTERNET HIGH EDUC, V49, DOI 10.1016/j.iheduc.2020.100791 Sharma K, 2019, BRIT J EDUC TECHNOL, V50, P3004, DOI 10.1111/bjet.12854 Sridharan S, 2021, EDUC INF TECHNOL, V26, P5895, DOI 10.1007/s10639-021-10560-w Strotmann A, 2012, J AM SOC INF SCI TEC, V63, P1820, DOI 10.1002/asi.22695 Tempelaar D, 2020, ASSESS EVAL HIGH EDU, V45, P579, DOI 10.1080/02602938.2019.1677855 Tsai CJ, 2001, LECT NOTES COMPUT SC, V2074, P429 Tseng JCR, 2008, COMPUT EDUC, V51, P776, DOI 10.1016/j.compedu.2007.08.002 Tseng SS, 2008, EDUC TECHNOL SOC, V11, P171 UNESCO, 2020, INT FOR AI FUT ED DE Vamvoudakis KG, 2010, AUTOMATICA, V46, P878, DOI 10.1016/j.automatica.2010.02.018 van Eck NJ, 2010, SCIENTOMETRICS, V84, P523, DOI 10.1007/s11192-009-0146-3 Vanitha V, 2019, COMPUT ELECTR ENG, V77, P325, DOI 10.1016/j.compeleceng.2019.06.016 Verbeek A, 2002, INT J MANAG REV, V4, P179, DOI 10.1111/1468-2370.00083 Villegas-Ch W, 2020, APPL SCI-BASEL, V10, DOI 10.3390/app10207016 Wan HP, 2023, INTERACT LEARN ENVIR, V31, P1821, DOI 10.1080/10494820.2020.1858115 Wang C., 2022, 2022 7 INT C CLOUD C, P507, DOI [10.1109/ICCCBDA55098.2022.9778874, DOI 10.1109/ICCCBDA55098.2022.9778874] Wang FH, 2004, EXPERT SYST APPL, V27, P11, DOI 10.1016/j.eswa.2003.12.001 Wang S, 2023, INTERACT LEARN ENVIR, V31, P793, DOI 10.1080/10494820.2020.1808794 Wang XH, 2018, BRIT J EDUC TECHNOL, V49, P742, DOI 10.1111/bjet.12646 Wang YS, 2022, SCI PROGRAMMING-NETH, V2022, DOI 10.1155/2022/4684461 Wei W, 2019, DISASTER MED PUBLIC, V13, P405, DOI 10.1017/dmp.2018.63 Wu LJ, 2023, INTERACT LEARN ENVIR, V31, P890, DOI 10.1080/10494820.2020.1815216 Xie H, 2019, COMPUT EDUC, V140, DOI 10.1016/j.compedu.2019.103599 Yaghmaie M, 2011, EXPERT SYST APPL, V38, P3280, DOI 10.1016/j.eswa.2010.08.113 Yang TC, 2013, EDUC TECHNOL SOC, V16, P185 Yang Y., 2012, International Journal of Innovation, Management and Technology, V3, P337, DOI [DOI 10.7763/IJIMT.2012.V3.250, 10.7763/ijimt.2012.v3.250] Yang YTC, 2014, BRIT J EDUC TECHNOL, V45, P723, DOI 10.1111/bjet.12080 Zeng LY, 2021, INT J ELEC ENG EDUC, DOI 10.1177/0020720920984325 Zhang H, 2020, J CLOUD COMPUT-ADV S, V9, DOI 10.1186/s13677-020-00165-y Zhang JT, 2021, NEUROCOMPUTING, V462, P31, DOI 10.1016/j.neucom.2021.07.046 Zhang L., 2020, IEEE transactions on learning technologies, V14, P338 Zhou YW, 2018, INFORM SCIENCES, V444, P135, DOI 10.1016/j.ins.2018.02.053 Zourmpakis AI, 2022, INT J TECHNOL ENHANC, V14, P1 NR 113 TC 10 Z9 10 U1 21 U2 82 PU MDPI PI BASEL PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND EI 2071-1050 J9 SUSTAINABILITY-BASEL JI Sustainability PD FEB PY 2023 VL 15 IS 4 AR 3115 DI 10.3390/su15043115 PG 21 WC Green & Sustainable Science & Technology; Environmental Sciences; Environmental Studies WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Science & Technology - Other Topics; Environmental Sciences & Ecology GA 9K0PW UT WOS:000940578200001 OA gold DA 2024-09-05 ER PT J AU Luo, FS Li, RYM Crabbe, MJC Pu, RH AF Luo, Fansong Li, Rita Yi Man Crabbe, M. James C. Pu, Ruihui TI Economic development and construction safety research: A bibliometrics approach SO SAFETY SCIENCE LA English DT Article DE Construction industry; Reconstruction; Bibliometrics; Safety management and artificial intelligence ID INTELLECTUAL STRUCTURE; MANAGEMENT; CLIMATE; HEALTH; FATALITIES; ACCIDENTS; BEHAVIOR; COUNTRY; WORKERS; IMPACT AB The construction industry contributes significantly to economic development worldwide, yet it is one of the most hazardous industries where numerous accidents and fatalities happen every year. Little research to date has shed light on the impact of economic development on construction safety research. In this paper, we conduct an analysis of construction safety articles published in the 21st century via a bibliometrics approach. We have analysed: (1) construction safety in developed and developing countries; (2) the major organisations that have conducted construction safety research; (3) authors and territories of the research and (4) topics in construction safety and future research directions. The largest number of published construction safety documents were published by scholars from the US and China; the total number of published articles by these two countries was 1,125, at 56% of the 2000 articles that were published. Both countries showed high levels of research collaboration. While our results suggest that economic development may drive academic construction safety research, there has been an increase in construction safety research conducted by developing countries in recent years, probably due to an improvement in their economic development. While authors' keywords evidenced the popularity of research on safety management and climate, the network analysis on all keywords, i.e. keywords given by Web of Science and authors, suggest that construction safety research focused on three areas: construction safety management, the relationship between people and construction safety, and the protection and health of workers' impact on construction safety. We found that there is a new interdisciplinary research trend where construction safety combines with digital technologies, with the largest number involving deep learning. Other trends focus on machine learning, Building Information Modelling, machine learning and visualisation. C1 [Luo, Fansong; Li, Rita Yi Man] Hong Kong Shue Yan Univ, Sustainable Real Estate Res Ctr, Hong Kong, Peoples R China. [Crabbe, M. James C.] Univ Oxford, Wolfson Coll, Oxford OX2 6UD, England. [Crabbe, M. James C.] Univ Bedfordshire, Inst Biomed & Environm Sci & Technol, Luton LU1 3JU, Beds, England. [Crabbe, M. James C.] Shanxi Univ, Sch Life Sci, Taiyuan 030006, Peoples R China. [Pu, Ruihui] Srinakharinwirot Univ, Fac Econ, Bangkok 10110, Thailand. C3 Hong Kong Shue Yan University; University of Oxford; University of Bedfordshire; Shanxi University; Srinakharinwirot University RP Pu, RH (corresponding author), Srinakharinwirot Univ, Fac Econ, Bangkok 10110, Thailand. EM 179034@hksyu.edu.hk; ymli@hksyu.edu; crabbe@wolfson.ox.ac.uk; ruihui@g.swu.ac.th RI LUO, Fansong/AFJ-9215-2022 OI Pu, Ruihui/0000-0002-8523-242X FU Research Grants Council of the Hong Kong Special Administrative Region, China [UGC/FDS15/E01/18] FX This work described in this paper was fully supported by a grant from the Research Grants Council of the Hong Kong Special Administrative Region, China (Project No. UGC/FDS15/E01/18). CR Abbas M, 2018, SAFETY SCI, V103, P183, DOI 10.1016/j.ssci.2017.10.026 Abueisheh Q, 2020, SAFETY SCI, V128, DOI 10.1016/j.ssci.2020.104742 Abukhashabah E, 2020, SAUDI J BIOL SCI, V27, P1993, DOI 10.1016/j.sjbs.2020.06.033 Ajayi SO, 2021, J BUILD ENG, V41, DOI 10.1016/j.jobe.2021.102398 Akinosho TD, 2020, J BUILD ENG, V32, DOI 10.1016/j.jobe.2020.101827 Al Mawli B, 2021, SAFETY SCI, V136, DOI 10.1016/j.ssci.2020.105156 Alonso S, 2009, J INFORMETR, V3, P273, DOI 10.1016/j.joi.2009.04.001 [Anonymous], 2021, S NEWS WORLD REP [Anonymous], 2017, EC ANAL AUTOMATED CO Arthur S., 2003, EC PRINCIPLES ACTION, P471 Awwad R, 2016, SAFETY SCI, V83, P1, DOI 10.1016/j.ssci.2015.10.016 Basaga HB, 2018, SAFETY SCI, V110, P344, DOI 10.1016/j.ssci.2018.09.002 Behm M, 2005, SAFETY SCI, V43, P589, DOI 10.1016/j.ssci.2005.04.002 BROADUS RN, 1987, SCIENTOMETRICS, V12, P373, DOI 10.1007/BF02016680 Brolin K, 2021, SAFETY SCI, V136, DOI 10.1016/j.ssci.2020.105147 Chen YT, 2018, SAFETY SCI, V109, P434, DOI 10.1016/j.ssci.2018.07.003 Choudhry RA, 2007, SAFETY SCI, V45, P993, DOI 10.1016/j.ssci.2006.09.003 Choudhry RM, 2008, SAFETY SCI, V46, P566, DOI 10.1016/j.ssci.2007.06.027 Clarivate, 2021, WHO WE ARE CLAR Daim TU, 2006, TECHNOL FORECAST SOC, V73, P981, DOI 10.1016/j.techfore.2006.04.004 Fahimnia B, 2015, INT J PROD ECON, V162, P101, DOI 10.1016/j.ijpe.2015.01.003 Fang DP, 2020, SAFETY SCI, V128, DOI 10.1016/j.ssci.2020.104761 Fang WL, 2020, AUTOMAT CONSTR, V110, DOI 10.1016/j.autcon.2019.103013 Fang WL, 2020, ADV ENG INFORM, V43, DOI 10.1016/j.aei.2019.100980 Fetscherin M, 2015, J BUS RES, V68, P380, DOI 10.1016/j.jbusres.2014.06.010 Glendon AI, 2001, SAFETY SCI, V39, P157, DOI 10.1016/S0925-7535(01)00006-6 Guo BHW, 2021, SAFETY SCI, V135, DOI 10.1016/j.ssci.2020.105130 Guo QJ, 2020, RELIAB ENG SYST SAFE, V201, DOI 10.1016/j.ress.2020.106956 *ILO, 2018, ILOSTAT ILO DAT LAB Kim J, 2020, AUTOMAT CONSTR, V120, DOI 10.1016/j.autcon.2020.103376 Li R.Y.M., 2013, CONSTRUCTION SAFEY Li RYM, 2011, ECON AFFA, V31, P73, DOI 10.1111/j.1468-0270.2010.02053.x Liang KZ, 2019, J SAFETY RES, V70, P149, DOI 10.1016/j.jsr.2019.06.004 Lingard H, 2021, SAFETY SCI, V133, DOI 10.1016/j.ssci.2020.105028 Lu Y, 2021, AUTOMAT CONSTR, V124, DOI 10.1016/j.autcon.2021.103553 Manu P, 2018, SAFETY SCI, V107, P188, DOI 10.1016/j.ssci.2017.07.007 Merigó JM, 2015, J BUS RES, V68, P2645, DOI 10.1016/j.jbusres.2015.04.006 Mohamed S, 2002, J CONSTR ENG M, V128, P375, DOI 10.1061/(ASCE)0733-9364(2002)128:5(375) Nerur SP, 2008, STRATEG MANAGE J, V29, P319, DOI 10.1002/smj.659 Oh TK, 2021, SAFETY SCI, V133, DOI 10.1016/j.ssci.2020.104994 Oxford Economics, 2015, CAP PROJ INFR SPEND Ramos-Rodríguez AR, 2004, STRATEGIC MANAGE J, V25, P981, DOI 10.1002/smj.397 Rodriguez A, 2014, SCIENCE, V344, P1492, DOI 10.1126/science.1242072 Sick V, 2020, CO2 CAN HELP CONSTRU Sinyai C, 2020, SAFETY SCI, V131, DOI 10.1016/j.ssci.2020.104915 Stanton EA., 2007, Polit Econ Res Inst Work Pap Ser, V127, P1 Tam CM, 2004, SAFETY SCI, V42, P569, DOI 10.1016/j.ssci.2003.09.001 U.S. Bureau of Labor Statistics, 2019, CENS FAT OCC INJ SUM UKGOV, 2013, CONSTR 2025 IND STRA van Eck N.J., 2020, VOSviewer Manual van Eck NJ, 2017, SCIENTOMETRICS, V111, P1053, DOI 10.1007/s11192-017-2300-7 Lozano-Díez RV, 2019, J SAFETY RES, V68, P149, DOI 10.1016/j.jsr.2018.12.012 Waltman L, 2010, J INFORMETR, V4, P629, DOI 10.1016/j.joi.2010.07.002 Xu YY, 2021, DEV BUILT ENVIRON, V6, DOI 10.1016/j.dibe.2021.100045 Zahoor H, 2015, PROCEDIA ENGINEER, V118, P581, DOI 10.1016/j.proeng.2015.08.488 Zhang SJ, 2013, AUTOMAT CONSTR, V29, P183, DOI 10.1016/j.autcon.2012.05.006 Zhong BT, 2020, AUTOMAT CONSTR, V113, DOI 10.1016/j.autcon.2020.103089 Zhou ZP, 2015, SAFETY SCI, V72, P337, DOI 10.1016/j.ssci.2014.10.006 Zupic I, 2015, ORGAN RES METHODS, V18, P429, DOI 10.1177/1094428114562629 NR 59 TC 48 Z9 49 U1 10 U2 136 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS SN 0925-7535 EI 1879-1042 J9 SAFETY SCI JI Saf. Sci. PD JAN PY 2022 VL 145 AR 105519 DI 10.1016/j.ssci.2021.105519 EA OCT 2021 PG 10 WC Engineering, Industrial; Operations Research & Management Science WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Engineering; Operations Research & Management Science GA WH6TY UT WOS:000707808600018 OA Green Submitted DA 2024-09-05 ER PT J AU Alipour, O Soheili, F Khasseh, AA AF Alipour, Omid Soheili, Faramarz Khasseh, Ali Akbar TI A Co-Word Analysis of Global Research on Knowledge Organization: 1900-2019 SO KNOWLEDGE ORGANIZATION LA English DT Article DE co-word analysis; bibliometric networks; strategic diagram; scientometrics; knowledge structure; hierarchical clustering ID INTELLECTUAL STRUCTURE; INFORMATION-SCIENCE; LIBRARY; COOCCURRENCE AB The study's objective is to analyze the structure of knowledge organization studies conducted worldwide. This applied research has been conducted with a scientometrics approach using the co-word analysis. The research records consisted of all articles published in the journals of Knowledge Organization and Cataloging & Classification Quarterly and keywords related to the field of knowledge organization indexed in Web of Science from 1900 to 2019, in which 17,950 records were analyzed entirely with plain text format. The total number of keywords was 25,480, which was reduced to 12,478 keywords after modifications and removal of duplicates. Then, 115 keywords with a frequency of at least 18 were included in the final analysis, and finally, the co-word network was drawn. BibExcel, UCINET, VOSviewer, and SPSS software were used to draw matrices, analyze co-word networks, and draw dendrograms. Furthermore, strategic diagrams were drawn using Excel software. The keywords "information retrieval," "classification," and "ontology" are among the most frequently used keywords in knowledge organization articles. Findings revealed that "Ontology*Semantic Web", "Digital Library*Information Retrieval" and "Indexing*Information Retrieval" are highly frequent co-word pairs, respectively. The results of hierarchical clustering indicated that the global research on knowledge organization consists of eight main thematic clusters; the largest is specified for the topic of "classification, indexing, and information retrieval." The smallest clusters deal with the topics of "data processing" and "theoretical concepts of information and knowledge organization" respectively. Cluster 1 (cataloging standards and knowledge organization) has the highest density, while Cluster 5 (classification, indexing, and information retrieval) has the highest centrality. According to the findings of this research, the keyword "information retrieval" has played a significant role in knowledge organization studies, both as a keyword and co-word pair. In the co-word section, there is a type of related or general topic relationship between co-word pairs. Results indicated that information retrieval is one of the main topics in knowledge organization, while the theoretical concepts of knowledge organization have been neglected. In general, the co-word structure of knowledge organization research indicates the multiplicity of global concepts and topics studied in this field globally. C1 [Alipour, Omid] Guilan Univ, Fac Nat Resources, Lib Serv, Guilan, Iran. [Soheili, Faramarz; Khasseh, Ali Akbar] Payame Noor Univ, Dept Lib & Informat Sci, POB 19395-4697, Tehran, Iran. C3 University of Guilan; Payame Noor University RP Alipour, O (corresponding author), Guilan Univ, Fac Nat Resources, Lib Serv, Guilan, Iran. EM alipour.omid@gmail.com; soheili@pnu.ac.ir; khasseh@pnu.ac.ir RI Khasseh, Ali Akbar/W-4434-2017; soheili, faramarz/ABE-4978-2020 OI Khasseh, Ali Akbar/0000-0001-5664-4671; CR Assefa SG, 2013, J AM SOC INF SCI TEC, V64, P2513, DOI 10.1002/asi.22917 Birkle C, 2020, QUANT SCI STUD, V1, P363, DOI 10.1162/qss_a_00018 Boyack KW, 2005, SCIENTOMETRICS, V64, P351, DOI 10.1007/s11192-005-0255-6 Barros THB, 2019, KNOWL ORGAN, V46, P493, DOI 10.5771/0943-7444-2019-7-493 Bredillet C.N., 2006, Global project management handbook: planning, organizing, and controlling international projects CALLON M, 1983, SOC SCI INFORM, V22, P191, DOI 10.1177/053901883022002003 Chen XW, 2019, SCIENTOMETRICS, V121, P349, DOI 10.1007/s11192-019-03187-9 Corrochano MD, 2013, KNOWL ORGAN, V40, P28, DOI 10.5771/0943-7444-2013-1-28 Deng SL, 2021, J LIBR INF SCI, V53, P280, DOI 10.1177/0961000620938120 Ding Y, 2001, INFORM PROCESS MANAG, V37, P817, DOI 10.1016/S0306-4573(00)00051-0 Gályez C, 2018, REV GEN INF DOC, V28, P455, DOI 10.5209/RGID.62834 Ghazizadeh H., 2018, SCIENTOMETRICS RES J, V4, P101 Hu CP, 2013, SCIENTOMETRICS, V97, P369, DOI 10.1007/s11192-013-1076-7 Katsurai M, 2019, SCIENTOMETRICS, V121, P1583, DOI 10.1007/s11192-019-03241-6 Khasseh AA, 2017, INFORM PROCESS MANAG, V53, P705, DOI 10.1016/j.ipm.2017.02.001 Kumar S, 2012, PROCD SOC BEHV, V65, P1027, DOI 10.1016/j.sbspro.2012.11.237 Lee PC, 2010, INNOV-MANAG POLICY P, V12, P26, DOI 10.5172/impp.12.1.26 Leydesdorff L, 1997, J AM SOC INFORM SCI, V48, P418 Leydesdorff L, 2011, J INFORMETR, V5, P469, DOI 10.1016/j.joi.2011.01.008 Li SQ, 2015, SCIENTOMETRICS, V103, P1023, DOI 10.1007/s11192-015-1571-0 Liu GY, 2012, SCIENTOMETRICS, V91, P203, DOI 10.1007/s11192-011-0586-4 Liu P, 2015, SCIENTOMETRICS, V104, P737, DOI 10.1007/s11192-015-1629-z Mane KK, 2004, P NATL ACAD SCI USA, V101, P5287, DOI 10.1073/pnas.0307626100 Melcer E., 2015, The Proceedings of the 10th International Conference on the Foundations of Digital Games (FDG 2015), June 22-25, 2015, Pacific Grove, CA, USA Mokhtarpour R, 2021, J INF SCI, V47, P794, DOI 10.1177/0165551520932119 Mokhtarpour R, 2020, J LIBR INF SCI, V52, P1186, DOI 10.1177/0961000620907956 Morgan J, 2006, J INF SCI, V32, P108, DOI 10.1177/0165551506062324 Olmeda-Gomez C. O., 2017, TENDENCIAS ATUAIS PE, VXX, P499 Olmeda-Gómez C, 2017, SCIENTOMETRICS, V113, P195, DOI 10.1007/s11192-017-2486-8 Pattuelli MC, 2010, J INF SCI, V36, P812, DOI 10.1177/0165551510388118 Ryan GW., 2003, FIELD METHOD, V15, P85, DOI [DOI 10.1177/1525822X02239569, 10.1177/1525822X02239569] Shen LN, 2017, J DOC, V73, P618, DOI 10.1108/JD-10-2016-0125 Smiraglia RP, 2017, KNOWL ORGAN, V44, P215, DOI 10.5771/0943-7444-2017-3-215 Tariq M., 2020, LIB PHILOS PRACTICE Wang X., 2009, Art Res, V9, P123 Wu Ke, 2013, Knowledge Science, Engineering and Management. 6th International Conference, KSEM 2013. Proceedings. LNCS 8041, P538, DOI 10.1007/978-3-642-39787-5_45 Xu F, 2021, J ACAD LIBR, V47, DOI 10.1016/j.acalib.2020.102295 Zhang J, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0034497 Zhu X, 2020, SCIENTOMETRICS, V123, P753, DOI 10.1007/s11192-020-03400-0 Zong QJ, 2013, SCIENTOMETRICS, V94, P781, DOI 10.1007/s11192-012-0799-1 NR 40 TC 1 Z9 1 U1 8 U2 19 PU NOMOS VERLAGSGESELLSCHAFT MBH & CO KG PI BADEN-BADEN PA WALDSEESTR 3 5, BADEN-BADEN, 76530, GERMANY SN 0943-7444 J9 KNOWL ORGAN JI Knowl. Organ. PY 2022 VL 49 IS 5 BP 303 EP 315 DI 10.5771/0943-7444-2022-5-303 PG 13 WC Information Science & Library Science WE Social Science Citation Index (SSCI) SC Information Science & Library Science GA G1FR9 UT WOS:000986704600001 DA 2024-09-05 ER PT J AU Millimouno, TM Delvaux, T Kolié, JM Kourouma, K Van Bastelaere, S Tsunami, CK Béavogui, AH Garcia, M Van Damme, W Delamou, A AF Millimouno, Tamba Mina Delvaux, Therese Kolie, Jean Michel Kourouma, Karifa Van Bastelaere, Stefaan Tsunami, Carlos Kiyan Beavogui, Abdoul Habib Garcia, Marlon Van Damme, Wim Delamou, Alexandre TI Evaluation of Three Blended Learning Courses to Strengthen Health Professionals' Capacity in Primary Health Care, Management of Sexual and Reproductive Health Services and Research Methods in Guinea SO FRONTIERS IN DIGITAL HEALTH LA English DT Article DE blended learning (BL); e-learning; online learning (OL); distance learning; training; health professionals (HPs); medical education; Guinea (Conakry) ID EDUCATION; IMPLEMENTATION AB BackgroundThree blended courses on Primary Health Care (eSSP), Management of Sexual and Reproductive Health Services (eSSR), and Research Methods (eMR) were developed and implemented between 2017 and 2021 by the Maferinyah National Training and Research Center in Rural Health, a training and research institution of the Ministry of Health in Guinea. The study objectives were to evaluate the reasons for dropout and abstention, the learners' work behavior following the training, and the impact of the behavior change on the achievements of learners' organizations or services. MethodsWe evaluated the three implemented courses in 2021, focusing on levels 3 and 4 of the Kirkpatrick training evaluation model. Quantitative and qualitative data were collected through an open learning platform (Moodle), via an electronic questionnaire, during the face-to-face component of the courses (workshops), and at learners' workplaces. Descriptive statistics and thematic analysis were performed for quantitative and qualitative data, respectively. ResultsOut of 1,016 applicants, 543 including 137 (25%) women were enrolled in the three courses. Over the three courses, the completion rates were similar (67-69%) along with 20-29% dropout rates. Successful completion rates were 72% for eSSP, 83% for eMR and 85% for eSSR. Overall success rate (among all enrollees) ranged from 50% (eSSP) to 58% (eSSR). The majority (87%) of the learners reported applying the knowledge and skills they acquired during the courses through activities such as supervision (22%), service delivery (20%), and training workshops (14%). A positive impact of the training on utilization/coverage of services and increased revenues for their health facilities were also reported by some trainees. ConclusionThese findings showed fair success rates and a positive impact of the training on learners' work behavior and the achievements of their organizations. C1 [Millimouno, Tamba Mina; Kolie, Jean Michel; Kourouma, Karifa; Beavogui, Abdoul Habib; Delamou, Alexandre] Maferinyah Natl Training & Res Ctr Rural Hlth, Forecariah, Guinea. [Delvaux, Therese; Garcia, Marlon; Van Damme, Wim] Inst Trop Med, Dept Publ Hlth, Antwerp, Belgium. [Van Bastelaere, Stefaan] Belgian Dev Agcy Enabel, Brussels, Belgium. [Tsunami, Carlos Kiyan] Inst Trop Med, Dept Clin Sci, Antwerp, Belgium. [Delamou, Alexandre] Gamal Abdel Nasser Univ, Africa Ctr Excellence Prevent & Control Transmiss, Conakry, Guinea. C3 Institute of Tropical Medicine (ITM); Institute of Tropical Medicine (ITM) RP Millimouno, TM (corresponding author), Maferinyah Natl Training & Res Ctr Rural Hlth, Forecariah, Guinea. EM minamillimouno@gmail.com RI Van Damme, Wim/F-7404-2011 OI Van Damme, Wim/0000-0002-6344-3007; KOUROUMA, KARIFA/0000-0001-6375-262X; Millimouno, Tamba Mina/0000-0002-4628-1296; Kiyan Tsunami, Carlos/0009-0008-3215-4078 FU Belgian Development Agency (Enabel) FX This evaluation was funded by the Belgian Development Agency (Enabel). CR Annan RA, 2020, GLOBAL HEALTH ACTION, V13, DOI 10.1080/16549716.2020.1831794 Ashraf MA, 2022, FRONT PSYCHOL, V12, DOI 10.3389/fpsyg.2021.772322 Attardi SM, 2015, ANAT SCI EDUC, V8, P53, DOI 10.1002/ase.1465 Bates R, 2004, EVAL PROGRAM PLANN, V27, P341, DOI 10.1016/j.evalprogplan.2004.04.011 Bediang G, 2013, BMC MED EDUC, V13, DOI 10.1186/1472-6920-13-57 Bonk C. J., 2005, HDB BLENDED LEARNING, P624 Bouzguenda K., 2014, TRANSFER LEARNING OR, P23, DOI [10.1007/978-3-319-02093-8_3, DOI 10.1007/978-3-319-02093-8_3] Bove L., 2019, NEW PARADIGMS CALL N, P1 Braun V., 2006, QUAL RES PSYCHOL, V3, P77, DOI [10.1191/1478088706qp063oa, DOI 10.1191/1478088706QP063OA] Cahapay MB, 2021, INT J ASSESS TOOLS E, V8, P135, DOI 10.21449/ijate.856143 Caner M, 2012, BLENDED LEARNING ENVIRONMENTS FOR ADULTS: EVALUATIONS AND FRAMEWORKS, P19, DOI 10.4018/978-1-4666-0939-6.ch002 Medina LC, 2018, AUSTRALAS J EDUC TEC, V34, P42, DOI 10.14742/ajet.3100 DIRKX JM, 1994, ADULT EDUC QUART, V45, P269, DOI 10.1177/0741713694045001002 District.Team, MOB 2 0 EQ CARD DIST Du S, 2013, INT NURS REV, V60, P167, DOI 10.1111/inr.12015 Garley A, 2016, MALARIA J, V15, DOI 10.1186/s12936-016-1354-y Garrison D. R., 2004, Internet and Higher Education, V7, P95, DOI 10.1016/j.iheduc.2004.02.001 Gauthier PD., 2001, DIMENSION CACH E E L Graham CR, 2003, The Handbook of Blended Learning: Pfeiffer-An Imprint of Wiley Harden RM, 2005, J CONTIN EDUC HEALTH, V25, P43, DOI 10.1002/chp.8 Hugenholtz NIR, 2008, OCCUP MED-OXFORD, V58, P370, DOI 10.1093/occmed/kqn053 Ibrahim NK, 2021, J INFECT PUBLIC HEAL, V14, P17, DOI 10.1016/j.jiph.2020.11.007 Karsenti T., 2009, J APPL COMPUT, V5, P16 Keen C.M., 2014, Perf. Improv, V53, P22, DOI DOI 10.1002/PFI.21443 Kirkpatrick D, 1996, TRAINING DEV, V50, P54 Kumar Basak S., 2018, E-LEARNING DIGITAL M, V15, P191, DOI 10.1177%2F2042753018785180 Lahti M, 2014, INT J NURS STUD, V51, P136, DOI 10.1016/j.ijnurstu.2012.12.017 Levy Y, 2007, COMPUT EDUC, V48, P185, DOI 10.1016/j.compedu.2004.12.004 Manyazewal T, 2017, AM J CLIN PATHOL, V147, P285, DOI [10.1093/ajcp/aqx002, 10.1093/AJCP/AQX002] Masic Izet, 2008, Acta Inform Med, V16, P102, DOI 10.5455/aim.2008.16.102-117 Millimouno TM, 2021, BMC MED EDUC, V21, DOI 10.1186/s12909-021-02847-w Millimouno Tamba Mina, 2021, Sante Publique, V32, P537, DOI 10.3917/spub.205.0537 Mohanna K, 2007, POSTGRAD MED J, V83, P211, DOI 10.1136/pgmj.2007.058610 Molenda M., 2003, PERFORMANCE IMPROVEM, V42, P34 Naal H, 2020, J GLOB HEALTH, V10, DOI 10.7189/jogh.10.020412 Regmi K, 2020, BMC MED EDUC, V20, DOI 10.1186/s12909-020-02007-6 Rudd KE, 2019, INT J MED INFORM, V131, DOI 10.1016/j.ijmedinf.2019.08.005 Saunders B, 2018, QUAL QUANT, V52, P1893, DOI 10.1007/s11135-017-0574-8 Turnbow D., INSTRUCTION DESIGN K Vaismoradi M, 2013, NURS HEALTH SCI, V15, P398, DOI 10.1111/nhs.12048 Vaona A, 2018, COCHRANE DB SYST REV, DOI 10.1002/14651858.CD011736.pub2 Watson J., 2008, Promising practices in online learning: Blended learning: The convergence of online and face-to-face education Wilkinson T.W., 1990, American Journal of Distance Education, V4, P47, DOI DOI 10.1080/08923649009526716 NR 43 TC 2 Z9 2 U1 0 U2 2 PU FRONTIERS MEDIA SA PI LAUSANNE PA AVENUE DU TRIBUNAL FEDERAL 34, LAUSANNE, CH-1015, SWITZERLAND EI 2673-253X J9 FRONT DIGIT HEALTH JI Front. Digit. Health PD JUN 27 PY 2022 VL 4 AR 911089 DI 10.3389/fdgth.2022.911089 PG 10 WC Health Care Sciences & Services; Medical Informatics WE Emerging Sources Citation Index (ESCI) SC Health Care Sciences & Services; Medical Informatics GA M4TV3 UT WOS:001030161100001 PM 35832657 OA gold, Green Published DA 2024-09-05 ER PT J AU Pei, B Xing, WL Wang, MJ AF Pei, Bo Xing, Wanli Wang, Minjuan TI Academic development of multimodal learning analytics: a bibliometric analysis SO INTERACTIVE LEARNING ENVIRONMENTS LA English DT Article DE Multimodal learning analytics; bibliometric analysis; learning analytics; social network analysis; topic modeling ID KNOWLEDGE AB Multimodal Learning Analytics (MMLA) has huge potential for extending the work beyond traditional learning analytics for the capabilities of leveraging multiple data modalities (e.g. physiological data, digital tracing data). To shed a light on its applications and academic development, a systematic bibliometric analysis was conducted in this paper. Specifically, we examine the following aspects: (1) Analyzing the yearly publication and citation trends since the year 2010; (2) Recognizing the most prolific countries, institutions, and authors in this field; (3) Identifying the collaborative patterns among countries, institutions, and authors, respectively; (4) Tracing the evolving procedure of the applied keywords and development of the research topics during the last decade. These analytic tasks were conducted on 194 carefully selected articles published since 2010. The analytical results revealed an increasing trend in the number of publications and citations, identified the prominent institutions and scholars with significant academic contributions to the area, and detected the topics (e.g. characterizing learning processes using multimodal data, implementing ubiquitous learning platforms) that received the most attention. Finally, we also highlighted the current research hotspots attempting to initiate potential interdisciplinary collaborations to promote further progress in the area of MMLA. C1 [Pei, Bo; Xing, Wanli] Univ Florida, Coll Educ, Sch Teaching & Learning, Gainesville, FL 32611 USA. [Wang, Minjuan] San Diego State Univ, Learning Design & Technol, San Diego, CA 92182 USA. C3 State University System of Florida; University of Florida; California State University System; San Diego State University RP Xing, WL (corresponding author), Univ Florida, Coll Educ, Sch Teaching & Learning, Gainesville, FL 32611 USA. EM wanli.xing@coe.ufl.edu OI Pei, Bo/0000-0002-6328-6929; Xing, Wanli/0000-0002-1446-889X CR Agarwal A, 2016, ASIAN J ANDROL, V18, P296, DOI 10.4103/1008-682X.171582 Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993 Blikstein P., 2016, J. Learn. Anal., V3, P220, DOI DOI 10.18608/JLA.2016.32.11 Chen X, 2020, COMPUT EDUC, V151, DOI 10.1016/j.compedu.2020.103855 Chiluiza, 2017, CEUR WORKSHOP P, V1828, P94 Cukurova M., 2019, P AIAED 2019 Di Mitri D, 2018, J COMPUT ASSIST LEAR, V34, P338, DOI 10.1111/jcal.12288 EGGHE L, 1987, SCIENTOMETRICS, V11, P81, DOI 10.1007/BF02016632 Iqbal W, 2019, SCIENTOMETRICS, V119, P1121, DOI 10.1007/s11192-019-03086-z Loper Edward, 2002, ASS COMPUTATIONAL LI, P63 Manocha D, 2019, TEXTUAL SPEECH CUES, V34, P1359, DOI [10.1609/aaai.v34i02.5492, DOI 10.1609/AAAI.V34I02.5492] Morency LP, 2013, ICMI'13: PROCEEDINGS OF THE 2013 ACM INTERNATIONAL CONFERENCE ON MULTIMODAL INTERACTION, P373, DOI 10.1145/2522848.2534669 Noroozi O, 2020, EDUC INF TECHNOL, V25, P5499, DOI 10.1007/s10639-020-10229-w Ochoa X., 2016, Journal of Learning Analytics, V3, P213, DOI DOI 10.18608/JLA.2016.32.10 Oviatt S, 2013, ICMI'13: PROCEEDINGS OF THE 2013 ACM INTERNATIONAL CONFERENCE ON MULTIMODAL INTERACTION, P563, DOI 10.1145/2522848.2533790 Pei B, 2019, BRIT J EDUC TECHNOL, V50, P3391, DOI 10.1111/bjet.12741 Scherer S, 2012, ICMI '12: PROCEEDINGS OF THE ACM INTERNATIONAL CONFERENCE ON MULTIMODAL INTERACTION, P609 Shankar SK, 2018, IEEE INT CONF ADV LE, P212, DOI 10.1109/ICALT.2018.00057 Talburt, 2013, INFORM QUALITY GOVER Worsley M., 2018, CEUR WORKSHOP P Xing WL, 2019, INTERNET HIGH EDUC, V43, DOI 10.1016/j.iheduc.2019.100690 Xing WL, 2016, COMPUT HUM BEHAV, V58, P119, DOI 10.1016/j.chb.2015.12.007 Xing WL, 2015, COMPUT HUM BEHAV, V47, P168, DOI 10.1016/j.chb.2014.09.034 Zhong SZ, 2016, J CLEAN PROD, V139, P122, DOI 10.1016/j.jclepro.2016.08.039 Zhu GX, 2019, USER MODEL USER-ADAP, V29, P789, DOI 10.1007/s11257-019-09241-8 NR 25 TC 11 Z9 11 U1 8 U2 91 PU ROUTLEDGE JOURNALS, TAYLOR & FRANCIS LTD PI ABINGDON PA 2-4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND SN 1049-4820 EI 1744-5191 J9 INTERACT LEARN ENVIR JI Interact. Learn. Environ. PD AUG 18 PY 2023 VL 31 IS 6 BP 3543 EP 3561 DI 10.1080/10494820.2021.1936075 EA JUN 2021 PG 19 WC Education & Educational Research WE Social Science Citation Index (SSCI) SC Education & Educational Research GA P6MO6 UT WOS:000658203800001 DA 2024-09-05 ER PT J AU van den Besselaar, P Leydesdorff, L AF van den Besselaar, P Leydesdorff, L TI Mapping change in scientific specialties: A scientometric reconstruction of the development of artificial intelligence SO JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE LA English DT Article ID CITATION ANALYSIS; JOURNALS; SCIENCE AB Has an identifiable core of activities called AI been established, during the AI-boom in the eighties? Is AI already in a ''paradigmatic'' phase? There has been a lot of disagreement among commentators and specialists about the nature of Artificial Intelligence as a specialty, This makes AI an interesting case of an emerging specialty, We use aggregated journal-journal citations for describing Artificial Intelligence as sets of journals; factor analytic techniques are used to analyze the development of AI in terms of (an emerging) stability and coherency of the journal-sets during the period 1982-1992, The analysis teaches us that AI has emerged as a set of journals with the characteristics of a discipline only since 1988, The thereafter relatively stable set of journals includes both fundamental and applied AI-journals, and journals with a focus on expert systems, Additionally, specialties related to artificial intelligence (like pattern analysis, computer science, cognitive psychology) are identified, Neural network research is a part neither of AI nor of its direct citation environment, Information science is related to AI only in the early eighties, The citation environment of AI is more stable than AI itself. C1 UNIV AMSTERDAM, DEPT SCI & TECHNOL DYNAM, 1018 WV AMSTERDAM, NETHERLANDS. C3 University of Amsterdam RP van den Besselaar, P (corresponding author), UNIV AMSTERDAM, DEPT SOCIAL SCI INFORMAT, ROETERSSTR 15, 1018 WB AMSTERDAM, NETHERLANDS. RI van den Besselaar, Peter A A/E-5938-2013; Leydesdorff, Loet/E-2903-2010; van den Besselaar, Peter A.A./A-8945-2011 OI van den Besselaar, Peter A A/0000-0002-8304-8565; Leydesdorff, Loet/0000-0002-7835-3098; CR [Anonymous], 1976, EVALUATIVE BIBLIOMET [Anonymous], 1962, The Structure of Scientific Revolutions [Anonymous], 1976, TECHNOL CULT [Anonymous], SCIENTOMETRICS [Anonymous], CARTOGRAPHY SCI SCIE [Anonymous], 1986, UNDERSTANDING COMPUT BOBROW DG, 1985, ARTIF INTELL, V25, P375, DOI 10.1016/0004-3702(85)90077-3 Boden M.A., 1990, PHILOS ARTIFICIAL IN BORGMAN CL, 1992, J AM SOC INFORM SCI, V43, P397, DOI 10.1002/(SICI)1097-4571(199207)43:6<397::AID-ASI1>3.0.CO;2-M Burt RonaldS., 1982, Toward a Structural Theory of Action : Network Models of Social Structure, Perception, and Action CARPENTER MP, 1973, J AM SOC INFORM SCI, V24, P425, DOI 10.1002/asi.4630240604 Chubin D., 1983, Sociology of science: An annotated bibliography on invisible college 1972- 1981 COY W, 1989, ERFAHRUNG BERECHNUNG Cozzens SE, 1993, P JOINT EC LEID WORK, P219 DOREIAN P, 1985, J AM SOC INFORM SCI, V36, P28, DOI 10.1002/asi.4630360103 DREYFUS HL, 1986, WHAT COMPUTERS CANT EVERETT JE, 1991, J AM SOC INFORM SCI, V42, P405, DOI 10.1002/(SICI)1097-4571(199107)42:6<405::AID-ASI3>3.0.CO;2-W Garfield Eugene., 1979, CITATION INDEXING GRIFFITH BC, 1972, SCIENCE, V177, P959, DOI 10.1126/science.177.4053.959 KHAWAM YJ, 1991, LIBR INFORMATION SCI, V14, P57 Knoke D., 1982, NETWORK ANAL LEYDESDORFF L, 1994, RES POLICY, V23, P217, DOI 10.1016/0048-7333(94)90054-X LEYDESDORFF L, 1987, SCIENTOMETRICS, V11, P295, DOI 10.1007/BF02279351 LEYDESDORFF L, 1990, SCI TECHNOL HUM VAL, V15, P305, DOI 10.1177/016224399001500303 LEYDESDORFF L, 1986, SCIENTOMETRICS, V9, P103, DOI 10.1007/BF02017235 Leydesdorff L., 2001, The Challenge of Scientometrics: The Development, Measurement, and Self-Organization of Scientific Communications LEYDESDORFF L, 1993, P JOINT EC LEID WORK, P289 LEYDESDORFF L, 1993, SCIENTOMETRICS, V26, P133 MCCAIN KW, 1984, J AM SOC INFORM SCI, V35, P351, DOI 10.1002/asi.4630350607 MCCAIN KW, 1990, J AM SOC INFORM SCI, V41, P433, DOI 10.1002/(SICI)1097-4571(199009)41:6<433::AID-ASI11>3.0.CO;2-Q MCCAIN KW, 1986, J AM SOC INFORM SCI, V37, P111, DOI 10.1002/asi.4630370303 MCCAIN KW, 1994, KNOWLEDGE, V15, P285, DOI 10.1177/107554709401500303 MCCRAY AT, 1992, INFORMATIEWETENSCHAP, P21 Mowshowitz A., 1976, The conquest of will: Information processing in human affairs Negrotti M., 1987, Applied Artificial Intelligence, V1, P109, DOI 10.1080/08839518708927963 PRICE DJD, 1965, SCIENCE, V149, P510 Shrum W., 1988, Handbook of Quantitative Studies of Science and Technology, P107, DOI DOI 10.1016/B978-0-444-70537-2.50009-X SMALL H, 1974, SCI STUD, V4, P147 SMALL HG, 1978, SOC STUD SCI, V8, P327, DOI 10.1177/030631277800800305 Studer Kenneth., 1980, The Cancer Mission: Social Contexts of Biomedical Research Tijssen RJW, 1987, SCIENTOMETRICS, V11, P347 van den Besselaar P., 1993, AI Communications, V6, P83 VANDENBESSELAAR P, 1992, INFORMATIEWETENSCHAP, P63 1993, COGNITIVE SCI, V17 NR 44 TC 77 Z9 83 U1 1 U2 47 PU JOHN WILEY & SONS INC PI HOBOKEN PA 111 RIVER ST, HOBOKEN, NJ 07030 USA SN 0002-8231 J9 J AM SOC INFORM SCI JI J. Am. Soc. Inf. Sci. PD JUN PY 1996 VL 47 IS 6 BP 415 EP 436 DI 10.1002/(SICI)1097-4571(199606)47:6<415::AID-ASI3>3.0.CO;2-Y PG 22 WC Computer Science, Information Systems; Information Science & Library Science WE Social Science Citation Index (SSCI) SC Computer Science; Information Science & Library Science GA UM121 UT WOS:A1996UM12100003 DA 2024-09-05 ER PT J AU Porter, LA AF Porter, Lon A., Jr. TI Active Learning and Student Engagement via 3D Printing and Design: Integrating Undergraduate Research, Service Learning, and Cross-Disciplinary Collaborations SO MRS ADVANCES LA English DT Article AB In order to provide students with the training required to meet the substantial and diverse challenges of the 21st Century, effective programs in engineering, science, and technology must continue to take the lead in developing high-impact educational practices. Over the past year, faculty across several departments collaborated in the establishment of a campus 3D printing and fabrication center. This facility was founded to offer opportunities for exploring innovative active learning strategies in order to enhance the lives of Wabash College students and serve as a model to other institutions of higher education. This campus resource provides the infrastructure that will empower faculty and staff to explore diverse and meaningful cross-disciplinary collaborations related to teaching and learning across campus. New initiatives include the development of courses on design and fabrication, collaborative cross-disciplinary projects that bridge courses in the arts and sciences, 3D printing and fabrication-based undergraduate research internships, and entrepreneurial collaborations with local industry. These innovative approaches are meant to open the door to greater active learning experiences that empower and prepare students for creative and practical problem solving. Furthermore, service learning projects, community-based opportunities, and global outreach initiatives provide students with a sense of social responsibility, ethical awareness, leadership, and teamwork. This paper shares initial successes of this effort and goals for future enrichment of student learning. C1 [Porter, Lon A., Jr.] Wabash Coll, Dept Chem, 301 W Wabash Ave, Crawfordsville, IN 47933 USA. RP Porter, LA (corresponding author), Wabash Coll, Dept Chem, 301 W Wabash Ave, Crawfordsville, IN 47933 USA. FU Wabash College and the Department of Chemistry; Ball Brothers Foundation Venture Fund FX The authors gratefully acknowledge financial support of this work by Wabash College and the Department of Chemistry. The Wabash College 3D Printing and Fabrication Center, supported through a Ball Brothers Foundation Venture Fund Grant, is thanked for facilities and instrumentation support. Roland Morin and the Wabash Center for Innovation, Business & Entrepreneurship (CIBE) are acknowledged for student intern support. CR Barnatt C., 2013, 3D PRINTING Gross BC, 2014, ANAL CHEM, V86, P3240, DOI 10.1021/ac403397r Hofmann M, 2014, ACS MACRO LETT, V3, P382, DOI 10.1021/mz4006556 Hutchings P., 2011, SCHOLARSHIP TEACHING Kuh G.D., 2008, Excerpt from "High-Impact Educational Practices: What They Are, Who Has Access to Them, and Why They Matter Lipson H., 2014, FABRICATED NEW WORLD Porter Jr L. A., 2016, J CHEM ED IN PRESS Sousa DavidThomas Pilecki., 2013, From Stem to Steam: Using Brain-Compatible Strategies to Integrate the Arts Violante LEH, 2014, ACS SYM SER, V1180, P125 NR 9 TC 4 Z9 4 U1 0 U2 13 PU CAMBRIDGE UNIV PRESS PI NEW YORK PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA SN 2059-8521 J9 MRS ADV JI MRS Adv. PY 2016 VL 1 IS 56 BP 3703 EP 3708 DI 10.1557/adv.2016.82 PG 6 WC Materials Science, Multidisciplinary WE Emerging Sources Citation Index (ESCI) SC Materials Science GA FJ4GQ UT WOS:000412695200001 DA 2024-09-05 ER PT J AU Sarol, MJ Ming, SF Radhakrishna, S Schneider, J Kilicoglu, H AF Sarol, Maria Janina Ming, Shufan Radhakrishna, Shruthan Schneider, Jodi Kilicoglu, Halil TI Assessing citation integrity in biomedical publications: corpus annotation and NLP models SO BIOINFORMATICS LA English DT Article ID COUNTS MEASURE; ACCURACY AB Motivation Citations have a fundamental role in scholarly communication and assessment. Citation accuracy and transparency is crucial for the integrity of scientific evidence. In this work, we focus on quotation errors, errors in citation content that can distort the scientific evidence and that are hard to detect for humans. We construct a corpus and propose natural language processing (NLP) methods to identify such errors in biomedical publications.Results We manually annotated 100 highly-cited biomedical publications (reference articles) and citations to them. The annotation involved labeling citation context in the citing article, relevant evidence sentences in the reference article, and the accuracy of the citation. A total of 3063 citation instances were annotated (39.18% with accuracy errors). For NLP, we combined a sentence retriever with a fine-tuned claim verification model to label citations as ACCURATE, NOT_ACCURATE, or IRRELEVANT. We also explored few-shot in-context learning with generative large language models. The best performing model-which uses citation sentences as citation context, the BM25 model with MonoT5 reranker for retrieving top-20 sentences, and a fine-tuned MultiVerS model for accuracy label classification-yielded 0.59 micro-F1 and 0.52 macro-F1 score. GPT-4 in-context learning performed better in identifying accurate citations, but it lagged for erroneous citations (0.65 micro-F1, 0.45 macro-F1). Citation quotation errors are often subtle, and it is currently challenging for NLP models to identify erroneous citations. With further improvements, the models could serve to improve citation quality and accuracy.Availability and implementation We make the corpus and the best-performing NLP model publicly available at https://github.com/ScienceNLP-Lab/Citation-Integrity/. C1 [Sarol, Maria Janina] Univ Illinois, Informat Programs, Champaign, IL 61820 USA. [Ming, Shufan; Schneider, Jodi; Kilicoglu, Halil] Univ Illinois, Sch Informat Sci, 501 E Daniel St, Champaign, IL 61820 USA. [Radhakrishna, Shruthan] Univ Illinois, Dept Comp Sci, Champaign, IL 61801 USA. C3 University of Illinois System; University of Illinois Urbana-Champaign; University of Illinois System; University of Illinois Urbana-Champaign; University of Illinois System; University of Illinois Urbana-Champaign RP Kilicoglu, H (corresponding author), Univ Illinois, Sch Informat Sci, 501 E Daniel St, Champaign, IL 61820 USA. EM halil@illinois.edu RI Schneider, Jodi/AAK-2236-2020 OI Schneider, Jodi/0000-0002-5098-5667 FU Office of Research Integrity (ORI) of the US Department of Health and Human Services (HHS) [ORIIR220073] FX This study was supported by the Office of Research Integrity (ORI) of the US Department of Health and Human Services (HHS) (grant number: ORIIR220073). The contents are those of the authors and do not necessarily represent the official views of, nor an endorsement, by ORI/OASH/HHS, or the US Government. CR Agarwal Shashank, 2010, AMIA Annu Symp Proc, V2010, P11 Athar A., 2014, Technical report Awrey J, 2011, WORLD J SURG, V35, P475, DOI 10.1007/s00268-010-0912-7 Beltagy I, 2020, Arxiv, DOI arXiv:2004.05150 Bornmann L, 2008, J DOC, V64, P45, DOI 10.1108/00220410810844150 Brown T., 2020, NEURIPS Chandrasekaran MK., 2019, P 4 JOINT WORKSH BIB, P153 Cohan A, 2017, SIGIR'17: PROCEEDINGS OF THE 40TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, P1133, DOI 10.1145/3077136.3080740 Dai C, 2021, PLOS ONE, V16, DOI 10.1371/journal.pone.0255849 Davids JR, 2010, J BONE JOINT SURG AM, V92A, P1155, DOI 10.2106/JBJS.I.00063 DELACEY G, 1985, BRIT MED J, V291, P884, DOI 10.1136/bmj.291.6499.884 Fong EA, 2017, PLOS ONE, V12, DOI 10.1371/journal.pone.0187394 Greenberg Steven A, 2009, BMJ, V339, pb2680, DOI 10.1136/bmj.b2680 Hsiao TK, 2023, SCI DATA, V10, DOI 10.1038/s41597-023-02134-x Hsiao TK, 2022, QUANT SCI STUD, V2, P1144, DOI 10.1162/qss_a_00155 Iqbal S, 2021, SCIENTOMETRICS, V126, P6551, DOI 10.1007/s11192-021-04055-1 Jaidka K., 2016, P JOINT WORKSH BIBLI, P93 Jergas H, 2015, PEERJ, V3, DOI 10.7717/peerj.1364 Kilicoglu H, 2019, J BIOMED INFORM, V91, DOI 10.1016/j.jbi.2019.103123 Kilicoglu H, 2018, BRIEF BIOINFORM, V19, P1400, DOI 10.1093/bib/bbx057 Kotonya N, 2020, PROCEEDINGS OF THE 2020 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING (EMNLP), P7740 Leung PTM, 2017, NEW ENGL J MED, V376, P2194, DOI 10.1056/NEJMc1700150 Li XC, 2024, Arxiv, DOI arXiv:2309.06365 Luo M, 2013, FOOT ANKLE INT, V34, P949, DOI 10.1177/1071100713475354 Nogueira R, 2020, FINDINGS OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, EMNLP 2020, P708 Pavlovic V, 2021, CLIN SCI, V135, P671, DOI 10.1042/CS20201573 PORTER J, 1980, NEW ENGL J MED, V302, P123 Qazvinian V., 2008, P 22 INT C COMP LING, V1, P689 Robertson Stephen, 2009, Foundations and Trends in Information Retrieval, V3, P333, DOI 10.1561/1500000019 Sarrouti M, 2021, FINDINGS OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, EMNLP 2021, P3499 Schneider J, 2020, SCIENTOMETRICS, V125, P2877, DOI 10.1007/s11192-020-03631-1 SMITH LC, 1981, LIBR TRENDS, V30, P83 SPIEGELROSING I, 1977, SOC STUD SCI, V7, P97, DOI 10.1177/030631277700700111 Stenetorp P., 2012, P DEMONSTRATIONS 13, P102 Suelzer EM, 2019, JAMA NETW OPEN, V2, DOI 10.1001/jamanetworkopen.2019.15552 SWALES J, 1986, APPL LINGUIST, V7, P39, DOI 10.1093/applin/7.1.39 Tahamtan I, 2019, SCIENTOMETRICS, V121, P1635, DOI 10.1007/s11192-019-03243-4 Teufel S., 2009, P 7 SIGDIAL WORKSH D, P80 Valenzuela M., 2015, WORKSHOPS 20 9 AAAI van der Vet Paul E, 2016, Res Integr Peer Rev, V1, P3, DOI 10.1186/s41073-016-0008-5 Wadden D., 2022, FINDINGS ASS COMPUTA, P61 Wadden D, 2020, PROCEEDINGS OF THE 2020 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING (EMNLP), P7534 Wager E, 2008, COCHRANE DB SYST REV, DOI 10.1002/14651858.MR000002.pub3 Waltman L, 2016, J INFORMETR, V10, P365, DOI 10.1016/j.joi.2016.02.007 Wei JS, 2022, ADV NEUR IN Xu Jun, 2015, AMIA Annu Symp Proc, V2015, P1334 Yu Gu, 2022, ACM Transactions on Computing and Healthcare, V3, DOI 10.1145/3458754 Zhang G, 2013, J AM SOC INF SCI TEC, V64, P1490, DOI 10.1002/asi.22850 Zhu XD, 2015, J ASSOC INF SCI TECH, V66, P408, DOI 10.1002/asi.23179 NR 49 TC 0 Z9 0 U1 1 U2 1 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 1367-4803 EI 1367-4811 J9 BIOINFORMATICS JI Bioinformatics PD JUL 9 PY 2024 VL 40 IS 7 AR btae420 DI 10.1093/bioinformatics/btae420 PG 9 WC Biochemical Research Methods; Biotechnology & Applied Microbiology; Computer Science, Interdisciplinary Applications; Mathematical & Computational Biology; Statistics & Probability WE Science Citation Index Expanded (SCI-EXPANDED) SC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology; Computer Science; Mathematical & Computational Biology; Mathematics GA XV4F6 UT WOS:001264431900001 PM 38924508 OA gold DA 2024-09-05 ER PT J AU Xu, ZY Archambault, É AF Xu, Ziyun Archambault, Eric TI Chinese interpreting studies: structural determinants of MA students' career choices SO SCIENTOMETRICS LA English DT Article DE Scientometrics; Chinese interpreting studies; Targeted maximum likelihood estimation; MA theses; Career choices; Causal inference ID MENTOR AB During the last 30 years, the growth of the interpreting industry in China has been outstanding. Increasing economic and political collaboration has driven the demand for interpreters to bridge the linguistic and cultural divides that exist between China and the West. With the creation of master's and bachelor's degrees in interpreting and translation all over China, hundreds of graduates from various universities have since undertaken distinctly different career paths. Using an exhaustive corpus of Masters' theses and a combination of logistic regression and Targeted Maximum Likelihood Estimation to establish causalities, this paper focuses on some of the structural determinants of graduate students' career choices. The paper examines to what extent university affiliations, thesis advisors, research methodology and thesis content influence the choice to pursue an academic career. The research reveals that graduating from a top university makes students less likely to become academics, and studying under a top advisor does not necessarily increase an individual's chances of securing an academic post. By contrast, writers of empirical theses or ones that are about training are more likely to enter the academic sphere. C1 [Xu, Ziyun] Univ Rovira & Virgili, Intercultural Studies Grp, E-43007 Tarragona, Spain. [Archambault, Eric] Sci Metrix, Montreal, PQ, Canada. C3 Universitat Rovira i Virgili RP Xu, ZY (corresponding author), Univ Rovira & Virgili, Intercultural Studies Grp, E-43007 Tarragona, Spain. EM xuziyun@gmail.com RI Archambault, Eric JA/G-5808-2019 OI Archambault, Eric JA/0000-0002-4422-1054 CR AIIC, 2013, DIR INT SCH PROGR [Anonymous], 2001, ACAD TRIBES TERRITOR Bao J., 2009, THESIS SHANGHAI INT Bourdicu P., 1989, NOBLESSE ETAT GRANDE Brown D.G., 1967, MOBILE PROFESSORS Chai Mingjiong, 2012, J U SHANGHAI SCI TEC, V34, P91, DOI [10.13256/j.cnki.jusst.sse.2012.02.005, DOI 10.13256/J.CNKI.JUSST.SSE.2012.02.005] Chen K, 2008, THESIS NATL TAIWAN N Cole JR., 1973, Social stratification in science Cone J.D., 1993, DISSERTATIONS THESES Feng X, 2012, THESIS DALIAN MARITI GAGNON RJ, 1982, INTERFACES, V12, P98, DOI 10.1287/inte.12.4.98 Gao Y, 2008, THESIS SHANGHAI INT Gile D, 1994, BENJAMIN TRANSL LIB, V2, P149 Gile D., 1998, TARGET-NETH, V10, P69, DOI [10.1075/target.10.1.04gil, DOI 10.1075/TARGET.10.1.04GIL] Gile D., 2000, TARGET-NETH, V12, P297, DOI [DOI 10.1075/TARGET.12.2.07GIL, https://doi.org/10.1075/target.12.2.07gil] Gruber S, 2012, J STAT SOFTW, V51, P1 Hofer KM, 2010, SCIENTOMETRICS, V84, P845, DOI 10.1007/s11192-010-0216-6 Jin Y., 2011, THESIS BEIJING FOREI Kushkowski JD, 2003, PORTAL-LIBR ACAD, V3, P459, DOI 10.1353/pla.2003.0062 Li B., 2007, THESIS HUNAN NORMAL Liu H., 2008, P 6 NAT C INT FOR IN, P144 Liu W., 2012, THESIS U INT BUSINES LONG JS, 1985, SCIENTOMETRICS, V7, P255, DOI 10.1007/BF02017149 LONG JS, 1995, ANNU REV SOCIOL, V21, P45, DOI 10.1146/annurev.so.21.080195.000401 Ma H., 2009, THESIS GUANGDONG U F McGee R. J., 1965, ACAD MARKETPLACE Merton R. K., 1974, SOCIOLOGY SCI THEORE Ministry of Education, 2013, NOT NEW MTI ACCR Moser-Mercer B, 2005, FORUM-REV INT INTERP, V3, P205, DOI 10.1075/forum.3.1.09mos Moser-Mercer Barbara, 2011, Advances in Interpreting Research. Inquiry in Action, P47, DOI [10.1075/BTL.99.06MOS, DOI 10.1075/BTL.99.06MOS] Niska H., 2005, TRAINING NEW MILLENN, V60, P35, DOI DOI 10.1075/BTL.60.07NIS PEARL S, 1995, PERSPECT STUD TRANSL, P161 Pinheiro D, 2014, TECHNOL FORECAST SOC, V81, P56, DOI 10.1016/j.techfore.2012.09.008 Pochhacker Franz, 2002, INTERPRETING STUDIES, P1 Rose S, 2011, SPRINGER SER STAT, P3, DOI 10.1007/978-1-4419-9782-1 Schnitzer ME, 2013, BIOSTATISTICS, V14, P1, DOI 10.1093/biostatistics/kxs024 Shen A., 2010, THESIS GUANGXI U Shneider AM, 2009, TRENDS BIOCHEM SCI, V34, P217, DOI 10.1016/j.tibs.2009.02.002 Spence Jonathan., 1994, UNDER SKY UNDERGROUN, P5 Tang F., 2010, FOREIGN LANGUAGE WOR, V137, P39 Tang L., 2011, THESIS HUNAN U Tseng J., 2005, THESIS FU JEN CATHOL Van Der Laan M.J., 2006, Social Sciences, V2 van der Weijden I, 2015, HIGH EDUC, V69, P275, DOI 10.1007/s10734-014-9774-5 Wang R., 2006, P 5 NAT C INT FOR IN, P143 Xu ZY, 2015, PERSPECT STUD TRANSL, V23, P284, DOI 10.1080/0907676X.2015.1011175 Yi S, 2012, SCIENTOMETRICS, V90, P1015, DOI 10.1007/s11192-011-0560-1 Yoon B, 2010, SCIENTOMETRICS, V85, P803, DOI 10.1007/s11192-010-0294-5 Zhang Q., 2012, THESIS XIAMEN U Zhang W., 2011, FOREIGN LANGUAGES CH, V5, P94 Zhang Y., 2009, THESIS SHANGHAI INT Zhao N, 2009, THESIS GUANGDONG FOR Zhao Z., 2012, THESIS XIAMEN U NR 53 TC 2 Z9 3 U1 4 U2 46 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0138-9130 EI 1588-2861 J9 SCIENTOMETRICS JI Scientometrics PD NOV PY 2015 VL 105 IS 2 BP 1041 EP 1058 DI 10.1007/s11192-015-1717-0 PG 18 WC Computer Science, Interdisciplinary Applications; Information Science & Library Science WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Computer Science; Information Science & Library Science GA CU1ED UT WOS:000363261600021 DA 2024-09-05 ER PT J AU Nah, S Luo, J Akçakir, G Wu, XL Nam, G Kim, S AF Nah, Seungahn Luo, Jun Akcakir, Gulsah Wu, Xinlei Nam, Gwiwon Kim, Seungbae TI Revisiting citizen journalism scholarship in the Web Era (1994-2023): Past, present, and prospect SO JOURNALISM LA English DT Article; Early Access DE Citizen journalism; topic modeling; bibliometric analysis; and manual content analysis ID USER-GENERATED CONTENT; SOCIAL MEDIA; PARTICIPATORY JOURNALISM; NEWS; COMMUNICATION; INITIATIVES; INFORMATION; NEWSROOMS; NETWORKS; INTERNET AB The study revisits citizen journalism scholarship spanning 30 years of journal articles published in the fields of journalism, communication, media, technology studies, and beyond. Previous studies in this domain have endeavored to evaluate the landscape of citizen journalism research since the inception of the Internet and its associated web technologies in 1994. Nonetheless, it remains fully unexplored concerning the topology and knowledge network structure of citizen journalism scholarship. The study assesses the landscape of citizen journalism scholarship over the past 30 years by employing a variety of mixed methods, including topic modeling, bibliometric analysis, and manual content analysis. This study provides an exploratory examination of the realm of citizen journalism within the context of journalism and democracy and further discusses the past, present, and prospects for future directions of this field. The study aims to advance citizen journalism scholarship in terms of theory, research, practice, and policy implications with a focus on English language articles. While the study contributes to the existing body of knowledge on citizen journalism scholarship, it serves as a catalyst for continuous intellectual inquiry in an international and interdisciplinary environment. C1 [Nah, Seungahn] Univ Florida, Coll Journalism & Commun, Polit Commun & Journalism, Gainesville, FL USA. [Nah, Seungahn] Univ Florida, Coll Journalism & Commun, Media Trust, Gainesville, FL USA. [Luo, Jun; Akcakir, Gulsah] Univ Calif Los Angeles, Dept Commun, Los Angeles, CA USA. [Wu, Xinlei; Nam, Gwiwon] Univ Florida, Coll Journalism & Commun, Gainesville, FL USA. [Kim, Seungbae] Univ S Florida, Dept Comp Sci & Engn, Tampa, FL USA. C3 State University System of Florida; University of Florida; State University System of Florida; University of Florida; University of California System; University of California Los Angeles; State University System of Florida; University of Florida; State University System of Florida; University of South Florida RP Nah, S (corresponding author), Univ Florida, Dept Journalism, Coll Journalism & Commun, 1885 Stadium Rd, Gainesville, FL 32611 USA. EM snah@ufl.edu OI Kim, Seungbae/0000-0001-5667-3560; AKCAKIR, GULSAH/0000-0001-9572-9352 CR Ambala AT, 2016, AFR JOURNAL STUD, V37, P45, DOI 10.1080/23743670.2016.1256056 [Anonymous], 2023, Social Media and News Fact Sheet Bastian M., 2009, Gephi: An open source software for exploring and manipulating networks Benson Rodney., 2005, BOURDIEU JOURNALISTI Borger M, 2016, NEW MEDIA SOC, V18, P708, DOI 10.1177/1461444814545842 Borges-Rey E, 2015, DIGIT JOURNAL, V3, P571, DOI 10.1080/21670811.2015.1034526 Ceron A, 2015, J COMPUT-MEDIAT COMM, V20, P487, DOI 10.1111/jcc4.12129 Chadha K, 2015, JOURNALISM STUD, V16, P706, DOI 10.1080/1461670X.2015.1054179 Chernobrov D, 2018, DIGIT JOURNAL, V6, P928, DOI 10.1080/21670811.2018.1462666 Chia A, 2012, AM BEHAV SCI, V56, P421, DOI 10.1177/0002764211429359 Chung DS, 2014, JOURNAL PRACT, V8, P390, DOI 10.1080/17512786.2013.813198 Domingo D, 2008, JOURNAL PRACT, V2, P326, DOI 10.1080/17512780802281065 Dovbysh O, 2021, SOC MEDIA SOC, V7, DOI 10.1177/20563051211013253 Martínez RGF, 2019, COMMUN SOC-SPAIN, V32, P213, DOI 10.15581/003.32.1.213-234 Ferrucci P, 2017, DIGIT JOURNAL, V5, P868, DOI 10.1080/21670811.2016.1208054 Friedland LA., 2009, Encyclopedia of Journalism, P297 Gillmor D., 2004, P 15 ACM C HYP HYP, P270, DOI [10.1145/1012807.1012808, DOI 10.1145/1012807.1012808] Goode L, 2009, NEW MEDIA SOC, V11, P1287, DOI 10.1177/1461444809341393 García VG, 2015, COMMUN SOC-SPAIN, V28, P33, DOI 10.15581/003.28.4.33-48 Hadland A, 2016, JOURNAL PRACT, V10, P820, DOI 10.1080/17512786.2016.1163236 Hänska-Ahy MT, 2013, JOURNALISM STUD, V14, P29, DOI 10.1080/1461670X.2012.657908 Harrison J, 2010, JOURNALISM STUD, V11, P243, DOI 10.1080/14616700903290593 Hermida A, 2008, JOURNAL PRACT, V2, P343, DOI 10.1080/17512780802054538 Hung CF, 2013, CHINA INT J, V11, P40 Ibahrine M, 2020, JOURNAL PRACT, V14, P971, DOI 10.1080/17512786.2019.1679037 Johnston J, 2017, DIGIT JOURNAL, V5, P850, DOI 10.1080/21670811.2016.1196592 Jouët J, 2009, JAVNOST-PUBLIC, V16, P59 Kermani H, 2021, BIG DATA SOC, V8, DOI 10.1177/20539517211025568 Krippendorff K., 2018, CONTENT ANAL INTRO I Lawrence RG, 2018, JOURNAL PRACT, V12, P1220, DOI 10.1080/17512786.2017.1391712 Lawson-Borders G, 2005, AM BEHAV SCI, V49, P548, DOI 10.1177/0002764205279425 Lee AYL, 2012, CHIN J COMMUN, V5, P210, DOI 10.1080/17544750.2012.664442 Luce A, 2017, JOURNAL PRACT, V11, P266, DOI 10.1080/17512786.2016.1222883 Mabweazara HM, 2014, DIGIT JOURNAL, V2, P44, DOI 10.1080/21670811.2013.850200 McElroy BP, 2019, CONVERGENCE-US, V25, P449, DOI 10.1177/1354856517736975 Meijer IC, 2013, JOURNALISM STUD, V14, P13, DOI 10.1080/1461670X.2012.662398 Meraz S, 2011, J MASS COMMUN Q, V88, P176, DOI 10.1177/107769901108800110 Mitchell A., 2020, AMERICANS WHO MAINLY Moon YE., 2020, Iowa Journal of Communication, V52 Moyo D, 2009, JOURNALISM STUD, V10, P551, DOI 10.1080/14616700902797291 Nah S., 2008, Encyclopedia of American Journalism, P100 Nah S., 2020, Understanding Citizen Journalism as Civic Participation Nah S, 2019, COMMUN THEOR, V29, P24, DOI 10.1093/ct/qty019 Nah S, 2015, J MASS COMMUN Q, V92, P399, DOI 10.1177/1077699015574483 Nip JoyceY. M., 2006, JOURNALISM STUD, V7, P212, DOI DOI 10.1080/14616700500533528 Nixon B, 2020, JOURNALISM, V21, P73, DOI 10.1177/1464884917719145 Norris W, 2017, JOURNAL PRACT, V11, P213, DOI 10.1080/17512786.2016.1228471 Paschalidis G, 2015, DIGIT JOURNAL, V3, P634, DOI 10.1080/21670811.2015.1034529 Pearce SC, 2020, SOCIOL COMPASS, V14, DOI 10.1111/soc4.12823 Pew Research Center, 2023, News platform fact sheet Saldaña M, 2017, JOURNAL PRACT, V11, P396, DOI 10.1080/17512786.2016.1151818 Scott J, 2015, DIGIT JOURNAL, V3, P737, DOI 10.1080/21670811.2014.952983 Spyksma H, 2019, JOURNALISM STUD, V20, P1, DOI 10.1080/1461670X.2017.1351885 Straub-Cook P, 2018, DIGIT JOURNAL, V6, P1314, DOI 10.1080/21670811.2017.1412801 Thurman N, 2008, NEW MEDIA SOC, V10, P139, DOI 10.1177/1461444807085325 Tong JR, 2015, ASIAN J COMMUN, V25, P600, DOI 10.1080/01292986.2015.1019526 Tsai JY, 2022, JOURNALISM, V23, P2132, DOI 10.1177/1464884920983261 van Eck NJ, 2010, SCIENTOMETRICS, V84, P523, DOI 10.1007/s11192-009-0146-3 Veenstra AS, 2015, JOURNALISM, V16, P488, DOI 10.1177/1464884914521580 Veenstra AS, 2014, COMPUT HUM BEHAV, V31, P65, DOI 10.1016/j.chb.2013.10.011 Walker D, 2022, JOURNAL PRACT, V16, P2022, DOI 10.1080/17512786.2021.1884990 Wall M, 2017, JOURNAL PRACT, V11, P134, DOI 10.1080/17512786.2016.1245890 Wall M, 2015, DIGIT JOURNAL, V3, P797, DOI 10.1080/21670811.2014.1002513 Walter D, 2019, COMMUN METHODS MEAS, V13, P248, DOI 10.1080/19312458.2019.1639145 Wardle C, 2010, MEDIA CULT SOC, V32, P781, DOI 10.1177/0163443710373953 Watson H, 2011, SOCIOL RES ONLINE, V16, DOI 10.5153/sro.2417 Wold T, 2022, COMMUN SOC-SPAIN, V35, P137, DOI 10.15581/003.35.1.137-150 Yeo TED, 2016, J MASS COMMUN Q, V93, P609, DOI 10.1177/1077699016628823 NR 68 TC 0 Z9 0 U1 0 U2 0 PU SAGE PUBLICATIONS INC PI THOUSAND OAKS PA 2455 TELLER RD, THOUSAND OAKS, CA 91320 USA SN 1464-8849 EI 1741-3001 J9 JOURNALISM JI Journalism PD 2024 JUN 6 PY 2024 DI 10.1177/14648849241247972 EA JUN 2024 PG 26 WC Communication WE Social Science Citation Index (SSCI) SC Communication GA TN7V7 UT WOS:001242017100001 DA 2024-09-05 ER PT J AU Citron, DT Way, SF AF Citron, Daniel T. Way, Samuel F. TI Network assembly of scientific communities of varying size and specificity SO JOURNAL OF INFORMETRICS LA English DT Article DE Collaboration networks; Network assembly; Social network analysis; Topic modeling; Scientometrics ID DYNAMICS AB How does the collaboration network of researchers coalesce around a scientific topic? What sort of social restructuring occurs as a new field develops? Previous empirical explorations of these questions have examined the evolution of co-authorship networks associated with several fields of science, each noting a characteristic shift in network structure as fields develop. Historically, however, such studies have tended to rely on manually annotated datasets and therefore only consider a handful of disciplines, calling into question the universality of the observed structural signature. To overcome this limitation and test the robustness of this phenomenon, we use a comprehensive dataset of over 189,000 scientific articles and develop a framework for partitioning articles and their authors into coherent, semantically related groups representing scientific fields of varying size and specificity. We then use the resulting population of fields to study the structure of evolving co-authorship networks. Consistent with earlier findings, we observe a global topological transition as the co-authorship networks coalesce from a disjointed aggregate into a dense giant connected component that dominates the network. We validate these results using a separate, complimentary corpus of scientific articles, and, overall, we find that the previously reported characteristic structural evolution of a scientific field's associated co-authorship network is robust across a large number of scientific fields of varying size, scope, and specificity. Additionally, the framework developed in this study may be used in other scientometric contexts in order to extend studies to compare across a larger range of scientific disciplines. (C) 2017 Elsevier Ltd. All rights reserved. C1 [Citron, Daniel T.] Cornell Univ, Ithaca, NY 14853 USA. [Way, Samuel F.] Univ Colorado, Boulder, CO 80309 USA. C3 Cornell University; University of Colorado System; University of Colorado Boulder RP Citron, DT (corresponding author), Cornell Univ, Ithaca, NY 14853 USA. EM dtc65@cornell.edu; samuel.way@colorado.edu RI way, S/JRY-7985-2023 FU National Science Foundation Graduate Research Fellowship [DGE-1144153]; NSF [SMA 1633747] FX This material is based upon work supported by the National Science Foundation Graduate Research Fellowship under Grant No. DGE-1144153, and NSF award SMA 1633747. Any opinion, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation. The authors would also like to acknowledge Michael W. Macy, Paul H. Ginsparg, Alexandra Schofield, and Haofei Wei, as well as Brent Schneeman, Laurence Brandenberger, Richard Barnes, and the other attendees of the Santa Fe Institute's 2015 Complex Systems Summer School for helpful discussions. CR [Anonymous], FORMATION SCI FIELDS [Anonymous], 2016, ARXIV SUBMISSION RAT [Anonymous], 2002, Learning to Classify Text Using Support Vector Machines: Methods, Theory and Algorithms [Anonymous], 2005, SIGKDD [Anonymous], 2010, Networks: An Introduction, DOI 10.1162/artl_r_00062 Backstrom Lars, 2006, Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD'06) [Em linha]. p, P44, DOI DOI 10.1145/1150402.1150412 Bettencourt LMA, 2009, J INFORMETR, V3, P210, DOI 10.1016/j.joi.2009.03.001 Bhattacharya I., 2007, ACM Transactions on Knowledge Discovery from Data (TKDD), V1, P1, DOI [10.1145/1217299.1217304, DOI 10.1145/1217299.1217304] Blei D, 2006, P 23 INT C MACH LEAR, P113 Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993 Börner K, 2010, SCI TRANSL MED, V2, DOI 10.1126/scitranslmed.3001399 Borner K., 2004, P NATL ACAD SCI USA, V101 Boyack KW, 2005, SCIENTOMETRICS, V64, P351, DOI 10.1007/s11192-005-0255-6 de Solla Price DerekJ., 1986, Little science, big science- and beyond Ginsparg P, 2004, P NATL ACAD SCI USA, V101, P5236, DOI 10.1073/pnas.0308253100 Griffiths TL, 2004, P NATL ACAD SCI USA, V101, P5228, DOI 10.1073/pnas.0307752101 Guimerà R, 2005, SCIENCE, V308, P697, DOI 10.1126/science.1106340 Guo Z, 2009, PROCEEDINGS 32ND ANNUAL INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, P720, DOI 10.1145/1571941.1572095 Jacobs A.Z., 2015, P ACM WEB SCI C, P1 Kaiser David, 2005, Drawing theories apart: the dispersion of Feynman diagrams in postwar physics Larivière V, 2014, J ASSOC INF SCI TECH, V65, P1157, DOI 10.1002/asi.23044 Lee D, 2010, PHYS REV E, V82, DOI 10.1103/PhysRevE.82.026112 McCallum Andrew Kachites, 2002, MALLET: A machine learning for language toolkit Newman MEJ, 2004, P NATL ACAD SCI USA, V101, P5200, DOI 10.1073/pnas.0307545100 Newman MEJ, 2001, P NATL ACAD SCI USA, V98, P404, DOI 10.1073/pnas.021544898 Rosen-Zvi Michal., 2004, UAI Song Y, 2007, ACM-IEEE J CONF DIG, P342, DOI 10.1145/1255175.1255243 Sun XL, 2013, ADV MATER RES-SWITZ, V616-618, P3, DOI [10.4028/www.scientific.net/AMR.616-618.3, 10.1038/srep01069] Tabah AN, 1999, ANNU REV INFORM SCI, V34, P249 Wang Xuerui., P 12 ACM SIGKDD INT, P424 Watts DJ, 1998, NATURE, V393, P440, DOI 10.1038/30918 NR 31 TC 8 Z9 8 U1 0 U2 28 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS SN 1751-1577 EI 1875-5879 J9 J INFORMETR JI J. Informetr. PD FEB PY 2018 VL 12 IS 1 BP 181 EP 190 DI 10.1016/j.joi.2017.12.008 PG 10 WC Computer Science, Interdisciplinary Applications; Information Science & Library Science WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Computer Science; Information Science & Library Science GA FZ3ID UT WOS:000427479800013 OA Bronze, Green Submitted DA 2024-09-05 ER PT J AU Amjad, T Shahid, N Daud, A Khatoon, A AF Amjad, Tehmina Shahid, Nafeesa Daud, Ali Khatoon, Asma TI Citation burst prediction in a bibliometric network SO SCIENTOMETRICS LA English DT Article DE Journal; Conference; Citation burst; Citations analysis; Features; Correlation; Multiple linear regression ID IMPACT; JOURNALS; AUTHOR; COUNT AB In the field of computer science, both journal and conference publications are considered valuable. The popularity of an author is mostly determined by the paper's high citations in a short time. Features that can help to attract higher visibility are not yet thoroughly investigated in the literature. This study aims to investigate the impact of the several features on received citations, for articles published in both journals or conferences. The correlation analysis and multiple linear regression models are applied to explore the strength of all related features. The study helps in finding the impact of the individual features on the number of citations both for journals and conferences, and to predict future citations. AMiner citation dataset has been used for experimental analysis. The findings of the study show that in the case of journal publications, "author first-year citations" and "author total citation" are the most important features. While, in the case of conference publications, "author total citation" is more effective as compared to other features. In the case of journal publications, the multiple linear regression model shows the coefficient of determination (R-2) is 0.975 and accuracy 0.846. For the conference publications, the R-2 value and accuracy are 0.877 and 0.846, respectively. C1 [Amjad, Tehmina; Shahid, Nafeesa; Khatoon, Asma] IIU, Dept Comp Sci & Software Engn, Islamabad, Pakistan. [Daud, Ali] Zhejiang Ocean Univ, Sch Informat Engn, Zhoushan 316022, Peoples R China. [Daud, Ali] Univ Jeddah, Dept Comp Sci & Artificial Intelligence, Jeddah, Saudi Arabia. C3 Zhejiang Ocean University; University of Jeddah RP Daud, A (corresponding author), Zhejiang Ocean Univ, Sch Informat Engn, Zhoushan 316022, Peoples R China.; Daud, A (corresponding author), Univ Jeddah, Dept Comp Sci & Artificial Intelligence, Jeddah, Saudi Arabia. EM alimsdb@gmail.com RI Shahid, Nafeesa/LDF-5707-2024; Amjad, Tehmina/GLS-0209-2022; Daud, Ali/ABA-8422-2020; Khatoon, Asma/V-4893-2019 OI Daud, Ali/0000-0002-8284-6354; Khatoon, Asma/0000-0001-9871-1844; Amjad, Tehmina/0000-0003-1201-498X CR Amara N, 2015, SCIENTOMETRICS, V103, P489, DOI 10.1007/s11192-015-1537-2 Amjad A., 2021, INVESTIGATING CITATI Amjad T, 2020, SCIENTOMETRICS, V122, P915, DOI 10.1007/s11192-019-03334-2 Amjad T, 2018, INT CONF EMERG TECHN Amjad T, 2017, J INFORMETR, V11, P307, DOI 10.1016/j.joi.2017.01.004 Amjad T, 2016, INFORM PROCESS MANAG, V52, P374, DOI 10.1016/j.ipm.2015.12.001 Bai XM, 2019, J INFORMETR, V13, P407, DOI 10.1016/j.joi.2019.01.010 Bar-Ilan J, 2010, SCIENTOMETRICS, V83, P809, DOI 10.1007/s11192-009-0145-4 Bethard S., 2010, Proceedings of the 19th ACM International Conference on Information and Knowledge Management, P609, DOI [DOI 10.1145/1871437.1871517, 10.1145/1871437.1871517] Bornmann L, 2014, J INFORMETR, V8, P175, DOI 10.1016/j.joi.2013.11.005 Chen JL, 2010, COMMUN ACM, V53, P79, DOI 10.1145/1743546.1743569 Danell R, 2011, J AM SOC INF SCI TEC, V62, P50, DOI 10.1002/asi.21454 Daud, 2019, CORRELATIONAL ANAL T Daud A, 2017, LIBR HI TECH, V35, P509, DOI 10.1108/LHT-02-2017-0044 Daud A, 2015, SCIENTOMETRICS, V102, P1687, DOI 10.1007/s11192-014-1455-8 Franceschet M, 2010, Commun. ACM, V53, P129, DOI [10.1145/1859204.1859234, DOI 10.1145/1859204.1859234] GARFIELD E, 1972, SCIENCE, V178, P471, DOI 10.1126/science.178.4060.471 Hurley L. A., 2013, Proceedings of the American Society for Information Science and Technology, V50, P1, DOI [DOI 10.1002/MEET.14505001070, 10.1002/meet.14505001070] Ibáñez A, 2009, BIOINFORMATICS, V25, P3303, DOI 10.1093/bioinformatics/btp585 Kim J, 2019, J ASSOC INF SCI TECH, V70, P71, DOI 10.1002/asi.24079 Lee DN, 2020, ELECTRON LIBR, V38, P463, DOI 10.1108/EL-10-2019-0253 Lee DH, 2019, SCIENTOMETRICS, V118, P281, DOI 10.1007/s11192-018-2943-z Lee DH, 2019, J ASSOC INF SCI TECH, V70, P83, DOI 10.1002/asi.24100 Li CT, 2015, LECT NOTES ARTIF INT, V9077, P659, DOI 10.1007/978-3-319-18038-0_51 Onodera N, 2015, J ASSOC INF SCI TECH, V66, P739, DOI 10.1002/asi.23209 Pan RK, 2014, SCI REP-UK, V4, DOI 10.1038/srep04880 Peng-hui Lyu, 2018, Proceedings of the Association for Information Science and Technology, V55, DOI 10.1002/pra2.2018.14505501035 Rostami F, 2014, SCIENTOMETRICS, V98, P2007, DOI 10.1007/s11192-013-1118-1 Silva FN, 2020, QUANT SCI STUD, V1, P1298, DOI 10.1162/qss_a_00070 Singh M, 2017, ACM-IEEE J CONF DIG, P59 Sohrabi B, 2017, SCIENTOMETRICS, V110, P243, DOI 10.1007/s11192-016-2161-5 Stern DI, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0112520 Tang J., 2008, KDD, P990, DOI DOI 10.1145/1401890.1402008 Vintzileos AM, 2010, AM J OBSTET GYNECOL, V202, DOI 10.1016/j.ajog.2009.06.038 Vrettas G, 2015, J ASSOC INF SCI TECH, V66, P2674, DOI 10.1002/asi.23349 Wainer J, 2013, J AM SOC INF SCI TEC, V64, P1104, DOI 10.1002/asi.22818 Yan R, 2012, P 12 ACM IEEE CS JOI, P51, DOI DOI 10.1145/2232817.2232831 Yan R, 2011, P 20 ACM INT C INF K, P1247, DOI DOI 10.1145/2063576.2063757 Yu T, 2014, SCIENTOMETRICS, V101, P1233, DOI 10.1007/s11192-014-1279-6 Zhang X., 2006, Proceedings of the 22nd International Conference on Data Engineering (ICDE'06), page, P146 Zhu XP, 2018, INT CON ADV INFO NET, P534, DOI 10.1109/AINA.2018.00084 NR 41 TC 18 Z9 19 U1 8 U2 81 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0138-9130 EI 1588-2861 J9 SCIENTOMETRICS JI Scientometrics PD MAY PY 2022 VL 127 IS 5 BP 2773 EP 2790 DI 10.1007/s11192-022-04344-3 EA MAR 2022 PG 18 WC Computer Science, Interdisciplinary Applications; Information Science & Library Science WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Computer Science; Information Science & Library Science GA 1I1KM UT WOS:000773181400002 DA 2024-09-05 ER PT J AU Kravets, LG AF Kravets, L. G. TI Fifty years of patent information centres in Russia SO WORLD PATENT INFORMATION LA English DT Article DE Machine translation; Automatic indexing; Subject matter search; Bibliographic data processing; Machine-readable information; International exchange; State patent information system; Competitive business information support; Soviet Union AB The article contains a brief historical review of developing patent information centres in the structure of the State Committee on Inventions and Discoveries (Rospatent) and their participation in establishing the national patent information system. The process is divided into three stages resulting from, first, changes in demands made by the new generations of users of information products and services and, second, renewal of methods, technologies and organizational forms of information support of innovation processes. (C) 2011 Elsevier Ltd. All rights reserved. C1 [Kravets, L. G.] Patent Informat Today Magazine, Druzhinnikovskaia Str 11A, Moscow 123995, Russia. RP Kravets, LG (corresponding author), Patent Informat Today Magazine, Druzhinnikovskaia Str 11A, Moscow 123995, Russia. EM kravets27@yandex.ru CR Alferova I. V., 1981, THESIS Budnikova L. F., 2010, PATENTNAIA INFORM SE Kedrovski OV, 1984, WORLD PATENT INFORMA, V6, P18 Kedrovsky O. V., 1980, VOPROSY IZOBRETATELS Kedrovsky OV, 1986, WORLD PATENT INFORM, V8, P273 Kravets L. G., 1966, 6 ANN M ICIREPAT HAG Kravets L. G., THESIS Morozov A. N., 1981, World Patent Information, V3, P50, DOI 10.1016/0172-2190(81)90002-8 Smorodinova E. V., 1967, 3 ALL UN C INF SEARC, P1 Vchrashny R. P., 1967, 3 ALL UN C INF SEARC, V1 Zakstelsky BA, 1970, SYSTEM BIBLIO INFORM NR 11 TC 2 Z9 2 U1 0 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0172-2190 EI 1874-690X J9 WORLD PAT INF JI World Pat. Inf. PD SEP PY 2011 VL 33 IS 3 BP 282 EP 285 DI 10.1016/j.wpi.2011.04.003 PG 4 WC Information Science & Library Science WE Emerging Sources Citation Index (ESCI) SC Information Science & Library Science GA V6Z1L UT WOS:000420747200010 DA 2024-09-05 ER PT J AU Jeong, B Yoon, J AF Jeong, Byeongki Yoon, Janghyeok TI Competitive Intelligence Analysis of Augmented Reality Technology Using Patent Information SO SUSTAINABILITY LA English DT Article DE competitive intelligence analysis; patent analysis; Topic modeling; bibliometrics; augmented reality ID FORECASTING EMERGING TECHNOLOGIES; MOBILE AB Augmented reality has recently achieved a rapid growth through its applications in various industries, including education and entertainment. Despite the growing attraction of augmented reality, trend analyses in this emerging technology have relied on qualitative literature review, failing to provide comprehensive competitive intelligence analysis using objective data. Therefore, tracing industrial competition trends in augmented reality will provide technology experts with a better understanding of evolving competition trends and insights for further technology and sustainable business planning. In this paper, we apply a topic modeling approach to 3595 patents related to augmented reality technology to identify technology subjects and their knowledge stocks, thereby analyzing industrial competitive intelligence in light of technology subject and firm levels. As a result, we were able to obtain some findings from an inventional viewpoint: technological development of augmented reality will soon enter a mature stage, technologies of infrastructural requirements have been a focal subject since 2001, and several software firms and camera manufacturing firms have dominated the recent development of augmented reality. C1 [Jeong, Byeongki; Yoon, Janghyeok] Konkuk Univ, Dept Ind Engn, 120 Neungdong Ro, Seoul 05029, South Korea. C3 Konkuk University RP Yoon, J (corresponding author), Konkuk Univ, Dept Ind Engn, 120 Neungdong Ro, Seoul 05029, South Korea. EM byeongkij@konkuk.ac.kr; janghyoon@konkuk.ac.kr OI Jeong, Byeongki/0000-0003-2701-4245 FU Konkuk University FX This paper was supported by Konkuk University in 2016. CR Altuntas S, 2015, TECHNOL FORECAST SOC, V96, P202, DOI 10.1016/j.techfore.2015.03.011 [Anonymous], 2014, SOFT COMPUTING BIG D Azuma R, 2001, IEEE COMPUT GRAPH, V21, P34, DOI 10.1109/38.963459 Azuma RT, 1997, PRESENCE-VIRTUAL AUG, V6, P355, DOI 10.1162/pres.1997.6.4.355 Bacca J, 2014, EDUC TECHNOL SOC, V17, P133 Barsom EZ, 2016, SURG ENDOSC, V30, P4174, DOI 10.1007/s00464-016-4800-6 Becker G, 2010, WILEY ENCY MANAGEMEN Bengisu M, 2006, TECHNOL FORECAST SOC, V73, P835, DOI 10.1016/j.techfore.2005.09.001 Billinghurst Mark, 2015, Foundations and Trends in Human-Computer Interaction, V8, P73, DOI 10.1561/1100000049 Biro I., 2008, AIRWeb, P29 Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993 Bower M, 2014, EDUC MEDIA INT, V51, P1, DOI 10.1080/09523987.2014.889400 Bulearca M., 2010, Global Business Management Research, V2, P237 Chen T, 2017, SUSTAINABILITY-BASEL, V9, DOI 10.3390/su9010026 Choi S, 2016, SUSTAINABILITY-BASEL, V8, DOI 10.3390/su8121315 Choi S, 2013, R&D MANAGE, V43, P52, DOI 10.1111/j.1467-9310.2012.00702.x Cirulis A, 2013, PROCEDIA COMPUT SCI, V25, P71, DOI 10.1016/j.procs.2013.11.009 Daim TU, 2006, TECHNOL FORECAST SOC, V73, P981, DOI 10.1016/j.techfore.2006.04.004 FEINER S, 1993, COMMUN ACM, V36, P53, DOI 10.1145/159544.159587 Fujii H, 2016, SUSTAINABILITY-BASEL, V8, DOI 10.3390/su8040351 Gao LD, 2013, TECHNOL FORECAST SOC, V80, P398, DOI 10.1016/j.techfore.2012.10.003 Guandong Xu, 2008, 2008 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology - Workshops, P529, DOI 10.1109/WIIAT.2008.313 Hu AGZ, 2003, INT J IND ORGAN, V21, P849, DOI 10.1016/S0167-7187(03)00035-3 Joung J, 2017, TECHNOL FORECAST SOC, V114, P281, DOI 10.1016/j.techfore.2016.08.020 Jun Wang, 2014, Construction Innovation, V14, P453, DOI 10.1108/CI-03-2014-0019 Luo X, 2009, 2009 INTERNATIONAL SYMPOSIUM ON UBIQUITOUS VIRTUAL REALITY (ISUVR 2009), P29, DOI 10.1109/ISUVR.2009.13 Mann D., 2002, HANDS SYSTEMATIC INN MarketsAndMarkets, 2015, AUGM REAL MARK COMP Matsumoto A, 2012, APPL ECON LETT, V19, P181, DOI 10.1080/13504851.2011.570705 McCartney M., 2016, BR MED J MILGRAM P, 1994, IEICE T INF SYST, VE77D, P1321 Miller Richard., 1982, Antitrust Bulletin, V27, P593 Mourtzis D., 2016, INT J COMPUT INTEGR Newman DJ, 2006, J AM SOC INF SCI TEC, V57, P753, DOI 10.1002/asi.20342 Ong SK, 2008, INT J PROD RES, V46, P2707, DOI 10.1080/00207540601064773 Pantano E, 2017, J RETAIL CONSUM SERV, V34, P88, DOI 10.1016/j.jretconser.2016.10.001 Papagiannakis G, 2008, COMPUT ANIMAT VIRT W, V19, P3, DOI 10.1002/cav.221 Park H, 2013, EXPERT SYST APPL, V40, P2373, DOI 10.1016/j.eswa.2012.10.073 Pucihar KC, 2013, COMPUT ENTERTAIN, V11, DOI 10.1145/2582179.2633427 Rauschnabel P.A., 2015, AUGMENTED REALITY SM Seo W, 2016, TECHNOL FORECAST SOC, V105, P94, DOI 10.1016/j.techfore.2016.01.011 Sheng Y, 2011, IEEE T VIS COMPUT GR, V17, P38, DOI 10.1109/TVCG.2009.209 Sielhorst T, 2008, J DISP TECHNOL, V4, P451, DOI 10.1109/JDT.2008.2001575 TERBRAAK CJF, 1986, ECOLOGY, V67, P1167 Thomas BH, 2012, COMPUT ENTERTAIN, V10, DOI 10.1145/2381876.2381879 Van Krevelen D., 2010, INT J VIRTUAL REAL, V9 Wang B, 2014, SCIENTOMETRICS, V101, P685, DOI 10.1007/s11192-014-1342-3 Wang Chong, 2011, P ACM SIGKDD INT C K, P448, DOI DOI 10.1145/2020408.2020480 Wang Y, 2009, IEEE T PATTERN ANAL, V31, P1762, DOI 10.1109/TPAMI.2009.43 Xing DS, 2007, PATTERN RECOGN LETT, V28, P1727, DOI 10.1016/j.patrec.2007.04.015 Yoon J, 2015, TECHNOL FORECAST SOC, V100, P153, DOI 10.1016/j.techfore.2015.04.012 Yoon J, 2014, J NANOPART RES, V16, DOI 10.1007/s11051-014-2471-6 Yoon J, 2013, SCIENTOMETRICS, V94, P313, DOI 10.1007/s11192-012-0830-6 Yu DG, 2010, VISUAL INFORMATION COMMUNICATION, P311, DOI 10.1007/978-1-4419-0312-9_21 Zhou F, 2008, INT SYM MIX AUGMENT, P193, DOI 10.1109/ISMAR.2008.4637362 Zhu ZW, 2015, IEEE WINT CONF APPL, P618, DOI 10.1109/WACV.2015.88 NR 56 TC 18 Z9 18 U1 8 U2 93 PU MDPI PI BASEL PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND SN 2071-1050 J9 SUSTAINABILITY-BASEL JI Sustainability PD APR PY 2017 VL 9 IS 4 AR 497 DI 10.3390/su9040497 PG 22 WC Green & Sustainable Science & Technology; Environmental Sciences; Environmental Studies WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Science & Technology - Other Topics; Environmental Sciences & Ecology GA EV9FE UT WOS:000402090300020 OA gold, Green Submitted DA 2024-09-05 ER PT J AU Cichowicz, E Rollnik-Sadowska, E AF Cichowicz, Ewa Rollnik-Sadowska, Ewa TI Inclusive Growth in CEE Countries as a Determinant of Sustainable Development SO SUSTAINABILITY LA English DT Article DE inclusive growth; CEE countries; sustainable development; globalization; cohesion; public policy; factor analysis; principal component analysis; bibliometric analysis AB Pursuant to the concept of inclusive growth, the authors analyze the transition economies of Central and Eastern European countries, which have become EU members (Bulgaria, Croatia, the Czech Republic, Estonia, Latvia, Lithuania, Hungary, Poland, Romania, Slovakia, and Slovenia). CEE countries characterized by comparable historic and economic backgrounds now seem to reach diversified stages of development. The objective of the study is to identify the level of inclusive growth among CEE countries by taking into account indicators assigned to its seven pillars. The article's thesis is that CEE countries represent social and economic heterogeneity as well as varied levels of sustainable development. Research methods included the application of the principal components analysis and the multivariate analysis. For a literature review, the bibliometric analysis was conducted with the visualization prepared by the VOSviewer software. The main findings suggest that Estonia, Slovenia, and the Czech Republic seem to exhibit the highest level of inclusive growth while Bulgaria and Romania represent the lowest level of indicators measured. C1 [Cichowicz, Ewa] Warsaw Sch Econ, Coll Socioecon, Inst Social Econ, Al Niepodleglosci 162, PL-02554 Warsaw, Poland. [Rollnik-Sadowska, Ewa] Bialystok Tech Univ, Fac Engn Management, Div Managerial Econ, 45AWiejska St, PL-15351 Bialystok, Poland. C3 Warsaw School of Economics; Bialystok University of Technology RP Rollnik-Sadowska, E (corresponding author), Bialystok Tech Univ, Fac Engn Management, Div Managerial Econ, 45AWiejska St, PL-15351 Bialystok, Poland. EM ewa.cichowicz@sgh.waw.pl; e.rollnik@pb.edu.pl RI Rollnik-Sadowska, Ewa/AAV-4280-2020 OI Rollnik-Sadowska, Ewa/0000-0002-4896-1199; Cichowicz, Ewa/0000-0002-9379-9127 FU Ministry of Science and Higher Education of Poland [KES/BMN18/01/18, S/WZ/4//2015] FX The research for this paper has been conducted in the framework of projects no. KES/BMN18/01/18 and S/WZ/4//2015 financed from the funds of the Ministry of Science and Higher Education of Poland. CR Adams W.M., 2006, P IUCN REN THINK M B Adil Khan M., 1995, Sustainable Development (Bradford), V3, P63, DOI 10.1002/sd.3460030203 Ali I., 2007, Inclusive growth toward a prosperous asia: Policy implications [Anonymous], 2018, Ownership and Governance of State-Owned Enterprises: A Compendium of National Practices, P20 [Anonymous], 2010, COMMUNICATION COMMIS, DOI DOI 10.1016/J.RESCONREC.2010.03.010 Asici AA, 2013, ECOL INDIC, V24, P324, DOI 10.1016/j.ecolind.2012.06.019 Balicki A., 2009, STATYSTYCZNA ANALIZA Brundtland Commission, 1987, OUR COMMON FUTURE, P41 Cabeza-García L, 2018, SUSTAINABILITY-BASEL, V10, DOI 10.3390/su10010121 CRONBACH LJ, 1951, PSYCHOMETRIKA, V16, P297, DOI [DOI 10.1007/BF02310555, 10.1007/BF02310555] Dbkowska K., 2012, EKONOMIA ZARZDZANIE, V4, P18 De Rosa D., 2018, UNEVEN GROWTH INCLUS Demirguc-Kunt A., 2018, The Global Findex Database 2017", DOI [10.1596/978-1-4648-1259-0, DOI 10.1596/978-1-4648-1259-0] Demirguc-Kunt Asli., 2012, Measuring Financial Inclusion: The Global Findex Database. Diamond P., 2010, GLOBALIZATION IS CHA Doyle MW, 2014, ETHICS INT AFF, V28, P5, DOI 10.1017/S0892679414000021 Flamm L., 2012, EUROPE FORM, V2, P305, DOI [10.3917/eufor.364.0305, DOI 10.3917/EUFOR.364.0305] Fleaca E, 2018, SUSTAINABILITY-BASEL, V10, DOI 10.3390/su10041032 Gatnar E., 2015, RES PAP WROCAW UNIWE, V384, P93, DOI [10.15611/pn.2015.384.09, DOI 10.15611/PN.2015.384.09] Gawthorpe S., 2010, NEW VOICES PUB POL S, V4, P2, DOI [10.13021/nvpp.v4i2.20, DOI 10.13021/NVPP.V4I2.20] George G, 2012, J MANAGE STUD, V49, P661, DOI 10.1111/j.1467-6486.2012.01048.x Grela M., 2017, 264 NBP EC RES DEP Gudanowska AE, 2017, PROCEDIA ENGINEER, V182, P247, DOI 10.1016/j.proeng.2017.03.185 Guijarro F, 2018, SUSTAINABILITY-BASEL, V10, DOI 10.3390/su10093167 Hanousek J, 2016, EUR J POLIT ECON, V43, P14, DOI 10.1016/j.ejpoleco.2016.02.002 Hedlund-de Witt A, 2014, SUSTAINABILITY-BASEL, V6, P8310, DOI 10.3390/su6118310 Lior N, 2018, SUSTAIN SCI, V13, P973, DOI 10.1007/s11625-018-0557-2 Manly B.F.J., 2005, MULTIVARIATE STAT PR Mathur G, 2013, MANAG RES REV, V36, P112, DOI 10.1108/01409171311292234 McKinley T., INCLUSIVE GROWTH CRI Mikhaylov A.S., 2017, J ADV RES LAW EC, V8, P1854, DOI [10.14505/jarle.v8.6(28).20, DOI 10.14505/JARLE.V8.6(28).20] Myers J.H., 2003, MANAGERIAL APPL MULT Nunnally J.C., 1978, Psychometric Theory, Vsecond OECD, OECD EC SURV EST OV Panayotou T, 2003, Econ Surv Eur., V2, P45 Paprotny D, 2016, SOC INDIC RES, V127, P939, DOI 10.1007/s11205-015-0991-9 Passaris C., 2006, J COMP INT MANAG, V9, P3 Radulescu M, 2018, SUSTAINABILITY-BASEL, V10, DOI 10.3390/su10020566 Rauniyar G, 2010, J ASIA PAC ECON, V15, P455, DOI 10.1080/13547860.2010.517680 Rollnik-Sadowska E., 2016, P 21 INT SCI C EC MA Romeiro Ademar Ribeiro, 2012, Estud. av., V26, P65 Rozmahel P., INTEGRATION CENTRAL Samans R., 2015, The inclusive growth and development report 2015 Siderska J., 2018, Engineering Management in Production Services, V10, P22, DOI DOI 10.1515/EMJ-2018-0002 Smtkowski M., 2015, ROCZNIKI EKONOMICZNE, V8, P324 Sun CZ, 2018, SUSTAINABILITY-BASEL, V10, DOI 10.3390/su10082863 NR 46 TC 23 Z9 23 U1 1 U2 16 PU MDPI PI BASEL PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND EI 2071-1050 J9 SUSTAINABILITY-BASEL JI Sustainability PD NOV PY 2018 VL 10 IS 11 AR 3973 DI 10.3390/su10113973 PG 23 WC Green & Sustainable Science & Technology; Environmental Sciences; Environmental Studies WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Science & Technology - Other Topics; Environmental Sciences & Ecology GA HC1AQ UT WOS:000451531700147 OA gold, Green Published DA 2024-09-05 ER PT J AU Yin, B Dridi, M El Moudni, A AF Yin, Biao Dridi, Mahjoub El Moudni, Abdellah TI Forward search algorithm based on dynamic programming for real-time adaptive traffic signal control SO IET INTELLIGENT TRANSPORT SYSTEMS LA English DT Article; Proceedings Paper CT Vienna Congress on How to Enhance the Sustainable Use of ITS CY 2014 CL Vienna, AUSTRIA DE search problems; dynamic programming; adaptive control; road traffic control; scheduling; artificial intelligence; decision trees; optimal control; forward search algorithm; traffic signal scheduling; artificial intelligence system; decision tree; real-time adaptive traffic signal control policy; fixed phase sequence; variable phase sequence; forward research dynamic programming; process optimisation; FSDP algorithm; online algorithm; labelled position method; rolling horizon approach; optimal fixed-time control; adaptive control; traffic delay evaluation; asymmetrical traffic flow scenarios ID FUNCTION APPROXIMATION; ARCHITECTURE; SYSTEM AB The scheduling of traffic signal at intersections is involved in an application of artificial intelligence system. This study presents a new forward search algorithm based on dynamic programming (FSDP) under a decision tree, and explores an efficient solution for real-time adaptive traffic signal control policy. Traffic signal control with cases of fixed phase sequence and variable phase sequence are both considered in the algorithm. Owing to the properties of forward research dynamic programming and the process optimisation of repeated or invalid traffic states the authors proposed, FSDP algorithm reduces the number of states and saves much computation time. Consequently, FSDP is certain to be an on-line algorithm through its application to a complicated traffic control problem. Moreover, the labelled position method is firstly proposed in the author's study to search the optimal policy after reaching the goal state. For practical operations, this new algorithm is extended by adding the rolling horizon approach, and some derived methods are compared with the optimal fixed-time control and adaptive control on the evaluation of traffic delay. Experimental results obtained by the simulations of symmetrical and asymmetrical traffic flow scenarios show that the FSDP method can perform quite well with high efficiency and good qualities in traffic control. C1 [Yin, Biao; Dridi, Mahjoub; El Moudni, Abdellah] Univ Technol Belfort Montbeliard, Lab Syst & Transports, F-90000 Belfort, France. C3 Universite de Technologie de Belfort-Montbeliard (UTBM) RP Yin, B (corresponding author), Univ Technol Belfort Montbeliard, Lab Syst & Transports, F-90000 Belfort, France. EM biao.yin@utbm.fr RI University of Technology of Belfort-Montbeliard, Mahjoub DRIDI./AAS-2243-2021; Gomaa, Ahmed/I-6442-2017; Yin, Biao/AAN-7652-2021 OI Yin, Biao/0000-0001-8087-5939 CR [Anonymous], 2004, Handbook of Learning and Approximate Dynamic Programming Arel I, 2010, IET INTELL TRANSP SY, V4, P128, DOI 10.1049/iet-its.2009.0070 BARTO AG, 1995, ARTIF INTELL, V72, P81, DOI 10.1016/0004-3702(94)00011-O Bazzan ALC, 2010, ENG APPL ARTIF INTEL, V23, P560, DOI 10.1016/j.engappai.2009.11.009 Busoniu L, 2010, AUTOM CONTROL ENG SE, P1, DOI 10.1201/9781439821091-f Cai C, 2009, TRANSPORT RES C-EMER, V17, P456, DOI 10.1016/j.trc.2009.04.005 Ceylan H, 2004, TRANSPORT RES B-METH, V38, P329, DOI 10.1016/S0191-2615(03)00015-8 Choy MC, 2003, IEEE T SYST MAN CY A, V33, P597, DOI 10.1109/TSMCA.2003.817394 García-Nieto J, 2012, ENG APPL ARTIF INTEL, V25, P274, DOI 10.1016/j.engappai.2011.04.011 Gartner N., 1991, TRANSPORT RES REC, P105 Gartner N. H., 1983, TRANSPORT RES REC, P75 Haijema R, 2008, PROBAB ENG INFORM SC, V22, P587, DOI 10.1017/S026996480800034X Hansen EA, 2001, ARTIF INTELL, V129, P35, DOI 10.1016/S0004-3702(01)00106-0 Head K.L., 1992, Transportation Research Record: Journal of the Transportation Research Board, P82 Khan SG, 2012, ANNU REV CONTROL, V36, P42, DOI 10.1016/j.arcontrol.2012.03.004 Kuyer L, 2008, LECT NOTES ARTIF INT, V5211, P656, DOI 10.1007/978-3-540-87479-9_61 Mirchandani P, 2001, TRANSPORT RES C-EMER, V9, P415, DOI 10.1016/S0968-090X(00)00047-4 Powell WB, 2007, APPROXIMATE DYNAMIC PROGRAMMING: SOLVING THE CURSES OF DIMENSIONALITY, P1, DOI 10.1002/9780470182963 Prashanth LA, 2011, IEEE T INTELL TRANSP, V12, P412, DOI 10.1109/TITS.2010.2091408 Srinivasan D, 2006, IEEE T INTELL TRANSP, V7, P261, DOI 10.1109/TITS.2006.874716 Trabia MB, 1999, TRANSPORT RES C-EMER, V7, P353, DOI 10.1016/S0968-090X(99)00026-1 Xu X, 2014, INFORM SCIENCES, V261, P1, DOI 10.1016/j.ins.2013.08.037 Yin B, 2014, ADV INTELL SYST, V285, P369, DOI 10.1007/978-3-319-06740-7_31 Yu XH, 2006, TRANSPORT RES C-EMER, V14, P263, DOI 10.1016/j.trc.2006.08.002 NR 24 TC 14 Z9 19 U1 1 U2 23 PU INST ENGINEERING TECHNOLOGY-IET PI HERTFORD PA MICHAEL FARADAY HOUSE SIX HILLS WAY STEVENAGE, HERTFORD SG1 2AY, ENGLAND SN 1751-956X EI 1751-9578 J9 IET INTELL TRANSP SY JI IET Intell. Transp. Syst. PD SEP PY 2015 VL 9 IS 7 SI SI BP 754 EP 764 DI 10.1049/iet-its.2014.0156 PG 11 WC Engineering, Electrical & Electronic; Transportation Science & Technology WE Science Citation Index Expanded (SCI-EXPANDED); Conference Proceedings Citation Index - Science (CPCI-S) SC Engineering; Transportation GA CQ5XW UT WOS:000360680000013 OA Bronze DA 2024-09-05 ER PT J AU Zyoud, SH Zyoud, AH AF Zyoud, Shaher H. Zyoud, Ahed H. TI Visualization and Mapping of Knowledge and Science Landscapes in Expert Systems With Applications Journal: A 30 Years' Bibliometric Analysis SO SAGE OPEN LA English DT Article DE artificial intelligence; expert systems; visualization maps; bibliometric indicators; content analysis ID SUPPORT VECTOR MACHINES; DECISION-MAKING TECHNIQUES; DATA MINING TECHNIQUES; SUPPLIER SELECTION; NEURAL-NETWORKS; SCIENTIFIC-RESEARCH; RISK-EVALUATION; GOOGLE-SCHOLAR; CLIMATE-CHANGE; FUZZY DEMATEL AB The Expert Systems With Applications (ESWA) is a leading journal in the fields of computer science and engineering. Motivated by its outstanding performance, this paper seeks to develop a comprehensive overview of research activities in ESWA since its inception in 1990. In this regard, bibliometric techniques have been utilized to characterize the status quo, dynamics, and development trends of research patterns in ESWA. In doing so, the work used Scopus database as a source of data required. A data visualization software, visualization of similarities (VOS) viewer, was used to map the bibliographic material. The Scopus database yielded 12,254 documents published in ESWA from 105 countries with an average of 408 documents/year. The most productive country was Taiwan (2,069 documents; 17.0%). National Cheng Kung University, Taiwan, was the most productive institution (219 documents; 1.8%). The major topics which will continue to be active include genetic algorithms, data mining, neural networks, support vector machines, classification and machine learning, feature selection, particle swarm optimization, fuzzy logic, and clustering. The outcomes underline the significant growth of ESWA through time. The vitality of topics addressed in ESWA to solve real-world problems boosts the progress and advancements of knowledge in this journal. C1 [Zyoud, Shaher H.] Palestine Tech Univ Kadoorei, Tulkarem, Palestine. [Zyoud, Ahed H.] An Najah Natl Univ, Nablus, Palestine. C3 An Najah National University RP Zyoud, SH (corresponding author), Palestine Tech Univ Kadoorei, Dept Bldg Engn & Environm, Fac Engn & Technol, POB Tulkarem Jaffa St 7, Tulkarem 00970, Palestine. EM shaher.zyoud@ptuk.edu.ps RI Zyoud, Shaher/AAB-4345-2022; Zyoud, Ahed/R-6263-2016 OI Zyoud, Shaher/0000-0002-2832-1047; Zyoud, Ahed/0000-0001-5812-5955 CR Akay MF, 2009, EXPERT SYST APPL, V36, P3240, DOI 10.1016/j.eswa.2008.01.009 Alatas B, 2010, EXPERT SYST APPL, V37, P5682, DOI 10.1016/j.eswa.2010.02.042 Aleixandre-Benavent R, 2017, J CLEAN PROD, V147, P406, DOI 10.1016/j.jclepro.2017.01.112 Atsalakis GS, 2009, EXPERT SYST APPL, V36, P5932, DOI 10.1016/j.eswa.2008.07.006 Behzadian M, 2012, EXPERT SYST APPL, V39, P13051, DOI 10.1016/j.eswa.2012.05.056 Bioxbio, 2020, J IMP EXP SYST APPL Bokor-Billmann T, 2020, J CLIN EPIDEMIOL, V119, P1, DOI 10.1016/j.jclinepi.2019.11.005 Boran FE, 2009, EXPERT SYST APPL, V36, P11363, DOI 10.1016/j.eswa.2009.03.039 Bornmann L, 2016, SCIENTOMETRICS, V107, P1041, DOI 10.1007/s11192-016-1925-2 Büyüközkan G, 2012, EXPERT SYST APPL, V39, P3000, DOI 10.1016/j.eswa.2011.08.162 Celebi ME, 2013, EXPERT SYST APPL, V40, P200, DOI 10.1016/j.eswa.2012.07.021 Chai JY, 2013, EXPERT SYST APPL, V40, P3872, DOI 10.1016/j.eswa.2012.12.040 Cobo MJ, 2015, KNOWL-BASED SYST, V80, P3, DOI 10.1016/j.knosys.2014.12.035 Dagdeviren M, 2009, EXPERT SYST APPL, V36, P8143, DOI 10.1016/j.eswa.2008.10.016 Elsevier, 2020, EXPERT SYST APPL Falagas ME, 2008, FASEB J, V22, P338, DOI 10.1096/fj.07-9492LSF Fonseca BDFE, 2016, HEALTH RES POLICY SY, V14, DOI 10.1186/s12961-016-0104-5 Güler NF, 2005, EXPERT SYST APPL, V29, P506, DOI 10.1016/j.eswa.2005.04.011 Tzeng GH, 2007, EXPERT SYST APPL, V32, P1028, DOI 10.1016/j.eswa.2006.02.004 Havemann Frank, 2006, J Biomed Discov Collab, V1, P6, DOI 10.1186/1747-5333-1-6 Hirsch JE, 2005, P NATL ACAD SCI USA, V102, P16569, DOI 10.1073/pnas.0507655102 Hong JY, 2009, EXPERT SYST APPL, V36, P8509, DOI 10.1016/j.eswa.2008.10.071 Huang CL, 2007, EXPERT SYST APPL, V33, P847, DOI 10.1016/j.eswa.2006.07.007 Huang CL, 2006, EXPERT SYST APPL, V31, P231, DOI 10.1016/j.eswa.2005.09.024 Huang L, 2020, J CLEAN PROD, V252, DOI 10.1016/j.jclepro.2019.119908 Ishizaka A, 2011, EXPERT SYST APPL, V38, P14336, DOI 10.1016/j.eswa.2011.04.143 Jae Kyeong Kim, 1990, Expert Systems with Applications, V1, P3, DOI 10.1016/0957-4174(90)90064-2 Janmaijaya M, 2018, PUBLICATIONS-BASEL, V6, DOI 10.3390/publications6030032 Kayacan E, 2010, EXPERT SYST APPL, V37, P1784, DOI 10.1016/j.eswa.2009.07.064 Kevin W.U.A., 2017, MALAYS J LIBR INF SC, V14, P17 Kim KJ, 2000, EXPERT SYST APPL, V19, P125, DOI 10.1016/S0957-4174(00)00027-0 Kumar MA, 2009, EXPERT SYST APPL, V36, P7535, DOI 10.1016/j.eswa.2008.09.066 Laengle S, 2017, EUR J OPER RES, V262, P803, DOI 10.1016/j.ejor.2017.04.027 Lee AHI, 2008, EXPERT SYST APPL, V34, P96, DOI 10.1016/j.eswa.2006.08.022 Lee AHI, 2009, EXPERT SYST APPL, V36, P7917, DOI 10.1016/j.eswa.2008.11.052 Liao SH, 2003, EXPERT SYST APPL, V25, P155, DOI 10.1016/S0957-4174(03)00043-5 Liao SH, 2005, EXPERT SYST APPL, V28, P93, DOI 10.1016/j.eswa.2004.08.003 Liao SH, 2012, EXPERT SYST APPL, V39, P11303, DOI 10.1016/j.eswa.2012.02.063 Lin CH, 2014, EXPERT SYST APPL, V41, P1118, DOI 10.1016/j.eswa.2013.07.107 Lin SW, 2008, EXPERT SYST APPL, V35, P1817, DOI 10.1016/j.eswa.2007.08.088 Liu HC, 2013, EXPERT SYST APPL, V40, P828, DOI 10.1016/j.eswa.2012.08.010 Mardani A, 2015, EXPERT SYST APPL, V42, P4126, DOI 10.1016/j.eswa.2015.01.003 Martín-Martín A, 2018, J INFORMETR, V12, P1160, DOI 10.1016/j.joi.2018.09.002 Meho LI, 2008, J AM SOC INF SCI TEC, V59, P1711, DOI 10.1002/asi.20874 Merigó JM, 2018, INFORM SCIENCES, V432, P245, DOI 10.1016/j.ins.2017.11.054 Merigó JM, 2017, INT J INTELL SYST, V32, P526, DOI 10.1002/int.21859 Min JH, 2005, EXPERT SYST APPL, V28, P603, DOI 10.1016/j.eswa.2004.12.008 Muhuri PK, 2018, APPL SOFT COMPUT, V69, P381, DOI 10.1016/j.asoc.2018.03.041 Nature index, 2020, NATURE Ngai EWT, 2009, EXPERT SYST APPL, V36, P2592, DOI 10.1016/j.eswa.2008.02.021 Niu JQ, 2016, ISPRS INT J GEO-INF, V5, DOI 10.3390/ijgi5050066 Ocak H, 2009, EXPERT SYST APPL, V36, P2027, DOI 10.1016/j.eswa.2007.12.065 Paliwal M, 2009, EXPERT SYST APPL, V36, P2, DOI 10.1016/j.eswa.2007.10.005 Park DH, 2012, EXPERT SYST APPL, V39, P10059, DOI 10.1016/j.eswa.2012.02.038 Park HS, 2009, EXPERT SYST APPL, V36, P3336, DOI 10.1016/j.eswa.2008.01.039 Phinyomark A, 2012, EXPERT SYST APPL, V39, P7420, DOI 10.1016/j.eswa.2012.01.102 Prashar A, 2020, J CLEAN PROD, V245, DOI 10.1016/j.jclepro.2019.118665 Romero C, 2007, EXPERT SYST APPL, V33, P135, DOI 10.1016/j.eswa.2006.04.005 Roy K., 2015, Understanding the Basics of QSAR for Applications in Pharmaceutical Sciences and Risk Assessment, P1, DOI [DOI 10.1016/B978-0-12-801505-6.00001-6, 10.1016/B978-0-12-801505-6.00001-6, 10.1016/b978-0-12-801505-6.00001-6] Ryu S, 2003, EXPERT SYST APPL, V25, P113, DOI 10.1016/S0957-4174(03)00011-3 Sanayei A, 2010, EXPERT SYST APPL, V37, P24, DOI 10.1016/j.eswa.2009.04.063 SCImago Journal Rank, 2020, SCIMAGO J COUNTRY RA SCImago Journal Rank, 2020, EXPERT SYST APPL Scopus, 2020, CITESCORE RANK TREND Shaw K, 2012, EXPERT SYST APPL, V39, P8182, DOI 10.1016/j.eswa.2012.01.149 Shin KS, 2005, EXPERT SYST APPL, V28, P127, DOI 10.1016/j.eswa.2004.08.009 Shukla AK, 2019, ENG APPL ARTIF INTEL, V85, P517, DOI 10.1016/j.engappai.2019.06.010 Subasi A, 2007, EXPERT SYST APPL, V32, P1084, DOI 10.1016/j.eswa.2006.02.005 Subasi A, 2010, EXPERT SYST APPL, V37, P8659, DOI 10.1016/j.eswa.2010.06.065 Tsai CF, 2009, EXPERT SYST APPL, V36, P11994, DOI 10.1016/j.eswa.2009.05.029 van Eck NJ, 2010, SCIENTOMETRICS, V84, P523, DOI 10.1007/s11192-009-0146-3 Wagner WP, 2017, EXPERT SYST APPL, V76, P85, DOI 10.1016/j.eswa.2017.01.028 Wallin JA, 2005, BASIC CLIN PHARMACOL, V97, P261, DOI 10.1111/j.1742-7843.2005.pto_139.x Wang LY, 2017, RENEW SUST ENERG REV, V68, P57, DOI 10.1016/j.rser.2016.08.021 Wang TC, 2007, EXPERT SYST APPL, V33, P870, DOI 10.1016/j.eswa.2006.07.003 Wang TC, 2009, EXPERT SYST APPL, V36, P8980, DOI 10.1016/j.eswa.2008.11.035 Wang YM, 2006, EXPERT SYST APPL, V31, P309, DOI 10.1016/j.eswa.2005.09.040 Wang YM, 2009, EXPERT SYST APPL, V36, P1195, DOI 10.1016/j.eswa.2007.11.028 Web of Science, 2020, J SELF CITATION J CI Web of Science, 2020, CLAR AN IMP FACT Wei GW, 2010, EXPERT SYST APPL, V37, P7895, DOI 10.1016/j.eswa.2010.04.047 Wiig KM, 1997, EXPERT SYST APPL, V13, P1, DOI 10.1016/S0957-4174(97)00018-3 Wu WW, 2007, EXPERT SYST APPL, V32, P499, DOI 10.1016/j.eswa.2005.12.005 Yataganbaba A, 2016, RENEW SUST ENERG REV, V59, P206, DOI 10.1016/j.rser.2015.12.357 Ye Q, 2009, EXPERT SYST APPL, V36, P6527, DOI 10.1016/j.eswa.2008.07.035 Yu DJ, 2018, IEEE T FUZZY SYST, V26, P430, DOI 10.1109/TFUZZ.2017.2672732 Zyoud SH, 2015, J OCCUP MED TOXICOL, V10, DOI 10.1186/s12995-015-0078-1 ZYOUD SH, 2015, IDA J DESALINATION W, V7, P3, DOI DOI 10.1179/2051645215Y.0000000001 Zyoud SH, 2017, INT J ENVIRON SCI TE, V14, P689, DOI 10.1007/s13762-016-1180-3 Zyoud SH, 2021, ENVIRON DEV SUSTAIN, V23, P8895, DOI 10.1007/s10668-020-01004-5 Zyoud SH, 2020, ENVIRON SCI POLLUT R, V27, P3523, DOI 10.1007/s11356-019-07100-y Zyoud SH, 2017, APPL WATER SCI, V7, P1255, DOI [10.100, 10.1007/s13201-016-0520-2] Zyoud SH, 2017, EXPERT SYST APPL, V78, P158, DOI 10.1016/j.eswa.2017.02.016 Zyoud SH, 2016, ENVIRON SCI POLLUT R, V23, P10288, DOI 10.1007/s11356-016-6434-6 NR 94 TC 3 Z9 3 U1 3 U2 21 PU SAGE PUBLICATIONS INC PI THOUSAND OAKS PA 2455 TELLER RD, THOUSAND OAKS, CA 91320 USA SN 2158-2440 J9 SAGE OPEN JI SAGE Open PD APR PY 2021 VL 11 IS 2 AR 21582440211027574 DI 10.1177/21582440211027574 PG 23 WC Social Sciences, Interdisciplinary WE Social Science Citation Index (SSCI) SC Social Sciences - Other Topics GA UL2ZC UT WOS:000692524200001 OA gold DA 2024-09-05 ER PT J AU Yalcinkaya, T Yucel, SC AF Yalcinkaya, Turgay Yucel, Sebnem Cinar TI Bibliometric and content analysis of ChatGPT research in nursing education: The rabbit hole in nursing education SO NURSE EDUCATION IN PRACTICE LA English DT Article DE ChatGPT; OpenAI; Artificial intelligence; Bibliometrics analysis; Nursing education; Nursing students AB Aim: This study was conducted to perform the bibliometric and content analysis of ChatGPT studies in nursing education. Background: ChatGPT is an artificial intelligence -based chatbot developed by OpenAI. The benefits and limitations of the use of ChatGPT in nursing education are still discussed; however, it is a tool having potential to be used in nursing education. Design: Bibliometric and content analysis. Methods: The study data were scanned through Scopus and Web of Science. Bibliometric analysis was carried out with VOSViewer and Bibliometrix software. In the bibliometric analysis, science mapping and performance analysis techniques were used. Various bibliometric data, including most cited publications, journals and countries, were analyzed and visualized. The synthetic knowledge synthesis method was used in content analysis. Results: We analyzed 53 publications to which 151 authors contributed. The publications had been published in 29 different journals. The average number of citations of publications is 8.2. It was determined that most of the articles were published in Nurse Education Today and Nurse Educator journals and that the leading countries were the USA and Canada. It was observed that international cooperation on the issue was weak. The most frequently mentioned keywords in the publications were "ChatGPT", "artificial intelligence" and "nursing". The following three themes emerged after the content analysis: (1) Integration of ChatGPT into nursing education; (2) Potential benefits and limitations of ChatGPT; and (3) Stepping down the rabbit hole. Conclusions: We expect that the results of the study can give nursing faculties and academics ideas about the current status of ChatGPT in nursing education and enable them to make inferences for the future. C1 [Yalcinkaya, Turgay] Sinop Univ, Fac Hlth Sci, Dept Nursing, Sinop, Turkiye. [Yucel, Sebnem Cinar] Ege Univ, Dept Fundamentals Nursing, Nursing Fac, Izmir, Turkiye. C3 Sinop University; Ege University RP Yalcinkaya, T (corresponding author), Sinop Univ, Fac Hlth Sci, Dept Nursing, Sinop, Turkiye. EM tyalcinkaya@sinop.edu.tr RI Yalcinkaya, Turgay/HFZ-8650-2022 OI Yalcinkaya, Turgay/0000-0002-0115-295X CR Abdulai AF, 2023, NURS INQ, V30, DOI 10.1111/nin.12556 Ahmed SK, 2023, ANN BIOMED ENG, V51, P2351, DOI 10.1007/s10439-023-03262-6 Allen C, 2023, INT J NURS STUD, V145, DOI 10.1016/j.ijnurstu.2023.104522 Archibald MM, 2023, J ADV NURS, V79, P3648, DOI 10.1111/jan.15643 Aria M, 2017, J INFORMETR, V11, P959, DOI 10.1016/j.joi.2017.08.007 Athilingam P, 2024, TEACH LEARN NURS, V19, P97, DOI 10.1016/j.teln.2023.11.004 Barrington NM, 2023, MED SCI-BASEL, V11, DOI 10.3390/medsci11030061 Berse S, 2024, ANN BIOMED ENG, V52, P130, DOI 10.1007/s10439-023-03296-w Buchanan Christine, 2021, JMIR Nurs, V4, pe23933, DOI 10.2196/23933 Byrne MD, 2024, NURS EDUC PERSPECT, V45, P63, DOI 10.1097/01.NEP.0000000000001225 Castonguay A, 2023, NURS EDUC TODAY, V129, DOI 10.1016/j.nedt.2023.105916 Chan MMK, 2023, NURS EDUC, V48, pE200, DOI 10.1097/NNE.0000000000001476 Chang CY, 2024, EDUC TECHNOL SOC, V27, P215, DOI 10.30191/ETS.202401_27(1).TP02 Choi EPH, 2023, NURS EDUC TODAY, V125, DOI 10.1016/j.nedt.2023.105796 Christiansen M., 2023, H. ogre Utbild., V13, P56, DOI [10.23865/hu.v13.5331, DOI 10.23865/HU.V13.5331] Donthu N, 2021, J BUS RES, V133, P285, DOI 10.1016/j.jbusres.2021.04.070 Echchakoui S, 2020, J MARK ANAL, V8, P165, DOI 10.1057/s41270-020-00081-9 Evans J, 2024, NURS EDUC, V49, pE41, DOI 10.1097/NNE.0000000000001424 Goktas P, 2024, TEACH LEARN NURS, V19, pe358, DOI 10.1016/j.teln.2023.12.014 Goktas P, 2023, SKIN RES TECHNOL, V29, DOI 10.1111/srt.13417 Gosak L, 2024, NURSE EDUC PRACT, V75, DOI 10.1016/j.nepr.2024.103888 Harder N, 2023, CLIN SIMUL NURS, V78, P1, DOI 10.1016/j.ecns.2023.02.011 Harmon J, 2021, NURS EDUC TODAY, V97, DOI 10.1016/j.nedt.2020.104700 He SK, 2024, ASIAN J SURG, V47, P784, DOI 10.1016/j.asjsur.2023.10.034 Huang HM, 2023, HEALTHCARE-BASEL, V11, DOI 10.3390/healthcare11212855 Irwin P, 2023, NURS EDUC TODAY, V127, DOI 10.1016/j.nedt.2023.105835 Kokol P, 2022, ELECTRONICS-SWITZ, V11, DOI 10.3390/electronics11162485 Kokol P, 2019, NURS OUTLOOK, V67, P680, DOI 10.1016/j.outlook.2019.04.009 Krüger L, 2023, MED KLIN-INTENSIVMED, V118, P534, DOI 10.1007/s00063-023-01038-3 Levin G, 2023, ARCH GYNECOL OBSTET, V308, P1785, DOI 10.1007/s00404-023-07081-x Liu HY, 2024, AESTHET PLAST SURG, V48, P1644, DOI 10.1007/s00266-023-03709-0 Liu JL, 2023, NURS OUTLOOK, V71, DOI 10.1016/j.outlook.2023.102064 Lo CK, 2023, EDUC SCI, V13, DOI 10.3390/educsci13040410 Miao Hongyu, 2023, Asian Pac Isl Nurs J, V7, pe48136, DOI 10.2196/48136 Mukherjee D, 2022, J BUS RES, V148, P101, DOI 10.1016/j.jbusres.2022.04.042 O'Connor S, 2023, NURSE EDUC PRACT, V66, DOI 10.1016/j.nepr.2022.103537 O'Connor S, 2020, NURSE EDUC PRACT, V56, DOI 10.1016/j.nepr.2021.103224 OpenAI, 2023, Introd. ChatGPT. Parker JL, 2023, J NURS EDUC, V62, P721, DOI 10.3928/01484834-20231006-02 Pradana M, 2023, COGENT EDUC, V10, DOI 10.1080/2331186X.2023.2243134 PRITCHARD A, 1969, J DOC, V25, P348 Qi X., 2023, Aging Health Res, V3, DOI [10.1016/j.ahr.2023.100136, DOI 10.1016/J.AHR.2023.100136] Rodgers DL, 2023, SIMUL HEALTHC, V18, P395, DOI 10.1097/SIH.0000000000000747 Saban M, 2024, J ADV NURS, DOI 10.1111/jan.16101 Sallam M, 2023, HEALTHCARE-BASEL, V11, DOI 10.3390/healthcare11060887 Seney V, 2023, NURS EDUC, V48, P124, DOI 10.1097/NNE.0000000000001383 Sharma M, 2023, NURS EDUC TODAY, V131, DOI 10.1016/j.nedt.2023.105972 Sharpnack PA, 2024, NURS EDUC PERSPECT, V45, P67, DOI 10.1097/01.NEP.0000000000001242 Shi JY, 2023, J NURS SCHOLARSHIP, V55, P853, DOI 10.1111/jnu.12852 Shorey S, 2024, NURS EDUC TODAY, V135, DOI 10.1016/j.nedt.2024.106121 Simsir I., 2022, Bir Literatur I.ncelemesi Araci Olarak Bibliyometrik Analiz, V3rd, P7 Stokel-Walker C, 2023, NATURE, V613, P620, DOI 10.1038/d41586-023-00107-z Su MC, 2024, INT J NURS STUD, V153, DOI 10.1016/j.ijnurstu.2024.104717 Sun GH, 2023, NURS EDUC, V48, P119, DOI 10.1097/NNE.0000000000001390 Taira Kazuya, 2023, JMIR Nurs, V6, pe47305, DOI 10.2196/47305 Tam W, 2023, NURS EDUC TODAY, V129, DOI 10.1016/j.nedt.2023.105917 Thakur A, 2023, TEACH LEARN NURS, V18, P450, DOI 10.1016/j.teln.2023.03.011 van Eck N J., 2013, VOSviewer manual Vaughn J, 2024, CLIN SIMUL NURS, V87, DOI 10.1016/j.ecns.2023.101487 Vitorino LM, 2023, J CLIN NURS, V32, P7921, DOI 10.1111/jocn.16706 Woodnutt S, 2024, J PSYCHIATR MENT HLT, V31, P79, DOI 10.1111/jpm.12965 Zong H, 2024, BMC MED EDUC, V24, DOI 10.1186/s12909-024-05125-7 Zupic I, 2015, ORGAN RES METHODS, V18, P429, DOI 10.1177/1094428114562629 NR 63 TC 1 Z9 1 U1 35 U2 35 PU ELSEVIER SCI LTD PI London PA 125 London Wall, London, ENGLAND SN 1471-5953 EI 1873-5223 J9 NURSE EDUC PRACT JI Nurse Educ. Pract. PD MAY PY 2024 VL 77 AR 103956 DI 10.1016/j.nepr.2024.103956 EA APR 2024 PG 10 WC Nursing WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Nursing GA SB9R6 UT WOS:001232121800001 PM 38653086 DA 2024-09-05 ER PT J AU Wang, YQ Luo, H Shi, YY AF Wang, Yinqiu Luo, Hui Shi, Yunyan TI Complex network analysis for international talent mobility based on bibliometrics SO INTERNATIONAL JOURNAL OF INNOVATION SCIENCE LA English DT Article DE Bibliometrics; Multiple linear regression; International talent mobility; Complex network ID GLOBAL COMPETITION; MIGRATION; MIGRANTS AB Purpose This paper aims to explore international talent mobility and identify its negative/positive factors. Design/methodology/approach Bibliometric data from Scopus are explicated to model the mobility network and providing a more comprehensive posture. In addition, by using indicators of complex network, significant features of international talent mobility are described quantitatively. After that, by introducing a kind of improved gravity model with multiple linear regression, the authors identify factors to explain international talent mobility flows. Findings With the analysis of international talent mobility in complex network, the overall network is not balanced. A small part of developed countries and developing countries with good emergency attract and drain a lot of talents and talents usually moving between these countries, the amount of talents leaving or entering into other countries is very limited. Furthermore, according to multiple linear regression, it is found that the share of migrants in population is the major negative factor for international talent mobility, and the factors of destination countries is more significant than original countries. Originality/value The result of this paper may support further research studies and political suggestions for cultivating, attracting and retaining scientific and technological talents in the world. C1 [Wang, Yinqiu; Luo, Hui; Shi, Yunyan] Natl Acad Innovat Strategy, Beijing, Peoples R China. RP Wang, YQ (corresponding author), Natl Acad Innovat Strategy, Beijing, Peoples R China. EM wh6509@yahoo.com; HuiLuo@sina.com; shiyunyan@cast.org.cn CR [Anonymous], 2010, Regression analysis Appelt Silvia., 2015, OECD Science, Technology and Industry Working Papers 2015/02 Beechler S, 2009, J INT MANAG, V15, P273, DOI 10.1016/j.intman.2009.01.002 Cañibano C, 2011, SCIENTOMETRICS, V89, P653, DOI 10.1007/s11192-011-0462-2 Castles Stephen., 2009, The_Age_of_Migration:_International_Population Movements in the Modern World Chen G, 2012, INT C WIREL COMM NET Choudaha R., 2017, STUDIES HIGHER ED, V42, P1 Docquier F, 2016, WORLD ECON, V39, P530, DOI 10.1111/twec.12267 Edler J, 2011, RES POLICY, V40, P791, DOI 10.1016/j.respol.2011.03.003 Franzoni C, 2011, SCIENCE, V333, P702, DOI 10.1126/science.1197286 Freeman RB, 2010, ECON INNOV NEW TECH, V19, P393, DOI 10.1080/10438590903432871 Haupt A., 2016, J POPUL ECON, V29, P1 Home O., 2008, GLOBAL COMPETITION T Hunter R.S., 2009, EC J J BRIT EC ASS Kerr SP, 2016, J ECON PERSPECT, V30, P83, DOI 10.1257/jep.30.4.83 Laudel G, 2003, SCIENTOMETRICS, V57, P215, DOI 10.1023/A:1024137718393 Moed H, 2014, SCIENTOMETRICS, V101, P1987, DOI 10.1007/s11192-014-1307-6 Moed HF, 2013, SCIENTOMETRICS, V94, P929, DOI 10.1007/s11192-012-0783-9 Nijkamp P, 2011, SPAT ECON ANAL, V6, P359, DOI 10.1080/17421772.2011.610814 OECD, 2017, SCI TECHN IND SCOR 2 Org Z., 2015, GLOBAL MOBILITY RES Podemski K., 2010, MIGRATION HIGHLY SKI Qin F, 2015, RES POLICY, V44, P405, DOI 10.1016/j.respol.2014.08.007 Roach M, 2010, RES POLICY, V39, P422, DOI 10.1016/j.respol.2010.01.004 Saxenian A., 2007, EC GEOGRAPHY INNOVAT, V1, P190 Schaeffer R, 1999, SOC FORCES, V77, P1197 Shachar A, 2006, NEW YORK U LAW REV, V81, P148 Solimano A., 2006, WORKING PAPERS, V32, P41 Stephan P., 2015, Innovation Policy and the Economy, V15, P73 Stephan P, 2016, IND CORP CHANGE, V25, P457, DOI 10.1093/icc/dtv037 Straubhaar T., 2000, HWWA DISCUSSION PAPE Wang Y., 2017, INT J BUSIN EC DEV I, V5, P5 Wang YQ., 2016, GLOB OUTLOOK SCI TEC, V31, P30 Yang SS, 2010, IEEE NETWORK, V24, P6, DOI 10.1109/MNET.2010.5578912 Yinqiu W., 2016, INT J HUMANITIES SOC, V7, P133 NR 35 TC 9 Z9 11 U1 6 U2 55 PU EMERALD GROUP PUBLISHING LTD PI BINGLEY PA HOWARD HOUSE, WAGON LANE, BINGLEY BD16 1WA, W YORKSHIRE, ENGLAND SN 1757-2223 EI 1757-2231 J9 INT J INOV SCI JI Int. J. Innov. Sci. PD OCT 11 PY 2019 VL 11 IS 3 BP 419 EP 435 DI 10.1108/IJIS-04-2019-0044 PG 17 WC Business WE Emerging Sources Citation Index (ESCI) SC Business & Economics GA JC0JR UT WOS:000488965800006 DA 2024-09-05 ER PT J AU Akhil, MP Lathabhavan, R Mathew, AM AF Akhil, M. P. Lathabhavan, Remya Mathew, Aparna Merin TI Exploring research trends of metaverse in education: a bibliometric analysis SO HIGHER EDUCATION SKILLS AND WORK-BASED LEARNING LA English DT Article; Early Access DE Metaverse; Education; Virtual reality; Augmented reality; Artificial intelligence AB Purpose - By a thorough bibliometric examination of the area through time, this paper analyses the research landscape of metaverse in education. It is an effort that is focused on the metaverse research trends, academic production and conceptual focus of scientific publications.Design/methodology/approach - The Web of Science (WoS) database was explored for information containing research articles and associated publications that met the requirements. For a thorough analysis of the trend, thematic focus and scientific output in the subject of metaverse in education, a bibliometric technique was used to analyse the data. The bibliometrix package of R software, specifically the biblioshiny interface of R-studio, was used to conduct the analysis. Findings - The analysis of the metaverse in education spanning from 1995 to the beginning of 2023 reveals a dynamic and evolving landscape. Notably, the field has experienced robust annual growth, with a peak of publications in 2022. Citation analysis highlights seminal works, with Dionisio et al. (2013) leading discussions on the transition of virtual worlds into intricate digital cultures. Thematic mapping identifies dominant themes such as "system," "augmented reality" and "information technology," indicating a strong technological focus. Surprisingly, China emerges as a leading contributor with significant citation impact, emphasising the global nature of metaverse research. The thematic map suggests ongoing developments in performance and future aspects, emphasising the essential role of emerging technologies like artificial intelligence and virtual reality. Overall, the findings depict a vibrant and multidimensional metaverse in education, poised for continued exploration and innovation. Originality/value - The study is among the pioneers that provide a comprehensive bibliometric analysis in the area of metaverse in education which will guide the novice researchers to identify the unexplored areas. C1 [Akhil, M. P.] Alliance Univ, Bengaluru, India. [Lathabhavan, Remya] IIM Bodh Gaya, Dept OB & HRM, Bodh Gaya, India. [Mathew, Aparna Merin] All St Coll Trivandrum, Trivandrum, India. C3 Alliance University; Indian Institute of Management (IIM System); Indian Institute of Management Bodh Gaya RP Lathabhavan, R (corresponding author), IIM Bodh Gaya, Dept OB & HRM, Bodh Gaya, India. EM remya.l@iimbg.ac.in RI MP, Akhil/IQS-7253-2023 OI MP, Akhil/0000-0002-2409-0747; Lathabhavan, Remya/0000-0002-4666-4748 CR Adtani R, 2023, HIGH EDUC SKILL WORK, V13, P846, DOI 10.1108/HESWBL-03-2022-0058 Akhil M.P., 2022, Big Data Analytics in the Insurance Market, P207, DOI [10.1108/978-1-80262-637-720221011, DOI 10.1108/978-1-80262-637-720221011] Allam Z, 2022, SMART CITIES-BASEL, V5, P771, DOI 10.3390/smartcities5030040 Anshari M, 2022, SUSTAINABILITY-BASEL, V14, DOI 10.3390/su142315805 Arsyad S., 2018, Discourse and Interaction, V11, P28, DOI [DOI 10.5817/DI2018-1-28, 10.5817/D12018-1-28] Ayub E, 2022, FRONT EDUC, V7, DOI 10.3389/feduc.2022.841363 Azuma RT, 1997, PRESENCE-VIRTUAL AUG, V6, P355, DOI 10.1162/pres.1997.6.4.355 Bojic L, 2022, EUR J FUTURES RES, V10, DOI 10.1186/s40309-022-00208-4 Bourgeois-Bougrine S, 2020, CREATIVITY RES J, V32, P55, DOI 10.1080/10400419.2020.1712162 Bourlakis M, 2009, ELECTRON COMMER RES, V9, P135, DOI 10.1007/s10660-009-9030-8 Cerasa A, 2022, HELIYON, V8, DOI 10.1016/j.heliyon.2022.e11762 Chen Z., 2022, Metaverse security and privacy: an overview Choi HS, 2017, INT J INFORM MANAGE, V37, P1519, DOI 10.1016/j.ijinfomgt.2016.04.017 Contreras GS, 2022, Mod Appl Sci, V16, P1, DOI [DOI 10.5539/MAS.V16N3P34, 10.5539/mas.v16n3p34] Di Pietro R, 2021, 2021 THIRD IEEE INTERNATIONAL CONFERENCE ON TRUST, PRIVACY AND SECURITY IN INTELLIGENT SYSTEMS AND APPLICATIONS (TPS-ISA 2021), P281, DOI 10.1109/TPSISA52974.2021.00032 Dionisio JDN, 2013, ACM COMPUT SURV, V45, DOI 10.1145/2480741.2480751 Duan HH, 2021, PROCEEDINGS OF THE 29TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2021, P153, DOI 10.1145/3474085.3479238 Dwivedi YK, 2022, INT J INFORM MANAGE, V66, DOI 10.1016/j.ijinfomgt.2022.102542 Dziuban C, 2018, INT J EDUC TECHNOL H, V15, DOI 10.1186/s41239-017-0087-5 El Beheiry M, 2019, J MOL BIOL, V431, P1315, DOI 10.1016/j.jmb.2019.01.033 Fitria T.N., 2022, Jurnal Ilmu Sosial dan Humaniora, V1, DOI [10.55123/sosmaniora, DOI 10.55123/SOSMANIORA] Gocen A., 2022, USOBED International Western Black Sea Journal of Social and Human Sciences, V6, P98 Guinard G., 2022, Public Policy Master Thesis, V1 Gupta A, 2023, ELECTRONICS-SWITZ, V12, DOI 10.3390/electronics12020391 Hare R, 2023, IEEE T SYST MAN CY-S, V53, P2047, DOI 10.1109/TSMC.2022.3227919 Henz P., 2022, Discov. Artif. Intell, V2, P19, DOI [10.1007/s44163-022-00032-6, DOI 10.1007/S44163-022-00032-6] Hines P, 2023, INT J LEAN SIX SIG, V14, P1121, DOI 10.1108/IJLSS-02-2022-0035 Hirsh-Pasek K., 2022, Policy Brief. Center for Universal Education at The Brookings Institution Holts K., 2013, Work Organ. labour Glob, V7, P31, DOI DOI 10.13169/WORKORGALABOGLOB.7.1.0031 Hwang G. J., 2022, Computers and Education: Artificial Intelligence, DOI [DOI 10.1016/J.CAEAI.2022.100082, 10.1016/j.caeai.2022.100082] Klimova O., 2021, Russian Language Journal, V71, P2021 Kraus S, 2022, INT J ENTREP BEHAV R, V28, P52, DOI 10.1108/IJEBR-12-2021-0984 Lee L.H., 2022, arXiv Lester S, 2023, HIGH EDUC SKILL WORK, V13, P786, DOI 10.1108/HESWBL-01-2022-0008 Li YJ, 2023, INFORM TECHNOL PEOPL, V36, P2563, DOI 10.1108/ITP-11-2021-0870 Lin Hong, 2022, P IEEE INT C BIG DAT, P2857, DOI DOI 10.1109/BIGDATA55660.2022.10021004 Liu Z, 2022, INT J ENV RES PUB HE, V19, DOI 10.3390/ijerph19031525 Morfaki C, 2023, HIGH EDUC SKILL WORK, V13, P697, DOI 10.1108/HESWBL-03-2022-0062 Mystakidis S., 2022, ENCYCLOPEDIA, V2, P486, DOI [10.3390/encyclopedia2010031, DOI 10.3390/ENCYCLOPEDIA2010031] Negm E, 2023, HIGH EDUC SKILL WORK, V13, P53, DOI 10.1108/HESWBL-05-2022-0121 Njoku JN, 2023, IET INTELL TRANSP SY, V17, P1, DOI 10.1049/itr2.12252 Paiva CE, 2012, CLINICS, V67, P509 Pandita D, 2023, HIGH EDUC SKILL WORK, V13, P682, DOI 10.1108/HESWBL-03-2022-0059 Park SM, 2022, IEEE ACCESS, V10, P4209, DOI 10.1109/ACCESS.2021.3140175 Pellas N, 2021, VIRTUAL REAL-LONDON, V25, P835, DOI 10.1007/s10055-020-00489-9 Reddy JS, 2023, HIGH EDUC SKILL WORK, V13, P813, DOI 10.1108/HESWBL-06-2022-0140 S. Bhavana, 2022, WSEAS Transactions on Systems, P178, DOI 10.37394/23202.2022.21.19 Sá MJ, 2023, SUSTAINABILITY-BASEL, V15, DOI 10.3390/su15032186 Sharma P., 2023, J. Foreign Lang. Educ. Technol, V8, P2023 Shiau WL, 2023, INFORM TECHNOL PEOPL, V36, P500, DOI 10.1108/ITP-11-2020-0793 Slater M, 2016, FRONT ROBOT AI, V3, DOI 10.3389/frobt.2016.00074 Spicer JI, 2001, J COMPUT ASSIST LEAR, V17, P345, DOI 10.1046/j.0266-4909.2001.00191.x Srisawat S., 2022, International Education Studies, V15, P153, DOI [https://doi.org/10.5539/ies.v15n5p153, DOI 10.5539/IES.V15N5P153] Talan T., 2022, Int. J. Technol. Educ. Sci. (IJTES), V6, P333, DOI [10.46328/ijtes.385, DOI 10.46328/IJTES.385] Tlili A, 2022, SMART LEARN ENVIRON, V9, DOI 10.1186/s40561-022-00205-x Usmani SS, 2022, GEN PSYCHIAT, V35, DOI 10.1136/gpsych-2022-100825 Valentine Cleo, 2023, Int J Environ Res Public Health, V20, DOI 10.3390/ijerph20032735 Wesemann A., 2022, Friedrich Berlin Verlagsgesellschaft mbH, P52, DOI [10.3390/ENCYCLOPEDIA2010031, DOI 10.3390/ENCYCLOPEDIA2010031] Zhang XL, 2022, FRONT PSYCHOL, V13, DOI 10.3389/fpsyg.2022.1016300 Zhao R., 2022, Journal of Latex Class Files, V14, P1 NR 60 TC 0 Z9 0 U1 11 U2 14 PU EMERALD GROUP PUBLISHING LTD PI Leeds PA Floor 5, Northspring 21-23 Wellington Street, Leeds, W YORKSHIRE, ENGLAND SN 2042-3896 EI 2042-390X J9 HIGH EDUC SKILL WORK JI High Educ. Skills Work-based Learn PD 2024 JAN 19 PY 2024 DI 10.1108/HESWBL-06-2023-0156 EA JAN 2024 PG 21 WC Education & Educational Research WE Emerging Sources Citation Index (ESCI) SC Education & Educational Research GA FK3K5 UT WOS:001145630900001 DA 2024-09-05 ER PT J AU da Silva, RF Pantoja, MJ AF da Silva, Ricardo Freitas Pantoja, Maria Julia TI Active learning: a new look at learning organizations SO REVISTA DE GESTAO E SECRETARIADO-GESEC LA English DT Article DE Distance education; Learning; Bibliometric Review; Covid-19 ID KNOWLEDGE; REFLECTIONS; MANAGEMENT; CLASSROOM; CONTEXT; WORK AB This article aims to analyze the national scientific production on andragogy, active learning and organizational learning, in the period from 2015 to 2021, in order to identify the contribution of distance education (DL) in the learning process to overcome the challenges faced by organizations today. To this end, a systematic literature review was conducted based on the protocol for selecting and analyzing sources defined by Cronnin, et al. (2008). The qualitative and quantitative research was carried out in journals classified as Qualis Capes A1 to B2, in the Web of Science database. Bibliometric mapping was used to analyze the publications and Iramuteq software was used to process the lexical data of the abstracts of the selected articles. The results of the research point to distance education as a potential model for the educational process capable of working on different organizational competencies. C1 [da Silva, Ricardo Freitas] Minist Gestao & Inovacao Serv Publ, Gestao Publ, Brasilia, Brazil. [Pantoja, Maria Julia] Univ Brasilia UNB, Psicol Socialdo Trabalho & Org, Foco Proc Aprendizagem Humana Trabalho, Programa Posgrad Gestao Publ, BR-70910900 Brasilia, DF, Brazil. C3 Universidade de Brasilia RP da Silva, RF (corresponding author), Minist Gestao & Inovacao Serv Publ, Gestao Publ, Brasilia, Brazil. EM ricardo.freitas@economia.gov.br; jpantoja@unb.br CR Almeida B. G., 2020, EDUCA O UFSM, V45, P64, DOI [10.5902/1984644437035, DOI 10.5902/1984644437035] Armond L. P., 2016, ANAIS 40 ENCONTRO AS Borges-Andrade Jairo Eduardo, 2010, Psic.: Teor. e Pesq., V26, P37 Brasil, DAD AB Camargo BV, 2013, Temas Psicol, V21, P513, DOI [DOI 10.9788/TP2013.2-16, 10.9788/tp2013.2-16] Caprioli KC, 2016, REV ADM DIALOGO, V18, P76, DOI 10.20946/rad.v18i3.21453 Costa CDC, 2018, REV IBERO-AM ESTUD E, V13, P553, DOI 10.21723/riaee.nesp1.v13.2018.11454 Castro A. B. C., 2018, HOLOS, V4, P137, DOI [10.15628/holos.2018.5170, DOI 10.15628/HOLOS.2018.5170] Colet D. S., 2019, REV GEST ORGAN, V12, P60, DOI [10.22277/rgo.v14i1.4080, DOI 10.22277/RGO.V14I1.4080] Cronin Patricia, 2008, Br J Nurs, V17, P38 Monteiro JCD, 2020, REVIST EDUC, V14, P119 Fernandes SRD, 2020, REV IBERO-AM ESTUD E, V15, P1669, DOI 10.21723/riaee.v15iesp2.13838 Zaduski JCD, 2017, REV IBERO-AM ESTUD E, V12, P1243, DOI 10.21723/riaee.v12.n.esp.2.10293 Deprá VM, 2018, NAVUS-REV GEST TECNO, V8, P22, DOI 10.22279/navus.2018.v8n4.p22-36.699 Brandao JMF, 2017, ADM PUBLICA GEST SOC, V9, P265, DOI 10.21118/apgs.v1i4.1233 Lemos C, 2018, REVIST EDUC, V12, P48 Lima GP, 2018, REV GES PROJ, V9, P81, DOI 10.5585/GeP.v9i3.10942 Meirelles K, 2020, REV EDAPECI, V20, P68, DOI 10.29276/redapeci.2020.20.213166.68-81 Monte WS, 2017, HOLOS, V33, P90, DOI 10.15628/holos.2017.5759 Moraes FV, 2020, REV GEST SECR-GESEC, V11, P164, DOI 10.7769/gesec.v11i2.1066 Oliveira M. A. M., 2020, REV 101 NCIAS ADMINI, V26, DOI [10.5020/2318-0722.2020.26.3.9538, DOI 10.5020/2318-0722.2020.26.3.9538] Pedro N, 2017, REV TEMPOS ESPACOS E, V10, P99, DOI 10.20952/revtee.v10i23.7448 Pereira JA, 2020, EDUC ESCRITO, V11, DOI 10.15448/2179-8435.2020.2.30993 Salerno B. N., 2019, ANAIS 2 CONGRESSO GE Salvagni J, 2020, EDUC ESCRITO, V11, DOI 10.15448/2179-8435.2020.2.38898 Santos VT, 2017, TEOR PRAT ADM-TPA, V7, P170, DOI 10.21714/2238-104X2017v7i1-31081 Campos IMS, 2018, NAVUS-REV GEST TECNO, V8, P17, DOI 10.22279/navus.2018.v8n2.p17-26.634 Soares T. L. F. S., 2020, DIALOGIA, V36, P35, DOI [10.5585/dialogia.n36.18396, DOI 10.5585/DIALOGIA.N36.18396] Teixeira WG, 2020, REV SERV PUBLICO, V71, P604, DOI 10.21874/rsp.v71i3.3999 Sanabria MLV, 2017, REV CUID, V8, P1907, DOI 10.15649/cuidarte.v8i3.456 Werlang NB, 2018, REV ELETRONICA ESTRA, V11, P198, DOI 10.19177/reen.v11e22018198-218 NR 31 TC 0 Z9 0 U1 2 U2 6 PU SINDICATO SECRETARIAS ESTADO SAO PAULO PI SAO PAULO PA RUA TUPI 118, SAO PAULO, 01233-000, BRAZIL SN 2178-9010 J9 REV GEST SECR-GESEC JI Rec. Gest. Secr.-GeSeC PD JAN-APR PY 2023 VL 14 IS 1 BP 174 EP 195 DI 10.7769/gesec.v14i1.1507 PG 22 WC Management WE Emerging Sources Citation Index (ESCI) SC Business & Economics GA F3YD0 UT WOS:000981726300003 OA gold DA 2024-09-05 ER PT J AU Lahman, MKE D'Amato, RC Stecker, S McGrain, E AF Lahman, Maria K. E. D'Amato, Rik Carl Stecker, Steffanie McGrain, Elizabeth TI Addressing the shortage of rural school psychologists via technology - Using candidate qualitative interviews to inform practice SO SCHOOL PSYCHOLOGY INTERNATIONAL LA English DT Article DE curriculum; distance education; e-learning; interactive video; online learning; program evaluation; qualitative approaches; qualitative research; school psychology jobs; school psychology training; shortage; technology AB For decades Colorado, USA, has had a shortage of school psychologists, especially in rural areas. The program 'Giving Rural Areas Access to School Psychologist' (GRAASP) was developed to meet this need by offering a technology based distance education program that trained candidates from remote sites across the state. Through the use of in-depth interviews the authors sought to answer the following question: What are the student-candidate perceptions of the GRAASP program? Students' perceptions of their experiences added significantly to our understanding of the effectiveness of the GRAASP program. This article offers insight to educators of school psychologists and others who are considering the use of technology to train learners in remote areas to meet current shortages of qualified personnel in education and related areas. C1 Univ No Colorado, Ctr Collaborat Res Educ, Coll Educ & Behav Sci, Greeley, CO 80639 USA. C3 University of Northern Colorado RP D'Amato, RC (corresponding author), Univ No Colorado, Ctr Collaborat Res Educ, Coll Educ & Behav Sci, McKee Hall Educ 125, Greeley, CO 80639 USA. EM rik.damato@unco.edu CR Badri A, 1998, SCHOOL PSYCHOL INT, V19, P121, DOI 10.1177/0143034398192002 BAILEY EK, 1994, COMMUN EDUC, V43, P184, DOI 10.1080/03634529409378975 Barab S.A., 2004, DESIGNING VIRTUAL CO BERGE ZL, 1994, COMMUN EDUC, V43, P102, DOI 10.1080/03634529409378967 CONNOLLY L, 1990, NASP COMMUNIQUE, V19, P1 D'Amato R.C., 1988, J PSYCHOEDUC ASSESS, V6, P118 D'Amato R.C., 2005, HDB SCH NEUROPSYCHOL D'Amato RC, 2001, SCHOOL PSYCHOL INT, V22, P285, DOI 10.1177/0143034301223005 DAMATO RC, 2002, 54 ANN M AM ASS COLL Davis C, 2000, Eat Behav, V1, P33, DOI 10.1016/S1471-0153(00)00007-6 Edwards OW, 2003, SCHOOL PSYCHOL INT, V24, P204, DOI 10.1177/0143034303024002005 FAGAN TK, 1994, SCH PSYCHOL PAST PRE Haboush KL, 2003, SCHOOL PSYCHOL INT, V24, P232, DOI 10.1177/0143034303024002007 HALL KE, 2000, SCH PSYCHOL, V54, P66 Harrison PL, 2003, SCHOOL PSYCHOL QUART, V18, P358, DOI 10.1521/scpq.18.4.358.27001 Janesick V.V., 1994, HDB QUALITATIVE RES, P209 Jimerson SR, 2004, SCHOOL PSYCHOL INT, V25, P259, DOI 10.1177/0143034304046901 Lam SF, 1998, SCHOOL PSYCHOL INT, V19, P317, DOI 10.1177/0143034398194004 McIntosh DE, 2004, PSYCHOL SCHOOLS, V41, P411, DOI 10.1002/pits.10183 Medley M.D., 1999, J CONTIN HIGH EDUC, V47, P25 Merriam S. B., 1998, Qualitative research and case study applications in education, DOI DOI 10.1016/J.IJPROMAN.2011.04.002 Myrick R.D., 1995, Elementary School Guidance and Counseling, V30, P35 Oakland T.D., 1992, School Psychology International, V13, P99, DOI [10.1177/0143034392132001, DOI 10.1177/0143034392132001] POLKINGHORNE DE, 1991, HDB SCH PSYCHOL, P108 RESCHLY D, 1990, REPORT RETENTION STU Reynolds C.R., 1999, The handbook of school psychology, V3rd NR 26 TC 6 Z9 13 U1 1 U2 7 PU SAGE PUBLICATIONS LTD PI LONDON PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND SN 0143-0343 J9 SCHOOL PSYCHOL INT JI Sch. Psychol. Int. PD OCT PY 2006 VL 27 IS 4 BP 439 EP 461 DI 10.1177/0143034306070429 PG 23 WC Psychology, Educational WE Social Science Citation Index (SSCI) SC Psychology GA 109XH UT WOS:000242342400005 DA 2024-09-05 ER PT J AU Yang, DH Wang, Y Yu, T Liu, XY AF Yang, Dong-Hui Wang, Yan Yu, Tian Liu, Xueyu TI Macro-level collaboration network analysis and visualization with Essential Science Indicators: A case of social sciences SO MALAYSIAN JOURNAL OF LIBRARY & INFORMATION SCIENCE LA English DT Article DE International collaboration; Scientometrics; Social network analysis; Hierarchical clustering; Essential Science Indicators ID INTERNATIONAL RESEARCH COLLABORATION; SCIENTIFIC COLLABORATION; PREFERENTIAL ATTACHMENT; PUBLICATIONS; CONVERGENCE; PATTERNS; GROWTH; KEY AB Cross-national collaboration has been shaped by internationalization of scientific relationships. To study the synergic network of high quality research patterns, this paper collects a total of 300 top 50 items, in each indicator from the big database, Essential Science Indicators, which lists top-ranking papers, scientists and institutions from 2005 to 2015. First, the country level relations of co-authorship addresses in five indicator variables are extracted in the field of social sciences to build international collaboration networks. The social network analysis (SNA) method was applied to calculate the metrics of vertices, edges, average degree, average shortest path, diameter, clustering coefficient and betweenness centrality to illuminate the structural characters and collaboration patterns. Based on the international collaboration similarities, this paper also visualizes the endemic clustering groups of six networks, as cluster dendrograms, using Hierarchical Clustering (HC) method. Findings illustrate that USA, England and Canada are outstanding countries in the international collaboration networks of five indicators. There are geographical groups in European countries in the collaboration networks of scientists, institutes and countries/territories. It is also found that international collaboration contributes to both highly cited papers in the recent 10 years and hot papers in the recent 2 years in this field, rather than geographical similarity does. Those conclusions are critical for policy makers to produce guidelines on how to encourage researchers to build collaboration networks with high-level scholars in different countries. C1 [Yang, Dong-Hui; Wang, Yan; Liu, Xueyu] Southeast Univ, Sch Econ & Management, Nanjing 210096, Peoples R China. [Yu, Tian] Harbin Engn Univ, Sch Econ & Management, Harbin 150001, Peoples R China. C3 Southeast University - China; Harbin Engineering University RP Yang, DH (corresponding author), Southeast Univ, Sch Econ & Management, Nanjing 210096, Peoples R China.; Yu, T (corresponding author), Harbin Engn Univ, Sch Econ & Management, Harbin 150001, Peoples R China. EM dhyang@seu.edu.cn; happyyanyan003@163.com; yutian@hrbeu.edu.cn; xyliu@gmail.com FU National Natural Science Foundation of China [71871053]; China Scholarship Council; Fundamental Research Funds for the Central Universities FX Many thanks to two reviewers for giving useful suggestions to refine this paper. This work was supported by the National Natural Science Foundation of China (Grant No. 71871053), the China Scholarship Council and the Fundamental Research Funds for the Central Universities. CR Almeida JAS, 2007, CHEMOMETR INTELL LAB, V87, P208, DOI 10.1016/j.chemolab.2007.01.005 Almeida JAS, 2009, J INFORMETR, V3, P134, DOI 10.1016/j.joi.2009.01.001 Arunachalam S, 2000, CURR SCI INDIA, V79, P621 Barrios C, 2019, SCIENTOMETRICS, V120, P631, DOI 10.1007/s11192-019-03133-9 Borgatti SP, 2009, SCIENCE, V323, P892, DOI 10.1126/science.1165821 Butrous G, 2015, PULM CIRC, V5, P413, DOI 10.1086/682961 Chen KH, 2019, RES POLICY, V48, P149, DOI 10.1016/j.respol.2018.08.005 Chuang KY, 2011, SCIENTOMETRICS, V87, P551, DOI 10.1007/s11192-011-0365-2 Coccia M, 2016, P NATL ACAD SCI USA, V113, P2057, DOI 10.1073/pnas.1510820113 Csajbók E, 2007, SCIENTOMETRICS, V73, P91, DOI 10.1007/s11192-007-1859-9 Didegah F, 2013, J INFORMETR, V7, P861, DOI 10.1016/j.joi.2013.08.006 FRAME JD, 1979, SOC STUD SCI, V9, P481 Francisco JS, 2015, ANGEW CHEM INT EDIT, V54, P14984, DOI 10.1002/anie.201505267 Fu HZ, 2011, SCIENTOMETRICS, V88, P841, DOI 10.1007/s11192-011-0416-8 Guo SS, 2016, J EDUC COMPUT RES, V53, P499, DOI 10.1177/0735633115611114 Harzing AW, 2014, J INFORMETR, V8, P29, DOI 10.1016/j.joi.2013.10.007 Hayati Z, 2010, LIBR HI TECH, V28, P433, DOI 10.1108/07378831011076675 He TW, 2009, SCIENTOMETRICS, V80, P571, DOI 10.1007/s11192-007-2043-y Hou H, 2008, SCIENTOMETRICS, V75, P189, DOI 10.1007/s11192-007-1771-3 Hsiehchen D, 2016, PHYSICA A, V444, P188, DOI 10.1016/j.physa.2015.09.085 Jalal SK, 2019, ANN LIBR INF STUD, V66, P57, DOI 10.56042/alis.v66i2.22404 Jonsen K, 2013, J MANAGE INQUIRY, V22, P394, DOI 10.1177/1056492612464429 Kossinets G, 2006, SCIENCE, V311, P88, DOI 10.1126/science.1116869 Liu J, 2015, PHYSICA A, V419, P29, DOI 10.1016/j.physa.2014.10.006 LUUKKONEN T, 1992, SCI TECHNOL HUM VAL, V17, P101, DOI 10.1177/016224399201700106 Mason S, 2020, SCIENTOMETRICS, V122, P1751, DOI 10.1007/s11192-020-03345-4 Murtagh F, 2012, WIRES DATA MIN KNOWL, V2, P86, DOI 10.1002/widm.53 Niu FG, 2014, SCIENTOMETRICS, V98, P1221, DOI 10.1007/s11192-013-1170-x Olmeda-Gómez C, 2015, INFORM RES, V20 Palacios-Callender M, 2016, J DOC, V72, P362, DOI 10.1108/JD-11-2014-0164 Perianes-Rodríguez A, 2009, J INFORMETR, V3, P91, DOI 10.1016/j.joi.2008.12.001 Peterson MF, 2001, J ORGAN BEHAV, V22, P59, DOI 10.1002/job.61 Ronda-Pupo GA, 2016, SCIENTOMETRICS, V107, P1423, DOI 10.1007/s11192-016-1939-9 Rousseau R, 2016, J ASSOC INF SCI TECH, V67, P1009, DOI 10.1002/asi.23565 Sarwar R, 2015, SCIENTOMETRICS, V105, P1059, DOI 10.1007/s11192-015-1718-z Schmoch U, 2008, SCIENTOMETRICS, V74, P361, DOI 10.1007/s11192-007-1818-5 SCOTT J, 1988, SOCIOLOGY, V22, P109, DOI 10.1177/0038038588022001007 Sud P, 2016, J ASSOC INF SCI TECH, V67, P1849, DOI 10.1002/asi.23515 Teixeira da Silva JA, 2012, ROM BIOTECH LETT, V17, P7043 Ulnicane I, 2015, SCI PUBL POLICY, V42, P433, DOI 10.1093/scipol/scu060 Wagner CS, 2005, RES POLICY, V34, P1608, DOI 10.1016/j.respol.2005.08.002 Wagner CS, 2005, SCIENTOMETRICS, V62, P3, DOI 10.1007/s11192-005-0001-0 Wang L, 2015, SCIENTOMETRICS, V105, P843, DOI 10.1007/s11192-015-1735-y Wang MY, 2008, PHYSICA A, V387, P4692, DOI 10.1016/j.physa.2008.03.017 Wang MY, 2011, SCIENTOMETRICS, V87, P695, DOI 10.1007/s11192-011-0366-1 Wang MY, 2009, PHYSICA A, V388, P4273, DOI 10.1016/j.physa.2009.05.008 Yang DH, 2014, J INF SCI, V40, P3, DOI 10.1177/0165551513512251 Yang GY, 2015, PHYSICA A, V419, P429, DOI 10.1016/j.physa.2014.10.012 Zdravkovic M, 2016, SCIENTOMETRICS, V108, P717, DOI 10.1007/s11192-016-1989-z Zhao Y, 2016, SCIENTOMETRICS, V107, P1373, DOI 10.1007/s11192-016-1898-1 Zitt M, 2000, SCIENTOMETRICS, V47, P627, DOI 10.1023/A:1005632319799 NR 51 TC 13 Z9 13 U1 1 U2 55 PU UNIV MALAYA, FAC COMPUTER SCIENCE & INFORMATION TECH PI KUALA LUMPUR PA UNIV MALAYA, FAC COMPUTER SCIENCE & INFORMATION TECH, KUALA LUMPUR, 50603, MALAYSIA SN 1394-6234 J9 MALAYS J LIBR INF SC JI Malays. J. Libr. Sci. PY 2020 VL 25 IS 1 BP 121 EP 138 DI 10.22452/mjlis.vol25no1.7 PG 18 WC Information Science & Library Science WE Social Science Citation Index (SSCI) SC Information Science & Library Science GA NF0BS UT WOS:000562968500007 OA Bronze DA 2024-09-05 ER PT J AU Mostafa, MM AF Mostafa, Mohamed M. TI Two decades of Wikipedia research: a PubMed bibliometric network analysis SO GLOBAL KNOWLEDGE MEMORY AND COMMUNICATION LA English DT Article DE Topic modeling; Wikipedia; Collaboration networks; Bibliometric networks; Keywords co-occurrence network; Scholarly publications ID CO-WORD ANALYSIS; INFORMATION-SCIENCE; KNOWLEDGE DOMAIN; DOCTORAL DISSERTATIONS; INTELLECTUAL STRUCTURE; SCIENTOMETRIC ANALYSIS; CITATION ANALYSIS; TOURISM RESEARCH; EMERGING TRENDS; RESEARCH THEMES AB Purpose - This paper aims to examine the structure and dynamics of scholarly publications dealing with Wikipedia. The research also aims to investigate how such research evolved since its launch in 2001. Design/methodology/approach - Wikipedia has grown to be the biggest online encyclopedia in terms of comprehensiveness, reach and coverage. Based on 1,040 PubMed Wikipedia documents written by 5,280 authors over two decades (2001-2021), this paper conducts a bibliometric review of the intellectual structure of scholarly publications dealing withWikipedia. Findings - Results show that annual scholarly publications on Wikipedia growth rate is 13.26. Major outlets publishing Wikipedia's research are PloS One, the Journal of Medical Internet Research, Nucleic Acids Research, Studies in Health Technology and Informatics, Bioinformatics and the International Journal of Medical Informatics. Results also show that the author collaboration network is very sparse, signifying rather negligible collaboration among the authors. Furthermore, results reveal that the Wikipedia research institutions' collaboration network reflects what is sometimes termed Wikipedia's "North-South divide," indicating limited collaboration between rich and poor nations' institutions. Finally, the multiple correspondence analysis applied to obtain the Wikipedia research conceptual map and its intellectual structure reveals the intellectual thrust and the diversity of the scholarly publications dealing withWikipedia. Originality/value - To the best of the author's knowledge, this research represents the first application of bibliometric methods to investigate two decades of scholarly publications dealing with Wikipedia based on the PubMed database. C1 [Mostafa, Mohamed M.] Gulf Univ Sci & Technol, West Mishref, Kuwait. RP Mostafa, MM (corresponding author), Gulf Univ Sci & Technol, West Mishref, Kuwait. EM mostafa@usa.com OI Mostafa, Mohamed/0000-0002-1145-4919 CR AJIFERUKE I, 1988, SCIENTOMETRICS, V14, P421, DOI 10.1007/BF02017100 [Anonymous], 2002, HDB SOFTWARE ENG KNO [Anonymous], 2018, J SUSTAIN TOUR, DOI [10.1080/09669582.2017.1329310, DOI 10.1080/09669582.2017.1329310] [Anonymous], 2021, THE ECONOMIST 0109, P49 [Anonymous], 2017, CHINESE NURSING RES Arazy O, 2011, J MANAGE INFORM SYST, V27, P71, DOI 10.2753/MIS0742-1222270403 Avila-Robinson A, 2018, J DESTIN MARK MANAGE, V10, P101, DOI 10.1016/j.jdmm.2018.06.005 Azad HK, 2019, INFORM SCIENCES, V492, P147, DOI 10.1016/j.ins.2019.04.019 Baker HK, 2020, MANAG FINANC, V46, P1495, DOI 10.1108/MF-06-2019-0277 Behrendt S, 2020, INT REV FINANC ANAL, V72, DOI 10.1016/j.irfa.2020.101563 Benckendorff P, 2009, J HOSP TOUR MANAG, V16, P1, DOI 10.1375/jhtm.16.1.1 Bouzembrak Y, 2019, TRENDS FOOD SCI TECH, V94, P54, DOI 10.1016/j.tifs.2019.11.002 Brazzeal Bradley, 2011, Issues in Science & Technology Librarianship, DOI 10.5062/F4057CV7 Brigo F, 2015, J CLIN NEUROSCI, V22, P1170, DOI 10.1016/j.jocn.2015.02.006 Brown AR, 2011, PS-POLIT SCI POLIT, V44, P339, DOI 10.1017/S1049096511000199 CALLON M, 1991, SCIENTOMETRICS, V22, P155, DOI 10.1007/BF02019280 Chen CM, 2008, DATA KNOWL ENG, V67, P234, DOI 10.1016/j.datak.2008.05.004 Chen CM, 2014, J ASSOC INF SCI TECH, V65, P334, DOI 10.1002/asi.22968 Chen CM, 2012, EXPERT OPIN BIOL TH, V12, P593, DOI 10.1517/14712598.2012.674507 Chen CM, 2001, COMPUTER, V34, P65, DOI 10.1109/2.910895 Chen XY, 2020, TRANSPORT POLICY, V85, P1, DOI 10.1016/j.tranpol.2019.10.004 Chen XL, 2021, INT J EDUC TECHNOL H, V18, DOI 10.1186/s41239-020-00239-6 Chen X, 2020, COMPUT EDUC, V151, DOI 10.1016/j.compedu.2020.103855 Chi E. H., 2001, CHI 2001 Conference Proceedings. Conference on Human Factors in Computing Systems, P490, DOI 10.1145/365024.365325 Cobo MJ, 2011, J AM SOC INF SCI TEC, V62, P1382, DOI 10.1002/asi.21525 Cobo MJ, 2011, J INFORMETR, V5, P146, DOI 10.1016/j.joi.2010.10.002 Colicchia C, 2019, SUPPLY CHAIN MANAG, V24, P5, DOI 10.1108/SCM-01-2018-0003 Coquidé C, 2019, EUR PHYS J B, V92, DOI 10.1140/epjb/e2018-90532-7 Corbet S, 2019, RESOUR POLICY, V63, DOI 10.1016/j.resourpol.2019.101416 de la Hoz-Correa A, 2018, TOURISM MANAGE, V65, P200, DOI 10.1016/j.tourman.2017.10.001 Della Corte V, 2018, BRIT FOOD J, V120, P2270, DOI 10.1108/BFJ-09-2017-0538 Dewald N., 2014, PUBLIC SERVICES Q, V10, P245 DiMaggio P, 2001, ANNU REV SOCIOL, V27, P307, DOI 10.1146/annurev.soc.27.1.307 Ding Y, 2011, J INFORMETR, V5, P187, DOI 10.1016/j.joi.2010.10.008 El Zant S, 2018, IEEE ACCESS, V6, P47735, DOI 10.1109/ACCESS.2018.2867327 Ezell J., 2021, ETHNIC RACIAL STUD, V44 Ferreira MP, 2014, SCIENTOMETRICS, V98, P1899, DOI 10.1007/s11192-013-1172-8 Flanagin AJ, 2011, INFORM COMMUN SOC, V14, P355, DOI 10.1080/1369118X.2010.542823 Francisco GL, 2019, INT BUS REV, V28, P713, DOI 10.1016/j.ibusrev.2019.02.001 Gaede J, 2018, ENERGY RES SOC SCI, V40, P142, DOI 10.1016/j.erss.2017.12.006 Gavel Y, 2008, ONLINE INFORM REV, V32, P8, DOI 10.1108/14684520810865958 Gaviria-Marin M, 2018, J KNOWL MANAG, V22, P1655, DOI 10.1108/JKM-10-2017-0497 Giles J, 2005, NATURE, V438, P900, DOI 10.1038/438900a Glänzel W, 2004, HANDBOOK OF QUANTITATIVE SCIENCE AND TECHNOLOGY RESEARCH: THE USE OF PUBLICATION AND PATENT STATISTICS IN STUDIES OF S&T SYSTEMS, P257 Göbel S, 2018, SOC SCI COMPUT REV, V36, P157, DOI 10.1177/0894439317703579 Gruzd A, 2011, AM BEHAV SCI, V55, P1294, DOI 10.1177/0002764211409378 Himelboim I, 2013, COMMUN METHODS MEAS, V7, P195, DOI 10.1080/19312458.2013.813922 Himelboim I, 2014, J HEALTH COMMUN, V19, P210, DOI 10.1080/10810730.2013.811321 Hino A, 2019, INT J INFORM MANAGE, V48, P175, DOI 10.1016/j.ijinfomgt.2019.01.019 Hjorland B, 2013, INFORM PROCESS MANAG, V49, P1313, DOI 10.1016/j.ipm.2013.07.001 Keegan B, 2013, AM BEHAV SCI, V57, P595, DOI 10.1177/0002764212469367 Khan GF, 2016, COMMUN ASSOC INF SYS, V39, P367, DOI 10.17705/1CAIS.03918 Khasseh AA, 2017, INFORM PROCESS MANAG, V53, P705, DOI 10.1016/j.ipm.2017.02.001 Kim J, 2019, TECHNOVATION, V79, P25, DOI 10.1016/j.technovation.2018.06.008 Kim MC, 2015, SCIENTOMETRICS, V104, P239, DOI 10.1007/s11192-015-1595-5 Knoke D., 2010, Social Network Analysis Koppen L, 2015, J MED LIBR ASSOC, V103, P140, DOI 10.3163/1536-5050.103.3.007 Korfiatis NT, 2006, ONLINE INFORM REV, V30, P252, DOI 10.1108/14684520610675780 Kosterich A, 2019, JOURNAL PRACT, V13, P431, DOI 10.1080/17512786.2018.1497454 Krauskopf E, 2018, J INFECT PUBLIC HEAL, V11, P224, DOI 10.1016/j.jiph.2017.12.011 Kumar HA, 2011, LIBR COLLECT ACQUIS, V35, P32, DOI 10.1016/j.lcats.2011.03.002 Kumar S, 2020, PUBLIC MANAG REV, V22, P1876, DOI 10.1080/14719037.2020.1721122 Laengle S, 2018, INT J COMPUT INTEG M, V31, P1247, DOI 10.1080/0951192X.2018.1529434 Lamprecht D, 2015, SEMANT WEB, V6, P403, DOI 10.3233/SW-140143 LAW J, 1988, SCIENTOMETRICS, V14, P251, DOI 10.1007/BF02020078 Lee MR, 2012, KNOWL-BASED SYST, V28, P47, DOI 10.1016/j.knosys.2011.11.016 Levitt Peggy., 2012, Religion on the Edge: De-Centering and Re-Centering the Sociology of Religion, P159 Lim MH, 2022, COMPUT ASSIST LANG L, V35, P2675, DOI 10.1080/09588221.2021.1892768 Linnenluecke M.M., 2021, AUST J MANAGE Aleixandre JL, 2015, SCIENTOMETRICS, V105, P295, DOI 10.1007/s11192-015-1677-4 González-Valiente CL, 2019, BIBL-AN INVESTIG, V15, P83 Mas-Tur A, 2020, REV MANAG SCI, V14, P933, DOI 10.1007/s11846-020-00406-z Mestyán M, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0071226 MILGRAM S, 1967, PSYCHOL TODAY, V1, P61 Moat HS, 2013, SCI REP-UK, V3, DOI 10.1038/srep01801 Mostafa M., 2016, INT J MANAGEMENT MAR, V9, P81 Mostafa MM, 2020, TRENDS FOOD SCI TECH, V99, P660, DOI 10.1016/j.tifs.2020.03.022 Mostafa Mohamed M., 2015, J BUSINESS EC STUDIE, V21, P24 Mulet-Forteza C, 2018, J TRAVEL TOUR MARK, V35, P1201, DOI 10.1080/10548408.2018.1487368 Navarrete T, 2016, CULT TRENDS, V25, P233, DOI 10.1080/09548963.2016.1241342 Neff MW, 2009, SCIENTOMETRICS, V80, P657, DOI 10.1007/s11192-008-2099-3 Neuhaus C, 2006, PORTAL-LIBR ACAD, V6, P127, DOI 10.1353/pla.2006.0026 Park SJ, 2015, TECHNOL FORECAST SOC, V95, P208, DOI 10.1016/j.techfore.2015.02.003 Pirolli P, 2003, LECT NOTES ARTIF INT, V2702, P45 Pirolli P., 1999, Information foraging Pournelle G. H., 1953, Journal of Mammalogy, V34, P133, DOI 10.1890/0012-9658(2002)083[1421:SDEOLC]2.0.CO;2 PRICE DJD, 1966, AM PSYCHOL, V21, P1011 Prieto-Gutierrez J., 2021, SERIAL LIBRARIAN Qi T., 2018, Int. J. Crowd Sci, V2, P136, DOI [10.1108/IJCS-08-2018-0015, DOI 10.1108/IJCS-08-2018-0015] Qian JW, 2019, SCAND J HOSP TOUR, V19, P192, DOI 10.1080/15022250.2018.1526113 Ratkiewicz J., 2010, Proceedings of the 2010 IEEE Second International Conference on Social Computing (SocialCom 2010). the Second IEEE International Conference on Privacy, Security, Risk and Trust (PASSAT 2010), P393, DOI 10.1109/SocialCom.2010.63 Rodi GC, 2017, PLOS ONE, V12, DOI 10.1371/journal.pone.0170746 Rollin G, 2019, PLOS ONE, V14, DOI 10.1371/journal.pone.0222508 SALTON G, 1991, SCIENCE, V253, P974, DOI 10.1126/science.253.5023.974 Sangam SL, 2015, COLLNET J SCIENTOMET, V9, P175, DOI 10.1080/09737766.2015.1069956 Shi F, 2019, NAT HUM BEHAV, V3, P329, DOI 10.1038/s41562-019-0541-6 Shiau WL, 2017, INT J INFORM MANAGE, V37, P390, DOI 10.1016/j.ijinfomgt.2017.04.007 Shirky C., 2008, Here Comes Everybody: The Power of Organizing Without Organizations Smith N, 2019, INFORM COMMUN SOC, V22, P1310, DOI 10.1080/1369118X.2017.1418406 SPENCE DP, 1990, J PSYCHOLINGUIST RES, V19, P317, DOI 10.1007/BF01074363 Surowiecki James., 2007, American Journal of Physics, V75, P190, DOI DOI 10.1119/1.2423042 Tang M, 2018, SUSTAINABILITY-BASEL, V10, DOI 10.3390/su10051655 Tang M, 2018, INT J FUZZY SYST, V20, P1403, DOI 10.1007/s40815-018-0484-5 Tausczik Y, 2012, HEALTH COMMUN, V27, P179, DOI 10.1080/10410236.2011.571759 Thompson N., 2019, 523817 MIT SLOAN RES Tomaszewski Robert, 2016, Science & Technology Libraries, V35, P246, DOI 10.1080/0194262X.2016.1206052 Trier M, 2013, EUR J INFORM SYST, V22, P317, DOI 10.1057/ejis.2012.27 Valenzuela-Fernandez L, 2019, J BUS-BUS MARK, V26, P75, DOI 10.1080/1051712X.2019.1565142 Van Eck N J., 2019, Manual for VOSviewer version 1.6.13. VOSviewer Manual Van Eck N.J., 2014, Measuring Scholarly Impact: Methods and Practice, P285, DOI 10.1007/978-3-319-10377-8_13(InEng.) Vanni T, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0093376 Vidgen R, 2007, EUR J INFORM SYST, V16, P5, DOI 10.1057/palgrave.ejis.3000661 Vieira F, 2015, J BUS IND MARK, V30, P105, DOI 10.1108/JBIM-02-2014-0027 Vos T., 2015, GATEKEEPING TRANSITI Wakefield R., 2008, The British Accounting Review, V40, P228, DOI DOI 10.1016/J.BAR.2008.03.001 Wallace DP, 2005, REF USER SERV Q, V45, P100 Wallace J, 2018, DIGIT JOURNAL, V6, P274, DOI 10.1080/21670811.2017.1343648 Wamba SF, 2017, BUS PROCESS MANAG J, V23, P477, DOI 10.1108/BPMJ-02-2017-0047 Wang C., 2021, EVOLUTION OMEGA INT Wang Y., 2012, 32 ANN INT NETW SOC Watad A, 2017, J MED INTERNET RES, V19, DOI 10.2196/jmir.8225 Watts DJ, 1998, NATURE, V393, P440, DOI 10.1038/30918 West R, 2015, PROCEEDINGS OF THE 24TH INTERNATIONAL CONFERENCE ON WORLD WIDE WEB (WWW 2015), P1242, DOI 10.1145/2736277.2741666 West R, 2009, 21ST INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE (IJCAI-09), PROCEEDINGS, P1598 Wetzstein A, 2019, J PURCH SUPPLY MANAG, V25, DOI 10.1016/j.pursup.2018.10.002 Wildgaard LE, 2016, LIBR HI TECH, V34, P669, DOI 10.1108/LHT-06-2016-0066 Wilkerson B., 2015, ANN M MIDW POL SCI A Williamson PO, 2019, J MED LIBR ASSOC, V107, P16, DOI 10.5195/jmla.2019.433 Wu GY, 2015, KNOWL INF SYST, V45, P473, DOI 10.1007/s10115-014-0802-7 Xu SX, 2013, MIS QUART, V37, P1043, DOI 10.25300/MISQ/2013/37.4.03 Yang GC, 2015, SCIENTOMETRICS, V105, P1319, DOI 10.1007/s11192-015-1763-7 Yang HL, 2011, BEHAV INFORM TECHNOL, V30, P131, DOI 10.1080/0144929X.2010.516019 Yang SL, 2016, J INFORMETR, V10, P132, DOI 10.1016/j.joi.2015.12.003 Yasseri T., 2015, PREDICTING ELECTIONS Zant S., 2018, EUR PHYS J B, V91 Zeleznik D, 2017, J ADV NURS, V73, P2407, DOI 10.1111/jan.13296 Zhu J, 2017, SCIENTOMETRICS, V110, P893, DOI 10.1007/s11192-016-2187-8 Zong QJ, 2013, SCIENTOMETRICS, V94, P781, DOI 10.1007/s11192-012-0799-1 Zou X, 2018, ACCIDENT ANAL PREV, V118, P131, DOI 10.1016/j.aap.2018.06.010 Zupic I, 2015, ORGAN RES METHODS, V18, P429, DOI 10.1177/1094428114562629 NR 140 TC 1 Z9 1 U1 0 U2 17 PU EMERALD GROUP PUBLISHING LTD PI BINGLEY PA HOWARD HOUSE, WAGON LANE, BINGLEY BD16 1WA, W YORKSHIRE, ENGLAND SN 2514-9342 EI 2514-9350 J9 GLOB KNOWL MEM COMMU JI Glob. Knowl. Mem. Commun. PD DEC 5 PY 2022 VL 71 IS 8/9 BP 947 EP 971 DI 10.1108/GKMC-03-2021-0056 EA NOV 2021 PG 25 WC Information Science & Library Science WE Emerging Sources Citation Index (ESCI) SC Information Science & Library Science GA 6S6FF UT WOS:000713737600001 DA 2024-09-05 ER PT C AU Roopashree, N Umadevi, V AF Roopashree, N. Umadevi, V BE Chandrasekaran, K Tahiliani, MP Mathew, J TI Future Collaboration Prediction in Co-authorship Network SO 2014 3RD INTERNATIONAL CONFERENCE ON ECO-FRIENDLY COMPUTING AND COMMUNICATION SYSTEMS (ICECCS 2014) LA English DT Proceedings Paper CT 3rd International Conference on Eco-Friendly Computing and Communication Systems (ICECCS) CY DEC 18-21, 2014 CL Natl Inst Technol, Mangalore, INDIA HO Natl Inst Technol DE SVM; Co-authorship network; Future collaboration AB The advent of proliferation of social networking is high on use in present era. A co-authorship network which shows research collaborations, are an important class of social networks. Research collaborations often yield good results but organizing a research group is a tedious task. Every researcher is concerned to collaborate with the best expertise complimenting him. Although there was abundant research conducted to find future collaborators or links, very few of them are able to find out effective relationship among them. In this article, we propose a method that makes link predictions in co-authorship networks using supervised approach. The model extracts the features from the networks node and topological structure which can be good indicators of future collaborations. The proposed method was evaluated on synthetic as well as real social networks such as NetScience. Our experiment corroborated the results, and demonstrated the efficiency of the method. C1 [Roopashree, N.; Umadevi, V] BMS Coll Engn, Dept CSE, Bangalore, Karnataka, India. C3 BMS College of Engineering RP Roopashree, N (corresponding author), BMS Coll Engn, Dept CSE, Bangalore, Karnataka, India. EM roops.gowda@gmail.com; umav.77@gmail.com RI , Dr. Umadevi V/E-6454-2017 OI , Dr. Umadevi V/0000-0001-5265-3925 CR Al Hasan M, 2011, SOCIAL NETWORK DATA ANALYTICS, P243 AlHasan M., 2006, P SDM 06 WORKSH LINK [Anonymous], P 7 WORKSH SOC NETW Backstrom L., 2011, WSDM, P635 Chang CC, 2011, ACM T INTEL SYST TEC, V2, DOI 10.1145/1961189.1961199 Gong NZ., 2011, JOINTLY PREDICTING L Liben-Nowell D, 2007, J AM SOC INF SCI TEC, V58, P1019, DOI 10.1002/asi.20591 Newman MEJ, 2006, PHYS REV E, V74, DOI 10.1103/PhysRevE.74.036104 NR 8 TC 1 Z9 1 U1 0 U2 1 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA BN 978-1-4799-7002-5 PY 2014 BP 183 EP 188 DI 10.1109/Eco-friendly.2014.45 PG 6 WC Computer Science, Interdisciplinary Applications; Engineering, Electrical & Electronic WE Conference Proceedings Citation Index - Science (CPCI-S) SC Computer Science; Engineering GA BI2ZA UT WOS:000410569900035 DA 2024-09-05 ER PT J AU Zhao, XT Langlois, K Furst, J An, Y Hu, XH Gualdron, DG Uribe-Romo, F Greenberg, J AF Zhao, Xintong Langlois, Kyle Furst, Jacob An, Yuan Hu, Xiaohua Gualdron, Diego Gomez Uribe-Romo, Fernando Greenberg, Jane TI Research evolution of metal organic frameworks: A scientometric approach with human-in-the-loop SO JOURNAL OF DATA AND INFORMATION SCIENCE LA English DT Article DE Scientometric; Metal-Organic Frameworks (MOFs); Network Analysis; Topic Modeling; Human in the Loop ID BIBLIOMETRIC ANALYSIS; CRYSTAL-STRUCTURE; DESIGN; CHEMISTRY AB Purpose This paper reports on a scientometric analysis bolstered by human-in-the-loop, domain experts, to examine the field of metal-organic frameworks (MOFs) research. Scientometric analyses reveal the intellectual landscape of a field. The study engaged MOF scientists in the design and review of our research workflow. MOF materials are an essential component in next-generation renewable energy storage and biomedical technologies. The research approach demonstrates how engaging experts, via human-in-the-loop processes, can help develop a comprehensive view of a field's research trends, influential works, and specialized topics.Design/methodology/approach A scientometric analysis was conducted, integrating natural language processing (NLP), topic modeling, and network analysis methods. The analytical approach was enhanced through a human-in-the-loop iterative process involving MOF research scientists at selected intervals. MOF researcher feedback was incorporated into our method. The data sample included 65,209 MOF research articles. Python3 and software tool VOSviewer were used to perform the analysis.Findings The findings demonstrate the value of including domain experts in research workflows, refinement, and interpretation of results. At each stage of the analysis, the MOF researchers contributed to interpreting the results and method refinements targeting our focus on MOF research. This study identified influential works and their themes. Our findings also underscore four main MOF research directions and applications.Research limitations This study is limited by the sample (articles identified and referenced by the Cambridge Structural Database) that informed our analysis.Practical implications Our findings contribute to addressing the current gap in fully mapping out the comprehensive landscape of MOF research. Additionally, the results will help domain scientists target future research directions.Originality/value To the best of our knowledge, the number of publications collected for analysis exceeds those of previous studies. This enabled us to explore a more extensive body of MOF research compared to previous studies. Another contribution of our work is the iterative engagement of domain scientists, who brought in-depth, expert interpretation to the data analysis, helping hone the study. C1 [Zhao, Xintong; An, Yuan; Hu, Xiaohua; Greenberg, Jane] Drexel Univ, 3141 Chestnut St, Philadelphia, PA 19104 USA. [Langlois, Kyle; Furst, Jacob; Uribe-Romo, Fernando] Univ Cent Florida, 4000 Cent Florida Blvd, Orlando, FL USA. [Gualdron, Diego Gomez] Colorado Sch Mines, 1500 Illinois St, Golden, CO USA. C3 Drexel University; State University System of Florida; University of Central Florida; Colorado School of Mines RP Zhao, XT (corresponding author), Drexel Univ, 3141 Chestnut St, Philadelphia, PA 19104 USA. EM xz485@drexel.edu FU NSF OAC [2118201] FX This work is funded by NSF OAC # 2118201. CR [Anonymous], 1997, Science studies: An advanced introduction Batten SR, 1998, ANGEW CHEM INT EDIT, V37, P1460, DOI 10.1002/(SICI)1521-3773(19980619)37:11<1460::AID-ANIE1460>3.0.CO;2-Z Bonilla CA, 2015, SCIENTOMETRICS, V105, P1239, DOI 10.1007/s11192-015-1747-7 Castillo-Vergara M, 2018, J BUS RES, V85, P1, DOI 10.1016/j.jbusres.2017.12.011 Cavka JH, 2008, J AM CHEM SOC, V130, P13850, DOI 10.1021/ja8057953 Churchill R, 2021, IEEE DATA MINING, P71, DOI 10.1109/ICDM51629.2021.00017 Clauset A, 2004, PHYS REV E, V70, DOI 10.1103/PhysRevE.70.066111 Côté AP, 2005, SCIENCE, V310, P1166, DOI 10.1126/science.1120411 Crossref.org, RETRIEVED OCTOBER 31 Cui YJ, 2012, CHEM REV, V112, P1126, DOI 10.1021/cr200101d De Bakker Frank., 2005, Business Society, V44, P283, DOI [DOI 10.1177/0007650305278086, 10.1177/0007650305278086] Dong BS, 2012, SCIENTOMETRICS, V93, P1101, DOI 10.1007/s11192-012-0730-9 EDDAOUDI M, 2002, SCIENCE, V0295 Eddaoudi M, 2001, ACCOUNTS CHEM RES, V34, P319, DOI 10.1021/ar000034b Egghe L, 2005, J AM SOC INF SCI TEC, V56, P669, DOI 10.1002/asi.20158 Férey G, 2008, CHEM SOC REV, V37, P191, DOI 10.1039/b618320b Furukawa H, 2013, SCIENCE, V341, P974, DOI 10.1126/science.1230444 Groom CR, 2016, ACTA CRYSTALLOGR B, V72, P171, DOI 10.1107/S2052520616003954 Guo YM, 2019, SUSTAINABILITY-BASEL, V11, DOI 10.3390/su11133606 Guo YQ, 2020, J MED INTERNET RES, V22, DOI 10.2196/18228 HAGBERG A., 2008, P 7 PYTH SCI C SCIPY, P11 HALL SR, 1991, ACTA CRYSTALLOGR A, V47, P655, DOI 10.1107/S010876739101067X Ho YS, 2014, CURR SCI INDIA, V107, P1565 Jeong Y. K., 2020, EXAMINING DRUG SIDE, V14, DOI [10.1016/j.joi.2019.100999, DOI 10.1016/J.JOI.2019.100999] KINOSHITA Y, 1959, B CHEM SOC JPN, V32, P741, DOI 10.1246/bcsj.32.741 Kitagawa S, 2004, ANGEW CHEM INT EDIT, V43, P2334, DOI 10.1002/anie.200300610 KLEMPERER WG, 1990, INORG SYN, V27, P71, DOI 10.1002/9780470132586.ch14 Kreno LE, 2012, CHEM REV, V112, P1105, DOI 10.1021/cr200324t Krishnamoorthy G., 2009, BIBLIOMETRIC ANAL LI Lan JM, 2022, J ENERGY STORAGE, V54, DOI 10.1016/j.est.2022.105275 Lee J, 2009, CHEM SOC REV, V38, P1450, DOI 10.1039/b807080f Li H, 1999, NATURE, V402, P276, DOI 10.1038/46248 Li JR, 2012, CHEM REV, V112, P869, DOI 10.1021/cr200190s Li JR, 2009, CHEM SOC REV, V38, P1477, DOI 10.1039/b802426j Lund BD, 2021, J SCIENTOMETR RES, V10, P348, DOI 10.5530/jscires.10.3.51 Mak KK, 2022, EXPERT OPIN DRUG DIS, V17, P79, DOI 10.1080/17460441.2022.1985108 Merigó JM, 2017, OMEGA-INT J MANAGE S, V73, P37, DOI 10.1016/j.omega.2016.12.004 Moghadam P. Z., 2017, DEV CAMBRIDGE STRUCT, V29, DOI [10.1021/acs.chemmater.7b00441, DOI 10.1021/ACS.CHEMMATER.7B00441] Moulton B, 2001, CHEM REV, V101, P1629, DOI 10.1021/cr9900432 Murray LJ, 2009, CHEM SOC REV, V38, P1294, DOI 10.1039/b802256a Naseer MN, 2022, MATERIALS, V15, DOI 10.3390/ma15145053 Perc M, 2010, J INFORMETR, V4, P358, DOI 10.1016/j.joi.2010.03.001 Perry JJ, 2011, METAL-ORGANIC FRAMEWORKS: APPLICATIONS FROM CATALYSIS TO GAS STORAGE, P269, DOI 10.1039/b802352m Scopus, RETRIEVED Sebastian Y., 2017, EMERGING APPROACHES, V32, DOI [10.1017/S0269888917000042, DOI 10.1017/S0269888917000042] SENGUPTA IN, 1992, LIBRI, V42, P75, DOI 10.1515/libr.1992.42.2.75 Seo JS, 2000, NATURE, V404, P982, DOI 10.1038/35010088 Sheldrick GM, 2015, ACTA CRYSTALLOGR C, V71, P3, DOI [10.1107/S2053229614024218, 10.1107/S0108767307043930, 10.1107/S2053273314026370] Shidiq A. P., 2023, ASEAN J SCI ENG, V3, P31, DOI DOI 10.17509/AJSE.V3I1.43345 Spek AL, 2003, J APPL CRYSTALLOGR, V36, P7, DOI 10.1107/S0021889802022112 Sumida K, 2011, ABSTR PAP AM CHEM S, V242 SWANSON DR, 1986, LIBR QUART, V56, P103, DOI 10.1086/601720 van Eck NJ, 2010, SCIENTOMETRICS, V84, P523, DOI 10.1007/s11192-009-0146-3 Vinker P., 1991, DR1 N SENGUPTAS INT Waltman L, 2010, J INFORMETR, V4, P629, DOI 10.1016/j.joi.2010.07.002 Wang CH, 2016, CHEM SOC REV, V45, P5107, DOI 10.1039/c6cs00362a Wang CC, 2016, SCIENTOMETRICS, V109, P481, DOI 10.1007/s11192-016-1986-2 Wu XJ, 2022, FUTURE GENER COMP SY, V135, P364, DOI 10.1016/j.future.2022.05.014 Xin D, 2018, PROCEEDINGS OF THE SECOND WORKSHOP ON DATA MANAGEMENT FOR END-TO-END MACHINE LEARNING, DOI 10.1145/3209889.3209897 Yaghi OM, 2019, INTRODUCTION TO RETICULAR CHEMISTRY: METAL-ORGANIC FRAMEWORKS AND COVALENT ORGANIC FRAMEWORKS, P1, DOI 10.1002/9783527821099 Yaghi OM, 2003, NATURE, V423, P705, DOI 10.1038/nature01650 Ye N, 2020, J CLEAN PROD, V272, DOI 10.1016/j.jclepro.2020.122679 Ye WM, 2022, J IND ENG CHEM, V109, P68, DOI 10.1016/j.jiec.2022.02.017 Zanzotto FM, 2019, J ARTIF INTELL RES, V64, P243, DOI 10.1613/jair.1.11345 NR 64 TC 0 Z9 0 U1 0 U2 0 PU SCIENDO PI WARSAW PA BOGUMILA ZUGA 32A, WARSAW, MAZOVIA, POLAND SN 2096-157X EI 2543-683X J9 J DATA INFO SCI JI J. Data Info. Sci. PD JUN 1 PY 2024 VL 9 IS 3 BP 44 EP 64 DI 10.2478/jdis-2024-0019 EA JUL 2024 PG 21 WC Information Science & Library Science WE Emerging Sources Citation Index (ESCI) SC Information Science & Library Science GA A4S8X UT WOS:001272122700001 OA gold DA 2024-09-05 ER PT J AU Yasar, MY Kaya, M AF Yasar, Mehmet Yasar Kaya, Mehmet TI Author-Profile-Based Journal Recommendation for a Candidate Article: Using Hybrid Semantic Similarity and Trend Analysis SO IEEE ACCESS LA English DT Article DE Market research; Bibliometrics; Recommender systems; Deep learning; Databases; Collaborative filtering; Semantics; Journal suggester; ontological similarity; trend analyses; venue selection; user-profile recommender AB Finding the right journal for a manuscript to be submitted is difficult and often time-consuming because authors take into account some criteria while searching for the appropriate journal for their manuscript. One of the most important criteria is the content similarity of the journals and manuscript. For this purpose, the subject of the manuscript should be in accordance with the scope of the journal. Also, the manuscript content should be closed to the journals' trend for higher chance of acceptance. Second criterion is to take into account the impact-factor, acceptance-rate, review-time and publishing houses of the journal, which are suitable for the author's past publication profile. In this study, a novel method is proposed in which both the content of the article and the author / authors profile are considered together to find the appropriate journal. To the best of our knowledge, this is the first effort in this direction. Experimental results conducted on real data sets have shown that the proposed method is applicable and performs high accuracy values. C1 [Yasar, Mehmet Yasar] Bingol Univ, Muhendislik Fakult, Bilgisayar Muhendisligi, Bingol, Turkiye. [Kaya, Mehmet] Firat Univ, Muhendislik Fakult, Bilgisayar Muhendisligi, Elazig, Turkiye. C3 Bingol University; Firat University RP Yasar, MY (corresponding author), Bingol Univ, Muhendislik Fakult, Bilgisayar Muhendisligi, Bingol, Turkiye. EM mybayraktar@bingol.edu.tr RI Bayraktar, Mehmet Yasar/JRX-8798-2023; Kaya, Mehmet/D-4459-2013 OI Bayraktar, Mehmet Yasar/0000-0003-3182-120X; Kaya, Mehmet/0000-0003-2995-8282 CR Alhoori H, 2017, J INFORMETR, V11, P553, DOI 10.1016/j.joi.2017.03.006 [Anonymous], 2020, P C AL NETW Bai XM, 2019, IEEE ACCESS, V7, P9324, DOI 10.1109/ACCESS.2018.2890388 Balog K., 2006, Proceedings of the Twenty-Ninth Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, P43, DOI 10.1145/1148170.1148181 Bangale S., 2019, SSRN ELECT J Becerra-Fernandez I, 2005, LECT NOTES ARTIF INT, V3782, P19 Bhagavatula C, 2018, Arxiv, DOI arXiv:1802.08301 Boukhris I, 2014, INT SYMP COMP INTELL, P465, DOI 10.1109/CINTI.2014.7028720 Bozanta A, 2018, MOB INF SYST, V2018, DOI 10.1155/2018/3258916 Bulut B, 2018, 2018 IEEE/ACM INTERNATIONAL CONFERENCE ON ADVANCES IN SOCIAL NETWORKS ANALYSIS AND MINING (ASONAM), P911, DOI 10.1109/ASONAM.2018.8508313 Burnham Judy F, 2006, Biomed Digit Libr, V3, P1 Cai XY, 2018, AAAI CONF ARTIF INTE, P5747 Cai XY, 2018, IEEE T NEUR NET LEAR, V29, P6026, DOI 10.1109/TNNLS.2018.2817245 Campbell C.S., 2003, P 12 INT C INFORM KN, P528, DOI DOI 10.1145/956863.956965 cfplist, AC CALL PAP DAT Chen MH, 2015, ADV ENG INFORM, V29, P830, DOI 10.1016/j.aei.2015.04.005 Diao QM, 2014, PROCEEDINGS OF THE 20TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING (KDD'14), P193, DOI 10.1145/2623330.2623758 Hoang DT, 2016, IEEE SYS MAN CYBERN, P4411, DOI 10.1109/SMC.2016.7844925 DUMAIS ST, 1992, SIGIR 92 : PROCEEDINGS OF THE FIFTEENTH ANNUAL INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, P233 Feng Xia, 2016, IEEE Transactions on Big Data, V2, P101, DOI 10.1109/TBDATA.2016.2555318 Forrester A., 2017, IMPACT SOCIAL SCI BL Kang N., 2015, P 9 ACM C RECOMMENDE, P261, DOI [DOI 10.1145/2792838.2799663, 10.1145/2792838.2799663] Kartal E, 2018, METIN MADENCILIGI IL Kuhn M, 2008, LECT NOTES COMPUT SC, V4976, P81 Li SC, 2018, IEEE ACCESS, V6, P17153, DOI 10.1109/ACCESS.2018.2817497 Ma ST, 2020, SCIENTOMETRICS, V122, P1445, DOI 10.1007/s11192-019-03336-0 Maybury M, 2001, COMMUN ACM, V44, P51, DOI 10.1145/501317.501342 Medvet E, 2014, PROC INT C TOOLS ART, P1004, DOI 10.1109/ICTAI.2014.152 Mhirsi Nour, 2018, Intelligent Systems Design and Applications. 17th International Conference on Intelligent Systems Design and Applications (ISDA 2017). Advances in Intelligent Systems and Computing (AISC 736), P83, DOI 10.1007/978-3-319-76348-4_9 Monteagudo Garcia Grettel, 2017, Journal of the Brazilian Computer Society, V23, DOI 10.1186/s13173-017-0053-z Ola, 1384, TEXT SIM FASTT WORLD Patak A., 2016, International Journal on Advanced Science Engineering Information Technology, V6, P557, DOI [DOI 10.18517/IJASEIT.6.4.890, https://doi.org/10.18517/ijaseit.6.4.890] Pudovkin AI, 2002, J AM SOC INF SCI TEC, V53, P1113, DOI 10.1002/asi.10153 Qu W, 2013, J COMPUT SCI TECH-CH, V28, P776, DOI 10.1007/s11390-013-1376-7 Razack HIA, 2021, SCI EDIT, V8, P134, DOI 10.6087/kcse.244 Ren X, 2014, PROCEEDINGS OF THE 20TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING (KDD'14), P821, DOI 10.1145/2623330.2623630 Schuemie MJ, 2008, BIOINFORMATICS, V24, P727, DOI 10.1093/bioinformatics/btn006 Singh M, 2016, J INFORMETR, V10, P1005, DOI 10.1016/j.joi.2016.08.001 Socher Richard, 2014, Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), P1532, DOI [10.3115/v1/D14-1162.https, DOI 10.3115/V1/D14-1162.HTTPS, 10.3115/v1/D14-1162] Theiler S., 2019, BASICS USING PRETRAI Wang DH, 2018, KNOWL-BASED SYST, V157, P1, DOI 10.1016/j.knosys.2018.05.001 Yang LB, 2019, COMPUT INTEL NEUROSC, V2019, DOI 10.1155/2019/1232581 Yu S, 2018, J NETW COMPUT APPL, V104, P38, DOI 10.1016/j.jnca.2017.12.004 NR 43 TC 0 Z9 0 U1 5 U2 11 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 2169-3536 J9 IEEE ACCESS JI IEEE Access PY 2023 VL 11 BP 45826 EP 45837 DI 10.1109/ACCESS.2023.3271732 PG 12 WC Computer Science, Information Systems; Engineering, Electrical & Electronic; Telecommunications WE Science Citation Index Expanded (SCI-EXPANDED) SC Computer Science; Engineering; Telecommunications GA G8KY0 UT WOS:000991592900001 OA gold DA 2024-09-05 ER PT S AU Cirillo, B Tzabbar, D Seo, D AF Cirillo, Bruno Tzabbar, Daniel Seo, Donghwi BE Tzabbar, D Cirillo, B TI A BIBLIOMETRIC AND TOPIC MODELING ANALYSIS OF THE STRUCTURAL DIVIDE IN THE MULTIDISCIPLINARY RESEARCH ON EMPLOYEE MOBILITY SO EMPLOYEE INTER- AND INTRA-FIRM MOBILITY: TAKING STOCK OF WHAT WE KNOW, IDENTIFYING NOVEL INSIGHTS AND SETTING A THEORETICAL AND EMPIRICAL AGENDA SE Advances in Strategic Management-A Research Annual LA English DT Article; Book Chapter ID INTERGENERATIONAL OCCUPATIONAL-MOBILITY; JOB EMBEDDEDNESS; GREAT-BRITAIN; UNITED-STATES; TURNOVER; METAANALYSIS; PERFORMANCE; ANTECEDENTS; PREDICTOR; SEARCH AB Research on employee mobility has proliferated in the past four decades across four research traditions: Economics, sociology, management, and organizational behavior/human resource management. Despite significant overlap in interest and focus, these four streams of research have evolved independent from each other, resulting in a structural divide. We provide a detailed account of the research on employee mobility and the structural divide across disciplines. We document that the payoff from this profusion of research and increasing interest has been disappointing, as reflected in the limited number of cross-disciplinary citations, even among common topics of interest. However, our analysis also provides some encouraging signs in the form of specific journals and individuals who provide a bridge for cross-disciplinary fertilization. C1 [Cirillo, Bruno] Univ Cote Azur GREDEG, SKEMA Business Sch, Sophia Antipolis, France. [Tzabbar, Daniel; Seo, Donghwi] Drexel Univ, LeBow Coll Business, Philadelphia, PA 19104 USA. C3 SKEMA Business School; Universite Cote d'Azur; Drexel University RP Cirillo, B (corresponding author), Univ Cote Azur GREDEG, SKEMA Business Sch, Sophia Antipolis, France. CR Agarwal R, 2004, ACAD MANAGE J, V47, P501, DOI [10.5465/20159599, 10.2307/20159599] Almeida P, 1999, MANAGE SCI, V45, P905, DOI 10.1287/mnsc.45.7.905 Campbell BA, 2012, ACAD MANAGE REV, V37, P376, DOI 10.5465/amr.2010.0276 Campbell BA, 2012, STRATEGIC MANAGE J, V33, P65, DOI 10.1002/smj.943 Chen G, 2011, ACAD MANAGE J, V54, P159, DOI 10.5465/AMJ.2011.59215089 Chetty R, 2014, Q J ECON, V129, P1553, DOI 10.1093/qje/qju022 Felps W, 2009, ACAD MANAGE J, V52, P545, DOI 10.5465/AMJ.2009.41331075 Franco AM, 2006, RAND J ECON, V37, P841, DOI 10.1111/j.1756-2171.2006.tb00060.x Griffeth RW, 2000, J MANAGE, V26, P463, DOI 10.1177/014920630002600304 Groysberg B, 2008, MANAGE SCI, V54, P1213, DOI 10.1287/mnsc.1070.0809 Hancock JI, 2013, J MANAGE, V39, P573, DOI 10.1177/0149206311424943 Hausknecht JP, 2011, J MANAGE, V37, P352, DOI 10.1177/0149206310383910 Hom PW, 2001, ACAD MANAGE J, V44, P975, DOI 10.5465/3069441 Kacmar KM, 2006, ACAD MANAGE J, V49, P133, DOI 10.2307/20159750 Klepper S, 2005, MANAGE SCI, V51, P1291, DOI 10.1287/mnsc.1050.0411 Lee TW, 2004, ACAD MANAGE J, V47, P711, DOI 10.5465/20159613 Long J, 2013, AM ECON REV, V103, P1109, DOI 10.1257/aer.103.4.1109 Marx M, 2009, MANAGE SCI, V55, P875, DOI 10.1287/mnsc.1080.0985 Mawdsley JK, 2016, J MANAGE, V42, P85, DOI 10.1177/0149206315616459 Meyer JP, 2002, J VOCAT BEHAV, V61, P20, DOI 10.1006/jvbe.2001.1842 Mitchell TR, 2001, ACAD MANAGE J, V44, P1102, DOI 10.5465/3069391 Ng TWH, 2005, PERS PSYCHOL, V58, P367, DOI 10.1111/j.1744-6570.2005.00515.x Rosenkopf L, 2003, MANAGE SCI, V49, P751, DOI 10.1287/mnsc.49.6.751.16026 Shaw JD, 2005, ACAD MANAGE J, V48, P594, DOI 10.5465/AMJ.2005.17843940 Singh J, 2011, MANAGE SCI, V57, P129, DOI 10.1287/mnsc.1100.1253 Somaya D, 2008, ACAD MANAGE J, V51, P936 Song J, 2003, MANAGE SCI, V49, P351, DOI 10.1287/mnsc.49.4.351.14429 Vardi Y., 1980, ACAD MANAGE REV, V5, P341 Wezel FC, 2006, ORGAN SCI, V17, P691, DOI 10.1287/orsc.1060.0219 Xie Y, 2013, AM ECON REV, V103, P2003, DOI 10.1257/aer.103.5.2003 NR 30 TC 1 Z9 1 U1 0 U2 8 PU EMERALD GROUP PUBLISHING LTD PI BINGLEY PA HOWARD HOUSE, WAGON LANE, BINGLEY, W YORKSHIRE BD16 1WA, ENGLAND SN 0742-3322 BN 978-1-78973-549-9; 978-1-78973-550-5 J9 ADV STRATEG MANAGE JI Adv. Strat. M. PY 2020 VL 41 BP 15 EP 36 DI 10.1108/S0742-332220200000041001 D2 10.1108/S0742-3322202041 PG 22 WC Management WE Book Citation Index – Social Sciences & Humanities (BKCI-SSH); Social Science Citation Index (SSCI) SC Business & Economics GA BS1MN UT WOS:000693396900002 DA 2024-09-05 ER PT J AU Frohardt, RJ AF Frohardt, Russell J. TI Engaging Community College Students in Publishable Research SO FRONTIERS IN PSYCHOLOGY LA English DT Article DE extramural funding; guided pathway; active learning; community college; experiential learning; co-curricular activities; STEM - science technology engineering mathematics; hispanic serving institution (HSI) C1 [Frohardt, Russell J.] Northwest Vista Coll, Acad Success, San Antonio, TX 78251 USA. RP Frohardt, RJ (corresponding author), Northwest Vista Coll, Acad Success, San Antonio, TX 78251 USA. EM rfrohardt@alamo.edu CR Altman W. S, 1995, PSYCHOL RES CAPSTONE American Association of Community Colleges, 2018, MEMB DAT American Association of Community Colleges, 2018, AACC PATHW PROJ American Psychological Association, 2018, GRANTS AW FUND PAG [Anonymous], DEV HISP SERV I TITL Association for Psychological Science, 2018, GRANTS AW S Bailey T.R., 2015, Redesigning America's community colleges: A clearer path to student success Bowen J., 2012, Teaching naked: How moving technology out of your classromm will improve student learning, VFirst *COLL BOARD, 2017, TRENDS COLL PRIC 201 Community College Research Center and American Association of Community Colleges, 2018, PATHW MOD DESCR Davidson N., 2014, J EXCELLENCE COLL TE, V25, P1 Lucas D, 2018, SW PSYCHOL, V11, P3 National Center for Educational Statistics, 2018, IPEDS FALL 2016 ENR National Science Foundation, 2018, IMPR UND STEM ED HIS Psi Beta, 2019, AW OV DEADL Society for Neuroscience, 2017, NEUR CAR ADV UND RES Stevens C., 2016, SCHOLARSHIP TEACHING, V2, P245, DOI [https://doi.org/10.1037/stl0000070, DOI 10.1037/STL0000070] NR 17 TC 2 Z9 4 U1 0 U2 3 PU FRONTIERS MEDIA SA PI LAUSANNE PA AVENUE DU TRIBUNAL FEDERAL 34, LAUSANNE, CH-1015, SWITZERLAND SN 1664-1078 J9 FRONT PSYCHOL JI Front. Psychol. PD APR 23 PY 2019 VL 10 AR 882 DI 10.3389/fpsyg.2019.00882 PG 4 WC Psychology, Multidisciplinary WE Social Science Citation Index (SSCI) SC Psychology GA HU6OD UT WOS:000465399200001 PM 31065248 OA Green Published, gold DA 2024-09-05 ER PT C AU Muhamedyev, RI Amirgaliyev, YN Kalimoldayev, MN Khamitov, AN Abdilmanova, A AF Muhamedyev, Ravil I. Amirgaliyev, Yedilkhan N. Kalimoldayev, Maksat N. Khamitov, Alim N. Abdilmanova, Ainur BE Guvercin, S Zhaparov, M Sagandykova, A TI Selection of the most prominent lines of research in ICT domain SO 2015 TWELVE INTERNATIONAL CONFERENCE ON ELECTRONICS COMPUTER AND COMPUTATION (ICECCO) LA English DT Proceedings Paper CT 12th International Conference on Electronics Computer and Computation (ICECCO) CY SEP 27-30, 2015 CL Suleyman Demirel Univ, Almaty, KAZAKHSTAN HO Suleyman Demirel Univ DE ICT domain; taxonomy; scientometric databases; Big Data; Bioinformatics; Cloud computing; Cyber-Physical systems; Embedded systems; Information Security; Internet of Things; Human-machine systems; Mobile computing; Machine Learning; Machine to Machine; Multi agent systems; Neural Networks; Robotics; Visualization; Augmented Reality; SDN; 5G; e-Governance AB The paper is devoted to selection of the most crucial directions of research in ICT domain that could be implemented in the Republic of Kazakhstan. In the paper we evaluated the dynamics of the annual changes in the number of publications and convergence of ICT sub-domains based on data of Scopus, EBSCO (Information Science & Technology Abstracts, Academic Search Complete) and Google Scholar. To analyze the place of Kazakhstan, we considered indexes shown in the Global Competitiveness Report. As a result, the most rapidly developing areas of research were revealed (big data, machine learning, 5G, augmented reality, and etc.). The semantic network of the most modern concepts of the ICT domain was constructed that visualizes the binary relationship between the components and their relative importance. By using comparative analysis of the number of publications in the leading countries and some other countries including Kazakhstan, we selected some key domains which need to be seriously improved onto the way of development science in RK. C1 [Muhamedyev, Ravil I.; Kalimoldayev, Maksat N.] Minist Educ & Sci Republ Kazakhstan, IICT, 125 Pushkina St, Alma Ata 050010, Kazakhstan. [Amirgaliyev, Yedilkhan N.] Suleyman Demirel Univ, Kaskelen 040900, Kazakhstan. [Muhamedyev, Ravil I.] ISMA Univ, LV-1019 Riga, Latvia. [Khamitov, Alim N.; Abdilmanova, Ainur] Int Informat Technol Univ, Alma Ata 050010, Kazakhstan. C3 Suleyman Demirel University - Kazakhstan; International Information Technology University RP Muhamedyev, RI (corresponding author), Minist Educ & Sci Republ Kazakhstan, IICT, 125 Pushkina St, Alma Ata 050010, Kazakhstan. EM ravil.muhamedyev@gmail.com; amir_ed@mail.ru; mnk@ipic.kz; alikhamt@umail.iu.edu; abdilmanovaa@gmail.com RI Kozbakova, Ainur/K-5077-2018; Kalimoldayev, Maksat/ABE-8607-2021; Abdildayeva, Assel/O-4374-2017; Amirgaliyev, Yedilkhan N/C-6963-2015; Mukhamediev, Ravil I./X-1461-2019 OI Kozbakova, Ainur/0000-0002-5213-4882; Mukhamediev, Ravil I./0000-0002-3727-043X CR Abdilmanova A., 2015, P 13 INT SCI C INF T, P106 Adolph M., 2014, P INT SCI PRACT C SM, P7 Alkaras Christina, 2014, OPEN SYSTEMS [Anonymous], BIG DATA SURVEY MOBI Ardito L, 2013, ENERGIES, V6, P251, DOI 10.3390/en6010251 Chernyak L., 2014, OPEN SYSTEMS, P12 Golyshko A.V., 2013, TELECOMMUNICATIONS, P4 Gubbi J, 2013, FUTURE GENER COMP SY, V29, P1645, DOI 10.1016/j.future.2013.01.010 Larsson EG, 2014, IEEE COMMUN MAG, V52, P186, DOI 10.1109/MCOM.2014.6736761 López G, 2014, ENERGIES, V7, P3453, DOI 10.3390/en7053453 Muhamedyev RI, 2014, P 2014 C EL GOV OP S, P178, DOI [10.1145/2729104.2729112, DOI 10.1145/2729104.2729112] Sanger DavidE., 2012, NEW YORK TIMES Schwab K., 2012, The global competitiveness report Skrynnikov V.G., 2013, TELECOMMUNICATIONS, P34 Tihvinsky V.O., 2013, TELECOMMUNICATIONS, P29 Vermesan O, 2013, RIVER PUBL SER COMM, P7 Wang D, 2014, ENERGIES, V7, P1517, DOI 10.3390/en7031517 NR 17 TC 2 Z9 2 U1 0 U2 9 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA PY 2015 BP 36 EP 42 PG 7 WC Computer Science, Information Systems; Computer Science, Theory & Methods WE Conference Proceedings Citation Index - Science (CPCI-S) SC Computer Science GA BF1IW UT WOS:000380400900035 DA 2024-09-05 ER PT J AU Song, M Heo, GE Lee, D AF Song, Min Heo, Go Eun Lee, Dahee TI Identifying the landscape of Alzheimer's disease research with network and content analysis SO SCIENTOMETRICS LA English DT Article DE Alzheimer's disease (AD); Bibliometrics; Document representation; Concept graph; Topic modeling ID BIBLIOMETRIC ANALYSIS; DEMENTIA; RISK; PRODUCTIVITY; INFORMATION; DECLINE; IMPACT; WOMEN; AD AB Alzheimer's disease (AD) is one of degenerative brain diseases, whose cause is hard to be diagnosed accurately. As the number of AD patients has increased, researchers have strived to understand the disease and develop its treatment, such as medical experiments and literature analysis. In the area of literature analysis, several traditional studies analyzed the literature at the macro level like author, journal, and institution. However, analysis of the literature both at the macro level and micro level will allow for better recognizing the AD research field. Therefore, in this study we adopt a more comprehensive approach to analyze the AD literature, which consists of productivity analysis (year, journal/proceeding, author, and Medical Subject Heading terms), network analysis (co-occurrence frequency, centrality, and community) and content analysis. To this end, we collect metadata of 96,081 articles retrieved from PubMed. We specifically perform the concept graph-based network analysis applying the five centrality measures after mapping the semantic relationship between the UMLS concepts from the AD literature. We also analyze the time-series topical trend using the Dirichlet multinomial regression topic modeling technique. The results indicate that the year 2013 is the most productive year and Journal of Alzheimer's Disease the most productive journal. In discovery of the core biological entities and their relationships resided in the AD related PubMed literature, the relationship with glycogen storage disease is founded most frequently mentioned. In addition, we analyze 16 main topics of the AD literature and find a noticeable increasing trend in the topic of transgenic mouse. C1 [Song, Min; Heo, Go Eun; Lee, Dahee] Yonsei Univ, Dept Lib & Informat Sci, Seoul 120749, South Korea. C3 Yonsei University RP Song, M (corresponding author), Yonsei Univ, Dept Lib & Informat Sci, 50 Yonsei Ro, Seoul 120749, South Korea. EM min.song@yonsei.ac.kr RI song, min/KPA-7030-2024 OI Song, Min/0000-0003-3255-1600 FU Bio-Synergy Research Project of the Ministry of Science, ICT and Future Planning through the National Research Foundation [2013M3A9C4078138] FX This work was supported by the Bio-Synergy Research Project (2013M3A9C4078138) of the Ministry of Science, ICT and Future Planning through the National Research Foundation. CR Al-Mubaid Hisham., 2005, American Journal of Biochemistry and Biotechnology, V1, P145, DOI DOI 10.3844/ajbbsp.2004.145.152 Andreasen T, 2009, LECT NOTES ARTIF INT, V5822, P323, DOI 10.1007/978-3-642-04957-6_28 Ansari MA, 2006, Trends Inf Manag, V2, P130 BACHMAN DL, 1993, NEUROLOGY, V43, P515, DOI 10.1212/WNL.43.3_Part_1.515 Barnes LL, 2003, NEUROLOGY, V60, P1777, DOI 10.1212/01.WNL.0000065892.67099.2A Bastian M., 2009, Gephi: An open source software for exploring and manipulating networks Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993 Bleik Said, 2009, 2009 IEEE International Conference on Bioinformatics and Biomedicine Workshop, BIBMW, P38, DOI 10.1109/BIBMW.2009.5332134 Blondel VD, 2008, J STAT MECH-THEORY E, DOI 10.1088/1742-5468/2008/10/P10008 Brin S, 1998, COMPUT NETWORKS ISDN, V30, P107, DOI 10.1016/S0169-7552(98)00110-X Brookmeyer R, 2007, ALZHEIMERS DEMENT, V3, P186, DOI 10.1016/j.jalz.2007.04.381 Cavnar William B., 1994, Proceedings of SDAIR-94, 3rd Annual Symposium on Document Analysis and Information Retrieval, V161175 Chen HQ, 2014, SCIENTOMETRICS, V98, P1865, DOI 10.1007/s11192-013-1132-3 Chen YM, 2005, Proceedings of 2005 International Conference on Machine Learning and Cybernetics, Vols 1-9, P1937 DAMASHEK M, 1995, SCIENCE, V267, P843, DOI 10.1126/science.267.5199.843 Ercan G, 2007, INFORM PROCESS MANAG, V43, P1705, DOI 10.1016/j.ipm.2007.01.015 Erhardt RAA, 2006, DRUG DISCOV TODAY, V11, P315, DOI 10.1016/j.drudis.2006.02.011 Evans DA, 2003, ARCH NEUROL-CHICAGO, V60, P185, DOI 10.1001/archneur.60.2.185 Ravetti MG, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0010153 Gong Y., 2001, SIGIR 2001, P19, DOI DOI 10.1145/383952.383955 Hebert LE, 2001, AM J EPIDEMIOL, V153, P132, DOI 10.1093/aje/153.2.132 Huang C, 2006, IEEE DATA MINING, P275 Krauthammer M, 2004, P NATL ACAD SCI USA, V101, P15148, DOI 10.1073/pnas.0404315101 Kukull WA, 2002, ARCH NEUROL-CHICAGO, V59, P1737, DOI 10.1001/archneur.59.11.1737 Lambiotte R., 2015, IEEE Transactions on Network Science and Engineering, P76, DOI DOI 10.1109/TNSE.2015.2391998 Li JF, 2009, PLANT METHODS, V5, DOI [10.1186/1746-4811-5-6, 10.1371/journal.pcbi.1000450] LINDBERG DAB, 1993, METHOD INFORM MED, V32, P281, DOI 10.1055/s-0038-1634945 Miech RA, 2002, NEUROLOGY, V58, P209, DOI 10.1212/WNL.58.2.209 Mimno D, 2008, UAI, P411 Rocca WA, 1998, AM J EPIDEMIOL, V148, P51, DOI 10.1093/oxfordjournals.aje.a009560 SALTON G, 1975, COMMUN ACM, V18, P613, DOI 10.1145/361219.361220 Seshadri S, 1997, NEUROLOGY, V49, P1498, DOI 10.1212/WNL.49.6.1498 Shehata S, 2007, KDD-2007 PROCEEDINGS OF THE THIRTEENTH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, P629 Smalheiser NR, 1996, NEUROLOGY, V47, P809, DOI 10.1212/WNL.47.3.809 Smalheiser NR, 1998, COMPUT METH PROG BIO, V57, P149, DOI 10.1016/S0169-2607(98)00033-9 Song M, 2014, J ASSOC INF SCI TECH, V65, P352, DOI 10.1002/asi.22970 Sorensen AA, 2010, PROCD SOC BEHV, V2, P6582, DOI 10.1016/j.sbspro.2010.04.068 Sorensen AA, 2009, J ALZHEIMERS DIS, V16, P451, DOI 10.3233/JAD-2009-1046 Tang J, 2009, GENOME MED, V1, DOI [10.1186/gm35, 10.1186/gm204] Thota H, 2007, BIOINFORMATION, V2, P91, DOI 10.6026/97320630002091 Turney PD, 2010, J ARTIF INTELL RES, V37, P141, DOI 10.1613/jair.2934 Wan X., 2007, In Proceedings of the Joint conference of the 47th Annual Meeting of the Association for Computational Linguistics (ACL-2007), P552 Wasserman S., 1994, Social Network Analysis NR 43 TC 23 Z9 25 U1 1 U2 63 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0138-9130 EI 1588-2861 J9 SCIENTOMETRICS JI Scientometrics PD JAN PY 2015 VL 102 IS 1 BP 905 EP 927 DI 10.1007/s11192-014-1372-x PG 23 WC Computer Science, Interdisciplinary Applications; Information Science & Library Science WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Computer Science; Information Science & Library Science GA AY0OZ UT WOS:000347297400044 DA 2024-09-05 ER PT J AU Tyni, J Tarkiainen, A Lopez-Pernas, S Saqr, M Kahila, J Bednarik, R Tedre, M AF Tyni, Janne Tarkiainen, Anni Lopez-Pernas, Sonsoles Saqr, Mohammed Kahila, Juho Bednarik, Roman Tedre, Matti TI Games and Rewards: A Scientometric Study of Rewards in Educational and Serious Games SO IEEE ACCESS LA English DT Article DE Games; Education; Bibliometrics; Collaboration; Licenses; Clustering algorithms; Vocabulary; Scientometric analysis; bibliometrics; rewards; educational games; serious games ID VIDEO GAMES; GAMIFICATION; SYSTEMS; FUTURE; SUPPORT; SCIENCE; TOOLS AB In this study we provide a new viewpoint on the body of literature regarding rewards in serious and educational games. The study includes a quantitative bibliometric analysis of literature in this context from 1969 to 2020. The dataset from the Scopus abstract and citation database was analyzed with the Bibliometrix R library. The data set was manually cleaned to contain only the relevant articles and conference papers. The data was then categorized to match the common themes. From the remaining documents, the amount of annual numbers of publications is presented and the most contributing countries are shown. The most frequent terms from the abstracts and keywords set by the authors are presented, and a co-occurrence network is drawn from the same data. The results of this study reveal that the most occurring topics in this dataset are gamification, physical activity, health, game design, and game-based learning. New directions for research are provided as the most commonly used media appear to be video games and mobile devices in addition to the literature being mostly focused on theory and not practical application. C1 [Tyni, Janne; Tarkiainen, Anni; Saqr, Mohammed; Bednarik, Roman; Tedre, Matti] Univ Eastern Finland, Sch Comp, Joensuu 80101, Finland. [Lopez-Pernas, Sonsoles] Univ Politecn Madrid, Dept Sistemas Informat, ETSI Sistemas Informat, E-28040 Madrid, Spain. [Kahila, Juho] Univ Eastern Finland, Sch Appl Educ Sci & Teacher Educ, Joensuu 80101, Finland. C3 University of Eastern Finland; Universidad Politecnica de Madrid; University of Eastern Finland RP Tyni, J (corresponding author), Univ Eastern Finland, Sch Comp, Joensuu 80101, Finland. EM janne.tyni@uef.fi RI Saqr, Mohammed/AAH-2520-2020; López-Pernas, Sonsoles/M-7375-2019 OI Saqr, Mohammed/0000-0001-5881-3109; López-Pernas, Sonsoles/0000-0002-9621-1392; Tyni, Janne/0000-0003-4512-1570; Kahila, Juho/0000-0002-9913-0627 CR Alahäivälä T, 2016, INT J MED INFORM, V96, P62, DOI 10.1016/j.ijmedinf.2016.02.006 [Anonymous], 2011, Learning science through computer games and simulations Aria M, 2017, J INFORMETR, V11, P959, DOI 10.1016/j.joi.2017.08.007 Barko T, 2013, AM BIOL TEACH, V75, P29, DOI 10.1525/abt.2013.75.1.7 Blondel VD, 2008, J STAT MECH-THEORY E, DOI 10.1088/1742-5468/2008/10/P10008 Connolly TM, 2012, COMPUT EDUC, V59, P661, DOI 10.1016/j.compedu.2012.03.004 de Freitas S, 2018, EDUC TECHNOL SOC, V21, P74 Garris R., 2002, Simulation & Gaming, V33, P441, DOI 10.1177/1046878102238607 Girard C, 2013, J COMPUT ASSIST LEAR, V29, P207, DOI 10.1111/j.1365-2729.2012.00489.x Huang R, 2020, ETR&D-EDUC TECH RES, V68, P1875, DOI 10.1007/s11423-020-09807-z Huotari K, 2017, ELECTRON MARK, V27, P21, DOI 10.1007/s12525-015-0212-z Izzo F., 2020, INT BUS RES, V13, P27 Jabbar AIA, 2015, REV EDUC RES, V85, P740, DOI 10.3102/0034654315577210 Johnson Daniel, 2016, Internet Interv, V6, P89, DOI 10.1016/j.invent.2016.10.002 Ke F., 2009, EFFECTIVE ELECT GAMI, V1, P1, DOI [DOI 10.4018/978-1-60960-195-9.CH701, DOI 10.4018/978-1-59904-808-6.CH001] Kim B., 2015, LIBR TECHNOL REPOR, V51, P5, DOI DOI 10.1145/2181037.2181040 Koivisto J, 2019, INT J INFORM MANAGE, V45, P191, DOI 10.1016/j.ijinfomgt.2018.10.013 Kokol P, 2018, ARXIV180205458 Landers RN, 2018, SIMULAT GAMING, V49, P315, DOI 10.1177/1046878118774385 Lewis ZH, 2016, GAMES HEALTH J, V5, P93, DOI 10.1089/g4h.2015.0078 Majumdar J. D., 2018, P NATL ACAD SCI IN A, V88, P1 Marsh T, 2011, ENTERTAIN COMPUT, V2, P61, DOI 10.1016/j.entcom.2010.12.004 Martí-Parreño J, 2016, J COMPUT ASSIST LEAR, V32, P663, DOI 10.1111/jcal.12161 Metwally AHS, 2021, INT J EDUC RES, V109, DOI 10.1016/j.ijer.2021.101832 Morschheuser B, 2017, INT J HUM-COMPUT ST, V106, P26, DOI 10.1016/j.ijhcs.2017.04.005 Phillips C, 2013, P 1 INT C GAM DES RE, P103, DOI DOI 10.1145/2583008.2583025 Phillips C., 2015, P ANN M AUSTR SPEC I, P83, DOI DOI 10.1145/2838739.2838782 Robson K, 2015, BUS HORIZONS, V58, P411, DOI 10.1016/j.bushor.2015.03.006 Ryan RM, 2006, MOTIV EMOTION, V30, P347, DOI 10.1007/s11031-006-9051-8 Shaffer DW, 2005, PHI DELTA KAPPAN, V87, P104, DOI 10.1177/003172170508700205 Virvou M, 2005, EDUC TECHNOL SOC, V8, P54 Wang HF, 2012, DISCOVERY, INNOVATION AND COMMUNICATION - 5TH CSAA SCIENCE AND TECHNIQUE YOUTH FORUM, P1 Warmelink H, 2020, J BUS RES, V106, P331, DOI 10.1016/j.jbusres.2018.09.011 Wee SC, 2019, J ENVIRON MANAGE, V233, P97, DOI 10.1016/j.jenvman.2018.11.127 Wouters P, 2013, COMPUT EDUC, V60, P412, DOI 10.1016/j.compedu.2012.07.018 Xi NN, 2019, INT J INFORM MANAGE, V46, P210, DOI 10.1016/j.ijinfomgt.2018.12.002 NR 36 TC 5 Z9 5 U1 4 U2 35 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 2169-3536 J9 IEEE ACCESS JI IEEE Access PY 2022 VL 10 BP 31578 EP 31585 DI 10.1109/ACCESS.2022.3160230 PG 8 WC Computer Science, Information Systems; Engineering, Electrical & Electronic; Telecommunications WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Computer Science; Engineering; Telecommunications GA 0J8OU UT WOS:000780360500001 OA gold DA 2024-09-05 ER PT J AU Vital, A Amancio, DR AF Vital, Adilson Amancio, Diego R. TI A comparative analysis of local similarity metrics and machine learning approaches: application to link prediction in author citation networks SO SCIENTOMETRICS LA English DT Article DE Link prediction; Citation networks; Network similarity; Science of science; Authors citation networks ID COMPLEX NETWORKS; COLLABORATION; EVOLUTION; SCIENCE AB Understanding the evolution of paper and author citations is of paramount importance for the design of research policies and evaluation criteria that can promote and accelerate scientific discoveries. Recently many studies on the evolution of science have been conducted in the context of the emergent Science of Science field. While many studies have probed the link problem in citation networks, only a few works have analyzed the temporal nature of link prediction in author citation networks. In this study we compared the performance of 10 well-known local network similarity measurements with four machine learning models to predict future links in author citations networks. Differently from traditional link prediction methods, the temporal nature of the predict links is relevant for our approach. Our analysis revealed that the Jaccard coefficient was found to be among the most relevant measurements. The preferential attachment measurement, conversely, displayed the worst performance. We also found that the extension of local measurements to their weighted version do not significantly improved the performance of predicting citations. Finally, we also found that a XGBoost and neural network approach summarizing the information from all 10 considered similarity measurements was able to provide the highest AUC performance and competitive precision values. C1 [Vital, Adilson; Amancio, Diego R.] Univ Sao Paulo, Inst Math & Comp Sci, Dept Comp Sci, Sao Carlos, SP, Brazil. C3 Universidade de Sao Paulo RP Amancio, DR (corresponding author), Univ Sao Paulo, Inst Math & Comp Sci, Dept Comp Sci, Sao Carlos, SP, Brazil. EM diego@icmc.usp.br RI Amancio, Diego Raphael/I-1071-2012 FU Sao Paulo Research Foundation (FAPESP) [2020/06271-0]; CNPq-Brazil [304026/2018-2, 311074/2021-9]; Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior -Brasil (CAPES) [001] FX A preprint version of this manuscript is available at arXiv (Vital and Amancio 2021). D.R.A. acknowledges financial support from Sao Paulo Research Foundation (FAPESP Grant No. 2020/06271-0) and CNPq-Brazil (Grant No. 304026/2018-2 and 311074/2021-9). This study was financed in part by the Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior -Brasil (CAPES) -Finance Code 001. CR Adamic LA, 2003, SOC NETWORKS, V25, P211, DOI 10.1016/S0378-8733(03)00009-1 Amancio DR, 2012, SCIENTOMETRICS, V91, P827, DOI 10.1007/s11192-012-0630-z Amancio DR, 2011, PHYSICA A, V390, P131, DOI 10.1016/j.physa.2010.08.052 Amancio DR, 2015, SCIENTOMETRICS, V102, P465, DOI 10.1007/s11192-014-1381-9 Amancio DR, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0094137 Amancio DR, 2012, J INFORMETR, V6, P427, DOI 10.1016/j.joi.2012.02.005 [Anonymous], 2015, Neural networks and deep learning [Anonymous], 2014, Link prediction in social networks: the State-of-the-Art" Bai XM, 2020, IEEE ACCESS, V8, P17548, DOI 10.1109/ACCESS.2020.2968459 Bai XM, 2019, J INFORMETR, V13, P407, DOI 10.1016/j.joi.2019.01.010 Bai XM, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0162364 Barabási AL, 2002, PHYSICA A, V311, P590, DOI 10.1016/S0378-4371(02)00736-7 Bornmann L, 2008, J DOC, V64, P45, DOI 10.1108/00220410810844150 Bradley AP, 1997, PATTERN RECOGN, V30, P1145, DOI 10.1016/S0031-3203(96)00142-2 Chacon XSQ, 2020, SCIENTOMETRICS, V125, P625, DOI 10.1007/s11192-020-03651-x Chen S., 2019, Link prediction on the patent citation network Chen TQ, 2016, KDD'16: PROCEEDINGS OF THE 22ND ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, P785, DOI 10.1145/2939672.2939785 Cui P, 2019, IEEE T KNOWL DATA EN, V31, P833, DOI 10.1109/TKDE.2018.2849727 Daud A, 2017, LIBR HI TECH, V35, P509, DOI 10.1108/LHT-02-2017-0044 Davis J., 2006, P 23 INT C MACH LEAR, P233, DOI 10.1145/1143844.1143874 de Sá HR, 2011, 2011 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), P2281, DOI 10.1109/IJCNN.2011.6033513 Edwards MA, 2017, ENVIRON ENG SCI, V34, P51, DOI 10.1089/ees.2016.0223 Eom YH, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0024926 Fortunato S, 2018, SCIENCE, V359, DOI 10.1126/science.aao0185 Hennemann S, 2012, J INFORMETR, V6, P217, DOI 10.1016/j.joi.2011.12.002 Hug SE., 2017, ARXIV Hung SW, 2010, SCIENTOMETRICS, V82, P121, DOI 10.1007/s11192-009-0032-z Jain AK, 1996, COMPUTER, V29, P31, DOI 10.1109/2.485891 KATZ JS, 1994, SCIENTOMETRICS, V31, P31, DOI 10.1007/BF02018100 Kohavi R, 1995, INT JOINT C ART INT, V2, P1137, DOI DOI 10.1067/MOD.2000.109031 Krumov L, 2011, EUR PHYS J B, V84, P535, DOI 10.1140/epjb/e2011-10746-5 Lande D, 2020, WORLD WIDE WEB, V23, P2239, DOI 10.1007/s11280-019-00768-9 Li WH, 2019, EPJ DATA SCI, V8, DOI 10.1140/epjds/s13688-019-0199-3 Liu XF, 2021, PHYSICA A, V564, DOI 10.1016/j.physa.2020.125518 Lizhi Zhang, 2020, Natural Language Processing and Chinese Computing. 9th CCF International Conference, NLPCC 2020. Proceedings. Lecture Notes in Artificial Intelligence Subseries of Lecture Notes in Computer Science (LNAI 12430), P617, DOI 10.1007/978-3-030-60450-9_49 Lü LY, 2011, PHYSICA A, V390, P1150, DOI 10.1016/j.physa.2010.11.027 Lü LY, 2010, EPL-EUROPHYS LETT, V89, DOI 10.1209/0295-5075/89/18001 Martincic-Ipsic S, 2017, PLOS ONE, V12, DOI 10.1371/journal.pone.0181079 Milojevic S, 2013, J INFORMETR, V7, P767, DOI 10.1016/j.joi.2013.06.006 Molléri JS, 2018, SCIENTOMETRICS, V117, P1453, DOI 10.1007/s11192-018-2907-3 Newman MEJ, 2001, PHYS REV E, V64, DOI [10.1103/PhysRevE.64.016131, 10.1103/PhysRevE.64.016132] Nie ZW, 2021, ADV ENERGY MATER, V11, DOI 10.1002/aenm.202003580 Nielsen MW, 2021, P NATL ACAD SCI USA, V118, DOI 10.1073/pnas.2012208118 Noble WS, 2006, NAT BIOTECHNOL, V24, P1565, DOI 10.1038/nbt1206-1565 Parnas DL, 2007, COMMUN ACM, V50, P19, DOI 10.1145/1297797.1297815 Powell WW, 2005, AM J SOCIOL, V110, P1132, DOI 10.1086/421508 Radicchi F, 2009, PHYS REV E, V80, DOI 10.1103/PhysRevE.80.056103 Refaeilzadeh P., 2009, encyclopedia of database systems, V5, P532, DOI DOI 10.1007/978-0-387-39940-9_565 Sebo P, 2021, SCIENTOMETRICS, V126, P4121, DOI 10.1007/s11192-020-03845-3 Shibata N, 2012, J AM SOC INF SCI TEC, V63, P78, DOI 10.1002/asi.21664 Silva FN, 2016, J INFORMETR, V10, P487, DOI 10.1016/j.joi.2016.03.008 Silva FN, 2020, QUANT SCI STUD, V1, P1298, DOI 10.1162/qss_a_00070 Stella M, 2020, PHYSICA A, V554, DOI 10.1016/j.physa.2020.124382 Stella M, 2019, BIG DATA COGN COMPUT, V3, DOI 10.3390/bdcc3010010 Vital, 2021, ARXIV Wang KS, 2020, QUANT SCI STUD, V1, P396, DOI 10.1162/qss_a_00021 Wang MY, 2008, PHYSICA A, V387, P4692, DOI 10.1016/j.physa.2008.03.017 Wright R.E., 1995, READING UNDERSTANDIN, P217 Wuestman ML, 2019, RES POLICY, V48, P1771, DOI 10.1016/j.respol.2019.04.004 Yegnanarayana Bayya, 2009, ARTIFICIAL NEURAL NETWORKS Zhang G, 2013, J AM SOC INF SCI TEC, V64, P1490, DOI 10.1002/asi.22850 Zhou T, 2009, EUR PHYS J B, V71, P623, DOI 10.1140/epjb/e2009-00335-8 NR 62 TC 6 Z9 7 U1 5 U2 43 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0138-9130 EI 1588-2861 J9 SCIENTOMETRICS JI Scientometrics PD OCT PY 2022 VL 127 IS 10 BP 6011 EP 6028 DI 10.1007/s11192-022-04484-6 EA AUG 2022 PG 18 WC Computer Science, Interdisciplinary Applications; Information Science & Library Science WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Computer Science; Information Science & Library Science GA 4P1FY UT WOS:000840040600001 DA 2024-09-05 ER PT J AU Ardia, D Bluteau, K Meghani, MA AF Ardia, David Bluteau, Keven Meghani, Mohammad-Abbas TI Thirty years of academic finance SO JOURNAL OF ECONOMIC SURVEYS LA English DT Article; Early Access DE finance literature; structural topic model (STM); scientometrics; topic modeling; textual analysis ID BETA REGRESSION; TEXT; REVEAL; GENDER; MODEL AB We study how the financial literature has evolved in scale, research team composition, and article topicality across finance-focused academic journals from 1992 to 2021. We document that the field has vastly expanded regarding outlets and published articles. Teams have become larger, and the proportion of women participating in research has increased significantly. Using the Structural Topic Model, we identify 45 topics discussed in the literature. We investigate the topic coverage of individual journals and can identify highly specialized and generalist outlets, but our analyses reveal that most journals have covered more topics over time, thus becoming more generalist. Finally, we find that articles with at least one woman author focus more on topics related to social and governance aspects of corporate finance. We also find that teams with at least one top-tier institution scholar tend to focus more on theoretical aspects of finance. C1 [Ardia, David; Meghani, Mohammad-Abbas] HEC Montreal, GERAD, Montreal, PQ, Canada. [Ardia, David; Meghani, Mohammad-Abbas] HEC Montreal, Dept Decis Sci, Montreal, PQ, Canada. [Bluteau, Keven] Univ Sherbrooke, Dept Finance, Sherbrooke, PQ, Canada. [Ardia, David] HEC Montreal, GERAD, 3000 Chemin Cote Sainte Catherine, Montreal, PQ H3T 2A7, Canada. [Ardia, David] HEC Montreal, Dept Decis Sci, 3000 Cheminde Cote Sainte Catherine, Montreal, PQ H3T 2A7, Canada. C3 Universite de Montreal; HEC Montreal; Universite de Montreal; HEC Montreal; University of Sherbrooke; Universite de Montreal; HEC Montreal; Universite de Montreal; HEC Montreal RP Ardia, D (corresponding author), HEC Montreal, GERAD, 3000 Chemin Cote Sainte Catherine, Montreal, PQ H3T 2A7, Canada.; Ardia, D (corresponding author), HEC Montreal, Dept Decis Sci, 3000 Cheminde Cote Sainte Catherine, Montreal, PQ H3T 2A7, Canada. EM david.ardia@hec.ca RI Ardia, David/E-4920-2019; Bluteau, Keven/JUB-1302-2023 OI Bluteau, Keven/0000-0003-2990-4807 FU Institut de Valorisation des Donnees; Schweizerischer Nationalfonds zur Forderung der Wissenschaftlichen Forschung [179281, 191730]; Natural Sciences and Engineering Research Council of Canada [RGPIN-2022-03767] FX Institut de Valorisation des Donnees, Grant/Award Number: Professorship; Schweizerischer Nationalfonds zur Forderung der Wissenschaftlichen Forschung, Grant/Award Numbers: 179281, 191730; Natural Sciences and Engineering Research Council of Canada, Grant/Award Number: RGPIN-2022-03767 CR Alexakis C, 2021, COMPUT ECON, V57, P369, DOI 10.1007/s10614-020-10077-3 Ambrosino A, 2018, J ECON METHODOL, V25, P329, DOI 10.1080/1350178X.2018.1529215 Ardia D., J FINANCIAL MARKETS Bajo E, 2020, J BANK FINANC, V114, DOI 10.1016/j.jbankfin.2020.105780 Baker HK, 2021, J CORP FINANC, V66, DOI 10.1016/j.jcorpfin.2020.101572 Berninger M, 2021, J BANK FINANC, V131, DOI 10.1016/j.jbankfin.2021.106188 Blei D., 2006, Advances in Neural Information Processing Systems, V18, P147 Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993 Bohr J, 2018, ENVIRON SOCIOL, V4, P181, DOI 10.1080/23251042.2017.1393863 Caplar N, 2017, NAT ASTRON, V1, DOI 10.1038/s41550-017-0141 Chari Anusha, 2017, NBER Working Paper no. 23953 Corbet S, 2019, RESOUR POLICY, V63, DOI 10.1016/j.resourpol.2019.101416 Cribari-Neto F, 2010, J STAT SOFTW, V34, P1 Curry TA, 2019, J INF TECHNOL POLITI, V16, P379, DOI 10.1080/19331681.2019.1657048 Daenekindt S, 2020, HIGH EDUC, V80, P571, DOI 10.1007/s10734-020-00500-x Dai R., REV FINANCE De Battisti F, 2015, SCIENTOMETRICS, V103, P413, DOI 10.1007/s11192-015-1554-1 Dolado JJ, 2012, SERIES-J SPAN ECON, V3, P367, DOI 10.1007/s13209-011-0065-4 Ferrari SLP, 2004, J APPL STAT, V31, P799, DOI 10.1080/0266476042000214501 Grimmer J, 2013, POLIT ANAL, V21, P267, DOI 10.1093/pan/mps028 Grossmann A, 2022, J BANK FINANC, V138, DOI 10.1016/j.jbankfin.2022.106427 Hansen S, 2018, Q J ECON, V133, P801, DOI 10.1093/qje/qjx045 Jackson SE, 2003, J MANAGE, V29, P801, DOI 10.1016/S0149-2063(03)00080-1 Justeson J.S., 1995, Natural Language Engineering, V1, P9, DOI [DOI 10.1017/S1351324900000048, 10.1017/S1351324900000048] Lau J.H., 2013, ACM T SPEECH LANGUAG, V10, P10, DOI [10.1145/2483969.2483972, DOI 10.1145/2483969.2483972] Martin F., 2015, P AUSTR LANG TECHN A Mimno David, 2011, P C EMPIRICAL METHOD, P262 Mishler A., 2015, COMMUNICATIONS COMPU Nielsen MW, 2017, NAT HUM BEHAV, V1, P791, DOI 10.1038/s41562-017-0235-x Priva UC, 2015, COGNITION, V135, P4, DOI 10.1016/j.cognition.2014.11.006 Roberts M.E., 2013, ADV NEURAL INFORM PR, V4, P1 Roberts ME, 2019, J STAT SOFTW, V91, P1, DOI 10.18637/jss.v091.i02 Roberts ME, 2016, J AM STAT ASSOC, V111, P988, DOI 10.1080/01621459.2016.1141684 Roberts ME, 2014, AM J POLIT SCI, V58, P1064, DOI 10.1111/ajps.12103 Rose S., 2010, Text Min. Appl. Theory, P1, DOI DOI 10.1002/9780470689646.CH1 Ruiz J. I., 2021, GENDER DISTRIBUTION Sachdeva S, 2017, INFORM COMMUN SOC, V20, P1146, DOI 10.1080/1369118X.2016.1218528 Santamaria L., 2018, PEERJ COMPUT SCI, V4, P1 Schofield A., 2016, Transactions of the Association for Computational Linguistics, V4, P287, DOI [DOI 10.1162/TACLA00099, 10.1162/tacla00099] Schulze P., 2021, EXPLORING TOPIC META Sebo P, 2021, J MED LIBR ASSOC, V109, P414, DOI 10.5195/jmla.2021.1185 Squazzoni F, 2021, SCI ADV, V7, DOI 10.1126/sciadv.abd0299 Treier S, 2008, AM J POLIT SCI, V52, P201, DOI 10.1111/j.1540-5907.2007.00308.x Wang C, 2013, J MACH LEARN RES, V14, P1005 Wang LL, 2021, COMMUN ACM, V64, P78, DOI 10.1145/3430803 Wijffels Jan., 2021, UDPIPE TOKENIZATION Zhang P. G., 1995, J DERIV, V2, P53 Zheng B, 2006, BMC BIOINFORMATICS, V7, DOI 10.1186/1471-2105-7-58 NR 48 TC 0 Z9 0 U1 1 U2 3 PU WILEY PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0950-0804 EI 1467-6419 J9 J ECON SURV JI J. Econ. Surv. PD 2023 JUN 1 PY 2023 DI 10.1111/joes.12571 EA JUN 2023 PG 35 WC Economics WE Social Science Citation Index (SSCI) SC Business & Economics GA H8NE9 UT WOS:000998455800001 OA Green Submitted, hybrid DA 2024-09-05 ER PT C AU Lund, K Chen, BD Grauwin, S AF Lund, Kristine Chen, Bodong Grauwin, Sebastian GP ACM TI The Potential of Interdisciplinarity in MOOC Research: How Do Education and Computer Science Intersect? SO PROCEEDINGS OF THE FIFTH ANNUAL ACM CONFERENCE ON LEARNING AT SCALE (L@S'18) LA English DT Proceedings Paper CT 5th Annual ACM Conference on Learning at Scale (L at S) CY JUN 26-28, 2018 CL London, ENGLAND DE MOOC; online learning; interdisciplinary research; bibliometrics ID BIBLIOMETRIC ANALYSIS AB Given that both computer scientists and educational researchers publish on the topic of massive open online courses (MOOCs), the research community should analyze how these disciplines approach the same topic. In order to promote productive dialogue within the community, we report on a bibliometrics study of the growing MOOC literature and examine the potential interdisciplinarity of this research space. Drawing from 3,380 bibliographic items retrieved from Scopus, we conducted descriptive analyses on publication years, publication sources, disciplinary categories of publication sources, frequent keywords, leading authors, and cited references. We applied bibliographic coupling and network analysis to further investigate clusters of research topics in the MOOC literature. We found balanced representation of education and computer science within most topic clusters. However, integration could be further improved on, for example, by enhancing communication between the disciplines and broadening the scope of methods in specific studies. C1 [Lund, Kristine] Univ Lyon, Ctr Natl Rech Sci CNRS, Ecole Normale Super Lyon, Lyon, France. [Chen, Bodong] Univ Minnesota, Coll Educ & Human Dev, Minneapolis, MN USA. [Grauwin, Sebastian] Univ Lyon, Ecole Normale Super Lyon, Lab Phys, Lyon, France. C3 Centre National de la Recherche Scientifique (CNRS); Ecole Normale Superieure de Lyon (ENS de LYON); University of Minnesota System; University of Minnesota Twin Cities; Ecole Normale Superieure de Lyon (ENS de LYON); Universite Paris Cite RP Lund, K (corresponding author), Univ Lyon, Ctr Natl Rech Sci CNRS, Ecole Normale Super Lyon, Lyon, France. EM kristine.lund@ens-lyon.fr; chenbd@umn.edu; sebgrauwin@gmail.com OI Chen, Bodong/0000-0003-4616-4353 FU French Centre National de la Recherche Scientifique; Ecole Normale SupAl'rieure de Lyon through the Laboratoire de l'Education [UMS 3773]; Aslan of UniversitAl' de Lyon within the program Investissements d'Avenir of the French government [ANR-10-LABX-0081, ANR-11-IDEX-0007] FX We gratefully acknowledge financing by the French Centre National de la Recherche Scientifique and Ecole Normale SupAl'rieure de Lyon through the Laboratoire de l'Education (UMS 3773), as well as Aslan (ANR-10-LABX-0081) of UniversitAl' de Lyon, for its financial support within the program Investissements d'Avenir (ANR-11-IDEX-0007) of the French government operated by the National Research Agency (ANR). CR Azer SA, 2015, ACAD MED, V90, P1147, DOI 10.1097/ACM.0000000000000780 Bosworth L, 2009, WOODHEAD PUBL MATER, P3, DOI 10.1533/9781845695477.1.3 Cheng B, 2014, EDUC RES REV-NETH, V11, P56, DOI 10.1016/j.edurev.2014.01.001 Choi BCK, 2006, CLIN INVEST MED, V29, P351 Cormier Dave, 2010, EDUCAUSE Review, V45, P31 Cuccurullo C, 2016, SCIENTOMETRICS, V108, P595, DOI 10.1007/s11192-016-1948-8 Daniel J, 2012, J INTERACT MEDIA EDU, DOI 10.5334/2012-18 Derry S.J., 2005, Interdisciplinary Collabora- tion: An Emerging Cognitive Science Ebben M, 2014, LEARN MEDIA TECHNOL, V39, P328, DOI 10.1080/17439884.2013.878352 Fischer G, 2014, DISTANCE EDUC, V35, P149, DOI 10.1080/01587919.2014.920752 Gaseric D., 2014, International Review of Research in Open and Distance Learning, V15, P134 Good BH, 2010, PHYS REV E, V81, DOI 10.1103/PhysRevE.81.046106 Grauwin S, 2012, J AM SOC INF SCI TEC, V63, P1327, DOI 10.1002/asi.22644 Grauwin S, 2011, SCIENTOMETRICS, V89, P943, DOI 10.1007/s11192-011-0482-y Haque M, 2013, BANGLADESH J MED SCI, V12, P357, DOI 10.3329/bjms.v12i4.16658 KESSLER MM, 1963, AM DOC, V14, P10, DOI 10.1002/asi.5090140103 Kirby JA, 2005, ETR&D-EDUC TECH RES, V53, P37, DOI 10.1007/BF02504856 Kirschner PA, 2013, EDUC PSYCHOL-US, V48, P169, DOI 10.1080/00461520.2013.804395 Liyanagunawardena TR, 2013, INT REV RES OPEN DIS, V14, P202, DOI 10.19173/irrodl.v14i3.1455 Lund Kristine, 2017, USING SCIENTOMETRIC Lungeanu A, 2015, AM BEHAV SCI, V59, P548, DOI 10.1177/0002764214556804 Newman MEJ, 2004, PHYS REV E, V69, DOI 10.1103/PhysRevE.69.026113 Price DerekJ. de Solla., 1978, SCIENTOMETRICS, V1, P3, DOI [10.1007/BF02016836, DOI 10.1007/BF02016836] Siemens G., 2005, ASTD Learn News, V10, P1 STEMBER M, 1991, SOC SCI J, V28, P1, DOI 10.1016/0362-3319(91)90040-B SUBRAMANYAM K, 1983, J INFORM SCI, V6, P33, DOI 10.1177/016555158300600105 Suthers D.D., 2013, Productive multivocality in the analysis of group interactions, DOI DOI 10.1007/978-1-4614-8960-3 Van Noorden R, 2015, NATURE, V525, P306, DOI 10.1038/525306a Veletsianos G, 2015, INT REV RES OPEN DIS, V16 Veletsianos G, 2015, BRIT J EDUC TECHNOL, V46, P570, DOI 10.1111/bjet.12297 Wang Y., 2014, Journal of Learning Analytics, V1, P203, DOI [DOI 10.18608/JLA.2014.13.23, 10.18608/jla.2014.13.23] Wise AF, 2017, SEVENTH INTERNATIONAL LEARNING ANALYTICS & KNOWLEDGE CONFERENCE (LAK'17), P383, DOI 10.1145/3027385.3027446 Yang D., 2015, P 2 2015 ACM C LEARN, P121, DOI DOI 10.1145/2724660.2724677 Zheng SJ, 2016, PROCEEDINGS OF THE THIRD (2016) ACM CONFERENCE ON LEARNING @ SCALE (L@S 2016), P419, DOI 10.1145/2876034.2876047 NR 34 TC 3 Z9 3 U1 0 U2 5 PU ASSOC COMPUTING MACHINERY PI NEW YORK PA 1601 Broadway, 10th Floor, NEW YORK, NY, UNITED STATES BN 978-1-4503-5886-6 PY 2018 DI 10.1145/3231644.3231661 PG 10 WC Computer Science, Interdisciplinary Applications; Education & Educational Research; Education, Scientific Disciplines WE Conference Proceedings Citation Index - Science (CPCI-S); Conference Proceedings Citation Index - Social Science & Humanities (CPCI-SSH) SC Computer Science; Education & Educational Research GA BP3ER UT WOS:000546308900056 DA 2024-09-05 ER PT J AU Amarathunga, B AF Amarathunga, Buddhini TI ChatGPT in education: unveiling frontiers and future directions through systematic literature review and bibliometric analysis SO ASIAN EDUCATION AND DEVELOPMENT STUDIES LA English DT Article; Early Access DE Artificial intelligence; Bibliometric analysis; ChatGPT; Education; Future directions; Systematic literature review ID INDEX AB Purpose - This is a dual-focused study that anticipates qualitatively and quantitatively examining the literature on the recently initiated revolutionizing concept of ChatGPT in education by performing a Systematic Literature Review (SLR) and bibliometric analysis. Current study analyzed eight research questions: (1) the main information and annual scientific publications on ChatGPT in education, (2) the pioneer authors and collaborative authors exploring ChatGPT in education, (3) the authors' productivity through Lotka's Law of Authors' Scientific Productivity, (4) the most pertinent sources on ChatGPT in education and how are sources clustered through Bradford's Law of Scattering, (5) the most related, cited countries and the nature of international collaborations exploring ChatGPT in education, (6) the most relevant publications exploring ChatGPT in education, (7) the most occurring and trending keywords in the empirical studies on ChatGPT in education, and (8) the themes and areas for future investigations on ChatGPT in education. Design/methodology/approach - The current study was designed as a SLR and bibliometric analysis, extracting articles from the Scopus database and utilizing both Biblioshiny and VOSviewer software for advanced scientific mapping and visualizations via quantitative and qualitative analysis approaches. Findings - The results indicated that ChatGPT in education is a progressively evolving worldwide concept generating 45 scientific publications from 2023 to 2024 (May). The USA, China, and Indonesia are the most productive countries that have published articles on ChatGPT in education. The education systems, AI, students, educational computing, human experiments, teaching, educational status, chatbots, generative AI, academic integrity, educational technology, worldwide education, and technology acceptance are the pertinent future directions in the field of ChatGPT in education. Originality/value - The analysis's outcomes will enhance the area of study with theoretical and practical implications and benefit students, teachers, policymakers, regulators of educational and higher educational sectors, government, and the general public worldwide with effective utilization of ChatGPT in education. C1 [Amarathunga, Buddhini] Wayamba Univ Sri Lanka, Dept Business Management, Kuliyapitiya, Sri Lanka. C3 Wayamba University of Sri Lanka RP Amarathunga, B (corresponding author), Wayamba Univ Sri Lanka, Dept Business Management, Kuliyapitiya, Sri Lanka. EM buddhini@wyb.ac.lk RI Amarathunga, Buddhini/GMX-4063-2022 OI Amarathunga, Buddhini/0000-0003-3837-9979 FX I am grateful to the editor-in-chief, the editorial board of the Asian Education and Development Studies Journal, and Emerald Publishing for their valuable cooperation in the article publication process. Moreover, I thank anonymous reviewers for constructive comments to enhance the quality of the article. This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors. CR Alzard MH, 2022, SUSTAINABILITY-BASEL, V14, DOI 10.3390/su141811646 Aria M, 2017, J INFORMETR, V11, P959, DOI 10.1016/j.joi.2017.08.007 Baidoo-Anu D., 2023, Journal of AI, V7, P52, DOI [DOI 10.61969/JAI.1337500, 10.2139/ssrn.4337484, DOI 10.2139/SSRN.4337484, 10.61969/jai.1337500] Bozic V., 2023, PREPRINT, DOI [10.13140/RG.2.2.18837.40168, DOI 10.13140/RG.2.2.18837.40168] Bradford S.C., 1934, Nature, P134, DOI [10.1038/134400b0, DOI 10.1038/134400B0] Dissanayake H, 2022, ADM SCI, V12, DOI 10.3390/admsci12040185 Egghe L, 2006, SCIENTOMETRICS, V69, P131, DOI 10.1007/s11192-006-0144-7 Elbanna S., 2024, Management Sustainability: An Arab Review, V3, P16, DOI 10.1108/MSAR-03-2023-0016 Grassini S, 2023, EDUC SCI, V13, DOI 10.3390/educsci13070692 Gupta S, 2024, INT J INTELL SYST, V2024, DOI 10.1155/2024/5511224 Hirsch JE, 2005, P NATL ACAD SCI USA, V102, P16569, DOI 10.1073/pnas.0507655102 Islam I., 2024, Discover Education, V3, P31, DOI 10.1007/s44217-024-00114-w Javaid M., 2023, BenchCouncil Transactions on Benchmarks, Standards and Evaluations, V3, DOI DOI 10.1016/J.TBENCH.2023.100115 Lancichinetti A, 2012, SCI REP-UK, V2, DOI 10.1038/srep00336 Liberati A, 2009, BMJ-BRIT MED J, V339, DOI [10.1016/j.ijsu.2010.02.007, 10.1136/bmj.b2700, 10.1136/bmj.b2535, 10.1186/2046-4053-4-1, 10.1371/journal.pmed.1000097, 10.1136/bmj.i4086, 10.1016/j.ijsu.2010.07.299] Lotka A.J., 1926, J Wash Acad Sci Wash D C, V16, P23 Mai DTT, 2024, FRONT EDUC, V9, DOI 10.3389/feduc.2024.1328769 Miles D.A., 2017, DOCTORAL STUDENT WOR, P1, DOI [10.1155/2017/5936239, DOI 10.1155/2017/5936239] Newman M, 2020, SYSTEMATIC REVIEWS IN EDUCATIONAL RESEARCH: METHODOLOGY, PERSPECTIVES AND APPLICATION, P3, DOI 10.1007/978-3-658-27602-7_1 Norris M, 2010, J DOC, V66, P681, DOI 10.1108/00220411011066790 Rahman MM, 2023, APPL SCI-BASEL, V13, DOI 10.3390/app13095783 Rejeb A, 2024, INT J MANAG EDUC-OXF, V22, DOI 10.1016/j.ijme.2024.100932 Sarkis-Onofre R, 2021, SYST REV-LONDON, V10, DOI 10.1186/s13643-021-01671-z Tlili A, 2023, SMART LEARN ENVIRON, V10, DOI 10.1186/s40561-023-00237-x van Eck NJ, 2017, SCIENTOMETRICS, V111, P1053, DOI 10.1007/s11192-017-2300-7 Wu TY, 2023, IEEE-CAA J AUTOMATIC, V10, P1122, DOI 10.1109/JAS.2023.123618 Xiao ZW, 2022, BUILDINGS-BASEL, V12, DOI 10.3390/buildings12010037 Xu XJ, 2024, J EDUC EVAL HEALTH P, V21, DOI 10.3352/jeehp.2024.21.6 Yu H, 2023, FRONT PSYCHOL, V14, DOI 10.3389/fpsyg.2023.1181712 Zhang J., 2023, ARAB GULF J SCI RES, V42, P44, DOI [https://doi.org/10.1108/AGJSR-10-2022-0225, DOI 10.1108/AGJSR-10-2022-0225] NR 30 TC 0 Z9 0 U1 27 U2 27 PU EMERALD GROUP PUBLISHING LTD PI Leeds PA Floor 5, Northspring 21-23 Wellington Street, Leeds, W YORKSHIRE, ENGLAND SN 2046-3162 EI 2046-3170 J9 ASIAN EDUC DEV STUD JI Asian Educ. Dev. Stud. PD 2024 JUL 9 PY 2024 DI 10.1108/AEDS-05-2024-0101 EA JUL 2024 PG 20 WC Education & Educational Research WE Emerging Sources Citation Index (ESCI) SC Education & Educational Research GA XS0I0 UT WOS:001263544600001 DA 2024-09-05 ER PT J AU Zhu, YP Park, HW AF Zhu, Yu-Peng Park, Han-Woo TI Use of Triangulation in Comparing the Blockchain Knowledge Structure between China and South Korea: Scientometric Network, Topic Modeling, and Prediction Technique SO SUSTAINABILITY LA English DT Article DE triangulation; scientometric; network analysis; blockchain ID BIG DATA; COLLABORATION; UNIVERSITY; CRITERIA; SCIENCE AB Blockchain, as a new innovative technology, has become a popular topic in many fields in recent years. In this study, triangulation was used to investigate the development of knowledge structures. First, scientometric network analysis was employed to identify the cooperation of knowledge networks. It was found that the structure of blockchain knowledge networks in China is relatively more complex and diverse than in South Korea. Since increased teamwork in blockchain is conducive to the creation of high-quality knowledge products, the Chinese government appears to strongly promote diversified cooperation on blockchain technology through centralized policies. Second, machine-learning topic modeling was used to analyze the content exchanged via a collaborative network. As a result, it was found that both countries lacked the societal and commercial aspects of blockchain technology. Finally, we developed a prediction technique based on the Ernie model to automatically categorize the nature of blockchain research. C1 [Zhu, Yu-Peng] Yeungnam Univ, Cyber Emot Res Inst, Blockchian Policy Res Ctr, Gyongsan 38541, South Korea. [Zhu, Yu-Peng; Park, Han-Woo] Yeungnam Univ, Dept Media & Commun, Gyongsan 38541, South Korea. [Park, Han-Woo] Yeungnam Univ, Interdisciplinary Grad Programs Digital Convergen, Gyongsan 38541, South Korea. [Park, Han-Woo] Yeungnam Univ, Interdisciplinary Grad Programs East Asian Cultur, Gyongsan 38541, South Korea. C3 Yeungnam University; Yeungnam University; Yeungnam University; Yeungnam University RP Zhu, YP (corresponding author), Yeungnam Univ, Cyber Emot Res Inst, Blockchian Policy Res Ctr, Gyongsan 38541, South Korea.; Zhu, YP; Park, HW (corresponding author), Yeungnam Univ, Dept Media & Commun, Gyongsan 38541, South Korea.; Park, HW (corresponding author), Yeungnam Univ, Interdisciplinary Grad Programs Digital Convergen, Gyongsan 38541, South Korea.; Park, HW (corresponding author), Yeungnam Univ, Interdisciplinary Grad Programs East Asian Cultur, Gyongsan 38541, South Korea. EM zhuyupeng@ynu.ac.kr; hanpark@ynu.ac.kr RI Zhu, Yu Peng/AAM-6683-2021 OI Zhu, Yu Peng/0000-0003-0544-3911; Park, Han Woo/0000-0002-1378-2473 CR Abramo G, 2019, SCIENTOMETRICS, V118, P215, DOI 10.1007/s11192-018-2970-9 Akulich M, 2018, MANAG-POL, V22, P238, DOI 10.2478/manment-2018-0017 [Anonymous], 2020, LDAM Aslam J, 2021, J INNOV KNOWL, V6, P124, DOI 10.1016/j.jik.2021.01.002 Baik J.S., POLIT NETW WORKSH C Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993 BlockData, 2019, AS BLOCKCH DEV REP 2 Bonacich P, 2007, SOC NETWORKS, V29, P555, DOI 10.1016/j.socnet.2007.04.002 Chen SJ, 2015, J INFORMETR, V9, P1034, DOI 10.1016/j.joi.2015.09.003 Chen Yi-jia, 2020, Journal of Sustainable Development, V13, P1, DOI 10.5539/jsd.v13n1p1 Danowski J. A., 2020, J CONT E ASIA, V19, P43, DOI [https://doi.org/10.17477/jcea.2020.19.1.043, DOI 10.17477/JCEA.2020.19.1.043] Davarpanah MR, 2008, SCIENTOMETRICS, V77, P21, DOI 10.1007/s11192-007-1803-z Dimitrov B, THESE CHINESE BLOCKC Ferligoj A, 2015, SCIENTOMETRICS, V104, P985, DOI 10.1007/s11192-015-1585-7 Franco M, 2019, J INNOV KNOWL, V4, P62, DOI 10.1016/j.jik.2018.03.003 FREEMAN LC, 1979, SOC NETWORKS, V1, P215, DOI 10.1016/0378-8733(78)90021-7 Hagen L, 2018, INFORM PROCESS MANAG, V54, P1292, DOI 10.1016/j.ipm.2018.05.006 Hansen DL, 2011, ANALYZING SOCIAL MEDIA NETWORKS WITH NODEXL: INSIGHTS FROM A CONNECTED WORLD, P11, DOI 10.1016/B978-0-12-382229-1.00002-3 Jung N, 2019, ADV ENG INFORM, V41, DOI 10.1016/j.aei.2019.04.007 Khan GF, 2016, SCIENTOMETRICS, V108, P531, DOI 10.1007/s11192-015-1822-0 Kibria MG, 2018, IEEE ACCESS, V6, P32328, DOI 10.1109/ACCESS.2018.2837692 Luthardt J., 2022, QUAL QUANT, V56, DOI [10.1007/s11135-021-01195-7, DOI 10.1007/S11135-021-01195-7] Malmstrom M.M., 2016, J INNOVATION ENTREPR, V5:4, DOI [DOI 10.1186/S13731-016-0034-Z, 10.1186/s13731-016-0034-z] Martín-Sempere MJ, 2008, SCIENTOMETRICS, V76, P457, DOI 10.1007/s11192-007-1866-x Mingers J, 2015, EUR J OPER RES, V246, P1, DOI 10.1016/j.ejor.2015.04.002 Ministry of Industry and Information Technology of, 2018, CHIN WHIT PAP CHIN B Nakamoto S., 2008, Bitcoin: A peer-to-peer electronic cash system, DOI DOI 10.1007/S10838-008-9062-0 Naughton B, 2017, J ECON PERSPECT, V31, P3, DOI 10.1257/jep.31.1.3 Oppermann M., 2000, International Journal of Tourism Research, V2, P141, DOI 10.1002/(SICI)1522-1970(200003/04)2:2<141::AID-JTR217>3.0.CO;2-U Park H. W., 2019, Journal of Contemporary Eastern Asia, V18, P1, DOI [DOI 10.17477/JCEA.2019.18.2.001, 10.17477/JCEA.2019.18.2.001] Park H. W., 2020, QUAL QUANT, V54, P1, DOI [DOI 10.1007/S11135-020-00969-9, 10.1007/s11135-020-00969-9] Park HW, 2019, SCIENTOMETRICS, V119, P771, DOI 10.1007/s11192-019-03056-5 Park H, 2021, PROF INFORM, V30, DOI 10.3145/epi.2021.mar.14 Park S, 2020, PROF INFORM, V29, DOI 10.3145/epi.2020.sep.16 Park S, 2019, INFORM PROCESS MANAG, V56, P1468, DOI 10.1016/j.ipm.2018.10.021 Perz SG, 2010, ENVIRON CONSERV, V37, P419, DOI 10.1017/S0376892910000810 Rakhmatullin R., 2014, J INNOV ENTREP, V3, pe6, DOI [10.1186/2192-5372-3-6, DOI 10.1186/2192-5372-3-6] Scarazzati S, 2019, SCIENTOMETRICS, V121, P839, DOI 10.1007/s11192-019-03220-x Schwartz R. D., 1966, Unobtrusive Measures: Non-Reactive Research in the Social Sciences Sena V, 2021, TECHNOL FORECAST SOC, V168, DOI 10.1016/j.techfore.2021.120790 Shelton RC, 2019, SOC SCI MED, V220, P81, DOI 10.1016/j.socscimed.2018.10.013 Sivertsen G, 2016, SCIENTOMETRICS, V107, P357, DOI 10.1007/s11192-016-1845-1 State Council of China, 2016, 13 5 YEAR PLAN NAT I Sun Y, 2020, AAAI CONF ARTIF INTE, V34, P8968 Thomas OlajideOlubayo., 2020, Annals of the University of Craiova: Economic Sciences Series, V1, P141 van Eck NJ, 2009, J AM SOC INF SCI TEC, V60, P1635, DOI 10.1002/asi.21075 Wambugu L., 2021, Quality and Quantity, P1, DOI DOI 10.1007/S11135-021-01150-6 Wang Y, 2019, J BRIT BLOCKCHAIN AS, V2, P83, DOI 10.31585/jbba-2-2-(5)2019 Yao Q, 2020, YICAI Yoon J, 2020, SCIENTOMETRICS, V124, P1421, DOI 10.1007/s11192-020-03497-3 Yoon J, 2017, SCIENTOMETRICS, V113, P61, DOI 10.1007/s11192-017-2476-x Young K M., 2021, Quality and Quantity, V55, P1917, DOI DOI 10.1007/S11135-020-01084-5 Zhang JN, 2013, INT J EDUC DEV, V33, P185, DOI 10.1016/j.ijedudev.2012.04.004 ZHUYUPENG, 2020, Journal of The Korean Data Analysis Society, V22, P513 NR 54 TC 0 Z9 0 U1 5 U2 19 PU MDPI PI BASEL PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND EI 2071-1050 J9 SUSTAINABILITY-BASEL JI Sustainability PD FEB PY 2022 VL 14 IS 4 AR 2326 DI 10.3390/su14042326 PG 16 WC Green & Sustainable Science & Technology; Environmental Sciences; Environmental Studies WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Science & Technology - Other Topics; Environmental Sciences & Ecology GA ZT2OV UT WOS:000768993700001 OA gold DA 2024-09-05 ER PT J AU Oliski, M Krukowski, K Siecinski, K AF Olinski, Marian Krukowski, Krzysztof Siecinski, Kacper TI Bibliometric Overview of ChatGPT: New Perspectives in Social Sciences SO PUBLICATIONS LA English DT Article DE ChatGPT; artificial intelligence; bibliometric analysis; ethical implications; educational technology; interdisciplinary research AB This study delves into a bibliometric analysis of ChatGPT, an AI tool adept at analysing and generating text, highlighting its influence in the realm of social sciences. By harnessing data from the Scopus database, a total of 814 relevant publications were selected and scrutinised through VOSviewer, focusing on elements such as co-citations, keywords and international collaborations. The objective is to unearth prevailing trends and knowledge gaps in scholarly discourse regarding ChatGPT's application in social sciences. Concentrating on articles from the year 2023, this analysis underscores the rapid evolution of this research domain, reflecting the ongoing digital transformation of society. This study presents a broad thematic picture of the analysed works, indicating a diversity of perspectives-from ethical and technological to sociological-regarding the implementation of ChatGPT in the fields of social sciences. This reveals an interest in various aspects of using ChatGPT, which may suggest a certain openness of the educational sector to adopting new technologies in the teaching process. These observations make a contribution to the field of social sciences, suggesting potential directions for future research, policy or practice, especially in less represented areas such as the socio-legal implications of AI, advocating for a multidisciplinary approach. C1 [Olinski, Marian; Krukowski, Krzysztof; Siecinski, Kacper] Univ Warmia & Mazury, Inst Management & Qual Sci, Fac Econ Sci, PL-10719 Olsztyn, Poland. C3 University of Warmia & Mazury RP Oliski, M (corresponding author), Univ Warmia & Mazury, Inst Management & Qual Sci, Fac Econ Sci, PL-10719 Olsztyn, Poland. EM olinski@uwm.edu.pl; kkruk@uwm.edu.pl; kacper.siecinski@uwm.edu.pl RI ; Olinski, Marian/X-2066-2018; Krukowski, Krzysztof/T-2278-2018 OI Siecinski, Kacper/0000-0001-8484-0741; Olinski, Marian/0000-0002-1707-0553; Krukowski, Krzysztof/0000-0002-1614-4397 CR [Anonymous], SIMILARWEB CHAT OPEN Baber H, 2024, INFORM LEARN SCI, V125, P587, DOI 10.1108/ILS-04-2023-0035 Barrington NM, 2023, MED SCI-BASEL, V11, DOI 10.3390/medsci11030061 Bianchini S, 2022, RES POLICY, V51, DOI 10.1016/j.respol.2022.104604 Bin-Nashwan SA, 2023, TECHNOL SOC, V75, DOI 10.1016/j.techsoc.2023.102370 Bu Y, 2020, INFORM PROCESS MANAG, V57, DOI 10.1016/j.ipm.2020.102300 Bukar UA, 2023, METHODSX, V11, DOI 10.1016/j.mex.2023.102339 Calonge D.S., 2023, J. Appl. Learn. Teach, V6, P346, DOI [10.37074/jalt.2023.6.2.22, DOI 10.37074/JALT.2023.6.2.22] Clark TM, 2023, J CHEM EDUC, V100, P3934, DOI 10.1021/acs.jchemed.3c00500 Cooper G, 2023, J SCI EDUC TECHNOL, V32, P444, DOI 10.1007/s10956-023-10039-y Cotton DRE, 2024, INNOV EDUC TEACH INT, V61, P228, DOI 10.1080/14703297.2023.2190148 Crawford J, 2023, J UNIV TEACH LEARN P, V20, DOI 10.53761/1.20.3.02 Dowling M, 2023, FINANC RES LETT, V53, DOI 10.1016/j.frl.2023.103662 Dwivedi YK, 2023, INT J INFORM MANAGE, V71, DOI 10.1016/j.ijinfomgt.2023.102642 Farhat F, 2024, FRONT ARTIF INTELL, V6, DOI 10.3389/frai.2023.1270749 Farrokhnia M, 2024, INNOV EDUC TEACH INT, V61, P460, DOI 10.1080/14703297.2023.2195846 Fisch C., 2018, Management Review Quarterly, V68, P103, DOI DOI 10.1007/S11301-018-0142-X Gallego-Valero L, 2021, SUSTAINABILITY-BASEL, V13, DOI 10.3390/su13095066 Gamage KA, 2023, J Appl Learn Teach, V6, DOI [10.37074/jalt.2023.6.2.32, DOI 10.37074/JALT.2023.6.2.32] García-Fernández FJ, 2020, J NEUROIMMUNOL, V349, DOI 10.1016/j.jneuroim.2020.577379 Gilson Aidan, 2023, JMIR Med Educ, V9, pe45312, DOI 10.2196/45312 Guliyev H., 2023, Res. Globalizat., V7, DOI [10.1016/j.resglo.2023.100140, DOI 10.1016/J.RESGLO.2023.100140] Guo Y, 2023, J CHEM EDUC, V100, P4876, DOI 10.1021/acs.jchemed.3c00505 Halaweh M, 2023, CONTEMP EDUC TECHNOL, V15, DOI 10.30935/cedtech/13036 Hirsch JE, 2005, P NATL ACAD SCI USA, V102, P16569, DOI 10.1073/pnas.0507655102 Hulland J, 2020, J ACAD MARKET SCI, V48, P351, DOI 10.1007/s11747-020-00721-7 Ismail F., 2023, Journal of Applied Learning and Teaching, V6, P56, DOI [10.37074/jalt.2023.6.2.34, DOI 10.37074/JALT.2023.6.2.34] Kashani ES, 2023, INT J INNOV STUD, V7, P68, DOI 10.1016/j.ijis.2022.09.003 Katchanov YL, 2022, J INFORMETR, V16, DOI 10.1016/j.joi.2021.101245 Khosravi H., 2023, INT J DATA MIN MODEL Kirby A, 2023, PUBLICATIONS, V11, DOI 10.3390/publications11010010 Knopp MI, 2023, JMIR MED EDUC, V9, DOI 10.2196/50373 Kooli C, 2023, SUSTAINABILITY-BASEL, V15, DOI 10.3390/su15075614 Korzynski P, 2023, CENT EUR MANAG J, V31, P3, DOI 10.1108/CEMJ-02-2023-0091 Kraus S, 2022, REV MANAG SCI, V16, P2577, DOI 10.1007/s11846-022-00588-8 Liao WX, 2023, JMIR MED EDUC, V9, DOI [10.2196/48904, 10.2023/1/e48904] Lim WM, 2023, INT J MANAG EDUC-OXF, V21, DOI 10.1016/j.ijme.2023.100790 Liu J, 2024, ASIA PAC J EDUC, V44, P156, DOI 10.1080/02188791.2024.2305170 Lund BD, 2023, J ASSOC INF SCI TECH, V74, P570, DOI 10.1002/asi.24750 Martin-Martin A., 2019, GOOGLE SCHOLAR WEB S Pavlik V. J., 2023, Journalism Mass Communication Educator, V78, P84, DOI DOI 10.1177/10776958221149577 Peres R, 2023, INT J RES MARK, V40, P269, DOI 10.1016/j.ijresmar.2023.03.001 Perkins M, 2023, J UNIV TEACH LEARN P, V20, DOI 10.53761/1.20.02.07 Pittaway L., 2014, SYNTHESISING KNOWLED Raj R., 2023, BenchCouncil Transactions on Benchmarks, Standards and Evaluations, V3, DOI DOI 10.1016/J.TBENCH.2023.100140 Rudolph J., 2023, Journal of Applied Learning and Teaching, V6, P342, DOI [10.37074/jalt.2023.6.1.9, DOI 10.37074/JALT.2023.6.1.23, DOI 10.37074/JALT.2023.6.1.9] SCI Journal, J APPL LEARN TEACH I SCI Journal, J CHEM ED IMP FACT K Sharma S, 2024, FUTURES, V157, DOI 10.1016/j.futures.2024.103328 Shiau WL, 2023, INFORM MANAGE-AMSTER, V60, DOI 10.1016/j.im.2023.103774 Shin H, 2023, EXPERT SYST APPL, V233, DOI 10.1016/j.eswa.2023.120889 Sullivan M., 2023, Journal of Applied Learning and Teaching, V6, DOI DOI 10.37074/JALT.2023.6.1.17 Taecharungroj V, 2023, BIG DATA COGN COMPUT, V7, DOI 10.3390/bdcc7010035 Tangadulrat P, 2023, JMIR MED EDUC, V9, DOI 10.2196/50658 Tlili A, 2023, SMART LEARN ENVIRON, V10, DOI 10.1186/s40561-023-00237-x UNESCO, SOC SCI R D DAT West JK, 2023, J CHEM EDUC, V100, P4351, DOI 10.1021/acs.jchemed.3c00581 Xu RX, 2024, INFORM PROCESS MANAG, V61, DOI 10.1016/j.ipm.2024.103665 Yalcinkaya T, 2023, NURSE EDUC PRACT, V71, DOI 10.1016/j.nepr.2023.103714 Zhang LL, 2022, ENERGY REP, V8, P14072, DOI 10.1016/j.egyr.2022.10.347 Zheltukhina MR, 2024, ONLINE J COMMUN MEDI, V14, DOI 10.30935/ojcmt/14103 NR 61 TC 2 Z9 2 U1 25 U2 25 PU MDPI PI BASEL PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND EI 2304-6775 J9 PUBLICATIONS-BASEL JI Publications PD MAR PY 2024 VL 12 IS 1 AR 9 DI 10.3390/publications12010009 PG 16 WC Information Science & Library Science WE Emerging Sources Citation Index (ESCI) SC Information Science & Library Science GA MH7V5 UT WOS:001192807500001 OA gold DA 2024-09-05 ER PT J AU Huang, XY Zou, D Cheng, GRY Chen, XL Xie, HR AF Huang, Xinyi Zou, Di Cheng, Gary Chen, Xieling Xie, Haoran TI A bibliometric analysis of the trends, topics, and findings of research publications on asynchronous and synchronous online language learning over three decades SO KNOWLEDGE MANAGEMENT & E-LEARNING-AN INTERNATIONAL JOURNAL LA English DT Article DE Synchronous learning; Online learning; Language learning; Bibliometric analysis ID FOREIGN-LANGUAGE; CLASSROOM; ENGLISH; FUTURE AB Since the first study on computer-mediated communication tools in support of language learning was published in 1992, asynchronous and synchronous tools have been widely adopted; however, few reviews have been conducted to explore the research status in this field. As COVID-19 has increased the use of online tools in education, the need to understand how asynchronous and synchronous tools are being used in language education has grown. In this bibliometric analysis, we reviewed asynchronous and synchronous online language learning (ASOLL) by analyzing the trends, topics, and findings of 319 articles on ASOLL. The results indicate that interest in ASOLL has increased over the past three decades with ASOLL for oral proficiency development and collaborative ASOLL being the two main research issues. Interest in three topics collaborative ASOLL, emotions, and corrective feedback - was especially apparent. The review contributes to the understanding of ASOLL while providing practical implications for using information communication technologies to enhance language learning. C1 [Huang, Xinyi; Cheng, Gary; Chen, Xieling] Educ Univ Hong Kong, Dept Math & Informat Technol, Hong Kong, Peoples R China. [Zou, Di] Educ Univ Hong Kong, Dept English Language Educ, Hong Kong, Peoples R China. [Xie, Haoran] Lingnan Univ, Dept Comp & Decis Sci, Hong Kong, Peoples R China. C3 Education University of Hong Kong (EdUHK); Education University of Hong Kong (EdUHK); Lingnan University RP Zou, D (corresponding author), Educ Univ Hong Kong, Dept English Language Educ, Hong Kong, Peoples R China. EM hxinyicara@gmail.com; dizoudaisy@gmail.com; chengks@eduhk.hk; xielingchen0708@gmail.com; hrxie2@gmail.com RI Huang, Xinyi/AFI-7092-2022; Xie, Haoran/AFS-3515-2022 OI Huang, Xinyi/0000-0001-9777-7905; Xie, Haoran/0000-0003-0965-3617; ZOU, Di/0000-0001-8435-9739 FU University Grant Committee; Strategic Development of Virtual Teaching and Learning, The Education University of Hong Kong FX Dr Di Zou's work is supported by the University Grant Committee, Special Grant for Strategic Development of Virtual Teaching and Learning, The Education University of Hong Kong, Hong Kong. CR Abrams ZI, 2003, MOD LANG J, V87, P157, DOI 10.1111/1540-4781.00184 Ahmed MMH, 2021, KNOWL MANAG E-LEARN, V13, P290, DOI 10.34105/j.kmel.2021.13.016 Al-Hoorie AH, 2019, LANG TEACH RES, V23, P727, DOI 10.1177/1362168818767191 Arnold N, 2006, LANG LEARN TECHNOL, V10, P42 Basaran B, 2020, KNOWL MANAG E-LEARN, V12, P209 Basri M., 2021, METATHESIS J ENGLISH, V4, P263, DOI [10.31002/metathesis.v4i3.2734, DOI 10.31002/METATHESIS.V4I3.2734] BEAUVOIS MH, 1992, FOREIGN LANG ANN, V25, P455, DOI 10.1111/j.1944-9720.1992.tb01128.x Biesenbach-Lucas S., 2000, Computer Assisted Language Learning, V13, P221, DOI 10.1076/0958-8221(200007)13:3;1-3;FT221 Blake R., 2000, Language Learning Technology, V4, P111, DOI 10125/25089 Bower M, 2015, COMPUT EDUC, V86, P1, DOI 10.1016/j.compedu.2015.03.006 Chang CC, 2023, INTERACT LEARN ENVIR, V31, P5995, DOI 10.1080/10494820.2022.2027457 Chen X., 2020, Computers and Education: Artificial Intelligence, V1, P100002, DOI DOI 10.1016/J.CAEAI.2020.100002 Chen XL, 2021, LANG LEARN TECHNOL, V25, P151 Chen X, 2020, COMPUT EDUC, V151, DOI 10.1016/j.compedu.2020.103855 Chiang THC, 2014, KNOWL MANAG E-LEARN, V6, P1 Elola I, 2010, LANG LEARN TECHNOL, V14, P51 González-Pereira B, 2010, J INFORMETR, V4, P379, DOI 10.1016/j.joi.2010.03.002 Güzer B, 2014, PROCD SOC BEHV, V116, P4596, DOI 10.1016/j.sbspro.2014.01.992 Hampel R., 2006, ReCALL, V118, P105, DOI 10.1017/S0958344006000711 Henderson C, 2021, LANG TEACH RES, V25, P185, DOI 10.1177/1362168819832907 KERN RG, 1995, MOD LANG J, V79, P457, DOI 10.2307/329999 Lin WC, 2013, LANG LEARN TECHNOL, V17, P123 Luo SQ, 2024, J RES TECHNOL EDUC, V56, P332, DOI 10.1080/15391523.2022.2139026 Martin F, 2021, INT REV RES OPEN DIS, V22, P205 McIntosh S., 2003, Educational Media International, V40, P63, DOI 10.1080/0952398032000092125 Parmaxi A, 2016, UNIVERSAL ACCESS INF, V15, P169, DOI 10.1007/s10209-015-0405-4 Payne J. S., 2002, CALICO Journal, V20, P7 Perveen A, 2016, OPEN PRAX, V8, P21, DOI 10.5944/openpraxis.8.1.212 Peterson M, 2010, RECALL, V22, P273, DOI 10.1017/S0958344010000169 Roberts ME, 2019, J STAT SOFTW, V91, P1, DOI 10.18637/jss.v091.i02 Serdyukov P., 2020, Exploring online learning through synchronous and asynchronous instructional methods, P1, DOI [DOI 10.4018/978-1-7998-1622-5.CH001, 10.4018/978-1-7998-1622-5.ch001] Shang HF, 2017, J COMPUT HIGH EDUC, V29, P496, DOI 10.1007/s12528-017-9154-0 Shih YC, 2008, EDUC TECHNOL SOC, V11, P56 Skinner B., 1999, ELT Journal, V53, P270, DOI DOI 10.1093/ELTJ/53.4.270 Smith B, 2004, STUD SECOND LANG ACQ, V26, P365, DOI 10.1017/S0272263104043013 Sotillo S. M., 2000, LANGUAGE LEARNING TE, V4, P77 Thomas J, 2013, COMPUT EDUC, V69, P199, DOI 10.1016/j.compedu.2013.07.005 van Aalst J, 2010, EDUC RESEARCHER, V39, P387, DOI 10.3102/0013189X10371120 Ware PD, 2005, MOD LANG J, V89, P190, DOI 10.1111/j.1540-4781.2005.00274.x Watts L., 2016, Q REV DISTANCE ED, V17, P23 Weldon A, 2021, KNOWL MANAG E-LEARN, V13, P161 Young E.H., 2018, EuroCALL Review, V26, P59, DOI [DOI 10.4995/EUROCALL.2018, 10.4995/eurocall.2018.8599, DOI 10.4995/EUROCALL.2018.8599] Zhang L, 2016, ASIA-PAC J TEACH EDU, V44, P242, DOI 10.1080/1359866X.2015.1081673 Zhang RF, 2022, COMPUT ASSIST LANG L, V35, P696, DOI 10.1080/09588221.2020.1744666 Zou D, 2022, EDUC INF TECHNOL, V27, P10585, DOI 10.1007/s10639-022-10991-z NR 45 TC 0 Z9 0 U1 6 U2 10 PU LABORATORY KNOWLEDGE MANAGEMENT & E-LEARNING UNIV PI HONG KONG PA RM 212, RUNME SHAW BLDG, FAC EDUCATION, UNIV HONG KONG, HONG KONG, 00000, HONG KONG SN 2073-7904 J9 KNOWL MANAG E-LEARN JI Knowl. Manag. E-Learn. PD JUN PY 2023 VL 15 IS 2 BP 153 EP 173 DI 10.34105/j.kmel.2023.15.009 PG 22 WC Education & Educational Research WE Emerging Sources Citation Index (ESCI) SC Education & Educational Research GA H5FS2 UT WOS:000996225100002 OA gold DA 2024-09-05 ER PT J AU Vorohobovs, V Kleinhofs, M AF Vorohobovs, Vladimirs Kleinhofs, Martins TI DEFICIENCY-SURPLUS TRANSITION FUNCTION (DeSuTra) IN SEMI-EMPIRICAL FORMULAS FOR TUMBLING OF FREELY FALLING CARD SO COMPOSITES THEORY AND PRACTICE LA English DT Article DE phenomenology; heuristics; semi-empirical research; tumbling cards; Magnus effect; autorotation; lift force; bifurcation; efficiency reducer; efficiency diminisher; DeSuTra function; singularity ID FLUTTER; ZIGZAG; FLUID; WINGS AB A new phenomenological method for composing analytical formulae to describe dynamic systems using the DeSuTra function as a building block is introduced. Based on heuristic considerations, it is possible to write a correct formula with several unknown coefficients. Next, these coefficients are tuned such a way that the result coincides with the experimental data. To illustrate the viability of such a method, a simple but not trivial aerodynamic system was chosen: the autorotation of a rectangular piece of paper that falls in air. Three correction coefficients (diminishers) were introduced to calculate its rotation frequency. Then a simple expression for the Magnus effect and drag force was used. All the obtained formulae were experimentally proved and the coefficients calculated. The conclusions drawn confirm the usefulness of the presented calculation procedure for the design of composites with chaotically distributed reinforcements. C1 [Vorohobovs, Vladimirs; Kleinhofs, Martins] Riga Tech Univ, Inst Aeronaut, Fac Mech Engn Transport & Aeronaut, 6B Kipsalas St, LV-1048 Riga, Latvia. C3 Riga Technical University RP Vorohobovs, V (corresponding author), Riga Tech Univ, Inst Aeronaut, Fac Mech Engn Transport & Aeronaut, 6B Kipsalas St, LV-1048 Riga, Latvia. EM riga2006@inbox.lv CR Andersen A, 2005, J FLUID MECH, V541, P65, DOI 10.1017/S002211200500594X Andersen A, 2005, J FLUID MECH, V541, P91, DOI 10.1017/S0022112005005847 Assemat P, 2012, J FLUID MECH, V690, P173, DOI 10.1017/jfm.2011.419 Auguste F, 2013, J FLUID MECH, V719, P388, DOI 10.1017/jfm.2012.602 Belmonte A, 1998, PHYS REV LETT, V81, P345, DOI 10.1103/PhysRevLett.81.345 Bönisch S, 2007, COMPUT FLUIDS, V36, P1434, DOI 10.1016/j.compfluid.2007.01.010 Changqui J, NUMERICAL STUDY UNST Chatys R, 2004, MECH COMPOS MATER, V40, P159, DOI 10.1023/B:MOCM.0000025490.66094.86 Chrust M, 2013, PHYS FLUIDS, V25, DOI 10.1063/1.4799179 Ern P, 2012, ANNU REV FLUID MECH, V44, P97, DOI 10.1146/annurev-fluid-120710-101250 Fernando V, 2010, CALCULATION DYNAMIC Field S.B.M, 1997, LETT NATURE Field SB, 1997, NATURE, V388, P252, DOI 10.1038/40817 Heisinger L, 2013, COINS FALLING WATER IVERSEN JD, 1979, J FLUID MECH, V92, P327, DOI 10.1017/S0022112079000641 Jones MA, 2005, J FLUID MECH, V540, P393, DOI 10.1017/S0022112005005859 Koziol M, 2013, J COMPOS MATER, V47, P1919, DOI 10.1177/0021998312452179 Lee CB, 2013, J FLUID MECH, V732, P77, DOI 10.1017/jfm.2013.390 Mahadevan L, 1999, PHYS FLUID Maxwell J.C., 1853, PARTICULAR CASE DESC Mittal R, 2004, THEOR COMP FLUID DYN, V17, P165, DOI 10.1007/s00162-003-0101-5 Olesik P, 2019, MATERIALS, V12, DOI 10.3390/ma12162520 Pesavento U, 2004, PHYS REV LETT, V93, DOI 10.1103/PhysRevLett.93.144501 SMITH AMO, 1953, J AERONAUT SCI, V20, P73, DOI 10.2514/8.2545 SMITH EH, 1971, J FLUID MECH, V50, P513, DOI 10.1017/S0022112071002738 Toron B, 2020, MATERIALS, V13, DOI 10.3390/ma13040902 Vincent L, 2016, J FLUID MECH, V801, P250, DOI 10.1017/jfm.2016.432 Wang WB, 2013, J FLUID MECH, V733, P650, DOI 10.1017/jfm.2013.461 Wang Y, 2016, PHYS FLUIDS, V28, DOI 10.1063/1.4963242 Zeeman E.C., 1977, CATASTROPHE THEORY S, P1972 Zhong HJ, 2013, J FLUID MECH, V716, P228, DOI 10.1017/jfm.2012.543 Zhong HJ, 2011, PHYS FLUIDS, V23, DOI 10.1063/1.3541844 NR 32 TC 0 Z9 0 U1 0 U2 0 PU POLISH SOC COMPOSITE MATERIALS PI CZESTOCHOWA PA AL ARMII KRAJOWEJ 19, CZESTOCHOWA, 42-200, POLAND SN 2084-6096 EI 2299-128X J9 COMPOS THEORY PRACT JI Compos. Theory Pract. PY 2022 VL 22 IS 2 BP 92 EP 98 PG 7 WC Materials Science, Composites WE Emerging Sources Citation Index (ESCI) SC Materials Science GA 2X3WD UT WOS:000825137100005 DA 2024-09-05 ER PT J AU Yang, L Sun, TT Liu, YL AF Yang, Lie Sun, Tiantian Liu, Yanli TI A Bibliometric Investigation of Flipped Classroom Research during 2000-2015 SO INTERNATIONAL JOURNAL OF EMERGING TECHNOLOGIES IN LEARNING LA English DT Article DE flipped classroom; active learning; blended learning; bibliometric ID NURSING-EDUCATION; CONFCHEM CONFERENCE; STUDENT ENGAGEMENT; STRATEGIES AB The paper analyzed the global growth and development of flipped classroom research productivity in terms of publication output as reflected in SCI/SSCI for the period 2000-2015. Publication types and languages, characteristics of articles outputs, countries, subject categories and journals, and the frequency of keywords were analyzed using bibliometric methods. There are 149 articles in 78 journals listed in 41 SCI/SSCI subject categories. A sharp growth trend of publication output was observed during 2011-2015. USA played a predominant role in flipped classroom research. Education educational research, chemistry and medical were the top 3 categories and "active learning" and "blended learning" recent major topics of flipped classroom research during the past 16 years. The results could help researchers understand the characteristics of research output and search hot spots of flipped education field. C1 [Yang, Lie; Sun, Tiantian; Liu, Yanli] Wuhan Univ Technol, Sch Resources & Environm Engn, Wuhan, Hubei, Peoples R China. C3 Wuhan University of Technology RP Yang, L (corresponding author), Wuhan Univ Technol, Sch Resources & Environm Engn, Wuhan, Hubei, Peoples R China. EM yanglie612@whut.edu.cn; stt313352667@163.com; liuyanli_l@163.com RI Yang, Lie/S-9216-2019 OI Yang, Lie/0000-0002-2814-5311 FU Program of National Natural Science Foundation of China [51508430] FX This work was supported by Program of National Natural Science Foundation of China (No. 51508430). CR Betihavas V, 2016, NURS EDUC TODAY, V38, P15, DOI 10.1016/j.nedt.2015.12.010 Chen HQ, 2015, RENEW SUST ENERG REV, V49, P12, DOI 10.1016/j.rser.2015.04.060 Chiu WT, 2007, SCIENTOMETRICS, V73, P3, DOI 10.1007/s11192-005-1523-1 Chou CK, 2015, SPRINGERPLUS, V4, DOI 10.1186/s40064-015-1106-4 Chuang KY, 2007, SCIENTOMETRICS, V72, P201, DOI [10.1007/s11192-007-1721-0, 10.1007/s11192-007-1693-0] Critz CM, 2013, NURS EDUC, V38, P210, DOI 10.1097/NNE.0b013e3182a0e56a Dong BS, 2012, SCIENTOMETRICS, V93, P1101, DOI 10.1007/s11192-012-0730-9 Garfield E, 2004, J INF SCI, V30, P119, DOI 10.1177/0165551504042802 Gilboy MB, 2015, J NUTR EDUC BEHAV, V47, P109, DOI 10.1016/j.jneb.2014.08.008 Haile JD, 2015, J CHEM EDUC, V92, P1572, DOI 10.1021/ed500917j Hao YW, 2016, COMPUT HUM BEHAV, V57, P250, DOI 10.1016/j.chb.2015.12.022 Kakosimos KE, 2015, EDUC CHEM ENG, V12, P1, DOI 10.1016/j.ece.2015.06.001 Lage MJ, 2000, J ECON EDUC, V31, P11 Leung JYC, 2014, MED EDUC, V48, P1127, DOI 10.1111/medu.12576 Liebert CA, 2016, AM J SURG, V211, P451, DOI 10.1016/j.amjsurg.2015.10.004 Long T., 2016, J COMPUTING HIGHER E Luker C, 2015, J CHEM EDUC, V92, P1564, DOI 10.1021/acs.jchemed.5b00024 McDonald K, 2013, J CONTIN EDUC NURS, V44, P437, DOI 10.3928/00220124-20130925-19 McGowan BS, 2014, J CONTIN EDUC NURS, V45, P477, DOI 10.3928/00220124-20141027-11 Missildine K, 2013, J NURS EDUC, V52, P597, DOI 10.3928/01484834-20130919-03 O'Flaherty J, 2015, INTERNET HIGH EDUC, V25, P85, DOI 10.1016/j.iheduc.2015.02.002 Roach T, 2014, INT REV ECON EDUC, V17, P74, DOI 10.1016/j.iree.2014.08.003 Schlairet MC, 2014, NURS EDUC, V39, P321, DOI 10.1097/NNE.0000000000000096 Seery MK, 2015, J CHEM EDUC, V92, P1566, DOI 10.1021/ed500919u Smith CM, 2013, J CONTIN EDUC NURS, V44, P486, DOI 10.3928/00220124-20131025-93 Tomory A, 2015, J SCI EDUC TECHNOL, V24, P875, DOI 10.1007/s10956-015-9570-8 Weaver G. C., J CHEM ED, V92, P1437 Wen H, 2012, SCIENTOMETRICS, V91, P51, DOI 10.1007/s11192-011-0535-2 Yang L, 2013, SCIENTOMETRICS, V96, P133, DOI 10.1007/s11192-012-0911-6 Yi H, 2008, SCIENTOMETRICS, V75, P111, DOI 10.1007/s11192-007-1828-3 NR 30 TC 26 Z9 30 U1 2 U2 27 PU KASSEL UNIV PRESS GMBH PI KASSEL PA DIAGONALE 10, D-34127 KASSEL, GERMANY SN 1863-0383 J9 INT J EMERG TECHNOL JI Int. J. Emerg. Technol. Learn. PY 2017 VL 12 IS 6 BP 178 EP 186 DI 10.3991/ijet.v12i06.7095 PG 9 WC Education & Educational Research WE Emerging Sources Citation Index (ESCI) SC Education & Educational Research GA FB9KC UT WOS:000406457000014 OA gold DA 2024-09-05 ER PT J AU Qian, Y Gou, XJ Xu, ZS AF Qian, Yu Gou, Xunjie Xu, Zeshui TI The Development and Progress of Engineering Economics: A Retrospect and Prospect Based on Visual Analysis SO INZINERINE EKONOMIKA-ENGINEERING ECONOMICS LA English DT Article DE Engineering Economics; Bibliometric Analysis; Software Engineering; Artificial Intelligence; Environment. ID ARTIFICIAL-INTELLIGENCE TECHNIQUES; PRESCRIBING EFFICIENCY; CARBON CAPTURE; OPTIMIZATION; MODEL; DESIGN; EUROPE AB Engineering economics is a cross subject with a wide range of applications, and it has taken on different characteristics with the changing times. The aim of this paper is to depict a sufficiently elaborate and vivid knowledge map of this field, with further discussion and outlook on the hotspots presented therein. Based on the principles and methods of bibliometrics, we use several visualization tools, mainly Vosviewer, to present the characteristics of the published literature within the field of engineering economics from multiple perspectives. Specifically, we collect 624 engineering economics documents published in the Web of Science core collection database between 1915 and 2021, and quantitatively analyze them in the following three aspects: (1) basic data characteristics, including annual publications, annual citations, research directions, and highly cited publications; (2) outstanding performers and cooperations in the four levels of country/region, institution, source and author, including co-authorship, bibliographic coupling, co-citation and co-occurrence analyses; and (3) keyword analyses, including co-occurrence analyses, burst detection analyses, and high-frequency word clouds. In addition, we further explore important topics within the field represented by intelligent and green transformation. C1 [Qian, Yu; Gou, Xunjie; Xu, Zeshui] Sichuan Univ, Business Sch, 29 Jiuyanqiao Wangjiang Rd, Chengdu 610064, Peoples R China. C3 Sichuan University RP Qian, Y (corresponding author), Sichuan Univ, Business Sch, 29 Jiuyanqiao Wangjiang Rd, Chengdu 610064, Peoples R China. EM yuqian_echo@163.com; gou_xunjie@163.com; xuzeshui@263.net RI Gou, Xunjie/KEJ-2735-2024; Xu, Zeshui/N-8908-2013 OI Gou, Xunjie/0000-0003-1963-0451; FU National Natural Science Foundation of China [72071135, 72271173]; National Social Science Fund of China [22FGLB005]; Ministry of education of Humanities and Social Science project [21YJC630030]; China Postdoctoral Science Foundation [2020M680151, 2023T160459] FX Acknowledgments The work was supported by the National Natural Science Foundation of China (Nos. 72071135 and 72271173) , the National Social Science Fund of China (22FGLB005) , the Ministry of education of Humanities and Social Science project (No. 21YJC630030) , and the China Postdoctoral Science Foundation (No. 2020M680151, 2023T160459) . CR Adler N, 2021, EUR J OPER RES, V291, P808, DOI 10.1016/j.ejor.2020.11.020 Adriaanse LS, 2013, ELECTRON LIBR, V31, P727, DOI 10.1108/EL-12-2011-0174 Afolalu SA, 2021, MATER TODAY-PROC, V44, P2889, DOI 10.1016/j.matpr.2021.01.098 Ahmed A, 2022, INT J E-HEALTH MED C, V13, DOI 10.4018/IJEHMC.20220701.oa5 Ahmed W, 2019, INTERACT TECHNOL SMA, V17, P67, DOI 10.1108/ITSE-08-2019-0043 Allwood JM, 2013, PHILOS T R SOC A, V371, DOI 10.1098/rsta.2012.0496 Aydin S, 2018, INZ EKON, V29, P254, DOI 10.5755/j01.ee.29.3.19392 Backhouse RE, 2009, J ECON PERSPECT, V23, P221, DOI 10.1257/jep.23.1.221 Balaganesan M, 2020, ADV INTELL SYST COMP, V1040, P647, DOI 10.1007/978-981-15-1451-7_66 Banga JR, 2008, BMC SYST BIOL, V2, DOI 10.1186/1752-0509-2-47 Barboza C, 2015, PROCEDIA COMPUT SCI, V44, P568, DOI 10.1016/j.procs.2015.03.017 BOEHM BW, 1984, IEEE T SOFTWARE ENG, V10, P4, DOI 10.1109/TSE.1984.5010193 Boltürk E, 2023, IEEE T ENG MANAGE, V70, P2891, DOI 10.1109/TEM.2022.3190914 Burns J, 2020, ENG ECON, V65, P236, DOI 10.1080/0013791X.2020.1781309 Bussey L.E., 1978, EC ANAL IND PROJECTS Chen HG, 2014, ADV MATER RES-SWITZ, V838-841, P2689, DOI 10.4028/www.scientific.net/AMR.838-841.2689 Chen YW, 2006, FUZZY SET SYST, V157, P34, DOI 10.1016/j.fss.2005.06.004 Cruz M, 2020, IEEE ACCESS, V8, P26773, DOI 10.1109/ACCESS.2019.2952191 Davis GA, 2012, ENG ECON, V57, P130, DOI 10.1080/0013791X.2012.677302 De Garmo E.P., 1989, Engineering Economy, V8e Dean J, 1951, Capital budgeting, DOI [10.7312/dean90552, DOI 10.7312/DEAN90552] Ding WX, 2013, APPL MECH MATER, V368-370, P1135, DOI 10.4028/www.scientific.net/AMM.368-370.1135 Donthu N, 2021, J BUS RES, V133, P285, DOI 10.1016/j.jbusres.2021.04.070 Donthu N, 2021, J INT MARKETING, V29, P1, DOI 10.1177/1069031X211004234 Duarte PG, 2020, HIST POLIT ECON, V52, P10, DOI 10.1215/00182702-8717898 Duarte Pedro Garcia, 2020, History of Political Economy, V51 Fang HW, 2019, J CENT SOUTH UNIV, V26, P1856, DOI 10.1007/s11771-019-4139-y Fish J. C. L, 1915, Engineering economics: first principles Fokaefs M, 2018, ACM T AUTON ADAP SYS, V12, DOI 10.1145/3139290 Gao J. X., 2021, China Development, P47, DOI [10.15885/j.cnki.cn11-4683/z.2021.s1.006, DOI 10.15885/J.CNKI.CN11-4683/Z.2021.S1.006] Gill F, 1943, Journal of the Institution of Electrical Engineers-Part I: General, V90, P373, DOI [10.1049/ji-1.1943.0073, DOI 10.1049/JI-1.1943.0073] Godman B, 2011, FRONT PHARMACOL, V1, DOI 10.3389/fphar.2010.00141 Godman B, 2010, EXPERT REV PHARM OUT, V10, P707, DOI [10.1586/erp.10.72, 10.1586/ERP.10.72] Goldman O. B, 1920, Financial engineering: A text for consulting, managing and designing engineers and for students Grant EugeneL., 1930, Principles of Engineering Economy Hébert RF, 2021, J IND BUS ECON, V48, P609, DOI 10.1007/s40812-021-00198-7 Hess HW, 1915, ANN AM ACAD POLIT SS, V62, P309 Heydt GT, 2018, IEEE T POWER SYST, V33, P4488, DOI 10.1109/TPWRS.2017.2764449 Hodder E, 1978, The Engineering Economist, V25, P146 Jung Hae-Il, 2009, 2009 Canadian Conference on Electrical and Computer Engineering (CCECE 2009), P41, DOI 10.1109/CCECE.2009.5090088 Khalilpour R, 2015, J CLEAN PROD, V103, P286, DOI 10.1016/j.jclepro.2014.10.050 Khlebnikova E, 2021, AICHE J, V67, DOI 10.1002/aic.17124 Kliestik T, 2018, SCI ENG ETHICS, V24, P791, DOI 10.1007/s11948-017-9912-4 Kumar L., 2017, 2017 10 INT C CONT C, P1, DOI [10.1109/IC3.2017.8284297, DOI 10.1109/IC3.2017.8284297] Kwon TD, 2023, J BUILD ENG, V69, DOI 10.1016/j.jobe.2023.106277 Li D, 2023, INTELLIGENCE, V96, DOI 10.1016/j.intell.2022.101719 Li GH, 2009, PROCEEDINGS OF 2009 INTERNATIONAL CONFERENCE OF MANAGEMENT ENGINEERING AND INFORMATION TECHNOLOGY, VOLS 1 AND 2, P273 Li LT, 2023, ENERGY REP, V9, P381, DOI 10.1016/j.egyr.2023.04.300 Li Y, 2018, P 2 INT C CULTURE ED, DOI [10.2991/iccese-18.2018.36, DOI 10.2991/ICCESE-18.2018.36] List G, 2007, STRUCT INFRASTRUCT E, V3, P95, DOI 10.1080/15732470600590903 Liu HZ, 2023, PROBABILIST ENG MECH, V71, DOI 10.1016/j.probengmech.2022.103406 Liu JJ, 2020, J COASTAL RES, P197, DOI 10.2112/SI106-046.1 Mahlia TMI, 2010, ENER EDUC SCI TECH-A, V26, P1 Mandavi S, 2015, INFORM SCIENCES, V295, P407, DOI 10.1016/j.ins.2014.10.042 Mariotti S., 2021, Integration and Implementation Insights Mariotti S, 2022, INZ EKON, V33, P341, DOI 10.5755/j01.ee.33.4.31806 Mariotti S, 2022, J IND BUS ECON, V49, P1, DOI 10.1007/s40812-021-00203-z Mariotti S, 2021, J IND BUS ECON, V48, P551, DOI 10.1007/s40812-021-00187-w Martis R, 2021, INT J HYDROGEN ENERG, V46, P6139, DOI 10.1016/j.ijhydene.2020.10.208 Mellit A, 2009, RENEW SUST ENERG REV, V13, P406, DOI 10.1016/j.rser.2008.01.006 Mellit A, 2008, PROG ENERG COMBUST, V34, P574, DOI 10.1016/j.pecs.2008.01.001 Michalski RS, 2000, MACH LEARN, V38, P9, DOI 10.1023/A:1007677805582 Moore J, 2017, INT J HYDROGEN ENERG, V42, P12047, DOI 10.1016/j.ijhydene.2017.03.182 Nilsson LJ, 2021, CLIM POLICY, V21, P1053, DOI 10.1080/14693062.2021.1957665 Ortloff CR, 2023, WATER-SUI, V15, DOI 10.3390/w15071363 Pinto CA, 2011, J HOMEL SECUR EMERG, V8, DOI 10.2202/1547-7355.1533 Plouff C, 2012, PROC FRONT EDUC CONF, DOI 10.1109/FIE.2012.6462309 Qian Y, 2023, RESOUR POLICY, V85, DOI 10.1016/j.resourpol.2023.103908 Qian Y, 2022, ECON RES-EKON ISTRAZ, DOI 10.1080/1331677X.2022.2155860 Ramasubbu N, 2019, IEEE T SOFTWARE ENG, V45, P285, DOI 10.1109/TSE.2017.2774832 Rane V, 2020, ENG ECON, V65, P213, DOI 10.1080/0013791X.2020.1784336 Riggs J.L., 1977, ENG ECON Riotto T, 2021, ACS SUSTAIN CHEM ENG, V9, P13233, DOI 10.1021/acssuschemeng.1c04031 Sanchez-Segura MI, 2021, KYBERNETES, V50, P2790, DOI 10.1108/K-05-2020-0302 Sarfaraz AR, 2006, 4th International Industrial Simulation Conference 2006, P199 Shen Y, 2013, ADVANCES IN UNDERGROUND SPACE DEVELOPMENT, P876, DOI 10.3850/978-981-07-3757-3_RP-118-8076 Si S, 2023, TECHNOVATION, V119, DOI 10.1016/j.technovation.2022.102484 Sonabend R, 2021, BIOINFORMATICS, V37, P2789, DOI 10.1093/bioinformatics/btab039 Su HEC, 2021, J HIST ECON THOUGHT, V43, P297, DOI 10.1017/S1053837220000231 Su Y, 2015, J CONSTR ENG M, V141, DOI 10.1061/(ASCE)CO.1943-7862.0000938 Sullivan W. G., 1991, Engineering Economist, V36, P187, DOI 10.1080/00137919108903044 Tansey B, 2010, CAN J ADM SCI, V27, P39, DOI 10.1002/CJAS.130 TSATSARONIS G, 1993, PROG ENERG COMBUST, V19, P227, DOI 10.1016/0360-1285(93)90016-8 Ventura-Molina E, 2020, MATHEMATICS-BASEL, V8, DOI 10.3390/math8112002 Voncina L, 2011, EXPERT REV PHARM OUT, V11, P469, DOI [10.1586/erp.11.42, 10.1586/ERP.11.42] Walwyn DR, 2021, IND HIGHER EDUC, V35, P598, DOI 10.1177/0950422220987088 Wang YL, 2023, ALEX ENG J, V68, P67, DOI 10.1016/j.aej.2023.01.010 Wellington A.M., 1887, The economic theory of the location of railways Wu LS, 2010, PROCEEDINGS OF THE FIRST INTERNATIONAL CONFERENCE ON SUSTAINABLE URBANIZATION (ICSU 2010), P1779 Xu HT, 2020, IET GENER TRANSM DIS, V14, P1912, DOI 10.1049/iet-gtd.2019.0356 Xu XR, 2023, HELIYON, V9, DOI 10.1016/j.heliyon.2023.e18763 Yilmaz M., 2011, An approach for improving the social aspects of the software development process by using a game theoretic perspective: Towards a theory of social productivity of software development teams, DOI [10.5220/0003492900350040, DOI 10.5220/0003492900350040] Young D, 2000, WASTE MANAGE, V20, P605, DOI 10.1016/S0956-053X(00)00047-7 Youns YT, 2023, FUEL, V349, DOI 10.1016/j.fuel.2023.128680 Zhang WY, 2020, J COASTAL RES, P125, DOI 10.2112/SI103-026.1 Zhang YW, 2021, ENERGY REP, V7, P1297, DOI 10.1016/j.egyr.2021.09.134 Zhu XL, 2013, ADV MATER RES-SWITZ, V779-780, P1314, DOI 10.4028/www.scientific.net/AMR.779-780.1314 NR 97 TC 0 Z9 0 U1 8 U2 8 PU KAUNAS UNIV TECHNOL PI KAUNAS PA LAISVES AL 55, KAUNAS, 44309, LITHUANIA SN 1392-2785 EI 2029-5839 J9 INZ EKON JI Inz. Ekon. PY 2024 VL 35 IS 1 BP 4 EP 24 DI 10.5755/j01.ee.35.1.32448 PG 21 WC Economics WE Social Science Citation Index (SSCI) SC Business & Economics GA JL1W8 UT WOS:001173240600005 OA gold DA 2024-09-05 ER PT C AU Liao, HT Pan, CL Huang, JQ AF Liao, Han-Teng Pan, Chung-Lien Huang, Jieqi BE Singh, M Kang, DK Lee, JH Tiwary, US Singh, D Chung, WY TI A Scientometric Review of Digital Economy for Intelligent Human-Computer Interaction Research SO INTELLIGENT HUMAN COMPUTER INTERACTION, PT I SE Lecture Notes in Computer Science LA English DT Proceedings Paper CT 12th International Conference on Intelligent Human Computer Interaction (IHCI) CY NOV 24-26, 2020 CL Daegu, SOUTH KOREA DE Human-Computer Interaction; Digital economy; Platform economy; Artificial intelligence ID PLATFORMS; LABOR; GIG AB As the economy goes digital, Human-Computer Interaction (HCI) professionals have been helping companies to better understand the usability, experience, and thus profitability issues, suggesting the contribution ofHCI professionals to the digital economy. However, there is no comprehensive review or theorydriven work that comes from the research area of the digital economy itself. This exploratory study, based on a scientometric analysis of digital economy literature, aims to outline the possibilities and application areas for future research and policy development for HCI research and its intelligent applications. By identifying and analyzing top key authors from 2,778 articles and their more than 100,000 citations, collected from the Web of Science database, the study reveals a dense network with a few clusters of concepts and research work. C1 [Liao, Han-Teng; Pan, Chung-Lien; Huang, Jieqi] Sun Yat Sen Univ, Higher Educ Impact Assessment Ctr, Nanfang Coll, Guangzhou, Peoples R China. C3 Sun Yat Sen University; Nanfang College, Guangzhou RP Pan, CL (corresponding author), Sun Yat Sen Univ, Higher Educ Impact Assessment Ctr, Nanfang Coll, Guangzhou, Peoples R China. EM peter5612@gmail.com RI Liao, Han-Teng/AAC-5793-2019; Pan, Chung-Lien/ACJ-6686-2022 OI Liao, Han-Teng/0000-0003-1081-5599; Pan, Chung-Lien/0000-0001-9488-5329; huang, jieqi/0000-0003-0814-2495 FU project of Smart AppDesign Innovation Research in the Age of New Business, Arts and Engineering Disciplines under the 2019 Guangdong Education Grants, China [2019GXJK186] FX The research is funded by a project of Smart AppDesign Innovation Research in the Age of New Business, Arts and Engineering Disciplines (2019GXJK186), under the 2019 Guangdong Education Grants, China. CR [Anonymous], 2006, OPEN INNOVATION RES [Anonymous], 2008, Convergence Culture: La cultura de la convergencia de los medios de comunicacion Benkler Y., 2006, The wealth of networks: How social production transforms markets and freedom Blandford A, 2001, EXPERT SYST, V18, P3, DOI 10.1111/1468-0394.00151 Bunnell T, 2002, ANTIPODE, V34, P265, DOI 10.1111/1467-8330.00238 Castells M., 2001, The internet galaxy Curran D, 2018, EUR J SOC THEORY, V21, P207, DOI 10.1177/1368431017710907 Emejulu A, 2019, CRIT STUD EDUC, V60, P131, DOI 10.1080/17508487.2016.1234494 EPSRC, RES AR HUM COMP INT Fuchs C, 2010, INFORM SOC, V26, P179, DOI 10.1080/01972241003712215 Garfield E, 1994, CURR COMMENTS Gawer A, 2014, RES POLICY, V43, P1239, DOI 10.1016/j.respol.2014.03.006 Graham M, 2017, TRANSFER-LONDON, V23, P135, DOI 10.1177/1024258916687250 Huws U., 2017, Work in the European Gig Economy: Research Results from the UK, Sweden Germany Austria, the Netherlands Switzerland and Italy Huws Ursula., 2014, Labor in the Global Digital Economy: The Cybertariat Comes of Age ITU, AI GOOD GLOB SUMM Lehdonvirta V, 2019, J MANAGE, V45, P567, DOI 10.1177/0149206318786781 Lessig Lawrence, 1999, CODE OTHER LAWS CYBE Lohse GJ, 2000, BCS CONFERENCE S, P3 Organisation for Economic Co-operation and Development, 2015, OECD G20 BAS ER PROF, DOI [10.1787/9789264241046-en, DOI 10.1787/9789264241046-EN] Parker G. G., 2016, PLATFORM REVOLUTION Rochet JC, 2003, J EUR ECON ASSOC, V1, DOI 10.1162/154247603322493212 Schor J., 2016, Journal of SelfGovernance and Management Economics, V4, P7, DOI [DOI 10.22381/JSME4320161, 10.7903/cmr.11116] Schor JB, 2017, SOCIOL COMPASS, V11, DOI 10.1111/soc4.12493 Schor JB, 2017, CAMB J REG ECON SOC, V10, P263, DOI 10.1093/cjres/rsw047 Srnicek Nick, 2017, PLATFORM CAPITALISM Taddeo M, 2018, SCIENCE, V361, P751, DOI 10.1126/science.aat5991 Tapscott, 1996, DIGITAL EC PROMISE P, DOI DOI 10.5860/CHOICE.33-5199 UN, 2020, ROAD MAP DIG COOP IM van Dijck J., 2018, The platform society: Public values in a connective world, DOI DOI 10.1093/OSO/9780190889760.001.0001 Wood AJ, 2019, WORK EMPLOY SOC, V33, P56, DOI 10.1177/0950017018785616 NR 31 TC 0 Z9 0 U1 1 U2 13 PU SPRINGER INTERNATIONAL PUBLISHING AG PI CHAM PA GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND SN 0302-9743 EI 1611-3349 BN 978-3-030-68449-5; 978-3-030-68448-8 J9 LECT NOTES COMPUT SC PY 2021 VL 12615 BP 469 EP 480 DI 10.1007/978-3-030-68449-5_45 PG 12 WC Computer Science, Artificial Intelligence; Computer Science, Cybernetics; Computer Science, Interdisciplinary Applications WE Conference Proceedings Citation Index - Science (CPCI-S) SC Computer Science GA BT5BZ UT WOS:000835686200045 DA 2024-09-05 ER PT J AU Lauer, MS Danthi, NS Kaltman, J Wu, CL AF Lauer, Michael S. Danthi, Narasimhan S. Kaltman, Jonathan Wu, Colin TI Predicting Productivity Returns on Investment Thirty Years of Peer Review, Grant Funding, and Publication of Highly Cited Papers at the National Heart, Lung, and Blood Institute SO CIRCULATION RESEARCH LA English DT Article DE bibliometrics; National Institutes of Health (US); National Heart, Lung, and Blood Institute (US); peer review; ROC curve ID CITATION IMPACT; PERCENTILE RANKING; SCIENCE; TRIALS; PEOPLE AB There are conflicting data about the ability of peer review percentile rankings to predict grant productivity, as measured through publications and citations. To understand the nature of these apparent conflicting findings, we analyzed bibliometric outcomes of 6873 de novo cardiovascular R01 grants funded by the National Heart, Lung, and Blood Institute (NHLBI) between 1980 and 2011. Our outcomes focus on top-10% articles, meaning articles that were cited more often than 90% of other articles on the same topic, of the same type (eg, article, editorial), and published in the same year. The 6873 grants yielded 62468 articles, of which 13507 (or 22%) were top-10% articles. There was a modest association between better grant percentile ranking and number of top-10% articles. However, discrimination was poor (area under receiver operating characteristic curve [ROC], 0.52; 95% confidence interval, 0.51-0.53). Furthermore, better percentile ranking was also associated with higher annual and total inflation-adjusted grant budgets. There was no association between grant percentile ranking and grant outcome as assessed by number of top-10% articles per $million spent. Hence, the seemingly conflicting findings on peer review percentile ranking of grants and subsequent productivity largely reflect differing questions and outcomes. Taken together, these findings raise questions about how best National Institutes of Health (NIH) should use peer review assessments to make complex funding decisions. C1 [Lauer, Michael S.] NHLBI, Off Director, Div Cardiovasc Sci, Bethesda, MD 20892 USA. [Danthi, Narasimhan S.] NHLBI, Adv Technol & Surg Branch, Div Cardiovasc Sci, Bethesda, MD 20892 USA. [Kaltman, Jonathan] NHLBI, Heart Dev & Struct Dis Branch, Div Cardiovasc Sci, Bethesda, MD 20892 USA. [Wu, Colin] NHLBI, Off Biostat Res, Div Cardiovasc Sci, Bethesda, MD 20892 USA. C3 National Institutes of Health (NIH) - USA; NIH National Heart Lung & Blood Institute (NHLBI); National Institutes of Health (NIH) - USA; NIH National Heart Lung & Blood Institute (NHLBI); National Institutes of Health (NIH) - USA; NIH National Heart Lung & Blood Institute (NHLBI); National Institutes of Health (NIH) - USA; NIH National Heart Lung & Blood Institute (NHLBI) RP Lauer, MS (corresponding author), 6701 Rockledge Dr,Room 8128, Bethesda, MD 20892 USA. EM lauerm@nhlbi.nih.gov RI Lauer, Michael S/L-9656-2013 CR Azoulay P, 2012, NATURE, V484, P31, DOI 10.1038/484031a Berg JM, 2012, NATURE, V489, P203, DOI 10.1038/489203a Bornmann L, J ASS INF S IN PRESS Bornmann L, 2013, EMBO REP, V14, P226, DOI 10.1038/embor.2013.9 Danthi N, 2014, CIRC RES, V114, P600, DOI 10.1161/CIRCRESAHA.114.302656 Danthi NS, 2015, CIRC RES, V116, P784, DOI 10.1161/CIRCRESAHA.116.305894 Devereaux PJ, 2013, NEW ENGL J MED, V369, P1962, DOI 10.1056/NEJMe1310554 Doyle JM, 2015, MOL PSYCHIAT Gordon DJ, 2014, NEW ENGL J MED, V370, P782, DOI 10.1056/NEJMc1315653 Graves N, 2011, BMJ-BRIT MED J, V343, DOI 10.1136/bmj.d4797 Hicks Diana, 2015, Nature, V520, P429, DOI 10.1038/520429a Ioannidis JPA, 2011, NATURE, V477, P529, DOI 10.1038/477529a Kaiser J, 2014, SCIENCE, V345, P366, DOI 10.1126/science.345.6195.366 Kaltman JR, 2014, CIRC RES, V115, P617, DOI 10.1161/CIRCRESAHA.115.304766 Lauer MS, 2014, ANN INTERN MED, V160, P651, DOI 10.7326/M14-0655 Li D, 2015, SCIENCE, V348, P434, DOI 10.1126/science.aaa0185 Mervis J, 2015, SCIENCE, V348, P384, DOI 10.1126/science.348.6233.384 Mervis J, 2014, SCIENCE, V343, P596, DOI 10.1126/science.343.6171.596 Opthof T, 2011, MED BIOL ENG COMPUT, V49, P613, DOI 10.1007/s11517-011-0783-6 Pettigrew R, 2014, MESSAGE DIRECTOR OCT Press WH, 2013, SCIENCE, V342, P817, DOI 10.1126/science.342.6160.817 Robin X, 2011, BMC BIOINFORMATICS, V12, DOI 10.1186/1471-2105-12-77 Sachs M, PLOTROC GENERATE USE Scheiner SM, 2013, FRONT ECOL ENVIRON, V11, P406, DOI 10.1890/13.WB.017 Wickham H, 2009, USE R, P1, DOI 10.1007/978-0-387-98141-3 NR 25 TC 32 Z9 34 U1 0 U2 30 PU LIPPINCOTT WILLIAMS & WILKINS PI PHILADELPHIA PA TWO COMMERCE SQ, 2001 MARKET ST, PHILADELPHIA, PA 19103 USA SN 0009-7330 EI 1524-4571 J9 CIRC RES JI Circ.Res. PD JUL 17 PY 2015 VL 117 IS 3 BP 239 EP 243 DI 10.1161/CIRCRESAHA.115.306830 PG 5 WC Cardiac & Cardiovascular Systems; Hematology; Peripheral Vascular Disease WE Science Citation Index Expanded (SCI-EXPANDED) SC Cardiovascular System & Cardiology; Hematology GA CM9QZ UT WOS:000358045300005 PM 26089369 OA Green Accepted DA 2024-09-05 ER PT J AU Cao, LM Yang, Q AF Cao, Limei Yang, Qi TI Interaction With Cutting-Edge Technologies: A Bibliometric Analysis and a Theoretical Framework SO JOURNAL OF HOSPITALITY & TOURISM RESEARCH LA English DT Article; Early Access DE cutting-edge technologies; artificial intelligence; virtual reality; robot; interaction ID VIRTUAL-REALITY; CULTURAL-DIFFERENCES; TOURISM; EXPERIENCE; SERVICE; ACCEPTANCE; LESSONS; TRENDS; ROBOTS AB In hospitality and tourism research, cutting-edge technologies (CETs) are receiving growing attention. However, most reviews on CETs focus on specific types of CETs and are devoid of theories focusing on the stakeholders-CETs interaction. Consequently, a comprehensive review and an integrated theoretical framework from an interaction perspective is necessary. To address this gap, we conducted a bibliometric analysis of 554 articles published between 2003 and 2023 to identify three research clusters and key entities of CETs. Moreover, drawing on stimulus-organism-response (SOR) theory and media equation theory, we built a new integrated theoretical framework for understanding the stakeholders' interaction with the CETs. The focus of this new framework centers on how CETs' representations and CETs' types directly and indirectly interact to affect stakeholders' outcomes. This study represents the first attempt to combine bibliometric and qualitative analysis, contributing to a forward-thinking review and theoretical building that accelerates and enhances research in CETs. C1 [Cao, Limei] Sun Yat Sen Univ, Sch Business, Guangzhou, Guangdong, Peoples R China. [Yang, Qi] Macao Inst Tourism Studies, Sch Tourism Management, Macau, Peoples R China. [Yang, Qi] Guangdong Univ Sci & Technol, Management Sch, Dongguan, Guangdong, Peoples R China. [Yang, Qi] Macao Inst Tourism Studies, Sch Tourism Management, Xu Rishengyin Rd, Taipa 999078, Macao, Peoples R China. C3 Sun Yat Sen University; Macao University of Tourism; Guangdong University of Science & Technology; Macao University of Tourism RP Yang, Q (corresponding author), Macao Inst Tourism Studies, Sch Tourism Management, Xu Rishengyin Rd, Taipa 999078, Macao, Peoples R China. EM yeungkei@foxmail.com OI Yang, Qi/0000-0002-2527-1283 CR Acedo FJ, 2006, J MANAGE STUD, V43, P957, DOI 10.1111/j.1467-6486.2006.00625.x Ameen N, 2021, COMPUT HUM BEHAV, V120, DOI 10.1016/j.chb.2021.106761 Angeloni S, 2016, TOURISM MANAGE, V52, P187, DOI 10.1016/j.tourman.2015.06.011 Bagozzi RP, 2022, J SERV RES-US, V25, P499, DOI 10.1177/10946705221118579 Benckendorff P, 2013, ANN TOURISM RES, V43, P121, DOI 10.1016/j.annals.2013.04.005 Bogicevic V, 2019, TOURISM MANAGE, V74, P55, DOI 10.1016/j.tourman.2019.02.009 Borner K., 2005, J. Am. Soc. Inf. Sci, DOI DOI 10.1007/978-1-4471-5128-9_8 Buhalis D, 2019, J SERV MANAGE, V30, P484, DOI 10.1108/JOSM-12-2018-0398 Chan APH, 2019, J TRAVEL TOUR MARK, V36, P458, DOI 10.1080/10548408.2019.1568953 Chen CM, 2006, J AM SOC INF SCI TEC, V57, P359, DOI 10.1002/asi.20317 Cho V, 2003, TOURISM MANAGE, V24, P323, DOI 10.1016/S0261-5177(02)00068-7 Choi M, 2023, INT J CONTEMP HOSP M, V35, P469, DOI 10.1108/IJCHM-02-2022-0157 Christou P, 2020, INT J CONTEMP HOSP M, V32, P3665, DOI 10.1108/IJCHM-05-2020-0423 Cohen SA, 2019, ANN TOURISM RES, V74, P33, DOI 10.1016/j.annals.2018.10.009 Colombetti G, 2005, J CONSCIOUSNESS STUD, V12, P103 Loureiro SMC, 2020, TOURISM MANAGE, V77, DOI 10.1016/j.tourman.2019.104028 DAVIS FD, 1989, MIS QUART, V13, P319, DOI 10.2307/249008 Filieri R, 2022, J SERV RES-US, V25, P614, DOI 10.1177/10946705221103937 Gardner WL, 2010, LEADERSHIP QUART, V21, P922, DOI 10.1016/j.leaqua.2010.10.003 Grundner L, 2021, J DESTIN MARK MANAGE, V19, DOI 10.1016/j.jdmm.2020.100511 Guttentag DA, 2010, TOURISM MANAGE, V31, P637, DOI 10.1016/j.tourman.2009.07.003 He Q, 1999, LIBR TRENDS, V48, P133 Hermann E, 2022, MARKET LETT, V33, P157, DOI 10.1007/s11002-021-09587-3 Hofman K, 2022, J SUSTAIN TOUR, V30, P742, DOI 10.1080/09669582.2021.1884690 Hu YO, 2021, J HOSP TOUR RES, V45, P1022, DOI 10.1177/10963480211011533 Huang MH, 2018, J SERV RES-US, V21, P155, DOI 10.1177/1094670517752459 International Organization for Standardization, 2021, 83732021EN ISO Ivanov S, 2020, INF TECHNOL TOUR, V22, P505, DOI 10.1007/s40558-020-00187-x Ivanov SH, 2022, TOURISM ECON, V28, P3, DOI 10.1177/1354816620946541 Jacoby J, 2002, J CONSUM PSYCHOL, V12, P51, DOI 10.1207/S15327663JCP1201_05 Johnson Richard D., 2021, Journal of Tourism Futures, V7, P40, DOI 10.1108/JTF-02-2020-0013 Jordan MI, 2015, SCIENCE, V349, P255, DOI 10.1126/science.aaa8415 Jung TH, 2018, INT J CONTEMP HOSP M, V30, P1621, DOI [10.1108/IJCHM-02-2017-0084, 10.1108/ijchm-02-2017-0084] Kim H, 2022, TOURISM MANAGE, V92, DOI 10.1016/j.tourman.2022.104537 Kim MJ, 2020, J TRAVEL RES, V59, P69, DOI 10.1177/0047287518818915 Kim SY, 2019, MARKET LETT, V30, P1, DOI 10.1007/s11002-019-09485-9 Kim T, 2023, J ACAD MARKET SCI, V51, P785, DOI 10.1007/s11747-021-00832-9 Kim WG, 2009, INT J HOSP MANAG, V28, P144, DOI 10.1016/j.ijhm.2008.06.010 Knani M, 2022, INT J HOSP MANAG, V107, DOI 10.1016/j.ijhm.2022.103317 Kong HY, 2021, INT J CONTEMP HOSP M, V33, P717, DOI 10.1108/IJCHM-07-2020-0789 Li J, 2019, TOURISM MANAGE, V73, P172, DOI 10.1016/j.tourman.2019.02.006 Li X, 2021, J TRAVEL RES, V60, P1213, DOI 10.1177/0047287520934871 Lin IY, 2021, INT J HOSP MANAG, V94, DOI 10.1016/j.ijhm.2021.102876 Lin PMG, 2019, INT J HOSP MANAG, V77, P492, DOI 10.1016/j.ijhm.2018.08.013 Liu X, 2022, ANN TOURISM RES, V92, DOI 10.1016/j.annals.2021.103324 Liu ZG, 2015, SCIENTOMETRICS, V103, P135, DOI 10.1007/s11192-014-1517-y McCartney G, 2020, INT J CONTEMP HOSP M, V13, P3835, DOI 10.1108/IJCHM-05-2020-0450 MEHRABIA.A, 1974, PERCEPT MOTOR SKILL, V38, P283, DOI 10.2466/pms.1974.38.1.283 Melián-González S, 2020, TOURISM MANAGE, V80, DOI 10.1016/j.tourman.2020.104123 Meuter ML, 2000, J MARKETING, V64, P50, DOI 10.1509/jmkg.64.3.50.18024 Mori M, 2012, IEEE ROBOT AUTOM MAG, V19, P98, DOI 10.1109/MRA.2012.2192811 Murphy J, 2019, J TRAVEL TOUR MARK, V36, P784, DOI 10.1080/10548408.2019.1571983 Nass C, 2000, J SOC ISSUES, V56, P81, DOI 10.1111/0022-4537.00153 Pillai R, 2020, INT J CONTEMP HOSP M, V32, P3199, DOI 10.1108/IJCHM-04-2020-0259 Prentice C, 2020, INT J HOSP MANAG, V90, DOI 10.1016/j.ijhm.2020.102629 Prentice C, 2020, J HOSP MARKET MANAG, V29, P739, DOI 10.1080/19368623.2020.1722304 Qiu HL, 2020, J HOSP MARKET MANAG, V29, P247, DOI 10.1080/19368623.2019.1645073 Racherla P, 2010, ANN TOURISM RES, V37, P1012, DOI 10.1016/j.annals.2010.03.008 Rajan K, 2017, ARTIF INTELL, V247, P1, DOI 10.1016/j.artint.2017.03.003 Reeves B., 1996, The media equation Ribeiro MA, 2022, J TRAVEL RES, V61, P620, DOI 10.1177/0047287521993578 Roesler E, 2021, SCI ROBOT, V6, DOI 10.1126/scirobotics.abj5425 Saydam MB, 2022, J HOSP MARKET MANAG, V31, P908, DOI 10.1080/19368623.2022.2118923 Schwartz Z, 2016, INT J CONTEMP HOSP M, V28, P267, DOI 10.1108/IJCHM-10-2014-0507 Seyitoglu F, 2020, INT J HOSP MANAG, V91, DOI 10.1016/j.ijhm.2020.102661 Shi S, 2021, J TRAVEL RES, V60, P1714, DOI 10.1177/0047287520966395 Shin Hyejo Hailey, 2022, International Journal of Contemporary Hospitality Management, V35, P563, DOI 10.1108/IJCHM-03-2022-0376 Slevitch L, 2022, J HOSP TOUR RES, V46, P212, DOI 10.1177/1096348020957067 Solakis K, 2024, J TOUR FUTURES, V10, P116, DOI 10.1108/JTF-06-2021-0157 Taherdoost H, 2018, PROCEDIA MANUF, V22, P960, DOI 10.1016/j.promfg.2018.03.137 Tung VWS, 2017, INT J CONTEMP HOSP M, V29, P2498, DOI 10.1108/IJCHM-09-2016-0520 Tuomi A, 2021, CORNELL HOSP Q, V62, P232, DOI 10.1177/1938965520923961 Tussyadiah I, 2020, ANN TOURISM RES, V81, DOI 10.1016/j.annals.2020.102883 Tussyadiah IP, 2018, TOURISM MANAGE, V66, P140, DOI 10.1016/j.tourman.2017.12.003 van Doorn J, 2017, J SERV RES-US, V20, P43, DOI 10.1177/1094670516679272 Van Eck N.J., 2014, Measuring Scholarly Impact: Methods and Practice, P285, DOI 10.1007/978-3-319-10377-8_13(InEng.) van Eck NJ, 2010, SCIENTOMETRICS, V84, P523, DOI 10.1007/s11192-009-0146-3 Van Kerrebroeck H, 2017, COMPUT HUM BEHAV, V77, P437, DOI 10.1016/j.chb.2017.07.019 Walters G, 2024, J HOSP TOUR RES, V48, P564, DOI 10.1177/10963480221116047 Wang CH, 2004, TOURISM MANAGE, V25, P367, DOI 10.1016/S0261-5177(03)00132-8 Wen J, 2020, J HOSP TOUR MANAG, V45, P370, DOI 10.1016/j.jhtm.2020.06.001 Wirtz J, 2018, J SERV MANAGE, V29, P907, DOI 10.1108/JOSM-04-2018-0119 Xu FZ, 2021, J HOSP MARKET MANAG, V30, P373, DOI 10.1080/19368623.2020.1813670 Yang Y, 2022, J HOSP MARKET MANAG, V31, P1, DOI 10.1080/19368623.2021.1926037 Ye Q, 2013, J HOSP TOUR RES, V37, P51, DOI 10.1177/1096348011425500 Yoganathan V, 2021, TOURISM MANAGE, V85, DOI 10.1016/j.tourman.2021.104309 Yu CE, 2020, J HOSP MARKET MANAG, V29, P22, DOI 10.1080/19368623.2019.1592733 Yu CE, 2019, TOUR REV, V74, P428, DOI 10.1108/TR-07-2018-0097 Zheng WM, 2019, TOURISM MANAGE, V71, P54, DOI 10.1016/j.tourman.2018.09.019 Zhu DH, 2020, INT J CONTEMP HOSP M, V32, P1367, DOI 10.1108/IJCHM-10-2019-0904 Zupic I, 2015, ORGAN RES METHODS, V18, P429, DOI 10.1177/1094428114562629 NR 91 TC 0 Z9 0 U1 7 U2 32 PU SAGE PUBLICATIONS INC PI THOUSAND OAKS PA 2455 TELLER RD, THOUSAND OAKS, CA 91320 USA SN 1096-3480 EI 1557-7554 J9 J HOSP TOUR RES JI J. Hosp. Tour. Res. PD 2023 JUN 30 PY 2023 DI 10.1177/10963480231182965 EA JUN 2023 PG 14 WC Hospitality, Leisure, Sport & Tourism WE Social Science Citation Index (SSCI) SC Social Sciences - Other Topics GA K8TQ3 UT WOS:001019111000001 DA 2024-09-05 ER PT J AU Valizadeh, M Moezzi, F Khavassi, Z Movahedinia, M Mazloomzadeh, S Mehran, L AF Valizadeh, Majid Moezzi, Farzaneh Khavassi, Zohreh Movahedinia, Mohammad Mazloomzadeh, Seideh Mehran, Ladan TI Influence of topical iodine-containing antiseptics used during delivery on recall rate of congenital hypothyroidism screening program SO JOURNAL OF PEDIATRIC ENDOCRINOLOGY & METABOLISM LA English DT Article DE congenital hypothyroidism; endocrinology-pediatric; iodine; thyroid function ID PROVINCE AB Background: The proportion of newborns recalled during neonatal screening programs for congenital hypothyroidism (CH) varies substantially by country and may be higher in settings where povodine iodine (PVP-I) is used during delivery. We assessed this hypothesis by substituting PVP-I for chlorhexidine (CHL) and evaluated the reduction in the recall rate of the Irainian newborn screening program. Methods: This study investigated 2282 neonates of mothers admitted to a local hospital for delivery between December 2012 and October 2013. We measured thyorid stimulating hormone (TSH) levels in heel-prick blood specimens of infants, aged between 3 and 5 days, born to mothers who received PVP-I (phase I) and those who received CHL after withdrawal of PVP-I from obstetric procedures (phase II). Then we compared the median TSH levels and the recall rate based on a TSH level >= 5 mU/L. Results: Of 2282 cases, 1094 infants were born to mothers exposed to PVP-I during phase I (PVP-I group) and 1188 ones were born to mothers exposed to chlorhexidine in phase II (CHL group); 6.56% of the PVP-I group and 1.91% of the CHL group were recalled later during screening (p < 0.001). The median TSH level was significantly higher in the PVP-I group compared to the CHL group (1.35 vs. 1.00, p < 0.001). Conclusions: Replacement of iodine-containing antiseptics by iodine-free ones, during delivery resulted in a significant reduction in the recall rate of the Iranian screening program for CH. C1 [Movahedinia, Mohammad] Shaheed Beheshti Univ Med Sci, Velenjak St,Shahid Chamran Highway, Tehran 193954719, Iran. [Valizadeh, Majid; Mehran, Ladan] Shaheed Beheshti Univ Med Sci, Res Inst Endocrine Sci, Tehran, Iran. [Moezzi, Farzaneh; Khavassi, Zohreh] Zanjan Univ Med Sci, Mosavi Hosp Zanjan, Zanjan, Iran. [Mazloomzadeh, Seideh] Zanjan Univ Med Sci, Dept Publ Hlth Zanjan, Zanjan, Iran. C3 Shahid Beheshti University Medical Sciences; Shahid Beheshti University Medical Sciences RP Movahedinia, M (corresponding author), Shaheed Beheshti Univ Med Sci, Velenjak St,Shahid Chamran Highway, Tehran 193954719, Iran. EM pudo_72@yahoo.com RI Movahedinia, Mohammad/IUP-6790-2023; Mazloomzadeh, Saeideh/H-4062-2016 OI Movahedinia, Mohammad/0000-0001-7889-8015; Mazloomzadeh, Saeideh/0000-0001-6325-0662; Valizadeh, Majid/0000-0002-3155-1951 CR Caldwell KL, 2013, THYROID, V23, P927, DOI 10.1089/thy.2013.0012 Cassio A, 1998, Ann Ist Super Sanita, V34, P337 CHANOINE JP, 1988, ARCH DIS CHILD, V63, P1207, DOI 10.1136/adc.63.10.1207 Francis I, 1983, EFFECT BETADINE TREA, P52 FYRO K, 1987, ACTA PAEDIATR SCAND, V76, P107, DOI 10.1111/j.1651-2227.1987.tb10424.x Gruters A, 1983, THYROID FUNCTION IOD, P54 Harada S., 1994, SCREENING, V3, P115, DOI 10.1016/0925-6164(94)90019-1 Hashemipour M, 2004, J CLIN ENDOCR METAB, V6, P13 Hashemipour Mahin, 2012, Adv Biomed Res, V1, P37, DOI 10.4103/2277-9175.100130 Kliegman RM., 2012, NELSON TXB PEDIAT Koga Y, 1995, J Obstet Gynaecol (Tokyo 1995), V21, P581 McPherson R., 2007, HENRYS CLIN DIAGNOSI Mengreli C, 2010, J CLIN ENDOCR METAB, V95, P4283, DOI 10.1210/jc.2010-0057 Nagendran V, 2009, OCCUP MED-OXFORD, V59, P270, DOI 10.1093/occmed/kqp042 Nohr SB, 2000, J CLIN ENDOCR METAB, V85, P623, DOI 10.1210/jc.85.2.623 Ordookhani A, 2007, THYROID, V17, P1097, DOI 10.1089/thy.2007.0058 ROSENTHAL M, 1988, ARCH DIS CHILD, V63, P790, DOI 10.1136/adc.63.7.790 Valizadeh M, 2011, INT J ENDOCRINOL MET, V9, P338, DOI 10.5812/Kowsar.1726913X.3639 Wittczak T, 2013, OCCUP MED-OXFORD, V63, P301, DOI 10.1093/occmed/kqt035 NR 19 TC 6 Z9 7 U1 0 U2 4 PU WALTER DE GRUYTER GMBH PI BERLIN PA GENTHINER STRASSE 13, D-10785 BERLIN, GERMANY SN 0334-018X EI 2191-0251 J9 J PEDIATR ENDOCR MET JI J. Pediatr. Endocrinol. Metab. PD SEP PY 2017 VL 30 IS 9 BP 973 EP 978 DI 10.1515/jpem-2016-0164 PG 6 WC Endocrinology & Metabolism; Pediatrics WE Science Citation Index Expanded (SCI-EXPANDED) SC Endocrinology & Metabolism; Pediatrics GA FF3LB UT WOS:000408795400009 PM 28809751 DA 2024-09-05 ER PT J AU Hoes, AC Regeer, BJ Bunders, JFG AF Hoes, Anne-Charlotte Regeer, Barbara J. Bunders, Joske F. G. TI TransFormers in knowledge production: building science-practice collaborations SO ACTION LEARNING LA English DT Article DE action learning; system innovation; inter-institutional collaboration; science and society AB This article places action learning in the context of system innovation, as it studies the potential use of action learning for system change. In order to effect such system change, collaboration between actors from different institutional backgrounds is essential. To gain insight into if and how action learning can be applied for system change, we study three system change projects in Dutch agriculture. We focus specifically on the approaches developed by the project leaders for collaboration between the scientists and the entrepreneurs and analyse how the interaction between these two contributed to the learning process within the project. This article concludes with guiding concepts for action learning for system change in the field of sustainable development of agriculture and beyond. C1 [Hoes, Anne-Charlotte; Regeer, Barbara J.] Vrije Univ Amsterdam, Athena Inst Res Commun & Innovat Hlth & Life Sci, Athena Inst, Amsterdam, Netherlands. [Bunders, Joske F. G.] Vrije Univ Amsterdam, Athena Inst Res Commun & Innovat Hlth & Life Sci, Athena Inst, Biol & Soc, Amsterdam, Netherlands. C3 Vrije Universiteit Amsterdam; Vrije Universiteit Amsterdam RP Hoes, AC (corresponding author), Vrije Univ Amsterdam, Athena Inst Res Commun & Innovat Hlth & Life Sci, Athena Inst, Amsterdam, Netherlands. EM ahoes@falw.vu.nl RI Regeer, Barbara J/JCE-1493-2023; Regeer, Barbara J/M-1207-2018 OI Regeer, Barbara J/0000-0002-9044-9367 FU TransForum FX We are grateful for the support of TransForum, the co-funder of our research project 'Networked Learning, Learning from Networks', of which the three case studies discussed in this article form a part. TransForum is a national programme that supports collaboration between science and practice in order to realise the sustainable development of agribusiness and rural areas. In addition we would also like to thank the project leaders and other interviewees, without whose openness this research would not have been possible. CR [Anonymous], ABC ACTION LEARNING [Anonymous], INTERMEDIARY P UNPUB [Anonymous], THESIS [Anonymous], CULTICATING COMMUNIT [Anonymous], 2007, IEEE ENG MANAGEMENT, DOI DOI 10.1109/EMR.2007.4296430 [Anonymous], INTERDISCIPLINARY EN, DOI [10.1504/ier.2003.053901, DOI 10.1504/IER.2003.053901] [Anonymous], 6 GUIDING PRIN UNPUB [Anonymous], DEV STRATEGY INCLUDE [Anonymous], 2007, PhD-Thesis. Bos A.P., 2008, Social Epistemology, V22, P29, DOI DOI 10.1080/02691720701773502 Coughlan P., 2004, ACTION LEARN, V1, P43 Feenberg Andrew., 2008, SOC EPISTEMOL, V22, P5, DOI DOI 10.1080/02691720701773247 Flinterman J.F., 2001, Bulletin of Science Technology Society, V21, P253, DOI DOI 10.1177/027046760102100403 FUNTOWICZ SO, 1993, FUTURES, V25, P739, DOI 10.1016/0016-3287(93)90022-L Gibbons M., 1997, The New Production of Knowledge: The Dynamics of Science and Research in Contemporary Societies Grin J, 1996, SCI TECHNOL HUM VAL, V21, P72, DOI 10.1177/016224399602100104 Guba E. G., 1989, Fourth Generation Evaluation, V1st ed Jasanoff S., 2006, States of Knowledge: The co-Production of Science and Social Order Klein J.T., 2001, Transdisciplinarity: Joint problem solving among science, technology, and society: An effective way for managing complexity Kleiner A., 1996, FIELD MANUAL LEARNIN Linder F, 2003, CONTEMP SOCIOL, V32, P255, DOI 10.2307/3089636 Marquardt M., 2004, ACTION LEARN, V1, P185, DOI DOI 10.1080/1476733042000264146 Raelin JA, 2006, ACTION LEARN, V3, P45, DOI 10.1080/14767330600574615 Regeer B.J., 2007, Kenniscocreatie: samenspel tussen wetenschap praktijk Revans R.W., 1998, ABC of action learning, V3rd Stringer E.T., 1996, Action research: A handbook for practitioners Tress G., 2003, From tacit to explicit knowledge in integrative and participatory research Veldkamp A, 2009, AGRON SUSTAIN DEV, V29, P87, DOI 10.1051/agro:2008022 Willis V.J., 2004, Action Learning: Research and Practice, V1, P11 NR 29 TC 25 Z9 27 U1 0 U2 0 PU ROUTLEDGE JOURNALS, TAYLOR & FRANCIS LTD PI ABINGDON PA 2-4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND SN 1476-7333 EI 1476-7341 J9 ACTION LEARN JI Action Learn. PY 2008 VL 5 IS 3 BP 207 EP 220 DI 10.1080/14767330802461298 PG 14 WC Education & Educational Research WE Emerging Sources Citation Index (ESCI) SC Education & Educational Research GA V99JE UT WOS:000213462500002 DA 2024-09-05 ER PT J AU Hiragi, S Tamura, H Goto, R Kuroda, T AF Hiragi, Shusuke Tamura, Hiroshi Goto, Rei Kuroda, Tomohiro TI The effect of model selection on cost-effectiveness research: a comparison of kidney function-based microsimulation and disease grade-based microsimulation in chronic kidney disease modeling SO BMC MEDICAL INFORMATICS AND DECISION MAKING LA English DT Article DE Chronic kidney disease; Health economics; Cost effectiveness analysis; Disease modeling ID QUALITY-OF-LIFE; GLOMERULAR-FILTRATION-RATE; STAGE RENAL-DISEASE; IGA NEPHROPATHY; DECLINE; PROGRESSION; POPULATION; TRIAL; CARE; CKD AB BackgroundCost effectiveness research is emerging in the chronic kidney disease (CKD) research field. Especially, an individual-level state transition model (microsimulation) is widely used for these researches. Some researchers set CKD grades as discrete health states, and the transition probabilities between these states were dependent on the CKD grades (disease grade-based microsimulation, MSM-dg), while others set estimated glomerular filtration rate value which determines the severity of CKD as a main variable describing patients' continuous status (kidney function-based microsimulation, MSM-kf). MSM-kf seems to reflect the real world more precisely but is more difficult to implement. We compared the calculation results of these two microsimulation models to evaluate the effect of model selection on CKD cost-effectiveness analysis.MethodsWe implemented simplified MSM-dg and MSM-kf emulating natural course of CKD in general, and compared models using parameters derived from an IgA nephropathy cohort. After checking these models' overall behavior, life-years, utilities, and thresholds regarding intervention costs below which the intervention is thought as dominant (V0) or cost-effective (V1) were calculated. In addition, one-way and probabilistic sensitivity analyses were performed.ResultsWith base-case parameters, the calculated life-years was shorter in MSM-dg (73.89 vs. 75.80years) while the thresholds were almost equal (86.87 vs. 90.43 (V0), 132.29 vs. 146.25 [V1 in 1000 USD]) compared to MSM-kf. Sensitivity analyses showed a tendency of the MSM-dg to show shorter results in life-years. V0 and V1 were distributed by approximately 100,000 USD (V0) and +/- 150,000 USD (V1) between models.Conclusions p id= Par4 Estimated cost-effectiveness thresholds by both models were not the same and its difference distributed too wide to be ignored. This result indicated that model selection in CKD cost-effectiveness research has large effect on their conclusions. C1 [Hiragi, Shusuke; Tamura, Hiroshi; Kuroda, Tomohiro] Kyoto Univ Hosp, Div Med Informat Technol & Adm Planning, Sakyo Ku, 54 Kawaharacho, Kyoto 6068507, Japan. [Hiragi, Shusuke] Kyoto Univ Hosp, Dept Nephrol, Sakyo Ku, 54 Kawaharacho, Kyoto 6068507, Japan. [Goto, Rei] Keio Univ, Grad Sch Business Adm, Kohoku Ku, 2-33-28 Hiyoshi Honcho, Yokohama, Kanagawa 2238526, Japan. [Goto, Rei] Keio Univ, Keio Business Sch, Kohoku Ku, 2-33-28 Hiyoshi Honcho, Yokohama, Kanagawa 2238526, Japan. C3 Kyoto University; Kyoto University; Keio University; Keio University RP Hiragi, S (corresponding author), Kyoto Univ Hosp, Div Med Informat Technol & Adm Planning, Sakyo Ku, 54 Kawaharacho, Kyoto 6068507, Japan.; Hiragi, S (corresponding author), Kyoto Univ Hosp, Dept Nephrol, Sakyo Ku, 54 Kawaharacho, Kyoto 6068507, Japan. EM hiragi.shusuke.4x@kyoto-u.ac.jp RI Tamura, Hiroshi/H-1855-2011; Kuroda, Tomohiro/F-7041-2010; Hiragi, Shusuke/AAF-4310-2019; HIRAGI, Shusuke/GYA-3171-2022 OI Tamura, Hiroshi/0000-0002-7740-2732; Kuroda, Tomohiro/0000-0003-1472-7203; Hiragi, Shusuke/0000-0003-1629-6195; FU Kyoto University; Advanced Science, Technology & Management Research Institute of KYOTO (ASTEM RI / KYOTO) FX Financial support for this study was provided in part by a grant from Kyoto University and Advanced Science, Technology & Management Research Institute of KYOTO (ASTEM RI / KYOTO). The funding agreement ensured the authors' independence in designing the study, interpreting the data, writing, and publishing the report. CR [Anonymous], 2015, LANG ENV STAT COMP [Anonymous], 2017, DRAWING SURVIVAL CUR [Anonymous], KIDNEY INT S, DOI DOI 10.1038/KISUP.2012.23 [Anonymous], AM J KIDNEY DIS, V39, pS170, DOI [10. 1053/ajkd. 2002. 30946, DOI 10.1053/AJKD.2002.30946] [Anonymous], 2016, CAN HLTH EXP SPEND P [Anonymous], 2013, KIDNEY INT SUPPL [Anonymous], 2012, NIHON JINZO GAKKAI S, V54, P1034 Bartosik LP, 2001, AM J KIDNEY DIS, V38, P728, DOI 10.1053/ajkd.2001.27689 Blanchette Christopher M, 2015, Drugs Context, V4, P212275, DOI 10.7573/dic.212275 Briggs A, 1998, PHARMACOECONOMICS, V13, P397, DOI 10.2165/00019053-199813040-00003 Cooper BA, 2010, NEW ENGL J MED, V363, P609, DOI 10.1056/NEJMoa1000552 Drummond MF., 2015, EC EVALUATION USING, P311 Erickson KF, 2013, ANN INTERN MED, V159, P382, DOI 10.7326/0003-4819-159-6-201309170-00004 Glassock Richard J, 2009, Trans Am Clin Climatol Assoc, V120, P419 Go AS, 2004, NEW ENGL J MED, V351, P1296, DOI 10.1056/NEJMoa041031 Gorodetskaya I, 2005, KIDNEY INT, V68, P2801, DOI 10.1111/j.1523-1755.2005.00752.x Harris A, 2011, AM J KIDNEY DIS, V57, P707, DOI 10.1053/j.ajkd.2010.12.018 Hegg BMS, 2008, PHARMACOECONOMICS, V26, P633, DOI 10.2165/00019053-200826080-00002 Hirth RA, 2000, MED DECIS MAKING, V20, P332, DOI 10.1177/0272989X0002000310 Hoerger TJ, 2010, AM J KIDNEY DIS, V55, P452, DOI 10.1053/j.ajkd.2009.11.016 Honeycutt AA, 2013, J AM SOC NEPHROL, V24, P1478, DOI 10.1681/ASN.2012040392 Imai E, 2008, HYPERTENS RES, V31, P433, DOI 10.1291/hypres.31.433 Jones C, 2006, NEPHROL DIAL TRANSPL, V21, P2133, DOI 10.1093/ndt/gfl198 Luo Lola, 2013, EGEMS (Wash DC), V1, P1040, DOI 10.13063/2327-9214.1040 Marseille E, 2015, B WORLD HEALTH ORGAN, V93, P118, DOI 10.2471/BLT.14.138206 Mazairac AHA, 2013, CLIN J AM SOC NEPHRO, V8, P82, DOI 10.2215/CJN.00010112 Mennini FS, 2014, J RENAL NUTR, V24, P313, DOI 10.1053/j.jrn.2014.05.003 MITCH WE, 1976, LANCET, V2, P1326 Orlando LA, 2011, BMC MED INFORM DECIS, V11, DOI 10.1186/1472-6947-11-41 Perlman RL, 2005, AM J KIDNEY DIS, V45, P658, DOI 10.1053/j.ajkd.2004.12.021 Pozzi C, 2004, J AM SOC NEPHROL, V15, P157, DOI 10.1097/01.ASN.0000103869.08096.4F Schwartz LM, 1999, J GEN INTERN MED, V14, P230, DOI 10.1046/j.1525-1497.1999.00322.x Siebert U, 2012, MED DECIS MAKING, V32, P690, DOI 10.1177/0272989X12455463 Skupien J, 2016, DIABETES CARE, V39, P2262, DOI 10.2337/dc16-0950 Skupien J, 2012, KIDNEY INT, V82, P589, DOI 10.1038/ki.2012.189 SONNENBERG FA, 1993, MED DECIS MAKING, V13, P322, DOI 10.1177/0272989X9301300409 Tesar V, 2015, J AM SOC NEPHROL, V26, P2248, DOI 10.1681/ASN.2014070697 Walz G, 2010, NEW ENGL J MED, V363, P830, DOI 10.1056/NEJMoa1003491 Weinstein MC, 2003, VALUE HEALTH, V6, P9, DOI 10.1046/j.1524-4733.2003.00234.x Wright JT, 2002, JAMA-J AM MED ASSOC, V288, P2421, DOI 10.1001/jama.288.19.2421 NR 40 TC 7 Z9 7 U1 0 U2 2 PU BMC PI LONDON PA CAMPUS, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1472-6947 J9 BMC MED INFORM DECIS JI BMC Med. Inform. Decis. Mak. PD NOV 9 PY 2018 VL 18 AR 94 DI 10.1186/s12911-018-0678-7 PG 11 WC Medical Informatics WE Science Citation Index Expanded (SCI-EXPANDED) SC Medical Informatics GA GZ8IZ UT WOS:000449734700001 PM 30413200 OA gold, Green Published DA 2024-09-05 ER PT J AU Maria, MR Ballini, R Souza, RF AF Maria, Mariana Reis Ballini, Rosangela Souza, Roney Fraga TI Evolution of Green Finance: A Bibliometric Analysis through Complex Networks and Machine Learning SO SUSTAINABILITY LA English DT Article DE green finance; bibliometric analysis; literature review; topic modelling ID RENEWABLE ENERGY-CONSUMPTION; JUSTICE ADAPTATION FINANCE; CARBON EMISSIONS EVIDENCE; EMERGING RESEARCH FRONTS; CLIMATE-CHANGE; ECONOMIC-GROWTH; CITATION NETWORKS; CO2 EMISSIONS; COUNTRIES; AID AB A fundamental structural transformation that must occur to break global temperature rise and advance sustainable development is the green transition to a low-carbon system. However, dismantling the carbon lock-in situation requires substantial investment in green finance. Historically, investments have been concentrated in carbon-intensive technologies. Nonetheless, green finance has blossomed in recent years, and efforts to organise this literature have emerged, but a deeper understanding of this growing field is needed. For this goal, this paper aims to delineate this literature's existing groups and explore its heterogeneity. From a bibliometric coupling network, we identified the main groups in the literature; then, we described the characteristics of these articles through a novel combination of complex network analysis, topological measures, and a type of unsupervised machine learning technique called structural topic modelling (STM). The use of computational methods to explore literature trends is increasing as it is expected to be compatible with a large amount of information and complement the expert-based knowledge approach. The contribution of this article is twofold: first, identifying the most relevant articles in the network related to each group and, second, the most prestigious topics in the field and their contributions to the literature. A final sample of 3275 articles shows three main groups in the literature. The more mature is mainly related to the distribution of climate finance from the developed to the developing world. In contrast, the most recent ones are related to climate financial risks, green bonds, and the insertion of financial development in energy-emissions-economics models. Researchers and policy-makers can recognise current research challenges and make better decisions with the help of the central research topics and emerging trends identified from STM. The field's evolution shows a clear movement from an international perspective to a nationally-determined discussion on finance to the green transition. C1 [Maria, Mariana Reis; Ballini, Rosangela] Univ Estadual Campinas, Inst Econ, BR-13083857 Campinas, SP, Brazil. [Souza, Roney Fraga] Univ Fed Mato Grosso, Fac Econ, BR-78060900 Cuiaba, MT, Brazil. C3 Universidade Estadual de Campinas; Universidade Federal de Mato Grosso RP Maria, MR (corresponding author), Univ Estadual Campinas, Inst Econ, BR-13083857 Campinas, SP, Brazil. EM marianareismaria@gmail.com RI Ballini, Rosangela/B-1560-2015; Maria, Mariana/CAJ-5582-2022; Fraga Souza, Roney/M-5661-2013 OI Maria De Lana, Mariana Reis/0000-0002-0036-3667; Fraga Souza, Roney/0000-0001-5750-489X CR Abadie LM, 2013, MITIG ADAPT STRAT GL, V18, P943, DOI 10.1007/s11027-012-9401-7 Acheampong AO, 2019, ENERG ECON, V83, P156, DOI 10.1016/j.eneco.2019.06.025 [Anonymous], 2019, HDB GREEN FINANCE, DOI DOI 10.1007/978-981-13-0227-5 Aria M, 2017, J INFORMETR, V11, P959, DOI 10.1016/j.joi.2017.08.007 Barrett S, 1998, OXFORD REV ECON POL, V14, P20, DOI 10.1093/oxrep/14.4.20 Barrett S, 2014, WORLD DEV, V58, P130, DOI 10.1016/j.worlddev.2014.01.014 Barrett S, 2013, GLOBAL ENVIRON CHANG, V23, P1819, DOI 10.1016/j.gloenvcha.2013.07.015 Barrett S, 2013, PROG HUM GEOG, V37, P215, DOI 10.1177/0309132512448270 Batagelj V, 2013, SCIENTOMETRICS, V96, P845, DOI 10.1007/s11192-012-0940-1 Bates D. M., 1988, NONLINEAR REGRESSION, DOI DOI 10.1002/9780470316757 Battiston S, 2017, NAT CLIM CHANGE, V7, P283, DOI [10.1038/nclimate3255, 10.1038/NCLIMATE3255] Berensmann K., 2017, POLICY AREA CLIMATE Betzold C, 2017, INT ENVIRON AGREEM-P, V17, P17, DOI 10.1007/s10784-016-9343-8 Bhatnagar S, 2022, RENEW SUST ENERG REV, V162, DOI 10.1016/j.rser.2022.112405 Bischof JonathanM., 2012, Proceedings of the 29th International Conference on Machine Learning, V29, P201, DOI DOI 10.5555/3042573.3042578 Blei DM, 2012, COMMUN ACM, V55, P77, DOI 10.1145/2133806.2133826 Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993 Blondel VD, 2008, J STAT MECH-THEORY E, DOI 10.1088/1742-5468/2008/10/P10008 Bornmann L, 2015, J ASSOC INF SCI TECH, V66, P2215, DOI 10.1002/asi.23329 Bouckaert S., 2021, NET ZERO 2050 ROADMA Boutabba MA, 2014, ECON MODEL, V40, P33, DOI 10.1016/j.econmod.2014.03.005 Boyack KW, 2010, J AM SOC INF SCI TEC, V61, P2389, DOI 10.1002/asi.21419 Campiglio E, 2018, NAT CLIM CHANGE, V8, P462, DOI 10.1038/s41558-018-0175-0 Carleton TA, 2016, SCIENCE, V353, DOI 10.1126/science.aad9837 Cetin M, 2018, ENVIRON SCI POLLUT R, V25, P36589, DOI 10.1007/s11356-018-3526-5 Charfeddine L, 2019, RENEW ENERG, V139, P198, DOI 10.1016/j.renene.2019.01.010 Chirambo D, 2014, J DEV SOC, V30, P415, DOI 10.1177/0169796X14545581 Christophers B, 2017, ANN AM ASSOC GEOGR, V107, P1108, DOI 10.1080/24694452.2017.1293502 Clement V., 2021, GROUNDSWELL 2 Deleidi M, 2020, ENERG POLICY, V140, DOI 10.1016/j.enpol.2019.111195 Dell M, 2014, J ECON LIT, V52, P740, DOI 10.1257/jel.52.3.740 Dell M, 2012, AM ECON J-MACROECON, V4, P66, DOI 10.1257/mac.4.3.66 Desalegn G, 2022, ENERGIES, V15, DOI 10.3390/en15124436 Dietz S, 2016, NAT CLIM CHANGE, V6, P676, DOI [10.1038/NCLIMATE2972, 10.1038/nclimate2972] Dogan E, 2016, RENEW SUST ENERG REV, V60, P1074, DOI 10.1016/j.rser.2016.02.006 Donner SD, 2016, ENVIRON RES LETT, V11, DOI 10.1088/1748-9326/11/5/054006 Fankhauser S, 2016, CLIM DEV, V8, P203, DOI 10.1080/17565529.2015.1064811 Farrell J, 2016, P NATL ACAD SCI USA, V113, P92, DOI 10.1073/pnas.1509433112 Gampfer R, 2014, GLOBAL ENVIRON CHANG, V29, P118, DOI 10.1016/j.gloenvcha.2014.08.006 Gomez-Echeverri L, 2013, CLIM POLICY, V13, P632, DOI 10.1080/14693062.2013.822690 Grajzl P, 2019, J COMP ECON, V47, P111, DOI 10.1016/j.jce.2018.10.004 Grasso M, 2010, GLOBAL ENVIRON CHANG, V20, P74, DOI 10.1016/j.gloenvcha.2009.10.006 Guimerà R, 2005, NATURE, V433, P895, DOI 10.1038/nature03288 Halimanjaya A, 2015, CLIM POLICY, V15, P223, DOI 10.1080/14693062.2014.912978 Intergovernmental Panel on Climate Change (IPCC), 2018, SPECIAL REPORT GLOBA Karpf A, 2018, NAT CLIM CHANGE, V8, P161, DOI 10.1038/s41558-017-0062-0 KESSLER MM, 1963, AM DOC, V14, P10, DOI 10.1002/asi.5090140103 Kim SH, 2020, J SCI STUD RELIG, V59, P62, DOI 10.1111/jssr.12639 Kitsak M, 2018, PHYS REV E, V97, DOI 10.1103/PhysRevE.97.012309 Krueger P, 2020, REV FINANC STUD, V33, P1067, DOI 10.1093/rfs/hhz137 Kuhn KD, 2018, TRANSPORT RES C-EMER, V87, P105, DOI 10.1016/j.trc.2017.12.018 Lindenberg N., 2014, Definition of Green Finance Mazzucato M., 2015, WHAT WILL IT TAKE GE Mazzucato M, 2017, OXFORD REV ECON POL, V33, P24, DOI 10.1093/oxrep/grw036 Monasterolo I, 2017, CLIMATIC CHANGE, V145, P495, DOI 10.1007/s10584-017-2095-9 Naeem MA, 2023, QUAL RES FINANC MARK, V15, P608, DOI 10.1108/QRFM-10-2021-0174 Nepusz T, 2006, InterJournal Comp. Syst., VComplex Systems, P1695 Nordhaus W., 2012, RICE CLIMATE EC MODE Ozturk I, 2010, ENERG POLICY, V38, P340, DOI 10.1016/j.enpol.2009.09.024 Pata UK, 2018, J CLEAN PROD, V187, P770, DOI 10.1016/j.jclepro.2018.03.236 Pickering J, 2015, GLOBAL ENVIRON POLIT, V15, P39, DOI 10.1162/GLEP_a_00325 Pickering J, 2015, WORLD DEV, V68, P149, DOI 10.1016/j.worlddev.2014.10.033 Pittel K, 2013, WORLD ECON, V36, P419, DOI 10.1111/twec.12029 Pournelle G. H., 1953, Journal of Mammalogy, V34, P133, DOI 10.1890/0012-9658(2002)083[1421:SDEOLC]2.0.CO;2 PRICE D.J.S., 1961, SCI BABYLON Puig D., 2016, The Adaptation Finance Gap Report PWC, 2013, Exploring Green Finance Incentives in China Reboredo JC, 2018, ENERG ECON, V74, P38, DOI 10.1016/j.eneco.2018.05.030 Roberts JT, 2017, INT ENVIRON AGREEM-P, V17, P129, DOI 10.1007/s10784-016-9347-4 Roberts ME, 2019, J STAT SOFTW, V91, P1, DOI 10.18637/jss.v091.i02 Roberts ME, 2016, J AM STAT ASSOC, V111, P988, DOI 10.1080/01621459.2016.1141684 Rockström J, 2009, NATURE, V461, P472, DOI 10.1038/461472a Salahuddin M, 2015, RENEW SUST ENERG REV, V51, P317, DOI 10.1016/j.rser.2015.06.005 Samuwai J, 2018, SUSTAINABILITY-BASEL, V10, DOI 10.3390/su10041192 Schoenmaker D., 2018, Principles of Sustainable Finance Scholtens B, 2007, CORP GOV-OXFORD, V15, P1090, DOI 10.1111/j.1467-8683.2007.00633.x Shahbaz M, 2018, ENERG ECON, V74, P843, DOI 10.1016/j.eneco.2018.07.020 Shahzad SJH, 2017, RENEW SUST ENERG REV, V70, P185, DOI 10.1016/j.rser.2016.11.042 Shibata N, 2008, TECHNOVATION, V28, P758, DOI 10.1016/j.technovation.2008.03.009 Shibata N, 2007, J AM SOC INF SCI TEC, V58, P872, DOI 10.1002/asi.20529 Shibata N, 2011, TECHNOL FORECAST SOC, V78, P274, DOI 10.1016/j.techfore.2010.07.006 Smith JB, 2011, CLIM POLICY, V11, P987, DOI 10.1080/14693062.2011.582385 Stadelmann M, 2013, CLIM POLICY, V13, P718, DOI 10.1080/14693062.2013.791146 Stadelmann M, 2011, CLIM DEV, V3, P175, DOI 10.1080/17565529.2011.599550 Steffen W, 2007, AMBIO, V36, P614, DOI 10.1579/0044-7447(2007)36[614:TAAHNO]2.0.CO;2 Taghizadeh-Hesary F, 2019, FINANC RES LETT, V31, P98, DOI 10.1016/j.frl.2019.04.016 UNCC, 2022, COP27 REACH BREAKTHR UNHCR The UN Refugee Agency, 2022, DISPL FRONTL CLIM EM United Nations Climate Change-UNCC, 2015, NDC SPOTL Unruh GC, 2002, ENERG POLICY, V30, P317, DOI 10.1016/S0301-4215(01)00098-2 Unruh GC, 2006, ENERG POLICY, V34, P1185, DOI 10.1016/j.enpol.2004.10.013 Unruh GC, 2000, ENERG POLICY, V28, P817, DOI 10.1016/S0301-4215(00)00070-7 van Eck NJ, 2010, SCIENTOMETRICS, V84, P523, DOI 10.1007/s11192-009-0146-3 Wang MR, 2021, ENERG POLICY, V154, DOI 10.1016/j.enpol.2021.112295 Weiler F, 2018, WORLD DEV, V104, P65, DOI 10.1016/j.worlddev.2017.11.001 Woo SH, 2011, TRANSPORT RES A-POL, V45, P667, DOI 10.1016/j.tra.2011.04.014 Young H., 1983, ALA GLOSSARY LIB INF Zaidi SAH, 2019, J CLEAN PROD, V228, P533, DOI 10.1016/j.jclepro.2019.04.210 Zhang DY, 2019, FINANC RES LETT, V29, P425, DOI 10.1016/j.frl.2019.02.003 NR 99 TC 6 Z9 6 U1 8 U2 61 PU MDPI PI BASEL PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND EI 2071-1050 J9 SUSTAINABILITY-BASEL JI Sustainability PD JAN PY 2023 VL 15 IS 2 AR 967 DI 10.3390/su15020967 PG 23 WC Green & Sustainable Science & Technology; Environmental Sciences; Environmental Studies WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Science & Technology - Other Topics; Environmental Sciences & Ecology GA 8Q7KD UT WOS:000927380500001 OA gold DA 2024-09-05 ER PT J AU Ikram, MT Afzal, MT AF Ikram, Muhammad Touseef Afzal, Muhammad Tanvir TI Aspect based citation sentiment analysis using linguistic patterns for better comprehension of scientific knowledge SO SCIENTOMETRICS LA English DT Article DE Citation analytics; Aspect detection; n-grams; n-gram after; n-gram before; n-gram around; Scientometrics ID FEATURE-SELECTION; CONTEXT; EXTRACTION; INDEX AB An almost unrestrained access to research plethora has emerged with a potential drawback: extracting relevant scientific publications is not a straightforward task anymore. The best way is to search on citation indexes, which also provide large number of pertinent papers and when a paper is focused even then it ascertains thousands of citations. In such a scenario, citation text could be a quintessential indicator in determining the importance and relevancy of paper for the researcher based on different aspects of the cited work such as technique, corpus, method, task, concept, measure, model and tool etc. This paper presents a novel approach to identify aspect level sentiments to reveal the hidden patterns from scholarly big data. The proposed methodology comprises of two levels. At first level, it extracts the aspects from the citation sentences using the pattern of opinionated phrases around the aspect. At the second level, it detects the sentiment polarity of the identified aspect considering nearby words and associates it with the corresponding aspect category based on a linguistic rule-based approach. We consider the words before, after and around the aspect using n-gram based features: N-gram after', N-gram before' and N-gram around'. Our results reveal that N-gram around' feature performed better than other features and the SVM outperformed other considered classifiers for all N-gram models. C1 [Ikram, Muhammad Touseef; Afzal, Muhammad Tanvir] Capital Univ Sci & Technol, Comp Sci Dept, Islamabad, Pakistan. C3 Capital University of Science & Technology RP Ikram, MT (corresponding author), Capital Univ Sci & Technol, Comp Sci Dept, Islamabad, Pakistan. EM touseefgrw@hotmail.com; tanvirqau@hotmail.com RI Afzal, Muhammad/D-3741-2019 OI Afzal, Muhammad/0000-0002-7851-2327; Afzal, Muhammad Tanvir/0000-0002-9765-8815 CR Abirami AM, 2016, J UNIVERS COMPUT SCI, V22, P650 Agarwal B., 2016, Prominent feature extraction for sentiment analysis, P21, DOI DOI 10.1007/978-3-319-25343-5_3 Agarwal B, 2016, J EXP THEOR ARTIF IN, V28, P485, DOI 10.1080/0952813X.2014.977830 Anand D, 2016, PROCEDIA COMPUT SCI, V84, P86, DOI 10.1016/j.procs.2016.04.070 [Anonymous], 2015, AAAI WORKSH SCHOL BI Appel O, 2016, KNOWL-BASED SYST, V108, P110, DOI 10.1016/j.knosys.2016.05.040 Athar A., 2011, P ACL 2011 STUD SESS, P81 Bar-Ilan J, 2017, SCIENTOMETRICS, V113, P547, DOI 10.1007/s11192-017-2242-0 Bertin M, 2016, SCIENTOMETRICS, V109, P1417, DOI 10.1007/s11192-016-2134-8 Salas-Zárate MD, 2017, COMPUT MATH METHOD M, V2017, DOI 10.1155/2017/5140631 Er MJ, 2016, LECT NOTES COMPUT SC, V9719, P426, DOI 10.1007/978-3-319-40663-3_49 Ghosh S., 2017, ARXIV170701425 Hernandez M, 2015, NATURAL LANGUAGE PRO, P149 Hernandez-Alvarez M., 2016, LATIN AM J COMPUTING, V3, P35 Hernández-Alvarez M, 2016, NAT LANG ENG, V22, P327, DOI 10.1017/S1351324915000388 Ikram MT, 2016, TURK J ELECTR ENG CO, V24, P4481, DOI 10.3906/elk-1502-173 Jochim C., 2012, P COLING 2012, P1343 Kazi P, 2016, SCIENTOMETRICS, V107, P103, DOI 10.1007/s11192-016-1844-2 Khalid A., 2017, CLUSTER COMPUT, V21, P1 Kilicoglu H, 2018, BRIEF BIOINFORM, V19, P1400, DOI 10.1093/bib/bbx057 Liu SB, 2014, SCIENTOMETRICS, V101, P1293, DOI 10.1007/s11192-014-1233-7 Lu C, 2017, SCIENTOMETRICS, V112, P927, DOI 10.1007/s11192-017-2398-7 Luna-Aveiga H, 2017, INT C COMP SCI APPL, P141 Manek AS, 2017, WORLD WIDE WEB, V20, P135, DOI 10.1007/s11280-015-0381-x Peñalver-Martinez I, 2014, EXPERT SYST APPL, V41, P5995, DOI 10.1016/j.eswa.2014.03.022 Quan CQ, 2016, ENTERP INF SYST-UK, V10, P505, DOI 10.1080/17517575.2014.985613 Rana TA, 2016, ARTIF INTELL REV, V46, P459, DOI 10.1007/s10462-016-9472-z Saggion Horacio., 2016, Proceedings of the Joint Workshop on Bibliometric-enhanced Information Retrieval and Natural Language Processing for Digital Libraries (BIRNDL); 2016 June 23; Newark, P175, DOI DOI 10.1007/978-94-017-2388-6_4 Salas-Zarate M. D. P., 2016, J INFORM SCI Tandon N., 2012, P 35 GERMAN C ARTIFI, P98 Widyantoro DH, 2014, INT C ADV COMP SCI I, P291, DOI 10.1109/ICACSIS.2014.7065871 Xiaojun Wan, 2014, Journal of the Association for Information Science and Technology, V65, P1929, DOI 10.1002/asi.23083 Xu Jun, 2015, AMIA Annu Symp Proc, V2015, P1334 Zainuddin N, 2016, LECT NOTES ARTIF INT, V9799, P269, DOI 10.1007/978-3-319-42007-3_23 Zainuddin N, 2016, LECT NOTES ARTIF INT, V9621, P151, DOI 10.1007/978-3-662-49381-6_15 Zhang X, 2016, BEHAV INFORM TECHNOL, V35, P1130, DOI 10.1080/0144929X.2016.1212403 Zhu XD, 2015, J ASSOC INF SCI TECH, V66, P408, DOI 10.1002/asi.23179 NR 37 TC 23 Z9 27 U1 4 U2 53 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0138-9130 EI 1588-2861 J9 SCIENTOMETRICS JI Scientometrics PD APR PY 2019 VL 119 IS 1 BP 73 EP 95 DI 10.1007/s11192-019-03028-9 PG 23 WC Computer Science, Interdisciplinary Applications; Information Science & Library Science WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Computer Science; Information Science & Library Science GA HS1QS UT WOS:000463637600004 DA 2024-09-05 ER PT C AU Belz, A Graddy-Reed, A Shweta, F Giga, A Murali, SM AF Belz, Andrea Graddy-Reed, Alexandra Shweta, Fnu Giga, Aleksandar Murali, Shivesh Meenakshi GP IEEE TI Deterministic bibliometric disambiguation challenges in company names SO 2023 IEEE 17TH INTERNATIONAL CONFERENCE ON SEMANTIC COMPUTING, ICSC LA English DT Proceedings Paper CT 17th IEEE International Conference on Semantic Computing (ICSC) CY FEB 01-03, 2023 CL Laguna Hills, CA DE disambiguation; names; patents; NLP; bibliometric; NASA; SBIR ID GOVERNMENT AB Peer-reviewed publications and patents serve as important signatures of knowledge generation, and therefore the authors and their organizations can represent agents of intellectual transformation. Accurate tracking of these players enables scholars to follow knowledge evolution. However, while author name disambiguation has been discussed extensively, less is known about the impact of organization name on bibliometric studies. We expand here on the recently defined phenomenon of "onomastic profusion," high-frequency words used in organization names for semantic reasons, and thus contributing a non-random source of error to bibliographic studies. We use the Small Business Innovation Research (SBIR) Phase I awardees of the National Aeronautics and Space Administration (NASA) as a use case in the field of engineering innovation. We find that firms in California or Massachusetts experience a six percent decrease in the likelihood of using the word "Technologies" in their names. Furthermore, use of the words "Research" and "Science" is linked to doubling the number of awards. We illustrate that, in aggregate, firms executing rational strategic naming decisions can create deterministic bibliometric challenges. C1 [Belz, Andrea; Shweta, Fnu; Murali, Shivesh Meenakshi] Univ Southern Calif, Viterbi Sch Engn, Los Angeles, CA 90007 USA. [Graddy-Reed, Alexandra] Univ Southern Calif, Sol Price Sch Publ Policy, Los Angeles, CA USA. [Giga, Aleksandar] Delft Univ Technol, Fac Technol Policy & Management, Delft, Netherlands. C3 University of Southern California; University of Southern California; Delft University of Technology RP Belz, A (corresponding author), Univ Southern Calif, Viterbi Sch Engn, Los Angeles, CA 90007 USA. EM abelz@usc.edu; graddyre@usc.edu; s779682@usc.edu; A.Giga@tudelft.nl; smeenaks@usc.edu FU National Science Foundation (NSF) I-Corps [1444080, 1740721] FX This research was funded in part by the National Science Foundation (NSF) I-Corps awards 1444080 and 1740721. Any opinions, findings, or recommendations expressed in this paper are those of the authors and do not necessarily reflect the views of the aforementioned organizations. CR Andrews RJ, 2022, RES POLICY, V51, DOI 10.1016/j.respol.2021.104437 Belenzon S, 2017, AM ECON REV, V107, P1638, DOI 10.1257/aer.20141524 Belz A., 2022, 6 IEEE INT WORKSHOP Belz A, 2021, IEEE T ENG MANAGE, V68, P1476, DOI 10.1109/TEM.2019.2904441 Belz AP, 2022, STRATEG ENTREP J, V16, P255, DOI 10.1002/sej.1429 Best MH, 2015, TECHNOVATION, V39-40, P4, DOI 10.1016/j.technovation.2014.04.004 Bol T, 2022, RES POLICY, V51, DOI 10.1016/j.respol.2021.104399 Chan CSR, 2018, VENTUR CAP, V20, P1, DOI 10.1080/13691066.2017.1334369 Conti A, 2013, J IND ECON, V61, P592, DOI 10.1111/joie.12025 D'Angelo CA, 2020, SCIENTOMETRICS, V123, P883, DOI 10.1007/s11192-020-03410-y Engel Y, 2022, J SMALL BUS MANAGE, V60, P828, DOI 10.1080/00472778.2020.1738820 Feng QC, 2022, FINANC RES LETT, V47, DOI 10.1016/j.frl.2021.102526 Fleming L, 2019, SCIENCE, V364, P1139, DOI 10.1126/science.aaw2373 Giga A, 2022, J TECHNOL TRANSFER, V47, P846, DOI 10.1007/s10961-021-09859-0 Glynn MA, 2002, ACAD MANAGE J, V45, P267, DOI 10.5465/3069296 Guzman J, 2015, SCIENCE, V347, P606, DOI 10.1126/science.aaa0201 Hoberg G, 2016, J POLIT ECON, V124, P1423, DOI 10.1086/688176 Hoberg G, 2010, REV FINANC STUD, V23, P3773, DOI 10.1093/rfs/hhq053 Hotelling H, 1929, ECON J, V39, P41, DOI 10.2307/2224214 Howell ST, 2017, AM ECON REV, V107, P1136, DOI 10.1257/aer.20150808 Jensen K, 2018, NAT BIOTECHNOL, V36, P307, DOI 10.1038/nbt.4120 Keller KL, 1998, J MARKETING, V62, P48, DOI 10.2307/1251802 Klink R., 2001, Journal of Marketing Theory and Practice, V9, P27, DOI [10.1080/10696679.2001.11501889, DOI 10.1080/10696679.2001.11501889] Kohli C.S., 2000, Marketing Management Journal, V10, P112 Lerner J, 1999, J BUS, V72, P285, DOI 10.1086/209616 Marx M, 2020, STRATEGIC MANAGE J, V41, P1572, DOI 10.1002/smj.3145 McDevitt RC, 2014, J POLIT ECON, V122, P909, DOI 10.1086/676333 McDevitt RC, 2011, AM ECON J-MICROECON, V3, P193, DOI 10.1257/mic.3.3.193 Mihaljevic H, 2021, SCIENTOMETRICS, V126, P3893, DOI 10.1007/s11192-021-03951-w Minichilli A, 2022, MANAGE SCI, V68, P2330, DOI 10.1287/mnsc.2021.3974 Monath N., 2021, Technical report Monath N., Disambiguating patent inventors, assignees, and their locations in patentsview Motschenbacher H, 2020, NAMES, V68, P88, DOI 10.1080/00277738.2020.1731240 Roe P, 2014, SCIENTOMETRICS, V100, P287, DOI 10.1007/s11192-013-1223-1 ROMER PM, 1990, J POLIT ECON, V98, pS71, DOI 10.1086/261725 Shweta F, 2021, PROC INT C TOOLS ART, P1132, DOI 10.1109/ICTAI52525.2021.00179 Stinchcombe A.L., 1965, HDB ORG, P142, DOI DOI 10.1016/S0742-3322(00)17019-6 Stoyneva I., 2022, NEW ENGL J ENTREP, V25, P121 Teodoridis F., 2021, MEASURING DIRECTION Todea L, 2015, INT CONF ONOMAST NAM, P856 Torvik VI, 2009, ACM T KNOWL DISCOV D, V3, DOI 10.1145/1552303.1552304 Yin DY, 2020, SCIENTOMETRICS, V122, P765, DOI 10.1007/s11192-019-03310-w NR 42 TC 2 Z9 2 U1 0 U2 1 PU IEEE COMPUTER SOC PI LOS ALAMITOS PA 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1264 USA BN 978-1-6654-8263-9 PY 2023 BP 239 EP 243 DI 10.1109/ICSC56153.2023.00047 PG 5 WC Computer Science, Artificial Intelligence; Computer Science, Interdisciplinary Applications; Computer Science, Theory & Methods WE Conference Proceedings Citation Index - Science (CPCI-S) SC Computer Science GA BV0YC UT WOS:000981661600039 OA Green Published DA 2024-09-05 ER PT J AU Argueta-Guzman, M West, M Gaiarsa, MP Allen, CW Cecala, JM Gedlinske, L McFrederick, QS Murillo, AC Sankovitz, M Rankin, EEW AF Argueta-Guzman, Magda West, Mari Gaiarsa, Marilia P. Allen, Christopher W. Cecala, Jacob M. Gedlinske, Lauren McFrederick, Quinn S. Murillo, Amy C. Sankovitz, Madison Rankin, Erin E. Wilson TI Words matter: how ecologists discuss managed and non-managed bees and birds SO SCIENTOMETRICS LA English DT Article DE Invasion biology; Sentiment analysis; Wild; Native; Introduced; Bibliometric analysis ID INVASION BIOLOGY; FERAL CHICKENS; HONEY-BEES; SCIENCE; WILD; CONSERVATION; LANGUAGE AB Effectively promoting the stability and quality of ecosystem services involves the successful management of domesticated species and the control of introduced species. In the pollinator literature, interest and concern regarding pollinator species and pollinator health dramatically increased in recent years. Concurrently, the use of loaded terms when discussing domesticated and non-native species may have increased. As a result, pollinator ecology has inherited both the confusion associated with invasion biology's lack of a standardized terminology to describe native, managed, or introduced species as well as loaded terms with very strong positive or negative connotations. The recent explosion of research on native bees and alternative pollinators, coupled with the use of loaded language, has led to a perceived divide between native bee and managed bee researchers. In comparison, the bird literature discusses the study of managed (poultry) and non-managed (all other birds) species without an apparent conflict with regard to the use of terms with strong connotations or sentiment. Here, we analyze word usage when discussing non-managed and managed bee and bird species in 3614 ecological and evolutionary biology papers published between 1990 and 2019. Using time series analyses, we demonstrate how the use of specific descriptor terms (such as wild, introduced, and exotic) changed over time. We then conducted co-citation network analyses to determine whether papers that share references have similar terminology and sentiment. We predicted a negative language bias towards introduced species and positive language bias towards native species. We found an association between the term invasive and bumble bees and we observed significant increases in the usage of more ambiguous terms to describe non-managed species, such as wild. We detected a negative sentiment associated with the research area of pathogen spillover in bumble bees, which corroborates the subjectivity that language carries. We recommend using terms that acknowledge the role of human activities on pathogen spillover and biological invasions. Avoiding the usage of loaded terms when discussing managed and non-managed species will advance our understanding and promote effective and productive communication across scientists, general public, policy makers and other stake holders in our society. C1 [Argueta-Guzman, Magda; West, Mari; Gaiarsa, Marilia P.; Allen, Christopher W.; Cecala, Jacob M.; Gedlinske, Lauren; McFrederick, Quinn S.; Murillo, Amy C.; Sankovitz, Madison; Rankin, Erin E. Wilson] Univ Calif Riverside, Dept Entomol, Riverside, CA 92521 USA. [Gaiarsa, Marilia P.] Univ Calif, Dept Life & Environm Sci, Merced, CA 95343 USA. [Gaiarsa, Marilia P.] Univ Zurich, Dept Evolutionary Biol & Environm Studies, CH-8057 Zurich, Switzerland. [Cecala, Jacob M.] Univ Calif Davis, Dept Entomol & Nematol, Davis, CA 95616 USA. [Gedlinske, Lauren] Montana State Univ, Dept Ecol, Bozeman, MT 59715 USA. C3 University of California System; University of California Riverside; University of California System; University of California Merced; University of Zurich; University of California System; University of California Davis; Montana State University System; Montana State University Bozeman RP Rankin, EEW (corresponding author), Univ Calif Riverside, Dept Entomol, Riverside, CA 92521 USA. EM e.wilson.rankin@gmail.com RI McFrederick, Quinn/AAD-2858-2019; Wilson Rankin, E E/GLS-9381-2022; Gedlinske, Lauren/HMV-3667-2023 OI Wilson Rankin, E E/0000-0001-7741-113X; West, Mari/0000-0001-5828-7639; McFrederick, Quinn S./0000-0003-0740-6954; Cecala, Jacob/0000-0002-6224-8517; Murillo, Amy/0000-0002-2467-2747; Argueta Guzman, Magda Paola/0000-0003-1758-3129; Palumbo Gaiarsa, Marilia/0000-0003-4414-472X CR Aho PW., 2002, COMMERCIAL CHICKEN M, DOI 10.1007/978-1-4615-0811-3_1 Alford D.V., 2019, Beneficial Insects [Anonymous], 2022, Cambridge Dictionary.com [Anonymous], 2022, Oxford English Dictionary published by Oxford University Press Aria M, 2017, J INFORMETR, V11, P959, DOI 10.1016/j.joi.2017.08.007 Associated Press, 2008, ASS PRESS NEWS SERVI Ayala AJ, 2020, FRONT VET SCI, V7, DOI 10.3389/fvets.2020.539925 Bates D, 2015, J STAT SOFTW, V67, P1, DOI 10.18637/jss.v067.i01 Beck KG, 2008, INVAS PLANT SCI MANA, V1, P414, DOI 10.1614/IPSM-08-089.1 BENJAMINI Y, 1995, J R STAT SOC B, V57, P289, DOI 10.1111/j.2517-6161.1995.tb02031.x Bezerra CM, 2014, MEM I OSWALDO CRUZ, V109, P887 Blackburn TM, 2011, TRENDS ECOL EVOL, V26, P333, DOI 10.1016/j.tree.2011.03.023 Blondel VD, 2008, J STAT MECH-THEORY E, DOI 10.1088/1742-5468/2008/10/P10008 Bonney, 2012, BEEKEEPING PRACTICAL, P192 Buckley Cara, 2004, MIAMI HERALD 0108, p1B Callaway E, 2016, NATURE, V529, P270, DOI 10.1038/529270a Chew MK, 2003, SCIENCE, V301, P52, DOI 10.1126/science.1085274 Cox-Foster DL, 2007, SCIENCE, V318, P283, DOI 10.1126/science.1146498 Crane E., 1984, Evolution of domesticated animals, P403 Cridland JM, 2017, GENOME BIOL EVOL, V9, P457, DOI 10.1093/gbe/evx009 Davis MA, 2006, INVAD NAT SPRING SER, P35, DOI 10.1007/1-4020-4925-0_3 Diallo SY, 2016, SCIENTOMETRICS, V107, P1005, DOI 10.1007/s11192-016-1891-8 Dorson J., 2011, METRO 0416, P04 Elkhoraibi C, 2014, POULTRY SCI, V93, P2920, DOI 10.3382/ps.2014-04154 Falk-Petersen J, 2006, BIOL INVASIONS, V8, P1409, DOI 10.1007/s10530-005-0710-6 Ferrario C, 2017, ENVIRON MICROBIOL, V19, P4771, DOI 10.1111/1462-2920.13943 Fortier J, 2011, NEW FOREST, V42, P241, DOI 10.1007/s11056-011-9250-3 Gao BY, 2020, MOV ECOL, V8, DOI 10.1186/s40462-020-00235-5 Gering E, 2015, MOL ECOL, V24, P2112, DOI 10.1111/mec.13096 Girvan M, 2002, P NATL ACAD SCI USA, V99, P7821, DOI 10.1073/pnas.122653799 Graystock P, 2016, INT J PARASITOL-PAR, V5, P64, DOI 10.1016/j.ijppaw.2015.10.001 Henriksen R., 2018, ORIGIN EVOLUTION BIO, DOI [10.1007/978-3-319-95954-2_11, DOI 10.1007/978-3-319-95954-2_11] Holland RA, 2006, SCIENCE, V313, P794, DOI 10.1126/science.1127272 Honolulu Star-Advertiser, 2022, NEWS BANK 0513 Jones BA, 2013, P NATL ACAD SCI USA, V110, P8399, DOI 10.1073/pnas.1208059110 KESSLER MM, 1963, AM DOC, V14, P10, DOI 10.1002/asi.5090140103 Kijlstra A, 2009, J FOOD PROTECT, V72, P2629, DOI 10.4315/0362-028X-72.12.2629 Klein AM, 2018, CURR OPIN INSECT SCI, V26, P82, DOI 10.1016/j.cois.2018.02.011 Koopman Marm E., 2007, Human-Wildlife Conflicts, V1, P235 Kueffer C, 2014, BIOSCIENCE, V64, P719, DOI 10.1093/biosci/biu084 Langford SM, 2013, BMC GENET, V14, DOI 10.1186/1471-2156-14-91 Larson BMH, 2005, FRONT ECOL ENVIRON, V3, P495 Lockwood JulieL., 2013, INVASION ECOLOGY, V2nd Lyall C, 2013, SCI PUBL POLICY, V40, P62, DOI 10.1093/scipol/scs121 MacDonald James., 2019, JSTOR Daily MacLeod M, 2018, SYNTHESE, V195, P697, DOI 10.1007/s11229-016-1236-4 Mallinger RE, 2017, PLOS ONE, V12, DOI 10.1371/journal.pone.0189268 Marcelino J, 2022, FRONT ECOL EVOL, V10, DOI 10.3389/fevo.2022.850600 MARTIN EC, 1973, ANNU REV ENTOMOL, V18, P207, DOI 10.1146/annurev.en.18.010173.001231 Mburu J., 2006, Economic Valuation of Pollination Services: Review of Methods McAffee A., 2020, SCI AM Mennes J, 2019, LANG RESOUR EVAL, V53, P889, DOI 10.1007/s10579-019-09455-7 Merriam-Webster.com, 2022, HOME Messner R., 2014, 1045 PAP Moritz RFA, 2007, J INSECT CONSERV, V11, P391, DOI 10.1007/s10841-006-9054-5 MYLESGONZALEZ E, 2019, AQUAT INVASIONS Nettle D, 2019, P ROY SOC B-BIOL SCI, V286, DOI 10.1098/rspb.2019.0040 Office of the Federal Register National Archives and Records Administration, 2019, PUBLIC LAW 116 9 JOH Ohl F, 2012, VET J, V192, P13, DOI 10.1016/j.tvjl.2011.05.019 Oksanen J., 2020, VEGAN COMMUNITY ECOL, DOI DOI 10.4135/9781412971874.N145 Olson ME, 2019, TRENDS ECOL EVOL, V34, P605, DOI 10.1016/j.tree.2019.03.001 Piggins D, 1998, APPL ANIM BEHAV SCI, V57, P181, DOI 10.1016/S0168-1591(98)00095-1 Pollock, 2012, BACKYARD POULTRY PRI Pollock SL, 2012, J COMMUN HEALTH, V37, P734, DOI 10.1007/s10900-011-9504-1 Pournelle G. H., 1953, Journal of Mammalogy, V34, P133, DOI 10.1890/0012-9658(2002)083[1421:SDEOLC]2.0.CO;2 Pritchard ZA, 2021, ENVIRON ENTOMOL, V50, P455, DOI 10.1093/ee/nvaa181 Pysek P, 2020, BIOL REV, V95, P1511, DOI 10.1111/brv.12627 Read AF, 2015, PLOS BIOL, V13, DOI 10.1371/journal.pbio.1002198 Rinker T., 2017, Package 'sentimentr' Rudis, 2015, STREAMGRAPH HTMLWIDG Satterfield DA, 2020, FRONT ECOL ENVIRON, V18, P335, DOI 10.1002/fee.2217 Schmid-Hempel R, 2014, J ANIM ECOL, V83, P823, DOI 10.1111/1365-2656.12185 Simberloff D., 2011, Encyclopedia of biological invasions Smith TJ, 2016, INSECT CONSERV DIVER, V9, P384, DOI 10.1111/icad.12178 Sokolow SH, 2019, PHILOS T R SOC B, V374, DOI 10.1098/rstb.2018.0342 Velthuis HHW, 2006, APIDOLOGIE, V37, P421, DOI 10.1051/apido:2006019 Vice News, 2021, VICE NEWS 0701 Warren CR, 2007, PROG HUM GEOG, V31, P427, DOI 10.1177/0309132507079499 Warren RJ, 2017, PLOS ONE, V12, DOI 10.1371/journal.pone.0182502 Wear DN, 1999, ECOSYSTEMS, V2, P299, DOI 10.1007/s100219900080 WEST B, 1988, J ARCHAEOL SCI, V15, P515, DOI 10.1016/0305-4403(88)90080-5 Winfree R, 2010, ANN NY ACAD SCI, V1195, P169, DOI 10.1111/j.1749-6632.2010.05449.x Young AM, 2011, ENVIRON RES, V111, P893, DOI 10.1016/j.envres.2011.06.006 NR 83 TC 0 Z9 0 U1 3 U2 36 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0138-9130 EI 1588-2861 J9 SCIENTOMETRICS JI Scientometrics PD MAR PY 2023 VL 128 IS 3 BP 1745 EP 1764 DI 10.1007/s11192-022-04620-2 EA JAN 2023 PG 20 WC Computer Science, Interdisciplinary Applications; Information Science & Library Science WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Computer Science; Information Science & Library Science GA 9M3IZ UT WOS:000916678200001 OA hybrid DA 2024-09-05 ER PT J AU Piryani, R Gupta, V Singh, VK Pinto, D AF Piryani, Rajesh Gupta, Vedika Singh, Vivek Kumar Pinto, David TI Book impact assessment: A quantitative and text-based exploratory analysis SO JOURNAL OF INTELLIGENT & FUZZY SYSTEMS LA English DT Article DE Altmetrics; book impact; citation impact; review mining; sentiment analysis ID ALTERNATIVE METRICS; CITATION ANALYSIS; REVIEWS; LEVEL AB Books are an important source of knowledge to disseminate information. Researchers and academicians write books to propagate their innovative research or teachings amongst academic as well as non-academic audience. The number of books written every year is increasing rapidly. According to International Publisher Association (IPA) annual report 2015-2016, around 150 million different books were published worldwide in 2014-2015. Many e-commerce websites are also involved in selling books. A recent addition to book publishing world is e-books, which have really made it very simple to publish. While, availability of large number of books is good for readers, at the same time it is challenging to find a good book, particularly in scholarly settings. Researchers in the area of Scientometrics have attempted to view assessment of goodness of a scholarly book by measuring citations that a book receive. However, citations alone are not a true measure of a book's impact. Many a times people use the knowledge in a book without actually citing it. Also use of books in classroom settings or for general reading often is not reflected in terms of citations. Therefore, it is important to obtain users's opinion about a book from other forms of data. Fortunately, we have now some data of this sort available in form of reviews, downloads and social media mentions etc. Amazon and Goodreads, both of which provide the readers' views about a book, are two good examples. This paper presents an exploratory research work on using these non-traditional data about books to assess impact of a book. A set of Scopus-indexed computer science books with good citations as well as some other popular books in computer science domain are used for analysis. The reviews of books have been crawled in an automated fashion from Amazon and Goodreads. Thereafter sentiment analysis is carried out the text of reviews. Results of sentiment analysis are compared and correlated with traditional impact assessment metrics. The experimental analysis does not show a coherent relationship between citation and online reviews. Also, majority of the online reviews are found to be positive for large number of books in the dataset. As a related exercise, the Scopus citation data and Google scholar citation data for books are also compared. A high value of correlation is observed in these two. Overall the exploratory analysis provides a useful insight into the problem of book impact assessment. C1 [Piryani, Rajesh] South Asian Univ, Dept Comp Sci, New Delhi, India. [Gupta, Vedika] Natl Inst Technol Delhi, Dept Comp Sci & Engn, Delhi, India. [Singh, Vivek Kumar] Banaras Hindu Univ, Dept Comp Sci, Varanasi 221005, Uttar Pradesh, India. [Pinto, David] Benemerita Univ Autonoma Puebla, Puebla, Mexico. C3 South Asian University (SAU); National Institute of Technology (NIT System); National Institute of Technology Delhi; Banaras Hindu University (BHU); Benemerita Universidad Autonoma de Puebla RP Singh, VK (corresponding author), Banaras Hindu Univ, Dept Comp Sci, Varanasi 221005, Uttar Pradesh, India. EM vivek@bhu.ac.in RI Piryani, Rajesh/AAF-8148-2020; Singh, Vivek Kumar/O-5699-2019; gupta, vedika/ABD-1934-2021; Gupta, Vedika/JXL-2328-2024; pinto, david/C-2797-2019 OI Piryani, Rajesh/0000-0003-3374-0657; Singh, Vivek Kumar/0000-0002-7348-6545; gupta, vedika/0000-0002-8109-498X; Pinto, David/0000-0002-8516-5925 FU Indo-German (DST-DAAD) Joint Research Project [DST/INT/FRG/DAAD/P-28/2017] FX This project is partly funded by an Indo-German (DST-DAAD) Joint Research Project, Grant No.: DST/INT/FRG/DAAD/P-28/2017. CR Almind TC, 1997, J DOC, V53, P404, DOI 10.1108/EUM0000000007205 Bar-Ilan J, 2010, SCIENTOMETRICS, V82, P495, DOI 10.1007/s11192-010-0185-9 Bollen J, 2005, INFORM PROCESS MANAG, V41, P1419, DOI 10.1016/j.ipm.2005.03.024 Chevalier JA, 2006, J MARKETING RES, V43, P345, DOI 10.1509/jmkr.43.3.345 CHUBIN DE, 1975, SOC STUD SCI, V5, P423, DOI 10.1177/030631277500500403 Cronin B, 1997, J DOC, V53, P263, DOI 10.1108/EUM0000000007200 Devaraj M, 2016, IETE TECH REV, V33, P332, DOI 10.1080/02564602.2015.1073572 GARFIELD E, 1972, SCIENCE, V178, P471, DOI 10.1126/science.178.4060.471 Kousha K, 2008, J AM SOC INF SCI TEC, V59, P2060, DOI 10.1002/asi.20920 Kousha K, 2016, J ASSOC INF SCI TECH, V67, P566, DOI 10.1002/asi.23404 Kousha K, 2015, PROF INFORM, V24, P724, DOI 10.3145/epi.2015.nov.04 Kousha K, 2011, J AM SOC INF SCI TEC, V62, P2147, DOI 10.1002/asi.21608 MacRoberts MH, 1996, SCIENTOMETRICS, V36, P435, DOI 10.1007/BF02129604 Nicolaisen J, 2002, RES EVALUAT, V11, P129, DOI 10.3152/147154402781776808 Piryani R, 2017, INFORM PROCESS MANAG, V53, P122, DOI 10.1016/j.ipm.2016.07.001 Piryani R., COMPUTACION SISTEMAS Piryani R, 2017, J INTELL FUZZY SYST, V32, P3297, DOI 10.3233/JIFS-169272 Poria S, 2016, KNOWL-BASED SYST, V108, P42, DOI 10.1016/j.knosys.2016.06.009 SHAW D, 1991, LIBR INFORM SCI RES, V13, P147 Shema H, 2014, J ASSOC INF SCI TECH, V65, P1018, DOI 10.1002/asi.23037 Small Helen., 2013, VALUE HUMANITIES Stremersch S, 2007, J MARKETING, V71, P171, DOI 10.1509/jmkg.71.3.171 Torres-Salinas D, 2012, REV ESP DOC CIENT, V35, P615, DOI 10.3989/redc.2012.4.1010 Uddin A, 2016, SCIENTOMETRICS, V106, P1135, DOI 10.1007/s11192-016-1836-2 Zuccala A, 2013, PRO INT CONF SCI INF, P353 NR 25 TC 8 Z9 8 U1 2 U2 55 PU IOS PRESS PI AMSTERDAM PA NIEUWE HEMWEG 6B, 1013 BG AMSTERDAM, NETHERLANDS SN 1064-1246 EI 1875-8967 J9 J INTELL FUZZY SYST JI J. Intell. Fuzzy Syst. PY 2018 VL 34 IS 5 BP 3101 EP 3110 DI 10.3233/JIFS-169494 PG 10 WC Computer Science, Artificial Intelligence WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Computer Science GA GH2AV UT WOS:000433204800025 DA 2024-09-05 ER PT J AU Fuentealba, D Flores-Fernández, C Carrasco, R AF Fuentealba, Diego Flores-Fernandez, Cherie Carrasco, Raul TI Analisis bibliometrico y de contenido sobre VUCA SO REVISTA ESPANOLA DE DOCUMENTACION CIENTIFICA LA English DT Article DE VUCA; Bibliometrics; content analysis; LDA; K-Means ID LEADERSHIP; CHALLENGES; INNOVATION; WORLD AB analysis Abstract: VUCA is an acronym for volatility, uncertainty, complexity, and ambiguity, used to describe an environment that defies confident predictions. An example of this environment is the Covid-19 pandemic, which has created uncer-tainty worldwide because it is an unknown and highly contagious disease that neither society nor institutions were pre-pared to face. This article aims to describe the scientific production of VUCA to understand its main research focus. This research analyzes 105 documents from the Web of Science (WoS) database using Bibliometrics and Content Analysis. The bibliometric analysis reported several production indexes: annual, personal, national, institutional, and journal productiv-ity. The content analysis analyzed 95 article abstracts in nineteen clusters selected by comparing two clustering methods, Latent Dirichlet Allocation and K-Means, using the coherence and silhouette indices, respectively. VUCA is an emerging topic with increased scientific production in the last four years. However, there are no major producers to date. The most frequent topics are management, leadership, and change, where several works emphasize the role of the leader in deal-ing with change. The literature has focused on understanding the skills needed to cope with a VUCA environment and how to teach them. In addition, the use of two methods based on machine learning techniques to estimate the number of clusters of scientific papers is highlighted as an alternative to splitting articles into topics when the dataset is small. C1 [Fuentealba, Diego] Univ Tecnol Metropolitana, Dept Informat & Comp, Santiago, Chile. [Flores-Fernandez, Cherie] Univ Tecnol Metropolitana, Dept Gest Informac, Santiago, Chile. [Carrasco, Raul] Univ Amer, Fac Ingn & Negocios, Providencia, Chile. C3 Universidad Tecnologica Metropolitana; Universidad Tecnologica Metropolitana; Universidad de Las Americas - Chile RP Fuentealba, D (corresponding author), Univ Tecnol Metropolitana, Dept Informat & Comp, Santiago, Chile. EM d.fuentealba@utem.cl; cflores@utem.cl; rcarrasco@udla.cl RI Flores, Cherie/AAC-6868-2020; Fuentealba, Diego/AAM-8509-2020; Carrasco, Raúl/G-5440-2015 OI Flores, Cherie/0000-0001-5294-7157; Fuentealba, Diego/0000-0001-5284-0448; Carrasco, Raúl/0000-0002-5023-9349 CR Ahmad N, 2021, SUSTAINABILITY-BASEL, V13, DOI 10.3390/su13073828 Antonacopoulou EP, 2019, LEARN ORGAN, V27, P117, DOI 10.1108/TLO-10-2018-0160 Antonacopoulou EP, 2019, LEARN ORGAN, V26, P304, DOI 10.1108/TLO-10-2018-0159 Ardanuy J., 2012, Breve introduccion a la bibliometria Aria M, 2017, J INFORMETR, V11, P959, DOI 10.1016/j.joi.2017.08.007 Ashraf A, 2020, CINEJ CINE J, V8, P195, DOI 10.5195/cinej.2020.247 Tran BX, 2019, INT J ENV RES PUB HE, V16, DOI 10.3390/ijerph16152699 Baraibar-Diez E, 2020, SUSTAINABILITY-BASEL, V12, DOI 10.3390/su12229389 Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993 Buckley PJ, 2021, MANAGE ORGAN REV, V17, P35, DOI 10.1017/mor.2020.72 Castillo EA, 2019, J ORGAN CHANGE MANAG, V32, P356, DOI 10.1108/JOCM-04-2017-0100 Chatterjee M, 2019, PAC BUS REV INT, V11, P14 Cook PJ, 2016, IND COMMER TRAIN, V48, P294, DOI 10.1108/ICT-01-2016-0006 Ding R, 2018, 2018 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING (EMNLP 2018), P830 Dolamic L, 2010, J AM SOC INF SCI TEC, V61, P200, DOI 10.1002/asi.21186 Dolot A, 2020, E-MENTOR, P35 Edison RE, 2019, INT J ORGAN LEADERSH, V8, P46, DOI 10.19236/IJOL.2019.01.04 Elkington R, 2018, J LEADERSH STUD, V12, P66, DOI 10.1002/jls.21599 Fahimnia B, 2015, INT J PROD ECON, V162, P101, DOI 10.1016/j.ijpe.2015.01.003 Figuerola CG, 2017, SCIENTOMETRICS, V112, P1507, DOI 10.1007/s11192-017-2432-9 Fletcher G, 2020, INT J INFORM MANAGE, V55, DOI 10.1016/j.ijinfomgt.2020.102185 Flores-Fernández C., 2018, Rev. Soc. Esp. Dolor, V25, P307, DOI 10.20986/resed.2018.3650/2018 Fuentealba D, 2021, IEEE LAT AM T, V19, P1391, DOI 10.1109/TLA.2021.9475870 Rubio AG, 2019, CULT CUID, V23, P182, DOI 10.14198/cuid.2019.54.16 Garcia-Marco F.-J., 2020, PROFESIONAL INFORM, P1, DOI [10.3145/epi.2020.jul.27, DOI 10.3145/EPI.2020.JUL.27] Geysi N, 2020, CORP COMMUN, V25, P67, DOI 10.1108/CCIJ-07-2019-0077 Hall RD, 2016, J MANAG DEV, V35, P942, DOI 10.1108/JMD-09-2015-0121 Hao TY, 2018, SOFT COMPUT, V22, P7875, DOI 10.1007/s00500-018-3511-4 Hartigan J. A., 1979, Applied Statistics, V28, P100, DOI 10.2307/2346830 Helgeson J, 2021, SUSTAINABILITY-BASEL, V13, DOI 10.3390/su13084554 Hernández-Santibáñez N, 2019, SIAM J CONTROL OPTIM, V57, P3072, DOI 10.1137/18M1184527 Herrera-Viedma E, 2020, PROF INFORM, V29, DOI 10.3145/epi.2020.may.22 Hoffman Matthew D., 2010, Adv. Neural Inf. Process. Syst. (NIPS), DOI DOI 10.5555/2997189.2997285 Jo T, 2019, STUD BIG DATA, V45, P1, DOI 10.1007/978-3-319-91815-0 Kaivo-Oja JRL, 2018, FORESIGHT, V20, P27, DOI 10.1108/FS-06-2017-0022 Katta AK, 2019, J MECH CONTIN MATH S, V14, P943, DOI 10.26782/jmcms.2019.10.00076 Khalatur S., 2021, Banks and Bank Systems, V16, P182, DOI [10.21511/bbs.16(1).2021.16, DOI 10.21511/BBS.16(1).2021.16] Kodinariya T.M., 2013, Int. J., V1, P90 Labib A, 2021, SAFETY SCI, V139, DOI 10.1016/j.ssci.2021.105274 Lai LWC, 2020, INT J ENTREP VENTUR, V12, P439 Levey J, 2019, CLIN RADIOL, V74, P739, DOI 10.1016/j.crad.2019.06.026 Lopes MP, 2017, MANAG ORGAN HIST, V12, P374, DOI 10.1080/17449359.2017.1397027 Lues L, 2021, TEACH PUBLIC ADMIN, V39, P175, DOI 10.1177/0144739420974737 Maini A, 2020, MED TEACH, V42, P1308, DOI 10.1080/0142159X.2020.1788713 Mofuoa K, 2016, J ENTERP COMMUNITIES, V10, P164, DOI 10.1108/JEC-09-2014-0019 Moral-Muñoz JA, 2020, PROF INFORM, V29, DOI 10.3145/epi.2020.ene.03 Nindl BC, 2018, J SCI MED SPORT, V21, P1116, DOI 10.1016/j.jsams.2018.05.005 Sokil JP, 2022, REV ESP DOC CIENT, V45, DOI 10.3989/redc.2022.1.1849 Panichella A, 2021, INFORM SOFTWARE TECH, V130, DOI 10.1016/j.infsof.2020.106411 Penarroya-Farell M., 2021, Journal of Open Innovation: Technology, Market, and Complexity, V7, P1, DOI [10.3390/joitmc7010081, DOI 10.3390/JOITMC7010081] Peterson M, 2020, J PROD BRAND MANAG, V29, P234, DOI 10.1108/JPBM-12-2018-2163 Qadir J, 2020, EDUC SCI, V10, DOI 10.3390/educsci10090236 Raghuramapatruni R., 2017, IOSR Journal of Business and Management, P16 Robinson J, 2017, ADM SCI, V7, DOI 10.3390/admsci7030023 Safina AM, 2020, TARIH KULT SANAT ARA, V9, P61, DOI 10.7596/taksad.v9i2.2677 Schoemaker PJH, 2018, CALIF MANAGE REV, V61, P15, DOI 10.1177/0008125618790246 Selvaseelan J, 2018, ADM SCI, V8, DOI 10.3390/admsci8020022 Seow PS, 2019, INT J MANAG EDUC-OXF, V17, P62, DOI 10.1016/j.ijme.2018.12.001 Shawyun T., 2018, WILEY INT HDB ED FDN, P369, DOI [10.1002/9781118931837.ch22, DOI 10.1002/9781118931837.CH22] Steinberg S, 2019, GIO-GRUP-INTERAKT-OR, V50, P115, DOI 10.1007/s11612-019-00456-2 Tsui E, 2018, MANAG MARK, V13, P848, DOI 10.2478/mmcks-2018-0009 Ungureanu P, 2018, EUR J INNOV MANAG, V21, P636, DOI 10.1108/EJIM-01-2018-0015 Valderrama L, 2018, RESOURCES-BASEL, V7, DOI 10.3390/resources7020026 Vera J, 2021, EPL-EUROPHYS LETT, V136, DOI 10.1209/0295-5075/ac39ee Villajos E, 2019, SUSTAINABILITY-BASEL, V11, DOI 10.3390/su11246933 Williams P, 2017, INT J EVID BASED COA, P18 Xing YJ, 2020, HUM RESOUR MANAGE R, V30, DOI 10.1016/j.hrmr.2019.100696 NR 67 TC 2 Z9 2 U1 8 U2 29 PU CONSEJO SUPERIOR INVESTIGACIONES CIENTIFICAS-CSIC PI MADRID PA Editorial CSIC, C/VITRUVIO 8, 28006 MADRID, SPAIN SN 0210-0614 EI 1988-4621 J9 REV ESP DOC CIENT JI Rev. Esp. Doc. Cient. PD APR-JUN PY 2023 VL 46 IS 2 AR 1968 DI 10.3989/redc.2023.2.1968 PG 13 WC Information Science & Library Science WE Social Science Citation Index (SSCI) SC Information Science & Library Science GA H0VN0 UT WOS:000993225500003 OA gold DA 2024-09-05 ER PT J AU Di Vaio, A Hassan, R Alavoine, C AF Di Vaio, Assunta Hassan, Rohail Alavoine, Claude TI Data intelligence and analytics: A bibliometric analysis of human-Artificial intelligence in public sector decision-making effectiveness SO TECHNOLOGICAL FORECASTING AND SOCIAL CHANGE LA English DT Article DE Ambidexterity; Industry 4; 0; Business intelligence; Big data; Intellectual capital; Human intellect; Accountability and performance ID BIG DATA ANALYTICS; FIRM PERFORMANCE; SUPPLY CHAIN; BUSINESS INTELLIGENCE; PREDICTIVE ANALYTICS; INSTITUTIONAL THEORY; VALUE CREATION; MEDIATING ROLE; HEALTH-CARE; MANAGEMENT AB This study investigates the literary corpus of the role and potential of data intelligence and analytics through the lenses of artificial intelligence (AI), big data, and the human-AI interface to improve overall decision-making processes. It investigates how data intelligence and analytics improve decision-making processes in the public sector. A bibliometric analysis of a database containing 161 English-language articles published between 2017 and 2021 is performed, providing a map of the knowledge produced and disseminated in previous studies. It provides insights into key topics, citation patterns, publication activities, the status of collaborations between contributors over past studies, aggregated data intelligence, and analytics research contributions. The study provides a retrospective review of published content in the field of data intelligence and analytics. The findings indicate that field research has been concentrated mainly on emerging technologies' intelligence capabilities rather than on human-artificial intelligence in decision-making performance in the public sector. This study extends an ambidexterity theory in decision support, which enlightens how this ambidexterity can be encouraged and how it affects decision outcomes. The study emphasises the importance of the public sector adoption of data intelligence and analytics, as well as its efficiency. Furthermore, this study expands how researchers and practitioners interpret and understand data intelligence and analytics, AI, and big data for effective public sector decision-making. C1 [Di Vaio, Assunta] Univ Naples Parthenope, Dept Law, Via G Parisi 13, I-80132 Naples, Italy. [Hassan, Rohail] Univ Utara Malaysia UUM, Othman Yeop Abdullah Grad Sch Business OYAGSB, Kuala Lumpur 50300, Malaysia. [Alavoine, Claude] IPAG Business Sch, 4 Bd Carabacel, F-06000 Nice, France. C3 Parthenope University Naples; Universiti Utara Malaysia; IPAG Business School RP Di Vaio, A (corresponding author), Univ Naples Parthenope, Dept Law, Via G Parisi 13, I-80132 Naples, Italy. EM susy.divaio@uniparthenope.it; rohail.hassan@uum.edu.my; c.alavoine@ipag.fr RI Hassan, Rohail/G-1213-2015; Di Vaio, Assunta/N-2259-2019 OI Hassan, Rohail/0000-0002-7825-0283; Di Vaio, Assunta/0000-0002-0498-1630 CR Ajah IA, 2019, BIG DATA COGN COMPUT, V3, DOI 10.3390/bdcc3020032 Akter S, 2016, INT J PROD ECON, V182, P113, DOI 10.1016/j.ijpe.2016.08.018 Al-Htaybat K, 2019, J INTELLECT CAP, V20, P733, DOI 10.1108/JIC-01-2019-0016 Amankwah-Amoah J, 2017, TECHNOL FORECAST SOC, V116, P299, DOI 10.1016/j.techfore.2016.10.006 Andrews L, 2019, PUBLIC ADMIN, V97, P296, DOI 10.1111/padm.12534 Ardito L, 2019, MANAGE DECIS, V57, P1993, DOI 10.1108/MD-07-2018-0754 Arnott D, 2005, J INF TECHNOL-UK, V20, P67, DOI 10.1057/palgrave.jit.2000035 Aydiner AS, 2019, J BUS RES, V96, P228, DOI 10.1016/j.jbusres.2018.11.028 Bag S, 2021, TECHNOL FORECAST SOC, V163, DOI 10.1016/j.techfore.2020.120420 BARNEY J, 1991, J MANAGE, V17, P99, DOI 10.1177/014920639101700108 Bogoviz AV, 2020, J INTELLECT CAP, V21, P583, DOI 10.1108/JIC-11-2019-0270 Bonilla CA, 2015, SCIENTOMETRICS, V105, P1239, DOI 10.1007/s11192-015-1747-7 Borges AFS, 2021, INT J INFORM MANAGE, V57, DOI 10.1016/j.ijinfomgt.2020.102225 Bornmann L., 2008, ETHICS SCI ENV POLIT, V8, P93, DOI [10.3354/esep00084, DOI 10.3354/ESEP00084] Bornmann L, 2007, J AM SOC INF SCI TEC, V58, P1381, DOI 10.1002/asi.20609 Braganza A, 2017, J BUS RES, V70, P328, DOI 10.1016/j.jbusres.2016.08.006 Brown B., 2011, Big data: The next frontier for innovation, competition, and productivity, P156, DOI DOI 10.1080/01443610903114527 Caputo F., 2019, Opening up Education for Inclusivity across Digital Economies and Societies, P277 Caputo F, 2019, MANAGE DECIS, V57, P2032, DOI 10.1108/MD-07-2018-0833 Carayannis EG, 2017, J TECHNOL TRANSFER, V42, P236, DOI 10.1007/s10961-016-9497-0 Chaudhuri S, 2011, COMMUN ACM, V54, P88, DOI 10.1145/1978542.1978562 Chen DQ, 2015, J MANAGE INFORM SYST, V32, P4, DOI 10.1080/07421222.2015.1138364 Chen HC, 2012, MIS QUART, V36, P1165 Chiang RHL, 2012, ACM TRANS MANAG INF, V3, DOI 10.1145/2361256.2361257 Davenport T. H., 2007, COMPETING ANAL NEW S Davenport TH, 2006, HARVARD BUS REV, V84, P98 Demlehner Q, 2021, INT J INFORM MANAGE, V58, DOI 10.1016/j.ijinfomgt.2021.102317 Di Vaio A, 2020, J BUS RES, V121, P283, DOI 10.1016/j.jbusres.2020.08.019 DiMaggio PJ, 2000, ADV STRATEG MANAGE, V 17, P143, DOI 10.2307/2095101 Duan YQ, 2019, INT J INFORM MANAGE, V48, P63, DOI 10.1016/j.ijinfomgt.2019.01.021 Dubey R, 2021, INT J PROD RES, V59, P1586, DOI 10.1080/00207543.2020.1865583 Dubey R, 2020, INT J PROD ECON, V226, DOI 10.1016/j.ijpe.2019.107599 Dubey R, 2017, INT J PROD ECON, V193, P63, DOI [10.1109/TEM.2017.2723042, 10.1016/j.ijpe.2017.06.029] Dwivedi YK, 2021, INT J INFORM MANAGE, V57, DOI 10.1016/j.ijinfomgt.2019.08.002 Erickson GS, 2017, SERV IND J, V37, P589, DOI 10.1080/02642069.2017.1346628 Eriksson T, 2020, TQM J, V32, P795, DOI 10.1108/TQM-12-2019-0303 Fink A., 2019, Conducting research literature reviews: From the internet to paper Freyn SL, 2020, FORESIGHT, V22, P617, DOI 10.1108/FS-02-2020-0011 Frisk JE, 2017, MANAGE DECIS, V55, P2074, DOI 10.1108/MD-07-2016-0460 Grover P, 2022, ANN OPER RES, V308, P177, DOI 10.1007/s10479-020-03683-9 Guan C., 2020, International Journal of Innovation Studies, V4, P134, DOI [DOI 10.1016/J.IJIS.2020.09.001, https://doi.org/10.1016/j.ijis.2020.09.001] Gunasekaran A, 2017, J BUS RES, V70, P308, DOI 10.1016/j.jbusres.2016.08.004 Gupta M, 2016, INFORM MANAGE-AMSTER, V53, P1049, DOI 10.1016/j.im.2016.07.004 Gursoy D, 2019, INT J INFORM MANAGE, V49, P157, DOI 10.1016/j.ijinfomgt.2019.03.008 Hirsch JE, 2005, P NATL ACAD SCI USA, V102, P16569, DOI 10.1073/pnas.0507655102 HM Government, 2013, SEIZ DAT OPP STRAT U Howard MC, 2017, COMPUT HUM BEHAV, V70, P317, DOI 10.1016/j.chb.2017.01.013 Hu Q, 2021, INT J INFORM MANAGE, V56, DOI 10.1016/j.ijinfomgt.2020.102250 Janssen M, 2015, GOV INFORM Q, V32, P363, DOI 10.1016/j.giq.2015.11.007 Jayakrishnan M., 2019, INT J RECENT TECHNOL, V8, P128 Kostova T, 2008, ACAD MANAGE REV, V33, P994 Kowalczyk M, 2015, DECIS SUPPORT SYST, V80, P1, DOI 10.1016/j.dss.2015.08.010 Krippendorff K, 2004, HUM COMMUN RES, V30, P411, DOI 10.1093/hcr/30.3.411 Liang HG, 2007, MIS QUART, V31, P59 Lim EP, 2013, ACM TRANS MANAG INF, V3, DOI 10.1145/2407740.2407741 Lin YK, 2017, MIS QUART, V41, P473, DOI 10.25300/MISQ/2017/41.2.07 Liu HF, 2010, J OPER MANAG, V28, P372, DOI 10.1016/j.jom.2009.11.010 Manzoor A., 2016, Big data: Concepts, methodologies, tools, and applications, P2458 Marzi G, 2017, SCIENTOMETRICS, V113, P673, DOI 10.1007/s11192-017-2500-1 Massaro M, 2016, ACCOUNT AUDIT ACCOUN, V29, P767, DOI 10.1108/AAAJ-01-2015-1939 McAfee A, 2012, HARVARD BUS REV, V90, P60 Mikalef P, 2021, INFORM MANAGE-AMSTER, V58, DOI 10.1016/j.im.2021.103434 Mikalef P, 2019, LECT NOTES COMPUT SC, V11701, P267, DOI 10.1007/978-3-030-29374-1_22 Mitchell RB, 2021, J EDUC BUS, V96, P1, DOI 10.1080/08832323.2020.1719961 Munoko I, 2020, J BUS ETHICS, V167, P209, DOI 10.1007/s10551-019-04407-1 Nishant R, 2020, INT J INFORM MANAGE, V53, DOI 10.1016/j.ijinfomgt.2020.102104 Okoli C., 2010, A guide to conducting a systematic literature review of information systems research, DOI DOI 10.2139/SSRN.1954824 Oliver C, 1997, STRATEGIC MANAGE J, V18, P697, DOI 10.1002/(SICI)1097-0266(199710)18:9<697::AID-SMJ909>3.0.CO;2-C Otokiti A, 2019, INT J HEALTH CARE Q, V32, P425, DOI 10.1108/IJHCQA-03-2018-0062 Pillai R, 2022, PROD PLAN CONTROL, V33, P1517, DOI 10.1080/09537287.2021.1882689 Pillai R, 2020, J RETAIL CONSUM SERV, V57, DOI 10.1016/j.jretconser.2020.102207 Qasim A., 2019, J EMERG TECHNOL ACCO, P0000 Rieple A., 2012, Symphona Emerging Issues in Management, V2, P13, DOI [DOI 10.4468/2012.2.02RIEPLE.PIRONTI.PISANO, 10.4468/2012.2.02rieple.pironti] Schubert A, 2020, SCIENTOMETRICS, V123, P1341, DOI 10.1007/s11192-020-03443-3 Scott WR, 2014, MANAGEMENT, V17, P136, DOI 10.3917/mana.172.0136 Scuotto V, 2017, J KNOWL MANAG, V21, P640, DOI 10.1108/JKM-10-2016-0465 Scuotto V, 2016, BUS PROCESS MANAG J, V22, P357, DOI 10.1108/BPMJ-05-2015-0074 Sen D, 2016, PROCD SOC BEHV, V235, P159, DOI 10.1016/j.sbspro.2016.11.011 Shareef MA, 2021, TECHNOL FORECAST SOC, V162, DOI 10.1016/j.techfore.2020.120334 Sharma R, 2014, EUR J INFORM SYST, V23, P433, DOI 10.1057/ejis.2014.17 Sheng J, 2019, TECHNOL FORECAST SOC, V143, P321, DOI 10.1016/j.techfore.2018.06.009 Singh SK, 2019, MANAGE DECIS, V57, P1729, DOI 10.1108/MD-08-2019-020 Srinivasan R, 2018, PROD OPER MANAG, V27, P1849, DOI 10.1111/poms.12746 Tatoglu E, 2016, J WORLD BUS, V51, P278, DOI 10.1016/j.jwb.2015.11.001 Tien J.M., 2017, Annals of Data Science, V4, P149, DOI 10.1007/s40745-017-0112-5 Turner JR, 2020, ADV DEV HUM RESOUR, V22, P72, DOI 10.1177/1523422319886300 Turner N, 2013, MANAGE LEARN, V44, P179, DOI 10.1177/1350507612444074 Valenzuela-Fernandez L, 2019, J BUS-BUS MARK, V26, P75, DOI 10.1080/1051712X.2019.1565142 Van Eck N.J., 2014, Measuring Scholarly Impact: Methods and Practice, P285, DOI 10.1007/978-3-319-10377-8_13(InEng.) Van Eck NJ, 2007, STUD CLASS DATA ANAL, P299 van Eck NJ, 2010, SCIENTOMETRICS, V84, P523, DOI 10.1007/s11192-009-0146-3 van Rijmenan M, 2019, LONG RANGE PLANN, V52, DOI 10.1016/j.lrp.2018.05.007 Viaene S, 2013, IT PROF, V15, P12, DOI 10.1109/MITP.2013.93 Wamba SF, 2021, TECHNOL FORECAST SOC, V164, DOI 10.1016/j.techfore.2020.120482 Wamba SF, 2017, J BUS RES, V70, P356, DOI 10.1016/j.jbusres.2016.08.009 Wang YC, 2018, TECHNOL FORECAST SOC, V126, P3, DOI 10.1016/j.techfore.2015.12.019 Watson H.J., 2011, Business Intelligence Journal, V16, P4 Wirtz BW, 2020, INT J PUBLIC ADMIN, V43, P818, DOI 10.1080/01900692.2020.1749851 Wirtz BW, 2019, INT J PUBLIC ADMIN, V42, P596, DOI 10.1080/01900692.2018.1498103 Wirtz BW, 2019, PUBLIC MANAG REV, V21, P1076, DOI 10.1080/14719037.2018.1549268 Yang Y, 2011, GROUP ORGAN MANAGE, V36, P6, DOI 10.1177/1059601110390997 You KF, 2019, J BUS RES, V97, P268, DOI 10.1016/j.jbusres.2018.01.015 Zhang C, 2009, INT J PROD ECON, V120, P252, DOI 10.1016/j.ijpe.2008.07.023 Zhang D, 2021, INT J INFORM MANAGE, V57, DOI 10.1016/j.ijinfomgt.2020.102304 Zhao JL, 2014, J MANAG ANAL, V1, P169, DOI 10.1080/23270012.2014.968643 Zheng DQ, 2013, EUR J INFORM SYST, V22, P221, DOI 10.1057/ejis.2012.28 Zupic I, 2015, ORGAN RES METHODS, V18, P429, DOI 10.1177/1094428114562629 NR 107 TC 55 Z9 56 U1 53 U2 275 PU ELSEVIER SCIENCE INC PI NEW YORK PA STE 800, 230 PARK AVE, NEW YORK, NY 10169 USA SN 0040-1625 EI 1873-5509 J9 TECHNOL FORECAST SOC JI Technol. Forecast. Soc. Chang. PD JAN PY 2022 VL 174 AR 121201 DI 10.1016/j.techfore.2021.121201 EA SEP 2021 PG 17 WC Business; Regional & Urban Planning WE Social Science Citation Index (SSCI) SC Business & Economics; Public Administration GA UY7AO UT WOS:000701672300012 DA 2024-09-05 ER PT J AU Ding, ZJ Ji, YR Gan, Y Wang, YW Xia, YK AF Ding, Zijie Ji, Yingrui Gan, Yan Wang, Yuwen Xia, Yukun TI Current status and trends of technology, methods, and applications of Human-Computer Intelligent Interaction (HCII): A bibliometric research SO MULTIMEDIA TOOLS AND APPLICATIONS LA English DT Article; Early Access DE Human-Computer Intelligent Interaction; Human-Computer Interaction; Artificial intelligence; Bibliometric Research; CiteSpace ID TRACKING; NETWORK AB This study delves into Human-Computer Intelligent Interaction (HCII), a burgeoning interdisciplinary field that builds upon traditional Human-Computer Interaction (HCI) by integrating advanced technologies like Natural Language Processing (NLP) and Machine Learning (ML). In this paper, we scrutinize 5,781 HCII papers published between 2000 and 2023, narrowing our focus to 803 most relevant articles to construct co-citation and interdisciplinary networks based on the CiteSpace Software. Our findings reveal that the publications of the United States and China are relatively high with 558 and 616 publications respectively. Furthermore, we found that machine learning and deep learning have emerged as the prevalent methodologies in HCII, which currently emphasizes multimodal emotion recognition, facial expression recognition, and NLP. We predict that HCII will be integrated into advanced applications such as neural-based interactive games and multi-sensory environments. In sum, our analysis underscores HCII's role in advancing artificial intelligence, facilitating more intuitive and efficient human-computer interactions, and its prospective societal impact. We hope that our review and analysis may guide the efforts of researchers aiming to contribute to HCII and develop more powerful and intelligent methods, tools, and applications. C1 [Ding, Zijie; Gan, Yan; Wang, Yuwen; Xia, Yukun] Huazhong Univ Sci & Technol, Sch Mech Sci & Engn, Wuhan 430074, Peoples R China. [Ji, Yingrui] Chinese Acad Sci, Aerosp Informat Res Inst, Beijing 100190, Peoples R China. [Ji, Yingrui] Univ Chinese Acad Sci, Beijing 100190, Peoples R China. C3 Huazhong University of Science & Technology; Chinese Academy of Sciences; Aerospace Information Research Institute, CAS; Chinese Academy of Sciences; University of Chinese Academy of Sciences, CAS RP Gan, Y (corresponding author), Huazhong Univ Sci & Technol, Sch Mech Sci & Engn, Wuhan 430074, Peoples R China. EM ganyan@hust.edu.cn FU National Laboratory of Mechanical Systems and Vibrations of China FX No Statement Available CR Ahamed MM., 2017, Int J Contemp Comput Res, V1, P31 AlEisa HN, 2023, IEEE ACCESS, V11, P62233, DOI 10.1109/ACCESS.2023.3284457 Ansar H, 2023, IEEE ACCESS, V11, P82065, DOI 10.1109/ACCESS.2023.3300712 Bai JS, 2009, ECONOMETRICA, V77, P1229, DOI 10.3982/ECTA6135 Basak S, 2021, IEEE ACCESS, V9, P37557, DOI 10.1109/ACCESS.2021.3063884 Bi LS, 2023, BMC MUSCULOSKEL DIS, V24, DOI 10.1186/s12891-023-06438-2 Cantoni V, 2004, J VISUAL LANG COMPUT, V15, P333, DOI 10.1016/j.jvlc.2003.10.002 Casini L, 2023, SCI REP-UK, V13, DOI 10.1038/s41598-023-36015-5 Changhoon O., 2018, Assoc Comput Mach Pap, V649, P1 Charissis V, 2021, APPL SCI-BASEL, V11, DOI 10.3390/app11041397 Chen CM, 2017, J DATA INFO SCI, V2, P1, DOI 10.1515/jdis-2017-0006 Chen WY, 2020, SENSORS-BASEL, V20, DOI 10.3390/s20041074 Chen YW, 2022, IEEE ACCESS, V10, P90523, DOI 10.1109/ACCESS.2022.3201555 Chen Y, 2021, BUILDINGS-BASEL, V11, DOI 10.3390/buildings11100427 Choi DY, 2020, IEEE ACCESS, V8, P203814, DOI 10.1109/ACCESS.2020.3036877 Cobo MJ, 2012, J AM SOC INF SCI TEC, V63, P1609, DOI 10.1002/asi.22688 de Arriba-Pérez F, 2021, SENSORS-BASEL, V21, DOI 10.3390/s21165515 Dey A., 2016, Int. J. Sci. Res., V7, P1174 Diederich S., 2022, J Assoc Inf Syst, V1, P23 El Ouariachi I, 2022, MULTIMED TOOLS APPL, V81, P12725, DOI 10.1007/s11042-022-12161-2 Foucher J, 2022, IEEE ACCESS, V10, P104242, DOI 10.1109/ACCESS.2022.3210526 Gagliardi G, 2023, IEEE ACCESS, V11, P39544, DOI 10.1109/ACCESS.2023.3268233 García-Méndez S, 2021, IEEE ACCESS, V9, P75878, DOI 10.1109/ACCESS.2021.3080837 Hirschberg J, 2015, SCIENCE, V349, P261, DOI 10.1126/science.aaa8685 Hu ZM, 2021, IEEE T VIS COMPUT GR, V27, P2681, DOI 10.1109/TVCG.2021.3067779 Hussien RM., 2021, J Phys: Conf Ser, V1 Jacob S, 2020, IEEE ACCESS, V8, P100721, DOI 10.1109/ACCESS.2020.2997727 Jaimes A, 2005, LECT NOTES COMPUT SC, V3766, P1, DOI 10.1007/11573425_1 Jia N, 2022, MULTIMED TOOLS APPL, V81, P32265, DOI 10.1007/s11042-022-13091-9 Jo AH, 2023, APPL SCI-BASEL, V13, DOI 10.3390/app13042167 Karpov AA, 2018, HER RUSS ACAD SCI+, V88, P67, DOI 10.1134/S1019331618010094 Khalil RA, 2019, IEEE ACCESS, V7, P117327, DOI 10.1109/ACCESS.2019.2936124 Kim H, 2023, ETRI J, V45, P75, DOI 10.4218/etrij.2021-0241 Kothadiya DR, 2023, IEEE ACCESS, V11, P47410, DOI 10.1109/ACCESS.2023.3274851 Krepki R, 2007, MULTIMED TOOLS APPL, V33, P73, DOI 10.1007/s11042-006-0094-3 Kusal S, 2022, IEEE ACCESS, V10, P92337, DOI 10.1109/ACCESS.2022.3201144 LeCun Y, 2015, NATURE, V521, P436, DOI 10.1038/nature14539 Lee CH, 2022, APPL SCI-BASEL, V12, DOI 10.3390/app121910066 Li C, 2022, IEEE ACCESS, V10, P91631, DOI 10.1109/ACCESS.2022.3202554 Li K, 2020, VISUAL COMPUT, V36, P391, DOI 10.1007/s00371-019-01627-4 Li M, 2021, SENSORS-BASEL, V21, DOI 10.3390/s21051613 Li X, 2020, SIGNAL PROCESS-IMAGE, V81, DOI 10.1016/j.image.2019.115686 Lin S, 2021, IEEE ACCESS, V9, P111181, DOI 10.1109/ACCESS.2021.3102606 Lv TQ, 2020, IEEE ACCESS, V8, P68320, DOI 10.1109/ACCESS.2020.2986246 Lv ZH, 2022, APPL SCI-BASEL, V12, DOI 10.3390/app122211457 Lyu Y, 2023, PROC ACM INTERACT MO, V7, DOI 10.1145/3596251 Malibari AA, 2022, APPL SCI-BASEL, V12, DOI 10.3390/app12146848 Miah AM, 2022, APPL SCI-BASEL, V12, DOI 10.3390/app12083933 Miao YM, 2018, MOBILE NETW APPL, V23, P1645, DOI 10.1007/s11036-018-1110-3 Nazar M, 2021, IEEE ACCESS, V9, P153316, DOI 10.1109/ACCESS.2021.3127881 Ometto M., 2022, Danieli Intelligent Plant. IFAC-PapersOnLine, V55, P313, DOI [10.1016/j.ifacol.2023.01.091, DOI 10.1016/J.IFACOL.2023.01.091] Ozcan T, 2020, MULTIMED TOOLS APPL, V79, P26587, DOI 10.1007/s11042-020-09268-9 Padfield N, 2022, SENSORS-BASEL, V22, DOI 10.3390/s22155802 Raptis GE, 2021, APPL SCI-BASEL, V11, DOI 10.3390/app11062695 Rawat KS, 2021, COMPUT APPL ENG EDUC, V29, P1324, DOI 10.1002/cae.22388 Razzaq MA, 2023, SENSORS-BASEL, V23, DOI 10.3390/s23094373 Singh SK, 2023, MULTIMED TOOLS APPL, V82, P23833, DOI 10.1007/s11042-022-14117-y Souza KES, 2019, IEEE ACCESS, V7, P96506, DOI 10.1109/ACCESS.2019.2927860 Tang JS, 2019, INT J HUM-COMPUT INT, V35, P846, DOI 10.1080/10447318.2018.1502000 Tang Y, 2021, IEEE T IMAGE PROCESS, V30, P444, DOI 10.1109/TIP.2020.3037467 Vail EF, 1999, INFORM SYST MANAGE, V16, P16, DOI 10.1201/1078/43189.16.4.19990901/31199.3 van Eck NJ, 2010, SCIENTOMETRICS, V84, P523, DOI 10.1007/s11192-009-0146-3 Van Mechelen M, 2023, ACM T COMPUT-HUM INT, V30, DOI 10.1145/3569897 Waldron SM, 2008, ERGONOMICS, V51, P775, DOI 10.1080/00140130701811933 Wang GZ, 2018, ADV EXP MED BIOL, V1093, P207, DOI 10.1007/978-981-13-1396-7_17 Wang T, 2021, INT J COMPUT INTEG M, V34, P888, DOI 10.1080/0951192X.2021.1925966 Wang T, 2021, J MANUF SYST, V58, P261, DOI 10.1016/j.jmsy.2020.07.011 Wei FW, 2015, PROF GEOGR, V67, P374, DOI 10.1080/00330124.2014.983588 Xi Y, 2016, WIRELESS PERS COMMUN, V91, P1779, DOI 10.1007/s11277-016-3356-z Xiong SQ, 2022, SENSORS-BASEL, V22, DOI 10.3390/s22155509 Zhang QL, 2023, SYSTEMS-BASEL, V11, DOI 10.3390/systems11030156 Zhong SH, 2019, PROCESSES, V7, DOI 10.3390/pr7110818 NR 72 TC 1 Z9 1 U1 28 U2 31 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 1380-7501 EI 1573-7721 J9 MULTIMED TOOLS APPL JI Multimed. Tools Appl. PD 2024 JAN 30 PY 2024 DI 10.1007/s11042-023-18096-6 EA JAN 2024 PG 34 WC Computer Science, Information Systems; Computer Science, Software Engineering; Computer Science, Theory & Methods; Engineering, Electrical & Electronic WE Science Citation Index Expanded (SCI-EXPANDED) SC Computer Science; Engineering GA HA6S6 UT WOS:001156811100010 DA 2024-09-05 ER PT J AU Nielsen, MW Börjeson, L AF Nielsen, Mathias Wullum Borjeson, Love TI Gender diversity in the management field: Does it matter for research outcomes? SO RESEARCH POLICY LA English DT Article DE Gender diversity; Research outcomes; Management research; Citations; Topic modeling; Bibliometrics; Research questions ID RESEARCH PRODUCTIVITY; SCIENTIFIC PRODUCTIVITY; COMBINED COCITATION; SEX SEGREGATION; WORD ANALYSIS; SCIENCE; IMPACT; PERFORMANCE; FACULTY; DETERMINANTS AB This study examines the relationship between gender diversity and research outcomes. Existing research on the topic primarily focuses on how team gender diversity influences scholarly productivity in terms of citations and publication rates. Far less attention has been devoted to the question of how the intellectual contents of research disciplines change as they become more gender diverse. Drawing on a global sample of more than 25,000 management papers, we use natural language processing techniques, correspondence analysis and regression models to illuminate impact-, content- and status-related dimensions of gender diversity in management research. In regression models adjusting for geographical setting, institutional prestige and collaboration patterns, we find no discernable effects of team gender diversity on per-paper scientific impact. In contrast, our analyses converge to yield a broadly consistent pattern of gender-related variations in research focus: women are well represented in social- and human-centered areas of management, while men comprise the vast majority in areas addressing more technical and operational aspects. Our findings corroborate recent sociological research suggesting that cultural norms and expectations are channeling women and men towards different areas of work and study. We argue that the broadened repertoire of perspectives, values and questions resulting from gender diversity may render management research more responsive to the full gamut of societal needs and expectations. C1 [Nielsen, Mathias Wullum] Aarhus Univ, Dept Polit Sci, Danish Ctr Studies Res & Res Policy, Bartholins Alle 7, DK-8000 Aarhus, Denmark. [Borjeson, Love] Stockholm Sch Econ, Stockholm Sch Econ Inst Res SIR, Box 6501, S-11383 Stockholm, Sweden. C3 Aarhus University; Stockholm School of Economics RP Nielsen, MW (corresponding author), Aarhus Univ, Dept Polit Sci, Danish Ctr Studies Res & Res Policy, Bartholins Alle 7, DK-8000 Aarhus, Denmark. EM mwn@ps.au.dk RI Nielsen, Mathias/KUC-8621-2024 OI Borjeson, Love/0000-0003-1328-4164; Nielsen, Mathias Wullum/0000-0001-8759-7150 FU Aarhus University Research Foundation [AUFF-F-2018-7-5] FX Bibliometric indices (CS, NCS, PP top-10%, JS, self-citation rates, institutional collaboration, international collaboration and WoS coverage) were generously provided by the Centre for Science and Technology Studies (CWTS) at Leiden University. We thank Jesper Wiborg Schneider and Sergiy Prostiv for help with data acquisition and processing, and useful comments on the manuscript. We also received valuable feedback from audiences at SCANCOR, Stanford University, the Editor Paul Nightingale and three anonymous reviewers. This project was generously funded by the Aarhus University Research Foundation [Award AUFF-F-2018-7-5]. CR Abramo G, 2013, J INFORMETR, V7, P811, DOI 10.1016/j.joi.2013.07.002 Abramo G, 2009, SCIENTOMETRICS, V81, P137, DOI 10.1007/s11192-008-2131-7 Aksnes DW, 2011, J AM SOC INF SCI TEC, V62, P628, DOI 10.1002/asi.21486 Alers M, 2014, PERSPECT MED EDUC, V3, P163, DOI 10.1007/s40037-014-0132-1 ALLISON PD, 1990, AM SOCIOL REV, V55, P469, DOI 10.2307/2095801 [Anonymous], 2012, COMMUNICATION [Anonymous], 2003, Women in Science: Career Processes and Outcomes [Anonymous], 2015, IS GENDER GAP NARROW [Anonymous], EC ANAL DIVERSITY 28 [Anonymous], 2008, DIFFERENCE POWER DIV [Anonymous], 1990, LOGIC PRACTICE TRANS Archambault E, 2009, SCIENTOMETRICS, V79, P635, DOI 10.1007/s11192-007-2036-x Association to Advance Collegiate Schools of Business (AACSB), 2016, BUSINESS DATA GUIDE Asuncion A., 2009, C UNC ART INT UAI QU, P27, DOI DOI 10.1080/10807030390248483 Ballesteros-Rodriguez JL, 2015, SCIENTIST, V47, P165, DOI 10.1111/RADM.12139 Baruch Y., 2001, International Journal of Cross-Cultural Management, V1, P109, DOI DOI 10.1177/147059580111010 Bland CJ, 2006, J HIGH EDUC, V77, P89, DOI 10.1353/jhe.2006.0002 Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993 Borgatti S. P., 2018, Analysing social networks, V2nd Bornmann L., 2008, ETHICS SCI ENV POLIT, V8, P93, DOI [10.3354/esep00084, DOI 10.3354/ESEP00084] Borrego A, 2010, SCIENTOMETRICS, V83, P93, DOI 10.1007/s11192-009-0025-y Botelho TL, 2017, ADMIN SCI QUART, V62, P698, DOI 10.1177/0001839217694358 Bozeman B, 2004, RES POLICY, V33, P599, DOI 10.1016/j.respol.2004.01.008 BRAAM RR, 1991, J AM SOC INFORM SCI, V42, P233, DOI 10.1002/(SICI)1097-4571(199105)42:4<233::AID-ASI1>3.0.CO;2-I BRAAM RR, 1991, J AM SOC INFORM SCI, V42, P252, DOI 10.1002/(SICI)1097-4571(199105)42:4<252::AID-ASI2>3.0.CO;2-G Campbell LG, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0079147 Caplar N, 2017, NAT ASTRON, V1, DOI 10.1038/s41550-017-0141 Cech EA, 2013, AM J SOCIOL, V119, P747, DOI 10.1086/673969 Charles M, 2002, AM SOCIOL REV, V67, P573, DOI 10.2307/3088946 Charles M., 2004, Occupational ghettos: the worldwide segregation of women and men Charles M, 2009, AM J SOCIOL, V114, P924, DOI 10.1086/595942 Cole JR., 1973, Social stratification in science CRONIN B, 1981, J DOC, V37, P16, DOI 10.1108/eb026703 CWTS, 2016, CWTS LEID RANK IND Dolado JJ, 2012, SERIES-J SPAN ECON, V3, P367, DOI 10.1007/s13209-011-0065-4 Duch J, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0051332 Eccles J.S., 2007, WHY ARENT MORE WOMEN, P199, DOI DOI 10.1037/11546-016 Elsevier, 2021, GENDER GLOBAL RES LA Ely RJ, 2001, ADMIN SCI QUART, V46, P229, DOI 10.2307/2667087 England P, 2006, GENDER SOC, V20, P657, DOI 10.1177/0891243206290753 Ferber MA, 2011, FEM ECON, V17, P151, DOI 10.1080/13545701.2010.541857 Fernandez RM, 2011, IND RELAT, V50, P591, DOI 10.1111/j.1468-232X.2011.00654.x Gender API, 2016, GEND API DET GEND 1 Glaser J., 2007, CHANGING GOVERNANCE, P101, DOI [10.1007/978-1-4020-6746-4_5, DOI 10.1007/978-1-4020-6746-4_5] Glaser J., 2015, EPISTEMIC DIVERSITY Glob. Res. Council, 2016, STAT PRINC ACT PROM Golde CM, 2005, J HIGH EDUC-UK, V76, P669, DOI 10.1353/jhe.2005.0039 Gonzalez-Brambila C, 2007, RES POLICY, V36, P1035, DOI 10.1016/j.respol.2007.03.005 GRANT L, 1991, GENDER SOC, V5, P207, DOI 10.1177/089124391005002005 Greenacre M, 2007, Correspondence Analysis in Practice, V2 Harrison DA, 1998, ACAD MANAGE J, V41, P96, DOI 10.5465/256901 Hasrati M., 2009, J ENGL ACAD PURP, V8, P14, DOI DOI 10.1016/J.JEAP.2009.01.002 Homan AC, 2007, J APPL PSYCHOL, V92, P1189, DOI 10.1037/0021-9010.92.5.1189 Horwitz S. K., 2005, HUMAN RESOURCE DEV R, V4, P219, DOI [10.1177/153448430527584, DOI 10.1177/1534484305275847] Hülsheger UR, 2009, J APPL PSYCHOL, V94, P1128, DOI 10.1037/a0015978 ISAAC PD, 1992, J HIGH EDUC, V63, P241, DOI 10.2307/1982014 Joshi A, 2014, ADMIN SCI QUART, V59, P202, DOI 10.1177/0001839214528331 Judge TA, 2007, ACAD MANAGE J, V50, P491 Larivière V, 2016, SOC STUD SCI, V46, P417, DOI 10.1177/0306312716650046 Larivière V, 2011, SCIENTOMETRICS, V87, P483, DOI 10.1007/s11192-011-0369-y Leahey E, 2006, GENDER SOC, V20, P754, DOI 10.1177/0891243206293030 Leisyte L, 2016, STUD HIGH EDUC, V41, P828, DOI 10.1080/03075079.2016.1147721 Lerchenmueller MJ, 2018, RES POLICY, V47, P1007, DOI 10.1016/j.respol.2018.02.009 Light R, 2013, RES SOCIOL WORK, V24, P239, DOI 10.1108/S0277-2833(2013)0000024012 LONG JS, 1992, SOC FORCES, V71, P159, DOI 10.2307/2579971 Lungeanu A, 2015, AM BEHAV SCI, V59, P548, DOI 10.1177/0002764214556804 Maes K., 2012, Women, research and universities: Excellence without gender bias Mairesse J, 2015, REV ECON-FR, V66, P65, DOI 10.3917/reco.661.0065 Mannix Elizabeth, 2005, Psychol Sci Public Interest, V6, P31, DOI 10.1111/j.1529-1006.2005.00022.x McCullagh P., 1989, Generalized linear models, V2nd McFarland DA, 2013, POETICS, V41, P607, DOI 10.1016/j.poetic.2013.06.004 McLeod J, 2005, THEORY RES EDUC, V3, P11, DOI 10.1177/1477878505049832 Medin D, 2017, NAT HUM BEHAV, V1, DOI 10.1038/s41562-017-0088 Merrill-Sands D., 2000, Working with diversity: A framework for action Mingers J, 2010, EUR J OPER RES, V205, P422, DOI 10.1016/j.ejor.2009.12.008 Mohr JW, 2013, POETICS, V41, P545, DOI 10.1016/j.poetic.2013.10.001 Moretti Franco., 2005, Graphs, Maps, Trees: Abstract Models for a Literary History Moss-Racusin CA, 2012, P NATL ACAD SCI USA, V109, P16474, DOI 10.1073/pnas.1211286109 Neumann R, 2007, STUD HIGH EDUC, V32, P459, DOI 10.1080/03075070701476134 Nichols LG, 2014, SCIENTOMETRICS, V100, P741, DOI 10.1007/s11192-014-1319-2 Nielsen MW, 2018, NAT HUM BEHAV, V2, P726, DOI 10.1038/s41562-018-0433-1 Nielsen MW, 2018, SCI TECHNOL STUD, V31, P2, DOI 10.23987/sts.60610 Nielsen MW, 2017, J INFORMETR, V11, P1213, DOI 10.1016/j.joi.2017.09.005 Nielsen MW, 2017, STUD HIGH EDUC, V42, P1033, DOI 10.1080/03075079.2015.1075197 Nielsen MW, 2016, STUD HIGH EDUC, V41, P2044, DOI 10.1080/03075079.2015.1007945 Nishii LH, 2013, ACAD MANAGE J, V56, P1754, DOI 10.5465/amj.2009.0823 Pelled LH, 1999, ADMIN SCI QUART, V44, P1, DOI 10.2307/2667029 PFEFFER J, 1993, ACAD MANAGE REV, V18, P599, DOI 10.2307/258592 Podsakoff PM, 2008, J MANAGE, V34, P641, DOI 10.1177/0149206308319533 Rafols I, 2012, RES POLICY, V41, P1262, DOI 10.1016/j.respol.2012.03.015 Ramage D., 2011, Stanford topic modeling toolbox Reskin B.F., 2009, JOB QUEUES GENDER QU Ridgeway CeciliaL., 2011, Framed by gender Rosenberg N., 1994, C GROWTH DEV EC 21 C Royal Society, 2017, DIV SCI Santamaría L, 2018, PEERJ COMPUT SCI, DOI 10.7717/peerj-cs.156 Sax LJ, 2002, RES HIGH EDUC, V43, P423, DOI 10.1023/A:1015575616285 Schneid M, 2015, INT J HUM RESOUR MAN, V26, P733, DOI 10.1080/09585192.2014.957712 Slyder JB, 2011, SCIENTOMETRICS, V89, P955, DOI 10.1007/s11192-011-0467-x Stirling A., 2009, WORKING PAPER Stirling A, 2007, J R SOC INTERFACE, V4, P707, DOI 10.1098/rsif.2007.0213 Stvilia B, 2011, J AM SOC INF SCI TEC, V62, P270, DOI 10.1002/asi.21464 Sugimoto C. R., 2009, THESIS Sugimoto CR, 2015, SCI PUBL POLICY, V42, P789, DOI 10.1093/scipol/scv007 Sugimoto CR, 2013, NATURE, V504, P211, DOI 10.1038/504211a Symonds MRE, 2006, PLOS ONE, V1, DOI 10.1371/journal.pone.0000127 Talley EM, 2011, NAT METHODS, V8, P443, DOI 10.1038/nmeth.1619 Taylor SW, 2006, SOUTH ECON J, V72, P846, DOI 10.2307/20111856 Valantine HA, 2015, P NATL ACAD SCI USA, V112, P12240, DOI 10.1073/pnas.1515612112 van Arensbergen P, 2012, SCIENTOMETRICS, V93, P857, DOI 10.1007/s11192-012-0712-y van Dijk H, 2012, ORGAN BEHAV HUM DEC, V119, P38, DOI 10.1016/j.obhdp.2012.06.003 VANMAANEN J, 1995, ORGAN SCI, V6, P133, DOI 10.1287/orsc.6.1.133 Waltman L, 2011, J INFORMETR, V5, P37, DOI 10.1016/j.joi.2010.08.001 Williams KW, 1998, HUM FAC ERG SOC P, P77 Xie Y, 1998, AM SOCIOL REV, V63, P847, DOI 10.2307/2657505 NR 115 TC 42 Z9 44 U1 4 U2 119 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0048-7333 EI 1873-7625 J9 RES POLICY JI Res. Policy PD SEP PY 2019 VL 48 IS 7 BP 1617 EP 1632 DI 10.1016/j.respol.2019.03.006 PG 16 WC Management WE Social Science Citation Index (SSCI) SC Business & Economics GA IC4RC UT WOS:000470952000002 DA 2024-09-05 ER PT C AU Zou, D Han, Y AF Zou, Dan Han, Yi GP ISSI BE Atanassova, I Bertin, M Mayr, P TI An Altmetrics Study of TOP100 Samples in 2016 SO 16TH INTERNATIONAL CONFERENCE ON SCIENTOMETRICS & INFORMETRICS (ISSI 2017) SE Proceedings of the International Conference on Scientometrics and Informetrics LA English DT Proceedings Paper CT 16th International Conference on Scientometrics and Informetrics (ISSI) CY OCT 16-20, 2017 CL Wuhan Univ, Wuhan, PEOPLES R CHINA HO Wuhan Univ DE Altmetrics; Altmetrics scores; citation counting; correlation analysis; multiple linear regression analysis AB This paper takes the TOP100 literatures with the highest Altmetrics Scores in the Altmetric.com in 2016 as samples. Taking the advantage of SPSS19.0, the correlation analysis between Altmetrics score and citation counting was presented, and the Pearson correlation coefficient is 0.036, which means that the Altmetrics score does not correlate with the citation counting and the Altmetrics indicator maybe independent variable to assess the literature impact. Meanwhile, the multiple linear regression analysis was conducted, which the Altmetric scores was viewed as dependent variable and some component indicators as independent ones. The fitness between the independent variable and the dependent variable is very good, and the significance test of the variable coefficient is also verified. C1 [Zou, Dan; Han, Yi] Southwest Univ, Coll Comp & Informat Sci, Chongqing, Peoples R China. C3 Southwest University - China RP Zou, D (corresponding author), Southwest Univ, Coll Comp & Informat Sci, Chongqing, Peoples R China. EM 531479222@qq.com; hanyi72@swu.edu.cn CR Cabezas-Clavijo A, 2010, PROF INFORM, V19, P431, DOI 10.3145/epi.2010.jul.14 Curry S., 2014, DEBATING ROLE METRIC Eysenbach G, 2011, J MED INTERNET RES, V13, DOI 10.2196/jmir.2012 LI Gen, 2016, ACTA EDITOLOGICA, V2, P196 Li XM, 2012, SCIENTOMETRICS, V91, P461, DOI 10.1007/s11192-011-0580-x Liu Jean, 2013, Bulletin of the American Society for Information Science and Technology, V39, P22 Piwowar H, 2013, NATURE, V493, P159, DOI 10.1038/493159a Priem J, 2012, PLOS ONE, V11, P35 Thelwall M, 2013, PUBLIC LIB SCI, V5 Torres-Salinas D, 2013, COMUNICAR, V21, P53, DOI 10.3916/C41-2013-05 Wang Rui, 2014, LIB INFORM SERVICE, V21, P92 Wang Xianwen, 2016, ATTENTION CITATION W Zhao Rongying, 2016, J LIB SCI CHINA, V1, P96 NR 13 TC 1 Z9 1 U1 0 U2 7 PU INT SOC SCIENTOMETRICS & INFORMETRICS-ISSI PI LEUVEN PA KATHOLIEKE UNIV LEUVEN, FACULTEIT E T E W, DEKENSTRAAT 2, LEUVEN, B-3000, BELGIUM SN 2175-1935 J9 PRO INT CONF SCI INF PY 2017 BP 1710 EP 1718 PG 9 WC Computer Science, Interdisciplinary Applications; Information Science & Library Science WE Conference Proceedings Citation Index - Science (CPCI-S); Conference Proceedings Citation Index - Social Science & Humanities (CPCI-SSH) SC Computer Science; Information Science & Library Science GA BO2SP UT WOS:000508234900188 DA 2024-09-05 ER PT J AU Sharmiladevi, JC Khandelwal, NK Mishra, PK Dutt, I Raees, S Mathur, AR Sharma, A AF Sharmiladevi, J. C. Khandelwal, Nishant Kumar Mishra, Punit Kumar Dutt, Ishita Raees, Sameera Mathur, Ashutosh Rajendera Sharma, Adya TI Changes and Current Trends in Higher Education in Management and Allied Disciplines: A Bibliometric Study SO INTERNATIONAL JOURNAL OF EDUCATIONAL SCIENCES LA English DT Article DE Online Learning; Research Trends; Sustainable Higher Education; Management; Scientometrics ID SCIENTIFIC LITERATURE; COMPETENCES; COCITATION; IMPACT AB Changes in the higher education domain are essential for the enhancement of the future generation. It must be embraced successfully to face the dynamics and accept new developments with their inherent outcomes. Sustaining changes will equip policymakers to understand the wheel of knowledge central to success. This domain has undergone many changes recently due to multiple global events. Using bibliometric analysis, authors tried to understand these changes in management and allied fields by extracting 2503 documents from the Scopus database from January 2020 to April 2023. Studies in Higher Education and International Journal of Sustainability in Higher Education are the most prominent sources. Mishra L, Gupta T, and Shree A are the highest-cited authors. Braun, Marginson, and Bourdieu are the most co-cited authors. Change management, online collaborative learning, and digital competence are the themes that emerged from thematic analysis. The results of this study are significant in decision-making for scholars, researchers, policymakers, and institutions in the higher education sector. C1 [Sharmiladevi, J. C.; Khandelwal, Nishant Kumar; Mishra, Punit Kumar; Dutt, Ishita; Raees, Sameera; Mathur, Ashutosh Rajendera; Sharma, Adya] Symbiosis Int Deemed Univ, Symbiosis Ctr Management Studies, Pune, Maharashtra, India. C3 Symbiosis International University; Symbiosis Centre for Management Studies Pune RP Sharmiladevi, JC (corresponding author), Symbiosis Int Deemed Univ, Symbiosis Ctr Management Studies, Pune, Maharashtra, India. EM sharmiladevi@scmspune.ac.in RI J.C, Sharmiladevi/U-3983-2017; Sharma, Adya/HLV-8669-2023; Dutt, Ishita/GLT-8249-2022; RAEES, Dr. SAMEERA/GHD-8110-2022; Mishra, Punit Kumar/HDL-9155-2022; Mathur, Ashutosh/HJP-2278-2023 OI Mishra, Punit Kumar/0000-0002-2912-4977; CR Abu Talib M, 2021, EDUC INF TECHNOL, V26, P6719, DOI 10.1007/s10639-021-10507-1 Adedoyin O.B., 2020, INTERACT LEARN ENVIR, P1, DOI DOI 10.1080/10494820.2020.1813180 Adhya D, 2022, EDUC MEDIA INT, V59, P131, DOI 10.1080/09523987.2022.2101204 Akter S, 2021, INT J SOC ECON, V48, P399, DOI 10.1108/IJSE-08-2020-0545 Altbach P., 2022, International Higher Education, V111, P3 Annala J, 2022, J CURRICULUM STUD, V54, P53, DOI 10.1080/00220272.2020.1836261 [Anonymous], 2023, What you need to know about higher education Aria M, 2017, J INFORMETR, V11, P959, DOI 10.1016/j.joi.2017.08.007 Arora AK., 2020, PRABANDHAN INDIAN J, V13, P43, DOI [10.17010/pijom/2020/v13i4/151825, DOI 10.17010/PIJOM/2020/V13I4/151825] Azorín C, 2020, J PROF CAP COMMUNITY, V5, P381, DOI 10.1108/JPCC-05-2020-0019 Basantes-Andrade A, 2022, HELIYON, V8, DOI 10.1016/j.heliyon.2022.e09456 Belchior-Rocha H, 2022, EDUC SCI, V12, DOI 10.3390/educsci12040255 Blondel VD, 2008, J STAT MECH-THEORY E, DOI 10.1088/1742-5468/2008/10/P10008 BOURDIEU P, 1977, SOC SCI INFORM, V16, P645, DOI 10.1177/053901847701600601 BOURDIEU P, 1985, THEOR SOC, V14, P723, DOI 10.1007/bf00174048 Brachem JC, 2018, J FURTH HIGH EDUC, V42, P166, DOI 10.1080/0309877X.2016.1224326 Braun E., 2015, Peabody Journal of Education, V90, P574, DOI DOI 10.1080/0161956X.2015.1068086 Braun E, 2008, DIAGNOSTICA, V54, P30, DOI 10.1026/0012-1924.54.1.30 Braun E, 2009, EUR PSYCHOL, V14, P297, DOI 10.1027/1016-9040.14.4.297 Brika SKM, 2021, FRONT EDUC, V6, DOI 10.3389/feduc.2021.666087 Bruggeman B, 2022, COMPUT EDUC OPEN, V3, DOI 10.1016/j.caeo.2022.100095 Brunner LR, 2022, STUD SOC JUSTICE, V16, P78 Chatterjee S, 2020, EDUC INF TECHNOL, V25, P3443, DOI 10.1007/s10639-020-10159-7 Chen XL, 2019, BMC MED INFORM DECIS, V19, DOI 10.1186/s12911-019-0757-4 Clark B.R., 1983, The higher education system: Academic organization in crossnational perspective, DOI [10.1525/9780520340725, DOI 10.1525/9780520340725] Cobo MJ, 2011, J INFORMETR, V5, P146, DOI 10.1016/j.joi.2010.10.002 Coman C, 2020, SUSTAINABILITY-BASEL, V12, DOI 10.3390/su122410367 Corcoran C., 2022, Journal ofInstructionalPedagogies, V27, P1 Crompton H, 2021, BRIT J EDUC TECHNOL, V52, P1554, DOI 10.1111/bjet.13114 de Wit H, 2021, GLOB PERSP HIGHER ED, V50, P303, DOI 10.1163/9789004462717_016 Torres-Caceres FD, 2022, TUNING J HIGH EDUC, V9, P470, DOI 10.18543/tjhe.2217 Dervenis C, 2022, QUAL ASSUR EDUC, V30, P199, DOI 10.1108/QAE-08-2021-0126 Dubey P., 2020, INT J INDIAN PSYCHOL, V8, P43, DOI [DOI 10.25215/0802, 10.25215/0802] Eli-Chukwu NC, 2023, J APPL RES HIGH EDUC, V15, P238, DOI 10.1108/JARHE-09-2021-0346 Eschmann R, 2021, SOCIOL RACE ETHNIC, V7, P264, DOI 10.1177/2332649220933307 Fakunle O, 2021, HIGH EDUC Q, V75, P525, DOI 10.1111/hequ.12345 Falkenstern A, 2020, A Bridge between Educational Theory and Empirical Educational Research. Student Learning in German Higher Education: Innovative Measurement Approaches and Research Results, P301 Fauzi MA, 2022, HELIYON, V8, DOI 10.1016/j.heliyon.2022.e09433 Ferreira JJ, 2018, Entrepreneurial Universities, Cheltenham Forliano C, 2021, TECHNOL FORECAST SOC, V165, DOI 10.1016/j.techfore.2020.120522 Fynn A, 2023, SA J HUM RESOUR MANA, V21 Gao Y., 2022, International Journal of Information and Education Technology, V12, P390, DOI [10.18178/ijiet.2022.12.5.1632, DOI 10.18178/IJIET.2022.12.5.1632] Garcez A, 2022, EDUC INF TECHNOL, V27, P1159, DOI 10.1007/s10639-021-10638-5 Garg A, 2022, EDUC INF TECHNOL, V27, P4793, DOI 10.1007/s10639-021-10797-5 Glass CR, 2023, HIGH EDUC, V85, P415, DOI 10.1007/s10734-022-00841-9 Gonzalez T, 2020, PLOS ONE, V15, DOI 10.1371/journal.pone.0239490 Goren H, 2017, INT J EDUC RES, V82, P170, DOI 10.1016/j.ijer.2017.02.004 Hamzah NFA, 2023, International Journal of Learning, Teaching and Educational Research, V22, P33 Hansson P, 2021, IAFOR Journal of Education, V9, P77 Haryati S, 2021, AlIshlah: Jurnal Pendidikan, V13, P364 Hodges CB., 2020, International Journal of Multidisciplinary Perspectives in Higher Education, V5, P118, DOI [10.32674/jimphe.v5i1.2507, DOI 10.32674/JIMPHE.V5I1.2507] Horta H, 2023, ASIAN ECON POLICY R, V18, P171, DOI 10.1111/aepr.12416 Thi HP, 2023, J APPL RES HIGH EDUC, V15, P324, DOI 10.1108/JARHE-05-2021-0191 Hyytinen H, 2023, FRONT EDUC, V8, DOI 10.3389/feduc.2023.1162156 Jeong YK, 2014, J INFORMETR, V8, P197, DOI 10.1016/j.joi.2013.12.001 Kelchen R., 2021, The lingering fiscal effects of the COVID-19 pandemic on higher education Keshavarz M.H., 2020, Budapest International Research and Critics in Linguistics and Education (BirLE) Journal, V3, P1384, DOI [DOI 10.33258/BIRLE.V3I3.1193, https://doi.org/10.33258/birle.v3i3.1193] Khan ZR, 2021, INT J EDUC INTEGR, V17, DOI 10.1007/s40979-020-00068-0 Laufer M, 2021, INT J EDUC TECHNOL H, V18, DOI 10.1186/s41239-021-00287-6 Le Vo TH, 2021, Journal of Asian Business and Economic Studies, V29, P205 Li X., 2022, ASIA PAC J EDUC, V42, P211, DOI DOI 10.1080/02188791.2020.1766417 Lin DM, 2009, PRO INT CONF SCI INF, V2, P552 Liu CX, 2021, ASIA PAC EDUC REV, V22, P515, DOI 10.1007/s12564-021-09692-y Makruf I, 2022, INT J INSTR, V15, P135, DOI 10.29333/iji.2022.1518a Marginson S, 2006, HIGH EDUC, V52, P1, DOI 10.1007/s10734-004-7649-x Marginson S, 2002, HIGH EDUC, V43, P281, DOI 10.1023/A:1014699605875 Marginson S, 2007, The Organisation for Economic Co-operation and Development OECD Education Working Papers, V8 Marginson S., 2007, Journal of Studies in International Education, V11, P306, DOI [10.1177/1028315307303544, DOI 10.1177/1028315307303544] Marginson S, 2007, HIGH EDUC, V53, P307, DOI 10.1007/s10734-005-8230-y Marom L, 2023, HIGH EDUC, V85, P123, DOI 10.1007/s10734-022-00825-9 Martin EC, 2021, SOC CURR, V8, P424, DOI 10.1177/23294965211026692 McCowan T, 2022, INT J EDUC DEV, V90, DOI 10.1016/j.ijedudev.2022.102558 Mishra Lokanath, 2020, Int J Educ Res Open, V1, P100012, DOI 10.1016/j.ijedro.2020.100012 Müller L, 2018, Z ERZIEHWISS, V21, P649, DOI 10.1007/s11618-017-0799-2 Munim ZH, 2020, MARIT POLICY MANAG, V47, P577, DOI 10.1080/03088839.2020.1788731 Murphy MPA, 2020, CONTEMP SECUR POL, V41, P492, DOI 10.1080/13523260.2020.1761749 Naim A, 2022, American Journal of Pedagogical and Educational Research, V1, P21 Nourshahi N, 2023, Research and Planning in Higher Education, V20, P95 Nowakowski A, 2012, Z ERZIEHWISS, V15, P253, DOI 10.1007/s11618-012-0275-y Oke A., 2020, Journal of Open Innovation: Technology, Market, and Complexity, V6, P31 Oleksiyenko A, 2021, EUR J HIGH EDUC, V11, P101, DOI 10.1080/21568235.2020.1777446 Oliveira G, 2021, BRIT J EDUC TECHNOL, V52, P1357, DOI 10.1111/bjet.13112 Parejo JL, 2022, FRONT EDUC, V7, DOI 10.3389/feduc.2022.991263 Pham HH, 2020, HIGH EDUC RES DEV, V39, P1327, DOI 10.1080/07294360.2020.1823945 Portillo J, 2020, SUSTAINABILITY-BASEL, V12, DOI 10.3390/su122310128 Pozas M, 2022, FRONT EDUC, V7, DOI 10.3389/feduc.2022.1045067 PRABHUPADA A.B.S., 1972, Bhagavad-Gita as it is Pratiwi DI, 2023, Contemporary Educational Technology, V15, P423 Quezada RL, 2020, J EDUC TEACHING, V46, P472, DOI 10.1080/02607476.2020.1801330 Raffaghelli JE, 2015, BRIT J EDUC TECHNOL, V46, P488, DOI 10.1111/bjet.12279 Rahman A., 2021, HIGHER ED FUTURE, V8, P71, DOI DOI 10.1177/2347631120980549 Rapanta C., 2020, Postdigital Science and Education, V2, P923, DOI [10.1007/s42438-020-00155-y, DOI 10.1007/S42438-020-00155-Y] Rapanta C., 2021, Postdigital Science and Education, V3, P715, DOI [DOI 10.1007/S42438-021-00249-1, https://doi.org/10.1007/s42438-021-00249-1] Ratten V, 2020, J ENTERP COMMUNITIES, V14, P753, DOI 10.1108/JEC-06-2020-0121 Raza SA, 2022, J APPL RES HIGH EDUC, V14, P1603, DOI 10.1108/JARHE-02-2021-0054 Rees S, 2021, TEACH HIGH EDUC, V26, P663, DOI 10.1080/13562517.2019.1670637 Riofrío-Calderón G, 2022, SUSTAINABILITY-BASEL, V14, DOI 10.3390/su14052951 Rizvi S, 2022, COMPUT HUM BEHAV, V126, DOI 10.1016/j.chb.2021.106973 Roco M, 2022, INT J EDUC TECHNOL H, V19, DOI 10.1186/s41239-022-00336-8 Rodrigues M, 2021, SUSTAINABILITY-BASEL, V13, DOI 10.3390/su13168718 Ruggeri G, 2019, INT J CONSUM STUD, V43, P134, DOI 10.1111/ijcs.12492 Salas-Pilco SZ, 2022, BRIT J EDUC TECHNOL, V53, P593, DOI 10.1111/bjet.13190 Santos A.I., 2020, Journal of Education and E-Learning Research, V7, P167, DOI [DOI 10.20448/JOURNAL.509.2020.72.167.173, 10.20448/journal.509.2020.72.167, DOI 10.20448/JOURNAL.509.2020.72.167] Sauphayana S., 2021, Journal of Educational and Social Research, V11, P163, DOI [10.36941/jesr-2021-0137, DOI 10.36941/JESR-2021-0137] Schina D, 2020, SUSTAINABILITY-BASEL, V12, DOI 10.3390/su122310085 Shahzad Arfan, 2021, Qual Quant, V55, P805, DOI 10.1007/s11135-020-01028-z Shomotova Aizhan., 2022, The Past, Present, and Future of Higher Education in the Arabian Gulf Region, P159 SMALL H, 1973, J AM SOC INFORM SCI, V24, P265, DOI 10.1002/asi.4630240406 Sokol T., 2022, Pedagogy and Education Management Review, V5, P49, DOI 10.36690/2733-2039-2022-5-49 Sundgren M, 2023, COMPUT EDUC OPEN, V4, DOI 10.1016/j.caeo.2023.100134 Phan TTT, 2022, J UNIV TEACH LEARN P, V19 Thompson KM, 2020, INFORM LEARN SCI, V121, P481, DOI 10.1108/ILS-04-2020-0083 Toquero C.M., 2020, PEDAGOGICAL RES, V5, pem0063, DOI [DOI 10.29333/PR/7947, https://doi.org/10.29333/pr/7947] Trevisan O, 2023, ETR&D-EDUC TECH RES, V71, P79, DOI 10.1007/s11423-023-10197-1 Tsiligkiris V, 2022, HIGH EDUC Q, V76, P343, DOI 10.1111/hequ.12390 Tuhkala A, 2021, EUR J EDUC, V56, P641, DOI 10.1111/ejed.12471 Varadarajan S, 2023, INT J EDUC TECHNOL H, V20, DOI 10.1186/s41239-023-00381-x Wahyuningsih S., 2023, INT J LEARNING TEACH, V22, P209, DOI [10.26803/ijlter.22.3.13, DOI 10.26803/IJLTER.22.3.13] Waters J. L., 2021, Student Migrants and Contemporary Educational Mobilities Wilkens L, 2021, SOC INCL, V9, P117, DOI 10.17645/si.v9i3.4125 Yang G, 2022, FRONT PSYCHOL, V13, DOI 10.3389/fpsyg.2022.829193 Zalat MM, 2021, PLOS ONE, V16, DOI 10.1371/journal.pone.0248758 Zhang L, 2022, BRIT J EDUC TECHNOL, V53, P620, DOI 10.1111/bjet.13191 NR 124 TC 0 Z9 0 U1 4 U2 9 PU KAMLA-RAJ ENTERPRISES PI GURUGRAM PA C210, NIRVANA COURTYARD SOUTH CITY 2, GURUGRAM, HARYANA 122 018, INDIA SN 0975-1122 J9 INT J EDUC SCI JI Int. J. Educ. Sci. PD JUL-SEP PY 2023 VL 42 IS 1-3 BP 6 EP 20 DI 10.31901/24566322.2023/42.1-3.1292 PG 15 WC Education & Educational Research WE Emerging Sources Citation Index (ESCI) SC Education & Educational Research GA T9CX3 UT WOS:001080901500002 DA 2024-09-05 ER PT J AU Cunillera, T Guilera, G AF Cunillera, Toni Guilera, Georgina TI Twenty years of statistical learning: from language, back to machine learning SO SCIENTOMETRICS LA English DT Article DE Statistical learning; Language; Psychology; Bibliometrics ID WORD SEGMENTATION; CHILDREN AB Twenty years ago, Saffran et al. (Science 274:1926-1928, 1996) published a paper in the prestigious journal Science, proposing statistical learning as a key learning process to explain how infants acquire their first words. The current paper presents an overview of how this publication has impacted the scientific community under a bibliometric perspective. Documents citing that paper were searched on the Web of Science Core Collection. Its evolution over time has been analyzed, most productive journals and subject areas have been identified, and a keywords co-occurrence map has been created. Results show that statistical learning has spread widely around scientific areas out of Linguistics and Psychology, and has aroused the interest of researchers from other related areas such as Rehabilitation or Education and Educational Research. C1 [Cunillera, Toni] Univ Barcelona, Fac Psicol, Dept Cognit Dev & Educ Psychol, Pg Vall dHebron 171, Barcelona 08035, Spain. [Guilera, Georgina] Univ Barcelona, Fac Psychol, Dept Social Psychol & Quantitat Psychol, Barcelona, Spain. C3 University of Barcelona; University of Barcelona RP Cunillera, T (corresponding author), Univ Barcelona, Fac Psicol, Dept Cognit Dev & Educ Psychol, Pg Vall dHebron 171, Barcelona 08035, Spain. EM tcunillera@ub.edu RI Guilera, Georgina/A-4253-2009; Cunillera, Toni/I-4212-2015 OI Guilera, Georgina/0000-0002-4941-2511; Cunillera, Toni/0000-0002-1768-5910 CR [Anonymous], 2006, Machine Learning [Anonymous], NEW PSYCHOL LANGUAGE Baldwin D, 2008, COGNITION, V106, P1382, DOI 10.1016/j.cognition.2007.07.005 Conway CM, 2005, J EXP PSYCHOL LEARN, V31, P24, DOI 10.1037/0278-7393.31.1.24 Domjan M., 2010, PRINCIPLES LEARNING Frank MC, 2010, COGNITION, V117, P107, DOI 10.1016/j.cognition.2010.07.005 Gabay Y, 2015, J SPEECH LANG HEAR R, V58, P934, DOI 10.1044/2015_JSLHR-L-14-0324 Guo LY, 2015, J SPEECH LANG HEAR R, V58, P987, DOI 10.1044/2015_JSLHR-H-14-0135 HASTIE T., 2009, Unsupervised Learning, P485 Jordan MI, 2015, SCIENCE, V349, P255, DOI 10.1126/science.aaa8415 Lu K, 2014, P NATL ACAD SCI USA, V111, P14553, DOI 10.1073/pnas.1412109111 Murphy K. P., 2012, MACHINE LEARNING PRO Perruchet P, 2006, TRENDS COGN SCI, V10, P233, DOI 10.1016/j.tics.2006.03.006 Perruchet P, 2014, ACTA PSYCHOL, V149, P1, DOI 10.1016/j.actpsy.2014.01.015 REBER AS, 1967, J VERB LEARN VERB BE, V6, P855, DOI 10.1016/S0022-5371(67)80149-X Saffran JR, 1996, SCIENCE, V274, P1926, DOI 10.1126/science.274.5294.1926 Santolin C, 2018, TRENDS COGN SCI, V22, P52, DOI 10.1016/j.tics.2017.10.003 Sengottuvel K, 2013, RES DEV DISABIL, V34, P3317, DOI 10.1016/j.ridd.2013.06.036 Stadler M.A., 1998, HDB IMPLICIT LEARNIN van Eck NJ, 2010, SCIENTOMETRICS, V82, P581, DOI 10.1007/s11192-010-0173-0 van Eck NJ, 2010, SCIENTOMETRICS, V84, P523, DOI 10.1007/s11192-009-0146-3 Vapnik VN, 1999, IEEE T NEURAL NETWOR, V10, P988, DOI 10.1109/72.788640 Waltman L, 2010, J INFORMETR, V4, P629, DOI 10.1016/j.joi.2010.07.002 NR 23 TC 5 Z9 6 U1 1 U2 109 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0138-9130 EI 1588-2861 J9 SCIENTOMETRICS JI Scientometrics PD OCT PY 2018 VL 117 IS 1 BP 1 EP 8 DI 10.1007/s11192-018-2856-x PG 8 WC Computer Science, Interdisciplinary Applications; Information Science & Library Science WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Computer Science; Information Science & Library Science GA GR6EH UT WOS:000442737700001 DA 2024-09-05 ER PT J AU O'Leary, DE AF O'Leary, Daniel E. TI INTELLIGENT SYSTEMS IN ACCOUNTING, FINANCE AND MANAGEMENT: ISI JOURNAL AND PROCEEDING CITATIONS, AND RESEARCH ISSUES FROM MOST- CITED PAPERS SO INTELLIGENT SYSTEMS IN ACCOUNTING FINANCE & MANAGEMENT LA English DT Article DE naming a journal; ISI proceeding citations; ISI journal citations; Google citations; most-cited papers; research topics in artificial intelligence ID INDEX AB This paper analyses the citations from Intelligent Systems in Accounting, Finance and Management that have occurred in ISI's Web of Knowledge in February 2010. I found roughly 1000 citations to the journal under 10 different journal name abbreviations, with roughly 25% of the citations occurring during 2008-2009, associated with 27 of the more frequently cited papers. Using that citation data, the H-index and the 40 (42 with ties) mostcited papers are presented. I found that ISI's new proceedings data appear to have a different citation pattern than ISI's journal citation data, resulting in citations to more sources, but fewer citations per source. I also examine the research methodologies and applications of the most-cited papers in an attempt to determine what areas have been cited most and where there are potential gaps in the research. Copyright (C) 2010 John Wiley & Sons, Ltd. C1 [O'Leary, Daniel E.] Univ South Calif, Marshall Sch Business, 3660 Trousdale Pkwy, Los Angeles, CA 90089 USA. C3 University of Southern California RP O'Leary, DE (corresponding author), Univ South Calif, Marshall Sch Business, 3660 Trousdale Pkwy, Los Angeles, CA 90089 USA. EM oleary@usc.edu RI O'Leary, Daniel E/B-6469-2008 CR Adams A, 1998, SCIENCE, V281, P1936 Anandarajan M., 2001, International Journal of Intelligent Systems in Accounting, Finance and Management, V10, P69, DOI 10.1002/isaf.199 [Anonymous], INT J INTELLIGENT SY [Anonymous], 1993, Intelligent Systems in Accounting, Finance and Management, DOI DOI 10.1002/J.1099-1174.1993.TB00034.X Barniv R., 1997, International Journal of Intelligent Systems in Accounting, Finance and Management, V6, P177, DOI 10.1002/(SICI)1099-1174(199709)6:3<177::AID-ISAF134>3.0.CO;2-D Bell T. B., 1997, International Journal of Intelligent Systems in Accounting, Finance and Management, V6, P249, DOI 10.1002/(SICI)1099-1174(199709)6:3<249::AID-ISAF125>3.0.CO;2-H Bennell J., 2004, International Journal of Intelligent Systems in Accounting, Finance and Management, V12, P243, DOI 10.1002/isaf.254 Bensic M, 2005, INTELL SYST ACCOUNT, V13, P133, DOI 10.1002/isaf.261 Boritz J. E., 1995, International Journal of Intelligent Systems in Accounting, Finance and Management, V4, P95 Brown C. E., 1994, International Journal of Intelligent Systems in Accounting, Finance and Management, V3, P205 Bryant S. M., 1997, International Journal of Intelligent Systems in Accounting, Finance and Management, V6, P195, DOI 10.1002/(SICI)1099-1174(199709)6:3<195::AID-ISAF132>3.0.CO;2-F Changduk Jung, 1999, International Journal of Intelligent Systems in Accounting, Finance and Management, V8, P61, DOI 10.1002/(SICI)1099-1174(199903)8:1<61::AID-ISAF156>3.0.CO;2-6 CHUNG HM, 1993, INT J INTELL SYST, V2, P3, DOI [DOI 10.1002/J.1099-1174.1993.TB00031.X, DOI 10.1002/j.1099-1174.1993.tb00031.x] Coakley J. R., 2000, International Journal of Intelligent Systems in Accounting, Finance and Management, V9, P119, DOI 10.1002/1099-1174(200006)9:2<119::AID-ISAF182>3.0.CO;2-Y Decker K., 1994, INT J INTELL SYST, V2, P215 DIAMOND AM, 1986, J HUM RESOUR, V21, P200 Duan Y., 1998, International Journal of Intelligent Systems in Accounting, Finance and Management, V7, P1, DOI 10.1002/(SICI)1099-1174(199803)7:1<1::AID-ISAF139>3.0.CO;2-W Duchessi P., 1993, Intell Syst Account Financ Manag, V2, P151, DOI [10.1002/j.1099-1174.1993.tb00039.x, DOI 10.1002/J.1099-1174.1993.TB00039.X] Fanning K., 1995, International Journal of Intelligent Systems in Accounting, Finance and Management, V4, P113 Fanning K. M., 1998, International Journal of Intelligent Systems in Accounting, Finance and Management, V7, P21, DOI 10.1002/(SICI)1099-1174(199803)7:1<21::AID-ISAF138>3.0.CO;2-K Fanning K. M., 1994, International Journal of Intelligent Systems in Accounting, Finance and Management, V3, P241 Garfield E., 1992, Science and Public Policy, V19, P321, DOI [DOI 10.1093/SPP/19.5.321, 10.1093/spp/19.5.321] Hean-Lee Poh, 1998, International Journal of Intelligent Systems in Accounting, Finance and Management, V7, P253, DOI 10.1002/(SICI)1099-1174(199812)7:4<253::AID-ISAF150>3.0.CO;2-X Herbst J., 2000, International Journal of Intelligent Systems in Accounting, Finance and Management, V9, P67, DOI 10.1002/1099-1174(200006)9:2<67::AID-ISAF186>3.0.CO;2-7 Hirsch JE, 2005, P NATL ACAD SCI USA, V102, P16569, DOI 10.1073/pnas.0507655102 Kohara K., 1997, International Journal of Intelligent Systems in Accounting, Finance and Management, V6, P11, DOI 10.1002/(SICI)1099-1174(199703)6:1<11::AID-ISAF115>3.0.CO;2-3 Kun Chang Lee, 1997, International Journal of Intelligent Systems in Accounting, Finance and Management, V6, P41, DOI 10.1002/(SICI)1099-1174(199703)6:1<41::AID-ISAF119>3.0.CO;2-J Kwon Y. S., 1997, International Journal of Intelligent Systems in Accounting, Finance and Management, V6, P23, DOI 10.1002/(SICI)1099-1174(199703)6:1<23::AID-ISAF113>3.0.CO;2-4 Li SL, 2009, INTELL SYST ACCOUNT, V16, P231, DOI 10.1002/isaf.302 Maher J. J., 1997, International Journal of Intelligent Systems in Accounting, Finance and Management, V6, P59, DOI 10.1002/(SICI)1099-1174(199703)6:1<59::AID-ISAF116>3.0.CO;2-H Maringer D, 2007, INTELL SYST ACCOUNT, V15, P57, DOI 10.1002/isaf.285 May RM, 1997, SCIENCE, V275, P793, DOI 10.1126/science.275.5301.793 McKee T. E., 2000, International Journal of Intelligent Systems in Accounting, Finance and Management, V9, P159, DOI 10.1002/1099-1174(200009)9:3<159::AID-ISAF184>3.0.CO;2-C Morris B. W., 1994, International Journal of Intelligent Systems in Accounting, Finance and Management, V3, P47 Nanda S., 2001, International Journal of Intelligent Systems in Accounting, Finance and Management, V10, P155, DOI 10.1002/isaf.203 Nissen M., 2000, International Journal of Intelligent Systems in Accounting, Finance and Management, V9, P237, DOI 10.1002/1099-1174(200012)9:4<237::AID-ISAF192>3.0.CO;2-R O'Keefe RM, 1993, INT J INTELL SYST, V6, P249 O'Leary D. E., 1995, International Journal of Intelligent Systems in Accounting, Finance and Management, V4, P149 O'Leary D. E., 1998, International Journal of Intelligent Systems in Accounting, Finance and Management, V7, P187, DOI 10.1002/(SICI)1099-1174(199809)7:3<187::AID-ISAF144>3.0.CO;2-7 O'Leary DE, 2008, IEEE INTELL SYST, V23, P10, DOI 10.1109/MIS.2008.74 O'Leary DE, 2009, INTELL SYST ACCOUNT, V16, P21, DOI 10.1002/isaf.291 O'Leary DE, 2007, HUM SYST MANAGE, V26, P153 Oxley H, 1998, DATABASE, V21, P37 Seglen PO, 1997, BRIT MED J, V314, P498 Shu-Heng Chen, 1999, International Journal of Intelligent Systems in Accounting, Finance and Management, V8, P237, DOI 10.1002/(SICI)1099-1174(199912)8:4<237::AID-ISAF174>3.0.CO;2-J Singh M. P., 1999, International Journal of Intelligent Systems in Accounting, Finance and Management, V8, P105, DOI 10.1002/(SICI)1099-1174(199906)8:2<105::AID-ISAF163>3.0.CO;2-# Slowinski R., 1995, International Journal of Intelligent Systems in Accounting, Finance and Management, V4, P27 Smith SD, 2004, FINANC MANAGE, V33, P133 Srivastava R. P., 1996, International Journal of Intelligent Systems in Accounting, Finance and Management, V5, P165, DOI 10.1002/(SICI)1099-1174(199609)5:3<165::AID-ISAF107>3.0.CO;2-E Stefanowski J., 2001, International Journal of Intelligent Systems in Accounting, Finance and Management, V10, P97, DOI 10.1002/isaf.197 Swicegood P., 2001, International Journal of Intelligent Systems in Accounting, Finance and Management, V10, P169, DOI 10.1002/isaf.201 Vojinovic Z., 2001, International Journal of Intelligent Systems in Accounting, Finance and Management, V10, P225, DOI 10.1002/isaf.207 Xin H, 2006, SCIENCE, V312, P1464, DOI 10.1126/science.312.5779.1464 Yu E. S. K., 1996, International Journal of Intelligent Systems in Accounting, Finance and Management, V5, P1, DOI 10.1002/(SICI)1099-1174(199603)5:1<1::AID-ISAF99>3.0.CO;2-C Zhiang Lin, 1993, International Journal of Intelligent Systems in Accounting, Finance and Management, V2, P271 NR 55 TC 4 Z9 4 U1 0 U2 6 PU JOHN WILEY & SONS LTD PI CHICHESTER PA THE ATRIUM, SOUTHERN GATE, CHICHESTER PO19 8SQ, W SUSSEX, ENGLAND SN 1055-615X EI 1099-1174 J9 INTELL SYST ACCOUNT JI Intell. Syst. Account. Financ. Manag. PD JAN-MAR PY 2010 VL 17 IS 1 BP 41 EP 58 DI 10.1002/isaf.312 PG 18 WC Business, Finance WE Emerging Sources Citation Index (ESCI) SC Business & Economics GA VA3PS UT WOS:000409823400003 DA 2024-09-05 ER PT J AU Willbur, JF Vail, JD Mitchell, LN Jakeman, DL Timmons, SC AF Willbur, Jaime F. Vail, Justin D. Mitchell, Lindsey N. Jakeman, David L. Timmons, Shannon C. TI Expression, Purification, and Characterization of a Carbohydrate-Active Enzyme: A Research-Inspired Methods Optimization Experiment for the Biochemistry Laboratory SO BIOCHEMISTRY AND MOLECULAR BIOLOGY EDUCATION LA English DT Article DE active learning; curriculum assessment; curriculum design; curriculum development; curriculum implementation; enzymes and catalysis; gene expression; glycobiology; integration of research into undergraduate teaching; laboratory exercises ID RESEARCH EXPERIENCES; MECHANISMS; BENEFITS AB The development and implementation of research-inspired, discovery-based experiences into science laboratory curricula is a proven strategy for increasing student engagement and ownership of experiments. In the novel laboratory module described herein, students learn to express, purify, and characterize a carbohydrate-active enzyme using modern techniques and instrumentation commonly found in a research laboratory. Unlike in a traditional cookbook-style experiment, students generate their own hypotheses regarding expression conditions and quantify the amount of protein isolated using their selected variables. Over the course of three 3-hour laboratory periods, students learn to use sterile technique to express a protein using recombinant DNA in E. coli, purify the resulting enzyme via affinity chromatography and dialysis, analyze the success of their purification scheme via SDS-PAGE, assess the activity of the enzyme via an HPLC-based assay, and quantify the amount of protein isolated via a Bradford assay. Following the completion of this experiment, students were asked to evaluate their experience via an optional survey. All students strongly agreed that this laboratory module was more interesting to them than traditional experiments because of its lack of a predetermined outcome and desired additional opportunities to participate in the experimental design process. This experiment serves as an example of how research-inspired, discovery-based experiences can benefit both the students and instructor; students learned important skills necessary for real-world biochemistry research and a more concrete understanding of the research process, while generating new knowledge to enhance the scholarly endeavors of the instructor. (C) 2015 by The International Union of Biochemistry and Molecular Biology, 44: 75-85, 2016. C1 [Willbur, Jaime F.; Vail, Justin D.; Mitchell, Lindsey N.; Timmons, Shannon C.] Lawrence Technol Univ, Dept Nat Sci, 21000 West Ten Mile Rd, Southfield, MI 48075 USA. [Jakeman, David L.] Dalhousie Univ, Coll Pharm, Halifax, NS B3H 4R2, Canada. C3 Dalhousie University RP Timmons, SC (corresponding author), Lawrence Technol Univ, Dept Nat Sci, 21000 West Ten Mile Rd, Southfield, MI 48075 USA. EM stimmons@ltu.edu RI Jakeman, David/X-7624-2018; Timmons, Shannon/IQS-9336-2023 OI Timmons, Shannon/0000-0003-0178-1286; Jakeman, David/0000-0003-3002-3388 FU Lawrence Tech Faculty Seed Grant; Lawrence Tech Quest co-curricular experiential learning program; Department of Natural Sciences FX The development of this laboratory module was supported by funding from a Lawrence Tech Faculty Seed Grant, the Lawrence Tech Quest co-curricular experiential learning program, and the Department of Natural Sciences. Special thanks to Dr. Nicole Villeneuve for HPLC assistance and to the CHM 3411 students who completed this experiment and the corresponding surveys. CR Ardèvol A, 2015, J AM CHEM SOC, V137, P7528, DOI 10.1021/jacs.5b01156 Auchincloss LC, 2014, CBE-LIFE SCI EDUC, V13, P29, DOI 10.1187/cbe.14-01-0004 Bauerle C., 2011, Vision and Change in Undergraduate Biology Education. A call to action BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3 Fakayode SO, 2014, J CHEM EDUC, V91, P662, DOI 10.1021/ed400482b Friedrich S, 2015, TETRAHEDRON, V71, P1473, DOI 10.1016/j.tet.2014.12.026 Garrett TA, 2015, BIOCHEM MOL BIOL EDU, V43, P145, DOI 10.1002/bmb.20844 Hatfull GF, 2006, PLOS GENET, V2, P835, DOI 10.1371/journal.pgen.0020092 Lairson LL, 2008, ANNU REV BIOCHEM, V77, P521, DOI 10.1146/annurev.biochem.76.061005.092322 Laursen S., 2010, UNDERGRADUATE RES SC Lopatto D., 2006, PEER REV, V8, P22 Lopatto David, 2007, CBE Life Sci Educ, V6, P297, DOI 10.1187/cbe.07-06-0039 Seymour E, 2004, SCI EDUC, V88, P493, DOI 10.1002/sce.10131 Shaffer CD, 2014, CBE-LIFE SCI EDUC, V13, P111, DOI 10.1187/cbe-13-08-0152 Thorson JS, 2001, CURR ORG CHEM, V5, P139, DOI 10.2174/1385272013375706 Timmons SC, 2007, ORG LETT, V9, P857, DOI 10.1021/ol0630853 Tsui L., 2007, The Journal of Negro Education, V76, P555 WeymouthWilson AC, 1997, NAT PROD REP, V14, P99, DOI 10.1039/np9971400099 NR 18 TC 4 Z9 4 U1 0 U2 22 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1470-8175 EI 1539-3429 J9 BIOCHEM MOL BIOL EDU JI Biochem. Mol. Biol. Educ. PD JAN-FEB PY 2016 VL 44 IS 1 BP 75 EP 85 DI 10.1002/bmb.20928 PG 11 WC Biochemistry & Molecular Biology; Education, Scientific Disciplines WE Science Citation Index Expanded (SCI-EXPANDED) SC Biochemistry & Molecular Biology; Education & Educational Research GA DH7YN UT WOS:000373010200009 PM 26710673 OA Bronze DA 2024-09-05 ER PT J AU Chan, CH Grill, C AF Chan, Chung-hong Grill, Christiane TI The Highs in Communication Research: Research Topics With High Supply, High Popularity, and High Prestige in High-Impact Journals SO COMMUNICATION RESEARCH LA English DT Article DE research topics; foci of scientific interest; topic modeling; citation counts; citation networks; high-impact journals ID TECHNOLOGY RESEARCH; CITATION COUNTS; MODEL; INTERNET; FUTURE; SCHOLARS; NETWORK; TRENDS AB More and more scholarly attention is paid to dissecting discipline of communication research under the microscope thereby aiming at revealing foci of scientific interest. The lion's share of research has hereby focused either on the supply side of research examining what topics scholars write about or at the popularity side of research shedding light on what scientific publications receive the most citations. Building up on this, we argue that these research strands are inadequate to the task of exhaustively identifying foci of scientific interest. Tailoring for the fragmented topical landscape of communication research, we propose an integrative combination of three metrics: supply, popularity, and prestige of research topics. By means of topic modeling, citation counts and citation networks, our study showcases how our approach is able to reveal the intellectual architecture of our discipline in order to identify relevant paths for further scientific inquiry. C1 [Chan, Chung-hong] Univ Mannheim, Mannheim, Germany. [Grill, Christiane] Univ Mannheim, Mannheim Ctr European Social Res MZES, MZES A5,6 Bauteil A, D-68131 Mannheim, Germany. C3 University of Mannheim; University of Mannheim RP Chan, CH (corresponding author), Univ Mannheim, Mannheim Ctr European Social Res MZES, MZES A5,6 Bauteil A, D-68131 Mannheim, Germany. EM Chung-hong.chan@mzes.uni-mannheim.de CR [Anonymous], 2016, CONTENT ANAL GUIDEBO Antons D, 2016, J PROD INNOVAT MANAG, V33, P726, DOI 10.1111/jpim.12300 BERGER CR, 1991, COMMUN MONOGR, V58, P101, DOI 10.1080/03637759109376216 Blei DM, 2007, ANN APPL STAT, V1, P17, DOI 10.1214/07-AOAS114 Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993 Bollen J, 2006, SCIENTOMETRICS, V69, P669, DOI 10.1007/s11192-006-0176-z Borah P, 2017, NEW MEDIA SOC, V19, P616, DOI 10.1177/1461444815621512 Bornmann L., 2008, ETHICS SCI ENV POLIT, V8, P93, DOI [10.3354/esep00084, DOI 10.3354/ESEP00084] Bornmann L, 2008, J DOC, V64, P45, DOI 10.1108/00220410810844150 Brown G., 1983, Cambridge Textbooks in Linguistics Bruns A, 2019, INFORM COMMUN SOC, V22, P1544, DOI 10.1080/1369118X.2019.1637447 Bürkner PC, 2017, J STAT SOFTW, V80, P1, DOI 10.18637/jss.v080.i01 Carley S, 2013, SCIENTOMETRICS, V94, P777, DOI 10.1007/s11192-012-0745-2 Carpenter C. J., 2019, Annals of the International Communication Association, V43, P1, DOI [10.1080/23808985.2018.1564881, DOI 10.1080/23808985.2018.1564881] Case DO, 2000, J AM SOC INFORM SCI, V51, P635, DOI 10.1002/(SICI)1097-4571(2000)51:7<635::AID-ASI6>3.0.CO;2-H Chung CJ, 2013, SCIENTOMETRICS, V95, P985, DOI 10.1007/s11192-012-0869-4 Clauset A, 2009, SIAM REV, V51, P661, DOI 10.1137/070710111 Cooper Roger., 1994, JOURNALISM ED, P54, DOI DOI 10.1177/107769589304800408 D'Urso SC, 2009, J COMPUT-MEDIAT COMM, V14, P708, DOI 10.1111/j.1083-6101.2009.01459.x Evans JA, 2011, SCIENCE, V331, P721, DOI 10.1126/science.1201765 Franceschet M, 2010, J INFORMETR, V4, P55, DOI 10.1016/j.joi.2009.08.001 Freelon D, 2020, INT J COMMUN-US, V14, P427 Griffin DJ, 2016, SCIENTOMETRICS, V106, P91, DOI 10.1007/s11192-015-1774-4 Griffiths TL, 2004, P NATL ACAD SCI USA, V101, P5228, DOI 10.1073/pnas.0307752101 Gross P L, 1927, Science, V66, P385, DOI 10.1126/science.66.1713.385 Günther E, 2017, INT J COMMUN-US, V11, P3051 Ha J.H., 2014, INT J STRATEGIC COMM, V8, P29, DOI [DOI 10.1080/1553118X.2013.850694, 10.1080/1553118X.2013.850694] Ha L, 2019, J MASS COMMUN Q, V96, P963 Herbst S, 2008, J COMMUN, V58, P603, DOI 10.1111/j.1460-2466.2008.00402.x Ioannidis JPA, 2019, PLOS BIOL, V17, DOI 10.1371/journal.pbio.3000384 Jacobi C, 2016, DIGIT JOURNAL, V4, P89, DOI 10.1080/21670811.2015.1093271 Johnson B., 2008, SAGE SOURCEBOOK ADV, P311, DOI [10.4135/9781452272054.n11, DOI 10.4135/9781452272054.N11] Kamhawi R, 2003, J MASS COMMUN Q, V80, P7, DOI 10.1177/107769900308000102 Kearney M.W., 2017, The SAGE Encyclopedia of Communication Research Methods, DOI [DOI 10.4135/9781483381411.N264, DOI 10.4135/9781483381411] Kim ST, 2002, NEW MEDIA SOC, V4, P518, DOI 10.1177/146144402321466796 Kim YoungJi., 2015, Annals of the International Communication Association, V39, P163, DOI DOI 10.1080/23808985.2015.11679175 Lee H, 2018, J TECHNOL TRANSFER, V43, P1291, DOI 10.1007/s10961-017-9561-4 Lee K, 2016, SCIENTOMETRICS, V109, P1761, DOI 10.1007/s11192-016-2135-7 Levine TR, 2010, COMMUN EDUC, V59, P41, DOI 10.1080/03634520903296825 Lin Y, 2000, SCIENTOMETRICS, V47, P143, DOI 10.1023/A:1005678011835 Maier D, 2018, COMMUN METHODS MEAS, V12, P93, DOI 10.1080/19312458.2018.1430754 Mane KK, 2004, P NATL ACAD SCI USA, V101, P5287, DOI 10.1073/pnas.0307626100 Merton RobertK., 1938, Osiris, V4, P360, DOI [10.1086/368484, DOI 10.1086/368484] Neuman WR, 2011, COMMUN THEOR, V21, P169, DOI 10.1111/j.1468-2885.2011.01381.x O'Sullivan PB, 2018, NEW MEDIA SOC, V20, P1161, DOI 10.1177/1461444816686104 O'Sullivan PB, 1999, HUM COMMUN RES, V25, P569, DOI 10.1111/j.1468-2958.1999.tb00462.x OPPENHEIM C, 1995, J DOC, V51, P18, DOI 10.1108/eb026940 Park HW, 2009, SCIENTOMETRICS, V81, P157, DOI 10.1007/s11192-009-2119-y Parks MR, 2014, J COMMUN, V64, P355, DOI 10.1111/jcom.12090 Paul B., 2000, Mass Communication Society, V3, P57, DOI [DOI 10.1207/S15327825MCS030104, 10.1207/S15327825MCS0301_04, DOI 10.1207/S15327825MCS0301_04, https://doi.org/10.1207/S15327825MCS0301_04] PETERS JD, 1993, J COMMUN, V43, P132, DOI 10.1111/j.1460-2466.1993.tb01313.x PINSKI G, 1976, INFORM PROCESS MANAG, V12, P297, DOI 10.1016/0306-4573(76)90048-0 Puschmann C, 2019, INFORM COMMUN SOC, V22, P1582, DOI 10.1080/1369118X.2019.1646300 Rauchfleisch A, 2018, JCOM-J SCI COMMUN, V17, DOI 10.22323/2.17030207 Rauchfleisch A, 2017, COMMUN PUBLIC, V2, P3, DOI 10.1177/2057047317691054 REARDON KK, 1988, HUM COMMUN RES, V15, P284, DOI 10.1111/j.1468-2958.1988.tb00185.x Roberts ME, 2014, AM J POLIT SCI, V58, P1064, DOI 10.1111/ajps.12103 So CYK, 1998, SCIENTOMETRICS, V41, P325, DOI 10.1007/BF02459049 Song H, 2020, J COMMUN, V70, P310, DOI 10.1093/joc/jqaa009 Sweet TM, 2017, J EDUC BEHAV STAT, V42, P107, DOI 10.3102/1076998616659752 Peng TQ, 2013, SCIENTOMETRICS, V97, P675, DOI 10.1007/s11192-013-1012-x Tomasello TK, 2010, NEW MEDIA SOC, V12, P531, DOI 10.1177/1461444809342762 Tomasello TK, 2001, JOURNALISM MASS COMM, V78, P659, DOI 10.1177/107769900107800403 Waisbord S., 2019, Communication: A Post-Discipline Wilhite AW, 2012, SCIENCE, V335, P542, DOI 10.1126/science.1212540 XHIGNESSE L V, 1967, American Psychologist, V22, P778, DOI 10.1037/h0024961 Ye L, 2012, J PUBLIC RELAT RES, V24, P409, DOI 10.1080/1062726X.2012.723277 Zhang Y, 2015, NEW MEDIA SOC, V17, P1007, DOI 10.1177/1461444813520477 Zhou YB, 2012, NEW J PHYS, V14, DOI 10.1088/1367-2630/14/3/033033 Zhu YE, 2019, J COMMUN, V69, P273, DOI 10.1093/joc/jqz012 NR 70 TC 12 Z9 12 U1 4 U2 42 PU SAGE PUBLICATIONS INC PI THOUSAND OAKS PA 2455 TELLER RD, THOUSAND OAKS, CA 91320 USA SN 0093-6502 EI 1552-3810 J9 COMMUN RES JI Commun. Res. PD JUL PY 2022 VL 49 IS 5 SI SI BP 599 EP 626 AR 0093650220944790 DI 10.1177/0093650220944790 EA JUL 2020 PG 28 WC Communication WE Social Science Citation Index (SSCI) SC Communication GA 1U4RA UT WOS:000556225200001 OA Green Published DA 2024-09-05 ER PT J AU Hintzen, RE Papadopoulou, M Mounce, R Banks-Leite, C Holt, RD Mills, M Knight, A Leroi, AM Rosindell, J AF Hintzen, Rogier E. Papadopoulou, Marina Mounce, Ross Banks-Leite, Cristina Holt, Robert D. Mills, Morena Knight, Andrew Leroi, Armand M. Rosindell, James TI Relationship between conservation biology and ecology shown through machine reading of 32,000 articles SO CONSERVATION BIOLOGY LA English DT Article DE bibliometrics; ecological applications; ecological theory; interdisciplinary; latent Dirichlet allocation; aplicaciones ecologicas; asignacion latente Dirichlet; bibliometria; interdisciplinario; teoria ecologica; (sic)(sic)(sic)(sic)(sic)(sic)(sic); (sic)(sic)(sic); (sic)(sic)(sic)(sic)(sic); (sic)(sic)(sic)(sic)(sic); (sic)(sic)(sic)(sic)(sic) ID OVERESTIMATE EXTINCTION RATES; HABITAT LOSS; COEXISTENCE; SCIENCE; BIODIVERSITY; DYNAMICS; DESIGN AB Conservation biology was founded on the idea that efforts to save nature depend on a scientific understanding of how it works. It sought to apply ecological principles to conservation problems. We investigated whether the relationship between these fields has changed over time through machine reading the full texts of 32,000 research articles published in 16 ecology and conservation biology journals. We examined changes in research topics in both fields and how the fields have evolved from 2000 to 2014. As conservation biology matured, its focus shifted from ecology to social and political aspects of conservation. The 2 fields diverged and now occupy distinct niches in modern science. We hypothesize this pattern resulted from increasing recognition that social, economic, and political factors are critical for successful conservation and possibly from rising skepticism about the relevance of contemporary ecological theory to practical conservation. C1 [Hintzen, Rogier E.; Papadopoulou, Marina; Banks-Leite, Cristina; Mills, Morena; Knight, Andrew; Leroi, Armand M.; Rosindell, James] Imperial Coll London, Dept Life Sci, Silwood Pk Campus,Buckhurst Rd, Ascot SW7 2AZ, Berks, England. [Papadopoulou, Marina] Univ Groningen, Groningen Inst Evolutionary Life Sci, NL-9747 AG Groningen, Netherlands. [Holt, Robert D.] Univ Florida, Dept Biol, Gainesville, FL 32611 USA. [Mounce, Ross] Arcadia Fund, Sixth Floor,5 Young St, London W8 6EH, England. C3 Imperial College London; University of Groningen; State University System of Florida; University of Florida RP Rosindell, J (corresponding author), Imperial Coll London, Dept Life Sci, Silwood Pk Campus,Buckhurst Rd, Ascot SW7 2AZ, Berks, England. EM j.rosindell@imperial.ac.uk RI Papadopoulou, Marina/AGG-3307-2022; Mounce, Ross/A-2538-2010; Papadopoulou, Marina/GQP-2573-2022; Knight, Andrew Thomas/C-8394-2009; Banks-Leite, Cristina/D-3075-2011 OI Mounce, Ross/0000-0002-3520-2046; Papadopoulou, Marina/0000-0002-6478-8365; Knight, Andrew Thomas/0000-0002-6563-0500; Banks-Leite, Cristina/0000-0002-0091-2857; Leroi, Armand/0000-0002-5603-0351; Rosindell, James/0000-0002-5060-9346 FU Natural Environment Research Council (NERC) doctoral training scholarship (Science and Solutions for a Changing Planet DTP); NERC [NE/L011611/1]; NERC [NE/L011611/1] Funding Source: UKRI FX The authors thank attendees of the Tansley Workshops at Imperial College for valuable discussion. R.H. was funded by a Natural Environment Research Council (NERC) doctoral training scholarship (Science and Solutions for a Changing Planet DTP). J.R. was funded by a NERC fellowship (NE/L011611/1). This study is a contribution to Imperial College's Grand Challenges in Ecosystems and the Environment initiative. CR [Anonymous], 1973, Stability and Complexity in Model Systems Axelsen JB, 2013, ECOLOGY, V94, P761, DOI 10.1890/12-0047.1 Barabas G, 2018, ECOL MONOGR, V88, P277, DOI 10.1002/ecm.1302 Bawa KS, 2004, CONSERV BIOL, V18, P859, DOI 10.1111/j.1523-1739.2004.01838.x Bell G, 2001, SCIENCE, V293, P2413, DOI 10.1126/science.293.5539.2413 Bennett NJ, 2017, BIOL CONSERV, V205, P93, DOI 10.1016/j.biocon.2016.10.006 Bird Steven, 2004, NLTK: The Natural Language Toolkit, P31 Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993 Bradshaw CJA, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0149852 Brannelly LA, 2018, ANIM CONSERV, V21, P108, DOI 10.1111/acv.12416 BRUSSARD PF, 1991, ECOL APPL, V1, P6, DOI 10.2307/1941843 Cafaro P, 2014, BIOL CONSERV, V170, P1, DOI 10.1016/j.biocon.2013.12.022 Chapron G, 2016, TRENDS ECOL EVOL, V31, P578, DOI 10.1016/j.tree.2016.06.003 Chesson P, 2000, THEOR POPUL BIOL, V58, P211, DOI 10.1006/tpbi.2000.1486 Chesson P, 2000, ANNU REV ECOL SYST, V31, P343, DOI 10.1146/annurev.ecolsys.31.1.343 Debinski DM, 2000, CONSERV BIOL, V14, P342, DOI 10.1046/j.1523-1739.2000.98081.x Desmet P, 2004, ECOL SOC, V9 Fortunato S, 2018, SCIENCE, V359, DOI 10.1126/science.aao0185 Fraser KC, 2018, FRONT ECOL EVOL, V6, DOI 10.3389/fevo.2018.00150 Godfray HCJ, 2014, BMC BIOL, V12, DOI 10.1186/1741-7007-12-22 Gotelli NJ, 2001, ECOL LETT, V4, P379, DOI 10.1046/j.1461-0248.2001.00230.x HANSKI I, 1989, TRENDS ECOL EVOL, V4, P113, DOI 10.1016/0169-5347(89)90061-X Harfoot MBJ, 2014, PLOS BIOL, V12, DOI 10.1371/journal.pbio.1001841 Hastings A, 2018, SCIENCE, V361, P990, DOI 10.1126/science.aat6412 He FL, 2011, NATURE, V473, P368, DOI 10.1038/nature09985 Hubbell Stephen P., 2001, V32, pi Jacquet C, 2016, NAT COMMUN, V7, DOI 10.1038/ncomms12573 Kareiva P, 2014, J APPL ECOL, V51, P1137, DOI 10.1111/1365-2664.12259 Lawton JH, 1999, OIKOS, V84, P177, DOI 10.2307/3546712 Lewis OT, 2006, PHILOS T R SOC B, V361, P163, DOI 10.1098/rstb.2005.1712 Lomolino MV, 2001, PROG PHYS GEOG, V25, P1 MAY RM, 1972, NATURE, V238, P413, DOI 10.1038/238413a0 MAY RM, 1975, NATURE, V254, P177, DOI 10.1038/254177a0 Meine C, 2006, CONSERV BIOL, V20, P631, DOI 10.1111/j.1523-1739.2006.00449.x O'Hanlon SJ, 2018, SCIENCE, V360, P621, DOI 10.1126/science.aar1965 PASZTOR L, 2016, THEOR EC DARW APPR Pedregosa F, 2011, J MACH LEARN RES, V12, P2825 Petchey OL, 2015, ECOL LETT, V18, P597, DOI 10.1111/ele.12443 Pritchard JK, 2000, GENETICS, V155, P945 Rehuek R., 2011, GENSIM STAT SEMANTIC Röder M, 2015, WSDM'15: PROCEEDINGS OF THE EIGHTH ACM INTERNATIONAL CONFERENCE ON WEB SEARCH AND DATA MINING, P399, DOI 10.1145/2684822.2685324 Rybicki J, 2013, ECOL LETT, V16, P27, DOI 10.1111/ele.12065 SHAFFER ML, 1981, BIOSCIENCE, V31, P131, DOI 10.2307/1308256 Soule M., 1980, Conservation Biology. An Evolutionary-Ecological Perspective SOULE ME, 1986, BIOL CONSERV, V35, P19, DOI 10.1016/0006-3207(86)90025-X SOULE ME, 1985, BIOSCIENCE, V35, P727, DOI 10.2307/1310054 Stancil DD, 2012, MOD PHYS LETT A, V27, DOI 10.1142/S0217732312500770 Stein A, 2014, ECOL LETT, V17, P866, DOI 10.1111/ele.12277 Sutherland W, 2018, CONSERVATION EVIDENC Teel TL, 2018, CONSERV BIOL, V32, P6, DOI 10.1111/cobi.13059 Thompson JN, 2001, BIOSCIENCE, V51, P15, DOI 10.1641/0006-3568(2001)051[0015:FOE]2.0.CO;2 Tilman D, 2006, NATURE, V441, P629, DOI 10.1038/nature04742 Tylianakis JM, 2008, ECOL LETT, V11, P1351, DOI 10.1111/j.1461-0248.2008.01250.x Urban MC, 2016, SCIENCE, V353, P1113, DOI 10.1126/science.aad8466 van der Maaten L, 2008, J MACH LEARN RES, V9, P2579 Van Dyke F., 2008, Conservation Biology: Foundations, Concepts, Applications, V2nd Vincenot C, 2017, DIDEROT BIBLIO NETWO von Humboldt A, 1819, PERSONAL NARRATIVE T, V4 Wallace AR., 1869, The Malay Archipelago: The land of the orang-utan, and the bird of paradise. A narrative of travel, V2 Wedekind C, 2002, CONSERV BIOL, V16, P1204, DOI 10.1046/j.1523-1739.2002.01217.x Worster Donald., 1994, NATURES EC HIST ECOL NR 61 TC 23 Z9 24 U1 0 U2 37 PU WILEY PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0888-8892 EI 1523-1739 J9 CONSERV BIOL JI Conserv. Biol. PD JUN PY 2020 VL 34 IS 3 BP 721 EP 732 DI 10.1111/cobi.13435 EA DEC 2019 PG 12 WC Biodiversity Conservation; Ecology; Environmental Sciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Biodiversity & Conservation; Environmental Sciences & Ecology GA LQ6QH UT WOS:000501791200001 PM 31702070 OA hybrid, Green Published DA 2024-09-05 ER PT C AU Pishtari, G Sarmiento-Márquez, EM Tammets, K Aru, J AF Pishtari, Gerti Sarmiento-Marquez, Edna Milena Tammets, Kairit Aru, Jaan BE Hilliger, I Munoz-Merino, PJ DeLaet, T Ortega-Arranz, A Farrell, T TI The Evaluation of One-to-One Initiatives: Exploratory Results from a Systematic Review SO EDUCATING FOR A NEW FUTURE: MAKING SENSE OF TECHNOLOGY-ENHANCED LEARNING ADOPTION, EC-TEL 2022 SE Lecture Notes in Computer Science LA English DT Proceedings Paper CT 17th European Conference on Technology Enhanced Learning (EC-TEL) CY SEP 12-16, 2022 CL Inst Rech Informatique Toulouse, Toulouse, FRANCE HO Inst Rech Informatique Toulouse DE One-to-one computing; Evaluation; Bibliometric network analysis; Topic modeling; Systematic literature review ID FRAMEWORK AB While one-to-one initiatives (that equip each student and teacher with digital devices) have been widely implemented, no systematic review has explored how they are being evaluated. The contribution of this paper is twofold. First, we present exploratory insights from a systematic review on the evaluation of one-to-one initiatives. We focus on the relations inside the related research community and explore the relevant research topics that they have considered, through bibiliometric network analyses and topic modeling. Second, this paper contributes to existing guidelines about systematic reviews with an example that applies the mentioned analyses after the manual in-depth review of the papers (usually they are applied in parallel, or afterwards). Results depict a fragmented community, with little explicit collaborations among the research groups, but that shares a common body of literature providing good practices that can inform future one-to-one implementations. This community has considered a common set of topics (including, the implementation of educational technologies, mobile learning and classroom orchestration). Future evaluations of one-to-one initiatives would benefit if grounded in pedagogical theories and informed by learning analytics. Our approach enabled us to understand the dynamics of the related community, identify the core literature, and define guiding questions for future qualitative analyses. C1 [Pishtari, Gerti] Danube Univ Krems, Univ Continuing Educ Krems, Dr Karl Dorrek 30, A-3500 Krems An Der Donau 3500, Austria. [Sarmiento-Marquez, Edna Milena; Tammets, Kairit] Tallinn Univ, Narva Mnt 25, EE-10120 Tallinn, Estonia. [Aru, Jaan] Univ Tartu, Ulikooli 18, EE-50090 Tartu, Estonia. C3 Danube University Krems; Tallinn University; University of Tartu RP Pishtari, G (corresponding author), Danube Univ Krems, Univ Continuing Educ Krems, Dr Karl Dorrek 30, A-3500 Krems An Der Donau 3500, Austria. EM gerti.pishtari@donau-uni.ac.at; msm@t1u.ee; kairit@tlu.ee; jaan.aru@ut.ee RI Aru, Jaan/H-3967-2015 OI Aru, Jaan/0000-0003-3927-452X; Sarmiento-Marquez, Edna Milena/0000-0002-8186-9028 FU ETAG [PRG1634]; HarNothe; European Social Fund through the IT Academy Programme; Estonian Research Council [PSG728] FX This research was supported by the ETAG project PRG1634 and HarNothe, as well as the European Social Fund through the IT Academy Programme and the Estonian Research Council grant PSG728. CR Bethel E.C., 2015, THESIS CONCORDIA U Carr JM, 2012, J INF TECHNOL EDUC-R, V11, P269 Decker A, 2019, SIGCSE '19: PROCEEDINGS OF THE 50TH ACM TECHNICAL SYMPOSIUM ON COMPUTER SCIENCE EDUCATION, P558, DOI 10.1145/3287324.3287393 Greller W, 2012, EDUC TECHNOL SOC, V15, P42 Grimes D, 2008, J EDUC COMPUT RES, V38, P305, DOI 10.2190/EC.38.3.d Holcomb LB, 2009, TECHTRENDS, V53, P49 Islam MS, 2016, J EDUC CHANG, V17, P191, DOI 10.1007/s10833-016-9271-y Kay R., 2019, Society for information technology teacher education international conference, P1862 Kearney M, 2012, RES LEARN TECHNOL, V20, DOI 10.3402/rlt.v20i0.14406 Kitchenham B.A., 2007, GUIDELINES PERFORMIN Matatall A., 2019, IMPACT 1 1 TECHNOLOG Mishra P, 2006, TEACH COLL REC, V108, P1017, DOI 10.1111/j.1467-9620.2006.00684.x Penuel WR, 2006, J RES TECHNOL EDUC, V38, P329, DOI 10.1080/15391523.2006.10782463 Pishtari G., 2022, Hybrid learning spaces, P167, DOI 10.1007/978-3-030-88520-5_10 Pishtari G, 2020, BRIT J EDUC TECHNOL, V51, P1078, DOI 10.1111/bjet.12944 Sell G.R., 2012, METASYNTHESIS RES 1, P1 Tedre M., 2011, IST-Africa Conference Proceedings, 2011, P1 Zheng BB, 2016, REV EDUC RES, V86, P1052, DOI 10.3102/0034654316628645 Zucker AA, 2008, J SCI EDUC TECHNOL, V17, P586, DOI 10.1007/s10956-008-9125-3 NR 19 TC 2 Z9 2 U1 0 U2 3 PU SPRINGER INTERNATIONAL PUBLISHING AG PI CHAM PA GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND SN 0302-9743 EI 1611-3349 BN 978-3-031-16290-9; 978-3-031-16289-3 J9 LECT NOTES COMPUT SC PY 2022 VL 13450 BP 310 EP 323 DI 10.1007/978-3-031-16290-9_23 PG 14 WC Computer Science, Interdisciplinary Applications; Education & Educational Research WE Conference Proceedings Citation Index - Science (CPCI-S); Conference Proceedings Citation Index - Social Science & Humanities (CPCI-SSH) SC Computer Science; Education & Educational Research GA BU0US UT WOS:000871898800023 DA 2024-09-05 ER PT J AU Drongstrup, D Malik, S Aljohani, NR Alelyani, S Safder, I Hassan, SU AF Drongstrup, Dorte Malik, Shafaq Aljohani, Naif Radi Alelyani, Salem Safder, Iqra Hassan, Saeed-Ul TI Can social media usage of scientific literature predict journal indices of AJG, SNIP and JCR? An altmetric study of economics SO SCIENTOMETRICS LA English DT Article DE Altmetrics; Economics; AJG; SNIP; JCR; Machine learning ID IMPACT; DOCUMENTS; CITATIONS AB Altmetrics are often praised as an alternative or complement to classic bibliometric metrics, especially in the social sciences discipline. However, empirical investigations of altmetrics concerning the social sciences are scarce. This study investigates the extent to which economic research is shared on social media platforms with an emphasis on mentions in policy documents in addition to other mentions such as Twitter or Facebook. Moreover, this study explores machine learning models to predict the likelihood of a research article being classified into the top-quality tier of a journal ranking based on the altmetric mentions. The included journal rankings are the academic journal guide (AJG), source normalized impact per paper (SNIP) and journal citation reports (JCR). The investigated journals have been selected based on the AJG list and extracted from Altmetric.com data. After applying extensive data cleaning on the extracted data, a final set of 55,560 journal article records is obtained. The results indicate that the average number of policy mentions of the publications of economics journals is higher than the other subject areas included in the AJG list. Moreover, the publications in top-ranking economic journals are more likely to have a higher average number of policy mentions. Policy and Twitter mentions are presented as the most significant and informative social media mentions in demonstrating the broader impact and dissemination of Economics discipline followed by Blogs, Facebook, Wikipedia, and News. The results show that Support Vector Machine and Logistic Regression performed best in classifying the journal ranking tiers i.e. SNIP-based with 77% accuracy, JCR-based with 71% accuracy, and AJG-based with 66% accuracy. The models classified the ranking tier AJG18 with lower accuracy than SNIP and JCR. This might be because the AJG18 rankings are based on expert opinion, whereas SNIP and JCR are based on citations. C1 [Drongstrup, Dorte] Univ Lib Southern Denmark, Res & Anal Sect, Campusvej 55, DK-5230 Odense, Denmark. [Malik, Shafaq; Safder, Iqra; Hassan, Saeed-Ul] Informat Technol Univ, 346-B,Ferozepur Rd, Lahore, Pakistan. [Aljohani, Naif Radi] King Abdulaziz Univ, Fac Comp & Informat Technol, Jeddah, Saudi Arabia. [Alelyani, Salem] King Khalid Univ, Ctr Artificial Intelligence CAI, POB 9004, Abha 61413, Saudi Arabia. [Alelyani, Salem] King Khalid Univ, Coll Comp Sci, POB 9004, Abha 61413, Saudi Arabia. C3 King Abdulaziz University; King Khalid University; King Khalid University RP Hassan, SU (corresponding author), Informat Technol Univ, 346-B,Ferozepur Rd, Lahore, Pakistan. EM shafaq.malik@itu.edu.pk; nraljohani@kau.edu.sa; s.alelyani@kku.edu.sa; iqra.safder@itu.edu.pk; saeed-ul-hassan@itu.edu.pk RI Safder, Iqra/JXN-8069-2024; Alelyani, Salem/AAT-8273-2020; Aljohani, Naif R/S-1109-2017; Drongstrup, Dorte/I-7395-2018; Hassan, Saeed-Ul/G-1889-2016 OI Alelyani, Salem/0000-0002-4571-9073; Drongstrup, Dorte/0000-0002-2541-3819; Hassan, Saeed-Ul/0000-0002-6509-9190 FU King Khalid University [239] FX This article is an extended version of research in progress presented at the 17th International Conference on Scientometrics and Informetrics, Rome (Italy), 2-5 September 2019 (Drongstrup et al. 2019). The authors (Saeed-Ul Hassan and Salem Alelyani) are grateful for the financial support received from King Khalid University for this research under Grant No. 239, 2019. CR Aung HH, 2019, J ASSOC INF SCI TECH, V70, P872, DOI 10.1002/asi.24162 Bailey C., 2017, 2017 ACM IEEE JOINT, P1 Bornmann L, 2016, SCIENTOMETRICS, V109, P1477, DOI 10.1007/s11192-016-2115-y CABS, 2018, AJG AC J GUID METH Costas R, 2015, J ASSOC INF SCI TECH, V66, P2003, DOI 10.1002/asi.23309 Drongstrup D., 2019, 17 INT C SCI INF ROM Eysenbach G, 2011, J MED INTERNET RES, V13, DOI 10.2196/jmir.2012 Hammarfelt B, 2014, SCIENTOMETRICS, V101, P1419, DOI 10.1007/s11192-014-1261-3 Hassan SU, 2020, SCIENTOMETRICS, V123, P1407, DOI 10.1007/s11192-020-03447-z Hassan SU, 2018, SCIENTOMETRICS, V117, P1645, DOI 10.1007/s11192-018-2944-y HASSAN SU, 2020, SCIENTOMETRICS 0518, DOI DOI 10.1007/S11192-020-03499-1 Haunschild R, 2017, SCIENTOMETRICS, V110, P1209, DOI 10.1007/s11192-016-2237-2 Haustein S, 2014, J ASSOC INF SCI TECH, V65, P656, DOI 10.1002/asi.23101 Holmberg K, 2014, SCIENTOMETRICS, V101, P1027, DOI [10.1007/s11192-014-1229-3, 10.1159/000358776] Jacso P, 2009, 5 YEAR IMPACT FACTOR, P603 Kelly E. J., 2017, J CONT ARCH STUDIES, V4, P1 Lewis D. D., 1998, Machine Learning: ECML-98. 10th European Conference on Machine Learning. Proceedings, P4, DOI 10.1007/BFb0026666 Liu J., 2014, NEW SOURCE ALERT POL Moed HF, 2010, J INFORMETR, V4, P265, DOI 10.1016/j.joi.2010.01.002 Nederhof AJ, 2006, SCIENTOMETRICS, V66, P81, DOI 10.1007/s11192-006-0007-2 Nuredini K., 2015, 14 INT S INFORM SCI, P380 Nuredini K., 2016, P 21 INT C SCI TECHN Saeed-Ul Hassan, 2020, KNOWL-BASED SYST, V192, DOI 10.1016/j.knosys.2019.105383 Saeed-Ul Hassan, 2019, SCIENTOMETRICS, V119, P481, DOI 10.1007/s11192-019-03044-9 Saeed-Ul Hassan, 2017, SCIENTOMETRICS, V113, P1037, DOI 10.1007/s11192-017-2512-x Said A, 2019, SCIENTOMETRICS, V120, P217, DOI 10.1007/s11192-019-03112-0 Segal M.R., 2004, Machine learning benchmarks and random forest regression Shuai X, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0047523 Suykens JAK, 1999, NEURAL PROCESS LETT, V9, P293, DOI 10.1023/A:1018628609742 Tattersall A., 2018, FRONTIERS RES METRIC, V2, P9, DOI [DOI 10.3389/FRMA.2017.00009, 10.3389/frma.2017.00009] Thelwall M, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0064841 Waltman L, 2013, J INFORMETR, V7, P272, DOI 10.1016/j.joi.2012.11.011 Wright R.E., 1995, LOGISTIC REGRESSION Zahedi Z., 2014, ALTMETRICS NR 34 TC 13 Z9 14 U1 10 U2 71 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0138-9130 EI 1588-2861 J9 SCIENTOMETRICS JI Scientometrics PD NOV PY 2020 VL 125 IS 2 BP 1541 EP 1558 DI 10.1007/s11192-020-03613-3 EA JUL 2020 PG 18 WC Computer Science, Interdisciplinary Applications; Information Science & Library Science WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Computer Science; Information Science & Library Science GA OT3PI UT WOS:000547804200011 DA 2024-09-05 ER PT J AU Basu, A Hazra, AK Chaudhury, S Ross, AB Balachandran, S AF Basu, Aman Hazra, Amit Kumar Chaudhury, Shibani Ross, Andrew B. Balachandran, Srinivasan TI State of the Art Research on Sustainable Use of Water Hyacinth: A Bibliometric and Text Mining Analysis SO INFORMATICS-BASEL LA English DT Article DE water hyacinth; cluster analysis; sentiment analysis; text-mining; network analysis ID CRASSIPES MART SOLMS; EICHHORNIA-CRASSIPES; AQUEOUS-SOLUTION; GROWTH DYNAMICS; ETHANOL; REMOVAL; BIOMASS; FOCUS; PHYTOREMEDIATION; SACCHARIFICATION AB This study aims to present a systematic data-driven bibliometric analysis of the water hyacinth (Eichhornia crassipes) infestation problem around the globe. As many solutions are being proposed in academia for its management, mitigation, and utilization, it requires investigation through a systematic scrutinizing lens. In this study, literature records from 1977 to June 2020 concerning research on water hyacinth are taken from Scopus for text analysis. Trends in the publication of different article types, dynamics of publication, clustering, correlation, and co-authoring patterns between different countries are observed. The cluster analysis indicated four clusters viz. (i) ecological works related to species, (ii) pollutant removal process and methods, (iii) utilization of biofuels for biogas production, and (iv) modelling works. It is clear from the networking analysis that most of the publications regarding water hyacinth are from India, followed by China and the United States. Sentiment analysis with the AFINN lexicon showed that the negative sentiment towards the aquatic weed has intensified over time. An exploratory analysis was performed using a bigram network plot, depicting and outlining different important domains of water hyacinth research. Water hyacinth research has passed the pioneering phase and is now at the end of a steady growth phase or at the beginning of an acceleration phase. In this article, an overview is given for the entirety of water hyacinth research, with an indication of future trends and possibilities. C1 [Basu, Aman] York Univ, Dept Biol, 4700 Keele St, Toronto, ON M3J 1P3, Canada. [Hazra, Amit Kumar] Visva Bharati Univ, Dept Environm Studies, Visva Bharati 731235, W Bengal, India. [Chaudhury, Shibani; Balachandran, Srinivasan] Inst Rural Reconstruct, Dept Lifelong Learning & Extens, Visva Bharati 731235, W Bengal, India. [Ross, Andrew B.] Univ Leeds, Sch Chem & Proc Engn, Leeds LS2 9JT, W Yorkshire, England. C3 York University - Canada; Visva Bharati University; University of Leeds RP Balachandran, S (corresponding author), Inst Rural Reconstruct, Dept Lifelong Learning & Extens, Visva Bharati 731235, W Bengal, India. EM amanbasu@yorku.ca; amit.hazra@visva-bharati.ac.in; shibani.chaudhury@visva-bharati.ac.in; A.B.Ross@leeds.ac.uk; s.balachandran@visva-bharati.ac.in RI Balachandran, Srinivasan/AAW-7223-2020 OI Balachandran, Srinivasan/0000-0003-4247-408X; Basu, Aman/0000-0001-6814-4615 FU Biotechnology and Biological Sciences Research Council (BBSRC) [BB/S011439/1]; BBSRC [BB/S011439/1] Funding Source: UKRI FX This research was funded by the Biotechnology and Biological Sciences Research Council (BBSRC; grant number BB/S011439/1) via the GCRF project BEFWAM (Bioenergy, Fertilizer, and Clean Water from Invasive Aquatic Macrophytes). CR BENTON AR, 1978, WATER RESOUR BULL, V14, P919 Bickel MW, 2019, ENERGY SUSTAIN SOC, V9, DOI 10.1186/s13705-019-0226-z Biswas B, 2017, BIORESOURCE TECHNOL, V242, P139, DOI 10.1016/j.biortech.2017.03.044 Das S, 2015, SUSTAIN MATER TECHNO, V3, P17, DOI 10.1016/j.susmat.2015.01.001 Davies RM, 2013, J COMBUST, V2013, DOI 10.1155/2013/549894 Dhote S, 2009, ENVIRON MONIT ASSESS, V152, P149, DOI 10.1007/s10661-008-0303-9 Eid EM, 2017, REND LINCEI-SCI FIS, V28, P169, DOI 10.1007/s12210-016-0589-4 El-Zawahry MM, 2016, CARBOHYD POLYM, V136, P507, DOI 10.1016/j.carbpol.2015.09.071 Ganguly A, 2012, RENEW SUST ENERG REV, V16, P966, DOI 10.1016/j.rser.2011.09.018 Gautam P, 2017, SCIENTOMETRICS, V113, P1245, DOI 10.1007/s11192-017-2538-0 Gopal B., 1987, Water hyacinth. Goyal S, 2005, BIORESOURCE TECHNOL, V96, P1584, DOI 10.1016/j.biortech.2004.12.012 Guerrero-Coronilla I, 2015, J ENVIRON MANAGE, V152, P99, DOI 10.1016/j.jenvman.2015.01.026 Gunnarsson CC, 2007, WASTE MANAGE, V27, P117, DOI 10.1016/j.wasman.2005.12.011 GUPTA GC, 1980, J ENVIRON HEALTH, V43, P80 Holm L. G., 1977, The world's worst weeds. Distribution and biology. Kelley C, 1999, ENVIRON SCI TECHNOL, V33, P1439, DOI 10.1021/es9807789 Ma WT, 2019, SUSTAINABILITY-BASEL, V11, DOI 10.3390/su11112999 Mabe M, 2001, SCIENTOMETRICS, V51, P147, DOI 10.1023/A:1010520913124 Malik A, 2007, ENVIRON INT, V33, P122, DOI 10.1016/j.envint.2006.08.004 Mathew AK, 2015, CLEAN TECHNOL ENVIR, V17, P1681, DOI 10.1007/s10098-014-0877-6 Monroy SE, 2018, SCIENTOMETRICS, V115, P1139, DOI 10.1007/s11192-018-2728-4 Munjeri K, 2016, INT J ENERGY ENVIR E, V7, P37, DOI 10.1007/s40095-015-0195-8 MUSIL CF, 1977, HYDROBIOLOGIA, V53, P165, DOI 10.1007/BF00029295 Nigam JN, 2002, J BIOTECHNOL, V97, P107, DOI 10.1016/S0168-1656(02)00013-5 Pimchuai A, 2010, ENERG FUEL, V24, P4638, DOI 10.1021/ef901168f Polprasert C, 1998, WATER RES, V32, P179, DOI 10.1016/S0043-1354(97)00191-7 Priya ES, 2017, ARAB J CHEM, V10, pS3548, DOI 10.1016/j.arabjc.2014.03.002 Rezania S, 2017, INT J HYDROGEN ENERG, V42, P20955, DOI 10.1016/j.ijhydene.2017.07.007 Rezania S, 2015, J ENVIRON MANAGE, V163, P125, DOI 10.1016/j.jenvman.2015.08.018 Rezania S, 2015, RENEW SUST ENERG REV, V41, P943, DOI 10.1016/j.rser.2014.09.006 Senthilkumar ST, 2013, J MATER CHEM A, V1, P1086, DOI 10.1039/c2ta00210h Shanab SMM, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0013200 Silge J., 2017, Text mining with R: A tidy approach Sindhu R, 2017, BIORESOURCE TECHNOL, V230, P152, DOI 10.1016/j.biortech.2017.01.035 Singh R, 2015, BIORESOURCE TECHNOL, V178, P157, DOI 10.1016/j.biortech.2014.08.119 Sukumaran RK, 2009, RENEW ENERG, V34, P421, DOI 10.1016/j.renene.2008.05.008 Sundari MT, 2012, CARBOHYD POLYM, V87, P1701, DOI 10.1016/j.carbpol.2011.09.076 Thamaga K.H., 2018, Remote Sens. Appl. Soc. Environ, DOI DOI 10.1016/J.RSASE.2018.02.005 Theuri M., 2013, ENVIRON DEV, V7, P139, DOI DOI 10.1016/J.ENVDEV.2013.05.002 Ting WHT, 2018, J WATER PROCESS ENG, V22, P239, DOI 10.1016/j.jwpe.2018.02.011 Villamagna AM, 2010, FRESHWATER BIOL, V55, P282, DOI 10.1111/j.1365-2427.2009.02294.x Wickham H, 2010, J COMPUT GRAPH STAT, V19, P3, DOI 10.1198/jcgs.2009.07098 Yadvika, 2004, BIORESOURCE TECHNOL, V95, P1, DOI 10.1016/j.biortech.2004.02.010 Yan S., 2017, WATER HYACINTH ENV C Yin DX, 2016, CHEMOSPHERE, V152, P196, DOI 10.1016/j.chemosphere.2016.01.044 Yusuf MOL, 2011, BIOMASS BIOENERG, V35, P1345, DOI 10.1016/j.biombioe.2010.12.033 Zhang F, 2015, J ENVIRON MANAGE, V153, P68, DOI 10.1016/j.jenvman.2015.01.043 NR 48 TC 6 Z9 6 U1 1 U2 6 PU MDPI PI BASEL PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND EI 2227-9709 J9 INFORMATICS-BASEL JI Informatics-Basel PD JUN PY 2021 VL 8 IS 2 AR 38 DI 10.3390/informatics8020038 PG 14 WC Computer Science, Interdisciplinary Applications WE Emerging Sources Citation Index (ESCI) SC Computer Science GA SX4KE UT WOS:000665175000001 OA gold, Green Published DA 2024-09-05 ER PT J AU Rober, R Hall, B Daubner, C Goodman, A Pikaart, M Sikora, A Craig, P AF Rober, Rebecca Hall, Bonnie Daubner, Colette Goodman, Anya Pikaart, Michael Sikora, Arthur Craig, Paul TI Flexible Implementation of the BASIL CURE SO BIOCHEMISTRY AND MOLECULAR BIOLOGY EDUCATION LA English DT Article DE active learning; assessment of educational activities; computers in research and teaching; curriculum design development and implementation; enzymes and catalysis; genomics proteomics bioinformatics; inquiry based teaching ID EDUCATION; DATABASE; DOCKING AB Course-based Undergraduate Research Experiences (CUREs) can be a very effective means to introduce a large number of students to research. CUREs are often an extension of the instructor's research, which may make them difficult to replicate in other settings because of differences in expertise or facilities. The BASIL (Biochemistry Authentic Scientific Inquiry Lab) CURE has evolved over the past 4 years as faculty members with different backgrounds, facilities, and campus cultures have all contributed to a robust curriculum focusing on enzyme function prediction that is suitable for implementation in a wide variety of academic settings. (c) 2019 International Union of Biochemistry and Molecular Biology, 00(00):1-8, 2019. C1 [Rober, Rebecca] Ursinus Coll, Dept Biol, Collegeville, PA 19426 USA. [Hall, Bonnie] Grand View Univ, Dept Chem, Des Moines, IA USA. [Daubner, Colette] St Marys Univ, Dept Biol Sci, San Antonio, TX USA. [Goodman, Anya] Cal Poly San Luis Obispo, Dept Chem & Biochem, San Luis Obispo, CA USA. [Pikaart, Michael] Hope Coll, Dept Chem & Biochem, Holland, MI 49423 USA. [Sikora, Arthur] Nova Southeastern Univ, Dept Chem & Phys, Ft Lauderdale, FL 33314 USA. [Craig, Paul] Rochester Inst Technol, Head Sch Chem & Mat Sci, Rochester, NY 14623 USA. C3 California State University System; California Polytechnic State University San Luis Obispo; Hope College; Nova Southeastern University; Rochester Institute of Technology RP Craig, P (corresponding author), Rochester Inst Technol, Head Sch Chem & Mat Sci, Rochester, NY 14623 USA. EM paul.craig@rit.edu RI Pikaart, Mike/ABE-3086-2020 OI Roberts, Rebecca/0000-0002-3855-0871; Craig, Paul/0000-0002-2085-7816; Pikaart, Michael/0000-0002-3771-4942; Sikora, Arthur/0000-0001-6295-9928; Goodman, Anya/0000-0003-1385-9992; Hall, Bonnie/0000-0002-7431-0349 FU Division of Undergraduate Education [1709170]; Division Of Undergraduate Education; Direct For Education and Human Resources [1709170] Funding Source: National Science Foundation FX Grant sponsor: Division of Undergraduate Education; Grant number: 1709170 CR Altschul SF, 1997, NUCLEIC ACIDS RES, V25, P3389, DOI 10.1093/nar/25.17.3389 ANDERSON J, 1994, J CHEM EDUC, V71, P715, DOI 10.1021/ed071p715 Auchincloss LC, 2014, CBE-LIFE SCI EDUC, V13, P29, DOI 10.1187/cbe.14-01-0004 Bateman A, 2004, NUCLEIC ACIDS RES, V32, pD138, DOI [10.1093/nar/gkh121, 10.1093/nar/gkp985, 10.1093/nar/gkr1065] Bell JK, 2017, BIOCHEM MOL BIOL EDU, V45, P7, DOI 10.1002/bmb.20989 Bell JK, 2019, FASEB J, V33 Caruso JP, 2016, J MICROBIOL BIOL EDU, V17, P156, DOI 10.1128/jmbe.v17i1.1011 CRAIG P, 2014, FASEB J S, V28 Craig PA, 2018, J BIOL CHEM, V293, P10447, DOI 10.1074/jbc.RA118.003722 Craig PA, 2017, BIOCHEM MOL BIOL EDU, V45, P426, DOI 10.1002/bmb.21060 Dallakyan S, 2015, METHODS MOL BIOL, V1263, P243, DOI 10.1007/978-1-4939-2269-7_19 Davis E, 2017, MICROBIOLOGYOPEN, V6, DOI 10.1002/mbo3.435 DELANO WL, 2002, PYMOL MOL GRAPHICS S, DOI DOI 10.1234/12345678 Elgin SCR, 2016, CBE-LIFE SCI EDUC, V15, DOI 10.1187/cbe.16-03-0118 Grell L, 2006, BIOCHEM MOL BIOL EDU, V34, P402, DOI 10.1002/bmb.2006.494034062672 Hanson B, 2014, BMC BIOINFORMATICS, V15, DOI 10.1186/1471-2105-15-87 Holm L, 2016, NUCLEIC ACIDS RES, V44, pW351, DOI 10.1093/nar/gkw357 IRBY SM, 2018, CBE LIFE SCI EDUC, V17 Jordan TC, 2014, MBIO, V5, DOI 10.1128/mBio.01051-13 Lopatto D, 2008, SCIENCE, V322, P684, DOI 10.1126/science.1165351 MCDONALD AR, BASIL BIOCH CURRICUL McKay Talia, 2015, Journal of Structural and Functional Genomics, V16, P43, DOI 10.1007/s10969-015-9194-5 Olson S., 2012, REP PRES Pope WH, 2015, ELIFE, V4, DOI 10.7554/eLife.06416 Ribeiro AJM, 2018, NUCLEIC ACIDS RES, V46, pD618, DOI 10.1093/nar/gkx1012 Seiler CY, 2014, NUCLEIC ACIDS RES, V42, pD1253, DOI 10.1093/nar/gkt1060 Shaffer CD, 2010, CBE-LIFE SCI EDUC, V9, P55, DOI 10.1187/09-11-0087 TAN K, CRYSTAL STRUCTURE PO Truhlar DG, 2007, J COMPUT CHEM, V28, P73, DOI 10.1002/jcc.20529 Woodin T, 2010, CBE-LIFE SCI EDUC, V9, P71, DOI 10.1187/cbe.10-03-0044 NR 30 TC 16 Z9 17 U1 0 U2 11 PU WILEY PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1470-8175 EI 1539-3429 J9 BIOCHEM MOL BIOL EDU JI Biochem. Mol. Biol. Educ. PD SEP PY 2019 VL 47 IS 5 BP 498 EP 505 DI 10.1002/bmb.21287 EA AUG 2019 PG 8 WC Biochemistry & Molecular Biology; Education, Scientific Disciplines WE Science Citation Index Expanded (SCI-EXPANDED) SC Biochemistry & Molecular Biology; Education & Educational Research GA IW9HU UT WOS:000479286300001 PM 31381264 OA Bronze DA 2024-09-05 ER PT J AU Xu, ZS Yu, DJ Wang, XZ AF Xu, Zeshui Yu, Dejian Wang, Xizhao TI A bibliometric overview of International Journal of Machine Learning and Cybernetics between 2010 and 2017 SO INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS LA English DT Article DE Bibliometric; Citation and co-citation; IJMLC; CiteSpace; Vosviewer ID PARTICLE SWARM OPTIMIZATION; FUZZY DECISION TREES; INFORMATION-SCIENCE; EMERGING TRENDS; NEURAL-NETWORK; SCIENTOMETRICS; ENSEMBLE; MEDICINE; ENERGY AB International Journal of Machine Learning and Cybernetics (IJMLC) is one of the influential journals in the area of computer science, and it published its first issue in 2010. On the one hand, taking the 544 IJMLC publications between 2010 and 2017 as the research object, this paper uses bibliometric methods to study the citation characteristics, international cooperation and institutional cooperation, the author's cooperation rate and cooperation degree, geographical distribution of the IJMLC publications. On the other hand, CiteSpace and Vosviewer, two data visualization software tools, are used to make the comprehensive analysis of the co-occurrence of the author keywords of the IJMLC publications. The document co-citation clusters visualization and burst detection of keywords are also presented to explore the development of the research trends. The research results in this paper provide a basis for further improving the academic level and quality of the IJMLC. C1 [Xu, Zeshui] Sichuan Univ, Business Sch, Chengdu 610064, Sichuan, Peoples R China. [Yu, Dejian] Nanjing Audit Univ, Business Sch, Nanjing 211815, Jiangsu, Peoples R China. [Wang, Xizhao] Shenzhen Univ, Coll Comp Sci & Software Engn, Shenzhen 518060, Peoples R China. C3 Sichuan University; Nanjing Audit University; Shenzhen University RP Xu, ZS (corresponding author), Sichuan Univ, Business Sch, Chengdu 610064, Sichuan, Peoples R China. EM xuzeshui@263.net; yudejian62@126.com; xizhaowang@ieee.org RI Wang, Xizhao/ABG-7225-2020; Xu, Zeshui/N-8908-2013 FU China National Natural Science Foundation [71771155, 71571123] FX The work was supported in part by the China National Natural Science Foundation (nos. 71771155, 71571123). CR Akmal A, 2018, PROD PLAN CONTROL, V29, P333, DOI 10.1080/09537287.2018.1429030 Biggio B, 2010, INT J MACH LEARN CYB, V1, P27, DOI 10.1007/s13042-010-0007-7 Boehm O, 2011, INT J MACH LEARN CYB, V2, P125, DOI 10.1007/s13042-011-0030-3 Borgman CL, 2002, ANNU REV INFORM SCI, V36, P3 Cancino CA, 2017, COMPUT IND ENG, V113, P614, DOI 10.1016/j.cie.2017.08.033 Castillo-Vergara M, 2018, J BUS RES, V85, P1, DOI 10.1016/j.jbusres.2017.12.011 Chacko BP, 2012, INT J MACH LEARN CYB, V3, P149, DOI 10.1007/s13042-011-0049-5 Chau KW, 2007, AUTOMAT CONSTR, V16, P642, DOI 10.1016/j.autcon.2006.11.008 Chen CM, 2010, J AM SOC INF SCI TEC, V61, P1386, DOI 10.1002/asi.21309 Chen CM, 2006, J AM SOC INF SCI TEC, V57, P359, DOI 10.1002/asi.20317 Cobo MJ, 2015, KNOWL-BASED SYST, V80, P3, DOI 10.1016/j.knosys.2014.12.035 Fang YQ, 2015, SCIENTOMETRICS, V105, P5, DOI 10.1007/s11192-015-1696-1 Gaede J, 2018, ENERGY RES SOC SCI, V40, P142, DOI 10.1016/j.erss.2017.12.006 Graaff AJ, 2012, INT J MACH LEARN CYB, V3, P1, DOI 10.1007/s13042-011-0041-0 Hirsch JE, 2005, P NATL ACAD SCI USA, V102, P16569, DOI 10.1073/pnas.0507655102 Hood WW, 2001, SCIENTOMETRICS, V52, P291, DOI 10.1023/A:1017919924342 Hu QH, 2010, INT J MACH LEARN CYB, V1, P63, DOI 10.1007/s13042-010-0008-6 Hu Y, 2014, SCIENTOMETRICS, V98, P1269, DOI 10.1007/s11192-013-1067-8 Huang F, 2018, J CHIN MED ASSOC, V81, P450, DOI 10.1016/j.jcma.2017.08.012 Huang GB, 2007, NEUROCOMPUTING, V70, P3056, DOI 10.1016/j.neucom.2007.02.009 Huang GB, 2011, INT J MACH LEARN CYB, V2, P107, DOI 10.1007/s13042-011-0019-y Jun W, 2011, INT J MACH LEARN CYB, V2, P261, DOI 10.1007/s13042-011-0024-1 Kim MC, 2015, SCIENTOMETRICS, V104, P239, DOI 10.1007/s11192-015-1595-5 Laengle S, 2017, EUR J OPER RES, V262, P803, DOI 10.1016/j.ejor.2017.04.027 Lan Y, 2009, NEUROCOMPUTING, V72, P3391, DOI 10.1016/j.neucom.2009.02.013 Leydesdorff L, 2006, J AM SOC INF SCI TEC, V57, P1616, DOI 10.1002/asi.20335 Li JH, 2013, INT J MACH LEARN CYB, V4, P721, DOI 10.1007/s13042-013-0150-z Li MB, 2005, NEUROCOMPUTING, V68, P306, DOI 10.1016/j.neucom.2005.03.002 Liang JZ, 2012, INT J MACH LEARN CYB, V3, P141, DOI 10.1007/s13042-011-0047-7 Liu N, 2010, IEEE SIGNAL PROC LET, V17, P754, DOI 10.1109/LSP.2010.2053356 Liu Z, 2011, INT J MACH LEARN CYB, V2, P37, DOI 10.1007/s13042-011-0012-5 Merigó JM, 2017, OMEGA-INT J MANAGE S, V73, P37, DOI 10.1016/j.omega.2016.12.004 Merigó JM, 2017, INT J INTELL SYST, V32, P526, DOI 10.1002/int.21859 PRITCHARD A, 1969, J DOC, V25, P348 Rana S, 2013, INT J MACH LEARN CYB, V4, P391, DOI 10.1007/s13042-012-0103-y Sharma A, 2012, INT J MACH LEARN CYB, V3, P269, DOI 10.1007/s13042-011-0061-9 Tang Y, 2011, INT J MACH LEARN CYB, V2, P15, DOI 10.1007/s13042-011-0011-6 Tong DL, 2010, INT J MACH LEARN CYB, V1, P75, DOI 10.1007/s13042-010-0004-x Tsang ECC, 2000, IEEE T FUZZY SYST, V8, P601, DOI 10.1109/91.873583 van Eck NJ, 2010, SCIENTOMETRICS, V84, P523, DOI 10.1007/s11192-009-0146-3 Waltman L, 2010, J INFORMETR, V4, P629, DOI 10.1016/j.joi.2010.07.002 Wang XZ, 2008, INFORM SCIENCES, V178, P3188, DOI 10.1016/j.ins.2008.03.021 Wang XZ, 2011, INFORM SCIENCES, V181, P4230, DOI 10.1016/j.ins.2011.06.002 Wei GW, 2016, INT J MACH LEARN CYB, V7, P1093, DOI 10.1007/s13042-015-0433-7 White HD, 1998, J AM SOC INFORM SCI, V49, P327, DOI 10.1002/(SICI)1097-4571(19980401)49:4<327::AID-ASI4>3.0.CO;2-W Xiao JZ, 2012, INT J MACH LEARN CYB, V3, P77, DOI 10.1007/s13042-011-0035-y Yang XB, 2012, INT J MACH LEARN CYB, V3, P223, DOI 10.1007/s13042-011-0054-8 Ye SQ, 2013, ANN MED, V45, P532, DOI 10.3109/07853890.2013.850838 Yi WG, 2011, INT J MACH LEARN CYB, V2, P67, DOI 10.1007/s13042-011-0015-2 Yu DJ, 2018, KNOWL-BASED SYST, V141, P188, DOI 10.1016/j.knosys.2017.11.018 Yu DJ, 2018, IEEE T FUZZY SYST, V26, P430, DOI 10.1109/TFUZZ.2017.2672732 Yu DJ, 2017, INFORM SCIENCES, V418, P619, DOI 10.1016/j.ins.2017.08.031 Yu DJ, 2018, APPL INTELL Zhang Y, 2010, INT J MACH LEARN CYB, V1, P43, DOI 10.1007/s13042-010-0001-0 Zhu W, 2011, INT J MACH LEARN CYB, V2, P273, DOI 10.1007/s13042-011-0027-y NR 55 TC 16 Z9 16 U1 4 U2 124 PU SPRINGER HEIDELBERG PI HEIDELBERG PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY SN 1868-8071 EI 1868-808X J9 INT J MACH LEARN CYB JI Int. J. Mach. Learn. Cybern. PD SEP PY 2019 VL 10 IS 9 BP 2375 EP 2387 DI 10.1007/s13042-018-0875-9 PG 13 WC Computer Science, Artificial Intelligence WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Computer Science GA IR4QF UT WOS:000481418600011 DA 2024-09-05 ER PT C AU Bhoiwala, J Jhaveri, RH AF Bhoiwala, Jaina Jhaveri, Rutvij H. BE Sa, PK Bakshi, S Hatzilygeroudis, IK Sahoo, MN TI A Bibliometric Analysis of Recent Research on Machine Learning for Medical Science SO RECENT FINDINGS IN INTELLIGENT COMPUTING TECHNIQUES, VOL 1 SE Advances in Intelligent Systems and Computing LA English DT Proceedings Paper CT 5th International Conference on Advanced Computing, Networking, and Informatics (ICACNI) CY JUN 01-03, 2017 CL Natl Inst Technol Goa, Dept Comp Sci & Engn, Goa, INDIA HO Natl Inst Technol Goa, Dept Comp Sci & Engn DE Wireless sensor networks; Trend analysis; Graphical interpretation ID CLASSIFICATION AB Machine learning is a system capable of the independent acquisition and integration of knowledge. Machine learning is a chosen approach to speech recognition, natural language processing computer vision, medical outcome analysis, and computational biology. In this paper we carry out bibliometric analysis of 150 papers from January 2015 to September 2016 in order to recognize various aspects of machine learning when used for medical science. We have considered large number of objectives and top rated publishers for analyzing the papers. For carrying out further research in the machine learning for medical science, our analysis would assist students, researchers, publishers, and experts to study the recent trends. C1 [Bhoiwala, Jaina; Jhaveri, Rutvij H.] Shri Sad Vidya Mandal Inst Technol, Dept Comp Engn, Bharuch, India. RP Bhoiwala, J (corresponding author), Shri Sad Vidya Mandal Inst Technol, Dept Comp Engn, Bharuch, India. EM jainabhoiwala@gmail.com; rhj_symit@yahoo.com RI Jhaveri, Rutvij H./A-5354-2018 OI Jhaveri, Rutvij H./0000-0002-3285-7346 CR Bhardwaj A., 2015, EXPERT SYST APPL Jain R., RECENT MACHINE LEARN, P1 Kalaiselvi T., 2015, RAPID AUTOMATIC BRAI Kang S, 2015, EXPERT SYST APPL, V42, P4265, DOI 10.1016/j.eswa.2015.01.042 Kourou K., 2014, CSBJ Lee H., 2015, EXPERT SYST APPL Menze BH, 2015, IEEE T MED IMAGING, V34, P1993, DOI 10.1109/TMI.2014.2377694 Sharma R, 2015, EXPERT SYST APPL, V42, P1106, DOI 10.1016/j.eswa.2014.08.030 Soman S, 2015, APPL SOFT COMPUT, V30, P305, DOI 10.1016/j.asoc.2015.01.018 Uddin S, 2012, SCIENTOMETRICS, V90, P687, DOI 10.1007/s11192-011-0511-x Yang G., 2015, AUTOMATED CLASSIFICA NR 11 TC 0 Z9 0 U1 2 U2 9 PU SPRINGER-VERLAG SINGAPORE PTE LTD PI SINGAPORE PA 152 BEACH ROAD, #21-01/04 GATEWAY EAST, SINGAPORE, 189721, SINGAPORE SN 2194-5357 EI 2194-5365 BN 978-981-10-8639-7; 978-981-10-8638-0 J9 ADV INTELL SYST PY 2019 VL 707 BP 225 EP 233 DI 10.1007/978-981-10-8639-7_23 PG 9 WC Computer Science, Artificial Intelligence; Computer Science, Information Systems; Computer Science, Theory & Methods; Engineering, Electrical & Electronic WE Conference Proceedings Citation Index - Science (CPCI-S) SC Computer Science; Engineering GA BQ4EW UT WOS:000589271900023 DA 2024-09-05 ER PT J AU Myers, CT O'Brien, SP AF Myers, Christine Teeters O'Brien, Shirley Peganoff TI Teaching Interprofessional Collaboration: Using Online Education Across Institutions SO OCCUPATIONAL THERAPY IN HEALTH CARE LA English DT Article DE Distance learning; e-Learning; Interprofessional education; Online learning; Social presence AB Interdisciplinary courses among students in occupational therapy, physical therapy, and speech-language pathology are important for addressing teamwork, communication, and understanding of professional roles, especially in pre-service training for early intervention and school-based practice where collaboration is essential. Although interprofessional education (IPE) as a part of higher education in the health sciences has been strongly encouraged, IPE courses are difficult to schedule and implement. This article discusses the challenges of developing and delivering two IPE courses in an online format, specifically the innovation that addresses logistics, time factors, and social presence for the IPE courses across two institutions. C1 [Myers, Christine Teeters; O'Brien, Shirley Peganoff] Eastern Kentucky Univ, Dept Occupat Sci & Occupat Therapy, Richmond, KY 40475 USA. C3 Eastern Kentucky University RP Myers, CT (corresponding author), Eastern Kentucky Univ, Dept Occupat Sci & Occupat Therapy, Dizney 103,521 Lancaster Ave, Richmond, KY 40475 USA. EM christine.myers@eku.edu OI Myers, Christine/0000-0003-1492-9008 CR [Anonymous], 1972, SOILS HUMID TROPICS [Anonymous], 2010, Framework for Action on Inter-professional Education and Collaborative Practice [Anonymous], 2011, Core competencies for interprofessional collaborative practice: Report of an expert panel Aragon S. R., 2003, New Directions for Adult and Continuing Education, V100, P57, DOI [DOI 10.1002/ACE.119, 10.1002/ace.119] Bainbridge L., 2010, J PHYS THERAPY ED, V24, P6, DOI DOI 10.1097/00001416-201010000-00003 Blackboard Inc, 2015, BLACKB COMP SOFTW Boettcher J.V., 2010, ONLINE TEACHING SURV, V1st Buxton EC, 2014, AM J PHARM EDUC, V78, DOI 10.5688/ajpe7818 Carson NE, 2012, AM OCC THER ASS 2012 Chandler B, 2010, EARLY CHILDHOOD OCCU Fisher T., 2013, Final report and recommendations: Ad hoc committee for future of occupational therapy education Glassick CE, 1997, CARNEGIE FDN ADVANCE Hanft B., 2008, COLLABORATING STUDEN Kelly R., 2014, Faculty Focus: Higher Ed. Teaching Strategies From Magna Publications Knebel E., 2003, HLTH PROFESSIONS ED, DOI DOI 10.17226/10681 Learning Objects Inc, 2014, CAMP PACK COMP SOFTW Mandernach B.Jean., 2009, The International Review of Research in Open and Distance Learning, V10, P1, DOI DOI 10.19173/IRRODL.V10I3.606 MarylandOnline, 2014, QUAL MATT Mossavar-Rahmani F, 2009, WWW J ONLINE ED Myers CT, 2014, J OCC THER SCH EARLY, V7, P70, DOI 10.1080/19411243.2014.898494 Neill Mark, 2007, J Interprof Care, V21, P425 O'Neil E.H., 1998, RECREATING HLTH PROF Plante K, 2014, NURS EDUC PERSPECT, V35, P219, DOI 10.5480/13-1094.1 Revere L., 2011, Quarterly Review Of Distance Education, V12, P113 University of Kentucky, PREPARE PREP REL SER Zimmerman Scott D, 2011, J Allied Health, V40, P15 NR 26 TC 13 Z9 18 U1 0 U2 10 PU TAYLOR & FRANCIS INC PI PHILADELPHIA PA 530 WALNUT STREET, STE 850, PHILADELPHIA, PA 19106 USA SN 0738-0577 EI 1541-3098 J9 OCCUP THER HEALTH CA JI Occup. Ther. Health Care PD APR PY 2015 VL 29 IS 2 SI SI BP 178 EP 185 DI 10.3109/07380577.2015.1017789 PG 8 WC Rehabilitation WE Emerging Sources Citation Index (ESCI) SC Rehabilitation GA CH8WQ UT WOS:000354317300008 PM 25821890 DA 2024-09-05 ER PT J AU Tang, L Walsh, JP AF Tang, Li Walsh, John P. TI Bibliometric fingerprints: name disambiguation based on approximate structure equivalence of cognitive maps SO SCIENTOMETRICS LA English DT Article DE Name disambiguation; Common names; Cognitive map; Approximate structural equivalence; Knowledge homogeneity score; Hierarchical clustering ID CITATION ANALYSIS; PUBLICATIONS; AUTHORSHIP; IMPACT; WEB AB Authorship identity has long been an Achilles' heel in bibliometric analyses at the individual level. This problem appears in studies of scientists' productivity, inventor mobility and scientific collaboration. Using the concepts of cognitive maps from psychology and approximate structural equivalence from network analysis, we develop a novel algorithm for name disambiguation based on knowledge homogeneity scores. We test it on two cases, and the results show that this approach outperforms other common authorship identification methods with the ASE method providing a relatively simple algorithm that yields higher levels of accuracy with reasonable time demands. C1 [Tang, Li; Walsh, John P.] Georgia Inst Technol, Sch Publ Policy, Atlanta, GA 30332 USA. C3 University System of Georgia; Georgia Institute of Technology RP Walsh, JP (corresponding author), Georgia Inst Technol, Sch Publ Policy, Atlanta, GA 30332 USA. EM litang@gatech.edu; jwalsh6@mail.gatech.edu RI Tang, Li/B-6182-2011; Walsh, John/GQI-2785-2022; Tang, Li/AAG-8045-2021 OI Tang, Li/0000-0003-4971-6192; Walsh, John/0000-0002-2510-8734; Tang, Li/0000-0003-4971-6192 FU Direct For Social, Behav & Economic Scie; Divn Of Social and Economic Sciences [0937591] Funding Source: National Science Foundation CR ABBASI A, 2006, P 4 IEEE C INT SEC I, P60 [Anonymous], 2008, Science and engineering indicators [Anonymous], 2005, International Journal of Digital Evidence [Anonymous], 2009, Social Network Analysis. Methods and Applications BORGMAN CL, 1999, J AM SOC INFORM SCI, V43, P45 FRIETSCH R, 2008, FRAUNHOFER ISI DISCU, V15 GARFIELD E, 1969, NATURE, V223, P763, DOI 10.1038/223763b0 GRIFFITH RA, 2008, Patent No. 20080275859 Han H, 2005, ACM-IEEE J CONF DIG, P334, DOI 10.1145/1065385.1065462 Han H, 2005, P 2005 ACM S APPL CO HAN H, 2004, P ACM IEEE JOINT C D Hanneman R. A., 2005, INTRO SOCIAL NETWORK Houvardas J, 2006, LECT NOTES COMPUT SC, V4183, P77 Huang Jian, 2006, FAST AUTHOR NAME DIS Jacobs LF, 2003, PSYCHOL REV, V110, P285, DOI 10.1037/0033-295X.110.2.285 Jones BF, 2008, SCIENCE, V322, P1259, DOI 10.1126/science.1158357 Kang IS, 2009, INFORM PROCESS MANAG, V45, P84, DOI 10.1016/j.ipm.2008.06.006 Keefe J.O., 1978, HIPPOCAMPUS COGNITIV KOSTOFF R, 2008, J INFORMETR, V57, P1 KOSTOFF R, 2006, 443315 DTIC ADA Kuhn T.S., 2012, The structures of scientific revolutions Lai Ronald., 2009, The careers and co-authorship networks of u.s. patent-holders, DOI 10.2200/S00428ED1V01Y201207WBE002 Lin J. C., 1988, Cataloging & Classification Quarterly, V9, P69, DOI 10.1300/J104v09n01_08 Lorrain F., 1971, Journal of Mathematical Sociology, V1, P49, DOI DOI 10.1080/0022250X.1971.9989788 MACROBERTS MH, 1989, J AM SOC INFORM SCI, V40, P342, DOI 10.1002/(SICI)1097-4571(198909)40:5<342::AID-ASI7>3.0.CO;2-U MCCALLUM A, 2003, IJCAI WORKSH INF INT Meho LI, 2007, J AM SOC INF SCI TEC, V58, P2105, DOI 10.1002/asi.20677 Merton R. K., 1974, SOCIOLOGY SCI THEORE PASULA H, 2004, ADV NEUR INF PROC NI Pauly D., 2005, Ethics Sci Environ Polit, V5, P33 Phelan TJ, 1999, SCIENTOMETRICS, V45, P117, DOI 10.1007/BF02458472 Pieters R, 1999, INT J RES MARK, V16, P113, DOI 10.1016/S0167-8116(99)00008-7 Porter AL, 2008, J NANOPART RES, V10, P715, DOI 10.1007/s11051-007-9266-y Raffo J, 2009, RES POLICY, V38, P1617, DOI 10.1016/j.respol.2009.08.001 Smalheiser Neil R., 2009, ANN REV INFORM SCI T, V43 Soler JM, 2007, SCIENTOMETRICS, V72, P281, DOI 10.1007/s11192-007-1730-z STROTMANN A, 2009, AUTHOR NAME DISAMBIG TAN CN, 1986, LIBRARY ASS RECORD, V88, P551 Torvik VI, 2009, ACM T KNOWL DISCOV D, V3, DOI 10.1145/1552303.1552304 Trajtenberg M., 2006, 12479 NBER, V2479 TREERATPITUK P, 2009, JCDL AUST TEX US Van Mechelen I, 2004, STAT METHODS MED RES, V13, P363, DOI 10.1191/0962280204sm373ra Wooding S, 2006, SCIENTOMETRICS, V66, P11, DOI 10.1007/s11192-006-0002-7 Youtie J, 2008, J NANOPART RES, V10, P981, DOI 10.1007/s11051-008-9360-9 Zhao DZ, 2002, SCIENTOMETRICS, V54, P449, DOI 10.1023/A:1016090601710 Zhou W, 2008, INT J ELECTRON COMM, V13, P9, DOI 10.2753/JEC1086-4415130201 NR 46 TC 83 Z9 90 U1 2 U2 70 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0138-9130 EI 1588-2861 J9 SCIENTOMETRICS JI Scientometrics PD SEP PY 2010 VL 84 IS 3 BP 763 EP 784 DI 10.1007/s11192-010-0196-6 PG 22 WC Computer Science, Interdisciplinary Applications; Information Science & Library Science WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Computer Science; Information Science & Library Science GA 630LK UT WOS:000280274400014 DA 2024-09-05 ER PT J AU Ganjavi, C Eppler, MB Pekcan, A Biedermann, B Abreu, A Collins, GS Gill, IS Cacciamani, GE AF Ganjavi, Conner Eppler, Michael B. Pekcan, Asli Biedermann, Brett Abreu, Andre Collins, Gary S. Gill, Inderbir S. Cacciamani, Giovanni E. TI Publishers' and journals' instructions to authors on use of generative artificial intelligence in academic and scientific publishing: bibliometric analysis SO BMJ-BRITISH MEDICAL JOURNAL LA English DT Article ID CHATGPT AB OBJECTIVES To determine the extent and content of academic publishers' and scientific journals' guidance for authors on the use of generative artificial intelligence (GAI). DESIGN Cross sectional, bibliometric study. SETTING Websites of academic publishers and scientific journals, screened on 19-20 May 2023, with the search updated on 8-9 October 2023. PARTICIPANTS Top 100 largest academic publishers and top 100 highly ranked scientific journals, regardless of subject, language, or country of origin. Publishers were identified by the total number of journals in their portfolio, and journals were identified through the Scimago journal rank using the Hirsch index (H index) as an indicator of journal productivity and impact. MAIN OUTCOME MEASURES The primary outcomes were the content of GAI guidelines listed on the websites of the top 100 academic publishers and scientific journals, and the consistency of guidance between the publishers and their affiliated journals. RESULTS Among the top 100 largest publishers, 24% provided guidance on the use of GAI, of which 15 (63%) were among the top 25 publishers. Among the top 100 highly ranked journals, 87% provided guidance on GAI. Of the publishers and journals with guidelines, the inclusion of GAI as an author was prohibited in 96% and 98%, respectively. Only one journal (1%)explicitly prohibited the use of GAI in the generation of a manuscript, and two (8%) publishers and 19 (22%) journals indicated that their guidelines exclusively applied to the writing process. When disclosing the use of GAI, 75% of publishers and 43% of journals included specific disclosure criteria. Where to disclose the use of GAI varied, including in the methods or acknowledgments, in the cover letter, or in a new section. Variability was also found in how to access GAI guidelines shared between journals and publishers. GAI guidelines in 12 journals directly conflicted with those developed by the publishers. The guidelines developed by top medical journals were broadly similar to those of academic journals. CONCLUSIONS Guidelines by some top publishers and journals on the use of GAI by authors are lacking. Among those that provided guidelines, the allowable uses of GAI and how it should be disclosed varied substantially, with this heterogeneity persisting in some instances among affiliated publishers and journals. Lack of standardization places a burden on authors and could limit the effectiveness of the regulations. As GAI continues to grow in popularity, standardized guidelines to protect the integrity of scientific output are needed. C1 [Ganjavi, Conner; Eppler, Michael B.; Pekcan, Asli; Biedermann, Brett; Abreu, Andre; Gill, Inderbir S.; Cacciamani, Giovanni E.] Univ Southern Calif, Keck Sch Med, Los Angeles, CA 90007 USA. [Ganjavi, Conner; Eppler, Michael B.; Pekcan, Asli; Biedermann, Brett; Abreu, Andre; Gill, Inderbir S.; Cacciamani, Giovanni E.] Univ Southern Calif, USC Inst Urol, Los Angeles, CA 90007 USA. [Ganjavi, Conner; Eppler, Michael B.; Pekcan, Asli; Biedermann, Brett; Abreu, Andre; Gill, Inderbir S.; Cacciamani, Giovanni E.] Univ Southern Calif, Keck Sch Med, Catherine & Joseph Aresty Dept Urol, Los Angeles, CA 90007 USA. [Ganjavi, Conner; Eppler, Michael B.; Pekcan, Asli; Biedermann, Brett; Abreu, Andre; Gill, Inderbir S.; Cacciamani, Giovanni E.] Univ Southern Calif, USC Inst Urol, Artificial Intelligence Ctr, USC Urol, Los Angeles, CA 90007 USA. [Collins, Gary S.] Univ Oxford, UK EQUATOR Ctr, Ctr Stat Med, Nuffield Dept Orthopaed Rheumatol & Musculoskeleta, Oxford, England. C3 University of Southern California; University of Southern California; University of Southern California; University of Southern California; University of Oxford RP Cacciamani, GE (corresponding author), Univ Southern Calif, Keck Sch Med, Los Angeles, CA 90007 USA.; Cacciamani, GE (corresponding author), Univ Southern Calif, USC Inst Urol, Los Angeles, CA 90007 USA.; Cacciamani, GE (corresponding author), Univ Southern Calif, Keck Sch Med, Catherine & Joseph Aresty Dept Urol, Los Angeles, CA 90007 USA.; Cacciamani, GE (corresponding author), Univ Southern Calif, USC Inst Urol, Artificial Intelligence Ctr, USC Urol, Los Angeles, CA 90007 USA. EM Giovanni.cacciamani@med.usc.edu RI Collins, Gary Stephen/A-2258-2014 OI Collins, Gary Stephen/0000-0002-2772-2316; Cacciamani, Giovanni/0000-0002-8892-5539; Pekcan, Asli/0000-0002-8826-3184 CR Allen B, 2019, J AM COLL RADIOL, V16, P1179, DOI 10.1016/j.jacr.2019.04.014 [Anonymous], 2023, WAME Recommendations on Chatbots and Generative Artificial Intelligence in Relation to Scholarly Publications, press release Beall J, 2012, NATURE, V489, P179, DOI 10.1038/489179a Cacciamani GE, 2023, NATURE, V618, P238, DOI 10.1038/d41586-023-01853-w COPE, 2023, Authorship and AI tools: COPE Position Statement: COPE COPE, About COPE Curcic D., 2023, Number of academic papers published per year de Vries E, 2018, POLIT ANAL, V26, P417, DOI 10.1017/pan.2018.26 Delardas O, 2022, J MED INTERNET RES, V24, DOI 10.2196/43089 Delgado-López-Cózar E, 2013, LEARN PUBL, V26, P101, DOI 10.1087/20130206 Flanagin A, 2023, JAMA-J AM MED ASSOC, V329, P637, DOI 10.1001/jama.2023.1344 Gallego V, 2021, MOL DIVERS, V25, P1461, DOI 10.1007/s11030-021-10266-8 Graf A, 2023, NEUROSCIENCE, V515, P71, DOI 10.1016/j.neuroscience.2023.02.008 Grammarly, 2023, US Lecler A, 2023, DIAGN INTERV IMAG, V104, P269, DOI 10.1016/j.diii.2023.02.003 Microsoft, 2023, Announcing Microsoft Copilot, your everyday AI companion, press release Moher D, 2010, PLOS MED, V7, DOI 10.1371/journal.pmed.1000217 Newman J., 2023, 33 AI tools you can try for free Fast Company Nishikawa-Pacher A, 2022, J DOC, V78, P450, DOI 10.1108/JD-04-2022-0083 Opena I, 2022, Introducing ChatGPT OpenAI Pichai S., 2023, An important next step on our AI journey Rakha EA, 2021, J CLIN PATHOL, V74, P409, DOI 10.1136/jclinpath-2020-206908 Reuters, 2023, REUTERS Sample I, 2023, The Guardian Sholklapper TN, 2023, INT J SURG, V109, P1489, DOI 10.1097/JS9.0000000000000323 Singhal K, 2023, NATURE, V620, P172, DOI 10.1038/s41586-023-06291-2 Stokel-Walker C, 2023, NATURE, V613, P620, DOI 10.1038/d41586-023-00107-z Thorp HH, 2023, SCIENCE, V379, P313, DOI 10.1126/science.adg7879 NR 28 TC 16 Z9 16 U1 36 U2 36 PU BMJ PUBLISHING GROUP PI LONDON PA BRITISH MED ASSOC HOUSE, TAVISTOCK SQUARE, LONDON WC1H 9JR, ENGLAND SN 0959-535X EI 1756-1833 J9 BMJ-BRIT MED J JI BMJ-British Medical Journal PD JAN 31 PY 2024 VL 384 AR e077192 DI 10.1136/bmj-2023-077192 PG 12 WC Medicine, General & Internal WE Science Citation Index Expanded (SCI-EXPANDED) SC General & Internal Medicine GA NE0G5 UT WOS:001198653600005 PM 38296328 OA hybrid HC Y HP N DA 2024-09-05 ER PT J AU Wu, DH Zhou, DH Chen, MY Zhu, JF Yan, F Zheng, SM Guo, ET AF Wu, Dehao Zhou, Donghua Chen, Maoyin Zhu, Jifeng Yan, Fei Zheng, Shuiming Guo, Entao TI Output-Relevant Common Trend Analysis for KPI-Related Nonstationary Process Monitoring With Applications to Thermal Power Plants SO IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS LA English DT Article DE Market research; Power generation; Process monitoring; Coal; Temperature measurement; Power measurement; Informatics; Anomaly detection; fault diagnosis; common trend analysis; key performance indicator (KPI); nonstationary process monitoring; power plant; thermal efficiency ID PARTIAL LEAST-SQUARES; FAULT-DETECTION; DIAGNOSIS; COINTEGRATION; COMPONENTS; REGRESSION; PROJECTION; ALGORITHM AB Operation safety and efficiency are two main concerns in power plants. It is important to detect the anomalies in power plants, and further judge whether they affect key performance indicators (KPIs), such as the thermal efficiency. These two goals can be achieved by KPI-related nonstationary process monitoring. Although the thermal efficiency cannot be accurately measured online, it can be strongly characterized by some online measurable variables, including the exhaust gas temperature and oxygen content of flue gas. These critical variables closely related to the thermal efficiency are termed as output variables. Inspired from nonstationary common trends between input and output variables in thermal power plants, the output-relevant common trend analysis (OCTA) method is proposed, in this article, to model the input-output relationship. In OCTA, input and output variables are decomposed into nonstationary common trends and stationary residuals, and the model parameters are estimated by solving an optimization problem. It is pointed out that OCTA is a generalized form of partial least squares (PLS). The superior monitoring performance of OCTA is illustrated by case studies on a real power plant in Zhejiang Provincial Energy Group of China. Compared with the other PLS-based recursive algorithms, OCTA can effectively detect the anomalies in power plants and accurately determine whether they have an impact on the thermal efficiency or not. C1 [Wu, Dehao; Zhou, Donghua; Chen, Maoyin] Tsinghua Univ, Dept Automat, Beijing 100084, Peoples R China. [Zhou, Donghua] Shandong Univ Sci & Technol, Coll Elect Engn & Automat, Qingdao 266590, Peoples R China. [Zhu, Jifeng; Yan, Fei; Zheng, Shuiming; Guo, Entao] Zhejiang Zheneng Zhongmei Zhoushan Coal & Elect C, Zhejiang Prov Energy Grp, Zhoushan 316000, Peoples R China. C3 Tsinghua University; Shandong University of Science & Technology RP Zhou, DH; Chen, MY (corresponding author), Tsinghua Univ, Dept Automat, Beijing 100084, Peoples R China.; Zhou, DH (corresponding author), Shandong Univ Sci & Technol, Coll Elect Engn & Automat, Qingdao 266590, Peoples R China. EM wudh16@mails.tsinghua.edu.cn; zdh@tsinghua.edu.cn; mychen@tsinghua.edu.cn; 61030737@qq.com; 451995139@qq.com; 316643967@qq.com; guoentao@126.com RI Wu, Dehao/GZH-1054-2022 OI Wu, Dehao/0000-0003-0649-1085 FU National Natural Science Foundation of China [61751307, 61873143, 62033008]; Research Fund for the Taishan Scholar Project of Shandong Province of China [LZB2015-162, TII-20-3264] FX This work was supported in part by the National Natural Science Foundation of China under Grant 61751307, Grant 61873143, and Grant 62033008 and in part by the Research Fund for the Taishan Scholar Project of Shandong Province of China under Grant LZB2015-162. Paper no. TII-20-3264. CR BARTELS RH, 1972, COMMUN ACM, V15, P820, DOI 10.1145/361573.361582 Boyd Stephen, 2010, Foundations and Trends in Machine Learning, V3, P1, DOI 10.1561/2200000016 Byon E, 2016, IEEE T AUTOM SCI ENG, V13, P997, DOI 10.1109/TASE.2015.2440093 Chen Q, 2009, IND ENG CHEM RES, V48, P3533, DOI 10.1021/ie801611s Ding SX, 2013, IEEE T IND INFORM, V9, P2239, DOI 10.1109/TII.2012.2214394 Dong J, 2015, NEUROCOMPUTING, V154, P77, DOI 10.1016/j.neucom.2014.12.017 Escribano A., 1994, J TIME SER ANAL, V15, P577, DOI [10.1111/j.1467-9892.1994.tb00213.x, DOI 10.1111/J.1467-9892.1994.TB00213.X] GEURTS M, 1977, J MARKETING RES, V14, P269, DOI 10.2307/3150485 GOLUB GH, 1979, IEEE T AUTOMAT CONTR, V24, P909, DOI 10.1109/TAC.1979.1102170 GONZALO J, 1995, J BUS ECON STAT, V13, P27 HELLAND K, 1992, CHEMOMETR INTELL LAB, V14, P129, DOI 10.1016/0169-7439(92)80098-O Hu CH, 2019, IEEE ACCESS, V7, P128746, DOI 10.1109/ACCESS.2019.2939163 Huang JM, 2020, IEEE T POWER ELECTR, V35, P7086, DOI 10.1109/TPEL.2019.2956812 Jiang YC, 2019, IEEE T IND INFORM, V15, P2849, DOI 10.1109/TII.2018.2875067 Juricek BC, 2004, IND ENG CHEM RES, V43, P458, DOI 10.1021/ie0301684 Li G., 2014, IFAC Proc. Vol, V49, P10616, DOI [10.3182/20140824-6-ZA-1003.00754, DOI 10.3182/20140824-6-ZA-1003.00754] Li G, 2010, AUTOMATICA, V46, P204, DOI 10.1016/j.automatica.2009.10.030 Lin YL, 2019, IND ENG CHEM RES, V58, P6486, DOI 10.1021/acs.iecr.8b05099 Lin YL, 2017, IND ENG CHEM RES, V56, P8895, DOI 10.1021/acs.iecr.7b00011 Ma L, 2019, IEEE T IND INFORM, V15, P2091, DOI 10.1109/TII.2018.2855189 Odiowei PEP, 2010, IEEE T IND INFORM, V6, P36, DOI 10.1109/TII.2009.2032654 Qin SJ, 2013, AICHE J, V59, P496, DOI 10.1002/aic.13959 Qin SJ, 1998, COMPUT CHEM ENG, V22, P503, DOI 10.1016/S0098-1354(97)00262-7 Shang J, 2017, CONTROL ENG PRACT, V66, P156, DOI 10.1016/j.conengprac.2017.06.011 Si YB, 2021, IEEE T IND ELECTRON, V68, P2626, DOI 10.1109/TIE.2020.2972472 STOCK JH, 1988, J AM STAT ASSOC, V83, P1097, DOI 10.2307/2290142 Sun H, 2017, IND ENG CHEM RES, V56, P6993, DOI 10.1021/acs.iecr.7b00156 The American Society of Mechanical Engineers, PERF TEST COD Wang G, 2018, IEEE ACCESS, V6, P10341, DOI 10.1109/ACCESS.2018.2793281 Wang G, 2015, IEEE T IND INFORM, V11, P398, DOI 10.1109/TII.2015.2396853 Wang SN, 2019, IEEE T CYBERNETICS, V49, P1896, DOI 10.1109/TCYB.2018.2816791 Wang XX, 2019, IEEE T IND INFORM, V15, P5139, DOI 10.1109/TII.2019.2899118 WOLD S, 1978, TECHNOMETRICS, V20, P397, DOI 10.2307/1267639 Yin S, 2015, IEEE T IND ELECTRON, V62, P1651, DOI 10.1109/TIE.2014.2345331 Zhang K, 2015, J PROCESS CONTR, V33, P112, DOI 10.1016/j.jprocont.2015.06.007 Zhang SM, 2019, IEEE T CONTR SYST T, V27, P103, DOI 10.1109/TCST.2017.2755580 Zhang YC, 2020, IEEE T IND INFORM, V16, P4390, DOI 10.1109/TII.2019.2945366 Zhao CH, 2018, AICHE J, V64, P1662, DOI 10.1002/aic.16048 Zhou B, 2006, SYST CONTROL LETT, V55, P193, DOI 10.1016/j.sysconle.2005.07.002 Zhou DH, 2010, AICHE J, V56, P168, DOI 10.1002/aic.11977 NR 40 TC 8 Z9 9 U1 5 U2 13 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1551-3203 EI 1941-0050 J9 IEEE T IND INFORM JI IEEE Trans. Ind. Inform. PD OCT PY 2021 VL 17 IS 10 BP 6664 EP 6675 DI 10.1109/TII.2020.3041516 PG 12 WC Automation & Control Systems; Computer Science, Interdisciplinary Applications; Engineering, Industrial WE Science Citation Index Expanded (SCI-EXPANDED) SC Automation & Control Systems; Computer Science; Engineering GA TJ3VW UT WOS:000673414500011 DA 2024-09-05 ER PT C AU Nasiar, N Baker, RS Li, J Gong, WY AF Nasiar, Nidhi Baker, Ryan S. Li, Jillian Gong, Weiyi BE Rodrigo, MM Matsuda, N Cristea, AI Dimitrova, V TI How do A/B Testing and Secondary Data Analysis on AIED Systems Influence Future Research? SO ARTIFICIAL INTELLIGENCE IN EDUCATION, PT I SE Lecture Notes in Computer Science LA English DT Proceedings Paper CT 23rd International Conference on Artificial Intelligence in Education (AIED) CY JUL 27-31, 2022 CL Durham Univ, Durham, ENGLAND HO Durham Univ DE Scientometrics; A/B testing; Online learning; AIED systems AB Recent years have seen a surge in research conducted on intelligent online learning platforms, with a particular expansion of research conducting A/B testing to decide which design to use, and research using secondary platform data in analyses. This scientometric study aims to investigate how scholarship builds on these two different types of research. We collected papers for both categories - A/B testing, and educational data mining (EDM) on log data- in the context of the same learning platform. We then collected a randomized stratified sample of papers citing those A/B and EDM papers, and coded the reason for each citation. Oncomparing the frequency of citation categories between the two types of papers, we found that A/B test papers were cited more often to provide background and context for a study, whereas the EDM papers were cited to use past specific core ideas, theories, and findings in the field. This paper establishes a method to compare the contribution of different types of research on AIED systems such as interactive learning platforms. C1 [Nasiar, Nidhi; Baker, Ryan S.; Li, Jillian; Gong, Weiyi] Univ Penn, Grad Sch Educ, Philadelphia, PA 19104 USA. C3 University of Pennsylvania RP Nasiar, N (corresponding author), Univ Penn, Grad Sch Educ, Philadelphia, PA 19104 USA. EM nasiar@upenn.edu RI Baker, Ryan/IWE-2102-2023 OI Nasiar, Nidhi/0009-0006-7063-5433 CR [Anonymous], 2016, P 9 INT C ED DAT MIN [Anonymous], 2011, Evaluation, DOI DOI 10.1177/1356389010389908 Baker R. S., 2009, Journal of educational Data Mining, V1, P3, DOI DOI 10.5281/ZENODO.3554657 Beck JE, 1999, FR ART INT, V50, P611 Bornmann L, 2008, J DOC, V64, P45, DOI 10.1108/00220410810844150 CAMBROSIO A, 1993, SCIENTOMETRICS, V27, P119, DOI 10.1007/BF02016546 Chen GL, 2020, LAK20: THE TENTH INTERNATIONAL CONFERENCE ON LEARNING ANALYTICS & KNOWLEDGE, P544, DOI 10.1145/3375462.3375500 COLE JR, 1972, SCIENCE, V178, P368, DOI 10.1126/science.178.4059.368 Cronin B., 1984, The citation process. The role and significance of citations in scientific communication, P103 Dormezil S., 2019, EDM WORKSHOPS, P17 Fazeli S., 2019, P LAK DATA CHALLENGE GARFIELD E, 1965, STAT ASSOC METHOD M, V1964, P189 Garzone M, 2000, LECT NOTES ARTIF INT, V1822, P337 Goel Gagan, 2012, Intelligent Tutoring Systems. Proceedings 11th International Conference (ITS 2012), P428, DOI 10.1007/978-3-642-30950-2_55 Gross P L, 1927, Science, V66, P385, DOI 10.1126/science.66.1713.385 Hopkins AL, 2013, SCIENTOMETRICS, V96, P515, DOI 10.1007/s11192-012-0893-4 Kizilcec RF, 2020, P NATL ACAD SCI USA, V117, P14900, DOI 10.1073/pnas.1921417117 Koedinger K. R, 2010, Handbook of Educational Data Mining, V43, P43, DOI DOI 10.1201/B10274-6 Koedinger KR, 2012, COGNITIVE SCI, V36, P757, DOI 10.1111/j.1551-6709.2012.01245.x Krichevsky N., 2020, THESIS WORCESTER POL Liu R., 2017, Journal of Educational Data Mining, V9, P25, DOI [DOI 10.5281/ZEN0D0.3554625, 10.5281/zenodo.3554625, DOI 10.5281/ZENODO.3554625] Malmi Lauri, 2020, ICER '20. Proceedings of the 2020 ACM Conference on International Computing Education Research, P36, DOI 10.1145/3372782.3406279 Maturana R.A., 2013, P LAK DATA CHALLENGE Mostow J., 2003, P THEWORKSHOP ASSESS, P61 Murphy R, 2020, J RES EDUC EFF, V13, P235, DOI 10.1080/19345747.2019.1710885 OECD, 2020, Digital transformation in the age of COVID-19. Building Resilience and bridging divides, DOI DOI 10.5281/ZENODO.4143612 Ostrow K, 2017, TEACH COLL REC, V119 Park JH, 2009, EDUC TECHNOL SOC, V12, P207 Peña-Ayala A, 2014, EXPERT SYST APPL, V41, P1432, DOI 10.1016/j.eswa.2013.08.042 Reich J, 2015, SCIENCE, V347, P34, DOI 10.1126/science.1261627 Romero C, 2020, WIRES DATA MIN KNOWL, V10, DOI 10.1002/widm.1355 SHOCKLEY W, 1957, P IRE, V45, P279, DOI 10.1109/JRPROC.1957.278364 Stamper J.C., 2012, P INT C ED DATA MINI VanLehn K, 2011, EDUC PSYCHOL-US, V46, P197, DOI 10.1080/00461520.2011.611369 Verbert K, 2013, AM BEHAV SCI, V57, P1500, DOI 10.1177/0002764213479363 VINKLER P, 1987, SCIENTOMETRICS, V12, P47, DOI 10.1007/BF02016689 Waheed H, 2018, BEHAV INFORM TECHNOL, V37, P941, DOI 10.1080/0144929X.2018.1467967 Wise AF, 2019, J LEARN ANAL, V6, P53, DOI 10.18608/jla.2019.62.4 Yeung CK, 2018, PROCEEDINGS OF THE FIFTH ANNUAL ACM CONFERENCE ON LEARNING AT SCALE (L@S'18), DOI 10.1145/3231644.3231647 Zhang JN, 2017, PROCEEDINGS OF THE 26TH INTERNATIONAL CONFERENCE ON WORLD WIDE WEB (WWW'17), P765, DOI 10.1145/3038912.3052580 Zouaq A., 2013, P LAK DATA CHALLENGE NR 41 TC 0 Z9 0 U1 0 U2 2 PU SPRINGER INTERNATIONAL PUBLISHING AG PI CHAM PA GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND SN 0302-9743 EI 1611-3349 BN 978-3-031-11644-5; 978-3-031-11643-8 J9 LECT NOTES COMPUT SC PY 2022 VL 13355 BP 115 EP 126 DI 10.1007/978-3-031-11644-5_10 PG 12 WC Computer Science, Artificial Intelligence; Computer Science, Interdisciplinary Applications; Education & Educational Research WE Conference Proceedings Citation Index - Science (CPCI-S); Conference Proceedings Citation Index - Social Science & Humanities (CPCI-SSH) SC Computer Science; Education & Educational Research GA BU1FW UT WOS:000877435100010 DA 2024-09-05 ER PT J AU Li, BJ Lee, HM AF Li, Benjamin (Benjy) J. Lee, Hui Min TI Emotional Personalization in Immersive Journalism: Exploring the Influence of Emotional Testimonies and Modality on Emotional Valence, Presence, Empathy, and Recall SO PRESENCE-VIRTUAL AND AUGMENTED REALITY LA English DT Article ID VIRTUAL-REALITY; EXPERIENCE; NEWS; PERCEPTIONS; CITIZENS; IMPACT AB Immersive journalism (IJ), where individuals engage in a news story from a first-person perspective using interactive technologies, has become increasingly popular in recent years. Such stories may improve the impact of journalism on the audience by enhancing feelings and emotions associated with the news content. Studies have shown that rather than undermining rationality, emotion could increase engagement toward news pieces, and improve knowledge of social issues. Emotional personalization (EP), a strategy where the production of news content involves the emotional testimony of ordinary citizens at the heart of the story, is therefore increasingly employed. This study explores how EP, as well as the modality of IJ content, influences our perceptions and cognitions with regards to an IJ piece on war and conflict. In our study, 193 participants took part in a 2 (EP: present vs. absent) x 2 (modality: VR vs. desktop) experiment. Participants in the EP-present condition reported stronger feelings of presence and greater story recall, while those in the VR condition experienced lower emotional valence and stronger feelings of empathy. Our results support current literature on IJ and EP and suggest that with the rising interest in immersive technologies, sustained investigation on the implications of EP strategies in IJ is crucial. C1 [Li, Benjamin (Benjy) J.; Lee, Hui Min] Nanyang Technol Univ, Wee Kim Wee Sch Commun & Informat, Singapore, Singapore. C3 Nanyang Technological University RP Li, BJ (corresponding author), Nanyang Technol Univ, Wee Kim Wee Sch Commun & Informat, Singapore, Singapore. EM benjyli@ntu.edu.sg FU Nanyang Technological University FX This project was supported by a Start-up Grant from Nanyang Technological University. The authors thank Carynn Chung for her assistance in data collection. CR [Anonymous], 1992, Presence: Teleoper. Virtual Environ., DOI [DOI 10.1162/PRES.1992.1.2.262, 10.1162/pres.1992.1.2.262] [Anonymous], 2001, MASS COMMUN SOC, DOI DOI 10.1207/S15327825MCS0403_01 Baños RM, 2004, CYBERPSYCHOL BEHAV, V7, P734, DOI 10.1089/cpb.2004.7.734 Baños RM, 2008, CYBERPSYCHOL BEHAV, V11, P1, DOI 10.1089/cpb.2007.9936 Baños RM, 2006, LECT NOTES COMPUT SC, V3962, P7 Barnidge M, 2022, MASS COMMUN SOC, V25, P1, DOI 10.1080/15205436.2021.1925300 Bas O, 2016, AM BEHAV SCI, V60, P1719, DOI 10.1177/0002764216676247 Bas O, 2015, COMMUN RES, V42, P159, DOI 10.1177/0093650213514602 Batson CD, 1997, PERS SOC PSYCHOL B, V23, P751, DOI 10.1177/0146167297237008 BURGOON JK, 1987, COMMUN MONOGR, V54, P19, DOI 10.1080/03637758709390214 DAVIS MH, 1983, J PERS, V51, P167, DOI 10.1111/j.1467-6494.1983.tb00860.x DAVIS MH, 1983, J PERS SOC PSYCHOL, V44, P113, DOI 10.1037/0022-3514.44.1.113 de la Peña N, 2010, PRESENCE-TELEOP VIRT, V19, P291, DOI 10.1162/PRES_a_00005 Estupiñán S, 2014, LECT NOTES COMPUT SC, V8518, P541, DOI 10.1007/978-3-319-07626-3_51 Grabe ME, 2017, INT J COMMUN-US, V11, P907 Harvey K., 2013, ENCY SOCIAL MEDIA PO, DOI [10.4135/9781452244723.n267, DOI 10.4135/9781452244723.N267] Hatfield E., 1992, REV PERSONALITY SOCI Herrera F, 2018, PLOS ONE, V13, DOI 10.1371/journal.pone.0204494 Jennett C, 2008, INT J HUM-COMPUT ST, V66, P641, DOI 10.1016/j.ijhcs.2008.04.004 Jeong SH, 2020, INT J MOB COMMUN, V18, P300, DOI 10.1504/IJMC.2020.107098 Kim M, 2021, ATL J COMMUN, V29, P202, DOI 10.1080/15456870.2020.1752693 Kobach MJ, 2012, COMMUN REP, V25, P51, DOI 10.1080/08934215.2012.721087 Laws ALS, 2020, DIGIT JOURNAL, V8, P213, DOI 10.1080/21670811.2017.1389286 Lee KM, 2004, COMMUN THEOR, V14, P27, DOI 10.1093/ct/14.1.27 Lombard M., 1997, Journal of Computer-Mediated Communication, V3, pJCMC321, DOI [10.1111/j.1083-6101.1997.tb00072.x, DOI 10.1111/J.1083-6101.1997.TB00072.X, https://doi.org/10.1111/j.1083-6101.1997.tb00072.x] Matthews M., 2021, OUR SINGAPOREAN VALU, DOI [10.25818/zb6t-tz11, DOI 10.25818/ZB6T-TZ11] Mayer RE., 2014, The Cambridge Handbook of Multimedia Learning, DOI [10.1017/CBO9781139547369.017, DOI 10.1017/CBO9781139547369, 10.1017/CBO9781139547369] Mujica C, 2018, JOURNALISM STUD, V19, P334, DOI 10.1080/1461670X.2016.1190661 Pantti M, 2010, EUR J COMMUN, V25, P168, DOI 10.1177/0267323110363653 Seijo SP, 2017, ADV INTELL SYST, V503, P113, DOI 10.1007/978-3-319-46068-0_14 Peters C, 2011, JOURNALISM, V12, P297, DOI 10.1177/1464884910388224 Riva G, 2007, CYBERPSYCHOL BEHAV, V10, P45, DOI 10.1089/cpb.2006.9993 Sanchez-Vives MV, 2005, NAT REV NEUROSCI, V6, P332, DOI 10.1038/nrn1651 Shen LJ, 2010, WESTERN J COMM, V74, P504, DOI 10.1080/10570314.2010.512278 Shin D, 2018, NEW MEDIA SOC, V20, P2800, DOI 10.1177/1461444817733133 Shin D, 2018, COMPUT HUM BEHAV, V78, P64, DOI 10.1016/j.chb.2017.09.012 Silverstein Jake., 2015, The New York Times Magazine Slater M, 2009, PHILOS T R SOC B, V364, P3549, DOI 10.1098/rstb.2009.0138 Steinfeld N, 2020, JOURNAL PRACT, V14, P240, DOI 10.1080/17512786.2019.1704842 Stocks EL, 2009, EUR J SOC PSYCHOL, V39, P649, DOI 10.1002/ejsp.561 Sundar SS, 2017, CYBERPSYCH BEH SOC N, V20, P672, DOI 10.1089/cyber.2017.0271 Susindar Sahinya, 2019, Proceedings of the Human Factors and Ergonomics Society Annual Meeting, V63, P252, DOI 10.1177/1071181319631509 Wald DM, 2021, FRONT COMMUN, V5, DOI 10.3389/fcomm.2020.588978 NR 43 TC 3 Z9 3 U1 2 U2 30 PU MIT PRESS PI CAMBRIDGE PA ONE ROGERS ST, CAMBRIDGE, MA 02142-1209 USA SN 1054-7460 EI 1531-3263 J9 PRESENCE-VIRTUAL AUG JI PRESENCE-Virtual Augmented Reality PD JAN 1 PY 2019 VL 28 BP 281 EP 292 DI 10.1162/pres_a_00352 PG 12 WC Computer Science, Cybernetics; Computer Science, Software Engineering WE Science Citation Index Expanded (SCI-EXPANDED) SC Computer Science GA 1F2AR UT WOS:000794975800003 DA 2024-09-05 ER PT J AU Hu, YH Tai, CT Liu, KE Cai, CF AF Hu, Ya-Han Tai, Chun-Tien Liu, Kang Ernest Cai, Cheng-Fang TI Identification of highly-cited papers using topic-model-based and bibliometric features: the consideration of keyword popularity SO JOURNAL OF INFORMETRICS LA English DT Article DE highly-cited papers; keyword popularity; supervised learning; binary classification; topic model ID CITATION IMPACT; COUNTS; EVOLUTION; ARTICLES; PREDICT; FIELDS AB The number of received citations have been used as an indicator of the impact of academic publications. Developing tools to find papers that have the potential to become highly-cited has recently attracted increasing scientific attention. Topics of concern by scholars may change over time in accordance with research trends, resulting in changes in received citations. Author-defined keywords, title and abstract provide valuable information about a research article. This study performs a latent Dirichlet allocation technique to extract topics and keywords from articles; five keyword popularity (KP) features are defined as indicators of emerging trends of articles. Binary classification models are utilized to predict papers that were highly-cited or less highly-cited by a number of supervised learning techniques. We empirically compare KP features of articles with other commonly used journal-related and author-related features proposed in previous studies. The results show that, with KP features, the prediction models are more effective than those with journal and/or author features, especially in the management information system discipline. (C) 2019 Elsevier Ltd. All rights reserved. C1 [Hu, Ya-Han] Natl Cent Univ, Dept Informat Management, Taoyuan 320, Taiwan. [Hu, Ya-Han] Natl Chung Cheng Univ, Ctr Innovat Res Aging Soc, Chiayi 621, Taiwan. [Hu, Ya-Han] Natl Cheng Kung Univ, MOST AI Biomed Res Ctr, Tainan 701, Taiwan. [Tai, Chun-Tien; Cai, Cheng-Fang] Natl Chung Cheng Univ, Dept Informat Management, Chiayi 621, Taiwan. [Tai, Chun-Tien] Chiayi Chang Gung Mem Hosp, Chiayi 613, Taiwan. [Liu, Kang Ernest] Natl Taiwan Univ Taipei, Dept Agr Econ, Taipei 106, Taiwan. C3 National Central University; National Chung Cheng University; National Cheng Kung University; National Chung Cheng University; Chang Gung Memorial Hospital; National Taiwan University RP Liu, KE (corresponding author), Natl Taiwan Univ, Dept Agr Econ, 1,Sect 4,Roosevelt Rd, Taipei 10617, Taiwan. EM yahan.hu@mis.ccu.edu.tw; flamquit@hotmail.com; kangernestliu@ntu.edu.tw; u9933116@gmail.com FU Ministry of Science and Technology of the Republic of China [MOST 107-2410-H-194 -054 -MY2]; Center for Innovative Research on Aging Society from The Featured Areas Research Center Program within Ministry of Education (MOE) in Taiwan FX This research was supported in part by the Ministry of Science and Technology of the Republic of China (grant number MOST 107-2410-H-194 -054 -MY2) and the Center for Innovative Research on Aging Society from The Featured Areas Research Center Program within the framework of the Higher Education Sprout Project by the Ministry of Education (MOE) in Taiwan. CR Abrishami A, 2019, J INFORMETR, V13, P485, DOI 10.1016/j.joi.2019.02.011 Acuna DE, 2012, NATURE, V489, P201, DOI 10.1038/489201a [Anonymous], MEASURING SCHOLARLY [Anonymous], BIBLIOMETRIC ANAL PU [Anonymous], 1993, MORGAN KAUFMANN SERI [Anonymous], ENCY BIOSTATISTICS [Anonymous], JAVA IMPLEMENTATION Bai XM, 2019, J INFORMETR, V13, P407, DOI 10.1016/j.joi.2019.01.010 Beliakov G, 2011, FUZZY SET SYST, V167, P101, DOI 10.1016/j.fss.2010.08.011 Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993 Bornmann L, 2014, J INFORMETR, V8, P175, DOI 10.1016/j.joi.2013.11.005 Chang YW, 2015, SCIENTOMETRICS, V105, P2071, DOI 10.1007/s11192-015-1762-8 Chen PI, 2010, EXPERT SYST APPL, V37, P1928, DOI 10.1016/j.eswa.2009.07.016 Chenguang Pan, 2010, 2010 International Conference on Computer Design and Applications (ICCDA 2010), P264, DOI 10.1109/ICCDA.2010.5541170 Choi J, 2011, INFORM MANAGE-AMSTER, V48, P371, DOI 10.1016/j.im.2011.09.004 Demsar J, 2013, J MACH LEARN RES, V14, P2349 Dorta-González P, 2014, J INFORMETR, V8, P406, DOI 10.1016/j.joi.2014.01.013 Finardi U, 2014, J INFORMETR, V8, P13, DOI 10.1016/j.joi.2013.10.003 Fu LD, 2010, SCIENTOMETRICS, V85, P257, DOI 10.1007/s11192-010-0237-1 GLANZEL W, 1995, J INFORM SCI, V21, P37, DOI 10.1177/016555159502100104 Hosmer D. W., 2004, APPL LOGISTIC REGRES Huang TY, 2019, PLOS ONE, V14, DOI 10.1371/journal.pone.0208370 Jiang HC, 2016, ECOL INDIC, V60, P693, DOI 10.1016/j.ecolind.2015.08.007 Kar M, 2015, INFORM PROCESS MANAG, V51, P809, DOI 10.1016/j.ipm.2015.06.002 Kim HN, 2011, DECIS SUPPORT SYST, V51, P772, DOI 10.1016/j.dss.2011.01.012 Kosteas VD, 2018, SCIENTOMETRICS, V115, P1395, DOI 10.1007/s11192-018-2703-0 Kretschmann E, 2001, BIOINFORMATICS, V17, P920, DOI 10.1093/bioinformatics/17.10.920 Leydesdorff L, 2011, J AM SOC INF SCI TEC, V62, P217, DOI 10.1002/asi.21450 Li LL, 2009, SCIENTOMETRICS, V80, P39, DOI 10.1007/s11192-008-1939-5 Liang TP, 2008, DECIS SUPPORT SYST, V45, P401, DOI 10.1016/j.dss.2007.05.004 Liu JY, 2019, SCIENTOMETRICS, V118, P617, DOI 10.1007/s11192-018-2974-5 Natale F, 2012, SCIENTOMETRICS, V90, P983, DOI 10.1007/s11192-011-0562-z Newman MEJ, 2014, EPL-EUROPHYS LETT, V105, DOI 10.1209/0295-5075/105/28002 Rodríguez-Bolívara MP, 2018, INT J INFORM MANAGE, V40, P111, DOI 10.1016/j.ijinfomgt.2017.12.011 PORTER MF, 1980, PROGRAM-AUTOM LIBR, V14, P130, DOI 10.1108/eb046814 RUMELHART DE, 1986, NATURE, V323, P533, DOI 10.1038/323533a0 Sohrabi B, 2017, SCIENTOMETRICS, V110, P243, DOI 10.1007/s11192-016-2161-5 Stegehuis C, 2015, J INFORMETR, V9, P642, DOI 10.1016/j.joi.2015.06.005 Tian YG, 2008, J INFORMETR, V2, P65, DOI 10.1016/j.joi.2007.10.001 Tsai CF, 2014, J INFORMETR, V8, P318, DOI 10.1016/j.joi.2014.01.002 Uddin S, 2016, J INFORMETR, V10, P1166, DOI 10.1016/j.joi.2016.10.004 Vapnik V., 2013, The nature of statistical learning theory Wacker D, 2013, SCIENCE, V340, P615, DOI 10.1126/science.1232808 Wang J, 2013, SCIENTOMETRICS, V94, P851, DOI 10.1007/s11192-012-0775-9 Wang MY, 2019, SCIENTOMETRICS, V119, P1575, DOI 10.1007/s11192-019-03052-9 Wang MY, 2012, J INFORMETR, V6, P586, DOI 10.1016/j.joi.2012.06.002 Yin JH, 2018, J CLEAN PROD, V197, P827, DOI 10.1016/j.jclepro.2018.06.169 Zhang X, 2014, APPL ENERG, V113, P1059, DOI 10.1016/j.apenergy.2013.08.047 Zhang Y, 2018, J INFORMETR, V12, P1099, DOI 10.1016/j.joi.2018.09.004 Zhang Y, 2012, PHYSICA A, V391, P5759, DOI 10.1016/j.physa.2012.05.013 Zheng HT, 2009, INFORM SCIENCES, V179, P2249, DOI 10.1016/j.ins.2009.02.019 Zhou XD, 2015, SCIENTOMETRICS, V105, P231, DOI 10.1007/s11192-015-1659-6 NR 52 TC 33 Z9 36 U1 5 U2 78 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS SN 1751-1577 EI 1875-5879 J9 J INFORMETR JI J. Informetr. PD FEB PY 2020 VL 14 IS 1 AR 101004 DI 10.1016/j.joi.2019.101004 PG 14 WC Computer Science, Interdisciplinary Applications; Information Science & Library Science WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Computer Science; Information Science & Library Science GA LH7EI UT WOS:000528948000006 DA 2024-09-05 ER PT C AU Saier, T Krause, J Färber, M AF Saier, Tarek Krause, Johan Faerber, Michael GP ACM TI unarXive 2022: All arXiv Publications Pre-Processed for NLP, Including Structured Full-Text and Citation Network SO 2023 ACM/IEEE JOINT CONFERENCE ON DIGITAL LIBRARIES, JCDL SE ACM-IEEE Joint Conference on Digital Libraries JCDL LA English DT Proceedings Paper CT 23rd ACM/IEEE Joint Conference on Digital Libraries (JCDL) CY JUN 26-30, 2023 CL Santa Fe, NM DE scholarly data; information extraction; citation network; LATEX AB Large-scale data sets on scholarly publications are the basis for a variety of bibliometric analyses and natural language processing (NLP) applications. Especially data sets derived from publication's full-text have recently gained attention. While several such data sets already exist, we see key shortcomings in terms of their domain and time coverage, citation network completeness, and representation of full-text content. To address these points, we propose a new version of the data set unarXive. We base our data processing pipeline and output format on two existing data sets, and improve on each of them. Our resulting data set comprises 1.9 M publications spanning multiple disciplines and 32 years. It furthermore has a more complete citation network than its predecessors and retains a richer representation of document structure as well as non-textual publication content such as mathematical notation. In addition to the data set, we provide ready-to-use training/test data for citation recommendation and IMRaD classification. All data and source code is publicly available at https://github.com/IllDepence/unarXive. C1 [Saier, Tarek; Krause, Johan; Faerber, Michael] Karlsruhe Inst Technol, Karlsruhe, Germany. C3 Helmholtz Association; Karlsruhe Institute of Technology RP Saier, T (corresponding author), Karlsruhe Inst Technol, Karlsruhe, Germany. EM tarek.saier@kit.edu; johan.krause@student.kit.edu; michael.faerber@kit.edu RI Färber, Michael/AAA-4789-2021 OI Färber, Michael/0000-0001-5458-8645 FU German Federal Ministry of Education and Research (BMBF); Software Campus project [01IS17042]; state of Baden-Wurttemberg through bwHPC FX This work was partially supported by the German Federal Ministry of Education and Research (BMBF) via [KOM,BI], a Software Campus project (01IS17042). The authors acknowledge support by the state of Baden-Wurttemberg through bwHPC. We thank Johannes Reber for supporting early stages of the software development. CR Bast H, 2017, ACM-IEEE J CONF DIG, P99 Bethesda (MD): National Library of Medicine, PMC Open Access Subset Bhagavatula C., 2018, Long Papers, V1, P238, DOI DOI 10.18653/V1/N18-1022 Chen CM, 2006, J AM SOC INF SCI TEC, V57, P359, DOI 10.1002/asi.20317 Chen H, 2021, FINDINGS OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, EMNLP 2021, P1483 Färber M, 2020, INT J DIGIT LIBRARIE, V21, P375, DOI 10.1007/s00799-020-00288-2 Gipp Bela, 2015, ICONFERENCE 2015 P Harper C., 2021, P 15 INT WORKSH SEM, P306 Hirsch JE, 2005, P NATL ACAD SCI USA, V102, P16569, DOI 10.1073/pnas.0507655102 Lai V., 2022, INT WORKSH SEM EV SE, P1671 Lo K., 2020, Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, P4969, DOI [DOI 10.18653/V1/2020.ACL-MAIN.447, 10.18653/v1/2020.acl-main.447] Lopez P, 2009, LECT NOTES COMPUT SC, V5714, P473, DOI 10.1007/978-3-642-04346-8_62 Luan Y, 2018, 2018 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING (EMNLP 2018), P3219 Mao Y., 2022, P 2022 C EMP METH NA, P10922 Papillon Mathilde, 2022, PREPRINT Parisot Mathias, 2022, P 3 WORKSHOP SCHOLAR, P80 Pontika Nancy, 2016, LIBER Quarterly, V25, P172, DOI 10.18352/lq.10138 Prasad A, 2018, INT J DIGIT LIBRARIE, V19, P323, DOI 10.1007/s00799-018-0242-1 Priem J, 2022, Arxiv, DOI [arXiv:2205.01833, DOI 10.48550/ARXIV.2205.01833, 10.48550/arXiv.2205.01833] Saier T, 2022, INT J DIGIT LIBRARIE, V23, P179, DOI 10.1007/s00799-021-00312-z Saier T, 2020, SCIENTOMETRICS, V125, P3085, DOI 10.1007/s11192-020-03382-z Scheidsteger T, 2022, Arxiv, DOI arXiv:2206.14168 Sinha A, 2015, WWW'15 COMPANION: PROCEEDINGS OF THE 24TH INTERNATIONAL CONFERENCE ON WORLD WIDE WEB, P243, DOI 10.1145/2740908.2742839 Veneri Michele Delli, 2022, Research Notes of the AAS, V6, P113, DOI [10.3847/2515-5172/ac74c7, DOI 10.3847/2515-5172/AC74C7] Viswanathan V, 2021, 59TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS AND THE 11TH INTERNATIONAL JOINT CONFERENCE ON NATURAL LANGUAGE PROCESSING, VOL 1 (ACL-IJCNLP 2021), P719 Wadden D, 2020, PROCEEDINGS OF THE 2020 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING (EMNLP), P7534 Wilkinson MD, 2016, SCI DATA, V3, DOI 10.1038/sdata.2016.18 NR 27 TC 1 Z9 1 U1 0 U2 1 PU ASSOC COMPUTING MACHINERY PI NEW YORK PA 1601 Broadway, 10th Floor, NEW YORK, NY, UNITED STATES SN 2575-7865 EI 2575-8152 BN 979-8-3503-9931-8 J9 ACM-IEEE J CONF DIG PY 2023 BP 66 EP 70 DI 10.1109/JCDL57899.2023.00020 PG 5 WC Computer Science, Information Systems; Computer Science, Interdisciplinary Applications WE Conference Proceedings Citation Index - Science (CPCI-S) SC Computer Science GA BW0PC UT WOS:001098971300010 OA Green Submitted DA 2024-09-05 ER PT J AU Sulastri, S Rahayu, A Sulaksana, RDIZF AF Sulastri, S. Rahayu, Agus Sulaksana, Ratu Dintha Insyani Zukhruf Firdausi TI MODEL OF TECHNOLOGY ACCEPTANCE USING ONLINE LEARNING SYSTEMS AND ITS IMPACT ON LEARNING EFFECTIVENESS SO JOURNAL OF ENGINEERING SCIENCE AND TECHNOLOGY LA English DT Article DE Bibliometric; Inquiry-based learning; Scopus; Technology; VOSviewer AB This study presents a bibliometric and bibliographic review of the studies of technology-assisted inquiry-based learning (IBL). A bibliometric approach using VOSviewer was used to conduct this study. 191 eligible and included documents published between 1999 - 2022 from the Scopus database were analysed using some main analyses such as performance, citation, co-authorship, and co-word supported by visualization and clustering analysis. The results revealed that the development of publications regarding technology-assisted IBL studies relatively soared from 1999 to 2020 while the development of citations related to the studies of technology-assisted IBL relatively fluctuated between 1999 and 2022. Furthermore, the United States relatively had the dominant influence in which most influential documents, authors, sources, and institutions affiliated with the became the leaders in conducting the studies of technology-assisted IBL in the social interactions among authors and also countries. This study implies that the use of technologies such as websites, computers, robots, and video conferencing extremely supports educational practitioners such as teachers and lecturers in implementing IBL. Additionally, this study suggests exploring the trending research topic related to critical digital literacy, an essential cognitive skill. C1 [Sulastri, S.; Rahayu, Agus; Sulaksana, Ratu Dintha Insyani Zukhruf Firdausi] Univ Pendidikan Indonesia, Jl Dr Setiabudi 229, Bandung, Indonesia. C3 Universitas Pendidikan Indonesia RP Sulastri, S (corresponding author), Univ Pendidikan Indonesia, Jl Dr Setiabudi 229, Bandung, Indonesia. EM sulastri@upi.edu RI Sulastri, Sulastri/O-3540-2019 OI Sulastri, Sulastri/0000-0001-6091-4451; Dintha IZFS, Ratu/0009-0003-3125-0985 CR Achdiani Y, 2019, J ENG SCI TECHNOL, V14, P2565 Aderele S.O., 2022, INDONESIAN J TEACHIN, P117 Aderogba O.A., 2021, INDONESIAN J TEACHIN, V1, P69 Agustina S., 2021, Indonesian Journal of Multidiciplinary Research, V1, P89 Akinoso SO., 2023, Indonesian Journal of Educational Research and Technology, V3, P79 Albar C., 2021, Indonesian Journal of Multidiciplinary Research, V1, P35 Ana A, 2020, J ENG SCI TECHNOL, V15, P3789 Anthony N.S., 2017, J ENG SCI TECHNOL, V1, P67 Arciosa R.M., 2022, Indonesian Journal of Teaching in Science, V2, P51 Ardiana A., 2022, Indonesian Journal of, P265 Arrasyid R, 2020, J ENG SCI TECHNOL, V15, P3859 Artawati A., 2022, ASEAN Journal of Community Service and Education, V1, P51 Ayupratiwi T., 2022, ASEAN J ED RES TECHN, V1, P125 Azhar F.M., 2023, ASEAN J ED RES TECHN, V2, P21 Azzahra S., 2022, INDONESIAN J MULTIDI, V2, P245 Babalola E.O., 2023, INDONESIAN J MULTIDI, V3, P31 Benito B.S.A., 2023, ASEAN J ED RES TECHN, V2, P145 Bolaji H., 2023, Indones. J. Educ. Res. Technol, V3, P97, DOI DOI 10.17509/IJERT.V3I2.48244 Bolaji H.O., 2022, Indonesian Journal of Multidiciplinary Research, V2, P257 Budiarti I., 2021, INT J RES APPL TECHN, V1, P6 Daramola F.O., 2022, ASEAN Journal of Educational Research and Technology, V1, P87 DAVIS FD, 1989, MIS QUART, V13, P319, DOI 10.2307/249008 Dirgantari P.D., 2022, ASEAN J EC EC ED, V1, P61 Djohar AA, 2020, Indonesian Journal of Science and Technology, V5, P308 Dwiana O., 2022, ASEAN J SCI ENG ED, V2, P193 Fadillah I.N., 2021, INDONESIAN J MULTIDI, V1, P329 Fahrannisa A L., 2022, Indonesian Journal of Multidisciplinary Research, V2, P237 Fale C.E.P., 2021, INDONESIAN J MULTIDI, V1, P309 Ganesha P., 2021, Indonesian Journal of Teaching in Science, V1, P1, DOI DOI 10.17509/IJOTIS.V1I1.33534 Giani W.A., 2022, ASEAN J COMMUNITY SE, V1, P43 HILL RJ, 1977, CONTEMP SOCIOL, V6, P244, DOI 10.2307/2065853 Huwaidi F., 2021, Indonesian Journal of Educational Research and Technology, V1, P35 Keengwe J, 2012, EDUC INF TECHNOL, V17, P365, DOI 10.1007/s10639-011-9164-x Leony I., 2022, ASEAN Journal of Economic and Economic Education, V1, P27 Manosa C., 2022, INDONESIAN J MULTIDI, P373 Maryanti R, 2020, J ENG SCI TECHNOL, V15, P1909 Maulidayani T., 2022, INDONESIAN J MULTIDI, V2, P117 Medani D. I., 2022, INDONESIAN J MULTIDI, V2, P229, DOI DOI 10.17509/IJOMR.V2I1.38668 Mohammad N., 2023, ASEAN J ED RES TECHN, V2, P35 Mugianti D.S., 2022, INDONESIAN J MULTIDI, V2, P223 Nasution A.R., 2021, Indonesian Journal of Educational Research and Technology, V1, P31 Ochayi O.A., 2021, ASEAN J SCI ENG ED, V2, P141 Ochayi O.A., 2021, INDONESIAN J MULTIDI, V1, P313 Odefunsho O.A., 2023, Indonesian Journal of Teaching in Science, V3, P9 Olumorin C. O., 2022, Indonesian Journal of Educational Research and Technology, V2, P213 Putri N.A.K.A., 2021, INDONESIAN J MULTIDI, V1, P399 Ramdhani T., 2021, Indonesian Journal of Multidiciplinary Research, V1, P107 Saefurohman S., 2021, ASEAN Journal of Science and Engineering Education, V3, P11 Saripudin S, 2021, J ENG SCI TECHNOL, V16, P666 Shah S.S., 2022, Indonesian Journal of Educational Research and Technology, V2, P133 Shirtode M.B., 2022, ASEAN J ED RES TECHN, V1, P53 Sombria K.J.F., 2023, ASEAN J SCI ENG ED, V3, P193 Sukmawati D., 2022, INDONESIAN J MULTIDI, V1, P235 Sultanto M.A., 2023, ASEAN J COMMUNITY SP, V2, P17 Suroto S., 2021, Indonesian Journal of Multidiciplinary Research, V1, P79 Thoriq M., 2023, INDONESIAN J TEACHIN, V3, P17 Wekke IS, 2013, PROCD SOC BEHV, V83, P585, DOI 10.1016/j.sbspro.2013.06.111 Yahya FH, 2018, J ENG SCI TECHNOL, V13, P1 Zheng A, 2011, J ENG SCI TECHNOL, V6, P639 NR 59 TC 0 Z9 0 U1 1 U2 1 PU TAYLORS UNIV SDN BHD PI SELANGOR PA 1 JALAN SS15-8, SUBANG JAYA, SELANGOR, 47500, MALAYSIA EI 1823-4690 J9 J ENG SCI TECHNOL JI J. Eng. Sci. Technol. PD JAN PY 2023 VL 18 SI SI BP 39 EP 52 PG 14 WC Engineering, Multidisciplinary WE Emerging Sources Citation Index (ESCI) SC Engineering GA L7BK2 UT WOS:001024772800004 DA 2024-09-05 ER PT J AU Klein, JJ Baker, NC Foil, DH Zorn, KM Urbina, F Puhl, AC Ekins, S AF Klein, Jennifer J. Baker, Nancy C. Foil, Daniel H. Zorn, Kimberley M. Urbina, Fabio Puhl, Ana C. Ekins, Sean TI Using Bibliometric Analysis and Machine Learning to Identify Compounds Binding to Sialidase-1 SO ACS OMEGA LA English DT Article ID ENZYME REPLACEMENT THERAPY; DRUG DISCOVERY; GENE-THERAPY; DISEASES; DATABASE; AGREEMENT AB Rare diseases impact hundreds of millions of individuals worldwide. However, few therapies exist to treat the rare disease population because financial resources are limited, the number of patients affected is low, bioactivity data is often nonexistent, and very few animal models exist to support preclinical development efforts. Sialidosis is an ultrarare lysosomal storage disorder in which mutations in the NEU1 gene result in the deficiency of the lysosomal enzyme sialidase-1. This enzyme catalyzes the removal of sialic acid moieties from glycoproteins and glycolipids. Therefore, the defective or deficient protein leads to the buildup of sialylated glycoproteins as well as several characteristic symptoms of sialidosis including visual impairment, ataxia, hepatomegaly, dysostosis multiplex, and developmental delay. In this study, we used a bibliometric tool to generate links between lysosomal storage disease (LSD) targets and existing bioactivity data that could be curated in order to build machine learning models and screen compounds in silico. We focused on sialidase as an example, and we used the data curated from the literature to build a Bayesian model which was then used to score compound libraries and rank these molecules for in vitro testing. Two compounds were identified from in vitro testing using microscale thermophoresis, namely sulfameter (K-d 2.15 +/- 1.02 mu M) and mexenone (K-d 8.88 +/- 4.02 mu M), which validated our approach to identifying new molecules binding to this protein, which could represent possible drug candidates that can be evaluated further as potential chaperones for this ultrarare lysosomal disease for which there is currently no treatment. Combining bibliometric and machine learning approaches has the ability to assist in curating small molecule data and model building, respectively, for rare disease drug discovery. This approach also has the capability to identify new compounds that are potential drug candidates. C1 [Klein, Jennifer J.; Foil, Daniel H.; Zorn, Kimberley M.; Urbina, Fabio; Puhl, Ana C.; Ekins, Sean] Collaborat Pharmaceut Inc, Raleigh, NC 27606 USA. [Baker, Nancy C.] ParlezChem, Hillsborough, NC 27278 USA. RP Puhl, AC; Ekins, S (corresponding author), Collaborat Pharmaceut Inc, Raleigh, NC 27606 USA. EM ana@collaborationspharma.com; sean@collaborationspharma.com RI Baker, Nancy/ABE-7415-2021; Foil, Daniel/AAJ-1809-2021 OI Foil, Daniel/0000-0003-0512-8997; Puhl, Ana/0000-0002-1456-8882 FU NIH [DP7OD020317]; NIGMS [R44GM122196-02A1]; NINDS [1R43NS107079-01, 3R43NS107079-01S1] FX We acknowledge Dr. Alexander Tropsha and Dr. Anthony Hickey for rare disease discussions and Dr. Alex M. Clark (Molecular Materials Informatics, Inc.) for Assay Central support. We thank Dr. Dinorah Leyva for helping with the analysis of MST data. We kindly acknowledge NIH funding to develop the software from NIGMS R44GM122196-02A1 as well as support from NINDS 1R43NS107079-01, NINDS 3R43NS107079-01S1. F.U. was partially supported by the NIH award number DP7OD020317. CR Aldenhoven M, 2015, CYTOTHERAPY, V17, P765, DOI 10.1016/j.jcyt.2015.03.609 [Anonymous], 2013, RARE DIS REPORT ORPH Baker NC, 2010, J BIOMED INFORM, V43, P510, DOI 10.1016/j.jbi.2010.03.008 Bonten EJ, 2004, FASEB J, V18, P971, DOI 10.1096/fj.03-0941fje Bruni S, 2007, Acta Myol, V26, P87 Capuzzi SJ, 2018, J CHEM INF MODEL, V58, P212, DOI 10.1021/acs.jcim.7b00589 Carletta J, 1996, COMPUT LINGUIST, V22, P249 Carvalho-Silva D, 2019, NUCLEIC ACIDS RES, V47, pD1056, DOI 10.1093/nar/gky1133 Clark AM, 2015, J CHEM INF MODEL, V55, P1231, DOI 10.1021/acs.jcim.5b00143 Clark AM, 2015, J CHEM INF MODEL, V55, P1246, DOI 10.1021/acs.jcim.5b00144 COHEN J, 1960, EDUC PSYCHOL MEAS, V20, P37, DOI 10.1177/001316446002000104 D'Azzo A, 2015, EXPERT OPIN ORPHAN D, V3, P491, DOI 10.1517/21678707.2015.1025746 Ekins S, 2019, NAT MATER, V18, P435, DOI 10.1038/s41563-019-0338-z Franceschetti S, 2016, EPILEPTIC DISORD, V18, pS89, DOI 10.1684/epd.2016.0845 Gaulton A, 2017, NUCLEIC ACIDS RES, V45, pD945, DOI 10.1093/nar/gkw1074 GULLNER G, 1990, ACTA BIOCHIM BIOPHYS, V25, P31 Guo TL, 2018, J MED CHEM, V61, P11261, DOI 10.1021/acs.jmedchem.8b04111 Hu HM, 2012, MOL THER, V20, P267, DOI 10.1038/mt.2011.227 James RA, 2016, J PAEDIATR CHILD H, V52, P262, DOI 10.1111/jpc.13122 Khan A, 2018, DIAGNOSTICS, V8, DOI 10.3390/diagnostics8020029 Lane T, 2018, MOL PHARMACEUT, V15, P4346, DOI 10.1021/acs.molpharmaceut.8b00083 Languillon J, 1975, Lepr Rev, V46, P81 MACLEOD TM, 1975, BRIT J DERMATOL, V92, P417, DOI 10.1111/j.1365-2133.1975.tb03103.x Marques ARA, 2019, J CELL SCI, V132, DOI 10.1242/jcs.221739 MATTHEWS BW, 1975, BIOCHIM BIOPHYS ACTA, V405, P442, DOI 10.1016/0005-2795(75)90109-9 MEDINA A, 1963, Antimicrob Agents Chemother (Bethesda), V161, P541 Minerali E, 2020, MOL PHARMACEUT, V17, P2628, DOI 10.1021/acs.molpharmaceut.0c00326 Perryman AL, 2018, PHARM RES-DORDR, V35, DOI 10.1007/s11095-018-2439-9 Platt FM, 2018, NAT REV DIS PRIMERS, V4, DOI 10.1038/s41572-018-0025-4 Rath A, 2012, HUM MUTAT, V33, P803, DOI 10.1002/humu.22078 Russo DP, 2018, MOL PHARMACEUT, V15, P4361, DOI 10.1021/acs.molpharmaceut.8b00546 Sands MS, 2008, ACTA PAEDIATR, V97, P22, DOI 10.1111/j.1651-2227.2008.00660.x Sands MS, 2006, MOL THER, V13, P839, DOI 10.1016/j.ymthe.2006.01.006 Seyrantepe V, 2003, HUM MUTAT, V22, P343, DOI 10.1002/humu.10268 Sly W S, 1978, Prog Clin Biol Res, V23, P547 Tambuyzer E, 2020, NAT REV DRUG DISCOV, V19, P93, DOI 10.1038/s41573-019-0049-9 Thompson R, 2014, J GEN INTERN MED, V29, pS780, DOI 10.1007/s11606-014-2908-8 Trujillano D, 2017, MOL GENET GENOM MED, V5, P66, DOI 10.1002/mgg3.262 Wager TT, 2016, ACS CHEM NEUROSCI, V7, P767, DOI 10.1021/acschemneuro.6b00029 Wager TT, 2010, ACS CHEM NEUROSCI, V1, P435, DOI 10.1021/cn100008c Wakap SN, 2020, EUR J HUM GENET, V28, P165, DOI 10.1038/s41431-019-0508-0 Wang DN, 2005, MOL GENET METAB, V85, P181, DOI 10.1016/j.ymgme.2005.03.007 Wang D, 2009, BBA-GEN SUBJECTS, V1790, P275, DOI 10.1016/j.bbagen.2009.01.006 Willighagen EL, 2017, J CHEMINFORMATICS, V9, DOI 10.1186/s13321-017-0220-4 Xu K, 2011, BRIEF BIOINFORM, V12, P341, DOI 10.1093/bib/bbr006 Zorn KM, 2019, MOL PHARMACEUT, V16, P1620, DOI 10.1021/acs.molpharmaceut.8b01297 NR 46 TC 10 Z9 10 U1 1 U2 13 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 2470-1343 J9 ACS OMEGA JI ACS Omega PD FEB 2 PY 2021 VL 6 IS 4 BP 3186 EP 3193 DI 10.1021/acsomega.0c05591 EA JAN 2021 PG 8 WC Chemistry, Multidisciplinary WE Science Citation Index Expanded (SCI-EXPANDED) SC Chemistry GA QH2DO UT WOS:000618087400074 PM 33553934 OA Green Published, gold DA 2024-09-05 ER PT J AU Niu, CL Gutierrez, G Cossette, L Sadeghi, S Portugal, M Zeng, S Zhang, P AF Niu, Chunling Gutierrez, Grace Cossette, Loren Sadeghi, Soheila Portugal, Missy Zeng, Shuang Zhang, Peng TI Introducing Bibliometric Analysis: A Methodological Tutorial Using Adult Online Learning Motivation Literature (2000-2022) SO AMERICAN JOURNAL OF DISTANCE EDUCATION LA English DT Article; Early Access ID STUDENT MOTIVATION; DISTANCE EDUCATION; LEARNERS; PARTICIPATION; PERFORMANCE; INSTRUCTOR AB This paper introduces an innovative and robust methodology for bibliometric analyses, utilizing the adult online learning motivation literature from 2000 to 2022 as its exemplar. Capitalizing on this comprehensive dataset, the methodology adeptly identifies emerging research trends, influential contributors, and thematic interconnections. The United States emerges as a dominant research contributor, and "Computers & Education" is spotlighted as an influential journal shaping discourse. From an overarching perspective, the study delves into the multifaceted dynamics of the field, spotlighting the rise of themes such as Self-Directed/Self-Regulated Learning (SDL), Transformative Learning (TL), gamification, and the profound influence of global events like the COVID-19 pandemic on online learning trajectories. However, the manuscript's central value lies in its methodological prowess, offering scholars a blueprint to rigorously interpret and dissect voluminous literatures across varied academic terrains. C1 [Niu, Chunling; Gutierrez, Grace; Cossette, Loren; Sadeghi, Soheila; Portugal, Missy] Univ Incarnate Word, San Antonio, TX USA. [Zeng, Shuang] Univ Shanghai Sci & Technol, Shanghai, Peoples R China. [Zhang, Peng] Sichuan Int Studies Univ, Chongqing, Peoples R China. [Niu, Chunling] Univ Incarnate Word, Dreeben Sch Educ, 4301 Broadway, San Antonio, TX 78209 USA. C3 University Incarnate Word; University of Shanghai for Science & Technology; Sichuan International Studies University; University Incarnate Word RP Niu, CL (corresponding author), Univ Incarnate Word, Dreeben Sch Educ, 4301 Broadway, San Antonio, TX 78209 USA. EM chunling.niu@gmail.com RI Cossette, Loren/KIH-9449-2024; Sadeghi, Soheila/HMV-2123-2023 OI Sadeghi, Soheila/0000-0002-7062-9002; Niu, Chunling/0000-0002-9106-0417 CR Abafe EA, 2022, SUSTAINABILITY-BASEL, V14, DOI 10.3390/su141710651 Abedini A, 2021, BRIT J EDUC TECHNOL, V52, P1663, DOI 10.1111/bjet.13120 Adams J, 2012, NATURE, V490, P335, DOI 10.1038/490335a Aguinis H, 2011, ORGAN RES METHODS, V14, P306, DOI 10.1177/1094428110375720 Aria M, 2017, J INFORMETR, V11, P959, DOI 10.1016/j.joi.2017.08.007 Banaszak-Holl J, 2013, HEALTH CARE MANAGE R, V38, P295, DOI 10.1097/HMR.0b013e3182678fb0 BANDURA A, 1981, J PERS SOC PSYCHOL, V41, P586, DOI 10.1037/0022-3514.41.3.586 Bannier BJ, 2010, J SCI EDUC TECHNOL, V19, P215, DOI 10.1007/s10956-009-9195-x Baran E, 2011, DISTANCE EDUC, V32, P421, DOI 10.1080/01587919.2011.610293 Barnett BG, 2012, LEADERSH POLICY SCH, V11, P92, DOI 10.1080/15700763.2011.611924 Boling EC, 2012, INTERNET HIGH EDUC, V15, P118, DOI 10.1016/j.iheduc.2011.11.006 Bozeman B., 2014, Research collaboration and team science: A stateoftheart review and agenda, V17 Brookfield S. D., 2017, Becoming a critically reflective teacher, V2nd, DOI [https://doi.org/10.37074/jalt.2019.2.2.22, DOI 10.37074/JALT.2019.2.2.22] Brown MA, 2020, ENERGY RES SOC SCI, V70, DOI 10.1016/j.erss.2020.101756 Deci E. L., 1985, INTRINSIC MOTIVATION, DOI DOI 10.1007/978-1-4899-2271-7 Deschacht N, 2015, COMPUT EDUC, V87, P83, DOI 10.1016/j.compedu.2015.03.020 Diep NA, 2016, COMPUT EDUC, V101, P84, DOI 10.1016/j.compedu.2016.06.002 Donthu N, 2021, J BUS RES, V133, P285, DOI 10.1016/j.jbusres.2021.04.070 Evans C, 2008, COMPUT EDUC, V50, P491, DOI 10.1016/j.compedu.2007.09.016 Figueroa F, 2020, ACTA ORTHOP, V91, P543, DOI 10.1080/17453674.2020.1776461 Fini A, 2009, INT REV RES OPEN DIS, V10 Freud S., 1957, The standard edition of the complete psychological works of Sigmund Freud, volume XI (1910): Five lectures on psycho-analysis, Leonardo da Vinci and other works, P209 Garrison D. R., 2008, BLENDED LEARNING HIG, DOI DOI 10.1002/9781118269558 Hartree A., 1984, International Journal of Lifelong Education, V3, P203, DOI DOI 10.1080/0260137840030304 Hirsch JE, 2005, P NATL ACAD SCI USA, V102, P16569, DOI 10.1073/pnas.0507655102 Huang HM, 2002, BRIT J EDUC TECHNOL, V33, P27, DOI 10.1111/1467-8535.00236 Huang J., 2022, Quality Quantity, V56, P1347, DOI [https://doi.org/10.1007/s11135-021-01179-7, DOI 10.1007/S11135-021-01179-7] Jung I, 2002, INNOV EDUC TEACH INT, V39, P153, DOI 10.1080/13558000210121399 Kara M, 2019, OPEN PRAX, V11, P5, DOI 10.5944/openpraxis.11.1.929 Kim KJ, 2011, J EDUC COMPUT RES, V44, P1, DOI 10.2190/EC.44.1.a Knowles M.S., 1980, CAMBRIDGE ADULT ED Mazzolini M, 2003, COMPUT EDUC, V40, P237, DOI 10.1016/S0360-1315(02)00129-X Mazzolini M, 2007, COMPUT EDUC, V49, P193, DOI 10.1016/j.compedu.2005.06.011 McDougall J, 2015, AUST J ADULT LEARN, V55, P94 Merriam S. B., 2013, Adult learning: Linking theory and practice, DOI [https://doi.org/10.1080/03601277.2015.1011576, DOI 10.1080/03601277.2015.1011576] Moore M.G., 2011, Distance Education: A Systems View of Online Learning, V3rd Nash-Stewart CE, 2012, J MED LIBR ASSOC, V100, P135, DOI 10.3163/1536-5050.100.2.013 Park JH, 2009, EDUC TECHNOL SOC, V12, P207 Pintrich PR, 2003, J EDUC PSYCHOL, V95, P667, DOI 10.1037/0022-0663.95.4.667 R Core Team, 2023, R LANG ENV STAT COMP Rajabalee BY, 2020, E-LEARNING DIGITAL M, V17, P1, DOI 10.1177/2042753019882567 Rasheed RA, 2020, COMPUT EDUC, V144, DOI 10.1016/j.compedu.2019.103701 Sarsar F., 2012, Anadolu Journal of Educational Sciences International, V2 Schwartz Andrew M, 2020, JB JS Open Access, V5, pe0045, DOI 10.2106/JBJS.OA.20.00045 Spante M, 2018, COGENT EDUC, V5, DOI 10.1080/2331186X.2018.1519143 Stone C, 2016, AUST J ADULT LEARN, V56, P146 Willems PP, 2021, ETR&D-EDUC TECH RES, V69, P1003, DOI 10.1007/s11423-021-09972-9 Xu J, 2021, J AFFECT DISORDERS, V293, P444, DOI 10.1016/j.jad.2021.06.070 Zembylas M, 2008, DISTANCE EDUC, V29, P71, DOI 10.1080/01587910802004852 Zhang J, 2016, J ASSOC INF SCI TECH, V67, P967, DOI 10.1002/asi.23437 NR 50 TC 0 Z9 0 U1 4 U2 5 PU ROUTLEDGE JOURNALS, TAYLOR & FRANCIS LTD PI ABINGDON PA 2-4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND SN 0892-3647 EI 1538-9286 J9 AM J DISTANCE EDUC JI Am. J. Distance Educ. PD 2024 JAN 21 PY 2024 DI 10.1080/08923647.2024.2303324 EA JAN 2024 PG 32 WC Education & Educational Research WE Emerging Sources Citation Index (ESCI) SC Education & Educational Research GA FI8C8 UT WOS:001145214000001 DA 2024-09-05 ER PT J AU Arana-Barbier, PJ AF Arana-Barbier, Pablo Jose TI The Relationship Between Scientific Production and Economic Growth Through R&D Investment: A Bibliometric Approach SO JOURNAL OF SCIENTOMETRIC RESEARCH LA English DT Article DE Bibliometrics; Economic growth; Multiple linear regression; Research and development; Scientific production; SDG 8 ID INNOVATION; SCIENCE; IMPACT; CHINA AB This quantitative bibliometric research measures the efficiency of investment in R&D for the 17 more relevant countries investing in R&D through a novel indicator based on the number of scientific articles (associated with stock markets), produced for every 1% of investment in R&D in terms of GDP. The study is justified by the need to deepen the relationship between investment in R&D and economic growth, and was conducted for developed and emerging countries separately, so that the understanding of which countries or regions' investment in R&D and its consequent scientific production has the greatest impact over the size of their economies through innovation. Our findings indicate clearly that R&D investment strongly correlates to the economy's size of the studied countries. In addition to finding our novel indicator statistically significant with respect to economic growth through a series of multiple linear regressions and proposing economic growth not statically, but as a dynamic cumulative effect over time, this becomes more relevant for emerging countries (represented in this study by China, Brazil, India, Russia and Turkey, or BRIC + Turkey) compared to developed ones, which decants into an opportunity for scholars and particularly governments to design or restructure their R&D policies towards innovation. C1 [Arana-Barbier, Pablo Jose] Ctr Catolica Grad Business Sch CCGBS, Lima, Peru. [Arana-Barbier, Pablo Jose] Pontificia Univ Catolica Peru PUCP, Lima, Peru. [Arana-Barbier, Pablo Jose] Jr Daniel Alomia Robles 125, Lima 15023, Peru. C3 Pontificia Universidad Catolica del Peru RP Arana-Barbier, PJ (corresponding author), Ctr Catolica Grad Business Sch CCGBS, Lima, Peru.; Arana-Barbier, PJ (corresponding author), Pontificia Univ Catolica Peru PUCP, Lima, Peru.; Arana-Barbier, PJ (corresponding author), Jr Daniel Alomia Robles 125, Lima 15023, Peru. EM pablo.arana@pucp.pe CR Abramo G, 2022, J INFORMETR, V16, DOI 10.1016/j.joi.2021.101244 Agu Sunday C., 2022, Intelligent Systems with Applications, V14, P200082, DOI [10.1016/j.iswa.2022.200082, DOI 10.1016/J.ISWA.2022.200082] Al-Marzouqi AH, 2022, HELIYON, V8, DOI 10.1016/j.heliyon.2022.e11309 Ali M, 2023, ENERG POLICY, V173, DOI 10.1016/j.enpol.2022.113380 [Anonymous], 1984, The citation process: The role and significance of citations in scientific communication Arana Barbier Pablo José, 2020, Investig. bibl, V34, P37, DOI 10.22201/iibi.24488321xe.2020.83.58111 Baker HK, 2023, INT J FINANC ECON, V28, P9, DOI 10.1002/ijfe.2725 Baker HK, 2021, GLOB FINANC J, V47, DOI 10.1016/j.gfj.2019.100492 Betarelli AA, 2020, ECON MODEL, V90, P235, DOI 10.1016/j.econmod.2020.04.017 Bilbao-Osorio B, 2004, GROWTH CHANGE, V35, P434, DOI 10.1111/j.1468-2257.2004.00256.x Boeing P, 2022, TECHNOL FORECAST SOC, V174, DOI 10.1016/j.techfore.2021.121212 Caporale GM, 2015, INT J FINANC ECON, V20, P48, DOI 10.1002/ijfe.1498 Chhatoi BP, 2021, J SCIENTOMETR RES, V10, P148, DOI 10.5530/jscires.10.2.29 Chowdhury RH, 2012, RES INT BUS FINANC, V26, P258, DOI 10.1016/j.ribaf.2011.12.003 Cicea C, 2021, J BUS ECON MANAG, V22, P445, DOI 10.3846/jbem.2020.14018 Confraria H, 2015, SCIENTOMETRICS, V102, P1241, DOI 10.1007/s11192-014-1463-8 Dai XY, 2015, INNOV-ORGAN MANAG, V17, P182, DOI 10.1080/14479338.2015.1011053 De Moya-Anegón F, 1999, SCIENTOMETRICS, V46, P299, DOI 10.1007/BF02464780 Duran DC, 2015, PROC ECON FINANC, V26, P806, DOI 10.1016/S2212-5671(15)00849-7 Fassin Y, 2021, MALAYS J LIBR INF SC, V26, P1, DOI 10.22452/mjlis.vol26no2.1 Fraumeni BM, 2022, Gross domestic product: Are other measures needed?, DOI [10.15185/izawol.368.v2, DOI 10.15185/IZAWOL.368.V2] Greenstone M, 2011, MIT Center for Energy and Environmental Policy Research, P1 Guimón J, 2018, J INT MANAG, V24, P165, DOI 10.1016/j.intman.2017.09.005 Hair J.F., 2009, A Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM), Vseventh Henderson V, 2011, AM ECON REV, V101, P194, DOI 10.1257/aer.101.3.194 Herzer D, 2022, WORLD DEV, V151, DOI 10.1016/j.worlddev.2021.105754 Huseynov AG, 2021, MARK MANAG INNOV, P293, DOI 10.21272/mmi.2021.2-24 Jansen BJ, 2006, INFORM PROCESS MANAG, V42, P248, DOI 10.1016/j.ipm.2004.10.007 Johnson G, 2018, LIBRI, V68, P331, DOI 10.1515/libri-2018-0033 Khan A, 2022, FINANC RES LETT, V47, DOI 10.1016/j.frl.2021.102520 Kumar S, 2020, J EMERG MARK FINANC, V19, P326, DOI 10.1177/0972652720944329 Meo SA, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0066449 OECD, 2023, R&D (% of GDP) Pattnaik D, 2022, ECON MODEL, V107, DOI 10.1016/j.econmod.2021.105712 Radas S, 2009, TECHNOVATION, V29, P438, DOI 10.1016/j.technovation.2008.12.002 Salameh S, 2022, J PUBLIC AFF, V22, DOI 10.1002/pa.2316 Soete L, 2022, IND CORP CHANGE, V31, P1, DOI 10.1093/icc/dtab066 Stahl BC, 2013, SCI PUBL POLICY, V40, P708, DOI 10.1093/scipol/sct067 United Nations, 2023, The sustainable development goals report special edition World Bank, 2023, GDP growth rate Zhang LJ, 2022, ACCOUNT FINANC, V62, P2467, DOI 10.1111/acfi.12871 NR 41 TC 1 Z9 1 U1 5 U2 5 PU PHCOG NET PI KARNATAKA PA 17, 2ND FLR, BUDDHA VIHAR RD, NEAR SPORTS ZONE, COX TOWN, BENGALURU, KARNATAKA, 560005, INDIA SN 2321-6654 EI 2320-0057 J9 J SCIENTOMETR RES JI J. Scientometr. Res. PD SEP-DEC PY 2023 VL 12 IS 3 BP 596 EP 602 DI 10.5530/jscires.12.3.057 PG 7 WC Information Science & Library Science WE Emerging Sources Citation Index (ESCI) SC Information Science & Library Science GA JE8W2 UT WOS:001171589100008 OA hybrid DA 2024-09-05 ER PT J AU Bansal, R Shrivastava, P Kumar, A AF Bansal, Ramita Shrivastava, Preeti Kumar, Amar TI Impact of goods and services tax (GST) on Indian economy SO INTERNATIONAL JOURNAL OF FINANCIAL ENGINEERING LA English DT Article DE GST; goods and services tax bill; sentiment analysis; bibliometric visualization; India ID SAP-LAP; INNOVATION AB India has implemented the Goods and Services Tax, an indirect tax, to help and promote the nation's economic expansion. The Goods and Services Tax Bill has been enacted in the majority of developed nations. In India, GST was established in 1999. A committee was set up to design the model of GST. But GST was re-launched on 1 July 2017 by the Indian government. There was a lot of uproar in favor of its introduction. All of the different taxes levied by the federal and state governments were replaced with the GST. The phrase "One Nation, One Tax" refers to the fact that all taxes must be paid in one location nationwide. The report thoroughly examines the effects of GST in India. The study offers sentiment analysis and bibliometric visualization of GST. It was discovered that the government implemented the GST in order to tax everyone in the nation and stop the flow of illicit money. However, it was noted that many Indian residents' feelings were conflicted. Therefore, it is advised to review the structure and maintain a focus on ongoing development. C1 [Bansal, Ramita; Shrivastava, Preeti; Kumar, Amar] IIMT Coll Management, Greater Noida, India. RP Kumar, A (corresponding author), IIMT Coll Management, Greater Noida, India. EM theamarkumar.ak@gmail.com CR Anand R, 2018, INF COMPUT SECUR, V26, P58, DOI 10.1108/ICS-12-2016-0090 Besley T, 2009, AM ECON REV, V99, P1218, DOI 10.1257/aer.99.4.1218 Bhattacharya G, 2017, INT J COMMER MANAG R, V3, P65 Bindal M, 2018, INT J ENG MANAGEMENT, V8, P143 Birken SA, 2015, HEALTH CARE MANAGE R, V40, P159, DOI 10.1097/HMR.0000000000000018 Birkinshaw J, 2008, ACAD MANAGE REV, V33, P825 CAG, 2019, REP COMPTR AUD GEN I Chand P, 2018, RESOUR POLICY, V59, P389, DOI 10.1016/j.resourpol.2018.08.011 Charan P, 2012, MEAS BUS EXCELL, V16, P67, DOI 10.1108/13683041211204680 Chavan M, 2019, HABITAT INT, V89, DOI 10.1016/j.habitatint.2019.102002 Chichkanov N, 2021, SERV IND J, V41, P489, DOI 10.1080/02642069.2019.1570151 Chikermane G, 2018, 70 POLICIES SHAPED I Chung GH, 2017, J ORGAN BEHAV, V38, P1130, DOI 10.1002/job.2191 Crandall W J, 2006, REVENUE AUTHORITIES Dabla-Norris ME, 2017, IMF WORKING PAPERS, V2017/095 Damanpour F, 2006, BRIT J MANAGE, V17, P215, DOI 10.1111/j.1467-8551.2006.00498.x Das Sourav, 2020, Computational Intelligence in Pattern Recognition. Proceedings of CIPR 2019. Advances in Intelligent Systems and Computing (AISC 999), P69, DOI 10.1007/978-981-13-9042-5_7 Das S, 2017, 2017 THIRD IEEE INTERNATIONAL CONFERENCE ON RESEARCH IN COMPUTATIONAL INTELLIGENCE AND COMMUNICATION NETWORKS (ICRCICN), P239, DOI 10.1109/ICRCICN.2017.8234513 NR 18 TC 0 Z9 0 U1 2 U2 2 PU WORLD SCIENTIFIC PUBL CO PTE LTD PI SINGAPORE PA 5 TOH TUCK LINK, SINGAPORE 596224, SINGAPORE SN 2424-7863 EI 2424-7944 J9 INT J FINANC ENG JI Int. J. Financ. Eng. PD JUN PY 2024 VL 11 IS 02 DI 10.1142/S2424786323500457 EA MAR 2024 PG 10 WC Business, Finance WE Emerging Sources Citation Index (ESCI) SC Business & Economics GA WD9K9 UT WOS:001180825700001 DA 2024-09-05 ER PT C AU Kumar, D Karwasra, K Soni, G AF Kumar, Devesh Karwasra, Kritika Soni, Gunjan TI Bibliometric analysis of artificial neural network applications in materials and engineering SO MATERIALS TODAY-PROCEEDINGS LA English DT Proceedings Paper CT International Conference on Aspects of Materials Science and Engineering (ICAMSE) CY MAY 29-30, 2020 CL ELECTR NETWORK DE Bibliometric analysis; ANN; Statistics; Materials; Machining AB Manufacturing industries in world are under pressure to adopt new technologies in order to sustain their market reputation and increase their performance. ANN is the widely used approach using in the manufacturing industries in various machining processes which results in improving the performance of manufacturing industries. There is need to identify the relationship in cutting parameters in various machining processes which results in the improving the quality and productivity. These relationships can be identified with various mathematical modelling techniques in which ANN is widely used at present time. An Artificial neural network (ANN) is the collection of nodes called artificial neurons, which is modelled according to neurons in biological brain. ANN approach is used because it has an ability to learn, can be used to model complex patterns and prediction problems. Here, Scopus database is used for collection of data with the keywords "Artificial neural network" and also "Artificial Neural Network and machining" is used to determine the trend on machining area, based on collected data bibliometric analysis has been performed. This analysis is used to determine the popularity, impact of publications and use of ANN on machining of different materials. This method is to explore the impact of ANN, the impact of different research areas. A thorough study of statistics of ANN publications by years, research areas, document types, countries, source titles and authors are conducted in this paper. This paper is for research evaluation only. (C) 2020 Elsevier Ltd. All rights reserved. Selection and peer-review under responsibility of the scientific committee of the International Conference on Aspects of Materials Science and Engineering. C1 [Kumar, Devesh; Karwasra, Kritika; Soni, Gunjan] Malaviya Natl Inst Technol Jaipur, Dept Mech Engn, Jaipur 302017, Rajasthan, India. C3 National Institute of Technology (NIT System); Malaviya National Institute of Technology Jaipur RP Kumar, D (corresponding author), Malaviya Natl Inst Technol Jaipur, Dept Mech Engn, Jaipur 302017, Rajasthan, India. EM deveshkumar1993@gmail.com RI Kumar, Devesh/HLX-4332-2023 OI Kumar, Devesh/0000-0002-4888-5173; Karwasra, Kritika/0000-0003-2044-0073 CR [Anonymous], 1993, CHAPMAN HALL NEURAL Eldon Y.Li, 1994, ARTIFICIAL NEURAL NE Gardner MW, 1998, ATMOS ENVIRON, V32, P2627, DOI 10.1016/S1352-2310(97)00447-0 Gershenson C., 2016, ARTIFICIAL NEURAL NE Ghasemiyeh R, 2017, CYBERNET SYST, V48, P365, DOI 10.1080/01969722.2017.1285162 Gorgel Pelin, 2013, INTELL AUTOM SOFT CO, P451 Gorucu FB, 2004, ENERG SOURCE, V26, P299, DOI 10.1080/00908310490256626 Haykin SS., 2018, NEURAL NETWORKS LEAR Jamwal A., 2018, INT RES J ENG TECHNO, V5, P433 Jamwal A, 2020, J COMPOS MATER, V54, P2635, DOI 10.1177/0021998319900655 Jebaraj S, 2011, ENERG SOURCE PART A, V33, P1305, DOI 10.1080/15567030903397859 Jha G. K., ARTIFICIAL NEURAL NE Modin J., 1995, Construction Management and Economics, V13, P411, DOI [10.1080/01446199500000046, DOI 10.1080/01446199500000046] Muthukrishnan N, 2009, J MATER PROCESS TECH, V209, P225, DOI 10.1016/j.jmatprotec.2008.01.041 Nayim SMTI, 2019, AIP CONF PROC, V2148, DOI 10.1063/1.5123973 Scopus, 2019, ABOUT SCOPUS Selvan MCP, 2020, MATER TODAY-PROC, V28, P538, DOI 10.1016/j.matpr.2019.12.215 Singh AK, 2020, MATER TODAY-PROC, V26, P2839, DOI 10.1016/j.matpr.2020.02.591 Smith Leslie, 1996, INTRO NEURAL NETWORK, p[98, 2001] Vemuri V., 1988, ARTIFICIAL NEURAL NE NR 20 TC 10 Z9 10 U1 0 U2 4 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS SN 2214-7853 J9 MATER TODAY-PROC JI Mater. Today-Proc. PY 2020 VL 28 BP 1629 EP 1634 DI 10.1016/j.matpr.2020.04.855 PN 2 PG 6 WC Materials Science, Multidisciplinary WE Conference Proceedings Citation Index - Science (CPCI-S) SC Materials Science GA MJ4RE UT WOS:000548078600028 DA 2024-09-05 ER PT J AU Jankowski, R Sienkiewicz, J AF Jankowski, R. Sienkiewicz, J. TI Determining Crucial Factors for the Popularity of Scientific Articles SO ACTA PHYSICA POLONICA A LA English DT Article; Proceedings Paper CT 10th Polish Symposium of Physics in Economy and Social Sciences (FENS) CY JUL 03-05, 2019 CL Natl Ctr Nucl Res, Otwock Swierk, POLAND HO Natl Ctr Nucl Res DE scientometrics; scientific data; predictions; machine learning AB Using a set of over 70.000 records from PLOS One journal consisting of 37 lexical, sentiment and bibliographic variables we perform analysis backed with machine learning methods to predict the class of popularity of scientific papers defined by the number of times they have been viewed. Our study shows correlations among the features and recovers a threshold for the number of views that results in the best prediction outcomes in terms of Matthew's correlation coefficient. Moreover, by creating a variable importance plot for random forest classifier, we are able to reduce the number of features while keeping similar predictability and determine crucial factors responsible for the popularity. C1 [Jankowski, R.; Sienkiewicz, J.] Warsaw Univ Technol, Fac Phys, Koszykowa 75, PL-00662 Warsaw, Poland. C3 Warsaw University of Technology RP Sienkiewicz, J (corresponding author), Warsaw Univ Technol, Fac Phys, Koszykowa 75, PL-00662 Warsaw, Poland. EM julian.sienkiewicz@pw.edu.pl RI Sienkiewicz, Julian/AAB-4900-2020 OI Sienkiewicz, Julian/0000-0003-2097-1499 CR [Anonymous], 1979, Information Retrieval [Anonymous], 2001, The elements of statistical learning: data mining, inference and prediction Arumugam J, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0153776 Bollen J., 2009, PLOS ONE, V4, P111 Breiman L., 2001, Machine Learning, V45, P5, DOI 10.1023/A:1010933404324 Breiman L, 1996, MACH LEARN, V24, P41, DOI 10.1023/A:1018094028462 Carleo G, 2019, REV MOD PHYS, V91, DOI 10.1103/RevModPhys.91.045002 Catalini C, 2015, P NATL ACAD SCI USA, V112, P13823, DOI 10.1073/pnas.1502280112 Chmiel A, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0022207 Choloniewski J, 2014, ACTA PHYS POL A, V127, P21 Deng B, 2015, Nature News, P1 Didegah F, 2013, J INFORMETR, V7, P861, DOI 10.1016/j.joi.2013.08.006 Gajewski LG, 2016, ACTA PHYS POL A, V129, P1071, DOI 10.12693/APhysPolA.129.1071 Glanzel W., 2015, SCIENTOMETRICS, V102 Hearst MA, 1998, IEEE INTELL SYST APP, V13, P18, DOI 10.1109/5254.708428 Kleinbaum D.G, 2002, Logistic regression Letchford A, 2015, ROY SOC OPEN SCI, V2, DOI 10.1098/rsos.150266 MATTHEWS BW, 1975, BIOCHIM BIOPHYS ACTA, V405, P442, DOI 10.1016/0005-2795(75)90109-9 Mehta P, 2019, PHYS REP, V810, P1, DOI 10.1016/j.physrep.2019.03.001 Mika Sebastian, 1999, NEURAL NETWORKS SIGN Newman MEJ, 2005, CONTEMP PHYS, V46, P323, DOI 10.1080/00107510500052444 Paiva C., 2012, CLINICS, V67 Rostami F, 2014, SCIENTOMETRICS, V98, P2007, DOI 10.1007/s11192-013-1118-1 Sienkiewicz J, 2018, SCI REP-UK, V8, DOI 10.1038/s41598-018-26511-4 Sienkiewicz J, 2016, ROY SOC OPEN SCI, V3, DOI 10.1098/rsos.160140 Sienkiewicz J, 2013, ADV COMPLEX SYST, V16, DOI 10.1142/S0219525913500264 Warriner AB, 2013, BEHAV RES METHODS, V45, P1191, DOI 10.3758/s13428-012-0314-x Ye J, 2007, LECT NOTES ENG COMP, P1008 NR 28 TC 0 Z9 0 U1 1 U2 10 PU POLISH ACAD SCIENCES INST PHYSICS PI WARSAW PA AL LOTNIKOW 32-46, PL-02-668 WARSAW, POLAND SN 0587-4246 EI 1898-794X J9 ACTA PHYS POL A JI Acta Phys. Pol. A PD JUL PY 2020 VL 138 IS 1 BP 41 EP 47 DI 10.12693/APhysPolA.138.41 PG 7 WC Physics, Multidisciplinary WE Science Citation Index Expanded (SCI-EXPANDED); Conference Proceedings Citation Index - Science (CPCI-S) SC Physics GA NX2JT UT WOS:000575541700007 OA gold, Green Submitted DA 2024-09-05 ER PT J AU Mashroofa, MM Jusoh, M Chinna, K AF Mashroofa, Mohamed Majeed Jusoh, Mazuki Chinna, Karuthan TI Research trend on the application of "E-learning adoption theory" : A scientometric study during 2000-2019, based on Web of Science and SCOPUS SO COLLNET JOURNAL OF SCIENTOMETRICS AND INFORMATION MANAGEMENT LA English DT Article DE Scientometric study; Learning theories; Educational Technology; Technology Acceptance Theories; Online learning ID TECHNOLOGY ACCEPTANCE MODEL; BEHAVIOR AB Bibliometric study of the research trend on e-learning adoption theory is essential to investigate the existing literature to identify a suitable theory for new research. Objective of this study is to explore the research trend in scientific literature on e-learning adoption theory. Search of Web of Science and SCOPUS were carried out to find papers dealing with the contours of e-learning adoption theory. This study retrieved 84 research papers from Web of Science and 324 from SCOPUS on the "e-learning adoption theory." USA and Taiwan accounted for the highest number of publications with 39 papers (12.03%) and 19 papers (22.62%) in SCOPUS and Web of Science respectively. Computer Science has the highest number of papers in SCOPUS whilst Education and Educational Research is the top in Web of Science. China Agricultural University and Universiti Teknologi Malaysia have the highest number of publications four and seven in Web of Science and SCOPUS respectively. National Central University and China Agricultural University are the most productive organization as they have received 321 and 69 citations on e-learning adoption theory in Web of Science and SCOPUS respectively. Among the authors, Tarhini Ali of Brunel University, London has published the highest number of papers (five) on e-learning adoption theory in Web of Science and received 124 citations. Despites, Giannakos, M.N. and Pappas, I.O. have published the same quantity of papers (five) in SCOPUS, they have received only 47 and 22 citations respectively. Journal namely Computers and Education have published the highest number of papers in both databases at 13 (16.05%) and 14 (4.32%) received the highest number of citations at 996 (53.04%) and 1487 (39.37%) for those papers in Web of Science and SCOPUS respectively. Among the technology adoption theories, the Decomposed Theory of Planned Behaviour is more suitable to study e-learning behavior of individuals. C1 [Mashroofa, Mohamed Majeed] South Eastern Univ Sri Lanka, Sci Lib, Oluvil, Sri Lanka. [Mashroofa, Mohamed Majeed] Management & Sci Univ, Shah Alam, Selangor, Malaysia. [Jusoh, Mazuki] Management & Sci Univ, Postgrad Ctr, Shah Alam, Selangor, Malaysia. [Chinna, Karuthan] Taylors Univ, Fac Hlth & Med Sci, Sch Med, Subang Jaya, Selangor, Malaysia. C3 South Eastern University of Sri Lanka; Management Science University; Management Science University; Taylor's University RP Mashroofa, MM (corresponding author), South Eastern Univ Sri Lanka, Sci Lib, Oluvil, Sri Lanka.; Mashroofa, MM (corresponding author), Management & Sci Univ, Shah Alam, Selangor, Malaysia. EM mashroof@seu.ac.lk RI Mashroofa, Mohamed Majeed/GNM-7789-2022; Mashroofa, Mohamed Majeed/AAP-2633-2020 OI Mashroofa, Mohamed Majeed/0000-0002-2250-2445; Mashroofa, Mohamed Majeed/0000-0002-2250-2445 CR Ajjan H, 2008, INTERNET HIGH EDUC, V11, P71, DOI 10.1016/j.iheduc.2008.05.002 Ali M, 2018, INTERACT TECHNOL SMA, V15, P59, DOI 10.1108/ITSE-02-2017-0012 Andersson A., 2008, INT J ED DEV USING I, V4, P1 Bhardwaj RK, 2015, COLLNET J SCIENTOMET, V9, P205, DOI 10.1080/09737766.2015.1069960 Bidin S. Z., 2012, PROC 6 INT C U LEARN, DOI [10.1016/j.sbspro, DOI 10.1016/J.SBSPRO] Chametzky B., 2016, Online Journal of Distance Education and e-Learning, V4, P15 Clark Jimmy D., 2007, Learning and Teaching in the Mobile Learning Environment of the Twenty-First Century DAVIS FD, 1989, MIS QUART, V13, P319, DOI 10.2307/249008 Edumadze J.K.E., 2019, ONLINE J DISTANCE ED, V7, P70 Eke HN, 2010, LIBR REV, V59, P274, DOI 10.1108/00242531011038587 Fu ZT, 2007, NEW ZEAL J AGR RES, V50, P609, DOI 10.1080/00288230709510329 Hwang GJ, 2011, COMPUT EDUC, V57, P1368, DOI 10.1016/j.compedu.2010.12.013 Jaiyeoba OO, 2019, INT J INF LEARN TECH, V36, P157, DOI 10.1108/IJILT-05-2018-0058 Lai HJ, 2017, INTERACT LEARN ENVIR, V25, P295, DOI 10.1080/10494820.2015.1121879 Lakshman I., 2015, European Scientific Journal, V11, P280 Munezero M., 2016, ONLINE J DISTANCE ED, V4, P1 Santos L., 2015, Structure and Morphologic Infl uence of WO3 Nanoparticles on the Electrochromic Performance of Dual-Phase a-WO3 / WO3 Inkjet Printed Films, P1, DOI DOI 10.1080/03075079.2015.1007940 Shih YY, 2004, INTERNET RES, V14, P213, DOI 10.1108/10662240410542643 Sung YT, 2016, COMPUT EDUC, V94, P252, DOI 10.1016/j.compedu.2015.11.008 Takalani T., 2008, BARRIERS LEARNING PO Tan PJB, 2013, SAGE OPEN, V3, DOI 10.1177/2158244013503837 Tarhini A, 2017, J INT EDUC BUS, V10, P164, DOI 10.1108/JIEB-09-2016-0032 Tarhini A, 2015, BRIT J EDUC TECHNOL, V46, P739, DOI 10.1111/bjet.12169 Tarhini A, 2014, COMPUT HUM BEHAV, V41, P153, DOI 10.1016/j.chb.2014.09.020 Taylor M, 1995, SW ACAD MANAG P, P137 TAYLOR S, 1995, INFORM SYST RES, V6, P144, DOI 10.1287/isre.6.2.144 Venkatesh V, 2000, MANAGE SCI, V46, P186, DOI 10.1287/mnsc.46.2.186.11926 Venkatesh V, 2008, DECISION SCI, V39, P273, DOI 10.1111/j.1540-5915.2008.00192.x NR 28 TC 9 Z9 9 U1 0 U2 13 PU ROUTLEDGE JOURNALS, TAYLOR & FRANCIS LTD PI ABINGDON PA 2-4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND SN 0973-7766 EI 2168-930X J9 COLLNET J SCIENTOMET JI Collnet J. Scientometr. Inf. Manag. PD JUL 3 PY 2019 VL 13 IS 2 BP 387 EP 408 DI 10.1080/09737766.2020.1729072 PG 22 WC Information Science & Library Science WE Emerging Sources Citation Index (ESCI) SC Information Science & Library Science GA KY9GO UT WOS:000522883100011 DA 2024-09-05 ER PT J AU Pozsgai-Alvarez, J Sanz, IP AF Pozsgai-Alvarez, Joseph Pastor Sanz, Ivan TI Mapping the (anti-)corruption field: key topics and changing trends, 1968-2020 SO JOURNAL OF COMPUTATIONAL SOCIAL SCIENCE LA English DT Article DE Corruption; Corpus; Machine learning; Bibliometrics; Interdisciplinary ID FOREIGN DIRECT-INVESTMENT; MORAL DISENGAGEMENT; CORRUPTION; IMPACT; GROWTH; INSTITUTIONS; ENFORCEMENT; PERFORMANCE; GOVERNANCE; GOVERNMENT AB As research on (anti-)corruption continues to accelerate, the heterogeneity of perspectives that have emerged in the field complicates the identification of key topics and trends, limiting our capacity to set meaningful research priorities, risking the waste of time and funds, and potentially broadening the gap between scholarly production and policy necessities. To help elucidate this morass, we use the Latent Dirichlet Allocation (LDA) algorithm to classify a dataset of 5417 publications listed in the Global Anticorruption Blog's (GAB) Anticorruption Bibliography. The results allow us to recognize eight main topics in the literature, as well as their evolution over the past 2 decades in terms of relative attention (as measured by citation count) and publication rates. The topics and trends found here invite us to reflect on the current structure of the (anti-)corruption field, and to draw attention to persistent-and emerging-gaps. C1 [Pozsgai-Alvarez, Joseph] Kyoto Univ, Ctr Southeast Asian Studies, 46 Shimoadachi Cho, Kyoto 6068501, Japan. [Pastor Sanz, Ivan] Univ Valladolid, Sch Business & Econ, Avda Valle de Esgueva 6, Valladolid 47011, Spain. C3 Kyoto University; Universidad de Valladolid RP Pozsgai-Alvarez, J (corresponding author), Kyoto Univ, Ctr Southeast Asian Studies, 46 Shimoadachi Cho, Kyoto 6068501, Japan. EM jpozsgai@dailycorruption.info; ivanpastorsanz@gmail.com RI Pozsgai-Alvarez, Joseph/AAL-8789-2021 OI Pozsgai-Alvarez, Joseph/0000-0002-9338-2583 CR ABRAMS NORMAN., 2010, FEDERAL CRIMINAL LAW AND ITS ENFORCEMENT, V5th Ali T.B., 2019, J. Econ. Stud Allen NW, 2014, PAC AFF, V87, P221, DOI 10.5509/2014872221 Annoni P, 2019, SOC INDIC RES, V141, P31, DOI 10.1007/s11205-017-1821-z [Anonymous], 2004, CORRUPTION DESIGN [Anonymous], 2011, DEV NGO CORRUPTION R Aromataris E, 2015, INT J EVID-BASED HEA, V13, P132, DOI 10.1097/XEB.0000000000000055 Asquer R., 2015, THESIS UCLA Attard J, 2015, GOV INFORM Q, V32, P399, DOI 10.1016/j.giq.2015.07.006 Bahoo S, 2020, INT BUS REV, V29, DOI 10.1016/j.ibusrev.2019.101660 Bandura A, 2002, J MORAL EDUC, V31, P101, DOI 10.1080/0305724022014322 Bardhan P, 2002, J ECON PERSPECT, V16, P185, DOI 10.1257/089533002320951037 Barth JR, 2009, J FINANC ECON, V91, P361, DOI 10.1016/j.jfineco.2008.04.003 Bekelman JE, 2003, JAMA-J AM MED ASSOC, V289, P454, DOI 10.1001/jama.289.4.454 Bertot JC, 2010, GOV INFORM Q, V27, P264, DOI 10.1016/j.giq.2010.03.001 Bes-Rastrollo M, 2013, PLOS MED, V10, DOI 10.1371/journal.pmed.1001578 BHAGWATI JN, 1982, J POLIT ECON, V90, P988, DOI 10.1086/261104 Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993 Boatright R. G., 2019, POLITICAL CORRUPTION, P299 Bornmann L, 2015, J ASSOC INF SCI TECH, V66, P2215, DOI 10.1002/asi.23329 Brown ME, 2005, ORGAN BEHAV HUM DEC, V97, P117, DOI 10.1016/j.obhdp.2005.03.002 Brunnschweiler CN, 2008, WORLD DEV, V36, P399, DOI 10.1016/j.worlddev.2007.03.004 Buchanan BG, 2012, INT REV FINANC ANAL, V21, P81, DOI 10.1016/j.irfa.2011.10.001 Campos NF, 2016, J INST THEOR ECON, V172, P521, DOI 10.1628/093245616X14616712130543 Ceva E, 2018, ETHICAL THEORY MORAL, V21, P789, DOI 10.1007/s10677-018-9950-2 Chan APC, 2017, J CONSTR ENG M, V143, DOI 10.1061/(ASCE)CO.1943-7862.0001353 CHANG J., 2009, Advances in Neural Information Processing Systems, V22, P288 Chang SC, 2015, PORT ECON J, V14, P75, DOI 10.1007/s10258-015-0112-3 Charron N, 2016, EUR POLIT SCI REV, V8, P147, DOI 10.1017/S1755773914000447 Chen HK, 2018, J FINANC STABIL, V36, P130, DOI 10.1016/j.jfs.2018.02.010 Chereches RM, 2013, HEALTH POLICY, V110, P105, DOI 10.1016/j.healthpol.2013.01.010 Cintra RF, 2018, RES INT BUS FINANC, V45, P607, DOI 10.1016/j.ribaf.2017.07.177 Coogan J., 2015, Journal of Financial Crime, V22, P228 Dhaliwal Iqbal., 2014, Deal with the Devil: The Successes and Limitations of Bureaucratic Reform in India. Tech. rep Djankov S, 2002, Q J ECON, V117, P1, DOI 10.1162/003355302753399436 Dupuy K.y., 2018, Microlevel explanations for unethical behaviour, VU4, P2 Epremian L, 2018, GEOFORUM, V97, P198, DOI 10.1016/j.geoforum.2018.09.004 Erinsyah RA., 2019, INT J MULTICULTURAL, V6, P497 Erlingsson GO, 2016, ICEL REV POLIT ADM, V12, P215, DOI 10.13177/irpa.a.2016.12.2.2 Esoimeme E. E, 2018, J FINANCIAL CRIME Faccio M, 2006, AM ECON REV, V96, P369, DOI 10.1257/000282806776157704 Fisman R, 2007, J POLIT ECON, V115, P1020, DOI 10.1086/527495 Friedman E, 2000, J PUBLIC ECON, V76, P459, DOI 10.1016/S0047-2727(99)00093-6 Gaitonde R, 2016, COCHRANE DB SYST REV, DOI 10.1002/14651858.CD008856.pub2 Gawthorpe S., 2020, ACE DIGITAL LIB GLOB Giliomee H, 1998, J DEMOCR, V9, P128, DOI 10.1353/jod.1998.0060 Glaeser EL, 2004, J ECON GROWTH, V9, P271, DOI 10.1023/B:JOEG.0000038933.16398.ed Gou ZN, 2019, SYMMETRY-BASEL, V11, DOI 10.3390/sym11121486 Griffiths TL, 2004, P NATL ACAD SCI USA, V101, P5228, DOI 10.1073/pnas.0307752101 Hanna R., 2011, EFFECTIVENESS ANTICO Hodgkinson P, 1997, SOCIOLOGY, V31, P17, DOI 10.1177/0038038597031001003 Hutchinson E., 2019, 9 ACE RES CONS Johansen ER, 1990, POLITICAL CORRUPTION Johnson Rob, 2018, The STM report: an overview of scientific and scholarly publishing, V5th Judge WQ, 2011, J WORLD BUS, V46, P93, DOI 10.1016/j.jwb.2010.05.021 Kaufmann D, 2004, WORLD BANK ECON REV, V18, P253, DOI 10.1093/wber/lhh041 Khan M., 2019, International Journal of Supply Chain Management, V8, P549 Kim HT, 2017, J MULTINATL FINANC M, V39, P39, DOI 10.1016/j.mulfin.2017.02.001 Kobis N. C., 2020, RES AGENDA STUDIES C Kohler JC, 2011, FIGHT CORR HLTH SECT Kouznetsov A., 2018, Int. Trade J., V32, P414 Kristin D. M, 2018, IOP C SERIES EARTH E, V195 Kruk ME, 2008, TROP MED INT HEALTH, V13, P1442, DOI 10.1111/j.1365-3156.2008.02173.x Larsen PO, 2010, SCIENTOMETRICS, V84, P575, DOI 10.1007/s11192-010-0202-z León CJ, 2013, SOC INDIC RES, V114, P977, DOI 10.1007/s11205-012-0185-7 Liberati A, 2009, BMJ-BRIT MED J, V339, DOI [10.1016/j.ijsu.2010.02.007, 10.1136/bmj.b2700, 10.1136/bmj.b2535, 10.1186/2046-4053-4-1, 10.1371/journal.pmed.1000097, 10.1136/bmj.i4086, 10.1016/j.ijsu.2010.07.299] Liu Y, 2019, J BUS ETHICS, V160, P127, DOI 10.1007/s10551-018-3806-5 Luo YD, 2012, MANAGE ORGAN REV, V8, P139, DOI 10.1111/j.1740-8784.2011.00273.x MAURO P, 1995, Q J ECON, V110, P681, DOI 10.2307/2946696 Mesquita De., 2005, LOGIC POLITICAL SURV Minka T.P., 2002, Uncertainty in Artificial Intelligence, P352 Molina E., 2016, Campbell Systematic Reviews, V12, P1 Monteiro MD, 2018, CORP GOV-INT J BUS S, V18, P1207, DOI 10.1108/CG-01-2018-0031 Moore C, 2008, J BUS ETHICS, V80, P129, DOI 10.1007/s10551-007-9447-8 Mulyana A., 2019, MIMBAR JURNAL SOSIAL, V35, P245 Naher N., 2018, 004 SOAS ACE Nichols P., 2017, Thinking About Bribery: Neuroscience, Moral Cognition, and Psychology of Bribery, DOI [10.1017/9781316450765, DOI 10.1017/9781316450765] Norris SL, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0025153 Olken BA, 2009, J PUBLIC ECON, V93, P950, DOI 10.1016/j.jpubeco.2009.03.001 Onwujekwe O, 2019, HEALTH POLICY PLANN, V34, P529, DOI 10.1093/heapol/czz070 Palvia S, 2017, AMCIS 2017 PROCEEDINGS Persson A, 2013, GOVERNANCE, V26, P449, DOI 10.1111/j.1468-0491.2012.01604.x Punch M., 2000, European Journal on Criminal Policy and Research, V8, P301, DOI [10.1023/A:1008777013115, DOI 10.1023/A:1008777013115] RANDALL DM, 1991, J BUS ETHICS, V10, P805, DOI 10.1007/BF00383696 Rashidian A, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0041988 Röder M, 2015, WSDM'15: PROCEEDINGS OF THE EIGHTH ACM INTERNATIONAL CONFERENCE ON WEB SEARCH AND DATA MINING, P399, DOI 10.1145/2684822.2685324 Sachs JD, 2001, EUR ECON REV, V45, P827, DOI 10.1016/S0014-2921(01)00125-8 Saddiq SA., 2019, Journal of Financial Crime, V26, P910, DOI DOI 10.1108/JFC-10-2018-0112 Samuel A, 2010, ECON GOV, V11, P333, DOI 10.1007/s10101-010-0080-0 Samuel A, 2009, J ECON BEHAV ORGAN, V71, P441, DOI 10.1016/j.jebo.2009.04.013 SCHNEIDER B, 1987, PERS PSYCHOL, V40, P437, DOI 10.1111/j.1744-6570.1987.tb00609.x Schuppan T, 2009, GOV INFORM Q, V26, P118, DOI 10.1016/j.giq.2008.01.006 Seligson MA, 2002, J POLIT, V64, P408, DOI 10.1111/1468-2508.00132 Sengupta M, 2014, SOC MOVEMENT STUD, V13, P406, DOI 10.1080/14742837.2013.860025 Sforza V., 2020, REV LIT CORRUPTION H SHLEIFER A, 1994, Q J ECON, V109, P995, DOI 10.2307/2118354 Stoerk T, 2016, ATMOS ENVIRON, V127, P365, DOI 10.1016/j.atmosenv.2015.12.055 Tanzi V, 1998, WELFARE STATE, PUBLIC INVESTMENT AND GROWTH, P41 Termini RB, 2017, J PHARM HEALTH SERV, V8, P77, DOI 10.1111/jphs.12174 Torsello D, 2016, J MANAGE INQUIRY, V25, P34, DOI 10.1177/1056492615579081 Treisman D, 2000, J PUBLIC ECON, V76, P399, DOI 10.1016/S0047-2727(99)00092-4 Ugur M., 2011, Evidence on the Economic Growth Impacts of Corruption in Low-Income Countries and Beyond Ugur M, 2014, J ECON SURV, V28, P472, DOI 10.1111/joes.12035 Ullah B, 2020, Q REV ECON FINANC, V75, P120, DOI 10.1016/j.qref.2019.05.009 Ungpakorn JG, 2002, J CONTEMP ASIA, V32, P191, DOI 10.1080/00472330280000121 van der Maaten L, 2008, J MACH LEARN RES, V9, P2579 Wallach HM, 2009, ADV NEURAL INFORM PR, V22, P1973, DOI DOI 10.1007/S10708-008-9161-9 Wane Waly., 2000, TAX EVASION CORRUPTI Wang CB, 2019, BRIT J NEUROSURG, V33, P675, DOI 10.1080/02688697.2017.1396286 Zhang YJ, 2016, TECHNOL FORECAST SOC, V112, P220, DOI 10.1016/j.techfore.2016.05.027 NR 110 TC 3 Z9 3 U1 1 U2 8 PU SPRINGERNATURE PI LONDON PA CAMPUS, 4 CRINAN ST, LONDON, N1 9XW, ENGLAND SN 2432-2717 EI 2432-2725 J9 J COMPUT SOC SCI JI J. Comput. Soc. Sci. PD NOV PY 2021 VL 4 IS 2 BP 851 EP 881 DI 10.1007/s42001-021-00110-2 PG 31 WC Social Sciences, Mathematical Methods WE Emerging Sources Citation Index (ESCI) SC Mathematical Methods In Social Sciences GA WH4ET UT WOS:000707633900018 DA 2024-09-05 ER PT J AU Baker, RS Nasiar, N Gong, WY Porter, C AF Baker, Ryan S. Nasiar, Nidhi Gong, Weiyi Porter, Chelsea TI The impacts of learning analytics and A/B testing research: a case study in differential scientometrics SO INTERNATIONAL JOURNAL OF STEM EDUCATION LA English DT Article DE Scientometrics; A; B testing; Learning analytics; Online learning; STEM education platform ID SCIENCE AB Background In recent years, research on online learning platforms has exploded in quantity. More and more researchers are using these platforms to conduct A/B tests on the impact of different designs, and multiple scientific communities have emerged around studying the big data becoming available from these platforms. However, it is not yet fully understood how each type of research influences future scientific discourse within the broader field. To address this gap, this paper presents the first scientometric study on how researchers build on the contributions of these two types of online learning platform research (particularly in STEM education). We selected a pair of papers (one using A/B testing, the other conducting learning analytics (LA), on platform data of an online STEM education platform), published in the same year, by the same research group, at the same conference. We then analyzed each of the papers that cited these two papers, coding from the paper text (with inter-rater reliability checks) the reason for each citation made. Results After statistically comparing the frequency of each category of citation between papers, we found that the A/B test paper was self-cited more and that citing papers built on its work directly more frequently, whereas the LA paper was more often cited without discussion. Conclusions Hence, the A/B test paper appeared to have had a larger impact on future work than the learning analytics (LA) paper, even though the LA paper had a higher count of total citations with a lower degree of self-citation. This paper also established a novel method for understanding how different types of research make different contributions in learning analytics, and the broader online learning research space of STEM education. C1 [Baker, Ryan S.; Nasiar, Nidhi; Gong, Weiyi; Porter, Chelsea] Univ Penn, Grad Sch Educ, Philadelphia, PA 19104 USA. C3 University of Pennsylvania RP Baker, RS (corresponding author), Univ Penn, Grad Sch Educ, Philadelphia, PA 19104 USA. EM ryanshaunbaker@gmail.com RI Baker, Ryan/IWE-2102-2023 OI Nasiar, Nidhi/0009-0006-7063-5433; Porter, Chelsea/0009-0005-0246-8509 FU Schmidt Futures Foundation FX The project is funded by the Schmidt Futures Foundation, in an award initially given to Worcester Polytechnic Institute. This article does not necessarily represent the perspectives of either of these organizations. CR [Anonymous], 2012, 2012 Conference of the North American Chapter of the Association for Computational Linguistics [Anonymous], 1984, The citation process: The role and significance of citations in scientific communication [Anonymous], 2011, Evaluation, DOI DOI 10.1177/1356389010389908 Baker R. S., 2009, Journal of educational Data Mining, V1, P3, DOI DOI 10.5281/ZENODO.3554657 Beck JE, 1999, FR ART INT, V50, P611 BENJAMINI Y, 1995, J R STAT SOC B, V57, P289, DOI 10.1111/j.2517-6161.1995.tb02031.x Bornmann L, 2008, J DOC, V64, P45, DOI 10.1108/00220410810844150 Chen GL, 2020, LAK20: THE TENTH INTERNATIONAL CONFERENCE ON LEARNING ANALYTICS & KNOWLEDGE, P544, DOI 10.1145/3375462.3375500 COLE JR, 1972, SCIENCE, V178, P368, DOI 10.1126/science.178.4059.368 Dawson S., 2014, P 4 INT C LEARNING A, P231 Derntl M., 2013, P LEARN AN KNOWL LAK Dormezil S., 2019, EDM WORKSHOPS, P17 Fazeli S., 2013, P LEARN AN KNOWL LAK Feng MY, 2009, USER MODEL USER-ADAP, V19, P243, DOI 10.1007/s11257-009-9063-7 Fletcher JD, 2018, INT J STEM EDUC, V5, DOI 10.1186/s40594-018-0106-7 GARFIELD E, 1965, STAT ASSOC METHOD M, V1964, P189 Garzone M, 2000, LECT NOTES ARTIF INT, V1822, P337 Graesser AC, 2018, INT J STEM EDUC, V5, DOI 10.1186/s40594-018-0110-y Gross P L, 1927, Science, V66, P385, DOI 10.1126/science.66.1713.385 Guo L., 2021, ASIA PAC EDUC REV, V18, P1 Harwood N, 2009, J PRAGMATICS, V41, P497, DOI 10.1016/j.pragma.2008.06.001 Heffernan N, 2014, INT J ARTIF INTELL E, V24, P470, DOI 10.1007/s40593-014-0024-x Inventado PS, 2018, INT J STEM EDUC, V5, DOI 10.1186/s40594-018-0107-6 Khajah M., 2016, P 9 INT C ED DAT MIN, P94 Kizilcec RF, 2020, P NATL ACAD SCI USA, V117, P14900, DOI 10.1073/pnas.1921417117 Koedinger K. R, 2010, Handbook of Educational Data Mining, V43, P43, DOI DOI 10.1201/B10274-6 Koedinger KR, 2013, SCIENCE, V342, P935, DOI 10.1126/science.1238056 Koedinger KR, 2012, COGNITIVE SCI, V36, P757, DOI 10.1111/j.1551-6709.2012.01245.x LANDIS JR, 1977, BIOMETRICS, V33, P159, DOI 10.2307/2529310 Malmi Lauri, 2020, ICER '20. Proceedings of the 2020 ACM Conference on International Computing Education Research, P36, DOI 10.1145/3372782.3406279 Maturana RA., 2013, P LAK DAT CHALL HELD, V34 Mostow J., 2003, P THEWORKSHOP ASSESS, P61 Mulqueeny K, 2015, INT J STEM EDUC, V2, DOI 10.1186/s40594-015-0028-6 Nawaz S., 2013, P LEARN AN KNOWL LAK Nye BD, 2018, INT J STEM EDUC, V5, DOI 10.1186/s40594-018-0109-4 OECD, 2020, Digital transformation in the age of COVID-19. Building Resilience and bridging divides, DOI DOI 10.5281/ZENODO.4143612 Ostrow K. S., 2019, LEARNING SCI THEORY, P201 Park JH, 2009, EDUC TECHNOL SOC, V12, P207 Razzaq L, 2006, LECT NOTES COMPUT SC, V4053, P635 Reich J, 2015, SCIENCE, V347, P34, DOI 10.1126/science.1261627 SHOCKLEY W, 1957, P IRE, V45, P279, DOI 10.1109/JRPROC.1957.278364 Stamper J., 2012, P 5 INT C ED DAT MIN Valle N, 2021, BRIT J EDUC TECHNOL, V52, P1724, DOI 10.1111/bjet.13089 VanLehn K, 2011, EDUC PSYCHOL-US, V46, P197, DOI 10.1080/00461520.2011.611369 Verbert K, 2013, AM BEHAV SCI, V57, P1500, DOI 10.1177/0002764213479363 VINKLER P, 1987, SCIENTOMETRICS, V12, P47, DOI 10.1007/BF02016689 Waheed H, 2018, BEHAV INFORM TECHNOL, V37, P941, DOI 10.1080/0144929X.2018.1467967 Walonoski JA, 2006, LECT NOTES COMPUT SC, V4053, P382 Yeung CK, 2018, PROCEEDINGS OF THE FIFTH ANNUAL ACM CONFERENCE ON LEARNING AT SCALE (L@S'18), DOI 10.1145/3231644.3231647 Zhang JN, 2017, PROCEEDINGS OF THE 26TH INTERNATIONAL CONFERENCE ON WORLD WIDE WEB (WWW'17), P765, DOI 10.1145/3038912.3052580 Zouaq A., 2013, LAK DAT CHALL 2013 H NR 51 TC 0 Z9 0 U1 0 U2 18 PU SPRINGER PI NEW YORK PA ONE NEW YORK PLAZA, SUITE 4600, NEW YORK, NY, UNITED STATES SN 2196-7822 J9 INT J STEM EDUC JI Int. J. STEM Educ. PD FEB 14 PY 2022 VL 9 IS 1 AR 16 DI 10.1186/s40594-022-00330-6 PG 10 WC Education & Educational Research; Education, Scientific Disciplines WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Education & Educational Research GA YY9UO UT WOS:000755130600002 PM 35194544 OA gold, Green Published DA 2024-09-05 ER PT C AU Kuznetsova, A Pozdniakov, S Musabirov, I AF Kuznetsova, Anastasiya Pozdniakov, Stanislav Musabirov, Ilya BE Alexandrov, DA Boukhanovsky, AV Chugunov, AV Kabanov, Y Koltsova, O TI Analyzing Web Presence of Russian Universities in a Scientometric Context SO DIGITAL TRANSFORMATION AND GLOBAL SOCIETY (DTGS 2017) SE Communications in Computer and Information Science LA English DT Proceedings Paper CT 2nd International Conference on Digital Transformation and Global Society (DTGS) CY JUN 21-23, 2017 CL ITMO Univ, St. Petersburg, RUSSIA HO ITMO Univ DE Russian universities; Northwestern region; Webometrics; Altmetrics; LDA; Topic modelling AB In this paper, we analyse the strategies and stratification of Russian universities in the Northwestern region. By enriching traditional social network analysis scientometric tools, we developed web presence indicators focused on the contexts in which universities are linked with businesses and are mentioned in media. We treat resulting groups in terms of Gouldner's cosmopolitans versus locals theory, based on differences in their publication strategies, and embeddedness in business connections and media contexts. C1 [Kuznetsova, Anastasiya; Pozdniakov, Stanislav; Musabirov, Ilya] Natl Res Univ Higher Sch Econ, St Petersburg, Russia. C3 HSE University (National Research University Higher School of Economics) RP Kuznetsova, A (corresponding author), Natl Res Univ Higher Sch Econ, St Petersburg, Russia. EM adkuznetsova13@gmail.com; pozdniakov.stanislav@gmail.com; ilya@musabirov.info RI Musabirov, Ilya/K-3905-2015 FU Academic Fund Program at the National Research University Higher School of Economics (HSE) in 2017 2018 [17-05-0024] FX The article was prepared within the framework of the Academic Fund Program at the National Research University Higher School of Economics (HSE) in 2017 2018 (grant No. 17-05-0024) and by the Russian Academic Excellence Project "5-100". CR Altbach P., 2017, ANARCHY EXPLOITATION Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993 Dyachenko E., 2017, HIGH ED RUSSIA, V11, P7 Espeland WN, 2007, AM J SOCIOL, V113, P1, DOI 10.1086/517897 GOULDNER AW, 1957, ADMIN SCI QUART, V2, P281, DOI 10.2307/2391000 Ingwersen P, 2004, HANDBOOK OF QUANTITATIVE SCIENCE AND TECHNOLOGY RESEARCH: THE USE OF PUBLICATION AND PATENT STATISTICS IN STUDIES OF S&T SYSTEMS, P339 Ingwersen P, 1998, J DOC, V54, P236, DOI 10.1108/EUM0000000007167 Kasyanov P., 2017, HIGHER ED RUSSIA, V11, P9 Kim E.Han., 2010, American Universities in a Global Market, P163 Putten J.V., 2014, OP TRACK EAIR 36 ANN STAHL MJ, 1979, IEEE T ENG MANAGE, V26, P39, DOI 10.1109/TEM.1979.6447440 Thelwall M, 2003, J AM SOC INF SCI TEC, V54, P594, DOI 10.1002/asi.10161 NR 12 TC 0 Z9 0 U1 0 U2 1 PU SPRINGER INTERNATIONAL PUBLISHING AG PI CHAM PA GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND SN 1865-0929 EI 1865-0937 BN 978-3-319-69784-0; 978-3-319-69783-3 J9 COMM COM INF SC PY 2017 VL 745 BP 113 EP 119 DI 10.1007/978-3-319-69784-0_9 PG 7 WC Computer Science, Theory & Methods; Telecommunications WE Conference Proceedings Citation Index - Science (CPCI-S) SC Computer Science; Telecommunications GA BO4XN UT WOS:000515664100009 DA 2024-09-05 ER PT J AU Li, SQ Zhang, YP Ding, M Dai, PC AF Li, Shuqin Zhang, Yipeng Ding, Meng Dai, Pengcheng TI Research on integrated computer game algorithm for dots and boxes SO JOURNAL OF ENGINEERING-JOE LA English DT Article; Proceedings Paper CT 3rd Asian Conference on Artificial Intelligence Technology (ACAIT) CY JUN 07-09, 2019 CL Chongqing, PEOPLES R CHINA DE C++ language; tree searching; Monte Carlo methods; artificial intelligence; neural nets; computer games; game theory; research on integrated computer game algorithm; dots; computer game research; game progresses; famous chess game; Monte Carlo tree search algorithm; Alpha-Beta algorithm; deep convolution neural network; computer game problem; deep convolutional neural network model; deep value network; situation assessment; strategy recommendation; Monte Carlo Tree Search algorithm; deep strategy network integrated MCTS algorithm; integrated models; Alpha-Beta complete search; Monte Carlo simulation process; integrated algorithm game systems ID GO AB Situation assessment and search are two key problems in computer game research. In general, as the game progresses, the difficulty of evaluating the situation of the game is significantly reduced, and the accuracy of the evaluation is significantly increased. Based on the famous chess game, this article proposes and implements a new scheme that combines the Monte Carlo tree search algorithm, the Alpha-Beta algorithm and the model based on the deep convolution neural network (CNN) to solve the computer game problem. This article first proposes a deep convolutional neural network model based on dots and boxes, including deep value network and deep strategy network, focusing on situation assessment and strategy recommendation, respectively. Then, using the Monte Carlo Tree Search (MCTS) algorithm as a framework, deep value network integrated MCTS algorithm and deep strategy network integrated MCTS algorithm are proposed. In both integrated models, Alpha-Beta complete search is used to truncate the Monte Carlo simulation process and improve simulation efficiency. Through competition with human players, the results show that the two integrated algorithm game systems have reached much higher intelligence level than ordinary humans in solving the problem of dots and boxes. C1 [Li, Shuqin; Zhang, Yipeng; Ding, Meng; Dai, Pengcheng] Beijing Informat Sci & Technol Univ, Comp Acad, Beijing, Peoples R China. [Li, Shuqin; Zhang, Yipeng; Ding, Meng; Dai, Pengcheng] Percept & Computat Intelligence Joint Lab, 35 North Fourth Ring Rd, Beijing, Peoples R China. C3 Beijing Information Science & Technology University RP Li, SQ (corresponding author), Beijing Informat Sci & Technol Univ, Comp Acad, Beijing, Peoples R China.; Li, SQ (corresponding author), Percept & Computat Intelligence Joint Lab, 35 North Fourth Ring Rd, Beijing, Peoples R China. EM lishuqin_de@126.com RI Zhang, Yipeng/HGD-1556-2022 OI Zhang, Yipeng/0000-0003-2869-4692 FU Key potential projects of Promoting Research Level program at Beijing Information Science and Technology University [5211910927]; Normal projects of General Science and Technology research program [KM201911232002]; Science & Technology Innovation program for graduated students at Beijing Information Science and Technology University [5121911044]; Normal projects of promoting graduated education program at Beijing Information Science and Technology University [5121911019] FX This work is supported by Key potential projects of Promoting Research Level program at Beijing Information Science and Technology University (NO. 5211910927), by Normal projects of General Science and Technology research program (NO. KM201911232002), by Science & Technology Innovation program for graduated students at Beijing Information Science and Technology University (NO. 5121911044), by Normal projects of promoting graduated education program at Beijing Information Science and Technology University (NO. 5121911019). CR Berlekamp E.R, 2000, The Dots and Boxes Game: Sophisticated Child's Play Berlekamp Elwyn, 2000, MORE GAMES NO CHANCE, V42, P317 Chaslot G., 2008, BELG NETH ART INT C Clevert D.-A., 2015, 4 INT C LEARN REPR I Garivier A, 2011, LECT NOTES ARTIF INT, V6925, P174, DOI 10.1007/978-3-642-24412-4_16 Kingma DP, 2014, ADV NEUR IN, V27 Kocsis L, 2006, LECT NOTES COMPUT SC, V4212, P282, DOI 10.1007/11871842_29 Lecun Y., 1998, The handbook of brain theory and neural networks, P1 Mnih V, 2015, NATURE, V518, P529, DOI 10.1038/nature14236 PEARL J, 1982, COMMUN ACM, V25, P559, DOI 10.1145/358589.358616 Schmid M., 2017, ARXIV170101724 Silver D, 2017, NATURE, V550, P354, DOI 10.1038/nature24270 Silver D, 2016, NATURE, V529, P484, DOI 10.1038/nature16961 Yuan YL, 2014, INT GEOSCI REMOTE SE, DOI 10.1109/IGARSS.2014.6946435 NR 14 TC 1 Z9 1 U1 0 U2 3 PU WILEY PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA EI 2051-3305 J9 J ENG-JOE JI J. Eng.-JOE PD JUL PY 2020 VL 2020 IS 13 BP 601 EP 606 DI 10.1049/joe.2019.1185 PG 6 WC Engineering, Multidisciplinary WE Emerging Sources Citation Index (ESCI) SC Engineering GA NI3QK UT WOS:000565270600060 OA gold DA 2024-09-05 ER PT C AU Antonakaki, D Polakis, I Athanasopoulos, E Ioannidis, S Fragopoulou, P AF Antonakaki, Despoina Polakis, Iasonas Athanasopoulos, Elias Ioannidis, Sotiris Fragopoulou, Paraskevi BE Aiello, LM McFarland, D TI Think Before RT: An Experimental Study of Abusing Twitter Trends SO SOCIAL INFORMATICS SE Lecture Notes in Computer Science LA English DT Proceedings Paper CT SocInfo International Workshops CY NOV 10, 2014 CL Barcelona, SPAIN DE Spam; Twitter; Microblogging; Social influence; Spammer; Spam campaign; Trending topic; Machine learning; Classification; Regression trees; Gain more followers campaign; Online social networks; Privacy AB Twitter is one of the most influential Online Social Networks (OSNs), adopted not only by hundreds of millions of users but also by public figures, organizations, news media, and official authorities. One of the factors contributing to this success is the inherent property of the platform for spreading news - encapsulated in short messages that are tweeted from one user to another - across the globe. Today, it is sufficient to just inspect the trending topics in Twitter for figuring out what is happening around the world. Unfortunately, the capabilities of the platform can be also abused and exploited for distributing illicit content or boosting false information, and the consequences of such actions can be really severe: one false tweet was enough for making the stock-market crash for a short period of time in 2013. In this paper, we analyze a large collection of tweets and explore the dynamics of popular trends and other Twitter features in regards to deliberate misuse. We identify a specific class of trend-exploiting campaigns that exhibits a stealthy behavior and hides spam URLs within Google search-result links. We build a spam classifier for both users and tweets, and demonstrate its simplicity and efficiency. Finally, we visualize these spam campaigns and reveal their inner structure. C1 [Antonakaki, Despoina; Athanasopoulos, Elias; Ioannidis, Sotiris; Fragopoulou, Paraskevi] FORTH ICS, Iraklion, Greece. [Polakis, Iasonas] Columbia Univ, New York, NY USA. C3 Columbia University RP Antonakaki, D (corresponding author), FORTH ICS, Iraklion, Greece. EM despoina@ics.forth.gr; polakis@cs.columbia.edu; elathan@ics.forth.gr; sotiris@ics.forth.gr; fragopou@ics.forth.gr OI Antonakaki, Despoina/0000-0001-9081-6115 CR [Anonymous], 1954, TIME [Anonymous], 2011, ICWSM [Anonymous], 2012, 19 ANN NETWORK DISTR [Anonymous], 2011, P INT MEAS C IMC, DOI DOI 10.1145/2068816.2068840 [Anonymous], COMM SYST NETW COMSN Benevenuto F., 2010, ANN COLLABORATION Flores Marcel, 2013, Passive and Active Measurement. 14th International Conference, PAM 2013. Proceedings, P208, DOI 10.1007/978-3-642-36516-4_21 Gao H., 2010, P 10 ANN C INT MEAS Grier C, 2010, PROCEEDINGS OF THE 17TH ACM CONFERENCE ON COMPUTER AND COMMUNICATIONS SECURITY (CCS'10), P27, DOI 10.1145/1866307.1866311 Martinez-Romo J, 2013, EXPERT SYST APPL, V40, P2992, DOI 10.1016/j.eswa.2012.12.015 O'Donovan J, 2012, PROCEEDINGS OF 2012 ASE/IEEE INTERNATIONAL CONFERENCE ON PRIVACY, SECURITY, RISK AND TRUST AND 2012 ASE/IEEE INTERNATIONAL CONFERENCE ON SOCIAL COMPUTING (SOCIALCOM/PASSAT 2012), P293, DOI 10.1109/SocialCom-PASSAT.2012.128 Ozdikis O., 2012, P 1 INT WORKSH ONL S Perlroth Nicole, 2013, NY TIMES Sridharan V, 2012, 28TH ANNUAL COMPUTER SECURITY APPLICATIONS CONFERENCE (ACSAC 2012), P389 Stringhini Gianluca., 2013, Proceedings of the 2013 Conference on Internet Measurement Conference, IMC '13, P163, DOI DOI 10.1145/2504730.2504731 Wang AH, 2010, SECRYPT 2010: PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON SECURITY AND CRYPTOGRAPHY, P142 NR 16 TC 1 Z9 1 U1 0 U2 2 PU SPRINGER-VERLAG BERLIN PI BERLIN PA HEIDELBERGER PLATZ 3, D-14197 BERLIN, GERMANY SN 0302-9743 EI 1611-3349 BN 978-3-319-15168-7; 978-3-319-15167-0 J9 LECT NOTES COMPUT SC PY 2015 VL 8852 BP 402 EP 413 DI 10.1007/978-3-319-15168-7_49 PG 12 WC Computer Science, Information Systems; Computer Science, Theory & Methods WE Conference Proceedings Citation Index - Science (CPCI-S) SC Computer Science GA BF3NP UT WOS:000380559900049 DA 2024-09-05 ER PT J AU Blanco, FJ AF Blanco, Jose F. TI Fashion at the museum: successful experiences with student curators SO MUSEUM MANAGEMENT AND CURATORSHIP LA English DT Article DE fashion exhibition; student curators; active learning; institutional collaboration; museum exhibitions AB This paper describes the development of two fashion-centered exhibitions organized by non-museum studies college students in collaboration with a university museum and a community arts center and historic house. The work was the result of a new course, 'Museum Issues in Historic Clothing and Textiles,' offered in the Department of Textiles, Merchandising and Interiors at the University of Georgia. The department holds a large historic clothing and textiles collection, but has limited exhibition space. This paper describes the steps involved in the collaborative project, the active learning process in the classroom, the exact nature and process of the collaboration, and provides information on the final product - the two exhibitions created by the class. The paper aims to encourage similar collaborations between museum and fashion design, or fashion merchandizing programs housing historic clothing and textiles collections. C1 [Blanco, Jose F.] Univ Georgia, Coll Familyand Consumer Sci, Dept Text Merchandising & Interiors, 303 Dawson Hall, Athens, GA 30602 USA. C3 University System of Georgia; University of Georgia RP Blanco, FJ (corresponding author), Univ Georgia, Coll Familyand Consumer Sci, Dept Text Merchandising & Interiors, 303 Dawson Hall, Athens, GA 30602 USA. EM jblanco@uga.edu CR Allen S.M., 1999, RARE BOOKS MANUSCRIP, V13, P110, DOI DOI 10.5860/RBML.13.2.157 [Anonymous], 2008, EXCELLENCE EQUITY ED [Anonymous], CREATING LEARNING CT Bonwell C., 1991, Active Learning: Creating Excitement in the Classroom, V1 David H., 1990, Museums and Universities: New Paths for Continuing Education, P117 Department of Art & Art History Michigan State University, 2008, STUD CUR EXH KRESG A Foyle H.C., 1995, INTERACTIVE LEARNING Genoways HughH., 2003, Museum Administration: An Introduction Georgia Museum of Art, 2009, MISS STAT Goodsell A., 1992, Collaborative Learning: A Sourcebook for Higher Education King L, 2006, NEW MUSEUM THEORY AND PRACTICE: AN INTRODUCTION, P266, DOI 10.1002/9780470776230.ch11 King Lyndel., 2001, Managing university museums, P19 Marstine J, 2006, NEW MUSEUM THEORY AND PRACTICE: AN INTRODUCTION, P1, DOI 10.1002/9780470776230 Marstine J, 2007, MUS MANAG CURATORSHI, V22, P303, DOI 10.1080/09647770701628644 Meyers Chet, 1993, Promoting Active Learning. Strategies for the College Classroom, Vfirst Millis KK, 2001, TEACH PSYCHOL, V28, P263, DOI 10.1207/S15328023TOP2804_06 Nist S.L., 2000, ACTIVE LEARNING STRA Schmiesing A, 2002, PORTAL-LIBR ACAD, V2, P465, DOI 10.1353/pla.2002.0065 Silberman M., 2005, TEACHING ACTIVELY 8 Silberman Mel., 1996, ACTIVE LEARNING 101 Spiess PD, 1996, MUSEUM NEWS, V75, P32 Visser Falke M., 2007, INT J HUMANITIES, V5, P215 Willumson G, 2000, MUSEUM INT, V52, P15, DOI 10.1111/1468-0033.00253 NR 23 TC 3 Z9 5 U1 0 U2 1 PU ROUTLEDGE JOURNALS, TAYLOR & FRANCIS LTD PI ABINGDON PA 2-4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND SN 0964-7775 EI 1872-9185 J9 MUS MANAGE CURATOR JI Mus. Manag. Curatorship PY 2010 VL 25 IS 2 BP 199 EP 217 DI 10.1080/09647771003737323 PG 19 WC Humanities, Multidisciplinary WE Emerging Sources Citation Index (ESCI) SC Arts & Humanities - Other Topics GA V73AY UT WOS:000211683500005 DA 2024-09-05 ER PT J AU Antonakaki, D Polakis, I Athanasopoulos, E Ioannidis, S Fragopoulou, P AF Antonakaki, Despoina Polakis, Iasonas Athanasopoulos, Elias Ioannidis, Sotiris Fragopoulou, Paraskevi TI Exploiting abused trending topics to identify spam campaigns in Twitter SO SOCIAL NETWORK ANALYSIS AND MINING LA English DT Article DE Spam; Twitter; Microblogging; Social influence; Spammer; Spam campaign; Trending topic; Machine learning; Classification; Regression trees; Gain-more-followers campaign; Online social networks; Privacy AB Twitter is an online social network (OSN) with approximately 650 million users. It has been fairly characterized as one of the most influential OSNs since it includes public figures, organizations, news media and official authorities. Twitter has an inherent simple philosophy with short messages, friendship relations, hashtags and support for media sharing such as photos and short videos. Popular hashtags that emerge from users' activity are displayed prominently in the platform as Popular Trends. Unfortunately, the capabilities of the platform can be also abused and exploited for distributing illicit content or boosting false information, and the consequences of such actions can be really severe: one false tweet was enough for making the stock market crash for a short period of time in 2013. In this study, we make an experimental analysis on a large dataset containing 150 million tweets. We delve into the dynamics of the popular trends as well as other Twitter features in regard to deliberate misuse. We investigate traditional spam techniques as well as an obfuscated way of spam campaigns that exploit trending topics and hides malicious URLs within Google search result links. We implement a simple and lightweight classifier for indentifying spam users as well as spam tweets. Finally, we visualize these spam campaigns and investigate their inner properties. C1 [Antonakaki, Despoina; Athanasopoulos, Elias; Ioannidis, Sotiris; Fragopoulou, Paraskevi] FORTH ICS, Iraklion, Greece. [Polakis, Iasonas] Columbia Univ, New York, NY USA. C3 Columbia University RP Antonakaki, D (corresponding author), FORTH ICS, Iraklion, Greece. EM despoina@ics.forth.gr; polakis@cs.columbia.edu; elathan@ics.forth.gr; sotiris@ics.forth.gr; fragopou@ics.forth.gr OI Antonakaki, Despoina/0000-0001-9081-6115 CR [Anonymous], 2010, ANN COLL EL MESS ANT [Anonymous], 2011, ICWSM [Anonymous], 2012, 19 ANN NETWORK DISTR [Anonymous], 2011, P INT MEAS C IMC, DOI DOI 10.1145/2068816.2068840 [Anonymous], COMM SYST NETW COMSN Cormack Gordon V., 2006, Foundations and Trends in Information Retrieval, V1, P1, DOI 10.1561/1500000006 EFRON B, 1987, J AM STAT ASSOC, V82, P171, DOI 10.2307/2289144 Flores Marcel, 2013, Passive and Active Measurement. 14th International Conference, PAM 2013. Proceedings, P208, DOI 10.1007/978-3-642-36516-4_21 Gao H., 2010, P 10 ANN C INT MEAS Ghosh S, 2012, P 21 INT C WORLD WID, P61, DOI [10.1145/2187836.2187846, DOI 10.1145/2187836.2187846] Grier C, 2010, PROCEEDINGS OF THE 17TH ACM CONFERENCE ON COMPUTER AND COMMUNICATIONS SECURITY (CCS'10), P27, DOI 10.1145/1866307.1866311 Kleineberg KK, 2014, PHYS REV X, V4, DOI 10.1103/PhysRevX.4.031046 Martinez-Romo J, 2013, EXPERT SYST APPL, V40, P2992, DOI 10.1016/j.eswa.2012.12.015 Newcombe RG, 1998, STAT MED, V17, P873, DOI 10.1002/(SICI)1097-0258(19980430)17:8<873::AID-SIM779>3.0.CO;2-I O'Donovan J, 2012, PROCEEDINGS OF 2012 ASE/IEEE INTERNATIONAL CONFERENCE ON PRIVACY, SECURITY, RISK AND TRUST AND 2012 ASE/IEEE INTERNATIONAL CONFERENCE ON SOCIAL COMPUTING (SOCIALCOM/PASSAT 2012), P293, DOI 10.1109/SocialCom-PASSAT.2012.128 Ozdikis O., 2012, P 1 INT WORKSH ONL S Perlroth Nicole, 2013, NY TIMES Sridharan V, 2012, 28TH ANNUAL COMPUTER SECURITY APPLICATIONS CONFERENCE (ACSAC 2012), P389 Stringhini Gianluca., 2013, Proceedings of the 2013 Conference on Internet Measurement Conference, IMC '13, P163, DOI DOI 10.1145/2504730.2504731 Thomas K, 2014, CCS'14: PROCEEDINGS OF THE 21ST ACM CONFERENCE ON COMPUTER AND COMMUNICATIONS SECURITY, P489, DOI 10.1145/2660267.2660282 Time.com, 2013, DOES ON FAK TWEET CA Wang AH, 2010, SECRYPT 2010: PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON SECURITY AND CRYPTOGRAPHY, P142 Yang J, 2011, TWITTER SNAP DATASET NR 23 TC 13 Z9 14 U1 0 U2 55 PU SPRINGER WIEN PI WIEN PA SACHSENPLATZ 4-6, PO BOX 89, A-1201 WIEN, AUSTRIA SN 1869-5450 EI 1869-5469 J9 SOC NETW ANAL MIN JI Soc. Netw. Anal. Min. PD DEC PY 2016 VL 6 IS 1 DI 10.1007/s13278-016-0354-9 PG 11 WC Computer Science, Information Systems WE Emerging Sources Citation Index (ESCI) SC Computer Science GA DT1CY UT WOS:000381220500048 DA 2024-09-05 ER PT J AU López-Robles, JR Cobo, MJ Gutiérrez-Salcedo, M Martínez-Sánchez, MA Gamboa-Rosales, NK Herrera-Viedma, E AF Lopez-Robles, J. R. Cobo, M. J. Gutierrez-Salcedo, M. Martinez-Sanchez, M. A. Gamboa-Rosales, N. K. Herrera-Viedma, E. TI 30th Anniversary of Applied Intelligence: A combination of bibliometrics and thematic analysis using SciMAT SO APPLIED INTELLIGENCE LA English DT Article DE Science mapping; Journal conceptual structure; Artificial intelligence; Intelligent systems; Applied intelligence; SciMAT ID MANAGEMENT; EVOLUTION; BUSINESS AB Applied Intelligence is one of the most important international scientific journals in the field of artificial intelligence. From 1991, Applied Intelligence has been oriented to support research advances in new and innovative intelligent systems, methodologies, and their applications in solving real-life complex problems. In this way, Applied Intelligence hosts more than 2,400 publications and achieves around 31,800 citations. Moreover, Applied Intelligence is recognized by the industrial, academic, and scientific communities as a source of the latest innovative and advanced solutions in intelligent manufacturing, privacy-preserving systems, risk analysis, knowledge-based management, modern techniques to improve healthcare systems, methods to assist government, and solving industrial problems that are too complex to be solved through conventional approaches. Bearing in mind that Applied Intelligence celebrates its 30th anniversary in 2021, it is appropriate to analyze its bibliometric performance, conceptual structure, and thematic evolution. To do that, this paper conducts a bibliometric performance and conceptual structure analysis of Applied Intelligence from 1991 to 2020 using SciMAT. Firstly, the performance of the journal is analyzed according to the data retrieved from Scopus, putting the focus on the productivity of the authors, citations, countries, organizations, funding agencies, and most relevant publications. Finally, the conceptual structure of the journal is analyzed with the bibliometric software tool SciMAT, identifying the main thematic areas that have been the object of research and their composition, relationship, and evolution during the period analyzed. C1 [Lopez-Robles, J. R.] Autonomous Univ Zacatecas, Acad Unit Accounting & Management, Zacatecas, Zacatecas, Mexico. [Lopez-Robles, J. R.] Univ Cadiz, Dept Comp Sci & Engn, Cadiz, Spain. [Cobo, M. J.] Univ Cadiz, Andalusian Res Inst Data Sci & Computat Intellige, Dept Comp Sci & Engn, Cadiz, Spain. [Gutierrez-Salcedo, M.] Univ Jaen, Dept Management Mkt & Sociol, Jaen, Spain. [Martinez-Sanchez, M. A.] Univ Granada, Dept Social Work, Granada, Spain. [Gamboa-Rosales, N. K.] Autonomous Univ Zacatecas, CONACYT Acad Unit Elect Engn, Zacatecas, Zacatecas, Mexico. [Herrera-Viedma, E.] Univ Granada, Andalusian Res Inst Data Sci & Computat Intellige, Dept Comp Sci & Artificial Intelligence, Granada, Spain. C3 Universidad Autonoma de Zacatecas; Universidad de Cadiz; Universidad de Cadiz; Universidad de Jaen; University of Granada; Universidad Autonoma de Zacatecas; University of Granada RP Cobo, MJ (corresponding author), Univ Cadiz, Andalusian Res Inst Data Sci & Computat Intellige, Dept Comp Sci & Engn, Cadiz, Spain. EM manueljesus.cobo@uca.es RI Cobo Martí­n, Manuel Jesús/C-5581-2011; HERRERA-VIEDMA, ENRIQUE/C-2704-2008; Gutiérrez-Salcedo, María/E-9633-2013 OI Cobo Martí­n, Manuel Jesús/0000-0001-6575-803X; HERRERA-VIEDMA, ENRIQUE/0000-0002-7922-4984; Gutiérrez-Salcedo, María/0000-0002-8874-8069 FU CONACYT-Consejo Nacional de Ciencia y Tecnologia (Mexico); COZCYT-Consejo Zacatecano de Ciencia, Tecnologia e Innovacion (Mexico); Spanish State Research Agency [PID2019-105381GA-I00/AEI/10.13039/501100011033, PID2019-103880RB-I00/AEI/10.13039/501100011033] FX The authors acknowledge the support of the CONACYT-Consejo Nacional de Ciencia y Tecnologia (Mexico) and COZCYT-Consejo Zacatecano de Ciencia, Tecnologia e Innovacion (Mexico) to carry out this study. Additionally, this work has been supported by the Spanish State Research Agency through the project PID2019-105381GA-I00/AEI/10.13039/501100011033 (iScience) and PID2019-103880RB-I00/AEI/10.13039/501100011033. CR [Anonymous], 2018, APPL INTELL, DOI [10.1007/s10489-017-1105-y., DOI 10.1007/s10489-017-1105-y, DOI 10.1007/S10489-017-1105-Y] [Anonymous], 2016, HDB BIBLIOMETRIC IND, DOI DOI 10.1002/ANIE.201608447 Garcia-Garcia LA, 2018, INT J BIOPRINTING, V4, DOI 10.18063/IJB.v4i2.147 Batagelj V, 2013, SCIENTOMETRICS, V96, P845, DOI 10.1007/s11192-012-0940-1 Borner Katy, 2015, Bulletin of the Association for Information Science and Technology, V41, P12 CALLON M, 1983, SOC SCI INFORM, V22, P191, DOI 10.1177/053901883022002003 CALLON M, 1991, SCIENTOMETRICS, V22, P155, DOI 10.1007/BF02019280 Cobo MJ, 2015, KNOWL-BASED SYST, V80, P3, DOI 10.1016/j.knosys.2014.12.035 Cobo MJ, 2012, J AM SOC INF SCI TEC, V63, P1609, DOI 10.1002/asi.22688 Cobo MJ, 2011, J AM SOC INF SCI TEC, V62, P1382, DOI 10.1002/asi.21525 Cobo MJ, 2011, J INFORMETR, V5, P146, DOI 10.1016/j.joi.2010.10.002 Coulter N, 1998, J AM SOC INFORM SCI, V49, P1206, DOI 10.1002/(SICI)1097-4571(1998)49:13<1206::AID-ASI7>3.0.CO;2-F Gaviria-Marin M, 2019, TECHNOL FORECAST SOC, V140, P194, DOI 10.1016/j.techfore.2018.07.006 Glanzel W, 1996, SCIENTOMETRICS, V35, P167, DOI 10.1007/BF02018475 Gorraiz J, 2008, J INF SCI, V34, P715, DOI 10.1177/0165551507086991 Gutiérrez-Salcedo M, 2020, STUD INFORM CONTROL, V29, P159, DOI 10.24846/v29i2y202002 He Q, 1999, LIBR TRENDS, V48, P133 Herrera-Viedma E, 2020, PROF INFORM, V29, DOI 10.3145/epi.2020.may.22 Hirsch JE, 2005, P NATL ACAD SCI USA, V102, P16569, DOI 10.1073/pnas.0507655102 Juliani F, 2016, INT J INFORM MANAGE, V36, P1033, DOI 10.1016/j.ijinfomgt.2016.07.003 Kiesslich T, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0154199 López-Robles JR, 2019, INT J INFORM MANAGE, V48, P22, DOI 10.1016/j.ijinfomgt.2019.01.013 Martínez MA, 2014, SCIENTOMETRICS, V98, P1971, DOI 10.1007/s11192-013-1155-9 Moral-Muñoz JA, 2020, PROF INFORM, V29, DOI 10.3145/epi.2020.ene.03 Murgado-Armenteros EM, 2015, SCIENTOMETRICS, V102, P519, DOI 10.1007/s11192-014-1443-z Petersen J, 2017, SCIENTOMETRICS, V112, P1593, DOI 10.1007/s11192-017-2434-7 López-Robles JR, 2020, TECHNOL ANAL STRATEG, V32, P604, DOI 10.1080/09537325.2019.1686136 Schneider JW, ACM SIGIR FORUM, V39, P63 Stek PE, 2016, TECHNOL FORECAST SOC, V110, P61, DOI 10.1016/j.techfore.2015.09.017 Yu DJ, 2019, APPL INTELL, V49, P449, DOI 10.1007/s10489-018-1278-z NR 30 TC 43 Z9 43 U1 13 U2 112 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0924-669X EI 1573-7497 J9 APPL INTELL JI Appl. Intell. PD SEP PY 2021 VL 51 IS 9 SI SI BP 6547 EP 6568 DI 10.1007/s10489-021-02584-z EA JUL 2021 PG 22 WC Computer Science, Artificial Intelligence WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Computer Science GA UC7PL UT WOS:000671766700001 OA Green Submitted DA 2024-09-05 ER PT J AU Park, S AF Park, Sungmin TI Differences in technology innovation R&D performance creation behavior between for-profit institutions and not-for-profit institutions SO SPRINGERPLUS LA English DT Article DE Data splitting; For-profit institutions; Not-for-profit institutions; R&D collaboration; Stepwise performance creation; Successive binary logistic regression ID DEVELOPMENT EFFICIENCY; NETWORKS; PRODUCTIVITY; DEA AB The present study compares the performance creation behavior between for-profit institutions and not-for-profit institutions within a national technology innovation research and development (R&D) program. Based on the stepwise performance creation chain structure of typical R&D logic models, a series of successive binary logistic regression models is newly proposed. Using the models, a sample of n = 2076 completed government-sponsored R&D projects was analyzed. For each institution type, its distinctive behavior is diagnosed, and relevant implications are suggested for improving the R&D performance. C1 [Park, Sungmin] Baekseok Univ, Dept Business Adm, Cheonan 330704, South Korea. C3 Baekseok University RP Park, S (corresponding author), Baekseok Univ, Dept Business Adm, Cheonan 330704, South Korea. EM smpark99@bu.ac.kr FU Baekseok University Research Grant FX The author acknowledges the contribution of the Korea Institute for Advancement of Technology (KIAT) and the Korea Evaluation Institute of Industrial Technology (KEIT), who permits the data available in the present study. This study was partially supported by Baekseok University Research Grant. CR [Anonymous], 2003, SCI INNOVATION RETHI [Anonymous], 1994, HDB IND INNOVATION [Anonymous], 2004, INT J BUS Astrom T, 2010, VINNOVA ANAL VA Bacchiocchi E, 2009, J TECHNOL TRANSFER, V34, P169, DOI 10.1007/s10961-007-9070-y Barney J., 2002, GAINING SUSTAINING C Belderbos R, 2004, RES POLICY, V33, P1477, DOI 10.1016/j.respol.2004.07.003 Berchicci L, 2013, RES POLICY, V42, P117, DOI 10.1016/j.respol.2012.04.017 Bickman L., 1987, USING PROGRAM THEORY, DOI [DOI 10.1002/EV.1443, 10.1002/ev.1443] Bitman WR, 2008, IEEE T ENG MANAGE, V55, P267, DOI 10.1109/TEM.2008.919725 BOWMAN CW, 1992, RES TECHNOL MANAGE, V35, P13, DOI 10.1080/08956308.1992.11670802 Branstetter L., 2005, IS ACAD SCI DRIVING Caloghirou Y., 2003, Managerial and Decision Economics, V24, P85, DOI [DOI 10.1002/MDE.1087, DOI 10.1002/(ISSN)1099-1468] Cullmann A, 2012, OXFORD ECON PAP, V64, P176, DOI 10.1093/oep/gpr015 Das TK, 2000, J MANAGE, V26, P31, DOI 10.1016/S0149-2063(99)00037-9 David PA, 2000, RES POLICY, V29, P497, DOI 10.1016/S0048-7333(99)00087-6 Eilat H, 2008, OMEGA-INT J MANAGE S, V36, P895, DOI 10.1016/j.omega.2006.05.002 Elg L, 2012, VINNOVA ANAL VA Esteve-Pérez S, 2013, SMALL BUS ECON, V41, P219, DOI 10.1007/s11187-012-9421-4 Fritsch M, 2001, RES POLICY, V30, P297, DOI 10.1016/S0048-7333(99)00115-8 GRAVES SB, 1993, STRATEGIC MANAGE J, V14, P593, DOI 10.1002/smj.4250140803 Grimaldi R, 2003, INT J TECHNOL MANAGE, V25, P766, DOI 10.1504/IJTM.2003.003136 Gronum S, 2012, J SMALL BUS MANAGE, V50, P257, DOI 10.1111/j.1540-627X.2012.00353.x Guan JC, 2010, SCIENTOMETRICS, V82, P165, DOI 10.1007/s11192-009-0030-1 Hagedoorn J, 2000, RES POLICY, V29, P567, DOI 10.1016/S0048-7333(99)00090-6 Hall BH, 2002, OXFORD REV ECON POL, V18, P1, DOI 10.1093/oxrep/18.1.1 Hashimoto A, 2008, RES POLICY, V37, P1829, DOI 10.1016/j.respol.2008.08.004 Hillman AJ, 2009, J MANAGE, V35, P1404, DOI 10.1177/0149206309343469 Hosmer W., 2000, Applied Logistic Regression, VSecond Hsu FM, 2009, EVAL PROGRAM PLANN, V32, P178, DOI 10.1016/j.evalprogplan.2008.10.005 Hu AGZ, 2009, WORLD DEV, V37, P1465, DOI 10.1016/j.worlddev.2009.01.012 IBM SPSS, 2009, PASW STAT REL 18 Jaffe A.B., 1996, EC ANAL RES SPILLOVE Kim J., 2009, INT J BUS, V8, P7 KOGUT B, 1988, STRATEGIC MANAGE J, V9, P319, DOI 10.1002/smj.4250090403 Korea Evaluation Institute of Industrial Technology (KEIT), 2010, 2010 PERF INV AN KNO Korea Evaluation Institute of Industrial Technology (KEIT), 2011, 2011 PERF INV AN KNO Korea Evaluation Institute of Industrial Technology (KEIT), 2013, 2012 PERF INV AN KNO Korea Institute of S&T Evaluation and Planning (KISTEP), 2011, INT CAS STUD MAJ ISS Lamperti F, 2017, J TECHNOL TRANSFER, V42, P158, DOI 10.1007/s10961-015-9455-2 Laursen K, 2006, STRATEGIC MANAGE J, V27, P131, DOI 10.1002/smj.507 Lee SH, 2005, IEEE T ENG MANAGE, V52, P59, DOI 10.1109/TEM.2004.839955 McLaughlin JA, 1999, EVAL PROGRAM PLANN, V22, P65, DOI 10.1016/S0149-7189(98)00042-1 Meng W, 2006, SCIENTOMETRICS, V69, P85, DOI 10.1007/s11192-006-0140-y Ministry of Knowledge Economy and Korea Institute for Advancement of Technology (MKE KIAT), 2012, 2012 GUID KNOWL EC R Ministry of Knowledge Economy (MKE), 2008, 2007 EL POW IND R D Ministry of Science and Technology and Office of Science and Technology Innovation (MST OSTI), 2008, 2008 INT EV MAN NAT Minitab, 2005, MIN REL 14 20 STATG Montgomery D.C., 2001, Wiley Series in Probability and Statistics, V3rd ed. Narula R., 2004, Journal of International Management, V10, P199, DOI DOI 10.1016/J.INTMAN.2004.02.007 Nieto MJ, 2007, TECHNOVATION, V27, P367, DOI 10.1016/j.technovation.2006.10.001 Office of Science and Technology Policy (OSTP), 2012, INN AM EC AM EN AM S Ortega-Argilés R, 2009, SMALL BUS ECON, V33, P3, DOI 10.1007/s11187-009-9187-5 Osawa Y, 2002, R&D MANAGE, V32, P79, DOI 10.1111/1467-9310.00240 Parikh M., 2001, ENG MANAG J, V13, P27, DOI DOI 10.1080/10429247.2001.11415124 Park S, 2014, SPRINGERPLUS, V3, DOI 10.1186/2193-1801-3-403 Reagans R, 2001, ORGAN SCI, V12, P502, DOI 10.1287/orsc.12.4.502.10637 Robin S, 2013, RES POLICY, V42, P149, DOI 10.1016/j.respol.2012.06.002 Ruegg R., 2003, A Toolkit for Evaluating Public RD Investment: Models, Methods, and Findings from ATP's First Decade Ruegg R., 2006, Bridging from Project Case Study to Portfolio Analysis in a Public R D Program, NIST GCR 06-891 Scherer F. M., 1990, Industrial market structure and economic performance Sharma S, 2008, SCIENTOMETRICS, V76, P483, DOI 10.1007/s11192-007-1896-4 Shipp S., 2005, EVALUATION BEST PRAC Stephan PE, 2012, HBK ECON, V1, P217, DOI 10.1016/S0169-7218(10)01005-1 Tan HX, 2015, SCIENTOMETRICS, V102, P885, DOI 10.1007/s11192-014-1393-5 TONG XS, 1994, RES POLICY, V23, P133, DOI 10.1016/0048-7333(94)90050-7 Van Aken JE, 2000, R&D MANAGE, V30, P139, DOI 10.1111/1467-9310.00164 Werner BM, 1997, RES TECHNOL MANAGE, V40, P34, DOI 10.1080/08956308.1997.11671115 WERNERFELT B, 1984, STRATEGIC MANAGE J, V5, P171, DOI 10.1002/smj.4250050207 Wholey J.S., 1987, New Directions for Program Evaluation, VSpring, P77, DOI DOI 10.1002/EV.1447 Wholey J.S., 1983, EVALUATION EFFECTIVE WK Kellogg Foundation (WKKF), 2004, WK KELL FDN LOG DEV Wu WY, 2006, R&D MANAGE, V36, P531, DOI 10.1111/j.1467-9310.2006.00452.x Xiaohong Chen, 2011, International Journal of Information Technology and Management, V10, P3, DOI 10.1504/IJITM.2011.037759 NR 74 TC 3 Z9 3 U1 4 U2 24 PU SPRINGER INTERNATIONAL PUBLISHING AG PI CHAM PA GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND SN 2193-1801 J9 SPRINGERPLUS JI SpringerPlus PD APR 14 PY 2016 VL 5 AR 451 DI 10.1186/s40064-016-2092-x PG 23 WC Multidisciplinary Sciences WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Science & Technology - Other Topics GA DL5TA UT WOS:000375698600007 PM 27119055 OA gold, Green Published DA 2024-09-05 ER PT J AU Hua, GB AF Hua, Goh Bee TI The state of applications of quantitative analysis techniques to construction economics and management (1983 to 2006) SO CONSTRUCTION MANAGEMENT AND ECONOMICS LA English DT Article DE Artificial intelligence; statistical method; quantitative analysis technique; bibliometrics; construction economics; construction management ID OPTIMIZING RESOURCE UTILIZATION; ARTIFICIAL NEURAL-NETWORK; TIME-COST OPTIMIZATION; GENETIC ALGORITHMS; SITE LAYOUT; SCHEDULING MODEL; SIMULATION-MODEL; DYNAMICS MODEL; PERFORMANCE; PROJECTS AB With increasing complexity of construction industry problems, researchers are experimenting with computationally rigorous techniques with the aim of seeking innovative solutions. In order to trace the applications of quantitative analysis techniques to research in the two fields of construction economics and construction management for both conventional and AI techniques, the methodology involves compiling all the relevant papers from the top two ranking construction management journals, namely, Construction Management and Economics and ASCE's Journal of Construction Engineering and Management. The period is from 1983 to 2006. The compiled papers are classified by field, area (or topic), technique applied and year of publication to enable time series and cross-sectional analyses of the data. Mainly, the results are depicted as trends when the patterns of distribution of the papers are plotted over time. The three findings are: (1) for construction economics, the overall increasing trend is higher for papers that have applied conventional techniques; (2) for construction management, there is a clear positive trend for papers that have applied AI techniques which starts from 1995; and (3) the areas (or topics) of construction management that have increasingly higher growth in the application of AI techniques are optimization of site operations and optimization of project time, cost and resources allocation. Two broad recommendations are made that relate to advancing the fields of construction economics and construction management with the view that researchers must better enable themselves to build tools that incorporate intelligence as innovative solutions for increasingly complex problems. C1 [Hua, Goh Bee] Natl Univ Singapore, Sch Design & Environm, Dept Bldg, Singapore, Singapore. C3 National University of Singapore RP Hua, GB (corresponding author), Natl Univ Singapore, Sch Design & Environm, Dept Bldg, Singapore, Singapore. EM bdggohbh@nus.edu.sg CR AbouRizk S, 2001, J CONSTR ENG M ASCE, V127, P502, DOI 10.1061/(ASCE)0733-9364(2001)127:6(502) Adeli H, 1997, J CONSTR ENG M ASCE, V123, P450, DOI 10.1061/(ASCE)0733-9364(1997)123:4(450) Adeli H, 1998, J CONSTR ENG M, V124, P18, DOI 10.1061/(ASCE)0733-9364(1998)124:1(18) AHUJA HN, 1985, J CONSTR ENG M ASCE, V111, P325, DOI 10.1061/(ASCE)0733-9364(1985)111:4(325) Akintoye A., 1994, Construction Management and Economics, V12, P3 Al-Hussein M, 2005, J CONSTR ENG M, V131, P579, DOI 10.1061/(ASCE)0733-9364(2005)131:5(579) Al-Momani A., 1996, Construction Management and Economics, V14, P311, DOI [10.1080/014461996373386, DOI 10.1080/014461996373386] Al-Sobiei OS, 2005, CONSTR MANAG ECON, V23, P423, DOI 10.1080/01446190500041578 Anderson P.W., 1988, EC EVOLVING COMPLEX [Anonymous], ARTIFICIAL INTELLIGE [Anonymous], CONSTRUCTION ENG MAN [Anonymous], CONSTRUCTION ENG MAN [Anonymous], P SANTA FE I [Anonymous], ASCE J CONSTR ENG MA [Anonymous], MANAGEMENT EC [Anonymous], 1990, P 7 ISARC INT ASS AU [Anonymous], P SANTA FE I [Anonymous], COMPUTING CIVIL ENG [Anonymous], CONSTRUCTION ENG MAN [Anonymous], 1983, COGNITIVE SCI [Anonymous], CONSTRUCTION MANAGEM [Anonymous], CONSTRUCT ENG MANAG [Anonymous], J CONSTR MANAGE EC [Anonymous], CONSTRUCTION MANAGEM [Anonymous], 1988, CONSTRUCTION MANAGEM [Anonymous], CONSTRUCTION MANAGEM [Anonymous], CONSTR MANAG EC, DOI DOI 10.1080/014461997372953 [Anonymous], CONSTR MANAGE EC [Anonymous], CONS MANAG EC [Anonymous], 1993, CONSTR MANAG ECON, DOI DOI 10.1080/01446199300000027 [Anonymous], J CONSTR MANAGE EC [Anonymous], CONSTRUCTION MANAGEM [Anonymous], P C ORG MAN CONSTR W [Anonymous], CONSTRUCTION MANAGEM [Anonymous], CONSTRUCTION MANAGEM Arbib MichaelA., 1964, Brains, Machines, and Mathematics, V1st Attalla M, 2003, J CONSTR ENG M ASCE, V129, P405, DOI 10.1061/(ASCE)0733-9364(2003)129:4(405) Back WE, 2000, J CONSTR ENG M ASCE, V126, P29, DOI 10.1061/(ASCE)0733-9364(2000)126:1(29) Barraza GA, 2004, J CONSTR ENG M, V130, P25, DOI 10.1061/(ASCE)0733-9364(2004)130:1(25) Barraza GA, 2000, J CONSTR ENG M ASCE, V126, P142, DOI 10.1061/(ASCE)0733-9364(2000)126:2(142) Baxendale T, 1984, Construct. Manag. Econ., V2, P201 Bennett J., 1984, CONSTR MANAG ECON, V2, P225, DOI DOI 10.1080/01446198400000021 Bonnal P, 2005, CONSTR MANAG ECON, V23, P797, DOI 10.1080/01446190500040869 Boussabaine A., 2004, Construction Management and Economics, V22, P1011, DOI [DOI 10.1080/1466433X.2004.11878565, 10.1080/1466433X.2004.11878565] Boussabaine A.H., 1996, CONSTR MANAG ECON, V14, P427, DOI [10.1080/014461996373296, DOI 10.1080/014461996373296] Chan SL, 2005, CONSTR MANAG ECON, V23, P295, DOI 10.1080/01446190500039812 Chassiakos AP, 2005, J CONSTR ENG M, V131, P1115, DOI 10.1061/(ASCE)0733-9364(2005)131:10(1115) Chiu H., 2002, Construction Management and Economics, V20, P55 Chua DKH, 1997, J CONSTR ENG M ASCE, V123, P214, DOI 10.1061/(ASCE)0733-9364(1997)123:3(214) Chua DKH, 2001, J CONSTR ENG M ASCE, V127, P35, DOI 10.1061/(ASCE)0733-9364(2001)127:1(35) Dawood N, 2006, CONSTR MANAG ECON, V24, P19, DOI 10.1080/01446190500310486 El-Rayes K, 2001, J CONSTR ENG M ASCE, V127, P18, DOI 10.1061/(ASCE)0733-9364(2001)127:1(18) Elazouni AM, 2005, J CONSTR ENG M, V131, P400, DOI 10.1061/(ASCE)0733-9364(2005)131:4(400) Ezeldin AS, 2006, J CONSTR ENG M ASCE, V132, P650, DOI 10.1061/(ASCE)0733-9364(2006)132:6(650) Flanagan R., 1983, Construction Management and Economics, V1, P157, DOI DOI 10.1080/01446198300000012 Furusaka S., 1984, Construction Management and Economic, V2, P157 Goh B.H., 2000, CONSTR MANAG ECON, V18, P209 Goldberg DE, 1989, Genetic Algorithms in Search, Optimization and Machine Learning, V1st Grossberg S., 1982, Studies of mind and brain: Neural principles of learning, perception, development, cognition, and motor control Haidar A, 1999, J CONSTR ENG M ASCE, V125, P32, DOI 10.1061/(ASCE)0733-9364(1999)125:1(32) Hegazy T, 2000, J CONSTR ENG M, V126, P414, DOI 10.1061/(ASCE)0733-9364(2000)126:6(414) Hegazy T, 2003, J CONSTR ENG M, V129, P698, DOI 10.1061/(ASCE)0733-9364(2003)129:6(698) Hegazy T, 2003, J CONSTR ENG M ASCE, V129, P396, DOI 10.1061/(ASCE)0733-9364(2003)129:4(396) Hegazy T, 1998, J CONSTR ENG M ASCE, V124, P210, DOI 10.1061/(ASCE)0733-9364(1998)124:3(210) Hegazy T, 1999, J CONSTR ENG M ASCE, V125, P167, DOI 10.1061/(ASCE)0733-9364(1999)125:3(167) Hiyassat MAS, 2000, J CONSTR ENG M ASCE, V126, P278, DOI 10.1061/(ASCE)0733-9364(2000)126:4(278) Holland J, 1975, Adaptation in natural and artificial systems: An introductory analysis with applications to biology, control, and artificial intelligence, DOI DOI 10.7551/MITPRESS/1090.001.0001 Jaskowski P, 2006, J CONSTR ENG M ASCE, V132, P861, DOI 10.1061/(ASCE)0733-9364(2006)132:8(861) Kaka A.P., 1991, Construction Management and Economics, V9, P291, DOI DOI 10.1080/01446199100000023 Kandil A, 2006, J CONSTR ENG M, V132, P491, DOI 10.1061/(ASCE)0733-9364(2006)132:5(491) Karshenas S., 1992, PRECEEDING 8 C COMPU, P841 Khosrowshahi F., 1991, Construction Management and Economics, V9, P113, DOI DOI 10.1080/01446199100000011 Killingsworth R.A., 1990, COST ENG, V32, P11 Lam K., 2001, Construction Management and Economics, V19, P63 Lam KC, 2005, CONSTR MANAG ECON, V23, P127, DOI 10.1080/0144619042000202834 LEBOWITZ M, 1983, ARTIF INTELL, V21, P363, DOI 10.1016/S0004-3702(83)80019-8 Leu S., 2002, J CONSTRUCTION MANAG, V20, P131, DOI DOI 10.1080/01446190110109148 Leu SS, 2001, J CONSTR ENG M ASCE, V127, P270, DOI 10.1061/(ASCE)0733-9364(2001)127:4(270) Li H, 1999, J CONSTR ENG M, V125, P185, DOI 10.1061/(ASCE)0733-9364(1999)125:3(185) Li H, 1997, J CONSTR ENG M, V123, P233, DOI 10.1061/(ASCE)0733-9364(1997)123:3(233) Li J, 2006, J CONSTR ENG M, V132, P1193, DOI 10.1061/(ASCE)0733-9364(2006)132:11(1193) Marzouk M, 2004, J CONSTR ENG M ASCE, V130, P878, DOI 10.1061/(ASCE)0733-9364(2004)130:6(878) Marzouk M, 2004, J CONSTR ENG M, V130, P105, DOI 10.1061/(ASCE)0733-9364(2004)130:1(105) Marzouk M, 2003, J CONSTR ENG M ASCE, V129, P173, DOI 10.1061/(ASCE)0733-9364(2003)129:2(173) Marzouk M., 2002, Constr. Manage. Econ, V20, P535, DOI DOI 10.1080/01446190210156064 Mawdesley MJ, 2002, J CONSTR ENG M ASCE, V128, P418, DOI 10.1061/(ASCE)0733-9364(2002)128:5(418) MOSELHI O, 1993, J CONSTR ENG M ASCE, V119, P466, DOI 10.1061/(ASCE)0733-9364(1993)119:3(466) Oliveros AVO, 2005, J CONSTR ENG M ASCE, V131, P42, DOI 10.1061/(ASCE)0733-9364(2005)131:1(42) Pietroforte R, 2004, J CONSTR ENG M ASCE, V130, P440, DOI 10.1061/(ASCE)0733-9364(2004)130:3(440) Portas J, 1997, J CONSTR ENG M ASCE, V123, P399, DOI 10.1061/(ASCE)0733-9364(1997)123:4(399) Que BC, 2002, J CONSTR ENG M, V128, P139, DOI 10.1061/(ASCE)0733-9364(2002)128:2(139) Sawhney A, 2002, J CONSTR ENG M ASCE, V128, P265, DOI 10.1061/(ASCE)0733-9364(2002)128:3(265) Sawhney A., 2001, CONSTR MANAG ECON, P227, DOI 10.1080/01446190010008079 Schank RC., 1983, Dynamic Memory: A Theory of Reminding and Learning in Computers and People Senouci AB, 2004, J CONSTR ENG M ASCE, V130, P869, DOI 10.1061/(ASCE)0733-9364(2004)130:6(869) Senouci AB, 2001, J CONSTR ENG M, V127, P28, DOI 10.1061/(ASCE)0733-9364(2001)127:1(28) Seydel J, 2003, J CONSTR ENG M ASCE, V129, P285, DOI 10.1061/(ASCE)0733-9364(2003)129:3(285) Sonmez R, 1998, J CONSTR ENG M ASCE, V124, P498, DOI 10.1061/(ASCE)0733-9364(1998)124:6(498) Tah J.H.M., 2000, CONSTR MANAG ECON, V18, P491, DOI [DOI 10.1080/01446190050024905, 10.1080/01446190050024905] Tam C.M., 2003, CONSTR MANAG ECON, V21, P257, DOI [DOI 10.1080/0144619032000049665, 10.1080/0144619032000049665] Tam CM, 2002, J CONSTR ENG M ASCE, V128, P220, DOI 10.1061/(ASCE)0733-9364(2002)128:3(220) Tang J.C.S., 1990, Construction Management and Economics, V8, P249, DOI DOI 10.1080/01446199000000022 Taylor R.G., 1987, CONSTR MANAG ECON, V5, P21, DOI DOI 10.1080/01446198700000004 THOMAS HR, 1986, J CONSTR ENG M ASCE, V112, P245, DOI 10.1061/(ASCE)0733-9364(1986)112:2(245) THOMAS HR, 1987, J CONSTR ENG M ASCE, V113, P623, DOI 10.1061/(ASCE)0733-9364(1987)113:4(623) Touran A, 2003, J CONSTR ENG M ASCE, V129, P280, DOI 10.1061/(ASCE)0733-9364(2003)129:3(280) Touran A., 1988, Const. Manag. Econ, V6, P295 Tucker S.N., 1986, CONSTR MANAG ECON, V4, P179 Wang C.H., 1998, CONSTR MANAG ECON, P147, DOI DOI 10.1080/014461998372457 Wang R.C., 2004, Constr. Manage. Econom, V22, P1047 WILLIAMS TP, 1994, J CONSTR ENG M ASCE, V120, P306, DOI 10.1061/(ASCE)0733-9364(1994)120:2(306) Wilmot CG, 2005, J CONSTR ENG M, V131, P765, DOI 10.1061/(ASCE)0733-9364(2005)131:7(765) WOOLERY JC, 1983, J CONSTR ENG M ASCE, V109, P342, DOI 10.1061/(ASCE)0733-9364(1983)109:3(342) ZADEH LA, 1965, INFORM CONTROL, V8, P338, DOI 10.1016/S0019-9958(65)90241-X Zhang H., 2003, CONSTR MANAG ECON, V21, P31 Zhang H, 2006, CONSTR MANAG ECON, V24, P159, DOI 10.1080/01446190500184311 Zheng DXM, 2005, J CONSTR ENG M, V131, P176, DOI 10.1061/(ASCE)0733-9364(2005)131:2(176) Zheng DXM, 2005, J CONSTR ENG M, V131, P81, DOI 10.1061/(ASCE)0733-9364(2005)131:1(81) Zheng DXM, 2004, J CONSTR ENG M, V130, P168, DOI 10.1061/(ASCE)0733-9364(2004)130:2(168) NR 119 TC 10 Z9 10 U1 0 U2 4 PU ROUTLEDGE JOURNALS, TAYLOR & FRANCIS LTD PI ABINGDON PA 2-4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND SN 0144-6193 EI 1466-433X J9 CONSTR MANAG ECON JI Constr. Manag. Econ. PY 2008 VL 26 IS 5 BP 485 EP 497 DI 10.1080/01446190801998716 PG 13 WC Business WE Emerging Sources Citation Index (ESCI) SC Business & Economics GA V96DW UT WOS:000213245900006 DA 2024-09-05 ER PT J AU Kumari, P Kumar, R AF Kumari, Priti Kumar, Rajeev TI Clustering Scientometrics of Computer Science Journals for Subarea Decomposition SO JOURNAL OF SCIENTOMETRIC RESEARCH LA English DT Article DE Scientometrics; Bibliometrics; Publications; K-means; Clustering; Computer Science; Subarea Indicators; Machine Learning ID BIBLIOMETRIC INDICATORS; IMPACT; CITATIONS; METRICS; INDEX AB Scientometrics indicators vary widely across subareas of the Computer Science (CS) discipline. Most researchers have previously analyzed scientometrics data specific to a particular subfield or a few subfields. More popular subareas lead to high scientometrics, and others have lower values. This work considers seven diversified CS subareas and six commonly used scientometrics indicators. First, we study the varying range of chosen scientometrics indicators of various subareas of the CS discipline. We explore the correlation patterns of these six indicators. Then, we consider a few combinations of these indicators and apply K-means clustering to decompose the pattern space. Correlation findings indicate that though the highly correlated indicators vary for most subfields, no single indicator can be considered equally suitable for all the subareas. The K-means clustering results show distinctive patterns across subfields, which are stable across K. The clustered subfield-specific indicators are quite distinct across subfields. This knowledge can be used as a signature for partitioning the subarea-specific indicators. C1 [Kumari, Priti; Kumar, Rajeev] Jawaharlal Nehru Univ, Sch Comp & Syst Sci, Data Knowledge D2K Lab, New Delhi 110067, India. C3 Jawaharlal Nehru University, New Delhi RP Kumari, P (corresponding author), Jawaharlal Nehru Univ, Sch Comp & Syst Sci, Data Knowledge D2K Lab, New Delhi 110067, India. EM priti08.1993@gmail.com CR Aggarwal C. C., 2016, Algorithms and Applications Alonso S, 2009, J INFORMETR, V3, P273, DOI 10.1016/j.joi.2009.04.001 Braun T, 2006, SCIENTOMETRICS, V69, P169, DOI 10.1007/s11192-006-0147-4 Cobo MJ, 2015, KNOWL-BASED SYST, V80, P3, DOI 10.1016/j.knosys.2014.12.035 Dai JG, 2020, KNOWL-BASED SYST, V195, DOI 10.1016/j.knosys.2020.105602 Espinoza-Audelo LF, 2021, J MULT-VALUED LOG S, V36, P543 Fang H, 2021, SCIENTOMETRICS, V126, P5321, DOI 10.1007/s11192-021-03964-5 Franceschet M, 2010, SCIENTOMETRICS, V83, P243, DOI 10.1007/s11192-009-0021-2 GARFIELD E, 1963, AM DOC, V14, P195, DOI 10.1002/asi.5090140304 GARFIELD E, 1972, SCIENCE, V178, P471, DOI 10.1126/science.178.4060.471 González-Pereira B, 2010, J INFORMETR, V4, P379, DOI 10.1016/j.joi.2010.03.002 Haddawy P, 2016, J INFORMETR, V10, P162, DOI 10.1016/j.joi.2015.12.005 Halim Z, 2019, SCIENTOMETRICS, V119, P393, DOI 10.1007/s11192-019-03035-w Ioannidis JPA, 2019, PLOS BIOL, V17, DOI 10.1371/journal.pbio.3000384 Jain AK, 2010, PATTERN RECOGN LETT, V31, P651, DOI 10.1016/j.patrec.2009.09.011 Kim K, 2018, SCI ED, V5, P16, DOI 10.6087/kcse.112 Kumar R, 1998, IEEE T NEURAL NETWOR, V9, P822, DOI 10.1109/72.712155 Liu XZ, 2020, J INFORMETR, V14, DOI 10.1016/j.joi.2020.101007 Muhuri PK, 2018, APPL SOFT COMPUT, V69, P381, DOI 10.1016/j.asoc.2018.03.041 Rokach L, 2010, DATA MINING AND KNOWLEDGE DISCOVERY HANDBOOK, SECOND EDITION, P981, DOI 10.1007/978-0-387-09823-4_51 Roldan-Valadez E, 2019, IRISH J MED SCI, V188, P939, DOI 10.1007/s11845-018-1936-5 Roshani S, 2021, SCIENTOMETRICS, V126, P7859, DOI 10.1007/s11192-021-04077-9 Serenko A, 2011, J INFORMETR, V5, P629, DOI 10.1016/j.joi.2011.06.002 Serenko A, 2010, J INFORMETR, V4, P447, DOI 10.1016/j.joi.2010.04.001 Setti G, 2013, IEEE ACCESS, V1, P232, DOI 10.1109/ACCESS.2013.2261115 Thomaz PG, 2011, ARQ BRAS CARDIOL, V96, P90, DOI 10.1590/S0066-782X2011000200001 Tsai CF, 2014, J INFORMETR, V8, P318, DOI 10.1016/j.joi.2014.01.002 Walters WH, 2017, IEEE ACCESS, V5, P22036, DOI 10.1109/ACCESS.2017.2761400 Yan EJ, 2018, SCIENTOMETRICS, V115, P369, DOI 10.1007/s11192-017-2583-8 Yu DJ, 2018, IEEE T FUZZY SYST, V26, P430, DOI 10.1109/TFUZZ.2017.2672732 Yu DJ, 2015, APPL SOFT COMPUT, V32, P189, DOI 10.1016/j.asoc.2015.03.027 Zhao SX, 2018, SCIENTOMETRICS, V115, P153, DOI 10.1007/s11192-018-2662-5 NR 32 TC 0 Z9 0 U1 2 U2 2 PU PHCOG NET PI KARNATAKA PA 17, 2ND FLR, BUDDHA VIHAR RD, NEAR SPORTS ZONE, COX TOWN, BENGALURU, KARNATAKA, 560005, INDIA SN 2321-6654 EI 2320-0057 J9 J SCIENTOMETR RES JI J. Scientometr. Res. PD MAY-AUG PY 2023 VL 12 IS 2 BP 383 EP 394 DI 10.5530/jscires.12.2.034 PG 12 WC Information Science & Library Science WE Emerging Sources Citation Index (ESCI) SC Information Science & Library Science GA HF6A6 UT WOS:001158105300014 OA hybrid DA 2024-09-05 ER PT J AU Kolahi, J Khazaei, S Bidram, E Kelishadi, R Iranmanesh, P Khademi, A Nekoofar, MH Dummer, PMH AF Kolahi, Jafar Khazaei, Saber Bidram, Elham Kelishadi, Roya Iranmanesh, Pedram Khademi, Abbasali Nekoofar, Mohammad H. Dummer, Paul M. H. TI Science Map of Cochrane Systematic Reviews Receiving the Most Altmetric Attention Score: A Network Analysis SO JOURNAL OF SCIENTOMETRIC RESEARCH LA English DT Article DE Cochrane systematic review; Altmetric; Bibliometric; Twitter; Machine learning; Network analysis; Random forest ID DENTAL LITERATURE; SCIENTIFIC LANDSCAPE; IMPACT; CITATIONS; ARTICLES; JOURNALS; TWITTER AB The present study aimed to analyze and visualize the science map of Cochrane systematic reviews (CSRs) with high Altmetric attention score (AAS). On 2020-07-29, the altmetric data of the Cochrane Database of Systematic Reviews were obtained from the Altmetric database (Altmetric LLP, London, UK). Bibliometric data of the top 5% AAS of CSRs were extracted from the Web of Science. Keyword co-occurrence, co-authorship and co-citation network analyses were then employed using VOSviewer software. The random forest model was used to rank the importance of the altmetric resource. A total of 11222 CSRs with AAS were found (Total mentions: 305265), with Twitter being the most popular Altmetric resource. Consequently, the top 5% AAS (649 articles, mean AAS: 204.95, 95% confidence level: 18.95, mean citations: 123.68, 95% confidence level: 13.9) were included. Density mapping revealed female, adult and child as the most popular author keywords. According to network visualization, Helen V. Worthington (University of Manchester, Manchester, UK), the University of Oxford and UK had the greatest impact on the network at the author, organization and country levels respectively. AAS were weekly correlated with citations (r(s)=0.21) although citations were moderately correlated with policy document and blog mentions (r(s)=0.46 and r(s)=0.43). Cochrane systematic reviews received high levels of online attention, particularly in the Twittersphere and mostly from the UK. However, CSRs were rarely publicized and discussed using recently developed academic tools. such as F1000 prime, Publons and PubPeer. C1 [Kolahi, Jafar] Dent Hypotheses, Esfahan, Iran. [Khazaei, Saber] Kermanshah Univ Med Sci, Sch Dent, Dept Endodont, Kermanshah, Iran. [Bidram, Elham] Isfahan Univ Med Sci, Sch Adv Technol Med, Dept Biomat Nanotechnol & Tissue Engn, Biosensor Res Ctr, Esfahan, Iran. [Kelishadi, Roya] Isfahan Univ Med Sci, Child Growth & Dev Res Ctr, Res Inst Primordial Prevent Noncommunicable Dis, Dept Pediat, Esfahan, Iran. [Iranmanesh, Pedram; Khademi, Abbasali] Isfahan Univ Med Sci, Dent Res Ctr, Dent Res Inst, Dept Endodont, Esfahan, Iran. [Nekoofar, Mohammad H.] Univ Tehran Med Sci, Sch Dent, Dept Endodont, Tehran, Iran. [Nekoofar, Mohammad H.; Dummer, Paul M. H.] Cardiff Univ, Coll Biomed & Life Sci, Sch Dent, Cardiff, Wales. C3 Kermanshah University of Medical Sciences; Isfahan University Medical Science; Isfahan University Medical Science; Isfahan University Medical Science; Tehran University of Medical Sciences; Cardiff University RP Iranmanesh, P (corresponding author), Isfahan Univ Med Sci, Sch Dent, Dept Endodont, Hezar Jerib Ave, Esfahan, Iran. EM pedram.iranmanesh@yahoo.com RI Dummer, Paul M. H./F-3063-2012; Khazaei, Saber/B-7654-2011; Iranmanesh, Pedram/M-5673-2017 OI Dummer, Paul M. H./0000-0002-0726-7467; Khazaei, Saber/0000-0002-9085-1292; Iranmanesh, Pedram/0000-0002-4813-4097; Bidram, Elham/0000-0002-6319-3204 CR Ali J., 2012, INT J COMPUT SCI ISS, V9, P272 [Anonymous], 2015, DENT HYPOTHESES, DOI [10.4103/2155-8213.150855, DOI 10.4103/2155-8213.150855] Barakat AF, 2019, J GEN INTERN MED, V34, P825, DOI 10.1007/s11606-019-04838-6 Barakat AF, 2018, J AM COLL CARDIOL, V72, P952, DOI 10.1016/j.jacc.2018.05.062 Breiman L., 2001, Machine Learning, V45, P5, DOI 10.1023/A:1010933404324 Butler JS, 2017, CLIN SPINE SURG, V30, P226, DOI 10.1097/BSD.0000000000000531 Clarke M, 2001, LANCET, V357, P1728, DOI 10.1016/S0140-6736(00)04934-5 Clarke M, 2007, OTOLARYNG HEAD NECK, V137, pS52, DOI 10.1016/j.otohns.2007.05.050 Clement D, 2020, J ONCOL, V2020, DOI 10.1155/2020/8341426 Clement J., 2019, Twitter: number of active users 2010-2019 Dawson J., 2020, COCHRANE WIKIPEDIA P Delli K, 2017, ORAL DIS, V23, P1155, DOI 10.1111/odi.12714 Dinsmore A, 2014, PLOS BIOL, V12, DOI 10.1371/journal.pbio.1002003 Hall N, 2014, GENOME BIOL, V15, DOI 10.1186/s13059-014-0424-0 Huang WY, 2018, PLOS ONE, V13, DOI 10.1371/journal.pone.0194962 Kho J., 2020, WHY RANDOM FOREST IS Kolahi J, 2020, INT ENDOD J, V53, P308, DOI 10.1111/iej.13226 Kolahi J, 2018, BRIT DENT J, V225, P68, DOI 10.1038/sj.bdj.2018.521 Kolahi J, 2017, BRIT DENT J, V222, P695, DOI 10.1038/sj.bdj.2017.408 Kolahi J, 2017, DENT HYPOTHESES, V8, P85, DOI DOI 10.4103/DENTHYP.DENTHYP_51_17 Kolahi J, 2020, REIMAGINING MACHINE, DOI [10.31224/osf.io/ap6xq, DOI 10.31224/OSF.IO/AP6XQ] Kolahi J, 2016, DENT HYPOTHESES, V7, P29 Kolahi J, 2019, DENT HYPOTHESES, V10, P55, DOI 10.4103/denthyp.denthyp_104_19 Kolahi J, 2019, DENT HYPOTHESES, V10, P25, DOI 10.4103/denthyp.denthyp_63_19 Kolahi J, 2019, INT J PREVENTIVE MED, V10, DOI 10.4103/ijpvm.IJPVM_134_19 Kolahi J, 2019, BRIT DENT J, V226, P673, DOI 10.1038/s41415-019-0212-z Kolahi J, 2018, DENT HYPOTHESES, V9, P77, DOI 10.4103/denthyp.denthyp_75_18 Kolahi J, 2018, DENT HYPOTHESES, V9, P29, DOI 10.4103/denthyp.denthyp_29_18 Kolahi J, 2018, DENT HYPOTHESES, V9, P1, DOI 10.4103/denthyp.denthyp_6_18 Konkiel SR, 2017, Dent Hypotheses, V8, P31, DOI [10.4103/denthyp.denthyp_12_17, DOI 10.4103/DENTHYP.DENTHYP_12_17] Kwok Roberta, 2013, Nature, V500, P491 Ortega JL, 2017, ASLIB J INFORM MANAG, V69, P674, DOI 10.1108/AJIM-02-2017-0055 McCambridge J, 2013, PLOS MED, V10, DOI 10.1371/journal.pmed.1001431 Mohammadi E, 2018, PLOS ONE, V13, DOI 10.1371/journal.pone.0197265 Morley Richard F, 2016, Res Involv Engagem, V2, P36, DOI 10.1186/s40900-016-0049-4 Murray H, 2019, BMJ EVID-BASED MED, V24, P90, DOI 10.1136/bmjebm-2018-111040 Noorden RV, 2018, NATURE, DOI [10.1038/d41586-018-00688-0, DOI 10.1038/D41586-018-00688-0] Patel RB, 2018, JAMA CARDIOL, V3, P1249, DOI 10.1001/jamacardio.2018.3823 Patthi B, 2017, J CLIN DIAGN RES, V11, pZE16, DOI 10.7860/JCDR/2017/26153.10078 Pershad Y, 2018, J CLIN MED, V7, DOI 10.3390/jcm7060121 Punia V, 2019, JAMA NEUROL, V76, P1122, DOI 10.1001/jamaneurol.2019.1791 Robinson-Garcia N, 2017, PLOS ONE, V12, DOI 10.1371/journal.pone.0183551 Rosenkrantz AB, 2017, ACAD RADIOL, V24, P891, DOI 10.1016/j.acra.2016.11.019 Serghiou S, 2018, JAMA-J AM MED ASSOC, V319, P402, DOI 10.1001/jama.2017.21168 Shen Jiantong, 2013, J Evid Based Med, V6, P34, DOI 10.1111/jebm.12022 Thelwall M, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0064841 van Eck NJ, 2010, SCIENTOMETRICS, V84, P523, DOI 10.1007/s11192-009-0146-3 Vanlandingham G, 2014, EVIDENCE BASED POLIC Wang J, 2013, SCIENTOMETRICS, V94, P851, DOI 10.1007/s11192-012-0775-9 Widmer RJ, 2016, CYBERPSYCH BEH SOC N, V19, P360, DOI 10.1089/cyber.2015.0607 NR 50 TC 1 Z9 1 U1 1 U2 11 PU PHCOG NET PI KARNATAKA PA 17, 2ND FLR, BUDDHA VIHAR RD, NEAR SPORTS ZONE, COX TOWN, BENGALURU, KARNATAKA, 560005, INDIA SN 2321-6654 EI 2320-0057 J9 J SCIENTOMETR RES JI J. Scientometr. Res. PD SEP-DEC PY 2020 VL 9 IS 3 BP 293 EP 299 DI 10.5530/jscires.9.3.36 PG 7 WC Information Science & Library Science WE Emerging Sources Citation Index (ESCI) SC Information Science & Library Science GA PP1WG UT WOS:000605658100006 OA hybrid, Green Submitted DA 2024-09-05 ER PT J AU Kashnitsky, Y Roberge, G Mu, JW Kang, K Wang, WW Vanderfeesten, M Rivest, M Chamezopoulos, S Jaworek, R Vignes, M Jayabalasingham, B Boonen, F James, C Doornenbal, M Labrosse, I AF Kashnitsky, Yury Roberge, Guillaume Mu, Jingwen Kang, Kevin Wang, Weiwei Vanderfeesten, Maurice Rivest, Maxime Chamezopoulos, Savvas Jaworek, Robert Vignes, Maeva Jayabalasingham, Bamini Boonen, Finne James, Chris Doornenbal, Marius Labrosse, Isabelle TI Evaluating approaches to identifying research supporting the United Nations Sustainable Development Goals SO QUANTITATIVE SCIENCE STUDIES LA English DT Article DE benchmarking; bibliometrics; machine learning; scientometrics; sustainability; Sustainable Development Goals AB The United Nations (UN) Sustainable Development Goals (SDGs) challenge the global community to build a world where no one is left behind. Recognizing that research plays a fundamental part in supporting these goals, attempts have been made to classify research publications according to their relevance in supporting each of the UN's SDGs. In this paper, we outline the methodology that we followed when mapping research articles to SDGs and which is adopted by Times Higher Education in its Social Impact rankings. We compare our solution with other existing queries and models mapping research papers to SDGs. We also discuss various aspects in which the methodology can be improved and generalized to other types of content apart from research articles. The results presented in this paper are the outcome of the SDG Research Mapping Initiative, which was established as a partnership between the University of Southern Denmark, the Aurora European Universities Alliance (represented by Vrije Universiteit Amsterdam), the University of Auckland, and Elsevier to bring together broad expertise and share best practices on identifying research contributions to UN's Sustainable Development Goals. C1 [Kashnitsky, Yury; Chamezopoulos, Savvas; Jayabalasingham, Bamini; Boonen, Finne; James, Chris; Doornenbal, Marius] Elsevier BV, Amsterdam, Netherlands. [Roberge, Guillaume; Rivest, Maxime; Labrosse, Isabelle] Elsevier BV, Montreal, PQ, Canada. [Mu, Jingwen; Kang, Kevin; Wang, Weiwei] Univ Auckland, Fac Sci, Auckland, New Zealand. [Vanderfeesten, Maurice] Vrije Univ Amsterdam, Amsterdam, Netherlands. [Rivest, Maxime] McGill Univ, Montreal, PQ, Canada. [Jaworek, Robert] Palacky Univ Olomouc, Olomouc, Czech Republic. [Vignes, Maeva] Univ Southern Denmark, Odense, Denmark. [Jayabalasingham, Bamini] Elsevier BV, New York, NY USA. C3 Reed Elsevier; Elsevier; University of Auckland; Vrije Universiteit Amsterdam; McGill University; Palacky University Olomouc; University of Southern Denmark; Reed Elsevier; Elsevier RP Kashnitsky, Y (corresponding author), Elsevier BV, Amsterdam, Netherlands. EM y.kashnitskiy@elsevier.com OI Doornenbal, Marius/0000-0001-6319-850X CR Armitage Caroline, 2020, DataverseNO, DOI 10.18710/98CMDR Armitage CS, 2020, QUANT SCI STUD, V1, P1092, DOI 10.1162/qss_a_00071 Bordignon F, 2021, DATA BRIEF, V34, DOI 10.1016/j.dib.2021.106731 Confraria H., 2022, Countries research priorities in relation to the Sustainable Development Goals Duran-Silva Nicolau, 2019, Zenodo James Chris, 2023, Mendeley Data, V1 James Chris, 2022, Mendeley Data, V1 James Chris, 2021, Mendeley Data, V1, DOI 10.17632/9SXDYKM8S4.1 Jayabalasingham B., 2019, Mendeley, DOI [10.17632/87txkw7khs.1, DOI 10.17632/87TXKW7KHS.1] Jingwen M., 2022, The University of Auckland SDG keywords mapping LaFleur M., 2019, Art is long, life is short: An SDG Classification System for DESA Publications, DOI [10.2139/ssrn.3400135, DOI 10.2139/SSRN.3400135] Nakamura M., 2019, Navigating the structure of research on sustainable development goals Pukelis L, 2020, Arxiv, DOI [arXiv:2005.14569, 10.48550/arXiv.2005.14569, DOI 10.48550/ARXIV.2005.14569] Purnell PJ, 2022, QUANT SCI STUD, V3, P976, DOI 10.1162/qss_a_00215 Rodriguez P. C., 2021, Conjunto de datos: Categorization of articles 2017 with authorship of Pontificia Universidad Catolica de Chile, through the SDGS Data set Ross D., 2022, Impact rankings 2022: Methodology Schmidt F., 2021, Zenodo, DOI [10.5281/zenodo.4917171, DOI 10.5281/ZENODO.4917171] South African SDG Hub, 2023, South African SDG Hub Vanderfeesten M., 2022, Zenodo, DOI [10.5281/zenodo.6487606, DOI 10.5281/ZENODO.6487606] Vanderfeesten Maurice, 2020, Zenodo Wang W., 2023, Research Square, DOI [10.21203/rs.3.rs-2544385/v2, DOI 10.21203/RS.3.RS-2544385/V2] Wastl J., 2020, Contextualizing sustainable development research, DOI [10.6084/m9.figshare.12200081.v2, DOI 10.6084/M9.FIGSHARE.12200081.V2, 10.6084/M9.FIGSHARE.12200081.V2] Wulff DU, 2023, Arxiv, DOI arXiv:2301.11353 Zhang R, 2020, PR INT CONF DATA SC, P516, DOI 10.1109/DSAA49011.2020.00066 NR 24 TC 0 Z9 0 U1 2 U2 2 PU MIT PRESS PI CAMBRIDGE PA ONE ROGERS ST, CAMBRIDGE, MA 02142-1209 USA EI 2641-3337 J9 QUANT SCI STUD JI Quant. Sci. Stud. PD MAY 1 PY 2024 VL 5 IS 2 BP 408 EP 425 DI 10.1162/qss_a_00304 PG 18 WC Information Science & Library Science WE Emerging Sources Citation Index (ESCI) SC Information Science & Library Science GA XG0J5 UT WOS:001260409900004 OA Green Submitted, gold DA 2024-09-05 ER PT J AU Wang, MY Wang, ZY Chen, GS AF Wang, Mingyang Wang, Zhenyu Chen, Guangsheng TI Which can better predict the future success of articles? Bibliometric indices or alternative metrics SO SCIENTOMETRICS LA English DT Article DE Highly-cited papers; Bibliometric index; Alternative metrics; Machine learning ID CITATION IMPACT; SCIENTIFIC PAPERS; MENDELEY READERS; JOURNALS; NUMBER; ALTMETRICS; COLLABORATION; DETERMINANTS; PUBLICATIONS; CORRELATE AB In this paper, we made a survey on the prediction capability of bibliometric indices and alternative metrics on the future success of articles by establishing a machine learning framework. Twenty-three bibliometric and alternative indices were collected to establish the feature space for the predication task. In order to eliminate the possible redundancy in feature space, three feature selection techniques of Relief-F, principal component analysis and entropy weighted method were used to rank the features according to their contribution to the original data set. Combining the fractal dimension of the data set, the intrinsic features which can better represent the original feature space were extracted. Three classifiers of Naive Bayes, KNN and random forest were performed to detect the classification performance of these features. Experimental results show that both bibliometric indices and alternative metrics are beneficial to articles' growth. Early citation features, early Web usage statistics, as well as the reputation of the first author are the most valuable indicators in making an article more influential in the future. C1 [Wang, Mingyang; Wang, Zhenyu; Chen, Guangsheng] Northeast Forestry Univ, Coll Informat & Comp Engn, Harbin 150040, Heilongjiang, Peoples R China. C3 Northeast Forestry University - China RP Chen, GS (corresponding author), Northeast Forestry Univ, Coll Informat & Comp Engn, Harbin 150040, Heilongjiang, Peoples R China. EM kjc_chen@163.com RI wang, mingyang/KSM-1989-2024 FU National Natural Science Foundation of China [71473034]; Postdoctoral Scientific Research Developmental Fund of Heilongjiang Province [LBH-Q16003]; national undergraduate training programs for innovation [201510225167] FX This work was supported by the National Natural Science Foundation of China (Grant No. 71473034), the financial assistance from Postdoctoral Scientific Research Developmental Fund of Heilongjiang Province (Grant No. LBH-Q16003), and the national undergraduate training programs for innovation (Grant No. 201510225167). CR Abdi H, 2013, WIRES COMPUT STAT, V5, P149, DOI 10.1002/wics.1246 Adams J, 2005, SCIENTOMETRICS, V63, P567, DOI 10.1007/s11192-005-0228-9 Aksnes DW, 2003, RES EVALUAT, V12, P159, DOI 10.3152/147154403781776645 Ale Ebrahim N., 2014, International Education Studies, V7, P120, DOI DOI 10.5539/IES.V7N4P120 Amara N, 2015, SCIENTOMETRICS, V103, P489, DOI 10.1007/s11192-015-1537-2 Annalingam A, 2014, SPRINGERPLUS, V3, DOI 10.1186/2193-1801-3-140 [Anonymous], 4 INT C WEB INF SCI [Anonymous], 2013, P ASIST ANN M [Anonymous], 2010, 1 MONDAY [Anonymous], 35 INT C INF SYST IC [Anonymous], P ACM IEEE JOINT C D [Anonymous], 2014, PROCEEDINGS OF THE 1 [Anonymous], 2014, ATTENTION CITATION W [Anonymous], 2 INT C FUT SCH COMM Antoniou GA, 2015, ANN VASC SURG, V29, P286, DOI 10.1016/j.avsg.2014.09.017 Belussi A., 1995, VLDB '95. Proceedings of the 21st International Conference on Very Large Data Bases, P299 Berchtold S., 1998, P ACM SIGMOD INT C M, P142 Biscaro C, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0099502 Bjarnason T, 2002, ACTA SOCIOL, V45, P253 Blewitt ME, 2008, NAT GENET, V40, P663, DOI 10.1038/ng.142 Bornmann L, 2014, J INFORMETR, V8, P895, DOI 10.1016/j.joi.2014.09.005 Bornmann L, 2013, J INFORMETR, V7, P722, DOI 10.1016/j.joi.2013.05.002 Bornmann L, 2013, J INFORMETR, V7, P562, DOI 10.1016/j.joi.2013.02.005 Bornmann L, 2012, J INFORMETR, V6, P11, DOI 10.1016/j.joi.2011.08.004 Bornmann L, 2010, J INFORMETR, V4, P83, DOI 10.1016/j.joi.2009.09.001 Borsuk RM., 2009, OPEN ECOLOGY J, V2, P25, DOI DOI 10.2174/1874213000902010025 Bosquet C, 2013, SCIENTOMETRICS, V97, P831, DOI 10.1007/s11192-013-0996-6 Breiman L, 2001, MACH LEARN, V45, P5, DOI 10.1023/A:1010933404324 Buela-Casal G, 2010, PSICOTHEMA, V22, P270 Lira RPC, 2013, ARQ BRAS OFTALMOL, V76, P26, DOI 10.1590/S0004-27492013000100008 Chen CM, 2012, J AM SOC INF SCI TEC, V63, P431, DOI 10.1002/asi.21694 Chi PS, 2018, SCIENTOMETRICS, V116, P537, DOI 10.1007/s11192-018-2708-8 Chi PS, 2017, SCIENTOMETRICS, V112, P403, DOI 10.1007/s11192-017-2356-4 Collet F, 2014, STRATEG ORGAN, V12, P157, DOI 10.1177/1476127014530124 de Winter JCF, 2015, SCIENTOMETRICS, V102, P1773, DOI 10.1007/s11192-014-1445-x Didegah F, 2018, J ASSOC INF SCI TECH, V69, P832, DOI 10.1002/asi.23934 Didegah F, 2013, J AM SOC INF SCI TEC, V64, P1055, DOI 10.1002/asi.22806 Dorta-González P, 2014, J INFORMETR, V8, P406, DOI 10.1016/j.joi.2014.01.013 DUDANI SA, 1976, IEEE T SYST MAN CYB, V6, P327 Eysenbach G, 2011, J MED INTERNET RES, V13, DOI 10.2196/jmir.2012 Falagas ME, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0077075 Farshad M., 2013, European Orthopaedics and Traumatology, V4, P125, DOI DOI 10.1007/S12570-013-0174-6 Fausto S, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0050109 Frandsen TF, 2013, J AM SOC INF SCI TEC, V64, P437, DOI 10.1002/asi.22785 Garner J, 2014, SCIENTOMETRICS, V100, P687, DOI 10.1007/s11192-014-1316-5 Glänzel W, 2014, SCIENTOMETRICS, V101, P939, DOI 10.1007/s11192-014-1247-1 Glänzel W, 2004, SCIENTOMETRICS, V61, P395, DOI 10.1023/B:SCIE.0000045117.13348.b1 Glänzel W, 2003, SCIENTOMETRICS, V56, P357, DOI 10.1023/A:1022378804087 Glänzel W, 2012, J AM SOC INF SCI TEC, V63, P1420, DOI 10.1002/asi.22643 González-Alcaide G, 2016, J STUD ALCOHOL DRUGS, V77, P710, DOI 10.15288/jsad.2016.77.710 Guerrero-Bote VP, 2014, SCIENTOMETRICS, V101, P1043, DOI 10.1007/s11192-014-1243-5 Haslam N, 2010, PSYCHOL REP, V106, P891, DOI 10.2466/PR0.106.3.891-900 Haustein S, 2014, IT-INF TECHNOL, V56, P207, DOI 10.1515/itit-2014-1048 Haustein S, 2013, PRO INT CONF SCI INF, P468 Herrmannova D, 2018, SCIENTOMETRICS, V115, P239, DOI 10.1007/s11192-018-2669-y Hilmer CE, 2009, REV AGR ECON, V31, P677, DOI 10.1111/j.1467-9353.2009.01461.x Huang H, 2012, J AM SOC INF SCI TEC, V63, P490, DOI 10.1002/asi.21707 Huang SZ, 2015, J HYDROL, V527, P608, DOI 10.1016/j.jhydrol.2015.05.032 Ibáñez A, 2013, SCIENTOMETRICS, V95, P689, DOI 10.1007/s11192-012-0883-6 Ingwersen P, 2014, SCIENTOMETRICS, V101, P1325, DOI 10.1007/s11192-014-1291-x Ingwersen P, 2014, SCIENTOMETRICS, V101, P1273, DOI 10.1007/s11192-014-1335-2 Ke SW, 2014, ONLINE INFORM REV, V38, P738, DOI 10.1108/OIR-03-2014-0062 Kononenko I., 1994, Machine Learning: ECML-94. European Conference on Machine Learning. Proceedings, P171 Korn F, 2001, IEEE T KNOWL DATA EN, V13, P96, DOI 10.1109/69.908983 Kousha K, 2017, J ASSOC INF SCI TECH, V68, P762, DOI 10.1002/asi.23694 LANGLEY P, 1992, AAAI-92 PROCEEDINGS : TENTH NATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE, P223 Lee SY, 2010, APPL ECON LETT, V17, P1697, DOI 10.1080/13504850903120725 Leimu R, 2005, TRENDS ECOL EVOL, V20, P28, DOI 10.1016/j.tree.2004.10.010 Li XM, 2012, SCIENTOMETRICS, V91, P461, DOI 10.1007/s11192-011-0580-x Ortega J, 2016, SCIENTOMETRICS, V109, P1353, DOI 10.1007/s11192-016-2113-0 Marashi SA, 2013, EXCLI J, V12, P15 McCabe MJ, 2015, REV ECON STAT, V97, P144, DOI 10.1162/REST_a_00437 Miettunen J, 2003, SCIENTOMETRICS, V57, P377, DOI 10.1023/A:1025056718587 Naraei P, 2017, CAN CON EL COMP EN Neylon C, 2009, PLOS BIOL, V7, DOI 10.1371/journal.pbio.1000242 Nomaler Ö, 2013, J INFORMETR, V7, P966, DOI 10.1016/j.joi.2013.10.001 Onodera N, 2015, J ASSOC INF SCI TECH, V66, P739, DOI 10.1002/asi.23209 Onyancha OB, 2011, SCIENTOMETRICS, V87, P315, DOI 10.1007/s11192-010-0330-5 Padial AA, 2010, SCIENTOMETRICS, V85, P1, DOI 10.1007/s11192-010-0231-7 Pagel B.-U., 2000, Proceedings of 16th International Conference on Data Engineering (Cat. No.00CB37073), P589, DOI 10.1109/ICDE.2000.839457 Pagel PS, 2011, J CARDIOTHOR VASC AN, V25, P761, DOI 10.1053/j.jvca.2011.03.003 Patterson MS, 2009, SCIENTOMETRICS, V80, P343, DOI 10.1007/s11192-008-2064-1 Peoples BK, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0166570 Piwowar Heather, 2013, Bulletin of the American Society for Information Science and Technology, V39, P10 Puuska HM, 2014, SCIENTOMETRICS, V98, P823, DOI 10.1007/s11192-013-1181-7 Ravenscroft J, 2017, PLOS ONE, V12, DOI 10.1371/journal.pone.0173152 Rees T, 2012, CURR MED RES OPIN, V28, pS9 Ringelhan S, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0134389 Royle P, 2013, SYST REV-LONDON, V2, DOI 10.1186/2046-4053-2-74 Sangwal K, 2012, SCIENTOMETRICS, V93, P987, DOI 10.1007/s11192-012-0805-7 Schilling MA, 2011, RES POLICY, V40, P1321, DOI 10.1016/j.respol.2011.06.009 Shu F, 2018, SCIENTOMETRICS, V116, P505, DOI 10.1007/s11192-018-2732-8 Sin SCJ, 2011, J AM SOC INF SCI TEC, V62, P1770, DOI 10.1002/asi.21572 Stremersch S, 2007, J MARKETING, V71, P171, DOI 10.1509/jmkg.71.3.171 Stremersch S, 2015, INT J RES MARK, V32, P64, DOI 10.1016/j.ijresmar.2014.09.004 Syamili C, 2017, COLLNET J SCIENTOMET, V11, P103, DOI 10.1080/09737766.2016.1260815 Tahamtan I, 2016, SCIENTOMETRICS, V107, P1195, DOI 10.1007/s11192-016-1889-2 Taylor Mike., 2013, Information Standards Quarterly, V25, P27, DOI DOI 10.3789/ISQV25NO2.2013.05 Thelwall M, 2018, SCIENTOMETRICS, V115, P1231, DOI 10.1007/s11192-018-2715-9 Thelwall M, 2016, J ASSOC INF SCI TECH, V67, P1962, DOI 10.1002/asi.23501 Thelwall M, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0064841 Traina C.J., 2000, Proc. 15th Brazil Symposium Databases, P158 van Dalen HP, 2005, SCIENTOMETRICS, V64, P209, DOI 10.1007/s11192-005-0248-5 van der Pol CB, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0119892 van Eck NJ, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0062395 van Wesel M, 2014, SCIENTOMETRICS, V98, P1601, DOI 10.1007/s11192-013-1154-x Vanclay JK, 2013, J INFORMETR, V7, P265, DOI 10.1016/j.joi.2012.11.009 Vieira ES, 2010, J INFORMETR, V4, P1, DOI 10.1016/j.joi.2009.06.002 Walters GD, 2006, SCIENTOMETRICS, V69, P499, DOI 10.1007/s11192-006-0166-1 Waltman L, 2014, J ASSOC INF SCI TECH, V65, P433, DOI 10.1002/asi.23040 Wang J, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0127298 Wang L, 2015, SCIENTOMETRICS, V105, P843, DOI 10.1007/s11192-015-1735-y Wang MY, 2012, SCIENTOMETRICS, V93, P635, DOI 10.1007/s11192-012-0766-x Wang MY, 2012, J INFORMETR, V6, P586, DOI 10.1016/j.joi.2012.06.002 Willis DL, 2011, BJU INT, V107, P1876, DOI 10.1111/j.1464-410X.2010.10028.x Xu JL, 2008, PROCEEDINGS OF 2008 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS, VOLS 1-7, P460, DOI 10.1109/ICMLC.2008.4620449 Yu T, 2014, SCIENTOMETRICS, V101, P1233, DOI 10.1007/s11192-014-1279-6 Yu T, 2014, MALAYS J LIBR INF SC, V19, P37 Yuan SB, 2011, ELECTRON LIBR, V29, P682, DOI 10.1108/02640471111177107 Yue WP, 2004, SCIENTOMETRICS, V60, P317, DOI 10.1023/B:SCIE.0000034377.93437.18 Zahedi Z, 2013, PRO INT CONF SCI INF, P876 NR 121 TC 29 Z9 34 U1 8 U2 116 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0138-9130 EI 1588-2861 J9 SCIENTOMETRICS JI Scientometrics PD JUN PY 2019 VL 119 IS 3 BP 1575 EP 1595 DI 10.1007/s11192-019-03052-9 PG 21 WC Computer Science, Interdisciplinary Applications; Information Science & Library Science WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Computer Science; Information Science & Library Science GA HZ7UB UT WOS:000469058000012 DA 2024-09-05 ER PT C AU Ray, JB Maitra, S AF Ray, Julie Basu Maitra, Samita GP IEEE TI Collaborative Interdisciplinary Teaching and Learning across Borders, Using Mobile Technologies and Smart Devices SO 2017 5TH IEEE INTERNATIONAL CONFERENCE ON MOOCS, INNOVATION AND TECHNOLOGY IN EDUCATION (MITE) LA English DT Proceedings Paper CT 5th IEEE International Conference on MOOCs, Innovation and Technology in Education (MITE) CY OCT 27-28, 2017 CL Bangalore, INDIA DE Collaboration; Undergraduate Institutions; Active learning strategies; Heavy Metals in Biology; Fermentation ID METALS AB Collaborative teaching today, is one of the best practices followed globally to foster active learning. As a variety of teaching styles emerge to address more student learning preferences, collaboration across disciplines and across borders, using mobile technologies, allows a cultural and academic exchange of ideas, improving teaching and learning pedagogy. The authors at the Department of Biology, Dillard University (DU) in New Orleans, Louisiana, USA and the Department of Chemical Engineering, BMS College of Engineering in Bangalore (BMSCE), India collaborated in Fall 2015 and 2016 to develop a teaching module where DU Human Physiology students and BMSCE Chemical Engineering students participated. This paper chronicles our experience in the interdisciplinary study across borders, focusing on critical and creative thinking; writing and communication using smart devices and collaboration and shared leadership. C1 [Ray, Julie Basu] Dillard Univ, Dept Biol, New Orleans, LA 70122 USA. [Maitra, Samita] BMS Coll Engn, Dept Chem Engn, Bangalore, Karnataka, India. C3 Dillard University; BMS College of Engineering RP Ray, JB (corresponding author), Dillard Univ, Dept Biol, New Orleans, LA 70122 USA. RI Maitra, Samita/ABA-8195-2020 OI Maitra, Samita/0000-0003-0196-1762 CR [Anonymous], MILL DEV GOALS REP 2 Costello P., 2010, BRIT J EDUC TECHNOL, V41, P6 Cowden Chapel D., 2015, J CHEM ED Dolmans DHJM, 2005, MED EDUC, V39, P732, DOI 10.1111/j.1365-2929.2005.02205.x Duron R., 2006, INT J TEACHING LEARN, V17, P160, DOI DOI 10.1016/J.NEPR.2006.09.004 Guengerich FP, 2014, J BIOL CHEM, V289, P28094, DOI 10.1074/jbc.R114.607093 Jan AT, 2015, INT J MOL SCI, V16, P29592, DOI 10.3390/ijms161226183 Jans C, 2017, INT J FOOD MICROBIOL, V250, P27, DOI 10.1016/j.ijfoodmicro.2017.03.012 Jones C., 2010, Essai, V7, P26 Laal M, 2012, PROCD SOC BEHV, V31, P486, DOI 10.1016/j.sbspro.2011.12.091 Lill R, 2009, NATURE, V460, P831, DOI 10.1038/nature08301 Mercier EM, 2017, LEARN INSTR, V50, P31, DOI 10.1016/j.learninstruc.2016.11.006 Mundorf AR, 2015, J URBAN HEALTH, V92, P605, DOI 10.1007/s11524-015-9969-9 Pérez-Escamilla R, 2012, GLOB FOOD SECUR-AGR, V1, P120, DOI 10.1016/j.gfs.2012.10.006 Quansah R, 2015, ENVIRON HEALTH PERSP, V123, P412, DOI 10.1289/ehp.1307894 Savery J. R., 1995, EDUC TECHNOL, V35, P31, DOI DOI 10.2307/44428296 Schnackenberg H. L., 2016, CASES DIGITAL TECHNO, P24 Shi YC, 2003, IEEE PERVAS COMPUT, V2, P47, DOI 10.1109/MPRV.2003.1203753 Trimmer EE, 1999, ESSAYS BIOCHEM, V34, P191, DOI 10.1042/bse0340191 NR 19 TC 1 Z9 1 U1 0 U2 3 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA BN 978-1-5386-3189-8 PY 2017 BP 77 EP 82 DI 10.1109/MITE.2017.00020 PG 6 WC Computer Science, Interdisciplinary Applications; Education & Educational Research WE Conference Proceedings Citation Index - Science (CPCI-S); Conference Proceedings Citation Index - Social Science & Humanities (CPCI-SSH) SC Computer Science; Education & Educational Research GA BM0AA UT WOS:000458537800016 DA 2024-09-05 ER PT J AU Jung, SK Segev, A AF Jung, Sukhwan Segev, Aviv TI Identifying a common pattern within ancestors of emerging topics for pan-domain topic emergence prediction SO KNOWLEDGE-BASED SYSTEMS LA English DT Article DE Topic prediction; Scientometrics; Knowledge management; Machine learning ID EVOLUTION AB The shared interest among existing research topics matures over time until it emerges as a topic of its own. This paper detects emerging topics as well as general predictor models spanning multiple research domains through the network-based topic evolution approach, which offers additional topic evolution capabilities such as extrapolation of data and separation of topic transition and correlation. Topics are represented as their neighbors in the past, or ancestors, and their structural properties are used to train binary classification models in capturing the materialization of such topics. The entirety of 197 million publications within the Microsoft Academic Graph was used to build multiple datasets, where machine learning algorithms were trained with structural features resulting in over 0.98 area under the precision-recall curve. General topic emergence predictor equations are then proposed based on the models trained specifically for each domain, which were able to capture a common pattern shared by emerging topics in general.(c) 2022 Elsevier B.V. All rights reserved. C1 [Jung, Sukhwan; Segev, Aviv] Univ S Alabama, Dept Comp Sci, 150 Student Serv Dr, Mobile, AL 36688 USA. C3 University of South Alabama RP Jung, SK (corresponding author), Univ S Alabama, Dept Comp Sci, 150 Student Serv Dr, Mobile, AL 36688 USA. EM shjung@southalabama.edu RI Jung, Suk hwan/AAW-3977-2020; Jung, Suk hwan/HIK-1039-2022; Segev, Aviv/C-2060-2011 OI Jung, Suk hwan/0000-0003-1758-1211; CR [Anonymous], 2009, Proceeding of the 18th ACM Conference on Information and Knowledge Management, DOI DOI 10.1145/1645953.1646076 Balili C, 2017, IEEE INT CONF BIG DA, P1694, DOI 10.1109/BigData.2017.8258108 Blei D, 2006, P 23 INT C MACH LEAR, P113 Chen BT, 2017, J INFORMETR, V11, P1175, DOI 10.1016/j.joi.2017.10.003 Chen TQ, 2016, KDD'16: PROCEEDINGS OF THE 22ND ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, P785, DOI 10.1145/2939672.2939785 Zeiler MD, 2012, Arxiv, DOI arXiv:1212.5701 Dietz L., 2007, ICML, P233, DOI DOI 10.1145/1273496.1273526 Gaul WG, 2017, ADV DATA ANAL CLASSI, V11, P159, DOI 10.1007/s11634-016-0241-2 Gohr Andrll., 2009, SDM, P859, DOI DOI 10.1137/1.9781611972795.74 Guo QY, 2022, IEEE T KNOWL DATA EN, V34, P3549, DOI 10.1109/TKDE.2020.3028705 Hug SE, 2017, SCIENTOMETRICS, V111, P371, DOI 10.1007/s11192-017-2247-8 Ilhan N, 2016, ENG APPL ARTIF INTEL, V55, P202, DOI 10.1016/j.engappai.2016.06.003 Jo Yookyung., 2011, P 20 INT C WORLD WID, P257, DOI DOI 10.1145/1963405.1963444 Jung S, 2022, SEMANT WEB, V13, P423, DOI 10.3233/SW-212951 Jung SW, 2020, IEEE INT CONF BIG DA, P5078, DOI 10.1109/BigData50022.2020.9378277 Jung S, 2020, J INFORMETR, V14, DOI 10.1016/j.joi.2020.101040 Mei Qiaozhu., 2005, KDD 05, P198, DOI DOI 10.1145/1081870.1081895 Menenberg M, 2016, 2016 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), P3509, DOI 10.1109/BigData.2016.7841014 Niculescu-Mizil A., 2005, P 22 INT C MACH LEAR, P625 Ozmutlu HC, 2005, INFORM PROCESS MANAG, V41, P1243, DOI 10.1016/j.ipm.2004.04.018 PORTER AL, 1995, TECHNOL FORECAST SOC, V49, P237, DOI 10.1016/0040-1625(95)00022-3 Shao YX, 2021, IEEE T KNOWL DATA EN, V33, P2790, DOI 10.1109/TKDE.2019.2956518 Shen ZH, 2018, Arxiv, DOI arXiv:1805.12216 Su Y, 2012, WORKSHOP CHINESE LEX, P84 Wang KS, 2019, FRONT BIG DATA, V2, DOI 10.3389/fdata.2019.00045 NR 25 TC 2 Z9 2 U1 5 U2 17 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS SN 0950-7051 EI 1872-7409 J9 KNOWL-BASED SYST JI Knowledge-Based Syst. PD DEC 22 PY 2022 VL 258 AR 110020 DI 10.1016/j.knosys.2022.110020 EA OCT 2022 PG 9 WC Computer Science, Artificial Intelligence WE Science Citation Index Expanded (SCI-EXPANDED) SC Computer Science GA 6F9QZ UT WOS:000884396500005 DA 2024-09-05 ER PT J AU Pooja Sood, SK AF Pooja Sood, Sandeep Kumar TI Scientometric analysis of quantum-inspired metaheuristic algorithms SO ARTIFICIAL INTELLIGENCE REVIEW LA English DT Article DE Quantum-inspired optimization algorithms; Quantum computing; Quantum-inspired evolutionary algorithms; CiteSpace ID GRAVITATIONAL SEARCH ALGORITHM; HARMONIC-OSCILLATOR ALGORITHM; PARTICLE SWARM OPTIMIZATION; GENETIC ALGORITHM; EVOLUTIONARY ALGORITHM AB Quantum algorithms, based on the principles of quantum mechanics, offer significant parallel processing capabilities with a wide range of applications. Nature-inspired stochastic optimization algorithms have long been a research hotspot. The fusion of quantum mechanics with optimization methods can potentially address NP-hard problems more efficiently and exponentially faster. The potential advantages provided by the ground-breaking paradigm have expedited the scientific output of quantum-inspired optimization algorithms locale. Consequently, a pertinent investigation is required to explain how ground-breaking scientific advancements have evolved. The scientometric approach utilizes quantitative and qualitative techniques to analyze research publications to evaluate the structure of scientific knowledge. Henceforth, the current research presents a scientometric and systematic analysis of quantum-inspired metaheuristic algorithms (QiMs) literature from the Scopus database since its inception. The scientometric implications of the article offer a detailed exploration of the publication patterns, keyword co-occurrence network analysis, author co-citation analysis and country collaboration analysis corresponding to each opted category of QiMs. The analysis reveals that QiMs solely account to 26.66% of publication share in quantum computing and have experienced an impressive 42.59% growth rate in the past decade. Notably, power management, adiabatic quantum computation, and vehicle routing are prominent emerging application areas. An extensive systematic literature analysis identifies key insights and research gaps in the QiMs knowledge domain. Overall, the findings of the current article provide scientific cues to researchers and the academic fraternity for identifying the intellectual landscape and latest research trends of QiMs, thereby fostering innovation and informed decision-making. C1 [Pooja; Sood, Sandeep Kumar] Natl Inst Technol Kurukshetra, Dept Comp Applicat, Kurukshetra 136119, Haryana, India. C3 National Institute of Technology (NIT System); National Institute of Technology Kurukshetra RP Pooja (corresponding author), Natl Inst Technol Kurukshetra, Dept Comp Applicat, Kurukshetra 136119, Haryana, India. EM insanpooja777@gmail.com OI , Pooja/0000-0002-3504-9694 CR Abdel-Basset M., 2018, Computational Intelligence for Multimedia Big Data on the Cloud with Engineering Applications, P185, DOI [DOI 10.1016/B978-0-12813314-9.00010-4, 10.1016/b978-0-12-813314-9.00010-4, DOI 10.1016/B978-0-12-813314, 10.1016/B978-0-12-813314-9.00010-4] Abualigah L, 2021, ARTIF INTELL REV, V54, P2567, DOI 10.1007/s10462-020-09909-3 Agrawal RK, 2020, APPL SOFT COMPUT, V89, DOI 10.1016/j.asoc.2020.106092 Akay B, 2022, ARTIF INTELL REV, V55, P829, DOI 10.1007/s10462-021-09992-0 Alia OM, 2011, ARTIF INTELL REV, V36, P49, DOI 10.1007/s10462-010-9201-y Arpaia P, 2011, APPL SOFT COMPUT, V11, P4655, DOI 10.1016/j.asoc.2011.07.017 Baghel Malti., 2012, INT J COMPUTER APPL, V58, P21, DOI [10.5120/9391-3813, DOI 10.5120/9391-3813] Bandyopadhyay S, 2008, IEEE T EVOLUT COMPUT, V12, P269, DOI 10.1109/TEVC.2007.900837 Barani F, 2017, APPL INTELL, V47, P304, DOI 10.1007/s10489-017-0894-3 Bechikh S, 2015, IEEE T CYBERNETICS, V45, P2051, DOI 10.1109/TCYB.2014.2363878 Bharill N, 2019, IEEE ACCESS, V7, P50347, DOI 10.1109/ACCESS.2019.2891956 Binitha S, 2012, INT J SOFT COMPUT EN, V2, P137, DOI DOI 10.1007/S11269-015-0943-9 Cai X, 2021, EXPERT SYST APPL, V171, DOI 10.1016/j.eswa.2021.114629 Chen CM, 2012, EXPERT OPIN BIOL TH, V12, P593, DOI 10.1517/14712598.2012.674507 Cheng S, 2016, ARTIF INTELL REV, V46, P445, DOI 10.1007/s10462-016-9471-0 Cheng X, 2023, CHINESE PHYS B, V32, DOI 10.1088/1674-1056/ac65ee Cobo MJ, 2012, J AM SOC INF SCI TEC, V63, P1609, DOI 10.1002/asi.22688 Dahi ZA, 2016, SWARM EVOL COMPUT, V31, P24, DOI 10.1016/j.swevo.2016.06.003 Dehghani M, 2022, SCI REP-UK, V12, DOI 10.1038/s41598-022-22458-9 Deng W, 2020, IEEE T INSTRUM MEAS, V69, P7319, DOI 10.1109/TIM.2020.2983233 Desale S., 2015, Int. J. Comput. Eng. Res. Trends, V351, P2349 Dragoi EN, 2021, MATHEMATICS-BASEL, V9, DOI 10.3390/math9182335 Fahad S, 2022, IEEE ACCESS, V10, P72339, DOI 10.1109/ACCESS.2022.3188276 Farhi E, 2014, Arxiv, DOI arXiv:1411.4028 Ganesan V, 2021, COMPUT ELECTR ENG, V94, DOI 10.1016/j.compeleceng.2021.107356 Gao MY, 2022, INT J ENV RES PUB HE, V19, DOI 10.3390/ijerph19148837 Gendreau M, 2005, ANN OPER RES, V140, P189, DOI 10.1007/s10479-005-3971-7 Gharehchopogh FS, 2023, ARTIF INTELL REV, V56, P5479, DOI 10.1007/s10462-022-10280-8 Ghorbani MA, 2018, ENG APPL COMP FLUID, V12, P724, DOI 10.1080/19942060.2018.1517052 Goyal K, 2021, INT J CONSUM STUD, V45, P80, DOI 10.1111/ijcs.12605 Guo YN, 2018, NEURAL COMPUT APPL, V30, P709, DOI 10.1007/s00521-016-2572-5 Hakemi S, 2024, EVOL INTELL, V17, P627, DOI 10.1007/s12065-022-00783-2 Han KH, 2002, IEEE T EVOLUT COMPUT, V6, P580, DOI 10.1109/TEVC.2002.804320 Han XH, 2013, ENG APPL ARTIF INTEL, V26, P2424, DOI 10.1016/j.engappai.2013.05.011 Hussain K, 2019, ARTIF INTELL REV, V52, P2191, DOI 10.1007/s10462-017-9605-z Hussain M, 2022, APPL SOFT COMPUT, V128, DOI 10.1016/j.asoc.2022.109440 Jacomy M, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0098679 Jeong YW, 2010, IEEE T POWER SYST, V25, P1486, DOI 10.1109/TPWRS.2010.2042472 JOHNSON JD, 1987, COMMUN EDUC, V36, P92, DOI 10.1080/03634528709378647 Kaur A, 2024, IEEE T ENG MANAGE, V71, P2430, DOI 10.1109/TEM.2022.3176477 Kaur A, 2024, IEEE T ENG MANAGE, V71, P400, DOI 10.1109/TEM.2021.3124977 Kaveh A, 2020, STRUCTURES, V28, P1479, DOI 10.1016/j.istruc.2020.09.079 Kennedy J, 1995, 1995 IEEE INTERNATIONAL CONFERENCE ON NEURAL NETWORKS PROCEEDINGS, VOLS 1-6, P1942, DOI 10.1109/icnn.1995.488968 Klarin A, 2023, IEEE T ENG MANAGE, V70, P1531, DOI 10.1109/TEM.2021.3126055 Kolandoozi M, 2019, APPL INTELL, V49, P3652, DOI 10.1007/s10489-019-01476-7 Konar D, 2017, APPL SOFT COMPUT, V53, P296, DOI 10.1016/j.asoc.2016.12.051 Kumar Y, 2020, INT J MOD PHYS C, V31, DOI 10.1142/S0129183120501387 Li BB, 2007, IEEE T SYST MAN CY B, V37, P576, DOI 10.1109/TSMCB.2006.887946 Li B, 2019, IEEE ACCESS, V7, P17377, DOI 10.1109/ACCESS.2019.2895358 Li F, 2019, SENSORS-BASEL, V19, DOI 10.3390/s19153334 Li YY, 2020, IEEE ACCESS, V8, P23568, DOI 10.1109/ACCESS.2020.2970105 Li YC, 2019, ELECTR POW COMPO SYS, V47, P1398, DOI 10.1080/15325008.2019.1689443 Liberati A, 2009, BMJ-BRIT MED J, V339, DOI [10.1016/j.ijsu.2010.02.007, 10.1136/bmj.b2700, 10.1136/bmj.b2535, 10.1186/2046-4053-4-1, 10.1371/journal.pmed.1000097, 10.1136/bmj.i4086, 10.1016/j.ijsu.2010.07.299] Ma T, 2022, IEEE ACCESS, V10, P65854, DOI 10.1109/ACCESS.2022.3184686 Matlab S, 2012, Matlab Mirsadeghi E, 2021, CLUSTER COMPUT, V24, P1135, DOI 10.1007/s10586-020-03179-y Mojrian M, 2021, EXPERT SYST APPL, V171, DOI 10.1016/j.eswa.2020.114555 Montanaro A, 2016, NPJ QUANTUM INFORM, V2, DOI 10.1038/npjqi.2015.23 Montiel O, 2019, SCI REP-UK, V9, DOI 10.1038/s41598-019-48409-5 Ross OHM, 2020, IEEE ACCESS, V8, P814, DOI 10.1109/ACCESS.2019.2962155 Neelam S, 2021, IEEE T ENG MANAGE, V68, P317, DOI 10.1109/TEM.2020.2972288 Nezamabadi-pour H, 2015, ENG APPL ARTIF INTEL, V40, P62, DOI 10.1016/j.engappai.2015.01.002 Niazi MA, 2016, COMPLEX ADAPT SYST M, V4, DOI 10.1186/s40294-016-0036-5 Osman I.H., 1997, J. Oper. Res. Soc., V48, P657, DOI DOI 10.1057/PALGRAVE.JORS.2600781 Osman IH, 2003, COMPUT IND ENG, V44, P205, DOI 10.1016/S0360-8352(02)00175-4 Ozcan S, 2021, IEEE T ENG MANAGE, V68, P1055, DOI 10.1109/TEM.2019.2924199 Pereira CS, 2020, IEEE SYST J, V14, P3926, DOI 10.1109/JSYST.2020.2968039 Peruzzo A, 2014, NAT COMMUN, V5, DOI 10.1038/ncomms5213 Rao RV, 2011, COMPUT AIDED DESIGN, V43, P303, DOI 10.1016/j.cad.2010.12.015 RUTENBAR RA, 1989, IEEE CIRCUITS DEVICE, V5, P19, DOI 10.1109/101.17235 Sharma P, 2022, EXPERT SYST, V39, DOI 10.1111/exsy.12813 SHOR PW, 1994, AN S FDN CO, P124 Singh MR, 2016, COMPUT IND ENG, V93, P36, DOI 10.1016/j.cie.2015.12.004 Soleimanpour-moghadam M, 2014, INFORM SCIENCES, V267, P83, DOI 10.1016/j.ins.2013.09.006 Sood SK, 2022, ACM T INTERNET TECHN, V22, DOI 10.1145/3564783 Sood SK, 2023, IEEE Trans Eng Manag, P1 Sood V, 2024, ARCH COMPUT METHOD E, V31, P73, DOI 10.1007/s11831-023-09973-2 Srikanth K, 2018, COMPUT ELECTR ENG, V70, P243, DOI 10.1016/j.compeleceng.2017.07.023 Talatahari S, 2022, INT J STEEL STRUCT, V22, P686, DOI 10.1007/s13296-022-00598-y Tayarani-N MH, 2014, EVOL INTELL, V7, P219, DOI 10.1007/s12065-014-0120-8 van Eck NJ, 2010, SCIENTOMETRICS, V84, P523, DOI 10.1007/s11192-009-0146-3 Wang L, 2010, EXPERT SYST APPL, V37, P1279, DOI 10.1016/j.eswa.2009.06.013 Wang P, 2018, APPL SOFT COMPUT, V69, P655, DOI 10.1016/j.asoc.2018.05.005 Wong LA, 2014, FRONT ENERGY, V8, P254, DOI 10.1007/s11708-014-0302-1 Wright J, 2017, INTEGR COMPUT-AID E, V24, P203, DOI 10.3233/ICA-170545 Xiao J, 2010, EXPERT SYST APPL, V37, P4966, DOI 10.1016/j.eswa.2009.12.017 Xiong HG, 2018, SWARM EVOL COMPUT, V42, P43, DOI 10.1016/j.swevo.2018.02.020 Yang SY, 2004, IEEE C EVOL COMPUTAT, P320, DOI 10.1109/CEC.2004.1330874 Yasin Zuhaila Mat, 2010, 2010 4th International Power Engineering and Optimization Conference (PEOCO 2010), P468, DOI 10.1109/PEOCO.2010.5559163 Zhang Guanghui, 2022, Complex System Modeling and Simulation, P334, DOI 10.23919/CSMS.2022.0021 Zhang GX, 2011, J HEURISTICS, V17, P303, DOI 10.1007/s10732-010-9136-0 Zhao SF, 2009, COMPUT MATH APPL, V57, P2009, DOI 10.1016/j.camwa.2008.10.048 Zhu LH, 2022, PHYS REV RES, V4, DOI 10.1103/PhysRevResearch.4.033029 Zouache D, 2016, SOFT COMPUT, V20, P2781, DOI 10.1007/s00500-015-1681-x NR 94 TC 2 Z9 2 U1 11 U2 11 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0269-2821 EI 1573-7462 J9 ARTIF INTELL REV JI Artif. Intell. Rev. PD JAN 30 PY 2024 VL 57 IS 2 AR 22 DI 10.1007/s10462-023-10659-1 PG 30 WC Computer Science, Artificial Intelligence WE Science Citation Index Expanded (SCI-EXPANDED) SC Computer Science GA HQ8C6 UT WOS:001161054000002 OA hybrid DA 2024-09-05 ER PT C AU Sun, XL Ding, K Lin, Y Lin, HF AF Sun, Xiaoling Ding, Kun Lin, Yuan Lin, Hongfei BE Catalano, G Daraio, C Gregori, M Moed, HF Ruocco, G TI Open Science Behavior of AI Industry: Collaboration Patterns and Topics from the Perspective of Cross-Institutional Authors SO 17TH INTERNATIONAL CONFERENCE ON SCIENTOMETRICS & INFORMETRICS (ISSI2019), VOL I SE Proceedings of the International Conference on Scientometrics and Informetrics LA English DT Proceedings Paper CT 17th International Conference of the International-Society-for-Scientometrics-and-Informetrics (ISSI) on Scientometrics and Informetrics CY SEP 02-05, 2019 CL Sapienza Univ Rome, Rome, ITALY HO Sapienza Univ Rome ID UNIVERSITY; PUBLICATIONS; TECHNOLOGY; LEAD AB In this study, the open science behaviour of industry is analyzed in terms of publications co-authored by at least one author from industry. Firstly, authors are classified into five types according to affiliations, and collaboration network is built to investigate the role of different types of authors. Then, topic evolution of papers related to industry is studied using Hierarchical Dirichelet Process and topic mapping algorithm. Artificial intelligence research area is taken as an example. Results show cross-university-industry type authors play an important bridge role in the collaboration network. And research topics that industries are concerned about are revealed and analyzed. This research could provide reference for formulating science and technology policy and promoting scientific research innovation in both universities and industries. C1 [Sun, Xiaoling; Ding, Kun; Lin, Yuan; Lin, Hongfei] Dalian Univ Technol, Dalian, Peoples R China. C3 Dalian University of Technology RP Sun, XL (corresponding author), Dalian Univ Technol, Dalian, Peoples R China. EM xlsun@dlut.edu.cn; dingk@dlut.edu.cn; zhlin@dlut.edu.cn; hflin@dlut.edu.cn RI DING, KUN/HNJ-1709-2023 FU National Natural Science Foundation of China [71704019]; Planning Fund for Liaoning Social Science [L17CGL009] FX This work is partially supported by grant from National Natural Science Foundation of China (No. 71704019) and the Planning Fund for Liaoning Social Science (No. L17CGL009). CR Ankrah SN, 2013, TECHNOVATION, V33, P50, DOI 10.1016/j.technovation.2012.11.001 Arel I, 2010, IEEE COMPUT INTELL M, V5, P13, DOI 10.1109/MCI.2010.938364 Åstebro T, 2012, RES POLICY, V41, P663, DOI 10.1016/j.respol.2012.01.004 Azagra-Caro Joaquin M., 2019, TECHNOLOGICAL FORECA, V139 Brin S, 1998, COMPUT NETWORKS ISDN, V30, P107, DOI 10.1016/S0169-7552(98)00110-X Callaert J, 2015, RES POLICY, V44, P990, DOI 10.1016/j.respol.2015.02.003 Chai S, 2016, RES POLICY, V45, P148, DOI 10.1016/j.respol.2015.07.007 Esteva A, 2017, NATURE, V542, P115, DOI 10.1038/nature21056 Etzkowitz H, 2000, RES POLICY, V29, P313, DOI 10.1016/S0048-7333(99)00069-4 Gulbrandsen M., 2007, Universities and strategic knowledge creation, P112, DOI DOI 10.4337/9781847206848.00011 Hicks D., 1995, IND CORP CHANGE, V4, P401, DOI [DOI 10.1093/ICC/4.2.401, 10.1093/icc/4.2.401] Hottenrott H, 2017, SCIENTOMETRICS, V111, P285, DOI 10.1007/s11192-017-2257-6 Jong S, 2014, RES POLICY, V43, P645, DOI 10.1016/j.respol.2013.12.009 Leydesdorff L., 1996, SCI PUBL POLICY, V23, P279, DOI [10.1093/spp/23.5.279, DOI 10.1093/SPP/23.5.279] Murray F, 2002, RES POLICY, V31, P1389, DOI 10.1016/S0048-7333(02)00070-7 Ponomariov B, 2013, J TECHNOL TRANSFER, V38, P749, DOI 10.1007/s10961-013-9301-3 Simeth M, 2015, RES POLICY, V44, P1283, DOI 10.1016/j.respol.2015.04.005 Teh YW, 2006, J AM STAT ASSOC, V101, P1566, DOI 10.1198/016214506000000302 Tijssen RJW, 2012, RES EVALUAT, V21, P204, DOI 10.1093/reseval/rvs013 Wong PK, 2013, SCIENTOMETRICS, V97, P245, DOI 10.1007/s11192-013-1029-1 Zhou P, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0165277 NR 21 TC 0 Z9 0 U1 0 U2 16 PU INT SOC SCIENTOMETRICS & INFORMETRICS-ISSI PI LEUVEN PA KATHOLIEKE UNIV LEUVEN, FACULTEIT E T E W, DEKENSTRAAT 2, LEUVEN, B-3000, BELGIUM SN 2175-1935 BN 978-88-3381-118-5 J9 PRO INT CONF SCI INF PY 2019 BP 329 EP 338 PG 10 WC Computer Science, Interdisciplinary Applications; Information Science & Library Science WE Conference Proceedings Citation Index - Science (CPCI-S); Conference Proceedings Citation Index - Social Science & Humanities (CPCI-SSH) SC Computer Science; Information Science & Library Science GA BO2SN UT WOS:000508217900033 DA 2024-09-05 ER PT J AU Capizzi, V Paltrinieri, A Pattnaik, D Kumar, S AF Capizzi, Vincenzo Paltrinieri, Andrea Pattnaik, Debidutta Kumar, Satish TI Retrospective overview of the journal venture capital using bibliometric approach SO VENTURE CAPITAL LA English DT Article DE Venture capital; entrepreneurial finance; bibliometrics; NLP; co-occurrence analysis; VOSviewer; Gephi ID BUSINESS ANGELS; ENTREPRENEURS; MODEL; MANAGEMENT; LEGITIMACY; NETWORKS; FINANCE AB The journal Venture Capital (VC) is a well-established highly reputed academic outlet specializing in research on entrepreneurial finance conducted from various methodological standpoints, on a global basis. This study uses bibliometrics to analyze the journal's impact, prominent topics, most frequent authors, and their affiliated institutions. Between 1999 and 2021, VC published 385 documents receiving 9,892 citations. About 62% of VC papers have more than 10 citations each. Some of the notable themes which may offer future scope for publications include crowdfunding platforms, equity crowdfunding, government venture capital, private equity firm and investment, entrepreneurial finance, market failure, and female entrepreneurship. C1 [Capizzi, Vincenzo] Univ Piemonte Orientale Amedeo Avogadro, Dipartimento Studi Econ & Impresa, I-28100 Novara, Italy. [Paltrinieri, Andrea] Univ Cattolica Sacro Cuore, Dept Econ & Business Admin, Campus Roma, Rome, Italy. [Pattnaik, Debidutta] Woxsen Sch Business, Sch Business, Hyderabad, India. [Kumar, Satish] Malaviya Natl Inst Technol, Dept Management Studies, Jaipur, Rajasthan, India. C3 University of Eastern Piedmont Amedeo Avogadro; Catholic University of the Sacred Heart; IRCCS Policlinico Gemelli; National Institute of Technology (NIT System); Malaviya National Institute of Technology Jaipur RP Kumar, S (corresponding author), Univ Piemonte Orientale Amedeo Avogadro, Dipartimento Studi Econ & Impresa, I-28100 Novara, Italy. EM skumar.dms@mnit.ac.in RI Pattnaik, Debidutta/Q-2125-2019; Kumar, Satish/M-8694-2017; Pattnaik, Debidutta/GWU-6164-2022; Capizzi, Vincenzo/M-7251-2016 OI Pattnaik, Debidutta/0000-0001-6180-0499; Kumar, Satish/0000-0001-5200-1476; Capizzi, Vincenzo/0000-0003-3761-9942; PALTRINIERI, Andrea/0000-0002-8172-9199 CR Acedo FJ, 2006, J MANAGE STUD, V43, P957, DOI 10.1111/j.1467-6486.2006.00625.x Allen F., 2021, REV CORPORATE FINANC, V1, P259, DOI DOI 10.1561/114.00000007 [Anonymous], 2001, VENTURE CAPITAL INT [Anonymous], 2013, VENTURE CAPITAL PRIV Baker HK, 2021, INT REV FINANC ANAL, V78, DOI 10.1016/j.irfa.2021.101946 Baker HK, 2021, J FUTURES MARKETS, V41, P1027, DOI 10.1002/fut.22211 Baker HK, 2021, J FORECASTING, V40, P577, DOI 10.1002/for.2731 Baker HK, 2021, J CORP FINANC, V66, DOI 10.1016/j.jcorpfin.2020.101572 Baker HK, 2020, FINANC REV, V55, P7, DOI 10.1111/fire.12228 Baker HK, 2020, REV FINANC ECON, V38, P3, DOI 10.1002/rfe.1095 Belleflamme P, 2013, VENTUR CAP, V15, P313, DOI 10.1080/13691066.2013.785151 Bianchini R., 2022, REV CORPORATE FINANC, V2 Block J, 2009, VENTUR CAP, V11, P295, DOI 10.1080/13691060903184803 Bonini S, 2019, VENTUR CAP, V21, P137, DOI 10.1080/13691066.2019.1608697 Brush C.G., 2002, VENTUR CAP, V4, P305 Brush CG, 2006, VENTUR CAP, V8, P15, DOI 10.1080/13691060500433975 Bygrave W.D., 2003, VENTUR CAP, V5, P101, DOI DOI 10.1080/1369106032000097021 CALLON M, 1983, SOC SCI INFORM, V22, P191, DOI 10.1177/053901883022002003 Carter N., 2003, Venture Capital, V5, P1, DOI [https://doi.org/10.1080/1369106032000082586, DOI 10.1080/1369106032000082586] Clark C, 2008, VENTUR CAP, V10, P257, DOI 10.1080/13691060802151945 Cumming D, 2013, VENTUR CAP, V15, P361, DOI 10.1080/13691066.2013.847635 Donthu N, 2021, J BUS RES, V133, P285, DOI 10.1016/j.jbusres.2021.04.070 Donthu N, 2021, J INT MARKETING, V29, P1, DOI 10.1177/1069031X211004234 Donthu N, 2021, J BUS IND MARK, V36, P1435, DOI 10.1108/JBIM-04-2020-0214 Donthu N, 2021, INT J INFORM MANAGE, V57, DOI 10.1016/j.ijinfomgt.2020.102307 Feeney L., 1999, Venture Capital, V1, P121, DOI DOI 10.1080/136910699295938 Freear J., 2002, VENTUR CAP, V4, P275 Frydrych D, 2014, VENTUR CAP, V16, P247, DOI 10.1080/13691066.2014.916512 Gabrielsson J., 2002, Venture Capital An International Journal of Entrepreneurial Finance, V4, P125 Goodell JW, 2021, J BEHAV EXP FINANC, V32, DOI 10.1016/j.jbef.2021.100577 Greene PG., 2001, Venture Capital, V3, P63, DOI [DOI 10.1080/13691060118175, 10.1080/13691060118175] Harrison R., 2000, Venture Capital: An international journal of entrepreneurial finance, V2, P223 Jones O, 2010, VENTUR CAP, V12, P127, DOI 10.1080/13691061003658886 Kenney M, 2019, VENTUR CAP, V21, P35, DOI 10.1080/13691066.2018.1517430 Khan MA, 2021, J BUS RES, V125, P295, DOI 10.1016/j.jbusres.2020.12.015 Kumar S, 2022, CROSS CULT STRATEG M, V29, P171, DOI 10.1108/CCSM-08-2021-0147 Kumar S, 2022, INT J BANK MARK, V40, P341, DOI 10.1108/IJBM-07-2021-0351 Kumar S, 2022, SOC INDIC RES, V162, P413, DOI 10.1007/s11205-021-02847-9 Kumar S, 2021, ELECTRON COMMER RES, V21, P1, DOI 10.1007/s10660-021-09464-1 Lehner OM, 2014, VENTUR CAP, V16, P271, DOI 10.1080/13691066.2014.925305 Lehner OM, 2013, VENTUR CAP, V15, P289, DOI 10.1080/13691066.2013.782624 Lockett A., 1999, Venture Capital, V1, P303, DOI DOI 10.1080/136910699295839 Madill JJ, 2005, VENTUR CAP, V7, P107, DOI 10.1080/1369106042000316341 Manigart S., 2002, Venture Capital, V4, P103, DOI [https://doi.org/10.1080/13691060110103233, DOI 10.1080/13691060110103233] Mason CM, 2008, VENTUR CAP, V10, P309, DOI 10.1080/13691060802380098 Maula M., 2003, VENTUR CAP, V5, P117, DOI DOI 10.1080/1369106032000087275 Maula M, 2005, VENTUR CAP, V7, P3, DOI 10.1080/1369106042000316332 Murray G., 1999, VENTUR CAP, V1, P351 Pattnaik D, 2022, ECON MODEL, V107, DOI 10.1016/j.econmod.2021.105712 Pattnaik D, 2021, AUST ACCOUNT REV, V31, P150, DOI 10.1111/auar.12332 Pattnaik D, 2020, QUAL RES FINANC MARK, V12, P367, DOI 10.1108/QRFM-09-2019-0103 Pattnaik D, 2020, RES INT BUS FINANC, V54, DOI 10.1016/j.ribaf.2020.101287 Paul S, 2007, VENTUR CAP, V9, P107, DOI 10.1080/13691060601185425 Politis D, 2008, VENTUR CAP, V10, P127, DOI 10.1080/13691060801946147 Shepherd D. A., 1999, Venture Capital: An International Journal of Entrepreneurial Finance, V1, P197, DOI DOI 10.1080/136910699295866 Sohl J.E., 1999, VENTUR CAP, V1s, P101, DOI [10.1080/136910699295929, DOI 10.1080/136910699295929] Stremersch S, 2007, J MARKETING, V71, P171, DOI 10.1509/jmkg.71.3.171 Tomczak A, 2013, VENTUR CAP, V15, P335, DOI 10.1080/13691066.2013.847614 Tranfield D, 2003, BRIT J MANAGE, V14, P207, DOI 10.1111/1467-8551.00375 Treichel MZ, 2006, VENTUR CAP, V8, P51, DOI 10.1080/13691060500453726 Valtakoski A, 2020, J SERV MARK, V34, P8, DOI 10.1108/JSM-12-2018-0359 Van Osnabrugge Mark., 2000, VENTUR CAP, V2, P91, DOI [10.1080/136910600295729, DOI 10.1080/136910600295729] NR 62 TC 6 Z9 6 U1 2 U2 34 PU ROUTLEDGE JOURNALS, TAYLOR & FRANCIS LTD PI ABINGDON PA 2-4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND SN 1369-1066 EI 1464-5343 J9 VENTUR CAP JI Ventur. Cap. PD JAN 2 PY 2022 VL 24 IS 1 BP 1 EP 23 DI 10.1080/13691066.2022.2051769 EA MAR 2022 PG 23 WC Business, Finance WE Social Science Citation Index (SSCI) SC Business & Economics GA 1B5OO UT WOS:000771824000001 DA 2024-09-05 ER PT J AU Paris, N Lamer, A Parrot, A AF Paris, Nicolas Lamer, Antoine Parrot, Adrien TI Transformation and Evaluation of the MIMIC Database in the OMOP Common Data Model: Development and Usability Study SO JMIR MEDICAL INFORMATICS LA English DT Article DE data reuse; open data; OMOP; common data model; critical care; machine learning; big data; health informatics; health data; health database; electronic health records; open access database; digital health; intensive care; health care ID CRITICALLY-ILL; VALIDATION; MANAGEMENT; RECORDS; CARE AB Background: In the era of big data, the intensive care unit (ICU) is likely to benefit from real-time computer analysis and modeling based on close patient monitoring and electronic health record data. The Medical Information Mart for Intensive Care (MIMIC) is the first open access database in the ICU domain. Many studies have shown that common data models (CDMs) improve database searching by allowing code, tools, and experience to be shared. The Observational Medical Outcomes Partnership (OMOP) CDM is spreading all over the world. Objective: The objective was to transform MIMIC into an OMOP database and to evaluate the benefits of this transformation for analysts. Methods: We transformed MIMIC (version 1.4.21) into OMOP format (version 5.3.3.1) through semantic and structural mapping. The structural mapping aimed at moving the MIMIC data into the right place in OMOP, with some data transformations. The mapping was divided into 3 phases: conception, implementation, and evaluation. The conceptual mapping aimed at aligning the MIMIC local terminologies to OMOP's standard ones. It consisted of 3 phases: integration, alignment, and evaluation. A documented, tested, versioned, exemplified, and open repository was set up to support the transformation and improvement of the MIMIC community's source code. The resulting data set was evaluated over a 48-hour datathon. Results: With an investment of 2 people for 500 hours, 64% of the data items of the 26 MIMIC tables were standardized into the OMOP CDM and 78% of the source concepts mapped to reference terminologies. The model proved its ability to support community contributions and was well received during the datathon, with 160 participants and 15,000 requests executed with a Conclusions: The resulting MIMIC-OMOP data set is the first MIMIC-OMOP data set available free of charge with real disidentified data ready for replicable intensive care research. This approach can be generalized to any medical field. C1 [Paris, Nicolas; Lamer, Antoine; Parrot, Adrien] InterHop, 30 Ave Maine, F-75015 Paris, France. [Lamer, Antoine] Univ Lille, ULR 2694 METRICS Evaluat Technol Sante & Prat Med, CHU Lille, Lille, France. C3 Universite de Lille; CHU Lille RP Paris, N (corresponding author), InterHop, 30 Ave Maine, F-75015 Paris, France. EM nicolas.paris@riseup.net RI Lamer, Antoine/AAL-2936-2020; Lamer, Antoine/JEP-7710-2023 OI Lamer, Antoine/0000-0002-9546-1808; Lamer, Antoine/0000-0002-9546-1808; PARROT, Adrien/0000-0002-9862-1408 FU Massachusetts Institute of Technology; Observational Health Data Sciences and Informatics community FX We acknowledge the Massachusetts Institute of Technology and the Observational Health Data Sciences and Informatics community for their support. CR Aboab J, 2016, SCI TRANSL MED, V8, DOI 10.1126/scitranslmed.aad9072 Angus DC, 2000, JAMA-J AM MED ASSOC, V284, P2762, DOI 10.1001/jama.284.21.2762 Azoulay É, 2005, INTENS CARE MED, V31, P56, DOI 10.1007/s00134-004-2484-1 Celi LA, 2016, J MED INTERNET RES, V18, DOI 10.2196/jmir.6365 Chronaki C, 2015, COMPUT CARDIOL CONF, V42, P189, DOI 10.1109/CIC.2015.7408618 Denny JC, 2009, J AM MED INFORM ASSN, V16, P806, DOI 10.1197/jamia.M3037 FitzHenry F, 2015, APPL CLIN INFORM, V6, P536, DOI 10.4338/ACI-2014-12-CR-0121 Gagne JJ, 2015, DRUG SAFETY, V38, P683, DOI 10.1007/s40264-015-0313-9 Garza M, 2016, J BIOMED INFORM, V64, P333, DOI 10.1016/j.jbi.2016.10.016 hl7, WELC FHIR Hripcsak G, 2015, STUD HEALTH TECHNOL, V216, P574, DOI 10.3233/978-1-61499-564-7-574 Johnson AEW, 2016, SCI DATA, V3, DOI 10.1038/sdata.2016.35 Kahn MG, 2012, MED CARE, V50, pS60, DOI 10.1097/MLR.0b013e318259bff4 Karwin B., KEEPING IT SIMPLE RE Klungel OH, 2016, PHARMACOEPIDEM DR S, V25, P156, DOI 10.1002/pds.3968 Lamer A, 2020, APPL CLIN INFORM, V11, P13, DOI 10.1055/s-0039-3402754 Li PY, 2017, JMIR MED INF, V5, DOI 10.2196/medinform.7380 Logical Observation Identifiers Names and Codes, LOINC VERS 2 63 RELM Luo EM, 2021, BMJ INNOV, V7, P231, DOI 10.1136/bmjinnov-2020-000492 Madigan D, 2013, AM J EPIDEMIOL, V178, P645, DOI 10.1093/aje/kwt010 Maier C, 2018, APPL CLIN INFORM, V9, P54, DOI 10.1055/s-0037-1617452 Meystre S M, 2017, Yearb Med Inform, V26, P38, DOI 10.15265/IY-2017-007 MIT Laboratory for Computational Physiology, MIT LCP MIM OM MIT Laboratory for Computational Physiology, MIT LCP MIM COD Moody DL, 2003, INFORM SYST, V28, P619, DOI 10.1016/S0306-4379(02)00043-1 Morgenstern H, 2017, J AUDIO ENG SOC, V65, P42, DOI 10.17743/jaes.2016.0063 Observational Health Data Sciences and Informatics, OHDSI ACH Observational Health Data Sciences and Informatics, OHDSI US Observational Health Data Sciences and Informatics, OHDSI FOR Observational Health Data Sciences and Informatics, 2021, OHDSI OBS HLTH DAT S OMOPonFHIR, FHIR PROJ GEORG TECH Overhage JM, 2012, J AM MED INFORM ASSN, V19, P54, DOI 10.1136/amiajnl-2011-000376 Platt R, 2018, JAMA-J AM MED ASSOC, V320, P753, DOI 10.1001/jama.2018.9342 Reich C, 2012, J BIOMED INFORM, V45, P689, DOI 10.1016/j.jbi.2012.05.002 Ross M K, 2014, Yearb Med Inform, V9, P97, DOI 10.15265/IY-2014-0003 Safran C, 2014, Yearb Med Inform, V9, P52, DOI 10.15265/IY-2014-0013 Shamsuzzoha B, CONVERSION MIMIC OHD U.S. National Library of Medicine, ICD 9 900 DIAGN COD Vincent JL, 2006, PLOS MED, V3, P1488, DOI 10.1371/journal.pmed.0030346 Xu YH, 2015, DRUG SAFETY, V38, P749, DOI 10.1007/s40264-015-0297-5 Yoon D, 2016, HEALTHC INFORM RES, V22, P54, DOI 10.4258/hir.2016.22.1.54 Zhang Y, 2016, CHINESE MED J-PEKING, V129, P731, DOI 10.4103/0366-6999.178019 NR 42 TC 10 Z9 11 U1 0 U2 2 PU JMIR PUBLICATIONS, INC PI TORONTO PA 130 QUEENS QUAY E, STE 1102, TORONTO, ON M5A 0P6, CANADA EI 2291-9694 J9 JMIR MED INF JI JMIR Med. Inf. PD DEC PY 2021 VL 9 IS 12 AR e30970 DI 10.2196/30970 PG 14 WC Medical Informatics WE Science Citation Index Expanded (SCI-EXPANDED) SC Medical Informatics GA YA8SQ UT WOS:000738596600015 PM 34904958 OA Green Submitted, Green Published, gold DA 2024-09-05 ER PT J AU Edelaar-Peeters, Y Putter, H Snoek, GJ Sluis, TAR Smit, CAJ Post, MWM Stiggelbout, AM AF Edelaar-Peeters, Yvette Putter, Hein Snoek, Govert J. Sluis, Tebbe A. R. Smit, Christof A. J. Post, Marcel W. M. Stiggelbout, Anne M. TI The Influence of Time and Adaptation on Health State Valuations in Patients With Spinal Cord Injury SO MEDICAL DECISION MAKING LA English DT Article DE affect and emotion; heuristics and biases; utility assessment; utility measurement; Health-Related Quality of Life; cognitive psychology; EQ-5D; health state preferences; utilities; valuations; outcomes research ID QUALITY-OF-LIFE; SATISFACTION; REHABILITATION; PREFERENCES; ADJUSTMENT; EXPERIENCE; PREDICTORS; UTILITIES; IMPACT AB Objectives: One of the explanations for the difference between health state utilities elicited from patients and the public-often provided but seldom studied-is adaptation. The influence of adaptation on utilities was investigated in patients with spinal cord injury. Methods: Interviews were held at 3 time points (T1, after admission to the rehabilitation center; T2, during active rehabilitation; T3, at least half a year after discharge). At T1, 60 patients were interviewed; 10 patients withdrew at T2 and T3. At all time points, patients were asked to value their own health and a health state description of rheumatoid arthritis on a time trade-off and a visual analogue scale. The Barthel Index, a measure of independence from help in activities of daily living, and the adjustment ladder were filled out. Main analyses were performed using mixed linear models taking the time-dependent covariates (Barthel Index and adjustment ladder) into account. Results: Time trade-off valuations for patients' own health changed over time, even after correction for gain in independence from help in activities of daily living, F(2, 59) = 8.86, P < 0.001. This change was related to overall adaptation. Both a main effect for adaptation, F(87, 1) = 10.05; P = 0.002, and an interaction effect between adaptation and time, F(41, 1)= 4.10, P = 0.024, were seen for time trade-off valuations. Valuations given for one's own health on the visual analogue scale did not significantly change over time, nor did the valuations for the hypothetical health state. Conclusion: Patients' health state valuations change over time, over and above the change expected by the rehabilitation process, and this change is partly explained by adaptation. Experience with a chronic illness did not lead to change in valuations of hypothetical health states. C1 [Edelaar-Peeters, Yvette; Stiggelbout, Anne M.] Leiden Univ, Med Ctr, Dept Med Decis Making, NL-2300 RC Leiden, Netherlands. [Putter, Hein] Leiden Univ, Med Ctr, Dept Med Stat & Bioinformat, NL-2300 RC Leiden, Netherlands. [Snoek, Govert J.] Rehabil Ctr Het Roessingh & Roessingh Res & Dev, Enschede, Netherlands. [Sluis, Tebbe A. R.] Rijndam Rehabil Ctr Rotterdam, Rotterdam, Netherlands. [Smit, Christof A. J.] Reade, Ctr Rehabil & Rheumatol, Amsterdam, Netherlands. [Post, Marcel W. M.] Univ Med Ctr, Rudolf Magnus Inst Neurosci, Utrecht, Netherlands. [Post, Marcel W. M.] Univ Med Ctr, Ctr Excellence Rehabil Med, Utrecht, Netherlands. C3 Leiden University - Excl LUMC; Leiden University; Leiden University Medical Center (LUMC); Leiden University; Leiden University Medical Center (LUMC); Leiden University - Excl LUMC; Utrecht University; Utrecht University Medical Center; Utrecht University; Utrecht University Medical Center RP Edelaar-Peeters, Y (corresponding author), Leiden Univ, Med Ctr, Dept Med Decis Making, POB 9600, NL-2300 RC Leiden, Netherlands. EM y.peeters@lumc.nl RI Post, Marcel/AAS-2502-2021; Stiggelbout, Anne/D-2293-2018; Putter, Hein/C-2244-2018 OI Stiggelbout, Anne/0000-0002-6293-4509; Post, Marcel/0000-0002-2205-9404; Putter, Hein/0000-0001-5395-1422 FU VIDI award of the Netherlands Organization for Scientific Research, Innovational Research Incentives Scheme [917.56.356] FX Y. Peeters and A. M. Stiggelbout were entirely supported by a VIDI award of the Netherlands Organization for Scientific Research, Innovational Research Incentives Scheme (grant 917.56.356). This study was presented at the 12th biennial meeting of the Society for Medical Decision Making, Europe, 2008. Revision accepted for publication 1 February 2012. CR Centraal Bureau voor de statistiek, 2007, OV NAAR LEEF TIJD GE COLLIN C, 1987, INT J REHABIL RES, V10, P356 CREWE NM, 1990, REHABIL PSYCHOL, V35, P205, DOI 10.1037/h0079064 Damschroder LJ, 2008, HEALTH PSYCHOL, V27, P394, DOI 10.1037/0278-6133.27.3.394 Damschroder LJ, 2005, SOC SCI MED, V61, P267, DOI 10.1016/j.socscimed.2004.11.060 Dolan P, 1996, J CLIN EPIDEMIOL, V49, P551, DOI 10.1016/0895-4356(95)00532-3 Folkman S, 2000, AM PSYCHOL, V55, P647, DOI 10.1037//0003-066X.55.6.647 Frederick S., 1999, Well-being: The foundations of hedonic psychology, P302 Gilbert DT, 1998, J PERS SOC PSYCHOL, V75, P617, DOI 10.1037/0022-3514.75.3.617 Jansen SJT, 2001, MED DECIS MAKING, V21, P295, DOI 10.1177/02729890122062596 Knight SJ, 2007, J PALLIAT MED, V10, P1190, DOI 10.1089/jpm.2006.0068 Lazarus, 1984, STRESS APPRAISAL Lucke KT, 2004, QUAL LIFE RES, V13, P97, DOI 10.1023/B:QURE.0000015284.95515.17 Mortenson WB, 2010, SPINAL CORD, V48, P73, DOI 10.1038/sc.2009.92 Peeters Y, 2010, VALUE HEALTH, V13, P306, DOI 10.1111/j.1524-4733.2009.00610.x Post M W, 1995, Ned Tijdschr Geneeskd, V139, P1376 Post MWM, 1998, SCAND J REHABIL MED, V30, P23 Post MWM, 1998, ARCH PHYS MED REHAB, V79, P395, DOI 10.1016/S0003-9993(98)90139-3 Riis J, 2005, J EXP PSYCHOL GEN, V134, P3, DOI 10.1037/0096-3445.134.1.3 Robinson A, 1997, SOC SCI MED, V45, P1289, DOI 10.1016/S0277-9536(97)00057-9 Salkeld G, 2000, HEALTH ECON, V9, P267, DOI 10.1002/(SICI)1099-1050(200004)9:3<267::AID-HEC511>3.0.CO;2-H Stalmeier PFM, 2007, MED CARE, V45, P835, DOI 10.1097/MLR.0b013e3180ca9ac5 Stiggelbout AM, 2008, VALUE HEALTH, V11, P76, DOI 10.1111/j.1524-4733.2007.00216.x Tedeschi RG, 1996, J TRAUMA STRESS, V9, P455, DOI 10.1002/jts.2490090305 Ubel PA, 2005, J EXP PSYCHOL-APPL, V11, P111, DOI 10.1037/1076-898X.11.2.111 Ubel PA, 2003, QUAL LIFE RES, V12, P599, DOI 10.1023/A:1025119931010 van Koppenhagen CF, 2009, AM J PHYS MED REHAB, V88, P887, DOI 10.1097/PHM.0b013e3181b71afe Wilson TD, 2005, CURR DIR PSYCHOL SCI, V14, P131, DOI 10.1111/j.0963-7214.2005.00355.x NR 28 TC 5 Z9 5 U1 0 U2 8 PU SAGE PUBLICATIONS INC PI THOUSAND OAKS PA 2455 TELLER RD, THOUSAND OAKS, CA 91320 USA SN 0272-989X J9 MED DECIS MAKING JI Med. Decis. Mak. PD NOV-DEC PY 2012 VL 32 IS 6 BP 805 EP 814 DI 10.1177/0272989X12447238 PG 10 WC Health Care Sciences & Services; Health Policy & Services; Medical Informatics WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Health Care Sciences & Services; Medical Informatics GA 046YV UT WOS:000311802700007 PM 22622845 DA 2024-09-05 ER PT J AU Mathew, G Agrawal, A Menzies, T AF Mathew, George Agrawal, Amritanshu Menzies, Tim TI Finding Trends in Software Research SO IEEE TRANSACTIONS ON SOFTWARE ENGINEERING LA English DT Article DE Software engineering; Conferences; Software; Analytical models; Data models; Predictive models; Testing; bibliometrics; topic modeling; text mining ID RESEARCH TOPICS; INSTITUTIONS; EVOLUTION; RANKING; GENDER AB Text mining methods can find large scale trends within research communities. For example, using stable Latent Dirichlet Allocation (a topic modeling algorithm) this study found 10 major topics in 35,391 SE research papers from 34 leading SE venues over the last 25 years (divided, evenly, between conferences and journals). Out study also shows how those topics have changed over recent years. Also, we note that (in the historical record) mono-focusing on a single topic can lead to fewer citations than otherwise. Further, while we find no overall gender bias in SE authorship, we note that women are under-represented in the top-most cited papers in our field. Lastly, we show a previously unreported dichotomy between software conferences and journals (so research topics that succeed at conferences might not succeed at journals, and vice versa). An important aspect of this work is that it is automatic and quickly repeatable (unlike prior SE bibliometric studies that used tediously slow and labor intensive methods). Automation is important since, like any data mining study, its conclusions are skewed by the data used in the analysis. The automatic methods of this paper make it far easier for other researchers to re-apply the analysis to new data, or if they want to use different modeling assumptions. C1 [Mathew, George; Agrawal, Amritanshu; Menzies, Tim] North Carolina State Univ NCSU, Dept Comp Sci CS, Raleigh, NC 27695 USA. C3 North Carolina State University RP Menzies, T (corresponding author), North Carolina State Univ NCSU, Dept Comp Sci CS, Raleigh, NC 27695 USA. EM george.meg91@gmail.com; aagrawa8@ncsu.edu; timm@ieee.org RI Menzies, Tim/X-7680-2019; Agrawal, Amritanshu/R-7093-2019 OI Menzies, Tim/0000-0002-5040-3196; Agrawal, Amritanshu/0000-0002-1220-8533 CR Agrawal A, 2018, INFORM SOFTWARE TECH, V98, P74, DOI 10.1016/j.infsof.2018.02.005 Al-Zubidy A., 2014, SERG201403 U AL DEP [Anonymous], 2010, P 32 ACM IEEE INT C [Anonymous], 2013, Joint Meeting of the European Software Engineering Conference and the ACM SIGSOFT Symposium on the Foundations of Software Engineering, ESEC/FSE'13, Saint Petersburg, Russian Federation, August 18-26, 2013 Arcuri A, 2011, 2011 33RD INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING (ICSE), P1, DOI 10.1145/1985793.1985795 Asuncion A., 2009, C UNC ART INT UAI QU, P27, DOI DOI 10.1080/10807030390248483 Bin Noor T, 2015, 2015 IEEE 1ST INTERNATIONAL WORKSHOP ON SOFTWARE ANALYTICS (SWAN), P13, DOI 10.1109/SWAN.2015.7070482 Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993 Cai KY, 2008, J SYST SOFTWARE, V81, P1051, DOI 10.1016/j.jss.2007.08.028 Carreño LVG, 2013, PROCEEDINGS OF THE 35TH INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING (ICSE 2013), P582, DOI 10.1109/ICSE.2013.6606604 Datta Subhajit, 2016, IEEE Transactions on Big Data, V2, P124, DOI 10.1109/TBDATA.2016.2580541 Ding Y, 2009, J AM SOC INF SCI TEC, V60, P2229, DOI 10.1002/asi.21171 Efron B., 1993, An Introduction to the Bootstrap, DOI 10.1007/978-1-4899-4541-9 Fernandes JM, 2014, SCIENTOMETRICS, V101, P257, DOI 10.1007/s11192-014-1331-6 Fu W, 2016, INFORM SOFTWARE TECH, V76, P135, DOI 10.1016/j.infsof.2016.04.017 Garousi V., 2010, Computer and Information Science, V3, P19, DOI DOI 10.1142/S0218194013500423 Garousi V, 2016, COMPUT SCI REV, V19, P56, DOI 10.1016/j.cosrev.2015.12.002 Garousi V, 2016, INFORM SOFTWARE TECH, V71, P108, DOI 10.1016/j.infsof.2015.11.003 Garousi V, 2015, SCIENTOMETRICS, V105, P23, DOI 10.1007/s11192-015-1663-x Garousi V, 2013, INT J SOFTW ENG KNOW, V23, P1343, DOI 10.1142/S0218194013500423 Geunseok Yang, 2015, KIISE Transactions on Computing Practices, V21, P616, DOI 10.5626/KTCP.2015.21.9.616 Glass RL, 2005, J SYST SOFTWARE, V76, P91, DOI 10.1016/j.jss.2004.08.018 Google Scholar, ABOUT US Griffiths TL, 2004, P NATL ACAD SCI USA, V101, P5228, DOI 10.1073/pnas.0307752101 Guzman E, 2014, INT REQUIR ENG CONF, P153, DOI 10.1109/RE.2014.6912257 Hamadicharef B, 2012, ADV INTEL SOFT COMPU, V144, P101 Hoonlor A, 2013, COMMUN ACM, V56, P74, DOI 10.1145/2500892 Hummel O., 2013, COMPUT INF SCI, V6 Marshall Christopher, 2013, 2013 ACM / IEEE International Symposium on Empirical Software Engineering and Measurement (ESEM), P296, DOI 10.1109/ESEM.2013.32 Massey AK, 2013, S VIS LANG HUM CEN C, P4, DOI 10.1109/RE.2013.6636700 Mathew G, 2017, PROC IEEE ACM INT C, P397, DOI 10.1109/ICSE-C.2017.52 Minka T.P., 2002, Uncertainty in Artificial Intelligence, P352 Mullner D., 2011, Modern hierarchical, agglomerative clustering algorithms Nikolenko SI, 2017, J INF SCI, V43, P88, DOI 10.1177/0165551515617393 Oliveto Rocco, 2010, Proceedings of the 18th IEEE International Conference on Program Comprehension (ICPC 2010), P68, DOI 10.1109/ICPC.2010.20 Panichella A, 2013, PROCEEDINGS OF THE 35TH INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING (ICSE 2013), P522, DOI 10.1109/ICSE.2013.6606598 Pournelle G. H., 1953, Journal of Mammalogy, V34, P133, DOI 10.1890/0012-9658(2002)083[1421:SDEOLC]2.0.CO;2 Ren J, 2007, COMMUN ACM, V50, P81, DOI 10.1145/1247001.1247010 Researchgate, SHAR DISC RES Restificar A, 2012, PROCEEDINGS OF THE ACM SIXTH INTERNATIONAL WORKSHOP ON DATA AND TEXT MINING IN BIOMEDICAL INFORMATICS, P21 Roberts SG, 2016, J LANG EVOL, V1, P163, DOI 10.1093/jole/lzw009 Robles Gregorio., 2014, Proceedings of the 11th Working Conference on Mining Software Repositories, P222 Sarkar S, 2017, WWW'17 COMPANION: PROCEEDINGS OF THE 26TH INTERNATIONAL CONFERENCE ON WORLD WIDE WEB, P1251, DOI 10.1145/3041021.3053051 Storn R, 1997, J GLOBAL OPTIM, V11, P341, DOI 10.1023/A:1008202821328 Sun XB, 2016, 2016 17TH IEEE/ACIS INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING, ARTIFICIAL INTELLIGENCE, NETWORKING AND PARALLEL/DISTRIBUTED COMPUTING (SNPD), P357, DOI 10.1109/SNPD.2016.7515925 Sun XB, 2015, INFORM SOFTWARE TECH, V66, P1, DOI 10.1016/j.infsof.2015.05.003 Systa T., 2012, INBREEDING SOFTWARE Tang J., 2008, KDD, P990, DOI DOI 10.1145/1401890.1402008 Terrell J, 2017, PEERJ COMPUT SCI, DOI 10.7717/peerj-cs.111 The ACM digital library, US Thomas SW, 2014, EMPIR SOFTW ENG, V19, P182, DOI 10.1007/s10664-012-9219-7 Thomas SW, 2014, SCI COMPUT PROGRAM, V80, P457, DOI 10.1016/j.scico.2012.08.003 Tsafnat G, 2014, SYST REV-LONDON, V3, DOI 10.1186/2046-4053-3-74 Vasilescu B, 2014, INTERACT COMPUT, V26, P488, DOI 10.1093/iwc/iwt047 Vasilescu B, 2014, SCI COMPUT PROGRAM, V89, P251, DOI 10.1016/j.scico.2014.01.016 West J., 2012, WOMEN ACAD AUTHORS 1 Wohlin C, 2007, INFORM SOFTWARE TECH, V49, P2, DOI 10.1016/j.infsof.2006.08.004 Yuanyuan Zhang, 2015, Search-Based Software Engineering. 7th International Symposium, SSBSE 2015. Proceedings: LNCS 9275, P301, DOI 10.1007/978-3-319-22183-0_27 NR 58 TC 13 Z9 13 U1 7 U2 27 PU IEEE COMPUTER SOC PI LOS ALAMITOS PA 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1314 USA SN 0098-5589 EI 1939-3520 J9 IEEE T SOFTWARE ENG JI IEEE Trans. Softw. Eng. PD APR 1 PY 2023 VL 49 IS 4 BP 1397 EP 1410 DI 10.1109/TSE.2018.2870388 PG 14 WC Computer Science, Software Engineering; Engineering, Electrical & Electronic WE Science Citation Index Expanded (SCI-EXPANDED) SC Computer Science; Engineering GA E9NM9 UT WOS:000978723600001 OA Green Submitted DA 2024-09-05 ER PT J AU Zhang, YY Jin, SX Li, DG Chen, GQ Chen, YL Xia, QM Mao, QJ Li, YL Yang, J Fan, XX Lin, H AF Zhang, Yiyin Jin, Shengxi Li, Duguang Chen, Guoqiao Chen, Yongle Xia, Qiming Mao, Qijiang Li, Yiling Yang, Jing Fan, Xiaoxiao Lin, Hui TI A Machine-Learning-Based Bibliometric Analysis of Cell Membrane-Coated Nanoparticles in Biomedical Applications over the Past Eleven Years SO GLOBAL CHALLENGES LA English DT Article DE bibliometrics; cell membrane encapsulation; medical applications; nanoparticles ID ERYTHROCYTE-MEMBRANE AB Cell membrane encapsulation is a growing concept in nanomedicine, for it achieves the purpose of camouflage nanoparticles, realizing the convenience for drug delivery, bio-imaging, and detoxification. Cell membranes are constructed by bilayer lipid phospholipid layers, which have unique properties in cellular uptake mechanism, targeting ability, immunomodulation, and regeneration. Current medical applications of cell membranes include cancers, inflammations, regenerations, and so on. In this article, a general bibliometric overview is conducted of cell membrane-coated nanoparticles covering 11 years of evolution in order to provide researchers in the field with a comprehensive view of the relevant achievements and trends. The authors analyze the data from Web of Science Core Collection database, and extract the annual publications and citations, most productive countries/regions, most influential scholars, the collaborations of journals and institutions. The authors also divided cell membranes into several subgroups to further understand the application of different cell membranes in medical scenarios. This study summarizes the current research overview in cell membrane-coated nanoparticles and intuitively provides a direction for future research. C1 [Zhang, Yiyin; Jin, Shengxi; Li, Duguang; Chen, Guoqiao; Chen, Yongle; Xia, Qiming; Mao, Qijiang; Li, Yiling; Yang, Jing; Fan, Xiaoxiao; Lin, Hui] Zhejiang Univ, Sir Run Run Shaw Hosp, Sch Med, Dept Gen Surg, Hangzhou 310016, Peoples R China. [Lin, Hui] Zhejiang Univ, Sir Run Run Shaw Hosp, Zhejiang Engn Res Ctr Cognit Healthcare, Sch Med, Hangzhou 310016, Peoples R China. C3 Zhejiang University; Zhejiang University RP Fan, XX; Lin, H (corresponding author), Zhejiang Univ, Sir Run Run Shaw Hosp, Sch Med, Dept Gen Surg, Hangzhou 310016, Peoples R China.; Lin, H (corresponding author), Zhejiang Univ, Sir Run Run Shaw Hosp, Zhejiang Engn Res Ctr Cognit Healthcare, Sch Med, Hangzhou 310016, Peoples R China. EM fanxx_gs@zju.edu.cn; 369369@zju.edu.cn RI Liu, Yuan/JFB-4766-2023; li, yang/IQV-3559-2023; li, chunyuan/IQW-1618-2023; wang, yingying/JSK-6741-2023; WANG, YANG/JFA-8821-2023; Yang, Jing/HZJ-2451-2023; jing, yang/JDV-8487-2023; Wang, lili/IXD-9828-2023; zhang, xiao/JCN-8822-2023; wang, yu/IUQ-6654-2023; li, jing/JEF-8436-2023; Wang, Yanlin/JGC-6782-2023; liu, jiaming/IWE-3196-2023; lu, yang/IWE-3635-2023; liu, bing/JJD-5566-2023; liu, huan/JKI-3764-2023; .., What/IXW-6776-2023; LI, XIAO/JCE-6169-2023; Zhang, Yunyi/JHS-3626-2023; wang, wei/JBS-7400-2023 FU National Natural Science Foundation of China [81874059, 82102105]; Natural Science Foundation of Zhejiang Province [LQ22H160017]; China Postdoctoral Science Foundation [2021M702825] FX Acknowledgements Thanks for the help of Figdraw developed by HOME for Researchers. Table of contents image drawn with assistance from Figdraw. This work was supported by the National Natural Science Foundation of China (81874059 and 82102105), the Natural Science Foundation of Zhejiang Province (LQ22H160017), and the China Postdoctoral Science Foundation (2021M702825). CR Aria M, 2021, ANIM COGN, V24, P541, DOI 10.1007/s10071-020-01448-2 Arkaban H, 2022, POLYMERS-BASEL, V14, DOI 10.3390/polym14061259 Chen CM, 2004, P NATL ACAD SCI USA, V101, P5303, DOI 10.1073/pnas.0307513100 Chen WS, 2016, NANOSCALE, V8, P10364, DOI 10.1039/c6nr00535g Fang RH, 2014, NANO LETT, V14, P2181, DOI 10.1021/nl500618u Gao WW, 2015, NANO LETT, V15, P1403, DOI 10.1021/nl504798g Ge Y., 2022, HYDROMETALLURGY, V47 Gou SS, 2021, NANO LETT, V21, P9939, DOI 10.1021/acs.nanolett.1c03243 Han YT, 2019, ADV SCI, V6, DOI 10.1002/advs.201900251 Hu CMJ, 2015, NATURE, V526, P118, DOI 10.1038/nature15373 Hu CMJ, 2011, P NATL ACAD SCI USA, V108, P10980, DOI 10.1073/pnas.1106634108 Hu QY, 2016, ADV MATER, V28, P9573, DOI 10.1002/adma.201603463 Jiang Q, 2020, SMALL, V16, DOI 10.1002/smll.202001704 Jiang Y, 2020, ADV MATER, V32, DOI 10.1002/adma.202001808 Kho ME, 2012, J CLIN EPIDEMIOL, V65, P996, DOI 10.1016/j.jclinepi.2012.03.008 Li PY, 2018, BIOCONJUGATE CHEM, V29, P624, DOI 10.1021/acs.bioconjchem.7b00669 Liu D, 2022, IMMUNOL REV, V306, P25, DOI 10.1111/imr.13055 Meng QF, 2018, NANOTECHNOLOGY, V29, DOI 10.1088/1361-6528/aaa7c7 Park JH, 2022, ANGEW CHEM INT EDIT, V61, DOI 10.1002/anie.202113671 Parodi A, 2013, NAT NANOTECHNOL, V8, P61, DOI 10.1038/nnano.2012.212 Patel RB, 2019, ADV MATER, V31, DOI 10.1002/adma.201902626 Peng LH, 2020, SCI ADV, V6, DOI 10.1126/sciadv.aba2735 Piao JG, 2014, ACS NANO, V8, P10414, DOI 10.1021/nn503779d Pitchaimani A, 2018, BIOMATERIALS, V160, P124, DOI 10.1016/j.biomaterials.2018.01.018 Rao L, 2018, ANGEW CHEM INT EDIT, V57, P986, DOI 10.1002/anie.201709457 Raza F., 2022, NEUROTOX RES, V1, P199 van Eck NJ, 2010, SCIENTOMETRICS, V84, P523, DOI 10.1007/s11192-009-0146-3 Wang DD, 2018, ACS NANO, V12, P5241, DOI 10.1021/acsnano.7b08355 Wang F., 2021, OPT MATER, V13, P14636 Wang ZH, 2019, ADV SCI, V6, DOI 10.1002/advs.201802246 Xiong JQ, 2021, ACS NANO, V15, P19756, DOI 10.1021/acsnano.1c07180 Xuan MJ, 2015, ADV HEALTHC MATER, V4, P1645, DOI 10.1002/adhm.201500129 Yang BB, 2022, NAT MATER, V21, P1074, DOI 10.1038/s41563-022-01274-6 Yang R, 2018, ACS NANO, V12, P5121, DOI 10.1021/acsnano.7b09041 Yao C, 2020, BIOMATERIALS, V257, DOI 10.1016/j.biomaterials.2020.120256 Yao H., 2021, LAND-BASEL, V351, P145 Zafar H., 2023, BIOMATER SCI-UK, V2, P41 Zhang G, 2020, MBIO, V11, DOI 10.1128/mBio.00903-20 Zhang Y, 2018, NANO LETT, V18, P1908, DOI 10.1021/acs.nanolett.7b05263 Zhang Y, 2017, ACS NANO, V11, P11923, DOI 10.1021/acsnano.7b06968 Zhao YN, 2021, BIOMACROMOLECULES, V22, P3149, DOI 10.1021/acs.biomac.1c00440 Zou MZ, 2021, NANO LETT, V21, P8609, DOI 10.1021/acs.nanolett.1c02482 NR 42 TC 0 Z9 0 U1 4 U2 17 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA POSTFACH 101161, 69451 WEINHEIM, GERMANY EI 2056-6646 J9 GLOB CHALL JI Glob. Chall. PD APR PY 2023 VL 7 IS 4 DI 10.1002/gch2.202200206 EA FEB 2023 PG 13 WC Multidisciplinary Sciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Science & Technology - Other Topics GA J7NA2 UT WOS:000935244400001 PM 37020629 OA gold, Green Published DA 2024-09-05 ER PT C AU Aparicio, G Catalán, E AF Aparicio, Gloria Catalan, Elena BE Chova, LG Martinez, AL Torres, IC TI THE CURRENT STATE OF STUDENT ENGAGEMENT AT UNIVERSITIES. REVIEW OF IATED CONGRESS PAPERS (2011-2015) SO EDULEARN16: 8TH INTERNATIONAL CONFERENCE ON EDUCATION AND NEW LEARNING TECHNOLOGIES SE EDULEARN Proceedings LA English DT Proceedings Paper CT 8th International Conference on Education and New Learning Technologies (EDULEARN) CY JUL 04-06, 2016 CL Barcelona, SPAIN DE Student Engagement; Active Learning and Teaching Methodologies; Bibliometric Review ID HIGHER-EDUCATION AB The impact of recent generations who have grown in up in an information society is displacing the concept of teachers' roles in conveying and transferring knowledge. Neither students nor instructors have ever had access to such accurate, diverse and multidisciplinary means for the teaching-learning process. However, never has there been such a large distance separating them or such unease. Globalisation has changed the structure of production since the 1990s, creating the need for people with high capacity to adapt to changes that occur in companies and the economy in general. Simultaneously, the information society has drastically revolutionised interpersonal paradigms as well as access to knowledge, causing deep social, political and economic transformations. In this context of rapid change, the university as an institution, and the various levels of its organisation have also been plunged into a paradigm adaption process in order to integrate into the system. In the particular case of adaptation of the Spanish university system to the EHEA (European Higher Education Area), lecturers' direct involvement in the process due to their relationship with students has led them to rethink education. This has required shifting from a lecturer-centred model to a student-centred one. In view of the challenge involving such a profound cultural change for universities, which are organisationally complex, endeavours have been made to give the new model more flexible guidelines by earmarking resources for training to transform methodology. However, this entire process has taken place in a context of economic crisis. Teachers have therefore often had to assume major changes as per the time and effort devoted while also working with facilities that have not been adapted to the new methodologies due to lack of investment in infrastructures. In effect, it has been necessary to accept changes without any budgetary support, above all in public education where constant cutbacks have limited possibilities for action. Involving, motivating, making students participate and ultimately achieving their academic and emotional engagement in their own learning process and recognition of the university are the challenges that today's universities must face. This takes place within a broader movement with deep international implications, the so called Student Engagement, which is still somewhat only tentatively seen on the Spanish university panorama. However, it is becoming increasingly important from the perspective of research, education, theory and debate on its content as well as teaching praxis due to the growing evidence of its critical role in students' success and learning. The main contribution of this work consists of analysis of the content of papers given at IATED congresses in the last five years. The texts are organised by year, county, and theme to draw conclusions on the main ideas we observe, focusing on an overall view of each group of studies conducted on Student Engagement. We consider this as the current state of the issue or roadmap of the topic in the leading congresses on education innovation in Spain where the events were organised and also on the international scene. C1 [Aparicio, Gloria; Catalan, Elena] Univ Basque Country UPV EHU, Leioa, Spain. C3 University of Basque Country RP Aparicio, G (corresponding author), Univ Basque Country UPV EHU, Leioa, Spain. RI Aparicio, Gloria/L-1866-2017 OI Aparicio, Gloria/0000-0001-6878-3353 CR ASTIN AW, 1984, J COLL STUDENT DEV, V25, P297 Coates H., 2010, HIGH EDUC, V60, P121 Johnson M.K., 2001, ANN M AM ED RES ASS Kahu ER, 2013, STUD HIGH EDUC, V38, P758, DOI 10.1080/03075079.2011.598505 Kember D, 1997, LEARN INSTR, V7, P255, DOI 10.1016/S0959-4752(96)00028-X Kuh G., 2003, NATL SURVEY STUDENT Kuh George D., 2001, The National Survey of Student Engagement: Conceptual framework and overview of Psychometric Properties Trowler P., 2010, STUDENT ENGAGEMENT E NR 8 TC 0 Z9 0 U1 0 U2 3 PU IATED-INT ASSOC TECHNOLOGY EDUCATION A& DEVELOPMENT PI VALENICA PA LAURI VOLPI 6, VALENICA, BURJASSOT 46100, SPAIN SN 2340-1117 BN 978-84-608-8860-4 J9 EDULEARN PROC PY 2016 BP 5889 EP 5894 PG 6 WC Education & Educational Research; Education, Scientific Disciplines WE Conference Proceedings Citation Index - Science (CPCI-S); Conference Proceedings Citation Index - Social Science & Humanities (CPCI-SSH) SC Education & Educational Research GA BH7TE UT WOS:000402955905149 DA 2024-09-05 ER PT C AU Rúbio, TRPM Gulo, CASJ AF Rubio, Thiago R. P. M. Gulo, Carlos A. S. J. BE Rocha, A Reis, LP Cota, MP Suarez, OS Goncalves, R TI Enhancing Academic Literature Review through Relevance Recommendation Using Bibliometric and Text-based Features for Classification SO 2016 11TH IBERIAN CONFERENCE ON INFORMATION SYSTEMS AND TECHNOLOGIES (CISTI) SE Iberian Conference on Information Systems and Technologies LA English DT Proceedings Paper CT 11th Iberian Conference on Information Systems and Technologies (CISTI) CY JUN 15-18, 2016 CL SPAIN DE Systematic Literature Review (SLR); Machine Learning; Classification; Text Mining; Bibliometric AB The growing number of scientific publications and the availability of information in online repositories enable researchers to discover, analyze and maintain an updated state of the art bibliography. Indeed, few works explore this scenario in order to support researchers on the literature review step. Literature reviewing comprises a fundamental part of the scientific writing, in which publications are evaluated and selected by relevance. Different approaches for relevance are possible, whether a more qualitative (semantic) approach with text-based techniques either more quantitative (numerical) approaches that use article's metadata, such as bibliometric measures. Bibliometrics provide direct evidences of relevance and could represent good attributes for automatic classification. Our insight is that if a bibliometric-based cannot outperform text-based approaches, a hybrid model using both could benefit from it enhancing the classification performance (in terms of accuracy, precision and recall). In this paper we presented a novel approach, using Machine Learning (ML), namely the ID3 algorithm for a classification model that learn from specialist annotated data and recommend relevant papers for a specific research. Experiments showed good results on learning performance when using a hybrid approach, increasing testing performance in 12%, achieving 89.05% in accuracy when classifying a paper as relevant. C1 [Rubio, Thiago R. P. M.] Univ Porto, Fac Engn, DEI, LIACC Artificial Intelligence & Comp Sci Lab, Oporto, Portugal. [Gulo, Carlos A. S. J.] Univ Porto, Fac Engn, UNEMAT Brazil, PIXEL Res Grp, Oporto, Portugal. C3 Universidade do Porto; Universidade do Porto RP Rúbio, TRPM (corresponding author), Univ Porto, Fac Engn, DEI, LIACC Artificial Intelligence & Comp Sci Lab, Oporto, Portugal. EM reis.thiago@fe.up.pt; sander@unemat.br CR Bertin M., 2014, PLOS NEGLECT TROP D, V1, P920 Blei D. M., 2005, ADV NEURAL INFORM PR, V18, P147 Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993 Chen CM, 2006, J AM SOC INF SCI TEC, V57, P359, DOI 10.1002/asi.20317 Cronin B., 2005, The hand of science: Academic writing and its rewards. Lanham De Bellis N, 2009, Bibliometrics and Citation Analysis: From the Science Citation Index to Cybermetrics Demmer-Fushman D., 2005, AMIA ANN S P ARCH Dhingra V., 2012, IJWEST, V3, P121 Gulo C. A. S. J., 2015, P 10 DOCT S INF ENG Gulo C. A. S. J., 2015, OASICS OPENACCESS SE Jeonghee Y., 2000, INT DAT ENG APPL S LAWANI SM, 1986, SCIENTOMETRICS, V9, P13, DOI 10.1007/BF02016604 Li DC, 2013, IEEE INT C BIOINF BI Manning C. D., 2014, 52 ANN M ACL SYST DE Mayr P., 2014, ADV INFORM RETRIEVAL, V9022, P845 McCallum Andrew Kachites, 2002, MALLET: A machine learning for language toolkit Moed H, 2014, SCIENTOMETRICS, V101, P1987, DOI 10.1007/s11192-014-1307-6 Okoli C, 2015, COMMUN ASSOC INF SYS, V37, P879 White HD, 2007, J AM SOC INF SCI TEC, V58, P583, DOI 10.1002/asi.20542 NR 19 TC 0 Z9 0 U1 0 U2 9 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA SN 2166-0727 BN 978-989-98434-6-2 J9 IBER CONF INF SYST PY 2016 PG 6 WC Computer Science, Information Systems; Engineering, Electrical & Electronic WE Conference Proceedings Citation Index - Science (CPCI-S) SC Computer Science; Engineering GA BF6BA UT WOS:000382923300256 DA 2024-09-05 ER PT J AU Cheng, CH Holsapple, CW Lee, A AF Cheng, CH Holsapple, CW Lee, A TI Citation-based journal rankings for AI research - A business perspective SO AI MAGAZINE LA English DT Article AB A significant and growing area of business-computing research is concerned with AI. Knowledge about which journals are the most influential forums for disseminating AI research is important for business school faculty, students, administrators, and librarians. To date, there has been only one study attempting to rank AI journals from a business-computing perspective. It used a subjective methodology, surveying opinions of business faculty about a prespecified list of 30 journals. Here, we report the results of a more objective study. We conducted a citation analysis covering a time period of 5 years to compile 15,600 citations to 1,244 different journals. Based on these data, the journals are ranked in two ways involving the magnitude and the duration of scientific impact each has had in the field of AI. C1 UNIV KENTUCKY,LEXINGTON,KY 40506. C3 University of Kentucky RP Cheng, CH (corresponding author), CHINESE UNIV HONG KONG,SHATIN,HONG KONG. RI Cheng, Chun-Hung/F-6113-2011; holsapple, c w/A-6342-2013; Holsapple, Clyde W/A-2338-2008 CR [Anonymous], 1993, KNOWLEDGE PROCESSING BOBROW DG, 1993, ARTIF INTELL, V59, P5, DOI 10.1016/0004-3702(93)90163-6 CHENG CH, 1995, EXPERT SYST, V12, P1 COOPER RB, 1993, INFORM PROCESS MANAG, V29, P113, DOI 10.1016/0306-4573(93)90027-B Degross J. I, 1992, DIRECTORY MANAGEMENT EOM SB, 1993, DECIS SUPPORT SYST, V9, P237, DOI 10.1016/0167-9236(93)90055-8 Garfield Eugene., 1979, CITATION INDEXING GUPTA UG, 1994, EXPERT SYST APPL, V7, P581, DOI 10.1016/0957-4174(94)90081-7 Holsapple C. W., 1994, Journal of Management Information Systems, V11, P131 HOLSAPPLE CW, 1993, INFORM MANAGE, V25, P231, DOI 10.1016/0378-7206(93)90072-2 ULRICH, 1993, ULRICHS INT PERIODIC 1994, COMMUN ACM, V37, P23 NR 12 TC 11 Z9 12 U1 0 U2 5 PU AMER ASSOC ARTIFICIAL INTELL PI MENLO PK PA 445 BURGESS DRIVE, MENLO PK, CA 94025-3496 SN 0738-4602 J9 AI MAG JI AI Mag. PD SUM PY 1996 VL 17 IS 2 BP 87 EP 97 PG 11 WC Computer Science, Artificial Intelligence WE Science Citation Index Expanded (SCI-EXPANDED) SC Computer Science GA UT195 UT WOS:A1996UT19500005 DA 2024-09-05 ER PT J AU Lathabai, HH Nandy, A Singh, VK AF Lathabai, Hiran H. Nandy, Abhirup Singh, Vivek Kumar TI x-index: Identifying core competency and thematic research strengths of institutions using an NLP and network based ranking framework SO SCIENTOMETRICS LA English DT Article DE Core competency; Expertise indices; Research strength; Thematic strength; x-index ID UNIVERSITIES AB The currently prevailing international ranking systems for institutions are limited in their assessment as they only provide assessments either at an overall level or at very broad subject levels such as Science, Engineering, Medicine, etc. While these rankings have their own usage, they cannot be used to identify best institutions in a specific subject (say Computer Science) by taking into account their performance in different thematic areas of research of the given subject (say Artificial Intelligence or Machine Learning or Computer Vision etc. for the subject Computer Science). This paper tries to bridge this gap by proposing a framework that uses the NLP and Network approach for identifying the core competency of institutions and their thematic research strengths. The core competency can be viewed as a measure of breadth of research capability of an institution in a given subject, whereas thematic research strength can be viewed as depth of research of the institution in a specific theme of a subject. The working of the framework is demonstrated in the area of Computer Science for 195 Indian institutions. The framework can be useful for institutions and the scientometrics research community as a system providing a detailed assessment of the core competency and the research strengths of institutions in different thematic areas. The framework and outcomes can also be useful for funding agencies in devising programs for 'performance-based funding' in 'thrust areas' or 'national priority areas'. C1 [Lathabai, Hiran H.; Nandy, Abhirup; Singh, Vivek Kumar] Banaras Hindu Univ, Dept Comp Sci, Varanasi 221005, Uttar Pradesh, India. C3 Banaras Hindu University (BHU) RP Singh, VK (corresponding author), Banaras Hindu Univ, Dept Comp Sci, Varanasi 221005, Uttar Pradesh, India. EM vivek@bhu.ac.in RI Lathabai, Hiran H/AAF-4552-2019; Nandy, Abhirup/AFR-0690-2022; Singh, Vivek Kumar/O-5699-2019; Nandy, Abhirup/GQA-4428-2022 OI Nandy, Abhirup/0000-0001-8618-0847; Singh, Vivek Kumar/0000-0002-7348-6545; lathabai, hiran/0000-0002-5633-9842 FU DST-NSTMIS [DST/NSTMIS/05/04/2019-20] FX The authors would like to acknowledge the support provided by the DST-NSTMIS funded project-'Design of a Computational Framework for Discipline-wise and Thematic Mapping of Research Performance of Indian Higher Education Institutions (HEIs)', bearing Grant No. DST/NSTMIS/05/04/2019-20, for this work. CR Abramo G, 2020, J INFORMETR, V14, DOI 10.1016/j.joi.2019.100986 Abramo G, 2014, J INFORMETR, V8, P766, DOI 10.1016/j.joi.2014.07.002 Ammar W., 2018, P 2018 C N AM CHAPT, V3, P84, DOI [DOI 10.18653/V1/N18-3011, 10.18653/v1/N18-3011] [Anonymous], 1998, Connections Anowar F., 2015, New trends in networking, P559, DOI [DOI 10.1007/978-3-319-06764-3_72, 10.1007/978-3-319-06764-3_72] Bastian M., 2009, Gephi: An open source software for exploring and manipulating networks Basu A, 2016, SCIENTOMETRICS, V107, P1171, DOI 10.1007/s11192-016-1935-0 Batagelj V., 2012, COMPUT COMPLEX, P2878 Beck S., 2010, GLOBE MAIL Billaut JC, 2010, SCIENTOMETRICS, V84, P237, DOI 10.1007/s11192-009-0115-x Bornmann L, 2014, J INFORMETR, V8, P581, DOI 10.1016/j.joi.2014.04.008 Bowman NA, 2011, HIGH EDUC, V61, P431, DOI 10.1007/s10734-010-9339-1 Costas R, 2007, J INFORMETR, V1, P193, DOI 10.1016/j.joi.2007.02.001 De Boer H., 2015, PERFORMANCE BASED FU Egghe L., 2006, ISSI NEWSLETTER, V2, P8 García JA, 2012, SCIENTOMETRICS, V93, P1081, DOI 10.1007/s11192-012-0740-7 George S, 2020, SCIENTOMETRICS, V122, P127, DOI 10.1007/s11192-019-03286-7 Hirsch JE, 2005, P NATL ACAD SCI USA, V102, P16569, DOI 10.1073/pnas.0507655102 Jeremic V, 2011, SCIENTOMETRICS, V87, P587, DOI 10.1007/s11192-011-0361-6 Lathabai H. H., 2021, P 11 INT WORKSH BIBL Lathabai HH, 2017, SCIENTOMETRICS, V110, P711, DOI 10.1007/s11192-016-2202-0 Lazaridis T, 2010, SCIENTOMETRICS, V82, P211, DOI 10.1007/s11192-009-0048-4 LEVENSHT.VI, 1965, DOKL AKAD NAUK SSSR+, V163, P845 López-Illescas C, 2011, SCIENTOMETRICS, V88, P563, DOI 10.1007/s11192-011-0398-6 Maslen Geof, 2019, New performance-based funding system for universities Pislyakov V, 2014, J ASSOC INF SCI TECH, V65, P2321, DOI 10.1002/asi.23093 Sivertsen G, 2016, RESEARCH ASSESSMENT IN THE HUMANITIES: TOWARDS CRITERIA AND PROCEDURES, P79, DOI 10.1007/978-3-319-29016-4_7 Sorlin S., 2007, Higher Education Policy, V20, P413 Torres-Salinas D, 2011, SCIENTOMETRICS, V88, P771, DOI 10.1007/s11192-011-0418-6 Uddin A, 2016, SCIENTOMETRICS, V106, P1135, DOI 10.1007/s11192-016-1836-2 Zhang J, 2016, J ASSOC INF SCI TECH, V67, P967, DOI 10.1002/asi.23437 NR 31 TC 7 Z9 7 U1 3 U2 24 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0138-9130 EI 1588-2861 J9 SCIENTOMETRICS JI Scientometrics PD DEC PY 2021 VL 126 IS 12 BP 9557 EP 9583 DI 10.1007/s11192-021-04188-3 EA NOV 2021 PG 27 WC Computer Science, Interdisciplinary Applications; Information Science & Library Science WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Computer Science; Information Science & Library Science GA XF4WA UT WOS:000715664900002 DA 2024-09-05 ER PT J AU Schöbel, S Schmitt, A Benner, D Saqr, M Janson, A Leimeister, JM AF Schoebel, Sofia Schmitt, Anuschka Benner, Dennis Saqr, Mohammed Janson, Andreas Leimeister, Jan Marco TI Charting the Evolution and Future of Conversational Agents: A Research Agenda Along Five Waves and New Frontiers SO INFORMATION SYSTEMS FRONTIERS LA English DT Article DE Bibliometric analysis; Chatbot; Conversational agent; Voice assistant; ChatGPT; Large language models; Generative artificial intelligence ID PERSPECTIVE; SYSTEMS; SCIENCE AB Conversational agents (CAs) have come a long way from their first appearance in the 1960s to today's generative models. Continuous technological advancements such as statistical computing and large language models allow for an increasingly natural and effortless interaction, as well as domain-agnostic deployment opportunities. Ultimately, this evolution begs multiple questions: How have technical capabilities developed? How is the nature of work changed through humans' interaction with conversational agents? How has research framed dominant perceptions and depictions of such agents? And what is the path forward? To address these questions, we conducted a bibliometric study including over 5000 research articles on CAs. Based on a systematic analysis of keywords, topics, and author networks, we derive "five waves of CA research" that describe the past, present, and potential future of research on CAs. Our results highlight fundamental technical evolutions and theoretical paradigms in CA research. Therefore, we discuss the moderating role of big technologies, and novel technological advancements like OpenAI GPT or BLOOM NLU that mark the next frontier of CA research. We contribute to theory by laying out central research streams in CA research, and offer practical implications by highlighting the design and deployment opportunities of CAs. C1 [Schoebel, Sofia] Univ Osnabruck, Informat Syst, Osnabruck, Germany. [Schmitt, Anuschka; Janson, Andreas; Leimeister, Jan Marco] Univ St Gallen, Inst Informat Management IWI HSG, St Gallen, Switzerland. [Benner, Dennis; Leimeister, Jan Marco] Univ Kassel, Informat Syst Res Ctr IS Design ITeG, Kassel, Germany. [Saqr, Mohammed] Univ Eastern Finland, Sch Comp, Joensuu, Finland. C3 University Osnabruck; University of St Gallen; Universitat Kassel; University of Eastern Finland RP Schöbel, S (corresponding author), Univ Osnabruck, Informat Syst, Osnabruck, Germany. EM sofia.schoebel@uni-osnabrueck.de; anuschka.schmitt@unisg.ch; benner@uni-kassel.de; mohammed.saqr@uef.fi; andreas.janson@unisg.ch; leimeister@uni-kassel.de RI Saqr, Mohammed/AAH-2520-2020 OI Saqr, Mohammed/0000-0001-5881-3109; Leimeister, Jan Marco/0000-0002-1990-2894; Benner, Dennis/0000-0001-6535-1643; Janson, Andreas/0000-0003-3149-0340 FU Stiftung Innovation in der Hochschullehre"; Swiss National Science Foundation [100013_192718]; Academy of Finland (Suomen Akatemia) Research Council for Natural Sciences and Engineering [350560]; Basic Research Fund (GFF) of the University of St. Gallen; Swiss National Science Foundation (SNF) [100013_192718] Funding Source: Swiss National Science Foundation (SNF) FX The authors acknowledge partial funding of the following funding bodies: "Stiftung Innovation in der Hochschullehre" within the project "Universitaet Kassel digital: Universitaere Lehre neu gestalten", Swiss National Science Foundation (project ID: 100013_192718), Academy of Finland (Suomen Akatemia) Research Council for Natural Sciences and Engineering for the project Towards precision education: Idiographic learning analytics (TOPEILA), Decision Number 350560, and the fifth author acknowledges personal funding from the Basic Research Fund (GFF) of the University of St. Gallen. CR Abedin B, 2022, INFORM SYST FRONT, V24, P691, DOI 10.1007/s10796-022-10313-1 Adam M, 2021, ELECTRON MARK, V31, P427, DOI 10.1007/s12525-020-00414-7 Ahmad R, 2022, INFORM SYST FRONT, V24, P923, DOI 10.1007/s10796-022-10254-9 Allouch M, 2021, SENSORS-BASEL, V21, DOI 10.3390/s21248448 Androutsopoulos I., 1995, NAT LANG ENG, V1, P29, DOI DOI 10.1017/S135132490000005X [Anonymous], 2017, P 2017 CHI C HUM FAC, DOI [DOI 10.1145/3027063.3053246, 10.1145/3027063] Aria M, 2017, J INFORMETR, V11, P959, DOI 10.1016/j.joi.2017.08.007 Baas J, 2020, QUANT SCI STUD, V1, P377, DOI 10.1162/qss_a_00019 Bastian M., 2009, Gephi: An open source software for exploring and manipulating networks Behera RK, 2024, INFORM SYST FRONT, V26, P899, DOI 10.1007/s10796-021-10168-y Benner D., 2022, AIS T HUMAN COMPUTER, V14 Bickmore T., 2001, CHI 2001 Conference Proceedings. Conference on Human Factors in Computing Systems, P396, DOI 10.1145/365024.365304 Bickmore T. W., 2005, ACM Transactions on Computer-Human Interaction, V12, P293, DOI 10.1145/1067860.1067867 Bickmore T, 2020, PROCEEDINGS OF THE 20TH ACM INTERNATIONAL CONFERENCE ON INTELLIGENT VIRTUAL AGENTS (ACM IVA 2020), DOI 10.1145/3383652.3423869 Bickmore T, 2015, LECT NOTES ARTIF INT, V9238, P332, DOI 10.1007/978-3-319-21996-7_35 BigScience, 2022, BLOOM 176B PAR OP AC BigScience, 2022, BIGSCIENCE RES WORKS Bocklisch T., 2017, NIPS 2017 CONVERSATI Brandtzaeg PB., 2018, Interactions, V25, P38, DOI [10.1145/3236669, DOI 10.1145/3236669] Brown T., 2020, NEURIPS Callejas Z, 2011, EURASIP J ADV SIG PR, DOI 10.1186/1687-6180-2011-6 Cassell J., 1994, P 21 ANN C COMP GRAP, P413, DOI [10.1145/192161, DOI 10.1145/192161.192272] Castelvecchi Davide, 2022, Nature, DOI 10.1038/d41586-022-04383-z Chaves AP, 2021, INT J HUM-COMPUT INT, V37, P729, DOI 10.1080/10447318.2020.1841438 Dale R, 2016, NAT LANG ENG, V22, P811, DOI 10.1017/S1351324916000243 Davenport T. H., 2022, Harvard Business Review De Meo P., 2011, Proceedings of the 2011 11th International Conference on Intelligent Systems Design and Applications (ISDA), P88, DOI 10.1109/ISDA.2011.6121636 Devlin J., 2018, ARXIV Diederich S., 2019, P INT TAG WIRTSCH SI, P1550 Diederich S., 2022, J ASS INF SYST JAIS ELSHAN E, 2023, IEEE T AFFECT COMPUT, DOI DOI 10.1080/07421222.2023.2172776 Elshan E, 2022, INFORM SYST FRONT, V24, P699, DOI 10.1007/s10796-021-10230-9 Feine J, 2019, INT J HUM-COMPUT ST, V132, P138, DOI 10.1016/j.ijhcs.2019.07.009 Fischer J, 2019, PEOPLE NAT, V1, P115, DOI 10.1002/pan3.13 Folstad A, 2019, PROCEEDINGS OF THE 1ST INTERNATIONAL CONFERENCE ON CONVERSATIONAL USER INTERFACES (CUI 2019), DOI 10.1145/3342775.3342784 FRUCHTERMAN TMJ, 1991, SOFTWARE PRACT EXPER, V21, P1129, DOI 10.1002/spe.4380211102 Goudos SK, 2019, IEEE T ANTENN PROPAG, V67, P4022, DOI 10.1109/TAP.2019.2905665 Graesser AC, 2005, IEEE T EDUC, V48, P612, DOI 10.1109/TE.2005.856149 Graesser AC, 2001, AI MAG, V22, P39 Griol D, 2008, SPEECH COMMUN, V50, P666, DOI 10.1016/j.specom.2008.04.001 Haque M. U., 2022, ARXIV Hauswald J, 2016, ACM T COMPUT SYST, V34, DOI 10.1145/2870631 Heyselaar E., 2019, INT WORKSH CHATB RES, P158 Hochreiter S, 1997, NEURAL COMPUT, V9, P1735, DOI [10.1162/neco.1997.9.1.1, 10.1007/978-3-642-24797-2] Huang MH, 2021, J SERV RES-US, V24, P30, DOI 10.1177/1094670520902266 Io HN, 2017, IN C IND ENG ENG MAN, P215, DOI 10.1109/IEEM.2017.8289883 Kendall L, 2020, INFORM SYST FRONT, V22, P585, DOI 10.1007/s10796-020-10015-6 Knote R, 2021, J ASSOC INF SYST, V22, P418, DOI 10.17705/1jais.00667 Kopp S, 2004, COMPUT ANIMAT VIRT W, V15, P39, DOI 10.1002/cav.6 Kramer N. C., 2005, P S AG WANT LIK ART, P55 Kushwaha AK, 2024, INFORM SYST FRONT, V26, P857, DOI 10.1007/s10796-021-10184-y Laban G., 2019, INT WORKSH CHATB RES, P215 Lee K, 2020, INFORM SYST FRONT, V22, P563, DOI 10.1007/s10796-019-09975-1 Li JW, 2016, PROCEEDINGS OF THE 54TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, VOL 1, P994 Luger E, 2016, 34TH ANNUAL CHI CONFERENCE ON HUMAN FACTORS IN COMPUTING SYSTEMS, CHI 2016, P5286, DOI 10.1145/2858036.2858288 Mattioli D., 2022, CHI 2019 P 2019 CHI McTear MF., 2016, CONVERSATIONAL INTER, DOI [DOI 10.1007/978-3-319-32967-3_2, 10.1007/978-3-319-32967-32] NASS C, 1994, HUMAN FACTORS IN COMPUTING SYSTEMS, CHI '94 CONFERENCE PROCEEDINGS - CELEBRATING INTERDEPENDENCE, P72, DOI 10.1145/191666.191703 Nguyen TH, 2022, INFORM SYST FRONT, V24, P797, DOI 10.1007/s10796-021-10212-x Norris M, 2007, J INFORMETR, V1, P161, DOI 10.1016/j.joi.2006.12.001 Perianes-Rodriguez A, 2016, J INFORMETR, V10, P1178, DOI 10.1016/j.joi.2016.10.006 Porra J, 2020, INFORM SYST FRONT, V22, P533, DOI 10.1007/s10796-019-09969-z Poser M, 2022, INFORM SYST FRONT, V24, P771, DOI 10.1007/s10796-022-10265-6 Qiu LY, 2009, J MANAGE INFORM SYST, V25, P145, DOI 10.2753/MIS0742-1222250405 Ramesh Aditya, 2022, Hierarchical Text-Conditional Image Generation with CLIP Latents, P2 Rethlefsen ML, 2021, SYST REV-LONDON, V10, DOI 10.1186/s13643-020-01542-z Revang M., 2022, GARTNER REPORTS Rheu M, 2021, INT J HUM-COMPUT INT, V37, P81, DOI 10.1080/10447318.2020.1807710 Rombach R, 2022, PROC CVPR IEEE, P10674, DOI 10.1109/CVPR52688.2022.01042 Rzepka C., 2018, P 39 INT C INF SYST, P1 Rzepka C, 2022, INFORM SYST FRONT, V24, P839, DOI 10.1007/s10796-021-10226-5 Schmitt A., 2021, 42 INT C INF SYST AU, P1 Schmitt Anuschka, 2021, ECIS 2021 RES PAPERS, V143 Schwede M., 2022, INT C INF SYST Seaborn K, 2021, ACM COMPUT SURV, V54, DOI 10.1145/3386867 Sedik A., 2022, J TURK-GER GYNECOL A, V177 Shang L, 2015, ARXIV Short J., 1976, The Social Psychology of Telecommunications Singh VK, 2021, SCIENTOMETRICS, V126, P5113, DOI 10.1007/s11192-021-03948-5 Smutny P, 2020, COMPUT EDUC, V151, DOI 10.1016/j.compedu.2020.103862 Stieglitz S, 2022, INFORM SYST FRONT, V24, P745, DOI 10.1007/s10796-021-10201-0 Stokel-Walker Chris, 2022, Nature, DOI 10.1038/d41586-022-04397-7 Sun J, 2022, IUI'22: 27TH INTERNATIONAL CONFERENCE ON INTELLIGENT USER INTERFACES, P212, DOI 10.1145/3490099.3511119 Suta P., 2020, INT J MECH ENG ROBOT, V9, P502, DOI DOI 10.18178/IJMERR.9.4.502-510 Taylor R., 2022, ARXIV Thoppilan R., 2022, ARXIV Trinidad M, 2021, IEEE ACCESS, V9, P46505, DOI 10.1109/ACCESS.2021.3063986 Van Pinxteren MME, 2020, J SERV MANAGE, V31, P203, DOI 10.1108/JOSM-06-2019-0175 Vertegaal R., 2001, P SIGCHI C HUMAN FAC, P301, DOI DOI 10.1145/365024.365119 Vössing M, 2022, INFORM SYST FRONT, V24, P877, DOI 10.1007/s10796-022-10284-3 Wahde M., 2022, ARXIV, DOI DOI 10.1142/9789811246050 Wallace RS., 2009, PARSING TURING TEST, P181, DOI [10.1007/978-1-4020-6710-5_13, DOI 10.1007/978-1-4020-6710-5_13] Wambsganss T., 2021, P 2021 CHI C HUM FAC, P1, DOI [DOI 10.1145/3411764.3445781, 10.1145/3411764.3445781] WEIZENBAUM J, 1966, COMMUN ACM, V9, P36, DOI 10.1145/357980.357991 Winkler R., 2018, Unleashing the Potential of Chatbots in Education: A State-Of-The-Art Analysis NR 95 TC 15 Z9 15 U1 17 U2 79 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 1387-3326 EI 1572-9419 J9 INFORM SYST FRONT JI Inf. Syst. Front. PD APR PY 2024 VL 26 IS 2 SI SI BP 729 EP 754 DI 10.1007/s10796-023-10375-9 EA APR 2023 PG 26 WC Computer Science, Information Systems; Computer Science, Theory & Methods WE Science Citation Index Expanded (SCI-EXPANDED) SC Computer Science GA MX9W3 UT WOS:000972807600001 OA Green Accepted, hybrid DA 2024-09-05 ER PT J AU Haghighat, M Hayatdavoudi, J AF Haghighat, Mansour Hayatdavoudi, Javad TI How hot are hot papers? The issue of prolificacy and self-citation stacking SO SCIENTOMETRICS LA English DT Article DE Self-citation; Hot paper; Web of science; Co-citation; Co-author; Co-word ID SCIENCE AB The nature of self-citation is not unequivocal as it fluctuates across the borders of approbation and condemnation. While it is tenable that scholars tend to build upon and thus appeal to their previous work, excessive self-citation is considered as a likely strategic tool to showcase one's achievement, inflate citations, and distort bibliometric indices. The present study aimed to explore how self-citation may affect hot paper designation in Web of Science (WoS) in a short-term citation window. To this end, we studied the self-citation behavior of the authors contributing a sample of hot papers in a select number of journals over two consecutive periods. The cited and citing papers were analyzed in terms of synchronous and diachronous self-citations as well as co-authorship and co-citation networks. The results showed that self-citation evidently proved problematic in as short a citation window of hot papers as two months. The results also suggested that including too many cited references in a given article might be a potential strategy to inflate citations. Thus, we suggest that hot paper designation should assume sensitivity to self-citation, or at least, excessive self-citations by either ruling them out or setting limits on how often an author can reasonably cite earlier works. Still, this is not an attempt at policing excessive self-citation practice of a group of authors and by no means intends to criticize the authors; rather, we aimed to cite an example of how excessive self-citation practice may distort the original agenda of a bibliometric designation in WoS, hot papers. C1 [Haghighat, Mansour] Shiraz Univ, Sch Sci, Dept Phys, Shiraz, Iran. [Haghighat, Mansour] ISC, Deputy Res Affairs, Shiraz, Iran. [Hayatdavoudi, Javad] ISC, Dept Anal Resources, Shiraz, Iran. C3 Shiraz University RP Hayatdavoudi, J (corresponding author), ISC, Dept Anal Resources, Shiraz, Iran. EM javad.hayatdavoudi@gmail.com OI Hayatdavoudi, Javad/0000-0002-7529-3499 CR Aksnes DW, 2003, SCIENTOMETRICS, V56, P235, DOI 10.1023/A:1021919228368 Baccini A, 2019, PLOS ONE, V14, DOI 10.1371/journal.pone.0221212 Bartneck C, 2011, SCIENTOMETRICS, V87, P85, DOI 10.1007/s11192-010-0306-5 Baumgartner SE, 2014, J ASSOC INF SCI TECH, V65, P797, DOI 10.1002/asi.23009 BONZI S, 1990, P ASIS ANNU MEET, V27, P204 Bornmann L, 2018, SCIENTOMETRICS, V116, P655, DOI 10.1007/s11192-018-2772-0 BRAAM RR, 1991, J AM SOC INFORM SCI, V42, P233, DOI 10.1002/(SICI)1097-4571(199105)42:4<233::AID-ASI1>3.0.CO;2-I Carley S, 2013, SCIENTOMETRICS, V94, P777, DOI 10.1007/s11192-012-0745-2 Costas R, 2010, SCIENTOMETRICS, V82, P517, DOI 10.1007/s11192-010-0187-7 D'Antuono P., 2019, FALSE MYTH RISE SELF Fowler JH, 2007, SCIENTOMETRICS, V72, P427, DOI 10.1007/s11192-007-1777-2 Garfield E, 2000, SCIENTIST, V14, P4 Garfield E, 1979, CITATION INDEXING IT Glänzel W, 2006, SCIENTOMETRICS, V67, P263, DOI 10.1556/Scient.67.2006.2.8 Glanzel W, 1999, INFORM PROCESS MANAG, V35, P31, DOI 10.1016/S0306-4573(98)00028-4 González-Sala F, 2019, SCIENTOMETRICS, V119, P1345, DOI 10.1007/s11192-019-03101-3 Gross P L, 1927, Science, V66, P385, DOI 10.1126/science.66.1713.385 Ioannidis JPA, 2019, PLOS BIOL, V17, DOI 10.1371/journal.pbio.3000384 Kacem A., 2019, TRACKING SELF CITATI, DOI [10.1101/2019.12.20.884031, DOI 10.1101/2019.12.20.884031] LAWANI SM, 1982, J AM SOC INFORM SCI, V33, P281 MACROBERTS MH, 1989, J AM SOC INFORM SCI, V40, P342, DOI 10.1002/(SICI)1097-4571(198909)40:5<342::AID-ASI7>3.0.CO;2-U Mcveigh M. E., 2002, J SELF CITATION J CI Noruzi A., 2017, WEBOLOGY, V14, P1 Seeber M, 2019, RES POLICY, V48, P478, DOI 10.1016/j.respol.2017.12.004 Simoes N, 2020, J INFORMETR, V14, DOI 10.1016/j.joi.2019.100990 Snyder H, 1998, J INF SCI, V24, P431, DOI 10.1177/016555159802400606 Surwase G., 2011, BOSLA NAT C P IND Szomszor M, 2020, SCIENTOMETRICS, V123, P1119, DOI 10.1007/s11192-020-03417-5 TAGLIACOZZO R, 1977, J DOC, V33, P251, DOI 10.1108/eb026644 Thijs B, 2006, SCIENTOMETRICS, V66, P71, DOI 10.1007/s11192-006-0006-3 van Eck NJ, 2017, SCIENTOMETRICS, V111, P1053, DOI 10.1007/s11192-017-2300-7 Van Noorden R, 2019, NATURE, V572, P578, DOI 10.1038/d41586-019-02479-7 Westney LCH, 1998, J ASS HIST COMPUTING, V1, P1 Zuur A. F, 2018, NEW HOT PAPERS NR 34 TC 4 Z9 4 U1 5 U2 42 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0138-9130 EI 1588-2861 J9 SCIENTOMETRICS JI Scientometrics PD JAN PY 2021 VL 126 IS 1 BP 565 EP 578 DI 10.1007/s11192-020-03749-2 EA OCT 2020 PG 14 WC Computer Science, Interdisciplinary Applications; Information Science & Library Science WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Computer Science; Information Science & Library Science GA PU7XL UT WOS:000579442800006 DA 2024-09-05 ER PT J AU Grobbelaar, S Oosthuizen, R AF Grobbelaar, S. Oosthuizen, R. TI A reflection on Southern Forests: a Journal of Forest Science using bibliometrics SO SOUTHERN FORESTS-A JOURNAL OF FOREST SCIENCE LA English DT Article DE text classification; supervised machine learning; sustainability; network analysis AB Bibliometrics is used to determine patterns in published research. The aim of this paper is to illustrate the observ- able bibliometric patterns in the journal Southern Forests: a Journal of Forest Science. Frequency analysis and co-occurrence network analysis were performed to identify patterns. Natural Language Processing and Supervised Machine Learning were used to perform text classification. The objective of the text classification was to classify articles into 15 themes. Each article was categorised in terms of the two main themes associated with the article. The analysis included 1 574 publications from 1941 to 2020 and confirmed that the journal's change in name and aims were successful in increasing the number of international researchers publishing in the journal. The research institute co-occurrence network diagram illustrates that there are two main research collaboration clusters. The one surrounds Stellenbosch University, and the other encompasses several South African universities and research institutes. Mondi and Sappi were the companies that collaborated the most with independent research institutes. The keywords and theme analysis confirmed that the journal's aim and scope were supported in the publications. The theme analysis also identified themes or aspects with very few publications. The methods illustrated in this paper can be used to identify research strengths and weaknesses and may assist in strategic planning for future research prioritisation. C1 [Grobbelaar, S.; Oosthuizen, R.] Univ Pretoria, Dept Engn & Technol Management, Fac Engn Built Environm & IT, Hatfield, South Africa. C3 University of Pretoria RP Grobbelaar, S (corresponding author), Univ Pretoria, Dept Engn & Technol Management, Fac Engn Built Environm & IT, Hatfield, South Africa. EM schalk.grobbelaar@up.ac.za RI Oosthuizen, Rudolph/AAH-9253-2021; Grobbelaar, Schalk/AFE-2046-2022 OI Oosthuizen, Rudolph/0000-0002-2333-6995; Grobbelaar, Schalk/0000-0001-8148-2440 CR Ackerman PA, 2017, SOUTH FORESTS, V79, P329, DOI 10.2989/20702620.2016.1255380 [Anonymous], 2012, S AFRICAN FORESTRY H Bastian M., 2009, Gephi: An open source software for exploring and manipulating networks BROADUS RN, 1987, SCIENTOMETRICS, V12, P373, DOI 10.1007/BF02016680 du Toit B, 2011, SOUTH FORESTS, V73, pIII, DOI 10.2989/20702620.2011.610878 Elsevier, 2021, SCOPUS Fisher IE, 2016, INTELL SYST ACCOUNT, V23, P157, DOI 10.1002/isaf.1386 Gianey HK, 2017, 2017 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND DATA SCIENCE (MLDS 2017), P37, DOI 10.1109/MLDS.2017.11 Grobbelaar S, 2021, SOUTH FORESTS, V83, P28, DOI 10.2989/20702620.2020.1813646 Informa UK, 2021, AIMS SCOP SO FOR J F Kowsari K, 2019, INFORMATION, V10, DOI 10.3390/info10040150 Little KM, 2014, SOUTH FORESTS, V76, P67, DOI 10.2989/20702620.2014.893683 Marais G, 2007, SOUTH HEMISPH FOR J, V69, pV, DOI 10.2989/19919310709505186 Martin S, 2011, PROC SPIE, V7868, DOI 10.1117/12.871402 Mund Sumit., 2015, Microsoft azure machine learning Notz M., 2019, ICEBI P 3 INT C E BU, P8, DOI [10.1145/3383902.3383904, DOI 10.1145/3383902.3383904] Oosthuizen R., 2020, ELSEVIER 29 INT C IN Owen, 2002, SOUTH AFR FOR J, V193, P81, DOI [10.1080/20702620.2002.10433521, DOI 10.1080/20702620.2002.10433521] Owen, 2006, SOUTH AFR FOR J, V164, P1059 Owen, 2005, SOUTH AFR FOR J, V203, P1, DOI [10.2989/10295920509505212, DOI 10.2989/10295920509505212] Owen, 2003, SOUTH AFR FOR J, V198, P84, DOI [10.1080/20702620.2003.10431740, DOI 10.1080/20702620.2003.10431740] Owen DL, 2008, SOUTH FORESTS, V70, pIII, DOI 10.2989/20702620809486758 Owen DL., 2005, S AFRICAN FORESTRY H, V205, P1, DOI [10.2989/10295920509505231, DOI 10.2989/10295920509505231] Pliuhin Vladyslav, 2019, 2019 IEEE International Scientific-Practical Conference Problems of Infocommunications, Science and Technology (PIC S&T). Proceedings, P631, DOI 10.1109/PICST47496.2019.9061447 Pournelle G. H., 1953, Journal of Mammalogy, V34, P133, DOI 10.1890/0012-9658(2002)083[1421:SDEOLC]2.0.CO;2 PRITCHARD A, 1969, J DOC, V25, P348 Rajput B.S., 2015, IOSR J COMPUT ENG, V17, P76 Sarkar S.D., 2013, International Journal of Computer Applications, V81, P38, DOI DOI 10.5120/14018-2173 Scharkow M, 2013, QUAL QUANT, V47, P761, DOI 10.1007/s11135-011-9545-7 Singh Upendra., 2015, Int. J. Comput. Sci. Trends Technol, V3, P83 Smith C., 2012, S AFRICAN FORESTRY H, P271 Stellenbosch University, 2022, US Wang XR, 2007, IEEE DATA MINING, P697, DOI 10.1109/ICDM.2007.86 WICHT C. L., 1958, EMPIRE FOREST REV, V37, P311 Zhang Yue, 2021, MATRIX ALGEBRA APPRO, V26, P93, DOI [DOI 10.1007/978-981-15-2770-8, 10.1007/s12204-021-2264-x] NR 35 TC 1 Z9 1 U1 0 U2 4 PU TAYLOR & FRANCIS LTD PI ABINGDON PA 2-4 PARK SQUARE, MILTON PARK, ABINGDON OR14 4RN, OXON, ENGLAND SN 2070-2620 EI 2070-2639 J9 SOUTH FORESTS JI South. Forests-A J. Forest Sci. PD APR 3 PY 2022 VL 84 IS 2 BP 93 EP 100 DI 10.2989/20702620.2022.2084353 EA AUG 2022 PG 8 WC Forestry WE Science Citation Index Expanded (SCI-EXPANDED) SC Forestry GA 5F3TU UT WOS:000842800200001 OA Green Submitted DA 2024-09-05 ER PT C AU Anchan, J Laube, D AF Anchan, John Laube, Donna BE Chova, LG Belenguer, DM Torres, IC TI A CONSORTIUM OF COLLABORATION: GOVERNMENT AND POST SECONDARY INSTITUTIONS IN COMMUNITY OUTREACH SO 3RD INTERNATIONAL CONFERENCE OF EDUCATION, RESEARCH AND INNOVATION (ICERI2010) LA English DT Proceedings Paper CT 3rd International Conference of Education, Research and Innovation (ICERI) CY NOV 15-17, 2010 CL Madrid, SPAIN DE University/Industry/Government partnership; Digital Divide; Community Development; Emerging Technologies; Online Learning; Community Outreach AB Universities in Canada and around the world are in a crisis of conflict. With higher tuition, dropping enrollments, increasing class sizes, constrained budgets, aging faculty, increasing salaries, systemic use of sessional and stipendiary instructors, and added demand for corollary revenues and bottom lines, universities are being stretched beyond their limits. Increasingly, the ivory towers have lost their gleam and are under constant pressure to publish or perish, react to grade inflation, increase revenues even as they produce knowledge, conduct quality research, and respond to a Net generation demanding employable credentials (Cote & Allahar, 2007). Thus, educational institutions are under siege. Many of these issues are not recent as we see scholars having raised the alarm bells even in the sixties (Coombs, 1985; Dore, 1976). Nevertheless, with the advent of Toffler's Third Wave, we have emerging technologies challenging our notion of relevant education in relation to pursuit of knowledge. Considerable debate exists on the role and influence of computers in particular and technology in general. While for some like Papert and Zuboff, the computer is a tool, which implies a neutral "social and political content," others like Weizenbaum, Hubert, Dreyfus, and Sullivan question these assumptions (Anchan, 2000; Aronowitz & Giroux, 1993). With some of the greatest criticisms of computer technology having emerged from writers in technology and literature (Roszak, 1986; Stoll, 1995; Hislop, 1995), the influence of technology in the way we learn and interact is undeniable. Conversely, these very same institutions have become isolated ivory towers distanced from their immediate communities that are supposed to be the recipients of progress and development. With the disconnect that has plagued higher institutions of learning, traditional universities have begun to revisit the notion of production of knowledge for its own sake. This is especially true in Canada - where the taxpayers highly subsidize education without having maximized benefit of returns. Amidst the phenomenon of globalization, digital divide and the evolution of McCluhan's the global village, the immediate indigenous communities remain alienated and marginalized (Anchan, 2003a). Yet, not all is lost. Universities have begun to recognize and acknowledge this disconnect; a wave of sweeping reforms and best practices have started to respond to communities and other stakeholders. Many initiatives attempt to bridge the chasm of disconnect between the university and the surrounding communities even as they open access to the remote and marginalized populations (Anchan, 2003b). For instance, on a large global scale, and as the first institution in Canada to become the headquarters for international aboriginal programming affiliated with the prestigious MacArthur Foundation network, the University of Winnipeg will be using the latest technologies from Cisco (TelePresence and WebEx systems) to connect across the country and the around the world. This multimillion dollar project will not only establish world class cutting edge research centre in Canada's newest and most environmentally friendly, Science Complex and Richardson College for the Environment, but also be a project that will integrate many of the community needs across the province and beyond. Online/Distance Education using asynchronous and synchronous deliveries will complement state of the art studios to allow collaborative technologies including both urban bureaucrats and remote communities. C1 [Anchan, John; Laube, Donna] Univ Winnipeg, Winnipeg, MB R3B 2E9, Canada. C3 University of Winnipeg EM j.anchan@uwinnipeg.ca; d.laube@uwinnipeg.ca CR [Anonymous], 2007, ECONOMIST [Anonymous], 2007, Rearch, DOI [DOI 10.1080/15427600701663023, 10.1080/15427600701663023] [Anonymous], 1989, 6 THEORIES CHILD DEV BRONFENBRENNER U, 1993, J PIAGET SY, P3 Campfens H., 1972, COMM NO AFF GOV MAN Campfens Hubert., 1997, COMMUNITY DEV WORLD Chekki D., 1979, Community Development: Theory and Method of Planned Change Dore R., 1981, COMMUNITY DEV Frank F., 1999, The community development handbook Grabill JeffreyT., 2007, Writing Community Change: Designing Technologies for Citizen Action. New Dimensions in Computers and Composition Marshall H.Peter., 1976, The Challenges of a Community Development Role for the Public University: Description and Analysis of a Pilot Extension Effort Prensky M, 2001, DIGITAL NATIVES DIGI Public Safety Canada, 2009, AB PEOPL COLL COMM M Renn KA, 2003, J HIGH EDUC, V74, P261, DOI 10.1353/jhe.2003.0025 Singh P., 1982, COMMUNITY DEV PROGRA Tapscott D., 2009, Higher education is stuck in the Middle Ages - Will universities adapt or die off in our digital world? Tissington L. D., 2003, J INSTRUCTIONAL PSYC, V34, P106 Wall D., 1990, DISTANCE ED SUSTAINA NR 18 TC 0 Z9 0 U1 0 U2 5 PU IATED-INT ASSOC TECHNOLOGY EDUCATION A& DEVELOPMENT PI VALENICA PA LAURI VOLPI 6, VALENICA, BURJASSOT 46100, SPAIN BN 978-84-614-2439-9 PY 2010 PG 7 WC Education & Educational Research WE Conference Proceedings Citation Index - Social Science & Humanities (CPCI-SSH) SC Education & Educational Research GA BEZ06 UT WOS:000318797405031 DA 2024-09-05 ER PT J AU Küçük-Avci, S Topal, M Istanbullu, A AF Kucuk-Avci, Sirin Topal, Murat Istanbullu, Aslihan TI The Effects of the Covid-19 Pandemic on Distance Education in Higher Education: A Bibliometric Analysis Study SO CROATIAN JOURNAL OF EDUCATION-HRVATSKI CASOPIS ZA ODGOJ I OBRAZOVANJE LA English DT Article DE COVID-19; distance education; e-learning; higher education; online learning; pandemic ID PUBLICATIONS; TRENDS AB This study aimed to examine the COVID-19 effect on distance education in higher education in the pre-COVID-19 pandemic (January to November 2019) and postCOVID-19 pandemic periods (December 2019 and January to December 2020). Two different meta-data sets, consisting of 580 articles for the pre-COVID-19 period and 746 for the post-COVID-19 period, obtained by querying the Web of Science database, were used for analysis. SciMAT and Vosviewer software were used for bibliometric analysis. Publications from the two different periods were compared according to keywords, words from abstracts, based on the criteria using co-occurrence and co-word analysis. The results of the keyword co-occurrence analysis show that the keywords "e-learning" and "online learning" were used more in the post-COVID- 19 period compared to the pre-pandemic period. In the pre-pandemic period, the thematic trend of academic studies largely aligned with students and satisfaction. However, in the post-pandemic period, the research trend was mostly toward such themes as video lectures and web 2.0 technologies. The research results show that the impact of COVID-19 was reflected in the research published in the post-pandemic period, with the interest in e-learning and online learning increasing in higher education, alongside a trend towards investigating the delivery of instruction rather than conducting student-centered studies. C1 [Kucuk-Avci, Sirin] Akdeniz Univ, Fac Educ, Dept Curriculumn & Instruct, Dumlupinar Bulvari,Kampus Antalya, TR-07058 Antalya, Turkey. [Topal, Murat] Sakarya Univ, Fac Educ, Dept Comp Educ & Instruct Technol, TR-54300 Hendek, Province Sakary, Turkey. [Istanbullu, Aslihan] Amasya Univ, Vocat Sch Tech Sci, Dept Comp Technol, Seyhcui Mah Kemal Nehrozoglu Cad 92 B, TR-05100 Merkez, Amasya, Turkey. C3 Akdeniz University; Sakarya University; Amasya University RP Küçük-Avci, S (corresponding author), Akdeniz Univ, Fac Educ, Dept Curriculumn & Instruct, Dumlupinar Bulvari,Kampus Antalya, TR-07058 Antalya, Turkey. EM sirinavci@akdeniz.edu.tr; mtopal@sakarya.edu.tr; aslihan.babur@amasya.edu.tr RI Topal, Murat/AAB-1651-2022; Kucuk-Avci, Sirin/IQU-6674-2023 OI Topal, Murat/0000-0001-5270-426X; Kucuk-Avci, Sirin/0000-0002-5518-0542 CR Almaiah Mohammed Amin, 2019, Education and Information Technologies, V24, P885, DOI 10.1007/s10639-018-9810-7 Alqahtani AY, 2020, EDUC SCI, V10, DOI 10.3390/educsci10090216 Aristovnik A, 2020, SUSTAINABILITY-BASEL, V12, DOI 10.3390/su12219132 Asia Pacific University of Technology & Innovation, 2020, COVID 19 UPD ADV Bozkurt A., 2020, Acikogretim Uygulamalari ve Arastirmalari Dergisi, V6, P112 Bozkurt A., 2020, Asian Journal of Distance Education, V15, P1, DOI [10.5281/zenodo.3878572, DOI 10.5281/ZENODO.3878572] Bozkurt A., 2020, Asian Journal of Distance Education, V15, P1, DOI [10.5281/zenodo.3778083, DOI 10.5281/ZENODO.3778083] Bozkurt A, 2015, INT REV RES OPEN DIS, V16, P330 Casado-Aranda LA, 2021, ENVIRON RES, V193, DOI 10.1016/j.envres.2020.110416 Cobo MJ, 2012, J AM SOC INF SCI TEC, V63, P1609, DOI 10.1002/asi.22688 De Felice F, 2020, IN VIVO, V34, P1613, DOI 10.21873/invivo.11951 De Giusti Armando, 2020, Rev. iberoam. tecnol. educ. educ. tecnol., P110 Di Pietro G., 2020, The likely impact of COVID-19 on education: Reflections based on the existing literature and recent international datasets, V30275, DOI [DOI 10.2760/126686, 10.2760/126686] El Mohadab M, 2020, CHAOS SOLITON FRACT, V139, DOI 10.1016/j.chaos.2020.110052 Ertug C.A. N., 2020, A IK GRETIM UYGULAMA, V6, P11 Gewin V, 2020, NATURE, V580, P295, DOI 10.1038/d41586-020-00896-7 Goksu I, 2021, TELEMAT INFORM, V56, DOI 10.1016/j.tele.2020.101491 Harzing A.W., 2007, Publish or perish Hodges C. B., 2020, DIFFERENCE EMERGENCY Kasemodel M G. C., 2016, International Journal of Food Studies, V5, P73, DOI DOI 10.7455/IJFS/5.1.2016.A7 Keskin M., 2020, Izmir Katip Celebi Univ Saglik Bilim Derg, V5, P59 Lau J., 2020, Times Higher Education Li HJ, 2016, PHYSICA A, V450, P657, DOI 10.1016/j.physa.2016.01.017 Martí-Parreño J, 2016, J COMPUT ASSIST LEAR, V32, P663, DOI 10.1111/jcal.12161 Moore M., 1990, CONT ISSUES AM DISTA, pxii Sigala M, 2020, J BUS RES, V117, P312, DOI 10.1016/j.jbusres.2020.06.015 Sukendro S, 2020, HELIYON, V6, DOI 10.1016/j.heliyon.2020.e05410 Telli SG, 2020, UNIVERSITE ARASTIRMA, V3, P25, DOI DOI 10.32329/UAD.711110 United Nations Educational Scientific and Cultural Organization, 2020, COVID-19 Educational disruption and response van Eck NJ, 2017, SCIENTOMETRICS, V111, P1053, DOI 10.1007/s11192-017-2300-7 WHO, 2021, WHO DIR GEN OP REM M World Health Organization, COR DIS COVID 19 ADV Yalcin, 2020, KURESEL SALGIN ONCES Yang KL, 2020, INTEGR MED RES, V9, DOI 10.1016/j.imr.2020.100490 Yu YT, 2020, ANN TRANSL MED, V8, DOI 10.21037/atm-20-4235 Zawacki-Richter O, 2016, DISTANCE EDUC, V37, P245, DOI 10.1080/01587919.2016.1185079 Zhang WN, 2020, J RISK FINANC MANAG, V13, DOI 10.3390/jrfm13030055 Zhao XB, 2017, AUTOMAT CONSTR, V80, P37, DOI 10.1016/j.autcon.2017.04.002 Zimmerman J., 2020, The Chronicle of Higher Education NR 39 TC 5 Z9 5 U1 2 U2 50 PU FAC TEACHER EDUCATION PI ZAGREB PA UNIV ZAGREB, SAVSKA CESTA 77, ZAGREB, 00000, CROATIA SN 1848-5189 EI 1848-5197 J9 CROAT J EDUC JI Croat. J. Educ. PY 2022 VL 24 IS 2 BP 457 EP 488 DI 10.15516/cje.v24i2.4534 PG 32 WC Education & Educational Research WE Social Science Citation Index (SSCI) SC Education & Educational Research GA 3F6KW UT WOS:000830776800004 OA Green Published DA 2024-09-05 ER PT C AU Nakatoh, T Nagatani, K Minami, T Hirokawa, S Nanri, T Funamori, M AF Nakatoh, Tetsuya Nagatani, Kenta Minami, Toshiro Hirokawa, Sachio Nanri, Takeshi Funamori, Miho BE Yamamoto, S TI Analysis of the Quality of Academic Papers by the Words in Abstracts SO HUMAN INTERFACE AND THE MANAGEMENT OF INFORMATION: SUPPORTING LEARNING, DECISION-MAKING AND COLLABORATION, HCI INTERNATIONAL 2017, PT II SE Lecture Notes in Computer Science LA English DT Proceedings Paper CT 19th International Conference on Human-Computer Interaction (HCI International) CY JUL 09-14, 2017 CL Vancouver, CANADA DE Bibliometrics; Research investigation; SVM; Citation ID PUBLICATIONS AB The investigation of related research is very important for research activities. However, it is not easy to choose an appropriate and important academic paper from among the huge number of possible papers. The researcher searches by combining keywords and then selects an paper to be checked because it uses an index that can be evaluated. The citation count is commonly used as this index, but information about recently published papers cannot be obtained. This research attempted to identify good papers using only the words included in the abstract. We constructed a classifier by machine learning and evaluated it using cross validation. As a result, it was found that a certain degree of discrimination is possible. C1 [Nakatoh, Tetsuya; Hirokawa, Sachio; Nanri, Takeshi] Kyushu Univ, Res Inst Informat Technol, Nishi Ku, 744 Motooka, Fukuoka, Fukuoka 8190395, Japan. [Nagatani, Kenta] Kyushu Univ, Grad Sch, Fukuoka, Fukuoka, Japan. [Nagatani, Kenta] Kyushu Univ, Fac Informat Sci & Elect Engn, Fukuoka, Fukuoka, Japan. [Minami, Toshiro] Kyushu Inst Informat Sci, Fukuoka, Fukuoka, Japan. [Funamori, Miho] Natl Inst Informat, Tokyo, Japan. C3 Kyushu University; Kyushu University; Kyushu University; Research Organization of Information & Systems (ROIS); National Institute of Informatics (NII) - Japan RP Nakatoh, T (corresponding author), Kyushu Univ, Res Inst Informat Technol, Nishi Ku, 744 Motooka, Fukuoka, Fukuoka 8190395, Japan. EM nakatoh@cc.kyushu-u.ac.jp RI Hirokawa, Sachio/S-3526-2018 OI Hirokawa, Sachio/0000-0002-8050-1109 FU JSPS KAKENHI [24500176]; Grants-in-Aid for Scientific Research [24500176] Funding Source: KAKEN FX This work was partially supported by JSPS KAKENHI Grant Number 24500176. CR [Anonymous], 1964, The Use of Citation Data in Writing the History of Science Ashok V.G., 2013, P 2013 C EMPIRICAL M, P1753 Dasí F, 2012, J CLIN PHARMACOL, V52, P1106, DOI 10.1177/0091270011407916 GARFIELD E, 1955, SCIENCE, V122, P108, DOI 10.1126/science.122.3159.108 Garfield E, 2006, JAMA-J AM MED ASSOC, V295, P90, DOI 10.1001/jama.295.1.90 Hirsch JE, 2005, P NATL ACAD SCI USA, V102, P16569, DOI 10.1073/pnas.0507655102 Kostoff RN, 1996, SCIENTOMETRICS, V36, P281, DOI 10.1007/BF02129595 MarshakovaShaikevich I, 1996, SCIENTOMETRICS, V35, P283, DOI 10.1007/BF02018487 Martin BR, 1996, SCIENTOMETRICS, V36, P343, DOI 10.1007/BF02129599 Nakatoh T., 2017, 22 INT S ART LIF ROB, P742 Nakatoh T, 2015, SMART INNOV SYST TEC, V39, P471, DOI 10.1007/978-3-319-19857-6_40 Nakatoh T, 2015, 2015 IIAI 4TH INTERNATIONAL CONGRESS ON ADVANCED APPLIED INFORMATICS (IIAI-AAI), P166, DOI 10.1109/IIAI-AAI.2015.282 Newman MEJ, 2001, P NATL ACAD SCI USA, V98, P404, DOI 10.1073/pnas.021544898 Otani S, 2014, 2014 IIAI 3RD INTERNATIONAL CONFERENCE ON ADVANCED APPLIED INFORMATICS (IIAI-AAI 2014), P216, DOI 10.1109/IIAI-AAI.2014.53 Schulte J, 2015, HOMEOPATHY, V104, P311, DOI 10.1016/j.homp.2015.06.004 Wuchty S, 2007, SCIENCE, V316, P1036, DOI 10.1126/science.1136099 Zahedi Z, 2014, SCIENTOMETRICS, V101, P1491, DOI 10.1007/s11192-014-1264-0 Zorin NA, 2001, SCIENTOMETRICS, V52, P315, DOI 10.1023/A:1017971908413 NR 18 TC 0 Z9 0 U1 2 U2 5 PU SPRINGER INTERNATIONAL PUBLISHING AG PI CHAM PA GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND SN 0302-9743 EI 1611-3349 BN 978-3-319-58524-6; 978-3-319-58523-9 J9 LECT NOTES COMPUT SC PY 2017 VL 10274 BP 434 EP 443 DI 10.1007/978-3-319-58524-6_34 PN II PG 10 WC Computer Science, Information Systems; Computer Science, Software Engineering; Computer Science, Theory & Methods WE Conference Proceedings Citation Index - Science (CPCI-S) SC Computer Science GA BL6NA UT WOS:000454446400034 DA 2024-09-05 ER PT J AU Polat, H Topuz, AC Yildiz, M Taslibeyaz, E Kursun, E AF Polat, Hamza Topuz, Arif Cem Yildiz, Mine Taslibeyaz, Elif Kursun, Engin TI A Bibliometric Analysis of Research on ChatGPT in Education SO INTERNATIONAL JOURNAL OF TECHNOLOGY IN EDUCATION LA English DT Article DE ChatGPT; Educational technologies; Bibliometric analysis; Generative AI ID ARTIFICIAL-INTELLIGENCE AB ChatGPT has become a prominent tool for fostering personalized and interactive learning with the advancements in AI technology. This study analyzes 212 academic research articles indexed in the Scopus database as of July 2023. It maps the trajectory of educational studies on ChatGPT, identifying primary themes, influential authors, and contributing institutions. By employing bibliometric indicators and network analysis, the study explores collaboration patterns, citation trends, and the evolution of research interests. The findings show the exponential growth of interest in leveraging ChatGPT for educational purposes and provide insights into the specific educational domains and contexts that have garnered the most attention. Furthermore, the study reveals the collaborative dynamics and intellectual foundations shaping the field by examining co-authorship and citation networks. This bibliometric analysis contributes to a comprehensive understanding of the current state of ChatGPT research in education, offering researchers and practitioners valuable insights into evolving trends and potential future directions for this innovative aspect of AI and learning. C1 [Polat, Hamza] Ataturk Univ, Fac Sci Appl, Dept Informat Syst & Technol, Erzurum, Turkiye. [Topuz, Arif Cem] Ardahan Univ, Fac Engn, Dept Comp Engn, TR-75002 Ardahan, Turkiye. [Yildiz, Mine] Ataturk Univ, Kazim Karabekir Educ Fac, Dept Foreign Language Educ, TR-25240 Erzurum, Turkiye. [Taslibeyaz, Elif] Erzincan Binali Yildirim Univ, Fac Educ, Dept Comp Educ & Instruct Technol, Erzincan, Turkiye. [Kursun, Engin] Ataturk Univ, Kazim Karabekir Educ Fac, Dept Comp Educ & Instruct, TR-25240 Erzurum, Turkiye. C3 Ataturk University; Ardahan University; Ataturk University; Erzincan Binali Yildirim University; Ataturk University RP Polat, H (corresponding author), Ataturk Univ, Fac Sci Appl, Dept Informat Syst & Technol, Erzurum, Turkiye. EM hamzapolat@atauni.edu.tr RI Polat, Hamza/HWQ-4414-2023 OI Polat, Hamza/0000-0002-9646-7507; Topuz, Arif Cem/0000-0002-5110-5334; Kursun, Engin/0000-0002-5649-8595 CR AalSaud A. B. F, 2021, International Research in Higher Education, V6, DOI [10.5430/irhe.v6n2p1, DOI 10.5430/IRHE.V6N2P1] Ali JKM., 2023, Journal of English Studies in Arabia Felix, V2, P41, DOI DOI 10.56540/JESAF.V2I1.51 Alzahrani A, 2022, AMAZON INVESTIG, V11, P293, DOI 10.34069/AI/2022.54.06.28 Aria M, 2017, J INFORMETR, V11, P959, DOI 10.1016/j.joi.2017.08.007 Arif TB, 2023, MED EDUC ONLINE, V28, DOI 10.1080/10872981.2023.2181052 Atlas S., 2023, ChatGPT for Higher Education and Professional Development: A guide to conversational AI Baker T., 2019, Educ-AI-tion Rebooted? Exploring the future of artificial intelligence in schools and colleges Bommineni V., 2023, Performance of ChatGPT on the MCAT: The road to personalized and equitable premedical learning, DOI [10.1101/2023.03.05.23286533, DOI 10.1101/2023.03.05.23286533] Boucher EM, 2021, EXPERT REV MED DEVIC, V18, P37, DOI 10.1080/17434440.2021.2013200 Buchanan Christine, 2021, JMIR Nurs, V4, pe23933, DOI 10.2196/23933 Cascella M, 2023, J MED SYST, V47, DOI 10.1007/s10916-023-01925-4 Celik I, 2022, TECHTRENDS, V66, P616, DOI 10.1007/s11528-022-00715-y Chan Kai Siang, 2019, JMIR Med Educ, V5, pe13930, DOI 10.2196/13930 Chiu T. K. F., 2023, Computers and Education: Artificial Intelligence, V4, P100118, DOI DOI 10.1016/J.CAEAI.2022.100118 Chu S T., 2022, Computers and Education: Artificial Intelligence, V3, P100091, DOI [10.1016/j.caeai.2022.100091, DOI 10.1016/J.CAEAI.2022.100091, 10.1016/J.CAEAI.2022.100091] Cobo MJ, 2011, J INFORMETR, V5, P146, DOI 10.1016/j.joi.2010.10.002 Cooper G, 2023, J SCI EDUC TECHNOL, V32, P444, DOI 10.1007/s10956-023-10039-y Cotton DRE, 2024, INNOV EDUC TEACH INT, V61, P228, DOI 10.1080/14703297.2023.2190148 Crescenzi-Lanna L, 2023, J RES TECHNOL EDUC, V55, P21, DOI 10.1080/15391523.2022.2128480 del Río-Rama MD, 2018, EUR J TOUR RES, V19, P56 Donthu N, 2021, J BUS RES, V133, P285, DOI 10.1016/j.jbusres.2021.04.070 Durso SD, 2022, PROBL EDUC 21ST CENT, V80, P679, DOI 10.33225/pec/22.80.679 Dwivedi YK, 2023, INT J INFORM MANAGE, V71, DOI 10.1016/j.ijinfomgt.2023.102642 Eggmann F, 2023, J ESTHET RESTOR DENT, V35, P1098, DOI 10.1111/jerd.13046 Eysenbach Gunther, 2023, JMIR Med Educ, V9, pe46885, DOI 10.2196/46885 Farrokhnia M, 2024, INNOV EDUC TEACH INT, V61, P460, DOI 10.1080/14703297.2023.2195846 Fidan M, 2022, J EDUC COMPUT RES, V60, P1716, DOI 10.1177/07356331221077901 Francisco RE, 2022, CSEDU: PROCEEDINGS OF THE 14TH INTERNATIONAL CONFERENCE ON COMPUTER SUPPORTED EDUCATION - VOL 1, P338, DOI 10.5220/0011084400003182 Gilson Aidan, 2023, JMIR Med Educ, V9, pe45312, DOI 10.2196/45312 Guan C., 2020, International Journal of Innovation Studies, V4, P134, DOI [DOI 10.1016/J.IJIS.2020.09.001, https://doi.org/10.1016/j.ijis.2020.09.001] Haleem A., 2022, BenchCouncil Transactions on Benchmarks, Standards and Evaluations, V2, DOI [10.1016/j.tbench.2023.100089, DOI 10.1016/J.TBENCH.2023.100089] Harmon J, 2021, NURS EDUC TODAY, V97, DOI 10.1016/j.nedt.2020.104700 Heersmink R, 2011, ETHICS INF TECHNOL, V13, P241, DOI 10.1007/s10676-011-9273-7 Hood WW, 2001, SCIENTOMETRICS, V52, P291, DOI 10.1023/A:1017919924342 Huang JS, 2023, AM J CANCER RES, V13, P1148 Huang XY, 2023, EDUC TECHNOL SOC, V26, P112, DOI 10.30191/ETS.202301_26(1).0009 Huang YX, 2023, Arxiv, DOI arXiv:2304.11957 Huh S, 2023, J EDUC EVAL HEALTH P, V20, DOI 10.3352/jeehp.2023.20.1 Hwang GJ, 2021, MATHEMATICS-BASEL, V9, DOI 10.3390/math9060584 Imran M, 2023, CONTEMP EDUC TECHNOL, V15, DOI 10.30935/cedtech/13605 Iqbal S., 2021, MedEdPublish, V10, P41, DOI DOI 10.15694/MEP.2021.000041.1 Jeblick Katharina, 2022, arXiv, DOI 10.48550/arXiv.2212.14882 Jeon J, 2023, INTERACT LEARN ENVIR, DOI 10.1080/10494820.2023.2204343 Jeon J, 2023, COMPUT ASSIST LANG L, V36, P1338, DOI 10.1080/09588221.2021.1987272 Kohnke L, 2023, RELC J, V54, P537, DOI 10.1177/00336882231162868 Kuhail MA, 2023, EDUC INF TECHNOL, V28, P973, DOI 10.1007/s10639-022-11177-3 Lancichinetti A, 2009, PHYS REV E, V80, DOI 10.1103/PhysRevE.80.056117 Liu SR, 2023, medRxiv, DOI [10.1101/2023.02.21.23286254, 10.1101/2023.02.21.23286254, DOI 10.1101/2023.02.21.23286254] Lo CK, 2023, EDUC SCI, V13, DOI 10.3390/educsci13040410 Macdonald C, 2023, J GLOB HEALTH, V13, DOI 10.7189/jogh.13.01003 Mhlanga D., 2023, SSRN Electronic Journal, DOI [DOI 10.2139/SSRN.4354422, 10.2139/ssrn.4354422] Mojadeddi ZM, 2023, NEW ZEAL MED J, V136, P60, DOI 10.26635/6965.6122 Nadarzynski T, 2019, DIGIT HEALTH, V5, DOI 10.1177/2055207619871808 Nguyen PT, 2023, Arxiv, DOI [arXiv:2307.09381, 10.48550/arXiv.2307.09381, DOI 10.48550/ARXIV.2307.09381] Okonkwo CW., 2021, COMPUTERS ED ARTIFIC, V2, P100033, DOI [10.1016/j.caeai.2021.100033, DOI 10.1016/J.CAEAI.2021.100033] Ouyang F, 2022, EDUC INF TECHNOL, V27, P7893, DOI 10.1007/s10639-022-10925-9 Pavlik V. J., 2023, Journalism Mass Communication Educator, V78, P84, DOI DOI 10.1177/10776958221149577 Polat H., 2023, Empowering Education: Exploring the Potential of Artificial Intelligence, P3 Pradana M, 2023, COGENT EDUC, V10, DOI 10.1080/2331186X.2023.2243134 Qureshi R, 2023, SYST REV-LONDON, V12, DOI 10.1186/s13643-023-02243-z Rudolph J., 2023, Journal of Applied Learning and Teaching, V6, P342, DOI [10.37074/jalt.2023.6.1.9, DOI 10.37074/JALT.2023.6.1.23, DOI 10.37074/JALT.2023.6.1.9] Ruksakulpiwat S, 2023, J MULTIDISCIP HEALTH, V16, P1513, DOI 10.2147/JMDH.S413470 Sakirin T, 2023, Mesop J Comput Sci, V2023, P24 Salas-Pilco SZ, 2022, EDUC SCI, V12, DOI 10.3390/educsci12080569 Salas-Pilco SZ, 2022, INT J EDUC TECHNOL H, V19, DOI 10.1186/s41239-022-00326-w Sallam M, 2023, HEALTHCARE-BASEL, V11, DOI 10.3390/healthcare11060887 Salvagno M, 2023, CRIT CARE, V27, DOI 10.1186/s13054-023-04380-2 Sharma S, 2023, CUREUS J MED SCIENCE, V15, DOI 10.7759/cureus.38380 Singh VK, 2021, SCIENTOMETRICS, V126, P5113, DOI 10.1007/s11192-021-03948-5 Song P, 2020, ASIA PAC EDUC REV, V21, P473, DOI 10.1007/s12564-020-09640-2 Swathi M. M., 2023, Journal of Engineering Sciences, V14 Tlili A, 2023, SMART LEARN ENVIRON, V10, DOI 10.1186/s40561-023-00237-x Wollny S, 2021, FRONT ARTIF INTELL, V4, DOI 10.3389/frai.2021.654924 Wu R, 2024, BRIT J EDUC TECHNOL, V55, DOI 10.1111/bjet.13334 Xu WQ, 2022, INT J STEM EDUC, V9, DOI 10.1186/s40594-022-00377-5 Yang S.-C., 2019, P 2019 3 INT C ED E, P79, DOI DOI 10.1145/3371647.3371659 Zawacki-Richter O, 2019, INT J EDUC TECHNOL H, V16, DOI 10.1186/s41239-019-0171-0 Zhai XS, 2021, COMPLEXITY, V2021, DOI 10.1155/2021/8812542 Zhang J, 2016, J ASSOC INF SCI TECH, V67, P967, DOI 10.1002/asi.23437 Zhang RF, 2023, INTERACT LEARN ENVIR, DOI 10.1080/10494820.2023.2202704 Zhu JW, 2020, SCIENTOMETRICS, V123, P321, DOI 10.1007/s11192-020-03387-8 NR 81 TC 4 Z9 4 U1 47 U2 47 PU INT SOC TECHNOLOGY EDUCATION & SCIENCE-ISTES PI MONUMENT PA 19723 LINDENMERE DR, MONUMENT, COLORADO, UNITED STATES EI 2689-2758 J9 INT J TECHNOL EDUC JI Int. J. Technol. Educ. PY 2024 VL 7 IS 1 SI SI BP 59 EP 85 DI 10.46328/ijte.606 PG 27 WC Education & Educational Research WE Emerging Sources Citation Index (ESCI) SC Education & Educational Research GA NB4F0 UT WOS:001197961000004 OA gold DA 2024-09-05 ER PT J AU Kushairi, N Ahmi, A AF Kushairi, Norliza Ahmi, Aidi TI Flipped classroom in the second decade of the Millenia: a Bibliometrics analysis with Lotka's law SO EDUCATION AND INFORMATION TECHNOLOGIES LA English DT Article DE Active learning; Bibliometrics analysis; Lotka's law; Blended learning; Flipped classroom; Flipped learning ID STUDENT PERFORMANCE; PRODUCTIVITY; SCIENCE; ENGAGEMENT; EDUCATION; HIV/AIDS; NIGERIA; AUTHORS; TRENDS; FIELD AB This paper aims to examine the current dynamics of the flipped classroom studies and to propose a direction for future research for the field. Using a bibliometric approach, we observe a sample of 1557 documents from the Scopus database to identify research activity on the flipped classroom. The keywords "flipped classroom" and "flipped learning" have been executed in the search query. We presented the earlier stage of research in the flipped classroom, the subsequent trends, publications status based on source title, country and institution and examined citations pattern of the publication. We also discuss the themes based on the occurrences and terms of the keywords, title and abstract of the documents. This paper also predicts the future study in the flipped classroom using Lotka's law. We found that the pattern distribution of the author's contribution fits with the law. We conclude by suggesting a few potential research directions on the flipped classroom. Research on flipped classroom focuses on approaches, strategies and effectiveness perceived by practitioners and learners with relatively less attention on author's contribution and the prediction on their future and sustainable contribution and networking in guaranteeing the survival and expansion of flipped classroom approach for the coming decades. C1 [Kushairi, Norliza] Univ Utara Malaysia, Sch Educ, Sintok 06010, Kedah, Malaysia. [Ahmi, Aidi] Univ Utara Malaysia, Tunku Puteri Intan Safinaz Sch Accountancy, Sintok 06010, Kedah, Malaysia. C3 Universiti Utara Malaysia; Universiti Utara Malaysia RP Kushairi, N (corresponding author), Univ Utara Malaysia, Sch Educ, Sintok 06010, Kedah, Malaysia. EM drnk@uum.edu.my; aidi@uum.edu.my RI Ahmi, Aidi/F-2858-2013 OI Ahmi, Aidi/0000-0002-8488-6966 CR Abeysekera L, 2015, HIGH EDUC RES DEV, V34, P1, DOI 10.1080/07294360.2014.934336 Adigwe I, 2016, ELECTRON LIBR, V34, P789, DOI 10.1108/EL-02-2014-0024 Ahmi A., 2020, STUDIES INT J ADV SC, V29, P289 Ahmi A., 2019, P 2019 INT C ELECT I, P1 Al-Shabibi T.S., 2019, International Journal of Learning, Teaching and Educational Research, V18, P96, DOI DOI 10.26803/IJLTER.18.3.6 Baker HK, 2020, J BUS RES, V108, P232, DOI 10.1016/j.jbusres.2019.11.025 Bergmann J, 2012, FLIP YOUR CLASSROOM Bhagat KK, 2018, IEEE INT CONF ADV LE, P27, DOI 10.1109/ICALT.2018.00013 Bishop J.L., 2013, P ANN C AM SOC ENG E, P6219 Burnham Judy F, 2006, Biomed Digit Libr, V3, P1 Burns J, 2012, CRIT CARE MED, V40, P3305, DOI 10.1097/CCM.0b013e31826bf117 Chen HQ, 2015, RENEW SUST ENERG REV, V49, P12, DOI 10.1016/j.rser.2015.04.060 Chiu WT, 2007, SCIENTOMETRICS, V73, P3, DOI 10.1007/s11192-005-1523-1 Chuang KY, 2007, SCIENTOMETRICS, V72, P201, DOI [10.1007/s11192-007-1721-0, 10.1007/s11192-007-1693-0] COILE RC, 1977, J AM SOC INFORM SCI, V28, P366, DOI 10.1002/asi.4630280610 Comerio N, 2019, TOURISM ECON, V25, P109, DOI 10.1177/1354816618793762 Dong BS, 2012, SCIENTOMETRICS, V93, P1101, DOI 10.1007/s11192-012-0730-9 Falagas ME, 2008, FASEB J, V22, P338, DOI 10.1096/fj.07-9492LSF Flumerfelt S, 2013, EDUC TECHNOL SOC, V16, P356 Forsey M, 2013, J SOCIOL, V49, P471, DOI 10.1177/1440783313504059 Gilboy MB, 2015, J NUTR EDUC BEHAV, V47, P109, DOI 10.1016/j.jneb.2014.08.008 Jacomy M., 2009, 3 INT AAAI C WEBL SO Jensen JL, 2015, CBE-LIFE SCI EDUC, V14, DOI 10.1187/cbe.14-08-0129 Kim MK, 2014, INTERNET HIGH EDUC, V22, P37, DOI 10.1016/j.iheduc.2014.04.003 Kumar A, 2019, LOGFORUM, V15, P509, DOI 10.17270/J.LOG.2019.366 Kushairi N, 2016, JURNAL IPDA, V23, P137 Kushairi N., 2010, THESIS U BRISTOL ENG Kushairi N, 2018, PEIEP VIA FLIPPED TE Lage MJ, 2000, J ECON EDUC, V31, P11 Lotka A.J., 1926, J Wash Acad Sci Wash D C, V16, P23 Luker C, 2015, J CHEM EDUC, V92, P1564, DOI 10.1021/acs.jchemed.5b00024 McDonald K, 2013, J CONTIN EDUC NURS, V44, P437, DOI 10.3928/00220124-20130925-19 McLaughlin JE, 2014, ACAD MED, V89, P236, DOI 10.1097/ACM.0000000000000086 Missildine K, 2013, J NURS EDUC, V52, P597, DOI 10.3928/01484834-20130919-03 Naheem K.T., 2019, APPL LOTKAS LAW BELL, V2019, P2892 NICHOLLS PT, 1986, INFORM PROCESS MANAG, V22, P417, DOI 10.1016/0306-4573(86)90076-2 Nwagwu WE, 2007, AFR J LIBR ARCH INFO, V17, P1 O'Flaherty J, 2015, INTERNET HIGH EDUC, V25, P85, DOI 10.1016/j.iheduc.2015.02.002 PAO ML, 1985, INFORM PROCESS MANAG, V21, P305, DOI 10.1016/0306-4573(85)90055-X Parslow GR, 2012, BIOCHEM MOL BIOL EDU, V40, P337, DOI 10.1002/bmb.20642 Pierce R, 2012, AM J PHARM EDUC, V76, DOI 10.5688/ajpe7610196 Prober CG, 2012, NEW ENGL J MED, V366, P1657, DOI 10.1056/NEJMp1202451 Rathika N., 2020, INT J EMERG TECHNOL, V11, P332 Sedighi M, 2016, LIBR REV, V65, P52, DOI 10.1108/LR-07-2015-0075 Smit K, 2014, SCAND J EDUC RES, V58, P695, DOI 10.1080/00313831.2013.821090 Smith CM, 2013, J CONTIN EDUC NURS, V44, P486, DOI 10.3928/00220124-20131025-93 Sweileh WM, 2017, BMC MED INFORM DECIS, V17, DOI 10.1186/s12911-017-0476-7 Tucker B., 2012, ED NEXT, V12, P1, DOI DOI 10.4236/OALIB.1107398 Tune JD, 2013, ADV PHYSIOL EDUC, V37, P316, DOI 10.1152/advan.00091.2013 van Eck N.J., 2020, VOSviewer Manual Wen H, 2012, SCIENTOMETRICS, V91, P51, DOI 10.1007/s11192-011-0535-2 Wolbrink Traci A, 2012, J Intensive Care Med, V27, P322, DOI 10.1177/0885066611429539 Yang L, 2017, INT J EMERG TECHNOL, V12, P178, DOI 10.3991/ijet.v12i06.7095 Yang L, 2013, SCIENTOMETRICS, V96, P133, DOI 10.1007/s11192-012-0911-6 Yi H, 2008, SCIENTOMETRICS, V75, P111, DOI 10.1007/s11192-007-1828-3 NR 55 TC 54 Z9 55 U1 14 U2 80 PU SPRINGER PI NEW YORK PA ONE NEW YORK PLAZA, SUITE 4600, NEW YORK, NY, UNITED STATES SN 1360-2357 EI 1573-7608 J9 EDUC INF TECHNOL JI Educ. Inf. Technol. PD JUL PY 2021 VL 26 IS 4 BP 4401 EP 4431 DI 10.1007/s10639-021-10457-8 EA MAR 2021 PG 31 WC Education & Educational Research WE Social Science Citation Index (SSCI) SC Education & Educational Research GA TL6AD UT WOS:000626920500002 PM 33686330 OA Green Published, Bronze DA 2024-09-05 ER PT J AU Tu, K Sun, A Levin, DM AF Tu, Kevin Sun, Angela Levin, Daniel M. TI Using memes to promote student engagement and classroom community during remote learning SO BIOCHEMISTRY AND MOLECULAR BIOLOGY EDUCATION LA English DT Article DE active learning; assessment of educational activities; distance learning; integration of research into undergraduate teaching; memes; molecular biology; teaching and learning techniques methods and approaches; using simulation and internet resources for teaching AB As colleges moved to online teaching during the COVID-19 pandemic, many instructors found it difficult to maintain student engagement and classroom community in the virtual environment. We developed a semester-long activity for a molecular biology research methodology course where students created, and shared original memes related to course content with peers through group chat. Surveys and semi-structured interviews revealed that the exercise was effective in promoting student engagement, a sense of community, and relieving stress. C1 [Tu, Kevin; Sun, Angela; Levin, Daniel M.] Univ Maryland, Dept Teaching & Learning Policy & Leadership, College Pk, MD USA. [Tu, Kevin] Univ Maryland, Dept Cell Biol & Mol Genet, College Pk, MD USA. [Sun, Angela] Univ Maryland, Fischell Dept Bioengn, College Pk, MD USA. [Tu, Kevin] Univ Maryland, Dept Teaching & Learning Policy & Leadership, College Pk, MD 20742 USA. C3 University System of Maryland; University of Maryland College Park; University System of Maryland; University of Maryland College Park; University System of Maryland; University of Maryland College Park; University System of Maryland; University of Maryland College Park RP Tu, K (corresponding author), Univ Maryland, Dept Teaching & Learning Policy & Leadership, College Pk, MD 20742 USA. EM ktu@umd.edu OI Tu, Kevin/0000-0002-0089-3932 CR Holton JA, 2008, GROUNDED THEORY REV, V7, P67 Liu X., 2007, Q REV DISTANCE ED, V8, P9 Means B., 2020, Unmasking inequality: STEM course experiences during the COVID-19 pandemic Perets EA, 2020, J CHEM EDUC, V97, P2439, DOI 10.1021/acs.jchemed.0c00879 Rovai A. P., 2005, Internet and Higher Education, V8, P97, DOI 10.1016/j.iheduc.2005.03.001 Supriya K, 2021, FRONT EDUC, V6, DOI 10.3389/feduc.2021.759624 Wester ER, 2021, J MICROBIOL BIOL EDU, V22, DOI 10.1128/jmbe.v22i1.2385 NR 7 TC 1 Z9 1 U1 2 U2 8 PU WILEY PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1470-8175 EI 1539-3429 J9 BIOCHEM MOL BIOL EDU JI Biochem. Mol. Biol. Educ. PD MAR PY 2023 VL 51 IS 2 BP 202 EP 205 DI 10.1002/bmb.21700 EA DEC 2022 PG 4 WC Biochemistry & Molecular Biology; Education, Scientific Disciplines WE Science Citation Index Expanded (SCI-EXPANDED) SC Biochemistry & Molecular Biology; Education & Educational Research GA A0KF1 UT WOS:000894584100001 PM 36479805 OA hybrid DA 2024-09-05 ER PT J AU Goulding, L AF Goulding, Lauren TI Spotlights: A Bibliometric Analysis of Lab Safety, Machine Learning Predictions of Nanomaterial Toxicity, and Creating Great Titles SO ACS CHEMICAL HEALTH & SAFETY LA English DT Editorial Material; Early Access NR 0 TC 0 Z9 0 U1 0 U2 3 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA EI 1878-0504 J9 ACS CHEM HEALTH SAFE JI ACS Chem. Health Saf. PD 2022 JUN 22 PY 2022 DI 10.1021/acs.chas.2c00049 EA JUN 2022 PG 2 WC Public, Environmental & Occupational Health WE Emerging Sources Citation Index (ESCI) SC Public, Environmental & Occupational Health GA 2Q2DG UT WOS:000820237600001 DA 2024-09-05 ER PT J AU Zhou, X Huang, L Zhang, Y Yu, MM AF Zhou, Xiao Huang, Lu Zhang, Yi Yu, Miaomiao TI A hybrid approach to detecting technological recombination based on text mining and patent network analysis SO SCIENTOMETRICS LA English DT Article DE Patent network analysis; The structure of science revolutions; Bibliometrics; Text mining; Technological recombination; Artificial intelligence ID TECHNICAL INTELLIGENCE; KNOWLEDGE STRUCTURES; INNOVATION; SCIENCE; IMPACT; SIMILARITY; EVOLUTION; PATHWAYS; DYNAMICS; INTERNET AB Detecting promising technology groups for recombination holds the promise of great value for R&D managers and technology policymakers, especially if the technologies in question can be detected before they have been combined. However, predicting the future is always easier said than done. In this regard, Arthur's theory (The nature of technology: what it is and how it evolves, Free Press, New York, 2009) on the nature of technologies and how science evolves, coupled with Kuhn's theory of scientific revolutions (Kuhn in The structure of scientific revolutions, 1st edn, University of Chicago Press, Chicago, p 3, 1962), may serve as the basis of a shrewd methodological framework for forecasting recombinative innovation. These theories help us to set out quantifiable criteria and decomposable steps to identify research patterns at each stage of a scientific revolution. The first step in the framework is to construct a conceptual model of the target technology domain, which helps to refine a reasonable search strategy. With the model built, the landscape of a field-its communities, its technologies, and their interactions-is fleshed out through community detection and network analysis based on a set of quantifiable criteria. The aim is to map normal patterns of research in the domain under study so as to highlight which technologies might contribute to a structural deepening of technological recombinations. Probability analysis helps to detect and group candidate technologies for possible recombination and further manual analysis by experts. To demonstrate how the framework works in practice, we conducted an empirical study on AI research in China. We explored the development potential of recombinative technologies by zooming in on the top patent assignees in the field and their innovations. In conjunction with expert analysis, the results reveal the cooperative and competitive relationships among these technology holders and opportunities for future innovation through technological recombinations. C1 [Zhou, Xiao] Xidian Univ, Sch Econ & Management, 266 Xinglong Sect,Xifeng Rd, Xian 710126, Shaanxi, Peoples R China. [Huang, Lu; Yu, Miaomiao] Beijing Inst Technol, Sch Management & Econ, 5 South Zhong Guan Cun St, Beijing 100081, Peoples R China. [Zhang, Yi] Univ Technol Sydney, Fac Engn & Informat Technol, Ctr Artificial Intelligence, Ultimo, NSW 2007, Australia. C3 Xidian University; Beijing Institute of Technology; University of Technology Sydney RP Huang, L (corresponding author), Beijing Inst Technol, Sch Management & Econ, 5 South Zhong Guan Cun St, Beijing 100081, Peoples R China. EM belinda1214@126.com; huanglu628@163.com; yi.zhang@uts.edu.au; 18165268237@163.com RI Zhang, Yi/AAT-6945-2021 OI Zhang, Yi/0000-0002-7731-0301 CR Albert R, 2002, REV MOD PHYS, V74, P47, DOI 10.1103/RevModPhys.74.47 Alpaydin E, 2016, NEURAL NETWORKS DEEP, P217 [Anonymous], 2016, CHINA TIMES Arjun K, 2016, JAPANS SOFTBANK BUY Arthur W. B., 2009, The Nature of Technology: What It Is and How It Evolves, DOI DOI 10.20396/RBI.V8I2.8648990 Babaeizadeh M., 2016, C INT C LEARN REPR I BAE HS, 2016, C IND ELECT APPL, V22, P1542 Barnett G, 2011, SCIENCE, V334, P1497, DOI 10.1126/science.1215785 Behara RS, 2014, INT J OPER PROD MAN, V34, P1537, DOI 10.1108/IJOPM-08-2013-0390 Bunz M, 2017, ARTIFICIAL INTELLIGE Burse K., 2011, INFORM TECHNOLOGY MO Carley SF, 2018, SCIENTOMETRICS, V115, P35, DOI 10.1007/s11192-018-2654-5 Carley SF, 2017, SCIENTOMETRICS, V111, P2077, DOI 10.1007/s11192-017-2342-x Carnabuci G, 2013, STRATEGIC MANAGE J, V34, P1591, DOI 10.1002/smj.2084 Casares AP, 2018, FUTURES, V103, P5, DOI 10.1016/j.futures.2018.05.002 Choi J, 2014, TECHNOL FORECAST SOC, V83, P170, DOI 10.1016/j.techfore.2013.07.004 Choi S, 2011, SCIENTOMETRICS, V88, P863, DOI 10.1007/s11192-011-0420-z Corredoira RA, 2015, RES POLICY, V44, P508, DOI 10.1016/j.respol.2014.10.003 Corrocher N., 2003, EMERGENCE NEW TECHNO Corrocher N, 2010, RES POLICY, V39, P945, DOI 10.1016/j.respol.2010.04.008 Dhabe PS, 2017, IMPACT J, V5, P55 Dotsika F, 2017, TECHNOL FORECAST SOC, V119, P114, DOI 10.1016/j.techfore.2017.03.020 Elish MC, 2018, COMMUN MONOGR, V85, P57, DOI 10.1080/03637751.2017.1375130 Fleming L, 2004, STRATEGIC MANAGE J, V25, P909, DOI 10.1002/smj.384 Fleming L, 2001, RECOMBINANT UNCERTAI Fortunato S, 2010, PHYS REP, V486, P75, DOI 10.1016/j.physrep.2009.11.002 FREEMAN LC, 1977, SOCIOMETRY, V40, P35, DOI 10.2307/3033543 Freniere C, 2016, COMPUT SCI ENG, V18, P68, DOI 10.1109/MCSE.2016.94 Frutos-Pascual M, 2017, IEEE T COMP INTEL AI, V9, P133, DOI 10.1109/TCIAIG.2015.2512592 Funk RJ, 2017, MANAGE SCI, V63, P791, DOI 10.1287/mnsc.2015.2366 Gallouj F, 1997, RES POLICY, V26, P537, DOI 10.1016/S0048-7333(97)00030-9 Galunic DC, 1998, STRATEGIC MANAGE J, V19, P1193, DOI 10.1002/(SICI)1097-0266(1998120)19:12<1193::AID-SMJ5>3.3.CO;2-6 Gruber M, 2013, MANAGE SCI, V59, P837, DOI 10.1287/mnsc.1120.1572 Guan JC, 2016, RES POLICY, V45, P1460, DOI 10.1016/j.respol.2016.05.002 Gupta Akanksha, 2017, 2017 International Conference on Intelligent Sustainable Systems (ICISS). Proceedings, P1041, DOI 10.1109/ISS1.2017.8389339 Halim Z, 2016, ARTIF INTELL REV, V46, P351, DOI 10.1007/s10462-016-9467-9 Hashimoto DA, 2018, ANN SURG, V268, P70, DOI 10.1097/SLA.0000000000002693 HENDERSON RM, 1990, ADMIN SCI QUART, V35, P9, DOI 10.2307/2393549 Hossain L, 2015, SCIENTOMETRICS, V103, P337, DOI 10.1007/s11192-015-1557-y iFlytek, 2014, HIT IFLYTEK LANG COG Inspur, 2016, INSPUR CO NEWS Kassianos G, 2018, VACCINE, V36, P6546, DOI 10.1016/j.vaccine.2018.02.031 Kelly K., 2016, The Inevitable: Understanding the 12 Technological Forces That Will Shape Our Future Keupp MM, 2013, RES POLICY, V42, P1457, DOI 10.1016/j.respol.2013.04.006 Kim B, 2014, SCIENTOMETRICS, V98, P1811, DOI 10.1007/s11192-013-1097-2 Kuhn T.S., 1962, The structure of scientific revolutions Lee PC, 2010, INNOV-MANAG POLICY P, V12, P26, DOI 10.5172/impp.12.1.26 Lee S, 2009, TECHNOL FORECAST SOC, V76, P769, DOI 10.1016/j.techfore.2009.01.003 Lee Y, 2014, SCIENTOMETRICS, V100, P227, DOI 10.1007/s11192-013-1216-0 Liu ZG, 2015, SCIENTOMETRICS, V103, P135, DOI 10.1007/s11192-014-1517-y Luo Q, 2012, 2012 IEEE 11TH INTERNATIONAL CONFERENCE ON SOLID-STATE AND INTEGRATED CIRCUIT TECHNOLOGY (ICSICT-2012), P441 Ma TT, 2017, TECHNOL FORECAST SOC, V116, P162, DOI 10.1016/j.techfore.2016.10.061 Makridakis S, 2017, FUTURES, V90, P46, DOI 10.1016/j.futures.2017.03.006 Meiring GAM, 2015, SENSORS-BASEL, V15, P30653, DOI 10.3390/s151229822 Meyer D, 2014, GOOGLE UNVEILS OPEN Miao YJ, 2016, INTERSPEECH, P3414, DOI 10.21437/Interspeech.2016-412 Movidius, 2016, MOV INT VIS FUT AUT Nakamura H, 2015, TECHNOL FORECAST SOC, V94, P187, DOI 10.1016/j.techfore.2014.09.009 Naveen R, 2016, INTEL NERVANA Pan YH, 2016, ENGINEERING, V2, P409, DOI 10.1016/J.ENG.2016.04.018 Park H, 2013, EXPERT SYST APPL, V40, P2373, DOI 10.1016/j.eswa.2012.10.073 Park Y, 2005, TECHNOL SOC, V27, P471, DOI 10.1016/j.techsoc.2005.08.003 Peter S., 2016, 100 YEAR STUDY ARTIF Pokkuluri KS, 2017, DEEP LEARNING FUTURE Porter A.L., 2005, Tech mining: exploiting new technologies for competitive advantage Rajpurkar Pranav, 2016, EMNLP, DOI DOI 10.18653/V1/D16-1264 Rotolo D, 2015, RES POLICY, V44, P1827, DOI 10.1016/j.respol.2015.06.006 Ruiz M, 2016, IEEE LAT AM T, V14, P4249, DOI 10.1109/TLA.2016.7786301 SABIDUSSI G, 1966, PSYCHOMETRIKA, V31, P581, DOI 10.1007/BF02289527 Saltos R, 2017, IEEE T FUZZY SYST, V25, P1508, DOI 10.1109/TFUZZ.2017.2741442 Schilling MA, 2011, RES POLICY, V40, P1321, DOI 10.1016/j.respol.2011.06.009 Serrano-Guerrero J, 2015, INFORM SCIENCES, V311, P18, DOI 10.1016/j.ins.2015.03.040 Shah SAA, 2016, NEUROCOMPUTING, V174, P866, DOI 10.1016/j.neucom.2015.10.004 Small H, 2014, RES POLICY, V43, P1450, DOI 10.1016/j.respol.2014.02.005 SOHU, 2017, HUAWEIS NEW KIR CHIP SOHU, 2003, HUAZH U SCI TECHN IN Stergiou C, 2017, INT J NETW MANAG, V27, DOI 10.1002/nem.1930 Sundbo J, 2000, ECON SCI TECHN INNOV, V18, P43 Takano Y, 2016, J INFORMETR, V10, P967, DOI 10.1016/j.joi.2016.05.004 van den Bergh JCJM, 2008, J ECON BEHAV ORGAN, V68, P565, DOI 10.1016/j.jebo.2008.09.003 Viejo CG, 2018, FOOD CONTROL, V92, P72, DOI 10.1016/j.foodcont.2018.04.037 Wang X, 2016, IEEE T INTELL TRANSP, V17, P1596, DOI 10.1109/TITS.2015.2513086 Wang YX, 2016, INT J COGN INFORM NA, V10, P1, DOI 10.4018/IJCINI.2016100101 Watts DJ, 1998, NATURE, V393, P440, DOI 10.1038/30918 Williams O, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0110121 Wood J, 2015, SCIENTOMETRICS, V105, P1 Xiong C, 2017, WORKSHOP, P1 Yang SL, 2016, J INFORMETR, V10, P132, DOI 10.1016/j.joi.2015.12.003 Yayavaram S, 2008, ADMIN SCI QUART, V53, P333, DOI 10.2189/asqu.53.2.333 Ye CL, 2015, 2015 12TH INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS AND KNOWLEDGE DISCOVERY (FSKD), P2648, DOI 10.1109/FSKD.2015.7382375 Yoon B, 2007, IEEE T ENG MANAGE, V54, P588, DOI 10.1109/TEM.2007.900796 ZALTZ A, 2013, PLOS ONE, V0008 Zhang QR, 2017, SCIENTOMETRICS, V111, P1623, DOI 10.1007/s11192-017-2314-1 Zhang Y, 2017, J ASSOC INF SCI TECH, V68, P1925, DOI 10.1002/asi.23814 Zhang Y, 2016, J INFORMETR, V10, P1108, DOI 10.1016/j.joi.2016.09.006 Zhang Y, 2014, TECHNOL FORECAST SOC, V85, P26, DOI 10.1016/j.techfore.2013.12.019 Zhou X, 2013, PORTL INT CONF MANAG, P2188 Zhou X, 2014, SCIENTOMETRICS, V100, P705, DOI 10.1007/s11192-014-1317-4 Zhou X, 2014, NANOMED-NANOTECHNOL, V10, P889, DOI 10.1016/j.nano.2014.03.001 Zhu DH, 2013, SCIENTOMETRICS, V97, P435, DOI 10.1007/s11192-013-1019-3 NR 100 TC 24 Z9 24 U1 7 U2 171 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0138-9130 EI 1588-2861 J9 SCIENTOMETRICS JI Scientometrics PD NOV PY 2019 VL 121 IS 2 BP 699 EP 737 DI 10.1007/s11192-019-03218-5 PG 39 WC Computer Science, Interdisciplinary Applications; Information Science & Library Science WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Computer Science; Information Science & Library Science GA JF2FJ UT WOS:000491201000006 DA 2024-09-05 ER PT C AU Freeman, C Roy, MK Fattoruso, M Alhoori, H AF Freeman, Cole Roy, Mrinal Kanti Fattoruso, Michele Alhoori, Hamed BE Bonn, M Wu, D Downie, SJ Martaus, A TI Shared Feelings: Understanding Facebook Reactions to Scholarly Articles SO 2019 ACM/IEEE JOINT CONFERENCE ON DIGITAL LIBRARIES (JCDL 2019) SE ACM-IEEE Joint Conference on Digital Libraries JCDL LA English DT Proceedings Paper CT 19th ACM/IEEE Joint Conference on Digital Libraries (JCDL) CY JUN 02-06, 2019 CL IL DE Facebook Reactions; Altmetrics; Data Collection; Social Clicks; Re- search Community; Social Media Analytics; Supervised Learning AB Research on social-media platforms has tended to rely on textual analysis to perform research tasks. While text-based approaches have significantly increased our understanding of online behavior and social dynamics, they overlook features on these platforms that have grown in prominence in the past few years: click-based responses to content. In this paper, we present a new dataset of Facebook Reactions to scholarly content. We give an overview of its structure, analyze some of the statistical trends in the data, and use it to train and test two supervised learning algorithms. Our preliminary tests suggest the presence of stratification in the number of users following pages, divisions that seem to fall in line with distinctions in the subject matter of those pages. C1 [Freeman, Cole; Roy, Mrinal Kanti; Fattoruso, Michele; Alhoori, Hamed] Northern Illinois Univ, De Kalb, IL 60115 USA. C3 Northern Illinois University RP Freeman, C (corresponding author), Northern Illinois Univ, De Kalb, IL 60115 USA. EM cole.freeman9@gmail.com; mkantiroy@niu.edu; z1840898@students.niu.edu; alhoori@niu.edu RI Alhoori, Hamed/B-8106-2009 OI Alhoori, Hamed/0000-0002-4733-6586 CR Alhoori H, 2014, ACM-IEEE J CONF DIG, P375, DOI 10.1109/JCDL.2014.6970193 [Anonymous], 2010, P AM SOC INFORM SCI, DOI DOI 10.1002/MEET.14504701201 Basile Angelo, 2017, P 4 IT C COMP LING C, P28 Bayer J, 2018, NEW MEDIA SOC, V20, P1047, DOI 10.1177/1461444816681522 Gabielkov M., 2016, ACM SIGMETRICS IFIP Krebs F., 2018, P 10 INT C AGENTS AR, P211, DOI 10.5220/0006656002110220 Krug Sammi., 2016, REACTIONS NOW AVAILA Pool C., 2016, P WORKSH COMP MOD PE, P30 Rajadesingan A, 2015, WSDM'15: PROCEEDINGS OF THE EIGHTH ACM INTERNATIONAL CONFERENCE ON WEB SEARCH AND DATA MINING, P97, DOI 10.1145/2684822.2685316 Shah P., 2018, FACEBOOKS NEW REACTI Shuai X, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0047523 Tian Y., 2017, P 5 INT WORKSH NAT L, P11, DOI DOI 10.18653/V1/W17-1102 NR 12 TC 6 Z9 11 U1 0 U2 6 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA SN 2575-7865 EI 2575-8152 BN 978-1-7281-1547-4 J9 ACM-IEEE J CONF DIG PY 2019 BP 301 EP 304 DI 10.1109/JCDL.2019.00050 PG 4 WC Computer Science, Information Systems; Computer Science, Interdisciplinary Applications; Computer Science, Theory & Methods; Information Science & Library Science WE Conference Proceedings Citation Index - Science (CPCI-S); Conference Proceedings Citation Index - Social Science & Humanities (CPCI-SSH) SC Computer Science; Information Science & Library Science GA BP5KE UT WOS:000555928200043 OA Green Submitted DA 2024-09-05 ER PT J AU Corrin, L Thompson, K Lodge, JM AF Corrin, Linda Thompson, Kate Lodge, Jason M. TI AJET in 2023: Reflections on educational technology, people, and bibliometrics SO AUSTRALASIAN JOURNAL OF EDUCATIONAL TECHNOLOGY LA English DT Article DE educational technology; generative AI; academic publishing; bibliometric data AB In this editorial we reflect on the last three years of AJET achievements, challenges, and opportunities as we reach a time of transition in the lead editorial team. We also reflect on the key themes of 2023, especially the impact that the growing availability of generative artificial intelligence has had on research and practice in the tertiary education sector. We present our annual round up of bibliometrics, thank our hardworking editorial team, and acknowledge the contributions of those who are ending their service with AJET in 2023. In conclusion, we look ahead by outlining our goals for 2024 and discussing the themes and technologies that will be a focus for AJET in the new year. C1 [Corrin, Linda] Deakin Univ, Geelong, Australia. [Thompson, Kate] Queensland Univ Technol, Brisbane, Australia. [Lodge, Jason M.] Univ Queensland, Brisbane, Australia. C3 Deakin University; Queensland University of Technology (QUT); University of Queensland RP Corrin, L (corresponding author), Deakin Univ, Geelong, Australia. EM linda.corrin@deakin.edu.au RI ; Corrin, Linda/AAD-8545-2019 OI Lodge, Jason/0000-0001-6330-6160; Corrin, Linda/0000-0002-1593-3271 CR Conroy G, 2023, NATURE, V622, P234, DOI 10.1038/d41586-023-03144-w Corrin L, 2023, AUSTRALAS J EDUC TEC, V39, P1, DOI 10.14742/ajet.8887 Corrin L, 2022, AUSTRALAS J EDUC TEC, V38, P1, DOI 10.14742/ajet.8455 D'Andrea R, 2017, PLOS ONE, V12, DOI 10.1371/journal.pone.0186111 Goodyear P, 2023, AUSTRALAS J EDUC TEC, V39, P1, DOI 10.14742/ajet.9082 Kaebnick Gregory E, 2023, Ethics Hum Res, V45, P39, DOI 10.1002/eahr.500182 Lodge JM, 2023, AUSTRALAS J EDUC TEC, V39, P18, DOI 10.14742/ajet.8695 Stokel-Walker C, 2023, NATURE, V614, P214, DOI 10.1038/d41586-023-00340-6 Thompson K, 2023, AUSTRALAS J EDUC TEC, V39, DOI 10.14742/ajet.9251 NR 9 TC 0 Z9 0 U1 7 U2 10 PU AUSTRALASIAN SOC COMPUTERS LEARNING TERTIARY EDUCATION-ASCILITE PI TUGUN PA UNIT 5, 202 COODE ST, PO BOX 350, TUGUN, 4224, AUSTRALIA SN 1449-3098 EI 1449-5554 J9 AUSTRALAS J EDUC TEC JI Australas. J. Educ. Technol. PY 2023 VL 39 IS 6 AR 9277 DI 10.14742/ajet.9277 PG 8 WC Education & Educational Research WE Social Science Citation Index (SSCI) SC Education & Educational Research GA EE9E6 UT WOS:001137353900005 OA Green Submitted, gold DA 2024-09-05 ER PT C AU Shaw, RA Fleming, SW Levay, K Thompson, R Koekemoer, AM Tseng, SA Forshay, P Hargis, JR McLean, B Marston, A Mullally, SE Peek, JEG Shiao, B White, RL AF Shaw, Richard A. Fleming, Scott W. Levay, Karen Thompson, Randy Koekemoer, Anton M. Tseng, Shui-Ay Forshay, Peter Hargis, Jonathan R. McLean, Brian Marston, Anthony Mullally, Susan E. Peek, J. E. G. Shiao, Bernie White, Richard L. BE Peck, AB Seaman, RL Benn, CR TI Enabling new science with MAST community contributed data collections SO OBSERVATORY OPERATIONS: STRATEGIES, PROCESSES, AND SYSTEMS VII SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Observatory Operations - Strategies, Processes, and Systems VII CY JUN 11-15, 2018 CL Austin, TX DE data archive; bibliometrics; machine learning; process improvement; science impact AB The Mikulski Archive for Space Telescopes' (MAST), a multi-mission archive that hosts science data products for several NASA missions, has since 2003 solicited collections of processed data, termed High-Level Science Products (HLSPs), from investigators with observing and archive science programs. As of early 2018 there were nearly 130 contributed collections, and the growth rate is expected to accelerate with the start of the TESSc and JWST(d) missions. While the data volume of all HLSP collections is only about 1% of the total volume hosted by MAST, they have an outsized impact on science. The aggregate downloaded volume for a given HLSP collection is typically about 40 times the collection size, and the citation rates for HLSP collections are significantly higher than that for typical observing programs. Yet hosting HLSPs presents special challenges for long-term archives. It is often problematic to obtain sufficient metadata to specify fully the data products without requiring work from potential contributors that may discourage them from sharing their collections. Historically, preparing an HLSP collection for distribution via MAST has been quite time-consuming and often required substantial interaction with the collection contributors. We are creating a more automated workflow and using new technologies for HLSP collection management to improve collection discoverability, simplify the process for the investigator, ease the burden for MAST staff, and shorten the timeframe for publishing HLSPs. This work will also help MAST staff better assess the impact of HLSP collections on science outcomes for hosted mission data. C1 [Shaw, Richard A.; Fleming, Scott W.; Levay, Karen; Thompson, Randy; Koekemoer, Anton M.; Tseng, Shui-Ay; Forshay, Peter; Hargis, Jonathan R.; McLean, Brian; Marston, Anthony; Mullally, Susan E.; Peek, J. E. G.; Shiao, Bernie; White, Richard L.] Space Telescope Sci Inst, 3700 San Martin Dr, Baltimore, MD 21218 USA. [Marston, Anthony] European Space Agcy, 3400 N Charles St, Baltimore, MD 21218 USA. [Peek, J. E. G.] Johns Hopkins Univ, Dept Phys & Astron, 3400 N Charles St, Baltimore, MD 21218 USA. C3 Space Telescope Science Institute; Johns Hopkins University RP Shaw, RA (corresponding author), Space Telescope Sci Inst, 3700 San Martin Dr, Baltimore, MD 21218 USA. EM shaw@stsci.edu RI White, Richard L/A-8143-2012; Koekemoer, Anton M./F-8400-2014 OI Koekemoer, Anton M./0000-0002-6610-2048; Shaw, Richard/0000-0003-4058-5202; Marston, Anthony/0000-0001-5788-5258; White, Richard/0000-0002-9194-2807 FU NASA [NAS 5-26555] FX MAST is operated by the Space Telescope Science Institute for NASA under contract NAS 5-26555. This research has made use of NASA's Astrophysics Data System Bibliographic Services. We are grateful for the contribution of InSight Data Science Fellow Alicia Shen, who built a machine-learning model for evaluating whether HLSP data were employed in citing papers. CR FITS, 2017, DEF FLEX IM TRANSP S Giavalisco M, 2004, ASTROPHYS J, V600, pL93, DOI 10.1086/379232 Hirsch JE, 2005, P NATL ACAD SCI USA, V102, P16569, DOI 10.1073/pnas.0507655102 Pepe A, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0104798 NR 4 TC 1 Z9 1 U1 0 U2 1 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X EI 1996-756X BN 978-1-5106-1962-3 J9 PROC SPIE PY 2018 VL 10704 AR UNSP 1070414 DI 10.1117/12.2312810 PG 13 WC Engineering, Aerospace; Remote Sensing; Optics; Imaging Science & Photographic Technology WE Conference Proceedings Citation Index - Science (CPCI-S) SC Engineering; Remote Sensing; Optics; Imaging Science & Photographic Technology GA BL5SA UT WOS:000452635900036 DA 2024-09-05 ER PT J AU Santos, BS Silva, I Costa, DG AF Santos, Breno Santana Silva, Ivanovitch Costa, Daniel G. TI Symmetry in Scientific Collaboration Networks: A Study Using Temporal Graph Data Science and Scientometrics SO SYMMETRY-BASEL LA English DT Article DE graph data science; symmetry properties; machine learning; graph embedding; temporal analysis; scientometrics AB This article proposes a novel approach that leverages graph theory, machine learning, and graph embedding to evaluate research groups comprehensively. Assessing the performanceand impact of research groups is crucial for funding agencies and research institutions, but many traditional methods often fail to capture the complex relationships between the evaluated elements.In this sense, our methodology transforms publication data into graph structures, allowing the visualization and quantification of relationships between researchers, publications, and institutions.By incorporating symmetry properties, we offer a more in-depth evaluation of research groups cohesiveness and structure over time. This temporal evaluation methodology bridges the gap between unstructured scientometrics networks and the evaluation process, making it a valuable tool for decision-making procedures. A case study is defined to demonstrate the potential to providevaluable insights into the dynamics and limitations of research groups, which ultimately reinforces the feasibility of the proposed approach when supporting decision making for funding agencies andresearch institutions. C1 [Santos, Breno Santana; Silva, Ivanovitch] Univ Fed Rio Grande do Norte, Postgrad Program Elect & Comp Engn, BR-59078970 Natal, Brazil. [Santos, Breno Santana] Univ Fed Sergipe, Informat Syst Dept, BR-49506036 Itabaiana, Brazil. [Costa, Daniel G.] Univ Porto, Fac Engn, INEGI, P-4200465 Porto, Portugal. C3 Universidade Federal do Rio Grande do Norte; Universidade Federal de Sergipe; Universidade do Porto RP Santos, BS; Silva, I (corresponding author), Univ Fed Rio Grande do Norte, Postgrad Program Elect & Comp Engn, BR-59078970 Natal, Brazil.; Santos, BS (corresponding author), Univ Fed Sergipe, Informat Syst Dept, BR-49506036 Itabaiana, Brazil. EM breno.santos.038@ufrn.edu.br; breno1005@hotmail.com RI Silva, Ivanovitch/N-8075-2019; Santos, Breno Santana/AAQ-2189-2020; Costa, Daniel G./I-4928-2013 OI Silva, Ivanovitch/0000-0002-0116-6489; Santos, Breno Santana/0000-0002-8790-2546; Costa, Daniel G./0000-0003-3988-8476 CR Agrawal G, 2022, INFORMATION, V13, DOI 10.3390/info13110526 Amat CB, 2016, SCIENTOMETRICS, V108, P41, DOI 10.1007/s11192-016-1952-z [Anonymous], 2010, The evaluation of research by scientometric indicators BASILI VR, 1984, IEEE T SOFTWARE ENG, V10, P728, DOI 10.1109/TSE.1984.5010301 Bonaccorso G., 2019, Hands-on Unsupervised Learning with Python Bramer Max, 2007, Principles of data mining (3. b.), V180 Cai HY, 2018, IEEE T KNOWL DATA EN, V30, P1616, DOI 10.1109/TKDE.2018.2807452 Camargo L.S.d., 2018, Ponto de Acesso, V12, P109, DOI 10.9771/rpa.v12i3.28408 CAPES, 2022, CAPES QUADR EV CAPES CAPES-Institutional, 2022, US Franceschini F, 2011, J INFORMETR, V5, P64, DOI 10.1016/j.joi.2010.08.003 Grohe M, 2020, PODS'20: PROCEEDINGS OF THE 39TH ACM SIGMOD-SIGACT-SIGAI SYMPOSIUM ON PRINCIPLES OF DATABASE SYSTEMS, P1, DOI 10.1145/3375395.3387641 Grover A, 2016, KDD'16: PROCEEDINGS OF THE 22ND ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, P855, DOI 10.1145/2939672.2939754 Gu WW, 2021, NAT COMMUN, V12, DOI 10.1038/s41467-021-23795-5 Jeon HJ, 2019, FRONT BIG DATA, V2, DOI 10.3389/fdata.2019.00039 Ju H., 2022, Collect. Intell, V1, DOI [10.1177/26339137221109839, DOI 10.1177/26339137221109839] Keramatfar A, 2022, MACH LEARN APPL, V10, DOI 10.1016/j.mlwa.2022.100401 Kudelka M, 2016, INT CONF INTEL NETWO, P375, DOI 10.1109/INCoS.2016.100 Kuprieiev Ruslan, 2021, Zenodo, DOI 10.5281/ZENODO.5562238 Longa A., 2019, THESIS U STUDI TRENT Menczer F., 2020, A First Course in Network Science Montazerian M, 2019, SCIENTOMETRICS, V118, P1065, DOI 10.1007/s11192-018-2996-z Moral-Munoz JA, 2019, SPRINGER HBK, P159, DOI 10.1007/978-3-030-02511-3_7 Mryglod O, 2022, SCIENTOMETRICS, V127, P3279, DOI 10.1007/s11192-022-04373-y Muller A. C., 2016, Introduction to Machine Learning with Python and Scikit-Learn Narayanan A, 2017, Arxiv, DOI arXiv:1707.05005 Patel Ankur A., 2019, Hands-on Unsupervised Learning Using Python : How to Build Applied Machine Learning Solutions From Unlabeled Data, V1st ed Santos B.S., 2021, 15 SIMP SIO BRASILEI, P1998, DOI [10.20906/sbai.v1i1.2838, DOI 10.20906/SBAI.V1I1.2838] Santos B.S., 2015, P ANN C BRAZILIAN S, P667 Santos Breno, 2022, Mendeley Data, DOI 10.17632/RWFD6P6XSD Santos BS, 2022, SCIENTOMETRICS, V127, P1609, DOI 10.1007/s11192-021-04260-y Sugimoto C.R., 2018, Measuring research: What everyone needs to know, DOI DOI 10.1093/WENTK/9780190640118.001.0001 Tang SJ, 2022, SCI CHINA LIFE SCI, V65, P753, DOI 10.1007/s11427-021-1974-7 van Solingen D.R., 1999, GOAL QUESTION METRIC Wiechetek L, 2022, SCIENTOMETRICS, V127, P1381, DOI 10.1007/s11192-021-04258-6 Zhou S, 2018, PROC INT CONF DATA, P1372, DOI 10.1109/ICDE.2018.00153 Zinoviev D., 2018, Complex Network Analysis in Python: Recognize-Construct-Visualize-Analyze-Interpret Zweig KA, 2016, LECT NOTES SOC NETW, P1, DOI 10.1007/978-3-7091-0741-6 NR 38 TC 1 Z9 1 U1 2 U2 14 PU MDPI PI BASEL PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND EI 2073-8994 J9 SYMMETRY-BASEL JI Symmetry-Basel PD MAR PY 2023 VL 15 IS 3 AR 601 DI 10.3390/sym15030601 PG 17 WC Multidisciplinary Sciences WE Science Citation Index Expanded (SCI-EXPANDED) SC Science & Technology - Other Topics GA A9FA6 UT WOS:000958091800001 OA gold DA 2024-09-05 ER PT J AU Velasco, ED Hirumi, A Chen, BY AF de la Mora Velasco, Efren Hirumi, Atsusi Chen, Baiyun TI Improving Instructional Videos with Background Music and Sound Effects: A Design-Based Research Approach SO JOURNAL OF FORMATIVE DESIGN IN LEARNING LA English DT Article DE Background music; Music; Sound; Sound effects; Instructional videos; Animations; Motivation; Engagement; Learning; Knowledge retention; Attention; Relevance; Confidence; Satisfaction; Working memory; Cognitive load; Multimedia learning; Multimedia theory; Online learning; Design-based  research; Formative evaluation ID ENGAGEMENT; MOOD AB There is a lack of empirical studies incorporating background music (BM) and sounds (SFX) to instructional videos to facilitate students' learning. A design-based research study was conducted to enhance student engagement and motivation including four iterative formative evaluations. In the first iteration, graduate students' reactions were examined to understand the potential influences of BM and SFX in the learning experience. The second iteration consisted of a small-group session focused on describing students' levels of engagement, motivation, and learning while using videos that included BM and SFX. In the third iteration, a field test was conducted to explore the effects of BM and SFX on students' engagement, motivation, and learning. The fourth iteration collected experts' feedback to inform future research and practice. Results showed beneficial effects of BM and SFX for motivation, engagement, and potential learning. Practical guidelines are suggested for faculty and instructional designers to implement BM and SFX on instructional videos. The paper concludes by posing an emergent theory: the design and integration of BM and SFX need to balance the motivational improvements with the challenges of cognitive dissonance and overload. C1 [de la Mora Velasco, Efren; Hirumi, Atsusi; Chen, Baiyun] Univ Cent Florida, 4000 Cent Florida Blvd, Orlando, FL 32816 USA. C3 State University System of Florida; University of Central Florida RP Velasco, ED (corresponding author), Univ Cent Florida, 4000 Cent Florida Blvd, Orlando, FL 32816 USA. EM efren@ucf.edu RI de la mora velasco, Efren/AAE-4618-2021 OI de la mora velasco, Efren/0000-0001-7485-9510 CR Allcoat D, 2018, RES LEARN TECHNOL, V26, DOI 10.25304/rlt.v26.2140 Anderson T, 2012, EDUC RESEARCHER, V41, P16, DOI 10.3102/0013189X11428813 [Anonymous], 2004, 1999D00460004 DAAD T Appleton JJ, 2008, PSYCHOL SCHOOLS, V45, P369, DOI 10.1002/pits.20303 Barron A.E., 2004, HDB RES ED COMMUNICA, P949 Batur Z., 2016, Education, V137, P82 Bishop MJ, 2008, ETR&D-EDUC TECH RES, V56, P467, DOI 10.1007/s11423-006-9032-3 Clark RC, 2011, E-Learning and the Science of Instruction: Proven Guidelines for Consumers and Designers of Multimedia Learning, 3rd Edition, P1, DOI 10.1002/9781118255971 Cobb P., 2003, Educational Researcher, V32, P9, DOI [10.3102/0013189X032001009, DOI 10.3102/0013189X032001009] Velasco ED, 2020, ETR&D-EDUC TECH RES, V68, P2817, DOI 10.1007/s11423-020-09783-4 Ferrao JC, 2021, HEALTH SYST, V10, P138, DOI 10.1080/20476965.2020.1729666 Finn JD, 2012, HANDBOOK OF RESEARCH ON STUDENT ENGAGEMENT, P97, DOI 10.1007/978-1-4614-2018-7_5 Greene CM, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0011739 Grossman G D., 2015, Journal of Natural History Education and Experience, V9, P1 Halcomb EJ, 2006, APPL NURS RES, V19, P38, DOI 10.1016/j.apnr.2005.06.001 Hallam S., 2016, OXFORD HDB MUSIC PSY, P775 Herrington J., 2007, P WORLD C ED MULTIME, P4089, DOI DOI 10.1017/CB09781107415324.004 Hoaglin D., 1983, Understanding Robust and Exploratory Data Analysis, V3 Hu X, 2021, INFORM PROCESS MANAG, V58, DOI 10.1016/j.ipm.2020.102409 Huizenga J, 2019, COMPUT HUM BEHAV, V99, P137, DOI 10.1016/j.chb.2019.05.020 Iacovides Joanna, 2011, International Journal of Virtual and Personal Learning Environments, V2, P1, DOI 10.4018/jvple.2011040101 Kang HJ, 2014, PSYCHOL MUSIC, V42, P728, DOI 10.1177/0305735613485152 Kao TA, 2014, SYSTEM, V43, P114, DOI 10.1016/j.system.2014.01.003 Keller JM, 2010, MOTIVATIONAL DESIGN FOR LEARNING AND PERFORMANCE: THE ARCS MODEL APPROACH, P297, DOI 10.1007/978-1-4419-1250-3_12 Kiss L, 2021, PSYCHOL RES-PSYCH FO, V85, P2313, DOI 10.1007/s00426-020-01400-6 Kuo FF, 2013, IEEE INT CON MULTI Langan KA., 2013, Public Services Quarterly, V9, P89, DOI [DOI 10.1080/15228959.2013.785876, 10.1080/15228959.2013.785876] Lehmann JAM, 2019, APPL COGNITIVE PSYCH, V33, P85, DOI 10.1002/acp.3509 Leiker AM, 2016, HUM MOVEMENT SCI, V49, P326, DOI 10.1016/j.humov.2016.08.005 Mann BL, 2008, COMPUT EDUC, V50, P1157, DOI 10.1016/j.compedu.2006.11.002 MASSEY FJ, 1951, J AM STAT ASSOC, V46, P68, DOI 10.2307/2280095 Mayer RE, 2014, COMPUTER GAMES FOR LEARNING: AN EVIDENCE-BASED APPROACH, P3 Moreno R, 2000, J EDUC PSYCHOL, V92, P117, DOI 10.1037//0022-0663.92.1.117 Murphy J, 2016, J ACAD LIBR, V42, P259, DOI 10.1016/j.acalib.2015.12.010 Murrock CJ, 2009, J ADV NURS, V65, P2249, DOI 10.1111/j.1365-2648.2009.05108.x Nantais KM, 1999, PSYCHOL SCI, V10, P370, DOI 10.1111/1467-9280.00170 Que Y., 2020, EXPLORING EFFECT PER, DOI [https://doi.org/10.1145/3383583.3398543, DOI 10.1145/3383583.3398543] Reeve J, 2012, HANDBOOK OF RESEARCH ON STUDENT ENGAGEMENT, P149, DOI 10.1007/978-1-4614-2018-7_7 Reeve J, 2011, CONTEMP EDUC PSYCHOL, V36, P257, DOI 10.1016/j.cedpsych.2011.05.002 Reimann P, 2011, METHODS SER, V9, P37, DOI 10.1007/978-90-481-8933-5_3 Sandoval W, 2014, J LEARN SCI, V23, P18, DOI 10.1080/10508406.2013.778204 Steele KM, 1999, NATURE, V400, P827, DOI 10.1038/23611 Sun YQ, 2020, COMPUT EDUC, V157, DOI 10.1016/j.compedu.2020.103963 Sweller J, 2011, EXPLOR LEARN SCI, P3, DOI 10.1007/978-1-4419-8126-4 Taylor K.M., 2012, Journal of College Reading and Learning, V42, P51 Ten Hove P., 2015, IT NOT WHAT CHARACTE Thompson WF, 2001, PSYCHOL SCI, V12, P248, DOI 10.1111/1467-9280.00345 Tyng CM, 2017, FRONT PSYCHOL, V8, DOI 10.3389/fpsyg.2017.01454 Yang TC, 2019, ASIA-PAC EDUC RES, V28, P495, DOI 10.1007/s40299-019-00450-8 조혜영, 2015, [Multimedia-Assisted Language Learning, 멀티미디어 언어교육], V18, P37 NR 50 TC 5 Z9 6 U1 4 U2 28 PU SPRINGER INT PUBL AG PI CHAM PA GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND EI 2509-8039 J9 J FORMATIVE DES LEAR JI J. Formative Des. Learn. PD JUN PY 2021 VL 5 IS 1 BP 1 EP 15 DI 10.1007/s41686-020-00052-4 EA JAN 2021 PG 15 WC Education & Educational Research WE Emerging Sources Citation Index (ESCI) SC Education & Educational Research GA TS8JB UT WOS:000607759100001 DA 2024-09-05 ER PT J AU Wahid, R Ahmi, A Alam, ASAF AF Wahid, Ratnaria Ahmi, Aidi Alam, A. S. A. Ferdous TI Growth and Collaboration in Massive Open Online Courses: A Bibliometric Analysis SO INTERNATIONAL REVIEW OF RESEARCH IN OPEN AND DISTRIBUTED LEARNING LA English DT Article DE massive open online courses; MOOCs; distance education; online learning; collaborative research; inclusiveness ID MOOCS AB Massive open online courses (MOOCs) are an important approach for achieving UNESCO's aim of open and accessible education. However, there are concerns regarding fragmentation or bias of MOOCs toward certain disciplines or countries. This study sought to: (a) examine how MOOCs research has evolved and is distributed, (b) determine what key areas are discussed in MOOCs research, and (c) identify the major players in MOOCs research and their collaborations. This study conducted a bibliometric analysis of 3,118 scholarly works related to MOOCs as recorded in the Scopus database in July, 2019. Specifically, we analyzed the evolution of MOOCs research by examining (a) published studies, (b) source titles, (c) types of sources and documents, as well as (d) the languages in which the documents were written in. We further analyzed the key areas of MOOCs research by looking into common subject areas, keywords used most often, and title analysis. Finally, we sought to increase our understanding of the major players in MOOCs research and their collaborations by examining (a) which countries contributed most to MOOCs research, (b) the main institutions involved, as well as (c) authorship and citation analysis. Findings indicated that in their early development starting in 2009, MOOCs caught the attention of scholars from both the East and the West, and the number of publications grew consistently over the 10 years after that. MOOCs research has been well distributed but has yet to adequately encourage inclusiveness. There has been healthy cross-country collaboration, but there is a gap in MOOCs research originating from certain countries as compared to the rest of the world. Our findings provide important input towards improving the inclusivity and global reach of MOOCs. C1 [Wahid, Ratnaria; Ahmi, Aidi; Alam, A. S. A. Ferdous] Univ Utara Malaysia, Bukit Kayu Hitam, Kedah, Malaysia. C3 Universiti Utara Malaysia RP Wahid, R (corresponding author), Univ Utara Malaysia, Bukit Kayu Hitam, Kedah, Malaysia. RI Ahmi, Aidi/F-2858-2013; Alam, A. S. A. Ferdous/I-4594-2014; Wahid, Ratnaria/K-7066-2015 OI Ahmi, Aidi/0000-0002-8488-6966; Alam, A. S. A. Ferdous/0000-0003-2413-3046; Wahid, Ratnaria/0000-0001-9424-9285 FU Ministry of Education Malaysia [13049] FX Y This work was supported in part by the Ministry of Education Malaysia, under the Malaysian Fundamental Research Grant Scheme [S/O Code 13049]. CR Adams J, 2013, NATURE, V497, P557, DOI 10.1038/497557a Alraimi KM, 2015, COMPUT EDUC, V80, P28, DOI 10.1016/j.compedu.2014.08.006 [Anonymous], 2018, P EDMEDIA WORLD C ED [Anonymous], 2015, TRANSF OUR WORLD 203 [Anonymous], 2013, P 3 INT C LEARN AN K Baggaley J, 2013, DISTANCE EDUC, V34, P368, DOI 10.1080/01587919.2013.835768 Cairns R, 2020, SUSTAIN SCI, V15, P1711, DOI 10.1007/s11625-020-00784-z Daradoumis T, 2013, 2013 EIGHTH INTERNATIONAL CONFERENCE ON P2P, PARALLEL, GRID, CLOUD AND INTERNET COMPUTING (3PGCIC 2013), P208, DOI 10.1109/3PGCIC.2013.37 DeBoer J, 2014, EDUC RESEARCHER, V43, P74, DOI 10.3102/0013189X14523038 Deng RQ, 2019, COMPUT EDUC, V129, P48, DOI 10.1016/j.compedu.2018.10.019 deWaard I, 2011, INT REV RES OPEN DIS, V12, P94, DOI 10.19173/irrodl.v12i7.1046 Ebben M, 2014, LEARN MEDIA TECHNOL, V39, P328, DOI 10.1080/17439884.2013.878352 Fini A, 2009, INT REV RES OPEN DIS, V10 Fox A, 2013, COMMUN ACM, V56, P38, DOI 10.1145/2535918 Gameel BG, 2019, COMPUT EDUC, V136, P49, DOI 10.1016/j.compedu.2019.02.014 Gaseric D., 2014, International Review of Research in Open and Distance Learning, V15, P134 Hew KF, 2014, EDUC RES REV-NETH, V12, P45, DOI 10.1016/j.edurev.2014.05.001 Ichimura Y., 2017, International Journal, V11, P42 Ichou RP, 2018, AUSTRALAS MARK J, V26, P116, DOI 10.1016/j.ausmj.2018.05.007 Jansen D, 2015, INT REV RES OPEN DIS, V16, P116 Jiang SH, 2014, INT REV RES OPEN DIS, V15, P99 Jordan K, 2014, INT REV RES OPEN DIS, V15, DOI 10.19173/irrodl.v15i1.1651 Kay J, 2013, IEEE INTELL SYST, V28, P70, DOI 10.1109/MIS.2013.66 Kerr R., 2019, EMOOCS WIP, P145 King M, 2018, INT REV RES OPEN DIS, V19, P1 Kizilcec R. F., 2013, P 3 INT C LEARN AN K, P170, DOI [10.1145/2460296.2460330, DOI 10.1145/2460296.2460330] Kizilcec RF, 2020, P NATL ACAD SCI USA, V117, P14900, DOI 10.1073/pnas.1921417117 Kop R, 2011, INT REV RES OPEN DIS, V12, P74, DOI 10.19173/irrodl.v12i7.1041 Kop R, 2011, INT REV RES OPEN DIS, V12, P19, DOI 10.19173/irrodl.v12i3.882 Lambert SR, 2020, COMPUT EDUC, V145, DOI 10.1016/j.compedu.2019.103693 Lee J, 2018, 22 BIENN C INT TEL S Li YX, 2017, ADV SOC SCI EDUC HUM, V146, P130 Liyanagunawardena TR, 2013, INT REV RES OPEN DIS, V14, P202, DOI 10.19173/irrodl.v14i3.1455 Ma L, 2019, J EDUC COMPUT RES, V57, P571, DOI 10.1177/0735633118757732 Margaryan A, 2015, COMPUT EDUC, V80, P77, DOI 10.1016/j.compedu.2014.08.005 Martin FG, 2012, COMMUN ACM, V55, P26, DOI 10.1145/2240236.2240246 Nordin N., 2018, JURNAL PENDIDIKAN MA, V43, P35, DOI [10.17576/JPEN-2018-43.01-05, DOI 10.17576/JPEN-2018-43.01-05] Pan RK, 2012, SCI REP-UK, V2, DOI 10.1038/srep00902 Radford AW, 2014, INT REV RES OPEN DIS, V15, P1 Reich J, 2015, SCIENCE, V347, P34, DOI 10.1126/science.1261627 Rogers RA, 2007, J INT STUD-JIS, V3, P92 Rohs M, 2015, INT REV RES OPEN DIS, V16, P1 Ruiqi Deng, 2017, International Journal of Information and Education Technology, V7, P601, DOI 10.18178/ijiet.2017.7.8.939 Scott J, 2014, S VIS LANG HUM CEN C, P45, DOI 10.1109/VLHCC.2014.6883020 Sweileh WM, 2017, BMC MED INFORM DECIS, V17, DOI 10.1186/s12911-017-0476-7 Van Eck N.J., 2014, Measuring Scholarly Impact: Methods and Practice, P285, DOI 10.1007/978-3-319-10377-8_13(InEng.) Veletsianos G, 2015, INT REV RES OPEN DIS, V16 Veletsianos G, 2016, INT REV RES OPEN DIS, V17, P198 Verk N, 2021, J BUS ETHICS, V168, P491, DOI 10.1007/s10551-019-04232-6 Yousef Ahmed Mohamed Fahmy, 2014, 6th International Conference on Computer-Supported Education (CSEDU 2014). Proceedings, P9 Zancanaro A, 2018, TURK ONLINE J DISTAN, V19, P4, DOI 10.17718/tojde.415602 Zancanaro A, 2017, RIED-REV IBEROAM EDU, V20, P59, DOI 10.5944/ried.20.1.15910 Zancanaro A, 2015, INT REV RES OPEN DIS, V16, P1 Zheng SJ, 2015, PROCEEDINGS OF THE 2015 ACM INTERNATIONAL CONFERENCE ON COMPUTER-SUPPORTED COOPERATIVE WORK AND SOCIAL COMPUTING (CSCW'15), P1882, DOI 10.1145/2675133.2675217 Zhu MN, 2018, INTERNET HIGH EDUC, V37, P31, DOI 10.1016/j.iheduc.2018.01.002 NR 55 TC 22 Z9 23 U1 0 U2 9 PU ATHABASCA UNIV PRESS PI ATHABASCA PA 1 UNIVERSITY DR, ATHABASCA, AB T9S 3A3, CANADA SN 1492-3831 J9 INT REV RES OPEN DIS JI Int. Rev. Res. Open Distrib. Learn. PD NOV PY 2020 VL 21 IS 4 BP 292 EP 322 PG 31 WC Education & Educational Research WE Social Science Citation Index (SSCI) SC Education & Educational Research GA PA7QU UT WOS:000595826000016 DA 2024-09-05 ER PT J AU Xie, Z AF Xie, Zheng TI Assessing the Attractions of MOOCs From the Perspective of Scientometrics SO IEEE ACCESS LA English DT Article DE Data science applications in education; distance education and online learning; evaluation methodologies ID IMPACT FACTORS; COAUTHORSHIP; PERFORMANCE; INDICATORS; MOTIVATION; EDUCATION; STUDENTS; MODEL AB A range of empirical observations show that the right-skewed phenomenon emerges in the citation distributions of papers. The phenomenon also exists in the length distributions of learners' time spent on viewing the videos of a massive open online course. The mechanisms underlying this phenomenon in both cases are the same, namely cumulative advantage, known as the Matthew effect and the Lindy effect respectively. These similarities make it possible to apply the theories and methods in scientometrics to attraction assessments of massive open online courses. Massive data of learning behaviors are recorded on the MOOC platforms with high measurability and wide coverage, setting the precondition for this study. Based on the data derived from the log records of viewing behavior, we showed how to utilize the ideas of typical scientometric indicators, such as the impact factor and h-index, to assess courses' attraction. Our work adumbrates not only the practicability but also the limitation of the provided indicators. C1 [Xie, Zheng] Natl Univ Def Technol, Coll Liberal Arts & Sci, Changsha 410000, Hunan, Peoples R China. C3 National University of Defense Technology - China RP Xie, Z (corresponding author), Natl Univ Def Technol, Coll Liberal Arts & Sci, Changsha 410000, Hunan, Peoples R China. EM xiezheng81@nudt.edu.cn OI Xie, Zheng/0000-0003-0391-8725 FU National Education Science Foundation of China [DIA180383]; National Natural Science Foundation of China [61773020] FX This work was supported in part by the National Education Science Foundation of China under Grant DIA180383, and in part by the National Natural Science Foundation of China under Grant 61773020. CR Anderson A, 2014, WWW'14: PROCEEDINGS OF THE 23RD INTERNATIONAL CONFERENCE ON WORLD WIDE WEB, P687 [Anonymous], 2001, CHALLENGE SCIENTOMET Barabási AL, 1999, SCIENCE, V286, P509, DOI 10.1126/science.286.5439.509 Barak M, 2016, COMPUT EDUC, V94, P49, DOI 10.1016/j.compedu.2015.11.010 Bornmann L, 2011, J INFORMETR, V5, P228, DOI 10.1016/j.joi.2010.10.009 Bouyssou D, 2011, J AM SOC INF SCI TEC, V62, P1761, DOI 10.1002/asi.21544 Bouyssou D, 2011, J INFORMETR, V5, P75, DOI 10.1016/j.joi.2010.09.001 BRAUN T, 1990, SCIENTOMETRICS, V19, P513, DOI 10.1007/BF02020712 Breslow L., 2013, RES PRACTICE ASSESSM, V8 Clark DB, 2007, EDUC PSYCHOL REV, V19, P343, DOI 10.1007/s10648-007-9050-7 de Barba PG, 2016, J COMPUT ASSIST LEAR, V32, P218, DOI 10.1111/jcal.12130 DEBRUIN RE, 1993, RES EVALUAT, V3, P25, DOI [DOI 10.1093/REV/3.1.25, DOI 10.1093/rev/3.1.25] Egghe L, 2006, SCIENTOMETRICS, V69, P131, DOI 10.1007/s11192-006-0144-7 Egghe L, 2008, SCIENTOMETRICS, V77, P377, DOI 10.1007/s11192-007-1968-5 Eliazar I, 2017, PHYSICA A, V486, P797, DOI 10.1016/j.physa.2017.05.077 Emanuel EJ, 2013, NATURE, V503, P342, DOI 10.1038/503342a Fritz J, 2011, INTERNET HIGH EDUC, V14, P89, DOI 10.1016/j.iheduc.2010.07.007 GADDUM JH, 1945, NATURE, V156, P463, DOI 10.1038/156463a0 Garfield E, 1999, CAN MED ASSOC J, V161, P979 Gikandi JW, 2011, COMPUT EDUC, V57, P2333, DOI 10.1016/j.compedu.2011.06.004 Hirsch JE, 2005, P NATL ACAD SCI USA, V102, P16569, DOI 10.1073/pnas.0507655102 Lattuca LR., 2007, New Directions for Institutional Research, V136, P81, DOI [10.1002/ir.233, DOI 10.1002/IR.233] Leydesdorff L, 2011, J AM SOC INF SCI TEC, V62, P2133, DOI 10.1002/asi.21609 Macfadyen LP, 2010, COMPUT EDUC, V54, P588, DOI 10.1016/j.compedu.2009.09.008 Margaryan A, 2015, COMPUT EDUC, V80, P77, DOI 10.1016/j.compedu.2014.08.005 MOED HF, 1995, SCIENTOMETRICS, V33, P381, DOI 10.1007/BF02017338 Nan Li, 2015, Design for Teaching and Learning in a Networked World. 10th European Conference on Technology-Enhanced Learning, EC-TEL 2015. Proceedings: LNCS 9307, P197, DOI 10.1007/978-3-319-24258-3_15 Perc M, 2014, J R SOC INTERFACE, V11, DOI 10.1098/rsif.2014.0378 PRICE DJD, 1976, J AM SOC INFORM SCI, V27, P292, DOI 10.1002/asi.4630270505 Reeves TC, 2000, J EDUC COMPUT RES, V23, P101, DOI 10.2190/GYMQ-78FA-WMTX-J06C Reich J, 2015, SCIENCE, V347, P34, DOI 10.1126/science.1261627 Romero-Zaldivar VA, 2012, COMPUT EDUC, V58, P1058, DOI 10.1016/j.compedu.2011.12.003 Rovai A. P., 2000, Internet and Higher Education, V3, P141, DOI 10.1016/S1096-7516(01)00028-8 Schubert A, 2007, SCIENTOMETRICS, V70, P201, DOI 10.1007/s11192-007-0112-x Sunar AS, 2017, IEEE T LEARN TECHNOL, V10, P475, DOI 10.1109/TLT.2016.2633268 Waltman L, 2011, SCIENTOMETRICS, V87, P467, DOI 10.1007/s11192-011-0354-5 Waltman L, 2011, J INFORMETR, V5, P37, DOI 10.1016/j.joi.2010.08.001 Watted A, 2018, INTERNET HIGH EDUC, V37, P11, DOI 10.1016/j.iheduc.2017.12.001 William D., 2011, STUD EDUC EVAL, V37, P3, DOI DOI 10.1016/J.STUEDUC.2011.03.001 Xie Z, 2018, J ASSOC INF SCI TECH, V69, P305, DOI 10.1002/asi.23935 Xie Z, 2020, TSINGHUA SCI TECHNOL, V25, P313, DOI 10.26599/TST.2019.9010011 Xie Z, 2019, SCIENTOMETRICS, V121, P503, DOI 10.1007/s11192-019-03183-z Xie Z, 2019, IEEE ACCESS, V7, P74206, DOI 10.1109/ACCESS.2019.2921009 Xie Z, 2017, SCIENTOMETRICS, V112, P483, DOI 10.1007/s11192-017-2359-1 Xie Z, 2016, J INFORMETR, V10, P299, DOI 10.1016/j.joi.2016.02.001 Xing WL, 2016, COMPUT HUM BEHAV, V58, P119, DOI 10.1016/j.chb.2015.12.007 Zhu MN, 2018, INTERNET HIGH EDUC, V37, P31, DOI 10.1016/j.iheduc.2018.01.002 NR 47 TC 1 Z9 1 U1 2 U2 16 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 2169-3536 J9 IEEE ACCESS JI IEEE Access PY 2019 VL 7 BP 136409 EP 136418 DI 10.1109/ACCESS.2019.2942835 PG 10 WC Computer Science, Information Systems; Engineering, Electrical & Electronic; Telecommunications WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Computer Science; Engineering; Telecommunications GA JQ1DH UT WOS:000498693400002 OA gold DA 2024-09-05 ER PT J AU Aguilar-Soto, M Robinson-García, N Vargas-Quesada, B AF Aguilar-Soto, Maria Robinson-Garcia, Nicolas Vargas-Quesada, Benjamin TI Altmetrics for the identification of scientific controversies: The case of NeuroGenderings and neurosexism SO PROFESIONAL DE LA INFORMACION LA English DT Article DE Neurosexism; Scientific controversies; Altmetrics; Sentiment analysis; News; Blogs; Social media; Wikipedia; Reddit; Facebook; Science mapping; Neuroscience; Gender; Sex; Neurogenderings ID GENDER SIMILARITIES; NEUROSCIENCE; LINKING; SEX AB This work presents a methodological proposal for the analysis of social controversies related to scientific literature. This methodology consists of three clearly differentiated parts. First, we identify the cognitive structure of a set of scientific works. To do this, a historiogram is created through the analysis of references cited by seminal works. This allows us to expand the set of works to work with, subsequently conducting a co-word analysis to identify the cognitive structure of the scientific field to be explored. Secondly, we obtain social mentions of this scientific literature using so-called altmetrics. This allows us to extract mentions made to each scientific document from non-academic environments. Finally, we apply sentiment analysis techniques to these mentions to identify focal points of negative sentiment. We test this methodology on the case study of NeuroGenderings, a movement in the field of neuroscience that denounces the lack of scientific evidence in works that claim the existence of brain differences driven by the biological sex of the subjects. Our results confirm the viability of these types of approaches that enable the identification of research areas with greater controversy. Although our study is limited to the analysis of controversies in news, blogs, Facebook, Wikipedia, and Reddit, the methodology can be applied to other domains and social platforms. C1 [Aguilar-Soto, Maria; Vargas-Quesada, Benjamin] Univ Granada, Unit Computat Humanities & Social Sci, Colegio Maximo Cartuja S-N, E-18071 Granada, Spain. [Robinson-Garcia, Nicolas] Univ Granada, Unit Computat Humanities & Social Sci, EC3 Res Grp, Colegio Maximo Cartuja S-N, E-18071 Granada, Spain. C3 University of Granada; University of Granada RP Robinson-García, N (corresponding author), Univ Granada, Unit Computat Humanities & Social Sci, EC3 Res Grp, Colegio Maximo Cartuja S-N, E-18071 Granada, Spain. EM m_aguilar@ugr.es; elrobin@ugr.es; benjamin@ugr.es RI Robinson-Garcia, Nicolas/B-3590-2012; Vargas-Quesada, Benjamin/L-7222-2014 OI Robinson-Garcia, Nicolas/0000-0002-0585-7359; Vargas-Quesada, Benjamin/0000-0001-5115-7460; Aguilar-Soto, Maria/0000-0002-8772-8832 FU Spanish Ministry of Science and Innovation, reference MCIN/AEI; European Social Fund "FSE invierte en tu futuro" FX This work has been financed by the Spanish Ministry of Science and Innovation, reference MCIN/AEI /10.13039/501100011033, and by the European Social Fund "FSE invierte en tu futuro". Nicolas Robinson-Garcia is a Ramon y Cajal researcher (REF: RYC2019-027886-I). CR Arroyo-Machado W, 2022, QUANT SCI STUD, V3, P931, DOI 10.1162/qss_a_00226 Arroyo-Machado Wenceslao, 2023, Anuario ThinkEPI, V17, DOI [10.3145/thinkepi.2023.e17a16, DOI 10.3145/THINKEPI.2023.E17A16] Boyack KW, 2009, SCIENTOMETRICS, V79, P45, DOI 10.1007/s11192-009-0403-5 Butler Judith., 1990, Thinking Gender Butler Judith, 1993, BODIES MATTER DISCUR CALLON M, 1983, SOC SCI INFORM, V22, P191, DOI 10.1177/053901883022002003 Choudhury S, 2009, BIOSOCIETIES, V4, P61, DOI 10.1017/S1745855209006437 COLE S, 1983, AM J SOCIOL, V89, P111, DOI 10.1086/227835 Fanelli D, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0066938 Fine Cordelia., 2010, DELUSIONS GENDER OUR Friedrich N, 2015, PRO INT CONF SCI INF, P107 Griffin A., 2008, New strategies to reputation management: Gaining control of issues, crises, and corporate social responsibility Hassan SU, 2021, J INF SCI, V47, P712, DOI 10.1177/0165551520930917 Hyde JS, 2014, ANNU REV PSYCHOL, V65, P373, DOI 10.1146/annurev-psych-010213-115057 Hyde JS, 2005, AM PSYCHOL, V60, P581, DOI 10.1037/0003-066X.60.6.581 Jordan-Young R, 2012, NEUROETHICS-NETH, V5, P305, DOI 10.1007/s12152-011-9134-4 Kaiser A, 2012, Z PSYCHOL, V220, P130, DOI 10.1027/2151-2604/a000104 Kaiser A, 2009, BRAIN RES REV, V61, P49, DOI 10.1016/j.brainresrev.2009.03.005 Kostoff RN, 2005, SCIENTOMETRICS, V62, P199, DOI 10.1007/s11192-005-0014-8 Kuhn T.S., 1962, The structure of scientific revolutions Lamers WS, 2021, ELIFE, V10, DOI [10.7554/eLife.72737, 10.7554/eLife.72737.sa1, 10.7554/eLife.72737.sa2] LEVAY S, 1991, SCIENCE, V253, P1034, DOI 10.1126/science.1887219 Leydesdorff L, 2012, J INFORMETR, V6, P318, DOI 10.1016/j.joi.2011.11.003 Muñoz-Écija T, 2024, J INF SCI, V50, P145, DOI 10.1177/01655515221084607 Muñoz-Écija T, 2019, J INFORMETR, V13, DOI 10.1016/j.joi.2019.100976 Muñoz-Écija T, 2017, J NANOPART RES, V19, DOI 10.1007/s11051-016-3732-3 Nane Gabriela F., 2021, Pandemic communication and resilience. Risk, systems and decisions Nicholson JM, 2021, QUANT SCI STUD, V2, P882, DOI 10.1162/qss_a_00146 North A., 2019, Vox PHOENIX CH, 1959, ENDOCRINOLOGY, V65, P369, DOI 10.1210/endo-65-3-369 Popper K., 2005, LOGIC SCI DISCOVERY Priem J., 2010, Altmetrics: A manifesto Proellochs Nicolas, 2023, CRAN R Core Team, 2023, R LANG ENV STAT COMP Reverter-Banon Sonia, 2017, Daimon, V72, P95, DOI [10.6018/daimon/291561, DOI 10.6018/DAIMON/291561] Rippon G, 2017, J NEUROSCI RES, V95, P1357, DOI 10.1002/jnr.24045 Rippon G, 2014, FRONT HUM NEUROSCI, V8, DOI 10.3389/fnhum.2014.00650 Robinson-Garcia N, 2018, SCI PUBL POLICY, V45, P815, DOI 10.1093/scipol/scy024 Robinson-García N, 2014, PROF INFORM, V23, P359, DOI 10.3145/epi.2014.jul.03 SCOTT J, 1988, SOCIOLOGY, V22, P109, DOI 10.1177/0038038588022001007 Thelwall M, 2021, J ECON SURV, V35, P1302, DOI 10.1111/joes.12381 Torres-Salinas D, 2013, COMUNICAR, V21, P53, DOI 10.3916/C41-2013-05 Torres-Salinas Daniel, 2023, The many publics of science: Using altmetrics to identify common communication channels by scientific field, DOI [10.5281/zenodo.7817445, DOI 10.5281/ZENODO.7817445] Traag VA, 2019, SCI REP-UK, V9, DOI 10.1038/s41598-019-41695-z van Eck NJ, 2014, J INFORMETR, V8, P802, DOI 10.1016/j.joi.2014.07.006 van Eck NJ, 2010, SCIENTOMETRICS, V84, P523, DOI 10.1007/s11192-009-0146-3 van Schalkwyk F, 2020, SCIENTOMETRICS, V125, P1499, DOI 10.1007/s11192-020-03551-0 Vargas-Quesada B., 2007, VISUALIZING STRUCTUR Vargas-Quesada B., 2017, Frontiers Res. Metrics Anal., V2, P7, DOI 10.3389/frma.2017.00007 Vargas-Quesada B, 2010, INFORM VISUAL, V9, P288, DOI 10.1057/ivs.2009.33 Wasserman Stanley., 1998, Social network analysis : methods and applications Zumbach David, 2023, CRAN NR 52 TC 0 Z9 0 U1 9 U2 10 PU EDICIONES PROFESIONALES INFORMACION SL-EPI PI BARCELONA PA MISTRAL, 36, BARCELONA, ALBOLOTE, SPAIN SN 1386-6710 EI 1699-2407 J9 PROF INFORM JI Prof. Inf. PY 2023 VL 32 IS 6 AR e320610 DI 10.3145/epi.2023.nov.10 PG 11 WC Communication; Information Science & Library Science WE Social Science Citation Index (SSCI) SC Communication; Information Science & Library Science GA GZ7F9 UT WOS:001156562800014 OA hybrid DA 2024-09-05 ER PT J AU Chen, XL Zou, D Xie, HR Wang, FL AF Chen, Xieling Zou, Di Xie, Haoran Wang, Fu Lee TI Metaverse in Education: Contributors, Cooperations, and Research Themes SO IEEE TRANSACTIONS ON LEARNING TECHNOLOGIES LA English DT Article DE Metaverse; Education; Bibliometrics; Analytical models; Solid modeling; Collaboration; Databases; Educational Metaverse (Edu-Metaverse); social network visualization; structural topic modeling ID AUGMENTED REALITY; COLLABORATIONS; ENVIRONMENT; EVOLUTION; COMMUNITY; PATTERNS; NETWORK; IMPACT; TIME AB Research on Educational Metaverse (Edu-Metaverse) has developed into an active research field. Based on 310 academic papers published from 2004 to 2022, this study identifies contributors, scientific cooperations, and research themes using bibliometrics, social network analysis, topic modeling, and keyword analysis. Results suggest that Edu-Metaverse has been gaining increasing attention in academia since 2019. Countries/affiliations located in the same regions are close partners in scientific cooperation. By jointly interpreting topic modeling and keyword analysis results, this study reveals eight main themes in the field of Edu-Metaverse: 1) Metaverse-based physical education; 2) Metaverse-supported simulations for collaborative problem-based learning (PBL) in health/medical education; 3) 3-D virtual learning environment-supported art appreciation and creation in art education; 4) Metaverse-enabled laboratories for STEM education; 5) language and 21st century skill development through Metaverse-supported immersive language learning; 6) Metaverse for developing autism children' social communication abilities; 7) virtual world Metaverse-supported gameful experience-based education; and 8) quantitative research on Edu-Metaverse focusing on learners' experience. We also identified challenges and directions needing further attention: 1) data security and privacy protection; 2) balance between the real world and virtual world identities; 3) preparing instructors for Edu-Metaverse; and 4) assessment of higher-order thinking competencies in Edu-Metaverse-based PBL. This work helps facilitate researchers' and practitioners' understanding of Edu-Metaverse research and raises their awareness of research frontiers and future directions. C1 [Chen, Xieling] Guangzhou Univ, Guangzhou 510006, Peoples R China. [Zou, Di] Educ Univ Hong Kong, Hong Kong, Peoples R China. [Xie, Haoran] Lingnan Univ, Hong Kong, Peoples R China. [Wang, Fu Lee] Hong Kong Metropolitan Univ, Hong Kong, Peoples R China. C3 Guangzhou University; Education University of Hong Kong (EdUHK); Lingnan University; Hong Kong Metropolitan University RP Zou, D (corresponding author), Educ Univ Hong Kong, Hong Kong, Peoples R China. EM xielingchen0708@gmail.com; dzou@eduhk.hk; hrxie2@gmail.com; pwang@hkmu.edu.hk RI Xie, Haoran/AFS-3515-2022 OI Xie, Haoran/0000-0003-0965-3617; Wang, Fu Lee/0000-0002-3976-0053; ZOU, Di/0000-0001-8435-9739 FU Special Grant for Strategic Development of Virtual Teaching and Learning, University Grant Committee, Hong Kong FX No Statement Available CR Akour IA., 2022, COMPUTERS ED ARTIFIC, V3, P100052, DOI [10.1016/j.caeai.2022.100052, DOI 10.1016/J.CAEAI.2022.100052] Allen M, 2016, ELIFE, V5, DOI 10.7554/eLife.18103 Almarzouqi A, 2022, IEEE ACCESS, V10, P43421, DOI 10.1109/ACCESS.2022.3169285 Alsaleh S, 2022, IEEE ACCESS, V10, P89924, DOI 10.1109/ACCESS.2022.3199371 Altiok S, 2020, Educational Technology Theory and Practice, V10, P177, DOI [10.17943/etku.622871, DOI 10.17943/ETKU.622871] American Psychiatric Association, 2013, DIAGN STAT MAN MENT [Anonymous], 2010, TEL OPP DEV MEMB STA Asmussen CB, 2019, J BIG DATA-GER, V6, DOI 10.1186/s40537-019-0255-7 Avila-Garzon C, 2021, CONTEMP EDUC TECHNOL, V13, DOI 10.30935/cedtech/10865 Barbosa A, 2021, LAK21 CONFERENCE PROCEEDINGS: THE ELEVENTH INTERNATIONAL CONFERENCE ON LEARNING ANALYTICS & KNOWLEDGE, P77, DOI 10.1145/3448139.3448147 Bastian M., 2009, Gephi: An open source software for exploring and manipulating networks Berg C, 2019, FRONT BLOCKCHAIN, V2, DOI 10.3389/fbloc.2019.00022 Billert MS, 2022, IEEE T LEARN TECHNOL, V15, P540, DOI 10.1109/TLT.2022.3176777 Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993 Bourne J, 2005, J ENG EDUC, V94, P131, DOI 10.1002/j.2168-9830.2005.tb00834.x Castro MDB, 2021, EDUC INF TECHNOL, V26, P1367, DOI 10.1007/s10639-019-10027-z Charles D, 2011, BRIT J EDUC TECHNOL, V42, P638, DOI 10.1111/j.1467-8535.2010.01068.x Chen XL, 2023, EDUC TECHNOL SOC, V26, P171, DOI 10.30191/ETS.202301_26(1).0013 Chen XL, 2022, EDUC TECHNOL SOC, V25, P28 Chen X, 2020, COMPUT EDUC, V151, DOI 10.1016/j.compedu.2020.103855 Coccia M, 2016, P NATL ACAD SCI USA, V113, P2057, DOI 10.1073/pnas.1510820113 Ding Y, 2011, J INFORMETR, V5, P187, DOI 10.1016/j.joi.2010.10.008 Eldokhny AA, 2021, INT J EMERG TECHNOL, V16, P198, DOI 10.3991/ijet.v16i09.17895 Erlandson BE, 2010, ETR&D-EDUC TECH RES, V58, P693, DOI 10.1007/s11423-010-9152-7 Erturk Emre, 2020, Proceedings of the 14th International Conference e-learning 2020. Part of the Multi Conference on Computer Science and Information Systems MCCSIS 2020, P191 Estudante A, 2020, J CHEM EDUC, V97, P1368, DOI 10.1021/acs.jchemed.9b00933 Falchuk B, 2018, IEEE TECHNOL SOC MAG, V37, P52, DOI 10.1109/MTS.2018.2826060 Garrido-Iñigo P, 2015, INTERACT LEARN ENVIR, V23, P453, DOI 10.1080/10494820.2013.788034 Getchell K, 2010, INT CON ADV INFO NET, P1195, DOI 10.1109/AINA.2010.125 Bote VPG, 2013, J AM SOC INF SCI TEC, V64, P392, DOI 10.1002/asi.22754 Guo HY, 2022, FRONT PSYCHOL, V13, DOI 10.3389/fpsyg.2022.859159 Guo L, 2016, J MASS COMMUN Q, V93, P332, DOI 10.1177/1077699016639231 Guraya SY, 2016, N AM J MED SCI, V8, P268, DOI 10.4103/1947-2714.187131 Hamari J, 2015, INT J INFORM MANAGE, V35, P419, DOI 10.1016/j.ijinfomgt.2015.04.006 Heo MH, 2021, HUM-CENT COMPUT INFO, V11, DOI 10.22967/HCIS.2021.11.40 Howard SK, 2015, COMPUT EDUC, V90, P24, DOI 10.1016/j.compedu.2015.09.008 Hwang G. J., 2022, Computers and Education: Artificial Intelligence, DOI [DOI 10.1016/J.CAEAI.2022.100082, 10.1016/j.caeai.2022.100082] Iwanaga J, 2023, CLIN ANAT, V36, P77, DOI 10.1002/ca.23949 JOHNSON K., 1979, COMMUNICATIVE APPROA Jonassen K.P. D., 2001, Journal of Special Education Technology, V16, P46 Kajastila R, 2016, 34TH ANNUAL CHI CONFERENCE ON HUMAN FACTORS IN COMPUTING SYSTEMS, CHI 2016, P758, DOI 10.1145/2858036.2858450 Kelly P., 2012, P 13 INT WORKSH IM A, P1 Ketelhut DJ, 2010, BRIT J EDUC TECHNOL, V41, P56, DOI 10.1111/j.1467-8535.2009.01036.x Khazanchi D, 2006, INT J E-COLLAB, V2, P25, DOI 10.4018/jec.2006070102 Kothari A, 2014, SYST PRACT ACT RES, V27, P123, DOI 10.1007/s11213-012-9271-7 Krippendorff K., 2018, CONTENT ANAL INTRO I Kye B, 2021, J EDUC EVAL HEALTH P, V18, P1, DOI 10.3352/jeehp.2021.18.32 Lee H, 2022, SUSTAINABILITY-BASEL, V14, DOI 10.3390/su14084786 Lee H, 2022, APPL SCI-BASEL, V12, DOI 10.3390/app12052667 Lee L.-H., 2021, arXiv preprint arXiv:2110.05352 Li HY, 2024, WIREL NETW, V30, P4343, DOI 10.1007/s11276-022-03000-1 Liang XN, 2018, RES POLICY, V47, P1295, DOI 10.1016/j.respol.2018.04.012 Lin JR, 2020, IEEE ACCESS, V8, P198503, DOI 10.1109/ACCESS.2020.3035214 Lio C., 2004, P ASS ED COMM TECHN, P592 Liu J., 2022, Adv. Educ. Technol. Psychol., V6, P130 Lu L., 2008, ART EDUC, V61, P48 Makransky G, 2022, EDUC PSYCHOL REV, V34, P1771, DOI 10.1007/s10648-022-09675-4 Min T, 2022, CCF T PERVAS COMPUT, V4, P124, DOI 10.1007/s42486-022-00094-6 Mroz A, 2015, CALICO J, V32, P528, DOI 10.1558/cj.v32i3.26386 Narin N.G., 2021, J METAVERSE, V1, P17 Nelson LK, 2021, SOCIOL METHOD RES, V50, P202, DOI 10.1177/0049124118769114 Ng DTK, 2022, AUSTRALAS J EDUC TEC, V38, P190, DOI 10.14742/ajet.7945 Oh HJ, 2023, COMPUT HUM BEHAV, V139, DOI 10.1016/j.chb.2022.107498 Park M, 2018, RECALL, V30, P196, DOI 10.1017/S0958344017000362 Park S, 2022, SUSTAINABILITY-BASEL, V14, DOI 10.3390/su14031361 Passig D, 2010, J EDUC COMPUT RES, V42, P307, DOI 10.2190/EC.42.3.d Petty G., 2016, Teaching Today: A Practical Guide Rogers L, 2011, BRIT J EDUC TECHNOL, V42, P608, DOI 10.1111/j.1467-8535.2010.01057.x Rojas-Sánchez MA, 2023, EDUC INF TECHNOL, V28, P155, DOI 10.1007/s10639-022-11167-5 Sano Y, 2016, PROCEEDINGS OF THE 2016 ACM INTERNATIONAL CONFERENCE ON INTERACTIVE SURFACES AND SPACES, (ISS 2016), P361, DOI 10.1145/2992154.2996781 Saritas MT, 2022, INT J TECHNOL EDUC, V5, P586, DOI 10.46328/ijte.319 Saundarajan K, 2020, INT J EMERG TECHNOL, V15, P123, DOI 10.3991/ijet.v15i16.10540 Schaf FM, 2012, INT J ENG PEDAGOG, V2, P15, DOI 10.3991/ijep.v2i2.2083 Schlemmer E, 2015, ADV EDUC TECHNOL INS, P1, DOI 10.4018/978-1-4666-6351-0 Sun LJ, 2017, TRANSPORT RES C-EMER, V77, P49, DOI 10.1016/j.trc.2017.01.013 Svensson G, 2010, EUR J MARKETING, V44, P23, DOI 10.1108/03090561011008583 Sweller J, 1998, EDUC PSYCHOL REV, V10, P251, DOI 10.1023/A:1022193728205 Taleb T, 2020, IEEE T MOBILE COMPUT, V19, P2010, DOI 10.1109/TMC.2019.2921712 Tlili A, 2022, SMART LEARN ENVIRON, V9, DOI 10.1186/s40561-022-00205-x Vogel R, 2015, PUBLIC MANAG REV, V17, P1165, DOI 10.1080/14719037.2014.895031 Wiehr F., 2016, P CHI C HUM FACT COM, P1998 Xi NN, 2023, INFORM SYST FRONT, V25, P659, DOI 10.1007/s10796-022-10244-x Xie H, 2019, COMPUT EDUC, V140, DOI 10.1016/j.compedu.2019.103599 Yang FF, 2022, HELIYON, V8, DOI 10.1016/j.heliyon.2022.e10562 Yu ZG, 2022, COMPUT APPL ENG EDUC, V30, P1470, DOI 10.1002/cae.22532 Yu ZG, 2023, INTERACT LEARN ENVIR, V31, P4956, DOI 10.1080/10494820.2021.1989466 Yuping Wang, 2001, CALICO Journal, V18, P539 Zhang XL, 2022, FRONT PSYCHOL, V13, DOI 10.3389/fpsyg.2022.1016300 Zupic I, 2015, ORGAN RES METHODS, V18, P429, DOI 10.1177/1094428114562629 NR 89 TC 13 Z9 13 U1 70 U2 78 PU IEEE COMPUTER SOC PI LOS ALAMITOS PA 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1314 USA SN 1939-1382 J9 IEEE T LEARN TECHNOL JI IEEE Trans. Learn. Technol. PD DEC PY 2023 VL 16 IS 6 BP 1111 EP 1129 DI 10.1109/TLT.2023.3277952 PG 19 WC Computer Science, Interdisciplinary Applications; Education & Educational Research WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Computer Science; Education & Educational Research GA EY5S1 UT WOS:001142515100011 OA hybrid DA 2024-09-05 ER PT J AU Vaicondam, Y Sikandar, H Irum, S Khan, N Qureshi, MI AF Vaicondam, Yamunah Sikandar, Huma Irum, Sobia Khan, Nohman Qureshi, Muhammad Imran TI Research Landscape of Digital Learning Over the Past 20 Years: A Bibliometric and Visualisation Analysis SO INTERNATIONAL JOURNAL OF ONLINE AND BIOMEDICAL ENGINEERING LA English DT Article DE digital learning; e-learning; m-learning; bibliometric analysis; visualisation; online learning; research trend analysis; covid-19 AB The concept of digital learning has grown in popularity significantly over the last few decades especially in the past couple of years due to covid-19. Digital learning is defined as any type of learning that integrated Information and communication technology in its conduct. This study aims to presents a research landscape of digital learning research published in the past 20 years. We conducted a bibliometric analysis to determine the pattern of digital learning published literature from 2002 to 2021. The search for the relevant articles was made on the basis of keywords linked with digital learning in the article's title, abstract, and keywords. As a result, we retrieved 1361 papers from Scopus for bibliometric analysis. The review identifies the publication growth trend, most cited articles, top journals, productive authors, and the leading countries and institutions and major subject areas. According to the findings of our analysis, the United States is the most productive country in terms oof publications and citations. Computers and Education is the leading journal. Through the co-occurrence of keywords analysis, we determined that the most significant keywords associated with digital learning are covid-19, online learning, e-learning and digital learning environment, higher education, digital technologies and so on. The highest number of digital learning articles are published under social science domain. The publication growth trend is consistently rising and is projected to continue in the following years, indicating the importance of digital learning in different domain. The study provides a roadmap for future researchers to follow, where they can focus on key areas where success is possible. C1 [Vaicondam, Yamunah] Taylors Univ, Sch Accounting & Finance, Subang Jaya, Malaysia. [Sikandar, Huma] Univ Teknol Malaysia UTM, Azman Hashim Int Business Sch AHIBS, Johor Baharu 81310, Johor, Malaysia. [Irum, Sobia] Univ Bahrain, Dept Management & Mkt, Coll Business Adm, Zallaq, Bahrain. [Khan, Nohman] Univ Kuala Lumpur, UniKL Business Sch, Kuala Lumpur, Malaysia. [Qureshi, Muhammad Imran] Teesside Univ, Int Business Sch, Clarendon Bldg, Middlesbrough TS1 3BX, Cleveland, England. C3 Taylor's University; Universiti Teknologi Malaysia; University of Bahrain; University of Kuala Lumpur; University of Teesside RP Sikandar, H (corresponding author), Univ Teknol Malaysia UTM, Azman Hashim Int Business Sch AHIBS, Johor Baharu 81310, Johor, Malaysia. EM Huma.sikandar@gmail.com; nohman.khan@s.unikl.edu.my; m.qureshi@tees.ac.uk RI Khan, Nohman/AAR-2414-2020; Qureshi, Muhammad Imran/I-4390-2016; Sikandar, Huma/AAA-1479-2022; Vaicondam, Yamunah/KTI-6691-2024 OI Khan, Nohman/0000-0001-9714-6273; Qureshi, Muhammad Imran/0000-0001-8861-0628; Sikandar, Huma/0000-0001-7777-2314; Vaicondam, Yamunah/0000-0003-2658-8319 CR Albort-Morant G, 2016, J BUS RES, V69, P4912, DOI 10.1016/j.jbusres.2016.04.052 Baas J, 2020, QUANT SCI STUD, V1, P377, DOI 10.1162/qss_a_00019 Blake H, 2020, INT J ENV RES PUB HE, V17, DOI 10.3390/ijerph17092997 Bouhnik D, 2006, J AM SOC INF SCI TEC, V57, P299, DOI 10.1002/asi.20277 Brown T., 2005, INT J E LEARNING, V4, P299 Burnham Judy F, 2006, Biomed Digit Libr, V3, P1 Chitkushev Lou, 2014, International Journal of Information and Education Technology, V4, P356, DOI 10.7763/IJIET.2014.V4.429 Das S., 2021, LIB PHILOS PRACTICE, V2021 Djeki E, 2022, J COMPUT EDUC, V9, P727, DOI 10.1007/s40692-021-00218-4 Elaish Monther M., 2019, International Journal of Mobile Learning and Organisation, V13, P91 Garrison D.R., 2016, E LEARNING 21 CENTUR, V3rd, DOI [10.4324/9781315667263, DOI 10.4324/9781315667263] Gaur P., 2015, SHANLAX INT J COMMER, V1, P29, DOI [10.5281/zenodo.1438182, DOI 10.5281/ZENODO.1438182] Goksu I, 2021, TELEMAT INFORM, V56, DOI 10.1016/j.tele.2020.101491 Hicks D, 2013, HANDBOOK ON THE THEORY AND PRACTICE OF PROGRAM EVALUATION, P323 Hoppe HU, 2003, J COMPUT ASSIST LEAR, V19, P255, DOI 10.1046/j.0266-4909.2003.00027.x Khan FM, 2022, INTERACT TECHNOL SMA, V19, P338, DOI 10.1108/ITSE-03-2021-0048 Kumar Basak S., 2018, ELearning and Digital Media, V15, P191, DOI DOI 10.1177/2042753018785180 Kumar Basak S., 2018, E-LEARNING DIGITAL M, V15, P191, DOI 10.1177%2F2042753018785180 Martin F, 2020, COMPUT EDUC, V159, DOI 10.1016/j.compedu.2020.104009 Md Osman S. Z., INT J LEARNING TEACH, V20, P2021 Moher D, 2009, J CLIN EPIDEMIOL, V62, P1006, DOI 10.1016/j.jclinepi.2009.06.005 Perianes-Rodriguez A, 2016, J INFORMETR, V10, P1178, DOI 10.1016/j.joi.2016.10.006 Qureshi Muhammad Imran, 2020, International Journal of Interactive Mobile Technologies, V14, P67, DOI 10.3991/ijim.v14i06.13479 Sikandar Huma, 2021, International Journal of Interactive Mobile Technologies, V15, P129, DOI 10.3991/ijim.v15i18.25535 Sikandar H, 2021, INT J ONLINE BIOMED, V17, P52, DOI 10.3991/ijoe.v17i12.25483 Sobral Sonia Rolland, 2020, International Journal of Interactive Mobile Technologies, V14, P153, DOI 10.3991/ijim.v14i11.13973 Sweileh WM, 2021, MED SCI EDUC, V31, P765, DOI 10.1007/s40670-021-01254-6 Valverde-Berrocoso J, 2020, SUSTAINABILITY-BASEL, V12, DOI 10.3390/su12125153 Van Eck N. J., 2020, MANUAL VOSVIEWER 1 6 Wheeler S., 2012, ENCY SCI LEARNING, P1109, DOI 10.1007/978-1-4419-1428-6_431 Zouhair R., 2016, INT J COMPUTER NETWO, V4, P89 NR 31 TC 7 Z9 7 U1 0 U2 17 PU Int Federation Engineering Education Societies-IFEES PI Fairfax PA 4400 University Drive, MS 4A3, Fairfax, VA, UNITED STATES EI 2626-8493 J9 INT J ONLINE BIOMED JI Int. J. Online Biomed. Eng. PY 2022 VL 18 IS 8 BP 4 EP 22 DI 10.3991/ijoe.v18i08.31963 PG 19 WC Computer Science, Interdisciplinary Applications WE Emerging Sources Citation Index (ESCI) SC Computer Science GA 2R3GA UT WOS:000820998600001 OA gold, Green Submitted DA 2024-09-05 ER PT J AU Morsink, MC Dekter, HE Dirks-Mulder, A van Leeuwen, WB AF Morsink, M. C. Dekter, H. E. Dirks-Mulder, A. van Leeuwen, W. B. TI Molecular diagnostic analysis of outbreak scenarios SO BIOCHEMISTRY AND MOLECULAR BIOLOGY EDUCATION LA English DT Article DE Assessment of educational activities; molecular biology; molecular medicine; active learning; emerging diseases; inquiry-based teaching; integration of courses; integration of research into undergraduate teaching; laboratory exercises; teaching and learning techniques methods and approaches AB In the current laboratory assignment, technical aspects of the polymerase chain reaction (PCR) are integrated in the context of six different bacterial outbreak scenarios. The Enterobacterial Repetitive Intergenic Consensus Sequence (ERIC) PCR was used to analyze different outbreak scenarios. First, groups of 24 students determined optimal ERIC-PCR conditions to validate the protocol and subsequently applied ERIC-PCR to identify genetic relatedness among bacterial strains. Based on these genetic fingerprints, students selected the outbreak cases from the patient samples and assessed the risk factors for the outbreak scenario. Finally, students presented their findings during a classroom presentation. The results indicated that the assignment successfully facilitated student learning on the technical aspects of (ERIC) PCR and clearly demonstrated the practical application of PCR in a clinical diagnostic setting. Additionally, the assignment was highly appreciated by the students. C1 [Morsink, M. C.; Dekter, H. E.; Dirks-Mulder, A.; van Leeuwen, W. B.] Univ Appl Sci Leiden, Dept Innovat Mol Diagnost, Hogesch Leiden, Leiden, Netherlands. RP Morsink, MC (corresponding author), Univ Appl Sci Leiden, Dept Innovat Mol Diagnost, Hogesch Leiden, Leiden, Netherlands. EM maarten.morsink@gmail.com CR Bres M., 2009, J COLL SCI TEACH, V38, P43 Buckingham Flaws, 2007, MOL DIAGNOSTICS FUND, P121 Centers for Disease Control and Prevention (CDC), 2008, MMWR Morb Mortal Wkly Rep, V57, P929 Romanelli RMD, 2009, BRAZ J INFECT DIS, V13, P341, DOI 10.1590/S1413-86702009000500005 DH Persing, 2004, MOL MICROBIOLOGY DIA, P43 Gillings M, 1997, LETT APPL MICROBIOL, V25, P17, DOI 10.1046/j.1472-765X.1997.00162.x Janssen D., 2009, Morbidity and Mortality Weekly Report, V58, P194 Kazakova SV, 2005, NEW ENGL J MED, V352, P468, DOI 10.1056/NEJMoa042859 Kur L., 2009, Morbidity and Mortality Weekly Report, V58, P337 Merrill MD, 2002, ETR&D-EDUC TECH RES, V50, P43, DOI 10.1007/BF02505024 Morsink MC, 2009, ADV PHYSIOL EDUC, V33, P46, DOI 10.1152/advan.90179.2008 Nasser, 2004, INFECT CONT HOSP EP, V25, P189 Pelt-Verkuil Van, 2008, PRINCIPLES TECHNICAL, P91 Peng Y, 2007, J APPL MICROBIOL, V103, P2095, DOI 10.1111/j.1365-2672.2007.03440.x Tortora, 2007, MICROBIOLOGY INTRO, P445 Van Merrienboer J.J. G., 2007, 10 STEPS COMPLEX LEA VERSALOVIC J, 1991, NUCLEIC ACIDS RES, V19, P6823, DOI 10.1093/nar/19.24.6823 WB Van Leeuwen, 2009, MOL DIAGNOSTICS TECH, P17 NR 18 TC 0 Z9 0 U1 0 U2 4 PU WILEY PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1470-8175 EI 1539-3429 J9 BIOCHEM MOL BIOL EDU JI Biochem. Mol. Biol. Educ. PD MAR-APR PY 2012 VL 40 IS 2 BP 112 EP 120 DI 10.1002/bmb.20562 PG 9 WC Biochemistry & Molecular Biology; Education, Scientific Disciplines WE Science Citation Index Expanded (SCI-EXPANDED) SC Biochemistry & Molecular Biology; Education & Educational Research GA 908JK UT WOS:000301486500006 PM 22419592 OA Bronze DA 2024-09-05 ER PT J AU Jain, J Walia, N Singh, S Jain, E AF Jain, Jinesh Walia, Nidhi Singh, Simarjeet Jain, Esha TI Mapping the field of behavioural biases: a literature review using bibliometric analysis SO MANAGEMENT REVIEW QUARTERLY LA English DT Article DE Heuristics; Prospect; Herding; Bibliometric analysis; Content analysis; Behavioural biases; G40; G41 ID MYOPIC LOSS AVERSION; INVESTMENT DECISION-MAKING; HERD BEHAVIOR; INTELLECTUAL STRUCTURE; CAPITAL-MARKETS; PROSPECT-THEORY; RISK-TAKING; INFORMATION; INVESTORS; OVERCONFIDENCE AB Research on behavioural biases has witnessed a momentous growth in the last two decades, supported by rising interest and publication thrust shown by academic scholars. Present study maps the academic literature on the role of behavioural biases in investment decision-making. With the help of bibliometric tools, the paper highlights the current state-of-the-art and identifies significant gaps in the existing literature on behavioural biases. Through keyword and reference searching approaches, the study retrieved 212 research papers from the Scopus database. Application of performance analysis techniques has helped in identification of influential journals, prolific authors, countries and affiliations enriching the literature on behavioural biases. Scientific mapping approaches such as bibliographic coupling and thematic mapping has provided valuable insights about the conceptual and intellectual structure of the field. Finally, the research directions proposed in this review will provide a roadmap for future research. C1 [Jain, Jinesh; Jain, Esha] Sri Aurobindo Coll Commerce & Management, Ludhiana, India. [Walia, Nidhi; Singh, Simarjeet] Punjabi Univ, Univ Sch Appl Management, Patiala, India. C3 Punjabi University RP Singh, S (corresponding author), Punjabi Univ, Univ Sch Appl Management, Patiala, India. EM jineshjain81@gmail.com; nidhiwalia79@gmail.com; jeetsimarkamal93@gmail.com; ejain2028@gmail.com RI Singh, Simarjeet/ABB-5409-2020; jain, Jinesh/AAM-6220-2021 OI Singh, Simarjeet/0000-0003-3497-2177; jain, Jinesh/0000-0003-1774-8704 CR Acedo FJ, 2005, INT BUS REV, V14, P619, DOI 10.1016/j.ibusrev.2005.05.003 Amonlirdviman K, 2010, J INT MONEY FINANC, V29, P1303, DOI 10.1016/j.jimonfin.2010.03.003 Anderson A, 2015, J BEHAV EXP FINANC, V6, P93, DOI 10.1016/j.jbef.2015.04.002 Arjoon V, 2020, J ECON BUS, V109, DOI 10.1016/j.jeconbus.2019.105889 Avery C, 1998, AM ECON REV, V88, P724 Aveyard H., 2014, DOING LIT REV HLTH S Aznar-Sánchez JA, 2019, J CLEAN PROD, V221, P38, DOI 10.1016/j.jclepro.2019.02.243 Baier-Fuentes H, 2019, INT ENTREP MANAG J, V15, P385, DOI 10.1007/s11365-017-0487-y Baker HK., 2014, How biases affect investor behaviour, DOI [10.1002/9781118813454, DOI 10.1002/9781118813454] Barber BM, 2000, J FINANC, V55, P773, DOI 10.1111/0022-1082.00226 Barberis N, 2001, J FINANC, V56, P1247, DOI 10.1111/0022-1082.00367 Bartolini M, 2019, J CLEAN PROD, V226, P242, DOI 10.1016/j.jclepro.2019.04.055 Batmunkh MU, 2020, PAC-BASIN FINANC J, V62, DOI 10.1016/j.pacfin.2020.101352 Bellemare C, 2005, ECON LETT, V87, P319, DOI 10.1016/j.econlet.2004.12.011 BENARTZI S, 1995, Q J ECON, V110, P73, DOI 10.2307/2118511 Beneish MD, 2008, J ACCOUNT PUBLIC POL, V27, P433, DOI 10.1016/j.jaccpubpol.2008.09.001 Berelson B., 1952, CONTENT ANAL COMMUNI BERNARD VL, 1989, J ACCOUNTING RES, V27, P1, DOI 10.2307/2491062 Bernstein M, 1998, AM PHILOS QUART, V35, P39 Best MJ, 2017, Q J FINANC, V7, DOI 10.1142/S201013921750001X Bhatia A, 2020, J BEHAV EXP FINANC, V25, DOI 10.1016/j.jbef.2020.100281 Bhatt Y, 2020, J CLEAN PROD, V260, DOI 10.1016/j.jclepro.2020.120988 Blavatskyy PR, 2010, J APPL ECONOMET, V25, P963, DOI 10.1002/jae.1116 Bloomfield R., 2000, Journal of Financial Markets, V3, P113, DOI [10.1016/S1386-4181(00)00003-3, DOI 10.1016/S1386-4181(00)00003-3] Bokhari S, 2011, REAL ESTATE ECON, V39, P635, DOI 10.1111/j.1540-6229.2011.00308.x Bonner SE, 2014, ACCOUNT REV, V89, P2087, DOI 10.2308/accr-50838 Bornmann L, 2015, J ASSOC INF SCI TECH, V66, P2215, DOI 10.1002/asi.23329 Borrett SR, 2018, ECOL MODEL, V382, P63, DOI 10.1016/j.ecolmodel.2018.04.020 Boyack KW, 2010, J AM SOC INF SCI TEC, V61, P2389, DOI 10.1002/asi.21419 Brin S, 1998, COMPUT NETWORKS ISDN, V30, P107, DOI 10.1016/S0169-7552(98)00110-X Briner R. B., 2012, The Oxford Handbook of Evidence-Based Management, P112, DOI [10.1093/oxfordhb/9780199763986.013.0007, DOI 10.1093/OXFORDHB/9780199763986.013.0007] Bryman A., 2012, SOCIAL RES METHODS Campbell SD, 2009, J FINANC QUANT ANAL, V44, P369, DOI 10.1017/S0022109009090127 Caust J, 2017, J CULT HERIT, V27, P1, DOI 10.1016/j.culher.2017.02.004 Chang TY, 2016, J FINANC, V71, P267, DOI 10.1111/jofi.12311 Chang YW, 2015, SCIENTOMETRICS, V105, P2071, DOI 10.1007/s11192-015-1762-8 Charles A., 2016, ICTACT Journal on Managament Studies, V2, P297, DOI DOI 10.21917/IJMS.2016.0039 Chen CS, 2017, MANAGE DECIS, V55, P1598, DOI 10.1108/MD-10-2016-0725 Chen D, 2016, ECOL ENG, V90, P285, DOI 10.1016/j.ecoleng.2016.01.026 Chen GM, 2007, J BEHAV DECIS MAKING, V20, P425, DOI 10.1002/bdm.561 Chen T, 2022, INT J FINANC ECON, V27, P4336, DOI 10.1002/ijfe.2374 Cobo MJ, 2011, J AM SOC INF SCI TEC, V62, P1382, DOI 10.1002/asi.21525 Corredor P, 2014, INT BUS REV, V23, P824, DOI 10.1016/j.ibusrev.2014.01.001 Costa DF, 2017, SCIENTOMETRICS, V111, P1775, DOI 10.1007/s11192-017-2371-5 Couckuyt D, 2019, SUSTAINABILITY-BASEL, V11, DOI 10.3390/su11154200 D'Acunto F, 2019, REV FINANC STUD, V32, P1983, DOI 10.1093/rfs/hhz014 Daniel K, 2002, J MONETARY ECON, V49, P139, DOI 10.1016/S0304-3932(01)00091-5 Daniel K, 1998, J FINANC, V53, P1839, DOI 10.1111/0022-1082.00077 Das S, 2010, J FINANC QUANT ANAL, V45, P311, DOI 10.1017/S0022109010000141 De Bondt W.F. M., 1995, Handbooks in Operations Research and Management Science, V9, P385, DOI DOI 10.1016/S0927-0507(05)80057-X DeBondt W., 1999, EUR FINANC MANAG, V5, P143, DOI [10.1111/1468-036X.00087, DOI 10.1111/1468-036X.00087] DEBONDT WFM, 1985, J FINANC, V40, P793, DOI 10.1111/j.1540-6261.1985.tb05004.x DEBONDT WFM, 1990, AM ECON REV, V80, P52 Dehghani P, 2014, VENTUR CAP, V16, P227, DOI 10.1080/13691066.2014.921100 Denyer D., 2009, SAGE HDB ORG RES MET, P671 Ding Y, 2011, INFORM PROCESS MANAG, V47, P80, DOI 10.1016/j.ipm.2010.01.002 Ding Y, 2009, J AM SOC INF SCI TEC, V60, P2229, DOI 10.1002/asi.21171 Eduardsen J, 2020, INT BUS REV, V29, DOI 10.1016/j.ibusrev.2020.101688 FAMA EF, 1970, J FINANC, V25, P383, DOI 10.2307/2325486 Fernández B, 2011, QUAL RES FINANC MARK, V3, P7, DOI 10.1108/17554171111124595 Frino A., 2008, PAC-BASIN FINANC J, V16, P8, DOI DOI 10.1016/J.PACFIN.2007.04.002 Frino A, 2015, PAC-BASIN FINANC J, V31, P1, DOI 10.1016/j.pacfin.2014.10.009 García-Lillo F, 2017, MANAGE INT REV, V57, P631, DOI 10.1007/s11575-016-0308-5 GARFIELD E, 1955, SCIENCE, V122, P108, DOI 10.1126/science.122.3159.108 Genesove D, 2001, Q J ECON, V116, P1233, DOI 10.1162/003355301753265561 Genesove D, 2001, Nat Bureau Econ Res Gneezy U, 2003, Q J ECON, V118, P1049, DOI 10.1162/00335530360698496 Goetzmann WN, 2008, REV FINANC, V12, P433, DOI 10.1093/rof/rfn005 González-Torres T, 2020, SUSTAINABILITY-BASEL, V12, DOI 10.3390/su12020513 Grinblatt M, 2005, J FINANC ECON, V78, P311, DOI 10.1016/j.jfineco.2004.10.006 Gurevich G, 2009, J BANK FINANC, V33, P1221, DOI 10.1016/j.jbankfin.2008.12.017 Hao Y, 2016, INT REV ECON FINANC, V43, P121, DOI 10.1016/j.iref.2015.10.035 Hens T, 2021, APPL ECON LETT, V28, P501, DOI 10.1080/13504851.2020.1761529 Hermann D, 2019, J ECON PSYCHOL, V74, DOI 10.1016/j.joep.2019.102192 Hilary G, 2011, J ACCOUNT ECON, V51, P300, DOI 10.1016/j.jacceco.2011.01.002 Hirshleifer D., 2003, Eur. Financ. Manag., V9, P25 Horvath PA., 2017, J Econ Finan, V41, P160, DOI [10.1007/s12197-015-9344-4, DOI 10.1007/S12197-015-9344-4] Hu WY, 2007, FINANC ANAL J, V63, P71, DOI 10.2469/faj.v63.n6.4928 Hudson Y, 2020, INT REV FINANC ANAL, V71, DOI 10.1016/j.irfa.2020.101494 Hwang S., 2004, J EMPIR FINANC, V11, P585, DOI [10.1016/j.jempfin.2004.04.003, DOI 10.1016/J.JEMPFIN.2004.04.003] Indars ER, 2019, EMERG MARK REV, V38, P468, DOI 10.1016/j.ememar.2018.12.002 Isidore RR., 2019, J Wealth Manag, V22, P21, DOI [10.3905/jwm.2019.22.2.021, DOI 10.3905/JWM.2019.22.2.021] Jain J, 2020, REV BEHAV FINANCE, V12, P297, DOI 10.1108/RBF-03-2019-0044 Joghee S, 2020, Decisions effectiveness Of FDI investment biases at real estate industry: empirical evidence from dubai smart city projects, V9, P5 Johnson JEV, 2009, J BEHAV DECIS MAKING, V22, P410, DOI 10.1002/bdm.640 Kahneman D, 2003, AM ECON REV, V93, P1449, DOI 10.1257/000282803322655392 KAHNEMAN D, 1979, COGNITION, V7, P409, DOI 10.1016/0010-0277(79)90024-6 Kengatharan L., 2014, Asian Journal of Finance Accounting, V6, P1, DOI DOI 10.5296/AJFA.V6I1.4893 Kim SJ, 2010, J PSYCHOSOM RES, V68, P159, DOI 10.1016/j.jpsychores.2009.06.010 Kliger D, 2008, J BANK FINANC, V32, P1782, DOI 10.1016/j.jbankfin.2007.12.006 Kliger D, 2009, J ECON BEHAV ORGAN, V71, P361, DOI 10.1016/j.jebo.2009.03.020 Ko KJ, 2007, J FINANC ECON, V84, P529, DOI 10.1016/j.jfineco.2006.03.002 Krokida SI, 2020, J ECON BEHAV ORGAN, V170, P386, DOI 10.1016/j.jebo.2019.12.018 Kumar A, 2009, J FINANC, V64, P1889, DOI 10.1111/j.1540-6261.2009.01483.x Kumar S., 2020, MANAGEMENT REV Q, V70, P535, DOI [10.1007/s11301-019-00175-4, DOI 10.1007/S11301-019-00175-4] Kumar S, 2015, QUAL RES FINANC MARK, V7, P88, DOI 10.1108/QRFM-07-2014-0022 Lai MM, 2013, J BEHAV FINANC, V14, P104, DOI 10.1080/15427560.2013.790822 Lather AS., 2020, An empirical examination of the impact of locus of control on investor behavioral biases Lee B, 2016, J BANK FINANC, V70, P235, DOI 10.1016/j.jbankfin.2016.04.008 Lepone A, 2019, INT REV ECON FINANC, V61, P179, DOI 10.1016/j.iref.2019.02.002 Li J, 2012, J FINANC ECON, V104, P401, DOI 10.1016/j.jfineco.2011.04.003 Li YJ, 2022, INFORM MANAGE-AMSTER, V59, DOI 10.1016/j.im.2020.103269 Liao LC, 2013, N AM J ECON FINANC, V26, P72, DOI 10.1016/j.najef.2013.07.001 Linnainmaa JT, 2021, J FINANC, V76, P587, DOI 10.1111/jofi.12995 Lowies GA, 2016, J PROP INVEST FINANC, V34, P51, DOI 10.1108/JPIF-08-2014-0055 Luo GY, 2013, J FINANC MARK, V16, P152, DOI 10.1016/j.finmar.2012.05.001 Mallawaarachchi H, 2020, J CLEAN PROD, V258, DOI 10.1016/j.jclepro.2020.120618 MARTYN J, 1964, J DOC, V20, P236, DOI 10.1108/eb026352 Massa M, 2006, REV FINANC STUD, V19, P633, DOI 10.1093/rfs/hhj013 Merton RobertC., 1985, On the Current State of the Stock Market Rationality Hypothesis Momen O, 2019, QUANT FINANC, V19, P265, DOI 10.1080/14697688.2018.1489138 Moradi M., 2013, Asian J Res Bus Econ Manag, V3, P328 Mugomeri E, 2017, HEALTH RES POLICY SY, V15, DOI 10.1186/s12961-017-0183-y Mushinada VNC, 2018, INT J MANAG FINANC, V14, P613, DOI 10.1108/IJMF-05-2017-0093 Ngoc L.T.B., 2014, International Journal of Business and Management, V9, P1, DOI [10.5539/ijbm.v9n1p1, DOI 10.5539/IJBM.V9N1P1] Nofsinger JR, 2001, J BANK FINANC, V25, P1339, DOI 10.1016/S0378-4266(00)00133-3 Nofsinger JR, 1999, J FINANC, V54, P2263, DOI 10.1111/0022-1082.00188 Odean T, 1998, J FINANC, V53, P1775, DOI 10.1111/0022-1082.00072 Olsen R.A., 1997, Review of Financial Economics, V6, P225, DOI DOI 10.1016/S1058-3300(97)90008-2 Paine SJ, 2006, J BIOL RHYTHM, V21, P68, DOI 10.1177/0748730405283154 Patria H, 2019, ASIAN J BUS ACCOUNT, V12, P233, DOI 10.22452/ajba.vol12no2.9 Peng L, 2006, J FINANC ECON, V80, P563, DOI 10.1016/j.jfineco.2005.05.003 Persson O., 2009, CELEBRATING SCHOLARL, V5, P9 Philippas D, 2020, J INT FINANC MARK I, V65, DOI 10.1016/j.intfin.2020.101191 Pittway L., 2008, The SAGE dictionary of qualitative management research Poteshman AM, 2001, J FINANC, V56, P851, DOI 10.1111/0022-1082.00348 Pruna RT, 2020, QUANT FINANC, V20, P275, DOI 10.1080/14697688.2019.1655784 Qin J, 2020, J BANK FINANC, V114, DOI 10.1016/j.jbankfin.2020.105784 Qin J, 2015, J ECON THEORY, V160, P150, DOI 10.1016/j.jet.2015.08.010 Ren R, 2020, INT J ENV RES PUB HE, V17, DOI 10.3390/ijerph17010261 Rodrigues M, 2018, J CLEAN PROD, V181, P88, DOI 10.1016/j.jclepro.2018.01.163 Rosenboim M, 2008, MANAG DECIS ECON, V29, P601, DOI 10.1002/mde.1435 Rousseau DM, 2008, ACAD MANAG ANN, V2, P475, DOI 10.1080/19416520802211651 Saggese S, 2016, INT J MANAG REV, V18, P417, DOI 10.1111/ijmr.12072 Shadish WR, 2006, SYSTEMATIC REVIEWS IN THE SOCIAL SCIENCES: A PRACTICAL GUIDE, P164 SHEFRIN H, 1995, J PORTFOLIO MANAGE, V21, P26, DOI 10.3905/jpm.1995.409506 Shefrin H., 2007, Behavioral Corporate Finance Shiller RobertJ., 1998, Indexed Units of Account: Theory and Assessment of Historical Experience Sias RW, 2004, REV FINANC STUD, V17, P165, DOI 10.1093/rfs/hhg035 Singh A., 2020, Rising threats in expert applications and solutions, P455 Singh H.P., 2016, Indian Journal of Finance, V10, P51, DOI DOI 10.17010/IJF/2016/V10I6/94879 Singh S, 2022, MANAG REV Q, V72, P87, DOI 10.1007/s11301-020-00205-6 SOLNIK BH, 1973, J FINANC, V28, P1151, DOI 10.2307/2978754 Subrahmanyam A, 2008, EUR FINANC MANAG, V14, P12, DOI 10.1111/j.1468-036X.2007.00415.x Tang AKY, 2019, ELECTRON COMMER R A, V37, DOI 10.1016/j.elerap.2019.100885 Tekçe B, 2016, RES INT BUS FINANC, V37, P515, DOI 10.1016/j.ribaf.2015.11.017 Thaler RH, 1997, Q J ECON, V112, P647, DOI 10.1162/003355397555226 Tranfield D, 2003, BRIT J MANAGE, V14, P207, DOI 10.1111/1467-8551.00375 TVERSKY A, 1974, SCIENCE, V185, P1124, DOI 10.1126/science.185.4157.1124 ul Abdin SZ, 2017, RES INT BUS FINANC, V42, P674, DOI 10.1016/j.ribaf.2017.07.010 van Oorschot JAWH, 2018, TECHNOL FORECAST SOC, V134, P1, DOI 10.1016/j.techfore.2018.04.032 Waweru NelsonMaina., 2008, International Journal of Business and Emerging Markets, V1, P24, DOI [10.1504/IJBEM.2008.019243, DOI 10.1504/IJBEM.2008.019243] Welch I, 2000, J FINANC ECON, V58, P369, DOI 10.1016/S0304-405X(00)00076-3 Xu W, 2018, J ECON DYN CONTROL, V87, P1, DOI 10.1016/j.jedc.2017.11.002 Vo XV, 2019, J BEHAV EXP FINANC, V24, DOI 10.1016/j.jbef.2019.02.002 Vo XV, 2019, PAC-BASIN FINANC J, V53, P321, DOI 10.1016/j.pacfin.2018.10.005 Yao J, 2013, J BANK FINANC, V37, P2793, DOI 10.1016/j.jbankfin.2013.04.001 Zeisberger S, 2012, THEOR DECIS, V72, P359, DOI 10.1007/s11238-010-9234-3 Zervoudi E, 2016, REV BEHAV FINANCE, V8, P39, DOI 10.1108/RBF-12-2014-0052 Zhang K, 2017, ELECTRON COMMER R A, V23, P45, DOI 10.1016/j.elerap.2017.04.001 Zhang L, 2006, BERNOULLI, V12, P1019, DOI 10.3150/bj/1165269149 Zupic I, 2015, ORGAN RES METHODS, V18, P429, DOI 10.1177/1094428114562629 Zyoud SH, 2017, EXPERT SYST APPL, V78, P158, DOI 10.1016/j.eswa.2017.02.016 NR 163 TC 35 Z9 35 U1 0 U2 0 PU SPRINGERNATURE PI LONDON PA CAMPUS, 4 CRINAN ST, LONDON, N1 9XW, ENGLAND SN 2198-1620 EI 2198-1639 J9 MANAG REV Q JI Manag. Rev. Q. PD SEP PY 2022 VL 72 IS 3 BP 823 EP 855 DI 10.1007/s11301-021-00215-y PG 33 WC Business; Business, Finance; Management WE Emerging Sources Citation Index (ESCI) SC Business & Economics GA TG4L8 UT WOS:001240099300005 DA 2024-09-05 ER PT C AU Johanes, P AF Johanes, Petr GP Assoc Comp Machinery TI Start of a Science: An Epistemological Analysis of Learning at Scale SO L@S '19: PROCEEDINGS OF THE SIXTH (2019) ACM CONFERENCE ON LEARNING @ SCALE LA English DT Proceedings Paper CT 6th ACM Conference on Learning @ Scale (L@S) CY JUN 24-25, 2019 CL Chicago, IL DE Epistemology; Philosophy of Science; Citation Network Analysis; Bibliometrics; Knowledge Modeling; Online Learning; MOOCs ID DESIGN-BASED RESEARCH AB The Learning at Scale (L@S) conference has brought together researchers from diverse scholarly communities to design and study technologies that are explicitly meant to scale to a large number and variety of learners. Over the last three years, the L@S community has published a thematic, methodological, and bibliometric analysis to reflect on its own interests, challenges, and foundations. This paper continues the wider reflection effort and complements these two prior analyses with an epistemological analysis of the way the papers employ learning theory, evaluate evidence, and deploy statistical models. The epistemological analysis uses two methodologies: coding the full papers from the first four years for epistemological markers of interest and analyzing the network of citations from all of the full papers for dominant institutional and epistemological traditions. By combining these two methods, the present analysis reveals that most papers explicitly show their theoretical commitments, target a narrow slice of available learning theory, draw on varied academic fields in different proportions, and showcase epistemological practices in line with what philosophers of computational science observe in communities using similar model-based methods. The paper then situates these claims in wider conversations occurring in the learning sciences and philosophy of science to provide theoretical insights as well as practical recommendations for how the community can more consciously conduct and communicate its scientific endeavor. C1 [Johanes, Petr] Stanford Univ, Stanford, CA 94305 USA. C3 Stanford University RP Johanes, P (corresponding author), Stanford Univ, Stanford, CA 94305 USA. EM pjohanes@stanford.edu CR Bang M, 2007, P NATL ACAD SCI USA, V104, P13868, DOI 10.1073/pnas.0706627104 Boaler J., 2000, J MATH BEHAV, V18, P379, DOI DOI 10.1016/S0732-3123(00)00026-2 Botelho A., 2015, LEARNING AT SCALE, P39, DOI DOI 10.1145/2724660.2724675 Bransford J., 2005, Learning Theories and Education Champaign J., 2014, Proc. of First ACM Conf. on Lrng. @ Scale Conf, P11, DOI [DOI 10.1145/2556325.2566250, 10.1145/2556325.2566250] Chen GL, 2016, PROCEEDINGS OF THE THIRD (2016) ACM CONFERENCE ON LEARNING @ SCALE (L@S 2016), P409, DOI 10.1145/2876034.2876035 Gitelman L, 2013, INFRASTRUCT SER, P1 Greeno J.G., 1997, Educational Researcher, V26, P5, DOI DOI 10.3102/0013189X026001005 Greeno JG, 1998, AM PSYCHOL, V53, P5, DOI 10.1037/0003-066X.53.1.5 Knight S., 2018, Augmenting Formative Writing Assessment with Learning Analytics: A Design Abstraction Approach, V8 Koedinger K. R., 2015, P 2 2015 ACM C LEARN, P111, DOI [10.1145/2724660.2724681, DOI 10.1145/2724660.2724681] Koedinger KR, 2012, COGNITIVE SCI, V36, P757, DOI 10.1111/j.1551-6709.2012.01245.x Konstan JA, 2015, ACM T COMPUT-HUM INT, V22, DOI 10.1145/2728171 Kross S, 2018, PROCEEDINGS OF THE FIFTH ANNUAL ACM CONFERENCE ON LEARNING AT SCALE (L@S'18), DOI 10.1145/3231644.3231662 Lave J., 1991, SITUATED LEARNING LE Lee CD, 2010, EDUC RESEARCHER, V39, P643, DOI 10.3102/0013189X10392139 Lund K, 2018, PROCEEDINGS OF THE FIFTH ANNUAL ACM CONFERENCE ON LEARNING AT SCALE (L@S'18), DOI 10.1145/3231644.3231661 Mason M., 2008, Educational Philosophy and Theory, V40, P5, DOI DOI 10.1111/J.1469-5812.2007.00412.X McDermott R., 2006, CRIT PERSPECT, P89, DOI DOI 10.1017/CBO9780511509568.007 MITCHELL MM, 2003, BIOL COMPLEXITY INTE, P345, DOI DOI 10.1002/WCS.54 Nathan MJ, 2010, WIRES COGN SCI, V1, P329, DOI 10.1002/wcs.54 NEWELL A, 1961, SCIENCE, V134, P2011, DOI 10.1126/science.134.3495.2011 Nisbett R. E., 2003, The geography of thought: How Asians and Westerners think differently... and why Sandoval WA, 2004, EDUC PSYCHOL-US, V39, P199, DOI 10.1207/s15326985ep3904_1 SKINNER BF, 1986, PHI DELTA KAPPAN, V68, P103 Squazzoni Flaminio, 2009, EPISTEMOLOGICAL ASPE, DOI [10.1007/978-3-642-01109-2, DOI 10.1007/978-3-642-01109-2] van der Sluis F, 2017, PROCEEDINGS OF THE FOURTH (2017) ACM CONFERENCE ON LEARNING @ SCALE (L@S'17), P131, DOI 10.1145/3051457.3051461 van Eck NJ, 2010, SCIENTOMETRICS, V84, P523, DOI 10.1007/s11192-009-0146-3 Wang F, 2005, ETR&D-EDUC TECH RES, V53, P5, DOI 10.1007/BF02504682 Wiese ES, 2017, PROCEEDINGS OF THE FOURTH (2017) ACM CONFERENCE ON LEARNING @ SCALE (L@S'17), P41 Winsberg E, 2009, PHILOS COMPASS, V4, P835, DOI 10.1111/j.1747-9991.2009.00236.x NR 31 TC 1 Z9 1 U1 1 U2 2 PU ASSOC COMPUTING MACHINERY PI NEW YORK PA 1601 Broadway, 10th Floor, NEW YORK, NY, UNITED STATES BN 978-1-4503-6804-9 PY 2019 DI 10.1145/3330430.3333631 PG 10 WC Computer Science, Interdisciplinary Applications; Education & Educational Research; Education, Scientific Disciplines WE Conference Proceedings Citation Index - Science (CPCI-S); Conference Proceedings Citation Index - Social Science & Humanities (CPCI-SSH) SC Computer Science; Education & Educational Research GA BO2RA UT WOS:000507611000001 DA 2024-09-05 ER PT J AU Cauthen, K Rai, P Hale, N Freeman, L Ray, J AF Cauthen, Katherine Rai, Prashant Hale, Nicholas Freeman, Laura Ray, Jaideep TI Detecting technological maturity from bibliometric patterns SO EXPERT SYSTEMS WITH APPLICATIONS LA English DT Article DE Technology life cycle; Machine learning; Artificial neural network; Data augmentation ID LIFE-CYCLE; S-CURVE; INNOVATION; DYNAMICS; GOMPERTZ; PATHS; MODEL AB The capability to identify emergent technologies based upon easily accessed open-source indicators, such as publications, is important for decision-makers in industry and government. The scientific contribution of this work is the proposition of a machine learning approach to the detection of the maturity of emerging technologies based on publication counts. Time-series of publication counts have universal features that distinguish emerging and growing technologies. We train an artificial neural network classifier, a supervised machine learning algo-rithm, upon these features to predict the maturity (emergent vs. growth) of an arbitrary technology. With a training set comprised of 22 technologies we obtain a classification accuracy ranging from 58.3% to 100% with an average accuracy of 84.6% for six test technologies. To enhance classifier performance, we augmented the training corpus with synthetic time-series technology life cycle curves, formed by calculating weighted averages of curves in the original training set. Training the classifier on the synthetic data set resulted in improved ac-curacy, ranging from 83.3% to 100% with an average accuracy of 90.4% for the test technologies. The perfor-mance of our classifier exceeds that of competing machine learning approaches in the literature, which report an average classification accuracy of only 85.7% at maximum. Moreover, in contrast to current methods our approach does not require subject matter expertise to generate training labels, and it can be automated and scaled. C1 [Cauthen, Katherine] Sandia Natl Labs, 1515 Eubank Blvd SE, Albuquerque, NM 87123 USA. [Rai, Prashant; Ray, Jaideep] Sandia Natl Labs, 7011 East Ave, Livermore, CA 94550 USA. [Hale, Nicholas; Freeman, Laura] Virginia Tech Appl Res Corp, 900 N Glebe Rd, Arlington, VA 22203 USA. [Cauthen, Katherine] Sandia Natl Labs, 1515 Eubank Blvd SE,Mail Stop 1137, Albuquerque, NM 87123 USA. C3 United States Department of Energy (DOE); Sandia National Laboratories; United States Department of Energy (DOE); Sandia National Laboratories; United States Department of Energy (DOE); Sandia National Laboratories RP Cauthen, K (corresponding author), Sandia Natl Labs, 1515 Eubank Blvd SE,Mail Stop 1137, Albuquerque, NM 87123 USA. EM kcauthe@sandia.gov; laura.freeman@vt.edu; jairay@sandia.gov OI Ray, Jaideep/0009-0000-9908-7035 FU U.S. Department of Energys National Nuclear Security Administration [DE-NA0003525]; Army Research Laboratory, U.S. Army [W911NF-15-3-0001] FX Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of San-dia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energys National Nuclear Security Administration under contract DE-NA0003525. This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government. Effort sponsored in whole or in part by the Army Research Laboratory, U.S. Army, under Partnership Intermediary Agreement No. W911NF-15-3-0001. The U.S. Government is authorized to reproduce and distribute reprints for Governmental purposes notwithstanding any copyright notation thereon. The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of the Army Research Laboratory. CR ACHILLADELIS B, 1990, RES POLICY, V19, P1, DOI 10.1016/0048-7333(90)90032-2 ACHILLADELIS B, 1993, RES POLICY, V22, P279, DOI 10.1016/0048-7333(93)90001-X Achilladelis B, 2001, RES POLICY, V30, P535, DOI 10.1016/S0048-7333(00)00093-7 Albert T., 2015, MEASURING TECHNOLOGY Albert T, 2015, TECHNOL FORECAST SOC, V92, P196, DOI 10.1016/j.techfore.2014.08.011 Andersen B, 1999, J EVOL ECON, V9, P487, DOI 10.1007/s001910050093 [Anonymous], 1986, MANAGEMENT ZEITALTER Ansoff H.I., 1984, IMPLANTING STRATEGIC Byun J, 2018, TECHNOL ANAL STRATEG, V30, P98, DOI 10.1080/09537325.2017.1297397 DALKEY N, 1963, MANAGE SCI, V9, P458, DOI 10.1287/mnsc.9.3.458 Ernst H, 1997, SMALL BUS ECON, V9, P361, DOI 10.1023/A:1007921808138 FORD D, 1981, HARVARD BUS REV, V59, P117 FRANSES PH, 1994, TECHNOL FORECAST SOC, V46, P45, DOI 10.1016/0040-1625(94)90016-7 Gao LD, 2013, TECHNOL FORECAST SOC, V80, P398, DOI 10.1016/j.techfore.2012.10.003 Goodfellow I, 2016, ADAPT COMPUT MACH LE, P1 Haupt R, 2007, RES POLICY, V36, P387, DOI 10.1016/j.respol.2006.12.004 Kim B, 2003, TECHNOVATION, V23, P371, DOI 10.1016/S0166-4972(02)00168-2 Kim J, 2012, EXPERT SYST APPL, V39, P12618, DOI 10.1016/j.eswa.2012.05.021 Lee C, 2016, TECHNOL FORECAST SOC, V106, P53, DOI 10.1016/j.techfore.2016.01.024 Lemos AD, 1998, IND MANAGE DATA SYST, V98, P330, DOI 10.1108/02635579810227698 Lezama-Nicolás R, 2018, SCIENTOMETRICS, V117, P1425, DOI 10.1007/s11192-018-2941-1 Linden A., 2003, Strategic Analysis Report No R-20-1971 MERINO DN, 1990, TECHNOL FORECAST SOC, V37, P275, DOI 10.1016/0040-1625(90)90028-T Momeni A, 2016, TECHNOL FORECAST SOC, V104, P16, DOI 10.1016/j.techfore.2015.12.003 Nagula M, 2016, J STAT MANAG SYST, V19, P73, DOI 10.1080/09720510.2014.1001601 Nieto M, 1998, TECHNOVATION, V18, P439, DOI 10.1016/S0166-4972(98)00021-2 Paszke A, 2019, ADV NEUR IN, V32 Ramadhan MH, 2018, 2018 5TH INTERNATIONAL CONFERENCE ON INDUSTRIAL ENGINEERING AND APPLICATIONS (ICIEA), P499, DOI 10.1109/IEA.2018.8387152 Ryu J, 2011, TECHNOL FORECAST SOC, V78, P1049, DOI 10.1016/j.techfore.2011.01.003 SHARIF MN, 1980, TECHNOL FORECAST SOC, V18, P247, DOI 10.1016/0040-1625(80)90026-8 Sick N, 2018, J CLEAN PROD, V201, P325, DOI 10.1016/j.jclepro.2018.08.036 Smojver V, 2019, TEH VJESN, V26, P222, DOI 10.17559/TV-20171123182106 STAPLETON E, 1976, TECHNOL FORECAST SOC, V8, P325, DOI 10.1016/0040-1625(76)90008-1 Su HN, 2018, R&D MANAGE, V48, P308, DOI 10.1111/radm.12279 Taylor M, 2012, INT J PROD ECON, V140, P541, DOI 10.1016/j.ijpe.2012.07.006 Urban G.L., 1993, DESIGN MARKETING NEW, V2 van der Pol J, 2018, SCIENTOMETRICS, V114, P307, DOI 10.1007/s11192-017-2579-4 Watts RJ, 1997, TECHNOL FORECAST SOC, V56, P25, DOI 10.1016/S0040-1625(97)00050-4 Wu FS, 2011, TECHNOL FORECAST SOC, V78, P386, DOI 10.1016/j.techfore.2010.08.006 NR 39 TC 6 Z9 6 U1 4 U2 24 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0957-4174 EI 1873-6793 J9 EXPERT SYST APPL JI Expert Syst. Appl. PD SEP 1 PY 2022 VL 201 AR 117177 DI 10.1016/j.eswa.2022.117177 EA MAY 2022 PG 12 WC Computer Science, Artificial Intelligence; Engineering, Electrical & Electronic; Operations Research & Management Science WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Computer Science; Engineering; Operations Research & Management Science GA 1L1DO UT WOS:000799032800001 OA Bronze DA 2024-09-05 ER PT J AU Sonkor, MS de Soto, BG AF Sonkor, Muammer Semih Garcia de Soto, Borja TI Using ChatGPT in construction projects: unveiling its cybersecurity risks through a bibliometric analysis SO INTERNATIONAL JOURNAL OF CONSTRUCTION MANAGEMENT LA English DT Article; Early Access DE ChatGPT; construction 4.0; cybersecurity; large language model; machine learning AB ChatGPT, a large language model chatbot by OpenAI, has increasingly become a part of employees' day-to-day activities in numerous industries, including construction, and researchers have looked into this tool since its first release in late 2022 to assist in different fields. One of the benefits of such tools can be related to improved efficiency; however, it raises data privacy and security concerns. Considering the increasing reliance on information technology and operational technology for enhanced productivity, accuracy and quality in projects, these concerns also affect the construction sector. This study presents an overview of the existing literature on the applications of ChatGPT in the construction sector, highlighting its potential to revolutionize various resource-intensive tasks in projects and the related cybersecurity risks. VOSviewer is used for bibliometric analysis of academic publications and to identify the relevant cybersecurity problems. The identified issues are categorized into three main groups and discussed in the context of construction applications. Suggestions are provided to address identified concerns. This paper highlights the importance of ensuring the secure deployment of ChatGPT in the construction sector, a subject that has not been explored in the existing literature. C1 [Sonkor, Muammer Semih; Garcia de Soto, Borja] New York Univ Abu Dhabi NYUAD, Div Engn, SMART Construct Res Grp, Expt Res Bldg,Saadiyat Isl,POB 129188, Abu Dhabi, U Arab Emirates. RP Sonkor, MS (corresponding author), New York Univ Abu Dhabi NYUAD, Div Engn, SMART Construct Res Grp, Expt Res Bldg,Saadiyat Isl,POB 129188, Abu Dhabi, U Arab Emirates. EM semih.sonkor@nyu.edu FU Center for Cyber Security (CCS) - Tamkeen under the NYUAD Research Institute Award [G1104]; Tamkeen under the NYUAD Research Institute Award [CG001] FX This work was supported by the Center for Cyber Security (CCS), funded by Tamkeen under the NYUAD Research Institute Award G1104 and in collaboration with the NYUAD Center for Interacting Urban Networks (CITIES), funded by Tamkeen under the NYUAD Research Institute Award CG001. CR Achiam OJ, 2023, Arxiv, DOI [arXiv:2303.08774, DOI 10.48550/ARXIV.2303.08774] Agarwal R., 2016, Technical Report Akbar M.A., 2023, IEEE Trans. Artif. Intell, P1, DOI [10.1109/TAI.2023.3318183, DOI 10.1109/TAI.2023.3318183] Akhavian R, 2016, AUTOMAT CONSTR, V71, P198, DOI 10.1016/j.autcon.2016.08.015 Al-Hawawreh M, 2023, CLUSTER COMPUT, V26, P3421, DOI 10.1007/s10586-023-04124-5 Aladag H, 2023, SUSTAINABILITY-BASEL, V15, DOI 10.3390/su152216071 Alawida M, 2023, INFORMATION, V14, DOI 10.3390/info14080462 Aluga M., 2023, East Afr. J. Eng., V6, P104, DOI [10.37284/eaje.6.1.1272, DOI 10.37284/EAJE.6.1.1272] Boyes H., 2013, Resilience and Cyber Security of Technology in the Built Environment Brown TB, 2020, P NEURIPS VIRT 2020 BSI, 2013, Br Stand Inst, P1 Chang YP, 2024, ACM T INTEL SYST TEC, V15, DOI 10.1145/3641289 Chowdhury MDM., 2023, 2023 IEEE INT C EL I, P1, DOI [10.1109/eIT57321.2023.10187355, DOI 10.1109/EIT57321.2023.10187355] Coles C., 2023, Cyberhaven Online Devlin J, 2019, Arxiv, DOI arXiv:1810.04805 Duarte F., 2023, Exploding Topics Online Garcia de Soto B., 2020, Prepr, DOI [10.20944/preprints202005.0213.v1, DOI 10.20944/PREPRINTS202005.0213.V1] Gasiba TE., 2023, P ICPEC VIL COND POR, DOI [10.4230/OASIcs.ICPEC.2023.2, DOI 10.4230/OASICS.ICPEC.2023.2] Goud N., 2020, Cybersecurity Insiders Guleria A, 2023, J INFECT DEV COUNTR, V17, P1292, DOI 10.3855/jidc.18738 Guo Z Jin R Liu C Huang Y Shi D Supryadi Yu L Liu Y Li J Xiong B et al., 2023, ArXiv Prepr, VarXiv, p2310.19736v2, DOI [10.48550/arXiv.2310.19736, DOI 10.48550/ARXIV.2310.19736] Gupta M, 2023, IEEE ACCESS, V11, P80218, DOI 10.1109/ACCESS.2023.3300381 Hacker P, 2023, PROCEEDINGS OF THE 6TH ACM CONFERENCE ON FAIRNESS, ACCOUNTABILITY, AND TRANSPARENCY, FACCT 2023, P1112, DOI 10.1145/3593013.3594067 Hatoum MB., 2023, PROC, V31, P208, DOI [10.24928/2023/0243, DOI 10.24928/2023/0243] Hu C., 2023, P NANA QINGD CHIN 20, P324, DOI [10.1109/NaNA60121.2023.00061, DOI 10.1109/NANA60121.2023.00061] Iqbal F, 2023, FRONT COMMUN NETW, V4, DOI 10.3389/frcmn.2023.1220243 Kasneci E, 2023, LEARN INDIVID DIFFER, V103, DOI 10.1016/j.lindif.2023.102274 Klinc R., 2019, ECONOMICANDBUSINESSR, V21, P393, DOI [10.15458/ebr.92, DOI 10.15458/EBR.92] Ko JC, 2023, Arxiv, DOI arXiv:2308.00227 Lambert J, 2023, COMPUT SCH, DOI 10.1080/07380569.2023.2256710 Liu YH, 2019, Arxiv, DOI arXiv:1907.11692 Mantha B, 2021, SUSTAIN CITIES SOC, V66, DOI 10.1016/j.scs.2020.102682 Mengiste E, 2024, J COMPUT CIVIL ENG, V38, DOI 10.1061/JCCEE5.CPENG-5478 Microsoft, 2024, Presidio-data protection and de-identification SDK Online Moon S, 2022, AUTOMAT CONSTR, V142, DOI 10.1016/j.autcon.2022.104465 Mukherjee P, 2023, RADIOLOGY, V309, DOI 10.1148/radiol.231147 Okey OD, 2023, COMPUT SECUR, V135, DOI 10.1016/j.cose.2023.103476 OpenAI, 2023, Enterprise Privacy at OpenAI OpenAI, 2023, Introducing ChatGPT Piñeiro-Martín A, 2023, ELECTRONICS-SWITZ, V12, DOI 10.3390/electronics12143170 Poremba S., 2023, Security Intelligence Prieto SA, 2023, BUILDINGS-BASEL, V13, DOI 10.3390/buildings13040857 Pu HX, 2023, Arxiv, DOI [arXiv:2310.07944, 10.48550/arXiv.2310.07944, DOI 10.48550/ARXIV.2310.07944] Radford A., 2023, Improving Language understanding by generative pre-training Rafiei MH, 2018, J CONSTR ENG M, V144, DOI 10.1061/(ASCE)CO.1943-7862.0001570 Remington R., 2023, Contractors-protect your confidential information from wrongful disclosure Saka A, 2024, DEV BUILT ENVIRON, V17, DOI 10.1016/j.dibe.2023.100300 Sawhney A., 2020, Construction 4.0: An Innovation Platform for the Built Environment Shidarta, 2023, E3S Web of Conferences, DOI 10.1051/e3sconf/202342602046 Singaravel S, 2018, ADV ENG INFORM, V38, P81, DOI 10.1016/j.aei.2018.06.004 Singh AK., 2023, P ISARC CHENN IND 20, P238, DOI [10.22260/ISARC2023/0034, DOI 10.22260/ISARC2023/0034] Touvron H, 2023, Arxiv, DOI arXiv:2302.13971 Tranfield D, 2003, BRIT J MANAGE, V14, P207, DOI 10.1111/1467-8551.00375 Uddin SMJ, 2023, SUSTAINABILITY-BASEL, V15, DOI 10.3390/su15097121 Vaccino-Salvadore S, 2023, LANGUAGES-BASEL, V8, DOI 10.3390/languages8030191 van Eck NJ, 2017, SCIENTOMETRICS, V111, P1053, DOI 10.1007/s11192-017-2300-7 Vaswani A, 2017, ADV NEUR IN, V30 Wang CY, 2023, J MED INTERNET RES, V25, DOI 10.2196/48009 Watson S., 2023, Construction News Online Wu X., 2023, Journal of Information and Intelligence, V2, P102, DOI [DOI 10.1016/J.JIIXD.2023.10.007, https://doi.org/10.1016/j.jiixd.2023.10.007] Yan LX, 2024, BRIT J EDUC TECHNOL, V55, DOI 10.1111/bjet.13370 Yang J, 2023, APPL SCI-BASEL, V13, DOI 10.3390/app13116355 Yao D., 2023, IAARC PUBLICATIONS, V40, P537 You HX, 2023, BUILDINGS-BASEL, V13, DOI 10.3390/buildings13071772 Zhang J., 2023, P ISARC CHENN IND 20, P63, DOI [10.22260/ISARC2023/0011, DOI 10.22260/ISARC2023/0011] Zheng JW, 2023, AUTOMAT CONSTR, V155, DOI 10.1016/j.autcon.2023.105067 NR 66 TC 0 Z9 0 U1 10 U2 10 PU TAYLOR & FRANCIS LTD PI ABINGDON PA 2-4 PARK SQUARE, MILTON PARK, ABINGDON OR14 4RN, OXON, ENGLAND SN 1562-3599 EI 2331-2327 J9 INT J CONSTR MANAG JI Int. J. Constr. Manag. PD 2024 MAY 15 PY 2024 DI 10.1080/15623599.2024.2355782 EA MAY 2024 PG 9 WC Construction & Building Technology; Engineering, Civil; Management WE Emerging Sources Citation Index (ESCI) SC Construction & Building Technology; Engineering; Business & Economics GA ST5J1 UT WOS:001236707800001 OA hybrid DA 2024-09-05 ER PT J AU Tattershall, E Nenadic, G Stevens, RD AF Tattershall, E. Nenadic, G. Stevens, R. D. TI Detecting bursty terms in computer science research SO SCIENTOMETRICS LA English DT Article DE Computer science; Bibliometrics; Term life cycles; Machine learning; DBLP; MACD ID TOPICS AB Research topics rise and fall in popularity over time, some more swiftly than others. The fastest rising topics are typically called bursts; for example "deep learning", "internet of things" and "big data". Being able to automatically detect and track bursty terms in the literature could give insight into how scientific thought evolves over time. In this paper, we take a trend detection algorithm from stock market analysis and apply it to over 30 years of computer science research abstracts, treating the prevalence of each term in the dataset like the price of a stock. Unlike previous work in this domain, we use the free text of abstracts and titles, resulting in a finer-grained analysis. We report a list of bursty terms, and then use historical data to build a classifier to predict whether they will rise or fall in popularity in the future, obtaining accuracy in the region of 80%. The proposed methodology can be applied to any time-ordered collection of text to yield past and present bursty terms and predict their probable fate. C1 [Tattershall, E.; Nenadic, G.; Stevens, R. D.] Univ Manchester, Dept Comp Sci, Oxford Rd, Manchester M13 9PL, Lancs, England. C3 University of Manchester RP Tattershall, E (corresponding author), Univ Manchester, Dept Comp Sci, Oxford Rd, Manchester M13 9PL, Lancs, England. EM emma.tattershall@postgrad.manchester.ac.uk RI Tattershall, Emma/HGV-0693-2022 OI Tattershall, Emma/0000-0001-5616-4002 FU Manchester Centre for Doctoral Training in Computer Science [EP/I028099/1] FX This research was supported by the Manchester Centre for Doctoral Training in Computer Science, EP/I028099/1 CR *ALL I ART INT, 2015, SEM SCHOL [Anonymous], 2010, Proceedings of the 2010 ACM SIGMOD International Conference on Management of data [Anonymous], 1998, P BROADC NEWS TRANSC Appel G., 2005, Technical Analysis: Power Tools for Active Investors Balili C, 2017, IEEE INT CONF BIG DA, P1694, DOI 10.1109/BigData.2017.8258108 Bird S., 2009, Natural language processing with Python: analyzing text with the natural lan-guage toolkit Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993 Bornmann L, 2015, J ASSOC INF SCI TECH, V66, P2215, DOI 10.1002/asi.23329 Cavacini A, 2015, SCIENTOMETRICS, V102, P2059, DOI 10.1007/s11192-014-1506-1 Chen HM, 2018, DRUG DISCOV TODAY, V23, P1241, DOI 10.1016/j.drudis.2018.01.039 Diao Qiming, 2012, P 50 ANN M ASS COMP, V1, P536 Dieleman S, 2015, MON NOT R ASTRON SOC, V450, P1441, DOI 10.1093/mnras/stv632 FENN J, 2008, GARTNER SERIES Fung G.P. C., 2005, VLDB, P181 Griffiths TL, 2004, P NATL ACAD SCI USA, V101, P5228, DOI 10.1073/pnas.0307752101 He D, 2011, LECT NOTES ARTIF INT, V6635, P532, DOI 10.1007/978-3-642-20847-8_44 He Dan., 2010, KDD, P443 *INV, 2019, IS EXP MOV AV EMA FO KAHANER D, 1994, IEEE COMPUT GRAPH, V14, P75, DOI 10.1109/38.250923 Kleinberg J, 2003, DATA MIN KNOWL DISC, V7, P373, DOI 10.1023/A:1024940629314 Krizhevsky A, 2017, COMMUN ACM, V60, P84, DOI 10.1145/3065386 Mane KK, 2004, P NATL ACAD SCI USA, V101, P5287, DOI 10.1073/pnas.0307626100 Mei Q., 2005, P P 11 ACM SIGKDD IN, P198, DOI DOI 10.1145/1081870.1081895 Murphy J. J., 1999, Technical Analysis of the Financial Markets: A Comprehensive Guide to Trading Methods and Applications *NAT LIBR MED, 2019, MED SUBJECT HEADINGS Prabhakaran V, 2016, PROCEEDINGS OF THE 54TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, VOL 1, P1170 RUMELHART DE, 1986, NATURE, V323, P533, DOI 10.1038/323533a0 *SCIPY, 2019, HIER CLUST SCIP CLUS Steyvers M., 2004, Proceedings of the International Conference on Knowledge Discovery and Data Mining (SIGKDD), P306, DOI [10.1145/1014052.1014087, 10.1145/1014052, DOI 10.1145/1014052] STROUP DF, 1989, STAT MED, V8, P323, DOI 10.1002/sim.4780080312 Takahashi Yusuke, 2012, Advances in Natural Language Processing. Proceedings 8th International Conference on NLP, JapTAL 2012, P239, DOI 10.1007/978-3-642-33983-7_24 WU Y, 2018, IEEE T EMERGING TOPI Zhang X., 2006, Proceedings of the 22nd International Conference on Data Engineering (ICDE'06), page, P146 2018, RES CONDITION DIS CA NR 34 TC 13 Z9 15 U1 2 U2 51 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0138-9130 EI 1588-2861 J9 SCIENTOMETRICS JI Scientometrics PD JAN PY 2020 VL 122 IS 1 BP 681 EP 699 DI 10.1007/s11192-019-03307-5 EA NOV 2019 PG 19 WC Computer Science, Interdisciplinary Applications; Information Science & Library Science WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Computer Science; Information Science & Library Science GA KQ7OX UT WOS:000498738600001 OA hybrid DA 2024-09-05 ER PT J AU Carballo-Meilan, A McDonald, L Pragot, W Starnawski, LM Saleemi, AN Afzal, W AF Carballo-Meilan, Ara McDonald, Lewis Pragot, Wanawan Starnawski, Lukasz Michal Saleemi, Ali Nauman Afzal, Waheed TI Development of a data-driven scientific methodology: From articles to chemometric data products SO CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS LA English DT Article DE Scientific method; Data mining; Meta-methodology; Chemometrics; Scientometrics; Machine learning; Scientific method; Data mining; Meta-methodology; Chemometrics; Scientometrics; Machine learning ID CLASSIFICATION AB Information and data science algorithms were combined to predict the outcome of an experiment in chemical engineering. Using the Scientific Method workflow, we started the journey with the formulation of a specific question. At the research stage, the common process of querying and reading articles on scientific databases was substituted by a systematic review with a built-in recursive data mining method. This procedure identifies a specific community of knowledge with the key concepts and experiments that are necessary to address the formulated question. A small subset of relevant articles from a very specific topic among thousands of papers was identified while assuring the loss of the least amount of information through the process. The secondary dataset was bigger than a common individual study. The process revealed the main ideas currently under study and identified optimal synthesis conditions to produce a chemical substance. Once the research step was finished, the experimental information was compiled and prepared for metaanalysis using a supervised learning algorithm. This is a hypothesis generation stage whereby the secondary dataset was transformed into experimental knowledge about a particular chemical reaction. Finally, the predicted sets of optimal conditions to produce the desired chemical compound were validated in the laboratory. C1 [Carballo-Meilan, Ara; McDonald, Lewis; Pragot, Wanawan; Starnawski, Lukasz Michal; Afzal, Waheed] Univ Aberdeen, Kings Coll, Sch Engn, Aberdeen AB24 3UE, Scotland. [Saleemi, Ali Nauman] GlaxoSmithKline, Stevenage SG1 2NY, Herts, England. C3 University of Aberdeen; GlaxoSmithKline RP Afzal, W (corresponding author), Univ Aberdeen, Kings Coll, Sch Engn, Aberdeen AB24 3UE, Scotland. EM waheed@abdn.ac.uk OI McDonald, Lewis/0000-0001-6185-7444; McDonald, Lewis/0000-0002-7635-4732; Afzal, Waheed/0000-0002-2927-0114 CR [Anonymous], 2011, Causality in the Sciences Azari A, 2020, CHEMOSPHERE, V250, DOI 10.1016/j.chemosphere.2020.126238 Bakeev K.A, 2010, PROCESS ANAL TECHNOL Baker RE, 2018, BIOL LETTERS, V14, DOI 10.1098/rsbl.2017.0660 Benstoem F, 2017, CHEMOSPHERE Börner K, 2003, ANNU REV INFORM SCI, V37, P179, DOI 10.1002/aris.1440370106 Boyjoo Y, 2014, J MATER CHEM A, V2, P14270, DOI 10.1039/c4ta02070g Brecevic L, 2007, CROAT CHEM ACTA, V80, P467 Carballo-Meilan A, 2020, CELLULOSE, V27, P10259, DOI 10.1007/s10570-020-03449-3 Carballo-Meilán A, 2016, CELLULOSE, V23, P901, DOI 10.1007/s10570-015-0848-z Carballo-Meilan A, 2014, CELLULOSE, V21, P261, DOI 10.1007/s10570-013-0093-2 Cartwright JHE, 2012, ANGEW CHEM INT EDIT, V51, P11960, DOI 10.1002/anie.201203125 Cobo MJ, 2011, J AM SOC INF SCI TEC, V62, P1382, DOI 10.1002/asi.21525 Corballis M. C, AM SCI Donoho D, 2017, J COMPUT GRAPH STAT, V26, P745, DOI 10.1080/10618600.2017.1384734 Evans JA, 2008, SCIENCE, V321, P395, DOI 10.1126/science.1150473 Ezer D, 2019, ELIFE, V8, DOI 10.7554/eLife.43979 Farhadi-Khouzani M, 2016, ANGEW CHEM INT EDIT, V55, P8117, DOI 10.1002/anie.201603176 Hafeez S, 2021, FRONT CHEM SCI ENG, V15, P720, DOI 10.1007/s11705-020-1992-z Hall M., 2009, ACM SIGKDD Explor. Newsl., V11, P10, DOI DOI 10.1145/1656274.1656278 Hall W., 2017, Independent Report Han J., 2012, Data Mining, P393, DOI [DOI 10.1016/B978-0-12-381479-1.00009-5, 10.1016/B978-0-12-381479-1.00009-5] Hassan A., 2000, INT J QUAL RELIAB MA Jinha AE, 2010, LEARN PUBL, V23, P258, DOI 10.1087/20100308 Juergens H, 2018, SCI DATA, V5, DOI 10.1038/sdata.2018.195 Kimura T, 2011, CRYST GROWTH DES, V11, P3877, DOI 10.1021/cg200412h Kumar V, 2019, CHEMOSPHERE, V236, DOI 10.1016/j.chemosphere.2019.124364 Kuncheva LI, 2007, COMPUT BIOL MED, V37, P1194, DOI 10.1016/j.compbiomed.2006.10.011 LeCun Y, 2015, NATURE, V521, P436, DOI 10.1038/nature14539 Liberati A, 2009, BMJ-BRIT MED J, V339, DOI [10.1016/j.ijsu.2010.02.007, 10.1136/bmj.b2700, 10.1136/bmj.b2535, 10.1186/2046-4053-4-1, 10.1371/journal.pmed.1000097, 10.1136/bmj.i4086, 10.1016/j.ijsu.2010.07.299] Liu WY, 2019, ENTROPY-SWITZ, V21, DOI 10.3390/e21121152 Meng XZ, 2016, ENVIRON SCI TECHNOL, V50, P5454, DOI 10.1021/acs.est.5b05583 Mutihac L, 2008, ANAL CHIM ACTA, V612, P1, DOI 10.1016/j.aca.2008.02.025 Nadeau C, 2003, MACH LEARN, V52, P239, DOI 10.1023/A:1024068626366 Ng JJ, 2015, 2015 IEEE INTERNATIONAL CONFERENCE ON INDUSTRIAL ENGINEERING AND ENGINEERING MANAGEMENT (IEEM), P976, DOI 10.1109/IEEM.2015.7385794 Nooraie RY, 2020, J MIX METHOD RES, V14, P110, DOI 10.1177/1558689818804060 Penson DF., 2006, Clinical Research Methods for Surgeons Peres FAP, 2018, COMPUT IND ENG, V115, P603, DOI 10.1016/j.cie.2017.12.006 Rendall R., 2019, COMPUT CHEM ENG Rothstein HR, 2005, PUBLICATION BIAS IN META-ANALYSIS: PREVENTION, ASSESSMENT AND ADJUSTMENTS, P1, DOI 10.1002/0470870168 Schmack R, 2019, NAT COMMUN, V10, DOI 10.1038/s41467-019-08325-8 Schutt R., 2011, INVESTIGATING SOCIAL, V7th Smith Emma., 2008, USING SECONDARY DATA Succi S, 2019, PHILOS T R SOC A, V377, DOI 10.1098/rsta.2018.0145 TEAM S., 2009, Science of Science (Sci2) Tool Trzesniewski K.H., 2011, SECONDARY DATA ANAL van Eck NJ, 2010, J AM SOC INF SCI TEC, V61, P2405, DOI 10.1002/asi.21421 Viswanath S., 2021, J. Pharmaceut. Innov., P1 Voit EO, 2019, PLOS COMPUT BIOL, V15, DOI 10.1371/journal.pcbi.1007279 Walker J., 2011, NASSP Bulletin, V95, P46, DOI [10.1177/0192636511406530, DOI 10.1177/0192636511406530] Witten I.H., 2016, DATA MINING PRACTICA, DOI DOI 10.1016/C2009-0-19715-5 Wu X, 2009, CH CRC DATA MIN KNOW, P1, DOI 10.1201/9781420089653 Xiong ZH, 2018, FRONT PHYSIOL, V9, DOI 10.3389/fphys.2018.00835 NR 53 TC 3 Z9 3 U1 0 U2 6 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS SN 0169-7439 EI 1873-3239 J9 CHEMOMETR INTELL LAB JI Chemometrics Intell. Lab. Syst. PD JUN 15 PY 2022 VL 225 AR 104555 DI 10.1016/j.chemolab.2022.104555 EA APR 2022 PG 13 WC Automation & Control Systems; Chemistry, Analytical; Computer Science, Artificial Intelligence; Instruments & Instrumentation; Mathematics, Interdisciplinary Applications; Statistics & Probability WE Science Citation Index Expanded (SCI-EXPANDED) SC Automation & Control Systems; Chemistry; Computer Science; Instruments & Instrumentation; Mathematics GA 1Q6BI UT WOS:000802769800004 OA Green Submitted DA 2024-09-05 ER PT J AU Goodell, JW Kumar, S Li, X Pattnaik, D Sharma, A AF Goodell, John W. Kumar, Satish Li, Xiao Pattnaik, Debidutta Sharma, Anuj TI Foundations and research clusters in investor attention: Evidence from bibliometric and topic modelling analysis SO INTERNATIONAL REVIEW OF ECONOMICS & FINANCE LA English DT Article DE Investor attention; Systematic literature review; Bibliometric analysis; Machine learning; Structural topic modelling; Cluster analysis ID LIMITED ATTENTION; EARNINGS ANNOUNCEMENTS; CROSS-SECTION; SEARCH; RETURNS; PREDICT; RETAIL; NEWS; UNDERREACTION; INFORMATION AB Investor attention is an emergent area in financial scholarship. However, no review till date offers a comprehensive retrospection of this research domain. To address this gap, we present an overview of investor-attention research in finance. Using both co-citation and structural topic modelling analyses, we infer the knowledge and thematic structure of investor-attention research for 1994-2021. By uncovering four co-citation clusters and eight specific topics, we conclude that investor-attention research in the areas of "underreaction to earnings announcements", "sector and financial risk", and "investors' attention and firm disclosures" is likely to soon expand rapidly. Our survey also identifies the most prominent scholars, author affiliations, and scientific outlets publishing on investor-attention research topics. We also explore the various theories examined or discussed in investor-attention scholarship, as well as identify research gaps. C1 [Goodell, John W.] Univ Akron, Coll Business, 302 Buchtel Common, Akron, OH 44325 USA. [Kumar, Satish] Malaviya Natl Inst Technol Jaipur, Jaipur, Rajasthan, India. [Li, Xiao] Nankai Univ, Sch Finance, Tianjin, Peoples R China. [Li, Xiao] Nankai Univ, Inst Digital Finance, Tianjin, Peoples R China. [Pattnaik, Debidutta] Int Management Inst, Bhubaneswar, India. [Sharma, Anuj] Chandragupt Inst Management Patna, Patna, Bihar, India. [Kumar, Satish] Swinbume Univ Technol, Fac Business Design & Arts, Sarawak, Malaysia. C3 University System of Ohio; University of Akron; National Institute of Technology (NIT System); Malaviya National Institute of Technology Jaipur; Nankai University; Nankai University; International Management Institute (IMI) Bhubaneswar RP Goodell, JW (corresponding author), Univ Akron, Coll Business, 302 Buchtel Common, Akron, OH 44325 USA. EM johngoo@uakron.edu; skumar.dms@mnit.ac.in; xiaoli@nankai.edu.cn; 2018rbm9086@mnit.ac.in; anuj@cimp.ac.in RI Pattnaik, Debidutta/Q-2125-2019; Kumar, Satish/M-8694-2017; Kumar, Satish/E-2103-2018; Sharma, Anuj/JTS-4887-2023; Pattnaik, Debidutta/GWU-6164-2022 OI Pattnaik, Debidutta/0000-0001-6180-0499; Kumar, Satish/0000-0001-5200-1476; Kumar, Satish/0000-0001-6788-0952; Sharma, Anuj/0000-0002-6281-6115; Sharma, Anuj/0000-0001-6602-9285; Goodell, John W./0000-0003-4126-9244 FU National Natural Science Foundation of China [72171125]; Fundamental Research Funds for the Central Universities [63222068] FX This work is supported by the National Natural Science Foundation of China (72171125) and the Fundamental Research Funds for the Central Universities (63222068). CR Abramova I, 2020, ACCOUNT REV, V95, P1, DOI 10.2308/tar-2018-0494 Aggarwal D, 2020, J BEHAV EXP FINANC, V27, DOI 10.1016/j.jbef.2020.100335 AJIFERUKE I, 1988, SCIENTOMETRICS, V14, P421, DOI 10.1007/BF02017100 Amihud Y, 2002, J FINANC MARK, V5, P31, DOI 10.1016/S1386-4181(01)00024-6 Andrei D, 2015, REV FINANC STUD, V28, P33, DOI 10.1093/rfs/hhu059 Aouadi A, 2013, ECON MODEL, V35, P674, DOI 10.1016/j.econmod.2013.08.034 Bai XW, 2021, TRANSPORT POLICY, V102, P11, DOI 10.1016/j.tranpol.2020.12.013 Baker HK, 2021, J CORP FINANC, V66, DOI 10.1016/j.jcorpfin.2020.101572 Baker HK, 2019, INT REV FINANC ANAL, V63, P331, DOI 10.1016/j.irfa.2017.02.002 Barber BM, 2008, REV FINANC STUD, V21, P785, DOI 10.1093/rfs/hhm079 Barbopoulos LG, 2020, J CORP FINANC, V64, DOI 10.1016/j.jcorpfin.2020.101583 Bashir HA, 2022, CURR ISSUES TOUR, V25, P28, DOI 10.1080/13683500.2021.1910633 Ben-Rephael A, 2017, REV FINANC STUD, V30, P3009, DOI 10.1093/rfs/hhx031 Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993 Blondel VD, 2008, J STAT MECH-THEORY E, DOI 10.1088/1742-5468/2008/10/P10008 Bollen J, 2011, J COMPUT SCI-NETH, V2, P1, DOI 10.1016/j.jocs.2010.12.007 Boyack KW, 2010, J AM SOC INF SCI TEC, V61, P2389, DOI 10.1002/asi.21419 Bushee B, 2020, J ACCOUNT ECON, V69, DOI 10.1016/j.jacceco.2019.101261 Carhart MM, 1997, J FINANC, V52, P57, DOI 10.2307/2329556 Cervellati EM, 2014, APPL ECON, V46, P1108, DOI 10.1080/00036846.2013.866206 Chapman K, 2018, J ACCOUNT ECON, V66, P222, DOI 10.1016/j.jacceco.2018.05.002 Chen ZD, 2021, J BEHAV EXP FINANC, V30, DOI 10.1016/j.jbef.2021.100511 Cheng FY, 2021, ECON MODEL, V94, P170, DOI 10.1016/j.econmod.2020.10.001 Cheon YH, 2018, MANAGE SCI, V64, P5807, DOI 10.1287/mnsc.2017.2830 Ciampi F, 2021, SCIENTOMETRICS, V126, P2141, DOI 10.1007/s11192-020-03856-0 Cohen L, 2008, J FINANC, V63, P1977, DOI 10.1111/j.1540-6261.2008.01379.x Conlisk J, 1996, J ECON LIT, V34, P669 Corwin SA, 2008, J FINANC, V63, P3031, DOI 10.1111/j.1540-6261.2008.01420.x Da Z, 2011, J FINANC, V66, P1461, DOI 10.1111/j.1540-6261.2011.01679.x Dellavigna S, 2009, J FINANC, V64, P709, DOI 10.1111/j.1540-6261.2009.01447.x Dimpfl T, 2016, EUR FINANC MANAG, V22, P171, DOI 10.1111/eufm.12058 Ding R, 2015, J INT FINANC MARK I, V37, P12, DOI 10.1016/j.intfin.2015.04.001 Donthu N, 2021, INT J RES MARK, V38, P232, DOI 10.1016/j.ijresmar.2020.10.006 Donthu N, 2021, J BUS RES, V133, P285, DOI 10.1016/j.jbusres.2021.04.070 Donthu N, 2022, J SERV MARK, V36, P340, DOI 10.1108/JSM-04-2020-0122 Donthu N, 2022, J SERV RES-US, V25, P187, DOI 10.1177/1094670520977672 Drake MS, 2017, MANAGE SCI, V63, P2847, DOI 10.1287/mnsc.2016.2477 Drake MS, 2012, J ACCOUNT RES, V50, P1001, DOI 10.1111/j.1475-679X.2012.00443.x Fang L, 2009, J FINANC, V64, P2023, DOI 10.1111/j.1540-6261.2009.01493.x Farinós JE, 2021, SUSTAINABILITY-BASEL, V13, DOI 10.3390/su13020721 Gervais S, 2001, J FINANC, V56, P877, DOI 10.1111/0022-1082.00349 Goddard J, 2015, J INT FINANC MARK I, V38, P79, DOI 10.1016/j.intfin.2015.05.001 Goodell JW, 2021, J BEHAV EXP FINANC, V32, DOI 10.1016/j.jbef.2021.100577 Grullon G, 2004, REV FINANC STUD, V17, P439, DOI 10.1093/rfs/hhg039 Guo K, 2017, PHYSICA A, V469, P390, DOI 10.1016/j.physa.2016.11.114 Han LY, 2018, ECON MODEL, V68, P644, DOI 10.1016/j.econmod.2017.06.015 Han LY, 2017, ENERG ECON, V66, P547, DOI 10.1016/j.eneco.2017.04.018 Hao J, 2021, INT REV FINANC ANAL, V74, DOI 10.1016/j.irfa.2021.101675 Hirshleifer D, 2003, J ACCOUNT ECON, V36, P337, DOI 10.1016/j.jacceco.2003.10.002 Hirshleifer D, 2011, REV ASSET PRICING ST, V1, P35, DOI 10.1093/rapstu/rar002 Hirshleifer D, 2009, J FINANC, V64, P2289, DOI 10.1111/j.1540-6261.2009.01501.x Hsu YJ, 2021, REV QUANT FINANC ACC, V57, P1093, DOI 10.1007/s11156-021-00971-8 Hu YT, 2021, INT REV FINANC ANAL, V73, DOI 10.1016/j.irfa.2020.101617 Huang MLY, 2020, EMPIR ECON, V59, P2821, DOI 10.1007/s00181-019-01725-1 Huang W, 2019, INT REV FINANC ANAL, V65, DOI 10.1016/j.irfa.2019.101375 Huberman G, 2001, J FINANC, V56, P387, DOI 10.1111/0022-1082.00330 Hur J, 2016, REV QUANT FINANC ACC, V46, P261, DOI 10.1007/s11156-014-0469-x Iatridis G, 2012, REV ACCOUNT FINANC, V11, P73, DOI 10.1108/14757701211201830 Ibikunle G, 2020, INT REV FINANC ANAL, V69, DOI 10.1016/j.irfa.2020.101459 JEGADEESH N, 1993, J FINANC, V48, P65, DOI 10.1111/j.1540-6261.1993.tb04702.x Johnson A., 2004, Attention: Theory and practice KAHNEMAN D, 1979, ECONOMETRICA, V47, P263, DOI 10.2307/1914185 Kahneman D., 1973, Attention and effort, V1063 Khalilpour R, 2012, ENERGY, V40, P317, DOI 10.1016/j.energy.2012.01.068 Khan MA, 2021, J BUS RES, V125, P295, DOI 10.1016/j.jbusres.2020.12.015 Kou Y, 2018, FINANC RES LETT, V25, P190, DOI 10.1016/j.frl.2017.10.014 Kumar S, 2021, ELECTRON COMMER RES, V21, P1, DOI 10.1007/s10660-021-09464-1 Kupfer A, 2021, J EMPIR FINANC, V62, P315, DOI 10.1016/j.jempfin.2021.04.004 Lerman A, 2020, CONTEMP ACCOUNT RES, V37, P2020, DOI 10.1111/1911-3846.12603 Li J, 2012, J FINANC ECON, V104, P401, DOI 10.1016/j.jfineco.2011.04.003 Li RH, 2019, J BEHAV FINANC, V20, P490, DOI 10.1080/15427560.2019.1575829 Li X, 2015, ECON MODEL, V49, P162, DOI 10.1016/j.econmod.2015.04.005 Li Y, 2021, INT REV ECON FINANC, V75, P723, DOI 10.1016/j.iref.2021.05.003 Pham L, 2020, FINANC RES LETT, V35, DOI 10.1016/j.frl.2020.101533 Liu HQ, 2021, J BEHAV FINANC, V22, P97, DOI [10.11713/j.issn.1009-4822.2021.01.020, 10.1080/15427560.2020.1748632] Lou D, 2014, REV FINANC STUD, V27, P1797, DOI 10.1093/rfs/hhu019 Malik TH, 2020, TECHNOL ANAL STRATEG, V32, P574, DOI 10.1080/09537325.2019.1683536 Mattarocci G, 2013, J PROP INVEST FINANC, V31, P314, DOI 10.1108/JPIF-10-2012-0048 MERTON RC, 1987, J FINANC, V42, P483, DOI 10.2307/2328367 Meshcheryakov A, 2022, INT REV FINANC ANAL, V81, DOI 10.1016/j.irfa.2020.101627 Mukherjee D, 2021, MANAGE INT REV, V61, P599, DOI 10.1007/s11575-021-00454-x NEWEY WK, 1987, ECONOMETRICA, V55, P703, DOI 10.2307/1913610 Obaid K, 2021, FINANC MANAGE, V50, P203, DOI 10.1111/fima.12323 Pattnaik D, 2021, AUST ACCOUNT REV, V31, P150, DOI 10.1111/auar.12332 Pattnaik D, 2020, QUAL RES FINANC MARK, V12, P367, DOI 10.1108/QRFM-09-2019-0103 Peng L, 2006, J FINANC ECON, V80, P563, DOI 10.1016/j.jfineco.2005.05.003 Peng L, 2007, EUR FINANC MANAG, V13, P394, DOI 10.1111/j.1468-036X.2007.00366.x Phylaktis K., 2005, J INT FINANC MARK I, V15, P91, DOI DOI 10.1016/j.intfin.2004.03.001 Piñeiro-Chousa J, 2020, TECHNOL FORECAST SOC, V158, DOI 10.1016/j.techfore.2020.120115 PRITCHARD A, 1969, J DOC, V25, P348 Rakowski D, 2021, FINANC MANAGE, V50, P3, DOI 10.1111/fima.12307 RAMOS HENRIQUE PINTO, 2017, RAM, Rev. Adm. Mackenzie, V18, P184, DOI 10.1590/1678-69712017/administracao.v18n2p184-210 Roberts ME, 2019, J STAT SOFTW, V91, P1, DOI 10.18637/jss.v091.i02 Roberts ME, 2016, J AM STAT ASSOC, V111, P988, DOI 10.1080/01621459.2016.1141684 Roberts ME, 2014, AM J POLIT SCI, V58, P1064, DOI 10.1111/ajps.12103 Saxena K, 2020, APPL ECON, V52, P6562, DOI 10.1080/00036846.2020.1804050 Seasholes Mark., 2007, J EMPIR FINANC, V14, P590, DOI [DOI 10.1016/J.JEMPFIN.2007.03.002, DOI 10.1016/j.jempfin.2007.03.002] Sharma A, 2021, INT J INFORM MANAGE, V58, DOI 10.1016/j.ijinfomgt.2021.102316 Shen DH, 2019, ECON LETT, V174, P118, DOI 10.1016/j.econlet.2018.11.007 Sims CA, 2003, J MONETARY ECON, V50, P665, DOI 10.1016/S0304-3932(03)00029-1 Smales LA, 2021, INT REV FINANC ANAL, V73, DOI 10.1016/j.irfa.2020.101616 SMALL H, 1973, J AM SOC INFORM SCI, V24, P265, DOI 10.1002/asi.4630240406 Soni A, 2020, J ALTERN INVEST, V22, P107, DOI 10.3905/jai.2020.1.088 Spurr A., 2021, Quality and Quantity, V55, P1541, DOI DOI 10.1007/S11135-020-01062-X Subramaniam S, 2021, REV BEHAV FINANCE, V13, P40, DOI 10.1108/RBF-08-2020-0215 Subramaniam S, 2020, J BEHAV FINANC, V21, P103, DOI 10.1080/15427560.2019.1629587 Tang HF, 2022, REAL ESTATE ECON, V50, P431, DOI 10.1111/1540-6229.12314 Tetlock PC, 2007, J FINANC, V62, P1139, DOI 10.1111/j.1540-6261.2007.01232.x Urquhart A, 2018, ECON LETT, V166, P40, DOI 10.1016/j.econlet.2018.02.017 Valtakoski A, 2020, J SERV MARK, V34, P8, DOI 10.1108/JSM-12-2018-0359 Vanhala M, 2020, J BUS RES, V106, P46, DOI 10.1016/j.jbusres.2019.09.009 Vozlyublennaia N, 2014, J BANK FINANC, V41, P17, DOI 10.1016/j.jbankfin.2013.12.010 Wang A, 2011, J FINANC SERV MARK, V16, P125, DOI 10.1057/fsm.2011.14 Wang XW, 2018, J FUTURES MARKETS, V38, P478, DOI 10.1002/fut.21890 Wen FH, 2019, INT REV FINANC ANAL, V65, DOI 10.1016/j.irfa.2019.101376 Wu Y, 2019, ECON MODEL, V80, P49, DOI 10.1016/j.econmod.2018.05.012 Xiong GY, 2013, J MARKETING RES, V50, P706, DOI 10.1509/jmr.12.0278 Yao T, 2017, APPL ENERG, V205, P336, DOI 10.1016/j.apenergy.2017.07.131 Yarovaya L., 2020, RETHINKING FINANCIAL, DOI 10.2139/ssrn.3602973. You HF, 2011, CHINA FINANC REV INT, V1, P358, DOI 10.1108/20441391111167487 Yuan Y, 2015, J FINANC ECON, V116, P548, DOI 10.1016/j.jfineco.2015.03.006 Zhang W, 2013, ECON MODEL, V33, P613, DOI 10.1016/j.econmod.2013.03.018 Zhang YH, 2019, FINANC RES LETT, V31, P363, DOI 10.1016/j.frl.2018.12.001 Zhu ZB, 2020, BRIT ACCOUNT REV, V52, DOI 10.1016/j.bar.2019.100859 Zupic I, 2015, ORGAN RES METHODS, V18, P429, DOI 10.1177/1094428114562629 NR 125 TC 18 Z9 18 U1 9 U2 47 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS SN 1059-0560 EI 1873-8036 J9 INT REV ECON FINANC JI Int. Rev. Econ. Financ. PD NOV PY 2022 VL 82 BP 511 EP 529 DI 10.1016/j.iref.2022.06.020 EA JUL 2022 PG 19 WC Business, Finance; Economics WE Social Science Citation Index (SSCI) SC Business & Economics GA 4L8TR UT WOS:000852903200030 DA 2024-09-05 ER PT C AU Makarov, I Gerasimova, O AF Makarov, Ilya Gerasimova, Olga GP IEEE TI Predicting Collaborations in Co-authorship Network SO 2019 14TH INTERNATIONAL WORKSHOP ON SEMANTIC AND SOCIAL MEDIA ADAPTATION AND PERSONALIZATION (SMAP) LA English DT Proceedings Paper CT 14th International Workshop on Semantic and Social Media Adaptation and Personalization (SMAP) CY JUN 09-SEP 10, 2019 CL Larnaka, CYPRUS DE Co-authorship Networks; Co-occurrence Networks; Recommender Systems; Network Embedding; Link Prediction; Machine Learning ID LINK-PREDICTION AB In this paper, we study the problem of predicting collaborations in co-authorship network. We formulated our task in terms of link prediction problem on weighted co-authorship network, in which authors play the role of nodes, and weighted edges connecting two authors are formed by storing either a number or quality metric of research papers co-authored by these authors. Our task is then formulated as regression machine learning model based on network features constructed using network embedding. We evaluate our edge embeddings on large AMiner co-authorship network for (un)weighted node2vec network embeddings and also on the dataset containing temporal information on National Research University Higher School of Economics (HSE) over twenty five years of research articles indexed in Russian Science Citation Index and Scopus for predicting the quality of future research publications measures in terms of quartiles corresponding to published journals indexed in Scopus. We showed that our model of network edge representation has better performance for stated regression task on both, AMiner and HSE co-authorship networks. C1 [Makarov, Ilya] Univ Ljubljana, Fac Comp & Informat Sci, Vena Pot 113, SI-1000 Ljubljana, Slovenia. [Gerasimova, Olga] Natl Res Univ Higher Sch Econ, Sch Data Anal & Artificial Intelligence, 3 Kochnovskiy Proezd, Moscow 125319, Russia. C3 University of Ljubljana; HSE University (National Research University Higher School of Economics) RP Makarov, I (corresponding author), Univ Ljubljana, Fac Comp & Informat Sci, Vena Pot 113, SI-1000 Ljubljana, Slovenia. EM iamakarov@hse.ru; ogerasimova@hse.ru RI Gerasimova, Olga/P-1560-2016; Makarov, Ilya/ABC-6521-2021 OI Makarov, Ilya/0000-0002-3308-8825 FU Russian Science Foundation [17-11-01294] Funding Source: Russian Science Foundation CR Abu-El-Haija S, 2017, CIKM'17: PROCEEDINGS OF THE 2017 ACM CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, P1787, DOI 10.1145/3132847.3132959 Adafre S., 2005, P 3 INT WORKSHOP L, P90 Al Hasan M, 2011, SOCIAL NETWORK DATA ANALYTICS, P243 Al-Rfou, 2018, ARXIV PREPRINT ARXIV [Anonymous], 2018, RUSSIAN WOS J [Anonymous], 2015, 24 ACM INT C INFORM [Anonymous], 2007, ACM SIGKDD Explorations Newsletter, DOI DOI 10.1145/1345448.1345462 [Anonymous], 2018, Scopus Backstrom L., 2011, WSDM, P635 Barabasi A.-L, 2016, Network Science Belkin M, 2002, ADV NEUR IN, V14, P585 Cai HY, 2018, IEEE T KNOWL DATA EN, V30, P1616, DOI 10.1109/TKDE.2018.2807452 Chang SY, 2015, KDD'15: PROCEEDINGS OF THE 21ST ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, P119, DOI 10.1145/2783258.2783296 Cho HR, 2018, SOC NETW ANAL MIN, V8, DOI 10.1007/s13278-018-0501-6 Cui P, 2019, IEEE T KNOWL DATA EN, V31, P833, DOI 10.1109/TKDE.2018.2849727 Doan TN, 2018, PROCEEDINGS OF THE 26TH CONFERENCE ON USER MODELING, ADAPTATION AND PERSONALIZATION (UMAP'18), P13, DOI 10.1145/3209219.3209231 Gao F, 2015, SCI PROGRAMMING-NETH, V2015, DOI 10.1155/2015/172879 Gao S., 2011, TEMPORAL LINK PREDIC, P1169 Glänzel W, 2004, HANDBOOK OF QUANTITATIVE SCIENCE AND TECHNOLOGY RESEARCH: THE USE OF PUBLICATION AND PATENT STATISTICS IN STUDIES OF S&T SYSTEMS, P257 González-Pereira B, 2010, J INFORMETR, V4, P379, DOI 10.1016/j.joi.2010.03.002 Goyal P, 2018, IEEE T COMPUT SOC SY, V5, P907, DOI 10.1109/TCSS.2018.2877083 Goyal P, 2018, KNOWL-BASED SYST, V151, P78, DOI 10.1016/j.knosys.2018.03.022 Grover A, 2016, KDD'16: PROCEEDINGS OF THE 22ND ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, P855, DOI 10.1145/2939672.2939754 Guerrero-Bote VP, 2012, J INFORMETR, V6, P674, DOI 10.1016/j.joi.2012.07.001 He Q., 2010, P 19 INT C WORLD WID, DOI DOI 10.1145/1772690.1772734 HSE Portal, 2017, PUBL HSE Huang Z, 2005, ACM-IEEE J CONF DIG, P141, DOI 10.1145/1065385.1065415 Kong XJ, 2021, IEEE T EMERG TOP COM, V9, P226, DOI 10.1109/TETC.2018.2830698 Kossinets G, 2009, AM J SOCIOL, V115, P405, DOI 10.1086/599247 Li J, 2014, WWW'14 COMPANION: PROCEEDINGS OF THE 23RD INTERNATIONAL CONFERENCE ON WORLD WIDE WEB, P1209, DOI 10.1145/2567948.2579034 Li X, 2009, ACM-IEEE J CONF DIG, P213 Liang YC, 2011, LECT NOTES COMPUT SC, V6897, P403, DOI 10.1007/978-3-642-23535-1_35 Liben-Nowell D, 2007, J AM SOC INF SCI TEC, V58, P1019, DOI 10.1002/asi.20591 Liu XM, 2005, INFORM PROCESS MANAG, V41, P1462, DOI 10.1016/j.ipm.2005.03.012 Lopes GR, 2010, LECT NOTES COMPUT SC, V6413, P190, DOI 10.1007/978-3-642-16385-2_24 Lü LY, 2011, PHYSICA A, V390, P1150, DOI 10.1016/j.physa.2010.11.027 Makarov I., 2017, SUPP PROC INT C ANAL, P1 Makarov I, 2016, INT C NETW AN, P251 Makarov I, 2019, IN PRESS, P1 Makarov I, 2019, PEERJ COMPUT SCI, DOI 10.7717/peerj-cs.172 Makarov I, 2018, ACM-IEEE J CONF DIG, P365, DOI 10.1145/3197026.3203911 Makarov I, 2018, LECT NOTES COMPUT SC, V10716, P404, DOI 10.1007/978-3-319-73013-4_37 McPherson M, 2001, ANNU REV SOCIOL, V27, P415, DOI 10.1146/annurev.soc.27.1.415 Ortega F, 2018, IEEE ACCESS, V6, P48543, DOI 10.1109/ACCESS.2018.2867731 Perozzi B, 2014, PROCEEDINGS OF THE 20TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING (KDD'14), P701, DOI 10.1145/2623330.2623732 Robins G, 2007, SOC NETWORKS, V29, P192, DOI 10.1016/j.socnet.2006.08.003 Roweis ST, 2000, SCIENCE, V290, P2323, DOI 10.1126/science.290.5500.2323 Scott J., 2017, Social network analysis, V4th ed. Sinha A, 2015, WWW'15 COMPANION: PROCEEDINGS OF THE 24TH INTERNATIONAL CONFERENCE ON WORLD WIDE WEB, P243, DOI 10.1145/2740908.2742839 Srinivas Virinchi., 2016, APPL LINK PRED, P57 Tang J., 2008, KDD, P990, DOI DOI 10.1145/1401890.1402008 Tang J., 2012, P 18 ACM SIGKDD INT, P904, DOI DOI 10.1145/2339530.2339673 Tang J, 2015, PROCEEDINGS OF THE 24TH INTERNATIONAL CONFERENCE ON WORLD WIDE WEB (WWW 2015), P1067, DOI 10.1145/2736277.2741093 Tang L, 2011, DATA MIN KNOWL DISC, V23, P447, DOI 10.1007/s10618-010-0210-x Tenenbaum JB, 2000, SCIENCE, V290, P2319, DOI 10.1126/science.290.5500.2319 Thomson Reuters, 2018, INC J RANK Uddin S, 2012, SCIENTOMETRICS, V90, P687, DOI 10.1007/s11192-011-0511-x Velden T, 2009, PRO INT CONF SCI INF, V2, P764 Wang P, 2015, SCI CHINA INFORM SCI, V58, DOI 10.1007/s11432-014-5237-y Wasserman S., 1994, SOCIAL NETWORK ANAL, V8 Yan EJ, 2009, J AM SOC INF SCI TEC, V60, P2107, DOI 10.1002/asi.21128 Yan SC, 2007, IEEE T PATTERN ANAL, V29, P40, DOI 10.1109/TPAMI.2007.250598 Yu Q, 2011, SCIENTOMETRICS, V89, P553, DOI 10.1007/s11192-011-0465-z NR 63 TC 8 Z9 8 U1 0 U2 0 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA BN 978-1-7281-3634-9 PY 2019 BP 72 EP 77 PG 6 WC Computer Science, Artificial Intelligence; Computer Science, Information Systems WE Conference Proceedings Citation Index - Science (CPCI-S) SC Computer Science GA BS3KM UT WOS:000712164100014 DA 2024-09-05 ER PT J AU Natarajan, R Verma, MK Muthuraj, S AF Natarajan, Rajkumar Verma, Manoj Kumar Muthuraj, Surulinathi TI Mapping the Global Academic Support for Sustainable Development Goal 7: A Bibliometric Analysis and Topic Modelling Approach SO JOURNAL OF SCIENTOMETRIC RESEARCH LA English DT Article DE SDG 7; Affordable and Clean Energy; Scientometrics; Text Analysis; Machine Learning; Latent Semantic Analysis ID ENERGY; SCIENCE AB The Sustainable Development Goal 7 (SDG-7) promises to ensure the affordable and clean energy to the world. The United Nations (UN) has set a target for 2030, which can only be achieved through academic excellence. The present study aims to analyze the academic research support of SDG 7 from a global perspective by using bibliometric analysis and topic modelling approaches using Orange Python -based software. The present study extracts the scholarly publications from the lens database from 2015 to 2022 and the dataset consisted of 918 publications with 18,377 citations related to the SDG 7. These including 121 single -author and 797 multiple -authors publications. Most of the papers have been published in open -access journals. Environmental Science and Pollution Research International (5343 citations; 225 publications and CPP 23.74) was the most impactful journal, Muntasir Murshed (13 publications, 421 citations, CPP 32.3) was the most influential author, and China was the most productive country. Under co -occurrence analysis, Clean Energy, Environmental Economics, Health, Affordable Energy, Climate Change, and Business, six different denoted clusters were found, while in the topic modeling approach, six key topics were identified, in which three topics were related to economics and the other were energy -related and climate change. Environmental, renewable energy, and economics were the top words used in SDG 7, and six key documents on each topic were identified according to the distribution and weighting of the topics. The Implications of the research findings and addressing research gaps can inform researchers, policymakers, and funding agencies involved in advancing SDG 7 to help accelerate the achievement of the SDGs in the decision -making process. C1 [Natarajan, Rajkumar; Verma, Manoj Kumar; Muthuraj, Surulinathi] Bharathidasan Univ, Dept Lib & Informat Sci, Tiruchirappalli, Tamil Nadu, India. [Natarajan, Rajkumar] Mizoram Univ, Dept Lib & Informat Sci, Mizoram, India. C3 Bharathidasan University; Mizoram University RP Natarajan, R (corresponding author), Bharathidasan Univ, Dept Lib & Informat Sci, Tiruchirappalli, Tamil Nadu, India. EM rajkumarnataraj19@gmail.com CR Amala IA, 2022, Build Inform Technol Sci Bits, V4, DOI [10.47065/bits.v4i1.1584, DOI 10.47065/BITS.V4I1.1584] [Anonymous], Goal 7: Ensure Access To Affordable [Anonymous], The 17 Sustainable Development Goals [Anonymous], 2023, United Nations Sustainable Development Goals Aria M, 2017, J INFORMETR, V11, P959, DOI 10.1016/j.joi.2017.08.007 Arora NK, 2022, ENVIRON SUSTAIN, V5, P395, DOI 10.1007/s42398-022-00257-2 Barbier EB, 2020, WORLD DEV, V135, DOI 10.1016/j.worlddev.2020.105082 Biermann F, 2022, NAT SUSTAIN, V5, P795, DOI 10.1038/s41893-022-00909-5 Bingqi Jiao, 2021, E3S Web of Conferences, V236, DOI 10.1051/e3sconf/202123602002 Bossio DA, 2020, NAT SUSTAIN, V3, P391, DOI 10.1038/s41893-020-0491-z de Araluze GKB, 2022, PLOS ONE, V17, DOI 10.1371/journal.pone.0275496 Bryan BA, 2018, NATURE, V559, P193, DOI 10.1038/s41586-018-0280-2 Chaudhry IS, 2022, ENVIRON SCI POLLUT R, V29, P5360, DOI 10.1007/s11356-021-15941-9 Creutzig F, 2018, NAT CLIM CHANGE, V8, P268, DOI 10.1038/s41558-018-0121-1 Crippa M, 2021, NAT FOOD, V2, P198, DOI 10.1038/s43016-021-00225-9 Dantu R, 2021, INFORM SYST MANAGE, V38, P62, DOI 10.1080/10580530.2020.1746982 Debnath R, 2020, engrXiv Demsar J, 2013, J MACH LEARN RES, V14, P2349 Duarte CM, 2020, NATURE, V580, P39, DOI 10.1038/s41586-020-2146-7 Elsevier, 2023, SDG 7: Affordable and clean energy Farrukh M, 2021, TECHNOL ANAL STRATEG, V33, P989, DOI 10.1080/09537325.2020.1862413 Ferronato N, 2019, INT J ENV RES PUB HE, V16, DOI 10.3390/ijerph16061060 Fitri H, 2021, IJITEE, V5, P82, DOI [10.22146/ijitee.67467, DOI 10.22146/IJITEE.67467] Gao L, 2017, NATURE, V544, P217, DOI 10.1038/nature21694 Gielen D, 2019, ENERGY STRATEG REV, V24, P38, DOI 10.1016/j.esr.2019.01.006 Goodell JW, 2021, J BEHAV EXP FINANC, V32, DOI 10.1016/j.jbef.2021.100577 Hengchen S, 2016, 2016 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), P3245, DOI 10.1109/BigData.2016.7840981 Hub ISK, UN-energy plan of action sends SDG 7 road map into implementation phase Ishtiaque A, 2020, REMOTE SENS-BASEL, V12, DOI 10.3390/rs12040691 Islam MM, 2022, ENVIRON SCI POLLUT R, V29, P34231, DOI 10.1007/s11356-021-18488-x Kalantari Ali, 2017, Journal of Big Data, V4, DOI 10.1186/s40537-017-0088-1 Katoch OR, 2022, J Energy Res Rev, P92, DOI [10.9734/jenrr/2022/v12i4251, DOI 10.9734/JENRR/2022/V12I4251] Kroll C, 2019, PALGR COMMUN, V5, DOI 10.1057/s41599-019-0335-5 Lin TC, 2022, FRONT PSYCHOL, V13, DOI 10.3389/fpsyg.2022.844425 Liu L, 2016, SPRINGERPLUS, V5, DOI 10.1186/s40064-016-3252-8 Majeed MT, 2022, ENVIRON SCI POLLUT R, V29, P61107, DOI 10.1007/s11356-022-20140-1 Minhaj M., 2017, Clustering of conference papers using LDA based topic modelling Nerini FF, 2019, NAT SUSTAIN, V2, P674, DOI 10.1038/s41893-019-0334-y Nerini FF, 2018, NAT ENERGY, V3, P10, DOI 10.1038/s41560-017-0036-5 Ngankam BT, 2019, J Sustain Dev, V12, P40, DOI [10.5539/jsd.v12n4p40, DOI 10.5539/JSD.V12N4P40] O'Neill DW, 2018, NAT SUSTAIN, V1, P88, DOI 10.1038/s41893-018-0021-4 Prieto-Jiménez E, 2021, SUSTAINABILITY-BASEL, V13, DOI 10.3390/su13042126 PRITCHARD A, 1969, J DOC, V25, P348 Qian QH, 2020, CHEM REV, V120, P8161, DOI 10.1021/acs.chemrev.0c00119 Raji Saheed Adekunle, 2023, Dialogues Health, V2, P100132, DOI 10.1016/j.dialog.2023.100132 Sachs JD, 2019, NAT SUSTAIN, V2, P805, DOI 10.1038/s41893-019-0352-9 Safrina Rika, 2023, IOP Conference Series: Earth and Environmental Science, DOI 10.1088/1755-1315/1199/1/012012 Sau K, 2023, F1000Res, P11, DOI [10.12688/f1000research.108772.2, DOI 10.12688/F1000RESEARCH.108772.2] Schroeder P, 2019, J IND ECOL, V23, P77, DOI 10.1111/jiec.12732 Sovacool BK, 2018, ENERGY RES SOC SCI, V45, P12, DOI 10.1016/j.erss.2018.07.007 Thacker S, 2019, NAT SUSTAIN, V2, P324, DOI 10.1038/s41893-019-0256-8 Thomas SP, 2008, Issues Ment Health Nurs, V29, P547, DOI [10.1080/016128 40802046547, DOI 10.1080/01612840802046547] Tong WM, 2020, NAT ENERGY, V5, P367, DOI 10.1038/s41560-020-0550-8 Trane M, 2023, SUSTAINABILITY-BASEL, V15, DOI 10.3390/su15097055 Tucho GT, 2020, FRONT ENERGY RES, V8, DOI 10.3389/fenrg.2020.564104 UNEP-UN Environment Programme, 2023, GOAL 7: affordable and clean energy United Nations, 2015, TRANSF OUR WORLD 203, DOI [10.1891/9780826190123.ap02, DOI 10.1891/9780826190123.AP02] United Nations, 2022, Energy's inter-linkages with other SDGs Vaishnav D, 2018, PROCEEDINGS OF THE 2018 3RD INTERNATIONAL CONFERENCE ON INVENTIVE COMPUTATION TECHNOLOGIES (ICICT 2018), P603, DOI 10.1109/ICICT43934.2018.9034442 van Daalen KR, 2022, LANCET PUBLIC HEALTH, V7, pE942, DOI 10.1016/S2468-2667(22)00197-9 van Eck NJ, 2010, SCIENTOMETRICS, V84, P523, DOI 10.1007/s11192-009-0146-3 van Loenhout R, 2022, EXTENDED ABSTRACTS OF THE 2022 CHI CONFERENCE ON HUMAN FACTORS IN COMPUTING SYSTEMS, CHI 2022, DOI 10.1145/3491101.3519638 Verma Manoj Kumar, 2023, SRELS Journal of Information Management, P97 Vinuesa R, 2020, NAT COMMUN, V11, DOI 10.1038/s41467-019-14108-y Vivanco DF, 2020, Science, Technology, and Innovation for Sustainable Development Goals: Insights from Agriculture, Health, Environment, and Energy, P192 Wang XY, 2021, CHINESE GEOGR SCI, V31, P600, DOI 10.1007/s11769-021-1213-9 Watts N, 2018, LANCET, V392, P2479, DOI 10.1016/S0140-6736(18)32594-7 Wernecke B, 2021, ANN GLOB HEALTH, V87, DOI 10.5334/aogh.3139 World Bank, Tracking SDG 7-The energy progress report 2022 Yamaguchi NU, 2023, ENVIRON SCI POLLUT R, V30, P5502, DOI 10.1007/s11356-022-24379-6 Yanti Y, 2022, TEM J, V11, P1229, DOI 10.18421/TEM113-31 NR 71 TC 0 Z9 0 U1 2 U2 2 PU PHCOG NET PI KARNATAKA PA 17, 2ND FLR, BUDDHA VIHAR RD, NEAR SPORTS ZONE, COX TOWN, BENGALURU, KARNATAKA, 560005, INDIA SN 2321-6654 EI 2320-0057 J9 J SCIENTOMETR RES JI J. Scientometr. Res. PD JAN-APR PY 2024 VL 13 IS 1 BP 285 EP 297 DI 10.5530/jscires.13.1.24 PG 13 WC Information Science & Library Science WE Emerging Sources Citation Index (ESCI) SC Information Science & Library Science GA TZ7J6 UT WOS:001245143700024 OA hybrid DA 2024-09-05 ER PT J AU Luong, DH Nguyen, XA Ngo, TT Tran, MN Nguyen, HL AF Dinh-Hai Luong Xuan-An Nguyen Thanh-Thuy Ngo My-Ngoc Tran Hong-Lien Nguyen TI Social Media in General Education: A Bibliometric Analysis of Web of Science from 2005-2021 SO JOURNAL OF SCIENTOMETRIC RESEARCH LA English DT Article DE COVID-19; ICT integration; Teachers' beliefs; Online learning; Distance learning; Social; media; General education. ID PROFESSIONAL-DEVELOPMENT; PRIOR-KNOWLEDGE; TEACHERS; STUDENTS; FACEBOOK; BELIEFS; IMPACT; ONLINE; SITES; TOOL AB Social media plays an increasingly important role in school activities. The study analysised 2,122 eligibility bibliographic records from 2005 to 2021 were extracted from the Web of Science database. This study employs a bibliometric method to analyze the use of social media on K-12 education worldwide. We concerned the following issues: the annual publication of Social Media in General Education (SMGE), the main characteristics of the SMGE research community, the primary sources in the field, the leading research themes and the new research topics in the field of SMGE. The results represented an annual growth trend of 17.15%. Countries with the highest number of publications were the US, England, Australia, China, and Turkey. The research community consisted of small groups; and Valcke M from the University of Ghent (Belgium) was one of the leading authors with large number of publications and citations. Sources focused on four scopes: Language Education, Educational Technology, Teacher and Teaching Education, Science Education. Furthermore, six themes were developed: SMGE's environment, ICT integration, teachers' beliefs and teaching practice, students' learning, teachers' motivation and engagement, SMGE's learning approach. Two prominent topics were COVID-19-related, online and distance learning. The findings represent the basic information of the SMGE knowledge base considered as a source of reference for teachers, school managers, and policymakers interested in SMGE research and suggest further research directions. C1 [Dinh-Hai Luong; Xuan-An Nguyen; Thanh-Thuy Ngo; My-Ngoc Tran; Hong-Lien Nguyen] Vietnam Natl Inst Educ Sci, Hanoi 100000, Vietnam. RP Nguyen, HL (corresponding author), Vietnam Natl Inst Educ Sci, Hanoi 100000, Vietnam. EM honglien2601@gmail.com RI Luong, Dinh-Hai/AAH-7107-2021 OI Luong, Dinh-Hai/0000-0003-0167-2645 CR Adler I, 2018, SCI EDUC, V102, P820, DOI 10.1002/sce.21445 Ahamer G., 2014, Handbook of Research on Transnational Higher Education, P526, DOI [10.4018/978-1-4666-4458-8.ch027, DOI 10.4018/978-1-4666-4458-8.CH027] Al-Qaysi N, 2020, J EDUC COMPUT RES, V57, P2085, DOI 10.1177/0735633118817879 Albirini A, 2006, COMPUT EDUC, V47, P373, DOI 10.1016/j.compedu.2004.10.013 Aloraini N, 2022, COMPUT ASSIST LANG L, V35, P1707, DOI 10.1080/09588221.2020.1830804 Annetta LA, 2009, COMPUT EDUC, V53, P74, DOI 10.1016/j.compedu.2008.12.020 Banaji S, 2013, COMUNICAR, V20, P69, DOI 10.3916/C40-2013-02-07 Barrot JS, 2022, COMPUT ASSIST LANG L, V35, P2534, DOI 10.1080/09588221.2021.1883673 Barrot JS, 2021, J EDUC COMPUT RES, V59, P645, DOI 10.1177/0735633120972010 Barrot JS, 2018, J COMPUT ASSIST LEAR, V34, P863, DOI 10.1111/jcal.12295 Beardsley M, 2021, BRIT J EDUC TECHNOL, V52, P1455, DOI 10.1111/bjet.13101 Boholano H.B., 2017, RES PEDAGOGY, V7, P21, DOI [10.17810/2015.45, DOI 10.17810/2015.45] Bourgonjon J, 2010, COMPUT EDUC, V54, P1145, DOI 10.1016/j.compedu.2009.10.022 Boyd DM, 2007, J COMPUT-MEDIAT COMM, V13, P210, DOI 10.1111/j.1083-6101.2007.00393.x Carpenter J, 2022, PROF DEV EDUC, V48, P784, DOI 10.1080/19415257.2020.1752287 Carpenter JP, 2019, TEACH TEACH EDUC, V86, DOI 10.1016/j.tate.2019.102904 Carpenter JP, 2019, TEACH TEACH EDUC, V81, P1, DOI 10.1016/j.tate.2019.01.011 Carpenter JP, 2017, TEACH TEACH EDUC, V68, P53, DOI 10.1016/j.tate.2017.08.008 Chai CS, 2009, TEACH COLL REC, V111, P1296 Chan CKK, 2011, COMPUT EDUC, V57, P1445, DOI 10.1016/j.compedu.2010.09.003 Chen CM, 2021, COMPUT EDUC, V163, DOI 10.1016/j.compedu.2020.104095 Chin C, 2007, J RES SCI TEACH, V44, P815, DOI 10.1002/tea.20171 Chu S.K. W., 2020, SOCIAL MEDIA TOOLS E, DOI DOI 10.1007/978-981-15-1560-6 Chugh R, 2018, EDUC INF TECHNOL, V23, P605, DOI 10.1007/s10639-017-9621-2 Davies J, 2012, COMPUT EDUC, V59, P19, DOI 10.1016/j.compedu.2011.11.007 de Vries S, 2013, TEACH TEACH EDUC, V33, P78, DOI 10.1016/j.tate.2013.02.006 Dede C, 2018, EDUCAUSE review, V43, P80 Ha DN, 2021, J SCIENTOMETR RES, V10, P337, DOI 10.5530/jscires.10.3.50 Do TT, 2021, COGENT EDUC, V8, DOI 10.1080/2331186X.2021.1994361 de Larreta-Azelain MDC, 2013, REV ESP LINGUIST APL, V26, P127 Dunleavy M, 2009, J SCI EDUC TECHNOL, V18, P7, DOI 10.1007/s10956-008-9119-1 Elsevier, 2022, Aims and scope. Computer & Education Eteokleous N, 2008, COMPUT EDUC, V51, P669, DOI 10.1016/j.compedu.2007.07.004 Evagorou M, 2012, INT J SCI EDUC, V34, P401, DOI 10.1080/09500693.2011.619211 Falagas ME, 2008, FASEB J, V22, P338, DOI 10.1096/fj.07-9492LSF Fischer C, 2019, AERA OPEN, V5, DOI 10.1177/2332858419894252 Friedman L.W., 2013, J ED ONLINE, V10, P1, DOI DOI 10.9743/JEO.2013.1.5 Fuchs C., 2021, Social Media: A Critical Introduction, DOI [10.4324/9781003199182-1, DOI 10.4324/9781003199182-1] Glass G.V., 1976, Educational Researcher, V5, P3, DOI [10.3102/0013189x005010003, DOI 10.3102/0013189X005010003, 10.2307/1174772ISSN0536-1036, DOI 10.2307/1174772] González-Betancor SM, 2021, COMPUT EDUC, V168, DOI 10.1016/j.compedu.2021.104195 Greenhow C., 2019, Policy Insights Behav Brain Sci, V6, P178, DOI [10.1177/2372732219865290, DOI 10.1177/2372732219865290] Greenhow C, 2020, INFORM LEARN SCI, V121, P513, DOI 10.1108/ILS-04-2020-0138 Greenhow C, 2016, LEARN MEDIA TECHNOL, V41, P6, DOI 10.1080/17439884.2015.1064954 Guraya SY, 2016, N AM J MED SCI, V8, P268, DOI 10.4103/1947-2714.187131 Hallinger P, 2014, EDUC ADMIN QUART, V50, P539, DOI 10.1177/0013161X13506594 Hashim AK, 2019, TEACH COLL REC, V121 Hashim Kamarul Faizal, 2018, International Journal of Interactive Mobile Technologies, V12, P4, DOI 10.3991/ijim.v12i7.9634 Hermans R, 2008, COMPUT EDUC, V51, P1499, DOI 10.1016/j.compedu.2008.02.001 Pham HH, 2021, SCIENTOMETRICS, V126, P5201, DOI 10.1007/s11192-021-03965-4 Huang CJ, 2018, COMPUT EDUC, V119, P76, DOI 10.1016/j.compedu.2017.12.010 Javaeed A, 2020, ADV MED EDUC PRACT, V11, P53, DOI 10.2147/AMEP.S209123 Judge M, 2021, IRISH EDUC STUD, V40, P419, DOI 10.1080/03323315.2021.1917443 Junco R, 2013, BRIT J EDUC TECHNOL, V44, P273, DOI 10.1111/j.1467-8535.2012.01284.x Jung I., 2019, Open and distance education theory revisited: Implications for the Digital Era, DOI [10.1007/978-981-13-7740-2, DOI 10.1007/978-981-13-7740-2] Kamarainen AM, 2013, COMPUT EDUC, V68, P545, DOI 10.1016/j.compedu.2013.02.018 Kaplan AM, 2010, BUS HORIZONS, V53, P59, DOI 10.1016/j.bushor.2009.09.003 Kellogg S, 2014, INT REV RES OPEN DIS, V15, P263 Kinchin IM, 2014, J CONTIN HIGH EDUC, V62, P39, DOI 10.1080/07377363.2014.872011 Kutlu B, 2018, 5 INT MANAGEMENT INF, P80 Lawton D, 2012, J ENG EDUC, V101, P244, DOI 10.1002/j.2168-9830.2012.tb00050.x Thu HLT, 2021, EDUC SCI, V11, DOI 10.3390/educsci11070353 Liu IF, 2010, COMPUT EDUC, V54, P600, DOI 10.1016/j.compedu.2009.09.009 Llorens Francesc., 2011, Revista de Universidad y Sociedad del Conocimiento(RUSC), V8, P31 Lopes RM, 2017, SCIENTOMETRICS, V111, P1591, DOI 10.1007/s11192-017-2294-1 Manca S, 2013, J COMPUT ASSIST LEAR, V29, P487, DOI 10.1111/jcal.12007 Manca S, 2020, INTERNET HIGH EDUC, V44, DOI 10.1016/j.iheduc.2019.100707 Mitchell K, 2012, CALICO J, V29, P471, DOI 10.11139/cj.29.3.471-493 Nelimarkka M, 2021, COMPUT EDUC, V173, DOI 10.1016/j.compedu.2021.104269 Nochumson TC, 2020, PROF DEV EDUC, V46, P306, DOI 10.1080/19415257.2019.1585382 Oortwijn M, 2008, INSTR SCI, V36, P251, DOI 10.1007/s11251-007-9032-7 PRITCHARD A, 1969, J DOC, V25, P348 Racionero S, 2010, REV PSICODIDACT, V15, P143 Restad F, 2021, J CURRICULUM STUD, V53, P435, DOI 10.1080/00220272.2020.1716391 Rosell-Aguilar F., 2018, Innovative Language Teaching and Learning at University: Integrating Informal Learning into Formal Language Education, P99, DOI [DOI 10.14705/RPNET.2018.22.780, 10.14705/rpnet.2018.22] So HJ, 2010, COMPUT EDUC, V54, P479, DOI 10.1016/j.compedu.2009.08.031 Sohoni T, 2019, J CRIM JUSTICE EDUC, V30, P389, DOI 10.1080/10511253.2018.1538420 Song D, 2016, INTERACT LEARN ENVIR, V24, P423, DOI 10.1080/10494820.2013.862553 Steinkuehler C, 2008, J SCI EDUC TECHNOL, V17, P530, DOI 10.1007/s10956-008-9120-8 Su JH, 2022, EDUC SCI, V12, DOI 10.3390/educsci12050331 Phan TTT, 2022, J UNIV TEACH LEARN P, V19 Tian WW, 2021, SYSTEM, V103, DOI 10.1016/j.system.2021.102682 Torphy K, 2020, AM J EDUC, V127, P49, DOI 10.1086/711012 Torrington J, 2021, J COMPUT ASSIST LEAR, V37, P1107, DOI 10.1111/jcal.12549 van den Bergh L, 2013, EDUC STUD-UK, V39, P418, DOI 10.1080/03055698.2013.767188 Wan H, 2018, P INT COMP SOFTW APP, P1006, DOI 10.1109/COMPSAC.2018.00177 Wang SG, 2012, CALICO J, V29, P412, DOI 10.11139/cj.29.3.412-430 Weng WY, 2017, INT J SCI EDUC, V39, P877, DOI 10.1080/09500693.2017.1310409 West R., 2018, Foundations of learning and instructional design technology: The past, present, andfuture of learning and instructional design technology Yang S, 2021, COMPUT EDUC, V163, DOI 10.1016/j.compedu.2020.104116 Yang WT, 2015, INT J SCI EDUC, V37, P1564, DOI 10.1080/09500693.2015.1045957 Yildirim Z, 2014, INTERACT LEARN ENVIR, V22, P721, DOI 10.1080/10494820.2012.745423 Ying YH., 2021, Creative Education, V12, P1503 NR 92 TC 1 Z9 1 U1 0 U2 0 PU PHCOG NET PI KARNATAKA PA 17, 2ND FLR, BUDDHA VIHAR RD, NEAR SPORTS ZONE, COX TOWN, BENGALURU, KARNATAKA, 560005, INDIA SN 2321-6654 EI 2320-0057 J9 J SCIENTOMETR RES JI J. Scientometr. Res. PD SEP-DEC PY 2023 VL 12 IS 3 BP 680 EP 690 DI 10.5530/jscires.12.3.066 PG 11 WC Information Science & Library Science WE Emerging Sources Citation Index (ESCI) SC Information Science & Library Science GA JE8W2 UT WOS:001171589100017 OA hybrid DA 2024-09-05 ER PT J AU Barrot, JS AF Barrot, Jessie S. TI Scientific Mapping of Social Media in Education: A Decade of Exponential Growth SO JOURNAL OF EDUCATIONAL COMPUTING RESEARCH LA English DT Article DE bibliometric analysis; informal learning; media in education; online learning; social media; technology-enhanced learning ID RESEARCH PERFORMANCE; H-INDEX; FACEBOOK; SCHOOL; WEB; LEADERSHIP; INDICATORS; UNIVERSITY; STUDENTS AB Given the increasing number of research on social media for educational purposes, few studies have examined the scientific literature in this field of interest. However, reviews that comprehensively mapped this research landscape in a broader view remain very limited. It is on this premise that the current study identifies the growth trajectory, distribution, and topical foci of scientific literature on social media in education published between 2007 and 2019. A total of 2,215 documents from Scopus-indexed journals were analysed. Using a bibliometric approach, the findings show a steady growth of scientific output and citations and the expansion of the topical foci in the past decade. Of the 15 examined social media platforms, Facebook, Twitter, and YouTube have attracted the greatest attention, while the rest remained underexplored or unexplored. The popularity of certain platforms among scholars was attributed to three factors: the number of active users, the pedagogical affordances, and the geographical scope. Implications for future studies are discussed. C1 [Barrot, Jessie S.] Natl Univ, Coll Educ Arts & Sci, Manila, Philippines. C3 National University Philippines RP Barrot, JS (corresponding author), Natl Univ, 551 MF Jhocson St, Manila 1008, Philippines. EM jessiebarrot@yahoo.com RI Barrot, Jessie/AAE-8566-2020 OI Barrot, Jessie/0000-0001-8517-4058 CR Abramo G, 2014, SCIENTOMETRICS, V101, P1129, DOI 10.1007/s11192-014-1269-8 [Anonymous], 2020, Most popular social networks worldwide as of April 2020, ranked by number of active users [Anonymous], 2010, 24187 EUR EN EUR COM [Anonymous], 2019, Society at a Glance 2019: OECD Social Indicators, DOI DOI 10.1787/SOC_GLANCE-2019-EN Appel M, 2020, REV GEN PSYCHOL, V24, P60, DOI 10.1177/1089268019880891 Azer SA, 2015, ACAD MED, V90, P1147, DOI 10.1097/ACM.0000000000000780 Baas J, 2020, QUANT SCI STUD, V1, P377, DOI 10.1162/qss_a_00019 Barrot JS, 2021, LANG CULT CURRIC, V34, P95, DOI 10.1080/07908318.2020.1745822 Barrot JS, 2018, J COMPUT ASSIST LEAR, V34, P863, DOI 10.1111/jcal.12295 Barrot JS, 2017, SCIENTOMETRICS, V110, P1, DOI 10.1007/s11192-016-2163-3 Barrot JS, 2016, LANG CULT CURRIC, V29, P286, DOI 10.1080/07908318.2016.1143481 Bodily R, 2019, BRIT J EDUC TECHNOL, V50, P64, DOI 10.1111/bjet.12712 Bruguera C, 2019, RES LEARN TECHNOL, V27, DOI 10.25304/rlt.v27.2286 Chu S.K. W., 2020, SOCIAL MEDIA TOOLS E, DOI DOI 10.1007/978-981-15-1560-6 Chugh R, 2018, EDUC INF TECHNOL, V23, P605, DOI 10.1007/s10639-017-9621-2 Coleman E, 2019, BMC MED EDUC, V19, DOI 10.1186/s12909-019-1706-8 Culpan Tim, 2018, BLOOMBERG Diem A, 2013, RES HIGH EDUC, V54, P86, DOI 10.1007/s11162-012-9264-5 Ding JD, 2020, SCIENTOMETRICS, V122, P1303, DOI 10.1007/s11192-020-03364-1 Feng SH, 2019, COMPUT EDUC, V134, P41, DOI 10.1016/j.compedu.2019.02.005 Gleason B, 2018, EDUC TECHNOL SOC, V21, P200 Greenhow C, 2019, BRIT J EDUC TECHNOL, V50, P987, DOI 10.1111/bjet.12772 Greenhow C, 2016, LEARN MEDIA TECHNOL, V41, P6, DOI 10.1080/17439884.2015.1064954 Gumus S, 2018, EDUC MANAG ADM LEAD, V46, P25, DOI 10.1177/1741143216659296 Hallinger P, 2020, EDUC MANAG ADM LEAD, V48, P595, DOI 10.1177/1741143219836684 Hallinger P, 2019, REV EDUC RES, V89, P335, DOI 10.3102/0034654319830380 Hallinger P, 2014, EDUC ADMIN QUART, V50, P539, DOI 10.1177/0013161X13506594 Hartog J, 2000, ECON EDUC REV, V19, P131, DOI 10.1016/S0272-7757(99)00050-3 Heradio R, 2016, COMPUT EDUC, V98, P14, DOI 10.1016/j.compedu.2016.03.010 Hew KF, 2013, EDUC RES REV-NETH, V9, P47, DOI 10.1016/j.edurev.2012.08.001 Hirsch JE, 2005, P NATL ACAD SCI USA, V102, P16569, DOI 10.1073/pnas.0507655102 Hopkins D, 2014, SCH EFF SCH IMPROV, V25, P257, DOI 10.1080/09243453.2014.885452 Jacsó P, 2009, ONLINE INFORM REV, V33, P831, DOI 10.1108/14684520910985756 Jensen P, 2009, SCIENTOMETRICS, V78, P467, DOI 10.1007/s11192-007-2014-3 Jeynes WH, 2007, URBAN EDUC, V42, P82, DOI 10.1177/0042085906293818 Junco R, 2011, J COMPUT ASSIST LEAR, V27, P119, DOI 10.1111/j.1365-2729.2010.00387.x Liberati A, 2009, BMJ-BRIT MED J, V339, DOI [10.1016/j.ijsu.2010.02.007, 10.1136/bmj.b2700, 10.1136/bmj.b2535, 10.1186/2046-4053-4-1, 10.1371/journal.pmed.1000097, 10.1136/bmj.i4086, 10.1016/j.ijsu.2010.07.299] Lopes RM, 2017, SCIENTOMETRICS, V111, P1591, DOI 10.1007/s11192-017-2294-1 Madge C, 2009, LEARN MEDIA TECHNOL, V34, P141, DOI 10.1080/17439880902923606 Maia SC, 2019, SCIENTOMETRICS, V120, P929, DOI 10.1007/s11192-019-03165-1 Malik A, 2019, INT J EDUC TECHNOL H, V16, DOI 10.1186/s41239-019-0166-x Manca S, 2013, J COMPUT ASSIST LEAR, V29, P487, DOI 10.1111/jcal.12007 Manca S, 2020, INTERNET HIGH EDUC, V44, DOI 10.1016/j.iheduc.2019.100707 Manca S, 2016, COMPUT EDUC, V95, P216, DOI 10.1016/j.compedu.2016.01.012 Mao J, 2014, COMPUT HUM BEHAV, V33, P213, DOI 10.1016/j.chb.2014.01.002 Marker C, 2018, EDUC PSYCHOL REV, V30, P651, DOI 10.1007/s10648-017-9430-6 Menzies R, 2017, EDUC INF TECHNOL, V22, P39, DOI 10.1007/s10639-015-9436-y Mills N, 2011, CALICO J, V28, P345, DOI 10.11139/cj.28.2.345-368 Moorthy K, 2019, COMPUT EDUC, V130, P94, DOI 10.1016/j.compedu.2018.12.002 Murphy KR, 2017, HUM RESOUR MANAGE R, V27, P193, DOI 10.1016/j.hrmr.2015.06.001 Nagle J, 2018, TEACH TEACH EDUC, V76, P86, DOI 10.1016/j.tate.2018.08.014 Niu L, 2019, J EDUC COMPUT RES, V56, P1384, DOI 10.1177/0735633117745161 Reinhardt J, 2019, LANG TEACHING, V52, P1, DOI 10.1017/S0261444818000356 Sabharwal M, 2013, J COMP POLICY ANAL, V15, P141, DOI 10.1080/13876988.2013.785149 Sarapin SH, 2015, INTERNET HIGH EDUC, V27, P14, DOI 10.1016/j.iheduc.2015.04.001 Shen CW, 2020, COMPUT HUM BEHAV, V104, DOI 10.1016/j.chb.2019.106177 Sheu CF, 2001, BEHAV RES METH INS C, V33, P102, DOI 10.3758/BF03195354 Shih RC, 2011, AUSTRALAS J EDUC TEC, V27, P829 Siemens G, 2017, FDN LEARNING INSTRUC Statista, 2020, Number of Global Social Network Users 2017-2025 Sterling M, 2017, ACAD MED, V92, P1043, DOI 10.1097/ACM.0000000000001617 Tan E, 2013, LEARN MEDIA TECHNOL, V38, P463, DOI 10.1080/17439884.2013.783594 Thomas L, 2020, COMPUT EDUC, V146, DOI 10.1016/j.compedu.2019.103754 Tijssen RJW, 2009, RES EVALUAT, V18, P13, DOI 10.3152/095820209X393145 van Raan A.F. J., 2003, Technology Assessment-Theory and Practice, V1, P20, DOI DOI 10.14512/TATUP.12.1.20 Veletsianos G, 2019, BRIT J EDUC TECHNOL, V50, P1713, DOI 10.1111/bjet.12788 Wang YY, 2018, EDUC ADMIN QUART, V54, P327, DOI 10.1177/0013161X18761342 Whelan E, 2020, COMPUT EDUC, V143, DOI 10.1016/j.compedu.2019.103692 Wiafe I, 2020, J COMPUT ASSIST LEAR, V36, P636, DOI 10.1111/jcal.12433 Willems J, 2018, AUSTRALAS J EDUC TEC, V34, P135, DOI 10.14742/ajet.3843 Williams B, 2018, EUR J ENG EDUC, V43, P190, DOI 10.1080/03043797.2016.1153043 Yang Y, 2014, LEARN MEDIA TECHNOL, V39, P267, DOI 10.1080/17439884.2013.839564 NR 72 TC 36 Z9 37 U1 3 U2 38 PU SAGE PUBLICATIONS INC PI THOUSAND OAKS PA 2455 TELLER RD, THOUSAND OAKS, CA 91320 USA SN 0735-6331 EI 1541-4140 J9 J EDUC COMPUT RES JI J. Educ. Comput. Res. PD JUL PY 2021 VL 59 IS 4 BP 645 EP 668 AR 0735633120972010 DI 10.1177/0735633120972010 EA NOV 2020 PG 24 WC Education & Educational Research WE Social Science Citation Index (SSCI) SC Education & Educational Research GA RZ5LI UT WOS:000600152400001 DA 2024-09-05 ER PT J AU Coavoux, S Boutet, M Zabban, V AF Coavoux, Samuel Boutet, Manuel Zabban, Vinciane TI What We Know About Games: A Scientometric Approach to Game Studies in the 2000s SO GAMES AND CULTURE LA English DT Article DE topic modeling; lexicometric analysis; multidisciplinarity; sociology of science; epistemic culture; game studies; path dependence; trading zone; World of Warcraft (WoW); interdisciplinarity AB This article proposes a reflexive approach on the scientific production in the field of game studies in recent years. It relies on a sociology of science perspective to answer the question: What are game studies really about? Relying on scientometric and lexicometric tools, we analyze the metadata and content of a corpus of articles from the journals Games Studies and Games & Culture and of Digital Games Research Association (DiGRA) proceedings. We show that published researches have been studying only a limited set of game genres and that they especially focus on online games. We then expose the different ways game studies are talking about games through a topic model analysis of our corpus. We test two hypotheses to explain the concentration of research on singular objects: path dependence and trading zone. We describe integrative properties of the focus on common objects but stress also the scientific limits met by this tendency. C1 [Coavoux, Samuel] Ecole Normale Super Lyon, Ctr Max Weber, Lyon, France. [Coavoux, Samuel] Ecole Normale Super, Dept Sci Sociales, Paris, France. [Boutet, Manuel] Univ Cote dAzur, GREDEG Lab, Nice, France. [Zabban, Vinciane] Paris 13 Univ, EXPERICE Lab, Villetaneuse, France. C3 Centre National de la Recherche Scientifique (CNRS); Ecole Normale Superieure de Lyon (ENS de LYON); Universite Jean Monnet; Universite Lyon 2; Universite PSL; Ecole Normale Superieure (ENS); Universite Cote d'Azur RP Boutet, M (corresponding author), Maison Sci Homme & Soc Sud Est, 24 Ave Diables Bleus,Pole Univ St Jean dAngely 3, F-06357 Nice, France. EM manuel.boutet@unice.fr RI Coavoux, Samuel/AAV-5125-2021 OI Coavoux, Samuel/0000-0001-7991-3555 CR Aarseth E., 2001, GAME STUDIES, DOI [10.1145/3402942.3402978, DOI 10.1145/3402942.3402978] Abend G., 2013, AM J SOCIOL, V119, P1, DOI DOI 10.1086/673128 [Anonymous], LEVEL UP [Anonymous], 2009, TEXT MINING CLASSIFI, DOI [DOI 10.1145/1141844.1143859, DOI 10.1201/9781420059458.CH4] Apperley TH, 2006, SIMULAT GAMING, V37, P6, DOI 10.1177/1046878105282278 Arsenault D., 2009, Journal for Computer Game Culture, V3, P149 Becker H. S., 2008, Art worlds Bourdieu Pierre, 2001, SCI SCI REFLEXIVITE Boutet M., 2013, 5 GLOB C VID CULT FU Clearwater David., 2011, Loading, V5, P29 Coavoux S., 2016, SOCIOLOGIE, V6, P133 CRANE D, 1967, AM SOCIOL, V2, P195 Galison Peter., 1997, IMAGE LOGIC MAT CULT Gorman M., 2010, TRADING ZONES INTERA Knorr-Cetina K., 1999, Epistemic Cultures. How the Sciences Make Knowledge Lowood H., 2006, Games and Culture, V1, P78 Mayra F., 2015, GAM STUD FRANC C SUP Melcer E., 2015, The Proceedings of the 10th International Conference on the Foundations of Digital Games (FDG 2015), June 22-25, 2015, Pacific Grove, CA, USA Ollion E., 2011, SOCIOLOGIE, V2, P277, DOI [10.3917/socio.023.0277, DOI 10.3917/SOCIO.023.0277] Pierson P, 2000, AM POLIT SCI REV, V94, P251, DOI 10.2307/2586011 Quandt T, 2015, J COMMUN, V65, P975, DOI 10.1111/jcom.12182 Rufat S., 2015, ESPACE GEOGRAPHIQUE, V43, P308 Shaw A, 2010, GAMES CULT, V5, P403, DOI 10.1177/1555412009360414 Simon B., 2013, The Journal of the Canadian Game Studies Association, V7, P1 Williams D, 2005, SIMULAT GAMING, V36, P447, DOI 10.1177/1046878105282275 NR 25 TC 13 Z9 14 U1 1 U2 30 PU SAGE PUBLICATIONS INC PI THOUSAND OAKS PA 2455 TELLER RD, THOUSAND OAKS, CA 91320 USA SN 1555-4120 EI 1555-4139 J9 GAMES CULT JI Games Cult. PD SEP PY 2017 VL 12 IS 6 SI SI BP 563 EP 584 DI 10.1177/1555412016676661 PG 22 WC Cultural Studies; Communication WE Social Science Citation Index (SSCI); Arts & Humanities Citation Index (A&HCI) SC Cultural Studies; Communication GA FD8YG UT WOS:000407809400005 OA Green Submitted DA 2024-09-05 ER PT C AU Bunga, M Joshi, S AF Bunga, Manisha Joshi, Sujata GP IEEE TI A Bibliometric Analysis of Blockchain and its applications in IOT and ML for Improved Decision Making SO 2022 INTERNATIONAL CONFERENCE ON DECISION AID SCIENCES AND APPLICATIONS (DASA) LA English DT Proceedings Paper CT International Conference on Decision Aid Sciences and Applications (DASA) CY MAR 23-25, 2022 CL Chiangrai, THAILAND DE Blockchain; Banking; Decision Making; Security; Supplychain; Internet of Things; Machine Learning ID INTERNET; THINGS; DIRECTIONS; CHALLENGES AB The fundamental goal of this research is to examine the evolution of Blockchain technology, particularly in the areas of IoT and machine learning. Decision-making has become more complex in the modern era as there are more options to pick from. This research explains how blockchain is used in the decision-making process. Blockchain stores the data where it is highly impossible to hack or edit this data. The research methodology used is Bibliometric Analysis. Bibliometric analysis is the analysis of books, articles, and other publications using statistical methods. There were a total of 18,978 publications available in Scopus from 2012 to 2021 on Blockchain. There were a total of 18,994 publications on Blockchain overall. Country-wise, year-wise, topic-wise, journal-wise, institution-wise and research field-wise analysis is done in this study. By the obtained data, the performance of Blockchain will be analysed. According to the study, Blockchain has a wide range of applications in IoT and ML, all of which improve decision-making. This analysis provides valuable insights and adds benefit for researchers to understand the overall development of Blockchain. C1 [Bunga, Manisha; Joshi, Sujata] Symbiosis Inst Digital & Telecom Management, Pune, Maharashtra, India. C3 Symbiosis International University; Symbiosis Institute of Digital & Telecom Management (SIDTM) RP Bunga, M (corresponding author), Symbiosis Inst Digital & Telecom Management, Pune, Maharashtra, India. EM bunga.manisha2022@sidtm.edu.in; sjoshi@sidtm.edu.in CR Alamri M, 2019, INT J COMPUT SCI NET, V19, P244 Ali MS, 2019, IEEE COMMUN SURV TUT, V21, P1676, DOI 10.1109/COMST.2018.2886932 [Anonymous], 2020, SMART CITY USE CASES Bandara E, 2021, INFORM PROCESS MANAG, V58, DOI 10.1016/j.ipm.2021.102572 Chen F, 2021, CAN J STAT, V49, P1364, DOI 10.1002/cjs.11623 Du Y, 2021, FUTURE INTERNET, V13, DOI 10.3390/fi13020048 Duan Ruijun, 2021, MATH PROBL ENG, V2021, P1 Dwivedi SK, 2021, SECUR COMMUN NETW, V2021, DOI 10.1155/2021/7142048 Hussain HA, 2021, INT J ADV COMPUT SC, V12, P239 Karafiloski E, 2017, 17TH IEEE INTERNATIONAL CONFERENCE ON SMART TECHNOLOGIES - IEEE EUROCON 2017 CONFERENCE PROCEEDINGS, P763, DOI 10.1109/EUROCON.2017.8011213 Li XL, 2020, IEEE WIREL COMMUN, V27, P116, DOI 10.1109/MWC.001.2000076 Liu MT, 2019, IEEE T IND INFORM, V15, P3559, DOI 10.1109/TII.2019.2897805 Mahdi HM, 2019, STUDIES IN BIG DATA, V60 Navid K., 2021, ELECTRONICS, V10, P2079 Pajooh HH, 2021, J BIG DATA-GER, V8, DOI 10.1186/s40537-021-00505-y Pal O, 2021, ICT EXPRESS, V7, P76, DOI 10.1016/j.icte.2019.08.002 Pandit A., 2021, INT J ENG TECHNOL MA, V8, P20 Pascal M., 2021, INF SYST E-BUS MANAG, V19, P13 Reyna A, 2018, FUTURE GENER COMP SY, V88, P173, DOI 10.1016/j.future.2018.05.046 Salah K, 2019, IEEE ACCESS, V7, P10127, DOI 10.1109/ACCESS.2018.2890507 Singh SK, 2020, FUTURE GENER COMP SY, V110, P721, DOI 10.1016/j.future.2019.09.002 Smriti S D., 2019, INT J INNOVATIVE TEC, V9 Sujatha K., 2020, INT J RECENT TECHNOL, V9 Tanwar S, 2020, IEEE ACCESS, V8, P474, DOI 10.1109/ACCESS.2019.2961372 Tsai CW, 2021, ICT EXPRESS, V7, P300, DOI 10.1016/j.icte.2021.08.014 Uddin MA, 2021, BLOCKCHAIN-RES APPL, V2, DOI 10.1016/j.bcra.2021.100006 Ullah N, 2021, SUSTAINABILITY-BASEL, V13, DOI 10.3390/su13041801 Waheed N, 2021, ACM COMPUT SURV, V53, DOI 10.1145/3417987 Yu DJ, 2021, INFORMATICA-LITHUAN, V32, P397, DOI 10.15388/20-INFOR437 Zyskind G, 2015, 2015 IEEE SECURITY AND PRIVACY WORKSHOPS (SPW), P180, DOI 10.1109/SPW.2015.27 NR 30 TC 1 Z9 1 U1 0 U2 11 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA BN 978-1-6654-9501-1 PY 2022 BP 416 EP 420 DI 10.1109/DASA54658.2022.9764994 PG 5 WC Computer Science, Artificial Intelligence; Operations Research & Management Science WE Conference Proceedings Citation Index - Science (CPCI-S) SC Computer Science; Operations Research & Management Science GA BT5YM UT WOS:000839386600221 DA 2024-09-05 ER PT J AU Chen, CF Li, Q Deng, ZQ Chiu, K Wang, P AF Chen, Chuanfu Li, Qiao Deng, Zhiqing Chiu, Kuei Wang, Ping TI The preferences of Chinese LIS journal articles in citing works outside the discipline SO JOURNAL OF DOCUMENTATION LA English DT Article DE Bibliometrics; Interdisciplinary studies; Machine learning; Chinese LIS; Citation preference; Knowledge import ID INFORMATION-SCIENCE; CITATION ANALYSIS; KNOWLEDGE DISCOVERY; SUBJECT-MATTER; LIBRARY; INTERDISCIPLINARITY; CLASSIFICATION; SYSTEM; COMMUNICATION; EVOLUTION AB Purpose - The purpose of this paper is to understand how Chinese library and information science (LIS) journal articles cite works from outside the discipline (WOD) to identify the impact of knowledge import from outside the discipline on LIS development. Design/methodology/approach - This paper explores the Chinese LIS' preferences in citing WOD by employing bibliometrics and machine learning techniques. Findings - Chinese LIS citations to WOD account for 29.69 percent of all citations, and they rise over time. Computer science, education and communication are the most frequently cited disciplines. Under the categorization of Biglan model, Chinese LIS prefers to cite WOD from soft science, applied science or nonlife science. In terms of community affiliation, the cited authors are mostly from the academic community, but rarely from the practice community. Mass media has always been a citation source that is hard to ignore. There is a strong interest of Chinese LIS in citing emerging topics. Practical implications - This paper can be implemented in the reformulation of Chinese LIS knowledge system, the promotion of interdisciplinary collaboration, the development of LIS library collection and faculty advancement. It may also be used as a reference to develop strategies for the global LIS. Originality/value - This paper fills the research gap in analyzing citations to WOD from Chinese LIS articles and their impacts on LIS, and recommends that Chinese LIS should emphasize on knowledge both on technology and people as well as knowledge from the practice community, cooperate with partners from other fields, thus to produce knowledge meeting the demands from library and information practice as well as users. C1 [Chen, Chuanfu; Li, Qiao; Deng, Zhiqing] Wuhan Univ, Sch Informat Management, Dept Lib Sci, Wuhan, Hubei, Peoples R China. [Chiu, Kuei] Univ Calif Riverside, Univ Lib, Riverside, CA 92521 USA. [Wang, Ping] Wuhan Univ, Sch Informat Management, Dept Arch & Govt Informat Management, Wuhan, Hubei, Peoples R China. C3 Wuhan University; University of California System; University of California Riverside; Wuhan University RP Chen, CF (corresponding author), Wuhan Univ, Sch Informat Management, Dept Lib Sci, Wuhan, Hubei, Peoples R China. EM cfchen@whu.edu.cn RI lan, xueyao/JZD-4201-2024 OI chen, chuan fu/0000-0003-1163-7691; Li, Qiao/0000-0002-9265-8808 FU National Natural Science Foundation of China [91546124] FX The authors would like to acknowledge reviewers and all participants for their contribution to the improvement of this study. This study is supported by a grant from the National Natural Science Foundation of China under the agreement 91546124. CR Abramo G, 2012, J AM SOC INF SCI TEC, V63, P2206, DOI 10.1002/asi.22647 [Anonymous], 2013, THESIS [Anonymous], B AM SOC INFORM SCI Baeza-Yates Ricardo, 1999, MODERN INFORM RETRIE Bauer J, 2016, J ASSOC INF SCI TECH, V67, P3095, DOI 10.1002/asi.23568 BAYER AE, 1987, RES HIGH EDUC, V26, P212, DOI 10.1007/BF00992030 Bidault F, 2014, RES POLICY, V43, P1002, DOI 10.1016/j.respol.2014.01.008 BIGLAN A, 1973, J APPL PSYCHOL, V57, P204, DOI 10.1037/h0034699 BIGLAN A, 1973, J APPL PSYCHOL, V57, P195, DOI 10.1037/h0034701 bin Othman MF, 2007, IFMBE PROC, V15, P520 Bornmann L, 2008, J DOC, V64, P45, DOI 10.1108/00220410810844150 Bornmann L, 2017, J ASSOC INF SCI TECH, V68, P1036, DOI 10.1002/asi.23728 Buriak JM, 2015, CHEM MATER, V27, P1147, DOI 10.1021/acs.chemmater.5b00463 Buttlar L, 1999, LIBR INFORM SCI RES, V21, P227, DOI 10.1016/S0740-8188(99)00005-5 Carson S., 2012, Writing for Psychology: A Guide for Psychology Concentrators Chang YW, 2012, J AM SOC INF SCI TEC, V63, P22, DOI 10.1002/asi.21649 Chen C., 2010, J LIB SCI CHINA, V6, P20 Chen MS, 1996, IEEE T KNOWL DATA EN, V8, P866, DOI 10.1109/69.553155 Chen W., 2012, INFORM RES, V179, P1 Cheng L.M., 1994, J ED MEDIA LIB SCI, V32, P94 COLE JR, 1972, SCIENCE, V178, P368, DOI 10.1126/science.178.4059.368 Cronin B, 2008, J AM SOC INF SCI TEC, V59, P551, DOI 10.1002/asi.20764 Cummings JN, 2005, SOC STUD SCI, V35, P703, DOI 10.1177/0306312705055535 Dai Y.M., 2013, INFORM SCI, V31, P106 Del Favero M, 2006, RES HIGH EDUC, V47, P281, DOI 10.1007/s11162-005-9389-x Gibbons M., 1997, The New Production of Knowledge: The Dynamics of Science and Research in Contemporary Societies Glymour C, 1996, COMMUN ACM, V39, P35, DOI 10.1145/240455.240466 Goldstone RL, 2006, COGNITIVE SCI, V30, P983, DOI 10.1207/s15516709cog0000_96 Guruler H, 2010, COMPUT EDUC, V55, P247, DOI 10.1016/j.compedu.2010.01.010 Hammarfelt B, 2011, SCIENTOMETRICS, V86, P705, DOI 10.1007/s11192-010-0314-5 Herther NK, 2015, DISABIL SOC, V30, P130, DOI 10.1080/09687599.2014.993061 Ho TB, 2003, APPL INTELL, V19, P125, DOI 10.1023/A:1023876925609 Hu CP, 2011, SCIENTOMETRICS, V86, P657, DOI 10.1007/s11192-010-0313-6 Huang M.H., 2007, J LIB INFORM STUDIES, V5, P1 Jiang J., 1995, J LIB SCI CHINA, V21, P18 Kamber M., 2011, Pei. data mining concepts and techniques Karki R, 1996, J INFORM SCI, V22, P323, DOI 10.1177/016555159602200501 Kodama H, 2013, RES EVALUAT, V22, P93, DOI 10.1093/reseval/rvs040 Lam P, 2014, COMPUT EDUC, V73, P111, DOI 10.1016/j.compedu.2013.12.015 Larivière V, 2012, J AM SOC INF SCI TEC, V63, P997, DOI 10.1002/asi.22645 Larsen PO, 2010, SCIENTOMETRICS, V84, P575, DOI 10.1007/s11192-010-0202-z Leahey E., 2016, ADM SCI Q, V62, P105 Levitt J., 2008, SCIENTOMETRICS, V78, P45 Li J.X., 1935, BOONE LIB SCH Q, V7, P263 Linderman K, 2010, J OPER MANAG, V28, P357, DOI 10.1016/j.jom.2009.11.012 Liu C, 2011, SCIENTOMETRICS, V89, P89, DOI 10.1007/s11192-011-0450-6 Liu J., 2004, An Introduction to Social Network Analysis Loh S, 2003, APPL INTELL, V18, P357, DOI 10.1023/A:1023258306854 Ma YC, 2014, SYST RES BEHAV SCI, V31, P115, DOI 10.1002/sres.2163 Maia LC, 2010, PERSPECT CIENC INF, V15, P154, DOI 10.1590/S1413-99362010000100009 Meyer T, 1996, COLL RES LIBR, V57, P23, DOI 10.5860/crl_57_01_23 Milojevic S, 2014, P NATL ACAD SCI USA, V111, P3984, DOI 10.1073/pnas.1309723111 Mingers J, 2010, SCIENTOMETRICS, V85, P613, DOI 10.1007/s11192-010-0270-0 Nonaka I., 1995, The knowledge-creating company: How Japanese companies create the dynamics of innovation Pettigrew KE, 2001, J AM SOC INF SCI TEC, V52, P62, DOI 10.1002/1532-2890(2000)52:1<62::AID-ASI1061>3.0.CO;2-J Pierce SJ, 1999, J AM SOC INFORM SCI, V50, P271, DOI 10.1002/(SICI)1097-4571(1999)50:3<271::AID-ASI10>3.3.CO;2-D Pike GR, 2001, RES HIGH EDUC, V42, P429, DOI 10.1023/A:1011054825704 PORTER AL, 1985, SCIENTOMETRICS, V8, P161, DOI 10.1007/BF02016934 Porter Mu., 1985, Competitive Advantage: Creating and Sustaining Superior Performance Prebor G, 2010, J LIBR INF SCI, V42, P256, DOI 10.1177/0961000610380820 Price D.De Solla., 1970, Communication among Scientists and Engineers, Heath, P3 Rafols I, 2010, SCIENTOMETRICS, V82, P263, DOI 10.1007/s11192-009-0041-y Rinia EJ, 2002, SCIENTOMETRICS, V54, P347, DOI 10.1023/A:1016078331752 ROTHMAN H, 1971, J DOC, V27, P287, DOI 10.1108/eb026523 Saracevic T, 1999, J AM SOC INFORM SCI, V50, P1051, DOI 10.1002/(SICI)1097-4571(1999)50:12<1051::AID-ASI2>3.0.CO;2-Z Schramm W.L., 1982, Men, women, messages and media Sima Q., 1986, HISTORICAL RECORDS SO CYK, 1988, HUM COMMUN RES, V15, P236, DOI 10.1111/j.1468-2958.1988.tb00183.x Stopar K, 2016, SCIENTOMETRICS, V106, P563, DOI 10.1007/s11192-015-1797-x Su X.F., 2010, LIB INFORM SERVICE, V54, P51 Sun DL, 2009, 2009 INTERNATIONAL FORUM ON COMPUTER SCIENCE-TECHNOLOGY AND APPLICATIONS, VOL 2, PROCEEDINGS, P388, DOI 10.1109/IFCSTA.2009.217 Sun YT, 2016, SCIENTOMETRICS, V109, P1965, DOI 10.1007/s11192-016-2140-x Szostak R, 2008, J DOC, V64, P319, DOI 10.1108/00220410810867551 Tang R, 2004, P ASIST ANNU, V41, P54, DOI 10.1002/meet.1450410107 Tomcho TJ, 2015, TEACH PSYCHOL, V42, P5, DOI 10.1177/0098628314562661 Uramoto N, 2004, IBM SYST J, V43, P516, DOI 10.1147/sj.433.0516 URATA H, 1990, SCIENTOMETRICS, V18, P309, DOI 10.1007/BF02017767 Valsamidis S, 2012, EDUC TECHNOL SOC, V15, P154 Vivian J., 1998, The Media of Mass Communication, V5th Whitmire E, 2002, J AM SOC INF SCI TEC, V53, P631, DOI 10.1002/asi.10123 Wu J.P., 2002, EC INFORM WU YM, 1994, EDUC INFORM, V12, P247 Xu HY, 2016, SCIENTOMETRICS, V106, P583, DOI 10.1007/s11192-015-1792-2 Xu Q., 2016, DOCUMENTATION INFORM, P96 Yan E, 2013, J INFORMETR, V7, P249, DOI 10.1016/j.joi.2012.11.008 Yegros-Yegros A, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0135095 Yong R., 1965, GEN CATALOGUE 4 BRAN Zheng Chengsi., 1997, INTELLECTUAL PROPERT NR 88 TC 11 Z9 12 U1 4 U2 100 PU EMERALD GROUP PUBLISHING LTD PI BINGLEY PA HOWARD HOUSE, WAGON LANE, BINGLEY BD16 1WA, W YORKSHIRE, ENGLAND SN 0022-0418 EI 1758-7379 J9 J DOC JI J. Doc. PY 2018 VL 74 IS 1 BP 99 EP 118 DI 10.1108/JD-04-2017-0057 PG 20 WC Computer Science, Information Systems; Information Science & Library Science WE Social Science Citation Index (SSCI) SC Computer Science; Information Science & Library Science GA FR6QP UT WOS:000419191300006 DA 2024-09-05 ER PT J AU Klarin, A Inkizhinov, B Nazarov, D Gorenskaia, E AF Klarin, Anton Inkizhinov, Boris Nazarov, Dashi Gorenskaia, Elena TI International business education: What we know and what we have yet to develop SO INTERNATIONAL BUSINESS REVIEW LA English DT Article DE International business education; Curriculum; Systems research; Systematic review; Scientometrics; Bibliometric mapping; COVID-19; Business schools; Language; Online learning ID CORPORATE SOCIAL-RESPONSIBILITY; ENTREPRENEURSHIP EDUCATION; ACADEMIC LIFE; MANAGEMENT; STUDENTS; MBA; KNOWLEDGE; LANGUAGE; PEDAGOGY; CULTURE AB International business education (IBE) scholarship is extensive and is continuously growing. Nevertheless, to date there is no systems perspective overview of the literature dedicated to this topic. Using latest advancements in scientometric analysis, this study structures and visualizes the entire IBE scholarship, which allows to identify gaps in research and propose a number of future research directions. Data extracted from 894 peer-reviewed documents made available through the Scopus database allows to map the scholarship across five identified research directions in IBE - IB, political economy environment, and education; student learning and experience; the lingua franca and communication; interrelationship of IBE and the ecosystem; and business school curricula and internationalization. The scholarship was also compared to the Academy of Management Learning and Education and to the Journal of International Business Studies together with the Journal of World Business journal scholarships to recommend further prospective directions for the future development of IBE. C1 [Klarin, Anton] Edith Cowan Univ, Sch Business & Law, 270 Joondalup Dr, Joondalup, WA 6027, Australia. [Inkizhinov, Boris] Univ Surrey, Guildford GU2 7XH, Surrey, England. [Nazarov, Dashi] Queen Mary Univ, London, England. [Gorenskaia, Elena] Russian Acad Sci, Siberian Branch, Baikal Inst Nat Management, Ulan Ude 670047, Russia. C3 Edith Cowan University; University of Surrey; University of London; Queen Mary University London; Russian Academy of Sciences; Baikal Institute of Nature Management SB RAS RP Klarin, A (corresponding author), Edith Cowan Univ, Sch Business & Law, 270 Joondalup Dr, Joondalup, WA 6027, Australia. EM a.klarin@ecu.edu.au RI Klarin, Anton/AAB-3031-2019; Klarin, Anton/IQS-6054-2023 OI Klarin, Anton/0000-0002-5597-4027; Klarin, Anton/0000-0002-5597-4027 CR Adler NJ, 2009, ACAD MANAG LEARN EDU, V8, P72, DOI 10.5465/AMLE.2009.37012181 Aggarwal R, 2020, J TEACH INT BUS, V31, P1, DOI 10.1080/08975930.2020.1738755 Aggarwal R, 2018, J TEACH INT BUS, V29, P267, DOI 10.1080/08975930.2018.1560676 Akdeniz MB, 2019, J TEACH INT BUS, V30, P96, DOI 10.1080/08975930.2019.1668333 Gonzalez-Perez MA, 2013, ADV SUSTAIN ENV JUST, V11, P1, DOI 10.1108/S2051-5030(2013)0000011006 Alon I, 2000, ONLINE INFORM REV, V24, P349, DOI 10.1108/14684520010357284 Alon I., 2003, Journal of Teaching in International Business, V14, P79, DOI DOI 10.1300/J066V14N02_06 Alon I, 2014, J TEACH INT BUS, V25, P44, DOI 10.1080/08975930.2013.847814 Alonso AD, 2015, INT J WINE BUS RES, V27, P40, DOI 10.1108/IJWBR-08-2014-0035 Anheier H., 2006, The politics of foundations: A comparative analysis [Anonymous], 1997, J TEACH INT BUS, DOI DOI 10.1300/J066V09N01 [Anonymous], 1984, J BUS COMMUN, DOI DOI 10.1177/002194368402100404 [Anonymous], 1998, J MARKET EDUC [Anonymous], 2005, INT BUSINESS SOC MAN Antal AB, 2008, J MANAG EDUC, V32, P363, DOI 10.1177/1052562907308794 Arambewela R, 2009, ASIA PAC J MARKET LO, V21, P555, DOI 10.1108/13555850910997599 Ayoubi RM, 2006, INT J EDUC MANAG, V20, P380, DOI 10.1108/09513540610676449 Barczyk CC, 2012, J TEACH INT BUS, V23, P98, DOI 10.1080/08975930.2012.718703 Bartell M, 2003, HIGH EDUC, V45, P43, DOI 10.1023/A:1021225514599 Basu A., 2011, International Journal of Entrepreneurship, V15, P1 Beamish P. W., 1989, J INT BUS STUD, V25, P319 Béchard JP, 2005, ACAD MANAG LEARN EDU, V4, P22, DOI 10.5465/AMLE.2005.16132536 Becker-Ritterspach F., 2016, MICROPOLITICS MULTIN Bedeian AG, 2010, ACAD MANAG LEARN EDU, V9, P11, DOI 10.5465/AMLE.2010.48661188 Bell J., 2004, Jourmal of International entrepreneurship; Vol, V2, P109, DOI DOI 10.1023/B:JIEN.0000026908.35126.15 Berkovich I, 2014, ACAD MANAG LEARN EDU, V13, P245, DOI 10.5465/amle.2012.0367 Blasco M, 2009, ACAD MANAG LEARN EDU, V8, P174, DOI 10.5465/AMLE.2009.41788841 Boddewyn J., 1997, International Business: An Emerging Vision, P50 Bos ND, 2006, SIMULAT GAMING, V37, P56, DOI 10.1177/1046878106286187 Brannen M.Y., 2016, Language in international business: Developing a field Buckley PJ, 2005, J INT BUS STUD, V36, P595, DOI 10.1057/palgrave.jibs.8400170 Bush V.D., 1999, Journal of Teaching in International Business, V10, P1, DOI 10.1300/J066v10n02_01 Cairns G, 2010, FUTURES, V42, P971, DOI 10.1016/j.futures.2010.08.016 Chavan M, 2011, J TEACH INT BUS, V22, P126, DOI 10.1080/08975930.2011.615677 Cumming D, 2018, J TEACH INT BUS, V29, P181, DOI 10.1080/08975930.2018.1514817 Czinkota MR, 2005, J WORLD BUS, V40, P111, DOI 10.1016/j.jwb.2005.02.006 Czinkota MR, 1997, J INT MARKETING, V5, P73, DOI 10.1177/1069031X9700500406 Danford GL, 2006, J TEACH INT BUS, V18, P7, DOI 10.1300/J066v18n01_02 Darley WK, 2019, ACAD MANAG LEARN EDU, V18, P99, DOI 10.5465/amle.2016.0086 De Vita G, 2001, INNOV EDUC TRAIN INT, V38, P165, DOI 10.1080/14703290110035437 De Vita G., 2000, ACT LEARN HIGH EDUC, V1, P168, DOI [10.1177/1469787400001002006, DOI 10.1177/1469787400001002006] Dean B., 2018, Social Business, V8, P387 DEANS PC, 1991, J HIGH TECHNOLOGY MA, V2, P57, DOI DOI 10.1016/1047-8310(91)90014-F DEGEORGE RT, 1987, J BUS ETHICS, V6, P201, DOI 10.1007/BF00382865 Driver M, 2012, ACAD MANAG LEARN EDU, V11, P421, DOI 10.5465/amle.2011.0002A DUNNING JH, 1989, J INT BUS STUD, V20, P411, DOI 10.1057/palgrave.jibs.8490371 Eden L., 2010, International Studies of Management and Organization, V40, P54, DOI DOI 10.2753/IMO0020-8825400405 Eden L, 2008, J INT BUS STUD, V39, P1, DOI 10.1057/palgrave.jibs.8400336 Edwards R, 2001, AUST J EDUC, V45, P76, DOI 10.1177/000494410104500107 Elahee MN, 2007, EUR BUS REV, V19, P142, DOI 10.1108/09555340710730100 Elenurm T, 2008, BALT J MANAG, V3, P145, DOI 10.1108/17465260810875488 Engle R. L., 2007, Corporate Social Responsibility and Environmental Management, V14, P16, DOI 10.1002/csr.114 Eraydin A, 2008, URBAN STUD, V45, P1663, DOI 10.1177/0042098008091496 Farrell C, 2005, J TEACH INT BUS, V16, P71, DOI 10.1300/J066v16n03_05 FAYERWEATHER J, 1994, J INT BUS STUD, V25, P1, DOI 10.1057/palgrave.jibs.8490192 Feldman DC, 2005, ACAD MANAG LEARN EDU, V4, P217, DOI 10.5465/AMLE.2005.17268569 Festervand T.A., 2001, Journal of Education for Business, V77, P106, DOI [https://doi.org/10.1080/08832320109599058, DOI 10.1080/08832320109599058] Finkle TA, 2001, J BUS VENTURING, V16, P613, DOI 10.1016/S0883-9026(99)00051-8 Fletcher D., 2000, Education Training, V42, P211, DOI DOI 10.1108/00400910010373651 Fotaki M, 2015, ACAD MANAG LEARN EDU, V14, P556, DOI 10.5465/amle.2014.0182 Gannon M., 2007, Paradoxes of culture and globalization GILLESPIE K, 1985, FOREIGN LANG ANN, V18, P47, DOI 10.1111/j.1944-9720.1985.tb01765.x Goby VP, 2007, J BUS TECH COMMUN, V21, P425, DOI 10.1177/1050651907304029 Goodall K, 2004, J WORLD BUS, V39, P311, DOI 10.1016/j.jwb.2004.08.008 Gribble C, 2015, HIGH EDUC SKILL WORK, V5, P401, DOI 10.1108/HESWBL-04-2015-0015 Guillotin B, 2015, THUNDERBIRD INT BUS, V57, P343, DOI 10.1002/tie.21705 Haakonsson SJ, 2013, J ECON GEOGR, V13, P677, DOI 10.1093/jeg/lbs018 Halkias D., 2009, INT J BUSINESS INNOV, V3, P151, DOI DOI 10.1504/IJBIR.2009.022752 Harzing AW, 2016, SCIENTOMETRICS, V106, P787, DOI 10.1007/s11192-015-1798-9 Harzing AW, 2014, J INFORMETR, V8, P29, DOI 10.1016/j.joi.2013.10.007 Hejazi W, 2011, MULTINATL BUS REV, V19, P152, DOI 10.1108/15253831111149780 Henthrone T.L., 2001, Journal of Teaching in International Business, V12, P49, DOI DOI 10.1300/J066V12N04_04 Inglehart RonaldF., 2010, HUMAN VALUES BELIEFS Jackson MC, 2006, SYST RES BEHAV SCI, V23, P647, DOI 10.1002/sres.799 Jain SC, 2009, J TEACH INT BUS, V20, P4, DOI 10.1080/08975930802671216 Justeson J.S., 1995, Natural Language Engineering, V1, P9, DOI [DOI 10.1017/S1351324900000048, 10.1017/S1351324900000048] Kaartemo V, 2018, J TEACH INT BUS, V29, P185, DOI 10.1080/08975930.2018.1486777 Kankaanranta A, 2010, ENGL SPECIF PURP, V29, P204, DOI 10.1016/j.esp.2009.06.004 Karakaya F, 1993, J TEACH INT BUS, V4, P9, DOI [10.1300/J066v04n03_02, DOI 10.1300/J066V04N03_02] Kardes I, 2020, J TEACH INT BUS, V31, P51, DOI 10.1080/08975930.2020.1729292 Kedia B.L., 1994, J TEACH INT BUS, V5, P11, DOI DOI 10.1300/J066V05N03_02 Ketokivi M, 2016, ACAD MANAG LEARN EDU, V15, P123, DOI 10.5465/amle.2015.0133 Klarin A, 2021, J BUS RES, V126, P250, DOI 10.1016/j.jbusres.2020.12.063 Koris R, 2017, MANAGE LEARN, V48, P174, DOI 10.1177/1350507616668480 Laughton D, 2005, J TEACH INT BUS, V16, P47, DOI 10.1300/J066v16n03_04 Li YL, 2013, DECIS SCI-J INNOV ED, V11, P125, DOI 10.1111/j.1540-4609.2012.00371.x Liesch PW, 2011, SCIENTOMETRICS, V88, P17, DOI 10.1007/s11192-011-0372-3 Lin Z., 1998, Managerial Auditing Journal, V13, P84 LOCKER KO, 1998, J BUS COMMUN, V35, P14 Louhiala-Salminen L, 2011, IEEE T PROF COMMUN, V54, P244, DOI 10.1109/TPC.2011.2161844 Lundstrom W.J., 1996, Journal of Marketing Education, P5 Manuel T.A., 2001, J TEACH INT BUS, V12, P43, DOI DOI 10.1300/J066V12N03_03 Cubillo JM, 2006, INT J EDUC MANAG, V20, P101, DOI 10.1108/09513540610646091 Markoulli MP, 2017, HUM RESOUR MANAGE R, V27, P367, DOI 10.1016/j.hrmr.2016.10.001 Martin JA, 2011, BUS HORIZONS, V54, P355, DOI 10.1016/j.bushor.2011.03.002 Milhauser KL, 2010, J TEACH INT BUS, V21, P78, DOI 10.1080/08975930.2010.483912 Mitchell TR, 2007, ACAD MANAG LEARN EDU, V6, P236, DOI 10.5465/AMLE.2007.25223462 Nabi G, 2017, ACAD MANAG LEARN EDU, V16, P277, DOI 10.5465/amle.2015.0026 Naidoo V, 2010, J STUD INT EDUC, V14, P5, DOI 10.1177/1028315308327953 Nazarov D, 2020, SYST RES BEHAV SCI, V37, P535, DOI 10.1002/sres.2700 Nickerson C, 2005, ENGL SPECIF PURP, V24, P367, DOI 10.1016/j.esp.2005.02.001 Nijhuis J.M. Segers., 2005, LEARNING ENV RES, V8, P67, DOI 10.1007/s10984-005-7950-3 Nijhuis J, 2007, STUD HIGH EDUC, V32, P59, DOI 10.1080/03075070601099457 Orta A, 2013, AM ETHNOL, V40, P689, DOI 10.1111/amet.12048 Ortiz J, 2005, INT EDUC J, V5, P255 Ott D.L., 2018, INT J MANAG REV, V20, P99, DOI [10.1111/ijmr.12118, DOI 10.1111/ijmr.12118] Pache AC, 2012, ACAD MANAG LEARN EDU, V11, P494, DOI 10.5465/amle.2011.0019 Parodi M. C. H., 2019, PALGRAVE HDB LEARNIN, P111 Paul P., 2001, Marketing Education Review, V11, P81, DOI DOI 10.1080/10528008.2001.11488759 Paul P, 2005, J TEACH INT BUS, V16, P7, DOI 10.1300/J066v16n02_02 Peiperl M.A., 1997, J MANAG DEV, V16, P354, DOI DOI 10.1108/02621719710174534 Pimpa N., 2011, International Journal of Management Education, V9, P77, DOI DOI 10.3794/IJME.93.323 Porth S.J., 1997, Journal of Management Education, V21, P190, DOI DOI 10.1177/105256299702100204 Prasad A, 2019, STUD HIGH EDUC, V44, P1605, DOI 10.1080/03075079.2018.1458220 Prestwich R, 2007, J TEACH INT BUS, V19, P29, DOI 10.1300/J066v19n01_03 Pudelko M, 2019, ACAD MANAG LEARN EDU, V18, P213, DOI 10.5465/amle.2017.0236 Ramburuth P, 2005, J TEACH INT BUS, V16, P5, DOI 10.1300/J066v16n03_02 Randazzo-Davis M., 2020, International Journal for Business Education, V160, P42 Rauch A, 2015, ACAD MANAG LEARN EDU, V14, P187, DOI 10.5465/amle.2012.0293 Richards D, 1997, MANAGE LEARN, V28, P387, DOI 10.1177/1350507697284001 Rodrigues C. A., 2004, Journal of Management Development, V23, P169, DOI 10.1108/02621710410517256 Rooney D., 2010, Wisdom and management in the knowledge economy, DOI DOI 10.4324/9780203852798 Rottig D, 2007, J TEACH INT BUS, V18, P5, DOI 10.1300/J066v18n04_02 Roy A, 2010, J TEACH INT BUS, V21, P4, DOI 10.1080/08975931003644572 Rubin RS, 2013, ACAD MANAG LEARN EDU, V12, P125, DOI 10.5465/amle.2012.0217 SARATHY R, 1990, J TEACHING INT BUSIN, V1, P101 Schlosser R.W., 2008, Evidence-Based Communication Assessment and Intervention, V2, P163, DOI [10.1080/17489530701560831, DOI 10.1080/17489530701560831] Schuster C.P., 1998, Journal of Marketing Education, V20, P121 Schworm SK, 2017, EUR MANAG J, V35, P493, DOI 10.1016/j.emj.2017.02.009 Scott-Kennel J, 2008, J TEACH INT BUS, V19, P142, DOI 10.1080/08975930802118085 Shams SMR, 2016, J GLOB MARK, V29, P139 Shi YW, 2019, J TEACH INT BUS, V30, P246, DOI 10.1080/08975930.2019.1698392 Smith David E, 2002, J TEACHING INT BUSIN, V13, P55, DOI [10.1300/J066v13n02_04, DOI 10.1300/J066V13N02_04] Smith R., 2002, Journal of Teaching in International Business, V14, P83, DOI [DOI 10.1300/J066V14N01, 10.1300/J066v14n01_06, DOI 10.1300/J066V14N01_06] Sommer L, 2011, INT ENTREP MANAG J, V7, P111, DOI 10.1007/s11365-010-0162-z St JohnM.J., 1996, ENGL SPECIF PURP, V15, P3 Stedham Y.E., 2004, WOMEN MANAGEMENT REV, V19, P233 Szkudlarek B, 2020, J WORLD BUS, V55, DOI 10.1016/j.jwb.2020.101126 Tenzer H, 2017, MANAGE INT REV, V57, P815, DOI 10.1007/s11575-017-0319-x THANOPOULOS J, 1987, J INT BUS STUD, V18, P91, DOI 10.1057/palgrave.jibs.8490402 Tracey P, 2007, ACAD MANAG LEARN EDU, V6, P264, DOI 10.5465/AMLE.2007.25223465 Tranfield D, 2003, BRIT J MANAGE, V14, P207, DOI 10.1111/1467-8551.00375 Trapnell JE, 2007, J MANAG DEV, V26, P67, DOI 10.1108/02621710710720112 Tsai SC, 2010, COMPUT EDUC, V55, P1245, DOI 10.1016/j.compedu.2010.05.021 Tuleja EA, 2008, BUS PROF COMMUN Q, V71, P314, DOI 10.1177/1080569908321471 Ueltschy L.C., 2001, Journal of Marketing Education, V23, P63 Uljin J., 2000, The Journal of Business Communication, V37, P173 Urgel J, 2007, J MANAG DEV, V26, P73, DOI 10.1108/02621710710721698 Van Eck N.J., 2014, Measuring Scholarly Impact: Methods and Practice, P285, DOI 10.1007/978-3-319-10377-8_13(InEng.) van Eck NJ, 2010, SCIENTOMETRICS, V84, P523, DOI 10.1007/s11192-009-0146-3 Vieira ES, 2009, SCIENTOMETRICS, V81, P587, DOI 10.1007/s11192-009-2178-0 Von Bertalanffy L., 1968, General Systems Theory: Foundations, Development, Applications Walker J, 2009, J TEACH INT BUS, V20, P293, DOI 10.1080/08975930903405050 Wan Guanghua., 2008, INEQUALITY GROWTH MO Witte AE, 2010, J TEACH INT BUS, V21, P101, DOI 10.1080/08975930.2010.483908 Wright R.W., 1970, Journal of International Business Studies, P109, DOI DOI 10.1057/PALGRAVE.JIBS.8490724 Wright RE, 2010, ACAD MANAG LEARN EDU, V9, P697, DOI 10.5465/AMLE.2010.56659887 Yu H, 2005, J FASH MARK MANAG, V9, P232, DOI 10.1108/13612020510599376 Zhang ZC, 2013, ENGL SPECIF PURP, V32, P144, DOI 10.1016/j.esp.2013.01.002 Zhao J, 2016, J INT EDUC BUS, V9, P52, DOI 10.1108/JIEB-02-2016-0001 NR 160 TC 21 Z9 22 U1 4 U2 50 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS SN 0969-5931 EI 1873-6149 J9 INT BUS REV JI Int. Bus. Rev. PD OCT PY 2021 VL 30 IS 5 AR 101833 DI 10.1016/j.ibusrev.2021.101833 EA AUG 2021 PG 15 WC Business WE Social Science Citation Index (SSCI) SC Business & Economics GA UD4VR UT WOS:000687206200009 OA Green Published, hybrid DA 2024-09-05 ER PT J AU Gowanlock, M Gazan, R AF Gowanlock, Michael Gazan, Rich TI Assessing researcher interdisciplinarity: a case study of the University of Hawaii NASA Astrobiology Institute SO SCIENTOMETRICS LA English DT Article DE Astrobiology; Bibliometrics; Information bottleneck method; Interdisciplinary science; Machine learning; Text mining ID SCIENCE; CITATION AB In this study, we combine bibliometric techniques with a machine learning algorithm, the sequential information bottleneck, to assess the interdisciplinarity of research produced by the University of Hawaii NASA Astrobiology Institute (UHNAI). In particular, we cluster abstract data to evaluate Thomson Reuters Web of Knowledge subject categories as descriptive labels for astrobiology documents, assess individual researcher interdisciplinarity, and determine where collaboration opportunities might occur. We find that the majority of the UHNAI team is engaged in interdisciplinary research, and suggest that our method could be applied to additional NASA Astrobiology Institute teams in particular, or other interdisciplinary research teams more broadly, to identify and facilitate collaboration opportunities. C1 [Gowanlock, Michael; Gazan, Rich] Univ Hawaii, Dept Informat & Comp Sci, NASA Astrobiol Inst, Lib & Informat Sci Program, Honolulu, HI 96822 USA. C3 University of Hawaii System; National Aeronautics & Space Administration (NASA) RP Gowanlock, M (corresponding author), Univ Hawaii, Dept Informat & Comp Sci, NASA Astrobiol Inst, Lib & Informat Sci Program, POST 310,East West Rd, Honolulu, HI 96822 USA. EM gowanloc@hawaii.edu OI Gazan, Rich/0000-0003-0741-9050 FU National Aeronautics and Space Administration through NASA Astrobiology Institute through Office of Space Science [NNA08DA77A] FX We thank David Schanzenbach for devising scripts, and Mahdi Belcaid and the anonymous reviewers for insightful comments. This material is based upon work supported by the National Aeronautics and Space Administration through the NASA Astrobiology Institute under Cooperative Agreement No. NNA08DA77A issued through the Office of Space Science. CR [Anonymous], 2005, Data Mining: Pratical Machine Learning Tools and Techniques Bjurström A, 2011, SCIENTOMETRICS, V87, P525, DOI 10.1007/s11192-011-0356-3 Bornmann L, 2011, J INFORMETR, V5, P547, DOI 10.1016/j.joi.2011.04.006 Boyack KW, 2005, SCIENTOMETRICS, V64, P351, DOI 10.1007/s11192-005-0255-6 Brewer GD, 1999, POLICY SCI, V32, P327, DOI 10.1023/A:1004706019826 Chawla NV, 2002, J ARTIF INTELL RES, V16, P321, DOI 10.1613/jair.953 Cockell CS, 2002, SPACE POLICY, V18, P263, DOI 10.1016/S0265-9646(02)00039-5 Derrick GE, 2010, SCIENTOMETRICS, V84, P317, DOI 10.1007/s11192-009-0118-7 Gargaud M, 2011, INTEGR SCI TECHNOL, V1, P337, DOI 10.1007/978-94-007-1658-2_20 Jacso P, 2005, CURR SCI INDIA, V89, P1537 Kostoff RN, 2001, J AM SOC INF SCI TEC, V52, P1148, DOI 10.1002/asi.1181 Kostoff RN, 1998, SCIENTOMETRICS, V43, P27, DOI 10.1007/BF02458392 Kousha K, 2008, SCIENTOMETRICS, V74, P273, DOI 10.1007/s11192-008-0217-x Morillo F, 2001, SCIENTOMETRICS, V51, P203, DOI 10.1023/A:1010529114941 National Academies, 2005, FAC INT RES National Science Foundation, 2011, INTR INT RES Oliver CA, 2007, ACTA ASTRONAUT, V61, P716, DOI 10.1016/j.actaastro.2006.12.010 Porter AL, 2007, SCIENTOMETRICS, V72, P117, DOI 10.1007/s11192-007-1700-5 Porter AL, 2009, SCIENTOMETRICS, V81, P719, DOI 10.1007/s11192-008-2197-2 PORTER MF, 1980, PROGRAM-AUTOM LIBR, V14, P130, DOI 10.1108/eb046814 Rafols I, 2010, SCIENTOMETRICS, V82, P263, DOI 10.1007/s11192-009-0041-y Slonim N., 2002, Proceedings of SIGIR 2002. Twenty-Fifth Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, P129 Small H, 2010, SCIENTOMETRICS, V83, P835, DOI 10.1007/s11192-009-0121-z Staley JT, 2003, CURR OPIN BIOTECH, V14, P347, DOI 10.1016/S0958-1669(03)00073-9 Sugimoto CR, 2011, SCIENTOMETRICS, V86, P449, DOI 10.1007/s11192-010-0275-8 Upham SP, 2010, SCIENTOMETRICS, V83, P15, DOI 10.1007/s11192-009-0051-9 Van Leeuwen TN, 2007, RES EVALUAT, V16, P93, DOI 10.3152/095820207X227529 van Raan AFJ, 2002, RES POLICY, V31, P611, DOI 10.1016/S0048-7333(01)00129-9 Wagner CS, 2011, J INFORMETR, V5, P14, DOI 10.1016/j.joi.2010.06.004 Zhang J, 2011, SCIENTOMETRICS, V86, P1, DOI 10.1007/s11192-010-0318-1 Zhang L, 2010, J INFORMETR, V4, P185, DOI 10.1016/j.joi.2009.11.005 NR 31 TC 19 Z9 23 U1 1 U2 94 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0138-9130 EI 1588-2861 J9 SCIENTOMETRICS JI Scientometrics PD JAN PY 2013 VL 94 IS 1 BP 133 EP 161 DI 10.1007/s11192-012-0765-y PG 29 WC Computer Science, Interdisciplinary Applications; Information Science & Library Science WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Computer Science; Information Science & Library Science GA 063RA UT WOS:000313016300008 DA 2024-09-05 ER PT J AU Berninger, M Kiesel, F Schiereck, D Gaar, E AF Berninger, Marc Kiesel, Florian Schiereck, Dirk Gaar, Eduard TI Citations and the readers' information-extracting costs of finance articles SO JOURNAL OF BANKING & FINANCE LA English DT Article DE Information extracting costs; Readability; Textual analysis; Finance literature; Machine learning; Scientometrics ID CO-AUTHORSHIP; READABILITY; IMPACT; PRODUCTIVITY; DETERMINANTS; INSTITUTIONS; ABSTRACTS; JOURNALS; NUMBER AB This paper focuses on the relationship between the reader's information-extracting costs of finance articles and the article's number of citations. The reader's information-extracting costs are measured using three metrics: (i) the Flesch-Kincaid readability score, ( ii ) the article's length, and ( iii ) the number of complex words. Based on a sample of more than 14,0 0 0 full text articles published between 20 0 0 and 2016 in 16 finance journals, we show that the information-extracting costs of finance journals have significantly increased over time, while the topics of these articles, determined by machine-learning topic modeling, remained relatively constant. We find a positive correlation between the reader's information extracting costs and the number of citations achieved by a paper for articles that are published in the top-three finance journals (JF, JFE, RFS), but do not observe this pattern for articles published in other major finance journals. (c) 2021 Elsevier B.V. All rights reserved. C1 [Berninger, Marc; Schiereck, Dirk; Gaar, Eduard] Tech Univ Darmstadt, Dept Business Adm Econ & Law, D-64289 Darmstadt, Germany. [Kiesel, Florian] Grenoble Ecole Management, F-38000 Grenoble, France. C3 Technical University of Darmstadt; Grenoble Ecole Management RP Berninger, M (corresponding author), Tech Univ Darmstadt, Dept Business Adm Econ & Law, D-64289 Darmstadt, Germany. EM berninger@bwl.tu-darmstadt.de OI Gaar, Eduard/0000-0003-2499-3855; Kiesel, Florian/0000-0001-7380-5190 CR ARMSTRONG JS, 1980, INTERFACES, V10, P80, DOI 10.1287/inte.10.2.80 Ayres I, 2000, J LEGAL STUD, V29, P427, DOI 10.1086/468081 Bajo E, 2020, J BANK FINANC, V114, DOI 10.1016/j.jbankfin.2020.105780 Bauerly R.J., 2006, MARK MANAG, V16, P216 Bellstam G, 2021, MANAGE SCI, V67, P4004, DOI 10.1287/mnsc.2020.3682 Berk JB, 2017, J ECON PERSPECT, V31, P231, DOI 10.1257/jep.31.1.231 Blei DM, 2012, COMMUN ACM, V55, P77, DOI 10.1145/2133806.2133826 Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993 Borokhovich KA, 2000, J FINANC, V55, P1457, DOI 10.1111/0022-1082.00254 Borokhovich KA, 2011, J BANK FINANC, V35, P1, DOI 10.1016/j.jbankfin.2010.07.006 BOTTLE RT, 1983, J INFORM SCI, V6, P103, DOI 10.1177/016555158300600402 Brogaard J, 2014, J FINANC ECON, V111, P251, DOI 10.1016/j.jfineco.2013.10.006 Bryce C, 2020, RES POLICY, V49, DOI 10.1016/j.respol.2020.103957 Jesse Y, 2016, REV QUANT FINANC ACC, V47, P29, DOI 10.1007/s11156-014-0493-x CHUNG KH, 1990, J FINANC, V45, P301, DOI 10.2307/2328824 Crosier K., 2004, Marketing Intelligence Planning, V22, P540, DOI [https://doi.org/10.1108/02634500410551923, DOI 10.1108/02634500410551923, 10.1108/02634500410551923] Currie RR, 2020, J BANK FINANC, V111, DOI 10.1016/j.jbankfin.2019.105717 Currie RR, 2011, J BANK FINANC, V35, P7, DOI 10.1016/j.jbankfin.2010.07.034 de Finetti B., 1990, Theory of Probability EDERINGTON LH, 1979, J FINANC, V34, P777, DOI 10.2307/2327443 Einav L, 2006, J ECON PERSPECT, V20, P175, DOI 10.1257/089533006776526085 Fishe RPH, 1998, J FINANC, V53, P1053, DOI 10.1111/0022-1082.00043 Ganglmair Bernhard, 2015, MEASURING CONTRACT C Gazni A, 2011, J INF SCI, V37, P273, DOI 10.1177/0165551511401658 Goldsmith-Pinkham P., 2016, FRB of NY Staff Report Gunning R., 1952, TECHNIQUE CLEAR WRIT, P36 Guo F, 2018, SCIENTOMETRICS, V116, P1531, DOI 10.1007/s11192-018-2805-8 Hamermesh DS, 2018, J ECON LIT, V56, P115, DOI 10.1257/jel.20161326 Hartley J, 2003, SCIENTOMETRICS, V57, P389, DOI 10.1023/A:1025008802657 Hartley J, 2002, SOC STUD SCI, V32, P321, DOI 10.1177/0306312702032002005 HECK JL, 1986, J FINANC, V41, P1129, DOI 10.2307/2328168 Hirshleifer D, 2015, REV FINANC STUD, V28, P637, DOI 10.1093/rfs/hhu093 Hoberg G, 2017, J CORP FINANC, V43, P58, DOI 10.1016/j.jcorpfin.2016.12.007 Holden CW, 2017, REV CORP FINANC STUD, V6, P102, DOI 10.1093/rcfs/cfx009 Hollis A, 2001, LABOUR ECON, V8, P503, DOI 10.1016/S0927-5371(01)00041-0 Hyland K., 2002, ELT Journal, V56, P351, DOI [10.1093/elt/56.4.351, DOI 10.1093/ELT/56.4.351] Hyland K, 2008, INT J APPL LINGUIST, V18, P41, DOI 10.1111/j.1473-4192.2008.00178.x Jacques Thomas S, 2010, JRSM Short Rep, V1, P2, DOI 10.1258/shorts.2009.100020 Jamali HR, 2011, SCIENTOMETRICS, V88, P653, DOI 10.1007/s11192-011-0412-z Karolyi GA, 2011, FINAN REV, V46, P485, DOI 10.1111/j.1540-6288.2011.00309.x Kerl A, 2018, J BANK FINANC, V89, P26, DOI 10.1016/j.jbankfin.2018.01.014 Kincaid J.P., 1975, Derivation of new readability formulas (automated readability index, fog count and flesch reading ease formula) for navy enlisted personnel KLEMKOSKY RC, 1977, J FINANC, V32, P901, DOI 10.2307/2326321 Li F, 2008, J ACCOUNT ECON, V45, P221, DOI 10.1016/j.jacceco.2008.02.003 Loughran T, 2014, J FINANC, V69, P1643, DOI 10.1111/jofi.12162 LOVELAND J, 1973, ACAD MANAGE J, V16, P522, DOI 10.5465/255014 MANTEN AA, 1977, ANIM FEED SCI TECH, V2, P195, DOI 10.1016/0377-8401(77)90035-9 MCDOWELL JM, 1983, REV ECON STAT, V65, P155, DOI 10.2307/1924423 Medoff MH, 2003, APPL ECON LETT, V10, P479, DOI 10.1080/1350485032000095348 NAFTULIN DH, 1973, J MED EDUC, V48, P630 NIEMI AW, 1987, J FINANC, V42, P1389, DOI 10.2307/2328535 Pinkowitz L, 2002, J FINANC, V57, P485, DOI 10.1111/1540-6261.00429 Reed Colorado, 2012, LATENT DIRICHLET ALL Sawyer AG, 2008, J MARKETING, V72, P108, DOI 10.1509/jmkg.72.1.108 SEC, 2007, SPEECH SEC CHAIRM CL Smith SD, 2004, FINANC MANAGE, V33, P133 Spiegel M, 2012, REV FINANC STUD, V25, P1331, DOI 10.1093/rfs/hhs052 Stremersch S, 2007, J MARKETING, V71, P171, DOI 10.1509/jmkg.71.3.171 You HF, 2009, REV ACCOUNT STUD, V14, P559, DOI 10.1007/s11142-008-9083-2 ZIVNEY TL, 1992, J FINANC, V47, P295, DOI 10.2307/2329099 NR 60 TC 4 Z9 4 U1 3 U2 23 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS SN 0378-4266 EI 1872-6372 J9 J BANK FINANC JI J. Bank Financ. PD OCT PY 2021 VL 131 AR 106188 DI 10.1016/j.jbankfin.2021.106188 EA JUN 2021 PG 34 WC Business, Finance; Economics WE Social Science Citation Index (SSCI) SC Business & Economics GA TC8YY UT WOS:000668925400003 DA 2024-09-05 ER PT S AU Umeki, H Takase, H AF Umeki, H. Takase, H. BE Ahn, J Apted, MJ TI Application of knowledge management systems for safe geological disposal of radioactive waste SO GEOLOGICAL REPOSITORY SYSTEMS FOR SAFE DISPOSAL OF SPENT NUCLEAR FUELS AND RADIOACTIVE WASTE SE Woodhead Publishing Series in Energy LA English DT Article; Book Chapter DE knowledge management system (KMS); knowledge engineering (KE); strategic environmental assessment (SEA); research and development R&D; quality management system (QMS); argumentation model (AM); knowledge acquisition design system (KADS); artificial neural network (ANN) AB Information overload caused by the rate at which data can be produced and the ease with which it can be accessed poses a significant challenge to those charged with maintaining an overview of large, complex, multidisciplinary projects. Geological disposal of long-lived radioactive waste is a technical area characterised by a breadth of multidisciplinary knowledge wider than almost any other industry. The particular challenges for radwaste require the development of a system that pushes the current limits of information technology (IT). This chapter illustrates an approach to the problem that focuses on a formal knowledge management system (KMS) and associated knowledge base that utilise state-of-the-art tools, developed in the field of knowledge engineering (KE) and IT. It considers whether advanced KM tools can contribute to the development, review, communication and control of the iterative evolution of safety cases. C1 [Umeki, H.] Japan Atom Energy Agcy, Chiyoda Ku, Tokyo 1008577, Japan. [Takase, H.] Quintessa KK, Nishi Ku, Yokohama, Kanagawa 2206007, Japan. C3 Japan Atomic Energy Agency RP Umeki, H (corresponding author), Japan Atom Energy Agcy, Chiyoda Ku, 2-1-8 Uchisaiwaicho, Tokyo 1008577, Japan. EM umeki.hiroyuki@jaea.go.jp; htakase@quintessa.co.jp CR [Anonymous], 1958, The Uses of Arguments [Anonymous], MODEL BASED REASONIN [Anonymous], 2008, ARTIFICIAL INTELLIGE Churchill F., 2002, COLLABORATIVE VIRTUA Eemeren F.H., 2004, A systematic theory of argumentation: The pragma-dialectical approach, DOI DOI 10.1017/CBO9780511616389 Hullermeier Eyke., 2007, Case-based approximate reasoning *IAEA NEA, 2006, IAEA SAF STAND SER JNC, 2000, TN14102000001 JNC JA JNC, 2005, TN14002005022 JNC JA Jones M.Tim., 2008, ARTIF INTELL *KASAM IAEA, 2000, P INT SEM 24 27 OCT KAWAMURA H, 2008, P INT C UND DISP UN Kawata T., 2006, P 11 INT HIGH LEV RA, P1236 Kendal S.L., 2007, INTRO KNOWLEDGE ENG Magnani L., 2007, Model-based reasoning in science, technology, and medicine, VVol. 64 Magnani Lorenzo., 2001, ABDUCTION REASON SCI Makau J., 2001, COOPERATIVE ARGUMENT Makino H., 2007, P GLOB 2007 Makino H., 2009, P 12 INT C ENV REM R Makino H., 2009, P WM2009 C 1 5 MARCH MCKINLEY IG, 2009, P MRS09 MCKINLEY IG, 2009, P INC 09 *NEA, 2004, POSTCL SAF CAS GEOL NEA, 2001, REV RETR GEOL DISP R NEA, 2004, STEPW APPR DEC MAK L *NUMO, 2007, NUMOTR0702 NUCL WAST NUMO, 2004, NUMOTR0403 Osawa H., 2009, P 12 INT C ENV REM R Osawa H., 2009, P WN2009 C 1 5 MARCH Reed Chris., 2004, Argumentation Machines: New Frontiers in Argument and Computation Schreiber A.T., 2000, Knowledge Engineering and Management: The CommonKADS Methodology Semba T., 2009, P 12 INT C ENV REM R Spink A, 2008, INFORM SCI KNOWL MAN, V14, P1, DOI 10.1007/978-3-540-75829-7 STEFANUK V, 2004, P 6 JOINT C KNOWL BA UMEKI H, 2008, P OECD NEA EC IAEA I Umeki H., 2007, P JOINT INT TOP M MA Umeki H., 2009, P 12 INT C ENV REM R UMEKI HIROYUKI, 2006, Nuclear Engineering and Technology, V38, P505 van Bruggen JM, 2003, COMP SUPP COMP W SER, P25 Walton D, 2005, ARGUMENTATION METHODS FOR ARTIFICIAL INTELLIGENCE IN LAW, pXI NR 40 TC 1 Z9 1 U1 0 U2 0 PU WOODHEAD PUBL LTD PI CAMBRIDGE PA ABINGTON HALL ABINGTON, CAMBRIDGE CB1 6AH, CAMBS, ENGLAND SN 2044-9372 EI 2044-9364 BN 978-1-84569-978-9; 978-1-84569-542-2 J9 WOODHEAD PUBL SER EN PY 2010 IS 9 BP 610 EP 638 D2 10.1533/9781845699789 PG 29 WC Engineering, Environmental; Nuclear Science & Technology WE Book Citation Index – Science (BKCI-S) SC Engineering; Nuclear Science & Technology GA BRQ28 UT WOS:000283424700020 DA 2024-09-05 ER PT J AU Chai, S D'Amour, A Fleming, L AF Chai, Sen D'Amour, Alexander Fleming, Lee TI Explaining and predicting the impact of authors within a community: an assessment of the bibliometric literature and application of machine learning SO INDUSTRIAL AND CORPORATE CHANGE LA English DT Article ID KNOWLEDGE; INNOVATION; NETWORKS; PRODUCTIVITY; MARGINALITY; COMPETITION; STRENGTH; CREATION; RETURNS; QUALITY AB Following widespread availability of computerized databases, much research has correlated biblio-metric measures from papers or patents to subsequent success, typically measured as the number of publications or citations. Building on this large body of work, we ask the following questions: given available bibliometric information in one year, along with the combined theories on sources of creative breakthroughs from the literatures on creativity and innovation, how accurately can we explain the impact of authors in a given research community in the following year? In particular, who is most likely to publish, publish highly cited work, and even publish a highly cited outlier? And, how accurately can these existing theories predict breakthroughs using only contemporaneous data? After reviewing and synthesizing (often competing) theories from the literatures, we simultaneously model the collective hypotheses based on available data in the year before RNA interference was discovered. We operationalize author impact using publication count, forward citations, and the more stringent definition of being in the top decile of the citation distribution. Explanatory power of current theories altogether ranges from less than 9% for being top cited to 24% for productivity. Machine learning (ML) methods yield similar findings as the explanatory linear models, and tangible improvement only for non-linear Support Vector Machine models. We also perform predictions using only existing data until 1997, and find lower predictability than using explanatory models. We conclude with an agenda for future progress in the bibliometric study of creativity and look forward to ML research that can explain its models. C1 [Chai, Sen] ESSEC Business Sch, Dept Management, F-95021 Cergy Pontoise, France. [D'Amour, Alexander] Univ Calif Berkeley, Dept Stat, Berkeley, CA 94720 USA. [Fleming, Lee] Univ Calif Berkeley, Coll Engn, Coleman Fung Inst Engn Leadership, Berkeley, CA 94720 USA. C3 ESSEC Business School; University of California System; University of California Berkeley; University of California System; University of California Berkeley RP Chai, S (corresponding author), ESSEC Business Sch, Dept Management, F-95021 Cergy Pontoise, France. EM chai@esse-c.edu; alex-damour@berkeley.edu; lfleming@ieor.berkeley.edu RI Chai, Sen/JYP-5197-2024 OI Chai, Sen/0000-0003-1243-3404 FU ESSEC Business School; NSF [1536022]; Coleman Fung Institute for Engineering Leadership; SBE Off Of Multidisciplinary Activities; Direct For Social, Behav & Economic Scie [1536022] Funding Source: National Science Foundation FX The authors gratefully acknowledge support from the ESSEC Business School, NSF grant 1536022, and the Coleman Fung Institute for Engineering Leadership. All opinions and errors remain the authors'. CR [Anonymous], 1999, Origins of genius: Darwinian perspectives on creativity [Anonymous], 2005, 11799 NAT BUR EC RES Arts S, 2018, ORGAN SCI, V29, P1074, DOI 10.1287/orsc.2018.1216 Azoulay P., 2018, 24489 NBER Azoulay P, 2010, Q J ECON, V125, P549, DOI 10.1162/qjec.2010.125.2.549 Brusoni S, 2001, ADMIN SCI QUART, V46, P597, DOI 10.2307/3094825 Burt RS, 2004, AM J SOCIOL, V110, P349, DOI 10.1086/421787 Chai S, 2019, RES POLICY, V48, P733, DOI 10.1016/j.respol.2018.11.006 COLEMAN JS, 1988, AM J SOCIOL, V94, pS95, DOI 10.1086/228943 Collins Randall., 1998, SOCIOLOGY PHILOS GLO Couzin J, 2002, SCIENCE, V298, P2296, DOI 10.1126/science.298.5602.2296 DOUGHERTY D, 1992, ORGAN SCI, V3, P179, DOI 10.1287/orsc.3.2.179 Fire A, 1998, NATURE, V391, P806, DOI 10.1038/35888 Fleming L, 2007, ADMIN SCI QUART, V52, P443, DOI 10.2189/asqu.52.3.443 Fortunato S, 2010, PHYS REP, V486, P75, DOI 10.1016/j.physrep.2009.11.002 Furman JL, 2011, AM ECON REV, V101, P1933, DOI 10.1257/aer.101.5.1933 GIERYN TF, 1983, SOC STUD SCI, V13, P87, DOI 10.1177/030631283013001005 Girotra K, 2010, MANAGE SCI, V56, P591, DOI 10.1287/mnsc.1090.1144 GRANOVETTER MS, 1973, AM J SOCIOL, V78, P1360, DOI 10.1086/225469 Guzman J, 2015, SCIENCE, V347, P606, DOI 10.1126/science.aaa0201 Hastie T., 2009, The Elements of Statistical Learning JANIS IL, 1971, PSYCHOL TODAY, V5, P43 Jeppesen LB, 2010, ORGAN SCI, V21, P1016, DOI 10.1287/orsc.1090.0491 Jones BF, 2009, REV ECON STUD, V76, P283, DOI 10.1111/j.1467-937X.2008.00531.x Kaplan S, 2015, STRATEGIC MANAGE J, V36, P1435, DOI 10.1002/smj.2294 Kerr WR, 2014, REV FINANC STUD, V27, P20, DOI 10.1093/rfs/hhr098 Kuhn T.S., 1962, The structure of scientific revolutions Leonard D.A., 1999, SPARK FLY IGNITING C McEvily B, 1999, STRATEGIC MANAGE J, V20, P1133, DOI 10.1002/(SICI)1097-0266(199912)20:12<1133::AID-SMJ74>3.3.CO;2-Z McFadyen MA, 2004, ACAD MANAGE J, V47, P735, DOI [10.2307/20159615, 10.5465/20159615] Merton Robert., 1949, SOCIAL THEORY SOCIAL Mowery DC, 2002, RES POLICY, V31, P399, DOI 10.1016/S0048-7333(01)00116-0 Obstfeld D, 2005, ADMIN SCI QUART, V50, P100, DOI 10.2189/asqu.2005.50.1.100 Pedregosa F, 2011, J MACH LEARN RES, V12, P2825 Reagans R, 2003, ADMIN SCI QUART, V48, P240, DOI 10.2307/3556658 Reagans R, 2001, ORGAN SCI, V12, P502, DOI 10.1287/orsc.12.4.502.10637 ROMER PM, 1987, AM ECON REV, V77, P56 SIMONTON DK, 1989, INT J AGING HUM DEV, V29, P23, DOI 10.2190/U81M-7LWL-XXN4-10T8 Singh J, 2010, MANAGE SCI, V56, P41, DOI 10.1287/mnsc.1090.1072 Stern S, 2004, MANAGE SCI, V50, P835, DOI 10.1287/mnsc.1040.0241 Swanson DR, 2006, J AM SOC INF SCI TEC, V57, P1427, DOI 10.1002/asi.20438 Terwiesch Christian, 2009, Innovation tournaments: Creating and selecting exceptional opportunities Torvik VI, 2009, ACM T KNOWL DISCOV D, V3, DOI 10.1145/1552303.1552304 Uzzi B, 1997, ADMIN SCI QUART, V42, P35, DOI 10.2307/2393808 Uzzi B, 2013, SCIENCE, V342, P468, DOI 10.1126/science.1240474 Wang J, 2017, RES POLICY, V46, P1416, DOI 10.1016/j.respol.2017.06.006 Wuchty S, 2007, SCIENCE, V316, P1036, DOI 10.1126/science.1136099 NR 47 TC 1 Z9 1 U1 1 U2 26 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0960-6491 EI 1464-3650 J9 IND CORP CHANGE JI Ind. Corp. Change PD FEB PY 2020 VL 29 IS 1 BP 61 EP 80 DI 10.1093/icc/dtz042 PG 20 WC Business; Economics; Management WE Social Science Citation Index (SSCI) SC Business & Economics GA LD3KE UT WOS:000525930700004 DA 2024-09-05 ER PT J AU Fleerackers, A Nehring, L Maggio, LA Enkhbayar, A Moorhead, L Alperin, JP AF Fleerackers, Alice Nehring, Lise Maggio, Lauren A. Enkhbayar, Asura Moorhead, Laura Alperin, Juan Pablo TI Identifying science in the news: An assessment of the precision and recall of Altmetric.com news mention data SO SCIENTOMETRICS LA English DT Article DE Altmetric; Data quality; News; Accuracy; Scholarly communication; Journalism AB The company Altmetric is often used to collect mentions of research in online news stories, yet there have been concerns about the quality of this data. This study investigates these concerns. Using a manual content analysis of 400 news stories as a comparison method, we analyzed the precision and recall with which Altmetric identified mentions of research in 8 news outlets. We also used logistic regression to identify the characteristics of research mentions that influence their likelihood of being successfully identified. We find that, for a predefined set of outlets, Altmetric's news mention data were relatively accurate (F-score = 0.80), with very high precision (0.95) and acceptable recall (0.70), although recall is below 0.50 for some news outlets. Altmetric is more likely to successfully identify mentions of research that include a hyperlink to the research item, an author name, and/or the title of a publication venue. This data source appears to be less reliable for mentions of research that provide little or no bibliometric information, as well as for identifying mentions of scholarly monographs, conference presentations, dissertations, and non-English research articles. Our findings suggest that, with caveats, scholars can use Altmetric news mention data as a relatively reliable source to identify research mentions across a range of outlets with high precision and acceptable recall, offering scholars the potential to conserve resources during data collection. Our study does not, however, offer an assessment of completeness or accuracy of Altmetric news data overall. C1 [Fleerackers, Alice; Enkhbayar, Asura] Simon Fraser Univ, Interdisciplinary Studies, Vancouver, BC, Canada. [Nehring, Lise] Univ Victoria, Ctr Forest Biol, Victoria, BC, Canada. [Maggio, Lauren A.] Uniformed Serv Univ Hlth Sci, Dept Med, Bethesda, MD USA. [Moorhead, Laura] San Francisco State Univ, Coll Liberal & Creat Arts, Journalism, San Francisco, CA USA. [Alperin, Juan Pablo] Simon Fraser Univ, Publishing Program, Vancouver, BC, Canada. C3 Simon Fraser University; University of Victoria; Uniformed Services University of the Health Sciences - USA; California State University System; San Francisco State University; Simon Fraser University RP Fleerackers, A (corresponding author), Simon Fraser Univ, Interdisciplinary Studies, Vancouver, BC, Canada.; Alperin, JP (corresponding author), Simon Fraser Univ, Publishing Program, Vancouver, BC, Canada. EM afleerac@sfu.ca; juan@alperin.ca OI Fleerackers, Alice/0000-0002-7182-4061; Maggio, Lauren/0000-0002-2997-6133; Moorhead, Laura/0000-0001-9185-6290; Alperin, Juan Pablo/0000-0002-9344-7439 FU Social Sciences and Humanities Research Council of Canada (SSHRC) insight grant, Sharing health research [453-2020-0401]; Social Sciences and Humanities Research Council Joseph Bombardier Doctoral Fellowship [767-2019-0369] FX This research is supported by a Social Sciences and Humanities Research Council of Canada (SSHRC) insight grant, Sharing health research (#453-2020-0401). AF is supported by a Social Sciences and Humanities Research Council Joseph Bombardier Doctoral Fellowship (#767-2019-0369). CR ALPERIN JP, 2022, ZENODO [Anonymous], 2020, ALTMETRIC 0917 Bar-Ilan Judit, 2019, J ALTMETR, V2, P1, DOI [10.29024/joa.4, DOI 10.29024/JOA.4] Barata G, 2019, TRANSINFORMACAO, V31, DOI 10.1590/2318-0889201931e190031 Bruns A., 2018, Gatewatching and News Curation: Journalism, Social Media, and the Public Sphere, DOI 10.3726/b13293 Casino G, 2018, PROF INFORM, V27, P692, DOI 10.3145/epi.2018.may.22 Covens L., 2018, Ontario Science Centre Canadian science attitudes research Cranley E., 2020, BUSINESS INSIDER De Dobbelaer R, 2018, HEALTH COMMUN, V33, P611, DOI 10.1080/10410236.2017.1287237 Dicks, PUBLICATION PRACTICE, V2021, DOI DOI 10.1101/2021.01.21.427563 Enkhbayar A., 2022, ZENODO, DOI [10.5281/zenodo.5963168, DOI 10.5281/ZENODO.5963168] Fitzpatrick Kathleen., 2021, Generous Thinking: A Radical Approach to Saving the University Fleerackers A., 2022, HARVARD DATAVERSE, DOI [10.7910/DVN/WNDOFL, DOI 10.7910/DVN/WNDOFL] Fleerackers A., 2020, HARVARD DATAVERSE, DOI [10.7910/DVN/WG9VDS, DOI 10.7910/DVN/WG9VDS] Fleerackers A, 2022, HEALTH COMMUN, V37, P726, DOI 10.1080/10410236.2020.1864892 Fraser N, 2021, PLOS BIOL, V19, DOI 10.1371/journal.pbio.3000959 Fraser N, 2020, QUANT SCI STUD, V1, P618, DOI 10.1162/qss_a_00043 Fu DY, 2019, ELIFE, V8, DOI 10.7554/eLife.52646 Funk C., 2017, SCI NEWS INFORM TODA Gesualdo N, 2020, JOURNALISM STUD, V21, P127, DOI 10.1080/1461670X.2019.1632734 Hansen A., 1994, PUBLIC UNDERST SCI, V3, P111, DOI [DOI 10.1088/0963-6625/3/2/001, 10.1088/0963-6625/3/2/001] Hatch A, 2020, ELIFE, V9, DOI 10.7554/eLife.58654 Hicks D, 2004, HANDBOOK OF QUANTITATIVE SCIENCE AND TECHNOLOGY RESEARCH: THE USE OF PUBLICATION AND PATENT STATISTICS IN STUDIES OF S&T SYSTEMS, P473 Karmakar M, 2021, SCIENTOMETRICS, V126, P4465, DOI 10.1007/s11192-021-03941-y Lehmkuhl M, 2020, PLOS ONE, V15, DOI 10.1371/journal.pone.0241376 Ortega JL, 2021, J INFORMETR, V15, DOI 10.1016/j.joi.2021.101175 Ortega JL, 2019, PRO INT CONF SCI INF, P75 Maggio LA, 2019, BMJ OPEN, V9, DOI 10.1136/bmjopen-2018-025783 Mahony N., 2017, Res All, V1, P35, DOI [10.18546/RFA.01.1.04, DOI 10.18546/RFA.01.1.04] Matthias L., 2019, HARVARD DATAVERSE, DOI [10.7910/DVN/TAGFBL, DOI 10.7910/DVN/TAGFBL] Matthias L, 2020, FRONT COMMUN, V5, DOI 10.3389/fcomm.2020.00064 Meschede C, 2018, SCIENTOMETRICS, V115, P283, DOI 10.1007/s11192-018-2674-1 Moorhead L, 2021, PLOS ONE, V16, DOI 10.1371/journal.pone.0247553 NISO, 2016, OUTP NISO ALT ASS ME, P86 Oliveira T., 2021, REV BRASILEIRA HIST, V10, P1, DOI [10.26664/issn.2238-5126.101202111810, DOI 10.26664/ISSN.2238-5126.101202111810] Ortega JL., 2019, J ALTMETRICS, V2, P4, DOI DOI 10.29024/JOA.14 Ortega JL, 2020, SCIENTOMETRICS, V122, P555, DOI 10.1007/s11192-019-03299-2 Ortega JL, 2020, PROF INFORM, V29, DOI 10.3145/epi.2020.ene.07 Page MJ, 2021, PLOS MED, V18, DOI 10.1371/journal.pmed.1003583 Priem J., 2010, Proceedings of the American Society for Information Science and Technology, V47, P1, DOI [DOI 10.1002/MEET.14504701201, 10.1002/meet.14504701201] Priem J., 2010, Altmetrics: A manifesto Robinson-Garcia N, 2019, FEMS MICROBIOL LETT, V366, DOI 10.1093/femsle/fnz075 Schultz T, 2021, QUANT SCI STUD, V2, P828, DOI 10.1162/qss_a_00139 Serghiou S, 2021, PLOS ONE, V16, DOI 10.1371/journal.pone.0248625 Shoemaker Pamela J, 2009, Gatekeeping Theory, DOI DOI 10.4324/9780203931653 Thelwall M., 2018, J ALTMETRICS, V1, P4, DOI [10.29024/joa.6, DOI 10.29024/JOA.6] Torres-Salinas D, 2018, ASLIB J INFORM MANAG, V70, P691, DOI 10.1108/AJIM-06-2018-0152 Torres-Salinas D, 2018, PROF INFORM, V27, P483, DOI 10.3145/epi.2018.may.03 Williams AE, 2017, ONLINE INFORM REV, V41, P311, DOI 10.1108/OIR-10-2016-0294 Yanovitzky I, 2019, COMMUN THEOR, V29, P191, DOI 10.1093/ct/qty023 Zahedi Z, 2014, SCIENTOMETRICS, V101, P1491, DOI 10.1007/s11192-014-1264-0 NR 51 TC 6 Z9 7 U1 2 U2 27 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0138-9130 EI 1588-2861 J9 SCIENTOMETRICS JI Scientometrics PD NOV PY 2022 VL 127 IS 11 BP 6109 EP 6123 DI 10.1007/s11192-022-04510-7 EA OCT 2022 PG 15 WC Computer Science, Interdisciplinary Applications; Information Science & Library Science WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Computer Science; Information Science & Library Science GA 5U5FU UT WOS:000862527700001 PM 36212767 OA Green Published, Bronze, Green Submitted DA 2024-09-05 ER PT C AU Obaideen, K AlShabi, M Bettayeb, M Gadsden, SA Bonny, T AF Obaideen, Khaled AlShabi, Mohammad Bettayeb, Maamar Gadsden, S. Andrew Bonny, Talal BE Blowers, M Wysocki, BT TI The Convergence of Control and Cognition: A Bibliometric Overview of UKF in AI-Infused Robotics SO DISRUPTIVE TECHNOLOGIES IN INFORMATION SCIENCES VIII SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Disruptive Technologies in Information Sciences VIII CY APR 22-25, 2024 CL National Harbor, MD DE Unscented Kalman Filter; UKF; Robotics; VOSviewer; Bibliometric ID ARTIFICIAL-INTELLIGENCE TECHNIQUES; UNMANNED AERIAL VEHICLES; UNSCENTED KALMAN FILTER; ROBUST; STRATEGIES; PREDICTION; NAVIGATION; FUSION; MODELS; AUV AB This paper gives a bibliometric summary of Unscented Kalman Filter (UKF) in AI-infused robotics, highlighting its role in unifying control and cognition. Using a systematic approach that includes literature collection from IEEE Xplore, Web of Science and Google Scholar, rigorous screening and selection, and VOSviewer for a comprehensive bibliometric analysis. This analysis reports major trends, primary contributors and central themes, highlighting UKF's pivotal role in improving robotics cognitive and control capacities. The study emphasizes the universally used UKF in many fields of robotics, i.e. in navigation and mapping, sensor fusion, and state estimation, as one of its principal developers, which illustrates its vital role in promoting robotic autonomy and intelligence. The integration of findings from the bibliometric analysis thus not only presents the current state of research but also identifies possible future research directions, highlighting the increasing unification of control theories and cognitive processes in robotics. This research adds to the body of knowledge by delivering a comprehensive map of the UKF application. In this light, the UKF will be able to penetrate AI-infused robotics, the future of robotic developments will rely on the deep fusion of control and cognition facilitated by UKF and alike. C1 [Obaideen, Khaled] RISE, Smart Automat & Commun Technol, Bio Sensing & Bio Sensors Grp, POB 27272, Sharjah 27272, U Arab Emirates. [AlShabi, Mohammad] Univ Sharjah, Dept Mech & Nucl Engn, POB 27272, Sharjah, U Arab Emirates. [Bettayeb, Maamar] Univ Sharjah, Dept Elect Engn, POB 27272, Sharjah, U Arab Emirates. [Gadsden, S. Andrew] McMaster Univ, Dept Mech Engn, Hamilton, ON L8S 4L8, Canada. [Bonny, Talal] Univ Sharjah, Dept Comp Engn, POB 27272, Sharjah, U Arab Emirates. C3 University of Sharjah; University of Sharjah; McMaster University; University of Sharjah RP AlShabi, M (corresponding author), Univ Sharjah, Dept Mech & Nucl Engn, POB 27272, Sharjah, U Arab Emirates. EM malshabi@sharjah.ac.ae OI Obaideen, Khaled/0000-0002-6472-2753 CR Abushihab K, 2023, J RELIG HEALTH, DOI 10.1007/s10943-023-01955-9 Aggarwal S, 2020, COMPUT COMMUN, V149, P270, DOI 10.1016/j.comcom.2019.10.014 Agwu OE, 2018, J PETROL SCI ENG, V167, P300, DOI 10.1016/j.petrol.2018.04.019 Ahmad F, 2019, INT J ELEC POWER, V107, P200, DOI 10.1016/j.ijepes.2018.11.019 Akca A, 2019, IFAC PAPERSONLINE, V52, P73, DOI 10.1016/j.ifacol.2019.06.013 Al-Kaff A, 2018, EXPERT SYST APPL, V92, P447, DOI 10.1016/j.eswa.2017.09.033 Al-Shabi M, 2013, SIGNAL PROCESS, V93, P420, DOI 10.1016/j.sigpro.2012.07.036 Al-Shabi M., 2015, Intelligent Control and Automation, V6, P147 Al-Shabi M., 2014, ASME INT MECH ENG C, V4648 Al-Shabi M., 2021, IAES Int. J. Artif. Intell, V10, P398, DOI [10.11591/ijai.v10.i2.pp398-406, DOI 10.11591/IJAI.V10.I2.PP398-406] Al-Shabi M., 2015 IEEE 12 INT MUL, P1 Al-Shabi M., 2017 7 INT C MOD SIM, P1 Al-Shabi M, 2019, INT J ROBOT AUTOM, V34, P632, DOI 10.2316/J.2019.206-0160 Al-Shabi M, 2017, 2017 IEEE 5TH INTERNATIONAL SYMPOSIUM ON ROBOTICS AND INTELLIGENT SENSORS (IRIS), P117, DOI 10.1109/IRIS.2017.8250108 Al-Yateem N., 2021 IEEE 45 ANN COM, P1387 Albasha L., P 2004 IEEE RAD WIR, P343 Alghanmi A, 2022, ENERGY REP, V8, P14673, DOI 10.1016/j.egyr.2022.10.441 AlMallahi M., Energy Harvesting and Storage: Materials, Devices, and Applications XIII, V1251, P113 Alsadi N., 2023 ADV SCI ENG TEC, P1 Alsadi N, 2023, DIGIT SIGNAL PROCESS, V135, DOI 10.1016/j.dsp.2023.103966 Alsadi N, 2022, PROC SPIE, V12113, DOI 10.1117/12.2619029 AlShabi M, 2020, IEEE SYST J, V14, P971, DOI 10.1109/JSYST.2019.2919792 AlShabi M., 2021, IAES International Journal of Artificial Intelligence, V10, P166 AlShabi M., Signal Processing, Sensor/Information Fusion, and Target Recognition XXXI, V1212, P96 AlShabi M., 2021, Design and Performance Optimization of Renewable Energy Systems, P251 AlShabi M, 2022, PROC SPIE, V12113, DOI 10.1117/12.2632218 Apio A, 2019, IFAC PAPERSONLINE, V52, P508, DOI 10.1016/j.ifacol.2019.06.113 Asl RM, 2017, ENG APPL ARTIF INTEL, V59, P205, DOI 10.1016/j.engappai.2017.01.005 Avzayesh M, 2020, IEEE T INSTRUM MEAS, V69, P8744, DOI 10.1109/TIM.2020.2999165 Awwad A, 2023, IEEE SENS J, V23, P8169, DOI 10.1109/JSEN.2023.3248142 Bai YT, 2023, ANNU REV CONTROL, V56, DOI 10.1016/j.arcontrol.2023.100909 Ballous K. A., Unmanned Systems Technology XXV, V1254, P39 Bertachi A, 2019, IFAC PAPERSONLINE, V52, P1000, DOI 10.1016/j.ifacol.2019.06.193 Chen X, 2023, GEOENERGY SCI ENG, V229, DOI 10.1016/j.geoen.2023.212134 Clifton JC, 2005, IEEE T MICROW THEORY, V53, P2251, DOI 10.1109/TMTT.2005.848747 Connie Tee, 2017, Multi-disciplinary Trends in Artificial Intelligence. 11th International Workshop, MIWAI 2017. Proceedings: LNAI 10607, P139, DOI 10.1007/978-3-319-69456-6_12 Cui LL, 2019, MEASUREMENT, V135, P678, DOI 10.1016/j.measurement.2018.12.028 Emran BJ, 2018, ANNU REV CONTROL, V46, P165, DOI 10.1016/j.arcontrol.2018.10.009 Eraliev OMU, 2022, AUTOMAT CONSTR, V141, DOI 10.1016/j.autcon.2022.104428 Fareh R, 2020, ROBOTICA, V38, P118, DOI 10.1017/S026357471900050X Gadsden S., 2021, Signal Processing, Sensor/Information Fusion, and Target Recognition XXIV, V9474, P54 Gadsden SA, 2014, SIGNAL PROCESS, V96, P290, DOI 10.1016/j.sigpro.2013.08.015 Gadsden S. A., 2011, ISRN Signal Processing, DOI 10.5402/2011/120351 Gadsden SA, 2015, 2015 10TH INTERNATIONAL SYMPOSIUM ON MECHATRONICS AND ITS APPLICATIONS (ISMA) Ghaeminezhad N, 2023, J ENERGY STORAGE, V72, DOI 10.1016/j.est.2023.108707 Grof T, 2019, IFAC PAPERSONLINE, V52, P376, DOI 10.1016/j.ifacol.2019.11.272 Hatamleh KS, 2015, APPL SOFT COMPUT, V36, P457, DOI 10.1016/j.asoc.2015.06.031 Hose DR, 2019, MED ENG PHYS, V72, P38, DOI 10.1016/j.medengphy.2019.08.007 Javadi MA, 2019, PROCEDIA MANUF, V39, P1834, DOI 10.1016/j.promfg.2020.01.255 Jiang K, 2019, ENGINEERING-PRC, V5, P305, DOI 10.1016/j.eng.2018.11.032 Jinyu L., 2019, Virtual Real. Intell. Hardw., V1, P386 Kahnamouei JT, 2023, OCEAN ENG, V277, DOI 10.1016/j.oceaneng.2023.114260 Khalil A. K., Energy Harvesting and Storage: Materials, Devices, and Applications XIII, V1251, P70 Khan SR, 2019, DRUG DISCOV TODAY, V24, P1735, DOI 10.1016/j.drudis.2019.05.018 Khan S, 2019, APPL SOFT COMPUT, V83, DOI 10.1016/j.asoc.2019.105650 Kheirandish M, 2023, ROBOT AUTON SYST, V161, DOI 10.1016/j.robot.2022.104343 Khokhar S, 2015, RENEW SUST ENERG REV, V51, P1650, DOI 10.1016/j.rser.2015.07.068 Koide K, 2020, ROBOT AUTON SYST, V124, DOI 10.1016/j.robot.2019.103348 Kurpath MI, 2024, SENSOR ACTUAT A-PHYS, V367, DOI 10.1016/j.sna.2024.115019 Lee AS, 2021, IEEE SIGNAL PROC LET, V28, P1295, DOI 10.1109/LSP.2021.3089918 Li C, 2024, ENG APPL ARTIF INTEL, V132, DOI 10.1016/j.engappai.2024.107965 Li WL, 2016, DIGIT SIGNAL PROCESS, V48, P93, DOI 10.1016/j.dsp.2015.09.004 Li Y, 2019, ACTA ASTRONAUT, V163, P77, DOI 10.1016/j.actaastro.2019.02.030 Lin RH, 2019, INT J HYDROGEN ENERG, V44, P5488, DOI 10.1016/j.ijhydene.2018.09.085 Liu CL, 2021, RENEW SUST ENERG REV, V150, DOI 10.1016/j.rser.2021.111408 Liu YF, 2022, COMPUT ELECTRON AGR, V197, DOI 10.1016/j.compag.2022.106920 Long ZH, 2023, ENERGY, V272, DOI 10.1016/j.energy.2023.127068 Manoharan A, 2022, J ENERGY STORAGE, V55, DOI 10.1016/j.est.2022.105384 Mao JL, 2021, CHINESE J CHEM ENG, V37, P1, DOI 10.1016/j.cjche.2021.04.009 Marchesseau S, 2013, MED IMAGE ANAL, V17, P816, DOI 10.1016/j.media.2013.04.012 Mbungu NT, 2023, RENEW SUST ENERG REV, V179, DOI 10.1016/j.rser.2023.113251 Mittal S, 2019, J SYST ARCHITECT, V97, P428, DOI 10.1016/j.sysarc.2019.01.011 Montani Margherita, 2019, Procedia Structural Integrity, V24, P137, DOI 10.1016/j.prostr.2020.02.013 Munadi M, 2024, RESULTS ENG, V21, DOI 10.1016/j.rineng.2023.101678 Obaideen Khaled, 2022, Diabetes Metab Syndr, V16, P102566, DOI 10.1016/j.dsx.2022.102566 Ochella S, 2022, ENG APPL ARTIF INTEL, V108, DOI 10.1016/j.engappai.2021.104552 Peng JQ, 2019, ACTA ASTRONAUT, V162, P589, DOI 10.1016/j.actaastro.2019.03.008 Poulin P, 2019, MAGN RESON IMAGING, V64, P37, DOI 10.1016/j.mri.2019.04.013 Rebollo JA, 2023, IFAC PAPERSONLINE, V56, P4508, DOI 10.1016/j.ifacol.2023.10.942 Renganathan V, 2023, ARTIF INTELL, V314, DOI 10.1016/j.artint.2022.103812 Sarotte C, 2019, IFAC PAPERSONLINE, V52, P280, DOI 10.1016/j.ifacol.2019.11.256 Spencer BF, 2019, ENGINEERING-PRC, V5, P199, DOI 10.1016/j.eng.2018.11.030 Sui ZJ, 2019, ANN NUCL ENERGY, V134, P452, DOI 10.1016/j.anucene.2019.07.001 Taheri H, 2023, MECH MACH THEORY, V190, DOI 10.1016/j.mechmachtheory.2023.105448 Ul Hassan M, 2022, SUSTAIN ENERGY TECHN, V54, DOI 10.1016/j.seta.2022.102801 van Dinter R, 2022, INFORM SOFTWARE TECH, V151, DOI 10.1016/j.infsof.2022.107008 von See TB, 2021, IFAC PAPERSONLINE, V54, P320, DOI 10.1016/j.ifacol.2021.10.111 Wang BJ, 2016, INFRARED PHYS TECHN, V75, P12, DOI 10.1016/j.infrared.2016.01.001 Wang TY, 2023, MECH SYST SIGNAL PR, V204, DOI 10.1016/j.ymssp.2023.110785 Wang Y, 2020, CHINESE J AERONAUT, V33, P561, DOI 10.1016/j.cja.2019.10.008 Wischnewski A, 2019, IFAC PAPERSONLINE, V52, P154, DOI 10.1016/j.ifacol.2019.08.064 Wu XG, 2022, ENERGY REP, V8, P2262, DOI 10.1016/j.egyr.2022.01.056 Yang F, 2023, J ENERGY STORAGE, V58, DOI 10.1016/j.est.2022.106283 Yu QQ, 2022, AUTOMAT CONSTR, V141, DOI 10.1016/j.autcon.2022.104409 Yu XY, 2024, NEUROCOMPUTING, V563, DOI 10.1016/j.neucom.2023.126827 Yusuf SA, 2024, TRANSP RES INTERDISC, V23, DOI 10.1016/j.trip.2023.100980 Zhang JQ, 2023, AUTOMAT CONSTR, V146, DOI 10.1016/j.autcon.2022.104699 Zhang LY, 2020, COMPUT COMMUN, V150, P747, DOI 10.1016/j.comcom.2019.11.038 Zhang L, 2019, IFAC PAPERSONLINE, V52, P256, DOI 10.1016/j.ifacol.2019.09.150 Zhang Y, 2022, INFORM FUSION, V81, P171, DOI 10.1016/j.inffus.2021.11.018 Zhao HQ, 2022, AUTOMATICA, V142, DOI 10.1016/j.automatica.2022.110410 Zhao YS, 2019, IFAC PAPERSONLINE, V52, P126, DOI 10.1016/j.ifacol.2019.12.359 Zhao ZG, 2016, MECH SYST SIGNAL PR, V75, P413, DOI 10.1016/j.ymssp.2015.12.027 Zhuang SW, 2021, J BIOTECHNOL, V339, P32, DOI 10.1016/j.jbiotec.2021.07.013 NR 104 TC 0 Z9 0 U1 0 U2 0 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X EI 1996-756X BN 978-1-5106-7435-6; 978-1-5106-7434-9 J9 PROC SPIE PY 2024 VL 13058 AR 1305817 DI 10.1117/12.3013841 PG 8 WC Computer Science, Information Systems WE Conference Proceedings Citation Index - Science (CPCI-S) SC Computer Science GA BX1WH UT WOS:001253884500036 DA 2024-09-05 ER PT J AU Li, JJ Yu, J Yang, D Tian, WY Zhao, LL Hu, JF AF Li, Jianjun Yu, Jie Yang, Dan Tian, Wanyong Zhao, Lulu Hu, Junfeng TI A Novel Semantic Segmentation Algorithm Using a Hierarchical Adjacency Dependent Network SO IEEE ACCESS LA English DT Article DE Semantics; Correlation; Feature extraction; Image segmentation; Convolution; Decoding; Bibliometrics; Semantic segmentation; hierarchical adjacency dependent network; adjacency dependency module AB Recent semantic segmentation networks mainly focus on how to fuse multi-level features from classification networks to improve segmentation accuracy. Some researches evenly emphasize the correlation of pixels in a global region, such as conditional random field (CRF). However, the strong correlation feature of pixels in a limited region is less considered in the previous researches and the remedy ability of the correlation of local pixels in semantic segmentation is severely ignored. To deal with this problem, we introduce a hierarchical adjacency dependent network (HadNet), in which an adjacency dependency module (ADM) is constructed by calculating and utilizing the impact fact of the pixel in different directions to classify the pixel. We explored the correlation of adjacent pixels and feature coverage in different feature levels to improve the segmentation accuracy. We evaluate our method on the popular Pascal VOC 2012 test set, and achieve a comparable result of mIOU accuracy of 79.8 with the state of art methods, such as DeepLabv3 and Exfuse. Further, we discuss and analyze the data distribution of COCO dataset for deeply understanding the feature correlation and coverage in semantic segmentation. C1 [Li, Jianjun; Yu, Jie; Yang, Dan] Hangzhou Dianzi Univ, Sch Comp Sci & Technol, Hangzhou 310018, Zhejiang, Peoples R China. [Tian, Wanyong; Zhao, Lulu; Hu, Junfeng] CETC Key Lab Data Link Technol, Xian 710000, Shaanxi, Peoples R China. C3 Hangzhou Dianzi University; China Electronics Technology Group RP Li, JJ (corresponding author), Hangzhou Dianzi Univ, Sch Comp Sci & Technol, Hangzhou 310018, Zhejiang, Peoples R China. EM jianjun.li@hdu.edu.cn OI Li, Jianjun/0000-0001-6658-9709 FU National Science Fund of China [61871170]; National Defense Basic Research Program [JCKY2017210A001] FX This work was supported in part by the National Science Fund of China under Grant 61871170, and in part by the National Defense Basic Research Program under Grant JCKY2017210A001. CR [Anonymous], P IEEE INT C COMP VI [Anonymous], P IEEE C COMP VIS PA [Anonymous], PROC CVPR IEEE [Anonymous], 2017, P IEEE C COMP VIS PA [Anonymous], 2013, ARXIV13124400 [Anonymous], TECH REP [Anonymous], IEEE IMAGE PROCESS [Anonymous], 2015, PROC CVPR IEEE [Anonymous], 2017, P IEEE C COMP VIS PA [Anonymous], 2016, INT C LEARNING REPRE [Anonymous], 2017, IEEE T PATTERN ANAL, DOI DOI 10.1109/TPAMI.2016.2644615 [Anonymous], 2017, C COMP VIS PATT REC Chen LCE, 2018, LECT NOTES COMPUT SC, V11211, P833, DOI 10.1007/978-3-030-01234-2_49 Chen LC, 2018, IEEE T PATTERN ANAL, V40, P834, DOI 10.1109/TPAMI.2017.2699184 Chen LC, 2016, PROC CVPR IEEE, P3640, DOI 10.1109/CVPR.2016.396 Dai JF, 2015, IEEE I CONF COMP VIS, P1635, DOI 10.1109/ICCV.2015.191 Everingham M, 2015, INT J COMPUT VISION, V111, P98, DOI 10.1007/s11263-014-0733-5 Hariharan B, 2011, IEEE I CONF COMP VIS, P991, DOI 10.1109/ICCV.2011.6126343 He KM, 2015, IEEE T PATTERN ANAL, V37, P1904, DOI 10.1109/TPAMI.2015.2389824 Ke TW, 2018, LECT NOTES COMPUT SC, V11205, P605, DOI 10.1007/978-3-030-01246-5_36 Krizhevsky Alex., 2012, Advances in neural information processing systems, P10971105 Lazebnik S., COMPUTER VISION PATT, V2, P2169 Lin TY, 2014, LECT NOTES COMPUT SC, V8693, P740, DOI 10.1007/978-3-319-10602-1_48 Liu W., 2015, COMPUTER SCI Liu ZW, 2015, IEEE I CONF COMP VIS, P1377, DOI 10.1109/ICCV.2015.162 Noh H, 2015, IEEE I CONF COMP VIS, P1520, DOI 10.1109/ICCV.2015.178 Peng C, 2017, PROC CVPR IEEE, P1743, DOI 10.1109/CVPR.2017.189 Ronneberger O, 2015, LECT NOTES COMPUT SC, V9351, P234, DOI 10.1007/978-3-319-24574-4_28 Russakovsky O, 2015, INT J COMPUT VISION, V115, P211, DOI 10.1007/s11263-015-0816-y SZEGEDY C, 2015, CVPR, DOI [10.1109/cvpr.2015.7298594, DOI 10.1109/CVPR.2015.7298594] Xu Huiting., 2017, IEEE International Conference on Smart Computing (SMARTCOMP), P1, DOI DOI 10.1109/INFOCOM.2017.8056992 Yan CG, 2019, IEEE T MULTIMEDIA, V21, P2675, DOI 10.1109/TMM.2019.2903448 Yang WB, 2017, COMM COM INF SC, V771, P696, DOI 10.1007/978-981-10-7299-4_58 Yu CQ, 2018, PROC CVPR IEEE, P1857, DOI 10.1109/CVPR.2018.00199 Yuan Yuhui, 2018, arXiv Zhang ZL, 2018, LECT NOTES COMPUT SC, V11214, P273, DOI 10.1007/978-3-030-01249-6_17 Zhao CY, 2016, INT GEOSCI REMOTE SE, P2881, DOI 10.1109/IGARSS.2016.7729744 Zheng S, 2015, IEEE I CONF COMP VIS, P1529, DOI 10.1109/ICCV.2015.179 Zhou Q, 2019, WORLD WIDE WEB, V22, P555, DOI 10.1007/s11280-018-0556-3 NR 39 TC 1 Z9 1 U1 0 U2 6 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 2169-3536 J9 IEEE ACCESS JI IEEE Access PY 2019 VL 7 BP 150444 EP 150452 DI 10.1109/ACCESS.2019.2944219 PG 9 WC Computer Science, Information Systems; Engineering, Electrical & Electronic; Telecommunications WE Science Citation Index Expanded (SCI-EXPANDED) SC Computer Science; Engineering; Telecommunications GA JN8TB UT WOS:000497163000006 OA gold DA 2024-09-05 ER PT J AU Riekki, J Mämmela, Ä AF Riekki, Jukka Mammela, Aarne TI Research and Education Towards Smart and Sustainable World SO IEEE ACCESS LA English DT Article DE Smart world vision; sustainable development goals; Internet of Things (IoT); artificial intelligence (AI); computational intelligence (CI); reductive view; systems view; emergence; experimental-inductive method; hypothetico-deductive method; functionality; basic resources; performance; energy efficiency; dependability; availability; reliability; safety; security; constraints; optimization; decision making; hierarchy; open-loop control; closed-loop feedback control; degree of centralization; distributed systems; education; integrative learning; research; innovation; history ID SYSTEM DYNAMICS; HEALTH RESEARCH; BIG DATA; INTERNET; THINGS; INTELLIGENT; VISION; MULTIDISCIPLINARITY; TRANSDISCIPLINARITY; INTERDISCIPLINARITY AB We propose a vision for directing research and education in the field of information and communications technology (ICT). Our Smart and Sustainable World vision targets prosperity for the people and the planet through better awareness and control of both human-made and natural environments. The needs of society, individuals, and industries are fulfilled with intelligent systems that sense their environment, make proactive decisions on actions advancing their goals, and perform the actions on the environment. We emphasize artificial intelligence, feedback loops, human acceptance and control, intelligent use of basic resources, performance parameters, mission-oriented interdisciplinary research, and a holistic systems view complementing the conventional analytical reductive view as a research paradigm, especially for complex problems. To serve a broad audience, we explain these concepts and list the essential literature. We suggest planning research and education by specifying, in a step-wise manner, scenarios, performance criteria, system models, research problems, and education content, resulting in common goals and a coherent project portfolio as well as education curricula. Research and education produce feedback to support evolutionary development and encourage creativity in research. Finally, we propose concrete actions for realizing this approach. C1 [Riekki, Jukka] Univ Oulu, Ctr Ubiquitous Comp, Oulu 90570, Finland. [Mammela, Aarne] VTT Tech Res Ctr Finland Ltd, Oulu 90570, Finland. C3 University of Oulu; VTT Technical Research Center Finland RP Riekki, J (corresponding author), Univ Oulu, Ctr Ubiquitous Comp, Oulu 90570, Finland. EM jukka.riekki@oulu.fi OI Mammela, Aarne/0000-0002-6659-4126; Riekki, Jukka/0000-0002-1694-9152 CR 5G PPP, 2015, 5G E HLTH 5G PPP, 2015, 5G FACTORIES FUTURE 5G PPP, 2015, 5G MEDIA ENTERTAINME 5G PPP, 2016, 5G EMPOWERING VERTIC 5G PPP, 2015, 5G Automotive Vision Agnes M., 2001, WEBSTERS NEW WORLD C Akyildiz IF, 2016, COMPUT NETW, V106, P17, DOI 10.1016/j.comnet.2016.06.010 Al-Kuwaiti M, 2009, IEEE COMMUN SURV TUT, V11, P106, DOI 10.1109/SURV.2009.090208 Albus J.S., 2001, Engineering of mind: An introduction to the science of intelligent systems ALBUS JS, 1991, IEEE T SYST MAN CYB, V21, P473, DOI 10.1109/21.97471 [Anonymous], 2007, Distributed Systems_ Principles and Paradigms [Anonymous], 2008, Complexity Explained [Anonymous], 1990, INTERDISCIPLINARITY [Anonymous], 2013, ADAPTIVE FILTER THEO [Anonymous], 2019, Global indicator framework for the Sustainable Development Goals and targets of the 2030 Agenda for Sustainable Development [Anonymous], 2014, Principles of communications [Anonymous], 2008, SMARTER PLANET [Anonymous], 2012, COMPUTER ARCHITECTUR [Anonymous], 2018, IEEE SUSTAINABLE ICT [Anonymous], 2007, Systems and Models: Complexity, Dynamics, Evolution, Sustainability [Anonymous], 1991, Feedback Thought in Social Science and Systems Theory [Anonymous], 2016, The IEEE Global Initiative on Ethics of Autonomous and Intelligent Systems [Anonymous], 2021, IEEE TAXONOMY VERSIO [Anonymous], 1971, General System Theory: Foundations, Development, Applications. [Anonymous], 2020, Gartner Top 10 Strategic Predictions for 2021 and beyond [Anonymous], 2015, EMBRACING COMPLEXITY [Anonymous], 2018, [No title captured], P44 [Anonymous], 2014, Digital Communications [Anonymous], 2018, 6GENESIS FLAGSHIP PR [Anonymous], 2004, NONLINEAR OPTICS TEL, DOI DOI 10.1007/978-3-662-08996-5 [Anonymous], 2006, 5 DISCIPLINE [Anonymous], 2019, RES PLATFORMS [Anonymous], 2018, RES ALLIANCE AUTONOM [Anonymous], 2006, EVOLUTIONARY DYNAMIC, DOI DOI 10.2307/J.CTVJGHW98 [Anonymous], 1995, DISCRETE TIME CONTRO [Anonymous], 2020, Missions in Horizon Europe Arbnor I., 1997, METHODOLOGY CREATING Arora S, 2009, COMPUTATIONAL COMPLEXITY: A MODERN APPROACH, P1, DOI 10.1017/CBO9780511804090 Atiyah M, 2002, B LOND MATH SOC, V34, P1, DOI 10.1112/S0024609301008566 Avizienis A, 2004, IEEE T DEPEND SECURE, V1, P11, DOI 10.1109/TDSC.2004.2 Bacco M, 2019, ARRAY-NY, V3-4, DOI 10.1016/j.array.2019.100009 Baillieul J, 2007, P IEEE, V95, P9, DOI 10.1109/JPROC.2006.887290 Barrett F.Dermot., 1953, Proceedings of the American Academy of Arts and Sciences, V80, P204, DOI DOI 10.2307/20023653 Barrow JohnD., 1998, Impossibility: The Limits of Science and the Science ofLimits Bekey George A., AUTONOMOUS ROBOTS BI Ben Yoo SJ, 2011, IEEE J SEL TOP QUANT, V17, P406, DOI 10.1109/JSTQE.2010.2076793 Benbya H., 2006, Information Technology & People, V19, P12, DOI 10.1108/09593840610649952 Bernstein DS, 2002, IEEE CONTR SYST MAG, V22, P53, DOI 10.1109/37.993315 Bezdek James C., 2016, IEEE Systems, Man, and Cybernetics Magazine, V2, P4, DOI 10.1109/MSMC.2016.2558778 Bhattacharya J., 2020, 26752 NAT BUR EC RES Bishop C.M., 2006, Pattern recognition and machine learning Bloom N, 2020, AM ECON REV, V110, P1104, DOI 10.1257/aer.20180338 Bock P., 2001, GETTING IT RIGHT R D Bohn J, 2004, HUM ECOL RISK ASSESS, V10, P763, DOI 10.1080/10807030490513793 Boschert S., 2019, Symbiotic Autonomous Systems Boulding K., 1985, WORLD TOTAL SYSTEM BOULDING K.E., 1978, ECODYNAMICS NEW THEO Brambilla M, 2013, SWARM INTELL-US, V7, P1, DOI 10.1007/s11721-012-0075-2 Calver MC, 2015, AUST UNIV REV, V57, P45 Cao YU, 1997, AUTON ROBOT, V4, P7, DOI 10.1023/A:1008855018923 Chaturvedi DK, 2008, STUD COMPUT INTELL, V103, P1, DOI 10.1007/978-3-540-77481-5 Checkland P., 1999, System Thinking, System Practice, V2e CHESS D, 1995, IEEE PERS COMMUN, V2, P34, DOI 10.1109/98.468361 Choi BCK, 2007, CLIN INVEST MED, V30, pE224, DOI 10.25011/cim.v30i6.2950 Choi BCK, 2006, CLIN INVEST MED, V29, P351 Cockshott P., 2015, COMPUTATION ITS LIMI Coulouris G., 2011, Distributed Systems: Concepts and Design, V5th Courtland R, 2016, IEEE SPECTRUM, V53, P9 DAVIS FD, 1989, MIS QUART, V13, P319, DOI 10.2307/249008 de Coulon F., 1986, SIGNAL THEORY PROCES de Sio FS, 2018, FRONT ROBOT AI, V5, DOI 10.3389/frobt.2018.00015 DECKER KS, 1987, IEEE T SYST MAN CYB, V17, P729, DOI 10.1109/TSMC.1987.6499280 Dedic N, 2017, LECT NOTES BUS INF P, V285, P114, DOI 10.1007/978-3-319-58801-8_10 Dewdney A.K., 2004, Beyond Reason: Eight Great Problems that Reveal the Limits of Science Dohler M, 2011, IEEE COMMUN MAG, V49, P159, DOI 10.1109/MCOM.2011.5741160 Dorf R.C., 2017, MODERN CONTROL SYSTE Eberhart R.C., 2007, COMPUTATIONAL INTELL Elsayed E. A., 2021, ELIABILITY ENG, V3rd Epstein D., 2019, RANGE WHY GENERALIST ETSI, 2020, EXPERIENTIAL NETWORK ETSI, 2020, ZERO TOUCH SERVICE M European Commission, 2019, The European Green Deal European Commission, 2001, A Sustainable Europe for a Better World: A European Union Strategy for Sustainable Development European Commission, 2019, EUROPEAN RES INFRAST European Commission, 2020, APPL ARTI CIAL INTEL European Commission, 2020, A European strategy for data. Communication from the European Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions European Council, 2019, A new strategic agenda 20192024 FELDER RM, 1988, ENG EDUC, V78, P674 Figueira J., INT SER OPER RES MAN Filip FG, 2009, SPRINGER HANDBOOK OF AUTOMATION, P619, DOI 10.1007/978-3-540-78831-7_36 Forrester JW, 2007, SYST DYNAM REV, V23, P345, DOI 10.1002/sdr.382 Forrester JW, 2007, SYST DYNAM REV, V23, P359, DOI 10.1002/sdr.381 Frampton KD, 2010, J ACOUST SOC AM, V128, P2798, DOI 10.1121/1.3183369 François C, 1999, SYST RES BEHAV SCI, V16, P203, DOI 10.1002/(SICI)1099-1743(199905/06)16:3<203::AID-SRES210>3.0.CO;2-1 Fricks RB, 2017, P REL MAINT S Friedman M., 1999, Introduction to Pattern Recognition. Statistical, Structural Futures Platform, 2020, DYNAMIC FORESIGHT TO Gass SaulI., 2005, ANNOTATED TIMELINE O, V2nd Ghosh S., 2015, Distributed systems: An algorithmic approach Global Footprint Network, 2019, EARTH OVERHOOT DAY Gupta RA, 2010, IEEE T IND ELECTRON, V57, P2527, DOI 10.1109/TIE.2009.2035462 Haddad W. M., 2008, Nonlinear dynamical systems and control: A Lyapunov-based approach Haenggi, 2013, STOCHASTIC GEOMETRY Hall A., 1962, METHODOLOGY SYSTEMS Harb A, 2011, RENEW ENERG, V36, P2641, DOI 10.1016/j.renene.2010.06.014 High-Level Expert Group on Arti~cial Intelligence, 2019, DE NITION MAIN CAPAB High-Level Export Group on AI, 2019, Ethics Guidelines for Trustworthy AI Hind M., 2019, XRDS: Crossroads, the ACM Magazine for Students, V25, P16, DOI DOI 10.1145/3313096 Honderich T., 2005, OXFORD COMPANION PHI, P668 Hubka V., 1988, THEORY TECHNICAL SYS Hugoson MÅ, 2009, IFIP ADV INF COMM TE, V303, P106 HUURDEMAN AntonA., 2003, WORLDWIDE HIST TELEC IEEE, 2020, SYSTEMS ENG BODY KNO IEEE Computational Intelligence Society, 2019, SMARTWORLD TECHNICAL IEEE Computer Society, 2019, COMPUTING CURRICULUM Iivari J., 1991, European Journal of Information Systems, V1, P249, DOI 10.1057/ejis.1991.47 International Vocabulary of Metrology~Basic and General Concepts and Associated Terms (VIM), 2012, DOCUMENT JCGM 200201, V3rd Investopedia, 2018, INTERACTIVECORP IAC ITU Focus Group on Technologies for Network, 2018, DOCUMENT FG NET 2030 ITU-T Focus Group on AI for Health, 2020, DEL054 TRAIN TEST DA Jacobson I., 2004, Software Systems Modeling, V3, P210, DOI [DOI 10.1007/S10270-004-0060-3, 10.1007/s10270-004-0060-3] Jain R. K., 2010, MANAGEMENT RES DEV O, V3rd Jarke M., 1998, Requirements Engineering, V3, P155, DOI 10.1007/s007660050002 Javidan M, 1998, LONG RANGE PLANN, V31, P60, DOI 10.1016/S0024-6301(97)00091-5 Johnson RR, 2004, J BUS TECH COMMUN, V18, P251, DOI 10.1177/1050651904182008 Kahlen F.J., 2017, Transdisciplinary perspectives on complex systems, DOI DOI 10.1007/978-3-319-38756-7_4 Katsuhiko O., 2010, MODERN CONTROL ENG Kay S. M., 1993, Fundamentals of Statistical Signal Pro-cessing: Estimation Theory Kephart JO, 2003, COMPUTER, V36, P41, DOI 10.1109/MC.2003.1160055 Kim KD, 2012, P IEEE, V100, P1287, DOI 10.1109/JPROC.2012.2189792 King WR, 2006, INFORM MANAGE-AMSTER, V43, P740, DOI 10.1016/j.im.2006.05.003 Kline StephenJay., 1995, CONCEPTUAL FDN MULTI Koksalan M. M., 2011, Multiple Criteria Decision Making: From Early History to the 21st Century Konar A., 2005, COMPUTATIONAL INTELL Konig T., P AUSTR PRES COUNC E, P1 Kortenkamp D, 2016, SPRINGER HANDBOOK OF ROBOTICS, P283 Kossiakoff A., 2020, SYSTEMS ENG PRINCIPL, V3rd Kotseruba I, 2020, ARTIF INTELL REV, V53, P17, DOI 10.1007/s10462-018-9646-y Kreutz D, 2015, P IEEE, V103, P14, DOI 10.1109/JPROC.2014.2371999 Kridel C.A., 2010, Encyclopedia of curriculum studies Kurose J. F., 2013, Computer Networking: A Top-Down Approach: International Edition Laszlo E., 1996, A systems view of the world: A holistic vision for our time Lee LC, 1998, BT TECHNOL J, V16, P94, DOI 10.1023/A:1009686016775 Liu D., 2016, Systems engineering: Design principles and models Liu X, 2019, IEEE ACCESS, V7, P79523, DOI 10.1109/ACCESS.2019.2920763 Ma JH, 2005, INT J PERVASIVE COMP, V1, P53, DOI 10.1108/17427370580000113 Ma JH, 2015, IEEE ACCESS, V3, P2475, DOI 10.1109/ACCESS.2015.2504123 Malgieri G, 2019, COMPUT LAW SECUR REV, V35, DOI 10.1016/j.clsr.2019.05.002 Mammela A., IN PRESS, V2 Mämmelä A, 2018, IEEE ACCESS, V6, P17464, DOI 10.1109/ACCESS.2018.2816605 Mämmelä A, 2017, IEEE CIRC SYST MAG, V17, P12, DOI 10.1109/MCAS.2016.2642679 Markov IL, 2014, NATURE, V512, P147, DOI 10.1038/nature13570 Marler RT, 2004, STRUCT MULTIDISCIP O, V26, P369, DOI 10.1007/s00158-003-0368-6 Marsland S, 2015, DECISION COMMITTEE E Martin M., 2004, Ethics in engineering, V4th Maslow Abraham Harold, 1981, Motivation and personality Matheson D., 2015, An Introduction to the Study of Education, V4th Matinmikko-Blue M., 2020, IS CRYPTO FINANCIAL Maurer M., 2015, AUTONOMOUS DRIVING T McGarry K., 1999, Neural Computing Surveys, V2 Meadows D. H., 2008, Thinking in systems: a primer Medsker L.R., 1995, HYBRID INTELLIGENT S Mendel J., 1970, Adaptive, Learning and Pattern Recognition Systems: Theory and Applications MESAROVIC M., 1970, THEORY HIERARCHICAL Miller JamesGrier., 1978, LIVING SYSTEMS MILLER JG, 1973, Q REV BIOL, V48, P63, DOI 10.1086/407588 Milojicic D, 2019, COMPUTER, V52, P31, DOI 10.1109/MC.2019.2944708 Mineraud J, 2016, COMPUT COMMUN, V89-90, P5, DOI 10.1016/j.comcom.2016.03.015 Mitchell Melanie, 2009, COMPLEXITY GUIDED TO, DOI DOI 10.1063/1.3326990 Mitchell T. M., 1997, Mach Learn Müller MK, 2018, EURASIP J WIREL COMM, DOI 10.1186/s13638-018-1238-7 Murata Satoshi., 2012, Self-organizing robots Neubauer C., 2018, GLOBAL PRESSING PROB Nguyen D. C., 2020, ARXIV200300866 Nielsen CB, 2015, ACM COMPUT SURV, V48, DOI 10.1145/2794381 Nielsen J., 1994, Usability Engineering | Guidebooks, pp 362, DOI DOI 10.5555/2821575 Nilsson N. J., 1998, ARTI CIAL INTELLIGEN Norman, 2013, DESIGN EVERYDAY THIN Ovaska SJ, 2006, IEEE T SYST MAN CY C, V36, P439, DOI 10.1109/TSMCC.2005.855528 Pahlavan K, 2015, IEEE ACCESS, V3, P3058, DOI 10.1109/ACCESS.2015.2508648 Panetta K., 2019, 5 TRENDS EMERGE GART Partridge C, 2011, ACM SIGCOMM COMP COM, V41, P24, DOI 10.1145/2043165.2043170 Pautasso Cesare., 2009, P 18 INT C WORLD WID Peltonen E., 2020, ARXIV200414850 Perona E., 2005, REV EC ESTADISTICA, V43, P29 PLATT JR, 1964, SCIENCE, V146, P347, DOI 10.1126/science.146.3642.347 Provost F, 2013, BIG DATA, V1, P51, DOI 10.1089/big.2013.1508 Pyster A., 2015, Graduate Reference Curriculum for Systems Engineering (GRCSETM) V1.1 Ramage M, 2009, SYSTEMS THINKERS, P1, DOI 10.1007/978-1-84882-525-3 Reese B., 2019, GIGAOM Repko A. F., 2020, INTERDISCIPLINARY RE Robertazzi T. G., 1986, IEEE Communications Magazine, V24, P28, DOI 10.1109/MCOM.1986.1092925 Robson David., 2019, The Intelligence Trap: Why Smart People Make Dumb Mistakes Rosenberg Alexander., 2012, Philosophy of Science: A Contemporary Introduction Rudas IJ, 2008, INT J COMPUT COMMUN, V3, P132 Russell S., 2010, Arti cial Intelligence: A Modern Approach Russell S, 2015, AI MAG, V36, P105, DOI 10.1609/aimag.v36i4.2577 Saridis G.N., 2001, Hierarchically Intelligent Machines, DOI 10.1142/4846 SARIDIS GN, 1979, P IEEE, V67, P1115, DOI 10.1109/PROC.1979.11407 Satyanarayanan M, 2001, IEEE PERS COMMUN, V8, P10, DOI 10.1109/98.943998 Schetzen M., 2006, VOLTERRA WIENER THEO Schwab K., 2017, 4 IND REVOLUTION Sheridan T. B., 2016, MODELING HUMAN SYSTE Shortle John F., 2018, Fundamentals of Queueing Theory, V4th Singh S., 2019, 12 MEGA THEMES WILL Snider E, 2020, NATURE, V586, P373, DOI 10.1038/s41586-020-2801-z Software and Systems Engineering Vocabulary, 2017, IEEE COMPUTER SOC IS Solovjew-Wartiovaara A., 2019, FINNISH INNOVATION F Stanford Encyclopedia of Philosophy Stanford University Stanford CA USA, 2019, FRAME PROBLEM Stankovic JA, 2014, IEEE INTERNET THINGS, V1, P3, DOI 10.1109/JIOT.2014.2312291 Statista, 2019, Internet of Things (IoT) connected devices installed base worldwide from 2015 to 2025 Statista, 2019, SIZE INTERNET THINGS Stonier T., 1992, INFORM STONIER T., 1997, Information and meaning: an evolutionary perspective Strogatz S., 2014, Studies in Nonlinearity Swanson J, 2002, J OPER RES SOC, V53, P472, DOI 10.1057/palgrave.jors.2601336 Sycara KP, 1998, AI MAG, V19, P79 Talbi EG, 2009, Metaheuristics from design to implementation Thiel D.V., 2014, Research methods for engineer Tsoukiàs A, 2008, EUR J OPER RES, V187, P138, DOI 10.1016/j.ejor.2007.02.039 Tubiello FN, 2015, GLOBAL CHANGE BIOL, V21, P2655, DOI 10.1111/gcb.12865 Turing D., 2018, STORY COMPUTING ABAC Tzafestas S. G., 2018, ENERGY FEEDBACK ADAP United Nations, 2015, TRANSF OUR WORLD 203, DOI [10.1891/9780826190123.ap02, DOI 10.1891/9780826190123.AP02] Valavanis K., 2007, ADV UNMANNED AERIAL Veldhuizen V., 2007, EVOLUTIONARY ALGORIT Viswanathan H, 2020, IEEE ACCESS, V8, P57063, DOI 10.1109/ACCESS.2020.2981745 Vogt A., 2019, TEKNOWLOGY von Solms R, 2013, COMPUT SECUR, V38, P97, DOI 10.1016/j.cose.2013.04.004 W3C, 2020, SEMANT WEB WEISER M, 1991, SCI AM, V265, P94, DOI 10.1038/scientificamerican0991-94 West Geoffrey, 2017, SCALE UNIVERSAL LAWS Widrow B., 1985, ADAPTIVE SIGNAL PROC WILDER RL, 1967, SCIENCE, V156, P605, DOI 10.1126/science.156.3775.605 Wilenius M, 2014, EUR J FUTURES RES, V2, DOI 10.1007/s40309-014-0036-7 Wilson EO., 1998, Consilience: The unity of knowledge Yang P, 2019, ACM T INTEL SYST TEC, V10, DOI 10.1145/3339474 Yang X.-S., 2010, Engineering Optimization: An Introduction with Metaheuristic Applications, DOI DOI 10.1002/9780470640425 Yanofsky NS, 2013, OUTER LIMITS OF REASON: WHAT SCIENCE, MATHEMATICS, AND LOGIC CANNOT TELL US, P1 Yaqoob I, 2017, IEEE WIREL COMMUN, V24, P10, DOI 10.1109/MWC.2017.1600421 Zhang LX, 2013, IEEE T IND INFORM, V9, P403, DOI 10.1109/TII.2012.2219540 Zhang ZQ, 2019, IEEE VEH TECHNOL MAG, V14, P28, DOI 10.1109/MVT.2019.2921208 Zhu C, 2015, IEEE ACCESS, V3, P2151, DOI 10.1109/ACCESS.2015.2497312 NR 243 TC 11 Z9 11 U1 1 U2 29 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 2169-3536 J9 IEEE ACCESS JI IEEE Access PY 2021 VL 9 BP 53156 EP 53177 DI 10.1109/ACCESS.2021.3069902 PG 22 WC Computer Science, Information Systems; Engineering, Electrical & Electronic; Telecommunications WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Computer Science; Engineering; Telecommunications GA RM7YC UT WOS:000639873400001 OA gold, Green Submitted DA 2024-09-05 ER PT C AU Zheng, YP Zhou, ZQ Blikstein, P AF Zheng, Yipu Zhou, Zhuqian Blikstein, Paulo BE Rodrigo, MM Matsuda, N Cristea, AI Dimitrova, V TI Towards an Inclusive and Socially Committed Community in Artificial Intelligence in Education: A Social Network Analysis of the Evolution of Authorship and Research Topics over 8 Years and 2509 Papers SO ARTIFICIAL INTELLIGENCE IN EDUCATION, PT I SE Lecture Notes in Computer Science LA English DT Proceedings Paper CT 23rd International Conference on Artificial Intelligence in Education (AIED) CY JUL 27-31, 2022 CL Durham Univ, Durham, ENGLAND HO Durham Univ DE Co-authorship network; Social network analysis; Keyword analysis; Bibliometric analysis AB This paper presents an overviewof the last decade of research on Artificial Intelligence in Education by conducting keyword and social network analysis on the time-evolving co-authorship networks in four major research conferences: the International Conference on Artificial Intelligence in Education, the International Conference on Educational Data Mining, the International Conference on Learning Analytics and Knowledge, and the ACM Conference on Learning at Scale. Time-evolving co-authorship networks were used as a proxy for the collaboration dynamic in the field, while keyword analysis was conducted to supplement the social network analysis in order to pinpoint foci of individuals and cliques. Recent research foci and the level of openness of the four research communities were examined to inform strategies on how to promote diverse ideas and further collaborations within the field of AI in Education. C1 [Zheng, Yipu; Zhou, Zhuqian; Blikstein, Paulo] Columbia Univ, Teachers Coll, New York, NY 10027 USA. C3 Columbia University Teachers College; Columbia University RP Zheng, YP (corresponding author), Columbia Univ, Teachers Coll, New York, NY 10027 USA. EM yz3204@tc.columbia.edu; zz2404@tc.columbia.edu; paulob@tc.columbia.edu RI ; Blikstein, Paulo/F-2396-2019 OI Zhou, Zhuqian/0000-0002-8045-6213; Blikstein, Paulo/0000-0003-3941-1088 CR Abbasi A, 2011, SCIENTOMETRICS, V89, P687, DOI 10.1007/s11192-011-0463-1 Benjamin R., 2019, Race After Technology: Abolitionist Tools for the New Jim Code Berendt B, 2020, LEARN MEDIA TECHNOL, V45, P312, DOI 10.1080/17439884.2020.1786399 Blikstein Paulo., 2021, Algorithmic Rights and Protections for Children, DOI [https://doi.org/10.1162/ba67f642.646d0673, DOI 10.1162/BA67F642.646D0673] Cheong F., 2009, P 17 EUROPEAN C INFO Clauset A, 2004, PHYS REV E, V70, DOI 10.1103/PhysRevE.70.066111 Feng SH, 2020, SCI REP-UK, V10, DOI 10.1038/s41598-020-64351-3 Luckin R., 2016, INTELLIGENCE UNLEASH Pesta Bryan, 2018, J Intell, V6, DOI 10.3390/jintelligence6040046 Sarigöl E, 2014, EPJ DATA SCI, V3, DOI 10.1140/epjds/s13688-014-0009-x Selwyn N, 2020, LEARN MEDIA TECHNOL, V45, P1, DOI 10.1080/17439884.2020.1694945 Taddeo M, 2018, SCIENCE, V361, P751, DOI 10.1126/science.aat5991 Zawacki-Richter O, 2019, INT J EDUC TECHNOL H, V16, DOI 10.1186/s41239-019-0171-0 Zuboff S, 2015, J INF TECHNOL-UK, V30, P75, DOI 10.1057/jit.2015.5 NR 14 TC 1 Z9 1 U1 4 U2 10 PU SPRINGER INTERNATIONAL PUBLISHING AG PI CHAM PA GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND SN 0302-9743 EI 1611-3349 BN 978-3-031-11644-5; 978-3-031-11643-8 J9 LECT NOTES COMPUT SC PY 2022 VL 13355 BP 414 EP 426 DI 10.1007/978-3-031-11644-5_34 PG 13 WC Computer Science, Artificial Intelligence; Computer Science, Interdisciplinary Applications; Education & Educational Research WE Conference Proceedings Citation Index - Science (CPCI-S); Conference Proceedings Citation Index - Social Science & Humanities (CPCI-SSH) SC Computer Science; Education & Educational Research GA BU1FW UT WOS:000877435100034 DA 2024-09-05 ER PT J AU Pan, XQ Gan, ZD AF Pan, Xiaoquan Gan, Zhengdong TI Perceiving Technology-Based Professional Development Practices for Teachers: Accounts From English as a Foreign Language (EFL) Teachers in China SO INTERNATIONAL JOURNAL OF COMPUTER-ASSISTED LANGUAGE LEARNING AND TEACHING LA English DT Article DE Collaboration; Community of Practice; Institutional Culture; Interaction; Online Learning Community; Teacher Professional Development; Teachers' Belief; Technology-Based Professional Development ID COMMUNITY; IDENTITY; AGENCY; MODEL AB This study explored how 26 Chinese EFL teachers perceived community-based, technology-supported professional development practices. The methods of data collection in this study blend quantitative and qualitative techniques: 1) questionnaire survey of teachers' satisfaction about community-based technology-supported professional development practices; 2) online teacher discussion postings; 3) teacher self-reflection journals; and 4) semi-structured interviews. Data analysis revealed a generally positive attitude and empowering feelings in these Chinese EFL teachers who viewed technology-facilitated practices as affording constructive functions for their professional development. Results also revealed a range of factors that apparently mediated/limited EFL teachers' participation in the professional development activities. This study thus contributes to the understanding of the reality in relation to actual utilization of technological resources in second-language teacher development in the context of a developing country such as China. C1 [Pan, Xiaoquan] Zhejiang Normal Univ, Xingzhi Coll, Jinhua, Zhejiang, Peoples R China. [Gan, Zhengdong] Univ Macau, Fac Educ, Macau, Peoples R China. C3 Zhejiang Normal University; University of Macau RP Pan, XQ (corresponding author), Zhejiang Normal Univ, Xingzhi Coll, Jinhua, Zhejiang, Peoples R China. FU Department of Education of Zhejiang Province [kg20160564] FX This research was supported by the Department of Education of Zhejiang Province [grant number kg20160564]. CR [Anonymous], 2000, HDB QUALITATIVE RES [Anonymous], 1998, COMMUNITIES PRACTICE, DOI DOI 10.1017/CBO9780511803932 [Anonymous], 2004, Situated Language and Learning: A Critique of Traditional Schooling, DOI DOI 10.4324/9780203594216 [Anonymous], 2008, Journal of Technology and Teacher Education Avalos B, 2011, TEACH TEACH EDUC, V27, P10, DOI 10.1016/j.tate.2010.08.007 Booth SE, 2015, BRIT J EDUC TECHNOL, V46, P684, DOI 10.1111/bjet.12168 Carter K., 2004, Technology Learning, V24, P32 Chen YS, 2009, COMPUT EDUC, V53, P1155, DOI 10.1016/j.compedu.2009.05.026 Chih-Hsiung Tu, 2002, American Journal of Distance Education, V16, P131, DOI 10.1207/S15389286AJDE1603_2 Cho V, 2013, LEARN LANDSC, V6, P45, DOI 10.36510/learnland.v6i2.604 Clandinin D., 1995, Advances in contemporary educational thought Clarke L, 2009, COMPUT EDUC, V52, P521, DOI 10.1016/j.compedu.2008.10.006 Cochran-Smith M, 1999, REV RES EDUC, V24, P249, DOI 10.3102/0091732X024001249 Day C., 1999, DEV TEACHERS CHALLEN Dede C., 2006, ONLINE PROFESSIONAL Dede C, 2009, J TEACH EDUC, V60, P8, DOI 10.1177/0022487108327554 Fereday J., 2006, INT J QUAL METH, V5, P80, DOI [DOI 10.1177/160940690600500107, 10.1177/160940690600500107] Gan ZD, 2016, ASIA-PAC EDUC RES, V25, P251, DOI 10.1007/s40299-015-0258-x Gerstein J., 2011, International Journal on E-Learning, V10, P273 Graham P., 2007, RMLE ONLINE RES MIDD, V31, P1, DOI DOI 10.1080/19404476.2007.11462044 Hough B. W., 2004, Journal of Technology and Teacher Education, V12, P361 Hramiak A, 2010, TECHNOL PEDAGOG EDUC, V19, P47, DOI 10.1080/14759390903579265 Judson E., 2006, Journal of Technology and Teacher Education, V14, P581, DOI DOI 10.1007/978-94-6209-266-2_ Kear K, 2010, OPEN FLEX LEARN SER, P1 Killen R., 2009, Effective teaching strategies: Lessons from research and practice King K. P., 2002, Internet and Higher Education, V5, P231, DOI 10.1016/S1096-7516(02)00104-5 Lai C, 2015, INNOV LANG LEARN TEA, V9, P265, DOI 10.1080/17501229.2014.918982 Lee K., 2013, Journal of Technology and Teacher Education, V21, P89 Lee KW, 2018, INT J COMPUT-ASSIST, V8, P13, DOI 10.4018/IJCALLT.2018100102 Lieberman A, 2000, J TEACH EDUC, V51, P221, DOI 10.1177/0022487100051003010 Lieberman A., 2008, TEACHERS PROFESSIONA Little JW, 2002, TEACH TEACH EDUC, V18, P917 Lomos C, 2011, SCH EFF SCH IMPROV, V22, P121, DOI 10.1080/09243453.2010.550467 McLoughlin C, 2010, J CASES INF TECHNOL, V12, P17, DOI 10.4018/jcit.2010010102 Mehli H, 2013, RES SCI TECHNOL EDUC, V31, P31, DOI 10.1080/02635143.2012.761604 Moate J, 2014, BRIT J EDUC STUD, V62, P249, DOI 10.1080/00071005.2014.955456 Mouza C, 2015, COMPUT EDUC, V88, P1, DOI 10.1016/j.compedu.2015.04.009 Opfer VD, 2011, TEACH TEACH EDUC, V27, P443, DOI 10.1016/j.tate.2010.09.014 Patton M., 2002, QUALITATIVE RES EVAL, DOI DOI 10.1002/NUR.4770140111 Prenger R, 2017, TEACH TEACH EDUC, V68, P77, DOI 10.1016/j.tate.2017.08.014 Prestridge S, 2017, TECHNOL PEDAGOG EDUC, V26, P85, DOI 10.1080/1475939X.2016.1167113 Prestridge S, 2010, TEACH TEACH EDUC, V26, P252, DOI 10.1016/j.tate.2009.04.004 Sahin I., 2007, J TECHNOLOGY TEACHER, V15, P167 Santoro DA, 2011, TEACH COLL REC, V113, P2670 Schn D. A., 1987, Educating the reflexive practitioner Shea P., 2006, Internet and Higher Education, V9, P175, DOI 10.1016/j.iheduc.2006.06.005 Sjoer E, 2016, EUR J TEACH EDUC, V39, P110, DOI 10.1080/02619768.2014.994058 Smith P., 2017, The challenge of teaching: Through the eyes of pre-service teachers, P25, DOI [DOI 10.1007/978-981-10-2571-6_4, https://doi.org/10.1007/978-981-10-2571-6_4] Stiler G.M., 2003, EDUCATION, V123, P789 Trent J, 2013, TECHNOL PEDAGOG EDUC, V22, P3, DOI 10.1080/1475939X.2012.720416 Vähäsantanen K, 2015, TEACH TEACH EDUC, V47, P1, DOI 10.1016/j.tate.2014.11.006 Vescio V, 2008, TEACH TEACH EDUC, V24, P80, DOI 10.1016/j.tate.2007.01.004 Wenger E., 2009, Digital habitats: Stewarding technology for communities Wu B, 2016, J EDUC COMPUT RES, V54, P531, DOI 10.1177/0735633115621922 Yang H, 2012, TECHNOL PEDAGOG EDUC, V21, P101, DOI 10.1080/1475939X.2012.659886 NR 55 TC 7 Z9 7 U1 3 U2 33 PU IGI GLOBAL PI HERSHEY PA 701 E CHOCOLATE AVE, STE 200, HERSHEY, PA 17033-1240 USA SN 2155-7098 EI 2155-7101 J9 INT J COMPUT-ASSIST JI Int. J. Comput.-Assist. Lang. Learn. Teach. PD APR-JUN PY 2020 VL 10 IS 2 BP 40 EP 58 DI 10.4018/IJCALLT.2020040103 PG 19 WC Education & Educational Research WE Emerging Sources Citation Index (ESCI) SC Education & Educational Research GA PP3BA UT WOS:000605740200003 DA 2024-09-05 ER PT J AU Nti, IK Bawah, FU Quarcoo, JA Kalos, F AF Nti, Isaac Kofi Bawah, Faiza Umar Quarcoo, Juanita Ahia Kalos, Favour TI A Bibliometric Analysis of Soft Computing Technology Applications Trends and Characterisation in Educational Research: Africa SO AFRICA EDUCATION REVIEW LA English DT Article DE Africa education; artificial intelligence in education; educational analytics; educational data mining; education technology; soft computing technology applications in education ID STUDENTS; PERFORMANCE; METAANALYSIS AB Computers in education, along with soft-computing technology applications, have revolutionised global interconnectedness and the need for a well-educated workforce. Many studies worldwide explore technology in education, often relying on systematic reviews, though concerns about selection bias have emerged. This article takes a different approach, employing bibliometric analysis to delve into the trends, key authors, institutions, and themes of soft-computing technology applications in education (SCTAE) research in Africa. Initially, 7 435 papers were downloaded from Scopus and then narrowed down to 1 358 using the PRISMA model and defined criteria. Utilising the VOSViewer text mining tool, the article maps out prolific authors, institutions, and thematic networks. It provides detailed findings and outlines opportunities, challenges, and future research prospects in SCTAE in the African context. C1 [Nti, Isaac Kofi] Univ Cincinnati, Cincinnati, ND 45221 USA. [Bawah, Faiza Umar; Kalos, Favour] Univ Energy & Nat Resources, Sunyani, Ghana. [Quarcoo, Juanita Ahia] Sunyani Tech Univ, Sunyani, Ghana. RP Nti, IK (corresponding author), Univ Cincinnati, Cincinnati, ND 45221 USA. EM isaac.nti@uc.edu RI NTI, ISAAC KOFI/E-2004-2017 OI NTI, ISAAC KOFI/0000-0001-9257-4295; Ahia Quarcoo, Juanita/0000-0001-7702-755X CR Adekitan AI, 2019, HELIYON, V5, DOI 10.1016/j.heliyon.2019.e01250 Aghayev Firudin T., 2017, Problems of Information Society, V13, P97, DOI [https://doi.org/10.25045/jpis.v13.i1.12, DOI 10.25045/JPIS.V13.I1.12] Avasthi S., 2021, Advances in Information Communication Technology and Computing, P385 Birhanu AM, 2014, BMC PUBLIC HEALTH, V14, DOI 10.1186/1471-2458-14-1186 Castro L, 2022, J CLEAN PROD, V331, DOI 10.1016/j.jclepro.2021.130004 Dandouh K, 2019, J BIG DATA-GER, V6, DOI 10.1186/s40537-019-0169-4 Deressa W, 2011, BMC PUBLIC HEALTH, V11, DOI 10.1186/1471-2458-11-660 El Shenawy E, 2007, INT J QUAL RELIAB MA, V24, P442, DOI 10.1108/02656710710748349 Ellegaard O, 2015, SCIENTOMETRICS, V105, P1809, DOI 10.1007/s11192-015-1645-z Faheem Abdul., 2021, 4th Industrial Revolution: Challenges and Opportunities Gao Yuhang, 2021, Theor. Pract. Lang. Stud., V11, P202 George TT, 2021, S AFR J BOT, V141, P12, DOI 10.1016/j.sajb.2021.04.025 Glenisson P, 2005, SCIENTOMETRICS, V63, P163, DOI 10.1007/s11192-005-0208-0 Hailemeskel S, 2016, INT J WOMENS HEALTH, V8, P489, DOI 10.2147/IJWH.S112768 Hair JF, 2021, J MARKET THEORY PRAC, V29, P65, DOI 10.1080/10696679.2020.1860683 Hawlitschek A, 2023, COMPUT SCI EDUC, V33, P400, DOI 10.1080/08993408.2022.2039504 Herrera-Franco G., 2021, Int. J. Sustain. Dev. Plan, V16, P1109, DOI [10.18280/ijsdp.160612, DOI 10.18280/IJSDP.160612] Kebede MA, 2019, INT J MENT HEALTH SY, V13, DOI 10.1186/s13033-019-0287-6 Kechaou Z., 2011, 2011 IEEE Global Engineering Education Conference (EDUCON), P1032, DOI 10.1109/EDUCON.2011.5773275 Kotzé M, 2013, J PSYCHOL AFR, V23, P51, DOI 10.1080/14330237.2013.10820593 Kumar S., 2011, 2011 3rd International Conference on Electronics Computer Technology (ICECT 2011), P414, DOI 10.1109/ICECTECH.2011.5942032 Linnenluecke MK, 2020, AUST J MANAGE, V45, P175, DOI 10.1177/0312896219877678 Liu GW, 2019, CONSTR INNOV-ENGL, V19, P343, DOI 10.1108/CI-03-2018-0013 Loeneto Bambang Apriady., 2022, Handbook of Research on Teacher Education: Innovations and Practices in Asia, edited by Myint Swe Khine and Yang Liu, P173, DOI [https://doi.org/10.1007/978-981-16-9785-2_10, DOI 10.1007/978-981-16-9785-2_10] Lu KY, 2022, APPL INTELL, V52, P13689, DOI 10.1007/s10489-021-02909-y Maphosa M, 2022, IEEE T EDUC, V65, P657, DOI 10.1109/TE.2022.3160935 Matsebula F, 2017, AFRICON, P951, DOI 10.1109/AFRCON.2017.8095610 Asad MM, 2022, EDUC RES INT, V2022, DOI 10.1155/2022/8262304 Mwalumbwe I, 2017, ELECTR J INF SYS DEV, V79 Nti IK, 2022, J COMPUT EDUC, V9, P195, DOI 10.1007/s40692-021-00201-z Nyirahabimana P., 2022, LUMAT INT J MATH SCI, V10, P89, DOI [10.31129/lumat.10.1.1634, DOI 10.31129/LUMAT.10.1.1634] Ogor EN, 2007, ELECT ROBOT AUTO MEC, P354, DOI 10.1109/CERMA.2007.4367712 Olufadi Y, 2015, COMPUT EDUC, V86, P84, DOI 10.1016/j.compedu.2015.03.005 Parlina A, 2020, INFORMATION, V11, DOI 10.3390/info11020069 Perry K, 2022, EDUC RES REV-NETH, V36, DOI 10.1016/j.edurev.2022.100451 Qazdar A, 2019, EDUC INF TECHNOL, V24, P3577, DOI 10.1007/s10639-019-09946-8 Ramadan R. A., 2010, 2010 6th International Conference on Intelligent Environments (IE), P344, DOI 10.1109/IE.2010.70 Rinaldi AM, 2021, EXPERT SYST APPL, V169, DOI 10.1016/j.eswa.2020.114320 Ross T., 2012, SURVIVAL GUIDE HLTH, VFirst Royle P, 2013, SYST REV-LONDON, V2, DOI 10.1186/2046-4053-2-74 Saheb T, 2019, HEALTHC INFORM RES, V25, P61 Saint J., 2022, Computers and Education: Artificial intelligence, V3, P100060, DOI DOI 10.1016/J.CAEAI.2022.100060 Sivakumar S., 2016, Indian Journal of Science and Technology, V9, P1, DOI [10.17485/ijst/2016/v9i4/87032, DOI 10.17485/IJST/2016/V9I4/87032] Speringer Markus., 2018, InTechOpen, DOI [https://doi.org/10.5772/intechopen.79165, DOI 10.5772/INTECHOPEN.79165] Stegenga J, 2011, STUD HIST PHI PART C, V42, P497, DOI 10.1016/j.shpsc.2011.07.003 Talan T, 2023, INFORM EDUC, V22, P161, DOI 10.15388/infedu.2023.02 Tella A., 2007, Eurasia Journal of Mathematics, Science Technology Education, V3, P149 Walker E, 2008, CLEV CLIN J MED, V75, P431, DOI 10.3949/ccjm.75.6.431 Yu D., 2019, J. Data. Infor. Manag, V1, P3, DOI [10.3390/su10010166, 10.1007/s42488-019-00001-2, DOI 10.1007/S42488-019-00001-2] NR 49 TC 0 Z9 0 U1 5 U2 5 PU ROUTLEDGE JOURNALS, TAYLOR & FRANCIS LTD PI ABINGDON PA 2-4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND SN 1814-6627 EI 1753-5921 J9 AFR EDUC RE JI Afr. Educ. Rev. PD MAY 4 PY 2022 VL 19 IS 3 BP 55 EP 77 DI 10.1080/18146627.2023.2284744 PG 23 WC Education & Educational Research WE Emerging Sources Citation Index (ESCI) SC Education & Educational Research GA CF0E1 UT WOS:001123710200001 DA 2024-09-05 ER PT J AU Limaymanta, CH Apaza-Tapia, L Vidal, E Gregorio-Chaviano, O AF Limaymanta, Cesar H. Apaza-Tapia, Ludgarda Vidal, Elizabeth Gregorio-Chaviano, Orlando TI Flipped Classroom in Higher Education: A Bibliometric Analysis and Proposal of a Framework for its Implementation SO INTERNATIONAL JOURNAL OF EMERGING TECHNOLOGIES IN LEARNING LA English DT Article DE Flipped classroom; Bibliometrics; Higher education; Active learning; Framework; Scientific collaboration; Co-occurrence; Scientific production; Information and communication technology ID UNIVERSITY; SCIENCE; COLLABORATION AB The flipped classroom as an educational model is perfectly aligned with the current demands of higher education. Therefore, the objectives of this article were to carry out a bibliometric analysis of the scientific production of the flipped classroom in higher education (2012-2020) and to propose a framework for its implementation in face-to-face, blended or online learning modalities. The records were recovered from the Web of Science Core Collection and Scopus, from which, after a five-phase methodological process, a consolidated dataset of 782 documents was obtained. The results showed the importance of the subject matter as scientific production reflected a continuous growth during the period of study. For their part, the most productive authors come from various institutions worldwide with an H index of over 50. The collaboration indicators show the growth trend of these indexes over the years, which reflects the capacity to generate national and international impact in the documents published in collaboration. The keywords co-occurrence analysis showed that the flipped classroom as a technological and innovative approach is complemented by active learning, blended learning, e-learning, ICT, teaching method, among others. Finally, a framework with five components was proposed as a basic guide for the implementation of the flipped classroom in higher education. C1 [Limaymanta, Cesar H.] Univ Nacl Mayor San Marcos, Lima, Peru. [Limaymanta, Cesar H.] Univ Peruana Ciencias Aplicadas, Lima, Peru. [Apaza-Tapia, Ludgarda] Univ Nacl San Agustin Arequipa, Sch Accounting & Financial Sci, Arequipa, Peru. [Vidal, Elizabeth] Univ Nacl San Agustin Arequipa, Comp & Syst Engn Dept, Arequipa, Peru. [Gregorio-Chaviano, Orlando] Pontificia Univ Javeriana, Bibliometr, Bogota, Colombia. C3 Universidad Nacional Mayor de San Marcos; Universidad Peruana de Ciencias Aplicadas (UPC); Universidad Nacional de San Agustin de Arequipa; Universidad Nacional de San Agustin de Arequipa; Pontificia Universidad Javeriana RP Limaymanta, CH (corresponding author), Univ Nacl Mayor San Marcos, Lima, Peru.; Limaymanta, CH (corresponding author), Univ Peruana Ciencias Aplicadas, Lima, Peru. EM climaymantaa@unmsm.edu.pe RI Limaymanta, Cesar H/IUM-1770-2023; Limaymanta, Cesar H./AAC-2537-2019; Gregorio-Chaviano, Orlando/B-5480-2018; Vidal, Elizabeth/HMV-4001-2023 OI Limaymanta, Cesar H./0000-0002-8797-4275; Gregorio-Chaviano, Orlando/0000-0002-3064-8639; Vidal, Elizabeth/0000-0002-8367-9439; Apaza-Tapia, Ludgarda/0000-0001-8894-3879 CR Abeysekera L, 2015, HIGH EDUC RES DEV, V34, P1, DOI 10.1080/07294360.2014.934336 Aguilera C., 2017, International Journal of Developmental and Educational Psychology, V4, P261, DOI DOI 10.17060/IJODAEP.2017.N1.V4.1055 AJIFERUKE I, 1988, SCIENTOMETRICS, V14, P421, DOI 10.1007/BF02017100 Al-Shabibi T.S., 2019, International Journal of Learning, Teaching and Educational Research, V18, P96, DOI DOI 10.26803/IJLTER.18.3.6 [Anonymous], 2008, ACIMED Aprianto E, 2020, INT J EMERG TECHNOL, V15, P114, DOI 10.3991/ijet.v15i24.14017 Bergmann J, 2012, FLIP YOUR CLASSROOM Bergmann J.y., 2014, Dale la vuelta a tu clase. Lleva tu clase a cada estudiante Brewer R, 2018, J COMPUT ASSIST LEAR, V34, P409, DOI 10.1111/jcal.12250 Carver R., 1996, J EXPERIENT EDUC, V19, P8, DOI DOI 10.1177/105382599601900102 Chan SY, 2020, INNOV EDUC TEACH INT, V57, P62, DOI 10.1080/14703297.2018.1541189 DePietro DM, 2021, ACAD RADIOL, V28, P128, DOI 10.1016/j.acra.2020.10.005 Deterding S., 2011, P 15 INT ACAD MINDTR, P9, DOI DOI 10.1145/2181037.2181040 Ellegaard O, 2015, SCIENTOMETRICS, V105, P1809, DOI 10.1007/s11192-015-1645-z Franceschet M, 2011, J AM SOC INF SCI TEC, V62, P1992, DOI 10.1002/asi.21614 Glänzel W, 2012, PROF INFORM, V21, P194, DOI 10.3145/epi.2012.mar.11 Glanzel Wolfgang., 2002, Coauthorship patterns and trends in the sciences (1980-1998): A bibliometric study with implications for database indexing and search strategies GROOS OV, 1969, J DOC, V25, P344, DOI 10.1108/eb026482 He WL, 2016, LEARN INSTR, V45, P61, DOI 10.1016/j.learninstruc.2016.07.001 Hew KF, 2020, INT J EDUC TECHNOL H, V17, DOI 10.1186/s41239-020-00234-x Hinojo-Lucena FJ, 2018, SUSTAINABILITY-BASEL, V10, DOI 10.3390/su10051334 Jeong JS, 2021, INTERACT LEARN ENVIR, V29, P707, DOI 10.1080/10494820.2019.1636079 Julia J., 2020, European Journal of Educational Research, V9, P1377, DOI [10.12973/eu-jer.9.4, DOI 10.12973/EU-JER.9.4] Kim MK, 2014, INTERNET HIGH EDUC, V22, P37, DOI 10.1016/j.iheduc.2014.04.003 Lazcano-Peña D, 2020, REV ESP DOC CIENT, V43, DOI 10.3989/redc.2020.1.1626 Lo CK, 2018, KNOWL MANAG E-LEARN, V10, P441 Lundin M, 2018, INT J EDUC TECHNOL H, V15, DOI 10.1186/s41239-018-0101-6 Moral-Munoz JA, 2019, SPRINGER HBK, P159, DOI 10.1007/978-3-030-02511-3_7 O'Flaherty J, 2015, INTERNET HIGH EDUC, V25, P85, DOI 10.1016/j.iheduc.2015.02.002 Ozadowicz A, 2020, EDUC SCI, V10, DOI 10.3390/educsci10100292 Prince M, 2004, J ENG EDUC, V93, P223, DOI 10.1002/j.2168-9830.2004.tb00809.x Martínez TS, 2019, REICE-REV IBEROAM CA, V17, P25, DOI 10.15366/reice2019.17.1.002 Strayer J. F., 2012, LEARNING ENVIRON RES, V15, P171, DOI [10.1007/s10984-012-9108-4, DOI 10.1007/S10984-012-9108-4] Tang T, 2023, INTERACT LEARN ENVIR, V31, P1077, DOI 10.1080/10494820.2020.1817761 Tsai HL, 2020, SCI ED, V7, P163, DOI 10.6087/kcse.212 Umam Khoerul, 2019, International Journal of Interactive Mobile Technologies, V13, P68, DOI 10.3991/ijim.v13i03.10207 UNESCO, 2020, Education: From disruption to recovery Van Eck N.J., 2014, Measuring Scholarly Impact: Methods and Practice, P285, DOI 10.1007/978-3-319-10377-8_13(InEng.) van Eck NJ, 2010, SCIENTOMETRICS, V84, P523, DOI 10.1007/s11192-009-0146-3 van Eck NJ, 2009, J AM SOC INF SCI TEC, V60, P1635, DOI 10.1002/asi.21075 Vargas-Quesada B., 2007, VISUALIZING STRUCTUR, DOI [10.1007/3-540-69728-4, DOI 10.1007/3-540-69728-4] Waltman L, 2010, J INFORMETR, V4, P629, DOI 10.1016/j.joi.2010.07.002 Yang L, 2017, INT J EMERG TECHNOL, V12, P178, DOI 10.3991/ijet.v12i06.7095 Zayapragassarazan Z., 2012, ONLINE SUBMISSION, V19, P3 NR 44 TC 14 Z9 16 U1 2 U2 26 PU INT ASSOC ONLINE ENGINEERING PI WIEN PA KIRCHENGASSE 10-200, WIEN, A-1070, AUSTRIA SN 1863-0383 J9 INT J EMERG TECHNOL JI Int. J. Emerg. Technol. Learn. PY 2021 VL 16 IS 9 BP 133 EP 149 DI 10.3991/ijet.v16i09.21267 PG 17 WC Education & Educational Research WE Emerging Sources Citation Index (ESCI) SC Education & Educational Research GA RZ0OU UT WOS:000648300600009 OA Green Submitted, gold DA 2024-09-05 ER PT C AU García-Sánchez, P Cobo, MJ AF Garcia-Sanchez, P. Cobo, M. J. BE Yin, H Camacho, D Novais, P TallonBallesteros, AJ TI Measuring the Impact of the International Relationships of the Andalusian Universities Using Dimensions Database SO INTELLIGENT DATA ENGINEERING AND AUTOMATED LEARNING (IDEAL 2018), PT II SE Lecture Notes in Computer Science LA English DT Proceedings Paper CT 19th International Conference on Intelligent Data Engineering and Automated Learning (IDEAL) CY NOV 21-23, 2018 CL Univ Autonoma Madrid, Polytechn Sch, Madrid, SPAIN HO Univ Autonoma Madrid, Polytechn Sch DE Bibliometric analysis; International collaboration; Andalusian universities; Dimensions.ai ID COLLABORATION AB Researchers usually have been inclined to publish papers with close collaborators: same University, region or even country. However, thanks to the advancements in communication technologies, members of international research networks can cooperate almost seamlessly. These networks usually tend to publish works with more impact than the local counterparts. In this paper, we try to demonstrate if this assumption is also valid in the region of Andalusia (Spain). The Dimensions.ai database is used to obtain the articles where at least one author is from an Andalusian University. The publication list is divided into 4 geographical areas: local (only one affiliation), regional (only Andalusian affiliations), national (only Spanish affiliations) and International (any affiliation). Results show that the average number of citations per paper increases as the author collaboration networks increases geographically. C1 [Garcia-Sanchez, P.; Cobo, M. J.] Univ Cadiz, Dept Comp Sci & Engn, Cadiz, Spain. C3 Universidad de Cadiz RP García-Sánchez, P (corresponding author), Univ Cadiz, Dept Comp Sci & Engn, Cadiz, Spain. EM pablo.garciasanchez@uca.es; manueljesus.cobo@uca.es RI Cobo Martí­n, Manuel Jesús/C-5581-2011; García-Sánchez, Pablo/G-2166-2010 OI Cobo Martí­n, Manuel Jesús/0000-0001-6575-803X; García-Sánchez, Pablo/0000-0003-4644-2894 FU FEDER funds [TIN2016-75850-R, TIN2017-85727-C4-2-P]; Program of Promotion and Development of Research Activity of the University of Cadiz (Programa de Fomento e Impulso de la actividad Investigadora de la Universidad de Cadiz) FX This contribution has been made possible thanks to Dimensions.ai database. Also, the authors would like to acknowledge FEDER funds under grants TIN2016-75850-R and TIN2017-85727-C4-2-P and Program of Promotion and Development of Research Activity of the University of Cadiz (Programa de Fomento e Impulso de la actividad Investigadora de la Universidad de Cadiz). CR Adams J, 2013, NATURE, V497, P557, DOI 10.1038/497557a [Anonymous], 2018, APPL INTELL, DOI [10.1007/s10489-017-1105-y., DOI 10.1007/s10489-017-1105-y, DOI 10.1007/S10489-017-1105-Y] Cobo MJ, 2011, J AM SOC INF SCI TEC, V62, P1382, DOI 10.1002/asi.21525 Fortunato S, 2018, SCIENCE, V359, DOI 10.1126/science.aao0185 Moed HF, 2013, SCIENTOMETRICS, V94, P929, DOI 10.1007/s11192-012-0783-9 Persson O, 2004, SCIENTOMETRICS, V60, P421, DOI 10.1023/B:SCIE.0000034384.35498.7d Sugimoto CR, 2017, NATURE, V550, P29, DOI 10.1038/550029a Wagner CS, 2005, RES POLICY, V34, P1608, DOI 10.1016/j.respol.2005.08.002 NR 8 TC 6 Z9 6 U1 0 U2 0 PU SPRINGER INTERNATIONAL PUBLISHING AG PI CHAM PA GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND SN 0302-9743 EI 1611-3349 BN 978-3-030-03496-2; 978-3-030-03495-5 J9 LECT NOTES COMPUT SC PY 2018 VL 11315 BP 138 EP 144 DI 10.1007/978-3-030-03496-2_16 PG 7 WC Computer Science, Artificial Intelligence; Computer Science, Information Systems; Computer Science, Theory & Methods WE Conference Proceedings Citation Index - Science (CPCI-S) SC Computer Science GA BQ2MP UT WOS:000582459900016 DA 2024-09-05 ER PT C AU Apanovich, Z Marchuk, A AF Apanovich, Zinaida Marchuk, Alexander BE Allen, RB Hunter, J Zeng, ML TI Experiments on Russian-English Identity Resolution SO DIGITAL LIBRARIES: PROVIDING QUALITY INFORMATION SE Lecture Notes in Computer Science LA English DT Proceedings Paper CT 17th International Conference on Asia-Pacific Digital Libraries (ICADL) CY DEC 09-12, 2015 CL Seoul, SOUTH KOREA DE Linked open data; Cross-language identity resolution; Authorship attribution; Self-citation network; Tf-idf; LDA; Jaro-Winkler AB The focus of this paper is on Russian-English identity resolution when English names of entities have been created by a transliteration or translation of Russian names. A new approach combining attribute-based identity resolution with the text analysis of publications attributed to these entities has been proposed. The dataset of the Open Archive of the Russian Academy of Sciences and digital library SpringerLink are used as test examples. C1 [Apanovich, Zinaida; Marchuk, Alexander] Russian Acad Sci, Siberian Branch, AP Ershov Inst Informat Syst, Novosibirsk, Russia. [Apanovich, Zinaida; Marchuk, Alexander] Novosibirsk State Univ, Novosibirsk 630090, Russia. C3 Russian Academy of Sciences; Ershov Institute of Informatics Systems; Novosibirsk State University RP Apanovich, Z (corresponding author), Russian Acad Sci, Siberian Branch, AP Ershov Inst Informat Syst, Novosibirsk, Russia. EM apanovich@iis.nsk.su; mag@iis.nsk.su RI Apanovich, Zinaida V./K-5339-2018 OI Apanovich, Zinaida/0000-0002-5767-284X CR [Anonymous], 2007, Probabilistic Topic Models Apanovich Z, 2013, COMM COM INF SC, V394, P1 Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993 COHEN WW, 2003, 2 WEB, P73 Ferreira A. A., 2013, LARG BIBL REP C INT Godby C. J., COMMON GROUND EXPLOR Hickey T. B., 2014, D LIB MAGAZINE JUL, V20 Isele Robert, 2010, COLD, V665 Kukushkina O. V., 2001, Problems of Information Transmission, V37, P172, DOI 10.1023/A:1010478226705 Ley M, 2009, PROC VLDB ENDOW, V2, P1493, DOI 10.14778/1687553.1687577 Marchuk A. G., 2010, P RCDL 2010 C, P19 Rogov A. A., 2001, P 6 INT C SEPT 10 14, V2, P187 Schultz A., 2012, SEM TECHN BUS C SAN Song Y, 2007, ACM-IEEE J CONF DIG, P342, DOI 10.1145/1255175.1255243 Stamatatos E, 2009, J AM SOC INF SCI TEC, V60, P538, DOI 10.1002/asi.21001 NR 15 TC 0 Z9 0 U1 0 U2 2 PU SPRINGER INT PUBLISHING AG PI CHAM PA GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND SN 0302-9743 BN 978-3-319-27974-9; 978-3-319-27973-2 J9 LECT NOTES COMPUT SC PY 2015 VL 9469 BP 12 EP 21 DI 10.1007/978-3-319-27974-9_2 PG 10 WC Computer Science, Artificial Intelligence; Computer Science, Interdisciplinary Applications; Computer Science, Theory & Methods; Robotics WE Conference Proceedings Citation Index - Science (CPCI-S) SC Computer Science; Robotics GA BE7RG UT WOS:000375767400002 DA 2024-09-05 ER PT J AU Gehanno, JF Rollin, L Le Jean, T Louvel, A Darmoni, S Shaw, W AF Gehanno, Jean-Francois Rollin, Laetitia Le Jean, Tony Louvel, Alexandre Darmoni, Stefan Shaw, William TI Precision and Recall of Search Strategies for Identifying Studies on Return-To-Work in Medline SO JOURNAL OF OCCUPATIONAL REHABILITATION LA English DT Article DE Return to work; Medline; Bibliometrics ID RANDOMIZED CONTROLLED-TRIALS; MEDICAL SUBJECT-HEADINGS; BIBLIOGRAPHIC DATABASES; OCCUPATIONAL-HEALTH; TEXT-WORD; PUBLICATIONS; RELEVANT; READ; CARE AB Introduction The purpose of this study was to report on the qualities of various search strategies and keywords to find return to work (RTW) studies in the Medline bibliographic database. Methods We searched Medline for articles on RTW published in 2003, using multiple search strings, and hand searched 16 major periodicals of rehabilitation or occupational medicine. Among the retrieved articles, those considered to be relevant, were pooled in a Gold Standard Database. From this database, we identified candidate text words or MeSH terms for search strategies using a word frequency analysis of the abstracts and a MEDLINE categorization algorithm. According to the frequency of identified terms, searches were run for each term independently and in combination. We computed Recall, Precision, and number needed to read (NNR = 1/Precision) of each keyword or combination of keywords. Results Among the 8,073 articles examined, 314 (3.9%) were considered relevant and included in the Gold Standard Database. The search strings ("Rehabilitation, Vocational'' [MeSH]), ("Return to work''[All]) and ("Back to work''[All]) had Recall/Precision ratio of 30.46/19.11, 59.55/87.38 and 3.18/90.91%, respectively. Their combination with the Boolean operator OR yielded to a Recall/Precision ratio of 73.89/58.44% and a NNR of 1.7. For the end user requiring comprehensive literature search, the best string was ("Return to work'' OR "Back to work'' OR "Rehabilitation, vocational''[MeSH] OR "rehabilitation''[Subheading]), with a Recall of 88.22% and a NNR of 18. Conclusions No single MeSH term is available to help the physician to identify relevant studies on RTW in Medline. Locating these types of studies requires the use of various MeSH and non-MeSH terms in combination to obtain a satisfactory Recall. Nevertheless, enhancing the Recall of search strategies may lead to lower Precision, and higher NNR, although with a non linear trend. This factor must be taken into consideration by the end user in order to improve the cost-effectiveness ratio of the search in Medline. C1 [Gehanno, Jean-Francois; Rollin, Laetitia; Louvel, Alexandre] Rouen Univ Hosp, Inst Occupat Hlth, F-76000 Rouen, France. [Le Jean, Tony] Gen Hosp Dieppe, Dept Rehabil Med, Dieppe, France. [Gehanno, Jean-Francois; Darmoni, Stefan] Rouen Univ Hosp, GCSIS Lab, F-76000 Rouen, France. [Shaw, William] Liberty Mutual Res Inst Safety, Hopkinton, MA USA. C3 Universite de Rouen Normandie; CHU de Rouen; Universite de Rouen Normandie; CHU de Rouen; Liberty Mutual Research Institute for Safety RP Gehanno, JF (corresponding author), Rouen Univ Hosp, Inst Occupat Hlth, 1 Rue Germont, F-76000 Rouen, France. EM jean-francois.gehanno@chu-rouen.fr RI Shaw, William/Q-3013-2019; Stefan, Darmoni J/H-4554-2016 OI Shaw, William/0000-0002-6830-6415; Gehanno, jean-francois/0000-0002-2309-7322; Darmoni, Stefan/0000-0002-7162-318X; ROLLIN, Laetitia/0000-0002-5454-4340 CR ADAMS CE, 1994, PSYCHOL MED, V24, P741, DOI 10.1017/S0033291700027896 Alper BS, 2004, J MED LIBR ASSOC, V92, P429 Bachmann LM, 2002, J AM MED INFORM ASSN, V9, P653, DOI 10.1197/jamia.M1124 Chang AA, 2006, LARYNGOSCOPE, V116, P336, DOI 10.1097/01.mlg.0000195371.72887.a2 Darmoni Stefan J, 2006, BMC Med Inform Decis Mak, V6, P7, DOI 10.1186/1472-6947-6-7 Devillé WLJM, 2000, J CLIN EPIDEMIOL, V53, P65, DOI 10.1016/S0895-4356(99)00144-4 Dong Peng, 2004, BMC Med Inform Decis Mak, V4, P21, DOI 10.1186/1472-6947-4-21 Felber S H, 2000, Cancer Control, V7, P469 Gehanno JF, 2000, OCCUP ENVIRON MED, V57, P706, DOI 10.1136/oem.57.10.706 Gehanno JF, 1998, OCCUP ENVIRON MED, V55, P562, DOI 10.1136/oem.55.8.562 Greenhalgh T, 1997, BRIT MED J, V315, P180, DOI 10.1136/bmj.315.7101.180 Haafkens J, 2006, OCCUP MED-OXFORD, V56, P39, DOI 10.1093/occmed/kqi193 Jenuwine ES, 2004, J MED LIBR ASSOC, V92, P349 Marson AG, 1996, EPILEPSIA, V37, P377, DOI 10.1111/j.1528-1157.1996.tb00575.x Montori VM, 2005, BMJ-BRIT MED J, V330, P68, DOI 10.1136/bmj.38336.804167.47 Nwosu CR, 1998, OBSTET GYNECOL, V91, P618, DOI 10.1016/S0029-7844(97)00703-5 Saint S, 2000, J GEN INTERN MED, V15, P881, DOI 10.1046/j.1525-1497.2000.00202.x Schaafsma F, 2006, AM J IND MED, V49, P127, DOI 10.1002/ajim.20235 Shaw W, 2008, J OCCUP REHABIL, V18, P2, DOI 10.1007/s10926-007-9115-y vanderWeijden T, 1997, FAM PRACT, V14, P204, DOI 10.1093/fampra/14.3.204 Verbeek J, 2005, OCCUP ENVIRON MED, V62, P682, DOI 10.1136/oem.2004.019117 Verbeek JH, 2002, SCAND J WORK ENV HEA, V28, P197, DOI 10.5271/sjweh.665 Watson RJD, 1999, BRIT J MED PSYCHOL, V72, P535, DOI 10.1348/000711299160220 WYATT J, 1991, LANCET, V338, P1368, DOI 10.1016/0140-6736(91)92245-W 1901, JAMA, V37, P647 NR 25 TC 31 Z9 33 U1 0 U2 11 PU SPRINGER/PLENUM PUBLISHERS PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1053-0487 J9 J OCCUP REHABIL JI J. Occup. Rehabil. PD SEP PY 2009 VL 19 IS 3 BP 223 EP 230 DI 10.1007/s10926-009-9177-0 PG 8 WC Rehabilitation; Social Issues WE Social Science Citation Index (SSCI) SC Rehabilitation; Social Issues GA 479SA UT WOS:000268680000001 PM 19381789 DA 2024-09-05 ER PT J AU Maisonobe, M AF Maisonobe, Marion TI The future of urban models in the Big Data and AI era: a bibliometric analysis (2000-2019) SO AI & SOCIETY LA English DT Article DE Bibliometrics; Urban modelling; Research dynamics; Science studies ID SMART CITIES; CHALLENGES; GOVERNMENT; SCIENCE; HELIX AB This article questions the effects on urban research dynamics of the Big Data and AI turn in urban management. Increasing access to large datasets collected in real time could make certain mathematical models developed in research fields related to the management of urban systems obsolete. These ongoing evolutions are the subject of numerous works whose main angle of reflection is the future of cities rather than the transformations at work in the academic field. Our article proposes grasp the scientific dynamics in areas of research related to two urban systems: transportation and water. The article demonstrates the importance of grasping these dynamics if we want to be able to apprehend what the urban management of tomorrow's cities will be like. To analyse these research areas' dynamics, we use two complementary materials: bibliometric data and interviews. The interviews conducted in 2018 with academics and higher education officials in Paris and Edinburgh suggest avenues for hybridization between traditional modelling approaches and research in machine learning, artificial intelligence and Big Data. The bibliometric analysis highlight the trends at work: it shows that traffic flow as well as transportation studies are focussing more and more on AI and Big Data and that traffic flow studies are arousing a growing interest among computer scientists, while, so far, this interest is less pronounced in the water research area, and more especially regarding water quality. The differences observed between research on transportation and that on water confirm the multifaceted nature of the developments at work and encourage us to reject overly hasty and simplistic generalisations about the transformations underway. C1 [Maisonobe, Marion] CNRS, Geog Cites UMR 8504 CNRS, Paris, France. C3 Centre National de la Recherche Scientifique (CNRS); Universite Paris Cite RP Maisonobe, M (corresponding author), CNRS, Geog Cites UMR 8504 CNRS, Paris, France. EM marion.maisonobe@cnrs.fr OI Maisonobe, Marion/0000-0002-2968-9038 FU "City and Digital" working group of the "Urban Futures" Labex within the I-SITE FUTURE [16-IDEX-0003]; joint research unit UMR LATTS in 2018; IASH fellowship FX This work was carried out within the framework of the "City and Digital" working group of the "Urban Futures" Labex within the I-SITE FUTURE (16-IDEX-0003). It was funded through a post-doctoral contract within the joint research unit UMR LATTS in 2018. The fieldwork carried out in Edinburgh was supported by an IASH fellowship. I would like to thank the interviewees for their time and the qualitative insights they brought to this exploratory work. I would also like to thank P. Tubaro, A. Casilli and E. Ollion for organising an inspiring research day about "the Big Data moment in Social Sciences" on the 21 February 2019 in Paris. CR Adamala S., 2017, Mach. Learn. Res, V2, P10, DOI [10.11648/j.mlr.20170201.12, DOI 10.11648/J.MLR.20170201.12] Anderson C., 2008, Wired, DOI DOI 10.1180/MINMAG.2008.072.1.7 Anttiroiko AV, 2014, AI SOC, V29, P323, DOI 10.1007/s00146-013-0464-0 Bassoo V, 2018, STUD BIG DATA, V30, P359, DOI 10.1007/978-3-319-60435-0_15 Batty M., 2016, Built Environment, DOI [DOI 10.2148/BENV.42.3.321, 10.2148/benv.42.3.321, 10.2148/benv.42.3] Batty Michael, 2013, Dialogues Hum Geogr, V3, P274, DOI 10.1177/2043820613513390 Batty M, 2014, ENVIRON PLANN B, V41, P388, DOI 10.1068/b4103c2 Bettencourt LMA, 2014, BIG DATA, V2, P12, DOI 10.1089/big.2013.0042 Borkowska K, 2018, INT REV EDUC, V64, P355, DOI 10.1007/s11159-018-9723-0 Boyd D, 2012, INFORM COMMUN SOC, V15, P662, DOI 10.1080/1369118X.2012.678878 Cardon Dominique., 2018, Reseaux, V211, P173 Carmichael I, 2018, JPN J STAT DATA SCI, V1, P117, DOI 10.1007/s42081-018-0009-3 Chen CLP, 2014, INFORM SCIENCES, V275, P314, DOI 10.1016/j.ins.2014.01.015 Chui M., 2018, NOTES FRONTIER INSIG Courmont A, 2018, REV FR SOCIOL, V59, P423, DOI 10.3917/rfs.593.0423 Crandall J, 2010, THEOR CULT SOC, V27, P68, DOI 10.1177/0263276410382027 Engin Z, 2020, J URBAN MANAG, V9, P140, DOI 10.1016/j.jum.2019.12.001 Etzkowitz H, 2000, RES POLICY, V29, P109, DOI 10.1016/S0048-7333(99)00055-4 Gao, 2019, COMPUTATIONAL SOCIOE Gingras, 2018, EVOLUTION SCI POLICY González-Bailón S, 2013, POLICY INTERNET, V5, P147, DOI 10.1002/1944-2866.POI328 Goodchild MF, 2007, GEOJOURNAL, V69, P211, DOI 10.1007/s10708-007-9111-y Goodfellow IJ, 2014, ADV NEUR IN, V27, P2672, DOI 10.1145/3422622 Graham M., 2013, Dialogues in Human Geography, V3, P255, DOI [10.1177/2043820613513121, DOI 10.1177/2043820613513121] Gray Steven, 2016, Built Environment, V42, P498, DOI [10.2148/benv.42.3.498, DOI 10.2148/BENV.42.3.498] Grossetti M, 2008, REV ANTHROPOL CONNAI, V2, P97, DOI 10.3917/rac.003.0097 Huang Y, 2015, SCIENTOMETRICS, V105, P2005, DOI 10.1007/s11192-015-1638-y Hutchins MG, 2017, WIRES WATER, V4, DOI 10.1002/wat2.1177 Jesse N, 2018, AI SOC, V33, P229, DOI 10.1007/s00146-018-0807-y Kalantari Ali, 2017, Journal of Big Data, V4, DOI 10.1186/s40537-017-0088-1 Kandt J, 2021, CITIES, V109, DOI 10.1016/j.cities.2020.102992 Kitchin R., 2017, Data and the City, P111 Kitchin R, 2016, PHILOS T R SOC A, V374, DOI 10.1098/rsta.2016.0115 Komninos N, 2016, HANDBOOK ON THE GEOGRAPHIES OF INNOVATION, P187 Korukonda AR, 2007, AI SOC, V21, P347, DOI 10.1007/s00146-006-0064-3 Laborie, 2016, MODELE PREDICTION QU, P43, DOI [10.1051/tsm/201611043, DOI 10.1051/TSM/201611043] Labrinidis A, 2012, PROC VLDB ENDOW, V5, P2032, DOI 10.14778/2367502.2367572 Lobo J., 2020, SSRN ELECT J, V2020, DOI DOI 10.2139/SSRN.3526940 Lungarella M, 2007, LECT NOTES ARTIF INT, V4850, P1 Pan YH, 2016, ENGINEERING, V2, P171, DOI 10.1016/J.ENG.2016.02.003 Park SC, 2018, AI SOC, V33, P433, DOI 10.1007/s00146-017-0777-5 Polonetsky, 2013, STANFORD LAW REV, P66 Ratinaud, 2008, IRAMUTEQ Rincon-Patino J, 2018, F1000Research, V7, P1240 Sainct, 2016, THESIS PARIS EST U Sha XW, 2023, AI SOC, V38, P2705, DOI 10.1007/s00146-016-0662-7 Sivarajah U, 2017, J BUS RES, V70, P263, DOI 10.1016/j.jbusres.2016.08.001 Stilgoe J, 2018, SOC STUD SCI, V48, P25, DOI 10.1177/0306312717741687 te Brömmelstroet M, 2014, ENVIRON PLANN B, V41, P381, DOI 10.1068/b4103c Thatcher J, 2014, INT J COMMUN-US, V8, P1765 Turchin A, 2020, AI SOC, V35, P147, DOI 10.1007/s00146-018-0845-5 Zheng Y, 2014, ACM T INTEL SYST TEC, V5, DOI 10.1145/2629592 NR 52 TC 5 Z9 5 U1 2 U2 21 PU SPRINGER PI NEW YORK PA ONE NEW YORK PLAZA, SUITE 4600, NEW YORK, NY, UNITED STATES SN 0951-5666 EI 1435-5655 J9 AI SOC JI AI Soc. PD MAR PY 2022 VL 37 IS 1 BP 177 EP 194 DI 10.1007/s00146-021-01166-4 EA MAR 2021 PG 18 WC Computer Science, Artificial Intelligence WE Emerging Sources Citation Index (ESCI) SC Computer Science GA YY9XL UT WOS:000629071300002 DA 2024-09-05 ER PT J AU Zennayi, Y Bourzeix, F Guennoun, Z AF Zennayi, Yahya Bourzeix, Francois Guennoun, Zouhair TI Analyzing the Scientific Evolution of Face Recognition Research and Its Prominent Subfields SO IEEE ACCESS LA English DT Article DE Face recognition; Performance analysis; Databases; Lighting; Indexes; Feature extraction; Statistical analysis; Bibliometric studies; co-word analysis; face recognition; performance analysis; science mapping; thematic evolution ID REPRESENTATION BASED CLASSIFICATION; LINEAR DISCRIMINANT-ANALYSIS; DISCRETE COSINE TRANSFORM; LOCAL BINARY PATTERNS; SPARSE REPRESENTATION; FEATURE-EXTRACTION; PRESERVING PROJECTIONS; 2-DIMENSIONAL PCA; VISUAL TRACKING; NEURAL-NETWORK AB This paper presents a science mapping approach to analyze thematic evolution of face recognition research. For this reason, different bibliometric tools are combined (performance analysis, science mapping and Co-word analysis) in order to identify the most important, productive and the highest-impact subfields. Moreover, different visualization tools are used to display a graphical vision of face recognition field to determine the thematic domains and their evolutionary behavior. Finally, this study proposes the most relevant lines of research for the face recognition field. Findings indicate a huge increase in face recognition research since 2014. Mixed approaches revealed a great interest compared to local and global approaches. In terms of algorithms, the use of deep learning methods is the new trend. On the other hand, the illumination variation impact on face recognition algorithms performances is nowadays, the most important and impacting challenge for the face recognition field. C1 [Zennayi, Yahya; Guennoun, Zouhair] Mohammed V Univ, Smart Commun ERSC Team, Res Ctr E3S, Rabat 10090, Morocco. [Zennayi, Yahya; Bourzeix, Francois] Moroccan Fdn Adv Sci Innovat & Res, Embedded Syst & AI Dept, Rabat 10010, Morocco. C3 Mohammed V University in Rabat; Moroccan Foundation for Advanced Science Innovation & Research (MASCIR) RP Zennayi, Y (corresponding author), Mohammed V Univ, Smart Commun ERSC Team, Res Ctr E3S, Rabat 10090, Morocco.; Zennayi, Y (corresponding author), Moroccan Fdn Adv Sci Innovat & Res, Embedded Syst & AI Dept, Rabat 10010, Morocco. EM zennayi.yahya@gmail.com OI guennoun, zouhair/0000-0002-7142-0550; ZENNAYI, Yahya/0000-0002-9561-7622 CR Abadi M, 2016, PROCEEDINGS OF OSDI'16: 12TH USENIX SYMPOSIUM ON OPERATING SYSTEMS DESIGN AND IMPLEMENTATION, P265 Abate AF, 2007, PATTERN RECOGN LETT, V28, P1885, DOI 10.1016/j.patrec.2006.12.018 Abdullah MFA, 2014, EXPERT SYST APPL, V41, P6131, DOI 10.1016/j.eswa.2014.04.006 Abdurrahim SH, 2018, VISUAL COMPUT, V34, P1617, DOI 10.1007/s00371-017-1428-z Abozaid A, 2019, MULTIMED TOOLS APPL, V78, P16345, DOI 10.1007/s11042-018-7012-3 Adini Y, 1997, IEEE T PATTERN ANAL, V19, P721, DOI 10.1109/34.598229 Adjabi I, 2020, ELECTRONICS-SWITZ, V9, DOI 10.3390/electronics9081188 Ahonen T, 2004, LECT NOTES COMPUT SC, V3021, P469 Ahonen T, 2006, IEEE T PATTERN ANAL, V28, P2037, DOI 10.1109/TPAMI.2006.244 Ai H, 2018, MEASUREMENT, V123, P309, DOI 10.1016/j.measurement.2018.04.005 Ali Z, 2018, FUTURE GENER COMP SY, V85, P76, DOI 10.1016/j.future.2018.02.040 [Anonymous], 2018, IEEE T PATTERN ANAL, DOI DOI 10.1109/TPAMI.2017.2737538 [Anonymous], 2018, IEEE T PATTERN ANAL, DOI DOI 10.1109/TPAMI.2017.2710183 Baradarani A, 2013, PATTERN RECOGN, V46, P57, DOI 10.1016/j.patcog.2012.06.007 Bartlett MS, 2002, IEEE T NEURAL NETWOR, V13, P1450, DOI 10.1109/TNN.2002.804287 Bashbaghi S, 2017, PATTERN RECOGN, V69, P61, DOI 10.1016/j.patcog.2017.04.014 Bedagkar-Gala A, 2014, IMAGE VISION COMPUT, V32, P270, DOI 10.1016/j.imavis.2014.02.001 Best-Rowden L, 2018, IEEE T PATTERN ANAL, V40, P148, DOI 10.1109/TPAMI.2017.2652466 Best-Rowden L, 2014, IEEE T INF FOREN SEC, V9, P2144, DOI 10.1109/TIFS.2014.2359577 Bianco S, 2017, PATTERN RECOGN LETT, V90, P36, DOI 10.1016/j.patrec.2017.03.006 Biswas S, 2013, IEEE T PATTERN ANAL, V35, P3037, DOI 10.1109/TPAMI.2013.68 Biswas S, 2012, IEEE T PATTERN ANAL, V34, P2019, DOI 10.1109/TPAMI.2011.278 Blanco-Gonzalo R, 2015, HUM-CENT COMPUT INFO, V5, DOI 10.1186/s13673-015-0043-0 Blanz V, 2003, IEEE T PATTERN ANAL, V25, P1063, DOI 10.1109/TPAMI.2003.1227983 Bowyer KW, 2006, COMPUT VIS IMAGE UND, V101, P1, DOI 10.1016/j.cviu.2005.05.005 BRUNELLI R, 1993, IEEE T PATTERN ANAL, V15, P1042, DOI 10.1109/34.254061 Cai D, 2006, IEEE T IMAGE PROCESS, V15, P3608, DOI 10.1109/TIP.2006.881945 CALLON M, 1983, SOC SCI INFORM, V22, P191, DOI 10.1177/053901883022002003 Cao Q, 2018, IEEE INT CONF AUTOMA, P67, DOI 10.1109/FG.2018.00020 Chakraborty S, 2017, MULTIMED TOOLS APPL, V76, P1201, DOI 10.1007/s11042-015-3111-6 Chamikara MAP, 2020, COMPUT SECUR, V97, DOI 10.1016/j.cose.2020.101951 Chan TH, 2015, IEEE T IMAGE PROCESS, V24, P5017, DOI 10.1109/TIP.2015.2475625 Chaves-González JM, 2010, DIGIT SIGNAL PROCESS, V20, P806, DOI 10.1016/j.dsp.2009.10.008 CHELLAPPA R, 1995, P IEEE, V83, P705, DOI 10.1109/5.381842 Chen BC, 2015, IEEE T MULTIMEDIA, V17, P804, DOI 10.1109/TMM.2015.2420374 Chen WL, 2006, IEEE T SYST MAN CY B, V36, P458, DOI 10.1109/TSMCB.2005.857353 Chihaoui M, 2016, COMPUTERS, V5, DOI 10.3390/computers5040021 Chollet F., 2015, KERAS INTERNET Cobo MJ, 2012, J AM SOC INF SCI TEC, V63, P1609, DOI 10.1002/asi.22688 Cobo MJ, 2011, J INFORMETR, V5, P146, DOI 10.1016/j.joi.2010.10.002 Cui MS, 2015, IEEE T GEOSCI REMOTE, V53, P2683, DOI 10.1109/TGRS.2014.2363582 Dagnes N, 2018, MACH VISION APPL, V29, P789, DOI 10.1007/s00138-018-0933-z De Marsico M, 2013, IEEE T SYST MAN CY-S, V43, P149, DOI 10.1109/TSMCA.2012.2192427 Deng JK, 2019, PROC CVPR IEEE, P4685, DOI 10.1109/CVPR.2019.00482 Deng WH, 2018, IEEE T PATTERN ANAL, V40, P2513, DOI 10.1109/TPAMI.2017.2757923 Deng WH, 2012, IEEE T PATTERN ANAL, V34, P1864, DOI 10.1109/TPAMI.2012.30 Déniz O, 2011, PATTERN RECOGN LETT, V32, P1598, DOI 10.1016/j.patrec.2011.01.004 Ding CX, 2018, IEEE T PATTERN ANAL, V40, P1002, DOI 10.1109/TPAMI.2017.2700390 Ding CX, 2017, PATTERN RECOGN, V66, P144, DOI 10.1016/j.patcog.2016.11.024 Ding CX, 2016, ACM T INTEL SYST TEC, V7, DOI 10.1145/2845089 Ding CX, 2015, IEEE T MULTIMEDIA, V17, P2049, DOI 10.1109/TMM.2015.2477042 Du B, 2017, IEEE T MULTIMEDIA, V19, P67, DOI 10.1109/TMM.2016.2608780 Er MJ, 2005, IEEE T NEURAL NETWOR, V16, P679, DOI 10.1109/TNN.2005.844909 Er MJ, 2002, IEEE T NEURAL NETWOR, V13, P697, DOI 10.1109/TNN.2002.1000134 Faltemier TC, 2008, IEEE T INF FOREN SEC, V3, P62, DOI 10.1109/TIFS.2007.916287 Fan KC, 2014, IEEE T IMAGE PROCESS, V23, P2877, DOI 10.1109/TIP.2014.2321495 Fan ZZ, 2020, MULTIMED TOOLS APPL, V79, P7319, DOI 10.1007/s11042-019-08211-x Feng QX, 2017, IEEE T CYBERNETICS, V47, P378, DOI 10.1109/TCYB.2016.2516239 Galbally J, 2014, IEEE ACCESS, V2, P1530, DOI 10.1109/ACCESS.2014.2381273 Galea C, 2017, IEEE SIGNAL PROC LET, V24, P1586, DOI 10.1109/LSP.2017.2749266 Gao GW, 2020, INFORM SCIENCES, V506, P19, DOI 10.1016/j.ins.2019.08.004 Gao GW, 2017, PATTERN RECOGN, V66, P129, DOI 10.1016/j.patcog.2016.12.021 Gao QX, 2019, IEEE T CYBERNETICS, V49, P1212, DOI 10.1109/TCYB.2018.2796642 Gao QX, 2015, NEUROCOMPUTING, V152, P69, DOI 10.1016/j.neucom.2014.11.018 Gao W, 2008, IEEE T SYST MAN CY A, V38, P149, DOI 10.1109/TSMCA.2007.909557 Gao Y, 2017, IEEE T IMAGE PROCESS, V26, P2545, DOI 10.1109/TIP.2017.2675341 Ge SM, 2019, IEEE T IMAGE PROCESS, V28, P2051, DOI 10.1109/TIP.2018.2883743 Geng CX, 2021, IEEE T PATTERN ANAL, V43, P3614, DOI 10.1109/TPAMI.2020.2981604 Georghiades AS, 2001, IEEE T PATTERN ANAL, V23, P643, DOI 10.1109/34.927464 Ghiass RS, 2014, PATTERN RECOGN, V47, P2807, DOI 10.1016/j.patcog.2014.03.015 Gong DH, 2017, IEEE T IMAGE PROCESS, V26, P2079, DOI 10.1109/TIP.2017.2651380 Gu WF, 2012, PATTERN RECOGN, V45, P80, DOI 10.1016/j.patcog.2011.05.006 Gui J, 2012, PATTERN RECOGN, V45, P2884, DOI 10.1016/j.patcog.2012.02.005 Guo GD, 2019, COMPUT VIS IMAGE UND, V189, DOI 10.1016/j.cviu.2019.102805 Haghighat M, 2016, EXPERT SYST APPL, V47, P23, DOI 10.1016/j.eswa.2015.10.047 Haghighat M, 2015, EXPERT SYST APPL, V42, P7905, DOI 10.1016/j.eswa.2015.06.025 Han H, 2013, IEEE T INF FOREN SEC, V8, P191, DOI 10.1109/TIFS.2012.2228856 Hassaballah M, 2015, IET COMPUT VIS, V9, P614, DOI 10.1049/iet-cvi.2014.0084 Hayat M, 2015, IEEE T PATTERN ANAL, V37, P713, DOI 10.1109/TPAMI.2014.2353635 He R, 2019, IEEE T PATTERN ANAL, V41, P1761, DOI 10.1109/TPAMI.2018.2842770 He R, 2020, IEEE T PATTERN ANAL, V42, P1025, DOI 10.1109/TPAMI.2019.2961900 He R, 2014, IEEE T PATTERN ANAL, V36, P261, DOI 10.1109/TPAMI.2013.102 He R, 2011, IEEE T PATTERN ANAL, V33, P1561, DOI 10.1109/TPAMI.2010.220 He XF, 2005, IEEE T PATTERN ANAL, V27, P328, DOI 10.1109/TPAMI.2005.55 Hine K, 2018, J GEN PSYCHOL, V145, P296, DOI 10.1080/00221309.2018.1472548 Hong L, 1998, IEEE T PATTERN ANAL, V20, P1295, DOI 10.1109/34.735803 Howland P, 2006, PATTERN RECOGN, V39, P277, DOI 10.1016/j.patcog.2005.06.013 Hu JL, 2017, IMAGE VISION COMPUT, V60, P48, DOI 10.1016/j.imavis.2016.08.007 Huang C, 2020, IEEE T PATTERN ANAL, V42, P2781, DOI 10.1109/TPAMI.2019.2914680 Huang D, 2011, IEEE T SYST MAN CY C, V41, P765, DOI 10.1109/TSMCC.2011.2118750 Huang KK, 2017, IEEE T NEUR NET LEAR, V28, P1082, DOI 10.1109/TNNLS.2016.2522431 Huang ZW, 2015, IEEE T IMAGE PROCESS, V24, DOI 10.1109/TIP.2015.2493448 Jadhav DV, 2009, NEUROCOMPUTING, V72, P1951, DOI 10.1016/j.neucom.2008.05.001 Jayaraman U, 2020, NEUROCOMPUTING, V408, P231, DOI 10.1016/j.neucom.2019.08.110 Jia YQ, 2014, PROCEEDINGS OF THE 2014 ACM CONFERENCE ON MULTIMEDIA (MM'14), P675, DOI 10.1145/2647868.2654889 Jiang JJ, 2017, IEEE T MULTIMEDIA, V19, P27, DOI 10.1109/TMM.2016.2601020 Jiang JJ, 2016, IEEE T CIRC SYST VID, V26, P1674, DOI 10.1109/TCSVT.2015.2433538 Jiang XD, 2008, IEEE T PATTERN ANAL, V30, P383, DOI 10.1109/TPAMI.2007.70708 Jiang XD, 2015, IEEE T PATTERN ANAL, V37, P1067, DOI 10.1109/TPAMI.2014.2359453 Jin Y, 2015, IEEE T INF FOREN SEC, V10, P640, DOI 10.1109/TIFS.2015.2390414 Juefei-Xu F, 2014, IEEE T IMAGE PROCESS, V23, P3490, DOI 10.1109/TIP.2014.2329460 Kakadiaris IA, 2017, COMPUT VIS IMAGE UND, V154, P137, DOI 10.1016/j.cviu.2016.04.012 Kasar MM, 2016, INT J SECUR APPL, V10, P81, DOI 10.14257/ijsia.2016.10.3.08 Kemelmacher-Shlizerman I, 2016, PROC CVPR IEEE, P4873, DOI 10.1109/CVPR.2016.527 Kim TK, 2005, IEEE T PATTERN ANAL, V27, P318, DOI 10.1109/TPAMI.2005.58 Klare BF, 2013, IEEE T PATTERN ANAL, V35, P1410, DOI 10.1109/TPAMI.2012.229 Klare BF, 2011, IEEE T PATTERN ANAL, V33, P639, DOI 10.1109/TPAMI.2010.180 Kong SG, 2005, COMPUT VIS IMAGE UND, V97, P103, DOI 10.1016/j.cviu.2004.04.001 Kortli Y, 2020, SENSORS-BASEL, V20, DOI 10.3390/s20020342 Kumar N, 2011, IEEE T PATTERN ANAL, V33, P1962, DOI 10.1109/TPAMI.2011.48 Kumar PM, 2019, CLUSTER COMPUT, V22, pS7733, DOI 10.1007/s10586-017-1323-4 La Cascia M, 2000, IEEE T PATTERN ANAL, V22, P322, DOI 10.1109/34.845375 Lahasan B, 2019, ARTIF INTELL REV, V52, P949, DOI 10.1007/s10462-017-9578-y Lai ZH, 2016, IEEE T NEUR NET LEAR, V27, P723, DOI 10.1109/TNNLS.2015.2422994 Lee KC, 2005, COMPUT VIS IMAGE UND, V99, P303, DOI 10.1016/j.cviu.2005.02.002 Lee KC, 2005, IEEE T PATTERN ANAL, V27, P684, DOI 10.1109/TPAMI.2005.92 Lei Z, 2014, IEEE T PATTERN ANAL, V36, P289, DOI 10.1109/TPAMI.2013.112 Li AN, 2012, IEEE T IMAGE PROCESS, V21, P305, DOI 10.1109/TIP.2011.2160957 Li B, 2010, IEEE SIGNAL PROC LET, V17, P20, DOI 10.1109/LSP.2009.2031705 Li HX, 2018, IEEE T INF FOREN SEC, V13, P2383, DOI 10.1109/TIFS.2018.2819124 Li HX, 2016, KNOWL-BASED SYST, V91, P241, DOI 10.1016/j.knosys.2015.07.040 Li P, 2019, IEEE T INF FOREN SEC, V14, P2000, DOI 10.1109/TIFS.2018.2890812 Li YM, 2004, IMAGE VISION COMPUT, V22, P413, DOI 10.1016/j.imavis.2003.12.005 Li ZH, 2017, IEEE T KNOWL DATA EN, V29, P2100, DOI 10.1109/TKDE.2017.2728531 Liao MM, 2019, IET IMAGE PROCESS, V13, P2281, DOI 10.1049/iet-ipr.2018.5263 Liao S, 2009, IEEE T IMAGE PROCESS, V18, P1107, DOI 10.1109/TIP.2009.2015682 Liu CJ, 2008, IEEE T INF FOREN SEC, V3, P213, DOI 10.1109/TIFS.2008.923824 Liu CJ, 2004, IEEE T PATTERN ANAL, V26, P572, DOI 10.1109/TPAMI.2004.1273927 Liu CJ, 2002, IEEE T IMAGE PROCESS, V11, P467, DOI 10.1109/TIP.2002.999679 Liu X, 2017, FRONT COMPUT SCI-CHI, V11, P208, DOI 10.1007/s11704-016-6076-3 Liu Y, 2017, IEEE T IMAGE PROCESS, V26, P684, DOI 10.1109/TIP.2016.2621667 Liu ZH, 2020, SIGNAL PROCESS, V170, DOI 10.1016/j.sigpro.2020.107456 Liu ZH, 2019, APPL SOFT COMPUT, V85, DOI 10.1016/j.asoc.2019.105768 Low CY, 2019, IEEE T CIRC SYST VID, V29, P115, DOI 10.1109/TCSVT.2017.2761829 Lu HP, 2008, IEEE T NEURAL NETWOR, V19, P18, DOI 10.1109/TNN.2007.901277 Lu HP, 2009, IEEE T NEURAL NETWOR, V20, P103, DOI 10.1109/TNN.2008.2004625 Lu JW, 2015, IEEE T PATTERN ANAL, V37, P2041, DOI 10.1109/TPAMI.2015.2408359 Lu JW, 2014, IEEE T PATTERN ANAL, V36, P331, DOI 10.1109/TPAMI.2013.134 Lu JW, 2013, IEEE T PATTERN ANAL, V35, P39, DOI 10.1109/TPAMI.2012.70 Luan X, 2014, PATTERN RECOGN, V47, P495, DOI 10.1016/j.patcog.2013.06.031 Lui M, 2018, INT J PSYCHOPHYSIOL, V133, P159, DOI 10.1016/j.ijpsycho.2018.07.005 Luo XL, 2019, PATTERN RECOGN, V93, P283, DOI 10.1016/j.patcog.2019.04.027 Mahmood Z, 2017, FRACTALS, V25, DOI 10.1142/S0218348X17500256 Mai GC, 2019, IEEE T PATTERN ANAL, V41, P1188, DOI 10.1109/TPAMI.2018.2827389 Marcolin F, 2017, MULTIMED TOOLS APPL, V76, P13805, DOI 10.1007/s11042-016-3741-3 Martìnez AM, 2001, IEEE T PATTERN ANAL, V23, P228, DOI 10.1109/34.908974 Melin P, 2011, IEEE T SYST MAN CY A, V41, P1001, DOI 10.1109/TSMCA.2010.2104318 Min R, 2014, IEEE T SYST MAN CY-S, V44, P1534, DOI 10.1109/TSMC.2014.2331215 Mitra S, 2007, IEEE T SYST MAN CY C, V37, P311, DOI 10.1109/TSMCC.2007.893280 Modak SKS, 2019, INFORM FUSION, V49, P174, DOI 10.1016/j.inffus.2018.11.018 Mohammed AA, 2011, PATTERN RECOGN, V44, P2588, DOI 10.1016/j.patcog.2011.03.013 Naik MK, 2016, APPL SOFT COMPUT, V38, P661, DOI 10.1016/j.asoc.2015.10.039 Naseem I, 2010, IEEE T PATTERN ANAL, V32, P2106, DOI 10.1109/TPAMI.2010.128 Newton EM, 2005, IEEE T KNOWL DATA EN, V17, P232, DOI 10.1109/TKDE.2005.32 Ng CB, 2015, PATTERN ANAL APPL, V18, P739, DOI 10.1007/s10044-015-0499-6 Vu NS, 2012, IEEE T IMAGE PROCESS, V21, P1352, DOI 10.1109/TIP.2011.2166974 Niinuma K, 2010, IEEE T INF FOREN SEC, V5, P771, DOI 10.1109/TIFS.2010.2075927 Ning X, 2023, CONCURR COMP-PRACT E, V35, DOI 10.1002/cpe.6147 Ochoa-Villegas MA, 2015, IET COMPUT VIS, V9, P978, DOI 10.1049/iet-cvi.2014.0086 Ou WH, 2014, PATTERN RECOGN, V47, P1559, DOI 10.1016/j.patcog.2013.10.017 Ouyang SX, 2016, IMAGE VISION COMPUT, V56, P28, DOI 10.1016/j.imavis.2016.09.001 Pang M, 2019, PATTERN RECOGN, V89, P91, DOI 10.1016/j.patcog.2019.01.005 Panis G, 2016, IET BIOMETRICS, V5, P37, DOI 10.1049/iet-bmt.2014.0053 Park JS, 2008, IEEE T IMAGE PROCESS, V17, P1806, DOI 10.1109/TIP.2008.2001394 Park U, 2010, IEEE T PATTERN ANAL, V32, P947, DOI 10.1109/TPAMI.2010.14 Peng CL, 2019, PATTERN RECOGN, V90, P161, DOI 10.1016/j.patcog.2019.01.041 Peng Y, 2015, NEUROCOMPUTING, V149, P340, DOI 10.1016/j.neucom.2013.12.065 Phillips PJ, 2014, IMAGE VISION COMPUT, V32, P74, DOI 10.1016/j.imavis.2013.12.002 Plichoski GF, 2018, REV BRAS COMPUT APL, V10, P2, DOI 10.5335/rbca.v10i2.8046 Prince SJD, 2008, IEEE T PATTERN ANAL, V30, P970, DOI 10.1109/TPAMI.2008.48 Qiao LS, 2010, PATTERN RECOGN, V43, P331, DOI 10.1016/j.patcog.2009.05.005 Rothkrantz L, 2017, P SMART CIT S PRAG S, P1 Sadhya D, 2019, NEUROCOMPUTING, V358, P188, DOI 10.1016/j.neucom.2019.05.045 Sajjad M, 2020, FUTURE GENER COMP SY, V108, P995, DOI 10.1016/j.future.2017.11.013 Sandbach G, 2012, IMAGE VISION COMPUT, V30, P683, DOI 10.1016/j.imavis.2012.06.005 Scherhag U, 2019, IEEE ACCESS, V7, P23012, DOI 10.1109/ACCESS.2019.2899367 Selvakumar K, 2015, INT J SIGNAL IMAGING, V8, P356, DOI 10.1504/IJSISE.2015.072928 Sepas-Moghaddam A, 2018, IEEE T INF FOREN SEC, V13, P1696, DOI 10.1109/TIFS.2018.2799427 Shakeel MS, 2019, PATTERN RECOGN, V93, P442, DOI 10.1016/j.patcog.2019.04.028 Sharma R, 2015, IMAGING SCI J, V63, P361, DOI 10.1179/1743131X14Y.0000000071 Shekhar S, 2014, IEEE T PATTERN ANAL, V36, P113, DOI 10.1109/TPAMI.2013.109 Shi QQ, 2019, IEEE T NEUR NET LEAR, V30, P1803, DOI 10.1109/TNNLS.2018.2873655 Shi XS, 2014, PATTERN RECOGN, V47, P2447, DOI 10.1016/j.patcog.2014.01.007 Soltanpour S, 2017, PATTERN RECOGN, V72, P391, DOI 10.1016/j.patcog.2017.08.003 Su FP, 2009, J AM SOC INF SCI TEC, V60, P2353, DOI 10.1002/asi.21169 Su Y, 2009, IEEE T IMAGE PROCESS, V18, P1885, DOI 10.1109/TIP.2009.2021737 Takacs B, 1998, PATTERN RECOGN, V31, P1873, DOI 10.1016/S0031-3203(98)00076-4 Tan XY, 2010, IEEE T IMAGE PROCESS, V19, P1635, DOI 10.1109/TIP.2010.2042645 Tan XY, 2005, IEEE T NEURAL NETWOR, V16, P875, DOI 10.1109/TNN.2005.849817 Tao DC, 2007, IEEE T PATTERN ANAL, V29, P1700, DOI 10.1109/TPAMI.2007.1096 Tao DP, 2018, IEEE T CIRC SYST VID, V28, P2657, DOI 10.1109/TCSVT.2017.2726580 Tao DP, 2018, IEEE T IMAGE PROCESS, V27, P325, DOI 10.1109/TIP.2017.2762588 Tathe SV, 2016, 2016 INTERNATIONAL CONFERENCE ON ADVANCES IN COMPUTING, COMMUNICATIONS AND INFORMATICS (ICACCI), P2200, DOI 10.1109/ICACCI.2016.7732378 Tian Q, 2013, IETE TECH REV, V30, P427, DOI 10.4103/0256-4602.123127 Tirunagari S, 2015, IEEE T INF FOREN SEC, V10, P762, DOI 10.1109/TIFS.2015.2406533 Turaga P, 2011, IEEE T PATTERN ANAL, V33, P2273, DOI 10.1109/TPAMI.2011.52 Uzair M, 2015, IEEE T IMAGE PROCESS, V24, P1127, DOI 10.1109/TIP.2015.2393057 Wagner A, 2012, IEEE T PATTERN ANAL, V34, P372, DOI 10.1109/TPAMI.2011.112 Wang H, 2018, PROC CVPR IEEE, P5265, DOI 10.1109/CVPR.2018.00552 Wang HJ, 2018, IEEE ACCESS, V6, P6001, DOI 10.1109/ACCESS.2017.2784842 Wang J, 2014, IEEE T CYBERNETICS, V44, P2368, DOI 10.1109/TCYB.2014.2307067 Wang NN, 2018, IEEE T CIRC SYST VID, V28, P2154, DOI 10.1109/TCSVT.2017.2709465 Wang NN, 2017, IEEE T IMAGE PROCESS, V26, P1264, DOI 10.1109/TIP.2017.2651375 Wang R, 2017, IEEE T IMAGE PROCESS, V26, P5019, DOI 10.1109/TIP.2017.2726188 Wang TS, 2009, PATTERN RECOGN LETT, V30, P1161, DOI 10.1016/j.patrec.2009.06.002 Wang XF, 2020, IEEE COMMUN SURV TUT, V22, P869, DOI 10.1109/COMST.2020.2970550 Wang ZF, 2014, VISUAL COMPUT, V30, P359, DOI 10.1007/s00371-013-0861-x Wang ZY, 2012, SCIENTOMETRICS, V90, P855, DOI 10.1007/s11192-011-0563-y Wen D, 2015, IEEE T INF FOREN SEC, V10, P746, DOI 10.1109/TIFS.2015.2400395 Widodo A, 2007, EXPERT SYST APPL, V33, P241, DOI 10.1016/j.eswa.2006.04.020 Wiskott L, 1997, IEEE T PATTERN ANAL, V19, P775, DOI 10.1109/34.598235 Wolf L, 2011, IEEE T PATTERN ANAL, V33, P1978, DOI 10.1109/TPAMI.2010.230 Wright J, 2010, P IEEE, V98, P1031, DOI 10.1109/JPROC.2010.2044470 Wright J, 2009, IEEE T PATTERN ANAL, V31, P210, DOI 10.1109/TPAMI.2008.79 Wu X, 2017, PATTERN RECOGN, V66, P404, DOI 10.1016/j.patcog.2016.12.001 Xie SF, 2010, IEEE T IMAGE PROCESS, V19, P1349, DOI 10.1109/TIP.2010.2041397 Xu BR, 2019, IEEE T NEUR NET LEAR, V30, P151, DOI 10.1109/TNNLS.2018.2836933 Xu CF, 2017, NEUROCOMPUTING, V222, P62, DOI 10.1016/j.neucom.2016.10.010 Xu F, 2017, IEEE T AFFECT COMPUT, V8, P254, DOI 10.1109/TAFFC.2016.2518162 Xu Y, 2017, IEEE ACCESS, V5, P8502, DOI 10.1109/ACCESS.2017.2695239 Xu Y, 2017, IEEE T NEUR NET LEAR, V28, P2233, DOI 10.1109/TNNLS.2016.2580572 Xu Y, 2017, INFORM SCIENCES, V375, P171, DOI 10.1016/j.ins.2016.09.059 Xu Y, 2014, IEEE T CYBERNETICS, V44, P1950, DOI 10.1109/TCYB.2014.2300175 Xu Y, 2014, IEEE T CYBERNETICS, V44, P1738, DOI 10.1109/TCYB.2013.2293391 Xu Y, 2014, NEUROCOMPUTING, V131, P191, DOI 10.1016/j.neucom.2013.10.025 Xu Y, 2013, PATTERN RECOGN, V46, P1151, DOI 10.1016/j.patcog.2012.11.003 Xu Y, 2012, NEUROCOMPUTING, V79, P125, DOI 10.1016/j.neucom.2011.10.013 Xu Y, 2011, IEEE T CIRC SYST VID, V21, P1255, DOI 10.1109/TCSVT.2011.2138790 Xu Z, 2019, NEUROCOMPUTING, V355, P1, DOI 10.1016/j.neucom.2018.09.056 Yan HB, 2015, IEEE T CYBERNETICS, V45, P2535, DOI 10.1109/TCYB.2014.2376934 Yan SC, 2007, IEEE T PATTERN ANAL, V29, P40, DOI 10.1109/TPAMI.2007.250598 Yang AY, 2013, IEEE T IMAGE PROCESS, V22, P3234, DOI 10.1109/TIP.2013.2262292 Yang J, 2005, PATTERN RECOGN, V38, P1125, DOI 10.1016/j.patcog.2004.11.019 Yang J, 2005, IEEE T PATTERN ANAL, V27, P230, DOI 10.1109/TPAMI.2005.33 Yang J, 2004, IEEE T PATTERN ANAL, V26, P131, DOI 10.1109/TPAMI.2004.1261097 Yang J, 2007, IEEE T PATTERN ANAL, V29, P650, DOI 10.1109/TPAMI.2007.1008 Yang J, 2017, IEEE T PATTERN ANAL, V39, P156, DOI 10.1109/TPAMI.2016.2535218 Yang J, 2008, IEEE T NEURAL NETWOR, V19, P2088, DOI 10.1109/TNN.2008.2003187 Yang M, 2013, IEEE T IMAGE PROCESS, V22, P1753, DOI 10.1109/TIP.2012.2235849 Yang SC, 2019, IEEE T INF FOREN SEC, V14, P251, DOI 10.1109/TIFS.2018.2849883 Yang WK, 2020, NEUROCOMPUTING, V373, P109, DOI 10.1016/j.neucom.2019.09.102 Yang WK, 2011, PATTERN RECOGN, V44, P1649, DOI 10.1016/j.patcog.2011.01.019 Yang ZJ, 2019, MULTIMED TOOLS APPL, V78, P23847, DOI 10.1007/s11042-018-6242-8 Yin X, 2018, IEEE T IMAGE PROCESS, V27, P964, DOI 10.1109/TIP.2017.2765830 Younis MI, 2018, WIRELESS PERS COMMUN, V101, P1939, DOI 10.1007/s11277-018-5800-8 Yuan XT, 2012, IEEE T IMAGE PROCESS, V21, P4349, DOI 10.1109/TIP.2012.2205006 Zafeiriou S, 2012, IEEE T NEUR NET LEAR, V23, P526, DOI 10.1109/TNNLS.2011.2182058 Zangeneh E, 2020, EXPERT SYST APPL, V139, DOI 10.1016/j.eswa.2019.112854 Zhang BH, 2007, IEEE T IMAGE PROCESS, V16, P57, DOI 10.1109/TIP.2006.884956 Zhang BC, 2010, IEEE T IMAGE PROCESS, V19, P533, DOI 10.1109/TIP.2009.2035882 Zhang DQ, 2005, NEUROCOMPUTING, V69, P224, DOI 10.1016/j.neucom.2005.06.004 Zhang L, 2017, IEEE T NEUR NET LEAR, V28, P3045, DOI 10.1109/TNNLS.2016.2607757 Zhang L, 2012, IEEE T SIGNAL PROCES, V60, P1684, DOI 10.1109/TSP.2011.2179539 Zhang MJ, 2019, IEEE T IMAGE PROCESS, V28, P642, DOI 10.1109/TIP.2018.2869688 Zhang SP, 2013, PATTERN RECOGN, V46, P1772, DOI 10.1016/j.patcog.2012.10.006 Zhang TP, 2009, PATTERN RECOGN, V42, P251, DOI 10.1016/j.patcog.2008.03.017 Zhang TP, 2010, IEEE T SYST MAN CY B, V40, P186, DOI 10.1109/TSMCB.2009.2024759 Zhang WM, 2019, IEEE T PATTERN ANAL, V41, P611, DOI 10.1109/TPAMI.2018.2803179 Zhang X, 2009, PATTERN RECOGN, V42, P2876, DOI 10.1016/j.patcog.2009.04.017 Zhang X, 2015, PATTERN RECOGN, V48, P2935, DOI 10.1016/j.patcog.2015.02.022 Zhang YB, 2006, IMAGE VISION COMPUT, V24, P626, DOI 10.1016/j.imavis.2005.08.004 Zhang YS, 2020, IEEE T INF FOREN SEC, V15, P1683, DOI 10.1109/TIFS.2019.2947872 Zhang Z, 2018, IEEE T NEUR NET LEAR, V29, P3111, DOI 10.1109/TNNLS.2017.2712801 Zhao HT, 2008, IEEE T SYST MAN CY B, V38, P210, DOI 10.1109/TSMCB.2007.908870 Zhao J, 2019, IEEE T PATTERN ANAL, V41, P2380, DOI 10.1109/TPAMI.2018.2858819 Zhao W, 2003, ACM COMPUT SURV, V35, P399, DOI 10.1145/954339.954342 Zhi H, 2019, J VIS COMMUN IMAGE R, V58, P495, DOI 10.1016/j.jvcir.2018.12.012 Zhou CJ, 2008, INT J INNOV COMPUT I, V4, P1723 Zhou SH, 2003, COMPUT VIS IMAGE UND, V91, P214, DOI 10.1016/S1077-3142(03)00080-8 Zong WW, 2011, NEUROCOMPUTING, V74, P2541, DOI 10.1016/j.neucom.2010.12.041 Zou WWW, 2012, IEEE T IMAGE PROCESS, V21, P327, DOI 10.1109/TIP.2011.2162423 NR 271 TC 3 Z9 3 U1 2 U2 8 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 2169-3536 J9 IEEE ACCESS JI IEEE Access PY 2022 VL 10 BP 68175 EP 68201 DI 10.1109/ACCESS.2022.3185137 PG 27 WC Computer Science, Information Systems; Engineering, Electrical & Electronic; Telecommunications WE Science Citation Index Expanded (SCI-EXPANDED) SC Computer Science; Engineering; Telecommunications GA 2P5ZZ UT WOS:000819820100001 OA gold DA 2024-09-05 ER PT C AU Kumar, MS Gupta, S Baskaran, S Na, JC AF Kumar, Mahalakshmi Suresh Gupta, Shreya Baskaran, Subashini Na, Jin-Cheon BE Jatowt, A Maeda, A Syn, SY TI User Motivation Classification and Comparison of Tweets Mentioning Research Articles in the Fields of Medicine, Chemistry and Environmental Science SO DIGITAL LIBRARIES AT THE CROSSROADS OF DIGITAL INFORMATION FOR THE FUTURE, ICADL 2019 SE Lecture Notes in Computer Science LA English DT Proceedings Paper CT 21st International Conference on Asia-Pacific Digital Libraries (ICADL) CY NOV 04-07, 2019 CL Kuala Lumpur, MALAYSIA DE Altmetrics; Machine learning; Support Vector Machine; Medicine; Twitter; User motivation; Chemistry; Environmental science ID TWITTER AB Modern metrics like Altmetrics help researchers and scientists to gauge the impact of their research findings through social media discussions. Twitter holds more scholarly and scientific discussions than other social media platforms and is extensively used to discuss and share research articles by domain experts as well as by the general public. In this study, we have analyzed the motivations of people using Twitter as a medium to propagate the research works. Tweets and the publication details from the field of medicine are collected from altmetric.com for journals with high impact factors and a Support Vector Machine classifier is developed with 85.2% accuracy to categorize the tweets into one of the six motivation classes. The model is then extended to observe the pattern of user motivations in chemistry and environmental science. Medicine and environmental science were found to have similar patterns in user motivations as they directly impact the general public. Chemistry, on the other hand, showed a peculiar pattern with a high percentage of self-citation and promotion. From this study, the domain is also found to play a vital role in measuring research impacts when alternate metrics are used. C1 [Kumar, Mahalakshmi Suresh; Gupta, Shreya; Baskaran, Subashini; Na, Jin-Cheon] Nanyang Technol Univ, Wee Kim Wee Sch Commun & Informat, 31 Nanyang Link, Singapore 637718, Singapore. C3 Nanyang Technological University RP Baskaran, S (corresponding author), Nanyang Technol Univ, Wee Kim Wee Sch Commun & Informat, 31 Nanyang Link, Singapore 637718, Singapore. EM mahalaks002@e.ntu.edu.sg; shreya015@e.ntu.edu.sg; subashin001@e.ntu.edu.sg; tjcna@ntu.edu.sg OI Na, Jin-Cheon/0000-0002-2211-9382 CR [Anonymous], 2014, Eighth Int. AAAI Conf. Weblogs Soc. Media Campion EW, 2004, NEW ENGL J MED, V351, P2436, DOI 10.1056/NEJMe048289 Chawla NV, 2002, J ARTIF INTELL RES, V16, P321, DOI 10.1613/jair.953 Collins K, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0162680 Erdt M, 2017, PLOS ONE, V12, DOI 10.1371/journal.pone.0183217 Esuli Andrea., 2006, P 5 C LANG RES EV LR, P417 George DR, 2013, CLIN OBSTET GYNECOL, V56, P453, DOI 10.1097/GRF.0b013e318297dc38 Halevi G, 2018, Journal of Altmetrics, V1, P2, DOI DOI 10.29024/JOA.1 Haustein S, 2014, ASLIB J INFORM MANAG, V66, P279, DOI 10.1108/AJIM-09-2013-0081 Howard J., 2012, CHRON HIGHER EDUC Hsu YC, 2012, EDUC TECHNOL SOC, V15, P354 Htoo T.H.H., 2017, WHO ARE TWEETING RES, DOI [10.1633/jistap.2017.5.3.4, DOI 10.1633/JISTAP.2017.5.3.4] Ikonomakis M., 2005, WSEAS Transactions on Computers, V4, P966 Ke Q, 2017, PLOS ONE, V12, DOI 10.1371/journal.pone.0175368 Knight CG, 2016, INNOV EDUC TEACH INT, V53, P145, DOI 10.1080/14703297.2014.928229 Na JC, 2017, ONLINE INFORM REV, V41, P337, DOI 10.1108/OIR-02-2016-0058 Na JC, 2015, LECT NOTES COMPUT SC, V9469, P197, DOI 10.1007/978-3-319-27974-9_20 Priem Jason, 2010, First Monday, V15, DOI 10.5210/fm.v15i7.2874 Priem J., 2016, Altmetrics: a manifesto Robinson-Garcia N, 2017, PLOS ONE, V12, DOI 10.1371/journal.pone.0183551 Robinson-García N, 2014, PROF INFORM, V23, P359, DOI 10.3145/epi.2014.jul.03 Ross C, 2011, J DOC, V67, P214, DOI 10.1108/00220411111109449 Shema H, 2015, J ASSOC INF SCI TECH, V66, P1136, DOI 10.1002/asi.23239 Zawbaa H., 2017, J CITATION REPORTS T, DOI [10. 13140/rg.2.2.31536.87049, DOI 10.13140/RG.2.2.31536.87049] NR 24 TC 1 Z9 1 U1 0 U2 10 PU SPRINGER INTERNATIONAL PUBLISHING AG PI CHAM PA GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND SN 0302-9743 EI 1611-3349 BN 978-3-030-34058-2; 978-3-030-34057-5 J9 LECT NOTES COMPUT SC PY 2019 VL 11853 BP 40 EP 53 DI 10.1007/978-3-030-34058-2_5 PG 14 WC Computer Science, Artificial Intelligence; Computer Science, Information Systems; Computer Science, Theory & Methods; Information Science & Library Science; Imaging Science & Photographic Technology WE Conference Proceedings Citation Index - Science (CPCI-S); Conference Proceedings Citation Index - Social Science & Humanities (CPCI-SSH) SC Computer Science; Information Science & Library Science; Imaging Science & Photographic Technology GA BQ3BB UT WOS:000583740100005 DA 2024-09-05 ER PT J AU Tran, J Meller, L Le, V Tam, J Nicholas, A AF Tran, Joanne Meller, Leo Le, Vy Tam, Jasmine Nicholas, Andrea TI Behavioral assessment of soft skill development in a highly structured pre-health biology course for undergraduates SO JOURNAL OF MICROBIOLOGY & BIOLOGY EDUCATION LA English DT Article DE pre-health undergraduate education; active learning; soft-skill assessment; biology education; patient simulations; collaborative learning; videotaped simulations; pre-health skill development; critical thinking analysis; behavioral analysis; scientific literacy; case-based education; group work; design-based research; Multiple Mini Exams (MME) ID QUALITIES; EDUCATION AB In this study, we assessed a highly structured, yearlong, case-based course designed for undergraduate pre-health students. We incorporated both content learning assessments and developed a novel method called Multiple Mini Exams for assessing course impact on the development of skills that professional schools often seek in pre-health students, focusing on students' abilities to collaborate with others, display bedside manners, synthesize patient case details, appropriately use scientific and medical language, and effectively attain patients' medical histories. This novel method utilized a rubric based on desired medical student skills to score videotaped behaviors and interactions of students role playing as doctors in a hypothetical patient case study scenario. Overall, our findings demonstrate that a highly structured course, incorporating weekly student performance and presentation of patient cases encompassing history taking, diagnosis, and treatment, can result in content learning, as well as improve desired skills specific for success in medical fields. C1 [Tran, Joanne; Meller, Leo; Le, Vy; Tam, Jasmine] Univ Calif Irvine, Dept Biol Sci, Irvine, CA USA. [Nicholas, Andrea] Univ Calif Irvine, Dept Neurosci, Irvine, CA 92697 USA. C3 University of California System; University of California Irvine; University of California System; University of California Irvine RP Nicholas, A (corresponding author), Univ Calif Irvine, Dept Neurosci, Irvine, CA 92697 USA. EM acnichol@uci.edu CR Allsop J., 2020, International Journal of Teaching and Learning in Higher Education, V22, P418 Anderson MB, 1999, ACAD MED, V74, P13 Angeles C., ANTIBIOTIC RESISTANC [Anonymous], 1983, Medical education and societal needs: A planning report for the health professions Bautista JMD., 2017, MED SCI EDUC, V27, P645, DOI [10.1007/s40670-017-0446-9, DOI 10.1007/S40670-017-0446-9] Duran M, 2023, CUREUS J MED SCIENCE, V15, DOI 10.7759/cureus.37871 Eva KW, 2004, MED EDUC, V38, P314, DOI 10.1046/j.1365-2923.2004.01776.x Freeman S, 2011, CBE-LIFE SCI EDUC, V10, P175, DOI 10.1187/cbe.10-08-0105 Graffam B, 2007, MED TEACH, V29, P38, DOI 10.1080/01421590601176398 Henneman A, 2020, CURR PHARM TEACH LEA, V12, P585, DOI 10.1016/j.cptl.2020.01.010 Hoffman E A, 2001, Microbiol Educ, V2, P5 McCoy L, 2018, J MED EDUC CURRIC DE, V5, DOI 10.1177/2382120518765135 Mitchell O, 2021, CLIN TEACH, V18, P409, DOI 10.1111/tct.13354 Nicholas A., DIS RIVER CASE STUDY Nissen JM, 2018, PHYS REV PHYS EDUC R, V14, DOI 10.1103/PhysRevPhysEducRes.14.010115 Scott EE, 2020, CBE-LIFE SCI EDUC, V19, DOI 10.1187/cbe.19-11-0245 Steiner-Hofbauer V, 2018, WIEN MED WOCHENSCHR, V168, P398, DOI 10.1007/s10354-017-0597-8 Sullivan Gail M, 2012, J Grad Med Educ, V4, P279, DOI 10.4300/JGME-D-12-00156.1 Young LM, 2010, J MICROBIOL BIOL EDU, V11, P107, DOI 10.1128/jmbe.v11i2.204 NR 19 TC 0 Z9 0 U1 0 U2 0 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 1935-7877 EI 1935-7885 J9 J MICROBIOL BIOL EDU JI J. Microbiol. Biol. Educ. PD AUG 29 PY 2024 VL 25 IS 2 DI 10.1128/jmbe.00192-23 EA JUN 2024 PG 13 WC Education, Scientific Disciplines WE Emerging Sources Citation Index (ESCI) SC Education & Educational Research GA E0R9E UT WOS:001243431200001 PM 38860778 OA gold DA 2024-09-05 ER PT J AU Gehanno, JF Thaon, I Pelissier, C Rollin, L AF Gehanno, Jean-Francois Thaon, Isabelle Pelissier, Carole Rollin, Laetitia TI Precision and Recall of Search Strategies for Identifying Studies on Work-Related Psychosocial Risk Factors in PubMed SO JOURNAL OF OCCUPATIONAL REHABILITATION LA English DT Article DE Psychosocial risk factors; MEDLINE; Bibliometrics ID OCCUPATIONAL-HEALTH; BIBLIOGRAPHIC DATABASES; SYSTEMATIC REVIEWS; MEDLINE; PERFORMANCE; SUFFICIENT; FILTERS AB PurposeThis study aims to report on the effectiveness of various search strategies and keywords to find studies on work-related psychosocial risk factors (PRF) in the PubMed bibliographic database.MethodsWe first selected by hand-searching 191articles published on PRF and indexed in PubMed. We extracted 30 relevant MeSH terms and 38 additional textwords. We then searched PubMed combining these 68 keywords and 27 general keywords on work-related factors. Among the 2953 articles published in January 2020, we identified 446 articles concerning exposure to PRF, which were gathered in a Gold Standard database. We then computed the Recall, Precision, and Number Needed to Read of each keyword or combination of keywords.ResultsOverall, 189 search-words alone or in combination were tested. The highest Recall with a single MeSH term or textword was 43% and 35%, respectively. Subsequently, we developed two different search strings, one optimizing Recall while keeping Precision acceptable (Recall 98.2%, Precision 5.9%, NNR 16.9) and one optimizing Precision while keeping Recall acceptable (Recall 73.1%, Precision 25.5%, NNR 9.7).ConclusionsNo single MeSH term is available to identify relevant studies on PRF in PubMed. Locating these types of studies requires the use of various MeSH and non-MeSH terms in combination to obtain a satisfactory Recall. Nevertheless, enhancing the Recall of search strategies may lead to lower Precision, and higher NNR, although with a non-linear trend. This factor must be taken into consideration when searching PubMed. C1 [Gehanno, Jean-Francois; Rollin, Laetitia] Rouen Univ Hosp, Inst Occupat Med, 1 Rue Germont, F-76000 Rouen, France. [Gehanno, Jean-Francois; Rollin, Laetitia] Univ Paris 13, Rouen Univ, Sorbonne Univ, Lab Med Informat & Knowledge Engn E Hlth,Inserm,LI, Paris, France. [Thaon, Isabelle] CHRU Nancy, Ctr Consultat Pathol Profess, Vandoeuvre Les Nancy, France. [Pelissier, Carole] Univ Gustave Eiffel IFSTTAR, Hosp Univ Ctr St Etienne, Univ Lyon 1, Univ St Etienne, F-42005 St Etienne, France. [Pelissier, Carole] UMRESTTE UMR T9405, F-42005 St Etienne, France. C3 Universite de Rouen Normandie; CHU de Rouen; Universite Paris 13; Universite de Rouen Normandie; Sorbonne Universite; Institut National de la Sante et de la Recherche Medicale (Inserm); CHU de Nancy; Universite Jean Monnet; Universite Claude Bernard Lyon 1 RP Gehanno, JF (corresponding author), Rouen Univ Hosp, Inst Occupat Med, 1 Rue Germont, F-76000 Rouen, France.; Gehanno, JF (corresponding author), Univ Paris 13, Rouen Univ, Sorbonne Univ, Lab Med Informat & Knowledge Engn E Hlth,Inserm,LI, Paris, France. EM jf.gehanno@chu-rouen.fr RI Thaon, Isabelle M/AAE-8650-2020 OI Thaon, Isabelle M/0000-0002-1462-3722; Gehanno, jean-francois/0000-0002-2309-7322 CR Brun Emmanuelle., 2007, EXPERT FORECAST EMER Cooper C, 2018, J CLIN EPIDEMIOL, V99, P53, DOI 10.1016/j.jclinepi.2018.02.025 Duchaine CS, 2020, JAMA PSYCHIAT, V77, P842, DOI 10.1001/jamapsychiatry.2020.0322 Dunn K, 2017, J MED LIBR ASSOC, V105, P336, DOI 10.5195/jmla.2017.87 Gehanno JF, 2009, J OCCUP REHABIL, V19, P223, DOI 10.1007/s10926-009-9177-0 Gehanno JF, 1998, OCCUP ENVIRON MED, V55, P562, DOI 10.1136/oem.55.8.562 Haafkens J, 2006, OCCUP MED-OXFORD, V56, P39, DOI 10.1093/occmed/kqi193 Halladay CW, 2015, J CLIN EPIDEMIOL, V68, P1076, DOI 10.1016/j.jclinepi.2014.12.017 Hausner E, 2012, SYST REV-LONDON, V1, DOI 10.1186/2046-4053-1-19 Kok R, 2015, BMJ OPEN, V5, DOI 10.1136/bmjopen-2014-006315 Mattioli S, 2013, AM J IND MED, V56, P1473, DOI 10.1002/ajim.22252 Mattioli S, 2012, OCCUP ENVIRON MED, V69, P522, DOI 10.1136/oemed-2011-100180 Mattioli S, 2010, OCCUP ENVIRON MED, V67, P436, DOI 10.1136/oem.2008.044727 Niedhammer I, 2021, SCAND J WORK ENV HEA, V47, P489, DOI 10.5271/sjweh.3968 Rice DB, 2016, J PSYCHOSOM RES, V87, P7, DOI 10.1016/j.jpsychores.2016.06.002 Rollin L, 2010, SCAND J WORK ENV HEA, V36, P484, DOI 10.5271/sjweh.3082 Sampson M, 2016, J CLIN EPIDEMIOL, V78, P108, DOI 10.1016/j.jclinepi.2016.03.004 Schaafsma F, 2006, AM J IND MED, V49, P127, DOI 10.1002/ajim.20235 Taouk Y, 2020, SCAND J WORK ENV HEA, V46, P19, DOI 10.5271/sjweh.3854 van de Glind EMM, 2012, J AM MED INFORM ASSN, V19, P468, DOI 10.1136/amiajnl-2011-000319 van der Molen HF, 2020, BMJ OPEN, V10, DOI 10.1136/bmjopen-2019-034849 Verbeek J, 2005, OCCUP ENVIRON MED, V62, P682, DOI 10.1136/oem.2004.019117 Wagner M, 2020, J CLIN EPIDEMIOL, V120, P17, DOI 10.1016/j.jclinepi.2019.12.008 Wilczynski NL, 2010, QUAL SAF HEALTH CARE, V19, DOI 10.1136/qshc.2010.042432 Wilczynski NL, 2004, CAN MED ASSOC J, V171, P1179, DOI 10.1503/cmaj.1040512 NR 25 TC 1 Z9 1 U1 0 U2 8 PU SPRINGER/PLENUM PUBLISHERS PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1053-0487 EI 1573-3688 J9 J OCCUP REHABIL JI J. Occup. Rehabil. PD DEC PY 2023 VL 33 IS 4 BP 776 EP 784 DI 10.1007/s10926-023-10110-w EA MAR 2023 PG 9 WC Rehabilitation; Social Issues WE Social Science Citation Index (SSCI) SC Rehabilitation; Social Issues GA AH2I3 UT WOS:000953888300001 PM 36941513 DA 2024-09-05 ER PT J AU Aljohani, NR Fayoumi, A Saeed-Ul Hassan AF Aljohani, Naif Radi Fayoumi, Ayman Saeed-Ul Hassan TI An in-text citation classification predictive model for a scholarly search system SO SCIENTOMETRICS LA English DT Article DE Citation classification; Machine learning; In-text citations; Scholarly search systems; Bibliometric-enhanced information retrieval ID SCIENTIFIC ARTICLES; CONTEXT; IDENTIFICATION; RETRIEVAL; DOCUMENTS; KNOWLEDGE AB We argue that citations in scholarly documents do not always perform equivalent functions or possess equal importance. To address this problem, we worked with a corpus of over 21 k citations from the Association for Computational Linguistics, from which 465 citations were randomly annotated by experts as either important or unimportant. We used an array of machine-learning models on these annotated citations: Random Forest (RF); Support Vector Machine (SVM); and Decision Tree (DT). For the classification task, the selected models employed 15 novel features: contextual; quantitative; and qualitative. We show that the RF model outperformed the comparative model by 9.52%, achieving a 92% precision-recall area under the curve. We present a prototype of a scientific publication search system based on the RF prediction model for feature engineering. This was used on a dataset of 4138 full-text articles indexed by PLOS ONE that consists of 31,839 unique references. The empirical evaluation shows that the proposed search system improves visibility of a given scientific document by including, along with its index terms, terms from the works that it cites that are predicted to be important. Overall, this yields improved search results against the queries by the user. C1 [Aljohani, Naif Radi; Fayoumi, Ayman] King Abdulaziz Univ, Fac Comp & Informat Technol, Jeddah, Saudi Arabia. [Saeed-Ul Hassan] Informat Technol Univ, 346-B Ferozepur Rd, Lahore, Pakistan. C3 King Abdulaziz University RP Saeed-Ul Hassan (corresponding author), Informat Technol Univ, 346-B Ferozepur Rd, Lahore, Pakistan. EM nraljohani@kau.edu.sa; afayoumi@kau.edu.sa; saeed-ul-hassan@itu.edu.pk RI Aljohani, Naif R/S-1109-2017; Fayoumi, Ayman/E-7236-2014; Hassan, Saeed-Ul/G-1889-2016 OI Fayoumi, Ayman/0000-0002-4160-3305; Hassan, Saeed-Ul/0000-0002-6509-9190 FU Deanship of Scientific Research (DSR), King Abdulaziz University, Jeddah [RG-14-611-40] FX This project was funded by the Deanship of Scientific Research (DSR), King Abdulaziz University, Jeddah, under grant No. RG-14-611-40. The authors, therefore, gratefully acknowledge DSR technical and financial support. CR Ananiadou Sophia, 2013, Computational Linguistics and Intelligent Text Processing. 14th International Conference, CICLing 2013. Proceedings, P318, DOI 10.1007/978-3-642-37256-8_27 Athar A., 2011, P ACL 2011 STUD SESS, P81 Batista-Navarro Riza Theresa, 2013, Computational Linguistics and Intelligent Text Processing. 14th International Conference, CICLing 2013. Proceedings, P559, DOI 10.1007/978-3-642-37247-6_45 Bhagavatula C., 2018, Long Papers, V1, P238, DOI DOI 10.18653/V1/N18-1022 BONZI S, 1982, J AM SOC INFORM SCI, V33, P208, DOI 10.1002/asi.4630330404 Bornmann L, 2020, SCIENTOMETRICS, V122, P1051, DOI 10.1007/s11192-019-03326-2 Bornmann L, 2018, SCIENTOMETRICS, V114, P427, DOI 10.1007/s11192-017-2591-8 Boyack KW, 2018, J INFORMETR, V12, P59, DOI 10.1016/j.joi.2017.11.005 CANO V, 1989, J AM SOC INFORM SCI, V40, P284, DOI 10.1002/(SICI)1097-4571(198907)40:4<284::AID-ASI10>3.0.CO;2-Z Cohan A, 2018, INT J DIGIT LIBRARIE, V19, P287, DOI 10.1007/s00799-017-0216-8 Conrad J. G., 2001, Proceedings of the 2001 ACM CIKM. Tenth International Conference on Information and Knowledge Management, P287, DOI 10.1145/502585.502634 Councill IG, 2008, SIXTH INTERNATIONAL CONFERENCE ON LANGUAGE RESOURCES AND EVALUATION, LREC 2008, P661 Ding Y, 2014, J ASSOC INF SCI TECH, V65, P1820, DOI 10.1002/asi.23256 Dong YX, 2017, KDD'17: PROCEEDINGS OF THE 23RD ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, P1437, DOI 10.1145/3097983.3098016 Drongstrup D, 2020, SCIENTOMETRICS, V125, P1541, DOI 10.1007/s11192-020-03613-3 Finney B., 1979, The reference characteristics of scientific texts GARFIELD E, 1965, STAT ASSOC METHOD M, V1964, P189 Garzone M, 2000, LECT NOTES ARTIF INT, V1822, P337 Hassan S.-U., 2017, Digital Libraries: Data, Information, and Knowledge for Digital Lives, P119, DOI DOI 10.1007/978-3-319-70232-2_10 Hassan SU, 2018, LECT NOTES COMPUT SC, V11279, P316, DOI 10.1007/978-3-030-04257-8_32 Hassan SU, 2018, SCIENTOMETRICS, V117, P1645, DOI 10.1007/s11192-018-2944-y Hassan SU, 2015, SCIENTOMETRICS, V103, P33, DOI 10.1007/s11192-015-1528-3 Hassan SU, 2013, SCIENTOMETRICS, V94, P163, DOI 10.1007/s11192-012-0786-6 Hassannejad S., 2017, 2017 ACM IEEE JOINT, V14, P1, DOI [DOI 10.1109/JCDL.2017.7991558, 10.9734/ARRB/2017/27339] Hoffmann A., 2003, P 2 INT C KNOWL CAPT, P28 HOOTEN PA, 1991, J AM SOC INFORM SCI, V42, P397, DOI 10.1002/(SICI)1097-4571(199107)42:6<397::AID-ASI2>3.0.CO;2-N Hu ZG, 2013, J INFORMETR, V7, P887, DOI 10.1016/j.joi.2013.08.005 Huang YH, 2013, IEEE DATA MINING, P291, DOI 10.1109/ICDM.2013.120 Jahangir M, 2017, PROCEEDINGS OF THE 2017 INTELLIGENT SYSTEMS CONFERENCE (INTELLISYS), P722, DOI 10.1109/IntelliSys.2017.8324209 Karimi S, 2018, SCIENTOMETRICS, V116, P1331, DOI 10.1007/s11192-018-2785-8 Kumar S, 2016, PROCEEDINGS OF THE 25TH INTERNATIONAL CONFERENCE ON WORLD WIDE WEB (WWW'16 COMPANION), P63, DOI 10.1145/2872518.2889391 Lamers W., 2018, 23 INT C SCI TECHNOL Ma Shutian, 2020, Scientometrics, V122, P1445, DOI 10.1007/s11192-019-03336-0 Ma ST, 2018, SCIENTOMETRICS, V116, P1303, DOI 10.1007/s11192-018-2754-2 Mayr P, 2018, INT J DIGIT LIBRARIE, V19, P107, DOI 10.1007/s00799-017-0230-x MORAVCSIK MJ, 1975, SOC STUD SCI, V5, P86, DOI 10.1177/030631277500500106 Nakov P. I., 2004, P SIGIR 04 WORKSH SE, P81 Nanba H, 1999, IJCAI-99: PROCEEDINGS OF THE SIXTEENTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOLS 1 & 2, P926 Nawaz R, 2012, LREC 2012 - EIGHTH INTERNATIONAL CONFERENCE ON LANGUAGE RESOURCES AND EVALUATION, P3505 Nawaz R, 2013, BMC BIOINFORMATICS, V14, DOI 10.1186/1471-2105-14-14 Nazir S, 2020, PLOS ONE, V15, DOI 10.1371/journal.pone.0228885 OPPENHEIM C, 1978, J AM SOC INFORM SCI, V29, P225, DOI 10.1002/asi.4630290504 Pang B., 2006, Foundations and Trends in Information Retrieval, V1, P91, DOI DOI 10.1561/1500000011 Qayyum F, 2019, SCIENTOMETRICS, V118, P21, DOI 10.1007/s11192-018-2961-x Qazvinian V, 2013, J ARTIF INTELL RES, V46, P165, DOI 10.1613/jair.3732 Rose S., 2010, TEXT MINING APPL THE, P1, DOI [DOI 10.1002/9780470689646.CH1, 10.1002/9780470689646.CH1, 10.1002/9780470689646.ch1] Saeed-Ul Hassan, 2018, SCIENTOMETRICS, V116, P973, DOI 10.1007/s11192-018-2767-x Safder I, 2020, INFORM PROCESS MANAG, V57, DOI 10.1016/j.ipm.2020.102269 Safder I, 2019, SCIENTOMETRICS, V119, P257, DOI 10.1007/s11192-019-03025-y Safder I, 2018, INT CONF DAT MIN WOR, P1308, DOI 10.1109/ICDMW.2018.00186 Shardlow M, 2018, BMC MED INFORM DECIS, V18, DOI 10.1186/s12911-018-0639-1 Small H, 2018, J INFORMETR, V12, P461, DOI 10.1016/j.joi.2018.03.007 Sugiyama Kazunari, 2010, Proceedings of the 2010 International Conference on Information Retrieval and Knowledge Management (CAMP 2010), P67, DOI 10.1109/INFRKM.2010.5466945 Tahamtan I, 2018, J INFORMETR, V12, P203, DOI 10.1016/j.joi.2018.01.002 Thompson P, 2017, LANG RESOUR EVAL, V51, P409, DOI 10.1007/s10579-016-9344-9 Voos H., 1976, The Journal of Academic Librarianship, V1, P19 Wang XL, 2011, BMC BIOINFORMATICS, V12, DOI 10.1186/1471-2105-12-S8-S11 Zhao DZ, 2020, SCIENTOMETRICS, V122, P503, DOI 10.1007/s11192-019-03280-z Zhu XD, 2015, J ASSOC INF SCI TECH, V66, P408, DOI 10.1002/asi.23179 NR 59 TC 6 Z9 7 U1 6 U2 39 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0138-9130 EI 1588-2861 J9 SCIENTOMETRICS JI Scientometrics PD JUL PY 2021 VL 126 IS 7 SI SI BP 5509 EP 5529 DI 10.1007/s11192-021-03986-z EA APR 2021 PG 21 WC Computer Science, Interdisciplinary Applications; Information Science & Library Science WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Computer Science; Information Science & Library Science GA SY3VS UT WOS:000644380300024 DA 2024-09-05 ER PT J AU Liu, JY Xia, F Feng, X Ren, J Liu, H AF Liu, Jiaying Xia, Feng Feng, Xu Ren, Jing Liu, Huan TI Deep Graph Learning for Anomalous Citation Detection SO IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS LA English DT Article DE Anomaly detection; Image edge detection; Bibliometrics; Task analysis; Semantics; Network analyzers; Representation learning; Anomalous citation; deep graph learning; network representation; scholarly network analysis (SNA) ID SELF-CITATION; NETWORKS AB Anomaly detection is one of the most active research areas in various critical domains, such as healthcare, fintech, and public security. However, little attention has been paid to scholarly data, that is, anomaly detection in a citation network. Citation is considered as one of the most crucial metrics to evaluate the impact of scientific research, which may be gamed in multiple ways. Therefore, anomaly detection in citation networks is of significant importance to identify manipulation and inflation of citations. To address this open issue, we propose a novel deep graph learning model, namely graph learning for anomaly detection (GLAD), to identify anomalies in citation networks. GLAD incorporates text semantic mining to network representation learning by adding both node attributes and link attributes via graph neural networks (GNNs). It exploits not only the relevance of citation contents, but also hidden relationships between papers. Within the GLAD framework, we propose an algorithm called Citation PUrpose (CPU) to discover the purpose of citation based on citation context. The performance of GLAD is validated through a simulated anomalous citation dataset. Experimental results demonstrate the effectiveness of GLAD on the anomalous citation detection task. C1 [Liu, Jiaying] Dalian Univ Technol, Sch Econ & Management, Dalian 116024, Peoples R China. [Xia, Feng; Ren, Jing] Federat Univ Australia, Sch Engn IT & Phys Sci, Ballarat, Vic 3353, Australia. [Feng, Xu] Dalian Univ Technol, Sch Software, Dalian 116620, Peoples R China. [Liu, Huan] Arizona State Univ, Sch Comp Informat & Decis Syst Engn, Tempe, AZ 85281 USA. C3 Dalian University of Technology; Federation University Australia; Dalian University of Technology; Arizona State University; Arizona State University-Tempe RP Xia, F (corresponding author), Federat Univ Australia, Sch Engn IT & Phys Sci, Ballarat, Vic 3353, Australia. EM f.xia@ieee.org RI Liu, JY/GYJ-0138-2022; liu, huan/JEO-4705-2023; Xia, Feng/Y-2859-2019; liu, huan/JKI-3764-2023; Wang, Luyao/JLL-2001-2023 OI Xia, Feng/0000-0002-8324-1859; Feng, Xu/0000-0002-3923-5590; Liu, Jiaying/0000-0001-9090-6305; Ren, Jing/0000-0003-0169-1491 FU National Natural Science Foundation of China [61872054] FX This work was supported in part by the National Natural Science Foundation of China under Grant 61872054. CR Abu-Jbara A., 2013, NAACL, P596 Atwood J, 2016, ADV NEUR IN, V29 Bai XM, 2020, IEEE ACCESS, V8, P123200, DOI 10.1109/ACCESS.2020.3007709 Bartneck C, 2010, SCIENTOMETRICS, V85, P41, DOI 10.1007/s11192-010-0242-4 Beltagy I, 2019, 2019 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING AND THE 9TH INTERNATIONAL JOINT CONFERENCE ON NATURAL LANGUAGE PROCESSING (EMNLP-IJCNLP 2019), P3615 Bian T, 2020, AAAI CONF ARTIF INTE, V34, P549 Bojchevski A, 2018, PR MACH LEARN RES, V80 Cheng JH, 2018, CHI 2018: EXTENDED ABSTRACTS OF THE 2018 CHI CONFERENCE ON HUMAN FACTORS IN COMPUTING SYSTEMS, DOI 10.1145/3170427.3188467 COHEN J, 1968, PSYCHOL BULL, V70, P213, DOI 10.1037/h0026256 Corbyn Z., 2010, Nature News, DOI DOI 10.1038/NEWS.2010.406 Davis P., 2012, SCHOLARLY KITCHEN, V10, P15 Ding KZ, 2021, PROCEEDINGS OF THE WORLD WIDE WEB CONFERENCE 2021 (WWW 2021), P2448, DOI 10.1145/3442381.3449922 Dong M, 2019, PROCEEDINGS OF THE 28TH ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT (CIKM '19), P569, DOI 10.1145/3357384.3357994 Feng Xia, 2021, IEEE Transactions on Artificial Intelligence, V2, P109, DOI 10.1109/TAI.2021.3076021 Fiore U, 2019, INFORM SCIENCES, V479, P448, DOI 10.1016/j.ins.2017.12.030 Fortunato S, 2018, SCIENCE, V359, DOI 10.1126/science.aao0185 Franck G, 1999, SCIENCE, V286, P53, DOI 10.1126/science.286.5437.53 Gallicchio C, 2010, IEEE IJCNN GORI M, 2005, IEEE IJCNN, P729, DOI DOI 10.1109/IJCNN.2005.1555942 Grover A, 2016, KDD'16: PROCEEDINGS OF THE 22ND ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, P855, DOI 10.1145/2939672.2939754 Guo SN, 2019, AAAI CONF ARTIF INTE, P922 Hamilton WL, 2017, ADV NEUR IN, V30 Ioannidis JPA, 2015, J PSYCHOSOM RES, V78, P7, DOI 10.1016/j.jpsychores.2014.11.008 Kojaku S., 2020, ARXIV200909097 Kong XJ, 2020, ACM T KNOWL DISCOV D, V14, DOI 10.1145/3385530 Kong XJ, 2019, J NETW COMPUT APPL, V132, P86, DOI 10.1016/j.jnca.2019.01.029 Li A, 2019, PROCEEDINGS OF THE 28TH ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT (CIKM '19), P2703, DOI 10.1145/3357384.3357820 Li Y., 2016, ICLR Liu JY, 2021, IEEE T KNOWL DATA EN, V33, P1763, DOI 10.1109/TKDE.2019.2946825 Lu YJ, 2020, 58TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2020), P505 Ma TF, 2018, ADV NEUR IN, V31 Mimouni M, 2016, SCIENTOMETRICS, V108, P1455, DOI 10.1007/s11192-016-2025-z Moustafa K, 2016, ACCOUNT RES, V23, P230, DOI 10.1080/08989621.2015.1127763 Ouyang L., 2020, 2020 INT JOINT C NEU, P1 Perozzi B, 2014, PROCEEDINGS OF THE 20TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING (KDD'14), P701, DOI 10.1145/2623330.2623732 PRABHA CG, 1983, J AM SOC INFORM SCI, V34, P202, DOI 10.1002/asi.4630340305 Le Q, 2014, PR MACH LEARN RES, V32, P1188 Ren Y., 2020, Ambipolar Materials and Devices, P1 Scarselli F, 2009, IEEE T NEURAL NETWOR, V20, P61, DOI 10.1109/TNN.2008.2005605 Schuster M, 2012, INT CONF ACOUST SPEE, P5149, DOI 10.1109/ICASSP.2012.6289079 Tang J, 2015, PROCEEDINGS OF THE 24TH INTERNATIONAL CONFERENCE ON WORLD WIDE WEB (WWW 2015), P1067, DOI 10.1145/2736277.2741093 Tu CC, 2017, PROCEEDINGS OF THE TWENTY-SIXTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, P2864 Tu K, 2018, KDD'18: PROCEEDINGS OF THE 24TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING, P2357, DOI 10.1145/3219819.3220068 Velickovic P., 2018, ARXIV180910341 Wang L, 2020, IEEE T COMPUT SOC SY, V7, P503, DOI 10.1109/TCSS.2019.2962819 Wang W, 2022, ACTA PHARMACOL SIN, V43, P771, DOI 10.1038/s41401-021-00714-4 Wang X, 2020, KDD '20: PROCEEDINGS OF THE 26TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING, P1243, DOI 10.1145/3394486.3403177 Wang XH, 2021, NEURAL COMPUT APPL, V33, P12073, DOI 10.1007/s00521-021-05924-9 Wu LK, 2021, LECT NOTES COMPUT SC, V12681, P3, DOI 10.1007/978-3-030-73194-6_1 Xia F, 2017, IEEE T BIG DATA, V3, P18, DOI 10.1109/TBDATA.2016.2641460 Xu K, 2018, IEEE INT SYMP CIRC S, DOI 10.1109/ISCAS.2018.8350934 Yu DH, 2021, LECT NOTES ARTIF INT, V12459, P378, DOI 10.1007/978-3-030-67664-3_23 Yu S, 2021, IEEE T COMPUT SOC SY, V8, P134, DOI 10.1109/TCSS.2020.2977958 Yu WC, 2018, KDD'18: PROCEEDINGS OF THE 24TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING, P2663, DOI 10.1145/3219819.3220000 Yuqin Dou, 2020, GLSVLSI '20. Proceedings of the 2020 Great Lakes Symposium on VLSI, P315, DOI 10.1145/3386263.3407591 Zhang JN, 2018, UNCERTAINTY IN ARTIFICIAL INTELLIGENCE, P339 Zhang X., 2020, PROC NEURAL INF PROC, P1 Zhao T., 2021, 2021 Int. Conf. on IC Design and Technology (ICICDT), Dresden, P1 Zheng L, 2019, PROCEEDINGS OF THE TWENTY-EIGHTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, P4419 NR 59 TC 25 Z9 26 U1 8 U2 56 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 2162-237X EI 2162-2388 J9 IEEE T NEUR NET LEAR JI IEEE Trans. Neural Netw. Learn. Syst. PD JUN PY 2022 VL 33 IS 6 BP 2543 EP 2557 DI 10.1109/TNNLS.2022.3145092 EA FEB 2022 PG 15 WC Computer Science, Artificial Intelligence; Computer Science, Hardware & Architecture; Computer Science, Theory & Methods; Engineering, Electrical & Electronic WE Science Citation Index Expanded (SCI-EXPANDED) SC Computer Science; Engineering GA 1T4KK UT WOS:000754285500001 PM 35143402 OA Green Submitted DA 2024-09-05 ER PT J AU Nahr, N Heikkilä, M AF Nahr, Nora Heikkila, Marikka TI Uncovering the identity of Electronic Markets research through text mining techniques SO ELECTRONIC MARKETS LA English DT Article DE Electronic Markets journal; Core identity; Text mining analysis; Cluster analysis; Unsupervised machine learning; Bibliometric analysis ID VALUE CO-CREATION; FINANCIAL SERVICES; RISK; TECHNOLOGIES; MANAGEMENT; IMPACT; INNOVATIVENESS; METAANALYSIS; EXPERIENCES; ALGORITHMS AB As an established academic journal in the e-commerce and digital platforms fields, Electronic Markets (EM) features a diverse range of topics and occupies a significant role in the information systems field. The study investigates EM's topic diversity over the time period 2009-2020 using a text mining analysis and a bibliometric analysis and identifies 28 cluster groups. The analysis reveals that the top three topics are 1) service quality, 2) blockchain and other shared trust building solutions, their impact and credibility, as well as 3) consumer buying behavior and interactions. EM's core identity lies in a balanced set of core themes that bring technological, business or human/ social perspectives to the research of networked business and digital economy. This includes research on digital and smart services, applications, consumer behavior and business models, as well as technology and e-commerce data. Ethical and sustainability related topics are however still less present in EM. C1 [Nahr, Nora] Univ Passau, Chair Informat Syst Informat & IT Serv Management, Innstr 43, D-94032 Passau, Germany. [Heikkila, Marikka] Univ Turku, Sch Econ, Rehtorinpellonkatu 3, Turku 20500, Finland. C3 University of Passau; University of Turku RP Nahr, N (corresponding author), Univ Passau, Chair Informat Syst Informat & IT Serv Management, Innstr 43, D-94032 Passau, Germany. EM nora.nahr@uni-passau.de; marikka.heikkila@utu.fi RI Heikkilä, Marikka/AAU-4000-2021 OI Heikkilä, Marikka/0000-0002-7298-7217; Nahr, Nora/0000-0002-2859-4088 FU Projekt DEAL FX Open Access funding enabled and organized by Projekt DEAL. CR Akter S, 2016, ELECTRON MARK, V26, P173, DOI 10.1007/s12525-016-0219-0 Akter S, 2013, ELECTRON MARK, V23, P29, DOI 10.1007/s12525-012-0091-5 Akter S, 2010, ELECTRON MARK, V20, P209, DOI 10.1007/s12525-010-0043-x Albrecht S, 2020, ELECTRON MARK, V30, P241, DOI 10.1007/s12525-019-00371-w Alt R, 2011, ELECTRON MARK, V21, P41, DOI 10.1007/s12525-011-0057-z [Anonymous], 2014, MULTIKONFERENZ WIRTS Balijepally V, 2011, J ASSOC INF SYST, V12, P375 Bauer I, 2020, ELECTRON MARK, V30, P211, DOI 10.1007/s12525-019-00368-5 Belanche D, 2021, ELECTRON MARK, V31, P477, DOI 10.1007/s12525-020-00432-5 Bons RWH, 2020, ELECTRON MARK, V30, P189, DOI 10.1007/s12525-020-00421-8 Boritz JE, 2013, INT J ACCOUNT INF SY, V14, P138, DOI 10.1016/j.accinf.2011.11.002 Bouwman H, 2018, ELECTRON MARK, V28, P149, DOI 10.1007/s12525-016-0243-0 Buchkremer R, 2019, IEEE ACCESS, V7, P65263, DOI 10.1109/ACCESS.2019.2917719 Chompis E, 2014, ELECTRON MARK, V24, P165, DOI 10.1007/s12525-014-0160-z Clarke R, 2012, P 25 BLED ECONFERENC, P12 Clarke R, 2013, ELECTRON MARK, V23, P271, DOI 10.1007/s12525-013-0144-4 Constantiou I, 2012, ELECTRON MARK, V22, P105, DOI 10.1007/s12525-011-0076-9 Daim TU, 2006, TECHNOL FORECAST SOC, V73, P981, DOI 10.1016/j.techfore.2006.04.004 Derks J, 2018, ELECTRON MARK, V28, P321, DOI 10.1007/s12525-018-0308-3 Donthu N, 2021, J BUS RES, V133, P285, DOI 10.1016/j.jbusres.2021.04.070 Dreher, 2012, P 25 BLED ECONFERENC, P193 Faloutsos C, 2012, MOR KAUF D, P39 Feinerer I, 2008, J STAT SOFTW, V25, P1 Feldman R., 2007, TEXT MINING HDB ADV Fischbach K, 2011, ELECTRON MARK, V21, P19, DOI 10.1007/s12525-011-0051-5 Fteimi, 2020, P THE33RD BLED ECONF, P499 Fteimi N, 2019, INT J KNOWL MANAG, V15, P53, DOI 10.4018/IJKM.2019010104 Gao HX, 2014, ELECTRON MARK, V24, P67, DOI 10.1007/s12525-013-0142-6 Ghazali E, 2016, ELECTRON MARK, V26, P157, DOI 10.1007/s12525-016-0218-1 Gimpel H, 2020, ELECTRON MARK, V30, P699, DOI 10.1007/s12525-019-00361-y Goyal S, 2018, COMMUN ASSOC INF SYS, V43, P404, DOI 10.17705/1CAIS.04323 Gretzel U, 2015, ELECTRON MARK, V25, P179, DOI 10.1007/s12525-015-0196-8 Grieger M, 2019, ELECTRON MARK, V29, P473, DOI 10.1007/s12525-018-0321-6 Hassan NR, 2017, J INF TECHNOL-UK, V32, P85, DOI 10.1057/jit.2015.29 Hayne SC, 2010, ELECTRON MARK, V20, P95, DOI 10.1007/s12525-010-0036-9 Hofmann P, 2020, ELECTRON MARK, V30, P99, DOI 10.1007/s12525-019-00365-8 Huang, 2008, P 6 NZ COMP SCI RES, P49 Hunke F, 2022, ELECTRON MARK, V32, P503, DOI 10.1007/s12525-021-00506-y Huotari K, 2017, ELECTRON MARK, V27, P21, DOI 10.1007/s12525-015-0212-z Hwang Y, 2009, ELECTRON MARK, V19, P89, DOI 10.1007/s12525-009-0007-1 Indulska M, 2012, EUR J INFORM SYST, V21, P49, DOI 10.1057/ejis.2011.37 Jeyaraj A, 2020, INFORM MANAGE-AMSTER, V57, DOI 10.1016/j.im.2019.103207 Keating BW, 2009, ELECTRON MARK, V19, P237, DOI 10.1007/s12525-009-0021-3 Kollmann T, 2020, ELECTRON MARK, V30, P273, DOI 10.1007/s12525-019-00369-4 Li BL, 2013, LECT NOTES COMPUT SC, V8206, P611, DOI 10.1007/978-3-642-41278-3_74 Liao CC, 2010, ELECTRON MARK, V20, P53, DOI 10.1007/s12525-010-0030-2 Liu W, 2020, ELECTRON MARK, V30, P735, DOI 10.1007/s12525-020-00395-7 Liu Y, 2012, ELECTRON MARK, V22, P83, DOI 10.1007/s12525-012-0085-3 Manthiou A, 2021, ELECTRON MARK, V31, P511, DOI 10.1007/s12525-020-00434-3 Marella V, 2020, ELECTRON MARK, V30, P259, DOI 10.1007/s12525-019-00392-5 Martín-Martín A, 2018, J INFORMETR, V12, P1160, DOI 10.1016/j.joi.2018.09.002 Menschner P, 2011, ELECTRON MARK, V21, P63, DOI 10.1007/s12525-011-0050-6 Möller F, 2022, ELECTRON MARK, V32, P701, DOI 10.1007/s12525-021-00507-x Munnukka J, 2014, ELECTRON MARK, V24, P219, DOI 10.1007/s12525-013-0138-2 Murtagh F, 2014, J CLASSIF, V31, P274, DOI 10.1007/s00357-014-9161-z Nam K, 2021, ELECTRON MARK, V31, P553, DOI 10.1007/s12525-020-00442-3 Neuhofer B, 2015, ELECTRON MARK, V25, P243, DOI 10.1007/s12525-015-0182-1 Nicolaou AI, 2011, ELECTRON MARK, V21, P113, DOI 10.1007/s12525-011-0061-3 Novak J, 2009, ELECTRON MARK, V19, P15, DOI 10.1007/s12525-009-0003-5 Ostern NK, 2020, ELECTRON MARK, V30, P195, DOI 10.1007/s12525-019-00387-2 Palvia P, 2015, COMMUN ASSOC INF SYS, V37, P630 Pappas IO, 2014, ELECTRON MARK, V24, P193, DOI 10.1007/s12525-014-0153-y Penttinen E, 2019, ELECTRON MARK, V29, P337, DOI 10.1007/s12525-018-0298-1 Pucihar A, 2020, ELECTRON MARK, V30, P29, DOI 10.1007/s12525-020-00406-7 Rhee HT, 2015, ELECTRON MARK, V25, P211, DOI 10.1007/s12525-014-0161-y Riquelme IP, 2014, ELECTRON MARK, V24, P135, DOI 10.1007/s12525-013-0145-3 Martín SS, 2011, ELECTRON MARK, V21, P267, DOI 10.1007/s12525-011-0074-y Schmidt-Rauch S, 2014, ELECTRON MARK, V24, P5, DOI 10.1007/s12525-013-0124-8 Serenko A, 2013, J KNOWL MANAG, V17, P773, DOI 10.1108/JKM-05-2013-0166 Setia P, 2015, ELECTRON MARK, V25, P283, DOI 10.1007/s12525-015-0189-7 Sha W, 2009, ELECTRON MARK, V19, P43, DOI 10.1007/s12525-008-0001-z Shao BJ, 2012, ELECTRON MARK, V22, P73, DOI 10.1007/s12525-012-0093-3 Sidorova A, 2007, PROC INT CONF INFORM Sigala M, 2015, ELECTRON MARK, V25, P189, DOI 10.1007/s12525-014-0179-1 Stamenkov G, 2016, ELECTRON MARK, V26, P291, DOI 10.1007/s12525-016-0221-6 Szmrecsanyi B., 2012, Grammatical variation in British English dialects: A study in corpus-based dialectometry, DOI [10.1017/CBO9780511763380, DOI 10.1017/CBO9780511763380] Tu HJ, 2012, ELECTRON MARK, V22, P243, DOI 10.1007/s12525-012-0108-0 Vijaymeena M., 2016, Machine Learning and Applications, V3, P19, DOI DOI 10.5121/MLAIJ.2016.3103 Weking J, 2020, ELECTRON MARK, V30, P447, DOI 10.1007/s12525-018-0322-5 Weking J, 2020, ELECTRON MARK, V30, P285, DOI 10.1007/s12525-019-00386-3 Wiegard RB, 2019, ELECTRON MARK, V29, P107, DOI 10.1007/s12525-017-0274-1 Xu H, 2009, ELECTRON MARK, V19, P137, DOI 10.1007/s12525-009-0012-4 Yim D, 2021, ELECTRON MARK, V31, P619, DOI 10.1007/s12525-021-00472-5 Zeng M, 2019, ELECTRON MARK, V29, P263, DOI 10.1007/s12525-018-0311-8 Zhang MM, 2011, ELECTRON MARK, V21, P161, DOI 10.1007/s12525-011-0065-z Zhao Y, 2005, DATA MIN KNOWL DISC, V10, P141, DOI 10.1007/s10618-005-0361-3 Zupic I, 2015, ORGAN RES METHODS, V18, P429, DOI 10.1177/1094428114562629 NR 87 TC 4 Z9 4 U1 8 U2 36 PU SPRINGER HEIDELBERG PI HEIDELBERG PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY SN 1019-6781 EI 1422-8890 J9 ELECTRON MARK JI Electron. Mark. PD SEP PY 2022 VL 32 IS 3 SI SI BP 1257 EP 1277 DI 10.1007/s12525-022-00560-0 EA JUL 2022 PG 21 WC Business; Management WE Social Science Citation Index (SSCI) SC Business & Economics GA 6G4VT UT WOS:000824995600001 OA hybrid DA 2024-09-05 ER PT J AU Aagaard, T Lund, H Juhl, C AF Aagaard, Thomas Lund, Hans Juhl, Carsten TI Optimizing literature search in systematic reviews - are MEDLINE, EMBASE and CENTRAL enough for identifying effect studies within the area of musculoskeletal disorders? SO BMC MEDICAL RESEARCH METHODOLOGY LA English DT Article DE Information retrieval; Bibliometric; MECIR guidelines; Evidence-based medicine; Relative recall; Literature searching; Systematic review; Musculoskeletal area ID RANDOMIZED CONTROLLED-TRIALS; MENTAL-HEALTH; DATABASES; INTERVENTIONS; ARTICLES; INFORMATION; PREVENTION; RELEVANT; NETWORK; DISEASE AB Background: When conducting systematic reviews, it is essential to perform a comprehensive literature search to identify all published studies relevant to the specific research question. The Cochrane Collaborations Methodological Expectations of Cochrane Intervention Reviews (MECIR) guidelines state that searching MEDLINE, EMBASE and CENTRAL should be considered mandatory. The aim of this study was to evaluate the MECIR recommendations to use MEDLINE, EMBASE and CENTRAL combined, and examine the yield of using these to find randomized controlled trials (RCTs) within the area of musculoskeletal disorders. Methods: Data sources were systematic reviews published by the Cochrane Musculoskeletal Review Group, including at least five RCTs, reporting a search history, searching MEDLINE, EMBASE, CENTRAL, and adding reference-and hand-searching. Additional databases were deemed eligible if they indexed RCTs, were in English and used in more than three of the systematic reviews. Relative recall was calculated as the number of studies identified by the literature search divided by the number of eligible studies i.e. included studies in the individual systematic reviews. Finally, cumulative median recall was calculated for MEDLINE, EMBASE and CENTRAL combined followed by the databases yielding additional studies. Results: Deemed eligible was twenty-three systematic reviews and the databases included other than MEDLINE, EMBASE and CENTRAL was AMED, CINAHL, HealthSTAR, MANTIS, OT-Seeker, PEDro, PsychINFO, SCOPUS, SportDISCUS and Web of Science. Cumulative median recall for combined searching in MEDLINE, EMBASE and CENTRAL was 88.9% and increased to 90.9% when adding 10 additional databases. Conclusion: Searching MEDLINE, EMBASE and CENTRAL was not sufficient for identifying all effect studies on musculoskeletal disorders, but additional ten databases did only increase the median recall by 2%. It is possible that searching databases is not sufficient to identify all relevant references, and that reviewers must rely upon additional sources in their literature search. However further research is needed. C1 [Aagaard, Thomas] Holbaek Univ Hosp, Dept Physiotherapy, Holbaek, Denmark. [Aagaard, Thomas; Lund, Hans; Juhl, Carsten] Univ Southern Denmark, Inst Sports Sci & Clin Biomech, Res Unit Musculoskeletal Funct & Physiotherapy, Odense, Denmark. [Lund, Hans] Bergen Univ Coll, Ctr Evidence Based Practice, Bergen, Norway. [Juhl, Carsten] Copenhagen Univ Hosp, Dept Rehabil, Gentofte, Denmark. C3 University of Southern Denmark; Western Norway University of Applied Sciences; University of Copenhagen RP Aagaard, T (corresponding author), Holbaek Univ Hosp, Dept Physiotherapy, Holbaek, Denmark.; Aagaard, T (corresponding author), Univ Southern Denmark, Inst Sports Sci & Clin Biomech, Res Unit Musculoskeletal Funct & Physiotherapy, Odense, Denmark. EM tvaagaard@gmail.com RI Juhl, Carsten/ISA-2180-2023; Lund, Hans Aage/HWT-2338-2023; Aagaard, Thomas/O-6439-2018 OI Lund, Hans Aage/0000-0001-6847-8324; Aagaard, Thomas/0000-0002-5098-5982; Juhl, Carsten/0000-0001-8456-5364 CR ADAMS CE, 1994, PSYCHOL MED, V24, P741, DOI 10.1017/S0033291700027896 Adie S, 2012, COCHRANE DB SYST REV, DOI 10.1002/14651858.CD007911.pub2 Aker P D, 1996, J Manipulative Physiol Ther, V19, P518 [Anonymous], COCHRANE DATABASE SY [Anonymous], COCHRANE DATABASE SY [Anonymous], COCHRANE DATABASE SY, DOI DOI 10.1002/14651858.CD001984] [Anonymous], 2010, COCHRANE DATABASE SY [Anonymous], J CLIN EPIDEMIOL [Anonymous], COCHRANE DATABASE SY [Anonymous], COCHRANE DATABASE SY [Anonymous], COCHRANE DATABASE SY, DOI DOI 10.1007/S00296-012-2619-6 [Anonymous], EVID BASED COMPLEMEN [Anonymous], COCHRANE DATABASE SY [Anonymous], COCHRANE DATABASE SY [Anonymous], COCHRANE DATABASE SY [Anonymous], US CORK COMP DAT OCC [Anonymous], COCHRANE DATABASE SY [Anonymous], COCHRANE DATABASE SY Bartels EM, 2007, COCHRANE DB SYST REV, DOI 10.1002/14651858.CD005523.pub2 Bayliss SE, 2014, HEALTH INFO LIBR J, V31, P303, DOI 10.1111/hir.12075 Beckles Z, 2013, J CLIN EPIDEMIOL, V66, P1051, DOI 10.1016/j.jclinepi.2013.04.009 Bellamy N, 2006, COCHRANE DB SYST REV, DOI 10.1002/14651858.CD005321.pub2 Bellamy N, 2006, COCHRANE DB SYST REV, DOI 10.1002/14651858.CD005328 Beyer FR, 2013, HEALTH INFO LIBR J, V30, P49, DOI 10.1111/hir.12009 Bramer WM, 2016, SYST REV, V5, DOI 10.1186/s13643-016-0215-7 Chalmers I, 2014, LANCET, V384, P1903, DOI 10.1016/S0140-6736(14)62252-2 Chandler J, 2013, METHODOLOGICAL EXPEC Cranney A., 2000, COCHRANE DB SYST REV, V2000, pCD001983, DOI DOI 10.1002/14651858.CD001983 Crumley Ellen T, 2005, BMC Med Res Methodol, V5, P24, DOI 10.1186/1471-2288-5-24 De MNA, 2007, COCHRANE DB SYST REV, DOI 10.1002/14651858.CD005955 DICKERSIN K, 1994, BMJ-BRIT MED J, V309, P1286, DOI 10.1136/bmj.309.6964.1286 Fidelix TSA, 2006, COCHRANE DB SYST REV, DOI 10.1002/14651858.CD005117.pub2 Gray J.A. Muir., 2001, Evidence-based Healthcare Guyatt GH, 2011, J CLIN EPIDEMIOL, V64, P1277, DOI 10.1016/j.jclinepi.2011.01.011 Haafkens J, 2006, OCCUP MED-OXFORD, V56, P39, DOI 10.1093/occmed/kqi193 Halladay CW, 2015, J CLIN EPIDEMIOL, V68, P1076, DOI 10.1016/j.jclinepi.2014.12.017 Harter S., 1986, ONLINE INFORM RETRIE Helmer D, 2001, B MED LIBR ASSOC, V89, P346 Higgins J, 2008, Cochrane handbook for systematic reviews of interventions Horton R, 2012, LANCET, V380, P2053, DOI 10.1016/S0140-6736(12)62133-3 Kelly L, 2008, CAN FAM PHYSICIAN, V54, P1572 Khan F, 2008, COCHRANE DB SYST REV, DOI 10.1002/14651858.CD004957.pub3 Klassen TP, 1998, ARCH PEDIAT ADOL MED, V152, P700 Lawrence DW, 2008, INJURY PREV, V14, P401, DOI 10.1136/ip.2008.019430 Lemeshow AR, 2005, J CLIN EPIDEMIOL, V58, P867, DOI 10.1016/j.jclinepi.2005.03.004 Lethaby A, 2013, COCHRANE DB SYST REV, DOI 10.1002/14651858.CD004525.pub2 Li L, 2014, J CLIN EPIDEMIOL, V67, P1001, DOI 10.1016/j.jclinepi.2014.04.003 Lorenzetti DL, 2014, INT J TECHNOL ASSESS, V30, P173, DOI 10.1017/S0266462314000166 Lovarini Meryl, 2006, Phys Occup Ther Pediatr, V26, P19, DOI 10.1300/J006v26n03_03 Lund H, 2016, BMJ-BRIT MED J, V355, DOI 10.1136/bmj.i5440 Matthews E J, 1999, Health Libr Rev, V16, P112 Michaleff ZA, 2011, PHYS THER, V91, P190, DOI 10.2522/ptj.20100116 Minozzi S, 2000, ARCH PHYS MED REHAB, V81, P720, DOI 10.1016/S0003-9993(00)90099-6 Moseley AM, 2009, PHYSIOTHERAPY, V95, P151, DOI 10.1016/j.physio.2009.01.006 Murphy LS, 2003, J MANIP PHYSIOL THER, V26, P374, DOI 10.1016/S0161-4754(03)00076-9 O'Donnell S, 2006, COCHRANE DB SYST REV, DOI 10.1002/14651858.CD005326.pub2 Ogilvie D, 2005, J EPIDEMIOL COMMUN H, V59, P804, DOI 10.1136/jech.2005.034181 RAMOSREMUS C, 1994, J RHEUMATOL, V21, P1912 Richards BL, 2012, COCHRANE DB SYST REV, DOI 10.1002/14651858.CD008921.pub2 Robinson KA, 2014, J CLIN EPIDEMIOL, V67, P793, DOI 10.1016/j.jclinepi.2013.11.015 Rollin L, 2010, SCAND J WORK ENV HEA, V36, P484, DOI 10.5271/sjweh.3082 Rome K, 2010, COCHRANE DB SYST REV, DOI 10.1002/14651858.CD006311.pub2 Royle P, 2003, INT J TECHNOL ASSESS, V19, P591, DOI 10.1017/S0266462303000552 Rutjes A. W. S., 2010, COCHRANE DB SYST REV, V1, DOI DOI 10.1002/14651858.CD003132.PUB2 Sampson M, 2003, J CLIN EPIDEMIOL, V56, P943, DOI 10.1016/S0895-4356(03)00110-0 Sampson Margaret, 2006, BMC Med Res Methodol, V6, P33, DOI 10.1186/1471-2288-6-33 Sampson M, 2009, J CLIN EPIDEMIOL, V62, P944, DOI 10.1016/j.jclinepi.2008.10.012 Savoie I, 2003, INT J TECHNOL ASSESS, V19, P168, DOI 10.1017/S0266462303000163 Shariff SZ, 2012, CLIN KIDNEY J, V5, P610, DOI 10.1093/ckj/sfs152 Slobogean GP, 2009, J CLIN EPIDEMIOL, V62, P1261, DOI 10.1016/j.jclinepi.2009.01.013 Stevinson C, 2004, COMPLEMENT THER MED, V12, P228, DOI 10.1016/j.ctim.2004.09.003 Suarez-Almazor ME, 2000, CONTROL CLIN TRIALS, V21, P476, DOI 10.1016/S0197-2456(00)00067-2 Vickers A. J., 1998, Complementary Therapies in Medicine, V6, P185, DOI 10.1016/S0965-2299(98)80026-5 Vincent Sam, 2003, Health Info Libr J, V20, P150, DOI 10.1046/j.1365-2532.2003.00427.x Watson RJD, 1999, BRIT J MED PSYCHOL, V72, P535, DOI 10.1348/000711299160220 Whiting P, 2008, J CLIN EPIDEMIOL, V61, P357, DOI 10.1016/j.jclinepi.2007.05.013 Whittle SL, 2011, COCHRANE DB SYST REV, DOI 10.1002/14651858.CD003113.pub3 Winzenberg TM, 2010, COCHRANE DB SYST REV, V10 Woodman J, 2010, J MED LIBR ASSOC, V98, P140, DOI 10.3163/1536-5050.98.2.006 Woolf AD, 2003, B WORLD HEALTH ORGAN, V81, P646 Wright JM, 2014, J CLIN EPIDEMIOL, V67, P800, DOI 10.1016/j.jclinepi.2014.02.017 NR 81 TC 36 Z9 36 U1 0 U2 15 PU BMC PI LONDON PA CAMPUS, 4 CRINAN ST, LONDON N1 9XW, ENGLAND EI 1471-2288 J9 BMC MED RES METHODOL JI BMC Med. Res. Methodol. PD NOV 22 PY 2016 VL 16 AR 161 DI 10.1186/s12874-016-0264-6 PG 11 WC Health Care Sciences & Services WE Science Citation Index Expanded (SCI-EXPANDED) SC Health Care Sciences & Services GA ED0EP UT WOS:000388516100002 PM 27875992 OA gold, Green Published DA 2024-09-05 ER PT J AU Bragge, J Thavikulwat, P Töyli, J AF Bragge, Johanna Thavikulwat, Precha Toyli, Juuso TI Profiling 40 Years of Research in Simulation & Gaming SO SIMULATION & GAMING LA English DT Article DE affinity propagation; bibliometrics; clusters of authors; conventional thinking; descriptors; hidden patterns; hot topics; knowledge creation; literature review; mapping; new thinking; profiling; prolific authors; research articles; research profiling; statistical methods; text mining; topic evolution; visualization; work division AB The authors apply the research profiling method to review all the research that has been published in Simulation & Gaming since the journal's inauguration in 1970. The data include 2,096 articles, of which 1,046 are research articles. The authors identify the prolific authors and their institutional affiliations. They tally referenced articles, title phrases, and descriptors. They find that the most prolific authors neither engage in more work division nor author more conventional thinking articles than less prolific authors and that the 51 prolific authors fall into 7 to 11 clusters. C1 [Bragge, Johanna] Aalto Univ, Helsinki, Finland. [Thavikulwat, Precha] Towson Univ, Towson, MD USA. [Toyli, Juuso] Turku Sch Econ & Business Adm, Turku, Finland. C3 Aalto University; University System of Maryland; Towson University; University of Turku RP Bragge, J (corresponding author), Aalto Univ, Dept Business Technol, Sch Econ, POB 21220, Aalto 00076, Finland. EM johanna.bragge@aalto.fi; pthavikulwat@towson.edu; juuso.toyli@gmail.com RI Bragge, Johanna/C-6227-2008; Töyli, Juuso/B-7305-2009 OI Bragge, Johanna/0000-0002-4084-3104 FU Jenny and Antti Wihuri Foundation FX The author(s) disclosed receipt of the following financial support for the research and/or authorship of this article:; The first author received funding for authorship of this article from the Jenny and Antti Wihuri Foundation, which is gratefully acknowledged. CR Börner K, 2003, ANNU REV INFORM SCI, V37, P179, DOI 10.1002/aris.1440370106 Boyack KW, 2005, SCIENTOMETRICS, V64, P351, DOI 10.1007/s11192-005-0255-6 Bragge J, 2010, LECT NOTES ECON MATH, V634, P259, DOI 10.1007/978-3-642-04045-0_22 Cournot A., 1838, Researches Into the Mathematical Principles of the Theory of Wealth Crookall D, 2009, SIMULAT GAMING, V40, P290, DOI 10.1177/1046878109337760 CULNAN MJ, 1987, MIS QUART, V11, P341, DOI 10.2307/248680 CULNAN MJ, 1986, MANAGE SCI, V32, P156, DOI 10.1287/mnsc.32.2.156 Faria AJ, 2009, SIMULAT GAMING, V40, P464, DOI 10.1177/1046878108327585 Frey BJ, 2007, SCIENCE, V315, P972, DOI 10.1126/science.1136800 Frey BJ, 2008, SCIENCE, V319, DOI 10.1126/science.1151268 GUZZO RA, 1987, RES ORGAN BEHAV, V9, P407 Hood WW, 2001, SCIENTOMETRICS, V52, P291, DOI 10.1023/A:1017919924342 King WR, 2005, COMMUN ASSOC INF SYS, V16, P665 Meyer M, 2009, JASSS-J ARTIF SOC S, V12, pA224 Porter A.L., 2005, Tech mining: exploiting new technologies for competitive advantage Porter AL, 2002, SCIENTOMETRICS, V53, P351, DOI 10.1023/A:1014873029258 PRITCHARD A, 1969, J DOC, V25, P348 Raghuram S, 2010, INFORM SYST RES, V21, P983, DOI 10.1287/isre.1080.0227 SciMaps, 2005, PLAC SPAC MAPP SCI S Simon H.A., 1960, The New Science of Management Decision Small H, 1999, J AM SOC INFORM SCI, V50, P799, DOI 10.1002/(SICI)1097-4571(1999)50:9<799::AID-ASI9>3.0.CO;2-G Watts RJ, 2007, INT J INNOV TECHNOL, V4, P103, DOI 10.1142/S0219877007001016 Webster J, 2002, MIS QUART, V26, pXIII Yang Y, 2008, WORLD PAT INF, V30, P280, DOI 10.1016/j.wpi.2008.01.007 NR 24 TC 14 Z9 18 U1 0 U2 0 PU SAGE PUBLICATIONS INC PI THOUSAND OAKS PA 2455 TELLER RD, THOUSAND OAKS, CA 91320 USA SN 1046-8781 EI 1552-826X J9 SIMULAT GAMING JI Simul. Gaming PD DEC PY 2010 VL 41 IS 6 BP 869 EP 897 DI 10.1177/1046878110387539 PG 29 WC Education & Educational Research; Psychology, Social; Social Sciences, Interdisciplinary WE Emerging Sources Citation Index (ESCI) SC Education & Educational Research; Psychology; Social Sciences - Other Topics GA VG2QN UT WOS:000445913100004 DA 2024-09-05 ER PT C AU Kernerman, VY Koenig, MED AF Kernerman, VY Koenig, MED BE Williams, ME TI HyMARC-based CIP IS for the Net/Web (General architecture and characteristics) SO 19TH ANNUAL NATIONAL ONLINE MEETING, PROCEEDINGS-1998 LA English DT Proceedings Paper CT 19th Annual National Online Meeting CY MAY 12-14, 1998 CL NEW YORK, NY DE CIP IS (Cataloging in Publication Information System); DTD (Document Type Definition); DSR CAPI (Dewey Speech Recognition Client Application Programming Interface); Dublin Core Metadata format; hyperdocument (hypertext/hypermedia document); HyMARC (hyperdocument machine readable caraloging bibliographic format); Net; NC (network computer); OCLC (Online computer library center, inc.); SGML (Standard generalized markup language); Web; WebZ (HTTP-Z39 50) server; Z39.50 server AB Historically, it was the USMARC format that mapped the way from the first library filing systems to modern Electronic CIP (ECIP) and bibliographic online IS. Similarly, the HyMARC may map a way to the CIP IS for the Net/Web. The idea behind this presentation is that not only the requirements of the existing Net/Web systems should determine the specifications of the HyMARC (HDOF) format as it was presented at the 17th NOM (Ref. 1) but these specifications, in turn, would shape the overall architecture of the future CIP IS and general characteristics of its elements modules. The suggested architecture and general characteristics of the CIP IS are presented, A comparison of the CIP IS architecture (Fig. 1) with the OCLC Web Spectrum System led to the conclusion that the SGML Grammar Builder, WebZ server, Z39.50 Server, and other software developed and implemented by OCLC can be assembled in accordance with the HyMARC structuring/linking specifications and then utilized in the CIP IS architecture. C1 Truman Coll, Chicago, IL USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU INFORMATION TODAY INC PI MEDFORD PA 143 OLD MARLTON PIKE, MEDFORD, NJ 08055 USA PY 1998 BP 197 EP 204 PG 8 WC Information Science & Library Science WE Conference Proceedings Citation Index - Social Science & Humanities (CPCI-SSH) SC Information Science & Library Science GA BL14G UT WOS:000074436800022 DA 2024-09-05 ER PT J AU Pooja Sood, SK AF Pooja Sood, Sandeep Kumar TI Scientometric Analysis of Quantum Algorithms for VANET Optimization SO IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS LA English DT Article; Early Access DE Quantum computing; Optimization; Vehicular ad hoc networks; Machine learning algorithms; Quantum mechanics; Market research; Bibliometrics; CiteSpace; quantum algorithm taxonomy; quantum optimization; vehicular ad-hoc network (VANET) ID INSPIRED EVOLUTIONARY ALGORITHM; DIFFERENTIAL EVOLUTION; DESIGN; UAV AB The rapid proliferation of quantum information technologies, spanning theoretical investigations to practical experiments, has generated a number of research papers and documents in quantum algorithms. Consequently, the current research serves as a gateway for interested readers to comprehend the status quo of quantum algorithms, with a specific focus on vehicular network optimization. It aims to explore the research patterns and latest trends by analyzing the dataset sourced from the Scopus and Web of Science databases. The scientometric implications offer valuable insights into publication patterns, keyword co-occurrence, author co-citation, country collaboration, and burst reference. These analyses delineate the temporal progression, prominent research topics, emerging research areas, leading collaborative nations, prolific authors, and research trends within this knowledge domain. The results reveal that smart power grids, traveling salesman problem, electric vehicle charging, battery life estimation, and air traffic control are emerging research areas. Similarly, quantum approximate optimization algorithms, adiabatic quantum computing, quantum-inspired evolutionary algorithms, and quantum annealing emerge as prominent quantum algorithms employed for vehicular network optimization problems. In addition, systematic literature analysis is objectively conducted to discern key insights, research challenges and future research directions in the current knowledge domain. C1 [Pooja; Sood, Sandeep Kumar] Natl Inst Technol Kurukshetra, Dept Comp Applicat, Kurukshetra 136119, Haryana, India. C3 National Institute of Technology (NIT System); National Institute of Technology Kurukshetra RP Pooja (corresponding author), Natl Inst Technol Kurukshetra, Dept Comp Applicat, Kurukshetra 136119, Haryana, India. EM insanpooja777@gmail.com; san1198@gmail.com OI K. Sood, Sandeep/0000-0002-8196-5503 CR Arrazola JM, 2020, QUANTUM-AUSTRIA, V4, DOI 10.22331/q-2020-08-13-307 Asna M, 2022, INT J ENERG RES, V46, P17308, DOI 10.1002/er.8399 Azad U, 2023, IEEE T INTELL TRANSP, V24, P7564, DOI 10.1109/TITS.2022.3172241 Bai H., 2023, Intelligent Computing, V2, DOI DOI 10.34133/ICOMPUTING.0025 Bauer B, 2020, CHEM REV, V120, P12685, DOI 10.1021/acs.chemrev.9b00829 Beloborodov Dmitrii, 2021, Machine Learning: Science and Technology, V2, DOI 10.1088/2632-2153/abc328 Callison A, 2022, PHYS REV A, V106, DOI 10.1103/PhysRevA.106.010101 Che A, 2015, IEEE T SYST MAN CY-S, V45, P1535, DOI 10.1109/TSMC.2015.2417509 Chen CL, 2008, IEEE INT C NETW SENS, P1599 Chen HW, 2011, PHYS REV A, V83, DOI 10.1103/PhysRevA.83.032314 Chen RH, 2020, COMPUT IND ENG, V149, DOI 10.1016/j.cie.2020.106778 Chen SYC, 2022, MACH LEARN-SCI TECHN, V3, DOI 10.1088/2632-2153/ac4559 Chuang IL, 1998, NATURE, V393, P143, DOI 10.1038/30181 Das M, 2023, ADV ENG INFORM, V55, DOI 10.1016/j.aei.2022.101816 Deng W, 2022, IEEE T SYST MAN CY-S, V52, P1578, DOI 10.1109/TSMC.2020.3030792 Dixit VV, 2023, SCI REP-UK, V13, DOI 10.1038/s41598-023-38787-2 Domino K, 2022, QUANTUM INF PROCESS, V21, DOI 10.1007/s11128-022-03670-y Dong DY, 2008, IEEE T SYST MAN CY B, V38, P1207, DOI 10.1109/TSMCB.2008.925743 Dong DY, 2012, IEEE-ASME T MECH, V17, P86, DOI 10.1109/TMECH.2010.2090896 Endo S, 2021, J PHYS SOC JPN, V90, DOI 10.7566/JPSJ.90.032001 Fakhari P, 2013, NEW MATH NAT COMPUT, V9, P273, DOI 10.1142/S1793005713400073 Fu YG, 2013, IEEE T SYST MAN CY-S, V43, P1451, DOI 10.1109/TSMC.2013.2248146 Gharehchopogh FS, 2023, INTERNET THINGS-NETH, V24, DOI 10.1016/j.iot.2023.100952 Gharehchopogh FS, 2024, MULTIMED TOOLS APPL, V83, P16929, DOI 10.1007/s11042-023-16300-1 Gharehchopogh FS, 2023, SYMMETRY-BASEL, V15, DOI 10.3390/sym15040894 Gharehchopogh FS, 2023, ARCH COMPUT METHOD E, V30, P2683, DOI 10.1007/s11831-023-09883-3 Gharehchopogh FS, 2023, J BIONIC ENG, V20, P1175, DOI 10.1007/s42235-022-00303-z Gharehchopogh FS, 2023, ARTIF INTELL REV, V56, P5479, DOI 10.1007/s10462-022-10280-8 Glos A, 2022, NPJ QUANTUM INFORM, V8, DOI 10.1038/s41534-022-00546-y Gupta BM., 2021, SCI TECH LIBR, V40, P282, DOI DOI 10.1080/0194262X.2021.1892563 Hakemi S, 2024, EVOL INTELL, V17, P627, DOI 10.1007/s12065-022-00783-2 Herrera Bruno Avila Leal de Meirelles, 2015, Pesqui. Oper., V35, P465, DOI 10.1590/0101-7438.2015.035.03.0465 Hu ZZ, 2023, SWARM EVOL COMPUT, V83, DOI 10.1016/j.swevo.2023.101387 Hu ZZ, 2021, ENERGY REP, V7, P916, DOI 10.1016/j.egyr.2021.01.096 Huang HQ, 2021, COMPLEXITY, V2021, DOI 10.1155/2021/8993173 Kea K, 2023, IEEE ACCESS, V11, P109964, DOI 10.1109/ACCESS.2023.3320800 Krauss Thomas, 2020, IEEE Transactions on Quantum Engineering, V1, DOI 10.1109/TQE.2020.3021921 Kumar SK, 2011, ADAPT LEARN OPTIM, V8, P269 Kumar V, 2022, WATER SUPPLY, V22, P3702, DOI 10.2166/ws.2022.010 Li F, 2023, INT PARALL DISTRIB P, P768, DOI 10.1109/IPDPS54959.2023.00082 Li J., 2017, Int. J. High Perform.Syst. Archit., V7, P223 Li YJ, 2021, IEEE WIREL COMMUN LE, V10, P1994, DOI 10.1109/LWC.2021.3089876 Liu X, 2023, IEEE T EM TOP COMP I, V7, P1605, DOI 10.1109/TETCI.2023.3251441 MAHI MJN, 2022, IEEE ACCESS, V10, P65760, DOI 10.1109/ACCESS.2022.3183605 Martonák R, 2004, PHYS REV E, V70, DOI 10.1103/PhysRevE.70.057701 Montanaro A, 2016, NPJ QUANTUM INFORM, V2, DOI 10.1038/npjqi.2015.23 Ross OHM, 2020, IEEE ACCESS, V8, P814, DOI 10.1109/ACCESS.2019.2962155 Neukart F, 2017, FRONT ICT, V4, P29, DOI DOI 10.3389/FICT.2017.00029 Nuuman S, 2015, IEEE WIREL COMMUNN, P271, DOI 10.1109/WCNCW.2015.7122566 Papalitsas C, 2019, ALGORITHMS, V12, DOI 10.3390/a12110224 Piri J, 2022, MATHEMATICS-BASEL, V10, DOI 10.3390/math10152742 Pranckute R, 2021, PUBLICATIONS-BASEL, V9, DOI 10.3390/publications9010012 Qian WY, 2023, ENTROPY-SWITZ, V25, DOI 10.3390/e25081238 Radaideh MI, 2021, KNOWL-BASED SYST, V217, DOI 10.1016/j.knosys.2021.106836 Rahmani-andebili M, 2016, IET GENER TRANSM DIS, V10, P2538, DOI 10.1049/iet-gtd.2015.1553 Ramezani SB, 2020, IEEE IJCNN, DOI 10.1109/ijcnn48605.2020.9207714 Rao PU, 2023, SOFT COMPUT, V27, P13347, DOI 10.1007/s00500-022-07478-x Rethlefsen ML, 2021, SYST REV-LONDON, V10, DOI 10.1186/s13643-020-01542-z Rötteler M, 2006, COMPUT SCI-RES DEV, V21, P3, DOI 10.1007/s00450-006-0008-7 Rózycki R, 2023, ENERGIES, V16, DOI 10.3390/en16010442 Ruan Y, 2020, CMC-COMPUT MATER CON, V63, P1237, DOI 10.32604/cmc.2020.010001 Sato Rei, 2023, 2023 IEEE International Conference on Quantum Computing and Engineering (QCE), P270, DOI 10.1109/QCE57702.2023.10238 Shao CP, 2019, J SYST SCI COMPLEX, V32, P375, DOI 10.1007/s11424-019-9008-0 Sharma M, 2019, PROCEEDINGS OF THE 2019 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE (GECCO'19), P709, DOI 10.1145/3321707.3321813 Sharma P., J. Comput. Inf. Syst. Shen Y, 2023, EXPERT SYST APPL, V215, DOI 10.1016/j.eswa.2022.119269 Shor PW, 2004, QUANTUM INF PROCESS, V3, P5, DOI 10.1007/s11128-004-3878-2 Sood SK, 2024, ARCH COMPUT METHOD E, V31, P1555, DOI 10.1007/s11831-023-10027-w Sood SK, 2023, IEEE T ENG MANAGE, DOI 10.1109/TEM.2023.3313984 Sood SK, 2023, IEEE T ENG MANAGE, DOI 10.1109/TEM.2023.3284689 Sood SK, 2022, COMPUT ELECTR ENG, V101, DOI 10.1016/j.compeleceng.2022.107948 Sood V, 2023, IEEE T ENG MANAGE, DOI 10.1109/TEM.2023.3330569 Spyridis Yannis, 2023, 2023 19th International Conference on Distributed Computing in Smart Systems and the Internet of Things (DCOSS-IoT), P354, DOI 10.1109/DCOSS-IoT58021.2023.00064 Stollenwerk T, 2020, IEEE T INTELL TRANSP, V21, P285, DOI 10.1109/TITS.2019.2891235 Suo JW, 2020, QUANTUM INF PROCESS, V19, DOI 10.1007/s11128-020-02673-x Tan ZP, 2022, SWARM EVOL COMPUT, V75, DOI 10.1016/j.swevo.2022.101194 Tolcheev VO, 2018, AUTOM DOC MATH LINGU, V52, P121, DOI 10.3103/S000510551803007X Vereno Dominik, 2023, Energy Informatics, DOI 10.1186/s42162-023-00292-1 Wang D, 2021, IEEE INTERNET THINGS, V9, P12588, DOI 10.1109/JIOT.2021.3137984 Wang LX, 2012, J INTELL MANUF, V23, P2227, DOI 10.1007/s10845-011-0568-7 Wang Y, 2007, NEUROCOMPUTING, V70, P633, DOI 10.1016/j.neucom.2006.10.001 Weinberg SJ, 2023, SCI REP-UK, V13, DOI 10.1038/s41598-023-31765-8 Yetis H., 2019, P 1 INT INF SOFTW EN, P1, DOI [10.1109/UBMYK48245.2019.8965624, DOI 10.1109/UBMYK48245.2019.8965624] Zaman A, 2023, IEEE ACCESS, V11, P77117, DOI 10.1109/ACCESS.2023.3297658 Zhang FQ, 2020, IEEE ACCESS, V8, P104555, DOI 10.1109/ACCESS.2020.2999608 Zhu QL, 2023, NEUROCOMPUTING, V556, DOI 10.1016/j.neucom.2023.126628 NR 86 TC 0 Z9 0 U1 2 U2 2 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 2168-2216 EI 2168-2232 J9 IEEE T SYST MAN CY-S JI IEEE Trans. Syst. Man Cybern. -Syst. PD 2024 AUG 2 PY 2024 DI 10.1109/TSMC.2024.3428707 EA AUG 2024 PG 11 WC Automation & Control Systems; Computer Science, Cybernetics WE Science Citation Index Expanded (SCI-EXPANDED) SC Automation & Control Systems; Computer Science GA A6R6M UT WOS:001283791300001 DA 2024-09-05 ER PT J AU Savin, IV Teplyakov, NS AF Savin, Ivan V. Teplyakov, Nikita S. TI Using Computational Linguistics to Analyse Main Research Directions in Economy of Regions SO ECONOMY OF REGION LA English DT Article DE topic modelling; machine learning; computational linguistics; text mining; literature review; academic journal; spatial economics; environmental economics; scientometrics; third-party funding ID TOPICS; DECADE AB Over the past decades, the process of knowledge generation has accelerated, producing a lot of scientific publications, which makes reviewing even a relatively narrow subject area very demanding, if not impossible. However, recent text data mining tools can assist researchers in conducting such analysis in an objective and time-efficient way. We conduct such a literature review on 1307 articles published in the journal Economy of Regions from 2010 to 2021 using advanced topic modelling techniques. This analysis aims to describe the main research areas in the journal over time, the dynamics of their popularity and the relationship with key quantitative indicators. We identified 22 topics ranging from "Agriculture" and "Economic Geography" to "Fiscal Policy" and "Entrepreneurship". We estimate how popularity of these topics was changing over time and find topics that gained the most popularity from 2010 to 2021 (+17.61 %, "Spatial Economics") or lost it (-14.58 %, "Economics of Innovation"). The topic of environmental economics collects the largest number of citations per article (3.64, on average), and the topics on monetary policy and poverty are the most popular among manuscripts in English, which is also true for articles written by authors with foreign affiliation. Papers with third-party funding are concentrated the most in "Spatial Economics" (around 11 %), and the least - in "Agriculture". Our results can help to understand the evolution in scope of research of Economy of Regions and serve researchers to find promising directions for future studies. C1 [Savin, Ivan V.] Ural Fed Univ, Acad Dept Econ, 19 Mira St, Ekaterinburg 620002, Russia. [Savin, Ivan V.] Univ Autonoma Barcelona, Inst Environm Sci & Technol ICTA, Cerdanyola Del Valles, Barcelona, Spain. [Teplyakov, Nikita S.] Ural Fed Univ, 19 Mira St, Ekaterinburg 620002, Russia. C3 Ural Federal University; Autonomous University of Barcelona; Ural Federal University RP Teplyakov, NS (corresponding author), Ural Fed Univ, 19 Mira St, Ekaterinburg 620002, Russia. EM nekit_teplykov@mail.ru RI Savin, Ivan/P-9035-2016 OI Savin, Ivan/0000-0002-9469-0510 CR Aggarwal C. C., 2018, MACHINE LEARNING TEX Ambrosino A, 2018, J ECON METHODOL, V25, P329, DOI 10.1080/1350178X.2018.1529215 [Anonymous], 2009, Proceeding of the 18th ACM Conference on Information and Knowledge Management, DOI DOI 10.1145/1645953.1646076 [Anonymous], 2003, The Oxford Handbook of Computational Linguistics Asmussen CB, 2019, J BIG DATA-GER, V6, DOI 10.1186/s40537-019-0255-7 Baskakova IV, 2020, EKON REG, V16, P114, DOI 10.17059/2020-1-9 Blei DM, 2012, COMMUN ACM, V55, P77, DOI 10.1145/2133806.2133826 Callaghan MW, 2020, NAT CLIM CHANGE, V10, P118, DOI 10.1038/s41558-019-0684-5 Dar G.H., 2020, Biodiversity of the Himalaya: Jammu and Kashmir State, V18, P1 De Battisti F, 2015, SCIENTOMETRICS, V103, P413, DOI 10.1007/s11192-015-1554-1 Drews S, 2022, ECOL ECON, V199, DOI 10.1016/j.ecolecon.2022.107507 Fellbaum Christiane, 2005, Encyclopedia of Language and Linguistics, P665 Griffiths TL, 2004, P NATL ACAD SCI USA, V101, P5228, DOI 10.1073/pnas.0307752101 Kochetkov DM, 2021, EKON REG, V17, P1137, DOI 10.17059/ekon.reg.2021-4-7 Liu GW, 2019, CONSTR INNOV-ENGL, V19, P343, DOI 10.1108/CI-03-2018-0013 Lüdering J, 2016, JAHRB NATL STAT, V236, P483, DOI 10.1515/jbnst-2015-1026 Maier D, 2018, COMMUN METHODS MEAS, V12, P93, DOI 10.1080/19312458.2018.1430754 Mimno David, 2011, P C EMPIRICAL METHOD, P262 Mo YH, 2015, SYST REV-LONDON, V4, DOI 10.1186/s13643-015-0117-0 Moskaleva O, 2018, SCIENTOMETRICS, V116, P449, DOI 10.1007/s11192-018-2758-y Murakami A, 2017, CORPORA, V12, P243, DOI 10.3366/cor.2017.0118 Roberts ME, 2019, J STAT SOFTW, V91, P1, DOI 10.18637/jss.v091.i02 Roberts ME, 2014, AM J POLIT SCI, V58, P1064, DOI 10.1111/ajps.12103 Savin I, 2023, SMALL BUS ECON, V60, P659, DOI 10.1007/s11187-022-00609-6 Savin I, 2022, TECHNOL FORECAST SOC, V174, DOI 10.1016/j.techfore.2021.121280 Savin I, 2021, ENVIRON INNOV SOC TR, V41, P10, DOI 10.1016/j.eist.2021.06.006 Savin I, 2021, ECOL ECON, V180, DOI 10.1016/j.ecolecon.2020.106878 Savin I, 2020, CLIMATIC CHANGE, V162, P2107, DOI 10.1007/s10584-020-02842-y Sharma V, 2021, EKON REG, V17, P318, DOI 10.17059/ekon.reg.2021-1-24 Soule M., 2014, KEEPING WILD DOMESTI, P66, DOI DOI 10.5822/978-1-61091-559-5 Speier W, 2016, J BIOMED INFORM, V61, P260, DOI 10.1016/j.jbi.2016.04.005 Uglanova I., 2020, CHR van den Bergh J, 2021, CLIM POLICY, V21, P745, DOI 10.1080/14693062.2021.1907276 NR 33 TC 3 Z9 3 U1 1 U2 1 PU RUSSIAN ACAD SCIENCES, URAL BRANCH, INST ECONOMICS PI EKATERINBURG PA UL MOSKOVSKAYA 29, EKATERINBURG, 620014, RUSSIA SN 2072-6414 EI 2411-1406 J9 EKON REG JI Ekon. Reg. PY 2022 VL 18 IS 2 BP 338 EP 352 DI 10.17059/ekon.reg.2022-2-3 PG 15 WC Area Studies WE Emerging Sources Citation Index (ESCI) SC Area Studies GA F1DJ0 UT WOS:000979818500003 OA gold, Green Published, Green Submitted DA 2024-09-05 ER PT J AU Ray, M Ramasubramanian, V Singh, KN Rathod, S Shekhawat, RS AF Ray, Mrinmoy Ramasubramanian, V Singh, K. N. Rathod, Santosha Shekhawat, Ravindra Singh TI Technology Forecasting for Envisioning Bt Technology Scenario in Indian Agriculture SO AGRICULTURAL RESEARCH LA English DT Article DE Scientometrics; Grey model; Cross impact analysis (CIA) technique; Activity Index (AI); Genetic Algorithm (GA); TOPSIS; MICMAC; CIAT ID IMPACT AB For scoping the future prospects of Bacillus thuringiensis (Bt) technology in Indian agricultural scenario, case studies of three quantitative/quasi-quantitative techniques of Technology Forecasting tools viz., activity index (AI)-based scientometric analysis, Grey modeling and cross impact analysis (CIA) techniques have been done. Under AI-based scientometric analysis, information relating to abstract, keywords, authors, affiliation, etc., relevant to research publication on applications of Bt technology in India vis-a-vis three other competing country regions-China, USA cum Canada and European countries were collected from ScienceDirect database for the period 1997-2017. AI has been constructed for seven domains viz. Bt Cotton, Bt Maize, Bt Mustard, Bt Brinjal, Bt Soybean, Bt Sunflower, Bt Rice, and 'Bt related but not crop specific' under these four regions considered. From the values of AI, it has been found that India's research effort is higher only in Bt Cotton and Bt Mustard than the other regions considered. Secondly, for Grey modeling, its conventional version as well as Grey model improved by Genetic Algorithm (GA) were fitted using yearly Bt cotton yield of India (2002-2003 to 2016-2017) obtained from Cotton Advisory Board of India. Only the first 11 years were utilized for model fitting and the rest were utilized for validation purposes. The results revealed that Grey model improved by GA performed better. Lastly, for employing CIA technique to study the direct as well as indirect cross impacts of Bt technology, 14 factors were considered. Three types of CIA techniques viz., Direct Classification, Cross-Impact Matrix Multiplication Applied to Classification, and CIA with Time Consideration have been attempted. The ranking of the factors obtained by three methods was combined using Technique for Order Preference by Similarity to an Ideal Solution approach. The analysis suggested that factors viz., Government policy, Bt seed sector, and technological interventions came out to be mainly responsible for future prospects of Bt technology in India. C1 [Ray, Mrinmoy; Ramasubramanian, V; Singh, K. N.; Shekhawat, Ravindra Singh] ICAR Indian Agr Stat Res Inst, New Delhi 110012, India. [Rathod, Santosha] ICAR Indian Inst Rice Res, Hyderabad 500030, India. C3 Indian Council of Agricultural Research (ICAR); ICAR - Indian Agricultural Statistics Research Institute; Indian Council of Agricultural Research (ICAR); ICAR - Indian Institute of Rice Research RP Ray, M (corresponding author), ICAR Indian Agr Stat Res Inst, New Delhi 110012, India. EM mrinmoy.ray@icar.gov.in RI Ray, Mrinmoy/IAM-4275-2023 OI Rathod, Santosha/0000-0001-9820-149X; Ray, Mrinmoy/0000-0002-1337-0348 CR Abramo G, 2018, J INFORMETR, V12, P590, DOI 10.1016/j.joi.2018.05.001 [Anonymous], 2011, ANN LIBR INF STUD Asan SS, 2007, TECHNOL FORECAST SOC, V74, P627, DOI 10.1016/j.techfore.2006.05.011 Bañuls VA, 2011, TECHNOL FORECAST SOC, V78, P1579, DOI 10.1016/j.techfore.2011.03.014 Guan JC, 2004, SCIENTOMETRICS, V61, P339, DOI 10.1023/B:SCIE.0000045114.85737.1b Mao MZ, 2006, TECHNOL FORECAST SOC, V73, P588, DOI 10.1016/j.techfore.2004.08.004 Ou SL, 2012, COMPUT ELECTRON AGR, V85, P33, DOI 10.1016/j.compag.2012.03.007 Pei Z, 2015, APPL SOFT COMPUT, V36, P24, DOI 10.1016/j.asoc.2015.06.042 Ray M, 2017, INT J AGRIC STAT SCI, V13, P563 Wang CH, 2008, APPL MATH COMPUT, V195, P256, DOI 10.1016/j.amc.2007.04.080 Zareie A, 2018, EXPERT SYST APPL, V108, P96, DOI 10.1016/j.eswa.2018.05.001 Zhou P, 2006, ENERGY, V31, P2839, DOI 10.1016/j.energy.2005.12.002 NR 12 TC 1 Z9 1 U1 0 U2 6 PU SPRINGER INDIA PI NEW DELHI PA 7TH FLOOR, VIJAYA BUILDING, 17, BARAKHAMBA ROAD, NEW DELHI, 110 001, INDIA SN 2249-720X EI 2249-7218 J9 AGR RES JI Agric. Res. PD DEC PY 2022 VL 11 IS 4 BP 747 EP 757 DI 10.1007/s40003-022-00612-z EA FEB 2022 PG 11 WC Agronomy WE Emerging Sources Citation Index (ESCI) SC Agriculture GA 6I1EQ UT WOS:000755402100003 DA 2024-09-05 ER PT J AU Choudhary, V Tanwar, S Choudhury, T AF Choudhary, Vandana Tanwar, Sarvesh Choudhury, Tanupriya TI Evaluation of contemporary intrusion detection systems for internet of things environment SO MULTIMEDIA TOOLS AND APPLICATIONS LA English DT Article DE Intrusion Detection System (IDS); Internet of Things (IoT); Bibliometric Analysis; Convolutional Neural Network (CNN); Aquila Optimization (AO) ID IOT; ANALYTICS AB Internet of Things (IoT) involves wide-ranging devices connected through the Internet with an aim to enable coherent communication amongst them without human intervention to realize profuse smart applications which inherently makes our life a lot easier and furthermore productive. These connected devices continuously sense and gather information from surroundings, thereby producing an immense amount of data that cater for big data analytics. In the current era, number of smart devices are increasing rapidly due to the magnificent features they offer. Moreover, public access to the Internet makes the system even more vulnerable to intrusions. Catastrophically, this has fascinated numerous cybercriminals who have turned the IoT ecosystem into a hotbed of illicit activities. Thereupon, implication of Intrusion Detection System (IDS) in IoT is apparent. The literature suggests a number of IDS to address intrusions/attacks in the discipline of IoT. In the current paper, besides Systematic Literature Review of the IDS for IoT environment, a deep learning model with aquila optimization is proposed to predict anomaly using IoTID20, UNSW-NB15-1 and UNSW_2018_IoT_Botnet_Full5pc_4 datasets. The hybrid model that we have developed, uses a combined network structure of convolutional neural network and aquila optimization algorithm. In all of the studies that were carried out, the swarm intelligence-driven deep learning strategy outperformed other, comparable approaches. Based on current findings, it is reasonable to draw the conclusion that the suggested technique offers an efficient method for early anomaly detection and contributes to viable control of anomaly in the IoT environment. C1 [Choudhary, Vandana; Tanwar, Sarvesh] Amity Univ, Amity Inst Informat Technol, Noida 201301, Uttar Pradesh, India. [Choudhury, Tanupriya] Univ Petr & Energy Studies, Sch Comp Sci, Informat Cluster, Dehra Dun 248007, Uttarakhand, India. C3 Amity University Noida; University of Petroleum & Energy Studies (UPES) RP Choudhary, V; Tanwar, S (corresponding author), Amity Univ, Amity Inst Informat Technol, Noida 201301, Uttar Pradesh, India. EM vandana.choudhary@s.amity.edu; s.tanwar1521@gmail.com; tanupriya1986@gmail.com OI Choudhury, Tanupriya/0000-0002-9826-2759; Tanwar, Sarvesh/0000-0003-0136-0182 CR Abu Al-Haija Q, 2022, ELECTRONICS-SWITZ, V11, DOI 10.3390/electronics11040556 Abualigah L, 2021, COMPUT IND ENG, V157, DOI 10.1016/j.cie.2021.107250 Abualigah L, 2020, APPL SCI-BASEL, V10, DOI 10.3390/app10113827 Albawi S, 2017, I C ENG TECHNOL Ali MH, 2022, ELECTRONICS-SWITZ, V11, DOI 10.3390/electronics11030494 Alkahtani H, 2021, COMPLEXITY, V2021, DOI 10.1155/2021/5579851 Alsulami AA, 2022, APPL SCI-BASEL, V12, DOI 10.3390/app122312336 Amin SO, 2009, 2009 IFIP/IEEE INTERNATIONAL SYMPOSIUM ON INTEGRATED NETWORK MANAGEMENT - WORKSHOPS, P269, DOI 10.1109/INMW.2009.5195973 Anitha AA, 2021, INT J ADV COMPUT SC, V12, P499 [Anonymous], 2002, P 9 ACM C COMP COMM Benkhelifa E, 2018, IEEE COMMUN SURV TUT, V20, P3496, DOI 10.1109/COMST.2018.2844742 Bhor Harsh Namdev, 2020, 2020 International Conference on Smart Electronics and Communication (ICOSEC), P939, DOI 10.1109/ICOSEC49089.2020.9215365 Bostani H, 2017, COMPUT COMMUN, V98, P52, DOI 10.1016/j.comcom.2016.12.001 Chaabouni N, 2019, IEEE COMMUN SURV TUT, V21, P2671, DOI 10.1109/COMST.2019.2896380 Creech G, 2014, IEEE T COMPUT, V63, P807, DOI 10.1109/TC.2013.13 Disha RA, 2022, CYBERSECURITY, V5, DOI 10.1186/s42400-021-00103-8 Fenanir S., 2020, Ingenierie Des Systemes D'information, V25, P569, DOI 10.18280/isi.250503 Gassais R, 2020, J CLOUD COMPUT-ADV S, V9, DOI 10.1186/s13677-020-00206-6 Gyamfi E, 2022, SENSORS-BASEL, V22, DOI 10.3390/s22103744 Hajiheidari S, 2019, COMPUT NETW, V160, P165, DOI 10.1016/j.comnet.2019.05.014 Hindy H, 2020, IEEE ACCESS, V8, P104650, DOI 10.1109/ACCESS.2020.3000179 Javed SH, 2022, ELECTRONICS-SWITZ, V11, DOI 10.3390/electronics11050742 Khraisat A, 2021, CYBERSECURITY, V4, DOI 10.1186/s42400-021-00077-7 Khraisat A, 2019, ELECTRONICS-SWITZ, V8, DOI 10.3390/electronics8111210 Koroniotis N, 2020, ARXIV Koroniotis N., 2020, Designing an effective network forensic framework for the investigation of botnets in the Internet of Things Koroniotis N, 2020, IEEE ACCESS, V8, P209802, DOI 10.1109/ACCESS.2020.3036728 Koroniotis N, 2020, FUTURE GENER COMP SY, V110, P91, DOI 10.1016/j.future.2020.03.042 Koroniotis N, 2019, FUTURE GENER COMP SY, V100, P779, DOI 10.1016/j.future.2019.05.041 Koroniotis N, 2018, L N INST COMP SCI SO, V235, P30, DOI 10.1007/978-3-319-90775-8_3 Krishna E., 2021, Int. J. Intell. Eng. Syst, V14, P66 Le A, 2016, INFORMATION, V7, DOI 10.3390/info7020025 Le KH, 2022, ELECTRONICS-SWITZ, V11, DOI 10.3390/electronics11040524 Maciá-Pérez F, 2011, IEEE T IND ELECTRON, V58, P722, DOI 10.1109/TIE.2010.2052533 Min EX, 2018, SECUR COMMUN NETW, DOI 10.1155/2018/4943509 Moustafa N, 2015, 2015 MILITARY COMMUNICATIONS AND INFORMATION SYSTEMS CONFERENCE (MILCIS) Moustafa N, 2019, IEEE T BIG DATA, V5, P481, DOI 10.1109/TBDATA.2017.2715166 Moustafa N, 2017, DATA ANALYTIC, P127, DOI 10.1007/978-3-319-59439-2_5 Moustafa N, 2016, INF SECUR J, V25, P18, DOI 10.1080/19393555.2015.1125974 Nguyen DT, 2022, WIREL COMMUN MOB COM, V2022, DOI 10.1155/2022/9173291 Qaddoura R, 2021, SENSORS-BASEL, V21, DOI 10.3390/s21092987 Ramadan RA., 2020, ANN EMERGING TECHNOL, V4, P61, DOI DOI 10.33166/AETIC.2020.05.004 Ribera EG, 2022, ELECTRONICS-SWITZ, V11, DOI 10.3390/electronics11234041 Saghezchi FB, 2022, ELECTRONICS-SWITZ, V11, DOI 10.3390/electronics11040602 Saheed YK, 2022, ALEX ENG J, V61, P9395, DOI 10.1016/j.aej.2022.02.063 Salcedo-Sanz S, 2016, PHYS REP, V655, P1, DOI 10.1016/j.physrep.2016.08.001 Sandhya E., 2021, Int. J. Intell. Eng. Syst, V14, P30 Sarhan Mohanad, 2021, Big Data Technologies and Applications. 10th EAI International Conference, BDTA 2020, and 13th EAI International Conference on Wireless Internet, WiCON 2020. Virtual Event. Proceedings. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering (LNICST 371), P117, DOI 10.1007/978-3-030-72802-1_9 Sedjelimaci H, 2016, IEEE ICC, DOI 10.1109/ICC.2016.7510811 Sicato JCS, 2020, J INF PROCESS SYST, V16, P975, DOI 10.3745/JIPS.03.0144 Song Y, 2021, SENSORS-BASEL, V21, DOI 10.3390/s21134294 Spadaccino P, 2020, ARXIV Syamsuddin I, 2022, ELECTRONICS-SWITZ, V11, DOI 10.3390/electronics11050737 Tharewal S, 2022, WIREL COMMUN MOB COM, V2022, DOI 10.1155/2022/9023719 Ullah Imtiaz, 2020, Advances in Artificial Intelligence. 33rd Canadian Conference on Artificial Intelligence, Canadian AI 2020. Proceedings. Lecture Notes in Artificial Intelligence. Subseries of Lecture Notes in Computer Science (LNAI 12109), P508, DOI 10.1007/978-3-030-47358-7_52 Ullah I, 2020, ADV ARTIFICIAL INTEL, P08 Wang JP, 2015, PERS UBIQUIT COMPUT, V19, P1021, DOI 10.1007/s00779-015-0874-8 Wani A, 2021, CAAI T INTELL TECHNO, V6, P281, DOI 10.1049/cit2.12003 Zarpelao BB, 2017, J NETW COMPUT APPL, V84, P25, DOI 10.1016/j.jnca.2017.02.009 NR 59 TC 3 Z9 3 U1 1 U2 3 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 1380-7501 EI 1573-7721 J9 MULTIMED TOOLS APPL JI Multimed. Tools Appl. PD JAN PY 2024 VL 83 IS 3 BP 7541 EP 7581 DI 10.1007/s11042-023-15918-5 EA JUN 2023 PG 41 WC Computer Science, Information Systems; Computer Science, Software Engineering; Computer Science, Theory & Methods; Engineering, Electrical & Electronic WE Science Citation Index Expanded (SCI-EXPANDED) SC Computer Science; Engineering GA GY5L7 UT WOS:001005496300002 DA 2024-09-05 ER PT J AU Ehlers, C Wiesener, N Teichgräber, U Guntinas-Lichius, O AF Ehlers, Claudia Wiesener, Nadine Teichgraeber, Ulf Guntinas-Lichius, Orlando TI Reformed conventional curriculum promoting the professional interest orientation of students of medicine: JENOS SO GMS JOURNAL FOR MEDICAL EDUCATION LA English DT Article DE JENa professional interest-Oriented Studies (JENOS); Ambulatory-oriented medicine (AoM); bottom-up strategy; Canadian Medical Education Directions of Specialist (CanMEDS) rolls; Clinic-oriented medicine (KoM); constructive alignment; costs; curriculum; deep learning; evaluations; Flexner model; identification; incentives; interactivity; JUH-specific lecturer and student information system (DOSIS); learning portfolio; longitudinal curriculum; mapping; Master Plan 2020; medical didactic programmes; mentoring; organisational difficulties; performance-based compensation; practical orientation; professional interest orientation; reduction of the curriculum; reform; reinforcement of ambulatory and general medicine; research-oriented Medicine (FoM); resources; scientific orientation; small group modules; student centered learning AB Introduction: In the last ten years, the medical faculty at Friedrich Schiller University Jena has reformed its traditional curriculum for human medicine. The reformed JENa professional interest-Oriented Studies (JEnaer Neigungs-Orientiertes Studium, JENOS) - with the objective to facilitate career entry through a professional interest-oriented practical approach - emerged due to the stipulation of cost neutrality. Methods: Report on the process sequence of JENOS from the reform idea to implementation: the initial processes, the development and assessment process with accompanying dialogue and dispute of the reform process within the faculty shall be discussed. The 17 objectives of the JENOS reformed traditional curriculum shall be presented and the current level of fulfilment assessed. Results: The structural link of the professional interest-oriented proposals was achieved through the recognition by the "Landesprufungsamt" (State Examination Board) as elective subjects with 21 semester hours (SH). Feedback and evaluations were conducted using lecturer and student information systems that were implemented in parallel. Eleven of 17 objectives have been achieved, three are still in process and three have not been achieved. Discussion: A professional interest orientation could be achieved through the reform. The weaknesses are found primarily in the links between teaching content. These are currently undergoing a mapping process in order to be optimised. Conclusions: Despite cost neutrality, JENOS is the successful result of reforming the curriculum. The academic reform complied with some requirements for the Master Plan 2020 for Medical Studies in order to be able to implement future changes. C1 [Ehlers, Claudia; Wiesener, Nadine; Guntinas-Lichius, Orlando] Friedrich Schiller Univ Jena, Med Fac, Studies, Jena, Germany. [Teichgraeber, Ulf] Jena Univ Hosp, Inst Diagnost & Intervent Radiol, Jena, Germany. [Guntinas-Lichius, Orlando] Jena Univ Hosp, ENT Dept, Jena, Germany. C3 Friedrich Schiller University of Jena; Friedrich Schiller University of Jena; Friedrich Schiller University of Jena RP Ehlers, C (corresponding author), Friedrich Schiller Univ, Med Fak, Studiendekanat, Bachstr 18, D-07743 Jena, Germany. EM claudia.ehlers@med.uni-jena.de RI Teichgräber, med. Ulf/H-8562-2019; Guntinas-Lichius, Orlando/L-1871-2016 OI Teichgräber, med. Ulf/0000-0002-4048-3938; Guntinas-Lichius, Orlando/0000-0001-9671-0784 CR [Anonymous], 2017, MAST MED 2020 Cholerton S, 2005, PRACTICAL GUIDE MED, P171 Dornan T, 2006, MED TEACH, V28, P3, DOI 10.1080/01421590500410971 Fabry G.B., 2008, Medizindidaktik. Ein Handbuch fur die Praxis Harden RM., 2013, PRACTICAL GUIDE MED Kollewe T., 2018, Medizindidaktik. Erfolgreich Lehren und Wissen vermitteln Konig K, 2012, TRANSFER STEUERN ANA Lammerding-Koeppel M, 2017, GMS J MED EDU, V34, DOI 10.3205/zma001083 Lammerding-Koppel M, 2006, GMS Z MED AUSBILD, V23 Lee E, 2016, ETR&D-EDUC TECH RES, V64, P707, DOI 10.1007/s11423-015-9422-5 Prideaux D., 2013, PRACTICAL GUIDE MED Richter F., 2017, 78 ORD MED FAK 15 16 Sallis E., 2014, Total quality management in education Seldin P., 2006, EVALUATING FACULTY P Serrao G, 2017, ULTRASOUND INT OPEN, V3, pE156, DOI 10.1055/s-0043-121983 Sng JH, 2017, MED TEACH, V39, P866, DOI 10.1080/0142159X.2017.1332360 Steven J, 2013, PRACTICAL GUIDE MED Wissenschaftsrat, 2018, NEUSTR MED AND APPR Wissenschaftsrat, 2014, EMPFEHLUNGEN WEITERE NR 19 TC 6 Z9 6 U1 0 U2 3 PU GERMAN MEDICAL SCIENCE-GMS PI DUESSELDORF PA UBIERSTRASSE 20, DUESSELDORF, 40223, GERMANY SN 2366-5017 J9 GMS J MED EDU JI GMS J. Med. Educ. PY 2019 VL 36 IS 5 SI SI AR Doc50 DI 10.3205/zma001258 PG 22 WC Education, Scientific Disciplines WE Emerging Sources Citation Index (ESCI) SC Education & Educational Research GA JE0XH UT WOS:000490417000004 PM 31815160 DA 2024-09-05 ER PT C AU Siddike, MAK Kohda, Y AF Siddike, Md Abul Kalam Kohda, Youji GP IEEE TI Service Innovation Research in the World: A Bibliometric Analysis SO 2013 INTERNATIONAL CONFERENCE ON SERVICE SCIENCES (ICSS 2013) SE International Conference on Service Sciences LA English DT Proceedings Paper CT International Conference on Service Science (ICSS) CY APR 11-13, 2013 CL Shenzhen, PEOPLES R CHINA DE activity index (AI); attractive index (AII); productive author index (PAI); productive institutions index (PII); productive journal index (PJI); publication proficiency index (PEI); service innovation (SI) ID MANAGEMENT AB The purpose of the study is to find out the growth and development of research productivity in service innovation (SI) in the world during the period of 2001-2011. Firstly, we explore the overall growth of SI research, and then investigate cross-country comparisons in its research performances, with the focus on the world share, relative research effort, impact and quality of top ten productive countries. Furthermore, we develop productive institution index, productive author index and productive journal index in the field of SI. The data was retrieved using Web of Science (WOS) database. The cross-country comparisons show that USA is the leading country and has the biggest world share of SI research. C1 [Siddike, Md Abul Kalam; Kohda, Youji] Japan Adv Inst Sci & Technol, Sch Knowledge Sci, Kanazawa, Ishikawa, Japan. C3 Japan Advanced Institute of Science & Technology (JAIST) RP Siddike, MAK (corresponding author), Japan Adv Inst Sci & Technol, Sch Knowledge Sci, Kanazawa, Ishikawa, Japan. EM siddike@jaist.ac.jp; kohda@jaist.ac.jp RI Siddike, Abul Kalam/AAT-6157-2021 OI Siddike, Abul Kalam/0000-0003-0541-0183 CR BARRAS R, 1986, RES POLICY, V15, P161, DOI 10.1016/0048-7333(86)90012-0 Bergmann J., 2003, P I KNOW 03 GRAZ AUS, P442 Chen KH, 2011, J INFORMETR, V5, P233, DOI 10.1016/j.joi.2010.10.007 Chesbrough H., 2005, HARVARD BUS REV, V83, P16 Chuan T. K., 2010, 7 INT C SERV SYST SE Coombs R, 2000, ECON SCI TECHN INNOV, V18, P85 Paulson LD, 2006, COMPUTER, V39, P18, DOI 10.1109/MC.2006.277 den Hertog P, 2003, ECONOMIST-NETHERLAND, V151, P433 Droege H, 2009, J SERV MANAGE, V20, P131, DOI 10.1108/09564230910952744 fM and IBM, 2007, SUCC SERV INN FRAME J D, 1977, Interciencia, V2, P143 Gallouj F, 1997, RES POLICY, V26, P537, DOI 10.1016/S0048-7333(97)00030-9 GALLOUJ F., 2002, Journal ofSocio-Economics, V31, P137, DOI [10.1016/S1053-5357(01)00126-3, DOI 10.1016/S1053-5357(01)00126-3] Gallouj F, 2009, J EVOL ECON, V19, P149, DOI 10.1007/s00191-008-0126-4 Guan JC, 2004, SCIENTOMETRICS, V61, P339, DOI 10.1023/B:SCIE.0000045114.85737.1b Hu XJ, 2009, SCIENTOMETRICS, V81, P475, DOI 10.1007/s11192-008-2202-9 Johne Axel., 1998, EUR J MARKETING, V32, P184, DOI DOI 10.1108/03090569810204526 Lee PC, 2012, PICMET '12: PROCEEDINGS - TECHNOLOGY MANAGEMENT FOR EMERGING TECHNOLOGIES, P3100 Macbeth D. K., 2012, EUROPEAN MANAGEMENT, V28, P1 Miles I., 2000, INT J INNOV MANAG, V14, P371, DOI [10.1142/S1363919600000202, DOI 10.1142/S1363919600000202] Noor MNM, 2009, FACILITIES, V27, P211, DOI 10.1108/02632770910944943 PRICE DS, 1975, YB SCI FUTURE Sakata I., 2011, TECHN MAN EN SMART W SCHUBERT A, 1986, SCIENTOMETRICS, V9, P281, DOI 10.1007/BF02017249 Sundbo J, 1997, SERV IND J, V17, P432, DOI 10.1080/02642069700000028 Tidd J., 2003, Service Innovation: Organizational Responses to Technological Opportunities and Market Imperatives, DOI DOI 10.1142/9781848161306_0001 Van der Aa W., 2002, SCAND J MANAG, V18, P155, DOI [10.1016/S0956-5221(00)00040-3, DOI 10.1016/S0956-5221(00)00040-3] Yu Y., 2011, 5 INT C MAN SERV SCI, P1 NR 28 TC 0 Z9 0 U1 0 U2 10 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA SN 2165-3828 BN 978-0-7695-4972-9; 978-1-4673-6258-0 J9 INT CONF SERVICE SCI PY 2013 BP 34 EP 39 DI 10.1109/ICSS.2013.15 PG 6 WC Computer Science, Artificial Intelligence; Computer Science, Information Systems; Computer Science, Interdisciplinary Applications WE Conference Proceedings Citation Index - Science (CPCI-S) SC Computer Science GA BHD52 UT WOS:000325086200007 DA 2024-09-05 ER EF